roceedings

TESTING DEFLECTION YOKES

Syatronic Instruments, itc.
The stringent requirements of modern high-speed display systems demand careful checking of deflection yoke characteristics. The yoke shown in the mirror above tube is being measured for transient response and resonant frequency.

Volume 43
Number 9

IN THIS ISSUE
Frequency and Time Standards
IRE Standards on Industrial Electronics
IRE Standara's on Waveguides
Power Gain of Transistors
IRE Standards on Radio Receivers
A Microwave Phase Contour Plotter
Dielectric Tuning of Panoramic Receivers

Wide-Band Low-Noise Amplifiers
Tuning of Microwave Cavities
Resolution of Signals in Noise
AGC of Transistor Amplifiers
Optimum-Response Networks
Transactions Abstracts
Abstracts and References

Table of Contents, Indicated by Black-And-IWhite Margin, Follows Page 96A

IRE Srandards on Industrial Electronics terms, Waveg.ide Deinnitions, and Receiver Testong appear in this issue

TELEMETERING
 FILTERS

UTC manufactures a wide variety of band pass filters for multi-channel telemetering. Illustrated are a group of filters supplied for 400 cycle to 40 KC service. Miniaturized units have been made for many applications. For example a group of 4 cubic inch units which provide 50 channels between 4 KC and 100 KC .

Dimensions
(3834) $11 / 4 \times 13 / 4 \times 2.3 / 16^{\circ 0}$
$\left(2000\right.$, 1) $11 / 4 \times 13 / 4 \times 15 / 8{ }^{\prime \prime}$ 。

CARRIER

FILTERS

A wide variety of carrier filters are available for specific applications. This type of tone channel filter can be supplied in a varied range of band widths and attenuations. The curves shown are typical units.

DISCRIMINATORS

These high Q discriminators provide exceptional amplification and linearity. Typical characteristics available are illustrated by the low and higher frequency curves shown.

FILTERS FOR EVERY APPLICATION

Dimensions:

$$
(4682 A) 11 / 2 \times 2 \geq 4^{\prime \prime}
$$

ARRCRAFT
 FILTERS

UTC has produced the bulk of filters used in aircraft equipment for over a decade. The curve at the left is that of a miniaturized (1020 cycles) range filter providing high attenuation between voice and range frequencies.
Curves at the right are that of our miniaturized 90 and 150 cycle filters for glide path systems.

Dimensions:
(6173) $1.1 / 16 \times 13$. $\times 3^{\prime \prime}$.
(6174A) $1 \times 11 / 4 \times 21 / 4$ ".

ww3-WATTBlue facket miniaturized axial-lead wire wound resistor

This power-type wire wound axial-lead Blue Jacket is hardly larger than a match head but it performs like a giam!' It's a rugged virreous-enamel coared job-and like the entire Blue Jacket family, it is built to withstand severest humidity performance requirements.

Bluc Jackets are ideal for dip-soldered sub-assemblies . . . for point-to-point wiring ... for terminal board mounting and processed wiring boards. They're low in
cost, eliminate extra hardware, save time and labor in mounting!

Axial-lead Blue Jackers in 3,5 and 10 watt ratings are available without delay in any quantity you require. $\quad \star \quad \star \quad \star$

SPRAGUE TYPE NO.	WATTAGE RATING	DIMENSIONS L (inches)	MAXIMUM RESISTANCE	
$151 E$	3	$1 / 32$	$13 / 4$	$10,000 \Omega$
$27 E$	5	$11 / 6$	$5 / 6$	$30,000 \Omega$
$28 E$	10	1%	5/6	$50,000 \Omega$

Slandard Resistance Tolerance: $\pm 5 \%$

[^0]

The machine we call "Mr. Meticulous"

Bell Laboratories scientists, who invented the junction transistor, have now created an automatic device which performs the intricate operations required for the laboratory production of experimental model transistors.

It takes a bar of germanium little thicker than a hair and tests its electrical characteristics. Then, in steps of $1 / 20,(100)$ of an inch, it automatically moves a fine wire along the bar in search of an invisible layer of positive germanium to which the wire must be connected. 'This layer may be as thin as $1 / 10,000$ of an inch!

When the machine finds the layer, it orders a surge of current which honds the wire to the bar. Then it welds the wire's other end to a binding post. Afterward, it flips the bar over and does the same job with another wire on the opposite side!

Once only the most skilled technicians could do this
work, and even their practiced hands became fatigued. This development demonstrates again how Bell Telephone Laboratories scientists work in every area of telephony to make service better.

Transistor made by new marhine is shown in shetch at left "bore. masnified 6 times. . At right is sketch of area where wires "re bonded. The wires are 2/1000 inch in diameter, with ends rimperd to reduce thickness.

BELL TELEPHONE
LABORATORIES

Another Advancement by

 General Ceramics
Presenting-

New Super-Grade Ferrites from the Laboratories of General Ceramics-

New Super-Ferramics are magnetic ferrites with properties once considered beyond the realm of achievement. The first of this series Ferramic O, (see property chart) has been released and is now available in production quantities. Engineers and product designers are invited to request complete information on Ferramic O. Call or write for data today!

Superior in Quality-Lower in Cost - Higher Initial Permeability - Higher Effective Permeäbility at Higher Saturation Levels - Lower Core Loss Resulting in Less Temperature Rise - Greater Uniformity Thróugh Improved Production Techniques

MAGNETIC PROPERTIES OF FERRAMIC O-1

PROPERTIES	UNIT	Ferramic 0.1
Muo at 50 kcs .	-	1200
Mumax	-	6000
Saturation Flux Density B_{s}	Gauss	4100
Residual Magnetism Br	Gauss	2500
Coercive Force Hc_{c}	Oersteds	0.20
Curie Temperature	$+{ }^{\circ} \mathrm{C}$.	165
Volume Resistivity	-	Low
Loss Factor at 50 kcs .	$\frac{1}{100}$	0.000010
$\begin{aligned} & \text { Temp. Coeff. of } \\ & \text { Initial Perm. (} 50 \mathrm{Kcs} \text {) } \end{aligned}$	$\% /{ }^{\circ} \mathrm{C}$.	+0.75

MAKERS OF STEATITE, ALUMINA, ZIRCON, PORCELAIN, SOLDEREEAL TERMINALS, "ADVAC" HIGH TEMPERATURE SEALS, CHEMICAL STONEWARE, IMPERVIOUS GRAPHITE, FERRAMIC MAGNETIC CORES

PERKIN... HAS A STANDARD POWER SUPPLY FOR YOUR EVERY NEED

PERKIN
 TUBELESS!!
 maGNETIC AMPLIFIER REGULATED DC Pown SUPPLIES

REGULATION: $\pm 1 \%$ (a) from 5.32 V $O C$ (b) from 1.5 to 15 amps . (c) from $105 \cdot 125 \mathrm{~V}$ AC. (single phase, 60 cps .)
RIPPLE: 1% rms @ 32 V and full lood, increases to max. of $2 \% \mathrm{rms}$ @ 5 V and full load. RESPONSE: 0.2 sec .
METERS: $4 \frac{1}{2} 2^{\prime \prime} A M$ and VM; 2% occuracy. MOUNTING: Cabinet or $19^{\prime \prime}$ rock panel. FINISH: Baked Grey Wrinkle.
WEIGHT: 150 Hbs.
DIMENSION: $22^{\prime \prime} \times 17^{\prime \prime} \times 14 \frac{1 / 2 "}{}$

REGULATION: $\pm 1 \%$ * (0) at 28 V DC: increases to 2% mox. over the range $24-32 \mathrm{~V}$; does nor exceed 2 V regulation over the range $4.24 \mathrm{~V} D C$ (b) from $1 / 10$ full load ta fu'l load (c) at a fixed $A C$ Input of 115 V .
RIPPLE: 1% rms @ 32 V and full lood: 2% rms max. @ any voltage above 4 V . AC INPUT: 115 V , single phase, 60 cps. FINISH: Boked Grey Wrinkle.
WEIGHT: 130 lbs .
DIMENSIONS: $22^{\prime \prime} \times 15^{\prime \prime} \times 14 \frac{1}{2}{ }^{\prime \prime}$

REGULATION: $\pm 1 \%$ (a) from 101040 V $D C$ (b) from 100 to $130 \mathrm{~V} A C$ (c) from 3 to 30 Amps DC. RIPPLE: $1 \% \mathrm{rms}$.
AC INPUT: $100.130 \mathrm{~V}, 1$ phose, 60 cycles. RESPONSE: 0.2 sec . METERS: $4 \frac{1}{2} \mathbf{2}^{\prime \prime}$ AM and VM.
MOUNTING: Cabinet with $19^{\prime \prime}$ rack ponel. FINISH: Boked Grey Enamel.
WEIGHT: 200 libs.
DIMENSIONS: $22^{\prime \prime} \times 15^{\prime \prime} \times 23^{\prime \prime}$

REGULATION: $\pm 1 / 2 \%$ (a) from no load to full Icad. (b) from $24-32 \mathrm{~V}$ DC. (c) for 230 (or 460) $\vee \pm 10 \%$
DC OUTPUT: $24-32 \mathrm{~V}$ @ 100 omps.
AC INPUT: 230 or $460 \mathrm{~V} \pm 10 \%, 3$ phase, 60 cycles.
RIPPLE: 1% rms. RESPONSE TIME: 0.2 sec . MOUNTING: Cobinet or $19^{\prime \prime}$ rock panel. WEIGHT: 250 lbs .
DIMENSIONS: $25^{\prime \prime} \times 15^{\prime \prime} \times 15^{\prime \prime}$
-This unit will be supplied for 230 V AC Inpup unless 460 V is specified.

ALso AVAlLABLF: Stondard 5 and 115
volt madela Ground and Airborne Rader yott mnoels Gound and Airbarne Rador
ond Mryily Powyt Suppllev - Write for PERKIN ENGINERING CORP.

power oupplies

Meetings with Brtilits

As a service both to Members and the industry, we will endeavor to record in this column each month those meelings of IRE, its sections and professional groups which include exhibits.

Δ

Sept. 12.16, 19.55
Tenth Annual Instrument Conference Exhibil, Shrine Exposition Hall \& Auditorium, Los Angeles, Calif.
Exhibits: Mr. Fred J. Tabery, 3442 So. Hill St., Los Angeles 7, Calif.
Sept. 26-27, 1955
IRE Sixtl Annual Meeting of the Professional Group on Vehicular Communications, Hotel Multnomah, Portland, Ore.
Exhibits: Mr. Henry S. Broughall, General Electric Co., 2727 N.W. 29th Ave., Portland, Ore.
October 3-5, 1955
National Electronics Conference, Sherman Hotel, Chicago, 111.
Exhibits: Mr. G. J. Argall, c/o DeVry 'Fechnical Institute, 4141 Belmont Ave., Chicago 41, Ill.
Oct. 31-Nov. 1, 1955
IRE East Coast Conference on Aeronautical \& Navigational Electronics. Lord Baltinore Hotel, Baltimore, Md.

Exhibits: Mr. C. E. McClellan, Westing. house Electric Corp., Air Arm Div., Friendship International Airport, Baltimore, Md.
Nov. 3-4, 1955
Annual Electronirs Conference, Kansas City Section, Town House Hotel, Kansas City, Kans.
Exhibits: Mr. Charles V. Miller, Bendix Aviation Corp., P.O. Box 1159, Kansas City $41, \mathrm{Mo}$.
Nov. 7.9, 19.55
Eastern Joint Computer Conference (IRE-AIEE-ACM), Hotel Statler, Boston, Mass.
Exhibits: Mr. J. D. Porter, Digital Computer Lab., Barta Building, M.I.T., Cambridge, Mass.
Nov. 28-30, 1955
Instrument:tion Conference \& Exhibit, Atlanta Biltmore Hotel, Atlanta, Ga.
Exhibits: Mr. W. B. Wrigley, Engineering Experiment Station, Georgia Institute of Technology, Atlanta, Ga .
December 12.16, 1955
EJC: Nurlear Science and Engineering Congress, Cleveland, Ohio
Exhibits: Engineers Joint Council, 33 W. 39th St., New York, N.Y.
Feb. 9-11, 1956
Eighth Annual Soulhwestern IRE, Conference and Electronics Show, Municipal Auditorium, Oklahoma City, Okla.
Exhibits: Mrs. Charles E. Happ, P.O. Box 764, Oklahoma City, Okla.
March 19-22, 1956
IRF National Convention and Radio Engineering Show, Waldorf-Astoria Hotel and Kingsbridge Armory and Palace, New York, N.Y.
Exhibits: Mr. William C. Copp, Institute of Radio Engineers, 1475 Broadway, New York 36, N.Y.

 NOISE FIGURE MEASUREMENT 10-3000 MC

Frequency Range:

10 mc to $3,000 \mathrm{mc}$
Output Impedance:
50 ohms unbalanced into Type N Connector
Noise Figure Range:
0 to 20 db
Filament Voltage Supply:
From regulated supply

Meter Calibration:

Linear in db noise figure; logarithmic in D.C.M.A.
Fuse Protection:
One Type 3AG, 2 amps
Tubes:
I Eelipse Pioneer TTI Diode
Power Supply Source:
117 Watts $\pm 10 \% .60 \mathrm{cps} A C$
Available for 50 cps .
Power Consumption:
130 Watts
Price:
\$995. FOB plant

KAY Rada-Node -

Complete radar noise figure measuring set for IF and RF, including attenuators, detector and noise sources. Complete with power supplies. Frequency range: 5 to $26,500 \mathrm{mc}$; noise
figure: range, up to 2 l db, in lower part of spectrum. Prices on request.

Kay Microwave Mega-Nodes
Calibrated random noise sources in the microwave range, used to measure norse figure, and receiver gain and calibrate standard signal soupces in radar and other microwave systems.
Available in following waveguide sizes to cover range of 960 26,500 mc.

$\begin{array}{llll}\text { RGG.49/U } \cdots . . & 195 . & 15.8 \mathrm{db} \pm .25 \mathrm{db} \text {; argon gas tuses, } 15.2 \mathrm{db} \pm .1\end{array}$

+ RG-50/U … 195. db^{*} : neon tubes. $18.0 \mathrm{db} \pm .5 \mathrm{db}^{*}$.
+RG-51/U... 195. *Noise output of inert gas tubes independent of
RG.52/U
RG.91/U 195.
RGerating temperature. RG-53/U … 250. argon gas and all waveguide sizes: $\$ 100$.
\$\$167. per Guide when 3 or more are purchased with \$100. Power Supply NEWI WR-770; WR-650- $\$ 595.00$ each: WR-510; WR-430; WR-340-m

A calibrated random noise source providing an output from $10-3,000 \mathrm{mc}$, the Mega-Node Sr. may be used to measure noise figure and receiver gain and for the indirect calibration of standard signal sources.
At the lower end of the frequency range noise figure may be obtained directly from the meter. For greater accuracy at higher frequencies, corrections for diode transit time and termination mismatch are available from charts supplied with each instrument.

Kay Mega-Node
Calibrated random noıse scurce reading direct ir, $\mathrm{db}_{\text {, for }}$ measureraent of noise figrere, receiver gain and for indiect sources. Frequency range, 5 sources. Frequency range, ${ }^{5}$ to 220 mc ; Output impedances, unbalanced-50, 75, 150, 300 , Infirity: balanced-: 00 , 150 ,
300,800 . Infinity; nojse figure 300, 600 . Infinitri nojse figure range, $0-16$ do at 50 shms Price: $\$ 295$. FOB plant.

KAY Auto-Node

Designed for production-line noise figure measurement from 5 to $26,500 \mathrm{mc}$., the Auto-Node provides continuous interpolation over VHF, UHF and mierowave frequencies. Two models are available:

MODEL TV MODEL RADAR
Trell. Range:
IF Strips mc.
IF Strips:
${ }_{15}^{20}$ or 40 mc . extra
Noise Figure Range:
Noise 0 . 24 db Range:
Price: $\$ 795$ FOB plant.
Additional IF strips,
$\$ 1 \angle 5.00$

Frea. Range:
30 and 60 mc ; other
IFs availablo.
IF Noise Figure:
$0-7 \mathrm{db}$
Price: $\$ 950$ with 2 If strips.
$\$ 950$ with 21
F0B plant.

For Complete Information Regarding these, and other Kay Instruments, Write:

KAY ELECTRIC COMPANY

Dept. 1-9, 14 Mople Avenue
Pine Brook, N.J.

Now Measure

from 100 microvolts to 320 volts REGARDLESS OF WAVEFORM with the Bullantine Model 320 Voltmeter

BRIEF SPECIFICATIONS:

VOLTAGE RANGE: 100 microvolts to 320 volts
DECIBEL RANGE:
.. - 80 dbv to +50 dbv
FREQUENCY RANGE: 5 10 $\$ 00,000$ cycles per second
ACCURACY:........ 3% from 15 cps to $150 \mathrm{KC} ; 5 \%$ else where
Figures apoly to all meter readings
MAXIMUM CREST FACTORS: 5 at full scale; 15 at botrom scale
CALIBRATOR STABILITY: $.0 .5 \%$ for line voriation 105.125 volts
INPUT IMPEDANCE: . . . $10 \mathrm{M} \Omega$ and 25 wuf, below 10 millivalts
$10 \mathrm{M} \Omega$ and 8 yuf, obove 10 millivolts
POWER SUPPLY:......... 105-125 volts; $50-420$ cps, 75 watt
Provision for 210.250 volt operation
DIMENSIONS: (Porlable Model). $143 / /^{\prime \prime}$ wide, $10 \frac{1 / /^{\prime \prime} h i g h, ~}{\text { h }}$
$123 /$ " $^{\prime \prime}$ deep-Relay Rack Model is available
WEIGHT:. 21 lbs., approximotely
 PRICE: $\$ 375$

Write for the New Ballantine Catalog describing this and other instruments in greater details.

MICROWAVE
 MULTI-PULSE SPECTRUM SELECTOR

for use with Polarad Spectrum Analyzers

The Polarad Multi-Pulse Spectrum Selector increases the versatility of Polarad Spectrum Analyzers by displaying and allowing selection for analysis a specific train of microwave pulses as well as any one pulse in the train.

It will select and gate a group of pulses up to 100μ sec. in length; is designed to work with fast, narrow pulses; and can be adjusted to gate any pulse including the first at zero time. Special circuitry discriminates automatically once pulses have been selected. The Model SD- 1 has been designed to operate with all Polarad Spectrum Analyzers at any of the frequencies they will accept.

- Completely self-powered portable unit.
- High intensity, flat-face CRT for accurate dis* play with:
Continuously variable sweep widths; 10 to $100 \mu \mathrm{sec}$.
Continuously variable gate widths for pulse selection; 0.2 to $10 \mu \mathrm{sec}$.
Continuously variable gate delays for pulse selection; 0 to $100 \mu \mathrm{sec}$.
Automatic gating of spectrum analyzer during time of pulse consideration.
Intensified gates (brightening) to facilitate manual pulse selection.
Triggered sweep on first pulse in any train. No sweep in absence of signal.

SPECIFICATIONS:

Maximum Pulse Train Time.............. $100 \mu \mathrm{sec}$.
Pulse Rise Time.............................. 05 sec. or Less
Minimum Pulse Separation................ 1 $\mu \mathrm{sec}$.
Repetition Rate.................... $10-10,000$ pps.
Minimum Pulse Width........................ 1 敫ec.
input Power... $1 \hat{10} \mathrm{I}$ volts,
50/60 cps., 350 watts
Input Impedance . . . 50 ohms
Output Impedance .. 50 ohms Spect(om Analyzen)

aVAILABLE ON EQUIPMENT LEASE PLAN
 FIELD MAINTENAMCE SEGVICE AVAILABLE THMOUGMOUT TME COUNTRY

ELECTRONICS CORPORATION
43-20 34th staeet LONG ISLAND CITY 1, N. Y.

102 Fanny Road, Boonion, N.J.
 ing heads. The model ISA operates simply-single dial frequency controlwith utmost frequency stab,lity. It provides highest accuracy, and reliability for observation and true evaluation of performance over the entire RF spectrum: -saving engineer ng manhours.
This instrament is designed for maximum utility and versatility in the laboratory and on the production line providing an easy-to-read 5 inch CRT display of the RF specirum.

Imput Impedance: $\mathbf{5 0}$ ohms-nominal -Sensitivity:
STU-1 $10-400 \mathrm{mcs}-89 \mathrm{dbm}$ $400 \cdot 1000 \mathrm{mcs}-84 \mathrm{dbm}$
STU-2A 910-2.200 mCs -87 dbm $1,980 \cdot 4,560 \mathrm{mcs}-77 \mathrm{dbm}$
STU. $3 \mathrm{~A} 4,370 \cdot 10,920 \mathrm{mcs}-75 \mathrm{dbm}$ $8,900 \cdot 22,000 \mathrm{mcs}-60 \mathrm{dbm}$
STV. $421,000 \cdot 33,000 \mathrm{mcs}-55 \mathrm{dbm}$ STU-5 $33,000-44,000 \mathrm{mcs}-45 \mathrm{dbm}$
Overall Gain: 120 db
Attenuation:
*RF Internal 100 db continuously variable,
Inout Power. 400 Watts

- Minimum Discernible Signal
- "STU-1 STU-2A, STU-3A

The model TSA Spectrum Analyzer has these exclusive Polarad de. sign and operating leatures

- Single frequency control with direct reading dial. No hlystron modes to set. Tuning dial accuracy $\pm 1 \%$.
- Five interchangeable RF tun. ing units for the entire frequency range 10 to 44,000 mes.
- Temperature compensation of Klystron Oscillator.
- Swept IF provides 400 kc to 25 mc display independent of RF frequency setting.
- Internal RF attenuator.**
- Frequency marker for measuring ifequency differences from 40 kc to 25 mc .

ayailable on equipmant lease plan

FIELD MAINTEMANCE SERVICE AVAILABLE TMROUGHOUT THE COUNTRY

NEW! Write for Handbook of Spectrum Analyzer Techniques

ELECTRONICS CORPORATION $43 \cdot 20$ 34th STREET, LONG ILLANO CITr 1, n. Y.

Strip-type Mallory carbon control adapted for quick mounting and connection on printed circnits. Strips
 can be mounted in tandem to take minimum space on crowded chassis.

Strip-Type Mallory Multiple Controls* Save Space . . Speed Assembly on Printed Circuits

Low cost way to get close tolerance fixed resistors

Thereonomicaleost of the Wallory strip-type controls makes them useful in place of close tolerance fixed resistors. Just adjust them to the exact resistance required in the cirenit, and you will have a fixed carbon resistor. The stability of the specially developed carbon element assures you of highly constant resistance value.
*I'utent Irmiding

New ecovomies in the production of printed electrenic circuits are made possible by these Wallory striptype controls. Available in single. dual and triple sections, they have straight tinned terminals which projeet through punched slots in the printed sheet for dip soldering.
Mounting is simple and fast. Shouldered tabs fixed for the ends of the strip hold the control assembly in pace. To save space, multiple sertions can be mounted about $1 / 2{ }^{2 \prime}$ behind each other. Holes punched in the strip permit the shatis of the rear section to project through the front unit for adjustment.

For conventional chassis as well as printed circuits, this functionalized design reduces a carbon control to its simpleat form. The resistance wafers are monted directly on a phenolic panel. Due to this unique construction. Nallory is able to offer multiple units at a cost substantially lower than that of a similar mamber of single controls.
High stability of resistance. Iow noise and long service life are pro. vided by the highedensity Mallory control element. A complete range of resistance values from $2 \overline{5} 0$ ohms to 10 mog ghme is available. For full data, write or call Mallory today.

Expect more... Gel more from

Serving Industry with These Products:
Electramechanical-Resistors - Switches - Television Tuners - Vibratars Electrachemical-Capacitars - Rectifiers - Mercury Batteries Metallurgical - Contacts - Special Metals and Ceramics - Welding Materials

MAlLORY
P. R. MALIORY \& CO., Inc., INDIANAPOLIS 6, INDIANA

SPECIFICATIONS

Frequency Range: 1 cps to 1 MC , continuous coverage.
Low Impedance Output: 7.0 v peak-to-peak across 75 ohm internal impedance. Rise time less than $0.02 \mu \mathrm{sec}$. BNC Connector.
High Impedance Output: 55 v peak-to-peak across 600 ohm internal impedance. Rise time less than $0.1 \mu \mathrm{sec}$. Dual banana jacks - $3 / 4^{\prime \prime}$ centers.
Amplitude Control: Low Impedance Output - Potentiometer and 60 db attenuator, variable in 20 db steps. High Impedance Output-Potentiometer.
Frequency Control: Dial calibrated "1 to 10" and decade multiplier switch. Six bands.
Symmetry Control: Allows exact square-wave balance.
Sync Input: Positive-going pulse or sine wave signal, minimum amplitude 5 volts peak. BNC connector.
Power: $115 / 230 \mathrm{v} \pm 10 \%, 50 / 60 \mathrm{cps}, 195$ watts.
Size: $93 / 4^{\prime \prime}$ wide, $137 / 8^{\prime \prime}$ high, $133 / 8^{\prime \prime}$ deep.
Weight: Net 22 lbs.; Shipping 44 lbs.
Price: \$265.00.
Data subject to change without notice. Prices f.o.b. factory.

Complete Coverage, Highest Quality

1 cps to 1 MC
 Square Wave Generator
 with 0.02 usec rise time

Other Unusual Features
7 volt 75 ohm TV circuit 55 volt 600 ohm high level circuit Full amplitude variation External synchronization

The new -hp- 211A Square Wave Generator permits fast measurement of audio and video amplifier frequency phase and transient characteristics up to several megacycles. In computer, pulse code and telemetering work, it materially simplifies triggering and switching. It is excellent for testing television circuitry, and ideal for modulating high frequency circuits, testing attenuators, filters and delay lines. In general laboratory use it is an excellent means of measuring time constants, indicating phase shift, frequency response and transient response.

Model 211 A has many unique features. Besides the 0.02 μ sec rise time and two separate outputs (with full amplitude variation on both), the generator can be operated either freerunning or externally synchronized. External synchronizing can be either with a positive going pulse or a sine wave signal of 3 volts amplitude. Much of the instrument's circuitry is etched to provide clean, trouble-free layout, compact size, freedom from stray capacity variations, and thus, a highly uniform product. The generator is of quality construction throughout and is housed in a streamlined, lightweight metal cabinet.

SEND FOR OPERATING TECHNIQUES, CAPABILITIES, COMPLETE DATA

[^1]Save, save, save . . . time, trouble, money when purchasing molybdenum permalloy* Powder Cores, for there can be no waste when you buy from Magnetics, Inc. Exclusively PerformanceGuaranteed, these cores are also graded according to inductance, and color-coded sc your assemblèrs know how many turns to put on without special testing. Write today for full details . . . Bulletin PC-103 and your Color-Coding Card . . . and remember . . .

Peminalloy Poviler lories

coss II IVIOP-

DEPT. I-24, BUTLER, PA.
*Manufactured under a license agreement with the Western Electric Co.

Standard Heavy-Duty Stacks

Extremely long life. . . with no maintenance problems. Thousands of voltage/amperage combinations available. Sizes from $11 / 16^{\prime \prime \prime}$ square cells to giant $6^{\prime \prime} \times 10^{\prime \prime}$ plates... Federal can provide a power rectifier for almost every type of industrial and military equipment.

Encapsulated Rectifiers

Maximum resistance to impact, acceleration, and vibration. Complete protection from harmful atmospheric conditions. Other electronic components may be encapsulated with rectifier to form a rugged, replaceable "potted" circuit.

Why

INDUSTRY and DEFENSE

LOOK TO
FOR THE FINEST IN SELENIUM RECTIFIERS in paper, glass, Bakelite, nylon, or metal tubes. Simple fuse-clip mounting of ferrule terminal types. Also, hermetically-sealed types. Uses:
CRT high-voltage supplies, photoflash, insulation testers, etc.

Pioneering

Leadership

Federal is the original supplier of selenium rectifiers in the United States... leading the field in research, development and production.

Facilities
 and Service

Federal's facilities can handle the largest and most complex orders ...satisfy the rush requirements of customer production peaks. Every order-large or small-is processed through a skilled engineering staff.

Quality
 and Economy

Federal's modern fabrication methods, mass production, intensive quality control, and rigid testing assure a product of highest quality and greatest economy.

Selenium cells and stacks precisely manufactured, tested, and selected to assure a high de* gree of stability and very low reverse current. For use with saturable reactors, regulated DC power supplies, etc.

LET US KNOW your AC-to-DC conversion problems. For further information on Federal Industrial Rectifiers, call NUtley 2-3600, or write to Dept. F-837.

Federal Telephone and Radio Company
A Division of INTERNATIONAL TELEPHONE AND TELEGRAPH CORPORATION COMPONENTS DIVISION • 100 KINGSLAND ROAD • CLIFTON, N. J.
In Canada: Standard Telephones and Cables Mfg. Co (Canada) Lid., Monfreal. P. Q. Export Distributors: International Standard Electric Corp.. 67 Broad St., New York

Th
The MC-700 AM-FM Electronic Multiplier is extremely accurate and performs at very high speed, thes saving many hours monthly in all types of computing center work. It consists of:

- 6 identical "A" units called MASTERS
- 12 identical " B " units called SLAVES
- Each Master Unit accepts two imputs, X and Y, and provides the product $X Y$
- With the addition of the Slave Units, the products $X Z$ and $X W$ are obtained.

These Specifications of the MC-700 provide four quadrant multiplication:
1 The input and output ranges are plus or minus 100 volts, with an input impedance of greater than ane megohm, and an autput impedance equal to that af the D-C Amplifier in the unit.
2 The static accuracy is within 0.2 volts aver full range.
3 The frequency response at full amplitude is flat ta 400 cycles, with less than ane degree af phase shift at 100 cycles.
4 The naise is less than 05 valts RMS.
5 The drift daes not exceed 0.2 volts aver an 8 hr . period.

MAIL THIS TOOAY TO SAVE TIME TOMORROW!

MID-CENTURY INSTRUMATIC CORP.
611 Braadway, New Yark 12, N. Y.
I am interested in obtaining more information on the following, without obligation
MC. 700 Electranic Multiplier
MC. 300 Six Channel Recorder

MC-400 Analogue Camputer
MC-500 D-C Analogue Computer
MC-600 Six Channel Electranic Functian Generator

FIRM NAME
STREET. \qquad
CITY... ..ZONE.... ...STATE \qquad BY.

"precision is our business" MAGD D C E M G D B M

611 BROADWAY

Now! For AMP Taper Pin Connectors

Type 90 GS/60W-AMP/S Compression Header, available with from 8 to 14 terminals, shown four times actual size.
....offering fast
connect and disconnect, speedy assembly and positive connections without soldering!

Available

IN COMPRESSION HEADERS AND PRACTICALLY ALL STANDARD E-I SINGLE TERMINAL EYELETS -

E-I offers single and multiple terminal type compression headers and practically every standard E-I single terminal compression eyelet for use with Type 78 AMP connectors*. For recommendations on specific sealed terminal applications, consult an E-I sales engineer, today!

PATENTS PENDING All RIGHTS RESEEVED

*Products of Aircraft-Marine Products, Inc. of Harrisburg, Pa.

Standard Ratio Transformer

Four new ruggedized standard ratio transformers have been added to the line of precision ac voltage dividers developed by Gertsch Products, Inc., 11846 Mississippi Ave., Los Angeles 25, Calif.

The I'l Series consists of nine modets of both rack mounted and case models, specifically designed to divide ac voltage with accuracies as good as 0.005 per cent and resolution as good as 0,00001 per cent. Mockels are available to cover frequencies from 30 to $3,000 \mathrm{cps}$ (to $10,000 \mathrm{cps}$ at reduced accuracy).

The four new morlels have ruggedized heavy silver rotary switches, for use wherever severe continuous service is required. According to the manufacturer the permanent "built-in" accuracy contained in all models, is not subject to the variations normally experienced with resistive dividers.
lises for the standard ratio transformers include core material investigation, ac meter calibration, transformer turns investigation, checking resolvers, servos, computers, synchros, selsyns, and ac transducers, bridge ratio arm, ac potentiometer checking, and as a ratio standard.

LF Q Meter

The Kilo-(Q, most recent addition to its line of electronic instruments was announced recently by Kay Electric Co., 14 Maple Ave.. Pine Brook, N. J.

A low frequency Q meter, the Kilo-() will cover a range of 20

These manufacturers have invited PRO. CEEDINGS readers to write for literature and further technical information. Please mention your I.R.E. affiliation.
cps to 1 mc . For ease of operation, the unit combines a direct reading dial over the entire range, accurate to 1 per cent.
Two positions are provided on the Q Range Control with full scale Q readings of 0 to 125 and 0 to 250 , respectively. For reading Q values between 250 and 500 , it is necessary to set the lever control to the X 2 position on the dial and double the reading on the 250 scale.

The instrument provides a tuning capacitor range of $60-1,200$ $\mu \mu f$. A vernier capacitor control in shunt is provided to facilitate tuning of sharp "()s."

Oscillator frequency accuracy, 2 to 5 per cent. Calibration capacitance accuracy, 1 per cent. Price $\$ 695$ f.o.b. plant. For complete information, write the manufacturer.

Precision Phase Detector

This instrument manufactured by Advance Electronics Co., Inc., 451 Highland Ave., Passaic, N. J., will measure time delay, phase delay, or envelope delay with error less than 1 per cent or 0.1° between two alternating voltages from $10 \mathrm{kc} u p$ to 15 mc . Essentially Type 205a precision phase detector consists of two input amplifiers, a continuously variable delay line, a step variable delay line, a differential tuned amplifier, a balanced phase detector, and a sensitive output inclicator.

The smallest time delay that can be read on the dial is 5×10^{-10} seconds; the smallest phase angle in degrees that can be read on the dial is equal to $5 \times 10^{-10} \times 36 \times$ frequency in cps. The frequency range is 10 kc to 15 mc . The time delay of the step variable delay
line is $5 \mu \mathrm{~s}$ in step of $0.05 \mu \mathrm{~s}$. Three plug-in units of continuously variable delay lines are supplied with the instrument, 0 to $0.4 \mu \mathrm{~s}, 0$ to $0.25 \mu \mathrm{~s}$, and 0 to $0.05 \mu \mathrm{~s}$. The maximum phase range that can be measured with the instrument is equal to the total time delay of the continuously variable delay line plus the step variable delay line multiplied by the frequeacy of the signals and 360. The indicator sensitivity is approximately 0.01 volt full scale maximum without the probe, and 0.1 volt with the prolee. Two low capacity probes with input capacitance less than $4 \mu \mu \mathrm{f}$ are supplied with the unit. The panel binding post has about 1 megohm shunted with $12 \mu \mu \mathrm{f}$ on both input channels.

Paper Dielectric Tubulars

Cornell-Dubilier Electric Corp.,

 South Plainfield, N. J., announces the development of its new "Tiger Cub" type MGT, high temperature paper dielectric tubular capacitors. This new capacitor is designed to operate effectively at temperatures from $-55^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$.

The capacitance stability of the new "Tiger Cub" is such that it varies less than 10 per cent over this temperature range. Longer service life is assured by Vikane impregnation. An external wax dip provides added moisture protection that will withstand 250 hours of continuous exposure in 90 per cent relative humidity at $40^{\circ} \mathrm{C}$.

The "Tiger Cub" MGT paper tubular capacitors are available in capacities from $0.001 \mu \mu$ f to 1.0 $\mu \mu \int$ in 6 voltage ranges from 100 to 1,600 volts dc working. Low resistance lead wires are soldered to extended foils and held firmly in place by Polykane, the high temperature, non-melting end fill. Request Bulletin 168.

Series 550-RO Attenuator

Because D/AMVEN makes the most complete, the most accurate line of Aymphuthors in the world!

Series 640 -R7

Write for Catalog Dafa.

" DADEN

195 CENTRAL AVENUE NEWARK 4, NEW JERSEY

Just select the range you want... Hycon's new Model 615 Digital VTVM does the rest . . . gives you a direct reading in numerical form, complete with decimal point and polarity sign. There's no interpolation, no chance of reading the wrong scale. Evea inexperienced personnel find the Model 615 easy to use . . you just can't read it incor*ectly!
Ideal for both laboratory and production-line testing, here's what the Model 615 offers... ... 1% accuracy on DC and ohms; 2% on AC
... 12 ranges . . . 0 to 1000 volts DC and $\mathrm{AC} ; 0$ to 10 megohms
... Illuminated 3 -digit scale, with decimal point and polarity sign ... Response (with auxiliary probes) to 250 mc
... Shielded case; rugged, bench-stacking design; lightweight
Two more Hycon test instruments . . . designed for tomorrow's

MODEL $6173^{\prime \prime}$ OSCILLOSCOPE...

Accurate enough for research, rugged enough for servicing. Features high deflection sensitivity ($.01 \mathrm{v} / \mathrm{in} \mathrm{rms}$); 4.5 mc vertica! bandpass, flat $\pm 1 \mathrm{db}$; internal 5\% calibrating voltage. SPECIAL FLAT $3^{\prime \prime}$ CRT For unoistorteo trace from edge to egge.

MODEL 614 VTVM.
Maximum convenience combined with unprecedented low cost. Pius features include: 21 ranges (28 with p-p scales); $61 / 2^{\prime \prime}$ meter; 3% accuracy on DC and ohms, 5% on AC; response (with auxiliary probe) to 250 mc . TEST PROBES STOW IN CASE, READY TO USE.

See these Hycon instruments
... all in matching, bench-
stacking cases . . . at your local electronic jobber.

TYycore mfo. Company 2961 EAST COLORADO STREET
PASADENA 8, CALIFORNIA
"Where accuracy counts"
BASIC ELECTRONIC RESEARCH - ORDNANCE • AERIAL CAMERAS • ELECTRONIC SYSTEMS ELECTRONIC TEST INSTRUMENTS • GO NO-GO MISSILE TEST SYSTEMS • AERIAL SURVEYS

Minature Power Transformers

Hycor Company, Inc., 11423 Vanowen Sis., North Hollywood. Calif, anmonnces . 1 new line of miniature power transformers for 400 ops and hisher frequemeies. The mits are available with output pow (er ratings up) to 15 va with

multiple windinss from 1 volt to 500 volts. They are available in miniature metal cases on in plastic (encorpsulated form 10 satisfl: Mll.-T-27 requirements. The torodoil constraction minimizes external fiekds and results in extremely high efficiency: Bullemin W'I lists stock tyens and is available upon request.

Terminal Catalog

Hermetic Seal Products Co., 29 South Sixth St., Newark 4 , N. J. annomeses the availability of their mew 4 -pase brochure on Vac-Tite Compression, Single Terminal Feed-Thra's and Stand()ffs. This new 4 -pase brochure provides industry with a coordinated standardization of single terminal ferd-thrus and standoff's. The patts iilustrated in the new brochure are of Vac-lite (onstruction, ath exolasively developed glass-to-nertal chemicalls. bouded compression construction.

The brochure introduces a wide variety of spreially designed thanged bodies ofered to industry for use in projection weld assemibly, for soldering to curved surfaces, and other special applications. In addition, designs capable of withstanding extremely high pressures atre available in flanged or threated bodies. Single terminal types have been developed by Termetic that incorporate spatee within the seal for mounting smatl compoments. This type requires a flat plate for closure.
(Continured on puge 181.1)

HELPING ESTABLISH RELIABILITY RECORDS

Raytheon Magnetrons and Klystrons
 in proved Gilfillan ASR-1 Radar

Civil Aeronautics Administration reports record-breaking reliability of Gilfillan airport surveillance radar. Boston International Airport had 8,760 hours continuous performance with only $71 / 3$ hours involuntary outage-less than $1 / 10$ of 1%-from their Gilfillan installation.

Condensed Typical Operating Data							
	Power Output	Frequency Range, mc	Reflector Voltage	Resonator Voltage	Maximum Temp. Coef.	Tuning	Cavity
2K28	140 mw	$\begin{aligned} & 1200- \\ & 3750 \end{aligned}$	$\begin{gathered} -140 \mathrm{v} \\ \text { to }-300 \mathrm{v} . \end{gathered}$	300 v	$\pm .15$	Mech. Inductive	Ext.
	Power Output	Frequency Range, mc	Anode ky	Anode Amps.	Pulse Width	P.R.R.	
2 J 32	$\begin{aligned} & 285 \mathrm{kw} \\ & \text { min. } \end{aligned}$	$\begin{gathered} 2780- \\ 2820 \\ \text { Fixed freq. } \end{gathered}$	20	30	$1 \mu \mathrm{sec}$	1,000	

Check these performance records of Raytheon tubes in the Gilfillan ASR-1. Average life, 2J32 Magnetron: 4,000 hours. Average life, 2K28 Klystron: 2,500 hours.

Your microwave and radar equipment offers extra reliability when you specify Raytheon Magnetrons and Klystrons. Use these rugged, reliable tubes in your present and proposed systems. Contact Fower Tube Sales to take advantage of Raytheon's Application Engineer Service, without obligation. Write for free Tube Data Booklets.

Write for descriptive literature.

Unlike most of nature's children, man's endeavors have carried him far beyond the use of his natural endowments. Spurred on by mental development, human efforts have created a dynamic way of life, demanding the most versatile mechanisms man is able to devise.

Scientists at Airborne Instruments Laboratory are constantly at work, creating electronic devices to aid industrial progress. In the Wide Range Power Oscillator, they have achieved an instrument, excellent in performance and quality, for testing over the wide frequency range of 300 to 2500 mc .

Equipped with a self-contained rectifier power supply and asingle tuning control for grid-cathode and grid-plate lines, the Wide Range Power Oscillator is representative of Airborne's high standard of achievement in research, development and production. Here is another example of individual design, resulting in the universal appeal of AIL products.

INFRA-RED LAMPS RAISE AMBIENT TEMPERATURE TO +125 C

New G-E TANTALYTICC CAPACITORS OPERATE AT +1250 C AMBIENT

LONG LIFE of G-E high temperature Tantalytic capacitors is shown by this graph of life vs loss of capacitance for typical 100 volt $d-c$ un't.

HIGHER VOLTAGES than 100 VCC can be applied. with no loss of life . . . at ambient temperatures below

Available in ratings from 36 uf at 100 VDC to 180 uf at 30 VDC

Designed to operate at +125 C for 1000 hours with not more than 20% loss in initial +25 C capacitance, General Electric's new high-temperature Tantalytic capacitors meet the tough requirements of miniaturized military equ:pment.
FOIL CONSTRUCTION assures the same long life, high quality, and stable operating characteristics provided by +85 C Tantalytics. Unlike other types of Tantalytic capacitors, the foil construction also offers:

- Both polar and monpolar construction.
- Chemically nentral electrolyte . . . minimizes coriosion danger.
- Excellent merthanical stability . . . freedom from electrical noise under shock and vibration.
- Excellent reliability at rated temperatures . . . extended life at temperatures below $+\mathbf{1 2 5} \mathbf{C}$.

AVAILABILITY: G-E high-temperature Tantalytic capacitors can be obtained now in sample quantities for evalnation and prototype use. Production lots will be available by September in the following standard ratirgs:

Voltage	$\begin{gathered} \text { uf Case } 1 \\ 3 / 4^{\prime \prime} \times 3 / 4^{\prime \prime} \times 11 / 8^{\prime \prime} \end{gathered}$	uf Case 2 $3 / 4^{\prime \prime} \times 3 / 4^{\prime \prime} \times 76^{\prime \prime}$	uf Cose 3 $3 / 4^{\prime \prime} \times 3 / 4^{\prime \prime} \times 1 / 2^{\prime \prime}$
30	180	110	55
50	100	60	30
75	60	36	18
100	36	24	12

For more information, see your G-E Apparatus Sales Representative or write for Bulletin GEA-6258, General Electric Company, Section 442-27, Schenectady ${ }^{3}$, New York.
*Reg. Hade-mark of General Electric Co.
Progress Is Our Most Important Product general

Now... Univac Tells Itself What To Do:

Univac no longer asks for the detailed instruction coces required by other computers. Univac now autamatically produces complex coded routines when given a simple instruction.

- This truly remarkable new Remington

Rand development cuts months from programming time ... is easily adaptable to your individuai requirements.
If you would like more information about Univac automatic programming, write to the address below for EL264.

VARIAN KLYSTRONS are designed and built to deliver top performance under extreme conditions of shock and severe G-loads . . . such as occurred in the impact of the Viking rocket, falling from an altitude of 158 miles.

KLYSTRONS, TRAVELING WAVE TUBES, BACKWARD WAVE OSCILLATORS, R. F. SPECTROMETERS, MAGNETS, STALOS, UHF WATERLOADS, MICROWAVE SYSTEM COMPONENTS, RESEARCH AND DEVELOPMENT SERVICES

presents this comprehensive range of Raytheon DIODES, having the characteristics and the uniformly dependable performance that warrant your complete confidence and your specification as first choice

Preserve this Ready Reference Chart
You'll find it a useful and dependable source of up-fo-date information on Raytheon Diodes.

RAYTHEON MANUFACTURING COMPANY

Stmiconduefor Division

RAYTHEON POINT CONTACT GERMANIUM DIODES
These diodes combine good transient response, low capacity and high frequency capa-
bilities with low cost and dependability. Ambient temperature range -50 to $+100^{\circ} \mathrm{C}$.

Type General Purpose	Dimension Outline	Peak Inverse Volts	Average Recififed $\mathrm{max}_{(\max)}$	Peak Rectified (max. (max	at $-5 v$	$\begin{aligned} & \text { Maximum in } \\ & \begin{array}{r} \text { at }-10 \mathrm{v} \end{array} \end{aligned}$	$\begin{aligned} & \text { re Curr } \\ & \text { at }-50 \mathrm{v} \end{aligned}$	ts $\text { at }-100 \mathrm{v}$	$\begin{gathered} \text { Forward } \\ m A \\ \text { at }+1 v \end{gathered}$
1 N66 (CK705)	A	60	50	150		50	800		5.
1 N67	A	80	35	100	5		50		5.
1 1N68 (CK708)	A	100	35	100				625	3.
1 N294 (CK705A)	A	60	50	150		10	800		5.
1 N297 (CK707)	A	80	35	100	10		100		3.5
1 N298 (CK713A)	A	70	50	150		$250 \mu \mathrm{~A}$ (m	t -40 v	$\left(50^{\circ} \mathrm{C}\right)$	30 mA (min.) at
CK801	A	60	50	150		,	50		$\frac{1}{5}$
CK802	A	80	50	150			100		7.5
VHF and UHF									
1N82A	B	5	50	150	UHF mixer	14 db max	- se	ata sheet fo	circuit
1N295 (CK706A)	A	40	35	125		200		eo detector	circuit
CK715	A	40	35	125		Spec	ts for V	to UHF frea	Iliplier
Multiple Assemblies									
CK709	c	Four in66 matched within 2.5% at +1.5 and -10 volis for bridge circuits							
CK711	C	Four 1 N67 matched from 0 to +3 volls. $30 \mu \mathrm{a}$ (max.) at -50 v . for bridge circuits							
CK717	c	Four 1 N66 matched within 2.5% at +1.5 and -10 volts for common anode circuits							
CK719	C	Four 1 N 67 matched from 0 to +3 volts. $30 \mu \mathrm{a}$ (max.) at -500							

RAYTHEON GOLD BONDED GERMANIUM DIODES

This group of diodes features small size, high forward conduction, high back resistance, and good temperature characteristics. Because junction area is increased over that of point contact types, capacity is slightly higher, transient response slightly slower.

Note: IN305-6-7 have very high back to forward ratio, high back resistance, sharp Zener characteristic, average transient response IN 308.13 have good transient response with good forward characteristics, high back resistance

RAYTHEON BONDED SILICON DIODES

Raytheon Bonded Siticon diodes provide high back resistance, a sharp Zener characteristic and fair tran-

Type	Dimension Outline	Peak Inverse Voilts	Average Rectified mA	Peak Rectified mA	Maximum Reverse Currents at $-5 v \quad$ at $-\operatorname{in} \mu \mathrm{A}$ at Votts shown			Forward mA at +Iv	$100^{\circ} \mathrm{C}$ Average Rectified mA	Max. Reverse at -10 v
1 N 300 (CK735)	D	15	40	120		0.001		8	15	001
1N301 (CK736)	D	70	35	110		0.01	0.05 at -50	5	12	0.2
1N302 (CK737)	D	225	25	80		0.01	0.2 at -200	1	8	0.2
1 N303 (CK738)	D	125	30	100		0.01	0.1 at -100	3	10	0.2
1 N432 (CK856)	D	40	40	120		0.005		10	20	0.05
1 N433 (CK860)	D	145	30	100		0.03	0.3 at -125	3	15	0.5
1 N434 (CK861)	D	180	30	100		0.05	0.5 at - 160	2	15	1.0
1N438 (CK852*)	0	7	100	200	10			50	50	

-8 volt Zener regulator
Note: All ratings at $25^{\circ} \mathrm{C}$ unless otherwise indicated.

RAYTHEON SILICON POWER RECTIFIERS

This new Raytheon silicon rectifier is the first to give high current rectifying capacity in extremely small volume. The rectifiers operate to $175^{\circ} \mathrm{C}$, to 200 volts peak and to over 99% efficiency. Back to forward resistance ratio is over 100,000 .

ADDITIONAL RATINGS ($25^{\circ} \mathrm{C}$)

Both CK775 and CK776 have maximum drop at 5 amperes of 1.5 volts CK775 has maximum reverse current at -60 volts of 25 mA
-maintained by external heat radiator
CK776 has maximum reverse current at -200 volts of 25 mA

Photo actual size
 AUTDMATIC makes the only complete line of standardized TRANSISTOR I.F.'s...K-TRANS

You can order all your Transistor I.F's from a single source-A utomatic Manufacturing Corp. This will save you time and money and give you I.F.'s with the exclusive K-Tran features: positive threading and controlled torque. In any electronic miniaturization program, the small physical dimensions, combined with the highest electrical performance of the Transistor K-Trans, give you tremendous advantages.
We make three styles of Transistor K-Trans. Each style has capacity built into the base, and is available in frequencies from 262 KC up through standard frequencies.
From left to right these are the three styles:

STYLE 10. Permits double ended tuning. ($11 / 20 \times 35 / 4 \times 35 / 4$)

STYLE 12. Permits single ended tuning. ($53 / 6 \times 35 / 4 \times 35 / 6$)

STYLE 15. Specific for severe space limitations. Permits single ended tuning. ($3764 \times 13 / 3 \times 13 / 32$)

Standard size K-Trans ($128 / 2 \times 3 / 4 \times 3 / 4$) are also available for transistor applications. Since the several types of the K.Tran* I.F. Transformer are all assembled from the same components,
they are immediately available for orders of any size.

$$
\dot{H} \dot{\sim}
$$

For full engineering information on transistor and other type K-Trans, ask for your copy of the 45 -page K -Tran Manual. It will help you design better transistor circuits.

many models of HELIPOT* precision potentiometers are stocked for immediate shipment
...our engineers will gladly adapt standard HELIPOTS to your requirements... or build entirely new HELIPOTS for you.
for information and specifications ... write for data file 108

Once your name was Og. You tired of shouldering mastodon steaks... of dragging your mate by her hair. You invented the wheel.

Later, your name was Watt. Steam made your kettle-lid dance... and the Industrial Revolution was on.

Yesterday, you were a bicycle mechanic named Henry...today, your brainchild's descendants are counted in millions.

Your name is legion. You created every linkage... every device...every system.

You're an engineer.
You make things work better... faster... more accurately ... more economically.

Next week... next month... next year... some system will need a better, faster, more accurate or more economical means of recordirg...or indicating... or computing...or controlling a process.

You'll want precision potentiometers.
You'll discover that Helipot makes the most complete line... linear and non-linear versions... in the widest choice of sizes, mounting styles and resistances.

You're an engineer. Your career is in the making.
Helipot would like to hear from you. first in precision potentiometers

IBM selects DU MONT TYPE 329^{*} as test oscillograph for their new type 702 computer

When IBM Corporation, world's largest maris facturer of computer equipment, produced their new Model 702, an essential phase of the project involved salection of a cathode-ray oscillograph to go into the field with each computer as standard test equipment. Requirements were strict.
IBM's approach to the problem was to conduct side-by-side evaluation with other competitive instruments. On the basis of actual performance, they selected the Du Mont Type 329 as their test oscillograph.
What are some of the primary reasons why IBM decided on the Du Mont Type 329? Excellent sensitivity-either d.c. or a.c. coupled. Precisely calibrated sweeps with movable notch magnification-ideal for making accurate neasurements. Brightness-adequate for display of very fast pulses. Synchronization simplicity-
the Type 329 "locks in" on almbst any type of signal. Stability-the trace remains steady as a rock despite power lize fluctuations, etc. Reliability in service-calibration adjustment requires no extra test gear and is a simple one-step process. And virtually any tube may be replaced without specid selection.
Another factor contributing to the selection of the Type 329 was the well known DL_{M} Mont Field Service Organization, which assures that regardless of where in the United States the equipment is used, swift, competent service facilities are in the immediate vicinity.
If you have instrumentation requirements, Du Mont facilities are always available for discussion and recommendations. Write us today for complele information on the Type 329, or on any problem you may have relating to cathoderay instramentation.

Need close-tolerance tubular parts like these? Just send drawing

Superior Tube has special facilities for doing complete job-efficiently, fast

Save handling costs. When you need special close-tolerance tubular parts, let Superior Tube make them for you complete. Engineering assistance is available. Or just send drawing, indicating size, shape, metal analysis, temper and degree of finish desired.

Superior Tube's special facilities provide for flaring, cutting, deburring, expanding, bending, rolling ends, grooving, beading, coiling, flattening, punching, deep drawing, reducing, drilling, chamfering, shearing, slotting. A wide choice of different alloys of closely controlled analysis is available.

For prices and complete information on fabricated tubular parts on glass sealing alloys, write Superior Tube Company, 2506 Germantown Ave., Norristown, Pa.

GLASS SEALING ALLOYS

Glass-to-metal seals for conductor leads into vacuum tubes, hermetically sealed chambers, or controlled atmospheres. Typical uses are shown above, left to right: voltage regulator, capacitor, capacitor cap, button terminal, recording pen, refrigeration sniffer. Superior offers six standard uniformexpansion alloys cold drawn to close tolerances in Seamless or Weldrawn* tubing.

All amalyses $.010^{\prime \prime}$ to $5 / \mathrm{s}^{\prime \prime}$ ©D. Certain analyses in light walls up to $21 / 2^{\prime \prime} O D$.

MISSILE TEST EQUIPMENT For over ten years Farnsworth has participated in the design, development, and production of guidance and control systems and special test equipment for such missile programs as Terrier, Talos, Sparrow, and others. Numerous "firsts" in this field have been accomplished as a result of contributions in the form of missile receivers, control systems, power supplies and complete system analyses.

IATRDN A charge-controlled cathode ray "memory" tube permits operator-controllable image persistence from one millisecond up to several minutes duration. Unusually brilliant picture presentation at a brightness level of up to 10,000 footlamberts for projection purposes.

IMAGE CONVERTER TUBES Used in any application where it is necessary or desirable to "see in the dark." Convert an infrared image into a visible image. Applications: medical and biological research, hotbody observation, temperature distribution, crime detection, security, and photography.

INFRARED VIEWER This unique, compact, easy to handle viewer is a valuable tool for crime detection, research and industrial application. Observation of objects or scenes in the dark is easily accomplished when they are illuminated by infrared radiation.

PHOTOMULTIPLIER TUBES Responsive in the near infrared spectrum featuring sensitivities as high as 50 amperes per lumen of incident radiation. Applications include photometric measurements for industrial and scientific uses.

IMAGE DISSECTOR A highly versatile TV camera tube particularly well adapted for use as a slide or facsimile scanner. This tube can be constructed in a variety of types to meet special requirements.

RADAR RANGE CALIBRATOR, AN/UPM-11A A precision instrument incorporating both "Radar" and "Beacon" functions. The equipment operates as a radar transponder in that pulsed r-f energy fed into the equipment results in a series of return echo pulses being fed back from the equipment to the radar under calibration. This simulates radar targets at accurately determined ranges.

RORTABLE CABLE TESTER Designed for testing all radio frequency cables that will accommodate, or can be adapted to, type "HN", " N ", or "BNC" connectors. It will supply a d-c voltage up to 12,000 volts provided the current drain is negligible, and current surges of at least 3,000 amperes peak into a load of 0.05 ohm at room temperature.

FARNSWORTH ELECTRONICS COMPANY. FORT WAYNE, INDIANA
a division of International Telephone and Telegraph Corporation

Deflection Types for Transformer Circuits
6BQ6GTA 6CD6GA
6CU6 6DQ6
-these Sylvania deflection amplifier tubes offer higher plate currents, greater dissipation

Here is a full line of Sylvania Tubes-made to take the tighter conditions of horizontal deflection circuits in streamlined TV chassis designs.

New plate and grid designs achieve minimum zero bias plate to screen grid current ratios of 10 to 1 . Plate dissipation has been increased to provide more stable performance throughout tube life. Designed to exhibit low plate knee characteristics, these tubes eliminate "snivet" problems when operated properly within ratings.

Whatever the nature of your TV design problem, Sylvania Tubes are "circuit-designed and circuit-tested" to meet your needs.

$$
\begin{array}{ll}
\text { 12BQ6GTA } & \text { 12CU6 } \\
\text { 25BQ6GTA } & \text { 25CD6GA } \\
\text { 12DQ6 }
\end{array}
$$

Dept. 132P, 1740 Broadway, New York 19, N. Y.
\square Please send complete data on "circuit-designed and circuit-tested" deflection amplifier types. Check other tube interests. \square Other entertainment types Control equipment types Military types Test equipment types
Special-Purpose types
types

[^2]

The new Ferrite Isolator is a useful device with applications such as oscillator isolation with the following advantages to system performance:

- Reduces long-line loading

- Prevents undesired frequency shift - Insures uniform power output - Improves transmitted pulse spectrum

The charts indicate the exceptional performance of this light-weight unit (less than 2 lbs.)

REVERSE ISOLATIO
This shows very cleariy the good unilateral de coup ing effect between the an tenna and trans mitter.
LOSS
This illustrates the exceptionaily iow loss from the transmitter to
voLTACE
stawing
WAVE RATIO
The VSWR intro-
duced into the
transmission line by the isolator.
by the 'Isolator.'

MODEL W154-1A

Special units can be prociuced by Kearfott

The following admissions and transfers were approved and are now effective:

Transfer to Senior Member

Aitken, K. M., Box 192, Merrit Island, Fla. Alexander, S. N., National Bureal of Standards, Bldg. 10, Washington, D. C.
Atkins, G. T., 571 Nightingale Dr., Miami Springs, Fla.
Barus, C., Electrical Engineering Dept., Swarthmore College, Swarthmure, I'a.
Bowen, D. C., Radio Corp. of America, Bldg. 7.2, Camden 2, N. J.

Brewer, I.. F., 168 Ludlow St., Portland 5, Maine
Buyer, E. M., 70 Grove St., Ramsey, N. J.
Camillo, C. C., 4358 S. Artesian Ave., Chicago 32, Il .
Clayton, J. F., Bendix Aviahtion Corp., Research Laboratory Division, Bldg. 351, USNMATC, Pt. Mugu, Port IIueneme, Calif.
Earls, H. G., 202 lByron Rd., Fayetteville, N. Y.
Elgerly, J. I., Office of Naval Kesearch, Special Devices Center, Port Washington, L. I.,

Fannin, B. M., 5206 Valley Oak, Austin, Tex. Flemons, R. S., 1444 Sherwood Cres., Peter. borough, Ont., Canada
Fragola, C. F., Sperry Gyroscope Co., Lake Suc. cess, L. I., N. Y.
D. W., 2488B Morosg PL, N.E., At lanta, fia.
German, J. P., 1515 W. 32, Austin 3, Tex.
Green, P. E., Jr., 29 Granison Rd., Weston 93. Mass.
Haines, B. P., Philco Corporation, "C" \& Tioga Sts., Philarlelphia, Pa.
Hampton, J. W., 1627 Mayflower Dr., Irving, Tex.
Harpster, W. T., 48 Keats Ave., Town of Tona. wanda, N. Y.
Hartwig, W. H., University of Texas, Austin, Tex.
Heaviside, M. G., 27 Whitney Rd., Newtonville 60, Mass.
Hogg, F. L., 37 Stormont Rd., Highgate, London N. 6, England

Houghton, E. G., Jox 134, IIq. USAF Security Service, San Antonio, Tex.
Jackson, H. L., Westinghouse Electric Corp., 2519 Wilkens Ave., Baltimore 3, Md.
Jacobson, II. I'., Jr., 1500 Oakland Rd., N.E., Cedar Rapids, Iowa
Tunken, L. If., 118 Iroguois La., Liverpool, N. Y. Kellogg, D. S., 9 Bradley Farms, Chappaqua,

McCracken, L. G., Jr., 2340 Massachusetts Ave., N.W., Washington, D. C.

Mercier, A. E., 391 Fifth Ave., Cedarhurst, I. I., N. Y.

Meyerson, M., West Caranetta Terr., Lakewood,
Mickey, 1. W., Jr., General Electric Co., 316 E. Ninth St., Owensbora, Ky.
Mumn, A. J., Hell Teleplone Laboratories, Inc., Whippany, N. J.
I'almer, T. R., 324 Homan Ave., State College, Pa.
Plotkin, M., Brookhaven National Laboratory, Upton, I. I., N. Y.
Ringoen, R. M., Collins Radio Co., Cedar Rapids, Jowa
Roth, J. H., 430 Princeton Rd., Haddonfield, N. T.

Ruellmann, H. E., 1804 Jordan Park Apts., Fullerton, Pa.
Schauer, J. I., 408 Cornell, S.E., Albuquerque, N. Mex.

Shub, L., 299 University Ave., Kenmore 23, N. Y.

Smith, I). A., 505 S. Mesa Dr., Mesa, Ariz.
Waters, R. A., 4 Gordon St.. Waltham 54, Mass. (Continucd on page 3+A)

Accuracy and stability - the two most important features in Oscillator performance - can now easily be incorporated into your high-performance design, cutting engineering time to a minimum. Whether your project is a transmitter, receiver, test equipment, frequency standard or others, Collins offers a
ready-to-install Variable Frequency Oscillator known for its linear calibration and stable output.

- Outstanding Stability
- Average 24 -hour stability under fixed-station conditions $.003 \%$ or better.
- Single-knob tuning with backlash of less than one cycle in 20 ke through use of mechanical loading and precision ballbearing construction.
- Frequency modulation less than 100 cps under 5 G's acceleration at 60 cycles.
- Compact, ready-to-operate design.
- Lirearity of calibration better than 1 kc throughout tuning range with multiple-turn tuning.
- Sealed against atmospheric changes.
- Available in fundamental ranges from 300 kc to 4 mc . Individual models achieve up to 2 to 1 tuning ratio.
- Uses standard power supply voltages.
- Each unit 100% tested under lab conditions to rigid specifications.
- Ease of installation.

Frequency Ranges Aveilable	
$70 \mathrm{E}-1$	$1.0-1.5 \mathrm{mc}$
$70 \mathrm{E}-10$	$600-800 \mathrm{kc}$
$70 \mathrm{E}-12$	$1.955-2.955 \mathrm{mc}$
$70 \mathrm{E}-15$	$2.0-3.0 \mathrm{mc}$
$70 \mathrm{E}-20$	$1.65-2.05 \mathrm{mc}$
$70 \mathrm{E}-21$	$300-400 \mathrm{kc}$
$70 \mathrm{E}-25$	$2.0-4.0 \mathrm{mc}$
$70 \mathrm{H}-2$	$2.455-3.455 \mathrm{mc}$
$70 \mathrm{H}-3$	$1.5-3.0 \mathrm{mc}$

For requirements other than the above ranges or for detailed specifications write to the Collins office nearest you

VARIABLE DELAY

NETWORKS br ${ }^{5}{ }^{2}$?

Unlike conventional tapped delay lines (which must be terminated in a high impedance at the selected tap), the \#300 series provides a variable delay between matched impedances. Available in ranges of $2 \mu \mathrm{sec}$ to $2000 \mu \mathrm{sec}$; the $\# 300$ series delay networks afford flexibility in obtaining long delays, with time delay proportional to angular rotation of the control shaft.

Write for complete, new caralog!
C O R P ORATION
534 Bergèn Blvd., Palisades Park, Now Jersey

Further Proof of

Getting to the hottom of things

every hour of every day - year in what we are doing make a finer fixed CAPACITOR in and year out - to

One of the man
One of the many things you as users are interested in is the LIFE OF THE CAPACITOR" under a multitude of spared no expense to We in the FAST organization have on th is expense to give you honest-to-goodness answers

What fortoriding quality capacitors.
What follows is a summary of what we are doing to

give you just that

I: RESEARCH and DEVELOPMENT TESTS

AC and DC lests at various temperatures and vollages.
1-Investigation of Impregnants: (a) New im. pregnants AC/DC-synthetic and natural oils resins and waxes. (b) Studies of impurities and additives.
2-Investigation of electrode separators and electrode materials: (a) Kraft papers-stand. ard, low PF varieties, sundry densities and deionized. (b) Films - regenerated cellulose polystyrene, teflon, "Mylar"*. Etc. (c) Elec: rodes - Dry annealed and neutral aluminum; and rin.
3-Number of groups tested: AC: over 800 involving more than 8000 units. DC; over 3700 nvolving more than 78,000 units.
4-Duration of tests: AC; many have been continuously under test for over 6 years. DC; many have been continuously under test for over 10 years.

- Voltage range of tests: AC; 70 to 2400 volts 60 and 400 cycles. DC; 140 to 44,000 volis -Temperature range of tests: AC; Room to

JOHNE FASTEC.
 Capacilor Specialisis For

 Over A Third of A Century3117 Nurth Pulaski Road, Chicago 11. III WHEN YOU THINK OF CAPACITORS . . . THINK FAST"

II: PRODUCTION TESTS

A. Alfernating Curren

1 - Heat runs on production lots - ultimate surface temperature rise.
2 -Ulimate life hours of current production (periodic tests run).
B. Direct Currext

1-Civilian Production: (a) ultimate life hours of capacitors taken from current production (These test runs comprise over 1800 groups involving more than 21,000 units).
(b) Ulimate Iffe hours of capacitors after being stored in cartons from 1 to 24 months under normal variations in humidity and tem perature. (These test runs comprise over 324 groups involving more than 3240 units).
2-Military Production: (a) Test to appli cable specifications (Mil.C-25. Mest to appli Army 71-1667; Etc)
(b) These test'runs comprise over 4200 groups involving more than 24,500 capacitors.
Flease note Carefully: at least 75% of the 134,740 capacitors included in the abo of the were tested to ultimate destruction at volests ranging from rared to 4 times rated and voltages ating temperatures from tower rated and at oper. mum rated or in excess of Many ourside his group have not failed to date. Importside this his is a continuous policy of the comply too, ustaining its testing policy of the company in day-year after year.

So with pardonab
QUALITY CAPACITORS'", may we suggest catch-phrase as apolied to ${ }^{\text {P }}$ is more than a *Du Pont rrade.mart to FAST CAPACITORS? *Du Pont frade-mark for Polyester Film.

INCREASE CIRCUIT RELIABILITY wıт T/eRADEL deposifed carbon RESISTORS

newest line of precision components from Texas Instruments

For precise resistance values under extreme operating conclitions, design with RADELL deposited carbon resistors - now manufactured by Texas Instruments. With resistance tolerance held to $\pm 1 \%$, Texas Instruments RADELL resistors provide exceptional stability plus a wide range of resistance values. Like all TI components, they are manufactured to exacting instrument standards.

Texas Instruments RADELL resistors are mass-produced in three lines and in $\frac{1}{2}, 1$, and 2 watt sizes. Resistance values range from 25 ohms to 30 megohms.

WRITE for Bulletin No. DL-C 539 giving detailed specifications of all three lines of Texas Instruments RADELL resistors. Your best source for precision components, TI also manufactures a complete line of subminiature transformers as well as custom capacitors, delay lines, special transformers and other reliable electronic components.

Hermetically sealed line - designed for extreme conditions of moisture and temperature. Specially treated ceramic shell effectively seals out moisture and air, resists abusive handling, and assures complete insulation.

MIL-Line - designed for the broad field of military applications. Exclusive multi-layer coating provides envirommental protection substantially equal to hermetic sealing throughout low and middle ranges of resistance. MIL-Line resistors more than meet MIL-R-10509A specifications.

Industrial-Line - differs from MILLine series only in type of coating. Industrial line resistors provide close tolerances for military, instrument and industrial applications where less extreme humidity conditions are encountered. Typical applications include computers, test equipment, communication and control systems.

SPECIFICATIONS

Frequency Range
100 to $1000 \mathrm{mc} / \mathrm{s}$ Residual VSWR:

Less than 1.05
Accuracy of Reflection Coefficient Angle:

Better than $\pm 5^{\circ}$
Characteristic Impedance: 50 ohms

Output Termirals
Type N jack.
Other inferchangeable connectors

Min. Input Signal:
Approx. 1 volt af $100 \mathrm{mc} / \mathrm{s}$,
0.1 volt af $1000 \mathrm{mc} / \mathrm{s}$

Dimensians:
$8^{\prime \prime}$ I. $\times 5^{\prime \prime}$ w. II $53 / 4^{\prime \prime} \mathrm{h}$.
Weight: $\quad 41 / 2 \mathrm{lbs}$.

The PRD Type 219 Standing Wave Detector is the

- READS VSWR AND REFLECTION COEFFICIENT

ANGLE DIRECTLY

- SMALL AND COMPACT
- LOW IN COST small package, low cost solution for making measurements easily and accurately in the 100 to $1000 \mathrm{mc} / \mathrm{s}$ region. By connecting the coutput to a VSWR indicator, such as the PRD Type 277, VSWR may be read directly on the indicator meter. No special detection equipment is required. The reflection coefficient angle is easily determined merely by rotating the top drum dial to a minimum indication on the meter and reading the angle on the dial directly in electrical degrees. No calculations are required. The probe and crystal detector are self-contained.
Usually it is more convenient to work with VSWR and reflection coefficient angle directly instead of with other components of the measured impedance. When other quantities are also of interest, they can easily be read from a conventional impedance chart. Only $\$ 475$ f.o.b. N.Y. Write for PRD Reports, Vol. 3, No. 2, and for 1955 catalog.

(Continued from page $=4.4$)
Alexander, R., 130 Lockland Ave, Franingham Center, Mass.
Allen, J. E., Westinghouse Air Arra Div., Baltimore, Md.
Allen, J. H., CINCNELM, box 5. c/o FPO, New York, N. Y.
Allen, M. H., Exeter Motel, Seatte, Wash.
Allen, R. L., Western Ontario Ǔniversity, London, Ont., Canada
Allen, W. T., 206 Brompton Rd., Garden City, t. I., N. I^{\prime}.

Alliot, F... Ir., 455 W. 23 St., New York 11
Allred, (. Mck., National Bureau of Standards, Boulder, Colo.
Astad, N. T., Hox 236, Weston 93, Mass.
Amatneek, K. V., 39-77-48 St., Lo:ng Island City 1, I. I., N, 1.
Ambrosio, 13. F., $459 \frac{1}{2}$ Keitor1 Ave., Los Angeles 24, Calif.
Ames, 11., Oliver St. North Easton, Mass.
Ainoo, I.. R.. 425 lourth St., S.W, Valley City, N. Dak.

Anders, R, 1), R.I. 2, Norrintam, Pal
Andersen, R. K., 617 Birch Ave., Richland, Wash.
Anderson, G. I', 5721-26 Ave., S., Minneanolis 17, Minn.
Anderson, C. W., 9022 Keatins, Skokie, 111.
Anlerson, H. C., 136 Fleetwood Terr., Silver Spring, Md.
Anderson. J. S., 4267 Coronado Ive., San Diego 7 , Calif.
Anderson, R. S., 1641-19 St., Manhatan Beach, Calif.
Andrae, P. H., Wirectorate of Requirements, Km. 50237, The l'entagon, Washington 25, 1). C.

Andreasen, I., 456-1 Riva Ave., Mill:own, N. J. Andrews, E., 237 McElroy Ave., I'alisade, N. J. Andrews, F. T., Jr., Bell Teicphene Labs., Inc., Murray Hill, N. J.
Angevine, R. A., 46 Rhodes Dr., New llyde Park, L. l., N. Y.
Angst, D. C., 1933 Illinois, Vallejo, Calif.
Anthony, D. T., 6431 Madrid Dr., Sanl Diego 15, C'alif.
Apolenis, C. J., 301 Evergreen Dr., Moorestown, N. J.

Applebaum, A., 1304 Ruppert Rd., Sadver Spring, Md.

Armour, R. B., 10711-23, N.E., Seattle 55, Wash.
Armstrong, C. W., 17333 Sylvester Rel., Seattle 66, IVash.
Armstrong, D. G., 297 Derby St., West Newton, Mass.
Armstrong, H. D., 175 Yonge B'vd., Toronto 12, Ont., Canada
Ash, F. A., Particle Laboratory, Queen Dlary College. Mile End Rd., Lonlon, England
Ashleman, F. C., Jr., 10723-23 Ave., N.E., Seattle, Wash.
Ashman, A. B., 225 E. Fourt上 St., Cincinnati 2 Ohio
Asmuth, I. L., Dept. of Electrical Engineering, University of Wisconsic, Madison, Wisc.
Astrow, M., 62-65 Sammers St., Rego Park, L. I., N. Y.

Atkinson, C., Ir., 2433 Stanmere Ir., Ilouston 19, Tex.
Atkinsor, F. E., 1110 N. Vernan St., Arlington, Va.
Atkinson, T. R., 334 S. Dixout kid., Kokomo, Ind. Audo, P. D), 5660 N. Magnotia, Chicago 40, Ill. Augustus, I.. M., 2650 Carpenter Rd., Y'psilanti, Micb.
Austin, K. B., 5 Clare Terr., Crestwood, Tuckahoe, N.Y.
Aymar, E., 403 La Canada, ̌a Joola. Calif. (Continued on page 38.1)

Société Anonyme au capital de 65.000 .000 de Francs 17. RUE FRANCOEUR, PARIS 18* - FRANCE TÉL. MONtmartre 02-93
the European specialist in the mica capacitor

West Coast Office： 117 E．Providencia，Burbank，Calif．Export Sales： Bendix International Division， 205 E，42nd 5t．，New York 17，N．Y．

A

 Kans
Thachmark，S．，Skonstatholmsvagers 61，Stockloolm，
Backinoff，R．，12 Shetland Dr．，E＇rat：ford，N．I． Bacon，J．R．，T68 Boulevard，Wiestfiedh，N．J． Railin，R．C．，22 \ddagger Myrtle Me．New Milford

13aird，（i．－\．，B． 3 Broadlawn－1／小．． 100 （harles Dr．，Bryn Mawr，Pa．
Hatird，I．＇1＇， 1529 N． 37 St．，Milwankee 8，IVisc． Haty，．．C．，Jr．， 2125 I＇atria St．．Winston－Satem，

Waker，\．I．．，Hq．Air Researelı \＆Developmont Command．Imox 1395．I＇altinore 3．Mal． laker，（i，H．，Bell Telephone raha．，Inc．， 463 West St．，New York，
Maker，Gi．W．，IIolbrook Dr．，Stamford，Connt．

Baher，I．II．，Florida Hill R．l．，Rt．4．Rirlectuelil，
Raldwin，R，S．，KFR（＇， 1000 Vitn Nies Ive．，
Sath lorancisco，Calif．
Haldwin，\because W．，107．39 ］＇rincetom St．，Iamaica

Naluta．R．K．．， 5518 drover St．，Héthestat，Md．
Bamdtel，K゙．（… Rawliation I，aboratory，lniveraity of（ alifornia，Bhig． $5(1, \mathrm{Rm}, 23 \mathrm{~F}$ ．Merk－ （ley 4，Calif．
Bankenn，II．W．， $4+12$ S．First Si．．Arlingtom 4.
larkley，Il．F．，Hox 155，Mapiewankl，X．I．
Barlow，1）．1＇．， 16 ＇l＇roy I＇l．，sehenectaly，N．Y．
Barlow，11，13．，Ir．， 2005 Industrial T＇rast Mhlg．， l＇rovilence，R．I．
 Mi．
 Nu．
Tharnes，I．．，Aralbian American（1，1（in．｜）hala ran，saudi Arabia
Barmes，O．（．， 2910 N．7\％St．，J＇ethel．Kima．
Barnes，R．B．，KRCA，ふithoma：Broatcantime

Maroxil，S．． 1050 Stratforal Ave．Senl Kork 50 ．
Barrick．WV．K．， 2600 F．，（1remen，Fwamsille，lml．
13：rtholnmew，I）， 279 N ．Unversity St．，I＇rowo．
 Twp．Hathoro．I＇a．
Bartett，O．H．，Jr．，383＿V．S＂inth Sit．Arlimg．
 Bartlett，I＇，R．，Radio Station KドRE，F＇resno．
（＂alif．
Batteman，R．， 5720 El Nisin Rd．，Jails（＇lntelh，
Batumeister，E．A．， 2350 N． 10 St．，Milwathere 6．Wis．
Batumgartner，W．If．， $3: 28$ Rowlyn Awo．．filen． Heane， $\begin{gathered}\text { sider，l＇a．} \\ \text { H．，} 1335 \text {（ilentiew St．，Philadelphia }\end{gathered}$ 11．l＇a．
II．W．， 119 North llial，Londen N．G． England
Beckmatn，C̛．， 817 Longshore St．，Ihalatelphi．t Realforil．S．．Tr．． 70 S．State St．，Salt I．ake（＂its
 ville，Mi．
 Ia．
Beer，A．（＇．，latitelle Xímorial Inntitute， 50 K゙ing Ave．，columbus 1，Ohio
leweman，R．F．．，Sandburn，Ine！．
Heitz，R，I．．， 1101 S ．Scowille Sve，Oak I＇arh． III． （Contioncol on pale 10．A）

Save assembly time

with quality-controlled ceramics

made of คlอ

Your line workers will appreciate the ease and speed with which they can assemble AlSiMag ceramics. Your production planning staff will be well
 pleased with the excellent quality as well as the rapid delivery of these parts.

Physical dimensions and tolerances are checked at every key stage of manufac.
ture by thoroughly trained Quality Control inspec tors to insure shipment of a superior product.

Four large, completely equipped plants assure you of hundreds-or hundreds of thousands-

You can confidently specify AISiMag ceramics-backed by over fifty years of specialized experience in the technical ceramics field.

american lava corporation

 CHATTAN (see your local telephone dire. Indianapolis, ind. Mo Branch offices in these cleveland, Ohio - Dallas-Houston, Philadelphia-Pitsburgh, Pa. Ca Irvington VarChicago, Calif. - Newark, N. Syracuse, N. Y. Tulsa, Canada, Lid., Po . Box Angeles. Cat Francisco, Calit. Syratuning \& Mig. of Canad Mig. Co., Internationa - sish \& Insulator Div.e Minnesoxport: Minnesota Mining \& N. Y. nish \& Insulator Alí other export: MinnesolaLondon, Ontar Mork. N. Y.

This OIE instrument checks RF, IF; and AF performance of receivers

MEASUREMENTS'

Standard Sigmal Generator

Frequency Range: $\mathbf{2 0}$ cycles - $\mathbf{5 0} \mathbf{~ m c}$.

The Model 82 Standard Signal Generator provides extremely wide frequency coverage. It comprises a low-frequency oscillator covering the range from 20 cycles to 200 kc ., and a high-frequency oscillator in the range from 80 kc . to 50 mc .

It is designed for audio and radio frequency measurements of AM, FM and television receivers; for testing and checking the frequency response of audio systems; as a driving source for AF and RF bridges; for testing video and wideband amplifiers.

SPECIFICATIONS:
FREQUENCY RANGE: 20 cps to 200 kc . in four ranges. 80 kc . to 50 mc . in seven ranges, plus one blank range.
FREQUENCY CALI8RATION: Each range individually calibrated. 20 cps to 200 kc . accurate to $\pm 5 \% .80 \mathrm{kc}$. to 50 mc . accurate to $\pm 1 \%$.
OUTPUT VOLTAGE AND IMPEDANCE: 0.50 v . across 7500 ohms from 20 cyeles to 200 kc .; Output voltage and impedance in this range can be reduced by external affenuator. $0.1 \mu \mathrm{v}$. to 1 v . across 50 ohms over most of the range from 80 kc . to 50 me .
MODULATION: Continuously variable from 0.50% from 20 cycles to 20 kc . from internal varioble oscillotor or external source.
HARMONIC OUTPUT: Less than 1% from 20 cycles to $20 \mathrm{ke} ; 3 \%$ or less from 20 kc . to 50 me .
LEAKAGE AND STRAY FIELD: Less than $1 \mu \mathrm{v}$. from 80 kc . to 50 mc .
POWER SUPPLY: 117 v., 50.60 cycles. 75 wafts.

FEATURES:

- Continuous frequency coverage from 20 cycles to 50 mc .
- Direct-reading individually calibrated dials.
- Low hermonic content.
- Accurate, metered output.
- Mutual inductance type offenuafor for high frequency oscillotor.
- Stray field and leokage negligible.
- Completely self-contoined.
ir

IVemliership

Belfi, J. L., 10 Downing St., New lork 14, N. Y. Bell,]. S., 2424 Richehen Pl., Scoth Plains,
lemis, I. S., A. 1). T. Co., Irrc., 155 Sixtly Ave., Xew York 13, N. Y.
Bender, 1) R., 126 Village St., Marblehead, Mass.
Senkley, F. G., 31 Indian Hill Rd., Arlington 7.4, Mass.

Benson, S. F., 215 W. Walnut Ia., Philadelphia, I'a.
1kereza, A., 739 Second Ave., New York 16,
lerge, 1. J., 245-32-76 Ave., Br-llerose, 1.. 1.
Berger, 1)., 6550 S. Ingleside, Chicago 37, III. Berger, I.. I.., 514 W. 'Third St., Santa Ana, Calif.
lierger, I. 1.., 995 E. 181 St., New York 60, N. Y.

13erger, M., 3733 I.aurel Ave., Broeklyı. 24, N. Y Derghoefer, F. (i., 1080 N. Manchester St., Ar lingtom, Va.
hergmamin. 11. M., 205 Fdgewond Ave., New Haven 11, Conn.
Berkowit, M. W... 50-36-190 St., Flushing, 1. I., N. ${ }^{\circ}$

Berkowitz, R. S., 8312 Lynnewood Rd., 1'hiladelphia 19, l'a.
ISerlin. W. N., 5910 Melvin St., Tarzana, Calif Rernat, 1.., 135 S. LaSalle St., Chicaso 3, Ill Bernharilt, F. C., R.R. 2, Rox 20G, Ventura, Calif.
Bernin, V: M., 105 Herkshire La., Mi. Prospect, 111.

Bernsley, I. T., 75 Transverse Rd., Garden City, L. I, N. Y.

13erriman. M.. $736,3-255$ St.. (Olen Oaks, 1.. I.,
IBerry, R. F.. 210 S. Lombard Ave., 1.ombard, 111.

Bethge, C. F.., 443.4 St., Barnabas Rd., Washington 21. 1). C.
Botrer, W: E., I'SS Mt. McKimley "AGC-7," Flo), San lirancisco, Calif.
Bialek, S. T.. 2446 N. California Are., Chicago 47, III.
Biamonte, (O. A., 5843 Ifudiont B'vel., North liergeri. N. I.
Bianco, 1. F.. 39 Outlook Rd., Wakefield, Mass. Biernat, W. M., 3034 W. Fullerton Ave., Chicago 47. 111 .
Biggs, O. Il., 56 Colon St., Fieverly, Mass.
IBinzel, M. S., 431 Alice Ave, Kirkwnol 22, Mo. Biosca, L. F., 719 Dartmouth Ave., Silver Spring, Mul.
Birch, R. S.. Jr., 800 Sistina Ave., Coral Gables, Fla.
Birenbaum, L., 87 F. 180 S., New York 60 , N. ${ }^{2}$:
lhirnbaum, G., 921-13 St., Boulder. Colo.
Bishop, M. M.. 52 Montauk Ave., New London, Conn.
Bixby, W. L., 53 Florence St. Wollaston 70, Mass.
13lack, D. R., 2614 Minnesota Ave, St .Louis, Mo.
Blackman, R. B., 663 West St. New York 14. N. Y.

Blanchard. I. W.. 91 South St., Auhurn, N. V. Blastel, F. G., I r., U.S. Naval War College, Newport, R I.
Block, F. (... Chestnut View Dr., R.D. 1, Lancaster, l'a.
Block, K. A.. 3567 Ray St., Saュ Diego 4, Calif.
Bloemsma, J.. Mient 551, Tle Mazue, I Colland Blonder, I. S., 536.536 Vorth Avt., Westfield,
Bloom, L., 34.74 IIeather La., Wantagh, L. I., N. Y.

Bloom T., 17 Howe St., New Haven, Conn.
Blumenstock, N. R., 44.05 Macnish St., Elm hurst, L. I., N. Y.
(Continted on page 42.f)

simi 5is

cl.jn

 o $0_{0 \text { or-Mica }}$ otpero DMC 20 PARALLEL LEATOR PEAK PERFOR LEADS PARALLEL LEADORideal for new miniatured des
and printed wiring circuits
MEETS ALL HUMIDITY, TEMPERAT
ELECTRICAL WITH MEETS ALL HUMIDITY Wiring circuit ELECTRICMIDITY, TEMPERATURE
 less than our famous molded mica capacitors.

- Provides greater versatility - wider applications.
- Tougher phenolic casing assures longer-life and greater stability through wide ranges in temperature.
- Parallel leads simplify application in transistor and sub-miniature electronic equipment including printed circuits for military and civilian use.

For Extreme Miniaturization Use Our DMI5
DMI5 - Up to 510 mmf af 300 VDCw
Up to 400 mmf at 500 VDCw
Available in $125^{\circ} \mathrm{C}$ operating temperature. Minimum capacity tolerance available $\pm 1 / 2 \%$
or 0.5 mmf (whichever is greater). or 0.5 mmf (whichever is greater).

Hillenco Capacitors

Typical Digital Phase-Shift Measurement Setup Employing a BERKELEY Model 5510 Universal Counter and Timer, with a Shasta Oscillator as Reference Frequency Source \& Oscilloscope to Provide Visual Check.

Now-A Digital Method for Precise Phase Measurements

ADVANTAGES:

* No interpolation required-results displayed in directreading digital form (in degrees, mils, or any desired unit of angular measure).
* Accuracies to 0.1°
* Utilizes standard BERKELEY Universal CounterTimer or Time Interval Meters.

APPLICATIONS:

1. Calibration of synchros and resolvers
2. Measurement of gain-phase characteristics of closed. loop servo systems.
3. Low frequency response studies
4. Precise phase measurements at audio and sub-sonic frequencies

TYPICAL INSTRUMENTATION:

COMPLETE DATA AVAILABLE

Data File 107 com. pletely describes the tbeory and practice of digital phase measurement, including set-up and operational instructions. A copy is yours for tbe asking; why not urite now? Please address Dept. N.9

Berkeley

INDUSTRIAL CONTROL SYSTEMS division 63

BECKMAN INSTRUMENTS INC. 2200 Wright Avenue, Richmond 3, California

(Continued from page 40A)
Boatwright, L. T., Jr., Boz 56, University Sta tion, Libana, 111.
Bohn, A. L., 10430 Brookmoor Dro, Silver Spring, Md.
Bomberger, D. C., Bell Telephone Labs., Inc., 463 West St., New York 14, N. Y.
Bondy, M. A., 1300 Alegria, Austin, 'Pex.
Bonham, L. L., 5105 You St., S. E., Washington 27, D. C.
I3onner, H. W., 597 San Luis Rd., Berkeley 7, Calif.
l'ooker, C. A., Jr., 1337 Singer Pl., Wilkinsburg 21, l’a.
Bootl, R. M., Jr., 921 Tower Bldg., Washing. ton 5, I). C.
Borden, E. W., 22 College Ave., Upper Mont clair, N. J.
13orgeson, P. W., 1641-21 St., Manhattan Beach, Calif.
Hose, J. H., 150 Claremont Ave., New York 27, N. Y. F., 427 Nintin St., Wilmette, Ill

Bosshart, R. F., 427 Nintic St., Wilmette, Ill.
llostwick, L. G., 463 West St., New York 14,
Bostwick, L. Y.,
13othun, R. B., 804 Sutter St, Palo Alto, Calif. Bouchy, S. H., 1907 Patterson Rd., Falls Church,

Bower, Ci. E., 420 Mci.eod Dr., Cocoa, Fla.
llowler, J. A., MAAG, APO 794, c/o PN, New lork, N. Y.
Bowley, R. J., 1914 Lyceming Ave., Willow Grove, Pa.
Howman, J. Y., 217 S. Circle Dr., San Gabriel, Calif.
Drachman, R, J., $1368 \mathrm{~N}, 75$ St., Philadeiphia 31, Pa .
Brachen, J. F., 3909 Grand Ave., Western Springs, Ill.
Bracken, J. R., 204 Queers Dr., Little Silver, N. J

Brackett, H. H., 515 summit Ave., Dradell.
lirackett, R. T., 3952 Atascadr ro Dr., San Diego 7, Calif.
13radburd, E., 0.46 V. Ansterdam Ave., Fairlawn, N. J.
Mraden, J. R., 123 \&. 13 St.. Fort Pierce, Fla,
Mradford, D. C., 38-58 Victoria Rd., Fairlawn, N. J.

Mradshaw, G. V., 50 Greenlirier Rd., Levittown, la.
Brandt, L. Uruguay 618, Burnos Aires, Argentina
Lirandt, W. L., Caixa Postal 435, Recife, Per. nambuco, Brazil
13rar, S. S., Box 299, Lemortt, Ill.
Braun, A. F., Bahnhofstr. 33, U-rthri B.. Zu rich, Switzerland
Braun, C. G., 113 Cornelia St., Boonton, N. J.
Braun, M., 126 Montgomery St., Highland Park,
Bremer, M. Mr., Box 131-B, Atlantic Highlands, N.J.

Bresee, W. IL., 818 Park Ave.. Williamsport, Pa.
Brewer, Mr. S., 1936 lombardy Dr., La Canada, Calif.
Breymayer, K., 464 spadina Kil. Toronto, Ont., Canada
Brice, J. R., 2521 Edgewood Rd., Tampa 9, Fla. Bridges, J. E., 2706 Elder L_i., Franklin Park, 111.

Brinkman, H. A,, 6506 Denison Blvd., Parma Heights 29, Ohio
Britt, C. O., Box 7862, Unwwrsity Sta., Austin 12, 「ex.
Brody, J., 160.01-77 Ave., Flushing 66, L. I., N. V .

Brodzinsky, A., 3981 First St., S.W., Washing. ton 20, 1). C.
Mrogan, J. M., 396 Union St., Jersey City, N .J.
Brogden, J. W., 118 Irvingtion St., S.W.. Washington, D. C.
(Continued on page 44A)

FOR CONTROL

proven components now in production

Pressure Pickups and Synchrotel Transmitters

to measure and electrically transmit - true airspeed - indicated airspeed - absolute pressure - log absolute pressure - differential pressure - log differential pressure - altitude - Mach number - airspeed and Mach number.

Pressure Monitors - to provide control signals for altitude, absolute and differential pressure, vertical speed, etc.

Acceleration Monitors - for many applications now served by gyros.

Pressure Switches - actuated by static pressure, differential pressure, rate of change of static pressure, rate of climb or descent, efc.

Motors - miniature, special purpose, including new designs with integral gear heads.

SPECIAL TEST EQUIPMENT

optical and electromechanical for flight test observations.

Please write us concerning your specific requirements in the field of missile or aircraft control and guidance.
Technical bulletins are available on most of the devices mentioned.

kollsman

80.16 45th ave., elmhurst, new york - glendale, california. subsiolary of Standard coil products co. inc.

(Continued from page 42A)
Brower, H. P., Box 1663, Los Alamos, N. Mex. Brown, A. E., 504-10 St., Alamogordo, N. Mex
Brown, B. 13., RCA Victor Div., 415 S. Fifth St., Harrison, N. J.
Brown, B. J., 3337 Corinth Ave., Los Angeles 34, Calif.
Brown, F. L., 3 I 3 E. 40 St., Neay York 16, N. Y. Brown, II. A., loox 238, State College, N. Mex. Brown, J. T. L., Bell Telephone L.abs., 463 West St., New York, N. Y.
Brown, N. M., Jr., 18183 Rosita St., Tarzana, Calif.
Brownell, H, R., 188 W. Fourth St., New York 14, N. Y.
Browning, J. W., 1990 Martin Cir., Memphis, Tenn.
Brubaker, G. P', Jr., 321 Thurston, Los Angeles 49, Calif.
Iryan, K. W., 409 Meadow l'ark Dr., Fort Worth 8, Tex.
Bryan, R. H., $54+$ N. Taylor Ave., Oak Park. III.

Bryner, 1). B., 1617 Clase Ave., Chicago 26, III.

Buchholz, F. Cr., 7341 W. Rascher Ave., Chicago 31, 111.
Buchantu, H. R., 947 James St., Syracuse, N. Y. Bucher, T. T. N., 36 E. Central Ave., Moorestown, N. J.
Buckingham, S. A., 8521 Georgia Ave., Silver Spring, Md.
Bull, J. T., 904 E. Greewich St., Falls Church, Va.
Bullock, R. E., 1957 W. Hilldale Dr., Montrose, Calif.
Bunker, E. R., Jr., 910 N . Gatheld Ave., Alhambra, Calif.
Burbeck, D. W., 7360 W. 89 St., Los Angeles 45, Calif.
Margwald, G. M., 60 E. 32 St., Chicago 16, Inl. Burke, M. II., Box 359, R.D. 2, Farmingdale, N. J.

Burkhard, II. F., R.D. 1, Box 424, Fatontown, N. J.

Burnett, J. R., School of Electrical Engineering, Purdue University, West Lafayette, Ind.
Burns, M. C., 3017 Essex Rd., Cleveland Heights 18, Ohio
Burlock, J., I'ine Rd., Porfuoson, Va.
Bush, C. R., 4650 Lanark La., Beaumont, Tex.
Bush, G. B., 222 Crestmoor Cir., Silver Spring, Md .
Bush, N. E., 5807 Larsen St., Glen Burnie, Md.
Bushnell, R. H., 432 Witwer St., North Can. ton, Ohio
Busuttil, II. L., 16915 Ainsworth, Torrance, Calif.
Butcher, J. H., 1365 Cass Ave., Detroit 26, Mich.
Butler, F. R., 8406 Los Arboles Rd., Albuquer. que, N. Mex.
Rutler, G. 11., 26 Kilmer R(l., Larchmont, N. Y.
Butler, G. T., Jr., 1408 Rangeley Ave., Dayton 3, Ohio
Byrne, I. F., 2221 Howard Ave., SanCarlos. Calif.
Calalan, E. T., 990 Sierra Madre Blvd., San Marino, Calif.
Cahill, W. J., 465 Fairlield Ave., Ridgewood, N. J.

Cahn, R. H., 6105 Madawaska Rd., Bethesda $16, \mathrm{Md}$.
Callan, J. M., 530 Wynnewood Rel., Pelham Manor. N. Y.
Camphell, J. R., 10243 Best Dr., Dallas 29,

Tex.
Campbell, R. F., Box 55\%, Menson, Ariz.
Canty, F.. T., 100-13 Donor Ave., East Patersen, N. T. (Continued on mge 46A)
for faster, more accurate TMPEDANCE MEASUREMENTS

HEWLETT -PACKARD COMPANY
3339 D PAGE MILL ROAD, PALO ALTO, CALIF,, U.S.A. Cable 'HEWPACK'
Sales representatives in all principal areas

New! -hp- 415B

Standing Wave Indicator

- measures SWR with slotted lines

■ expanded scale for low SWR

- output for recorder operation

■ crystal detector for rf signals

- bridge or null indicator

Model 415B is a completely new instrument, similar to the time-tested-hp-415A Standing Wave Indicator but containing advanced features never before incorporated in one instrument of its type.

Basically a high gain, low noise, amplifier operating at fixed audio frequency, -hp-415B presents output on a square-law calibrated VTVM reading direct in SWR or db for operation with crystal detectors such as -hp-440A and 444A, and -bp805 serics slotted lines.

Among the many extra-convenience features are an expanded meter scale for accurate measurement of very flat systems; a 200 K input for null or bridge measurements; a bias current for use with bolometers; a 70 db calibrated range adjustable in 5 db steps so meter may be read in a favorable portion of the scale. Output connections for recorder operation are also provided.
$-h p-415 \mathrm{~B}$ is normally supplied for operation at $1,000 \mathrm{cps}$, but simple "plug-in" units are available on special order for other frequencies 315 to $3,000 \mathrm{cps}$. The instrument is housed in a light, compact, rugged metal case.

SPECIFICATIONS

Frequency: $1,000 \mathrm{cps} \pm 2 \%$.
Sensitivity: 0.1μ vat a 200 ohm level for full scale deffection.
Noise Level: Less than ($0.03 \mu \mathrm{f}$ ré. to input (operated from a 200 ohm resistor.

Amplifier 0: 25 ± 5

Calibration: Square law. Meter reads SW'R, dh.
Range: 70 dh . Input atrenuator provides 60 db in 10 dt steps. Accuracy $\pm 0.1 \mathrm{db}$ per 10 db step.
Scale Selector: "Normal," "Expand," and "-5 db.
Meter Scales: SWR 1-4; SWR: 3-10; Expanded SWrR: 1-1.3; db : 0-10; Expanded dh: 0-2.
Gain Control: Adjusts to convenient reference level. Range approx. 30 db .

Input: "Boll" (200 ohms). Bias provided for 8.4 ma bolometer or $1 / 100 \mathrm{amp}$. fuse; or 4.3 ma low current bolometer.
"Crystal." 200 ohms for crystal rectifier.
"200,000 whms." High impedance for crystal rectifier as null detector.
Output: Jack for recording millammeter having 1 ma full sale defection. internal resistance of approx. 1,500 ohms. Input Connector: BNC.
Power: $115 / 230 \mathrm{v} \pm 10 \% / 6,50 / 60 \mathrm{cps}, 60$ watts.
Dimensions: Cabinet Mount: $7 \mathrm{~T}_{4}^{\prime \prime}$ "wide, $111 / 4$ " high, $14^{\prime \prime}$ deep. Rack Mount: 19" wide, 7" high, 11 " deep.
Weight: Net 20 lhs. Shipping 35 lbs. (cabinet mount).
Price: $\$ 200,00$.

CONTINUOUSLY VARIABLE FILTERS

MODEL 302
VARIABLE ELECTRONIC FILTER

Fast, Accurate, Reliable

The - SKL - Model 302 includes two independent filter sections, each having a continuously variable cut-off range of 20 cps to 200 KC . Providing a choice of filter types each section has 18 db per ocłave attenuation. When cascaded 36 db is obtained in the high and low pass setting and 18 db in the band pass position. With low noise level and 0 insertion loss this versatile filter can be used as an analyzer in industry and the research laboratory or to control sound in the communications laboratory, radio broadeasting, recording and moving picture industries.

SPECIFICATIONS

- CUT-OFF RANGE

20 cps to 200 KC

- SECTIONS

2-can be high, low and band pass

- attenuations
$36 \mathrm{db} /$ octaye maximum
- INSERTION LOSS . 0 dh
- NOISE LEVEL

80 db below 1 valt

- FREQUENCY RESPONSE

2 cps to 4 MC

SM SPENCER-KENNEDY LABORATORISS, INC.

WE ARE SPECIALLY ORGANIZED TO HANDLE DIRECT ORDERS OR ENQUIRIES FROM OVERSEAS SPOT OELIVERIES FOR U.S.
BILLED IN DOLLARSSETTLEMENT BY YOUR CHECK
CABLE OR AIRMAIL TOOAY

\section*{capacitance
 | TYPE | UNFFFt | IMPED. Ω | O.D. |
| :---: | :---: | :---: | :---: |
| C1 | 7.3 | 150 | .36 |
| C 11 | 6.3 | 173 | . $36{ }^{\text { }}$ |
| C 2 | 6.3 | 171 | . $44^{\text {a }}$ |
| C 22 | 5.5 | 184 | . 44^{*} |
| C 3 | 5.4 | 197 | . $64{ }^{\text { }}$ |
| C33 | 4.8 | 220 | . $64{ }^{\circ}$ |
| C 4 | 4.6 | 229 | 1.03 |
| C44 | 4.1 | 252 | 1.03^{\prime} |

(Continued from frage 44A)
Carbonmean. V. J., 63 Jady IIi: 1 Ave., Exeter, 11
Carlin, 13., 67 Fairlawn lokw'., Fairlawn, N. J, Carpenter, L. 13.. 37 Newark Way, Maplewool,

Carr, L. MI., lit. Fivans liarm, R.D. 1, Iecsburg.
Carrillo, E. 13., 618 Allen Sit. Syracuse. N. l°.
Case, M. D., 302 E. Ofive Ave., Sunnywale, (alif.
(Gasey, 'I. J., 5300 W. 84 St., Mameambis 20, Mimn.
Cash, F. L., 179 l'arkhou:e St., Dallas 7, Tex. (avenaugh, 1). F., 290 Nongrove lla, Fiberon, N. J .
(cccarini, R. E., 4427 Auckl mill Ave.. N. Holly. wood, Calif.
Chadbourne, II. L., 2577 Atdath Rd., I.a Tolla, Calif.
(hadek, T. J., 2923 W. Solano Dr., N, Phoenix. Ariz.
Chalmers, I'. H., 100 W . Terrace, .Iltadena, Calif.
Chamberlin, N. K., 5810 Greene St . I'hiladel. phia 44, l'a.
('hambers, (i. R., Rollins Associates, Moore Bldg. Rellooroth, I)el.
(hambers, (i. S., Philco Corp., 4;00 Wisalhichon Ave., l'hiladelphia, l'a.
(Mambers, (f. R., 535-13 Ave., N., Seattle, Wash.
Chambers, R. M., Jr., 4660 W . Florissant . We.. St. Louis 15, Mo.
(Chandler, C. W., 3817 Muiffield Rd., Los Angeles 8 , (alif.
(hapman, A. B., 4135 Grassmery Iat, Dallas 5, 'lex.
(Ihapman, C. M., 317 W. Sixth Ave., Columbus 1, (hio
Chase, D. G., 7411 Foster St., Dist. Hyt-., Washingtom 28 , D. C
(Chen, T. S., 39 W. 84 St., New York 24, N. Y.
(hild, R. W., 2433 Allison Ave., Spectway, Inll.
('hosky, l'., 1022 N. Negley St., Pittsburgh, l'a.
(Mristian, M. S., 2432 Prospect Ave., Fvanston, III.
('hristian, O. R., Electronics Test, U. S. Naval Air Station, Patuxent River, Md.
($\mathrm{isne}, \mathrm{T} . . \mathrm{E}$., 762 Hill Ave., Glen Fillyn, 111.
(lapp, E. 13., 5020 Colina Dr., La Mesa, Calif.
(larance, A. L.. Box 91, Warrington, Pa.
(lark, D., Jr., 4027C Abourne Rd., Los Angeles, Calif.
(Clark, F. C., 87 l'ark Plı, Oreland, Pa
(lark, G. L., 7208 Central Ave., Takoma Park, Mel.
(Fark, T. G., 21 Gilenview R(l., North Caldwell, N. J.
(Farke. I. L., 530-44 Ave., Lachine, P. Q., Canada
(${ }^{2}$ arke, K. K., 1)ent, of Electrical Engineering, (Carkson College, Putstam, N. Y゙.
(larke, R. L... 4049 l'ennsylvania, Kansa: City 11. Mo.
("lemens, C. J., City Collere of New York, 138 St. \& Convent Ave.. New York, N. Y.
((lement, P. F., $17+1$ Los Fobles Dr., Bakersfield, Calif.
(Fements, L. E., 306 W . Sherwood Terr., Fit. Wayne, Ind.
(lerc, M. C.. $51+$ Ave., B, South Mouston, Tex. (lifford, M. L., 4060 N, Warner Rel., Iafayette Hill, l’a.
(onates, R. J.. 3907 Penmsylvania Ave., S.E., Washington 20, D. C.
(ohen, E., 269 E. Broadway, New York 2, N.).
(Chen, J. E., 13457 Magnolia Blvd., Van Nuys, Calif.
Cohen, F., R.R. 1, Box 52c, Melbourne, Fla.
Colly, N. C., R.1). 1, Moorestown, N. J.
Cole, B. 'T., 3810 Stearntee St., Long leach, Calif. (Continued on faye 48A)

Lar
 Enalits, Accuracus

TELEMETERING
 CHARACTERISTIC IMPEDANCE 500 OHMS Band pass flue the same attenuave
FBP. 33 leature above

SLUG TUNED
 Covers
frequency band of
70 70 kc . Frequency. deviation $1 / 2 \%$ linearity. Fectures 15 enter frequency. $1 / 2 \%$ linearity slug tuned. $2^{1 / 4^{4}} \times 4^{1,2^{\prime \prime}}$. LINEARITY OC listing and are
solder lug terminals.

DISCRIMINAT 3 kc to

 KC
KC
KC
35 KC
0.5
12.3
14.5
22
30
40
52.5
70
22
30
40
32

33 DEVIATION WITHIN $5 \% \quad 32.5$ \begin{tabular}{l|l|l|}
\hline \& $81 / 2 \%$ FO WITHIN $.5 \%$ \& 32.5

\pm \& $51 / 2 \%$ \& WITHIN 5%

\hline \& 32.5

\hline

\hline $81 / 2 \%$ FO \& WITHIN $.5 \%$ \& 32

\pm \& WITHIN 5% \& 32

$\pm 81 / 2 \%$ FO \& WITHIN \& 32
\end{tabular}

DISCRIMINATOR FILTERS INPUT LOW PASS FI Grequency band of 400 Covers the trequens than 70 kc . Less $\pm 9^{3 / 4} \%$ of center
cps to attenuation at and 50 DB atten har. trequency, ${ }^{30}$ and and fith hard tretion at of the pass band $1 \frac{1}{1 / 2^{\prime \prime}} \times 4^{1 / 2}$. monic of size $1^{1 / 2} \times 1,2 \times 1000$ OHMS CHARACTERISTIC IMPEDANCE 30,000

$L P 1-$	$F 2$.	KC
24	30	KC
25	40	KC
26	52.5	
27	70	KC
28		

OISCRIMINATOR FILTERS

IN STOCK FOR IMMEDIATE DELIVERY
Send for further information and catalag FREED TRANSEORMERCO., INC.

revolutionary NEW

contact design

IN
AMPHENOL PRINTED CIRCUIT CONNECTORS

4 contact tail styles --

$10,15,18,22$ contacts \cdot.

Prin-Cir connectors are the result of careful design work by amphenol Development Engineering. They feature compact bodies and a new contact design that is greatly superior to any available for printed circuit applications.

Prin-Cir contacts can't be set, can't be overstressed when used with standard $.061^{\prime \prime}$ to $.071^{\prime \prime}$ boards, have very low millivolt drop and extremely long life. This contact has an extra-long spring base and a circle-lip for good wiping action.

Prin-Cir connectors are available with $10,15,18$ and 22 contacts in four contact tail styles: Standard Eyelet, Wire Wrap, Pin and Open End. They may be ordered with one or more polarizing keys in any contact location.

Bodies are molded of an improved version of AMPHENOL blue dielectric and contacts are gold-plated.

AMERICAN PHENOLIC CORPORATION chicago 50, illinois

Write for special Product Bulletin!

In Canada:
 AMPHENOL CANADA LIMITED, Toronto
 लयमाताक

(Continued from page fo A)
Coleman, A. H., 42 Jratchimort Ave., Long Branch, N. J.
Coleman, 1'. 11., 812 W. Charles St., Champaign, 1li.
Collins, G. S., 22 Kerwool Cresc., Box 476, Agincourt, Ont., Canada
Conklin, H. A. Jr., 2262 Hill Pl, N. W., Washington 7, D. C.
Connolly, J., Holy Cross College, Worcester 10 , Mass.
Conway, B. B., 312 W. Xenia 1r., Fairborn, Ohio
(Cook, K. II., 1401 Warner Kil., Great Bend, Kans.
('ool, L. K., 3632 Ligo Ave., San Bernardino, Cialif.
Coolidke, J. 1., 706 S. 25 Ave., Rellwood, Ill. Commbs, J. M., Engineering Lab., I. [3.M. Corp., l'ougincepsie, N. V.
(ionn, C. F., 26 Lowell Terr., Bloomfiedd, N. J. Cooney, J. K., Box 89, Waldoboro, Me.
Cooper, A. E., Stratfori Dr., R.l). 1, Vestal, N. Y°
("onper, F . S., llashins I aibs., 305 K .43 St., New York $17, \mathrm{~N}, \mathrm{Y}$.
(\%)ル, R. \&., 333 W. Monmment Ave., Dayton 2, Olio
Corbin, J. E:., Bell Telephone Lablos. 463 West St., Xev York, N. Y
Corlerman, (. I.., 91 Bacon Sto, Winchester, Mass.
(orp, I). E., 67 Ayer R(l., Williansville 21, N. Y. firson, 13, R., 29 Holly Pl., Stamford, Conn. Coss, W. I., 803 Randolph St., Brook Farm, Falls Church, Vi.
Cottrell, Mck., General Research Co., 120 Ia Grange St., Morenci, Mich.
Conch, W. M., Jr., Machlett I alıs., Inc., Spring dile. Conn.
Conlter, W:. II., 3023 W . Fulton Blvd., Chicago $12,111$.
(Cousins, V. M., River Rd., Chatlam, N. J. (Govell, 1). 1F., 143 E. St., Rerfwood City, Calif. Covici, W., 43 Obre Il., Shrewbbury, N. J. ('owles, R. T., Montmorenci Rd., Ridgway, J'a. Cox, W. W., 274 (irove St., lBelmont, Mass.
('rago, I). H., 2103 Collett J.a., I'lossmoor, Ill. ("raig, A. C., 801 Main St., I.aurel, Md.
Craig, A. (i., Jr., 66 Chadwik St., Newport, R, I.
Crane, II. 1)., Institute for Advanced Studies, Princeton, N. I.
Crane, N. B., Jr., 347 L.oveman Ave., Worthington, Ohio
Crawford, 1). J., 50 Ziegler Ave., I'oughkeepsie, N. Y.

Crawford, I. A., Box 464 , Chirna Lake, Calif.
Crawford, 12. 11., 277 New Jersey Ave., Colings woorl. N. J.
('reamer, F.. MI. Jr., 1341 Colwyn St., Phila clelphia 40, P'a.
(r edle, A. $13 ., 903$ Trifiammer Rd., Ithac:a, N. Y.
(reust\%, J.. Mcl.ean, Val
(rews, F. LI., Darby \& Darly, 405 Lexington Ave.. New York 17, N. Y.
(rippen, E. (i.. 3829 X.W. 23, Oklahomat (ity 7, Okla.
(ronaliey, \mathbb{R}. W:, 35 Brown St., Maklwinsville. N. Y.
(rosuett, F.. ($\because 1517$ I mmbardy Rd., Pasadena 5, Calif.
(rowley, 1). J., Jr., 137 Taylor St., Needham Me-ighte, Mass.
((ulling, F.. J., 10405 Toullymore 1)r., Myattsville Md.
(inlver, R. H.. Cravern, fohnes \& Culver. 1242 Munsey Bldg., Washimgton 4, (). (.
Cummings. A. P', 201 J) irston Ave., Syracuse $6, \mathrm{~N} . \mathrm{Y}$.
((nnninghath. Fi. W., 4224 E. Washington IBlve.. I.os Anceles 23, Calif
(u url, G. II, 1132 Montma $[$ r., San Diego 7, Calif. (Continued on page 50.1)

for telephones, too

CRUCIBLE

PERMANENT MAGNETS

mean maximum energy . . . minimum size

You get consistently higher energy product from Crucible prescription-made alnico permanent magnets.

That means more energy from a smaller magnet... greater design freedom for manufacturers of telephone sets, high-fidelity sound equipment, controls, instruments, and magnet-equipped devices of all kinds.

Crucible, the nation's leading producer of special purpose steels, has been making these quality magnets ever since the development of alnico alloys. They're available sand cast, shell molded, or investment cast to meet every size, tolerance, shape and finish need.

For prompt delivery - or helpful advice on magnet problems - call Crucible. Crucible Steel Company of America, Henry W. Oliver Building, Pittsburgh 22, Pa.

CRUCIBLE

first name in special purpose steels

Crucible Steel Company of America

Build SORENSEN REGULATION into your products with these new

MAGNETIC VOLTAGE REGULATORS

CAPACITIES-ISVA, $30 V A, 60 V A, 120 V A, 250 V A, 500 V A$.
TUBELESS - frouble free
COMPACT-saves space in your equipment
LIGHTER than comparable regulators
GOOD APPEARANCE - enhances your product
THERMALLY ISOLATED CASE - simplifies your design problems
ELECTRICAL SPECIPICATIONS
Input voltage range $95-130 \mathrm{VAC}, 10,60$ cycles. Output range $115 \mathrm{VAC}, \mathrm{RMS}, 10$.
Regulation accuracy $\pm 0.5 \%$ against line changes.
Load conditions $\pm 0.5 \%$ against line at any given load from 0 to full. Time constant from 2 to 6 cycles for line changes.

GET MORE INFORMATION: Catalog MVR2 is yours for the asking; gives complete data on the new Magnetic Voltage Regulator line. Contact your local Sorensen representative, or write to General Sales Department, Sorensen \& Co., Inc., 375 fairfield Ave., Stamford, Conn.

(Continued from page 48.A)
Curtis, R. B., 2309 Montgomery St., Bethlehem, Pa.
Custer, C. I.., Bell Telephone Labs., Murray Ilill. N. J.

1) Agostino, \because F., 494 Thoreau Terr., Unim, N. 1.

Dairiki, S., 45 Kendal Conmon Rd., Weston 93. Mass.
1)ale, G. V., Bell Telephone Labs., Whippany, N. J.

Walrymple, II. C., 4 Sands Ave., Bayridge, Anapolis, Md.
Haly, W. E., 4627 F. Eastlend St., Tuscon, Ariz. I''Amico, S. P., 1740 Kirkwood Ave., Merrick, L. I., N. Y.

Damiels, L. H., 356 Ford Ave., Jackson, Miss. Dantine, W. A., Rua Brigadeiro Tobias 247, Sao Paulo, Brazil
Itarling, W., 606 W. Maple Ave., Merchantville, N. J.

Haspit, J. I., 507 Ninth St., Santa Monica, Calif. Dausch, A. A., Jr., 17445 Lemac St., Northridge, Calif.
Haven!prt, E... 229 E. 29 St., North Vancouver, B. C., Canada

David, W. R., R.F.D. 2, Galway, N. Y.
Davilson, D.. 26 Mrook St., Brookline 46, Mass.
Davidson, F. 1)., 1505 W. Dorland St, Whittier, Calif
1)avies. R, C., 1208-16 National Press Rlda., Washington 4, D. C.
Davis, C., $7+33$ 'ooe Ave.. Detroit 6, Mich.
Davis, 1. I)., 16 Beverly Ct., Berkeley 7, Calif.
Davis, E. W., 50 Elbow La., Levittown, L. I., N. Y.

Davis, F. H., Smith Hill Rd., R.F.l., Monsey. N. Y.

Davic, G. W., Box $110 \cdot \mathrm{~A}$, Rt 1. Lorton, Vat.
Iavis, J. H., 1678 Lee Dr., Mountain View, Calif.
Davis, M. F., 323 E. Plymouth Ave., Silver Spring, Md.
Davis, K. I... 535 Fountam St., Grand Rapids. Mich.
Davis, S., 101 Hungry Harbor Rd., Valley Stream, I., I., N. Y.
Davis, W. M., 31 Sherwood Rd., Glen Cove. L. I., N. Y.

Davis, W. K., 552 N. Sparks St., Burbank, Calif.
Day, W. B., 116 Yale St., Roslyn Heights, L. I., N. Y.

Dayot, V. D., Phillipine Military Academy, Loa. kan, Baguio City, P. I.
Dazey, M. II., 1120 Via Nogales, Palos Verdes Estates, Calif.
Deacon, N. F., 8750 Colesv:lle Rd., Silver Spring, Md.

Deakins, G., A-Bar Hotel, 2612 Guadalupe, Aus tin, Tex.
Deal, J. B., Jr., Hiox 1663, Los Alamos, N. Mex. Dean, J. P., 4009 Woodman Ave., Sherman Oaks. Calif.
Dean, W. E.., Jr.. 3236 N. Lockwood Dr., Chattanooga, Tem.
Deßell. J. M., Jr., 5 Albion St., Passaic, N. J. Decker, K. M., 680 Brandywine St., S.F., Wash. ington, D. C.
Deeken, J. W.. 3025 Fairway, Dayton, Ohio
Deer, J. W., 4108 S.E. 113, Portland 66, Ore.
DeGregorio. J. F., 2022 ILermosa Dr., Boulder, Colo.
Dellart, W. R., 2250 E. Ellsworth Rd., Rt. 6, Anve Arbor. Wich.
DeLange, O. E., Bell Telephone Labs., Holmdel. N. J.

DeLisle, J. E., 46 Frost St., Arlington, Mass.
Delker, A. G., Jr., 2828 Cortelyou Pl., Cincin. nati 13, Ohio
Dellenbaugla, F. S., III, $1: 1$ Seven Bridges Rd.. Chappaqua, N. Y.
Delmerge. A. H., 1072 Brys Dr., S., Grosse Pte. Woods 36, Mich.
(Continued on page 52A)

You buy a communications receiver for just one thing-dependable performance. It's performance that counts, and the NEW Pro-310 was designed with performance in mind. It outperforms all the other receivers in its class. Here's why -

- 3 years engineering and design time in its development (including $1 \frac{1}{2}$ years to iron out the 'bugs'l plus 5 years production experience on its military counterpart.
- The features shown above.

Check on the NEW Pro-310-it's made to order for your "rough-spot" service. Write for specs and other details to The Hammarlund Manufacturing Co. Inc., 460 West 34th Strect, New York 1, N.Y. Ask for Bulletin I-9.

MEASURE NOISE AND FIELD INTENSITY FROM 150 KC TO 1000 MCWITH ONE METER!

Quickly • Accurately • Reliably

Noise and Field Intensity Meter Model NF-105
(Commercial Equivalent of AN/URM-7)
Empire Devices Noise and Field Intensity Meter Model NF-I05 permits measurements of RF interference and field intensity over the entire frequency range from 150 kilocycles to 1000 megacycles. It is merely necessary to select one of four individual plug-in tuning units, depending on the frequency range desired. Tuning units are readily interchangeable...can be used with all Empire Devices Noise and Field Intensity Meters Model NF-105 now in the field.

Each of the four separate tuning units employs at least one RF amplifier stage with tuned input. Calibration for noise measurements is easily accomplished by means of the built-in impulse noise calibrator. With this instrument costly repetition of components common to all frequency ranges is eliminated because only the tuners need be changed. The same components . . indicating circuits. callbrators, RF attenuators. detectors and audio amplifier and power supplies... are used at all times.
Noise and Field Intensity Meter Model NF-I0S is accurate and versatile. It may be used for measuring field intensity, RF interference, or as an ultra-sensitive VTVM A complete line of accessorics is a vailable.
Additional information and huerature upon request
NEW YORK-DIgby 9.1240. SYRACUSE-SYracuse 2.6253. PHILA
DELPHIA-SHerwoot 7-9080. BOSTON-WAItham 5.1955 . PHILA
TNGTON, D.C.-D Ecatur 2.8000 . ATLANTALEXChange 780, WASH.
TROIT-BRoadway 3.2900. CLEVELAND-EVergroen 2.4114. DAYTON

- FORT WORTH—WEAGO-COIUmbus 1.1566. DENVER-MAIn 3-0343
GELES-REpublle 2-8103. Palo Alto-DAvenport 3.4455 . LOS AN.
MONTREAL-UNiversity 6.5149. TORONTOEnport 3.4455. CANADA:
FAX 4.648i - EXPORT: NEW YORK—MUrray Hill 2.3760 A

EMPIRE DEVICES PRODUCTS CORPORATION

38-15 BELL BOULEVARD = BAYSIDE 61. NEW YORK manufacfurers of
FIELD INIENSITY METERS - DISIORTION AMILYIERS - IMPULSE GENERAIORS - CORXIAL ATIENUATORS - CRYSIAL MIXERS

foot
 TRANS－HORIZON ANTENNAS available NOW

Ficld proven for two years in over 50 installations，this versatile，rugged antenna is currently available from stock．
 perimental purposes．

ANTENNA EQUIPMENT
－D．S．KENNEDY \＆CO． COHASSET，MASS．－TEL：CO4－0699
（Continucd from fage $52 A$
Duffy，M．I＇．Haseltine Floctronics（＇orp．，I．itale
Dugan，I）．I．， 25 Maple Ave．，Oakwoml Itk．，
Dincan，D．C．， 4077 biarder Are，Nístern Springs，III．
Dunlitp，I．F．， 734 N, Pize Ave．，（hicimo 4 t． Ill．
Dumap，K．S．，【kell Telephone Labs．，Duray． Hill，N．I．
Dumn，J．l．．．（itneral belivery，Clombent．
 Ensland
Dum，T．F．， 56 Thorny Apple I．a．，Levitown， Pa，
Durbin．H．：I．， 125 Sylvan Glen Dr．，Smotit Bend 15，Ind．
 18．М（1．
Durlatm，I．G．，F：lectronic Dept．，Hugites ．Nix． craft Co．，Culver（ity，Calif．
Durhec．．I．I．．，Bell Telepione Labs， 463 Ne－t St．，New Sork，N．Y．
$307-40$ St．Sacramento，Calif．
Iurr，F．．．307－40 St．，Sacramento，Calif．
Dutim，W．I．， 732 N．Friison St．，Arlingtom 3. V．I． 1523 E．Oratuge（irove dve．
1）wyer，R．J．， 1522 E．Orathe（irove Ara
I）ye，R．F．．，12217 Bushey D．．，Silver siming， （C．． 448 Monssell T）r．D）dlas，fed

 dirport Br．，Mian i，17a．
I．，C．， 471 S．F．． 72 Ave．，J＇urtlant，
Fastland，I．，C．， 471 S．F．． 72 Ave．，Joutlant，

Eidly，W．1．．， 4517 Secley Ave．，Downers Grove，Ill．
 bank，Calif．
Edinon，T：M．，J．lewetlyn l＇ark，W＂eit Orange，
Eelmumds，I．I．．Ir．． 198 Sylvan St．Rutler－
Filwatale，（C．F゙．，IBne 107，Re．l Bank，N，I．
Eflwarls，\therefore ．I．，R．F．D．1，Jopewell Junction，
Fells，W．．．， 207 （iilhan，Jhiladelphia 11，I＇a．
Eggart，（i．J．，Tr．，Ebasco International Corp．， \｛ Rector St．，Nerv York
Filers，C．（i．， 104 W．Nrite St．，Fairbury，Ill．
Eisenberg，I．， 805 F．． 182 Si．，N゙ゃw York 60. N．Y．
Ekblaw，WV．Fi，Jr．，Roy（i，Miller，Inc．，Mone mowth，III．
Ekrem，T ．C．， 952 S．Jo：ephine，Denver，Colo． Flath，F．Fi．， $204 \times$ Vath Buren St．，Rock－ ville，Md．
E．ficut，C．H．， 65 （ireglaws 1）r．，Cliftom，V．I Follerbeck， 1 ．H．，2815－46，W．，seattle 99 ， Wash．
Fllert，C．A．， 2406 liverson Rd．，Haltimore 9. Md．
Ellint，T．．． 453 Whitfield Rd．，Ratimume 28， Md．
 St．，New York，N．Y．
Fllic．I，W＇．Ir．， 20951 Costanso St．，Wood－ lamellills，Calif．
Ellis，R．＂I．，Ir．， 2008 Diyton St．，Silset Sprimer，Mst．
Fillian，M．，Tr．， 10404 Seventh Ave．，Inble． wool．Calii．
Fimore，C．M．．Tr．，303G linhgrove Itr．，Dal－ las，Tex．
Folwell，H．（i．，Ir．， 392 Inafiyctte Ase．，Wiset－ wort，N．I．
Fitmmerich．I．．． 408 Avenda De Jose，Redumpo Beach，Calif．
（Continucd on fay．56．1）

DESIGN IS OUR BUSINESS

ANNOUNCINE

TYPE 589

CLIPPER-DEODERECTIFIER

Ever so small, and light for its power capabilities, our new type 589 electron tube will help immeasurably in concluding many electronic design problems, especially for aircraft and missile environment.
This new external anode tube weighs only a little over $3 / 4$ of an ounce, is less than 2 inches long, yet is rated as a clipper diode for 10,000 volts epx, and for peak plate current of 8 amperes.

For oil emersed rectifier operation rated epx is 16,000 volts ard average plate current rating is 65 mAdc .

For convection cooled rectifier operation rated epx is 16,000 volts and average plate current rating is 30 mAdc .

Shock rating is 300 g .

MECHANICAL DATA
Nominal Overall Cimensions:
bength (Less lead)...... 1.9 inches Lead length ... 1.5 inches Diometer \qquad
Anade Dirensians:
Length (for contact)... 8 nehes Ciometer--.. . 6 inches BulaPer illutrations Mounting and Anode Contoct......................Per illu:trations Filament Terminals

Peak Plate Current.................-n.............................. 250 mo . Average Ptele Current..........-.......................... 65 mAds Maximum Caalant Temperature Range

$$
-65^{\circ} \mathrm{C} \text { to }+165^{\circ} \mathrm{C}
$$

Moximum Rectifier Ratings (Raciatian Coaled):
Peak Inver' e Varlage.................... 16.0 kv. Peak Plate Current................-............................. 120 mg . Average Plate Current....................... 30 ma Moximum Clioper Siode Raling: (Liquid Cooled):
Peak Inver-e Vo tage.. 10.0 kv . Peak Cuirent .. 8 a. Average Plate Current... 20 mo.

Tiny toroids - 14 OF THEM - produced on a Boesch Model SM Subminiature Coil Winding Machine are shown fitted inside a SIZE FIVE WEDDING RING.
Consider the importance of this comparison! By producing space and weight-saving subminiature toroids, the Boesch Model SM helps you design subminiaturized equipment.
For coils down to 5/64 ID, wire sizes as fine as \#50, IT'S THE BOESCH MODEL SM Toroidal Winding Machine. Somewhat larger coils can be wound with wire as heavy as \#36.

14K. gold wedding ring courtesy of Shreve, Crump \& Cow Compony Boston, Mossochusetts

Send us your specifications and a core sample. We will show you what our machines can do.
NOW - no licensing, no royalties required in the sale and use of BOESCH Machines.

(Continued from page 5.4-1)
Jindres, J. M., Jr., 29 Fulmer Ave., Haver. town, I'a.
Enenstein, N. H., 7447 Henefer Ave., Los Angeles 45, Calif.
Engel, G. C., 460 Spring Ave., Rirlgewood, N. J. B. G., 28 Club Way, Hartsdale,

Engelhardt, G. B., 28 Clab Way, Martsdale,
Engert, C. W., Kingwoud Manor, State l’ark, Ringwoorl, N. J.
Epstein, M., 4 Clarence St., West End, N. J. Erickson, R. S., 1860 Rome Ave., St. Paul 5, Minn.
Firnst, R. IF., 16 Stuywesant Oval, New York 9,
Frwin, E. V., $42+7$ S. 172, Seattle 88, Wash. Eubanks, J. M., 2302 Granada IBlvi., Coral Gables, Fla.
Evans, J. C., 134 S . Bowling Gireen Way, L.os Angeles 49, Calif.

Fiverett, F. C., 31 Maple St., Garden City, I.. I., N. .

Everitt, K. S.. 504 S. L.os Robles Ave., Pasa. dena 5, Calif.
Evers, J. T., I'inewood l J_{o}, Box 161, K.F.D. JFahy, E. J., USN Underwater Sound Lab., Fit. Trumbull, dew London, Conn.
Fair, I. E., Box 182, Fan Gallie, Fla.
Fairbanks, A. F., 2417 N. Angelus Ave., Ciar. vey, Calif.
Fairweather, B. A., Bell Telephone Labs., Mur ray Hill, N. J.
Fairweather, R. W., 318 Colony St., West Hempstearl, 1.. I., N. غ.
Fiallows, R. S., 5 lhellingham St., Newton High lands, Mass.
Fast. S., 96 First St., Fiar Haven, N. J.
Faust, C. W., 1485 Arlington Ave., St. Louis 12, Mo.
Featherstone, R. P., 1933 Third Ave., S., Minne apolis 9, Minn.
Feigenbann, I. A., 112 Cedar Ave., West End, Fernbach, M., 7813 Farnsworth St., Philadel. phia, l'a.
Fesko, J.: Jr., 8259 E. Clarence Ave., San Gabriel, Calif.
lield, W: A., $522 . \mathrm{A}$ Nimitz, China Lake, Calif.
W. L., K. D. 1, Mendham Rd., Mor ristown, N. J.
Findley, R. W., R. D. 2, Valencia, Pa.
Fingerhood, S. A., 25 W. 81 St., New lork,
Fishberg, S., 3400 F'ark Ave., New York 56, S. X. Fisher, S. G., R. D. 2, New Rt. 18, Slaron,
Pa.
Fitts, W. F., 71 Walthery Ave, Ridyewood, Flack, S. G., 15419 Hilliard Rd., Lakewood 7, Ohio
Fleming, J. J., Naval Research I.ab., Code 5130, Washington, D. C.
Florman, E. F., 2003 Bluebell Ave., Boulder, Colo.
Flower, R, A., 67 TopIand Rd., White I'lains, Flynn, I., 805 N. Overlook Dr., Alexandria, Va .
Flynn, J. G., 1937 Irving Blvd., Dallas, Tex. Foley, T. U., 148 Kidge Rd., Erlton, N. T. Follingstad, H. G., 611 Norwood Dr., V'est field, N. J.
Fonte, G., The Clough Brengle Co., 6014 Broadway, Chicago, IIl.
Foote, S. H., 14935 Hartsook St.. Shernan Oaks, Calif.
Forbath, F. P., 4296 Vineland Ave., North Hollywood, Calif.
Forster, A. G., 1133 Oakland Ave., Fielmont 11, Calif. (Continted on page $58 . A$)

CUSTOM-DESIGNED CERAMIC CAPACITORS
Among $\mathrm{H} \cdot \mathrm{Q}$ custom-designed urits are ring capaci tors to fit around metal-tube sockets, multiple. section rectangular capacitors in metal cans for by-pass applications, and new stand-off and feed thru designs, all ensıneered to withstand severe mechantcal and environmental stresses. These pieces reflect the skill of H_{1}-Q engineers in produc ing sturdy, campact components to meet the requirements of specialized applications.

Catalog on request. Let requirements.

DIVISION

AEROVOX CORPORATION OLEAN, N.Y.

for that short grid lead

 use the Sangamo

First used in Navy electronic gear, Tote-m-poles are invaluable for "bug-resistant" wiring of models and production units. Advantages: Short leads; high component density; improved ventilation.

HUGHES SILICON JUNCTION DIODES

features:

HIGH TEMPERATURE OPERATION* EXTREMELY HIGH BACK RESISTANCE VERY SHARP BACK VOLTAGE BREAKDOWN NO VOLTAGE DERATING AT HIGH TEMPERATURE EXCEPTIONALLY STABLE CHARACTERISTICS ONE-PIECE, FUSION-SEALED GLASS BODY AXIAL LEADS FOR EASY MOUNTING SUBMINIATURE SIZE**

The onc-piece, fusion-sealed glass body is impervious to penetration by moisture or other external contami-nation-ensures electrical and mechanical stability. Ship-ments-in quantity-of all types of Hughes Silicon Junction Diodes are now being made in new, compact volume packaging. When your circuit requirements call for diodes with high temperature or high back resistance characteristics, be sure to specify Hughes Silicon Junction Diodes. They are first of all-for reliability. Listed and described in Bulletin Sp4.

Characteristics rated at $25^{\circ} \mathrm{C}$ and at $150^{\circ} \mathrm{C}$. Ambient operating range, $-80^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$.
**Actual dimensions, diode glass bodyLength: 0.265-inch, max. Diameter: 0.105 -inch, max.

Quickly measures incident or reflected power, simplifies matching loads to lines

New Sicrra Model 164 is a compact, versatile, bi-directional monitor for intermittent or continuous measuring of incident or reflected power, or convenient and precise matching of loads to lines. The instrument offers unequalled measuring ease and economy, since only two plug-in elements are required for coverage of all frequencies 25 to $1,000 \mathrm{mc}$ and wattages 10 to 500 watts. Two plug-in elements cover, respectively, 25 to 250 mc and 200 to $1,000 \mathrm{mc}$. Both have 4 power ranges: $10,50,100$ and 500 watts. Accuracy is $\pm 5 \%$ full scale. No auxiliary power is required to operate the instrument.

Because of its compact size and wide range, Model 164 is ideal for portable ap. plications (mobile, aircraft, etc.) as well as laboratory use. It is supplied in a sturdy carrying case (one or both plug-in elements supplied as ordered) and both meter and directional coupler may be removed from the case for remote monitoring. The monitor may be equipped for most connectors normally employed with 50 ohm lines. A twist of the wrist selects incident or reflected power, or any power range, without requiring removal of power. No exchange of plug-in elements is necessary to read low levels of reflected power.

TENTATIVE SPECIFICATIONS

Power Ranges: $10,50,100$ and 500 watts full scale direct reading.
Accuracy: $\pm 5 \%$ of full scale.
Insertion V5WR: I.ess than 1.08 .

Frequency Ranges: 25 to $1,000 \mathrm{mc}$. Two plugin elements
Low Frequency Element: 25 to 250 mc High Frequency Element: 200 to 1.000 mc Impedance: 50 ohm coaxial line.

Data subject to change without notice.

8317

Sierra Electronic Corporation

San Carlos 2, California, U.S. A.

Soles representotives in major cities
Manufoclurers of Corpier Frequency Volimeters, Wanuaclurers Analyzers, Line foult Analyzers, Directional Wave Analyzers, Line fault Analvzers, Directional
Couplers, Wideband RF Transfort ers, Custom Radio Transmitters, VHF-UHF Detectors. 'Ic riable Im pedance Watmefers, Reflection Coefilf tall Meters

Foster, J. F., 835 Mountain Pi., Pasadena 6 , Calif.
Fowler, J. A. 13., Box 488, Fort Jones, Calif. Fowlie, W. 1., 379 Baringtor: St., Halifax, N. S., Canada

Fox, K. R., 2 E. Adeheidstrat 300, The Hague, Holland
Fox, R. C., Westinghouse Electric Corp., Air Arm Div., Friendsiip Airport, Baltimore 27, Md.
Frame, T. F., 1003 Tpton Rd., Glen Burnie, Md.

Franklin, R. M., Chysier Corp., 2985 E. Jefferson Ave., Detroit, Mich.
Franta, A. L.., Code 535, Naval Research Lalb., Alacostia Sta., Washindton 25, 1). C. Pranz, J. P., Jr., 311 Delano Ir., Pittsburgh 36, P'a.
Framel, 1. H., 3.36 Lacev Dr., New Milforl, …
Firattali, F. A. V.. 4403 Old Frederick Rd., Baltimore 29, Md.
lirazier, R. V.', 212 MaryTand Ave.. Tow mon t, Md.

Fredendall, B. F., 1907-13 W. Alamedia, Bhrhank, Calif
Predaml. R. R., loox 265, W. Warr Aeres, I'. O., Oklahoma City, (kl lit.
Forceman, C. F., $100 \cdot \mathrm{~B}$ Halser Ave., (hina I.ake, Calif.

French, C. (.., U. S. Steel Co., Fairleas Works, Fairless Hills, J'a.
Friedberg. 1. S.. 11 Longfellow sit., N. W.. Washington, D. C.
Firiedman, I. 13.. 5406 Wirodlawh Ave.. (hiicago 15, 111.
Friesser, I. M., Box 6+8. Forze Ru., Whitemarsh, Md.
Frolbach, II. F., 7132 Sterens Ave., S.. Minneapolis 23 , Mim.
Fry, W. J., Flectrical Encinering Researeh Labs., University of Tllinois, L'rhana, 111.

Fryncko, P., R.F.D. 1, kox 143, seymour, Contr.
Fuhtmeister, 1'. I'., 4 Langhorne Ral., Warwick, Va.
Fuller, I. W.. Ir., 200 Ottawa Si.. S. F., Washington 21, D. C.
Fulmer, J. W., 1504 W. Chester Pike, Westgate Hills, Havertown, Pa.
Fulton, W. L., 29 Otterbein Ave.. Dayton, Ohio
(iaillard, R. L., 229 E. 12 St., New lork 3, N. Y.
(Galanhos, L. G., 1149 Olsen. Foleto 12, Ohio Galidas. P., (iencral Electric Co., Syracuse,
Gallo, F. J., 340A Vallejo St., San Francisco 11, Calif.
Gams, 'T. C.. N. T. Electronics Corp., 345 Carnesie Ave., Kerilworth, N. I.
Gano, O, K.. Kt. 1, Box 78-B, Melrose, Fla. Garafalo, J. T., 5817 W. 78 PI., Los Angeles 45, Calif.
Garcia. A.. 583 Queen St.. Woodbury, N. J. Garduer, K. O.. 1014 Blvd., Cor. Ridse St., New Milford, N. T.
Garkav, F., 7019 Pennsylvania Tve. Bywoorl, Upper Harby, Pa.
(iaroff, K., 116 N. Sumyc-est Dr., Little Silver, N. J.

Carretson, II. W', Power Utifization, Bureau of Reclam., Denver Federal Center, Denver, Colo.
Garrett, E. T, Hox 339: T'SAFIT, W'rightl'atterson AFB , Ohio
Garrigus, 天. F.. of Fairehild Cir., OFFl"TT, Omala, Nebr.
Gates, W. F.. 580 Irullman Rd., l3urlingame, Calif.
(iaydos, (i. I.. 1+ Lafayette Ave., N. F. Grand Raphels. Mieh. (Comtimued on pagle 60.1)

No longer need the lack of material deter you from switching to printed circuitry. Revere Rolled Printed Circuit Copper is now available to laminators in standard coils of 3.50 lbs . in widths up to $38^{\prime \prime}$, and in $.0015^{\prime \prime}$ and $.0027^{\prime \prime}$ gauges weighing approximately 1 oz . and 2 oz . per square foot.
Revere Rolled Printed Circuit Copper is accurate in gauge, of high conductivity, and uniform density. It is easily etched and soldered.
The next time you order blanks from your laminator, specify Revere Rolled Printed Circuit Copper.

COPPER AND BRASS INCORPORATED

Fonnded by Panl Retere in 1801
230 Park Avenue, New York 17, N. Y. - . .

Mills: Baltimore, Md.; Brooklyn. N. Y.; Chicago, Clinton and Joliet, IIl.; Detroit, Mich.; Los Angeles and Riverside, Calif.; New Bedford, Mass.; Neuporf, Ark.: Rome, N. Y

Sales Offices in Principal Cities, Distributors Ever'where.

CERAMIC MATERIALS

Ot your fingertips

TECHNICAL DATA CHART NIU\|ULIOff CERAN TECHNIC

\square
\qquad

NEW TECHNICAL DATA on stuporliorf CERAMIC MATERIALS

The very latest technical information on a wide range of erramin materials is given in the new Stupakoff Technical Data Chart Electrical and physical characteristics and the chemical eomposilion of various grades of the following ceramic materials are included:

HUNAN
ALCMINE"M silld:A'YE
STEATITE:

Valuable design and application suggestions included in the Stupakoff Data Chart help you engineer your ceramic parts for lowest cost and greatest satisfaction.

Send today for your fec copy of the new Stupakofl Data Chart. Arranged for ready reference.

WRITE DEPT. P.

Division of The CARBORUNDUM Company
LATROBE, PENNSYLVANIA

Gayle, A., Cave Dr., Deertield Acres, BoughWeepie, N. Head of Meadow, Rd., Newton, ("oms.
(iegenheimer, R. F., 27 Longfellow Dr., Ralıway, N. J.

Geiger, J. Mr., 342 Woodland Dr., Bright. waters, L. I., N. Y.
(ieiger, R. F., 701 Flden, Whittier, Calif.
(iellert, J., 6.7-09-210 St., Bayside, I.. I., N. Y.
(iemmill, F. Q., 82 Wyat: Rd., Garden City, L. I., N. Y.

Cemulla, W., 3516 E. Third St., Long leach, Calif.
Gent, W. F., Tele-Kay Tube Co., Inc., 984 Saw Mill River Rd, Yonkers, N. Y.
(icorge, W. D., National Bureau of Standards, Boulder, Colo.
(Berber, P. D., 118 Elm Ave, Woodlyme, Audubon 6, N. J.
Gibbons, D. R., P. O. Box 500, Manasquan, N. J.
(iblis. D. R., 926 sweetbriar Dr., Nevandria, Ya. E., 24A Garden St., Cambridge Mass.
(iilosm, F. C., Box 376, Brought an, I'at.
(Gilson, W. (i., 645 Princeton Kinw-ton Rd., Princeton, N. J.
(Gifford, J. S., 57 Hazel Ave., Livingston, N. J Gilbertson, S. R., 16165 Stone Ave., Seattle 33, Wash.
Gilder, M., Dept. of Electrical Engineering, University of Illinois, Urbana. Ill.
Gillespie, II. C., 207 Pleasant Valley Ave., Moorestown, N. J.
Gillette, K. G., 1433 Spring RS., N. W., Washington $10, \mathrm{D}$. C.
Gilman, B. S., 484 Laurel R4., Rockville Centre, L. I., N. Y.

Gilman, M. A., General Kacio Co., 275 Mast chusetts Ave., Cambridge 39, Mas
Gilmore, A. C., Jr., 292 L.yndhurst Ave., I.yndhurst, N. J.
Ginsburg, C. P', 522 Orange Ave., Los Altos, Calif.
(iinlie, I. I., 11751 Plateau Ave., Ios Altos, Calif.
Cilaser, K. A., c/o Mrs. A. S. Oliger, 12034 62 Ave., Seattle, Wash.
Glass, M. S., Bell Telephone Labs., Murray sTill, N.. I.
(;season, J. L.., 707 North F ss., Oxnard, Calif.
Gleason, R. F., 2722 Ramblewood Dr., S. E., Washington, D. C
Cleghorn, G. J.. 2400 Via Auacapa, Halos Verde Estates, Calif
Glummer, L., 63-61 Yellowstone Blah., Forest Hills, L. I., N. Y.
Glendiming, W., 9 Honor Ora Rice. Forest II ill, London, England
Glidewell, J. J., Jr., 254 N. Delmar Ave., Dayton 3. Ohio
Glueckler, F. J., 1314 Puritan Ave., Bronx 61, N. Y.

Gudbey, J. J., 6047 Ridgecrest Rd., [balas, 'Tex. Goetz, J. A., 33 Hasbrouck D-., Poughkeepsie, N. Y.

Goff, R. H., Flight Determination Lab., White Sands Proving Ground, Las Cruces, N. Mex

Gold, D., 5262 Fountain Ave., Los Angeles 29, Calif.
Coldbaum, S., 112-41-72 Rd., Forest Hills 75, L. I., N. Y.

Goldberg, R. J.. 347 Ave. T, Firsoklyn 23, N. Y'. Goldenthal, S., 1644 Northgate Rf., Baltimore, Md.

Goldshine. A. 1). 1122 Sthymemint Ave., Irving. ton, N. J.
(Continued on page 52A)

wit

HYCON EASTERN

a complete facility for
DESIGN • ENGINEERING • PRODUCTION

CRYSTAL FILTERS

FREQUENCY RANGE: 10 kilocycles to 10 megacycles for all types of filters.
BANDWIDTH RANGE: 0.01% to 14% of center frequency.
APPLICATIONS: Carrier Communication Systems: Telephone Channel Filters, Pilot Selection Filters, Telemetering Channel Filters, Teletype Channel Filters, Other Frequency Multiplexing Systems. Single Side Band Filters. High Selectivity Amplifiers. Noise and Sound Analysers. Carrier Current Systems. Harmonic Selection.

A the synthesis of crystal filters which resolses many of the problems heretofore associated with their design and production. High initial cost and long lead time have been eliminated. System design no longer need be compromised becanse of the limited number of existing filters. Filters can be produced on short notice in large or small quantities to mect exact performance reguirements. Carves shown above suggest the wide variety of characteristics. Four inquiry is incited.

HYCON EASTERN, INC
 75 Cambridge Parkway, Dept. B, Cambridge 42, Massachusetts

(Continued from page oi0.4)
Goldsmith, P., Armour Reseatch Foundation, 35 W. 33 St., Chicago ${ }^{1} \mathrm{C}, \mathrm{Hh}$.

Goldstein, (G. D., 9520 Saybrook Ave., Silver Spring, Md.
Goldstein, S. J., Jr., 4220 ‥ (aritol Ave., In dianapolis, Ind.
Goldstone, 13. J., 32 Spiral La, Levittown, I'a, Goodling, G. G., Jr., 421 Lincoln St., York, P'it. Gorton, E. 1)., 1043 Lilac, N.E., Grand Rapids, Mich.
Goss, C. (9., 636 long Rd., (1 enview, ill.
Ciottwald, (. 11., 4009-50, S.n Dicgo 5, Calif.
Gould, F.. W., The Ramo-Wcoldridge (orp., 8820 Bellanca Ave., Lon Angeles 45, Calif.
Gracloner, M. S. J., 2085 E. Arlington, St. Paul 6, Minn.
Graf, V. V., Holwood, Kestoiı, Kent, England
Graham, F:., J r., (it24 Jocelym Jollow Rd., Nashville 5, Tenn.
Grandizo, L. A., 2175 Washington Ave., New York 57, N. ${ }^{\prime}$
Grant, C. R., 8606 Melwoor Rel., Bethesda 14, Md.

Grant, J. H.. 721 S. 28 St., South Bend 15, Ind, Grass, A. M., 101 Old Coiory Ave., Quincy, Mass.
Gratton, R. E., 3151 F.. Colorado, Bux 2, Pasadena 8, (alif
Graveson, R. T., 26 Overlook Rd., Ardsley, N. Y. Gravlee, (i. 1', 1116 Vellex La., Annandale, Va. Giray, C. M., Box 602, Birmangham 1, Ala.
Gray, G. E., 39 Murnett Hill Rd., Livingston, N. J.

Gray, H. J., Jr., 412 Colonial Yark I rr., Spring field, Media, Pa.
Grazda, F. F., 214-21-46 Rd, Haysicle Hills, I.. I., N. I

Green, A. I'., 14030 Margate St, Van Nuys, (alif.
Green, 1). B., 5 Arclen Pl., A'htrls, Ohio
Green, I. W.. 3515 Veteran Ave., Ios Angelvs 34, Calif.
Green, J. IV:, R.R. 2, c/o 1:. C. Winzer, Angusta, Kans.
Green, W. M. Jr., 1201 Alabama, Bastrop, La, Greenbanm, M., 6361 W. 85 Tl., Los Angeles 45, (:allif.
(irecnberg, If., Foordmore RI., Kerhonkson, N. Y.

Greenberg, S., 2183 Ryer Ave.. New York 57, N. Y.
(ireenhlum, C:. 31 Molly Pitcher Vilkage, Red Bank, N. J.
(ireene, A. N., Det. 5, 60t AC\&W S(l., 47 Air Base Gp., Ilo 22, c/o PM, New Vork, N. Y.
(ireemham, R. L., 214-14 St., N.M., Cantom 3, Ohio
Cireenquist, R, F., $380+$ Bailey Ave., New York $6,3, \mathrm{~N}$. Y^{\prime}.
(ireenspan, S., 21 Cedar Ave., West End, Long Branch, N. J.
Greenstein, P., New York University, University Heights, New York 53, N. Y.
Girectmald, M. H., 2107 lelvedere Blvil., Silver Spring. Ma.
Greenwald, S., 2208 Woodberry St.. Hyattsville, Md.
(ireenwookl. P. E., Jr., 127 Dormar Dr., North Syracuse, N. Y.
Ciregory, C. N., Jr., 226 S. Eiscalypus Ave., Inglewood 1, Calif.
(iridley, D. 11., 3926 First St., S.W., Washington $24, \mathrm{D}, \mathrm{C}$.
Griemsuann, J. W. E., 90-64 Francis Lewis Blvd., Queens Village \&, I. I., N. Y.
Griffin, S. I., 6629 N. Williamsburg Mlvd., Ar. lington, Va.
Grim, W. M., Jr., General Electıic Labs., Inc., 18 Ames St., Cambridge 39, Mass.
Grobowski, Z. V., Jansky \& Bailey, 1735 DeSales Sr., N.W., Washington, D. C. (Coltinued on page 6 5 A)

International Rectifier Selenium and Germanium Rectifiers

International

 Selenium ProductsPressed pouder or cacuum process used as determined by our Applications Engincering Dept. The most widely used Industrial Power Rectificrs in Industry today!

high voltage cartridge rectifiers
Designed for long iife and relialility in HalfWave, Voltage Doubler, Bridge, Center-Tap Circuits, and 3-Phase Circuit Types. Phenolic Cartridge and Hernetically Sealed types available. Operating temperature range: $-65^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$. Specify Bulletin $\mathrm{H}-2$

International

Germanium

Products

High quality units of improved alcsign are the results of years of experience in the production of cxceptionaily finc germanium crystals plus extensive rescarch, development and field performance testing!

Lamination users can now correlate va. and core loss figures with applications

The above curve shows the maximum va. and watt loss of EI $11 / 4^{\prime \prime} 29$ gauge Orthosil 3 X laminations.

As a lamination user, you will want to know that guaranteed maximum va. and core loss is available for standard EI transformer laminations and that you can correlate the figures for your own applications.

This valuable information is offered exclusively by Thomas \& Skinner. For several years, Thomas \& Skinner has accumulated data on standard EI laminations. Based upon an analysis of this information, $\Gamma \& S$ has established maximum va. and maximum core loss values of each EI lamination at 1,000 and 10,000 gauss, 60 CPS.

A Material Certifica. TION is furnished with each shipment of T\&S laminations, and gives test figures for both core loss and exciting current on each heat annealed.

This CER'IIFICATION attests that each shipment meets the specifications set by the customer.

To you - as a lamination user these test figures mean elimination of need for retesting, adding up to im portant satings in your production.

WRITE TODAY for Technical Bulletin DMF-1 giving test details and tables showing core loss and maximum va. Also request new 40 page Bulletin No. L-355 (illustrated below), on special and standard laminations.

SPECIALISTS IN MAGNETIC MATERIALS . ..
Permanent Magnets Laminations 5 .

Thomas \& Skinner, Inc.

1125 East 23rd Street, Indianapolis, Ind.
(iroce, J. C., 45 Joerg Ave., Nuthey, N. J. Gross, F. J., 34 Albright Cir., Madison, N. J. Gross, S.. 2091 Davidson Are., New York 53.
(irossman, R., 78 leaumont Cir., Tuckahoe, N. Y. © iuarrera, J. J., 17160 Gresham Are., Northridge, Calif.
Ciudaitis, II: V., 649 Chippewa, Mt. Clemem, Mich.
Ciudzin, .11. (i., 2704 Tisinger Ave., Dallas 28, Tex.
(inernsey, F. D., 2350 Southv:ay I)r., Columbus 12, Ohio
Guglielno, (i., Via Palestriñ 31 , Milan, Jtaly Gumaraes, B. Q., Rua Sampaio Viana No. 391, Sao I'aulo, Brazil
Guim, J. R., Jr., Engr. Div., Texas A \& I (in). lege, Kinsville, Tex.
(iumaer, II.. is Elizabeth St., N. Hackensack,
Guros, F. S., 308 E. Clurch, Roswell, N. Mex Ciuyton, J. H., 2323 S. Park Rd.. Kokomo, Ind. Hlaas, D. L., Rt. 3, Box 826. D, Fairfax, Va.
Haas, N. V., 8638 Thouron Ave., Philadelphia 19, 1'a.
Hackman, E. II., 3904-14 St., N., Arlington,
Haddlock, J. W., 105 Lake Dr., Allenhurst, N.I Haddock, F. T., Jr., Naval Research Lab., Washington 25, D.C.
Hagınan, II. B., Sylvania Electric Products. Inc., Emporiumi, Pa.
Hagnann, R. W., 333 N. Mary St., Lancaster. Pa.
Italu, J. H., Grafenwohr Suh-Area, 7822 A.L.. APO 114, c/o PM, New York,
Haines. A. B., Bell Telephone Labs., Whippany, N. 1.

Haining, I.. F., 231 S. Haviland Ave., Atrdubun, N. I.

1lajek, A. F., 2330 S. 58 Ct., Cicero 50, Ill. Hales, E. B., 171 Astor Ave., Hawthorne, ㅅ.
IIall, C. F., 1603 Tibbits Ave., Troy, N. Y.
Hall, (r. D., Ril. 1, Manle Bay, Clay, N, Y
Hall, If. II., 18459 Perth Ave., Homewood, Ill. 11all, R. F., 107 Sycamore Ave., Berkeiey

Hall, R. T., 1 l'ierce $\mathbb{R d}$, Framingham, Mass. Hall, T. S.. 6is21 W. 81 St., Las Angeles +5,

Hall, W. H. C., $28311 / 2$ Mayview Rd., Raleigh,
Hallenstein, N. A., Federal Communications Com mission, 1600 Custom House, Boston 9, Mass.
Hallford, B. R., 10628 Sylvia Dr, Dallas, Tex. Ilalsted, G. P., 22 Pine Ct., Snyder, N. Y.
1Lateon, F. B., Providence College, Providence. R. I.

Hamilton, H. F.. S., c/o C.B.C., 354 Jarvis St., 'Toronto, Ont., Canada
Ifamilton, R. C., 915 Monarch Dr., Pasadena 3. Calif.
Jammack, J. W., 504 Wayne Ave., Silver Spring. Md.

Hammell, R.. 24 Canoe Brooi- Pkwy., Summit, N. I.
llammer, R. V., 1961 Leahy St., Muskegon, Mich.
Hammond, C. R., 5 Salem Cir., Evanston, Ill Ilampshire, T. R., 349 Avenel St., Avenel, N. I. Hampshire R. A., 9 Wilson Terr., West Call. well, N. J.
Hana, T. C., 58-25 Little Neck Pkwy., I.ittleNeck, L. I., N. Y.
Handelman, R. B., 54 Riverside Dr., New York 24, N. Y.
Handy, F. E., 35 Brookline Dr., W. Hartford : Conn.
Hannan, P. W., 6 Carey Rc.., Great Neck, I.. I. N. Y.

Hanopol, I.., 131 Washington St., İrighton 35. Mass. (Continued on page 6siA)

INTEGRATED

ELECTRONICS

the imagination for research plus the skills for production
Hoffman Laboratories maintains a highly specialized group of engineers whose entire efforts are devoted to the complex problem of developing and producing specialized tactical test equipment for airborne navigation radar, fire control, missile guidance systems, and other advanced electronic gear.
To meet the high standards of quality and reliability set by Hoffman Laboratories, this test equipment group is an integral part of the engineering staff.
For the past 13 years Hoffman Laboratories has been successfully solving advanced design and development problems in electronics. During this time Hoffman Laboratories has never undertaken a development program that has not successfully gone into production.

Write the Sales Department for free booklet.

Radar, Navigational Gear
Missile Guidance \& Control Systems
a Subsiolary of hoffman electronics corporation
Noise Reduction
Countermeasures (ECM)
Computers
Communications
Transistor Application

Challenging opportunities for outstanding engineers to work in an atmosphere of creative engineering. Write Director of Engineering, Hoffman Laboratories, Inc., 3761 S. Hill St., Los Angeles 7, California.

With only a few basic interchangeable parts, constantly stocked by Shallcross, over 1000 different switch typescan be quickly assembled. Delivery is immediate. Your specifications are matched exactly.

The use of solid silver contacts and collector rings, low-loss steatite decks, and silver plated beryl-lium-copper wiper pressure springs assures uniformly low contact resistance and exceptional durability for a wide variety of instrument switching applications.

For complete information on "12000 Series" Switches, write, wire, or phone for Shallcross Engineering Bulletin L-32 which catalogs 275 of the most popular types. SHALLCROSS MFG. CO., 524 Pusey Avenue, Collingdale, Pa.

Shallcross 12000 Series

 Oval Ceramic SwitchesNON-SHORTING ACTION -40° or 60° indexing
SHORTING ACTION-200 or 30° in. dexing
DETENT-Optional. Positive-acting star wheel type.
POLES PER DECK-1, 2, or 3
number of decks - Up to 10 decks may be ganged.
ADIUSTABLE STOP - Available on order
SHAFT-Completely isolated
CONTACT RESISTANCE - 0.0025 ohm , $\pm 0.0002 \mathrm{ohm}$
RATINGS-110 v., la., 50 cy.-nominal. 2500 v . 60 cy -de rated current. 40 amps-de-rated voltage.

Complete specifications in Bulletin L-32.

Hansen, M, R., $12511 / 4$ N. Detroit St., Los Angeles 46 , Calif.
Hansen, R. C, 311 Elec. Engi. Research Lab., t:niversity of Illinois, Urbana, Ill.
Hanysz, F. A., 7120 Chalforte St., Detroit 21, Micl.
Mappe, W. M., Jr., 18 Stockton 11., Nutley 10, N. J.

Harbour, R. D., 410 Fountain St., Pullnam, Wash.
Hardeastle, C., 167 I.ichfield Rd., Bloxwich, Wal sall, England
Hardie, F. 1H., 228 Reese Ave., Vestal, N. y
Hare, (i. 1I., 1810 Alta Wrod Dr., Altaclena, Calif.
Hare, J., 48 Cochrane Park Are., Newcastle-onTyyne, England
Harper, E. E., 4712 Cable St., Bellingham, Wash. Marper, H., 305 Beechwood L'r., Mollin Hills, Alexandria, Va.
Harpster, W. T., 48 Keats, Tonawanda, N. Y Harriman, 1). E., Jr., 15255 El Soneto Dr., Friendly Hills, Whittier, Calif.
Harris, A. S., 2211 Muscoday P'ass, Ft. Wayne 6, Ind.
Harris, D. J., 37 Maplewood Ave., West Hart ford 7, Conn.
Harris, E. A., Jr., Div. 33, Naval Ofdnance L.ab., Corona, Calif.

Harris, F. H., R.F.D. 1, Box 61, Accokeek, Md
Harris, F : M, 212 E , Hanover, Trenton, N J.
Harris, 11 N., 5428 Channing Rd., Baltimore 29, Md.
lfarrison, C. W., Long lill Rel., Millington, N. J.

Harrison, J. R., 8 Page Rd., Fedford, Mass.
Hartman, L. A., 52 Cameroc Dr., Huntintgon, I. I., N. Y.

Hartman, R. B., Il, Remington Arms Cu., Inc., 13ridgeport, Conn.
Hartman, W. H., Rt. 3, Box 1213-A, Sacramento, Calif.
Hartmann, W. A., Jr., 943 IIartzell St., Pacific l'alisades, Calif.
Hartnett, E. J., 545 Beverly Ril., Teaneck, N. J.
Hartz, F. M., 16703 Ashton Rd., Detroit 19. Mich.
Harwool, F. E., 720 Cornell, Ypsilanti, Mich. Hatfield, G. I., 1936 Edgewood R.d., Towson 4, Md.

Hathaway, S, D., 21 Lowell Are., Summit, N. I. Hartzakortzian, H. T., 424 E. 174 St., New York 57, N. Y.
Hausenbaner, C. R., College of Fingr, University of Arizona, Tuscon, Ariz.
Mausitalter, C'. H., Instrumentation Lab., M.I.T., Bedford Flight Fac:li•y, Box 249, Concorl, Mass.
Hawes, T. G., 124 Shockey Dr., Huntington, W. Va.

Mawkins, B. C., Gate 20, Lakewood, Crystal I.ake, I11.

Hayden, J. R., 875 Michigan Ave., Columbus, Ohio
Hayman, W. H., 43 Stadtheuer Dr., Clifton, N. J.

Maynes, H. S., 45 Franklin PI., Montclair, N. J. Hayward, J. W., R.F.D. 2, Terwood Rd., Huntington Valley, Pa.
Hazlelurst, E., Powerville Rd., R.I. 2, Boonton, N. J.

Heasly, C. C., Jr., 1039 N. Monroe St., Arlisg. ton, Va.
Heath, J. W., 1641 First Ave., S.E., Cedar Rapids, Iowa
Heaton, II. T., 2141 S. Gerfles St., Syracuse 4, N. Y.

Heckert, R. E., 8638 Relford Ave., Los Angeles 45, Calif.
Medges, H. G., 1313 Haslett Kd., Haslett, Miclı. Hefter, M., 1270 Teller Ave, New York 56.
Heich, 13. K., i Dean Rd., We lesley Hills, Mass, (Continued on fage 68A)

Only 2" (without leceds) and $3 / 4$ " in diameter, the AMPEREX 6339, a miniaturized, ruggedized version of the 3B29, operates under more stringent conditions than its prototype. This miniature, high-vacuum, external-anode, clipper diode and rectifier tube is designed to be enclosed in a complete liquid-cooled package, including power supply and pulse modulator components. It may also be operated in air at reduced ratings, in applications where liquid cooling is not required.

PARTIAL DATA - AMPEREX 6339
 1.55

Maximum Ratings

IN AIR Maximum Rafings (sealevel)

	Withou* Auxiliary Cooler	With Auxiliary Cooler
Peak Inverse Voltage	12,000	12,000 volts
Peak Current	200	400 ma
Average Current	50	100 ma de
Ambient Temperature	$10+85$	5 to $+85^{\circ} \mathrm{C}$

Typical Operation (Three-phase, 8ridge, Choke Input Filter)
No. of Tubes
.. .6
Peak Inverse Voliage12,000
Peak Anode Current 100
Average Anode Current iper tubel 33
Output Voltage10,500
Oufput Current
100
, 000 volts 200 ma 67 ma dc 10,500 volts de 200 ma de

The AMPEREX 6339 may be mounted in a standard 60 amp fuse clip, as illustrated. For high power operation in air, an auxiliary cooler which will also serve as a mount may be used. Flexible leads ferminating in $\# 6$ and \#8 lugs are used for heater and cathode connection. These allow the tube to be mounted in an extremely small space, and the leads may be brought out to any convenient terminal strip or stand-off insulator.

AMPEREX 6339
$\$ 35.00 \mathrm{ne}$ See it at your local electronic parts distributor, or write direct to factory for detailed dita sheets.

RETUBE WITH

Flap Type Residual

The Difference in RESIDUALS

Careful analysis of performance of the various types of residuals can only result in the selection of the one which assures long-lived performance without losing its original adjustment.

ENGINEERS KNOW...

... that the screw type residual with its point type contact eventually hammers a hole into the soft iron pole piece - reducing air gap.
... that reducing the residual air gap destroys the initial adjustment of the relay and can under severe conditions cause the armature to mechanically or magnetically lock up in a permanently operated condition.
. that screw type residuals require complicated mechanical construction. A lock nut and screw in a tapped hole are vulnerable to loosening through impact of operation.

If's the Flap Type Residual Found on NORTH Relays

. . . that distributes the impact of operation between the armature and pole piece over the entire surface-not on the tip of a screw.
... made of extremely hard non-magnetic material that insures long life.
. . .that provides fixed air gap, stable release and unvarying adjustment under any critical application.
... that eliminates the necessity of any adjustment in the field. We specify residual thickness to fit your requirement.

Flap type residuals are just another of the many critical details found in the NORTH Relay, shown above, which insure frouble-free repeat performance.

Detailed specifications available on request.

THE NORTH ELECTRIC MANUFACTURING COMPANY

Originators of All RELAY Systems of Automatic Switching 549 South Market Street, Galion, Ohio, U.S.A.
(Continued from page 6êiA)
Heilprin, L. 13., Falls Rd., R.F.D. 2, Rockville, Md.

