

FIRST CHOICE FOR RELABILITY

Designers of complex military and industrial equipment fully appreciate the need for extremely reliable components. For over a decade, UTC has been devoting constantly increasing manpower and dollars in the search for increased transformer and filter dependability. Investigation and analysis have been related to
the life testing of large numbers of units to failure, plus thousands of wire-insulation-impregnant-potting and encapsulating systems. This program has resulted in proven materials, methods of structure and full quality controls which assure in UTC units an overall degree of reliability unequaled in our industry.

Special Units to Your Specifications or 1000 Stock Items \ldots. with UTC
 High Reliability

February, 1960

published monthly by The Institute of Radio Engineers, Inc.

Proceedings of the IRE

conlents

Poles and Zeros 145
John N. Dyer, Vice President, 1960 146
Sconning the lssue 147PAPERS PERCOS—Performance Coxling System of Merbock and Device ("sed for Meaturnment andControl, Erruest A. Kellor148
 156
 164
Correction to "A New Method for Sturying the Suroritl lomosplere L'sing liarth Satellites," R. Parlhasaralla', R. I'. Basher, and R. N. Dnd ill 164
 Pulse Kitar. D). (). . Meroy and /I. T. Closson 165
 169
Reliabilitu . Analysis Tecluidues, Charhes .1. Krohn 179
A Stabilized I.ocker-()scillator Frequetcy Invieler, /'hilip K. Scoll. Ir. 192
Corrections to "Experiment Imbicating Generation of Submillimetre Witves by an Avalatmelmen Semicomductor," and "linther Notes on Indicated Cient"ation of Submillimeter Wives by an 200
IRF: Stambards on Television: Measurement of l)ifferential (batu and 1)ifferential Pláase, 1060 201
Compandor [.oading amd Soise Tmprovement in Vrequency Tivision Multiplex Radio-Kelay Sys- tems. l:ilul . M. Rizsomi 208
 colul, C. Cmolik, and /I. Iaffe 220
Firther Consideration of Palk Lifetine Deaturentent with a Mictowate Filectrodeless Teclungue, /I. Jacobs, A. I'. Ramsia, and F. .A. Brand 229
 234
CORRESPONDENCE UIIV Stambard Frexucney. Transmissions, National Burcau of Slandards 239
P'anametrit ()scillations with Joint Comat Diodes at Frequencies Higher than Pumping lore- (ucucies, I. (* K゙ib/r 239
On the Frequency I Mependence of the Másuitude of Common-Tmitter Current Gäth of Guated- 240
A Simnle Techuinue for Measuring the Signal-to-Noise Ratio at the Output of a Pulsect Simusoid Mitcled Filter, //. I:. il hild 24
The Kelliability Functions. I. $/$. Colley 242
 243
 244
 245
Noise 「emurerature in a Roular System. 1/. IV. Crimm 246
Surbace Kesistance of Commonted Comductors, Toshio Ihosono 247

By spreading one conductor of a two-wire transmission line so that it gradatly encircles the other conductor, engineers at the Collins Radio Company have developed a very-hroad-hatul bilun transformer for matching a two wire line to a coavial line over a 10 -to- 1 frequency range. Shown is an artist's conception of the device, which is described on page 156

published monthly by The Institute of Radio Engineers, Inc.

Proceedings of the IRE"

conlinuted
The Electromagnetic Energy Stored in a Dispensive Medium, T. Hosono and T. Ohira 247
Emitance Properties of Nonreciprocal Networks, A. W. Kecn 248
A System of Nonuniform Transmission Lines, H. Kurss and W. K. Kahn 250
TM Vaves in Sulmillimetric Region, C. A. Marin and A. E. Karboaiak 250
Efficient Ilamonic Generation, G. Franklin . Montgomery 251
A Note Regarding the Mechanism of UHF Propagation Beyond the Horizon, A. D. Watt, E. F. Florman, and R. W. Plush 252
LTunsual Propagation at 2.500 KC , Raphacl Soifer 253
Generalized Energy Relations of Nonlinear Reactive Elements, Chai Yel 253
$P-N-I$ Variable Capacitance Diodes, I. F. Gibbons and G. J.. Pearson 253
Some Possible Causes of Noise in Adler Tuhes, C. P. J.ca-W'llson, R. Adlor, G. Hrhek, and G. IV adi 255
A New Concept in Comphting, Richard I.indaman 257
A S/S Improvement Factor on P.AM-F.M Whose Received Pulse is Cosine-Squated. . Akinori Watanabe 257
The Efficiency of 100 Per Cent luspectiom, Charles R. Toye 259
Ferromagnetic Implifiers, .4. F. //. Thomson 259
A Tmable X-Band Ruby Maser, l^{\prime}. I). (Ganino and F. I. Dominick 260
Frequency Response of the Two-to-One Autotransomer, T. R. O'Miara 260
On the U'se of Plysical Rather Than Four-Pole Parameters in a Standard Transistor Specifica- tion, D. F. Page 261
Effect of Initial Stress in Vibrating Quatrt Plates, -1. D. Ballato and R. Rochmam 261
Some Rounds on the Frror in the L'nit Jmpulse Response of a Network, P. M. Chirlian 262
On the Performance of a Class of llybrid Tubes, S. V. Vodoralli 263"Soldering Manual," edited by AWS Committee on Brazing and Soldering, Reviowd byRalph R. Batifher...267
"Microwave Data Tables," by A. E. Booth, Reviored by Seymom R. Colm 267
"Molern Flectronic Components," by (i. WV. A. Dummer. Reairied by Alfred R. (impl 267
Scamming the Transactions 268
ABSTRACTS Abstracts of IRE Transactions 269
Abstracts and References 274
IRE NEWS AND NOTES Calendar of Coming Events 14A
I'rofessional Group News 18 A
Obituary 20A
1959 IRE. National and WIESCON (Ontention Records 22A
DEPARTMENT5 Contributors 264
For ther departments see advertising index 196A
REVIEWS Books:

BOARD OF DIR1:C"TORS, 1960
*R. I. McFarlan, President

1. A. Rateliffe, Vice-President
*V. N. Dyer Vice-President
*H. R. B. Baker, Treasurer * Haraden Pratt, Secrefary F. llamburger, Ir.. İditor
*D. C. Fink
Cenior Past President
Junior Past President

1960

A. P. 11. Barclay (R8)
*L. V. Berkner
(i, S. Brown
A. N. Goldsmitl
P. F. Haggerty H. F. Olsen (R2) A. II. WVaynick (R4)

1960-1961
C. W. Carnalan (RT)
13. 1. Dasiler (R3)
B. F. Dastier (R3
R. Fi. Moe (R5)
I. B. Ku*sll], Ir. (RI)

1960-1962
W. G. Shepherd
G. Sinelair
*Execulive Commiltee Members

George Iv. Bailey
John 13. Buckley, Chief Accountam
Laurence G. Cumming. Techuical Serretary
Emily Sirjane, office Manager

ADVFRTISING; DEP.IRTMIKNT
William C. Copp, Adertising Manager
Lillian Petranek, 4 ssistonf Adterising Manager

EDITORIAL DEPARTMENT
Alfred N. Goldsmith, Editor Emerifus
F. Hamburger, Ir., Edifor

Helene Frisehaner, A ssociate Editor

EDITORIAL ROARD
F. Ilamburger. Ir., Chairman
A. 11. Wayniok, V'ice-Chairman
F. K. Gatmmett
T. A. Hunter
I. D. Ryder
C. K. Teal

Kiyo Tomiyasu

 in triplicate to the Editorial Department. Responsibility ior contents oi papers published rests upon the authors, and not the ikl: or its nembers. All republication rights, including translations, are reserved by the IRF and granted only on request. Abstracting is permitted with mentian of sonrce.

Thirty days advance notice is required for change of address. Price per copy: members of the Institute of Radio Finginewre, one additional copy $\$ 1.25 ;$ non-menbers $\$ 2.25$. Yearly subscription price: $t 0$ members $\$ 9.00$, one additional subscription $\$ 13.50 ; 10$ non-members in United States, Cauada, and U. S. Possessions $\$ 18.00$, to non-members in foreign countries $\$ 19.00$. Second-class postage paid at Menasha, Wisconsin under the act of March 3 , 187%. Acceptance ior mailing at a special rate of postage is provided for in the act of February 28, 1925, embodied in Paragraph 4, Section 412. P. L. and R., authorized October 26. 1927. Printed in U.S.A. Copy right (c) 1960 by the Institute of Radio Engineers, Inc.

ON DISPLAY FOR
 NEW IDEAS In RADIO-ELECTRONICS . . 1960 !

 Year after year, the IRE NATIONAL CONVENION AND RADIO ENGINEERING SHOW gets bigger! That's because you and your gigantic radio-electronics industry are surging ahead with NEW IDEAS and remarkable speed to make the Space Age the most exciting time in which to live.That's why it takes all 4 floors of New York's great Coliseum to show what your industry is doing Takes 950 exhibitors...takes over 200 papers. takes over 60,000 of your co-workers to view the impressive sight.

If you're not at the IRE CONVENTION AND SHOW this year you'll miss a once-a-year opportunity unequalled in your industry to see progress in action. Plan to be at the Coliseum to see...to hear about...the NEW IDEAS IN RADIOELECTRONICS. 1960!
the IRE NATIONAL CONVENTION Waldorf-Astoria Hotel and The RADIO ENGINEERING SHOW Coliseum, New York City The Institute of Radio Engineers 1 East 79th St., New York 21, N. Y.

Recently, dispersive networks in which the time delay is a linear function of frequency have assumed considerable importance in certain electronic applications. In their patents, Caver ${ }^{1}$ and Darlington ${ }^{2}$ show how these networks make it possible for a long pulse of low peak power to do the work of a shorter pulse having much higher peak power. When we are limited in the peak power we can produce, the advantage of these networks is obvious. This month Warren White, Consultant in our Research and Engineering Division, discusses another application of these networks in which the advantage gained has nothing to do with peak power limitations.

RAPID - FREQUENCY SCANS

Consider a conventional panoramic receiver. Assume that the rate of change of frequency of the sweeping oscillator will be fixed by the requirement that we must cover a certain band n times per second. We now ask ourselves. "What should the IF bandwidth be to obtain the best resolation?" If the IF band is very narrow, the output pulse is essentially just the transient response of the IF amplifier. and its duration will be inversely proportional to the bandwidth. We find that. in this region. the resolution improves as we widen the band. On the other hand. if the band is very wide. the output pulse is simply a trace of the pass-band characteristic, and its duration is proportional to the bandwidth. In this region, the resolution deteriorates as we widen the bandwidth. Clearly there is an optimum bandwidth between these extremes. Figure 1 illustrates the case for a Gaussian-shaped pass band. For other types of pass band. the details will be different. but the general shape of the curve will be the same

The curve of Figure I was plotted for a sweep rate $f=1 \mathrm{Mc} / \mu \mathrm{sec}$ and shous that optimum resolution occurs when the If bandwidth is about $0.664 \mathrm{Mc}(3 \mathrm{db})$ and that the resolution obtainable is about 0.94 Mc. What happens if this resolution is not good enough? What can we do if the problem requires a resolution of, siy, 0.25 Mc? In the past, the only answer has been that we must slow down the sweep rateaccepting either a lower rate of scan or a smaller coverage. In the example just cited. to improve the available resolution to 0.25 Mc would require the sweep rate to be slowed down by a factor of about 14 : 1, meaning that we must either scan $1 / 14$ as often or cover only $1 / 14$ of the band with one receiver.

The anomalous part of this situation is the fact that, in the right-hand region of Figure 1. the output pulse duration increases as we increase the bandwidth. As we increase the bandwidth, we should be able to increase the output data rate-but in fact the reverse is true. Lets see how this situation can be corrected. In Figure 2. a time vs frequency diagram. the signal coming out of the mixer is represented as an oblique straight line (frequency varying linearly with time). Roughly speaking. the output pulse duration is from the instant the signal frequency enters the IF pass band until the instant it leaves. The wider the bandwidth. the wider the output pulse will be. Suppose. however. that we introduce a network having a dispersive time delay. The network is arranged so that signals at the low end of the band are delayed T_{1} seconds, and the signals at the high end of the band are delayed t. seconds. The result is that the low-frequency

Fwite 1
part of the signal emerges from the network simultaneously with the high-frequency part. The spectrum of the output now has the shape of the IF pass band. and the phase is a linear function of frequency corresponding to a uniform time delay. In consequence, the resolution continues to improve as the bandwidth is widened. as indsated by the dotted line of Figure 1.

The improvement in resolution obtained in this way is not obtained without paying a price-the complexity of the network required. This complexity is a function of the "compression ratio" or the ratio of uncorrected resolution banduidth to corrected resolution bandwidth. To achieve $0.25-$ Mc resolution at $1 \mathrm{Mc} / \mu \mathrm{sec}$ sweep rate. we need a bandwidth of 1.765 Nc: at this bandwidth. the uncorrected resolution is 1.783 Mc . The required compression ratio is then $1.783 / 0.25$ or 7.132 . This is a fairly modest requirement as such networks go. Depending on the tolerance specifications. the requirement can be met by a lumped-constant network having 18 or 20 all-pass sections. The cost of this network is to be compared with the cost of 14 receivers 10 cover the same band.

Figure 3 is a scope photograph shouing results obtained with a breadhoard setup. The dispessive network consisted of 24 allpass sections and was designed to provide a compression factor of about $10: 1$ for signals sweeping at a rate of $1 . \mathrm{Mc} / \mathrm{usec}$. No particular pains were taken to adjust

the netuork preciselv, and its performance is far from optimum. The top line is a 2 Mc sine wave. which serves as a timing reference: the second line is the IF signal at the input to the network: the third line is the network output signal. The signal being analyzed is amplitude-modulated at 0.5 Mc. The sidebands are clearly resolved at the outpu! of the network. The signal is being overmodulated somewhat, as evidenced by the fact that the carrier amplitude is roughly equal to that of the sidebands. and higher-order sidebands are visible. For this sweep speed. the optimum resolution without the network would be about J Mc whereas the resolution actually achieved appears to be about 0.25 Mc.

References

1. Wilhelm Adolph Eduard Catuer. German Patent \#892772.
2. S. Darlington. U.S. Patent $\mp 2.678 .997$.

A complete bound sef of our third series of arficles is available on request. Write to Harold Hechtman at AlL for your set.

HIGH-SPEED, HIGH-GAIN MICRO-ALLOY TRANSISTORS for modern computer circuitry

Types 2N393 and 2N1122 Micro-Alloy Transistors combine high gain with excellent high frequency response to meet demands of high-speed computer switching applications in the megacycle range. Low saturation resistance, low hole storage, and exceptionally good life characteristics make these micro-alloy transistors top performers in general high frequency applications and computer circuits.

Made by electrochemical manufacturing techniques, Sprague Micro-Alloy Transistors are uniformly reliable, as well as reasonably priced for transistors with such excellent operating parameters.

All Sprague transistors-micro-alloy, micro-alloy diffused base, and surface barrier types-are now produced in Sprague's completely new spotless semiconductor facility.

For engineering data sheets on the types in which you are interested, write Technical Literature Section, Sprague Electric Company, 235 Marshall Street, North Adams, Massachusetts.

Sprague micro-alloy, micro-alloy diffused base, and surface barrier transistors are fully licensed under Philco patents. All Sprague and Philco transistors having the same type numbers are manufactured to the same specifications and are fully interchangeable. You have two sources of supply when you use micro-alloy and surface barrier transistors!

Other popular SPRAGUE transistors

SB MIt GENERAL PURPOSE (MIL-T-19500/9)

FOR COMPUTER SWITCHING

2N344/58101
FOR MEDIUM GAIN AMPLIFIERS

2N345/SB 102
FOR HIGH GAIN AMPLFIERS

2N346/SB103
FOR HIGH FREQUENCY OSCILLATORS

MADT FOR ULTRA.HIGH SPEED SWITCHING

SPRAGUE COMPONENTS:

TRANSISTORS - RESISTORS • MAGNETIC COMPONENTS • CAPACITORS•INTERFERENCE FILTERS•PULSE NETWORKS - HIGH TEMPERATURE MAGNET WIRE - CERAMIC-BASE PRINTED NETWORKS•PACKAGED COMPONENT ASSEMBLIES

Jacques Bernoulli, the great Swiss mathematician, pondered a question early in the 18th century. Can you mathematically predict what will happen when events of chance take place, as in throwing dice?

His answer was the classieal Bernoulli binomial distri. bution-a basic formula in the mathematies of probability (pullished in 1713). The laws of probability say, for instance, that if you roll 1.50 icosahedrons the 20 -faced sulid shown above), 15 or more of them will come to rest with side " A " on top only about once in a hundred times.

Identical laws of probability govern the calls coming into your local Bell Telephone exchange. Suppose you are one of a group of 1.50 telephone subscribers, each of whom makes a three-minute call during the busiest hour of the day. Since three minutes is one-twentieth of an hour, the
probalility that you or any other subseriber with be busy is 1 in 20 . the same as the probability that side " A " of an icosahedrom will be on top. The odds against 15 or more of you talking at once are again alout 100 to 1 . Thus it would be extravagant to supply your group with 150 trunk circuits when 15 are sufficient for good service.

Telephone engineers discovered at the turn of the century that telephone users obey Bernoullis formula. At Bell Telephone Laloratories mathematicians have developed the mathematics of probability into a tool of tremendous economic value. All over the Bell S :stem, the mathematical approach helps provide the world's finest telephone service using the least possible equipment. The achievements of these mathematicians again illustrate how Bell Laboratories works to improve your telephone service.

BELL TELEPHONE LABORATORIES
IVorld center of communications research and development

BLUE JACKET

VITREOUS ENAMEL-PROTECTED, POWER WIREWOUND RESISTORS.
Send for Bulletins: 7410-A (Axial Lead), 7400-A (Tab Type)

CERAMIC INSULATED=SHELL, POWER WIREWOUND RESISTORS.

Send for Engineering Bulletin: 7300-A

PERMASEAL

CAST EPOXY HOUSING, PRECISION WIREWOUND RESISTORS.

Send for Engineering Bulletin: 7500

SPRAGUE RESISTORS

PRECISION CARBON FILM RESISTORS.
Send for Bulletins: 7000 (Molded shell), 7010-B (Ceramic shell)

SPRAGUE ELECTRIC COMPANY 235 Marshall Street North Adams, Mass.
SPRAGUE COMPONENTS: RESISTORS - CAPACITORS - MAGNETIC COMPONENTS - TRANSISTORS INTERFERENCE FILTERS • PULSE NETWORKS • HIGH TEMPERATURE MAGNET WIRE - PRINTED CIRCUITS

TRANSISTORIZED POWER SUPPLY

Highly Regulated 4-36 VDC Output At 0-500 MA

This remarkably compact transistorized power supply provides a highly regulated continuously variable output for all battery voltage ranges. Despite its low cost, it has a number of outstanding features which result in rugged performance and convenience of operation.

There is a vernier control which permits fine adjustment of the output voltage. Outputs are isolated, and either terminal may be grounded, or units can be "stacked" for higher voltage operation. Thermostatic monitoring of the transistor base temperatures prevents thermal run-a-way and damage to the unit or external circuit. A unique current limiter circuit protects against transient overloads. The current limiter is also continuously adjustable which permits pre-set currents to be fed to the external circuitry. The unit is equipped with a front panel meter for monitoring both the output voltage or output current.

Additional features include low power consumption, light weight and accessible location of all components.

SPECIFICATIONS:

Model Designation
Output Voltage
Output Current
Load Regulation
Ripple

IR436M
4.36 VDC (divided into 4 ranges)
-500 milliamperes
Less than 0.15% or 15 millivolts change or 105-125 VAC input, $60-400 \mathrm{cps}$ Less than 0.05% or 15 millivolts change, ess than 2 millivolts
(8)Reg. U.S. Pat. Off

ELECTRONIC RESEARCH ASSOCIATES, INC.
67 Factory PI., Cedar Grove, N. J. • CEnter 9-3000

- As a service both to Members and the indusiry, we will endeovor to record in this column each month those meetings of IRE, its sections and professional groups which include exhibits.

Δ

March 21-2d, 1960
IRE 1960 Internatinnal Convention and Ensineering Show, Waldorf-istoria Hotel and New York Coliscum, New York, N.Y.
Exhihits: Mr. William C. Copp. Instıute of Radio Engineers, 72 West 4.5 th St., New York 36. N.Y.
April 3-8, 1960
Sixily Nuclear Conmess, New York Coliscum, New York, N.Y.
Exhibits: Mr. F. M. Howell. c/o EJC, 29 W. 39th St., New York 18, N. Y.

April 20-22, 1960
SWIRECO, Southwestorn IIRE, Regional Conference \& Electronics Show, Shamrock-Hilton Hotel, Houston, Texas.
Exhibits: Mr. A. D. Scixas, SWlRECO, 1’.O. Box 22331, llouston, Texas.

May 2-4, 1960
National Aeronautical Electronica Conference, Dayton Biltmore Horel, Dayton, Ohio.
Exhibits: Mr. Edward M. Lisowski, General I'cecision Lab., Inc., Suite 452, 333 West First St., Dayton 2. Ohio.
.1/ay 2-6, 1960
Western Jaint Compnter Conference. Fairmont Hotel, San Francisco, Calif.
Exhibits: Mr. H. K. Farrar, Pacific TM. \& Tel. Co., 140 New Montgomery St., San Franceso 5, Calif.
Ma) 2+26, 1960
Seventh Resional Technical Conference \& Trade Show, Olympic Hotrl, Seathle. Wash.
Exhibits: Mr. Rush Drake. 1806 Bush Place. Sattle 4. Wash.
1/ay 24-26, 1960
Armed Forces Commmonications \mathbb{N} Electronies Association Convention and Exhibit, Sheraton-l’ark Hotel, Washington. D.C.
E.thibirs: Mr. William C. Copp, 72 West 45 th St., New York 36, N.Y.
June 27-29, 1960
National Convention on Military Electronics, Sheraton-Park Hotel, Washington, D.C.
Exhibits: Mr. L. David Whitelock, BusShips, Electronics Div., Dept. of Navy, Washington, D.C.

August 23-26, 1960
WESCON, Western Electronic Show and Convention, Ambassador Hotel \& Memorial Sports Arena. Lus Angeles, Calif.
Exhibits: Mr. Don Larson, WESCON, 1435 LaCienega Blvd., Los Angeles, Calif.
(Continusd in page 10.4)

See these Products at the 1960 I.R.E. Convention Booth No. 2818-2820

The Most Complete Line of High Frequency Attenuators

Standard Toggle Switch Moriels, 1-101 db

- Fixed Zero or 10 db Insertion Loss
- Choice of 50, 70, or $\mathbf{9 0}$ ohm Impedance
- Improved Accuracy-Reduced Maximum Error
- High Frequency Switches-Solid Silver Contacts Sot in Teflon
- 1% Carbon Film Resistors
direct reading digital
Provides Digital Readout of Attenuation, 1-119 db

Provides Digital Readout of Altnuaion, 119 db

The three models of Kay DRD Attenuutors listed at the right hand side of the table offer the convenience of a direct-reading dial. Attenuation can be varied from 1 db to 119 db in one-dh steps by operating two rotary switches. The standard Kay Attenuators operated by six or nine togele switches are listed at the left. All models are set in lightweight cast bronze housings and offer reduced maximum total error and a negligible insertion loss.

All prices f.o.b. factory.
NOTE; Kay Aftenuafors can be made on spectal order in 0.5 db steps, and to customer's choice of insertion loss, attenuation range, and impedance rating.

SEE US AT THE IRE SHOW BOOTHS 3512, 14, 16, 18

FIRST Airborne Doppler Radar Navigation System
 with Simplified Transistor Circuitry Uses HERMES CRYSTAL FILTER

Collins DN-101 Doppler Radar Navigation System is an airborne radar transmitting and receiving system which directs three beams of X-band energy towards the earth and then accurately measures the amount of frequency change between the transmitted and reflected signals to determine the lateral, vertical, and horizontal velocities of the aircraft.
In order to eliminate an undesired leakage sideband in the Radar Sensor, a system selectivity with a very sharp cut-off on the lower frequency end of the passband had to be provided. Hermes Crystal Filter, Model 669 U, not only met this requirement by establishing the desired selectivity in the second IF amplifier but also made it possible to reduce the number of transistors in the accompanying circuit. Close cooperation between the engineering departments of the two companies contributed to the rapid solution of this critical selectivity problem. Hermes Crystal Filter characteristics. Model 669U . . . Center Frequency is 159.0 Kc . Bandwidth at 2 db is 6 Kc min . Attenuation increases from 2 db to 53 db in 8.1% of the passband. Insertion Loss is 10 db max. Temperature Range is $-40^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$.
Whether your selectivity problems are in transmission or reception, AM or FM. mobile or fixed equipment. you can call on Hermes enginecring specialists to assist you in the design of your circuitry and in the selection of filter characteristics best suited to your needs. Write for Crystal Filter Bulletin.

A limited number of opportunities is arailable to experienced circuit
designers. Send Résumé io Dr. D. I Kosowsky. designers. Send Résumé to Dr. D. I. Kosowsky.

Hermes Electronics co.

75 CAMBRIDGE PARKWAY • DEPT B - CAMBRIDGE 42. MASSACMUSETTS

Meetings with Exhibits

(Continued from page 8.4)

September 19-21, 1960
National Symposium on Space Electronics \& Telenietry, Shoreham Hotel, Washington, D.C.
Exhibits: John Leslie Whitlock Associates, 6044 Ninth St., North, Arlington 5, Va.

October 3-5, 1960
Sixth National Communications Symposium, Hotel Utica \& Utica Memorial Auditorinm, Utica. N.Y.
Exhibits: Mr. W. R. Roberts, 102 Fort Stanwix Park N., Rome, N.Y.

October 10-12, 1960
National Electronics Conference, Hotel Shernan, Chicago, Ill.
Exhibits: Mr. Arthur H. Streich, National Electronics Conference, 184 E. RandoIph St., Chicago, Ill.

October 24-26, 1960
East Coast Aeronautical \& Navigaltional Electronics Confercuce. I ord Raltimore Hotel \& Th Regiment Armory, Baltimore, Md.
Exhibits: Mr. R. L. Pigeon. Westingheuse Electric Corp.. Air Arm Div., P.O. Box 746, Baltimore, Md.
Oct. 31-Nov. 2, 1960
13ıh Annual Confercuce on Electrical Teclmiques in Medicine \& Biology, Sheratn-Park Hotel. Washinglon, D.C.
Exhibits: Mr. Lewis Winner, 152 West 42nd St., New York 36, N.Y.

Norember 14-16, 1960
Mid-America Electronics Convention (MAECON), Municipal Auditorium, Kansas City, Mo.
Exhibits: Mr. John V. Parks, Bendix Aviation Corp., P.O. Box 1159, Kansas City 41, Mo.
November 15-17, 1960
Northeast Electronics Research \& Engineering Meeting (NFREM), Boston Conunonwealth Armory, Boston, Mass.
Exhibits: Miss Shirley Whitcher. IRE Boston Office, 73 Tremont St., Boston, Mass.
December 1-2, 1960
PCVC Ammal Meeting, Sheraton Hotel, Philadelphia, Pa.
Exhibits: Mr. E. B. Dunn, Atlantic Refining Co., 260 S. Broad St., Philadelphia 1, Pa.

Δ

Note on Professional Group Meetings: Some of the Professional Groups conduct meetings at which there are exhibits. Working committeemen on these groups are asked to send advance data to this column for publicity information. You may address these notices to the Advertising Department and of course listings are free to IRE Professional Groups.

"OVER-THE-HUMP" SCATTER
 ANTENNA BY KENNEDY

hese camels have just walked a mile to view the latest 60 -fnot steel and 28 -foot aluminum antenna systems at a relay station in one of our overseas tropo scatter communications networks.

Tracking Antennas Radlo Telescopes Radar Antennas
"Trans-Morlzon" Antennas
Tropospherlc Scatter
Ionospheric Scatter

WHAT

 HASTHE 7182 S BAND MAGNETRON IN COMMON WITH THIS CAT?

A good question! According to legend, a cat has nine lives-something that has yet to be proved. The 7182. on the other hand, has a proved life 8 to 10 timesgrea ter thanany similars-Band magnetron.

The 7182 retains its remarkable stability and reliability during a life of 10.000 hours. and is one of a series of magnetrons now in production providing peak powers of 5 MW . These magnetrons operate at voltages and current densities usually associated with magnetrons rated at a fraction of the power output.

A parallel development in L-Band ensures that attainments in this field equal the phenomenal successes already achieved with S-Band magnetrons.

'ENGLISH ELECTRIC'
Agents throughout the World

ExGISH ELECTRIC VALVE CO. ITD.

CHELMSFORD, ENGLAND
Telephome: Chelmstord 3491

SCIENTIFICALLY ORIENTED to achieve siguificant results for government and civilian agencies -in the broad areas of defense physics ... weapons system concepts and evaluation ...electronic technology-this organization applies creative scientific thinking ...to adranced problems of nuclear and plasma physics ...to unique computer programming tecbniques ...to original electronic design criteria . . to systems analyses that meet measure of effectiveness standards.
THE G. C. DEWEY CORPORATION, 202 East 44th Street, N. Y. C. I7
Physicists, mathematicians and engineers with adzanced degrees,
write for information on professional career opportunities.

IRE News and Radio Notes

Calendar of Coming Events and Authors' Deadlines*

1960

PGMIL Winter Mtg., Biltmore Hotel, Los Angeles, Calif., Feb. 3-5.
Cleveland Electronics Conf., Cleveland Engrg. and Sci. Center, Cleveland, Ohio, Feb. 10-12.
1960 Solid State Circuits, Conf., Sheraton Hotel, Philadelphia, Pa., Feb. 10-12.
IRE National Conv., N. Y. Coliseum and Waldorf-Astoria Hotel, New York, N. Y., Mar. 21-24.

First Natl. Symp. on Human Factors in Electronics, BTL Aud., New York, N. Y., Mar. 24-25.

Scintillation Counter Symp., Washington, D.C., Mar.
6th Nuclear Congress, N. Y. Coliseum. New York, N. Y., Apr. 4-8.
14th Spring Tech. Conf., Cincinnati, Ohio, Apr. 12-13.
Cont. on Automatic Tech., SheratonCleveland Hotel, Cleveland, Ohio, Apr. 18-19.
Int'l Symp. on Active Networks and Feedback Systems, Engrg. Soc. Bldg. Auditorium, New York, N. Y., Apr. 19-21. (DL*: Jan. 15, H. J. Carlin, 55 Johnson St., Brooklyn, N. Y.)

Int'l Symp. on Active Networks and Feedback Systems, Polytechnic Inst. of Brooklyn, Brooklyn, N. Y., Apr. 19-21.
1960 SWIRECO (Southwestern IRE Regional Conf. and Electronics Show), simultaneously with the Nat'l. PGME Conf., Houston, Texas, Apr. 20-22.
Natl. Aeronautical Electronics Conf., Biltmore and Miami-Pick Hotels, Dayton, Ohio, May 2-4. URSI-IRE Spring Mtg., Sheraton Hotel, Washington, D.C., May 2-5.
Western Joint Computer Conf., San Francisco, Calif, May 2-6.
PGMTT Natl. Symp., San Diego, Calif., May 9-11.
Electronic Components Conf., Hotel Washington, Washington, D. C., May 10-12.
7th Reg. Tech. Conf. \& Trade Show, Olympic Hotel, Seattle, Wash., May 24-26.
6th Radar Symp., Ann Arbor, Mich., June 1-3.
Conf. on Standards and Electronic Measurements, NBS Boulder Labs. Boulder, Colo., June 22-24. (DL*: Feb. 15, G. E. Shafer, NBS, Boulder Colo.)
Natl. Conv. on Mil. Elec., Sheraton Park Hotel, Washington, D. C., June 27-29.

* $\mathrm{DL}=$ Deadline for submitting $a b-$ stracts.
(Continted on paye 15A)

IRE COMLLATIVE I NDE: FOR 1954-1958 Now Avallable

A new cumulative index covering all technical papers and letters which have appeared in IRE: publications during 1954 through 1958 is now arailable from the Institute of Radio Engineers. 1 East 79 St., New Vork $21, \therefore$. Y., at the following prices: IRE Members, $\$ 2.50$; libraries, $\$ 4.80$; nonmembers, $\$ 6.00$.

The index covers the Proceramsis of THE IRE, IRE 'Transactions of the l'rufessional Groups, IRE National Convention Record IRE Mescon Convention RecORD, and the IRE STTDENT Quarteris.

Cummlative indeces for years prior to 1954 are also available as follows:

	$101,3-1942$	$194.3-1947$	$1948-105.3$
Members	$\$ 1.25$	$\$ 1.25$	$\$ 1.25$
I.jibraries	1.05	1.65	2.00
Nonmembers	2.25	2.25	3.00

Armistrong Miedal.

Presented to J. 11. Bose
The Armstrong Medal of the Radio Club of America was presented to John II. Bose (S'33-. $1 \times 36-1 \times 1.39-.11^{\prime} 55-5.11$ '58), assomate professor of Engineering at Colmmbia I'niversity. New York, N. Y'., at the Club's golden anniversary dinner December 4 , 1959 at the Hotel Ilaza, . Xew York. X. S'.

The award will mark the eleventh presentation of the medal since it was eatal)lished ferember 19, 1935. in recognition of the discovery of radio frequency modulation by Major Vidwin II. Armstrong. professor of Flectrical Engineering at Columbia and a prominent member of the Club).

Dajor Armstrong, who died in 1954 at the age of 6.3. invented mumerots improvements in radio transmission and reception. One of his accomplishments, announced the year hefore he died, was the perfection of a system of multiplex radio transmission that enables FM broadcasting stations to transmit two or more different programs simultaneously:

The presentation of the medal was made by IValter knoop, president of the Club, who also presented l'rofessor Bose with a citation which reads:

The award of the Armstrong Medal of the Radio Chb of America to John Henry Bose is in recognition of his pioneering contributions to the art of ratdie communications and particularly frefuency modulal(ion.
"He was chosely associated with Edwin lloward Armstrong and has rontributed especially to the development of $\because \mathrm{ll}$ multiplexing systems, phase shift frequency modulation, and CW radar.
"As inventor, teacher and true scientist, much is still experted from John Bose in the continuing advance of radio commmaication techniques. A comparatively young man, with years of proxluctive and creative future ahead, he is an outstanding lirst of radio's: second generation."

The principal speaker at the dinner was Dr. Alfred N. (Boldsmith, cofomoler and editor emeritus of the IRE:

I'rolessor Buse was born March 26, 1912. Ite received the 13.5 . legree from Columbia in 1934, and the F.F. (legree from Columbia in 19.35. From the time he received his engineering degree he was associated with Professor Armstrong and collaborated with Armstrong in the development of the F, IT multiplexing system of transmission, as well as many other classified projects for the govermment.

Professor Bose is a founding member and a director of the Armstrong Memorial Research Foundation and a former president of the Radio Club of . Imerica.

Attendance Limited

At IPGHFE Simboshom

Attendance at the first Annual symposium on Haman Fiactors in Electronics. March 24-25, 1960, will be limited. Those interested in attending the Symposium, which will be held in New York, N. Y., are urged to send $\$ 2.00$ (PGHlㅌ members) or $\$ 3.00$ (all others) for preregistration to J. E. Karlin, Chairman, Meetings Committee, \% Bell Telephone Labs., Murray IIill, N. J. Anvone interested in obtaining further information about the Symposium should also contact Mr. Karlin.

At the press conference beld during the 12 th Annual Conterence on Electrical Techuiques in Medieine and Biology at the Sheraton Hotel, Philadelphia, Pa, left to right: Dr. J. Schultz, session fhairman; Dr. R. I. Bow-man, conferenee vice chairman; Dr. W. P. Schwan, conference chairman; I. F. Flory. program chairman for conference; Dr. E. Hendler, session chairman; and Carl Berkley, publicity-exhibits conterence chairman.

Eleventli Annial MAECON Held in Ki.insas City

Paul C. Constant, Jr., Conference General Chairman, opened the 11th Annual MidAmerica Electronics Conference (MAECON) in Kanasas City, Missouri, November 3, 1959. Dr. Ernst Weber, the principal speaker at the opening session, gave an address on "Radio Engineers of the F'uture."

Speakers at the conference inchuded Dr. John D. Kyder (IRE Past I'resident, 1955), 1)r. Benjamin E. Shackelford (IRE Past I'resident, 1948), Dr. R. L. Mcl`arlan, T. C. Combs, Yudell Luke, Dr, Johns. McNown, Ir. Castruccio, Philip E. Ohmart, I). R. Hull, 1)r. II. ('inz, Delmer C. Ports, Dr. Clyde M. Hyde, J. F. Tormey, Robert L. Francisco, Ir. IV. W. Hohenner, Ir. Joseph C. Shipman, Gerakl O. Hayman, Dr. John N. Warfield.

The seventeen techuical sessions covered the following areas: Engineering Education, Engineering Management, Simulation and Computers, Technical Writing, Broadcasting Equipment, Components, Guidance and Communications, Transmission and Control Systems, Adaptive Servos and Other Nonlinear Devices, Wave Propagation, Medical Electronics, and Airborne Electronics.

More than 1350 MAECON registrants, (from more than 40 different states) attended the technical sessions, exhibits and social activities at MAECON. A few of the highlights were the 11th Annual Banquet, the Ladies Program, and the reunion of Past National Presidents of the IRE

Mr. R. L. Hull, President of the Electronics Industries Association and VicePresident of Raytheon Company, was the principal speaker at the banquet. He spoke on "The National and Political Problems of the Electronics Industry."

On November 4 the past presidents of the IRE were honored. The reunion began with a testimonial luncheon at the Hotel Muehlebach at which Dr. John S. McNown, Dean of the School of Engineering of the University of Kansas spoke on "Why Research is Important in the Education of Engineers." This was followed by a ceremony in which the past presidents were presented with MAECON Chairman's Emblem, and
given the title of Honorary Chairman of MAECON. They were given a certificate and a MAECON pin, Arthur F. Van Dyck, IRE president, 1942, and a charter nember of the IRE, spoke for all the P'ast Presidents at the annual banquet Wednesday evening. Those honored and who becane honorary Chairmen of MAECON were Ir. Haraden I'ratt (P'resident, 1938), Arthur F. Van Dyck (I'resident, 1942), Dr. Benjamin E. Shackelford (President, 1948), Dr. John I). Ryder (I'resident, 1955) and I)r. Ernst Weber (I'resident, 1959).

Other reunion activities for the past national presidents included a tour of Midwest Research Institute and Linda Hall Library, and a social hour which preceded the anural bancuret.

1960 NAEC()N Conference Plins Near Completion

Plans are being completed for the NAECON Conference in Dayton, Ohio, on May 2-4, 1960. This year's 'Twelfth Anmal National Aeronautical Electronics Conference theme is "Electronics Probes the L'niverse."

Jointly sponsored by the professional group on Aeronautical and Navigational Electronics and the Dayton Section of the IRE, with participation by the Institute of Aeronautical Sciences, this year's NAECON will offer a program of value to everyone interested in electronics. The program will consist of technical papers, a forum, exhibits, ladies program, banquet and a ball. The following are a few selected subjects which have been suggested as session topics: Radio Astronomy, Safety in Space flight, Space Systems Integration, Bionics, Solid State Devices, Navigation In the Universe and other similar topics.

For additional information, on hotel and motel accommodations and rates in Dayton, write to:

NAECON Housing Chairman P.O. Box 621

Far Hills Br.
Dayton 19, Ohio.

Distinguished guests at MAECON and the testimonial luncheon for the IRE Past Presidents. First row left to right): Dr. John D. Ryder (President. 1955), Dr. Benjamin E. Shackelford (President, 1942), Dr. Ernst Weber (President. 1959), Arthur F. Van Dyck (President. 1942), and Dr. Haraden Pratt (President, 1938), Second Kow (left to pight): Paul C. Constant. Jr. (MAECON General Chairman), David R. Hull (principal speaker at MAECON's Annual Banquet), K. I. McFarlan (IRE President-elect), Noble Vilander (Chairman, Kansas City IRE Section). Charles E. Harp (Director Region 6. IRE).

Calendar of Coming Events and Authors' Deadlines*
(Continued from page 14A)

Cong. Intl. Federation of Automatic Control, Moscow, USSR, June 25July 9.
Int'l Conf. on Electrical Engrg. Education, Sagamore Conf. Center, Syracuse Univ., Syracuse, N. Y., Jul.

WESCON, Los Angeles Mem. Sports Arena, Los Angeles, Calif., Aug. 23-26, (DL*: May 1, R. G. Leitner, WESCON Bus. Office, 1435 So. La Cugna Blvd., Los Angeles 35, Calif.)

Space Electronics and Telemetry Conv and Symp., Shoreham Hotel, Washington, D.C., Sept. 19-22.
Industrial Elec. Symp., Sept. 21-22.
Sizth Natl. Communications Symp. Hote! Utica and Utica Municipal Aud., Utica, N. Y., Oct. 3-5. (DL*: June 1, B. H. Baldridge, 25 Bolton Rd., New Hartford, N. Y.)
Natl. Elec. Conf., Chicago, Ill., Oct. 1012.

Symp. on Space Navigation, DeshlerHilton Hotel, Columbus, Ohio, Oct. 19-21.

East Coast Conf. on Aero \& Nav. Elec., Baltimore, Md., Oct. 24-26.
Electron Devices Mtg., Hotel Shoreham, Washington, D. C., Oct. 27-29.
13th Ann. Conf. on Elec. Tech. in Med and Bio., Sheraton Park Hotel, Washington, D. C., Oct. 31, Nov. 1-2.
Radio Fall Mtg., Hotel Syracuse, Syracuse, N. Y., Oct. 31, Nov. 1-2.

Mid-Amer. Elec. Conv., Kansas City, Mo., Nov. 14-16.

1960 NEREM (Northeast Electronics Res. \& Engrg. Mtg.), Boston, Mass. Nov. 15-17.

PGVC Ann. Mtg., Sheraton Hotel, Philadelphia, Pa., Dec. 1-2.

Eastern Joint Computer Conf., New Yorker Hotel, New York, N.Y., Dec.

1961

7th Natl. Symp. on Reliability and Quality Control, Bellevue-Strafiord Hotel, Philadelphia, Pa., Jan. 9-11. (DL*: May 9, 1960, W. T. Summerin, Philco Corp., 4700 Wissahickon Ave., Philadelphia 44, Pa.)

IRE National Conv., N.Y. Coliseum and Waldorf-Astoria Hotel, New York, N.Y., Mar. 20-23

5th Midwest Symp. on Circuit Theory, Univ. of Illinois, Urbana, May 7-8. (DL*: Oct. 1, M. E. Van Valkenberg, Dept. of E.E. Univ. of Ill., Urbana.)

Electronic Computer Conf., West Coast, May 9-11.

WESCON, San Francisco, Callf. Aug. 22-25.
Natl. Symp. on Space Elec. and Telemetry, Sept.

* $\mathrm{DL}=$ Deadline for submitting ab stracts.

Major General Clyde H. Mitchell, left, Commander, Rome dir Materiel. Irea, receiving the citation from the 1RE. The citation was presented by Mr. William J. Kilehl, center, Chairman of the Rome-t tica Section of the 1RE and Manager of Commmications and Navigatiomal Engineere at Ceneral Electric. Mr. Richard C. Benoit, right, Ceneral Chaiman, oth National IRF: Symposium and Chief, Directiomaland Telecommunications Branch, Directorate of Commbmiations at Rome dir Development Center, and Mr. Miciael P. Forte, background, Vice

IRE Presents (itathon

to Major Gen. (`. H. Mitohele.

A citation was presented to Xajor General Clyde II. Nitchell, Commander, Kome Air Materiel \rea at Griffiss : \ir Force Base, N. Y., for his ollstanding support and contributions to The Institute of Radio Engineers' activities.

The citation read in part: "Major General Clyale II. Mitchell has contributed significantly to the growth and welfare of the Rome-ITtica section. Ontstanding in leatership and in devotion to the aims, ideals, and purposes of the lastitute, it is our judgment that he has served us well.
"In recognition thereof, and in token of our appreciation, the officers and executive committee hereby unanimously declare him to be a patron of the Rome-Utica Section entitled to the accolade of distinguished fine fellowship among all members at all times and places.

Technicml Writers' and

Medicia. Mriters' Institites

Fo Be llead at Rexsiselaber

Technical writing as a tool for industry and the government services will feature the Eighth . Innmal Technical Writers' Institute scheduled from Jane 1.3-17, 1900 at Rensselaer Dolytechnic Institute, 'Tros, X. Y. The week-long Jnstitute, directed by Professor Jay R. Gould, will present key lectures by industrial speakers on editing; writing reports, manuals and instruction books, technical promotion, articles, and government publications; technical illustration; and supervision of publications.

Lecturers in the specialized fields will be S. J. Goodman, Manager of Technical I'ublications, . Vircraft Radio Corp.: Ralph V' Rice, Supervisor of Publication Production, Bell Telephone L.abs. ; I.t. Col. Herbert Herman, Research Studies Institute. Maxwell Air Force Base; Millard E., Roberts, Manager of Technical P'ublications, Ordnance

Department, General Electric Co.: Richard 11. Ford, Supervisor of Sales I'romotion, Data Processing Division, IBN; N. N. Mathews, Managing Editor, Westinghouse Enginerer and Stuart P. Hall, President, lhall Industrial Publicity:

Basic instruction will be given by Professors: *. P'. Olmsted, Wentworth 1 K. Brown, and Douglas II, Mashburn, coauthors of the commmonations text The L'ses of Langrage; Professor Robert . I. Sencer, consultant to business, in charge of Kensselaer's special Commonications Program: and Professor Gould, coatthor of the writing texts Technical Reporting and Exposition: Technical and Popular.

Remsselater's pioneer Institute was founded in 195.3 to provide a formon and workshop for technical writers and editors. Juring the past seven years over 500 representatives from 250 large industrial companies government agencies. and technical publishing combanies have taken adrantage of the intensive Monday through Friday seminar.
'The third Merlical Writers' Institute will be held at the same time as the "Technical "riters' lnstitute. It will be coordinated by Dr. Joseph fr. Montagne, New Vork surgeon and writer. . Ithough lertures on fundamentals will be shared with the technical writing group, the medical writers will attend sessions presided over by these speakers from the pharmacentical firms and medicine: I Pr. II. 1). Snively, Medical Director, Mead. Johnson and Co.; Dr. Raymond C. Pogge, Director of Medical Research, the Wim. S. Merrell Co.. and editor of the AXII.I Bullctin; Col. John B. Coates, Director, Historical U'nit—Medical Corps, ['SA; I)r. John II. Beckley, Medical Director, Warwick and I.egler, advertising consultants: Dr. Otto I. Bettmann, Director, Bettmann Archive; Dr. Eric W: Martin, Editor, Spectrum, Pfizer and Co.; and Dr. Granville IV. Larimore, Deputy Commissioner, New York State Department of Health.

Inquiries about both Writers' Institutes should be sent to Professor Jay R. Gould, Director, 'lechnical Writers' Institute, Troy, N. Y.

Phans Behng Finalione

Dr. T. Keith Glemnan, Administrator, National Aeronautics and space Administration, heads a list of civilians and military officers who will serve as advisors for the Fourth National Convention on Military Electronic:-19n0 (XIIL-E-CON), to be held at the Sheraton-Park Hotel in Washington, D. C., June $27-29,1960$. The meeting is sponsored by the IRE Profemional Group on Military Electronics.

Other advisors, as amounced by R. II. Cranshaw, MII-FE-CON President and Manager, Vdranced Space Iroducts, beneral Flectric Co., litica, \therefore. Y., are Ior. II. F. York, Director of Defense Res. and Engrg., Dept. of Defense: Admiral A. Burke, I'SN, Chiet of Naval Operations; Lientemant General A. G. Trudeau, I'S. Chicei of Res, and Dev., Dept. of the Army: Lieutenant General R. C. Wilison, I'sMF, Deputy Chief of Staff, Development, U. S. Air Force; Vice Admiral J. T. Itayward, US, Deputy Chief of Naval Operations (Development); Lieutenant General B. A. Shlhiever, I'SAF, Commander, Ilg., dir Res and bev. Command; Lientenant General II: E. Kepner, USAF (Ret.), Chairman of the Board, Radiation, Ine, Orlando, Fla., II. Randall, Chairman, PGIL; Office of Electronics, Office of the Director of Defense Res and Engrg. ; J. E. Durkovic, Chairman, Washington, D. C., Section of The IRE and Corporate Secretary, Aeronautical Radio, Inc., Washington, D. C.

Dr. C. Al. Crenshaw; Chief sicientist, Office of the Chief Signal Officer, Dept, of Defense (Army), is chairman of the Technical Program Committee, which has set a deadline of February 1, 1900) for technical papers on the various fiedds of military electronics. Exhibits Chairman is 1. D. Whitelock, 5014 Greentree Road, Bethesda 14, Md.
lore than 400 engineers, mientists, and exerutives from industry; Govermment agencies and laboratories, the Armed Forces, universities and embassies listened to more than 100 technical papers and looked at over 100 exhibits of new developments in military electronics at the 195° AlI--E-CON. This branch of electronics includes such topics as space efectronics, space navigation, guidance and control systems, electronic propulsion, reconnaisance systems simulation, and communcations systems.

WESCON P.apers De.adline

Siet for May 1. 1960
Authors wishing to present papers at the 1900 Western Flet tronic Show and Convention technical sessions to be held August 2.3-26 should register their interest by May 1. Required are 100-200 words abstracts, together with complete texts or detailed summaries. They should be sent to the Chairman of the Technical Program, Richard G l.eitner, IIESCON Business Office, $1+35$ south La Cienega Blvel., Los Angeles 35, Calif.

Selection of papers for the program will be made before June 1 ; authors will be advised of acceptance or rejection by that date.

There will again be an IRE-IVESCON Convention Record published in advance of LESCON by the National Headquarters of the IRE.

RADAR ano ftIUlUTIUT]

One sweltering July afternoon in 1789, a tattered raggedy mob appeared outside the gates of the Bastille, the formidable prison of Paris, and demanded entrance.
"Go auray," the guard shouted, "or we'll have to arrest you."
"That's exactly the idea!" a voice came back. "H'e're starving to death. All we want is a little of that moldy bread and canal water you feed your prisoners!"

Word was passed to the prison commandant, one Maurice Antoinette. "If they want their just desserts," he smiled, "let them eat cake!"

It was this remark shat sparked the Revolution. The mob grew "gly. "Force the gate!" shouted a sickle-wielding daughter of France named Brigitte Sourdongh. A radar controlled battering ram, appropriated from the local armory, swung into play. In moments, the

Bastille gate had been hammered into shambles, and the unfortmate Maurice Antoinctte was at the mercy of the mob.
"Observe the instrunent of your defeat!" sneered Brigitte Sourdough, pointing at the radar.
"Pfui," the commandant replied, calm and disdainful. "No Beaumac (French for Bomac*) tubes."

Brigitte was furious. "The commandant wants 'Beanmac'? He shall have Beatmac!"

With that, Antoinette was led to a second instruntent of the people - a device consisting of a heavy blade, poised between grooved uprights. It had no tubes at all.
"This is your Beaumac?" the commandant asked.
"Oui, monsieur," Brigitte Sourdough leered. "This is Beau Mac - the knife!"

No sooner had Manrice Antoinette heard these words than his icy calm vanished.

Matter of fact, he lost his head completely.

* Bomac makes the fincet mieroumede tathes and comporeents since the stoming of the Bastille

BOMAC laboratories, inc.

Leaders in the design, development and manulacture of TR, ATR, Pre-TR tubes; shutters; reference cavittes; crystal protectors; silicon diodes; magnetrons; klystrons; duplexers; pressurizing windows; noise source tubes; high frequency triode oscillators; surge protectors.

[^0]
URSI Toronto Sympositm

 Proceedings AlvilableThe IRE Professional Gromp on Antennas and I'ropagation has pullished the Proceedings of the ['RSI Imernational Symposium on Electromugnetic Theory, held at the Iniversity of Tormito, Canada, June 15-20, 1959. The volume consists of invited papers by- fifty-four of the world's leading authorities; subjects covered include I Iffraction and Scattering Theory, Radio Telescopes, Surface llaves, Boundary Value Problems, Propagation of Waves. and Antennas. The complete program can be found on pages 18 A of the June, 1950 issue of the Proceledincis of the IRE.

Those who registered at the Tormato Symposinm will antomatically receive one copy as a part of their symposium registration fee. All others interested in ordering the Proceedings should turn to page 106A of this issue for further information.

Internationil. Conference

on Medical Electronics

To Be Ield in Loxbon

The Electronics and Communications Section of The Institution of Electrical Engineers, in association with the International Federation for Medical Electronics, are organizing the Third International Conference on Medical Electronics which will be held at Olympia, Lomdon, England, July 21-27. 1960.

The Conference is planned to bring together members of the medical and electrical engineering professions so that each will gain a better understanding of the problems of the other; besides sessions for experts, there will also be less specialized meetings to enable those who have no deep insight of the subject to increase their background knowledge. With the many recent advances both in electronics and medicine, it is generally recognized by members of both professions that discussions on medical electronics can do much to stimulate progress.

The scope of the Conference is indicated by the following preliminary subject list: Instrumentation for Medicine and Biology, Medical Electronics in Space Research, Isotopes and Radiology, Ultrasonics and Microwave Radiation, The Respiratory System, Digestive System, Metabolism and Biochemistry, The Circulatory System, Electronic Aspects of Sight, Hearing and Locomotion, and The Motor and Nervous Systems.

In view of the International nature of the Conference it is plamed to provide simultaneous translation facilities.

In conjunction with the Conference. The Institution is promoting an International Scientific Exhibition which will be held at Olympia at the same time as the Conference, and where the research organizations, universities, hospitals and industrial organizations from all over the world who are working in this important field can display their latest developments. The Exhibition is being organized by Industrial Exhibitions Ltd., 9 Argyll Street, London, W. 1 (GERRARD 1622): enquiries from those interested should be addressed to this organization.

The Institution is now inviting the submission of papers for consideration. The following are the broad classes which are acceptable:

Surey papers giving an account, in part descriptive, of developments in a particular part of the field.
Integrating papers which present a critical review of the developments which have led to the present practice in a particular part of one of the branches of the science.
P'apers recording the results of research or udvanced decelopment.
P'apers on medical electronics engineering practice and achievements which present details of some new project or achievement with which the author has been concerned.
Short papers deating with practical problems or with limited aspects of a wider subject will also be welcome.
Short papers should be of between 1000)-2500 words; other papers should not exceed 8000 words.

The Conference will be open to all interested persons, and those who would like to have registration forms and further information, or who are interested in submitting a paper should write to the Program Coordinator for the United States: L.ee B. Lusted, M.D., Dept. of Radiology, Cniv. of Rochester School of Medicine, Rochester 20, N. Y'

First Army MARS Tecinical. Net Cellebrates 2nd Anniversary

On January 6, 1960, The First U. S. Army MARS SSB Technical Net celebrated its second anniversary. During two years of operation, the net has presented sixty-three talks and forums by electronic scientists and engineers from many parts of the country:

In order to expand the activities of the net in the Boston area, Colonel Clinton W. Janes, W4KS/1, of Acton, Mass., was appointed an associate net director for the section. Colonel Janes, who is the I. S. Army Signal Corps liaison officer at the M.I.T. Lincoln Laboratory, will make arrangements for scheduling a speaker each month from this section.

The speakers scheduted for February are: February 3-"Application of Quartz Crystals in SSB Filters," W. E. Benton, Division Chief, Manufacturing Engineering, West ern Electric Co., Andover Mass.
February 10-"Design Philosophy of a Modern SSB Transceiver," C. Carney, Manager Amateur Equipment Sales, Collins Radio Co., Cedar Rapids, Iowa.
February 17-"Harmonic and Intermodulation Distortion in High Fidelity Amplifiers," M. Snitzer, Technical Editor, Electronics World, New York, N. Y.
February 24-"High Power Transmitter Stations," H. C. Hawkins, Project Engineer, Long Range Radio Branch, 1. S. Army Signal Development Lab., Fort Mommouth, N. J.

7ti Scintilation Coloter

Symposilat To BE: HELD
The Seventh cintillation Counter Symposilum will he held lebruary 25-26, 1960 at the Hotel Shorehatm in Washington, D. C. It is sponsored by the American Institute of Eilectrical Fingineers, Atomic Energy Commission, Institute of Radio lingineers and National Burean of Standards.

This is one of the series of Symposiat which have been held biemially since 1948 . They have served to bring together those interested in simtillation counters for the purpose of exchanging information on advanced terhniques, recent equipment developments and new components. The meetings are on a high technial level and treat both the theoretical and practical aspects of the field.

The Leventh Scintillation Comnter Symposiam will consist of four sessions of a halfday each treating the following topics:

$$
\begin{aligned}
& \text { Session l-Sintillators } \\
& \text { Session 11-Plotomultipliers and . Isso- } \\
& \text { ciated Electronies } \\
& \text { Session IIl-Sicintillation Track lmaging } \\
& \text { Session IV-Sitrophysical and Space. \p- } \\
& \text { plications of Sicintillation } \\
& \text { Counters. }
\end{aligned}
$$

A dinner and evening session will be held February 25. The evening session will be an open group discussion of some of the important current problems in scintillation counting. The program includes invited papers by U. S. and foreign scientists and contributed papers by workers in the field. Further information can be obtained from G. A. Morton, Chairman, Sintillation Comter Symposium Committee. RCA Laboratories, Princeton, N. J.

Piblish Bimontily Journal on Mathematicid. Pirysics

A bimonthly Journal of Mathematical Physics, devoted to new mathematical methods for the sohtion of physical problems as well as original research in physics furthered by. such methods, is being published by the American Institute of Physics. The scope of the magazine includes mathematical aspects of quantum field theory, statistical mechanics of interacting particles, new approaches to eigenvalue and scattering problems, theory of stochastic processes, novel variational methods, theory of graphs, and review papers on mathematical topics for physicists.

Subscription rates for the journal will be $\$ 10.00$ in the United States and Canada and $\$ 11.00$ elsewhere. Orders and inquiries should be addressed to the American Institute of Physics, 335 E 45 St., New York 17, N. Y.

Professional Group News

The following Chapters were approved by the IRE Executive Committee on November 16 th and December 15 , respectively: PG on Medical Electronics-North Carolina Chapter, PG on Medical Electronics-I'ortland Chapter.

SILICON AND GERMANIUM MONOCRYSTALS

For Semiconductor, Solar Cell and Infrared Devices

Major manufacturers of semiconductor devices have found that Knapic Electro-Physics, Inc. can provide production quantities of highest quality silicon and germanium monocrystals far quicker, more economically, and to much tighter specifications than they can produce themselves. Knapic ElectroPhysics has specialized in the custom growing of silicon and germanium monocrystals. We have extensive experience in the growing of new materials to specification. Why not let us grow your crystals too?

Knapic monocrystalline silicon and germanium is available in evaluation and production quantities in all five of the following general grade categories -Zener, solar cell, transistor, diode and rectifier, and high voltage rectifier.

Dislocation density, Knapic silicon monocrystals: Crystal diameters $103 / 8$ "-None; $3 / 8^{\prime \prime} 103 / 4$ "-less than 10 per sq. cm.; $3 / 4^{\prime \prime} 10$ $11 / 4^{\prime \prime}$ - less than 100 per sq. $6 m . ; 11 / 2^{\prime \prime} 102^{\prime \prime}$ - less thos 1000 per sq. cm.

Check these advantages...

Extremely low dislocation densities.
Tight horizontal and vertical resistivity tolerances.
Diameters from $1 / 4^{\prime \prime}$ to $2^{\prime \prime}$. Wt. to 250 grams per crystal. Individual crystal lengths to $10^{\prime \prime}$. Low Oxygen content 1×10^{17} per cc., 1×10^{16} for special Knapic small diameter material. Doping subject to customer specification, usually boron for P type, phosphorous for N type. Lifetimes: 1 to 15 ohm cm .-over 50 microseconds; 15 to 100 ohm cm .-over 100 microseconds; 100 to 1000 ohm cm.-over 300 microseconds. Special Knapic small diameter material over 1000 microseconds.

Specification Sheets Available.

TUNNEL (ESAKI) DIODE MATEREALS			
RECOMMENDED SPECIFICATIONS			
Material	Phosphorous Concentration $\times 10^{19} \mathrm{~cm}^{-3}$	Specific Resitivity in ohm cm	Electron Mobility cm^{2} volt ${ }^{-1} \mathrm{sec}^{-1}$
SILICON	6.8	.00105	85
SILICON	11.0	. 00078	81
SILICON	16.0	. 00065	78
GERMANIUM	1.6	.00091	426
GERMANIUM	3.4	.00067	268

... Also manufacturer of large diameter silicon and germanium lenges and cut domes for infrared use

Air loorce Mars Eastern Net

Schedleles Febrliary Progrim

The February program of the Air l＇orce MARS Eastern Technical Net，which can be heard from 2 to 4 P．M．EST Sundays，at 3295 ke SSB， 7540 and $15,715 \mathrm{kc}$ AM，is as fol－ lows：
I＇ebruary 7－＂I＇rinciples of Infra－red，＂Staff discussion．Rome lir Des． Center．
February 14－＂I＇HF Radiotelephone Sys－ tems，＂I L Longly，Eng＇r．，New York lelephone Co．
February 21－＂Oscillator Circuit Considera－ tions，＂R．Gunderson．Fiditor． Braille＂lechnical I＇ress．
February 28 －＂Quality Control＇Techniques，＂ ．S．Stein，Fing＇r．Riverside I＇lastics Corp．
March 6－＂The IRE National Conven－ tiom，＂Cs．Bailey，Chairman of the Convention．

＂「O BE \｜leLI M．ar（H 2）

The SSB ．Amateur Radio ．Issociation will －ponsor the Ninth Ammual SSB Dimer and Hanfest on Tuesday，March 22，1960，at the Hotel Statler－Hilton，New York，N．Y． ．Il amateurs and their friends are invited． This dinner，held during the week of the IRE Consention，attracts many outstanding radio amatemrs and communications men from all parts of the workl．

Equipment displays open at 10 A．m．and the dimer starts at 7：30 P．m．Bill Leonard， い2SK゙に，will be the master of ceremonies． Tickets purchased in advance are $\$ 8.50$ a piece：those purchased at the door are \＄0．50．

Checks for reservations should be sent to SSBARA．A
c／o Mike Le Vine，W：A2BLIT
33 Allen Road
Rockville Centre，I．．I．，N．Y．

N゚STF AnNol＇nces Dedidine，
 Policy on Research Grants

The National Science Founclation an－ nounces that the next closing date for re－ ceipt of proposals for support of renovation and／or construction of graduate level（doc－ toral）research laboratories is March 1，1960． Proposals received prior to that date will be reviewed during late spring and early sum－ mer．Disposition of approved proposals will be made daring late summer，1960．P＇ro－ posals received after the closing date in March will be reviewed following the next closing date，which is expected to be Sep－ tember 1， 1960.

This program will continue to require at least 50 per cent participation by the institu－ tion with funds derived from non－Federal sources．Proposals may be submitted for modernization or construction of research laboratories，including laboratory farnish－
ings．but not including apparatus or equip－ ment，in any field of the natural sciences． For the present，this program is restricted to those departments which have an on－go－ ing program leading to the Ph．1）．degree． Support of facilities to be used primarily for instractional purposes will not be considered． It is suggested that preliminary inguiry be made to either the Jivision of Biological and Nedical Sciences or the Division of Mathematical，Ihysical，and Engineering sciences．National science Foundation， Washington 25，1）．C．Information concern－ ing the Program and instruetions for prep－ aration of proposals may be olntained upon request．
．Inso，the NSF announces that effective January 1．1960，pending completion of a study of the entire problem of indirect costs， it will permit institutions to request up to 20 per cent of total clirect costs as the allow－ ance for indirect costs in research proposals． tu no event，however．may such indirect costs exceed the bast＂audited＂or＂negoti－ ated＂rate approved for the institution by a liederal agency for purposes of Govermment－ sponsored rescarch and development．An institution with an＂andited＂or＂negoti－ ated＂indirect cost rate so approved may claim such rate provided it does not exceed 20 per cent of the total direct costs．

Clembland Conference INcudes IRE Pinel．

The seventh ammal Cleveland Elec－ tronics Conference will take place on F＂ebru－ ary 10－12．1960，at the Cleveland Engincer－ ing and Scientific Center．Nllen S．Sace （：$\left.\AA^{\prime} 39-S M I^{\prime}+6\right)$ is conference chairman．The conference program inclusles presentation of ten technical papers and three evening sembars．

The IRE will sponsor a panel discussion on silicone controlled rectifiers on Thursday evening，lebruary 11，at 7：30．The mod－ erator will be John lilick，and three par－ ticipating panelists will be E．．E．Von Zas－ trow，Robert McKenna（ $S^{\prime} 58-\mathrm{M} 59$ ）and Eric Johnson．

The six groups which ammally sponsor this conference are the Instrument Society of Anerica，the Institute of Radio Eingi－ neers，the American Institute of Electrical Engineers，the Cleveland I＇hysics Society， Case Institute of Technology，and Western Reserve［ n iversity．

CincinNati Sbetion tollold Spring Technicil Conferente

The Fourteenth Anmal Spring Techni－ cal Conference will be held by the Cincin－ nati Section of the IRE and the Sonthern Ohio Section of the American Rocket Society in Cincinnati，Ohio，April 12 and 13， 1960.

This year the conference committee has planned expanded technical sessions， featuring papers on Space Electronics and Data Processing；expanded exhibit areas， including displays from major concerns in
the electronics and missile fields；a confer－ ence ball，featuring a kevnote speaker of national interest ；and a luncheon program． at which several prominent personalities in the rocket and electronics fields will be pre－ sented．The conference will have a domble theme of Space Technology and Flectronic Data Processing．

A registration fee of $\$ 3.00$ in advance or $\$ 3.50$ at or during the conference has been established．There will be an additional charge of $\$ 1.00$ for each bound copy of the technical papers．

OBITUARY

John Robinson Binns（．${ }^{\prime} 26-\mathrm{X}:$ ： $39-$ S．1＇54），homorary chairman of the board of Hazeltine Corp．，died recently at the age

J．R．Buxas e public and Florida at sea off Nantucket．

Born in Lincolnshire，England in 1884， he became interested in electrical sciences as a boy．He attended the technical school of Great Eastern Railway，where he received a thorough gronnding in electricity and learned the Morse telegraphic code．In 1905， he joined the Marconi Company as a wire－ less operator．

On Jamary 23，1900，the L＇SS Republic， en route to Egypt with 1600 passengers on board was rammed in the fog off Nantucket by the Flordia，an Italian ship with almost 2000 passengers bound for New York．Is wireless operator on the Repub／ic，Mr． Bimns stayed in his flooded radio shack and contacted the Siasconsett Station on Nan－ tucket Island．It was the first time that S．O．S．（C．Q．I）．）had been used successfully：

Mr．Binns worked as a wireless operator for Marconi Wireless until 1912．He then joined the staff of the New lork American as a reporter and following World War I，be－ cane Radio and Aviation Editor of the Jeu Fork Tribune．Iuring the war，he was a Alying and radio instructor for the Canadian Flying Corps．

In 1924，he became associated with Hazeltine Corp．，when it was formed to de－ velop and license radio patents．He was made assistant treasurer in 1925，treasurer in 1926 and a director in 1927．He was clected vice president in 1935 ，president in 1942 and chairman of the board in 1952．In 1957，he was elected first honorary chairman of the firm．

Mr．Binns was a member of the Radio Chab of America，Society of Naval Eingi－ neers，Irmed Forces Commmications and Electronics Association and Society of the Silurians，a newspaper men＇s group．

Signal fires flaming across a network of some nine stations over a distance of sixty miles flashed the news of the fall of Troy to Agamemnon's palace at Mycenae. Tele in Greek means distance, and this-in 1194 в.c.-was telecomиииісаtions.

The newest and most advanced technique in telecommunications is the tropospheric scatter method using ultra high frequency signals which travel beyond the horizon, leap-frogging mountains, oceans, and other geographical barriers.
Pioneering in the development of tropo scatter communications has been Radio Engineering Laboratories, which is responsible for the design and construction of the radio equipment for eight out of nine of the major tropo networks.
REL welcomes the opportunity to use this experience in solving your commercial and military telecommunications problems.

Radio Engineering Laboratories•Inc

A subsidiary of Dysamics Corporation of America
Depf.1:29-01 Borden Ave - Long Island City 1, NY

1959 IRE NATIONAL AND WESCON CONVENTION RECORDS

. 11 Parts of the 1959 IRI: National Convention Record and the 195° IRE Wescon Comention Record are now avalable. Becallse of the large number of refuests receivell for both Records, several parts had been completely sold out. bit they are now being reprinted.

The following important changes have been made in 1959 with regard to the Records:

1) Prices hatse treen reduced by more than 50 per cemt.
2) A spectial redued rate has been established for members of IRE: Professional Groups.
3) The practice of distributing free copies to Professional Group members has been discontinned.
Professional Group members and Affiliates are entitled to purchase the l'art sponsored by the Professional Group to which they belong at the special $P^{\prime} G$ rate indicated below. Other Parts may be purchased at the IRE Member rate.

IRE members may purchase any Part at the IRE: Member rate indicated. However, if a member applies for membership in the appropriate Professional Group at the time he places his order, he will be entitled to the I'G rate.

Nonmembers and libraries may place orders at the Nonmember and the Library rates, respectively: Individuals who apply for IRE membership at the time they place their orders are entitled to the IRE member rates.

Subscription agencies are entitled to purchase any of the Record l'arts at the Library rate.

Clip out the order form on the opposite page, and return it, with remittance to the Institute of Radio Engincers, Lice, 1 East 79 Street, New York 21, N. Y. In ordering, le sure to refer to the proper columns for sul)jects and prices.

1959 IRE NATIONAL CONVENTION RECORD

P'art	Sosions:	Subject and Sponsoring IRE: I'rofessional Group	I'rices for Members of Sponsoring Professional Group (I'G), IRE Members (M). Libraries (L), and Nonmembers (NiW$)$			
			PG	M	1.	\cdots
1	38, 46, 5.3	. Intemas \& I'ropagation	S0.70	\$1.05	\$2.80	\$3. 50
2	34, 41, 49	Circuit Theory	0.70	1.05	2.80	3.50
3	8, 16, 23, 32, 39	Electron I Devices Nicrowave Theory $\&$ Terhniques	1.00	1.50	4.00)	5.00
4	1, 9, 17, 25, 33, 40, 48	Sutomatic Comerol Filectronic Computers Information Theory	1.20	1.80	4.80	6.00
5	7, 15, 24, 28, 36, 4, , 51	teronatical \& Na vigational Electronies Military Electronics Space Électronics \& Telemetr!	1.20	1.80	4.80	6.00
6	6,22, 27, 31, 35, 42, 44, 50	Component I'arts Industrial Electronic= Production Fechuigues Reliability \& Quality Controt T'Itasonics Enginerring	1.40	2.10	$5.61)$	7.00
7	11, 12, 19, 20, 26, 52	Iurlio Broadeatst © TV Receiser: Broalatating	100	1.50	4.010	5.00
8	2, 4, 30, 37	Commmications System: Radio Freguency Interference Vehicular Commmincation	0.80	1.20	3.20	4.00
9	10, 14, 18, 21, 45, 47, 54,	Human Factors in Electronic: Instrumentation Nedical Electronic: Nuclear Science	1.20	1.80	4.80	6.00
10	3. 5. 13, 29	Education Engineering Managencent Engineering Writing \& Speech	0.80	1.20	3.20	4.00
		Complete Set (10 l'arts)	\$10.00	\$15.00	S40.00	\$50.00

ORDER FORM
1959 IRE National and Whecon Contienton Reourds

National Convention Record

Part	1	2	3	4	5	6	7	8	9	10	Complete Set
Number of Copies											
Amount Paid	-										

Total Remittance
\square

Wescon Convention Record

Fart	1	2	3	4	5	6	7	8	Cimplete Set
Number of Copies									
Amount P'aitl									

Total Remittance

Total Remitatace for both Records
Name (Pleace l'rint):
Shipping Acldress \qquad

1959 IRE WESCON CONVENTION RECORD

Part	hessions	Subjer and Sponsoring IRE Professional Gronp)	Prices for Members of Somsoring Irolessionald (iroup (IP ;), IRF Members (Al), libraries and Sulb. Agencies (I.), and Nommembers (N.X)			
			I' ${ }^{\prime}$	λ	1.	$N \mathrm{~N}$
1	3, 8, 13, 31, 37, 42	Antennas \& Propagation Nicrowave Theory \& Terhniques	\$1.00	\$1.50	84.00	\$5.00
2	11, 17, 24, 29	Circuit 'Theory	80	1.20	3.20	4.000
3	$5,10,14,15,19$	Electron levices	.90	1.35	3.60	4.50
4	$4,9,22,27,30,36,41$	Automatic Control Flectronic Compaters Information Theory	1.20	1.80	4.80	6.00)
5	20, 25, 26, 28, 34	Aeronamtical \& Navigational Electronios Human Factors in Flectronies Military Electronics Space Electronies \& Telemetry	. 90	1.35	3.00	4.50
6	1, 2, 12, 16, 18, 33, 40	Component P'arts Industrial Electrouics Prolkntion Terhniques Reliability \& Quality Control L'ltrasonics Engineering	1.20	1.80	4.80	0.00
7	6, 23, 39	Audio Broadcast \& Television Receivers Broadrasting Communications Systems	. 70	1.05	2.80	3.50
8	7, 32, 35, 38	Instrumentation Medical Electronics Nuclear Science Fngineering Management	. 80	1.20	3.20	4.00
		Complete Set (8 Parts)	\$7.50	\$11.25	\$30.01)	\$37.50

CFM	to 750 max
Types	Single, double,

Housings 2\%" to $111 / 2^{\prime \prime}$, vertical, overall

OUR FIELD
ENGINEERS WILL gladLy Assist YOU IN YOUR COOLING problems

Air-Marine motors and cooling units have been designed and tested to meet the specifications of both the military and industry.

air-marine motors, inc.

369 Bayview Avo.
Amityville L.I., N.Y.

in Canada MAE Limited, Weston, Ontario WRITE TODAY FOR OUR NEW CATALOG

CLEVITE'S NEW
 SPACESAMER

TRANSISTOR

112 achual size

THREE AMPERE SWITCHING TYPES

TEST	CTP 1728	CTP 1735	CTP 1729	CTP 1730	CTP 1731	CTP 1736	CTP 1737	CTP 1733
Min BVcbo @ 2 ma (Volts)	40	60	80	100	40	60	80	100
Min BVceo @ 500 ma (volts)	25	40	55	65	25	40	55	65
Min BVces @ 300 ma (Volts)	35	50	65	75	35	50	65	75
Max Icbo @ 90 ${ }^{\circ}$ C @ Max VCb (ma)	10	10	10	10	10	10	10	10
Max Icbo @ 2 V (μ a)	50	50	50	50	50	50	50	50
D. C. Current Gain @ 0.5A	30.75	30.75	30.75	30.75	60.150	60.150	60.150	60.150
Max Veb @ 3.0 A (volts)	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
Max Vce (sat) @ 3.0A, 300 ma (volts)	1.0	1.0	1.0	1.0	0.8	0.8	0.8	0.8
Min fae @ 3.0 A (kc)	20	20	20	20	15	15	15	15
Max Thermal Resistance (॰C/w)	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5

Compared with present power transistors of similar ratings, the new Clevite Spacesaver gives you important new advantages. Better Suitching - Its low base resistance gives lower input impedance for the same power gain and lower saturation resistance, resulting in lower "switched on" voltage drop. Its lower cut off current means better temperature stability in direct coupled circuits (such as regulated power supplies) and a higher "switched off" impedance.
Better Amplifying - Improved frequency response leads to higher audio fidelity, faster switching and improved performance in regulated power supply applications.
Better Mounting - The Spacesacer's simple rectangular configuration and low silhouette make it adaptable to a wide variety of mounting requirements where space is at a premium. In aircraft and missile applications, its low mass (half present type) improves shock and vibration resistance of lightweight assemblies.

A DIVISION OF

 CLEEVITEPhone for data and prices.

accepts over 40 magnetrons!

Here's the first of a series of new products from Narda's recently-established High Power Electronics Division! A high power Microwave Modulator that permits installation inside the unit of any of more than 40 magnetrons! Complete, compact and self-contained, it accepts magnetrons covering $3,200 \mathrm{mc}$ to $35,000 \mathrm{mc}$, with peak outputs from 6 KW to 120 KW . Model 10001 features a completely interlocked circuit, with all high voltage leads and connections internal, for maximum safety; solid state high voltage bridge rectifiers for longer life and reduced heat output (prolonging life of other components, too); and built-in meters and viewing connectors for all principal parameters.

Other features are shown below. For complete specs and a list of at least 40 magnetrons suitable for use with the 10001, write Narda's High Power Electronics Division (HPED) at Dept. PIRE-7.

SPECIFICATIONS

High voltage supply: Continuously variable from 0 to 4 KV at 100 ma ; Pulse power: 18 KV at 20 amps max.; Magnetron filament supply: Cont. variable from 0 to 13 volts at 3 A; Rep. rate generator range: Cont. variable from 180 to 3000 pps; Pulse width: 1 microsecond at 70% points, rise time 0.15 microseconds, max. slope 5% (other pulse widths available); Size: $38^{\prime \prime} \mathrm{h}, 22^{\prime \prime} \mathrm{w}, 18^{\prime \prime} \mathrm{d}$. Weight: 150 lbs.

Complete 1959 catalog available on request.
(Contınucd from pagc 2f.1)

Task Force One, and received for this effort a citation by Admiral IV. 1I. Blandy. Following the war he returned to M.I."I, to join the faculty and complete his graduate study.

During the past eight years, Dr. Van Rennes has been a consultant to various industrial and Govermment groups, and has published a variety of papers on nuclear instrumentation techniques and on nuclear reactor kinetics, control and instrumentation. He is currently chairman of the IRE: Professional Group on Nuclear Science, and a member of standards committees of the American Nuclear Society and of the American Standards . Wsociation. Other affiliations include the Anerican Soxiety for Fingineering Fidncation and the honorary societiess, '「au Beta l'i, Eta Kappa No, and Sigma Xi .

$$
\therefore
$$

Rear Admiral Richard S. Mandelkorn (USN, Ret.), (SM'57), who has held a number of the Niny's highest engineeringscientific posts, has joined General lnstrument Corp. as Executive licePresident of its llarris Transducer Corp. subsidiary. Harris Transducer, a key unit in General Instrument's six-plant Defense and Engineering R. S. Mandel.korn Products Group,
 develops and produces electronic-acoustical devices in the Sonar and anti-submarine warfare fields. He will be in complete charge of operations and planning at the Harris Translacer, Woodbury, Conn. plant, under direction of Dr. W'ilbur T. Harris, president of the General Instrument subsidiary:

Inmediately prior to joining General Instrument, he had been ()perations Manager and Director of Planning for Philco Corporation's Lansdale 'lube IDivision since 1957, when he retired from the Navy. In the Navy his career included the posts of: Commanding Officer and Director of U. S. Naval Radiological Defense laboratory (1956-57); Coniptroller, Bureatu of Ships (1955); Director of Value Engineering, Bureau of Ships (1954); Shipbuilding Superintendent, Portsmouth Naval Shipyard, in charge of submarine design and construction (1951-53); Deputy 1)irector of Research, Armed Forces Special (nuclear) Weapons l'roject, Sandia Base, Albuquerque, N. M.; Weapons Division, Los Alamos Scientific Laboratories (194748); Coordinator of Guided Xissiles, Bureau of Ships (1945-1947)

He received the B.S. degree in '3? "with distinction" from the U. S. Naval . Wealemy, Amapolis, Md., and the M.S. degree in 1937 from the Wassachusetts institute of 'Technolngy: ! !e served in the l'acitic

FLITTEST

 coax coupler!
Only 0.2 db variation over full octave!

What more is there to say?
The new series of
Narda Coaxial Couplers
is absolutely the flattest on the market; the specs are here; the prices are here. And you know Narda's reputation for quality! If you need a really flat coupler, contact your

Narda representative, or
write to us directly.

Calibration points at 5 frequencies
Connectors: Series N female; others on special order.

SEND FOR FREE 1959 CATALOG
Write for your free copy of Narda's new 1959 catalog. Address:
Dept. PIRE-14.

and
men narda
microwave corporation

$118-160$ HERRICKS ROAD, MINEOLA, L. I., N. Y. - PIONEER 6-4650

Scrubbs on Motherhood

Sir Joshua Wormwood-Scrubbs, FRMS, (1883-1949), developer of the celebrated automated fly trap, summed up a triumph over nature when he said: "The normal mother fly has 320 children four times a year, and yet seems able to go out considerably between times." Good show, say we at HOOVER ELECTRONICS!

We enjoy saluting triumphs, even when (immodestly!) they're of our own making. For example, we've commanded that there be whistle-blowing, bell-ringing, and ratchet-twirling for our new Millivolt Transistorized Oscillator, which has scored a resounding victory (and in the botton of the ninth inning, too) over DC amplification in telemetering. The MTO, as we affectionately call it, makes it possible to feed the outputs of low-level transducers such as thermo-couples, strain gauges and accelerometers directly into the HOOVER Subcarrier Oscillator without DC amplification. A neat trick!

Another giant stride forward, this Millivolt Transistorized Oscillator eliminates a separate DC amplifier, which means fewer packages, lower power consumption, and the end of one possible source of error-one of telemetry's seven plagues. Ask us for details of this belf. ringing little triumph.

IRE People
(Contrulued frim fugc 2o.t)
during World War II. He is a member of Sigma Xi and Tau Beta Pi professional engineering societies, the American Soriety of Natal Eingineers, and the Society of Naval Irchitects and Marine Engineers, and is Chairman of the Value Engineering Committee of the Electronics Industries Association.

The Teleregister Corp, has appointed Edward Rathje, Jr., (A' $+8-\ 1$ '55) to the phat of Manamer of the l evelopment Surtion.

Ite hats been with Sanders. Issociates Inc. of \ashua, N. H. for the past live vears in tarious positions, inclurling . Issistant to the Vice I'resident of Eingineering and Project Wanager. Durimy this time he was concerued with tedhimal and administrative direction of connter-medentes and missile guidance projeres and development of the related analogoe and digital devices. Previously he was with Daysirom Instrument Co. and Stavid Engineering Inc., in design, development. and rescarch capacities.

A member of the AIFF, Mr. Rathje received the B.S. degree in Electrical Engineering, and has done graduate study at Northeastern ('niversity. Boston.

\because

Eugene F. Brosseau (M '56) has been appointed manager. Employment of Advanced Professional Personnel, for the International Business Machines Corporation. He reports to the manager of Corporate Emplowment at the IBM World Hearlquarters in New York City.

At his office at the IB.M, I'oughkeepsie, ㅊ. Y., research laborators,

E. F. Brosstent he is responsible for Ph.I). recruiting at 32 key colleges and universities and maintaining liaison with some 30 other schools throughout the country: Itis responsibilities ako include matntaining communication with department managers ats to their needs for professional people of particular background. and hiring newly graduated and experienced I'h.I)s. to fill these needs.

Ho joined IB.X in July, 1951 as a technical engineer assisting in the design and construction of automatic ferrite core evaluation equipment. Subsequently he held positions of associate engineer, project engineer, and research engineer.

His assignments have included work on magnetic core measurements, setting up equipment for thin film preparation and evaluation; he has been group leader of the magnetic materials and devices group,
(Continued on paye 30A)

AIRCRAFT TYPE TERMINAL BOARDS

New series of Molded Terminal Boards available in three basic types-AN, NAS and MS. Special compoundings, backing strips and hardware on request.

GENERALPRODUCTSCORPORATION Over 25 Years of Quality Molding

UNION SPRINGS, NEW YORK
TWX No. 169

AUGAT'S REVOLUTIONARY ELASTACLAMP*

 The answer to more effectivecooling of subminiature tubes !

Heal-dissipating subminiature tube shield with elastic thermal conductor
 clamp's inner cartridge.

Resilient elastomer will completely conform to pronounced irregularities of glass surface thus reducing dangerous hot spots.
Tubes protected from severe shock and vibration by rubberlike elastomer which cushions glass.

For additional information write for hilletin No. 559.
AUGAT BROS., INC.

IRE People
(Conmanted from rag, 28.1)
group leader of the magnetic film group and technical assistant to the resident manager of the longhtepsie researeh laboratory

Mr. Brossean is a gradaate of the ['miversity of Colorado, having received the B.S. degree in electrical engineering.

Anthony G. Schifino (M'48), who has resigned as vice president and general manager of Siromberg-C"arlsoms Special Prochuets Division, is joining Rochester Radio Supply Company, luc, as exentive vice president. This move is being made 10 im plement plans of the company for extensive expansion in the IVestern New York area.

He will continue
 to serve as a consultant to Stromberg-Carlson in the somud equipment field for an indefinite perioxl.

He was born in Retsof, ‥ Y.. and has been active in Rochester business since 1929, when he joined Stromberg-Carlson's telephone laboratory after graduation from Ohio Northern ['niversity with a degree in electrical engineering. Subsequently he left Stromberg-Carlson to establish and operate Rowhester Radio Supply Compans for several years, returning to Sitromberg-Carlson in 1910 as chief sound equipment engineer.

Mr Shinino is currently serving on the Board of Dirctots of the Rich hester Sales Executives Club, and as chairman of the Amplitier and Somad Fequipment Section of the Electronic Iudustries Association. De also is a member of the Imerican Institute of Electrical Engineers.

Frederick J. Seufert ($\$ 490-$ I $^{\prime} 50-S . I^{\circ} 57$) has been named section manager of the newly established Sustems I evelopnent Section of Hulfanal Lalomatories I Dis ision. Hoffman Electronios Corporation, it was amounced by Richard . . Maher, vice-presirlent-engineering for the division. He previonaly wows aperations director for Hoflman's (ill)-1 "Tall Tom* program.

The new Systems Development Section is being establishad to further lholluth Laboratories (apabilities in advanced systems programs. 'The section will consist of a mencleus of highli trained systems engineers who will anticipate future reguirements for adsamed milibary at stems, athi combluct studien and analyses of these re! for any future systems programs Iloffinath undertakes

Mr. Seufert, who joined Hofman four

[^1]

Modern Pliysles for the Enginee s laval. 4
Matherbatics for Electronics with

Enconic Analo; Computers by aikn ama hit 111

Candbook of industrial Electronic Control Circuits In I. Waskins and

Eectronic IRE

Pulse and Digital Circuits by .I. Millman amt 11. Tinal. Faplain-

Eectronic Measurements in Fr, F: Treman and ol N. Intrip. Tidnhimum for une in many uberomic Hollo

Select one AS A GllFT! Choose from Electronic Mtararements. Operational Mathenatics. Palie and Digitul Circuits. and six other valuable hooks your introduction to membership in the Electronics and Control Enginetr: Book Club.

If youre missing out on important technical literature-if today's high cost of reading curbs the growth of your library-here's the solution to your problem. The Electronics and Control Enginetrr Buok Club was onganized for you. to proviele an economical technical reading program that cannot fail to be of value to you.

All hooks are chosen by qualified editors and consultants. Their thoroughgoing underatanding of the standards and values of the literature in your field gaarantees the authoritativeness of the selections.

How the Club operates. Every second month you rective free of charge The Electomic ind Contool Engineers' Brok Bulletin (issued uix times a year)

This gives complete advance notice of the next main selection, as well as a number of alternate seletions. If you want the main selection you do nothing; the book will be mailed to pou. If you want in alternate selection . . . or if you Mant no book at all for that twomonth period notify the Club by returning the form and postagepaid envelope enclosed with your Bulletin.

We ask you to agree only to the purchase of three books in a vear. Certainly out of the large number of books in your hield offered in any tuelve months there will be at least three you would buy anyway. By joining the Cluh you save yourself the hother of searching and shopping and save in cost about 15 per cent from publishers prices.

Send no money now. Just check any two books you want-one FREE and one as your first Club selection-in the coupon below. "lake adantage of this offer nou. and get two books for less than the regular price of one.

THIS COUPON IS WORTH UP TO $\$ 12.50$

The Electronies and Control Engineers' Book Club 330 West 42nd Street, New York 36, N. Y. Dept. IRE-2

Please print
Namme
Athly
(ity

- ompany

NO RISK GUARANTEE: If mut monnlinls satistled,

Check 2 books: We will send the higher priced book as your FREE book:

Pulme and lligital Circsila, \&10.0.0.
Simppled-dala fiontral simbems, shilo
Mperational Mathematien, 85.05
Flectronic Meamurementm, \$10.25
4 Madern Phyricm for the Fingineer, $\$ \mathbf{5} .65$
\square Mathematien for Fifertronien with Applicalionn, 5.5 .95

\square Handbook of Induairial tilecironic fionirol Circuitm, 8. 1.5 1kP.-2

He knows that the answer is in the wire!

He uses Hickory Brand MW Hookup Wire exclusively

- HIGH DIELECTRIC STRENGTH
- flexible at low temperatures
- Stable at high temperatures

Use Hickory Brand MW Hookup Wire for electronic devices, aircraft instruments, radio and radar transmitters, receivers, and lighting and power rectifiers.
Thermoplastic insulation type MW 1000 volt$80^{\circ} \mathrm{C}$, military specifications Mil-W-76A. In 30 color combinations. Fungus-proof. Resistant to acids, alkalis, oil, flame and moisture.
All Hickory Brand Electronic Wires and Cables are quality-engineered and precision-manufactured to meet the most exacting requirements.

Electron Tube News ...from SYLVANIA

straight-sided bantam envelope with 9-pin miniature pin circle

NEW SYLVANIA TUBES FOR LOW-COST STEREOPHONIC AMPLIFIERS 18HB8 and 35HB8 ...9-pin miniatures feature high-mu triode and power-pentode

 in one envelope!Looking for sales-building record players you can quan-tity-produce and market? Here are 2 new tube-types that will help you design stereophonic and monophonic amplifiers small enough in cost to reach the "popular" market, with enough power output to please the music fan with a "tight" budget. The triode section of these new tubes has a mu of 100 . That makes it excellent as a voltage amplifier for the types of pickups usually used in low-cost phonographs. In typical operation as a class-A audio amplifier, the pentode section with only 115 -volts on the plate can deliver up to 1 -watt power output, adequate for a small-speaker system. SYLVANIA 18 HB 8 and 35 HB 8 are identical in their electrical characteristics except for heater power requirements: 18 -Volts at $300-\mathrm{Ma}$, and 35 -Volts at $150-\mathrm{Ma}$, respectively.

NEW SYLLVANIA TUBES ANNOUNCED FOR IMPROVED TV-RECEIVER DESIGNS

8ET7. . . this 9-pin miniature features duodiodes for discriminator or video-detector service and a pentode section for video-output service.

6GN8... a 9-pin miniature with a triode section for general-purpose use as a voltage amplifier or for service as a sync-separator, and a pentode section for videooutput service. The pentode section is equipped with a cathode especially designed to provide "cool" operation with resultant extended life and reliability.

8GN8 . . 9-pin miniature with electrical characteristics identical to SYLVANIA 6GN8 except for heater power requirements.

For further information, contact the Sy/vania Field Office nearest you. Sy/vania Electronic Tubes, a division of Sylvania Electric Products Inc., 1740 Broadway, New York 19, New York.

STRCkROLE Colivie To

 fixed composition RESISTORS 1/2-, 1- and 2-watt sizesThe resistors that are setting today's higher performance standards! Unmatched for load life and moisture resistance-and, with performance that exceeds MIL-R-11 requirements. And now, for the first time, you can get such resistors in a complete line of RC-42 (2-watt); RC-32 (1-watt) and RC-20 ($1 / 2$-watt) types from stock from leading distributors!

FROM STOCK . . . from these selected STACKPOLE distributors:

CLEVELAND, OHIO Ploneer Electronic Supply Co.
DALLAS, TEXAS
Wholesale Electronics Supply Co.
UAYION, OHIO
Sropeo, Inc.
BALTIMORE, MD. Kann-Ellort Electronics, Inc. BATTLE CREEK, MICH. Eloctronic Supply Corp. BIRMINGHAM, ALA. MG Eloctrical Supply Co. BOSTON, MASS. Soger Electrical Supply BROOKLYN, N. Y. Electronic Equipment Carp. Eloctronic supply Con MG Eloctrical Supply Co

DENVER, COLO.
Donver Electronics Supply Co.
GLENDALE, CALIF.
R. V. Weatherford Company INDIANAPOLIS, INDIANA Radio Dista. Co.
KANSAS CITY, MO. Burstain.Applebee Co.
MELBOURNE, FLORIDA Electronic Supply MIAMI, FLORIDA Electronic Supply NEW YORK, N. Y. Harvey Radlo Co. PHILADELPHIA, PA Alma Rodio Co.

SAN DIEGO, CALIF. Rodio Ports Co.
SCRANTON, PA.
Fred P. Pursell
SEATTLE, WASH. C \& G Radio Supply Co. ST. LOUIS, MO. Interstate Supply Co. SYRACUSE, N. Y. Morris Electronics of Syrocuso TACOMA, WASH. C \& G Rodio Supply Co. WASHINGTON, D. C. Electranic Wholesalers, Inc. WATERBURY, CONN. Band Radio Supply Co. Inc.

WEST PALM BEACH, FLA. Goddord Distributors, Inc.
WICHITA, KANSAS
Interstoto Electronic Sup. Corp.
WILBRAHAM, MASS. Industrial Components Corp.
WINSTON-SALEM, N. C. Dalton-Hege Radio Supply
. . . and G. (/STACKPOLE, TOO!
Atractivaly packaged by G.C Electronics for service reploce. ment uses, Colorte 70+ Resis. ors are also available through over 800 G.C distributors.

Amtron Corp., 17 Felton St., Waltham, Mass., has recently developed an FM telemetry radio link designed to operate in the 400 to 406 mac radiosonde band. The tramsmitter, Model $\mathrm{K}^{\prime \prime} \mathrm{T}$, is a low cost, small 6 ounce package, capable of 2 watts RF output. A semiconductor mochatator provides 125 kc deviation for a 1.0 volt RXIS modulation level. The linearity of the modulation system is such that a mumber of IRIG FM subearriers can be transmitted simultaneonsly. Antemna output is 50 ohn coavial. Power input requirements are 6 to 12 volts ac or de at 2.8 watts and 150 volts de at 55 ma.

The companion receiver, designated Monel $k R$, is a high quality FM receiver featuring a $0280 / 410.4$ gronnded grid low moise RF stage and a very effertive antomatic frequency control. The AFC hold-in range is over 10 mc which permits the recoived signal to drift over the entire lurning range of the receiver without detuning effects being moticeable. AFC time constant is fast, 3 milliseconds, capable of correcting for not only thermal difift, but also frequeney changes dae to G loading which may be encountered by the transmitter. The semiconductor AFC control also permits signal-seeking, panoramic and remote tuning features if they are desired.

The receiver operates on 115 volts, 60 eps ate and is built on a hinged rack panel 19" wide, allowing rear access from the front of the equipment rack. An airborne version is also available power by 115 volts 400 cps ac.

These manufacturers have invited PROCEEDINGS readers to write for literature and further technical information. Please mention your IRE affiliation.

FM Signal Generator

A new FM signal generator covering the frequency range of 1.300 to 2500 mc in one band is now available from Sierra Electronic Corp., a division of Philco Corp., 3885 Bohannon Dr., Menlo Park, Calif.

The Nodel 201 B , is specifically designed for telemetry and data transmission applications in the 1.3 to 2.5 kne rauge. Featuring a 1% deviation linearity, the instrument can be frequency modulated by applications of external signals having modelation bandwidths up to 500 kc . A nominal deviation of 2 me peak is produced by external modulation signals hawing an amplitude of 1.0 volts peak to peak. Model 201 B also provides good ClV characteristics by virtue of the low value of residual FM.

The instrument's R RF output is continuously variable from 0 (thom to -110 by means of a precision calibrated piston attenuator. Model 20113 also provides direct reading, single dial tuning and high stability.

Sierra has also amomored the avalability of a wide deviation F.I signal generator, Model 202 13. This instrument, covering the fregenney range 2200 to $2,300 \mathrm{mc}$, also provides excellent FX characteristics with large deviation for use in wide band applications. Its modulation amplifier response is flat within the limits of 0 db to - (odb) from 10 aps to 10 me.

Pulse Delay Module

The NAVCOR Nodel 304 Pulse Delay module, designed by Navigation Computer Corp., 1621 Snyder Ave., Philadelphia 45, Pa., contains five independent, all semiconductor, delay circuits. Fach section provides (1) a delayed pulse ontput, and (2) a square wave output for the delay duration.

Each delay circuit includes a high gain regenerative delay stage, a de pulse amplifier which prosides a spluare-wave for the delay duration, and a differentiating circuit which provides a negative spike at the end of the delay interval.

The Model 304 is a $5^{\prime \prime} \times 0^{\prime \prime}$ glass-epoxy printed circuit card, $\frac{1}{16}{ }^{\prime \prime}$ thick, and is for use with an 18 pin l'C receptalele.

The delay range, of each deliy section, is adjustable irom 3 to $30 \mu \mathrm{sec}$. The delayed pulse output is a negative differentiated pulse, -3 volts unloaded, 1 ma loading capability. The square-wave output for the delay daration is -12 volts switching to 0.2 volts. Rise and fall times of $0.3 \mu \mathrm{sec}$ remain constant for full range of pulse width adjustments.

Spectra Electronics Corporation

Dace to a clerical error in the statistical department, the name of Spectra Electronics Corp., div. of Douglas Microwave Corp., 250 E. Third Si., Monnt Vernon, N. Y., was omitted from the 1960 IIRE Directors:

This firm was included in the infrared section of the book, however this one prodwet section does not cover the full line of activities in which this firm participates. These people are specialists in the ultraviolet, visible, and infrared systems for geophysical and meteorological applications. "Their record of creative performance also includes the following tields of endeawor: communications, telemetry, antemats, ratar instrumentation, countermeatures, security systems, display and storage systems, and information systems.

Just before the close of the year this firm announced the appointment of Richard A. Bolz as director of research. Bolz will assume the full responsibility for the technical direction of the scientitic and engineering effort. Inaniel 13 . Ventre was appointed project leader. Systems project development is Veatre's responsibility. Edward J. Warner, president of the firm. was appointed to the board of directors of the Corporation.

Creative Microwave Technology MOOOON

Published by MICROWAVE AND POWER TUBE DIVISION, RAYTHEON COMPANY, WALTHAM 54, MASS., Vol. 1, No. 9

NEW RAYTHEON MAGNETRONS FOR A WIDE RANGE OF APPLICATIONS

Designed for C-band systems requiring tunability, the RK-7156 magnetron has aminimum peak power output rating of 250 kilowatts over a frequency range of 5,450 to 5,825 megacycles. Applications include a flighttested, revolutionary airborne weather radar system. The RK-7l56 is in quantity production.

X-band magnetron for airborne search radar provides one megawatt minimum peak power and 875 watts average

power within a frequency range of 9,340 to $9,440 \mathrm{Mc}$. Designated QK-624, this pulsed-type tube is liquid cooled and should give at least 1,000 hours of reliable service.

For ground-based and airborne radar systems, the RK7529 magnetron provides a 2.0 microsecond pulse of 3.5 megawatts minimum peak power over 2,700 to $2,850 \mathrm{Mc}$. This liquid-cooled tube is interchangeable with other fixed-frequency S-band tubes operating at similar power levels.

RK-7529

A one kilowatt beacon magnetron, the RK-7578 weighs onlyl4 ozs., yet will withstand vibrations of 15 G's at 20 to 2,000 cycles and shock up to 100 G's. It is

mechanically tunable and covers the 5,400 to 5,900 Mc range.

Developed to withstand extreme environmental conditions, the RK-7449 magnetron is a lightweight, compact tube with a minimum peak power output of 45 kilowatts at the operating frequency of 24 kmc . The RK-7449 is required to withstand re-

peated shocks of 50G. Stable operation is guaranteed at vibration frequencies up to 2,000 c.p.s. with 30G applied.

DALLONS spells

WHAT MAKES THE MOST RELIABLE SILICON RECTIFIER？
.3 YHINGS
1st－THE PROPER ENGINEERING PHILOSOPHY AND HERITAGE．
2nd－ 10 YEARS OF SOLID STATE COMPONENT MANUFACTURING WITH COMPE．
TENT PERSONNEL AND EQUIPMENT．
3rd－ 100% ENVIRONMENTAL TESTING FOR ALL PRODUCTION．
TAKEN TOGETHER，THE RESULT IS A DALLONS SILICON RECTIFIER． be a discriminating circuit designer and experience a new degree of RELIABILITY ON YOUR PROJECT．YOUR DALLONS ENGINEER IS READY TO ASSIST． YOUR MOST RIGID RECTIFICATION REQUIREMENTS ARE INVITED． WRITE TODAY FOR SPECIFICATIONS AND COMPLETE TECHNICAL INFORMATION．

DALLONS SEMICONDUCTORS
A DIVISION OF DALLONS LABORATORIES．INC．
5066 SANTA MONICA BLVD．
LOS ANGELES 29．CALIF．

Two new ，anintath diremers in electron－ ic：remeately have been hathed at dramor Reveareh Fontudation of Illimois Institute of＂ledmelens．The apponimements were made by Virgil II．Di－hes，dieceor of eler－ tronices reseatrely．

Xamed to the pront in thatge of amm－ puter develepment and controls syme ceretrical matehiner！，（omponents，．tod meaturements Was George T．Jacobi （J＇41－．\42－S．1555）．formerly of（bemer．ll Floctric（impans．I＇hnemis，Driz．

Harold H．Kantner（．｜1＇S？），with the Foundation sher 1951，wa－matmed a－ant ant ind dharge of comploter application－and －gerations－rexarch．
 Switzerland，and Ohio State lniver－ils
 las：ten of which were in clone asock hation ＂ith the compater art and development He Wat mathager of－pecial complater emgi－

 puter applications and onperations rexareh at the Fommatam before recolving hi－new

He Wit－edhented at Reod College amel did grathote work at the loniversit！of Chirager Since 1951，when he joined．IRF Kiantuer has worked with control sy－tem－ in the arean of missile guthance，flight simnlation，and electramedical med－ure－ memts．Ile ha－1xem－nperviato of computer application－and uperations rewareh since 1955
 named matheser of the－emiomatuctor sli－ saion of the Hughers．Vircrati（\％）．Proxher－ Croup，Culver Cits，Cialif．He formerly held the Gatnal Barloaral，Callif．，Resarch managership for Hughes

S．Merrill Skeist（．｜＇51－．｜1＇5．3）hel－1xedr mamed director of marketing for the－－－ tems division of（omsolidated Wionica Corpo．a subsidiary of Consolidated I Died Electric Corp．
 he will be re－ponsi－ ble for market plan－ lime anul ale－at－ bivity for the com－ patyy＇s colectronic datal handling amd dulomattic terang

Immediatels pri－

\therefore N．Sレにしら！ or to joining Con－ solidated ：Wionics，he wats comberted with Bradley．Dsocialtes．a New Vork electron－ irs manlufacturers representative firm． Previously he had been viee president， sales，for Buckl－Standey Corp．．vice presi－ dent，contracts，for Polarall Electronics Corp．，and viee－president，contracts， IV^{2} ．L． Max：onCorp．

NEC tubes with new doped-nickel cathode

Both tube series described here use NEC's new doped-nickel cathode core material. This 10 -year development increases emission without raising operating temperature. Oxide evaporation rate is lower than any known core material. Operating data show tube life is extended up to 50%.

WIDE-BAND AMPLIFIER TUBES: Development began seven years ago with the 6R-R8, which was used in Japan's first microwave link. A modification, 6 R-R8C, with very low distortion factor, is used in coaxial amplifiers. 6R.P10 Power Amplifier Pentode, with high mutual conductance and small capacitance, is designed for larger power output.

Trme	Meme	Cathod	Rosing	Scraen and Plete Sumpl Vedtage (b) (V) (c) (V)	Plate Currem 10 (ma)		Copeciraom		Interchangentle Tuben
		$\begin{aligned} & \text { Valt } \\ & \text { (t }(\mathrm{v}) \end{aligned}$	$\begin{gathered} \text { Amp } \\ \text { Hf (}) \end{gathered}$				Inpur	Onver	
GR-RE	Sharp.Culafl Penteds	0.3	0.3	130	13	12,500	7.8	3.2	woth wisoma
AR-RET	Sharp.Curat1 Peniode	6.3	0.3	150	13	12,500	7.3	3.2	with WEAOAA
QR.PIO	Power Amplitier Pentode	6.3	0.5	150	36	13,500	10.5	2.7	-

$2 C 40$

2C39B
DISC.SEALED TRIODES: NEC designed the first disc-sealed tube in 1939, giving NEC many years of experience in the design and manufacture of this type of microwave tube. Each is a direct replacement under all circumstances for the corresponding type. The NEC tube will give longer life, an especially important advantage in repeater stations.
Please write for specification sheets.

IRE People
(C) ut hurd from page is.t)

His appomment is part of a plan for increased activity in the use of digital data handling seethimuts to sole reliability problems in test and ground support equipment.

A merhmical engineering graduate of Worcester Ponverhnic Institute, Mr. Skeist is a member of the Air Force Associaton, the American Institute of Managemeat, . American Ordnance Association, American Rocket Society, . Tried Forces Commmatations and Electronics Asondiaton, Sales Executives Club and Society of Automotive Engineers.
\because
The study of underwater phenomena will he the primary interest of the newly formed Underwater Systems, lac., in

M. S. MENSTETN
R. II. VAN Homes:

Wheaton, Nd., promising applications for anti-submarine warfare and basic oceanographic stud!

According to the organization's founders and senior scientists. Dr. Marvin S. Weinstein ($S^{\circ} 48-. V^{\prime} 50-. \ 1{ }^{\prime} 55$) and Richard W. Van Hoesen (A'5t) l'mlerwater St'stens, Inc.. will undertake research and development in acoustics and other promsing molerwater influences. The firm will seek military contracts and also provide consultation services to industries in allied fields.

Through broad applications of underwater instrumentation techniques, Mr. Van loosen, president of the new firm, foresees development of many devices usefol to other technologies. "These include new audio concepts useful to the television and radio industry, noise control devices, meteorological instruments, and self calibating microphone systems.

IO. Weinstem, formerly of the C . S Naval Ordnance Laboratory. was awarded the l'h.D. degree in physic los the Joniversity of Maryland in 195\%. His studies in underwater acoustics, hydrodynamics and ultrasonics led to increased efficiency in data gathering, electronic design, instrumentation and ordnance sty tens evalualion.

Mr. Van IJoesen is muted for his design and direction of naval data recording programs, both here and abroad, while with the I. S. Naval Ordnance laboratory. He holds the B.S. degree in physics from Union College, Schenectady, X . Y.

New MADT* 2N1500 Provides

Increased Power Dissipation

Here is another Philco "break-through" in the design and manufacture of high frequency, ultra high-speed switching transistors ! This new Micro Alloy Diffused-base Transistor (M1ADT*) uses cadmium electrodes in place of indium. The higher thermal conductivity of cadmium insures cooler-running junctions for any given power dissipation and provides an extra margin of safery as added assurance of reliable performance.

The new 2 N1500 offers the designer these important advantages:

- $100^{\circ} \mathrm{C}$ maximum junction - high Beta and excellent Beta temperature linearity with temperature
- low collector capacitance and current
- low saturation voltage
- low hole storage time (Typical: $7 \mathrm{~m} \mu \mathrm{sec}$)
In electrical characteristics, the 2 N 1500 is similar to 2 N 501 , which has been thoroughly field-proven in many military and industrial computer applications. It is manufactured on Philco's exclusive fully-automated production lines to the highest standards of uniformity. For complete specifications and applications data, write Dept. IR-260.

Max. Ratings								Typical Parameters					
$\mathrm{T}_{\text {STG }}$ ${ }^{\mathrm{C}}$	V_{CB} volts	t_{r} $\mathrm{m} \mu \mathrm{sec}$	t_{s} $\mathrm{m} \mu \mathrm{sec}$	t_{f} $\mathrm{m} \mu \mathrm{Sec}$	h_{FE}	V_{CE} (SAT) volts							
100	-15	12	7	4	35	-0.1							

AVAILABLE IN PRODUCTION QUANTITIES... and in quamities $1-99$ from jour Philco Industrial Semiconductor Distribusor.
*MADT . . TRADEMARK PHIL(O CORPORATIOS

The ocean depths...
an area
of prime strategic significance
... an area of critical interest to Stromberg-Carlson.

Quiet, swift and deep-running, nuclear-powered submarines demand new performance from undersea warfare devices.

Equipment is urgently needed for improved underwater detection, classification and localization.

Stromberg-Carlson
research programs will result in new undersea warfare electronic systems.
Unequalled tank-test
facilities and automatic test instrumentation enable StrombergCarlson to conduct the exhaustive tests required to develop the complex ASW equipment of the future.

Brochure on request.

IRE People
(Cominued from puge 40.4)

Cozzens \& Cudahy, Inc., Electronics Mamufacturers Representatives, with offices at the Old Orchard Shopping Center in Skokie, Ill., has annominced plans for the reorganization of their firm to inchude Robert E. Bard (S'44-M'47SM'52), former executive of General Radio Company. The limu anme will be changed to Cozzens, Cudahy $\mathbb{~}$ Bard, Inc., in the

R. I:. Bard earlyspring of 1960 .

Mr. Bard, a former Associate P'rofessor of Elentrical Enginereng at the Illinois lnstitute of "Technology, joins the company with a vast experience in precision components and laboratory instruments. He has been with the Chicago office of General Radio Company of IVest Concord, Mass., since the year 1952, and is currently the Chaiman of the Chicago Section of the IRE. He has also recently been a member of the Board of Directors of the National Electronics Conference, as well as Editor and I'resident of Scanfax, Inc.

Appointment of Lynn C. Holmes (M'44-SM'49-F'49), formerly director of research for the Stromberg-Carlson Division of General Dynamics Corp., as director of engineering operations for the same company, has been announced by I)r. Royal Weller, vicepresident of engineering.

In this new position he will be concerned with plats:

L. C. Hommes ing and for the cvaluation of engineering projects in keeping with long range plans for expansinn of the division's engineering functions.

He has been with Stromberg-Carlson since 1943, when he joined the company as senior engincer in charge of somnd recording research. In 1950 he became associate director of rescarch, and, later that same year, director of research.

He is currently serving as vice president of the Empire I District No. 1 of the American Institute of lilectrical Engineers, of which he is a fellow, and he has, at varions times, held all the offices of the Rochester Section of the A.I.E.E. He is alsoa member of the Acoustical Society of America. a menser of the Rochester Eingineering Society, and a member of Signat Xi and the Scientific Research Society of America. He
(Contimed on lage 4.4)

1×10^{-8}

with compact, transistorized series
JKTO-PIP
FREQUENCY STANDARDS
(Standard Models Stocted For Quick Delivery)

This series brings rogether a combination of ultrastable glass sealed crystals, matched-design silicon transistor-ascillator circuitry, and transistorized proportional control performance. The result of this advanced engineering is frequency stability of 1 part in 100.000,000 per day, under normal conditions.

For information, write stating your requiremenls.
THE JAMES KNIGHTS COMPANY SANDWICH. ILLINOIS

MEDALIST* null indicators
READABLE . . WIDE RANGE SENSITIVITY
Modern MEDALIST design provides far greater readability and modern styling in minimum space. Unique core and magnet structure provides $1 / 2 \mathrm{ua}_{/} \mathrm{mm}$ sensitivity af null point with sharp square law attenuation to 100 va at end of scale in Type A. Inter nal resistance is 2000 ohms. Other sensitivities available. ASA/MIL $21 / 2^{* *}$ mounting. Standard and special colors. Bulletin on request. Marion Instrument Division, Minneapolis-Honeywell Regulator Co., Manchester, N.H., U.S.A. In Canada, Honeywell Con trols Limifed, Toronto 17, Onfario.

Honeywell

THE 8 EAD CHAIN MFG. CO.

sthe Stromberg-Carsm representative in the American Society for Engineering Educationand in the ludustrial Researeh Institute, and in 195.5 he served as chairman of the Institute's luards Committee

Mr. Holmes wats born in Brokkliedt, Y. Y., and received the bachelor's and master's degrees in electrion engineering irom Rumsedaer Polytechnic Pastitute From 1925 mat he joined strombery Carlem in 194.3 he wats a member of the engineming facaly at Rensidater, first as an instructor, and later as assistint proferwor of electrical enginering. He holds a New York state monessional engineer's license.

Adam M. Wilczenski ($\mathrm{N}^{\prime} \mathrm{5} 8$) hats been appoilted Manager, Technical Serviees of the Spectalty Blower Division, The Torrington Manliacturing Company: Torrington, Comn. He will direct all Speriates Blower engineering and atles service in the beed and terlumall service persomel at the Torrington plant. Tre Spectal1. Blower livision
 wat orvanized in Jamary, 1959, 10 derign and manmacture complete bomer
 airlame and gromad support empipmem, largely for military nis.

Ho joined Torringtom Mandacturing in earls 1955 and spant three gears in the Demgi Enginering Section working an speriatized merhaniral development. Ite was transerved in Janmary, 1958, as I'rojext Engineer in the bir limpellor bivision sales Deparment. He returned to tho Engineering Deparmem (arlier this year when the Spectalty Blower Division was
 of Euginearing, Sir Impeller Division.

Before joining Torringtom Manma turing, he was a lied engineer for the Nay Department, concerned primarils with coaluating the capacition of ponemtial prime contractors. For thre seats prior to that he wasa Merhamical bingineer at the Hay don Division on (emeral Time Corporatiom. "here his major respomsilility was the design of electro-mechanical timing dericen.

He is a native of Torringtom and was educated at local schools. While serving in the Sir Force in Wiorld War II, he attended George Washington liniversity, Washington, I). (., and lonim ('niversity, Jackson, Pemn., durimy ariation cadet training. After his discharge in 1945, he studied merhanical engincering at Tultana Technial College, Fort Wayne, Ind.

Mr. Wilczenski is a member of the American Society of Merhanical Engineers and several other professional organization:

PRロ」ECT 7ロ，ㅁㅁㅁㅁㅁㅁ

Since their introduction more than ten years ago，clare Type J Relays，with their small size，twin contact design and superior performance，have been first choice of de－ sign engineers for applications where com－ ponent failure is intolerable．

Sensational demand for these relays has resulted in numerous imitations．Similar in appearance and published specifications， many have been represented as＂just as good＂as the original clare Type J Relays．

An independent laboratory has just com－ pleted exhaustive tests of Clarf Type J Relays and copies made by other well known manufacturers．

The results are here．Tests of the clare relays were discontinued at $70,000,000 \mathrm{cy}$－ cles．．．with no contact failure whatsocver． All the other relay groups showed failure of 10% of their contacts before the end of $60,000,000$ cycles（see graph）．Some had $22^{\circ} \mathrm{C}$ contact failure at $5,000,000$ cycles．

Let us tell you more about this important test．Call or write：C．P．Clare \＆Co．， $3 i 01$ Pratt Blud．，Chicago 15．Illinois．In Canada：C．P．Clare Canada Limiled， P．O．Box 134，Downsview，Onturio．Cable Address：CLARELAY．

FIRST in the industriat field

Independent

 tests＊
prove There are no copies ＂just as good＂as CLARE type」 RELAYS

CLARERELAYS
18 Form C）

BRAND X3 IS Futic C	80，000，000 Operations 8 Chmacl Failures

$$
\begin{aligned}
& \text { BRAND X5 } \\
& \text { (8 FuIm G) }
\end{aligned}
$$

$20,000,000$ Opêrations 12 Contact Fallures

15，000，000 Operations 7 Contact Failures

10，000，000 Operations 11 Contact Failures
＊Failure of 10% of the total contacts involved eliminated any group from the test．Additional data available on request．

EMCOR pre-engineered cabinets and enclosures bring Erector-Set simplicity to control center construction. A Phillips Head Screwdriver and handy EMCOR hardware kif infroduce an ease and flexibility never before attained in control center assembly, alteration or rearrangement. Costly modification of units of custom type construction is eliminated. EMCOR units with their exclusive combination of patented custom quality features bring a new concept to instrument housing. Advanced design, greater load carrying capacities, combined with modern fabricating techniques and high craftsmanship standards are just a few of the many reasons why dollar for dollar you get more from EMCOR. Take the guesswork out of your packaging problem, let EMCOR engineering know-how give you the solution. Your request for current information will be promptly answered.

Originators of the Modular Enclosure System
ELGIN METALFORMERS CORP. 630 CONGDON, DEPT. 1229 . ELGIN, ILLINOIS
*Registered Trademark of Elgin Metolformers Corporation
Visit us af Booth 4420-4424 During IRE Show, New York Coliseum

IRE People
(1. ntmuled or m Fane +1.4)

Vinton D. Carver (SM№s) has been named ansiotant general manager of Litton Industries Blectron Tube Division, San Carles, Calif. Is as-istant general manager, he will he in charge of all Filectron Tube l)iwisum orperationn.

Since 1957 he hat been manager of the Salt Lake (ity, I tah, plant of the Electrom Tube Division.

Prior wo joining
1: 1). (arther Littom, he was rice president and general mathater of the Pa. cilic Disixion of Farnewneth Electronics Company, which puat millaw ed anctiatom with Farmoworth for several veare in Fort Wayne, Ind.

Other key pusitions held in carlier Cat: Mr. Marver were with Argonne Xatomal Iaboratory, Temencere Eatmon Corpuration, and Beseing Sirplane Compant.

Professional Group Meetings \Rightarrow

Aeronat tical ini) Nayiga-
tional Electronics

Boston--Noveminer 2

"Integration of Air Traffic Control and Air Defense," I). R. Isratel, Mitre Corp.

Philadelphia-Nosember 18
". Atitule Control of an Orbital Vehicle," R. Whealan, Gemeral Electric Co.

Antennis momphathen

Ikron-Nowemper 17

"A New Radior Interfermeter Tracking system for Satellites," C. H. Grate, Smith Electromica, 1ne.

San Francison-Nonember 10
"The Argus Experiment," N. C. Christofilos, Inis. of Calif.

ADDIO
Baltinure-(October 20
"Report of the New York Hi-Fi Show and AES Comention," L.. R. Mills, Recordings Inc.

[^2]
PRECISION DECADE FREQUENCY MEASURING SYSTEMS

Generate and measure frequencies from zero to kilomegacycles. Basic component is frequency synthesizer which generates continuously variable frequencies of extreme stability and accuracy derived from a single standard frequency.

- Fast, direct reading of frequency on three dials calibrated in megacycles, kilocycles and cycles. Vernier reading in millicycles can be added.
- Smallest crystal controlled step 10 cps .
- Suppression of spurious harmonics better than 60 db .
- Accuracy $2 \times 10^{9} /$ day with Type XSB Standard.
- Short time stability approximately 1×10^{10}.
- System comprises a number of component units which can be combined in various ways in accordance with desired range and applications.
Write for Bulletin DFS.

Write for New Catalog

36-page catalog describes complete line of Rohde \& Schwarz precision electronic measuring and testing equipment.
Write for your free copy of Catalog-MT.

POLYSKOP ELECTRONIC TEST INSTRUMENT FOR TWO AND FOUR TERMINAL NETWORK MEASUREMENTS

Displays two separate quantities such as impedance and gain as functions of frequency in the form of continuous curves. Frequency range: 500 kc to 400 mc . Instrument contains a
 sweep signal generator, precision variable attenuator, electronic switch, crystal marker generator and large screen oscilloscope which provides a complete precision measuring system.
Applications include laboratory and production testing of band-pass filters, limiters, all types of amplifiers, television receivers, attenuators. discriminators and coaxial cables.

Write for Bulletin SWOB.

DIAGRAPH

30 to 2400 mc . Plots, instantaneously and accurately by means of a light spot, complex impedances and admit-
 tances directly on Smith charts. Eliminates tedious measurements and involved calculations. Instrument can also be used as a phase meter over its frequency range. Applications: impedance measurements on semi-conductors, antennas, filters, receivers, amplifiers.
Diagraph is available in three models: ZDU covering frequency range 30 mc to 300 mc and ZDU (420) from 30 to 420 mc ; ZDD from 300 mc to 2400 mc . Overall accuracy is better than 3% for amplitude and 1.5° for phase angle.

Write for Bulletin Diagraph.

ROHDE \& SCHWARZ

111 Lexington Ave., Passaic, New Jersey
Telephone: PRescott $\mathbf{3 . 8 0 1 0}$
Cable Address: ROHDESCHWARZUSA

test...test...test...

If you feel you must make your nwn pols to get exactly what you need, don't overlook quality control along the way! And this can be a messy business, what with special, elahorate techniques to quality-check every production stage! Oh, you'll get insolved in maddening bouts with visual comparitors, ratiometers, environmental testing labs - and when you've finished - and made a few hundred revisions - you might have the quality you want!

So, before you go fly a kite - consider Ace. We've been all through this before, and have what is regarded to be the finest quality control system in the industry. It enables us to keep our final costs down, by rejecting sub-standards at each stage, without waiting for the final inspection. Although it's more work this way, we can offer a higher degree of resolution and linearity at a lower price. So, for precision-at-i-price, see your ACErep!

Here's 0.5% linearily in a $1 / 2$ " pol: the Series 500 ACEPOT Singlelurn, $-55^{\circ} \mathrm{k} 125^{\circ} \mathrm{C}$ range. As with all Ace components, tested in every slage of its manulacturel

Acepol ${ }^{(8)}$ Acetrim* Acesel副 Aceohm(1) •Reg. Appl. for

(Conthucd from fuge to.1)

Milwaukee-November 17
The Hixh Fidelity sinem, k. Kramer, Jensen Mig. Co

Artomitic Contron.
Philatelphid October 20
"The Compensation of a Disibal Type II Serso," R. I'. Cheetham, RCA.
(`mmeneathen Sistems
Los Angeles- Octoher ?2
"Active Communication Satellites," D. F. Miller, Hughes Communications. "Passive Commaniation Satedias," D. (), Muhleman, Jet Propulion Iahb.

Wishingtom, I). C. - Nowember 4
"Space Communications," W. R. Donsbach, Westinghouse Ele: Cob

Componext Pirts
I.os Angeles - November '
"Technical Theory of Controlled Rectiliers," C, Smith, Texas Instrmments, Inc.
": $/$ pplications of Controlled Rectitiers," Panel: IV: Gutzwiller, Gemeral Electric. R. NeFema, Texas Instrmments, Ine, 1. Dixon, Solid state Proxucts, A. DeVemuti, Transitron, F. Parrish, Internatimal Rectifier.

Philadelphia-November 11
"Specification of Component Part Reliability," I). I. Trovel, RCA.

Componext P.ikTs/
Prodtction TEOMNTOC
W:ahington--November 9
"Thin Film Circout Functions Terhnifues." J. J. Bohrer, Jnternational Resistance Co.

Electron Devices

Los Anpeles-October, 19

"Design of High Energy Particla Secelerators," R. V. Langmuir, Calif. Incitute of Tech.
L.os . Ingeles-November 9
"Teehnical Themre of Controlled Rectifiers," C. Smith, Texats Limamments. Ine.
"Applications of Controlled Rectitiers." Panel: M. Clark, P’il Co, R. (s, McKenna, Texas Instruments, Inc.: A. L. DiCenuti, Transitron; IV. (sutzwiller, General Electric; F. W. Parrish, International Rectifier.

San Franciso--November 16
"One Hundred Years of Progress in Parametric Inevices." G. Wade, Electronics Res. Lab., Ntanford Chiv.
(Comthamed on fatm s?

4 muSECS

 GUARANTEED MAXIMUM RECOVERY

SYIVANIA D- 1820 is the forerunner of an outstanding family of diodes, designed, produced and controlled specifically for logic circuitry. The cost of this new SYIVANIA diode is low enough to make it especially attractive for use in quantity-produced electronic computers. SYIVANIA D.1820, and the circuits designed around this diode, feature:
high-speed operation - with recommended circuits, all units are guaranteed to provide a maximum recovery time of 4 millimicroseconds. However, recovery times of 2.5 millimicroseconds are typical.
long-life performance - proved in 1000 -hours operating and 7000 -hours storage life tests.
high reliability - basic point-contact structure has been field-proved for more than a decade. Withstands environmental conditions of shock and vibration.
exceptional uniformity of electrical character-istics-assures complete interchangeability within the type-result of modern automated-production techniques employed in the manufacture of SYIVANIA D-1820.
economy - SYIVANIA pioneered the field of germanium point-contact diode manufacture, has "know-how" of superior-quality, large-quantity economical production. SYIVANIA is able to pass these savings on to you.
simplicity-diode-logic circuitry is relatively uncomplicated, requires few components. It reduces computer construction costs. It adds to equipment reliabilify.
compactness-SYIVANIA D. 1820 "package" is miniafure all-glass.
availability-units can be supplied immediately through your local Sylvania Semiconductor Distributor or through your local Sylvania Field Office.
Complete sales information on quantity prices, delivery and sampling for your own evaluation is available from your local Sylvania Semiconductor Distributor or Field Office. For engineer. ing data sheets on the new Sylvania D-1820 High-Speed Switching Diode or on any Sylvania Semiconductor Device, write Sylvania Semicon. ductor Division, Dept. 43-2, Woburn, Mass.

ELECTRICAL CHARACTERISTICS- SYLVANIA	
Absalute Maximum Ratings	Typical
Operating Canditians*	

tat 10 mA of $20^{\circ} \mathrm{C}$.

All of these widely useful -hp-instruments are available in rack-mounted -hp-voltmeter accessories-voltage dividers, coaxial connectors, voltage

NEW!

(4p) 405AR Digital Voltmeter

 Automatic range, polarityHere's true "touch-and-read" measuring simplic. ity. Automatic range, polarity selection; covers 0.001 v to $1,000 \mathrm{v}$. (Accuracy $\pm 0.2 \%$ of reading \pm 1 count). New, unique circuitry provides a stability of readings virtually eliminating fatiguing jitter in the last digit. Floating input, multielectronic code output for use with digital recorders. Uses electronic computing circuits to insure low maintenance, trouble-free operation. Just $7^{\prime \prime}$ high! $\$ 825.00$.