Heininger, W. W. L., Rua Anchieta 5, Apt. 1001, Leme, Rio de Janeiro, Brazil
Heiser, W. W., East Lempster, N. II.
Heit, I. C., 9 Meadowview Dr., Penfield, N. Y Ilelgeson, V. L., 717 E. Henry C.ay, Whitefish Bay, Wis.
Hellerman, H., 334 Mountainview Ave., Syra cuse, N. Y.
Helmreich, L. W., 4 Wildwond La., Kirkwood 22, Mo.
Helsdon, P. B., 7 Trinity Rd., Chelmsford, Fs sex, England
Hemstreet, II. S., 76 Hightand Ave., Bingham ton, N. Y.
Henderson, J., General Delivery, Dahlgren, Va.
Hendry, A. J., Northern I'acific Railway Illdg., Signal Dept., St. Pauil 1, Minn.
Henry, R. L., Jr., 415 Wiadsor St., Silver Spring, Md.
Henyan, G. W., General Electric Co., 1 River Rd., Schenectady, N. Y.
Herdman, T. L., 40F Wickhan Rd., Beckenham, Kent, England
Herman, H., 1729 Webster St, N.W., Washing. ton : 1, D. C.
Herrera, J. C., 132 Ashcraft Rd., New London, Conn.
Herring, R. A., Jr., 4310 Fesenden St., N.W., Washington, D. C.
Herrmann, N. P., 6267 S.W. 12 St., Miami 44. Fla.
Hersh, J. F., 20]'rescott St., Cambridge 38, Mass.
Hershfield, I. I.., 1109 Johnsan St., Philadelphia 38, Pa.
Hertsch, D., Physics Lab., 99 Ft. Washington Ave., New York 32, N. Y.
Hertzberg, A., 11 Walnut St., Baldwin, I.. I., N. Y.

Hertzog, W. K., 4307 S.E. Anthony Wayne Dr., Ft. Wayne, Ind.
Hess, D. ('., 4425 Oakwood Ave., Downers Grove, I11.
Hess, P. N., 1243 Rose Vista Ct., St. Palll 8, Minn.
IIesse, A. N., 90 Salisbury Ave., Garden City. L. I., N. Y.

Hewson, K. D., Rt. 3, Box 136. I.arned, Kans. Hexem, J., 911 Glemmoor La., Glendale 22, Mo. Hicks, I. M., Naesu Field Enyr., COMAlRPAC. Box 1270, Naval Air Station, San Diego, Calif.
Hilbourn, C. L., 302 Van Sant Ir., Palmyra, N. J.

Hildebrand, J. G., Jr., 45 lrrighton St., Mox 176. Beimont, Mass
1Hill, D. R., 285 Memorial Ìr., Hawthorne, N. Y.
IIillier, R. J., Cable \& Wireless I.td., Porthcurno, Cornwall, Fingland
Hills, C. E., Jr., Love Lane. Weston 93, Mass. IIIItner, E. I3., 47 Rector Pl., Red Bank, N. J. Himmelstein, S., 1021 Arlington Blvd., Arling ton 9, Va.
Hlincley, R. L., Sperry Gyroscope Co., Great Neck, L. 1., N. Y.
Ifineline, H. I., 425 Rich Ave, Mt. Vernon, N. Y

Hinrichs, J. II., 2711 Sunland Vista, Tucson, Ariz.
Hint?, K. T., 8920 l'ark La:ne, S., Woodhatven, I. I., N. Y

Hirsch, J. I)., 53 Darling Ave.. New Rochelle, N. Y.

IIixson, E. L.., Dept. of Elec. Engr., University of Texas, Austin, Tex.
Hlavaty, E. M., 301 F.dge Ave., Valparaiso, Fia Hobbs, I. C., Apt. 7A-Parkway Apts., Maddonfield, $\mathrm{N} . \mathrm{J}$.
Hobbs, R. V., R.F.D. 2, Franklin, Tenn.
Hodder, W: K., 7920 Blerio: Are., Los Angeles 45. Calif. (Continued on page 70A)

When you need a stable cepacitor...

Type JL

The ideal cost-saving replacement for paper or general purpose mica capacitors, Type JL DISCAPS, afford exceptional stability over an extended temperature range. Maximum capacity change between -60° and $110^{\circ} \mathrm{C}$ is only $\pm 7.5 \%$ of capacity at $25^{\circ} \mathrm{C}$. Standard working voltage is 1000 V.D.C. providing a high voltage safety factor. Type JL DISCAPS are manufactured in capacities between 220 MMF and 5000 MMF .

In addition to the advantages of longer life, dependability, and lower initial cost, their smaller size and greater mechanical strength provide additional economies in assembly line operations.

Wedg-loc

Type JL stable-capacity DISCAPS, as well as temperature compensating and by-pass types, are available with RMC "Wedg-loc" leads for printed circuit assemblies. The exclusive design of these leads lock securely in place on printed circuits . . the capacitors cannot fall out and a uniform soldered connection is assured.

Manufactured in capacities between 2 MMF and 20,000 MMF, "Wedg-loc" DISCAPS have the same electrical specifications and tolerances as standard wire lead DISCAI'S. Suggested hole size is a .062 square.

Plug-in

To simplify production line problems on printed circuits Type JL DISCAPS, temperature compensating and by-pass types, are available with plug in leads. These leads are No. 20 tinned copper (.032 diameter) and are available up to $1 \frac{1}{2} 2^{\prime \prime}$ in length. Plug-in DISCAPS will provide worthwhile savings on printed circuit assemblies and include all of the electrical and mechanical features that have made standard DISCAPS a favorite with leading television and electronic manufacturers.

Write loday on your company letterhead for expert engineering help on any capccitor problem.

Square Wave Generator

MODEL 183. This high-quality precision instrument provides square waves for testing the transient and frequency response of wide band amplifiers, and for accurately measuring their cmplitude.
It features an oufput impedance of 100 shms at a terminal box at end of 3°-cable: frequency range of 10 cps to 1 mc continuously variable over decade steps; rise time of 0.02 microseconds at the low impedance output.

Write for catalog

MINIATURIZE with

SUPEREX
 STOCK SIZE VARIABLE INDUCTANCES

HIGH INDUCTANCE RATIO-a series of variable inductances with a range as high as 10 to 1 within physical dimensions not considered possible until the introduction of the Ferrite Core.

WRITE for full line catalog:
INDUSTRIAL
DIVISION
Dept. I.9
Suparex:

(Continued from page 68A)

Hodge, A. H., Ballistic Research Labl., Aberdeen Proving Ground, Mc.
Hodgkinson, W. S., Fox Meadow La., Wayland, Mass.
Hoffman, H. L., 804 Newb-idge Ave., Westbury, I. l., N. Y.

Hogie, W. I., Astoria, S. U.
Hogin, P. E., 100 Central Ave., Kearny, N. J. Hogle, R. C., 9294 Quandt, Allen Park 10, Mich. Hole, W. G., 1109 Twinbrook Dr., Webster (iroves 19, Mo.
Hollander, J. M., 140 W. B6 St., New York 24,
Hollister, 1). (i., 16 Texas Ct., Syosset, L. I.,
Itolmes, I. S., 200 F. Walnut St., Kokomo, Ind. Holmes, W. H., c/o Officers Mess, RCAF, Trenton, Ont., Canada
Holroyd, W. H., 5 Roycrest Ave., W., Willowdale, Ont., Canada
Hom, R. N. (., 1689 Massachusetts Ave., Cambridge 38, Mass.
Honda, H., 3703 Powelton Ave., Philadelphia 4, Pa.
Hood, C. R., Teiner Engr. Corp., 115 Madison St., Malden, Mas
Hooper, J. R., Jr., 1606 Compton Rd., Cleveland Hgts., Ohio
Hooper, J. S., 1936 Hubbard Ave., Salt I.ake City 5, Utah
Iloover, W. G., 586 Foothill Rd., Stanford University, Stanford, Calif.
Hopkins, R. C., 6856 Calvin Ave., Reseda, Calif. Horner, R. C., 1721 Hudson Blvd., N. Bergen,
Horniman, \because. I., 220 Jetnings Ave., Petoskey, Mich.
Horrocks, S. W., Aerovox Corp., 700 Belleville Ave., New Bedfo-d, Mass.
IIorseman, T. E., 2615 S.E. Salmon St., Portland 15 , Ore.
Houghton, H. V., Jr., 7 Wynnewood Rd., I_ivingston, N. J.
Houpis, C. If., Elec. Eagr. Dept., USAFIT. Wright-Patterson AFB, Ohio
House, H. J., 129 Magnolia Dr., Levittown, I'a. Houseworth, G. II., 16 Walden Ave., Jericho. L. I., N. Y.

Howard, F. (i., Inspector of Nival Materiel, Camden, N. J.
Howes, D. E., Worcester Polytechnic Institute. Woreester, Mass.
Howes, E. 'I'., 1590 Linda Vista Ave., Pasadena 3, Calif.
Hoyt, W. A., 1316 Jefferson, Quincy, Ill.
Hubbard, IB, I., 28 Glorer Ave., Haddonfield. N. J.

Huber, P., 500 S. Higland. Dearborn 7, Mich.
Mudson, A. E., 2559 Kingston Rd., Cleveland Hyts, Ohio
Inuebscher, II., 152.32 Mellourne Ave., Flush. ing, L. I., N. Y.
Hufford, G., 404 B. Deverux Ave., Princeton, N. J.

Huggins, L.. L., 1800 Morsow, Austin, Tex.
Hughes, $\mathcal{K} . \operatorname{Er}, 4808$ Bergenline Ave., Union City, N. J.
Hull, R. E., 30 Joyce Rd, Temafly, N. J.
Hummel, C. F., 6610 Hillandale Rd., Chevy Chase, Md.
Humphrey, A. J., 340 Dalwood Dr., Cleveland 10, Ohio
Humphrey, H. C., 99 Darand Rd., Maplewood, N. J.

Hundstad, C. E., 115 Orchard Dr., E., North Syracuse, N. Y.
Hunkins, H. R., 27 College Ave., Upper Montclair, N. J.
Hunt, R. A., Clinton \& Bowen Rd., Elina, N. Y.
Hurd, P. A., 521 Timberland St., Smyrna, Ga. Hurford, W. L., 301 Lees Ave., Collingswood, N. J. (Continued on page 72.4)

OHMITE

AMRE®ON Relays

HIGH QUALITY, GENERAL-PURPOSE RELAYS FEATURING COMPACTNESS, DEPENDABILITY AND LONG LIFE!

hermetically

 sealed or dust-protective enclosures
61 TYPES available from STOCK

Current ratings up to 25 amp, AC or DC

When you want the utmost in relay dependability. investigate the Amreson line. Anrecon relays are designed. produard, and tested in the new, airconditioned Ohmite plant

These ruggedly buitt relays bave the ability to handle power loails usually requiring larger. heavier units. They are built to miere rigorous aircraft relas standards, and are particularly adapted to molile. "quipment where serere shoch and vibration are enermantered.

Amrecon relays are available with screw. plug. or solder-wire terminals: in a variety of contact arrangements: with hermetically sualed or dustprotective enclosures. Order from the 61 stoek types. or let Amrecon's engineers help you work out special relay applications.

MANUFACTURING COMPANY 3677 IdPowards5xy, Skokie, Illinois (Surburb of Chicaga)

Complete line of Mierowave Components From Magnetron Through Antenna Designed and Proticeed by Cistron- wa

Whether it is "Standard" plumbing or designing an entirely new waveguide system, Airtrons complete facilities can substantially reduce the time and expense between concept and reality. Here are just a feu examples:

FLEXIBLE WAVEGUIDE ASSEMBLIES. Flexible double ridge waveguide for airborne commercial weather radar. Beryllium copper flexible in convolute or type S construction. Waveguide sizes from Ka-Band to $9.750^{\prime \prime} \times 4.875^{\prime \prime}$ I.I), in standard lengths or preformed to your installation.

ROTARY JOINTS. Waveguide rotary joints of the coaxial or circular waveguide type in many frequency ranges designed for high power VSWR performance. Produced in volume to your specifications or designed to meet requirements.

WAVEGUIDE SWITCHES. For frequent, rapid switching to or from noise sources, signal generators, dummy loads, etc. Reversing switches for dual channel systems in GCA or microwave relay radars. Low VSWR, excellent crosstalk characteristics, and high peak power performance. Switching tees, ferrite switches and other special designs.

PRECISION CAST BALANCED MIXERS. Low noise figures over a broad bandwidth are achieved by compact balanced mixer design and use of latest type crystals. Equipped with coaxial or waveguide crystal mounts for frequencies up to 40,000 mc. Standard and special types available. MixerPreamp packages designed to meet your requirements.

ANTENNAS AND ASSOCIATED COMPONENTS.
Horn antennas and feeds for fire control, countermeasure, guided missile, navigational or weather radars. Designed to your specifications and produced in the Airtron precision casting foundry. Complete with rotary joints, flexible sections and associated waveguide assemblies.

OTHER AIRTRON PRODUCTS

Twists, Magnetron Transitions • RF and Pressure Contact Flanges and Gaskets • Quick Disconnects - RF Pressure Windows - Short-Slot Hybrids - Antenna Components - Test Horns - Dummy Loads - Jet Engine Power Cables and Thermocouples - Waveguide Bending and Twisting To Your Specifications.

NEW PRODUCT DEVELOPMENT PROGRAM

Including such MICROWAVE FERRITE COMPONENTS as duplexers, waveguide switches, high and low power load isolators, variable absorption attenvators and other special ferrite devices.

Meminership

(Continued from rage 50.A)

Iturley, II. C., 7016 Broadway, Indianapolis 20, Ind.
Hurney, P. A., Jr., 10 Flintlock Rel., Lexington. Mass.
Huster, I. W., 271 Chesterfield Cir., Dayton 3. Ohio
Ilntelinson, N. D., 9991 Chirenc. Št., Dallas 20, Tex.
Hutchinson, R. W., 23201 Sherman Ave., (Bak Park 37, Mich.
Hutson, L. S., 232 Ifart St., Brooklyn, N. Y.
IIntter, F. C., Box 468, Princeton, N. I.
Hyne, A. D., Box 429, Beimont, Calif.
Illman, R. W., 12258 Second Ave., N.W.. Seat tle 77, Waslı.
Ingerson, W, E., 5012 Tin:berwolf Dr., Fil I'aso. Tex.
Fngling, T. M., 1643 Oak Lawn PI., Biloxi, Miss. Innes, F. 'I., R.D. 1, Malvern, Pa.
Inslerman, II. E... 375 Westwrod Ave., I, ong Branch, $\therefore . J$.
Irwin, Emmett M., 2179 Lurain Rd., San Marino 9. Calif.

Ishii, F. K., g20 Deodar Ave., Oxnard, Calif. Jachym, T. M., R.D. 1, Ballston Lake, N. Y' Tackson, J. E., Rt. 1, Philpot, Ky.
Jacobs, G. B., R.F.D. 2, Schoharie, N. Y.
Jacobson, F. K., 446 Norton Pkwy., New Haven 11, Com.
!acobson, L., 3 Belleval Rd., Marien, Conn.
lacolson, N., 27 Virginia St., Valley Stream, I. I., N. Y.
laeger, M.. 508 E. Blommield St., Rome, N. Y. Iagoe, R. W.. 27 Greenvale Lane, Syosset, I.. I..

James, E.. 4833 W, 136th St., Hawthorne, Calif.
Iames, (i. F., 10 fernald Dr.: Cambridge 38, Mass.
Tames, W. 13., 2111 Taft St., Houston 6, Tex. Jamieson, F. C., London Kcds. of Canada, L.td., 736 Wellington St., Montreal, Que., Canada
Iamison, J. W., Jr., 4136 \&. Bronson, Las Angeles 8, Calif.
Janes, A. W., 12 Overlook Rd., Caldwell, N. I. Jans, J. T., R.D. 1, Seneca Falls, N. Y. Jansen, J. J., Bell Tele. Labs., Murray Hill. N. J.

Tarema, E. D., 409 Fourth Ave, Belmar, N. I. Jayne, A. W., $10+$ Holden (ircen, Canbridge 38, Mass.
Jean, R. P., 600+ Suwanee Ave., 'Tampa 4, Fla. Jednacz, J. F., 1608 Walnut Sı., Phila. 3, Pa. Jeffers, G. N., R.R. 2. New Catisle, Ohio
Jelatis, D. (i., Central Research Lahs., Red Wing, Minn.
Jenkins, R. L., 604 Meadow Mr., Kokomo, Ind. Jesse, E., 216 Ridge Vista, San Jose 27, Calif. Joehlin, N. C., 1350 Hartsough St., Plymouth. Mich.
Tohler, J. R., 5410 Independence, Arvada, Colo. Johnson, C. A., 1536 I St., Archorage, Alaska Johmson, C. E., 837 N. Reese PI., Burbank, Calif. Tohnson, E. F., Waseca, Minn.
Tohnson, G. D., Jr., 97 Conover PI., Red Batik, ‥ J.
Tolunson, M., Jr., 707 W . Montoe Ave., (ireenwood, Miss.
Johnson, J. S., 7541 Midfield Are., Los Angele:s +5 , Calif.
Johmson, J. II., Johnson \& Hoffnan Mfg. Có. 31 E. 2 St., Mineola, I.. I., N. Y.
Johnson, M. S., to5 F., Church St., Champaign.
Johnson, R. 1̌.., 315 L La Sierra I)r.: Arcadia. Calif.
R. D)., 15625 Hart St., Van Nuys, Calif.
Johnson, R. D., 15625 Hart St., Van Nuys, Calif.
Johnson. W. C., 124 . (Cumberland Ave., Park Ridke, H 12.
Johnston. E. L... Box 6008, Congress Ifyhts. Sta.. Nichols Ave., Wash. 20, 1). C.
Iohnston. I. L.., 223 W. Park, Pittshurg, Kans. (Continued on page 96A)

speaking of TV Quality... HERE'S HOW TO GET MORE

FROM A COST STANDPOINT, magnetic focusing of television picture tubes paves the way to important cost savings by comparison with electrostatic tube focusing methods. In actual instances, material savings alone have run from 50 c to $\$ 1$.

FROM A DESIGN STANDPOINT, magnetic focusing lends itself well to the trend toward increased second anode voltages.

FROM A PRODUCTION STANDPOINT, the predictable higher quality of magnetic tubes reduces incoming inspection costs. Factory focusing of sets is done in less time with less skilled labor.

FROM A PERFORMANCE STANDPOINT, magnetic focusing quality is generally superior, more stable, and more effective over the entire face of large tubes. Focusing is less affected by voltage changes. When tube replacement becomes necessary, servicing adjustment is a relatively simple matter.

NEW HIGH STANDARDS OF cameratube production

 orthicon-shown here being welded to its ring. Note the rubber finger cots used by the General Electric worker, to avoid contaminating the silk-fine mesh!

Extreme delicacy in processing parts for G-E camera tubes is shown as this glass technician fabricates an image-orthicon target. The glass bubble she holds is only $1 / 10,000$ inch thick. After cutting out a small section, she seals this carefully to a metal ring. Any slip or other false movement would completely ruin the fragile target.

18-inch offset screwdrivers are used to tighten the set-screws holding target and mesh assembly in place in the camera tube. Skill, care, and time are needed to complete the delicate operation. Again, dust and lint are barred. An important step toward cleanliness, is the lint-free Nylon garments worn by all persons in the G-E camera-tube area.

CRAFTSMANSHIP FEature by general electric!

To include image orthicons, vidicons, other commercial and military types.

G.E.'s entry into camera-tube manufacture is a project of major proportions. Extensive facilities and advanced equipment have been acquired; impressive engineering and technical skills have been assembled; workers have been exhaustively trained.
The purpose is high-quality, long-life camera tubes of all types - from TV image orthicons, now in full G-E production, to vidicons and other "seeing" tubes for commercial and military uses.

How improved performance is built into G-E camera tubes, these pictures show in part. Every operation described is rivalled by numerous others that call for the same or greater precision.

You are invited to familiarize yourself with $\mathrm{G}-\mathrm{E}$ camera-tube manufacture, by written request for information. Problems involving camera tubes to meet your special design needs, will be welcomed. Tube Dept., General Electric Co., Schenectady 5, N.Y.

Final testing of a G-E image orthicon uses actual performance as the yardstick. Instrumentation supplements the verdict of the inspector's critical eyes. Life tests, under the most unfavorable conditions, also are regularly conducted by General Electric, to increase the service life and improve the performance of all G-E camera tubes . . . Above: a G-E image orthicon-Type GL-5820 - ready for the TV camera.

Progress /s Our Most Important Product

 GENERAL (96) ELECTRIC
Engineer using BURROUGHS PULSE UNITS loses no time designing test equipment

1.FAST SET-UP. Engineer draws pulse sequence, then determines by block diagram how to connect his Burroughs Pulse Units. Usually this can be done in a matter of minutes.

2.JOB COMPLETED. No time iost. Because engineer spends no time designing test equipment, he can spend his full time on the real problem. This means he can do more, accomplish more.

3.NEXT ASSIGNMENT. Without losing time, engineer simply determines the block diagram needed to produce the next pulse sequence and sets up his Burroughs Pulse Units. He shifts quickly from one assigrinent to the next-saving considerable time otherwise needed to design and build special test equipment.

GET THE FACTS

Learn how you can make your time worth more. Burroughs Pulse Units save weeks of engineering, uncertainty, and considerable equipment cost. Can be used over and over again on different future projects. Immediate delivery from stock. Write for adetailed brochure. Burroughs Corporation, Electronic Instruments Division, Dept. 11-J, 1209 Vine St., Phila. 7, Pa.

FIRST IN PULSE HANDLING EQUIPMENT

(Continued from page 72A)

Jones, D. H., 2405 Sorrell St., Pittsburgh 12, Pa. Jones, E. A., 2827-7 St., Curahoga Falls, Ohio Jones, F. W., 140 New Mortgomery St., San Francisco 5, Calif.
Jones, G. E., Jr., Univ. of Pittsburgh, 1'ittsburgh 13, Pa.
Jones, M. I., Jr., 415 Summers Dr., Alexandria 4, Va.
Jones, K. N., 13213 Leibacker Ave., Norwalk, Calif.
Jones, L. S., 269 Maple Dr., Sharon, I'a.
Jones, M. C., M. C. Jones Elec. Co., $185 \times$. Main, Bristol, Conn.
Jones, M. N., 4711 E. 36 St., Indianapolis, Ind.
Jones, R. C., Jr., 2604 N. Roosevelt St., Arling ton 7, Va.
Jones, W. T., Ihox 3125, MCLI, USAlilT, Wright-Patterson AFB, Ohio
Jordan, H. G., Mell Tele. Labs., Murray Hill, N. J.

Jorgensen, B., Ilybenvej 55, Virum, Denmark Joseph, D., Moore School, 33rd \& Walnut Sis., Philadelphia, Pa .
Joss, E. 「., 215 Jefferson St., Huntington, I.. I., N. Y.

Juanillo, I. J., 50 Cayuga Dr., Peekskill, N. Y'.
Judson, H. H., Jr., 2006-14 Ave., N., Seatıl. 2, Wash.
Jurek, W. M., 7913 Amherst St., Dallas 25, Fex.
Justice, L. E., 2462 S. Barrington Ave., Los Angeles 64, Calif.
Justman, S., 3-D Crescent Rd., Greenbelt, Md.
Juviler, I'. H., 441 West End Ave., N. Y. 24. N. Y.

Kaar, J. M., 6 Robert S. Dr., Menlo Pk., Calif. Kabell, J., 3633 S. Court, Palo Alto, Calif.
Kadow, A. C., Kadow Acoustic Devices, Elgin, 111.

Kalakowsky, C. B., 55 Čragie St., Somerville, Mass.
Kalman, J., 5240 N. Sheridan Rd., Chicago 40 , III.

Kaminoff, M., 1111-33 Ave., N. Seattle 2, Wash.
Kampinsky, A., 1200 D. St., Belmar, N. J.
Kane, J. R., 238 N. Pine St., Apt. 212, Chiatgo 44, Ill.
Kang, Y. O., 343 Iolani Ave., Honolulu, T. H
Kannenstine, F. M., 1922 W. Gray, Houston 19, Tex.
Kant, M., 2090 Barnes Ave, Apt. 3H, Bron: $62, \mathrm{~N} . \mathrm{Y}$.
Kanter, J. I., 1517 Paula Dr., Silver Spring, Md.

Kaplan, M. N., 4045 Loma Alta DT., San Iliego 15, Calif.
Kardauskas, E., 24 E. Price St., Linden, N. J.
Karl, D. R., 5348 Blanco Way, Culver City, Calif.
Karmiol, Edwin D., 2065 Creston Ave., New York 53, N. Y.
Karr, P. R., 5903 Beech Dr., Bethesda, Md.
Kasdorf, G. R., 15725 Brentwood Dr., Rt. 12, Milwaukee 10, Wis.
Kaserman, F. S., 111 Carlisle Way, Norfolk 5, Va.
Kassner, M. H., 4387 Ernscliffe, Montreal, Que., Canada
Katahara, C., 183 Ku Dr., Wailukum Maui, Hawaii
Katz, S., Fort Plains Rd., R.D. 4, Freehold, N. J.

Kaylor, R. L., c/o Bell Tele. Labs., New York 14, N. Y.
Kazda, L. F., University of Miehigan, Ann Ar. bor, Mich.
Kearney, H. B., Jr., 458 Washington, Ave., Tyrone, Pa.
Kearny, Donald, H., 66-10 Grand Central Pkwy., Forest Hills, L. I., N. Y.
Keary, H. F., 412 N. Bend Rd., Baltimore 29, Md.
(Continued on page 78A)

Why Raytheon Voltage Stabilizers mean satisfied customers for you

When you incorporate a Raytheon Voltage Stabilizer in your equipment, you help assure complete customer satisfactionfor these important reasons:

1. Your equipment will operate as it was designed to, regardless of voltage variations of your customers' electrical source.
2. Since most components have maximum life when operating at their designed voltage, a Raytheon Voltage Stabilizer prolongs the life of components-and your equipment. A plus feature is provided by the short-circuit protection inherent in Raytheon Voltage Stabilizers.
3. Because Raytheon Voltage Stabilizers are superior to any other static type stabilizer under virtually all operating conditions, your equipment will work better and longercharacteristics your customers really appreciate.

For full information see your electronic supply house or write Dept. 6120

Check these important points of Raytheon Voltage Stabilizer superiority

Raytheon Model VR-6113 (120 watts) chosen at random and compared with a similarly rated competitive model.

- Guaranteed to deliver accurate AC voltage within $\pm 1 / 2 \%$ (competitive model 1%)
- 14% lighter, 22% smaller
- Three times more accurate noload to full-load regulation
- 17% less change in voltage output as frequency varies
- 28% closer regulation as temperature changes

for service and lab. work
 Heathkit
 PRINTEDCIRCUIT OSCILLOSCOPE KIT
 FOR COLOR TVI

(1)
Check the outstanding engineering design of this modern printed circuis Scope. Designed for color TV work, ideal for critical Laboratory ap. olications. Frequency response essentially fat from 5 cycles to 5 Mc down only $11 / 2 \mathrm{db}$ at 3.58 Mc (TV color burse sync frequency). Down only 5 db at 5 Mc. New sweep generator $20-500,000$ cycles, 5 simes the range usually offered. Will sync wave form display up to 5 Mc and better. Printed circuit boards stabilize performance specificarions and cur assembly rime in half. Formerly available only in costly Lab type Scope. Fearures horizontal trace expansion for observation of pulse detail - rerace blanking amplifier - voltage regulared power supply - 3 step frequency compensared vertical input - low capacity nylon bushings on panel terminals - plus a host of other fine features. Combines peak performeace and fine engineering features with low kit cost!

Heathkit iv

 SWEEP GENERATOR KIT
ELECTRONIC SWEEP SYSTEM

2 A new Heathkit sweep generator covering all frequencies encountered in TV service work (color or monochrome). FM frequencies roo! 4 Mc - 220 Mc on fundamentals, harmonics up to 880 Mc. Smoorhly controllable all-electroaic sweep sysrem. Nothing mechanical to vibrate or wear out. Crystal controlled 4.5 Mc fixed marker and separate variable marker 19.60 Mc on fundamentals and 57. 180 Mc on calibrated harmonics. Plug.in crystal in cluded. Blanking and phasing controls - automatic constant emplitude output circuit - efficient atten uation - maximum RF output well over . 1 volt vastly improved linearity. Easily your best buy in sweep generators.
 27 lbs.
 a subsidiary of daystrom, inc. BENTON HARBOR 4, MICH.

Write for free cataloo .COMPLETE INFORMATION

Illustrated: Screw Terminals-Screw and Solder Terminals-Screw Terminal above Panel with Solder Terminal below. Every type of connection.

Six series meet every requirement: No. 140, 5-40 screws; No. 141, 6-32 screws; No. 142, 8-32 serews; No. 150, $10-32$ serews; No. 151, $12-32$ screws; No. 152, 1/4-28 screws.

Catalog No. 20 lists complete line of Barrier Strips, and other Jones Electrical Connecting Devices. Send for your copy.

> Howard B. Jones Division
> CINCH MANUFACTURING CORPORATION CHICAGO 24, ILIINOIS
> SUBSIDIARY OF UNITED. CARR FASTENER CORP.

Ileminership
(Cuntinued from fage 76A)
Keigher, B. J., 103 Garden Rd., Red Bank 20;: N. J.

Keim, D. Y., 145 Chestrut Si., Garden City, L. I., N. Y.

Keith, Walter S., 47.45-43 St., Woodside, L. I., N. Y.

Keithley, R. D., 4437 Spatz Ave., Ft. Wayne, Ind.
Kell, R. F., 4455 Genesee St., Buffalo 21, N. Y. Kelleher, R. L., 66 Wickey Ave., Westbury, L. I., N. Y.

Keller, J. E., 3191 Acalanes Ave., Lafayette. Calif.
Kellerman, D., 206-16-35 Ave, Baysille, I. I. N. Y.

Kelley, G. G., Rt., 3, Kingston, Tenn.
Kelley, J. J., Oak PL., Ayrlawn, Bethesda, Mrd
Kelley, L. A., 3438-87 St., Jackson Hghts.r L. I., N. Y.

Kelly, H. P., 588 Valley Rd., Watchburg, Plain field, N. J.
Kelly, R. S., 120-25 St., Hermosa Beach, Calif! Kelly, V., 99-1215 Aiea Hghts., Dr., Aiear Hawaii
Kelvin, William, 120 Hilldale Rd., Albertson. L. I., N. Y.

Kenny, J. A., 27 Lion Lane, Westbury, L.I., N. Y.

Kent, J. S., 3332 Buchanan St., Mft. Rainier ${ }_{n}$ Md,
Kenyon, F. R., 803 S. Virginia Ave., Marion ${ }_{r}$ In.
Keppel, R. A., 7315 McCool Ave., L.os Angeles 45, Calif.
Kerby, G. A., 14 Dimitri Pl., Larchmont, N. Y. Kessler, G. W., 2918 Windermere Rd., Sclienec tady, N. Y.
Kessler, S., 4705 Kansas Ave., N.W., Washington 11, D. C.
Kidd, Deane E., Box 197, Oceanport, N. J.
Kidd, G. B., 24 S. Cherrywood Ave., Dayton 3. Ohio
Killion, R. H., 507 Salt Springs Rd., Syracuse. N. Y.

Kim, Y. S., 121 Montfoat St., Apt. 12A, Ioston 15, Mass.
Kime, Joseplı M., 471 Greenwood Ave., Akron 20, Ohio
King, A. D., 142 Main St., Northampton, Mass, King, A. M., 2901 Erie St., S.E., Washington 20, D. C.
King, R. E., ${ }^{122-A ~ H a d d o n ~ H i l l s, ~ H a d d o n f e l l d . ~}$ N. J.

Kirkland, R. E., 6 Ifawthorne St., Belmont 77, Mass.
Kissel, M. M., Rt. 1, Mansfield, Ohio
Kiver, M. S., 900 Fairview Rd., Highland Pk., Ill.
Klamm, C. F., Jr., U.S. Naval Postgrad School, Monterey, Calif.
Kleason, D. B., 580 S . Snelling Ave., Apt. 2., St. T'aul 5, Mina.
Klein, M. M., 50 Cromwell 14., Sea Cliff, L. I.,
Klein, S., 6468 Milton St., Philadelphia 19, Pa. Klima, W. M., 6209 Wedgewood Rd., Bethesila, Washington 14. D. C.
Kline, A., 179 Ocean Pikwy., Brooklyn 18, N. Y.
Klinke, E. R., 1161 Greenhills Rd., Sacranento, Calif.
Kloga, P. J., 1533 N. Keating Ave., Chicago 51, III.

Klug, S. H., 55 Hanson Pl., Box 1165, Brooklyn 17, N. Y.
Knaul, J. F., Apt. 6, 10626 Wilshire Blval., I.ne Angeles 24, Calif.
Knight, H. M., 264 I'ark Ave., Arlington 74. Mass.
Knight, S. J., Jr., 3040 E. Exposition Ave., Den ver 9, Colo.
Knitel, Erich T. M., 2120 Prieur St., E., Montreal 12, P. Q., Canada (Continued on page 80A)

leadership in semi-conductors

 from
Trunsjition
 SILICON

GERMANIUM

electronic
corporation
melrose 76, massachusetts

Continuous Distance and Bearing Solutions with Unique Plotter-Resolver System

Problem: Determine automatically and continuously the distance and relative bearing of any two points on a map.
Ford Instrument's Solution: A combination of two staadard components - a map plotter and an electrical resolver.
Result: Equipment can operate with maps up to a yard square whose scale varies over a wide range. This means real flexibility because it does not restrict plotter just to maps - since photographs - even sketches can be used.

Here's how it works: The plotter proper has a smooth unobstructed glass top on which the map is placed. Under the glass there is a light traveling on screws. The screws are driven horizontally (E-W) and vertically (N-S) by servo motors actuated by a computing mechanism. The position of the light on the plotter is controlled by four handcranks. Two of the handeranks are used to position the light muder the first point; a transfer switch is then thrown and the other two handeranks used to position the light under the second point. The map coordinates of the two points are algebraically added in two network boxes, the resultant voltage from the network boxes being the N-S and E-W distances between the two points. The resolver converts these two distances into range and bearing, which are indicated on two dials. Such a techmique results in astounding accuracy. In a computer employing this principle, the maximum range error is on the order of one yard in a thousand, and the maximum bearing error is 10^{\prime}. The average errors are about half the maximum.

If you have a problem in any phase of automatic control, it will pay you to discuss it with Ford engineers.
Visit our Booth \#15 at 1st Annual Trade Fair of Atomic Industry Sept. 26-29, Washington, D. C.

ford instrument company
DIVISION OF SPERRY RAND CORPORATION 31-10 Thomson Avenue, Long Island City 1, N. Y.

[^3](C"ontinusd frion page 78A)
Knoll, D. W'.. 1849 Vésta Witr, Sacramento 21, Calif.
Knos. J. I... (entral Ihiliprine Univ., Iloilo City. 1'. I.
Knox, R. V'., 123 Manleattan Ave., Hawthorne, N.

Kintson, II. C., 1309 Slade Run 1rr, Falls Church, Va.
Koch, D. G., 24 N . Summit. Ave., Chathan, N. J.

Koch, H. T., $1+9$ Hranch Brook Dr., Belleville, N. J.

Koch, J. F. A., I Maple I r., Great Neck, L. I., N. Y.

Koch, J. G., 10 High Point Rd., Old Bridge, N. J.

Kocsan, E. S., 102 Milway Dr., Ferndale, Johnstown, 1'a.
Kodera, C. F., 7606 Stetson Ave., Los Angeles 45, Calif.
Koen, F. T., 34 Chestnut St., Danvers, Mass. Koenig, J. G., Timken Roller Bearing Co., Canton 6, Ohio
Koenreich, J. L., 'Trans-Arabian Pipe Line Co., Box $13+8$, Meirut, Lebanon
K゙oeppel, B. W., Seismograph Service Corpı, Box 1590, 'Tulsa 1, Okla.
Koepsel, W. W., Southern Methodist Univ., Dal. las, Tex.
Koerner, C. T., 1112 Cortez Dr., Glendale 7. Calif.
Koerner, H., 3256 E. 'Terra Alta Tucson. Ariん. Koerner, L. F., Bell Tele. Labs., Murray Hill, N. J.

Koesy, C. B., 1813 Moates Ave., Panama City, Fla.
Kofler, E. J., A C.S Conm. Hirs., 12 AF, APO 12, c/o P. M., New York, N. Y.
Kohler, E., Jr., 40 Greenhouse Dr., Dayton 9. Ohio
Konkel, T. C., 3334 Campus St., Claremont, Calif.
Konrad, L., 117 l'airmont Ave, Philadelphia 23, Pa.
Korby, I., 18900 Wisconsin Ave., Detroit 21. Mich.
Kosmaczewski, I., 118 Cleremont Ave., Irving. ton, N. J.
Kostyal, S. P., 9850 S. Central Pk., Fvergreen Park 42, Ill.
Kotera, W. J., Wow, Omaha, Neb.
Kotlewski, J. P., 3222 Maple St., Toledo. Ohio Kouchnerkavich, T. A., Civil Aero, Adminis., 17 \& Constitution Aves., Wash. 25, D. C.
Kovach, L., Warren St., Whippany, N. J.
Kowitz, A. E., 4518 W. George St., Chicago 41. I11.
Kozitzky, W. J., 223 Jamaica Ave., Brooklyn 7. N. Y.

Krainin, S., 105-30-66 Ave., Forest Hills. L. I., N. Y.

Kramer, A. W., 110 S. Dearborn St., Chicago 3, 111 .
Krantz, C. H., 953.D 19 St., Santa Monica. Calif.
Krasnick, B., 10 Mangano Ct., Watertown, Mass. Kraus, F. A., 7535 Reverly Rd., Philatlelplia 38, Pa.
Krause, C. K., R.R. 2, Box 1277, Parsipluany, N. J.

Kreider, P. A., 6909 S. Vanport Ave., Whittier. Calif.
Krieger, H. C., Rt. 1, Osterbaut Lake. (irand Junction, Mich.
Krivanich, M. A., 413 F. St., White Sand. Proving Gr., Las Cruces, N. Mex.
Krody, J. L., Rt. 2, Box 51, Bethel, Ohio
Krogh, R. A., 4108 Via Largavista, Palos Ver. des Estates, Calif.
Kruse, F. W., Jr., 2770 Ross Rd., Palo Alto. Calif.
Ktistes, P. J., 100 Wash. St., Gloucester, Mass. (Continued on page 83A)

MICROWAVE
 SIGNAL GENERATORS AND SIGNAL SOURCES

for extremely

high frequencies 12,400 to 50,000 mc

Rugged, compact, completely integrated units. Designed to save engineering manhours in the laboratory and on the production line. Operate simply with direct-reading continuously variable dials. No calibration charts.

Frequency is measured by direct-reading reaction-type wavemeters that assure extreme accuracy. VSWR is exceptionalSignal Generators 1.7 to 1 ; Signal Sources 1.7 to 1 when aitenuated. Calibration accuracy is given special attention. Consult Polarad on all your EHF problems.

	SIGNAL GEIERATOLES		SIGREL SDMEES	
Frequency Range	Model Number	Output Power	Model Number	Power Output (Average)
12.4 to 17.5 KMC	SG 1218	$-10 \mathrm{DBM}$	SS 1218	15 mw
18.0 to 22.0 KMC	SG 1822	-10 DBM	SS 1822	10 mw
22.0 to 25.0 KMC	SG 2225	-10 DBM	SS 2225	10 mw
24.7 to 27.5 KMC	SG 2427	-10 DBM	SS 2427	10 mw
27.27 to 30.0 KMC	SG 2730	-10 DBM	SS 2730	10 mw
29.7 to 33.52 KMC	SG 3033	-10 DBM	SS 3033	10 mw
33.52 to 36.25 KMC	SG 3336	-10 DBM	SS 3336	9 mw
35.1 to 39.7 KMC	SG 3540	-10 DBM	SS 3540	5 mw
37.1 to 42.6 KMAC	External Source Power Measurement Rar.ge +10 to +30 DBM Accuracy with Correction: $\pm 2 \mathrm{DB}$		SS 3742	Afprox. 3 mw
41.7 to 50.0 KMC			SS 4150	Approx. 3 mw
*	Modulation: 1. Internal 1000 CPS Square Wave 2. External a. Pulse Pulse Width: 0.5 to 10 Microseconds PRF: 50 to 10,000 PPS Pulse Amplitude: 10 volts Pk to Pk Min. Polarity: Positive b. Sawtooth or Sinusoidal Frequency: 50 to 1C,000 CPS Amplitude: 15 Volts RMS Min.			

SS. 1218

polarad microwave signal suurces 12.4 TO 50.0 KMC

SPECIAL FEATURES OF

EMF SIGNAL GENERATORS

- Unique power measurement system employs waveguide components of unusual design - allows continuous and front panel monitoring.
- Attenuation is independent of power set and frequency.
- 1000 cycles cps square wave modulation and external fm or pulse modulation provided over entire frequency range.

AVAILABLE ON EQUIPMENT LEASE PLAN

FIELD MAINTENANCE SERVICE AVAILABLE THROUGHOUT THE COUNTRY

PRICE: $\$ 975.00$ F. O.B. Boonton, N. J

FM-AM
 SIGNAL GENERATOR

Type 202-B
SPECIFICATIONS
FREQUENCY RANGE: $54-216 \mathrm{MC} \neq 0.5 \%$ FM MODULATION: $0-240 \mathrm{KC}$ continuously variable. FM DISTORTION: Less than 2% at 75 KC . AM MODULATION: 0-50\% continuously variable. AM DISTORTION: Approximately 5% of 50% AM. INTERNAL MODULATING FREQUENCIES: $50,100,400$ cycles; 1 , 5, 7.5, 10, 15 KC .
R. F. OUTPUT VOLTAGE: 0.1 to 200,000 microvalts continuously variable from source impedance of 26.5 ohms.
POWER SUPPEY: 105-125 volts, 50/60 cycles (internally regulated)

UNIVERTER Type 207-A

(When used with 202-B) SPECIFICATIONS
FREQUENCY RANGE: $100 \mathrm{KC}-55 \mathrm{MC}$.
FREQUENCY RESPONSE: Flat within $\neq 1 \mathrm{db}$. over frequency range. FM-AM MODULATION: See 202-B.
FM DISTORTION: No appreciable disfortion at any level.
AM DISTORTION: No appreciable distortion at carrier levels below 0.05 volt and modulation of 50%.
RF OUTPUT VOLTAGE: 0.1 to 100.000 microvoles confinuously variable from source impedance of $\mathbf{2 6 . 5}$ ohms; also approximately 1.5 volts from 330 ohms into open circuit.
POWER SUPPLY: 90-130 volts, 60 cycles (internally regulated).

The Type 202-13 FM-AM Signal Generator and the Type 207-A Lniverter provide complete FM-AM signal coverage from 100 KC continuously through 216 MC in two compact portable units.

The Type 202-B FM-AM Signal Generator was designed to meet the exacting requirements set forth by learling engineers throughout the country and has found widespread acceptance as the essential laboratory instrument for receiver development and research work.

The Type 207-A Univerter was designed to provide additional frequency coverage of commonly used intermediate and radio frequencies and enables the modulation and attenuation calibration features of the $202-\mathrm{B}$ to be utilized at these lower frequencies.

Write for CATALOG "J"

PRICE: $\$ 345.00$
F.O.B. Boonton, N. J.
(Continued from page 80.1)
Kuba, R. E., 19391 Votrobeck Dr., Detroit 19, Mich.
Kubala, A. M., 7725 Lamphere St., Detroit 28, Mich.
Kuczun, C. G., 17 Whittier Rd., Reading, Mass
Kugler, F., 8106 MaCarthur Rd., Jhiladelphia 18, P'a.
Kuliback, I., 1573 Ave., Long Branch, N. J.
Kunde, W. W., Jr., 1610 W. York Lane, Wheaton, Ill.
Kunst, A. F., 3451 W. 66 St., Chicago 29, I11. Kuykendall, J. H., 822 Mitchell Ave., Arlington II ghts., Ill.
Kyburz, U. L., 4211 Crestview Dr., Rockford, III.

Kyne, T., 1998 Upland Way. Philadelphia 31 Pa.
Lahn, F. C., Box 156, Melbourne Beach, Fla
l.aing, J. T., Westinghouse Elec. Corp., Sharon, Pa.
l.amb, F. X., Weston Elec. Instru. Corp., 614 Frelinghuysen Ave., Newark 5, N. J.
Lambert, T. M., 1944 Diamond St., San Diego 9, Calif.
Lane, A. L., 706 Chillum Rd., Hyattsville, Md.
Lane, E. F., 1810 N. 47 St., Phoenix, Ariz.
Lane, F. A., 126 Fssex Ave., Montclair, N. J
Langdon, G. G., Sao Patlo Tramway Light \& Power Co. Ltd., Caixa Postal 8026, Sao Paulo, Mrazil
I.apidos, R. W., 325-B I'rinceton Rel., Haddon field, N. J.
Lapp, R. S., Lapp Insulator ('o., Leroy, N. Y.
Larsen, H. F., 8714 Melva, Downey, Calif.
I.arson, R. P., 808 N. Humphrey Ave., Uak Pk. III.
Lasby, R. O., Parkway Apts., Munn Ave., Haddonfield, N. J.
Lashier, H. M., Emmanuel Missionary Coll., Berrien Springs, Mich.
laskin, H. J., 395 Belmont Ave., Brooklyn 7, N. Y.

Latham, N. D., 2010 Narberth Ave., Haddon Hghts., N. T.
L.athrop, L. L., 1100 Monroe St., S.E., Albuquer que, N. Mex.
Laube, O. T., 366 N. Pkwy., F. Orange, N. J Landerdale, D. M., Univ. of Tex., Austin, Tex.
Lautenberger, 11. W., 23 Garfield Rd., Baldwin, 1. I., N. Y.

Lantz, C. F.. Jr., 887 Parkside Are., Buffalo 16, N. Y.

Lawrence, G. M., 12.4 W'estwoud Rd., Cohmbus 14, Ohio
Leahy, E. F., 1149 Greentree Rd., Pitts. 20, Pa L.eavitt, IV. E., 5229 Tanice Lane, Wash. 22, D. C.

Lebert, A. W., Bell Tel. Labs., Mt. Ave., Mur ray Hill, N. J.
I.ee, F. B., 1319 Powell St., San Fran. 11, Calif. Lee, R. C., 1833 Shelby St., Seattle 5, Wash.
I.eef, G. R., 54 Rector St., Millburn, N. I.

Lee Grand, C., 5909 W. Colgate Ave., Los An geles 36, Calif.
I-egrand, J. S., 348 Innes Rd., Wood-Ridge, N. J.

Leimbach, H. J., Jr., 2959 Tilden St., N.W. Wash. 8, D, C.
1.eiphart, J. P. C., 4642 Ceclar Ridge Dr., Wash. 21, D. C.
Leming, J. G., 2499 So. Ave., Niakara Falls, N. Y.

Lemmond, C. Q., 1 River Rd., Schenectady 5, N. Y.

Lenfest, G. C., Jr., 3458 Homestead, Wantagh, L. I., N. Y.

I_enigan, T. E., Radio llev. Dept. Bell Tel. Labs., Whippany, N. J.
L.entz, J. J., Int'1 Bus. Mach., 612 W. 115 St., N. Y. 27, N.

Leonard, R. R., 52 Beacon St., Boston 8, Mass. Leppert, M. L., 4012 First Pl., S.IV., Wasl. 2t. D. C.
(Continued on page 84A)

MODEL S-15-A

TWO IDENTICAL INDEPENDENT OSCILLOSCOPES WITH COMMON TIME BASE

ANOTHER EXAMPLE OF LIEMIEIZ PIONEERING...

The WATERMAN TWIN POCKETSCOPE, model S-15-A, presents a new concept in multiple trace oscilloscopy with independent vertical channels each having a sensitivity of 10 millivolts $\mathrm{rms} / \mathrm{inch}$, and a response within -2 db from DC to 200 KC -a pulse rise time of 3 microseconds. These features combined with the provisions for intensity modulating either, or both, traces, results in greater flexibility. The sweep generator is operated either in the repetitive or triggered mode from 0.5 cycles to 50 KC with synchronization polarity optional. All attenuators and gain controls are of the non-frequency discriminating type. Remember that portability has not been overlooked! The amazing small size of the S-15-A tips the scales of opinion heavily in its favor. Imagine, all of these essential characteristics in an instrument weighing only $161 / 4 \mathrm{lbs}$. You can carry it to any job, anywhere!

WATERMAN PRODUCTS CO., INC.

PHILADELPHIA 25, PA.
CABLE ADDRESS: POKETSCOPE

WATERMAN PRODUCTS INCLUDE
S-4-C SAR PULSESCOPE ${ }^{(1)}$
S-5-A LAB PULSESCOPE
S-6-A BROADBAND PULSESCOPE
S-11-A INDUSTRIAL POCKETSCOFE ${ }^{8}$ S-12-B JANized RAKSCOPE ${ }^{(B)}$
S-14-A HIGH GAIN POCKETSCOPE S-14-B WIDE BAND POCKETSCOPE S-15-A TWIN TUBE POCKETSCOPE RAYONIC® Cathode Ray Tubes and Other Associated Equipment

BIICABD

the Wrolde Traquest TRANSFORMERS

in the

KILDWATT
This superbly designed and engineered "Transmitter of Tomorrow" will meet the most rigid electrical, mechanical and performance specifications.
E. F. Johnson engineers chose CHICAGO "Sealed-in-Steel" transformers for the Viking Kilowatt . . . modulation, filaments, screen voltage, bias filament, plate and matching choke and filter chokes . . . eleven in all, including many stock units.
Here is further proof of the rugged, trouble-free construction of CHICAGO transformers. Learn about the full line of the world's toughest transformers by writing for the latest CHICAGO Catalog. It is available from your local electronic parts distributor or from Chicago Standard Transformer Corporation.

(Continued from page 8iA)

1.eslie, C. B., 916 Robin Rd. Silver Sprmg, Md. Leeslie, F., Emerson Radio, $1+$ \& Colea Sts., Ier. sey City 2, N. 3.
Lessem, M., 2527 Ford Ave., Detroit 6. Mich. l.euteritr, H. (., 51 Canterbury Rl.. Row kville Center, I. I., X. Y.
L.ev, (i. N., 200 Carlton Avr., Westmon. N. J.. l.e Van, J. D., 53 Raymond St., Nishlua. N. Hamp.

Levenson, I). W., 1121 Main St., Wheeling. w. Va.

Levenstein, H., 26 Hansmm l't. Oceanside. L. J., N. Y.
1.evine. A. M., 154 i.ozier Tert River Bilge. N. J.
L.evinthal, J. (i., 344 King Rd., W., Ithac:, N. V' Levitsky, J., 65 Rutgers P1., River Edge, N. J. L.evy, B., $34-5890$ St., Jackson Hghts., I.. I.. N. Y.

Levy, 1... 535 Parkside Ave., Bklys. - 't, … Y'. Lewis, (r., IVCAU Inc., City Ave. It Mounment Rd., Philadelphia 31. I'a.
Lewis, M. B., 220264 St., Brooklyn. ㄱ. I'.
Lewis, R. F., I'roduct Jev. Co., Kearny, N. I.
l.iang, D., 315 J3rierwood Ave.. Ann Arbor. Mich.
Libbey, W. M., 135 W . Broadway, lanker, Me. L.ibby, H. L., 1324 Stevens Dr., Richland, W'asi. Libby, R. L., (;ien Rd., Rome, N. Y.
Liepold, R. B., 350 Đakdale Ave., Chieagn 14. 111.
I.ang, F. T., 3226 Walbridge Pl., N.W.. Washington, D. C.
Lang, J. M., Gen. Elec, Co., Schenectaly, X, Y. Lange, W. W., 8300 Grois Pt. Rd., Morton Grove, Ill.
R.ieberman, F., 48 Helen Ave., Plainview. 1.. 1.0 N. Y.
 Off. Bldg., Washiagton 27.1$)$.
Lindeman, IJ. B., 1533 I'atk Citove Ral. Malt more $28, \mathrm{M} 4$.
I.indley, P. I., Jurroughs Research C'anter. Paoli, I'a.
Lindner, N. T., 332 W. 8. St. New York 24. N. Y.

Lindsay, J. C., Nottiagham Rd., Kf. 2, Neruark. J)el.
L.indsay, P. A., 18 Aspley Rd., Lomion S.W' 18, England.
l.indstrom, Co., Limmegatam 25 A . I.mhoping. Sweden
Link, I. C., 7213 IIalleck St.. S.F... W:ahing ton $28, \mathrm{~J} . \mathrm{C}$
linkletter, R. L., 1108 N lafayett. Ave.. Bremerton, Wash
I.inton, T. B., 11561 Cand. L.a., varden firove. Calif.
L.ipin, B., 808 F, 73 St., Kansas City, Mo.

Lipkin, L.., 3025 Richton Ave., Inetroit 6, Mich.
litpel, B., 401 West End Ave, Long Branch. N. J.

I isle, J., 729 Delaware Ave., Bethlehom, P'a. Little, N. C., 8 College St., Brunswick, Me.
Lob, C. G., Gen. Elec. Co. Syracuse, N. Y. l.ochanthi, B. N., 2552 Bonlder Rd., Altadena, Calif.
L.ockhart, J. C., 306 Oreland Mill Rd., Ureland, Pa.
Loewenthal, M., 186 Commonwealth Ave., Boston 16, Mass.
L.oftis, II, T., 2223 S. 11 St., I ronton, Ohio

Long, J. V., 4120 Fifth Ave., San Diego 3, Calif.
Long, M. B., Bell Tel, Labs., 463 W. St.. New York 14, N. Y.
Long, M. C., Dept, of the Nav. Washington 25, D, C
Looney, H. C., 103 Hilltop Rd., Silver Spring. Md.

Looney, L. A., 50 Winans Dr., lonkers, N. Y. Lorence. E. L., 521 Distel Dr,, L.os Altos, Calif. (Continued on page 86A)

IN TOP QUALITY CORES

FROM 20 T० 300 MC.

ITMS ST:J JNIII

PHYSICAL CONSTANTS	W	J	SF
Percent retained by 325 mesh screen.	trace	trace	trace
Weight-average particle diameter (Roller Analyzer) $d=\Sigma d_{i}{ }^{4} / \Sigma d_{1}{ }^{3}$ (microns).	3	9	3
Surface-average particle diameter (Fischer Sub-Sieve-Sizer) $d=\Sigma d_{1}^{3} / \Sigma d_{1}{ }^{2}$ (microns)	2.5	4.5	2.5
Density of particles, g/cm³ .	7.35	7.35	7.81
Apparent density, g/cm³ .	2.6	2.8	3.0

From Research to Reality...

Three types of G A \& F Carbonyl Iron Powders are particularly satisfactory in cores designed for use at the higher frequencies. To assure low losses and good magnetic and temperature stability at 20 mc . to 300 mc ., we invite you to test Types SF, J and W. These powders are microscopic, alnost perfect spheres-ranging from 3 to 9 microns in diameter-with the same rigorous uniformity that characterizes all G A \& F Carbonyl Iron Powders.

Today, Carbonyl Iron Powders-a total of ten types-are widcly used in the production of cores for transformers and inductor coils-to increase Q values, to vary inductances, to reduce coil size, to confine stray fields or to increase the coupling factors.
We urge you to ask your core maker, your coil winder, your industrial designer, how G A \& F Carbonyl Iron Powders can increase the efficiency and performance of the equipment or product you make, while reducing both the cost and the weight.
We offer you two books-one covering SF, J and W Powders only-the second covering the other seven types. In both books, characteristics and applications are given with diagrams, performance charts and tables. For either or both books, address Department 40.

Specialists in BROAD-BAND Amplification

Standard adaptable amplifiers delivered from stock Expert engineering service for your particular broad-band problems Development service on all types of broad-band systems. Ask for bulletin E-13

Here are a few typical I.F.I. amplifiers available:

M 200 Miniature i.f. Amplifiers
Band Centers $\quad 30$ or 60 mc
Band Width 2 to 10 mc
Model 400 High Power Distributed Amplifier
Output Power Band Pass

100 w CW 300 mc

Model 500 Distributed Amplifier Output Power 3 w Band Pass 250 mc
TV 100 Broad-Band Amplifiers Gain 50 db Band Pass $\quad 52.90$ or 171.219 mc

INSTRUMENTS FOR INDUSTRY, Inc.

159 GLEN COVE RD., MINECLA, N. Y. - PHONE: PIONEER 2.5300 Representatives
G. E. Moxon, 422 La Jolla Avenue, San Mateo, California Hınter \& Salsbury, Inc., 258 Herricks Road, Mineola, New York

ALPHA METALS, INC.
61 Water St., Jersey City, N.J.
general purpase SOFT SOLDER

FLUX KIT

It is a timesaver for designers, ENGINEERS AND PRODUCTION MEN

IN SOLVING FLUXING PROBLEMS

A FLUX for each of your soft soldering operations. This Flux Kit contains a complete assortment of the most useful Fluxes for ELECTRONIC ASSEMBLIES, PRINTED CIRCUITS, TINNING and HOT SOLDER DIPPING. STAINLESS STEEL SOLDERING and ALUMINUM SOLDERING. It enables a rapid determination of the proper Flux for a soldering job. The Flux Kit is the result of thousands of customers' service problems submitted to Alpha's Research Laboratory. Special Fluxes can be compounded to suit individual needs at Alpha's modern Research Laboratory.

AMIP\|L\|TIUIDIE \|LIINIEANR\|TI「

MODEL ALT-2 TIIESTIEIR

The ALT-2 is a linear staircase generator for differential gain measurements of television systems or individual units. Supplies composite video sigsal with adjustable sync pulse, blanking level, and staircase amplitude. Steps variable from 3 to 14 . Step exponent 1.0 to 2.75 . Internal $\mathrm{r} . \mathrm{f}$ modulates steps from 1.0 mc to 3.75 mc .

Modulating steps with studio 3.58 subcarrier permits simultaneous differential phase and amplitude measurements using a Wickes VDE-3A Vector Display Equipment or a CPA-I Color Phase Analyzer.

Write for descriptive literature.

4N

Lorenzen, II. O., 3713 Bangor St., S.E., Washington $20, \mathrm{D} . \mathrm{C}$
L.ourie, N. M., 100 Memoria; Dr., Cambridge, Mass.
Love, A. I.., 58 l'inewoods A.ve., Troy, N. Y
Love, C. E., 12763 Brooklake St., Los Angeles 66, Calif.
Love, J. E., 235 Hawthorne Ave., Haddonfield, N. J.

Loveberg, A. G., Jr., 9135 Lemon Ave., La Mesa, Calif.
Lowe, D. M., 9209 Shirley Ce, La Mesa, Calif lowell, R., Bell 'Tel. Lab., Whippany, N. I.
Lowery, II. R., 1+2+ 12 Ave S., IBirminghan, Ala.
Lowrie, R. W., 23 Antoinette Ave., Poughkeepsie, N. Y.
I_ozo, K. G., Camp Asan, Sta. 8, Guam, M. I. Lucas, F. (i., 9331 Lenore Dr., Garden (irove, Calif.
Luecker, G., American Embassy, Bierut I.elanon. Fign. Ser., Washirgton, I). C.
Lukas, W., 115 Belvidere Rd., Clen Rock, N. J. Lund, C. O., Destervoldgade 10.(i, Copethagen K, Denmark
Iundin, J. A., 5 Toval Ct., Brooklyn 29, N. Y. Lundquist, G. A., 8012 liney Branch Kd., Silver Spring, Md.
Lundstrom, O. C., 305 Calle De Andalucia, IIollywood Riviera, Redondo Beach, Calif.
Luntz, J. D., Nucleonics, 330 W. 42 St., New York 36, N. Y.
Lurie, E. M., 226-38 Mentone Ave., Inilreltont. I. I., N. Y.
I.urye, T. R., $135-24$ Hoover Ave., Kew (ialdent.

Luse, J. I)., A Potter Pk., Cambridge 38, Mass. Lush, M. J., Old Rd. to Nine Acre Comer, Concorl, Mass.
L.nster, E. W., $400 \mathrm{Wych} w o r d$ RII., Westfield, N. J.

Lyman, Fr, Jr., Cambridge Thermionic Corp., 445 Concord Ave., Cambridge 38, Mass
Lymn, P. R., 139 Central Ave., W. Caldwell. N. J.

Lyon, D. J., 941 Geranimm, Baton Routge, La. L.yons, E. F., 2805 Croyden Ct., Oklahomal City 14, Okla.
Lyons, 1.. H., 500 California Ave., Santa Monica, Calif.
L.yons, R. C., 25 Woodland St., Huntington. I. I., N. Y.

MacCallum, J. M., Jr., 43 Meehan 1)r., Dayton, Ohio
MacInnes, N. A., 424 is Whitman Dr., Has donfield, N. J.
Mack, A., 197 Queens Dr., Little Silver, N. I. Mackey, C. I.., Westernville, N. Y. MacIean, W. I)., Sperry Gyroscope Co., Great Neck, L. I., N. Y.
MacMillan, T. S., 184 Highview Dr., West Paterson, N. J.
Mac.Nabb, V. C., 171 W. 73 St., Indianapolis 20, Ind.
Macnichol, E. F., Jr., Belfast Rd., Sparks, Md. Magasiny, I. P., 4522 "I)" St., Philadelphia 20, Pa.
Maget, R., c/o Industries Electricos y Musicales Odeon, Avila. Corrientes 485, Buenos Aires, Argentina
Magimniss, F. J., Analytical Div., (ieneral Elec tric Co., Schenectady, N. Y
Maglathlin. R. N., R.F.D., Cojasset, Mass.
Maguire, W. W., 7418.88 IP., Los Angeles 45,
Malaffey, (i, N., 4532 N . Chelsea La., Bethesila. Md.

Mahren, A. A., 5602187 St., Flushing, I.. I.,
Maier, R. II., 228 N. Oak Park Ave., Oak P'ark, III.
(Continued on page 89A)

Here's the Relay for today's high speed devices

> Highly Sensitive No Contact Bounce Billions of Operations

- Announcement of the clare Type T High Frequency Relay two years ago set off such a deluge of inquiries for samples and information that it is only just now that production facilities permit us to mention it again.

Originally designed for use in an analog computer, this relay is ideal for designs which call for a highly sensitive relay completely free from contact bounce and capable of billions of operations at extremely high speeds.

Pull-in time of this relay, for instance, is 120 microseconds. With dropout time of 100 microseconds, the relay follows up to 2500 cycles per second; aperiodic to 1000 cycles per second.

Manufacture of the clare Type T Relay, with its high speed, no bounce and other unusual characteristics, necessitated the development of entirely new techniques. It is built to extremely close tolerances, with a high degree of precision and fabricated under conditions of utmost cleanliness.

SPECIFICATIONS

MECHANICAL

Size: 1-15/16 in. dia. x 2-3/16 in. overall. Weight: 50 oz.

Mounting: Equipped with plug, to fit standard 8-pin octad socket.

Cover: Removable dust-tight cover.

Contacts:

Type: Form A (s.p.s.t., normally open) Material: Platinum-iridium
Gap: 0.0005 inch
Pressure: 30 grams, min. (Coil energized with 50 ampere-turns)
Coil:
Type: Single winding, bobbin-wound, Wire: Heavy formex.

ELECTRICAL

Operate Ampere-Turns: 8 to 20.
Release Ampere-Turns: 1 to 4 less than operate ampere-turns.
Nominal Ampere-Turns for High-Speed Operation: 16 to 40.
Speed of Operation: will follow 2500 cycles per second; aperiodic to 1000 Eycles per second.
Operate Time: 100 to 180 microseconds.
Release Time: 60 to 120 microseconds. Contact Bounce: None.
Contact Current Rating: 0.05 amp., max. Contact Voltage Rating: 150 V ., max. Dielectric Strength: 500 V., rms. Coil Resistance: up to 600 ohms .
Life Expectancy: $5 \times 10^{\circ}$ operations (determined by contact load).

THE CLARE TYPE T
High Frequency
Impulse relay

TYPICAL CHARACTERISTICS
Coil Resistance: 135 ohms.
Coil linductance: .35 Hy .
Operate Current: 10 to 12 ma.
Release Current: 8 to 10 ma .
Nominal Current: 40 ma., steady state; 20 ma., average.

Operate Time: 130 microseconds.
Release Time: 100 microseconds.
Energizing Circuit: Coil in plate circtit of vacuum tube with 300 volt plate supply.

For full information on the clare Type T Relay -or for consultation on any relay problem-see your nearest Clare Sales Engineer or write C. P. Clare \& Co., 3101 Pratt Blud., Chicago 45, Illinois. In Canada: Canadian Line Materials Ltd., Toronto 13. Cable Address: clarelay.
Send for Clare Bulletin Number 117

Just reach for your date pad and re. serve four days to explore your new world of production . . . attend the Second International Automation Ex. position at Chicago's Navy Pier, November 14-17. 1955.

FOR THE VISITOR _

- Computer and Automatian applica. tion clinics and special related sym. posia.
- Exhibits of leading manufacturers displaying the latest developments in automation.

FOR THE EXHIBITOR

- A show of proven merit for finding new and exciling markets, and expanding 'old' ones.
- For exhibitor information, and o re. port on the success of the First Auto. mation Show, write to Richard Rimbach Associates at the address shown or use the coupan below.

FOR VISITOR AND EXHIBITOR -

to help you keep step in the double-time march of production progress - read INSTRUMENTS \& AUTOMATION, the world's leading maguzine of measurement and automatic control (since 1928).

（Continued from fage 80.1 ）
Main，W．F．，Jr．， 527 Galveston Il．，S．ド．．
Washington，D．C．
Mains．M．C．，Officers Mail Rm．，Box $120, \mathrm{APO}$ 323 ，San Francisco，Calif．
Majlinger，A．，43－18－49th St．，Sunnyside t L．I．，N．Y．
Makar，R．T．，2＋Sharia Said，Ileliopolis，Catiro， Egypt
Malkin，S．， 248 S．Lincoln Ave．，Elberon，N．J． Mallalieu，R．F．，P．O．Box 151，Oxford，Pa．
Malta，S．V．， 1135 Slocum St．，Philadelphia 19, Pa．
Mandel，M．，131 Stonehouse Rd．，Glen Ridge， N．J．
Manfredi，R．E．， 2027 Cardiff Ru．，Sclenectatly， N．Y．
Mankoff，L．L．， 7244 Spruce St．，Upper Darby， Pa．
Mann，A．， 424 Compass St．，Uniondale，I．．I．， Nं．Y．
Manning，F．W．， 12 E．Circle La．，Norris，＇lenn Manoogian，H．Box 460，Doylestown，I＇a．
Marantz，S．A．， 104 Arlington Ave．，Brooklyn 7，N．Y．
Marcus，I．A．， 3011 Elwin Ave．，Fort Leec，N．J． Marcuvitz，N．， 10 Garden St．，Great Neck，I．．I． N．Y．
Margolin，A．R．， 3536 Mclaughlin Ave．，Los Angeles，Calif．
Margolin，B．， 6 Ellsworth Ave．，Cambridge 38 ， Mass．
Marquez，J．，Dr．J．M．Vertiz 16，Mexico，D．F． Mexico
Marolda，J．， 2088 Ryer Ave．，New York 57, N．Y＇．
Marsh，C．O．，Jr．， 36 Conklin Ave，Hillsiale， N．J．
Marsh，S．V．， 5300 Vantage St．，N．Hollywood， Calif．
Marshall，A．R．， 5 Wiellington Ave．，Watham， Mass．
Marshall，R．， 1009 N．Ist Ave．，Arcadia，Calif．
Marshall，T．A．， 82 Daisy Ave．，Floral Park， I．I．，N．Y．
Marteena，J．M．，Agr．\＆Technical College， Greensboro，N．C．
Martin，D．W．， 1042 S．Waugh，Kokomo，Ind，
Martin，E．O．， 100 Franklin St．，Bldg．5－A3， Morristown，N．J．
Martin，I．B．， 409 Preston La．，High l＇ark， Hatboro，Pa．
Martin，J．F．，Bell Tel．Iabs．，Whippany，N．J．
Martin，J．L．， 17 Hawthorne St．，Massapequa， L．I．，N゙．Y．
Martin，J．W．， 23804 W． 54 St．，Edmonds， Wash．
Martin，S．J．， 64 Forest St．，Closter，N．J．
Masnik，M．，Jr．， 309 Houston Ave．，Syracuse， X．Y．
Masmn，A．F．，Jr．， 113 E．I．eona St．，Uvalde， Tex．
Mason，R．S．， 383 Canterbury I）r．，Box 311. Rainsey，N．J．
Massi，F．， 373 Atlantic Ave．，Cohasset，Mass．
Masucci，C．， 208 Cottage Blvd．，Hicksville，I．I．， N．Y．
Mather，D．L．， $11+$ Ardmore I＇l．，Syracuse 8， N．Y．
Mathes，R．H．， 2601 Gaither St．，S．F．．，Hillcrest His．，Washington，D．C．
Mathison，W．W．， 144 Coggeshall Ave．，New port，R．I．
Matsun．L．E．，Jr．，416－B Park View Apts．， Collingswood，N．J．
Hatt，S．， 210 Eastwood Ave．，Ithaca，N．Y．
Mathias，L．II．， 1849 E．Fox La．，Milwaukee 11，Wis．
Matldin，H．W．，Jr．， 2480 Berkley La．，N．E．， Atlanta，Ga，
Mavinides，J．G．， 60 Crestview Rd．，Waltham it．Mass．
（Continucd on page 20A）

Sub－miniature Assemblies

To Gigantic Electronic

Systems

Sub－miniature circults
－Transistorized Application

－2．．For the NAVY
Radar Fire Control Systems．Mine Detecting Devices．Anti－Submarine Altack Directors， Catapult Speed Indicators，Servo Control Sys－ tems，Torpedo Assemblies．

．．．For the AIR FORCE
Capacitance Testers，All－Altitude Servo Indi－ cators，Transistorized Receivers，R F Switches， Potontiometers．
．．．For the ARMY
Mechanical Fire Control Systems．Fuzes Communication Systems and other instrumen－ tation for all branches of the Army．

Antenna Drive Antenna
Housing

Test Equipment，Computing Devices，Radar Equipment，Nuclear Equipment，Gyro Mecha． nisms．Electronic and Electro－Mechanica Devices

Write Eor Our
Focilities Report
DAYSTROM INSTRUMENT has produced tiny precision assem－ blies ．．．to gigantic gun directors and fire control systems－all within their modern $350,000 \mathrm{sq}$ ． ft．plant．When you combine Daystrom＇s team of skilled engi－ neers with efficient production methods and modern facilities， you＇ll understand how Daystrom has been able to achieve mass production of such products－on time and at low cost－for every branch of the Armed Forces and industry．

rforl．．．For INDUSTRY

$$
2
$$

DAYSTROM INSTRUMENT

ARCHBALD，PENNA．
Div．of Doystrom，Inc．

simplify custom FILTER installation

The $\mathbf{4 2 0 0}$ Variable filter and 4201 Program Equalizer are now available in component form, as illustrated, for the custom builder.
In addition to the flexibility of installation, all the features and characteristics of the standard models are retained.
The high and low sections of either model may be obtained separately. Complete wiring instructions included.

Send for Bulletin TB-4

Model 4200 Variable Filter (Send for Bulletin S)

Model 4201, Program Equalizer (Send for Bulletin E)

Representatives in Principal Cities

Subsidiary of International Resistance Company 11423 VANOWEN STREET NORTH HOLLYWOOD 6, CALIF.
(Comtinued from page 80A)
Mayfield, S. A., 1417 Byral Dr., Fort Worth
Mazel, L. G., 72.36 112th St., Forest Itills. I. I., \times. Y .

McAllister, J. A., San Franciseo Naval Shipyard, San Francisco, Calif.
McAlpine, W. N., Radio Sec., Anaconla Mining Co., W'eed Heights, Nev.
Mcinally, D. (i., 4416 Emerson St., Dallis, Tex.
Mcilulay, W. H., Box 715, Sin Carlos, Callif McCann, J. G., 534 Erskine Dr., Pacitic Dali sades, Callif
McClamrock, J. M., 76.37 S. Yakima, Tacoma, Wash.
McCormack, Tr. L., 12 Rambow Ave., Chelms ford, Mass.
MeCourt, A. R., 1333 Selley St., Butte, Mont. McDermott, F., 6000 Lemmons Ave., Dallits 9, Tex.
McDowell, H. I.., liree Acres, Emerson 1.a., Berkeley Heights, N. J.
McElroy, W. J., 3502 Manor Dr., Minneapolis 22, Mimn
McFarland, R. B., 7226 N. Hamilton, Chicago, Ill.
McGarvey, 11. J., 325 S. Mais, Dubois, Pa McGimis, S. E., 138 Jifth Ave., S. E., Orlwein, lowa
dicllenry, G. A., 100-- 27 Ave., Seattle 22, Wash.
Mckiay, H. B., 13:9-35 Ave., Salı Francisco 22, Calif.
Mrkay, W. M., 2100 E. Galer St., Seatle 2, Waslı.
McKee, G. R., Jr., 3630 Merrick Rel., phila. delphia 29, Pa.
Mcl.aren, I. H., 209 Clamemont, Dearhorn, Mich.
McMullen, (i. D., 1128 Rughy Rel., Schenec tady 8, N. Y
Mc.Namara, 1: T., 322 Thornton St., Handen 14, Comm.
McPlierson, R. R., 813 E. Kingsley St., Aun Arbor, Mich
McWhortor, W. F., 3147 Ronham 1)r., Indianajolis, Indi.
Meier, A. S., 691 Fvergreen Ave., Hamden, Conn.
Meier, W. M., 4305 Alan Dr., Baltimore 29. Md .
Meier, W. I.., Chatham Filectronics Corp.. 630 Mt. I'leasant Ave., Livingston, N. J.
Mekota, J. E., Jr., 211 A Lexington St., Waver. ley 79, Mass.
Melton, G. H., 2300 Colston Dr., Silver Sprius. Md.

Melvin, E. A., 9620 Lorain Ave., Silver Spring. Md.

Mende!, F. S., 870 Seward, 402, Detroit 2, Mich.
Menes, H., 515 Grandview Ave., Wyckoff, N. J. Mentreken, C. F., Box 451, Pebble Beach. Calif. Merrill, II. M., 924 S. Serrano Ave., I.os Angeles 6, Calif.
Messenheimer, A. D., 2005 Woorlberry St. Hyattsville, Md.
Messinger, H. P., Inst. for Air Weapons Re. search, Museum of Science and Industry, Chicaso 37, Ill.
Meyer, A. W., 4630 Manordene Rd., Baltimore 29, Md.
Meyer, D. R., 8511 Winnetka Ave., Canoga Park, Calif.
Meyer, M. A., 12. Sherwood Rd., Natick, Mass. Meyer, R. C., Jr., Box 486 A, Louise Dr., Mill. town, N. J.
Meyer, R. W., 65 Trudy Dr., Lodi, N. J.
Meager, G., 175 W. 21 St., Huntington Station,
Michaud, R. F., Apt. 4, $93+14$ St., Santa Monica, Calif.
(Continued on page 93A)

color

 TV shadow masks
etched and electro formed

With the rechnical experience
and producrion knowhow gain.
ed in producing fine meral erch.
ing and in electro-formiog, we
are now manufacruriog mong
components for the elecironic
industry. Some specifictions call
for fine mesh up to $1,000,000$
holes per square inch. Send us
your drawings for a prompr
quatation.

Lindeke Building
SAINT PAUL 1, MINNESOTA

to checking jet starter performance . . -

 SANBORN OSCILLOGRAPHIC
RECORDING SYSTEMS

prove their versatility

FOR INTERNATIONAL HARVESTER'S
ENGINEERING TEST AND DEVELOPMENT DEPY.
A specially housed and shock-mounted Sanborn 2-channel recorder provides dynamic strain measurement dafa on a field forage harvesting machine, during actual field use. In the photographs, rotor shaft lorque and RPM are being recorded, one of several uses Internetional Harvester has found for the Sanborn Sysfem in field testing their farming equipment.

AT ARCH GEAR WORKS, QUINCY, MASS....
A record of tooth regularity of various types of precision gears is obtained on a single.channel Sanborn Model 141 System, used in conjunction with a special gear checking instrument devised by Arch Gear Works. The equipment permits vis ual spot checking of gears, helps maintain a high rate of acceptability and provides a permanent record of tests often required by customers.

AT G. E.'S AIRCRAFT GAS TURBINE DIV. ...
Engineers record performance data such as temperatures, pressure, RPM and starting time of jet engine starters, using a modified Sanborn Model 67 Systom. Six channels of information are recorded in this four-channel unit, equipped with three DC amplifiers, one Triplexer, a four-channel OC Converter, iwo-channel zero suppression netwark ond two modified strain gage amplifiers. The date also provides G. E. enginears with an indication of the performance of all production units.

These typical applications indicate the scope of usefulness of standard and modified Sanborn Recording Systems. Wherever accurate, permanent, graphic registration of electrical phenomena in the 0.100 cps range is required, the versatility and flexibility of Sanborn onc-, two-, four- six- and eight-channel systens will prove invaluable. A wide variety of readily interchangeable, plug-in preamplifiers enable one basic system to meet many recording requirements. Standard instrument features include inkless recording in true rectangular co-ordinates, high torque galvanometer movement, time and code marking. and a choice of nine chart speeds.

CATALOG AND TECHNICAL DATA AVAILABLE ON REQUEST

©

SANBORN

 COMPANYINDUSTRIAL DIVISION
CAMBRIDGE 39, MASS.

ACCURATV

HIGH RELIABILITY
HIGH PRECISION
HIGH QUALITY
LOW WEIGHT
SMALL SIZE ECONOMICAL

FHBQUCNCIES

FREQUENCY STANDARD 240 to 800 Cycles

Type 50 C
$\pm .02 \%$ at -65° to $85^{\circ} \mathrm{C}$
Type R 50 C
$\pm .002 \%$ at 15° to $35^{\circ} \mathrm{C}$

FREQUENCY STANDARD 200 to 4000 Cycles
Type 2003 C
$\pm .02 \%$ at -65° to $85^{\circ} \mathrm{C}$
Type R 2003 C
$\pm .002 \%$ at 15° to $35^{\circ} \mathrm{C}$
Type W 2003 C
$\pm .005 \%$ at -65° to $85^{\circ} \mathrm{C}$

American Time Products, Inc.

 560 Fifth Avemue

 560 Fifth Avemue}

OPERATING UNDER PATENTS OF WESTERN ELECTRIC COMPANY
(Continued from page 90A)
Mickelson, T. H., 137 Orchard Dr., N. Syracuse, N. Y.
Milinowski, A. S., Ferris St., Peekskill, N. I'. Millard, J. W., 311 Blvd, Pompton l'lains, N. J. Miller, C. E., 37945 Radde, Mt. Clemens, Mich. Miller, F. P., 635 Jefferson St., Fairborn, Ohio Miller, H. C., 250 W. Portola Ave., Los Altos. Calif.
Miller. L. A., 1641 A Waverly Way, Baltimore $12, \mathrm{Md}$.
Miller, R. A., Bell Tel. Lab., Murray Hill, N. J. Miller, R. L., 429 Manor Rd, Hatboro, l'a.
Miller, W. F., Knollwood Rd., Whippary, N. J.
Miller, W. A., 465 E. Juniper, Oxnard, Calif. Miller, W. B., 8138 Redfern lur, Houston 2I, Tex.
Mills, C. W., 1310 Poston Cir., Gastonia, N. C. Mills, H. J., 470 l'iaget Ave. 'D.11,' Clifton, N. J.

Mills, T. L., Rt. 1, Box 1872, Bremerton, Wash. Mino, H. R., Cruft Lab., Harvard Univ., C'ambridge, Mass.
Ming, 1). L., 407 S. Cherry Woul Ave., W. Covina, Calif.
Minter, J., Box 1, Boonton, N. J.
Mischler, W. D., Bell Tel. Labs., Murray Hill, N. J.

Misey, J. J., Rm. 40, Civilian Billet T 2001, Aberdeen Proving Ground, Md.
Mitchell, B. B., 5156 Tenth Ave., Los Angeles, Calif.
Mitchell, F. A., Stromberg-Carlson Co., 100 Carlson Rd., Rochester 3, N. Y.
Mitchell, H. F., Jr., Remington Rand Inc., 315 4th Ave., New York, N.Y.
Mitchell, J. A., 377 Nott St., Wethersfield 9, Conn.
Mitchell, W. R., 3309 Mocking Bird Laine, Dallas, "lex
Mitchell, W. T., 208 N. Parkway, l'ospect Heights, 111 .
Mittleman, W., 5t Frances St., Shrewsbury, N. J.

Miyake, I., Univ. of Hawaii, Honolulu, T. H.
Mobley, M. C., 901 Nichols Dr., Laurel, Md.
Modry, J. F., 1841 Portsmouth Ave., Westchester, Ill.
Moe, W. J., 1903 Tatum St., St. l'aul, Minm. Mohr. H. F., 3 Fox Lane Apt. 1 I, Flushing, L. I., N. Y.

Mond, L. I., 49 Brook Ave., Little Silver, N. J. Moners, C. N., 40 Grozier Rd., Cambridge, Mass.
Moun, R. F., Comdr., Electronics Officer, 13os. ton Naval Shipyard, Boston 29, Mass.
Moons, A. G., 1218 Central Ave., Westfield, N. J.

Moore, H. N., Lt. Col., 803 Ring Bldg., 1200 18 St., Washington 6, D. C.
Moore, M. H., 7700 Winnetka Ave., Wimnetka, Calif.
Moore, S. F., Amer. Mach. \& Foundry Co., 261 Madison Ave., New York, N. Y.
Moore, W. E., 248 Southern Rd., San Diego, Calif.
Moorhead, G. H., 56 N. Hillside Ave., Chatham, N. J.

Moose, L. F., R.D. 2, Quakerstown, 1'a.
More, C. C., 20 Harrison Ave., Erlton, N. J. Morehouse, G. D., 2703 San Simeon Way, Riverside, Calif.
Morelli, A., 33 Daly Rd., Medford, Mass.
Moreno, T., 3167 Leonello St., Los Aitos, Calif.
Morgan, W. E., Jr., 7 Spiral Lane, Levittown, L. I., N. Y.

Morison, R., 1155 Medford Rd., Pasadena 8, Calif.
Moritz, C. Dr., 1 Gray St., Cambridge 38, Mass.
Morrell, G. A., Jr., c/o Asiatic Corp., Conneaut. Ohio
Morris. G. W., Col., 239 N. 24 St, Camp Hill. Pa.
(Continued on page 94A)

For long life under extreme conditions of shock, vibration, corrosion, humidity and temperature Bendin W/iype

HEAVY-DUTY ELECTRICAL CONNECTOR

Here is the electrical connector designed and built for maximum performance under rugged operating conditions.

Intended for use with jacketed cable and not requiring ground return through mating surfaces, this connector incorporates sealing gaskets at all mating joints.

W-Type Bendix* Connectors also incorporate standard Scinflex resilient inserts in established AN contact arrangements. Shell components are thicksectioned high-grade aluminum for maximum strength. All aluminum surfaces are grey anodized for protection against corrosion.

For the real tough jobs, be sure to specify the W-Type Electrical Connector.

Our Sales Department will gladly furnish complete specifications and details on request.
*reg. trade-mark

SCINTILLA DIVISION
 SIDNEY, NEW YORK

Bendix

Export Soles: Bendix International Division, 205 East 42nd St.

 New York 17. N. Y.```
FACTORY BRANCH OFFICES: 117 E, Providencia Ave., Burbonk, Calif. 6560 Cass Ave Detroit 2 Mich Avorbank, Calif Stephenson Bldg., 6560 Cass Ave.. Detroit 2, Mich. 512 West Ave., Wisc. 'American Bldg., 4 S. Main St., Dayton 2, Ohio - 8401 Cedar
``` Springs Rd., Dallas 19, Texas


\section*{Unsurpassed \\ in performance}

\section*{Unequalled tw compactusss}

\section*{CHARACTERISTICS}

2 degrees of freedom
\(360^{\circ}\) in roll, \(\pm 82^{\circ}\) in pitch
Repeatability to established vertica ... 15 Minutes max. of \(1 / 2\) cone angle
Free drift rate . \(0.5^{\circ}\) Minute
Erection Time
3 minutes at start
Erection Rate
\(\ldots 3^{\circ}\) minute-Normal \(80^{\circ} /\) minute-Fast
Synchro Output (each axis) 11.8 volts, 400 cycles

Only Kearfott can offer a Miniature Vertical gyro with big gyro Performance. Completely self contained, this gyro requires No External Erection Amplifiers. A gravity sensitive electrolytic device, within the gyro, directly associated with the torquer motors, provides the necessary vertical reference.
Hermetically sealed, filled with a dry, inert gas. Satisfies the requirements of MIL_-K-5272 as regards shock test (Procedure II) humidity, salt spray, fungus resistance, rain, sand, dust, immersion and explosion proof.
This gyro duplicates the performance of the Kearfott T2108 series in \(1 / 3\) the oolume and weight.

KEARFOTT COMPONENTS INCLUOE:
Gyros, Servo Motors, Synchros, Servo and Magnetic Amplifiers, Tachometer (jenerators, Hernetic Rotary Sealls, Aircraft Navigational Systems, and other high accuracy mechanical, electrical and electronic components.
Engineers: Many opportumities in the above fields are open. Please write for details tombre.


\section*{KEARFOTT COMPANY, INC., LITTLE FALLS, N. J.}

Sales and Engineering Officest 1378 Main Avenue, Clifton, N. J.
Midwest Office: 188 W . Randolph Street, Chicago, III. South Central Office: 6115 Deston Drive, Dallas, Texas West Coast Office: 253 N . Vibedo Avenue, Pasadena, Calif.
(Continued from page 93A)
Morrison, D. A., 508 West St., R.D., Reading, Mass.
Morrison, E. D., R.F.D. 1 Whippany Rd., Whip pany, N. J.
Morrissey, D. J., 14404 Benefit St., Sherman Oaks, Calif.
Morrow, C. T., Hughes Aircraft Res., L.ev. Labs., Culver City, Calif.
Morse, J. E., 8 Bobrich Dr., Apt. 20, Rochester, N. Y.

Mortenson, K. E., 4 Sanford Ave., Troy, N. Y'. Moster, C. R., 14 Webster St., Summit, N. J.
Motchan, H. L., 7809 Milan, University City 14, Mo.
Moule, W. N., 806 Mt . Vernon Ave., Haddonfield, N. J.
Mucher, G. J., Clarostat Mfg. Co., Inc., Dover, N. H.

Muchnick, P.,2239 Creston Ave., Bronx 53, N. Y.

Mueller, A. A., 1101 N. Yale Ave., Arlington Heights, III.
Mueller, F. L., 105 W. Adams St., Chicago 3, III.

Mueller, P. L., 4407 Fourth Ave., Temple, Pa.
Mueller, W. A., Warner Bros. Pictures, Burbank, Calif.
Mullenger, K. E., Larchwont Acres, Apt. 422.A, Larchmont, N. Y.
Mullins, W. H., 1607-19 St., Manhattan Beach, Calif.
Minnford, L. G., 333 E. 21 St., Owensboro, Ky.
Munson, L. A., Rt. 1, Box 54, I'hoenix, Md.
Mural, F., 354 S. Lombardy Rd., Drexel Hilh, Pa.
Murphy, C. E., 405 S. Union St., Galion, Ohio
Murray, J. II., 3631 Huntington Ave., Minneapolis 16 , Minn.
Murrell, T. A., Dept. of EE, Univ. of Illinois, Urbana, III.
Mushrush, R. S., Jr., 213 Salt Springs St., Fayetteville, N. Y.
Mut, S. C.. 6317 Orchid Lame, Dallas 5, Ter
Muth, J., Jr., 18 Orchard Pl., Valley Stream, 1. I., N. Y.

Myers, J. L., \(2417-\mathrm{A}\) W. Oak St., Burbank, Calif.
Myers, O. C., 2659 Weodland Ave., Columbus 11, Ohio
Myers, V. V., Jr., 701 Cagua S.E., Albuquerque, N. Mex.

Nagy, I.., Jr., 2711 Gracewood Rd., Toledo 13, Ohio
Nash, A., 639 West End Ave., New York 25. N. Y.

Nathan, A. M., 36 W. 69 St., New York 23, N. Y.

Naybor, E. V., 15 Salear Lane, Port Washing. ton, I. I., N. Y.
Naylor, A. F., 208 Kingswood Dr., S, E., Grand Rapids 6, Mich.
Neleel, C. N., Bell Tel. Labs., Ins., Whippany: N. J.

Needlatm, 1). P., 1610 E. Minnelaha I Pwy., Minneapolis 7, Minn.
Neely, (i. M., \(161+\) Myrtle St., N.W.. Wiahington 12, 1). C.
Neill, G. W., Rt. 2, Lake Garda, Unionville, (oun.
Neitzert, C., Stevens Inst. Tech., Hoboken, N. J.
Nelson, E. K., 19850 E. Arrow Mgws., Covina, Calif.
Nelson, R. P., 3405 Manchester Rd., Wantagh, L. I., N. Y.

Nessmith, J. T., Jr., 623 Wayne Rd., Haddonfield, N. J.
Neu, W. J., 2017 Hudson Terr., Fit. Leee, N. J. Neuland, J, G., 408 E. Elm St., Brea, Calif. Nevitt, R. G., 613 S. Western Pkwy., Louisville 11, Ky.
New, R. F., 16 Stever Dr., Binghamton, N. Y.
Newhouse, G. B., 2630 Lambert Dr., Pasadena, Calif. (Continued on page 98A)

\title{
DQW versatile data
} tape recorder

\section*{THE MOBILE AMPEX 800}
records the broadest combination of data ever obtained concurrently on one magnetic tape-performs with laboratory precision under severe field, airborne, shipboard and vehicular conditions-and furnishes data ccmpatible with the most widely used playback equipment.

The Ampex 800 can provide from 1 to 28 data channels. By interchangeable amplifier units, each one can be adapted to any one of three basic magnetic recording techniques:


Direct recording - 300 to 35,000 -cycle response for wide-band data or multiple recording of RDB subcarriers.
FM-carrier type recording - D.C. to 5000 cycles and high instantaneous accuracy suit. able for shock and vibration data.
Pulse-width modulation recording - Up to 90 instrument readings commutated on to each tape track with frequency response 0 to 2 cycles \(/ \mathrm{sec}\). With fewer instrument readings, frequency response is greater.

\section*{ADAPTS TO}

ANY DATA REQUIREMENT The Ampex 800's three available recording techniques can satisfy practically any test requirement by simple insertion of the proper plug-in amplifiers. Separate channels can be assigned to measurements requiring wide-band response or high transient accuracy. And by using pulse-width techniques, many relatively steady instrument readings can be commutated on to a single channel. All will have a common time base.

WITHSTANDS THE RIGORS OF AIRBORNE, SHIPBOARD, VEHICULAR AND GENERAL MOBILE USE The Ampex 800 will perform within specifications under vibrational forces as high as 10 G -operates over a temperature range from \(-65^{\circ} \mathrm{F}\). to \(130^{\circ} \mathrm{F}\) - is unaffected by altitudes to 50,000 feet - and withstands a relative humidity of \(100 \%\) up to \(122^{\circ} \mathrm{F}\). The Ampex 800 is light in weight. It operates on 27.5 volts D.C. and 115 volts, 400 cycle, A.C. All operating functions can be remotely controlled.

\section*{RETAINS WIDELY ESTABLISHED}

RECORDER STANDARDS The majority of all magnetic recorders now in instrumentation use are Ampex machines. Their recording characteristics, tape speeds, track widths and other parameters have become standards. The Ampex 800 retains these while greatly extending the environmental and mechanical conditions under which accurate test data can be gathered.

Performance specifications, descriptions and explanations
have necessarily been limited by the space on this page. A full description and detailed specifications on the Ampex 800 are available by writing Dept. 心-2:328

CORPORATION

FIRST IN MAGNETIC TAPE INSTRUMENTATION
934 CHARTER STREET • REDWOOD CITY, CALIFORNIA

\author{
Branch Offices: New York; Chicago; Atlanta; San Francisco;
} Dayton; College Park, Maryland (Washington D.C. area)

\section*{RCA WT-100A Electron-Tube MicroMhoMeter}

\section*{NEW VERSATILE TUBE TESTER!}

\section*{RCA-WT-100A}

Electron-Tube Micromhomieter Suggented liser Irice: \(\mathbf{5 7 8 5 . 0 0}\)

\section*{Practical for:}
- Radio, Phonograph, and TV Ser Manufacturers
- Electronic Equipmerr Manufacturers
- Electronir Research and Development Groups
- Electronie Mantenamce and Service Groups
- Communcation and Broadcast Stations
- Tube Manufacturers

\section*{... has accuracy approaching that of}

\section*{tube-factory equipment for measuring true gm}

The new RCA-W/T-100A Electron-Tube MicroMhoMeter is especially suited for laboratory and production-line resting, and circuit design engineering.
Unique design makes possible the resting of receiving tubes, receiving-rype Unique design makes possible the testing of receiving tubes, receiving-type tubes for industry and communications, and small transmitting tubes under actual operating veltage and current conditions. This feature permits direct correlation of test results with tube mannfacturers' published data-and, in design work, permits the determination of a tube's performance under a given setiof current and voltage conditions. The Micromhometer is manufactured in accordance with the same rigid standards of high quality that account for in accordance with the same rigid standards of high quality that accoun
the outstanding reputation of RCA tubes. The WT-100A weighs only 50 pounds; measures \(231 \%^{\prime \prime} \times 8^{\prime \prime} \times 1812^{\prime \prime}\)

Volfuge-drop p:cuizrements arross tibes, du- \(\psi\)-dise rectifiers, and crystal diodes!


Plap-in, whitipleser ket whea hme nis sew sentersipes acitil aldet!

Barn-rath proof neties-clectron. icall\} protected!

Tab -pin
selacior suitches -tproli pins!

BOARD OF DIRECTORS, 1955
J. D. Ryder, President Franz Tank, Vice-President W. R. G. Baker, Treasurer Haraden Pratt, Secretary
John R. Pierce, Editor
J. W. McRae, Senior Past President W. R. Hewlett, Junior Past President

\section*{1955}
S. L. Bailey
A. N. Goldsmith
A. V. Loughren
C. J. Marshall (R5)
L. E. Packard (R1)
J. M. Pettit (R7)
B. E. Shackelford
C. H. Vollum
H. W. Wells (R3)

1955-1956
E. M. Boone (R4)
J. N. Dyer (R2)
J. T. Henderson (R8) A. G. Jensen George Rapuaport D. J. Tucker (R6)

1955-1957
J. F. Byrne

Ernst Weber

George W. Bailey,
Executive Secretary

John B. Buckley, Chief Accountant
Laurence G. Cumming, Technical Secretary Evelyn Davis, Assistant to the Executive Secretary Emily Sirjane, Office Manager EDITORIAL DEPARTMENT Alfred N. Goldsmith, Editor Emeritus John R. Pierce, Editor E. K. Gannett, Managing Edilor Marita D. Sands, Produclion Manager
ADVERTISING DEPARTMENT William C. Copp,
Advertising Manager Lillian Petranek, Assistant Advertising Manager

EDITORIAL BOARD
John R. Pierce, Chairman D. G. Fink E. K. Gainnett T. A. Ilunter W. R. Hewlett J. A. Stratton W. N. Tuttle


Responsibility for the contents of papers published in the Procernings of the IRE: rests upon the anthors. Statemento made in papers are not binding on the IllE or its members.


Change of address (with 15 days advance notice) and letters regarding subscriptions and payments should be mailed to the Sertetary of the IRE, 1 East 79 Street. New York 21, N. Y.
All rights of publication, including foreign language translations are reserved by the IRE Abstracts of papers with mention of their source may be pridted. Requests for republication should be addressed to The Institute of Radio Engineers.

\title{
PROCEEDINGS OF THE IRE
}

Published Monthly by
The Institute of Radio Engineers, Inc.
Volume 43
September, 1955
Number 9

\section*{CONTENTS}
A Worthy Project. T. A. Hunter ..... 1044
5472. Frequency and Time Standards F. D. Lewis ..... 1046
5473. IRE Standards on Industrial Electronics: Definitions of Industrial Electronics Terms, 1955. ..... 1069
5474. IRE Standards on Antennas and Waveguides: Definitions for Waveguide Com- ponents, 1955 ..... 1073
5475. High-Frequency Power Gain of Junction Transistors R. L. Pritchard ..... 1075
5476. IRE Standards on Radio Receivers: Method of Testing Receivers Employing Ferrite Core Loop Antennas, 1955 ..... 1086
5477. A Microwave Phase Contour Plotter. J. S. Ajioka
5478. The Application of Dielectric Tuning to Panoramic Receiver Design. ...................................... Butler, Jr., W. J. Lindsay and L. W. Orr ..... 1091
5479. Note on the Design of Wide-Band Low-Noise Amplifiers. D. Weighton ..... 1096
Correction to "The Minimum Noise Figure of Microwave Beam Amplifiers," by H. A. Haus and F. N. H. Robinson. ..... 1101
5480. Wide-Range Electronic Tuning of Microwave Cavities.
F. R. Arams and II. K. Jenny ..... 1102
5481. The Resolution of Signals in White, Gaussian Noise. C. W. Helstrom ..... 1111
5482. Automatic Gain Control of Transistor Amplifiers.......W. F. Chow and A. P. Stern ..... 1119
5483. Two Network Theorems for Inalytical Determination of Optimum-Response Physically Realizable Network Characteristics S. S. L. Chang ..... 1128
Correspondence:
5484. VHF and UHF Signals in Central Canada D. R. IIay and R. C. Langille ..... 1136
5485. On Reciprocal Inductance. E. J. Baghdady ..... 1136
5486. Rebuttal. Harry Stockman ..... 1136
5487. Empirical Relationships with the Munsell Value Scale
J. H. Ladd and J. E. Pinney ..... 1137
5488. Effects of Impurities on Resonator Properties of Quartz
A. R. Chi, D. L. Hammond, and E. A. Gerber ..... 1137
Contributors ..... 1138
IRE News and Radio Notes:
Annual Meeting of the Dallas-Fort Worth Section ..... 1141
Transactions of the IRE Professional Groups ..... 1142
Professional Group News. ..... 1145
Technical Committee Notes ..... 1145
5489-5493. Books. ..... 1146
Professional Group Chairmen. . ..... 1148
Section Chairmen. ..... 1148
1955 Industrial Electronics Conference. ..... 1150
Radio Fall Meeting Program. . ..... 1150
Second Annual Meeting of Irofessional Group on Niuclear Science ..... 1151
5494. Abstracts of Transactions. ..... 1152
1955 IRE Student Awards ..... 1155
5495. Abstracts and References. ..... 1156
Meetings with Exhibits. 4 A Positions llanted ..... 145.1
News and New Products. 14A Positions Open ..... 1481
Membership. 32 I IRE People. ..... 154.1
Industrial Engineering Notes. 134A Section Meetings. ..... 172.1

\title{
A Worthy Project
}

\author{
'T. A. Hinter, Editor, IRE Stident Quarterly
}


During the past few months I have had an opportunity to visit a mumber of sections actively participating in programs designed to be of service to our student members. Generally, these programs take the form of a student paper context, presentation of outstanding student awards, field trips, or career conferences. A recent innovation, undertaken by the Los Angeles Section, provides a student with the opportunity to discuss each area of the electronics industry, its future and the outstanding problems yet to be solved, with a representative of the l'rofessional Groups. My experience with our student program indicates that this last type of program is hy far the most effective and I wish to call it to your attention.

On May 3, 1955 , the los Angeles Section was host to four engineering colleges in Southern (alifornia with IRE Student Branches: California Institute of 'lechnology', California State Polytechnic, University of California, and the University of Southern (‘alifornia. Mr. John O'Ilalloran, Student Branch Co-ordinator for the Los Angeles Section supervised the preparations. The student members, about 300 from the four colleges, were addressed by outstanding engineers, each representing one of the Professional Groups. Twenty minutes were allowed each group in addition to the open discussion which followed. A social hour concluded the afternoon program. Following the afternoon program students were allowed to
discuss each group informally with the speakers in private rooms set aside for this purpose. During a dinner bancuet following the conference Joseph Pettit, Regional Director, gave a short talk on IRE organization with empllasis on I'G activities.

My own opinion of this meeting is certainly not as important as the opinion of the student body of the four schools. For this reason I have asked two students, Herbert Leach of California State Polytechnic College, and l'aul Rude of the University of Southern California, to state their opinion of the meeting, together with those opinions they felt typified the views of the entire student body. Following are a few of their comments:
"On May 3 the Ios Angeles Section held a joint meeting with its student branches. The meeting was, we hope, the first of many. The purposes of the meeting were to promote the general professional development of the students through a better knowledge of the function of the IRE, to acquaint the students with leaders active in the IRE I'rofessional Groups and to assist the students in selecting the phase of electronics in which they might wish to work after graduation.
"The Los Angeles Section and its Student Relations Committee deserve much credit for a well-planned and very interesting day. The talks were presented in a manner so as to be of interest primarily to the students present. It
seemed that all of the speakers went out of their way to talk to the students and this consideration was quite effective.
"The afternoon session was sponsored by the various l'rofessional Groups. The session was opened by a talk by 1)r. Joseph l'ettit of Stanford University, in which he discussed the attitude which the present IRE organization had towards the Professional Groups and how they have recently expanded. He and many of the following speakers emphasized the use of the Professional Groups by men in the field and the value of these groups in aiding members to keep) abreast of the ever-changing electronics scene. Other speakers during this session spoke on their respective Professional Groups. These talks were of particular value to the students in that they dealt with basic philosophies in scientific and engineering investigations.
"Following dinner, recognition was paid to the chairmen of the student groups and student awards were presented to a student member from each of the student branches by Dr. Pettit. Following the presentation, I)r. l'ettit spoke on 'What I Should Expect from the IRE,' giving a clear picture of the organization.
"1)uring the regular section evening meeting Dr. Ernest Krause of Lockheed Missile Systems and Mr. John Byrne of Motorola spoke. Dr. Krause discussed the replacement of build and test, trial and error, experimental work in the fiek of missiles. Mr. Byrne spoke on recent developments in the fiek of mobile communication service.
"We feel, that as a whole, the meeting was very successful. We have made an attempt to contact some of the other students who attended the day-long session, and they seem to be in
complete agreement with this opinion. Such meetings should be continued and held once each year. This type of meeting allows the student a chance to obtain a clear idea as to the organization and function of the IRE. Also students can meet with students from other colleges and broaden their views as to the various curricula and programs of the other student branches. Possibly in future meetings the students will be allowed to partake in the program itself. From the viewpoint of the Los Angeles Section the day should have been a success. Attendance was high and the response of the group was excellent. The section should take this hint and plan to continue such events."

1 concur with both gentlemen and, based on my experience as editor of the Student Quarterly, I would further suggest that a recent graduate of an engineering college be invited to talk about his experience during his first year in industry. I have found that the readers of the Student Quarterly are most enthused about this type of material. I would also like to point out that the above response is truly typical of the many favorable comments brouglit to my attention-by the students themselves during the conference.

On the basis of the enthusiasm shown it seems that the time and effort which went into making the program possible have been fully rewarded. As I left Los Angeles I felt pride in the fact that the IRE had members who would take the time to provide the student with such an unusual service. Any section wishing to undertake such a project is invited to write to Mr. John O'Halloran or me for a more complete description of the program. You will find the pattern one which is worthy of duplication.

\title{
Frequency and Time Standards*
}

\author{
F. D. LEWIS \(\dagger\), SENIOR MEMBER, IRE
}

\begin{abstract}
The following is one of a planned series of papers written at the invitation of the IRE, in which men of recognized standing review recent developments in, and the present status of, various fields in which noteworthy progress has been made.-The Editor.
\end{abstract}

\begin{abstract}
Summary-Improvements in astronomical time measurement echniques and in the definition of time have kept pace with developnents in frequency standards. Quartz crystal frequency standards are described, including Essen rings, bars, GT-cut plates, and contoured AT-cut plates. Stable oscillator circuits for quartz-crystal frejuency standards are described, including the Meacham bridgestabilized circuit, the Gouriet-Clapp circuit, and the Lea quartz-resonator-servo circuit. A discussion of the present status of atomic and molecular frequency standards includes the ammonia absorption cell, ammonia oscillator (MASER), and cesium atomic-beam apparatus. Instrumentation for precision frequency measurement is outlined, and a current listing of standard-frequency broadcast stations is included.
\end{abstract}

\section*{Introduction}

MEASUREMENTS of frequency and time have advanced in accuracy as the instrumentation for these measurements has improved. With each improvement in accuracy of measurement, new problems of stability, precision, calibration, and interpretation have become apparent. A review of the recent advances in frequency and time measurement technique is of interest to the radio engineer as an indication of the progress which has been made and of the improvements to be expected in the near future.

\section*{Time Measurement}

The basis of frequency measurement is, axiomatically, time measurement, and conversely, time measurement can be based on frequency measurement. Before the discovery of atomic or molecular frequency standards, there were not available any alternatives to the calibration of freduency standards by means of astronomical observations. In view of the present early stage in the development of the atomic and molecular frequency standards, it is mot yet possible to state that these atomic standards have been used to measure the constancy of astronomical time. However, the groundwork has been laid and soon it will be possible to calibrate astronomical time measurements against spectral-line frequencies. Further discussions of the spectral-line frequency standards are given in another section of this paper.

Accurate time is determined by astronomical observations at a designated observatory in each country where suitable observatories exist. The U. S. Naval Ob-

\footnotetext{
* Original manuscript received by the IRE, June 24, 1955.
\(\dagger\) General Radio Co., Cambridge 39, Mass.
}
servatory is the only observatory in the United States regularly carrying out such measurements, and is thus the source of all accurate time determirations in this country. Time signals giving time as determined by the Naval Observatory are broadcast by naval radio stations, \({ }^{1}\) and in cooperation with the Bureau of Standards, by stations WWV and WWVII which are operated by the Bureau of Standards.

A number of observatories in other coantries are cooperating with agencies of their respective governments to furnish time measurements for radio transmission, and many of these observatories provide time measurements of very high accuracy. International comparison of time is carried on principally by means of radio transmission. (See section below on Standard Frequency Broadcasts.)

The problems of time measurement, and even of the definition of "time," have been familiar to the astronomer since long before the days of Sir Isaac Newton. \({ }^{2}\) It is nevertheless true that our moder: scientific notions of time are derived from the fact that time is the independent variable of Newtonian mechanics. Minor corrections, to take account of relativity, have enabled the original Newtonian concept of time to survive, and to provide a firm basis for astronomical time reckoning. As the stability of time-keeping devices has improved, it has become apparent that astronomers need to agree on a standard unit of time to use for astronomical calculations, and also to provide a basis for checking any variations in such time standards as the rotation of the earth. Consequently, in 1950 an international conference on astronomy recommended that the term Ephemcris Time be used to denote uniform or Newtonian time, and this term (Ephemeris Time) was adopted by the International Astronomical Union in September, 1952, as defining uniform time related to the revolution of the earth about the sum. \({ }^{1,3}\) At the present writing, \({ }^{4}\) it is impending that the International Committec on Weights and Measures will adopt a definition of the second, as a unit of time, as "the fraction \(1 / 31,556,925.975\)

\footnotetext{
\({ }^{1}\) Circular No. 49, U. S. Naval Observatory, Washington, D. C. March 8, 1954.
\({ }^{2}\) Dirk Brouwer, "The accurate measurement of time," physics Today, vol. 4, pp. 6-15; August, 1951.
\({ }_{3}\) Time Service Notice No. 1, U. S. Naval Observatory, Washington, D. C.; May 28, 1953.
"E. C. Crittenden, "International weights and measures, 1954." World Radio Seience, vol. 120, p. 1008; December 17, 1954
}
of the tropical year 1900." The adoption of this standard unit will serve to provide a time which may be used for data of great precision, such as may be required in frequency standardization.

In the preceding paragraph, the term Ephemeris Time was defined as denoting time based on the orbit of the earth around the sun. It is of interest to discuss the kinds of time and their significance in terms of astronomical phenomena. Ephemeris Time is determined by measurement of the tropical year. The tropical year is the time taken by the earth to make an orbit around the sun from vernal equinox to vernal equinox. By means of clocks, one can divide this tropical year into smaller intervals for application to various problems.

The time which is commonly used as "standard" time on the earth is determined by measuring the rotation of the earth about its own axis, especially with respect to the sun. Because of the ellipticity of the earth's orbit around the sun and the inclination of the earth's equator to the orbital plane, the length of an apparent solar day varies with the position of the earth on the ecliptic. In order to make the keeping of time indlependent of the seasons, the apparent solar day has been replaced by the "mean solar day," the duration of which is the average value of the apparent solar day over a period of a year. Very precise time measurements require corrections for the variation in longitude (apparent zenith) of the observing station and other small corrections known to astronomers. \({ }^{5}\) Time determined by measuring the rotation of the earth was designated by the International Astronomical Union, September, 1952, as Universal Time. By international agreement, Universal Time is also defined as Greenwich Mean Time.

In order to provide a time measurement obtaining in one operation simultaneous data on the rotation of the earth and the rotation of a pair of bodies in space with a substantially constant rotational speed, observations of the moon and stars simultaneously have been undertaken. \({ }^{6}\) The data obtained from such observations provides information on both Ephemeris Time and Universal Time, and it is thus possible to obtain an accurate difference term which enables precise conversion of one to the other.

It is expected that the above-mentioned improvements in observation techniques and method of computation of time will enable absolute frequency based on time measurements to be determined to approximately \(\pm 1 \times 10^{-9}\).

The frequency of WWV, and of all standard frequency broadcast stations, is presently computed with respect to Universal Time (G.M.T.) which is mean solar time, thus automatically limiting the absolute accuracy to approximately \(\pm 2 \times 10^{-8}\). This accuracy

\footnotetext{
\({ }_{n}^{5} \mathrm{H} . \mathrm{M}\). Smith, "The estimation of absolute frequency in 1950 51," Proc. IEE, vol. 99, pt. IV (Monographs), Monograph 39, pp. 273-278; December, 1952 .
\({ }^{-}\)W. Markowitz, "Photographic determination of the moon's position, and applications to the measurement of time, rotation of the earth, and geodesy," Astron. Jour., vol. 59, pp. 69-73; March, 1954.
}
could be improved somewhat if corrections for short term variations in the earth's rotation were included in the computations.

\section*{Astronomical Time Measuring Instruments}

Time determination requires specialized apparatus for the required astronomical observations. When visual observation is employed, the instrument most frequently used is the meridian transit telescope, which is constructed and mounted in such a way that it can be directed only at points along the meridian. The observer then operates the mechanism for recording the times of transit of the selected stars. Early designs of recording mechanisms depended on the reaction time of the observer to some extent. Improved designs have reduced the variation in observation from this cause, but the ultimate accuracy of measurement can only be reached when the observation can be made indlependent of the observer. Such indepenclence from observer error can be achieved by photographic means, as in the apparatus described below.

\section*{Photographic Zenith Tube}

The principal device used by the U. S. Naval Observatory for the routine determination of star transits is the photographic zenith tube (1'ZT). \({ }^{7}\) This device consists of a telescope of a special design for photographing stars near the zenith. A vertical tube is mounted above a mercury basin which, when used as a mirror, supplies automatically the vertical reference as a normal to its surface. The vertical or zenith view of this type of telescope minimizes the effects of atmospheric refraction and thus reduces olservational errors. The upper end of the telescope tule supports the lens and the holder for the photographic phate used to record the positions of the stars. The plate holder is driven horizontally by an electric motor at a rate which synchronizes with the motion of the star images during two periods of exposure of the plate. Between the exposures, the carriage is rotated 180 degrees (images on opposite sides of the center of the photographic plate) thus providing simple and accurate geometrical determination of the meridian transit. The times at which the plate is at particular positions during the exposures are recorded on a chronograph driven by the crystal-controlled clocks of the Olservatory. The positions of the stars are known, and it is thus possible to compute the correct time. An outline of the steps involved in the determination of time and transmission of time signals by the U. S. Naval Observatory is shown in Fig. 1 (next page). A photograph of a photographic zenith tube, PZT No. 3, at the U. S. Naval Olservatory, is shown in Fig. 2 (page following).
Recent improvements in design of the plate carriage, motor drive, and chronographic pick-up of PZT have resulted in improved accuracy of time measurement.

\footnotetext{
\({ }^{7}\) W. Markowitz, paper on Photographic Zenith Tube now in preparation (U.S. Naval Observatory).
}


Uficial U. S. Navy photugraph.
Fig. 1-Steps involved in the determination of time and transmission of time signals.

\section*{Dual-Rate Moon Position Camera}

Recently developed apparatus for observation and measurement of the position of the moon is now being applied to the problem of the precise measurement of time. The equipment and technique for obtaining a photograph of the moon simultaneously with that of the necessary stars for the calculation of the moon's position have been developed by W. Markowitz at the U. S. Natval Observatory. \({ }^{6}\) The apparatus, or camera, for use on a refracting telescope comprises a special plate holder with a synchronous motor driving a micrometer screw to move the photographic plate at the sidereal rate corresponding to the moon's declination. The clock drive normally used to move the telescope tube is not used during this observation, the moving plate-holder heing used instead. The image of the moon falls on a dark filter (attenuator) with a transmission factor of 0.001 . This fitter is a glass disk, with plane-parallel sides, 1.8 mm thick. Tilting of this disk about an axis parallel to its plane surfaces causes a translation of the image of the moon. A second synchronous-motor-and-micrometer drive controls the speed of tilt of this disk to hold the moon image fixed relative to the stars. A further adjustment enables selection of the axis about whish the
at which the photographic plate and the filter disk are parallel, i.e., the instant at which there is no relative shift in position between moon image ant star images on the photographic plate. This instant thus defines the epoch of observation for time-measurement purposes.

A photograph of the dual-rate moon position camera installed on the 12 -inch refractor of the U.S. Naval Onservatory is shown in Fig. 3 (opposite page).

With the development of a satisfactory moon-star camera, it has now become feasible to institute a program of observation to chart the long-period variations in the rotation of the earth, and to compare them directly with Ephemeris Time determined from the same observations. (A group of photographic olservations of moon and star positions was obtained at llarvard College Observatory, in 1911-17, and reduced at I'rinceton, but using another method..\(^{6}\) ) An extended series of such observations by several separated observatories is expected to be able to provide a basis for the determination of absolute frequency to 1 part in \(10^{9}\).

\section*{Frequency Standards}

As may be inferred from the preceding discussion, the measurement of time by astronomical observation


Fig. 2-IPhotographic zenith tube, l'ZT No. A, Namal (Observatory, Washington, 1). C.
provide means for subdividing a tropical year into \(31,556,925.975\) parts, each alike in duration. This extreme requirement for clock stability will be partially alleviated by the moon observation program which will provide monthly time checks. (locks of the highest stability are necessary for scientific purposes such as the measurement of the short-period variations in the earth's rotation and the standardization of frequency.

The first crystal-controlled clock was constructed by W. A. Marrison and J. W. Horton in \(1927 .{ }^{8}\) Since that date, many engineers and scientists have made important improvements in the various components of the crystal-controlled clock, resulting in the stability mentioned above, and in impressive reliability as a laboratory tool for daily use, a reliability infrequently surpassed by any other electronic devices. Since the crystal clock is essentially a freguency standard with a cyclecounting device attached, \({ }^{9}\) we shall here consider the various component parts of the crystal-controlled clock as being frequency standards and associated items, for it is as frequency standards that the radio engineer most often meets these elements of the crystal clock.

\footnotetext{
\({ }^{8} \mathrm{~J}\). WV. Horton and W. A. Marrison, "Precision determination of frepuency," P'Roc. IRE, vol. 16, p. 137; February, 1928.
\({ }^{9}\) W. A. Marrison, "The evolution of the Qatartz crystal clock," Bell Sys. Tech. Jour., vol. 27, pp. 510-588; July, 1948. AIso published as "I3ell Telephone System Monograph B-1593," Bell Tel. Lab., New York City, and in Morological Journal, vol. Go, pp. 274 ff ; MayOctuber, 1948.
}


Fig. 3-Moon position camera, attached to the 12 -inch refractor of the Naval Observatory.

Standard ()scillators
In order to set forth the recent progress in frequency standard apparatus, it seems expedient to consider individually the clements making up such equipment. Most crystal-controlled frequency standards comprise (1) a control element, i.e., the quartz crystal unit, (2) a negative resistance element, i.e., the oscillator circuit using vacuum tubes or transistors to su:pply the power, (3) a thermostat or temperature-control device to keep, the control element and other circuit elements at constant temperature, (4) suitable frequency dividers or other means for producing lower output frequencies, which may be used to operate (5) integrating devices, such as clock inclicators, to keep a record of the number of cycles in a given period for comparison with astronomical time measurements. A suitable power supply (6) is, of course, required. Item (5) is sometimes climinated in a secondary frequency standard if adequate reception is available from one or more of the standard frequency broadcasts now being transmitted by various agencies. Various other items of aluxiliary equipment are frequently associated with crystal-controlled frequency standards for the purpose of calibration and standardization of the standards themselves, or for the use of the standards in frequeney and time measurement.

\section*{Quartz Clystai. Controf, Elements \({ }^{10-12}\)}

Two outstanding properties of crystalline quartz make it especially attractive as a control element ©or a piezo-electric oscillator, namely, the possibility of obtaining resonators of high \(Q\) value, and the exceedingly good stability of the quartz itself insofar as aging effects are concerned. Much of the frequency-standard work
\({ }^{10}\) R. A. Heising, "Quartz Crystals for Electical Circuits." D. Van Nestrath (o., New York, N.Y., 1945.
\({ }^{11}\) P. Vigontre:x and C. F. Booth, "Quartz Vibrators," His Majesty's Stationery Office, London, England, 1950.
\({ }^{12}\) J. I'. Buchanan, "Handbook of Piezoelectric Crystals for Radio Fquipment Designers," Wright Air Dev. Center (USAF) Tech. Rep. 54-248, Wright-Patterson AF Base, Ohio; December, 1954.
of recent years has been directed to the improvement of \(Q\) and aging characteristics of crystals. \({ }^{13-15}\) The variation of frequency with temperature, an important matter for a stable oscillator, is a function of the shape of the crystal element, its dimensions and its angle of cut from the mother crystal. The pertinent properties of various types of crystal resonators currently considered suitable for use as frequency standards are considered herewith.

\section*{Rings and Bars}

Crystal resonators operating in extensional modes offer some attractive properties for use at low frequencies. The choice of a suitable shape generally will provide one or more nodes suitable for use as mounting points, and the proper dimensioning, combined with a proper angle of cut, will produce a low coefficient of frequency vs temperature usually over a relatively narrow, specified temperature range. Such resonators at frequencies of the order of 100 kc have been made in the form of hars or rings.

\section*{Essen Ring \({ }^{15}\)}

A ring-type resonator, developed by Essen of the IBritish National Physical Laboratory, has shown great stability in frequency-standard use. This resonator operates in the extensional mode with six half-wavelength sectors alternately extencling and contracting in a direction along its circumference. The exciting voltage is applied to electrodes concentric with the inner and outer surfaces of the ring. Since the motion of the quartz is mainly along the circumference, there is only a little contraction and expansion of the surface of the ring and hence only a small power loss caused by ultrasonic radiation. An evacuated, sealed container has been used to keep the aging rate low, and incidentally also eliminate any residual losses caused by radiation from the ring or its mounting. The British-Post-Office Essen rings are reported to have a \(Q\) of two million, \({ }^{16}\) while the earlier pin-type mount produced a \(Q\) of one million.

The Essen ring requires a fairly sophisticated mounting in order to take full arlvantage of its inherent high \(Q\) value. The mounting problem is simplified to some extent by the existence of the six nodal planes, which are zones of minimum vibration at 60 degrees angular sepa. ration around the ring. The earliest mountings made by Essen at N.I'.I. employed pointed pins set into grooves cut into three of these nodal planes. Although the pins provided rugged support points, the rings seemed to exhibit some small frequency instability which was
\({ }^{13}\) J. P'. Griffin, "Iligh-stahility 100 -kc crystal units for frequency tandards," Bell Lab. Rec., vol. 30, pp. 433-4.37; November, 1952.
\({ }^{14} \mathrm{~A}\). W. Wiarner, "High-freguency erystal units for primary frequency standards," Proc. IRE, vol. 40, pp. 1030-1033; September,
1952. \({ }^{15}\)
thought to be ascribable to the pin mountings. Consequently, a string or thread-type mounting was devised at the British Post Office for the Essen-ring crystal elements used in frequency standards designed there. Fig. 4 is a photograph of the Post Office Essen Ring, and


Courtesy H. M. Yostmaster General.
Fig. 4-Photograph of 100 kc Z-cut quartz ring mounted on thread suspension in crystal holder W6, with cover removed.

Fig. 5 shows a sketch of the string mounting. The string. type mounting appears to have overcome the random frequency shifting observed with the pin-type support, but still leaves unsolved a few of the problems with respect to shipment or transportation of the finished quartz ring. The large mass of the Essen-ring crystal element imposes a requirement for relatively great care in shipment, requiring the type of shipment and handling normally reserved for de!icate scientific instruments.


Fig. 5-Sketch of ane of three string support points of Essenring crystal element.

Long term drift of the Essen-ring crystal is very small. \({ }^{17,18}\) Values of dirift rates of approximately \(1 \times 10^{-8}\) per month, or approximately \(3 \times 10^{-10}\) per day, have been observed for the Essen-ring oscillators at the U.S. Naval Observatory, \({ }^{19}\) with the expectation that lower drift rates will be reached in the future. The lowest
\({ }^{17}\) H. M. Sinith, "The determination of time and frequency," Proc. IEE, vol. 98, part II, pp. 143-153 (plus discussion): April, 1951
18 L. Essen, "Frequency standardization," Proc. IEE, vol. 98, Rate If Private communication. \({ }^{154-163 \text { (plus discussion); A pril, } 1951 .}\)
drift rates of two such oscillators reported by the British Post Office are 0.25 and \(0.4 \times 10^{-10}\) per day over periods of several hundred days. \({ }^{16}\) The British Post Office radio laboratory group considers that an Essen-ring oscillator unit is satisfactory for delivery to a user only if its drift rate is less than \(5.0 \times 10^{-10}\) per day averaged over 10 days. The excellent performance of the Essen ring with respect to long-term stability is ascribable, in part, to the fact that the frequency of oscillation of the ring is a function of the mean diameter of the ring, and that the loss, or acquisition, of a uniform layer of material over the entire surface would thus produce only a sec-ond-order change in the frequency. Careful processing of the ring and use of the evacuated mounting have further reduced the probability of changes in the crystal frequency.

An Essen ring ground for a frequency of 100 kc has an outside diameter of almost \(2 \frac{1}{2}\) inches (actually 61.26 mm in one case). This dimension is an indication of the difficulty of fabrication of such a crystal element, since it is necessary to obtain a quartz crystal free from defects with maximum dimensions large enough to allow cutting the ring from it. Because of this drastic requirement for large pieces of high-grade raw quartz-crystal, commercial Essen-ring frequency-standard units intended for moderate-quantity production have not been introduced.

\section*{Bars}

Quartz bars vibrating in the extensional or longitudinal mode are widely used in frequency-standard oscillators. The attractive features of such bars include the availability of one or more nodal planes for the attachment of mountings, a large ratio of mass to surface for the finished crystal, and only a moderate size requirement for the raw quartz blank. In addition, the processing required is similar to that required for the more commonly used plates, i.e., plane lapping.

Frequency-standard crystals operating in the extensional mode havelbeen used for many years. The German Physikalishe Technische Reichsanstalt group (Giebe, et al.) designed, constructed and operated for many years a quartz-controlled frequency standard using a \(60-\mathrm{kc} \mathrm{Y}\)-cut bar.

A commercial frequency standard using a \(50-\mathrm{kc}\) X-cut bar was produced by the General Radio Company, Cambridge, Massachusetts, in 1928. \({ }^{20}\)

A new design of overtone-operated X-cut bar was developed by Clapp \({ }^{21}\) for use at 100 kc in the present model of the General Radio Company frequency standard (since 1947). This quartz bar (Type 1190-A Quartz Bar), shown in Fig. 6, operates at the second overtone, having two half-wavelength extensional mode sections

\footnotetext{
\({ }^{20}\) L. M. Hull and J. K. Clapp, "A convenient method for referring secondary frequency standards to a standard time interval," Proc. IRE, vol. 17, pp. 252-271; February, 1929.
\({ }^{21} \mathrm{~J} . \mathrm{K}\). Clapp, "On the equivalent circuit and performance of plated quartz bars," Gen. Rad. Experimenter, vol. XXII; MarchApril, 1948.
}
operating in push-pull, i.e., the portion of the bar from the center to one end extends as the portion from the center to the other end contracts. A nylon-monofilament string suspension is used to support the bar at the two nodal planes, the filaments being maintained in tension by coil springs. Adjustable baffles at the ends of the bar are used to reflect ultrasonic racliation and thus reduce damping and change in freçuency caused by changes in air pressure, as the mounting is not evacuated or hermetically sealed. Plated electrodes are applied directly to the surface of the bar on its sides, and are interconnected for second-overtone excitation in the extensional mode. The \(Q\) of this har is approximately 170,000 in the mounting described.


Courtesy General Radio Company.
Fig. 6-Quartz bar for operation at 100 kc in second overtone mode. Note the end baffles to reduce ultrasonic radiation losses, and the string suspension at the two nodes.

Frequency stability of the commercial model bridgestabilized oscillator, with which this bar is supplied in its temperature-controlled oven, reaches a value of approximately \(0.5 \times 10^{-8}\) per day or better, after an aging period of approximately one year. Many of these oscillators demonstrate considerably better stability than this figure. The long-term drift rate of the frequency standard in use at the General Radio Company has been approximately \(5 \times 10^{-7}\) per year since 1945 , an aging rate of \(1.2 \times 10^{-9}\) per day averaged over 10 years.

Extensional-mode bars suitable for stable oscillator use have been made by other crystal manufacturers. Bars of the +5 -degree X-cut, fundamental-mode longi-tudinal-vibration type, which were wire monnted with plated electrodes, have been used in a quartz-crystalcontrolled clock in Switzerland. \({ }^{22}\) These bars, mounted in evacuated glass envelopes, were supplied by Salford Electrical Instruments (British General Electric Company). They gave stabilities of the order of \(0.5 \times 10^{-8}\) per day, or better, when used in a Gouriet-Clapp oscillator circuit with automatic level control.

\section*{GT-Cut Plates}

The GT-cut plate, originated by Mason, \({ }^{23}\) has been developed to a highly advanced state for use in frequency standardization work. \({ }^{13}\) This type of quartz

\footnotetext{
\({ }^{22}\) I'. Chalande, "The realization of a group of piezo-electric timekeepers," La Suisse Horlogere (International Edition in English), La Chaux-de-Fonds, Switzerland, pp. 41-44; October, 1952.
\({ }^{23}\) V. P. Mason, "A new quartz cry-stal plate, designated the G' \(\Gamma\), which produces a very constant frequency over a wide temperature range,"I'roc. IRE, vol. 28, pp. 220-223; May, 1940 .
}
plate can be made to have a temperature coefficient of frequency which is less than \(2 \times 10^{-7}\) per degree \(C^{\circ}\)., over a relatively wide temperature range. For the plates used as frequency standards, the temperature is frequency curve is reasonably flat between 0 degrees and 100 degrees (., , with optimum flatness in the range from ap)proximately 20 degrees to 90 degrees ( \(\because\). Thus, the G'Tcut plate can be made to serve as a stable element at temperatures approximating room temperature, and also at thermostatically controlled oven temperatures.

Early GT-cut plates were mounted on pressure-point contacts. \({ }^{9,13,24}\) It is necessary to leave the edges of the GT-cut plate unsupported because they are vibrating with the greatest amplitude of any point on the crystal. Conseguently, centrally located mounting points are desirable, the theoretical notal point leing at the center of the rectangular plate. Actually, because of couplings to other modes, the plates are not completely at rest at the central point. In addition, the desirability of keeping the attachment points small and flexible requires the use of several support points, which are now generally made in the form of thin wires attached to the surface of the crystal plate near the center, along the center line of the length of the plate.


Courtesy Bell Telephone Laboratorits.
Fig. 7-100 ke GT-cut plates (D168670) in evacuated mountings as used in LORAN timer oscillators.

The use of GT-cut plates in freguency-standard oscillators was given impetus by the LORAN development during World War 11 which required stable oscillators for timing the pulses used in this radio-navigation system. Wire-mounted-silver-plated-electrode GT-cut plates were manufactured in evacuated glass envelopes for use in the LORAN timer oscillators. These crystals were a development of the Bell Telephone Laboratories, and represent an achievement of considerable magnitude in making a crystal unit largely independent of temperature, atmospheric changes, aging effects caused by exposure to the air, and a fair amount of rough handling in shipment. This crystal unit was designated by the number D-168670 (shown in Fig. 7, above).
\({ }^{24}\) C. F. Booth and F. J. M. Laver, "A standard of frequency and its applications," Jour. IEE, vol. 93, part III, pp. 22.3-241 (with discussion); July, 1946.

Further refinement of this type of GT-cut plate has produced excellent results. \({ }^{13}\) The improvements consist of reduction in the diameter of the support wires and their attachment points, improved methods of processing the soldered comections, and careful annealing to relieve strains. Final adjustment to frequency is accomplished by etching the edges. The electrodes are of gold to take advantage of the inherently stable character of this metal in this application. Twenty crystals were constructed for the National Bureau of Standards incorporating these improved design features, and are now in use by the Bureau of Standards at Boulder, Colorado, and at WWV.
The \(Q\) value of the I)-168670 (TT-rut crystals was approximately 140,000 and the frequency drift with time was approximately \(1 \times 10^{-8}\) per day in the LORAN oscillator. The \(Q\) value of the improved design is of the order of magnitude of a million, with some values as high as \(4,000,000\). The daily drift rate of the special Gi'cut crystals in use at the National Bureau of Standards is reported as low as 1 to \(5 \times 10^{-10}\) per day, whereas the drift rate of the earlier design was reported as 1 to 3 parts in \(10^{9}\) per day after one year of aging. \({ }^{33,25,26}\)

The principal advantage of the GT-cut appears to lie in its low temperature coefficient of frequency, and the conseguent ability to provide a stable freguency even in the ablsence of precise temperature control. The \(\mathrm{Na}_{\text {a }}\) tional Bureau of Standards has demonstrated that it is possible to use a crystal resonator buried in the earth as a reasonably accurate frequency reference without further temperature control. \({ }^{27}\) Such a system has the advantage that continuity of power supply is not necessary in order to preserve continuity in measurement of the aging curve of the crystal resonator, and that it is thus possible to use such a crystal as an emergency standard during a power failure.

It has been cletermined that GT-cut plates are sensitive to the amplitude of the driving current within the range of current experienced in the bridge-stalilized oscillator circuits normally used with these plates. \({ }^{25}\) Although some improvement has resulted from redesign of the oscillator bridge networks to balance at lower values of crystal current, the National Bureau of Standards has incorporated into the group of crystals used as frefuency standards several crystals which are used only as reference resonators; i.e., which are not rumning continuously in oscillator circuits but are measured in bridge circuits at low excitation current levels. \({ }^{26}\)

\footnotetext{
\({ }^{25} \mathrm{~J} . \mathrm{M}\). Shaull, "Adjustment of high-precision frequency and time standards," Proc. IRE, vol. 38, pp. 6-15; January, 1950.
\({ }^{28}\) J. M. Shaull and J. H. Shoaf, "I'recision quartz resonator frequency standards," Proc. IRE, vol. 42, pp. 1300-1.306; August, 1954.
\({ }^{27}\) \%. A. Pendleton, "Underearth quartz crystal resonators," Proc. IRE, vol. 41, pp. 1612-1614; November, 1953.
}

\section*{AT-Cut Plates}

The AT-cut quartz crystal plate was developed by Lack, Willard, and Fair in \(1934 .{ }^{28}\) Other investigators, notably I. Koga, also published data on similar low-temperature-coefficient cuts. This type of plate vibrates in the thickness-shear mode and may be made to have a low temperature coefficient of frequency: It is possible to orient the cut angle to produce an inflection point on the frequenc \(y\)-vs-temperature curve, that is, a zero temperature coefficient of frequency, in the range of temperatures normally used in temperature-controlled ovens. Such a crystal cut has obvious applications as a frequency standard.

Early efforts to use the AT-cut plates as standards \({ }^{24}\) were hampered by the difficulty of mounting the plate in such a way as to achieve a mount which would not influence the frequency of the crystal. Low aging drift is almost impossible to attain unless a mount is used which affects the frequency of the crystal to a minimum degree. Booth of the British Post Office used nodal-plane pin-mounted AT-cut plates, operating at 1000 kc , with air-gap) electrodes, in partially evacuated holders (airpressure 3 cm Hg\().{ }^{29}\) These crystals were operated at 50 degrees C. They gave drift rates averaging 2 to \(5 \times 10^{-9}\) per day over the years 1941-1944. In view of the fact that the nodal plane is in the center of the thin edges of the AT-cut plate ( 1.65 mm thick), the difficulty in constructing a stable mounting by this method was considerable.

The most promising recent development in the design of AT-cut plates for frequency-standard use has heen carried out by Warner. \({ }^{30}\) Warner has shown that a circular AT-cut plate with one side plane and the other side ground to spherical contour, operating at 5 mc in the 5th-overtone mode, can be made with a \(Q\) of approximately \(2,500,000\). A photograph of this crystal unit in an evacuated glass envelope is shown in Fig. 8. Warner further reports a 1 me crystal of similar design \({ }^{31}\) with a \(Q\) of \(12 \times 10^{6}\). These remarkably high \(Q\) values are ascribable to the use of the overtone mode and to the spherical contouring, which "mismatches" the zones of the crystal away from the exact center of the convex side of the plate. The zones near the edge of the crystal are thus rendered incapable of resonant vibration at the excitation frequency and are consequently quiescent. The edge of the contoured plate is thus made suitable for the attachment of rugged mounting supports and

\footnotetext{
\({ }^{28}\) F. R. Lack, \(G\). W". Willard, and I. L̇. Fair, "Some improvements in quartz crystal circuit elements," Bell Sys, Tech. Jour., vol. 13, pp. 453-463; July, 1934.
\({ }^{29}\) C. F. Booth, "The application and use of quartz crystals in telecommunications," Jour. IEE, vol. 88, part III, pp. 97-144 (with discussion); June, 1941.
\({ }^{30}\) A. WV. Warner, "Iligh-frequency crystal units for primary frequency standards," Proc. IRE, vol. 40, pp. 1030-1033; September, 1952.
\({ }_{31} A\). W. Warner, "High-frequency crystal units for primary frequency standards," Proc. IRE, vol. 42, p. 1452; September, 1954.
}
connecting leads to the electrodes. The use of a glassenvelope evacuated mounting for this type of crystal plate has resulted in the high \(Q\) value quoted above, and in a low aging rate which is currently being verified at a number of laboratories. Indications are that the aging drift of this type of contoured AT-cut plate in an evacuated mount will be as low as that of any previously designed crystal units.


Fig. 8- -5 mc Al'-cut contoured plate in evacuated glass envelope, operating in 5 th overtone mode.

The advantages of the overtone-mode contoured 5 me-plate for commercially produced equipment are centered in the relatively small size of the quartz blank required, and the ease of getting a satisfactory mounting. Careful processing is still necessary in order to attain low rates of frequency drift with time, but the ruggedness of the crystal unit and its small size have already suggested numerous applications.

Fundamental-mode AT-cut plates are capable of low rates of frequency change with time if properly processed and mounted, and if used in applications, such as high-stability circuits, where the constancy of the crystal can be exploited. Lea has used a fundamentalmode 5 mc plate in experimental oscillators of high stability, \({ }^{32}\) and Sulzer has developed a 1 mc oscillator using a fundamental-mode contoured AT-cut plate. \({ }^{33}\)

\section*{Oscillator Circuits for Frequency Standards}

Resonant devices can be made to oscillate with good frequency stability only if appropriate means are selected for maintaining them in oscillation. Pendulum clocks furnish elegant illustration of this requirement.

\footnotetext{
\({ }^{32}\) N. I.ea, "Quartz resonator servo-a new frequency standard," Marconi Rev., vol. 17. pp. 65-7.3; 3rd Quarter, 19.54.
\({ }^{33}\) "High-stability one-megacycle frequency standard," NBS Tech. News Bull., vol. 38, pp. 162-163; November, 1954.
}

The Shortt clock, representing a highly developed form of the gravity pendulum clock using electrically supplied impulses to maintain oscillation, gives stability approaching that of crystal-controlled clocks. This stability is achieved by a combination of a stable resonator (free-pendulum), and an "oscillator circuit" which supplies a constant amount of power at the same point in every cycle. Similar requirements hold for quartz-crystal-controlled oscillators, each increase in stability of crystal elements calling for improvements in oscillator circuits.

The principal property susceptible to improvement is the stability of the phase shift in the "negative resistance" or amplifier element of the oscillator. There are currently at least three distinct approaches to the oscillator circuit problem, and possibly a great many more as yet not known to the author of this review. The first approach consists of the use of an amplifier with a positive feedback connection to provide regeneration and also frequency control through incorporation of the crystal element in this feedback path, with a negative feedback connection to stabilize amplifier gain and phase characteristics. The second approach comprises the use of the most stable elements in the "optimum" simple oscillator circuit with stabilization of the oscillator active element by appropriate means. The third approach adds to the second approach a servo-operated device for adjusting the circuit elements to maintain the oscillation frequency at a value which gives a constant value of impedance or phase shift in the crystal element.

\section*{Mridge-Stablized Oscillators}

The oscillator circuit which has been most widely used for frequency standard oscillators is the bridge-stabilized circuit originated by Meacham. \({ }^{34}\) In this circuit [Fig. 9(a)], the feedllack voltage which drives the amplifier is the unbalance voltage at the output terminals of a bridge network which includes the crystal with associated adjusting reactances, a resistor with a positive temperature coefficient of resistance, two linear-resistive arms and the necessary coupling circuits. The values of the resistors are so chosen, with respect to the crystal series resistance and the tungsten lamp resistance, that the bridge is unbalanced at low levels of applied signal in such a direction that positive feedback results from the bridge-unbalance output signal. As the amplitude of oscillation builds up, more current flows through the bridge arms, causing the tungsten lamp to increase its resistance and the bridge to approach the balance condition. The ultimate amplitude of oscillation is reached when the bridge unbalance signal becomes small enough so that the transmission loss through the bridge network equals the gain through the amplifier.

The excellence of the bridge-stabilized oscillator circuit stems from two important properties which are the

\footnotetext{
\({ }^{4}\) L. A. Meacham, "The bridge stabilized oscillator," Proc. IRE, vol. 26, pp. 1278-1294; October, 1938.
}
result of the use of the bridge network in the feedback path. The first property is a function of the phase relationship of the input voltage of a bridge with respect to its unbalanced output, or detector output, voltage. Near the balance point of the Meacham bridge, incorporating the crystal resonator as one element, the slope of the phase shift of output voltage vs input voltage is greater than the slope of the phase shift of input voltage vs current through the crystal element alone. This improvement in slope enables design of oscillators in which improvement in stability is accomplished by provision of additional gain to make up for the loss involved in the operation of the bridge network close to the balance point. Improvement in frequency stability generally will result from increase in amplifier gain since the voltage gain goes up as the power of the number of stages, whereas the amplifier phase shift instability generally increases only directly with the number of stages.


Fig. 9-Oscillator circuits for frequency standards.
The second property of the bridge-stabilized oscillator, one which is at once an asset and a liability, is the amplitude stabilization property of the bridge network. The tungsten lamp has been almost universally used as the amplitude stabilizing device in the bridge because of its simplicity, ruggedness, and low drift with time. Some efforts have been made to use elements with negative temperature coefficients of resistance, such as thermistors, but the tungsten lamp is, in general, the accepted element. The amplitude stabilization resulting from the self-balancing bridge feedback retwork is effective, holding its amplitude setting well for long periods. However, the range of levels over which the bridge
network can be made self-balancing, depends on the characteristics of the lamp, and generally higher levels are required than would be desirable for use with some crystal elements. \({ }^{25}\)
The above-described properties of the bridge-stabilized oscillator are related to the general properties of amplifiers with feedback connections. It has been shown \({ }^{35}\) that the performance of the bridge-stabilized crystal oscillator can be analyzed by separating the feedback circuit into a negative feedback path which stabilizes the gain and phase shift of the amplifier and a positive feedback path including the crystal unit, which determines the frequency of oscillation of the system. From this analysis, it appears that it may be profitable to explore further means for the stabilization of the amplifier circuits of oscillators.

Examples of the Meacham bridge-stabilized oscillator are provided loy the LORAN timer oscillator (U. S. Navy, R. F. Oscillator Type \(0-76 / \mathrm{U}\) ), \({ }^{36}\) the General Radio Company commercial frequency standard Type 1100 -A, and the British Post Office Essen-ring oscillator, a photograph of which is shown in Fig. 10.


Courtesy H. M. Postmaster General.
Fig. 10-British Post Office precision frequency standard oscillator, showing oven (center) containing 100 kc Essen ring. This oscillator uses the bridge-stabilized circuit.

Because of unavoidable stray inductance and capacitance, it has been generally found that the bridge-stabilized oscillator circuit is most useful at frequencies of 1 mc or below. Frequency-standard oscillators designed for operation at higher frequencies have, therefore, used the circuits described below.

\section*{Gouriet-Clapp Oscillator}

The Gouriet-Clapp crystal oscillator circuit, shown in Fig. 9(b), has been used for many years in frequency monitors for broadcasting and in other applications

\footnotetext{
\({ }^{35}\) E. J. Post and H. F. Pit, "Alternate ways in the analysis of a feedback oscillator and its application," Proc. IRE, vol. 39, pp. 169-174; February, 1951.
\({ }^{36}\) J. A. Pierce, A. A. McKenzie, and R. H. Woodward, "Loran," McGraw-Hill Book Co., New York, N. Y. ("Model UE-1 Oscillator," pp. 237-240, describes the Type 0-76/U Oscillator): 1948.
}
where stable, simple oscillators are required. (This oscillator circuit is sometimes called a "modified Pierce" or "modified Colpitts" circuit. U. S. Patent No. 2,012,497 was granted to J. K. Clapp for this crystal oscillator circuit in 1935, the series capacitance and inductance being adjusted to series resonance at the crystal seriesresonant frequency. A similar circuit was developed independently by G. G. Gouriet of the B. B. C.) Recent availability of stable high-frequency crystals (See section on AT-Cut Plates, above) has prompted application of the Gouriet-Clapp circuit to frequency-standard oscillators in the megacycles/second range. An analysis (See Appendix) of the Gouriet-Clapp circuit with regard to the variations in frequency caused by changes in various circuit elements shows that an oscillator stability of the order of 1 or 2 parts in \(10^{9}\) should be realizable with this circuit using a crystal \({ }^{30}\) with \(Q=2.6 \times 10^{6}\) Application of automatic-gain-control to this oscillator circuit by controlling the grid bias of the vacuum tube with an amplified delayed-AGC circuit stabilizes the input impedance of the oscillator tube as well as the gain and crystal current.

Application of this circuit to frequency-standard oscillators has been carried out by Felch and Israel, \({ }^{37}\) and in considerably modified form, by Lea (See Servo-Controlled Oscillators, below). The stability achieved has been \(3 \times 10^{-9}\) per day or better, using the 5 mc overtonemode AT-cut plate, \({ }^{30}\) by the former group. A photograph of this 5 mc oscillator unit is shown in Fig. 11.


Courtesy Bell Telephone Laboratorics.
Fig. 11-Photograph of USAF Type 0-269 (XW-1)/UR Oscillator, using 5 mc overtone-mode contoured AT-cut plate (see Fig. 8).

\section*{Servo-Controlled Crystal Oscillators}

All of the oscillator circuits described above have relied on the steep slope of phase-change with frequency in the crystal element to provide corrections for the drifts of phase in the oscillator circuit in order to maintain a constant frequency of oscillation. The bridgestabilized oscillator alone has provided an enhanced phase-change system to assist the phase-vs-frequency

\footnotetext{
\({ }^{37}\) E. P. Felch and J. O. F- racl, "A simple circuit for frequency standards employing overtcue crystals," Proc. IRE, vol. 43, pp. 596-603: May, 1955.
}
slope of the crystal element. An oscillator circuit which provides a somewhat different method of frequency control has been developed by Lea. \({ }^{32}\) A simplified circuit diagram of his servo-controlled oscillator is shown in Fig. 9(c). It should be noted that the servomechanism has been added to an oscillator circuit which, for purposes of illustration, is sinilar to the Couriet-Clapp oscillator of Fig. \({ }^{9}(\mathrm{~b})\). The short-term or cycle-to-cycle phase stability of the oscillator is thus dependent on the \(Q\) of the crystal, which \(Q\) has heen degraded to \(\frac{1}{2}\) of its original value by the addition of \(R_{1}=R\) (crystal series resistance). The phase "noise" or phase instahility of this circuit may thus be twice that of the Gouriet-Clapp circuit using the same crystal unit. However, the longterm stability (for any period longer than the correction time of the servo control) is determined by the ability of the servo system to maintain the oscillator frequency at that value which appears to result in a constant value of impedance in the crystal unit. A bridge circuit comprising the crystal ( \(R, L, C\) ) \(R_{1}, R_{2}, R_{3}\) and ganged modulating reactances \(\pm X\) and \(\mp X\) is provided by adding \(R_{1}=R\) in series with the crystal, and adding \(R_{2}\), \(\pm X, \mp X\) and \(R_{3}\) in parallel with the crystal branch. \(R_{2}\) should be equal to \(R_{3}\), but be large compared with \(R\) (crystal) and \(R_{1}\). A detector, comprising a sensitive AM receiver, is provided with a phase-detector output circuit synchronized with the modulation rate of \(\pm X\) and \(\mp X\). If the frequency applied to the crystal deviates from the frequency of the crystal series resonance, the voltage drop across the crystal arm of the bridge will change both in magnitude and in phase. The modulating reactances, \(\pm X\) and \(\mp X\), heing modulated contimuously at a fairly constant rate, will enable sensing of the direction of phase change of the bridge unbalance voltage (detector output) by scanning back and forth through a small range of reactance unbalance in the morlulating arms, and using a phase-sensitive circuit tuned to the modulation frequency at the output of the detector. The output signal from this detector will then be proportional to the magnitude of the deviation from bridge balance, and will have a phase or sign which indicates the direction of deviation of the applied frequency from the crystal resonant frequency. The detector output signal is then applied to a servo system to readjust the oscillator circuit to reduce the frequency deviation to a minimum. By increasing the gain of the detector circuit, it is possible to reduce the magnitude of the deviation reguired to operate the servo device until the limiting signal-to-noise ratio is reached.

The servo system is thus used to correct for such instalility as may arise in the "negative resistance," that is, in the vacuum tube (or transistor) and associated reactive elements. Instability is thought to arise from such factors as cathode-interface impedance, spacecharge capacitance, changes in tube geometry with age, transit time variation, and perhaps Miller-effect capacitance changes in addition. A delayed-automatic-gaincontrol is used by Lea to stabilize level and grid input
impedance. The correction time of the servo control used is fairly short, a variable capacitor being driven by a motor to effect the adjustment of the circuit reactance. In its present state of development, \({ }^{38}\) the servocontrolled oscillator is stable to better than \(\pm 3 \times 10^{-11}\), and the average frequency to approximately \(\pm 1 \times 10^{-11}\), for periods in excess of 10 seconds, the ultimate drift rate for long periods thus being dependent only on the constancy of the crystal element except for the \(\pm 3 \times\) \(10^{-11}\) error of the circuit. This figure includes changes of tubes, drift of the feedback circuit elements, and supply voltage changes.
Further application of this servo-control principle has produced comparable results using slightly different circuit details. I.ea makes use of a motor-driven variable inductance as a single modulated reactance, dispensing with the second modulated element, and delayed AGC. Sulzer \({ }^{39}\) has used a chopper to commutate small capacitors in the modulated reactance positions. and a limiter to control level. Both systems operate at a modulation rate different from the power frequency in order to avoid "lium" troulles.

\section*{Tuning Forks as Frequency Standards}

Tuning forks have been used as frequency standards. \({ }^{24}\) The advantages of the tuning fork as a clock-driving source derive mainly from the low frequency of oscillation of the fork and the simplified auxiliary apparatus needed to drive the clock. Interest in small, lightweight, frequency standards for airborne applications has kept the tuning fork from being completely eclipsed. Several matnufacturers are producing hermetically-sealed tem-perature-compensated tuning forks operating in the frequency range of 400 to \(1,000 \mathrm{cps}\), and also at \(50-60 \mathrm{cps}\), and at some frequencies above 1 kc . Performance of the best of these tuning-fork units is comparable with that of commercial-grade crystals as far as stability is concerned. For example, one of these forks (at the Riverbank L.aloratories, Geneva, Illinois), operating without temperature control at room temperature in an ampli-tude-stabilized oscillator circuit, has given stability of the order of \(\pm 1 \times 10^{-6}\) for several weeks. The \(Q\) realizable in a tuning fork is limited, and consequently, the instantaneous phase stability of an oscillator circuit using fork control has to he made as high as possible in order to keep the frequency from fluctuating rapidly. With a modern tuning-fork-controlled oscillator, it is possible to realize a portable time and frequency standard with stability adequate for many purposes.

\section*{Microwave Spectral Lines of Atons ayd Molecules as Frequency Standards}

Much has been written of the many proposals for the use of the constant properties of atoms and molecules as standards of frequency. It will not be possible here to

38 Private communication, February 1, 1955.
\({ }^{39}\) P. G. Sulzer (National Bureau of Standards), "High stability bridge-balancing oscillator," paper in preparation.
give a complete description of the status of the various projects in this field of endeavor, but the projects which appear most promising will be covered briefly. Of the many possible spectrum lines in the microwave region, the 3,3 inversion-line of the ammonia molecule \(\left(\mathrm{NH}_{3}\right)\) and the transition \((4,0) 3,0)\) of the cesium atom secm to be nearest to practical application. Both of these spectrum lines have already been used as the bases of frequency calibrating apparatus, \({ }^{40}\) and it is probable that their use will result in the first frequency standards of high precision with complete freedom from long-term aging drift. If present theories of atomic structure are rigorously correct, and there appears to be no reason for suspecting otherwise, then the frequencies representing the spectral lines should never change. We should, therefore, be able to use these invariant frequencies as frequency standards without reference to astronomical phenomena except for initial calibration. It is probable that the first frequency and time standardization using these spectral lines as standards will be done by using them as calibration standards to measure the constancy of the frequency of a conventional frequency standard or of the oscillator of a quartz-crystal-controlled clock, and thus enable accurate establishment of the timekeeping rate of the clock for comparison with astronomical time. As the perfection of atomic frequency standards progresses, it may prove feasible to use them as standard-frequency oscillators for routine laboratory measurements.

The problem then resolves itself into the design of equipment and the application of the information obtained from the equipment. Since the techniques for the two spectrum lines mentioned ahove are so widely different, they will be treated individually.

\section*{Ammonia Spectrum Line Developments}

It is probable that the earliest published reference to the possibility of using microwave spectrum lines as frequency-stabilizing elements is in a paper by lound \({ }^{41}\) published in 1946, although other investigators had perceived the possibility of using the microwave spectral lines as frequency calibration points. Shortly after publication of Pound's paper, a paper by Smith, de Quevedo, Carter and Bennett \({ }^{42}\) confirmed the application of Pound's method of stabilization using the 3,3 line of ammonia \(\left(\mathrm{NH}_{3}\right)\) as the frequency reference. The stabilized oscillator system comprised a reflex klystron, a wave-guide hybrid system, a wave-guide resonator filled with ammonia, and a "dc" feedback connection to the klystron repeller electrode to close the loop. In effect, the ammonia was used as a resonant element to provide a rapid change of phase of a reflected wave in a

\footnotetext{
\({ }^{40} \mathrm{H}\). Lyons, "Spectral lines as frequency standards," Ann. N. Y. Acad. Sci., vol. 55, pp. 831-871; November, 1952.
\({ }^{11}\) R.V. Pound, "Electronic stabilization of microwave oscillators," Rev. Sci. Instr., vol. 17, p. 490; November, 1946.

42 VV. V. Smith, J. L. G. de Quevedo, R. L. Carter, and IV. S. Bennett, "Frequency stabilization of microwave oscillators by spectrum lines," Jour. Appl. Phys., vol. 18, p. 1112; December, 1 ) 47.
}

Pound-type discriminator, the rate of change of phase with frequency being rapid enough to give an effective \(Q\) estimated at 12,500 .

The use of the 3,3 inversion line of ammonia at approximately 23,870 me for this stabilization experiment was the extension of many years of investigation of this particular spectrum line. (leeton and Williams measured this ammonia absorption in 1934, \({ }^{43}\) and a number of papers appeared immediately after World War I \({ }^{44-46}\) giving further information which indicated that the 3,3 line of ammonia was a strong line (high absorption of energy), and that it was not affected in frequency by such variable factors as pressure, temperature, and maynetic field, although the apparent resolution or breadth of the line depends on pressure and temperature.

The most accurate determination of the frequency of the 3,3 inversion line of ammonia appears to be that by Shimoda, \({ }^{47}\) who gives a value of \(23,870,130.97 \pm 0.10 \pm 1\) ke for this line. This figure includes terms of \(\pm 0.10 \mathrm{kc}\) instrumental error, and \(\pm 1 \mathrm{kc}\) uncertainty concerning the absolute value of the reference frequency standard.

\section*{Servo-Controlled Ammonia Oscillators}

A method of oscillator stabilization using a control loop and an ammonia absorption cell as a frequencystable element has been applied to frequency-standard oscillators. Hershberger and Norton \({ }^{48}\) stabilized a klystron oscillator at the ammonia-line frequency, and atso offset from this frefuency by a known intermediate frequency increment. Lyons \({ }^{40,49}\) applied a similar approach to the stabilization of a crystal-controlled fre-quency-standard oscillator, and thus to the control of a clock by reference to the ammonia absorption-line frequency. Fletcher and Cooke stabilized a klystron at the ammonia-line frequency: \({ }^{50}\)

The basic principles of such a servo-controlled oscillator are shown in Fig. 12(a) (next page). An oscillator, with a controllable frequency adjustment, supplies a signal to a modulation system which adds modulation to the signal, which is then referred to the ammoniafilled absorption cell. The signal is modified by passage through the cell, the modification then being detected and evaluated by the circuits of the servo control with
\({ }^{43}\) C. E. Cleeton and N. II. Williams, "Electromagnetic waves of 1.1 cm wavelength and the absorption spectrum of ammonia," Phys. Rev., vol. 45, pp. 234-237; Fehruary 15, 1934.
\({ }^{44}\) C. . I1. "lownes," The ammonia spectrm and line shapes near 1.25 cm wavelength," Phys. Kev., vol. 70, p. 665 ; November, 1946.
\({ }^{45}\) IV. E. Crood, "The imersion spectrum of ammonia," P'hys. Rew., vol. 69, p. 539; May, 1946.
\({ }^{46}\) I3. Bleaney and R. I'. Penrose, "Ammonia spectrum in the 1 cm wavelength region," Nature, vol. 157, p. 3.39; May, 19.46.
\({ }^{47} \mathrm{~K}\). Shimoda "Atomic clocks and frequency" standards on an ammonia line," Jour. Phys. Soc. Japan; l'art III, 1954.
\({ }^{18} \mathrm{WV}\). D. Mershberger and I. E. Norton, "Frequency stabilization with microwave spectral lines," RCA Rev., vol. 9, pp. 38-49; March, 1948 .
\({ }^{49}\) II. Lyons, "The atomic clock, an atomic standard of frequency and time," NBS Tech. News Bull., vol. 33, pp. 17-24; Feliruary, 1949.
\({ }_{60}\) E. W. Fletcher and S. P. Cooke, "The stabilization of a microwave oscillator with an ammonia absorption line reference," Cruft Laboratory, Harvard [niversity, Tech. Report No. 5; 1948, Tech. Report No. 64; 1950.
reference to the modulation system. The servo control then supplies a correction to adjust the freguency of the controlled oscillator to the desired value.
Hershberger and Norton \({ }^{48}\) swept the frequency of a separate klystron local oscillator back and forth across the frequency of the ammonia cell, and detected the pulse resulting from the absorption peak. Simultaneously, they applied this FM signal to a mixer with a signal from the controlled oscillator (a reflex klystron) and amplified the beat-notes near zero-beat (pulses) resulting from this interaction. The phase of the two sets of pulses was compared, and a correction signal obtained which was contrived to move the controlled oscillator pulse to coincidence with that from the ammonia cell. \(\Lambda\) further arrangement was constructed which used an offset, or intermediate-frequency, beat-note from the controlled-oscillator part of the circuit to provide the control pulses. By using a stabilized intermediate frecfuency, a stable controlled frequency resulted.


Fig. 12-Servo-controlled ammonia-absorption-cell oscillator systems.

The atomic clock development program under Lyons at the Bureau of Standards has explored the possibility of stabilizing a crystal-controlled frequency standard against the ammonia absorption cell.40,49 The ammoniastabibized clock uses a system of stabilization similar to the one discussed above [see Fig. 12(b)], but resulting in a lower output frequency which can be used to operate a clock mechanism for comparison with astronomical time measurements. The controlled oscillator feeds a frequency multiplier chain which eventually provides output near the frequency of the ammonia line. At one stage in the multiplier system, a frequency-modulated
signal is added to that from the multiplier stage, and the proper sideband signal selected to provide a harmonic falling on the \(23,870 \mathrm{mc}\) frequency of the ammonia cell. Thus it is possible to provide a frequency-modulated signal derived from the frequency standard, sweeping back and forth in the vicinity of the ammonia frequency, with good short-term stability of the center (or carrier) frequency. The intermediate-frequency frequency-modulated signal (that which was added to the multiplied frequency of the controlled oscillator) is compared with the appropriate harmonic of the controlled frequencystandard oscillator, a signal pulse being produced each time the swept intermediate-frequency signal passes a given reference frequency. The \(\mathrm{F} M\) signal, at \(23,870 \mathrm{mc}\) \(\pm\) modulation, undergoes absorption each time it sweeps past the ammonia absorption frequency in the cell, this absorption being olserved as a negative reference pulse out of the detector at the receiving end of the ammonia absorption cell. The servo circuits are operated by the phase or time difference between these two pulses and are arranged to produce a correction of the crystal oscillator frequency to keep the crystal-controlled frequency standard locked to the ammonia line. The result which is sought is to produce a clock with no net long-term drift in its time-keeping rate, and with good short term stability, or low acceleration. A clock constructed on these principles gave a performance estimated at \(\pm 2 \times 10^{-8}\) for a period of the order of one week. The average freguency or integrated time error was not determined. A photograph of the first ammonia clock built at the National Bureau of Standards (19481949) is shown in Fig. 13 (opposite). The ammonia absorption cell is mounted in a coil around the large clock indicator above the racks.

A different approach to the servo-coatrol system problem was used by Fletcher and Cooke. \({ }^{50}\) Their modulation system used frequency modulation of the controlled oscillator at a relatively high modulation frequency but with a low modulation index. This modulation produced two sidebands which were on either side of the frequency range affected by the ammonia absorption line. An amplitude-modulation detector was used at the output of the absorption cell. If the phase of the carrier \((23,870 \mathrm{mc})\) of the FM oscillator became shifted from its original phase by the action of the ammonia absorption, amplitude modulation resulted upon recombination with the unshifted sidehands. \({ }^{51}\) This amplitude modulation occurred at the modulation frequency of the FM ("intermediate frequency"), the AM signal being recovered by the AM detector at the receiving end of the absorption cell. This intermediate frequency signal was then amplified and compared in phase with the modulating signal, the output of the phase comparison circuit being applied to the repeller electrode of the controlled klystron oscillator as a dc adjustment of the average frequency of oscillation.
\({ }^{51}\) M. G. Crosby, "Communication by phase modulation," Proc. IRE, vol. 27, pp. 126-136; February, 1939.


Fig. 13-Photograph of first ammonia clock bui.t at National Bureau of Standards.

A stabilized oscillator using an ammonia absorption cell modulated by a Stark-effect modulator was constructed by Townes \({ }^{52}\) in 1951.

\section*{Difficulties in the Use of Ammonia Absorption to Stabilize Oscillators}

Certain basic difficulties beset the use of the ammonia absorption technique for the stabilization of oscillators. \({ }^{40,52}\) The principal difficulties of an inherent nature (properties of molecules) are (1) the natural breadth of the spectral line, (2) Doppler-effect brcadening, (3) pressure broadening caused by collisions between molecules, (4) broadening caused by collisiors with the walls of the absorption cell, and (5) saturation effects. The natural line breadth is related to the radiation from the molecule and the amount of thermal radiation falling on it. It is inherent and cannot be changed except by choice of the molecule or atom to be used. The other effects are usually much greater, in any case. Dopplereffect broadening is proportional to the velocity of the gas molecules parallel to the propagation direction of the radio-frequency energy in the cell. It caa be reduced by cooling, but the ammonia freezes \({ }^{48}\) out if cooled far enough to provide much reduction. Pressure broadening results because the energy absorption process is interrupted if a molecule collides with another during the absorption, and has to start again with a new phase possible. This effect can amount to 15 mc bandwidth at a

\footnotetext{
\({ }^{52}\) C. H. Townes, "Atomic clocks and frequency stabilization on microwave spectral lines, " Jour. Appl. Phys., vol. 22, pp. 1365-1372; November, 1951.
}
pressure of 1 mm of Hg , but it diminishes with pressure reduction. Wall collisions cause broadening, but amount to a relatively minor item, of approximately 15 kc bandwidth maximum. Saturation effects result from the possibility of all available molecules having already been excited to the higher energy state. and those which are emitting energy supplying enough quanta to re-excite those which require excitation. The only energy then absorbed at the inversion line frequency is that lost to thermal radiation by collision and radiation damping of the moledules. The power input level to the absorption cell at which saturation effects set in is proportional to the square of the pressure in the cell, and hence is conflicting with pressure broadening effects as far as the selection of a pressure level for the cell is concerned.

In addition to the theoretical limitations set forth in the preceding paragraph, the design and construction of the microwave rf system for an ammonia-absorptioncell stabilized oscillator is complicated by the difficulties of working in the frequency range close to \(23,870 \mathrm{mc}\). The signal-to-noise ratio of the system is affected by the noise in the detector, in particular, and could be improved if the saturation effects did not limit the allowable power input. The design of a cell to hold the ammonia gas is complicated by the necessity for maintaining a low standing-wave ratio over the band of frequencies used by the modulation system chosen. A schematic showing the principal features of one design of ammonia absorption cell is shown in Fig. 14 (next page), and a photograph of an ammonia absorption cell is shown in Fig. 15 (next page).

Further work on the solution of these problems appears unlikely in the future as a result of the success of other approaches to the atomic-frequency-standard problem, although experimental work on absorption cells will undoubtedly continue.

\section*{Ammonia Oscillator}

A completely different arrangement for the use of the 3,3 inversion-line of \(\mathrm{NH}_{3}\) as a frequency standard has been devised by Townes, \({ }^{53}\) of the Department of Physics, Columbia University, New York City. Ammonia gas at room temperature contains molecules in various energy states. Slightly less than half of the molecules are in the upper-energy states, while the remaining molecules are in the lower states. The lower-energy-state molecules have an electric dipole moment which makes it possible to accelerate them in a given direction by putting them in an electric-field gradient. The molecules in the upper states are accelerated in the opposite direction along this same electric-field gradient. Thus a sorting or selecting device may be constructed by setting up an appropriately shaped transverse-electric-field gradient in a region traversed by a stream of ammonia molecules, the lower-energy-state molecules being diverged away

\footnotetext{
\({ }^{4 s}\) J. P. Gordon, H. J. Zeiger, and C. H. Townes, "Molecular microwave oscillator and new hyperime structure in the microwave spectrum of \(\mathrm{NH}_{3}\)," Phys. Rev., vol. 95, pp. 282-284; July 1, 1954.
}


Fig. 14-Diagram of ammonia absorption cell for atomic clock.


Courtesy Annals of New York Academy of Sciences
Fig. 15-Photograph of ammonia absorption cell for atomic clock.
from the axis, and the higher-energy-state molecules converged by the focusing system. By this means, a useful portion of the high-energy molecules in a given stream may be selected and focused at the end of the electrode system.

Such a system is shown schematically in 17ig. 16, with a resonant cavity to receive the focused high-energy molecules through a waveguide-below-cutoff entrance port. This device operates to produce oscillations at the inversion-line frequency of the ammonia by the following mechanism: the high-energy-state molecules which enter the resonant cavity are acted upon by any radiofrequency fields present in the cavity, and also thosen


Fig. 16-Ammonia oscillator (Townes).
emission of energy. Some of the molecules in the cavity undergo transition to the lower state by emission of a quantum of energy at \(23,870 \mathrm{mc}\). Whe: the rf field at this frequency builds up to a sufficient value, the transitions are stimulated and the molecules then give up their quanta in an ordered, coherent manner, thus providing a source of power at \(23,870 \mathrm{mc}\). The magnitucle of the power available is adequate to supply the losses in the radio-frequency circuit, and to provide an additional small amount of power for measurement purposes (estimated \(10^{-8}\) to \(10^{-9}\) watt).

The general class of devices of this sort has been designated MASER, from the initials of the description " \(m\) icrowave amplifier by stimulation of emitted radiation." In the case discussed above, the gain of the amplifier is greater than the losses in the system, and hence an oscillator is the result.

The exact frequency at which the oscillations are produced depends on several factors, the two most significant ones being the \(Q\) of the cavity and the tuning of thereavity relative to the inversion-line frequency. In


Fig. 17-Cesium atomic-bean frequency-standard apparatus.
the cavity produced a "pulling" effect of approximately. \(\pm 2,000\) cycles. At the present time, the best method of estimating the correct center freguency of the 3,3 inversion line of ammonia appears to be setting to the midpoint of the pulling range. Other methods may be devised with better reproducibility of setting, such as the use of the frequency at which oscillations are just observable when the \(Q\) of the system (cavity plus load) is reduced to the point where self-oscillations are barely possible.

Two of these oscillators are reported to have been operated simultaneously, beating one against the other in a receiver tuned to their frequency. The oscillators were detuned to produce a \(50-\mathrm{cps}\) beat note, and the instability was observed to be less than \(\pm 0.1 \mathrm{cps}\). Over a period of an hour, the average variation in the beat-note was less than \(\pm 2.5 \mathrm{cps}\) and the peak deviation was less than 5 cps .

It is estimated that a fully engineered version of this type of oscillator may reach a long-term stability of \(\pm 1 \times 10^{-12}\). The absolute accuracy of the oscillation frequency cannot now be specified, but it is apparent that the oscillator may be set by simple methods to within approximately \(\pm 20 \mathrm{cps}\) of the correct frequency, or \(\pm 1 \times 10^{-9}\), and that improvements in setting techniques will improve this figure.

\section*{Cesium Atomic-Beam Frequency Standard \({ }^{40,54,55}\)}

Another atomic spectrum line which may be used for frequency standardization is the line at \(9,192.63197+\mathrm{mc}\) which is observed in cesium of atomic weight 133 by atomic-beam techniques. The atomic or molecular beam apparatus for measuring nuclear magnetic moments by resonant absorption was developed by Rabi and coworkers at Columbia University. \({ }^{56}\) The original labo-
\({ }^{54}\) J. R. Zacharias and J. G. Yates, "VIII, Atomic Beam Research; A Cesium Clock," Quarterly Progress Report, Research I, aboratory of Electronics, Mass. Inst. Tech., Cambridge, Mass., pp. 30-34; October 15, 1954.
\({ }^{65}\) N.F.Ramsey, "Nuclear Moments," John Wiley and Sons, Inc., New York, N. Y., ch. 3, sec. D, "Molecular Beam Resonance Methods," pp. 37-52 (An extensive bibliography is given on this general type of molecular beam apparatus); 1953 .
\({ }^{56}\) I. I. Rabi, S. Millman, P. Ǩusch, and J. R. Zacharias, "The molecular beam resonance method for measuring nuclear magnetic moments," Phys. Rev., vol. 55, pp. 526-535; March 15. 1939.
ratory equipment gave a minimum indication upon the absorption of a quantum of any frequency, whereas the present models give a maximum indication upon the absorption of a quantum at the desired frequency only. The energy level difference corresponding to this frequency in the cesium atom is associated with the spin vector of the valence electron and its relation to the nuclear magnetic moment of the atom, the two energy levels corresponding to the case of the electron spin vector being aligned with and in the same direction as the nuclear magnetic moment, and the case in which the spin vector is directly opposed to that of the nucleus. When an atom of cesium is acted upon by a magnetic field of exactly the correct frequency, the internal structure of the atom can absorb a quantum of energy corresponding to the transition described above. The external evidence of this change in energy level is provided by a change in the magnetic moment of the atom. The atomic-beam apparatus shown in Fig. 17 is designed to enable detection of the changed magnetic moment of the atoms, and hence to determine the correctness of the frequency of the exciting field in the cavities. The width of the resonance curve of the absorption line is inversely proportional to the time the atom spends in the exciting field, the time in this case, using the two-cavity excitation method, being the time taken to traverse the path from the entrance of the first cavity to the exit from the second cavity.

The cesium-beam apparatus shown in the diagram (Fig. 17) is typical of current designs. A stream or beam of cesium atoms is emitted by the oven through a nozzle which provides a ribbon-shaped beam of approximately 0.02 -inch thickness, the emission of cesium being approximately \(10^{-6}\) grams per day. The atoms pass through the inhomogeneous magnetic field between the polepieces of the \(A\) magnet. Those atoms with the appropriate dipole moment are deflected by the magnetic field gradient of the \(A\) magnet as indicated in the diagram, and are turned back toward the axis of the apparatus. The cesium atoms then traverse the first rf cavity in which they are exposed to a magnetic field at \(9,192+\mathrm{mc}\) which can produce the energy level change desired in the atoms. The atoms then drift through the
distance between the cavities ( 50 to 100 cm ) and then through the second rf cavity. The radio-frequency magnetic field in the cavities is set to the same phase by careful adjustment and is checked by means of a probe inserted in the phasing waveguide comecting the two cavities. The net effect of the use of two separate inphase cavities is similar to the effect obtained by using a long cavity with zero phase-shift between the ends, with the exception that, at frequencies slightly separated from the center of the resonance curve, an interference pattern occurs which shows up as a large amplitude ripple in the main absorption curve. This method of excitation, originated by Ramsey, \({ }^{57}\) provides a sharper peak at the center of the resonance curve than is provided by the use of a single excitation field, reducing as it does the Doppler effect to a very small value. The atoms which have alsorbed (or emitted) a quantum in the space between the magnets have then changed their magnetic dipole moment and are deflected in the opposite direction by the magnetic field gradient in the \(B\) magnet, while those atoms which have not "flopped" are deflected a second time, as before, and are not refocused on the detection device. The detection device comprises a surface ionizer, of the hot wire type, which is hit by the neutral atoms, and ionizes them. The cesium ions thus formed are then accelerated and focused by the appropriate electrodes and injected into the secondary-emission electron multiplier. The output current of the electron multiplier collector electrode is thus a measure of the number of atoms making the transition, and hence of the resonance curve of the transition.


Courtesy National Bureau of Standards.
Fig. 18-The National Bureau of Standards cesium atomicbeam equipment.

Fig. 18 shows a photograph of the atomic-beam portion of the cesium-beam frequency-standard apparatus
\({ }^{57}\) N. F. Ramsey, "A molecular beam resonance method with separate oscillating fields," Phys. Rev., vol. 78, pp. 695-699; June 15, 1950.
constructed at the National Bureau of Standards. \({ }^{40}\) The path length between the rf cavities is 50 cm . The effective \(Q\) obtained was 30 million. The atomic beam was horizontal in this apparatus. The excitation for the rf system is supplied through the waveguide entering the top of the container. Control of the ambient magnetic field affecting the equipment is provided by the large coils surrounding the vacuum envelope. The crystal-controlled excitation system is not shown in this photograph.

Current practice makes use of a small amount of frequency modulation of the exciting oscillator and appropriate phase-sensitive circuits to control the average frequency of the exciting oscillator. Hence the cesiumbeam apparatus is a form of servo-controlled oscillator with a highly specialized form of absorption cell in which the Doppler effect is very small, collision broadening is absent, and which uses a very sensitive, lownoise, detection circuit not heavily limited by saturation or detector thermal noise level.

The excitation oscillator used in such a system must be adequately stable in order to avoid spurious effects, and the auxiliary equipment associated with the atomicbeam apparatus requires careful design in order to provide the best stability and accuracy for the over-all fre-quency-standard apparatus. The excitation system used at the Bureau of Standards is crystal-controlled at a relatively low frequency and uses a multiplier chain to reach the operating frequency of the cesium beam. Another suitable oscillator system has been constructed at M.I.T., using a Western Electric Type \(416-\mathrm{B}\) microwave triode working at approximately \(3,064 \mathrm{mc}\) and tripling with crystal diodes.

The cesium-beam apparatus which has been run at M.I.T. is reported to have a stability of \(\pm 1 \times 10^{-9}\) for short periods, with the mean frequency showing less drift than this value. Refinements in this apparatus are expected to improve the over-all stability. A newer projected clesign is also being undertaken in an effort to improve the over-all performance by several orders of magnitude.

A commercial model of the cesium-beam atomic frequency standard is now being designed (by the National Company, Malden, Massachusetts) and should be available shortly.

\section*{Further Atomic Frequency Standards}

Although the spectrum lines of atoms and molecules in the microwave frequency range are almost limitless in number, only a few of these spectrum lines offer attractions comparable with those of the lines described above. Dicke is carrying out work at Princeton which may result in the use of a line of the sodium spectrum as a reference. Some frequency calibration measurements on oxygen absorption lines are being carried out at the National Bureau of Standards. However, at the

TABLE I
Principal Characteristics of Standard-Frequency and Time-Signal Stations
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Stations & Hawaii & Johannesburg \({ }^{\text {b }}\) & Rugby & Tokyo & Torino & Uccle \({ }^{22}\) & Washington \\
\hline Call-sign & WWVH & ZUO & MSF & JJY & II3F & - & WWV \\
\hline Service \({ }^{\text {Crrier }}\) Power (t-W) & Experim'1 & Experim'I & Experim'1 & Experim'l & Experim'1 & Experim'l & Regular \\
\hline \begin{tabular}{l}
Carrier Power (kW) \\
Type of antenna
\end{tabular} & \[
\stackrel{2}{2}^{2^{1}}
\] & \[
\begin{gathered}
0.1 \\
\text { Inverted }
\end{gathered}
\] & \begin{tabular}{l}
0.5 \\
Vertical
\end{tabular} &  & 0.3
Horizolal & 0.02 & \(10^{1}\) \\
\hline & dipole &  & lertical dipole & Vertical dipole & Horizontal
dipole \({ }^{18}\) & & Vertical dipole \\
\hline Number of simultaneous transmissions & 3 & 1 & 3 & 1 & 1 & 1 & \({ }_{6}\) \\
\hline Number of frequencies used & 3 & 1 & 3 & 3 & 1 & 1 & 6 \\
\hline Transmission Days per week Hours per day & \(\begin{array}{r}7 \\ \hline\end{array}\) & 24 \({ }^{6}\) & 7 \({ }^{4}\) & 7-212 & \({ }_{6}^{119}\) & 2 & 7 \\
\hline Standard frequencies used & & 246 & \(24^{\circ}\) & 24 & \(6{ }^{20}\) & 22 & 24 \\
\hline \begin{tabular}{l}
Carriers (mc) \\
Modulations (cs)
\end{tabular} & \(5,10,15\)
\(1,240,600\) & 5
17 & 2.5, 5, \(10^{10}\)
\(1,21,000\) &  & \(1,{ }^{2} 440,1,000\) & 2.5
None & \(\stackrel{\text { all }}{1.2} 440\) ( 600 \\
\hline Duration of tone modulation (minutes) & \[
\begin{gathered}
5^{2} \text { in every } \\
5^{3}
\end{gathered}
\] & 17 & \[
\begin{gathered}
1,21,000 \\
5 \text { in every } \\
15
\end{gathered}
\] & \[
\begin{gathered}
1,171,000 \\
9 \text { in every } \\
20
\end{gathered}
\] & \[
\begin{gathered}
1,2440,1,000 \\
5 \text { in every } \\
10^{21}
\end{gathered}
\] & & \[
\begin{gathered}
1,{ }^{2} 4^{440,} 600 \\
\text { in every }_{5} \\
5^{3}
\end{gathered}
\] \\
\hline Accuracy of frequencies \(\left(10^{-8}\right)\) & \(\pm 2\) & \(\pm 2^{8}\) & \(\pm 2\) & \(\pm 2\) & \(\pm 2\) & \(\pm 1\) & \(\pm 2\) \\
\hline Max. oscillator drift ( \(10^{-8}\) ) per month & +2 & +4 & +0.5 & +1 & +4 & - & +1 \\
\hline Max. value of steps of frequency adjustment ( \(10^{-8}\) ) & 1 & 2 & 2 & 2 & 2 & - & 1 \\
\hline Duration of time signals in minutes & continuous & continuous & \[
5 \text { in every }
\] & continuous & 5 in every & None & continuous \\
\hline Accuracy of time intervals & \[
\begin{aligned}
& \pm 2 \times 10^{-8} \\
& \pm 1 \mu \mathrm{~s}
\end{aligned}
\] & \[
\begin{aligned}
& \pm 2 \times 10^{-8} \\
& \pm 10 \mu \mathrm{~s}
\end{aligned}
\] & \[
\begin{aligned}
& \pm 2 \times 10^{-8} \\
& \pm 1 \mu \mathrm{~s}
\end{aligned}
\] & \[
\begin{aligned}
& \pm 2 \times 10^{-8} \\
& \pm 1 \mu \mathrm{~S}
\end{aligned}
\] & \[
\begin{aligned}
& \pm 2 \times 10^{-8} \\
& \pm 1 \mu \mathrm{~s}
\end{aligned}
\] & - & \(\pm 2 \times 10^{-8}\)
\(\pm 1 \mu \mathrm{~S}\) \\
\hline Method of adjusting time signals & Steering \({ }^{4}\) & Steering \({ }^{4}\) & By steps of
\(50 \mathrm{~ms}^{2}\) & Adjusted to mean of time signals & \({ }_{\text {Steering }}{ }^{4}\) & - & \({ }_{\text {Steering }}{ }^{4}\) \\
\hline
\end{tabular}

\footnotetext{
\({ }^{1}\) Maximum values, reduced power is used on certain frequencies and on certain days, \(\quad{ }^{2} 5\) cycles of \(1,000 \mathrm{cps}\) modulation pulses, \({ }^{3} 440\) and 600 cps alternately, \({ }^{4}\) No phase adjustment to the signals themselves, \({ }^{5}\) Transmission by the Union Observatory (Union of South Africa), \({ }^{6}\) Interruptions for short periods, \({ }^{7} 100\) cycles of \(1,000 \mathrm{cps}\) modulation pulses, \({ }^{8}\) In relation to WIVV, \({ }^{9}\) Interruption from the \({ }_{13}\) th to the 20th minutes of each hour, \({ }^{10}\) Transmission on 60 ks also, \({ }^{11}\) The 1 st of the month, if necessary, \({ }^{12}\) See carrier frequencies, \({ }^{13}\) Froni 0700 to 2300 U.T., \({ }^{14}\) Mondays, \({ }^{15}\) Wednesdays, \({ }^{16}\) Transmissions on 4 and 8 mc too, \({ }_{17}\) Interruptions during 20 ms , \({ }^{18}\) Maximum radiation: North-East and South-West, \({ }_{22}\) Tuesdays, \({ }^{20}\) From 0800 to 1100 and from 1300 to 1600 U.T., 21440 and 100 cps alternately, \({ }^{22}\) Transmission by the Belgian Royal Observatory.
}
present time it seems safe to assume that the spectrum lines discussed above will be the first for which practical application will be found as frequency standards.

\section*{Standard Frequency Broadcasts}

Standardized radio frequencies are now broadcast by a number of agencies in various nations,,\(^{57,58}\) and usually include time signals. Table I, above, provided by the International Radio Consultative Committee, through the courtesy of B. Decaux, International Radio Consultative Committee Study Group VII, gives the principal characteristics of standard-frequency and timesignal stations. This table is correct as of August, 1954.

\section*{Changes in WWV Transmissions \({ }^{59}\)}

The presently used method of adjustment of the frequency of WWV is a slight modification of the method described in a previous reference, \({ }^{25}\) namely, that the frequency of the standard-frequency oscillator is steered to keep Universal Time as determined by the

\footnotetext{
\({ }^{58} \mathrm{H} . \mathrm{B}\). Law, "Standard frequency transmission equipment at Rugby radio station," Proc. IEE, vol. 102, part 3, pp. 166-173; March, 1955.
\({ }^{59}\) U. S. Bureau of Standards I etter Circular LC 1009, and Supplement; December 1, 1954.
}
U. S. Naval Observatory, which advises WWV on regulation of the oscillator. The slight modification is that the frequency is readjusted by no more than \(1 \times 10^{-9}\) parts per day. The frequency of WWV is measured by the National Bureau of Standards at Boulder, Colorado, and the correction data are supplied for the adjustment of the transmitter. Tables of corrections to the broadcast time signals are furnished, as previously, by the Time Service, U. S. Naval Observatory.
The transmitters at WWV are using single-sideband transmission of tone modulation on some of the carrier frequencies. The carrier is radiated continuously by one transmitter unit, the sideband giving the tone modulation being generated from the same frequency-standard oscillator by appropriate frequency dividers, modulators, and filters, and then radiated through a separate antenna.

\section*{Precision Frequency Measuring Equipment}

Extension of the frequency range and accuracy of precision frequency measuring equipment has, of necessity, been carried out to keep pace with the microwave measurement field and the improved stable oscillators described above.
l'recision Standard-Frequency Cadibrators
As was stated in the section of this paper devoted to time stanclards, the exact calibration of a quart\%-crystalcontrolled clock in terms of time is the only method now available for establishing an accurate frequency calibration of the oscillator driving the clock. The accuracy of a frequency measurement carried out by comparison with astronomical time measurements has been limited in the past by the errors in the measurements of time, by the fluctuations in the rate of rotation of the earth itself, and by the fluctuations in the rate of the clock driven by the crystal-controlled oscillator. \({ }^{5,7,17,25}\) Clock stability having now been improved by a significant amount, it is expected that the new methods of astronomical observation (see l)ual-Rate Moon Position Camera, above) and improvements on the standard methods of observation (improved photographic zenith tube) will result in better data on the relative variations of the variable factors.

In order to provide the high-stability clocks described above, it has been found essential to maintain several quartz-crystal clocks in a frequency-standard installation, and to intercompare these clocks to establish their performance as to relative rate and acceleration, i.e., their rates relative to each other. Current practice for such intercomparison in the United States appears to favor the use of one frequency-standard oscillator slightly off-set from the correct standard frepuency to produce beat-motes with the other correctly adjusted, standard-freguency oscillators. Such a system then permits measuring and recording of the relative frequencies of the various oscillators by measuring and recording the beat-note frequency. The precision of measurement of such a system may then be increased by multiplying the frequencies of the oscillators to be compared, and using the beat-note measuring equipment as before . \(^{9,25,60}\) Beat frequency measuring equipment has been constructed using digital electronic counters to measure the duration of a beat cycle between two standard oscillators, and to record this duration as a voltage produced by a suitable resistance-bridge circuit. \({ }^{61,62}\)

Other methods of measurement involving comparison of frequencies have been devised. One system makes use of a frequency-multiplier stage multiplying the frequency, \(f_{1}\), of the oscillator to be measured, by 10 , and of a similar multiplier stage for multiplying the frequency of the reference standard, \(f_{2}\), by 9 . The two signals, \(10 f_{1}\) and \(9 f_{2}\), are then beat together, the beat-note being at approximately the frequency of \(f_{1}\) or \(f_{2}\) but containing 10 times the error of \(f_{1}\) and 9 times the error of \(f_{2}\). This process is then repeated except that the original \(9 f_{2}\) signal is used to heterodyne the 10 th harmonic of the first beat note. By continuing this process on to the desired point, and subtracting out the original \(f_{2}\)
\({ }^{50}\) J. M. Shaull, "High precision automatic frequency comparator and recorder," Tele-Tech, vol. 14, pp. 58 ff .; January, 1955.
\({ }^{61}\) J. M. Shaull, "Frequency multipliers and converters for measurement and control," Tele-Tech, vol. 14, pp. 86 ff.; April, 1955.
\(62 \mathrm{~J} . \mathrm{Mc} \backslash\). Steele, "The standard frequency monitor at the national physical laboratory," Proc. IEE, vol. 102, part 3, pp. 155-165 (with discussion); March, 1955.
frequency in the final beating process, the error frequency can be multiplied sufficiently to increase the sensitivity of indication of the frequency change to the required degree. Recording may then be accomplished by utilizing commercially-available recording-type frequency meters. \({ }^{26}\)

An interesting variation on these methods makes use of an off-set reference frequency produced by means of a rotary phase-shifter capable of continuous rotation. This phase-shifter is driven at a constant rate by a synchronous-motor-drive operated by the frequency standard, the input frequency from the reference standard thus being shifted by 1 cycle per second for each revolution-per-second of the 360 degree phase shifter. The unknown frequency is then heterodyned by this shifted standard frequency, which has heen multiplied to the appropriate value, and the resulting beat note recorded as above. \({ }^{62}\)

Although the methods of frequency measurement described above are those most recently described, spark chronographs and other electric time recorters are still widely used, and integrating phase meters, similar to the polyphase modulator device described by Marrison, \({ }^{9}\) are sometimes used for comparing the relative frequencies of frequency standard oscillators.

\section*{Microwaye Frequency Measuring Equipaent}

Accurate measurements of frequencies in the microwave range require apparatus for the generation of standard frequencies and for comparison of these frequencies with the unknown frequencies to be neasured, with appropriate interpolating equipment to provide accurate measurement over a continuous range of frequencies. Apparatus for precision frequency measurement in the microwave region gene-ally includes (1) frequency multipliers or harmonic generators to produce harmonics of known standard frequencies, and (2) a receiver or detector for mixing the unknown signal with the standard frequency in order to profluce a beat frequency, which is then measured by (3) an interpolation system. \({ }^{18.63-65}\) Application of frequency-scanning or spectrum-analyzer techniques to the detector unit has been used to improve ease of operation. Digital electronic counters have been applied to the problem of measuring the beat-note for interpolation purposes.

The most effective way presently available for generating microwave harmonics of standard frequencies appears to be by means of the use of crystal diodes as harmonic generators. \({ }^{6-66}\) 'The driving power for a crystal-diode harmonic generator is isually furnished bya conventional negative-grid vacuum-tube frequencymultiplier chain, \({ }^{61}\) although klystrons are used at the extreme end of the range. \({ }^{65}\) Application of crystal-diode
\({ }^{63}\) R. G. 'l'alpey and Harold Goldberg, "A microwave frequency standard," Proc. IRE, vol. 35, pp. 965-969; September, 1947.
\({ }^{64}\) C. G. Montgomery, Ed., "Technique of Microwave Measurements," McGraw-Hill Book Co., New York. N. Y., pp. 343-375; 1947.
\({ }^{65} \mathrm{~L}\). J. Rueger and \(\lambda\). E. Wilson, "The inicrowave frequency standard," Radio-Electronic Engrg, pp. 5-ff.; March, 1953.
\({ }^{6} \mathrm{~F}\). D. Lewis, "Harmonic generation in the \(\mathrm{T}-\mathrm{H}-\mathrm{F}\) region by means of germanium crystal diodes," Gen. Rad. Experimenter, vol. 26, pp. 6-8; July, 1951.
harmonic generators has produced some relatively simple calibrating equipment covering frequencies up to \(10,000 \mathrm{mc}\). (Model 100, Presto Recording Corp., P'aramus, New Jersey).

The use of locked-oscillators in frequency-multiplier systems has been extended to the microwave range, one piece of apparatus of this type designed specifically for microwave measurement purposes now commercially available (Model FM-4, Gertsch Products Inc., Los Angeles, California).

\section*{Frequency I)Ividers}

Although many frequency measurement systems require frequency multipliers to reach the microwave region, it is also possible to use a microwave oscillator as a source and to divide its frequency for the operation of auxiliary measuring equipment, such as interpolation systems, and clock mechanisms. The regen-crative-modulator divider circuit \({ }^{67}\) appears to be well suited to use with presently available microwave components. \({ }^{68}\) Frequency divider systems operating at lower frequencies can have a wider choice of circuits, regenerative-modulator dividers, \({ }^{9}\) multivibrators, \({ }^{20}\) and counter-type dividers \({ }^{69-71}\) being widely used.

\section*{Decade Frequency Generators}

Standard-frequency oscillators of extremely high stability are usually constructed in such a manner that their frequency of operation can be adjusted by relatively small amounts only. \({ }^{36}\) I lence for measurement purposes, it is desirable to be able to generate frequencies controlled by the reference standard oscillator in order to provide known standard frequencies in the region in which it is desired to make measurements.

The easiest solution to this problem requires only a harmonic generator, or distorter, which can be tuned to the harmonic desired. This solution is usually inadequate for general measurement purposes since only a narrow range is covered at any one harmonic, and the exact calibration of this range must be established during the measurement. Furthermore, even though the range covered is narrow, the harmonics of lower-frequency stages of the system frequently interfere to cause ambignity and difficulty in identification of the harmonic actually desired.

If the entire range of harmonics of a standard frequency is available simultaneously, it is usually possible to count the intervals from a known reference point. This system is widely used in commercial frequencystandard apparatus.
\({ }^{67}\) R. I. Miller, "Fractional frequency generation utilizing regenerative modulation," Proc. IRE, vol. 27, pp. 446-457; July, 1939.
\({ }^{68}\) I1. Lyons, "Microwave frequency dividers," Jour. Appl. Phys., vol. 21, pp. 59-60; January, 1950.

B9 R. W. Frank, "A computer-type decade frequency synthesizer," 1954 IRE: Contration Record, Part 10, "Instrumentation and Industrial Electronics," p. 46; 1954.
\({ }_{70}\) R. W. Stuart, "A high speed digital freq̧uency divider of arbitrary scale," 1954 IRE CONvention Record, l'art 10, "Instrumentation and Industrial Electronics," p. 52; 195t.
\({ }_{71}\) G. K. Jensen and J. E. McGeogh, "Four-decade frequency divider," Electronics, vol. 28, pp. 154-155; April, 1955.

As the maximum frequency range of measurements has increased, techmiques for improving the facility of identification of a given harmonic frequency have been developed. These techniques have taken the form of tuned selective circuits of narrow bandwidth for selecting an individual harmonic, \({ }^{72}\) and of relatively complex systems of harmonic generation, harmonic selection, mixing, and filtering to generate a given frequency relatively free from spurious components. Commercial models of this type of standardized-decade-frequency generator \({ }^{73}\) have been produced having good rejection of spurious beat notes and unwanted modulation components.


Fig. 19-Case I.

\section*{Arrendix}

Case I (Fig. 19)
\(C, C=\) Shunt capacitive elements (assumed equal).
\(L=\) Series inductance to bring crystal to series resonance when \(e_{2}\) is 180 degrees out of phase with \(i\).
\(X=\) Crystal.
\(\delta C, \delta C=\) Output and input capacitances of driving and driven tubes (assumed equal).
\(i=\operatorname{Input}\) current.
\(e_{1}=\) Input voltage developed.
\(e_{2}=\) Output voltage.
Crystal Parameters. \({ }^{74}\)
\(Q_{x}=2.6 \times 10^{6}\),
\(R_{x}=100 \Omega\),
\(L_{x}=8.27 h\),
\(C_{x}=0.000122 \mu \mu\) i,
\(f=5 \mathrm{mc}\).
Circuit Analysis (Assuming crystal operating at series resonance). Let:
\[
X_{L}=\omega L=2 X_{c}
\]
where \(X_{L}\) is reactance of \(L, X_{2}\) is reactance of one capacitance, \(C\). The resistance of \(L\) is assumed small enough to be neglected.
\[
B=\omega(C+\delta C)
\]

Then
\[
\begin{aligned}
& e_{1}=\frac{i}{i B} \frac{\left(1-B X_{L}\right)+j B R_{x}}{\left(2-B X_{L}\right)+j B R_{x}} \\
& e_{2}=\frac{i}{B} \frac{1}{-B R_{x}+j\left(2-B X_{L}\right)}
\end{aligned}
\]

\footnotetext{
\({ }^{72}\) J. II. Shaull, "Wide range decade frequency generator," TeleTech, vol. 9, p. 36; November, 1950.
\({ }_{73}\) The Plessey Co., Ltd., Ilford (Essex), Eng.; A. Schomandl, Munich, Germany; Rohde and Schwarz, Munich, Germany; Telefunken, A. G., Berlin, Germany.
\({ }^{74}\) A. W. Warner, "High-frequency" crystal units for primary frequency standards," Proc. IRE, vol. 40, pp. 10.30-1033; Sept. 1952.
}

For \(e_{2} 180\) degrees out of phase with \(i\)
\[
\begin{aligned}
B & =\frac{2}{X_{L}} \\
\frac{e_{1}}{i} & =Z=\frac{X_{L}^{2}}{4 R_{x}}-j \frac{X_{L}}{2} \\
\frac{e_{2}}{i} & =-\frac{X_{L}^{2}}{4 R_{x}} .
\end{aligned}
\]

\section*{Numerical Values.}

Let
\[
\frac{e_{2}}{i}=-\frac{X_{L}{ }^{2}}{4 R_{x}}=-\frac{100}{3} .
\]
(This value of transfer impedance is also satisfactory for Case II, thus enabling direct comparison.) Then:
\[
\begin{aligned}
X_{L} & =115.5 \Omega \\
L & =3.68 \mu \mathrm{~h}
\end{aligned}
\]

If the \(Q\) of \(L\) is 230 , which is reasonable for a coil of this inductance at this frequency, then
\[
\begin{gathered}
X_{L} / R_{L}=230=115.5 / R_{L} \\
R_{L}=\frac{115.5}{230} \approx 0.5 \Omega,
\end{gathered}
\]
which is negligible, as assumed above.
\[
C+\delta C=552 \mu \mu \mathrm{f}
\]

Assume 0.1 per cent change in \(L\) :
\[
X_{L}=115.5 \times 10^{-3}=0.1155 \Omega .
\]

This change in reactance must be balanced by a change in crystal reactance to correct phase back to original value. This requires a small change of frequency, \(\Delta f\). For small changes of frequency close to the series resonance frequency, the crystal reactance
\[
X_{q}=X_{0}\left(\frac{\omega}{\omega_{0}}-\frac{\omega_{0}}{\omega}\right)
\]
where \(X_{0}\) is reactance of crystal inductance, \(X_{L}\), at series-resonance frequency; \(X_{0}=2\left(5 \times 10^{6}\right) \times 8.27=2.6\) \(\times 10^{6} \Omega\) :
\[
\begin{gathered}
X_{q}=X_{0}\left(\frac{f+\Delta f}{f}-\frac{f}{f+\Delta f}\right) \\
X_{0} \frac{(f+\Delta f)^{2}-f^{2}}{f(f+\Delta f)} \cong X_{0} \frac{2 f \Delta f+\Delta f^{2}}{f(f+\Delta f)} .
\end{gathered}
\]

Neglecting higher order terms,
\[
\begin{aligned}
X_{q} & =X_{0} \frac{2 \Delta f}{f} \\
\frac{X_{q}}{2 X_{0}} & =\frac{\Delta f}{f}
\end{aligned}
\]
\(X_{q}\) then must equal \(\Delta X_{L}\);
\[
\frac{\Delta f}{f}=\frac{\Delta X_{L}}{2 X_{0}}=\frac{0.1155}{2.6 \times 10^{6}}=2 \times 10^{-10} .
\]

Assume 0.1 per cent change in each shunt capacitance, \(C\) :
\[
\frac{\Delta f}{f}=2 \times 10^{-10}
\]
(This is equivalent to \(0.5 \mu \mu \mathrm{f}\) in each tube capacitance.) Assume \(1 \mu \mu f\) change in one tube capacitance:
\[
\frac{\Delta f}{f}=2 \times 10^{-10} .
\]


Fig. 20-Case II.
Case II (Fig. 20)
\(R, R=\) Shunt resistive elements, \(X=\) crystal, \(\delta C\), \(\delta C=\) output and input capacitances of driving and driven tubes, assumed equal; \(\delta L, \delta L=\) compensating inductances, \(i=\) input current, \(e_{1}=\) input voltage developed, and \(e_{2}=\) output voltage.

Crystal Parameters. Same as Case I.
Circuit Analysis. \(e_{2}\) will be in phase with \(i\) when crystal is at series resonance if the shunt impedances are both resistive. This occurs when
\[
\begin{aligned}
L & =R^{2} \delta C \\
\frac{e_{1}}{i} & =\frac{R\left(R+R_{x}\right)}{2 R+R_{x}} \\
\frac{e_{2}}{i} & =\frac{R^{2}}{2 R+R_{x}}
\end{aligned}
\]

Numerical Values. Let:
\[
\frac{e_{2}}{i}=\frac{R^{2}}{2 R+R_{x}}=\frac{100}{3} .
\]

Then:
\[
R=100 \Omega .
\]

Assume:
\[
C=10 \mu \mu \mathrm{f},
\]
then
\[
L=0.1 \mu \mathrm{~h}=R^{2} C .
\]

Assume 0.1 per cent change in each shunt resistance, \(R\) :
\[
\begin{gathered}
\frac{\Delta\left(2 R^{2} \delta C\right)}{L_{x}}=4.8 \times 10^{-11}, \\
\frac{\Delta f}{f}=2 \times 10^{-11} .
\end{gathered}
\]

Assume 0.1 per cent change in each compensating inductance, \(\delta L\) :
\[
\frac{\Delta f}{f}=1 \times 10^{-11}
\]

Assume \(1 \mu \mu \mathrm{f}\) change in one tube capacitance, \(\delta C\) :
\[
\frac{\Delta f}{f}=6 \times 10^{-10}
\]

\section*{Recapitulation}

On the assumption that these circuits operate so that the crystal is at series resonance, and that the transfer impedance \(e_{2} / i\) is the same for both ( \(100 / 3\) ), there is little to choose between them. Case II is less sensitive to changes in circuit constants than Case I by an order of magnitude ( \(2 \times 10^{-11}\) vs \(2 \times 10^{-10}\) ), but Case I is less sensitive to changes in tube capacitance by half an order of magnitude ( \(2 \times 10^{-10}\) vs \(6 \times 10^{-10}\) ).

If over-all stability of \(10^{-9}\) is assumed to be about all that can be reasonably expected, the frequency variations ascribed to the crystal coupling network and associated tube capacitances therefore do not seem to present a problem in either circuit. The next part of the analysis is devoted to the remaining part of the closed loop.

\section*{Loop Closure}

Assume: Transconductance of tubes \(=g_{m}=1,000\) \(\mu \mathrm{mho}=10^{-3}\). Then:
Gain of crystal-coupling-circuit portion
\[
=\frac{100}{3} \times 10^{-3}=\frac{1}{30}
\]
from grid of driving tube to grid of driven tube. Gain of remainder of closed loop must therefore \(=30\).

Assume: Two tubes, coupled through simple parallelresonant circuit, transconductance of tubes \(=g_{m}=1,000\) \(\mu \mathrm{mho}=10^{-3}\).
\[
\begin{gathered}
\text { Gain }=30=R_{\beta} g_{m}=10^{-3} R_{\beta} \\
R_{\beta}=30 \mathrm{k} \Omega=3 \times 10^{4}
\end{gathered}
\]
where \(R_{\beta}=\) impedance of coupling network at resonance.
Assume: Interstage capacitance \(=20 \mu \mu \mathrm{f}\), coil resonant with this capacitance.
\[
\begin{aligned}
C_{\beta} & =20 \mu \mu \mathrm{f} \\
X_{\beta} & =1,592 \Omega \text { at } 5 \mathrm{mc} \\
L_{\beta} & =50.7 \mu \mathrm{~h} \\
Q_{\beta} & =18.9 \text { at } 5 \mathrm{mc} \\
\tan \theta_{\beta} & =Q_{\beta}\left(\frac{\omega_{\beta}}{\omega}-\frac{\omega}{\omega_{\beta}}\right),
\end{aligned}
\]
where \(R_{\beta}, C_{\beta}\) and \(L_{\beta}\) are tuned-circuit parameters, \(Q_{\beta}\) is the storage factor at the resonant frequency \(f_{\beta}\) \(=\omega_{\beta} / 2 \pi\), and \(\theta_{\beta}\) is the phase angle of the coupling system.

Assume: \(1 \mu \mu \mathrm{f}\) change in one tube capacitance
\[
\frac{\Delta \omega_{\beta}}{\omega_{\beta}}=2.5 \times 10^{-2}
\]
\(\tan \theta_{\beta}=0.943\) (actual frequency \(f=\omega / 2 \pi\) assumed constant). For crystal coupling network,
\[
\tan \theta_{\mu}=Q_{\mu}\left(\frac{\omega_{\mu}}{\omega}-\frac{\omega}{\omega_{\mu}}\right),
\]
where \(Q_{\mu}\) is the storage factor at the resonant frequency \(f_{\mu}=\omega_{\mu} / 2 \pi\), and \(\theta_{\mu}\) is the effective phase angle of the crystal coupling network.

Case I
\[
\begin{aligned}
& Q_{\mu}=Q_{x}=2.6 \times 10^{6} \\
& \frac{\Delta f}{f}=2 \times 10^{-7}
\end{aligned}
\]

Case II
\[
\begin{aligned}
& Q_{\mu}=\frac{2.6 \times 10^{8}}{3} \\
& \frac{\Delta f}{f}=6 \times 10^{-7}
\end{aligned}
\]

Recapitulation. Frequency shift from change in phaseshift of the loop is more important than changes in the crystal coupling network by three orders of magnitude \(\left(6 \times 10^{-7}\right.\) vs \(\left.6 \times 10^{-10}\right)\). Case \(I\) is less sensitive than Case II to changes in capacitance in the closing loop by a half order of magnitude because a factor of three in effective \(Q_{\mu}\) is sacrificed in Case II to work the crystal in and out of shunt resistive elements. Both circuits, however, are seriously limited by phase-shift in the closing loop.
It was noted that the coupling circuit was tunerl entirely by the interstage capacitance, but this assump. tion need not be made. If additional capacitance is added at this point, the effect of a change in tube capacitance on the resonant frequency will be reduced, but the storage factor, \(Q_{\beta}\), and consequently the rate of change of phase with frequency will be increased to the same extent. The phase shift introduced by a given change in tube capacitance will therefore remain the same, whether or not additional shunt capacitance is employed. If no extra capacitance is added the effect of any change in inductance is a minimum, however, and can be ignored.

It should be noted that in Case II there is zero phase shift in the crystal coupling network, whereas in Case I there is 180 degrees phase shift. Case II is therefore more readily adaptable to two-tube operation. A reasonably simple solution for Case I might be the use of a cathode-coupled twin triode for one of the two tubes.
Coupling systems designed for lower rate of change of phase shift might be worked out, but it would seem a
more promising avenue of approach to eliminate the network entirely by going to a single-tule circuit in which the driven and driving tube for the crystal coupling network were one and the same.

\section*{Single-Tube Version}

To make a single-tube version, the reverse problem exists regarding phase-shift in the Case 1 I and Case 1 circuits. Case 1 is more readily adaptable than Case II because of its 180 degree phase shift in the crystal coupling network. To make the Case II circuit work it would be necessary to go to some such expedient as use of a cathode-coupled twin triode.

Since there is no additional gain provided elsewhere, the gain from the grid of the "driving" tube to the grid of the "driven" tube must be unity (actually the same grid), and this specification therefore determines the transfer impedance of the crystal coupling network in terms of the tube transconductance. Assume:
\[
\begin{gathered}
\text { Transconductance }=g_{m}=1,000 \mu \mathrm{mho}=10^{-3} \\
i=i_{p}=-g_{n} e_{g}=-10^{-3} e_{g}=-10^{-3} e_{2} .
\end{gathered}
\]

Case III
\[
\begin{aligned}
\frac{e_{2}}{i} & =-10^{3}=\frac{-X_{L}^{2}}{4 R_{x}} ; \\
X_{L} & =632 \Omega \\
L & =20.1 \mu \mathrm{~h} \\
C, C & =101 \mu \mu \mathrm{f}
\end{aligned}
\]

Assume 0.1 per cent change in \(L\) :
\[
\frac{\Delta f}{f}=1 \times 10^{-9} .
\]

Assume 0.1 per cent change in each shunt capacitance, \(C\) :
\[
\frac{\Delta f}{f}=1 \times 10^{-9}
\]

Assume \(1 \mu \mu \mathrm{f}\) change in one tube capacitance:
\[
\frac{\Delta f}{f}=6 \times 10^{-9} .
\]

Case IV (Two-Tube Circuit)
\[
\begin{aligned}
\frac{e_{2}}{i} & =10^{3}=\frac{R^{2}}{2 R+R_{x}} \\
R & =2,050 \Omega \\
\delta L & =42 \mu \mathrm{~h}=R^{2} \delta C .
\end{aligned}
\]

Assume 0.1 per cent change in each shunt resistance, \(R\) :
\[
\begin{gathered}
\frac{\Delta\left(2 R^{2} \delta C\right)}{L_{x}}=2 \times 10^{-8} \\
\frac{\Delta f}{f}=1 \times 10^{-8} .
\end{gathered}
\]

\title{
IRE Standards on Industrial Electronics: Definitions of Industrial Electronics Terms, 1955*
}

\section*{COMMITTEE PERSONNEL}

Subcommittee on Definitions for Induction and Dielectric Heating
C. F. Spitzer, Chairman
G. P. Bosomworth
J. M. Cage
J. I. Dalke
E. Mittelmann
W. Richter

Industrial Electronics Committee 1951-55
J. E. Eishefin, Chairman, 1954-55
J. 1.. DAL.ке, Chairman, 1951-54
E. Mittelmañ, Vice-Chairman, 1951-55
\begin{tabular}{|c|c|c|c|}
\hline G. M. Bosomworth & 1. E. Eiselein & J. H. Mennie & E. 11. Schulz \\
\hline Cledo Brunetti & C. W. Frick & E. Mittelmant & (`. F. Spitzer \\
\hline J.M. Cage & H. C. Gillespie & P. E. Ohmart & W. C. Kudk \\
\hline E. WV. Chapin & (i. WV. Klingaman & H. W'. Parker & W. R. Thurston \\
\hline 1). WV. Cottle & T. I'.Kinn & S. 1. Rambo & R. S. Tucker \\
\hline J. L. Dalke & 11. R. Meahl & W. Richter & L. I'. Tuckerman \\
\hline & I'. Vore & & \\
\hline
\end{tabular}

\section*{Standards Committee 1955-56}
E. Weber, Chairman
M. IV. Baldwin, Jr., Viee-Chairman L. G. Cumming, Vice-Chairman R. F゙. Shea, Vice-Chairman
J. Avins
IV. R. Bennett
J. G. Brainerd
I. S. Carter
P. S. Christaldi
A. G. Clavier
I. E. Eiselein
A. W. Friend
V. M. Graham
R. A. Hackbuseh
H. C. Hardy

1'. J. Herlst
Hans Jaffe
Henry Jasik
A. G. Jensen
J. L. Jones
J. G. Ǩreer, Jr.
E. A. Laport
A. A. Macdonald

Wayne Mason
1). E. Maxwell
K. R. Mc Commell
II. K. Mimno
M. G. Morgan
W. "T. Wintringham

Definitions Co-ordinator
M. W. Bud.bwin, Jr.

\section*{AIEE Subcommittee on Induction and Dielectric Heating}
W. C. Rudd. Chairman, 1954-55
R. M. Baker
G. M. Bosomworth
E. W. Chapin
IV. T. Chesnut
L. M. I)uryee
J. E. Eiselein
C. W. Frick
(:. W. Klingaman
W. II. Hickok
R. J. Humn
T. 1. K゙inn
E. Mittelmann
W. P'aulen
W. C. Rudd
J. Eiselein, Chairman, 1953-54
G. W. Scott, Jr.
J. 'Г. Thwaites
R. S. 'Tucker
J. T. Vaughan
I). E. Watts
(). Weitmann

\footnotetext{
* Reprints of this Standard, 55 IRE 10.S1 may be purchased while available from the Institute of Radio Engineers, 1 Fast 70 Street, New York, N. Y., at \(\$ 0.50\) per copy. A 20 per cent discount will be allowed for 100 or more copies mailed to one arldress.
}

Applicator (Applicator Electrodes), (Dielectric Heating usage). Appropriately shaped conducting surfaces between which is established an alternating electric field for the purpose of producing dielectric heating.
Applicator Impedance, Loaded (Dielectric Heating usage). See Loaded Applicator Impedance.
Applicator Impedance, Unloaded (Dielectric Heating usage). See Unloaded Applicator Impedance.
Autoregulation Induction Heater. An induction heater in which a desired control is effected by the change in characteristics of a magnetic charge as it is heated at or near its Curie point.
Channel, Melting. See Melting Channel.
Charge. See Load (Induction and Dielectric Heating usage).

Contactor, Load. See Load Switch (Load Contactor).
Converter, Mercury Arc, Pool Cathode. See Pool Cathode Mercury Arc Converter.

Converter, Quenched Spark Gap. See Quenched Spark Gap Converter.

> Converter, Mercury Hydrogen Spark Gap. See Mercury Hydrogen Spark Gap Converter.

Core Type Induction Heater or Furnace. A device in which a charge is heated by induction and a magnetic core links the inducing winding with the charge.

Coreless Type Induction Heater or Furnace. A device in which a charge is heated by induction and no magnetic core material links the charge.

Note-Magnetic material may be used elsewhere in the assembly for fux guiding purposes.

Coupling (Induction Heating usage). The percentage of the total magnetic flux produced by an inductor which is effective in heating a load or charge.
Curie Point (Induction IIeating usage). The temperature in a ferromagnetic material above which the material becomes substantially nonmagnetic.

Decalescent Point (of a metal). The temperature at which there is a sudden absorption of heat as the metal is raised in temperature.

Depth of Heating (Dielectric Heating usage). The depth below the surface of a material in which effective \(d i\) electric heating can be confined when the applicator electrodes are applied adjacent to one surface only.

Depth of Penetration (Induction IIeating usage). The thickness of a layer extending inward from the surface of a conductor, which has the same resistance to direct current as the conductor as a whole has to alternating current of a given frequency.

Note-This term is useful only in cases where the surface is substantially flat.
Dielectric Dissipation Factor. The cotangent of the dielectric phase angle of a dielectric material.
Dielectric Heating. The heating of a nominally insulating material in an alternating electric field due to its internal losses.
Dielectric Phase Angle. The angular difference in phase between the sinusoidal alternating voltage applied to a dielectric and the component of the resulting alternating current having the same period as the voltage.
Dielectric Power Factor. The cosine of the dielectric phase angle.
Dielectric Strength. The maximum potential gradient that a material can withstand without rupture.
Domestic Induction Heater. A cooking device in which the utensil is heated by current, usually of commercial line frequency, induced in it by a primary inductor associated with it.
Dual Frequency Induction Heater or Furnace. A heater in which the charge receives energy by induction, simultaneously or successively, from a work coil or coils operating at two different frequencies.

Efficiency, Over-all Electrical. See Over-all Electrical Efficiency (Induction and Dielectric HEeating usage).
Efficiency, Load Circuit. See Load Circuit Efficiency (Induction and Dielectric Heating usage).
Field Strength Meter. A calibrated radio receiver for measuring field strength.
Flux Guide (Induction Heating usage). Magnetic material to guide electromagnetic flux in desired pahts.

Note-The guides may be used either to direct flux to preferred locations or to prevent the flux from spreading beyond definite regions.
Gaseous Tube Generator. A power source comprising a gas-filled electron tube oscillator, a power supply, and associated control equipment.
Glue Line Heating (Dielectric Heating usage). An arrangement of electrodes designed to give preferential heating to a thin film of material of relatively high loss factor between alternate layers of relatively low loss factor.
Heater Coil. See Load Coil (Induction Heating usage).
Heating Pattern. The distribution of temperature in a load or charge.
Heating Station. Location which includes work coil or applicator and its associated production equipment.
High-Frequency Induction Heater or Furnace. A device for causing electric current flow in a charge to be heated, the frequency of the current being higher than that customarily distributed over commercial networks.

Horizontal Ring Induction Furnace. A device for melting metal comprising an angular horizontally-placed open trough or melting channel, a primary inductor winding and a magnetic core which links the melting channel with the primary winding.

Hysteresis Heater. An induction device in which a charge or a muffle about the charge is heated principally by hysteresis losses due to a magnetic flux which is produced in it.

Note-A distinction should be made between hysteresis heating and the enhanced induction heating in a magnetic charge.

Induced Current (Induction IIeating usage). Current in a conductor due to the application of a time-varying electro magnetic ficld.

Induction-Conduction Heater. A heating device in which electric current is conducted through but is restricted by induction to a preferred path in a charge.
Induction Heating. The heating of a nominally conducting material in a varying electro magnetic field due to its internal losses.

Induction Ring Heater. A form of core-type induction heater adapted principally for heating electrically conducting charges of ring or loop form, the core being open or separable to facilitate linking the charge.

Interference (Induction or Dielectric ITeating usage). The disturbance of any electric circuit carrying intelligence, caused by the transfer of energy from an induction or dielectric heating equipment.
Load (Induction and Dielectric ITeating usage) (Charge). The material to be heated.

Load Circuit (Induction and Dielectric IIeating usage). The network including leads connected to the output terminals of the generator.

Note-The load circuit consists of the coupling network and the load material at the proper position for heating.

Load Circuit Efficiency (Induction and Dielectric ITeating usage). The ratio of the power absorbed by the load to the power delivered at the generator output terminals.

Load Coil (Induction Heating usage). An electric conductor which, when energized with alternating current, is adapted to deliver energy by induction to a charge to be heated.

Load Leads (Induction and Dielectric ITeating usage). The connections or transmission line between the power source or generator and load, load coil or applicator.

Load Matching (Induction and Dielectric Heating usage). The process of adjustment of the load circuit impedance to produce the desired energy transfer from the power source to the load.

Load Matching Network (Induction and Dielectric Heating usage). An electric network for accomplishing load matching.

Load Matching Switch (Induction and Dielectric Heating usage). A switch in the load matching network to alter its characteristics to compensate for some sudden change in the load characteristics, such as passing through the Curie point.

Load Switch (Load Contactor). The switch or contactor in an induction heating circuit which connects the highfrequency generator or power source to the heater coil or load circuit.

Load Transfer Switch. A switch to connect a generator or power source optionally to one or another load circuit.

Loaded Applicator Impedance (Dielectric Heating usage). The complex impedance measured at the point of application with the load material at the proper position for heating, at a specified frequency.

Low-Frequency Induction Heater or Furnace. A device for inducing current flow of commercial power line frequency in a charge to be heated.

Magnetron. An electron tube characterized by the interaction of electrons with the electric field of a circuit element in crossed steady electric and magnetic fields to produce ac power output.
Melting Channel. The restricted portion of the charge in a submerged resistor or horizental ring induction furnace in which the induced currents are concentrated to effect high energy absorption and melting of the charge.

Mercury Arc Converter, Pool Cathode. See Pool Cathode Mercury Arc Converter.

Mercury Hydrogen Spark Gap Converter. A spark gap generator or power source which utilizes the oscillatory discharge of a capacitor through an inductor and a spark gap as a source of radio-frequency power. The spark gap comprises a solid electrode and a pool of mercury in a hydrogen atmosphere.

Motor Effect. The repulsion force exerted between adjacent conductors carrying currents in opposite directions.

Motor Field Induction Heater. An induction healer in which the inducing winding typifies that of an induction motor of rotary or linear design.

Oscillator. A nonrotating device for producing alternating current, the output frequency of which is determined by the characteristics of the device.

Over-all Electrical Efficiency (Induction and Dielectric Heating usage). The ratio of the power absorbed by the load material to the total power drawn from the supply lines.

Pad Electrode. One of a pair of electrode plates between which a load is placed for dielectric heating.
Pinch Effect. The result of an electromechanical force that constricts, and sometimes momentarily ruptures, a molten conductor carrying current at high density.

Pool Cathode Mercury Arc Converter. A frequency converter using a mercury arc power converter.

Proximity Effect. The redistribution of current in a conductor brought about by the presence of another conductor.

Quenched Spark Gap Converter. A spark gap generator or power source which utilizes the oscillatory discharge of a capacitor through an inductor and a spark gap as a source of radio frequency power. The spark gap comprises one or more closely-spaced gaps operating in series.
Radio Frequency Converter. A power source for producing electrical power at a frequency of 10 ke and above.
Radio Frequency Generator-Electron Tube Type (Industrial and Dielectric IIeating usage). A power source comprising an electron tube oscillator, an amplifier if used, a power supply and associated control equipment.

Recalescent Point (of a metal). The temperature at which there is a sudden liberation of hea: as the metal is lowered in temperature.
Rotary Generator (Induction Heating usage). An alter-nating-current generator adapted to be rotated by a motor or prime mover.

Shield. Material used to suppress the effect of an electric or magnetic field within or beyond definite regions.

Stirring Effect. The circulation in a molten charge due to the combined forces of motor and pinch effects.

Submerged Resistor Induction Furnace. I device for melting metal comprising a melting hearth, a depending melting channel closed through the hearth, a primary induction winding and a magnetic core which links the melting channel and the primary winding.

Unloaded Applicator Impedance (Dielectric Healing usage). The complex impedance measured at the point of application, without the load material in position, at a specified frequency.

Wave Heating. The heating of a material by energy absorption from a traveling electro magnetic wave.

Work Coil. See Load Coil (Induction Heating usage).

\title{
IRE Standards on Antennas and Waveguides: Definitions for Waveguide Components, 1955*
}

\section*{COMMITTEE PERSONNEL}

Subcommittee on Waveguide and Transmission Line Definitions 1953-55
G. A. I)eschamps, Chairman, 1954-55
II. Jasik
R. L. Mattingly

I'. II. Smith, Chairman, 1953-54

\section*{Committee on Antennas and Waveguides 1953-56}
I. II. Smith, Chairman, 1954-55
II. Jasik, Chairman, 1955-56
D. C. Pokts, Chairman, 1953-54
II. Jasik, Vice-Ch., 1954-55
(.. A. Deschanips, Vice-Ch., 1955-56
P. II. Smiti, I'ice-Ch., 1053-54
I. S. Carter
A. G. Fox
W. (. Jakes
R. L. Mattingly
J. Ruze
G. A. Deschamps
S. Frankel
J. E. Eaton
A. G. Giordano
E. T. Jaynes
H. A. Finke
H. Jasik
O. E. Kienow
A. A. Oliner
IV. Sichak
K. Tomiyasu
M. W. Baldwis, Jr., Vice-Chairman
R. F'. Silea, Vice-Chairman

\begin{abstract}
J. Avins
\end{abstract}
W. R. Bennett
J. G. Brainerd
P. S. Carter
P. S. Christaldi
A. G. Clavier
J. E. Eiselein
A. W. Friend
V. M. Graham
R. A. Hackbusch
11. C. Hardy
I. J. Herbst
11. R. Terhune

Hans Jaffe
Henry Jasik
A. G. Jensen
J. I.. Jones
J. G. Kreer, Jr.
E. A. Laport
W. T. Wintringlam
L. G. Cummivg, Vice-Chairman
A. A. Macdonald

Wayne Mason
I). E. Maxwell
K. R. McConnell
II. R. Mimno
M. G. Morgan
J. E. Ward
G. A. Morton
11. I. Owens
C. II. Page
I. A. Redhead
R. Serrell
R. M. Showers
Definitions Co-ordinator
M. W. Baldimin, Jr.

\section*{Introduction}

A set of definitions of basic waveguide terms prepared by the Technical Committee on Antennas and Waveguides was published as IRE Standards in December, 1953 ( 53 IRE 2. S1). The present Standards on Waveguide Components, Definitions of Terms, represent an extension of the work of this committee from 1953 to 1955.

Waveguide component terms have not previously been standardized by the IRE: however, with continuing development in this field the need for such definitions has become increasingly apparent. The present list comprises only the more general, basic and estahlished terms. For example, Waveguide Transformer is defined but the many specific types of waveguide transformer such as Double Stub Transformer, Quarter-I'ave Sleeve Transformer, Probe Transformer, Eccentric Line Transformer, and others are not defined.

As used in the following definitions, Whaveguide is a generic term which includes transmission line and uniconductor zuateguides as special cases. For specific definitions see 53 IRE 2. S1.

\section*{I) efinitions}

Attenuator, Waveguide. A waveguide device for the purpose of producing attenuation by any means, including alsorption and reflection.
Bend, Waveguide. A section of waveguide in which the direction of the longitudinal axis is changed.
Butt Joint. A connection between two waveguides which provides physical contact between the ends of the waveguides in order to maintain electrical continuity.
Cavity Resonator (in Waveguides). A resonator formed by a volume of dielectric bounded by reflecting walls.
Cavity Resonator Frequency Meter. \(\lambda\) cavity resonator used to determine frequency of an electromagnetic wave.

\footnotetext{
* Reprints of this Standard, 55 IRE 2.S1, may be purchased while available from The Institute of Radio Engineers, 1 East 79 Street, New York 21, N. Y., at \(\$ 0.25\) per copy. A 20 per cent discount will be allowed for 100 or more copies mailed to one address.
}

Choke Joint. A connection between two waveguides which provides effective electrical continuity without metallic continuity at the inner walls of the waveguide. Connector, Waveguide. A mechanical device for electrically joining separable parts of a waveguide system. Coupling Aperture (Coupling Hole, Coupling Slot). Aperture in wall of waveguide or cavity resonator designed to transfer energy to or from an external circuit. Coupling Loop. A conducting loop projecting into a waveguide or cavity resonator, designed to transfer energy to or from an external circuit.
Coupling Probe. A probe projecting into a waveguide or cavity resonator designed to transfer energy to or from an external circuit.
Directional Coupler. A four-branch junction consisting of two waveguides coupled together in a manner such that a single traveling wave in either guide will induce a single traveling wave in the other, direction of latter wave being determined by direction of the former.
E-H Tuner. An \(E\) - II tee used for impedance transformation having two arms terminated in adjustable plungers.
E-H Tee. A junction composed of a combination of \(E\) and II-plane tee junctions having a common point of intersection with the main guide.
E-plane Bend. For a rectangular uniconductor waveguicle operating in the dominant mode, a bend in which the longitudinal axis of the guide remains in a plane parallel to the electric field vector throughout the bend.
E-plane Tee Junction. For a rectangular uniconductor waveguide, a tee junction of which the electric field vector of the dominant wave of each arm is parallel to the plane of the longitudinal axes of the guides.
H-plane Bend. For a rectangular uniconductor waveguide operating in the dominant mode, a bend in which the longitudinal axis of the guide remains in a plane parallel to the plane of the magnetic field vector throughout the bend.
H-plane Tee Junction. For a rectangular uniconductor waveguide, a tee junction of which the magnetic field vector of the dominant wave of each arm is parallel to the plane of the longitudinal axes of the guides.
Hybrid Junction. Waveguide arrangement with four branches which, when branches are properly terminated, has the property that energy can be transferred from any one branch into only two of remaining three.

Note-In common usage, this energy is equally divided between the two branches.
Hybrid Tee. A hybrid junction composed of an E-H Tee with internal matching elements, which is reflectionless for a wave propagating into the junction from any arm when the other three arms are match terminated.
Iris (Diaphragm). In a waveguide, a conducting plate or plates, of thickness small compared to a wavelength, occupying a part of the cross section of the waveguide.

Note-When only a single mode can be supported an iris acts substantially as a shunt admittance.
Line Stretcher. A section of waveguide whose physical length is variable.

Magic Tee. See Hybrid Tee.
Mode Filter. A selective device designed to pass energy along a waveguide in one or more modes of propagation and substantially reduce energy carried by other modes. Mode Transducer (Mode Transformer). A device for transforming an electromagnetic wave from one mode of propagation to another.
Phase Shifter, Waveguide. A device for adjusting the phase of a particular field component (or current or voltage) at output of device relative to the plase of that field component (or current or voltage) at the input.
Plunger, Waveguide. In a waveguide, a longitudinally movable obstacle which reflects essentially all the incident energy.
Post, Waveguide. In a waveguide, a cylindrical rod placed in a transverse plane of the waveguide and behaving substantially as a shunt susceptance.
Resonator, Waveguide (Resonant Element). A waveguide device primarily intended for storing oscillating electromagnetic energy.
Rotating Joint. A coupling for transmission of electromagnetic energy between two waveguide structures designed to permit mechanical rotation of one structure.
Series Tee Junction. A tee junction having an equivalent circuit in which the impedance of the branch guide is predominantly in series with the impedance of the main guide at the junction.
Shunt Tee Junction. A tee junction having an equivalent circuit in which the impedance of the branch guide is predominantly in parallel with the imperlance of the main guide at the junction.
Slug Tuner. A waveguide tuner containing one or more longitudinally adjustable pieces of metal or dielectric. Stub, Waveguide. An auxiliary section of waveguide with an essentially nondissipative termination and joined at some angle with the main section of waveguide. Taper, Waveguide. A section of tapered waveguide.
Tapered Waveguide. A waveguide in which a physical or electrical characteristic changes continuously with distance along the axis of the guide.
Tee Junction. A junction of waveguides in which the longitudinal guide axes form a T.

Note-The guide which continues through the junction is the main guide; the guide which terminates at a junction is the branch guide.
Transformer, Waveguide. A device, usually fixed, added to a waveguide for the purpose of impedance transformation.
Tuner, Waveguide. An adjustable device added to a waveguide for the purpose of impedance transformation. Tuning Probe. An essentially lossless probe of adjustable penetration extending through the wall of the waveguide or cavily resonator.
Twist, Waveguide. A waveguide section in which there is a progressive rotation of the cross section about the longitudinal axis.
Wye Junction. A junction of waveguides such that the longitudinal guide axes form a Y.

\title{
High-Frequency Power Gain of Junction Transistors*
}

\author{
R. L. PRITCHARD \(\dagger\), SENIOR member, ire
}

\begin{abstract}
Summary-The purpose of this paper is three-fold. First, the subject of maximum available power gain at high frequencies is discussed briefly. Also, maximum gain for a four-terminal network driven by a generator having a purely resistive internal impedance is calculated in terms of small-signal parameters of the network. Then a theoretical model of a junction transistor comprising the ideal one-dimensional model plus a base impedance, which may be complex and frequency-dependent as in the case of grown-junction transistors, is introduced for the network to obtain an expression for maximum available power gain in terms of fundamental device parameters. Experimental results, which are given for a number of grown-junction transistors, tend to confirm the theoretical expression. Finally, an idealized model of a grown-junction transistor is introduced, and theoretical power gain is calculated in terms of physical parameters. Such calculations show, for example, that 30 db of gain should be available at 5 mc and that such transistors should be capable of oscillating up to several hundred mc.
\end{abstract}

\section*{Introduction}

THE SUBJECT of the high-frequency performance of a junction transistor has received considerable attention during the past few years. Variation of transistor parameters with frequency has been discussed in some detail, \({ }^{1}\) and recently several writers have presented equations for relating high-frequency power gain to transistor parameters for transistors having constant base-spreading resistance. \({ }^{2}\) The purpose of the present paper is three-fold. First, the different ways in which power gain at high frequencies may be defined is discussed briefly. Then an equation is presented for calculating high-frequency power gain in terms of fourpole parameters for a transistor which is conjugatematched at the output and which is driven by a generator having a purely resistive internal impedance. Second, a new, different expression relating high-frequency gain to fundamental device parameters is presented for the case of junction transistors in which base-spreading resistance is not constant at high frequencies, e.g., as in grown-junction transistors. Results of measurements of

\footnotetext{
* Original manuscript received by the IRE, March 7, 1955; revised manuscript received, June 20, 1955.
\(\dagger\) General Electric Research Laboratory, The Knolls, Schenectady, N. Y.
\({ }^{1}\) For example, J. M. Early, "Design theory of junction transistors," Bell Sys. Tech. Jour., vol. 32, pp. 1271-1312; November, 1953.
R. L. Pritchard, "Frequency variations of junction-transistor parameters," Proc. IRE, vol. 42, pp. 786-799; May, 1954. Presented at Transistor Research Conference, State College, Pa.; July 6, 1953.
H. Johnson, RCA Laboratories, unpublished paper presented at Transistor Research Conference, State College, Pa.; July 6, 1953.
\({ }^{2}\) R. L. Pritchard, "Frequency Response of Grounded-Base and Grounded-Emitter Junction Transistors," presented at AIEE Winter Meeting, New York; January 22, 1954.
J. Aí. Early, "Pnip and npin junction transistor triodes," Bell Sys. Tech. Jour., vol. 33, p. 519; May, 1954.
L. J. Giacoletto, "The study and design of alloyed-junction transistors," 1954 IRE Convention Record, Part 3, p. 102. Also, "Study of \(p-n-p\) alloy junction-transistor from dc through medium frequencies," \({ }^{\text {RCA Rev., vol. } 15, ~ p . ~ 555 ; ~ D e c e m b e r, ~} 1954\).
H. Statz, E. A. Guillemin, and R. A. Pucel, "Design considerations of junction transistors at higher frequencies," PRoc. IRE, vol. 42, p. 1627; November, 1954.
}
power gain for approximately 60 grown-junction transistors are shown which tend to confirm the validity of this theoretical expression. Third, values of high-frequency power gain are calculated for an idealized theoretical model of a grown-junction transistor triode, in order to illustrate what upper limit exists on power gain from such transistors. For example, calculations show that 30 db of power gain should be available at 5 mc , and that such transistors should be capable of oscillating up to several hundred mc.

\section*{Definition of High-Frequency Power Gain}

At high'frequencies, there is no clear-cut interpretation for the maximum gain of a junction transistor, since under proper terminations a transistor may oscillate. Hence, maximum gain could be infinity. Accordingly, in general, gain must be maximized subject to certain constraints. One measure of power gain is the unilateral power gain, or \(U\) function, proposed by Mason. \({ }^{3}\) On the other hand, J. G. Linvill has derived an expression for the maximum gain available from a general linear fourterminal network in terms of the series-parallel \(h\) parameters. \({ }^{4}\) This expression yields a value of gain within 3 db of the maximum possible gain available, unless the transistor would oscillate under proper terminations. By an additional simple calculation, it is possible to determine whether or not oscillations could be obtained, i.e., whether or not the transistor is potentially unstable.


Fig. 1-Four-terminal network with variable load admittance and with generator having resistive internal impedance.

Alternatively, the writer has calculated the maximum gain available from a four-terminal network when driven by a generator having a purely resistive internal impedance, as shown in Fig. 1. The importance of such a calculation lies in the fact that experimental determination of high-frequency gain often is made as shown in Fig. 1. \({ }^{5}\) By employing this type of measurement, it is

\footnotetext{
\({ }^{3}\) S. J. Mason, "Power gain in feedback amplifiers," Trans. IRE, vol. CT-1, pp. 20-25; June, 1954. Note, however, that Mason points out that under certain conditions (of lossy coupling) a transistor can yield more gain than that calculated from the \(U\) function (corresponding to lossless coupling).

4 J. G. Linvill, "The Relationship of Transistor Parameters to Amplifier Performance," presented at IRE-AIEE- ['niversity of Pennsylvania Conference on Transistor Circuits, Philadelphia, Pa., February \(17,1955\).
\({ }^{5}\) See, for example, J. I. Pankove and C. W. Mueller, "A \(p-n-p\) triode alloy-junction transistor for radio-frequency amplification," Proc. IRE, vol. 42, p. 390; February, 1954; RCA Rev., vol. 14, p. 596; December, 1953.
}
often possible to avoid oscillations which otherwise might result if an attempt is made to conjugate match at both output and input terminals simultaneously: The very important question of how much gain can be obtained with a potentially unstable transistor (gain vs stability question) is not considered in this paper. What is required here is a relationship bet ween net work parameters and network performance. For this purpose, (1), based on the circuit of Fig. 1, is quite satisfactory (although Linvill's result \({ }^{4}\) is more general), and experimental results can be obtained easily with the circuit of Fig. 1. Furthermore, as noted below, under certain conditions (which are satisfied quite well by most junction transistors in grounded-emitter operation at high fre(quencies) the maximum gain available from the circuit of Fig. 1 will be within a few db of the maximum gain available from the transistor under any conditions of termination.

The maximum available power gain for the circuit of Fig. 1 is given by the equation (see Appendix A):
\[
\begin{equation*}
G_{\mathrm{av}}=\left|h_{21}\right|^{2} /\left[2 r_{11} g_{22}\left(1+p_{m}\right)-I I_{r}\right], p_{m}>0, \tag{1}
\end{equation*}
\]
where
\(r_{11} \equiv \operatorname{Re}\left(h_{11}\right), \quad g_{22} \equiv \operatorname{Re}\left(h_{22}\right), \quad I_{r} \equiv \operatorname{Re}\left(h_{12} h_{21}\right)\),
and
\[
\begin{align*}
p_{m} \equiv\{1 & +\left(\frac{x_{11}}{r_{11}}\right) \\
& \left.-\frac{I_{\tau}}{r_{11} g_{22}}\left[1+\left(\frac{x_{11}}{r_{11}}\right)\left(\frac{I I_{i}}{I_{r}}\right)\right]\right\}^{1 / 2}, \tag{3}
\end{align*}
\]
with
\[
\begin{equation*}
x_{11} \equiv \operatorname{Im}\left(h_{11}\right), \quad I_{i} \equiv \operatorname{Im}\left(h_{12} h_{21}\right) . \tag{4}
\end{equation*}
\]

Here Re and Im denote real and imaginary part, respectively.
Physically, parameter \(p_{m}\) of (3) may be identified as the ratio of generator resistance \(R_{a m}\) required for maximum gain, with conjugate matching at output circuit, to short-circuit input resistance \(r_{11}\); i.e.,. \(p_{m}=\left(R_{g m} / r_{11}\right)\).
It should be emphasized that (1) is valid only for \(p_{m}>0\). For the conditions that yield \(p_{m}=0\), the circuit leterminant vanishes; this corresponds to the condition or oscillations in the circuit shown in Fig. 1. Infinite gain, i.e., oscillations, also may be obtained for other values of \(p_{m}\), e.g., if the denominator of (1) vanishes. Consequently, since the parameter \(I_{r}\) in (3) above may. e positive for a junction transistor, \({ }^{6}\) under proper conlitions a transistor may oscillate in the circuit shown in Fig. 1, even with a purely resistive generator impedance. A few additional remarks concerning (1) and (3) may de in order. First, note that at low frequencies all reac-

\footnotetext{
\({ }^{6}\) (ienerally, \(H\) is positive for grounded-emitior operation and is
egative for grounded-base.
}
tive terms vanish, and (1), together with (3), reduces to the exact equation for calculating maximum gain of a purely resistive four-terminal network. \({ }^{7}\) Second, note that at high frequencies, calculations for (3) may be simplified somewhat by neglecting terms involving the reactive part \(x_{11}\) of the short-circuit input impedance \(h_{11}\). Physically, this would correspond to tuning out the short-circuit input reactance, i.e., to adding in series with \(R_{g}\) a reactance \(-x_{11}\). Since the actual input reactance of the transistor may be quite different from \(x_{11}\), this would not correspond to conjugate matching at the input. W. N. Coffey of this Laboratory has considered the resulting gain expression in some detail and has pointed out that \({ }^{8}\) the value of gain obtained from: (1) by setting \(x_{11}=0\) in (3) also represents the maximum gain available with a variable complex generator impedance \(Z_{4}\), and a variable load conductance \(G_{L}\), with the opencircuit output susceptance \(b_{22}\) tuned out, i.e., \(\mathrm{I}_{\mathrm{m}}\left(Y_{L}\right)=\) \(-b_{22}\). Finally, it might be noted that if the short-circuit input reactance \(x_{11}\) is equal to zero or can be tuned out and if ( \(I_{r} / r_{11} g_{22}\) ) is small relative to unity, then \(p_{m}\) mav. be replaced by the first two terms of its series expansion, and (1) reduces to the expression given by Linvill.

\section*{Migii-Frequency Poner Gain in Terms of Fundamental Transistor Parameters}

In order to calculate available gain for a given transistor, it is necessary merely to substitute measured values of the four complex \(h\) parameters into the appropriate equation by which gain is to be defined. However, by considering an appropriate model of a junction transistor, it is possible to relate the \(h\) parameters to certain fundamental device parameters of the transistor and hence to obtain an expression for high-freguency gain in terms of these fundamental parameters. The model comprises the usual ideal one-dirensional transistor in series with a base impedance \(z_{b}^{\prime}\) [Fig. 2(a), next pagel. For most fused-junction transistors, \(z_{b}{ }^{\prime}\) is real and is the base spreading resistance \(r_{b}{ }^{\prime}\). However, for grownjunction transistors, in general, the distributed nature of the transistor parameters in the transverse direction of the base region must be taken into account. Results of a theoretical analysis \({ }^{9}\) of a two-dimensional (distrib)uted) model have shown that under simplifying conditions, such a transistor may be represented by the model

\footnotetext{
\({ }^{7}\) Equations for calculating low-frequency maximum power gain have been given, in different form, by R. L. Wallace, Jr., and W. I. l'ietenpol, "Some circuit properties and applications of \(n-p-n\) transistors," Bell Sys. Tech. Jour., wol. 30, pp. 516-549: July, 1951: I'ROC. IRE, wh. 39 , pp. \(759-761\) 'July, 1951 . See also H. E. Hollmann, "Transistortheorie und Transistorschaltungen," Arch. elekl. Übertragung, vol. 7, p. 326; July, 1953.
\({ }^{8}\) IV. N. Coffer, I'ersonal communications and unpublished memorandum.
\({ }^{9}\) R. L. P'ritchard and W. N. Coffer, "Small-signal parameters of grown-junction transistors at high frequencies," 1954 IRE CovvenTion Record, Part 3, pp. 90-98. Also, R. L. Pritchard, "lheory of grown-junction transistor at high frequencies," presented at Semiconductor Device Research Conference, Minncapolis, Minn.. June 29, 1954: planned for publication.
}
shown in Fig. 2(a), in which case \(z_{b}^{\prime}\) may be complex and frequency dependent at high frequencies. Hence, the two-dimensional distributed model actually may be represented by the ideal one-dimensional model plus a complex base impedance.

The \(h\) parameters for the ideal transistor have been described previously in general terms in some detail. \({ }^{1}\)


Fig. 2-Ideal transistor plus base impedance; (a) Grounded-base operation, (1) Grounded-emitter operation.

However, in order to olstain a relatively simple expression for maxinum gain, certain assumptions can be made, consistent with what may be expected in commercially available transistors under practical operating conditions. For example, the emitter-efficiency term \(\gamma\) in the expression for current-amplification factor can be assumed to equal unity at all frequencies. Moreover. this assumption will be valid for practical transistors at not too high nor too low values of de emitter current. \({ }^{10}\)

Under such assumptions, fairly simple analytical expressions can be obtained for the \(h\) parameters for frequencies up to approximately twice the \(\alpha\)-cutoff frequency: For example, see the equivalent circuit in \(A_{p}\) pendix B. Unfortunately, however, for grounded-base operation a relatively simple expression for gain does not result, although numerical calculations can be carried out fairly easily. Furthermore, if the subject of stability is investigated with the help of Linvill's gain-stability criterion, \({ }^{4}\) it is found that the grounded-base configuration may be unstable at frequencies up to approximately the \(\alpha\)-cutoff frequency.

On the other hand, if the grounded-emitter configuration is considered, a relatively simple, compact expression can le obtained for maximum gain. Furthermore, when Linvill's criterion is applied to this case, it is

\footnotetext{
\({ }^{10}\) At low emitter current, emitter-base barrier capacity causes a decrease in \(\gamma\). On the other hand, at high emitter currents, \(\gamma\) may decrease because of high-level injection effects. High-level injection was discussed first by W. M. Webster, "On the variation of junction transistor current-amplification factor with emitter current," presented at Transistor Research Conference, State College, Pa., July 7. 1953; Proc. IRE, vol. 42, pp. 914-920; June, 1954. See also E. S. Rittner, "Extension of the theory of the junction transistor," Phys. Rev., vol. 94, pp. 1161-1171; Jun 1 1, 1954 .
}
found that stable maximum gain can be obtained down to much lower frequencies.

For grounded-emitter operation, the \(h\) parameters of the transistor model which are shown in Fig. (2b) are as follows:
\[
\left[h^{(e)}\right]=\left[\begin{array}{cc}
z_{b}^{\prime}+h_{11}^{\prime}(\epsilon) & h_{12}^{\prime}(\epsilon)  \tag{5}\\
h_{21}^{\prime}(\mathrm{e}) & h_{22^{\prime}}(\mathrm{e})
\end{array}\right]
\]
where \(h^{\prime(\epsilon)}\) denotes the grounded-emitter \(h\) parameter for the theoretical model. Note that the base impedance \(z_{b}^{\prime}\) appears only in one parameter, viz., in \(h_{11}\). General expressions for the grounded-emitter \(h^{\prime(\epsilon)}\) parameters are given in Appendix 13.

For calculating available power gain, the following simplifying assumptions will be made:
1. Emitter efficiency \(\gamma=1\) at all frequencies. This can be achieved in practice at not too high nor too low dc emitter currents. \({ }^{10}\)
2. Limiting case of low frecuencies is excluded, e.g., low-frequency interterminal conductances are neglected. This is equivalent to assuming \(\left(1-\alpha_{0}\right)=0\). As a result of this assumption, the gain calculated according to the expression given below will be too high at low frequencies. low-frequency gain can be calculated separately using completely different parameters, i.e., the low-frequency parameters, in order to determine when the high-frequency result becomes inapplicable. \({ }^{7}\)
3. The effect of the base impedance is the dominant part of the input resistance \(r_{11}\), i.e., \(r_{11} \gg r_{!}{ }^{\prime}\), where \(r_{\varepsilon}^{\prime} \equiv\left(k T / q_{\theta} I_{\epsilon}\right)\) is the Shockley, et al., emitter resistance. This will be true at larger values of dc emitter current.
4. The collector-base diffusion capacity \(C_{d}\) is much smaller than the collector-base barrier capacity \(C_{c}\). This will be true for not too large values of de emitter current density. Hence, high-frequency output conductance \(g_{22}\) is predominantly due to the effect of collector-base barrier capacity \(C_{c}\). Also, it follows that the feedback due to \(C_{c}\) is much larger than that due to Early effect at high frequencies, i.e., in the expression for \(h_{12}{ }^{(\epsilon)}\) (see Appendix B), \(\mu_{\theta c} \ll 0.8 \omega_{c} C_{c} r_{\varepsilon}^{\prime}\), where \(\mu_{\theta c}\) is the Early feedback factor. \({ }^{11}\)
('onsideration of the assumptions shows that, in general, gain will be decreased at low emitter currents and at high emitter currents. Actually, assumptions 1, 3, and 4 may be removed at only a slight expense in complexity. This is done below for the case of the grownjunction transistor.

Under the above atssumptions and over a limited frequency range, \({ }^{12}\) with \(\left(\omega / \omega_{c}\right)<2\), where \(\omega_{c} / 2 \pi\) is the \(\alpha\) -

\footnotetext{
\({ }^{11}\) J. M. Firly, "Effects of space-charge layer widening in junction transistors," I'RoC. IRE, vol. 40, p. 1403; November, 1952.

12 Under the assumption that \(\left(1-\alpha_{0}\right)=0\), (6) are valid down to zero frequency. Iowever, in a practical transistor with \(\left(1-\alpha_{0}\right) \neq 0\), (6) will he valid for \(\left(1-\alpha_{0}\right) \ll\left(\omega / \omega_{c}\right)<2\).
}
cutoff frequency, the following approximate expressions may be obtained for the parameters required in calculating gain (see Appendix B):
\[
\begin{gathered}
r_{11} \doteq \operatorname{Re}\left(z_{b}^{\prime}\right), \quad g_{22} \doteq 0.8 \omega_{c} C_{c} \\
\left|h_{21}\right|^{2} \doteq\left(1.2 \omega / \omega_{c}\right)^{-2}
\end{gathered}
\]
and \({ }^{13}\)
\[
\begin{align*}
& \operatorname{Re}\left(h_{12} h_{21}\right) \equiv I_{r} \doteq-\left[\frac{\mu_{\varepsilon c}}{6}+\left(\omega_{c} C_{c} r_{c}^{\prime}\right) \frac{\left(\omega / \omega_{c}\right)^{2}}{15}\right.  \tag{6}\\
&\left.+\left(\omega_{c} C_{c} r_{\epsilon}^{\prime}\right)^{2}\left(1+\frac{C_{e}}{3 C_{c}}\right)\right]
\end{align*}
\]
where \(C\), is the emitter-base barrier capacity. As a consequence of assumptions 3 and 4 above,
\[
\begin{align*}
-\frac{I_{r}}{r_{11} g_{22}}= & \frac{\mu_{e c}}{5 r_{11} \omega_{c} C_{c}}+\left(\frac{r_{\epsilon}^{\prime}}{r_{11}}\right)\left[\frac{\left(\omega / \omega_{c}\right)^{2}}{12}\right. \\
& \left.+1.2\left(\omega_{c} C_{c} r_{\epsilon}^{\prime}\right)\left(1+\frac{C_{\epsilon}}{3 C_{c}}\right)\right] \tag{7}
\end{align*}
\]

For a transistor having a constant base spreatling resistance \(r_{b}{ }^{\prime}\), e.g., a normal fused-junction transistor, \(r_{11}=r_{b}{ }^{\prime}\), and \(\left(x_{11} / r_{11}\right) \ll 1\). Then (6) and (7) may be substituted in (1) to yield the now familiar expression, \({ }^{2}\)
\[
\begin{gather*}
G_{\mathrm{av}}=\frac{0.22}{\omega^{2}}\left(\frac{\omega_{c}}{r_{b}^{\prime} C_{c}}\right) \approx \frac{1}{25 f^{2}}\left(\frac{f_{c}}{r_{b}^{\prime} C_{c}}\right) \\
0.05-0.1<\left(\omega / \omega_{c}\right)<2 . \tag{8}
\end{gather*}
\]

\section*{Grown-Junction Transistor}

On the other hand, for the distributed model of the transistor, e.g., a grown-junction transistor with a base contact that approximates a line contact, analysis \({ }^{9}\) indicates that under the assumptions described above,
\[
\begin{gather*}
r_{11} \doteq\left[R_{b} r_{e}^{\prime} / 2 \cdot 4\left(\omega / \omega_{c}\right]^{1 / 2},\right. \text { provided } \\
{\left[\frac{R_{b}\left(\omega / \omega_{c}\right)}{r_{e}^{\prime}}\right]^{1 / 2}>2,} \tag{9}
\end{gather*}
\]
where \(R_{b}\) is the transverse base resistance of the transistor. (For a tetrode transistor, \(R_{b}\) would be the basebase resistance.)

If this inequality is not satisfied, the grown-junction transistor behaves like a fused-junction transistor with
\({ }^{13}\) This result is complete only for assumption 2 that \(\left(1-\alpha_{0}\right)=0\). In a practical transistor, a considerably more important contribution to \(I_{\mathrm{r}}\), especially at lower frequencies, arises from the factor ( \(1-\alpha_{0}\) ). The contribution in this case is
\[
\left.H_{r} \doteq \frac{\left(1-\alpha_{0}\right)}{\left(\omega / \omega_{c}\right)^{2}}\left[\left(\omega_{c} C_{c} r_{e}\right)^{\prime}\right)+0.6 \mu_{e c}\right],\left(\omega / \omega_{c}\right)^{2} \gg 0.6\left(1-\alpha_{0}\right)^{2} .
\]

It should be emphasized that this term, which is positive, may be sufficiently large in magnitude to satisfy the conditions required for infinite gain, i.e., oscillations, in (1) and (3). Since this term decreases with increasing frequency, such oscillations are most likely to occur at moderately low frequencies relative to \(f_{c}\). Accordingly, it is desirable to limit the validity of the equations given below for gain from a theoretical model of a junction transistor to frequencies greater than perhaps \(0.05 \omega_{c}-0.1 \omega_{c}\) (although perfectly stable gain may be obtainable at lower frequencies). Linvill's stability criterion applied to the theoretical model, yields the result that stable gain can be obtained for \(\left(\omega / \omega_{c}\right)>0.4\left(r_{e}^{\prime} / r_{11}\right)\).
a simple base-spreading resistance \(r_{b}{ }^{\prime}=R_{b} / 3 .{ }^{14}\) This will be true in general at low and medium frequencies. Accordingly it is convenient to substitute this frequencyindependent value of \(r_{b}{ }^{\prime}\) for \(R_{b}\) (which is not generally known for a triode) in (9); this yields:
\(r_{11} \doteq\left[r_{b}^{\prime} r_{\epsilon}^{\prime} / 0.8\left(\omega / \omega_{c}\right)\right]^{1 / 2} \quad\left[r_{b}^{\prime}\left(\omega / \omega_{c}\right) / r_{\epsilon}^{\prime}\right]^{1 / 2}>1\).
In this case, \(\left(x_{11} / r_{11}\right)\) being \(\doteq-1\), is not negligible, and the expression for \(p_{m}\) of (3) becomes a bit cumbersome. Hence, in order to obtain a simple expression for gain, it is convenient to assume that \(p_{m} c a n\) be approximated by unity in (3). \({ }^{15}\) In this particular case, the resulting expression for gain becomes identical with that calculated from Linvill's expression (since \(I_{r} / r_{11} g_{22}\) is negligible \({ }^{13}\) ).

Substitution of (9a) together with (6) in (1) and (2), with \(p_{m}=1\), yields,
\[
\begin{gather*}
G_{\mathrm{av}} \doteq \frac{0.2}{\omega^{3 / 2}} \frac{\omega_{c}^{1 / 2}}{C_{c}\left(r_{b}^{\prime} r_{e}^{\prime}\right)^{1 / 2}}, \quad 0.05-0.1<\left(\omega / \omega_{c}\right)<2 \\
{\left[r_{b}^{\prime}\left(\omega / \omega_{c}\right) / r_{c}^{\prime}\right]^{1 / 2}>1} \tag{10}
\end{gather*}
\]

Comparison of this result (applicable for grown-junction transistors) with (8) (applicable for fused-junction transistors) shows that the available power gain at high frequencies still is dependent upon the same parameters, viz., medium-frequency base-spreading resistance \(r_{b}{ }^{\prime}\), collector-base capacity \(C_{c}\), and \(\alpha\)-cutoff frequency \(\omega_{c} / 2 \pi\). Note, however, that the dependence is different for the distributed model (grown-junction transistor), e.g., gain at a given frequency is proportional to the square root of the \(\alpha\)-cutoff frequency, and gain varies with frequency at the rate of 15 clb per decade rather than at 20 db per decade. Note also that for the distributed model, gain varies inversely as \(r_{e}^{1 / 2}\), i.e., gain is directly proportional to the square root of dc emitter current \(I_{t}\). Although this can be confirmed in practice, variation of gain with \(I_{e}\) also can result from second-order effects, e.g., when one or more of assumptions 1,3 , or 4 above is not strictly valid, or when \(r_{b}{ }^{\prime}\) varies with \(I_{e}{ }^{14}\)

\section*{Second-Order Effects}

In view of the theoretical dependence of gain upon de emitter current \(I_{\varepsilon}\) for the distributed-model transistor, it might be of interest to remove several of the restrictions imposed above in order to calculate what might be called second-order correction terms. In particular, if the effect of emitter capacity is taken into account for low \(I_{e}\), and

\footnotetext{
\({ }^{14}\) See Pritchard and Coffey, reference 9, p. 93. Actually, this substitution is valid only for very small dc base current. When a substantial transverse base current exists, e.g., as at higher values of dc emitter current \(I_{e}\), a grown-junction triode behaves like an internally biased tetrode transistor (ibid., p. 95), and \(r_{1}^{\prime}\) decreases with increasing \(I_{e}\). However, even in this case, the value of \(3 r_{b}\) may be taken as a measure of the cffctive transverse base resistance.
\({ }^{15}\) Actually, if the more complete expression (3) for \(p_{m}\) is considered for the theoretical motel, as it should be when comparing experimental results for gain determined with a purely resistive generator impedance, the following results may be obtained:

If \(H_{r}\) and \(H_{i}\) terms are negligible, then \(p_{m} \doteq \sqrt{2}\), and actual gain will be approximately 0.8 db less than that calculated by setting \(p_{m}=1\). If the \(H\) terms are not negligible, oscillations may be obtained; see reference 13.
}


Fig. 3-Grounded-emitter maximum available power gain with resistive generator impedance as a function of gain factor \(\left\{\int_{e}^{1 / 2} /\left(r_{b}\right)^{1 / 2} C^{22}\right\}\); experimental results for a number of grown-junction transistors at 5 mc .
if the effect of collector-base diffusion admittance is taken into account at high emitter current density, the more complete expression for gain becomes
\(G \approx \frac{0.2}{\omega^{3 / 2}} \frac{\omega_{c}{ }^{1 / 2}}{C_{c}\left(r_{b}{ }^{\prime} r_{d}\right)^{1 / 2}} \frac{1}{\left(1+C_{d} / C_{c}\right)} \frac{1}{\sqrt{1+0.8 \omega_{c} r_{c}{ }^{\prime} C_{T}}}\).
In this equation, \(C_{T} \equiv\left(C_{\mathrm{e}}+C_{c}\right)\) is the sum of emitterbase and collector-base barrier capacities, and \(C_{d}\) is the (frequency-independent) collector-base diffusion capacity, due to the effect of space-charge-layer widening and the charge stored in the base region by the dc emitter current \(I_{e}\). In particular, \(C_{d}\) is directly proportional to \(I\), and to Early's space-charge-layer widening factor, which in turn is a function of the nature of the collector junction. \({ }^{16}\) Furthermore, it should be noted that the ratio of \(C_{d} / C_{c}\) is an indication of injection level. \({ }^{17}\) High-

\footnotetext{
\({ }^{16}\) See R. L. Pritchard, "Collector-base impedance of a junction transistor," Proc. IRE, vol. 41, p. 1060; August, 1953; also R. L. Pritchard (reference 1); pp. 798-799. Explicitly,
\[
C_{d} \approx\left(I_{\epsilon} w / D_{b}\right)\left(\partial w / \partial E_{c}\right),
\]
where \(w\) is the base thickness, \(\left(\partial w / \partial E_{c}\right)\) is the rate of change of base thickness with collector voltage, and \(D_{b}\) is the diffusion constant for minority carriers in the base. Alternatively, that part of the output conductance \(g_{22}\) which is due to stonel charge may be written as 0.8 \(\omega_{c} C_{d}=g_{r \beta} /\left(1-\beta_{0}\right)\), where \(g_{c \beta}\) is that part of the Early collector-base conductance \(g_{c}\) due to the transport function \(\beta\), and \(\beta_{0}\) is the lowfrequency value of \(\beta\). If emitter efficiency \(\gamma\) is completely negligible, as assumed here, \(g_{c \beta} /\left(1-\beta_{0}\right)=g_{c} /\left(1-\alpha_{0}\right)\); this value can be obtained easily from low-frequency parameter measurements. However, in a practical transistor, with \(\alpha_{0}\) close to unity, \(g_{c \beta} /\left(1-\beta_{0}\right)\) may not equal \(g_{e} /\left(1-\alpha_{0}\right)\), even though \(\gamma\) is negligible at higher frequencies.
\({ }^{17}\) R. L. Pritchard, reference 1, p. 799 . Note, however, that highlevel injection effects were discussed first by Webster (op. cal.).
}
level injection occurs when the injected minoritycarrier charge density is comparable with the majoritycarrier charge density normally present in the base. For \(C_{d} / C_{r} \approx 1\), these two charge densities are approximately equal.

The expression given above is substantially complete except for the clecrease of current gain at large values of dc emitter current, due to high-level injection effects. However, if it is assumed that the current gain is not adversely affected unless high-level injection is fairly substantial, then (11) will be valiel up to approximately \(C_{d} / C_{r} \approx 1 .{ }^{18}\) In this case, it might be noted that if the term involving \(C_{T}\) is negligible, a maximum power gain with respect to dc emitter current, with all other parameters held constant, occurs for \(C_{d} / C_{c}=1\).

\section*{Experimental Results}

In an attempt to check the validity of (10), power gain and small-signal parameter measurements were made for a large number of grown-junction transistors originating from a number of different sources. Results for a dc emitter current \(I_{t}=1 \mathrm{ma}\) are shown in Fig. 3 in which each point corresponds to a different transistor. For each point, the ordinate value represents the maximum power gain available at a frequency of 5 mc from

\footnotetext{
\({ }^{18}\) Note that if internal tetrode biasing occurs, as it will for large values of \(I_{e}\), the active cross-section area of the transistor is reduced while \(C_{c}\) remains lixed. Hence, high-level injection may occur for values of \(\left(C_{d} / C_{c}\right)\) considerably less than unity.
}


Fig. 4 - (ironnded-emitter maximum available power gain with resistive generator impedance as a function of gain factor [ \(f_{c} / r_{b}^{\prime} C_{22}\) ]; experimental results for a number of grown-junction transistors at 5 me.
a particular transistor in a grounded-emitter configuration, driven by a generator having a variable but purely resistive internal impedance, while the value of the abseissa is calculated from measured values of \(f_{c}, r_{b}{ }^{\prime}\) and \(C_{22}\) for that transistor. The solid line in Fig. 3 represents an "average curve" about which the experimental points appear to group themselves.

An arbitrary selection of transistors was employed for these measurements, although certain types of units specifically were excluded. The latter included transistors having poor low-frequency characteristics, transistors having alpha-cutoff frequencies \(<2.5 \mathrm{mc}\) [in view of the 5 mc measuring frequency and of the restriction on (10)], transistors with emitter efficiencies \(\gamma\) apprecialbly different from unity at high frequencies ("slow-drool" type of alpha-frequency behavior), \({ }^{19}\) and transistors having a large emitter-base overlap capacity. \({ }^{20}\)

The dotted line shown in Fig. 3 represents the theoretical result calculated from (10) for \(I_{\epsilon}=1\) ma \(\left(r_{\epsilon}^{\prime}=25\right)\). Note that the solid line drawn through the experimental results lies about 3.5 db below the dotted line. Also note that no single point approaches the theoretical dot ted curve more closely than about 1 (lb). \({ }^{15}\)

The same experimental results also have been ploted as a function of the older parameter \(\left(f_{c} / r_{b}{ }^{\prime} C_{22}\right)\) derived for transistors having constant base-spreading resistance, as shown in lig. 4. Although there definitely is a correlation between ( \(\mathrm{g}_{\mathrm{av}}\) and this parameter, as indicated

\footnotetext{
19 R. I. I'ritchard, reference I, p. 788.