Complete array of ac and dc measuring equipment

versatile, precision
 OHMMETERS you need. multi-purpose!

(tp) 4000 10 cps to 4 MC

Regarded by many as finest ac VTVM ever built. Covers all frequencies 10 cps to I MC, extremely sensitive, wide range, accurate within 2% to $\mathbf{1}$ MC. Measures 0.1 mv to 300 v (max. full scale sensitivity 1 mv , 12 ranges. Direct reading in v, db. 10 megohm input impedance with $15 \mu \mu f$ shunt insures negligible loading to circuits under test. \$225.00.

(19) 400L
 Log VTVM-10 cps to 4 MC

Covering 10 cps to 4 MC , this new hp VTVM features a true logarithmic scale $5^{\prime \prime}$ long plus a 12 db linear scale. The log voltage scale plus long scale length provides a voltmeter of maximum readability, with accuracy a constant percentage of the reading. Accuracy is $\pm 2 \%$ of reading or $\pm 1 \%$ of full scale, whichever is more accurate, to $500 \mathrm{KC}, \pm 5 \%$ full range. Range 0.3 mv to $300 \mathrm{v}, 12$ steps, (max. full scale sensitivity 1 mv). $\$ 325.00$.

(5p) 400 H

1\% accuracy VTVM
Here's extreme accuracy of 1% in a precision VTVM covering 10 cps to 4 MC. Big $5^{\prime \prime}$ meter has exact-reading mirror-scale, measures voltages 0.1 mv to $300 \vee$ (max. full scale sensitivity 1 mv). 10 megohm resistance with 15 $\mu_{\mu} \mathrm{f}$ shunt minimizes circuit loading. Amplifier with 56 db feedback insures lasting stability. $\$ 325.00$.
models! Also, inquire about multipliers and shunt resistors.

(4) 410 B ac to 700 MC , also dc

Time-tested standard all-purpose volt meter. Covers 20 cps to 700 MC , full scale readings 1 to 300 v . input capacity $1.5 \mu \mu \mathrm{f}$, input resistance 10 megohms. Also serves as dc VTVM with 122 megohms input impedance, or ohmmeter for measurements 0.2 ohms to 500 megohms. $\$ 245.00$.

HEWLETT-PACKARD COMPANY
1004 D Page Mill Road Palo Alto, California, U.S.A
Cable "HEWPACK" • DAvenport 5-4451
Field representatives in all principal areas

At last a true, precision multi-purpose instrument. Measures dc voltage $100 \mu \mathrm{v}$ to $1,000 \mathrm{v}$ (max. full scale sensitivity 1 mv), 1% accuracy full scale. Measure currents 1 μ a to 1 amp with $\pm 2 \%$ accuracy full scale. 13 ranges. As ohmmeter measures 0.02 ohms to 5,000 megohms. Extremely low noise, drift. Recorder output provides 1 v full scale. $\$ 350.00$.

NEW!

(49) 425A MicrovoltMicromicroammeter

New, high sensitivity, high stability instrument reading end scale voltages of $10 \mu \mathrm{~V}$ to 1 v in 11 ranges, or currents of $10 \mu \mu \mathrm{a}$ to 3 ma in 18 step, 1-3-10 sequence. Accuracy $\pm 3 \%$ on all ranges. Drift less than $2 \mu v$ under all conditions; very much less under lab conditions. Input impedance 1 megohm $\pm 3 \%$ on all ranges. Also usable as 100 db amplifier with up to 1 v output from signals as small as $10 \mu \mathrm{v} . \$ 500.00$.

NEW!

(4p) 428A

Clip-On Milliammeter

Employs radical new approach to cur rent measurement which eliminates breaking leads, soldering connections or loading of circuit under test. Revolutionary "current sensing" probe clips around wire under test, measures the magnetic field around the lead. Easily measures dc current in presence of strong ac. Covers 0.3 ma to 1 amp in 6 steps; full scale sensitivity 3 ma. Accuracy $\pm 3 \%$, probe inductance less than $0.5 \mu \mathrm{~h} . \$ 475.00$.

-unique value, traditional -hp- dependability

Microullatals.

RF POWER STANDARDS LABORATORY

Micronlatch

equipment is used to establish a reference standard of RF power to an accuracy of better than 1% of absolute.
THE G4IN CALORIMETRIC WATTMETER establishes RF power reference of an accuracy of 1% of value read, and is used to calibrate other wattmeters. Five power scales, 0-3, 3-10, 10-30, $30-100$, and $100-300$ watts, are incorporated in the wattmeters for use in the $0-3000 \mathrm{mcs}$ range.

711N and 712N FEED-THROUGH WATTMETERS, after comparison with the 64IN, can be used continuously as secondary standards and over the same frequency range as covered by the primary standard. The MODEL 711 N is a multirange instrument covering power levels from 0 to 300 watts in three ranges, $0-30,30-75$, and $75-300$ watts. MODEL 712 N covers power levels of 0 to 10 watts in three switch positions, $0-2.5,2.5-5$, and $5-10$ watts full scale.
636N and 603N RF LOAD RESISTORS absorb incident power during measurements. MODEL 636 N is rated at 600 watts, and MODEL 603 N is rated at 20 watts. Both models perform satisfactorily over the entire frequency range to 3000 mcs . These loads, in conjunction with the MODELS 711 N and 712 N Feed-through Wattmeters, form excellent absorption type Wattmeters.

152 N COAXIAL TUNER is used to decrease to 1.000 the residual VSWR in a load. The tuner is rated at 100 watts, and its frequency range is $500-4000 \mathrm{mcs}$.
For more information on Tuners, Directionol Couplers, R. F. Loads, elc., write

M. C. JONES ELECTRONICS CO., INC.

185 N. MAIN STREET, BRISTOL, CONN. SUBSIDIARY OF

(Continued from page 48.4)
Electronic Compltters
Detroit-October 5
"Learning Machines," I)r. Holland. Univ. of Michigan.

San Frameisco-October 27
"Micro-Miniature Circuits," I. Last, Fairchild Semiconductor Corp.

Washington, D. C.-November 11
"L'ltra High Speed Computers I'tilizing Nicrowave Phase Lenked Oscillators," G. B. Her\%og, RC.I I ahs.

Engineering Managemint

Srancese- Nosember 1%
"Selection and Ibevelopment of Engineering Managers," Panel discussion, Moclerator: R. A. Galbraith, Syracuse Univ: Speakers: F: F. Ilerzog, Ceneral Electric; J. A. Basher, The Nurray Corp. of Amerita; C. H. Northrup, Crouse I Iinds Co.; M. II. Pratt, Niagara Mohawk Iower Corp.; L. Nacrow, Carrier Corp.

Washington, 1). C.-October 19
"Evaluation and Control of R\&I) Expenses," F. X. Lamb, Weston Instrument Div. of Daystrom, Inc.

Washington, D. C.-November 2
"Men, Money; and Management," Rear Admiral R. l3ennett, LSN.

Indestrial Electronics

Cleveland-November 19
"Instrumentation for Steel Mill Coil Classilication," IV. C. George, Designers for Industry, Inc.

Instrumentation

Los Angeles-November 4
"Extrasensory Perception Instrumentation," Dr. A. Puharich.

Washington, 1). C.-November 16
"I)esign of an RC Filter for use at lery Low Frequencies," II. S. Campbell, I avid Taylor Model Basin.
"A Telemetering Torque and Horsepower Meter," M. W". Wilson, David Taylor Model Basin.

Medical Electronics
Boston-November 4
"Measuring Mental Stability in Space," J. H. Mendelson, Boston Naval Hosp.

Los Angeles-November 19
Informal Seminar in Medical Electronic Problems.
(Comtinued on page .54.4)

TWO-WAY PROTECTION

When you specify IBUSS or FUSETIRON fuses for the products you manufacture, you not only provide the finest electrical protection possible but you also help protect your company's reputation for quality products.

Remember: No matter how good your product is, a poor quality fuse that opens needlessly deprives a customer of the use of your device, - or a fuse that does not protect may permit costly damage to occur. In either case you may lose a customer's goodwill and future business.

Why take the risk when you know you can depend on BUSS and FUSE'TIRON fuses?

Every fuse is tested in a sensitive electronic device that automatically rejects any fuse not correctly calibrated, properly constructed and right in all physical dimensions.

BUSS - the one source for all your fuse needs...

To meet all your fuse needs, the BUSS line is most complete, - including a companion group of fuse clips, blocks and holders.

To help you on special problems in electrical protection ... BUSS places at your service the facilities of the world's largest fuse research laboratory and its engineering staff. If possible, our engineers will help you select a fuse readily available in local wholesalers' stocks so that your products can be easily serviced.

For more information on BUSS and FUSETRON Small Dimension fuses and fuseholders, write for bulletin SFB.

BUSSMANN MFG. DIVISION,
McGrow-Edison Co.
University of Jefferson, St. Lovis 7, Mo.

BUSS fuses are made to protect - not to blow, needlessly. BUSS makes a complete line of fuses for home, farm, commercial, electronic, electrical, automotive and industrial use.

Ceramics assure the superior performance you want from alumina

Material alone does not assure a reliable alumina part ... the exceptional performance characteristics associated with alumina are directly related to manufacturing knowledge and techniques. Since 1948, Wesgo has perfected the precise controls over composition and manufacturing techniques that alone impart a uniform quality to alumina parts. Quality can only be superficially specified knowledge of alumina ceramics plus quality consciousness are the important extras offered by Wesgo. Alumina is a premium ceramic material but with many cost saving advantages. Be assured of these advantages . . . use Wesgo AL-300 ceramıcs in shapes to your specifications.

PURE WHITE AND TRANSLUCENT. 97.6\% $\mathrm{Al}_{2} \mathrm{O}_{3}$. Visibly free from impurities. Vacuum tight.

HIGH STRENGTH. 46000 PSI Flexural, 285000 PSI in compression. UNIFORM IN COMPOSITION AND PROPERTIES from lot to lot. HIGH DIELECTRIC STRENGTH AND RESISTIVITY.

VERY LOW LOSS FACTOR.

For details on properties, write for illustrated brochure
WESTERN GOLD AND PLATINUM COMPANY
Manufacturers of Wesgo Brazing Alloys
BELMONT, CALIFORNIA

Professional Group Meetings

(Contmued from page 52.4)

Macrowide Theory ind
Techniques
Batimore-November 12
"Some Aspects of Solicl State Phenomena in the Microwave Region," P. Pan, Westinghouse Air Arm Div

No. New Jersey-Keptember 30
A. G. Clavier, ITT Labs., reviewed his early experiments in microwave transmis. sion.

No. New Jersey-October 28
"A New High Capacity Microwave Relay System," R, F. Privett, RCA.

Washington, D. C.-November 10
"Atomic Stabilized Oscillators," R. T. Daly, Tech. Research Group.

Microwave Theory and Techviques/Antennas and Propragation

Syracuse-October 1.3
"Radar Exploration of Nearby Space." II. E. Gordon, Cornell Univ.

Military Electronics
Philadelphia-November 19
"Automatic Checkout," O. 'T. Carver, RCA.

Nuclear Souence
Atlanta-November 19
"Wind Tunnel Instramentation," W. T. Earheart, Jr., A.R.O.
"Transistorized Galvanometer Current Limiter," P', Clemens, A.R.O.

Prodection Techniques
Philadelphia-November 12
"Future Printed Circuits-Military Application," R. Geisler, IT. S. . Irmy Signal Corps.
"Future Printer Circuits-Commercial Application," A. Ausley, Ansley Man. Co.

San Francisco-Octuber 27
"Electroplating," G, Dorlge, Tepco Co.
"Organic Finishes," S. Simon, Rhino Tech. Co. and Technical Coating Corp.
"Water IDispersed Coating," a film with comments by R. Koren, Doilge-Koren Co.

Space Electronics and
Telemetry
Philadelphia-November 18
"Attitude Control of Orbiting Vehicles," R. Whealan, General Electric Co,
(Continued on page 56A)

How to design 250 mw at 140 mc transistorized power amplifiers

...with NEW TI 2N716 silicon mesa transistors

1 This power rating for 1000 hours expected life at a case temperature of $25^{\circ} \mathrm{C}$ derated linearly to $+175^{\circ}$ case temperature at the rate of $.125^{\circ} \mathrm{C}$ per mw .
2 Maximum voltage ratings at an ambient temperature of $+25^{\circ} \mathrm{C}$.
3 BVCEO: This is the voltage at which hFB approaches one when the emitter-base diode is open circuited. This value may be exceeded in applications where the dc circuit resistance ($R_{B E}$) between base and emitter is a finite value.
When the emitter-base diode has a reverse voltage applied, peak collector to emitter voltage equal to BV CBO minus VEB may be allowed. Such conditions may be encountered in class B or C amplifiers and oscillators.

- Pulse Measurement
- Specify IEBO on commercial data sheet
**Specify ${ }^{\text {I CBO }}$ on commercial data sheet

Now . . . silicon high frequency transistors specifically designed for your VHF power circuits . . . another addition to the industry's broadest line of silicon mesa transistors (now 16 TI types!).
TI 2N715 and TI 2N716 guarantee 500-mw amplifier output at 70 mc and provide $100-\mathrm{mw}$ typical power output at 200 mc .
These subminiature (TO-18) silicon units feature . . . 1.2-w dissipation at $25^{\circ} \mathrm{C}$ case temperature . . 10-50 beta spread . . . collector reverse voltages of 50 and 70 v . . . maximum collector reverse currents of $1.0 \mu \mathrm{a}\left(25^{\circ} \mathrm{C}\right)$ and $100 \mu \mathrm{a}\left(150^{\circ} \mathrm{C}\right)$.
Check the guaranteed specs below and take immediate advantage of advanced performance in your designs. Both units are ready for your orders in every TI distributor's stocks today, and in quantities of 1,000 and up from your nearest TI sales office.

Tentative Specifications 2N715-2N716								
$\begin{aligned} & \hline 1 \\ & P_{C} \\ & T_{C}=25^{\circ} \mathrm{C} \\ & \text { watt } \\ & 1.2 \end{aligned}$	Tste${ }^{\circ} \mathrm{C} \text { 65 to }+175$	$\stackrel{2}{2}_{v_{C B}}$			$\begin{aligned} & \mathbf{V}_{E B} \end{aligned}$		$V_{C E}^{3}$	
		$\begin{aligned} & v \mathrm{dc} \\ & +70(2 N 716) \\ & +50(2 N 715) \\ & 2 N 715 \end{aligned}$				$v \mathrm{dc}$		
								(2N716)
								35 (2N715)
					2 N 718			
Parameter	Test Condition	Min	Typ	Max	Min	Typ	Max	
${ }^{* *}{ }^{\text {BV }}$ Ebo	EBO $=100 \mu$ a	5			5			$v \mathrm{dc}$
	${ }^{1} \mathrm{C}=0$							
$\cdots{ }^{*} \mathrm{BV}_{\text {CBO }}$	$\mathrm{I}_{\mathrm{E}}^{\mathrm{CBO}}=0 \mathrm{O}=10 \mu \mathrm{adc}$	50			70			$v \mathrm{dc}$
${ }^{\text {hfe }}$								
	$I_{C} \mathrm{C}=15 \mathrm{madc}$	10		50	10		50	
${ }^{-} V_{C E}$ (sat)	1 $I_{B}=15 \mathrm{ma}$ $\mathrm{C}=3 \mathrm{ma}$	12			12			v ds
$\overline{C o b}$	$\mathrm{v}_{C B}=5 \mathrm{vdc}$		3	6				voc
	${ }^{1} \mathrm{E}=1 \mathrm{mc}$					3	6	$\mu \mu \mathrm{l}$
	$F=1 \mathrm{mc}$							
Amplifier	$\left(V_{C B}=40 \vee d c\right.$				500	600		${ }_{\text {mb }}{ }^{\text {m }}$
Power Oufput					4			db
$\begin{aligned} & \text { Oufput } \\ & \text { and } \end{aligned}$	$\begin{aligned} & (P)(A C)-500 \mathrm{mw} \\ & (F=70 \mathrm{mc} \end{aligned}$							
Transducer gain	$\begin{aligned} & (V C B=30 \mathrm{vdc} \\ & (\mathrm{lCB}=25 \mathrm{ma} \mathrm{dc} \\ & (\mathrm{P}(\mathrm{AC})=300 \mathrm{mw} \\ & (\mathrm{F}=70 \mathrm{mc} \end{aligned}$	300	400					mw
			8					
		4						db

Amazing, New, High Inductance

The R.F. Choke that's so small you can pack 200,000 to a cubic foot

Tiny, new, WEE-DUCTOR covers a full range of inductances from $0.10 \mu \mathrm{H}$ to $56,000 \mu \mathrm{H}$ yet it measures only $0.157^{\prime \prime} \times 0.375^{\prime \prime}$.
Unique ferrite sleeve and core construction provides 560,000 to 1 inductance range in a tiny package . . . and yet when assembled side-by-side, exhibit less than 2% coupling. Essex WEE-DUCTORS are available immediately from stock. WEE-DUCTORS are the latest addition to Essex's broad line of Standard R.F. Choke Coils.
Essex Electronics Standard Line of R.F. Chokes

ESSEX PART NO.	WEE. DUGTOR	RFC- S	RFC- M	RFC- L-
L $\mu \mathrm{H}$	$.1-56,000$	$.1-100$	$1.0-1,000$	$1.0 \cdot 10,000$
Max, Res. n	$.035-499$	$.02 \cdot 6.0$	$.04-21$	$.03-80$
I Max. mA	$3000-26$	$4000-220$	$2700-125$	$4000-80$
Dia.	.157	.188	.250	.310
Length	.375	.440	.600	.900

WRITE TODAY
Free Descriptive Literature Available

ESSEM ELECTRONICS

550 Springfield Ave., Berkeley Heights, N. J. CRestview 3.9300

Professional Group Meetings

(Continued from fage 54.4)

Vehictar Commencitions

Los Angeles-September 17
"Commercial Consideration and Basic Engineering Techniçues on Audio "Special Service' Circuits, Working with Vehicular Communications Systems," O. E. Wiedman and P'. L., Cuminghan, D'ac. Tel. \& lel.

Los Augeles-October 15
"Single Position Control for Radio Dispatching and Telephone Answering, R. C. Crabh, Molvilephone of L. A.
"Plug-in Transistorized Microphone and Line . Implifiers," J. Fellis, Los Angetes Fire lept.

Washingtom, D. C.-November 18
". T Tramsmission line and Amtenna Measuring Technigue for Mobile Systems," IV: F. Biggerstaff, CV. s. Dept, of Agriculture.

Use Your
IRE DIRECTORY!
It's Valuable!

EAI
 ELECTRONIC ASSOCIATES, INC.
 Long Branch, New Jersey

from DALOHM

 better things in smaller packages
DALE PRODUCTS, INC.

1302 28th Ave.
Columbus, Nebraska

- Precision Resistors-wire wound, metal film and deposited carbon
- Trimımer Potentiometers
- Resistor Networks
- Hysteresis Motors
- Collet-Fitting Knobs
write for Full Line Brochure

10 me COUNTER does everything without plug-ins

[^3]Complete specifications an Models 7370, 7570 and 7580 will be sent on request.

Beckman/ Brmesp puicin
 2200 IIright A renue, Richmond 8, California a division of Beckman Instruments, Inc.

Announcing...

High Quality
High Performance
Extreme Reliability

From the leading manufacturer of power transistors, new Silicon Power Rectifiers to meet your most exacting requirements. Even under conditions of extreme temperatures, humidity and mechanical shock, these diffused junction rectifiers continue to function at maximum capacity! Thoroughly dependable, completely reliable-new Delco Rectifiers are an important addition to Delco Radio's high quality semiconductor line.

Conservatively rated at 40 and 22 amperes for continuous duty up to case temperatures of $150^{\circ} \mathrm{C}$.

For full information and applications assistance, contact your Delco Radio representative.
Newark, New Jersey
1180 Raymond Boulevard
Tel: Mitchell 2.6165

Chicaga, Illinois
5750 West 51 st Street Tel: Portsmouth 7.3500

Santa Monica, California 726 Santa Monica Boulevard Tel: Exbrook 3.1465

Division of General Motors - Kokomo, Indiana

To assure a new order of reliability
 MICROMODULE
 EQUIPMENT

The micro-module is a new dimension in military electronics. It offers answers to the urgent and growing need for equipment which is smaller, lighter, more reliable and easier to maintain. Large scale automatic assembly will bring down the high cost of complex, military electronic equipment. Looking into the immediate future, we see a tactical digital computer occupying a space of less than two cubic feet. It will be capable of translating range, wind
velocity, target position, barometric pressure, and other data into information for surface to surface missile firings. The soldier-technician monitoring the exchange of computer data will have modularized communications with the other elements of his tactical organization. RCA is the leader contractor of this important United States Army Signal Corps program and is working in close harmony with the electronic components industry.

AT PULSE RATES AS LOW AS 5 pps .. . VOLTAGES OF 1 mv TO 1000 v

Also measures

Complex Waveforms

having fundamental of 5 cps to 500 kc with harmonics to 2 mc .

Accuracy

is 2% to $5 \% \mathrm{OF}$ INDICATED
VOLTAGE, depending upon waveform and frequency.

Scale

is the usual Ballantine log-voltage and linear db , individually handcalibrated for optimum precision.

Input Impedance

is 2 meg , shunted by 10 pf to 25 pf .

Price: $\$ 395$.

THIS "A" MODEL is the result of improvements and new features AFTER 11 YEARS OF MANUFACTURING THE VERY SUCCESSFUL MODEL 305

Write for brochure giving many more details

- Since 1932 -

BALLANTINE LABORATORIES mc.

Boonton, New Jersey

CHECK WITH BALLANTINE FIRST FOR LABORATORY AC VACUUM TUBE VOLTMETERS, REGARDLESS OF YOUR REQUIREMENTS FOR AMPLITUDE, FREQUENCY, OR WAVEFORM. WE HAVE A LARGE LINE, WITH ADDITIONS EACH YEAR. ALSO AC/DC AND DC/AC inverters, calibrators, calibrated wide band af amplifier, digectrreading capacitance meter, other accessories.
includes $55,11.3$ sets capable of receiving UHF signals as against the 51,555 such sets made in September and $+2,171$ ('HF receivers made in October tast year. Cumulative L'HF output during the first ten months of this year totaled 340,980 compared with $35,3,980$ such sets made at this time last year. Y'ear-to-date 'TY output totaled $5,195,440$ compared with $4,067,606$ telerisions mate during the like JanmaryOctober period last year. The number of radios produced in October totaled 1.795,718 including 531,116 automobile receisers, compared with 1,981,208 radios matle in September ineluding 717,501 auto receivers, and $1,218,575$ radios made in October last year which included 290,067 auto sets. The number of FMI radios made in October totaled 62,959 compared with 76,9+2 made in September and 59,586 F WI receivers made in October in 1958. Cumulative FAl output during the 10 month period this year totaled $4,30,763$ compared with $235,6+7$ such reseivers made at this time last year. Cumulative over-all radio output during the first 10 months of this year totaled $12,722,970$, including 4,682 ,962 automohile receivers, compared with the $8,904,772$ radios made during the like 1958 period which included 2,679,618 automobile receivers. Factory sales of transistors in September set a new all-time monthly record, EIA figures show. Saleduring September alone were more than double the number of units sold during calendar year 1955. Cimbulative sales during the first nitne months of 1959 exceeded the total number of transistors sold duning calendar year 1958. Total factory sales of transistors in 1958 amounted to $47,051,000$ units valued at $\$ 112,7,30,000$.

Military Electronics

The Department of Defense released for the consideration of the electronic industries early in January, 1960 the preliminary recommendations of its Ad Hoc Study Group on Parts Specification Management for Reliability-a DOD appointed producer-user-Government group that for the past year has beell working tw establish guidelines for increased reliability in electronic parts and tubes. The office of Perkins McGuire, Assistant Secretary of INfense (Supply and Logistics) said that the group's expanded program affecting the procurement of electronic parts and tubes: is part of the over-all DOI effort to increase the reliability of complex weapon systems.

The group, headed by Dr. 1'. S. Darnell, of Bell Telephone Laboratories, Whippany; N. J. expects to submit its preliminary recommendations to 1)r. Herbert F. York, Director of R\&E, and to Mr. Mocruire following its January 5 meeting. Mr. McGuire's office said that the group's recommendations will be released for study to the electronic industries before they are acted upon by the DOD.

Oufput wave shapes under varying inpuf and load conditions. Sola Catalog No. 23-13-150 used in this fest.

Sola's moderate-cost static-magnetic voltage regulator has sine-wave output

Sola now offers sinusoidal output in every standard-type regulator with no price premium. This development a result of major design and production innovations greatly widens the field of use for static-magnetic voltage regulation. The new standard sinusoidal design is now ideal for use with electrical and electronic equipment requiring a regulated input voltage with commercial sine wave shape - especially where harmonic-free supply had previously been too costly. The sinusoidal output also contributes to ease of selection and ordering, since this Sola stabilizer is virtually universal in application.

The Sola Standard Sinusoidal Constant Voltage Transformer provides output with less than $3 \% \mathrm{rms}$ harmonic content. It automatically and continuously regulates output voltage within $\pm 1 \%$ for line voltage variations of $\pm 15 \%$. Average response time is 1.5 cycles or less. The new line includes nine stock output ratings from 60 va to 7500 va .

Besides the improved electrical characteristics, these units are substantially smaller and lighter than previous models. Size and weight reductions were accomplished without any loss of performance or dependability.

With the Sola Standard Sinusoidal Constant Voltage

Transformer you also get all the proved benefits of a static-magnetic regulator. It is simple and rugged. There are no tubes . . . no moving parts . . . no replaceable parts. Maintenance and manual adjustment are not necessary.

Its current-limiting characteristic protects against shorts on the load circuit. It is available in step-up and step-down ratios, allowing substitution for conventional, non-regulating transformers. These units can be used in any electronic or electrical application requiring a regulated'sinusoidal power source where the peak power demand does not exceed the capacity of the constant voltage transformer. Circuit design formulae based on sinusoidal wave shape are directly applicable. Custom units to specific requirements are available in production quantities.

SOLA

Write for Bulletin CVS
$\mathbf{B P}$
A Division of Basic Products Corporation
SOLA ELECTRIC CO.

SLOPE GAIN TWT FOR IWPROVED SYSTEM OPERATION

RECORDED PLOT OF SMALL SIGNAL GAIN VS FREQUENCY
OF A MODIFIED HUGGINS HA-20 PM FOCUSED TWT AMPLIFIER

The production department at Huggins Laboratories has become very adept at providing traveling wave fubes having specific performance characteristics. These characteristics generally have stressed achievement of a prescribed small signal gain as a function of frequency over definite frequency bands, depending on customer requirements.

As an example, tubes can be provided in which small signal gain varies at some prescribed rate as a function of frequency. The use of a TWT whose gain increases as frequency increases makes it possible to compensate for losses of other microwave system components, which generally increase with frequency, also. The over-all result is a system which, between two given points, has a response which is very nearly independent of frequency. Traveling wave tubes having such properties have been supplied over several specific frequency ranges within the 2.0 to 12.4 KMC bands.

The curve above gives an example of the extent to which the small signal gain response of a TWT amplifier may be controlled. Here, the modification of a
standard X-band PM-focused amplifier resulted in an average gain which ir.creased by 1.5 db per 1000 MC increase in frequency over the 8.0 to 12.0 KMC band. Response of this type is possible with no adjustment necessary by the user external to the tube - the curve is presented with all potentials and currents fixed. Other types of gain responses are also possible, such as TWT amplifiers whose gain varies at some fixed rate over certain particular frequency bands.

The curve is a plot made with a pen recorder used in conjunction with a constant power system. This system makes use of a gridded low-level TWT and the use of feedback to control its output such that it is very nearly constant as a function of frequency and drive (over certain input level ranges). Such a system is described in Huggins Engineering Note, Number 8, "The use of the TWT in con. stant power systems.'

A copy of this is available upon your request, and is bound in our two-volume catalog set which is also available should you not already be on our mailing list. Submit inquiry on company letterhead.

REgent 6-9330

(Continued from page 60A)

Concerning the nature of the group's recommendations, Mr. McGuire's office said it is expected to urge uniform criteria for use by the military Services in specifying desired reliability levels in equipment, including specific reliability parameters for various selected types of components. The group also is said to be considering changes in the QPI procedure that would require producers to furnish considerably more reliability data for qualification, and the possible use of incentives in procurement to encourage parts proxlucers to develop components with a higher degree of reliability. The DOD's Ad Hoc Study (roup is described as a subgroup of the Alvisory Group on Electronic Parts, located at the Triversity of l'emsylvania, Engineering Bldg., Philatelphia.

Publication of quarterly supplements to its electronics reliability design handbook, temporarily suspended in January, 1959, has been resumed by the Navy's BuShips.

The supplements are sold by the Office of Technical Services, Dept. of Commerce, Washington 25, D. C., on subscription at $\$ 2.25$ a year or individually at 7.5 cents a copy.

The hantbrok is intended as a source of information on watys of achieving greater simplicity, ecomomy, and reliability in electroniss equipment for the Nary

OTS still mantains stork of previous issuances. The hasic handbork (I'B1218.39) sells for $\$ 1$. Six previous supplements, PB 1218.30-S1 through I'i 121839-S6, October, 19.57 through January, 1959, are 75 cents each.

Section Meefings

Alamogordo-Hold.omas
"Solar Disturlances and Their Effect on Radio Transmission Phenomena," Dr. John Fvants, ("ambridge Research Center. $11 / 16 / 59$.

Atheq-ERQte-Los Alamos
Antual Christmas Social Party. 12 '5/59

ANchorage
"Reliability and Maintainability," Myron Bakst, Federal Electric Corp. 1055°.
"History of GEELA." Charles Parker, GEEI. Organization. 11/2/59.
"IEngineering Calculations with Digital Computers," Dr. J. G. Tryon, University of Alaska. $12,759$.

Itlanta

Wilectronics in the Space Age," Dr. Frnst Weber. IRF: President. $11 / 30 / 59$

Bealmont-Port Mrthter
"Off-Shore Gas-Condensate Production by* Electronics." J. R. Scroggs, Pure Oil Co.; "Prob-
(Continurd on rage 64A)

Good anywhere in or out of this world

This system adds greatly to your credit when applied to the development of communications, telemctering, control and other devices. Under terms of membership, a wide range of toroids, filters and related networks are available. These include a complete line of inductors. low pass, high pass and band pass filters employing the new micro-miniature MICROID ${ }^{\text {a }}$ coils so valuable in transistorized circuitry. Type $M \angle P$ and $M H P$ MICROIDS are micro-miniature counterparts of the popular Burnell types TCL and TCH low pass and high pass filters. The band pass filter results when cascading a TCL with a TCH filter.
 MHP MICROIDS

W'ijhh of all MLLP and Mull .Microils-approx. 3 ozs. each Send now for your free membership card in the Space Shrinkers Club. And if you don't already have our

Catalogue $=104$ describing Burnell's full line of toroids. filters, and related networks. please ask for it.

Note: First informal meeting of Club members will be held in Burnell Booths 2919-2921 during the IRE Show, New York Coliseum, March 21-24. See you there.

Burnell\& Co, Onc.
 PIONEERS IN microminaturization OF

TOROIDS, FILTERS AND RELATED NETWORKS

Interelecironics Interverter solid-state thyra-tron-like elements and magnetic components convert DC to any number of voltage regulated or controlled frequency AC or filtered DC outputs from 1 to 1800 watts. light weight, compact, $\mathbf{9 0 \%}$ or better conversion efficiency.

Ulira-reliable in operation, no moving parts, unharmed by shorting output op reversing input polority. Complies with MIL specs for shock, acceleration, vibration, temperature, RF noise.

Now in use in major missiles, powering telemetering transmitters, rador beacons, electronic equipment. Single and polyphase AC output units now power airborne and marine missile gyros, synchros, servos, magnetic amplifiers.
Interelectronics - first and most experienced in the DC input solid-state power supply field, produces its own solid-state gating elements, all magnetic components, has the most complete facilities ond know-how-has designed and delivered more working KVA than any other firm!

For complete engineering data write Interelectronics today, or call LUdlow 4-6200 in N. Y.

INTERELECTRONICS CORPORATION

2432 GR. CONCOURSE, N. Y. 58, N. Y.

Section Meetings

(Continnced from raye 62.4)

Fems of Broadcasting" (Technical Briefl, Ren Yugles, KTRM-AM Broadeasting Co. 9/22/5).
"What is a Good Capacitor" "How to Rechire Sour Capacitor Cost!" D. İ. Harris, 11 \& M Kesearch \& Development (0. : " \mathbf{M} icrowave Communications for Power I-tilities, "W. Haack, Gulf States L'tilities Co. 10/20/59.
"Computers for Engineering." IJloyd Ihubbard, IBM: "Ampex VR-1000B Video Tape Recorder," Harold Bartlett, KFDM TS. 11 17/50.

Brenos Aires
"Microwave Spectroscons," Dr. Gunmar Fir. landsson. $7 / 2 / 5^{\circ}$.
"Stereophonic Systems," L. M. Radrizzani (Goni. 7/16/59.
"Biological Risks in the Radiations," Dr. Dan Beninson. 8/6/59.
"TV. Kelay Systems." I. J. Ieibson, A.I.R,F. 8 (20'50.
*Digital Computing Machines of Associative Words," F. K. Taneo. 9 17/59.
"Some Applications of the Radionsotopes in the Argentine Industry," C. C. Papadopulos. 10/1/59.

Vist to Itectronir Argentine Navy taboratories. $10 / 8 / 5 \%$.
"Possibilities of .Istronautics in Argentine," Teofilo Tabanera. 10 15/59.
"Contribution of the IGI' to the Development of Telecommunications," J. λ. Kodriguez. 11/5/59.

Betfalo-Niagara

"The How, What and Why of the Ampere," I. H. Miller, Daystrom-Weston. 1t/18 59.

"The Generalized Machine。" R. A. Strand Pennsylvania State Univ. to 20 50.

Cincrisati

"Data llandling Systems." WV. C. Nash, Minne apolis-Honeywell Kegulator Co.: "Planning for Centrat City ludustry," H. W. Stevens, Clty of Cincinnati Planning Div. $11 / 17 / 50$.

Commars

"Dew Line Radar," Alfred Ruppel, Bell Tele phone Lahs. 11 24/59.
"Thermoelectricity." Dr. S. Ingello, Ne:stinghouse. 12/15/51.

Dallis

Panel Discussion "Trans-horizon Comtmunicat tions," R. M. Mitchell, J. H. Bistrup, H. D. Hern, A, J. Svien, Collins Radio Co. 12/15/50.

Egipt
"Some Asperts of TV Transmitter and Sttodio Equipment." Mr. Tokunoh. Shibaura Filectric Co.. L.td. Japan. $11 / 4 / 5 \%$

EMP(ORI’M
"Infrared Radıation," F. C. Bennett, Jr. Kodak. 11/17/59

Evansville-Owessboro
"Inertial Guidance," IV. G. IVing, Sperry Cyroscope (\%o. $12 / 9 / 59$.

Flerida Mifst Coast
"Communications on a Strategic Air Command Base," Maj. W. E. Smith, MacDill AFR $11 / 18,5^{9}$.
(Continsed on page 70.A)

Transistorized Amplifier

Series T-330

A new series of completely transistorized I-F amplifiers offered to fill the need for standardized, high quality units. These T-330 series amplifiers by I.F.I. are available iniders variety of center frequencies and with emitter follower also can be equipped low noise tuhe input low noise tube input
The quality of construction is high. The use of printed circuitry and quality contro procedures provide rigid standards, Indi vidual inspection and testing of each unit prior to delivery assure the superior quality of irl transistorized -r amplifiers. Thes transistorized amplifiers meet all applicable mititary environmental specifications.

Quantity	Unit Price
11.10	$\$ 800$
11.25	700

INSTRUMENTS FOR INDUSTRY, Inc.

 101 New South Road, Hicksville, L. I., N.Y.

Graduate andmeant with swo or more yeare of circult application in the 6 elde of eloctronice or phyoice are invited to maeat with Mr.

[^4]Distributed constant delay lines - Lumpert-constanl delay lines • Variable delay networks . Continuously variable delay lines - Pushbutton decade delay lines . Shift registers .

Pulse transformers • Medium and low-power transformers - Filters of all types. Pulse-forming networks - Miniature plugin encapsulated circuit assemblies

ESC DEVELOPS DELAY LINE WITH 170 to 1 DELAY TIME/ RISE TIME RATIO

Model 61-34 Perfected
 For Specialized Communications Application

PALISADES PARK, N. J.-An entirely new Lumped-Constant Delay Line, with a proven 170 to 1 delay time/rise time ratio, has been announced by the ESC Corporation, Palisades Park, N. J. The new delay line, known as Model 61-34, was specifically designed for a specialized communications application calling for the exceptionally high delay time/rise time ratio.

ESC, the world's leading manufacturer of custom built and stock delay lines, is already widely recognized in the electronics industry for its exceptional engineering advances. In October, 1958, ESC broke through an existing design barrier and produced a delay line with a 145 to 1 delay time/rise time ratio. It had been thought, prior to the announcement of the Model 61-34, that ESC had reached the ultimate in this type of delay line.

SPECIFICATIONS OF NEW DELAY LINE MODEL 61-34

Delay time rise time ratio: 1701
Delay: 200 usec.
Rise time: 1.16 usec.
Attenuation: less than 2 db
Frequency response: $3 \mathrm{db}=325 \mathrm{KC}$
50 taps with an accuracy of ± 0.2 usec. at each tap.

Complete technical data on the new unit can be obtained by writing to
ESC Corporation, 534 Bergen Boulevard, Palisades Park, New Jersey.

ABSOLUTE MAXIMUM RATINGS AT $25^{\circ} \mathrm{C}$

SPECIFICATIONS AND TYPICAL CHARACTERISTICS
(At $25^{\circ} \mathrm{C}$ Unless Otherwise Stated)

		Typlcal		Tesi Conditions	
Saturation Voltage	$\mathrm{V}_{\text {s }}$	1.0	1.5	Volts	$1_{\mathrm{c}}=50 \mathrm{~mA}$
Forward Leakage Current	If	0.1	10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{c}}=30 \mathrm{~V}$
Reverse Leakage Current	I_{R}	0.1	10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{c}}=-30 \mathrm{~V}$
Torward Leakage Cirront	I_{5}	20.	50.	HA	at $175^{\circ} \mathrm{C}$
Reverse Leakage Curitent	I_{g}	20.	50.	uA	at $125^{\circ} \mathrm{C}$
Gate Voltage to Switch "ON"	$\mathrm{V}_{\mathrm{g}} \mathrm{On}$	0.7	1.0	Volts	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{~K}$
Gate Current to Switch "CN"	Ig_{g} On	0.1	1.0	mA	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{~K}$
Gate Voltage to Switch "OFF"	$\mathrm{Vg}_{\mathrm{g}} \mathrm{OH}$	1.2	4.0	Volts	$1_{c}=50 \mathrm{~mA}$
Gate Current to Switch "OFF"	$\mathrm{I}_{\mathrm{g}} \mathrm{OH}$	7.0	10.	mA	$\mathrm{I}_{\mathrm{c}}=50 \mathrm{~mA}$
Holding Curtent	I_{8}	2.0	5.0	mA	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{~K}$

SPECIALLY DESIGNED FOR:

- Miniaturized Memory Circuits
- Ring Counters
- Shiff Registers
- Controlled Rectifier Driver
- Flip-Flop Equivatent
- Simplified Information Storage
- 0.3 m second Switching

Transitron announces a NEW computer element for: Greater Reliability. Circuit Simplicity

The Transwitch is a new bistable silicon device that can be TURNED OFF with gate current.

This PNPN latching device "remembers" its last gate signal. High current gain, both turn-on and turn-off, leads to greater circuit simplicity and inherent reliability. Excellent linearity of electrical parameters over a wide current range fulfills both low logic level and medium power needs.

Here is a unique device that replaces two transistors plus resistors in most bistable circuits and permits increased component density.

Furthermore, the transwitch is FAST . . . requiring only 0.3 microseconds to turn ON or ofF !

The Transwitch is now available from Transitron in the popular JEDEC TO-5 package, ready to solve your switch-on-switch-off requirements.

Polarad Model SA-84W being used to make pulse analysis of radar aboard a Pan American Boeing 707, Jet Clipper*

FEATURES:

MODEL SA-B4W 10 to 44,000 MC in a single unit

- Over 80 mc dispersion 1 mc to over 80 mc for narrow pulse analysis.

100 kc to 7 mc for wide pulse analysis.Dual Resolution
7 kc or 50 kc automatically set by dispersion control.Crystal controlled markers from 10 to $44,000 \mathrm{mc}$.Provision for use with a multi-pulse spectrum decoder (Polarad Model SD-1)
(4) Log-linear amplifiers
(E) Expanded, direct-reading, slide rule dial.

- Accurately calibrated IF attenuator

The Polarad Model SA-84W is the most accurate universal microwave analyzer to measure nearly all parameters - Pulse, CW, FM, VSWR, antenna patterns, bandwidths and filter characteristics.

pOLARAD ELECTRONICS CORPORATION

MAIL THIS CARD
for specifications. Ask your nearest Polarad representative (in the Yeliow Pages) for a copy of "Notes on Microwave Measurements."

POLARAD ELECTRONICS CORPORATION:

Please send me information and specifications on:
\square Model SA-84W Universal Spectrum Analyzer
\square Model SD-1 Multi-Pulse Spectrum Selector (see reverse side of page)
mep
(죠몽

My application is \qquad

Name
Title \qquad Dept \qquad
Company \qquad
Address
City \qquad

43-20 34th Street, Long Island City 1, N. Y.
Representatives in principal cities.

Isolate and gate a pulse. Intensified pulse has been isolated by a Model SD 1 Multı puise Spertrim Sulector.

COMPLEX SPECTRUM DECODING

10 to 44,000 me.
Signal Analysis for Missiles, Telemetry, IFF, Beacons and Radar

The Polarad spectrum selector permits spectrum analysis and decoding of any selected pulse within a multiple pulse train. Sweep, gate width and position can be controlled. Model SD- 1 permits the selection and gating of a group of pulses up to $180 \mu \mathrm{sec}$. in length (Model SD.IX permits $350 \mu \mathrm{sec}$.)
Works with POLARAD Models TSA, TSA-S, TSA.W, SA. 84 and SA84 W spectrum analyzers.

BUSINESS REPLY CARD
First Class Permit No. 18, Long Island Ciry I, N.Y.

POLARAD ELECTRONICS CORP
43-20 34th Be., Long isiand City I. N. Y.

MAIL THIS CARD
for specifications. Ask your nearest Polarad represen tative (in the Yellow Pages) for a copy of "Notes on Microwave Measurements.'

POLARAD

ELECTRONICS

 CORPORATION43-20 34th Street, Long Island City 1, N. Y.
Representatives in principal cities.

tomorrow
is our
yesterday

SEIECTION OF INPUT ImPEDANCES:

10 K , low noise (as above) and 100 K , ap. proximately 50% higher noise.

BANDPASS SEIECTOR SWITCHES:

Upper Frequency Limiting Switch, 11 positions, 300 cps to 180 kc ; Lower Frequency Limiting Switch, 11 positions. 2 cps to 120 kc.

GAIN:

Selectable in 8 steps, 10 db to 80 db .
EXTENDED FREQuENCY RANGE AND HGHER INPUT IMPEDANCE AVAILABLE IN SPECIIL DESIGNS TO MEET SPECIFIC REQUIREMENTS.

ELECTFONICS, INC. Box 997

represents the theoretically ideal electron tube grid，and describes its nearest approach，the Amperex frame grid．By developing frame grid mass production techniques Amperex has made possible elec－ tron tubes with capabilities hither－ to quite impossible to achieve．
Amperex frame grid tubes may be considered typical of the out－ standing electron tubes，semi－ conductors and detection devices presently adding to the stature of the 30 year old Amperex name in such fields as Nuclear Instrumen－ tation，Advanced Military Elec－ tronics，Communications，Com－ puters and Industrial Electronics．

Applications Engineering assist－ ance is available．Write to： AMPEREX ELECTRONIC CORP．， 230 Duffy Ave．，Hicksville，L．I．，N．Y．

for information on electron tubes and semiconductors for all applications．

Section
Meetings
（c．ntmined from Fage od．1）
formt lleacilla
＂Silieon Capacitor＊＂J．C．Hammor＝3g． Huthe dir（raft（CO．11， 2.15%

Fort IVAVE
＂Commantiction by a Polat Orbit satollite

 （1）liknida． 12 10 59．

11amu．To）
＂The What，When，How and Why of the＂
 $11 / 1859$.

Ilotson
 Rjue lustitute．It 17 5）．

 K．W．Meswin，JBM Lab．：Mosie－＂Mettomolis in Motion．＂ 11 10 $5^{\circ} 1$.

Ins Avintues
＂Commaniaation at Viandenberg AFB，＂（a）．

Miami

 Hatwiggen；Filection of Otheress． $1210 \quad 105$
＂Srw Developments and Thinge to Comate in
 $121+/ 50$ ．

Movikizal．
 timail Kesemtell Cemmion． 1125 50．

 Depr．of Transport． 1120 5リ．

 10 275%
 Single＊idebath，＂II．Vance．K（ $1.11,1.3,5{ }^{\circ}$ ．
＂Interplanctatry Guidance of Space Vehiclos，－ R．N．Hutson，Chance．Votught Aireratit Ins． 1125.50.

Vortin Cabulle． 1
＂Spate（Commaniantioms，－Dr．D．P．Ling，Betl） Teleghome Labse $12+5^{\circ}$ ．

Nokthers Mesuria
＂Electronion at Work。＂C，N．Hoylho RCA； Whertion of Oflicers： $101.5 / 50$.
（C，nftumat，in 「ult i？

Andrew Corporation offers a wealth of engineering experience in the field of super power RF transmission devices. A broad line of standard equipment is offered and andrew facilities for the develcpment and production of special equipment are without equal.

Available on a production basis is antenna equipment in all of the new, very large waveguide and transmission line sizes, including high power coaxial lines designed with specially shaped inner conductors and insula. tors to substantially increase voltage ratings.

Typical too, of this equipment are patch panels such as the $9^{\prime \prime}$ line model
shown above, used for occasional rearrangement of antenna and transmitter connections.

For high speed circuit switching, andrew has developed peak reli. ability, non-contacting waveguide switches such as the $21^{\prime \prime}$ model above. Similar switches are also supplied with transitions for use with coaxial line.

Of definite advantage to you is the completeness of the andrew line which permits a systems approach with integrated equipment for best performance of the overall system. Our newly expanded production facilities assure prompt deliveries.

We would welcome your inquiries for product information and engineering assistance on :
Antennas • Feed Horns • Switches • Patch Panels • Duplexers • Power Dividers • Filters • Coaxial Line • Waveguide - Transitions • Adaptors ${ }^{\circ}$ Bends • Hangers * Dehydrators

WRITE FOR bULLETIN

VISIT THE ANDREW DISPLAY AT IRE SHOW, BOOTH 1502-04.

363 EAST 75TH STREET - CHICAGO 19 Now York - Boston - Los Angeles - Toronio

－measures 100 to 30.000 mc
 generates 500 to 30.000 mc with high accuracy and stability

This phase－locked oscillator transfers the accuracy and stability of a VHF driver into the microwave region，giving continuous coverage．
You can drive the unit with Gertsch frequency meters FM－3，FM－6， or FM－7．Fundamental frequency range is 500 to 1000 Mcs ，with harmonic output to at least 30,000 Mcs．
Ideal for calibration of cavity wavemeters．．．for precise measure－ ments，or as an ultra－stable frequency source．Unitized construction． Adaptable for rack mounting．

Complete data in Bulletin FM－4A．

GERTSCH PRODUCTS，Inc．

3211 South la Cienega Boulevard，Los Angeles 16，California／UPton 0．2761－VErmont 9．2201

Engineers！Designers！
THERE IS NO SUBSTITUTE FOR RELIABILITY！ Specify－

PERFORMANCE PROVEN＂MAG MOD＂

MAGNETIC MODULATORS

Miniaturized design permits engineers to employ these new components in transis． torized printed circuit as． semblies and wafer type structures．Alf models offer maximum reliability，fully ruggedized construction and conform to MIL－T－27A speci－ fications．

COMPLETE RELIABILITY －infinite life
－FASTER RESPONSE time －NEGLIGIBLE HYSTERESIS
－EXTREME STABILITY
（Ambient Temp．Range
from -75° to $+135^{\circ} \mathrm{C}$ ）
－COMPACT SIZE
－LIGHTWEIGHT

Typical circuit applications for Magnetic Modulators are algebraic addition，subtrac－ tion，multiplying，raising to a power，controlling amplifier gains，mechanical chopper replacement in DC to funda． mental frequency conver－ sion，filtering and low signal level amplification．

GENERAL

 MAGNETICS•INC135 BLOOMFIELD AVENUE bloomfield，New Jersey Telephone：Pilgrim 8.2400

（Conmmind t．om patn• 7！．I）

\qquad
＂tondance ot L．anar Poblees，＂D1．S．Darling

＂The Cbanging（hallonges al Foctrmaic
 neering lastitate．II 20 59．

OIIAWA
＂（Combat Sutwillancer，＂Matj．I．．II．II ydit Army HQ，（Othwa：＂．Irmy Field C＇ommumication and Fibld F＂qupment＂＂Radias F ：quipmont tor

Philadet infa

 A Keview of low Noise Amplitier＝＂Dr．Ilenty

P！eがバメ

PORT：ANI

 Planning \＆Divelommant Dugn， 112.3 5！． Orgathization meeting． 11 os 50 ．

＂Kandom！Fumetions and Xinn－linear Promewe $11 / 259$.

Quribec

Kunll IIICs

SAV D DEGO
＂S゙ew Deveropment－in Kadio A－toonomy，
 $11+51$ ．

> SHRFILPORI

 11.35
＂I＇roce－aing and Kelusilding TV Pbutur
 Tour of Imperial EAectronic Finctory． $121 / 54$

Sot 111（＂（RI）IIへA

I．anle．Pyramial Electric（＂o． 11 21 59）．
＂Be－ing Prepared，＂Dr．Jirnet IVeber，1kJ： Problont 12 2 5！

Tomino

RELIABLE SILICON TRANSISTOR SWITCHING

HOW? - By using Fairchild's 2N1252 or 2N1253 lowstorage silicon mesa transistors. The guaranteed low storage characteristic permits a simple saturating circuit to achieve switching speeds that previously required complex non-saturating circuits.
WHY? - Improved reliability and reduced cost - one semiconductor instead of five and fewer soldered connections. Power dissipation is only $1 / 3$ rd to $1 / 5$ th as great, making possible much higher component densities in packaging. Cost and reliability are improved all the way from development through volume production.
WHERET - Switching circuits in general. The 2N1252 and 2N1253 are ideally suited to high-speed high-current switching applications such as magnetic-core drivers, drum and tape write drivers, high-current pulse generators and clock amplifiers. In addition, the transistors are applicable to medium-speed saturated logic circuits.

FAIRCHILD 2N1252 and 2N1253

Symbol	Characteristic	Rating	Min	Typ	Max	Test Conditions	
$h_{\text {FE }}$	D.C. pulse current $\begin{array}{ll}\text { gain } & \text { 2N1252 } \\ & \text { 2N1253 }\end{array}$		$\begin{aligned} & 15 \\ & 30 \end{aligned}$	$\begin{aligned} & 35 \\ & 45 \end{aligned}$	$\begin{aligned} & 45 \\ & 90 \end{aligned}$	${ }^{\prime} \mathrm{C}=150 \mathrm{~mA}$	$V_{C}=10 \mathrm{~V}$
P_{C}	Total dissipation at $25^{\circ} \mathrm{C}$ case temperature	2 watts					
VBE SAT.	Base saturation voltage			0.9 V	1.3 V	${ }^{\prime} \mathrm{C}=150 \mathrm{~mA}$	$\prime_{B}=15 \mathrm{~mA}$
VCE SAT.	Collector saturation voltage			0.6 V	1.5 V	${ }^{\prime} \mathrm{C}=150 \mathrm{~mA}$	$\mathrm{I}_{\mathrm{B}}=15 \mathrm{~mA}$
h_{fe}	Small signal current gain at $\mathrm{f}=2 \mathrm{mc} \begin{aligned} & \begin{array}{l}2 \mathrm{~N} 1252 \\ 2 \mathrm{~N} 1253\end{array}\end{aligned}$		$\begin{aligned} & 2 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 4 \\ & 5.5 \end{aligned}$		$\mathrm{I}_{\mathrm{C}}=50 \mathrm{~mA}$	$V_{C}=10 \mathrm{~V}$
${ }^{1} \mathrm{CBO}$	Collector cutoff current			$\begin{gathered} 0.1 \mu A \\ 100 \mu A \end{gathered}$	$\begin{gathered} 10 \mu A \\ 600 \mu A \end{gathered}$	$\begin{aligned} & V_{C}=20 \mathrm{~V} \\ & V_{C}=20 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{T}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}=150^{\circ} \mathrm{C} \end{aligned}$
ts +1 t	Turn off time			$75 \mathrm{~m} \mu \mathrm{~s}$	$150 \mathrm{~m} \mu \mathrm{~s}$	${ }^{1} \mathrm{C}=150 \mathrm{~mA}$	$\mathrm{I}_{\mathrm{B} 1}=15 \mathrm{~mA}$
						$I_{B 2}=5 \mathrm{~mA}$	$\mathrm{R}_{\mathrm{L}}=40 \mathrm{n}$
						Pulse width $=$	10 ms

For full specifications, write Dept. E-2

545 WHISMAN ROAD - MOUNTAIN VIEW, CALIFORNIA - YORKSHIRE 8-8161 - TWX: MOUNTAIN VIEW CAL 122 New York Area: Ploneer 1-4770 - Syracuse: GRanite 2-3391 - Philadelphia Area: TUrner 6-6623
Washington D.C.: NAtional 8-7770 - Chicago: BRowning 9-5680 - Los Argeles: OLeander 5-6058

 NOW ...THE WORLD'S

 NOW ...THE WORLD'S LARGEST SELLING VTVM in wired or kit form

- ETCHED CIRCUIT BOARDS FOR EASY ASSEMBLY, STABLE PERFORMANCE

- I \% PRECISION RESISTORS FOR HIGH ACCURACY

- LARGE, EASY-TO-READ $41 / 2^{\prime \prime} 200$ UA METER

The fact that the V-7A has found its way into more shops, labs and homes around the world than any other single instrument of its kind attests to its amazing popularity and proven design. Featured are seven AC (RMS) and DC voltage ranges up to 1500 ; seven peak-to-peak ranges up to 4,000 ; and seven ohmmeter ranges with multiplying factors from unity to one million. A zero center scale db range is provided and a convenient polarity reversing switch is employed for DC operation, making it unnecessary to reverse test leads when alternately checking plus and minus voltages.

A large $4 \frac{1}{2}{ }^{\prime \prime}$ meter is used for indication, with clear, sharp calibrations for all ranges. Precision 1% resistors are used for high accuracy and the printed circuit board gives high circuit stability and speeds assembly. The 11-megohm input resistance of the V-7A reduces "loading" of the circuit under test resulting in greater accuracy. Whether you order the factory wired ready-to-use model or the easy-to-assemble kit, you will find the V-7A one of the finest investments you can make in electronic workshop or lab equipment.

> Send for your Free Heathkit Catalog or see your nearest authorized Heathkit dealer.

 Meetings

((antinu-d from fuge 23.1)

Tichos

"Magnetic Amplifiet - " Henry Patton, Detront. $11 / 19$ 5\%.
"Radio Astromomy and thr Nitional Rivjio Astronomy Obserwatory: Dr. J. IV. Findlas. N tional Ration Astronmong ()bsematorv. $11 / 1.3$ 5\%.
"Tammel Dioder, ${ }^{-}$Dr. K. Hitll, (it. (O. 12 + So).

"(3ats: Droces-ing." Dr. W". Shaver, Cornimg Glame Wiurks. 11 IS 5

S bstechons

FASIERN NURII (AKOLNA

*Ther Federal Aviation Ageney- Flectonic Cilamdiatn of the dirways." I. Mears and T. K. Hiplit. FiA. 1111350

 117,5).

"1:nra Red Physir=." Dr. II. ,. Daw. New Mexico state Inivervits; lention ai oftivers, 1124 51)

*BMEIIS - Batli-tic Miswile Farly W"arning Sysem," 11. F. Baker, RCA. 11) 28 59.

Mempins

"Satellites and Their Scientitic Impme," Dr.

Merrimack \alioliy

" Inetrmmentation of Ntlantio Misoile Test Kanke". I. A. Inceri, $\mathrm{IN}^{\prime}\left({ }^{\prime}() .112 .3\right.$. 59.

M(1)-llinson

"("ab)twition (IV.ide Bath Vidso Distribution)"

"Control ot the Machine By' the Spolen Word," 11. W. Dudley, Ball Telephone I-abls, 102059.
"Kadin Interference Testing of Large Scale Computing Systems - Theory and Practice, "Norman Tashor, IBM. 1! 12 50.

 Amplifiers I*sing Dindes." IV. W". Mumford and

- Fopporation of the Fíarth"s (luter Atmes phele. Dr. S. J. Batuer. I'. S. Army I.th. 11 18 59

"Radin A, (monamy." Dr. Harold Ewen. Vwenknight (iors. 1210 50)
Panama City
"Theory and Application of Instramentation Magnetic Tape kecording." IV. Craig, Ampex Corp. 12/15 59.
SAS [í:RNANHO VALLEY
 Studio. 10 20 इ"
"X-15," Q. (. Harvey, North American Avia tion. $11,11,59$.

[^5]
NEWzST way to write periormance.:

 תervo/riter
SELF-BALANCING POTENTIOMETRIC RECORDER

NO OTHER RECORDER OFFERS YOU AS MANY HIGH PERFORMANCE FEATURES...at any price!

The old cliché, "You can pay more but you can't buy better" was never more applicable than in the new "servo/riter" recorder. Texas Instruments has developed a self-balancing potentiometric recorder that incorporates premium engineering refinements, sensitivity, reliability and quality construction as standard equipment.
High-Sensitivity - Standard electrical span of 2.5 millivolt d-c with off-balance input resistance of 4 megohms gives a power sensitivity of better than 10^{-17} watts.
Fast Pen Speed - Span step response is less than 0.5 second.

High Interference Rejection - Good filtering provides high orders of rejection to common-mode d-c and all types of 60 cps interference. Guard shields permit making full-accuracy measurements at hundreds of volts above ground.
Long-Term Reliability - Tube life is prolonged by
heat-dissipating shields. Amplifier gain is stabilized by partial negative feedback. Non-lash, non-wearing, toothed belt drive gives long consistent performance. Superior Operating Conveniences - Recorder function is easily changed by plug-in input units. Presently standard are $2.5,5$, or 10 millivolt d-c electrical spans
special applications and ranges are easily accommodated. "Micrometer" control for zero adjustment and main amplifier gain control are readily accessible as are all other adjustments, connections, and controls. The popular 10 -speed chart gears and the highcapacity, easy-prime ink handling system proved on the "recti/riter" \notin recorder are standard equipment on the "servo/riter" recorder.
There are four "servo/riter" recorder models to choose from . . Single Channel, Narrow Grid; Single Channel, Wide Grid; Dual Channel, Narrow Grids; and Dual Channel (overlapping pens), Wide Grid. Write for technical literature and TI engineering assistance in your specific end or OEM use.

Illustrated: Screw Terminals—Screw and Solder Terminals—Screw Terminal above Panel with Solder Terminal below. Every type of connection.

Six series meet every requirement: No. 140, $5-40$ screws; No. 141, 6-32 screws; No. 142, 8 -32 screws; No. 150, 20-32 screws; No. 151, 12.32 screws; No. 152, 1/4-28 screws.

Catalog No. 22 lists complete line of Barrier Strips, and other Jones Electrical Connecting Devices. Send for your copy.

UP TO 1000 BITS/SEC OPERATION ON VOICE BANDWID'TII CIRCLITS

KY-612 TONE KEYER
TD. 635 TONE DEMODULATOR
A transistorized system-basic principle of operation is audio frequency subcarrier, keyed on and off. Input and output a-f filters designed for multiplex operation. Up to six 1000 bit multiplex channels in 20 kc band-more channels at lower data rates.

CONDENSED SPECIFICATIONS

Max. Data Rate (keying speed) Time Jitter at DeMod Output

Input-Output Signal
Carrier Frequencies
AF Output-Input Levels
Primary Power (each unit)
Dimensions (each unit) \qquad
Ask for Engineering Bulletin No. 57

RIXON ELECTRONICS, INC.

2414 Reedie Drive

Silver Spring, Maryland

Section Meetings
(Contimued trom page il-1)
"The Feletron, Kewarch and the Navy," Rear Adur. R. Remett, Dept. Ot Navy-Washington 11/1759.

santa bariaka

 1: letronic Enkinerering (or of Calit, 111789.

Conduted Tour on Nikl: Plant, Doustas dircraft Co. 11 19 3^{11}.

The following transfers and admissions have been approved and are now effective:

Transfer to Senior Member
Becher, I... Bromlyn. N. Y
Bekheringe D. H.. The Hawue. Holland Benham. E. F.. Ilollt wort) (alif Bowlier. P.. Browel-. Belkum Catanzarite. F. 1., Dayton. Ohio Cullen, A. I... Sheftienh, Englamel Dentant. M. C.. (harlerui. Beteium Detwiler. S. I'.. Xew Hyale Park. 天. Y Fik-tein, (f., ifteth Burnie. Ma. For-ter. M. C., santa Barbara, Calif. Guvton, R. D... Starkville. NiHarmengnies, I'. A.. Sons, Relpium Hines. W. S., Em Gallice, Fla Hofimam. I. A. Bruseels. Belsium Howelt. J. F.. N1/watuher. Wis Marigul. I., ["celc-Pruwero, Delwimb Mathews. F.. W.. !r. Monevown, N. J. Mushiake, Vo.. Semlai, Iatan Overby, 11. S.. ()Who. Sorway Rowenblitl. W. A., Cambrilge. MatSchnciler, S.. Sew York, N. Seals, K. B., Irving. Tev.
Sellers, T. D., Mellmurne. Fla.
Sharpe. G., Murray IIII. N. I.
silsey, J. O., Fort Wayne. Inl.
Stoklas, F. P. Fan Callie. Flat
sundaram, I. R.. Ceneva. Switzerland
Sware\% F. F... I'tica. Mich.
Talbot, R. V., Corona, (alif.
Thomison. D. C., College I'ark. Mi? van Wijngatrilen, I.. Amaterdam. (hont. The Nethertants
Waller. S. !... Irlingtom. V'a
Watoon, S. E., Ir.. U'nimernity City, Mo.
Weston, B. I.. Albuqueriuc. N. If.
Wever. I. R., Cowoa Beath, Fla.
Wolf, F. A.. Columbus, Ohio
Woorlbury. H. L.. Orland Park, III.
Admission to Senior Member
Benjamin, R. B., Newport Beach, Calif.
Bosenberg, W. A.. Somerville, X. I.
Boudreanx, F. I., Lafayette, La.
Cardwell. L.. R., Orlando, Fla.
Doherty, R. II., Boulder. Colo.
Garrow, H. I., San Mateo, Calif.
Graham, (i. E.. Stratfort. Comm.
Heaton, A. R., The Hague. Setherlands
Herrlin, R. C.. Dayton, (hio
Lefkoy, S.. Waalhinstorz. D. (C

Contamination is eliminated. Bakıng, surface treatment, electrical testing and package welding are all conducted in dry-boxes at a dewpoint temperature below $-90^{\circ} \mathrm{F}$.

Flat, even junctions avoid "hotspots." Precise control of time and temperature ($\pm 0.03 \mathrm{~F}_{0}$) of alloying process elıminates localized heatıng, gives long reliable life. Characteristics are more uniform.

Ruggedness oxceeds MIL specification. Severe requirements for shock ($1000 \mathrm{~g}, 1 \mathrm{~ms}$), vibration (10 g , $100-3000 \mathrm{cps}$) and acceleration ($20,000 \mathrm{~g}$) are met by: electronic welding of formed lead wires, horizontal base tab, and welded JEDEC TO.9 case.

More reliable products through Advanced Engineering

CBS NPN switching transistors have proved themselves in flight in many of our important "birds." They have been found to have the advantages of fast switching, high voltage, low cutoff current, and low saturation resistance. All 28 of these CBS transistors exceed the MIL-T-19500A specification.

This same proven reliability under the most adverse environmental conditions is yours for military or industrial core drivers, logic circuits or general switching functions. Write for complete data sheet E-353. Order from your local Manufacturers Warehousing Distributor.

Choose From...

$2 N 306$	$2 N 357$.	$2 N 388$	$2 N 439 A$	$2 N 445$	$2 N 558$	$2 N 1000$
$2 N 312$	$2 N 358$	$2 N 43 B$	$2 N 440$	$2 N 446$	$2 N 634$	$2 N 1012$
$2 N 356$	$2 N 377$	$2 N 438 A$	$2 N 440 A$	$2 N 447$	$2 N 635$	$2 N 1090$
$2 N 356 A$	$2 N 385$	$2 N 439$	$2 N 444$	$2 N 556$	$2 N 636$	$2 N 1091$

LAPP INSULATION

FOR

WATER－COOLED

SYSTEMS

For carrying cooling water which must undergo a change in potential，use of Lapp porcelain eliminates trouble arising from water contamination and conductivity， sludging and elecrro－ lytic attack of fittings．Permanent cleanness and high resist－ ance of cooling water is assured with the completely vitri－ fied，non－absorbent Lapp porcelain．

PORCELAIN WATER COILS

Twin hole or single hole models to provide flow of cooling water from 2 to 90 gallons per minute．Each assembly in－ cludes ceramic coil，aluminum mounting base，nickel plated brass attachment fittings．．．and is proof－tested to 100 lbs ．per square inch water pressure．

PORCELAIN PIPE

Practically any piping layout can be made with these pieces ．．．swivel flanges provide automatic alignment．Straight pipe up to $60^{\prime \prime}$ lengths． 90° and 180° elbows，fittings for easy attachment to metal pipe；matching support insula－ tors．Inside diameters $3 / 4$＂to $3^{\prime \prime}$ ．

1

WRITE for Bulletin 301 containing complete description and specification data．Lapp Insulator Co．，Inc．， 222 Sumner Street， Le Roy，New York．

Membership
（Continurd from fage 76．A）

Metzelar，W．，The Hague．Netherlands
Pace，N．C．，Washington．D．C．
Pollard，IB．W．，Pasadena，Calif．
Rogers，T．W＊．，Wa－hinkton，D．C．
Rooney，IV．R．，Fulton．Md．
Shockley，WV．L．，Richardson．Tex．
Tani，K．．Tokyo．Ohta－ku．Tapan van Hall，I．N．，Hilversum．Holland Wheeler．C．R．，Harrison，N．J．

Transfer to Member
Adam～．R．R．，［pton，I．．I．．S．I＇
Albert．B．，Belmont．Mars．
Alhon，R．．Jr．．L．enwool．Calif．
Amort．1）．L．．Corvallic．（）re．
Austim．R．C．，Camp Ilill．D＇a．
Ayer－，J）．C．，（Cerlar Rapils．Jowa
Baianonte． F° ．J．．，Citecley，Colo．
Bain，T．1）．．Columbti＝，（Hhis Barmair．R．F．．Richfielf．Minm． llartol，IV．I．，Milwather，W＂is． Jatuer．R．V．．．Riversile．Calif． Jehrendt．R．＇r．，Billinks，Munt． Hein．G．E．．Norfolk．Via．
Bennett．WV．F．，Reading．I＇a．
Bertelsen，B．I．．Vestall．N．V＇
Hoesch．I＇．W：．，Wa－hington．I）．C．
Boohwalter，F．C．．Sinte lie．ソ゚．D
Boy－．H．N．．I．evistown，l＇a
Bradley．K．M．，New Itaven．（＇man，
Bramies．N．！．．Nutley，N．I
Hrechenrisme，W．G．，It．．．Itallema，（＇atif．
Brown．C．R．．Hunston，＂Iex．
Huchanan，K．T．，St．I＇atol．Minn．
Huchieller．J．E．，Riversiale．（alif．
Budell．L．A．．Marcellus．N．V Burhans，R．WV．，Cleveland．（）hio Kramhari．W：．，Norwalk，（omm （＂arremin．I）．（i．，Newark，N．I． （ase．S．W．，Janview，I．I．．N．V （atemaro，R．．）．．seafurd，l．．1．．N．ソ． （＂）ambers，D．R．．F゙t．W゙ayne．Jnl． Clarke，E．L．．．Kamsas City，Mo． （ockerham，F．E．，Eau Gallie，Fla． Cohen，K．！．．Kink of Pruscia．Pa． （ole，D．A．，Burlington，N．J． （Cole，I．E．．Tucson，Ariz． （oleminn．If．R．，Garland，Tex （ollier，A．F．．Roclester．Mich． Copithorne．A．R．，Marblehead．Mass． Cox．Ci．C．．Northbridge，Calif Cross．A．H．，W＇．Somerville，Mas： Croueh．M．IK．，Ottawa．Canala Malton，M．M．．I．os Angelec，Calif． Dargue，F．B．．Roselle I＇ark．N．I． Ji Napoli．C．W＇．．Reno．Nev． Dohbs．W゙．．Vambenierg A．F．B．C：alif． bodee，I．F．．．Irlington．Va． Bonovan，C．，lberlford．Masc． Dublbel．W＇．C．，St．D＇aul．Minn Dunn．I．Ci．．Cuper Montelair．N．J． ［bmang．R．A．．Memplais．Temn． Wroracek．F．H．，Oxbard．Citif． Ehoff，W．C．．Constamia．S．S． Faber．D．C．，Timonium．Md． Fedutin，I．S．，Dayton，Ohis Fleishman，G．，Long Island City．N．Y． Gicenbers．S．A．，Malrlen，Maハ． Greis，WV．F．，Sao Paulo，Braril Heizer，L．E．．．Ft．Worth．Tex． Held，（i．，Seattle，Wash． Hendricksm，H．S．，Bloonnield，Conn． Heyer，E．M．．Mt．Holly，N．I． Horlgin，R．M．，Ir．．Liverpool，N．V＇ Holly，C．M．，E゚l Cajon，Calit． Howard，D．V．．Ir．．Camden．N．！． Hughes，A．M．，Bonton，Mans． Hughey，A．H．．Hollỵumal．（alif．

1 BROAD AVAILABILITY from a single source. All popular RF Series. In addition to those illustrated above, series UHF, BN, Adapters and Specials are also manufactured by AMPHENOL

2 SERVICE \& ASSISTANCE based on the experience of over twenty years of designing and manufacturing RF connectors.

3 ENGINEERING facilities are the finest of any components manufacturer. AMPHENOL has the know-how and the equipment to assist you in "problem areas" and in special designs.

BACKWARD WAVE OSCILLATORS

Features:

- SMALL SIZE

LOW VOLTAGE

- LONG LIFE
- RUGGED CONSTRUCTION

Varian X-band EWO's are now the standard of the industry for mystemp requirins tonir 16 , low valtage operation, and amall size. Characierintic of Varian BWO's is a uniform power output and helir voltage reiationship with frequency The metal ase ceramic construction effers the hroll reliable tube at the lowest coat and assurns depen lability in severo envipemmente

Varian anakos a wide variety of Klystrotls and Wave Tubee for use in RadarCointmunicalions, Test and Instratnentalion, and for Severe Environmental Service Applications Ovor 100 are deneribed and ploturpe in mir Mow cath. fog. Write for your copy - addrnan Twum Division.

VA VARIAN associates

［1］

WIDEST RANGE OF MICROWAVE GAS NOISE SOURCES AVAILABLE ANYWHERE

Since accurate measurement of a receiver＇s inherent noise level is vital in determining a value for absolute signal level for a given signal－to－noise ratio，it stands to reason that the noise source tube used should fit the specific job requirements exactly．

The tremendous variety－ biggest in the industry－of Bendix ${ }^{\circledR}$ Microwave Gas Noise Source Tubes is your best guar－ antee of matching noise sources to the application－whether that
application be in the laboratory， in field service，or as a component of the system．

Our new improvements in design make Bendix tubes suitable for use in pulse circuits with an increase of one order of magnitude in life． And our improved manufacturing techniques have resulted in a smaller spread of excess noise out－ put from tube to tube．Many Bendix types are now available to a tolerance of $\pm 0.1 \mathrm{db}$ on excess noise output．

Complete engineering data on the Bendix Microwave Noise Source Tube line and on auxiliary circuit designs can be obtained by writing ．．．

SPECIAL－PURPOSE TUBES DEPARTMENT

EATONTOWN，NEW JERSEY
West Coast Sales \＆Service： 117 E ．Providencia Ave．，Burbank，Calif．
Expart Sales \＆Service：Bendix Internatianal Division， 205 E．42nd St．，New York 17，N，Y．
Canadian Distributor：Computing Devices of Canada，Lid．，P．O．Box 508，Ottawa 4，Ontario

Andrenen．M．（B．．Inalo Nto，Calif．
Appelt，O．H．．San saluador，El salvombor，C．A Arbuckle．（C．Fi．．s．I＇eter－bors，Fla Ahley．I．（＇．，Realwent（＂ily．（＇alif． ．Mary．\％．P．，Anm Arhor，Mel Buker．J．I．．．Xormonal．Mal．
 Barne－II：H．．Pate ．Itw．（alit Barnhart．Wo．，Pals ．Nto，C＇alif． Perhin．Ii．M．．Pomblacepre．X．Y
 Borch．R．II．．Fedwarde．C＇alif． Breelaml．Ii．I．．．I．Iblanch．Tea Brolerich．R，F．，Melmien，Ma－
 Brama．I）．N．．San Francoco，（alif． Bruwn，E．W．．Ir．，Fall（Church．I＇ Brown，R．P．．Findicott，N．Y Brami，D．J．Bbotom，Mas．
 （alpena．I．．syosset．．．．I．．N．S． －arbm，R．．I．，Melrose，Man （enlaterlia，（ \because ．A．A．，Monza，lu，ly

（hapm，I．W．．．Nathek，M．．．． （＇lownack，1i．，Teaneck，N．I． （lark．B．H．，Lymothburg，Via （＇larke，M．L．．．Intikomish，Nova siomm，Camada （ommer，IV：E．．Kohomus，Int （ooner，R．F．，sim Antonio．Ter corelle，（i，T．，Filmhurst．I．，I．． （organ．IV：（a．．Allembun，Pat． （onge．I．I．Haddentiell．N．J． （ramg．I．B．，Litheton．Cuto Dallarkine，（io．Milatho．Italy．

De Polo，N．，Milam，Italy
Di Marimo．．．．Mradfort，
Dinter，I… PMaladelphia，l＇at．
Dome．P＇．I ans ．Inteles，（＇alii．
Urucher．S．，（ikmblale．Cali
1）ulfy．P．P．．．Madacon，N．．
 Fhirlath．E．，sit．Peterilurg，Flat Fifenlemin，I．．．Brashlyn．N．Y Filliot，R．R．，Pumte Claire，Que．，C：anada

 Enterminn，N．，Loo Anzilea，（＇alii
Feter，E．M．．IP．，Tuswho drio Farrelly，R．I．，I．evittown．Dat Jerri，A．J．，Ir．Bediord，Ma Fiseher．W．．Siber Suring．Ma Fitch，T．I．．．Indiamaplia，Inel．
 Fife．S．B．．Ir．diarden（ity，1．I．，N．Y． （Bardiner．ID ！．．Cohlam，Surres，Fincland benem，1．T．，sinta Mamica，Calif． （ientry，B．F．．Fent Wiorth，Fes （ilfert，I．（．．（olumbm，Ohio Baner，F．．R．．Plialadelphia．Pa blaker．S．lom Anzeles．（allis （iohkmith，B．P＇．Wahome，Mas－ baner．1）．F．．．Rumbamem．N．S Grams，R．D．，Remben，N．V： liray．1s．（．．Muena Bark．Calif． Haback．1）．H．Rm＠n，N．V＇ Haswatal．T．Y．．．levingtom，K！ 11．anitom，1）．Tr．Jutifa，天 H：mey．13．M1．．Indialantic，Fla If anfon，1）．＇I＇．，Burlank，（＇alif．
 Heckman，U），F．．．Montreal，P．Q．．Canada Henher．I．W．，Minlawaha，Jum！ Hershewita，is ！．．Freah Meathon．I．．I．．N．I． Hetry，D．．Brighton，Miが
Hoyle，J．，Cramada Hills，C＇alif．
Hundley．I．（i．．Ir．．Winton－Kalem，X．C

. . . in a high-current silicon switching diode. The 1 N920. 1 N923 series is the latest result of Sperry Semiconductor's unique developments for the computer field.

The most advanced addition to the industry's most com. plete line of high conduction fast recovery diodes, this series meets the severe requirements of high current pulse circuits for high speed computer switching, pulse clamping, gating, blocking, and diode logic circuits.

Designed for high temperature operation (to $175^{\circ} \mathrm{C}$), the 1 N920 series features high forward conductance (500 mA at 1.0 V .) and low leakage ($50 \mu \mathrm{~A}$ at $150^{\circ} \mathrm{C}$). Peak dissipa. tion is 800 mw .

All units feature a maximum recovery time of 0.3 micro. seconds to return to 10 K ohms when switched from a forward current 2 microsecond pulse of 500 mA to a reverse voltage of -50 volts (-30 V for 1 N 920), with a loop impedance of 1 K ohms. Faster switching speeds are obtained at lower currents.

SPERRY SEMICONDUCTOR DIYISION, SPERRY RAND CORPORATION, SOUTH NORWALK, CONN. Call or write: Sperfy Semiconductor. Wilson Avenue. SOUTH NORWALK, Conn. VOIunteer6-1641: in NEW YORK PLaza 2-0885;/3555 W. Peterson Ave.. CHICAGO 45. III, KEystone 9-1776; 2200 East Imperial Highway, EL SEGUNDO, Calif., ORegon 8-6226.

ALLIED'S 1960 CATALOG

BUY AT FACTORY PRICES
WORLD'S largest stocks at your command

specialists in the complete supply of:

- Semi-Conductors - Special-Purpose Tubes
- Controls, Resistors
- Connectors
- Test Equipment \& Meters
- Switches \& Timers
- Relays
- Knight-Kit ${ }^{\text {® }}$ Instruments
- Knight ${ }^{\text {P }}$ P.A. Equipf.
- Transformers
- Electronic Ports for Every Industrial Need

ONE ORDER TO Allied Fills the whole bill: Your allied Catalog is the best single source for electronic supply. It puts the world's largest stocks at your command-there's no need to deal with hundreds of separate factories-one order to us fills the whole bill. You get same-day shipment (fastest service in electronic supply) and you buy at factory prices. Send today for your free 1960 allied Catalog your one-source electronic supply guide.

your dependoble

 direct foctory source for everything in electronic supplyALLIED RADIO
100 N. Western Ave., Dept. 35-8 Chicago 80, III.

Measure fractions of a microvolt...approaching the Johnson noise limit... with Beckman DC Breaker Amplifiers. These high gain, low drift amplifiers are insensitive to vibrations, provide fast response and feed outputs directly to standard recorders. This means you can measure dc and low frequency ac voltages which were impossible or too tedious with devices like suspension galvanometers. A few applications include use with ultra-precision bridge circuits for measurement of differential thermocouples, nerve voltages, and other extremely low voltages. For detailed specifications write for Data File 9-2-11

[^6]Hunt, D. P., I.as Vexas. Nev
Hurst, A. H., Erie, 1’a.
Iacols, E. (... Valley Stream. L. I.. N. Y lacobs, R., Waketieht. Ma-s. Janone, V.. White Plaincs X. Y Jansen, J. J.. Wa-hinkton, I). (Iohncon, I. E., Detroit. Mich. Iulian, C. E., Sacramemo, Calif Iulinsburker, H. V'., O-sining. N. Y Kahn. A. (i.. Colonia bel lale. D. F.. Me Karp, 1), W:aylam, M.
hazmierczak. 13., sthenectuly
Kelly. D. . ., Sangertie- N. V
Kelly. I. D., Concord! Mans.
Kelly, R. I., Battimure. Mil
Kidmer. R. W., Melford. N. .
Kohn. D.. Breat Neck. I. I.. N. Lachmam, C. F. (i,. Bromblime, Wass L.ascli, K. B., Waketiehl. Mass. Lassetter, T. A.. Lexington. K I.edgerwoorl, F. . I.. Mellionrne, Fla, I,ee, A., Florimimt, Mo.
.emart, P. F.. St. Pitul. Mim.
evine. (i.. Silver Sprine, Md.
I.eve, I., Milamo. Italy

Lixis. 'f. Flizalyeth, N. I.
tilley. C. M.. Denver, Cold
I. natec. f. I... Mmatingtonstatinn. T.. I.. N. Y Lovely, (.. Throm. Ohit Lovely. II, E., sian . Dintomio. Ter Lynch. I, F. Downev, C:alif Mackenie. M. V., Winchewer. Mase Mackom, 1). I.. Irime-boro, Mat Matleml. IV. A.. Norwich, Xorfolh, Findand Mathat. M. (... I.melen. Fankiant Mar-h. !. L... ! r.. Inle of P.ames. © W:rtin. T. B., Ro-lyn Heikhta, X y Martinez. P. I. Buchus Aires, Argentima Mawalli, P'.. Mtilano. Italy
May. I'. T. Wemater. N. Y
MeCarthy. W. A. Waylaml. Ma Not onnell. IN. E:.. Ciramarla Hatls, (Ghf. ItcGihom. R. S., clarbe-ton. Merimigle. R. D., bartield Heights, whio Meal, D. C.. Ir.. Ridkeworl. N. Meloff, M.. Philadelphia, Pa. Melter. M. I.. Newton Centre, MaMener, I. M.. Seatle. Wash. Meyer, R. J.. Cedar Raplids. Iow: Migneault. Ci. B., Pomt-V'ian. Montreal, Que.,

Mild, I. M.. Amapolis. MrI
Miller. M. S., Hollimon. Mass
Monteion, R., Norriotewn. Pa
Monre. I. IF., Havertown. Pa.
Moore, T. H.. Torrance, Calif
Morrison, R. ©., las Vegas, Xev.
Motes. I. H.. Owegn, N. Y.
Murphy, W. V', Jachoon Heighta. I. I., N. Y.
Myers, (: A., Palo Alto. Calif.
Myhre, R. IV., San Brtumo, Colif. Myrluerg. !. E.. Silt Lake City, Itah Nahamura, F. T., Charlotte. N. C . Narendra, K. S., Cambridge, Mas Xiple, I.. O., l'oughkeepsie, X, \’ Nowick, W. Bowie, Mil.
Olson. H. H.. Cilenolden, Pa
Orsino, R. T., Washington, 1). C. O.lorn, T. F.. Jr., North Hollywoml, Calif. P'al, (r. I.., Hamilton, Ont., Canarla Parish, R., Winston-Salem, N. C. Pavell, P. J., Falls Church, V'a Payne, R. K., Los Altos, Calif. Peltzer. K. E., Adelphi, Mt perez-Belisario, H., (aracas, Venezuela Pipher, M. D., West Hollywoort, Calif. Polhamus, J. R,, Fort Wayne, Indiana Ponce de Leao, H. B., Rio De Janeiro, Brazil Ouam, W', M., Ias Vegas, Nev.
Ragki, F., Milano, ltaly (Continucd in page 88A)

Just about. The new Raytheon 2N1468 silicon Avalanche Mode transistor switches in less time than it takes the light to reach your eyes from this page!

Fast! About 2^{11}, millimicroseconds, in fact. We guarantee a maximum of 10 , an average of $4 \ldots$ and speeds faster than $1^{1} 2$ millimicroseconds are feasible. Detailed specs are on the other side of this ad.

You will appreciate what this means in Wave-form. sampling data systems, pulsing microwave tubes... in any equipment where transistor switching capability has heretofore
limited the speed and efficiency. Here's a major technical breakthrough that adrances elec. tronic equipment performance by several orders of magnitude.

Advanced technology such as this has long been accepted practice at Raytheon Semiconductor. When you need transistors...diodes... rectifiers engineered for your circuit designsit will pay you to look into the reliable Ray theon line. Semiconductor Division, Raytheon Company, 215 First Ave., Needham Heights 9.1, Mass.

Scope shows millimicroseconds! Reproduced from unretouched Polaroid photograph of trace on Lumatron Model 12AB sampling oscilloseope.

Switching circuit employing the Raytheon 2N1468 avalanche mode transistor.

CHARACTERISTICS OF 2 N 1468 AT $25^{\circ} \mathrm{C}$ Thermal Dissipation Coefficient (in air) $\mathrm{K}_{\mathbf{3}}=0.5^{\circ} \mathrm{C} \mathrm{mm}$.

	Min.	Ave.	Max.	Units
Avalanche Voltage	40	70	-	Vdc
Emitter Cutoff Current				
\quad VEB-10V	-	-	1.0	μ Adc
Switching Time in Circuit	-	4.0	10.0	musec.
Peak Collector Current	-	-	2	A max.
Junction Operating Temperature	-	-	125	C max

FASTEST SWITCHING! The new Raytheon 2N1468 silicon NPN transistor, designed for Avalanche Mode operation, has a guaranteed switching time of 10 millimicroseconds maximum when used in the circuit shown. Speeds faster than $1^{112} 2$ millimicroseconds are feasible.

HANDLES 40 WATTS! The new Raytheon Avalanche Mode transistor is capable of switching 40 watts peak power. Average power dissipation is 250 milliwatts.

HIGH TEMPERATURE! Silicon-the maximum operating temperature of the new Raytheon 2 N 1468 is $125^{\circ} \mathrm{C}$.

PATENTED! Protected by U.S. Patent No. 2,843,515 (covering junction transistors exhibiting current amplification of at least unity when operated in the avalanche breakdown region), this revolutionary new transistor is a Raytheon exclusive.

AVAILABLE NOW! Production quantities of this new Raytheon 2N1468 are available now for your evaluation. For data sheets and other technical information, contact your nearest Raytheon office.

Your local authorized Raytheon Distributors carry in-stock inventories for immediate delivery.

SEMICONDUCTOR DIVISION

From MICROLOCK to microlock

One of the most interesting and useful scientific activities at JPL has been the development of MICROLOCK, a radio tracking and communication system for satellites.

Microlock is designed to transmit information over extreme ranges of space with a minimal amount of transmitter power and weight. The objective
was achieved by sophisticated design of the ground receiving equipment. The design utilizes basic electronic circuits and techniques carefully combined in a novel manner to provide superior performance and sensitivity.

The satellite transmitter consists of a radio-frequency oscillator, phasemodulated by telemetering signals, and
radiates a power of 3 mW . It is capable of operating for several months on a battery weighing one pound.

Used successfully in previous space vehicles, microlock remains a useful and expandable instrument for continuing space exploration. It is a prime example of JPL's activity on the space frontier.

CALIFORNIA INSTITUTE OF TECHNOLOGY
JET PROPULSION LABORATORY
A Research facility operated for the Notional Aeronautics and Space Administration

PASADENA, CALIFORNIA

Employment opportunities for Engineers and Scientists interested in basic and applied research in these fields:
INFRA-RED • OPTICS • MICROWAVE • SERVOMECHANISMS • COMPUTERS • LIQUID AND SOLID PROPULSION

- STRUCTURES • CHEMISTRY • INSTRUMENTATION • MATHEMATICS • AND SOLID STATE PHYSICS . Send prafessianal resume, with full qualificatians and experience, far aur immediate cansideratian

SURPASSES NEW MIL－T－4807 30 G SHOCK AND VIBRATION TESTS

HEAVY DUTY＂M＂SERIES RELAY RACK CABINETS

These MC and MH Series cabinets were designed for those who must have excep－ sional strength，superlative quality in material and every detail of design and construction，the utmost in flexibility and dependability－and a wide choice of semi－custom features with which to satisfy their own highly specific requirements．

Standard models surpass the 30 G shock and vibration requirements of MiL－T－4807 （steel construction），but reinforcement for higher shock loading is available．

Mount standard $19^{\prime \prime}$ or $24^{\prime \prime}$ panels．All－welded frames in choice of 12．ga．steel or ．125＂alu－ minum alloy 5052 SH32．Side panels，lou－ vered top cap and rear door in choice of 18 －ga．steel or ． $062^{\prime \prime}$ aluminum．Continuously adjustable rear mounting rail is 12 －ga．steel． All tapped holes are $10-32$ tapped and spaced per MIL－STD－189．Rear door panel has $4^{\prime \prime}$ cen－ ter stiffener，Neoprene seal，liff－off hinges．

VARIABLES．．．ALL TO GUSTOMER SPEGS

Refrigerated cooling－insulated if required－ $1 / 2$ and 1 ton systems built in with high efficiency insulation－all MIL spec．
－Ventilated or non－ventilated．．．Panel－mounting blower pro－ vides $600-900$ CFM of filtered air to pressurize duct in left side of ventilated units－air is then accurately directed through fully controlled openings to temperafure－critical areas－see sche－ matic at right．．．Natural convection in non－ventilated units draws air through louvers in lower portion of rear door and exhausts heated air through louvered top cap．
－Choice of steel or aluminum construction－Panel space as required－in $13 / 4^{\prime \prime}$ increments（for $19^{\prime \prime}$ or $24^{\prime \prime}$ width panels） Cabinet depths $18^{\prime \prime}-36^{\prime \prime}$ in $2^{\prime \prime}$ increments＊Choice of Three types of cabinet front－Choice of hinged，lift－out or bolt－on doors－Choice of square or rounded front and／or rear top corners－MIL spec（standard）or special finish－With or with－

SCHEMATIC OFAIR FLOW IN VENTILATED MODELS out heavy duty dolly－to Customer specs．

Also available－matching consoles and a complete line of MIL spec and high grade commercial accessories：chassis，panels，Chassis－Trak ${ }^{0}$ ， blowers，handles，cable retractors，slope－and turret．front console fronts，desk top consoles，fixed and retractable writing surfaces．

ONE SOURCE

Membership

（Continutad from payc $8+1$ ）

Kaimbird，K．V．K．，Saleigh，X．C
Rabsmitz，J．（i．．Sun I＇rantisce．Calif
Kandig，（8．W：．Weat ．Ictotn．Más
Rapoza．E．I．．Wevmomt．K．J
Rapp，F．J．（Htawa．（）nt．，Canata
Kay．H．，W゙athinцton．W．C
Reviolds，R．Fi．（incoil，Fla．
Roberts，J3．C．．I．o，Nltos，Calif
Roberts，H．J．．．Finglewsori，Coln
Roig，R．W＊．，Wrisht－l＇atterson AFR，Ohio Rosd．I．．אnntiltown，I．．I．，N． Rosellini，（i．R．，Milamo．ltaly Rossi，R．．Bulugtis，Itals kussell，HI．I．．，New York，N．Y． Sanders．H．I．．，Alhuqueryue，N．M． Sarabachit．HI．，Uxnarl，（alit． Sasaki，T．．Kobe．！aparn Saunters，I．H．．Ruslimelate，Mass． schneider，I．I．．Womthavern，N．Y sclireiber．S．，Winne．N．I． Schumacher，R．I3．F．．Baskums Rilue，N．I Scott．R．J．．San Dieqo．Calif Seltzer，A．D．，Glen Oaks，N． Sharko，N．，Morris Plains．N．J． Sinclair．J．C．．（）ak l＇ark，lll Sippel．R．I．，l＇oughheepsie，X．Y． Skimer，A．I．．．Ft．Huacluma，Ariz． smith．J．F．．Jhiladelphia，I＇a sobel．R．I．．．Fvanston，III． Sondik．II．，Brooklyn．N．S＇ Spieso．F．R．，Las lexpa Sev Sprague，J．J．．．Nurth ．Diatho．Mass． Spruth，WV．Gi，Poughkeepise，X．Y゙． Stalherg．N．（i．．（iotehors，Swerlen Steinsto．O．，（Nolo．Kjelsas．Norway Stern．．1．I．．Veabmly，Naw Sturman，I．C．．Clevelathd．Ohio Suhrahmanyam，\vee° ．，Bankalore．India Suchammek．R．（i．．Elmira，N．S Swamy，A．，Nachern，（iermany Tahusmo，（i．．Milarm．｜taly Taylor．W．V＇．Winter l＇ark．Fla Thomas，I＇．S．，seattle，W＇ash Thomas．1＇．R．，Downemel，Bristol，Finglamd Thormon．H．I．IV．Seattle，Wash． Tinkle，T．\．，Albuguerque，N．M． Touw，C．1．．North Highlands．（alif． Tucker，C，K゙．，Seattle．W＇ash． ＇lurner，V＇．D．，Ambover，Mass lirseny，IV，（i，．Carmichael，Cablif． Vacea，R．，Rome，ltaly Verdworen，H．W：．，W＇akefichl．Mass， Watanaloe，H．，Kawasaki，Kanagawa，Taman
 Watam．J．P．．Weston，Ont．，Canada Weaver，C．B．．Jr．．Chevy（\％ase，Md． Webh，J）．O．．Wrichata．Kansas Weeks，R．F．，las Angeles，Calif Weeiss，I）．W．．Jayshore．I．．I．．N．Y Whiteside，R．B．，Naple Shade，N．I Wilbur，W゚．C．，Ir．，Torratce．Calif． Wilkins．1）．R．．W゚inston．salem，N．（ Wiomanns，l．（i．，Sierra Madre．（’alif Witham，R，（i．，St，l＇atul，Indiana Woulruff．I．（i．．Jr．，Whitevboro，N．J Woorlwarll．R．M．．Ir．．E．atontown．N．J． Yonce．1＇．K．．，sunnvale．Calif

Admission to Associate Abell．1）．＇＇．Fall－Chmreh．V＇ Aivasian，S．（i．．Jackan Iteiblats．I．．I．，N．Y． Albert．C．（C．，Mcelellan ．AFlb．（atlif ．Inter，13．I．，Nourlarh．Calif．
 Dikinson，M．H．．Rome．N．I Anerbach．S．S．．Jevilumn．I＇ －byer．H．（i．，Sitl｜hema．（illil Bermgons．C．N．．Natmomerdo．X．N

Lockheed P3V

AIRBORNE SUB-HUNTERS USE TI ASW SYSTEMS

Five major ASW aircraft today use antisubmarine warfare systems supplied by Texas Instruments. These include radar, sonar, magnetic anomaly detection, interval computers, intercom, and advanced detection systems.
Now, TI is applying its 14 -years' antisubmarine experience to newer and better methods for detecting, localizing, classifying and positively identifying both conventional and nuclear-powered submarines.
For detailed information about these special activities, properly cleared personnel with a need to know are invited to contact SERVICE ENGINEERING:

Gudebrod synthetic rubber finish has now tamed slippery Teflon* by coating it with synthetic rubber. Once cables are laced with Temp-Lace H , they're laced for good ... because there's no knot-slip; no harness slip. Assemblies stay tight and firm.

Flat-braided of pure, inert Teflon, Temp-Lace H is noncorrosive to hands or instruments. Now coated with Gudebrod's non-flaking, fungistatic rubber finish, it's non-slip, and flexible from -40° to $220^{\circ} \mathrm{C}$. It won't cut through insulation.

Temp-Lace H is available in five sizes; or we will engineer a tape to meet your specifications. Write today for Data Book giving complete information on ALL Gudebrod Lacing Tapes and Drive Cords.

* Du Punt S TFE Huorwesthon fiber

Temp-idace H. Pat. Pendame

GUDEBROD BROS. SILK CO., INC.

ELECTRONIC DIVISION
225 West 34th Street, New York 1, N.Y.
EXECUTIVE OFFICES
12 South 12th Street, Philadelphia 7, Pa.

Membership

Bowler, R. I'.. Botom, Mas.
 Bycroft, F. F... l'anama, (ity, Fla

Cathiuri, G. I'. Reme. I baly
Cerena B I. Chyamall
(Thellab. F. K. (.. Bearm, Iechanm
Glivio. V'. S.. Jamata Main. Mat
Clark, K.. Hampun, Midllewex, Fimband
Colello. d.. Milane. Itals
Cors. C. WI.. Palo Altu. Colif.
Comanagna, Ci. İ. I.. Vilano. It.uls (Tawford. F. 1... Mrwatuhee. II'i,
Diger, I. E.. Mimeatulis. Mimb.
(biner. I. D., Prince Albert. Sazh., ('allawh Filiret. IF. II.. Burlineth, lowa Fivker. C. J.. St Iolm', Newfommiand. Canada Filner. D, M.. Sen liork, XI Firey, I). W... (1malar, Nelir.
Forlani. F.. Monza, Milamo Haly Friedlander. M. (1.. Methiace. I.. Fritr. G. I... Fremont, Nelor. Gahakan, J. W.. Danvers. Ma-, Giles, I R.. Millamm. Tex (Biati, 1... Somerville. Man
Guth, R. I'.. 1.s melhure. V:
Haizlip, I. H.. Hawhorme. Calif. Marley: R. 1... North Bay. Gut., (amad.a Hasnes. F. H.. Florivant, Mo. Hinz. H. E.. Humsmatom. I.. I.. X. Y: Honde, R. L... Mlorisamb. Mo Holtzer. H.. Broullyn, N. V: Humphrie. S.T'.. Ontawa. Ont.. Canaht Hmmer, (1. F... Inalieim. Calif.
 Johman. 太. F... Jr.. Fort Worth. Tex. lohnom, 1). H. Center Valles: Pa. Jonser, B. 1... ()ttatat, Ont., (athata Katz, I.. Ciramala Hills, Calif. Kelley, 1: I... Concord, Min Klime, I... Buenos Aites, Drpentma 1,muler. Bh., San Diego, (alif. Laman, K. E... I'hiladelphat, I'a 1.ea. R. H., Danville. 1.each. R. F... Oaklantl. ("alif. 1.ethexity. S.. Haddonfiedel. N. ! I.enc. E. I... New Vork. l.otl. I. I.. ()xnard. (als

1,ogan. S.. Matráa, India
Lyon, (. C., Hightstown, N. J. Makicra, I. F... Lam-ing, Mich Marims. J.. Néconset. 1.. I.. N. Y Matherem. M., Copenhagen, Demmark Mat, F. (i.. Millis. Man
Mechure. II. WV.. Toleto, wre
Mebermatr. II. R.. Warrington, Lancoshare Ftugland
Melougalt, A. Far Hills, N. I.
MeFarland. T. (O., Molise, Mich.
Mewall, I. I. Santa Barlora, Caha.
Morbami, F.. Milano. |aaly
Morria, 11: T.. Midfletown. Ohio
Xatarajah. S. S.. I.ondon, Fingland
Ximette. R.. Itr. Los Inkelo. Calif.
Niblutl, I. R.. Rome, N. V.
Soll. R. A. North I.iote Ruch, Ark.
(, wald. I. R.. Versaillea, Framee
Wwan. I. N.. Seatlo, Wab.

Pemington. F. !.. Ir.. sumerville. Ma
Perty, f. (i.. liarrimetom. R. I.
Prette, M.. Milame, It:aly
Ray, R., Zurielı, switzerlan!
Repelink, I. S., P'onialikeepre

CAPITOL bado EXCIDEERING ITSTITUTE

Advanced Home Study and Residence Courses in Electronics, Automation and Industrial Electronics Engineering Technology

3224 16th St., N. W. Washington 10, D. C. A prored for leteran Training

* Noise suppressor for better S/N ratio * Bolometer burnout protector $* D B$ meter for signal monitoring * Automatic single chart cycle advance

Scientific-Atlanta's new series of rectangular antenna pattern recorders bring you new standards of performance, reliability and flexibility.

Compare these key features
Writing speed of better than 40 inches per second - Log, linear, or square root pen response obtained with plug-in balance pots - One electronics system drives both polar and rectangular recorder heads. Overload indicator to prevent amplifier saturation - 60 db dynamic range system available - Chart scale expansion of $1: 1,6: 1$, and $36: 1$ - Page size recordings optional at extra cost - 100 db gain in bolometer amplifier - Lighted chart - Improved pen mechanism - DC input pre-amplifier available - Plug-in selective filter - Simplified controls.

PRICES, Series APR-20 Rectangular Antenna Pattern Recorders APR - 21 linear, $\$ 4100$ - APR - 22 logarithmic, $\$ 4300$ -APR-23 linear, logarithmic, \$4700-APR-24 linear, square-root, \$4700-APR-25 linear, logarithmic, squareroot, $\$ 5300$.

THESE PLUG-INS MEAN FLEXIBILITY AND EASY SERVICE

New pen balance potentiometer

Call your nearby S-A engineering rep for a demonstration and complete rechnical information or you may write directly to the factory. Please ask for data sheet

> SCIENTIFIC-ATLANTA, INC. 2162 PIEDMONT ROAD, N.E. - ATLANTA 9, GEORGIA

The Sarkes Tarzian M－500 silicon rectifier is rated at 500 milliamperes dc，with a peak inverse voltage rating of 400 volts．This was the first commercially priced silicon rectifier，and more M－500＇s are now in use than any similarly rated unit．
The Tarzian M－500 is a cartridge type rectifier with end ferrules that snap quickly and easily into standard clips．These silicon rectifiers are made by a special Tarzian process that provides optimum forward to reverse ratios and long，useful life．
For additional information，practical application assistance， and prices on the M－500，write to Section 4393C， Semiconductor Division，Sarkes Tarzian，Inc．， Bloomington，Indiana．

M－500 Characteristics

DC amps $\left(100^{\circ} \mathrm{C}\right)$	Peak Inv． Voltage	Tarzian Type	Max．RMS Volts	Max．Recurrent Peak Amperes $\left(100^{\circ} \mathrm{C}\right)$	Max．Surge Amps 4MS	JEDEC No．
0.5	400	$M-500$	280	5	30	1N1084

SARKES TARZIAN，INC．
SEMICONDUCTOR DIVISION BLOOMINGTON，INDIANA－

In Canada： 700 Weston Rd．，Toronto 9，Ontario
Export：Ad Auriema，Inc．，New York City

Membership

1rmutatict
（Continurd from furg on．1）
Richarlan．C．F．．．Silver Sıring．．Ma．
Richer．1＇．I．．Huacluca（＂ity．Ari／．
Ricler．I’．М．，New Yoth．X．\}
Ruff゙man，心．H．，Jamaica，I．I．．N．Y
schmitt．M．I．，Towson．Mal．
Schwelt）．（）．，Montreal．Wue．（＂athata
Shelton，IV＇，D．，Pittahurkh．l＇at
Siallatear．S．，Hyatt－ville．Mal．
Simm，太九．S．，Stamford．Comin．
ぶいっulai．（｀．K．，Honolılı．Hawati

Terata，H1，Tokso．Iapaar
T゙iedt．M．（．．I＇arma．Ghiu
Tittermstun．E．I．．Socorro．N．．
Trevi－ath．※．．Milano．Italy
Troth．B．I．．（iolumhia．Mo．
Vachlat．R．I＇．．Bombay．Intia
Wall，（．K．．Montclair．N．！
Warelam，W＂，S．，Fort K゙nox．Ky．
W＂：rrner．（＂，E．，H1aleah．Flal．
Wiatl－J．A．．Edmonton．Ilta，（itnalat
White．F：．F．．Florimath，No．
Whyte．！．D．．Aneac．Alta．（＇anawla
Woorl．R．A．I．O．Nlios，（＇alit．
Zalter．R．．（）malat．Xebr

These manufacturers have invited PROCEEDINGS readers to write for liteiature and further technical information．Please mention your IRE affiliation．
（Contmulted from tulle so．l）

Counter－Timers

Three new all solid－state de to 10 megacyele counting，timing，and frepuen－ cy measuring instraments－whe first successful high frepuency application of transistors to high speed（ircolitry（exaip）－ ment－have been developed lis Computer－ Measurements Co．， 12920 Bradley ．Wo．， Sylmar，Calif．

The firm olfers these instruntents with two year free service watmantion

There 10 megaterge units：the Xokel
 the Model 707.1 Tramsistor frequency－ I＇eriod Meter，and the Model 757.1 Tralls－ istor 「inne Interval Neter are now in pro－ datetion．

The Model 727.1 combine the funce fions of a combter，time interval beter，and frepuency period meter．It performs live
 switch．Input circuitr hat hett do skited to exploit the desiratbility of remote（u）erat tion athd switching withent sporial reserd to cable lengths，ịpe of cable，imperlowe

TRIMPOT'MOOEL 220

As many as 17 of these compact units can be mounted in a space of just one cubic inch. Designed for printed circuits and modular assem. blies, Trimpot Model 220 measures less than $3 / 16^{\prime \prime} \times 5 / 16^{\prime \prime} \times 1^{\prime \prime}$. Power rating is 1 watt and maximum operating lemperature is $175^{\circ} \mathrm{C}$. This Potentiometer meets or exceeds Mil-Specs for humidity, salt spray, fungus, sand and dust, as well as acceleration, vibration and shock, Self-locking 15 -turn shaft insures sharp, stable settings...exclusive Silverweld fused-bond termination and ceramic mandrel provide extreme temperature stability. The Model 220 is available in a wide variety of resistance ranges and a choice of two terminal types-gold-plated Copperweld wire or insulated stranded leads.
Stocked by leading electronic distributors across the nation, these units are ready for immediate delivery. Write for complete techinical data and list of stocking distributors. AVAlLABLE AS PANEL MOUNT UNIT (illustrated at right) with same specifications.

Bourns, Inc., Trimpot Division 6135 Magnolia Ave., Riverside, Calif:

Plants: Riverside. California
and Ames. Iowa

Exclusive manutacturers of Trimpot", Trimit*. Pioneers in potentiometer transducers for position, pressure and acceleration.

Designed for

 Application
RIGHT ANGLE DRIVES

Extremely compact, with provisions for many methods of mounting. Ideal for operating po tentiometers, switches, etc., that must be lo cated, for shortleads, in remote parts of chassis, No. 10012 for ${ }^{1}$ inch shafis. No. AOI2 Miniature for ${ }^{1}$ inch shafts.

JAMES MILLEN MFG. CO., INC.

MALDEN

MASSACHUSETTS

NEWS New Products/

Single Diffused Silicon Junction MEDIUM POWER RECTIFIER DIODES

PlVs from 50 to 700 volts, extremely high forward conductance, minimum saturation cusrent. IN1907 \qquad 44-2

. S. SEMICONDUCTOR PRODUCTS A DIVISION OF TOPP INDUSTRIES, INC. 3540 WEST OSBORN ROAD. PHOENIX, ARIZONA

STABLITVGHENT BARRER BROKEN with Metal-Ceramic Variable Resistor

Newly developed $500^{\circ} \mathrm{C}$ MetalCeramic Resistance Element is separately available for other applications than variable re sistors. Because the element is very stable to $500^{\circ} \mathrm{C}$, it is extremely reliable at the elevated temperatures currently de. manded and anticipated in military requirements. Ceramic bases can be made in a wide variety of shapes and sizes; the metal resistance film can be made to cover an entire surface or an accurately defined pattern. Consult CTS engineers on your requirements.

CeraTrols' rugged, hard-surfaced metal-ceramic element, having been fired at temperatures exceeding $600^{\circ} \mathrm{C}$. meets temperatures up to $500^{\circ} \mathrm{C}$ with high safety factors at ratings listed below.

HIGH

reliábility STABILITY TEMPERATURE

Miniature

CERATROLS

with new metal-ceramic element
New Series 600 Characteristics:

- Infinite resolution.
- 100 ohms thru 5 meghoms (IInear taper) resistance range
- $1 / 2^{\prime \prime}$ diameter, mnterchangeable with Style RV6

MIL-R.94B

- Power ratings: 3/4 watt (a $85^{\circ} \mathrm{C}$, $1 / 2$ watt (G $125^{\circ} \mathrm{C}$, zero load (n $175^{\circ} \mathrm{C}$.

COMPARATIVE TEST DATA: No carbonaceous variable resistors (either film or molded) can equal Series 600 performance. Ideal for critical applicatons requiring high stability and reliability. Far exceeds MIL-R-94B.

Tests	MHL-R-94B (Siyle RVG, Char. Y) Reyuirement	Series 600 CTS Maximum	Series 600 CTS Average
Lnat life 1000 hrs .			
. watt 125-C, 350 V max.	$\pm 10 \%$ @ $70^{\circ} \mathrm{C}$	$\pm 7 \%$ (a) $125{ }^{\circ} \mathrm{C}$	-4\% @ 125 ${ }^{\circ} \mathrm{C}$
3/4 watt (a $85^{\circ} \mathrm{C}$			
Thermal Stability (1000 hrs . ${ }^{\circ} 175^{\circ} \mathrm{C}$ no load)	$\begin{aligned} & \text { Notest in } \\ & \text { MIL.R- } 948 \end{aligned}$	= 5%	$\pm 3 \%$
Temperature Co.ell.* (Room to $-63^{\circ} \mathrm{C}$: room to $+175^{\circ} \mathrm{C}$)	$\begin{aligned} & \text { No test in } \\ & \text { MIL.R-94B } \end{aligned}$		
25 K and over		± 250 PPM/ ${ }^{\circ} \mathrm{C}$	$\pm 150 \mathrm{PPM} / \mathrm{C}^{\circ}$
under 25 K		1500 PPM/ ${ }^{\circ} \mathrm{C}$	$\pm 300 \mathrm{PPM} / \mathrm{C}$
Moisture Resistance	$\begin{aligned} & \pm 6 \% \text { avg. } \\ & \pm 10 \% \text { max. } \end{aligned}$	$\begin{aligned} & \pm 2 \% \text { avg. } \\ & \pm 4 \% \text { max. } \end{aligned}$	$\pm 1.3 \%$
Low Temp. Storage	$\pm 2 \%$	$\pm 1 \%$	$\pm .5 \%$
Low Temp. Operation	$\pm 3 \%$	$\pm 2 \%$	$\pm 1 \%$
Thermat Cycling	+6\%	$\pm 3 \%$	$\pm 2 \%$
Voltage Co-efficient	$\begin{aligned} & \text { No tesi in } \\ & \text { MIL.R.94B } \end{aligned}$	$\pm .01 \% / \mathrm{VOT}$	$\pm .005 \%$ /volt
Rotational Life	$\pm 10 \%$ (after 25,000 cycles)	$\pm 10 \%$	$\pm 7.5 \%$
Acceleration	$\pm 3 \%$	$\pm 2 \%$	$\pm 1 \%$
High Freq. Vibration	$\pm 2 \%$	$\pm 2 \%$	$\pm 1 \%$
Shock	$\pm 2 \%$	$\pm 2 \%$	$\pm 1 \%$

* Lower temperature coefficient can be developed for specific applications.

Note Exceptional Stability. Note extent that MLL-R-94B is exceeded.
Complete Series 600 CeraTrolS electrical and mechanical specs and dimensional draw. ings will be sent upon request.
CTS manufactures a complete line of composition and wirewound variable resistors for military, industrial and commercial applications. CTS specialists are willing to help solve your variable resistor problems. Contact your nearest CTS office today.

Your difficult filtering problems solved with high-performance, precision crvstal filters custom-designed and produced for you!

Do you face tough filtering problems in: Single Sideband, Doppler Systems, Missile Guidance, Radio Communications, Radar and Navigation, Spectrum Analyzers. Carrier and Multiplexing, Frequency Shift, High Selectivity Amplifiers?
Check these advantages of Hughes precision crystal filters: Small size, light weight, low insertion loss, low passband ripple, precise selectivity, high frequency filtering, wide temperature stability, high reliability, rugged resistance to shock/vibration. quick delivery in quantity.

Experienced Hughes Application Engineers are available to work with you on your filtering problems. For additional information on crystal filters with center frequencies of 30 kc to 52 mc , and fractional handwidths of $0.01 \%-6.0 \%$, write: HUGHES, Industrial Systems Division, International Airport Station, Los Angeles 45, California.
For export information, write:
Hughes International,
Culver City, California.

Microwave Component News from SYIVANIIA (nil)

 \title{
22 TYPES OF
 \title{
22 TYPES OF FERRITE DEVICES NOW IN

 FULL PRODUCTION

 FULL PRODUCTION AT SYLVANIA
} AT SYLVANIA
}

Tee Circulator-FD-TC531-typical of Sylvania's tee circulator and isolator line is this model, which operates at 24 KMC , weighs only three ounces and is $11 / 2^{\prime \prime} \times 11 / 2^{\prime \prime} \times 3 / 4^{\prime \prime}$. It is less expensive than conventional phase shift circulators. The line covers from 5.4 to 26 KMC .

Waveguide Isolator-FD-5213A - this minia. ture X-band isolator is representative of Sylvania's success in miniaturizing these important components. Units from 2.6 to 26 KMC are available.

Coaxial Isolator-FD-151P-representative of Sylvania's coaxial line, it gives octave coverage. The units in this line exhibit unequalled electrical performance and cover the range from 1 through 11 KMC.

Expanded facilities now make it possible for Sylvania to offer 22 different ferrite devices as full production items at competitive prices. These production units represent over one-third of the types now in Sylvania's growing line of ferrite devices.

Modifications of Sylvania ferrite devices can be provided within three weeks. In addition, new types developed to meet your special requirements can be delivered in as little as 60 days, and we can be in

-SYLVANIA:
 Subsidiary of
 GENERAL TELEPHONE \& ELECTRONICS

Sylvania Electric Products Inc.
Special Tube Operations
500 Evelyn Ave., Mountain View, Calif.
full production on these new items within 60 days after design approval.

All ferrite devices in the line are made to Sylvania's recognized high standards and have these characteristics:

Frequencies from 1 to 26 KMC
Isolation up to 80 db
Insertion Loss as low as 0.2 db

New Catalog-Get this new ferrite catalog free from your Sylvania sales office, or by writing to the address below.

Specialists in the Unusual

New Products/

These manufacturers have invited PROCEEDINGS readers to write for literature and further bechnical information. Please mention your IRE affiliation

Cuntinued tram rugio of

Delay Lines Bulletin

Bulletin [ll.1159, released by Valor Instruments, Inc., 1,1 1 14 Crenshaw 131 cl . Gardena. Calif., dervibes a standard lise of miniature lumped constant delay limes. Data are provided on the electrical ster ilications, packaging and the construction lechniques which enable a high clogree of miniat uriation. I esigu fattors that should be considered when establishing sperifications for special clelay lines are abor ex plained.

Multi-Channel Transducer Supply

(p to six transistor-regulated isolated power supplies can be relay-rack monnted on a bitandard ald $_{2}$-ineh panel using the new W.1603. 1 Pamel Nomuting . Ascmbly now wifered by Elcor, Inc., 1225 W . Broad St. Fatl- (huteh, Via. Designed for suppling maitiple strain gage or other transeluerer systems, the six smatl isolated power supplies (ISOPI, IS that are employed in this ensemble are individually isolated from grommed and individually adjustable in output voltage. 'lhe two or three umits maty be employed intially in this acambly and other mits added later as the esstem is eapanded. . Ill mits are easily removabho for replacement, repair or teating.

Sivteen mocles of power supplies cowering from tive to lifty volts de output make his monting ascembly useful wath diverse transducer systems. Wach of the six chamels may have its regulated ontput voltage adjusted from the front panel ower a range of about 15%. Speciad features of the power supplies include $40 \mu \mu \mathrm{f}$ shunt capacitance between output and ground. less that 10 miorovolts of hum and noise per kilohm imperlance to ground, temperature coeflicient for output voltage less that 0.02% per elegree F, and leakage resistance to ground greater than 100,000 megohms.

Computer Training Course

An industrial training conrse in analog computers is offered for technicians, engineers and management by EBEX Technical Institute, Inc., Orem, ['tah, The
 spondence with at rertilicate of completion given. Do prerequsites are reflitited. Theory: practical applications, case histories and illastrated equiphent evaluation are given. Write on FiTV, iud!!stial rain-

FREQUENCY STANDARDS

FREQUENCY STANDARD TYPE 50L

Size $33 / 4 " x \not 4^{1 / 2 " x} \times 51 / 2^{\prime \prime}$ High Weight, 2 lbs.

Frequencies: $50,60,75$ or 100 cycles Accuracies:-

Type $50 \mathrm{~L}\left(\pm .02 \%\right.$ at -65° to $\left.85^{\circ} \mathrm{C}\right)$
Type R50L ($\pm .002 \%$ at 15° to $35^{\circ} \mathrm{C}$)
Output, 3 V into 200,000 ohms
Input, 150 to $300 \mathrm{~V}, \mathrm{~B}(6 \mathrm{~V}$ at .6 amps)
*312" high 400 to 500 cy . optional

PRECISION FORK UNIT
 TYPC 2003

 Frequencies: 200 to 4000 cycles Accuracies:-

Type 2003 ($\pm .02 \%$ at -65° to $85^{\circ} \mathrm{C}$) Type R2003 ($\pm .002 \%$ at 15° to $35^{\circ} \mathrm{C}$) Type W2003 ($\pm .005 \%$ at -65° to $85^{\circ} \mathrm{C}$) Double triode and 5 pigtail parts required Input and output same as Type 50, above

FREQUENCY STANDARD
TYPE 2007.6
TRANSISTORIZED, Silicon Type
Size $11 / 2^{\prime \prime}$ dia. x $31 / 2^{\prime \prime} H$. Wght. 7 ozs.
Frequencies: $400-500$ or 1000 cycles Accuracies:

2007-6 ($\pm .02 \%$ at -50° to $+85^{\circ} \mathrm{C}$)
R2007-6 ($\pm .002 \%$ at $+15^{\circ}$ to $+35^{\circ} \mathrm{C}$) W2007-6 ($\pm .005 \%$ at -65° to $+125^{\circ} \mathrm{C}$) Input: 10 to 30 Volts, D. C., at 6 ma. Output: Multitap, 75 to 100,000 ohms

FREQUENCY STANDARD

TYPE 2005
Sinc, $s^{\prime \prime} \times s^{\prime \prime} \times 71 / \mathcal{I N}^{\prime \prime}$ High W'eight, 14 lbs .
Frequencies: 50 to 400 cycles (Specify)
Accuracy: $\pm .001 \%$ from 20° to $30^{\circ} \mathrm{C}$

Output, 10 Vatts at 115 Volts
Input, 115 V . (50 to 400 cycles)
 Accuracy:
$\pm .001 \%$ from 20° to $30^{\circ} \mathrm{C}$
Input, 115 V (50 to 400 cycles)

FREQUENCY STANDARD

TYPE 2001.2

Frerurneirs: 200 to 3000 cycles
Accuracy: $\pm .001 \%$ at 20° to $30^{\circ} \mathrm{C}$
Output: 5V. at $2.50,000$ ohms
Input: Heater voltage, 6.3-12-28
B voltage, 100 to 300 V ., at 5 to 10 ma .

ACCESSORY UNITS

for TYPE 2001-2
L - For low frequencies multi-vibrator type, 40-200 cy.
D-For low frequencies counter type, 40-200 cy.
H-For high freqs, up to 20 KC .
M-Power Amplifier, 2W output.
P-Power supply.

FREQUENCY

 STANDARDTYPE 211IC
Size, with cover $10^{\prime \prime} \times 17^{\prime \prime} x 9^{\prime \prime} \mathrm{H}$. Panel morlel $10^{\prime \prime} \times 19^{\prime \prime} \times 8^{3,1}{ }^{3 \prime} H$. Weight, 25 lbs.

Frequencies: 50 to 1000 cycles
Accuracy: $\left(\pm .002 \%\right.$ at 15° to $\left.35^{\circ} \mathrm{C}\right)$
Output: $115 \mathrm{~V}, 75 \mathrm{~W}$. Input: $115 \mathrm{~V}, 50$ to 75 cycles.

This organization makes frequency standards within a range of 30 to 30,000 cycles. They are used extensively by aviation, industry, govern. ment departments, armed forces-where maximum accuracy and durability are required.

WHEN REQUESTING INFORMATION PLEASE SPECIFY TYPE NUMBER

American Time Products, Inc.

At least one of yonrinterests is now served by one of IIRE's 28 Professional Groups.

Each group nublishes its own specialized papers in its Transacmons. some annually, and some bi-monthly. The larger groups have orpanazed local Chanters, and they also sponsor technical sessions at IRP. Conventions.
Aeronatical and Navigational Flectromes (G 11) Antembas and Propagation ($G 3$)
Atmio (C 1)
Attomatic Control (G23)
Broadeast \& Television Receivers (G8)
Proatcatitiog (G2)
(irronit "I"hernt ((4)
(ommmnication Systom: (C19)

Fituration (C_{2}^{25})

 Engimerering Mamagement (C ($1+$) litgencering Wiriting :um Sbeech (G 26)
 Industrial Electronics ($(\mathrm{i} 13$) Information "heory (C : Z)
(Instrumentation ((i 9)
Medical Electronics (1; 181
Nicrowate 'Theory and Techmigues (G 17)
Military Electronics ($1,2+$)
Ximerar Scicure ((i 5
Trenlaction lexhmirnes (C $_{2} 2$)
Radin: Freytumby] interference ($G 27$)
Reliability and (Juality Control (C 7)
Sunce Eiectronic- :nd Telemetry ((10)
iltatmoncs Fogincerong ((i 20)

IR1: Professional Groups are only open to those who ate alreaty members of the IRE. Copies of I'rofessiomal (irout Iransations are avalable to non-members at three times the cost-pricce to group mombers.

'The Institute of VRadio Engincers

 1 Last 7!th Strert, New York 21 , N.Y.
USE THIS COUPON

Miss Emily Sirjane
IRE-1 Fast 74th St.. New York 21. ヘ.. Y'
Please corroll me for these IRIE I'roicesional (iroup:

Please enclose remitance whth this order

Dre
 Elesetronnic Comepaleress

The electomics computer torlat stands as ome of the most important of all engineering tools and is in widespread use in mathy military. industrial, and scientific applications. And yet just a decatle ago. only a handful of these mathines were in existence

The fied of electronic eomputer is thus one of the volungest and fast est growitug banches of the radinengineering art. The rapiol expansiom of this ficlel led to an wesent new for a means wherebe the computer ent gincer contel readily keep ablocast of the matne derelopments in this important new fiche.

In response to this need, the TRE l'ofessional (itoup on Electronic Computers was formed in ()etober of 1851 . Interest in the (ione) was (a) great that membership hat now grown to more than NX(M).

The principal activity of the iroup is the J'ublication of TR.S.N. A TIONS. contaming technical bapers kescribing recent developments in the computer fied. reviews of cutrent literature, and news. TR.オN’S A(T1OCS is published quaterly and sent to all (itonp members who have paid the ammal assessment of \$t. Thus the (iroup member is provided with an invaluable somece of anthoritatice information in his particular field of specialization

Each vear the Electronic Com puter (iroup co-sponsors compule conferences on both the East and West Coasts. athl organizes sereral sessions at the lRI: National Comvention

In addition to these national meetings. the (iroup has organized some 19 Chapters all ower the comtery which hold local meetings in conjunetion with IRE: Scetions, thuts filling out a program of techmical activities which has proved indispensable to the computer engincer.

W. R. G. Baker
Chairmon, Professional Groups Committee

Expanding a capability...

Raytheon's Airborne Electronic Subdivision this month occupies a new multi-million dollar research and development laboratory.

Creative effort within this new facility will be directed at featherweight transistorized Doppler radars; altimetry and terrain clearance techniques; satellite weather radar studies; airborne early warning radars; missile boost, flight and terminal guidance problems; radiometry; and other areas.

Like the B-58's sophisticated search and Doppler radars, the systems, subsystems or equipments developed will find application in manned aircraft, missiles, drones, and a variety of space carriers.

To engineers and scientists with particular interest in this work, the new laboratory offers complete professional satisfaction in an academic environment. For immediate information on select staff appointments, write Mr. Donald H. Sweet, Engineering \& Executive Placement, Raytheon, 624 Q Worcester Road, Framingham, Mass. (suburban Boston).

AIRBORNE ELECTRONIC GOVERNMENT EQUIPMENT DIVISION

New RCA Scan-Conversion Tube Makes Possible Brighter and Larger Air-Traffic-Control Displays

Once again RCA Tube Engineers have provided another practical answer to the long-standing problem of large-screen radar display in brightly lighted rooms. The answer . . . RCA-7539 Scan-Conversion Tube.

The 7539 is designed to transform signal information continuously from one time base to another. For example, PPI information generated by a conventional radar system can be processed by this tube for display on a highresolution, large-screen TV monitor for comfortable viewing in a brightly lighted room.

Depending on system requirements, the persistence of information in the display is adjustable from several seconds to more than a minute. Moreover, writing and reading may take place simultaneously without recourse to rf carrier techniques of signal separation.

The resolution capability of the 7539 is 150 range rings per display radius with a response of 50% or better. To utilize fully the resolution capability of the 7539, the TV monitor system must be designed for resolution in excess of 1000 TV lines.

For complete information about RCA-7539 and its possible applications, contact the RCA Field Office nearest you. Technical bulletin for the 7539 will be available about January 15. For a free copy, write RCA Commercial Engineering, Section B-35-Q. Harrisol. N. . .
another way rca serves you through electronics

RADIO CORPORATION OF AMERICA
Electron Tube Division
Harrison, N. J.

Proceedings of the mre

Poles and Zeros

Transition. As a new editor takes over the commas, colons, cedillas, and carets of the IRE publishing activity (and active it is), it is his fervent wish that the transition is sufficiently smooth to avoid any excessive increase in the extremely satisfactory standing-wave ratio established by his predecessors. To follow in the footsteps of Goldsmith, Pierce, Fink, and Ryder, and maintain the excellence of IRE publications to which they have accustomed the reader, is a challenging task. The bylaws assign this task to the Editorial Board, which is charged with the responsibility of advising "the Board of Directors concerning all matters of editorial policy, the publication of the Proceemings of the IRE, including policy determination of its editorial and technical content, and general publication policies for IRE publications." The Fditor and the Editorial Board trust that their efforts will be pleasing to the membership.