\({ }^{20} \mathrm{In}_{1}\) such cases, \(\alpha\)-cutoff frequency would be quite dependent upon dc emitter current, and the short-circuit input impedance would be largely capacitive-reactive in nature. See R. I. J'ritchard, "Effect of base-contact overlap and parasitic capacities on small-signal parameters of junction transistors," I'Roc. IRE, vol. 43, p. 30: January, 1955.
}
by the solid line, the relationship is not according to theory, as shown by the dotted line calculated from (8). Also note that a large number of experimental points lie above dotted curve in Fig. 4, i.e., for a large number of transistors (mostly those having lower gain) measured gain exceeded theoretical gain as calculated from equation (8).

Variation of available power gain also has been measured as a function of irequency, of de emitter current, and of de collector voltage for a smaller number of transistors. In general, the experimental results are in agreement with the theory. For example, \((G\) varied as \(\omega^{-1.5}\) to \(\omega^{-1.7}\). Also, gain increased with increasing emitter current at first and attained a maximme with respect to \(I_{\epsilon}\) at a moderate value of \(I_{\epsilon}\) (of the order of \(1-10\) ma for the transistors measured). Finally, \(G\) increased with increasing collector voltage until collector-breakdown voltage was approached. \({ }^{* 1}\)

\section*{Design (Criteria for I)istributed Model.}

Since the high-frequency power gain of a distributed model (grown-junction) transistor deperds upon the same circuit parameters as does the constant \(r_{b}^{\prime}\) model (fused-junction) transistor, the same general design criteria that have been described previously \({ }^{22}\) also may be applied to the grown-junction transistor. However, since the nature of the dependences is different for the two types of models, a few remarks together with mumerical examples concerning optimum design for highfrequency performance may be of some interest.

\footnotetext{
\({ }^{21}\) The increase of \(G\) with increasing collector voltage is due to an increase in \(f_{c}\) as base width is reduced by space-charge-layer widening and to a decrease in \(C_{c}\).
\({ }_{22}\) See, for example, Early, reference 2.
}

In addition to the different manner in which base spreading resistance influences gain in the grown-junction transistor [cf. (10) and (8)], this type of transistor also may have a graded collector-base junction, resulting in potentially lower collector-base capacitance than in the fused-junction transistor. (Generally a rather abrupt emitter-base junction is preferred in order to yield good high-frequency emitter efficiency.) The value of the collector-junction gradient represents one additionat parameter for the design of high-frequency grownjunction transistors. In general, however, the gradient will he a function of majority-carrier concentration in the base, i.e., of base resistivity. For example, in one case which has been considered for computation and has been termed proportionately graded, the majority-carrier concentration \(\left(N_{a}-N_{d}\right)\) is assumed to vary with position \(x\) through the base region as shown in lig. 5. Conserpuently, the concentration gradient \(A=2 N_{b} / w_{0}\), where \(N_{b}\) is the maximum value of \(\left(N_{a}-N_{d}\right)\) in the base, and \(w_{0}\) would be the base width in the absence of a collector depletion tayer.


Fig. 5 - Variation of majority-carrier concentration through base region of an \(n-p-n\) transistor having proportionately graded collector junction and abrupt emitter junction.

In order to calculate theoretical gain for a phasical model of a grown-junction transistor, the circuit parameters of (10) may be related to the various physical parameters such as base dimensions, base resistivity, etc. All of these calculations are straightforward and will not be repeated here because of space limitations. If this is done, the following expression results for the first-order gain of a theoretical distributed-model transistor having substantially constant majority-carrier concentration \(N_{b}\) in the base:
\[
\begin{align*}
& G_{\mathrm{av}} \doteq \\
&=\left(\frac{0.5 q_{e}^{1 / 2} / \epsilon_{0} \epsilon_{r}}{\omega^{3 / 2}}\right)\left[\frac{(d / h)^{1 / 2} I_{\epsilon}^{1 / 2}}{S}\right]  \tag{12}\\
& \cdot\left[\frac{\left.\left(\mu_{n} \mu_{p} \cdot\right)_{b}\right)^{1 / 2} x_{m}}{w^{1 / 2}}\right]
\end{align*}
\]

A corresponding expression for the constant-rbemodel transistor could be obtained from (8) rather than (10). Such a result already has heen given by Giacoletto. \({ }^{23}\) In (12), \(q_{t}\) is the electronic charge, \(\epsilon_{0}\) is the free-space dielectric constant ( \(8.85 \times 10^{-12} \mathrm{fd} /\) meter ), \(\epsilon_{r}\) is the relative dielectric constant of the semiconductor (e.g., \(\epsilon_{r}=\) 16 for (ie), \(d\) is the base depth, \(h\) is the transverse height of the base (for a tetrode transistor, \(h\) would be the basebase dimension), \(S\) is the base cross-section area ( \(S=d h\) ), \(\mu_{n}\) and \(\mu_{p}\) are respectively the mobilities of electrons and holes in the \(p\)-type base region (which are functions of \(\left.\lambda_{b}\right),{ }^{24}\) and \(x_{m}\) is the width of the collector-base-junction depletion layer. \({ }^{25}\)

With the help of (12), plus consideration of secondorder effects, the variation of theoretical gain with each of the physical parameters for the distributed-model transistor could be discussed in detail. A few of the more pertinent results are as follows:
1. For a fixed bias and fixed cross-section geometry (of conventional values), the theoretical gain is essentially independent of base width and base resistivity (within suitable limitations) and is essentially constant to within \(3-6 \mathrm{db}\), depending upon the nature of the col-lector-base junction.
2. For a fixed cross-section area \(S\), theoretical gain is directly proportional to the square root of the ratio \(d / h\) of base depth to base height. Hence, for maximum gain, a long thin cross-section geometry should be employed with a line-type of base contact on the long side (dimension \(d\) ) of the hase. However, in practice, in order to obtain a good line contact, \(d / h\) probably would be limited to a moderate value, e.g., 2-5.
3. As cross-section area is reduced, first-order gain is increased directly. However, the second-order term \(C_{d} / C_{c}\) increases owing to an increased current density in the base region, while the second-order term involving \(\omega_{c} C_{r^{r}}{ }^{\prime}\) decreases owing to a decrease in total harrier capacity: Reduction in cross-section area represents the most significant method of increasing gain over any appreciable range.
\({ }^{23}\) L. J. (iacoletto, "Comparative high-frequency operation of junction transistors made of different semiconductor materials," RC. 1 Rev., vol. 16, p. 37, Eq. (2); March, 1955. Note that because of the differences between this equation and (12) above, Giacoletto's semiconductor figure of merit ( \(\mu_{n} \mu_{p} / \epsilon_{F}^{1 / 2}\) ) is not directly applicable to the case of high-frequency grown-junction transistors. The corresponding figure of merit for a high-frequency grown-junction transistor having a line-type of base contact, with a linearly graded collector junction is \(\left[\left(\mu_{n} \mu_{p}\right)^{1 / 2} / \epsilon_{r}^{2 / 3}\right]\). Note that in this case the comparison between silicon and germanium is much less unfavorable than in the case of the fused-junction transistor. (Ratio of figure of merit of germanium to that of silicon is 2.9 for case of grown-junction and is 10.7 for case of fused-junction.)
\({ }_{24}\) See, for example, M. B. Prince, "Irift mobilities in semiconductors, I. Germanium," Phys. Rer., vol. 92, pp. 681-687; November 1. 195.3: I'art II. Silicon, Phys. Rev., vol. 93, pp. 1204-1206; March 15. 1954.
\({ }_{25}\) For an essentially abrupt collector-base junction with collector resistivity very much less than the base resistivity, \(x_{m}=\left(2 \epsilon_{0} \epsilon_{r} E_{c}\right.\) \(\left(q_{e} N_{b}\right)^{1 / 2}\), just as in the case of the fused-junction transistor. For the proportionally graded junction shown in Fig. 5, \(x_{m}=\left(6 \in \epsilon_{\epsilon} E_{c} w_{0} /\right.\) \(\left.q_{\theta} N_{b}\right)^{1 / 3}\).

A few numerical values of gain which have been calculated for various physical parameters \({ }^{28}\) are shown below in Table I. Values of gain are quoted at 5 mc , but

TABLE I
Theoretical Power Gain, Distributed-Monel Transistor \(E_{c}=4.5 \mathrm{v} ; f=5 \mathrm{mc}\).
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \[
\begin{gathered}
c-b \\
\text { junction }
\end{gathered}
\] & \(\stackrel{\rho_{b}}{\mathrm{ohm}_{\mathrm{m}}}\) cm & \multicolumn{3}{|l|}{\[
\begin{aligned}
& w_{0} \\
& \text { mils }\left(10^{-3} \text { inches }\right)
\end{aligned}
\]} & \[
\begin{gathered}
I_{e} \\
\text { ma }
\end{gathered}
\] & Firstorder gain db & Secondorder gain db \\
\hline prop. gr. & 1 & 0.39 & 10 & 10 & 1 & 18.9 & 18.2 \\
\hline prop. gr. & 8 & 0.39 & 10 & 10 & 1 & 18.7 & 17.7 \\
\hline abrupt & 1 & 0.39 & 10 & 10 & 1 & 14.5 & 17.0 \\
\hline prop. gr. & 1 & 0.39 & 10 & 2.5 & , & 27.9 & 26.9 \\
\hline prop. gr. & 1 & 0.39 & 10 & 2.5 & & 30.9 & 28.1 \\
\hline abrupt & 1 & 0.39 & 10 & 2.5 & 4 & 26.5 & 25.0 \\
\hline prop. gr . & 1 & 0.2 & 10 & 2.5 & 4 & 31.8 & 30.7 \\
\hline
\end{tabular}
gain at other frequencies may be calculated from these values by adding or subtracting 4.5 dlb per octave change in frequency. Note, however, that the results are valid at high frequencies only if \(\left(\omega / \omega_{c}\right)<2\). Also, it should be emphasized that these numerical values were calculated for a conventional grown-junction triode, as distinguished from a \(p-n-i-p\) or \(n-p-i-n\) transistor \({ }^{2}\) or from a "drift transistor." \({ }^{27}\)

\section*{Conclusions}

The subject of maximum gain available from a junction transistor at high frequencies has been discussed briefly. A theoretical expression has been presented for calculating maximum gain available from a transistor driven by a generator having a purely resistive internal impedance in terms of the four-pole small-signal parameters of the transistor. Under certain conditions, this expression reduces to that given by Linvill for the maximum possible gain available from a transistor.

The four-pole parameters of a theoretical model of a junction transistor then were substituted in this expression to obtain a simple concise result for evaluating high-frequency power gain in terms of three fundamental transistor parameters, viz., \(\alpha\)-cutoff frequency, medium-frequency base spreading resistance, and col-lector-base capacity. Two different expressions are given, one for the fused-junction type of transistor, for which a constant base spreading resistance is valid, and one for the grown-junction type of transistor, for which base spreading resistance becomes complex and fre-quency-dependent at high freguencies. Experimental results given for approximately 60 grown-junction transistors tend to confirm the validity of this second result, which is new.
\({ }^{26}\) In these calculations, dc base current is assumed to be negligible so that no internal tetrode biasing exists (see reference 14). Also for solculation of emitter-hase harrier capacitance, a fixed value of tolal emitter-base potential (built-in potential plus applied voltage) of 0.25 v was assumed. Actually, this potential depends upon injection level and upon emitter resistivity, but the dependence is slight, e.g., see Early, reference 1, p. 1286.
\({ }^{27} \mathrm{H}\). Krömer, "Zur Theorie des Diffusions- und des Drifttransistors," Arch. clekt, Übertragung, vol. 8, pp. 223-228, 363-369.119-504istory
Mav. August, November, 1954.

By further relating the three fundamental highfrequency transistor parameters to physical parameters, such as base resistivity and geometry, an expression has been presented for calculating typical available power gains for the grown-junction type of transistor. It has been emphasized that the most significant method of increasing high-frequency power gain over any appreciable range is to employ a rectangular cross section with small transverse dimension and to reduce total cross-section area. For scpuare cross-section area of 100 \(\mathrm{mil}^{2}\), gains of the order of \(15-18 \mathrm{db}\) should be available at 5 mc . Gain at other frequencies can be calculated by addition or subtraction of 4.5 db per octave frequency change. By reducing cross-section area to, say, \(25 \mathrm{mil}{ }^{2}\) and by employing rectangular cross section with a line type of contact along the longer cross section dimension, 30 db of gain should be available at 5 mc , and it should be possible to obtain oscillations from such triode transistors up to several hundred mc.

\section*{Appendix A}

\section*{Calculation of Maximum Avallable Polier Gain}

Available power gain for a quadripole in a circuit as shown in Fig. 1 in general is given by the equation \({ }^{28}\)
\[
\begin{equation*}
G_{\mathrm{av}}=\frac{4 R_{\bullet} G_{L}\left|h_{21}\right|^{2}}{\left|\left(h_{11}+Z_{g}\right)\left(h_{22}+Y_{L}\right)-h_{12} h_{21}\right|^{2}}, \tag{13}
\end{equation*}
\]
where \(R_{g}\) and \(G_{L}\) are the real components of the generator and load immittances \(Z_{o}\) and \(Y_{L}\) respectively. (For this calculation, \(Z_{g} \equiv R_{g}\).) By separating the complex four-pole parameters \(h_{i j}\) into real and imaginary parts,
\[
\begin{aligned}
h_{11} & \equiv r_{11}+j x_{11}, & & h_{22} \equiv g_{22}+j b_{22} \\
h_{12} h_{21} & \equiv I I_{r}+j I I_{i} & & Y_{L} \equiv G_{L}+j B_{L},
\end{aligned}
\]
and by defining dimensionless variables
\[
\begin{gathered}
x \equiv 1+\left(R_{g} / r_{11}\right), \quad y \equiv 1+\left(G_{L} / g_{22}\right), \quad z \equiv 1+\left(B_{L} / b_{22}\right), \\
A \equiv r_{11} g_{22}, \quad B \equiv x_{11} b_{22}, \quad C \equiv x_{11} g_{22}, \quad D \equiv r_{11} b_{22} .
\end{gathered}
\]

Eq. (13) may be written in the form
\[
\begin{equation*}
G_{\mathrm{av}}=\frac{4 A\left|h_{21}\right|^{2}(x-1)(y-1)}{X^{2}+Y^{2}} \tag{14}
\end{equation*}
\]
where \(X \equiv\left(A x y-B z-H I_{r}\right)\) and \(Y \equiv\left(C y+D x z-I I_{i}\right)\).
In order to maximize available power gain, (14) may be differentiated with respect to each of the three variables \(x, y, z\), corresponding to varying \(R_{g}, G_{L}\), and \(B_{L}\) respectively, and the results may be set equal to zero. This yields the following three equations:
\[
\left.\begin{array}{c}
2(x-1)[A X y+D Y z]=X^{2}+Y^{2} \\
2(y-1)[A X x+C Y]=X^{2}+Y^{2},  \tag{15}\\
B X=D Y x .
\end{array}\right\}
\]

A solution to the last two equations of (15) is
\[
\begin{equation*}
X=2(y-1) A x, \quad Y=2(y-1) C \tag{16}
\end{equation*}
\]
valid for any \(x\), i.e., for any \(R_{\theta}\). Physically, the conditions expressed by (16) correspond to setting the load admittance equal to the complex conjugate of the transistor output admittance, for any arbitrary \(R_{g}\), i.e.,
\[
\left.\begin{array}{rl}
\left(G_{L} / g_{22}\right)=(y-1)=1-\frac{A I_{r} x+C H_{i}}{A^{2} x^{2}+C^{2}}, \\
-\left(B_{L} / b_{22}\right)=(1-z)=1-\frac{D I_{i} x-B I_{r}}{D^{2} x^{2}+B^{2}} . \tag{17}
\end{array}\right\}
\]

Substituting (16) and (17) in the first part of (15), then yields a fourth-degree equation in \(x\) which can be factored into two quadratic equations. One of these yields no real solution for \(x\); the other is
\[
\begin{equation*}
A^{2} x^{2}-2 A^{2} x+A I I_{r}-C^{2}+C H I_{i}=0 . \tag{18}
\end{equation*}
\]

Alternatively, (16) and (17) may be substituted directly back into (14) to obtain an expression for \(G_{\mathrm{av}}\) as a function of \(x\) alone. This expression then may be maximized with respect to \(x\). This is a far simpler procedure and leads to the same result (18). Eq. (18) may be solved for
\((x-1)^{2}=\left(R_{0} / r_{11}\right)^{2}=1-\left(I I_{r} / A\right)+(C / A)^{2}+\left(C H_{i} / A^{2}\right)\),
which is (3) in slightly different form.
Then, substitution of (16) and the first part of (17) back into (14), plus manipulation of the result with the help of (16), yields
\[
G_{\mathrm{av}}=\left|h_{21}\right|^{2} /\left(2 A x-H_{r}\right),
\]
where \(x\) is given by (19). This is (1) in slightly different form.

\section*{Appendix B}

\section*{\(h\)-Parameter Representation of Junction Transistor in Grounded-Emitter Configuration}

The grounded-emitter \(h^{(e)}\) parameters for an ideal onedimensional transistor may be calculated by conventional transformation from the grounded-emitter admittance or \(y^{(\theta)}\) parameters. The latter parameters can be calculated in terms of the grounded-base \(y\) parameters \({ }^{1}\) from the relation
\[
\left[y^{(*)}\right]=\left[\begin{array}{cc}
y_{z} & -\left(y_{12}+y_{22}\right)  \tag{20}\\
-\left(y_{21}+y_{22}\right) & y_{22}
\end{array}\right],
\]
where
\[
y_{\mathrm{z}} \equiv\left(y_{11}+y_{12}+y_{21}+y_{22}\right) .
\]

Then, \({ }^{29}\)
\[
\left[h^{(e)}\right]=\left[\begin{array}{cc}
1 / y_{\Sigma} & \left(y_{12}+y_{22}\right) / y_{\Sigma}  \tag{21}\\
-\left(y_{21}+y_{22}\right) / y_{\Sigma} & \left(y_{11} y_{22}-y_{12} y_{21}\right) / y_{\Sigma}
\end{array}\right] .
\]

It should be noted that emitter-base and collector-base barrier capacities \(C_{c}, C_{c}\) are included here in \(y_{11}\) and \(y_{22}\), respectively.

\footnotetext{
\({ }^{29}\) See for example, J. S. Brown and F. D. Bennett, "The application of matrices to vacuum-tube circuits," Proc. IRE, vol. 36, p. 852; July, 1948.
R. L. Pritchard, reference 28, p. 905.
}

Each \(h^{(\theta)}\) parameter can be calculated in terms of base thickness, diffusion constants, etc., if desired. However, it may be of more practical interest here to express each \(h^{(e)}\) parameter in terms of appropriate low-freguency parameters and a single frequency variable, namely: \(\omega / \omega_{c}\), or (radian) frequency \(\omega\) relative to \(\alpha\)-rutoff frequency \(\omega_{c}\). Thus, for the special case of unity emitter efficiency \(\gamma,{ }^{10}\) the current-amplification factor \(\alpha=\beta\), where
\[
\begin{equation*}
\beta=\beta_{0} \operatorname{sech}\left(j \omega \tau_{D}\right)^{1 / 2}, \tag{22}
\end{equation*}
\]
is the transport factor. In (22), \(\beta_{0}\) is the low-frequency value of \(\beta\), and
\[
\begin{equation*}
\tau_{D}=2.43 / \omega_{c} \tag{23}
\end{equation*}
\]
where \(\omega_{c} / 2 \pi\) is the \(\alpha\)-cutoff frequency. In this special case, \({ }^{30}\)
\[
\begin{equation*}
y_{\Sigma}=y_{\mathrm{t}}^{\prime}(1-\beta)\left(1+\mu_{e c}\right)+j \omega\left(C_{\epsilon}+C_{c}\right), \tag{24}
\end{equation*}
\]
where
\[
\begin{equation*}
y_{\mathrm{c}^{\prime}}^{\prime} \equiv\left(1 / r_{\mathrm{t}}^{\prime}\right)\left[\left(j \omega \tau_{D}\right)^{1 / 2} \operatorname{coth}\left(j \omega \tau_{D}\right)^{1 / 2}\right] \tag{25}
\end{equation*}
\]
is the emitter-base diffusion admittance, and \(r_{t}{ }^{\prime}=(k T\) \(\left./ q_{e} I_{e}\right)\) is the Shockley, et al, emitter resistance; \(\mu_{o c}\) is the voltage-feedback factor described by Early, \({ }^{11}\) and \(C_{e}, C_{c}\) are, respectively, emitter-base and collector-base barrier capacities. Similarly, \({ }^{31}\)
\[
\left.\begin{array}{rl}
\left(y_{12}+y_{22}\right)= & \mu_{e c} y_{t}^{\prime}(1-\beta)+j \omega C_{c} \\
-\left(y_{21}+y_{22}\right)= & y_{\epsilon}^{\prime}\left(\beta-\mu_{c c}\right)-j \omega C_{c} \\
\left(y_{11} y_{22}-y_{12} y_{21}\right)= & y_{\epsilon}^{\prime}\left\{j \omega\left(C_{c}+\mu_{e c} C_{t}\right)\right.  \tag{20}\\
& \left.+\frac{g_{c \beta}}{2\left(1-\beta_{0}\right)}\left[\left(y_{\epsilon}^{\prime} r_{\epsilon}^{\prime}\right)\left(1-\beta^{2}\right)\right]\right\}
\end{array}\right\}
\]
where \(g_{c s}\) is the low-frequency collector-base Early conductance (for \(\gamma=1\) ).

In general, \(\mu_{o c}\) is very small and may be neglected relative to unity and to \(\beta\). In this case, expressions for the \(h^{(e)}\) parameters of the ideal transistor may be obtained as follows:
\[
\begin{align*}
h_{11}^{(\epsilon)} & =\left\{y_{e}^{\prime}(1-\beta)[1+\epsilon]\right\}-1,  \tag{27}\\
h_{12}^{(\epsilon)}= & {\left[\mu_{e c}+j \omega C_{c} / y_{\epsilon}^{\prime}(1-\beta)\right] /[1+\epsilon], }  \tag{28}\\
h_{21}{ }^{(\epsilon)}= & {[\beta /(1-\beta)]\left[1-j \omega C_{c} / y_{c}^{\prime} \beta\right] /[1+\epsilon], }  \tag{29}\\
h_{22}{ }^{(\epsilon)}= & {\left[\frac{j \omega C_{c}}{(1-\beta)}\right.} \\
& \left.+\frac{g_{c \beta}}{2\left(1-\beta_{0}\right)}\left(y_{c}^{\prime} r_{c}^{\prime}\right)(1+\beta)\right] /[1+\epsilon] \tag{30}
\end{align*}
\]

\footnotetext{
\({ }^{30}\) If emitter efficiency is not unity, a diffusion admittance term of the form \(g\left(1+j \omega \tau_{e}\right)^{1 / 2}\) described by Shockley must be added to the right-hand side of (24) and to \(y_{11}\) in calculating \(h^{(\epsilon)}{ }_{\mathbf{m}}\). See W. Shockley, "The theory of \(p-n\) junctions in semiconductors and \(p-n\) junction transistors," Bell Sys. Tech. Jour., vol. 28, pp. 449-450; July, 1949.
\({ }^{31}\) In deriving the third of these results, use was made of the identity \(\tanh Z=\operatorname{coth} Z\left(1-\operatorname{sech}^{2} Z\right)\).
}
where
\[
\begin{equation*}
\lfloor 1+\epsilon\rfloor \equiv\left[1+j \omega\left(C_{e}+C_{c}\right) / y_{e}^{\prime}(1-\beta)\right] . \tag{31}
\end{equation*}
\]

Alternatively, for \(h_{22}{ }^{(e)}\) at high frequencies it is useful to express the second term involving the space-chargelayer widening factor in terms of the collector-base diffusion capacitance \(C_{d}\) due to charge stored in the base by de emitter current. \({ }^{16}\) The relation for the theoretical model is simply
\[
\begin{equation*}
g_{c 3} /\left(1-\beta_{0}\right)=\left(\omega_{c} C_{d} / 1.2\right) . \tag{32}
\end{equation*}
\]

However, it should be pointed out that for a practical transistor, the factors \(g_{c \beta}\) and \(\beta_{0}\) in general will not correspond to measured collector-base conductance \(g_{c}\) and current-amplification factor \(\alpha_{0}\) respectively. \({ }^{11,16}\) The difference arises from the fact that although emitter efficiency \(\gamma\) may be essentially equal to unity without modifying the high-irequency behavior of the transistor. if \(\beta_{0}\) is close to unity, \(\left(1-\gamma_{0}\right) \neq 0\) may be comparable with \(\left(1-\beta_{0}\right)\). In this case, in (30) for \(h_{22}{ }^{(e)}, g_{\beta} /\left(1-\beta_{0}\right)\) should be replaced by \(g_{r} /\left(1-\alpha_{0}\right)\) for low frequencies: however, at high frequencies, (30) as given is correct. Since in general it is not easy to differentiate between \(g_{c \beta}\) and \(g_{c}\), use of (32) is recommended for high frequenries. (It might be pointed out that if \(C_{d} \ll C_{r}\), then at high frequencies the second term in (30) for \(h_{29}(e)\) will be negligible compared to the term involving \(C_{\text {c. }}\) )

It is especially important to note that all of the \(h^{(t)}\) parameters for the ideal transistor can be calculated completely in terms of four low-frequency parameters \(r_{e}^{\prime}, \mu_{e c}, g_{6} \beta_{0}, \beta_{0}\), plus two barrier capacitances \(C_{c}, C_{e}\) and two normalized functions of frequency, \(y_{e}{ }^{\prime} r^{\prime}\) 'and \(\left(\beta / \beta_{n}\right)\). Each of the latter two functions depends only upon the \(\beta\)-cutoff frequency \(\omega_{c} / 2 \pi\). Curves of these two normalized functions of ftequency have been presented earlier for a fairly wide range of frequencies. \({ }^{1,32}\) At low frequencies, each of the hyperbolic functions may be represented approximately by series expansions. Thus.
\[
\begin{align*}
\left(\beta / \beta_{0}\right) & \approx\left[\left(1-x^{2} / 4\right)-j 1.2 x\right] /\left(1+x^{2}\right),  \tag{33}\\
y_{e}^{\prime} r_{e}^{\prime} & \approx\left[\left(1+x^{2} / 4\right)+j 0.8 x\right] /\left[1+0.06 x^{2} x^{2}\right], \tag{34}
\end{align*}
\]
where
\[
x \equiv \omega / \omega_{c}
\]
is the ratio of freguency to \(\alpha\)-cutoff frequency. These expansions are accurate to order \(x^{2}\) and are valid up to approximately \(x=2\), to an accuracy of approximately 10-20 per cent. (Somewhat less accurate series expansions have been given by Early. \({ }^{1}\) )

With the help of these series expansions, approximate expressions may be obtained for each \(h_{i j}{ }^{(t)}\) parameter in a straightforward manner. For example, if lowfrequency effects are neglected, so that \(\left(1-\beta_{0}\right) \approx 0\), particularly simple results are obtained:

\footnotetext{
\({ }_{32}\) R. L. Pritchard, "Frequency variations of current-amplilication factor for junction transistors," Proc. lRF, vol. 40, p. 1480; November, 1952.
}
\[
\begin{align*}
h_{11}^{(\epsilon)} & \approx\left[\left(r_{\epsilon}^{\prime} / 0\right)+\left(\omega_{c} r_{\epsilon}^{\prime} / j 1.2 \omega\right)\right] /\lfloor 1+\epsilon],  \tag{35}\\
h_{12}(\epsilon) & \approx\left[\mu_{e c}+0.8 \omega_{c} C_{c} r_{\epsilon}^{\prime}\left(1+j x^{\prime} / 0\right) \mid /[1+\epsilon] .\right.  \tag{36}\\
h_{21}(\epsilon) & \approx\left[-1 / 6+\left(1 / j 1.2 x^{\prime}\right)\right. \\
& -0.8 \omega_{c} C_{c} r_{\epsilon}^{\prime}(1+j x /(0)] /[1+\epsilon],  \tag{37}\\
h_{22}(\epsilon) & \approx\left[0 . 8 \omega _ { c } \left(C_{c}(1+j x)+0.8 \omega_{r} C^{\prime}{ }_{d}(1+j(1.2 x)] /[1+\epsilon],\right.\right.  \tag{38}\\
{[1+\epsilon] } & \approx\left[1+0.8 \omega_{c}\left(C_{\epsilon}+C_{c}\right) r_{\epsilon}^{\prime}(1+j x / 6)\right] . \tag{39}
\end{align*}
\]

From these equations, together with the matrix (5), the parameters required for calculating \(\vec{G}_{\mathrm{av}}\) according to (1) and (3) can be evaluated readily. For example, for \(g_{22}=\operatorname{Re}\left(h_{22}{ }^{(e)}\right)\), from (38), to the first approximation, [see assumptions \(1-4\) following (5)] \(g_{22} \equiv 0.8 \quad \omega_{c} C_{c}\), whereas to the second approximation,
\[
g_{22} \approx\left[0.8 \omega_{c}\left(C_{c}+C_{d}^{\prime}\right)\right] /\left[1+0.8 \omega_{c}\left(C_{t}+C_{c}\right) r_{t}^{\prime}\right] .
\]

Alternatively, the theoretical transistor can be represented by an equivalent circuit if desired. The basic circuit for \(h\)-parameter representation is shown in Fig. 6(a). \({ }^{33}\) This two-generator circuit also can be converted to a one-generator circuit by incorporating either shunt or series feedback. An approximate circuit employing shunt feedlack, which is valid if \(\left|h_{12}\right| \ll 1\) and if \(\left|h_{12}\right| \ll\left|h_{21}\right|\), is shown in Fig. 6(b).


Fig. 6-Equivalent circuits for representation of a network by smallsignal series-parallel \(h\) parameters; (a) Basic two-generator circuit, (b) Approximate one-generator circuit.

For groundel-emitter operation of the transistor, the elements of the approximate equivalent circuit shown in Fig. 6(b) assure reasonable and well-hehaved values. For example, for frecuencies less than approximately twice \(\omega_{c}\), relatively simple two-terminal networks for each of the elements can be constructed from the expressions given above for \(h_{i j}{ }^{(6)}\) in (35) to (38). These networks can be simplified further and reduced to simple components by neglecting certain terms with a loss of accuracy of approximately 20 per cent. Further simplification also results if it is assumed that \(\mu_{e c}\) is negligible at high frequencies. The resulting circuit for high

\footnotetext{
\({ }_{33}\) The equivalent circuits described here also have been given by the writer in "Frequency response of theoretical models of junction transistors," TraNs. IRE, vol. ("I-2, No. 2, pp. 183-191; June, 1955.
}
frequencies is shown in liig. 7; the base impedance \(z_{b}{ }^{\prime}\) also has been included in accordance with the model shown in Fig. 2(b). \({ }^{34}\) In this circuit, the freguency variation of the current-generator constant \(h_{21}{ }^{(e)}\) has been taken into account by employing a simple pi network in the output circuit and by replacing \(h_{21}{ }^{(t)}\) by a constant \(\alpha_{0} /\left(1-\alpha_{0}\right)\) (low-frequency value of \(h_{21}{ }^{(6)}\) ), independent of frepuency. As a consequence of this modification, the limiting low-freguency representation of \(h_{22}{ }^{(e)}\) also can be oltained from this circuit. To obtain the low-frequency representation for \(h_{11}\) and \(h_{12}\), addlitional resistances \(r_{e}^{\prime} /\left(1-\alpha_{0}\right)\) and \(r_{\mathrm{e}}^{\prime} / \mu_{e r}\left(1-\alpha_{0}\right)\) should be shunted across the input capacitance \(1.2 / \omega_{c} r_{e}^{\prime}\) and across \(C_{c}\), respectively.


Fig. 7-ipproximate high-frequency equivalent circuit for theoretical model of junction transistor; grounded-emitter operation.

On the other hand, for grounded-base operation, use of the shunt-feedhack circuit shown in Fig. 6(b) leads to negative values for the admittance ( \(h_{22}-y_{12}\) ) : this is not especially desirable. A series feedback circuit could be employed (e.g., see that given by Early \({ }^{11}\) for low frequencies). However, for high frequencies in groundedlase operation, feedback is predominantly due to the effect of the base impedance, and \(h_{12}\) of the inherent transistor is negligible. Consequently, the basic circuit
\({ }^{34}\) Note the similarity between this circuit of Fig. 7 and the hybridpi equivalent circuit of Giacoletto-Johnson. (See for example, Giacoletto, reference 2, or C. W. Mueller, and J. I. Pankove, "A \(p-n-p\) triode alloy junction transistor for radio frequency amplification," RCA Rev., vol. 14, p. 594; December, 1953, also P'roc. IRE, vol. 42, p. 389; February, 1054.) The principal difference is that in the equivalent circuit above, the current generator in the output circhit is proportional to the actual input current to the over-all transistor, whereas in the Giacoletto-Johnson circuit, the current generator is proportional to a voltage at a point ( \(b^{\prime}\) ) inside the equivalent circuit which is not accessible in practice. Also, in the latter circuit, the current generator is shown to be independent of frequency, whereas in theory, the output current should lag the \(b^{\prime}-\epsilon\) voltage by an appreciable phase angle, c.g., 22 degrees at the \(\alpha\)-cutoff frequency.
[Fig. 6(a)] may be employed directly for the ideal transistor, and at high frequencies, \(h_{12} \ell_{2}\) simply may be neglected.

By combining the circuit of Fig. \(6(a)\), salls voltage generator, with the model shown in Fig. 2(a), and by substituting appropriate low-frequency expansions for the grounded-1)ase \(h_{i j}\) parameters of the ideal transistor, the circuit shown in Fig. 8 has been synthesized. \({ }^{35}\) In this circuit, as in Fig. 7, a simple pi network has been used in the output circuit. However, in this case, although the resulting current-generator "constant" can be made independent of frequency with respect to amplitude, it is necessary to include a frequency-clependent phase shift, i.e., a constant time delay, between the input current and current applied in the pi network. To complete the circuit for low frequencies, the voltage generator \(\mu_{e c} e_{2}\) and a collector-base conductance \(g_{c}\) must be added. \({ }^{11}\)


F-ig. 8 - Approximate high-frequency equivalent circuit for theoretical model of junction transistor; grounded-base operation.

\section*{dCKNOWIEDGMENT}

The writer is grateful to J. Lawrence for his help in obtaining experimental data reported here and to R. N. Hall and W. N. Coffey for helpful discussions.

\footnotetext{
\({ }_{35}\) Note the simplicity of this approximate circuit relative to the more exact circuits emploving RC transmission lines (I'ritchard, reference 16, Fig. 1; reference 1, Fig. 13, 16. Also, J. \%awels, "Ihysical theory of new circuit representation for junction transistors," Jour. Appl. Phys,, vol. 25, p. 978; August, 1954). A simplified equitalent circuit incorporating a time delay (delay line) between input and impressed-output currents also was presented by II. F. Chow and J. J. Suran, "Transient analysis of junction transistor amplifiers." Proc. IRE, vol. 41, pp. 1126-1127: September, 1953.
}

\title{
IRE Standards on Radio Receivers: Method of Testing Receivers Employing Ferrite Core Loop Antennas, 1955* COMMITTEE PERSONNEL
}

Subcommittee on Loop Receivers, 1954-55
L. E. Closson, Chairman
V. Beck
R. A. Bell
R. J. Farber

\author{
W. R. Koch
}
J. R. I ocke
C. G. Seright

\title{
Committee on Radio Receivers 1953-55 \\ J. Avins, Chairman, 1953-55
}
J. 1). Reid, Vice-Chairman, 1953-54
D. E. Harnett, Vice-Chairman, 1954-55
K. A. Chittick
K. IV. Jarvis
L. E. Closson
J. K. Johnison
D. E. IIarnett
W. R. Koch
D. J. Healey III
C. O. Marsh
W. O. Swinyard
F. B. Uphoff
L. Riebman
I. J. Melman
I. M. Rodgers
G. Mountjoy
\(\begin{array}{ll}\text { F. R. Norton } & \text { S. W. Seeley } \\ \text { J. D. Reid } & \text { R. F. Shea }\end{array}\)
\(\begin{array}{ll}\text { F. R. Norton } & \text { S. W. Seele } \\ \text { J. D. Reid } & \text { R. F. Shea }\end{array}\)
R. S. Yoder

\section*{Standards Committee, 1955-56}
E. Weber, Chairman
M. W. Baldwin, Jr., Vice-Chairman
L. G. Cumming, Vice-Chairman
R. F. Shea, Vice-Chairman
J. Avins
W. R. Bennett
J. G. Brainerd

I'. S. Carter
1. S. Christaldi
A. G. Clavier
J. E. Eiselein
A. W. Friend
V. M. Graham
R. A. Hackbusch
H. C. Hardy
P. J. Herbst

Hans Jaffe
Henry Jasik
A. G. Jensen
J. I.. Jones
J. G. Ǩreer, Jr.
E. A. Laport
A. A. Macdonald

Wayne Mason
D. E. Maxwell
K. R. McConnell
H. R. Mimno
M. G. Morgan
W. T. Wintringham
G. A. Morton
H. I. Owens
C. H. Page
P. A. Redhead
R. Serrell
R. M. Showers
H. R. Terhune
J. E. Ward

\section*{Measurements Co-ordinator}

\author{
R. F. Shea
}
1.00. Introduction. The technique for introduction of a test signal into a loop antenna (see "Stanclards on Radio Receivers-Methods of Testing Amplitude-Modulation Broadcast Receivers-1948," Section 4.01.03, for example) has long been employed with receivers using aircore loop antennas. These antennas are normally of a more or less flat or "pancake" construction and, in general, lend themselves to the method described in the standard without ambiguity. When this method is extencled to loop antennas wound on cores of high permeability in which the length-to-diameter ratio is high, it tends to break down. When the test loop and this type of antenna are coaxial, it is ubually not feasible to
assign a spacing between these two for calibration purposes. Moreover, the use of the induction field to simulate the actual radiation field received by the loop is a satisfactory procedure only if the loop is immersed in a reasonably uniform field. This is substantially the situation with flat air core loops using the aforementioned technique but is not approximated satisfactorily when the relatively long ferrite core loop antenna is employed. This present standard describes a modification of the existing techniques which allows for the measurement of a receiver employing a ferritecore loop antenna with the same precision as that obtained in the measurement of air-core loop antennas.

\footnotetext{
 New York 21, N. Y., at \(\$ 0.50\) per copy. A 20 per cent discount will be allowed for 100 or more copies mailed to one address.
}


Fig. 1-Field configuration when air loop practice is followed with ferrite core loop antenna.

\subsection*{2.00. Apparatus Required.}
2.01. Radiating Test Loop. 'The test loop employed can be identical to the one described in "Standards on Radio Receivers-Methods of Testing Amplitude-Modulation Broadcast Receivers-1948," Section 5.00. It should be observed, however, that the calibration relations of that section and Section 4.01 .03 .01 of the same standard refer to the field directed along the axis of the loop. Although this is not the field that is to be employed in this standard, the same loop design is implied.
2.02. Shielded Room (Screen Room). The relations presented for the field due to the loop assume free space conditions. Measurements generally are made in a screen room, and the precaution of Section 5.02 of the "Standards on Radio Receivers-Methods of Testing Amplitude-Modulation Broadcast Receivers-1948" applies. If there is any doubt concerning the validity of the measurements due to the proximity of fixed large metal objects, the field within the screen room can be compared with the field at the same distance in free space and a suitable correction factor applied to the screen room field. This correction is explained more fully in Section 3.03.
2.03. Other Equipment. The standard signal generators and receiver output measuring devices required for any particular test should have the characteristics specified in Section 3.00 of "Standards on Radio ReceiversMethods of Testing Amplitude-Modulation Broadcast Receivers-1948."
3.00. Method of Measurement. This new standard describes a method of introducing a known signal into a ferrite-core loop antenna and therefore replaces Section 4.01.03 of "Standards on Radio Receivers-Methods of Testing Amplitude-Modulation Broadcast Receivers1948," when a receiver employing such an antenna is being measured. The remainder of the test procedures specified in Section 4.00 of that standard still apply.


Fig. 2-Field configuration suitable for ferrite core loop antennas.

\subsection*{3.01. Orientation of Radiating Loop and Receiver under} Test. Fig. 1 shows the magnetic field that would exist at a ferrite-core loop antenna if the orientation of radiating loop and receiver loop normally used with receivers employing air loop antennas were used (this figure and subsequent ones do not demonstrate the effect on the magnetic field configuration of the presence of the high-permeability ferrite rod). Notice that the field is not constant over the length of the rod; and since the length of the ferrite rod is generally significant compared to the spacing between radiating loop and rod, it is difficult, in general, to assign a value to the effective field at the antenna.

The recommended orientation is as shown in Fig. 2. The axis of the ferrite rod is placed normal to the plane of the test loop with the center of the rod in the plane of the test loop. The antenna rod is now located in a substantially constant field to which an effective value can be assigned.
3.02. Calibration of Effective Field. The significant component of field near the radiating test loop is a magnetic field that varies inversely as the cube of the distance from the loop. The receiving loop is essentially responsive to a magnetic field, and the magnitude of the field can be calculated in terms of the test loop parameters, the current in the test loop, and the spacing between the radiating and receiving loops. This can also be expressed in terms of the equivalent electric radiation field in volts per meter that would be accompanied by a magnetic field of the calculated value. The relation between the observed current in the coil and the equivalent electric field intensity is, to a close approximation, given by the formula:
\[
E=\frac{30 \pi n_{1} a_{1}^{2}}{x^{3}} I_{1}
\]
where \(E=\) equivalent electric field intensity in volts per meter at the receiving loop antenna, \(n_{1}=\) number of turns of racliating loop \(L, a_{1}\) = radius of radiating loop \(L\) in meters, \(x=\) distance in meters between the center of radiating loop \(L\) and the axis of the ferrite rod receiving loop, \(I_{1}=\) current in radiating loop \(L\) in amperes. If the loop is constructed as described in Section 5.01 of the "Standards on Radio Receivers-Methods of Testing Amplitude-Modulation Broadcast Receivers-1948," and a spacing of 24 inches \((x)\) between the axes of the radiating test and receiving loops is employed, the above equation can be reduced to a simple relationshij, between the indicated output voltage of the signal generator \((V)\) and the effective electric field strength in volts per meter as follows:
\[
E=0.05 V
\]

In other words, the field in dh below one volt per meter is 26 db below the signal generator output in dt below one volt. \({ }^{1}\)

\footnotetext{
\({ }^{1}\) This relation is approximate in that it assumes the loop is a point source. For greater accuracy nomuniformity of field over length of ferrite rod must be taken into account. The \(26-\mathrm{db}\) value appears to be sufficiently accurate for normal measurement purposes.
}
3.03. Effect of Screen Room. The equation relating effective electric field intensity to signal generator output is clerived assuming that the induction field of the radiating loop varies inversely as the cube of the distance from the loop as occurs in free space. If the screen room is not sufficiently large, reflections from its walls will tend to modify the field from its ideal value. It is useful to set up a receiver, radiating loop, and signal generator in "free space" (as far from large metal objects as possible) in the manner prescribed in this standard, and adjusted to a frequency that can be used outside the screen room without undue interference. The signal generator output required to produce a suitable reference output from the receiver is recorded. The entire set-up is then transferred to the screen room, and the signal generator output readjusted, if necessary, to produce the same reference output from the receiver. This change in signal generator output is a measure of the distortion of the field configuration due to the screen room. The correction should be used to modify the relation between effective field strength and signal generator output given in Section 3.02. Since the calibration in general is not independent of frequency, it should be made at or near the frequency of interest. If the locations of the instruments within the screen room are modified, a new calibration may be required.

\title{
A Microwave Phase Contour Plotter*
}

\author{
J. S. AJIOKA \(\dagger\)
}

\begin{abstract}
Summary-A simple, easily built rf phase contour plotting device is described. This phase plotter differs from the conventional plotter in that two field-sampling probes are used instead of one. Instead of a fixed reference signal taken directly from the source, a phase reference is taken from the field itself. This technique offers several practical advantages over conventional methods.
\end{abstract}

TWHE MEASUREMENT of phase in the field of microwave radiators is important in the design of antenna components and in the study of the effects of objects placed in the field. The determination of equiphase contours and the location of phase centers of feeds for reflectors and lenses are of much value in the design of such antennas. Phase measurements are also important in the study of the effects of weatherizing covers and radomes.

This paper describes a simple, inexpensive, easily made device for manual phase contour plotting, with primary application to locating the phase centers of
primary radiators. It has some advantages over the conventional phase contour plotting apparatus and is comparable in accuracy. This device is not intended to replace some of the rather complex and expensive automatic phase plotters \({ }^{1}\) now in existence, but rather to afford a design for a simple inexpensive phase plotter that can be built in a relatively short time.

In the conventional method for measuring phase, a sample of energy from the field is picked up by a probe and compared in phase with a reference signal which comes directly from the source. \({ }^{2}\) The phase of one signal is varied with respect to the other to produce an interference resulting in a maximum or minimum. The amount of phase shift is a measure of the difference in phase between the field sample and the reference. A slotted line with the reference signal inserted through the traveling probe is often used as the phase shifter and mixer.

\footnotetext{
* Original manuscript received by the IRE, January 25, 195.5 : revised manuscript received, June 6, 1955. This work was performed
\({ }^{1}\) R. M. Barrett and M. H. Barnes, "Automatic antenna waveat the U.S. Nav' Electronics Lab., San Diego 52, Calif.
}

The conventional phase measuring apparatus has several practical disadvantages which are as follows:
1. The necessary rf rotating joints or flexible cables complicate the rf plumbing; and unless much care is taken, may cause phase shift with movement.
2. If there is a wide variation in the amplitude of the field whose phase is to be measured, the minima readings in the mixer cannot all be made sharp by a simple interference procedure. \({ }^{3}\)
3. All components in the rif system must be well matched or false minima can occur. \({ }^{2}\)
4. Phase contour plot, usually not direct, must be plotted from data taken from phase shifter readings.
5. The accuracy is impaired by small changes in frequency during the time for making a complete plot. \({ }^{2}\)

A method using two field-sampling probes instearl of one eliminates the above disadvantages. Instead of a fixed reference directly from source, a phase reference is taken from the field itself. Fig. 1 is a photograph of this phase plotter. The stand in the background is an instrument for projecting the horn onto plotting paper.


Fig. 1-Phase contour plotter in operation.
The device (See lig. 2) is described as follows:
Two probes spaced a fixed distance apart are connected respectively to the \(E\) and \(I I\) arms of a magic tee where their signals are mixed. A detector is placed on one of the remaining arms and a matched load is placed on the other. The connection is such that in-phase sig-

\footnotetext{
\({ }^{3}\) With somewhat inore complication, this difficulty can be eliminated. See F. ]. V'ernon, Jr., "Application of the microwave homodyne," Trans. IRF, vol. AP-4, pp. 110-116; 1)ecember, 1952 and J. Bacon, "An antomatic X-band phase plotter," Proc. NEC, Chicago, Ill.; October, 1954.
}
nals from the probes will destructively interfere at the detector to give a minimum. Since the probes are close enough together so that they are usually in a fied of approximately the same strength, the minimum is sharp. Since the magic tee with the detector is an integral part of the two-probe combination, there is only an audio cable that need be flexible.


Fig. 2--Sketch of phase contour plotter.
To plot equiphase contours, the probe assembly is placed in the field of the radiator whose phase fronts are to be plotted. The probe assembly is placed over a flat surface on which the phase contour is plotted. The flat surface is \(\frac{1}{2}\) inch plate glass covered with heavy paper.


Fig. 3--Diagran illustrating the procedure of plotting phase contours.
(See Fig. 3). The tack under probe \(A\) is pushed into the surface (paper) and the probe assembly is rotated about probe \(A\) and the positions of minimum readings are
marked by pushing tack " \(B\) " in to the paper. These \(B\) tack points (marked by \(x\) s) are points of equal phase. The tack is lifted from point \(A\) and the probe assembly is rotated about one of the \(B\)-tack points. Since the center of phase is somewhere in the region of the aperture of the radiating element under test, there will, in general, be no ambiguity as to which of the \(B\)-points are on the same phase contour as point \(A\). Of course, there would be no ambiguity if the prole spacing were less than a wavelength but the sensitivity would be decreased. These \(B\)-points are labeled \(B_{1}\) and \(B_{4}\) in the figure. As the assembly is rotated about point \(A_{1}\), the null-points \(B_{1}\) and \(B_{4}\) only are considered and the center of rotation is then moved to either \(B_{1}\) or \(B_{4}\) (say \(B_{1}\) ) and point \(A_{4}\) on the same phase front as \(A_{1}\) is found. This process of alternately rotating about probe \(A\) (circles) and probe \(B\) \((x\) 's) is repeated to plot a complete equiphase contour.
If the electrical line length from probe \(A\) to the detector is equal to that from probe \(B\) to the detector as was intended, the \(A\) and \(B\) points will be in phase. Otherwise, the points \(A\) (circles) and the points \(B\) (x) s) are two different sets of equiphase points. If curves are drawn through points \(A\) and through points \(B\), the normal separation between the curves will be the difference in electrical lengths of the lines from the two probes. This difference in line lengths can be calibrated by picking a fixed point in the field, rotating about probe \(A\) and establishing a null-point for probe \(B\). Then place probe \(B\) at fixed point, rotate about probe \(B\) and establish a null-point for probe \(A\). Distance between these null-points will be twice the difference in line lengths.

Since the path lengths from the probes to the detector are made to be as nearly identical as possible, the phase front plotter is guite insensitive to variations of frecquency.

If the phase fronts are smooth, there is no ambiguity as to which points are on the same contour; but if there is a sudden phase change as would occur over a minimum in the amplitude pattern of the radiator under test, care must be taken so that a true phase contour would be followed. 1 or this reason, amplitude patterns are also taken with a single probe with a center of rotation about the approximate center of phase of the radiating element. A deep minimum in the amplitude pattern will give warning that a sudden change in phase is to be expected. A typical amplitude and phase plot of such a situation is given in Fig. 4. Fig. 4 is an amplitude (dashed lines) and phase (solid lines) plot of an \(E\)-plane horn with a septum. This horn was chosen as an example because of the deep minima in its amplitude pattern. If the minimum were infinitely deep, the phase change would be a sudden step of 180 degrees. In general, the
minima are not infinitely deep and the phase contour is like that of Fig. 4. To plot points about the region of rapid phase change, a partial curve is drawn in the smooth phase region and points on this curve are used as reference points for establishing points closer than the probe spacing. Thus, we creep up to the region near the amplitude minimum and finally we span the amplitude minimum to establish points on the phase contour on the other side of the amplitude minimum. With a little more complexity a probe assembly could be made so that the probe spacing could be varied. Once the probe spacing is changed, it is kept unvaried during a set of measurements. This eliminates the difficulty of the above procedure. Such a variable spacing probe assembly has not been made but a fixed spacing of approximately one and one-half wavelengths was chosen to give sharp minima readings. The probes for each polarization were of conventional design.


Fig. 4-Phase and amplitude plot of horn with septum.
One obvious disadvantage of the above procedure is the possibility of cumulative errors, but in the application to locating the phase centers of primary feedgthis is not serious because only groups of three points on the phase contour are necessary for location of the phase center. However, the simplicity, inexpensiveness, and ease of operation make this phase plotter a practical laboratory tool.

\section*{Acknowledgment}

The author gratefully acknowledges the encouragement given by all nembers of the Microwave Antenna Section at NEL, headed by J. J. Thomas and formerly headed by E. K. Abbey. The author also wishes to thank J. II. Jensen who built the first models.


\title{
The Application of Dielectric Tuning to Panoramic Receiver Design*
}

\author{
T. W. BUTLER, Jr. \(\dagger\), associate, ire, W. J. LINDSAY \(\dagger\), Associate, ire, and L. W. ORR \(\dagger\), Assoclate, ire
}

\begin{abstract}
Summary-This paper describes a method of utilizing the voltage tuning characteristics of ferroelectric capacitors in a wide range, superheterodyne, dielectric-tuned, panoramic receiver. Continuous tuning over a \(2: 1\) frequency band is obtained in frequency ranges up to 110 mc . Some of the problems encountered in this application are described, and a method of optimizing the parameters of specific materials is discussed. No detailed technical discussion is presented. The application of these capacitors to various types of circuitry is briefly indicated.
\end{abstract}

\section*{Introduction}

FTERROELECTRIC tuning techniques utilize the nonlinear electrical characteristics of certain types of ferroelectric materials. Barium-strontium titanate materials constitute the major class of dielectrics that are presently being applied to ferroelectric tuning devices. The use of capacitors constructed from these materials as the basic tuning elements in panoramic receiver front ends is the subject of this paper.

It should be noted, however, that ferroelectric tuning techniques are being applied to sweep generators, spectrum analyzers, search receivers, and other equipments where wide-range, rapid-scan devices are useful.

This paper describes a method of utilizing the voltage tuning characteristics of ferroelectric capacitors in a wide-range superheterodyne, dielectric-tuned, panoramic receiver. This receiver employs titanate ceramic capacitors as tuning elements in the rf, mixer, and local oscillator tank circuits. The capacity of the tuning elements is varied by changing the electric field applied to the capacitor.

The receiver described is incorporated in a rather complete laboratory test unit which was designed specifically for testing dielectric-tuned receiver front end assemblies. This unit consists of an assemblage of power supplies, a display oscilloscope, and control panels. The essential components of this test unit are indicated in the block diagram of Fig. 1. The receiver front-end assemblies are plug-in units containing the electrical electrically tunable stages, i.e., the rf, mixer and local oscillator stages.

\section*{Characteristics of Capacitors}

The ceramic capacitors used as the tuning elements in the front end assemblies are of the barium-strontium titanate class. These were developed in the Department

\footnotetext{
* Original manuscript received by the IRE, April 25, 1955; revised manuscript received, June 8, 1955. This work was sponsored by the U. S. Army Signal Corps under Contract No. DA-36-039 sc63203.
\(\dagger\) Electronic Defense group, Engrg. Res. Inst., Univ. of Mich., Ann Arbor, Mich.
}
of Electrical Engineering Laboratories at the University of Michigan. A commercially made body material is used, but methods of plating, connecting, and potting capacitors are still laboratory processes.

To obtain the maximum tuning range with good receiver stability and sensitivity, the capacitor body material should have the following characteristics:
1. A large change in dielectric constant, \(\epsilon\), with applied field,
2. A small temperature coefficient of \(\epsilon\) over a wide temperature range, and
3. Low loss over the desired frequency range.


Fig. 1-Block diagram of wide-range dielectric tuned panoramic receiver.

Materials which exhibit large changes in dielectric constant with applied field also exhibit large changes in dielectric constant with changes in temperature. Conversely, materials which have a small temperature coefficient of dielectric constant over a wide temperature range generally lack field sensitivity and are not suitable for dielectric tuning. It has not been possible to obtain body material for the capacitors which possess all three of the desirable characteristics.
Fig. 2 (next page) shows an \(\epsilon-T-E\) surface for a typical ferroelectric ceramic material of rather high dielectric constant. Ordinate of surface gives the dielectric con-


Fig. 2- \(\epsilon-\) T-E surface for acrovox \(1 \mathrm{Hi}-(\mathrm{Q} 41\).
stant, with abscissae of temperature and de electric field. Small circles indicate points of zero temperature coefficient. Surface representation gives a very clear display of the characteristics of the material, and its use in the design of the tuning elements is illustrated by the following numerical example.

Consider the design of the rf amplifier tank circuit which is to be tunable from 50 to 100 mc . Assuming a value of \(160 \mu \mu\) f for the total tank capacitance at 50 mc , gives \(40 \mu \mu \mathrm{f}\) for the total capacitance at 100 mc . If the fixed shunt capacitance representing the tube, wiring and strays is \(10 \mu \mu \mathrm{f}\), the tunable element must vary from \(150 \mu \mu \mathrm{f}\) to \(30 \mu \mu \mathrm{f}\). This element will be a pair of ceramic capacitors connected in series, each having a value of \(300 \mu \mu \mathrm{f}\) at zero applied field.

The capacitance variation as the electric field is applied may be obtained from the contour curves of Fig. 2. Consider the curve for 30 degrees ( \({ }^{\prime}\). It is noted that a \(5: 1\) variation in dielectric constant is obtained when the applied field varies from zero to \(30.5 \mathrm{kv} / \mathrm{cm}\). If the material is 0.05 cm thick, the required field is furnished by an applied voltage of 1,525 volts.

Effect of a temperature chage on tuning may be calculated by noting dielectric constant at 20 degrees \(C\). is almost identical with that at 30 degrees (.. with zero applied field. Therefore, lower frequency will still be 50 mc . At a field of \(30.5 \mathrm{kv} / \mathrm{cm}\), dielectric constant is lowered about 4 per cent below its value at 30 degrees \(C\). The minimum capacitance value at 20 degrees (.. will
therefore be \(28.8 \mu \mu\) f, giving an upper frequency of
\[
f_{2}=\left\{\frac{30+10}{28.8+10}\right\}^{1 / 2} \cdot 100=101.5 \mathrm{mc}
\]

This does not imply a tracking error of 1.5 mc since the oscillator circuit will also experience a similar temperature-induced change. It does, however, represent an increase in the tuning range of 3 per cent, so that as the equipment warms up from 20 degrees C. to 30 degrees C.., the tuning range will shrink by this amount.

The effect of capacitor tolerance may be disposed of by noting that an increase of 10 per cent in the zero field capacitance due to a larger electrode area is accompanied by an increase of 10 per cent in the capacitance at all fields, and can therefore be compensaterl throughout the tuning range by an appropriate decrease ( 9.1 per cent) in the tuning inductance. To insure that all capacitors of the receiver have approximately the same tuning characteristic, i.e., the same \(\epsilon-T-E\) surface, they may all be cut from the same wafer of ceramic material. The ceramic materials now available are sufficiently homogeneous that variations in tuning characteristic are less than 1 per cent between samples cut from the same wafer of the material.
\(\epsilon-T-E\) surfaces have been obtained for a number of materials suitable for electric tuning. A survey of these surfaces is of great assistance in selecting the best available material for a particular set of conditions.

Low loss is an important factor in electric tuning, and tests show that this is not entirely a property of the ceramic material. The type and quality of metal used for electrodes, and its thickness and uniformity, all have important effects on the loss. Capacitors for the tuning units were made with 0.020 -inch cubes of ceramic having one mil thick electrode plating exteading to the edges of the ceramic faces. Fig. 3 shows typical capacitors made in this manner. A plastic coating over the dielectric seals out moisture, preventing excessive losses and possible electrical breakdown.


Fig. 3-Typical subminiature ferroclectric capacitor.


Fig. 4-Block diagram of receiver.

\section*{Receiver Design}

The receiver is a single conversion s:bperheterodyne type with a tuned rf stage, tuned mixer, and local oscillator in the tunable front end unit, and a 20 mc IF strip driving a crystal detector (Fig. 4). The three tuned
circuits in the front-end unit are tuned by changing the dc bias voltage on the tuning capacitors. The receiver is swept by applying a superimposed 60 cps alternating voltage to the tuning capacitors. The dc bias voltage maty be varied from 0 to 1,000 volts, and the ac sweep voltage may be varied from 0 to 1,000 volts rms. No power is absorbed from the dc bias supply in sweeping the receiver over the maximum range. The reactive power absorbed from the ac sweep voltage supply is generally less than 0.1 volt-amperes. The three tuned circuits are tracked by suitable adjustments of the dc bias and the ac sweep voltages. The IF strip is of the synchronous-tuned type \({ }^{1}\) with a 3 (l) banchwidth of approximately 100 kc . The output of the crystal detector feeds the vertical input of the Inallont 304 -AR oscilloscope. The horizontal input of the scope is fed a sample of the 60 cycle sweep voltage applied to the oscillator. This results in a panoramic display on the oscilloscope.


Fig. 5-Exterior view of a front-end unit.


Fig. 6-Interior view of a front-end unit.

\section*{Front-End Units}

Exterior and interior views of one of the early FE (Front-End) units are shown in Figs. 5 and 6. The three sets of tuning capacitors can be seen in Fig. 6. A sche-

\footnotetext{
\({ }^{1}\) The individual stages of a synchronous-tuned IF strip are single tumed and all stages are tumed to the same frequency.
}


Fig. 7-Schematic of receiver front end unit.
matic of one of the later FE units is shown in Fig. 7. The circuit design is conventional in some respects, but requires some precautions. The principal points of difference in circuitry occur in the tuned circuits and in the method of connecting the bias and sweep voltages. Capacitances to ground are kept as low as possible to reduce the effect of shunt circuit capacitance on the tuning range. This also dictates use of tubes with low shunt capacitance. The 6 CB6 tube has good noise characteristics, and has performed very well in the frequency ranges considered.

A pentode mixer is used to keep the circuitry simple, and still provide good signal-to-110ise ratio. I.ink coupling is used to oltain oscillator injection. This method of injection reduces the possibility of spurious responses due to oscillator harmonics.

The \(Q\) of the tank circuits used is lower than ordinarily encountered in receiver design. This is due to the relatively low \(Q\) of the capacitors. High \(g_{m}\) tubes must be used to obtain satisfactory results. The oscillator circuit is quite critical with respect to the \(g_{m}\) of the tube, requiring at least 7,000 to \(8,000 \mu\) mhos to oscillate satisfactorily. The triode-connected 6All6 has given good results as the oscillator tube. The 6J4 triode has also performed satisfactorily.

The bias and sweep voltages are decoupled from the
rf circuits to avoid increases in rf loading and stray capacitance. P'airs of series-comnected capacitors are used in all the tank circuits. This affords smaller minimum capacitance and at the same time supplies a convenient dc block for the bias voltage. The rf ground end of the rf and mixer coils, and the feedback point of the oscillator coil, are comnected to the chassis. This permits a single connection to be used for the bias and sweep voltages, which aids in keeping stray capacitances to a minimum.

It was pointed out in an earlier section that it is desirable to use titanate materials which have a small temperature coefficient of dielectric constant over a wide temperature range. If the receiver is to be used over an extended temperature range, methods of temperature compensation will be required to maintain receiver tuning range and sensitivity. It has been found that for laboratory operation temperature compensation was not necessary.

\section*{Results}

To date, two working units, Modeis FE-2 and FE-3 have been built and tested. FE-2 tunes from 28 to 60 mc, while FE- 3 tunes from 55 to 110 mc .

The sensitivity of the units may be defined as that signal level at the input of the receiver which will pro-


Fig. 8-Oscillograms showing response of FE-2.
duce a "pip" on the scope twice the apparent average height of the interual noise of the receiver. \({ }^{2}\) The sensitivity of both units under the swept conditions listed is \(5( \pm 1)\) microvolts into 50 ohms. When tuned to a fixed freguency, the sensitivity goes up to approximately 1.5 microvolts. The internal noise generated in the receiver is a function of the sweep width, and of other factors, the exact nature of which are not yet known. The overall bandwidth of this system is approximately that of the IF strip, or approximately 100 kc . The half-power point resolution of the receiver is approximately 150 kc . The reliability of the receiver depends primarily upon the reliability of the tuning capacitors. Recently, excellent results have been obtained in this respect. Improvements in the methods of manufacturing the capacitors from the commercially available body materials have resulted in capacitors that are expected to give continuous operation over long periods \({ }^{3}\) with few failures.

Fig. 8 shows two oscillograms taken with FE-2 in operation. In the upper picture, marker signals of 20 microvolts at \(28,30,40,40\) and 60 mc indicate the frequency spectrum. The lower picture shows the local strong signal spectram with a short piece of wire used as an antenna. Fig. 9 shows a similar display for FE-3.

\footnotetext{
\({ }^{2}\) J. B. L. Foot, "Widehand VHF panoramic receiver," Wireless World, vol. 59, p. 392 ; September, 1953.
\({ }^{3}\) At this writing the reliable life of capacitors under operating conditions cannot be evaluated since life-test results are incomplete.
}

(a) Marker sicnal:s at \(55,65,75,85,95\), 105 , and 110 mc .

(b) Local spectrim (Detroit) with high gain discone anteuna.
Fig. 9-Oscillogratns showing response of FE-3.
The upper picture contains markers at \(55,65,75,85\), \(95,105,110 \mathrm{mc}\). The lower pieture was made with a high-gain antema oriented toward two TV stations, 30 miles distant. At the lower end of the spectrum are the audio and video signals of the two TV channels, while in the higher regions numerous FM radio stations may be observed. The frequency scale distortion noted in the upper picture is clue to the nonlinear characteristic of the tuning capacitors.

Work is presently being done to extend the tuning range to higher frequencies. I'reliminary tests on a higher frequency FE unit inclicate that attaining the 200 mc region is feasible. This requires different types of circuits than those used in FE-2 and FE-3. At frequencies much above 100 mc the most sat:sfactory oscillator circuit is the ultra-audion. \({ }^{4}\) Oscillators of this type have been built and tested up through 400 mc with tuning ratios of \(1.5: 1\). There are two major problems in connection with extension of the frequency range.
1. It is difficult to manufacture capacitors with capacitances low enough to be useful in high-frequency circuits.
2. Rf losses in the dielectric increase with frequency, resulting in lowered \(Q\) of the tuned circuits.

Although the receiver clescribed in this paper uses a relatively slow scan rate ( 60 cps ), these are applications for which a faster scan rate may be desirable. Faster
\({ }^{4}\) J. F. Reintjes and G. T. Coate, "Principles of Radar," 3rd ed., McGraw-Hill Book Co., Inc., N, Y., N, Y., p. 706; 1952.
scan rates are readily obtainable with dielectric tuned oscillators and have been reported up to 500 kc for small deviations. \({ }^{5}\) To judge from the relaxation measurements on several samples of titanate ceramics, the upper practical limit of sweeping in a panoramic receiver appears at present to be about 100 kc .

\section*{Conclusion}

There are many applications in the field of instrumentation in which dielectric tuned tank circuits could

5 M. Apstein and H. H. Wieder, "Capacitor-modulated wide range FM system," Electronics, vol. 26, p. 190; October, 1953.
be used to advantage, i.c., sweep generators and spectrum analyzers. Dielectric-tuned, wide-range, whf swept oscillators which may be suitable for use in the instrumentation field are under development at the present time.
The results achieved to date are very good considering the characteristics of the capacitor body material being used in the tuning elements. It is possible that the present difficulty of clielectric tuning-i.e., obtaining a large tuning ratio while maintaining a small temperature coefficient-may be considerably reduced through the development of new materials and manufacturing techniques.

\title{
Note on the Design of Wide-Band Low-Noise Amplifiers*
}

\author{
D. WEIGHTON \(\dagger\)
}

\begin{abstract}
Summary-The case is considered of a grounded cathode amplifier fed from a finite source impedance in which the requirements of minimum noise factor conflict with those of adequate bandwidth. Equalization, either by feedback or by the use of complementary networks, provides one means of dealing with this problem, and involves modification of some circuit parameters for minimum noise factor. Design criteria are developed for amplifiers based on this procedure, including equalization of both input and tube coupling circuits. Some measurements on an experimental amplifier are reported.
\end{abstract}

\section*{Introduction}

THHE PRINCIPIES of design of low-noise amplifiers in which bandwidth is not a limiting factor are well-known as a result of the early work of a number of authors, notably North \({ }^{1}\) and Herold. \({ }^{2}\) In the case where the requirements of minimum noise factor conflict with those of adequate bandwidth there is, however, no clearly established procedure, although a number of devices to increase bandwidth have been discussed by Herold, \({ }^{2}\) Lebenbaum \({ }^{3}\) and others. In the narrow-band case, the input circuit of a grounded cathode amplifier is normally designed for minimum noise factor by choice of the optimum transformation of source impedance as described, for example, by Waillman \({ }^{4}\) or Houlding. \({ }^{5}\) The value of this optimum source

\footnotetext{
* Original manuscript received by the IRE, January 7, 1955; revised manuscript received, Junc 17, 1955.
\(\dagger\) Pye, Ltd. Radio Works, Cambridge, England.
\({ }^{1}\) B. J. Thompson, D. O. North, and IV. A. Harris, "Fluctuations in space-charge-limited currents at moderately high frequencies, RCA Rev., vols. 4 and 5, pp. 269-285: January, 1940-July, 1941.
\({ }^{2}\) E. W'. Herold, "An analysis of the signal-to-noise ratio of ultra high frequency receivers," RCA Rev., vol. 6, pp. 302-331, 1942.
\({ }_{3} \mathrm{M}\). " I . Lebenbaum, "Design factors in low noise figure input circuits," Proc. IRE, vol. 38, pp. 75-80; January, 1950.

4H. Wallman, A. B. Macnee, and C. P. Gadsden, "A low-noise amplifier," I'Roc. IRE, vol. 36, pp. 700-708; June, 1948.
s N. Houlding, "Noise factor of conventional V.H.F. amplifiers," Wireless Eng., vol. 30, pp. 281-306; November, December, 1953.
}
impedance depends only on the circuit losses, the transit time damping and the equivalent noise resistance of the tube, and the maximum bandwidth avaibable in these conditions is therefore fised by the tube input and stray capacitances. If a greater handwidth is required there are a number of alternatives open to the designer. but in most cases some sacrifice in noise factor is involved. A detailed discussion of these alternatives is 10 be found in Twiss and Beers. \({ }^{6}\)

The use of feedback affords one of the most attractive solutions to this problem largely for incidental reasons. It allows some freedom in modifying the input impedance of the amplifier without appreriably degrading the noise factor and tends to minimize the effect of variations in source impedance. The effect of feedback on single frequency moise factor has been dealt with by llarris \({ }^{7}\) and more recently by Beers, \({ }^{8}\) who also diseusses specific cases based on the work of Nacnee. These atuthors show that, provided the feedback network does not itself significantly load the input circuit, the effect on single-frequency noise factor is small. The effect on the average noise factor over a wide pass band may, however, be large, since the spectral distribution of noise is changed, and a new value of optimum source impedance has to be found. The problem is similar to that of an amplifier in which the restricted bandwidth of the input circuit is corrected by an equalizing network inserter at some later stage. The latter arrangement has received some attention in relation to viden armplifiers fed from a

6 R. Q. Twiss and Y. Beers, "Vacuun Tube Amplifiers," M.I.T Rad. Lab. Ser., No. 18, McGraw-Hill Book (o., Inc., New York N. Y., ch. 13; 1948.
iv. A. Harris, "Fluctuations in vacum-tube amplifiers and in put systems," RCA Rei., vol. 6, pp. 114-124; Jaly, 1941.

8 \%. Beers, "Microwave Receivers," M.I.T. Rad. Lah. Ser., No 23. McGraw-Hill Book Co., New York, N. Y., p. 88: 1948.


Fig. 1
constant current source (see, for example, Barco \({ }^{9}\) ) but as far as the author is aware it hat not received quantitative treatment for the case of a source of constant awailable power.

The purpose of the present note is to develop design criteria and performance data for minimum-noise equalized amplifiers and to present the results in a form directly useful to the engincer. The discussion is limited to the grounded cathode circuit fed from a source of finite impedance, but applies equally to pentodes or triodes which may be either neutralized or cascole stabilized.

\section*{Input Circuit}

The simplest arrangement of input circuit for a bandpass amplifier is shown in Fig. 1, where the total capacitance to ground is tuned bẹ a shunt inductor. Writing \(g\) s the source conductance, \(g_{d}\) the conductance representing circuit losses, \(g_{t}\) the transit time conductance, and \(g_{x}\) the total shunt susceptance, then the transfer function of the input circuit is of the form
\[
g_{s} /\left(g_{s}+g_{d}+g_{t}+j g_{x}\right)
\]
and the correcting network must therefore have the form
\[
\begin{equation*}
f(\omega)=\left(g_{s}+g_{d}+g_{t}\right)+i g_{x} \tag{1}
\end{equation*}
\]
if the amplifier is to be distortionless.
It is shown in \(A_{p p e n d i x} A\) that the noise factor of the first stage of an amplifier which is followed by a correcting network of this form is given by
\[
\begin{align*}
V= & 1+\left\{K g_{i}+g_{d}+\frac{4}{3} r_{n} \pi^{2} B^{2} C^{2}\right\} / g_{s} \\
& +r_{n}\left(g_{s}+g_{t}+g_{d}\right)^{2} / g_{s} \tag{2}
\end{align*}
\]
where \(K\) is the excess noise temperature assigned to the transit time loading, \(B\) is the over-all noise bandwidth of the amplifier in cycles per second and \(r_{n}\) is the equivalent noise resistance of the first tube. Eq. (2) will be recognized as the expression for single-frequency noise factor at band center with an additional term in the first bracket. It follows that the bandwidth limitation may be taken into account by supposing an additional noise source equal to that of a conductance \(4 / 3 r_{n} \pi^{2} B^{2} C^{2}\) to he in shunt with the input circuit.

In a wide-band amplifier \(g_{d}\) and \(g_{t}\) will generally be small compared with \(g_{s}\), and the expression for noise factor may be approximated

\footnotetext{
\({ }^{9}\) A. A. Barco, "An iconoscope preamplitier," RC. 1 Rcv., vol. 4, pp. 8()-107; July, 19.39.
}
\[
\begin{equation*}
I=1+\left(\kappa g_{t}+\frac{4}{3} r_{n} \pi^{2} B^{2}(\cdots) / g_{s}+r_{n} g_{s}\right. \tag{3}
\end{equation*}
\]

In video amplifiers or intermediate frequency amplifiers in which the center frequency is sufficiently low, the bandwidth term predominates over the induced grid noise and the expression may be further approximated
\[
\begin{equation*}
N=1+4 r_{n} \pi^{2} B^{2} C^{2} / 3 g_{s}+r_{n} g_{s} \tag{4}
\end{equation*}
\]
from which the optimum source impedance is seen to be
\[
\begin{equation*}
r_{s} \text { optimum }=\sqrt{ } 3 / 2 \pi R C \tag{5}
\end{equation*}
\]
and the minimum noise factor,
\[
\begin{equation*}
V \text { minimum }=1+2.32 r_{n} \pi B C \tag{6}
\end{equation*}
\]

It will be observed that under these conditions the optimum source impedance is independent of the equivalent noise resistance of the tube. Substituting from (5) into the transfer function of the input circuit, we obtain the result that the response falls by a factor of 2 at the edge of the band. The best noise factor is therefore obtained when the coupling of the source is adjusted to give an input circuit response which falls by 6 db at the edges of the desired band.

It is interesting to compare the performance of an amplifier designed on this basis with that of one in which the input circuit is damped by the source to a point where it is substantially flat over the desired band so that no compensation or feedback is necessary. For the sake of comparison substantially flat may be interpreted as dropping by 1 db at the limits of the over-all noise bandwidth. In this condition, \(\pi B C r_{s}=.255\).

Kearranging (4),
\[
\begin{aligned}
& N=1+r_{n} \cdot \pi B C \cdot\left\{\frac{g_{s}}{\pi B C}+\frac{4 \pi B C}{3 g_{s}}\right\} \\
& N=1+4.35 \pi B C r_{n}
\end{aligned}
\]

Comparing this result with (6), it is seen that the incremental noise is improved by a factor of nearly 2 by the use of the correct source impedance combined with compensation. When the induced grid noise is not negligible as when the bandwidth is smaller or the center frequncy higher, the improvement effected in noise factor will be less.

\section*{Tube Coupling Circuits}

The discussion has so far neglected the noise sources associated with the second and subsequent stages. The contributions to the total noise from these sources be-
come of increasing importance as the bandwidth is made wider, and for minimum noise factor it is evidently desirable to achieve the greatest possible gainbandwidth product for each stage. The noise relations in double-tuncd circuits have been studied in this connection by Herold. \({ }^{2}\) For optimum performance multiple circuit couplings tend to become critical of adjustment and difficult to handle in practice, and the case of an undamped circuit compensated by feedback is worthy of attention on the score of simplicity. The arrangement corresponds closely to the video amplifier described by Barco, \({ }^{9}\) but the equations differ when the amplifier contains more than one circuit to be compensated. Integration of the noise over the band then involves cross proclucts and the equations tend to become too complex to be useful to the designer. In most cases, however, the noise sources in the first two stages are the only ones of importance and the solution in this instance is derived in Appenclix A.

Inspection of the expressions for noise factor given by (19) and (20) shows that the damping on the circuits \(g_{d}\) and \(g_{d 1}\) should be as small as possible for the best noise factor. In the wide-band case an approximation may be made similar to that discussed above for the input circuit and (19) then simplifies to
\[
\begin{equation*}
N=1+r_{\mathrm{s}}\left\{K g_{t}+\frac{4}{3} \pi^{2} B^{2} C^{2} R_{x}\right\}+g_{8} R_{y}, \tag{7}
\end{equation*}
\]
where
\[
R_{x}=\boldsymbol{r}_{n}+\frac{1}{g^{2}}\left\{K g_{t 1}+\frac{12}{5} \boldsymbol{r}_{n 1} \pi^{2} B^{2} C_{1}^{2}\right\}
\]
and
\[
R_{y}=r_{n}+\frac{1}{g^{2}}\left\{K_{t 1}+\frac{4}{3} r_{n 1} 1 \pi^{2} B^{2} C_{1}^{2}\right\} .
\]

The contribution from the second tube appears in terms in both \(g_{s}\) and \(1 / g_{s}\) and will in general modify the optimum value of source impedance. However, the effect will be small unless the stage gain is very low, and the source impedance given by (5) may usually be used with negligible rise in noise factor. Substituting for \(g s\) from (5) in (7), and neglecting the induced grid noise terms, we obtain
\[
\begin{equation*}
N=1+\frac{4 \pi B C}{\sqrt{3}}\left\{r_{n}+\left(\frac{\pi B C_{1}}{.73 g}\right)^{2} r_{n 3}\right\} . \tag{8}
\end{equation*}
\]

Comparing this with (6), it appears that for the purposes of calculating noise the effective voltage gain of the first stage is
\[
\begin{equation*}
\frac{.73 g}{\pi B C_{1}} \tag{9}
\end{equation*}
\]

When the input circuit is not equalized but is made sufficiently flat over the required frequency band by reducing the source impedance, then the term in \(1 / \mathrm{g}\), in
(7) will be small compared with the term in \(g_{8}\). The effective voltage gain of the first stage is then obtained from the coefficient of \(r_{n 1}\) in the term in \(g_{s}\) and will be
\[
\begin{equation*}
\frac{.87 g}{\pi B C_{1}} \tag{10}
\end{equation*}
\]

Comparing (9) and (10), it appears that the effective stage gain does not vary greatly for widely varying values of source impedance. The expressions are in a form permitting direct comparison with the performance of other types of coupling circuit, \({ }^{10,11}\) for example, they compare favorably with the corresponding formula for a two-circuit coupler having unequal \(Q s\).

Eq. (8) illustrates a feature of wide-band amplifiers which has not been emphasized in the literature. The criterion for low-noise factor in the first tube is a low value of the product \(r_{n} C\), whereas in the second stage the contribution to the noise depends on \(r_{n 1} \mathcal{C}_{1}{ }^{2}\). This may have an important bearing on the selection of suitable tubes for these positions in a low-noise amplifier.

\section*{Matcuing to the Source}

In narrow-band amplifiers the optimum source impedance is generally lower than the input impedance of the amplifier if the latter is largely determined by transit time damping. In the wide-band case the discrepancy will be greater, but the use of a feedback network to equalize the response of the input circuit suggests the possibility of also obtaining a match by this means. To satisfy the matching requirement and at the same time equalize with sufficient accuracy over the desired band it would theoretically be necessary to provide a rather complex feedback network. In the simplest case of a resistor connected back to the input circuit from a point in the amplifier where the gain is sufficiently high there are two parameters at the disposal of the designer, the feedback factor at band center and the group time delay round the loop. If the first of these is chosen to match the input impedance to the source, the second may be adjusted for a first-order equalization, but the frequency band over which such equalization is adequate will then be fixed. The result is, however, reasonably good for a source impedance chosen in accordance with (5), and it is shown in Appendix B that a maximally flat condition may then be obtained in which the response falls by \(\frac{1}{2} \mathrm{db}\) at the limits of the design bandwidth. If the induced grid noise is significant so that the circuit to be equalized falls by less than 6 db at the band limits, then the matching condition may evidently be satisfied with an even better over-all response.

\section*{Practical Aspects}

The construction of wide-band amplifiers in accordance with the above principles presents two major

\footnotetext{
\({ }^{10}\) II. A. Wheeler, "Wide-band amplifiers for television," Proc. IRE, vol. 27, pp. 429-438; July, 19.39.
\({ }^{11}\) D. Weighton, "Performance of coupled and staggered circuits in wide band amplifiers," W'ireless Eng., vol. 21, pp. 468; October, 1944.
}


Fig. 2-Experimental amplifier showing ac connections only.
practical difficulties. The first is the familiar one of avoiding the effects of anode-grid capacitance in a grounded cathode triode, and the second the design of practical networks for compensation of the input and tube coupling circuits. An experimenta! amplifier has been constructed which offers one approach to the solution of these two problems. Compensat:on is by feedback rather than by complementary networks, since the response is then less critically dependent on the source impedance. In order to avoid appreciable damping on the imput circuit by the feedback network itself, it is desirable that this should be taken from a point in the amplifier where the voltage gain is high. A similar remark applies to the circuit coupling the first and second tubes. However, since a compromise has to be effected and the input circuit is evidently the more important from the noise point of view, the arrangement in Fig. 2 (above) was tried and found to be reasonably satisfactory: Feedl)ack for compensation of the second circuit is over only one stage via the resistor \(R_{1}\) in shunt with a resonant circuit of which the plate-grid capacitance of the tube forms the major portion of the tuning capacitance. The arrangement can readily be adjusted for a maximally flat response without the addition of damping across the circuit. Feedback for the input circuit is over three stages allowing the resistor \(R_{2}\) to be large compared with the source impedance. In one example for a bandwidth of 16 mc the optimum source inpedance was found to be about 500 ohms and \(\mathrm{R}_{2}\) was 18,000 ohms having no measurable effect on the singlefrequency noise factor.

Inductive neutralization is employed throughout, since it affords the simplest circuit arrangement. The ease of neutralization in the first stage is greatly helped by the low voltage gain between grid and plate of the first tube. Since the feedback resistor \(R_{1}\) is generally small compared with the plate impedance of the second tube, the input impedance of this stage at band center approximates to the reciprocal of the slope of the tube, and the voltage gain of the first stage is therefore one when the slopes of the two tubes are eçual. In this respect the arrangement resembles the cascode. It differs in that the gain of the first stage rises on either side of band center. It is, however, sufficiently low at all times to ensure stability, and neutralization has been found to be very noncritical.

\section*{Experimental Results}

No detailed experimental investigation has been undertaken, but the noise factor of one amplifier of the kind described above has been measured for a range of source impedance, adjusting the feedhack in each case to maintain a flat response, and the results are shown in Fig. 3. The first two tubes were 6 J 6 s with the two halves operated in parallel and the main parameters as follows:


Fig. 3
Calculation of the anticipated performance illustrates the use of the equations and provides a check on the experimental results. The effective voltage gain of the first stage is first estimated from (9) and yields a figure of 10.3 times. The noise contribution from the second stage may therefore be neglected and the optimum source impedance derived from (3). Allowing a noise temperature ratio of 5 for the induced grid noise, the terms are
\[
1 / \mathrm{kg}_{\iota}=4,000 \text { ohms },
\]
and
\[
3 / 4 r_{n} \pi^{2} B^{2} C^{2}=1,800 \text { ohms }
\]
giving a total shunt resistance of 1,240 ohms. The optimum source impedance is therefore the geometric mean
of 1,240 ohms and the equivalent noise resistance 300 ohms, i.e., 610 ohms, and the corresponding noise factor
\[
\begin{aligned}
& N=1+2 \times \frac{300}{610} \\
& N=1.98 .
\end{aligned}
\]

The measured values show reasomably good agreement with these calculated figures.

\section*{Conclusions}

Consideration of the noise relationships in grounded cathode wide-band amplifiers in which the input and tube coupling circuits are equalized by feedback reveals two points of interest to the design engincer.
1. The optimum source resistance may be selected by considering the usual narrow-band equation for noise factor with the addition of a hypothetical noise source equivalent to a conductance \(4 r_{n} \pi^{2} B^{2} C^{2} / 3\) in shunt with the input. In the case of very large bandwidth or low mean frequency where this hypothetical source predominates over induced grid noise, the optimum condition is one in which the circuit falls by 6 db at the edges of the desired frequency band.
2. The equalized tube coupling circuit has an effec tive gain-bandwidth for noise calculations which compares favorably with that of multiple circuit net works.

There appears to be no major practical difficulty in constructing amplifiers of this kind which approximate closely to the theoretical limits at least for bandwidths up to about 20 mc .

\section*{Appendix A}

Fig. 1 slows the essential features of an amplifier in which the input and first stage coupling circuits are followed by their appropriate correcting networks. From the transfer functions of the two circuits it is readily shown that the correcting networks have the form
\[
\begin{align*}
f(\omega) & =\left(g_{s}+g_{d}+g_{k}\right)+j g_{x} \\
f_{1}(\omega) & =\left(g_{d 1}+g_{11}\right)+j g_{x 1} . \tag{11}
\end{align*}
\]

Neglecting any correlation between induced grid noise and shot noise, the equivalent mean-square noise voltage per cycle at the grid of the first tube is found to be
\[
\begin{align*}
\vartheta^{2}= & 4 k T\left(g_{\varepsilon}+g_{d}+K g_{\imath}\right) /\left\{\left(g_{\imath}+g_{d}+g_{\varepsilon}\right)^{2}+g_{x}^{2}\right\} \\
& +4 k T r_{n}, \tag{12}
\end{align*}
\]
where \(K T\) is the noise temperature assigned to the transit time conductance, and \(r_{n}\) is the equivalent noise resistance of the tube.

The mean square noise voltage per cycle at the grid of the second tube due to the sources in the second circuit is given by
\[
\begin{equation*}
\left.v_{1}^{2}=4 k T\left(g_{d 1}+K g_{t 1}\right) /\left\{\left(g_{l_{11}}+g_{d 1}\right)^{2}+g_{x 1}\right)^{2}\right\}+4 k T r_{n 1} . \tag{13}
\end{equation*}
\]

Now the mean noise power per cycle at the output of the amplifier is proportional to
\[
\begin{equation*}
g^{2} v^{2}|f(\omega)|^{2}+v_{1}^{2}|f(\omega)|^{2} \cdot|f:(\omega)|^{2}, \tag{14}
\end{equation*}
\]
where \(g\) is the transconductance of the first tube. Substituting for \(v^{2}\) and \(v_{1}^{2}\) from (12) and (13), this expression becomes
\[
\begin{align*}
4 k T\left[g^{3}\left(g_{s}+g_{d}+k g_{t}\right)+\right. & \left(r_{n} g^{2}+g_{d 1}+K g_{11}\right) \cdot|f(\omega)|^{2} \\
& \left.+r_{n 1} \cdot|f(\omega)|^{2} \cdot\left|f_{1}(\omega)\right|^{2}\right] . \tag{15}
\end{align*}
\]

Substituting for \(f(\omega)\) and \(f_{1}(\omega)\) from (1) and (13) yields an expression containing terms in \(g_{x}{ }^{2}, g_{x 1}{ }^{2}, g_{x}{ }^{2} g_{x 1}{ }^{2}\) and terms independent of frequency. To fird the total noise this function must be integrated over the band accepted by the remainder of the amplifier, and the integrand should properly be modified in those regions where the over-all amplitude response is not flat. In practice it is usually sufficient to estimate the noise bandwidth and to integrate within these limits assuming a flat response.

If \(\omega_{0}\) is the angular frequency at the band center, then
\[
g_{x}^{2}=\omega_{0}^{2} C^{2}\left(\frac{\omega}{\omega_{0}}-\frac{\omega_{0}}{\omega}\right)^{2}
\]
and writing
\[
p=\left(\omega_{1}-\omega_{2}\right) / 2 \omega_{0}
\]
where \(\omega_{1}\) and \(\omega_{2}\) define the limits of the noise bandwidth
\[
\int_{\omega_{1}}^{\omega_{2}} g_{x}^{2} \cdot d \omega=\left(\omega_{2}-\omega_{1}\right) \omega_{0}^{2} C^{2} p^{2}\left(t-p^{2}\right) / 3\left(1-p^{2}\right) .
\]

Provided \(p\) is less than about 0.25 , a very good approximation is given by
\[
\begin{align*}
\int_{\omega_{1}}^{\omega_{2}} g_{x^{2} \cdot d \omega} & =\left(\omega_{2}-\omega_{1}\right) \cdot \frac{4}{3} p^{2} \omega_{0}^{2} C^{2} \\
& =\left(\omega_{2}-\omega_{1}\right) \cdot \frac{4}{3} \pi^{2} B^{2} C^{2} \tag{16}
\end{align*}
\]
where \(B\) is the noise bandwidth.
The remaining terms may be integrated in a similar manner, giving
\[
\begin{align*}
& \int_{\omega_{1}}^{\omega_{2}} g_{x 1}^{2} \cdot d \omega=\left(\omega_{2}-\omega_{1}\right) \cdot \frac{4}{3} \pi^{2} B^{2} C_{1}{ }^{2}  \tag{1i}\\
& \int_{\omega_{1}}^{\omega_{2}} g_{x^{2}}{ }^{2} \cdot g_{x 1}{ }^{2} \cdot d \omega=\left(\omega_{2}-\omega_{1}\right) \cdot \frac{16}{5} \pi^{4} B^{4} C^{\prime \prime 2} C_{1}{ }^{2} \tag{18}
\end{align*}
\]

Using these relations in the integration of (15) and dividing by the noise originating in the source gives the noise factor:
\[
\begin{align*}
N= & 1+r_{s}\left(g_{d}+K_{g t}+\frac{4}{3} \pi^{2} B^{2} C^{2} R_{2}\right) \\
& +r_{s}\left(g_{s}+g_{d}+g_{t}\right)^{2} R_{y}, \tag{19}
\end{align*}
\]
where
\[
\begin{align*}
R_{x}= & r_{n}+\frac{1}{g^{2}}\left[g_{d 1}+\kappa g_{t 1}+r_{n 1}\left\{\left(g_{d 1}+g_{t 1}\right)^{2}\right.\right. \\
& \left.\left.+\frac{12}{5} \pi^{2} B^{2} C_{1}^{2}\right\}\right] \\
R_{y}= & r_{n}+\frac{1}{g^{2}}\left[g_{d 1}+\kappa g_{t 1}+r_{n 1}\left\{\left(g_{d 1}+g_{t 1}\right)^{2}\right.\right. \\
& \left.\left.+\frac{4}{3} \pi^{2} B^{2} C_{1}^{2}\right\}\right] . \tag{20}
\end{align*}
\]

When the noise sources in the second stage are omitted,
\[
R_{x}=R_{y}=r_{n}
\]
and inserting these values in (19) gives the noise factor of the first stage alone.

\section*{Abpecidix 13}

Fig. 4 shows an input circuit with current feedback via a resistor \(R\); the amplifier having a gain of \(-A\) and a time delay 7 . The analysis is carried out for the low-pass case but applies equally to a band-pass amplifier if \(T\) is the group delay.


Fig. 4
The effective admittance due to feedback is of the form
\[
\frac{1}{R}\left(1+.4 e^{-j \omega T}\right)
\]
and the total admit tance of the circuit is therefore
\[
Y=\frac{1}{r_{s}}+j \omega C+\frac{1}{R}\left(1+A e^{-j \omega T}\right)
\]

When the matching condition is satisfied and \(R\) is large compared with \(r_{s}\),
\[
Y=j \omega C+\frac{1}{r_{s}}\left(1+e^{-j \omega T}\right)
\]

Separating real and imaginary terms and taking the modulus gives
\[
Y \left\lvert\, r_{s}^{2}=2(1+\cos \omega T)+\omega^{2} C^{\prime 2} r_{s}^{2}\left(1-\frac{2 \sin \omega T}{\omega C r_{s}}\right)\right.
\]

Expanding in powers of \(\omega\) and equating the coefficient of \(\omega^{2}\) to zero, we obtain
\[
T=(\sqrt{2}-1) C r_{s} .
\]

This is the condition for first-order equalization. If \(r_{s}\) is chosen in accordance with criterion (5), then
\[
\omega C r_{s}=\sqrt{3}
\]
at the limits of the band and hence
\[
\begin{aligned}
\omega T & =\sqrt{3}(\sqrt{2}-1) \\
& =.715 \text { or } 41^{\circ} .
\end{aligned}
\]

Substituting these values in the expression for transfer arlmittance, we obtain
\[
|Y|{ }^{2} r_{\varepsilon}^{2}=4.23
\]

When \(\omega=0,|Y|^{2} r_{s}{ }^{2}=4\), and the response at the edge of the band is therefore down in the ratio \(\sqrt{4 / 4.23}=.94 .5\), or about \(\frac{1}{2} \mathrm{db}\).

\section*{Acknowledgment}
'The author is indebted to J. Blades for many useful discussions and to the Directors of Messrs. I'ye Limited for permission to publish this paper.

\section*{Correction}
H. I Haus and F. N. H. Robinson, authors of the paper, "The Minimum Noise Figure of Microwave Beam Amplifiers," which appeared on pages 981-991 of the August, 1955 issue of the Procerdings of the |RE, have brought the following corrections to the attention of the editors.
1. Eq. 3 should read
\[
q=\left(q_{1} e^{j \beta_{p} z}+q_{2} e^{-j \beta_{p} z}\right) e^{-j \beta_{\Delta} z}
\]
2. Paragraph above Eq. 27 should read

The determinant of \(P\) is det \(P= \pm 1\) and so (25) . .
3. Ielete this sentence, which follows E( \(\downarrow .54\) :

The equality sign applies when \(M_{44}=0\), which will be the case if the amplifier presents a match to the output. transmission line.
4. Eq. 61 shoukl read
\[
G(z)=G e^{-2 \beta_{0} \sigma x_{1} z} .
\]

Where \(\beta_{p} C\) and \(x_{1}\) have their usual meaning. \({ }^{1}\)
5. The integral expression below Eq. 61 should read
\[
\int_{0}^{l} e^{-2 \beta_{C} C x 1^{2} \lambda} \lambda d \tau
\]
6. Immediately below this integral expression, change lower case \(c\) to capital \(C\).
7. In Eq. 76 insert an equality sign between closed paren. and \(E_{z}\).
8. Two lines below Eq. \(84, \epsilon_{2}=\epsilon_{2}{ }^{*}\) should read \(\epsilon_{1}=\epsilon_{2}{ }^{*}\).

\title{
Wide-Range Electronic Tuning of Microwave Cavities*
}

\author{
I. R. ARAMS \(\dagger\), senior member, ire, and H. K. JENNY \(\dagger\), senior mimbee, ire
}

\begin{abstract}
Summary-Methods for electronically tuning microwave cavities using the principles of space-charge tuning and of spiral-beam electronic tuning in the presence of a low-pressure gas are described. The use of a low-pressure gas permits tuning over frequency ranges several times larger than those obtainable in vacuum.
\end{abstract}

An \(S\)-band cavity was tuned over a frequency range from 3,280 to \(4,350 \mathrm{mc}\), and from 3,280 to \(2,540 \mathrm{mc}\), or \(\pm 30\) per cent. An \(X\)-band cavity was tuned over a frequency range from 9,170 to \(10,800 \mathrm{mc}\), or 18 per cent. These values are compared to measurements made in vacuum.

A semi-quantitative theory for electronic tuning in gas atmospheres is presented. Limitations of the method are given.

\section*{Introduction}

ELECTRONIC tuning of microwave resonant elements is necessary for many applications in which frequency must be varied rapidly. For example, frequency-modulated oscillators may use electronically tuned microwave resonant cavities. Although earlier electronic-tuning techniçues limited the tuning range of microwave cavities to a few per cent, the use of a low-pressure gas atmosphere has been found to permit the tuning of microwave cavities over frequency ranges several times larger than those obtainable when corresponding techniques are used in vacuum.
Two principal methods are used for the electronic tuning of microwave cavities in vacuum. The first method, spiral-beam tuning, \({ }^{1,2}\) involves the projection of an electron beam into the resonant structure in a direction perpendicular to the oscillating electric field and parallel to a constant magnetic field, as in Fig. 1 (a). The second method, space-charge tuning, \({ }^{3-5}\) involves rotation of a cloud of electrons in a plane perpendicular to a constant magnetic field and in the same plane as the oscillating electric field, as in Fig. 1(b).
Both methods of tuning involve the interaction of rotating electrons with the radio-frequency electric field. Although this article describes the effects of this interaction in terms of changes in resonant frequency, the process is fundamentally an electronic means for changing capacitance. The various tuning methods described, therefore, are applicable not only to resonant elements but also to any other microwave network involving electric fields, i.e., capacitances. This paper discusses theo-

\footnotetext{
* Original manuscript received by the IRE, February 2, 1955; revised manuscript received, June 6, 1955.
\(\dagger\) Radio Corporation of America, Tube Division, Harrison, N. J.
\({ }^{1}\) L. P. Smith and C. Shulman, "Frequency modulation and control by electron beams," Proc. IRE, vol. 35, pp. 64+-657; July, 19.47.
\({ }^{2}\) A. Baños, Jr., and D. S. Saxon, "An Electronic Modulator for CW Magnetrons," M.I.'T. Rad. Lab. Rep. 748; June 26, 1945.
\({ }^{3}\) J. P. Blewett and S. Ramo, "High frequency behavior of a space charge rotating in a magnetic field," Phys. Rev., vol. 57, pp. 635-641; 1940; and Jour. Appl. Phys. vol. 12, pp. 856-859: 19+1.

4 W. E., Lamb, Jr., and M. Phillips, "Space-charge frequency dependence of a magnetron cavity," Jour. Appl. Phys., vol. 18, pp. 230-2.38; February, 1947.
\({ }^{5} \mathrm{H}\). W. Welch, Jr., G. R. Black, G. R. Brewer, and G. Hok, Final Report, "Theoretical Study, Design and Construction of CV Magnetrons for Frequency Modulation," Contract W-36-039-SC\(322+5\), Univ. of Michigan, Engrg. Res. Inst., May 27, 1949.
}
retical aspects and experimental results for spiral-beam tuning and space-charge tuning in gas atmospheres and compares these results to those obtained when the same tuning methods are used in vacuum.

(a)


Fig. 1-(a) Schematic representation of resonant cavity using spiralbeam tuning. (b) Schematic representation of resonant cavity using space-charge tuning.

\section*{Tineoretical Aspects}

\section*{Spiral-Beam Tuning}

In spiral-beam tuning, an electron beam is introduced into the concentrated electric-field region of a cavity, as shown schematically in lig. 1(a). The magnetic field, which is parallel to the electron stream, causes the electrons to precess, i.e. to describe helical orbits. The electrons, therefore, exchange energy with the radiofrequency electric field, \(E_{x}\), inducing a reactive current in the cavity walls and thereby having a tuning effect on the cavity. The period of rotation oi the electrons is determined by the magnetic field in accordance with the formula \(\omega_{c}=(|e| / m) B_{z}\), where \(\omega_{c}\) is the angular frequency of rotation in radians per second, \(|e|\) and \(m\) are the charge and mass, respectively, of an electron, and \(B_{z}\) is the magnetic-field density in wehers per square meter. Depending on the value of \(\omega_{c}\) and the combination of angular frequency, \(\omega\), of the rf field, geometry, and electron entrance velocity, \(v_{0}\), the electron beam behaves as an electronically variable admittance, with or without a dissipative component. This admittance is either inductive or capacitive, i.e., can either raise or lower the resonant freguency of the circuit electronically. This relation has been analyzed by Smith and Shulman' \({ }^{1}\) and by Baños and Saxon. \({ }^{2}\)
Smith and Shulman begin their analysis with the electronic equations of motion:
\[
\begin{align*}
m \ddot{x} & =-E_{0}|e| e^{i \omega t}-B_{z}|e| \dot{y}  \tag{1}\\
m \ddot{y} & =+B_{z}|e| \dot{x}  \tag{2}\\
m \ddot{z} & =0 \tag{3}
\end{align*}
\]
where \(x, y\), and \(z\) are the three Cartesian co-ordinates, \(t\) is time in seconds. \(E_{0} e^{i \omega t}\) represents the electric-field intensity varying at an angular radio frequency \(\omega(=2 \pi f)\), \(B_{z}\) is the constant magnetic-field density, and the dots above the symbols \(x, y\), and \(z\), denote first and second derivatives with respect to time. In this paper, a distinction is made between \(\omega\), the resomant angular frequency of the tuned cavity, and \(\omega_{0}\), the resonant angular frequency of the untuned cavity, such that \(\omega=\omega_{0}+\Delta \omega\).

For the initial conditions, Smith and Shulman assumed that when \(t=t_{0}, x=z=0, \dot{x}=v_{x}=\dot{y}=0\), and \(\dot{z}=v_{0}\). Thus, they obtained for the \(x\)-component of velocity:
\[
\begin{align*}
v_{x}= & -E_{0} \frac{|e|}{m} \frac{i \omega}{\omega^{2}-\omega_{c}{ }^{2}}\left\{\left(\frac{\omega_{c}+\omega}{2 \omega_{c}}\right) e^{i\left(\omega_{c}-\omega\right)\left(t-t_{0}\right)}\right. \\
& \left.+\left(\frac{\omega_{e}-\omega}{2 \omega_{c}}\right) e^{-i\left(\omega+\omega_{c}\right)\left(t-t_{0}\right)}-1\right\} e^{i \omega t} . \tag{4}
\end{align*}
\]

If the frequency change is restricted so that the fraction \(\left(\omega_{c}-\omega\right) / \omega\) is considerably less than unity, an expression for electron admittance as a function of the transit angle, \(\theta\), is obtained, as shown in Fig. 2. The


Fig. 2-Electronic admittance as a function of transit angle, \(\theta\).
transit angle, \(\theta\), in radians, is equal to \(\left(\omega_{c}-\omega_{0}\right) \tau\), where \(\tau\) is the electron transit time in seconds. Typical electron trajectories appear in Fig. 2 for several values of \(\theta\), when cavity is excited in the \(\mathrm{TE}_{111}\) mode. When the electron enters the rf-field region, it is accelerated by the rf field toward one ridge (Fig. 7) and then begins to describe a circular path due to influence of the dc magnetic field. The length of time required for an electron to describe a complete circle is independent of the rf field, and is a function of the magnetic field oaly. Angular velocity of the electron, \(\omega_{c}\), is a constant equal to \(B_{z}|e| /\) \(m\). If the angular frequency, \(\omega\), of the rf field is somewhat greater than \(\omega_{c}\), the time of one complete revolution is somewhat more than the time of ore rf cycle so that the electron will lag somewhat behind the field. At the end of each succeeding revolution, the electron has gained more energy and has increased its radius of rotation, but it continues to fall further behind the rf field until its rotation is in quadrature with the field. Beyond this point, as the electron continues to rotate, it begins to give up some of its rotational energy to the rf field, and its radius of rotation decreases.

If the electron leaves the interaction space when its radius of rotation is zero \((\theta=2 \pi n ; n=1,2,3, \cdots)\), the electron beam can be represented by a pure susceptance; this condition represents frequency modulation. If the electron leaves the interaction space at any other point ( \(\theta \neq 2 \pi n\) ), the beam has rotational energy (which is dissipated as heat) and can be represented by a susceptance plus a dissipative component; this condition represents a combination of amplitude and frequency modulation. In the special case where \(\omega=\omega_{c}\), the electron rotation is in phase with the rf fielld; as a result, the radius of rotation will increase without limit until the electron strikes the ridge; this condition represents amplitude modulation.

Even though the susceptance decreases with increasing transit angle, \(\theta\), (for \(\theta>\pi\) ) as shown in Fig. 2, it is not inversely proportional to transit time, \(\tau\), because \(\tau\) is a variable dependent on the electron entrance velocity \(v_{0}\). Since
\[
V_{0}=\frac{1}{2} \frac{m}{|e|} \frac{L^{2}}{\tau^{2}}
\]
by substituting for \(V_{0}\) in the expression for electronic admittance shown in Fig. 2, the curves shown in Fig. 3, in a three-dimensional plot, are obtained. These curves indicate that for a given value of magnetic field the electronic susceptance increases continuously with transit time.


Fig. 3-Three-dimensional plot of theoretical frequency shift in spiral-beam tuning as a function of magnetic-field parameter, \(\omega_{0} / \omega_{0}\), and transit time, \(\omega_{0} \tau\).

In the experimental work described in this article, the experimental frequency shifts were large enough so that the restriction of frequency change \(\omega_{c}-\omega \ll \omega\) was no longer valid. Therefore, new expressions for electronic admittance are shown in (7) and (8).

\section*{Spiral-Beam Tuning in a Gas Atmosphere}

The electron is shot into the tuning cavity with a kinetic energy \(v_{0}\), which is several times the ionization potential of the gas ( 15.7 volts for argon \(A+\) ). After traveling a mean free path which can be calculated statistically, the electron experiences inelastic collisions with gas molecules, thereby producing ionization electrons. These then begin to spiral in phase with the rf field (as the primary electrons did when they entered the cavity), and thereby contrilute to the electronic susceptance. Because the primary electrons are slowed
down by the collisions and the ionization electrons have very low drift velocity, the time during which the electrons interact with the rf field is substantially increased. Therefore, we can expect an increase in electronic reactance, over that obtainable with spiral-beam tuning in vacuum, due to two factors: (1) more electrons, and (2) increased interaction time, i.e., transit time.

More Electrons. An electron having an entrance velocity of 100 volts can produce as many as six ionization electrons in argon. The prohability of an electron colliding with a gas molecule in a given distance in the \(z\)-direction is substantially increased by the magnetio field because of the spiral-beam helical motion of electrons in the (transverse) \(x y\) plane. Hence, a given mean free path may be divided by a factor, \(K\), to obtain an equivalent mean free path which allows for increased path length due to the transverse helical electron motion. The value of the factor \(K\) is derived as follows:

The length, \(S\), of the helical path of the electron in spiral-beam tuning for one spiral may be expressed as
\[
\begin{align*}
S= & \int_{0}^{1 / 2\left(f_{c}-f\right)} \\
& \sqrt{\left(\frac{2|e| E_{0} \omega}{m\left(\omega_{c}{ }^{2}-\omega^{2}\right)}\right)^{2} \sin ^{2} \frac{1}{2}\left(\omega_{c}-\omega\right) t+v_{0}^{2}} \tag{5}
\end{align*}
\]

If the electron moves in the (transverse) \(x y\)-plane in a spiral path without motion in the (axial) \(z\)-direction, i.e., \(z_{0}\) is taken to be zero, (5) can be easily integrated and the length of the path between adjacent points of minimum radius obtained:
\[
\begin{equation*}
s=\delta \frac{|e|}{m} \frac{E_{0}}{\omega^{2}}\left[\frac{1}{\left(\frac{\omega_{c}}{\omega}\right)^{2}-1}\right]\left[\frac{1}{\left(\frac{\omega_{c}}{\omega}\right)-1}\right] \tag{6}
\end{equation*}
\]

The axial distance, \(l\), for one complete helical path, is given by
\[
l=v_{0} t=\frac{v_{0}}{f_{c}-f}
\]

The value of the factor \(K\) is approximately equal to che sum of the two path lengths (added linearly) divided byl:
\[
K \approx \frac{S+l}{l}
\]

The equivalent mean free path, therefore, is a function of both the rf electric field and the electron-beam velocity.

Fig. 4 shows \(K\) as a function of beam voltage, \(V_{0}\), for an \(S\)-band cavity fed from a local oscillator having an output of 50 milliwatts and for an \(X\)-band cavity fed from a 200 -watt source. For the \(X\)-band cavity, \(K\) is about 10 for a 10 -volt electron beam; therefore, for this case the helical electron motion increases the probability of ionizing collisions approximately tenfold.

Increased Interaction Time. The decrease in axial drift velocity, i.e., increase in transit time, of the entire


Fig. 4 -Factor \(K\) as a function of beam voltage, \(V_{0}\).
spiraling electron cloud due to collisions and the low axial drift velocity of the ionization electrons cause an increase in interaction time. The equation given by Smith and Shulman for the electronic admittance of the spiraling electron cloud may be solved in terms of transit time, \(\tau\), for the electronic conductance
\[
\begin{align*}
G_{c}= & \frac{|e|}{m} \frac{I_{0}}{2 d^{2}}\left\{\frac{1}{\left(\omega_{c}-\omega\right)^{2}}\left[1-\cos \left(\omega_{c}-\omega\right) \tau\right]\right. \\
& \left.+\frac{1}{\left(\omega_{c}+\omega\right)^{2}}\left\lfloor 1-\cos \left(\omega_{c}+\omega\right) \tau\right]\right\} \tag{7}
\end{align*}
\]
and for the electronic susceptance
\[
\begin{align*}
B_{e} & =\frac{|e|}{m} \frac{I_{0}}{2 d^{2}}\left\{\frac{1}{\left(\omega_{c}-\omega\right)^{2}}\left[\left(\omega_{c}-\omega\right) \tau-\sin \left(\omega_{c}-\omega\right) \tau\right]\right. \\
& -\frac{1}{\left(\omega_{c}+\omega\right)^{2}}\left\lfloor\left(\omega_{c}+\omega\right) \tau-\sin \left(\omega_{c}+\omega\right) \tau\right\} . \tag{8}
\end{align*}
\]

Fig. 5-Flectronic admittance of spiral beam as a function of transit time.

Eqs. (7) and (8) are ploted in Fig. 5 in terms of normalized expressions
\[
G \frac{m}{|e|} \frac{2 d^{2}}{I_{0}}
\]
and
\[
B \frac{m}{|e|} \frac{2 d^{2}}{I_{0}}
\]
for a frequency of 4,000 megacycles per second and a ratio of \(\omega_{c} / \omega_{0}\) equal to 1.1 . The second term of (4), which is neglected by Smith and Shulman, is not neglected in these expressions.

As shown in \(\mathrm{F} \because \mathrm{ig}\). 5, the susceptance increases in an essentially linear manner with transit time while the conductance oscillates about a mean value. 'Therefore, even if a slow-moving electron does leave the interaction space with some rotational energy, the dissipative effect (AM) is very small in comparison to the reactive effect (FM). 'Thus, for a given frequency change, it becomes less and less important to maintain the transit angle, \(\theta\), equal to \(2 \pi n\) as the value of \(\tau\) increases.

\section*{Experimental Results}

\section*{Test Cavities}

All tests reported in this article were made in ridgewaveguide resonant cavities having a length equal to one-half the guide wavelength. lig. 6 shows the important dimensions of the cavities used for the \(S\) - and \(X\)-band tests.


CAVITY DIMENSIONS IN INCHES


Fig. 6-Ridge-waveguide resonant cavity used for \(S\) - and \(X\) band tests.

In the \(S\)-band cavity, two coaxial feed lines which are coupled into the cavity by means of inductive loops allow both transmission-t ype and reaction-type measurements. The \(X\)-band spirab-beam cavity is shown in Fig. 7. The gun consists of a tetrode having 0.200inch by 0.050 -inch rectangular apertures. The indirectly heated oxide cathode operates at a temperature of 830 degrees \(C\). and a heater voltage and current of 6.3 volts and 2 amperes, respectively.

The \(X\)-band cavity, which is coupled to 1 -inch by \(\frac{1}{2}\) inch waveguide through slots, has the following electrical values in the absence of the electron beam: \(f_{0}=9,600 \mathrm{mc} ; Q_{0}=1,760 ; Q_{L}=380\). Vacuum-tight ceramic windows and mica windows are used in the waveguide to separate the cavity from the atmosphere.


Fig. 7-X-band cavity using spiral-beam tuning.

\section*{Test Arrangements}

Fig. 8 illustrates the setup used at low power levels to measure frequency changes in the \(X\)-band cavit! by the reaction method. For the work at \(S\)-band, a simpler, transmission-type arrangement was used. An arrangement similar to that shown in Fig. 9 was used for tuning measurements at high power levels and for gas-breakdown tests.


Fig. 8-Test setup used to measure frequency changes at low power levels in the \(X\)-band cavity:


Fig. 9-Test setup used at high power levels and for gas-breakdown tests.


Fig. 10-Glass system used for exhaust and for gaspressure measurements.

A special glass system, shown schematically in Fig. 10 , provided the facilities required for exhaust, for filling the test cavities with gas, and for measuring the gas pressure over a wide range. The double-range McLeod gauge is designed and constructed to measure pressure continuously from 5 mm to about 0.2 microns of Hg .


Fig. 11-Frequency change as a function of magnetic-field parameter for spiral-beam tuning in vacuum.

\section*{Spiral-Beam Tuning in Vacuum}

Fig. 11 shows the frequency change as a function of magnetic-field density with electron-beam current held constant for both \(S\)-band and \(X\)-band cavities using spiral-beam tuning in vacuum. At \(S\)-band ( \(3,250 \mathrm{mc}\) ), a maximum frequency change of \(\pm 30 \mathrm{mc}\) ( \(\pm 0.9\) per cent) was obtained with a beam current of 2 milliamperes. (The plus and minus sigus refer to settings of magnetic field for \(\omega_{c} / \omega_{0}<1\) and \(>1\), respectively.) The tuning rate was \(15 \mathrm{mc} / \mathrm{ma}\) at 2 ma .

For a special test in the \(S\)-hand cavity, a second electron gun was installed opposite the gun shown in Fig. 7, and two electron beams were shot into the cavity from opposite directions. As expected, the frequency deviation obtained was the same when each of the two guns was operated at onc-half the current of the single gun used in the initial test. A maximum frequency change of \(\pm 175 \mathrm{mc}\) ( \(\pm 5.5\) per cent) was obtained with a total beam current of 20 milliamperes. This frequency change represents a tuning rate of \(8.8 \mathrm{mc} / \mathrm{ma}\) at 20 nla .

At \(X\)-l)and \((10,000 \mathrm{mc})\), a maximum frequency change of \(\pm 500 \mathrm{mc}\) ( \(\pm 5\) per cent) was obtained with a beam current of 14 ma . The tuning rate was \(35 \mathrm{mc} / \mathrm{ma}\) at 14 ma. Although higher values of deviation can be obtained by the use of higher beam currents, the tuning rate decreases with increasing beam current, as shown in Fig. 12.

\section*{Spiral-Beam Tuning in (ias Atmosphere}

Tests made in \(S\)-loand and \(X\)-band cavities filled with low-pressure air showed that substantially larger frequency deviations could be obtained in low-pressure air than in vacuum. Fig. 13 shows the frequency deyia-


Fig. 12-Tuning rate as a function of beam current for spiralbeam tuning in vacuum.


Fig. 13-Frequency change as a function of magnetic-field density for spiral-beam tuning in gas atmospheres, and comparison to results with vacuum.
values of beam current and a probable air pressure of about 10 microns of Hg (not measured). In general, the curves obtained in air are similar to those obtained in vacuum, although there is some beam loading at mag-netic-field values at which no loading would exist in vacuum.

Fig. 14 shows curves of wavelength versus beam current obtained in a spiral-beam \(S\)-band cavity filled with argon at various pressures. Two values of magnetic field were used: \(\omega_{c} / \omega_{0}=0.86\) for the two upper curves, and \(\omega_{c} / \omega_{0}=1 / 0.86=1.16\) for the lower curves. At a pressure of argon equal to 46 microns Hg and with a guncathode current of less than 1 milliampere, the frequency change was almost -30 per cent when the magnetic field was set for \(\omega_{c} / \omega_{0}=0.86\) and +30 per cent for \(\omega_{c} / \omega_{0}=1.16\). The cavity was actually tuned from 2,540 to 4,350 megacylces per second. It should be noted that


Fig. 14-Frequency as at function of gun-eathode current for a spiralbeam \(S\)-band cavity filled with argon at various pressures for two fixed values of magnetic field.
1.16 are symmetrical. Although no measurements were made of the dissipative component, qualitatively it was found to be approximately proportional to pressure and low at pressures up to 46 microns of Hg . The tuning rate at a pressure of 46 microns of Hg is \(760 \mathrm{mc} / \mathrm{ma}\) at 1 ma and \(2,850 \mathrm{mc} / \mathrm{ma}\) at 0.1 ma . The tuning rate is shown in lig. 15 as a function of bean current. A similar curve for spiral-beam tuning in vacuum is also shown for comparison.

The frequency change in an \(X\)-hand cavity filled with argon is shown in curve 3 of Fig. 13 as a function of magnetic fiedd for a constant beam current. Fig. 16 shows the frequency change at \(X\)-band as a function of the bean current for different values of pressure and fixed magnetic field ( \(\omega^{\prime}, \omega_{0}=0,86\) ). In all tests in which the cavities were filled with low-pressure air or argon, the limit on the frequency range obtained was determined by the test equipment rather than the test cavity. Therefore, frequency changes larger than those measured are olptainable.

The data shown in Figs. 11 through 16 were measured using a low-power tunalble klystron oscillator hating a power output of only a few hundred milliwatts as a signal source.

\section*{Comparison of Theory and Experiment for Spral-bean Tuning in Gas}

In order to compare theory and experiment, we need


Fig. 15-Tuning rate as a function of bean current for spiratbeam tuning in gas atmospheres.


Fig. 16-Frequency change as a function of gun-cathorle current for different values of pressure and lixed magnetic field.
to derive an expression for freguency change that is usable with the large values of frequency (leviation observed with spiral-beam tuning in gas atmospheres. Eq. (8) for electronic susceptance, can be approximated by the first term, so that
\[
\begin{equation*}
B_{0} \cong \frac{|e|}{m} \frac{I_{0}}{2 d^{2}}\left(\frac{\tau}{\omega_{c}-\omega}\right) . \tag{9}
\end{equation*}
\]

The resonant frequency may be determined by the application of the condition \(\searrow B=B_{e}+B_{c}=0\), and by the use of the expression \(B_{c} \cong 2 C_{0} \Delta \omega\) for circuit susceptance. Then, since \(\omega=\omega_{0}+\Delta \omega\),
\(\Delta \omega=\frac{\left(\omega_{c}-\omega_{0}\right) \pm \sqrt{\left(\omega_{r}-\omega_{0}\right)^{2}+\frac{|e|}{m} \frac{I_{0}}{d^{2}} \frac{\tau}{C_{0}}}}{2}\).
The positive sign may be eliminated by substitution of the condition \(\Delta \omega=0\) when \(\tau=0\), so that the fractional frequency change becomes
\[
\begin{align*}
\frac{\Delta \omega}{\omega_{0}}= & \frac{1-\omega_{c} / \omega_{0}}{2} \\
& \cdot\left[\sqrt{1+\frac{1}{\left(1-\omega_{c} / \omega_{0}\right)^{2}} \frac{|e|}{m} \frac{I_{0} \tau}{\omega_{0}^{2} d^{2} C_{0}}}-1\right] . \tag{11}
\end{align*}
\]

This expression is usable for large values of \(\Delta \omega\), and reduces, for the case of small frequency deviations, to
\[
\begin{equation*}
\frac{\Delta \omega}{\omega_{0}}=\frac{1}{1-\omega_{c} / \omega_{0}} \frac{|\mathrm{e}|}{m} \frac{I_{0} \tau}{4 \omega_{0}^{2} d^{2} C_{0}} \tag{12}
\end{equation*}
\]

Curves of frequency change versus transit time are shown in Fig. 17 for values of \(\omega_{c} / \omega_{0}\) equal to 1.1 and 0.9 . The dashed lines in Fig. 17 represent (12). The error introduced by this approximation is appreciable for the physical conditions chosen even at a deviation of 10 per cent.


Fig. 17-Theoretically calculated frequency change as a function of transit time for spiral-beam tuning. Dashed lines represent the approximation \(\Delta \omega \ll \omega\).

When physical constants and dimensions for the \(S\) band cavity are sulbstituted in (11), and a value of 0.86 is used for \(\omega_{c} / \omega_{0}\),
\[
\begin{equation*}
\frac{\Delta \omega}{\omega_{0}}=0.07\left[\sqrt{1+333 \frac{I_{0}}{\sqrt{V_{0}}}}-1\right] \tag{13}
\end{equation*}
\]

For a typical value of \(\mathrm{I}_{0} / \sqrt{V_{0}}\) equal to \(10 \times 10^{-6}\) (for example, \(I_{0}=100\) microamperes; \(V_{0}=100\) volts), the calculated frequency change, \(\Delta \omega / \omega_{0}\) is 0.0117 per cent. This value is representative of the frequency deviation obtainable in vacuum for this current and voltage, but does not agree with the measured \(\Delta \omega\) for gas-filled cavities because the measured value of cavity current, \(I_{0}\), substituted in (1.3) is essentially a measure of primary electron flow alone. Eq. (13), therefore, should be rewritten with an addlitional term as follows:
\[
\begin{equation*}
\frac{\Delta \omega}{\omega_{0}}=0.07\left[\sqrt{1+333\left(\frac{I_{0}}{\sqrt{\bar{V}_{0}}}+\frac{n \bar{I}_{0}}{\sqrt{V_{2}}}\right)}-1\right] \tag{14}
\end{equation*}
\]
where \(V_{0}\) is used as a measure of the average transit time
of the primary electrons, \(n\) is the number of ionization electrons produced per primary clectron (and is a function of \(V_{0}\) ) and \(V_{2}\) is used as a measure of the average transit time of the ionization electrons.
Because the ionization electrons have very low initial velocities and there are more of them than primary electrons, the term in (14) involving \(V_{0}\) is much smaller than the term involving \(V_{2}\) and can be neglected.
For an \(S\)-band spiral-beam cavity filled with argon at a pressure of 46 microns of Hg , the frequency change for a beam current, \(\mathrm{I}_{0}\), of 100 microamperes is calculated as follows: The curves in Fig. 14 irdicate that the measured value of beam voltage, \(V_{0}\), for a heam current of 100 microamperes and a pressure of 46 microns of Hg is approximately 55 volts. Because about 10 ions, \(/ \mathrm{cm} / \mathrm{mm}\) IIg are created in argon for each primary electron having a velocity from 50 to 100 volts, \({ }^{6}\) at a pressure of 46 microns of 1 Ig approximately one ion is created for two centimeters traversed by a primary electron. This value must be multiplied by the factor \(K\) to allow for the decrease in mean free path due to the spiral motion of the primary electron. For a value of \(K\) equal to 2 (from Fig. 4) and a cavity length, \(L\), of about 2 centimeters, the number of created ionization electrons, \(n\), for each primary electroin is approximately 2. If it is assumed that the ionization electrons are at room temperature, their thermal velocity, \(V_{2}=K T / 2|e|\) is equal to 0.013 volt. By substitution in (12) a frequency deviation of 1.6 per cent is obtained. Although this value does not agree with the measured value of 8 per cent, it comes much closer than the value of 0.0117 per cent originally calculated.

\section*{Space-Charge Tuning}

Phase shifts in a coaxial line using a rotating space charge in vacuum have been measured by Blewett and Ramo. \({ }^{3}\) The problem of a rotating space charge in a nonoscillating magnetron has been investigated by Lamb and Phillips \({ }^{4}\) and by Welch, et al. 5

In the method of space-charge tuning shown in Fig. \(1(\mathrm{~b})\), a thin heated filament is placed between the two ridges parallel to a constant magnetic field, and a dc voltage is applied between the filament (which serves as the cathode) and the ridges (which serve as the anode). Space-charge tuning can be considered as closely analogous to spiral-beam tuning, particularly when the cathode is extremely small. In space-charge tuning, however, two modifications are: (1) \(v_{0}=0\), and (2) a dc field is superimposed on the interaction space.

The dissipative component can be expected to be greater for space-charge tuning than for spiral beam tuning because the dc field attracts the electrons to the anode and sweeps them out of the interaction space while they possess rotational energy originating from the rf field. One therefore would not expect that there

\footnotetext{
©A. Von Engel and M. Steenbeck, "Elektrische Gasentladungen,"
}
exists a condition for zero dissipative component (pure FM) as in spiral beam tuning.

The test cavity used in the measurement of spacecharge tuning was similar to the spiral-beam cavity shown in Fig. 7 except that a fine tungsten wire, mounted midway between the ridges, is substituted for the electron gun. The external de magnetic field is parallel to the filament. All measurements were made at frequencies near 4,000 megacycles.

Curves 1 and 2 in Fig. 18 show the change in frequency obtained in a space-charge cavity in vacuum as a function of anode current for two values of \(\omega_{c} / \omega_{0}\). A maximum deviation of \(+130 \mathrm{mc}(+4\) per cent \()\) at \(3,280 \mathrm{mc}\) was measured. The dissipative component was found to increase rapidly in proportion to frequency deviation. Curves 3 and 4 show frequency change for space-charge tuning in argon as a function of anode current for two values of \(\omega_{c} / \omega_{0}\). In argon frequency deviations of the order of +12 per cent were obtained. Curves 3 and \(3 a\) in Fig. 18 taken with different values of heater power show that space-charge tuning is very sensitive to filament temperature.


Fig. 18-Frequency change as a function of anode current for spacecharge tuning for vacuum and gas atmosphere.

In space-charge tuning, rf absorption increases rapidly in proportion to frequency deviation. Electrons absorb energy from the rf and dc electric fields, spiral in increasingly larger orbits, and finally strike the anode, thereby dissipating energy in the anode in the form of heat. This loading and the sensitivity to filament temperature mentioned above are serious disadvantages of the space-charge tuning method both in vacuum and in gas. The use of an interaction space which is free of electrostatic fields and the separation of the electronemitting means from the microwave portion of the device combine to make the spiral-beam tuning technique superior to the space-charge tuning method for both vacuum and gas atmosphere.

\section*{Limitations}

Any tuning method which employs a gas atmosphere is subject to limitation by gas breakdown." The breakdown point is that point at which cumulative ionization is initiated by the rf energy stored in the cavity. Beyond this point, the dc voltages have no control over the cavity frequency. The operating rf power level, therefore, must be kept below the power level necessary for initiating breakdown.

The presence of the magnetic field enhances breakdown. As \(\omega_{c}\) approaches \(\omega_{0}\), the angular momentum of the electron continues to increase and the rotational energy becomes greater than the ionization potential for the gas used. For example, if the electronic maximum rotational energy, \(V_{\omega}\), is given by
\[
\begin{equation*}
V_{\omega}=\frac{1}{2} \frac{m}{|e|} \omega_{c}^{2} r^{2}{ }_{\max } \tag{15}
\end{equation*}
\]
and the maximum radius, \(r_{\text {max }}\) of the spiral beam is
\[
\begin{equation*}
r_{\max }=2 \frac{F_{0}|e|}{m} \frac{1}{\omega^{2}}\left\{\frac{1}{\left(\frac{\omega_{e}}{\omega_{0}}\right)^{2}-1}\right\} \tag{16}
\end{equation*}
\]
then for the conditions \(f=3,000 \mathrm{mc}, \omega_{c} / \omega_{0}=1.1\), and \(E_{0}=300\) volts/centimeter (corresponding to 50 milliwatts input power to the cavity from the signal generator), a value of \(V_{\omega}\) equal to 20.6 volts is obtained. This value exceeds the ionization potential of argon. It must be concluded from this and from other tests that gas tuning can be used only in applications where the power level is of the order of one watt or less.

The magnitude of the conductance component was not measured during the frequency-deviation measurements. However, it has been observed qualitatively that the loading is not severe for spiral-beam tuning at gas pressures up to about 47 microns of Hg .

Gas pressure can be expected to decrease with the life of the tube. This decrease in pressure can be reduced to some extent by inclusion of a large glass bulb in the tube to serve as a gas reservoir, or by the use of hydrogen reservoir or a metallic vapor.

Modulation due to plasma oscillations or noise was not investigated.

\section*{Conclusions}

The energy interaction of electrons and radio-frequency electric fields in resonant structures, such as microwave cavities, provides a means for producing electronically-controlled amplitude modulation and/or frequency modulation (tuning). \({ }^{8}\)

Spiral-beam tuning in vacuum has been successfully applied to obtain cavity-tuned magnetron frequency

\footnotetext{
\({ }^{7}\) B. Lax, W. P. Allis, and S. C. Brown, "Effect of magnetic field on the breakdown of gases at microwave frequencies," Jour. Appl. 1'lys., vol. 21, pp. 1297-1304; December, 1950.
\({ }^{8}\) F. Arams, "Microwave applications of gas discharges," Elertronics, vol. 27, pp. 168-172; Noveniber, 1954.
}
changes of the order of 1 per cent. \({ }^{9,10}\) No indication has been observed that this value can be substantially exceeded in vacuum in self-excited oscillators where a substantial fraction (such as 50 per cent) of the total energy is stored in the tuning cavity. However, it can be experted that more tuning range is obtainable in am-plifier-type devices where a smaller fraction of the energy would be stored in the tuning cavity.

When a gas atmosphere is used with spiral-beam tuming, frequeney deviations of one or two orders of magnitude larger can be obtained with beam currents (driving power) one or two orders of magnitude smaller than those used in vacuum. The reasons for the improvement in tuning in a gas atmosphere are that one beam electron frees several ionization electrons as a result of ionizing collisions and that the ionization electrons interact with the electric fied for a longer time due to their very low drift velocity.

Frequency changes of \(\pm 30\) per cent have been measured in gas atmospheres. These values did not necessarily represent maximum or optimum values, but rather limitations in test equipment. Fig. 19 shows gas pressure and beam current required for a given frequency deviation at both \(S\) - and \(X\)-band for the operating point \(\omega_{c} / \omega_{0}=0.86\).


Fig. 19-Summary of results of frequency change as a finction of gas pressure.

Space-charge tuning produces a tuning characteristic similar to that of spiral-heam tuning. Frequency deviations for both vacuum and gas atmosphere are in the same order of magnitude as those obtained with spiralbeam tuning. However, loading is far greater and the tuning is sensitive to filament temperature. In adklition, as in all microwave tubes, the device in which the cathode is not in the interaction space has certain advantages. The spiral-beam modulation technique, therefore, is superior.

\footnotetext{
\({ }^{9} \mathrm{H}\). K. Jemys, " \(\backslash 7000\) me developmental magnetron for fre'quency molulation," RCA Rev., vol. 1.3, pi. 202-22.3; June, 1953.
\(10 \mathrm{~J} . \mathrm{S}\). Donal, Jr., "Modulation of contimons-wave magnetrons," Advances in Electronics, vol. 4. Academic l'ress, New York, X. Y., рр. 188-256: 1952.
}

\section*{List of Symbols}
\(B_{c}=\) circuit susceptance in mhos
\(B_{0}=\) electronic susceptance of spiraling electron cloud in mhos
\(B_{z}=\) magnetic fickl density in webers per square meter in \(z\)-direction
\(C_{0}=\) de ridge capacitance in farads
\(d=\) separation of ridges in meters
\(|e|=\) electronic charge in coulomls
\(E_{x}=\) rf electric field intensity in volts per meter = \(E_{0} e^{i \omega t}\)
\(\vec{F}_{e}=\) electronic conductance of spiraling electron cloud in mhos
\(i=\sqrt{-1}\)
\(I_{0}=\) beam current in amperes
\(K=\) factor by which mean free path is reduced due to spiraling motion of electrons.
\(l=\) axial distance for one complete helical path in meters
\(L=\) cavity length in meters
\(m=\) electronic mass in kilograms
\(n=\) number of secondary electrons produced per primary electron
\(Q_{L}=\) loaded cavity \(Q\)
\(Q_{0}=\) internal cavity \(Q\)
\(r_{\text {max }}=\) maximum radius of spiral beam in meters
\(s=\) length of helical path of electron in spiral-beam tuning in meters
\(t=\) time in scconds
\(T=\) temperature in degrees Kelvin
\(i_{0}=\) electron entrance velocity in meters per second ( \(=\sqrt{2 k V_{0}^{r} / m}\) )
\(v_{x}=x\)-component of velocity
\(\Gamma_{\omega}=\) electronic maximum rotational energy expressed in volts
\(V_{0}=\) heam voltage in volts
\(x\)
\(y\}=\) Cartesian co-ordinates
z)
\(\theta=\) electron transit angle in ratlians
\(\tau=\) electron transit time in seconds
\(\omega=\) angular frequency of rif field in ratians per second ( \(=2 \pi f\) )
\(\omega_{c}=\) angular frequency of rotation of electron in radians per second ( \(=2 \pi f_{c}\) )
\(\omega_{0}=\) resonant angular frequency of motuned cavity in radians per second \(\left(=2 \pi f_{0}\right)\)
\(\omega_{c} / \omega_{0}=\) magnetic-field parameter
.\(=\) first derivative with respect to time
\(\ldots=\) second derivative with respect to time

\section*{ACKNownengment}

Work reported in this paper was sponsored by the Navy under contract NObsr-39312. The authors wish to thank Dr. B. B. Brown and the Microwave Development laboratory of the R('A Tube Division for their help, and Ir. 'T. S. Chen for his work on some of the theoretical calculations.

\title{
The Resolution of Signals in White, Gaussian Noise*
}

\author{
C. W. HELSTROM \(\dagger\)
}

\begin{abstract}
Summary-The resolution of two signals of known shapes \(F_{1}(t)\) and \(F_{2}(t)\) in white Gaussian noise is treated as a problem in statistical decision theory. The observer must decide which of the signals is present with a minimum probability of error. The optimum system for this decision is specified in terms of filters matched to the two signals, the outputs of which are compared. The error probability is exhibited as a function of the cross-correlation of the two signals and of the signal-to-noise ratio. If the phases of the two signals are unknown, as in radar, and if the signals are of equal strength and equal a priori probability, the optimum system consists of filters matched to each of the signals, each followed by a detector. The observer then bases his decision upon which of the detectors has the larger output. The probability of error is computed for this case also.
\end{abstract}

\section*{I. INTRODUCTION}

TWIIE IRROBLEM of resolution can be considered from two points of view. The first is that of, for example, astronomy, in which one sturlies the ability of a particular instrument to produce a response which the observer can identify as the result of two sources of a certain nature rather than of one such source. Thus the resolving power of a telescope is defined in terms of the smallest angular separation of two stars, the image of which can be identified as that of two stars rather than one. Similarly, considering a conventional A-scope presentation in radar, one can ask how close two targets can be in range before their echo pips so blend as to appear to be one.

From the second point of view one studies the nature of the phenomenon rather than the instrument used to observe it. One imagines a situation in which one of two (or more) similar sources is present, and one asks an observer to iclentify which of them it is, permitting him to use the best system which he can design for the purpose. His observations will in general suffer interference of a statistical nature which prevents an unambiguous selection. The optimum instrument for this purpose will thus depend on the characteristics of the sources as well as on the statistical properties of the interference.

It is from the latter standpoint that we wish to study narrow-band, pulsed electrical signals such as those encountered in radar or in communications. The interference will be taken as white Gaussian noise of power \(N\) per unit of frequency. The problem will be treated by the methods of statistical decision theory by imagining that one of a class of signals is presented immersed in noise, the observer being asked to identify which member of the class it is. The observer will make this decision by picking that member of the class having

\footnotetext{
* Original manuscript received by the IRE, April 2, 1955; revised manuscript received, June 9, 1955.
\(\dagger\) Westinghouse Res. Labs., East Pittsburgh, Pa.
}
the largest a posteriori probability calculated on the basis of the received signal \(x(t)\).

In order best to understand the influence of the noise, we shall assume that one of two signals, \(F_{1}(t)\) and \(F_{2}(t)\), is present, the form of each being known exactly. The optimum system for deciding between the two will be derived, and the probability of error \(P_{e}\) per decision will be calculated. The probability of error can be used as a measure of the ambiguity of the signals; that is, it measures the extent to which the similarity of two signals causes one to be mistaken for the other when they are observed in the presence of noise.

The resolution of narrow-band, pulsed signals hasbeen discussed by Woodward, \({ }^{1}\) who considered the problem of determining simultaneously the range and velocity of a radar target by measuring the delay in time and the Doppler shift in frequency of a returning echo. One asks how close two such signals can be in frequency and in time of arrival before it becomes difficult to tell them apart. Woollward pointed out that their ambiguity depends on the quantity \(\lambda\) given by
\[
\begin{align*}
& \lambda=B / E \\
& E=\frac{1}{2} \int_{0}^{T}\left|u_{1}(t)\right|^{2} d t=\frac{1}{2} \int_{0}^{T}\left|u_{2}(t)\right|^{2} d t \\
& B=\frac{1}{2}\left|\int_{0}^{T} u_{1}(t) u_{2}^{*}(t) e^{-i \omega t} d t\right| \tag{1}
\end{align*}
\]
where \(u_{1}(t), u_{2}(t)\) are the complex envelopes of the signals, \(\omega\) is the difference in the carrier frequencies \(\Omega_{1}\) and \(\Omega_{2}\) of the two signals (resulting e.g. from a 1 )oppler shift), and \(T\) is the time of observation. That is, the signals are taken as
\[
\begin{align*}
& F_{1}(t)=R l u_{1}(t) e^{i \Omega t} \\
& F_{2}(l)=R l u_{2}(t) e^{i \Omega_{2} t} \tag{2}
\end{align*}
\]
and they are assumed to be of equal energies (proportional to \(E\) ) and of small bandwidtl compared with the carrier frequencies. The quantity \(\lambda\) may be called the relative cross-correlation of the two signals. Woodward \({ }^{1}\) asserts that if the quantity \(\lambda\) is small, the signals can be easily distinguished, while if \(\lambda\) is close to unity it will be difficult to distinguish them. He discusses the form of \(\lambda\) for various types of signals, such as trains of pulses, frequency-modulated signals, etc.

Clearly, if there were no noise present, one could distinguish two such signals, let them differ by ever so

\footnotetext{
\({ }^{1}\) P. M. Woodward, "Probability and Information Theory, with Application to Radar," McGraw-Hill Book Co., Inc., New York, N. Y., p. 115; 1953.
}
little, by passing the input through two parallel filters, one matched to \(F_{1}(t)\) and the other matched to \(F_{2}(t)\). The filter giving the larger output would then determine which of the two signals had been received. (By a filter matched to a given signal we mean that filter which gives the maximum output for this signal annong the class of all signals having the same energy \(E\). Its admittance is proportional to the complex conjugate of the Fourier transform of the given signal. \({ }^{2}\) )

The effect of noise on the ambiguity of two such signals will be evaluated by the decision-theoretic approach mentioned above. In Section II it will be assumed that each of the signals \(F_{1}(t)\) and \(F_{2}(t)\) is known exactly. Then it turns out that the decision between them can be based on the output of a single filter, which is matched to the difference of the signals, \(F_{2}(t)-F_{1}(t)\). In Section III the phases of the received signals are assumed to be completely unknown, as for instance in radar. Then one compares the outputs of detectors following parallel filters, one matched to \(F_{1}(t)\), the other matched to \(F_{2}(t)\). The probability of error \(P_{e}\), which we define as a measure of the ambiguity of the signals, is calculated in each section under the assumption that the signals are of equal energy \(E\) and equal a prior \(i\) probability. \(P_{e}\) turns out to be a function of the relative cross-correlation \(\lambda\) and of the signal-to-noise ratio \(\rho=E / 2 N\). The ambiguity of signals of random phase is a minimum when \(\lambda=0\), i.e., when each pair is orthogonal in the sense that the integral of their product taken over the ohservation interval vanishes. Thus the advantage of coding into a set of orthogonal signals in communication is indicated.

The application of decision-theoretic methods to this type of situation is not, of course, restricted to the simple cases treated here. One could imagine that the signal amplitudes are unknown, so that one is asked to distinguish between two classes of signals of the forms \(A_{1} f_{1}(t)\) and \(A_{2} f_{2}(t)\), in which \(f_{1}(t)\) and \(f_{2}(t)\) are known (except perlaps for a random phase), but in which the amplitudes are described by a priori probability distributions \(P\left(A_{1}\right)\) and \(P\left(A_{2}\right)\). In this case these \(a\) priori distributions would be used in computing, on the basis of the received signal \(x(t)\), the a posteriori probability distributions of the two classes of signals, and the optimum decision procedure would be accordingly modified. In another situation, the observer may have to decide among the possibilities that either one, both, or neither of the two signals is present, the a priori probabilities of these alternatives being given. The optimum system would then consist of two parallel filters, each matched to one of the signals (and each followed by a linear detector if the signal phases are unknown). The output of each filter would be provided with a bias level appropriately chosen in terms of the a priori probabilities, and the decision would be made

\footnotetext{
\({ }^{2}\) J. H. Van Vleck and D. Middleton, "A theoretical comparison of the visual, aural, and meter reception of pulsed signals in the presence of noise," Jour. Appl. Phys., vol. 17, p. 940; November, 1946.
}
by comparing the two outputs with their respective hias levels. Choices among larger numbers of signals can be similarly systematized by statistical decision theory. \({ }^{3}\)

\section*{II. Ambiguity of Signales of Known Shape}

One of two signals of known waveforms \(F_{1}(t)\) and \(F_{2}(t)\) is received in white Gaussian noise \(n(t)\), the power of which is \(N\) per unit of frequency over an input band of width \(W\) which includes and is much larger than the signal bandwidth. (If \(F_{1}, F_{2}\), and \(n\) are taken as voltages then the quantities of power and energy are determined with respect to dissipation in a resistance of 1 ohm.) The a priori probabilities that \(F_{1}\) and \(F_{2}\) are sent are \(\zeta\) and \((1-\zeta)\) respectively. The signals are observed over a period of time \(0<t<T\) long enough to contain them in their entirety. Let \(x(t)\) be the received signal, including the noise. Then the observer must decide between case I: \(x(t)=F_{1}(t)+n(t)\) and case I I: \(x(t)=F_{2}(t)+n(t)\). He will pick that case for which he computes the larger a posteriori probability.

Let the a posteriori probabilities of cases I and II be \(p_{1}\) and \(p_{2}\) respectively. Since \(T \gg 1 / W\), these will be given \({ }^{1}\)
\[
\begin{align*}
& p_{1}=K \zeta \exp -\frac{1}{N} \int_{0}^{T}\left[x(t)-F_{1}(t)\right]^{2} d t \\
& p_{2}=K(1-\zeta) \exp -\frac{1}{N} \int_{0}^{T}\left[x(t)-F_{2}(t)\right]^{2} d t \tag{3}
\end{align*}
\]
where \(K\) is that number which makes \(p_{1}+p_{2}=1\). The observer decides for case I if \(p_{1}>p_{2}\), and for case II if \(p_{1}<p_{2}\). This decision can as well he hased on the a posteriori likelihood ratio, given by
\[
\begin{align*}
\Lambda= & p_{2} / p_{1}=\frac{1-\zeta}{\zeta} \exp \frac{2}{N} \int_{0}^{T}\left[F_{2}(t)-F_{1}(t)\right] x(t) d t \\
& \cdot \exp -\frac{1}{N} \int_{0}^{T}\left\{\left[F_{2}(t)\right]^{2}-\left[F_{1}(t)\right]^{2}\right\} d t \tag{4}
\end{align*}
\]

All the factors in this expression are given except the first exponential, which is a monotonic function of its argument. Hence the decision can be based on a measurement of the quantity \(G\) given by
\[
\begin{equation*}
G=\int_{0}^{T} x(t)\left[F_{2}(t)-F_{1}(t)\right] d t \tag{5}
\end{equation*}
\]

This is the cross-corrclation of the received signal \(x(t)\) with the difference of the two signals in question. The observer picks case I or case II accordingly as \(G\) is less than or greater than a \(G_{0}\) given by
\[
\begin{equation*}
G_{0}=\frac{N}{2} \ln \frac{\zeta}{1-\zeta}+\frac{1}{2} \int_{0}^{T}\left\{\left[F_{2}(t)\right]^{2}-\left[F_{1}(t)\right]^{2}\right\} d t \tag{6}
\end{equation*}
\]

The quantity \((r\) is the output at time \(T\) of a filter having an impulse response \(K(\tau)\) given by

\footnotetext{
\({ }^{2}\) D. Middleton, "Modern statistical approaches to reception in communication theory," Trans. IRE, vol. PGIT-4, p. 119; Septem-
ber, 1954 .
}
\[
\begin{align*}
& K(\tau)=F_{2}(T-\tau)-F_{1}(T-\tau), \quad 0<\tau<T \\
& K(\tau)=0, \quad \tau<0, \quad \tau>T \tag{7}
\end{align*}
\]
since neither of the signals is assumed to last more than \(T\) seconds. The admittance \(Y(\omega)\) of this filter is given by
\[
\begin{equation*}
Y(\omega)=\int_{0}^{\infty} K(\tau) e^{-i \omega \tau} d \tau=e^{-i \omega T}\left[\Phi_{2}^{*}(\omega)-\Phi_{1}^{*}(\omega)\right], \tag{8}
\end{equation*}
\]
where \(\Phi_{1}(\omega)\) and \(\Phi_{2}(\omega)\) are Fourier transforms of \(F_{1}(t)\) and \(F_{2}(t)\) respectively.

Since the noise \(n(t)\) is Gaussian, the quantity \(G\) is also Gaussian distributed, for it is the result of a linear operation on \(x(t)\). Thus one can easily calculate the probability of error. In case I it is just the probability that \(G>G_{0}\) when \(x(t)\) is \(F_{1}(t)+n(t)\). The average error probability is then obtained by weighting the error probabilities in the two cases in accordance with the a priori probabilities \(\zeta\) and \((1-\zeta)\).

Let us assume that the two signals are of equal a priori probabilities and equal energies \(E\), where
\[
\begin{equation*}
E=\int_{0}^{T}\left[F_{1}(t)\right]^{2} d t=\int_{0}^{T}\left[F_{2}(t)\right]^{2} d t \tag{9}
\end{equation*}
\]

Then \(G_{0}=0\), and the error probabilities are equal in both cases. Hence the average probability of error \(P_{e}\) is just the probability \(G>0\) when \(x(t)=F_{1}(t)+n(t)\). In this case mean \(G\) and variance \(\sigma^{2}\) of \(G\) are given by \({ }^{4}\)
\[
\begin{align*}
\bar{G} & =\int_{0}^{T}\left[F_{2}(t)-F_{1}(t)\right] \overline{x(t)} d t \\
& =\int_{0}^{T}\left[F_{2}(t)-F_{1}(t)\right] F_{1}(t) d t=-(E-B) \\
\sigma^{2} & =\int_{0}^{T} \int_{0}^{T}\left[F_{2}(t)-F_{1}(t)\right]\left[F_{2}(s)-F_{1}(s)\right] \overline{n(t) n(s)} d t d s \\
& =\frac{N}{2} \int_{0}^{T}\left[F_{2}(t)-F_{1}(t)\right]^{2} d t=N(E-B) \tag{10}
\end{align*}
\]
where
\[
\begin{equation*}
B=\int_{0}^{T} F_{1}(t) F_{2}(t) d t \tag{11}
\end{equation*}
\]
is the cross-correlation of the two signals. (10) used
\[
\begin{equation*}
\overline{n(t) n(s)}=\frac{N}{2} \delta(t-s) \tag{12}
\end{equation*}
\]
as the autocorrelation function of the noise, since this corresponds to the assumption of wideband white noise of power \(N\) per unit of frequency in the limit \(W \gg 1 / T\). The probability that \(G>0\) is then given by
\[
\begin{align*}
P_{\theta} & =\left(2 \pi \sigma^{2}\right)^{-1 / 2} \int_{0}^{\infty} \exp -\frac{(G-\bar{G})^{2}}{2 \sigma^{2}} d G \\
& =\frac{1}{2}[1-\Phi(\sqrt{\rho(1-\lambda)})] \tag{13}
\end{align*}
\]

\footnotetext{
4 The bar in \(\overline{x(t)}\) refers to an ensemble average rather than to a time average, so that \(x(t)=F_{1}(t)\) is a function of time.
}
where \(\Phi(x)\) is the standard error-function integral, defined by
\[
\begin{equation*}
\Phi(x)=\frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-n} d t, \quad \Phi(\infty)=1 \tag{14}
\end{equation*}
\]
and \(\lambda\) and \(\rho\) are given by
\[
\begin{equation*}
\lambda=B / E, \quad \rho=E / 2 N \tag{15}
\end{equation*}
\]

In Fig. 1 we have plotted the error probability \(P_{e}\) as a function of \(\lambda\) for various values of the "signal-tonoise ratio" \(\rho\). The ambiguity of two such signals can be defined by means of the error probability \(P_{s}\). For fixed ambiguity one obtains a curve of the signal-tonoise ratio \(\rho\) versus the relative cross-correlation \(\lambda\)


Fig. 1-Ambiguity of known signals.
which describes the effect of noise on the ambiguity of the signals. Such curves are in Fig. 2 (on following page) for error probabilities of 1,5 , and 10 per cent. One can show by means of the Schwarz inequality that \(|\lambda| \leqq 1\), so that the minimum ambiguity occurs when \(\lambda=-1\), i.e., when \(F_{2}(t)=-F_{1}(t)\) and the two signals are 180 degrees out of phase.

\section*{1II. Narrow-Band Signals of Unknown Phase}

In radar systems in which the ranges of the targets are unknown a priori and in which no attempt is made to make successively transmitted pulses coherent, information regarding the carrier (radio-frequency) phase is lost, and one may assume it to be a uniformly distributed random variable. The same may be true in many communication systems in which coherent detection camot be used. It is of interest to determine the ambiguity of signals in such situations.

Let us assume that the signals \(F_{1}(t), F_{2}(t)\) can be written as
\[
\begin{equation*}
F_{i}(t)=f_{i}(t) \cos \left[\Omega_{i} t+\psi_{i}(t)-\phi_{i}\right], \quad i=1,2 \tag{16}
\end{equation*}
\]
where the \(\Omega_{i}\) are the carrier frequencies and the \(f_{i}(t)\) and \(\psi_{i}(t)\) are the amplitude and phase modulations respectively, both the latter being of bandwiclth small compared with the \(\Omega_{i} . \Omega_{2}-\Omega_{1}=\omega \ll \Omega_{i}\). The carrier phases \(\phi_{i}\) are random variables distributed uniformly over their
ranges 0 to \(2 \pi\). The noise is assumed to be Gaussian of power \(N\) per unit bandwidth over a range of frequencies containing both signals. Again the observer is asked to choose between two cases: (I) \(x(t)=F_{1}(t)+n(t)\) and (II) \(x(t)=F_{2}(t)+n(t)\); his choice is to be made in accordance with the a posteriori probabilities of the two cases.


Fig. 2-Ambiguity of known signals: fixed error probability.
If the phases \(\phi_{1}, \phi_{2}\) were known, the a posteriori probabilities would be given by (3). But since these phases are unknown, we must average the exponential factors over the distribution of the phases. This has been done loy Petersom, Birdsall, and Fox \({ }^{5}\) using a representation in terms of a sampling plan, but one can simply substitute (16) into (3), multiply by \(d \phi_{i} / 2 \pi\) and integrate over \(0<\phi_{i}<2 \pi, i=1,2\), using the narrowband character of the signals to discard all but the videofrequency parts of the terms in the exponential. The \(a\) posteriori likelihood ratio upon which the decision is to be based then becomes
\[
\begin{equation*}
\mathrm{A}=p_{2} / p_{1}=\frac{1-\zeta}{\zeta} \exp \left(\frac{K_{1}-F_{2}}{V}\right) \frac{I_{0}\left(2 R_{2} / N\right)}{I_{\mathrm{n}}\left(2 R_{1} / N\right)} \tag{17}
\end{equation*}
\]
where ( \(i=1,2\) )
\[
\begin{equation*}
E_{i i}=\frac{1}{2} \int_{0}^{T}\left[f_{i}(t)\right]^{3} d t \tag{18}
\end{equation*}
\]
and
\[
\begin{equation*}
R_{i}{ }^{2}=X_{i}{ }^{2}+Y_{i}{ }^{2} \tag{19}
\end{equation*}
\]
with
"W. W. I'eterson, T. G. Birdsall, and W. (. Fox, "The theory of signal detectability," Trans. IRE, vol. 'GI'l-4, p. 171; September, 1954. See Section 4.5.
\[
\begin{align*}
X_{i} & =\int_{0}^{T} x(t) f_{i}(t) \cos \left[\Omega_{i} t+\psi_{i}(t)\right] d t \\
Y_{i} & =\int_{0}^{T} x(t) f_{i}(t) \sin \left[\Omega_{i} t+\psi_{i}(t)\right] d t \tag{20}
\end{align*}
\]
\(I_{0}(x)\) is the modified Bessel function of order zero.
The observer picks case I if \(\Lambda<1\) and case II if \(\mathrm{A}>1\). He could as well use the logarithm of the likelihood ratio, basing the decision on the quantity \(G^{\prime}\) given by
\[
\begin{equation*}
G^{\prime}=\ln I_{0}\left(2 R_{2} / N\right)-\ln I_{0}\left(2 R_{1} / . \mathrm{V}\right) \tag{21}
\end{equation*}
\]

It can be shown \({ }^{5}\) that \(R_{1}\) is the output at time \(T\) of a linear detector following a filter having the impulse response \(K_{1}(\tau)\) given by
\[
\begin{align*}
& K_{1}(\tau)=f_{1}(T-\tau) \cos \left[\Omega_{1}(T-\tau)+\psi_{1}(T-\tau)\right] \\
& \\
& K_{1}(\tau)=0, \quad 0<\tau<T \tag{22}
\end{align*}
\]

A filter similarly matched to \(F_{2}(t)\) will yield, when followed by a linear detector, the quantity \(R_{2}\). By using detectors having the characteristic \(\ln I_{0}(2 R / N)\), the receiver can form the duantity \(G^{\prime}\) of (21). There is then a quantity \(G_{0}{ }^{\prime}\) depending on \(E_{1}, E_{2}\), and \(\zeta\) with which \(G^{\prime}\) is compared for purposes of making a decision. Of course the detector characteristic required here is identical with that for optimum detection of pulsed signals in noise. \({ }^{6}\)

If, however, the signals are of equal a priori probabilities and equal energies \(E_{1}=E_{2}=E\), as we shall assume henceforth, one sces from (17) that one can simply use a linear detector (or any detector having a characteristic monotonic in \(R\) ) at the output of each matched filter. One then will decitce for case I if \(R_{1}>R_{2}\) and for case II if \(R_{2}>R_{1}\). Again the ambiguity of the two signals in noise will depend on the probability \(P_{e}\) of making an error in such a decision. We shall now calculate this probability as a function of the quantities \(\lambda\) and \(\rho\) defined in (1) and (15). The error probat,ility \(P_{0}\) is the probability, given \(x(t)=F_{1}(t)+n(t)\), that \(R_{2}>R_{1}\), that is
\[
\begin{equation*}
P_{e}=\int_{0}^{\infty} d R_{1} \int_{R_{1}}^{\infty} p\left(R_{1}, R_{2}\right) d R_{2} \tag{2,3}
\end{equation*}
\]
where \(p\left(R_{1}, R_{2}\right)\) is the joint probability density for measuring \(R_{1}\) at the output of the first and \(R_{2}\) at the output of the second filter-detector combination, when the input to both is \(x(t)=F_{1}(t)+n(t)\).

To determine the joint probability density function \(p\left(R_{1}, R_{2}\right)\) one fixes the phase of \(F_{1}(t)\) at \(\phi_{1}=\phi\), ohtaining the conditional density function \(p\left(R_{1}, R_{2} ; \phi\right)\). This will turn out to be independent of \(\phi\), so that it equals \(p\left(R_{1}, R_{2}\right)\), since \(\phi\) is completely random. The quantities
\(\left.{ }^{6} 1\right)\) Middleton, "Statistical criteria for the detection of pulsed carriers in noise," Jour. Appl. Phys., vol. 24, p. 371; April, 1953.
\(X_{i}, Y_{i}\) of (20) are Gaussian distributed, since they are linear combinations of Gaussian variables. The means, variances, and cross-correlations of these variables are given in the following equations. For simplicity of writing it has been assumed that there is amplitude modulation only, though the same derivation could be carried through for the general case by replacing \(\Omega_{i} t\) by \(\Omega_{i} t+\psi_{i}(t)\) everywhere.
\[
\begin{align*}
\bar{X}_{1} & =\int_{0}^{T}\left[f_{1}(t)\right]^{2} \cos \Omega_{1} t \cos \left(\Omega_{1} t-\phi\right) d t=E \cos \phi \\
\bar{Y}_{1} & =\int_{0}^{T}\left[f_{1}(t)\right]^{2} \sin \Omega_{1} t \cos \left(\Omega_{1} t-\phi\right) d t=E \sin \phi \\
\bar{X}_{2} & =\int_{0}^{T} f_{1}(t) f_{2}(t) \cos \Omega_{2} t \cos \left(\Omega_{1} t-\phi\right) d t \\
& =\frac{1}{2} \int_{0}^{T} f_{1}(t) f_{2}(t) \cos \left[\left(\Omega_{2}-\Omega_{1}\right) t+\phi\right] d t \\
& =c_{1} \cos \phi-c_{2} \sin \phi=B \cos (\phi+\psi) \\
\bar{Y}_{2} & =\int_{0}^{T} f_{1}(t) f_{2}(t) \sin \Omega_{2} t \cos \left(\Omega_{1} t-\phi\right) d t \\
& =\frac{1}{2} \int_{0}^{T} f_{1}(t) f_{2}(t) \sin \left[\left(\Omega_{2}-\Omega_{1}\right) t+\phi\right] d t \\
& =c_{1} \sin \phi+c_{2} \cos \phi=B \sin (\phi+\psi), \tag{24}
\end{align*}
\]
where
\[
\begin{align*}
& c_{1}=\frac{1}{2} \int_{0}^{T} f_{1}(t) f_{2}(t) \cos \left(\Omega_{2}-\Omega_{1}\right) t d t=B \cos \psi \\
& c_{2}=\frac{1}{2} \int_{0}^{T} f_{1}(t) f_{2}(t) \sin \left(\Omega_{2}-\Omega_{1}\right) t d t=B \sin \psi  \tag{25}\\
& B^{2}=c_{1}{ }^{2}+c_{2}{ }^{2} .
\end{align*}
\]

The fact that the signals are of narrow bandwidths compared with the carrier frequencies has enabled us to simplify the above integrals by keeping only the slowly varying parts of the integrands.

Because the signal energies are equal, the variances of the \(X_{i}\) and \(Y_{i}\) are all equal to \(\sigma^{2}\), which is given by
\[
\begin{align*}
\sigma^{2} & =\int_{0}^{T} \int_{0}^{T} \overline{n(t) n(s)} f_{1}(t) f_{1}(s) \cos \Omega_{1} t \cos \Omega_{2} s d t d s \\
& =\frac{N}{2} \int_{0}^{T}\left[f_{1}(t)\right]^{2} \cos ^{2} \Omega_{1} t d t=N E / 2, \tag{26}
\end{align*}
\]
where we have used (12). The cross-correlations are
\[
\begin{align*}
& \overline{\left(X_{1}-\bar{X}_{1}\right)\left(Y_{1}-\bar{Y}_{1}\right)}=\overline{\left(X_{2}-\bar{X}_{2}\right)\left(Y_{2}-\bar{Y}_{2}\right)}=0  \tag{27}\\
& \overline{\left(X_{1}-\bar{X}_{1}\right)\left(X_{2}-\bar{X}_{2}\right)}=\overline{\left(Y_{1}-\bar{Y}_{1}\right)\left(Y_{2}-\bar{Y}_{2}\right)} \\
& \quad=\int_{0}^{T} \int_{0}^{T} \overline{n(t) n(s)} f_{1}(t) f_{2}(s) \cos \Omega_{1} t \cos \Omega_{2} s d t d s \\
& \quad=\frac{N}{2} \int_{0}^{T} f_{1}(t) f_{2}(t) \cos \Omega_{1} t \cos \Omega_{2} t d t=N c_{1} / 2=k_{1}, \tag{28}
\end{align*}
\]
\[
\begin{align*}
& \overline{\left(X_{1}\right.}-\overline{\left.\bar{X}_{1}\right)\left(Y_{2}-\overline{Y_{2}}\right)}=-\overline{\left(X_{2}-\bar{X}_{2}\right)\left(Y_{1}-\bar{Y}_{1}\right)} \\
&=\int_{0}^{T} \int_{0}^{T} \overline{n(t) n(s)} f_{1}(t) f_{2}(s) \cos \Omega_{1} t \sin \Omega_{2} s d t d s \\
&=\frac{N}{2} \int_{0}^{T} f_{1}(t) f_{2}(t) \cos \Omega_{1} t \sin \Omega_{2} t d l=N c_{2} / 2=k_{2} . \tag{29}
\end{align*}
\]

The joint distribution of the \(X_{1}, Y_{1}, X_{2}, Y_{2}\) is now the exponential of a quadratic form, the cocfficients of the terms of which form a matrix which is the inverse of the correlation matrix of the four variables. \({ }^{7}\) Taking the variables in the above orler, the correlation matrix \(\left\|\phi_{i j}\right\|\) and its inverse \(\left\|\mu_{i j}\right\|\) are
\[
\begin{align*}
& \left\|\phi_{i j}\right\|=\left(\begin{array}{cccc}
\sigma^{2} & 0 & k_{1} & k_{2} \\
0 & \sigma^{2} & -k_{2} & k_{1} \\
k_{1}-k_{2} & \sigma^{2} & 0 \\
k_{2} & k_{1} & 0 & \sigma^{2},
\end{array},\right. \\
& \left\|\mu_{i j}\right\|=\frac{1}{A}\left(\begin{array}{cccc}
\sigma^{2} & 0 & -k_{1} & -k_{2} \\
0 & \sigma^{2} & k_{2} & -k_{1} \\
-k_{1} & k_{2} & \sigma^{2} & 0 \\
-k_{2} & -k_{1} & 0 & \sigma^{2}
\end{array}\right) . \tag{30}
\end{align*}
\]
where \(A=\sigma^{4}-k_{1}{ }^{2}-k_{2}{ }^{2}\). Thus the joint probability may be written
\[
\begin{align*}
& p\left(X_{1}, Y_{1}, X_{2}, Y_{2}^{\prime}\right)=\left(4 \pi^{2} A\right)^{-1} \exp -(2 A)^{-1}\left\{\sigma ^ { 2 } \left[\left(X_{1}-\bar{X}_{1}\right)^{2}\right.\right. \\
& \left.\quad+\left(Y_{1}-\bar{Y}_{1}\right)^{2}+\left(X_{2}-\bar{X}_{2}\right)^{2}+\left(Y_{2}-\bar{Y}_{2}\right)^{2}\right\rfloor \\
& \quad-2 k_{1}\left[\left(X_{1}-\bar{X}_{1}\right)\left(X_{2}-\bar{X}_{2}\right)+\left(Y_{1}-\bar{Y}_{1}\right)\left(Y_{2}-\bar{Y}_{2}\right)\right] \\
& \left.\quad-2 k_{2}\left\{\left(X_{1}-\bar{X}_{1}\right)\left(Y_{2}-\bar{Y}_{2}\right)-\left(X_{2}-\bar{X}_{2}\right)\left(Y_{1}-\bar{Y}_{1}\right)\right]\right\} . \tag{31}
\end{align*}
\]

If one now uses the above expressions for the means, making the substitutions
\[
\begin{array}{rlrl}
X_{1} & =R_{1} \cos \theta_{1}, & Y_{1}=R_{1} \sin \theta_{1}, \\
X_{2} & =R_{2} \cos \theta_{2}, & Y_{2}=R_{2} \sin \theta_{2}, \\
\theta_{1}^{\prime} & =\theta_{1}-\phi, & & \theta_{2}{ }^{\prime}=\theta_{2}-\phi-\psi, \\
k_{1} & =\mu \cos \psi, & k_{2}=\mu \sin \psi, \quad \mu=N B / 2, \tag{32}
\end{array}
\]
one finds the joint probability of the new variables \(R_{1}\), \(R_{2}, \theta_{1}{ }^{\prime}, \theta_{2}{ }^{\prime}\) to \({ }^{\prime}{ }^{8}\)
\[
p\left(R_{1}, R_{2}, \theta_{1}^{\prime}, \theta_{2}^{\prime} ; \phi\right)
\]
\[
\begin{align*}
= & \frac{R_{1} R_{2}}{4 \pi^{2} A} e^{-E / N} \exp \left\{-\frac{\sigma^{2}}{2 A}\left(R_{1}^{2}+R_{2}^{2}\right)\right. \\
& \left.+\frac{\mu R_{1} R_{2}}{A} \cos \left(\theta_{2}^{\prime}-\theta_{1}^{\prime}\right)+\frac{2 R_{1}}{N} \cos \theta_{1}^{\prime}\right\}, \tag{33}
\end{align*}
\]
where the factor \(R_{1} R_{2}\) comes from the Jacobian of the
\({ }^{7}\) S. O. Rice, "The mathematical analysis of random noise," Bell Sys. Tech. Jour., vol. 23, p. 282; July, 1944; and vol. 24, p. 46; January, 1945.
\({ }_{8}\) This derivation is formally similar to one given by D. Middleton for a different problem, "Some general results in the theory of noise through non-linear devices," Quart. Appl. Math., vol, 5, p. 445; January, \(19+8\), section 5. His eq. (5.12) can be reduced to our (33) by making the proper identification of symbols.
transformation to the new variables. Note that this expression is independent of \(\phi\). In order to find the joint distribution of the magnitudes \(R_{1}\) and \(R_{2}\), we integrate \(\theta_{1}{ }^{\prime}\) and \(\theta_{2}{ }^{\prime}\) over their ranges 0 to \(2 \pi\). The result is
\[
\begin{align*}
p\left(R_{1}, R_{2}\right)= & \frac{R_{1} R_{2}}{A} e^{-E / N} \exp \left[-\frac{\sigma^{2}}{2 A}\left(R_{1}^{2}+R_{2}^{2}\right)\right] \\
& \cdot I_{0}\left(\mu R_{1} R_{2} / \Lambda\right) I_{0}\left(2 R_{1} / N\right) . \tag{34}
\end{align*}
\]

The error probability \(P_{e}\) is the probability that \(R_{2}>R_{1}\), i.e., (23):
\[
\begin{align*}
P_{\bullet} & =\left(1-\lambda^{2}\right) e^{-2 \rho} \\
& \cdot \int_{0}^{\infty} d x \int_{x}^{\infty} d y x y e^{-\left(x^{2}+y^{2}\right) / 2} I_{0}\left(2 x \sqrt{\rho\left(1-\lambda^{2}\right)}\right) I_{0}(\lambda x y), \tag{35}
\end{align*}
\]
where we have introduced the notation
\(\lambda=B / E, \rho=E / 2 N, x^{2}=\sigma^{2} R_{1}{ }^{2} / \Lambda, y^{2}=\sigma^{2} R_{2}{ }^{2} / A\)
and changed variables in the double integral. In carrying out the derivation with the inclusion of the phase modulations \(\psi_{i}(t)\) one finds that the quantities \(B, E\), and \(\lambda\) are just those given by (1), with \(u_{i}(t)=f_{i}(t) \exp\) \(i \psi_{i}(t)\). The integral can be reduced by transformations outlined in the Appendix. The result is
\[
\begin{align*}
P_{e}= & Q\left(\sqrt{\rho\left(1-\sqrt{1-\lambda^{2}}\right)}, \sqrt{\rho\left(1+\sqrt{1-\lambda^{2}}\right)}\right) \\
& -\frac{1}{2} e^{-\rho} I_{0}(\rho \lambda), \tag{37}
\end{align*}
\]
where the function \(Q(\alpha, \beta)\) is given by
\[
\begin{equation*}
Q(\alpha, \beta)=\int_{\beta}^{\infty} t e^{-\left(\alpha+\alpha^{2}\right) / 2} I_{0}(\alpha t) d t . \tag{38}
\end{equation*}
\]

It has been tabulated by Marcum. \({ }^{9}\)
If both \(\lambda\) and \(\rho \lambda\) are small, it is convenient to use the series expansion
\[
\begin{equation*}
P_{\epsilon}=\frac{1}{2} e^{-\rho}\left[I_{0}(\rho \lambda)+2 \sum_{n=1}^{\infty}\left(\frac{1-\sqrt{1-\lambda^{2}}}{\lambda}\right)^{n} I_{n}(\rho \lambda)\right] . \tag{39}
\end{equation*}
\]

For large signal-to-noise ratios, \(\rho \gg 1\), and for \(1-\lambda \ll 1\), (37) reduces to (13), so that in this region the loss of phase information introduces only a very small increase in the probability of error. [Sce Appendix, (62).] In Fig. 3 we have plotted \(P_{e}\) versus \(\lambda\) for a number of values of \(\rho\), while in l"ig. 4 are given curves of \(\rho\) versus \(\lambda\) for various values of \(P_{f}\). By comparing these curves with those of Figs. 1 and 2 one can assess the increase in ambiguity arising when the carrier phases become uncertain. Thus it is the quantity \(\lambda\), along with the signal-to-noise ratio \(\rho\), which again determines the ambiguity of the signals, so that Woodward's contention \({ }^{1}\) that the ambiguity of narrow-band signals depends on the relative crosscorrelation \(\lambda\) is borne out, provided one takes account of the noise as we have done here.

\footnotetext{
' J. I. Marcum, "Table of Q Functions," Rand Corporation Report RM-339; January 1, 1950.
}


Fig. 3-Ambiguity of signals of unknown phase.


Fig. 4-Ambiguity of signals of unknown phase: fixed error probability, \(P_{s}\).

\section*{IV. Conclusion}

The probability of error in deciding which of two signals, \(F_{1}(t)\) or \(F_{2}(t)\), was sent has been computed as a function of the signal-to-noise ratio \(\rho=E / 2 N\) and of the relative cross-correlation \(\lambda\) of the signals, where \(\lambda\) is given by (1). It has been shown that as \(\lambda\) approaches unity, an ever higher signal-to-noise ratio is required to keep the error probability to a pre-assigned value \(<0.5\).

These results have a bearing upon the accuracy with which parameters of a received signal, such as its carrier frequency or its time of arrival, can be measured when noise is present. \({ }^{10}\) Consider for example the measurement of frequency. This could be accomplished by use of a large number of filters of amplitude characteristic
\({ }^{10} \mathrm{Cf}\). D. Slepian, "Estimation of signal parameters in the presence of noise," Trans. IRE, vol. I'GIT-3, p. 68; March, 1954.
matching the pulse envelope, the pass-frequencies \(\Omega_{i}\) spaced more or less uniformly over the band of expected signal carrier frequencies. That filter yielding the maximum output would determine the signal frequency to an accuracy given by the frequency spacing between adjacent filters. Now there would be little point to placing the filters so close together that the noise would introduce a large probability of error in the decision as to which filter output was the largest. If one considers the filters pairwise, the results of this paper enable one to determine the probability that an adjacent filter, of pass frequency \(\Omega_{i+1}\), say, will have a larger output than that of pass frequency \(\Omega_{i}\), when the frequency of the signal was really \(\Omega_{i}\). By setting a limit to this probability \(P_{0}\) one can determine the overlap \(\lambda\) as a function of the expected signal-to-noise ratio \(\rho\), using the curves of Figs. 2 or 4.
Suppose for example that one expects pulses of Gaussian envelope \(u(t)\) given by
\[
\begin{equation*}
u(t)=A \exp \left[-\frac{1}{2} \alpha^{2}\left(t-\frac{1}{2} T\right)^{2}\right], \tag{40}
\end{equation*}
\]
where \(\alpha\) is roughly the bandwidth of the pulse. If we assume that the observation time is long compared with \(\alpha^{-1}\), the relative cross-correlation \(\lambda\) is given by (1) to be
\[
\begin{equation*}
\lambda=e^{-\omega / 4 \alpha} \tag{41}
\end{equation*}
\]
when the time of arrival of the pulses is the same, but when the frequency separation (corresponding to the difference of the pass frequencies of adjacent matched filters) is \(\Omega_{i+1}-\Omega_{i}=\omega\). If we use for simplicity the results of Section II, which assume the signals completely known, we find that the dependence of signal-to-noise ratio upon \(\lambda\) for fixed error probability \(P_{c}\) is given by
\[
\begin{equation*}
\rho(1-\lambda)=k^{2} \tag{42}
\end{equation*}
\]
where \(k\) is a constant such that
\[
\begin{equation*}
P_{e}=\frac{1}{2}[1-\Phi(k)] . \tag{43}
\end{equation*}
\]

Now for \(\lambda\) near unity, (41) is, approximately,
\[
\begin{equation*}
\omega=2 \alpha \sqrt{-\ln \lambda} \cong 2 \alpha \sqrt{1-\lambda} \tag{44}
\end{equation*}
\]
so that
\[
\begin{equation*}
\omega \cong 2 k \alpha / \sqrt{\rho} \tag{45}
\end{equation*}
\]

This implies that the minimum resolvable frequency difference, i.e., the minimum reasonable difference between the pass frequencies of adjacent filters, is proportional to the signal bandwidth and inversely proportional to the square root of the signal-to-noise ratio. This essentially is the limitation upon the accuracy with which the frequency of such a signal can be determined. Of course, to make better use of such a system one should use the outputs of all the filters of the array, computing from them the a posteriori probability distribution of the input signal frequency. The width of this
distribution would indicate the expected error in a frequency determination by this means.

\section*{Appendix}

In order to evaluate the integral of (35), we start with the definition (38) of the function \(Q(\alpha, \beta)\). By integration by parts \({ }^{14}\) one can show, for \(\alpha<\beta\),
\[
\begin{equation*}
Q(\alpha, \beta)=e^{-(\alpha+\beta) / 2} \sum_{n=0}^{\infty}(\alpha / \beta)^{n} I_{n}(\alpha \beta) . \tag{46}
\end{equation*}
\]

Now we use the integral representation of the modified Bessel functions \(I_{n}(x)\) :
\[
\begin{equation*}
I_{n}(x)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \cos n \theta e^{x \cos \theta} d \theta \tag{47}
\end{equation*}
\]

Substituting into (46) and interchanging the order of summation and integration we get
\[
\begin{aligned}
Q(\alpha, \beta)= & \frac{1}{2 \pi} e^{-(\alpha+\beta) / 2} \int_{0}^{2 \pi} e^{\alpha \beta \cos \theta} \sum_{n=0}^{\infty}(\alpha / \beta)^{n} \cos n \theta d \theta \\
= & \frac{1}{2 \pi} e^{-\left(\alpha^{2}+\beta^{2}\right) / 2} \\
& \cdot \int_{0}^{2 \pi} \frac{1-(\alpha / \beta) \cos \theta}{1-2(\alpha / \beta) \cos \theta+(\alpha / \beta)^{2}} e^{\alpha \beta \cos \theta} d \theta
\end{aligned}
\]
\[
\begin{equation*}
(\alpha<\beta) \tag{48}
\end{equation*}
\]

Now (35) can be written using (38) as
\[
\begin{align*}
P_{e}= & \left(1-\lambda^{2}\right) e^{-2 \rho} \\
& \cdot \int_{0}^{\infty} x e^{-x^{2}\left(1-\lambda^{2}\right) / 2} I_{0}\left(2 x \sqrt{\rho\left(1-\lambda^{2}\right)}\right) Q(\lambda x, x) d x \tag{49}
\end{align*}
\]

Substituting from (48) for \(Q(\lambda x, x)\), we get
\[
\begin{align*}
P_{e}= & \frac{\left(1-\lambda^{2}\right) e^{-2 \rho}}{2 \pi} \int_{0}^{2 \pi} \frac{1-\lambda \cos \theta}{1-2 \lambda \cos \theta+\lambda^{2}} d \theta \\
& \cdot \int_{0}^{\infty} x e^{-x^{2}(1-\lambda \cos \theta)} I_{0}\left(2 x \sqrt{\rho\left(1-\lambda^{2}\right)}\right) d x \tag{50}
\end{align*}
\]

Now we use the formula
\[
\begin{equation*}
\int_{0}^{\infty} x e^{-a^{2} x} I_{0}(b x) d x=\frac{e^{b^{2} / \& a^{2}}}{2 a^{2}} \tag{51}
\end{equation*}
\]
(from which one can show that \(Q(\alpha, 0)=1\) ). (50) then becomes, with \(a^{2}=1-\lambda \cos \theta, b=2 \sqrt{\rho\left(1-\lambda^{2}\right)}\),
\[
\begin{align*}
P_{\theta}= & \frac{\left(1-\lambda^{2}\right) e^{-2 \rho}}{4 \pi} \int_{0}^{2 \pi} \frac{d \theta}{1-2 \lambda \cos \theta+\lambda^{2}} \\
& \cdot \exp \left[\frac{\rho\left(1-\lambda^{2}\right)}{1-\lambda \cos \theta}\right] . \tag{52}
\end{align*}
\]

We now make the change of variable given by
\({ }^{11}\) J. I. Marcum, A Statistical Theory of Target Detection by Pulsed Radar, Math. App., Rand Corp. Report RM-753; 1948.
\[
\begin{equation*}
\cos \theta=\frac{\lambda+\cos \phi}{1+\lambda \cos \phi} \tag{53}
\end{equation*}
\]
where the range \(0<\theta<2 \pi\) corresponds to \(0<\phi<2 \pi\), ob)taining after some labor
\[
\begin{equation*}
P_{e}=\frac{\sqrt{1-\lambda^{2}} e^{-p}}{4 \pi} \int_{0}^{2 \pi} \frac{e^{p \lambda} \cos \phi d \phi}{1-\lambda \cos \phi} . \tag{54}
\end{equation*}
\]

Now in (48) let us put \(\alpha / \beta=\mu\), whereupon we can break up the integral as follows:
\[
\begin{align*}
Q(\alpha, \beta)= & \frac{1}{4 \pi} e^{-\left(\alpha+\beta^{2}\right) / 2} \int_{0}^{2 \pi} e^{\alpha \beta \cos \theta} d \theta\left[1+\frac{1-\mu^{2}}{1-2 \mu \cos \theta+\mu^{2}}\right] \\
= & \frac{1}{2} e^{-\left(\alpha+\beta^{2}\right) / 2}\left[I_{0}(\alpha \beta)\right. \\
& \left.+\frac{1-\mu^{2}}{2 \pi} \int_{0}^{2 \pi} \frac{e^{\alpha \beta \cos \theta} d \theta}{1-2 \mu \cos ^{2} \theta+\mu^{2}}\right] \tag{55}
\end{align*}
\]
so that
\[
\begin{align*}
\frac{1}{2 \pi} \int_{0}^{2 \pi} & \frac{e^{\alpha \beta \cos \theta d \theta}}{1-2 \mu \cos \theta+\mu^{2}} \\
& =\left(1-\mu^{2}\right)^{-1}\left[2 Q(\alpha, \beta) e^{\left(\alpha+\beta^{2}\right) / 2}-I_{0}(\alpha \beta)\right] \tag{56}
\end{align*}
\]

Thus we can evaluate (54) by putting
\(\lambda=\frac{2 \mu}{1+\mu^{2}}, \quad \mu=\frac{1-\sqrt{1-\lambda^{2}}}{\lambda}, \quad \sqrt{1-\lambda^{2}}=\frac{1-\mu^{2}}{1+\mu^{2}}\)
\(\alpha=\sqrt{\rho \lambda \mu}=\sqrt{\rho\left(1-\overline{\left.\sqrt{1-\lambda^{2}}\right)}\right.}\),
\(\beta=\sqrt{\rho \lambda / \mu}=\sqrt{\rho\left(1+\sqrt{1-\lambda^{2}}\right)}\),
whereupon (54) becomes
\[
\begin{align*}
P_{\theta} & =\frac{\left(1-\mu^{2}\right) e^{-\rho}}{4 \pi} \int_{0}^{2 \pi} \frac{\left(e^{\rho \lambda}\right)^{\cos \theta} d \theta}{1-2 \mu \cos \theta+\mu^{2}} \\
& =\frac{1}{2} c^{-\rho}\left[2 Q(\alpha, \beta) e^{(\alpha+\beta) / 2}-I_{0}(\alpha \beta)\right] \\
& =Q(\alpha, \beta)-\frac{1}{2} e^{-\rho} I_{0}(\rho \lambda) \tag{58}
\end{align*}
\]
which was to be proved. The series expansion of (39) comes directly from (46).

When \(\alpha\) and \(\beta\) are large, one can obtain an asymptotic evaluation of \(Q(\alpha, \beta)\) by using the asymptotic form of the function \(I_{0}(x): 1^{10}\)
\[
\begin{equation*}
I_{0}(x) \cong \frac{e^{x}}{\sqrt{2 \pi x}} \tag{59}
\end{equation*}
\]

Putting this into the integral (38), and noticing that most of the contribution to the integral comes from the region in which \(y \sim \alpha\), one obtains
\[
\begin{align*}
Q(\alpha, \beta) & \cong \int_{B}^{\infty} \frac{y}{\sqrt{2 \pi \alpha y}} e^{-(y-\alpha) / 2} d y \\
& \sim \frac{1}{2 \pi} \int_{\beta}^{\infty} e^{-(y-\alpha)^{2} / 2} d y \\
& =\frac{1}{2}\left[1-\Phi\left(\frac{\beta-\alpha}{\sqrt{2}}\right)\right] \tag{60}
\end{align*}
\]

Now for \(1-\lambda \ll 1\), one can write \(\alpha\) and \(\beta\) approximately as
\[
\begin{equation*}
\alpha \doteq \sqrt{\rho}(1-\sqrt{(1-\lambda) / 2)}, \beta \doteq \sqrt{\rho}(1+\sqrt{(1-\lambda) / 2}) \tag{61}
\end{equation*}
\]

In addition, the second term of (58) becomes negligible, so that one finally obtains the approximate result
\[
\begin{equation*}
P_{\bullet} \cong \frac{1}{2}[1-\Phi(\sqrt{\rho(1-\lambda)}] \tag{62}
\end{equation*}
\]

Comparison of the curves of Figs. 1 and 3 shows that this is a good approximation when \(\rho \geq 10, \lambda \geq 0.5\).

\section*{Acknowhedgment}

I wish to thank I'rofessor R. Fano of the Massachusetts Jnstitute of 'Technology and Dr. W. Siebert of Lincoln Laboratory, Massachusetts Institute of Technology, for an introductory discussion of the problem of signal resolution. I am indebted to Dr. W. Altar of Westinghouse Research Laboratories for helpful criticism of the manuscript.

\title{
Automatic Gain Control of Transistor Amplifiers*
}

\author{
W. F. CHOW \(\dagger\), senior member, ire, and A. P. STERN \(\dagger\), associate, ire
}

\begin{abstract}
Summary-Since transistor small signal parameters are functions of the dc emitter current ( \(I_{\theta}\) ) and of the dc collector voltage ( \(V_{c}\) ), gain control can be achieved by varying either \(I_{c}\) or \(V_{c}\). The gain decreases with decreasing \(I_{e}\) or \(V_{c}\).

Using the series-parallel representation, the parameter most sensitive to \(I_{e}\)-variations is \(h_{11}\), whereas \(V_{c}\)-variations affect \(h_{12}\) and \(h_{22}\) considerably. In common emitter configuration changes of \(h_{21}\) are also important. A study of the dependance of the \(h_{i j}\) on the dc operating point explains the nature of gain variations with \(I_{s}\) and \(V_{c}\).

Satisfactory AGC circuits have been built using either \(I_{e}\) - or \(V_{c}\)-control. The control power required is very small if \(I_{c}\) or \(V_{c}\) are controlled indirectly by varying the base current. Since \(I_{s}\) or \(V_{c}\) are decreased considerably in the presence of strong input signals, the problem of distortion must be given serious consideration. Due to the variation of transistor driving point impedances, AGC may result in changes of the bandpass characteristic of tuned amplifiers.

The gain of transistor converters and oscillator-converters can be controlled by conventional or special techniques.
\end{abstract}

\section*{1. INTRODUCTION}

TTh1E POSSIBHITY of controlling the gain of amplifiers is very important in many electronic systems. Methods achieving gain control in vacuum tube amplifier circuits are well-known. These methorls are based on the fant that the transconductance, and conseguently, the amplification of a vacuum tube are functions of its grid bias.

Automatic gain control circuits using transistors have been described by Blecher, \({ }^{1}\) Barton, \({ }^{2}\) Stern and Raper. \({ }^{3.4}\) Blecher discusses circuits using the common base configuration. The other papers describe broadcast receivers employing AGC.

The purpose of this paper is to review the theoretical aspects of transistor gain control and some of the principles useful in the design of transistor \(A G C\) circuits. The investigations leading to this paper were mainly concerned with the gain control of amplifiers designed to operate in the 100 kc to 2 mof frequency range, but it is helieved that the conclusions can be considered valid for amplifiers designed for different frequencies.

\footnotetext{
* Original manuscript received by the IRE, March 23, 1955; revised manuscript received, June 15, 1955. The first part of th is paper has been presented as "Principles of Automatic Gain Control of l'ransistor Amplifiers," at the IRE-AIEE-[P Conference on Transistor Circuits, l'hiladelphia, February 17, 1955; the second part has been presented as "Automatic Gain Control of Transistor Amplifiers," at the Radio Fall Meeting of the RETMA, Syracuse, October 18, 1954. Parts of this paper will be incorporated in a thesis being prepared for presentation to the Elec. Engrg. Dept., Syracuse University.
\(\dagger\) Electronics Lab., General Electric Co., Syracuse, N. Y.
\({ }^{1}\) F. II. Blecher, "Automatic gain control of junction transistor amplifiers," Proc. NEC, vol. 9, pp. 731-7.37; 1953.
\({ }_{2}\) L. F., Barton, "An experimental transistor personal broadcast receiver," Proc. IRE, vol. 42, pp. 1062-1066; July, 1954.
\({ }^{3}\) A. P. Stern and J. A. A. Raper, "Transistor AM broadcast receivers," 1954 IRE Convention Record, part 7, "Broadcasting and Television," pp. 8-14.

4A. P. Stern and J. A. A. Raper, "Transistor broadcast receivers," Elec. Eng., vol. 7.3, pp. 1107-1112; December, 1954.
}

\author{
11. T'ransistor 13emavior and 1)(" \\ Oplerating Pont
}

\section*{Small Signal Parameters and C.ain}

Using the series-parallel representation, the behavior of the transistor is described by:
\[
\begin{align*}
I_{1} & =h_{11} I_{1}+h_{12} E_{2}  \tag{1}\\
I_{1} & =h_{21} I_{1}+h_{22} E_{2}
\end{align*}
\]

The small signal parameters \(h_{i j}\) vary with the frequency \({ }^{5,6}\) and are, of course, different for the three transistor configurations (common base, emitter and collector). If the transistor (Fig. 1) is terminated by a


Fig. 1 Schematic representation of a transistor amplitier.
source impedance \(Z_{G}\left(Z_{G}=R_{G}+j . \mathrm{X}_{G}\right)\) and a load admittance \(\dot{F}_{L}\left(Y_{L}=\left(G_{L}+j B_{L}\right)\right.\), the transtucer gain (; of the transistor can be expressed as:
\[
\begin{equation*}
G=\frac{+R_{G} G_{L}\left|h_{21}\right|^{2}}{\left|\left(h_{11}+Z_{G}\right)\left(h_{22}+Y_{L}\right)-h_{12} h_{21}\right|^{2}} \tag{2}
\end{equation*}
\]

The gain (; of (2) is defined as the ratio of the power delivered to the load to the available power of the source comected to the input terminals of the transistor.

Gain control of the transistor is possible because, as will be shown in the following discussion, the parameters \(h_{i j}\) depend on the de operating point, i.e.. on the de emitter current \(\left(I_{e}\right)\) and the de collector-voltage ( \(V_{c}\) ). Therefore, there are two basic methods of transistor gain control:

> 1. Emitter current or \(I_{t}\)-control
> 2. Collector voltage or \(V_{c}\)-control.

The two methods apply in different regions of the collector plane: \(I_{e}\)-control applies at "normal" values of \(V_{c}\) (several volts) and small values of \(I_{d}\), whereas \(V_{c^{-}}\) control involves "normal" values of \(I_{e}\) (order of milliampere) and small values of \(\mathrm{V}_{c}\).
The \(h_{i j}\) being frepuency dependent and complex and the functions \(h_{i j}=F\left(I_{e}, \Gamma_{c}^{\circ}\right)\) rather involved, an exact analytic treatment of the gain as a function of the de: operating point using (2) is hardly practical, especially

\footnotetext{
\({ }_{5}\) J. M. Early, "Design theory of junction transistors," Bell Sys. Tech. Jour., vol. 32, pp. 1271-1312; November, 1953.

6 R. 1. Pritchard, "Frequency variation of junction transistor parameters," Proc. 1RE, vol. 12, pp. 786-709; May, 1954.
}
at higher frequencies. The effect of \(I_{s}\) and \(V_{c}\) on gain and other performance characteristics of transistor amplifiers can, however, be described qualitatively by analyzing the theoretical properties and observing the experimental behavior of the \(h_{i j}\) as functions of \(I_{s}\) and \(V_{c}\).

In the following discussion, \(h_{i j, b}\) designate the \(h\)-parameters of the common base transistor configuration whereas \(h_{i j, \text {, refer to }}\) the common emitter circuit. Whereever it is necessary to distinguish between collector-tobase and collector-to-emitter voltages, the former is designated by \(V_{c b}\) and the latter by \(V_{c e}\).

\section*{Common Base Parameters: Theory}

The common base small signal admittance parameters of the transistor have been calculated by Early \({ }^{5}\) in terms of the physical properties of the device. Early has solved the one-dimensional diffusion equation approximately valid for an "ideal" transistor and has added to the ideal model several circuit elements representing the deviation of a "real" transistor from the ideal one.

In the case of gain controlled amplifiers \(I_{0}\) may be reduced to a few microamperes and \(V_{c b}\) to a few millivolts ( \(V_{c b}\) may clange sign). Consequently, \(I_{e}\) may be of the order of magnitude of the emitter or collector reverse currents and \(V_{c b}\) is not necessarily larger than \(k T / q\). Early's solution of the diffusion equation can be written to include terms which may be of importance at small values of \(I_{e}\) and \(V_{c b}\). The resulting admittance parameters are transformed into series-parallel parameters \(h_{i j}{ }^{\prime}\), yielding an equivalent circuit of the "ideal" transistor. The ideal model is assumed to have unity emitter efficiency and collector multiplication and can be completed by adding the "base spreading impedance" \(z_{b}{ }^{\prime}\) and collector barrier capacitance \(C_{b}\) (Fig. 2). (Pritchard and Coffey \({ }^{7}\) have shown that the base spreading "resistance" is complex for rate grown \(n-p-n\) transistors.)


Fig. 2-"Real" transistor.
The collector-to-base leakage resistance is negligible at medium and high frequencies under consideration.

At higher frequencies \(h_{12}{ }^{\prime}\) is small as compared to the feedback due to \(z_{b}{ }^{\prime}\) and the parameters \(h_{i j, b}\) of the common base transistor are related to those of the "ideal" transistor \(h_{i j}{ }^{\prime}\) by the following approximate relations:

\footnotetext{
\({ }^{7}\) R. L. Pritchard and W. N. Coffey, "Small signal parameters of grown-junction transistors at high frequencies," 1954 IRE Convention Record, part 3, "Electron Devices and Component Parts," pp. 89-98.
}
\[
\begin{align*}
& h_{11, b}=h_{11}^{\prime}+z_{b}^{\prime}\left(1+h_{21}^{\prime}\right)  \tag{3}\\
& h_{12, b}=\left(h_{22}^{\prime}+j \omega C_{b}\right) z_{b}^{\prime}  \tag{4}\\
& h_{21, b}=-\alpha=h_{21}^{\prime}  \tag{5}\\
& h_{22, b}=h_{22}^{\prime}+j \omega C_{b} . \tag{6}
\end{align*}
\]

Writing out the \(h_{i j}{ }^{\prime}\) explicitly, the \(h_{i j, b}\) can be written as functions of \(I_{s}\) and \(V_{c b}\) :
\[
\begin{align*}
& h_{11, b}= \frac{\tanh s w / L}{a s \tanh w / L} \frac{1}{I_{e}+I_{e 0}}+z_{b}\left(1-\frac{1}{\cosh s w / L}\right)  \tag{7}\\
& h_{12, b}=\left\{\left[a I^{\prime}+\frac{1}{L} \frac{\partial w}{\partial V_{c b}}\left(\frac{1}{\cosh w / L} I_{e}+I_{c 0}\right)\right] s\right. \\
&\left.\cdot \tanh s w / L+j \omega C_{b}\right\} z_{b}^{\prime}  \tag{8}\\
& h_{21, b}=-\frac{1}{\cosh s w / L}  \tag{9}\\
& h_{22, b}= {\left[a I^{\prime}+\frac{1}{L} \frac{\partial w}{\partial V_{c b}}\left(\frac{1}{\cosh w / L} I_{e}+I_{c o}\right)\right] s } \\
& \cdot \tanh s w / L+j \omega C_{b} . \tag{10}
\end{align*}
\]
\(I_{00}\) is the emitter reverse current, the collector being biased at \(V_{c b} ; I_{c 0}\) is the collector reverse current with open emitter and \(I^{\prime}\) is a quantity having the dimension of a current. For \(p-n-p\) transistors:
\[
\begin{align*}
I_{e 0} & =\frac{q D_{\nu} p_{n}}{L \sinh w / L}\left(e^{a V_{c b}}-1+\cosh w / L\right)  \tag{11}\\
I_{c 0} & =\frac{q D_{p} p_{n}}{L}\left(1-c^{a V c b}\right) \tanh w / L  \tag{12}\\
I^{\prime} & =\frac{q D_{p} p_{n}}{L} e^{a V_{c b}} . \tag{13}
\end{align*}
\]

The symbols used in (7) to (13) are those of Early and have the following significance:
\(a=q / k T\) (approximately 40 at room temperature);
\(D_{p}=\) diffusion constant for holes;
\(p_{n}=\) equilibrium concentration of holes in \(n\)-type base region;
\(L=\) diffusion length of holes;
\(w=\) base-layer thickness;
\(s=(1+j \omega \tau)^{1 / 2}, \tau\) being the lifetime of holes in the base region.

Eq. (7) shows that \(h_{11, b}\) has a component which is inversely proportional to ( \(I_{*}+I_{00}\) ) and a component proportional to ( \(1+h_{21, b}\) ). Due to the decrease of \(\alpha=-h_{21, b}\) with decreasing \(I_{e}\) at low values of \(I_{a},\left(1+h_{21, b}\right)\) increases under the same conditions. Consequently, with decreasing \(I_{s}, h_{11, b}\) increases. \(h_{11, b}\) is, however, hardly affected by changes in \(V_{c b}\).