A specific task that the Editor inherits is that of preparing the text of the Poles and Zeros page established by Editor Fink, From the passive viewpoint of a reader this feature of the Procerdings has always been interesting and informative and has certainly achieved the intent of its initiator as "a regular page of editorial comment on matters of concern to the IRE membership." From the active viewpoint, forced on one who must author this feature, the striking aspect of Poles and Zeros through its history is an ingenuity of its authors in providing commentary month-by-month on an amazingly diverse series of engrossing topics. A glance at the index over the years reveals subjects ranging from A-"Aids in Preparation and Utilization of IRE Publications" through the alphabet to W"--"Wescon," So far no theme has occurred in the X. Y, Z portion of the alphabet. Perhaps this deficiency can be remedied in the coming months. One final point-in a single year Poles and Zeros word-wise requires as much paper and ink, and perhaps writing time, as an average length technical paper: if the topics are of interest (as they have been in the past) the feature is justified, if not, it should, in the words of its founder, be "howled out of existence." To the Editor this means that feedback, positive or negative, is important; suggestions and criticisms are invited.
International Again. Poles and Zeros in December, 1959, told briefly of the Institute and something of its international perspective. To add further emphasis, it is a pleasure to welcome the India Section to the family of IRF, and proclaim it number 105. The new Section, which comprises the whole of the country of India, is also the twenty-second outside of the United States. May it grow and prosper (perhaps one day it can entertain the Board of Directors in the shadow of the Taj Mahal).
Peripatetic Presidents. Throughout the history of IRE, and other professional societies as well, one of the natural functions of the society's President seems to have been that of
visiting the geographically scattered Sections of the Institute, appearing at conventions, national and regional, and attending special conferences of his own and sister societies. A visit by a President to a Section is rightfully considered a very special occasion, and there is no question of the value of top management learning at first hand the grass root reaction. The wear and tear on the Iresident physically, as well as the tremendous expenditure of time demanded of this nonremunerative office, camot be ignored.

It has become obvious, as the exponential growth of the Institute continues, that it is unrealistic to expect a President to visit even a fraction of the Institute Sections during this term of office. Try to fit into your own busy life a travel schedule to eighty-three United States and thirteen Canalian Sections. The Board has clearly taken note of the traymblem faced by its President and the Vice-President (residing in North America) and has decreed that ammal visits to all Sections by either is neither possible nor practical. ine delegated the responsibility of visiting a nominal num of Sections to the Vice-President (residing in North Amentica) during his period of office. He can devote more time in these fewer visits in the better interest of the Sections and the Institute. The I'resident is thus to be free of the responsibility of Section visits in order to permit him to meet the many other demands on his time that are concomitant with the expanding activities of the Institute. The Buard of Directors is confident that this decision will meet with the approval of the Institute memlorship.
Cumulative Index. Last September Poles and Zeros announced that a new five-year cumulative index would be a vailable soon. It was published last month; to add it to your library see page 14 A of this issue of the Proceemings. No longer can there be complaints about finding material for the years covered by the 1954-1958 index which is striking for its new feature of providing easy access to all IRE publications in a simple manner never before available. The index is interesting, too, for the light it sheds on the remarkable growth of the Institute publishing program.

A brief study of earlier indexes, and a comparison with the newest, reveals the astonishing fact that in the five years 1954-1958 more articles were published than in the previous forty-one years of IRE publication. Indeed, the number of articles tripled in both of the last two five-year periods. If this rate continues the present five-year period may produce over 20,000 papers. Editor Ryder's predietion last December that the Professional (iroups may have monthly Traxisactions by 1965 would appear to be pessimistic!

Convention Record. The out-of-print sections of the 1959 IRE Natonal Convention Recori) and the IRE Wescon Convention Record for 1959 have been reprinted and are again available. See pages 22.1 and 23:\ for ordering information.
-F. H., Jr.

John N. Dyer

「íice President. 1960

John N. Dyer was bom in Haverhill, Mass. on July 14 , 1910. He attended Massachusetts Institute of Technology: and received the 13.S. degree in electrical engineering in 19,31 .

Com his return to this country from the Byrd Antaretic Expedition in 1935. Mr. Deer served as a radio engineer in the (eneral lengineering Department of the Columbia Broadeasting Sistem. In 1937 he became . Assistant Chief Television Eingineer for that company and was involved in the development of color television. He was associated with (CBS for nine years, starting in 1933.

During the war Mr. I)yer was with the Radio Research Laboratory of Harvard Vniversity as head of the transmitter group. He was responsible for the line of "carpet" jamming transmitters that are credited with saving large numbers of the Eighth Air Force 13-17. He then became director of the American- British Laloratory, Division 15, of the National Defense Research Committee. During 1944 it was his responsibility to assist the services in making maximum use of the countermeasure equipment development at I Larvard and other [`. S. laboratories.

In 1945 Mr . Dyer joined dirborne Instruments Laboratory: Radar and Air Navigation Section, as Supervising Engineer. He became Director of the Research and En-
gineering Division in 1950 and Vice President and a member of the Board of Directors of the laboratory in 19.51. After he became Vice President, the Research and Engineering Division grew to an organization which has entered into many important military, governmental and industrial programs in different phases of electronics and now numbers more than 1.000 prople. Mr. Dyer remained a Director of All, until the merger of the company with Cuter-Hammer, Inc.. in 1958. He is now \ice President and Technical Director of the All. division, and Assistant Secretary of Cutler-Hammer.

Mr. Dyer joined the IRE in 1930 ats a Junior Member. Ho became an tssoriate in 19,32 and a Senior Momber in 194.5. In 194" he receised the Fellow Award "for administrative and technical contributions to radio. including polar-expedition communications and important wartime radio countermeasures." Mr. I)yer, a past (hairman of the IRE Policy Advisory Committe and the Follows Committee, has served on numerots IRE committees. In 1950 he was elected Clairman of the longl !sand Subsection. He served as a Director of the IRE in 1955-1950. He is the first to serve in the newlecreated ofice of Vice President Residing in North America under the recently amended IRE Constitution which prowides for two IRE Vige Presidents.

Scanning the Issue

PERCOS-Performance Coding System of Methods and Devices Used for Measurement and Control (Keller, p. 148) - Working in close cooperation with the IRE Technical Committee on Industrial Electronics, the author has developed a numeric system for classifying, coding and cataloging the twelve most important functions and performance characteristics of the many components which are found in measurement and control systems. These twelve ratings may then be catalogued by means of edge-coded cards. The result is a system which substantially simplifies the task of a designer in selecting a chain of compatible devices to achieve a system of prescribed accuracy and reliability. It is hoped and believed that this system will find wide application among many industrial and government organizations.

100:1 Bandwidth Balun Transformer (Duncan and Minerva. p. 156) - Within the past year or two important progress has been made in the development of new types of antennas with bandwidths much greater than had previously been thought possible. The future utility of these new antema designs, however, will depend on the corresponding development of very broad-band components. This paper concerns one such component development. The halun described here is a transmission line section which starts off at one end as a coaxial cable and winds up at the other end as a balanced two-wire transmission line of the type frequently required to feed broad-hand antennas. In addition to achieving a physical transition from one type of line to another, the balun also maintains an excellent impedance match over frequency bandwidths as great as 100 to 1 .

Measurement of Internal Reflections in Traveling-Wave Tubes Using a Millimicrosecond Pulse Radar (Melroy and Closson, p. 165)-Small irregularities in the helix of a travel-ing-wave tube cause internal reflections which, in the case of pulse code transmission, may result in echo pulses which could distort the meaning of the code. The accurate location of helix faults has now been made possible by an ingenious technique which employs radar pulses to perform measurements at distances of 2 feet or less and a stroboscopic system for viewing the echoes. This paper will be of interest both as a solution to a very exacting and delicate instrumentation problem and as a method of obtaining valuable new data affecting traveling-wave tube design and performance.

Noise Consideration of the Variable Capacitance Parametric Amplifier (Uenohara, p. 169)-One of the most widely discussed topics in recent months concerns the use of variable capacitance diodes as very-low-noise amplifiers. This paper, in formulating a theoretical model of the noise source in amplifiers of this type, therefore goes to the heart of this timely subject. I simplified theory is developed which introduces a new and useful "guality factor" for representing and calculating the performance potential of diodes. Confirming experiments with a gallium arsenide diode yield a very low 0.9 db noise figure for double-sideband operation and 3.9 db for single sideband. The discussion points up the necessity of differentiating between single- and double-sideband operation when speaking of noise figures, a pitfall into which this column fell in the January, 1959 issue.

Reliability Analysis Techniques (Krohn, p. 179)-This paper presents an excellent nonmathematical picture of the suhstantial progress that has been in the last few years in developing effective techniques for analyzing the reliability of electronic equipment. The author wrote the paper with the typical nonspecialist particularly in mind. All readers will find this a valuable, introduction to an important subject.

A Stabilized Locked-Oscillator Frequency Divider (Scott. p. 192)-An important class of subharmonic generators is that which makes use of the locking property of oscillators.

This paper deals with a particular type within that class which has the combined attributes of other types, namels; it is easily synchronized and at the same time provides a high degree of frequency stability. The circuit is simple, practical and useful, and will be of interest in the design of frequency and interval standards used in almost all phases of electronics. Moreover, the author's graphical analysis technique might well be applied to all types of synchronized oscillators.

IRE Standards on Television: Measurement of Differential Gain and Differential Phase, 1960 (p, 201)-This Standard provides a useful operational and maintenance test for determining whether the phase or amplitude of the chrominance component of a color telerision signal is heing altered by virtue of its being superimposed on a varying base, i.e., the monochrome component. Such tests are important because a variation in phase or amplitude may cause undesirable variations in the colors reproduced by the receiver.

Compandor Loading and Noise Improvement in Frequency Division Multiplex Radio-Relay Systems (Rizzoni, p. 208)A compandor consists of a device which redistributes the speech volume at the input of a channel for high efficiency of transmission and a device which restores the speech to its original form at the channel output. The effect of a compandor is to improve the intelligibility of speech over noisy circuits and to change, generally for the leetter, the loading of channels. When used in microwave or scatter communication systems, compandors will permit among other things longer hops, lower antenna gain, lower transmitter power or lower receiver sensitivity. Whether these advantages pay for the expense of the compandors depends on a number of factors, although where high quality is required, compandors always result in the most economical system. This paper provides system designers with the means for calculating the improvement that would result from using compandors, thereby enabling them to arrive at an optimum system design.

Piezoelectric Properties of Polycrystalline Lead Titanate Zirconate Compositions (Berlincourt, et al, p. 220)-Valuable data are given on a new piezoelectric ceramic which, despite its forbidding name, seems destined to have very wide application in underwater sound transducers, delay lines and mechanical filters. It has been found that lead titanate zirconate compositions have remarkably higher piezoelectric effects than the presently used barium titanate ceramic. a fact which will interest a wide circle of readers.

Further Consideration of Bulk Lifetime Measurement with a Microwave Electrodeless Technique (Jacolss, et al., p. 229)-A new method of measuring the lifetime of excess carriers in semiconductors has been developed which uses a steady source of light to generate excess holes and electrons. By locating a sample of the material in a waveguide and measuring changes in microwave absorption as the distance between the sample and light source is varied, bulk lifetime can be determined. This technigue makes an interesting addition to the list of lifetime measurement methods, one that avoids the complications of electrode attachments and surface recombination effects.

The Application of Linear Servo Theory to the Design of AGC Loops (Victor and 13rockman, p. 234)-This paper gives an interesting, well-written description of an application of feedback montrol theory to the problem of automatic gain control in radio receivers. The key to the authors' contribution is their recognition that an almost linear relationship exists between signal level and receiver attenuation when both are expressed in db relative to unity. By thus linearizing the problem, they have been able to apply linear servo theory to its solution with excellent results.

Scanning the Transactions appears on p. 268.

PERCOS—Performance Coding System of Methods and Devices Used for Measurement and Control*

ERNEST A. KELLER \dagger, senior member, ire

Abstract

The manuscript of I)r. Keller's paper on a proposed l'erformance Coding System was prepared upon request, and with the active cooperation of the IRE Technical Committee on Industrial Electronics and its Subcommittee 10.3 on Industrial Electronics Instrumentation and Control. Both the proposed system and the definitions suggested therein found approval by potentially large user groups outside of the IRE, such as the lnstrument Society of America, and various govermment and industrial organizations.

By sponsoring the publication of this report in the Proceemncis of rhe IRE, the Industrial Electronics Committee hopes to have contributed to the solution of the ever-increasing problems of equipment classitication and specifications. If used consistently both by manufacturers and users of electronic devices, the proposed system could go far toward an unambiguous and clarified language in technical specifications.

Eugene Mittelmann
Chairman
IRE Committee on
Industrial Electronics

Abstract

Summary-This paper describes a classifying and coding system of functions and performance characteristics of devices in a way that is useful to the systems designer, who must select a chain of compatible instruments to achieve a measurement or control system of prescribed accuracy and reliability.

The performance coding system consists of numeric codes for rating a device in terms of twelve parameters of importance to the over-all performance of the system, such as precision, stability of calibration, rate of performance, useful shelf life, mean operating time to failure, average repair time, cost, availability and physical volume.

The numeric codes provide a quantitative description of the performance data to the nearest order of magnitude only. However, this broad classification is consistent with the magnitude of the expected span of performance data of all the devices in a complex system.

An edge coded card system is described for the selection of devices or methods complying with the performance parameters. The individual card specifies the exact technical data of the device, the input and output requirements, and especially the environmental conditions under which the performance parameters are given.

This classification is established for and with the cooperation of IRE Subcommittee 10.3 of the Industrial Electronics Committee.

Introdicotion

TTIE goal of a good dassification is to provide a systematic procedure to locate a desired specific piece of information or item out of a large quantity of data or mats. The systematic procedure is preferred over the trial method, because the results are generally olotained faster and more easily:

Classification provides as a byproduct a family tree of descriptive terms for the common features of a class or group of units, as well ats for the individual details of a specimen.

It is sometimes implied that the quality of a classification can be appraised by the amount of details given for specimens. This is certainly true for many phases of scientific endeavor. In botany, for instance, it is necessary to describe the major and minor differences in logically progressing subdivisions, identifying, finally, one species from another.

* Original manuscript received by the IRE, January 28, 1959; revised manuscript received, August 20, 1959.
\dagger Motorola, Inc., Chicago, III.

This type of successive division of classes is very of ten accomplished by using the decimal corling system. This system has the advantage that neither the quantity of items of the same order nor the momber of successive subdivisions is limited. In this respect, the decimal classification system is the most logical and useful coding system.

It should be pointed out, however, that the possibility of subdividing classes into subclasses and sub-subclasses should not be interpreted as a necessity for best service to the user.

The desirable degree of subdivision is determined by the purpose of the classification and by evaluating the ratio of increase in detail data to the gain in new dependable information, derived from this data increase. This ratio of information content per data quantity gains in importance as industry progresses more and more to atutomatic techniques.

PERCOS, a short name for performance coding system of methods and control, is based on the decimal classification technique, purposely limited to a few classes and to very broad subdivisions in order to be consistent with the information accuracy derived primarily from statistical data.

PIRPOSE

The PERCOS system for measurement and control is established primarily for the logical design of systems. It helps in the selection of an economically feasible and, in respect to the requirements, compatille chain of methorls or instruments, to obtain results with a given degree of accuracy and reliability under specified envirommental conditions.

PERCOS assists in providing the answer to questions of compatibility of requirements. This compatibility depends naturally on the method used to solve a problem, and on the present status of the art. Since there are an infinite amount of factors determining complete compatibility, it is apparent that any practical coding sys-
tem can only consider the more important aspects, such as accuracy and reliability.

IERCOS selects, out of a number of methorls or devices with satisfactory performance in respect to accuracy, those which will also satisfy the requirements of reliability. This reduced number of acceptable solutions can then be screened for the best answers to the problem, considering the economical aspects.

It is immaterial, however, which one of these restricting factors is considered first. PERCOS permits any desired sequence in the selection of compatible parameters.

()rganization

The performance coding system is rescriberl in two parts. The first part, definitions and coding classes, deals with the actual coding of performance parameters and a series of definitions to clarify the meaning of the coding classes. The definitions follow, as much as possible, the generally inferred meaning of the term.

The second part describes a card file system, organized for random access to any classes described in the first part. It permits, through successive selecting operations, the discovery of a method or device complying with all the prescribed requirements for the solution of a posed problem. This second part is essential for the practical use of PERCOS.

Operational Example

Some of the services offered by PER(OS are best illustrated by a practical example.

In an assumed functional block diagram of a complex communication system, one of the blocks is labelled "multichannel master oscillator." The task consists of finding either the most appropriate design method or a supplier for this instrmment. Answers to this problem are found in a three-step approach.

The first step consists of preparing a list of the requirements, complying with the over-all specifications of the entire system. This list is set up according to the twelve classes of PERCOS and contains the PERCOS coding as well as a "rank" scale, indicating the relative importance of the various PERCOS classes for this particular problem. The list may look like Table I.

TABLE I

Item	PERCOS Class	PERCOS Corle	Rank
Oscillator	convertor	0	1
Input 60 c atc	electrical	6	2
Output RF			3
Irecision minimum	1 part in $10{ }^{7}$	7	5
Stability of calibration	48 hours	6	6
Rate of performante minimum	140-170 mc	8	4
Shelf-life minimum	1 year	4	10
Mean-time-to-failure minimum	10,000 hours	4	7
Repair-time average	4 hours	1	8
Cost limit	\$5000.00	3	9
Availability	90 days	2	12
Volume	less than 2 cubic feet	5	11

The second step is the actual selection of the answer cards out of the PERCOS card file. This is accomplished by inserting the search needle into one of the selected code holes around the edges of the file cards. Bysimply lifting the needle, the cards complying with this code will drop out. These cards are then used to select the next corle. The sequence of selection has no effect on the final result.

The third step consists in the evaluation of the selected cards. If too many cards are left, the requirements for reliability or cost may be tightened to reduce quickly the number of carcls to a manageable quantity.

In the average case, at least one methods card and several suppliers cards will be left for final consideration. The methods card describes the basic technical solution of the problem, indicating the limits of environmental conditions for which the stated reliability figures are valid, and refers to pertinent literature, without indicating any sources of supply. The suppliers card, on the other hand, describes one available instrument in detail, giving environmental conditions or applicable military specifications as well as pertinent input and output characteristics. The microfilm may give complete schematic diagrams or performance curves under given environmental conditions.

The elimination of all cards in a specific selection process indicates either that the requirements are impossible to meet, or that they reach beyond the present status of the art. For that reason, it is advisable to follow the "rank" order in selecting the classes, to assure that the search limits are imposed by the more important requirements.

Definitions and Coding Classes

Group A-Identification

PERCOS iclentifies instruments or measuring and control methods with only three codes. These are the instrument itself with ten divisions, and input and output with eleven divisions each. Out of the 1210 possible combinations of all the divisions of these three classes, only about 800 are of use. This rather coarse subdivision serves a very useful purpose in preventing the user of the system from narrowing the possible selection of suitable instruments by searching in too small a domain. The arbitrary choice of only 10 divisions for the instruments has the further advantage of reducing guesswork by the user, by limiting, in an obvious fashion, the possible location of an instrument in the classification.

Class 1-Instruments: All instruments are classified in ten mutually exclusive divisions, each described by a representative term. Each division is identified by a number from 0 to 9 . The sequence of the divisions is arbitrary and of no particular significance. The assignment of a specific instrument to a certain class may seem in many cases to be arbitrary. This is clue to the necessity of making the divisions mutually exclusive and of providing uniformity of information content.

A debate about whether a particular instrument should be assigned to one division or another is futile,
because the logical search process will infallibly find all the instruments which can perform a desired duty. To ease the assignment of instruments to the divisions further, a rather careful study has been made in the selection of the collective names of the divisions and in the specifying definitions used. (See Table II.)

TVBIEE II

Niumber	Meaning and Description
0	Converter-Any device which changes one form or kind of energy into another, with efficiency being of primary importance. Examples: oscillator, motors; electrical, hydraulic and pheumatic actuators, motor-generator sets, choppers, inserters, lamps ased for ilhmination or heating, etc.
1	Switch-Any revice for connecting and disconnecting a path of information or energy. Examples: samplers, distributors, commutators, electronic gating circuits.
2	Tranducer-Any device which changes one physical quantity into another, with acouracy being of primary interest. Examples: thermocouples, strain ganges, different ial transformers, microphones.
3	- Amplifier-Any device which changes the level of a physical quantity, part or all of the energy for the ontput being drawn from a separate supply source.

Examples: electronic, magnetic, pnemmatic and hydraulic amplifiers with gains greater, equal to, or less than one. Note that passive devices such as transformers, voltage dividers, and resonant circuits are excluded.

4 Passive network-Any device which transfers energy or information between points with or without intentional change, none of the output energy being drawa from a separate supply source.

Fxamples: free space, filters, twin lead, pnemmatic or hydranlic signal-tubing, delay line (without recirculation means), cables.
5 Indicator-Ans device which changes information signals into quantities recognizable by human senses.

Fxamples: readout devices, oscillographs, data-printers, lamps used to transmit information, mechanical position inclicators, woltmeters.

6
Fnergy Source-Any device capable of providing suitable power to instruments, controls or processes, without supplying information.

Examples: ac, de, RF power supplies, light sources nsed to excite an optical transducer, pnenmatic compressor, temperature-controlled bath.

7 Command element-Any devire which initiates specitic control actions when provided with predetermined information.

Examples: paper tape-, magnetic tape- or punched-card-reading instruments, cam-follower.
8 Comparator-iny device which accepts two inputs and provides an output based upon their relative values.

Examples: self-balancing potentiometers, regulators, limit switches, alarm "detectors."
$9 \quad \begin{aligned} & \text { Storage element-Any device which retains information } \\ & \text { for an independently controlled length of time. }\end{aligned}$ for an independently controlled length of time.

Examples: self-locking relays, magnetic core logic elements, magnetic drum, magnetic tape, punchedpaper tape, punched cards, recirculated delay lines.

Class 2: This describes, in eleven numbers, the general type of input characteristics of an instrument.

Class 3: This describes, for obvious reasons, with the same eleven numbers, the general type of output characteristics.

Table 111 is applicable for these two classes.

TABIEE III

Number	Class 2	Class 3	Description
0	luput	Output	Merhamical
1	Input	Output	Hyolraulic
2	luput	Output	Pnenmatic
3	Input	Output	. Icoustical
4	lnput	Output	Thermal
5	Input	Output	Optical (visual)
6	luput	Output	Electrical
7	lnput	Output	Magnetic
8	lnput	Output	Electromagnetic radiant
9	Input	Output	Chemical
10	Input	Output	Nuclear

Group B-Accuracy and Dynamics

This group contains three classes, namely: precision, stability of calibration, and rate of performance. These three classes determine the level of confidence that can be put in the results of the measurements and give an indication of the speed with which these results may be obtained.

The data of these three classes are in most cases intimately related in a tradeable fashion. It is, for instance, more possible to obtain the highest degree of accuracy il the calibration has only to be maintained for a short time and if rate of performance limits do not impair the careful preparation and checking of the measurement. On the other hand, many instruments are capable of providing results in a rapid sequence, but the accuracy is limited to a nominal value.

The information provided by PERCOS would not be meaningful without an adequate definition of the terms used in the description of the classes. Unfortunately, there seems to be no standard or widely accepted definition for such vital terms as accuracy, precision, resolution, etc. ()n the contrary, practical evidence (Webster's New (Collegiate Dictionary) shows that these terms are either not specifically defined for scientific use, or are labeled as syonoms.

The following definitions are given in an attempt to upgrade the information content of commonly used words by describing the most accepted version and by pointing out the most significant difference between them. It is quite obvious that there are many other ways to express the meanings of the following terms. The definitions chosen are merely one form of them.
Synonyms of the defined principal terms are separated by a comma, antonyms are put in brackets.

Accuracy-Numerically, the extent of agreement of a measured quantity with a predetermined or standard quantity at a specified point within the range of measurement. Note that the extent of agreement is sometimes expressed as a percentage difference between the measured quantity and the standard quantity.

Absolute error-Civen by the maximum deviation of a measured quantity from a predetermined or standard quantity, at any given point within the range of measurement.
Accuracy and absolute error define the same borderline which separates the warranted quantity from the unwarranted. Accuracy is intuitively associated with the number of significant digits; hence, "high accuracy" refers to a quantity, described with a "high amount" of digits. Absolute error, on the other hand, emphasizes the deviation. A "large error" refers to a "large" numerical value of the error, as compared to the total numerical value of the quantity to be measured.

Precision (repeatability, relative error)-Defines mumerically the degree with which a sequence of measurements of a quantity will coincide with the arithmetic average at any given point within the range of measurement.

Relative error (precision, repeatability)-The maximum deviation from the arithmetic average value, obtained in a series of tests, at any point within the range of measurement.

Precision and relative error have the same relationship as accuracy and absolute error. The observer has the choice of reporting the facts either as precision or as relative error. In many cases, precision and relative error are given, as, for instance, in the probable speed of light, $299,792.6 \pm 0.7 \mathrm{~km}$. The precision is given as a seven significant digit number, and the relative error as plus or minus 0.7 km , a numerical quantity.

Sensitivity-Ratio of the output response to a specified change in the measured or controlled variable quantity.

Detectability-The required minimum input signal to cause a useful output signal. Detectability indicates the practical limits of use of an instrument due to noise in the input signal or due to instability of the instrument parameters.

Resolution-Defined as the magnitude of the least significant digit that a measuring system is capable of delivering, or a controlling system to respond. This definition in terms of "significant digits" is probably more useful than the description of resolution as the ratio of a quantity to be measured and the fraction of that quantity that the instrument is able to detect

Threshold-The minimum detectable energy difference for a given instrument. Threshold is also used in connection with the human senses, describing the minimum stimulus (energy) to cause a definite response of one or more of the human sensitory organs.

Calibrating-The action of making the arithmetic average value of a measured quantity coincide with a predetermined or standard value. Calibration is necessary because of drift. Drift changes the original settings of a device because of aging and environmental conditions. Stability of calibration and drift have the same relationship as precision and relative error.

Stability of calibration-The time during which an instrument provides results with an accuracy half as good as the precision stated for the instrument. The
same facts could be described as follow's. Drift indicates the probable time at which the average of the measurements of an instrument will show an absolute error of twice the relative error stated for the instrument.

Linearity-The deviation from a constant ratio between dependent and independent variables. Linearity could also be described as the boundary within which all relative errors will fall if an instrument is checked on each significant point within its range.

IHysteresis (backlash: instrument and control usage) A special form of the relative error (precision), making the magnitude of deviation of a sequence of measurements dependent from the direction of approach. This definition of hysteresis obviously has to be restricted to the use of instruments and controls, for the hysteresis in a magnetic material, for instance, is a physical property and could never be described as some sort of an error. Ilowever, the notation pertinent to instrumentation is formed from an analogy to the hysteresis found in nature.

Rate of performance-The number of complete measurement cycles per second, giving results of a prescribed precision.

The following notes do not carry the latel of a definition; they are more or less conseguences of the previous definitions. They may further clarify the terms.

Calibration is usually carried out to the limit of resolution. Resolution should therefore not be coarser than half the value given for precision. This is consistent with the belief that a digital value derived from a measurement should always be taxed with an error of at least plus or minus one of the least significant digit. This, of course, is a direct consequence of the always finite domain of uncertainty of any practical measurement and of the fact that the resolution of a digital indication is limited to the span of one digit.

The accuracy of a system can, at best, be equal to its precision if the calibration is perfect, but it can never exceed it.

The total absolute error (accuracy) is determined by three component errors: the relative error of the measurement (precision), the error of calibration, and the error of definition of the exact value of the standard. The best approximation to the maximum absolute error of a measurement is given by the sum of the maxima of these three component errors.

The resolution can onty be equal to or coarser than the threshold.

The rate of performance and the time constants of a system are naturally related. It is, however, generally not possible to establish a numerical relation between these terms, except in very simple cases where the number, the value, and the dependency of the time constants in an instrument are known to a degree which is consistent with the demands for precision.

For an instrument with a given frequency response characteristic, the rate of performance will decrease in proportion with the increase of demands for precision.

Class 4-Precision: The individual number of the fourth class represents the power of ten by which the
range of an instrument has to be divided to obtain the span of the maximum deviation for a large number of measurements at any points within the range. (See Table IV.)

TABLE N

Number	Description
9	l'recise to one part in one or totally random.
1	Precise to \pm one part in 10 or better.
2	Precise to \pm one part in 10^{2} or better.
3	Precise to \pm one part in 10^{3} or better.
$*$	${ }^{*}$
9	Precise to \pm one part in 10^{9} or better.

The tolerance on the value of "one part" is 50 per cent. That means that an instrument with an error of ± 1.50 per cent is still within Class 2 . But an instrument with an error of ± 1.51 per cent belongs to Class 1 .

Class 5-Stability of Calibration: The individual number of the fifth class represents the power of ten of seconds of average time, for which the instrument provides results with an accuracy hall as good as the precision stated for the instrument, under specified environmental conditions. (See Table V.)

TABLE V

$\underset{\text { ber }}{\substack{\text { ium- }}}$	Description
0	Calibration maintained for at least 1 second.
1	Calibration maintained for at least 10 seconds.
2	Calibration maintained for at least 10^{2} seconds.
3	Calibration maintained for at least 10^{3} seconds or 15 minutes.
4	Calibration maintained for at least 10^{4} seconds or 2 hours.
5	Calibration maintained for at least 10^{5} seconds or 1 day,
6	Calibration maintained for at least 10^{6} seconds or 2 weeks.
7	Calibration maintained for at least 10^{7} seconds or 4 months.
8	Catibration maintained for at least 10^{8} seconds or 3 years.
9	Calibration mamtained for at least 10^{9} seconds or 30 years.

Class 6-Rate of Performance: The individual number of the sixth class represents the power of ten of performances per second to achieve measurements or control functions within the precision of class 4. (See Table \i.)

TABIE VI

Number	Description
-3	One performance in 100 to 1000 seconds.
-2	One performance in 10 to 100 seconds.
-1	One performance in 1 to 10 seconds.
0	One performance in 0.1 to 1 second.
1	10 to 100 performances per second.
2	100 to 1000 performances per second.
*	* * * * * *
9	10^{9} or more performances per second.

The addition (observing the sign) of the fifth and sixth class gives the power of ten to the possible measurement or control function within one calibration period.

Group C-Reliability

Reliability is defined as the probability that at a given time a device will operate within the prescribed range of precision, calibration, and rate of performance under given environmental conditions.

If an instrument performance deviates beyond the set limits, it is called failing.

One of the few widely accepted guantitative terms describing some aspects of reliability is the "mean time to failure."

Mean time to failure is defined as the arithmetical mean (average) of the operating time between failures under given environmental conditions.

The mean time to failure of an instrument is determined experimentally,

$$
T_{m}=\frac{\sqrt{ } \cdot t}{F}
$$

where
$T_{m}=$ mean time to failure (hours),
$N=$ number of identical and independent samples under test,
$t=$ duration of test (hours),
$F=$ number of failures during test.
The same formula is used in many cases to determine the mean time to failure of a system consisting of a multitude of similar elements for which T_{m} is known. However, certain precautions have to be observed to guard against unwarranted extrapolation.

If, for example, a certain transistor is said to have a T_{m} of 10,000 hours as a result of a test where 1000 transistors, tested under certain conditions, yielded 100 failures in a 1000 -hour test, a closer analysis may reveal that most of these failures occurred during the very early part of the test.

A sample of the same type of transistor, taken from the survivors of a 100 -hour aging process, might increase the average T_{m} to $1,000,000$ hours under the same envirommental conditions; or 1 failure out of a lot of 1000 transistors during a 1000 hour test.

However, this T_{n} of 10^{6} hours should not be interpreted to mean that the average life of any one of the transistors is in the order of 100 years, because the deterioration of the material may terminate the useful life of a transistor long before that time.

This behavior is found in most life histories of practical components. The mean time of failure applies therefore only to that portion of the component life where the failures per unit time are proportional to the mumber of identical samples used.

The T_{m} of an instriment should therefore ahways be correlated to stated envirommental conditions, the number of samples used in the test and the duration of the test.

Sometimes the term "longevity" is used to indicate the longest service life of a component in hours for which the relation of T_{m} still holds. (See Fig. 1.)

Fig. 1.

The relation between mean time to failure and reliability can be described by

$$
R_{t}=R_{u} e^{-t / T_{m}}
$$

where
$R_{1}=$ probability of satisfactory performance at time t,
$R_{0}=$ probability of satisfactory performance at time

$$
t=0
$$

$T_{m}=$ mean time to laihre.
Since the probability of satisfactory performance at the time $t=0$ is not necessarily equal to one, it seems to be advisable to introduce another term, similar to the operating mean time to failure.

The "mean shelf life" is defined as the arithmetical mean (average) of time for which a device can be stored uncler given envirommental conditions so that the probability of satislactory performance at the moment of first use is $1 / e$.

Under the same assumptions as given to determine the probability of satisfactory performance after ℓ, operating time can be defined as

$$
E_{t}=E_{0} e^{-t t T_{0}}
$$

where
$E_{1}=$ probability of satisfactory first performance after time t of inoperative storage,
$E_{0}=$ probability of satisfactory first performance at the moment of final testing after manufacture (zero storage time),
$7 \%=$ mean shelf life.
The probability of satislactory jerformance after t_{s} time of storage and t time of operation can therefore be given as

$$
R\left(l_{s}+l\right)=E_{0} e^{-\left(t_{s} f T_{s}\right)\left(t / T_{m}\right)}
$$

where E_{0} can also be interpreted as the coefficient describing the result of incoming inspection. If, from a
large quantity N of identical instrmments delivered, the initial inspection detects F failures, E_{0} can be defined as

$$
E_{0}=\frac{N-F}{V}
$$

E_{0} therefore describes uniformity of quality at the time of delivery:

A third very useful statistical time record is furnished by the "average repair time," defined as the arithmetical mean (average) of time required to perform the maintenance check program or to locate the cause of failure and to replace the defective part, making the instrument fully operative again.

The utilization factor U of an instrument is determined by

$$
\zeta=\frac{T_{m}-T_{r}}{T_{m}} \cdot 100
$$

where
$l^{*}=$ per cent of time for which an instrument provides useful service,
$T_{m}=$ mean time to failure,
$T_{r}=$ average repair time.
Class 7-Mean Shelf Life T_{s} : The indivichat number of the seventh class represents the power of ten of hours as average time for which an instrument can be stored under given environmental conditions, so that the prob)ability of satisfactory performance at the moment of first use is $1 / e$. (See Table VII.)

IABIE VOII

Nun!ber	I Mescription
0	No shelf life.
1	Shelf life of 10 hours or 1 fatilure out of 10 after 1 hour.
2	Shelf life of 10^{2} hours or 1 failure out of 100 after 1 hour.
3	Shelf life of 10^{3} hours or 1 failure out of 100 after 10 hours.
4	Shelf life of 10^{4} hours or 1 failure out of 100 after 100 hours.
5	Shelf life of 10^{5} hours or 1 failure out of 1000 after 100 hours.
6	Shelf life of 10^{6} hours or 1 failure out of 1000 after 1000 hours.
7	Shelf life of 10^{7} hours or 1 failure out of 10,000 after 1000 hours.
8	Shelf life of 10^{8} hours or 1 failure out of 10,000 after 10,000 hours.
9	Shelf life of 10^{9} hours or 1 failure out of 100,000 after 10,000 hours.

It is to be understood that the interpretation of the shelf life in Table VII is only one out of many possible interpretations. In other words, number 3 equal to a shelf life of 1000 hours can also mean 2 failures out of 20 samples after 100 hours of storage, etc.

Class 8-Mcan Time to Failure I_{m} : The individual number of eighth class represents the power of ten of hours as average time for which an instrument performs satisfactorily under given environmental conditions. The probability of satisfactory performance is at that time equal to $1 /$ e. (See Table VIII.)
T.\BI.E: VIII

$\underset{\substack{\text { ber }}}{N_{1 u 1}}$	Description
0	Operating time 1 hour.
1	Operating time 10 hours or 100 failures out of 10^{3} every hour.
2	Operating time 10^{2} hours or 10 failures out of 10^{3} every hour.
3	Operating time 10^{3} hours or 1 failure out of 10^{3} every hour.
4	Operating time 10^{4} hours or 1 failure out of 10^{3} every io hours.
5	Operating time 10^{5} hours or 1 failure out of 10^{3} every 10^{2} hours.
6	Operating time 10$)^{6}$ hours or 1 failure out of 10^{3} every 10^{3} hours.
7	Operating time 10^{7} hours or 1 failure out of 10^{4} every 10^{3} hours.
8	Operating time 10^{8} homrs or 1 failure unt of 10^{5} every 10^{3} hours.
9	Operating time 10^{9} hours or 1 failure out of 10^{5} every 10^{4} hours.

The interpretation in Table V'll of the mean time to failure, " 1 faihure out of X samples every y hours," is only one example out of many possible interpretations. Any interpretation of the formma

$$
T_{m}=\frac{V^{V} \cdot l}{F}
$$

is valid provided t is within the mormal "operating period" as defined.

Class 9-. Vean Repair Time T_{r} : The individual number of the ninth chass represents the power of ten of hours as average time required to repair an instrmment after failure, or to perform rontine maintenance. (See Table IX.)

「ГABI.E IX

Number	Description
-2	Instantaneous and automatio replacement.
-1	Repair time less than 6 minutes.
0	Repair time less than 1 hour.
1	Repair time less than 10 hours.
2	Repair time less than 100 hours.
3	Repair time less than 1000 hours or 6 weeks.
4	
5	lnstrument cannot be repaired.

Group D-Relatice Iferits

The last group of relative merits contains 3 classes, representing cost, availability and vohme. These three characteristics have been chosen in preference to weight, operability, ease of maintenance, and others of the same nature, because it is felt that the selected three characteristics are more of en determining factors in choosing particular instrments.

Class 10-Cost: 'The individual number of the tenth class represents the power of ten of chollars list price of an instrument. (See Table N.) Higher digits than 5 are probably not useful.

TABLE X

Digit	Description
0	Instrument costs from 1 dollar to 9.99.
1	Instrument costs from 10 dollars or more to 99.99.
2	Instrument costs from 100 dollars or more to 999.99.
3	Instrument costs from 1000 dollars or more to 9999.99.
4	Instrument costs from 10,000 dollars or nore to 99,999.99.
5	Instrument costs 100,000 dollars or more.

Class 11-. 4 'alability: 'The individual number of the eleventh class represents the power of ten of days elapsed between the placing of the order for the instrument and the probable delivery. (See Table X).

T:NBIE XI

Digit	Desription
0	Spare parts at hand.
1	Delivery within 10 days or carlier.
2	Delivery within 100 days or earlier.
3	belivery within 3 years or earlier.
4	Delivery undetermined.

Class 12-Volume: The individual number of the twelfth class represents the power of ten of cubic centimeters of volume of an instrument. (See Table NII).

TABI.E XII

Digit	Description	
-2	Volume $10^{-2} \cdot \mathrm{~cm}^{3}=10 \mathrm{~mm}^{3} \sim 6.1$	10^{-4} cubie inches or less.
-1	Volume $10^{-1} \mathrm{~cm}^{3}=100 \mathrm{~mm}^{3} \sim 0.1$	10^{-3} cubic inches or less.
0	Volume $1 \mathrm{~cm}^{3}=\sim 6.1$	10^{-2} cubic inches or less.
1	Volume $10 \mathrm{~cm}^{3}=\quad \sim 6.1$	10^{-1} cubie inches or less.
2	Volume 10 ${ }^{2} \mathrm{~cm}^{3}=\quad \sim 6.1$	cubic inches or less.
3	Volume $10^{3} \mathrm{~cm}^{3}=1 \mathrm{dm}^{3} \sim 61$	cubic inches or less.
4	Volnme $10^{4} \mathrm{~cm}^{3}=10 \mathrm{dma}^{3} \sim 010$	cubic inches or less.
5	Volume $100^{5} \quad \mathrm{~cm}^{3}=100 \mathrm{dm}^{3} \sim 3.5$	cubic feet or less.
6	Volume $10^{6} \mathrm{cmm}^{3}=1 \mathrm{~m}^{3} \sim 34$	cubic feet or less.
7	Volame $10^{7} \mathrm{~cm}^{3}=10 \mathrm{mb}^{3} \sim 1.3$	cubie yards or less.

The: Cird File: System

Group .1-Requirements

The only logical means to implement the performance coding system is a card file, whose design parameters are to a large extent prescribed by the requirements of I'ER("OS.

1) Information Content: Each card of the file must contain enough information about one method or device, so that in the majority of cases no further references to books or magazines are required to make a satisfactory decision.

This requirement demands a card of sufficient size to allow a direct readable description of the PER("OS parameters and the environmental conditions or other restrictions affecting the PERCOS data. A separate area on the card has to be reserved for applying a microfilm containing more detailed information.

It should be emphasized at this point that the card gives not only the code mumber for each class of PERC(OS, but the actual value carried out to the least meaningful decimal digit. It is therefore not necessary to subdivide the code number into fractions in order to obtain more precise information. Such a subdivision would only complicate the search operation and would probably make the coding of a specific device obsolete faster.
2) Search Method: The amount of written information required makes the use of a common punched card rather difficult due to the possibility of impairing the text by punching out numbers or letters.

It seems to be more advantageous to utilize the edgecoded key sort system, which leaves the center of the card intact. The key sort system has the added advantage that mamual search is very easily accomplished. The manual search is probably not only indicated from the economical viewpoint, but also from the user's standpoint in respect to the availability of information independent of sorting machine programs.

The restriction in the number of available holes is not important in the case of PLER(`)S because the 12 classes require only about 120 holes. Some search systems use miniature holes of ten to twenty thousandths of an inch in diameter. While it is obvious that printed text would not be mutilated even by a large quantity of holes, it is evident that the search operation would be far more time-consuming because of the increased demands for proper alignment between the master and the file card to obtain proper registration. The potential availability of a very large number of holes per card is not an addvantage for PERCOS.

The magnetic card search method is principally applicable to IPERCOS, since the magnetic coating is only required on one side of the card and does not interfere with the printing on the other side. The magnetic cardreader is capable of very high speeds, offering about the same handling ease as the direct photoelectric reader of the edge-coded card. Both systems are practical, if for some reason the mechanical search is found desirable.

Group B-The Card Organization

The organization of the l'ERCOS card can best be illustrated by Fig. 2. A card 6.5×7.5 inches is edge per-

Fig. 2.
forated with 122 holes (5 holes per linear inch), leaving an area of 37 square inches for text and microfilm. The text area is divided into four parts.

1) The title, giving information about the method or device, the source, and the date of coding.
2) The performance coding, with 12 assigned and 2 spare classes.
3) The notes, giving the conditions under which the performance coding is valid, and any other pertinent information such as input and output impedance, signal level, noise, type of connector used, etc.
4) The microfilm, giving more detailed information, such as schematics, waveform patterns, maintenance instructions, mathematical deductions, cross reference, etc.

It should be noted that the card actually contains two superimposed coding systems. The principal coding system is done by opening the punched holes to the edge of the card. The second system uses the edge printing technique on the two longer edres of the card. The top edge printing serves to identify the number of Class 1. This is done by edge printing all cards of a particular number of Class 1 with a black mark 0.65 inches in length. This length guarantees positive identification even in a case where two adjacent holes are punched out.

Since it is most likely that the cards will be stored according to the numbers of Class 1 , it is very easy to spot a misplaced card by merely observing the top of the filing cards in one drawer. The lower edge is used to code the year in which the card is prepared. This gives at one glance a check of the possible obsolescence of the information contained on the card. The spare spaces in the text area and the spare holes are reserved for future additions to PERCOS.

Conclesion

The principles for a useful performance coding system have been outlined. Ahead is the major task of putting this system into practical use. The way to do that is clear. With help from interested industries and governmental agencies, an independent, nonprofit research orgamization has to be formed. This organization will collect the raw data, correlate the findings of testing laboratories, and perform the coding and printing of the cards, which will then be offered publicly on a subscription basis.

Acknowledgatent

The author is deeply indebted to his friends in the IRE Committees 10 and 10.3 for their support and active participation during the conception period of the performance coding system. The author is especially grateful to Dr. E. Mittelmann, chairman of Committee 10, for his many contributions, among which was the suggestion to incorporate the microfilm on the file cards.

100:1 Bandwidth Balun Transformer*

J. W. DCNC.AN \dagger, senior member, ire, and V. P. Minervat, member, ire

Abstract

Summary-The theory and design of a Tchebycheff tapered balun transformer which will function over frequency bandwidths as great as $100: 1$ is presented. The balun is an impedance matching transition from coaxial line to a balanced, two-conductor line. The transition is accomplished by cutting open the outer wall of the coax so that a cross-sectional view shows a sector of the outer conductor removed. As one progresses along the balun from the coaxial end, the open sector varies from zero to almost 2π, yielding the transition to a two-conductor line.

The balun impedance is tapered so that the input reflection coefficient follows a Tchebycheff response in the pass band. To synthesize the impedance taper, the impedance of a slotted coaxial line was obtained by means of a variational solution which yielded upper and lower bounds to the exact impedance. Slotted line impedance was determined experimentally by painting the line cross section on resistance card using silver paint and measuring the dc resistance of the section.

The measured VSWR of a test balun did not exceed $1.25: 1$ over a $50: 1$ bandwidth. Dissipative loss was less than 0.1 db over most of the range. Measurements show that the unbalanced current at the output terminals is negligible.

INTRODICTION

IX utilizing some of the recently developed broadband antenas such as the logarithmically periodic antema, it is sometimes alvantageous to excite the antema from balanced, two-conductor terminals. ${ }^{1}$ In order to match the balanced antenna impedance to the unbalanced impedance of a coaxial line, a balun transformer is required. Moreover, the balun transformer must be capable of operating over a very large frequency range if it is to be compatible with the antema performance. This paper presents the theory and design of a Tchebycheff tapered balun transiormer which will function over bandwidths as great as 100:1.

The balun transformer is illustrated in Fig. 1. The balun is an impedance matching transition from coaxial line to a balanced two-conductor open line. The transition is accomplished by cutting open the outer wall of the coax so that a cross-section view shows a sector of the outer conductor removed. The angle subtended by the open sector is denoted by 2α. ts one progresses along the balun from the coaxial end, the angle 2α varies from zero to amost 2π, yielding the transition from coax to an open wo-conductor line. The cross section of the conductors is then varied as required. One is not limited to conductors having a circular cross section; a transition from coaxial cable to a balanced strip line is one of the possible configurations.

The broad-band impedance matching properties of

[^7]

Fig. 1-Tapered balun transformer.
the balun are obtained by utilizing a continuous transmission line taper described by Klopfenstein." The characteristic impedance of the ballun transformer is tapered along its length so that the input reflection coefficient follows a Thehycheff response in the pass band. The length of the balun is determined by the lowest operating frequency and the maximum reflection coefficient which is to occur in the pass band. The balun has no upper frequency limit other than the irequency where higher order coaxial modes are supported or where radiation from the open wire line becomes appreciable.

Before discussing the "balun" property of the device, a brief review of balance conditions on an open transmission line is in order. A balanced two-conductor transmission line has equal currents of opposite phase in the line conductors at any cross section. System unbalance is evidenced by the addition of codirectional currents of arbitrary phase to the balanced transmission line currents. The order of unbalance is measured by the ratio of the codirectional current to the balanced current. Now in a coaxial line, the total current on the inside surface of the outer conductor is equal and opposite to the total current on the center conductor. The ideal balun functions by isolating the outside surface of the coan from the tramsmission line junction so that all of the current on the inside surlace of the coan outer conductor is delivered in the proper phase to one of the two balaned condactors. Inbalance of the transmission line currents results if current returns to the generator on the outside surface of the coaxial line.

Consider the Tchebycheff tapered balun transformer which is formed by increasing the slot aperture in the outer wall of the coax until an open two-conductor line is obtained. Over the length of the transition the electromagnetic field changes from a totally confined field in the coas to the "open" field of a two-wire transmission line. It is evident that the total current on the out-

[^8]side surface of the coax at the balun input must result from the summation of wave reflections which originate over the entire length of the open transition. But the slot transition is purposely tapered so that the net reflection at the balun input is arbitrarily small. Consequently, negligible current appears on the outside of the coaxial line at the batun input and electrical balance at the output terminals is very good. In other words, the physical geometry of the transition which produces negligible wave reflections and leads to a broad-band impedance transformer also results in the operation of the device as a balun.

Assuming that the characteristic impedance of the balun at any cross section is cqual to the characteristic impedance of a uniform. slotted coaxial line of that particular cross section, it is possible to synthesize the required impedance taper by providing the appropriate cross section at each position along the balun transformer. In order to carry out this procedure, one must know the characteristic impedance of a uniform, sloted coaxial line as the angle 2α varies from zero to 2π. This information was obtained by theoretical analysis and verified experimentally. The characteristic impedance of the slotted line was determined from a variational solution of the two-dimensional boundary value problem. The variational expressions yield upper and lower bounds to the exact characteristic impedance. The upper bound is obtained from a variational expression involving the charge distribution on the outer conductor of the slotted coaxial line, while the lower bound is obtained from a variational expression involving the potential distribution in the slot aperture. Characteristic impedance was determined experimentally by painting the slotted line cross section on resistance card. using silver paint and measuring the de resistance of the cross section. These data are presented as curves which show characteristic impedance of the slotted coaxial line as a function of the angular opening. The curves allow one to design a balun for matching a large range of impedances with an arbitrarily small standing wave ratio. We proceed to derive variational expressions for the characteristic impedance of the slotted line. The method of analysis is similar to that used by Collin to solve the problem of a symmetrically slotted coaxial line. ${ }^{3}$

(Tpper Bolend to the Choricteristic Impedince

Consider the cross-sectional view of the uniform, slotted coaxial line shown in Fig. 2. We choose the cylindrical coordinate system r, θ, z, where r, θ are in the transverse plane and z is the direction of wave propagation along the line. The radius of the inner conductor is $r=a$, while the outer conductor occurs at $r=b$. The slot opening in the outer conductor is defined by the angle

[^9]

Fig. 2-Cross section of iniform slotted coaxial line.
2α. We assume that there is a homogeneous, isotropic medium about the conductors with permeability μ and permittivity ϵ.

It may be verified that the solution of Maxwell's equations for the TEM mode of propagation on the line reduces to solving Laplace's equation for the static potential distribution $\phi(r, \theta)$ in the transverse plane. The electric field $\bar{E}(r, \theta)$ is defined by the relation

$$
\begin{equation*}
\bar{E}(r, \theta)=-\operatorname{grad} \phi(r, \theta) \tag{1}
\end{equation*}
$$

It follows from Naxwell's equations that the transverse field components are given by

$$
E_{r}=-\frac{\partial \phi}{\partial r}=\frac{1}{\epsilon \tau^{\prime}} I_{\theta}
$$

and

$$
\begin{equation*}
E_{\theta}=-\frac{1}{r} \frac{\partial \phi}{\partial \theta}=-\frac{1}{\epsilon i^{\prime}} H_{r} \tag{2}
\end{equation*}
$$

where $v=1 / \sqrt{\mu \epsilon}$ is the velocity of light in the surrounding medium. Thus, all field components may be derived from the scalar potential function $\phi(r, \theta)$ which is the solution of Laplace's equation

$$
\begin{equation*}
\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial \phi}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial^{2} \phi}{\partial \theta^{2}}=0 \tag{3}
\end{equation*}
$$

subject to the boundary conditions of the problem.
We define the potential on the imer conductor $r=a$ as $\phi=0$, while the outer conductor $r=b, \alpha \leq \theta \leq 2 \pi-\alpha$ is maintained at the constant potential ϕ_{0}. The potential $\phi(r, \theta)$ at any point in the plane may be expressed in terms of the Green's function $G\left(r, \theta \mid r^{\prime}, \theta^{\prime}\right)$ for the problem. The Green's function is the solution of the inhomogeneous equation

$$
\begin{equation*}
\nabla^{2} G\left(r, \theta \mid r^{\prime}, \theta^{\prime}\right)=-\frac{1}{\epsilon} \frac{\delta\left(r-r^{\prime}\right) \delta\left(\theta-\theta^{\prime}\right)}{r} \tag{4}
\end{equation*}
$$

where the polar coordinate form of the delta function

$$
\frac{\delta\left(r-r^{\prime}\right) \delta\left(\theta-\theta^{\prime}\right)}{r}
$$

represents a unit line source at $r=r^{\prime}, \theta=\theta^{\prime}$. The Green's function satisfies laplace's equation throughout the r, θ plane except at the source point $r^{\prime}, \theta^{\prime}$ where $G\left(r, \theta \mid r^{\prime}, \theta^{\prime}\right)$ and all its derivatives are singular. Denoting R as the scalar separation between observation point r, θ and source point $r^{\prime}, \theta^{\prime}$, the singularity of G is such that

$$
G\left(r, \theta \mid r^{\prime}, \theta^{\prime}\right) \rightarrow-\frac{1}{2 \pi \epsilon} \ln R \text { as } R \rightarrow 0.4
$$

The (ireen's function is subject to the boundary condition $(i=0)$ on the inner cylinder $r=a .\left(G\left(r, \theta \mid r^{\prime}, \theta^{\prime}\right)\right.$ may be viewed as the potential at the point r, θ becatuse of a unit line charge located at $r^{\prime}, \theta^{\prime}$.

Because of the symmetry of the problem, it is convenient to write the Green's function in the form which derives from mit line sources located as shown in lig. 3. The positive unit charges are located at $r=b, \theta= \pm \theta^{\prime}$. The images of these line charges in the grounded cylinder $r=a$ occur at $r=a^{2} / b, \theta= \pm \theta^{\prime}$. The harmonic expansion of the potential caused by this system of sources with the condition that $G=0$ at $r=a$, yiekls the appropriate Green's function which is

Fig. 3-I Int line charges and inages.
(7) by $\sigma(\theta)$ and integrate with respect to θ over $\alpha \leq \theta \leq \pi$; thus

$$
\begin{equation*}
\phi_{01}=\frac{b \int_{\alpha}^{\pi} \int_{\alpha}^{\pi} G\left(b, \theta \mid b, \theta^{\prime}\right) \sigma(\theta) \sigma\left(\theta^{\prime}\right) d \theta d \theta^{\prime}}{\int_{\alpha}^{\pi} \sigma(\theta) d \theta} \tag{8}
\end{equation*}
$$

$$
G\left(r, \theta \mid b, \theta^{\prime}\right)=\frac{1}{\epsilon \pi} \left\lvert\, \begin{align*}
& \ln \left(\frac{r}{a}\right)+\sum_{n=1}^{\infty} \frac{2 \sinh \left(n \ln \frac{r}{a}\right) \cos (n \theta) \cos \left(n \theta^{\prime}\right)}{n\left[\sinh \left(n \ln \frac{b}{a}\right)+\cosh \left(n \ln \frac{b}{a}\right)\right]} \tag{5}\\
& \ln \left(\frac{b}{a}\right)+\sum_{n=1}^{\infty} \frac{2 \sinh \left(n \ln \frac{b}{a}\right) e^{-n \ln (r / b)} \cos (n \theta) \cos \left(n \theta^{\prime}\right)}{n\left[\sinh \left(n \ln \frac{b}{a}\right)+\cosh \left(n \ln \frac{b}{a}\right)\right]} \quad \text { where } a \leq r \leq b
\end{align*}\right.
$$

It now follows that the potential $\phi(r, \theta)$ caused by an arbitary (but necessarily symmetrical) charge distribution $\sigma\left(\theta^{\prime}\right)$ at $r=b$ is given by

$$
\begin{equation*}
\phi(r, \theta)=\int_{a}^{\pi} G\left(r, \theta \mid b, \theta^{\prime}\right) \sigma\left(\theta^{\prime}\right) b d \theta^{\prime} \tag{6}
\end{equation*}
$$

The charge distribution $\sigma\left(\theta^{\prime}\right)$ is still unknown, however, imposing the boundary condition that $\phi(r, \theta)=\phi_{0}$ when $r=b, \alpha \leq \theta \leq \pi$ leads to the following integral equation for $\sigma\left(\theta^{\prime}\right)$:

$$
\begin{equation*}
\phi_{0}=b \int_{a}^{\pi} G\left(b, \theta \mid b, \theta^{\prime}\right) \sigma\left(\theta^{\prime}\right) d \theta^{\prime} \tag{7}
\end{equation*}
$$

To obtain a variational expression for Z_{0}, we multiply
${ }^{4}$ P. M. Morse and H. Feshbach, "Methods of Theoretical Physics," MeGraw-Hill Book Co., Inc., New York, N. Y., pt. 1, pp. 808810; 1953.

The total charge Q on the outer conductor resulting from the charge distribution $\sigma\left(\theta^{\prime}\right)$ is given by

$$
\begin{equation*}
\varrho^{\prime}=\int_{\alpha}^{2 \pi-\alpha} \sigma\left(\theta^{\prime}\right) b d \theta^{\prime}=2 b \int_{\alpha}^{\pi} \sigma\left(\theta^{\prime}\right) d \theta^{\prime} \tag{9}
\end{equation*}
$$

The characteristic impedance of a uniform, lossless transmission line is given by $1 / e^{\circ} C^{\circ}$, where C° is the capacitance of the line per unit length and v is the wave velocity. It is sufficient, therefore, to determine C in order to evaluate Z_{0}. Since C is equal to the ratio of charge on the outer conductor to the potential difference ϕ_{0} between the conductors, we obtain

$$
\begin{equation*}
Z_{0}=\frac{\frac{1}{v} \phi_{0}}{Q} \tag{10}
\end{equation*}
$$

Substituting (8) and (9) into (10) yiedds the variational form

$$
\begin{equation*}
Z_{0}=\frac{\frac{1}{2 \imath^{\prime}} \int_{\alpha}^{\pi} \int_{\alpha}^{\pi} G\left(b, \theta \mid b, \theta^{\prime}\right) \sigma(\theta) \sigma\left(\theta^{\prime}\right) d \theta d \theta^{\prime}}{\left[\int_{\alpha}^{\pi} \sigma(\theta) d \theta\right]^{2}} \tag{11}
\end{equation*}
$$

It may be shown that Z_{0} as given by (11) is stationary with respect to arbitrary first order variations in the form of $\sigma(\theta)$ about the correct distribution. (See the λ_{p} pendix.) The stationary value is an absolute minimm for the "best" aphoximation to the actual distribution so that (11) yieds an upper bound to Z_{0}. We approximate the true charge distribution by an N tern function containing V arbitrary parameters $c_{1}, c_{2}, \cdots, c_{N}$. This function is substituted into (11) for $\sigma(\theta)$ and the expression for Z_{0} is minimized with respect to the parameter constants c_{ν}. To do this, Z_{0} is differentiated with respect to the N parameters and the results equated to zero which leats to N homogeneous linear equations in the N unknowns c_{v}. Solving for the c_{v} and substituting lack into (11) yields the stationary value of Z_{0}.

A suitable expansion for $\sigma(\theta)$ is the cosine series

$$
\sigma(\theta)=\sum_{\nu=0}^{N} c_{\nu} \cos \frac{\nu \pi}{\pi-\alpha}(\theta-\alpha) .
$$

As one uses a larger number of terms to represent $\sigma(\theta)$, the variational solution converges to the exact value of Z_{0}; however, the labor of computations increases enormously with N. It will be seen that sufficiently accurate results are obtained by using the simple two term series

$$
\begin{equation*}
\sigma(\theta)=c_{0}+c_{1} \cos k(\theta-\alpha) \tag{12}
\end{equation*}
$$

where

$$
k=\frac{\pi}{\pi-\alpha}
$$

Without loss of generality we may define $c_{0}=1$. Proceeding as outlined above, one obtains

$$
\begin{aligned}
Z_{0} & =\frac{1}{2 \pi} \sqrt{\frac{\mu}{\epsilon}} \ln \left(\frac{b}{a}\right) \\
& +-\frac{\sqrt{\frac{\mu}{\epsilon}}}{\pi(\pi-\alpha)^{2}} \sum_{n=1}^{\infty} \frac{\sin ^{2}(n \alpha)\left[1+\frac{c_{1} n^{2}}{n^{2}-k^{2}}\right]^{2}}{n^{3}\left[1+\operatorname{coth}\left(n \ln \frac{b}{a}\right)\right]} \text { ohms }
\end{aligned}
$$

where

$$
-c_{1}=\frac{\sum_{n=1}^{\infty} \frac{\sin ^{2}(n \alpha)}{n\left(n^{2}-k^{2}\right)\left[1+\operatorname{coth}\left(n \ln \frac{b}{a}\right)\right]}}{\sum_{n=1}^{\infty} \frac{n \sin ^{2}(n \alpha)}{\left(n^{2}-k^{2}\right)^{2}\left[1+\operatorname{coth}\left(n \ln \frac{b}{a}\right)\right]}} .
$$

Selecting $\sqrt{\mu / \epsilon},(b / a)$, and α, one may compute c_{1} and evaluate (13) which is an upper bound to the exact chauacteristic impedance. Before presenting the momerical results obtained with (13) we shall derive a lower bound to Z_{0}.

Lowier Bodnd to tile Chindicteristic Impebince

The fundamental principle that a system in equilibrium is characterized by a minimum of potential energy consistent with the constraints imposed on the system applies to all electrostatic fied. ${ }^{5}$ A lower bound to the characteristic impedance may be derived from the integral which yieds the total potential energy $I V$ of the electrostatic field. For the two dimensional problem under consideration, the total field energy per unit length is given by

$$
\begin{equation*}
W=\frac{1}{2} \epsilon \int_{0}^{2 \pi} \int_{a}^{\infty}\left[\left(\frac{\partial \phi}{\partial r}\right)^{2}+\frac{1}{r^{2}}\left(\frac{\partial \phi}{\partial \theta}\right)^{2}\right] r d r d \theta \tag{14}
\end{equation*}
$$

which may lee recognized as the llirichlet integral in polar coordinates.

13: definition, $W=(1 / 2) C \phi_{0}{ }^{2}$, where C is the capacitance per unit length. Recalling the relation between characteristic impedance and C, we may express $1 / Z_{0}$ in terms of the integral for the total field energy.

$$
\begin{equation*}
\frac{1}{Z_{0}}=\tau^{\prime} C=\frac{2 \imath^{\prime}}{\phi_{\|^{2}}{ }^{2}} W^{\prime} \tag{15}
\end{equation*}
$$

It follows from (15) that if \mathbb{W}^{\top} is minimized with respect to the constants of a parameter-laden function, we obtailu a lower bound to Z_{0}. The function used to minimize W is an N term approximation to the potential distribution $\phi(b, \theta)$ in the slot aperture.

We patuse to discuss briefly the variational expression $1 / Z_{0}$. A necessary condition for the integral (14) to be stationary is that its first variation vanish. This condition implies that $\phi(r, \theta)$ must satisfy Laplace's equation. ${ }^{6}$ In other words, if a function $\phi(r, \theta)$ exists which minimizes (14), it must necessarily satisfy $\Gamma^{2} \phi=0$ and the boundary conditions of the problem. The reader is referred to Kellogg ${ }^{7}$ for proofs that unique solutions of

[^10]the Dirichlet problem exist under proper conditions on the region, boundary values, and the functions ϕ eligible for the mininization of the integral.