According to (8) and (10), the dependence of \(h_{12, b}\) and \(h_{22, b}\) on the dc parameters is rather complicated.

Both \(h_{12, b}\) and \(h_{22, b}\) have a component varying linearly with \(I_{0}\) and all components are sensitive to variations \(V_{c b}\), due to the fact that both \(\partial w / \partial V_{c b}\) and \(C_{b}\) increase with decreasing \(V_{c b}\). The major portion of \(h_{12, b}\) and \(h_{22, b}\) in practical transistors is due to \(C_{b}\) and, \(C_{b}\) being independent of \(I_{e}\); the variation of these parameters with \(I_{0}\) is not as strong as their variation with \(V_{c b}\).

In (9) \(h_{21, b}\) is inclependent of \(I_{\text {a }}\) and \(V_{c b}\), but it is well known that \(h_{21, b}=-\alpha\) does decrease at low values of \(I_{0}{ }^{8}\) and in the neighborhood of zero \(V_{c b}\).

In the case of transistors with small base layer thickness the dependence of \(h_{i j, b}\) on \(V_{c b}\) is particularly complicated because of the nonnegligible variation of the base layer thickness with \(V_{c b}{ }^{9}\)

The variation of the \(h\)-parameters with \(I_{0}\) can be summarized schematically by the following qualitative relationships:
\[
\begin{align*}
& h_{11, b} \cong A_{1} \frac{1}{I_{0}+I_{e 0}}+z_{b}^{\prime}(1-\alpha)  \tag{14}\\
& h_{12, b} \cong\left[A_{2}\left(\alpha_{l} I_{e}+I_{c 0}\right)+A_{3}\right]_{z_{b}^{\prime}}^{\prime}  \tag{15}\\
& h_{21, b}=-\alpha  \tag{16}\\
& h_{22, b} \cong A_{2}\left(\alpha_{0} I_{e}+I_{c 0}\right)+A_{3} . \tag{17}
\end{align*}
\]

The \(A_{i}\) are complex constants and \(\alpha_{0}\) is the low frequency value of \(\alpha . A_{3}\) is usually the prevailing term in (15) and (17) and consequently, the parameter most sensitive to \(I_{0}\), variations is \(h_{11, b}\). Therefore, one can state that, in terms of small signal parameter variations, emitter current type gain control is due principally to rariations of \(h_{11, b}\).

In the case of varying \(V_{c b}\), both \(\partial w / \partial V_{c b}\) and \(C_{b}\) are functions of \(V_{c b}{ }^{5,10}\) In general:
\[
\begin{align*}
\frac{\partial w}{\partial V_{c b}} & =k_{1} V_{c b}-m  \tag{18}\\
C_{b} & =k_{2} V_{c b}{ }^{-n} . \tag{19}
\end{align*}
\]

The magnitude of the exponents \(m\) and \(n\) depends on the nature of the collector junction. For graded junctions \(m=\frac{2}{3}\) and \(n=\frac{1}{3}\), whereas for step junctions \(m=n\) \(=\frac{1}{2}\). Both cases are idealized: in practice the exponents will be close to \(\frac{1}{2}\).

The \(h\)-parameters for varying \(V_{c b}\) can be written in first approximation as:
\[
\begin{align*}
& h_{11, b} \cong B_{1}+z_{b^{\prime}}(1-\alpha)  \tag{20}\\
& h_{12, b} \cong\left[B_{2} e^{a V_{c b}}+B_{3} V_{c b^{-m}}+B_{4} V_{c b^{-n}}\right]_{z_{b}^{\prime}}  \tag{21}\\
& h_{21, b}=-\alpha  \tag{22}\\
& h_{22, b} \cong B_{2} e^{a V_{c b}}+B_{3} V_{c b}{ }^{-m}+B_{4} V_{c b} b^{-n} . \tag{23}
\end{align*}
\]

\footnotetext{
? W. M. Webster, "On the variation of junction-transistor cur-rent-amplification factor with emitter current," Proc. IRE, vol. 42 , pp. 914-920; June, 1954.
- D. Haneman, "Expression for the " \(\alpha\)-cut-off frequency in junc-tion-transistors," Proc. IRE, vol. 42, pp. 1808-1809; December, 1954.
\({ }^{10}\) J. M. Early, "Effects of space-charge layer widening in junctiontransistors," Proc. IRE, vol. 40, pp. 1401-1406; November, 1952.
}

These expressions show that \(h_{12, b}\) and \(h_{22, b}\) are the parameters most sensitive to variations of \(V_{c b}\). Therefore, in terms of small signal parameter variation, collector voltage type gain control is due principally to variations of \(h_{12, b}\) and \(h_{22, b}\).

\section*{Common Base Parameters: Experimental Results}

The common base \(h\)-parameters of a typical General Electric rate grown \(n-p-n\) transistor (Type 2N78) were measured as functions of \(I_{0}\) and \(V_{c b}\) at one megacycle.
\(h_{11, b}\) is considered as the parallel connection of a resistance \(r_{11, b}\) and a (negative) capacitance \(C_{11, b}\) (Fig. 3). Both resistive and reactive components of \(h_{11, b}\) increase if \(I_{d}\) is decreasing. The phase angle of \(h_{11, b}\) decreases as \(I_{e}\) is decreasing and reverses itself ( \(C_{11, b}\) becomes positive) at a small value of \(I_{0}\) (this part of the curve is not shown in Fig. 3). The phase reversal is due to the fact that at low values of \(I_{e}\), the first component of \(h_{11, b}\) in (7) is prevailing and this component is capacitive. \(h_{11, b}\) depends only to a very moderate extent on \(V^{\top}\) cb.


Fig. 3-Components of \(h_{11, b}\) as functions of emitter current and collector-to-base voltage.
\(h_{12, b}\) (Fig. 4, next page) does not vary strongly with \(I_{\mathrm{e}}\), small measured variation due mainly to \(I_{e^{-}}\)dependence of \(z_{b} b^{\prime}\). The variation of \(h_{12, b}\) with \(V_{c b}\) is considerable, as can be expected. \(h_{12, b}\) increases if \(V_{c b}\) is decreasing but its phase remains unaffected, \(z_{b}{ }^{\prime}\) being independent of \(V_{c b}{ }^{11}\)
Variation of \(h_{22, b}\) (Fig. 5, next page) with \(I_{0}\) and \(V_{c b}\) is analogous to \(h_{12, b}\) as can be expected from the similarity of (8) and (10). Effect of \(I_{0}\) is small, whereas that of \(V_{c b}\) is considerable. Both components of \(h_{22, b}\left(g_{22, b}\right.\) and \(\left.C_{22, b}\right)\) increase if \(V_{c b}^{r}\) is decreasing. The slope \(C_{22, b}\) versus \(V_{c b}\) is comparable to that of \(h_{12, b}\) versus \(V_{c b}\) and is close to ( \(-1 / 2\) ).

\footnotetext{
\({ }^{11}\) Measurentents of the phases of \(h_{12, b}\) and \(h_{12,0}\) involved considerable errors and the corresponding curves may not be representative.
}


Fig. \(4-h_{12,}\), as a function of emiter current and collector-to-base voltage.


Emitter CuRRENT (mo) OR COLLECTOR - TO-BASE VOLTAGE (v)
Fig. 5-Components of \(h_{23,}\) ats functions of emitter current and collector-to-hase voltage.

The magnitude of \(h_{21, b}=-\alpha\) decreases with decreasing \(I_{e}\) (Fig. 6) in the region of small values of \(I_{e}\left(I_{e}<0.3\right.\) ma). \(h_{21, b}\) also decreases slightly with decreasing \(V_{c b}\).

The reduction of \(h_{21, b}\) at 1 mc with decreasing \(I_{e}\) or \(r_{\text {co }}\) is slue both to the decrease of the low frepuency value of \(h_{21, b}\) as well as to the decrease of the \(h_{21, b}\) - (or \(\alpha-\) ) cutoff frequency, The latter manifests itself in the notable increase of the phase angle of \(h_{21, b}\).

\section*{Common Emitter Parameters}

The approximate relationships between common emitter parameters \(h_{i_{j}, ~}\) and common base parameters \(h_{i j, b}\) are:


Fig. 6- \(h_{21, b}\) as function of emitter current and collector-tobase voltage.


Fig. 7-Emitter-to-base versus collector-ts-emither voltage at constant emitter current.
\[
\begin{align*}
& h_{11, b} \cong h_{11, b} /\left(1+h_{21, b}\right)  \tag{24}\\
& h_{12, e} \cong h_{11, b} h_{22, b} /\left(1+h_{21, b}\right)-h_{12, b}  \tag{2.5}\\
& h_{21, b} \cong-h_{21, b} /\left(1+h_{21, b}\right)  \tag{26}\\
& h_{22, e} \cong h_{22, b} /\left(1+h_{21, b} .\right. \tag{27}
\end{align*}
\]

With exception of \(h_{12, \mathrm{e}}\)
\[
\begin{equation*}
\left|h_{i j, e}\right| \cong\left|h_{i, b} /(1-\alpha)\right| \tag{28}
\end{equation*}
\]
where \(1 /(1-\alpha)\) decreases strongly with decreasing \(I_{\text {。 }}\) or \(V^{\prime}\).
In Figs. 8 to 11, the \(h_{i j, e}\) are plotted as functions of \(I_{e}\) and \(V_{c e}\). \(V_{c e}\) has been chosen as independent variable rather than \(V_{c b}\) for the common emitter case. By sul)tracting the emitter-to-base voltage from \(V_{c e}\) one ob tains \({ }^{\prime}{ }_{c}\) (Fig. 7).

Both resistive and reactive components of \(h_{11,0} \mathrm{in}-\) crease as \(I_{\theta}\) is decreasing (Fig. 8). The effect of \(\mathrm{V}_{c e}\) variation is negligible until \(V_{c e}\) reaches values of approximately 100 mv . In this region, the collector diode is forward biased and \(h_{11, e}\) decreases as \(V_{c e}\) is decreased. \(h_{12, e}\) increases if \(I_{e}\) is decreasing (Fig. 9) due to the increase of \(h_{11, b}\) in (25). \(h_{12, e}\) also increases with \(V_{c e}\), the variation leeing largest in the region of forward biased collector junction.


Fig. 8-Components of \(h_{11, e}\) as functions of emitter current and collector-to-emitter voltage.


EMITTER CURRENT (ma)OR COLLECTOR-TO-EMITTER VOLTAGE (v)
Fig. 9-h \(h_{12 ., ~ a s ~ a ~ f u n c t i o n ~ o f ~ e m i t t e r ~ c u r r e n t ~ a n d ~ c o l l e c t o r-~}^{\text {a }}\) to-emitter voltage.
\(h_{21, e} \cong \alpha /(1-\alpha)\) is, of course, more sensitive to variations of \(I_{*}\) and \(V_{c}\) than \(h_{21, b}=-\alpha\) (lig. 10). The variation of \(h_{22, e}\) is qualitatively similar to \(h_{22, b}\) (Fig. 11).

The measured curves show that in common emitrer configuration, just as in the case of the common base stage, emitter current type gain control is achieved by varying \(h_{11, s}\), whereas if collector voltage type gain control is used, \(h_{12, e}\) and \(h_{22, e}\) are mainly responsible for gain variation. In common emitter configuration, however, the variation of \(h_{21,8}\), which is in the numerator of (2), helps the gain control process considerably.

The Gain as Function of \(I_{e}\) and \(V_{c}\).
Considering (2) for the gain and the dependence of the


EMITTER CURRENT (mo) COLLECTOR - TO-EMITTER VOLTAGE (v)
Fig. \(10-h_{21,}\) as function of emitter current and collector-toemitter voltage.


Fig. 11-Components of \(h_{23, \text { e }}\) as functions of emitter current and collector-to-emitter voltage.
\(h\)-parameters on \(I_{e}\), it is easy to see that in the case of \(I_{s}\) control, at small values of \(I_{e}\), the gain is approximately proportional to \(1 /\left|h_{11}\right|^{2}\). Due to the nature of the variation of \(h_{11}\) with \(I_{c}\) this means that the gain will be reduced by almost 20 dl) per decade decrease of \(I_{g}\).
In the case of \(V_{c}\)-control the variation of \(h_{12}\) and \(h_{22}\) is most important. The exponent ( \(-\frac{1}{2}\) ) leads to a gain variation of approximately 10 db per decade variation of \(V_{c}\) at low values of \(V_{c}\).
The actual dependence of the transducer gain of a General Electric rate grown \(n-p-n\) transistor on \(I_{e}\) and \(V_{c}\) has been measured at 500 kc (Figs. 12 and 13). The terminations were resistive: \(R_{G}=500 \Omega\) and \(R_{L}=5,000 \Omega\). The curves show that considerable control action occurs in the region of small values of \(I_{e}\) and \(V_{c}\). (By reducing \(I_{e}\) and \(V_{c}\) lheyond the values shown on the diagram, gain reductions exceeding 35 db per stage can be achieved.) The agreement with the theoretical gain variation is satisfactory: gain decrease of 15 to 18 db per decade decrease in \(I_{e}\) is measured in the case of \(I_{e}\)-control,


Fig. 12-Transistor gain as a function of the emitter current.


Fig. 13-Transistor gain as a function of the collector voltage.
whereas for \(V_{c}\)-control the gain decrease per decade of \(V_{c}\) is 12 to 15 db . The higher value applies to the common emitter circuit, due to the previously mentioned fact that \(h_{21,0}\) is more sensitive to \(I_{0}\) and \(V_{c}\) variations than \(h_{21, b}\).

The gain does not vary appreciably at values of \(I\). exceeding \(500 \mu \mathrm{a}\) and at values of \(V_{c}\) exceeding 1 v . This enables the design of amplifiers with "delayed" AGC. By selecting an appropriate "no signal" operating point, reasonable delay characteristics can be obtained using either gain control principle.

Although the characteristics discussed were those of a General Electric rate-grown transistor, other transistor types exhibit similar gain control properties.

\section*{III. Circuit Considerations}

\section*{Methods of Cain Control}

In practical AGC circuits the variation of \(I_{0}\) or \(V_{c}\) must be performed economically, with a minimum expenditure of control power. The following consideration illustrates the problem. Figs. 12 and 13 show that for adequate gain in the presence of small signals, \(I_{0}\) must be of the order of \(500 \mu \mathrm{a}\) and \(V_{c}\) at least 1 v . With increasing signal level, in the case of \(I_{0}\)-control, \(I_{0}\) must


Fig. 14-AGC systen with additional amplifier in feedback loop.

I. Control of tuned amplifier with AGC voltage applied to base.


Fig. 15-Indirect \(V_{0}\)-control of tuned amplifier with AGC voltage applied to base.
be decreased to \(20 \mu\) a or less, whereas if \(V_{c}\)-control is used, \(V_{c}\) must be reduced to 30 mv or less. If \(I_{e}\) or \(V_{c}\) are controlled directly, the dc control power required to achieve this reduction of \(I_{s}\) or \(V_{c}\) is considerable.

The necessary dc power for direct control is not always available from detectors or other sources of AGC power and, consequently, in some cases (especially with a diode detector), if direct control of \(I_{0}\) or \(V_{c}\) is desired, an additional de amplifier must be inserted in the feedback loop to deliver this control power (Fig. 14) unless detection is performed at very high level.

Control power can, however, be saved and the control power requirements on the detector (or any other control source) reduced by using the controlled transistor amplifier simultaneously as a dc amplifier of the control signal.

An example for the case of \(I_{\text {- }}\)-control is shown in Fig. 15(a). \(I_{0}\) is varied indirectly by applying an appropriate control potential to the base. The transistor shown is \(n-p-n\) and, consequently, with increasing signal level, a decreasing positive voltage is reçuired as AGC signal. This will result in a decrease of \(I_{0}\). (For a \(p-n-p\) transistor, a decreasing negative voltage is needed.) The transistor amplifies the dc control signal and moderate variations of the base current will result in appreciable variations of \(I_{0}\).

A similar procedure can be applied in case of \(V_{c}\)-control (Fig. 15(b)). The AGC voltage is applied to the base.


Fig. 16-Transistor detector circuit.


Fig. 17-Two stage IF amplifier followed by detector with V. type AGC.

With increasing signal level, the AGC voltage acts to increase the emitter current \(I_{s}\) and the collector current \(I_{c}\) of the controlled stage. Due to the increased voltage drop developed by \(I_{c}\) across the resistor \(R\) inserted in the collector lead, \(V_{c}\) decreases and results in a reduction of gain. The controlled stage being \(n-p-n\), an increasing positive control voltage is needed to reduce the gain (increasing negative for \(p-n-p\) transistor).

The necessary control power is often smaller in the case of \(V_{e^{-}}\)than in the case of \(I_{e}\)-control, since very small variations of \(I_{c}\) will cause large variations of \(V_{c}\), provided the gain control resistance \(R\) is sufficiently high.

\section*{Detector}

The control voltage (with required polarity and sense of variation) can he obtained in many ways. Diorle detectors produce positive or negative control voltages increasing with increasing signal level and by using appropriate biasing arrangements control voltages decreasing with increasing signal level can be easily produced.
In many cases (e.g., in broadcast receivers), transistor detectors delivering ample control power can be used. A possible arrangement is shown in Fig. 16. A positive voltage increasing with increasing signal level will appear at \(A\). The potential at \(B\) will be decreasing with increasing signal level. Both points can be used as control signal sources. (With \(p-n-p\) detectors, the control voltage will be negative.)

\section*{AGC Circuits}

Making use of the principles described in the previous paragraphs many, more or less different, AGC circuits can be designed. Blecher \({ }^{1}\) and Barton \({ }^{2}\) have described circuits based on \(I_{0}\)-control. Stern and Rapers,4 use \(V_{c}\)-control in a broadcast receiver.


Fig. 18-AGC characteristics of IF amplifiers.


Fig. 19-AGC circuits.
A \(V_{c}\)-controlled circuit is shown in Fig. 17. The diagram represents a two-stage IF amplifier followed by a transistor detector. The first IF stage is \(V_{c}\)-controlled. The gain control characteristic of this amplifier is shown in Fig. 18.

Fig. 19 shows other possible circuits. Fig. 19(a) represents an \(I_{0}\)-controlled system, the performance of which is comparable to the one of Fig. 17. The circuit of Fig. 19(b) operates in a similar manner, but uses a \(p-n-p\) amplifier and a \(n-p-n\) detector. In the arrangement of Fig. 19(c), the collector voltage of the amplifier stage is controlled directly by the AGC voltage. Obviously, many other variations are possible.

The methods described can be applied to control the gain of several stages simultaneously. Desirable differential delays between the AGC action of different stages can be achieved, by either operating the controlled stages at different quiescent ("no signal") operating points or by designing different feedback networks for the controlled stages, or by deriving the control signal
for one controlled stage from another controlled stage
Fig. 18 also shows the gain characteristic of a \(V_{c}\) controlled IF amplifier two stages of which were controlled. The circuit was that of Fig. 17 with an additional controlled IF stage preceding the IF amplifier.

\section*{Distortion}

Both principles of gain control ( \(I_{e}\) and \(V_{c}\) ) involve the reduction of the signal handling capability of the controlled stage at high signal levels (i.e., at reduced gain). \(I_{e}\)-control is achieved by decreasing \(I_{\theta}\) in presence of strong signals and, therefore, at small values of \(I_{\theta}\), the permissible input current swing is reduced. If, on the other hand, the gain is decreased in the presence of strong signals by reducing \(V_{c}\), the output voltage swing of the controlled stage is strongly limited.

In other words, the AGC performance of most transistors can be compared to that of sharp-cutoff vacuum tules. Some transistors do, however, exhibit an \(\alpha\) which starts io decrease at relatively large values of \(I_{e}\) or \(V_{c}\). With such transistors, in common emitter configuration, the distortion problem is less serious.

In amplitude modulated systens, the controlled stages must be low-level stages to prevent distortion (or, even worse, the suppression) of the modulation envelope. (This does not apply, of course, to freguencymodulated systems.) In broadcast receivers, for instance, this limitation implies that AGC must not be applied to the last IF stage, and if more than one stage is controlled, suitable staggering of delays will be necessary. Controlled stages should be designed to landle only a fraction of a microwatt signal power. By careful design, adequate performance with tolerable distortion can be obtained. \(I_{e}\)-controlled stages can handle somewhat more signal power than \(V_{c}\)-controlled stages.


Fig. 20-Harmonic distortion as a function of input voltage.
Fig. 20 shows the distortion measured at the detector output of the amplifier of Fig. 17. High distortion at very low input signal levels is due to detector nonlinearity. The distortion is minimum at intermediate input levels and increases at high input levels as a result of AGC.

\section*{Bandwidth and Tuning}

It has been seen that from the point of view of AGC the variation of \(h_{11}\) and \(h_{22}\), and consequently that of in-
put and output impedances is very important. The driving point impedances of a gain controlled stage vary with the signal level. This implies changes in the bandpass characteristics of tuned amplifiers:
1. Variation of the resistive component of the driving point impedances means variable damping of the interstage tuned circuits and conseguently variation of bandwidth and selectivity.
2. Variation of the reactive component of the driving point impedances means detuning, i.e., a shift of the center frequency of the tuned amplifier.

In the case of emitter current control, resistive component of input impeclance rises with decreasing \(I_{e}\). Variation of the output impedance is less pronounced, but it also increases. If a parallel-parallel interstage tuning arrangement is used (Fig. 21(a)), with increasing signal level, that is with decreasing \(I_{e}\), the bandwilth will decrease. The parallel-series tuning arrangement (Fig. \(21(\mathrm{~b})\) ) is more clesirable. The parallel output impedance of the first stage tends to decrease the bandwidth in the presence of large signals, but this is overcome by the increasing input impedance of the second stage which is in series with the tuned circuit. The combined effect is a moderate increase in bandwidth.


Fig. 21(a)-Parallel-parallel coupling circuit. (b) l'arallel-series coupling circuit. (The circuits are drawn ac-wise.)

The situation is different in the case of collector voltage control. The input impedance is hardly at all affected by variations of \(V_{c}\) and the octput impedance decreases if \(V_{c}\) is reduced. Consequently, the parallel arrangement leads to increasing bandwidth in the presence of strong signals. Fig. 22 (opposite page) shows the audio response of a \(V_{c}\)-controlled receiver as a function of the input signal. The increasing bandwidth at strong signal levels results in an "automatic tone control" feature, permitting taking advantage of the radiated spectrum of local transmitters.

In cases where it is desired to keep the bandwidth rigorously constant, it is necessary to place the desired selectivity into tuned circuits not adjoining controlled stages. Keeping the bandwidth of variable center frequency amplifiers constant is a particularly difficult
problem, and can often be achieved only by using stabilizing resistors and thereby sacrificing gain.

In the case of the \(I_{0}\)-controlled common emitter stage both input and output capacitances decrease in the presence of strong signals and result in an upward shift of the center frequency, The common base circuit usually shifts in the downward direction, because its input impedance is inductive and the inductive component increases with decreasing \(I_{e}\).


Fig. 22-Audio response of controlled IF amplifier-detector.
In the case of \(V_{c}\)-control the variation of the output capacitance is important; it increases with decreasing collector voltage and results in a downward shift of the center frequency.

An obvious method of center freguency stabilization is the use of a large external tuning capacitance, thereby reducing the effect of transistor reactances as tuning elements. If this is unsatisfactory, stalilizing resistances can be used; an uneconomical solution berause of the loss in gain. In some cases it is advantageous to design the controlled stages as wideband amplifiers and to provide the selectivity by tuned circuits which are not associated with controlled stages.

\section*{Gain Control of Converters}

Converter stages have special properties distinguishing them from linear amplifiers and special technigues can be used to control their gain.

Conventional \(I_{e^{-}}\)or \(\mathrm{V}_{c^{2}}\)-control will also be effective in the case of converters. The gain of converters \({ }^{12}\) having a maximum at a certain value of \(I_{s}\) (Fig. 23), the gain can be reduced not only by decreasing \(I_{n}\), but also by increasing it beyond the maximum. A further possibility of gain control exists due to the dependence of the converter gain on the injected oscillator voltage.

It is possible to perform with a single junction transistor both functions of oscillation and conversion simultaneously (Fig. 24). Such a circuit has optimum gain at

\footnotetext{
\({ }^{12}\) J. Zawels, "The transistor as a mixer," Proc. IRE, vol. +2, pp. 542-548; March, 1954.
}


Fig. 23-Conversion gain as a function of emitter current and oscillator voltage.


Fig. 24 -Single transistor oscillator-converter with inductive tuning and AGC .
a certain value of \(I_{a}\). Increasing or decreasing of \(I_{d}\) will result in reduction of gain and both methods can be used to obtain efficient automatic gain control.

\section*{IV. Conclusion}

Automatic gain control of transistor amplifiers is jossible due to the depenclence of the gain on the de operating point. AGC: circuits with satisfactory performance have been built using either collector voltage or emitter current control. Efficient use can be made of the available control power if the controlled transistor is operated as a dc amplifier of the control signal.

No transistors are as yet available which have been designed specifically for AGC use. With present transistors, \(\mathrm{AC}_{\mathrm{C}} \mathrm{C}\) involves problems of distortion, bandwidth and center frequency variation. In many applications these problems can be solved by appropriate design.

\section*{Acknowledgment}

The authors are pleased to express their gratitude to J. A. A. Raper, who has designed part of the circuits and has done part of the experimental work leading to this paper. The helpful advice of R. L. Pritchard and the extensive measurements of C. D. Aiken are also gratefully acknowledged.

\title{
Two Network Theorems for Analytical Determination of Optimum-Response Physically Realizable Network Characteristics*
}

\author{
S. S. L. CHANG \(\dagger\), SEnior miember, ire
}

\begin{abstract}
Summary-By a technique combining variational methods, contour integration, and the concept of analytic extension, two network theorems are derived which form the basis of a procedure for determining the physically realizable network characteristic which is the best compromise between conflicting requirements in the sense of least mean-square error or some other criterion of approximation selected by the designer and written into the variational problem. Both the specifications and the criterion for compromise may include functions which are given as curves versus frequency rather than explicit functions of frequency.

The Wiener-Kolmogoroff theory of smoothing and prediction and the vestigial sideband filter with linear phase shift are included as illustrative application problems. For the former an alternative derivation in the frequency domain as well as a simpler procedure for numerical computations are given. For the latter a criterion for selecting the constant slope of the phase characteristic is derived in addition to providing the procedure for computing the optimum response filter.
\end{abstract}

\section*{I. Introduction}

IN RECENT years, the primary emphasis of network synthesis appears to have been on the assembling of circuit elements to meet or approximate prescribed, physically-realizable attenuation and phase characteristic as functions of frequency. One may ask a rather basic question: "Are the prescribed characteristics leest suited to the job for which the network is assigned?" If the answer to the above question is uncertain, then it would appear rather meaningless to try to fit the prescribed characteristics to one-tenth of a decibel or one degree. Many present-day problems contain conflicting requirements so that a network characteristic selected by qualitative judgment alone, even at its best, lelongs to the uncertain category.

This paper describes an analytical method for obtaining a physically realizable network characteristic which is the best compromise towards meeting various desired but conflicting requirements. The "best" compromise may be based on a root-mean-square error criterion or other criterion of approximation as selected by the designer and introduced in the formulation of the minimization problem. The procedure is based on two network theorems which will be stated and proved in this paper.

One noteworthy point about this procedure is that while the derived network characteristic is physically realizable, it is in general not of the minimum phase

\footnotetext{
* Original manuscript received by the IRF, March 16, 1955; revised nanuscript received, June \(6,1955\).
ised nanuscript received,
t Dept. of Elec. Engrg., \(_{\text {IV }}\)
+ Dept. of Elec. Engrg., New ( 1955.
niversity, Newoytgralis3!
}
other considerations. The designer may select any slope for the phase characteristic. However, as a guide to such selection, it will be proven in general that the overall error of the optimum filter decreases with increasing value of the assigned slope of the phase characteristic. This error reduction consideration is to be balanced against the increased complexity of the filters when a larger slope of the phase characteristic is used.

Once the minimization problem is formulated, a designer may follow a definite procedure to calculate the optimum response network function. An equation for the over-all error is also given which allows a designer to determine the error before the calculation of the optimum response network function is completed.

\section*{II. Definition of Terms}

To describe the same terminal pairs of the same network, two entirely different network functions may be used. One may define the network function as the ratio of the input to the output, or as the logarithm of this ratio, or as the ratio of output to the input. The latter definition will be used throughout this paper. For passive as well as stable active linear networks, all the poles of the network function are in the left-half \(p\)-plane ( \(p=\sigma+j \omega\) ), excluding the imaginary axis. The above condition will be the basis for the analysis. While it may appear to be more restrictive than Bode's definition of physically realizable network functions, the restriction is due to a more definite definition rather than on the type of networks to be analyzed.

Some of the functions involved in the two theorems are defined only along the positive half of the real frequency axis. For instance, the desired phase and amplitude characteristics and the weighting factors may be given as curves versus frequency, rather than explicit expressions of frequency. As the required numerical computations of the design procedure being proposed in this paper are done entirely along the real frequency axis, specifications of the above type are entirely adequate for actual design work. However, in the theorems and derivations these functions are considered as defined over the entire complex plane and are analytic except at isolated singularities. The implied extension follows from a well-known mathematical theorem which states that if an analytic function is defined for the entire imaginary axis, then that function is completely determined over the complex plane. In theory at least, its value can be calculated for any arbitrary complex value of \(p\) by means of analytic extension.

Some explanatory remarks are due here on the choice of notations. In the literature the network function \(G(j \omega)\) is usually expressed as a function of \(p\) or \(j \omega\) along the real frequency axis while the spectral densities \(S(\omega)\) and \(N(\omega)\) are usually given as curves or real functions of \(\omega\). It appears desirable to the writer to comply with the conventional usage in both cases so that practically inclined readers will not find the design procedure confusing.

The inclependent variable \(p=\sigma+j \omega\) is used outside the real frequency axis and the functions \(G(j \omega), S(\omega)\), and \(N(\omega)\) etc., become \(G(p), S(-j p)\), and \(N(-j p)\) etc., respectively. One should note that \(S(-j p)\) and \(N(-j p)\) etc., are actually even and real functions of \(p\) since \(S(\omega)\) and \(N(\omega)\) are even functions of \(\omega\).

Throughout LHP and RHP cenote interior of the left-half \(p\)-plane and right-half \(p\)-plane, respectively.

In the following sections examples of application will be taken up first to illustrate the nature of the problems and the manner in which the two theorems will be applied. The derivations of the two theorems will follow the examples. This sequence is probably preferred by practically inclined readers. Theoretically inclined readers may find it more convenient to read Sections \(V\) and VI ahead of Sections III and IV.

\section*{III. The Prediction Problem in l'resence of Noise}

A filter is to be designed such that when a desired signal \(s(t)\) plus a disturbing signal \(n(t)\) is the input, the output \(s_{0}(t)+n_{0}(t)\) is closest to \(s(t+\tau)\) in the least meansquare error sense. The spectral densities of \(s(t)\) and \(n(t)\) are known and \(s(t)\) and \(n(t)\) are not correlated. The time interval \(\tau\) is the forecast time.

The problem is simply to minimize the following integral, which represents the averaged value of the instantaneous error squared:
\[
\begin{equation*}
I=\lim _{T \rightarrow \infty} \frac{1}{2 T} \int_{-T}^{T}\left[s_{0}(l)+n_{0}(t)-s(l+\tau)\right]^{2} d t \tag{1}
\end{equation*}
\]

Since \(n(t)\) is not correlated with \(s(t), n_{0}(t)\) is not correlated with both \(s_{0}(t)\) and \(s(t+\tau)\), and (1) becomes:
\[
\begin{equation*}
I=\lim _{T \rightarrow \infty} \frac{1}{2 T} \int_{-T}^{T}\left\{\left[s_{0}(t)-s(t+r)\right]^{2}+n_{0}(t)^{2}\right\} d t \tag{2}
\end{equation*}
\]

By a method similar to that used by Phillips, \({ }^{4}\) (2) can be written in terms of frequency functions, as
\[
\begin{equation*}
I=\frac{1}{2 \pi} \int_{0}^{\infty}\left\{\left|G(j \omega)-e^{j \omega \tau}\right|^{2} S(\omega)+|G(j \omega)|^{2} N(\omega)\right\} d \omega \tag{3}
\end{equation*}
\]

In (3), \(G(j \omega)\) is the response function of the filter; \(S(\omega)\) and \(N(\omega)\) are spectral densities of the desired signal and disturbing signal respectively.
' \(o\) apply the minimization theorem, the integrand may be written as:
\[
\begin{align*}
F_{0}= & \frac{S(\omega)}{2 \pi}\left[G(j \omega)-e^{j \omega \tau}\right]\left[G(-j \omega)-e^{-j \omega \tau}\right] \\
& +\frac{N(\omega)}{2 \pi} G(j \omega) G(-j \omega) . \tag{4}
\end{align*}
\]

Let \(C(p)\) be defined as the following function: \({ }^{5}\)

\footnotetext{
\({ }^{4}\) H. M. James, N. B. Nichols, and R. S. Phillips, "Theory of Servomechanisms," McGraw-1Hill Book Co., Inc., New York, N. Y., pp. 278-279; 1047.
\({ }^{5}\) In general, \(C(j \omega)\) is defined as the functional derivative \(\partial F_{\theta}\) \(/ \partial G(-j \omega)\).
}
\[
\begin{equation*}
C(p)=\frac{S(-j p)}{2 \pi}\left[G(p)-e^{\prime r}\right]+\frac{M(-j p)}{2 \pi} G(p) . \tag{5}
\end{equation*}
\]

The Minimization Theorem which will be derived later states that if a network function \(G_{m}(p)\) minimizes the integral of (3), the corresponcling \(C(p)\) will not have any poles in the LHP' including the imaginary axis, and vice versa. This condition can be used to determine \(G_{m}(p)\) completely. Let \(Y_{+}(p)\) and \(Y_{-}(p)\) be defined such that \(Y_{+}(p) \cdot Y_{-}(p)=S(-j p)+N(-j p)\) and all the poles and zeros of \(I_{+}(p)\) are in the LIHI', and all the poles and zeros of \(Y_{-}(p)\) are in the RHI'.

Dividing (5) by \(I_{-}^{-}(p)\), there results
\[
\begin{equation*}
\frac{2 \pi C(p)}{Y_{-}(p)}+\frac{S(-j p) e^{n \tau}}{Y_{-}(p)}=G_{m}(p) Y_{+}(p) \tag{6}
\end{equation*}
\]

Let
\[
\phi(p) \equiv \frac{S(-j p) e^{\mu \tau}}{Y(p)} .
\]

In general, \(\phi(p)\) has poles in both the LIHI and RIII'. It will be shown later that \(\phi(p)\) can be expressed as the sum of two components \(\phi_{1}(p)\) and \(\phi_{2}(p)\) such that all the poles of \(\phi_{1}(p)\) are in the LIIP and all the poles of \(\phi_{2}(p)\) are in the RHP. Since all the poles of \(C(p) / Y_{-}(p)\) are in the RHI' and all the poles of \(\dot{G}_{m}(p) Y_{+}(p)\) are in the LIfl' it follows from (6) that
\[
\begin{equation*}
G_{m}(p)=\frac{\phi_{1}(p)}{Y_{+}(p)} \tag{7}
\end{equation*}
\]

If \(S(\omega)\) and \(N(\omega)\) are given as explicit functions of \(\omega\), \(\phi_{1}(p)\) can be determined by writing \(\phi(p)\) into partial fraction form and retaining only the terms with poles in the LHH'. However, in most actual cases, \(S(\omega)\) and \(V(\omega)\) are given as curves versus \(\omega\) for real values of \(\omega\) only. Then the gain and phase of the optimum response network function for real values of \(\omega\) can be calculated as follows: Let \(\alpha(\omega)\) and \(\beta(\omega)\) be the gain and phase respectively of \(Y_{+}(j \omega)\). As both \(S(\omega)\) and \(N(\omega)\) are positive and are even functions of \(\omega\), it follows that \(-\beta(\omega)\) is the phase of \(Y_{-}(J \omega)\) and that \(\left|Y_{+}(j \omega)\right|=\left|Y_{-}(j \omega)\right|\) \(=\sqrt{S(\omega)+N(\omega)}\). The gain \(\alpha(\omega)\) can be calculated as:
\[
\begin{equation*}
\alpha(\omega)=\frac{1}{2} \log _{e}[S(\omega)+N(\omega)] . \tag{8}
\end{equation*}
\]

Since all the poles and zeros of \(Y_{+}(j \omega)\) are in the IIIl', \(\beta(\omega)\) can be determined from \(\alpha(\omega)\) by the well-known Bode's e(fuations. Let \(\beta\left(\omega_{c}\right)\) be the phase at an arbitrary frequency \(\omega_{c}\). It can be calculated as
\[
\begin{equation*}
\beta\left(\omega_{c}\right)=\frac{1}{\pi} \int_{-\infty}^{\infty} \frac{d \alpha}{d u} \log \operatorname{coth} \frac{|u|}{2} d u . \tag{9}
\end{equation*}
\]

In (9) and subsequent equations, \(u=\log \left(\omega / \omega_{c}\right)\). From (8) and (9) \(\phi(j \omega)\) can be calculated. The real component of \(\phi(j \omega)\) is
\[
\begin{equation*}
A(\omega)=\frac{S(\omega)}{\sqrt{S(\omega)+V(\omega)}} \cos [\omega \tau+\beta(\omega)] . \tag{10}
\end{equation*}
\]

The imaginary component of \(\phi(j \omega)\) is:
\[
\begin{equation*}
B(\omega)=\frac{S(\omega)}{\sqrt{S(\omega)+V(\omega)}} \sin [\omega \tau+\beta(\omega)] . \tag{11}
\end{equation*}
\]

Presently one has only a set of mumerical values of the real and imaginary components of \(\dot{\phi}(j \omega)\) instead of an explicit expression of \(\phi(j \omega)\) in terms of \(\omega\). Apparently \(\phi_{1}(j \omega)\) cannot be determined by the partial fraction method. It will be shown later in the Separation Theorem that the real and imaginary components of \(\phi_{1}(j \omega)\) can be calculated as below: Let \(A^{1}\left(\omega_{c}\right)\) and \(B^{1}\left(\omega_{c}\right)\) for any arbitrary frequency \(\omega_{c}\) be defined by the following equations.
\[
\begin{align*}
& A^{1}\left(\omega_{c}\right)=-\frac{1}{\pi \omega_{\mathrm{c}}} \int_{-\infty}^{\infty} \frac{d[\omega B(\omega)]}{d u} \log \operatorname{coth} \frac{|u|}{2} d u  \tag{12}\\
& B^{1}\left(\omega_{c}\right)=\frac{1}{\pi} \int_{-\infty}^{\infty} \frac{d A(\omega)}{d u} \log \operatorname{coth} \frac{|u|}{2} d u, \tag{1.3}
\end{align*}
\]
then:
\[
\begin{equation*}
\phi_{1}(j \omega)=\frac{1}{2}\left[A^{1}(\omega)+A(\omega)\right]+\frac{j}{2}\left[B^{1}(\omega)+B(\omega)\right] . \tag{14}
\end{equation*}
\]

Let \(\alpha_{1}\) and \(\beta_{1}\) be the gain and phase of \(\phi_{1}(j \omega)\) in nepers and radians respectively as calculated from the values of \(\phi_{1}(j \omega)\) obtained by (14). From (7) the gain and phase of \(G_{m}(j \omega)\) are \(\alpha_{1}-\alpha\) and \(\beta_{1}-\beta\) respectively.


Fig. 1-Idealized response.

\section*{IV. The Vestigial Sideband Filter Problem}

The vestigial sideband filter is designed for a given amplitude response characteristic and a linear phase characteristic as shown in Fig. 1. Ilowever, as this is not strictly realizable, the vector difference between the actual network response \(G(j \omega)\) and the desired response is \(G(j \omega)-R(\omega) e^{-j(b \omega+a)}\). From various engincering considerations, it is desirable to minimize a more general weighted square error integral
\[
\begin{align*}
I= & \int_{0}^{\infty} W(\omega)\left[G(j \omega)-R(\omega) e^{(-j b \omega+a)}\right] \\
& \cdot\left[G(-j \omega)-R(\omega) e^{j(b \omega+a)}\right] d \omega \tag{15}
\end{align*}
\]
instead of a straight square error integral which will be obtained by setting \(W(\omega)=1\). The function \(W(\omega)\) will be called the spectral emphasis function. It is even and real and is determined loy the following considerations: In the passband \(W(\omega)\) may be the product of the signal spectral density and a weighting factor to take into account, for instance, that the picture detail may be considered more important than slow variations in luminous level in a television. While \(W(\omega)\) at high frequencies is still smaller than \(W(\omega)\) at low frequencies, it is not reduced to the same ratio as the spectral density. In the attenuation band, \(W^{\prime}(\omega)\) determines the attenuation to a large extent. The larger \(W(\omega)\) is, the larger will be the minimum value of the attenuation.

The optimum response network function \(i_{m}(p)\) can be obtained by an analysis which is exactly parallel to that of the preceding section. From the Minimization Theorem,
\[
\begin{equation*}
G_{m}(p)=\frac{\phi_{1}(p)}{Y_{+}(p)} \tag{16}
\end{equation*}
\]
where \(Y_{+}(p) Y_{-}(p)=W(-j p)\), and \(\phi(p)=\phi_{1}(p)+\phi_{2}(p)\) \(=Y_{+}(p) f(p)\). All the poles and zeros of \(Y_{+}(p)\) are in the LIIP, and all the poles of \(\phi_{1}(p)\) are in the LIIIP. The function \(f(p)\) is the analytic extension of \(f(j \omega)\) which is defined as follows:
\[
\begin{array}{ll}
f(j \omega)=R(\omega) e^{-j(b \omega+a)} & \\
f(j \omega)=R(\omega) e^{j(b \mid \omega i+a)} & \\
\text { for } \omega>0 \\
f(\omega)
\end{array}
\]
and either \(R(\omega)\) is assumed to vanish at \(\omega=0\) or \(a=0\), so that there is no discontinuity at \(\omega=0\). In case \(R(\omega)\) is known only numerically, following the same reasoning as in the prediction filter case, a similar procedure for determining \(\left(i_{m}(j \omega)\right.\) is obtained:
1. (alculate \(\alpha\) and \(\beta\) as in (8) and (9), with the function \(S(\omega)+N(\omega)\) replaced by \(W^{\prime}(\omega)\).
2. Calculate \(A(\omega)\) and \(B(\omega)\) as follows:
\[
\begin{align*}
& A(\omega)=\sqrt{I I^{\prime}(\omega)} R(\omega) \cos (\beta(\omega)-b \omega-a)  \tag{17}\\
& B(\omega)=\sqrt{\bar{I}(\omega)} R(\omega) \sin (\beta(\omega)-b \omega-a) \tag{18}
\end{align*}
\]

The remaining steps are the same as (12), (13) and (14) etc., of the prediction filter case.

As \(i_{m}(j \omega)\) is not expected to be appreciably affected by minor variations of \(W(\omega), W(\omega)\) may be written as a real algebraic function of \(\omega^{2}\), or \(Y_{+}(j \omega)\) may be written as an algebraic function of \(j \omega\) directly. The first step of the numerical computations will be saved in this case.

It is usually desirable to be able to calculate the minimum value of mean-square error before the optimum response network function is completely determined, and to know in advance what effect of change in the specified phase slope \(b\) would have on the minimum value of mean-square error. The following equations will be derived in Appendix I:
\[
I_{\mathrm{m} \ln }=\frac{1}{2} \int_{0}^{\infty}\left[A(\omega)-A^{1}(\omega)\right]^{2} d \omega
\]
\[
\begin{align*}
& =\frac{1}{2} \int_{0}^{\infty}\left[B^{1}(\omega)-B(\omega)\right]^{2} d \omega  \tag{19}\\
\frac{\partial I_{\mathrm{min}}}{\partial b} & =-\frac{1}{\pi}\left[\int_{0}^{\infty} A(\omega) d \omega\right]^{2} \\
& =-\frac{1}{\pi}\left[\int_{0}^{\infty} \sqrt{\bar{W}(\omega)} R(\omega) \cos (\beta(\omega)\right. \\
& -b \omega-a) d \omega]^{2} \tag{20}
\end{align*}
\]

In (19) two alternatives for calculating \(I_{\min }\) are given. \(A^{1}(\omega)\) and \(B^{1}(\omega)\) are calculated from (12) and (13). Since \(B^{1}(\omega)\) is the simpler one to calculate, the latter form is recommended. Eq. (20) gives a valuable criterion for choosing \(b\), as values of \(A(\omega)\) can be readily calculated from the given functions. It means the following:
1. The approximation improves with increasing value of the phase slope \(b\).
2. As a larger value of \(b\) means a more complicated filter construction, it is not desirable to make \(b\) unduly large. Eq. (20) predicts a case of "diminishing returns" as follows: With a small value of \(b\), the argument of the cosine factor varies over a relatively small angle as \(\omega\) varies over the range \(\omega_{2}\) to \(\omega_{1}\) for which \(R(\omega)\) has sub)stantial value. Therefore, \(A(\omega)\) is of substantially the same sign and the magnitude of \(\int_{0}^{\infty} A(\omega) d \omega\) is large. An increase in \(b\) tends to reduce \(I_{\min }\) sulsstantially. For a large value of \(b\), the argument of the cosine factor increases many times \(2 \pi\) radians as \(\omega\) increases from \(\omega_{2}\) to \(\omega_{1}\). Therefore, \(A(\omega)\) has many sign reversals and the magnitude of \(\int_{0}^{\infty} A(\omega) d \omega\) is small. A further increase in \(b\) will have very little effect in reducing \(I_{\text {min }}\). As a goorl compromise the value of \(b\) should be such that in addition to overcoming the upward phase slope of \(Y_{+}(j \omega)\), adequate amount of downward slope is provirled to cause a few sign reversals of \(A(\omega)\), depending on the degree of approximation required.

\section*{V. Derivation of the Minimhation Tieorem for the Two Sifectal. CAses}

It will be shown rigorously that for the two illustrative cases, the previous procedure leads to network functions for which the respective error integrals have absolute minimum values. For both cases the error integrals can be written as:
\[
\begin{align*}
I= & \int_{0}^{\infty}\left\{W_{1}(\omega)[G(j \omega)-f(j \omega)][G(-j \omega)-f(-j \omega)]\right. \\
& \left.+W_{2}(\omega) G(j \omega) G(-j \omega)\right\} d \omega \tag{21}
\end{align*}
\]
where \(W_{1}(\omega)\) and \(W_{2}(\omega)\) are positive real for real values of \(\omega\), and are even functions of \(\omega\). Let \(\omega^{2 n}\) and \(\omega^{2 m}\) le the leading terms of \(W_{1}(\omega)\) and \(W_{2}(\omega)\) respectively at the vicinity of \(\omega \rightarrow \infty\), where \(n\) and \(m\) may be positive or negative integers.

For the prediction filter case, if \(n\) is 0 or positive, and \(G(j \omega)\) is restricted to physically realizable functions, the
integral \(I\) does not converge at all. In other words, if the signal power does not diminish as frequency approaches infinity, no prediction is possible. If \(n\) is a minus integer, and \(k\) is the larger one (or the less negative one) of \(m\) and \(n, I\) converges if the leading term of \(G(j \omega)\) is \((1 / \omega)^{k+1}\) or higher power of \(1 / \omega . I\) does not converge otherwise.

For the vestigial sideband filter case \(W_{2}(\omega)=0\), and \(f(j \omega)\) vanishes for \(\omega\) larger than \(\omega_{1}\). The necessary and sufficient condition for \(I\) to converge is simply that the leading term of \(G(j \omega)\) is \((1 / \omega)^{n+1}\) or higher power of \(1 / \omega\) in the vicinity of \(\omega \rightarrow \infty\). For both cases, only the network functions for which \(I\) is convergent need to be considered, and these are the admissible ones in the sense of condition \(c\) of the more general theorem. (See Appendix II.)

Let \(G_{m}(j \omega)\) be the network function which minimizes \(I\), and \(G(j \omega)\) be any other admissible network function. The difference function \(I I(j \omega)\) is defined by the following equation:
\[
\begin{equation*}
G(j \omega)=G_{m}(j \omega)+I(j \omega) . \tag{22}
\end{equation*}
\]

Substituting (22) into (21) there results:
\[
\begin{aligned}
I= & \int_{0}^{\infty}\left\{W_{1}(\omega)\left|G_{m}(j \omega)-f(j \omega)\right|^{2}+W_{2}(\omega)\left|G_{m}(j \omega)\right|^{2}\right\} d \omega \\
& +\int_{0}^{\infty}\left(W_{1}(\omega)+W_{2}(\omega)\right)|H(j \omega)|^{2} d \omega \\
& +\int_{0}^{\infty}\left\{\left[W_{1}(\omega)+W_{2}(\omega)\right] G_{m}(j \omega)\right. \\
& \left.-W_{1}(\omega) f(j \omega)\right\} I I(-j \omega) d \omega \\
& +\int_{0}^{\infty}\left\{\left[W_{1}(\omega)+W_{2}(\omega)\right] G_{m}(-j \omega)\right. \\
& \left.-W_{1}(\omega) f(-j \omega)\right\} I I(j \omega) d \omega .
\end{aligned}
\]

Since the second integral is positive definite, it follows that the necessary and sufficient condition for \(G_{m}(j \omega)\) to be the minimizing network function is that the sum of the last two integrals vanish. Combining these two terms, and using \(p\) as the independent variable, there results
\[
\begin{align*}
\int_{-j \infty}^{i \infty}\left\{\left[W_{1}^{\prime}(-j p)+\right.\right. & \left.W_{2}(-j p)\right] G_{m}(p) \\
& \left.-W_{1}(-j p) f(p)\right\} H(-p) d p=0 . \tag{23}
\end{align*}
\]

Since both \(G_{m}(p)\) and \(G(p)\) are of the order \((1 / p)^{k+1}\) as \(p \rightarrow \infty, I I(p)\) is also of the order \((1 / p)^{k+1}\) as a result of (22). The convergence at \(\omega= \pm \infty\), and the vanishing of the integral along the large semicircle on LHP can be verified easily. The path of integration of (23) may be extended from \(+j \infty\) through a large semicircle to \(-j \infty\), enclosing the LHP, and there results:
\[
\begin{align*}
\int_{L H P}\left\{\left[W_{1}(-j p)+\right.\right. & \left.W_{2}(-j p)\right] G_{m}(p) \\
& \left.-W_{1}(-j p) f(p)\right\} H(-p) d p=0 \tag{24}
\end{align*}
\]

Let \(C(p)\) denote the expression inside the curved bracket in (24):
\[
\begin{equation*}
C(p)=\left[W_{1}(-j p)+W_{2}(-j p)\right] G_{m}(p)-W_{1}(-j p) f(p) . \tag{25}
\end{equation*}
\]

Since \(I I(p)\) does not have any poles in the RHP including the imaginary axis, it follows that \(H(-p)\) does not have any poles in the LHP including the imaginary axis. A sufficient condition for satisfying (24) is that \(C\) does not have any poles in the LHI' including the imaginary axis. This is also the necessary condition due to the arlitrariness of \(I I(-p)\). If \(C(p)\) has poles in the LHP, a function \(I I(-p)\) can be found such that the sum of residues does not vanish, and the condition embodied in (24) will be violated.

\section*{Vi. Separation Theorem}

In carrying out the minimization calculations, usually there is required the separation of a function \(\phi(j \omega)\) into two portions
\[
\begin{equation*}
\phi(j \omega)=\phi_{1}(j \omega)+\phi_{:}(j \omega), \tag{26}
\end{equation*}
\]
such that all the poles of \(\phi_{1}(p)\) are in the LHP, and all the poles of \(\phi_{2}(p)\) are in the RHP. \(\phi(p)\) does not have any poles on the imaginary axis.

In most problems \(\phi(j \omega)\) is not expressed as an explicit function of \(\omega\), but with its amplitude and phase specified as curves versus \(\omega\) for real positive values of \(\omega\). One wellknown method of separation is by means of the Fouricr transform. Let \(\Psi(t)\) be the inverse transform of \(\phi(j \omega)\). Generally \(\Psi(t)\) does not vanish for \(t<0\). Let \(\Psi(t)\) be cut into two halves, \(\Psi_{1}(t)\) and \(\Psi_{2}(t)\), such that for \(t<0\) : \(\Psi_{1}(t)=0\) and \(\Psi_{2}(t)=\Psi(t)\); and for \(t>0: \Psi_{1}(t)=\Psi(t)\) and \(\Psi_{2}(t)=0\). Then \(\phi_{1}(j \omega)\) and \(\phi_{2}(j \omega)\) are obtained as Fourier transforms of \(\Psi_{1}(t)\) and \(\Psi_{2}(t)\). The disadvantage of this method is that \(\Psi(t)\) is rather insensitive to \(\phi(j \omega)\). Within reasonably expected accuracies of numerical computations, the result is not likely to be accurate enough for filter design work.

The separation theorem is an extension of Bode's relationships between real and imaginary components of physically realizable network functions. It may be stated as follows:
"If a function \(\phi(j \omega)\) is bounded and is of the order of \(1 / \omega\) as \(\omega\) approaches \(\propto\), and
\[
\begin{equation*}
\phi(-j \omega)=\phi^{*}(j \omega) \tag{27}
\end{equation*}
\]
where \(\phi^{*}\) denotes the complex conjugate value of \(\phi\), then two functions \(\phi_{1}(j \omega)\) and \(\phi_{2}(j \omega)\) can be found such that \(\phi(j \omega)=\phi_{1}(j \omega)+\phi_{2}(j \omega)\), and that both \(\phi_{1}(j \omega)\) and \(\phi_{2}(j \omega)\) satisfy the same conditions as \(\phi(j \omega)\) for real values of \(\omega\), and that all the poles of \(\phi_{1}(p)\) are in the LHP and all the poles of \(\phi_{2}(p)\) are in the RHP \(\phi_{1}(j \omega)\) and \(\phi_{2}(j \omega)\) can be calculated as:
\[
\begin{align*}
& \phi_{1}(j \omega)=\frac{1}{2}\left[\phi(j \omega)+\phi^{1}(j \omega)\right]  \tag{28}\\
& \phi_{2}(j \omega)=\frac{1}{2}\left[\phi(j \omega)-\phi^{1}(j \omega)\right], \tag{29}
\end{align*}
\]
where the 'complementary function' \(\phi^{\prime}(j \omega)\) is defined such that along the real frequency axis its real and
imaginary components \(A^{1}(\omega)\) and \(B^{1}(\omega)\) are related to the real and imaginary components \(A(\omega)\) and \(B(\omega)\) of the function \(\phi(j \omega)\) by the following equations:
\[
\begin{align*}
& A^{1}\left(\omega_{c}\right)=-\frac{1}{\pi \omega_{c}} \int_{-\infty}^{\infty} \frac{d(\omega B)}{d u} \log \operatorname{coth} \frac{|u|}{2} d u  \tag{30}\\
& B^{1}\left(\omega_{c}\right)=\frac{1}{\pi} \int_{-\infty}^{\infty} \frac{d A}{d u} \log \operatorname{coth} \frac{|u|}{2} d u \tag{31}
\end{align*}
\]
where \(u=\log _{\theta}\left(\omega / \omega_{c}\right)\)."
The proof of the existence part of the theorem is simple. If \(\phi_{1}(p)\) is defined as having the same poles and residues as \(\phi(p)\) in the LIIP, but none whatsoever in the RHII , and \(\phi_{2}(p)\) is defined as having the same poles and residues as \(\phi(p)\) in the RIIP but none whatsoever in the LHP, then all the conditions of the first sentence of the theorem are satisfied.

To prove (28) to (31), let real functions \(A_{1}(\omega), A_{2}(\omega)\), \(A^{1}(\omega), B_{1}(\omega), B_{2}(\omega)\) and \(B^{1}(\omega)\) be defined by the following equations:
\[
\begin{align*}
\phi_{1}(j \omega) & =A_{1}(\omega)+j B_{1}(\omega)  \tag{32}\\
\phi_{2}(j \omega) & =A_{2}(\omega)-j B_{2}(\omega)  \tag{33}\\
A^{1}(\omega) & =A_{1}(\omega)-A_{2}(\omega)  \tag{34}\\
B^{1}(\omega) & =B_{1}(\omega)+B_{2}(\omega) . \tag{35}
\end{align*}
\]

By definition, from (26), (32), and (33)
\[
\begin{align*}
& A(\omega)=A_{1}(\omega)+A_{2}(\omega)  \tag{36}\\
& B(\omega)=B_{1}(\omega)-B_{2}(\omega) . \tag{37}
\end{align*}
\]

Solving for \(A_{1}, A_{2}, B_{1}\) and \(B_{2}\) from (34) to (37) leads to (28) and (29) directly. To prove (30) and (31), let the functions \(\phi_{3}(j \omega)\) and \(\phi_{4}(j \omega)\) be defined such that
\[
\begin{align*}
& \phi_{3}(j \omega) \equiv \phi_{1}(j \omega)+\phi_{2}(-j \omega)=A(\omega)+j B^{1}(\omega)  \tag{38}\\
& \phi_{4}(j \omega) \equiv \phi_{1}(j \omega)-\phi_{2}(-j \omega)=A^{1}(\omega)+j B(\omega) . \tag{39}
\end{align*}
\]

The second equality signs in (38) and (39) follow from (32) to (37). As all the poles of \(\phi_{1}(p)\) and \(\phi_{2}(-p)\) are in the LIIP, it follows that all the poles of \(\phi_{3}(p)\) and \(\phi_{4}(p)\) are in the LHP. By means of contour integration enclosing the RHP, one can easily prove that \(A^{1}(\omega)\) and \(B(\omega)\) are related by Bode equations, and that \(A(\omega)\) and \(B^{1}(\omega)\) are related by Bode equations. There is no limitation on the zero locations since \(A(\omega)\) and \(B^{1}(\omega)\) are real and imaginary components of the function \(\phi_{3}(j \omega)\) itself rather than of the logarithm of \(\phi_{3}(j \omega)\).

The following corollaries are easily verified:
1. "The complementary function of the complementary function is the function itself, provided that the function has no poles on the imaginary axis."
2. "If all the poles of a network function are in the LHP, excluding the imaginary axis, then the function is self-complementary."

\section*{Conclusion}

A method for determining the optimum-response network function from conflicting requirements has
been shown and illustrated by application to two actual examples: the prediction filter and the vestigial sideband filter with linear phase shift. The method is also applicable to cases where the desired performance is given as curves rather than explicit functions of \(\omega\), and the actual calculations involve evaluation of real integrals only along the real frequency axis.

The network theorems are proved rigorously for the special cases and are also stated in terms much more general than the two illustrative cases require, and can be expected to have wider applications (see Appendix II). Exact mathematical requirements such as continuity, etc., on the minimization function \(F\) has not been determined for the general case, but as most actual physical functions are continuous and have continuous derivatives, the problem rarely arises in application. However, such conditions as location of poles, convergence at infinity, etc., which are pertinent to engineering problems have been explicitly stated.

\section*{Aprendix I}

Derivation of Formulas Relating to the Minimum
Value of Error for tiie Vestigal Sideband Filter Problem

\section*{Minimum Value of the Error Integral}

From (16) and the definition of \(\phi(p)\) one obtains:
\[
\begin{equation*}
G_{m}(j \omega)-f(j \omega)=\frac{\phi_{1}(j \omega)}{Y_{+}(j \omega)}-\frac{\phi(j \omega)}{Y_{+}(j \omega)}=-\frac{\phi_{2}(j \omega)}{Y_{+}(j \omega)} . \tag{40}
\end{equation*}
\]

The complex conjugate of the above equation is:
\(G_{m}(-j \omega)-f(-j \omega)=-\frac{\phi_{2}(-i \omega)}{Y_{+}(-j \omega)}=-\frac{\phi_{2}(-j \omega)}{Y_{-}(j \omega)}\).
Substituting (40) and (40a) in (15), there results:
\[
\begin{equation*}
I_{\min }=\int_{0}^{\infty} \phi_{2}(j \omega) \phi_{2}(-j \omega) d \omega \tag{41}
\end{equation*}
\]

From (18), (41) can be written as
\[
\begin{equation*}
I_{\min }=\int_{0}^{\infty}\left[A_{2}^{2}(\omega)+B_{2}^{2}(\omega)\right] d \omega \tag{42}
\end{equation*}
\]

Eq. (42) can be further simplified. Let the integral \(J\) be defined as:
\[
\begin{equation*}
J=\int_{-\infty}^{\infty} \phi_{2}{ }^{2}(j \omega) d \omega \tag{43}
\end{equation*}
\]

Since \(\phi_{2}(-j \omega)=\phi_{2}{ }^{*}(j \omega), J\) can be written as
\[
\begin{align*}
J & =\int_{0}^{\infty}\left[\phi_{2}{ }^{2}(j \omega)+\phi_{2}{ }^{* 2}(j \omega)\right] d \omega \\
& =2 \int_{0}^{\infty} A_{2}{ }^{2}(\omega) d \omega-2 \int_{0}^{\infty} B_{2}{ }^{2}(\omega) d \omega . \tag{44}
\end{align*}
\]

As all the poles of \(\phi_{2}(p)\) are in the RII1, and \(\phi_{2}(p)\) is of the order of \(1 / p\) as \(p\) approaches infinity, it can be
easily shown that \(J=0\) as a result of contour integration. Combining (42) and (44), there results
\[
\begin{equation*}
I_{\min }=2 \int_{0}^{\infty} A_{2}{ }^{2}(\omega) d \omega=2 \int_{0}^{\infty} B_{2}{ }^{2}(\omega) d \omega . \tag{45}
\end{equation*}
\]

\section*{Effect of Time Delay or Slope of Phase Characteristics on Minimum İrror}

Differentiating (15), one ol)tains
\[
\begin{align*}
\frac{\partial I}{\partial b}= & 2 \int_{0}^{\infty} W(\omega)\left\{R(\omega) e^{-j(\omega b+a)}\left[c(-j \omega)-R(\omega) e^{j(\omega b+a)}\right]\right. \\
& \left.-R(\omega) e^{j(\omega b+a)}\left[G(j \omega)-R(\omega) e^{-j(\omega b+a)}\right]\right\}(j \omega) d \omega . \tag{46}
\end{align*}
\]

Substituting (40) and (40a) in (46), the latter becomes \(\frac{\partial I_{\mathrm{min}}}{\partial b}=\int_{0}^{\infty}\left[\phi_{1}(-j \omega) \phi_{2}(j \omega)-\phi_{1}(j \omega) \phi_{2}(-j \omega)\right](j \omega) d \omega\).

Eq. (47) can be rewritten into the following form:
\[
\begin{equation*}
\frac{\partial I_{\mathrm{min}}}{\partial b}=-\int_{-\infty}^{\infty} \phi_{1}(j \omega) \phi_{2}(-j \omega)(j \omega) d \omega . \tag{48}
\end{equation*}
\]

The integrand of (48) is anlaytic and without singularities in the Rlll'. llowever, the integration over the large semicircular path does not vanish. In general, the amplitude of the desired response \(R(\omega)\) is nonvanishing only in the limited range of \(\omega\). Therefore both \(A(\omega)\) and \(B(\omega)\) are nonvanishing in the same range only. From Bode's equation, one obtains, as \(\omega_{c} \rightarrow \infty\).
\[
\begin{gather*}
B^{1}\left(\omega_{c}\right)=\frac{2 \omega_{c}}{\pi} \int_{0}^{\infty} \frac{A}{\omega^{2}-\omega_{c}^{2}} d \omega=\frac{B_{\infty}}{\omega_{c}}  \tag{49}\\
A^{1}\left(\omega_{c}\right)=0\left(\frac{1}{\omega_{c}^{2}}\right)  \tag{50}\\
B_{\infty}=-\frac{2}{\pi} \int_{0}^{\infty} A(\omega) d \omega . \tag{51}
\end{gather*}
\]

The real constant \(B_{\infty}\) is defined in (49). From (28) and (29), the limits of \(\phi_{1}(j \omega)\) and \(\phi_{2}(j \omega)\) are found to be \(j B_{\infty} / 2 \omega\) and \(-\left(j B_{\infty} / 2 \omega\right)\) respectively as \(\omega\) approaches infinity along the real frequency axis. Since \(\phi_{1}\) and \(\phi_{2}\) are analytic, the results hold true for all large values of \(p\). Therefore, by contour integration:
\[
\begin{equation*}
\int_{-\infty}^{\infty} \phi_{1}(j \omega) \phi_{2}(-j \omega)(j \omega) d \omega-\frac{\pi}{4} B_{\infty}^{2}=0 . \tag{52}
\end{equation*}
\]

From (48) and (52), one obtains (20).

\section*{Applendix II}

\section*{General Formulation of the Minimization Theorem}

While in most applications the minimization formulation is quite simple, it may be desirable to state the theorem in a relatively general form. It is:

If the integral along the real frequency axis (or the imaginary \(p\)-axis)
\[
\begin{equation*}
I=\int_{0}^{\infty} F_{0}\left(\omega, G_{1}, G_{2} \cdots G_{n}, G_{1}^{*}, G_{2}^{*}, \cdots G_{n}^{*}\right) d \omega \tag{53}
\end{equation*}
\]
is stationary with respect to infinitesimal variations of \(G_{1}(p), i_{2}(p) \cdots\) etc., and corrclated infinitesimal variations of \(\left(i_{1}{ }^{*}, \dot{i}_{2}{ }^{*} \cdots\right.\) etc., under the following conditions, where ( \(\dot{r}_{L} *\) is the shorthand notation for ( \(i_{L}(-p):(1)\) the integrals along the real frequency axis
\[
\begin{array}{r}
I_{i}=\int_{0}^{\infty} F_{i}\left(\omega, G_{1}, G_{2} \cdots G_{1}^{*}, G_{2}^{*} \cdots\right) d \omega=K_{i}  \tag{54}\\
i=1,2,3, \cdots m
\end{array}
\]
are fixed in value, that is, \(K_{i}\) 's are constants; (2) \(\vec{r}_{1}(p), G_{2}(p) \cdots\) etc., are physically realizable network functions in the sense that they are real functions of \(p\) with all the poles in the left \(p\)-plane excluding the imaginary axis; (3) only sets of \(\left(r_{1}(p)\right.\), (is \((p) \cdot \cdots\) etc. for which the integralls \(I_{0}, I_{1} \cdot \cdots\) converge and exist are admissible for comparison, and the functions \(F_{0}, F_{1} \cdot \cdots\) etc. are well behaved so that for the admissible ( \(r_{L}(p)\) 's differentiation under the integral sign is allowed;
\[
\begin{align*}
& \left.\frac{\partial F_{i}}{\partial G_{L}}\right|_{p=j \omega_{1}}=\left.\frac{\partial F_{i}}{\partial G_{L}{ }^{*}}\right|_{p m=-j \omega_{1}}  \tag{4}\\
& i=0,1,2, \cdots m ; L=1,2, \cdots n \tag{55}
\end{align*}
\]
then the linear combinations of the functional derivatives
\[
\begin{equation*}
C_{L}(p)=\sum_{i=0}^{m} \lambda_{i} \frac{\partial F_{i}}{\partial G_{l_{l}} *} \tag{56}
\end{equation*}
\]
do not have any pole in the LIfP including the inaginary axis, where \(\lambda_{0}=1\) and \(\lambda_{1}, \lambda_{2}, \cdots \lambda_{m}\) are determined by \(K_{1}, K_{2}, \cdots K_{m}\) or vice versa. The reverse statement is also true. That is, if \(C_{L}(p)\) lo not have any pole in the LHI inclusive, and given the conditions (1), (2), (3) and (4), then the integral \(I\) is stationary.

The proof of the theorem is as follows:
Let \(E H_{L}(p)\) 's be an arbitrary set of infinitesimal difference functions where \(E\) is an infinitesimal constant and \(H_{L}(p)\) 's are finite. Since the admissible \(G_{L}(p)\) 's must meet the condition of physical realizability, the difference functions \(E I_{L}(p)\) 's between two sets of admissible \(G_{L}(p)\) 's meet the same conditions. Making use of Lagrange multipliers, the first corler variations are:
\(E \sum_{i=0}^{m} \lambda_{i} \int_{0}^{\infty} \sum_{l==1}^{n}\left[\frac{\partial F_{i}}{\partial G_{L}} I_{L}(p)+\frac{\partial F_{i}}{\partial G_{L^{*}}} I_{L}(-p)\right] d \omega=0\).

Since \(I_{L}(j \omega)\) 's are independent of each other, (57) is equivalent to
\[
\begin{align*}
& \int_{0}^{\infty} \sum_{i=0}^{m} \lambda_{i} \frac{\partial F_{i}}{\partial G_{L}} H_{L}(p) d \omega \\
&+\int_{0}^{\infty} \sum_{i=1}^{m} \lambda_{i} \frac{\partial F_{i}}{\partial G_{L}{ }^{*}} H_{L}(-p) d \omega=0  \tag{58}\\
& \quad I=1,2, \cdots n . \tag{58}
\end{align*}
\]

From (55) :
\[
\begin{align*}
& \int_{0}^{\infty} \sum_{i=0}^{m} \lambda_{\nu} \frac{\partial F_{i}}{\partial G_{l .}} \Pi_{L}(p) d \omega \\
&=\int_{-\infty}^{0} \sum_{i=0}^{m} \lambda_{i} \frac{\partial F_{i}}{\partial G_{L}{ }^{*}} \Pi_{L}(-p) d \omega \tag{59}
\end{align*}
\]

Substituting (59) into (58), and using \(p\) as an independent variable, there results
\[
\begin{equation*}
\int_{-j \infty}^{i \infty}\left(\sum_{i=0}^{m} \lambda_{i} \frac{\partial F_{i}}{\partial G_{L}^{*}}\right) H_{I .}(-p) d(p)=0 \tag{60}
\end{equation*}
\]

As a result of condition (3), the integral on the left-hand side of ( 60 ) converges at \(\omega=x\). Either the integrand is oscillatory and does not have a definite value at \(\omega=\infty\), or the following equation must hold:
\[
\begin{equation*}
\lim _{p \rightarrow \infty} p\left(\sum_{i=0}^{m} \lambda_{i} \frac{\partial F_{i}}{\partial G_{L_{*}} *}\right) H_{L}(-p)=0 \tag{61}
\end{equation*}
\]

In the latter case, the path of integration of (8) may be extended from \(+j x\) through a large semicircle to \(-j x\), enclosing the entire LIIP , and there results
\[
\begin{align*}
\oint_{\text {LHP }}\left[\sum_{i=0}^{m} \lambda_{i} \frac{\partial F_{i}}{\partial G_{L}{ }^{*}}\right] & \\
& =\Pi_{L(-p) d(p)} C_{L}(p) H_{L}(-p) d(p)=0  \tag{62}\\
& L=1,2, \cdots n
\end{align*}
\]

In a strictly physical problem, the functions \(F_{i}\) can always be formulated so that the integrand is nonoscillatory as the frequency approaches \(\infty\), since the frequency range of interest is always limited. However, the integrand may become oscillatory in some oversimplifying mathematical formulations and in such cases, it would be necessary to check if the integration over the large are does vanish before applying the minimization theorem.

Since \(I_{L}(p)\) does not have any poles in the R1Il' including the imaginary axis, it follows that \(I_{L}(p)\) does not have any poles in the LIIP inchuding the imaginary axis. A sufficient condition for satisfying (62) is that the functions \(C_{L}(p)\) 's do not have any poles in the L,111', including the imaginary axis. This is also the necessary condition due to the arbitrariness of \(I_{L}(-p)\). If any of the functions \(C_{L}(p)\) has poles in the LIll', a function \(I_{L}(-p)\) can be found such that the sum of residues does not vanish, and the condition embodied in (62) will be violated.

\section*{Acknowledgment}

The writer is indebted to Professor J. 1I. Mulligan, Jr., of the Department of Electrical Engineering of New York University for his many valuable suggestions.

\title{
Correspondence
}

\section*{VHF and UHF Signals in Central Canada*}

Since the spring of 1953 , the Radio Physics Laboratory of the Defence Research Board has carried out measurements on the amplitudes of vhf and uhf signals beyond the optical horizon. These signals have been propagated over rolling terrain between antennas whose height above ground was less than one hundred feet, but greater than one wavelength. Although the duration of the individual measurements was between one day and three weeks, the experiments were carried out over several different paths in central Canada during the winter and summer.

Fig. I shows the median signal power at \(49,91,173\) and 495 mc as measured at ranges between 20 and 2.35 miles. The reference axis ( 0 db ) corresponds to the theoretical signal for diffraction around a smonth, spherical earth. \({ }^{1}\) Here, the modified earth's radius factor was taken as 1.4 for summer propagation and 1.3 for winter propagation, according to Bean. \({ }^{2}\) The signals at 21, 27 and 41 miles were measured over frozen muskeg in the sub-Arctic during January, while the signals at 30 and 49 miles were measured over Lake Ontario in October. The remaining signals at 29 and 50 miles and at greater ranges were measured between Ottawa and Sudbury. It will be seen that the diffraction theory predicts the median signal within a few decibels at ranges up to 30 or 40 miles. Beyond this range, the signals deviate widely from this theory. At ranges beyond 80 miles, the deviation from smooth-earth diffraction theory generally increases with increasing signal frequency. It should be mentioned that the measurements on different signal frequencies at ranges beyond 80 miles were made simultaneously at each location.


Fig. 1-Comparison between median measured signals and theoretical signals for diffraction around smooth spherical earth with atmosphere.

If it is assumed that the signals beyond 80 miles are propagated by scatter from at mospheric turbulence, the summer measurements indicate that the intensity of atmospheric turbulence varies inversely as the first power of height above ground. Fig. 2 shows the median of the random component of the signals at ranges beyond 80 miles, de-
* Received by the IRE, May 5. 1955
\({ }^{1} \mathrm{~K}\). Bullington, "Radio propagation at frequencies above 30 megacycles." Proc. IRE, vol. 35, pp. 1122-1136; October, 1947.
\({ }^{2}\) B. R. Bean, "The geographical and height dis tribution of the gradient of refractive index." Proc IRE, vol. 41, pp. 549-550; April. 1953.
rived from the measured medians by removing the small steady diffraction component. \({ }^{3}\) Examination of the data shows that the signal power (relative to free space level) varies approximately as the inverse cubed power of distance from the transmitter. According to the scatter formula recently proposed by Gordon, \({ }^{4}\) this attenuation rate requires the distribution in atmospheric turbulence stated above. It is of interest to note also that the median measured signals lie well below the Bullington mean curve, which was fitted to radio measurements obtained during the past several years in the United States and the Thited Kingdom. \({ }^{5}\)


Fig. 2-Comparison between summer measurements and Gordon theory.

Further details on the measurements reported here are given in project reports of the Radio Physics Laboratory.

\section*{D. R. Hay and R. C. Langille Radio Physics Lab. \\ Defence Research Iooard}

Ottawa, Canada
A. P. Barsis, J. W. Herbstreit, and K. O. IIornberg, "Cheyenne" Mountain tropospheric propagation berg, "Cheyenne Mountain tropospheric propagation
experiments." Nat. Burcau of Standards Circular 554. experiments." Nat. Bu
p. 34 ; January 3, 1955
p. 34, January 3, 1955 .

4W. E. Gordon, "Radio scattering in the troposphere." Proc. IRE. vol. 43, Dp. 23-28; January. 1955. \({ }^{6} \mathrm{~K}\). Bullington. "Radio transmission beyond the horizon in the 40 - to 4000 mc band." Proc. IRE, vol 41. p. 135; January, 1953

\section*{On Reciprocal Inductance*}

Mr. Stockman's objection \({ }^{1}\) to "inertiance" \({ }^{2}\)-that most engineers would associate it with inductance rather than reciprocal inductance-is worthwhile, but answerable.

Clearly, with analogies based largely on arbitrary interpretation of coefficients and variables involved in basic differential equations, several models of analogous mechanical and electrical systems are possible and, in many circumstances, rather useful. Consequently, it is easy to make \(C\), rather than \(1 / C\), correspond to the elastic constant of a spring, and so qualify for the name "elastance." In fact, the necessary argument would hinge upon electrical quantities that are the duals of the corresponding quantities in the argument that would make \(L\) correspond to inertia.

However, to arrive at analogies that are physically more satisfying, one would go back to the rudiments, and talk, not in terms of currents and voltages, but in terms of the more fundamental concepts of electric flux in a capacitor corresponding to the rest-
* Received by the 1RE, April 25, 1955
\({ }^{1}\) H. Stocknan, "On reciprocal inductance," Proc. IRE, vol. 43. D. 341 ; March, 1955.
\({ }^{2}\) E. J. Brghdady "Qn reciprocal inductance," IROC. IRE, VoVI!2, DR 280 Fiodecmber, 1954.
ing charge on it, and magnetic flux in a coil corresponding to the rate of moving charge through it. If the electric displacement is then associated with the length by which a spring is stretched, and the magnetic flux with the velocity of a moving mass, an elegant physical correspondence will be established between static and dynamic concepts. One consequence of this is that current and momentum become direct analogs-which does not lack in physical appeal. Also the analogies will be found to parallel electrically dual quantities. More important at the moment is the fact that \(1 / C\) will be found to deserve the name "elastance," and \(1 / L\), "inertiance."

Would Mr. Stockman prefer our "newtance" to his "yrnch" for the unit of in-ertiance-or even "newt"?
E. J. Baghdady Res. Lab. of Elect. Mass. Inst. "lech. Cambridge, Mass.

\section*{Rebuttal \({ }^{3}\)}

Reading E. J. Faghdady's letter, I receive the impression that it serves as a derivation of his originally given formulas and statements, which are all correct. No statement to the contrary was implied in my correspondence item. As Baghdady points out, several models of aralogous mechanical and electrical systems are possible, and one of these models will no doubt be selected as a future basis for terminology considerations. As stated, 1 feel most engineers would associate inertiance with inductance rather than reciprocal inductance. In view of the rapid progress of generalized field concepts, perhaps ten years from today most engineers would feel the opposite way!

It is not easy to formulate and cletine useful quantities and units, which are fundamentally correct, and one of the stumbling blocks is the fact that each gencration inherits from the previous one a maze of nomenclature; to a great extent inadequate and erroneous. Mr. Baghdady deserves credit for having brought up for discussion in the correspondence section such fundamentals as the basic inductance concept, and perhaps the viewpoints he brings out illuminate the fact that many improvements would result, if other basic concepts were also brought out in open discussions. In fact, a correspondence page in every issue of the Proceedings of the IRE, reserved for new thoughts an symbols, terms, units, and definitions would, I am sure, be received with great interest by all readers, and would supply much fresh thought material for the various IRE symbols and standards committees, Actually, this sort of arrangement has already been successfully tried by two leading European scientific journals.

With regards to "yrneh," this term is not my "invention" any more. Somebody else invented it long before I did.4 Probably, there have been many inventors since then.

Harry Stockman
Scientific Specialties Corp.
Boston 35, Mass.
- Received by the IRE. May 6. 1955.
H. Storkman, "y-neh," Proc. IRE, vol. 43. 13. 879; July. 1955.

\section*{Empirical Relationships with the Munsell Value Scale}

In color television development and control activities, it is sometimes desirable to use or consider a gray scale which presents equal visual lightness steps. The Munsell value (renotation) scale is widely used for this purpose. Munsell value is defined as the lightness of the colors of a series of standards, varying in reflectance from zero to unity, in such a way that all visual intervals are uniform when viewed on a middle gray background by a light-adapted eye. \({ }^{1}\)

The Weber-Fechner law has sometimes been applied to establish a visual scale linear with reflection density. However, it applies only to the dark-adapted eye; hence it is of limited practical utility. The Munsell value scale applies to the light-adapted eye; hence it is of more general use.

We have had occasion to consider scales of equal brightness differences for presentation on color picture tubes. A single visual scale can produce a scale of equal brightness differences on all color picture tubes only if the viewing conditions are standardized. "A visual scale is applicable only under the conditions of calibration or when the departures from these conditions have been found to make no difference. \({ }^{2}\) The manner in which the conditions of observation influence brightness sensation is described and illustrated by Evans. \({ }^{3}\)

It is granted that neither the Munsell value scale nor any other visual scale can be used "blindly" as a scale of equal brightness differences to be reproduced on color picture tubes, even if the color television system gives exact tone reproduction. Nevertheless, the Munsell value scale is an established equi-spaced visual scale for achromatic colors from black to white.

The utility of the Munsell value scale would be extended if there were a simple analytical relationship between Munsell renotation value ( \(V\) ) and per cent reflectance \((R)\). This would facilitate conversion from physical to psychophysical units and vice versa. This relationship is now defined by the empirical equation:
\[
\begin{aligned}
R= & 1.2219 V-0.23111 V^{2}+0.23951 V^{3} \\
& -0.021009 V^{4}+0.0008404 V^{5}
\end{aligned}
\]

A more simple relationship between Munsell value and reflectance would be desirable.

In an attempt to find such a relationship, six equations were assumed, each of the form \(V=a+b \cdot f(R)\). The empirical constants in each equation were found by the method of least squares. The goodness-of-fit for each equation is stated in parenthesis for the range of Munsell values from 1.0 to 9.0 . These equations were calculated from the table of reference 4 using 0.10 value increments.
\({ }^{1}\) A. E. O. MunselI. I.. L.. Sloan, and I. H. Godiove, Neutral value scales. I. Munsell neutral value \({ }^{\text {a }}\) Neutral value scales. I. Munsell neutral valus scale. \({ }^{\text {J Jour }}\) Opt. Soc. Amer., vol. 23, pp. 394-411 November. 1933.
\({ }^{2}\) Committee on Colorimetry, Opt. Soc. Amer The Srience of Color." Thomas X. Crowell Co. New York, N. Y.. D 134;1053.
\({ }^{3} \mathrm{R} . \mathrm{M}\). IVans, "An introduction to Color." John Wiley and Sons. New York. N. Y.. pp. 124-129. 157 172; 1948.
'S. M. Newhall, D. Nickerson, and D. B. Judd, Final report of the O.S.A. subcommittee on the spacing of the Munsell colors, "Jour. Opt. Soc. Amer. vol. 33. pp. 385-418; July, 1943.
1. \(V=-1.324+2.217 R^{0.8520}\left(\right.\) sigma \(\left._{\mathrm{p}}= \pm 0.018\right)\)
2. \(V=-1.636+2.468 R^{1 / 3} \quad\left(\right.\) sigma \(\left._{v}= \pm 0.029\right)\)
3. \(V=-3.598+4.146 R^{1 / 4} \quad\left(\right.\) sigma \(\left._{0}= \pm 0.12\right)\)
4. \(V=0.336+1.010 R^{1 / 2} \quad\left(\right.\) sigma \(\left._{v}= \pm 0.17\right)\)
5. \(V=-0.388+4.505 \log _{10} R\left(\right.\) sigma \(\left._{0}= \pm 0.43\right)\)
6. \(V=2.381+0.09834 R \quad\left(\operatorname{sigma}_{\nu}= \pm 0.66\right)\).

For large ranges of value and for smaller ranges of value, these six empirical equation forms maintain approximately the same relative merit. The assumed linear relationship between reflectance and value (eq. 6) is very poor. The logarithmic relationship (eq. 5) is nearly as bad. The square-root and the fourth-root relationships (eqs. 3 and 4) are both somewhat better than the linear and logarithmic relationships. The cube-root of \(R\) (eq. 2) gives an excellent linear fit to value. The empirically-found 0.3520 -power of \(R\) relationship (eq. 1) gives the best fit for a simple equation of the six forms tried.

In Fig. 1 we have compared the failure of the logarithmic equation with the failure of the simple cube-root of reflectance expression and the 0.3520 -power of reflectance expression. A perfect fit would be represented by a horizontal line through the origin. The figure illustrates graphically the inadequacy of the logarithmic expression.


Fig. 1- Error graph for three assumed empirical equations relating per cent reflectance ( \(R\) ) to Munsell renotation value ( \(V\) ). The zero-error axis represents the defining equation relating reflectance to Munsell value. The equations involving \(R^{1 / 8}\) and \(R^{c}\) both give better fits than does the equation in volving log \({ }_{11} R\).

The equation relating Munsell renotation value with cube-root of per cent reflectance may be of particular interest. This simple equation may be used instead of the defining quintic equation for many purposes. 'The cube-root of \(R\) equation has the important advantage that it may be used to compute \(V\) from \(R\) or \(R\) from \(V\). The defining quintic equation will not easily compute \(V\) from \(R\).
J. H. Ladd and J. E. Pinney

Color Tech. Div., Eastman Kodak Co.
Rochester 4, New York

\section*{Effects of Impurities on Resonator Properties of Quartz*}

During recent studies conducted at the Signal Corps Engineering Laboratories on fundamental properties of natural and synthetic quartz, it was found that piezoelectric resonators fabricated from synthetic quartz
* Received by the IRE May 23, 1955
crystals \({ }^{1}\) containing impurities introduced during the quartz growth cycle have different frequency-temperature characteristics from those made from natural quartz

Measurements of frequency-temperature characteristics of fifth overtone, 29 mc A'Tcut resonators prepared from aluminumdoped synthetic quartz show higher inflection temperature and orientation angles than those of natural quartz having similar frequency-temperature characteristics. This is graphically illustrated by the frequencytemperature curves of Fig. 1. In this figure


Fig. 1-Frequency temperature characteristics o AT-cut crystals with different \(Z Z^{\prime}\) angles fabri cated from natural and aluminum-doped synthet ic quartz. The solid curves are the characteristics for aluminum-doped crystals; the dashed curves for natural quartz having same \(2 Z^{\prime}\) angles; and dotdashed curves for natural quartz having similar frequency temperature characteristics.
the solid line is used to represent aluminumdoped synthetic quartz resonators; the broken line represents the natural quartz resonators which have approximately the same orientation angles as the "doped" units; and the dot-dash line represents the natural quartz resonators which have the same frequency-temperature characteristics as those of the "doped" units. Angle given at ends of each curve is \(Z Z^{\prime}\) orientation angle of particular A'T-cut resonator.

The inflection temperature is defined as the temperature at which \(d^{2} F / d T^{2}=0\). As Fig. 1 shows, the inflection temperature of the aluminum doped synthetic quartz resonators is at 75 degrees \(C\)., whereas that of natural quartz is at 20 degrees \(C\). For similar frequency-temperature characteristics, the \(Z Z^{\prime}\) orientation angle of aluminum cloped synthetic quartz resonators is roughly 30 minutes higher than that of natural quartz.

The spectrochemical analysis of the aluminum-doped synthetic quartz shows that the following impurities (in parts per million by weight) are present: Al-100, Ge-50, Mg-10, Mn-10, Ca-5. Other impurity-doped synthetic quartz crystals have been grown and tested. In the case of germanium-doped quartz ( \(\mathrm{Ge}-1,000\), \(\mathrm{Al}-100, \mathrm{Fe}-10, \mathrm{Ag}-10, \mathrm{Mg}-5, \mathrm{Ca}-5)\), there is an upward shift of the inflection temperature of approximately 25 degrees, and an upward shift of the orientation angle of approximately 15 minutes. The investigation is being continued in an effort to determine the effects of various other impurities on resonator properties.
A. R. Chi, D. L. Hammond, and
E. A. Gerber

Frequency Control Branch
Components Division
Ft. Monmouth, N. J.
\({ }^{1}\) A paper on synthesis of impurity doped quartz is n preparation by J. Stanley and S . Theokritoff.

\section*{Contributors}

J．S．Ajioka（ \(\mathbf{S}^{\prime} 4^{9}\) ）was born at Rexburg， Idaho，on Augnst 9，1923．He received his early college echuation at the l＇niversity of California at Los


J．S．Ajoka Angeles．During World War II he served with the 442 ud Infantry Regi－ ment in southern Europe．

It the close of the war，Mr．Ajioka entered the l＇niver－ sity of Utah，where he received the 13．S． degree in 1949 and the M．S．degree in 1951．Since graduation，he has been em－ ployed in the U．S．Nary Electronics Lab－ oratory at San Diego，working on micro－ wave antenna design and development，and in the Hughes Research Laboratories， Hughes Aircraft Co．，Culver City，working on certain analytical phases of the radome resign problem．

F．R．．Trams（S＇H－N＇49－SM＇55）was born on Octoleer 18，1925，in the Free City of 1）anzig．Ite received a B．S．E．in electrical engineering and a


F．R．Akams 13．S．E．in mathemat－ ics from the lini－ sersity of Michigan in 1947，a M．S．de－ gree in applied phys－ ics from Harvarel University in 1948， and al M．S．degree in business manage－ ment from Stevens Institute of Technol－ ogy in 1953．He is presently studying for a doctorate in electrical engineering at the I＇olytechnic Institute of Brooklyn．Dur－ ing World Wiar II he served as Communica－ tions Chief in charge of Radio Receiver Sta－ tion IVNF，バetchikan，Alaska．

Mr．Araths josined the Ratio Corpora－ tion of America in 1948 as a specialized tramee，and subsequently joined the Niero－ wave lingineering laboratory of the RCA Pube Divisiom，lirst at lancaster，P＇a．and now at larrisom，N．J．From 1948 to 1950, he was engaged in adsanced development problems on microwave gaseous phenomena． From 1950 to 1953，he was project engineer on various magnetron and traveling－wave－ tube design programs．From 195.3 until early 1955 ，he served as assistant to the manager of Mirrowave Engineering，and at present he is in charge of Application Engineering on Microwase＇lubes at RC \(A\)＇lube I Division．

Mr．Arams was a 1944 Donovan Scholar at the University of Michigan，and is a member of Eta Kappa Nu and Tau Beta Pi．

I＇．WV．Butler，Jr．（A＇53）was born in Niagara Falls，N Y．，on Octoher 9， 1922. He received the B．S．F．F．and M．S．in physics from the

＂．W．Butler，Jr． University of Michi－ gan in 1950 and 1953， respectively．

From 1950 to 1951 he was em－ ployed as an ansist－ ant design engineer with Consumers lower Company， Jackson，Mich．From 1951 to the present time，Mr．Butler has been employed by the Engineering Research Institute，at the Triversity of Michigan as an associate re－ search engineer．He is currently engaged in both component and systems research pro－ grams and is working toward the Ph．i）．de－ gree in electrical engineering．

He is a member of（amma Alpha and Signa Xi．

S．S．L．Chang（SM＇53）was born in leiping，Chima，in 1020．He receiver the M．S．in physics from Tsinghua University in China，in 1944 and the Ph．I）．in electri－


S．S．L．Cunno； cal engineering from l＇urlue I＇niversity in 1947．From 1947 to 1948，he talught at Purdue I＇niversity

He hats been asso－ ciated with Rollnins and Myers，Inc．， Springfield，Ohio since 1946．Ite joined the faculty of New York Iniversity in 1952 and is now Associate I＇rofessor of Electical 巨ngineering．

I）r．Chang is a member of the AIED， ISEF：American Ihysical Society，Eta K゙appa Nu，and Sigua Xi．

For a photograph and biography of W＇．F． Chow，see page 881 of the July， 1955 issue of the l＇rocimidiag of tmis iR l：

C．II：Helstrom wats horn on Felruary 22，1925，in Easton，Pa．From 194t to 1946， he served as a radio technician in the L－nited States Navy．

In \(19+7\) he received the B．S．degree in engineering physics from Lehigh I＇niversity， and in 1051 the Ih．D）．


C．IV．IIflstrom in physios from the Califormia Institute of Technology．Since 1951，he has been employed in the Flec－ tronics and Nuclear Physies Inepartment of the Westinghonse Research Lats．，in East Jittshurgh，l＇a．

Dr．Helstrom is a member of the Tmeri－ can Mosical Society．

\section*{\(\therefore\)}

H．K．Jenny（ \(\mathrm{N}^{\prime}+5-\mathrm{M}\)＇ \(47-\mathrm{SM} \mathrm{I}^{\prime} 50\) ）was burn on September 1t．1919，in（ilarus， Switzerland．He reacived the M．S．degree in electriat engineering from the Swiss Fed－
 eral Institute of Technology in \％u－ rich，Switzerland in 194．3．He remained there from 194.3 to 194．5，as assistant to Dr．F．Tank，head of the Institute of High Frequency．

In 1940，he joined
II．K．Jenvy
the Tube Jivision of the Radio Corpora－ tion of America in L，mmaster，Pa．，and has since been engaged in the development of microwate tules．At present，Mr．Jenny is manager of the Micronave Thbe Fingineer－ ing Activity in Itarrism，N．J．
\(\%\)

I：．1）．Lewis（ \(\left.\mathrm{S}^{\prime} 36-\mathrm{A}^{\prime} 38-\mathrm{Y}^{\prime} \mathrm{A}^{\prime} 30-S \mathrm{~S} \mathrm{I}^{\prime} 50\right)\) was born in Liberty，Mo．on July 2， 1911. He received the \(A . B\) ．degree at Central Col－
lege，lanette，Mo．，in


F．I）．Lemis

103．3，and the 13．S． and M．S．degrees from Massachusetts Institute of＂lechmol－ ogy in 19.37 and 1940 ． From 19.37 to 1940 he was engaged in experimental wotk on uhf receivers and electromagnetic horn radiators at M．I．＇1． Iquring the summer of 1940 he worker on I Opppler－effect radar at Loomis Labo－ ratory，subsequently going to the M．I．＇I． Ratiation Laboratory when it opened in November， 1940.

In 1941 he went to England as scientific liaison officer for the NDRC－OSRD．Re－ turning in 1942，he became an expert con－
sultant in the Office of the Secretary of Wiar on radar countermeasures and allied problems. Ile has been with the General Radio Co. since 1945 , and has been working on frequency measurement since 1940.

Mr. l.ewis holds the I'resident's Certiflcate of Nerit. He is a member of Sigma Xi and the SA.AS.
IV. J. Lindsay (A'55) was born in Miles, Texas, on October 28, 1925. He reccived his B.S. degree from Texas A. and M. College in 1948 and the M.S. degree in 1954. From August, 1948, to May, 1951, he was employed by the Humble Oil and Refining Company in Houston, Texas as an assistant engincer. From May, 1951 to August, 1952, Mr. Lindsay was employed in the EITS Research Laboratory of the Halliburton Oil Well Cementing Company of Houston as project engineer. From 1952 to 1954 he was engineer in charge of a network analyzer project, at the Texas A. and M. Research Foundation.

Mr. Lindsay joined the staff of the Electronic Defense Group, Engineering Re-
search Institute, at the Liniversity of Michigan in August, 1954 as research associate. IIe is currently working toward the Ph.I). degrec in electrical engineering.

He is a nember of Tau Beta Pi .

\section*{\(\%\)}
L. W. Orr (A'52) was born in 1915 in Hamilton, Canada. He reccived the IS.A.Sc. degree in electrical engineering in 1943 from the U'niversity of

L. W. Orr Toronto, and the M.S. and I'h.I. degrees in electrical engineering in 1946 and 1949 from the University of Michigan. During Workd War II, he was an officer in the Signals Branch of the Royal Canadian Air Force. From 1950 to 1951, Dr. Orr was in charge of the research and development of magnetic devices at the Burroughs Research Division, Philadelphia, P'a. From 1949 to 1950, and from 1951 to the present time, he has been a research engineer in the Engineering Research Institute, at the University of Michigan. He is presently engaged in a component research program in the Electronic Defense Gronp.

For a photograph and biography of R. L. I'ritehard, see page 105 of the January, 1955 issue of the l'rochemings of the lRE.

For a photograph and biography of A. P. Stern, see page 882 of the July, 1955 issue of the Prociemings of the IRE.

\section*{*}
1). Weighton was born on June 26, 1913, in Kingston-upon-Hull, England. He received the M.A. degree from Cambridye ['niversity in 1935.

D. WelGhton From 19,36 to 1938 , he served as Education Officer in the Royal Air Force.

In 1938 Mr. Weighton joined the research staff of Pye Limited, Cambridge, Fing, and from 1948 has headed the research division of that company.

Mr. Weighton is an associate member of the British Institution of Electrical Engineers.

\section*{IRE News and Radio Notes}

\section*{pG on Broabcast Transmisslon Sistems Wa.i, Hol.d Symposium}
"New l'erspectives in the Field of Broadcasting" will be the theme of the Fifth Annual Fall Symposium of the I'rofessional Ciroup on Broadrast Transmission Systems. The meeting is scheduled for September 23 and 24 at the Ifamilton Hotel in Washingtom, D, C. Registration will open at 9:00 A.m., September 23. Adrance registration and reservations may be sent to PGB'TS, Seventh Floor, 1735 DeSales Street, N.IW., Washington 6, D. C.

The Friday morning session of the symposium will be devoted to 32 new television broadeast ing equipment and facilitics. P'apers will include Multiple Antenna System with Antennas of Equal Height by L. J. Wolf of RCA, Studio Switching Problems with C'olor Signals by H. IV. Morse of General Electric, and \(A\) Fifty Kiloratt Transmitter by John Ruston of DuMont, Philip B. Laeser, Technical Director of IVTMJ in Milwaukee, will speak on Intcgrating Color Equipment with Monochrome Facilities al your Television Station.

The Friday afternom session will be devoted to measurements, including propagation factors, in television. A paper, made available by Edward W. Allen, Jr., of the FCC and including work directed by William
C. Buese and Harry Fine, Present Knowledge of Propagation in VHF and CHF Telcuision Bands, will be delivered. Edward IV: Chapin, Chief of the Laurel, Maryland Laloratory Division of the Federal Commmications Commission will deliver a paper summarizing field intensity measurements which have been made on varions ("HF stations.

The Saturday morning session will inclucle papers on new broadcast operation techniques and erpuipment arrangements. R, A. Isberg, of the Ampex Corporation, wilt deliver a paper on Using New Tape and Film Techniques to Increase Broadcast Operation Efficiency. A. C. Goodnow, Westinghouse Broadcasting Company, will speak on Experimental Experience with Remote Control of IIigh Power and Directional Antenna Broadcast Transmitter Operations, A Novel Television Slide Sequencing Arrangement will be presented by Roger E. I'cterson of WNBF, Binghamton, New York. Fidgar F, Vandivere, Jr. of Vandivere, Cohen and Wearn will present a paper on Some Techniques in Automatic l'rogramming.

Mloderators for the sessions will be Ralph N. Harmon, Wentinghouse Broadcasting Company; Stuart L. Bailey, Jansky and Bailey; Incorporated, and George C. Davis, consulting engineer.

A Friday evening cocktail hour will begin at 6:00 p.m. and will be followed by a
bancuret, . Irrangements have also been made with Ehyar T. Martin, Chief Engineer of the lovice of America for conducted tours there on Saturday afternoon.

Steering Committee includes Oscar Reed, Jr., (ieneral Chairman; Ralph N. IIarmon, Technical Irogram Committee; IIarold Dorschug, l'ublic Relations and Publicity; C. M. Brown, Finance; Lewis Winner, Papers Review; and Irma B. Galane, Iocal Drangenents Committee.

\section*{W. C. White Contributes to Browder Thompson Fund}

Friends of W. C. White recently presented him with several gifts upon his retirement from the General Electric Company. Mr. White has generously donated those gifts that were in cash to the Browder J. Thompson Fund. The money is to be used in six annual installments to augment the Browder J. Thompson Memorial Prize, which is given annually to an author, less than 30 years old, who has published the most outstanding paper in an IRE publication.

Mr. White has been active in IRE affairs for more than twenty-five years, serving as Treasurer in 1946 and Director from 1943 to 1947.

Calendar of Coming Events
IRE-ISA Tenth Annual Instrument Conference, Shrine Auditorium, Los Angeles, Calif., Sept. 12-16
Association for Computing Machinery. Annual Meeting, Moore School of Electrical Engineering, U. of Pa., Sept. 14-16
IRE Professional Group on Nuclear Science-Second Annual Meeting, Oak Ridge National Labs., Oak Ridge, Tenn., Sept. 14-17
IRE Cedar Rapids Section Symposium on Automation, Cedar Rapids, Ia., Sept. 17
PGBTS Fifth Annual Fall Symposium, Hamilton Hotel, Washington, D. C., Sept. 23-24
Symposium on Physiologic and Pathologic Effects of Microwaves, Mayo Clinic, Rochester, Minn., Sept. 23-24
RETMA Automation Symposium, U. of Pennsylvania, Philadelphia, Pa., Sept. 26-27
PG on Vehicular Communications, Sixth Annual Meeting, Multnomah Hotel, Portland, Ore., Sept. 26-27
1MISA Annual Convention, Hotel Seneca, Rochester, N. Y.. Sept. 26-29
International Analogy Computation Meeting, Société Belge des Ingenieurs des Télécommunications et d'Electronique, Brussels, Belgium, Sept. 27-Oct. 1.
IRE-AIEE Conference on Industrial Electronics, Rackham Memorial Building, Detroit, Michigan, Sept. 28-29
National Electronics Conference, Hotel Sherman, Chicago, Ill., October 3-5
Audio Enginecring Society Convention, Ilotel New Yorker, New York City, Oct. 12-15
IRE-RETMA Radio Fall Meeting, Hotel Syracuse, Syracuse, N. Y., Oct. 17-19
Conference On Electrical Insulation, Pocono, Pa., Oct. 17-19
Eighth Annual Gaseous Electronics Conference, General Electric Res. Lab., Schenectady, N. Y., Oct. 20-22
PG on Electron Devices Annual Technical Meeting, Shoreham Hotel, Washington, D. C., Oct. 24-25
GAMM and NTG-VDE International Conference on Electronic Digital Computers, and Data Processing, Darmstadt, Germany, Oct. 25-27
IRE East Coast Conference on Aeronautical and Navigational Electronics, Lord Baltimore Hotel, Baltimore, Md., Oct. 31-Nov. 1.

Syinposium on Applied Solar Energy, Westward Ho Hotel, Phoenix, Ariz., Nov. 1-5
Kansas City Section Electronics Conference, Kansas City, Kansas, Nov. 3-4
IRE-AIEE-ACM Eastern Joint Computer Conference, Hotel Statler, Boston, Nov. 7-9
IRE-AIEE-ISA Electrical Techniques in Medicine and Biology, Shoreham Hotel, Washington, D. C., Nov. 14-16
IRE-PGCS Symposium on Aeronautical Communications-Civil and Military; Utica, New York, Nov. 21-22
PGI and Atlanta Section Data Processing Symposium, Hotel Biltmore, Atlanta, Ga., Nov. 28-30

Symposium on Reliablity and Quality Control


Victor Wouk (left). Chairman of PG on Reliability and Quality Contro:, is Publicity Chairman for Symposium.

The PG on Reliability and Quality Control will sponsor a Symposium on Reliability and Quality Control in Electronics. The symposium will be held January 9 and 10, 1956 at the Hotel Statler in Washington.

A preliminary schedule for the symposium has been published.

First Session: "Quality Control and Automation," "Reliability of Complex Commercial Equipment," "Reliability of Weapons Systems."

Second Session: "The Control Chart Applied to Field Failure Data," "An Ap-
proach to the Study of System Reliability," "The Relation of Life Tests to Failure Rates." The panel discussions will include: "IIfg Reliability vs Cost of Equipment and Parts," "System Testing ve In-process Control," "The Problem of Field Failure Reporting (including new Air Force plans)."

Third Session: "Advances in Tube Reliability," "Reliable Connectors Through Quality Control," "Controlling Relay Characteristics," "Reliable Capacitors," "Inarts Reliability Research by the Services."

Fourth Session: "Quality Requirements and Acceptance Procedures."

\section*{Symposium on Microwave Teciniques to Meet in \\ February in Philadelpiifa}

Jointly sponsored by the PG on Microwave Theory and Techniques, the PG on Antemas and Propagation, and the Philadelphia Section, a national symposium on Nicrowave Techniques will be held at the Iniversity of Pemsylvania in I'hiladelphia, February 2 and 3, 1956.

Sessions are planned to include the following topics:

Radialing Systems: radomes, techniques of antenna gain and pattern measurement, the use of near field measurements, problems associated with paraboloid antennas of 20 feet or more diameter.

Panel Session on Guided Microwave Transmission: rectangular guide, ridge guide, round guide, dielectric guide, single wire guide.

Components: filters, converters, duplexers, directional couplers, non-reciprocal components.

Propagation: scatter.
Measurencents: power spurious emission, spurious modulation, ennission bandwidth, gain standards.

Those interested in presenting papers on one of these subjects should submit 250 word abstracts no later than October 15. The abstracts, in duplicate, may be sent to D. R. Crosby, RCA, Bldg. 10-1, Canden 2, N.J.

\section*{November 4 IRE Convention Papers Deadline}

November \(\ddagger\) is the deadline for submission of 1956 IRE National Convention papers Information needed, to be included in triplicate: a 100 -word abstract with title of paper, name, and address; a 500 -word summary, with title of paper, name, and address. One of the fcillowing fields in which the paper falls should be indicated. Aeronautical and Navigatioral Electronics, Antennas and Propagation, Audio, At:tomatic ControI, Broadcast and Television Receivers. Broadcast 'Transmission Systems, Circuit Theory, Communications Systems, Component Parts, Electron Devices, Electronic Computers, Engineering Management, Industrial Electronics, Information Theary, Instrumentation, Medical Electronics, Microwave Theory and Techniques, Nuclear Science, I'roduction Techniques, Reliability and Qualty Control, Telemetry and Remote Control, LItrasonics Engineering, Vehicular Communications.

Send material to Russell R. Law, 1956 Technical Prog-am Committee, IRE, 1 East 79 St., N. Y. 21, N. Y.

\title{
ANNUAL MEETING OF THE DALLAS-FORT WORTH SECTION
}

Seen at right are two participants at the Dallas-Fort Worth Section Annual Meeting. Bernard Brister (left). public relations counselor for the Section, was honored with membership in the institute of Radio Engineers. Making the presentation is Dr, Gordon K. Teal of Texas Instruntents, Inc.. new Dallas-Fort Worth Vice-Chairman.

(-1boie) Matk Mullock, Continental Electronics Manufactur ing \(C_{0}\)., is caught in an in:formal ing Co., is caught in an itiformad sint during the banquet whics. was held ing. He will be the new chairnan of the Section.


Shown above is John A. Green outgoing Chairman of the Sec-
tion. He was honored at the tion. He was honored at the IKE during the past year.


Shown at left are the new contributing edinew cont who were elected recently at the Annual \(\underset{\text { Might) }}{\text { Meeting. (From left to }}\) right) Kenneth Pe P. Dowell, of the Texas
Instruments, Inc., Dallas, and janies M. las, and Janies M. Radio Company, Cedar Rapids, Iowa, look over an issue of Pipection with T. A. Wright, Jr. of A. Earl Cullum. Jr., and Associates, Dallas, John K. Godbey, and Thell Sharp, beth of Collins Kadio Company.

\section*{February to be Date for} Western Computer Conference

The Western Computer Conference will be held in San Francisco February 8-10, 1956. It will be sponsored jointly by the IRE, AIEE, and ACM.

Papers on all phases of the computer field are now being solicited. In addition to paper title, authors are asked to submit an abstract of approximately 200 words, suitable for reproduction in the program, and either the complete manuicript or sufficient additional information to permit evaluation by the Technical Program Committee. Early submission of papers is desired, the final deadline being November 15. This is the latest date that is feasible and papers received thereafter cannot be considered.

Authors should indicate any plans for publication and should state what facilities, such as slide or movie projectors, power sources, etc. are required. For uniformity of handling, it is requested that all papers be directed to: Byron J. Bennett, Chairman,

Technical Program Committee, Stanford Research Institute, Menlo P'ark, California.

\section*{Several Proceedings Available}

The 1934 Eastern Joint Computer Conference Proceedings are now available at \(\$ 3.00\) per copy. These are the complete papers that were presented in Philadelphia December 8-10, 1954. Also available at \(\$ 3.50\) per copy are the 1955 National Telemetering Conference Proceedings. These represent the complete papers delivered at Chicago May 18-20. Both volumes may be obtained through IRE Headquarters, 1 E. 79 St., N. Y. 21, N. Y.

The Proceedings of the 1955 Electronic Components Conference held in Los Angeles are now available. The publication contains more than forty-eight papers on electronics which will not be duplicated in other publications. Checks for \(\$ 4.50\) per copy should be made payable to the 1955 Electronic Components Conference, 8820 Bellanca, Los Angeles, California.

National Simulation Conferexce Will Meet in Dallas

The Dallas-Fort Worth Chapter of the PG on Electronic Computers will sponsor a Nation al Simulation Conference in Dallas, Texas, January 19-21, 1956. The conference will be devoted to simulation and associated computing techniques, and will include topics in general simulation (mathematical, physical, logistic, etc.); advances in computer design, techniques, and applications; and methods of determining and improving the accuracy of analog solutiors.
l’apers for the conference are now being solicited. Although it is expected that most of the papers will deal with analog computers, papers on the use of digital consputers in simulation will be strongly encouraged. Prospective authors should submit in duplicate by September 10, a 100 word abstract together with either a 500 word summary or the complete paper itself to: J. R. Forester, 2104 Huntington, Arlington, Texas.

\section*{Former IRE President Elected Head of Radio Pioneers Club}

Raymond F. Guy recently has been elected president of the Radio Pioneers Club. He is I)irector of Radio Frequency Engineering for the National Broadrasting Company. Mr. Guy was on the original staff, composed of only a few persons, at WJ\% when it was opened by he Westinghouse Company in Newark, N.J.J. in 1921 as the world's second broadcasting station. At that time the audience consisted of only a few amateurs. Commercial broadcasting was unknown and practically all operating methods and techniques had to be originated by trial and error. In the last 36 years, Mr. Guy has played a part in developing network broadcasting, short-wave broadcasting to foreign countries, frequency modnation and the evolation and development of television.


Raymond F. Guy. new President of Radio Pioneers

Daring World War II, he participated in projects of the Office of Strategic Services, the Co-ordinator of Inter-American Affairs, and the Office of War Information, one of which took him abroad. Since the war he has participated in international radio conferences in Havana, Mexico City, and Mont real.

A fellow of the Radio Chbb of Anerica, a charter member of the Radio Pioneers (lub), a life member of the Veteran Wireless Operators Association, and a member of the Society of Professional Engineers, he was admitted to practice as a professional engineer in New York and New Jersey in 1937. Ife has also served on the Radio Technical Plaming Board and represented the IRE in the activities of the American Standards Association.

Mr. Giny became an IRIE Associate Member in 1925, a Member in 19.31 and a Fellow in 1939. Ite was President in 1950. In 1944, he was elected to the Board of Directors and served through 1948, inchuding one term as Treasurer. He has served on a number of IRE committees, functioning as chairman of the standards, public relations, founders, transmitters, nembership and office practices conmittees, and vice chairman of the building fund and executive committees.

\section*{TRANSACTIONS OF THE IRE PROFESSIONAL GROUPS}

The following issues of TRANSACTIONS are available from The Institute of Radio Engineers, Inc., 1 East 79 Street, New York 21, N. Y., at the prices listed below :
\begin{tabular}{|c|c|c|c|c|}
\hline Sponsoring Group & Publications & Group Members & IRE Members & \[
\begin{aligned}
& \text { Non-* } \\
& \text { Mem- } \\
& \text { bers }
\end{aligned}
\] \\
\hline \multirow[t]{9}{*}{Aeronautical \& Navigational Electronics} & PGAE-5: A dynamic Aircraft Simulator for Study of Human Response Characteristics (6 pages) & \$ . 30 & \$ . 45 & \$ . 90 \\
\hline & PGAE-6: Ground-to-Air Cochannel Interference at 2900 NC ( 10 pages) & . 30 & . 45 & . 90 \\
\hline & PGAE-8: June 1953 (23 pages) & . 65 & . 95 & 1.95 \\
\hline & PGAE-9: September 1953 (27 pages) & . 70 & 1.05 & 2.10 \\
\hline & Vol. ANE-1, No. 1, March 1954 (51 pages) & 1.00 & 1.50 & 3.00 \\
\hline & Vol. ANE-1, No. 2, June 1954 (22 pages) & . 95 & 1.40 & 2.85 \\
\hline & Vol. ANE-1, No. 3, September 1954 (27 pages) & 1.00 & 1.50 & 3.00 \\
\hline & Vol. ANE-1, No. 4, December 1954 (27 pages) & 1.00 & 1.50 & 3.00 \\
\hline & Vol. ANE-2, No. 1, March 1955 (41 pages) & 1.40 & 2.10 & 4.20 \\
\hline \multirow[t]{9}{*}{Antennas and Propagation} & PGAP-4: IRE Western Convention, August 1952 (136 pages) & 2.20 & 3.30 & 6.60 \\
\hline & Vol. AP-1, No. 1, July 1953 (30 pages) & 1.20 & 1.80 & 3.60 \\
\hline & Vol. AP-1, No. 2, October 1953 (31 pages) & 1.20 & 1.80 & 3.60 \\
\hline & Vol. AP-2, No. 1, January 1954 (39 pages) & 1.35 & 2.00 & 4.05 \\
\hline & Vol. AP-2, No. 2, April 1954 (41 pages) & 2.00 & 3.00 & 6.00 \\
\hline & Vol. AP-2, No. 3, July 1954 (36 pages) & 1.50 & 2.25 & 4.50 \\
\hline & Vol. AP-3, No. 4, October 1954 (36 pages) & 1.30 & 2.25 & 4.50 \\
\hline & Vol. AP-3, No. 1, January 1955 (43 pages) & 1.50 & 2.40 & 4.80 \\
\hline & Vol. AP-3, No. 2, April 1955 (47 pages) & 1.60 & 2.40 & 4.80 \\
\hline \multirow[t]{17}{*}{Audio} & PGA-7: Editorials, Technical Papers \& News, May 1952 (47 pages) & . 90 & 1.35 & 2.70 \\
\hline & PGA-10: November-December 1952 (27 pages) & . 70 & 1.05 & 2.10 \\
\hline & Vol. AU-1, No. 1, January-February 1953 (24 pages) & . 60 & . 90 & 1.80 \\
\hline & Vol. AU-1, No. 2, March-April 1953 (34 pages) & . 80 & 1.20 & 2.40 \\
\hline & Vol. AU-1, No. 3, May-June 1953 (34 pages) & . 80 & 1.20 & 2.40 \\
\hline & Vol. AU-1, No. 4, July-August 1953 (19 pages) & . 70 & 1.05 & 2.10 \\
\hline & Vol. AU-1, No. 5, September-October 1953 (11 pages) & . 50 & . 75 & 1.50 \\
\hline & Vol. AU-1, No. 6, November-December 1953 (27 pages) & . 90 & 1.35 & 2.70 \\
\hline & Vol. AU-2, No. 1, January-February 1954 (38 pages) & 1.20 & 1.80 & 3.60 \\
\hline & Vol. AU-2, No. 2, March-April 1954 (31 pages) & . 95 & 1.40 & 2.85 \\
\hline & Vol. AU-2, No. 3, May-June 1954 (27 pages) & . 95 & 1.40 & 2.85 \\
\hline & Vol. AU-2, No. 4, July-August 1954 (27 pages) & . 95 & 1.40 & 2.85 \\
\hline & Vol. AU-2, No. 5, September-October 1954 (22 pages) & . 95 & 1.40 & 2.85 \\
\hline & Vol. AU-2, No. 6, November-December 1954 (24 pages) & . 80 & 1.20 & 2.40 \\
\hline & Vol. AU-3, No. 1, January-February 1955 (20 pages) & . 60 & . 90 & 1.80 \\
\hline & Vol. AU-3, No. 2, March-April 1955 (51 pages) & . 95 & 1.40 & 2.85 \\
\hline & Vol. AU-3, No. 3, May-June 1955 (85 pages) & . 85 & 1.25 & 2.55 \\
\hline Broadcast Transmission Systems & PGBTS-1: March 1955 (102 pages) & 2.50 & 3.75 & 7.50 \\
\hline \multirow[t]{7}{*}{Broadcast and Television Receivers} & PGBTR-1: Round-Table Discussion on UHF TV Receiver Considerations, 1952 IRE National Convention (12 pages) & \begin{tabular}{l}
.50 \\
\\
\\
\hline 10
\end{tabular} & \(\begin{array}{r}.75 \\ \\ \\ \hline 10\end{array}\) & 1.50 \\
\hline & PGBTR-3: June 1953 (67 pages) & 1.40 & 2.10 & 4.20 \\
\hline & PGBTR-5: January 1954 (96 pages) & 1.80 & 2.70 & 5.40 \\
\hline & PGBTR-6: April 1954 (119 pages) & 2.35 & 3.50 & 7.00 \\
\hline & PGBTR-7: July 1954 (58 pages) & 1.15 & 1.70 & 3.45 \\
\hline & PGBTR-8: October 1954 (20 pages) & . 90 & 1.35 & 2.70 \\
\hline & Vol. BTR-1, No. 1, January 1955-Papers presented at the Radio Fall Meeting, 1954 ( 68 pages) & 1.25 & 1.85 & 3.75 \\
\hline \multirow[t]{6}{*}{Circuit Theory} & PGCT-1: IRE Western Convention, August 1952 (100 pages) & 1.60 & 2.40 & 4.80 \\
\hline & PGCT-2: Papers presented at the Circuit Theory Sessions of the Western Electronic Show \& Convention, San Francisco, Calif., August 19-21, 1953 (106 pages) & 1.95 & 2.90 & 5.85 \\
\hline & Vol. CT-1, No. 1, March 1954 (80 pages) & 1.30 & 1.95 & 3.90 \\
\hline & Vol. CT-1, No. 2, June 1954 (39 pages) & 1.00 & 1.50 & 3.00 \\
\hline & Vol. CT-1, No. 3, September 1954 (73 pages) & 1.00 & 1.50 & 3.00 \\
\hline & Vol. CT-1, No. 4, December 1954 (42 pages) & 1.00 & 1.50 & 3.00 \\
\hline
\end{tabular}

\footnotetext{
* Public Libraries, Colleges and Subscription Agencies may purchase at IRE Member rate.
}
(Continued)

TRANSACTIONS OF IRE PROFESSIONAL GROUPS
\begin{tabular}{|c|c|c|c|c|}
\hline Sponsoring Group & Publications & Group Members & \begin{tabular}{l}
IRE \\
Members
\end{tabular} & \begin{tabular}{l}
Non-* \\
Members
\end{tabular} \\
\hline \multirow{4}{*}{Communications Systems} & Vol. CT-2, No. 1, March 1955 (106 pages) & \$2.70 & \$4.05 & \$8.10 \\
\hline & Vol. CS-2, No. 1, January 1954 (83 pages) & 1.65 & 2.50 & 4.95 \\
\hline & Vol. CS-2, No. 3, November 1954: IRE Symposium on Global Communications, June 23-25, 1954, Washington, D. C. \& IRE-AIEE Symposium on Military Communications, April 28, 1954, New York, N. Y. ( 181 pages) & 3.00 & 4.50 & 9.00 \\
\hline & Vol. CS-3, No. 1, March 1955: Papers presented at the Symposium on Marine Communications \& Navigation, October 13-15, 1954, Boston, Mass. (72 pages) & 1.00 & 1.50 & 3.00 \\
\hline \multirow[t]{3}{*}{Component Parts} & PGCP-1: March 1954 Issue (46 pages) & 1.20 & 1.80 & 3.60 \\
\hline & PGCP-2: September 1954: Papers presented at the Component Parts Sessions at the 1954 Western Electronic Show \& Convention, Los Angeles, Calif. (118 pages) & 2.25 & 3.35 & 6.75 \\
\hline & PGCP-3: April 1955 (44 pages) & 1.00 & 1.50 & 3.00 \\
\hline \multirow[t]{9}{*}{Electronic Computers} & Vol. EC-2, No. 2, June 1953 (27 pages) & . 90 & 1.35 & 2.70 \\
\hline & Vol. EC-2, No. 3, September 1953 (27 pages) & . 75 & 1.10 & 2.25 \\
\hline & Vol. EC-2, No. 4, December 1953 (47 pages) & 1.25 & 1.85 & 3.75 \\
\hline & Vol. EC-3, No. 1, March 1954 (39 pages) & 1.10 & 1.65 & 3.30 \\
\hline & Vol. EC-3, No. 2, June 1954 (65 pages) & 1.65 & 2.45 & 4.95 \\
\hline & Vol. EC-3, No. 3, September 1954 (54 pages) & 1.80 & 2.70 & 5.40 \\
\hline & Vol. EC-3, No. 4, December 1954 (46 pages) & 1.10 & 1.65 & 3.30 \\
\hline & Vol. EC-4, No. 1, March 1955 (48 pages) & 1.10 & 1.65 & 3.30 \\
\hline & Vol. EC-4, No. 2, June 1955 (86 pages) & . 90 & 1.35 & 2.70 \\
\hline \multirow[t]{6}{*}{Electron Devices} & PGED-4: December 1953 (62 pages) & 1.30 & 1.95 & 3.90 \\
\hline & Vol. ED-1, No. 1, February 1954 (72 pages) & 1.40 & 2.10 & 4.20 \\
\hline & Vol. ED-1, No. 2, April 1954 (75 pages) & 1.40 & 2.10 & 4.20 \\
\hline & Vol. ED-1, No. 3, August 1954 (77 pages) & 1.40 & 2.10 & 4.20 \\
\hline & Vol. ED-1, No. 4, December 1954-Papers presented at the 1954 Symposium on Fluctuation Phenomena in Microwave Sources, November 18-19, 1954, New York, N. Y. (280 pages) & 3.20 & 4.80 & 9.60 \\
\hline & Vol. ED-2, No. 2, April 1955 (53 pages) & 2.10 & 3.15 & 6.30 \\
\hline \multirow[t]{3}{*}{Engineering Management} & PGEM-1: February 1954 (55 pages) & 1.15 & 1.70 & 3.45 \\
\hline & PGEM-2: November 1954 (67 pages) & 1.30 & 1.95 & 3.90 \\
\hline & PGEM-3: March 1955 (52 pages) & 1.00 & 1.50 & 3.00 \\
\hline \multirow[t]{2}{*}{Industrial Electronics} & PGIE-1: August 1953 (40 pages) & 1.00 & 1.50 & 3.00 \\
\hline & PGIE-2: March 1955 (81 pages) & 1.90 & 2.85 & 5.70 \\
\hline \multirow[t]{4}{*}{Information Theory} & PGIT-2: A Bibliography of Information Theory (Communication Theory-Cybernetics)-( 60 pages) & 1.25 & 1.85 & 3.75 \\
\hline & PGIT-3: March 1954 (159 pages) & 2.60 & 3.90 & 7.80 \\
\hline & PGIT-4: September 1954 (234 pages) & 3.35 & 5.00 & 10.00 \\
\hline & Vol. IT-1, No. 1, March 1955 (76 pages) & 2.40 & 3.60 & 7.20 \\
\hline Instrumentation & PGI-2: Data Handling Systems Symposium: IRE Western Electronic Show \& Convention, Long Beach, Calif., August 27-29, 1952 (111 pages) PGI-3: April 1954 (55 pages) & 1.65
1.05 & 2.45
1.55 & 4.95
3.15 \\
\hline \multirow[t]{6}{*}{Microwave Theory \& Techniques} & Vol. MTT-1, No. 2, November 1953 (44 pages) & . 90 & 1.35 & 2.70 \\
\hline & Vol. MTT-2, No. 2, July 1954 (67 pages) & 1.25 & 1.85 & 3.75 \\
\hline & Vol. MTT-2, No. 3, September 1954: Papers presented at the Joint IRE Professional Group-URSI meeting, Washington, D. C., May 5, 1954 (54 pages) & 1.10 & 1.65 & 3.30 \\
\hline & Vol. MTT-3, No. 1, January 1955 (47 pages) & 1.50 & 2.25 & 4.50 \\
\hline & Vol. MTT-3, No. 2, March 1955-Symposium on Microwave Strip Circuits, October 11-12, 1954, Tufts College, Medford, Mass. ( 182 pages) & 2.70 & 4.05 & 8.10 \\
\hline & Vol. MTT-3, No. 3, April 1955 (44 pages) & 1.40 & 2.10 & 4.20 \\
\hline \multirow[t]{2}{*}{Nuclear Science} & Vol. NS-1, No. 1, September 1954 (42 pages) & . 70 & 1.00 & 2.00 \\
\hline & Vol. NS-2, No. 1, June 1955 (15 pages) & . 55 & . 85 & 1.65 \\
\hline \multirow[t]{4}{*}{Reliability \& Quality Control} & PGQC-2: March 1953 (51 pages) & 1.30 & 1.95 & 3.90 \\
\hline & PGQC-3: February 1954 (39 pages) & 1.15 & 1.70 & 3.45 \\
\hline & PGQC-4: December 1954 (56 pages) & 1.20 & 1.80 & 3.60 \\
\hline & PGRQC-5: April 1955 (56 pages) & 1.15 & 1.75 & 3.45 \\
\hline
\end{tabular}
* Public Libraries, Colleges and Subscription Agencies may purchase at IRE Member rate.

\section*{Radio PioneersAttention!}

This notice, from the Radio lioneers Club, is for the information of members of the IRE who are qualified and wish to join the Radio Pioneers but who lack information concerning it. Originally formed in 1942 as the Twenty Year Club, the purposes of the organization are:
"To establish a membership organization of persons who by their loug years of service in the lied of Radio desire to become associated for the purposes of friendship and education The Club shall be a central clearing house for the exchange of information and historical data about the radio industry and shall record in form to be determined facts and data about the history of the radio industry and its traditions for use by this and future generations. It is felt that this organization with the resultant exchange of information would make a valuable contribution to the public interest."

As outlined in the constitutiom, the purposes are broad enough to enable the Radio Pioneers to undertake almost any task which the club may desire for the furtherance of the radio industry.

1950 marked the establishment of a Radio Hall of Fame in which the memories of men and women whose contribution have placed them among the immortals will be perpetuated. The first of such awards went to Thomas Mvah Edison. Subsequent awards went to Marconi, Fessenden, Frank Conrad and Joseph Henry, All members are entitled to submit their choice which will be voted upon by the committee.

In 1950 the Radio l'ioneers inaugurated the radio orat history project which has been undertaken by Columbia 'rniversity's oral history project, under the direction of Allen Nevins. This vast project set up a source of material which will be available to all future historians of the industry, or to those writing books which dwell on some phases of radio. The plan consisted of oltaining recorded intervicws of outstanding men and women who have pioneered in radio, engineers as well as those in other branches. It is felt that soon many of these will no longer be awailable for first-hand information. All members are encouraged to send in carly ancolotes and "irsts" with which they were connected or concerned.

The requirements for membership are that a prospective member be in good standing, and have served the radio industry for 20 consecutive years or more at the time of making application for membership.
II. V. Kaltenborn, noted commentator and author, is the founder of the Pioncers; this came about when NBC gave him a dimuer on : ipril 4, 1942, to commemorate his 20 th year in radio. The small original group has grown to more than 1000. Officers include Raymoud F. Guy, formerly IRE I'resident, President; John l'att (Station WJR Detroit) 1st Vice President; Lewis H. Avery (Avery-Knodel, Inc.) \iec-I'resident; Victor Dichm (Station W:ZZL) \ice-P'resident ; and Merle Jones (Columbia Broadcasting System) Vice-P'resident. Honorary Presidents

\section*{TRANSACTIONS OF IRE PROFESSIONAL GROUPS}
(Continued)
\begin{tabular}{|c|c|c|c|c|}
\hline Sponsoring Group & Publications & Group Members & \begin{tabular}{l}
IRE \\
Members
\end{tabular} & \begin{tabular}{l}
Non-* \\
Members
\end{tabular} \\
\hline \multirow[t]{3}{*}{Telemetry and Remote Control} & PGRTRC-1: August 1954 (16 pages) & \$ . 85 & \$1.25 & \$2.55 \\
\hline & PGRTRC-2: November 1954 (24 pages) & . 95 & 1.40 & 2.85 \\
\hline & Vol. TRC-1, No. 1, February 1955 (24 pages) & . 95 & 1.40 & 2.85 \\
\hline \multirow[t]{3}{*}{Ultrasonics Engineering} & PGUE-1: June 1954 (62 pages) & 1.55 & 2.30 & 4.65 \\
\hline & PGUE-2: November 1954 (43 pages) & 1.05 & 1.55 & 3.15 \\
\hline & PGUE-3: May 1955 (70 pages) & 1.45 & 2.20 & 4.35 \\
\hline \multirow[t]{3}{*}{Vehicular Communications} & PGVC-3: Theme-Spectrum Conservation, Washington, D. C., December 3-5, 1952 ( 140 pages) & 3.00 & 4.50 & 9.00 \\
\hline & PGVC-4: Design, Planning \& Operation of Mobile Communications Systems (June 1954) (98 pages) & 2.40 & 3.60 & 7.20 \\
\hline & PGVC-5: June 1955 (76 pages) & 1.50 & 2.25 & 4.50 \\
\hline
\end{tabular}
* Public Libraries, Colleges and Subscription Agencies may purchase at IRE Member rate.

\section*{Radio I'ioneers-Attention! (Cont'd from page 1143)}
are Brig. Gen. David Sarnoff and Dr. Lee De Forest.

Active local chapters exist in New York and Honolulu and plans are made to form others to promote friendship and social intercourse among the pioneer radio fraternities. New members have an opportunity to participate actively in the formation of their local chapters.

Radio Pioneers issues a small magazine and whenever feasible an annal membership roster including short biographies of each member.

Radio Pioncers holds its annual election, meeting and banquet each year at the time
and place of the NARTB Convention and during the year a number of chapter meetings are held.

Membership, dues in the Pioneers are \(\$ 10\) anmally. The initiation cost is \(\$ 15\) each, \(\$ 10\) for dues and \(\$ 5\) for a Pioneers insignia pin.

The Radio Pioneers is the only association of its kind in that it is not confined to engineers, financial people, the legal fraternity, program people, or management personnel, but includes them all. The meetings provide an opportunity to create friendships and enjoy informal social affairs with fellow members representing all of the industry. The opportunity to meet and enjoy the companionsloip with pioncers in the nonengineering professions has been pleasant, stimulating and valuable.

Chapter meetings are highly informal
and normally include excellent entertainment following dinner. Members of the Institute who are eligible to join are invited to send for an application blank to Raymond F. Guy, President, c/o National Broadcasting Company, Inc., 30 Rockefeller Plaza, New York 20, New York.

\section*{I.I.T. Will Sponsor Conference on Industrial Hydraulics}

The use of electronic analog computers in the solution of hydraulic problems will he a feature of the eleventh anmal National Conference on Industrial Hydraulics, October 27 and 28, at the La Salle Motel, Chicago.

The conference will be sponsored by the Illinois Institute of Technology graduate school and Armour Research Foundation, in cooperation with engineering societies and nearly 100 industrial organizations.

\section*{'Two Ilundred Attend Pimladelphia Student Nigilt}

The Philadelphia Section last spring organized a Student Night which included a dinner and meeting at the Engineers Club in Philadelphia. Nearly 100 students from the Tniversity of Delaware, Drexel Institute, Lafayette College, Lehigh I'niversity, I'niversity of Pemsylvania, Swarthmore, and Villanova were guests of the Section. After the dinner, attended by 200, a Section meeting was held. John Ryder, IRE President, spoke to the group on "Automatic Electronic Production." Also addressing the meeting was Theotore I Ianter, Editor of the Student Quarterly. Student Awards were presented to seven students by S. C. Spielman, Chairman of l'hiladelphia Section.

\section*{Philadelphia Section Presents Student Awards to Members from Six Colleges}


Winners of Student Awards at the Philadelphia Section meeting are (standing, left to right): L. A. Rubin, Pennsylvania; E. J. Taylor, Delaware; William Fryer, Lafay-
ette; William Kilpatrick, Lafayette; C. F. Der. Drexel. Seated: T. S. Durand, Villanova; S. C. Speilman. Philadelphia Section Chairtnan; R. J. Fulmer, Lehigh.

\section*{Professional Group News}

\section*{New Yokk Chal'ter of PGANE} Will Expand Winter Program

Now in its second full season, the New York Chapter of the Professional Group on Aeronautical and Navigational Electronics is scheduling an expanded program of six meetings. Functioning jointly for the New York, Long Island, and Northern New Jersey Sections, the chapter will cover topics in communications, control, navigation, and training aids.

The season will get under way on Thursday evening, October 20, with a session on "The Automatic Dead Reckoning Computer." Subsequent meetings and field trips will take place in November, January, February, April, and June.

Ilanning has been carried out by the Chapter Executive Committee, consisting of Gordon P. McCouch, Aircraft Radio Corp., Chairman; Lester M. Glantz, Telephonics Corp., Vice-Chairman; William P. McNally, W. L. Maxson Corp., Secretary; Stamates I. Frangoulis, Ford Instrument Co., Membership Committee Chairman; Henry C. Nelson, Polytechnic Research and Development Corp., I'rogram Committee Chairman; and Robert J. Bibbero, Hillyer Instrument Co., Past Chairman. The Program Committee includes: Thomas W. Winternitz, Bell Telephone Labs.; Robert A. Buckles, Watson, Leavenworth, Kelton and Taggart; Charles Cambridge, N. Y. U'SAF Development Field Office; Richard Meyers, Federal Telecommunications Labs.; and John Litsios, W. L. Maxson Corp.

\section*{Four New Chapters Announced}

On May 4, the IRE Board of Directors approved the establishment of a new Section in Ontario, Canada, to be known as the Bay of Quinte Section.

At the same meeting, the AmarilloLubbock Subsection of the Dallas-Fort Worth Section was made a full Section, now called the Lubbock Section.

The Executive Committec, at its meeting on June 7, approved the following chapters: Central Florida Section, PG on Telemetry and Remote Control; Philadelphia Section, PG on Medical Electronics; Boston Section, PG on Autonatic Control; Rome-Utica Section, PG on Communications Systems.

\section*{OBITUARY}

James F. Pierce (A'30-VA'39) died recently. Mr. Pierce, a patent attorney, received the bachelor's degree in civil engineering from the University of Michigan and the bachelor of laws degree from George Washington University. He was a World War I veteran and a member of the American Legion. He also held membership in the American Bar Association and the American Patent Law Association. He had been admitted to practice before the Supreme Court, and was a partner in the patent law firm of Pierce, Scheffler and Parker, Washington, D. C.

Mr. Pierce was an IRE Representative at the University of Pittsburgh in 1949 and 1950.

\section*{Technical Committee Notes}

The Antennas and Waveguides Committee met at IRE Headquarters on June 8 with Henry Jasik presiding. Mr. Jasik reported on the Standards Committee review of the Proposed Definitions of W'aveguide Components. The work of the Waveguide and Waveguide Component Measurements Subcommittee (2.4) on Methods of Waveguide Measurement was reviewed. The sections on delay time and power handling capacity had no further change. The section on \(Q\) was discussed at length and amended.

This Proposed Standard will be discussed further at the next meeting.
W. R. Bennett presided at a joint meeting of the Circuits Committee and the Subcommittec on Linear Active Circuits Including Network with Feedback Servomechanism (4.7) on June 23 at IRE Headquarters. It was announced that S. J. Mason had resigned from the Circuits Conmittee because of the pressure of other work, and that W. A. Lynch would take his place as Vice-Chairman. The committee discussed, amended, and approved the feedback definitions for submission to the Standards Committee.

The Facsimile Committce met at the Times Building on June 17 with K. R. McConnell presiding. Mr. Lankes reported on the progress of the IRE Facsimile Standards Chart from a series of prepared notes. The committee decided to write down a short definition and use for each pattern of the chart. The committee discussed the facsimile definitions as sent to the Standards Committec.

Mr. J. E. Eiselein presided at a meeting of the Industrial Electronics Committee at IRE Headquarters on June 15. The chairman announced that the definitions on induction and dielectric heating were approved by the Standards Committee with some short added notes on the two words, decalesence and recalesence. The sccretary was instructed to send a letter to R. R. Batcher, Chairman of the Professional Group on Production Techniques. The letter was to stipulate that those in the Industrial Electronics Committee had assumed work in the production techniques and automation fields and that they would appreciate it if the Production Techniques group worked with them. The letter also indicated a desire to have any interested members of this professional group as members of the Industrial Electronics Conmittee and a desire to have them recognize the group as their channel of expression. Mr. Cottle reported on the RETMA work on definitions. Definitions for

\section*{Administrative Committee of PG on Microwave Theory and Techniques Meets at IRE}


\footnotetext{
At a recent meeting of the Administrative Committee of the PG on Microwave Theory and Techniques A. C. Beck was elected Chairman of the Group. Pictured at IRE Headquarters are (seated left to right): H F. Engelmann, Vice.Chairman; A. C.
Beck. Chairman; W. W. Mumford, former Chairman; G. C. Southworth. Chairman
} urer; R. F. Schwartz, who organized the Philadelphia Chapter; S. D. Schreyer. Papers Review Committee. The meeting was held early this summer.
automatic machinery, aspect ratio and automatic dip sokdering, prepared by Mr. Fiselein, were discussed and some medifications suggested. For those terms containing "antomatic" it was decided to accept the dictionary defintion for antomatic and define the rest of the terms separately. It was decided to appoint a small task group to work on definitions of other terms and present them for consideration at the next mecting.

The Information Theory and Modulation Systems Committer met at IRE Head quarters on June 1 with J. G. Kreer presiding. The committee discussed and annended the Information Theory I befinitions now under consideration.
11. R. Minno presidecl at a meeting of the Navigation Aids Committer at IRE llealcpuarters on Jume 17. The committee contimed its discussion of the proposed standard on "YIIF ()mni-1)irectional Radio Range ( V (OR)." Minor revisions and minor
editorial changes were noted. The committee noted, but did not settle, certain policy questions regarding the possible subdivision of the system into major components for measurement standardization purposes.

The Standards Committee met at IRE Headquarters on June 7 with Chairman E. Weber presiding. The following proposed standards were discussed, amended, and approved and will appear in TIIE I'ROCEED INGS shortly: "Standards on Industrial Electronics: Definitions of lndustrial D:lectronic Terms, 1955;" "Standards on Antemas and Waveguides: Definitions of Waveguide Components, 1955;" "Standards on Pulses: Methods of Measurement of Pulse Quantities, 1955:" "Standards on Radio Reccivers: Method of Testing Receivers Employing Ferrite Core Loop Antemnas, 1955;" and "Standards on Graphical and Letter Symbols for Feedback Control Systems, 1955." The proposed standard on "Torminolagy for Feedlack Control Sys-
tems" was discussed and will be completed at the next meeting of the Standards Committee. It was unanimonsly approved on motion by Mr. Shea and scoonded by Mr. Baldwin that the Standards Committed recommend to the Fxecutive Committee that the title of the Simiconductor Devices Committee be changed to the Solicl State Devices Committe and their scope be changed accordingly. Dr. Weber announced that the following appointments had been approved at the last meeting of the Fxecmtive Committee: upon resignation of Mr. Dodds, I'. A. Redhead was appointed Chairman of the Electron Tubes Committec; L.. E. Colfey, Telecommmication Division, Department of Transport, Ottawa, Canada was appointed as a mon-IRE member to the Radio Frequency Hiterference Committec. 1. A. Fleming, British Radio Valve Mamfacturers, London, England, was appointed as a non-IRE member to the lilectron Tubes Committec.

\section*{Books}

\section*{Analog Methods in Computation and Simulation by Walter W. Soroka}

Published (1954) by Mceriaw-11ill Buok Co. Inc.,

"his book describes varions electrical and merhanical components which (ideally) obey fumdamental mathematical laws, and proceeds to demonstrate how computers and simulators may be constructed from these basic building blocks. The chapters are: "Nechanical Computing Elements;" "Elertromechanical, Filectrical, and Electronic Computing E: Ements;" "Machines for Simultanems Linear . Dgebraic Equations;" "Analog Solntion of Nonlinear Ngebraic Equations;" "The Mechanical I)ifferential Analyzer;" "Electronic Analog Computers (FJectronic Differential Nalyzers);" "I)ynamical . Inalogies;" "Equivalent (ircuits for Ordinary and l'artial Differential Equations in Finite Differences;" and "Membrane and Conducting-sheet Analogies."

The amalog computer has both a long history and a current vitality. The basic precepts may be puickly enumerated, but a feeling for the subject is developed only through acequaintance with a wide spectrom of examples, many in the "ingenious device" category. Prof. Soroka has provided these examples in profusion, yet without making the book a mere catalog of miscellany. He has done a goocl jol, of collecting and organizing material largely available heretofore only in isolated spots. The book is descriptive, but the author does not hesitate to "put the mumbers in."

The problem of scaling receives adequate attention throughout the book, and the technical limitations of many of the computers described are indicated. A particu-
larly valuable addition would have been the expansion of the brief chapter on electronic analog computers to inchude checking procedures and error analysis techniques.

The athor's preface indicates that the book is considered a textbook; however, no exercises for the student are included. I'roperly employed, it could form the basis for a course at perhaps a high mulergraduate level, althongh appreciation of the fine points in certain chapters requires somewhat more adranced training. Laboratory work would be essential, and might well be modeled upon examples in the book.

The practicing engineer will find this a useful basic reference, but one which does not attempt to solve his practical problems of detail design to meet space and weight limitations or to ensure reliable operation under adverse envirommental conditions. In this comnection, the reader will be grateful that the book contains a wealth of basic references to the literature.

Lotis I3. Wadel
Chance Vought Aircraft, Inc.
Dallas, Texas

\section*{Servomechanisms and Regulating System Design: Volume II by Harold Chestnut and Robert Mayer}

Published (1055) by John Wiley and Sons, Inc. 440 Fourth Ave., New York 1. N. Y. 368 pages +8 page index +xii pages. Illustrated. \(9 \div 6 . \$ 8.50\).

In engineer who has had the experience of reducing a control system to practice soon recognizes the rather substantial gap between theory and practical design. 'Theory considers the broad and general fundamentals that describe the performance of the system. On the other hand, practical design
requires the translation of the control task into technical specifications and the specific means of implementation. Induled in the latter are error-sensing circonits, actuators, transducers, amplifiers and other components. The designer must also recognize and minimize the effects of imperfections such as drift, backlash, moise, situration, nonlinearities, an! werheating which are present in the plysical components he is compelled to use. While there are many books which deal with the theory of feedback control systens (such as whime one of this same work), there are very few which deal with practical design. For this reason, this book is a most valuable and welcome addition to the library of the control cmgineer.

The first part deals with the measurement techniques for obtaining transfer functions of compements The only criticism offered here is that this reviewer's experience has been that except for simple cases the accurate (leduction of transfer functions from test data is not quite as direct and simple as the authors scem to imply. Following this, there is naterial on the setting of dymanic specifications of the system as influenced by the systematic inputs the system is required to follow and the noise it is required to reject. Selection of motors and actuators, network design, amplifier (lesign and the handling of ac carrier servonechanisms round out the material on design. The authors restrict themselves largely to electrical and electronic systens, omitting other forms of implementation. It conchodes with a substantial amount of material on monlinearities such as saturation and backlash, on-off systems and the use of non-linear components for compensation.

Gencrally speaking, the look is well written and is replete with information of practical value to the engineer. The presentation, while analytical, is not too complex thus making the book casily readable by the practicing engincer and student. A comprehensive bibliography is a vailable as an appendix so that the reader may broaden his coverage should he wish to do so. The lack of problems is one factor which lessens its value as a student textbork. On the other hand, it is recognized that meaningful problems in practical design are very difficult to devise and the lack of problems is quite understandable. "This book is a very worthwhile addlition to the list of texts dealing with feedback control and it is highly recommended to those engineers and students who have an interest in the practical design of servomechanisms.

> Jorin R. RariazZini
> Columbia University New York. N. Y.

\section*{The Amplification and Distribution of Sound by A. E. Greenlees}

Published (1954) by Chapman and Hall Ltd., 37 Essex St. W.C. 2, Londont. England. 295 pages +5 page index \(+x\) pages. 114 Figs. \(8 \frac{1}{5} 5^{5} .35 \mathrm{~s}\).

The author of this third revised edition faithfully pursues the purpose stated in the preface-" "to present a general survey of the principles of sound amplification and distribution, showing the practical consideritions involved, together with sufficient technical detail to crable the reader to appreciate the fundamental principles." The book is a survey in that a wide variety of subjects is covered lightly, though not superficially. By reading this book a heginner in sound amplification covers the field rapielly without getting deeply involved in any one branch of the subject. The emphasis throughout is on practical consideration and, although many technical details are omitted, it is to the author"s credit that technical correctness has not been sacrificed.

Chapters are included on amplifier components, typical amplifier circuits, amplifier performance factors; audio sources such as radio receivers, microphones, and records of various types; loudspeakers, installation acoustics, system layouts; operation and maintenance of equipment ; and the preparation of souml equipment specifications. No attempt is made to assign specific values to circuit components or to describe the mechanical design of electroaconstic components in terms of actual dimensions. The numerous block diagrams, charts, and schematics are intended to be illustrative rather than specific.

Little, if any, mathematical background or prereguisite reading is required for the reader of this book. The reader would do well, however, to have as alternative background a modicum of experience with sound systems, and additional experience of this type is reconumended as an accompaniment to the study program.

Although sound amplification systens camot, as the author states, "improve the acoustics of the building," their proper design, installation, and use can go far to overcome an adverse acoustical enviromment. The book will be very useful to sound system dealers, service technicians, and operators,
as well as to architects and others in need of immediate direct information on sound amplification systems.

Danifil W. Mahtin
Baldwin Piano Company Cincinnati. Ohio

\section*{An Outline of Atomic Physics by O. H. Blackwood, T. H. Osgood, and A. E. Ruark}

Published (1955) by John Wiley and Sons, Inc., 440 Fourth Ave., New York 16, N. Y. 474 pages +12 440 Fourth Ave., New 0 ork io, Nix.
page index \(+x\) pages +9 Appendixes. Hlus. \(9!\times 6\).
\(\$ 7.50\).

This well-rounded exposition is the third edition of a text originally designed to provide college students with a thorough-going knowledge and understanding of the structure and behavior of atoms, molecules, and radiation. While the intended reader is expected to have completed a year's course in college physics, the book is written primarily for students aspiring to professions other than physics.

The contents of the book may be roughly divided into two classes. First nine chapters contain descriptions of the atomic nature of matter and of electricity, the forms and properties of radiant energy, atomic and molecular spectra, the duality of waves and particles, and a brief treatment of solids. The remaining six chapters maty be roughly classed as nuclear physics, and include discussions of radioactivity, the elementary particles, nuclear trammutations, cosmic ralys, and the theory of relativity.

The authors have avoided the use of calculus and higher mathematics throughout the text; nevertheless the make a determined (and generally highly successful) attempt to give the full story of the physics involved. They give to the reader not only the present-day physical theories but also the ideas which led to their formation. Where our knowledge is rague or contradictory this is pointed out, and the dilemmas of physics are discussed as freely as its successes.

Altogether, the radio engineer who is interested in getting an accurate and complete picture of the physics which interrelates the phenomena underlying his profession, and who wishes, as the authors state, "to go to the frontiers of physics and see for himself what manner of things must be done to take the next step forward" will find this book rewarding. The subject matter is not easy, and most readers will find that a considerable degree of concentration is required. The authors' presentation is, however, remarkable for its clarity, and those who expend the effort to alsorb and retain this material will find unfolding a fascinating story of the trimmphs of modern thought in unravelling some of the fundamental mysteries of nature.

John IV. Coltman
Westinghouse Rescarch Laboratories East P'ittsburgh, Pennsylvania

\section*{Servomechanism Practice by William R. Ahrendt}

Published ( 19.54 ) by Mc(iraw-Hill Book Co., Inc., 330 W: 42 St.. N. Y. 36, N. Y. 3.11 pages +7 page
index + vii pages. 28,3 figures, \(9 \frac{1}{3} \times 6 \% . \$ 7.00\).

This book is ideal for a manufacturer of instrument servomechanisms. The solutions
which it gives to problems in fabrication, construction, component selection, circuitry, vibration, temperature variations, tolerances, and nonlinearities, are of considerable value to maintenance engineers and to manufacturers of all types of feedback control systems.

The writing is clear, simple, nonmathematical, casy to read, and accurate. It can be studied and mastered by a practicing engineer or an undergraduate student without the help of a teacher. Block diagrams are used effectively in the presentation ly of ten appearing with the detailed circuit diagran.

There are a number of good examples of complete electric and hydraulic instrument servomechanisms with specifications, component characteristics, system analyses, and actual system performances. The book is excellent in its treatment of manufacturing techniques, nonlinearities in small components, and the observed effect of these non-lincarities on system performance. The selection of a prime mover and gear ratios is covered in detail.

In its limited scope, this work fulfills an important need, duplicating no other book. It has very little, however, on control theory, high power industrial control systems, analogs or function computers. It does not discuss process control servos, guidance of large objects, digitally or periodically controlled systems, on-off or relay systems, noulinear predictor systems, tension, velocity, or fabrication controls. It has nothing on statistical disturbances, or the formulation of specifications. It deres not cover graphical, electrolytic, or analog aids for the design steps.

This book unfortunately dues not have a wide enough scope to serve as a latoratory text for engineers in training, but it is an excellent guide for the final design and production engineers who must bridge the gap) between preliminary design and delivery.

Otto J. M. Smith
Instituro Tecnologico de Aeronautica
Sao Jose dos Campos. Est. San Praulo, Brasil

\section*{Rechet Books}

ASTM Standards on Electrical Insulating Matcrials. Compiled by ASTM Committee D-9 on Electrical Insulating Materials. American Soxiety for Testing Materials, 1916 Race St., Dhiladelphia 3 Pa, \(\$ 5.50\).
Banner, IE. H. W., Electronic Measuring frstruments. Chapman and Hall Ltd., 37 Essex St., W.C. 2, London, England. 4.5 .
1)uschinsky, IV. J., TV Stations: A Guide for Architecis, Engincers, and Management. Reinhold P'ublishing Corp., 430 I'ark Ave., N. Y. 30, N. Y. \$12.00.
Higdon, Archie, and Stiles, William B., Enginecring Mechanics. I'rentice-Hall, Inc., 70 Fifth Ave., N. Y. 11, N. Y. \(\$ 7.95\).
Kiver, Milton S., Introduction to UHF Circuits and Components. D. Van Nostrand Co., Inc., 250 Fourth Ave., New York, N. Y. \$7.50.
Proceedings of the Third Mecting of the Joint Commission on Radiometeorology. li.R.S.I. 42 Rue des Minimes, Brussels, Belgium. \(\$ 5.00\).

Aeronautical \& Navigational ElectronicsChairman, Fdgar A. Post, Navigational Aides, United Air Lines, Operations Base, Stapleton Field, Denver 7, Colo.
Antennas \& Propagation-Chairman, Delmer C. Ports, Jansky \& Bailey, 1339 Wisconsin Ave., N.W., Washington 7, 1). C.
Audio-Chairman, W. E. Kock, Bell Tel. Labs., Murray Iill, N. J.
Automatic Control-Chairman, Robert B. Wilcox, Raytheon Manufacturing Co., 148 California St., Newton 58, Mass.
Broadcast \& Television Receivers-Chairman, W. P. Boothroyd, Philco Corp., 1'hiladelphia 3t, Pa.
Broadcast Transmission Systems-Chairman, O. W'. B. Reed, Jr., Jansky \& Bailey, 1735 DeSales St., N.W., Washington, D. C.

Circuit Theory-Chairman, J. Carlin, Microwave Res. Inst., Polytechnic Inst. of Brooklyn, 55 Johnson St., Brooklyn 1, N. Y.

Communications Systems-Chairman, A. C.

Peterson, Jr., Bell Labs., 463 West St., New York 14, N. Y.
Component Parts-Chairman, Floyd A. Paul, Reliability Bendix Development Lab., 116 W. Olive Avenue, Burbank, Calif.
Electron Devices-Chairman, J. S. Saby, Electronics Laboratory, G.E. Co., Syracuse, N. Y.
Electronic Computers-Chairman, J. H. Felker, Bell I.abs., Whippany, N. J.
Engineering Management-Chairman, C. J. Breitwieser, Lear, Inc., 3171 S. Bundy Drive, Los Angeles 34, Calif.
Industrial Electronics-Chairman, George P. Bosomworth, Engrg. Lab., Firestone Tire \& Rubber Co., Akron 17, Ohio
Information Theory-Chairman. Louis A. DeRosa, Federal Telecommunications Lab., Inc., 500 Washington Avenue, Nutley, N. J.
Instrumentation-Chairman, F. G. Marble, Boonton Radio Corp., Intervale Rd., Boonton, N. J.

Medical Electronics-Chairman, Dr. Julia F. Ilerrick, Inst. of Experimental Medicine, Mayo Found, Rochester, Minn.
Microwave Theory and Techniques-("hairman, A. C. Beck, Bell Labs., 463 West St., New York 14, N. Y.
Nuclear Science-Chuirman, M. A. Schultz, Westinghouse Automatic Power Division, Bettis Field, l'ittsburgh 30, Pa.
Reliability and Quality Control-Chairman, Victor Wouk, Beta Electric Corp., 3.33 IE . 103 rd St., New York 29, N. Y.
Production Techniques-Chuirman, R. R. Batcher, 240-02-42nd Ave., Douglaston, I. I., N. Y.

Telemetry and Remote Control-Chairman, C. H. Iloeppner, Stavid Engineering, Plainfield, N. J.
Ultrasonics Engineering-Chairman, M. D. Fagen, Bells Labs., Whippany, N. J.
Vehicular Communications-Newton Monk, Bell Telephone Labs., 463 West St., New York, N. Y.

\section*{Sections*}

Akron (4)-H. I.. Flowers, 202919 St., Cuyahoga Falls, Ohio; H. F. Lanier, 49 W. I owell Ave., Akron, Ohio.

Alberta (8)-Officers to be elected.
Albuquerque-Los Alamos (7)-'「. G. Banks, Jr., 1124 Monroe St., S.E.., Albuquerque, N. M.; G. A. Fowler, 333349 L.oop, Sandia Base, Albuquerque, N. M.
Atlanta (3)-D. L. Fiinn, School of Electrical Engineering, Grorge Institute of Technology, Atlanta, Ga.; P. C. Toole, 605 Morningside Dr., Marietta, Ga.
Baltimore (3)-C. F. Miller, Johns Hopkins University, 307 Ames Hall, Baltimore 18, Md.; II. R. IIyder, III, Route 2, Owings Mills, Md.
Bay of Quinte (8)-J. C. R. Punchard, 1:lec. Division, Northern Filec. Company, Ltd., Sydney St., Belleville, Ont., Canada; M. J. Waller, R.R. 1, Foxboro, Ont., Canada.
Beaumont-Port Arthur (6)-IV. IW. Eckles, Jr., Sun Oil Company, Prod. Lab., 1096 Calder Ave., Beaumont, Tex.; E. D. Coburn, Box 793, Nederland, 'Tex.
Binghamton (4)-O. T. I.ing, 100 Henry St., Binghamton, N. Y.; Arthur Hamburgen, 102 S. Nanticoke Ave., Endicott, N. Y.
Boston (1)-T. P. Cheatham, Jr., Hosmer St., Marlborough, Mass.; R. A. Waters, 4 Gordon St., Waltham 54, Mass.
Buenos Aires-J. M. Rubio, Ayachucho 1147, Buenos Aires, Argentina; J. L. Blon, Transradio Internacional, San Martin 379, Buenos Aires, Argentina.
Buffalo-Niagara (1)-D. P'. Welch, 859 Highland Ave., Buffalo 23, N. Y.; W. S. 1 Iolmes, 1961 Ellicot Rd., West Falls, N. Y.
Cedar Rapids (5)-Ernest Pappenfus, 1101 30 St. Dr., S.E., Cedar Rapids, Iowa; E. I.. Martin, 111923 St., S.E., Cedar Rapids, Iowa.
- Numtrals in parentheses following. Section desig. nate Region number. First name designate, Chairman, second name. Secretary.

Central Florida (3)-Ilans Scharla-Niclsen, Radiation lnc., P.O. Drawer "Q," Melbourne, Fla.; G. F. Anderson, Radiation Inc., P.O. Box "Q," Melbourne, Fla.
Chicago (5)-J. S. Brown, 9829 S. Hoyne Ave., Chicago 43, Ill.; D. G. I laines, 17 W. 121 Oak Lane, Bensenville, 111 .

Cincinnati (4)-1). W. Martin, The Baldwin Company, 1801 Gilbert, Cincinnati 2, Ohio; F. L.. Wedig, Jr., 3819 Davenant Ave., Cincimati 13, Ohio.
Cleveland (4)-R. H. DeLany, 5000 Euclid Ave., Cleveland 3, Ohio: J. F. Keithley, 22775 Douglas Rd., Shaker IIeights 22, Ohio.
Columbus (4)-R. W. Masters, 1633 Essex Rd., Columbus 21, Ohio; R. L. Cosgriff, 2200 Ilomestead, Columbus, Ohio.
Connecticut Valley (1)-P. F. Ordung, Dunham Laboratory, Yale University, New Haven, Conn.; H. M. Lucal, Box U-37, University of Connecticut, Storrs, Conn.
Dallas-Fort Worth (6)-M1. W. Bullock, 6805 Northwood Rd., Dallas 25, 'Гех.; C. F. Seay, Jr., Collins Radio Company, 1930 Hi-Line Dr., Dallas, Tex.
Dayton (5)-M. A. McLennan, 304 Schenck Ave., Dayton 9, Ohio; N. A. Nelson, 310 Lewiston Rd., Dayton 9, Ohio.
Denver (6)-J. W. Herbstreit, 2000 E. Ninth Ave., Boulder, Colo.; R. S. Kirby, 455 I lawthorne Ave., Boulder, Colo.
Des Moines-Ames (5)-A. A. Read, 511 Northwestern Ave., Ames, Iowa; W. L. Hughes, E.E. Department, Iowa State College, Ames, Iowa.
Detroit (4)-N. D. Saigeon, 1544 Grant, Lincoln Park 25, Mich.; A. L. Coates, 1022 E. Sixth St., Royal Oak, Mich.
Elmira-Corning (1)-J. L. Sheldon, 179 Dodge Ave., Corning, N. Y.; J. P. Hocker, Corning Glass Works, Corning, N. Y.
El Paso (6)-J. C. Nook, 1126 Cimarron St., El Paso, Tex.; J. II. Maury, 3519 Ft. Blyd., El Paso, Tex.

Emporium (4)-I:. H. Boden, R.D. 1, Emporium, P'a.; H. S. Ilench, Jr., R.I. 2, Emporium, Pa.
Evansville-Owensboro (5)-A. IP. Ilaase, 2230 St. James Ct., Owensboro, Ky.; D. D. Mickey, Jr., IEngineering Department, General Electric Company, Owensboro, Ky.
Fort Wayne (5)-C. L. 1lardwick, 2905 Chestnut St., Fort Wayne 4, Ind.; Paul Rudnick, Farnsworth Electronics Company, Fort Wayne 1, Ind.
Hamilton (8)-G. F. Beaumont, 6 Tallman Ave., Burlington, Ont., Canada; C. N. Chapman, 40 Dundas St., Waterdown, Ont., Canada.
Hawaii (7)-1I. E. Turner, 44-271 Mikiola Dr., Kaneohe, Hawaii; G. II. IHunter, Box 265, Lanikai, Oahu, 'T.H.
Houston (6)-L. W. Erath, 28.31 Post Oak Rd., Houston, Tex.; J. M. Bricaud, Schlumberger Well Surveying Corporation, Box 2175, Houston 1, Tex.
Huntsville (3)-D. I:. French, 1403 E. Clinton St., Huntsville, Ala.; T. L. Greenwood, 1709 L-a Grande St., Iluntsville, Ala.
Indianapolis (5)-A. J. Schultz, 908 IE. Michigan St., Indanapolis, Ind.; II. I.. Wisner, 5418 Rosslyn Ave., Indianapolis 20, Ind.
Inyokern (7)-G. D. Warr, 213-A Wasp Rd., China Lake, Calif.; B. 13. Jackson, 54-13 Rowe St., China Lake, Calif.
Israel-Franz Ollendorf, Box 910, Hebrew Institute of Technology, Haifa, Israel; J. 11. Halberstein, P.O. Box 1, Kiriath Mozkin, Isracl.
Ithaca-Berjamin Nichols, School of Flectrical Engineering, Cornell University, Ithaca, N. Y.; Howard Heydt, General Electric Co., Advanced Electronics Center, Cornell University Airport, Ithaca, N. Y.
(Cont'd on next page)

\section*{(Sections conl'd)}

Kansas City (6)-K. V. Newton, Bendix Aviation Corporation, Box 1159, Kansas City 41, Mo.; Mrs. G. L. Curtis, Radio Industries, Inc., 1307 Central Ave., Kansas City 2, Kan.
Little Rock (6)-J. E. Wylic, 2701 N. Pierce, Little Rock, Ark:; J. C. Spilman, 34 Lakeshore Dr., Route 9, Little Rock, Ark.
London (8)-C. F. MacDonald, 328 St. James St., London, Ont., Canada; J. D. B. Mloore, 27 McClary Ave., London, Ont., Canada.
Long Island (2)-P. G. Hansel, Addison Lane, Greenvale, L. I., N. Y.; J. Neidert, 9 Surrey Rd., New I yde Park, L. I., N. Y.
Los Angeles (7)-B. S. Angwin, 3300 Colby Ave., Los Angeles 34, Calif.; C. E. Rutherford, 209 S. Oakhurst Dr., Beverly Hills, Calif.
Louisville (5)-R. W. Mills, 1017 Eastern Pkwy., Louisville 4, Ky.; I.. A. Miller, 314 Republic Building, Louisville 2, Ky.
Lubbock (6)-H. A. Spuhler, F. E. Dept., Texas Tech. College, Lubbock, Tex.; J. W. Dean, 190349 St., Lubbock, Tex.
Miami (3)-C. S. Clemans, Station WSWN, Belle Glade, Fla.; H. F. Bernard, 1641 S.IV. 82 Pl., Miami, Fla.

Milwaukee (5)-W. E. Watts, 2224 N. 70 St., Wauwatosa 13, Wis.; W. A. Van Zeeland, 4510 N. 45 St., Milwaukee 16, Wis. Montreal (8)-Sydney Bonneville, Room 1427, 1050 Beaver Hall Hill, Montreal, P. Q., Canada; R. E. Penton, 2090 Claremont Ave., Montreal, P. Q., Canada.
New Orleans (6)-J. A. Cronvich, Department of Electrical Engineering, Tulane Univ., New Orleans 18, La.; N. R. Landry, 620 Carol Dr., New Orleans 21, La.
New York (2)-A. B. Giordano, \(85-99\) Livingston St., Bronklyn, N. Y.; H. S. Renne, Radio-Flectronic Engr., 366 Madison Ave., New York 17, N. Y.
North Carolina-Virginia (3)-J. C. Mace, 1616 Jefferson Park Ave., Charlottesville, Va.; A. L. Comstock, 1404 Ilampton Dr., Newport News, Va.
Northern New Jersey (2)-W. R. Thurston, 923 Warren Pkwy., Teaneck, N. J.; R. J. Kircher, 14.5 Maple St., Sunmit, N. J.

Northwest Florida (3)-B. H. Overton, Box 115, Shalimar, Fla.; G. C. Fleming, 579 E. Gardner Dr., Fort Walton Beach, Fla.
Olkahoma City (6)-A. P. Challenner, University of Oklahoma, Norman, Okla.; Frank Herrmann, 1913 N.V. 21 St., Oklahoma City, Okla.
Omaha-Lincoln (5)-M. L. McGowan, 5544 Mason St., Omaha 6, Neb.; C. W. Rook, Department of Electrical Engineering, University of Nebraska, Lincoln 8, Neb.
Ottawa (8)-George Glinski, 14 Dunvegan Rd., Ottawa, Ont., Canada; C. F. Pattenson, 3 Braeniar, Ottawa 2, Ont., Canada.
Philadelphia (3)-C. R. Kraus, Bell Telephone Company of Pennsylvania, 1835 Arch St., Philadelphia 3, Pa.; Nels Johnson, Philco Corporation, 4700 Wissahickon Ave., Philadelphia 44, Pa.
Phoenix (7)-W. R. Saxon, 641 E. Missouri, Phoenix, Ariz.; G. L.. McClanathan, 509 E. San Juan Cove, Phoenix, Ariz.

Pittsburgh (4)-J. N. Grace, 112 Heather Dr., Pittsburgh 34, Pa.; J. B. Woodford, Jr., Box 369, Carnegie Tech. P.O., Pittsburgh 13, Pa.
Portland (7)-J. M. Roberts, 4325 N.E. 77, Portland 13, Ore.; D. C. Strain, 7325 S.IV. 35 Ave., Portland 19, Ore.
Princeton (2)-G. C. Sziklai, Box 3, Princeton, N. J.; L. L. Burns, Jr., R.C.A. Laboratories, Princeton, N. J.
Rochester (1)-Allan Holstroni, 551 Spencer Rd., Rochester 9, N. Y.; W. F. Bellor, 186 Dorsey Rd., Rochester 16, N. Y.
Rome-Utica (1)-Harry Davis, 716 Cherry St., Rome, N. Y.; M. V. Ratynski, 205 W. Cedar St., Rome, N. Y.
Sacramento (7)-R. C. Bennett, 3401 Chenu Ave., Sacramento, Calif.; R. A. Poucher, Jr., 3021 Mountain View Ave., Sacramento 21, Calif.
St. Louis (6)-F. A. Fillmore, 5758 Itaska St., St. Louis 9, Mo.; Christopher Efthim, 1016 Louisville Ave., St. Louis 10, Mo.
Salt Lake City (7)-M. E. Van Valkenburg, Department of Electrical Engineering, University of Utah, Salt Lake City 1, Utah; A. L. Gunderson, 3906 Parkview Dr., Salt Lake City, Utah.

San Antonio (6)-C. M. Crain, Engineering Building 149, University of Texas, Austin 12, Tex.; W. H. Hartwig, Dept. E. E., University of Texas, Austin 12, Tex.
San Diego (7)-F. X. Byrnes, 1759 Beryl St., San Diego 9, Calif.; R. T. Silberman, 4274 Middlesex Dr., San Diego, Calif.
San Francisco (7)-B. M. Oliver, 395 Page Mill Rd., Palo Alto, Calif.; Wilson Pritchett, Div. of Electrical Engineering, University of California, Berkeley 4, Calif.
Schenectady (1)-C. C. Allen, 2064 Baker Ave., Schenectady 9, N. Y.; A. F. Rankin, 833 Whitney Dr., Schenectady, N. Y.
Seattle (7)-IV. C. Galloway, 5215 Pritchard St., Seattle 6, Wash.; L. O. Nelson, 10303 13 Ave., N.W., Seattle 77, Wash.
Syracuse (1)-A. D. Arsem, G.E. Co., Electronics Park, Syracuse, N. Y.; G. M. Glasford, E. E. Dept., Syracuse Univ., Syracuse 10, N. Y.
Toledo (4)-L. R. Klopfenstein, Portage, Ohio; D. F. Cameron, 1619 Milburn Ave., Toledo 6, Ohio.
Toronto (8)-A. P. H. Barclay, 2 Pine Ridge Dr., Toronto 13, Ont., Canada; II. W. Jackson, 352 Laird Dr., Toronto 17, Ont., Canada.
Tulsa (6)-C.F.Hadley, 1356 E. 45 Pl., Tulsa 15, Okla.; L. H. Hooker, 4064 E. 22 Pl., Tulsa 5, Okla.
Twin Cities (5)-N. B. Coil, \(166 \pm\) Thomas Ave., St. Paul 4, Minn.; A. W. Sear, 5801 York Ave., S., Minneapolis 10, Minu.
Vancouver (8)-J. E. Breeze, 5591 Toronto Rd., Vancouver 8, B. C., Canada; R. A. Marsh, 3873 W. 23 Ave., Vancouver, B. C., Canada.

Washington (3)-H. I. Metz, U. S. Government Department of Commerce, CAA, Room 2076, T-4 Building, Washington 25, D. C.; A. H. Schooley, 3940 First St., S.W., Washing ton 24, D.C.

Williamsport (4)-J. F.. Snook, 1629 Warren Ave., Williamsport, Pa.; F. T. Henry, 1345 Pennsylvania Ave., Williansport, Pa.
Winnipeg (8)-R. M. Simister, 179 Renfrew St., Vinnipeg, Man., Canada; G. R. Wallace, 400 Sinithfield Ave., Winnipeg, Man., Canada.

\section*{Subsections}

Amarillo-Lubbock (6)-R. B. Spear, 510 E. Hill St., Brownfield, Tex.; J. B. Joiner, 2621 30 St., Lulbbock, Tex.
Berkshire (1)-Gilbert Devey, Sprague Elec. Co., Marshall St., Building 1, North Adams, Mass.; R. P. Sheehan, Ballou Lane, Villiamstown, Mass.
Buenaventura (7)-E. C. Sterıke, 320 Vista Del Mar, Camarillo, Calif; Oliver La Plant, 325 N. "J" St., Oxnard, Calif.
Centre County (4)-W. L. Baker, 1184 Omeida St., State College, Pa.; IV. J. Leiss, 1173 S. Atherton St., State College, Pa .
Charleston (3)-W. L. Schachte, 152 Grove St., Charleston 22, S. C.; Arthur Jonas, 21 Madden Dr., Dorchester Ter., Charleston Heights, S. C.
East Bay (7)-J. M1. Rosenberg, 1134 Norwood Ave., Oakland 10, Calif.; C. W. Park, 6035 Chabolvn Ter., Oakland 18, Calif.

Erie (1)-R. S. Page, 1224 Idaho Ave., Erie 10, Pa.; R. H. Tuznik, 905 E. 25 St., Erie, Pa.
Fort Huachuca (7)-R. O. Burns, Electronic Prov. Gd., Ft. Huachuca, Ariz.; J. H. Homsy, Gen. Del., Warren, Ariz.
Lancaster (3)-G. W. Scott, Jr., Armstrong Cork Co., Lancaster, Pa.; G. E. Mandell, 522 E. King St., Lancaster, Pa.
Mid-Hudson (2)-E. A. Keller, Red Oaks Mill Rd., R.D. 2, Poughkeepsie, N. Y.; P. A. Bunyar, 760 South Rd., Poughkeepsie, N. Y.
Monmouth (2)-G. F. Senn, 81 Garden Rd., Little Silver, N. J.; C. A. Borgeson, 82 Garden Rd., Little Silver, N. J.
Northwest Florida (6)-K. L. Huntley, Mary Esther, Fla.; G. C. Jones, 12 N. Okaloosa Rd., Fort Walton Beach, Fla.
Orange Belt (7)-M. V. Kiebert, Jr., 1937 Elaine St., Pomona, Calif.; W. F. Meggers, Jr., 6844 De Anza Ave., Riverside, Calif.

Palo Alto (7)-W. W. Harman, Electronic Res. Lab., Stanford Univ., Stanford, Calif.; IV. G. Abrahan, 611 IIansen Way, c/o Varian Associates, Palo Alto, Calif.
Pasadena (7)-Officers to be elected.
Richland (7)-R. G. Clark, 1732 Howell, Richland, Wash.; R. E. Connally, 515 Cottonwood Dr., Richland, Wash.
Tucson (7)-R. C. Eddy, 5211 E. 20 St., Tucson, Ariz. (Chairman).
USAFIT (5)-W. T. Jones, USAFIT, Box 3125, MCLI, Wright-Patterson AFB, Ohio; J. J. Gallagher, Box 3482, USAFIT. Wright-Patterson AFB, Ohio.
Westchester County (2)-Joseph Reed, 52 Hillcrest Ave., New Rochelle, N. Y.; D. S. Kellogg, 9 Colonial Dr., Chappaqua, N. Y.

Wichita (6)-M. E. Dunlap, 548 S. Lorraine Ave., Wichita 16, Kan.; English Piper, 1838 S. Parkwood Lane, Wichita, Kan.

\title{
1955 INDUSTRIAL ELECTRONICS CONFERENCE
}

\author{
Sponsored by Detroit Section, I’G on Lndustrial Electronics, àd Michigan Section of Alee Detroit, Michigan, September 28-29
}

The Industrial Electronics Conference will be held at the Rackham Memorial Suditorium in Detroit, Michigan, September \(28-29\). The meeting is sponsored jointly by the Michigan Section of the Tmerican Institute of Filectrical lingineers, the Professional Group on Industrial Electromics of the Institute of Radio Eingineers and the Detroit Section of the IRE. Sixteen papers have been scheduled for the four technical sessions which will discuss automation, industrial measurement problems and new control system applications. The tentative program for the two-day conference is as follows:

Conference Registration will be \(\$ 2.00\) to members of the IRE and AIEE and \(\$ 3.00\) to all others. The conference hotel will be the Park-Sheloon and reservations should be made prior to September 10. Information concerning advance conference registration and hotel reservations maty be obtained from Guido Ferrara, 8106 West Nine Mile Road, Oak Park 37, Michigan.

\section*{Wednesday Morning \\ 9:30—12:30}

\section*{Sission I-Eleccrro-Optical} Devices and Aprifications
"Miniature Strobelight System for a 60,000 rpm Bearing Tester," John P'atraiko, Ford Motor Company.
"An Instrument to Count and Size Particles in a Gas," f: S. Gordon, Armour Research Foundation.
"Industrial Applications of a High Speed Spectrum Analyzer," N. L. I )uncan, Raytheon Manufacturing Company.
"How Can Industry Use Television," H. F. Schneider, Radio Corporation of America.

\section*{12:30-2:30 p.m.}

Iuncheon at the Fingineering Society of Je-troit- \(\$ 2.75\) per person. Speaker: John R. Robertson, Chrysler Corporation.
\[
2: 30-5: 30 \text { p.m. }
\]

Session II-Measuring and Recording Instruments and Applications
"Capacitive Measurements of High Sensitivity and Their \(\lambda_{\text {pplications to Indus- }}\) trial Testing and Control," George Revesz, Rohertshaw Fulton Control Company.
"Some Applications of a Capacity Micrometer to High Speed, High Temperature Measurements," Ralph Condit, Ford Motor Company.
"Pritaciples of Radioactive Gauging \(A\) pplied to Measurements and Control in the Process Industry," D. C. Brunton, Isotope I'roducts, I.td.
"A Frequency-Modulated Magnetic Recorder," Walter Richter, Cutler-Hamner, Inc.

\section*{Thursday, September 29 \\ 9:30-12:30 p.m.}

Session III-Process Controi, and Systems Analysis
"Antomatic and Sermi-Automatic Steel Flow Control Systens," Robert D. Morrow, Morrow Products, Inc.
"Iroblems in the Control of Nuclear Reactor Steam-Electric Power Plants," William Kerr, University of Michigan.
"'ltrasonic Impact Grinder-lndustrial Tool," Kenneth IV. Henderson, Raytheon Manufacturing Company.
".Automatic Controlled Electrolytic Grinding," Eugene Mittelmann.

\section*{12:30-2:30 p.m.}

Luncheon at the Figineering Society of Detroit- \(\$ 2.75\) per person
2:30-5:30 p.m.

Session IV-Automation and Machine Tool Control
Title to be announcel, Cledo Brunetti, General Mills, Inc.
"Automation Re-Examined," J. J. Graham, Radio Corporation of America.
" \(\lambda\) Numerically-Controlled Cam Milling Machine," F. C. Johnson, Bendix Aviation Corporation.
"Two-Motion Duplicator for Nachine Tool Control," A. J. Carr, Jr., Raytheon Manufacturing Company.

\section*{RADIO FALL MEETING PROGRAM}

\section*{Hotel Syracuse,}

Syracuse, N. Y.
Octobier 17-19
Monday, October 17
9:30 A.M.
Report on the FCDAI-RETMA Atomis Test of Commercial Equipment, R. H. \1 illiamson, (ieneral Blectric Co.

Additional paper to be amomed.

\section*{2:00 P.M.}

Sponsored by the IRE Professional Group on Reliability and Quality Control
Session Chairman, J. R. Steen, Sylvania Electric Co.

Type Test to Assure TV Performance Reliability, R. F. Rollman, C. Quirk, A. B. DuAlont Laboratories.

Influcnce of Production Quality Distribulions on Production Engineering, H. H. Mahuron, General Electric Co.

Two additional papers to be announced.

\section*{Tuesday, October 18}

Sponsored by the IRL: Professional Group on Broadcast and Television Receivers

\section*{9:00 A.M.}

Transistorization Session
Session Chairman, II. P. Boothroyd, lhilco Corp.

The Practical Application of Transistors in Monochrome Television Circuits, Ken James, Emerson Radio and Phonograph Corp.

Some Recent Advances in the Application of Transistors to \(R-F\) and I-F Radio Recciver Circuits, J. Karew, F. Mural, J. Tellier, l'hilco Corp.

Some Considerations of Transistor Viideo Amplifiers, M. C. Kidd, RCA.

A Discussion of the Design I'roblems Encountered in the Development of a Transislorized Radio Receizer, J. A. Worcester, General Electric Co.

Application of RCA Transistors to Bat-Lery-Powered Portable Receivers, John W. Englund, RCA.

\section*{2:00 P.M.}

Television Session
Session Chairman, L. R. Fink, General Electric Co.

Methods of Measurement of Color Television Reccizer Performance, Stephen P. Ronzheimer, Hazeltine Research Inc. and Richard J. Farber, Hazeltine Corp.

Generation of Television Sucep by Resonant Netzorks, Kurt Schlesinger, Motorola, lnc.

A Method of Measuring the Optical SineWave Spectrum and Effective Bandwidth of TV Image Display Dervices, O. H. Schade, Sr, RCA.

Design Considerations in the Reduction of Szeeep Interference from Television Receivers, . Nexander M. Intrator, General Electric Co.

Magnetic Field Effects on Color Receivers, Olaf H. Fernald, Westinghouse Electric Corp.

\section*{8:00 P.M.}

Radio Fall Meeting Banquet
Toastmaster, J. D. Ryder, IRE I'resident.

Speaker-to be announced.
Presentation of Radio Fall Mecting Plaque.

\section*{Wednesday, October 19 \\ 9:00 A.M.}

Sponsored by the IRE l'rofessional Group on Electron Devices
session Chairman, R, R. Law, CBS Hytron.

Migh Frequency NP \(N\) Transistors, A. 1'. Kordalewski, Gencral Electric Co.

Transistors for Portable Radios, Author to be determined, 'Texas Instrument Co.

Recent Improvements in the RCA-21AXP22 Color Kinescope, R. B. Janes, L. B. Ileadrick, J. Evans, RCA.

22 Inch Rectangular CBS-Colortron, N. F. Fyler, I'. Hambleton, 'T. Hodge, CBSIIytron.

\section*{2:00 P.M.}

Color and Brightness in Projected Piitures, R. M. Evans, Eastman Kodak Co.

\title{
SECOND ANNUAL MEETING OF PROFESSIONAL GROUP ON NUCLEAR SCIENCE
}

Sronsored by l'G on Nuclear Science
September 14-16, Oak Ridge, Tennessee
The Second Annual Meeting of the Professional (Group on Nuclear Science will be held at the Center Theater in Oak Ridge, Temessee, September 14-16. Registration fees for this meeting will be as follows: member PGNS- \(\$ 2.50\); member IRE, not PGNS - \(\$ 4.00\); non-member, \(\$ 5.00\). Registration and techuical sessions at the Center Theater. A copy of the transactions will be sent to all persons registering for the meeting.

Officers of the meeting committee are: Chairman, Harold E. Walchli; Vice-Chair-man-Treasurer, D. J. Knowles; Papers Committee, II. E. Banta; Arrangements Committee, R. W'. Schede; l'ublicity Committee, E. Fairstein; Ex-officio, D. II. Loughridge.

A coraplete program, including abstracts, may be oltained from D. J. Knowles, Oak Rilge National Laboratory, P.O. Box P, X゙-10, Oak Ridge, Tenn.

\section*{TENTATIVE PROGRAM}

\section*{Wednesday, September 14}

10:00 A.M.-12:15 P.M.

\section*{Session I-Accelerators}

Welcoming Address, R. W. Schede, Chairman, Oak Ridge Chapter P'iNS.

History and Aims of the PGNS, M. A. Schultz, National PGidS Chairman.

The Brookhaven Electron :1 nalogue, Ralph Kassner, Brookhaven National Laboratory.

The Microtron, a Nuclear and Electronic Research Instrument, H. F. Kaiser, Naval Research Laboratory.

Proton Beam Studics in a Fixed Frequency Cyclotron, Farno L. Green, Oak Ridge National Lahoratory:
in A pproximate Method for Obtaining the I'SW on Cyclotron Dees, R. M. Donaldson, Oak Ridge National Laboratory.

\section*{2:00 P.M.-5:00 P.M.}

\section*{Session II-Eleectronics}

Phototube Voltage Regulators for Scintillotion Counters, O. R. Itarris and Bruce d'E. Flagse, 「niversity of Cirginia.

Recent Advances in Modular Design of Electronics, W. G. Jame's, A.C.F. Industries, Inc.

Tultichannel Time Interval Analyzer, J. II. Neiler, II. F. Manta, W. II. Gond, and E. C. Smith. Oak Ridge National Laboratory

The 'Ifard-Bottoming' Technique in Nualear Instrumentation Circuil Design, C. (. Har:is, Oak Ridge National Laboratory:

Four-Channel Counting System, 1). IV. Scott, Oak Ridge National Laboratory.

\section*{8:00 P.M.}

Social and Smoker sponsored by Carbile and Carbon Chemicals Company, operators of Oak Ridge National I aboratory:

Thursday, September 15
9:00 A.M.-12:00 NOON
Session III-Reactor Controls and Pulse Ifeight ANalyzers
Electronic A nalogue Devices for Design of Reactor Contrels. F:. R. Mann, Oak Ridge National Laboratory.

Control of a Two-Phase Reactor, John Macl'hee, American Machine and Foundry, Atomics Division.

The Oak Ridge National Laboratory Serial Memory 120 Channcl Pulse Height Analyzer, T. L. Emmer, Oak Ridge National Laboratory.

Circuits for Pulse A nalysis, G. G. Kelley, Oak Ridge National Laboratory.

\section*{2:00 P.M.-5:00 P.M.}

Session IV-Radiation Detection, Medical.
Jnstrumentation

\section*{and Heal.tif Pirysics}

Medical Radiation Instrumentation with Scintillation Spectrometers, P. R. Bell, Oak Ridge National Laboratory:

Radiation Fall Out Measurements, John Harley, AEC Operations New York.

Present Status of Halogen Quenched F.MI Tubes Using Transparent, Non-metallir, Electrically Conducting Cathodes-I. G. Clark, Sr., Naval Research Laboratory.

A Direct Current Integrator, F. M. Class, Oak Ridge National Laboratory:

Instrumont Requirements for Routine Medical Radioisotope Techniques, Theodore Fields, VA Hospital, Hines, Ill.

A Dual Function Gamma Monitor, R. E. Connally, General Electric Co., Hanford, Wash.

\section*{7:00 P.M.-10:00 P.M.}

I3anquet at the Oak Terrace, speaker to be announced.

\section*{Friday, September 16}

Tour of unclassified facilities at Oak Ridge National Laboratory, Abhott Pharmaceutical Lahoratory (radioactive drugs), and Museunn of Atomic Energy.

The following issues of "Transactions" have recently been published, and are now available from the Institute of Radio Engineers, Inc., 1 East 79th Street, New York 21, N. Y. at the following prices. The contents of each issue and, where available, abstracts of technical papers are given below.
Sponsoring Group Publication \(\quad\)\begin{tabular}{c} 
Group \\
Members
\end{tabular} \begin{tabular}{c} 
IRE \\
Members
\end{tabular} \begin{tabular}{c} 
Non- \\
Members*
\end{tabular}
\begin{tabular}{lllll}
\begin{tabular}{c} 
Broadcast and \\
Television \\
Receivers
\end{tabular} & Vol. BTR-1, No. 2 & \(\$ .95\) & \(\$ 1.45\) & \(\$ 2.85\) \\
\begin{tabular}{cllll} 
Broadcast and \\
Television
\end{tabular} & & & & \\
\(\quad\) Receivers & Vol. BTR-1, No. 3 & \(\$ .95\) & \(\$ 1.45\) & \(\$ 2.85\) \\
Circuit Theory & Vol. Ct-2, No. 2 & \(\$ 2.60\) & \(\$ 3.90\) & \(\$ 7.80\) \\
Electron Devices & Vol. Ed-2, No. 2 & \(\$ 2.10\) & \(\$ 3.15\) & \(\$ 6.30\)
\end{tabular}
* Public libraries and colleges may purchase copies at IRE Member rates.

\section*{BROADCAST AND TELEVISION RECEIVERS}

\section*{\ol. BTR-1, No. 2, April, 1955}

Automatic Gain Control of Transistor Am-plifiers-IV. F. Chow and A. P. Stern

Due to the dependence of transistor small signal parameters on the de operating point, the gain of a transistor amplifier is function of the emitter current \(I_{8}\) and of the collector voltage \(V_{c}\). An analysis of the variation of the seriesparallel transistor parameters \(h_{i j}\) with the operating point shows that the gain decreases with decreasing \(I_{s}\) or decreasing \(V_{c}\) in the region of small values of \(I_{s}\) and \(V_{c}\). The appreciable control power necessary to vary \(I_{e}\) or \(V_{c}\) (of possibly several amplifying stages) can be obtained advantageously by operating the controlled stages as dc amplifiers of the control signal and employing transistor detectors. Automatic gain control systems applicable to linear amplifiers and converters using \(I_{0}\) and \(V_{c}\) control have been developed, and their performance is described in this paper. Some problems arising in transistor age systems are distortion, detuning and bandwidth variation.

Technical Requirements of the Australian Television System-A. J. McKenzie

Following a brief discussion of the important aspects of television standards, those used by various countries are described. The history of the Australian standards is then outlined and specific aspects of these standards are dealt with in some detail. The effect of introducing color television is considered. After summarizing the frequency channels available for Australian television services, standards of allocation of frequency and power are discussed. Finally some conclusions from tentative frequency allocation plans are given.

Preventing Fires from Electrical Causes in the Design and Manufacture of Radio and Television Receivers-H. T. Heaton

Minutes of the Meeting of the Administrative Committee of the IRE Professional Group on Broadcast and TV Receivers

Publication Committee Report
Notice for Papers for the Fall Meeting
Vol. BTR-1, No. 3, July, 1955
Selectivity and Transient Response Syn-thesis-R. W. Sonnenfeldt

The theory, design, and operation of a uni-
versal filter for the rapid synthesis of selectivity and transient responses are presented. This filter is useful in monochrome and color TV applications, and has the universality and ease of use normally associated with decade boxes. Like decade boxes, it enables the development engineer to design circuits that otherwise would require laborious and intricate calculations.

Low-pass, high-pass, band-pass, and bandstop characteristics, all at constant-time-delay. can be obtained in the basic operating range from 30 cps to 4.5 mc by throwing switches and adjustment of independent potentiometers. A simple theory, using elementary trigonometry, determines the settings. Transients can be synthesized by a series of small steps. This process produces the required phase and amplitude responses simultaneously. The settings in this case are determined by simple arithmetic. Experimental results are given for various selectivity curves and transients in the form of oscillograms and plotted curves.

A Transistor Sub-Carrier Generator for Color Receivers-L. J. Kabell and W. E. Evans

The era of transistorized television receivers on a commercial scale is still in the future. IIowever, even at the present state of the art, laboratory tests on experimental transistorized color receivers have shown that certain of the circuit functions can be performed reliably enough with transistors to make them true competitors for vacuum tube circuits whenever the economic comparison becomes favorable. A representative circuit is the one used to generate the local 3.58 Mc sub-carrier.

A junction transistor circuit capable of performing the color synchronization function of a color television receiving system is described. The circuit employs a single high frequency junction transistor which serves as an oscilla-tor-amplifier, phase detector, and current-controlled variable reactance in the generation of an accurately phased color reference carrier. A series mode quartz crystal filter in the feedback loop of the oscillator enables the circuit to perform well in the presence of noise interference up to a 1:1 signal-to-noise ratio.

The use of a transistor characteristic sometimes thought of as being objectionable illustrates the general principle of attempting to exploit those characteristics peculiar to transistors, rather than thinking of them as mere vacuum tube substitutes.

Differential Phase and Gain Measurements in Color Television Systems-H. P. Kelly

The presence of differential phase and gain distortion in systems used for the transmission of color television results in distortion of the colors being transmitted. A test set for measuring differential phase and gain is described. The set consists of two pieces of portable equipment, a transmitter and a receiver. Each has a self-contained power supply operated from 115 volt, 60 -cycle power. The measurement is presented as a display on an oscilloscope. Scales of 0.5 db per inch differential gain and 2.5 degrees per inch differential phase are obtainable.

Operational Tests for Color TelevisionE. E. Gloystein

The advent of compatible color television has brought with it the need for several new types of test instruments to facilitate the adjustment of the specialized circuits required for generating, transmitting and receiving color television signals. This paper consists of descriptions of a selected group of test instruments which have been found particularly useful for routine operational tests in broadcasting plants and receiver service ghops. Test generators which provide noise-free, artificial color signals are described, and techniques for using such signals for the adjustment of critical circuits in broadcast equipment and in home receivers are outlined briefly.

Light Amplification-P. E. Pashler
Three principal methods of light amplification are described. These are electron optical image tubes, contiguous layers of photoconductor and electroluminescent phosphor, and direct amplification of light in photoelectroluminescent film. Details of construction and relative merits of each are presented.

The Composite Video Signal-Waveforms and Spectra-J. B. Chatten, R. G. Clapp and D. G. Fink

Measured frequency spectra are given for the composite video signals of a variety of types of subject matter, in both color and nonochrome. The subject matter includes colored flat fields, a bar chart and N.T.S.C. slides, as well as a monochrome flat field and resolution test chart. Data is presented in several forms, so as to show the relative amplitudes of all the main spectrum components, the general trends of energy distribution over the entire video frequency range, and the detailed fine structure showing the modulation sidebands on the individual spectrum components. The frequency interleaving of the luminance and chrominance components is clearly shown.

The waveforms resulting from scanning the various subjects are shown, including the synchronizing pulses and burst, and theoretical methods are discussed for predicting the resulting spectra.

The experimental methods which were employed are described.

This material will form part of a chapter of the forthcoming "Television Engineering Handbook," Donald G. Fink, Editor, to be published by McGraw-Hill.

UHF Tuner Local Oscillator RadiationV. Mukai

Factors important to the design of a low radiation uhf television tuner have been empirically studied within the framework of the open field measuring technique specified by the FCC. Although there is some question as to the reliability of the open field method some significant result have been obtained. In particular it has been established that the magnitude of radiation is dependent on basic tuner circuitry as well as shielding and by-passing, namely on the type of oscillator, crystal circuit, and num-
ber of preselectors. An existing commercial model which employed a balanced oscillator and two preselectors was developed until radiation was below the proposed FCC limit of \(500 \mathrm{uv} / \mathrm{m}\). These developments were then successfully applied to a recently designed small package model. It was not necessary to make any sacrifice of overall tuner performance.

\section*{CIRCUIT THEORY}

Vol. CT-2, No. 2, June, 1955
A Note on the Scattering Matrix of an Active Linear Two-Terminal Pair NetworkJ. E. Knausenberger

By separating the scattering matrix into matrix factors, a cascade of partial two-terminal pair networks is obtained, which represents the general nonreciprocal two-terminal pair network. Using a matrix factor to represent a source, the active circuit properties are separated from the passive ones and it is demonstrated that this source, which is simply related to the determinant can be moved to the terminal ends of the total network, where it nay be combined with an external source.

The derived equivalent circuits do not employ gyrators but contain, besides the source mentioned, 2 two-terminal circuit elements, which characterize loss as well as inherent stability, and 2 "ideal transformers" rendering measures of amplitude and phase transfer.

An application to the transistor results in a novel equivalent circuit for that device.

Matrix Analysis of Oriented Graphs with Irreducible Feedback Loops-]. K. Percus

A generating function is obtained for the nonrepetitive closed loops of a network with unidirectional elements; from this is derived an analogous function for the irreducible loops. Criteria for the existence of loops are then established and the size of the smallest loop present determined; an asymptotic evaluation is made of the number of irreducible loops in a completely connected network. Further application of the generating function permits estimation of bounds for both irreducible and composite closed loops of a given order; less rigorous bounds are found by two perturbation techniques. The generating function is reformulated in terms of determinant-like quantities and application made to small networks.

Transformations preserving the irreducible loops of a system are discussed at length, following a delineation of the meaning of loop equivalence. Methods employed include elimination of branches, condensation of nodes, and decomposition of circuits, with criteria for their utilization being set forth. Finally, connection is made between the analysis of the present paper and those prevalent in more avowedly topological treatments.

Matrix Factorization-H. A. Schulke, Jr.
Minimum-Phase Transfer-Function Syn-thesis-R. H. Pantell

This paper presents a means for realizing a minimum-phase transfer-function \(H(p)\) to within a constant multiplier, provided that \(H(p)\) has no poles on the \(j \omega\)-axis including infinity. The network is in ladder form, without coupled coils, and every coil has an associated series resistance if \(H(j \omega) \neq 0\) for any finite \(\omega\). Synthesis is illustrated for the specification of resistance termination at input and output, and for the specification of a resistor-capacitor termination at both ends. Regardless of the complexity of \(H(p)\), the synthesis problem can always be reduced to the problem of synthesizing driving-point functions that are no more complicated than the ratio of quadratic polynomials in \(p\). The method to be described is an extension of constant-resistance ladder network synthesis.

Neutralization and Unilateralization-C. C. Cheng

The subject of neutralization and unilateral. ization is of great interest in the field of transistor design because of the inherent bilateral property of transistors. This paper presents a systematic study of unilateralization in terms of generalized network theory presented in matrix form. Results are listed in tabulated form for easy use in practical circuit design. Examples illustrating the adaptation of the general procedure to the design of transistor amplifiers and vacuum-tube amplifiers are also included.

A General Matrix Factorization Method for Network Synthesis-E. C. Ho

This paper considers a new matrix factorization method for the synthesis of RLC two terminal-pair networks. Equivalent matrixes suitable for the synthesis of RLC ladder and parallel ladder networks are developed by linear transformations of matrix multiplication. The application of the method is demonstrated through the synthesis of a general minimumphase transmission function as a ladder network and a general nonminimum-phase transmission function as a parallel ladder network. Ideal transformers are not required in the realized networks and superfluous elements in ladder networks are reduced considerably. Distribution of losses in reactive elements and arbitrary specification of resistive terminations are considered.

A Matrix Method for the Design of Relay Circuits-F. E. Hohn

This paper reviews the matrix method of synthesis of combinational multiple-output relay circuits first given in reference 44 . Further examples are provicled and it is shown how the method may be applied to sequential circuits as well. The purpose of presenting this material in the present connection is to illustrate the use of unconventional techniques with unconventional types of matrixes in switching circuit design.

Generalized Mesh and Mode Systems of Equations-M. B. Reed

Based on the obvious complexity of presentday problems to be solved and the increasing availability of computers, the broadest possible base for establishing the differential equations of an electrical network is an urgent need. This paper presents, on a topology, Laplace transform base, the differential equations and their solutions for any network describable in terms of linear differential equations with constant coefficients. These systems of equations by successive matrix partitioning and change of variable, lead to generalized "mesh" and "node" systems of unrestricted character.

Use of Tchebycheff Functions in Dealing with Iterated Networks-H. L. Armstrong

Expressions for the transmission matrices of four-terminal networks in terms of Tchebycheff functions have been given previously. Here, relations among these functions are used to give a convenient formula for the voltage gain of such networks; the transfer impedance etc., could be handled similarly. As an example, the low-pass network formed by cascading induc-tance-capacitance \(T\) sections is discussed.

Regeneration Analysis of Junction Transistor Multivibrators-D. O. Pederson

The two-transistor, collector-coupled relaxation circuit is a prototype configuration from which various switching circuits such as monostable multivibrators and flip-flops can be derived. Although the operational possibilities derived from the basic configuration, e.g., astable, monostable, or bistable, may differ in the details of triggering and stable point operation, the circuits of this class will have in common the key factor of the regenerative switching behavior. In addition, the circuits will have similar transient behavior immediately following the regeneration, having to do with the
drive of one transistor off and the other into saturation.

The operation of the transistors for a complete cycle of operation can be divided into regions, each region of which can be characterized by an approximate linear equivalent circuit. Hence, a piece-wise linear analysis can be made of the operation of these circuits. In this paper, attention will be centered on the analysis of the regenerative switching mechanism which occurs when the transistors are in the active region. A major result of the analysis is the derivation of a simple formula for the switching time. The analysis also provides a fundamental inequality which must be satisfied in order to obtain regenerative switching. An extension of the results leads to an expression for the maximum repetition frequency.

In setting up the regencration analysis, elementary design data are established. From this data, a minimum value for \(\alpha_{0}\) can be specified if sharp, rectangular output waveforms are desired.

Predictions Based on Maximum Oscillator Frequency-P. R. Drouilhet, Jr.

Considerable difficulty is encountered in directly measuring the parameters of a transistor at very high frequencies. An approximate high-frequency equivalent circuit for a transistor is presented, and several techniques for measuring the alpha-cutoff frequency are discussed. An indirect technique is presented involving the measurement of the maximum frequency at which the transistor can oscillate, and it is shown that this leads to a simple and accurate determination of the alpha-cutoff frequency. This maximum frequency of oscillation can also be used to predict the approximate gain obtainable from a transistor at high frequencies, and the efficiency which may be realized from the transistor used as a high frequency oscillator.

Frequency Response of Theoretical Models of Junction Transistors-R. L. Pritchard

For a grown-junction transistor, the concept of a constant base-spreading resistance may not be valid at high frequencies, owing to the distributed nature of the transistor parameters in the transverse direction of the base. However, results of a theoretical analysis of an appropriate two-dimensional model have shown that this type of transistor may be represented by the same type of model as that normally used for the fused-junction transistor, but with the constant base spreading resistance of the latter model replaced by a complex frequencydependent base impedance. These two types of models represent limiting cases which should be useful for calculating circuit performance of practical junction transistors. In this paper, a method of comparing circuit performance of these two types of transistor models is described for both grounded-base and groundedemitter configuration, using the series-parallel, or \(h\), parameters. Under simplifying conditions, either type of transistor model in either configuration can be described by three normalized functions of frequency relative to \(\alpha\)-cutoff frequency plus three additional constants. Simple relations are shown to exist between groundedbase and grounded-emitter parameters. Polynomial representations are given for the \(h\) parameters for both grounded-base and grounded-emitter operation, and simplified equivalent circuits are presented. To illustrate this method of circuit analysis, numerical examples are given for power gain and input resistance for a one-stage amplifier terminated in a pure resistance. Finally, the subject of maximum available power gain also is discussed briefly.

Constant-Resistance AGC Attenuator for Transistor Amplifiers-C. R. Hurtig

The gain of a wideband tuned transistor amplifier may be varied over a large range by an external control voltage, accompanied by
only slight changes in amplifier bandwittli or center frequency, by means of a unique con-stant-resistance agc attenuator. The control power required by this attenuator is in the milliwatt region. At audio frequencies this relatively simple attenator may be used to obtain the arithmetic operations of multiplication and division.

Weighted Least-Squares Smoothing Filters -L. A. I'le

This paper differs from many others on least square filtering, in that no explicit note has been taken of the noise spectrum, at least no more than is taken when one fits a curve by least squares to a set of data. The concept of a least weighted error, not new in curve fitting, has, to the author's knowledge, never before been applied to a filter-other workers have uniformly weighted their signal over a fixed interval of length \(T\), with the result that the filters so derived cannot be realized with lumped constants. If this artificial constraint is removed as it is here, lumped constant filters are possible. The expression for the filter weighting function is obtained with a bare minimum of elementary mathematics; a very slight generalization leads to an expression for a time-varying filter weighting function when this is required. The nonlinear least-square filter is considered but no general solution is given.

The paper is replete with examples and is directed to the average engineer. Although some original material is presented, a large part of the paper may be considered tutorial.

Note on a Logarithmic Approximation for Use with Singularity Plots-II. E. Tompkins

The analysis or synthesis of band-pass networks using plots of the singularities of their transfer functions can often be shortened and simplified by using a suitable logarithmic transformation of the complex-frequency \(s\)-plane which permits a simple approximate calculation of the transfer function. This approximation is good for over-all-bandwidth ratios of 2 to \(t\) or less as compared with a usable bandwidth ratio of 1.2 to 1 for the conventional narrow-band approximation. This transformation is not intended for use with an electrolytic tank, for which better methods have been described in the literature. It does not have the power of certain conformal transformations, but is considerably simpler. Unlike the wideband low-jass to band-pass transformation it is not limited to pole and zero patterns of particular symmetry. This approximation also has interesting properties as an aid in the factoring of network polynomials.

Circuits with Quantized Feedback-Rajko Tomovitch

The paper deats with a special class of feedback circuits in which the feedback path is closed at a discrete set of time instants that depend upon two arbitrary inputs \(g(t)\) and \(v(t)\). Since the feedback signal is quantized in magnitude as well as in time, these circuits possess novel properties not found in ordinary linear feedback systems. The equations of such circuits are established and it is shown that these circuits may perform various mathematical operations, such as yielding inverse or reciprocal functions. Application to a communication method similar to delta modulation is describe \(I\).

\section*{Reviews of Current Literature}
"The Complete Specification of a Network by a Single Parameter"-M. S. Corrington, T. Murakami and R. W. Sonnerfeldt . . . Reviewed by A. D. Perry
"Extension de la méthode du diagramme de phase généralizé dans l'étude de la stabilité des systèmes linéaires"-P. Lefevre . . . Reviewed by V. Belevilch
"A New Method of Synthesis of Reactance Networks"-A. Talbot . . . Reviewed by II. J. Orchard
"Synthesis of Distributed Amplifiers for Prescribed Amplitude Response"-A. D. Moore . . . Reviewed by W. H. Kautz

\section*{Correspondence}

Comment on B. J. Bennett's Paper, "Synthesis of Electric Filters with Arbitrary IMase Characteristics" . . D. IIelman

Reply to Mr. Helman's Letter . . . B. J. Bennett
"The Spelling of the Name Napier"... H. A. Wheeler

News
PGCT News

\section*{ELECTRON DEVICES}

Vol. El)-2, No. 2, Aprii., 1955
Plasma Frequency Reduction Factors in Electron Beams-G. M. Branch and T. G. Mihran

The electron plasma frequency reduction factor has proved to be a fundamental design parameter in all types of microwave tubes employing long electron beams. This factor is here calculated for a variety of beanı shapes and drift-tube cross sections, and the results are presented in a series of graphs. One interesting result is that the reduction factor for an annular beam depends primarily on the width of the annulus and is relatively independent of the radius of curvature of the beam.

Noise in Traveling-Wave Tubes-A. G. Mungall

A number of experimental traveling-wave tubes have been built for operation in the 3.2 centimeter wavelength region, and series of noise measurements have been made on these tubes. The perionlic dependence of noise figure on the separation between the clectron gun and the circuit ent rance of the traveling-wave tube has been investigated and various characteristics of these curves have been discussed. A modified noise theory has been suggested: comparisons between it and the experimental results show fair agrecinent. Noise figure reduction by the use of a triode gun has been investigated for two of the experimental tubes. and a method of analysis that should lead to theoretical justification is suggested.

Writing Speed and Tonal Range of Dark Trace Tubes-Seymour Nozick

The writing speed and tonal range properties of clark trace tubes are analyzed and figures of merit are outlined. Experimental results are presented. Writing speed of a dark trace tube varies linearly with the ratio of bean current to spot size. The information writing rate varies directly with the beam current and inversely with the square of the spot size. The tonal range
of dark trace tubes varies directly with the ratio of maximum contrast to spot size.

Suppression of Backward-Wave Oscillation by Filter Heliz Methods-A. E. Siegman and II. R. Jolinson

An experimental study has been made of the filter helix properties of a periodically loaded helix, using a special traveling-wave tube. The filter helix is shown to possess filter-like frequency pass bands and stop bands and a phase velocity characteristic suci that forward- and backward-wave phase velocities are separated, making the filter helix a useful circuit for traveling-wave amplification at high \(k a\) (ratio of helix circumference to free space wavelength) without danger of backward-wave oscillation. Certain difficulties associated with backwardwave oscillation frequency pushing were found to arise in filter helices, but useful gain was obtained at ka greater than 0.5 using filter helix techniques.

A Wide-Band Square-Law Circuit Element -A. S. Soltes

A square-law circuit element with operating frequency range from zero into the vhf region is described. Its dymamic range and accuracy capabilities vary with the particular conditions under which it is operated; accuracies within less than one per cent of full scale and outpit dynamic ranges of over 100 db lave been achieved. Frequency response limitations and possible sources of error are analyzed. Experimentally determined characteristics are presented and noise properties, dynamic range, and accuracy potentialities evaluated.

Low-Frequency Circuit Theory of the Double-Base Diode -J. J. Suran

The double-base diode is a single-junction semiconductor triode. When an electric potential is applied between the two ohmic contacts, a negative-resistance is obtained between the junction and one of the olimic contacts. This negative resistance is bounded by two positive-resistance regions, one of considerably high magnitude which corresponds to the cut-off state and one of very low magnitude which corresponds to a saturating condition. The magnitude of the negative resistance is related to the ratics of majority-to-minority carrier mobilities. Small-signal low-frequency equivalent circuits are developed to approximate the clouble-base diode in each of the operating regions of the negative-resistance characteristic and equations for current and voltage amplification, input and output resistance and fower gain are developed. The important circuit parameters are related to the physical constants of the device.

Space-Charge Conditions in a Reflected Flow of Electrons-J. T. Wallmark

Some characteristic features of a reflected flow of electrons are described, in particular variations of the virtual cathode and transit time with respect to current. This has been accomplished by finding new solutions to wellknown basic equations treated earlier by Fay, Samuel, Shockley, Salzberg, Haeff and others. The results are applicable to problems where the current is varied while earlier solutions were considering the potential as variable. The theoretical results are found to be in agreement with experimental results obtained on reflex klystrons and space-charge deflection tubes.


\section*{1955 STUDENT AWARDS}

\section*{THE INSTITUTE OF RADIO ENGINEERS, INC.}

January 1-July 29, 1955
\begin{tabular}{|c|c|c|c|c|c|}
\hline Stlodent Branch & Recipient of dwarl & IRE Section & Student Branch & Recipient of Award & HRE Siection \\
\hline I'niversity of Akron Joint Student Branch & Floyd H. Jean & Akron & Mississippi State College Student Branch & Meek B. Graves & Ifuntsville \\
\hline University of 13ritish Columbia & Christopher John Goodman & Vancouver & College of The City of New York & Melvin L. Eisenstein & New York \\
\hline Joint Stuclent 13ranch & & & Student Branch & & \\
\hline Polytechnic Institute of Brooklyn & Victor Wallace & New York & \begin{tabular}{l}
New York University \\
Student Branch (Day Divi-
\end{tabular} & Jack Silberlicht & New York \\
\hline Joint Student Branch (Day Division) & & & sion)
North Carolina State College & James lenhard & No. \\
\hline California Institute of Technology & Cari W. Johnson & Los Angeles & \begin{tabular}{l}
Student Branch \\
Northwestern University
\end{tabular} & Tommerdahl Robert K. Chen & Virginia Chicago \\
\hline Joint Student Branch & & & Joint Student Branch & & \\
\hline California State I'olytechnic College & 1'hilip L. Rich & Los Angeles & University of Notre Dame Joint Student Branch & Rolert Lawrence
Bolger & Chicago \\
\hline Student Branch & & & Ohio State University & John Robert Baechle & Columbus \\
\hline Carnegie Institute of Tech-
nology nology & Hale Horelick & l'ittsburgh & Joint Student Branch Ohio I'niversity & Charles Husson & Columbus \\
\hline Joint Student I3ranch & Alexander Prourlit & New Yort & Joint Student İranch & Lewellyn A Rubin & Philatelphia \\
\hline Joint Student Branch & . Mexander Proudit & New York & Joint Student Branch & & diladel \\
\hline The Cooper Union Joint Student Branch & Joseph Gala & New York & University of Pittsburgh Student Branch & James R. Garnett & l'ittsburgh \\
\hline Cornell University & Kenneth R. Evans & Ithaca & Pratt Institute & Richard 'T. Coen & New York \\
\hline Joint Student Branch & & & Joint Student Branch & & \\
\hline Iniversity of Dayton & Wilbert H. K. Chang & Dayton & Princeton University Joint Student Branch & John L. Norton & Princeton \\
\hline University of Delaware & Edward J. Taylor & Philadelphia & Rutgers University & John C. Strole & I'rinceton \\
\hline \(J\) Jint Student Branch & & & Joint Student Branch & & \\
\hline University of Detroit Ioint Student Branch & Albert Vanschaemelhout & Detroit & San Diego State College Student Branch & Edward A. Starr & San Diego \\
\hline Drexel Institute of Technology & Chuck F. Der & Philadelphia & Seattle University Student Branch & Rolbert 13. Martin-
dale & Seattle \\
\hline Joint Student Branch & & & University of Southern Cali- & Mark C. Biedebach & Los Angeles \\
\hline George Washington University & Claire A. Kennedy, Jr. & Washington & \begin{tabular}{l}
fornia \\
Joint Student Branch
\end{tabular} & & \\
\hline Joint Student Branch & & & Southern Methodist Univer- & Lloyd Carleton & Dallas- \\
\hline Illinois lnstitute of Technol-
ogy & Burton L. Hulland & Chicago & \begin{tabular}{l}
sity \\
Joint Student Branch
\end{tabular} & 13randt & Fort Worth \\
\hline Student 13ranch & & & Texas Technological College & George T. Baker & Dallas- \\
\hline University of Illinois & William Wayne & Chicago & Joint Student Branc & & Fort Worth \\
\hline Joint Student Branch & Lichtenberger & & University of Toronto & John V. Ilanson & Toronto \\
\hline lowa State College & Richard J. Reid & Des Moines- & \begin{tabular}{l}
Joint Student Branch \\
'lulane University
\end{tabular} & Charles ( E . Battig & New Orleaus \\
\hline Joint Student Branch & & \({ }_{\text {Ames }}^{\text {Amsas City }}\) & Joint Student Branch & Charles (\%. Battig & New Orleaus \\
\hline Student Branch & John R. Buck & Kansas City & I tah State Agricultural College & Clair L. W'yatt & Salt Lake City \\
\hline University of Kansas & Philip T. Boling & Kansas City & Student Branch & & \\
\hline Joint Student Branch & & & University of Utah & LeRoy H. Walker & Salt Lake City \\
\hline Lafayette College & William T. Fryer & Philadelphia & Ioint Student Branch & HeRoy H. Walker & Salt Lake City \\
\hline Joint Student Branch & & & 1 Tniversity of Vermont & Paul R. Low & 13oston \\
\hline \begin{tabular}{l}
Lehigh University \\
Joint Student Branch
\end{tabular} & Robert J. Fulmer & Philadelphia & Joint Student Branch Villanova University & Tulvio S. Durand & Pliladelphia \\
\hline Manhattan College & Harvey P. LeFevre & New York & Ioint Sturlent Branch & & \\
\hline Joint Student Branch & & & Virginia Polytechnic Insti- & John D. Hawks, III & No. Carolina- \\
\hline University of Maryland & Emile Joseph Daigle, & Washington & tute & & Virginia \\
\hline Joint Student Branch & Jr. & & Joint Student Branch & & \\
\hline Michigan State University & Clyde M. Hyde and & Detroit & \begin{tabular}{l}
University of Washington \\
Joint Student Branch
\end{tabular} & Wallace H. Eckton, Ir. & Seattle \\
\hline Joint Student Branch & Robert L. Grim (posthumously) & & Wayne University & Charles Leonard & Detroit \\
\hline niversity of Michigan & Gordon Alfred & Detroit & Ioint Student Branch & Schreiber & \\
\hline Joint Student Branch & Roberts & Detroit & \begin{tabular}{l}
IVest Virginia University \\
Joint Student Branch
\end{tabular} & Gordon R. Williams & Pittsburgh \\
\hline
\end{tabular}

\title{
Abstracts and References
}

\author{
Compiled by the Radio Research Organization of the Department of Scientific and Industrial Research, London, England, and Published by Arrangement with that Department and the Wireless Engineer, London, England
}

\author{
NOTE: The Institute of Radio Engineers does not have available copies of the publications mentioned in these pages, nor does it have reprints of the articles abstracted. Correspondence regarding these articles and requests for their
} procurement should be addressed to the individual publications, not to the IRE.


The number in heavy type at the upper left of each Abstract is its Vniversal Decimal Classification number and is not to be confused with the Decimal Classification used by the United States National Bureau of Standards. The number in heavy type at the top right is the serial number of the Abstract. DC numbers marked with a dagger ( \(\dagger\) ) must be regarded as provisional.

\section*{ACOUSTICS AND AUDIO FREQUENCIES} 543.2

2174
The Propagation of Sound Pulses along Metal Bars-W. Guth. (Acustica, vol. 5, no. 1, pp. 35-43; 1955. In (rerman.) The stationaryphase method is applied in developing the theory of pulse propagation along a bar. Experiments using schlieren technique were made on cylindrical steel bars immersed in water, with an clectric spark as pulse source. Agrecment of results with theory was satisfactory. In the case of thick bars, a wave of higher order was observed, presumably the first-order skewsymmetric wave.

\subsection*{534.213}

2175
Sound Propagation in the Atmosphere and Audibility of Warning Signals in Ambient Noise-1. Baron. (Ann. Telecommun., vol. 9, pp. 258-274; October, 1954.) An account of experiments carried out in 1938-1939 in the Vals d'Yonne district and in Paris. Meteorological and sound-pressure measurements were made. Raising the sound source from ground level to 37 m produced a marked increase of received sound power for distances \(<1 \mathrm{~km}\). A mean curve of propagation was derived from the experimental data. The directional effect of the wind makes it desirable to have several sound sources to cover a given area. The degree of audibility satisfactory in the presence of noise was determined in a series of laboratory experiments. Computation shows that two sources having a combined power equal to that of a single source have a greater range.

\subsection*{534.54:534.2}

2176
Tubes and Resonators. Computation and Measurement of Some Acoustic ResistancesJ. Guittard. (Acuslica, vol. 5, no. 1, pp. 7-18; 1955. In Frenclu.) Assuming that the linear dimensions of the enclosed space are small compared with \(\lambda / 4\), where \(\lambda\) is the wavelengt \(h_{1}\)

\begin{abstract}
The Index to the Abstracts and References published in the PROC. IRE from February, 1954 through January, 1955 is published by the PROC. IRE, April, 1955, Part II. It is also published by Wireless Engineer and included in the March, 1955 issue of that journal. Included with the Index is a selected list of journals scanned for abstracting with publishers' addresses.
\end{abstract}
of the sound, acoustic resistance is computed from elementary theory for a circular aperture in a thin wall, for a tube opening on to (a) a semi-infinite and (b) an infinite space, and for a discontinuity of tube cross section. Satisfactory agreement between theory and experiment is found.

\subsection*{534.78:621.39}

2177
The Effect of Severe Amplitude Limitation on Certain Types of Random Signal: a Clue to the Intelligibility of "Infinitely" Clipped Speech -(See 2412.)

\subsection*{534.833}

2178
Subjective Assessment of Sound Insulation, using Electrical Simulation of TransmissionLoss Curves-H. J. Rademacher. (Acustica, vol. 5, no. 1, pp. 19-27; 1955. In German.)
534.85

2179
Frequency Irregularity in Rooms-A. F. B. Nickson and 1R. W. Muncey. (Acustica, vol. 5, no. 1, pp. 44-47; 1955.) The sounds of the speaking or singing voice and of musical instruments are often nodulated in frequency and/or contain transients. These are the sounds of real importance in assessing the acoustic characteristics of auditoria. Frequency irregularity measurements using only pure tones may therefore give misleading results. Experiments with tones modulated in frequency at 6 cps over a range of \(\pm 3\) per cent show that the frequencyirregularity curves for such tones are much smoother than the corresponding ones for pure tones.

\subsection*{534.86:621.396.712.3}

2180
On the Structural and Room Acoustics of the Multipurpose Studio Unit at Broadcasting House, Hamburg G. Venzke. (Tech. Hausmilt. NordwDisch. Rifunks, vol. 6, nos. 11/12, 11p. 229-236; 1954.) The two-story building contains two groups of studios designed principally for recording plays. These comurise two "clead" studios, two studios with normal reverberation time, two studios in which the reverberation tince can be changed, and one underground reverberation room. Reverbera-tion-time/frequency curves are shown and results of measurements of the sound insulation achieved by the double-leaf, floating-floor construction of the studios are noted.

\subsection*{621.395.6:621.372.5}

2181
Equivalent Quadripole Networks for Electromechanical Transducers: Part 1-W. Reichardt and A. Lenk. (Acuslica, vol. 5, no. 1, pp. 1-6; 1955. In German.) Es, em and electrodynamic transducers are considered, with particular reference to the frequency-independent transformer or gyrator used as the coupling element between the electric and mechanical elements.
\(621.395 .61+621.395 .623 .7] .012 .12\)
2182
Directivity Characteristice of Electro-
acoustic Transducers-A. C. Raes. (Ann. Télécommun., vol. 9, pp. 313-314; November, 1954.) A method of obtaining the polar characteristics of loudspeakers and microphones is described which does not require the use of an anechoic chamber. The transducer under test and the recording instsument are arranged at distances from the reflecting wall such that the characteristic can be recorded during the period preceding the arrival of the reflected sound.

\subsection*{621.395.623.8}

2183
Sound System for Plenary Hall of United Nations General Assembly Building-C. W. Goyder and L. L. Beranek. [Proc. IRE, (Australia), vol. 16, pp. 38-44; February, 1955. 1953 IRE Convention Record, part 3, pp. 2634; 1953.] This specially designed sound-reinforcenent system has a linear frequency response over the range \(300 \mathrm{cps}-6 \mathrm{kc}\). Time-delay systems are used to improve intelligibility. Measured performance characteristics are pre sented.
621.395.625.3:621.397.6:778.5

2184
Methods of Picture-Synchronized Sound Recording in Television-Gondesen. (See 2450.)

\section*{ANTENNAS AND TRANSMISSION LINES} 621.372 .2 2185
Theory of the Harms-Goubau Wire Waveguide at Metre Wavelengths-G. I'iefke. (Arch. elekt. Übertragung, vol. 9, pp. 81-93; February, 1955.) Whereas at centimeter and decimeter wavelengths thin dielectric layers provide adequate concentration of the wave energy, at meter wavelengths, and particularly for dealing with bends, thick diclectric layers are required. Theory is developed for this case, and is extended to include the use of a separate dielectric tube shieldimg the line from precipitation. Both the leakage attenuation and the resistive attenuation increase with rising frequency, the former inereasing also as dielectric constant decreases. For a given degree of energy concentration, the attenuation has a minimum value for a particular value of wire radius, but this value mav be unacceptable for economic reasons. Attenuation due to a coating of ice on the line is investigated. Neglecting icing effects, a relay section of length 1.5 km with a loss of 5 n at \(1 \mathrm{~m} \lambda\) is practicable.
\(621.372 .2+621.372 .54]: 512.831\)
2186
The Matrix Approach to Filters and Transmission Lines-Fisher. (See 2231.)

\subsection*{621.372.21:621.396.67}

2187
The Behaviour of the Open End of a Coaxial Line-V. Pfirmmann. 'Arch. elekl. Übertragung, vol. 9, pp. 8-12; January, 1955.) A theoretical study is made of the fie.d pattern and variations at the junction of a coaxial line and a circular waveguide; the method of least squares is used. Particular cases treated are (a) frequency
below the cut-off value for the waveguide, and (b) radiation conditions, the waveguide being excited in the \(E_{01}\) mode.
621.372.221:621.395.97

2188
Programme Circuits on Cable Pairs Loaded at 500-Yard Intervals-J. J. L. W. Morgan and W. S. Ash (P.O. Elec. Eng. Jour., vol. 47, part 4, pp. 193-196; January, 1955.) Cable links between telephone exchanges which will be suitable for normal traffic when not required for BBC program circuits for outside broadcasts are obtained by loading standard cable pairs with \(22-\mathrm{mH}\) coils at 500 -yard nominal spacing. Sufficient tolerance on the spacing to permit existing jointing chambers to be used is achieved by artificially increasing the mutual capacitance of the circuits.

\subsection*{621.372 .8}

2189
Propagation of a Signal in a WaveguideP. Poincelot. (Ann. Télécommun., vol. 9, pp. 315-317; November, 1954.) An approximate formula is derived for the amplitude of the signal at a given time. Its application is illustrated by a numerical example for a guide of length 3 km and radius 3.825 cm . The duration of the initial transient state is found to be proportional to the square root of the length.

\subsection*{621.372 .8}

2190
Stability of the \(\mathrm{H}_{01}\) Mode in Circular Waveguides, and the Occurrence of Harmonic Modes on Deformation to an Elliptical Cylinder -J. Kornfeld. (Arch. elekt. Überlragung, vol. 9, pp: 29-38; January, 1955.) Analysis involving use of Mathieu functions is presented. A numerical example indicates that a 10 per cent deformation gives rise to an \(H_{\mathrm{ll}}\) wave whose amplitude is about 0.15 that of the original \(H_{01}\) wave.
621.372.8:538.614

2191
Propagation of Electromagnetic Waves in an Anisotropic Gyromagnetic Medium in a Rectangular Waveguide-A. Clevalier, T. Kahan and E. Polacco. [Compl. Rend. Acad. Sci. (Paris), vol. 240, pp. 1323-1324; March 21, 1955.] Analysis is presented for the case where the gyromagnetic medium is made anisotropic by application of a magnetic field perpendicular to the direction of propagation. General expressions are derived for the thrce electricfield components.
621.372.8:621.318.134 2192
Temperature Dependence of the Micro~ wave Properties of Ferrites in WaveguideB. J. Duncan and L. Swern. (Proc. IRE, vol. 43, pD. 623-624; May, 1955.) Report of an experimental investigation on a rod of ferramic A-106 in a waveguide of internal diameter 0.937 inch, with a static magnetic field parallel to the direction of propagation. The results indicate that at some temperature between 23 degrees and 500 degrees C . the ferrite absorption loss for this specimen is practically independent of frequency.
\(621.396 .67+621.397 .62\)
New Television Receivers and Aerials [in Western Germanyl-W. W. Diefenbach. [Funk-Technik (Berlin), vol. 10, pp. 88-91; February, 1955.! A brief survey of commercially available equipment.

\subsection*{621.396 .67}

2194
Scattering of Electromagnetic Waves by Wires and Plates-D. B. Brick and J. Weber. (Proc. IRE, vol. 43, p. 628; May, 1955.) Comment on 930 of May and author's reply.

\subsection*{621.396 .67}

2195
Method of Measurement of Aerial Gain by Electrical Integration of the Characteristic Function-J. Munier. (Compl. Rend. Acad. Sci. (Paris), vol. 240, pp. 1411-1413; March 28, 1955.] An arrangement is described which operates in conjunction with a polar-diagram recorder with muare-law receiver to give a
direct reading of the gain for antennas with rotationally symmetrical characteristics. The af output of the receiver is applied to the primary of a rotating transformer mechanically coupled to the rotating antenna support; the secondary voltage is detected by means of a rectifier whose time constant is large compared with the af period.

\subsection*{621.396.67:621.372.2 \\ 2196 \\ Gap Problem in Antenna Theory-R. King.} (Jour. Appl. Phys., vol. 26, pp. 317-321; March, 1955.) Discussion indicates that the so-called gap probiem [sce e.g. 24 of 1948 (Infeld)] is more properly to be considered as a problem of the coupling between the transmission line and the antenna.
621.396.67:621.396.93

2197
Aerials for Mobile Radio ServicesW. Stohr and D. Bassler. (Frequenz, vol. 8, pp. 357-368; December, 1954.) A survey covering wide-band antennas comprising full-wave dipoles, corner reflectors, collinear antennas, Yagi arrays, multichannel \(\lambda / 4\) radiators and folded dipoles, all for meter wavelengths
621.396.67.012

2198
Wave Launching from a Conical AerialV. l'firmmann. (Arch. elekt. Überlragung, vol. 9 pp. 98-101; February, 1955.) The near field of a \(\lambda / 4\) conical antenna is computed, and the wave-launching mechanism is illustrated by field patterns.
621.396.67.095.12

2199
Elliptic Polarization of Electromagnetic Radiation-M. Bouix. (Ann, Télécommun., vol. 9, pp. 275-281, 298-304 and 345-351; OctoberDecember, 1954.) Fundamental formulas are developed in detail, and the gencral expressions of Kottler and Goudet are adapted for ellintic polarization. The results are used to obtain formulas for the gain and effective surface area of antenna systems.
621.396.674.1:621.318.134

2200
Ferrite-Cored Antennae-C. A. Grimmett. [Proc. IRE (Australia), vol. 16, pp. 31-35; February, 1955. Discussion, pp. 36-37; 1954 IRF. Convention Record, Part 7, pp. 3-7.] A survey of developments in the use of this type of antenna for reception of broadcast at \(540 \mathrm{kc}-\) I. 6 inc. The influence of length, diameter, winding and core material on sensitivity is discussed; ferrite-cored and air-cored antennas are compared.
621.396.674.3:621.372

2201
The Radiation of a Hertzian Dipole over a Coated Conductor-D. B. Brick. (Proc. IEE, Part C, vol. 102, pp. 104-121; March, 1955; Digest, ibid., I'art B, vol. 102. pp. 392-395; May, 1955.) The study presented was undertaken in an effort to explain certain characteristics of an antenna field pattern measured over an aluminium ground screen presumed to have a thin coating of aluminium oxide. Analysis is given for the case where the dipole is (a) above the dielectric coating, (b) in the dielectric coating, and (c) lying in the conductor/dielectric interface. Values of the field potentials are obtained for both electric and magnetic dipoles. The power from the dipole is partly radiated and partly surface-guided; numerical values for the ratio between the two are derived for some particular cases.
621.396.676

2202
Aircraft Antennas-J. V. N. Granger and J. T. Bolljahn. (Proc. IRE, vol. 43, pp. 533550; May, 1955.) A survey of antennas for communication and navigation on conventional aircraft.
621.396.677.45

2203
Radiation Characteristics of a Conical Helix of Low Pitch Angle-J. S. Chatterjee. (Jour. Appl. Ihys,, vol. 26, ןr. 331-335; March, 1955.) Experiments are reported on a
conical helix with a pitch angle much smaller than in the previous investigation (2809 of 1953) and with a larger ground plane. Mounted with the apex at the bottom and a short distance above the ground plane, the arrangement provided radiation in the axial direction over a frequency range of \(100-500 \mathrm{mc}\). Radiation pattern and current distribution along the lielix were determined experimentally; the radiation pattern is also determined by computation, assuming a linear current distribution.

\subsection*{621.396.677.85}

2204
Virtual Source Luneberg Lenses- G. I. M. Peeler, K. S. Kelleher and II. P. Coleman. (Trans. IRE, vol. AP-2, pp. 94-99; July, 1954.) An investigation is made of lenses formed by portions of a spherical Luneberg lens bounded by a pair of plane reflectors intersecting along a diameter; wedge angles up to 180 degrees are considered. Multiple virtual sources corresponding to the reflections of the feed point can be obtained. Calculations are made of the positions of these virtual sources and the width of the corresponding beam. Methods of climinating undesired beams include the placing of absorptive material at the edges of the lens. Data obtained experimentally on a twodimensional lens with wedge angle of 180 degrees are in good agreement with calculated values.

\section*{AUTOMATIC COMPDTERS}

\subsection*{681.142}

2205
Computer for Universal Application(Elec. Times; vol. 127, pp. 319-320; February \(24,1955\). ) Brief description of DEUCE, a commercially available computer developed from the ACE; it has punched-card input and output systems, mercury delay lines for shortterm storage and a magnetic recording drum for long-term storage. The total floor space occupied by the equipment is 14 feet by 4 feet 6 inches.
681.142

2206
An Outline of an Electronic Arithmetic Unit-W. Woods-IIill. (ElecIronic Ling., vol. 27, pp. 212-217; May, 1955.) Discussion of the design of a digital-computer unit capable of performing and checking the operations repre. sented by \(A \times B \pm D=C\).
681.142

2207
Pulse-Switching Circuits using Magnetic Cores-M. Karnaugh. (Proc. IRE, vol. 43. pp. 570-584; May, 1955.) Design theory is presented for nonstorage uses of cores with rectangular hysteresis loops in digital computers. To facilitate determination of the sense of the em processes a metlood of representation due to Mayer is used in which the magnetic-circuit elements are replaced by elements of a mirror system. Devices for eliminating output voltage on "shuttling" the core are discussed. Operat. ing frequencies \(>100 \mathrm{kc}\) are attainable. 31 references.
681.142

2208
A Statistical Method for Solution of the Laplace Differential Equation using Electronic Computers-II. Harmuth. (Acta Phys. austriaca, vol. 9, pp. 27-32; December, 1954.) An electrical analog of the Galton board is used in which the rolling balls are replaced by pulses and the pins by pulse-storage units.
681.142:621.37:535.32 2209

Analogue Machine for Calculation of the Complex [refractive] Index of a Body from its Reflection Coefficient-M. IIénon. [Comps. Rend. Acad. Sci. (Paris), vol. 240, pp. 13051306; March 21, 1955.) A resistance network is discussed by means of which the phase shift of ight reflected by a body can be calculated if the reflection coefficient is known for all wave. lengths; the refractive index can hence be de termined.
681.142:621.385.832

2210
The Function of Basic Elements in Digital Systems-C. B. Speedy. (Proc. IEE, Part C, vol. 102, pp. 49-56; March, 1955. Digest, ibid., I'art II, vol. 101, pp. 677-679; December, 1954.) The three basic clements of digital computers are (a) a bistable element for storing a cligit, (b) a gate for controlling the passage of a digit, (c) a diode for controlling the direction of passage. A unit in the form of a beam deflection tube has been designed including a bistable element together with two gating elements. See also 2485 below

\section*{CIRCOITS AND CIRCUIT ELEMENTS}
621.3.011.21.012

2211
The Geometric Transformation of Impedance Diagrams-A. Železnikar. (Telefunken Zig., vol. 27, pp. 252-253; December, 1954.) An extension of the work of Briner and Graffunder ( 2576 of 1953) to the general case. For a correction to the carlier paper see ibid., vol. 27, p. 254; December, 1954

\subsection*{621.3.042:621.396.822}

2212
Barkhausen Noise from a Cylindrical Core -1). laneman. (Jour. Appl. Phys., vol. 26, pp. 355-356; March, 1955.) The method used by Krumhansl and Beyer for calculating Barkhausen noise ( 298 of 1950) is simplified by considering an exciting field with a sawtooth rather than a sinusoidal waveform.

\subsection*{621.3.066.6}

2213
The Variation with Current and Inductance of Metal Transfer between Platinum Contacts J. Riddlestone. (Proc. IFF, Part C, vol. 102, pp. 29-34; March, 1955.) Continuation of investigation described previously [3495 of 1953 (Warham)]. Curves of the net transfer are given for currents and inductances in the ranges \(1.8-7.6 \mathrm{a}\) and \(0.06-117 \mu \mathrm{~h}\) respectively. Four different types of transfer, termed "bridge," "short arc," "long arc," and "reversed short are," may be involved. The results indicate that the life of Pt contacts could be improved by controlling the effective circuit inductance at break to about \(0.6 \mu \mathrm{~h}\).

\subsection*{621.314 .223}

2214
Analytical Approach to the Variable TurnsRatio Autotransformers- \(\mathbf{E}\). Mishkin. (Trans. Amer. IEE, Part III, Power Apparatus and Sysiems, vol. 72, pI. 609-673; August, 1953.)

\subsection*{621.314.7:621.375.4 2215}

High-Frequency Amplification using Tran-sistors-E. Kettel. (Telefunken Zig, vol. 27, pp 245-251; December, 1954.) Measurements were made on transistors Type OC 601 and OC 602 in the grounded-base connection to assess them for use in narrow-band 1 F amplifiers. The volt age feedback effect may lead to instability, hence neutralization is essential. At the higher frequencies ( \(\sim 500 \mathrm{kc}\) ) the stage gain is reduced mainly by the base resistance and the collector barrier capacitance.

\subsection*{621.314.7.012.8 2216}

Theory of Equivalent Circuits for Junction Transistors-L. Oertel. (Telefunken Zig, vol. 27, pp. 230-237; December, 1954.) An eçuivalent circuit is discussed which differs from that of Pritchard (2537 of 1954) only in respect of the arrangement of the current and voltage sources. A simplified equivalent circuit including a triode tube is also presented.
621.314.7.012.8

2217
The Frequency Dependence of [junction-] Transistor Quadripole Parameters-E. Kettel and G. Meyer-Brötz. (Telefunken Ztg. vol. 27, pp. 237-245; December, 1954.) The groundedbase connection only is considered. Oertel's equivalent tube circuit ( 2216 above) is a satisfactory approximation up to a frequency about half that of \(\alpha\) cut off, but a proper description of rf performance requires the addition of a base resistance and leakage conductance to the basic equivalent circuit. Measurements on a

Type-OC 601 transistor show satisfactory agreement with theory.

\section*{\(621.318 .4+621.314 .2]: 621.3 .015 .3\)}

2218
Field Theory of Wave Propagation along Coils-H. Poritsky, P. A. Abetti and R. P. Jerrard. (Trans. Amer. IEE, Part III, Power Apparalus and Systems, vol. 72, pp. 930-938; October, 1953. Discussion, pp. 938-939.) Expressions are derived for phase and group velocites and surge impedance in air-cored and iron-cored coils and transformer windings. Theoretical and experimental data for frequencies up to 600 kc are compared.
621.318.42 2219

The Design of Coils for the Production of High Magnetic Fields-A. N. Ince. (Proc. IEE, Part C, vol. 102, pp. 25-28; March, 1955. Digest, ibid., Part A, vol. 102, p. 100 February, 1955.) I)esign curves are presented for coils of rectangular cross section for producing intense transient magnetic fields, using energy obtained from a bank of charged capacitors.
\(621.318 .57 \quad 2220\)
A Reversible Binary Counter-R. W. Fene more. (Elect. Eng., vol. 27, pp. 204-206; May, 1955.) A multivibrator-type counter performs addition or subtraction depending on application of a control signal to a two-gate system interposed between consecutive counter stages, The control signal may be obtaince from a multivibrator circuit similar to the counter stages. Applications in digital-analog conversion and in an interpolator are discussed.
621.318.57:621.314.7

2221
Transistor Choppers for Stable DC Ampli-fiers-R. L. Bright and A. P. Kruper. (Electronics, vol. 28, pp. 135-137; April, 1955.) Two fused-junction transistors driven at power frequency are used in a switching circuit for converting weak dc input signals into proportional square wave ac signals.
621.318.57:621.38 2222
Multi-electrode Counting Tubes-K. Kan, diah and D. W. Chambers. (Jour. Brit. IRE, vol. 15, pp. 221-232; April, 1955. Discussionp. 232.) Applications other than straightforward counting operations are discussed for decimal counting tubes of various types. The design of a pulse amplitude analyzer using trochotrons and dekatrons in a matrix system is outlined. The life of the tubes is comparable to that of ordinary tubes.

\section*{\(621.37 .+621.396 .621] 049.75\)}

2223
Investigations of Laboratory Production of Printed Circuits for Communication Equipment -W. Götze. (Fernmeldelech. Z., vol. 8, pp. 8388; February, 1955.) A brief report is presented on the practical aspects of very-small-scale production of printed circuits, using the simplest tools only. The electrical and mechanical properties of 12 different chassis materials are tabulated as well as the properties and the treatinents required by seven different conducting materials. Applications described inclucle the production of components, an amplifier, an \(R C\) oscillator and a heterodyne receiver for the frequency band \(500 \mathrm{kc}-15 \mathrm{mc}\); this receiver contains no inductive components (sce also 958 of 1953).

\subsection*{621.372 .412}

2224
Piezoelectrically-Activated Low-Frequency Mechanical Resonators-J. F. W. Bell. (Jour. Sci. Instr., vol. 32, pp. 52-54; February, 1955.) Discussion of resonators comprising plates or bars carrying two relatively amall piezoelectric crystals. The parameters of the equivalent electrical quadripole are determined for flexural modes of some circular Chladni's plate type resonators. Application to stabilization of sinusoidal oscillators is briefly described.
621.372 .5

2225
On the Physical Realizability of Linear

Non-reciprocal Networks-H. J. Carlin. (Proc. IRE, vol. 43, pp. 608-616; May, 1955.) "The necessary and sufficient conditions are given that a matrix witl arbitrary complex number elements be the impedance, adinittance or scattering matrix of a physical linear reciprocal or non-reciprocal network. A canonical form for non-reciprocal network synthesis is presented which applies to any linear \(n\)-terminal pair ( \(n\)-port) system at any fixed frequency. If the network is passive the only circuit element required in addition to lossless inductors, capacitors, transformers and positive resistors is the gyrator. If the network is active, negative resistors and gyrators must be used in addition to conventional passive elements. Some discussion of matrixes with frequency variable elements is also given."
621.372 .5

2226
Transient Responses with Limited Over-shoot-A. J. O. Cruickshank. (Wireless Eng., vol. 32, pI. 154-163; June, 1955.) "The problem is considered of designing a system transfer function such that, in the response to a stepfunction input, the overshoot shall be limited and consist largely of the principal mode of oscillation. A method is stated by which the size of any real term in the response may be calculated relative to the maximum value of the principal mode. Graphical conditions are given restricting the permissible pole and zero positions in certain cases when this ratio is specified. The procedure is illustrated by examples."

\subsection*{621.372 .5}

2227
Design of Parallel-T Resistance-Capacitance Networks-Y. Oono. (Proc. IRE, vol. 43, pp. 617-619; May, 1955.) Formulas are derived for networks having a transfer characteristic symmetrical with respect to resonance frequency and a minimum loss for a prescribed frequency discrimintion.
621.372 .5

2228
Symmetrical Quadripoles operated as [asymmetrical] Transformers-A. Ruhrmann. (Arch. Elektrotech., vol. 41, pp. 320-333; November 25, 1954.) A theoretical investigation is presented of the behavior of passive, linear quadripoles in asymmetrical operation. The analysis is based on introduction of the characteristic iterative impedance. Multisection bandpass filters with different output and input impedances are built up with sections which have similar frequency characteristics and phase constants, but geometrically graduated impedances. A numerical example is given of a \(30 \Omega / 60\) ? transformation for the \(474-1,570\)-kc frequency band.
621.372 .54

2229
The Initial Transient Behaviour of Filters with Characteristic Amplitude ResponseH. H. Nissen and W. Händler. (Arch. elekt. Übertragung, vol. 9, pp. 74-80; February, 1955.) The distortion of a step-voltage input by Butterworth-type and Tchebycheff-type filters is analyzed. Calculations are made for all-pass equalizing networks for the former type.

\subsection*{621.372 .54}

2230
A Note on Time Series and the use of Jump Functions in Approximate Analysis-A. J. O. Cruickshank. (Proc. IEE, Part C, vol. 102, pp. 81-87; March, 1955. Digest, ibid., Part II, vol. 101, p. 680; December, 1954.) The response of filters to jump-function inputs is investigated. Jump-transfer functions and serial operators for common types of filter are tabulated. The method is compared with that described by Tustin (Jour. IEE, Part IIA, vol 94, p. 130; 1947.)

\section*{\(621.372 .54+621.372 .2]: 512.831\)}

2231
The Matrix Approach to Filters and Transmission Lines-M. E. Fisher. (Electronic Eng. vol. 27, pp. 198-204 and 258-263; May and June, 1955.) Use of matrices provides a
direct and flexible method of treatment. A simple graphical procedure is indicated for investigating filter characteristics.

\subsection*{621.372.54:519.241.1}

2232
A New Method of Determining Correlation Functions of Stationary Time Series-Lampard. (See 2352.)

\subsection*{621.372.54:621.3.015.3}

The Transient Response of R.F. and I.F. Filters to a Wave Packet A. W. (sent. (Proc. IEE, Part C, vol. 102, 1p. 1-2; March, 1955) Discussion on 963 of 1953.

\subsection*{621.372.56:546.289:538.63}

2234
A Novel Microwave Attenuator using Ger-manium-J. B. Gumn and C. A. Hogarth. (Jour. Appl. Phys., vol. 26, pi). 353-354; Aarch, 1955.) The device comprises a thin rectangular slab of (se set obliquely across a waveguide, with current leads attached to the two ends and a magnetic field applied parallel to the face of the slab) so as to control the concentration of current carriers as described by Weisshatr and Welker (35\%0 of 1954). Attenuation of 33 dt was ohtained with a pulsed control current of 60 ma .
621.372 .6

2235
The Hybrid Ring-a Hybrid Circuit for Very High Frequencies-C. Colani. (firequenz, vol. 8, pp. 368-372; December, 1954) Input admittance and coupling attenuation are calculated as functions of frequency; good agreement with measured values is obtained. Methods of increasing bandwidth are discussed and a practical arrangement is described for the 4 -kmc band, using a construction similar to microstrip.

\subsection*{621.373}

2236
Suggestions on constructing Oscillators J. Piesch. (Öst. Z. Telegr. Teleph. Frunk Fernsehtech. vol. 9, pp. 10-19; January/February. 1955.) The operation of various tube and transistor oscillators is analyzed. Fixed and continuously tumable oscillators, pulse generators, and two-frequency oscillators for spectial applications are discussed.

\subsection*{621.373.2.029.65}

2237
The Generation of Millimetre Waves-J.I. Farrands. (Proc. IEE, Part C, vol. 102, pp 98-103; March, 1955. Digest, ihid., Part 13, vol. 102, p. 264; March, 1955.) Theory is presented for spark generators: experimental evidence generally supports the theory. Vseful results can only be olstained with sararks in oil.

\subsection*{621.373.42.029.4}

2238
Ultra-low-Frequency Oscillator-M, D. Armitage. (IHireless Eng. vol. 32, ए1. 173174; June, 1955.) A CR circuit using resistors and polystyrene capacitors of moderate values is clescribed for obtaining oscillations at frequencies down to \(<1 \mathrm{cps}\). The effective value of the resistance is increased by use of the cathode-follower effect.

\subsection*{621.373 .421 \\ 2239 \\ Parallel-Network Oscillators-J. L. Stew-} art. (Proc. IRE, vol. 43, Inp. 589-59.5; May, 195.5.) (reneral principles are discussed of electronically tumable wide-band oscillators having two signal paths, with their out puts added, and a common feedback path; the tuning is performed by differentially controlling the gain in the two paths, e.g. by push-pull molulation. Particular arrangements described include a twin-triode circnit using an artificial-trans-mission-line network, giving a \(2: 1\) tuning ratio, and a four-tube circuit with lead and lag networks, giving a frequency range nearly independent of center frequency. Amplitude constancy, stability, waveform and noise are examined.
\(621.373 .5:\{621.314 .7+621.372 .412\)
2240
A Simple Quartz Crystal Oscillator driven by a Junction Transistor-H. G. Bassett.
(Electronic Eng., vol. 27, p1. 222-223; May, 1955.) The transistor is connected with grounded base and the quartz crystal is operated in its series mode. The frequency range is up to about 300 kc and the output power up to about 10 mw .

\subsection*{621.374 .4}

2241
Four-Decade Frequency Divider-G. K. Jensen and J. E. McGeogh. (Electronics, vol. 28, pp. 154-158; April, 1955.) Division of any frequency from sub-audio to 450 kc by any whole number up to 10,999 is accomplisleed by a direct-reading divider using binary counter circuits.

\subsection*{621.375.2:621.372.2} Coaxial Cavities for Valves with Planar Electrodes-L. Grifone. (Alta Frequenza, vol. 23, pp. 357-377; December, 1954.) The cavities form the double coaxial-line structure used in conjunction with a disk-sealtype tube for grounded-grid operation as amplifier or multiplier. A graphical method of design is presented, which involves only functions of the claracteristic impedance, once the operating mode has been chosen. Criteria are explained for determining the diameters of the two cavities for optimum response. For highermode oferation the response can be improved most easily by the introduction of a suitable discontinuity. Three types are considered. The occurrence of spurious resonances is also discussed.

\subsection*{621.375.2:621.396.41}

2243
Design of H.F. and I.F. Amplifiers for Multichannel F. M. Links-R. Schienemann. (Telefunken Zig, vol. 24, pp. 157-162 and 211219; September and December, 1954, Correction, ibid., vol. 24, 1. 254; December, 1954.) Bandwidth required is cletermined (a) from the side-band amplitudes for given modulation index and (b) from the permissible distortion. Expressions for (b) involve the derivatives of the amplifier response curves and are tabulated for single-stage circuits and two-stage bandpass filters. The computation for multistage circuits is shown to involve the same derivatives. [nder ideal conditions, secondharmonic distortion would be eliminated by exact tuning to the central frequency, and third-harmonic distortion sufficiency reduced by using symmetrical filters with a coupling coefficient \(1 / \sqrt{3}\). In practice, tuning is not exact, but second-harmonic distortion can be kept at a tolerable level by arljustment of the mass-band response at the aligmment stage. Tube capacitance variations are allowed for in the shunt circuit capacitance. Neutralization can practically climinate the effects of feedback via grid-anode capacitance. (riteria for the choice of IF are explained.

\subsection*{621.375.2.029.3}

2244
Circuit Design Factors for Audio Amplifiers - M. V. Kiebert, Jr. (Electronics, vol. 28, ni). 160-171; April, 1955.) Close regulation of the anode sumply of a cathorle-follower driver stage in a power amplifier is achieved by using a regulator triode operated by a diode connected to the driven grid. Circuits discussed include improved versions of Williamson and "ultralinear" amplifiers.

\subsection*{621.375.2.029.3}

2245
Design for a 20-Watt High-Quality Amplifier: Part \(2-\mathrm{W}\). A. Ferguson. (Wireless World, vol. 61. pD. 279-282; June, 1955.) Details are given of the circuit, lay-out and performance of an amplifier with an output stage of two Type-EL 34 high-slope pentorles in push-pull with partial screen-griol loarling. Part 1: 1918 of August.
621.375 .227

2246
A New Circuit for balancing the Characteristics of Pairs of Valves-R. E. Aitchison. (Electronic Fing., vol. 27, pJ. 224-226; May.
1955.) A more detailed account of the work described previously (982 of May).

\subsection*{621.375.23.029.64}

2247
X-Band Receiving Amplifier-K. Ishii. (Electronics, vol. 28, pp. 202, 210 ; April, 1955.) A regenerative klystron amplifier is described, suitable for use in a microwave television receiver, having a gain 16 db at 9.76 kmc , with a bandwidth of 20 mc .

\subsection*{621.375 .3}

2248
Problems of Magnetic Pre-amplifiers 1. Kümmel. (Elektrotech. Z., Eidn. A, vol. 76, pp. 113-120; February 1, 1955.) The topics discussed include the quality, the effect of core shape on the magnetization characteristic effect of characteristic of tube or semiconductor rectifier on amplification, and effects of incomplete magnetic decoupling of input circuit.

\section*{GENERAL PHYSICS}

53(083.7)
2249
Representation of Physical Quantities in Formulae, Tables and Coordinate SystemsC. Glinz. (Tech. Mill. schweiz. Telegr. TelephVerw., vol. 33, pf. 41-69; Fehruary 1, 1955. In (erman.) A comprehensive discussion covering both fundamental physical principles and typographical aspects.
53.081 .4

2250
A New System of Logarithmic Units-J. B. Moore. (I'roc. IRE, vol. 43, D. 622; May, 1955.) Comment on 988 of May (Hartley).
530.112

2251
Proposal for a New Aether Drift Experi-ment-1). D. Crombic. [ Nature (London), vol. 175, [D. 350-351; February 19, 1955.] A method of greater sensitivity than lissen's (2618 of 1954) uses a resonant cavity to produce a phase change in a signal from a fixedfrequency oscillator.
530.145:538.3

2252
Derivation of the Laws of Relativistic Electrodynamics for a Vacuum from the Energy-Quantum Model-H. Zuhrt. (Arch. elekl. Übertragung, vol. O, pp. 47-51; , Tanuary, 1955.) Theory developed previously (1627 of July) is extended to include the case of systems in motion.

\subsection*{530.145.6:621.385.833}

2253
Wave-Mechanics Theory of ElectronOptical Image Formation: Part I-W. Glaser and G. Braun. (Acta Phys. austriaca, vol. 9, pp. 41-74; December, 1954.)

\subsection*{537.21:621.3.013.78}

2254
Electrostatic Averaged Boundary Conditions for Wire Mesh-B. Ya. Moyzhes. (Zh. Tekh. Fiz., vol. 25, pp. 167-176; January, 1955.) A brief review is given of the existing methods for determining the screening effect of a mesh, and a general derivation is proposed of the boundary condition for a mesh by the method of averaging the field. The results obtained are applied to the determination of the screening effect of an earthed uniform spherical mesh with respect to a charge or a dipole placed at the center, and also to the determination of the effective potential in a triode. See also 227.3 below.
537.212:621.317.39.082.72

2255
The Field due to an Infinite Dielectric Cylinder between two Parallel Conducting Planes-C. Mack. (Brit. Jour. Appl. Phys., vol. 6, pp. 59-62; February, 1955.) If the cylinder radius, \(b\), is sufficiently small compared with the other dimensions involved, the change of capacitance due to its insertion between the plates can be made proportional to \((K-1) b^{2}\) \(/(K+1)\), where \(K\) is the dielectric constant of the cylinder. For a conducting cylinder, \(K\) is put equal to infinity. Applications include the measurement of the departure from uniformity of threads.

2256
The Ionic Conductivity of Dilute Potassium Chloride Solutions at Centimetric Wavelengths -V. I. Little and V. Smith. (Proc. Phys. Soc., vol. 68, pp. 65-74; February 1, 1955.) Measurements on solutions in the concentration range \(0.005-1.0\) normal, at a frequency of \(3 \times 10^{9} \mathrm{cps}\), indicate the existence of a strong dispersion region at concentrations below 0.5 normal, which may be explained in terms of the perturbations by the applied field of a shell of water molecules surrounding the ion at a mean distance of \(6 \AA\).
537.226.2:546.212:621.317.335.3

2257
The Dielectric Constant of 'Free' and 'Bound' Water at Microwave Frequencies-J. Baruch and W. Low. (Bull. Res. Coun. Israel, vol. 3, pp. 31-36; June-September, 1953.) An attempt is made to assess and summarize results obtained by the authors and by other workers on the dielectric dispersion of water, the water molecules in \(\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}\) in the temperature range from -70 degrees \(C\). to 150 degrees C., water in hygroscopic salts, aqueous gels and thixotropic gels. Estimation of hydration is also considered. 39 references.

\subsection*{537.311.1:535.137}

2258
The Theory of the Reflectivity of MetalsR. Wolfe. (Proc. Phys. Soc., vol. 68, pp. 121127; February 1, 1955.) The reflectivity of an ideal metal for infrared radiation is calculated by quantum-mechanicals. Results agree with those obtained by Dingle ( 2626 of 1954) using classical methods; the diffuse-reflection wave functions correspond more closely than the specular-reflection wave functions to the actual electronic wave functions as indicated by experimental results.
537.311.6:621.315.514

2259
Skin and Spiraling Effect in Stranded Con-ductors-J. Zaborszky. (Trans. Amer. IEE, Part III, Power Apparaius and Systems, vol. 72, pp. 599-602; August, 1953. Discussion, pp. 602-603.) An analysis is made to determine the ac resistance and internal reactance of strancled conductors with or without a magnetic core, at power frequencies, assuming current density constant in individual strands. The spiralling of strands tends to reduce skin effect. Data calculated for standard copper conductors with parallel and spiralled strands are listed.

\subsection*{537.52:537.226 2260 \\ Theory of Breakdown of Inhomogeneous} Dielectrics-Yu. M. Volokobinski. (Zh. Tekh. Fiz., vol. 25, pp. 74-80; January, 1955.)
537.525

2261
Formative Time-Lag Studies with HighFrequency Discharges-A. W. Bright and H. C. Huang. (Proc. IE E, Part C, vol. 102, pp. 42-45; March, 1955. Digest, ibid., Part III, vol. 101, pp. 407-408; November, 1954.) Pulse techniques were used to study phenomena in coaxial-cylinder and parallel-wire systems, in the frequency range \(1-15 \mathrm{mc}\), where the discharge changes from corona type to one which completely crosses the gap. The breakdown voltage drops by about 13 per cent above the critical frequency.
537.525

2262
Space-Charge Effects in a High-Frequency Discharge: Part 2-M. Chenot. (Jour. Phys. Radium, vol. 16, pp. 101-107; February, 1955.) Further discussion of results of experiments previously reported (1945 of August). Cathode disintegration phenomena, various shapes of characteristic, and factors affecting the direction and magnitude of the emf are considered.

Field-Emission and Surface PhenomenaF. L. Jones. [ Nature (I.ondon), vol. 175, pp. 244-245; February 5, 1955.] Brief report of a symposium held at Pittsburg in November, 1954.
537.533

2264
Delayed Electron Emission from MetalsK. Seeger. (Naturwiss., vol. 42, p. 66; February, 1955.) Measurements were made on a w foil substituted for the usual photocathode in a multiplier cell. Emission was excited by bombarding with 1 -kev electrons and measurements were started 5 minutes after the bombardment, the foil being simultaneously heated at a controlled rate. The emission/temperature curve passed through a maximum between 130 degrees and 200 degrees C. Emission was eliminated by prolonged heating at \(1,000 \mathrm{de}\) grees C . but was restored by exposing the foil to the atmosphere at 100 degrees C. and abrading it. The results support theory advanced by Nassenstein (87 of February).

\subsection*{537.533}

2265
Electron Emission from Metal Surfaces after Mechanical Working-J. Lohff and H. Raether. (Naturwiss., vol. 42, pp. 66-67; February, 1955.) Measurements were made on various metals in gas at a pressure of about \(2 \times 10^{-5} \mathrm{Torr}\), using an electron multiplier. The surfaces were abraded with a steel brush within the vessel. Emission/time curves are shown for \(\mathrm{Pb}, \mathrm{Ca}, \mathrm{Al}\) and Na ; the activity of the elements is correlated with their position in the periodic system. Oxidation may be the cause of the emission, but no explanation of the mechanism is yet available.

\subsection*{537.533 .8}

2266
On the Escape Mechanism of Secondary Electrons from Insulators-A. J. Dekker. (Physica, vol. 21, pp. 29-38; January, 1955.) Starting from the Boltzmann transport equation, and with certain simplifying assumptions, theory is developed which takes into account the interaction of secondary electrons with lattice vibrations, traps and occupied donor levels. At high trap densities, the secondary yield for high primary energies is inversely proportional to the square root of the trap density, at low trap densities yield is independent of trap density. Expressions for the temperature effect for high primary energies are derived for polar and nonpolar insulators. Results for the first case have been confirmed by experiment.
538.11

2267
Antiferromagnetism-G. W. Pratt, Jr. (Phys. Rev., vol. 97, pp. 926-932; February 15, 1955.) The nature of the spin coupling in the antiferromagnetic oxide MnO is discussed on the basis of a simplified model. The coupling between magnetic ions whose charge densities interact with an intervening nonmagnetic ion but not directly with each other is described as the result of the polarization of the nonmagnetic ion.

\subsection*{538.56}

2268
Representation of Electromagnetic Field by Retarded Potentials-I. S. Arzhanykh. [Compl. Rend. Acad. Sci. ( URSS), vol. 100, pp. 1053 1056; February 21, 1955. In Russian.] Applications considered include a boundary problem and the equation of motion of electron gas in vacuo.

\section*{\(538.566+534.2\)}

2269
Electromagnetic and Acoustic Scattering by a Semi-infinite Body of Revolution-C. E. Schensted. (Jour. Appl. Phys., vol. 26, pp. 306308; March, 1955.) Theory developed by Kline ( 646 of 1952) is used to determine the scattering of a plane wave incident along the axis of a perfectly reflecting body. For the case of a paraboloid the solution of the em problem is obtained exactly in closed form. The results are compared with those obtained from consideration of current distribution, as in 2306 below.
\(538.566+534.2\)
2270
Electromagnetic and Acoustical Scattering from a Semi-infinite Cone-K. M. Siegel, J. W. Crispin and C. E. Schensted. (Jour. Appl. Phys., vol 26, pp 309-313; March, 1955.) Cal-
culations of scattering cross section for em waves incident along the axis of the cone are made by the physical-optics method based on current distribution and by the exact method based on the appropriate field equations; the solutions are practically identical for cone semiangles close to zero or \(\pi / 2\). The corresponding comparison is also made for acoustic waves.
538.566:535.42

2271
Studies of the Diffraction of Electromagnetic Waves by Circular Apertures and Complementary Obstacles: the Near-Zone FieldM. J. Ehrlich, S. Silver and G. Held. (Jour. Appl. Phys., vol. 26, pr. 336-345; March, 1955.) Measurements have been made of both magnetic and electric ficld strengths with diffracting apertures of diameter up to \(36 \lambda\) and normally incident waves. Experimental techniques for illuminating the aperture and probing the field are described; wavelengths around 3 cm afford a satisfactory compromise between reasonable over-all dimensions on the one hand and reliability of measurements on the other. Results are shown graphically; the predicted uniformity of the tangential magnetic field in the aperture plane is confirmed.
538.566:537.5:523.72

2272
Nonlinear Theory of Space-Charge Wave in Moving, Interacting Electron Beams with Application to Solar Radio Noise-H. K. Sen. (Phys. Rev., vol. 97, pp. 849-855; February 15, 1955.) Consideration of the exact equations for interaction between two neutralized electron beams indicates that steady-state space-charge waves can be propagated in such a medium. The period of the wave depends on the amplitude and phase velocity. The oscillation is simple harmonic for small amplitudes but deviates progressively from this condition as the amplitude increases. Beyond a critical amplitude, whose value deprends on the phase velocity, the oscillation waveform becomes discontinuous. The theory is used to estimate the relative intensity of the second-harmonic component in solar rf outbursts reported by Wild el al. (391 of 1954). Analysis based on theory of radiation from oscillating plasma leads to a value for the rf flux of the order of magnitude of that observed.

\subsection*{538.566: 621.3.013.78}

2273
Electrodynamic Averaged Boundary Conditions for Wire Mesh-B. Ya Moyzhes. ( \(Z h\). Tekh. Fiz., vol. 25, pp. 158-166; January, 1955.) Eqs. (29) and (30) are clerived which form a system of boundary conditions relating the averaged tangential components of the electric and magnetic fields on the surface of the mesh to the averaged surface density of the current in the mesh. The results obtained are illustrated by calculating the reflection of a plane wave from a plane uniform mesll, and by determining the screening effect of a spherical mesh with respect to a small turn of wire carrying a current and located at the center of the sphere.
538.566.2: 535.32:[546.212+546.332.26 2274

The Refractive Index of Water and Aqueous Solutions of Sodium Sulphate at Metre Wave-lengths-I. S. Frolov. (Zh. Eksp. Teor. Fiz., vol. 27, pp. 477-486; October, 1954.) Using the first method of Drude, the determination of the dependence of the refractive index of water on wavelength and temperature was extended to meter wavelengths and a temperature range from 2 degrees to 32 degrecs \(C\). Similar investi gations were also carried out to determine the dependence on concentration of the refractive index of aqueous solutions of \(\mathrm{Na}_{2} \mathrm{SO}_{4}\). The main conclusions reached are: (a) the refractive index in both cases increases linearly with temperature; (b) there is no anomalous dispersion at meter wavelengths; (c) for a given temperature the refractive index of a solution increases with concentration.
538.569.4.029.64:535.338
Application of Molecular Beams to Radiospectroscopic Study of Rotation Spectra of Molecules-N. G. Basov and A. M. I'rokhorov. (Zh. Eksp. Teor. Fiz., vol. 27, pp. 431-438; October, 1954.) Molecular beams may be used to obtain narrow spectral lines, of width about 7 kc , and the rotation spectra of materials in the solid state. Quantitative estimates are made of the possibility of detecting the rotation transition \(J=1 \rightarrow J=2\) in Csl molecules at a frequency of 17.7 kmc using a spectroscope with a waveguide absorption cell, and of the \(J=0 \rightarrow J=1\) transition using a cavity-resonator instrument [see also 100 of liebruatry (Gordon el al.)].
539.233/.234

2276
Growth of Thin Films-G. Cario and J. H. K゙allweit. (Z. Phys., vol. 140, pp. 47-56; January 13, 1955.) An attempt is made to explain qualitatively the mechanism of growth on the basis of Frenkel's theory of adsorption. A summary is given of the most inportant parameters which may affect the structure of the film before, during, and after deposition.

\section*{548.0:53}

2277
Investigation of the Natural Frequencies and Natural Oscillations of Imperfect Crystal Lattices-E. Fues and Il. Stumpf. (Z. Naturf., vol. 9a, pp. 897-902; October, 1954.) A theoretical investigation.

\section*{538.3}

2278
Electromagnetics [Book Review]-J. D. Kraus. l'ublishers: McGraw-Hill, London, 1953, 604 pp., 76 s .6 d . [Nature (London), vol. 175, pp. \(358-359\); February 26, 1955. 1 A treatment of Maxwell's theory and some of its applications; suitable as a reference book for research workers. Mathematical functions entering into the solution of wave equations are dealt with in an appendix.
538.569.4:535.33

2279
Microwave Spectroscopy [Book Review]W. Gordy, W. V. Sinith and R. F. Trambarulo. Publishers: J. Wiley \& Sons, New York, and Chapman \& llall, London, 1953, \(446 \mathrm{pp} ., 64 \mathrm{~s}\). [ Nalure (London), vol. 175, p. 273; February 12, 1955.] Includes chapters on spectroscope technique and design, on measurements on gases, liquits and solids, on nuclear properties, on molecular structure, and on further possible applications of microwaves.

\section*{GEOPHYSICAL AND EXTRATERRESTRIAL PHENOMENA}

\section*{523.5}

2280
The Diffusion of Ionized Meteor Trails in the Upper Atmosphere-J. S. Greenhow and E. L. Neufeld. (Jour. Atmos. Terr. Phys., vol. 6, pp. 133-140; March, 1955.) The variation with height of the duration of radio echoes from meteor trails is discussed. For the experimental conditions involved, echo duration decreases approximately exponentially with increased height, in agrecment with diffusion theory. The diffusion coefficient is between \(10^{4}\) and \(10^{3} \mathrm{cin}^{2}\), in agreement with estimates based on rocket determinations of upper-air density.
523.5:537.564

2281
Collision Processes in Meteor TrailsH. S. W. Massey and D. W. Sida. (l'hil. Mag., vol. 46, пр. 190-198; February, 1955.) Mo-mentum-loss cross sections for impacts between meteor atoms and at mospheric inolecules are calculated. The values of the ionization cross section derived from them are in agreement with those derived carlier by Bates and Massey (Phil. Mag., vol. 45, pp. 111-122; February, 1954.) The diffusion of ionization in a meteor trail is also discussed in relation to known mobilities of positive ions in gases.
523.72:538.566:537.5

2282
Nonlinear Theory of Space-Charge Wave in Moving, Interacting Electron Beams with

Application to Solar Radio Noise-Sen. (See 2272.)

\subsection*{523.72:621.396.822.029.62}

2283
Character of \(200-\mathrm{Mc} / \mathrm{s}\) Solar Noise Observation Equipment installed at Hiraiso Radio Wave Observatory-T. Takahashi, M. Onoue and K. Kawakami. [Jour. Radio Res. Labs. (Japan), vol. 1, pp. 41-53; September, 1954.] Principles of measurement and accuracy of equipment installed in March, 1952 are discussed. Routinc observations started in August, 1954. The path of the sun is followed by a beam antenna system rotated 2 degrees every eight minutes, with manual adjustment daily for clange of declination. During one minute in every eight the receiver input is connected to a noise generator for calibration purposes. The double-superheterodyne receiver has a bandwidth of about 80 kc . Results are compared with data from other stations.
\(523.74+551.510 .535]: 537.311 .37 \quad 2284\)
Solar Electrodynamics-J. W. Dungey. (Jour. Atmos. Terr. Phys., vol. 6, pp. 88-90); March, 1955.) The reduction in conductivity of an ionized gas by a magnetic field and the effect of a polarization electric field are discussed. The theory has a bearing on conditions in the solar atmosphicre above sunspots and on tidal oscillations in the ionosphere.

\section*{\(523.75:[551.510 .535+550.38\)}

2285
Geophysical Aspects of Solar FlaresV. C. A. Ferraro. [ Nature (London), vol. 175, pp. 242-244; February 5, 1955.] Report of a discussion held at the Royal Astronomical Society in November, 1954. Results of research on the geomagnetic and ionospheric effects of the flares were surveyed.
523.755:523.16:621.396.822:523.99 2286

The Irregular Structure of the Outer Regions of the Solar Corona-A. Hewish. (Proc. Roy. Soc. A, vol. 228, pp. 238--251; February 22, 1955.) Records obtained in 1952 of the radiation from the radio star in Taurus [ 98 of 1953 (Machin and Sinith)] and results of neasurements made in June, 1953, using antennas of greater directivity, cannot be explained in terms of absorption or large-scale refraction effects in the solar corona, but are consistent with a scattering theory. An estimate is made of the size and the electron clensity of the coronal irregularities in the range of distance \(5-15 R \odot\), where \(R \odot\) is the solar radius. The irregular structure may represent an extension of the visible coronal rays.

\subsection*{550.384}

2287
Recent Progress in the Theory of the Main Geomagnetic Field-S. K. Runcorn. (Sci. Prog., vol. 43, pp. 13-27; January, 1955.)

\subsection*{550.386:523.75}

2288
Particularly Large Chromospheric Eruptions and Geomagnetic Activity-P. Simon. [Compl. Rend. Acad. Sci. (Paris), vol. 240, pp. 10561058; March 7, 1955.] Further analysis of observations indicates that geomagnetic activity related to the appearance of certain cruptions can be distinguished from that related to the central meridional passage of certain sunspots (1973 of August).

\subsection*{551.510 .5}

2289
Ion Production Rate in an Atmosphere of Exponentially Rising Temperature with Height -H. Kamiyama. (Sci. Rep. Tohoku Univ., Sth Ser., Geophys., vol. 6, pp. 11-18; August, 1954.) An expression is derived for the height distribution of the ion production rate, assuming that temperature varies exponentially with height and also depends on the solar zenith distance. Results are similar to those of Chapman for heights up to about 100 km . In the \(F_{2}\) region the maximun rate of ion production and the height at which it occurs vary anomalously with solar zenith distance.
551.510 .535

2290
Mechanism of Creation of Ionospheric In-homogeneities-B. N. Gershman and V. L. Ginzburg. [Compt. Rend. Acad. Sci. (URSS), vol. 100, pp. 647-650; February 1, 1955. In Russian.] Results of approximate calculations indicate that a negative temperature gradient of about \(10^{-4}\) degrees per cm , or greater, at a height of about 400 km could result in thernal convection currents such as would produce inhomogeneities and high-velocity winds in the ionosphere. The temperature at \(300-400 \mathrm{~km}\) is assumed to be about 1,000 degrees -3.000 degrees.
551.510 .535

2291
Studies on the Sunrise Effect in Regions E and F-S. S. Baral. (Jour. Atmos. Terr. Phys., vol. 6, pp. 160-170; March, 1955.) To be effeclive in causing ionization in a night-time layer, solar radiation must pass above the day-time height of the layer. The observed delay in time of sunrise effect is due therefore to the differance between the night-time and day-time heights of the layer considered. Observations made at Calcutta over the period 1947-1952 are in reasonable agrement with the theory.

\subsection*{551.510.535}

2292
Absence of Bifurcation in the E LayerJ. C. Seddon and J. E. Jackson. (Phys. Rev., vol. 97, p1. 1182-1183; February 15, 1955.) Results of rocket measurements of electron concentration [see e.g. 1033 of May (Seddon et al.)] are adduced as evidence of absence of the bifurcation reported by Lien et al. (1054 of 1954).

\subsection*{551.510.535}

2293
Further Remarks on Bifurcation in the \(\mathbf{E}\) Layer-W. Pfister, J. C. Ulwick and R. J. Marcou. (Phys. Rev., vol. 97, pp. 1183-1184; February 15, 1955.) Comment on 2292 above.

\subsection*{551.510 .535}

\section*{2294}

Horizontal Movements of Ionization in the Equatorial F Region-B. W. Osborne. (Jour. Atmos. Terr. Phys., vol. 6, pp. 117-123; March, 1955.) Results of measurements at Singapore during the period September, 1953-A pril, 1954 show the existence of a regular semidiurnal sinusoidal variation in the \(E\)-W velocity component at the equinoxes. Around the December solstice, during the mornings, the movenients were irregular. No correlation with virtual height was found, nor any regular N-S movement.

\subsection*{551.510 .535}

2295
Origin of the \(F_{1}\) Layer-E. Clıvojkova. (Bull. Astr. Inst. Csl,, vol. 4, pp. 101-109; September 1, 1953. In German.) The splitting of the \(F\) layer into the \(F_{1}\) and \(F_{2}\) layers is considered to be due to a thermal effect. The maximum temperature occurs in the region of maximum ion production, but since the density of gas in this region is a minimum, higher electron concentrations will occur above and below it. The region of maximum ionization lies in the lower half of the \(F\) layer and hence the \(F_{1}\) layer will be thinner than the \(F_{2}\) layer. The formula derived for the height distribution of the electron concentration shows that the thermal process could lead to splitting of an ionized layer and also explains the secondary nocturnal maximum of \(f^{\circ} \mathrm{F}\). The peculiarities of the equatorial layer described by Osborne (989 of 1952) are briefly discussed.

\subsection*{551.510.535:001.4}

2296
Nomenclature and Conventions used in Analysis of Ionospheric Data-K. Bibl, R. Busch, K. Rawer and K. Suchy. (Jour. Almos. Terr. Phys., vol. 6, pp. 69-87; March, 1955, In French.) It is proposed to classify the layers according to their thickness. A "critical thickness \({ }^{n}\) is introduced to define the difference between normal layers, which are always thick, and abnormal thin layers, caused by transitory phenomena. The term "critical frequency" may
be used of thin layers if account is taken of the intensity of the echoes. Characteristics directly determined and those found by extrapolation should be distinguished. Revised lists of characteristic symbols and code letters are given in appendices.
551.510.535:523.746

2297
Relations between the Critical Frequency of the Ionosphere \(F_{n}\) Layer at Freiburg and Solar Activity Centres during the Years 1948-1951-P. Simon. [Compt. Rend. Acad. .ici. (Paris), vol. 240, ןp. 1192-1193; March 14, 1955.] Analysis is made separately for nighttime and daytime observations. No significant variation of \(F_{2}\)-layer critical frecuency was associated with the passage of those sunspots giving no rf radiation. (On passage of sunspots giving rf radiation, the night-time critical frequency suffered a significant reduction, while the daytine value was not significantly affected. This night-time effect is in concordance with observations of ionospheric absorption reported by l)avies and llagg ( 1765 of July).

\subsection*{551.510.535:523.78}

2298
Ionospheric Behaviour at Khartoum during the Eclipse of 25th February 1952 - C. M. Minnis. (Jour. Almos. Terr. Phys., vol. 6, pp. 91-112; March, 1955.) (O)servations indicate that the \(E\) and \(F_{1}\) layers behave as Chamman layers laving constant effective recombination coefticients \(\alpha^{\prime}\) of \(1.5 \times 10^{-8} \mathrm{~cm}^{3} \mathrm{~s}^{-1}\) and \(8 \times 10^{-0} \mathrm{~cm}^{3} \mathrm{~s}^{-1}\) respectively, assuming a nonuniform distribution of the sources of ionizing radiation on the sun's disk. The positions and relative intensities of these sources and the frequency of the radiation are in dicated. The \(F_{2}\)-layer records suggest the existence at the time of the eclipse of two component layers: a lower one corresponding to the normal post-sunrise \(F_{2}\) layer, having a high \(\alpha^{\prime}\), and an upper one which is a later development of the lower, having a low \(\alpha^{\prime}\). Changes in 1 ) ater absorption confirm the asymmetrical dis tribution of sources of ionizing radiation. There is no evidence of an eclipse effect on \(E\), ionization nor for a corpuscular eclipse in the \(F_{3}\) layer.
551.510.535:621.317.39 \(\begin{array}{r}2299\end{array}\)

An Apparatus for recording Time Delays between Radio Fading Characteristics-(r. J. Phillips. (Jour. Atmos. Terr. Phys., vol. 6, pp. 124-128; March, 1955.) The equipment is designed for the study of ionospheric winds ( 1916 of 1952) and records time delays in the range 0.1 to \(5 s\), with an instrumental accuracy of about 0.1s.

\subsection*{551.510.535:621.396.11.029.62 2300 Sporadic-E Propagation-Gerson. (.See 2409.)}
551.510.535:621.396.6:621.317.7 2301
D.S.I.R. Ionospheric Absorption Measuring Equipment-W. R. Piggott. (Wireless Eng., vol. 32, pp. 164-169; June, 1955.) Main design features are described of pulse transmitting and receiving equipment used at Slough since 1941. Highly stable operation is essential. l'ulse duration is variable between \(50 \mu s\) and \(500 \mu s\); the frequency range is \(1-10 \mathrm{mc}\), and a peak power output of 0.5 kw is adequate for observer reception. Rhombic, delta and folded-dipole transmitting antennas have been used. The receiver is a superheterodyne with extra-high gain and dynamic range, and with provision for attenuation varying continuously up to about 160 db . Double-doublet and folded-dipole receiving antennas have been used. The display unit is a conventional cro.
551.593 2302 Collisional Deactivation and the Night Air-glow-D. R. Bates. (Jour. Atmos. Terr. Phys., vol. 6, pp. 171-172; March, 1955.) A possible reaction of the oxygen is indicated to explain the observed spectrum of the night airglow.
551.510 .53

2303
The Earth's Exterior Atmosphere and the Counterglow: The Counterglow as Related to Modern Geophysical Theories, with Seven Recent Russian Papers. Collected and translated by E. R. Hope [Book Review]-1'ublishers: Defence Research Board, Ottawa, 2nd ed., 1954, 52 pp, [.Valure (Iondon), vol. 175, p, 377; February 26, 1955.| Theory based on observations suggests that a gascous tail resembling that of a contet stretches away from the earth in the direction away from the sun. A valuable contribution to the literature of upper-atmosphere research.

\section*{LOCATION AND AIDS TO NAVIGATION}

\subsection*{621.396.663:621.396.933.1}

2304
Qualitative and Quantitative Errors of an Automatic Radio Compass-A. Troost and (r. Zichm. (Fernmeldetech. Z., vol. 8, jp. 0.5-70; February, 1955.) Three sources of bearing errors in a typical automatic radio compass are considered: (a) effect of "nondirectional" noise voltage in goniometer output, (b) cffect of noise voltage and an error phase angle between the goniometer output voltage and the output voltage of the onmidirectional aerial, and (c) effect of inaccurate tuning.
621.396.933:551.594.6

2305
The Measurement of Low-Frequency Atmospheric Noise in Southern Africa-(ICAO Bull., vol. 9, 1n. 7-8; October, 1954.) (ieneral account of work undertaken since 1946 for the develomment of radio mavigational aids in South Africa. This includes the recording of at mospheric noise in aircraft and on the ground at 100 kc [438 of 1951 (llogg)], and ground tests carried out by the Telecommunications Research Laboratory on Decca, radio-compass, consol and loran equipment installed at fixed sites; in these, atmospheric noise picked up by an antema and measured on a recorder wats fed to the equipment together with a signal to simulate actual operating conditions.

\subsection*{621.396.96:538.566}

2306
Bistatic Radar Cross-Sections of Surfaces of Revolution-K. M. Siegel, H. A. Alperin, R. R. Bonkowski, J. W. Crispin, A. L. Maffett, C. E. Schensted and I. V. Schensted. (Jour. Appl. Phys., vol. 26, pp, 297-305; March, 1955.) The "bistatic" cross section \(\sigma(\beta)\) corresponds to an arrangement in which radar transmitter and receiver are separated, \(\beta\) being the angle subtended at the scatterer by the transmitter-receiver line. Simple geometrical configurations are considered in which the transmitter is located on the axis of symmetry of the scatterer. Formulas are derived, by considering current distribution, for scatterers of spheroidal, conical, ogive, paraboloidal, ellipsoidal and hyperboloidal form, with characteristic dimensions large compared with \(\lambda\). See also 2269 above.

\subsection*{621.396.96.089.6}

2307
Precision Calibrator checks Radar Beacons -R. I). Sinish. (Electronics, vol. 28, p1). 150153; April, 1955.) Description of portable transponder equipment which checks range accuracy within \(\pm 5\) yards.

\section*{MATERIALS AND SUBSIDIARY TECHNIQUES}
531.788 .7

2308
A Compensated Ionization Manometer for Measurement of Vacua with High Relative Accuracy-J. W. lliby and M. Pah1. (Z. Nalurf., vol. 9a, pp. 906-907; October, 1954.) \(535.37 \quad 2309\)

Action of Ni and of Co on \(\mathrm{ZnS}(\mathrm{Au})\) Phosphors. Displacement of the Fermi Level by Variation of the Concentration-N. Arpiarian. [Compl. Rend. Acad. Sci. (Paris), vol. 240, pp. 1333-1335; March 21, 1955.]
537.226:546.212

2310
The Dielectric Method of Studying the Ad-
sorption of Water-J. LA Bot and S. Le Montagner. (Jouer. Phys. Kadium, vol. 16, pis. 163-164; l 'ebruary, 1955.) Continuation of experiments reported in 199\% of August using various types of gel and varying water content. Comparable results were obtained.
537.226 .2

2311
Dielectric Mixture Chart-II. Sion. (Electronics, vol. 28, 1. 176; April, 1955.) Nomogram relating dielectric constants of mixtures of two dielectrics with the dielectric constants of the components and the composition of the mixture.
537.227

2312
X-Ray and Neutron Diffraction Study of Ferroelectric \(\mathrm{PbTiO}_{3}-\mathrm{G}\). Shirane, R. P(p)insky and B. C. Frazer. (Phys. Rev., vol. 97, pp. 1179-1180; February 15, 1955.)
\(537.311 .3+536.21\)
2313
Thermal and Electrical Conductivities of Solids at Low Temperatures-G. K. White and S. B. Woods. Claned. Jour. Phys., vol. 33, pp. 58-7.3; February; 1955.) Measurements were made over the range 2 degres -300 degrees K on materials for which lattice conductivity is comparable to electronic conductivity. Results are presented for some dilute Cu alloys, \(\mathrm{Be}, \mathrm{Bi}\) and Ge .
537.311.3:546.3-1

2314
Semiconducting Properties of some HighResistance Metallic Alloys-A. I. Drabkin. (Zh. Tckh. Fiz., vol. 25, pp. 81-84; January, 195.5.\()\) A table is given showing the properties of various types of manganin, constantan and NWIB alloys (Ag and Mn with Sb or Ni).
\(537.311 .33+621.314 .7\)
2315
Semiconductors and the Transistor-1\%. W. Ilerold. (Jour. Frank. Insl., vol. 25\%, pp. 87106; Feloruary, 1955.) A general survey with 33 references

\subsection*{537.311 .33}

2316
Motion of Electrons and Holes in Perturbed Periodic Fields-J. M. Luttinger and W. Kohn. (Phys. Rer., vol. 97, 11. 869-883; February 15, 19.5.) "A new method of developing an effective-mass" equation for electrons inoving in a perturbed periodic structure is discussed. This method is particularly adapted to such problems as arise in connection with impurity states and cyclotron resonance in semiconductors such as Si and fre. The resulting theory generalizes the usual effectivemass treatment to the case where a band minimum is not at the center of the Brillonin zone, and also to the case where the band is degenerate. The latter is particularly striking, the usual Wannier equation being replaced by a set of coupled differential equations."
537.311 .33

2317
Scattering of Electrons by Charged Dislocations in Semiconductors--W. T. Read, Jr. (Phil. Mag., vol. 46, 口п 111-131; February, 1955.) lixperiments [2124 of 1954 (l'earson et al.)] suggest that dislocations in (re act as rows of closely spaced acceptor centers. In \(n\)-t ype material a dislocation accepts electrons and becomes a line of negative charge surrounded by a cylindrical region of fixed positive space charge. A theoretical investigation is made of drift and Ilall mobilities for current flow normal to the dislocations. with a magnetic field (a) parallel to the dislocations, and (b) normal to them.

\subsection*{537.311 .33}

2318
Dielectric Properties of Transition Layers in Semiconductors-[3. M. Vul, (Zh. Tekh. Fiz., vol. 25, 11p. 3-10; January, 1955.) Formulas are derived for determining the capacitance, resistance and dielectric losses of the region in which the semiconductor changes from \(n\) to \(p\) type.
537.311.33:537.32

2319
On the Thermoelectric Properties of the Impurity Semiconductors-E. Laurila. (Ann. Acad. Sci. Fenn., Ser. A, no. \(178,11 \mathrm{pI}\).; 195.5.) Formulas for the Seebeck, Peltier and Thomson coefficients of impurity semiconductors are derived on the basis of statistical theory of conductivity as developed by Shockley ( 246 of 1951). For a Ge \(p-n\) junction at room temperature the thermoelectric power is found to be about \(2 \mathrm{mv} /\) degrees K .

\subsection*{537.311.33:546.28}

2320
Hyperfine Splitting of Donor States in Sili-con-W. Kohn and J. M. Luttinger. (Phys. Rev., vol. 97, pp. 883-888; February 15, 1955.) Calculations are reported which support the view that spin resonances observed by Fletcher et al. ( 3254 of 1954 and 453 of February) are due to electrons in donor states.

\subsection*{537.311.33:546.28:548.0}

2321
Lamellar Defects in Single Crystals of Sili-con-J. Franks, G. A. Gcach and A. T. Churchman. (Proc. Phys. Soc., vol. 68, pp. 111-112; February 1, 1955.) "Otherwise perfect single crystals of silicon have been shown to contain lamellar defects lying on (111) and (123) planes. Similar lamellae may be introduced by plastic deformation."

\subsection*{537.311.33:546.289}

2322
Effective Carrier Mobility in Surface SpaceCharge Layers-J. R. Schrieffer. (Phys. Rev., vol, 9'7, pp. 641-646; February 1, 1955.) "Carriers held to a region near the surface by the potential well of a space charge layer may have their mohility reduced by surface scattering, if the width of the well is of the order of a mean free matli. An effective mobility, which may differ from the bulk mobility by as much as a factor of ten, has been obtained from a solution of the Boltzmann equation. Solutions have been carried out for two types of potential functions: (a) a linear potential corresponding to a constant space-charge field, and (b) a solution of Poisson's equation inclucling an extermal bias applied normal to the surface. The results have been used to calculate changes in surface conductance of germanium with changes in surface potential and predict the "field effect' and 'channel effect' mobilities."

\subsection*{537.311.33:546.289}

2323
Gold as an Acceptor in Germanium- W. C. Dunlap, Jr. (l'hys. Rev., vol, 97, pp, 614-629; February 1, 1955.) Measurements are reported on wafers cut from single crystals grown from a Ge melt to which Au had been adeled. Acceptor levels are found at 0.15 ev above the valence band and at 0.2 cv below the conduction band. At 77 degrees \(K\), suecimens of \(p\) - or \(n\)-type, with either high or low resistivity can be obtained, depending on the amounts of other impurities present. Photoconductive response extends to a wavelength of about \(8 \mu\). Trapping phenomena are discussed. Important applications of Au-cloped Ge in research are indicated.

\subsection*{537.311.33:546.289}

2324
Properties of Germanium Doped with Co-balt-W. W. Tyler, R. Newman and II. II. Woodbury: (Phys. Rev., vol, 97, pp. 669-672; February 1, 1955.) "Measurements of the temperature dependence of electrical resistivity in \(n\) - ancl \(p\)-type cobalt-doped germanium crystals indicate that cobalt introduces acceptor levels in germanium at \(0.31 \pm 0.01\) eV from the conduction band and \(0.25 \pm 0.01 \mathrm{eV}\) from the valence band. Ionization energies deduced from infrared photoconductivity studies at \(77^{\circ} \mathrm{K}\) are in good agreement with the values obtained from resistivity measurements. N-type samples show higher intrinsic photosensitivity than \(p\)-type samples and demonstrate quenching effects."
537.311.33:546.289

2325
Sparked Hydrogen Treatment of Ger-
manium Surfaces-N. Holonyak, Jr., and H. Letaw, Jr. (Jour. Appl. Phys., vol. 26, p. 355; March, 1955.) On subjecting Ge specimens to a discharge in hydrogen at low pressure, the surface recombination velocity was greatly increased while the magnitude and decay time of voltages produced by illuminating \(p-n\) junctions was reduced; hole-storage effects in junctions were also reduced, without greatly impairing the reverse \(I / V\) characteristics.

\subsection*{537.311.33:546.47.86}

2326
Diffusion of Sb and Sn in Semiconducting Compound SbZn -B. I Boltaks. [Compt. Rend. Acad. Sci. (URSS), vol. 100, pp. 901-903; February 11, 1955. In Russian.] Report of an experimental investigation. A sharp change of slope of the \(\log -D /(1 / T)\) curve was observed at about 400 clegrees \(C\). This effect is briefly discussed.
537.311.33:546.472.21

2327
Investigations on Zinc Sulphide CrystalsJ. Krumbiegel. (Z. Naturf., vol. 9a, pp. 903904 ; October, 1954.) Brief report of an investigation of the structure, luminescence and photoconductivity of single crystals grown from the vapor phase. Nonuniformities are observed particularly in the huminescence properties.

\subsection*{537.311.33:546.482.21}

2328
Significance of the Electrical Contact in Investigations on CdS Single Crystals-W. M. Buttler and W. Muscheid. [Ann. Phys (I-eipzig), vol. 14, pp. 215-219; February 15, 1954, and vol. 15, pp. 82-111; Novenber 15, 19.54.) The properties of ohmic and of nonohmic CdS photoresistors were investigated experimentally. Separate models are suggested for the metal-to-semiconductor contact in the two cases, one based on the assumption of a perfect contact, the other assuming a dependence of the contact on adsorption layers and surface states. Both models deviate from the SchottkyMott model.

\subsection*{537.311.33:546.623.86}

2329
Zone Melting of Aluminium AntimonideH. A. Schell. (Z. Mctallkde, vol. 46, pp. 58-61; January, 1955.) Experiments on the purification of AlSb were marle using l'fann's technique. The method proved satisfactory for eliminating Cu, Fe, Mg, Si, Ca and Plo, and sielded material with improved electrical properties.

\subsection*{537.311.33:546.811-17}

2330
Measurements of Electrical Conductivity and Magnetoresistance of Gray Tin Filaments -A. W. Ewald and E. E. Kohnke. (Phys. Rev,, vol. 97, pp. 607-613; February 1, 1955.) Measurements were made on filaments of pure inaterial and of alloys containing \(\mathrm{Sb}, \mathrm{As}\), In, Al or Zn prepared by the method described previously (Phys. Rev., vol. 91, p. 244; July 1, 1953.) For 99.998 per cent pure Sn the activation energy is 0.082 ev and the conductivity at 0 degree \(C\). is \(2,0905^{-1}\). \(\mathrm{cm}^{-1}\). The activation energy is increased by addition of impurities. Differences in the temperature variation of conductivity produced by the different types of impurity are indicated.
537.311.33:548.0

2331
Energy Levels of a Disordered Alloy-R. H. Parmenter. (Phys. Rev., vol. 97, inp. 587-598; February \(1,1955\).\() A study is made of the one-\) electron energy levels of a disordered alloy, using perturbation theory. The method is relevant to problems of semiconductor crystals with imperfections. Some experimental verification is reported for a predicted tailing off of the density-of-states curve into a forbidden band.

\subsection*{537.311.33:621.396.822}

2332
Current Noise in Semiconductors-W. Baumgartner and H. U. Thoma. (Z. angew. Math. Phys., vol. 6, pp. 66-68; January 25, 1955.) The observed inverse-frequency spectral
distribution of noise is explained in terms of electron trapping.
538.22:546.3-1-47-46-26

2333
The Structure and Properties of Some Ternary Alloys of Manganese, Zinc and Car-bon-R. G. Butters and H. P. Myers. (Phil. Mag., vol. 46, pp. 132-143; February, 1955.) The single-rhase alloys prepared have an or(lered structure of the perovskite type and show spontancous magnetization at room temperature. The observed magnetic properties are exceptional and indicate a new type of ferrimagnetic behavior postulated by Néel (3159 of 1949) but not hitherto observed. Measured characteristics are presented.
538.221

2334
Possibility of the Observation of Exchange Resonance near a Ferrimagnetic Compensation Point-R. K. Wangsness. (Phys. Rev., vol. 97, p. 831; February 1, 1955.) Theory for a system containing two sublattices indicates that resonance corresponding to the upper branch of the frequency curve should occur at a wavelength of the order of 0.1 mm . The possibility of observing such resonance is improved by working near the compensation point for angular momentum.
538.221

2335
Observation of Exchange Resonance near a Ferrimagnetic Compensation Point-T. R. McGuire. (Phys. Rev., vol. 97, pp. 831-832; February 1, 1955.) Report of observations made under the conditions described by Wangsness (2334 above).

\subsection*{538.221}

2336
Domains of Reverse Magnetization in Ferromagnetic Metals-T. Gr. Nilan and W. S. Paxton. (Phys. Rev., vol. 97, pp. 834-835; February 1, 1955.) Calculations made by Goodenough (470 of March) are discussed in the light of studies of powder patterns in polycrystalline grain-oriented Si steels.
538.221

2337
Spontaneous Magnetogalvanism and Magnetization in Irreversible Ferronickels-A. I. Perrier and E. Ascher. [Compt. Rend. Acad. Sci. (Paris), vol. 240, pp. 1066-1068; March 7, 1955.] Hall-effect and resistance measuremients have been made on specimens containing about 70 per cent Fe and 30 per cent Ni , over a range of temperatures. Anomalies in the curves obtained are eliminated if, instead of the usual Itall emf, the current component normal to the longitudinal electric field and to the magnetic field or the matgnetization is considered as the primary transverse effect.

\subsection*{538.221}

2338
Fundamental Processes in the Magnetization of Alnico Permanent-Magnet AlloysH. Fahlenbrach. (Naturwiss., vol. 42, r1). 6465; February, 1955.) Electron-microscope investigations of polycrystalline and singlecrystal specimens of alnico- 400 confirm the structural features observed by Nesbitt and Heidenreich (3456 of 1952) in heat-treated alloys.

\subsection*{538.221}

2339
Dependence of Coercive Force on Thickness of Laminae of Fe -Si Alloy-Yu. P. Burdakova and V. V. Druzhinin. (Zh. Tekh. Fiz., vol. 25, pp. 108-111; January, 1955.)
538.221:537.311.31:538.632

2340
Band Model for Hall Effect, Magnetization, and Resistivity of Magnetic Metals-Li. M. 1'ugh. (Phys. Rev., vol. 97, pp. 647-654; February 1,1955 .)

\subsection*{538.221:538.652}

2341
The [110] Magnetostriction of Some Single Crystals of Iron and Silicon Iron-E. W. Lee. (Proc. Phys. Soc., vol. 68, pp. 65-71; February 1, 1955.) The results of the previous investigation of magnetization curves (117 of 1954) are
used in magnetostriction calculations. The magnetostriction is found to depend on crystal width in a manner similar to that of the magnetization curves.
539.234:546.23

2342
X-Ray Investigation of Selenium Films obtained by Evaporation in Vacuum-D. N. Nasledov, V. A. Dorin and I. M. Dikina. (Zh. Tekh. Fiz., vol. 25, pp. 29-38; January, 1955.) A detailed report is presented; one of the conclusions is that the electrical conductivity of the film depends on the temperature of the base during the evaporation process.

\subsection*{549.514.51:621.93}

2343
A Novel Type of Saw for the Economical Cutting of Quartz Crystals or Other Materials -J. E. Thwaites and C. F. Sayers. (P.O. Elect. Engr. Jour., vol. 47, part 4, pp. 233-235; January, 1955.)
621.3-761

2344
New Solution Ceramic Coatings-K. Rose. (Malerials and Methods, vol. 41, pp. 107-108; February, 1955.) Heat- and corrosion-resistant films are formed on either metal or nonmetal surfaces by spraying on an aqueous solution of metallic salts. The surface is warmed sufficiently to drive off the water, leaving a tightly bonded oxide layer. Oxides of Zr and Cr are especially satisfactory; oxides of \(\mathrm{Ti}, \mathrm{Ce}\) and Mg and some phosphates, silicates, oxyhalides and metals have also been applied in this way. Such films may be useful for resistors and capacitors as well as for protective coatings.

\subsection*{621.315.615:537.311.3}

2345
A Note concerning the Conductivity of Liquid Dielectrics-J. Hart and D. A. Simmons. (Canad. Jour. Phys., vol. 33, pp. 54-57; February, 1955.) "Experiments are described which show that it is not permissible to ignore electrode effects in the calculation of the mobilities of ions in liquid dielectrics."

\subsection*{546.831}

2346
Zirkonium-Seine Herstellung, Eigenschaften und Anwendungen in der Vacuumtechnik (Zirconium-its Production, Properties and Applications in Vacuum Technique) [Book Review]-W. Espe. Publishers: Winter'sche Verlagshandlung, Fuessen/Bayern, 1953, 174 pp. (Electronic Eng., vol. 27, p. 232; May, 1955.) A comprehensive survey including tables of properties and a bibliography; of particular interest in relation to gettering technique.

MATHEMATICS
516
2347
Geometric Representation of the Gudermann Transformation-R. Cazenave. (Ann. Télécommun., vol. 9, pp. 330-333; December, 1954.)
517.51

2348
The Theory of Generalized FunctionsG. Temple. (Proc. Roy. Soc. A, vol. 228, pp. 175-190; February 22, 1955.) An introductory account of the construction and properties of generalized functions of real variables, so defined that any generalized function \(f(x)\) possesses partial derivatives \(D^{P} f(x)\) of all orders, and that if the sequence \(f_{n}(x)\) converges to \(f(x)\), then \(D^{p} f_{n}(x)\) converges to \(D^{p} f(x)\). Delta functions of Dirac are inclucled in the theory. The representation of generalized functions by Fourier series and integrals is illustrated. Applications in vector analysis, potential theory and wave theory will be dealt with subsequently.
517.562

2349
Locus Diagrams of some Elementary Transcendental Functions-H. Wahl. (Frequenz, vol. 8, pp. 372-378; December, 1954.) Continuation of paper abstracted in 1423 of June.

Method of Computation for Generalized

Lommel Integrals-G. Coulmy. (Ann. Têlêcommun., vol. 9, pp. 305-312; November, 1954.)

\subsection*{517.65:621.396.11}

2351
A Table of a Function used in Radio-Propagation Theory-Horner. (See 2397.)
519.241.1:621.372.54

2352
A New Method of Determining Correlation Functions of Stationary Time Series-D. G. Lampard. (Proc. IEE, Part C, vol. 102, pp. 35-41; March, 1955. Digest, ibid., Part III, vol. 101, pp. 343-346; September, 1954.) The method is based on an expansion of the correlation function in a suitable orthonormal system. The coefficients in the expansion are simply related to the convolution integrals which arise when the given time series are applied to linear filters whose impulse responses are nembers of this orthonormal system. A method of measuring these coefficients is proposed. Complex filters can be built up having an impulse response of the same form as the desired correlation function. Examples are presented of filters whose impulse responses are members of a Laguerre system. A practical autocorrelator based on such a filter is described and some results obtained with it are reported
519.241 .5

2353
On the Averaging of Data-S. S. Stevens. (Science, vol. 121, pp. 113-116; January 28, 1955.) A brief introductory discussion on when to use the mean, mode or median as measure of central tendency.

\section*{517}

2354
Higher Transcendental Functions [Book Review]-Staff of the Bateman Project. Publishers: McGraw Hill, London, 1953, vol. 1, 302 pp., 52s., vol. 2, 396 pp., 60 s. [Nałure (London), vol. 175, p. 317; February 19, 1955.] The first two volumes of a series. Thousands of formulas are presented, usually with some indication of origin and often with suggestions as to methods of proof.

\section*{MEASUREMENTS AND TEST GEAR}
621.396.11.029.45: 621.3.018.41(083.74) 2355

The Diurnal Carrier-Phase Variation of a 16-Kilocycle Transatlantic Signal-Pierce. (See 2404.)
621.317.3:621.314.632:546.289 2356

Recovery-Time Measurements on PointContact Germanium Diodes-T. E. Firle, M. E. McMahon and J. F. Roach. (Proc. IRE, vol. 43, pp. 603-607; May, 1955.) Discussion indicates the importance of using standard techniques and terminology.
621.317.3.012.3

2357
Phase-Linearity Nomograph-J. F. Sodaro. (Electronics, vol. 28, p. 178; April, 1955.) Nomogram relating delay time, phase shift and frequency for circuits of various types.
621.317.32:621.385.2

2358
Use of Diodes for Measurement of R.M.S. Voltage with Good Independence of Waveform -G. Bernardi. (Ricerca Sci., vol. 25, pp. 3448; January, 1955.) The important feature of the measurement circuit described is the inclusion of an improved voltage divider for supplying the diodes.
621.317.329:621.373.413

2359
Measurement of the Distribution of the Electromagnetic Field in a Resonant CavityA. Septier. (Jour. Phys. Radium, vol. 16, pp. 108-114; February, 1955.) See 1853 of 1954.
621.317.335.2

2360
The Precise Measurement of CapacitanceJ. K. Webb and H. B. Wood. (Proc. IE E, Part C, vol. 102, pp. 3-12; March, 1955. Digest, ibid., Part II, vol. 101, pp. 681-682; December, 1954.) The method described is designed to enable measurements to be made conveniently with a precision approaching that achieved by the National Physical Laboratory. A bridge
network is used with inductively coupled ratio arms which can be switched into the form of either a comparison or a Wien bridge. By combined use of the comparison bridge with a \(2: 1\) ratio and the Wien bridge with a \(1: 1\) ratio the unknown capacitance in one arm can be determined in terms of the resistance in the other arm at a given frequency.
621.317.335.3.029.63/.64

2361
Phase and Amplitude Balance Methods for Permittivity Measurements between 4 and \(50 \mathrm{~cm}-\mathrm{T}, \mathrm{J}\). Buchanan and E. H. Grant. (Bril. Jour. Appl. Phys., vol. 6, pp. 64-66; February, 1955.) The coaxial-line equipment described can be used to measure permittivities of liquicls over a wide range of values; several alternative methods of procedure are given and two types of liquid cell are described. The apparatus is useful mainly for medium and high-loss liquids; for low-loss liquids cavity methools are preferred.

\subsection*{621.317.353.2}

2362
Measurements of a Fundamental by [periodic] Contacting without using a Fundamental Filter-P. K. Hermann. (Frequenz, vol. 8, pp. 379-382; December, 1954.) Extension of the method in which harmonics are eliminated by appropriate choice of the contacting period.

\subsection*{621.317 .374}

Loss-Angle Standards [fixed and variable] -H. Hoyer. (Arch. Eleklrotech., vol. 41, pp. 347-356; November 25, 1954.) Several types of fixed and variable capacitor-resistor loss-angle standards developed at the Physikalisch-Technische Bundesanstalt are described. The constructional details, method of use and experimental results are given. Standards for use at frequencies up to 10 kc are included.
621.317.374.027.3

2364
A Recording Loss-Angle Meter for High Voltages-K. B. Westendorf. (Arch. Elektrotech., vol. 41, pp. 333-346; November 25, 1954.) A bridge-circuit instrument for use at voltages of the order of 10 kv at 50 cps is described.

\subsection*{621.317.38.029.63}

2365
A Note concerning Forces and Torques on Spheroidal Bodies in Cavities-W. J. van de Lindt. (Canad. Jour. Phys., vol. 33, pp). 113117 ; February, 1955.) The method of determining microwave power from the force or torque on a ring in a cavity [ 1140 of 1954 (Kalra)] is modified by substitution of a metal sphere or spheroid for the ring. The forces acting on such a body are calculated from considerations of the energy in the cavity field.
621.317.411:621.318.134:621.372.413 2366
Circularly Polarized Cavities for Measurement of Tensor Permeabilities-E, G. Spencer, R. C. LeCraw and F. Reggia. (Jour. Appl. Phys., vol, 26, pp. 354-355; March, 1955.) The determination of the tensor permeability of a ferrite by introducing a small sample into a cavity and observing the resonance characteristic is facilitated by exciting the cavity with a circularly rather than a linearly polarized wave.
621.317 .42

2367
A Probe for the Study of Magnetic FieldsR. Birebent. [Compl. Rend. Acad. Sci. (Paris), vol. 240, pp. 1064-1065; March 7, 1955.] The probe comprises a small cail fixed at one end of a tube and fed from an oscillator by leads passing through the tube, the other end of which carries a piezoelectric crystal. When the coil is exposed to a magnetic field, an alternating torsion is applied to the crystal, whose output is proportional to the field and to the coil current. Maximum sensitivity is obtained when the oscillator frequency is equal to the natural frequency of vibration of the probe, which was 1 kc in a particular model. The range of measurement is from a few oersteds to to some thousands of oersteds.
621.317.7:621.3.018.75

2368
A Transient Pulse Width and Pulse Amplitude Meter-F. Hart. (Electronic Eng., vol. 27, pp. 192-197; May, 1955.) Two low-leakage capacitors are given charges proportional respectively to the amplitude and the duration of the pulse, and the voltages across the capacitors are measured with electrometer-type voltmeters before the charge leaks away. The particular instrument described was developed for observations on pulses originating from a mechanically vibrating tube.
621.317.7:621.385

2369
Circuit for the Determination of Contact Potentials and Electron Temperatures from Retarding Field Characteristics-S. Friedman and L. N. Heynick. (Rev. Sci. Instr., vol. 26, pl. 17-19; January, 1955.) The design of the circuit is based on the retarding-field equation for parallel-plane diodes; errors involved in applying it to measurements on other tubes are discussed.
621.317.729.1

2370
Probe Impedance in the Electrolytic TankJ. C. Burfoot. (Brit. Jour. Appl. Phys., vol, G, 111. 6i-68; February, 19.55.) The impedance is usually ascribed to capacitance or polarization effects, but in many cases the simple ionic conduction mechanism will give a useful estimate, so that the optimum size and shape may be calculated. Theoretical results are supported by measurements.
621.317.733:621.375.2

2371
A Tuned Detector-Amplifier for PowerFrequency Measurements--IV. K. Clothier and WV. E. Smith. (Jour. Sci. Instr., vol. 32, pp. 67-70; February, 1955.) A detector-amplifier for bridge measurements is tuned by means of a two-section LC filter, the inductors of which are varied simultaneously by dc in control windings on their mumetal cores. When used with suitable tuned input transformers it can detect power as low as \(10^{-19} \mathrm{w}\).
621.317 .75 : [521-526+621.372.5 2372

A Harmonic Response Plotter-Z. Czajkowski. (Electronic Eng., vol. 27, pp. 207-211; May, 19.55.) The instrument described gives simultaneously the frequency response of a system and its first derived plot. It was designed for testing servo systems, but is useful for determining the characteristics of any network over the frequency range \(0.2-104\) cps. An electromechanical analog computer system is used incorporating six servomechanisms.

\subsection*{621.317.75:[621-526+621.372.5}

2373
Servo Analyzer for Wide-Range TestingF. E. Dickey. (Electronics, vol. 28, pp. 172175; April, 19.55.) A phase-shift oscillator covering the range \(0.25-300 \mathrm{cps}\) provides a drive voltage for the servo unit under test and a variable two-phase output for analysis purposes. It may also be used to measure the characteristics of filters etc. The output can be modulated to supply a \(60-\) or \(400-\mathrm{cps}\) suppressed-carrier A.M signal.
621.317.75:621-526

2374
Transient Measurement of Feedback Control Systems-F. H. Ferguson and C. II. Looney. (Trans. Amer. IEE, I'art II, Applications and Industry, vol. 72, pp. 110-114; May, 1953.) Description of a transientresponse indicator and recording system.

621,317.75:621.373.4.029.62
2375
Wobbulator Adaptor for Band III-G. II. Leonard. (Wireless World, vol. 61, pp. 283287; June, 19.55.) Full details are given of a circuit designed to operate with an existing band-I frequency-sweep oscillator for alignment of tuning units. Third harmonics of the \(57-73\)-mc range are derived in a tripler stage and amplified, the response of the amplifier peaking sonewhat below the center of the pass
band to discriminate against fourth harmonics. An over-all flat response is achieved by an age system based on detecting any modulation at the sweep frequency, 25 cpss , in the rf output. Marker, attenuator and cro display systems are described.

\subsection*{621.317 .755}

2376
The Development and Design of DirectCoupled Cathode-Ray Oscilloscopes for Industry and Research-M. J. Goddard. (Jour. Bril. IRE, vol. 15, pp. 179-197; April, 1955.)

\subsection*{621.317 .755}

2377
Study and Realization of a Four-Beam Cathode-Ray Oscillograph for High-Voltage Operation-J. Ollé. (Rev. Gén. élecl., vol. 64, pp. 104-108; February. 1955.) A fuller account of the oscillograph previously described by Fert et al. (1624 of 1954).

\subsection*{621.317.755:621.318.57}

2378
Trigger Adapter for Transient Oscillograms -L. Fleming. (Electronirs, vol. 28 pp. 159-161; April, 1955.) An anxiliary unit operated by the transient to be displayed provides single sweep and unblanking of the cro beam. Sweep times of \(2-5 \mathrm{~ms}\) are used.
621.317.755: 621.385.029.6

2379
Velocity Spectrography of Electron Dynamics in a Traveling Field-O. T. Purl and H. M. VonFocrster. (Jour. Appl. Phys., vol. 26, pp. 351-353; March, 1955.) Velocity variations of electrons at a selected point along a beam are studied by means of a modification of an arrangement described by Bloom and VonFoerster ( 218 of February), one of the Lecher-wire deflection systems being replaced by a pair of curved deflection plates and the fluorescent screen being correspondingly offset. Use of this device for investigating the motion of electrons at the input of a traveling-wave tube is discussed.

\subsection*{621.317 .772}

2380
A Direct-Indicating Phase Meter-A. van Weel. (Jour. Brit. IRE, vol. 15, pp. 143-152; March, 1955.) 1)escription of a complete instrument based on principles discussed previously (3659 of 1953).
621.317 .78 .029 .6

2381
A Microwave Microcalorimeter-A. C. Macpherson and 1). M. Kerns. (Rev. Sci. Instr., vol. 26, pp. 27-33; January, 1955.) A bolometer instrument developed at the National Bureau of Standards measures microwave power accurately to within 1 per cent at milliwatt levels. The bolometer mount assembly serves as a matched waveguide termination.
621.373.421.13:621.3.018.41(083.74) 2382

A Simple Circuit for Frequency Standards employing Overtone Crystals-E. P. Felch and J. O. Israel. (Proc. IRE, vol. 43, pp. 596603; May, 1955.) An oscillator circuit with frequency stable to within one part in \(10^{\circ}\) over periods of several hours is obtained using a single-stage class-A amplifier with II-section feedback network and a quartz crystal operating at its fiftll overtone, at 5 mc [see 3481 of 1952 (Warner)]. Undesired frequencies are suppressed by connecting a resistor in parallel with the crystal.

\subsection*{621.385.001.4:531.768}

2383
Vibration Generator for Electron Tubes(Elec. Jour. vol. 154, p. 350; February 4, 1955.) Electrodynamic apparatus developed at the National Bureau of Standarts for testing subminiature tubes uses a \(\mathrm{BaTiO}_{3}\) accelerometer capable of measuring vibration frequencies up to 20 kc at acceleration levels of \(0.2-10,000 \mathrm{~g}\).

OTHER APPLICATIONS OF RADIO AND ELECTRONICS
534.222-8

Photoelectric Measurement of Weak

Acoustic Birefringence-J. Badoz. (Compt. Rend. Acad. Sci. (Paris), vol. 240, pp. 10621064; March 7, 1955.] An ultrasonic beain modulated at low frequency is passed through a liquid, thus periodically producing birefringence. Polarized light passes through the liquid and is received by a photomultiplier, the intensity of the received light varying with the ultrasonic variations. The photomultiplier output is connected to a selective amplifier followed by a detector. Differences of optical path down to \(10^{-4} \lambda\) can thus be measured.
621.316 .7

2385
A Design Philosophy for Man-Machine Control Systems-M. Ifoberman. (Proc. IRE, vol. 43, p. 623; May, 1955.) Comment on 822 of March (Birmingham and Taylor), suggesting that animals could replace humans as machine minders in some cases.

\subsection*{621.37/.38]786.2}

2386
New Electronic Piano-B. F. Miessner. (Radio-Electronics, vol, 26, pp. 64-66, 68; Pebruary, 1955.) Description of a keyboard instrument in which the strings are replaced by hammer-struck fixed-free reeds capacitively associated with fixed electrodes to control the frequency of an oscillator, producing a \(F \mathrm{M}\) signal which is detected by a discriminator.

\subsection*{621.373.43:616-7}

2387
Application of Pulse Circuits in MedicineI. Abrikosov. [Radio (Moscow), no. 12, pp. 4345; December, 1954.] Basic circuits are shown of apparatus for diagnosis and therapy. The pulse shares and repetition rates most commonly used are indicated.
621.383.2:621.317.087:534.213-8 2388

A Method of Ultrasonoscopy using an Electron-Optical Image Converter-M. von Ardenne. ( Nachr Tech., vol. 5, pp. 49-51; February, 1955.) The ultrasonic-wave intensity distribution produced by a selectively absorbing test object is converted into a corresponding temperature distribution at an absorbing layer on the inage converter photocathode. For maximum sensitivity the cathode work function should be low; a suggested material is \(\left\{\mathrm{Ag} \mid-\mathrm{Cs}_{2} \mathrm{O}\right.\) on a Csitg base, which has a work function of about 1 ev . The sketch of the suggested arrangement includes notes on materials and dimensions; the calculated threshold ultrasonic energy density, when using a photographic method of recording the image, is about \(0.04 \mathrm{w} / \mathrm{cm}^{2}\). References to literature on the subject are tabulated, classified according to the method used, and the operation of the converters is outlined.
621.383.2:778.37

2389
Two New Image-Converter Tubes for Scientific Uses, "Valvo 18120" and "Valvo 18130"-F. Cubasch. (Elektronische Rundschau, vol. 9, pp. 5-11; January, 1955.) A diode- and a triode-type image converter are described. Applications noted include use in a high-speed camera; a circuit diagram is given and results obtained are illustrated. Exposure times shorter than \(10^{-7}\) seconds are attainable. Methods of increasing the repetition rate to about 200,000 exposures/second are mentioned.
621.384 .622

2390
Linear-Accelerator Issue-(Rev. Sci. Instr., vol. 26, pp. 111-231; Febrıary, 1955.) Detailed accounts are included of the Berkeley accelerator, which produces \(31.5-\mathrm{Mev}\) protons, and of the Stanford Mark-II and Mark-III travelingwave electron accelerators.
621.385 .833

2391
Electron Optics of Cylindrical Systems having a Plane of Symmetry: Part 1-FirstOrder Approximation-M. Landet. (Jour. Plays. Radium, vol. 16, pp. 118-124; February,
1955.) Expressions for the electron trajectories are derived, using Lagrange's method.

\subsection*{621.385.833:537.533}

2392
Use of Space Charge in Electron OpticsE. A. Ash. (Jour. Appl. Phys., vol. 26, pp. 327-330; March, 1955.) "The electron optical properties of a cylindrical space charge cloud are derived. The possibility of achieving a system free from either spherical or chromatic aberration by combining a space charge lens with a space charge free converging lens is examined. It is concluded that the achromatization of a thin electric or magnetic lens is possible only if the resultant action of the combination is divergent. The correction of the spherical aberration of a high quality lens, such as an electron microscope objective, is shown to be impossible on account of electron interaction effects."

\subsection*{621.387 .424}

2393
Geometric Efficiency of Cylindrical [G-M] Counters-J. Goldemberg. (Rev. Sci. Instr., vol. 26, pp. 41-44; January, 1955.)
621.387 .424

2394
Spontaneous Discharges of Thermionic Origin in Geiger Counters-R. Meunier, M. Bonpas and J. P. Legrand. (Jour. Phys. Radium, vol. 16, pp. 145-148; February, 1955.)

\subsection*{621.387.424}

2395
Geiger Counters with \(\mathrm{Tr}_{2} \mathrm{O}\) Vapour FillingP. Meunier, M. Bonpas and J. P. Legrand. (Jour. Phys. Radium, vol. 16. pp. 148-151; February, 1955.)

\subsection*{621.397 .3}

2396
Image Processing-Kovásznay and Joseph. (See 2445.)

\section*{PROPAGATION OF WAVES}

\subsection*{621.396.11:517.65}

2397
A Table of a Function used in RadioPropagation Theory-F. Horner. (Proc. IEE, Part C, vol. 102, pp. 134-137; March, 1955. Digest, ibid., P'art B, vol. 102, 1. 400; May, 1955.) "Real and imaginary components of the complex integral \(1+2 j \sqrt{(\omega) \epsilon^{-\omega}} \int_{-j}^{\infty} \sqrt{\omega} \epsilon^{-x_{2}} d x\) are tabulated as a function of \(\omega\). The Tables are prepared for real components of \(\omega\) in the range 0 to 10 , associated with imaginary components in the range -10 to 0 ."

\subsection*{621.396.11:537.56}

2398
Theory of Coupling of the Ordinary and Extraordinary Electromagnetic Waves in an Inhomogeneous Anisotropic Plasma and Conditions for Reflection. Applications to the Ionosphere-R. Jancel and T. Kahan. (Jour. Phys. Radium, vol. 16, pp. 136-145; February, 1955.) Results of previous work [1030, 2196 and 2364 of 1954] are applied. Using the BKW approximation, expressions for the refractive index of the medium and the conditions for reflection both for longitudinal and transverse propagation are developed. Coupling is then considered, the four-sheeted Riemann surface representing the refractive-index equation giving the various forms of coupling between the ordinary and extraordinary rays. This surface is studied in detail for the particular conditions of the ionosphere.

\subsection*{621.396.11:551.510.52}

Cheyenne Mountain Tropospheric 2399 Cheyenne Mountain Tropospheric Propa-
ation Experiments- \(\Lambda . \quad\) P. Barsis, J. W. Herbstreit and K. O. Hornberg. ( \(N\) BS Circulars, no. 554, 39 pp; January 3, 1955.) Experiments were started in 1950 on propagation over simulated air-to-ground communication paths, using cw transmitters on five frequencies in the range \(92-1,046 \mathrm{mc}\), receivers continuously recording field strength at four locations within 226 miles of the mountain with additional provision for reception at distances of 393 and 617 miles, and an extensive meteoro-
logical installation at Haswell, Colo. A detailed description is given of the transmitting and receiving equipment. Sample results tend support to Booker and Gordon's theory of scattering elaborated by Staras (804 of 1953). See also 2499 of 1954 (Bean) and 1955 IRE Convention Record, Part 2, pp. 85-93 (Herbstreit et al.).

\subsection*{621.396.11:551.510.535}

2400
An Ionospheric Attenuation Equivalence Theorem-E. V. Appleton and W. J. G. Beynon. (Jour. Almos. Terr. Phys,, vol. 6, pp. 141-148; March, 1955.) Partial reflection and scattering in the ionosphere may be important sources of attenuation of radio waves. For frequencies well above the equivalent critical frequency the following theorem relating oblique-incidence to \(f\) vertical-incidence phenomena is stated: \([\rho]_{i_{0}}^{i_{0}}=\lambda[\rho]_{0} \int^{\cos } i_{0}\) where \(\rho\) is the fractional attenuation, \(f\) the frequency and \(i_{0}\) the angle of incidence; \(\lambda=1\) or \(\cos 2 i_{0}\), according as the electric vector is perpendicular to the plane of propagation or in the plane.
621.396.11:551.510.535 2401
Radio Disturbance Warnings in JapanT. Obayashi. [Jour. Radio. Res. Labs (Japan), vol. 1, pp. 55-61; September, 1954.] The system operated by the Hiraiso observatory is described. Short-term forecasts are broadcast on 4 mc and 8 mc from the standard-frequency station JJY. Weekly and monthly forecasts and special services for operators are provided.

\subsection*{621.396.11.029.45:551.510.535 2402}

The Numerical Solution of Differential Equations governing Reflexion of Long Radio Waves from the Ionosphere-K. G. Budden. (Proc. Roy. Soc. A, vol. 227, pp. 516-537; February 8, 1955.) Two methods which have been used with the EIDSAC are described. "In the first method the first-order simultancous equations, derived from Maxwell's equations and the constitutive relations for the ionosphere, are integrated by a step-by-step process proceeding downwards. The integrations are started from properly chosen initial solutions. From the resulting ficld variables at the bottom of the ionosphere a reflexion coefficient matrix \(\mathbf{R}\) is derived, whose elements inclucle the familiar reflexion coefficients. Two integrations are needed for each derivation of the clements of \(\mathbf{R}\). For the second method, it is shown that the formulae for \(\mathbf{R}\) for a level below the ionosphere can be applied also within the ionized medium, and define a more general matrix variable whose elements are the dependent variables in a new set of differential equations. These are integrated by a step-by-step process as in the first method. The solution obtained below the ionosphere gives the required set of reflexion coefficients without further calculation. Only one integration is required for each derivation. The equations are given in full for certain important special cases."

\subsection*{621.396.11.029.45:551.510.535}

2403
The Ionospheric Propagation of Radio Waves of Frequency \(16 \mathrm{kc} / \mathrm{s}\) over Short Dis-tances-T. W. Straker. (Proc. IEE E, Part C, vol. 102, pp. 122-123; March, 1955. Digest, ibid., Part B, vol. 102, pp. 396-399; May, 1955.) Report of experiments made during the period March, 1948-October, 1949, in continuation of the investigations described by ludden el al. (Proc. Roy. Soc. A, vol. 171, pp. 188 214 ; May 19, 1939) on signals transmitted from Rugby to Cambridge; amplitude and phase were ineasured separately. Conclusions reatched previously concerning diurnal and seasonal variations of the reflection height are confirmed. Marked seasonal variation of the amplitude of the downcoming wave was observed, the variations being different for daytime and nighttime. During summer the amplitude was closely controlled by the sun, but was not related in any simple way to the zenith angle.

The sunrise effect for amplitude occurred about an hour earlier than for phase. Subsidiary variations observed are consistent with reflection taking place at two levels. Abnormal variations of reflection height occurred during and after magnetic storms.
621.396.11.029.45:621.3.018.41(083.74) 2404 The Diurnal Carrier-Phase Variation of a 16-Kilocycle Transatlantic Signal-J. A. Pierce. (Proc. IRE, vol. 43, pp. 584-588; May, 1955.) Measurements at Cambridge, Mass., on signals from GBR are reported. The diurnal variation in apparent transmission time is about \(40 \mu \mathrm{~s}\); this is presumed to be due to a variation of 10 12 km in \(h^{\prime}\). The degree of phase stability of the received signal is such as to permit intercontinental comparison of frequencies with a precision of at least 1 part in \(10^{10}\). On this basis, a radio navigation system could theoretically be accurate to within about a mile at a range of several thousand miles. The importance of such stability for narrow-band reception is discussed. See also 1425 of June (Pierce et al.).

\subsection*{621.396.11.029.6}

2405
Tropospheric Scatter Propagation-(Hireless World, vol. 61, pp. 253-254; June, 1955.) Experiments carried out in America at frequencies in the lower uhf band, using \(10-\mathrm{kw}\) tramsmitters with antenna reflectors 60 feet in diameter, show that wide-band transmissions over a range of 200 miles are feasible. The system will probatbly be used to supplement the present radio-link system. Other experiments in progress at Syracuse are designed to determine the best modulation system and the diurnal and seasonal variation in reception. See also 2811 of 1951 (Straiton et al.).
621.396.11.029.6

2406
Large Reduction of V.H.F. Transmission Loss and Fading by the Presence of a Mountain Obstacle in Beyond-Line-of-Sight Paths-J. H. Crysdale: F. H. Dickson, J. J. IEgli, J. W. Herbstreit and G. S. W'ickizer. (Proc. 1R10, vol. 43, p1. 627-628; May, 1955.) Comment on 3396 of 1953 and authors' reply.
621.396.11.029.62

2407
V.H.F. Field Strength far beyond the Radio Horizon-T. F. Rogers. (lroc. IRE, vol. 4.3, p. 623: May, 1955.) Measurements on a 220) me pulsed signal are reported; an airborne receiver was used, at an altitude of 500 feet, at distances up to 420 miles. Differences from Megaw's results ( 973 of 1951) are noted. The results appear to be reasonably consistent with a \(d^{-7}\) law of variation of field strength.

\subsection*{621.396.11.029.62}

\section*{2408}

Meteorological Consideration on the V.H.F. Propagation between Inubo and HiraisoK. Hirno and H. Maruyama. [Jour, Radio. Res. Labs (Japan), vol. 1, pp. 31-40; September, 1954.] Results of propagation tests during the period June-August, 1952 at 153 mc over a \(78-\mathrm{km}\) sea path are analyzed with reference to aerological data. A sudden \(20-\mathrm{db}\) increase of field strength lasting up to several hours occurred frequently during both baiu and summer seasons. These increases are related to meteorological conditions giving rise to dry, warm air over the sea surface.
621.396.11.029.62:551.510.535

2409
Sporadic-E Propagation-N. C. Gerson (Jour, Almos. Terr, Phys., vol. 6. np. 113-116; March, 1955.) Reports of two-way communication by amateurs during the period 1949-1952, mainly in summer, on a frequency of 50 mc , are analyzed. The results indicate that the modal station separation was \(1,490 \mathrm{~km}, 2,800\) km and about \(4,200 \mathrm{~km}\) for single-, doubleand triple-hop communication resiectively. \(E_{s}\) clouds having an effective diameter of about 925 km appeared to be fairly prevalent.
621.396.11.029.64:535.4

2410
The Reflection of Electromagnetic Waves from a Rough Surface-H. Davies. (Proc. IEE, Part C, vol. 102, p. 148; March, 1955.) Discussion on 537 of March.

\subsection*{621.396 .81 .029 .53}

2411
Measurement of Loran Waves-Y. Aono, T. Kobayashi, C. Ouchi and C. Nemoto. [Jour. Radio Res. Labs (Japan), vol. 1, pp. 1-16; September, 1954.] In order to develop a reliable system for predicting field strength in the mf band, measurements were made at Hiraiso of the field strength of \(1.85-\mathrm{mc}\) and \(1.95-\mathrm{mc}\) loran transinissions from 12 stations in the western Pacific Ocean between 200 and 4,000 km away. Results are analyzed and characteristic curves are derived for diurnal variation factor \(\kappa\) and absorption factor \(\Gamma_{m}\). These are used in constructing nomograms (a) relating \(\kappa\) to local time, month, and latitude of transmitting and receiving stations, and (b) relating \(\Gamma_{2}\) (deviative absorbtion factor), critical frequency, muf, operating frequency and distance.

\section*{RECEPTION}
621.39:534.78

2412
The Effect of Severe Amplitude Limitation on Certain Types of Random Signal: a Clue to the Intelligibility of "Infinitely" Clipped Speech - J. M. C. Dukes. (Proc. IEE, Part C, vol. 102, pp. 88-97; March, 1955. Digest, ibid., Part B, vol. 102, pp. 261-263; March, 1955.) The energy spectrum of a random waveform is compared with that of the waveform after limiting and differentiation. With certain sig. nals of common occurrence the average energy distribution is not much affected by the limiting, and the phase relation between the waveforms is highty coherent. This result explains the observed high intelligibility of clipped speech [1537 of 1948 (Licklider and Pollack)].

\section*{\(621.396 .621+621.37] 049.75\)}

2413
Investigations of Laboratory Production of Printed Circuits for Communication Equipment -Götze. (See 2223.)
621.396.621.57:621.314.7

2414
Crystal Valve Receivers-A. Stead. (RSGB Bull., vol. 30, pp. 378-380; February, 1955.) The design of simple "straight" receivers employing point-contact and junction-type transistors is described and complete circuit diagrams are given. The receivers worked satisfactorily at frequencies up to 2 mc .
621.396.822:621.396.62

2415
The Response of a Nonlinear System to Random Noise-IV. E. Thomson. (Proc. IEE, Part C, vol. 102, pp. 46-48; March, 1955. Digest, ibid., Part III, vol. 101, p. 407 ; November, 1954.) A simplified form is derived of a formula obtained previously [see e.g. 3238 of 1948 (Middleton)] for the autocorrelation function of the output of a nonlinear system for the case where the output/input relation is expressed as a power series. The new formula emphasizes that intermodulation products of different orders are uncorrelated while contributions to the intermodulation product of a given order from different terms of the power series are completely correlated. If the output is expressed as a series of Hermite polynomial functions of the input, each term of the series gives rise to intermodulation products of one order only.

\subsection*{621.396 .823}

2416
High-Frequency Interference from ElectricFence Equipment-M. Haag. (Elektrotech. Z., E.dn. A, vol. 76, pp. 120-124; February 1, 1955.) Electric fences considered are operated with voltage pulses of up to 5 kv , maximum pulse charge of 2.5 ma.s, pulse duration 0.1 second and pulse intervals of at least 0.75 sec ond. Radio interference occurs mainly in the long-, medium- and short-wave bands; usw
interference has not so far been reported. Suitable measurement circuits and suppressors are discussed and both impedance/frequency and interference/frequency curves are shown.

\subsection*{621.396.823:537.523.3}

2417
Radio Interference from Direct-Voltage Corona in a Coaxial Cylindrical Field-H. Heindl. (Arch. elekt. Übertragung, vol. 9, pp. 93-98; February, 1955.) Report of a laboratory investigation intended as preliminary to a study of the effects produced by ac lines. The rf interference calculated from a consideration of the corona discharge mechanism is in good agreement with the observations. Comparison is made also with results obtained by other workers in various countries.

\section*{STATIONS AND COMMONICATION SYSTEMS}

\subsection*{621.39.001.11-20}

2418
Extent of Redundancy in the Speech and its Importance in Long-Distance TelephonyW. Endres. (Fernmeldetech. Z., vol. 8, pp. 8993; February, 1955.) According to communication theory, the time interval during which the frequency/time characteristic of a sound remains constant is considered to be redundant. Visible speech diagrams indicate that the redundancy in spoken English is about 50 per cent; a 2:1 time-compression should therefore be feasible.
621.395.44:621.315.052.63

2419
Telecommunication Equipment for Power Systems: Developments and Application in Sweden-U. Hecht, S. Rodhe and H. J. B. Nevitt. (Trans. Amer. IEE, Part III, Pozver Apparatus and Systems, vol. 72, pp. 961-968; October, 1953. Discussion, pp. 968-969.) See also 1148 of May (Rathsman et al.)
621.395.44: 621.315.052.63:621.395.822, 2420

A Study of Carrier-Frequency Noise on Power Lines: Part 3-Interpretation of Field Measurements-J. D. Moynihan and B. J. Sparlin. (Trans. Amer. IEE, Part III, Power Apparatus and Systems, vol. 72, pp. 573-580; June, 1953. Discussion, pp. 580-581. Corrections for bandwidth and impedance differences to be considered in correlating test data are discussed. A standard reference bandwidth of 1 kc is suggested. Parts 1 and 2 : 3705 of 1953 (Cheek and Moynihan).

\subsection*{621.395.741:621.3.018.78}

2421
Law of Addition of Distortion Voltages in Long-Distance Communication Systems-K. Steinbuch and H. Marko. (Fernmeldetech. Z., vol. 8, pp. 71-78; February, 1955.) The law of addition of interference voltages due to thermal noise and to the nonlinear distortion in the amplifiers is derived for cascaded amplifiers with given phase characteristics. With sufficiently curved characteristics arithmetical addition is partly prevented, but the maximum obtainable gain is of the order of only 1.3 n . Such a phase characteristic can be obtained by means of a suitable all-pass filter in the system.
621.396.4:621.376.222

2422
Study of the Balanced Valve Modulator for S.S.B. Radio Communication-G. Bronzi. (Alta Frequenza, vol. 23, pp. 335-356; December, 1954.) Operation of conventional balanced bridge circuits is analyzed. If the amplitudes of the inodulation and carrier signals, the static tube characteristics and the load are known, the maximum bridge output voltage can be determined graphically. Experiments confirm the validity of the method.
621.396.65:621.396.41

2423
Trieste - Venezia - Bologna - Verona - Milano Radio-Link Network-L. Bernardi. (Posle e Telecomun. vol. 23, pp. 61-67; February, 1955.) Extensions to the Mestre-Trieste multichannel microwave communication link ( 3109 of 1953) are described.
621.396.712.3:534.86

On the Structural 2424 and Room Acoustics of the Multipurpose Studio Unit at Broadcasting House, Hamburg-Venzke. (See 2180.)
\(621.396 .97+621.397 .74\)
2425
Present State of U.S.W. Sound and Television Broadcasting Coverage [in Germany]R. Gressmann. (Funk-Technik, vol. 10, Dp. 31-34; January, 1955.)

\section*{SUBSIDIARY APPARATUS}

\section*{621-526}

2426
Asymmetrical Servomechanisms-J. Loeb and J. D. Lebel. (Ann. Télécommun., vol. 9, pp. 282-286; October, 1954.) Servomechanisms in which the nonlinear element has an input/output characteristic asyınmetric with respect to the origin are considered. Even if the input signal is a pure sine wave, the output will have a dc component that cannot be filtered out by the linear element. The general feedback-loop equations are reformulated and the new conditions of stability considered. A temperaturecontrol device is treated as an example.

\section*{621-526}

2427
Feedback Control Systems-(Trans. Amer. IEE, Part II, Applications and Industry, vol. 72; 1953.) The following papers are included: "Quick Methods for evaluating the ClosedLoop Poles of Feedback Control Systems," -G. Biernson (np. 53-68. Discussion, pl. 68-70).
"Correlation Between lirequency and Transient Responses of Feedback Control Sys-tems,"-Y. Chu (pp. 81-92).
"Coulomb Friction in Feedback Control Sys-tems,"-V. B. Haas, Jr. (pp. 119-123. Discussion, pp. 123-126).
"Describing Function Method of Servomechanism Analysis anplied to Most Commonly Encountered Nonlinearities,"-HI. D. Greif (pp. 243-248).
"Optimization of Nonlinear Control Systems by means of Nonlinear Feedbacks," R. S. Neiswander and R. H. MacNeal (p). 262-270. Discussion, pp. 27(0-272).
"A Relative Damping Criterion for Linear Systems,"-J. F. Koenig (1p. 291-294. Discussion, 1p. 294-295).
"Errors in Relay Servo Systems,"-L. F. Kazda (pp. 323-328. Discussion, p. 328).
"Effects of Friction in an Optimum Relay Servomechanism,"-T. M. Stout (p1. 329335. Discussion, pp. 335-336).
"Backlash in a Velocity Lag Servomechanisın," -N. B. Nichols (pp. 462-467).
"Determination of the Maxinum Modulus, or of the Specified Gain, of a Servomechanism by Complex-Variable Differentiation,"T. J. Higgins and C. M. Siegel (pp. 467468. Discussion, pp. 468-469).

Abstracts of other papers appear separately.

\section*{621-526}

1-526
Some Saturation Phenomena in Servomechanisms with Emphasis on the Tachometer Stabilized Systems-E. Levinson. (Trans. Amer. IEE, Part II, Applicalions and Industry, vol. 72, pp. 1-9; March, 1953.) Analytical methods of dealing with frequency response and transient response are described and various saturation effects are explained.
621-526
2429
Relative Stability of Closed-Loop Systems -M. J. Kirby and D. C. Beaumariage. (Trans. Amer. IEE, Part II, Applications and Industry, vol. 72, pp. 22-43; March, 1953.) The equivalence of a transfer-function plot and a plot of the Laplace transform of transient response is illustrated and the application of transform plots in the analysis of linear systems is described.

Nonlinearly Damped Servomechanisms-R.R. Caldwell and V. C. Ridcout. (Trans. Amer. IEE, Part II, Applications and Industry, vol. 72, pp. 165-169; July, 1953. Discussion, pp. 169-170.) Advantages of the system described by Lewis (1186 of 1954) over corres!onding linear systems are illustrated and modifications to improve its operation are suggested.

\section*{621-526}

2431
Limiting in Feedback Control SystemsR. J. Kochenburger. (Trans. Amer. IEE, Part 1I, Applications and Industry, vol. 72, pp. 180192; July, 1953. Discussion, pp. 192-194.) Study of the effect of limiting on system performance in terms of the frequency response.

\section*{621-526}

2432
Open-Loop Frequency Response Method for Nonlinear Servomechanisms-R. L. Cosgriff. (Trans. Amer. IEE, l'art II, Applications and Industry, vol. 72, pp. 222-225; September, 1953.) A graphical representation similar to a Nyquist diagram is developed for indicating frequency response characteristics and for the synthesis of linear filters.

\section*{621-526}

2433
The Synthesis of "Optimum" Transient Response: Criteria and Standard FormsD. Graham and R. C. Lathrop. (Trans. Amer. IEE. Part II, Applications and Industry, vol. 72, pp. 273-286; November, 1953. Discussion, pp. 286-288.) "Eight mathematical criteria for optimum transient responses are critically examined, and the clear superiority of the minimum integral of time-multiplied absolutevalue of error is demonstrated. The application of this criterion results in the selection of standard forms, which are presented in tables." See also 268 of Fiebruary.

\section*{621-526}

2434
Approximation of Transient Response from Frequency Response Data-C. Il. Dawson, (Trans. Amer. IEE, Part II, Applications and Industry, vol. 72, pp. 289-291; November, 1953.) A relatively short method is described involving an 18 -point graphical integration which gives accurate results for linear feedback systems with a closed-loop transfer function of fifth order or below.

\section*{621-526:016}

2435
Bibliography on Feedback Control-(Trans. Amer. IEI:, l'art II, Applicalions and Industry, vol. 72, pp. 430-462; January, 1954.) A classified list of references up to 1952 relating to the theory and application of feedback systems. A list of relevant periodicals is also given.

\section*{621-526:621.3.066.6}

2436
Control of Metal Build-up in Minimum Pressure Sensitive Contact Systems [for servo-mechanisms]-J. P. Dallas and T. R. Stuelpnagel. (Trans. Amer. IEE, Part II, Applications and Industry, vol. 72, pp. 398-403; January, 1954.) A review of designs aimed at reducing spire-type metal transfer on contacts with gaps of \(0.001-0.005\) inch and operating on pressures down to 0.01 g .

\subsection*{621.311.6:621.373.4}

2437
Highly Regulated R.F. Voltage SupplyL. G. Sloan, R. W. Raible and M. K. Testerman. (Electronics, vol. 28, pp. 192-200; April, 1955.) A rf output voltage of 5 v rms maximum, with low harmonic content, is obtained by using a crystal-controlled pentode oscillator at the fundamental frequency, with positive feedback. Regulation of the output is achieved by means of a negative-feedback loop incorporating a high-gain de amplifier which supplies the oscillator screen-grid voltage.
621.314.63:546.28

2438
Silicon Power Rectifiers for AC Line Opera-tion-G. Rudenberg. (Electronics, vol. 28, pp. 146-149; April, 1955.) Used as half-wave recti-
fiers, with capacitor-input filters, typical alloyjunction units rated for \(135-\mathrm{v}\) maximum mms input give 150 ma output at 125 degrees C. A typical full-wave rectifier with choke-input filter will deliver 800 ma at 125 degrees C . or 1.5 a at room temperature. Heat-dissipating mountings are discussed.

\subsection*{621.314.67:621.372.54}

2439
Rectifier-Filter Characteristics-F. G. Ileymann. (Wireless Eng., vol. 32, pp. 147-154; June, 1955.) Approximate calculations are described for the design of half-wave rectifiers with capacitor-input filters and of full-wave rectifiers with capacitor-choke-input filters. The method gives results within about 5 per cent of measured values.

\subsection*{621.316.7.012}

2440
Determination of Frequency Characteristics of Automatic Control Systems using Mikhailov's Curves-O. P. I emehenko. [Compl. Rend. Acad. Sci. URSS, vol. 100, pp. 693696; February 1, 1955. In Russian.]
621.316.93:621.396.933

2441
Aircraft Protection from Thunderstorm Discharges to Antennas-J. M. Bryant, M.M. Newman and J. D. Robb. (Trans. Amer. IEE, Part II, Applications and Industry, vol. 72, pp. 248-252; Sejtember, 1953. Discussion, pp. 253-254.) See 1586 of 1954.

\subsection*{621.316.993.08}

2442
The Effect of Reactive Components in the Measurement of Grounding Circuits-I. II. liarrison. (Trans. Amer. IEEE, Part 1I, Applications and Industry, vol. 72, pp. 340-3.43; November, 1953. Discussion, pp. 343-345.) Discussion of results of measurements of earth resistance using ac in the range \(30 \mathrm{cms}-200 \mathrm{kc}\), and dc.

TELEVISION AND PHOTOTELEGRAPHY 621.397.2:621.397.8

2443
Some Typical Characteristics of FrequencyModulated Television Transmissions- \(\boldsymbol{C}_{\text {r }}\). 13rühl. (Arch. elekt. Übertragung, vol. 9, bi. 63-68; February, 1955.) Control of picture quality in the conrse of intermational television exchanges is considered. The distortion of the video signal by multiple reflections in hf and IF cables is discussed; the frequency swing is the determining factor. Methods of specifying the permissible deterioration and of measuring the relevant system transmission properties are indicated.

\subsection*{621.397.24}

2444
The London-South Wales Television Link -J. C. D. Bell (GEC Telecommun., no. 18, pp. 4-13; December, 1953.) Simultaneous two-way transmission is provided on the 165 -mile London-Wenvoe coaxial link. The over-all gain/frequency characteristic is flat within \(\pm 0.65 \mathrm{db}\) and the delay/frequency characteristic is flat within \(\pm 0.075 \mu s\) over the range \(500 \mathrm{kc}-3.8 \mathrm{mc}\). The rms noise level is 58 db below carrier level for the London-Bristol section.

\subsection*{621.397 .3}

2445
Image Processing—L. S. G. Kovásznay and H. M. Joseph. (Proc. IRE, vol. 4.3, pp. \(560-570\); May, 1955.) Mathematical theory is presented and extensions and applications are discussed of the techniques described previously (1541 of 1954).

\subsection*{621.397.335.001.4}

2446
Aligning TV Receivers by Pulse-Cross Dis-play-H. E. Thomas. (Electronics, vol. 28, pp. 184-192; April, 1955.) Synchronization faults in a television system may be analyzed by presentation on the picture tube screen of the synchronizing and blanking portions of the signal, by simple adjustment of the receiver controls. See also 1125 of 1952 (Launer).
621.397 .5

2447
Television and Modern Information Theory -F. Schröter. (Arch. elekt. Übertragung, vol. 9, pp. 1-7; January, 1955.) See 556 of March.
621.397.5(083.7)

2448
I.R.E.Standards on Television: Definitions of Television Signal Measurement Terms, 1955-(PROC. IRE, vol. 43, pp. 619-622; Standard 55 IRE 23 S1.
621.397 .6

2449
Possible Methods of Equalization in Vestigial Sideband Transmission in Television -II. J. Griese. (Fermmeldetech. Z., vol. 8, pp. 94-103; February, 1955.) A survey with particular reference to the rethod of improving transient response described by Ruston ( 3253 of 1952). Results of an experimental investigation of transient response on two types of receiver are presented graphically and a standard television-receiver response is proposed, combined witl the application of group delay pre-emphasis at the transmitter.
621.397.6:778.5:621.395.625.3

2450
Methods of Picture-Synchronized Sound Recording in Television-K. E. Gondesen. (Tech. II ausmill. NordwDtsch. Rdfunks, vol. 6, nos. \(11 / 12\), pp. \(237-242\); 1954.) 16 -mmn film with magnetic sound track is prcferred. The princijples of the single-stripe method and three variants of the doulie-strige method, (a) with perforated film, (b) with a pilot frequency and (c) without special synctronization, are outlined. The equipment and operation of these methods are described and applications of these and photoelectric recording techniques are tabulated. See also 1802 of July (Lituer and Schulze).
621.397.611.2

2451
Properties and Applications of Television Camera Tubes with Photoconductive TargetsW. Heimann. (Arch. elekt. Übertragung, vol. 9, pb. 13-19; January, 195s.) The construction and oneration of vidicon-type tubes are discussed with marticular refiarence to the development of a German tube, the resistron. A method is described for measuring the time delay of the target response in normal operation, in which a vertical bar pattern is scamed horizontally across the target. The picture quality attained is illustrated by photographs.
\(621.397 .62+621.396 .67\)
2452
New Television Receivers and Aerials [in Western Germany]-W. W. Diefenbach. [Funk-Technik (Berlin), vol. 10, pp. 88-91; February, 1955.] A brief survey of commercially available equirment.
621.397.62:535.88

2453
M.E.P. 55 Projector-A. V. J. Martin. (Télévision, no. 51, pp. 45-51; liebruary, 1955.) Illustrated description of a television receiver using a classical objective system for projecting pictures of linear dimensions variable from about 25 cm to 3 m . The equipment is no larger than a standard receiver with \(36-\mathrm{cm}\) screen.
621.397.621.2:535.623

2454
Convergence in the CBS-Colortron "205"J. Giuffrida. (Radio-Electronic Eng., vol. 24, pp. 12-13, 27; February, 1955.) Accurate superposition of the three beams in the center of the screen of this color-television tube is achjeved by using radial-dellection correcting coils or permanent magnets on all three guns and a lateral-deflection acjustment on one of them. Convergence of tlie beams when deflected requires further magnetic fields which vary as complex circular functions of the scanning angle. Circuit arrangements for deriving the required magnetic-field waveforms from the defiection system are indicated.

Some Problems in Television LightingW. C. Pafford. (Wireless W'orld, vol. 61, pp. 288-290; June, 1955.) Discussion of scene illumination and camera arrangements.
\(621.397 .74+621.396 .97\)
2456
Present State of U.S.W. Sound and Television Broadcasting Coverage [in Germany]R. Gressmann. (Finnk-Technik, vol. 10, pp. 31-34; January, 1955.)

\section*{TRANSMISSION}
621.376 .223

2457
Unbalance Effects in Modulators-D. \(\mathrm{G}_{\text {. }}\) Tucker. (Jour. Bril. IRE, vol. 15, pp. 199207; April, 1955.) Rectifier modulators of (a) shunt ("Cowan") and (b) ring tyrees are considered. With tyje (a) only one balance control is needed and only one unbalance commonent can in general be brought to a real minimum by a particular adjustment. With type (b) two independent balance controls can be provided and two unbalance components can be simultaneously brought to a minimum. The effect of the signal voltage on the magnitude of unbalance components is zero in a morlulator which is perfectly halanced in the absence of signal, and is noticeable only near the overload point even when initial unbalance exists.

\subsection*{621.396.61:621.3.018.78}

2458
The Problem of Distortion in Anode-Volt-age-Modulated Transmitters-W. T. Runge. (Telefunken Zig, vol. 27, p. 254; December, 1954.) Correction to paper abstracted in 262 of 1953 .

\subsection*{621.396.61:621.375.2}

2459
Progress in the Construction of Modulation Amplifiers for Anode-Modulated Broadcasting Transmitters-H. Müller. (Telefunken Zig, vol. 27, pp. 204-210; December, 1954.) Development work was aimed at reducing the amount of equipment and the power dissipation. The essential features of the present circuit arrangement are (a) operation of the driver valve with grid current, (b) dc negative feedback on the driver, and (c) a substantial reduction in the anode currents of the output valves with no signal applied. Because of the higher efficiency resulting from grid-current oberation, smaller tubes with lower anode voltage can be used. Measurements on amplifiers for \(20-\mathrm{kw}\) and 150 -kw transmitters confirmed the saving in equipment and power dissipation.

\section*{TUBES AND THERMIONICS}
621.314.632:546.289

2460
The Barrier Height of Point-Contact Germanium Diodes inferred from Measurements of the Voltage Dependence of CapacitanceF. I. Roberts and J, R. Tillman. (Proc. Phys. Soc., vol. 68, pp. 113-115; February 1, 1955.) Results of measurements on several types of diode are presented graphically, using a \(\log\) \(C / \log (V+\phi)\) presentation so as to give equal prominence to large and small values of the capacitance \(C\) and reverse voltage \(V\), the constant \(\phi\) being chosen for each unit so that the curves are nearly straight lines. The value of \(n\), the reciprocal of the slope, is about 2 for most types and about 3 for some others; the interpretation of these values is discussed in terms of the distribution of impurities. It is inferred that for the cases where \(n \sim 2\) the barrier height for electrons approaching the semiconductor from the metal is less than or barely equal to half the forbidden energy gap for Ge. Attention is drawn to the discrepancy between this low value of barrier height and the much greater values to be inferred from measurements of injection ratio [e.g. 2536 of 1954 (Swanson)].

Contact Germanium Diodes-Firle, Mc.Mahon and Roaclı. (See 2356.)
\(621.314 .7+537.311 .33\)
2462
Semiconductors and the Transistor-E. W. Herold. (Jour. Frank. Inst., vol. 259, pp. 87106; February, 1955.) A general survey with 33 references.

2463
Some Aspects of the Design of Power Transistors-N. H. Fletcher. (Proc. IRE, vol. 43. pp. 551-559; May, 1955.) Design of alloyed-junction transistors for af operation with output \(>1\) w is considered. Special clectrical problems are involved since the injected carrier density cannot be considered as a linear perturbation. Mechanical design problems relate mainly to cooliug and shock resistance. The effect of reduction of emitter bias due to transverse current flow in the base region is examined. Transistors with class-A output ratings \(>50 \mathrm{w}\) have been obtained.
621.314.7.002.2

2464
The Transistor: Part 4-the making of Transistors-14. Yemm and J. L. Carrasso. (P.O. Elec. Eng. Jour., vol. 47, Part 4, pp. 217-221: January, 1955.) Part 3: 1070 of May (Speight and Carasso).
621.314.7.012.8

2465
Theory of Equivalent Circuits for Junction Transistors-Oertel. (See 2216.)

\subsection*{621.314.7.012.8}

2466
The Frequency Dependence of [junction-] Transistor Quadripole Parameters-Kettel and Meyer-Brötz. (See 2217.)
621.383 .2

2467
Energy Distributions of Photoelectrons from Au and Ge in the Far Ultraviolet-IV. C. Walker and G. L. Weissler. (Phys. Rev., vol. 97. pp. 1178-1179; February 15, 1955.)

\subsection*{621.383 .2}

2468
Evolution and Conservation of the Photoelectric Effect of an \(\mathrm{Sb}-\mathrm{Cs}\) Layer deposited in Vacuum-A. Lallemand and M. Duchesne. [Compt. Rend. Acad. Sci. (Paris), vol. 240, pp. 1329-1331; March 21, 1955.] Experiments are described in which a sealed tube containing an \(\mathrm{Sb}-\mathrm{Cs}\) photocathode is introduced into an evacuated enclosure. After evaporating Ba onto the enclosure wall, the inner tube is broken and the time variation of the photoelectric emission is observed. Photosensitivity is retained longer by those cathodes which are richer in Cs. When the cathode is placed on a support cooled to about -55 degrees \(C\). the photosensitivity is not apprecialby reduced after several hours, while the dark emission is considerably reduced.

\subsection*{621.383 .27}

2469
Theory of Operation of the Final Stage of a Photomultiplier-P. Leuba, (Jour. Phys. Radium, vol. 16, pp. 161-162; February, 1955.) Under specified operating conditions, the voltage variation on the collector electrode is expressed approximately by \(d u / d t+u / R C\) \(=q(t) / C\), where \(R C\) is the time constant of the equivalent capacitor, and \(q(t)\) the charge transferred from the penultimate electrode to the collector. When \(R C / T \gg 1, T\) being the period of charge transfer, operation is linear. When \(R C / T<100\), experiment shows that \(q(t)\) is approximately an inverse exponentia! function.

\subsection*{621.383.4/.5:546.289}

2470
Germanium Junction Photodiodes-Zh. I. Alferov, B. M. Konovalenko, S. M. Ryvkin, V. M. Tuchkevich and A. I. Uvarov. ( \(Z h\). Tekh. Fiz., vol. 25, pp. 11-17; January, 1955.) In the photocell proposed by Shive ( 2825 of 1953) the direction of the beam of light is parallel to the plane of the \(n-p\) junction. In the cell
used in the present investigation the light beam is perpendicular to the plane of the junction and passes through a thin layer of \(n\) - or \(p\)-type Ge. Experiments were carried out to determine the voltage/current characteristics, dependence of current on intensity of illumination, distribution of sensitivity over the surface, spectral distribution of sensitivity, inertia and temperature effect.
621.383.4/.5:546.289

2471
Sensitivity of Germanium Photodiodes to X Rays-B. M. Konovalenko, S. M. Ryvkin and V. M. Tuchkevich. (Zh. Tekh. Fiz., vol. 25, pp. 18-20; January, 1955.) Measurements indicate that Ge photodiodes are much more sensitive to \(X\) rays than silver sulphide or selenium photocells. They also possess the advantage of a linear current/irradiation characteristic.
621.383.4/.5:546.289

2472
Mechanism of Operation of Germanium Photodiodes-S. M. Kyvkin. (Zh. Tekh. Fiz., vol. 25, pis. 21-28; January, 1955.) Theory of the operation of an \(n-p\) Ge diode as a photocell is given: the fundamental relations are established between the photo-emf, short-circuit photocurrent and saturation current for the case of operation as a barrier-layer photocell. A general equation suitable for any operating conditions is also derived. Results are given of experiments thade to verify the relations obtained, and the efficiency of the diodes used as barrier-layer photocells is discussed.

\subsection*{621.385:621.317.7}

2473
Circuit for the Determination of Contact Potentials and Electron Temperatures from Retarding Field Characteristics-Fricdman and Heynick. (See 2369.)

\subsection*{621.385: 621.396.822}

2474
Fluctuations of Cathode Emission in Electron Valves-A. Blanc-Lapierre, G. Goudet and P. Lapostolle. [Compt. Rend, Acad. Sci. (l'aris), vol. 240, pp. 1409-1411; March 28, 1955.] Noise due to fluctuations of electron velocity and of current density is cliscussed. Separate consideration is given to the cases where (a) electrons are emitted at regular intervals, and (b) electrons are emitted at irregular intervals. In case (a) there is no noise contribution from current fluctuation; expressions are given for the current-fluctuation contribution in case (b) and for the velocity-fluctuation contribution, which is twice as great in case (b) as in case (a). Values derived for the anode-current fluctuations of a space-charge-controlled diode, using the case (a) formula, are in good agreement with those obtained by direct calculation and in fairly good agreement with values obtained experimentally, indicating that the electron emission is regulated by the virtual cathode.

\subsection*{621.385.029.6}

2475
Space-Charge Waves in Ion-Free Electron Beams-J. Labus and K. I'öschl. (Arch. elekt. Übertragung, vol. 9, pp. 39-46; January, 1955.) In a previous analysis by Labus ( 2182 of 1953) the rf variations of the beam boundary were neglected; on taking these into account, the theoretical results are in satisfactory agreement with measurements made at the Massachusetts Institute of Techmology. Sce also 2807 of 1954.

\subsection*{621.385029 .6 \\ 2476 \\ The Design of Travelling-Wave Output Valves for Microwave Relay Stations-W. Klein. (Arch. elek!. Übertragung, vol. 9, pp. 5562; February, 1955.) The operation of helixtype valves capable of giving outputs of the order of 5 w is discussed on the basis of the relation between gain and power level. To obtain the required output it is necessary to use electron guns providing strong beam con-}
centration, or alternatively to use cathodes giving high current density; the requirements become more difficult to satisfy as the wavelength decreases. With high-gain valves very good matching is required between the localized attenuation section and the rest of the helix. Typical values of efficiency are \(10-15\) per cent. See also 1526 of June (Klein and Friz).

\subsection*{621.385.029.6:621.317.755 \\ 2477 \\ Velocity Spectrography of Electron Dynamics in a Travelling Field-Purl and Von.} Foerster. (See 2379.)

\subsection*{621.385.032.2:537.533 \\ 2478 \\ New Approach to the Design of Electron} Guns for Cylindrical Beams with High Space Charge-M. Miuller. (Arch. elekt. Überiragung. vol. O, 1p. 20-28; January, 1955.) Discrepancies between the predicted and observed characteristics of guns with spherically curved electrodes (l'ierce type) are studied. The influence of the anode aperture is evaluated by electro-lyte-trough incasurements, using specially shaped anode and control electrodes. Design details are given for simple electrode shapes and arrangements, and an indication is given of the corrections for high perveance values. Effects due to thermal velocity distribution are discussed.

\subsection*{621.385.032.21}

2479
The Platinum-Cored Oxide-Cathode Repeater Valve-G. II. Metson. (P.O. Elec. Eng. Jour., vol. 47, jart 4, pp. 208-211; January; 1955.) The reactions of cathodes with pure platinum and nickel cores to oxygen attack are compared. Complete recovery from heavy oxygen contamination occurs in the case of platinum, whereas the nickel-cored cathode is completely destroyed.

\subsection*{621.385.032.213}

2480
Deviation from the Boguslavski-Langmuir Law when a Tungsten Cathode of a Thermionic Valve is Heated by a High-Density Current Pulse-S. V. I elsedev. (Zh. Eksp. Teor. Fiz., vol. 27, 11), 487-500; ()ctober, 1954.) Experiments were made to find the cause of the abnormal increase in the anode current when a tube filament is heated by a high-density current pulse. A detailed report is presented including photographs of oscillograms recorded. The main conclusion reached is that the current increase is due to a change in the state of the tungsten, and is not related to the neutralization of the space charge by ions.

\subsection*{621.385.032.216}

2481
Electron-Optical Study of Non-stationary Emission from an Oxide Cathode in Vacuum and in a Gas-1. N. I'rilezhaeva, V. V. I.ivshits and (i, V, Spivak. (2h. Tekh. liz., vol. 25, pi). \(97-107\); January, 1955.) The emission from a pulsed cathode was studied. Electron-ontical images were obtained showing the disturbances calused by sparking and cathode poisoning. Oscillograms of discharge currents corresponding to these images are also given.
621.385.032.216

2482
Growth of the Barium Orthosilicate Interface of Oxide-Coated Cathodes-M. G. Harwood and N. Fry. (Bril. Jour. A ppl. Phys., vol. 6, pp. 62-64; February, 1955.) The core/coating interface of oxide cathodes with Ni-alloy cores containing (a) 0.048 per cent and (b) 0.17 per cent Si was examined. In addition to barium orthosilicate a layer of nearly pure strontium oxide was found. Results of an investigation of the barium orthosilicate layer during heating at 765 degrees \(C\). for up to 2,000 hours indicate that the growth continues until all the available Si is used up, in case (a), but a limitation of the growth is apparent in case (b), possibly due to diffusion of Si .

\subsection*{621.385 .832}

2483
Optical Distortion of Magnetic Deflecting Coils-E. Canbi. (Alla Frequenza, vol. 23, pp. 292-334; December, 1954.) First-order approximations are made for three distinct causes of distortion considered separately. These are (a) finite length and axial nonuniformity of the field, (b) curvature of the screen, and (c) transverse nonuniformity of the field. (a) is substantially independent of the direction of deflection, and may be partly compensated by (b) provided the screen is rotationally symmetric and concave. (c) is considered in terins of percentage of field harmonics present, i.e. in terms of design parameters of the coil. Conditions under which the geometric and thirdharmonic distortion due to (c) can cancel out in an axial direction are established. All formulas are expressed in terms of design parameters of a cr tube.

\subsection*{621.385 .832}

2484
A Revolutionary Television Tube- (Radio and Telev. News, vol. 53, p. 44 ; April, 1955.) Brief description of a very-short-length picture tube comprising a phosphor screen sandwiched between glass plates. An electron beam is directed along an edge, adjacent to a row of deflection plates; by applying a control voltage to a selectecl deflection plate the beam is bent at right angles, remaining parallel to the plane of the screen. A second set of deflection plates is used to bend the beam so as to strike the screen normally.

\subsection*{621.385.832:535.37}

2485

\section*{Reduction of Cathodoluminescence of} \(\mathrm{ZnS}: \mathrm{Ag}\) by Irradiation with \(16-\mathrm{kV}\) Electrons に. H. J. Rottgardt and W. Berthold. (Nalurwiss., vol. 42, p. 67; February, 1955.) Exteriments were made using ordinary \(43-\mathrm{cm}\) television tubes with Al-coated screens. Comparison of the results with those obtained previcusly for bombardment with \(4-k v\) electrons [ 3420 of 1954 (Rottgardt)] confirms that the reduction of luminescence depends only on the number of incident electrons and is independent of electron energy over the range 2-16 kv.

\subsection*{621.385.832:681.142}

2486
A Beam-Deflection Valve for use in Digital Computing Circuits-M. W. Allen. (l'roc.

IEE, Part C, vol. 102, pp. 57-61; March, 1955. Digest, ibid., Part II, vol. 101, pp. 682684 ; December, 1954.) The properties required in a universal computing element are discussed in terms of the analogy with the nervous systern. \(\Lambda\) description is given of a ribbon-beamdeflection tube consisting of two interconnected elements each having the desired properties; this enables binary addition and other operations of interest to be performed in a single tube with a 12 -pin base.

\subsection*{621.387}

2487
Restoration of Control in Ionic ApparatusV. I. Drozdov and A. F. Smirnov. (Zh. Tekh. Fiz., vol. 25, pp. 85-96; January, 1955.) The time necessary for the restoration of control in devices such as thyratrons, mercury rectifiers etc, after the cessation of the current is consitered; various definitions are discussed. An elementary theory of the restoration process is proposed and two experimental methods are described for determining the "electricstrength"/tione build-up characteristic which indicates the ability to block the anode voltage. Some experimental results are given.

\subsection*{621.387.032.216}

Peak Current of Oxide Cathodes 2488 Oxide Cathodes in Arc Discharges-II. J. Vogt. (Elektrotech. Z., Edn A, vol. 76, pp. 192-195; March 1, 1955.) An oscillographic pulse-method for determining the permissible peak current is described. At this value of current, when the emission from the cathode just becomes nonuniform, both the anode voltage and the emission current cro traces show sharp "sjuikes." This condition was also observed spectroscopically. A circuit diagram of the experimental setup is given.

\section*{MISCELLANEOUS}
061.4:[621.317.7+621.38

2489
Physical Society's Exhibition [1955](Wireless World, vol. 61, pp. 271-278; June, 1955. Correction, ibid, vol. 61, p. 324; July; 1955.) An illustrated review of exhibits, including instruments and tubes shown also at the REC.MF exhibition ( 2490 bclow). See also Wiveless Eng., vol. 32, pls. 169-172; June, 1955.
061.4:621.396.6

2490
Components Exhibition-(Wireless World, vol. 61, pp. 258-264; June, 1955.) Detailed review of components and accessories at the RECM1F exhibition held in London, April, 1955. See also 2489 above.

\subsection*{621.19:621.37/.38|.004.4}

2491

\section*{Mould Growth in Electronic Apparatus-} E. Ganz and O. Walchli. (Bull. schweiz. elektrotech. Ver., vol. 46, pp. 233-239; March 19, 1955. In French.) The IEC-recommended methods for testing equipment and components for resistance to mold growths are discussed and modified test specifications are proposed based on experimental results. Spraying or painting with a suitable varnish should give adequate protection

\title{
Gulton abstracts
}

\section*{Tailored Engineering Creates Unique Accelerometer System}

The new Clennite ©elfrecording accelerometer system is an outstanding example of how the practice of "tailored engineering" is brought to bear by Gulton Industries upon the specific need of industry.

The accelerometer. Model KAT-1. can reliahly measure accelerations up to \(\pm 60 \mathrm{~g}\) in moving devices without the use of direct cable or wireless connections, and is particularly applicable in guided missiles. air. sea, and land vehicles, underwater devices, and ordnance equipment where remote or relatively inacces. sible mounting of the accelerometer is required.

The accelerometer, completely selfcontained and self-recording, provides an instantaneous 30 -second permanent tape recording of shock and vibration phenomena. These measurements are then reproduced in a special playback unit and can be read through any standard recording device such as a galvanometer. ascilloscope, meter, or direct. writing recorder.

From the seismic transducer and tape transport mechanism of the recorder to the demodulator of the playbark unit. the Glemite KAT-l system has been engineered and designed with new techniques and developments never before found in an instrument of this kind. A new phase modulation system provides


SPECIFICATIONS:
Range:
\[
\begin{aligned}
& 0- \pm 60 \mathrm{~g} \\
& 0=300 \mathrm{cps}
\end{aligned}
\]
Frequency Range:
Seismic Element Resonance:

\section*{Recording Speed:}
above 500 cps
\(15^{\prime \prime}\)
Recording Time:
30 seconds ( 500 inches using 2.5 mil tape)
Channels:
Size:
Weight:

\section*{1}
\(41 / 2^{\prime \prime}\) diameter by \(3^{\prime \prime}\) high
3 pounds

Instantaneous start by pull of wire or electric relay; automatic stop when tape recording is completed.
(3)Trade mark registered


Each high-reliability capacitor which leaves the Glenco plant is first tested in this special tempera-ture-controlled oven which prorforms accelerated life tests on 2400 units simutaneously.

\section*{Combine Hi-Reliability and Hi-K in New Subminiature Capacitors}

The continually growing commercial and military need for high-reliability components can now be met in your industry by using (ilennite mixhlati: ceramic capacitors

Through constant research and dewlopment, the normally undesirable feature of sacrificing high-reliability for high-K in summinature capacitors has been eliminated.
an amplitude accuracy comparable to an FM tape system yet overcomes the typical FM system errors normally caused by tape speed variations. A completely transistorized electronic circuit has heen developed to minimize size. weight. and battery power consumption and. in addition. provides instantaneous starting. Simple adjustment of phase sensitivity can provide various acceleration ranges within the same instrument. and overall phase characteristics have been made independent of oscillator stahility. temperature. and battery condition to provide greater accuracy.

Meanwhile. extensive development work is in progress to extend the application of the accelerometer to include multi-channel operation and other uses in the fictds of pressure and temperature measurements.
lerhaps the Glennite KAT-l taperecording accelerometer system can help your shock and vibration measurements. You are urged to write ahout your problem on your company letterhead to:

\author{
Gulton MIfg. Corp. \\ Metuehen, New Jersey
}

And now of prime importance. where space and weight are prime factors and when varied circuitry demands superreliable performance-such as in computers or in complex aircraft equipment upon which a human life may dependthese capacitors are available to insure against even virtual negligible failure in field use.

Quality controlled and inspected from the initial processing of the raw material hrough final assemhly, Clennite capacitors are produced in one plant under one roof to insure consistent standards of high-reliability and superior characteristics.

The patented thin sheet process of automatic manufacture, unique testing methods-including a rugged 24 -hour life and screening procedure-and new cwating tecliniques have been combined to produce a product with increased reliability and unusual flexibility of size and shape to conform to your specifications.

Yoner inquiry is invited. For more information about miviplate capacitors (high-relialiility and high-K), write on your company letterhead to:

\section*{Glenco Corporation \\ Metuchen, New Jersey}
publishet by
GULTON INDUSTRIES, INC.

Gominisfing: Gulton Mfg. Corp. Glenco Corparation - Vibro-Ceramics Corporation
Greibach Instruments Corporation - Thermistor Corporation of America

\section*{FIRST REPORT}


\section*{TELEMETERING TESTS}


Mycalex 410 provides:
- absolute dimensional and age stability
- imperviousness to moisture
- precision dimensional tolerance control
- temperature endurance to \(650^{\circ} \mathrm{F}\).

Write today:
Mycalex Electronics Corporation
Dept. 111
P. 0. Box 311

Clifton, N. J.

\section*{MYCALEX ELECTRONICS CORPORATION}

Under exclusive license of the Mycalex Corporation of America

Executive Offices
30 Rockefeller Plaza New York 20, N. Y.

(Continucd ircm prage 9|A)
Newman, M. M., Li,hting \& Transient: Re search Inst., Minneapolis 2, Minn.
Newmeyer, D. R., 2025 Rittenhouse St., Phita delphia 38, Pa.
Nicholides, E. C., 116 Pizehurst Ave., New York 33, N. Y
Nielsen, G., Jr., Bell Tel. Zabs., Inc., Murray Hill, N. J.
Nielsen, H. V., 11 E. 31 St., New York 16. N. Y.

Niemi, L. T., Navcicoffscol, Naval Air Station, (Blenview, Ill.
Nierstheimer, I'. H., 1974 Shaftsbury Rd. Day ton 6, Ohio
Niewenhons, I. H., 54 Colonial Dr., Farming dale, 1.. I., N. Y
Nixhemhelser, L. W., R.R. 1, Arcadia, Ind. Nitsche, I. E., Corning Glass Works, Corning, N. Y.

Nittoli. A. J., Pond Acre, Rt. \(25 \cdot\) A, R.F.D. Syosset, L. I., N. Y
Nom, J. R., 1542 E. Rancho Dr., I'hoenix, Ariz. Noriy, 1. A., 10746 Crank Rd., Culver Cits Calif
Nordseth, M. P., Navy Ord. Labl., Corona, Calif Nordyke, H. :V., Jr., Merry Hill, 'Titusville Rd. Poughkeepsie, N. Y.
Normando, N. T., 133 Locust Ave., Dumont
Norris, R. M., 1323 Fern Ave., Torrance, Calif Northrol, P. A., 52 Grove St., Lexington 7.3. Mass.
Nothoff, A. P., Jr., 19 Nancy Way, Menlo l'ark, Calif.
Novak, W. D., Gipsy Trail Cluh, Carmel, N. Y'. Novick, (i., 96 Queens 1)r., S., Little Silver. N. J.

Novick, R.. 74-22-263 St. Floral Park, I.. I
Nunan, I. K., 1775 Mt. Read Blvd., Rochester
Nuut, A., 1330 Cortova Ave., Glendale 7, Calif. Nyland, F. S., \(100+\) A Kern Mivd., Fll l'aso, Tex. Nymberg, R. J., Jr., 21644 Penbroke, Detroit 19, Hicl.
Nyswamler, R. E., 7012 N. 8 Ave., Ihoenix, Ari\%
Oates, T. I.., 616-27 St., Sacramento 16, Calif. O'brien, J. A., 1109 Fim Ave., W. Collingswood (')Brien, '1. H. 6.3 Aster Dr.. New Hyde l'ark. I. I., N. Y

Olsharsky, P., 131 Hudson Ave., Red Bank, N. J.

Ocko, R., 868 L.ancaster Ave., Syracuse 10, N. Y. O'Day, M. D., 642 Pleasant St., Belmont i尺. Mass.
Ogram, R. L., 1325 Trieste Dr., Sall Diego 7. Calif.
Ohler, A. F... 514 Holmente ul Ave., Hathlonfield. N. J. Ohlsson, R. L.., Willow Run Research Center. Mpsilanti, Micr.
(Hha, W. R., 51 Westwille Ave., Danbury, Conn. (Hsen, E. l'., 22 ITawthor've Ave., Glen Ridge. N. I.
()man, N. J., 6529 Rogers Ave., Merchantville 8, N. J.
0'Meara, T. I., 21 Lace L_ane, Westhury, L. I., N. Y.
(1.Meara, W. J., Montgomery Ave., Ambler, J’a. (1'Reilly, J. P., 538 Sherwool Ikwy., Westfield. N. J.

Ornstein, E., 333910 PI., S.E., Washington, D. C. Osloon, W. O., W'estinghouse Elec. Corp., F Pittslurgh, Pa
()sborn, P. H., 546 Sunset Ave., Haworth, N. J. Oshorn, R. L., 8652 Kedvale Ave., Skokie, III. Ostrolenk, S., 10 F. 40 St., New York 16, N. Y. Ould, R. S., Box 27, Washington 4, D. C.
I'achuta, ग. R., 3824 Milan Dr., Alexandria, Va. (Continued on gage 100 A)

\section*{Cilinpilili/ advance-designed yesterday} industry-wide
use today!



SR4WGB


\section*{STANDARD TYPES DIRECT FROM STOCK}

PLUS SPECIAL DESIGNS BUILT TO REQUIREMENTS
Chatham specializes in the development of general ard special purpose tubes for both electronic and industrial applications. Many of the tubes originally developed by Chatham to fill a specialized need, now number among the most widely used tubes in the industry. For complete information on Chatham tubes - either stock items or types built to your requirements - call or write today.

\section*{-3B28 RECTIFIER}

Rugged half-wave Xenon filled rectifier. Operates in any pasilian. Ambient temperature range \(-75^{\circ}\) to \(+90^{\circ} \mathrm{C}\). In. verse peak anode vollage 10,000 , average current . 25 amps. Filament 2.5 v ., 5 amp.
- 4 B32 RECTIFIER

Ruggedly built, half-wave Xenon filled rectifier. Ambient temperature range \(-75^{\circ}\) to \(+90^{\circ} \mathrm{C}\). Inverse peak anade voltage 10,000 , average anode current 1.25 amp . Filament 5 v ., 7.5 amp.
- VC-1258 MINIATURE HYDROGEN THYRATRON
for pulse generation. Handles 10 kw peak pulse power.

6336 TWIN TRIODE
for voltage regulation. Features high plate dissipation, hard glass envelope.
- 5R4WGB RECTIFIER

Full wave rectifier manufactured to MIL-E-1B reliable tube specifications.
- 5651-WA VOLTAGE

REFERENCE TUBE
Stoble, rugged. Available in both commercial or relioble tube MII types.


\author{
CHATHAM ELECTRONICS \\ Division of Gera Corporation LIVINGSTON, NEW JERSEY
}

\section*{FERROXCUBE SHIELDING BEADS}


Ferroxcube shielding beads on inpul leods provide simple, efficient decoupling so that \(h-1\), i -f and pulse signals from output stages will not be picked up by input wiring. High. permeobility Ferroxcube material increases inductance so that lead acts as h.f choke while i-f, h-f and pulse oscillations are damped by high losses that occur in Ferroxcube 3B of frequencies over 0.5 mc .
Ferroxcube shielding beads also increase the h.f effective. ness of button-type ceramic feed-thru capacitors. SEND FOR BULLETIN FC 5112
FERROXCUBE CORP. OF AMERICA
A Joint Affliate of Sprague Electric Co., and Philips Industries, Managed by Sprague
235 East Bridge Street - Saugerties, New York


\section*{AN/APR-4 LABORATORY RECEIVERS}

Comprete with all five Tuning Units, covering the range 38 to 4,000 Mc.: wideband discone and other antennas, wavetrapt, mobile accessories, 100 page technical manual, etc. Versatile. accurate, compact-the aristocrat of lab receivers in this range. Write for data sheet and quotations.

We have a large variety of other hard-to-get equipment, including microwave, aircraft, communications, radar; and labo. ratory electronics of all kinds. Quality standards maintained. Get our quotations!
NEW TS-I3/AP X-BAND SIGNAL GENERATORS, with manual, \(\$ 575,00 \ldots\) T-47A/ART-13 Transmitters, \(\$ 450.00 \ldots\) H-P, Boon ton, G-R, Measurements, and other standard items in stock:
also nucleonic equipment.

ENGINEERING ASSOCIATES


\section*{TRANSCONDUCTANCE ANALYZER} AND CIRCUIT SIMULATOR

This direct-reading metermeasures transconductance under all operating conditions. It has directly calibrated voltage controls and means for connecting components to simulate the circuitry in which a tube will operate. Facilities are provided for measuring both static and dynamic tube characteristics.

Transconductance Range: \(0-100,0-500\), \(0-1,000,0-5,000,0-10,000,0-50,000\) micromhos. Accuracy of measurement: \(\pm 5 \%\). Write for Catalog

(Continued from page 9\&A)
lalik, F., Fect. Comm. Come, New Pont Oftice Bldg., Washington 25, D. C.
Palm, H. A., Jr., 5250 N. Spauhling Ave., Chi. cato 25, 111.
Palm, K. F., R.D. 1, Box 61. Moorestown, N. J.
Palmer, F. J., 49 Stow St., So. Acton, Mass.
Pahner, O, Lfo, Ir., 1131 'rulane St., Houstor 8, Tex.
P'alumuist, (\%. A., 150 Kelburne Ave., N. Tarrytown, N. Y'.
P'ardee, O. O’M., Syracuse T'nis., Syracuse 10 . N. \(\because\).

I'arke, H. (i, 138-71 St., Brooklyn 9, N. Y'.
Parker, A. P., 33 Ivanhoe Ave., Dayton 9, Ohio
Parker, E. O., Jro, 427 Huton Ave., Camiridge 38, Mass.
Parker, J. R., 8 I.ippineott Ave., Iastelon Heiplits. N. J.

Parker, R, O., 2045 San Diego Ave., San Diego 1, (alif.
l'arker, R. H., 2831 Post (Oak Rd., 1 Iouston 19. Tex.
Parker, S. F.., 854 Bangor St., San Diego 6. Calif.
Parsons. 13. La, 100 Center St., Williston Park, I.. 1., N. Y

Partin, M. E., 5009 Bondinot St., Philadeldhat 20, 1'a.
Parsons, I. R., 1709 S . Keeler, Bartlesville, Okla. baskin, M., 2.31) \& Selgwick Ave., New York 68.
l'aslay, I. C., 4815 Shadyword lane, Dallas 9. Tex.
Dataki, F.., 343 F. 8 St., New York 9, N. Y.
Pant, (i, S., 60 Hudson St., New York 13, N. Y.
Danls, (G. C., 1108 I'embroke Wr.. Webster (iroves 19, Mo.
Pearson, II. A., Sonotone Corp), Fhimsford, N. Y. Pearson, S. S., 2585 Rosewed Ave., Roslyn, Pa. Peekham, 1I. A., 1.30 S . Fairvirw Ave., L'pler larly, lat.
Pelzman, 1., 225 W .25 St., New York 1, N. Y. 1'enwell, G. N., Box 691, Bozeman, Mont.
Perch, D. F., 1009 Dixie 11 wy., Rossford, Ohio
Perkins, F.. (i., Suprense Instr. (\%o., (ireenwood, Miss.
Perlman, 1., 2251-81 St., Brooklyn, N. Y'.
Perniek, 11. 1... 531 f.. 54 St., New York 9, N. Y.

Perry, J, S., Box 351, Pen ningion Dr., Itunting. ton, I. I., N. V". Calif,
Perry, V. G., 2921 Mansfied Ave., S.F., (edar Rapicls, lowa
Petersen, M. Fo.. 1.42 I anghlon Ave., Watertown, Mass.
Petersen, R. I... Guerrero 14, Fisq. l'atton, l'ark Mivi., Santurce, I'. R.
Peterson, C. D., 11115 Filbrooke Ave., Chirago 28, 311.
Peterson, F. II., Ir., 11 Oaklale (r., Mains, Ave., Syracmse 7, N. Y
l'eterson, F. V'., 3920 Weilisgton Rd., 1.0 s Angeles 8, Calif.
Peterson, 1.. E., R.C.S. Comm, Rocky Proint, I. I., N. Y.

Peterson, K. M., 6 Joseph Ave., Bethpage, 1. I., N. \(\because\)

Peterson, W. E., 3111 Carnation St., Ft. Worth 11, Tex.
Petes, J., 1058 Ruatan, St., Silver Spring, Md. letit, F. W., N. Woorllury, Com.
Petkofsky, L., 10 Francis St., Shrewsbury, N. J. l'faff, R. W., 96 F. 219 St., Euclid 23, Ohio
Phillips, W. 1:., Rox 87, Deerfield, Ill.
Pickens, G. O., U.S. Nave Flectronics Iab., San Diego 52, Calif.
Pickert, C. F., 115 Pinezurst IM., Schencetady 4, N. Y.
Pierce, F. R., llox 87, Petersburg, Nlaska (Comtimurd on fage 102A)

\title{
the first NEM DESIGN of selenium rectifiers IN OYEIR 20 YEARS
}

No center mounting Full air ventilation between plates Light contact and constant assembly pressure
No center hot spots Lightest weight per unit of output power
Lower initial forward resistance-
better voltage regulation
Smaller overall size for each rating-
cost no more
Better for all electrical and electronic equipment
because of
- Improved convection cooling
- Simpler mounting
- Longer life and minimum aging
- Designed for more rugged service and rated for use in high ambient temperatures

LOQL-EELO is the rectifier
most readily adaptable to printed circuit applications.
Because of the fixed edge mount
yoke, assembly requires only one whistler die, one hole fixed, one hole variable to three dimensions. For complete information write

\section*{How SECON Fine Wire is used in critical Government end-use items}

Secon's highly enginecred fine wire is being used to meet critical specifications by manufacturers of important defense and military end-use items.

\section*{Precision Wire-Wound Pofentiometers}

In supplying precious metal alloy wire for these, Secon not only conforms to the physical and electrical characteristics on the manufacturer's specifications, but also winds a prototype potentioneter from each melt, which is tested for life, noise, and other characteristics which camot be specified on the wire. Roundness of so small a magnitude that it cannot be measured is a carefully controlted characteristic which receives Secon's contimuous attention.

\section*{Direct-Heafed Cafhodes in \\ Electronic Vacuum Tubes}

Wire and ribbon for use here are individually prepared for each manufacturer to insure satisfactory operation. Secon sets aside the melts until the manufacturer has ascertained the emission and life characteristics of the melt. Approved Secon melts are then used exclusively to supply the manufacturer who made the tests.

\section*{Electro-Plafed Grid Wire for Electronic Vacuum Tubes}

Precious metals used for these are carefully selected for purity. Only high purity gold, rhodium, silver and others are employed.

\section*{Strain Gauge Wires}

These are most carefully selected, in both precious and base metals. Samples of Secon melts are tested by the manufacturer of the strain gauge for temperature coefficient of resistance, gauge factor, and other important characteristics. To insure uniformity, Secon sets aside approved melts for the exclusive use of the manufacturer who made the tests.

\section*{Naw Wire Products for Semi- \\ Conductors, Transistors, Diodes, \\ Crystais}

Developed through special research for application in these fields, the new products include :


Gold: fine gold in purities up to \(99.99 \%\); and doped gold alloys.
Aluminum: fune aluminum wire in four grades: (1) 2 S aluminum, \(99 \%\) pure; (2) EC grade aluminum, \(99.4 \%\) pure ; (3) \(99.97 \%\) pure aluminum; (4) special high purity alunimum, \(99.99 \%\) pure.
Whisker Wires: in base metals as well as hard platimum alloys, with close tolerances on straightness and hardness in all types.
Lead-in IWires of a great variety such as timed copper wire or ribbon.

Secon specializes in the development, research and production of special alloys and pure metals, processed to very small diameter wire-in all shapesround, oval, flat, rilbbon, grooved-for highly engineered applications in electronics, instrumentation, orinance, aviation, nuclear physics, atomic energy, guided missiles, automotive industry, and other fields.

Close tolerances and controlled specifications can be held on many important characteristics such as: resistance, tensile strength, elongation, surface appearance, special spooling, purity, torgue, linearity, composition, cross section, weight per unit length, uniform plating, dependable insulation, temperature coefficient of expansion and resistance, and strain sensitivity.

\section*{Secon end-products include:}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|r|}{Fine Wire drawn to \(0.0003^{\prime \prime}\) diameter} \\
\hline & Hibbon rolled to \(0.0001^{\prime \prime}\) in thickness \\
\hline & Electro-Plated Wire and Hihbon \\
\hline & Special Solder \\
\hline & Enameled and Inaulated Wire \\
\hline \multicolumn{2}{|l|}{- Pirani fauge Wire} \\
\hline \multicolumn{2}{|r|}{Filectric Primer Ignition Wire} \\
\hline \multicolumn{2}{|r|}{```
Galvanometer Suspension
Sirip
```} \\
\hline \multicolumn{2}{|l|}{- Fitched Wire} \\
\hline \multicolumn{2}{|r|}{Preciaion Potentiometer Wire} \\
\hline \multicolumn{2}{|r|}{Transistor Wire Components} \\
\hline & Electronic Vacuum Tube Wire Components \\
\hline & Fixperimental Meltn \\
\hline
\end{tabular}