Based on the Cireen's function analysis we write the following expansion for the potential function $\phi(r, \theta)$ which satisfies the boundary conditions $\phi=0$ at $r=a$ and ϕ continnous at $r=b$.

$$
\phi(r, \theta)=\left\{\begin{array}{c}
a_{0} \ln \left(\frac{r}{a}\right)+\sum_{n=1}^{\infty} a_{n} \sinh \left(n \ln \frac{r}{a}\right) \cos (n \theta) \\
\text { where } a \leq r \leq b \\
a_{0} \ln \left(\frac{b}{a}\right)+\sum_{n=1}^{\infty} a_{n} \sinh \left(n \ln \frac{b}{a}\right) \\
\cdot e^{-n \ln (r / b)} \cos (n \theta) .
\end{array}\right.
$$

$$
\text { where } r \geq b
$$

It follows that the potential at $r=b$ is given by

$$
\begin{align*}
\phi(b, \theta)= & a_{0} \ln \left(\frac{b}{a}\right) \\
& +\sum_{n=1}^{\infty} a_{n} \sinh \left(n \ln \frac{b}{a}\right) \cos (n \theta) . \tag{17}
\end{align*}
$$

Multiplying (17) by $\cos (m \theta) d \theta$ and integrating with respect to θ over $-\pi \leq \theta \leq \pi$ yickls

$$
\begin{align*}
& a_{0}=\frac{1}{\pi \ln \left(\frac{b}{a}\right)} \int_{0}^{\pi} \phi(b, \theta) d_{\theta}^{d \theta} \\
& a_{n}=\frac{2}{\pi \sinh \left(n \ln \frac{b}{a}\right)} \int_{0}^{\pi} \phi(b, \theta) \cos (n \theta) d \theta \tag{18}
\end{align*}
$$

since $\phi(b, \theta)$ is an even function of θ. If the true potential distribution over the slot aperture were known, the constants a_{0}, a_{n} would be determined uniquely by (18), and (16) would yield the exact solution $\phi(r, \theta)$. Instead, we approximate $\phi(b, \theta)$ over the slot by using an appropriate function and then minimize the integral for W with respect to the arbitrary constants.

Substituting the series (16) into (14) and then performing the integration leads to

$$
\begin{align*}
\frac{1}{Z_{0}}= & 2 \pi \epsilon \tau \cdot \frac{a_{0}{ }^{2}}{\phi_{0}{ }^{2}} \ln \left(\frac{b}{a}\right) \\
& +\frac{\pi \epsilon \tau}{\phi_{0}{ }^{2}} \sum_{n=1}^{\infty} n a_{n}{ }^{2} \sinh \left(n \ln \frac{b}{a}\right) \\
& \cdot\left[\cosh \left(n \ln \frac{b}{a}\right)+\sinh \left(n \ln \frac{b}{a}\right)\right] \tag{19}
\end{align*}
$$

Substituting (18) into (19), we obtain the variational expression

$$
\begin{align*}
\frac{1}{Z_{0}}= & \frac{2 \epsilon i}{\pi \phi_{0}{ }^{2} \ln \left(\frac{b}{a}\right)}\left[\int_{0}^{\pi} \phi(b, \theta) d \theta\right]^{2} \\
+ & \frac{4 \epsilon i}{\pi \phi_{0}{ }^{2}} \sum_{n=1}^{\infty} n\left[1+\operatorname{coth}\left(n \ln \frac{b}{a}\right)\right] \\
& \cdot\left[\int_{0}^{\pi} \phi(b, \theta) \cos (n \theta) d \theta\right]^{2} \tag{20}
\end{align*}
$$

which is stationary with resject to arbitrary first-order variations in the form of $\phi(b, \theta)$ over the slot aperture.

A suitable representation for the potential $\phi(b, \theta)$ is
$\phi(b, \theta)=\phi_{0}\left\{\begin{array}{l}1 \\ 1+\sum_{\nu=1,3,5, \ldots}^{N} c_{\nu} \cos \frac{\nu \pi}{2 \alpha} \theta \quad \text { where } \alpha \leq \theta \leq 2 \pi-\alpha \\ .\end{array}\right.$
Proceeding as outlined for the upper bound, one may substitute this series into (20) and minimize the expression with respect to the c_{ν}. However, a prohibitive number of terms is needed to describe properly $\phi(b, \theta)$ over the slot for α approaching π. We know that for large α, the potential over the slot remains very small until one approaches the outer conductor at $\theta= \pm \alpha$; consequently one would expect an even-powered polynomial in (θ / α) to provide a good approximation to the true distribution. Excellent results were obtained by using the following simple function containing the single arbitrary constant c_{1}.
$\phi(b, \theta)=\phi_{n}\left\{\begin{array}{c}1 \\ 1-c_{1}+c_{1}\left(\frac{\theta}{\alpha}\right)^{4} \\ \text { where } \alpha \leq \theta \leq 2 \pi-\alpha \\ \text { where }-\alpha \leq \theta \leq \alpha .\end{array}\right.$
Note that when $\theta=0, \phi(b, \theta)=\phi_{0}\left(1-c_{1}\right)$. Substituting (21) into (20) and minimizing (20) with respect to c_{1}, yields

$$
\begin{equation*}
Z_{0}=\frac{\frac{1}{2 \pi} \sqrt{\frac{\mu}{\epsilon}} \ln \left(\frac{b}{a}\right)}{1-\frac{4}{5}\left(\frac{\alpha}{\pi}\right) c_{1}} \text { ohms } \tag{22}
\end{equation*}
$$

where

$$
\begin{aligned}
& \frac{1}{c_{1}}=\frac{4}{5}\left(\frac{\alpha}{\pi}\right)+\frac{40}{\pi} \ln \left(\frac{b}{\alpha}\right) \sum_{n=1}^{\infty} \\
& \cdot \frac{\left[1+\operatorname{coth}\left(n \ln \frac{b}{a}\right)\right]}{(n \alpha)}\left[\frac{\ln _{n} \cos (n \alpha)-B_{n} \sin (n \alpha)}{(n \alpha)^{4}}\right]^{2}, \\
& A_{n}=(n \alpha)^{3}-6(n \alpha), \\
& B_{n}=3(n \alpha)^{2}-6 \text {. }
\end{aligned}
$$

Eq. (22) provides a lower bound to the exact characteristic impedance of the slotted line. The numerator of
(22) may be recognized as the characteristic impedance of a closed coaxial cable with conductor radii b and a. The denominator of (22) is always less than unity for non-zero α. Since (22) is a lower bound to the exact imperlance, we see that the slotted coax imperdance is always greater than the impedance of closed coaxial line.

Selecting free space values for μ and ϵ so that $\sqrt{\mu_{11}} / \epsilon_{11}=120 \pi$, (13) and (22) were evalnated for $\log _{n}(b / a)=0.833,1.00$, and 1.25 which corresponds to closed coaxial lines of $50-, 60$-, and 75 -ohm impedance, respectively. Numerical computations were carried out on an 1 BXI 650 computer. These data are presented in the dashed curves of Figs. 4-6 which show the upper and lower bound to Z_{0} as a function of the angle 2α for a particular $\log _{e}(b / a)$. It is evilent that the functional approximations to $\sigma(\theta)$ and $\phi(b, \theta)$ were sufficiently accurate since the difference between the bounds is very small over most of the range 2α. The greatest difference occurs as α approaches π. Since the exact characteristic impedance of the slotted line must lie between the upper and lower bounds, the curves allow one to determine quite accurately the angle 2α required to give a certain impedance Z_{0}.

The impedance of the slotted line was also determined by using the well-known method where the line cross section is painted on a two dimensional resistive surface and the de resistance of the cross section is measured. ${ }^{8}$ Measurements were performed for $\log _{e}(b / a)=0.833$, 1.00, and 1.25 . These experimental data appear as the plotted points in Figs. 4-6. The solid curve is the arithmefic mean of the upper and lower bound to Z_{0} for each log. (b / a). The experimental datat agree quite closely with theory except for the $\log _{e}(b / a)=1$ data which diverge slightly for large α. Apparently the cross section was not drawn with sufficient accuracy in this case.

Balitn Design and Performance

llaving established the characteristic impedance of the uniform, slotted coaxial line, a specific balun design was undertaken. A transition from 50-ohm coaxial line to 150 -ohm two-conductor line was selected for the balun. As mentioned previously, the characteristic impedance of the balun transformer is tapered along its length so that the input reflection coefficient follows a Tchebyeff response in the pass band. The maximum allowable reflection coefficient in the pass band was chosen as 0.055 . This corresponds to a maximum standing wave ratio of 1.11 to 1 . It follows that the length of the balun is $l=0.478 \lambda$, where λ is the largest operating wavelength. ${ }^{9}$ The lowest frequency was selected as 50 mic which fixed the length l as approximately 2.86 meters.

[^11]

Fig. 4-Characteristic impelance of unform, slotted comaxial line.

Fig. 5-Chararteristic impedance of uniform, slotted coaxial line.

Fig. 6-Characteristic impedance of uniform, slotted coaxial line.

Let the total length l of the balun be defined from $z=-1 / 2$ to $z=1 / 2$. Fig. 7 shows the impedance contour reduired for Thebycheff response under the prescribed design criteria. The angle 2α which yields the proper impedance at each position along the balum may be extracted from Fig. 4. The outer conductor of the coaxial line had an inside diameter of 1.527 inches. The balun was fabricated by milling through the coax outer conductor to the depth which yielded the angle 2α. The milling cut was performed in discrete 6-inch increments along the bahan until the outer conductor was reduced to a thin concave strip having a width equal to the center conductor diameter. This occurred at the position $z / /=0,373$ where $2 \alpha=312^{\circ}$ and $Z_{41}=131$ olnms. The strip outer conductor wats transformed to a circular cylinder identical to the center conductor over a 6 -inch length from $z / I=0.373$ to $z / l=0.426$. The spacing between cylindrical conductors at $z / l=0.426$ was such that the impedance was the required 136 ohms as shown in lig. 7. From $z / l=0.426$ to $z / l=0.5$ the spacing of the cylindrical conductors was gradually increased so that the impedance followed the contour of lig. 7 .

Since the balun may be viewed as a two-port waveguide junction, it was convenient to measure its performance by means of Deschamps' method. ${ }^{10}$ The twoconductor output of the balum was terminated in a large, rellecting metal sheet mounted perpendicular to the line. The dissipative loss and scattering matrix coefficients of the balun are readily obtained by locating the reflecting sheet at four equally spaced positions and measuring the corresponding reflection coefficient at the coaxial input. ${ }^{11}$ Since the scattering coefficient S_{11} corresponds to the input reflection coefficient for a reflectionless termination of the output line, one thereby obtains the input VSIVR for a matched termination of the two-conductor line. This procedure also avoids the considerable difficulties encountered in providing a matched termination for an open wire line. Over the 40- to 500-mi frequency range, measurements were performed by using a General Radio admittance bridge.

The voltage standing wave ratio as a function of frequency is presented in Fig. 8. It may be seen that the VSWR never exceeded 1.25:1 over the 43- to 2200-mic spectrum which represents a $50: 1$ bandwidth. The rapid increase in VSWR below the 50-mic cutoff frecpuency is quite apparent. The balun dissipative loss was not measurable below 500 mc . At 1000 mc , the loss was approximately $0.1(\mathrm{db}$ and increased to 0.3 dl$)$ at 2000 mc . The spacing between cylindrical conductors at 2000 mc was 0.21λ. It is evident that the tapered balun can be designed to operate over frequency bandwidths as large as 100:1.

It should be noted that the characteristic impedance

[^12]

Fig. 7-50- to 1.50 -0hm "Fhehycheil impedance taper.

Fig. 8-Experimental performance of tapered balun transformer.
at any cross section of the balun is slightly different than the Z_{0} assumed from theory since the slotted line analysis applied to a coax with infinitely thin outer conductor. The effect of finite wall thickness on impedance is greatest for large apertures 2α. Consequently, the synthesis of the required Tchebycheff impedance contour was not accomplished precisely. It appeatrs that the measured VSWR exceeded the design maximum of 1.11 because of reflections from teflon spacers which were used for mechanical support of the line and becanse the synthesis of the impedance contour was not exact.

Concerning the electrical balance of the balun, it would be fine to prescribe the exact complex ratio of unbalanced to balanced current which results at the two-conductor output of the balun, but, unfortunately, serious questions arise as to the validity or meaning of such a measurement on the open, two-conductor system. We know that the "real field of the coaxial line is gradually transformed to the TEM field of an open, twowite transmission line as one traverses the length of the tapered balun transformer. Obviously, not all of the incident power is converted to the transmission line mode. A fraction of the incident power is lost as stray radiation from the slot aperture which forms the tapered transition. That is, the efficiency of excitation of the transmission line mode is necessarily less than 100 per cent.

In addition to the usual TEXI transmission line mode, the so-called parallel wate or mode will also be excited. ${ }^{12}$ The parallel wave is a transverse magnetic surface wave akin to Sommerleld's single-wire wave. The parallel wave is evidenced by the superposition of an umbalanced current component (parallel excitation or codirectional currents) with the push-pull currents of the TEXI mode. In fact, the common engineering description of this wave phenomenon is to note that the transmission line currents are not balanced, which implies the existence of the parallel wave component of current, The amplitude of the parallel wave field decreases much more slowly with radial distance than does the TEXI molle. Berause of this fact. the surface wave is quite sensitive to its surmomelings and we say that the wave is very loosely bound to the transmission line. At any bends, changes in line cross section, or discontimuties such as line spacers, a significant portion of the mode power will be converted to a radiation field. This is a well-known property of surface wave fieks: in fact, some types of surface wave antennas specifically depend upon radiation from obstacles as the mechanism for operation. Wherever radiation occurs, the magnitude of the parallel wave (unbalanced) current will be attemated. (Obviously, then, the measured unbatance on the open two-conductor line will depend upon the line position where the measurement is performed. One questions, therefore, the utility or meaning of an "exact" balance measurement on such an open system.

In order to excite any surface wave mode efficiently, the launching source must produce a field which is quite similar to the mode distribution. If the physical parameters of the problem are such that the surface wave field is of large transversal extent, then the latunching source must necessarily have a large physical aperture. It so happens that the parallel wave does have a very large transverse distribution so that the tapered balun transformer, which accomplishes a very gradual transition between two TEAI field distributions, is a very poor source of the parallel wave mode. Thus, the initial magniturle of the mbalanced current is quite small compared to the balanced current. Furthermore, it is possible to attenuate the unbalanced current in a short distance from the balun terminals by placing several radiating discontinuities such as spacers on the line. Since only the TE.M mode exists at a sufficient clistance from the balun output, a reflecting plate may be placed there and a network measurement of dissipative attenuation (Deschamps'method) is valid. In view of the foregoing circumstances it would seem more realistic to evaluate electrical balance by the measurement of balun radiation loss since the "net" result of the unbalanced current is, precisely, radiation which may be included in the total dissipative attenuation of the balun. If the total balun attenuation is small, we can be sure that the

[^13]unbalanced current is insignificant compared to the balanced current. As a result of the extremely low dissipative attenuation which was measured with the test balun, we conclude that the magnitude of the unbalanced current is negligible and that the tapered balun transformer is inherently a balanced device.

As a final demonstration of the electrical batance resulting from the tapered batun, a scaled model of the previous design was constructed for operation in the kilomegacycle frequency region. The balun was fabricated from $\frac{1}{4}$-inch-diameter brass tubing and the total length was approximately 12 inches to permit operation down to 500 mc . The impedance taper of the microwave model was identical to the taper of the low-frequency balum. The balun was used to excite dipole radiators at various irequencies from 500 to 5000 mc . So asymmetry caused by unbalanced excitation currents aeas cevident in the dipole radiation patterns.

Conclusion

The performance of the Tchebycheff tapered balun transformer is mique; it provides near perfect impedance matching over frequency bandwidths as great as 100:1. The balun geometry is not limited to a transition from coax to two-wire tramsmission line; other output configurations such as a balanced strip line are possible. The basic design allows one to match a large range of imperlances with an arbitrarily small standing wave ratio. The balun length is determined by the lowest frequency of operation and the maximum reflection coefficient which is to occur in the pass band. It is evident from the very small dissipative attenuation that negligible radiation results from the balun and that the balun is inherently balancerl. From the satisfactory performance of the test model baluns, we know that, by simple scaling according to wavelength and with careful regard to construction, tapered baluns may be operated in the kilomegacycle frequency region. It should also be noted that the balun is well suited to high power applications.

Applendix

The formation of a variational principle for the eigenvalue equation

$$
\begin{equation*}
\mathfrak{L}(\psi)=\lambda_{i} \mathbb{M}(\psi) \tag{23}
\end{equation*}
$$

is discussed by Feshbach and Morse. ${ }^{13}$ Here \mathfrak{L} and , m are differential or integral operators, ψ is the function upon which \mathfrak{L} and ${ }^{\text {an }}$ operate, and λ is the quantity (eigenvalue) whose value is desired. Morse and Feshbach show that if \mathfrak{L} and \mathfrak{m} are self-adjoint operators, a variational principle for λ is the form

$$
\begin{equation*}
\delta[\lambda]=\delta\left[\frac{\int \psi \mathcal{L}(\psi) d v}{\int \psi \mathfrak{N}(\psi) d v^{\prime}}\right]=0 \tag{24}
\end{equation*}
$$

[^14]Which means that the eigenvalue λ is stationary with respect to arbitary first order variations in the functional form of ψ.

Let the integral operators $\&$ and an, and the function ψ be defined as follows:

$$
\begin{aligned}
& \mathcal{Z}=\frac{b}{\tau} \int_{\alpha}^{\pi} G\left(b, \theta \mid b, \theta^{\prime}\right) d \theta^{\prime} \\
& \\
& \psi=2 b \int_{\alpha}^{\pi} d t \\
& \psi=\sigma\left(\theta^{\prime}\right) .
\end{aligned}
$$

Then

$$
\begin{align*}
& \mathfrak{Z}(\psi)=\frac{b}{z^{\prime}} \int_{\alpha}^{\pi} G\left(b, \theta \mid b, \theta^{\prime}\right) \sigma\left(\theta^{\prime}\right) d \theta^{\prime}=\frac{1}{z^{\prime}} \phi_{0} \\
& M(\psi)=2 b \int_{\alpha}^{\pi} \sigma\left(\theta^{\prime}\right) d \theta^{\prime}=Q \tag{25}
\end{align*}
$$

and (23) takes the form

$$
\begin{equation*}
\frac{1}{\tau} \phi_{0}=\lambda \varphi ; \tag{26}
\end{equation*}
$$

i.e., the eigenvalue λ is the characteristic impedance Z_{10}. Substituting (25) and ψ into (24), we obtain the variational principle

$$
\begin{align*}
\delta\left[Z_{0}\right] & =\delta\left[\frac{\frac{1}{2 i^{\prime}} \int_{\alpha}^{\pi} \int_{\alpha}^{\pi} G\left(b, \theta \mid b, \theta^{\prime}\right) \sigma(\theta) \sigma\left(\theta^{\prime}\right) d \theta d \theta^{\prime}}{\left\{\int_{a}^{\pi} \sigma\left(\theta^{\prime}\right) d \theta^{\prime}!^{2}\right.}\right] \\
& =0 \tag{27}
\end{align*}
$$

which shows that Z_{0} as given by (11) is stationary with respect to arbitrary first order variations in the functional form of $\sigma(\theta)$.

Acknowledomlent

The authors are pleased to acknowledge the assistance of Dr. K. II. Dullamel who originally conceived the tapered batun transformer. They also wish to thank R. P. Rhodes who programmed the numerical computations and R. G. (iisel who assisted with the experimental measurements.

Corrections

W. K. Weihe, atuthor of "(lassification and Analysis of Image-Forming Systems," which appeared on pages 1593-1604 of the September, 1959, issue of Procemdings has requested that the following corrections be made to his paper.

In the second paragraph of Section 1, on page 1593 , the description following the colon on the third line is incomplete. It shouk read: ". . . the radiation which is being emitted by each individual element and the radiation which is being reflected by the same element and which has its origin insicle or outside the scene."

On page 1599 , second column, the dimensions in the fourth line after (7) should read $\mathrm{cm}^{-1} \mathrm{deg}^{-1}$.

On page $1602,4 \Gamma^{\prime}$ in (23) should be replaced by $\mathrm{I} / 4 L_{0}$.

In the equation in the middle of the first columin on page $1603, r^{2}$ should be replaced by I^{2}.
R. Parthasarathỵ. R. P. Basler, and R. N. Dellitt, authors of the correspondence entitled "A New Method for Studying the Auroral lonosphere U'sing Earth Satellites," which appeared on page 1660 of the September, 1959, issue of PRocembligs, have requested that the following corrections be made to their letter.

In the first paragraph of the second column, the time difference mentioned on the tenth line should be 33 ± 1 seconds and the corresponding height given in the next sentence should be $104 \mathrm{~km} \pm 3 \mathrm{~km}$.

Measurement of Internal Reflections in TravelingWave Tubes Using a Millimicrosecond Pulse Radar*

D. O. MELROY \dagger and H. T. CLOSSON \ddagger

Abstract

Summary-This paper describes a test method which enables one to locate reflections on traveling-wave tube helices and to measure the return loss of each reflection. This information is needed for traveling-wave tubes used in pulse code transmission since "echo" pulses arising from reflections can distort the meaning of the code.

This test method employs millimicrosecond pulses in a radar circuit with a stroboscopic viewing system. The sensitivity of the system permits easy observation of reflections having return losses as high as 40 db . Using this method we have been able to identify two previously unsuspected sources of helix reflections.

INTRODCOTION

ONE of the reguirements for the best operation of traveling-wave tube amplifiers is that the signal be transmitted through the tube with a minimum number of reflections. If the tube is used for pulse amplification, any reflection will increase the apparent pulse width, or, if the pulse is short enough, cause an echo to follow the main pulse. In (W operation, a reflection may canse the operating output match to show a rippled pattern when plotted agatinst frequency: The amplitude of these ripples is a measure of the reflected power, and their frefuency spacing is an indication of the distance to the intermal reflection point.

In general, these intermal reflections are produced by some deviation from a unform helix structure. A single discontinuty mag give a strong reflection at all frequencies. A periodic aberation in the helix structure may cause a small reflection from cach of mang points Which become additive at particular frefuencies. ${ }^{*}$

The short pulse measurements reported here locate reflections accurately along a traveling-wave tube helix. Once the location of the reflection is known one can often determine the cause by using a low-power microscope. In some cases it is possible to remove the disturbance and make the helix entirely satisfactory. If this is not possible, it is still important to know the location, since the degree of the signal degradation aused by the reflection depends upon its position along the helix.

[^15]If part of the output signal is reflected back into the tube be an imperfect output match, it will travel back along the helix. If part of this reflected signall is again reflected by some disturbance on the helix, it will travel forward with the electron beam and be amplified. For a reflection near the output end, the amplification is small. li, however, the reflection occurs near the edge of the "loss" section of the helix, it will experience almost the full gain of the tube. This may luild up an "echo" signal to a level at which it call be confused with the main signal. For this reason the position of the reflection strongly intuences the decision as to whether the helix is useable.

The use of millimicrosecond pulses and radar technifgues for studies of reflections in waveguides hats been reported. ${ }^{2}$. A stroboscopic method of pulse observation has been developed at the Bell Telephone Laboratories by Goodall. ${ }^{4}$ By use of a stroboscopic gating system one obtains a slowed-down facsimile of the periodically recurring millimicrosecond pulse which may be displayed on any good low frequency oscibloscope. To display these pulses directly would require an oscilloscope having a bandwidth of at least 500 me. We have adapted the technigues of Beck and Goodall to the measurement of traveling-wave tube reflections, and have developed a strobosconic system using balanced RF modulators.

(Operation of the Test System

The components and operation of the system appear in Fig. 1. Basically the system consists of a signal source giving millimicrosecond polses of R1: energy which are amplified by a traveling-wave tube. The amplified pulses are coupled into the structure being examined. Anse reHected pulses are separated from the incident pulses by a directional conpler. The reflected pulses are amplified by a traveling-wave tube and then detected with a crystal detector. The detected pulses are displayed on an oscilloscope where the separation of the pulses displayed represents the distance between the reflection points along the structure being tested.

The actual display of the reflected pulse is done by use of the stroboscopic gating system previously mentioned. This yating system converts the reflected pulse

[^16]

Fig. 1-Millimicrosecond pulse test system.
to low-frequency modulation of the RI' pulse train. The modulated RF is amplified by the second travelingwave tube and detected by a conventional crystal detector. The detected signal can then be displayed on an ordinary low-frequency oscilloscope. The "strobe gate" is essentially a high-speed switch which is normally off and is periodically turned on for a short while by the strobing signal at a repetition rate of f_{g}. Ideally, the strobe pulse should be much narrower than the signal pulse in order to provide maximum resolution. In practice, however, the strobe and signal pulses are of the same width. The resulting display pulse has about 1.4 times the basic pulse width.

The signal pulses recurrent at frequency f_{s} and the strobe pulses at frequency f_{0} may be represented by the Fourier series of harmonic terms. It can be shown that the output of the strobe gate, which is a product modulator, will contain the sum and difference frequencies of the two harmonic series. If a low-pass filter is adjusted to pass only the difference frequencies, then at its output the signal pulses will be reproduced slowed down in time by the factor $K^{-}=f_{s} /\left(f_{s}-f_{g}\right)$. Values of f_{s} and f_{n} may be chosen so that the strobed facsimile of the input pulse may be displayed directly on a low-frequency oscilloscope. The oscilloscope's time base may be calibrated in terms of the input signal by multiplying the scope's sweep) speed by the factor K. One may apply this terminology to the more familiar optical strobo-
scope where f_{g} is adjusted to equal f_{s} and K becomes infinite, resulting in "stopped" motion.

The equipment may be calibrated and adjusted quite easily by connecting at the test position a variable attenuator followed by a length of waveguide shorted at the end, as shown in IFig, 2(a). With this arrangement, there are two reflections; the first from the edge of the attentator vane, and the second from the short at the end of the waveguide. If the distance from the edge of the attenuator vane to the short is 2 feet, the pulse separation will be very close to $5 \mathrm{~m} \mu \mathrm{sec}$, as indicated in lrig. 2(b). These reflections may be used to calibrate the time base of the oscilloscope and checked against the basic $100-\mathrm{m} \mu \mathrm{sec}$ separation of the main pulses. The reHection from the attenuator vane is about 30 db below the incident pulse, so with 15 db in the attenuator, the two pulses will have the same amplitude. With such a display one can easily make adjustments for minimum pulse width by observing the base line separation of the two pulses. The normal base line pulse width is 2 to 3 musec, depending on the care used in adjusting the equipment. With care it is possible to measure reflections 45 to 50 db below the main pulse.

Fig. 2-(a) Wareguide setup for calibration. (b) Oscilloscope display.

Rissul.ts

The millimicrosecond radar has been used to study the helices for the M1917 traveling-wave tube. This tube is designed for use as a millimicrosecond pulse amplifier in the 10.7 - to 11.7 -kme band. Most of the present work has been done with helices prior to assembly into tubes. Results are also presented for several operating tubes.

The helix testing is clone by matching into one end of the helix and observing the reflected pulses returning Trom along the helix. The oscilloscope sweep is triggered by the reflection from the matching section of the helix. Since the other end of the helix is not termimated, it provides a fairly strong reflection which may be used to calibrate the oscilloscope sweep in terms of helix length. The oscilloscope is conveniently adjusted to give a sweep of one or two scale divisions per inch of helix. This makes it easy to identify the position of a

Fig. 3-Refletion pattern from a helix which had pieces of metal placed on the helix at 1.0 and 2.5 inches.

Fig. 4-Typical $\mathbf{M 1 9 1 7}$ helix reflections.

Fig. 5-Interference of overlapping pulses- $\tau=$ base pulse width, $t=$ time between reflected pulses, (a) $t=\tau / 8$, (b) $t=\tau / 4$, (c) $t=\tau / 2$,
reflection along the helix. Fig. 3 shows the reflection pattern obtained from a helix on which small bits of wire had been placed at 1.0 and 2.5 inches from the end.
lig. 4 shows the reflection patterns for two typical M1917 helices. These patterns show a double pulse at the beginning of each helix, the reflection from the helix matching section, and the retlection from the shorting phanger behind the helix. Since these two points are close together the two reflected pulses overlap and one olserves an interference pattern in the output trace. A change in plunger position of 0.33 inch gives a phase shift of 180° for the reflected RF pulse. This interference between two pulses can result in a rlisplay showing a rlouble pulse with a much greater time separation than would be indicated by the actual separation of the reflection points, as shown in Fig. 5. Because of the double pulse at the begiming of the helix, small reflections close to this end of the helix are not observed. ReHections from this area are seen from the other end of the helix, unless they are very small.

With the first helices examined, a number of reflection points were seen on almost every helix. These were found, in most cases, to be due to one of two defects. Small splinters of wire which formed in the winding of the helix were one source of reflections. The second source was small particles of metal imbedded in the ceramic rods which support the helix. Nost of the splinters seen on the wire are very small and easily removed by oxidizing and then reducing the helix assembly. Fig. 6 shows a very large splinter and the reflection obtained from it. The size of the splinter maty be estimated by comparing it with the helix wire, which is 0.005 inch in diameter. Splinters of this size may be picked off the helix by hand under a microscope. The metal imbedded in the rods is often covered by the glaze which bonds the helix wire to the ceramic rods, and therefore little can be done to remove it from the finished helix. Examination of the ceramic rods (Alsimag 475) prior to use showed that the particles were already present and distributed throughout the ceramic material. The impurities are bits of iron, stainless steel and nickel introduced during the preparation of the ceramic.

By selecting rods which are free from visible inclusions along the edge which contacts the helix, we have been able to eliminate the worst reflections. However, most helices still show small internal reflections, prob)ably due to particles which lie just below the rod surface.

Several helices have shown a small but broad reflection, as though from a series of points spaced along the helix. Inspection of the helix winding showed periodic

[^17]

Fig. 6-Reflection from splinter on helis.

TUBE OFF

TUBE ON 36 db GAIN NOTE REFLECTION FROM SHORTED INPUT COUPLER

Fig. 7-Growth of helix reflections in operating tube.
aberrations in the region of the reflection and, in one case, a gradual change in pitch.

By using an operating tube one greatly increases the sensitivity of the measuring system, since any reflected pulse will now be amplified by the tube being examined. The output end of the tube being tested is connected to the test system. The incident pulse then travels along the helix against the electron beam, while any reflected pulse travels with the electron beam and is amplified. Fig. 7 shows the result for a typical $\mathbf{M} 1917$ tube. The upper trace shows the reflections from the cold tube; the lower trace shows the same tube with full gain. Note that the low total loss of the helix allows one to observe the reflection from the input coupler, which is deliberately mismatched.

In these tests, the full pulse is traveling back along the helix, but in an actual tube this backward power should be only that introduced by the mismatch either at the output coupler or at some other point after the tube. ()ne would expect any such reflection to be 20 db or more below the main signal. This loss would be added to the loss at the internal reflection point to obtain the value of the signal, which would be amplified again. Thus, one should be able to compute the approximate level of any echo pulse. Tests with actual tubes have shown this method to be accurate within 6 db .

The reflected pulse can also be used to measure the rate at which the intrinsic and applied losses increase along the helix. This is done by using a reflecting rod inside the helix and by measuring the amplitude of the reflected pulses as a function of position along the helix. The reflected pulse decreases in amplitude at a rate equal to twice the rate of increase of helix loss. A measurement of this type is shown in Fig. 8, corrected by this factor of two.

Fig. 8.

Conclesion

These results show that millimicrosecond pulse techniçues have provided us with a powerful tool for studying the internal match of traveling-wave tubes. Initial measurements on cold helices have disclosed two major sources of internal reflections. Echoes as small as 40 (lb below the incident pulse can be measured on the cold helices and even smaller reflections identified in operating tubes. The same equipment can also be used to evahuate various applied loss patterns and to measure the reflection from the edges of this loss. By selecting only helices that have reflections below a selected value we are able to make tubes whose hot match can be predicted and held to some set standards. Perhaps most important of all is that we can now tell, without building a tube, if a change in material, technique, or processing actually results in an improved helix.

Noise Consideration of the Variable Capacitance Parametric Amplifier*

M. UENOHARA \dagger

Abstract

Summary-This paper describes a model of the variable capacitance diode in which the spreading resistance is considered as the source of amplifier noise. Gain and noise figure calculations are made for this model and experimental results obtained at 5.84 kmc while pumping at 11.7 kmc are presented for gallium arsenide, silicon and germanium diodes. The qauntity $1 / \omega C_{0} R_{s}$ is defined as a "quality factor" where R_{s} is the spreading resistance and C_{0} is the static capacitance at zero bias point. Computations of minimum noise figure, optimum load admittance, optimum pumping factor, are all given in terms of the parameter $\omega C_{0} \boldsymbol{R}_{s}$.

The essential differences between single- and double-sideband reception are discussed. Over a range of sufficiently large values of the parameter $\omega C_{0} R_{n}$, there is a reasonable correlation of the theory developed with the measurements performed on most of the diodes. In the range of relatively small values of $\omega C_{0} R_{a}$, the model proves inadequate to describe some diodes properly and suggests the need for introducing extra noise sources. These noise sources are also discussed. Of the experimental data obtained thus far, the best result has been with a gallium arsenide diode which yields a 0.9 db doublesideband noise figure and, equivalently, 3.9 db for single-sideband operation with 16 db gain and 25 mc of single-sideband frequency bandwidth.

INTR()IUUCTION

THIE variable capacitance parametric amplifier is of interest primarily because it shows promise of very low noise amplification. ${ }^{1-3}$ A reduction in receiver noise would permit either an equivalent reduction in transmitter power or an increase in range, or both.

In a parametric amplifier, the process of energy transfer from the signal frequency to the idler (image) frequency (and vice versa) complicates the noise problem. The mode of analysis of noise performance in a variable capacitance parametric amplifier is very much the same as for crystal mixers. ${ }^{4-8}$ It should be emphasized, how-

[^18]ever, that the process of energy transfer is cansed by a variable capacitance rather than a monlinear resistance, as is the case for crystal mixers, and that regenerative amplification can be achieved only when the circuit is properly adjusted for both the signal and idler frequencies. When the amplifier is properly adjusted, the variable capacitance exhibits the property of a negative conductance. This negative conductance is the result of a secondary mixing process, mamely that between the pump and the idler. The idler frequency band, therefore, camot be rejected to improve the noise figure as is common practice in mixers.

The moise output in the signal frequency band, f_{s}, is due to: 1) input noise at f_{s} which is amplified, 2) input noise at the idfer frequency, f_{p-s}, which is converted to f_{s} while being amplified, 3) noise which originates in the diode and its circuit at f_{s} and is implified, and 4) noise from the diode and its circuit at f_{p-s}, which is converted to f_{s} while being amplified. The noise sources which might be important under 3) and 4) above are as follows:
a) Thermal noise originating in the series resistance (spreading resistance) of the variable caparcitance.
b) Noise generated in the junction of the diode. This is manly shot noise "due to carriers that cross the junction in the forward direction, meander about as minority carriers for a while, and then, escaping any other fate, return in the reverse direction across the junction." ${ }^{9}$ Uhlir has shown that this type of noise does not contribute significantly to the noise at the signal and idler frequencies in the microwatve region.
c) Thermal noise from the waveguide circuitry.

In addition to the four types of noise mentioned above, there exists still another type. It is cansed by pump noise giving rise to a fluctuation of the depletion layer and to a corresponding fluctuation in gain. This noise is probably negligible since for proper adjustment of the amplifier gain it is essentially constant for small variations of pump power.

If the amplifier circuit is designed so that the circuit impedance is very low for all frequencies except for the signal, idler, and pump frequencies, no voltage appears at the circuit terminals except for these three freguencies. However, when the series resistance is not negligible, all currents generated by the variable capacitance flowing through the series resistance will set up corresponding voltages at the terminals. Several mixing proc-
${ }^{9}$ A. Whlir, "High frequenry shot noise in $p-n$ junctions," Proc. IRF, vol. 4t, pp. 557-558; ipril, 1956.
esses are involved before these currents can give rise to voltages at the idler or signal frequencies, and noise arising from such secondary processes is ordinarily of far less importance than noise arising in the series resistance.

Noise originating in the signal and idler bands is uncorrelated and therefore additive in the output of the amplifier. It is clear that, as compared with normal amplifiers, we are paying a penalty by introducing signal in only one sideband, whereas noise inevitably also comes in through frequency conversion from the iller frequency band. If, however, we generate special signals having proper symmetry about half the pump frequency, signal power as well as noise power will enter in both bands, and the frequency converted signal will add in phase with the nonconverted signal. This type of operation which we shall call "double-sideband reception," offers a considerable advantage in noise performance over "single-sideband reception." The same improvement also occurs when the amplifier is used to receive broad-band noise as, for example, in certain radio astronomy applications. The signal-to-noise ratio for double-sideband reception is better than that of single-sideband reception by a factor of about 2 for $f_{s} \approx f_{p-x}$. Further, when the background noise temperature goes down below room temperature, the signal-tonoise ratio of the variable capacitance amplifier for normal operation becomes better than for a conventional amplifier having the same noise figure. This is so because a significant amount of noise arises as input noise at the idler frequency. Since the term noise figure is standardized in such a way that excess receiver noise is referred to the available noise from a resistor at room temperature ($290^{\circ} \mathrm{K}$), we shall employ the term "operating noise figure" to characterize the sensitivity of a receiver for arbitrary source temperatures. ${ }^{8}$ The operating noise figure τ_{s} is defined by

$$
\tau_{s}=(F-2)+2 \tau_{a}
$$

for single-sideband parametric operation, and

$$
\tau_{s}=(F-1)+\tau_{a}
$$

for both conventional amplifiers and double-sideband parametric operation. In the above equations F is the noise figure of the amplifier and τ_{a} is the antenna temperature divided by $290^{\circ} \mathrm{K}$. In Fig. 1 the curves indicate the operating noise figures of a single-sideband parametric amplifier and of a conventional amplifier as a function of the apparent temperature of the sky. For example, when the noise figures of the single-sideband parametric amplifier and the conventional amplifier are both 4 db , and the antenna sees a sky temperature of $20^{\circ} \mathrm{K}$, then the operating noise figure of the parametric amplifier is -2 db , while that of the conventional amplifier is 2 db . When the noise figure of the parametric amplifier is high, most of the noise originates within the circuit or within the series resistance of the diode; in

Fig. 1-The operating noise figures of a single-sideband parametric amplifier and of a conventional amplifier or a double-sideband parametric amplifier as a function of the apparent temperature of the sky:
this case the operating noise figure of a conventional and parametric amplifier are approximately equal. llowever, when the noise figure is small, the output noise is due mainly to input moise so that the distinction between parametric and conventional amplifiers is enhanced. This is shown in the lower portion of Fig. 1.

Avalabble Power Gan of the Variable Capacitance Parametric Amplifier With Series Resistance

The noise figure will be discussed in terms of a circuit having a single external coupling line and using a circulator to separate the incoming and outgoing signals. The experimental arrangement is shown in Fig. 2. Because of the circulator the signal generator is always matched and the amplifier is isolated from the generator while transmitting its output to the load. The equivalent circuit is shown in Irig. 3.

The current flowing into the variable capacitance includes in general the infinite number of frequency components provided by the nonlinearity of the diode. We now assume that the circuit impedance is high only for the signal f_{1} and the iller f_{2}. We assume further that the capacitance is not strongly pumped so that the use of only a first-order nonlinearity term is a good approximation. We observe then that, to within the approximations, $C=C_{0}+C_{3} \sin \left(\omega_{3} t+\theta_{3}\right)$, where ω_{3} is the angular frequency of the pump and staisfies the relation $\omega_{3}=\omega_{1}+\omega_{2}$. The signal current i_{1} and the idler current i_{2} are the only important components of the current
spectrum. These may be expressed ${ }^{10,11}$ in terms of the voltages appearing across the terminals of the variable capacitance, but excluding the series resistance, as

$$
\begin{align*}
{\left[\begin{array}{c}
i_{1} \\
-i_{2} *
\end{array}\right] } & =\left[\begin{array}{ll}
y_{11} & y_{12} \\
y_{21} & y_{22}
\end{array}\right]\left[\begin{array}{c}
e_{1} \\
e_{2}^{*}
\end{array}\right] \\
& =\left[\begin{array}{ll}
j \omega_{1} C_{0} & j \omega_{1} \frac{C_{3}}{2} \\
j \omega_{2} \frac{C_{3}}{2} & j \omega_{2} C_{11}
\end{array}\right]\left[\begin{array}{l}
e_{1} \\
e_{2}^{*}
\end{array}\right], \tag{1}
\end{align*}
$$

where e_{1} is the terminal voltage at the signal frequency and $e_{2}{ }^{*}$ is the complex comjugate of the corresponding voltage at the idler freguency. Since the depletion-layer capacitance of a junction diode is due to majority rather than minority carriers, and since the motion of these carriers is extremely smatl, the value of capacitance is practically constant from de to microwave irequencies and beyond. Strictly speaking, if the series resistance of the diode is appreciable, none of the voltage components at other fremancies can be effectively short-circuited, and we therefore expect a change both in gain and noise output which depend on higher-order modulation products. These effects are considered of little consequence, however, and (1) represents a good approximation.

The currents in (1) are composed of two terms: one is the displacement current flowing through the constant capacitance C_{0}, and the other is the current generated by the variable capacitance due to the mixing effect. Eq. (1) permits the construction of the equivalent circuit shown in lig. 4. Energy at the two frequencies is interchanged only through the variable capacitance; evidently no such exchange would take place in a linear passive network. Another form for the equivalent circuit is shown in Fig. 5. Here, the diode is common to both circuits, but currents at the signal and idler frequencies are caused to flow in separate extermal circuits by the presence of filters. If the circuit impedance is high enough at other frefuencies, the representation must include extra circuits connected to the diode through appropriate filters. Since the amplifier has a single external coupling, and the input and output are separated by the circulator, the amplifier can see only one conductance connected in parallel with the signal generator. Let us then redefine G_{y} as the load conductance as well as the generator conductance for the signal, and G_{L} as the load for the idler. If the signal is received in double-sideband fashion, an extra current generator should be connected in parallel to G_{L}. In the equivalent representation, the two circuits appear separately, but in an actual waveguide configuration, the two different

[^19]

Fig. 2-Experimental arrangement of a circulator parametric amplifier.

Fig. 3-W¿quivalent circuit of lig. 2.

Fig. 4-Fifuivalent circuit of Fig. 3 based on (1).

Fig, 5-Revised form of equivalent circuit. Currents at signal and image frequencies are caused 10 ी.ow in repardte external circuits by the presence of filters.
frequencies may be present simultameously within a single resonant structure. When f_{1} is near f_{2}, G_{g} and G_{L} are almost equal.

From the equivalent circuit, the following relations are found:

$$
\begin{align*}
\tau_{1} & =e_{1}+i_{1} R_{s} \tag{2}\\
\tau_{2}^{*} & =e_{2}^{*}+i_{2}^{*} R_{8} . \tag{3}\\
i_{1} & =\frac{I_{*}}{\left(1+R_{*} I_{11}\right)}-\frac{e_{1} I_{11}}{\left(1+R_{*} I_{11}^{\prime}\right)} . \tag{4}\\
i_{2}^{*} & =\frac{-e_{2}^{*} I_{22}^{*}}{\left(1+R_{*} I_{22}^{*}\right)} . \tag{5}
\end{align*}
$$

where

$$
\begin{align*}
& \mathrm{I}_{11}=G_{1 /}+G_{1}+j\left(\omega_{1} C_{1}-\frac{1}{\omega_{1} L_{1}}\right) \tag{6}\\
& \mathrm{I}_{20}=G_{L}+G_{2}+j\left(\omega_{2} C_{2}-\frac{1}{\omega_{2} L_{2}}\right) . \tag{7}
\end{align*}
$$

from above equations the output voltage v_{1} is found to be

$$
\begin{equation*}
T_{1}=\frac{I_{n}}{I_{11}+\frac{j \omega_{1} C_{0}-\frac{\omega_{1} \omega_{2} C_{3}^{2}}{4 \Gamma_{2}}}{1+R_{33}\left(j \omega_{1} C_{0}-\frac{\omega_{1} \omega_{2} C_{3}^{2}}{4 I_{2}}\right)}}=\frac{I_{8}}{Y_{11}+\mathrm{I}^{*}} \tag{8}
\end{equation*}
$$

where V is the input admittance of the diode seen by the signal at terminal $a-a^{\prime}$ and V_{2} is the admittance seen looking back from variable capacitance to the idler,

$$
\mathrm{I}_{2}=-y_{22}+\frac{\Gamma_{22}^{*}}{\left(1+R_{s} \Gamma_{22}^{*}\right)} .
$$

Power output at the signal frequency is

$$
\begin{equation*}
P_{\text {out }}=r_{1}^{\prime} r_{1}^{*} * G_{\theta} \tag{9}
\end{equation*}
$$

The available power gain, under a high gain approximation is

$$
\begin{equation*}
G_{\mathrm{av}}=\frac{P_{\mathrm{out}}}{P_{\mathrm{av}}}=4 G_{g}{ }^{2}\left|\frac{1}{\Gamma_{11}+\mathrm{I}}\right|^{2} . \tag{10}
\end{equation*}
$$

However, when the logarithmic gain is small or negative, the approximation fails and we determine the available power gain exactly from its equality to the square of the voltage reflection coefficient, ${ }^{12}$

$$
G_{\mathrm{av}}=\left|\frac{Y_{11}-Y}{Y_{11}+Y}\right|^{2} .
$$

If Y is negative, the logarithmic gain is positive, and as the denominator of (10) decreases gain increases. When

[^20]the denominator passes through zero the gain becomes infinite and the system breaks into oscillation. We now assume that the idler frequency circuit is adjusted to make Y_{2} real; then $Y_{11}+Y$ is simplified as follows:
\[

$$
\begin{align*}
& Y_{11}+I=G_{a}+G_{1}+j\left(\omega_{1} C_{1}-\frac{1}{\omega_{1} L_{1}}\right) \\
& +\frac{\left(1-\frac{\omega_{1} \omega_{2} C_{3}^{2} R_{8}}{4 G_{2}^{\prime}}\right)\left(-\frac{\omega_{1} \omega_{2} C_{3}{ }^{2}}{4 G_{2}{ }^{\prime}}\right)+\omega_{1}^{2} C_{0}{ }^{2} R_{z}}{\left(1-\frac{\omega_{1} \omega_{2} C_{3}^{2} R_{3}}{4 G_{2}{ }^{\prime}}\right)^{2}+\omega_{1}{ }^{2} C_{0}{ }^{2} R_{8}^{2}} \\
& +j \frac{\omega_{1} C_{0}}{\left(1-\frac{\omega_{1} \omega_{3} C_{3}{ }^{2} R_{s}}{4 G_{2}{ }^{\prime}}\right)+\omega_{1}{ }^{2} C^{2}{ }_{11}{ }^{2} R_{s}{ }^{2}}, \tag{11}
\end{align*}
$$
\]

where Y_{2} has been replaced $\mathrm{by}^{\prime} G_{2}{ }^{\prime}$. If the siganl frequency circuit is adjusted so that its susceptance component is cancelled by that of the diode, the over-all admittance becomes a real conductance and the equation is simplified further.

The diode conductance is a function both of

$$
\frac{-\omega_{1} \omega_{2} C_{3}^{2}}{+G_{2}^{\prime}}
$$

Which is a negative conductance introluced by the variable capacitance, and of $\omega_{1} C_{0} R_{s}$. The normalized conductance of the diode is shown in liig. 6 as a function of the normalized pumping factor, $G R_{s}$, given by

$$
G R_{s}=\left(\frac{\omega_{1} \omega_{s} C_{0}^{2} R_{s}}{4 G_{2}^{\prime}}\right) \gamma^{2},
$$

Fig. 6-Normalized conductance of diode as a function of the nornalized pumping factor, $G R_{s}$. Minimum input conductance is zero when $\omega_{1} C_{0} R_{a}$ is 0.5 .
where γ is the ratio of the variable capacitance C_{3} to the static capacitance, C_{0}, and is proportional to pump power. Curves are shown for 10 values of $\omega_{1} C_{0} R$ ranging from 0.05 to 0.50 . As the curves indicate, the negative conductance increases when $\omega_{1} C_{0} R_{s}$ is decreased. When $\omega_{1} C_{0} R_{s}$ is 0.5 , no negative conductance can be observed and this determines the highest frequency at which the diode can be used as an amplifier. ${ }^{13}$ Further, it will be shown later that this proluct $\omega_{1} C_{n} R_{x}$ is also important in determining the minimum obtainable noise figure for a given diode, and we shall therefore refer to the inverse of it as "quality factor" of the diode. Since $1 /\left(2 \pi C_{0} R_{s}\right)$ is defined as the diode cut-off frequency at zero bias, the quality factor is equal to the ration between zero bias cut-off frequency and the signal frequency.

To improve the quality of a diode, both the series resistance R_{s} and the static capacitance C_{0} must be decreased. Both R_{s} and C_{0} depend on the semiconductor material used as well as on the geometry of the diode. In addition C_{0} is also a function of the applied bias. While it is desirable to reduce R_{s} to the lowest possible value, such a reduction cannot be applied to C_{0} without, at the same time, limiting the possible capacitance swing. Experimentally, a zero bias has generally been employed for the better diodes, but some negative bias is needed for poorer diodes to obtain optimum gain. The terms "poorer" and "better" refer to diode quality in terms of the quality factor defined above. At lower frequencies, the quadity factor of a diode improves, and it is even possible to use small positive bias to cut down the pump power requirements. For example, if the quantity $\omega_{1} C_{4} R_{s}$, is 0.5 at 5 kmo , it is necessary to have negative bias to have a gain; but at $500 \mathrm{mc}, \omega_{1} C_{0} R_{s}$ $=0.05$ for the same diode, and ample gain is achieved without external bias. Amplifier gain may be determined using Fig. 6 if the pumping factor and the shunt conductance $\left(G_{i}+G_{1}\right)$ are known.

The negative conductance is double valued with respect to pumping power in the presence of the series resistance. The question now arises as to how two separate stable regions can exist when only a first-order nonlinearity in the capacitance has been assumed. The answer is related to the tuning conditions implied in making the admittance across the diode real. Looking from the circuit towards the variable capacitance, the negative conductance increases with the pumping factor. However, the over-all loss is greatly changed by changing the susceptance component of the circuit due to reactive current flowing through the series resistance of the diode. The two transition points are found to correspond to two different tuning conditions which occur because the input susceptance of the diode is a function

[^21]of pump power even though constant load conductance and frequency are maintained. A similar phenomenon has been observed experimentally when a poor crystal is used; i.e., as the pump power increases, the gain at first increases, then oscillation sets in, and finally stable gain is again observed as shown in Fig. 7. It is believed that the higher order terms of nonlinearity are primarily responsible for the observed effect. For letter crystals, oscillation cannot be stopped before reaching the avalanche breakdown point by an increase in the pump power alone.

The normalized input capacitance is shown in Fig. 8 as a function of the pumping factor and as (11) indirates. the input susceptance increases as pump power increases. To cancel the imaginary part of the admittance with increasing pump, the inductive susceptance of the circuit must likewise be increased.

Fig. 7 -Gain of a parametric amplitier ats a function of pump power. As pump power increases, gain at lirst increases, then oscillation sets in, and fimally stable gain is again observed. When circuit conductance is high no oscillation can be observed. but gain goes down beyond upper limit of optimum pump power.

Fig. 8-Normalized input capacitance of variable capacitance diole with parasitic elements as a function of pumping factor.

Experimental observations show that the plunger motion of the amplifier cavity is in the appropriate direction to that predicted by the theory; nevertheless, there are separate positions of the plunger required to maximize the idler and signal frequencies individually in the region of lower gain. In the range of higher gains we observe a synchronous tuning at both freguencies. This latter result occurs because the incidental dissipation effects decrease in proportion to the negative resistance as the pump increases, and the idler and signal progressively approach a simultaneous optimization in a fashion consistent with the Manley-Rowe relations.

Noise Figure Calculation

As was discussed in the Introduction, the main noise sources of the amplifier are (Fig. 9) :

Fig. 9-Fquivalent circuit used for moise output calculation.
Assuming that both frequency bandwidths, B_{1} and B_{2}, are the same, the total noise output at signal frequency f_{1} is obtained as:

$$
\begin{align*}
& P_{n}=4 K T B G_{g}\left[\left(G_{0}+G_{1}\right)\left|\begin{array}{l}
1+R_{s}\left(j \omega_{1} C_{0}-\frac{\omega_{1} \omega_{s} C_{3}^{2}}{4 G_{g_{2}^{\prime}}}\right) \\
\left(1+R_{s} I_{11}^{\prime}\right)\left\{\left(j \omega_{1} C_{0}+\frac{I_{11}}{1+R_{s} Y_{11}}\right)-\frac{\left.\omega_{1} \omega_{2} C_{3}^{2}\right\}}{\left.4 G_{2}^{\prime}\right\}}\right.
\end{array}\right|^{2}\right. \\
& +\left(G_{L}+G_{2}\right)\left|\frac{\frac{j \omega_{1} C_{3}}{2 G_{2}^{\prime}{ }^{\prime}}\left(\frac{1}{1+R_{8} Y_{22}{ }^{*}}\right)}{\left.\left(1+R_{*} I_{11}\right) \frac{j}{}\left(j \omega_{1} C_{0}+\frac{Y_{11}}{1+R_{5} Y_{11}^{\prime}}\right)-\frac{\omega_{1} \omega_{2} C_{3}{ }^{2}}{4 G_{22}^{\prime}}\right\}}\right|^{2} \\
& +\frac{1}{R_{s}}\left|\frac{R_{s}\left(j \omega_{1} C_{0}-\frac{\omega_{1} \omega_{2} C_{3}^{\prime} 3^{2}}{4 C_{2}^{\prime}}\right)}{\left(1+R_{8} I_{11}^{\prime}\right)\left\{\left(j \omega_{1} C_{0}+\frac{\Gamma_{11}}{1+R_{4} I_{11}}\right)-\frac{\left.\omega_{1} \omega_{2} C_{3}^{2}\right\}}{\left.4 G_{2}^{\prime}\right\}}\right\}}\right| \\
& \left.+\frac{1}{R_{s}}\left|\frac{\frac{j \omega_{1} C_{3}}{2 G_{2}{ }^{\prime}}\left(\frac{1}{1+R_{s} F_{22} *}\right) I_{Y_{22}} * R_{s}}{\left(1+R_{s} I_{11}\right)\left\{\left(j \omega_{1} C_{0}+\frac{Y_{11}}{1+R_{R} Y_{11}}\right)-\frac{\omega_{1} \omega_{2} C_{3}{ }^{2}}{4 G_{2}{ }^{\prime}}\right\}}\right|\right] \text {, } \tag{12}
\end{align*}
$$

1) Thermal noise delivered from the series resistance at the diode at frequency bands f_{1} and f_{3}. These noises are introduced by the voltage generators $\epsilon_{13}=\sqrt{4 K T B_{1} R_{8}}$ and $\epsilon_{23}=\sqrt{4 K T B_{2} R_{2}}$ connected in series with the series resistance.
2) Thermal moise received from the antenna frequency bands f_{1} and f_{2}. These noises are introduced by the current gencrators $i_{11}=\sqrt{4 K T B_{1} G_{g}}$ and $i_{21}=\sqrt{4 K T B_{2} G_{l}}$ connected in parallel to G_{q} and G_{L}, respectively.
3) Thermal noise generated in amplifier circuit (due to waveguide losses, etc.) at f_{1} and f_{2}. These are represented by the current generators $i_{12}=\sqrt{4 K} \overline{T B_{1} G_{1}}$ and $i_{22}=\sqrt{4 K T B_{2} G_{2}}$ connected in parallel to G_{1} and G_{2}.

The equivalent circuit used for the noise output calculation is shown in Fig. 9.
where Y_{11} and $Y_{2 n}$ were defined in (6) and (7).
The noise figure for conventional operation which we shall call single-sideband reception to distinguish it from double-sideband reception (as used above) is defined as

$$
\begin{align*}
& F=\frac{P_{n \text { out }}}{K T B G_{11}}=1+\frac{G_{1}}{G_{a_{1}}} \\
& +\frac{1}{R_{*} G_{\eta}}\left|\frac{R_{0}\left(j \omega_{1} C_{0}-\frac{\omega_{1} \omega_{2} C_{3}{ }^{2}}{4 C_{2}{ }^{2}}\right)}{1+R_{*}\left(j \omega_{1} C_{0}-\frac{\omega_{1} \omega_{2} C_{3}{ }^{2}}{4 G_{2}{ }^{\prime}}\right)}\right|^{2} \\
& +\frac{G_{21}}{G_{11}}\left[\frac{G_{l}}{G_{a}}+\frac{G_{22}}{G_{\theta}}+\frac{1}{R_{8} G_{y}}\left|Y_{22}^{*} * R_{8}\right|_{2}\right], \tag{1.3}
\end{align*}
$$

where G_{11} is the available power gain from signal injut
to signal output, and ($\dot{2}_{21}$ is that irom idler imput to sig-
nal output, and

$$
\begin{align*}
& \boldsymbol{G}_{11}=4 \boldsymbol{B}_{\theta}{ }^{2}\left|\frac{1+R_{n}\left(j \omega_{1} C_{0}-\frac{\omega_{1} \omega_{2} C_{3}{ }^{2}}{4 G_{2}{ }^{\prime}}\right)}{\left(1+R_{8} I_{11}^{\prime}\right)\left[\left(j \omega_{1} C_{0}+\frac{I_{11}}{1+R_{8} J_{11}}\right)-\frac{\omega_{1} \omega_{2} C_{3}{ }^{2}}{4 C_{V_{2}{ }^{\prime}}}\right]}\right|^{2} \\
& G_{21}=4 G_{g}{ }^{2}\left|\frac{\frac{j \omega_{1} C_{3}}{2 G_{2!}{ }^{\prime}}\left(\frac{1}{1+R_{2} Y_{22}{ }^{*}}\right)}{\left(1+R_{R} Y_{11}\right)\left[\left(j \omega_{1} C_{0}+\frac{\Gamma_{11}}{1+R_{11} J_{11}}\right)-\frac{\omega_{1} \omega_{22} C_{3}{ }^{2}}{4 C_{22}{ }^{\prime}}\right]}\right|^{2} . \tag{14}
\end{align*}
$$

When ω_{1} and ω_{2} are equal, the fourth term in (13) does not appear in the noise figure representation.

For double-sideband reception as defined in the lntroduction, the coherent signal comes in at both the signal and idler frequency bands and the frequency converted signal can therefore be made to add in phase with the nonconverted signal. The noise figure for rlouble-sideband reception becomes
separation. However, if the quality of the diode at ω_{2} is very low, full advantage of relrigeration cannot be taken because the noise temperature of the diode at ω_{2} is much higher thatl at ω_{1}.

The effects of several of the parameters in (16) on the noise figure are shown in Fig. 10 . The term G_{1} / G_{g} has been neglected, assmming the circuit loss is very smatl. The abscissa indicates the normalized pumping factor

$$
\begin{aligned}
& F=\frac{P_{n o u t}}{K T B\left(G_{11}+G_{21}\right)}=\frac{\left(G_{11} G_{u}+\left(G_{21} G_{L L}\right)+\left(G_{11} G_{1}+G_{21} G_{2}\right)\right.}{G_{g}\left(G_{11}+\left(G_{21}\right)\right.}
\end{aligned}
$$

When $G_{n}=G_{i}$ and $G_{1}=G_{2}$, and using the further ap)proximation that $\mathrm{J}^{\circ} \approx \mathrm{J}_{22} * \approx \mathrm{~J}_{11}$, (15) reduces to

$$
\begin{equation*}
F \approx 1+\frac{C_{1}}{G_{0}}+\frac{1}{R_{0} G_{g}}\left|\frac{R_{*}\left(j \omega_{1} C_{01}-\frac{\omega_{1} \omega_{2} \cdot C_{3}}{4 C_{3_{2}^{\prime}}}\right)}{1+R_{0}\left(j \omega_{1} C_{0}-\frac{\omega_{1} \omega_{2} C_{3}^{2}}{4 C_{2}^{\prime}}\right)}\right| \tag{16}
\end{equation*}
$$

Referring to (8), (13), and (16), and the above assumptions, the noise figure for single-sideband reception is about twice that for double-sideband reception. When J_{1} and J_{2} are widely separated, so that the difference between G_{21} and G_{11} is appreciable, $G_{21} / G_{11} \approx \omega_{1} / \omega_{2}$, and the noise figure for single-sideband reception becomes roughly $\left(1+\omega_{1} / \omega_{2}\right)$ times that for double-sideband reception. This is to say, if f_{1} is smaller than f_{2}, the difference between the noise figure for single-sideband reception and the double-sideband reception is less than 3 db , while it is larger than 3 db if f_{1} exceeds f_{2}. The noise figure for single-sideband reception approaches that for double-sideband reception if ω_{1} / ω_{2} is very small. This we call noise refrigeration due to frequency

G R_{*} and the ordinate shows the excess moise figure. $(F-1)$. The excess noise figure is calculated for different diode quality factors, the dotted line indicating the locus of the calculated minimun moise figure for optimized noise figure adjustment of each diode. These calculations are made under the assumption that the gain is very high, $|G| \approx\left(G_{n}+G_{1}\right)$. When $\omega_{1} C_{n} R_{s}$ is large the excess noise figure is much higher than the ratio between R_{s} and the load resistance, and it approaches R_{L} / R_{s} as $\omega_{1} C_{0} R_{*}$ approaches 0.5. However, it approathes the inverse R_{s} / R_{L} as $\omega_{1} C_{0} R_{s}$ decreases. Is seen from lixg. 10 , the noise figure varies widely as pump power or load conductance is changed and there is an optimum load conductance for a given diode which provides a minimum noise figure. The optimmm load conductance is a function of $\omega_{1} C_{0} R_{s}$ and of R_{R}. When the series resistance is higher the optimum load conductance is also higher. The excess noise figure is, of course, a function of the series resistance, but only through the quality factor, $1 / \omega_{1} C_{0} \mathcal{R}_{s}$. The minimum excess noise figure, $\mathfrak{F}-1$, the optimum normalized foad resistance, and the normalized pumping factor are shown as functions of the inverse quality factor of the diode in Fig. 11.

Fig. 10-Excess noise figures, ($F-1$), of parametric amplifiers with barious quality factor as a function of normalized pumping factor. Excess moise from circuit loss is assumed very small.

Fig. 11 -The minimum excess noise figure, optimmm normatized load resistance, and normalized pumping factor as functions of the inverse quality factor of dione.
U_{p} to this point, C_{0} has been defined as the static capacitance of the diode at zero bias. However, in actual practice, the pump voltage is swept over a wide range and the assumption of a linear characteristic of the diode is no longer valid. Negative bias is also used for most of the diodes to minimize noise output. Therefore, the average capacitance of the diode at the bias point, which is dependent on the amplitude of pump and the characteristic of the capacitance, must be used to calculate the noise figure. However, as will be discussed tater, the average capacitance of the diode at arbitrary bias
is usually larger than the static capacitance at zero bias if the coupling is adjusted to the optimum; the minimum obtainable noise figure is well defined by the quality factor given above.

Noise Figure Measurement

It was explained that two different noise figures can be defined for the parametric amplifier. One is the noise figure for single-sideband reception, and the other is that for double-sideband reception; the one with which we associate the measured results is determined by whether the noise generator covers both the signal and idler frequency bands, or only covers the signal frequency band. If the noise generator is broad-band, the measured noise figure is that for double-sideband reception and conversely, appropriately located, a narrow-band noise source provides a single-sideband measure. The noise figure of degenerate operation is put in the category of that for double-sideband reception. In the experiment an argon discharge lamp was used as the noise generator, and no particular band-pass filter was used to eliminate the idler frequency band. Ilence, the noise figures measured in this experiment all correspond to (louble-sideband reception. Since the noise contribution from the idler frequency band has not been eliminated except by refrigerating the idller load thermally or electrically, as discussed previously, it must be emphasized that the ordinary noise figure for operation as a singlesideband amplifier is about 3 db less than the measured value. Throughout the remainder of this section, when "noise figure" is used, it is employed in a double-sideband sense.

One of the most serious measurement erors that is apt to arise is associated with gain variation in the course of measuring noise figure, and it must therefore be carefully avoided. The gain of the amplifier is changed by some stray signal and pump power reflected batek from the load and the generator circuits. The amount reflected back will change as changes are made in the circuit impedance. Such changes would intclude, for example, turning the noise generator on and off and adjustment of the attemuator. The gain of the amplifier was stabilized very well by a circulator and isolators, and by operation in a region where gain is insensitive to pump power. In an absolute measurement of noise figure, it was measured by reference to the noise from a matched load cooled to liguid nitrogen temperature.

Twenty-eight samples- 10 silicon $p-n$ junction diodes, 6 germanium $p-n$ diffused diodes, 6 germanium gold-bonded diodes, and 6 gallium arsenide point contact diodes-were tested as variable capacitance elements at 5.84 kme while pumping at 11.7 kmc . The parameters, $\omega_{1} C_{0} R_{s}$, ranged from 0.06 to 1.13 .

In the experiments, the pump) voltage used ranged from 0.2 volt to 2 volts depending on the bias voltage. These voltages cannot be considered as small signals and the capacitance characteristic deviates considerably
from the linear characteristic. Noise contributions through higher-order nonlinear terms can be eliminated by the careful arrangement of the circuit. llowever, noise output is higher than that calculated from linear theory because the average capacitance of the diode at the operating point is larger than the static capacitance at the same point. The noise figures of a gallium arsenide diode measured at various bias voltages are plotted in Fig. 12. The input circuit loss was subtracted from the raw noise data to give the "measured" noise figure quoted. The gain of the amplifier was maintained constant at 16 db by adjusting the pump power and the single-sideband frequency bandwidth was about 25 mc. The coupling between the waveguide and the cavity was adjusted for minimum noise output at each bias condition. The pump power, iris size, and the rectified current are also plotted in the same figure. The rectified current is negligibly small, from -0.3 volt of bias voltage to -1.4 volts, with no noise contribution expected in this range other than the thermal noise arising from the series resistance of the diode. The noise figures, calculated theoretically, based on the average capacitance agree very well with the measured values for reverse bias voltages indicated above. For larger reverse bias voltages, the rectified current increases very rapidly as a result of the diode being driven into breakdown. A consequence of this is that the measured noise figures exceed the calculated values, the difference being attributed largely to contributions from shot noise as well as noise of the microplasm type.

To enable calculation of the noise figure theoretically, the pump voltages across the junction were graphically determined from experimental results. The pump voltage for maintaining constant gain was found to be almost linearly proportional to the bias voltage. The average capacitance was determined at each bias from knowledge of both the pump voltage and the capacitance characteristic and $\omega_{1} C_{0} R_{s}$ of the diode was calculated. This process is very time-consuming and is impractical to predict the obtainable noise figure. However, the experimental fact was found that the minimum noise figures measured for most diodes were in good agreement with that predicted from the quality factors at zero bias. This resulted because the average capacitance of the diode at the optimum bias voltage was approximately the static capacitance of the diode at zero bias when the circuit coupling was adjusted to the optimum. The experimental results and the theoretical calculations are compared in lig. 13. The circles indicate the minimum noise figures measured for the individual silicon diodes, the triangles are for the gallium arsenide diodes, and the squares are for the germanium diodes. The solid line indicates the noise figure predicted theoretically. Over a range of sufficiently large values of the parameter $\omega_{1} C_{0} R_{8}$, there is a reasonable correlation of the theory developed with the measurements performed on most of the diodes. In the range of relatively small values of $\omega_{1} C_{0} K_{s}$, the model proves inadequate to de-

Fig. 12-Measured results of noise figure of a gallinum arsenide diode at varions bias voltages. Gain was maintained constant at 16 db . Since broad-hand noise source is used as noise generator, these values all correspond to double-sideband reception. To determine noise figure for single-sideband reception, about 3 (d) must be added to these values.

Fig. 1.3-Measured results of noise figure for various galliun arsenide, silicon and germanium diofles. Solid line inclicates noise figure predicted theoretically. Circles indicate the minmum noise figures measured for individual silicon diodes, triangles are for gallium arsenide diode, and sfuares are for germanium diodes.
scribe some diodes properly and suggests the need for introclucing extra noise sources. (Of course, circuit losses were neglected in the theoretical curve and they flatten the curve in the range of very small values of $\omega_{1} C_{0} R_{8}$. However, the deviation from simple theory is much more than that due to circuit losses ${ }^{14}$ and the effects of shot noise, microplasm type noise, higher-order sidehand noise, and pump noise should be considered. These noises can be eliminated by knowing the detailed characteristics of the diode and by the circuit adjustment. However, if the amount of impurity (loping is too high or the doping is not uniform, the dynamic range ${ }^{16}$ of the

[^22]diode decreases and it is very difficult to eliminate them without sacrificing other factors, such as coupling, which also increase noise output. This kind of difficulty was enhanced with the germanium diodes, while much less difficulty was experienced with the gallium arsenide diodes.

The quality factor of some germanium diodes was less than 2, and negative bias had to be applied to obtain gain. In this case, the coupling between the cavity and the circuit must be considerably reduced so that the small pump voltage is sufficient to produce an adequate negative conductance, and the operating quality factor can be improved beyond the limit. However, the coupling is much smaller than the optimum value and the noise figure is much higher than the minimum obtainable based on the operating quality factor. The same problem can occur when the dynamic range of the diode is small. The effect on noise figure of coupling between the resomant cavity and the output circuit was measured and is plotted in Fig. 14. The cavity was usuatly operated in a over-coupled state and coupling was changed by changing the size of a symmetrical waveguide iris. There exists an optimum coupling for minimmm noise figure as theory predicts. Noise figure deterioration was larger than theory predicts when
coupling was greater than the optimum value. This is because larger pump power is necessary to maintain the gain constant, and the average capacitance C_{0} increases and the operating quality factor decreases. Thus noise figure increases much faster than the theory prediets. Some qualitative agreement with theoretical calculations can be found, but a quantitative correlation has not yet been achieved.

Pertinent diode data and experimental results are listed in Table I.

Fig. 14-1 Data on coupling effert on noise figure. Coupling is changed by changing inductive iris size.

TABLE I

Sample no.	「ype	$C_{0} \mu \mu \mathrm{f}$	R_{s} !	$\omega_{1} C_{0} R_{s}$	$F_{\text {.11, }}{ }^{*}$ at /eros hias	$\begin{gathered} F_{\text {min }}{ }^{*}{ }^{*}(\mathrm{~d}) \end{gathered}$	Biats volt	$P_{\text {puaza] }}$ Watt	$\begin{gathered} K_{n} \\ \Omega(1.5 v) \end{gathered}$
451-7	Si p-n junction	2.44	0.99	0.089	2.0	1.4	-0.5	0.15	. $34-\infty$
422c-2	Si $p-n$ junction	1.88	1.7	0.118	2.5	1.8	-0.6	0.09	$3.3-\infty$
422-10	Sip-n junction	0.7	8.06	0.211	2.87	2.2	-0.4	0.018	40-x
$42 \mathrm{c}-1$	Si $p-n$ junction	0.38	18.5	0.258	3.7	3.2	-0.4	0.013	$55-\infty$
210	Gitis peint contact	0.427	6.4	0.10	3.0	1.4	-1.3	0.004 .5	$42-\infty$
212	Gaids point contact	0.477	7.4	0.130	3.8	1.8	-1.3	0.000	$38-\infty$
21.3	Ciasts point contact	0.475	3.44	0.060	2.1	0.9	-1.2	0.004	$34-x$
295	Ge gold bouded	1.92	4.5	0.33	x	4.5	-3.4	0.450	10.5-x
299	Gegrold bouded	2.20	3.7	0.30	x	4.0	-3.4	0.680	10.5-1 M
05-1	(ie gold boonded	2.09	4.1	0.32	x	4.4	-0.8	0.023	$10-0.5 \mathrm{M}$
818-5.73-1	Ge $p-n$ diffused	2.036	1.78	0.173	5.7	4.2	-0.5	0.180	$17-\infty$
918-11	Ge p-n diffused	0.985	1.62	0.06	4.3	2.1	-0.4	0.020	$17-\infty$
919-57-6	Ge $p-n$ diffused	0.87	4.2	0.135	6.0	1.8	-1.4	0.022	$19-\infty$

* These are the measured noise figures. They correspond to double-sideband reception. For single-sidehand reception 3 db must be added to these values.

Conciusion

It has been demonstrated that a simplified theory, which includes a resistance in series with the variable capacitance, is good enough to predict much of the noise behavior of the parametric amplifier, and can be used in designing a low-noise parametric amplifier. From the facts that 1) no positive gain was obtained for the diodes which have a quality factor smaller than 2, and 2) the minimum obtainable noise figure was fairly well predicted from the quality factor, this factor, $1 / \omega_{1} C_{0} R_{s}$, is seen to be an appropriate one for representing the performance potential of diodes for use in parametric amplifiers.

The best noise figure measured is 0.9 db excluding the effect of external circuit losses and it applies only to
double-sideband reception. If this amplifier is used as an ordinary receiver, however, the obtainable noise figure is worse by about 3 db . The need for communication systems which carry coherent signal information in both the signal and image frequency bands therefore appears to be a real one.

Acknowledgment

The author wishes to express his appreciation to W. E. Danielson, II. Seidel, and E. I). Reed for their stimalating discussions and for their helpful criticism in the preparation of the mantuscript.

Acknowledgment is also made to F. J. 1)' Mlessio for helping to carry out the experiments.

Reliability Analysis Techniques*

CHARLES A. KROHN \dagger, member, ire

Abstract

Summary-Reliability analysis has progressed to the point where a quantification of reliability is possible. Reliability models for electronic equipment and techniques for interpretation of field and laboratory data have been developed. Of more significance, analytical methods leading to higher reliability are available. Reliability estimates enable early pinpointing of low reliability. Catastrophic failures can be controlled and performance change failures reduced through analytical techniques. Redundant techniques allow further reliability improvement even though failures occur. Analytical techniques are a useful aspect of reliability improvement, but they comprise only a part of reliability improvement methods.

Introdiction

TTHE attainment of increased reliability in electronic equipment during the past several years has received considerable attention throughout the electronics industry. As the field of reliability engineering develops, a system of useful analytical techniques pertinent to reliability is also evolving. V'arious techniques are presented and related to the whole of such techniques. Generally, the techniques are supported by data indications and reasonable theory.

Treating Reidability Quintititiveley

Reliability is an aspect of electronic equipment that can be quantitatively treated; this is desirable from several different viewpoints. In learning how to quan-

[^23]tify reliability, equipment designers have a better understanding of their designs and are thus in a position to improve reliability. Operational analysts planning the use of electronic equipment know how useful it will he. Customers procuring equipment can designate their needs and maintenance persomel are in an improved position to plan their programs.

Electronic equipment broadly divicles into two logical groups with respect to reliability quantification. These groups are associated with equipment usage. Equipment is either intended for continual use over a long period of time or for a single use for a short time. Long-time use includes communications, computing, instrumentation, navigation, and similar equipment; short-time use equipment principally includes military items such as missile and torpedo electronics, sono-buoys, and projectile proximity fuses. Different approathes to reliability quantification for each of the two groups of equipment are shown.

Continual-L'se Equipment

Electronic equipment intended for either long periods of continuous use or for periodic use over long perions of times comes under the continual-use cattegory la either case, the equipment will be repaired upon failure and returned to operation.

Data for reliability quantification can be obtained by observations of the time-to-failure while actually using the equipment or while testing the equipment under
controlled conditions. A measure of reliability is the failure rate, which is obtained from data by dividing the total equipment operating hours during a given short time interval into the failures during the interval. If failure ratte is plotted as a function of time for a typical piece of electronic equipment, the generalized curve will be as indianted in Fig. 1.

An actual failure rate curve best approaches the generalized curve of Fig. 1 as the quantity of equipment under observation increatses. Such equipment must be of the same model, with common usage conditions and a common criteria of falure. Failure data, in a laboratory environment from an electronic package, is shown in Fig. 2 and follows the generalized curve shown in Fig. 1. ${ }^{1}$ The solid curve is the falure rate of 8 carly units; the dashed curve, of 14 litter units with subsequent improvements.

Fig. 1-Failure rate of electronic equipment.

Fig. 2-Measured failure rate of an electronic package; solid line represents early units, dashed line represents later units.

As shown in Figs. 1 and 2, there is an initial higher falure rate called the debugging or burn-in period. This period of high, but decreasing falure rate results from the elimination of marginal parts and materials. Indications show that this period may vary between nearly zero and 200 hours. It is important that this period be determined and removed prior to using equipment in order that the initial use of equipment will be at its lowest falure rate.

Following the higher early failure period, there is an extended period of relatively constant failure rate. In well designed and maintained electronic equipment this period will extend for many thousands of operating hours. This period of relatively constant fature rate describes the useful life of electronic equipment

Fialures occur randomly during this period, and chance of failure is independent of age. When a piece of

[^24]equipment is exhibiting this constant fature rate, replacement of an older model with a newer one will not improve reliability. A constant failure rate results from the accumulation of a large number of fature catuses distributed throughout the equipment. These causes include the random occurrence of stresses that exceed inherent strength, some unavoidable human error, and a mixture of unknown or uncontrolled nonr:andom variat tions.

By reducing these causes, the constant lailure rate catn be lowered. This is illustrated in the wo failure rate curves of Fig. 2. Investigation of the reatsons for fatures in the early units and corrective action resulted in a failure rate improvement.

Finally, the equipment will enter a wearout region, thus indicating ath increasing falure rate. The wearout period results from the start of wide-scale deterioration of materials and parts not typically replaced in periodic maintenance. In well designed modern equipment it is doubtful whether wearout will be evidenced ats the equipment will experience technological obsolescence and be replaced prior to wearout.

The useful life of a piece of electronic equipment is the period of relatively constant lahure rate. During the period of constant fature rate the distribution of failures vs time-to-failure is exponential. Fig. 3 shows time-to-failure data under fight conditions of a military airborne LHF transceiver. ${ }^{2}$ The exponential distribution is described solely by its mean $.1 /$ (first absolute moment). Thus M, the mean time-(o-failure, is the parameter of interest. The mean time-to-failure of Fig. 3 is 51 hours.

Fig. 3-Time-to-iailure distribution for a 55 tube liff transeener. solid line represents data, dashed line is exponential curve for $. ~ M=51$ hours.

The failure rate of Figs. 1 and 2, in more exact terms, is the instantaneous probability rate of failure at any time, conditional upon nonfailure at that time. ${ }^{3}$ This failure rate is constant with respect to time for equipment whose times-to-failure are exponentially distributerl, and is ${ }^{4}$

[^25]\[

$$
\begin{equation*}
F=1 / M \tag{1}
\end{equation*}
$$

\]

where (previously used terms will not be defined)
$F=$ failure rate .
Eq. (1) applies to equipment which can be repaired upon faihure and returned to operation, as well as to devices having an exponential time-to-failure distribution that cannot be repaired and returned to operation. ${ }^{5}$

Reliatbility is defined as the probability of a device not failing for a certain period of time under defined usauge conditions. Reliability, as a probability, is between 0 and 1 . Reliability of electronic equipment whose failure rate is constant and whose times-to-failure follow the exponential distribution is ${ }^{6}$

$$
\begin{equation*}
R=\exp [-1 / M] \tag{2}
\end{equation*}
$$

where
$K=$ reliathility, probability of successful operation:
$t=$ time of successful operation.
Eq. (2) is shown in Fig. 4, and applies at all times when the erpuipment is in a nonfailed state. Thus reliability for a given time interval does not depend on the previous operating time on the equipment.

Fig. 4-Reliability of electronic equipment.

It is important to realize that the reliability of a piece of equipment for a period of time equal to its mean time-to-failure is only 0.37 . Therefore, we err in thinking that equipment is highly reliable for its mean time-tofailure. As indicated in (2) and lig. 4, a high reliability, such as 0.99 . should be expected for only one per cent of the mean time-to-failure and a 0.90 reliability for 10 per cent of the mean time-to-failure.

If the mean time-to-failure, or its reciprocal, failure rate, is known, probability of operation for any time interval is computed from (2). The communications equipment referred to in Fig. 3 for a 3 -hour flight has a reliability of 0.943. A useful approximation for rapid calculation, based on the general exponential expansion of (2), is
${ }^{5}$ E. Pieruschka, "Mathematical Foundation of Reliability Theory," U. S. Army Redstone Arsenal, Ala., pp. 15, 23; January, 1958. A disctission of reliability models, ats well als derivationt of the referenced point, is contained in this article.
${ }^{6}$ C. R. Knight and E. R. Jervis, "A IDiscussion of Some Basic Theoretical Concepts, and a Review of Progress Since World War II," Aeronautical Radio, Inc.. Washington, D. C., ARINC Mono. No. 1, p. 6; May 1, 1955. A general discussion of reliability models, as well as derisation of the referenced point, is contained in this report.

$$
\begin{equation*}
R \approx 1-(l / M) \tag{3}
\end{equation*}
$$

and it is reasonably accurate for reliabilities greater than 0.8. Other useful operational reliability information are the percentage and number of pieces of nonfailed equipment expected on the average where a group of similar pieces of equipment are used simultaneously. The per cent of survivors is simply

$$
\begin{equation*}
P_{B}=R 100, \tag{4}
\end{equation*}
$$

and the number of survivors is

$$
\begin{equation*}
N_{s}=\Gamma_{t} R \tag{5}
\end{equation*}
$$

where
$P_{a}=$ percentage of survivors expected,
$N_{s}=$ number of survivors expected,
$N_{t}=$ total similar equipments.
Techniques for analyzing reliability data obtained from either actual equipment use or test have been developed. ${ }^{7}$ In measuring reliability as expressed by (2), mean time-to-faifure is the parameter of interest. Mean time-to-failure is estimated from

$$
\begin{equation*}
\hat{M}=\frac{T}{f} \tag{6}
\end{equation*}
$$

where

$$
\begin{aligned}
\hat{M} & =\text { estimate of the mean time-to-failure; } \\
T & =\text { total operating time; } \\
f & =\text { number of failures during } T .
\end{aligned}
$$

This is simply the total number of operating hours divided by the number of failures. Eq. (6) applies where failed items are either repaired and returned to operation or not repaired and returned to operation. Further, test termination time or the number of pieces of equipment on test are not mathematically significant.

Estimated mean time-to-failure, \hat{M}, is subject to deviation from the true mean time-to-failure because of possible sampling variations. The accuracy of the estimate depends on the number of failures observed.

Confidence limits on \hat{M} can be calculated; these limits embrace the confidence interval. Confidence intervals are the percentage of the intervals that would include the true mean time-to-failure if the tests were to be repeated many times. A useful interpretation of this is that the confidence interval has a probability of the magnitude of the confidence interval of containing the true (but unknown) mean time-to-failure.

Limits of the confidence interval for the estimated mean time-to-failure of the confidence interval are computed from
${ }^{7}$ B. Epstein and M. Sobel, "Life testing," J. Amer. Statistical Assoc., vol. 48, pp. 485-502; September, 1953. Derivations of (6) and (7) are contained in this article.

$$
\begin{equation*}
\text { lower limit }=\frac{2 f \hat{M}}{\chi^{2}(2 /, a / 2)} \tag{ia}
\end{equation*}
$$

and

$$
\begin{equation*}
\text { upper limit }=\frac{2 f \cdot \hat{I}}{\chi^{2}(2 f, 1-\alpha 2)} \tag{7b}
\end{equation*}
$$

where $\chi^{2}(2 f, \alpha / 2)$ and $\chi^{2}{ }_{(2 f, 1-\alpha / 2)}=$ tabulated chi-square values at $2 f$ degrees of freedom for $(1-\alpha)$, the desired confidence interval.

Note that $(1-\alpha)$ is the confirlence interval. Thus for a 0.90 (or 90 per cent) confidence interval α is 0.10 , and the confidence limits are for $(\alpha / 2)=0.05$ and $(1-\alpha / 2)$ $=0.95$. Tabulated chi-square values are found in most statistics books.

These techniques are useful in analyzing reliability data such as obtained from laboratory reliability measurements or field data. Applving these techniques to the data used to plot the failure rate, shown in ligig. 2 as the later improved models, results in an estimated mean time-to-failure of 40.5 hours (850 hours $/ 21$ failures) with 0.90 confidence limits of 31.4 and 55 .2 hours. Only that data after the debugging period of 10 hours is used in this computation.

Sampling plans for testing reliability where times-tofailure are exponentially distributed have been developed. ${ }^{8.9}$ These are tests where defined equipment operating hours are accumulated and the number of failures are observed. Depending on the quantity of failures observed, a decision is made as to whether or not the specified-reliability exists.

Such sampling plans are not designed to measure reliability but rather, within defined risks, to indicate that a specified reliability exists. Hence they are particularly applicable to production lots where satisfactory reliability of prototypes has previously been demonstrated and the problem is one of allowing only equipment with acceptable reliability to pass the test.

Development of sampling plans is an involved subject and one which is beyond the intended seope of this paper. Sampling plans for reliability are mentioned because they form a logical aspect of reliability analysis. To further illustrate the concept, a reliability sampling plan is shown in ligs. 5 and $6 .{ }^{10}$

Fig. 5 shows a test plan. A group of similar pieces of equipment are tested under defined usage conditions with a certain falure criteria. Failed pieces of equipment are repaired and returned to operation. Total failures are plotted vs total operating time and, as in-

[^26]

Fig. 5-Reliabiliny sampling plan.

Fig. 6-Operating characteristic curve for the sampling plan shown in Fig. 5.
dicated in Fig. 5, the group is either accepted or rejected at any time, or the test is continued. Fig. 6 is the operating characteristic of this plan and it gives the probability of accepting this group of equipment for various true mean times-to-failure. A great many such plans are possible. Plans with less risk require more testing time.

The pertinency of the techniques for analyzing reliability data discussed to this point depends on assumption of exponential distribution of times-to-failure. Further, common definition of failure, common usage conditions, and similar equipment are necessary when data is to be grouped. The exponential distribution assumption can be tested by application of the standard "goodness of fit" test found in statistics books to the time-to-failure distribution (see Fig. 3). ${ }^{11}$ This test is not applicable when there is truncated data; that is, when some tests do not terminate in failure. Techniques have been developed for this situation, and for testing whether or not various data can be grouped. ${ }^{12}$

All discussion to this point has been with respect to the reliability of typical electronic equipment for continued use. The pertinency of the failure rate pattern. as illustrated by liig. 1, to component parts (resistors. capacitors, vacuum tubes, etc.) in general is, at this time, questionable. Nost component-part iailure data is acquired under accelerated electrical and environ-

[^27]mental stresses. This allows failures within a reasonable true time, but does not actually represent typical usage conditions. Such component-part failure data, as well as true-time failure data, as the writer has seen have not illustrated a definite leaning toward the failure pattern of Fig. 1.

Although the failure rate pattern of component parts has not been as clearly indicated as has that for equipment, it is reasonable to suspect that certain component parts will exhibit wearout. Wearout results from the start of wide-scale deterioration of materials, and it is highly suspected that component parts subject to exhaustion of some built-in supply of material will exhibit wearout. Such component parts would include contact surfaces of relays, bearings, and brushes and the cathode emissive material of tubes, particularly high power pulse tubes such as magnetrons. If operating time records indicate a wearout phenomena in a component part, the part should be replaced prior to wearout. Such periodic replacement will reduce the equipment failure rate and improve reliability.

Single-Use Equipment

In recent years the short time, single use types of electronic equipment have come to make up a substantial portion of the total electronics effort, with missile electronics being the dominating influence. When actually used, the objective of single-use equipment is satisfactory operation during the short period of usually severe and varying environments. The equipment is often not recoverable for repair when used. The question arises as to what constitutes a meaningful reliability quantification of such single-use equipment.

Data for reliability quantification comes from either direct use observation or from observation under test conditions that may or may not simulate final use conditions. In continual-use equipment these data in the form of times-between-failure can be obtained without excessive difficulty. However, the nature of single-use equipment indicates a different approach to reliability quantification.

Direct use observation of single-use equipment yields data which, when interpreted, primarily indicate the equipment has or has not performed satisfactorily. Typically the use period is short and the environments are severe and varying.

Observation of single-use equipment under controlled test conditions, as a source of reliability quantification data, has limitations. Environmental conditions during such testing can be kept moderate. Under such conditions the equipment under observation will not be harmed and, when failures occur, it can be repaired and returned to operation. Testing can continue for long periods of time, and much time-between-failure data can be obtained. However, there must be a known correlation between the time-between-failure data under moderate test conditions and the performance capabilities during use for the test observations to be meaning-
ful. Such correlation may or may not exist. Thus, time-between-failure data gathered on single-use electronic equipment under moderate test conditions will be questionably useful reliability quantification until the correlation just mentioned both exists and is known.

Instead of using moderate conditions during the test, enviromments can be made severe in all attempt to simulate actual use. Assuming that this can be accomplished, useful reliability quantification data will be obtained. Various considerations make this approach difficult. Exact use enviromments are of ten unknown, and simulation of these enviromments is difficult, particularly simultaneous simulation of different environments. Subjecting equipment to the severe environment will often have a deteriorating effect, and contimuing observations camnot be made on the same piece of equipment. Data obtained can be of a time-to-failure nature, or the test time can be in the order of the short use time with the measure being, simply, satisfactory or unsatisfactory performance. If the former approach is used and the time-to-failure distribution is exponential, the reliability quantification techniques previously presented for continual-use equipment are pertinent, while the latter approach requires a different (quantification technique. The latter approach is considered most pertinent, as it is analogous to actual use.

These various considerations lead to the opinion that a meaningful reliability quantification of single-use equipment is simply to judge whether or not satisfactory performance is achieved during use, or tests simulating use. The previous definition of reliability-the probability that a device will perform adequately for an interval of time under certain usage conditions-still applies, but the time interval is now short and essentially constant.

Reliability of single-use equipment is estimated from data by

$$
\begin{equation*}
\hat{R}=\frac{x_{t}-N_{f}}{x_{t}} \tag{8}
\end{equation*}
$$

where

$$
\begin{aligned}
\hat{R} & =\text { estimated reliability; } \\
N_{t} & =\text { total number of trials; } \\
N_{f} & =\text { number of trials resulting in failure. }
\end{aligned}
$$

Confidence limits on this estimate are necessary in order to appraise realistically the above illustrations. Estimated reliability here is a simple proportion, and confidence limits are those for the binomial distribution.

Computing confidence limits for proportions is involved, and has been tabulated by the Bureau of Standards. ${ }^{13}$ Approximations of confidence limits can be made by using a normal distribution where estimated reliability is between 0.10 and 0.90 and total trials are

[^28]in the order of 50 or more. Estimates of proportions and their confidence limits are well covered in statistics texts. Various sampling plans for attribute inspections such as the Department of Defense sampling plan, Military Standard 105.A, "Sampling Procedures and Tables for lnspection by Attributes," have been formulated. Thus this reliability quantification of single use electronic equipment involves the application of well known, classical methods of statistical analysis.

This reliability quantification technique for single-use equipment is apparent, and the significant point is one of recognizing that an approach different from that employed for continued-use equipment is pertinent. The approach presented for single-use equipment is readily applicable to analysis of existing data accumulated during use or tests simulating use. However, there is difficulty in demonstrating reliability in this manner when it is made a contractual requirement. Since continuing observations on the same piece of equipment cannot be macle, large quantities of usually costly equipment are required to satisfactorily demonstrate reliability.

Technigles for Higher Reliabiaty

Areas of reliability analysis that are particularly appealing are those that lead directly to increased reliability. Failure of equipment can be either catastrophic or the change of some performance parameter to an unacceptable level. Analytical techniques, leading to minimization of failures of both types, are available. Techniques for further reliability improvement with the occurrence of failures can be analytically treated. Quantitative reliability estimates lead to optimum system design. Such techniques for higher reliability are discussed below.

Reliability of electronic equipment, when used, is the product of usage reliability and inherent-equipment reliability. Usage reliability reflects such factors as the operator and maintenance personnel ability, maintenance practices, and use enviromment. Similar equipment under different usage conditions will often realize different reliabilities. Inherent reliability is a complex factor related to component part cuality, electrical and mechanical design maturity, and workmanship in assembling the equipment. Further discussion is with respect to inherent reliability, which is under the control of the equipment designer and producer.

Controlling Performance Change Failures

The majority of failures of electronic equipment where a performance parameter has changed to an unacceptable level can be eliminated in design.

Control of performance change failures can be approached by attempting to design circuits which will perform properly when all component part values are simultaneously at their limits. Such an approach may
appear feasible where only the typical initial manufacturing tolerance is considered by using circuits requiring a larger quantity of component parts, or precision parts, or both. However, there are many addlitional causes of part value change other than initial tolerance, and when all part value change caluses are considered, the above approach is often impossible. In addition, the larger quantity of component parts to effect the above remedy will have a greater chance of catastrophic failure and thus may offset any total reliability gain.

Component part values of a large quantity of similar parts will be distributed over a range of values, with usually only a few values near the extreme limits. The distribution of the circuit performance variable can be predicted from the distributions of the component part values. Performance variable distribution ranges of the circuit will be smaller than the range obtained by simultaneously using component-part tolerance-limit values in the circuit equation. Control and minimization of performance out of acceptable limits is possible through this realistic prediction of the performance variables distribution.

Exact values of a large quantity of the same component part are clistributed over a range of values. Measuring and tabulating values of the same parts from a stable production process over a period of time would reveal the initial distribution of the values. The basic distribution often found is the familiar normal or Gaussian, as shown in Fig. 7. This distribution is completely described by its mean value and standard deviation, sigma. ${ }^{14}$ Manufacturing tolerances of perfected production processes are usually 3 sigma or better.

Fig. 7-The familiar normal or Gaussian distribution.
Distributions of performance variables can be estimated from the distributions of component part values. ${ }^{15}$ When the analytical expression relating the performance variable to the component part values is

$$
\begin{equation*}
y=f\left(x_{1}, x_{2}, \cdots x_{n}\right), \tag{9}
\end{equation*}
$$

the standard deviation (see Fig. 7, normal distribution) of the performance variable is obtained from

[^29]\[

$$
\begin{align*}
\left(\sigma_{y}\right)^{2}= & \left(\frac{\partial y}{\partial x_{1}}\right)^{2}\left(\sigma_{x_{1}}\right)^{2}+\left(\frac{\partial y}{\partial x_{2}}\right)^{2}\left(\sigma_{x_{2}}\right)^{2} \\
& +\cdots\left(\frac{\partial y}{\partial x_{n}}\right)^{2}\left(\sigma_{x_{n}}\right)^{2} \tag{10}
\end{align*}
$$
\]

where
$y=$ performance variable value,
$x_{n}=$ component part values,
$\sigma=$ standard deviation of the appropriate distribution.
Nominal component part values are used for numerical determination of the partial derivatives of (10). The nominal value of the performance variable is obtained from using the component parts' nominal value in (9).

This technique is based on the assumptions that component parts are randomly selected for assembly, that component-part value ranges are not large relative to the nominal value, that the various component-part values are independent, and that distributions of com-ponent-part values are normal. Techniques are available to treat analytically violation of the assumptions. ${ }^{16}$ However, due to the complexity of full treatment and the approximate status of component-part value distributions, the additional effort is not typically warranted.

A moderate portion of component parts in electronics are selected by value from a larger group and have nonnormal distributions. The distribution of selected parts often is described essentially by the rectangular distribution shown in Fig. 8. In such instances, the technique of (10) is still useful where there are 3 or more compo-nent-part values. The standard deviation of componentpart values with rectangular distributions is obtained from

$$
\begin{equation*}
\sigma=B / \sqrt{3}, \tag{11}
\end{equation*}
$$

where B is as inclicated in Fig. 8 .

Fig. 8-The rectangular distribution.
The performance value distribution will be nearly normal because of the tendency of combinations of nonnormal distributions to approach a normal distribution. As a general rule, where there are only two non-normal

[^30]component-part values, one should design for both simultaneously at their distribution limits.

Measures of component-part value distributions to be used in the application of this technique are not generally a vailable. Such distributions can be approximated by consultation with component-part manufacturers, examination of test data, and study of component part specifications. Such tabulations of variations are admittedly approximate, but they are still useful in making first approximations as to what the performance value extremes will be realistically.

Tabulations of component-part variations prepared for limited use (short-life guided-missile electronics) are shown in Tables I and $11 .{ }^{17}$ As indicated in the tabulated variations, there are many additional causes of variations other than the typical manufacturing tolerance of new parts under ambient conditions. Component-part value variations are caused by:
a) Manufacturing tolerance.
b) Applied voltage.
c) Soldering.
d) Operational aging.
e) Nonoperational aging.
f) Ambient temperature.
g) Power dissipation.
h) Operational instability.
i) Short time instability.
i) Humidity.

Further, variations for any cause will be of different types and will be any combination of:
a) Distributions.
b) Mean value change.
c) Reversiblity or irreversibility.

Distributions are assumed to be normal, and \pm values shown in Tables 1 and 11 are 3 sigma limits. The mean value change refers to the existence of a shift in the mean value, as indicated in Tables 1 and 11 loy $a+$ or a- . Reversibility or irreversilitity is a function of the variation callse, where time is irreversible, temperature typically reversible, and voltage either. Fïg. 9 ilhustrates these points using component-part value variation data from Tables I and II.

The form of the variations of component-part values illustrates that variation caluses result in a high and a low set of changes. In using such variations all possible simultaneous causes are separately combined for both high and low value changes. Nominal value changes are alyebratcally added, while the distributions are statistically added by taking the square root of the sum of the squares. Thus the value changes of each component part reduces to a set of high and low values, both having a

[^31]TABIE 1
Varlatons to Be Expected in Resistors anis Capacitors

	Resistors (Per Cellt)			Capacitors (Per Cent)	
	Jeposited Carbon	$\left(\begin{array}{c} \text { Composition* } \\ (1 \text { megonno or less) } \end{array}\right.$	Precision IVirewound	Paper	Glass
Typical manmacturing tolerance	± 1	± 5	± 0.25	± 5	± 5
Change at $+125^{\circ} \mathrm{C}$	-3.5	+11	+0.25	$+5$	+1.3
Change at $+85^{\circ} \mathrm{C}$	-2.1	± 4	$+0.15$	+ 3	+0.8
Change at $-54^{\circ} \mathrm{C}$	+2.8	+12	-0. 20	-6	-1.0
Aging change	-0.4 ± 1	-5 ± 2	± 0.20	± 2	± 1
Change with heary loating (near maximum rating)	-1.8	$+7$	+0.1	-	-
Change due to voltage coefficient (100) volts de applied)	-	-1.5	-	-	-
Soldering change	-	- 2	-	-	-

* Composition resistors may suffer a +10 per cent additionat change if exposed to 95 prer rent relative humidity, $55^{\circ} \mathrm{C}$, for 100 hours.

TABI.E H
Vakiatlons to Be Explectied IN Tr-bles*

	Tramseomductance (ler Cellt)		I'late Corrent (ler Cellot)		Amplitication Factor (Per Cent)	
	1.0w	High	Low	High	1.0w	High
Mamufacturing tolerance	-8 ± 10	$+8 \pm 10$	-10 ± 14	$+10 \pm 14$	$+8 \pm 7$	$+8 \pm 7$
10 per cent decrease in lilament voltage	-5 ± 3	-	-5 ± 3	-	Negligible	
10 per cent increase in filament volange	-	$+5 \pm 3$	-	$+5 \pm 3$	Negiligible	
Aging change	-6 ± 5	-	-10 ± 5	-	-	+2土3
Random change when lirst entergizing	± 10	± 10	± 10	± 10	Negligible	

* These data are pertinent to tubes procured to the AII.E-1 speciliation and used near their design center values. The low and high conditions, which apply specilically to mannfacturing tolerances, result from the MIL-E-I specification having upper and lower atoreptance limits on the tube parameter average (called LAL and C.AL in MHL, F-1) and, in addition, an acceptance limit on the dispersion (ailled $A L D$ in $M I L, E-1)$. If the manufacturing tolerance is adjusted out, it can be omitted from the combined tolerance.

Fig. 9-Examples of component part calue variations.

TABLE III
Expected Changes

	Resistor, Composition (Per Cent)		Tube, Transconductance Change (Per Cent)	
	l.ow	High	Low	High
Manufacturing tolerance	± 5	± 5	-8 ± 10	$+8 \pm 10$
Change at $+85^{\circ} \mathrm{C}$	± 4	-	-	-
Change at $-54^{\circ} \mathrm{C}$	-	$+12$	-	-
. Sing chance	-5 ± 2	-	-6 ± 5	-
Soldering change	-2*	-2^{*}	-	-
Fibament voltage change of ± 10 per cent	-	-	-5 ± 3	$+5 \pm 3$
Kandumi hange when first encrgized	--	-	± 10	± 10
Totals	-7 ± 6.7	$+10 \pm 5$	-19 ± 15	$+13 \pm 15$

* A fixed change that will affect both the low and high conditions.
mean value and a distribution. Table III illustrates the application of this method to the composition resistor and vacuun tube transconductance of Fig. 9 for various causes of changes.

Performance value distributions are next obtained using the two sets of component-part value distributions and the appropriate transfer function. Eqs. (9) and (10) are applied to the appropriate transfer function for both the low and high conditions. The resulting lower distribution limit for the low condition and the high distribution limit for the high condition are realistic extreme performance limits that can be expected for the possible simultaneous combination of variation causes.

The resistance and transconductance of Table III are for a load resistor of 1000 ohms nominal and a tube of 5000 micromhos nominal for a 7 -stage IF strip where all stages are similar. The IF strip over-all gain transfer function is

$$
\begin{equation*}
A=\coprod_{n=1}^{\eta}\left(G_{m_{n}} R_{1_{n}}\right. \tag{12}
\end{equation*}
$$

where

$$
A=\mathrm{IF}^{\circ} \text { strip gain, }
$$

$G_{m_{n}}=$ transconductance of each tube,
$R_{1_{n}}=$ resistance of each load resistor.
Fig. 10 shows the resulting gain distributions and indicates that the worst probable limits to anticipate under operating conditions are 74.2 and 114 db .

Application of this technique is possible to any circuit or network where the transier function is known. The technique can be expanded in scope and used to relate circuit performance to equipment performance. Where the transfer function is not known or is too inaccurate, the experimental statistical method of multiple regression will yield an empirical transfer function.

Fig. 10-D Distribution of IF strip gain at low and high conditions.

Reducing Catastrophic Failures

Catastrophic failures at the component-part level are such failures as shorted capacitors or open resistors. In most circuits catastrophic failure of a component part will cause catastrophic failure of the circuit. Techniques leading to minimization of such failures have been formulated. Catastrophic failures can be reduced but not entirely eliminated.

Catastrophic failures of component parts are related to electrical and environmental stress levels. Thus, by reducing these stress levels, the incidence of catastrophic failures are reduced. Further stress level reduction will of ten reduce part parameter variations and thereby assist in minimizing performance change failures.

Stress-level catastrophic failure-rate relationships have been formulated on the basis of the best knowledge available by the Radio Corporation of America. ${ }^{18}$ Such relationships are presented in this RCA work as family-of-curves, as shown, in a generalized manner, in Fig. 11. These component-part failure-rate characteristics are available through the Office of Technical Services, Washington, D. C. ${ }^{18}$

[^32]

Fig. 11 -Format of estimated component part catastrophic failure rate-stres level relationships ($R C A$ IR1100)

Failure rates referred to in these relationships are assumed to be constant, as indicated in Fig. 1 , for electronic equipment. In the previons discussion of the treatment of continual-use chectronic-equipment reliability quantitatively, the point was made that the pertinency of the constant fallure rate conditions to component patts was at this time questionable. Also, the failure-rate quantities assigned are averages and are subject to consideratble variation.

These limitations do not detract from the excellency of the curves. They are a very useful guide in controlling and reducing catastrophic failures of component parts by showing designers where electrical and environmental operating level reduction (derating) will be most effective.

Redundancy

The approaches of reducing electrical and environmental stresses on component parts, and designing. circuits, tolerant to realistic variations in component part values, that have been discussed increase reliability by minimizing failures. Reliability can be further improved by incorporating additional elements, that serve only to increase reliability of equipment. Reliability is defined as the probability that a piece of equipment will perform satisfactorily for a certain time under specified usage conditions. This definition says nothing about failure, and if a piece of equipment can be made to perform satisfactorily for longer time periods even if failures occur, its reliability has been increased. Redundancy is based on this point.

In typical electronic equipment (nonredundant),

$$
\begin{equation*}
R=\prod_{i=1}^{n} R_{i} \tag{13}
\end{equation*}
$$

where

$$
\begin{aligned}
R & =\text { total reliability, } \\
R_{i} & =\text { reliability of the individual elements, }
\end{aligned}
$$

relates equipment reliability to those elements compris-
ing the equipment. Elements can vary from individual component parts to groups of component parts combined into single circuits or groups of circuits. In this discussion of redundancy, elements will be circuits or groups of circuits. The smallest breakdown of elements into individual component parts is a basic portion of practical reliability estimating which is discussed in the subsequent section.

E(f. (13) is based on the assumptions that chance of failure of any element is not related to the chance of any ot her element failing and that haihre of any element causes equipment failure. These assumptions are sulficiently correct in typical equipment to make the concept applicable. The relationship of (13) is based on the application of the general rule of mathematical statistics of multiplication for the probability of joint, independent events to the probability of successful operation of all elements.

When elements are made redundant, reliability of the combination is

$$
\begin{equation*}
R=1-\left(1-R_{i}\right)^{n} \tag{14}
\end{equation*}
$$

where

$$
n=\text { mamber of redundant elements. }
$$

Eq. (14) is for the idealized case of perfect failure detection and switching among elements. The relationship of (14) is based on the application of the general rule of mathematical statistics of multiplication to probability of failure of all elements. Including the reliability of the failure detection and switching mechanism changes total reliability to

$$
\begin{equation*}
R=R_{s}\left[1-\left(1-R_{i}\right)^{n}\right] \tag{15}
\end{equation*}
$$

where
$R_{s}=$ reliability of the failure detection and switching device.

Eq . (15) indicates that R_{s} has a minimum value below Which there is no reliability gain over a single element.

Fig. 12 illustrates those concepts where elementreliability time functions are assumed to be exponential, as shown in Fig. 4. Note that where redundancy is used, the reliability time functions are quite different from the exponential. Hence, a method of comparing various redundant and nonredundant approaches is to compare their reliability time functions.

Investigating further into redundancy reveals that making the complete piece of equipment redumdant may not be the optimum technique. Assuming periect failure detection and switching, optimum results are achieved by making every smallest possible element redundant, as illustrated by Fig. 13. The various reliabilities of the combinations of fig. 13 are obtained by the appropriate application of the fundamental relationships of (13) and (14). Similarly, reliabilities of the

Fig. 12-Idealized reliability improvement with redundancy.

Fig. 13-Idealized reliability improvement for various redundancy levels.
great many possible combination methods are obtained by such application of (13) and (14).

Quantitative appraisal of the reliability of redundant approaches can be carried to further detail than indicated thus far. Total reliability of a redundant combination with switching was expressed by (15). Actually, there are various contingencies, such as erroneous signal from failure detectors or erroneous switching, that lead to a more detailed analysis. ${ }^{19}$ Such a contingency also is the criterion of failure for switching circuits. ${ }^{20}$ Successful opening of switches in parallel involves the opening of all switches, hence (13) is pertinent for the reliability of opening. Successful closing, however, involves a single switch closing, and hence (14) is pertinent for the reliability of closing. Switches physically in series can be similarly considered and will result in the opposite situation.

The type of redundancy referred to thus far involves switching the signal flow. If electrical power supplying a redundant element is switched instead of, or in addition to, signal, and if there is little chance of an element failing with no power supplied, a different analytical

[^33]appraisal is pertinent. This situation is often thought of as standby. Reliability of elements on standby, where each element has an exponential time-to-failure distribution, is ${ }^{21}$
\[

$$
\begin{equation*}
R=\sum_{i=0}^{n-1} \frac{1}{i!}\left(\frac{t}{M}\right)^{i} \exp [-t / M] \tag{16}
\end{equation*}
$$

\]

E(1. (16) must be individually derived for various time-to-faihure distributions (see Fig, 3). However, comparing (16) to (14) for the exponential distribution, and using the same mean time to failure, M, reveals that standby reliability is somewhat higher.

The above discussion of redundancy presents various fundamentals and notes of application that relate the topic to the lield of reliability analysis. The concept of redundancy has potentials of significantly increasing equipment reliability. However, this reliability increase will be at the cost of additional size, weight, and money. Considerable study by system and reliability analysts is currently being directed to the feasibility of the concept, and at least one program (AN/SPG-56 Radar for the Talos Missile System) involving equipment is being implemented using extensive redundancy principles. ${ }^{22}$

Reliability Estimating

Estimating reliability is particularly useful in the planning and early design eras of electronic equipment and systems. Estimates indicate whether proposed equipment will have the necessary reliability, allow the comparison of reliabilities of various approaches, and indicate the design emphasis necessary to achieve reliability goals. If reliability of electronic equipment progresses from the present status in military electronics as a qualitative objective or quantitative goal to a quantitative requirement, accurate techniques for estimating reliability will become a necessity.

An ideal equipment reliability estimate relates equipment periormance parameters to the characteristics of the individual component parts. ${ }^{23}$ The equipment performance is analytically related to part characteristics; the part characteristics are expressed as functions of time and environment. Part characteristics for such a

[^34]reliability estimate must include the pertitent part parameters expressed as statistical distributions in time and environment and the probability of catastrophic failure as a function of time and environment. With this information, it is possible to obtain the probability of satisfactory equipment performance and the confidence limits of this probability at given combinations of time and stresses.

The ideal equipment reliability estimating technique thus involves utilizing the approaches previously discussed on cattastrophic and performance change failures and reliability of combinations. However, while these approaches, when simplified to first order approximations, are useful in reducing failures and increasing reliability, they are not currently practical for widespread use in reasonably-accurate relability estimating. I lighly accurate transfer functions and component-part characteristics are, in most cases, not available. Practical reliability estimating uses a simplified approach that can be reasonably accurate when projerly used.

Reliability estimates are made by relating, in a simplified manner, equipment reliability to component-part reliability. Equipment reliability is assumed to be

$$
\begin{equation*}
R=\prod_{i=1}^{n} R_{i} \tag{1.3}
\end{equation*}
$$

where

$$
\begin{aligned}
R & =\text { equipment reliability, } \\
R_{i} & =\text { component part reliability } .
\end{aligned}
$$

This approach is based on the assumptions that chances of failure of the various component parts are independent of each other and the failure of any part will result in equipment failure.
ludividual components are assumed to have reliabitities as described by (2). Failure of equipment or component parts is assumed as either catastrophic or as the change of some parameter to an unacceptable level. Hence, (1.3) becomes

$$
\begin{align*}
R & =\prod_{i=1}^{n} \exp \left[-t F_{i}\right] \\
& =\exp \left[-t \sum_{i=1}^{n} F_{i}\right] \tag{17}
\end{align*}
$$

where
$F_{i}=$ component part hailure rates.
Equipment failure rate F is estimated from

$$
\begin{equation*}
F=\sum_{i=1}^{n} F_{n} \tag{18}
\end{equation*}
$$

Although, as previously discussed, the assumptions upon which this morlel is based are not completely satisfied, the method is a useful tool in reliability analysis. In applying this technique reduced equipment
performance, different modes of operation and redundancy should be considered. ${ }^{24}$ In complex electronic equipment there are often circuits whose failure results in reduced, but still useful, equipment performance. Complex equipment may have various modes of operation where each mode does not utilize all circuits. In these situations, failure rate can be estimated separately for each mode of operation by making the assumption that failure of noncommon cireuits in one mode does not caluse equipment failure in other modes. Where redundancy exists, the technique above (18) is applied to nonredundant elements; then the appropriate redundant relationships are applied to the nonredundant element reliability time functions.

Component-part failure rates suitable for use in (18) to estimate equipment reliability have been reported by various sources. ${ }^{25}$ The reported data show wide divergencies for the same type of component part. As previously cited, inherent equipment reliability is a result of many complex factors such as component-part relability, electrical and mechanical design approaches and maturity, and manufacturing techniques. Therefore, the wide variations in reported failure rates should be expected because of the wide variations found throughout the electronics industry in the factors just cited that affect reliability.

Examination of many sources of reported componentpart failure rates suggests that the failure rates in Table IV' are pertinent for the current state of the art on

TABIE N
Componext part Fallerie Figitres for Reliablity Estimating

Component Part	Failure Rate*	Component Part	Failure Rate*
Capacitors			
Paper	0.67	Relay	5.0
Ceramic	0.67	Resistors	
Mica, glass	0.5	Composition	0.5
Others	2.5	Film	1.0
Choke, coil	1.67	Wirewound	0.5
Commector	1.2.5	Sorket	0.5
Crysial	5.0	Switeh	5.0
Deliay line	5.0	Syonchro	5.0
Diode (semicondatetor)	2.5	Thermostat	10.0
I leater	10.0	- Pransformer	2.5
Magnetic amplitier	1.25	Iransistor	5.0
Motor	25.0	Tribes	
Potentionmers		Rereiving	20.0
Wirewound	10.0	Other	100.0
Composition	1.67		

* Failures per 10 ' hours.

[^35]mature equipment where there has been a high degree of reliability consciousness and gross design errors have been removed. Further, these failure rates are for a typical laboratory enviromment. In reliability estimates for other more severe environments, these failure rates should be increased. The writer suggests a multiplication of these failure rates by two for typical manned aircraft and by 10 for typical missile flight enviromments.

The component-part failure rates of 'rable IV are principally tools of equipment reliability estimating. The failure rates represent an average. Therefore any specific equipment might have little trouble with one component part, but more with another, resulting in a cancelling effect.

In the previous discussion of treating reliability quantitatively, equipment was divided into continualuse equipment and single, short-time-use equipment. This approach toward reliability estimating is directed primarily toward the continual-use equipment, but can be applied to single-use equipment by following the same approach and computing the reliability for the appropriate short time.

This reliability estimating technique can be moderately accurate where an equipment producer develops his own component-part failure-rate data. One such approach has resulted in data that has been ultimately substantiated as being capable of estimating equipment reliability within approximately 15 per cent. ${ }^{26}$

Relationship of Analytical Techniques to Effective Reliability Improvement

The approaches discussed to this point on reliability analysis only touch on a portion of a complete engineering effort for high reliability. Many factors affect reliability, and it is difficult to isolate them from the total of all the factors in designing and producing electronic equipment. It is a fundamental fact that the reliability of equipment is established in design, and after the design is committed only gross errors can be fixed within reasonable economic realms.

Elements of a complete reliability program are presented in Table V. Examination of these elements indicates that this is merely a common sense approach to good engineering. The underlying theme of these elements is that of first doing everything reasonable to minimize and eliminate weaknesses and then performing adequate testing in search of existing weaknesses. The objective is to prove the product by design adequacy studies and sufficient testing prior to releasing it from engineering.

The elements of Table V can be applied in varying extents to different engineering programs. On programs where reliability is stresserl, the elements should be

[^36]TABLE V
Engineering Reliablhity Elements

Use Reliable Component Parts

Determine best component-part type by:

1) Past experience
2) Evaluative tests.

Determine best vendors by:

1) Past experience
2) Screening tests and tests to failure
3) Vendor facility survey.

Design for Reliability

Design for Reliability	
Electrical-rcliable circuits by: 1) *Derate component parts	Packaging-mainlain a balance among:
2) *Minimize component-part variation effects through	1) Reliability-adequate safety margins
statistical techniques and feedback	2) Maintainability-accessibility for repair
3) Simplicity	3) Producibility-ease of as-
4) Proven circuits	sembly
5) *Redundancy 6) *Reliability estimates	4) Operability-ease of operation
systems design.	5) Size and weight—meet requirements.
Packaging-minimize environmental effects by:	
1) Absorb vibratory energy	
2) Adequate heat flow	
3) Humidity protection	
4) Shock protection.	

Perform Adequate Testing

Locate weaknesses for corrective action by:

1) Circuit breadboard bench tests
2) System breadboard bench tests
3) Mechanical mock-up environmental tests
4) Engineering model bench tests
5) Engincering model environmental tests.

* Analytically treated in this paper.
completely applied. Where reliability is not stressed, the extent of application will be less.

The elements of the reliability effort of Table V' which are analytically treated in this paper are coded with an asterisk. Only a few asterisks appear. Analytical techniques only form a part of engincering for reliability and must not be over emphasized at the expense of other equally important elements.

The engineering reliability efforts must be supported by efforts in manufacturing (quality control) to maintain and improve inherent reliability and by efforts in the use of the equipment to improve any gross weaknesses by field changes.

Concorsan

Analytical techniques learling to improved equipment reliability have evolved in the last few vears. The techniques are not precise, but they are effective in reducing failures and increasing reliability. The development of quantitative reliability models is leading to the formal treatment of reliability as a contractmal requirement. These analytical techmiques are effective but are just a part of total reliability efforts. A total reliability approach is that of essentially sound engineering supplemented by these recently developed analytical techniques.

Considerable research and st udy of reliability analysis techniques is currently occurring from both a sound
theoretical approach and from attempts at practical application. Many electronic equipment prolucers are experimenting with formal and informal reliability programs. As results are achieved and experience gained, expansion and modification of the material presented herein can be expected.

AckNowledgment

The author is indebted to the other stall members of the Motorola Reliability and Components (roup who assisted in gathering the information contained in this paper. Wo a large extent this is a collection and synthesis of the isolated works of many people. Acknowledgment is extended to these people, and their work, which is referenced throughout the piper.

A Stabilized Locked-Oscillator Frequency Divider*

PHILIP R. SCOTT, Jr. \dagger, member, ire

Abstract

Summary-This paper presents an analysis of a simple oscillator designed for stabilized frequency divider application. The oscillator combines some of the characteristics of sinusoidal and relaxation oscillators to provide a high degree of frequency stability while allowing sufficient tendency for synchronization. The analytical results are obtained in a graphical form which is easy to handle and which could be used as a design procedure for stabilized frequency dividers. Synchronization of the oscillator is described for the case of an input signal consisting of narrow pulses. It is shown that the circuit can maintain a given frequency division ratio regardless of variations in the amplitude of such a synchronization signal.

The results of the graphical analysis are confirmed by experimental observations. Performance data are presented indicating that the circuit is capable of frequency division ratios of 30 to 40 without requiring close control of the power supply voltage.

INtroduction

THE generation of subharmonics, or frequency division, can be performed by several types of circuits. ${ }^{1-4}$ An important class of frequency dividers makes use of the locking property of oscillators.

* Original manuscript received by the IRE, January 30, 1059; revised mamuseript received, July $1.3,1959$. Most of this material was contained in a thesis which the author submitted to the Moore School of Engineering, University of Pennsylvania, Philarlelphia, I'a., in partial fulfilment of the requirements for the M.S.E.E. degree.
\dagger Instrumentation Lab., Mass. Inst. "lech., Cambridge, Mass.
' H. Sterky, "lequency multiplication and division,"Proc. IRE, vol. 25, pp. 1153-1173; September, 1937.
${ }^{2}$ R. I.. Niller, "Fractional-frequency generators utilizing regenerative modulation," Proc. IR1:, vol. 27, pp. 446-457; July, 19.39.
${ }^{3}$ IV. It. Bliss, "Electronic digital counters," Elec. Engrg., vol. 68, pp. 309-314; April, 1949.
"K. C. In and Y. Il. Kin, "Circuit for a magnetic subharmonic pulser," Trans. AIEE, pt. I. pp. 137-141: May, 1957.

This phenomenon has been discussed by a number of writers, ${ }^{5-10}$ and for many years has been used as a basis for Irequency divider design. ${ }^{11-18}$

Oscillators which generate waveforms rich in harmonics are easier to synchronize than those which generate sinusoidal waveforms. ${ }^{7,19}$ For this reason, relaxa-

[^37]tion oscillators are often used as frequency dividers. Relaxation oscillators are sensitive to operating conditions, however, and variation of the synchronizing signal amplitude or of the power supply voltages can cause synchronization to the wrong submultiple of the input frequency. These parameters must be closely controlled to avoid marginal operation. The problem becomes more difficult at high ratios of frequency division.

The locking requirements suggest the use of an oscillator which combines the desirable characteristics of relaxation and sinusoidal oscillators. Such a circuit would have good freguency stability and yet would be easy to synchronize. Builder ${ }^{2 n}$ stabilized a gas tube relaxation oscillator by adding a tuned feedback loop. This reduced the harmonic content of the generated waveform enough to improve stability, while at the same time allowing sufficient tendency for synchronization. Later Sulzer ${ }^{21}$ obtained a similar result by increasing the harmonic content of the waveform generated by a simusoidal oscillator.

This paper presents a study of a simple stabilized frequency divider similar to that described by Sulzer. A graphical solution of the nonlinear differential equation of the circuit is obtained by the piecewise-linear method. ${ }^{22}$ The antalysis is casy to carry out, and could be used as a basis for the systematic design of stabilized frequency dividers. The mechanism of synchronization is described for the case of an input signal consisting of sharp pulses, and it is shown that the oscillator can be made independent of variations in the amplitude of this type of synchronizing signal.

Circitit ()per.ation

The oscillator of Fig. 1 (a) can be adjusted to operate as a stabilized frequency divider. If the resistor R is made very small, the circuit operates as a simusoidal oscillator. If R is made very large, the effect of the tuned circuit becomes negligible, and the circuit operates as a free rumning multivibrator. Somewhere between these extremes lies a range of resistor values for which the circuit takes on characteristics of both types of oscillators.

Fig. 1 (b) is an approximate equivalent circuit of Fig. 1(a), obtained by neglecting the plate reaction of the triodes as well as the bias resistor R_{b} and the blocking capacitors C_{1}. Coil losses are represented by the resistor r_{c}. The amplifier open circuit output voltage e_{o} is a nonlinear function $\phi\left(c_{i}\right)$ of its input voltage e_{i} as illustrated in Fig. 2. To simplify the analysis, the piecewiselinear approximation of Fig. 2(b) will be used.

Referring to Fig. 1(b), and representing the effect of

[^38]

Fig. 1-Stabilized frequency divider. (a) Practical circuit. (b) Approximate equivalent circuit.

Fig. 2-Smplifier function $e_{n}=\phi e_{i .}$ (a) Ietual function. (b) ipproximated function.
the tuned circuit by its voltage e_{t}, the loop equation for the circuit is

$$
\begin{equation*}
\phi\left(i R+e_{t}\right)-\left[i(R+r)+e_{t}\right]=0 . \tag{1}
\end{equation*}
$$

This can be illustrated on a graph as shown in Fig. 3. The functions $\phi\left(i R+e_{t}\right)$ and $\left[i(R+r)+e_{t}\right]$ are plotted against the amplifier output current i, and a composite curve is obtained by subtracting the second of these
curves from the first. The points where the composite curve crosses the current axis are equilibrium points which satisfy (1).

Fig. 3(a) shows the construction for zero voltage e_{t}. The function $\phi\left(i R+c_{t}\right)$ contains a segment with slope $K R$, where K is the unsaturated amplifier gain and is greater than plus one, By choosing a resistor R large enough this slope can be made greater than the slope $(R+r)$ of the function $\left\lceil i(R+r)+e_{i}\right\rceil$. As a result, the system has three equilibrium positions labeled a, b, and c. Solutions a and c are stable while b is unstable, and thus the device operates as a bistable or trigger circuit.

As the voltage c_{t} is moved away from zero, a point is reached where the device becomes monostable. Fig. 3(b) shows the construction for a positive voltage e_{1}. The ef fect is to translate the composite curve of Fig. 3(a) upward and to the left. The amount of translation is proportional to the magnitude of e_{t}. In Fig. 3 (b) the shift has been carried so far that solution c is the only one remaining of the original three. A similar result holds for a negative voltage, shown in Irig. 3(c), with the translation occurring (lownward and to the right,

The transitions between bistable and monostable operation of the amplifier occur when one of the bends d

(a)

(b)

(c)

Fig. 3-Graphical determination of amplifier operation as a function of tuned circuit voltage e_{1}. (a) $e_{t}=0$. (b) e_{1} is positive. (c) e_{t} is negative.
or e in the composite curve is tangent to the current axis. The values of e_{t} for which these points are tangent are given by

$$
\begin{equation*}
e_{\ell}= \pm E_{j}= \pm E_{o s}[K R-(R+r)] / K r \tag{2}
\end{equation*}
$$

The operation of the circuit for all values of voltage e_{t} is summarized in Table 1.

TABLE I
Circutt Operation as a Function of efor $K R>(R+r)$

e_{t}	Amplifier Operation
$\begin{aligned} & e_{i}<-E_{J} \\ & -E_{J}<e_{i}<+E_{J} \\ & +E_{J}<e_{t} \end{aligned}$	Monostable: $c_{0}=-E_{0, s}$ Bistible: $\varepsilon_{0}=$ either $-E_{o s}$ or $+E_{o s}$ Nomostable: $e_{0}=+E_{0, *}$

The voltage c_{l} across the tuned circuit is given by

$$
\begin{equation*}
e_{l}=L i_{1}^{\prime}+r_{c} i_{1} \tag{3}
\end{equation*}
$$

where

$$
i_{1}^{\prime}=d i_{1} / d t
$$

The current i_{2} in the capacitive branch is given by

$$
\begin{equation*}
i_{2}=C e_{i}^{\prime}=C L i_{1}^{\prime \prime}+C r_{c} i_{1}^{\prime} \tag{t}
\end{equation*}
$$

The current entering the tuned circuit is the amplifier output current i, the sum of the currents in the inductive and capacitive branches

$$
i=i_{1}+i_{2}=L C i_{1}^{\prime \prime}+C r_{c} i_{1}^{\prime}+i_{1}=\frac{e_{0}-e_{t}}{R+r}
$$

or

$$
\begin{array}{r}
i_{1}^{\prime \prime}+\left[\frac{r_{c}}{L}+\frac{1}{C(R+r)}\right] i_{1}^{\prime}+\left[\frac{R+r+r_{c}}{(R+r) L C}\right] i_{1} \\
=\frac{e_{0}}{L C(R+r)} \tag{5}
\end{array}
$$

The amplifier open-circuit output voltage e_{o} assumes one of two possible values $\pm E_{o 8}$. In practical circuits the coefficient of i_{1}^{\prime} in (5) is made much less than the coefficient of i_{1}, and the equation has an oscillatory solution given by

$$
i_{1}=I(\exp (-h t)) \cos \left(\omega_{1} t+\alpha\right) \pm \frac{E_{o s}}{R+r+r_{c}}
$$

where

$$
\begin{align*}
h & =\frac{1}{2}\left[\frac{r_{c}}{L}+\frac{1}{C(R+r)}\right] \\
\omega_{1} & =\sqrt{\frac{R+r+r_{c}}{(R+r) L C}-h^{2}} \tag{6}
\end{align*}
$$

and I and α are arbitrary constants depending on the initial conditions.