Secon invites you to discuss your metallurgical problems with its Research and Development Department.

\section*{Write for Pamphlet P.9.}

SECON METALS CORPORATION

\author{
7 Intervale Street, White Plains, N.Y.
} WHite Plains \(9-4757\)

\section*{(Continued from fage 100al)}

Pierce, I. I.., Gieneral Elec. ('n., 100 Woodiawn Ave., Pittsfield, Mass.
Pierson, I. S., 185 Avis Ave., St. Marys, Ta
P'iety, E:. A.. Rox 6.304, Mmolulu 18, T. H.
Piller, \(\therefore . \quad\) F.. \(157-22-20\) Ave., Whitevton, L. I., N. Y.

Pino, T. P., 292 Catherime Snt., Alhany, N. Y'
Pitt, Calvin J.. 76.5 S . I.mmon St., El C:ijon. Calif.
Pittard, F. L.., 509 S.W., Oak St., Portland +, Ore.
Place, J. F., 12 Amity Dr., Camillus, N. Y
Place, W. I'., Jarmers Fing. \& Mfg. Co., Irwia, Pa.
I.,
Plotkin, I., 10409 Marrie Ave., Silver Spring. Md.

Plummer, C. H., 91 Harmon Ave., Sprimpfield 8, Mass.
Plutt, J. A., Jr., 3346 Delaware St., Pittshur,h \(14, \mathrm{~Pa}\).
T'oast, T. M., \(2138-26\) Ave., S., St. letershurs. Fla.
loehler, H., 7 Marmille Lane, Pleasantville. \(\therefore\).
Polking, [: il. Hraghes dircraft Co., Culver City, (alif.
Jomerante, M., 154-39-23 Ave., Whitevtons. L. I., N. Y.

Ponsolle, W: 1.. 67 Kiverside Pr., New Iork 24, N. Y.

Joritzky, S. B., 1033 Woolley Il., Falls Chirch, Va.
Porter, A. D., 126 Villa St., Waltham 57, Mass. Porter, T. J.. Sycmmore Mills kd., R.I). 1. Media, Pa .
lost, D. B., 451 रonger Ave., Collanswoonl, N. J.

Iostle, A. H.. Co.onial Mlvi., Williamstown. Mass.
I'ouliot, I. A., Famous Players Corp. Letu., Royal Bank Blig., Toronto, Ont., Canarla
Poulson, W'. A., P.O. Mox 26, Rivera, Calif.
I'owell, C. S., 1507 W. Sherwin Ave., Chicago 26, Ill.
l'owers, D. M., 64 Coxbow Rd., Weston 93, Mass. I'redmore, E. F., 2255 Sedgwick Ave., New York \(68, \mathrm{~N} . \mathrm{Y}\).
I'reston, J. G., 640 Martense Ave., Teaneck, N. J.

Preziosi, F. W., 2336 IIingston Ave., N. J). (i. Montreal, Que., Canada
I'richard, J. S., 294 W. I.ena Ave., fireeport, I. I., N. Y.

Proskaner, R., 350 Lakeville Rd., New Hyile I'ark, L. I., N. V.
Prunty, P. F., 268 Arlington St., Mineola, I.. 1.. N. Y. 4989 Kalamazoo, S.E., Gramel Rapids, M•ch.
Pughe, E. W., Jr., 36 Ibradford R.l., Natick, Mass.
Purvis, W. J., Nat'l Res. Council, Momere.l Kı.. Ottawa, Ont., Canada
Putnam, R. F. A., 416 N . U'nion Ave. llave De Grace, Md.
Putz, II. R., is Camichael Ave., Toronto, (Int., Canada
Pyle, II., 1546 W. Jefferson Rd., Kokomo. Ind. Quarfoot, II. i3., 232-A, Rt. 1, Kelseyville, Calif.
Quate, C. F., 15 I'ine Grove Rd., Berkeley Ights, N. J.

Quayle, G., 80 Southwell Rd., Wethersfield. Comn.
Queen, J. I.., 9622 Fernwood Rd., Hethesda, Mr.
Quinn, F. S., Jr., P.O. Box 322, Isle of l'alma, S. Car.

Quinn, J. I.., Jr., 209 E. Roseville Rd., J.ancaster, I'z.
Quinn, J. M., 435 Breck St., Scranton 5, Ia.
Quinn, R. L.., Barber IIill, R.D. 3, Knoxville, Tenn.
Radgowski, S. P., \%9 New St., Staten Island, N. Y.
(Continued on page 101A)

\section*{CLOSE PARAMETER CONTROL MEANS}

\section*{II transistors standardize your production circuits!}

You can now design transistorized circuits to standard device specifications. Texas Instruments controlled parameter semiconductor devices fit your specific applications without additional testing and selection. Parameter tolerances are closely held and accurately described in new comprehensive design data. All TI germanium and silicon transistors are manufactured and 100 per cent tested for exacting design characteristics.

This close parameter control has enabled Texas Instruments to pace the indus. try in transistor development and application. Newest TI germanium devices are n-p.n high speed switching transistors. An important step toward complete transistorization of computers. these grown junction units have beta spreads of two-to-one and are 100 per cent tested for switching characteristics. Tl was also first to produce silicon transistors commercially, and only TI manufactures ger manium transistors for all three transistorized pockel radios now on the consumer market. For radio. general purpose, and many specific applications, Texas Instru ments manufactures both p-n-p alloyed junction and \(n \cdot p \cdot n\) grawn junction ger manium types.

For your own transistorized product development. specify the exact devices you need from TI's wide range of semiconductor products - germanium and silicon; p-n-p or n-p-n types; diodes, triodes, tetrodes. Write for new descriptive data and curves that will help simplify your production problems.

6000 LEMMON AWENUE

SEND THE COUPON FOR DETAILS

Please send comprehensive data and curves describing the semiconductor products checked below:

\section*{GERMANIUM}
\(\square\) Radio transistors, \(p \cdot n \cdot p\) and \(n \cdot p \cdot n\) types
High speed swithing Ironsistors
\(\square\) P-N.P alloyed junction general purpose transistors
\(\square\) N.P.N grown junction general purpase transistors

Grewn junction tetrodes

\section*{SILICON}General purpose transisiors
\(\square\) Power transistors
\(\square\) Junction diodes
\(\square\) Voltage reference diodes

\section*{Where to get transformers for atomic submarines}

Like General Dynamics'Stromberg-Carlson Division, you may at times need transformers that operate in a new circuit design under unusual and rugged conditions.
The shipboard announcing equipment Stromberg designed for the U.S.S. Nautilus, for example, must be \(100 \%\) trouble-free because of the sub's ability to remain submerged indefinitely. It must also be able to withstand the terrific shock of depth bombs during battle.

Stromberg asked us to design and produce transformers that fit the system's advanced circuitry. The transformers we supplied them meet all the high standards of both Stromberg and the US Navy. They are now operating on the Nautilus and the second atomic sub, the U.S.S. Sea Wolf.
Just off the press! 16-page, illustrated brochure describing Caledonia's services and facilities for custom-designing and manufacturing transformers.

\section*{TRAVELING-WAVE TUBES}

\section*{Backward-Wave Oscillators}
\begin{tabular}{|c|c|c|c|}
\hline TYPE & FREQUENCY & MINIMUM POWER & \begin{tabular}{c}
HELIX VOLTAGE \\
RANGE
\end{tabular} \\
\hline HO-1A & \begin{tabular}{c}
\(2.0-4.0 \mathrm{kmc}\) \\
S-Band
\end{tabular} & \begin{tabular}{c}
\(20 \mathrm{dbm} 2.5-4.0 \mathrm{kmc}\) \\
\(10 \mathrm{dbm} 2.0-4.0 \mathrm{kmc}\)
\end{tabular} & \(300-3400\) \\
\hline HO.3A & \begin{tabular}{c}
\(3.75-7.0 \mathrm{kmc}\) \\
C-Band
\end{tabular} & \begin{tabular}{c}
\(20 \mathrm{dbm} 4.3-7.0 \mathrm{kmc}\) \\
\(10 \mathrm{dbm} 3.75-8.0 \mathrm{kmc}\)
\end{tabular} & \(300-3400\) \\
\hline HO.2B & \begin{tabular}{c}
\(7.0-14.0 \mathrm{kmc}\) \\
X-Band
\end{tabular} & \begin{tabular}{c}
\(10 \mathrm{dbm} 7.6-13.7 \mathrm{kme}\) \\
\(4 \mathrm{dbm} 7.0-14.0 \mathrm{kmc}\)
\end{tabular} & \(300-3400\) \\
\hline HO.4B & \begin{tabular}{c}
\(12.4-18.0 \mathrm{kmc}\) \\
P.Band
\end{tabular} & \(10 \mathrm{dbm} 12.4-18.0 \mathrm{kmc}\) & \(450-2000\) \\
\hline
\end{tabular}

\section*{DELIVERY: 4 TO 6 WEEKS}

Divicrimen
mamimina Ea

HUGGINS LABORATORIES
(Continued from arge 102.A)
Ramakrishnan, P. R., Radla Krishna Mills, Co imbatore. Madras, India
Ramsay, William R., 307 Robert Ave., ("xhard, Calif.
Randall, 11. L.., 16841-19 Ave., S.W., Seatte 66, Wash,
Ranks, J. E.., 1270 Lemond Ave., I'asatlena 8, Calif.
Rappaport, M. B., 52 Clearwater Ril., Brookline. Mass.
Rappaport, R. B., 1514 S. Orange Grove Ive., Los Angeles 19, (alif.
Rasmussen, C. F., 82.39 Noren St., Downey, Calif.
Rathje, E., 412 Ilaven Lane, Clarks Summit, Pa. Ratuer. M., 1253 llarberry Ril., Wantagh, I.. I., N. Y.

Rawls, L. F... 5 White Irelge Rd., Nashville 5, Temn.
Rawson, 11. B. 55 Manor 1)., Newark 6, N. J.
Read, (i. W., 360 W. Hroadway, Glendale 4. Calif.
Reader, M., 2514 E. Seventlı St., Brooklyn 35. N. Y.

Redelings, J. T., 3935 Del Mar Ave., Sat liego 7, Calif.
Redhead, P. A., Nat'l Research Council, Radio \& Elec. Engr. Div., Ottawa, Ont., Can ada
Reed, F.. 1., R.I). 2. James St., Morristown, N. !.
C., Ir., 9 Sylvia St., Cilen Head, L. 1.

Reed, F. C., Ir., 9 Sylvia St., (ilen Head, L.. 1.
Reed, J. F'., Jr., 369 Parkar Dr., Pittshurgh 16 l'a.
Reed, W. O., 6517 Foster Are., Chicago 31, 111 Reciy, J. F., 2856 Fxposision Blvel., Santa Mon ica, Calif
Reenstra, IV. A., 450 Riverside 'ferr., Ruther ford, N. J.
Reese, J. S., 572 Fletcher St. ' Tonawanda, N. Y Regis, R. T., 5358 N. 56 .st., Mitwankee 16 , Wis. Regnier, L. A., 206 W. D'arkwood Ilr., Dayton 5, Ohio
Rehberg, C. F., 25-28-84 Sit., Jackson Hhhts. L. 1., N. Y

Rehler, K. M., 515 Montana Ave., Sama Mon ica, Calif.
Reich, A. L., 219 Rodney Cir., Bryn Mawr, Pa Reichert, II. A., 136 Central Ave., N. Hills, la Reickord, A. W., HC Revere Rel., Apt. B, Drexel Hill, Pa.
Reid, 1). (., 145 Farnhorough Rel., Farhmengh Hants., Finglanel
Reifel, H., 11 Neighhors Iane, Walthatn 54, Mas.
Reilly, R. R., 7117 N. Rosemead Iklvd., San Gabriel, Calif.
Reimer, R. N., 7811 Agnew Ave., Ios Angeles 45, Calif.
Reiner, S., 210 Pelliam RA., New Rochelle, N. Y:
Reinscli, F. J., 445 W. 118 St., Los Angelec 6, Calif.
Reintjes, I. C., 89.13 Mothew Ave., N.E., Al buquerque, N. siex.
Reisman, E., 2201 Dickixson Ave., Camp Hill, Pa.
Renner, Darwin S. 1314 Cedar Lill Ave., Wal las, 'lex.
Reno, H., 2303 W. 46 Ave., Denver, Colo.
Retherford, R. C., Univ. of Wis., Madison, Wis. Rett, If, C., 14 W. Elm St., Chicago 10, Ill. Keyling, G. F., 240 Los Trancos Woods, Menlo Park, Calif.
Reynolds, I. J., 272 Deverill St., Ludlow, Ky. Reynolds, F. M., G. E. Co., Flectronics Pk., Syracuse, N. Y'.
Reynolds, V. F., 1380 Warmer Rd., Meadow. brook, Pa.
Rhodehamel, A. J. W., R.D. 3, Doyle Rd., Mald winsville, N. Y.
(Continaed on page 106A)

\section*{new!}

\section*{a solid-dielectric molded paper tubular capacitor}

\section*{with flat capacitance-temperature characteristics}

\title{
HCX*-impregnated Black Beauty \({ }^{\text {® }}\) capacitors
}
offer improved circuit performance

Sprague, on request, will provide you with complete application engineering service for optimum results in the use of molded paper tubular capacitors.

SPRAGUE'S NEW TYPE 109P CAPACITORS use a unique new impregnant identified by the trademark HCX. Developed in the Sprague research laboratories in the search for a better material than the polyesters customarily used for impregnating solid dielectric paper tubulars, HCX is a hydrocarbon which polymerizes after the rolled section has been vacuum impregnated. Its salient electrical characteristic of insulation resistance, power factor, and capacitance change with temperature are superior to those of the ordinary polyester units on the market today.

Type 109P Black Beauty Telecaps are molded in non-flammable phenolic and are mechanically rugged. They make an ideal capacitor for all TV and auto radio operations and are well suited for automation assembly by machine since the lead concentricity is closely fixed and there is no outer wax dip to jam inserting heads or magazines.

Complete performance data covering the wide range of sizes and ratings are in Engineering Bulletin 223, available on letterhead request to the Technical Literature Section, Sprague Electric Company, \(2: 35\) Marshall Street, North Adams, Massachusetts.
* Trademark

\section*{MADE TO YOUR EXACT SPECIFICATIONS IN ANY SIZE. SHAPE•QUANTITY}

Precision coil bobbins are fabricated from high dielectric materials and quality controlled to the most minute tolerances Yet, because they are made on special high production equipment, they're available to you for prompt delivery at low unit cost.

Cores are spirally wound dielectric kraft, fish paper, acetate, phenol impregnated or combinations. Flanges are cut to any specification for all types of mountings.

Request illustrated bulletin. Send specifications for samples.

\section*{High Strength Low Cost Paper Tubes}

Accurately fabricated in any size, shape, ID or OD. Spirally wound from select dielectric materials. Crush resistant, withexcellent dimensional stability. Subject to rigid control and inspection for tolerance and uniformity.

Ask for samples and Arbor List of over 2000 sizes.
Sales Representatives in:
New England: Frominghom, Massachusetts, Trinity 3-7091
Metropolitan New York, New Jersey:
Jersey City, New Jersey, Journal Square 4-3574
Upstate New York: Syracuse, New York, Syracuse 4.2141
Northern Ohio, Western Penn.: Cleveland, Ohio, Atlantic 1.1060
Indiana, Southern Ohio: Logansport, Indicno, Logansport 2555
California: Pasodena, California, Sycamore 8-3919
Canada: Montreal, Quebec, Conada, Walnut 0337
(Continued frome page 107A)
Rhodes, R. N., 53 Garden Lane, Levitown, Pa. Riblet, H. J., 220 Grove St., Waltham, Mass. Risner, M., 1129 Oakwood Ave., Columbus 6, Ohio
Richards, G. A., 216 Brookdale Ave., Toronto 12, Ont., Canala
Richardson, L. D., 328 Rantoul St., Beverly, Mass.
Richardson, M. S., 721 W. Montclaire Ave., Milwakee 17, Wis.
Richmond, M. R., 135 Princeton Rd., Nashua, N. H.

Richter, E., 361 Lincoin St., Waltham, Mass.
Rickert, H, H., \(108+\) Washington Ave., Westbury, L. I., N. I
Rigelon, C. A., 14 Bilmore I3lvd., Massapequa, L. I., N. Y

Rines, D., 10 P.O. S.W., Rm. 1318, Boston 9, Mass.
Ringer, H. N., 1303 Highland Ave., Palmyra, N. J.

Ripnitz, A., 10 Liberty St., Nashua, N. H.
Riser, H. N., 3889 (iaspar Jr., Hallas 9, Tex. Risteen, H. C., Meadowlands Dr., City View, Via Ottawa, Ont., Canada
Robb, E. J., Box U.37, Úniv. of Comecticut, Storrs, Comn.
Robhins, 1)., 555 S. Leos Robles, Pasadena, Calif. Robhins, N. P., 515 L.yndale Ir., Vestal, N. Y. Roberts, 13. I., \(32+6\) lourtage Bay ll., Seattle 2, Wash.
Roberts, G. TT., 85 Mam St., Concord, Mass.
Robertson, J. P', 7345 Cherokee Dr., Kansas City 13, Mo
Robillard, P'. A., \(17+\) Bord De I.'Eau, Longueuil, Montreal 23, Que., Canada
Rolinson, A. S., 330 Haven Ave., New York, N. Y.

Robinson, 1)., III, Ihox 71, Aplaus, N. Y.
Robinson, (i. D., R. I, Pullman, Mich.
Robinson, R. B., 1235 E. 103 St., Seattle Wash Robinson, W. C., 3 Kuss St., Caribou, Me.
Rockwell, W. S., 36,5 Van Buren Ave., Los Altos, (alif.
Roddy, V. S., 8005 Westover Rd., Bethesda, Md. Roerlel, J., 829-173 P1., Hammond, Ind.
Roedliger, F. E., R.1), 2, Webster Village, Havre 1) Grace, Nal.

Roel, Fi. I.., Hillerest lane, Iluntington, 1.. I., N. Y.

Rosers, E. I., 2022 ‥ Gantenbein Ave., l'ort. land 12 , Ore.
Rogers, J. A., 1528 W. l’ratt Blvd., Chicago, Ilt. Rogers, M. I., R.D. 1, Stratford Rel., Vestal,
N. Y.
Romanofsky, N. K., 7691 Wooderest Ave., l'lila delphia 31, Pa.
Romoser, P. E., 1118 Eighth St., I.orain, Olio Rosa, Gillert N., 2945 Maming Ave., Los Angeles 64, Calif.
Rose, A., \(134-136\) I.ewisham W'ay, New (ross, L.onton S.E. 14, England

Rose, F. C. 5 Roosevelt Pl., Apt. 3-(C Montelair, N. J.

Rose, J. K., 6047 N. Jrancisco Ave., Chicago \(45,111\).
Rosenberg, M., 715-18 St., Santa Monica, Calif. Rosenberg, S. L.., 119 Wooley Lane, Great Neck, I.. I., N. Y.

Rosenman, L., 1351 Carraen Ave., Chicago 40, 111.

Rosenthal, 1).,8421 Temple Rel., Philadelphia, Pa. Rosman, A. S., 4647 Alveo Dr., La Canada, Calif.
Ross, A. T., 5535 Reaucourt Ave., Apt. 16, Montreal, Que., Canada
Ross, II. D., Jr., 7 Ilemlock Rd., Poughkecpsic,
Ross, H. JI., Jr., 1630 Shamwood St., West Corina, Calif.
Row: J. J)., H.M.T.S. Monarch GPO, Lomlon, England
(Continuca on fage 108.4)

* Finer Resolution . . . 10 Kilocycles
- Complete in one unit. . . no extra funing heads required
t Single Dial tuning... Use of stable triode oscillators eliminates klystrons
Smooth tuning without backlash
Ruggedized to military specifications
Simplicity of operation permits use by
production line personnel
Usable to 34,000 megacycles

\section*{SPECIFICATIONS}

\section*{DIMENSIONS}
\(25-7 / 16^{\prime \prime}\) high by \(201 / 8^{\prime \prime}\) wide by \(191 / 8^{\prime \prime}\) deep.
WEIGHT
150 pounds
PRESENTATION
5CPIA 5" cathode-ray tube (other persistances available).
SENSITIVITY
At signal to noise ratio 2:1, and spectrum width 25 megacycles:
-75 dbm at 10 mc to
-50 dbm at \(16,000 \mathrm{mc}\)

\section*{RANGE}

10 megacycles to 16,000 megacycles calibrated. Usable 1 to 34,000 megacycles.
ACCURACY
Dial acturacy \(\pm 1.0 \%\) at the operating frequency of the local oscillator.
SPECTRUM WIDTH
0.5 to 25 megacycles

RESOLUTION

\section*{10 kilocycles}

TEMPERATURE RANGE
\[
\text { Operating }-40 \text { to }+130^{\circ} \mathrm{F}
\]

HUMIDITY

\section*{90\% RH.}

SHOCK
(Non-operating in transit case.) One 12G impact, 10 mlsec duration on each face. One 37G impact, \(10 \mathrm{~m} / \mathrm{sec}\) duration on each face.

\section*{Lavoie Lebonatories, Inc.}

\section*{MORGANVILLE, NEW JERSEY}

Coll The Lavoie Representotive nearest you for complefe information on The L A 17 Specfrum Anolyzer and other Lavoie equipmenf.

Albony, New York 1. A. Reogan Co. 51 Summit Avenue Phone: 4-7676
Atlonto, Georgio
Southeostern Industriol Instruments
374 Hascol! Raod, N.W.
Phone: Exchonge 7801
Baltimore, Marylond
Thomos L. Toylor
2100 Sp. Poul Sirees
Phone: 8elmont 5 -9126
Chicago, lllinois
R. Edward Stemm

5681 West Lake Street
Phone: Columbus 1-2227
Denver, Colorada
Allen I. Williams Company
124 West 12th Ave.
Phone: Main 3.0343
Flint, Michigan
Som Robbins, Inc.
230 East First Street
World Radio Phone:/Cedor 5.7310

Fort Worth, Texas
Mitchell Speoirs Co.
M.tehe 8 Peoirs 11033

1929 Chotburn Caurt
Phone: Websfer 8811 Sunsef 3784
Hartford, Conn.
M. S. Coldwell
289 Fairfield Avenue

289 Fairfield Avenue
Phone: Jackson 2.5832
os Angeles, California
os Angeles, Califor
5777 West Pico Soulevar
5777 West Pico 8oulevar
Phone Webster 1-5566
Phone Webster 1-556
Montclair. New Jersey
l.ouis A. Garten \& Associates 25 Valley Road
Phane Montctair 3-0257
San Mateo, Colifornia
R. L. Pflieger Co.

126 25th Avenue
Phone: Fireside 5-1134
t. Lovis, Missouri

Edwin H. Murty
3505 Ridgedale Avenue Phone: Evergreen 5-7728

\title{
Wet... but not worried!
}

Stoddart NM-10A Radio Interference and Field Intensity Meter,*
covering the frequency range of 14 kc to 250 kc .
CHANCES ARE YOU'LL NEVER SUBJECT YOUR NM-IOA TO THIS KIND OF TREATMENT...

BUT it's nice to know that it can take it if it has to! We turned the hose on the AN/URM-6B - the Navy equivalent of the Stoddart NM-10A - in accordance with Navy specifications. Immediately afferward it was disassembled and found to be dry as a bone inside. And much to our satisfaction, the Navy inspector smiled!

Whether you use this fine, rugged instrument for field intensity measurements of carrier current systems, Navy, maritime or other services... or for surveys of conducted ar radiated inferference, you'll find that tne NM-10A CAN TAKE IT ... whether in the lab or in the field.

A complete selection of accessories is available, expanding the utility of the NM-10A to make it one of the most versatile instruments you have ever used.

Write today for further information. Learn about the excellent sensitivity . . . the "hand calibrated" accuracy . . . the sturdy, dripproof constructior, enabling use in driving rain or snow ... the A. C. power supply that permits operation from 105 to 125 volts or 210 to 250 volts A. C., 50 to 1600 cps .

The NM.10A is the identical instrument we supply to the Navy as the AN/URM-68, a Class One instrument, as shown in MIL.I.16910 (SHIPS). It was designed and is manufactured exclusively by Stoddart Aireraft Radio Co., Inc. When you buy the NM-10A you're getting a quality instrument that meets the rugged requirements of the U.S. Navy!
*Stoddart RI-FI Meters Cover the Frequency Range of 14 kc to 1000 mc
\begin{tabular}{|c|c|c|}
\hline NM-20B - HF & NM-30A - VHF & NM-50A - UHF \\
\hline 15 kc to 25 mc . Commercial i & 20 mc to 400 mc . & 375 mc to 1000 mc . \\
\hline equivalent of AN/PRM-1A. I & Commercial equivalent of & Commercial equivalent of \\
\hline Self-contained batteries. & AN/URM-47. Frequency & AN/URM-17. Frequency \\
\hline A.C. supply optional includes & range includes FM and & range includes Citizens band \\
\hline standard broadeast band, radio ! & TV bands. & and UHF TV band. \\
\hline range, WWW and communi- & & \\
\hline cations frequencies. Has BFO. & & \\
\hline
\end{tabular}

(Continued frem page 100 A)
Rosselot, G. A., Bemdix Proale Div, fow A. Beiger St., Mishawaka, Ind.
Rossuick, M., 28 Metromelital Waal, New York \(62, N . Y\).
Rothbart, A., 98 Van Cuurtlandt, l'ark South, Bronx 63, N. Y
Rothrock, 11. B., 5413 Synnette Dr., Fountain ("ity 18, Jenn.
Rozas, Felix, White Horse Pike \& Dartmouth Ave., R.F.D., Haddanfield, N. J.
Rubel, 1. H., Hughes Arcraft Co., Culver (ity, Calif.
Rudermatn. M., 131+5 Laske St., Los Angeles 66, Calif.
Rusliclı, I., Five l马asket Lane \({ }_{\text {p }}\) IIcksville, I.. I.,
Ruecta, I. V., Fil Ranarealor C24, Buenos Aires Argentina
Rugni, A. (i., 2807 Noatta Blbed, Belmore, 1.. 1..
Rummel, f.. C., 5507 New Haven Courl, Austin, 'T'ex.
Rankle, E. (i., Jr., 13788 W. Yuter Dr., Detroit 28, Nlich.
Rupke, F., 1830 Imerendence 13Ivd., Ann Arbor, Mirh.
Rusinow, K., 336 W .95 St., New York 25, N: Y Rusinak, W., 91 Wallace Ave., Buffalo 14, N. Y'.
Russ, J. A., liederal Communications Comm., Washington 25, 1). C.
Ruscell, I. A., 111, 27 l'reston St., Hantington, 1., I., N. Y.

Ryan, E. 11., 3118 Snyder Ave., Brooklyn 26, N. Y.

Ryan, W. £., Diamond Orilnance Fuze Labs., Washington 25, D. C.
Ryan, W: I., +215 N. Western Pkwy., Louisville 12, Ky.
Rypstra, B., Jr., sol W. Lawrence, Charlotte, Mich.
Sahol, R. W., 485 sumatra Ave., Akron 5, Ohio Sackler, A. A., Cons. Diesel Elec., Corp, Ladlow \& Canal St., Stamford, Conn.
Salim, E. J., 193 Richard Ave., Merrick, I. I.,
Sail, A. H.. 513 Syracuse Ave., Massapeqna, L. 1., N. Y.

St. John, I. S., Rı. 2, Box 385. Bothell, Wash. Sale, I', A., 226 Ledlmury Ave., Toronto 12, Ont., Canada
Salem, J., 105 Demarest Pl., Maywood, N. J.
Salisbury, D. I.., 3838 Alberan Ave., Long Beach 8, Calif.
Saltsburg, S. S., 97.11-1.44th Rel., Ozone Park, I. J., N. Y

Samsel, 18. W:., 106 Birch Lane, Scotia 2, ‥ Y.
Samson, R. I.., 15 Colonial Dr., Wyckoff, N. J.
Satmuelian, 13., 1692 Washingten Ave., Bronx 57, N. H .
Samuelson, W. H. F.., R.D. 5, Carlisle, Pa.
Sanker, 1I. F., Bell Telephone Co., 416 Seventh Ave., Pittshurgh 19, Pa.
Sanders, L., Jr., 2200 Robles Ave., San Marino, Calif.
Santa, M. M., 6 Howland St., Cambridge, Mass. Sattertlwaite, W. F., 630 N. Cliester Rd., Swarthmore, Pa.
Satullo, A. R., 4512 Noth Woorlward Ave., Royal (Oak, Mich
Sannders, C. L., 83-30 Kew Gartens Rul., Kew Gardens 15, L. I., N. Y'.
Sannders, H. M., Western Union Telegraph Co., 60 Hudson St., New York 13, N. Y.
Savadelis, I. C., 1910 E. Highland St., Allen town, Pat.
Sawyer, II. (;., 2401 Gulः IBhllz., Houston 2. Tex.
Sayles, P. W., General Eiectric Co., Schenec tady, N. Y.
Scarbroukh, A. 1)., 595 W . Washington St., Pasa dena 6, Calif. (Continued on page 110A)

\section*{New MALLORY FP Capacitors}

\section*{with snap-in mounting}

\author{
for printed circuits
}

\section*{NEW AM-FM \\ SIGNAL GENERATOR}

MODEL 995A/1
Our enthusiasm will be shared by you when you use this superbly designed instrument.
Model 995A/1 is designed to cover both IF and Carrier Frequencies. This new Marconi generator together with the Marconi Deviation Meter Model 934/2 ore the basic instruments for developing and maintaining FM systems.

Make no mistake, specily Morconi for Bridges, Audio \& VTVM's, Deviation Meters, elc. Wrife to:
MARCONI
Since 1897

- Frequency Range \(1.5-220 \mathrm{Mc}\)
- Crystal Standardized to \(0.02 \%\)
- Leakage: below \(0.1 \mu \mathrm{~V}\)
- Deviation Ranges: \(0-25 \mathrm{kc}, 0-75 \mathrm{kc}\), and up to 600tre
- Deviation Accuracy: \(\pm 5 \%\) of f.s.d.
- Tubes: 6AK6, 6AK5, 6AU6, 12AT7, 5Z4G, OA2
- Compact and Portable

Price: \(\$ 850.00\) Immediate Delivery

\section*{user}

Other Shasta Quality Instruments Expanded Scale Frequency Me. ters and Voltmeters - Log Scale Voltmeters - Audio Oscillators Square Wave Generafors - Power Supplies - Wide Band Amplifiers Bridges - WWV Receivers - Dec. ade Inductors.

\section*{\({ }_{\text {os }}\) Shasta ducusion}

\section*{© \\ BECKMAN}

ARGA MODEL 401
EXPANDED SCALE
FREQUENCY METER
description:
Originally designed for production checking of frequency regulation en motor and engine-driven generator sets, ARGA Expanded Scale Frequency Meters offer fast, accurate monitoring of frequency on many aoplications.
features:
* Accuracy of \(\pm 1 / 2\) cycle
* 1 ma recorder connection provided
* Expanded scale for easy, error-free reading brief specifications

Base Trequency: \(400 \mathrm{cps} *\)
Span: \(\pm 25\) cycles
Accuracy: \(\pm 1 / 2\) cycle
Price: \(\$ 305.00\) f.o.b. factory
*Also available in 60 cps model
Write today for Technical Bulletin A401; please address Dept sa-9.
Shasta
division
BECKMAN INSTRUMENTS INC.

Cims Iemliership

Schabhehar, F.: A., 190 Clock Blvd., Amityville,
Schachter. J., \(1907^{\circ}\) Coney I sland Ave., Brooklyn \(30, \mathrm{~N} . \mathrm{I}^{\prime}\).
Solarding, R. M., 5943 S. Green St., Chicago 21, 111.
Scharf, J., 236 Broarlway, Massapequa Park, I.. 1.. N. Y.
1). 1:, 2800 Wiseman Rd., Silver Spring, Md.

Elieffel. 1. (i., 2814 -7.5 Ave., Elmwort Park 35, 111.
Sclieiner, M. I... 541 F. 20 St., New York 10,
Scleldorf, R. ID, 29 Manor Ave., Oaklyn 6, N. I.

Schiller, J., 203 Capouse Ave., Scranton, P'a.
Schindler, R. W., 6813 Charles Ave., Parma 29, Ohio
Schlecht, M. F., 302 Merrell Rd., Syracuse,
Schlesinger. W. A., 4815 W. Division St., (hicako \(51,111\).
Shlleter, (i. (C., fo33 1)avenport St., N.W., Washington 16, D). C.
colmialt. R. A., 717 N . Cayuga St., Ithaca,
Schueblue, A. W.. Michael St., Menlo Park, N. I. solmeiler, R. F., 10 Wakg Ave.. Malverne, L. I.,

Schnipuer, A., in W. 4.5 St., Bayome, N. J.
Schoenfeld, K., Broadway 太. Sanders St., fireen lawn, l.. I., N. Y.
Schtader, I.. IV., Ir., Airbourne Instruments Co. 160 ()ld Country Rd., Mineola, 1. I.

Schreincr, 5 Bayview Ave., l'ort Washington, I. I., N. Y.

Schreiner, K. F., Watson Scien., Comps, Lab, 1.13.M. 2939 Broadway. New York 25

Sclireiner, W. A., Newon-Bukkingham Pike, lineville, l'a.
Sclultz, I. J., K. Q. V., Chamber of Commerce latg., l'ittshurgh 19, l'a.
Schure, Dr. A., \(27+1 \mathrm{l}-141\) St., Belle Harhor, 1.. I., N. Y

Schwartı, A. I., Wallworth Apts., Haddonfield,
Schwart\%. F.. I., 18-31 !erdan Rd., Fairlawn,
Schwart/. F... 147.25-71 Kd., Kew Gardetis,
Schwartz, 11. T., 150 E. Third St., New York
Schwarz, 11. F:, The Decea Record Co., Letd., 1-3 Brixtom Ril, l.ondon S.W. 9, England
Shwarzenhach, E. E., 8303 Osceola Ave., Chicago 31, 11 .
Schwarzkopf. J., \(29-7\) Garden Cir., Waltham 54, Mass.
Schwenueselz, 11., 4125 Grove St., Skokie, Ill.
Scott, R. M., \(1+19\) Alger Re., Falls Church, Va.
Seewald, E. C., 136 Osborn Kd., therdeen, Md. Sefton, W. E., 364.5 Shadow Grove Rd., l’asadena 8, Calif.
Sehnert, 1'. J., Box 250, Thousand Oaks, Calif. Seid, E., 3927 W. Jefferson Blvd., Los Angeles 16, Calif.
Seid, H. R., 113 Colvin St., Mobile, Ala
Seidel, JI., 46 C Leland Gardens, Plainfield, N. I.

Seidman, S. Mr. 3638 Glenc.airn Rd., Slaker IIeigits 22, Ohio
Seilner, O, R., 1705 W. Pe,lley Dr., Alhambra, Calif.
Seisler, M., 136-19-222 St., I.aurelton 13, L. I.,
Selbmam, R. W., 180-48 Abr.rdeen Rd., Jamaica
Selby, E. O., 214 Jern Ave., Collineswoorl, N. J. (Continued on page 112A)

\section*{Custom Electronic Componento}

\section*{MODULATORS for MAGNETRONS and KLYSTRONS}

When industry and experimental laboratories need special instruments, designed and built to the highest standards of precision performance and af lowest cost. they turn to FXR for proved dependability. A good example of close integration between FXR engineering design and production, typified in the illustration, shows an electromechanical engineer working on a design change to accommodate o customer's special requirements. Got a desian problem? Try FXR first!

BASIC DESIGNS NOW AVAILABLE
ONE
MEGAWATT
UNIT
Type 2820A

\section*{ALLIED}

GONTROL

\section*{starts with}
the finest

\section*{Garfield
Uire}

When you specify Allied Control, you're asking for the best. For example, take the relay shown here. It's the finest there is - in split-second response, unfailing accuracy, rugged dependability.
Design - construction - materials - all have to be the best for Allied... and the heart of this relay is wound with Garfield Enameled Magnet Wire.
You'll start with the finest in wire, too, when you specify Garfield. Our modern drawing and enameling equipment, our rigid production control and our stringent inspection system are geared to produce only top-quality wire with tolerances closer than NEMA specifications.

Write for price lists and specification chart on Garfield bare wire, plain and heavy enamel additions today.

\section*{c) \(\because \square \square \square \square\)} WIRE

of The Prevlakea Coyponation 142 Monroe Streel, Garfield, N. J., GRegory 2-3661-2

Assembly of these rugged building blocks into an integrated system is a simple and easy process. Analyze your telemetry requirements, sketch your block diagram, and select the required units from RREP's full line of FM transmitting equipment. You've then got the finest airborne system available.

FM TRANSMITTERS. Crystal Controlled and Variable Reactance RF AMPLIFIERS for boosting R.F. signal strength
SUBCARRIER OSCILLATORS. Voltage Controlled, Bridge Activated, and Variable Reactance

COMMUTATORS AND DYNAMOTOR-COMMUTATOR GAT. ING UNITS for expansion of system capacity by subcarrier commutation

UNIVERSAL MOUNTING ASSEMBLY:
UNERAC (Universal Regulator, Amplifier and Calibrator) and UNIVERSAL MOUNTING UNITS for mounting all RREP Oscillators

DYNAMOTORS for high voltage supplies
Technical Bulletins giving complete information on these units are available on request.

\section*{RREP}

\section*{RAYMOND ROSEN ENGINEERING PRODUCTS, INC.}

32nd and Walnut Streets, Philadelphia 4, Pennsylvanla Western Regional Office: 15166 Ventura Blvd., Sherman Oaks. Los Angeles, California

\section*{Whembership}

Sclenter. \(11 ., 738\) Howard Ase., Mraoklyn 12, N. Y.

Sell, R. 1.., 7233 Vincent Ave., So., Minmeapolis 10, Міни.
Setaro, J. F., \(2+26\) - 10 S Ne, S.E., Bellesuc, Wash.
Sferrara, I'. J., \(1+94\) Wagner St., Wantagh.
Shaule, R. R., ㄴ2ㄴ Bulman, Rivera, Calif.
Shalleross, 1i. I'.. til.3 I ensacola Ave., Chicago 41, 111.
Shamath, iV. J., 23-19—31 Ave., I.ong Iiland (ity 2, !. 1., N. Y
Sharp, J. II. R.F.I. 1, Box 217, Santa lratula, Calif.
Shatmok, I. (., 1045 Ronita Ave., (ixomet
Shaw, 1:., 321 Ave. "C", New York 9, … Y' Shaw, ID., 3th Hoiland Ave., JBromx 67, X. Y Shawhan, R. X., dimben Rel., \& Buther Dr . Sewtown Siguare, Pa.
Sheher, F. 1B., 22 . Ndwy lane, Villanow, lob Sheltaharger, I. N., 725 I'ennsylvania Ave., San Diego 3. Calif.
Shoparil, F. H., Ir., 480 Morris Are., Smmit.
Shepard, W: H.. Box 94. Rock Stream, X. Y.
Shererty, I'. C., ist Elmira St., S.W., Wanhing ton 24. 1). (:
Shermath. I. H., Jr., 220 Allen Si., E. Syranse.
Sherron, R. I., Ir.. Box 107, Hempstead, Tiex.
Sherry, R. S., 146 Rolby Lane, New Hyde Park. I. T., N. Y.

Sherwood, E:. M., 6 Battelle Mcmorial Imet. 505 King Ave., Columlans 1, Ohio
Sheoler, R. I... 2203 S. Gedeles St., Syracuse.
Shiels, A. R., Jr., \(1+\) Cirde Hr., Hickswille,
Shipley, F. D., Asut. Dir., Oak Rilge Nat'l. I.all., Oak Rislge, Temn.

Shively: F. H., 250 (1 laddon IItls. Apts. Hat-

 Tex. Slure Bros. Inc. 225 WV. IJuron
Shure, S. N.., Shure Bros. Inc. 225 WV. Ituron Si., Chicago, III.
Sichert, W. M., 5 Martha's Boint Rd., Concort, Mass.
Sicfkem, R. M., 104 Buckwarth 1)r., Kokomo, Ind.
Sillhki. A. T., 2.5 Mahwah Rel., Mahwah, N. J.
Sillere. W. F.. 122 Molawk 1)r., Clarendon Hills, In.
Sillerman, A., 81 II: 172 St., Brome \(52, \mathrm{~N} . \mathrm{K}^{2}\). Sills, M. M., drik loplar lane, Fast Meatow,
S.. I., N. Y'.

Silver. I. F., 122 Clinton Ave., I'ark Ridge, Ill. Silver, Mr., 21.11 Grecmwood IDr., Kadburn, N. J. Silver, S. H., 1441 Somerset Pl., N.W., Washington 11, I. C.
Simmons, E., Jr., 455 S. Uakland Ave., P'asa. dena 5, Cilif.
Simonds, F. W., 372, Richnond Ave., Honston Simsem, VV. F.. 245 IV. Passaic Ave., Rutherforil, Ň. J.
Sims, W. IT., Jr., 7326 Yorktowne Dr., Towson
Singer, F.. M., 430 Deal I.ahe D)r.. Ashury I'ark,
Sixley. S. R., 132 Wahingmon Ave., Amitywille, L. I., N. Y".
E. R., 824 Fispeth Way, Covina, Calif.

Skages, E. R., 82t Flsicth Way, Covina, Calif.
Skalaik, I. C., Inunham Tab., Yale University, Skaluik, I. G., Ihuham Lab., Yale University,
New Haven, Conn, Skene, R. A., Douklas Aireraft Co. Engr., Dept., C-250, Long Beach 1, Calif
Skilmeski, C. E.. 25 IV. 39 St., Hayonne, N. I. (Contintued on fuge 11+1)

\section*{YEARS AHEAD of the industry...}

\section*{Type 105 Model 6}

\section*{New!}

\section*{Northern Radio} Hritutict SHIIII KHEIR

New! highest Stability achieved by any Frequency Shifi Keyer

Sets a new standard for the Industry. It supersedes and directly replaces its

\author{
Newt Increased Frequency Range 1.0 to 7.0 mc
}

\section*{LEADER PREDECESSOR,}

The new Northern Radio Frequency Shift Keyer Type 105 Model 6 is a very high stability RF oscillator which provides a means for shifting an RF carrier in accordance with the intelligence. This exciter replaces the crystal oscillator in a transmitter and produces "Mark" and "Space" carrier shift New' Pre-selection of Proper Frequency Shift for any particular transmitfer frequency muhiplication

MeU' Permits use with for transmission of teleprinter or telegraph signals, or a linear without need of adapters carrier shift for transmission of FM telephone, facsimile or telephoto. In addition to the technical advancements mentioned above, this new external oscillator
- Direct-reading frequency calibration of mixer and output tuning dials from 1.0 to 7.0 mc .
- Direct-reading calibration of output frequency vernier \(\pm 600 \mathrm{cps}\).
- Pulse-shaping circuit to permit operation within assigned bandwidth with no adjacent channel radiation.
- Highly stable temperature. controlled oven with control of \(\pm 0.1^{\circ} \mathrm{C}\) at \(60^{\circ}\)
mainfenance
- Linear carrier shift up to 1400 cps for Fax operations.
- Component ratings according to JAN specs for greater assurance of trouble-free operation.
- Direct-reading frequency calibration of shift from 0 to 1000 cps
- Frequency shift dial adjusts "Mark" and "Space" frequencies equally above and below the carrier position, which remains fixed.
- Simplfied frequency setting makes only the upper sideband tuning indication visible on the meter over substantially all of the luning range.

\section*{WESGO... for the best vacuum tube ceramic}

\section*{WESGO AL-300} a very high alumina ceramic Non-gassing at elevated temperafures - Extremely high strength Very low loss at all frequencies Vacuum tight - Very high bond strength to a "moly-manganese" metallized coating - Can be supplied in most shapes to precise dimensional tolerances.

\author{
WESTERN GOLD \& PLATINUM WORKS 589 BRYANT - SAN FRANCISCO 7, CALIF.
}
the ONLY instrument in the field that offers ALL these features at

Skinner, R. L., 333 lligh St., Woodbury, N. J. Skrobiscli, A., Teclinical AAvisory Asonc.. 30 Broad St., New York 4, N. Y.
Slade, M. G., 17 Holčen Wood Rd., Concord. Mass.
Slate, M. W., 435 Ft . Washington Ave., New York \(33, \mathrm{~N} . \mathrm{Y}\).
Slawek, I. E., 4202 Manayunk Ave., P'hilatelphia 28, 1'a.
Slottow. H. G., 1.303 W. University Ave., Clam. раіян, 111.
Smalts, FI, Wi., 225 S. I.ecato Ave., Auluhon, N. J.

Smart, M. F., 990 San Ramon Way, Sacramemo 21, Calif.
Smith, C. 11., Jr.. L.ockkeed Aircraft ('org., Mis. siles Research Labs, 7701 Woodley Ave. Van Nuys, Calif.
Smitl, F. I.., Jr., 3010 Severth St., N. . Trlinkton \(7, \mathrm{Va}\).
Smith, E. L., Jr., 5129 Frečerick Ave., Baltimore 29 , Md.
Smith, G. M., Box 1142, Church St., Station, New York 8, N. Y.
Smith, G. H., 1 Flm St, Nassau, N. Y'.
Smith, G. S., Rd-2 Turkey Hill Rd., Ithata,
Smith, of. Iiniversity of Kentucky, Flect. Engr., Dept., Lexington, Ky.
Smith, 11. A., Civil Aeronautics Almin., Sect.. 6.556. 5651 W . Manzhester . ive., L.os Angeles 45, Calif.
Smith, H. K., 111 Morningside Dr., Cerons, N. J.

Smith, H. G., 236 Valley Rod, Ithacd. N. Y'. Smith, J. C.. 153.59 Cohasset St., Van Nuys. Calif.
Smith, K. A. H., 4714 Edgefield Rd., Bethessla, Mll.
Smith, 1.. R., 5130 W. 72 Terr., Prairie l'illage 15, K゙an.
Smith, R. A., 1243 F. Shanwood St., West Covina, Calif.
Smith, W. E., 617 Derstine Are., Lansdale, Pa. Smith, W. 18., 744-36 St., Manhattan leach. Cailf.
Smiuh, W. M.. 2500 IIudson Elvd., Jersey City 4, N. J.
Snefsky, E. A., 2046 Brookfield Rd., Pittshurgh, Pa.
Snow, 1I. A., 30 Old Sakem Red., West Urange. N. J.

Snowilen, J., 6 Rediffusion, P.O. Box 608, Singapore
snyter, G. H., Mq. AMIFE APO, 633, New York, N. Y. 49.67 Fresh Meadaws Lane, Flush-
Soleherg. S., 49.67 IFresh Meadows Lane, Flushing, I. I., N. Y.
Somers, B. A., Westover Rd., Simshury. Comm. Somerville, J, R., Jr., 723 Griffith Ave., Owens. boro, Ky.
Sontheimer, C. G., 350 Flax Hill Kd., South Norwalk, Conn.
Soorin, A. J., Box 211, R.F.D. 1, Meelway, Ohio
Sorensen, R. L., Civil Aeronautics Adm., W'356, Washington, D. C.
Sorkis, S. A., 6738 Norway Rer., Nallas, Tex. Sowerby. J, M., 74 Marston Gardens, l.aton, lBeds., England
Spagnoletti, I'. H., Kolster-l3randes, I.til. Footscray, Sidcup, Kent, Erugland
Spandorfer. I.. M., Res., Div., Moore School of E:lec., Engrs., 20 So. 33rd St., Phila. delphia, l'a.
Spear, I.. P., 2534 N. Granada St., Arlington,
Va. Spenter, II. II., Bldg., \(10-2\) REA Victor Div., Camalen, N. J.
sperrer, MI. C., 105 Parlz Ave., Eait Orange, N. J.
(Continurd in prac 116.t)

- OF SYNTHANE HAS DURABILITY, DIMENSIONAL STABILITY,-

\section*{dIELECTRIC STRENGTH}

Although this sturdy end plate will fit into the palm of your hand, it has in combination all the dielectric strength, the physical properties, and the printability the customer requires. It's made of Synthane, a laminated plastic, the same material used in hundreds of other electrical, mechanical, and chemical applications.

SYNTHANE CORPORATION, 8 River Road, Oaks, Pa,
Please send my copy of the Synthane catalog.

Name
Tifle

\section*{Company}

Address
City \(\qquad\)

The blue print for this par: calls for accurate machining, the punching of wenly holes of various shapes and sizes, and printing or engraving in three different colors. Syinthane delivers finished parts exactly as specified, ready for the production line. The customer gets them promptly without problems of tooling up, waste, or rejects.

If you need components with many properties in combination, you will want to know more about Synthane laminates and the Synthane fabricating service. Send in the coupon for the full story.

synthane corporation - oaks, pennsylvania

The Type H-14A Signal Generator has two

Type H-14A
Signal Generator

Type H-16
Standard Course Checker

UHF Signal Generator

UHF Signal Generator uses: (1) It provides a sure and simple means of checking omnirange and localizer receivers in aircraft on the field, by sending out a continuous test identifying signal on hangar antenna. Tuned to this signal, individual pilots or whole squadrons can test their own equipment. The instrument permits voice transmission simultaneous with radio signal. (2) It is widely used for making quantitative measurements on the bench during receiver equipment maintenance.

The H-16 Standard Course Checker measures the accuracy of the indicated omni course in ARC's H-14A or other omni signal generator to better than \(1 / 2\) degree. It has a built-in method of checking its own precision.

Type H-12 Signal Generator (\(900-2100 \mathrm{mc}\)) is equal to military TS-419/U, and provides a reliable source of CW or pulsed rf. Internal circuits provide for control of width, rate and delay of internally-generated pulses. Complete specifications furnished on request.

\section*{Dependable Airborne Electronic Equipment Since 1928}

\section*{Aircraft Radio Corporation BOONTON, NEW JERSEY}

\author{
Omni Receivers - 900-2100 Mc Signal Generators • UHF and VHF \\ Receivers and Transmitters - 8-Watt Audio Amplifiers - 10-Channel Isolation Amplifiers - LF Receivers and Loop Direction Finders
}

(Continued from page (11A-])
Spergel, J., 412 Hhird Ave.. Ashury Park, N. J. Spieker, L. J., 6000 Lemmon Ave., Dallas 9. Tex.
Spiellierg, A. M.. 2,7 Crystal Terr., IIaddon. field, N. J.
Spinks, A. IV., 4216 knowles Ave, kensington, Md.

Spinmer, I.. … 3867 Maywood Court, Chevint 11, Ohio
Spoor, T. A., Philips Mexicana S. A. (atle Norte 44, No. 3612, Col XochimancaAtzanotzalco, Mexico 16, I). F. Mex. ico
Sprague, R. M., 76 Amatwan Rd., Waban (ix. Mass.
Shrague, V. Ci., 31 Brunswick Kd., Montclair, N. J.

Sproul, S., R.F.I). 1, Cato, N. Y.
Springer, R. W., 809 S. Grove Ave., Oak l’ark, III.

Squibb, W, F., 3910 Alicia Dr., San Diego 7, (alif.
Sulitieri, A.. 70 Crest Rul., Merrick, L. T., N. Y.
Sreh, J. H., 0.3 Elmira St., S.W., Washington 24. 1). C.

Stahl, M. D., Hoover Ca, North Canton, Ohio Stahmam, !. 1R., 1827 Carl St., St. P'anl 8. Minn.
Stambangh, U. W., 1528-28 St., Columbus, Ind. Stanton, G. V., 1257 l'unta Way, Monterey Park, Calif.
Stanton, R. S., \(107+7\) Rorhester Ave., Ios Abs geles 24, Calif.
Stanton, S. W., Halsey Rel, East, Hov 383. l'arsimpaly, N. J.
Stanwich, C. . ., 1.31 Rymula Rd., South Orange. N. T.

Starek, R. A., +12 Highview Ave., Flmhurnt, III. Starks, W. II., 720.3 I.eonard St., Philate-lphiaa 49. l'al.

Starner, C. I.. \(31+\mathrm{Fim}\) Aveme, Haddentield. N. J.

Staschover, I... \(211-01-75\) Ave., Bayside 64, I. I., X, Y

Stavitski, I.. X.. 3705-6ł St., Woodside, I.. I., N. Y.

Steeb, E. (\(\because\). Ir., 15 (irovelanal Ave., Buffalo 14. N. Y.

Steele, R:, R., 55 Harting Ave., Hathoro, I'a.
Stein, F., 31-07 Garrison Terr., Fairlawn, N. I.
Stein, S., 90 Day St., Clifton, N. J.
Steinberg, W. A., 3756 libby lane, Levittown. I.. I., N. Y.

Steulammer, 11. 'T., 5s か. 43 St., New York, N. \%.

Stensgaard, C. P', Jr., 240 S . Michigan Ave.. Pasadena 5, Calif.
Stephanz, (; H., 8 I ake Dr., Darien, (omm. Stephenson, I. O., 127 Thumharton Rd., Baltimore, Mil.
Sterk, A. A.. 198 Seminary Ave., Yonkers, N. Y. Stern, J. I.., C.B.S. Finer., Dept., 485 Maclison Ave., New York 22, N. Y.
Sternick, L., 3451 (iiles Pll., New York 63, N. Y.
Stetson, H. 'r., 541 lido Dr., Ft. Latulerdale, Fla.
Stevens, W. I., 253 Governors Ave., Medford 55, Mass.
Stewart, B. L., Insp. of Naval Material, 2300 Eleventh Ave., S.W., Seattle 4, Wash.
Stewart, J. A., 23 Irake, Monnt Kisco, N. Y.
Stewart, W. A., 5816 Trojad Ave., San Diego 15, Calif.
Stiles, M. (., 789 Prospect St., Mapleword. N. J. Stimmel, R. G., 141 Foxridge I)r., Dayto:s 9, Ohio
Stoll, J. I.., 1031 N. Lake St., Madera, (ialif. Stoltz, G. F., 808 S.E., Riverside Dr., Evansville 13 , Ind.
Stone, W. R., 21 Horn I.anc, Levittown, I. I., N. Y.

Stonevic, V. R., 1342 Argyle, Chicago 40, 111. (Continucd on pag: 118A)

\section*{Built for close "combat" in tight spots}

Into the construction of ihis coil form goes C.T.C.'s rigid quality control to highest procuction standards.

The result is another C.T.C. first - a miniaturized coil form (\(7 / 16^{" 1}\) diameter by \(1 / 2^{\prime \prime}\) high when mounted) that is shock-resistant ard exceptionally rugged - shielded against radiation, electrically, and therefore ideal for "close quarter" use in I.F. strips and numerous designs where adjacent mounting is necessary.
C.T.C.'s policy of continuous step-by-step quality control in the manufacture of every component means guaranteed performance. Already certified materials are doubly checked before manufacture.
Whatever your component need let C.T.C. solve your problem - with either custom or standard designs of qualit.-controlled, guaranteed components - including insulated terminals, coil forms, coils, swagers, terminal boards, diode clips, capacitors and a wide variety of hardware items.

Put your component problem up to
C.T.C. now. For samples, specifications and prices - write today to Sales Engineering Dept., Cambridge Thermionic Corporation, 456 Concord Ave., Cambridge, Mass. On West Coast, contact E. V. Roberts, 5068 West Washington Blvd., Los Angeles 16 or 988 Market St., San Francisco, California.
Coil Form Data: C.T.C.'s Is-9 coil form has a brass shell enclosing a peswiered-iron cup-core, turing slug. phenwlic coil form and silicone fibreglas terminal board. Three terminal hoards are available with choice of two three or four terminal layout. Forme, unassembled, may be had without windings. . or wound and assembled to your specifications

Capacitor: New CST- 50 variable ceramic capacitor surpasses range of capacitors many times its size. Stands only \(19 / 32\) " high when mounted, is less than \(1 / 6^{*}\) in diameter and has an 8-32 thread mounting stud. A tunable element of unusual design practically eliminates losses due to air dielectric giving large minimum to maximum capacity range (1.5 to 12 MMFD).

\section*{CAMBRIDGE THERMIONIC CORPORATION}
makers of guaranteed electronic components, custom or standard

\section*{Our "In-Plant" Testing Facilities} Can Save You Time and Money!
Our test equipment and services, set up to meet MIL-T-27, assure you of prompl approval and minimum delivery time.

We also have an experienced staff, an extensive research and measurement laboratory, and complete pulse magnetron test equipment. Thus, we can offer you top-quality transformers and expert assistance with your design preblems. Write for free literature
ATLANTIC TRANSFORMER DIVISION
OF NEW LONDON INSTRUMENT COMPANY, INC.
30 Hynes Ave., Groton 4, Conn.

\title{
CAPIOL RIDO EXCITHERIMG CHSTIUT:
}

Advanced Home Study and Residence Courses in Practical Radio-Electronics and Television Engineering

Pioneer in Radio Engineering Instruction Since 1927

Request your free Home sludy or
Resident School ('utalog by writing to Dept. 20 \(1: 3\). 3224 16th St., N. W. Washington 10, D. C. Approved for Veteran Training
(Continued from page 116A)
Stormer, W. J., 2800-51 Ave., S.l:., Withing ton 27, 1). (
Stotz, C. C., 180 Pine St.., Rockwille C'entre, 1. I., N.

Stouse, L. E., Jr., 4233 E. Second St., Lonk Beach 3, Calif
Stout, E. R., 620 Clarendon Ave., Arlinkton Heights, Ill.
Stovall, II. E., 3009 First Ave., N.F. . Seattle, Wash.
Stover, F. 13., Ir., 2301 S. Florentee 1\%.. Tulsa
Strain, C. E., 1298 Niles Ave., N.W'. Itlanta,

Strand, I.. 3051 (ieddes Ave., Anti Arbor, Mich Strancy. K. 11.. 20 learl St.0 Ext., lieverly, Mas.
Streater, A. I.., 120 Sylvan Dr., ISromall, P'a. Streich, R. J., Box 121, Inverness, Calif.
Streitus, C. A., 2 Rector St., Rm., 130, New York 6, Ň. Y.
Stribling, J. I., Jr., 2003 Columbus, Fit. Worth, Tex.
Striker, R. G., 58 South Lor., IPlandome, L. I.,
N. Y. 106 Myrtle St, Suite D. Boston 14,

Mass.
Stroble. R. R., 4715 Chestnut St., Bethenda 14 ,
Md.

Stroman, C. F., Officers Mail Sect., 又1t (1ms. Scl., Fatirchild Air Force Base, Fairchild, Wash.
 मatterom AFB, Ozio
Strothers, 11., +11133 St., S., Arlmetom, Va, Strome. S. A., 3501 MrBain Ave. Rectonto Beach, Calif.
Strull. G., 819 College Ave., Pittsburg 32, 1’a Stuart. R. M., 270 Ocean Ive., Mirblehead, Mass.
Stuleer, Dr. R., Schlosslistr. 29, Zurich 47, Swit. zerland
Stubuer, J. W., 2116 Grove St., Cilenview, 111
Suarez-Flamerichs, O., Qta. Mariaemma Ave Valle Arriba, caracas. Veremela
Suhramaniam, C. R., Asac Supt. Wevelapment, Tecli., [hevel., Fotal.. Smmerual: ('amp., Delloa then, U.P., Jomet
Suktr, J. P., 4317 W: 99 Pl., Oak 1 atwn, 111 . Summers, (i. C., 1417 Fleming Ave., Waltas 16
Tex. Summers. W., 15t⿹ Glenwood RI, Vestal, N. Y.

Sumber, J. Fo., 3-0 1hakpond Dr.. Somb. Wan tagh, L. I., N. Y. Sumpuist, A., El. Eingr. Stemballataken 45 Stora Essingea, Stockholm K. Sweden Sutton. (i, L., Ihox 313 Griffiss AFB, Rome, N. G., Jr., 1524 E. Oak St., Phenix Sutton, I. G., Jr., 15at E. Oak St.. Mmenix, Svedlow. T. D., 102.1121 Patrick Henry Jr., Falls Churci, Va.
Svihel, B. T., 940 Wyoming Ave., Croylon. P'a Swait, R. R., 2.324 (ieneral Pradley N.F., Al mupletalue. N. M.
Sweeney. IV. R.. 32 Wyatt Ril., Garten city I. I.. N. Y. . . Box 682, Hunteville. Ml: Swindall. P. M., P.(O. Bos 682, Hunturille. Nat.
Swire. J. E., is Arabella St., I.ongueville, N.S.W., Australia

Symamon, T. II., 255 Eberly Ave., Bowling (ireen, Ohio
Taber. J. E., \(280+\) W. 163 St.. diarterlu. (alif. Tanck, II., 197 Wick, Lane, Malvernc. I.. I.
 Ashland, Mass
Tamer, W. F., Bell Aircraft Corp, Buffaln S. N. 1 .
(Continued on bage 120A)

\title{
Styroflex Coaxial Cable
}

\section*{CHOSEN FOR}

Station WFMY-TV in Greensboro, N. C., went on the air January 2, 1955, with a feed system consisting of two \(3^{1}\) 's 'Styroflex cables. These cables are installed from the 25,000 -watt transmitter, located approximately 200 feet from the footing of the tower, to the base of the antenna 658 feet above ground. The installation is an unusual one, as this photo shows.

Mr. William E. Neill, Chief Engineer of WFMY-TV, reports that the Styroflex cables are operating satisfactorily and are holding air pressure to the point where use of a dehydrator has not been necessary. The cables' performance, according to Mr. Neill, measures up to every expectation both electrically and mechanically.

\section*{PHELPS DODEE COPPER PRODUCTS CORPORATION}

40 WALL STREET, NEW YORK 5, N.Y.

\section*{Designed for变 Application}

The No. 90901
One Inch
Instrumentation Oscilloscope
Miniaturized, packaged panel mounting cathode ray oscilloscope designed for use in instrumentation in place of the conventional "pointer type" moving coil meters uses the \(1^{\prime \prime}\) ICPI tube. Panel bezel matches in size and type the standard 2 square meters. Magnitude, phase displacement, wave shape, etc. are constantly visible on scope screen.

\section*{JAMES MILLEN MFG. CO., INC.}

MAIN OFFICE AND FACTORY
MALDEN
MASSACHUSETTS
\(\overline{\mathbf{M}}\)

 Tallom, Fe Re, bell Tal. Labse, Muray llath.
 |cc. REF|
Faslon, 11, 11.. If.. H1 W: Holmee, Huntsville,
Taylon, K. A., Bell Tel., tho Sewenth Ave. 1'manum 14, I's.
Tay for, Malcolm, wins Shemoond Ral, Baltimore \(2, \mathrm{Mt}\}\).
Taylor, 1'. II., 2.2 Washineton Ive.. (hathath, N. J.

Temple, 1). I.. (00) D'e liam Rel., Pilas. B. Nen Robleclle, \(N\), \(Y\),

Femmant, M. J. 21 Five Mile line RUI., l'en hedel, N. Y. Sheffield St., siluer Spuing. Mid.
Teslik, !. . ., \(385:\) W. Vinn Buren, Clicago 14. 111.

Thavon, Herbert \(\mathrm{A}, 4120 \therefore\) Ioma, Finglewood, Colo.
Wheobbald, 1). !., 5450 Linda Rosa, Ia Jolla, Calif.
Iheufil, 1). V.. 637 Fifth St.. Ann Arbor, Mich.
Thille, R. W., 1 Wood Si., Apt. J, San Francisco 1R. (ahif
Thomas, E. R., 245 Maple St.. Figleword, N. J
'Thomas, M. E.. Sis •' St. Jdaho Falls, Idaho
Thomas, R. R., Ir., Radio Sta, IV.O.A.Y., Oak HIII. W. Va
Thomas, T: R. 14834 Coyle Ave., Detroit 27, \(\mathrm{Mich}_{\mathrm{c}}\).
Thomom. 13., Ir., 814t/2 N. Madison, l'asatlena 6, (alif.
Thompson, 1). (., 30 Cleveland Rd., Waltham 54, Nass.
Whompson, (i. 1.., 710 F Fight Ave., los Angeles 45, C. hit
Thompson, I. F.. 27 N. Fennwood])r., Rock
 111.

Thomson. Fi. (\(\quad\) as Tisingstom Rad, Wellevtes
Thumensell. R., \(11+20\) bolas \(S_{t}\), Loos Anerte 4) C. 11 f.
 (hurch, V.t.
Thuten, (i. W:. Pox 182, Oitula, (alif
Thurston, B: (i., 2433 N. Jetsoir Blad., Cleve
Thbetts, (i. C.. Collord Ave., Camden, Mane Tillutson. 1. (i.. 2522 Plate We Monecath, Apt
Jilton, H. S.. 2 Pr Pomacom \(S_{t}\)., Manelnester. N. 11.
 lingley, Fi. Mt., Ir., \(3 \times 3\) Filn St., Glen Ellyn,
 Title, H. (., si Ruce Hill Way, Waltham \(5+\) Cobin, M. W. 5802251 St., I.itte Nock,

Tobler. (: R.. -o Sutton IM., Veroma, N. I Tonmate, is. H., =23.536 N. Ave., Westield,

Torim, I. 'I., ss-1! - 34 Ave., Jackson Heights, I. I., N. Y.

Tomrthon. S., 1716 spring Gardens St., Phila Trathenhers. K.. And (iraishory Ave., Hatdon Traqp, R. R., i20 W, Fianhlin St., Taylorville ((intinturd in page 121d)

AMERICAN TELEVISION \& RADIO CO. ST. PAUL, MINN.

\section*{introduces the}

Full Door Console Receining bets.

UNSURPASSED IN BEAUTY

UNEQUALLED IN PERFORMANCE

UNMATCHED IN
QUALITY CONSTRUCTION
exclusive profitable dealer franchises

WRITE TODAY FOR COLORFUL BROCHURE SHOWING THE NEW LINE OF ATR TV SETS

ALSO MANUFACTURERS OF DC.AC INVERTERS A" BATTERY ELIMINATC•RS, AUTO RADIO VIBRATORS

Trinter, V. E., 2808 Echodale Ave., Baltimore 14, Md.
Trotter, B, E., 3110 First St., N., Arlington, Va. Truscott, 1), N., 58 Oxford Rd., Birmingham 13, Fingland
Tuckerman, 1.. S., 317 E. 87 St., New York 28, N. Y.

Tumnicliffe, W. W., 11 Orient St., Winchester, Mass.
Turner, A. H., 202 Burrwood Ave., Collings. wood 7, N. J.
Turner, A., 160 Gaylor Rtl., Scarstlale, N. Y. Tuttle, I.., 1131 Ashburton St., Baltimore 16, Md.

Tutty, J. F., 56 Jefferson St., Belleville, N. J. Tykulsky, A., 551 Wales Ave., New York 55, N. 1 .

Ulmer, R. M., 2207 Campus Ril., Beachwood 21, Ohio
Umbach, L.., Jr., 21 Olive St., Youngstown 1, Ohio
Urey, G. M., 934 N. Orlando Ave., Hollywood 46, Calif.
Vacca, L. N., 7 Meadowbrook I.ane, Vestal, N. Y.

Valen:a, M. F., 14 Jen Oaks Dr., W.., Millersville, Md.
Vallarino, A. R., E. Sardle River Rd., Allendale, N. J.
Vallarino, A. D., Casilla 1753, Santiago De Chile
Vanacore, T., 151 Tulane Rd., Kenmore 17, \(\mathrm{N} . \mathrm{Y}\).
Vance, D. H., RD 1, Crooked Lane, Moorestown, N. J.
Van Doeren, C. A., Peace Haven Rd., WinstonSalem, N. Car.
Van Every, A., 1017 S. California, Albuquerque, N. Mex.

Van Meter, J. L.. 4298 Higliview Ave., Baht. more 29, Md.
Van Name, J. M., 1506 F. Walnut Lane, Philadelphia, I'a.
Vasilevskis, H. S., Tioga \& C Sts., Philade!phia 34, l'a.
Vaughan, V'. 3836 l'ukalani Plo, Honolulu, T. II.

Veazie, F. A., Bell Tel. Labs.. Murray Hill, N. J.

Vehling, R. H., 60 Hudson St., New York 13, N. Y.

Vemdeland, R. N., 610 Fourth St., Riverton, N, J.
Verkley, Bernard M., 3768 Hubble Rd., Cincimnati 24 , Ohio
Vetter, William F., 43 Sprucewood Dr., Levit. town, L. I., N. Y.
Viales, Lionel O., 2332 Cedar St., Berkeley 8, Calif.
Vilas, Elward T., Box 491, Silver Spring, Md.
Vogel, II, O., U.S.S. Rehohoth, c/o F.P.O., New York, N. Y.
Vosel, W. H., Jr., 59 Crane St., Caldwell, N. J. Von Dohlen, H. W., 1701 Preston Rel., Alexandria, Va.
Vore, M. P., c/o Westinghouse Flec. Corp., Baltimore 3, Md.
Vulliet, P. O., Rt. 2, Box 870, Bremerton, Wash. Waer, R. R., 49 Daily St., Nutley, N. J.
Wagner, F. C., 16219 Tonkaway Rd., Wayzata, Minn.
Walden, G. R., 3804 Fulton St., N.W., Washington 7, J). C.
Wales, R. O., 301 Vierling Dr., Silver Spring. M1.
Walkup, L. A., 4904-14 Ave., S., Mimeapolis 17. Minn.

Wall, V. W., 10058 Lesterford Avc.. Downey, Calif.
Wallace, Bert E., Ir., 7509 Far Hills Dr., Towson 4, Md.
Wallace, Bon C., Bendix Mhy., 1206 Maple Ave., Los Angeles 15, Calif. (Continued on Fuge 122.1)

\section*{Worddi largart Storks or}

\section*{ELECTRONIC SUPPLIES FOR INDUSTRY}

Here's how to simplify and speed the purchasing of all your electronic supplies and equipment: send your orders to ALLIED - the reliable one-supply-source for all your electronic needs. We make fastest shipment from the world's largest stocks of electron tubes (all types and makes), transistors, test instruments, andio equipment, electronic parts (transformers, capacitors, controls, etc.) and accessories-everything for industrial and communications application, for research, development, maintenance and production. Our expert Industrial supply service saves you time, effort and money. Send today for your free copy of the 1956 allied Catalogthe complete Buying Guide to the worid's largest stocks of quality Electronic Supplies for Industrial and Broadcast use.
ulira-modern facilities
for the fastest service in Electronic Supply
ane complate
dependab e source for
everything in electronics
allied radio 100 N. Western Ave., Dept. 35-1-5 Chicoge a0, IAlinais

An all new instrument for measuring phenomena that can be expressed as frequency or phase modulation of an audio frequency．Completely portable．

Meets all applicable requirements of the IRE，SMPTE and ASA－\(\$ 295\) ．

Write for specification sheets on the above instruments and the complete Donner line of advanced instrumentation

\section*{Ilembership}
（Lontinued from page 121A）
W＂allace，Robert M．， 2921 Cherrywood．Dalla． 19，7ex．
W：allenstein，J．P．， 89 Sherhard Ave．，Newark 8，N．J．
W．alsh，J．V．， 501 ド， 234 St．，Apt． \(4 \mathbb{F}^{\circ}\), New York \(66, \mathrm{~N} . \mathrm{Y}\).
Walter，（i，W．，4425 Main St．，Kansas City， Mo．
Whalers，Ambew W：，National Hur，of Stamb arels，Corona，Caiif．
Wamboldt，H．，bol Meyer Ave．，I）ayton 3，（Onio Wang，C．S．． 1205 Fudora St．，Denver 20，（ olo． Ward，D，M．，2＂26 Balboa Ave．，San Dicgo 9， Calif．
W：arnick，A．，12752 Menorial．Detroit 27．Mich． Warren，M．，Jr．，Box 465，Alcoa，＇Ienn．
Washhsrn，C．A．，Andria Lane，Thortwood， N．Y．
Wasnerman，J．， 760 Bronx River Rd．，Bromx ville，N．Y．
Whasson，I．， 8 Scooter I．ane，Hicksville，I．I．， \(\therefore . Y\) ．
Watertman，I＇．，Natval Research Lab．，Anacustia Sta．，Washington \(25, \mathrm{D} . \mathrm{C}\) ．
W：atson，R．H．， \(37+1\) Narragansett，Sun 1）iego 7，（＇alif．
Watterberg，J．，1227（iarcia，N゙，F．．，Albunturnue． N．Mex．
Wiayer，（․ l＂，Jr．，Star Ki．，Box 2805，Siperard， Alaska
Weaver，A．， 16.3 W. St，New York 14．S．Y．
Webls，R．li．，c／o Suerry l＇roducts Co．，Shelter Rock R．l．，I anloury，Contr．
Weher，I．WV．，8819：，Kelford Ave．，Ios hmeles 45，（alif．
Weber，M．E．， 19.33 Santa Rose，Houston 23． Tex．
W＂eeks，G．，F．．，leell Tel．I．abs．，Inc．，Whinpany， x．J．
Wehmer，（i．L．，Olive Rd．，Box 385，RR 10. Dayten，（Miso
Weoblomant，II．K．， 26 Shesapeake St．，N．W．， Ant．5，Waslington \(24, \mathrm{D}, \mathrm{C}\) ．
Wevilusecht．C．J．，Jr．， 1611 Roumfort R．l． Philarlephiat 19，Pa．
Weiler，（i．， 1439 E. Monroe，South lemd，Ind． Weill，A．F．．．， 1229 IBlanchan Ave．，I．a Grange l＇ark，Ill．
Weinbers，1）． 7087 fo．Crenmeadow I．ane，Cin－ （immati 37，Olio
Weingarten，J．， \(11+\) Farnham St，Belmmat 78. Mass．
W＇einstein，A．，loox 478，Rlil）5．Ntexandria， Va．
Weinstein，G．， 5351 l＇ullman Ave．，Seattle 58 ， W＇asl．
 ville，Mal．
Weise，J．．W＂「＂TWV．TV＂， 38 S．Learburn St．． （ Chicago 3．Ill．
Weisi，I．M．， 857 Crotona Pk．，N．．，Bronx 60， N．Y．
Wehan，I．，Iillside Ave，Spring Valley．X．Y． W＂elch．H．E．． 3301 Kensington Way，Stockton， Calif．
Wether．John I．， 2553 N．Mason Ave．，（Hicago， I11．
Welluan，M．，llox 88，Thinconn，Mass．
Wells，W＇．M．， 3222 lbsen St．，San Diego 6， （alif．
Wells．W．S．， 1207 Ryan Ave．，St．Paul 13. Xinm．
W＂emit．R．H．，Get Garret：Pl．，Evanston，Ill． Wengryn．N． \(248.11-87\)［ir．，Beilerone．I．．I．，

Wermath，M．M．， \(101+\) F．，2t St．Brooklyn 10 ， N．Y．
West．J．I．．， 7 Eilwards St．，Binghanton，N．Y． Westbom，A，（．，Ir．，16 Circuit Rd．，Westwoorl． Mass．
Wentenhaver，I．I．．．Hughes Aircraft Co．，Flor ence \＆＇leale Sts．，Culver City，Calif． （Continued on page 124A）

\section*{MEASURES IN NUMBERS ...NOT VOLTS!} For FM/FM Telemetering

Accurate enough to fit into any telemetering systen that requires precise measurement of static or dynamic pressure \(:\). and small enough to fit inte the palm of your hand ... Byron Jackson's new Vibrotron Pressure Gage sets a new standard of aecuracy by measuring in numbers, not olts!
accurate and rellable Standaud Vibrotron Gages provide accuracies to. \(1 \%\) under the temperature and pressure conditions encountered from sea level to \(75,000^{\prime}\).
direct and simple Utilization of the vibrating wire principle which directly produces a subcarrier frequency eliminates subcarrier oscillators and consequent drift and inaccuracy. The direct digital information is easily handled by tape recording and data handling systems.
versatile and stable For altitude meusurements, the standard vibrotron Gages will resolve \(60^{\prime}\) at sea level. Special gages that cover 0-1 psi absolute ranges or less are also available for better resolution. For air speed measurements, a variety of differential gages have been developed to measure the wide ranges of speeds needed for aircraft and missile work. For pressure measurements, corrosion-resistant gages are being supplied to measure static or dynamic pressure of virtually any medium including fuming acids.

Available in eight pressure ranges from 0.3 psi to 0.2000 psi and in the following RDB Channels.
\begin{tabular}{c|c|c}
Chandel & CPS & DEVIATION \\
8 & 3000 & \(\pm 71 / 2 \%\) \\
9 & 3900 & \(\pm 71 / 2 \%\) \\
10 & 5400 & \(\pm 71 / 2 \%\) \\
11 & 7350 & \(\pm 71 / 2 \%\) \\
12 & 10500 & \(\pm 71 / 2 \%\) \\
13 & 14500 & \(\pm 71 / 2 \%\) \\
14 & 22000 & \(\pm 71 / 2 \%\) \\
& & or \(15 \%\) \\
& 40000 & \(\pm 15 \%\) \\
& 70000 & \(\pm 15 \%\)
\end{tabular}

WRITE TOOAY for complete specifications and iaformation on how Byron Jackson engineers can work with you on (1) application of standard Vibrotron models to your measurement problems; (2) special Vibrotron development; and (3) design of complete systems.

\section*{Byron Jackson Co.}

492 EAST UNION STREET•PASADENA 1, CALIF. • RYAN 1.5166
PACEMAKER IN PRECISION ELECTRONICS

0.001 volt input d-c gives 70 mm deflection with this high-speed direct writing oscillograph, many times that for competitive units. The Dynograph with one amplifier is used for all types of inputs for measuring speed, temperature, position, vibration, and other variables. Patented, chopper amplifier design makes it sensitive, stable, and versatile. Available in
 both 6 channel console model and single and dual channel portable models. Get bulletin L742-compare the Dynograph with all competitive models-it combines sensitivity with absolute stability.

\section*{OFFNER \\ ELECTRONICS INC.}

5328 N. Kedzie Avenue Chicago 25, U.S.A.

(Lombuncd from page 122A.
Westman, H. P., Jr., 55 Arleigh Dr., Albertson,
Whannel, R. L., R.F.I). 1, Oakdale, Conn.
Wheat, Wilson M., Box 266, MPO, Springfield, Mo.
Wheeler, Randolph B., 130 La Rue Dr., Hunt. ington, L. I., N, Y.
White, A. 1., Woorlridge Rd., Wayland, Mass. White, E. A., 1204 Delta Blvd., Ft. Wayne 3, Ind.
White, J. A., Box 1230, Williamstown, Mass,
White, J. R., 33 Hidden Lane, Westbury, I. I., N. Y.

Whiting, Webster K., 604 Woorllawn Ave., Falls Church, Va.
Whitney, I. I., 41 Gabb Rd., Bloonfield, Comn. Whittaker, II. F., Jr., 32 Essex St., I.ynı, Mass. Widenor, M. I., 19 Greely Sq., (ilen Head L. I., N. Y.

Widmann, F. W., 15 Roberts Ave., II aldonfield, N. J.

Wier, I. M., 904 S. Wabash, Urbana, Ill.
Wiesner, I.., 118-65 Metropolitan Ave., Kew Gardens, I. I., N. Y
Wild, J. H., 1224 Ransom Sit., Sandusky, Ohio Wikl, J. J., 7 Overhill Lane, Roslyn, I.. I., N. Y. Wilkinson, D. A., 777-14 St., N. W., Washing ton, D. C.
Willard, T. M., 5205 Fisht Rel., So.. Arlington 4, Va.
Witlard, R. S., Jr., to Kailolu l'l., Lanikai, Oaln, T. H.
Willett, E., 447 Tenth Ave., New York 1, N. Y Williams, C. E., 1517 Piedmont Ave., Austin, Tex.
Williams, C. H., 2031-34 St., S.E., Washing ton 20, 1). C.
Williams, C. S., 5010 Kimball, Kansas City \&, Kan.
Williams, J. T., 145 Callan Ave., Evanston, Ill Williams, R. J., 111, (ireene Rd., Berwyn, l'a Williams, R. W., 4800 Oik (irove I)r., P'asa dena, Calif
Williams. S. B., \(4847 \mathrm{~N} .+1 \mathrm{st}\), Milwankee 9, IVis.
Williamson, C. R., 85 f . Columbus Ave., White Plains, N. Y.
Williamson, J. C., 205 Brow St., Liverpool, N. Y. Williamson, R. J., 136 Esperanza Ave., Sierra Madre, Calif.
Witlis, F. H., Bell Tel. L.abs., New York 14 N. Y., 499 Fort Washington Ave., New York, N. Y.
Willson, F. E., 463 West St., New York 14, N, Y.
Wilmot, R. I.. Kirk's Ferry, Ottawa, I'Q. Canada
Wilson, C. A., 1612 Conly I)r., Silver Spring, Md.

Wilson, H. R., 236 S. l.ymmood Ave., Gilenside, Pa.
Wilson, R. E., Radio Corp of America, Camden, N. J.

Wilts, J. R., 447 Mesa Way, La Jolla, Calif.
Winchester, D. S., Rox 89, Maldwinsville, N. Y
Wingate, Silluey A., 8 Gray St., Cambridge, Mass.
Winget, William F., \(23+2\) Commonwealth Ave. St. 1’anl 8, Minn.
Winkle, La Verne, 1270 I'rospect Pl., Cincinnati 31, Ohio
Winkter, M. R., 5225 N. 20 St., Phoenix, Ariz.
Winter, Harold F., Mountain Ave., Murray Hill, N. J.

Withrow, W. E., 4803 Ravenswood Rd., Riverdale, Md
Wittenberg, R. C., 136 Pine St., New Hyde I'k. L. I., N. Y.

Wittig, William I., 2519 S. Walter Reed Dr, Arlington 6, Va.

VHS* RELAY
(*Very High Sensitivity)

Model 266
Sample specs. are 0.2 micro-
amperes, (12,000 ohms coil) or, 0.1 millivolts, (5 ohms.

- The VHS is a balanced armature, Alnico magnet type relay. It is internally shock mounted and resistant to vibration. The screw-on cove is gasket sealed. It can be opened and resealed. Connections: 9 pin octal style. Dimensions: \(13 /\) diameter \(\times 21 / 4\) long. Weight: 4 ounces. Sensitivity Infinite variations from 0.2 Ua . to 10 Amp . ar 0.1 Mv . to 500 volts, self contained. Higher volts or amps with external multipliers. A.C. rectifier types. Trip point accuracies to \(1 \%\). Differentia \(1 \%\). The degree of resistance to shorik and vibra tion primorily depends upon sensitivity and type of action wanted. In general, the relays will no be permanently damaged by shocks of 100 G's and vibra. tions up to \(2,000 \mathrm{cps}\) at 4 G's. The most sensitive relays may close their contacts under these conditions.
Contacts: SPST o SPDT, 5-25 Ma. D.C Other ratings to \(1 / 2\) Amp. A. Coil A locking coil gives high pres sure and chater free and vibration shock Prices:\$20.\$80
Delivery 4 to 6 weeks
Assembly Products, Inc
Chesterland 2. Ohio.

Booth A-150, Instrume Sept. 12-16, Los Angeles

Designers Manufacturers Of
PLASTIC LIGHTING PANELS and DIALS

\section*{Specialists In The \\ INTEGRAL LIGHTING OF INSTRUMENTS}

\section*{Authorized LIGHT TESTING}

Facility of Bu-Air

BODNAR INDUSTRIES
238 Huguenot St.
New Rochelle, N.Y.

(Continued from page 124A)
Wohl, C. J., 44-21 Macnis'ı St., Elmhurst 73, 1.. I., N. Y.

Wolf, A. A., 1131 Cedar I'ark Ave., Philadelphia 38. \(\mathrm{P}_{\mathrm{i}} 11\)

Wolf, E. W., 19 Robinson Rd., Lexington, Mass. Wolf, F. E., Jr., 161.03-65 Ave., Flushing, I. I., N. Y.

Wolfand, D., 905 Manor RA., Falls Church, Va. Wolfe, C. M., 820 F. Bennett, Giendora, Calif. Wolken, I. I., 6307 N. Francisco Ave., Clicago 4.5, 111 .

Wong, (f. W., 66 University Rd., Brookline 46, Mass.
Wood, Frederick 13., 1152 IIedding St., San Jose, Calif.
Wood, R. M., Jr., 13 Gibson Rd., Hampton, Va. Wood, R. F., Bear Rd., N. Syracuse, N. Y.
Woodrulf, A. E., 312 N. Parkside, Chicago, Ill. Woodruff, R. I.., 86 Concord St., San Francisco 12, Calif.
Woods, O. K., 301 Ifenrietta St., Kalamazoo, Mich.
Woods, W. A., 255 Waterview St. Playa Del Rey, Calif.
Woodward, W. E., 5002 S.E., 122 St., I'ortland 66, Ore.
Wooklyard, J. R., University of California, Berkeley, Calif.
Worthen, G. B., 2630 Kingsbridge Terr., Bronx, N. Y.

Wrathall, G. R., Rt. 2, Box 260, Aptos, Calif. Wright, C. R., 207 St. Lo., Mishawaka, Ind.
Wright, D., 1420 Opechee Way, Glendale 8, Calif.
Wright, D. S., 86 Brook Rd., Red Bank, N. J.
Wright, J. W., 5504 Grove St., Chevy Clase, Md.

Wright, R. B., 4607 Comnecticut Ave., N.W, Washington, D. C
Wright, T. A., Highland l'k., Village, Dallas Tex.
Wurman, G., 318 E. Walnut St., fong Beach, L. I., N. Y.

Wycoff, K. M., Rt. 1, Overton, Nebr
Wyeth, F. H., 4901 Stenton Ave., I'liladelphia 44, Pa.
Yang, T., Remington Rand Inc., Philadelphia, la.
Yaplee, B. S., 4219 -Fourth St., S.E., Wash ington 20, 1). C.
Yarbrough, A. D., 3513 Stanford St., Dallas 5, Tex.
Yeager, J. R., Queens Village, I.. I., N. Y.
York, E., Jr., 1094 S. King St., San Gabriel, Calif.
Young, A. F., Rt. 2, Box 474-A, Severna I'k., IId.
Young, J. W., Box 407, Fort Anador, Balhoa, Canal Zone
Young, M. F., Box 1142, Honolulu, T. H
Young, W. E., Hq. Fifth Air Force, Ibox 544, APO 710, c/o P.M., San Francisco, Calif.
Youngblood, W. A., M.I.T., Cambridge 39, Mass
Younger, U. E., 3202 E. Foothill IBvd., Pasa dena 8, Calif.
Youngstrom, N. C., Seven E. Cedar Lane, Maple wood, N. J.
Youtz, P., 211 Massachusetts Ave., ("ambridge 39, Mass.
Yu, Y. I'., tSl Highland Ave., I'assaic, N. I. Zablocki, H. S., 30 Grove Terr., Irvington, N. I.
Zancanata, H. W., R.F.D. 2, Aberdeen, Mil.
Zayac, F. R., Rockaway Dr., R.D. 2, Boonton, N. J.

Zebrowitz, S., 2220 I'ine St., I'hiladelphia 3, Pa.
Zeiger, I. B., 4515-12 Ave., Brooklyn 19, N. Y.
Zenon, Z., 27 Lincoln Dr., Box 363, N. Syra cuse, N. Y.
Zern, R. T., 2972 Second St., Norristown, l’a. (Continued on page 126A)

\section*{Jon't \({ }_{\text {00 }}\) voursili...}

\section*{let ERIE BUILD YOUR ELECTRONIC AND MECHANICAL CUSTOM ASSEMBLIES}

ERIE has the unique combination of facilities for producing electronic components, molded plastic parts, metal stampings and embossed wiring boards, for Electronic and Mechonical Custom Assemblies. Such assemblies are essential in the design of Computers, Business Machines, Automatic Industrial Controls, Electronic Organs, Communication Equipment, Guided Missiles and Ordnance Materieh

A definite trend has been toward unitized assemblies that help speed production and insure a minimum of down time on end use equipment. Through research, design and actual production of component packaging for a number of years, ERIE has kept pace with this fast growing industry. By subcontracting certain basic assemblies to ERIE, you, the manufacturers, can devote more of your engineering time to the design of new equipments and development of end use systems, and save on your final unit costs.

The ElectroMechanical Division of Erie Resistor will welcome the opportunity to consult with you on the possible economies to be gained through the use of ERIE assemblies.

Typical ERIE Electronic and Mechanical Assemblies
- Pluggable and Modular Units © Unitized Multiple Component Networks - Transistorixed Assemblles and Assemblies for Military Use - Memory Matrix Devices Panel Wiring and Cabling

ERIE ELECTRO-MECHANICAL DIVISION
ERIE RESISTOR CORPORATION
Main Offices: ERIE, PA.

\section*{FAST RISE TIME}

An extremely versatile instrument for the generation of accurately controlled test pulses - also provides gate pulses, neg. triangles, and five sync. pulses in each cycle. Ideally suited for: Computer Development...Radar Test...Fuse and Relay Research... Pulse Modulation...Transient Response Studies... General Pulse Circuit Development.
- 10 CPS to 100 KC Rep. Rate - 0 to \(10,000 \mu\) s Delay - . 1 to 1,000 /ıs Pulse Width • 80 V Amplitude (open circuit) • 93 Ohms Internal Impedance • \(02 \mu\) s Rise Time
- Twin Pulse or Advanced Pulse Connection

Zieman, (:. M., 2293 Hapelmon Ave., Jayton 3, Olio
S., 6742 s. stresians Ave., Chicabo ?n, III.
 Okta
 111.

Zimmerman, R. I.., 17122 (Nionne, Northrulec Calif.
Zuckerberg. II., 6ö-30 Dart mouth sit. lionterl Hills, I.. I., . . Y.
 N. \({ }^{\prime}\).

Admission to Member
Alams, I. F... Box 138. Nurtal Paty,
Adams, R., stsite 1, is Home, Wimmpue IU Man., Cimatat

France

 N. C.
 ada, Calif
Bower, C. M., Air Assariates, Inc., ill loyes St., Mrange, N.J.
 I.M., *an Francisto, (allif.
(Chaudhuri, 1), 500 Riveroide 1)r., New York 27.
Chu, У"., 2402 Allen Rel., Alles l'ark Jo, Mich. (Clevelaml, A. R., \(11+13\), antewood Cir., Dallas,

Cook, M. IK.. 5,34 lhaeder Ril., Ifenkintown, B'it
Cory, IV. F... 25t Shrine, San Antonio, Tex.

Gerriah, C. R., sums IV', |havi, sit., Jahlas 'lex
Gladhone. H., 15: W. 5\& St., New York 1 .

('latuibler, liat.
 lieach 7, (alif.
 versity of Mismuri, C'olumbia, Mo.
 I'a. \(\begin{aligned} & \text { R., (is Kemelall R.l., Cokhester, Finnes. }\end{aligned}\) England
!afte. H., 239 Newman St., Mettrefleth, N. 1 .
Johns, \(\therefore\) Fo., ! r., c/o Birl lvell Surveys, -1 Holley Ave., Brandforel, I'n.
Kim, IB., lion 530, 3337 Feeh. Tang 太il. Sookt V.F.E., III.

Korak, IV. S., liwx 75. (itraberlazed, (Jme., (ial)
1.eblomin, A. F., 23 Rue di Maroc, Firin 19. France

 S N M (allege of Vevas, (ollege sit town Tes
 bintich K. 1'it.

Me.Mullin, 'T, I.. '000 Drason. Dallas, Tev,
 erlo, B'asade tha, (atlif.

CUI CORES TOROIDAL SQUARE rectancular

1

\section*{Anptring Vou Mar Need in} TAPE-WOUND CORES

\section*{RANGE OF MATERIALS}

Depending upon the specific properties required by the application, Arnold Tape-Wound Cores are available made of DELTAMAX . . 4-79 MO-PERMALLOY ... SUPERMALLOY . . . MUMETAL ... 4750 ELECTRICAL METAL . . . and SILECTRON.

\section*{RANGE OF TYPES}

In most of the magnetic materials named, Arnold Tape-Wound Cores are produced in the following standard tape thicknesses: .012", \(.004^{\prime \prime}, .002^{\prime \prime}, .001^{\prime \prime}, .0005^{\prime \prime}\), or \(.00025^{\prime \prime}\), as required.

For complete details, write for Bulletins TC-101 A and SC-107.

\section*{Applications}

Let us help with your core prob. lems for Pulse and Power Transformers, 3.Phase Transformers, Magnetic Amplifiers, Current Transformers, Wide-Band Transformers, Non-Linear Retard Coils, Reactors, etc.

ADDRESS DEPT. P-59

\section*{RANGE OF SIZES}

Practically any size Tape-Wound Core can be supplied, from a frac. tion of a gram to several hundred pounds in weight. Toroidal cores are made in twenty-seven standard sizes with protective nylon cases. Special sizes of toroidal cores-and all cut cores, square or rectangular cores-are manufactured to meet your individual requirements.

\section*{The Arnold Engineering Company \\ SUBSIDIARY OF ALLEGHENY LUDLUM STEEL CORPORATION General Office \& Plant: Marengo, Illinais DISTRICT SALES OFFICES ...New York: 350 Fifth Ave. \\ Los Angeles: 3450 Wilshire Blvd. Boston: 200 Berkeley St.}

\section*{CHECK THIS LIST OF SUPERIOR FEATURES}

Light weight - only 8 ounces
OVer 10\% effcient - 1 watt CW output . . . uses 450-500 volt receiver power suppiy
Compact - smaller than \(6 L 6\) receiving tube

1/Rugged - Cathode sup. ported at both ends to minimize microphonics

The 6444 Magnetron is fixed-tuned for 9800 to \(10,000 \mathrm{mc} / \mathrm{s}\) operation, incorporates the longlife Philips dispensertype cathode . . . delivers 1 watt CW energy into a coax output. Mounts in standard klystron octal socket. Extremely rugged, 6444 Magnetron is exceptionally suited for Doppler-type radar and other field and laboratory use.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{\begin{tabular}{l}
Tube \\
Type
\end{tabular}} & \multirow[b]{2}{*}{Frequency (mcs)} & \multirow[t]{2}{*}{Nominal output (watts)} & \multirow[b]{2}{*}{Anode Voltage} & \multirow[t]{2}{*}{Anode Current (ma)} & \multirow[t]{2}{*}{Puiling (max, mc)} & \multicolumn{2}{|l|}{Initial Heater} \\
\hline & & & & & & \begin{tabular}{l}
Voltage \\
(v)
\end{tabular} & \begin{tabular}{l}
Current \\
(a)
\end{tabular} \\
\hline \[
\begin{aligned}
& 6444 \\
& (\text { ESM-48) }
\end{aligned}
\] & 9800-10000 & 1.0 & 450.500 & 15 & 10 & 6.0 & 0.4-0.5 \\
\hline
\end{tabular}

Available from stock for immediate delivery
ATR - TIT - AND MAGMETRDM TUIES TEST EQUIPMEWT - SLLLCON DIODES

an cummington trees

\section*{Send for this Zree SAMPLE FOLDER...}

\section*{Contains 25 different test samples of high dielectric Insulating Tublng \& Sleeving}

Includes samples and descriptions of: Varglas Silicone - Permafil-Impregnated Varglas Tubing - Varglas Tubing and Sleeving • Varglas Non-Fray Sleeving • Varflo Tubing and Sleeving - Varflex Cotton Tubing and Sleeving - Syntholvar Extruded Tubing

Pixley, N. S., Jr., 13585 Bromwich St., Pocoima, Calif.
Polan, M., 816 Howard Ave., Brooklyn 12, N. Y.
Roberts, A. N., 3246 Portage Ray IPl., Seattle 2, Wish.
Simmonds, C. W., 153 Second Ave., Apt. 3, Salt Lake City, Utah
Smith, E. C., 903 Summit St., Findlay, Ohio Stelin, J. W., W. L. Maxson Corp., 460 W. 34 St., New York 1, N. Y.
Thompsonn, A. J., 273 April Way, Campbeil, Calif.
Uhland, J. C., 359 Garden Ave., Carnden, N. J.
Vandervoort, Q. D., 12 Riverside St., Rochester 13, N. Y.
Wamboldt, G. L., 217 Bleecker Ave., Belleville, Ont., Canada
Warner, G., 3840 Linton Ave., Apt. 4, Montreal, Que., Canada
Waters, W. E., Jr., 3208 Edgewood Rd., Kensingtorl, Mcl.
Wood, L.. A., ANP Division, General Electric Co., Cincinnati 15, Ohio

The following elections to the Associate grade were approved and are now effective
Abel, W. G., 7 Aerial St., Arlington 74, Mass.
Ali, F. I., Egyptian State Broadcasting, 4, Shara Sherifein, Cairo, Egypt
Ambos, R. G., 28 Gales Dr., New Providence, N. J.

Amer, S., Fgyptian State Broadcasting, 4, Sherifein, Cairo, Egypt
Andrews, F. E., 2275 Gladys St., Heaumont, Tex.
Andrikian, C. P., 6228 N. Dak. Ave., N.W., Washington, D. C.
Arndt, L. A., 14328 Gilmore, Van Nuys, Calif.
Awaad, A. K., Feyptian State Broadcasting, 4 Sherifein St., Cairo, Eyypt
Bailey, J. J., CMR 13ox 2, Al'O 994, San Fran. cisco, Calif.
Rernstein, F., c/o Bel Fuse, Inc., 311 Mountain Ral., Union City, N. J.
Bishop, W. M., 463 West St., New York 14, N. Y.

Boyd, J. E., 1451 Vista Trail, N.E., Atlanta, Ga. Burke, T. J., 105 Virginia Ave., Westuont, N. J.
Burrows, D. E., 6966 Ramona, Cucamonga, Calif.
Byrne, J. J., Jr., 1002 Garrison Ave., New York 59, N. Y.
Canese, O. R., Guemes 5557 (Carapachay) Munro, FCNG. Belgr., Pcia de Buenos Aires, Argentina
Canning, T. 13., 8 W. Erie, Chicago 10, Ill.
Care, W. G., 4113 E. 21 Pl., Tulsa 14, Okla.
Carpenter, J. L., 319 l'ioneer Ir., Glendale 3, Calif.
Churlin, E., 7112 Blvd., E., North Bergen, N. J. Clark, C. C., Star Rt., Castle Creek, N. Y.
Coats, R. P., 6158 I.lano, Dallas 14, Tex.
Coawette, R. T., 2154 Willianis St., St. Paul 10, Mim.
Cote, J. A., King St., Bathurst, N.B., Canlada
Dabis, G. A. H., No. 6 St., El-Toran, Damanhour, Fgypt
Dangeti, S. M., Physics Department, Andhra University, Waltair, Visakhanatam 3, Andhra, India
Deering, C. S., 1853 Grand, Fort Worth, Tex. de Haro, F. O., Yerbal 2663, Buenos Aires, Argentina
Dessouki, M. J., Eryptian State Broadcasting, 4 Sherifein St., Cairo, Egypt
Dunhan, K. D., 1432 Riverside Ir., Titusville, Fla.
Elabd, I. II. A., Faculty of Engineering, Alexandria University, Alexarndria, Egypt
Elkashlan, F. I., Egyptian State Broadcasting, Cairo, Fgypt
(Continued on pagc 130A)
British equipment manufacturers are making a vital contribution to the development of electronics in all fields of application.
Their products are being exported to every corner of the world, earning a universal reputation for advanced techniques and excellent performance.
The majority of these electronic equipment manufacturers consistently use Mullard tubes. This choice is decided upon because they prefer the greater assurance of efficiency and dependability, and because the vast manufacturing resources of the Mullard organisation guarantee ready availability of Mullard tubes wherever they are needed.
used throughout the world

\section*{Mullard}

Electronic Tubes
In Canada
Write 10 the undermentioned distributors for full details of Mullard tubes:-

In the U.S A. International Electronics Corporation,
Department D.9.
81. Spring Street, N. Y. 12, New York, U.S.A.

Regers Majestic Electronics Limited,
Department K.A
11-19 Brentcliffe Road, Toronto 17, Ontario, Canada.

Mullord is the Trade Mork of
Mullars Led., and is registered in mast of the principal countries of the world.

\section*{FREQUENCY-SHIFT V-F CARRIER-TELEGRAPH SYSTEM}

Provides one, two, or three frequency-shift telefype channels above the voice on a 3400-cycle telephone circuit

A send and a receive panel require \(51 / 4^{\prime \prime}\) of mounting space on a standard \(19^{\prime \prime}\) rack

This system provides an economical troublefree method of obtaining up to three fullduplex 100 wpm telegraph channels at the upper end of a broad-band telephone channel, and still retain a 2950 -cycle voice circuit. Mid-channel carrier frequencies of 3120,3240 and 3360 cyeles are employed. The mark frequencies are 30 cycles below and the space frequencies are 30 cycles above the mid-band frequencies. The three telegraph channels are transmitted in the band 3080 to 3400 cycles, leaving the band below 2950 cycles for the voice channel.

Foult-free teletype circuits are obtained
even where the telephone circuit on which they are superimposed suffers from noise or abrupt level variations which may be so great as to render on-off keyed signals unintelligible. Frequency-shift signals do not suffer deterioration from non-linear transmission, such as is caused by overloading in voice: frequency, corrier or rodio equipment. Under most circumstances a signal-to-noise ratio per channel as low as 20 db is satisfactory, and under some conditions even lower ratios result in fault-free operation. This equipment meets the requirements of current MIL specifications wherever applicable.

\section*{RADIO ENGINEERING PRODUCTS 1080 UNIVERSITY STREET, MONTREAL 3, CANADA}

Tolephone: UNiversity 6-6887
Cable Address: Radenpro, Montreal
MANUFACTURERS OF CARRIER-TELEGRAPH, CARRIER-TELEPHONE AND BROAD-BAND RADIO SYSTEMS

- Military or special yokes and focus coils designed to your specifications.
- Production yokes for TV sets

For your answer to yoke problems write Dr. Henry Marcy today.
syntronic
INSTRUMENTS, INC.
100 Industrial Road • Addison, Ill. P Phone: Terrace 4-6103
(Ciontinued from proge 128A)
Elliott, R., 561 W . Briar Plı, Chivago, Ill.
Espina, 11. E., 4058 Belerano, Mar Del Plata, p'cia, Buenos Aires, Argentina
Fahny, A. I., Egyptian State Broadcasting Stations, AbU-ZaAbal, Cairo, Egypt
Faitouri, A. Mı., Egyptian State Broadcasting, 4 Sherifein, Cairo, Egypt
Fattah, A. F. A., 16 Farascour, Cairo, Heliopolis, F.gypt

Fonts, 1). F., HQ AACS, Andrews AFB, Washington 25, D. C.
Fujimoto, M., 5600 Imperial Hiws., South Cate, Calif.
Gharbawi, I. S., 14 Sakhat St., Apt. 8, Heliopolis, Cairo, Egypt
(iiordano, N. J., 1170 E. 29 St.. Brooklyn 10, N
Green, P. I., 49 F.. Mouttain Ave., South Williamsport, l'a.
Hager, D. N., Heps. Sytuad. Sec., 3380 Technical Training Group, Box 277. Keesler AFB, Miss.
Hall, T. E., 2686 Filmore, Salt Lake City, Utah Hall, R. I)., 15918 Morrison St., Encino, Calif. Hann, (i. W., R.F.D. 2, Kemesaw, Ca.
Hansell, G. E., 25 Friendly Rd., Norwalk, Conn. Harroun, M. S., Radar \& Wireless Work Shops, Almaza, Cairo, Fyypt
Hassan, M. I., Radar \& Wireless Work Shops, Almaza, Cairo, Egypt
Hayes, M. E., 3115 Oaklyn Ave., Muncie, Ind. Helmer, R. J., 799 Sixth St., Apt. 21, Los Alamos, N. M.
Helmy, A. M., 96 Abul El-Datker "laha, Cairo, Egypt
Hendrix, (. F., 211-13 Byrnes St., China Lake, Calif.
Hermann, F. C., \(3+31\) W. 227 Pl., Torrance, Calif.
Herrera, II., 3337 Tech. Tng. Sqn., Box 244, Scott AFB, Ill.
Hodges, G. W., 107 Birch La., Scotia 2, N. Y.
Holmbeck, I. 11., \(+3+\) W'ilmot Ave., Burlington, Wis.
Hyde, P. I.., Box 122, Watertown, N. Y'
lbralim, F. B., F.kyptian State Broadcasting, 4 Sherifein St., Cairo, Fgypt
Issa, F.. E. M., F.gyptian State Broadcasting, 4 Sherifein St., Cairo, Egypt
I verson, K. F.., Harvard Compatation Laboratory, 33 ()xford St., Cambridge 38, Mass.
Tongherg, I. 33., 452 F. 29 St., Brooklyn 26,
Jonkman. I. Y., 202?-32 St., S.W., Calgary, Alta., C'anada
Jung, D. H., K.F.D. 1, New Wremen, (Mio
Kanton, L. B., 8735 Bay Pkwy., Brooklyn 14,
Kelly. 1). R., U.S.S. Carronate, 1 Fisl, c/o FIO, San Francisco, Calif.
Kheireldin, A. F.. M., Alexaudria University, Faculty of Fongineering, Alexandria, Enypt
Kistuer. R. 1... 3812 4.3 st., Sioux ('ity, lowa Kurmat, Y. R.. c/o Sri. K. V. Gopalaswamy, kepistrar, Andlıra University, Waltair, Visantabathat 3. Andhra, India
Laiguelet, 11., 3.337 Tech. Tug. Syln., Box 24t, Scot: AFB, 111.
Larsen, R. R., 2019 Lincoln (iir., Salt Lake City, Utal
Lignon, J. R., Instituto 'fecualogico de Aeronautica, Sao Jose Dos Campos, Est., Sao Paulo, lirazil
Low lenslager, J. K.. 1023 Hulls Hwy., South port, Comn.
Tudwig, I). E... 729 Gayley Ave., Los Angeles
Maass, (. A. I.. 1775 Fremom Ave., S., Min neapolis 5, Mism.
MacCrone, C.. R., 5308 Knowlton St., Los Angeles 45, Calif.
(Continued on page 132.4)

The Silk Screen method is being widely accepted for preparing copper laminated plastic panels prior to etching printed circuits. General Decorator Presses put printed circuits on an automatic, high production basis. Bowed panels are held flat by vacuum. Line contact impression and accurate register give clean, sharp reproduction of fine lines. Controlled inking lays down a thick, uniform layer of resist.

Utilizes a new system for high speed drying of inks, resists and

\begin{tabular}{|l|c|c|c|}
\hline \begin{tabular}{l}
Model \\
No.
\end{tabular} & B1224 & B1824 & B1836 \\
\hline \begin{tabular}{l}
Sheet \\
Size
\end{tabular} & \(13 \times 25^{\prime \prime}\) & \(19 \times 25^{\prime \prime}\) & \(19 \times 37^{\prime \prime}\) \\
\hline \begin{tabular}{l}
Speeds \\
Up To
\end{tabular} & \begin{tabular}{c}
1500 \\
per hr.
\end{tabular} & \begin{tabular}{c}
1500 \\
per hr.
\end{tabular} & \begin{tabular}{c}
1500 \\
per hr.
\end{tabular} \\
\hline
\end{tabular} coatings by greatly aecelerated evapo

Wrife for complefe information RESEARCH AND SUPPLY COMPANY
572 S. Division Avenue ration of solvents.

\section*{Teflon.: \\ - Trademark for DuPont \\ tetrafluoroethylene resin.}

INQUIRIES INVITED ON
tape • Sheet - ROD • TUBES
Molded and Machined Parts
O. J. Maigne Co.

321 PEARL STREET • NEW YORK 38, N. Y. - WOrth 2-1165

Meminership

Malcolnu, A., 266 N. Fulton Ave., Mount Vernon,
Mansfiekl, I.., l'athe Lajoratozy, 105 E. 106 St.,
Marslall, I). F.., Jr., 835 Westview St., I'hila delphia 19, Pa
Matsumara, K., Flectrival Conmumication Iaboratory, Kichijcji 15 E1, Musashitno, Tokyo, Tapan
McDaniel, G., 63 Wall, New York 5, N, ㄱ.
McDowell, D. İ., 821 Neil Ave., Apt. A.2, Columbus 8, Ohio
McKeown, F. J., 205 Sterling St., I3ronklyn 25, N. \(Y^{\prime}\).

Michael, R. A. M., 9 Dekerness, Apt. 14, Heliopolis, Cairo, Egspt
Mill, A. F., 1145 N. 11 St., Keading, Pa.
Miller, R. S., 241.02-86 Kd., Bellerose 26, L. I., N, V.

Mirchandani, I. T., Box 687, Bombay 1, India Moharram, A., Radar \& Wireless Work Shops, Almaza, Cairo, Egypt
Mondreti, S. R., Padmaraju Quarters, Waltair, Visakhapatnam 3, Andhra, India
Morsy, S. II., Radar \& Wirdess Work Shops, Amaza, Cairo, Egypt
Nasr, 'T., E.gyptian State Broadcasting, 4 Sherifein, Cairo, Egypt
Norris, V. L., 24 In lrey Ave., Baltimore 28, Md. larker, J. F., 3102 Nontgomery Dr., Santa Rosa, Calif.
Payne, G. W., 830 Caviiier, San Antonio, Tex. Peirano, A., Av. Eva Peron \#2216, Olivos, FENGBM, Argentina
Perfilio, L. M., Maure 2180, Buenos Aires, Argentina
Rashwan, II. M., Ekyptiar. State Broadeasting, + Sherifein St., Cairo, Fxypt
Redden, E. T., 212 N. Spruce I)r., Anaheim, Calif.
Rodgers, I. W., Ir., 4013 S. Rockwell St., Chi садо 32, Ill.
Rosser, B. M., 280 Branchbrook Mr., Belleville 9, N. J.
Rulin, 1I. M., 11 Sinai Ave, Ahuza Hafa. Israel
Selfridge, J. J., 13 Genetti St., Bedford, Mass. Shaltout, M. IL., 34 Mostafa Kamel St., Sidi Galier, Alexandria, Egypt
Shaw, I.. A., 2 Castine, Schenectady 9, N. Y. Shirvis, R. A., 5125 N. Kenmore, Chicago 40, 111.

Sinclair, R. R., 216 W. Second St., Biloxi, Miss.
Sklon, (i, M., 8912 Forest View Dr., North Riverside, 111.
Smith, R. F.., 858 Ensenada Ave., Herkeley 7. Calif.
Stapf, M. R., Jr., 405 F. 15 Ave., Columbus 1. Ohio
Steinbremer, F. W., 4821 S . Union Ave., Chi. cago 9, Ill.
Sterrett, J. E., 438 l,iberty St., Grove City, Pa Stewart, A. C., 185 Bar`ley Dr., Toronto 16, Ont., Canada
Sundberg, G. A., 17 River Rd., Philadelphia 28 Pa
Sundheimer, D. M., 505 W. Marmee St., Angola, Ind.
Tallon, W. J., 529 Second St., Manhattan Beach, Calif.
Turner, II. (.., 13576 Corrent, llacoima, Calif. Vina, F. A., Griveo 2798, Buenos Aires, Argen tina
Volder, J. E., 208 Burton Hill kd., Fort Worth 14, Tex.
Wascavage, J. A., 517 Amberly Rd., Cilen Bur nie, Mrl.
Westervelt, (i, J., 4543 Bannock St., San Diego 17, Čalif.
Weytze, D. W., 6580-38 Ave., 5, Rosemount, Montreal, Que., Canada
Whan, D. F., 51 Relle Haven, Manhattan, Kans Wong, E., 5602 E. 17 St., Oakland 21, Calif. Young, R. II., 320 Ninth St., Sumbury, Pa.

\title{
Save Yine in Cisanit Derian Get advance information... in graphic form... on vacuum-tube behavior in new circuitry with the Type 570 Charcacteristic-Curve Tracer
}

\section*{Displays Families of Curves} on CRT Screen
Chaice of four ta twelve character. istic curves per family-with as many as 8 positive-bias curves per family.

\section*{Plots All Important}

\section*{Characteristics}

Plate curren: against plate valtage. Plate current against grid voltage. Screen current against plate voltage. Screen current against grid voltage. Grid current against plate voltage. Grid current against grid valtage.

\section*{Callbrated Controls}

Accurate current and valtage readings directly fram the crt screen.

Wide Display Range
11 current ranges fram \(0.02 \mathrm{ma} /\) div ta \(50 \mathrm{ma} / \mathrm{div}\).
9 voltage ranges from \(0.1 \mathrm{v} /\) div to \(50 \mathrm{v} / \mathrm{div}\).
11 series-load resistors from \(\mathbf{3 0 0}\) ohms to 1 megohm.
7 grid-step values from \(0.1 \mathrm{v} /\) step to \(10 \mathrm{v} / \mathrm{step}\).

\section*{Price - \$925}
f.a.b. Partland (Beavertan), Oregon

\author{
P. O. Box 831 , Portland 7, Oregon
}

CYpress 2-2611
Cable: TEKTRONIX

The Tektronix Type 570 Characteristic-Curve Tracer can save you many hours in circuit-development work by providing quick, accurate pictures of vacuum-tube characteristics. You have complete control of the operating-condition setup, permitting a realistic approach to actual circuit conditions, whatever they may be. You get curves that can be very important in a particular circuit problem; but are rarely, if ever, published in handbooks.

The Type 570 can also be used for rapid preselection of vacuum tubes, either by comparison with another vacuum tube, or with curves outlined on a crt mask.

> Please call your Tektronix Field Engineer or Representative or write direct for new booklet, Type 570 Technical Description.

Fig. 1 - Plate current ploted against plote volfage for one triode section of a 12AU7. Plate load is 5 k , peok plate. supply voltage is 500 v . Grid voltage is changed 5 v between curves, from -35 v . to zero. Vertical sensitivity is \(5 \mathrm{mo} / \mathrm{div}\), horizontal sensitivity \(50 \mathrm{v} / \mathrm{div}\). Calibrated controis permit accurote current and voltage readings directly from the screen.

Fig. 3 - Screen current plotted against plate voltage with positive grid bias on a GAQ5. Plate lood is 300 ohms, peak plate voltage is 100 v , screen-grid volt. age is 100 v , with grid vollage changing \(2 \mathrm{v} / \mathrm{step}\) from +16 v to below zero. Vertical scale is \(10 \mathrm{ma} / \mathrm{div}\), harizantal scole \(10 \mathrm{v} / \mathrm{div}\).

Fig. 2 - Same triode section of 12 AU7 with only \(20 \cdot v\) peak plate supply and sen. sitivities increased to \(0.2 \mathrm{ma} / \mathrm{div}\) vertical and \(2 v / d i v\) horizontal. Grid vollage is changed 2 between curves, from - 14 to zero. This is essentialy a 25 -himes magnication is he lower len portion or Fig. I, showing the operating sharacteristics at low plate-supply vollage.

Fig. 4-Typical Germanium Diode curve. Inherent flexibility of the Type 570 permits accurate evaluation of diade characteristics and detailed examination of any part of the curve. Calibrated scales above are \(0.2 \mathrm{v} / \mathrm{div}\) horizontal, \(0.5 \mathrm{ma} / \mathrm{div}\) vertical, with zera points at center af screen.

\title{
The NEW American Beauty
} \(B\)

\section*{FCC Actions}

The Federal Communications Commission has issued a request to set manufacturers that they supply information relating to the current status of UHF television receivers. The request was contained in a notice of proposed tule making which looks toward increasing the maximum power limits for UHF stations to five million watts. In other actions the commission issued rules authorizing the construction ol low-power 'IVV stations, without regard to city size, and amended the chain hroadcast rules to prevent territorial exclusivity clanses in 'TV station contracts with networks

\section*{Mobilization}

The Office of Naval Material has made a report available in which it showed that 509 manufacturers of electronic end equipment and major components had sales of nearly \(\$ 6.6\) billion in 1954 . These firms employed over 458,000 persons in commection with their electronic end equipment production and have a maximum anmual production potential, on a one-shift basis. of over \$9.6 hillion.

\section*{RETMA}

Dorman D. Israel of Emerson Radio \& Phonograph Corp. has been named Chairman of the Joint Technical Advisory Committee for a one-year period starting July 1. The appoint ment was made ley IV'. R. (i. Baker, Director of the RE'TMA Enginerering Department. Ernst Weber of the Polytechaic Institute of Brooklyn has been appointed Vice-Chairmas for the same period by the Board of Directors of the Institute of Radio Ensineers. The other members of JTJC for the coming year are R. N. Harmon, Westinghouse BroadCasting Co., Inc.; I. J. Kaar, Cen. İlere, Co.; A. V. Ioughren, Hazeltine Filectronics Corb: Ralph Bowne, Bell Tele. phone Iabs.; John V. I.. I logan, Hogan Taboratories, Inco, and lhilip F. Siling, Radio Corp. of America. I.. G; Cumming, 'lechnical Secrotary of the IRE, will contime to serte as Secretary. . . W. W. G. Baker, Director of the RETMA Engineering Department, has been elected to the grade of Fellow in the Standards Engineering Society. The award wiil be made at all awards lancheon Sept. 30 during the group's national eomvention at the lootel Statler in I Aartord, Comn.

\section*{STANDARDHZATION}

The Radio Technical Commission for Aeronautics has released a report setting forth minimum performance standards for airborne radio communication receiving (Cominurd on paye 136.4)

\section*{AMERICAN ELECTRICAL HEATER COMPANY}
\begin{tabular}{c}
fmerican Reauty \\
बiEctaic \\
\hline
\end{tabular}

\footnotetext{
* The data on which these Notrs are based were selected by permission from Industry Reports. issues of June 13, and 26, July 4, and 11. published by the Radio-Electronics-Television Manufacturers Association, whose helpfulness is grat efully acknowledged.
}

\section*{Radio}

\section*{Receptor's}

NEw
money saving rectifier mounting!

Radio Receptor's unique Qui-Klip rectifiers will soon make their debut in TV sets produced by one of the country's leading manufacturers, saving them countless dollars in production costs.

QUI-KLIP requires no tools or sockets for mounting. There are no studs to break or threads to strip and the locating tab is now unnecessary. Qui-Klip provides a positive seat for the rectifier - no rocking. Yet any serviceman can remove the stack quickly by squeezing the QUI-KLIP prongs with his fingers and removing the solderless connectors.

Let us show you how to put the cost saving QUi-Klip selenium rectifiers to work in !ootr production . . . Available in most popular sizes with cells from \(1^{\prime \prime}\) square to \(2^{\prime \prime}\) square, for radio, TV and other electronic circuits. For detailed information, write Dept. P-6

QUICK MOUNTING! QUICK REMOVAL!
Sping stee clips with safe edges sriap into two round: large tolerance holes in chassis (approx thi" dia., 3/4" \(c\) to \(c\)). Solderless connectors as shown, when used. simplify servicing

- Speads assembly time.
- Slashes production costs.
- Simplifies assembly.
- Eliminates stud rejects (Na studs or nuts needed.)
- Permits easier replacement in the field.

\section*{WITH TWO TUNING HEADS}

Check these autstanding features:
- Low noise input, less than 0.5 microvolt acruss \(50^{\circ}\) ohms, for high usable sensitivity
- 10 MC maximam sweepwidth, continuously reducible to 0 MC
- Continuously variable differential markers, \(\pm 50 \mathrm{kc}\) to \(\pm 5 \mathrm{mc}\)
- Continuously variable resolution (I.F. bandwidth) 9 kc to 100 kc
- 1 cps to 60 cps sweep rate, c
variable with single control
- DC coupled video amplifier for analysis of CW signals.
- Three selectable amplitude scales, 40 db log, 20 db linear and square law.
- Low frequency swept oscillator provides high inherent stability.
- Excellent construction and design make the equipment unparalleled for minimum down time.
- Optional bezels and CRTs for visual examination or camera use.
- Low cost.

\section*{Tuning Heads}

RF-2 \(50 \mathrm{mc}-250 \mathrm{mc}\)
RF-3 \(220 \mathrm{mc}-4000 \mathrm{mc}\) in five ranges
Inquiries invited on Panoramic Spectrum Analyzers for special problems. Write foday for descriptive literature.

RADN PRODUCTS, INC.
(Continued from page 134A)
equipment operating in the 118-132 meg. band. Compliance with the standards is recommended by R'TCA as a means of assuring "that the equipment will satisfactorily perform its intended function under all conditions normally encountered in routine aeronautical operations." In addition to setting forth minimum performance standards, the report also outlines standard test conditions and methods of test to be used in mowsuring performance characteristics. "Minimum Performance Standards-Airborne Radio Commmication Receiving Equipment Operating WZithin the Radio-Frequency Range of 118-132 Megacycles" is available at 30 cents per copy from the RTC \(A\) Secretariat, Room 2036, Bnidding 'T-5, Washington 25, 1). C.

\section*{"JECHNICAI.}

A summary of the ideas and experiences of researchers in the field of automatic programming for digital computers, compiled by the Office of Naval Research, is contained in a report made available to industry by the Office of Technical Services, Commerce Department. The volume" consists of papers relative to differentiattors, compilers, generators, interpretative rontines and universal antomatic codes. The report, I'l3 111607, "Symposium on Automatic I'rogramming for I Digital Computers," may he obtained from OTS, Commerce Department, Washington 25, I). C., for \$4. Ilso, ol'S has made available ". A survey of High-Speed Printers for Digital-(omputer Output," prepared in August 1952 by the Office of Naval Resatarch. The code number of this report is I'B 111615 , and the price is 50 cents.
An improved spheregenerator for precision contouring of round quartz crystals on a mass production basis, developed by Bausch and Lomb under an Army Signal Corps contract, is described in a report just released to industry by the Office of Technical Services, Commerce Department. The report notes that the contouring machine grinds spherical bevels on one or more flat round crystals at a time, with a range of curves from \(2^{\circ}\) mm to 350 mm . Curves even shorter can be generated with s'ight modifications in the machine and its anxiliary equipment, the OTS report states. The report, "Contouring Equipment for Round Crystals," is the final report on the subject, and can be ordered by mmberPl'l 111609-from (o'S Commerce Department, IVashington 25, 1). C., for \(\$ 1.50\) each, which includes drawings and design data. . . The Radio Technical Ccmmission for Aeronautics recently released two reports relative to airborne radio communication equipment. The first report sets forth minimum performancestandards for airborne radio communication transmitting equipment operating within the radio-frequency range of \(118-132 \mathrm{mc}\). . similar report dealing with receiving equipment in this band wats released previonsly (RI:TMA Industry Report, Vol. 11, No. 24). The R"C report, " Dinimum Per(Continued on page 138.4)

Manufacturers of Ruggedized and Regular Panel Instruments and Related Products.
vopyright 1955 M.E.I. Co

\section*{marion meters}

research design
engineering manufacturing of outstanding quality CONNECTORS - CABLE ASSEMBLIES
including
PRINTED CIRCUIT

\section*{AN Types • RF}

RACK and PANEL
(Standard and Special)

\section*{for America's \\ Electronic Industry}

\section*{Catalog-Literature Available}
H. H. BUGGIE, Inc.
BOX 817 .TOLEDO 1, OHIO

\title{
Eimac Amplifier Klystrons and Circuit Components
}

\section*{-the easy, economical approach to high power, UHF/microwave transmitters}

Design and construction of a high power UHF/microwave transmitter for beyond-the-horizon communication and other microwave applications is simple and straight-forward with an Eimac amplifier klystron and circuit components. In fact, it's easier to build than a low frequency Class \(C\) amplifier. Eimac high power amplifier klystrons, plus Eimac circuit components consisting of A) Magnetic framework B) RF output load coupler C) Magnetic beam-control coils and DI Convenient tuning wide range RF resonant cavities comprise the essential elements of a final amplifier package. By adding conventional power supplies, control circuits, driver and cabinets to the Eimac klystron-circuit component package, high power at UHF is easily obtained. Eimac developed klystron and circuit components provide equipment manufacturers with the easy economical approach to high power microwave transmitters. In many cases, existing low power equipment can be used as a driver for the higher powered amplifier.

Radio Frequency circuitry is completed outside the vacuum system of Eimac klystrons through circuit components. This allows unmatched economy by eliminating repurchase of costly RF circuitry with each tube replacement.

The reliability and performance of Eimac klystrons is proven, as they were employed extensively in estab. lished microwave scatter-type communication systems.

For an easy and economical approach to reliable high power microwave transmitting equipment, investigate the incomparable capabilities of performanceproved Eimac developed klystrons and klystron circuit components.

Magnetic frame work

Output load coupler

c
Magnetic beam-control coils

Resonant cavities

EIMAC AMPLIFIER KLYSTRONS
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{frequency mange - mC} & CW POWER & & cy Range-m & CW POWER & \multicolumn{2}{|r|}{frequency mange - mC} & CW POWER \\
\hline 3K3000LA & 400-600 & 2000w & 3K20,000 LF & 580-720 & 5000w & 3K50,000LF & 580.720 & 10,000w \\
\hline 3K3000LQ & 760.980 & 2000w & 3K20,000LK & 720-890 & 5000w & 3K50,000LK & 720.890 & 10,000w \\
\hline 3K20,000LA & 470-580 & 5000w & \(3 \mathrm{~K} 50,0001 \mathrm{~A}\) & 470.580 & 10,000w & 3K50,000LQ
\(4 \mathrm{~K} 50,000 \mathrm{LQ}\) & \(850-1000\)
\(750-1000\) & \(10,000 \mathrm{w}\)
\(10,000 \mathrm{w}\) \\
\hline
\end{tabular}

For further information write our technical service department.
 SAN BRUNO•CALIFORNIA
World's Largest Manufacturer of Transmitting Tubes

\section*{MICROPHONE CABLES}

\section*{}
Designed for low capacitance, high insulation resistance, low at-ienuation-in plastic or rubber insulation to stand severe service

\section*{T-V LEAD-IN CABLES}
 trical properties and long life under severe operating conditions
T-V LEAD-IN CABLES

Made hollow, of pure virgin polyethylene, for maximum efficiency in receiving Uifra High Frequency signals
INTERCOMMUNICATION CABLES
These quality cables are made in various constructions, utilizing plastic insulation for both conductors and jacket

\section*{SHIELDED \\ INTERCOMMUNICATION}
When installation conditions dictate, shielded cables are recommended. Made with internal or external shield \(\mathbf{- 2}\) and 3 conductors
MADE BY ENGINEERS FOR ENGINEERS
MADE BY ENGINEERS FOR ENGINEERS
 CORUISH WIRE COWPATY, IIC.

(Continued from page 136A)
formance Standards; Airlorne Radio Communication Transmitting Equipment Operating Within the Radio-Frequency Range 118-1,32 Megacycles." is available at 30 cents a copy from: the RTCA Secretariat, Room 2036, Building T-5, Washington 25, D. C. Compliance with the standards, the report stated, is recommended as a means of assuring that the equipment "will satisfactorily perform its intended function under all conditions normally encountered in routine aeronatutical operations." The second R'TCA report issued, "Re-Fvaluation of YOR Airway Lateral Separation Criteria" discusses the problems of VOR stations and receivers and describes methods of procerlure for solving the problems. The procedures described are those relating to service and laboratory tests. The text also contains a statistical analysis of VIIF omni-range navigation receiver errors and an analysis of VIIF onmi-tearing system errors. The report is available at 75 cents a copy from the RTCA Secretariat. . Two manuals designed to assist manufacturers of electronics equipment for the Armed Forces were just issued by the Office of Technical Services, Department of Commerce. One mantal is designed to help the manufacturer meet the requirements of radio-interference specifications: and the other is concerned with the application of electron tubes. "Radio Interference Suppression Techniques" contains information on approved suppression components and systems and their application. In addition, it explains the procedures recommended for obtaining approwals, requesting tests by the Signal Corps, and in getting assistance from the Signal Corps in solving special problems. Some of the individual sources of radio-interference dealt with are rotating macbinery, ignition systems, switches and contactors, electronic devices, fluorescent lamps and instruments. The manual is available from the OTS, Commerce Department, Washington 25,1 . C., for \(\$ 6.75\) and should be ordered by number-l'ls 111611. "Fechniques for Application of Electron Tubes in Military Equipment" presents tule information from the point of view of the electronic design engineer, and is organized under three sections: numerical data and specialdesignconsiderations for specific tube types; tube properties according to ratings, characteristics essential in circuit operation and properties detrimental to circuit operation; and tube properties in circuit design including a check list for the use of the circuit designer to insure coverage of all important design factors. The concepts of specification control, operation within ratings, and tolerance characteristic are emphasized throughout the report, available from the O'TS, Commerce Department, for \(\$ 2.50\). The report should be ordered by number-PB 111644. . . The Office of Technical Services, Commerce Department, has announced studies in the field of electronics in its "U. S. Govern(Continucd on page 142A)

\section*{Type UPM-45}

For TV preset control applications. Control mounts directly on printed circuit panel with no shaft extension through panel. Recessed screwdriver slot in front of control and \(3 / 8^{\prime \prime}\) knurled shaft extension out back of control for finger adjustment. Terminals extend perpendicularly \(7 / 32^{*}\) from control's mounting surface.

\section*{Type GC-U45}

Threaded bushing mounting. Terminals extend perpendicularly \(7 / 32^{\prime \prime}\) from control's mounting surface. Available with or without associated switches.

\section*{Type 070 (Miniaturized)}

Threaded bushing mounting. Terminals extend perpendicularly \(5 / 32^{\prime \prime}\) from control's, mounting surface.

\section*{Type XP-45}

For TV preset control applications. Control mounts on chassis or supporting bracket by twisting two ears. Available in numerous shaft lengths and types.

\section*{Type YGC-B45}

Self-supporting snap-in bracket mounted control. Shaft center spaced \(29 / 32^{\prime \prime}\) above printed circuit panel. Terminals extend 1-1/32" from control center.

\section*{WIRIABLE RESISTORS}
 Winm fown ECTMNS

\section*{GHIGAGO TELEPHONE SUPPLY}

I:KKART: INDIAIA
fancorp 3tgi

\section*{Type WGC-45}

Designed for solderless wire-wrapped connections with the use of present wire-wrapping tools. Available with or without switch and in single or dual construction.

The controls illustrated are typical constructions. CTS' years of engineering and tecioncal experience makes available
many other types for your automation needs.

EASt COAST OPFICE Henty E Sander 130 North Broad 1 Pay Camdert 2 New Jerey Phont Iodiawn 6166 TWX No Camden NJ 380 Th No Mamden N 1380 West COAST OFFICE Robert A. Stach houme Rabs indertion Blvd.

Type XGC-45
For applications using a mounting chassis to support printed circuit panel. Threaded bushing mounting.
"OUTH NESTERNUSA SOUTIE A H ERICh John A. Grent Company Jose Lurimomiet PO Bot 7224 Dallat 9 , Ten Pikane. Dikoritatig

CANADXAN D VISION
C. C. Mrredith \& Cim. Lid

Supesinlle. Qhearm.
puresumbe.

Montevider, Urivaut Montevider, Ui uruey

DTHEM EXPORT Skver (imbitiry New Yock In, Nes Yoeh

\title{
23 Fields of Special Interest -
}

The 23 Professional Groups are listed below, together with a brief definition of each, the name of

\section*{ACTIVITIES}

The IRE Professional Group has the responsibility of providing the individual with the advantages of a small, select society in the feld of his speciolization, with its own magorine, just as IRE provides him with the advantages of a large, generol society. The advantages of the small sociely relote primarily to meetings and to publications. Speciolized symposia may be arranged either to coincide with IRE Conventions or to occur where there are places of large activity in the field of interest.

The Group is concerned with the advancement of scientific engineering leading to increased professional standing in its field and serves to aid in promoting close cooperation and exthange of technical information among its members. It provides a forum for discussion and presentation of papers on subjects of mutual interest, and provides smaller, more compact Groups who may meel on the common basis of professional interests.

\section*{ORGANIZATION}

The IRE Professional Group is established under a constitution within the framework of the IRE. The constitution defines the technical field of interest of the Group, estoblishes committee structures, describes broadly its funetions and procedures, and fixes a minimum level of activity. The monagement of an IRE Professional Group is in the hands of its Administrative Committee, the officers and members of which are elected annually. The IRE provides financial assistance to the Groups in accordance with their activity and current needs.

\section*{PUBLICATIONS}

Every Group publishes a magarine which is called TRANSACTIONS of the Professional Group, generally on a regular quarterly schedule. The TRANSACTIONS serve to preserve and disseminate the body of knowledge that constitutes the fields of interest of the Groups. All editions are distributed without additional cost to members who have paid the annual assessment.

The CONVENTION RECORD covering the sessions presented at the IRE National Convention is furnished without further charge to the members of Groups who have paid assessments.

\section*{MEMBERSHIP}

IRE members of any grade are aligible for membership in the IRE Professional Groups and will receive all Group publicotions upon payment of the prescribed ossessments. An IRE member may join as many Professional Groups as serve his interests and wishes.

To join IRE Professional Groups, indicate on the application coupon in the lower righthand corner of the opposite page the Group or Groups you wish to join. Detoch completed coupon and mail with your check for assessments to The Institute of Radio Engineers, 1 East 79ih Street, New York 21, N.Y.

\section*{Aeronautical and Navigational Electronics}

The application of electronics to operation and traffic control of aircraft and to navigation of all craft.

Mr. Edgar A. Post, Chairman,
Onited Air Lines, Operations Base
United Air Lines, Operations Ba
Fee \(\$ 2.14\) Transactions, 4 Newsletters, 5, "6, \({ }^{2}\), a \({ }^{2} 9\), and Vol. ANE-1, NOE. 1 , 2, 3 and 4. Vol. 2, No. 1.

\section*{Automatic Contral}

The theory and application of automatic control techniques including feedback control systems.

Mr. Robert B. Wilcor, Chalrman,
Raytheon Mig. Co., 148 California
St., Newton 58, Mass.
Fee \(\$ 2\).

\section*{Circuit Theory}

Design and theory of operation of circuits for use in radio and electronic equipment.

Dr. Herbert J. Carlin, Chairman,
Milcrowave Research Institute, Poly-
technic Institute of Brooklyn, 55
Johnson St., Brooklyn 1, N.Y.
Fee \(\$ 2.8\) Transactions. " 1, " \(^{2}\) * \({ }^{\text {Vol. CT-1, }}\)

\section*{Component Parts}

The characteristics, limitation, applications, development, performance and reliability of component parts.

Mr. A. W. Rogers, Chairman, Chief,
Components o Materials Branch,
Squier Signal Lab., Fort Monmouth, N.J.

Fee \$2. 3 Transactions. *PGCP-1-2-3.

Nos. 1-4; CT-2, No. 1-2.

\section*{Electron Devices}

Electron devices, including particularly electron tubes and solid state devices.

Dr. John S. Saby, Chairman, Elec-
tronics Laboratory, General Electric Company, Syracuse, New York
Fee \$2. 10 Transactions, 3 Newsietters, 2 Technical Bulletins. \({ }^{-1},{ }^{*} 2, *^{*}{ }^{*}\) Vol. ED-1, Nos. 1-4; ED-2, No. 1-2.
\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
Electronic Computers \\
Design and operation of electronic computers. \\
Mr. Jean H. Felker, Chairman, Bell Telephone Laboratories, Whippany, N.J. \\
Fee \$2. 14 Transactions, 5 Newsletters. \\
-Vol. EC-2, Nos. 2-4; "Vol. EC-3, Nos. 1-4; EC-4, No. 1-2.
\end{tabular} & \begin{tabular}{l}
Engineering Management \\
Engineering management and administration as applied to technical, industrial and educational activities in the field of electronics. \\
Mr. Max C. Batsel, Chairman, Engineering Products Dept., RCA Victor Div., Bldg. 10-7, Camden, N.J. \\
\({ }^{\text {Fee }}\) 1, \({ }^{2-3 .}\). 3 Transactions, 8 Newsletters.
\end{tabular} & \begin{tabular}{l}
Indusirial Electronics \\
Electronics pertaining to control, treatment and measurement, specifically in industrial processes. \\
Mr. George P. Bosomworth, Chairman, Firestone Tire and Rubber Co., Akron 17, Ohio. \\
Fee \$2. 2 Transactions, "PGIE-1-2.
\end{tabular} \\
\hline \begin{tabular}{l}
Information Theory \\
Information theory and its application in radio circuitry and systems. \\
Mr. Louls A. DeRosa, Chalrman, Federal Telecommunications Lab., Inc., 500 Washington Are., Nutley, N.J. \\
Fee \$2. 5 Transactions, 1 Newsletter. "2, *3, 4. IT-1, No. 1.
\end{tabular} & \begin{tabular}{l}
Instrumentation \\
Measurements and instrumentation utilizing electronic techniques. \\
Mr. F. G. Marble, Chairman, Boonton Radio Corp., Intervale Road, Boonton, N.J. \\
Fee \$1. 3 Transactions. *2, *3.
\end{tabular} & \begin{tabular}{l}
Medical Electronics \\
The application of electronics engineering to the problews of the medical profession. \\
Dr. Vladimir K. Zworykin, Chairman, RCA Laboratories, Princeton, N.J. \\
Fee \(\$ 1.1\) Transaction. 3 Newsletters. 1.
\end{tabular} \\
\hline \begin{tabular}{l}
Microwave Theory and Techniques \\
Microwave theory, microwave circuitry and techniques, microwave measurements and the generation and amplification of microwaves. \\
Mr. Alfred C. Beck, Chairman, Bell Telephone Laboratories, 463 West Street, New York 14, N.Y. \\
Fee \(\$ 2.9\) Transactions. \({ }^{*}\) Vol. MTT-1, No. 2; \\
*Vol. MTT-2, Nos. 1-3; MTT-3, No. 1-4.
\end{tabular} & \begin{tabular}{l}
Nuclear Science \\
Application of electronic techniques and devices to the nuclear field. \\
Dr. Mortimer A. Schultz, Chairman, Westinghouse Automatic Power Div., Bettis Field, Pittsburgh 30, Pa. \\
Fee \$2. 2 Transactions, 3 Newsletters. NS-1, No. 1 ; NS-2, No. 1.
\end{tabular} & \begin{tabular}{l}
Production Techniques \\
New advances and materials applications for the improvement of production techniques, including automation techniques. \\
Mr. R. R. Batcher, Chairman, 240-02 42nd Ave., Douglaston, L.I., N.Y. \\
Fee \(\$ 1\).
\end{tabular} \\
\hline \begin{tabular}{l}
Reliability and Quality Control \\
Techniques of determining and controlling the quality of electronic parts and equipment during their manufacture. \\
Dr. Victor Wouk, Chairman, Beta Electric Corp., 333 E. 103rd St., New York 29, N.Y. \\
Fee \$2. 5 Transactions, 1 Newsletter. *1, *2, *3, 4-5.
\end{tabular} & \begin{tabular}{l}
Telemetry and Remote Control \\
The control of devices and the measurement and recording of data from a remote point by radio. \\
Mr. Conrad H. Hoeppner, Chairman, Stavid Engineering, Plainfield, N.J. \\
Fee \$1. 4 Transactions, Newsletter. 1-2. TRC-1, No. 1-2.
\end{tabular} & \begin{tabular}{l}
Ulirasonics Engineering \\
Ultrasonic measurements and communications, including underzater sound, ultrasonic delay lines, and various chemical and industrial ultrasonic devices. \\
Mr. Morton D. Fagen, Chairman, \\
Bell Telephone Laboratories, Whippany, N.J. \\
Fee \$2. 3 Transactions, 4 Newsletters. *1, 2-3.
\end{tabular} \\
\hline \begin{tabular}{l}
Vehicular Communications \\
Communications problents in the field of land and mobile radio services, such as public safety, public utilities, railroads, commercial and transportation, etc. \\
Mr. Newton Monk, Chairman, Bell Telephone Labs., 463 West St., New York 14, N.Y. \\
Fee \$2. 5 Transactions, 2 Newsletters. *2, *3, *4, 5.
\end{tabular} & \begin{tabular}{l}
Miss Emily Sirjane \\
IRE-1 East 79th St., New York 21, Please enroll me for these IRE Pro
\(\qquad\) \\
Name \\
Address \\
Place \\
Please enclose remittance with this
\end{tabular} & \begin{tabular}{l}
COUPON \\
PG-9-55 \\
nal Groups
\(\qquad\)
\(\qquad\)
\(\qquad\) \\
er.
\end{tabular} \\
\hline
\end{tabular}

\section*{EMTTCHCPAFT \({ }^{\circ}\) "TEEVER SWITCH"}

The Rugged
Telephone Type Switch of "T-Beam" Construction

2 and 3 Position Types
A Unique Design That Has Been Universally Accepted By Today's Design Engineers

Use this Telephone Type Lever Switch for dependable switching. Exceptionally light, rugged construction for long life.

Proved in thousands of installations during the past 4 years. Send for bulletin S-52 or outline your problem.

\section*{EMTIEFRENAE}

\author{
1332 N. Halsted Street
}

Chicago 22, Illinois
Canadian Representative: Atlas Radio Corp., Ltd., 50 Wingold Avenue, Toronto, Canada,

\section*{What is this ?}

New wide-range linear electrostatic loudspeaker \(40 \mathrm{c} / \mathrm{s}-20 \mathrm{kc} / \mathrm{s}\). Featured in May 1955 Wireless World. High fidelity reproduction is covered by frequent articles.

\section*{Up-to-date news of every British development \\ Wireless World \\ Britain's chief technical magazine in the general field of radio, tele- \\ Wireless Engineer \\ Journal of radio research and progress, produced for research}
vision and electronics. Founded 45 years ago, it provides a complete and accurate survey of the newest British techniques in design and manufacture. Articles of a high standard cover every phase of radio and allied technical practice, with news items on the wider aspects of international radio. Theoretical articles by recognised experts deal with new developments, while design data and circuits for every application are published. WIRELESS WORLD is indispensable to technicians of a!l grades and is read in all parts of the world.

Monthly: \(\$ 4.50\) a year. Three years \(\$ 9.00\)
Recent editorial features: Wide Range Electrostatic Loudspeakers - Principles of design for operation with negligible distortion at low as well as high frequencies ; V.H.F. and U.H.F. Propagation; Transistor Equivalent Circuits; Non-Linearity Distortion; Developments in Sound Reproduction.
engineers, designers and students in the fields of radio, television and electronics. Its editorial policy is to publish only original work, and its highly specialized content is accepted as the authoritative source of information for advanced workers everywhere. The journal's Editorial Advisory Board includes representatives of the Department of Scientific and Industrial Research, the British Broadcasting Corporation, and the British Post Office.

Monthly: \(\$ 7.50\) a year. Three years \(\$ 15.00\)
(including annual Index to Abstracts \& References).
Recent editorial features: Pulse Response of Signal Rectifiers; Junction Transistor Trigger Circuits; Waveguide Phase Changer; Visual Impedance-Matching Equipment; Ferromagnetic Loop Aerials; Differential-Amplifier Design; Waveguides and Waveguide Junctions.

\author{
MAIL THIS ORDER TODAY \\ TO: ILIFFE \& SONS LTD.. DORSET HOUSE, STAMFORD STREET, LONDON, S.E.I.. ENGLAND
}

Please forward. for 12 months/ 36 months. Payment is being made*.
NAME.
ADDRESS growith of our research and development program

\begin{abstract}
As a member of our staff you will enjoy the advantages of outstanding personnel policies, jol security, and an environment of a progressive and creative nature . . . IBroad coverage group insurance benefits are offered together with liberal vacation and sick leave policies . . . Faciitities of an extensive technical library allow investigation of the latest developments in many fields . . . Periodic wage reviews assure you of a salary commensurate with your contributions . . . You will be encouraged and given financial assistance in supplementing your formal education at the world-famous colleges and universities of the Greater Iboston Area.
\end{abstract}

\author{
We have openings for persons experienced in: \\ - System Design \\ - Logical Design \\ - Radar Circuits \\ - Systems Testing \\ - Component Testing \\ - General Circuitry \\ - Magnetic Recording \\ - Transformer Design \\ - Transistor Circuits \\ - Digital Systems Design \\ - Magnetic Core Circuits \\ - Digital Techniques Development
}

We sincerely feel that your investigation of these openings will be worthwhile and assure you of our prompt reply to all inguiries. For further details you may forward a resume to Personnel Administrator or Tel. RI 2-3200 for appointment.

\section*{LABOIRATORY for ELECTIONICS, INC. \\ 75 PITTS ST. BOSTON I4. MASG.}

\section*{By Armed Forces Veterans}

In order to give a reasonably equal opportunity to all applicants and to avoid overcrowding of the corresponding column, the following rules have been arlopted:

The IRE publishes iree of charge notices of positions wanted by IRE nembers who are now in the Service or have received an honorable discharge. Such notices should not have more than five lines. They nay be inserted only after a lapse of one month or more following a previous insertion and the maxinumn number of insertions is three per year. The IRE necessarily reserves the right to decline any announcement without assignment of reason.

Address replies to box number indicated. c/o IRE, 1 East 70th St.. New York 21, N.Y.

\section*{ENGINEER}

BSEF, 1951, I.I.T. Eta Kappa Nu, Age 25 2 years experience itt adapting power system analysis to digital computers. 2 years experience (t White Sands in programmint and in trouble thooting a large scale digital computer. Desires position involving logical desisn of computers. Bov 838 W .

\section*{ELECTRONIC ENGINEER}

1BEE 1953. Age 25. 5 years electronic experience, including 2 years shop and testing, 1 year assistant project engineer on classified Navy project. 2 years as radio officer USAF. Desires responsible position in productio: or development. Box 839 W.

\section*{INSTRUCTOR}

BSEE, MSEE. Age 29, married, 1 chidt. liraduate work in advanced clectron tube circuits. network analysis and syuthesis, and feedbach systems. Mathematics minor. L,icensed ratlio amateur. 1 year communications (R.F.) design and development; 1 year analogue computer cir cuit research and design; 3 years applied transistor research. Excellent references. Ihesires a full time teaching position in an institution that has an F.E. graduate school (Plo.D.) with priv ilege of engaging in six semester hours per semester of graduate stidy. Available Sept. I. 1055. Box 840 W.

\section*{ENGINEER}

Age 28, married. BS in EF., working on MS 2 years ETM 2/c in WW II; 5 years experience in VHF-UHF tuner desi,yn; precision radar receiver circuit design, some video and pulse work. Desires challenging position with medium size company. \(\$ 7,000\) minimusm. Prefer east. Box 353 W .

\section*{SENIOR ELECTRONIC DEVELOPMENT ENGINEER}

BS 1950. Age 25, married. 3 years viteo, pulse and ultrasonic systems develo ment, project level. (patents) some guided missile system develop ment, 2 years Army electronics instructor. De sires responsible R \& D position. Box 854 W .

\section*{ELECTRONIC ENGINEER}

BSEE January 1951. Age 27, married, 2 chil dren. \(3 \sqrt{2}\) years experience in circuit develop. ment, instrument and communications systems planning, and ordnance testing. 1 year ad ministrative and supervisory experience. Desires position offering responsibility and advancement in San Francisco area. Box 855 W .
(Continued on page (f6.A)

\section*{TO THE FINE ENGINEERING MIND SEEKING THE CHALLENGING PROJECTS IN}

\section*{TEST EQUIPMENT}

TEST EQUIPMENT ENGINEERS (Senior Electronic Engineers and Electronic Engineers) are urgentiy necded for design and development of test equipment for aircraft and missile application at Convair. Unusual carcer opportunities are here now for enginecrs qualified in these fields: relemeter equipment; auto pilot; rockct propulston: system engineering; electrowic packaging and cabling: electrical, bydraulic and pnownatic power distribution: data reduction systems, radar beacon. remoti control sybems, specification writers, test procedurcs, component tevt, inertial guidance.

CONVAIR offers you an imaginative, explorative, energetic enginecring department to challenge four mind, your skills, and your abilities in solving the complex problems of vital, new, immediate and long-range programs. You w:ll find salaries, facilities, enginecring policies, educational opportunities and personal advantages excellent.

Generous travel allowances to engineers who are accepted. Write at once enclosing full resume to:
H. T. Brooks, Engineering Personnel, Dept. 809

A Division of General Dymamics Corporation

\section*{3302 PACIFIC HIGHWAY}

SAN DIEGO, CALIFORNIA
SMOG-FREE SAN DIEGO, lovely city on the coast of Southern Califoinia, ofers you and your family a wonderful new way of iife....a way of life judged by most as the Nation's finest for climate, natural beauty and casy (indooroutdoor) living.

BELL AIRCRAFT CORPORATION
has
Immediate Openings
for

\section*{ELECTRONICS ENGINEERS}

Electronics at Bell Aircraft includes the broad field of radio communication, wide-band amplifiers, pulse circuitry computers, coders, decoders, subminiature components, special electronic indicators, remote-control systems, telemetry and instrumentation systems.

\section*{- RESEARCM and DEVELOPMENT ENGINEERS}

Electronic guidance. control, checkout and instrumentation systems for guided missiles and remotely controlled aircraft. Systems engineering.

\section*{- microwave engineer}

Research and development work on antemas and complex components.

\section*{- ELECTRONIC STANDARDS ENGINEER}

Evaluation of electronic componem parts for guided missiles.

\section*{- TRANSFORMER ENGINEER}

Design of special transformers and reactors,

Send complete resume to: Manager, Engineering l'ersomel

POST OFFICE BOX 1
BUFFALO 5, N. Y.

\section*{Posilions Wanted}

\section*{By Armed Forces Veterans}
(Continued from page 145A)
ENGINEERING PHYSICIST
BS Physics, MSEE. 4 years exprerience in in. dustrial electromectanial, electronic instrmmentation. 2 years instrumentation experience as assistant project engineer in mucleonics branch of Signtal Corps an A.E.C. project. Employer going west. Desires eastern area position. Fixcellent record and references. Box 856 W .

REGISTERED PROFESSIONAL ENGINEER
Senior Member IRE seeks position where unique combination of terhnical and administrative ability and experience can be put to good use as director of engineering, technical manager, technical sales director, or similar position. Age 39. JBroadly experienced in most aspects of elec tronics, radio and IV sations, networks, gen eral management. Known in industry for book and articles on 'IV. Tacught at 2 universities. Specialized in TV and filns for TV. Prefer connection with broadeast organization or similar 3ox 857 W .

\section*{PATENT ENGINEER}

Electrical engineet with patent experience in mechanical, electrical and nuclear arts. Member of Illinois and Fei, bazs. Registered patent lawyer. At present available in midwest on part time hasis or as independent. Box 859 W

\section*{ENGINEER}

WASHINGTON REPRESENTATIVE
(iovernment engineer. Age 34. Nearing the (iovermment ceiling wants to grow. Has been project Engineer or Sulervisor at NBS, NOl., BuOril, BuShips, and Army. Knows elecfor missiles, fuzes, ships, air defense and nuclear sciences; dovernment contract law and patenth. Best selooblo and reforences. box 860 W

\section*{ELECTRONIC ENGINEER}

BSEF: 1950, MSEE 1951, Tau Beta Pi, 27. married, one child. \(2 z_{2}\) years experience as unit head on classified Navy project, \(11 / 2\) years experience involving logical design and design of electronic circuitry of large scale digital com. puter. Desires position in re:earch or development witl possibility of advancement. Box 867 W .

\section*{MANAGEMENT ENGINEER}

14 vears experience working with tol-rankink executives of some of the country's best known corporations. Heavy technical background, or ganizational and analytical ability. Teaching exserience especially valuable to executives wh delegate responsibilities. Desires position not in volving military contracts. Box 868 W .

\section*{BROADCAST ENGINEER}

IRCA graduate, EE 2 years. Age 23, marricd 1 st phone license with Radar. 2 years experience Radar and CHF. Desires josition in broadcast. ing or in broadcast eq.ipmeat lab, Prefers New York City arca. Box 8.59 W.

\section*{ELECTRONIC ENGINEER}
B.A. (Plysics), M.A. (Math.), Age 29, mar ried, 2 children, Graduate work in E.E. and Math. 3 years maval electronics, \(41 / 2\) years circuit development athl desion, Teaching experience. Widl relocate. Box 870 W .

\section*{RESEARCH ENGINEER}

IB.S.E.E. (communications option) Itlinois ln stitute of Techology. I'rof. Eng-in-Training license State of Illinois, 3 years as Radio Ufficer, U.S. Navy, 8 years amateur radio. Desire research or development position with opportunity to enter management in northeastern llinois. Box 871 W .
(Cuntinued cil page 148A)

\section*{win vour horizo n \\ \\ Bendix Radio has new, \\ exceptional opportunities for advahcemept \\ while working on: \\ RADAR \\ MISSILE GUIDANCE \\ AIRBORNE COMMUNICATIONS MOBILE COMMUNICATIONS AUTO RADIO}

Expand the horizon of your future with Bendix Radio-a leader \& pioneer in the electronics field, one that has the knowledge, strength and resources to stay out front during the competitive days ahead Your part is EASY: Wire phone, write . . . or send us a post card. Simply state your name, address and phone number, your education and experience. We'll carry the ball from there! All replies held in strictest confidence, and we guarantee speedy action

Address: Mr.L.H.Noggie
Dept. M
Bendix Radio
Baltimore 4, Md.
Phore: VAlley 3-2200

\section*{READ WHAT HAPPENED WHEN WE PUT OURSELVES IN The WESTINGHOUSE TEST CHAMBER}

Both the Electronics and the Air Arm Divisions of the Westinghouse Electric Corporation are expanding. We need experienced electronic engincers for advanced design and development work. . so we put ourselves in the "environmental test chamber" to see just what we have to offer the people we need.

We found that we have a professioral atmosphere that is ideal for the engineer. We offer advanced study a: company expense and merit promotions that assure a good future.

Our income and benefit advantages scored high on this test, too. Finally, there were many "extras," iike the Westinghouse Patent Award Prugram, that make investigation of the current openings worthwhile for all electronic enginecrs.

Openings exist in the fields of-
COMMUNICATIONS
(Microwave) FIRE CONTRO! RADAR
COMPUTERS
BOMBER DEFENSE MISSILE GUIDANCE FIELD ENGINEERING TECHNICAL WRITING TEST EQUIPMENT INDUSTRIAL INDUCTION HEATING
Send resume outlining education and experience to:
Technical Director
Dept. 242
Westinghouse Electric Corporation 2519 Wilkens Avenue
Baltimore 3, Md.

\section*{ILLUSTRATED BROCHURE} WILL BE SENT TO ALL APPLICAHTS.

\section*{Boeing "E.E.'s" are kept free for creative assignments}

Thanks to draftsmen and engineering aides, Boeing electrical engineers are free to handle stimulating projects like this: determining optimum antenna performance and placement in an electrolytic tank. The findings of these electronics experts will influence the configuration of Bocing airplanes and guided missiles for years to come.

At Boeing. electrical engineers have the sanne relationship to draftsmen and engineering aides that doctors have to technicians and laboratory assistants. The skills of a Boeing electrical engineer are fully utilized. Ile finds seope for really creative enginecring in instrumentation, radar systems design, guided missile con-
trol. miniaturization, sonic testing, and much more.

This electrolytic tank is one example of the superb equipment at Boeing engineers' disposal. Other facilities include the worid's most versatile privately owned wind tunnel, a new tunnel under construction, capable of velocities up to Mach 4, the latest electronic computers, and splendidly equipped laboratory and test equipment in the new multi-milliondollar Flight Test Center.

Achievenents of each Boeing engineer are recognized by regular, individual merit reviews, and by promotions from within the organization. Boeing offers exceptional career stability and growth:
this soundiy expanding company now employs more than twice as many engineers as at the peak of World War II.

Do you want a clance to "spread your wings' in a truly creative job? There may be a place for you on one of Boeing's engineering teams in design, rescarch or production.
: JOHN C. SANDERS, Staff Engineer-Personnel
- Boeing Airplane Co., Dept. G-43, Seattle 14, Wash.
- Please send further information for my analysis.
- I am interested in the advantages of a career
- with Boeing.
- Name
- University or
- college(s) Oegree(s) ___ Year(s)
- Address
- City _Z_Z_ State___

BCIENMF
Aviation leadership since 1916

\section*{Senior Power Plant Engineer}

Three to eight years aircraft power plant experi ence. Capable conducting power plant testing in conjunction with jet engine and induction system analysis. B.S. in M.E. or A.E.

\section*{Antenna Engineer}

To conduct pattern studies, design prototype an tennas and supervise flight tests of new antenna installations. College graduate in Physics, Math or E.E.

\section*{Electronic Instrumentation Engineer}

Three to five years aircraft instrumentation experience required. Knowledge of transducers, ampliflers and recording equipment used in experimental research testing of hi-speed jet aircraft is essential. Knowledge of servo loop theory as applied to aircraft systems coupled with ability to properly instrument, record and analyze is desirable. Graduate with E.E. degree preferred.

\section*{Electronics Engineer}

Familiar with airborne electronic equipment (communications, navigation I.F.F., Radar and Autopilots), preferably with 2 to 4 years aircraft experience. Should be a college graduate. Duties will include system investigations, establishing test procedures and conducting environmental tests on airborne electronic equipment and components.

\section*{Computer Engineer}

To supervise maintenance and to design special circuitry for computers. Experience with either analogue or digital computers required. College graduate preferred.

\section*{NEW ALL-EXPENSE-PAID RELOCATION PLAN}

\section*{For those living ontide the New York City and long Istand area, Re} bublic offers an unusual blan which relleves you of all financial worries. This blan offurs these no-cost-to-sou benefits: Interview expenses paid for qualified candidates; Educational Rufund I'lan pays \(u_{p}\) to \(z_{s}\) of tutiom and laboratory fees: life, health and aceident insurance-uj to \(\$ 20.000\) combany-paid: plus hospital-surgical benefts for the whole family. And of couse you'll live and work on fabulons Iong Island, playground of the mant mast
: Please address complete resume, outlining details of your technical background, to: Assistant Chief Engineer
Administration
Mr. R. L. Bortner
MEDPEBRIE ANDATHEN
FARMINGDALE, LONG ISLAND, NEW YORK

\section*{(Continised from pag: 148A)}
development, and production of advanced ger manium and silicon diode: and transistors. Ex perience in semiconductor: or other components such as tubes or capacitors is desirable. Positions are available for physicisti, metallurgists, device engineets, sales engineers and production engi neers, Send resume or call:. Iransitron Electronic Corn., 407 Main St., Melrose, Mass. MElrose 4.9600

\section*{COIL ENGINEER}

Coil engineer needed. Must bre experienced in design of deflection yokes. Send resume of edts cation and experience to Hox 8?1

\section*{ENGINEERS}

The U.S. Naval Ordnance 'lest Station, Chinat Lake, (Yalifornia, is urgently in need of Elec tronic Engineers and Electronic Technicians. Salaries range from \(\$ 4035\) to \(\$ 7040\) per annum Write or send application torm 57 to Personne Officer, I'S. Naval Ordnance Test Station, China Lake, California.

\section*{COMPONENTS ENGINEER}

A progressive manufacturer, with AAA-I financial rating and well diversified product line needs a Senior Engineer with experience in the pulse-transformer and inducerr fiedds. This man will be responsible for developing new produc lines, devising test facilities ior determining con formance with industrial and military specifica tions and establishing production process speci fications on new products. Pleasant living con ditions in one of the foremost educational ant cultural centers of the soutbeastern U.S. Sent full details including salary requirements to Box 822.

\section*{INSTRUCTORS}

California State Polytechnit: College plans additions to its staff in the E'rctronic Engineer ing Department to teach (1) courses in fields, waves and antennas, and (2) intermediate level courses in circuits. For information, write to: Harold l'. Inyes, Dean of Engineering, San Lois Ohispo, California

RESEARCH ENGINEERS AND PHYSICISTS
1. MICROWAVE PHYSICIST for research project on application of Ferrites at Microwave frequencies and other microware proiects, \(\mathrm{Ph}, \mathrm{D}\). with experience
2. INSTRUMENTATION ENGINEER. Eltc tronic and mechanical experience for design of x-ray spectrographic instruments. BS or MS with 3 to 5 years experience.

TUBE DESIGN ENGINEER to head project on x-ray tube design. BS or IIS with 3 to 5 years tube design and development experience.

Ideal working conditions in suburban researcl laboratory. All retirement, instrance and other fringe benefits. Interviews with prospective appli cants may be arranged by calling New York LOrraine 2.8703 or IRvington 9.2100 .

\section*{ELECTRONICS ENGINEER}

Small engineering organizatian needs com petent engineers with initiative. Experience in guided missile field desirable, bui not necessary must have a broad background in electronics as well as a working knowledge of the many aspects of the current state of the art including the latest develomments in circuits, components and production techniques. The positics.s also require experience in the specialized fields of radar, infrared, flight stabilization and coutrol sy:ems, and instrumentation. Eligibility for seczerity elearance required. Positions are open at Cis-11 through 14 levels. Salaries \(\$ 5,940\) to \(\$ 9,600\). Srond resume or form 57 to Officer in Charge, U. S. Naval Ordnance Experimental ("nit. c/o N.ational Burean of Standards, Wachington 25,1 . \({ }^{\circ}\)
(Continucd on pagi 153-4)

\title{
SPERRY ENGINEERS
}

\section*{nearly half a century of engineering history}

\section*{now pointing to a new era of engineering opportunities}
\begin{tabular}{|c|c|}
\hline 1911 & \\
\hline 1914 & （tay \\
\hline 1916 & \\
\hline 1918 & \\
\hline 1924 & 最 \\
\hline 1929 & \\
\hline 1933 & 隹 \\
\hline 1937 & \\
\hline \multirow[t]{3}{*}{\[
\begin{gathered}
\text { WORLD } \\
\text { WAR } \\
\text { II }
\end{gathered}
\]} & Sers \\
\hline & 隹 \\
\hline & \\
\hline \multirow{5}{*}{\[
\begin{gathered}
\text { POST } \\
\text { WORLD } \\
\text { WAR } \\
\text { II }
\end{gathered}
\]} & \\
\hline & \\
\hline & amter wopopen－ m \\
\hline & \\
\hline & ．ad \\
\hline
\end{tabular}

From the memorable day in 1911 when the first gyro electrons went aboard the USS Deloware to modern the way．Their achievements Engineers have pioneered turion way．Their achievements nave made Sperry on insti turion passessing a braad base of engineering＂know how＂far ventures into new and diverse fields．Over een years！Hees have been with Sperry more than fif． founded an foresight mument to sound management confidence born of th．．．looking to the future with dynamic．This is an organization Above all，Sperry is expanding ．．．progressing．

\section*{We invite you to investigate \\ ENGINEERING OPPORTUNITIES AVAILABLE AT SPERRY}

These openings offer unusual possibilifies
for professional development and recognition ELECTRICAL ENGINEERS－－Servo－Mechanisms • Circuits and Components－Radio and Radar Sysfems－Tele metering－Digital and Analog Compute：s－Synchros， Resolvers，Motor Design．＂Sysiems Planning and Analy， sis＂Klystron and Travelirig Wave Tube：，Solid Stafe MECHAN
bly Design ENGINEERS－－Small Mechanical Assem－ Equipment－Hackaging of Airborne Electro－Mechanical Antennas Design．Gyros．Acseleromalysis－Airborne Accelerometers

CAL ENGINEERS－Aerodynamics＊Stabil Performance and Flight Testing and Guidance－Aircraft PELOM ALlowanrfs
relocation allowances－liberal employee benefits Adequate housing in Bequtiful Suburban Country Type Area TUITION REFUND PROGRAM（9 groduate schools in area of plant）

MODERN PLANT with Latest Technical Facilities association with outstanding professional personnel

Please submit resume to
J．W．DWYER
Engineering Employment Supervisor Phone Fieldstone 7－3500 Ext． 2605 or 8238 for interview appointment．
（Interviews arranged for Sat．or Wed．Eve．） GREAT NECK，LONG ISUAND，NEW YORK

\section*{in these specialized fields}

\author{
MISSILES \\ Research, systems analysis, development, and design in guidance and control systems, systems component equipment, and systems operational test equipment.
}

\section*{TESTEQUIPMENT}

Research, development, and design in Guided Missile operational test equipment systems and systems component equipment.

\section*{MICROWAYES}

Systems analysis, development, and design in mierowave circuitry and components for missile guidance systems, radar systems, and systems test equipment.

\section*{RADAR}

Study, analysis, development, and design in highly advanced radar techniques, and electronic countermeasures.

\section*{ANTENNAS}

Research, development, and design of airborne antennas in low-frequency, UHF, and microwave regions for missiles, radar, and countermeasures equipment.

\section*{PACKAGINE}

Encapsulation and subminiaturization desigm for reliability and produceability in missile guidance and control equipment systems, airborne radar systems, operational systems test equipment, closed-loop TV systems, etc.

Address inquiries to:
Technical Employment Manager

\section*{FARNSWORTH ELECTRONICS CO., Fort Wayne, Indiana \\ A division of International Telephone and Telegraph Corp.}

\section*{ENGINEERS}

Find Out About GPL's
INTEGRATED APPROACH To Research Engineering

A continuous flow of stimulating and varied projects are laid before the staff of General Precision Laboratory, Incorporated.
Sometimes research and development engineers work together as a cooperative, specialized professional team. Often one or two devote all their energies to a long-range basic problem. All are engaged in challenging work which encourages them to broaden their interests beyond their immediate fields of concentration. There is particular opportunity for components application engineers of several types.

Your family will enjoy your career at GPL as much as you, for you'll make your home in beautiful Westchester, noted for its high standard of living. Only an hour away is New York City, with all its famous cultural and educational advantages.
gENERAL PRECISION LABORATORY INC.
4 rubalders of General Prectston Equipment Corporation 63 Bedford Road
Pleasantville, New York

WHAT GOES ON
IN THE GP LAB:
RESEARCH
\& DEVELOPMENT
WORK IN:
Electronics
Television
Aircroft \& Missile Guidance, Control, Simulation
Radar, Microwave, Ulirasonics

Systems Engineering: (aeronautical, naval, industrial)

Precision Mechanics, Ceramics, Optical Devices

Instruments, Servos,
Controls:
thydraulic, pneumatic, magnetic, electronic)

Expenses will be paid for qualified applicants who come for intervien. We re. gres we can consider only U.S. citizens. Please wite complete details to Mr. complete de
\(H . F\). Ware

\section*{ENGN:ERS}

THE APPLIED PHYSICS LABORA TORY OF THE JOHNS HOPKINS UNIVERSITY offers an exceptional op portunity for professional advancemen in a well-established Laboratory with a reputation for the encouragement of individual responsibility and relf-direction.

Our program of
GUIDED MISSILE RESEARCH and DEVELOPMENT
provides such an opportunity for men qualified in

DESIGN AND ANALYSIS OF PULSE CIRCUITS
RESEARCH AND DEVELOPMENT IM RADAR AND MICROWAVES ELECTRONIC PACKAGING DEVELOPMENT OF TELEMETERINQ. DATA PROCESSING, AND SPECIAL SWITCHING EQUIPMENT MAGNETIC AMPLIFIER DESIGN AND ANALYSIS
DEVELOPMENT ANE APPLICATION OF PRINTED CIRCUITS SERVOMECHANISMS AND CONTROL. SYSTEM ANALYSIS

Please send your resume to Professional Staff Appointments

APPLIED PHYSICS LABORATORY THE JOHNS HOPKINS UNIVERSITY

8603 Georgia Avenue Silver Spring. Maryland

Industrial Fngimering Notes
(Continued from page 150 A)
CHEMISTS, ENGINEERS, PHYSICISTS, PATENT AGENTS
Florida firm with Manhattan office has several positions available for research and development on radioactive batteries. Vacuum evaporation experience is helpful but not essential. Radiation Research Corp., 140 Cedar St., New York 6, N.Y.

\section*{ENGINEERS}

We want experience in makneric amplitiers, analog computers, servomechanisms and elec tronic systems. Juniors to \(\$ 120.00\) per week. Intermediates to \(\$ 140.00\) per week. Box 825.

\section*{PATENT RESEARCH ENGINEER}

Engineering Degree, Electrical or Electronics major preferred for opening involving technical research and report preparation based on aeronautic applications. Opportunity for ant engineering graduate interested in entering the patent field. Liberal salary commensurate with experi ence and educational qualifications. I'ension plan. Nationally known organization located in New York City. Box 826.

\section*{MISSILES SYSTEMS ENGINEERS}

For work on radar indicator circuits, digital computers, systems analysis, missile planning Submit inquiries to Engineering Personnel Diwision, Sperry Gyroscone Co., Creat Neck, L.I. N.Y.

\section*{ASSISTANT OR ASSOCIATE PROFESSOR}

Ph.D. preferred to teach undergraduate and evening graduate courses. Specialist in Communication or Computers preferred. Salary on 9 month basis competitive, with opportunity for local summer employment for right man. High altitude, dry climate. Write Chairman, Elect. Engr. Department, University of New Mexico. Albuquerque.

\section*{TECHNICAL SALES ENGINEER}

A medium-sized southern New Fngland manufacturer of technical papers used by the electronics industry has a challenging position for an electrical engineer under 35. Some selling or administrative experience is desirable. He must have a strong persuasive personality and be capable of working with both technical and nontechnical people. Salary open. Include resume of personal history, education, and experience with introductory letter to Box 827.

\section*{ELECTRONIC ENGINEERS}

Must have 2 to 6 years experience in the design of I.F., V.H.F., and/or U.H.F. broad band sustems. Progressive L.I firm; many benefits Send resume or phone for appointment: Mr. Cr. W. Fellendorf, Ploneer 2.5300, Instruments for Industry, Inc., 150 Glen Cove Roatl, Mineola, N.Y.

\section*{ASSISTANT PROFESSOR}

Assistant professor of Electrical Fingineering. University of North Dakota, Grand Forks. North Dakota. Duties: teaching electronic and communications courses to undergraduate students. An advanced degree plus some teaching or industrial experience preferred. Submit resume of education and experience to Heal, Flectrical Engineering Dept.

\section*{ELECTRONICS ENGINEERS}
begrees in electrical or electronic engineering with at least 2 years related experience, to conduct and supervise junior engineers and technicians on qualification testing and evaluation of electronic components. Analyze test programs and instrumentation, design test methods, evaluate completed data and prepare final reports. Age; 25 to 40. U. S. Testing Company. Inc.. 1415 Park Avenue, Hoboken, N.I.

\section*{violin music}

The demand exceeds the supply. It's that simple? With 3 engineering jobs available for every 2 engineers, some 5,000 companies are bidding for you with offers, inducements and background music. But don't be mistaken! Most of today's "opportunities" are jobs, not futures.

We, too, want engineers. But we're offering no violin music-only the opportunity for intelligent and careful evaluation-you of us and we of you-with the possibility of your joining one of the finest team operations in the whole new world of flight systems development.

Most of the people on that team are young, and moving ahead fast. They weren't lured here. They found out-and figured out-for themselves. We hope you'll do that too.

Write to J. M. Hollyday, Dept. P-9, The Glenn L. Martin Company, Baltimore 3, Maryland.

\section*{目目}

\section*{needs competent men in:}

Instrumentation and Control
Electro-mechanics
Servo Mechanisms
Applied Mechanies Ballistics

Structural Analysis
Aerodynamics
Fluid Mechanies
Electronics and Communications Design

\section*{Do Vou Wunt To:}
- solve some of industry's toughest technical problems-
- work on projects assigned by the nation's most progrossive corporations-
- work on area-wide regional research problems-
- work in a completely new 80,000 sq. ft. research center-- have a real personal sense of professional accomplishment-

Midwont Research Inntitute is one of the country"s largest independent research and developinent organizations created to meet the refuirements of the rapidly increasing industrial expanmion of the midwoss. In its first ton yeara is has completed a multitude of assignmentm for numerous sponsoring organizations. It has a well oriented staff of of ansignments and engineors representing \(6 . t\) different univernities in this country and abroad. It han a remendous record of productive research, as evidenced by itm repat projects in which we take modest pride.

If you would like to become a part of this plan and learn more about the MRI story

Write to:
F. N. Stephens, Manager

Engineering Division
Midwest Research Institute
425 Volker Blvd.
Kansas City 10, Missouri
MIDWEST RESEARCH INSTITUTE KANSAS CITY, MISSOURI

\section*{-}

\section*{UHF RECEIVING EQUIPMENT ENGI-}

NEER Capable of creative wark an advanced UHF amplifiers and ascillatar circuits.
VIDEO CIRCUITS ENGINEER for crea-
tive wark with multi-vibratar, gate and pulse circuits
SENIOR ELECTRONIC ENGINEERS
Far development of campanent systems and test equipment assaciated with aircraft navigatianal equipment.

These are permanent positions with Kollsman, designers of America's finest aireraft instruments . . . a progressive, growing organization in which the atmosphere is friendly, the facilities of the best, and the emplover benefit program liberal.

Frank Marx, American Broadcasting Co. William Iodge, Columbia Broadcasting System; Ralph Ilarmon, Nestinghouse Broadcasting Co., Inc.; Haraden Pratt, Institute of Radio Engincers: Curtis Plummer, Federal Communications Commission, and engineering consultant T.A.M. Craven.

Consolidated Engineering Corporation has appointed R. B. Hurley (S' \(+4-A^{\prime} 47\)). a transistor specialist, 20 its Rescarch Division as a senior research engineer.

Prior to his appointment by Comsolidated, Mr. 1lurley spent three years as senior electronics engineer with Convair, Pomona. Farlier, he was an engineer with AerojetGeneral Corpora-

R. B. IUuri.Ey tion, Azusa, California; \(1^{\circ}\). S. Electrical Notors, Los Angeles, and General Fiketric Company, Schenectady, New York. He is also a parttime lecturer in engincering at the C'niversity of California in los. Angeles.

He is anthor of two articles on transistor amplifiers which appeared recently and "Predictable Design of Transistor Ampli(Continucd on page 156A)

If you are interested in guided missiles this book will interest you. Here is one of the most complete guides to job opportunities in the guided missile field yet published. In this book, you will find not only a complete outline of the objectives and accomplishments of the Bendix Guided Missile Section, but also a detailed background of the functions of the various engineering groups such as system analysis, guidance, telemetering, steering intelligence, component evaluation, missile testing, environmental testing, test equipment design, reliability, propulsion, and other important engineering operations. Send for your free copy today.

\section*{23}

\section*{challenging opportunities in the} newest and fastest growing branch of the aviation industry are now

Bendix job opportunities in guided missiles range from top senior engineers to assistant engineers, junior engineers, technicians, and a score of other assignments.

Qualified men are given real job responsibility with Bendix and grow with the development of what is not only the nation's most important weapon system, but a project that will undoubtedly lead to new and important longrange commercial applications.

And at Bendix you will be associated with top missile authorities and have at your command unexcelled engineering and manufacturing facilities.

If you are interested in a future in guided missiles, the first step is to fill out the coupon and mail it to us today.

\title{
enGineers
}

Fulfill professional and personal objectivea . . . with an outstanding firm in its field.

Challenging openings for experienced engineers with degrees or equivalent experience in:

\title{
- ELECTRONIC
}
- MECHANICAL

Research, Development, De-
sign \& Field Engineering on:
- Counfermeasures
- Fire Control Radar Systems
- Navigation 5ystems
- Underwater Sound Sysfems
- Magnetic Amplifiers
- Radar \& Sonar
- Communications Equipment - Circuit Design

FIELD ENGINEERS
Junior \& Senior
(Local \& Field Assignments)

\title{
WHAT STAVID OFFERS YOU \\ \\ \\ \\ \\
}

- Guidance 5ystems
- Electronic Installation
- Antennas
- Telemetering

\section*{LOCATION:}

On U.S. llighway 22, thirty miles (45 minutes) from New York City, near the heautiful Watehung Mountaine, and within one hour's drive to the eashore. Enjoy all the ad. vantages of the eity, the mountains, and the seashore, as well as excellent schools, homes, churches and shopping facilities all conveniently located.

ENIIRONMENT:
One of the finest plants of its kind . . . epacious, modern, air-ronditioned. Conducive to hringing out the hest of yonr abilities!
ABOUT THE COMPANY:

ITS BENEFITS:

Organized in 1945. Engaged in researeh, design and development for the Armed Services. The company hat nteadily progressed and grown sinee lts inception, and now employe over 400. Poaltions are permanent, with opportunitios for your development matehing our own constant oxpansion.
- Pension Plan
- Paid Vacations
- Education \& Tuition Assistance
- Oiher Group

Insurances
- Paid Holidays
- Paid Sick Leave
- Recreational programs: golf, softball, bowling, picnics, dances.

\section*{Interviews in Your Community by Appointment}

Send resume, write or call for additional information.

\author{
U.S. Highway 22, Watchung, P.O. Plainfield, N.J. Plainfield 7-1600
}
(Continued from page 154A)
fiers," will appear this fall in Tele-Tech \& Electronic Industries.

Holder of the M.S. degree in electrical engineering from the University of Southern California, Mr. Hurley is a member of Phi Beta Kappa, Eta Kappa Nu, Sigma Xi, Tau Beta Pi, American Institute of Electrical Engineers, and the Scientific Research Society of America.

The appointment of T. R. Kennedy Jr. (SM'48), to the public relations staff of Allen B. Du Mont Laboratories, Inc., has been announced.

For twenty-five years Mr. Kennedy was a member of the radio-television news and editorial staff of The New York Times. He began newspaper work in 1925 at the Pittsburgh Post \& Sun, being radio editor and radio advertising manager. A year later he joined the Philadelphia Evening Ledger as technical radio editor.

Mr. Kennedy studied electrical engineering at Carnegie Institute of Technology, Pittsburgh, and joined the U. S. Navy at the beginning of World War 1. He attended the Navy Radio School at Harvard University, received a commission, and was transferred to the Boston Navy Yard, where he helped design, construct, and install the radio compass.

Mr. Kennedy is a member of the Audio Engineering Society, a fellow of the Radio Club of America, and a member of the Radio Pioneers.

Lester M. Field (M'48-F'52) has been appointed Head of the Electron Tube Laboratory, Hughes Aircraft Company Culver City, California. He comes to Hughes with a background in tube research and development acquired at the Bell Telephone I.aboratories and as head of tube research projects at both Stanford University and the California Institute of Technology. He will continue to be associated with the faculty at the California Institute of Technology to help maintain the research program in progress there.

Dr. Field's honors include one of the Eta Kappa Nu Outstanding Young Electrical Engineer Awards for 1949, and election to Fellow of the Institute of Radio Engineers. He is also a member of Tau Beta Pi, Sigma Xi, the American Association of University Professors, and the American Physical Society.
\(\%\)
J. W. Thatcher (SM'46), formerly an engineering executive at Western Electric Company, has been appointed Customer Service Manager of Pasadena's ElectroData Corporation.

Mr. Thatcher will head a department of computer engineers and technicians,
(Continued on page 161A)

PROGRESS REPORT

PROJECTS
Our cight current military contracts support a broad range of advanced development work in the fields of modern commanications, digital computing and datu-processing, fire-control, and guided missiles. This work is supplemented by non-military activities in the ficlds of operations research, automation, and data-processing.

\section*{FINANCES}

In 1954, our first full year of operation, we showed a good profit. Of greater importance, however, are the arrangements recently completed with Thompson Products, Inc., our corporate associate, whereby we are assured additional funds up to \(\$ 20,000,000\) to fisance our expansion requirements of the next few jears, and insure the long-range stability of the company.

\section*{The Future}

Our first year and a half of corporate history encourages us in the belief that our future will be one of expanding productivity. But whether we remain a small company or grow large, we plan not to lose sight of the fact that the continued success of The Ramo-Wooldridge Corporation depends on our maintaining an organizational pattern, a professional environment, and methods of operating the company that are unusually well suited to the very technical, very special needs of modern systems development and manufacturing.

\section*{After Twenty-One Months...}

\section*{RESEARCH AND DEVELOPMENT PERSONNEL}

Total population figures, such as those displayed in the curve, tell only a limited story. Personnel quality factors are most important, in our kind of business. We believe we are doing well in this respect. Of the 90 Ph.D.'s, 65 M.S.'s and 75 B.S.'s or B.A.'s who today make up our professional staff, a gratifyingly high percentage are men of broad experience and, occasionally, national reputation in their fields.

\section*{FACILITIES}

By mid-1956 our Los Angeles facility will consist of seven buildings totalling 300,000 square feet of modern research and development space. Two of the three buildings now complete and occupied are shown at bottom of this page; a fourth and fifth are presently under construction, the others are in the design stage.

\section*{MANUFACTURING}

We are somewhat ahead of the usual systems development schedule, with some of our projects having arrived at the field and flight-test stages. We are now planning a facility for quantity production of electronic systems. Construction on the initial unit of 160,000 square feet (shown above) is expected to start in late 1955, with manufacturing planned for late 1956.

\section*{Take a look at the record}

\section*{WITHIN THE LAST YEAR, MORE THAN 500}

\section*{EXPERIENCED ENGINEERS and SCIENTISTS*}

\section*{CHOSE DESIGN AND}

\section*{DEVELOPMENT CAREERS}

Today... RCA opens
new opportunities for you to join
these progressive, creative engineers in...

RSA advancement creates opportunities with a future
openings which are availabie today for engineers and scientists who can move ahead professionally with the world leader in electronics. At the RCA engineering locations listed in the chart, you'll find the kind of living and working conditions you and your family consider most attractive.

RCA offers you... facilities unsurpassed in the electronics industry . . . everyday association with top engineers and scientists. Plus RCA benefits that include: tuition refund plan, a company-paid insurance program for you and the family, modern retirement plan, relocation assistance.
A carefully-planned advancement program helps you move ahead financially and professionally!

\footnotetext{
- RCA was also chosen by several hundred recent engineering graduates, field serice engineers and other categaries of experiencod professional engineers of scientists.
}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{FIELDS OF ENGINEERING ACTIVITY} & \multicolumn{12}{|c|}{type of degree and years of experience preferred} \\
\hline & \multicolumn{3}{|c|}{Electrical
Engineers} & \multicolumn{3}{|l|}{Mechanica! Engineers} & \multicolumn{3}{|c|}{Physics
Science} & \multicolumn{3}{|l|}{} \\
\hline & 1-2 & 2-3 & \(4+\) & 1.2 & 2.3 & 4+ & 1-2 & 2.3 & + + & 1-2 & 2-3 & \({ }^{4}+\) \\
\hline \begin{tabular}{l}
SYSTEMS \\
(Integration of theory, eqzipments, and environment to create and optimize major electronic concepts.)
\end{tabular} & & & & & & & & & & & & \\
\hline AIRBORNE FIRE CONTROL & & & W & & & & & & W & & & \\
\hline digital data handling devices & & & C & & & C & & & C & & & \\
\hline missile and radar & & & M & & & M & & & M & & & \\
\hline inertial navigation & & & M & & & M & & & M & & & \\
\hline COMMUNICATIONS & & & \[
\begin{aligned}
& \mathbf{G} \\
& \mathbf{i}
\end{aligned}
\] & & & & & & C
1 & & & \\
\hline COLOR TV tuass-Electron Optics-Instrumental Analysis -Solid States (Phosphors, High Temperature Phenomena, Photo Sensitive Materials and Glass to Metal Sealing) & L & L & L & L & L & L & L & 1 & L & L & L & L \\
\hline receiving tubes-Circuitry-Life Test and Rating-Tube Testing-Thermionic Emission & H & H & H & & H & H & & H & H & & H & H \\
\hline SEMI-CONDUCTORS--Transistors-Semi-Conductor Devices & H & H & H & & & & H & H & H & & & \\
\hline microwave tubes-Tube Development and Manufacture (Traveling Wave-Backward Wave) & & H & H & & H & H & & H & H & & H & H \\
\hline gAs, POWER AND PHOTO TUBES-Photo Sensitive DevicesGlass to Mietal Sealing & L & L & L & L & L & L & L & 1 & L & L & L & L \\
\hline aviation electronics-Radar-Computers-Servo Mech-anisms-Shock and Vibration - Circuitry-Remote Control Heat Transfer Sub-Miniaturization -Automatic Flight Design fo: Automation-Transistorization & \[
\begin{aligned}
& \mathrm{C} \\
& \mathrm{x} \\
& \hline
\end{aligned}
\] & \begin{tabular}{l}
C \\
\hline \\
F \\
\(\times\) \\
\hline
\end{tabular} & \begin{tabular}{|l|}
\hline \\
\hline \\
\hline \\
\hline \\
\(X\) \\
\hline
\end{tabular} & C & \begin{tabular}{l}
C \\
\hline \\
\(\mathbf{F}\) \\
\(\mathbf{X}\) \\
\hline
\end{tabular} & \begin{tabular}{|l|}
\hline \\
\hline \\
\hline \\
F \\
¢ \\
\hline
\end{tabular} & \[
\begin{aligned}
& \mathrm{C} \\
& \mathrm{X} \\
& \hline
\end{aligned}
\] & \begin{tabular}{l}
C \\
F \\
x \\
\hline
\end{tabular} & & & & \\
\hline radar-Circuitry-Antenna Design-Servo Systems-Gear Trains-Intricate Mechanisms-Fire Control & \[
\begin{aligned}
& c \\
& x
\end{aligned}
\] & M & \begin{tabular}{l}
M \\
\hline \\
\hline \\
F \\
X \\
\hline
\end{tabular} & C & \begin{tabular}{|l|}
\hline \\
\hline \\
\hline \\
\hline \\
F \\
\hline
\end{tabular} & \begin{tabular}{l}
M \\
\hline \\
C \\
F \\
X
\end{tabular} & C & M & M
C
F
X & & & \\
\hline \begin{tabular}{l}
computers-Systems-Advanced Development-Circuitry \\
-Assembly Design-Mechanisms-Programming
\end{tabular} & c & C & \begin{tabular}{|l|}
\hline \\
\hline \\
\hline \\
\hline \\
F \\
\hline
\end{tabular} & \(c\) & \[
\begin{aligned}
& \text { C } \\
& \text { F }
\end{aligned}
\] & \begin{tabular}{l}
M \\
\hline \\
\hline \\
F \\
X \\
\hline
\end{tabular} & \(c\) & \[
\stackrel{i}{i}
\] & M & & & \\
\hline communications-Microwave-Aviation-Specialized Milizary Systems & C & \[
\begin{aligned}
& \text { C } \\
& \text { F }
\end{aligned}
\] & \[
\begin{aligned}
& M \\
& C \\
& F \\
& \hline
\end{aligned}
\] & & \[
\underset{\mathbf{F}}{\mathbf{C}}
\] & \(\stackrel{M}{M}\) & & \[
\begin{aligned}
& \mathrm{C} \\
& \mathrm{~F} \\
& \hline
\end{aligned}
\] & M & & & \\
\hline RADIO SYSTEMS—HF-VHF-Microuave-Propagation Analysis-Telephone, Telegraph Terminal Equipment & & 1 & \(\stackrel{1}{1}\) & & 1 & F & & 1 & F & & & \\
\hline missile guidance-Systems Planning and Design-Radar -F.re Control-Shock Problems-Serva Mechanisms & & \[
\begin{gathered}
\mathrm{M} \\
\mathrm{~F} \\
\hline
\end{gathered}
\] & \[
\underset{F}{M}
\] & & \[
\begin{gathered}
\mathrm{M} \\
\mathrm{~F}
\end{gathered}
\] & \[
\begin{gathered}
M \\
F \\
\hline
\end{gathered}
\] & & \[
\begin{gathered}
\mathrm{M} \\
\mathrm{~F}
\end{gathered}
\] & M & & & \\
\hline COMPONENTS - Transfornuers-Coils-TV Deflection Yokes (Color or Monochrome)-Resistors & C & \begin{tabular}{l}
2 \\
c \\
\(\times\) \\
\hline
\end{tabular} & \[
\begin{aligned}
& \hline 2 \\
& c \\
& x \\
& \hline
\end{aligned}
\] & C & \[
\mathrm{z}
\] & \[
\begin{aligned}
& \mathrm{z} \\
& \mathrm{c}
\end{aligned}
\] & C & c & C & & 2 & 2 \\
\hline Mech. and Elec.-Autonatic or Semi-Automatic Machines & & L & L & & L & 1 & & L & L & & & \\
\hline
\end{tabular}

\section*{Locution \\ Code}

C-Camden, N. J.-in Greater Philadelphia near many suburtan communities.
F-Florida-on east cuntral coast
H—Harrison, N. J.-just 18 minutes from downtown New Yark
I - International Div. - New York City and Overseas.

L-Lancaster, Pa.-about an hour's drive west of Philadelphia.
M-Moorestown, N. I.-quiet, attractive community close to Phils. W-Waltham, Mass.-near the cultural center of Boston.
X—Los Angeles, Calif.-west coast electronics center.
Z-Findlay, Ohio-pleasant, small midwestern town.

Please send resume of education and experience, with location preferrea, to:

Mr. John R. Weld, Emplayment Manager Depf. A-13J, Radio Comporation of Americo 30 Rockefeller Plaza
New York 20, M.Y.

\title{
ENGINEERS
}

\section*{for immediate placement}

\section*{ENGINEERING AT NCR:}
1. Immediate, permanent positions in Mechanical and Electrical Engineering Divisions.
2. Engineering project work in Adding Machines, Cash Registers, Accounting Machines, Computers, and related Data Processing Equipment in Dayton, Los Angeles, and Ithaca, New York.
3. Work involving design, development, and production engineering of mechanical, electronic, and electromechanical devices.
4. Some experience in development, design, and application of high-speed, light-weight mechanisms of the intermittent motion type is desirable, but not esential.
5. Ample training and indoctrination is available to all employees.

\section*{ELECTRICAL ENGINEERS MECHANICAL ENGINEERS ELECTRONIC ENGINEERS MECHANICAL DRAFTSMEN}

AS AN NCR ENGINEER you, with your family, will enjoy:
1. UNLIMITED OPPORTUNITY in the broad, everexpanding field of Business Machine Engineering.
2. AN EXCELLENT SALARY, plus exceptional benefits of lifetime value for you and your family.
3. A RECREATIONAL PROGRAM for year-round enjoyment of the entire family including a new Country Club with 36 holes of golf, and a 166 -acre park for outings with swimming, boating, and supervised play for the children.
4. LIVING IN DAYTON . . . considered one of the cleanest and most attractive cities in the Midwest with outstanding school facilities.
5. YOUR WORK AT NCR with its friendly, family atnosphere, with its employee morale at a very high level, and with people who, like yourself, have decided to build their professional future with NCR.

ACT AT ONCE-Send resume of your education and experience to: EMPLOYMENT DEPARTMENT, TECHNICAL PROCUREMENT SECTION
THE NATIONAL CASH REGISTER COMPANY

\section*{ENGINEERS \\ DESIGNERS-DRAFTSMEN \\ Electronic}

\section*{Keep Your Eye \\ on the Ball} In your career, as in successful baseball, golf or tennis, it pays to keep your eye on the ball. Keep your eye on the advantages only a young, yet securely established company can offer. Melpar is young enough to welcome new ideas, to recognize and award achievement, yet big enough to offer stability and growth to those who look to the future.

Superb new laboratory facilities just completed this year; an engineering staff of the highest calibre; longrange military and industrial research programs; and an ideal family environment in pleasant Fairfax County in northern Virginia . . . these are just some of the many benefits you'll find as a member of the Melpar staff.

Keep your eye on a career with Melpar, leader in electronic research and development.

For personal interview send resume to
Technical Personnel Repfesentative.
melpar, inc.
Subsidiary of Westinghouse Air Broke Co
- Network Theory
- Systems Evaluation
- Automation
- Microwave Technique
- UHF, VHF or SHF Receivers
- Analog Computers
- Digital Computers
- Magnetic Tape Handling Equipment
- Radar \& Countermeasures
- Packaging Electronic Equipment
- Pulse Circuitry
- Microwave Filters
- Flight Simulators
- Servomechanisms
- Subminiaturization
- Electro-Mechanical Design
- Quality Control 8 Test Engineers

\section*{EleCTRONIC DESIGN ENGINEERS \\ capable of ASSUMING RESPONSBBILITY}

To perform basic design and direct experimental laboratory work in the development of new equipment.

The desire and ability to progress with an expanding engineering and production organization will yield ample opportunity for advancement.

The position affords excellent working conditions, modern equipment, and usual fringe benefits.

Salary will be commensurate with background and ability.

BELL SOUND SYSTEMS
Electranics Division of
THOMPSON PRODUCTS, INC.
555 Marian Raad, Calumbus, Ohia
responsible for nationwide installation and maintenance of "DATATRON" highspeed electronic data processing machines.

During 26 years with Western Electric, Mr. Thatcher has held a variety of posts, most recent of which was the west coast managership of field engineering service for electronic equipment purchased by the Air Force. I'reviously he was west coast representative of the Nike contract manager. He has served also as nanager of the Wesco Field Modification Shop and general manager of Sound Services, Inc., a Western Electric subsidiary.

He is a graduate of the Califormia Institute of Technology.

The election of Richard Hodgson (M'47-SM'51) as a Vice-President of Fairchild Camera and Instrument Corporation has been announced. At the same time, Mr. Hodgson was promoted from the position of Trend Planning Director to that of General Manager of the Company's Reconnaissance Systems Division.

Mr. Hodgson was one of the organizers of Chromatic Television Laboratories, Inc., which pioncered in the development of manufacture of color television picture tubes based on the invention of Dr. E. O. Lawrence. He was president of the firm when he joined Fairchikd, and contimues to serve on the board of directors.

His association with the military dates back to \(19+2\) when he was a research staff nember of M.I.T.'s Radiation Laboratory working on microwave radar developments. His work included liaison with Air Force Laboratories at Wright Field on airborne radar developments and operational applications. In 1944 he was given leave and assigned to the office of the Secretary of War as an expert consultant on radar. During this period he also served as civilian radar advisor to General Iloyt B. Vanderburg, then Commanding General of the 9th Air Force.

He also served as a consultant to the Department of the Air Force in 1952 and 1953, advising on the organization of the research and development program as part of a three-man advisory group headed by I.t. General James H. Doolittle. This work led to the establishment of the Air Research and Development Command.

He also has been Director of Television Development for Paramount Pictures Corporation; Assistant Treasurer of Allen B. DuMont Laboratories, Inc.; head of the Engineering Management Division of Brookhaven National Laboratory, A.E.C.; a senior change board engineer for Lockheed Aircraft Corp. and a manufacturing and process economic analyst for Standard Oil Company of California.

He is a member of the Society of Motion Picture and Television Engineers and has served on many industry committees of the Radio-Eletronics-Television Manufacturers Association.
(Continued on page 162A)

\title{
APPLIED TO THE DESIGN, DEVELOPMENT ANO APPLICATION OF
}

\author{
aUTOMATIC RADAR DATA PROCESSING. TRANSMISSION AND CORRELATION in Large ground networks
}

\section*{Engineers \& Physicists}

Digital computers similar to successful Hughes airborne fire control computers are being applied by the Ground Systems Department to the information processing and computing functions of large ground radkr weapons control systems.

The application of digital and transistor techniques to the problems of large ground radar networks has created new positions at all levels in the Ground Systems Department. Engineers and physicists with experience in the fields listed, or with exceptional ability, are invited to consider joining us.

TRANSISTOR CIRCUITS • DIGITAL COMPUTING NETS • MAGNETIC DRUM AND CORE MEMORY • LOGICAL DESIGN • PROGRAMMING - VERY HIGH POWER MODULATORS AND TRANSMITTERS • INPUT AND OUTPUT DEVICES • SPECIAL DISPLAYS • MICROWAVE CIRCUITS

Culver City, Los Angeles County, California

\title{
Electronic and Electro-Mechanical Engineers
}

\section*{(Continued from sage 161A)}

The new Techaical Products Division of Alen B. DuAlont Laboratories, Fuc. will be headed by P. S. Christaldi (S' 35 ('40-SM'4-F's2) and will manufarture and sell the products formerly hanalled ly the company's Instrument Division and Commundation Proflucts 1 Division. It is initiatine a program of expansion and diversification with es-
 pecial emphasis on elements and systems for almomation of inclustrial processes.

Proelucts manufactured by the new division inclucle television station broadcasting and studio equipment, industrial television systems, cathole-ray and other electronic instruments, automotive test equipment, industrial electronics, components and systems, guided missiles test equipment, military electronic and electromelanical devices, and the newly do veloped complement of mobile radi. equipment.

Dr. Christaldi has been associated with Wlen B. DuMont Laboratories since 1938. His first duties were in the fied of cathode-ray tulve and cathode-ray ossillograph development, being expanded to include telerision recciving and transmitting operations when he was appointed Chief Fingineer of the company in 1941 In 1947 he became Eigineering Manager of the Instrument Division. He was made Assistant Manager of the division in 1952 and Nanager in 1953. The is a member of Signa Xi, the American Radio Relay League, the American Rooket Society, a Fellow of the Ratio Club of Smerica, and a fellow of the Institute of Radion Engineers. Dr. Christaldi is a member of the IRE Standards Committee, Chairman of the LRE Committe on Measurement and Fnstrumentation, a mernber of the IRE: Subrommittee on Oscillography, chairman of the RE:TMA Committee on Oscillography, and IRE: Delegate to the American Standards Association, Section C-39.

\section*{*}

Franklin S. Cooper (.1't6) rewarch scientist and physicist, has been elected President and Director of Rescarch of llaskins Laboratories Luc. of New York to sucreed Caryl I'. Haskins who has resigned to accept the presidency of the Carnegic Institution of Washington. Mrs. Ame Hinchey Gallagher was elected to sorve as Treasurer and Assistant Secretary.

Franklin Conper was born in Robinson, Illinois in 1008 and graduated from the Tiniversity of Illinois. He received the

\footnotetext{
(Continted on page 165A)
}

\section*{ENGINEERS
PHYSICISTS
METALLURGISTS}

If you can see a limit to your job ... then it's not oig enough! - Consider the future in

\section*{MICROWAVE} \& POWER TUBES
- making new ideas work
- designing manufacturable tubes
- an accelerating rate of growth
- fundamental training
- company sponsored courses
- long-term personal benefits
- an invitation to advance that has your name written on it

\section*{GENERAL ELECTRIC}

Schenectady, N.Y.

\section*{Is YOUR FUTURE as promising as the ATOM'S?}

> If you're not satisfied with your own answer to this question, you should investigate the opportunities at TRACERLAB, foremost company in the field of NUCLEAR APPLICATIONS. TRACERLAB needs . . .

NUCLEAR ENGINEERS ELECTRONIC ENGINEERS ELECTRICAL ENGINEERS MECHANICAL ENGINEERS PHYSICISTS
to work in research. development and applications of nuclear instrumentation. Openings are of a permanent and non-military nature, and offer outstanding opportunities for advancement. We would be pleased to have you consider the possibility of joining our successful and forward looking team. Write in confidence to

130 HIGH ST., BOSTON 10, MASS.

\section*{Now Republic Greaty Expands its}

\section*{Development} and Experimental Activities

\section*{Adding 425,000 sq. ft. of Floor Space}

Republic Aviation has undertaken a vital and luge expansion program for its development and experimental activitics. Many new opportunitics at all levels of professional experience are open to scientists and engineers. If you seek a position where your abilities alone are the key to success, and where company grouth facilitates your advancement, you owe it to your future to investigate these positions with Republic.
The large, modern louilding pictured above with 425,000 square fect arljoining Repuhlie's Farmingdale plants has just been added. A corps of pioncer thinkers is working with minds unfettered loy material restrictions of any kind, unlampered by hidebound tradition. New ideas being developed will be as record-setting as Republie's many past achievements in aircraft design.

The fast-broadening scope of these operations has ereated a large number of positions for men with a bent toward development work. Why not make today a landmark in your career, ly checking into the opportunities open with our staff of development engineers and scientists? Repullic's lenefit program for its professional staff is unsurpassed; the pay scale is a model for the industry. Relocation experses are paid.

\section*{CHECK THESE}

NO-COST-TO-YOU REPUBLIC BENEFITS

INTERVIEW EXPENSES paid for qualified candidates

EDUCATIONAL REFUND PLAN
pays up to 2/3 of turtion and laboratory fees

LIFE, HEALTH \& ACCIDENT IN. SURANCE - up to \(\$ 20,000\) company. paid; plus hospital.surgical benefits for the whole family
positions are open at all levels in the fields of:
physics mathematics physical chemistry

\section*{operational analysis electronics servo-mechanisms fire control} stress analysis
missile armament aerodynamics thermodynamics

Convenient inferviews will be arranged.
Please forward complete resume to:
Mr. R. L. Bortner, Dept. C Assistant Chief Engineer
Administration
MEEDUBRDE AMDATKON
FARMINGDALE, L. I., N. Y.

\section*{MIANILE SVENEME}

\section*{Rescarch and Development}

Broad interests and exceptional abilities are required of scientists participating in the techoology of guided missiles. Physicists and engineers at Lockheed Hissile Systems Diviston are pursuing adsanced work in virtually every scientific field.

Below: Missile Systems scientists and enginecrs discuss future seientilic exploration on an advanced systems concept with Vice President and Cieneral Manager Ehwood R. Quesada. From left toright: I)r. Eric Durand. nuclear physicist, systems research laboratory: Ralph H. Miner (standing). staff division engineer; Dr. Montgomery H. Johnson, director, nuclear research laboratory: Elwood R. (Quesada: Dr. Louis N. Ridenour (standing), director, program development: Willis M. Hawkins (standing), chief engineer; Dr. Joseph V. Charyk (standing), director, physies and chemistry research laboratory: Dr. Ernst H. Krause, director, research Laboratories.

Scientilic adsances are creating new areas of interest for those capable of significant contribution to the technology of guided missiles.

\section*{ research and engineering slaff}

\section*{CONFERENCE}

Chicago, Oct. 3-5

\section*{HALI. ME1ETING}

\section*{AMERICAN}

\section*{INSTITU'IE}

\section*{OF}

\section*{EIAECNRICAL.}

\section*{ENGINEERS}

Chicago, Oct. 3-7

\section*{C.T. Petrie, A. A. Daush} and senior members of the technical staff will be available for consultation at the Sherman Hotel,

FRanklin 2-2100.
(Continted from page 162A)
Ph.I). degree in 1936 from the Massachusetts Institute of Technology. He was with the Research Laboratory of the General Electric Company until he joined Haskins Laboratories in 1939 where he has been Issociate Director of Research.

Dr. Cooper was Senior Liaison Officer of the Office of Scientific Research and Development duaing the war, in charge of the exchange of scientific information with the Allies. He has served as consultant to the Secretary of \(D\))efense and to the \(A\) tomic Energy Commission of the U'nited Coations. He is a member of varions scientific and professional societies and of advisory committees of the Massachusetts Institute of Technology and New Y'ork University. and is Adjunct Professor of aconstic phonetics at Columbia L'niversity.

\section*{\(\therefore\)}

The appointment of W. Evan- Jones (A'54) to the Canadian Westinghonse Company Ltd., Electronics Division in Hamiton, Ontario has been announced. Mr. Evan-Jones will be responsible for the Sales Engincering promotion of the company's communication prochects across Canadal

Prior to joining the Canadian Westinghouse Company, Mr. Evan-Jones was with the Canadian Marconi Compatly as Assistant Sales Supervisor, Commercial Products Division Montreal; The Communications Group, Ilydro Electric Power Commission of Ontario; and the Northern Electric Co. Ltd.

He has been actively engaged in communication engineering for the past fifteen years and is an Associate Member of the American Institute of Electrical Engineers.

Airborne Instrmments Laboratory, Inc., Mineola, New York, announces the promotion of J. G. Stephenson (1 '45-N1'47SM'50) to the position of assistant Supervising Engineer of the Mpplied Electronics Section of the Research and Engineering Division.

In the ten years of his empleyment with Virborne Instruments I.aboratory, he has been associated with major developments in the fieds of L1IF receivers, stable oscillators, and data-processing equipment.

Prior to his employnernt with Airborne Instrments Laboratory in 1945, Mr. Stephenson was a Research Associate all the Radio Research Laboratory of Harvard Iniversity, where he worked on (Continucd on page 166.4)

A division of Norden-Ketay

Corporation
radar combtermeasures. He also served with the American British Jaboratory in Fingland and was a "lechnical observer a the Mediterrancen . Vrea.

Mr. Stephenson gradated from Yale Eniversity with the 13.f:. degree in 19.39 and from Sanford ['niversity itu l9 41 with the bengineer clegrees. He is a member of the NIEE, Sigmat Ni, and loan Betal Pi.

Fidward H. Weitzen, president of the Gruen Wateh Company, has amomonced the appointunent of Gerald \(C\). Schutz (.I'to \(5.115(1)\) as Director of F leretronico.

Mr. Schutz wats formerly associaterl with the (ibb) Xamafoterming atd Kescareh Corporation as Director of 1: lectronics. During his five years with the(ib)sorganization, he was respon-
 sible for the intia-
(i. C. Sculetz lion of a mumber of development pregratus in the airborne radar mavigation and combtermeatisures fied.

Previonsly, Mr. Schat\% wats in charge of Airborne Ratar Technigues development for the \([\). S. Air Force at Wright Fied, Dayton, Ohio. With the Lir Forre from 1942 to 1950, he was concermed with the development of many radar test instruments including radar missild goldance atol bombing systems.

Mr. Selut\% is a graduate of the I'niversity of Illinois with the Bachelor of Science degree in electrical engineering He is a member of "Tan Ibenali.
P. J. Schenk (\(\mathrm{N}^{\prime} 43\) SM'52), former excoutive officer to the Technical \(\\) Sssistant to the Secretary of the Air Forre, has been appointed matager of market-
 ing for the Gencral Filectric Light Military Electronic Equipment 1):partment.

His. new dutics will inclade dirertion of the depart ment's product plaming, sales. contract heqotiation, and prodict and field service activities.

Mr. Schenk for the past year has been manager of market research and product plamines for the (a . İ. Heavy Military Foctronic Equipment Department, Syracuse, N. Y

Mr. Sohenk, a Lientenant Colonel in the ISAF Reserve, joined G. E. in early 19.54 following his Air Force assignment:

\section*{Electronics Engineer}
(MAGNETIC AMPLIFIER EXPERIENCE)
THE APPLIED PHYSICS LAB. ORATORY OF THE JOHNS HOPKINS UNIVERSITY hais "ren a Sonior-Stafl position in the theory and desigat of magnetic amplitiers and related devies for 2aided-missile comtrols. Applicamts shombl have five gears elecomon firconit experience. inchating one or more years in for maneticamplitier field.

\section*{THE LABORATORY}

OFFERS-
A creative profesomal atmosphere progresese wage policy, and excellent benelits with regard to vacation, pernsion, advalle ed educationa, eto.

Plewsi send resume to: crsimal Staff Atrointments

THE JOHNS HOPKINS UNIVERSITY APPLIED PHYSICS LABORATORY

8603 Georgia Avenue
Silver Spring. Maryland

\section*{WANTED}

\section*{electronic} engineers

\author{
Experienced in Power Supply Design for Military Applications
}

One of the country's oldest and largest manufacturers of electronic equipment requires the services of several competent electronic engineers familiar with military specifications and requirements for power supplies. Working environment and surroundings are congenial and stimulating. The company plant is situated in Long Island City.
Our employees are aware of this advertisement. Please furnish written resume and state salary required.

\section*{Box \#828}

Institute of Radio Engineers 1 E. 79th St., New York 21, N.Y.
as executive officer to l.t. Gen. James II Doolittle, technical assistant to the Seeretary of the Air Force; assistant military director of the Air Force Scientific Adivisory Board; and executive officer to the Chief Scientist, USAF.

From micl-1951 to Deecmber, 1952, he served sucessisely as deputy for research and as vice commander of the Air Force Cambridge Research Center, Cambridge, Mass. Previdusly, he served for two years on the Research and Devedopment IDanning Teans of the office of the bepute Chief of Staff, Development, ISNF From 1946 io \(194^{\circ}\) he was chide, Sireraft Control and Warning Branch, Heaclquarters, IS.SF, and fromi 194.3 to \(19+6\) he was techmienl inspector and depoty signal officer of the 20th Fighter Commanil in I'anama. He entered active duty with the Sigual Corps in 1941, and for two years instructed and organized in the radio and radar school at Ft. Dix. N. J. He has a molnilization assignment to the Scientific Advisory Board. Office of the Chief of Staff, Headequarters, LS.SF
native of Viema, Austria, Mr. Schenk came to this combtry with his parents at the age of 12 and settled in New York City: He wom a four-year regional competitive scholarship to Lafayette College, Easton, Pa., and was graduated in 1941 with honors.

Administration of technical product sales for Dlen B. DuMtont Laboratories. luc., will be handled by G. Robert Mezger,
 54), who hats been named deneral Sales Manager of the Technical Products Division.

Mr. Mezger will supervise the Television Transmitter Sales Department the Mobile Communications Sales Department, and

G. R. Mezciek the Technical Sales Department. He will be responsible for over-all sales plaming, administation, and sales promotion for DuMont electronic and cathode-ray instruments, television transmitting and studio apparatus, mobile radio equipment, industrial cath-ole-ray tubes, and multiplier phototubes, electronic cont rol apparatus, and industrial electronic devices.

Immediately prior to his new appointment, Mr. Mezger was . Issistant Manager of the Instrument Division.

He first joined the DuMont organization in 1936, following his graduation from Rensselater Polytechnic Institute. From 19.36 to 19,39 he was active in the engineering and development of cathode-ray instruments and was technical sales manager from 1939 until 1941, when he was assigned to active duty by the Conited States Navy. With the Navy he participated in instrument development work at the David (Continued on page 169A)

\section*{ENGINEERING OPPORTUNITIES \\ }

CONVAIR-Pomona is engaged in develop ment, engineering and production of electronic equipment and complex weapons systems. The Convair-Pomona engineering facility is one of the newest and best equipped laboratories in the country. The work in progress. backed by Convair's outstanding record of achievement, offers excellent opportunities for recent graduates and experienced engineers in the following fields:

ELECTRONICS
DYNAMICS
AERODYNAMICS
THERMODYNAMICS
OPERATIONS RESEARCH
HYDRAULICS
MECHANICAL DESIGN
LABORATORY TEST ENGINEERING

Generous travel allowance to engineers who are accepted.
* For further information on Convair and its fields of interest, write at once, enclosing a conplete resume to:
Einployment Department 3.E

*ENGINEERING BROCHURE TO QUALIFIED APPLICANTS

\title{
ENGINEERS and DESIGNERS NEEDED for: COMPUTER SYSTEMS \\ NEW CIVML AVIATION PRODUCTS \\ \\ JET AND TURBO-PROP \\ \\ JET AND TURBO-PROP ENGINE CONTROLS
} ENGINE CONTROLS
}

\section*{GM CAREER OPPORTUNITIES IN}

Systems Engineering and Analysis
Experimental Engineering
Development Engineering Project Coordination

Design Engineering Product Engineering Product Evaluation Field Engineering

AND WE ALSO NEED:
DESIGNERS •CHECKERS • LAYOUT MEN
Positions Are Permanent
Excellent Advancement Opportunities Every inquiry treated confidentially and given immediate attention and personal reply.

WRITE TODAY FOR EMPLOYMENT APPLICATION
Mr. Louis R. Berks
Supervisor of Employment
AC SPARK PLUG DIVISION
Precision Instrument Plant

\section*{GENERAL MOTORS CORPORATION}

Milwaukee 2, Wisconsin

\section*{ELECTRONIC DEVELOPMENT ENGINEERS}

\section*{CHALLENGING DESIGN \& DEVELOPMENT POSITIONS FOR CREATIVE ENGINEERS}

\footnotetext{
These positions are tailor-made for highly imaginative engineers who enjoy problems of more than ordinary difficulty-problems that require a maximum of individual electronic creativity. Men selected will be entrusted with the complete electronic or electromechanical design and development tasks (initial circuits, systems, componeats, or product design) entailed in carrying a prototype project from original conception to its completion.

REQUIREMENTS: Senior and Intermediate engineers with degrees and 4 to 8 years' experience Junior engineers with degrees and Ito 3 years' experience, capable of growing with our longrange, electronic design and development program in the following fields:
(1) ANALOG COMPUTER
(4) ELECTRO-OPTICS
(2) RADAR BEACONS
(5) MISSILE SYSTEMS
(3) MAGNETIC AMPLIFIERS
(6) SERVOS
(7) FIRE CONTROL SYSTEMS
}

Interviews will be arranged at convenient locations.
Send resume to:

\section*{AVION DIIISION}

OF ACF INDUSTRIES INCORPORATED
Route 17, Paramus, N.J. COlfax \(1-4100\)

\section*{SENIOR} ELECTRONICS ENGINEERS

EE degree or equivalent experience. Background in communications and navigation desirable. Permanent positions in design and development. Citizenship required. Position at Rochester, New York. Excellent living and recreational conditions in this area

\section*{ADDRESS:}

Chief Electronics Engineer Stromberg-Carlson Company

Rochester 3, New York
(Continued from page 167A)
Taylor Model Basin in Washington, D.C. and in the design of naval radar equipment. Mr. Mezger held the rank of Commander. He rejoined DuMont after World War II where he served successively as technical sales manager, engineering manager, and assistant division manager-all for the Instrument Division.

He is a member of the American Institute of Electrical Engineers and the Institute of Radio Engineers.
\[
\therefore
\]
M. J. Kelly (M'25-F'38), president of Bell Telephone Laboratories, New York, has been named to the Board of Trustees of Stevens Institute of Technology, Hoboken, N. J.

Dr. Kelly has served as chariman of the U. S. Air Force's Scientific Advisory Board, and as advisor to the Secretary of the Air Force, the Atomic Energy Commission and
 other defense agenM. J. Ǩelisy cies.

An alumnus of the Missouri School of Mines, he received the master's degree from the University of Kentucky and the Ph.D. from the University of Chicago.

He is a Fellow of the American l'hysical Society, the Acoustical Society of imerica, and the American Institute of Electrical Fingineers: and a member of the National Academy of Sciences, the American Philosophical Society, and Tau Beta P', Eta Kappa \(\mathrm{N}_{\mathrm{u}}\), and Sigma Ni.

\section*{\(\therefore\)}

The appointment of Peter Janis (SM'47) as Chief Engineer of Amperex Electronic Corporation, Hicksville, L.I., New York has been

Petior Jasis announced.

Mr. Janis came to Amperex from Sylvania E:lectric Products, Inc., where he was active in the development of klystrons, hydrogen thyratrons, magnetrons and photo-sensitive devices. Later, he was put in charge of the nicrowave and special purpose tube development activities of the Product Development Laboratories, and more recently was involved in the design, development, and production of travelingwave tubes.

Prior to his work at Sylvania, he was engaged at R.C.A., Victor Division in development of special purpose tubes. He has also taught theory and design of monochrome and color television, AM and FM receivers.

Born in New York, Mr. Janis received (Continwed on pape 170A)

\section*{Admiral}
|ncreases STAFF

Diversilication at ADMIRAL is making itself felt
in more cnd better engineeriny careers.
Real ability and originality can find new challenge and opportunity with a leader in electronic development and manufacturing.

Positions available for engineers with the following backgrounds:

\section*{* MICROWAVE ENGINEERS}

Experienced in UHF and SHF circuitry and components, with under standing of wave guides, cavities, and duplexers.

\section*{* ELECTRONIC ENGINEERS}

Junior and Senior englneers for television recelver circuit design. Experienced men also needed for V.H.F. and U.H.F. tuner work.

\section*{RADIO ENGINEERS}

Duties involve designing household and portable radio receivers. FM and \(\mathbf{A M}\) experience preferred.

\section*{* MECHANICAL ENGINEERS}

Electro-Mechanical designers. Assignments involve the design and layout of small mechanical devices at the development level.

\section*{* COMMUNICATIONS ENGINEERS (MILITARY)}

Applied development and design of radar and other specialized military systems.

\section*{* AUTOMATION ENGINEERS}

A special opportunity exists in the field of applying automation and printed circuit techniques in the above categories. Your imagination and engineering talents can be used in furthering this development.

\footnotetext{
Good starting salaries and working conditions with complete program of employee benefits. Opportunity for professional development with excellent facilities in Chicago area to carry on University graduate work while working full time.
- Send complete resume to Mr. Waltor Weckor, Pereanmal Department, to get more information on these oppertuaition.
}

\title{
UNIVAC
}

\section*{The FIRST Name}

\section*{in Complete Electronic Computing Systems}

As the UNIVAC takes its place in more and more industries, REMINGTON RAND has greatly expanded its research and development work in order to continue its leadership in electronic computing equipment.

> There are many positions recently opened at all levels in all phases of research, design, development, and application of computing and allied equipment. Even though your training and experience may not be connected with computers, we are willing in many cases to provide the necessary training. Individual cases can be evaluated during interview.

The rapidly expanding engineering program has created many permanent positions paying excellent salaries. These positions offer personal challenges as well as outstanding opportunities for professional development. The possibilities for graduate study in this area are excellent and the company has a liberal plan for reimbursement of tuition expenses. Other company benafits include retirement and group in surance.

\title{
Replies Kept Strictly Confidential FOR INTERVIEW, WRTIE TO
} Themingtorn Thand

\section*{Division of}

SPERRY RAND CORPORATION
2300 West Allegheny Ave.
Philadelphia 29, Pa.
the E.E. degree from Ccoper Union School of Engineering, and attended Columbia University and Ncw York University. He is a recipient of the War Production Merit Award, has seteral patents and disclosures on electronic devices, and has written articles and papers on wide band oscillators, amplifiers and microwave devices.

\section*{Section Ilexings}

Albteqerque-Los Alamos
*A Transistorized Digital Computer TRADIC." by J. II. Felker, Bell Telephone I.abs.; July 14, 1955.

Atlanta
"Radio Location by Phase Comparison," by IV. J. Crossland, Seismograph Corp.; June 24, 1955. (Continued on page 172.A)
```

USE YOUR IRE DIRECTORY
IT'S VALUABLE!

```

\section*{ELECTRONIC \\ ENGINEER}
for work on Civilian Products
in the fields of
ACOUSTICS and
ELECTROMECHANICS
Salary commensurate with background

\section*{DYNA-EMPIRE} INC.

1075 Stewart Avenue
Garden City, L.J., N.Y.

\section*{What Opportunities in Electronics are on the Horizon at}

Huge antenna used with new radar height.finder needs a room all its own above the control center in the radome building erected in Arctic climates. Air pressure supports the rubberized glass fabric radome "balloon." Entraace to the radome is through an air lock chamber

Please send resume to: Dept. 9-5-P-Technical I'ersonnel

\section*{GENERAL ELECTRIC?}

Advances in electronics are so rapid at General Electric that today's predictions appear tomorrow as equipment bearing the GE symbol.
The opportunities created by the scope and pace of the field are increased at General Electric by the facilities and range of professional advantages which GE engineers enjoy.
This means that GE electronics engineers have incentives, satisfactions and rewards that lead to accelerated personal development and advancement in the company.

ENGINEERS • PHYSICISTS
Positions available in the following fields:
Advanced Development, Design, Field Service and Technical Writing in connection with:
military radio \& radar - multiplex microwave MOBILE COMMUNICATION - SEMICONDUCTORS - ELECTRONIC COMPONENTS - TELEVISION, TUBES \& ANTENNAS

Bochelor's or advanced degree in Electricol or Mechonicol Engineering, physics, and experience in electronics industry necessory.

ELECTRONICS PARK, SYRACUSE, N. Y.

\section*{A MAJOR CANADIAN COMPANY requires a SENIOR ELECTRONICS ENGINEER}

To direct the equipping and operation of an electronic laboratory involved in the development and testing of complex assemblies.

Applicants must have an electrical engineering degree (or equivalent) preferably with honours or specilization in electronics or telecommunications, and at least 6 to 8 years experience with some years in a senior capacity in a development type facility and be qualified to direct the efforts of engineers and technicians.

An excellent salary will be paid to the right man together with liberal relocation assistance.

Write: Box No. 930
institute of radio engineers 1 East 79th 5t.
Now York 21, N.Y.

\section*{COMMUNICATIONS}
and

\section*{ELECTRONICS}
are but two of the many scientific disciplines in which the Operations Research Office of The Johns Hopkins University offers most unusual and challenging opportunities to the experienced researcher. Salaries are commensurate with experience. Inquiries are invited. Address:

\section*{LET'S}

\section*{FACE IT...}

\section*{there are thousands of}

\(\checkmark\) New engineering groups being established offering unusual opportunities NOW . . . "on the ground floor."
\(\checkmark\) Greater advancement opportunities assured by the continued expansion of this young, vibrant engineering organization.

SOME OF THE FIELDS OF INTEREST TO CROSLEY:
Radar - Servo-mechanisms - Fire Control - Digital Circuitry - Navigation - Communications - Countermeasures - Missile Guidance - Microwave Design - Telemetry
substantial benefits available to you:
Excellent salaries, fully equipped modern laboratories, paid vacations and holidays, subsidized university educational program, group insurance program for you and your family, retirement plan and adequate housing in desirable residential areas.

\section*{Investigafe these opportunities}
by sending resume to:

\footnotetext{
DIRECTOR OF ENGINEERING Government Products - Crosley Division, AVCO Manufacturing Corporation Cincinnati 15, Ohio
} *U. S. Citizenship required

Section Ilectimus
(Continued from page 170A)

\section*{Baltimere}
"Ferrites in Duplexers," by T. N. Anderson, Airtron, Inc.; June 8, 1955.

Beaumont-Port Arthur
"The IRE," by D. J. Tucker, Director, Region 6; June 21, 1955.

\section*{Cedar Rapids}
"Basic Considerations and More Interesting Problems in the Development of the Iowa Electronic Test Processing Equipment," by John A. Brady; "The Future of the Peaceful Atom," by Aristids Ratermanis; and "Matrix Analysis of Communication Networks and Power Systems," by D. R. Wilson; May 18, 1955.
"Elenents of Music and an Electronic Music Synthesizer," by Dr. H. F. Olson, RCA Labs.; June 15, 1955.

Cincinnati
"Jest about Jets," by N. R. Thomas. General Electric Company; June 21, 1955.

Dfnver
Business meeting, and inspection trip to TV transmitter sites of KI, TV, KBTV and KOA-TV; June 7. 1955.

\section*{Detroit}

Student papers contest: "Putting the Rainbow on the Air," by R. P. Farbolin, Wayne University; "Semi-Conductors and Point Contact Transistors." by Elliot Rappaport, Wayne University; "Magnetic Amplifiers Using Square Loop Core Materials, \({ }^{\text {n }}\) by J. W. Rood, Michigan State University; May 20, 1955.

\section*{El Paso}
"Electronics in Law Enforcenent," by l.t. Art Clatfelter, El Paso Police; June 30, 1955.

\section*{Fort Wayne}
"Galactic Radio Waves," by Dr. J. P. Hagen, U. S. Naval Research Lab; June 2, 1955.

\section*{Havail}
\({ }^{1955}\) 1RE Convention Report," by J. R Sanders, Matson Navigation Co.; July 13, 1955.

\section*{Huntsville}
"Radio Astronomy," by H. W. Wells, Carnegie Institute and Director, Rexion 3; June 23, 1955.

Indianapolis
"Radar Systems, All Types and Their Characteristics." by C. J. Marshall, Wright Patterson AFB; June 9. 1955.

Inyokern
"Modern Radar Components and Applications," by George Dexter, Ifoffman Labs, July 11. 1955.

\section*{Oklahoma City}

Tour of the International Crystal Company Plant; April 20, 1955.

Student papers; "Electr'cal Pipeline Pumping," by Bob McAlpine; "The Economical Replacement of Machinery." by Jess Jackson; "Power Plant Location," by Bob Marshal: and "Something for Nothing," by Ted Hart; May 4, 1955.

\section*{Pittsburgh}
"Numerical Control." by H, P. Grossimon, Massachusetts Institute of Technology; June 13. 1955.

\section*{Sacramento}

Business and social meeting, with talk by J, H, Cowan, former member of the F.B.I.; June 17 , 1955. electronic placement SERVICE COVERING the country.

Just tell us where you would like to relocate. We will handle everything for you at no cost or obligation.

\section*{PARTIAL LISTINGS}

CHIEF RADAR ENGR. \(\$ 18,000\)
NUCLEONIC ENGRS. . . \(\$ 10-12,000\) ELECTRONIC MFG. To \(\$ 11,500\) ELECTRONIC CABLE ENG. To \(\$ 10,000\) TRANSISTOR ENGRS. . . To \(\$ 14,000\)

We need 90 Engineers with 2.4 years' experience for a compulor Company with salaries from \$6-8000.
(A Free Sorvice 10 You)
Mail 3 resumes in confidence to: HARRY L. BRISK Member I.R.E.
ACCREDITED PERSONNEL SERVICE
Since 1937
Suite 936, 12 S. 12th St., Phila. 7, Pa.

\section*{Engineers}
with experience in

\section*{computers}
microwave
pulse techniques servo-mechanisms related circuit design
leading designers and manufacturers of electronic instrumentation offer outstanding opportunity, top pay, moving allowance, benefits, plus the charm of san francisco living.
please send resume.

\section*{Berkeley}
division
BECKMAN INSTRUMENTS INC.
2200 WRIGHT AVE., RICHMOND 3. CALIF

Sandia Corporation operates Sandia Laboratory under contract with the Atomic Energy Commission. Sandia engineers and scientists work in the forefront of a new field - the design and development of atomic weapons vital to the nation's defense. Graduate engineers and scientists will find excellent professional opportunities in these specific fields:

ENGINEERS - Mechanical, electrical, electronic; with BS or higher degree. Design, development, and preparation for production of electro-mechanical systems and components, electronic devices and test sets, antennae, test and design evaluation of electrical and mechanical components.
PHYSICISTS AND ENGINEERING PHYSICISTS - with MS or PhD degrees. Openings for classical theorists, experimentalists, in the fields of weapon systems analysis, blast wave propagation and diffraction, evaluation of present weapon designs, recommendations for new weapons.
MATHEMATICIANS - PhD level, in field of applied mathe. matics, probability studies, fluid dynamics, statistics, weapon systems analysis.
AERODYNAMICISTS - PhD, MS, or BS with at least 5 years experience. To perform analytical or experimental aero studies.
QUALITY CONTROL, TEST \& EVALUATION ENGINEERS - Set up and perform electro-mechanical tests, environmental testing, evaluate results, devise new test methods, statistical quality con. trol. Appropriate college degrees required.

Sandia haboratory is located in Albuquerque - a modern, cosmopolitan city of 160,000 , rich in cultural and recreational attractions ard famous for its delightful year-around climate. Working conditions are excellent. Employee benefits include liberal paid vacation, free group life insurance, sickness benefits, and a generous contributory retirement plan. Compensation is competitive with that offered in other industry, and there are many opportunities for advancement. Housing is readily obtained, and accepted applicants receive a generous moving allowance. Personal interviews will be arranged for qualified applicants. For additional information, or to apply for employment, please write:

PROFESSIONAL EMPLOYMENT DIVISION 554

\section*{and}

\section*{is tor Electronics}
and
Expansion
Vital words that spell a promising career for qualified engineers! EMERSON looking back on 40 years of scientific development, now looks ahead to even greater expansion. And EMERSON is looking for engineers to grow with it. Applicants should understand that EMERSON is offering careers-not merely positions. In addition to the stahility of long-term Government contracts EMERSON provides the basic stability of its constantly expanding civilian engineering activities in Television. Radio and Air-conditioning. Openings exist at all levels for youngminded engineers (some of EMERSONS top engineers are not college graduates) with vision, imagination and creativeness to fill responsible

\section*{Electronics and Mechanical Engineering Assignments}
in any of the following fields:
- Radar
- Antennas
- Fire Control
- Network Theory
- Servo-Amplifiers
- Pulse Techniques
- Analog Computers
- Magnefic Amplifiers
- Microwave Techniques
- Electronic Countermeasures

Offices and Laboratories Fully Air-Conditioned

Interview expenses paid to qualithed candidates. Generous moving allow ance and other fully paid benefits

\section*{EMERSON}

RADIO \& PHONOGRAPH CORP.
14 th \& Coles Sts., Jersey City 2, N.J.

OR
Dr. Ray Wilson

\section*{EMERSON}

Research Laboratories
701 Lamont St., N.W. Washington 10, D.C.

\section*{CONTROL SYSTEMS ENGINEERS}

\section*{ELECTRONIC ENGINEER or PHYSICIST required for CONTROL SYSTEMS DESIGN and \\ APPLICATIONS ENGINEERING}

Involving pressure and level sensing devices, data transmission, automatic controlling, and instrumentation (monitoring-recording-and supervision)

> SEND RESUME IN STRICT CONFIDENCE TO
> G. J. Miller
> AUTOMATIC CONTROL COMPANY

995 University Avenue
St. Paul 4, Minnesota
(Continued from page 172A)

\section*{San Antonio}
"Instrumentation for Uranium Prospecting," by Dr. J. C. Cook, Suuthwestern Research Institute; April 27, 1955.

Upgrading party; May 27, 1955.
"Telemetering Hishlights of 1955," by John Ohman, Southwest Research Institute; June 3, 1955.

\section*{San Francisco}
"The Engineer in Society," by J. W. McRae. Sandia Corporation; June 17, 1955.

\section*{Seattle}

Student paper contest: "Amplifiers," by Phil Beaudoin; "An Investigation of the Two-Charge Theory of Electrets." by R. B. Kieburtz; and "Dielectric Potentiometers," by A. T. Simmons, all of University of Washington; April 12. 1955.
"Automatic Electronics," by J. D. Ryder. President, IRE; April 21, 1955.
"Instrumentation at the Hanford Operation." by R. G. Clark, and "A Gamma Scintillation Spec. trometer," by R. E. Connally, both of Hanford Works; May 19, 1955.

Election of officers; June 3, 1955

\section*{Toledo}
"Police Radar, Speed Control," by Manford Rosencrantz, Toledo Police Dept.; April 14, 1955.

Technical Tour of Television Facilities at WSPD.TV. conducted by W. M. Stringfellow; May 12, 1955.

Election of officers; June 9, 1955

\section*{Vancouver}
"Automatic Electronic Production," by J. D. Ryder, President. IRE; April 20. 1955.
"Atomic Energy-The New Frontier," by Dr. G. M. Shrum, U.B.C.; May 19, 1955.

\section*{SUBSECTIONS}

\section*{Buenaventura}
"The Present and Future of Airborne Firc Control," by Dr. R. M. Astby, North American Aviation, Inc.; June 9, 1955.

\section*{Tucson}
"Applied Communication Theory," by Dr. Eberhardt Rechtin, California Institute of Technology; April 22, 1955.
"Automation and Mechanization," by G. O. Ilaglund, General Mills; May 26, 1955.

\section*{Wichita}
"Boolean Algebra and Its Circuit Application," by P. I. Miller, Boeing Airplane Co.; June 2, 1955. Election of officers; June 17, 1955.
Kay Lab. Industrial TV Demonstration in Mobile Trailer, by Mr. O'Neal and Bob Bacon, Both of Kay Lab.; June 23, 1955.

Aeronautical and Navigational Electronics

Dallas-Ft. Worth Chapter-May 24
"Modern Aircraft Transmitter Design" by Ryan B. Seals, Collins Radio Company.

New York Chapter-May 19
"Distance Measuring Equipment" by William J. Flynn, Hazeltine Electronics Corporation.
"Automatic Test Equipment for DME" by Sherman Rinkle, Polytechnic Research and Development Comprany, Inc.

Election of Officers: Chairman-Gordon P. McCouch, Vice-Chairman-Lester M. Glantz, Secretary-William P. McNally.

\section*{Antennas and Propagation}

Albuquerque-Los Alamos; Chapter-May 4
"Theoretical Analysis of a Dipole Antenna" by S. H. Dike, Sandia Corporation.

Chicago Chapter-April 15
"Ionospheric Propagation" by Howard J. Goldman, Armour Fesearch Foundation.

Chicago Chapter-May 20
"A Color Film Entitled 'The Antenna is the Payoff" " by The Channel Master Corporation of Ellenville, New York.

\section*{Audio}

Boston Chapter-June 2
"Man, a Somewhat Neglected Component of Hi-Fi Systems" by Walter A. Rosenblith, MIT.

Chicago Chapter-January 19
"Calibration of Test Records by Interference Patterns" by Ben Bauer, Shure Brothers, Inc.

Chicago Chapter-April 15
"The Circulatron Amplifier" by John Overly and Lloyd Loring, Electro-Voice.

Cincinnati Chapter-October 19
"Audio Systems Home Demonstration" by C. G. Haehnle, A. B. Bereskin, F. M. Livezey, J. P. Goode, R. A. Jenkins, J. P. Quitter, IV. W. Gulden.

Cincinnati Chapter-November 16
"What and How You Hear" by Warren E. Johnson, Cincinnati Speech and Hearing Center.

Cincinnati Chapter-January 18
"A Twin Lever Ceramic Cartridge" by B. B. Bauer, Shure Brothers, Inc.

Cincinnati Chapter-April 26
"How Many Dollars Can You Hear?" by Harvey B. Glatstein, Customcrafters Audio, Inc.

Cincinnati Chapter-May 17
"Binaural Audio Demonstration" by C. G. Haenhle, E. D. Kay, and R. A. Jenkins, Jr.,

Syracuse Chapter-April 13
"Performance of the 'Distributed Port' Loudspeaker Enclosure" by A. F. Petrie, Gen. Elec. Co.
(Continued on page 176A)

Link Aviation, Inc. needs top level electronics engineers

If you are experienced in computer engineering - and have the abitity to direct others ir important projects, then Link Aviation Inc. has a top level position for you in its expanding research and development program.
These permanent, key positions are for:
SENIOR DIGITAL COMPUTER ENGINEERS - Must be capable of supervising a small group of engineers designing special-purpose digital computers. Should have extensive knowledge of latest digital computer logic and circuit design techniques. Familiarity with transistor pulse circuits, magnetic functional elements, magnetic tape and drum read-write systems and analog digital conversion methods is highly desirable. The position will require complete responsibility for computer project from system design through prototype construction.
SENIOR ELECTRONICS ENGINEERS—Qualified to design complex feedback amplifiers, precision regulated power supplies, specialized electronic instruments and advanced systems which require unusual creative and analytical ability. Familiarity with vacuum-tube circuit design, transistor circuits, application of magnetic amplifiers, photo-conductor and photo-transistor circuitry is desirable. Should be capable of directing a small group of engineers engaged in systems and component design in the above fields.
Link's broad scope of activities-including design and development of flight and radar simulators, computer-actuated training devices, electronic instruments and special-purpose computers presents engineers of executive calibre with an outstanding opportunity for personal advancement in a growing organization.
In addition to these advantages, Link offers an unusually attractive "fringe benefit" program including profit sharing, retirement and liberal vacation and holiday policies. Link is

\section*{-•• for those who qualify \\ \\ offers ELECTRONIC ENGINEERS}

\section*{Security}

(Continued from page 175A)
Broadcast and Television Receivers

Chicago Chapter-April 15
"A New High Efficiency Parallax Mask Color TV Tube" by Mark Amdursky, Rauland Corp.

Chicago Chapter-May 20
"Theory and Design of Vertical and Horizontal Deflection Circuits" by Kurt Schlesinger, Motorola, Inc.

Broadcast Transmission
Systems
Houston Chapter-May 30
"Color TV Demonstration of 'The Petrified Forest'."

Circuit Theory
Albuquerque-Los Alamos ChapterMay 25
"Physics of Transistors" by Walter E. Brown, Sandia Corporation.

Election of Officers: Chairman-Norman J. Elliott, Vice Chairman-George Webber, Secretary-John McLay.

Chicago Chapter-April 15
"Effects of Impedance in Cathode and Plate of Vacuum Tube Amplifiers" by Bernard S. Parmet, Motorola, Inc.

Los Angeles Chapter-May 13
"Color Television Circuitry" by Dr. E. L. Michaels, Packard-Bell Corp.
"Color Television Studio Equipment, Staging Practices, and Techniques" by W. H. Copeland, CBS.

Election of Officers: Chairman-J. E. Jacobs, Secretary-Treasurer-H. Low, Program Committee-J. Heilfron, R. M. W. Johnson, Dick Towle.

Urbana Chapter-February 10
"Formulation of Kirchhoff Voltage and Current Postulates" by M. B. Reed and E. W. Schwarz, Univ. of Illinois.

Urbana Chapter-February 24
"The Differential Equation Postulates for Circuit Theory" by M. B. Reed and E. W. Schwarz, Univ. of Illinois.

Urbana Chapter-March 10
"Mathematical Aspects of Switching" by F. E. Hohn, Univ. of Illinois.

Urbana Chapter-March 24
"The Differential" by M. E. Munroe, Univ. of Illinois.

Urbana Chapter-April 14
"The Stieltje's Integral" by F. E. Hohn, Univ. of Illinois.

Urbana Chapter-April 28
"The Laplace-Stieltje's Transform" by S. Seshu, Univ. of Illinois.

Urbana Chapter-May 12
"Time Domain Analysis" by C. L. Coates, Univ. of Illinois.

OUMONI
Technical Products Division
needs additional high calibre engineers for
Electronic Instrumentation Missile Work
Test Equipment
Timing and Pulse Circuits Video Circuits
Electro-Mechanical Devices Recording Systems Communications Equipment Television Development
for both commercial and government output

Contect
Mr. William Papanestor Employment Manager
ALLEN B. DU MONT LABORATORIES, INC.

35 Market Street
East Paterson, New Jersey or at
II845 Olympic Blvd.
Los Angeles, California

\section*{the K er to your fature ...}
 opportunities better than ever at
\[
\begin{aligned}
& \text { Piomingtore Pirual }
\end{aligned}
\]

\section*{The ERA Division}

Is a leader in developing Electronic Digital Computers, Automatic Data-Handling and Control Systems, Mechanisms, and Weapons.

\section*{Everything you want in a job-}

\section*{Stimulating Work}

Most of our engineers are having the time of their lives doing creative research and development on important new applications in mechanical and electronic engineering. Men work as project teams, and each man learns all aspects of his project. Pulse circuits, magnetic cores, transistors, printed wiring, miniaturization, and precise mechanisms are used in designing computers, automatic data-handling and control systems, mechanisms, and special weapons. Other excellent engineering jobs are available in production, testing. specifications, quality control, contract administration, and technical writing.

\section*{Advancement}

ERA plans to triple its staff. Opportunities for promotion are sure to come rapidly for years.

\section*{Good Pay from the Start}

We offer the highest starting salary possible considering your qualifications for the job. Experience need not be in computers.

\section*{Good Living}

Most ERA engineers own their homes. Within 15 minutes they can drive to work, to downtown shopping, or to the country. The University of Minnesota offers evening courses and Big Ten sports. Minneapolis Symphony concerts are a vital force in the community. Minnesota's forests are dotted with 10,000 cool lakes, many nearby. Hunting, fishing, swimming, and boating are excellent. You will enjoy living in Minnesota's vacation land.

Send an outline of your training and experience to Dept. 5-5:

\section*{WANTED:}

\section*{Electronic and} Mechanical Engineers E: ut

This is the new Engineering Center at Bendix-Pacific now nearing completion. With 100,000 square feet of area, it represents the latest and one of the most complete eagineering facilities in the nation.

You are invited to consider becoming a member of this vital engineering group-with a forward iooking company in Southern California.

Unusual engineering positions in electrical and mechanical design of radar, sonar and telemetering are available. These positions, which are directly associated with our longrange projects for industry and for defense, are available at all tevels.

Please fill in the coupon or write us for complete information.

W. C. Walker, Engineering Employment Mgr. Pacific Division, Bendix Aviation Corp
Sherman Way, North Hollywood, Calif.
Please send infarmatian.
I am a graduate engineer with___d degree I am nat a graduate engineer but have. years experience.

Name
Address
City Zone_-State

Professional Group IIcetings
(Continued from page 176A)
Urbana Chapter-May 26
"I'urpose of Symbolic Logic" by H. E. Vaughan, L'niv, of Illinois.

Electronic Computers
Boston Chapter-May 26
"Pulse Circuits Near Absolute" by Dudley A. Buck, M.I.T.

Dallas-Ft. Worth Chapter-March 22
"Introduction to Control Systems Application" by John F. Nolan, M.I.T.
"I Development of a Magnetic Memory" by Harlan E. Auderson, M.I.T.

New York Chapter-April 26
"Fundamental Theory and Operation of a Typical but Elementary Computer (1) igital Differential Analyzer)" by J. A. Githens, Bell Labs
"I lesign Features of the E'T'T-100 Computer (Stevens I.D.A.)" by S. M. Shockell, Sterens Institute.

New York Chapter-May 24
"The Type 650 Magnetic Drum Data Processing Machine" by R. W. Avery, IBAI Corp.

\section*{Electronic Devices}

Los Angeles Chapter-May 2
How Should a Transistor be Char-acterized?"--P'anel Discussion.

Philadelphia Chapter-May 17
"Transistors Today" by Harry 1 . Owens, Signal Corps Engineering Labs.

Election of Officers: Chairman-Bernard T. Svihel, Vice Chairman-Werner Hasenberg, Secretary-Gordon R. Spencer.
Washington, D. C. Chapter-May 23
"P-N-I-P Transistors" by J. M. Early, İell Labs.

Election of Officers: Chairman-Henry 1). Arnett, Vice Chairman-Robert IV Grantham, Secretary-Harold J. Peake.

\section*{CORNELL AERONAUTICAL LABORATORY, INC. of Cornell University is seeking \\ ELEGTRONIG ENGINEERS}
for positions in all levels of experience above Junior Engineer

\section*{Communications} Dynamic Control Systems Aircraft Instrumentation Radar Computers
Electrical Measurements Varied Electronic Circuits

\author{
Servo-Mechanisms
}

Missile Guidance Microwave
If you have a B.S. degree and experience, imagination and potential, we invite you to communicate with our Employment Manager
Box 235 Buffalo 21, N.Y.

Engineering Management
Los Angeles Chapter-May 18
"A Technique for Interviewing" by Dick S. Barlow, Hughes Aircraft Co

Philadelphia Chapter-May 26
"Research and Development Organization and Planning for a Dynamic Field" by J. W. Forrester, Lincoln Computer Labs., also Director, Digital Computer Lab., MIT.

Syracuse Chapter-May 12
"Planning Meeting for Engineering Management Course" by Harlan Perrins, Cornell Univ.

\section*{MICROWAVE COMMUNICATIONS ENGINEER}

Leading independent manufacturer of carrier telephone and multi-channel radio equipment is expanding transmission engineering services to customers. An opportunity exists for an experienced communications engineer familiar with the problems of multichannel transmission and common-carrier grade reliability require:nents. This job involves working with microwave systems and circuit design engineers on requirements for new systems, as well as solution of field problems. Some work on tropospheric scatter and higher microwave frequencies can be expected in the near future. A minimum of five years' experience in development or operation and familiarity with common carrier techniques is required. Salary open. Send complete résumé to Ind. Rel. Div., Lenkurt Electric Co., San Carlos, California.

\section*{Industrial Electronics}

Chicago Chapter-April 15
"Automation in the Electronics \(I_{11}\) dustry" by V. C. Lafferty, Armour Research Found.

Cleveland Chapter-April 21
"Radio Noise Measurements and Control Problems" by Leonard Thomas, Bureau of Ships, Navy Dept.
Election of Officers: Chairman-Ruben Kozarian.

\section*{Information Theory}

Albuquerque-Los Alamos Chapter-
\[
\text { May } 11
\]

Business Meeting
Election of Officers: Chairman-Walter E. Brown, Vice-Chairman-Leo V. Skinner, Secretary-Charles H. Bidwell.

Los Angeles Chapter-May 26
"Linear Programming Applied to Bidl Analysis" by Leon Gainen, Hughes Aircraft Co.

\section*{Instrumentation}

\section*{Houston Chapter-May 24}
"Nuclear Batteries" by Edward A. DeCrosta, Tracerlab, Inc.

\section*{Medical Electronics}

Los Angeles Chapter-January 26
"Medical and Electronic Cooperation" by J. Phillip Sampson, L. A. County Medical Assoc.
"Instrumentation Froblems" by Marcel Verzeano, UCLA.

Los Angeles Chapter-March 16
"Heart Microphone" by John Hilliard, Altec Lansing.
"X-Ray Microscope" by Curtis G. Smith, UCLA.

Los Angeles Chapter-April 19
"Hearing Correction" by Helen Ken. nedy, City College.
"Electric Potentials in Tissue" by Robert Tschirgi, UCLA, "Electrosurgery" by Ralph Gunter, UCLA, "Physiological Monitoring" by John Dillon, UCLA.

Los Angeles Chapter-May 10
"Acoustical Resonance in Microorganisms" by Robert Woods, College of Med. Evang.
"Localization of Nerve Blocks" by Robert Pearson, College of Med. Evang.

San Francisco Chapter-May 26
"Electronic Instrumentation in Otology and Audiology" by Francis Sooy, Univ. of Cal., and R. E. Allison, Allison Labs.

Microwave Theory and
Techniques
Boston Chapter-May 12
"Broadband Microwave Crystals" by Eugene J. Feldman, Sylvania Elec. Products Inc.
(Continued on page 180 A)

CHALLENGING CAREERS AT RAYTHEON

Checking on a process in one of Raytheon Research Division's "furnace" rooms. Single crystals of silicon (melting point near \(1400^{\circ} \mathrm{C}\)) are grown in these furnaces.

\section*{Ready to move UP in electronics?}

In Raytheon's extensive research program, a variety of special furnaces and equipment is used for the preparation, purification and study of semiconductor materials. This research is fundamental to the continuing pre-eminence of Raytheon in the field of transistors and diodes. Today there are more Raytheon transistors in use than all other makes combined.
When you join Raytheon you work in an atmosphere of progress. University graduate study is encouraged through a tuition refund plan. Openings now for engineers, scientists in many areas including:
microwave tubes - special purpose tubes - guided missiles transistors • diodes - receiving tubes • TV receivers • radar metallurgy - ceramics - communications - cathode ray tubes sonar • servomechanisms • solid state physics • field engineering
Join a team where performance pays off. Please address inquiries to L. B. Landall, Professional Personnel Section.

RAYTHEON MANUFACTURING COMPANY 190 Willow St., Waltham 54, Mass.
Plants also located in Californla and illinois

\section*{JET}

PROPULSION
LABORATORY
CALIFORNIA
INSTITUTE OF
TECHNOLOGY
Active in all phases of electronics and physics related to guided missiles and jet propulsion.

The nation's foremost guided-missile research and development facility, established in 1940, offers excepfional opportunity for engineers and research scientists in the fields of guidance and control, information theory, computers, electro. mechanical devices, instrumentation, and related aspects of elec. tronic research. The Laboratory offers an ideal blend of academic and industrial environments and maintains a high level of technical competence. Attractive salaries are offered.

A brochure describing opportunities and activities at the Laboratory will be sent upon request.

California Instilute of Technology
4800 oak grove dr.
TASADENA 3. CMITOHNIA

(Continued from page 179A)
Chicago Chapter-April 15
"Latest Developments in Microwave Test Equipment Featuring the Reflectometer" by John E. Stiles and Frank Water fall, Alfred Crossley Associates, Inc.

\section*{Nuclear Science}

Albuquerque-Los Alamos Chapter-May 3
Nomination of Officers for coming year: Chairman-Alan S. Rawcliffe, Vice-Chair-man-Leo Grant, Secretary-Richard Hie-
bert.

Albuquerque-Los Alamos ChapterMay 18
"The Racetrack Synchrotron" by G. P. Kenfield, Sandia Corp.

Boston Chapter-April 14
"Dynamic Analysis and Control of Nuclear Power Plants" by J. N. Grace, Westinghouse Atomic Power Div.

Election of Officers: Chairman-John C. Simons, Vice-Chairman and Program Chairman-A. B. Van Rennes, Secre-tary-William M. Trenholme.

\section*{Chicago Chapter-Arpil 15}
"Methods of Particle Acceleration" by John J. Livingood, Argonne National
Lab.

Chicago Chapter-May 20
"Pioneering in Nuclear Research" by Hal Fredrich Fruth, Hal Fruth Associates.
Connecticut Valley Chapter-May 31
"The Atomic Energy Industry" by F. H. Warren, Gen. Dynamics Corp.

Election of Officers: Chairman-Nelson A. Merritt, Vice Chairman \#1-Francis A. Fanelli, Vice Chairman \#2-John E. Bassett, Secretary-Financial OfficersHenry A. Sardelli.

Oak Ridge Chapter—May 18
"Organization and Programming for Magnetic Drum Calculators" by J. P. Kelly, K-25 I'lant, Oak Ridge.

\section*{Production Techniques}

Washington, D. C. Chapter-April 14 "The Autofab Assembly System" by Donald Melton, General Mills.

\section*{Reliability and Quality \\ Control}

Chicago Chapter-May 20
"Reliability of Transformers" by Martin Wolff, Chicago Transformer Corp.

\section*{Telemetry and Remote Con-} trol Communications Systems

Chicago Chapter-April 15
"A New Data Transmission System for Pipeline Applications" by George E. Foster, Metrotyne Corp.

Chicago Chapter-May 20
"The Role of Magnetic Tape in Data Recording, Processing and Analysis" by Gomer L. Davies, The Davies Lab. (Continued on page 181A)

\section*{ENGINEERS}

\section*{Electronic}

\section*{and \\ MECHANICAL}

The Radio and Television Department of General Electric, sifuated in beautiful Electronics Park, is expanding its staff of development and product design engineers.
Those graduate engineers who qualify for current openings will find excellent opportunities for professional development through association with the outstanding engineers and scientists concentrating on research, development and design in all branches of the electronics industry.

Electronics Park is headquarters for the Electronics Division of GE, including the Electronics Laboratory, Radio and Television Department, Semiconductor Products, Communications Equipment, Broadcast Equipment, Cathode Ray Tube Department, Components Department and Government Equipment Department.

Salary scales for engineers are strictly competitive, and based on individual ability and experience. And, in addition to its comprehensive system of benefits, General Electric is noted for its stability.

Current openings include:
ELECTRONICS ENGINEERS
ENGINEERING SUPERVISORS MECHANICAL ENGINEERS
VHF and UHF Head-End Design Audio and High-Fidelity Products

Advanced Development
Deflection Component Design Deflection Systems Color Television Transistor Circuits Metal-forming and Plastics

\section*{Please send}
complete resume to:
MR. JAMES STARK

Electronics Park
Syracuse, N.Y.

Professional Group Ileetings
(Continued from page 180A)
Los Angeles Chapter-May 17
"Linear Voltage-Controlled Frequency Modulation of the Hartley Oscillator" by W. F. Link, Bendix Aviation Corp. (Presented by W. G. Coe, Rendix Aviation Corporation).
"High Measurement Accuracy via FM/FM Telementry" by D. W. Blancher, Bendix Aviation Corp.

\section*{Vehicular Communications}

Chicago Chapter-April 15
"Transistorized Auto Receiver" by Thomas 0. Stanley, RCA Labs.

These manufacturers have invited PROCEEDINGS readers to write for literature and further technical information. Please mention your IRE affiliation. (Continued from page 16A)

\section*{TV Camera Dolly}

A new, lightweight, remarkably maneuverable television camera pedestal is introduced by Houston Fearless Div., Color Corp. of America, 11831 W. Olympic Blvd., Los Angeles 64, Ca!if. Designated the PI)-7, it is particularly adapted to the small studio, or is suitable as an ausiliary camera mount for larger studios.

Outstanding feature of the Houston Fearless PD-7 Pedestal is its unusually light weight: 140 lbs. It rolls snioothly on rubbertired ball bearing wheels and will pass through a 34 inch or, if necessary, a 30 inch door.

Its maneuverability is made possible by two types of steering: For rolling dolly shots, "parallel steering" is used wherein the three

> (Continued on page 183A)

DESIGNERS AND BUILDERS OF HIGH PERFORMANCE MILITARY AIRCRAFT SINCE
1917

\section*{EXPERIMENTAL PHYSICISTS}

For the expansion of a small group of competent physicists and engineers who are concerned with the development of new devices and with the solution of advanced instrumentation and measure. ment problems. This group is responsible for devising methods for the solution of special problems and for the experimental verification of these methods. The final engineering and packaging is normally carried out by other groups in the organization. The varied nature* of this work requires both recent graduates and experienced people capable of accepting primary responsibility for the solution of problems of varying degrees of complexity.

Excellent opportunities for advancement and advanced study. Salary commensurate with experience and education level.

Some of the current investiga. tions are in the fields of mass spectrometry, electron multi. pliers, electron and ion optics, fast pulse techniques, ultra sonics, radiography, and wide. band sensors for the measure. ment of pressure, temperature and flow.

For further information please contact: PERSONNEL DIRECTOR bendix aviation corporation

Research Laborafories Division
4855 Fourth Avenue, Detroit I. Michigan

ENGINEERS:
Take it from
RALPH S. HAWKINS,
B.S.E.E., Cornell

University '39
No
frustrations
at National

Mr. Howkins started with National in 1940 testing equipment and writing instruction books. He advansed to Project Engineer on telelype and facsimile equipment development, then to chief engineer of the Communications Receiver Department, and most recently became Staff Engineer. One reason for his steady and rapid progress is the combination of diversified opportunities and the cooperation of superiors that exists at National. It's a combination, says Mr. Hawkins, that makes an engineer's association with National a pleasant and profitable one.

Opportunities of National Now for . . .

\section*{PROJECT ENGINEERS} SENIOR ENGINEERS
SEND YOUR RESUME TODA Y TO Mr. John A. Bigelow

\section*{National}

NATIONAL COMPANY, INC.
60 Sherman \$t. Malden, Mass.

ELECTRONIC ENGINEERS

\section*{DEVELOPMENT ENGINEER-} ING OPENINGS EXIST IN THE FOLLOWING FIELDS:

\section*{SERVO-SYSTEMS . . .}

SERVO AMPLIFIERS . . . REMOTE
POSITIONERS . . . INSTRUMENT DEVELOPMENT.

\section*{PULSE CIRCUITS . . .}

\section*{RADAR APPLICATIONS} digital devices.

\section*{ANALOGUE CIRCUITS . . .}

TRANSISTOR-MAGNETIC AMPLIFIER DEVELOPMENT.

A background in computer or radar systems work is desirable. Openings also exist in the above fieids for Junior Engineers.

The efforts of a relatively small but select staff are being applied on projects requiring engineering ingenuity essential to advancing the art of control.

\section*{For a Confidential Personal Interview} during the National Electronics Conference

Call Vernon Vogel
at the Bismark Hotel.
Telephone: CEntral 6-0123
Appointments may be made in ad. vance by contacting Mr. Vogel, Electronics Laboratory Director, in Anaheim.

AERONAUTICAL DIVISION

\section*{ROBERTSHAW-FULTON}

CONTROLS COMPANY
SANTA ANA FREEWAY AT EUCLID AVENUE
ANAHEIM, CALIFORNIA
Telephone: MUtual 5144 or KEystone 5-8151

\section*{EIECTRONCS}

\section*{for Medical Research}
E.E. or Physics Major with work experience in electronic instrumentation. Interesting \& challenging opportunity to develop equipment in connection with medical \& biological research problems. Superior employee benefits \& working conditions. Nationally known research organization located N.Y. area. Send detailed resume including salary requirements.

Box \#829, Institute of Radio
Engineers
I East 79th St., New York 21, N.Y.

\section*{PHYSICISTS RESEARCH ENGINEERS}

The Radiation Laboratory of The Johns Hopkins University provides unusual opportunities in a long range research and development program for senior engineers and physicists. The men we seek are experts in fields of:

\section*{INFRARED TECHNIQUES SYSTEMS \\ MICROWAVES CIRCUITRY}

The Laboratory offers challenging work in an atmosphere of scientific progress, encourages professional advancement and provides opportunity for advanced study in the University graduate schools. Congenial surroundings, excellent laboratory facilities, stimulating associations and, of course, liberal emplogee benefits.

Address inquiries to
Radiation Laboratory
The Johns Hopkins University
Homewood Campus
Baltimore 18, Maryland

These manufacturers have invited PROCEEDINGS readers to write for literature and further technical information. Please mention your IRE affiliation.
(Continucd from prge 181A)
wheels are locked in parallel and turn together in any direction For sharp turning or rotating "tricycle steering" is employed wherein all steering is clone with the rear wheel while the front wheels are locked in parallel. Changing from one type of stecring to the other is clone simply by lifting the steering wheel.

\section*{RF Signal Generator}

\section*{EICO ELECTRONIC INSTRU-} MENT CO., INC., 84 Withers St., Brooklyn 11, N. Y., has just released details on its new Morlel 324 Signal Generator. It can be used for Iた-rf alignment; signal tracing, and trouble shooting of AM, FMand TV receivers (all on fundamentals); as a marker generator for alignment of new highfrequency as well as older low frequency TV IF's; for 400 cps sine wave audio testing, and laboratory and experimental work.

Its frequency range is 150 kc to 145 mc on fundamentals in 6 bands; and 111 mb to 435 mc on calibrated harmonics. Accuracy of dial calibration is \(\pm 1-5\) per cent with 6-1 vernier tuning know and good spread at most important frequencies.

Colpitts rf osc llator, clirectly plate-modulated by a cathode follower for improved moclulation. Turret-mounted, slug tuned coils for individual calibration of each band. Variable depth of internal modulation from 0 to 50 per cent by the 400 cps ('olpitts oscillator. Variable gain external modulation amplifier requires audio input of only 0.8 volts for 30 per cent modulation Fine and Coarse (3 step) attenuators - 50 ohms output impedance. The unit is supplied complete or in kit form. Request catalog Z-1.

\title{
Electrically Conductive Cloth
}

\author{
A New Engineering Maferial for Many Applicatlons in Electronics
}

SUGGESTED USES:

RF SHIELDING RADAR REFLECTION
MICROWAVE GASKETING
WARNING SYSTEMS ATJENUATORS
STATIC DISCHARGE

Buy it by the yard and sew it to shape on any sewing machine. Or, have us sew it for you.

WRITE OR PHONE

\section*{CONTINUOUS, DIRECT-READING} X-BAND VSWR masuruman

For speedy and accurate VSWR measurements in laboratory or production use, the CTI Model IIOB Measuring System reads directly, is continuously tunable from 8,500 to \(9,600 \mathrm{mc}\).
5PECIFICATIONS
\begin{tabular}{lr}
Two VSWR Ranges: & 1.02 to \(1.2: 1.2\) to 2.5 \\
Attenuation Scale: & 0 to \(\infty ; 1.5 \mathrm{db}\) midscale \\
Waveguidc Fitting & UG-39/U \\
Directional Couplers, directivity & over 40 db
\end{tabular}

COLOR TELEVISION INCORPORATED
SAN CARLOS 2, CALIFORNIA

\section*{FERRITE COMPONENTS of HIGH EFFICIENCY for COLOR TV CIRCUITS}

A greatly broadened line of Allen-Bradley Quality ferrite parts is now available to electronic and television set manufacturers. Some standard pieces are shown above.

Three performance standards-WO-1,WO-2, and WO- 3 have been established for the electrical and magnetic characteristics of Allen-Bradley ferrite component parts:

WO-1 and WO-3 are somewhat more efficient but still interchangeable with other makes of ferrite parts. WO-2 parts have much lower losses and higher
permeability with greater flux density at maximum operating temperatures. Their higher magnetic efficiency permits reduction in size of these ferrites and the use of less copper. A lower over-all cost is often the result. In some color television circuits, the use of Allen-Bradley WO-2 ferrites has eliminated two tubes and related parts.

Allen-Bradley has grown rapidly as a dependable producer of Quality ferrite parts. It will pay you to investigate the performance of Allen-Bradley ferrites in your electronic circuits.

114 W. Greenfield Ave., Milwaukee 4, Wis.
OTHER QUALITY COMPONENTS FOR RADIO, TV \& ELECTRONIC APPLICATIONS

NEW - Allen-Bradley Ferrite Beads for increasing the inductance of lead wires.

Ferri-Cop Feed-thru Filters are capocitors in combination with ferrite material to provide "T" filter performance.

\section*{（942） 360－440 CPS BENCH TYPE}

\author{
VARIABLE FREQUENCY POWER SUPPLY ＂THE STANDARD OF THE INDUSTRY＂
}

Operating from standard 115 v 60 cps power，the Model 1460 provides \(400 \mathrm{cps} 100-130\) volt supply at any bench position．Utilization of units of this type allows testing at 400 cps \(\pm 10 \%\) at any individual position without interference with any other test position．Catalogue＂\(M\)＂de－ scribing this unit as well as other CML generators in the power range of from 50 VA to 30 KVA and fre． quency range of 20 cps to 60 KC is available for the asking．

MODEL 1460
OUTPUT－100 V．A． DISTORTION—2 \％
STABILITY—士 1 CPS
REGULATION一士 \(1 \%\) 。

\section*{COMMUNICATION MEASUREMENTS LABORATORY，INC．} 350 LELAND AVE．，PLAINFIELD，N．J．

These manufacturers have invited PROCEEDINGS readers to write for literature and further technical information．Please meption your IRE affiliation． （Continued from page 184A）
ly－designed radio－frequency cur－ rent transformer of the inserted－ primary type and has a nominal output impedance of 50 olms ． The probe consists of two semi－ circular insulated windings on a hypersil core．These are hinged， and by opening the probe the conductors mav be placed in its center．A locking arrangement holds the probe closed．

The probe is useable from 20 cps to 25 mc and is especially designed for use with the Stoddart NM－10A and NM－2013 Radio Interference－Field Intensity Meas－ uring equipments．

Interference measurements may be made on single and multi－con－ ductor cables，on ground and bonding straps，and on the ex－ ternal surfaces of shielding con－ duits and coaxial cables．Radio frequency currents，modulated or unmodulated，can also be meas－ sured by suitable operation of the NM－10A or NM－20B．

\section*{Precision Variable Delay Line}

This delay line，designed loy Advance Electronics Co．，Inc．， 451 Highland Ave．，Passaic，N．J．，con－ sists of 60 sections of L．C m－ derived networks and one 60 posi－ tion rotary switch．The LC m－ derived networks are especially designed for fast rise time，and negligible overshoot．The rotary switch is used to change the amount of time delay between the input and output by connecting the output terminal to any one of the 60 sections of LC networks． The input impedance of the delay line is equal to the characteristic impedance．＇The output terminal should be connected to a high－ impedance load（approximately 20 times or more the characteristic impedance of the line），such as the （Continued on page 188A）

To make sure of proper operation under all service conditions - every BUSS fuse normally used by the Electronic Industries is tested in a sensitive electronic device. Any fuse not correctly calibrated, properly constructed and right in all physical dimensions is automatically rejected.

That's why BCSS fuses won't blow when trouble doesn't exist. Useless shutdowns caused by poor quality fuses blowing needlessly are not only irritating to customers - but customers' confidence in your product or service could be jolted.

However, when there is an electrical fault BUSS fuses open to prevent further damage to equipment - saving users the expense of replacing needlessly damaged parts.

When you standardize on BUSS fuses, you are doubly

Whenever possible, the fuse or fuse mounting selected will be available in local wholesalers' stocks, so that your device can easily be serviced.

Be sure to get the latest information on BUSS and FUSETRON small dimension fuses and fuseholders . . . Write for bulletin SFB.

\section*{ELECTRICAL PROTECTION PROBLEMS}

The BUSS fuse research laboratory and its staff of engineers are at your service to help you with problems involving electrical protection. Submit description or sketch and tell us your requireents.
safe.

MAKERS OF A COMPLETE LINE OF FUSES FOR HOME, FARM, COMMERCIAL, ELECTRONIC, AUTOMOTIVE AND INDUSTRIAL USE.

\section*{BUSSMANN MFE. CO.}

Means the Finest in Frequency Control in

\section*{Tpidland CRYSTALS}

Midland makes more frequency control crystals than anybody else. Millions are used in two-way communications thruout the world.
Only a product of the highest quality rates that kind of demand. That's why you know your Midland crystal will do a completely dependable job for you.

The quality of Midiand crystals is assured by exacting tests and controls through every step of processing. It's quality you can stake your life on - as our men in the armed forces and law enforcement do every day.

Whatever your crystal need conventional or highly specialized... when it has to be exactly right, contact

\section*{Dficilamd Manufacturing Co., Inc.}

\author{
3155 Fiberglas Road - Kansas City, Kansas
}

WORLD'S LARGEST
PRODUCER OF QUARTZ CRYSTALS

These manufacturers have invited PROCEEDINGS readers to write for literature and further technical information. Please mention your IRE affiliation.
(Continued from page 186A)
grid circuit of the amplifier. The end of the delay line has been terminated by a resistor equal to the characteristic impedance internally.

Both the m-derived networks and the rotary switches can be moved from the cabinet and incorporated into any equipment where various time delay is needed. The accuracy of time delay cas lee as high as \(\pm 0.5\) per cent of the time delay at any point.

There are five different types available. Type 605 a has a maximum time delay of \(0.6 \mu \mathrm{~s}\) in step of \(0.01 \mu \mathrm{~s}, 75\) ohms impedance, 32 megacycles bandwidth, and \(0.01 \mu\) s rise time. Type 605 b has a maximum time delay of \(1.5 \mu \mathrm{~s}\) in step of \(0.35 \mu \mathrm{~s}, 95\) ohms impedance, 12.4 mc bandwidth, and \(0.025 \mu \mathrm{~s}\) rise time. There are three more types available with total time delay up to \(12 \mu \mathrm{~s}\). All of them have 60 steps and impedance ranging from 75 ohms to 300 ohms.

\section*{Miniature Toroid Coils}

A line of toroid coils for use with transistors in both subminiature and printed circuits is announced by the Forrest Mfg. Co., 5962 Smiley Dr., Culver City, Calif, These coils are designed for insertion through transistor terminal borads, the windings are terminated in lugs, or solid wire leads. Leads can be tinned for dip soldering, or brought to any pin arrangment. Major applications for the toroids include uses in
(Continued on page 190A)

NEMS-CLARKE I NCORPORATED 多 167 SERIES RECEIVERS

in
- telemetering
- GUIDED-MISSILE MONITORING

\section*{- RADIOSONDE} RECEPTION
3. Frequency coverage of 55 to 260 megacycles. AM and FM. without band chancing. The 167 series of Special Purpose Re. ceivers are designed for optimum performance in telemetering, guided-missile monitoring, radiosonde reception, television soind rebroadcastirg and many other applications calling for superior performance. The superheterodyne cireuit assures lowest noise figure possible with an input tube of reasonable cost, ready availability, and reliable performance. Particular care has been exercised to provide for extreme sensitivity and linearity of response, and the 500 ohm impedance of the out. put circuit permits bridging of many high-impedance devices. Only the finest components are used in their construction. All meters, transformers and chokes are hermetically sealed; all components are operated well within their safe design limits; and the entire assembly is treated to reduce the effect of moisture and fungus. Rigidly inspected and aligned, the Model 167 Receivers reflect the high standards characteristic of the products of this company which for 45 years has been erigaged in manufacturing radio-communications equipment and electronic instruments for the rigid requirements of military service.

\section*{NEMS CLARKF Inooryorat ed}

PRECISION
ELECTRONIC
WRITE INSTRUMENTS FOR FULL
SPECIFICATIONS
DEPT. NO. G
```

SILVER SPRING

``` MARYLAND

\section*{The most valuable reference} work

\section*{in the} world
- for the electronics engineer
- for buyers of component parts
- for users of electronic equipment
- for anyone who must

\section*{FIND FACTS FAST}

The IRE Directory contains full information on 3000 firms manufacturing products or furnishing services in the radio-electronic field, brought up-to-date every year.

Arranged efficiently and logically, the way an engineer thinks, for simple location of any product or service-

675 specific products and services, arranged under
99 major headings in
4 great groups
- Communications
- Components
- Controls and Instruments
- Materials and Services

USE YOUR IRE DIRECTORY . . . IT'S VALUABLE 1955 edition coming September 15.
THE INSTITUTE OF RADIO ENGINEERS
1 East 79th Street, New York 21, N.Y.

These manufacturers have invited PROCEEDINGS readers to write for literature and further technical information. Please mantion your IRE affiliation.
(Continuted from fage 188A)
super-selective \(1 F\), ri and audio transformers, pulse transformers, high (\(\mathbb{C}\) filter reactors, magnetic amplifiers, low-level modulators, tuncable reactors, and voltage regulators.

\section*{Cl}

Sizes range from \({ }_{8}^{5}(01) \times \frac{1}{4}\) to \(\frac{7}{8}\) OI) \(\times{ }_{3}^{3}\) inches. Inductance values up to 2 henries. Types for use with reactors provide as high as 150 Q in the \(\frac{5}{8}\) inch size illustrated, with rising () values as coil sizes increase. Types for use in magnetic amplifiers, modulators and voltage regulators absorb \(u_{p}\) to 130 V , 400 cps in units with an OD of 0.94 inch. Manufacturer states that windings with low capacity and of resistance can he provided. Units are finished with hard-setting epoxy resin, or are sealed in cans to meet Mil specifications. Maker will wind coils to special sizes and inductance values. Details on the line will be sent on request.

\section*{Color TV Tubescope}
'The Color TV' Tubescope, manufactured by Edmund Scientific Corp., 101 E. Gloucester Pike, Barrington 3, N. J., is a microscope designed to assist and simplify alignment of the dot pattern on the picture tube during manufacture and on regular field service calls. Specifically, it checks the accuracy and concentricity of the pattern where unaided vision is unsatisfactory.

The instrument consists of two parts, a main chrome plated optical body housing a cemented achromatic objective lens with the eyepiece, and the outer black (Continued on page 192A)

\section*{DESIGNED} ...DELIVERED
in operatian!

\title{
| 7 lla digital data recorring systems
}

\section*{[亩}

\section*{Here are your} CANNON CONNECTORS

\section*{for}

\section*{PRINTED CIRCUITS}

Available in 5 Sizes
1. Dx-1052. Length \(2 \cdot 13 / 32^{\prime \prime}\). 10 con. tats, space
to \(0.067^{\prime \prime}\) thick. \(3.1 / 32^{\prime \prime}\). 18 con2. \(0 x-1852\). Len \(5 / 32^{\prime \prime}\) tarts, space thick.
to \(0.075^{\prime \prime}\) 3. \(0 \times-2252\) Length \(4.9 / 32^{\prime \prime}\). 22 con3. DX-2252. Len \(1 / 32^{\prime \prime}\). For boards \(0.060^{\prime \prime}\) to \(0.071^{\prime \prime}\) thick.
4. DX-2842. Length 4.9/32" 28 confacts, spaced \(1 / 8^{\prime \prime}\). For boards \(0.060^{\prime \prime}\) to \(0.071^{\prime \prime}\) thick.
5. DY -4453. Length \(4.9 / 32^{\prime \prime}\). Double 5. Dy-4453. of 44 contacts, spaced \(5 / 32^{\prime \prime}\). For printed \(0.100^{\prime \prime}\) thick.

Nylon plastic shells... gold plated contacts OX contacts of phosphor bronze; DY of beryllium copper. All contacts "grip" the board, which enters. Each rated at approximately cation studs provided.
5-amp. Polaris 2000 and 2500 v .60 CPS
Flashover as rms. Single-row types or both sides com. on one side only, or type for boards mon. both sides having printed its, not common.

ply 9
-

CANNON ELECTRIC CO.. 3209 Humboldt St., Los Angeles 31 , Calliomia. Rep int ines and distributors in all prince

These manufacturers have invited PROCEEDINGS readers to write for literature and further technical information. Please mention your IRE affiliation. (Continued from page 190.A)
anodized felt lined aluminum barrel for focusing. A working distrance of \(4 \frac{1}{4}\) inches is ample to view the periphery of the tube, and

makes it unnecessary to remove the safety glass shield thereby protecting technicians from the high potential on the tube.

Five different eyepieces are available and can be easily interchanged to give powers from \(10 \times\) to \(33 \times\). The instrument is \(7 \frac{1}{4}\) inches long with outside diameter of \(1 \frac{1}{2}\) inches.

\section*{Ohmmeter}

A new low-resistance ohmmeter featuring low test current is announced by Industrial Instrumints, : Inc., Cedar Grove, N. J., manufacturers of electrical test equipment. The new meter, Model LRO , is especially adaptable to measurement of relay contact resistance, fuse resistance, bonding and ground wire resistance and any other application requiring low resistance measurements with minimum test current.

The Model LRO has an accuracy of \(\pm 1\) per cent of full scale reading. Ranges include full-scale

\section*{BE SAFE WITH \\ LOW-LOSS LACQUER \& CEMENT}
- Q-Max is widely accepted as the standard for R-F circuit components because it is chemically engineered for this sole purpose.
- Q-Max provides a clear, practically loss-free covering, penetrates deeply, seals out moisture, imparts rigidity and promotes electrical stability.
- Q-Max is easy to apply, dries quickly and adheres to practically all materials. It is useful over a wide temperature range and serves as a mild flux on tinned surfaces.
- Q-Max is an ideal impregnant for "high" Q coils. Coil "Q 'remains nearly constant from wet application to dry finish. In 1,5 and 55 gallon containers.

\section*{52-ahm}

LINE STRETCHERS
 with Types N, HN, or other connectors.
Write for
Bulletin R-454

ANTENNA SYSTEMS -COMPONENTS AIR NAVIGATION AIDS -INSTRUMENTS

a complete new line of \(1 \frac{1}{4}\) "P. M. Motors
- Smaller: 5 oz. weight, \(2.14^{\prime \prime} \mathrm{L}, 1.25^{\prime \prime}\) OD. (A typical example-Type AM-210).
- Exceptionally High Torque due to unique, simpler magnet design.
- Radio Noise Minimized.
- \(-55^{\circ} \mathrm{C}\) to \(+71^{\circ} \mathrm{C}\) temperature range.
- 6000 to 20,000 RPM motor speed range. Speeds contrcllab!e to \(\pm 1 \%\) over a voltage range from 24 V to 29 V by using a governor.
- Altitude-Treated Brushes have exceptionally long life.
- Specially Designed Metal Brush Holders avoid sticking in environmental tests and do not protrude into outside housing, permitting full design freedom.
- Available with gear train, governor, brake or any combination thereof. For gear train ratios, see chart.
- Applications: radio, radar, actuators, drive mechanisms, antenna tiltmotors, tuning devices, blowers, cameras and many others. Write for further details today.

\section*{PERMANENT MAGNET MOTOR GEAR TRAIN DATA}

Motor can be designed for speeds from 6000 RPM to 20,000 RPM.
Length of motor will vary according to power.
Length of gear train will vary according to gear ratio required-
\begin{tabular}{rr}
\(1000: 1\) to \(33,000: 1\) & 6 stages \\
\(300: 1\) to \(5,900: 1\) & 5 stages \\
\(100: 1\) to \(1,000: 1\) & 4 stages \\
\(40: 1\) to \(183: 1\) & 3 stages \\
\(15: 1\) to & \(32: 1\)
\end{tabular}

Other products include Actuators, AC Drive Motors, DC Motors, Fast Response Resolvers, Servo Torque Units, Servo Motors, Synchros, Reference Generators, Tachometer Generators and Molor Driven Blower and Fan Assemblies.

\section*{BETTER IMPREGNATING EQUIPMENT MEANS \\ BETTER PRODUCTION \\ Whether you impregnate electrical windings, transformers, \\ castings, paper tubes, etc.with NYECO's better equipment, you will get better impregnation and more production. \\ The New York Engineering Company manufactures complete systems for vacuum-pressure impregnating. Tank sizes range from \(24^{\prime \prime}\) diameter to \(12^{\prime \prime} 6^{\prime \prime}\) \\ diameter \(\ldots\). depth to suit applications. \\ For prompt, reliable data and quotations}

where progress

\section*{GOMMUNIGATIONSEQUIPMENTCO.}

10 CM.—RG48/U Waveguide

\section*{共}

Trans. Cutike BEACONLIGTHOUSE
MAGNETRON TO

\section*{}

\section*{}
 BEACON
\(\qquad\) "E"PLANE BENDS. 90 deq. Jess flanges.

X BAND- \(\boldsymbol{1}^{\prime \prime} \times 1 / 2^{\prime \prime}\) WAVEGUIDE PARABALDID DISH,

FLEXIBLE SECTION
ROTARY JOINT

 3 CM ANTENNA ASSEMBLY (ses mín birab. matern: dege in both Azinmot and edevationt. Cross-Guide Directional Conpler. Ti-40 mutpin thante at one eud, and is fitterd with sid. io sal 4 to
 Rotating-Joints sitpuliwd dither wilh or withut dech Bulkhead Feed-thru Assembly \(\$ 15.00\) Pressure Gauy Section with I, lh, pauke \(\$ 10.00\) MAGNET AND STABILIZER CAVITY FIM 90 degree elbows. "E" of "HP" Dlan". 2", rathily \(\$ 8.50\) TS 11 TS. Wh, Fte. ADAPTER

\section*{COAXIAL R.F. FILTERS}
 F- \(+1 /\) SPR-I. Hi-Pas, with 300
nic cut-off. Type
\(\$ 10.50\)

\section*{MICROWAVE ANTENNAS}

cm . Horn, \(1^{\prime \prime} \times 1 / 2^{\prime \prime}\). With twist and
IR dind. bend. As shown \(\$ 22.59\).
AT49/APR i:roathind Conical, 300 . 3300 MC. Tine M Feral …... \(\$ 895\)
 smmported with t
 AS46A/APG.4 Yogi Antemna, 5 elemont arras . \(\$ 22.50\) AN/APA. 12 Suctur scan adantor for Al'S-2 radar Complete kilt
TPS.3. 10 Fit. Dish. "Chirken Wire" laraloola, Ex. AN-154 3 rertical dipoles working arainst a rectanelulobing switch (115x, tio ey) and mortable slatted LP. 24 Alford lomp, for use with zllde-path transmitters (MRN-1, ete.) \(100-108\) me.

THERMISTORS
D. 164699 Bead Type JJCI? 1.2 Ohms (ir 50 Deg. - 1 (1M
D. 167332 Bead Type 1)("1
2531 at
D. 167613 Disk Tyoe DCR:
D. 166228 Disk Tyne il.in oil........... \(\$ 1.00\)

\section*{VACUUM TUBES}

\section*{POWER TRANSFORMERS}

COMBINATION \(=115 \mathrm{~V} / 60\) INPUT

 \(\begin{array}{llll}\text { CT.034 } & 350.0-350 \mathrm{~V} / 90 \mathrm{MA}, & 5 \mathrm{VCT} / 3 \mathrm{~A}, & 2.5 \vee C T \\ \text { CT.002 } & 12.5 A & 350.0350 \mathrm{~V} / 50 \mathrm{MA}, & 5 V C T / 2 A, \\ & 2.5 \mathrm{VCT}\end{array}\)

\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|r|}{PLATE-115V/60~INPUT} \\
\hline PT. 07 & 400VCT/4.0 AMPS For RA43 \\
\hline PT 034 & 125V/45MA (For Preamp) \\
\hline PT 157 & \(660-0-660 \mathrm{VAC}(500 \mathrm{VDC})\) or \(550-0.550\) VAC (400VDC) at 250 MADC \\
\hline PT 167 & 1400.0 .1400 VAC (300 MADC) or 1175. \(0-1175\) VAC (1000 VDC) at 300 MAOC \\
\hline PT \({ }^{168}\) & 2100.0 .2100 VAC (1750 VDC) or 1800 . \(0.1800 \mathrm{VAC}(1500 \mathrm{VDC})\) at 300 MADC \\
\hline PT 371 & 210.00210 V at 2.12 Anip. \\
\hline PT 133 & \(3140 / 1570 \mathrm{~V}\). 2.36 kVA \\
\hline PT 401 & \(22.000 \mathrm{~V} / 234 \mathrm{MA}\). . 5.35 KVA \\
\hline PT : 21 & \(7500 \mathrm{~V} / .06 \mathrm{~A}\). Hali Wave \\
\hline PT 913 & \(2500 \mathrm{~V} / 12 \mathrm{MA}\) H'SLD \\
\hline PT i2A & 280VCT/1.2A \\
\hline PT-88.2 & \(37.5 / 40 \mathrm{~V}\) AT 750 MA \\
\hline & FILAMENT-115V/60~INPUT \\
\hline FT.157 & aV/16A, \(2.5 \mathrm{~V} / 2.75 \mathrm{~A}\) \\
\hline FT-101 & \(6 \mathrm{~V} / .25 \mathrm{~A}\) \\
\hline FT-924 & 5.25A/21A. \(2 \times 7.75 \mathrm{~V} / 6.5 \mathrm{~A}\) \\
\hline FT-824 & \[
\begin{aligned}
& 2 \times 26 \mathrm{~V} / 2.5 \mathrm{~A}, 16 \mathrm{~V} / 1 \mathrm{~A}, 1.2 \mathrm{~V} / 7 \mathrm{~A}, 6.4 \mathrm{~V} / 10 \mathrm{~A} \\
& 6.4 \mathrm{~V} / 2 \mathrm{~A}
\end{aligned}
\] \\
\hline -463 & 6.3VCT//A, \(5 \mathrm{VCT} / 3 \mathrm{~A}, 5 \mathrm{VCT} / 3 \mathrm{~A}\) \\
\hline FT-55.2 & 7.2V/21.5A. \(6.5 \mathrm{~V} / 6.85 \mathrm{~A}, 5 \mathrm{~V} / 6 \mathrm{~A}, 5 \mathrm{~V} / 3 \mathrm{~A}\) \\
\hline FT.38A & \(6.3 \mathrm{~V} / 2.5 \mathrm{~A} .2 \times 2.5 \mathrm{~V} / 7 \mathrm{~A}\) 5 KV Test \\
\hline FT-6is 0 & \(2.5 \mathrm{~V} / 10 \mathrm{~A}-3 \mathrm{KV}\) TEST LO-CAP \\
\hline FT-025 & 2.5VCT/10A, 10KV TEST \\
\hline
\end{tabular}

FILTER CHOKES
\begin{tabular}{|c|c|c|}
\hline Stork & Description & \\
\hline CH.914 & \(\mathbf{1 2 H Y / 2 5 0 ~ M A ~} 250\) & \\
\hline CH-CEC & 117: 9-60H/.05-400 M A. 10 KV Test & 14.95 \\
\hline H-113 & \(2.5 \mathrm{H} / 700 \mathrm{MA}, 2.5 \mathrm{KV}\) Test 180 hms & 5.75 \\
\hline CG.044 & \(8.5 \mathrm{H} / 350 \mathrm{AtA}, 3.5 \mathrm{KV}\) Test 50 Ohms & 6.35 \\
\hline CH. 291 & 0.1H/12 A, DCR: 0.3 Ohms & 12.5 \\
\hline CH. 322 & . \(35 \mathrm{H} / 350 \mathrm{NIA}-100 \mathrm{hmis}\) DCR & 2.75 \\
\hline CH.141 & Dual \(7 \mathrm{H} / 75 \mathrm{MA} .11 \mathrm{H} / 60 \mathrm{MA}\) & 4.69 \\
\hline CH.69.I & Dual 120H/17 Ma & 2.35 \\
\hline H-8-35 & \(2 \times .5 \mathrm{H} / 380 \mathrm{MA} / 25\) Ohms & . 79 \\
\hline CH-776 & \(1.28 \mathrm{H} / 130 \mathrm{HA} / 75\) ohms & 2.25 \\
\hline CH-344 & \(1.5 \mathrm{H} / 1+5 \mathrm{MA} / 1200 \mathrm{~V}\) Test & 2.35 \\
\hline H-43A & \(10 \mathrm{HY} / 15 \mathrm{MA}-850\) ohmis DCR & 1.75 \\
\hline CH.366 & \(20 \mathrm{H} / 300 \mathrm{MA}\) & 6.95 \\
\hline CH-999 & \(15 \mathrm{HY} / 15\) MA -400 ohms DCR & 1.95 \\
\hline CH. 445 & \(0.5 \mathrm{HY} / 200 \mathrm{MA}, 32.2\) ohms, 3000 & 1.39 \\
\hline CH-170 & \(2 \times 0.5 \mathrm{H} / 380 \mathrm{HA} .25 \mathrm{ohms}\) & 2.79 \\
\hline CH. 533 & \(13.5 \mathrm{H}, 1.0 \mathrm{AM}\) & \\
\hline
\end{tabular}

\section*{1. F. AMPLIFIER STRIPS}

Madel 15:30 Me Entur frefilumery Bandwidth 2.5 Mc Thestor're and Virleo Detector. A.F.C. Sirip imbuded. 60 mC . Minianme IF serip. using 6.1 K 5 s . 60 Mc comer Ftwi, Gain: ! 5 ch, ut Bandwidth of 2.7 Mc. Nell.

PULSE TRANSFORMERS
 RAYTHEON WX 4298 E : Priuary 4 K 1.0 \(\$ 2.50\)
 DCR

 DCR 100 Ohtis.
\(-904695.501:\) Ratio \(1: 1\), Iri. Imp, io Ohun. Sec. Imp.
to Ohms. Dusses pulse 0.6 usec with 0.05 used RAYTHEON. VX

\section*{PULSE NETMORKS}
 7-5EA-16.60, 6iJ 7.5 KV "F" ("ircuit, \& sections 10

 H. \(61510 \mathrm{KV}, 0.85\) usic. 7.501 I's, 50 onms lmp. \(\$ 27.50\) KS8865 CHARGING CHOKE: \(115-150\) H (a) 02.1 .50
 K 99623 CHARGING CHOKE: 1611 @

PULSE MODULATORS
MIT. MOD, 3 HARD TUBE PULSER: OHPDIt IMuss
 age: 115 v. 400 to 2400 ens. l'ses: \(1-7118\), . 88413. ASD Modulator-Units, mifd. hy shery. Hard tule nulser delitats l'k. pulse of 144 kw . Similat 10 Mod 3 minit. dirborne RF head, model 11 A , delivers 50 Kw peak ollt but at mant mie. at . 001 dits. (monplete with si85.00

\section*{DELAY NETWORKS}

\section*{}
D. 165997 13
. 162311 . 5 ece. 1400 ohtm impedan
Bandwidh
0.150979: Oscillating network. Oscillates at 81,955 he When normal murrent of 10 hia. is intermuted. Hat built-in
in shielde

\section*{byinamotolis}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{N} & \multicolumn{2}{|l|}{OUTPUT} & \multirow[t]{2}{*}{Price} \\
\hline TYPE & VOLTS & AMPS & VOLTS & AMPS & \\
\hline \(35 \times .059\) & 19 & 3.8 & 405 & . 095 & \$4.35 \\
\hline POSX-15 & 14 & 2.8 & 220 & . 08 & 8.95 \\
\hline DA.7A & 28 & 27 & 1100 & . 400 & 15.00 \\
\hline DM 33A & 28 & 7 & 5.40 & . 250 & 3.95 \\
\hline 23350 & 27 & 1.75 & 285 & . 075 & 3.95 \\
\hline B. 19 & 12 & 9.4 & 275 & . 110 & 6.95 \\
\hline & & & 500 & . 050 & \\
\hline \multirow[t]{3}{*}{DA.3A*} & \multirow[t]{3}{*}{28} & \multirow[t]{3}{*}{10} & 300 & . 260 & \multirow[t]{3}{*}{6.95} \\
\hline & & & 150 & . 010 & \\
\hline & & & 14.5 & 5. & \\
\hline PE 73 CM & 28 & 19 & 1000 & . 350 & 17.50 \\
\hline BD 69 \(\ddagger\) & 14 & 2.8 & 220 & . 08 & 8.95 \\
\hline DAG-33A & 18 & 3.2 & 450 & . 06 & 2.50 \\
\hline D M \(25 \dagger\) & 12 & 2.3 & 250 & . 05 & 6.95 \\
\hline \multicolumn{6}{|l|}{\multirow[t]{3}{*}{}} \\
\hline & & & & & \\
\hline & & & & & \\
\hline \multicolumn{6}{|c|}{INVERTERS} \\
\hline
\end{tabular}

800-1B Input 24 vdc. 62 A. Output: \(115 \mathrm{~V}, 800\) cy. 7 FA

MAIL ORDERS PROMPTLY FILLED. ALL PRICES F.O.B. NEW YORK CITY, SEND M.O. OR CHECK. ONLY SHIPPING SENT C.O.D. RATED CONCERNS SEND P.O. PARCELS IN EXCESS OF 20 POUNDS WILL BE SHIPPED VIA CHEAPEST TRUCK OR RAILEX.

\title{
PRTFESSICNALSERVICES
}

\section*{ALFRED. W. BARBER LABORATORIES}

Specializing in the Communications Field and in Laboratory Equipment
Offices, Laboratory and Model Shop at:
32-44 Francis Lewis Blvd., Flushing, L.I., N.Y. Telephone: Independence 3-3306

\section*{BERGEN LABORATORIES}

MAX HOBERMAN, P.E., Chief Engineer Automation of Electronic Equipment Relay Logic Control Circuits Automatic Meter Range Switching Step Servomechanisms
265 Elm St., East Paterson, N.J., FAirlawn 4-1736

> Edward J. Content, P.E. and Staff INTERNATIONAL RADIO CONSULTANTS
> Pan American Radio Tangier Int'I Zone Bldg., I6 Rue Delacroix Specialized in the design, construction, forelgn. Electronic, projects, and advising governments at Int'l Telecommunications Union.

CROSBY LABORATORIES, INC. MURRAY G. CROSBY STAFF RADIO-ELECTRONIC RESEARCH DEVELOPMENT \& ENGINEERING COMMUNICATIONS, FM \& TV ROBBINS LANE
HICKSVILLE NEW YORK HICKSVILLE 3-3191

ELK ELECTRONIC LABORATORIES, INC. Jack Rosenbaum
Specializing in design and development of Test Equipment for the communications, radar and allied fields.

333 West 52nd St., New York 19, PL-7-0520

\section*{FREDERICK RESEARCH CORPORATION}

Carl L. Frederick, D.Sc., President
Bethesda 14, Maryland * OLiver 4.5897
Engineering Research and Development, Evaluation, Technical Writing and Publishing-Electronic and Electro-mechanical Systems, Test Equipment, Radio Interference, Instrumentation, Controls.

\section*{HIGHLAND ENGINEERING CO. William R. Spittal \& Staff}

Specialize in Design and Development of Transformers, Chokes, etc.
Electronic, Industrial and Allied Fields.
Westbury L.I., N.Y. EDgewood 3-2933
HOGAN LABORATORIES, INC. John V. L. Hogan, Pres.
APPLIED RESEARCH DEVELOPMENT, ENGINEERING
Est. 1929. Electronics! Optics, Mechanisms, Facsimile Communication, Digital Computers, Electro-sensitive recording media, Instrumentation.
155 Perry Street, New York 14 CHelsea 2-7855

INTERFERENCE TESTING AND RESEARCH LABORATORY, INC. Rexford Daniels E. T. Buxton P. B. Wilson 150 Causeway Street, Boston 14, Mass. Lafayette 3-7826
Specializing in the design and testing of equipment to meet Military and FCC specifica. tions for redio interference.

LEONARD R. KAHN
Consultant in Communications and Electronics
Single-Sideband and Frequency-Shift Systems Diversity Reception - Modulation Theory Television Systems
Elizabeth Bldg., 22 Pine St., Freeport, L.I., N.Y. Freeport 9 -8800

\section*{George W. Baker, Pres.}

KIP ELECTRONICS CORPORATION
Electron tube consulting and design.
Research and development and preparation of prototype electron tubes.
\[
29 \text { Holly Place, }
\]

Stamford, Connecticut
DAvis 3-5116

\section*{ARNOLD S. J. LEE - KENNETH B. MORRIS}

Consultants in Control Engineering, Electromechanical Devices, Medical-Physical Instruments.
Development of New Devices and Pre-Production Models-Building of Developmental De vices.
P.O. Box 301 MUtual \(1-4525\) BELMAR, N.J.

LEONARD J. LYONS
Consulting Mechanical Engineer Heat Transfer and Thermodynamics Packaging-Rating Charts-Miniaturization. Analysis of heat flow, temperature rise, and cooling system characteristics. 5817 Alviso Ave., Los Angeles 43, Calif. Phone: AXminster 1.5446
```

Harry W. Houck Martial A. Honnell
John M. van Beuren
RESEARCH ENGINEERS
Specialists in the Design and Development of Electronic Test Instruments c/o MEASUREMENTS CORP. BOONTON, N.J.

```


(Continued from page 194A)
inductance, free from non-linear effects.

Capable of dissipating 2.5 watts with a temperature rise of \(20^{\circ} \mathrm{C}\), the units have voltage ratings of 400 volts maximum, dimensions of \(1 \frac{1}{8}\) inches long by \(\frac{3}{4}\) inches diameter, weigh approximately one ounce. The same range of inductance values and other corresponding characteristics can be provided with approximately 10 per cent higher Q's when mounted in slightly larger cans. Style A Type 1 Variable Inductors are also available in the form of complete sealed tuned circuits with shunt capacitors included to customer's specifications.

HOWARD J. MURRAY, JR
ELECTRONIC
PATENT CASES EXCLUSIVELY
1824 Lakeshore Ave.
Telephone
Oakland 6, Calif.
TEmplebar 5-3268

Olympic Radio \& Television, Inc. Radio-Electronics
Consulting-Research-Development Environmental Tests Performed for the Industry
B. Parzen - E. Bradburd

Olympic Building, Long Island City I, N.Y. EXeter 2-5200

\section*{EVERT M. OSTLUND \\ Consulting Radio Engineer} Radio-Microwave Communication-Control Systems and Equipment
anning, Research, Development
evelopment
ANDOVER, NEW JERSEY
Tel.: Lake Mohawk 8635

PENN-EAST ENGINEERING CORPORATION
(Formerly-Atlantic Electronics Corp. of Port Washington, N.Y.) Desigaers of Industrial Controls
Gereld L. Tawney, Robert R. Sparacino,
Warren M. Janes, Richard C. Tawney
P.O. Box 240, Telephone Kutztown 2675

\section*{PICKARD AND BURNS, INC. \\ Consulting Electronic Engineers}

Analysis and Evaluation of Radio Systems Research, Development, Design and Production of Special Electronic Equipment and Antennas. 240 Highland Ave.

Needham 94, Mass.

\section*{SIDNEY PICKLES}

Consulting Radio Engineer
Antennas \& Transmission Lines
Phone:
Post Office Box 643 Monterey 5-3379 MONTEREY, CALIFORNIA

\section*{Paul Rosenberg Associates}

Consulting Physicists
100 stevina ang. - modnt vernon, net yomi
CABLE: paysicist mount vernon \(\mathbf{7 . 8 0 4 0}\)

\section*{M. D. Ercolino and Associates}

ANTENNA CONSULTANTS
Research and Development
Communication Arrays
Commercial and Amateur
c/o TELREX, INC.
ASBURY PARK, N.J.
Phone Prospect 5.7252

\section*{WHEELER LABORATORIES, INC. \\ Radio and Electronics \\ Consulting - Research - Development \\ R-F Circuits - Lines - Antennas \\ Microwave Components-Test Equipment \\ Harold A. Wheoler and Engineering Staf \\ Great Neck, N.Y. \\ HUnter 2-7876}

\section*{PRDCISYON}
 High Sensitivity, Wide Band 5" OSCILLOSCOPE

For laboratory, industrial and technician. A rugged, dependable instrument for broad coverage of modern electronic oscillograph applications, INCLUDING COLOR TV. High sensitivity PLUS single, overall wide-band frequency response, and many other special performance features at most sensible price.
* Push-Pull, Wide-Band Vertical Amplifier: \(10 \mathrm{MV} / \mathrm{inch}\) sensitivity. 2 Megohms, 22 mmfd . One DB from 10 cps . to \(3.5 \mathrm{MC}-3 \mathrm{DB}\) at 5 MC .
\(\star\) Direct Readiag, Peak to Peak Voltage Calibrator
* Vertical Pattern Reversal Switching Facility
* Push-Pull, Wide-Range Horizontal Amplifier: \(100 \mathrm{MV} /\) inch sensitivity. 2 Megohms, 25 mmfd . One DB from 10 cps . to \(1.0 \mathrm{MC}-3 \mathrm{DB}\) at 2 MC .
* Linear, Multi-vibrator Sweep Circuit:

10 cycles to 100 KC
Amplified sweep retrace blanking.
\(\star\) Amplified Auto-Sync Circuit
* Four Way Sync. Selector Switch provides for internal Negative, Internal Positive, External and Line Symchronization.
* "Z" Axis Input for blanking, timing, marking. * Built-in 60 cps Phasing and Blanking Controds.
\(\star\) All 4 Deflection Plates Available directly (at rear), with full beam centering facilities.
* Tube Complement: 12AV7 "V" Cathode Follower.Ampl. 6 U8 'v"' Ampl. Phase Splitter.
 ode Follower-Ampl. 6C4 "H' Phase Splitter. Two 12BH7 Push.Pull "H" Drivers. 12AV7 LinearSweep. 6BH6 Auto-Sync. AmpI. 12 AU7 Sweep Retrace Blanking Ampl. OAZ Voltage Regula. tor. 504 Low Voltage Rect. Two 1 V2 High Voltage Rect. SCP1/A CR Tube.
* High Contrast, Filter Type, Calibrating Screem - Fully Licensed under AT\&T and RCA patents.

Model ES-550 Deluxe: (Illustrated) In customstyled, blue-grey ripple finished steel cab.net; 2 color satin-brushed aluminum panel and con trasting dark blue control knobs. Case Dirensions \(81 / 4 \times 141 / 2 \times 181 / 2\) inches. Complete with all tubes, including 5CP1/A CR tube. Comprehensive instruction Manual.

Net Price \(\$ 215.00\)
Model ES-550 Standard: Electrically identical to above but in standard black cabinet with plack anodized aluminum panel. Case Dimensiors \(81 / 4 \times 14 / 2 \times 181 / 2\) inches. Complete as above. Net Price: \(\$ \mathbf{2 1 0 . 0 0}\)

PRECISION Test Equipment is atail able und on display at leading elec. tronic parts distributors. W'rite directly to factory for new 1955 catalog.

\footnotetext{
\(P R E C Z S T D\) Apparatus Company Ine. 70-31 84th Street, Glendale 27, L. I., N. Y. Export: 458 Broedway, New York 13, U. S. A. Coneda: Atlos Rodio Corp., Ltd., 50 Wingold Ave., Toronte 10
}

\section*{INDEX AND DISPLAY ADVERTISERS}
Meetings with Exhibits 4A
News-New Products 14A
Membership 32A
Industrial Engineering Notes 134A
Positions Wanted by Armed ForcesVeterans145A
Positions Open 148A
IRE People 154A
Section Meetings 170A
Professional Group Meetings 174A
DISPLAY ADVERTISERS173A
Admiral Corporation (Empl.)169AAerovox Corporation
ent56AAircraft Radio Corp.

Airtron, Inc.
Alford Mfg. Co., Inc. Allen-Bradley Company Allied Radio Corp.
Alpha Metals, Inc.
American Electrical Heater Co.
American Lava Corporation
American Phenolic Corp.
American Television \& Radio Co.
American Time Products, Inc.
Amperex Electronic Corp...
Ampex Corporation
Andrew Corporation
Apex Coated Fabrics Co., Inc
Arnold Engineering Co.
Assembly Products, Inc.
Atlantic Transformer Corp., Div. New LondonInstrument Co.

Automatic Control Co. (Empl.)
\(\qquad\)16BA
Ballantine Laboratories, Inc.Barber Laboratories, Alfred W.6 A
Bell Aircraft Corporation 146A
Ell Sound Systems, inc. (Empl.)
Bell Telephone Laboratories \(2 A\)
Bendix Aviation Corp., Eclipse-Pioneer Div. .Bendix Aviation Corp., Guided Missile Section(Empl.)
155A
Bendix Aviation Corp., Pacific Div. (Empl.) ..Bendix Aviation Corp., Radio Communication
Div. (Empl.)
Bendix Aviation Corp., Research LaboratoriesIB2A
Bendix Aviation Corp., Scintilla Div. 93A
Bergen Laboratories. 42A
Berkeley Div. Beckman Instruments,(Empl.)173A
Bodnar Industries 124A
Boeing Airplane Co. (Empl.) 149A
Boesch Mifg. Co., Inc. 56A
oonton Radio Corp
uckbee Mears Co.Burroughs Corporatio
Bussmann Mfg. CoByron Jackson Company90 A136ACaledonia Electronics Transformer Corp104A
Calif. Institute of Technology, Jet Propulsion Lab. (Empl.)
1B0A
Cambridge Thermionic Corp. 117A
Cannon Electric Company \(192 A\)
\(118 A\)
Capitol Radio Engineering Institute 181A

\section*{" PRECISION PHASE METER}

0.3-120 V, 8 CPS-100 KC
- NO AMBIGUITY AT ZERO DEGREE
\(0.25^{\circ}\) RELATIVE ACCURACY
PHASE READING INDEPENDENT OF SIGNAL AMPLITUDES-PRICE: \$485

\title{
PRECISION \(=\) PHASE MEASURING INSTRUMENTS
}
.0001 CPS to 500 MC ACCURACY \(\pm 0.1\) DEGREE

\section*{NEW \\ PRECISION PHASE DETECTOR}

- measures time delay with \(1 \%\) ACCURACY
- measures phase delay with \(0.1^{\circ}\) ACCURACY
- 10 KC TO 15 MEGACYCLES. 0.01 VOLT SENSITIVITY
pulse transformer kit

\section*{simplifies}

\section*{circult design}

Sprague's new Type 100Z1 Pulse Transformer Kit contains five multiple winding transformers, each chosen for its wide range of practical application. Complete technical data on each of the transformers is included in the instruction card in each kit so that the circuit designer may readily select the required windings to give transformer characteristics best suited for his applications, wherher it be push-pull driver, blocking oscillator, pulse gating, pulse amplifier, or impedance matching. Electrical characteristics of the transformers in the kit have been designed so they may be matched by standard Sprague subminiature hermetically-sealed pulse transformers shown in engineering bulletin 502B.

For complete information on this kit, as well as the extensive line of Sprague pulse transformers, write to the Technical Literature Section, Sprague Electric Company, 235 Marshall Street, North Adams, Massachusetts.

\section*{CHARACTERISTICS OF KIT TRANSFORMERS}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Type & \[
\underset{\substack{\text { Pri. } \\(\mu H)}}{\text { in }}
\] & \begin{tabular}{l}
duct. \\
Leakage \\
(\(\mu \mathrm{H}\))
\end{tabular} & Dist. Cap. of Prr. (\(\mu \mu \mathrm{F}\)) & \begin{tabular}{l}
Max. Nom. \\
P.W. Range \\
(\(\mu \mathrm{Sec}\))
\end{tabular} & Aval. Ratios. \\
\hline 4122 & 0.5 & 2.5
4.0
4.5
7.0 & 5 & 0.5 & \[
\begin{aligned}
& 1: 1 \\
& 2: 1 \\
& 3: 1 \\
& 5: 1
\end{aligned}
\] \\
\hline 4123 & 5.0 & 13
15
25
30 & 15 & 6 & \[
\begin{aligned}
& 1: 1 \\
& 2: 1 \\
& 3: 1 \\
& 5: 1 \\
& \hline
\end{aligned}
\] \\
\hline 2077 & 10 & \[
\begin{aligned}
& 20 \\
& 40
\end{aligned}
\] & 12 & 12 & \[
\begin{gathered}
1: 1 \\
8: 1 \\
1: 1: 1 \\
8: 8: 1
\end{gathered}
\] \\
\hline 2028 & 20 & \[
\begin{aligned}
& \hline 50 \\
& 150
\end{aligned}
\] & 15 & 25 & same as
\[
2027
\] \\
\hline 2029 & 50 & \[
\begin{aligned}
& 150 \\
& 210
\end{aligned}
\] & 20 & 50 & \[
\begin{aligned}
& \text { same as } \\
& 2027
\end{aligned}
\] \\
\hline
\end{tabular}

\section*{DISPLAY ADVERTISERS}

Chatham Electronics Div. of Gera Corp. 99 A Chicago Standard Transformer Corp. .84A Chicago Telephone Supply Corp. 139A Clare \& Company, C. P. .87A Cohn Corporation, Sigmund Collins Radio Company
Color Television, Inc. 186A \(.33 A\) Communication Measurements Lab., Inc.I86A Communication Products Co . Communications Equipment \(C O\). 192A ...195A Content, Edward J. Convair, Div. General Dynamics Corp. (Empl.)
.......145A, 167A
Cornell Aeronautical Lab., Ine. (Empl.) I78A
Cornell-Dubilier Electric Co. Cover 3
Cornish Wire Co., Inc.
...I38A
Cosmic Condenser Co. 190A
Crosby Laboratories, Ine. .196A Crosley Div. of Avco Mfg. Corp. (Empl.) Crucible Steel Co. of America

\section*{Daven Company}

Daystrom Instrument Div.
Detectron Corporation
Donner Scientific Co.
Allen
8.

DuMont Laboratories, Allen B. (Empl.)
Dyna-Empire, Inc.
ESC Corporation
Eitel-McCullough, Ine
Electrical Industries
Electro-Impulse Laboratory
Electro-Motive Mig. Co., Inc.
Electro-Pulse, Inc.
Electro-Pulse, Inc.
........ Elk Electronic Laboratories, Inc Elk Electoners Research Laboratories (Empl) Emerson Research Labora Corp. 57 A Empire Devices Products Corp. Engineering Associates Engineering Research Associates, Div. Remington Rand, Inc. (Empl.)
Erie Resistor Corporation
F-R Machine Works, Inc.
\(.111 A\)
Farnsworth Electronics Co.
\(.29 A\)
Farnsworth Electronics Co. (Empl.)
152A
Fast \& Company, John E.
Federal Telephone \& Radio Co.
. IIA
100A Ford Instrument Co., Div. of Sperry Rand Corp. 80A Frederick Research Corporation 196A Freed Transformer Co., Inc.
.47A
Garfield Wire Div., The Overlakes Corp.I12A Garrett Corporation, AiResearch Mis. Co. Division (Empl.)
General Aniline Film Corporation, Antara Chemicals Div.
General Ceramics Corporation
\(.85 A\)
General Ceramics Corporation3A General Electric Co., Capacitor Sales Div. 19 A General Electric Co. (Empl.)162A, 171A, 180A General Electric Co., Tube Dept.74A.75A General Motors Corp., A C Spark Plug Div. ... 168 A General Precision Laboratory, Inc. (Empl.) ...I52A General Radio Co.Cover 4
 Giannini \& Co., Inc., G. M. .. Gulton Industries, Inc. 97 A

Hammarlund Mfg. Co., Inc. .51 A
Hammarlund Mfg. Co., Inc.
Heath Company 78A

Helipot Corporation
Heppner Mig. Co. .25A

Hewlett-Packard Company
9A, 45A
Highland Engineering Co.
Hoffman Laboratories, Inc.
Hogan Laboratories, Ine.
Huggins Laboratories
Hughes Aircraft Company Hughes Research \& Development Labs (Empl.)
. I61A
Hycon Eastern, Inc.
\(.62 A\)
Hycon Mig. Co., Inc. 90 A
Hycor Company, Ine.
Ilifie \& Sons, Ltd.
Institute of Radio Engineers, Inc. 140.141A. 189A

\title{
. . . through \\ EXPERIENCE
}
to Fit Your Needs

Station WOAY-TV is an ex. ample of how TOWER'S engineering and experience can solve your unusual tower problems. This 600 h . lower supports an 83 ft . TV antenna, an FM anten. na, an \(8 \mathrm{tt} \times 12 \mathrm{th}\) Microwave Passive Reflector, and serves as an \(\mathbf{A M}\) radiator. From coast to coast you'll find installations where TOWER'S "know how" has paid olf.

MICROWAVE TOWERS and REFLECTORS

Pioneers in Microwave 1owers and reflectors. TOWER Microwave Passive Rellectors are used by the U. S. Government, Bell Telephone System and lead. ing manulacturers. For sliength. dependability and service... you can ccunt on TOWER.

Construction Co. siòux city, iowa

\section*{DISPLAY ADVERTISERS}
\begin{tabular}{|c|}
\hline \multirow[t]{4}{*}{International Automation Exposition International Electronic Research Corp. International Rectifier Corp.} \\
\hline \\
\hline \\
\hline \\
\hline
\end{tabular}

Johns Hopkins University, Applied Physics Lab. (Empl.) I52A, 166A
Johns Hopkins University, Operations Research Office (Empl.) 17
Johns Hopkins University, Radiation Lab. (Empl.)
Jones Div., Howard B., Cinch Mfg. Corp.78A
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Kahn, Leonard R. 196} \\
\hline Electric Compan & \\
\hline \multicolumn{2}{|l|}{Keariott Co., Inc. .} \\
\hline \multicolumn{2}{|l|}{Kearfott Co., Inc., Western Mfg. Div.} \\
\hline \multicolumn{2}{|l|}{Kennedy \& Co., D. S.} \\
\hline \multicolumn{2}{|l|}{Kip Electronic Corp. .} \\
\hline \multicolumn{2}{|l|}{Kollsman Instrument Corp.} \\
\hline \multicolumn{2}{|l|}{Kollsman Instrument Corp. (Emal.) .} \\
\hline \multicolumn{2}{|l|}{Laboratory for Electronics (Empl.)} \\
\hline \multicolumn{2}{|l|}{Lapp Insulator Co., Inc.} \\
\hline \multicolumn{2}{|l|}{Lavoie Laboratories, Inc.} \\
\hline \multicolumn{2}{|l|}{Lee, Arnold S. J. \& Morris, Kenneth B.} \\
\hline \multicolumn{2}{|l|}{Lenkurt Electric Co., Inc. (Empl.)} \\
\hline \multicolumn{2}{|l|}{Librascope, Inc.} \\
\hline \multicolumn{2}{|l|}{Link Aviation, Inc. (Empl.)} \\
\hline \multicolumn{2}{|l|}{Little Falls Alloys, Inc.} \\
\hline \multicolumn{2}{|l|}{Lockheed Aircraft Corp. (Emp.)} \\
\hline & \\
\hline
\end{tabular}

Magnetics Inc. 10 A
Maigne Co., O. J. 132A
Mallory \& Co., Inc., P. R.8A, 109A
Marconi Instruments, Ltd.IIOA
Marion Electrical Instrument Co........88A, 136A
Martin Co., Glenn L. (Empl.)I53A
Measurements Corporation40A, 196A
Melpar, Inc. (Empl.)
1601
Microdot Division Felts Corp
Microwave Associates, Inc.
881

Microwave Consultant 1984

Mid-Century Instrumatic Corp. 124
Midiand Mfs. Co. Inc.
Midwest Reszarch Institute (Empl.) 154A
Millen Mfg. Co., Inc., JamesI20A
Model Engineering \& Mig. Co., Inc., Tru-Ohm Products Div.
Mullard Overseas Limited129A
Murray, Jr. Howard J. 196A
Mycalex Corporation of America98A
N.R.K. Mfg. \& Eng. Co. 88A

National Cash Register Co. (Empl.)160A
National Company (Empl.)I82A
Nems-Clarke, Inc.I88A
New London Instrument Co...70A, 100A, 118A, 190A
New York Engineering Co.194A
Norden-Ketay Corporation (Empl.)165A
North Electric Mig. Co.68A
Northern Radio Company, Inc.II3A

Offner Electronics, Inc. I24A
Ohmite Mfg. Co.71A
Olympic Radio \& Television, Inc. 196A
Oster Mfg. Co., John
Ostlund, Evert M.

gTays put-No wobble; no shift during shipment; no realignment necessary when your TV set is installed in the home.
EASILY ADJUSTED-Slides more uniformly over tube's neck due to metal-to-glass contact.
stabilized and tested on special equipment designed and used only by Heppner, each individual Heppner Ion Trap is guar anteed to meet your working requirements. UNUSUALLY FAST DELIVERY

Lightweight-Snap-On Model weighs only \(1 / 2\) ounce; Slip-On Model only \(3 / 5\) ounce. Will not harm tube's neck.
aLnico p.m. USED-Retains magnetism indefinitely.

SNAP-ON ION TRAP

MODEL E-437. Saves you expensive production manhours with exclusive instant snap-on feature. Reduces your parts costs because priced below competition. Clamp-type construction of Hardened Spring Steel.

Write today for further information on better ion traps at lower prices.

Representatives: 3451 N. 10 th St. Phlladelphla 40
 penna.
R.R. Whatey, Indlana Coldwater Rd., Ft Irvayne 8. Indiana

Calir.
John E. \({ }^{\mathbf{J}} \mathbf{4} 2\) Kopple \({ }^{\text {Kit. }}\), New York 17, N.Y.
Gen H . Tollefson
144 Collingsworth Drive, Rochester 10

Brittle glass is fast being replaced by Chemelec Components, made with duPont Teflon, which permit compression mounting directly into punched chassis without additional hardware, facilitateminiaturization, greatly reduce assembly costs, withstand shock and vibration in service, are unsurpassed for high frequency, high voltage, high temperature service.

And Teflon Insulated Components are now competitively priced with those of lesser quality-due to simplified manufacturing techniques, mass production methods and declining material costs. Investigate "price-wise", too.

Nineteen stock sizes of Chemelec stand-off and feed-through insulators, including sub-miniatures. Other dimensions feasible. Write for Chemelec Bulletin No. EC-1153.

\section*{Fluorocarbon Products, Inc. Division of UNITED STATES GASKET COMPANY \\ Camden 1, New Jersey}

Representatives in principal cities throughout the world

\section*{DISPLAY ADVERTISERS}

Pickard \& Burns, Inc.
196A
Pickles, Sidney 196A
Polarad Electronics Corp.6A-7A, 81A
Polytechnic Research \& Dev. Co., Inc.36A
Precision Apparatus Co., Inc.197A
Precision Paper Tube Co. . 106A
Pyramid Electric Co. . 101 A

Radio Corp. of America (Empl.) 158-159A
Radio Corp. of America, Tube Dept.
. 96A
Radio Engineering Products Limited130A
Radio Materials Corporation
Radio Receptor Co., Inc.135 A
Ramo-Wooldridge Corp. (Empl.)I57A
Raytheon Mig. Co. (Empl.) I79A
Raytheon Mfs. Co., Equipment Marketing Div. 77A Raytheon Mfg. Co., Pover Tube Div.17A
Raytheon Mfg. Co., Spesial Purpose Tube Div.
.22A-23A, 27
Remington Rand, Inc., Div. of Sperry Rand
Corp. .. 20 A
Remington Rand, Inc., Div. of Sperry Rand
Corp. (Empl.) 170 A
Republic Aviation Corp. (Empl.)150A, I63A
Revere Copper \& Brass Incorporated59A
Robertshaw-Fulton Controls Co.182A
Rosen Eng. Products, Inc., RaymondI12A
Rosenberg Associates, Poul .196A
Rutherford Electronics Co.
Sanborn Company91A
Sandia Corporation (Empl.)173A
Sangamo Electric Co.56A
Secon Metals Corporation102A
Shallcross Mfg. Co.66A
Shasta Division, Beckman Instruments, Inc. .. I10A
Sierra Electronics Corparation58A
Sorensen \& Company 50 A
Sparton Radio \& TV Div., Sparks Withington
Co. (Empl.)
162A
Speer Carbon Co., Speer Resistor Div.I31A
Spencer-Kennedy Laboratories, Inc. 46 A
Sperry Gyroscope Co., Div. of Sperry Rand
Corp. (Empl.)
151A
Sprague Electric Co.IA, 105A, 198A
Stackpole Carbon Co.73A
Stavid Engineering, Inc. (Empl.)|56A
Steafix .. 37 A
Stoddart Aircraft Radio Co., Inc. - . 44A, 108A
Stromberg-Carlson Co. (Empl.)168A
Stupakoff Ceramic \& Mfg. Co60A
Superex Electronics Corp.
Superior Tube Company . 70A
...........28A
sit Industries, Inc.
Sylvania Electric Produc.ts Inc. .184A .142 A Sylvania Electric Products (Empl) -......31A
Sylunia Electric Products Inc. (Empl.) 183A
Synthane Corporation ...
Syntronic Instruments, Inc.
Tektronix, Inc
Telrex, Inc.
133A
Texa 1nc................................ 196A
Thas35A, 103 A
Thomas \& Skinner, inc.64A
Tower Construction Co.198A
Tracerlab, Inc.162A
Transitron Electronic Cowp.79A
Transradio, Ltd. 46A
Tru-Ohm Products Div., Model Eng. \& Mfg.
Co.
.61 A

Waterman Products Co., Inc. B3A
Western Gold \& Platinum Works
114A
Westinghouse Electric Corp. (Empl.) .. 148A, 176A Wheeler Laboratories, Inc. 196 A
Wickes Engineering Construction Co. 86A

Charting the course of the future in the manufacture of capacitors has always been the practice at Cornell-Dubilier. Proof of this leadership is that capacitor developments originated at C-D invariably become the standards of comparison for the entire industry.

low voltage dry electrolytic capacitors.

\section*{C•D... 45 YEARS OF FAMOUS FIRSTS}

Typical of these "famous firsts" are the three examples shown here ... proof that whatever your capacitor requirements may be, your needs can be filled by C-D. Write to Cornell-Dubilier Electric Corp., Dept. M-95. South Plainfield, N. J.

OONSISTENTLY EPENDABLE
Corneil.Dubiller capacitors

\section*{FIRST-}

Measures Impedance . . .

\author{
from 0 to \(\infty\) ohms balanced or grounded positive or negative at any phase angle over 20 -cps to \(20-\mathrm{kc}\) range
}

The Type 1603-A Z-Y Bridge is the latest addition to the G-R line of precision impedance-measuring apparatus.

This Universal Z-Y Bridge will measure any impedance - from short circuit to open circuit, at small or large phase angle, and with a basic accuracy of \(1 \%\) over most of this very wide range. Quadrature components of impedance, R \& X or G \& B, are measured directly at calibrated \(100 \mathrm{c}, 1 \mathrm{kc}\) and 10 kc bridge positions. Measurements at other frequencies over the 20 to 20,000 cycle range are made simply by multiplying reactance \(X\) or susceptance \(B\) readings by a factor which takes into account the difference between operating frequency and frequency setting of the Bridge selector switch.
The ability to measure impedances of any magnitude and with good accuracy with the same instrument can be an extremely valuable asset in many measurement situations. The Z-Y Bridge can be used by chemists for measuring conductivity of liquids in dielectric cells as readily as it can be used for ordinary R-L-C component measurements in the laboratory or production-test department. It will measure . . . open-and short-circuit transformer parameters . . . impedances of batteries and electrolytic capacitors . . . characteristics of audio-transmission networks . . . motional impedance of electro-acoustic transducers... Q and resonant frequency of chokes . . . and impedances of feedback loops, since negative real parameters are directly measured.

The Bridge also can be used to determine cable-fault locations and circular-arc plots of liquids or solids having lossy polarizations in the audio-frequency range. These are but a few of the countless applications for this unique and versatile device. You name it - this \(Z-Y\) Bridge can probably measure it!

\section*{SPECIFICATIONS}

Frequency Range - 20 cycles to 20 kc Impedance and Admittance Range -
\(\mathrm{R}: \pm 1000\) ohms
G: \(\pm 1000 \mu\) mhos
\(\mathrm{X}: \pm 1000\) ohms \(\quad \mathrm{B}: \pm 1000 \mu \mathrm{mh}\) h

Accuracy -
Ror \(\mathrm{G}: \pm(1 \%+[1\) ohm or \(1 \mu \mathrm{mho} \mid)\)
X or B: \(\pm\left(1 \%+\frac{E_{0}}{f}\right.\) ohm or \(\left.\frac{f}{f_{0}} \mu m h o l\right)\)
\(f\) is operating frequency, \(f_{0}\) is frequency setting of panel selector switch
Impedarices of less than \(100 \Omega\) (or \(100 \mu\) mhos) can be measured on "Initial Balance" dials with considerably greater accuracy -

Ror \(\mathrm{G}: \pm\left(1 \%+\left[0.2 \mathrm{f}_{0}\right.\right.\) ohm or \(\left.0.2 f \mu \mathrm{mhol}\right)\)
X or \(\mathrm{B}: \pm\left(1 \%+\left[0.2 \frac{2}{\mathrm{f}}\right.\right.\) ohm or \(\left.0.2 \frac{f_{0}}{f_{0}} \mu \mathrm{mhol}\right)\)

Maximum Applied Vottage - 150 volts, rms Accessories Recommended -

Type 1210-B Unit R-C Oscillator and Type 1212-A Unit Null Detector

\section*{Accessories Supplied -}

2 Shielded Cables for generator and detector
Dimensions- \(121 / 2^{\prime \prime} \times 1312^{\prime \prime} \times 812^{\prime \prime}\)
Net Weight - \(211 / 2 \mathrm{lbs}\).
Type 1603-A Z-Y Bridge - \(\$ 335.00\)```

[^0]: SPRAGUE ELECTRIC COMPANY - 235 MARSHALL ST. • NORTH ADAMS, MASS.

[^1]:

[^2]: Name
 Address
 City __Z_Z__ Sone___

[^3]: ENGINEERS
 of unusual abilities can find a future at FORD INSTRUMENT COMPANY. Write for information.