Differentiating (6) gives

$$
\begin{align*}
i_{1}^{\prime}= & -I(\exp (-h t))\left(h \cos \left(\omega_{1} l+\alpha\right)\right. \\
& \left.+\omega_{1} \sin \left(\omega_{1} l+\alpha\right)\right) \tag{7}
\end{align*}
$$

It is possible to obtain a complete representation of the oscillator operation by using a phase plane plot ${ }^{23}$ of $i_{1}{ }^{\prime}$ against i_{1}. In this analysis, however, it is convenient to first make the following transformation: ${ }^{24}$

$$
\begin{equation*}
u=\omega_{1} i_{1} ; \quad r^{\prime}=h i_{1}+i_{1}^{\prime} \tag{8}
\end{equation*}
$$

from which
$u=P(\exp (-h t)) \cos \left(\omega_{1} l+\alpha\right) \pm \omega_{1} E_{0, k} /\left(R+r+r_{c}\right)$,
$i=-P(\exp (-h t)) \sin \left(\omega_{1} l+\alpha\right) \pm h E_{m \times s} /\left(R+r+r_{c}\right)(\rho)$
where P is all abbitary constant depending upon the initial conditions.

These equations describe families of clockwise logarithmic spirals in the π, v plane. The transformation to logarithmic spirals is useful because such curves can be constructed easily. Also, this representation provides a simple indication of time, since the angular velocity of the radius vector about its center is a constant ω_{1}. Thus, the time reguired to complete ally portion of motion in the system can be calculated by measuring the angle of rotation of the radius vector of the spiral segment. This is convenient in studying the effect of synchronizing pulses.

Fig. 4 illustrates the graphical procedure for describ)ing the generation of oscillations. The first step is to locate on the u, v plane the two possible points around which motion call center. These are labeled point A and point B in Fig. 4. Point 1 has the coordinates $u=+\omega_{1} E_{n s} /\left(R+r+r_{c}\right) ; v=+h E_{o s} /\left(R+r+r_{r}\right)$. Wotion

Fig. 4-Graphical representation of the generation of oscillations.

[^39]centers about this point when the amplifier output voltage is $+E_{n s}$. Point B has the coordinates $u=-\omega_{1} F_{\text {ase }}$ $/\left(R+r+r_{r}\right) ; \quad y=-h \sum_{\text {oos }} /\left(R+r+r_{r}\right)$. Notion centers about this point when the amplifier output voltage is $-E_{0 s}$.

Next, the voltages $\pm E_{J}$ are mapped on the u, v plane. Csing (3) and (8), the volage $+E_{J}$ is mapped as at straight line a given by

$$
\begin{equation*}
\vartheta_{a n}=\frac{+E_{J}}{L}+\left(h-\frac{r_{c}}{L}\right) \frac{u}{\omega_{1}} . \tag{10}
\end{equation*}
$$

Line $b b$ maps the voltage $-E_{J}$.

$$
\begin{equation*}
v_{b b}=\frac{-E_{J}}{L}+\left(h-\frac{r_{r}}{L}\right)_{u_{1}}^{u} . \tag{11}
\end{equation*}
$$

According to Table I the portion of the u, v plane above line aa is a region of monostable operation for which the amplifier open circuit output voltage e_{0} has the value $+E_{w, s}$ and motion centers about point .1 . The portion below line $b b$ is also a monostable region for which e_{n} is $-E_{u s}$ and motion centers about point B. Between $a a$ and $b b$ is the bistable region for which c_{0} can be either $+E_{a s s}$ or $-E_{a s}$, and motion can center about either point A or point B.

The construction begins by selecting some initial point such as 1 in Fig. 4. Since point 1 is below the line $b b$, it falls on the arc of a logarithmic spiral centered about point B. The radius of the spiral is given by:

$$
\text { Radius }=P(\exp (-h t))=P\left[\exp \left(-h \theta / \omega_{1}\right)\right]
$$

where

$$
\begin{align*}
\theta & =\omega_{1} t=\text { angle of rotation in radians }, \\
P & =\text { initial radius } . \tag{12}
\end{align*}
$$

The spiral is drawn clockwise about point B and passed through the bistable region to point 2 where it intersects the line aa. At this point, the center of motion must switch to point . 1. Using (12) with the new initial radius, a logarithmic spiral is drawn around point A which intersects line $b b$ at point 3. Here the center of motion switches back to point B. Fig. 4 shows the growth of oscillations from small initial amplitude. This growth approaches the stable operating amplitude or limit cycle.

The limit cycle describes the steady-state operation of the oscillator. From this construction the operating frequency can be calculated, and the waveforms of the voltages at various points in the circuit can be plotted as functions of time. Fig. $5(a)$ shows the method of calculating frequency. The rotations of the logarithmic spiral segments are θ_{1} about point .1 and θ_{2} about point B. These angles, expressed in radians, can be substituted into the following to determine the frequency

$$
\begin{equation*}
f_{a a}=\omega_{1} /\left(\theta_{1}+\theta_{2}\right) \tag{1.3}
\end{equation*}
$$

where $f_{a a}$ is the free rumning or unsynchronized frequency of the oscillator.

Fig. 5-(a) Calculation of unsynchronized uscillator frequency $f_{n a}$. (b) Calculation of points for a plot of the waveform of tumed circuit voltage ef.
liig. (5b) shows the method of calculating points for a plot of the voltage c_{t} as a function of time. Appropriate values of e_{t} are mapped onto the u, v plane as straight lines which intersect the limit cycle. Starting from some convenient point, the angles of revolution θ of the spiral segments to each of these intersections is measured in radians. From these measurements, the time corresponding to a value of e_{a} is given by

$$
\begin{equation*}
t_{n}=\theta_{n} / \omega_{1} \tag{14}
\end{equation*}
$$

The values of e_{t} are then plotted against the corresponding values of time to obtain the waveform. Fig. 6(a) shows the waveform for a typical oscillator. It is a decaying sine wave which is regencrated every half cycle.

The amplifier open-circuit output voltage e_{0} is a square wave as shown in lig. $6(\mathrm{~b})$. Its value is $+E_{o s}$ during the time motion is centered about point I, and $-E_{0,}$ during the time motion is centered about point B. The wavelorm of amplifier input voltage e_{i} is obtained by substituting values of voltage e_{t} and e_{o} into the following:

$$
\begin{equation*}
e_{1}=e_{t}+\left(e_{0}-e_{t}\right) R /(R+r) \tag{15}
\end{equation*}
$$

As Fig. 6(c) shows, this is sinusoidal with a superimposed discontinuity caused by the switching of the amplifier.

Fig. 6-Typical stabilized oscillator waveforms. (a) Tuned circuit voltage e_{1}. (b) Amplifier open circuit output voltage e_{0} (this cannot be observed on an operating circuit becatuse of loading). (c) . Implitier input voltage e_{i}.

In order to permit this type of oscillation, the resistor R must be large enough to satisfy the condition $K R>(R+r)$. There is also an upper limit. As R is increased, the points A and B move closer together in the u, $a^{\text {p }}$ pane, and the lines $a a$ and $b b$ move farther apart. Eventually no limit cycle can be constructed, and the desired type of oscillation becones impossible. At this point the effect of the blocking capacitors C_{1} can no longer be ignored, and the circuit generates relanation oscillations at a much lower freguency.

It is possible to select starting points for the graphical construction that will not learl to the fimit cycle. Consider the shaded area surrounding point 11 in Fig. 7 (a). This area is bounded by the spiral segment centered at point A and tangent to line $b b$. If the system is represented by a point within this area, and, if motion is centered about point . 1 , the initial spiral segment will not cross line $b b$. Under these conditions, it is not possible to construct a limit cycle. A similar area exists about point B.

When these areas are small as shown in Fig. 7 (a), they do not affect the operation of the circuit. The oscillator will generate relaxation oscillations which provide sufficient impulse to start the desired type of oscillations.

Circuit with a small resistor R. (b) Circuit with a larger R.

If the resistor R is made larger, however, the areas overlap and fill most of the area reguired by the limit cyole, ats shown in Fig. 7(b). In this case it sometimes may be necessary to apply an external shock to the circuit to prevent it from continuing to generate relaxation oscillations instead of the desired type.

Sinehronization

The oscillator can be synchronized by a signal of proper frequency applied to the input of the amplifier. A signal consisting of narrow positive pulses can affect the circuit only when motion is within the bistable region and centered about point B. The pulses raise the oscillator frequency by causing the center of motion to switch from point B to point A before motion reaches the line $a a$. When stearly state is reached, the circuit operates as though its limit cycle were constructed as shown in Fig. 8(a), by using some line $a^{\prime} a^{\prime}$ instead of the line aa. The maximum frequency to which the oscillator can be syouchronized be narrow positive pulses is given by the construction of Fig. $8(\mathrm{~b})$ where line $a^{\prime} a^{\prime}$ falls on line $b b$.

The width of the region of bistable operation can be adjusted by varying the resistor R. As R is made smaller, lines $a a$ and $b b$ move closer together and the width decreases. When the following equation is satistied the

Fig. 8-Graphical representation of the effect of narrow, positive sy'nchronizing pulses. (a) Oscillator synchronized to intermediate frequency $f_{a}^{\prime} a^{\prime}$. (b) Oscillator synchronized tomaximums frequency jurn-
oscillator will synchronize only to desired subharmonic regardless of the amplitude of the input pulses:

$$
\begin{equation*}
\frac{f}{n+1}<f_{a a}<\frac{f}{n}<f_{b b}<\frac{f}{n-1} \tag{16}
\end{equation*}
$$

where f is the frequency of the input signal, $f_{a n}$ is the oscillator natural frequency, $f_{b b}$ is the maximum possible synchronized frequency, and n is the desired frequency division ratio.

It is not necessary to construct the spiral curves to determine the frequencies $f_{a n}$ and $f_{b b}$. Referring to liig. $5(a)$, the points .1 and B and the lines $a a$ and $b b$ are located in the u, v plane. Then the points C and D are selected so that the lines $C .1, D . A, D B$, and $C B$ satisfy the following:

$$
\begin{align*}
& (C .1 / D . A)=\exp \left(-h \theta_{1} / \omega_{1}\right), \\
& (D B / C B)=\exp \left(-h \theta_{2} / \omega_{1}\right) . \tag{i}
\end{align*}
$$

With the aid of a slide rule and a scale, these points can be located in a few tries. Then the angles θ_{1} and θ_{2} are inserted into (13) to give the frequency fao. A similar procedure is used to obtain /ho.

Experimental Observations

Fig. 9 shows an experimental circuit designed to operate in the vicinity of 500 cps . The plates of the pentodes are joined to the circuit by electronic coupling and take no part in the generation of oscillations. This provided a method of making accurate frequency measurements without danger of error due to loading from the frefuency meter. Synchronizing signal was applied through the $47 \mu \mu \mathrm{f}$ capacitor which differentiated the square wave input to approximate a series of harrow pulses. The resistor R was made variable so its effect could be studied.

Fig. 10 presents oscillograms of the amplifier input voltage e_{i} and the voltage across the tuned circuit e_{t} with an R of 100 k . The waveforms agree with the graphical constructions of Fig. 6. The e_{t} waveform shows the irregularities caused by the regeneration of

Fig. 9-Experimental circuit.

Fig. 10-Oscillator waveforms for $R=100 \mathrm{k}$. (a) Amplifier input voltage e_{i}. (b) Tuned circuit voltage e_{t}.
the decaying sine wave. These occur simultaneously with the discontinuities in the e_{i} waveform.

The operation of the circuit for several values of R is shown in Fig. 11. These waveforms were obtained by connecting the oscilloscope between one of the control grids and ground. When R was zero the waveform was an approximate half sine wave. As R was raised to about 50 k a small discontinuity appeared, indicating the beginning of the bistable region of operation. The discontinuity increased as R was increased. It was found that for values of R between 50 k and 120 k , the circuit generated only the desired type of oscillations. For values between 120 k and 300 k , either the desired type of oscillations or relaxation oscillations could be generated and the oscillator could be switched from one mode to the other by temporarily shorting the resistor R or the tuned circuit. Above 300 k , the circuit generated only relaxation oscillations.

Figs. 12 and 13 show the operation of the oscillator as a synchronized frequency divider. The synchronizing pulses are superimposed on the grid voltage waveforms. Operation at division ratios of 10,20 , and 40 is illus.

Fig. 11-Control grid waveforms for various values of R. (a) $R=0$. (b) $R=50 \mathrm{k}$. (c) $R=100 \mathrm{k}$. (d) $R=200 \mathrm{k}$. (e) $R=200 \mathrm{k}$ (operating as a relawation oseillator at 23 cps .

Fig. 12-Operation of the circuit as a frequency divider. (a) 10-to-1 division ratio. (b) 20-to-1 division ratio. (c) 40-to-1 division ratio.

Fig. 14-Frequency range over which synchronization can be maintained.

Fig. 13-Operation of the circuit as a 15-to-1 frequency divider over a five-to-one range of synchronizing signal amplitude.

Fig. 15-Per cent change in unsy nchronized oscillator frequency caused by varying the supply voltage. (a) $R=0$. (b) $R=50 \mathrm{k}$. (c) $R=100 \mathrm{k}$. (d) $R=200 \mathrm{k}$. (e) $R=200 \mathrm{k}$ (operating as a relaxation oscillator).

Fig. 16-Range of supply voltage over which synchronization could be maintained for varions frequency division ratios.
trated in lrig. 12. Experimental confirmation of the remarks made in connection with (16) is given in Fig. 13. Here the oscillator matintained a division ratio of 15 in spite of a five-to-one variation of synchronizing pulse amplitude. Fig. $13(\mathrm{~b})$ is of interest as it shows that two of the pulses are sufficiently positive to draw grid current during the portion of the cycle when the tube is cut off.

In Fig, 14 the range of frequency over which the oscillator could be synchronized is plotted as a function of R and compared with the results of graphical calculations. It is noted that the measured frequency range did not reduce to zero as R was lowered to 50 k . This is because the synchronizing pulses from the $47 \mu \mu \mathrm{f}$ capacitor have a finite width. The circuit parameters used in making the calculations were $L=10 \mathrm{hy}, C=0.01 \mu \mathrm{f}$, $r=360 \mathrm{k}, r_{c}=1.2 \mathrm{k}$, and $K=8$. The value of gain K was determined from static measurements of the unloaded push-pull amplifier.
lïg. 15 gives an indication of the frequency stability of the oscillator for various values of resistor R. As expected, the oscillator became more sensitive to supply voltage variation as R was increased, and became extremely sensitive when it operated as a relaxation oscillator. In lig. 16 the supply voltage range over which syonchronization could be mantained is given for several values of division ratio. It appears that the stabilized frequency divider can provide division ratios as high as 30 or 40 without requiring close control of the supply voltage.

Acknowleidgment

The author is indebted to Anthony l'. Pensabene, Philco Corporation, whose experimental work led to the oscillator circuit described.

Correction

A. Schleimann-Jensen, author of two correspondence items entitled "Experiment Indicating (emeration of Submillimeter Wiaes by an Avalanching Semicondactor" and "Further Notes on Indicated Generation of Submillimeter Waves be an Avataching Semiconductor," which appeated on pages 1376 and 1378 , respectivels, of the August, 1959, issue of Proctimoncos, has requested that the following corrections be made to these letters.

In the first letter, in the section contitled "Small Gap Discharges," located in the second columan of page 1376 , the word "cathofle" on line 19 of the first paragraph should be changed to "anode."

In the second letter, in the section entitled "Generation of Low-frequency (Iscillations," located in the second colmmon of page 1379, the first sentence of the second paragraph should have the words "in the first communication" added to it as a concluding phrase.

IRE Standards on Television: Measurement of Differential Gain and Differential Phase, 1960*

60 IRE 23. S1
COMMITTEE PERSONNEL

Subcommittee on Video Signal Transmission Methods of Measurement
J. M. Barstow, Chairman 1955-1959
J. L. Jones, Chairman 1954-1955
J. M. Barstow 1954-1955
K. B. Benson 1954-1957
R. I. Brown 1955-1957
K. I). Chipp 1954-1958
M. II. Diehl 1955-1958
S. Dola, Jr. 1954-1955
A. B. Ettlinger 1957-1959
M. F. Ginystein 19.54-19.57
F. J. Herr 1958-1959 E. B. Pores 1955-1959
II. P. Kelly 1955-1957
II. Mate 1956-1959
L. K. Moffett 1954-1955
R. M. Morris 1954-1959
K. E. Mullenger 1954-1955
R. S. O'Brien 1954-1957
J. R. Popkin-Clurman 1956-1959
E. II. Schreiber 1954-1959
I.. Staschover 1955-1959
D. Tay lor 1958-1959
B. F. Tyson 1954-1955
J. W. Wentworth 1956-1959
IV. B. Whalley 1957-1959
J. F. Wiggins 1958-1959

Committee on Video Techniques

G. L. Fredendall, Chairman 1959-
S. Dobi, Jк., Chairman 1957-1959
I. C. Abrahams 1957-1959
E. E. Benham 1957-1958
S. W. Athey 1957-1959
K. B. Benson 1957-1959
A. J. Baracket 1957-1958
E. M. Coan 1957-1958
J. M. Barstow 1957-1959
L. B. Davis 1957-1958
S. Deutsch 1958-1959
S. Doba, Jr. 1959-
J. M. Barstow, Vice-Chairman 1959-
G. I. Fredendall, V'ice-Chairman 1957-1959
I. J. Duke 1957-1959
J. R. Heiele 1957-1959
J. L. Jones 1957-1959
R. 'T. Petruzzelli 1957-1958
II. J. Poch 1957-1959

Ad Hoc Subcommittee for the Review of the Proposed Standard on the Measurement of Differential Gain and Differential Phase, 1959
W. T. Wintringham, Chairman
W. F. Bailey J. M. Barstow
S. Doba, Jr.
J. G. Kireer, Jr.
C. H. Page

Standards Committee
1959-1960
R. F. Shea, Chairman C. H. Page, Vice-Chairman
J. G. Kireer, Jк., Vice-Chairman
L. G. Cumming, Vice-Chairman
J. Avins
W. F. Bailey
S. Doba, Jr.
R. A. Hackbusch
I. Mertz
M. L. Phillips
M. W. Baldwin, Jr.
P. Elias R.T. Haviland
H. I. Metz
R. L. Pritchard
J. T. Bangert
G. A. Espersen
A. G. Jensen
H. R. Mimno
I. A. Redhead
IV. R. Bennett
R. J. Farber
R. W. Johnston
D. G. Fink
I. Kerney
E. Mittelmann
R. Serrell
J. G. Brainerd
G. L. Fredendall
A. E. Kerwien
G. S. Ley
L. H. Montgomery, Jr.
IV. A. Shipman
D. R. Brown
E. A. Gerber

Wayne Mason
G. A. Morton
H. R. 'Terhune
P. S. Carter
A. B. Glenn
D. E. Maxwell
R. C. Moyer
E. Weber
J. H. Mulligan, Jr.
R. B. Wilcox
V. M. Graham
A. A. Oliner
W. 'T. Wintringham

Measurements Coordinator

J. G. Kireer, Jr.

[^40]
1. INTRODUCTION

1.1 Definitions

T1HIS Standard describes a method for measuring differential gain and differential phase in equipment transmitting either monochrome or color television signals. The characteristics to be measured are defined as follows.

Differential Gain. ${ }^{1}$ In a video transmission system, the difference between (a) the ratio of the output amplitudes of a small, high-frequency sinewave signal at two stated levels of a low-frequency signal on which it is superimposed, and (b) unity.

Note 1: Differential gain may be expressed in per cent by multiplying the above difference by 100 .

Note 2: Differential gain may be expressed in (ll) by multiplying the common logarithm of the ratio described in (a) above by 20.

Vote 3: In this definition, level means a specified position on an amplitude scale applied to a signal waveform.

Note t: The low- and high-irequency signals must be specified. For purposes of this standard these signals will be as they are afterwards described in this paper.

Differential Phase. ${ }^{2}$ In a video transmission system, the difference in output phase of a small, high-frequency sinewave signal at two stated levels of a low-frequency signal on which it is superimposed.

Note 1: Notes 3 and 4 applied to Differential Gitin above, apply also to Differential Phase.

1.2 Scope of Applicution

The primary application of this Standard is intended to be in the field of routine operational and maintenance tests, where rapid interpretation and communication of test results is necessary or desirable. The basic techniques described here are also applicable to laboratory measurements, proof-of-performance tests, and detailed maintenance procedures.

2. ANALYSIS OF THE MEASUREMENT PROBLEM

2.1 Characteristics of Television Signals

Certain significant characteristics of both monochrome and color television signals are illustrated by Fig. 1. Color television signals differ from monochrome signals, shown in Fig. 1 (a), primarily by the addition of two other signal components, which are shown separately in loig. 1 (b). These are:

[^41]

Fig. 1-Waveforms of typical television signals. (a) Luminance or monochrome signal. (b) Chrominance and color sync signals. (c) Composite-color signal.
2.1.1-A burst of about 9 cycles at a subcarrier frequency of approximately 3.6 me transmitted during the blanking interval following each horizontal sync pulse except during the equatizing pulse and vertical sync pulse intervals. This serves as a phase reference for subcarrier regenerators in color monitors, receivers and test equipment.
2.1.2-A chrominance signal, consisting of the sidebands of the phase-and-amplitude-modulated subcarrier, transmitted during active scamning time. To a first degree of approximation, the phase of the chrominance signal controls dominant wavelength in the reproduced picture, while the amplitude controls purity.

The composite color signal, consisting of the sum of the various components, appears as shown in liig. 1(c). Note that the effective axis of the chrominance signal may vary through the luminance range since this axis coincides with the level of the monochrome signal component.

2.2 Effects of Differential Gain and Differential Phase

A necessary condition for distortion-free transmission of a color signal is that neither the amplitude nor the phase of the chrominance signal be altered as a function of the level of the associated luminance signal, and that the luminance signal be unaffected by its own level.

Differential gain other than zero in a video transmission system may catuse undesirable variations in the purity of reproluced colors as a function of luminance level. Similarly, differential phase other than zero in a video transmission system may canse undesirable variations in dominant wavelength as a fanction of laminance level.
2.2.1 Differential gain other than zero in a monochrome transmission system prochaces compression or expansion. The effects of differential phase in a monochrome system are minor and may usually be disregarded.

2.3 Significant l'ariations in Operaling Conditions

The average pieture level $\left(A P^{\prime}\right)^{3}$ oi a television signal depends apon the arerage laminance of the televised scene. For fathfut reproduction, the system as a whole must transmit low video signal frequencies extending to zero or de. It is not neressary to transmit the socalled de component through all parts of the system, however, since this component can be restored at any desired point by de restorers or clampers. There are, therefore, two signilicantly different sets of operating conditions in television systems, depending on whether the de component is present or absent. These conditions are illustrated in Fig. 2.
2.3.1 When the de component is present, as shown in Fig. 2(a), the amplitude range required for the monochrome component of a television signal is fixed at 140 IRE scale mits. ${ }^{4}$
2.3.2 When the de component is absent, as shown in Fig. 2(b), the signal for a given luminance varies with the apl. For practical purposes, it is sufficient to consider signal conditions corresponding to variations in the average picture level from 10 per cent to 90 per cent. I $n d e r$ these conditions, the total amplitude range required for the monochrome component of a television signal in ac-coupled equipment is equivalent to $105+96$ $=201$ IRE scale units.

3. REQUIREMENTS FOR STANDARD MEASUREMENTS

3.1 -1pparatus Required

The apparatus required to measure differential gain and phase in accordance with the method described in this Stindard is shown in block diagram form in Fig. 3. It consists of a test signal generator, an output signal analyzer, and means for displaying or indicating the test results.
${ }^{3}$ Al'L, or average picture level, is defined as the average signal level, with respect to blanking level, during artive picture scanning time (integrated over a frame period, excluding blanking intervals), expressed as a percentage of the difference between the blanking and reference white levels. (Cf. Fig. 2),
${ }^{4}$ For a description of the IRE scale for measuring television signal levels see "IRE Stamdards on Television: Measurements of Lamimance Signal Levels, 1958 (58 IRE 23. Si)," Proc. IRE, vol. 46, pp. 482-180; February, 1958.

Fig. 2- Variation of signal ex-ursions with ill.. (a) D) Component
 sync and blanking signals.)

Fig. 3-Apparatus for the measurement of differential gain and differential phase.

3.2 Requirements for the Test Signal

3.2.1 I mplitute Range. The bow-frequency component of the test signal should be capable of exploring the amplitude range corresponding to the blanking-1o-reference-white range of a normal composite picture signal for each of the following average picture level conditions: 10 per cent, 50 per rent, and 90 per rent.
3.2.2 Cominuity. If the low-frefuency signal explores the amplitude range in discrete steps, the separation between steps should not exceed 12.5 IRE scale mits, where 100 IRE scale units equals the banking-to-reference-white range.
3.2.3 Frequencies. A high-frequency sinewave of 20 IRE seale units peak-to-peak amplitude and of a frequency approximately equal to the color subarrier frequency (3.579545 mc) shoukd be added to the lowfrequency signal (on the order of 15 kc). (See Section 5.1.)
3.2.t Additional General Requirements. The test signal should contain such elements of a composite signal (sync pulses, color syone bursts, etc.) as may be required for proper operation of clampers or other control devices inchaded in the sperifie equipment or circuit under test. The test signal should not alter the normal operating characteristics of the sperific equipment or circuit under test.

3.3 Requircments for the Test Signal I Inalywer

The test signal analyzer should provide means for measuring the amplitude and phase of the fandamental component of the high-frequency signal as functions of the level of the low-frerfuency signal.

3.t Presentation of Test Results

3.t.1. Voltage. The voltage corresponding to 100 IRE scale units (blanking-to-reference-white) should be stated.
3.t.2 Average Picture Level Conditions. Results should be presented for 10 per cent, 50 per cent, and 90 per cent APL conditions separately or for that single condition yielding the largest value of differential gain (or phase). (See Section 5.3.)
3.t. 3 Differential Gain Data. Differential-gain data may be expressed as:
a) A function of one of the stated low-frequency levels with the other stated level arbitrarily fixed, or
b) The extreme values of differential gain with respect to that portion of the differential gain function judged to be most nearly constant (plus inplies expansion, minus implies compression), or
c) The maximum range of the differential gain (difference of extreme values).
3.t.t Differential Phase Data. Infferential phase data may be expressed as:
a) A function of one of the stated low-frequency levels with the other stated level at blanking level, or
b) The extreme values of differential phase with respect to the value at blanking level (plus implies leading phase; minus implies lagging phase), or
c) The maximum range of the differential phase (difference of extreme values).
3.4.5 Supplementary Information. The general portion of the amplitude range associated with a numerical specification should be designated black, center and white.
3.4.6 Typical Examples of Test Results. The same data for a television transmission circuit may be presented as follows:
(Differential Gain and Phase.) (Low-frequency signal 1.0 volt, blanking to reference white)
A. See Figs. 7-10, for presentations as for a) in both sections 3.4 .3 and 3.4.4. Also, refer to Sections 4.3 and 4.4 below.
B. Using methods found in b) of sections 3.4.3 and 3.4.4:

$A P L$	Differential Gain		Amplitude Region	Differential Phase in Degrees
	Per Cent	db)		
10 per cent		+0.2	black	0
	0	0.0	center	+0.5
	-7			
50 per cent	+2		black	0
	0	0.0	center	$+1$
	-2	-0.2	white	-2
${ }^{90}$ per cent	+ 5	+0.4	black	0
	0	0.0	center	+1
	-2	-0.2	white	-1

C. Using methods found in c) of sections 3.4.3 and 3.4.4:

> Differemial I'hase in Degrees
> 3.5

4. METHODS OF MEASUREMENT ${ }^{\text {T }}$

4.1 Low-Frequency Component of the Test Signal

+.1.1 Basic IVaveforms. The low-frequency component of the test signal may have any waveform consistent with the requirements of Section 3.2, but simple waveforms such as the sinewave, staircase, and sawtooth, in which the fundamental is on the order of 15 kc , are usually most convenient in practice. Since it is clesirable to use a test signal containing horizontal sync pulses. it is convenient, though not essential, to use a lowfrequency waveform that is fully contained within a line period. Examples of suitable staircase, sawtooth, and sinewave signals are shown in ligs. 4 and 5.
4.1.2 Provision for Varying the Iverage Picture Level. Any simple waveform with an inherent cluty cycle of 50 per cent during actual presentation time may be used directly as the low-frequency component of the test signal for differential gain measurements under 50 per cent apl conditions. Its peak-to-peak amplitude, exchusive of sync pulses, should be set at 100 IRE scale units. The required variation in the average picture level of the complete signal can be obtained by presenting this 50 per cent APL, test information for only one-fifth of the total active scanning time in each field period. The remaining four-fifths of the active scanning time should be used for the transmission of a constant low-frequency level, which should be set at blanking to provicle 10 per cent APL conditions, and at reference-white to provide 90 per cent Al'L conditions. Practical examples of such time-shared signals are shown in lFig. 4.
4.1.3 Special Factors Pertaining to Circuits in Which All Stages are $D C$ Conpled. When all stages including the output of the test signal generator are effectively D(` coupled, there is no need to vary the APL of the test signal, because the amplitude range occupied by the signal is the same for all APL conditions in each stage.
4.1.t Special Factors Perfaining to Circuits in Which All Stages are AC Coupled. When all stages are ac coupled, and are able to pass a signal of somewhat greater than normal amplitude without overload effects, standard measurements can be mate with a test signal whose low-frequency component has a duty cycle of 50 per cent, provided the amplitude of the low-frequency signal is increased to cover the full range occupied by normal picture signals under 10 per cent to 90 per cent APl, conditions. Assuming the presence of sync pulses with peak amplitudes of 40 IRE scale units, the low-frequency signal should have a peak-to-peak amplitude of 178 IRE

[^42]

Fig. 4-Examples of teat siguals.

Fig. 5-Examples of a test signal employing a sinusoidal waveform.
seale units when a sawtooth type of signal is used, and horizontal plus vertical blanking is taken into account. When the sinewave type of low-frequency signal is used without additional blanking, the corresponding amplitude is 184 IRE scale units as illustrated in lig. 6. When these expanded signals are used, the data should be processed so that the results reported for each APL,

Fig. 6-Example of a test signal of expander amplitude watisfactory for meaturements in cirmits in which all stages are AC compled.
condition correspond to the following ranges relative to the blanking level of the signal.

NPL	Significant Ranges	

t. 2 IIigh-Frequency Component of the Test Signal

t.2.1 Froquency. As stated in Section 3.2.3, the frefuency of the high-frequency component of the test signal should be approximately equat to the color subcarrier frecpuency (3.579545 mc). Lnless the equipment under test employs special circuits which require precise control of the subatrrier frequency, deviations of the order of ± 1 per cent from the subcarrier frequency should not ippreciably affect the resulis of tests made in accordance with this standard.
4.2.2 1 m plitude During . Ictual Test Interãal. To sitisfy the requirements of this standard, the high-frequency component of the test signal should have a peak-to-peak amplitude of 20 IRE scale units during the actual test interval. If a low-frequency signal of greater than normal ampliture is employed for the special case described in Section 4.1.4, it is important that the high-frequency component not be expanded in proportion to the lowfrequency signal but remain at the mormal of 20 IRE scale units peak-to-peak amplitude, as illustrated in Fig. 6.
4.2.3 A Implitude During Other Interals. The highfrequency component may be transmitted at any reasonable amplitude (including zero) during other intervals of the test signal, provided the equipment under test is not adversely affected. In the event that the equipment under test requires standard color sync bursts for proper operation, these must be alded to the test signal. Fig. 4 illustrates several possible test signals with and without separate color syonc bursts.

4.3 Measurement of Differential Gain

t.3.1 1 Method Suitable Jor Test Signals with Staircuse or Saxtooth Waveforms. Fig. 7 (ai) is a simplified block diagram ilhastrating the measurement of differential gain by means of test signals similar to those in Pig. 4. In this method. the output signal from the equipment

Differential gain in per cent at level $11=100(b / a-1)$ Differential gain in db at level $11=20 \log b / a$
Fig. 7-I iagrams illustrating the measurement of differential gain when using the test signal of Fig. 4 (a).
under test is passed through a band-pass filter (order of 1 mc bandwidth centered at the high frequency). which rejects the low-frequency components. A filter suitable for this purpose is shown in Fig. 7(b), in which R is the nominal impedance of the circuits between which the filter is intended to operate, $\omega_{0} / 2 \pi$ is the center of the pass band, and $\omega_{1} / 2 \pi$ and $\omega_{2} / 2 \pi$ are the frequencies at the nominal limits of the pass band. The high-frequency component is then directly displayed on an oscilloscope. lrig. 7 (c) illustrates such a display for the test signals of Fig. 4(a). Differential gain appears as a variation in the envelope of the high-frequency signal. Transients oceur at the riser positions of the stairsteps and should be disregarded.
+.3.2. A Method Suitable for Test Signals with Sinusoidal W'aveforms. Fig. $8(a)$ is a simplified block diagram of equipment ${ }^{6}$ which may be used to measure differential gain by means of a test signal like that shown in Fig. 5 . In this method, the high-frequency component of the output signat received from the equipment under test is separated from the complete signal, and is applied to an envelope detector, ${ }^{7}$ the output of which is displayed

[^43]
(a)

(1)

Fig. 8-Simplified blook diagram and waveform illustrating the measurement of differemtial gatn using a test signal of the 1 ypu shown in l:igs. 5 or 6.
on an oscilloscope. As shown in Fig. $8(\mathrm{~b})$ the vertical deflection of the oscilloscope trace is proportional to the differential gain. Horizontat deflection for the oscilloscope may be provided by the use of a low-pass filter to recover the low-frequency sinewave from the test signal. A phase shifter in the horizontal deflection circuit compensates for the delay difference between the horizontal and vertical circuits.

4.t Measurement of Differential Phase

t.t.1 . 1 Mathod for Test Signals with Staircase or Sawtooth Waveforms. Fig. 9(a) is a simplified block diagram of equipment which may be used to measure differential phase with test signals similar to those in Fig. 4. The high-frequency component of the test signal, separaterl from the complete signal by a suitable band-pass filter [see Fig. $7(b)$] (order of 1 mo bandwidth, centered at the high frequency), may be compared with a reference signal of the same frequency in a phase detector." The reference signat may be regenerated from the color syne burst or derived from the high-frequency component of the test signal. A phase shifter may be used to obtain a zero indication on the part of the oscilloscope trace corresponding to blanking level.

As shown in Fig. $9(1)$ the verticat deflection of the oscilloscope trace is very nearly proportional to differential phase. Differential phase can also be measured by introlucing a known phase shift (by means of a calibrated phase shifter) to bring any particular portion of the trace to the signal zero reference.
t.t.2 . 1 Suitable Method for Test Signals with Sinus-

[^44]

Fig. 9-Simplified block diagram and waveform illustrating the measurement of differential phatse using the test signals of Fig. 4 (a).

(b)

Fig. 10-Simplified block diagram and waveform illustrating the measurement of differential phase using a test signal of the type shown in Figs. 5 or 6.
oidal I'aveforms. Fig. 10(a) is a simplified block diagram of equipment ${ }^{6}$ which may be used to measure differential phase with a test signal such as that shown in Fig. 5. This apparatus is similar to that shown in Fig. 8 (a) except that the high-frerfuency component of the output signal is compared with a reference high-frequency signal in such a way that the trace on the oscilloscope represents the differential phase characteristic. This is accomplished by using a 90° phase shifter and a phase detector. ${ }^{6}$ ()ver a reasonable operating range, the output of the detector is very nearly proportional to the
differential phase, and the oscilloscope can be calibrated to be direct reading as shown in Fig. 10(b).

5. LIMITATIONS AND COMMENTS

5.1 IIigh-Frequency Signal

The primary objective of this standard is the measurement of differential gain or phase in the chrominance fregnency region. It should be noted that measurements of differential gain or phase with a specified high-frequency signal such as the color subcarrier do not necessarily indicate the performance of the system at other frepuencies. This is particularly trae in the case of circuits which employ spectrum separation, pre-emphasis or de-emphasis techniques. However, it should be noted that when the frequency separation between the highand low-frequency components is reduced, the difficulty of making a measurement may be increased and measurements are practically impossible when the low and high frequencies are barely separable by filters.
5.1.1 Frequency. A frequency other than 3.579545 mo may be used for special purposes. When such a frequency is used, it should be stated when presenting the results of measurements.
5.1.2 A mplitude. A high-frequency component amplitude of other than 20 I RE scale units peak-to-peak may be used for special purposes, but should be specified when presenting test results. For example, greater resolution in measuring differential gain or phase characteristics in low-noise transmission circuits may be achieved by decreasing the high-frequency component amplitude.

5.2 Relation to FCC Rules ${ }^{9}$

To provide data with reasonable correlation to FCC transmission requirements, it is recommended that the low-frequency exploratory signal, exchusive of sync pulses, be adjusted to 80 IRE scale units, peak-to-peak, and that the superimposed high-frequency signal have a peak-to-peak amplitude of 40 IRE scale units. This test signal then simulates conditions which are somewhat more severe than FCC reguirements. Measurements should be made at 10 per cent, 50 per cent and 90 per cent APL.

5.3 Significance of 50 per cent APL Conditions

It is recognized that the amplitude ranges occupied by normal picture signals under 10 per cent and 90 per cent APL, conditions overlap each other, and that tests at 50 per cent APL, do not provide information beyond that contained in the results of tests made at 10 per cent and 90 per cent APL. Tests at 50 per cent APL are significant, however, because this condition comes closest to

[^45]simulating average transmission conditions. Where time or facilities permit tests under only one APL condition, the results are most significant if 50 per cent APL is selected.

5.4.Voncomposite Signals

The standard tests do not fully cover the case of noncomposite signals, since the maximum excursion of the subcarrier signal in the black direction (for the 90 per cent APL condition) is increased by about 4 IRE scale units when the syme pulses are absent. If there is any reason to suspert difficulty with noncomposite signals, a further test may be made either by removing the sync pulses from the test signat or by slightly increasing the amplitude of the low-frequency signal.

5.5 Sync Compression or Expansion

The standard tests do not directly provide for the measurement of sync compression or expansion, although this characteristic may be readily measured by direct observation of the test signal on an oscilloscope using the IRE scale.

5.6 Color Sync Burst Distortion

Distortion of the amplitude or phase of the color syne burst relative to the chrominance signal may be introduced by such factors as poorly adjusted clampers or burst regenerators. Therefore, such equipment should be adjusted properly before measurements of differential gain and phase are made.

Compandor Loading and Noise Improvement in Frequency Division Multiplex Radio-Relay Systems*

EITEL M. RIZZONI \dagger, senior member, ire

Abstract

Summary-Graphical and numerical means are developed to compute the additional effective loading caused by the use of syllabic compandors on the input of a multichannel radio-relay system, and to evaluate the noise improvement yielded by the compandor in a telephone channel.

Intromection

IIN modern commercial and military multichannel radio-relaying, an increasingly large number of telephone channels are carried on wide-band equipment, employing either conventional microwave propagation, or scatter propagation, at VHF, UHFF, and SHF freguencies. High circuit quality and reliability are normally required. Some applications require reliable tramsmission of a smalt number of boice chamels on narrow-band equipment, often over long hops, using the technique of scatter propagation.

Theoretical considerations, experimentally proved by many working compandored circuits, show that the use of syllabic compandors permits the attaimment of the desired performance economically:

The system designer is thus confronted with the problems of 1) evaluating the additional effective load which compandors introduce on the common equipment, and 2) estimating the improvement in circuit quality resulting from their action. These problems are dealt with in Parts 1 and II, respectively.

[^46]A basic explanation of the compandor principle of operation and circuitry, as well as of multichannel toading theory, is not included in this paper. (This is available in the literature. ${ }^{1.2}$)

Pakt 1

Introduction

A syllabic compandor is made of two separate devices: a conpressor inserted at the chamel input and an expandor inserted at the chamel outpat, as shown schenatically in Fig. 1. The compressor processes the speech input for high efficiency of transmission, and the expandor restores the speech output to its original value and introduces substantiat loss during silent pauses when noise omput would otherwise be present.

The insertion of a compressor in a channel may modity the channel loading on the radio system. The insertion of the expandor at the channel output may modify both speech and noise levels, hence the signal-to-noise ratio, and does not affect the loading of the system.
To evaluate the effect of chamel dynamic compression on the multichamel rms load and multichannel peak factor, most of the classical work published by

[^47]Holbrook and Dixon in 1939^{1} has been repeated, starting from a compandored distribution of speech volume. Numerical data and curves are shown together with corresponding data and curves for uncompandored speech. This permits a direct appraisal of the contribution of compressors on the multiplex loading and of their effect on the multichannel peak factor.

In the following analysis, single-sideband carriersuppressed 4 -kc channels are considered. The effects of signalling tones are not included.

Fig. 1-A compandor is made of two devices: the compressor and the expandor.

Single-Channel Loading

In a syllabic compandor, the average power of the applied signal over a short time interval is used to control the transmission gain. The insertion of a compressor in a telephone channel has the effect of raising speech volume which is below the compandor crossover level and of lowering speech volume which is above the crossover level. The compandor crossover level is defined as that level at which the use of the compandor introduces no gain or loss on the input signal.

The speech volume at the compressor output is a function of the speech volume at the compressor input and of the setting of the compandor crossover level (other parameters such as the companclor time constants, the compression ratio, etc. are assumed to be standardized constants). Therefore, both input volume distribution and compandor crossover level must be known for determination of the volume distribution at the compressor output.

Uncompandored Channel

Holbrook and Dixon ${ }^{1}$ found that the probability distribution of the average-talker volume follows approximately the Gaussian law. That is, the probability that the speech volume will be equal to or greater than
a value V, is given by:

$$
\begin{equation*}
P(V)=\frac{1}{\sigma \sqrt{2 \pi}} \int_{-\infty}^{V} \exp -\frac{\left(V-V_{0}\right)^{2}}{2 \sigma^{2}}(d V) \tag{1}
\end{equation*}
$$

where
$V_{0}=$ mean value of the distribution in volume units (VU)
$\sigma=$ standard deviation of the distribution in decibels.
The average-talker cumulative distribution of (1) is plotted in Fig. 2, curve .1. In Appendix I an explanation is given of the units used in Fig. 2. For distribution A of Fig. 2, the parameters are:

$$
\begin{aligned}
V_{0} & =-10 \mathrm{VU} \\
\sigma & =5.8 \mathrm{db} .
\end{aligned}
$$

The volume, $V_{0 p}$, corresponding to the average speech power of the log-normal distribution is given by: ${ }^{3}$

$$
\begin{equation*}
V_{0 p}=V_{0}+(0.115) \sigma^{2}(V U) \tag{2}
\end{equation*}
$$

For distribution A of Fig. 2:

$$
\begin{equation*}
V_{0 p}=-10+(0.115) 5.8^{2} \cong-6.1(\mathrm{VU}) \tag{3}
\end{equation*}
$$

In Appendix I it is shown that the relationship between volume, V, and average speech power, P, is

$$
\begin{equation*}
V(\mathrm{~V} \mathrm{U}) \cong P(\mathrm{dbm})+3.8(\mathrm{db}) \tag{4}
\end{equation*}
$$

Therefore, a volume of -6.1 VU corresponds approximately to an average speech power of -9.9 dbm 0 (denotes dbm referred to a point of zero transmission level), which is thus found to be the average loading on the baseband by an uncompandored active channel carrying continuous speech of an average talker.

Fig. 2-Average-talker volume distribution and corresponding average speech power. (All levels referred to zero transmission point.)

Compandored Channel

Let us consider a compandored channel. Fig. 3 shows typical compandor characteristics and their crossover levels. The figure also shows that the output powers from the compressor (expander) for sinewave input and

[^48]speech or noise input of same rms power differ by three decibels. The explanation of this behavior is given in Appendix II.

At the output of the compressor, the talker volume distribution will be altered according to the compressor characteristic. Thus, channel input volume lower than the crossover level will be raised, and input volume higher than the crossover level will be lowered. The result is a compression of the speech dymamics to onehalf, and the halving of the standard deviation of the volume distribution.

Fig. 3-Typical characteristics of compandors. (All powers are in dhm at a point of zero transmission level.)

The average-talker distribution A of Fig. 2, compressed through a compandor with zero dbm0 crossover level, results in distribution B of Fig. 2. Distribution A, through a compandor with $+5 \mathrm{dbm0}$ crossover level, results in distribution C of Fig. 2. The significance of dynamic compression is that the resulting decreased fluctuation of speech volume permits a more constant, hence efficient, loading of the baseband. In fact, weak signals are substantially amplified and unnecessarily strong signals are attenuated.

The compressed distributions are again log-normal and their mean value and standard deviation can be read on Fig. 2, or directly calculated by recalling that in the practical range of speech the compression ratio is two to one. The volume corresponding to the average speech power of the compressed distributions is calculated with (2); and the average speech power with (4). The results are summarized in Table I, where L (db) is the increase in loading on the baseband, because of the compressor action in one active channel. In Appendix III it is shown that the variation in average load, L, is a linear function of the compandor crossover level, C. From Tiable I:

$$
\begin{equation*}
L=0.5 C+1.1 \tag{5}
\end{equation*}
$$

Eq. (5) shows that when the crossover level is adjusted to $-2.2 \mathrm{dbm0}$, the compressor will introduce no change in average load on the baseband. Physically, it means that the average speech power at the compressor input is equal to the average speech power at the compressor output. Nathematically, this can be easily checked by applying (2) before and after compression.

Multichannel Loading

A. Case of All 「'olumes Controlled to Single-Channel Average Speech Power. In a practical multichamel system, each active chamel will carry speech at varying volume within the values of the volume distributions shown in Fig. 2. However, if the number of channels is sufficienty large, the multichamel rms power resulting from the combination of all individual active channels will be approximately equal to the single-chamel average speech power multiplied by the number of active chanmels.

The fration of time for which overloading may be tolerated is generally taken as one per cent. Therefore, it is necessary to find the multichanmel speech power

TABLE I

Channel	Distribution of Fig. 2	$\left(V_{0}^{\circ}\right)$	$\stackrel{\sigma}{(\mathrm{db}})$	$\left(\begin{array}{l} V_{0 n} \\ \left(\mathrm{l}^{\prime} \mathrm{v}^{\prime}\right) \end{array}\right.$	Average Specch (dbur) Power	$\begin{gathered} \text { Merage } \\ \text { Lowad } \\ \text { Increase } L \\ \text { (dib) } \end{gathered}$
U'ncompandored Speech	(1)	-10	5.8	-6.1	-9.9	Reference
Compandored with crossover level $C=0 \mathrm{dbmo}$	(B)	-6	2.9	-5	-8.8	+1.1
Compandored with crossover level $C=+5$ dbmo	(C)	-3.5	2.9	-2.5	-6.3	+3.6

exceeded for one per cent of the time in a system of N compandored channels, when the volume in each compandored channel is held to the same constant value. The number, n, of active channels exceeded for one per cent of the time in a system of V channels is shown in Fig. 4 (from Hlolbrook and Dixon ${ }^{1}$). The average power for n active channels will be n times that of one channel, which is given by Table I, or:

$$
\begin{gather*}
n \text {-channel average power }=\left(-8.8+10 \log _{10} n\right) \\
\text { (lbm, for companclors with } C=0 \text { dbmo } \tag{6}
\end{gather*}
$$

n - channel average power $=\left(-6.3+10 \log _{10} n\right)$ dbm, for compandors with $C-+5$ (lbmo.

The multichannel speech power and the equivalent volume [defined loy (4) when P is now the total power because of the contributions of all active channels $]$ exceeded for one per cent of time computed from (6) or (7) and from Fig. 4 are plotted in Fig. 5 vs the number, N. of compandored channels. The case of uncompandored channels is also shown for direct comparison.

It is seen that for the particular case of all volumes controlled to average speech power, the multichannel load increase caused by the insertion of compressors in all N channels is equal to the single-channel load increase, L.

Fig. 4-Number of active channels is number of channels in system.

Fig. 5-Multichanmel speech power and equivalent vohme exceeded one per cent of time. (Volumes controlled to single-channed average speech power. All levels referred to zero transmission puint.)

When only a partial number of channels, $N c$, are compandored in an N-channel system, the increase in multichannel load will be smaller than L. Let $L m$ be the increase in multichannel load in decibels for systems partially compandored. If busy channels are assumed at random, it can be shown that:

$$
\begin{equation*}
L m=10 \log _{10}\left\{\left(\operatorname{antilog} 10 \frac{L}{10}-1\right) \frac{\Lambda c}{V}+1\right\} \tag{8}
\end{equation*}
$$

By virtue of (5), (8) becomes:

$$
L m=10 \log _{10}
$$

$$
\begin{equation*}
\left\{\left(\operatorname{antilog}{ }_{10}\left[\frac{(0.5()+1.1}{10}\right]-1\right) \frac{\lambda c}{N}+1\right\} \tag{9}
\end{equation*}
$$

Fig. 6 shows relationship (9) in nomogram form for direct application.
B. Case of Uncontrolled Volumes. When the number of active channels is not sufficiently large, the simple method of summation used in the preceding section to compute the multichannel power exceeded forone per cent of the time is not valid. In the more general case, each channel will carry speech at any volume according to the probability shown in liig. 2, and the multichannel power will be the sum of the power contributions from all active chammels.

Fig. 6-Loading effect of compandors on radio baseband. (Case of controlled iolumes.)

The multichannel speech power exceeded for one per cent of the time in a system of N compandored channels, when the volume in each of n active channels varies at random with distribution as in Fig. 2, corresponds to the one per cent probability of the following cumulative distribution: ${ }^{1}$

$$
\begin{equation*}
P_{. v}(V)=\sum_{n=1}^{V} p(n) \cdot p_{n}\left(V^{\prime}\right) . \tag{10}
\end{equation*}
$$

The term $p(n)$ is the probability that n channels be simultaneously active in an N-channel system, and is given by:

$$
p(n)=\frac{N!}{n!(. V-n)!} \tau^{n}(1-\tau)^{v-n}
$$

with $\tau=0.25$ being the activity factor of a busy channel. Tables of binominal probability ${ }^{4,5}$ give $p(n)$ directly.

The term $p_{n}(V)$ represents the probability that, with n active channels, the volume V is exceeded. The function $p_{n}(V)$ is the cumulative distribution of the sum of n independent probability variables whose logarithms (volumes) have the same Caussian distribution as in Fig. 2.

To the knowledge of the writer, the problem of expressing the function $p_{n}(V)$ analytically has not yet been solved for the general case of $n>2$. An approximate numerical method of calculating $p_{n}(V)$ was used by Holbrook and Dixon. ${ }^{1}$ Here, a more (tirect approximate graphical method is employed. ${ }^{6}$ This graphical method offers good accuracy for the higher levels of volume [lower values of probability $p_{n}(V)$] and hence is readily applicable for the range of values affecting the present calculation.

Examples of the cumulative distribution curves $p_{n}(V)$ of equivalent volume for n active compandored channels are given in Fig. 7, logether with the corresponding distributions for uncompandored channels. ${ }^{1}$ Similarly, Fig. 8 gives examples of the cumulative distribution curves $P_{x}(V)$ of equivalent volume for systems of N compandored chamels, together with the corresponding distribution for uncompandored channets. ${ }^{1}$

The equivalent volume and the corresponding speech power exceeded one per cent of the time, read from curves as in Fig. 8, are plotted in Fig. 9 vs the number, N, of chamels for compandored and uncompandored systems.

[^49]

Fig. 7-Equivalent volume distribution for n active channels.

Fig. 8-Equivalent volume distribution for systems of N channels.

Fig. 9-Multichamel speech power and equivalent volume exceeded one per cent of time. (Uncontrolled volumes. All levels referred to zero transmission point.)

The computation of (10) has been carried out up to $N=120$ chamels. For $N>120$, the extrapolation has been performed in the following manner. Fig. 7 clearly shows that the volume fluctuations are largely reduced when a number of channels are combined together. For a very large number of channels, the equivalent volume tends to stay constant; that is, the speech power exceeded for one per cent of the time is approximately equal to the average speech power of the composite signal. The latter is given by (6) or (7), which can thus be used to compute the multichannel load also for a very large number of channels with uncontrolled volumes. This computation has been done for $N=1000$ ($n=300$; see Fig. 4), and the points $N=120$ and N - 1000 in Fig. 9 have been joined by a smonth curve.

When only a number $N_{c}(<N)$ of channels are compandored in an N-channel system, the difference δ between compandored and uncompandored curves in Fig. 9 must be corrected to a value δ^{\prime} which, assuming busy channels at random, is shown on the nomogram of Fig. 10.

Multichannel Peak Factor

Superimposed on the speech volume, constantly changing at a relatively slow rate, there are instantaneous voltage variations occurring at a relatively fast rate because of rapid transients which constitute the very nature of speech. The probability distribution of the ratio of instantaneous voltage to rms voltage for different numbers of channels was derived by Holbrook and Dixon from actual tests ${ }^{1}$ and was found to be independent of volume. The multichannel peak factor was defined ${ }^{7}$ as the upper limit of the ratio of instantaneous voltage to rms voltage. Speech at the compressor input can be regarded as a succession of volumes slowly varying, each having superimposed instantaneous voltages. It is desired to estimate the effect of compression on the instantaneous voltages in a channel and in a multichannel system.

The syllabic compressor has an attack time-constant of about 3 milliseconds, and its variolosser follows faithfully all voltage variations having rise-time longer than 3 milliseconds. Thus, such slow voltage variations are compressed. By contrast, the compressor variolosser is too sluggish to follow rapid variation lasting less than 3 milliseconds. Thus, such rapid voltage variations are not compressed. Therefore, the action of a compressor on the instantaneous voltages is to compress all peaks having rise time greater than 3 milliseconds.

It is known that only rarely do vowel sounds build up to full amplitude within one or two milliseconds. ${ }^{8}$ More frequently; speech sounds reach full amplitude in about fifty milliseconds, while for the great majority of syllables the build-up is even more gradual.

[^50]

Fig. 10-Nomogram for partially-compandored systems.

Thus, the insertion of a compressor in a channel will have the effect of compressing the great majority of instantaneous voltage variations. It follows that a given peak amplitude will be reached with a smaller percentage of occurrence.

In a multichannel system where speech in all channels is uncorrelated, peaks will have random magnitude, phase, and duration. At any given instant, there will be some peak compression in a number of channels and there may be no peak compression in some other channels. Thus, the effect of a number of compressors is again to compress the bulk of instantaneous voltages in the composite multiplex signal. However, as the number of channels is increased, the probability of occurrence of short uncompressed peaks in the composite signal will increase; and for an infinite number of channels, dynamic syllabic compression will not modify the multichannel peak factor.

Comparative oscillographic measurements of single and multichannel peak factor with compandored and uncompandored active channels have been carried out, employing compressors with zero dbm0 crossover level. ${ }^{9}$ The measured peak factor for n active channels, expressed as

$$
20 \log _{10} \frac{V \text { inst max }}{V \text { rms }},
$$

[^51]and modified by the solid line of Fig. 4, is plotted in Fig. 11 vs the number N of channels in system. ${ }^{11}$

Notice that curve B of Fig. 11 is valid also for systems compandored with +5 dbm0 crossover-level compressors. In fact, the crossover level affects solely the amount of volume compression; but the distribution of instantaneous voltages to rms voltage, hence the peak factor, was found to be independent of wolume; ${ }^{1}$ therefore, the peak factor is also independent of crossover level.

If only a partial number of chamels $V_{c}(<. V)$ are compandored in an V-channel system, the corresponding multichannel peak factor will be somewhere in between curves A and B of Fig. 11. Let Δ represent the difference between these two curves. The decrease in peak factor from the uncompandored case, assuming busy channels at random, will be given by J^{\prime} shown on the nomogram of Fig. 10.

System Pcak Load Capacity

The multichannel rms speech power not exceeded ior more than one per cent of the time is shown in fig. 9. To determine the instantaneous peak-load capacity of the sytem, the multichannel peak factor of lig. 11 must be added to the rms speech power. The system peak-load capacity, so obtained, is plotted in Fig. 12 is the number N of chamels in system. The rms testtone load capacity, also shown in Fig. 12, is three decibels lower than the peak-loat capacity.

Conclusion

For system design purposes, figs. 9 and 12 show the important parameters. Fig. 9 shows the multichannel speech power exceeded one per cent of the time vs the number of channels in a system when chamel volumes are uncontrolled (practical case). Intermodulation noise at the output of a system is a function of the multichannel input power and of the amplitude and phase characteristics ol the system. Intermodulation can be esti-

[^52]

Fig. 11-Multichannel peak factor.

Fig. 12-Multichannel instantaneous peak load capacity. (.VII levels referred to zero transmission point.)
mated when these parameters are known. Gencrally, the equipment is tested in order to determine the relationship between output intermodulation moise and input power level. A random noise source of proper bandwidth and of level deduced from Fig. 9 is used to simulate a number of telephone conversations, and the intermodulation noise is measured in an idle channel. ${ }^{11}$ Fig. 12 shows the peak-load capacity required of the equipment vs the number of chamels in a system to maintain overloading below one per cent of the time. Fig. 12 can be safely used for modern multiplex equipment which presents a certain amount of peak limiting.

From Figs. 9 and 12 it is seen that compandors decrease the rms load and the peak load in systems with small and medimm number of chammels. Physically, this is due to the fact that, before input to the sytem, speech is processed for a more constant loading of the equipment, thus increasing the over-atl efficiency of transmission. The figures also show that compandors increase the rms and peak loading in systems with very many chamels. The reason is that the composite uncompandored speech for very many chamels presents little volume fluctuation, and the reduction of such fluctuation, resulting from the introduction of compandors, is overridden by the increase in mean
${ }^{11}$ R. W. White and J. S. Whyte, "Equipment for measurement of interchamel crosstalk and noise on broadband multichanmel telephone system," P. O. Elec. Engrs. J., vol. 48, pt. 3, pp. 127-1.32.
power caused by the compressors. Moreover, the multichannel peak factor for very many channels is not modified significantly by the compandor action.

Also from Figs. 9 and 12, it appears that compandors with zero dbmo crossover levels are more advantageous than compandors with +5 dbm0 crossover level. This is true insofar as loading of line and radio equipment is concerned. Ilowever, in Part II it will be seen that the improvement in signal-to-noise ratio may be greater when the higher crossover-level compandors are used.

Part II

Introduction

The improvement in signal-to-noise ratio (SNT) yielded by a compandor in a telephone channel is given by the instantaneous magnitude of the expandor loss.

The gain of the expandor varioloss circuit is controlled by the average power of its input signal over a short interval of time. Input signal during speech is made of two components, the desired signal (compressed at the transmitting point) and the channel noise introluced along the system up to the receiving point. Channel noise alone is present at the expandor imput during pauses or in the absence of speech. Therefore, the expandor loss is controlled by speech power (assumed to be higher than noise) during syllables, and by noise power during pauses or in the absence of speech.

To deduce the compandor noise improvement, it is convenient to proceed as follows:

Step 1: Estimate the compandor noise improvement when speech is absent from the channel under consideration (normally the top chamel in the baseband, where noise is greatest).

Step 2: Estimate the compandor noise improvement when speech is present in the channel under consideration.

Step 3: Perform electrical and aural tests to measure and appraise the improvement under conditions 1 and 2 above and compare the test results with the estimates.

Noise Improvement in an Idle Channel

When speech is absent in the channel under consideration, it is convenient to regard the compandor as a static device, or in other words to assume steady-state conditions. Expandor characteristics as well as channel noise level must be known. Expandor characteristics of commercial compandors are shown in Fig. 3. Channel noise is a statistical variable with probability distribution depending upon the distribution of fading, traffic over the system, external interferences, etc. Assuming that the channel noise probability distribution is known, the level of noise corresponding to a certain probability can be chosen. Entering the expandor characteristic with this level of noise will permit one to obtain the improvement yielded by the expandor.

By repeating this process for various levels of noise,
corresponding to different probabilities of occurrence, the probability distribution of the compandor noise improvement can be found.

From a practical viewpoint, however, one value of noise improvement is of interest, namely that corresponding to the value of reliability for which the system is designed.

Let us assume that the value of channel noise is given for the chosen reliability (for instance, corresponding to one per cent of the time). It is (lesired to find out the compandor noise improvement in an idle channel. The procelure is more easily followed by working out a numerical example. lig. 13 shows a system block diagram with relative levels at several points, as well as the top channel thermal and intermodulation noise at the expandor input. Compandors with zero dbm0 are employed, with characteristics as in Fig. 3(a).

Multichannel loading is in accordance with Fig. 9. System A is the reference. In System B the intermodulation noise is lower than in System A, because of the decrease in multichannel loading introduced by the compressors, as shown in Fig. 9. The channel noise undergoes a loss through the expandor according to the expandor characteristics of Fig, 3 (a). This loss determines the noise improvement. In System C (Fig. 13), the effect on the noise improvement of compandoring only a partial number of channels is considered.

The example shows theoretical noise improvement in an idle compandored channel of the order of 25 db . This value may not be obtained in practice, as the expandor characteristic may deviate from its theoretical slope.

Noise Improvement in an Active Channel

When speech is present in a channel, the instantaneous expandor loss depends upon the short-term average power of the compressed speech. As a numerical example, let us assume a speech level of -10 dbm (talker average power) at the channel input. Table II shows speech levels read off Fig. 3, characteristics (a) and (b).

It is seen that the order of magnitude of noise improvement, during speech, is of only a few decibels. For compandors with +5 dbm0 crossover level, the noise improvement is always 2.5 db higher than for compandors with zero dbm0 crossover level.

It should be noticed that the stronger the speech, the smaller the noise improvement. For high enough values of speech, there is actual impairment of SNR. However, the level of noise during syllables is unimportant as long as it stays below the speech level, as noise is then masked by speech. During pauses or between syllables, owing to the short time-constant of the expandor variolosser, the compandor improvement approaches the value of noise improvement in an idle channel. Speech following a silent interval thus becomes more intelligible as adaptation to higher sensitivity during a quiet interval is a property of the human ear.

1) For multichammel spech power as in Fig. 9, curve A for,$V=72$.
2) For multichamel sperch power as in Fig. 9, curve β for $\dot{X}=7$ j $^{\circ}$. Notice that at intermondutation mose is all of ?nd order, its absolute value changes at twice the rate of change of loading in deribels.
3) For multichannel speech power as in Fig. 9, curve B for $\lambda^{\prime}=72$, and nomogram of Fig. 10 for $X_{c}=47$.

Fig. 1.3 - Example of static insertion of compandors with zero dhm') "rossover level in a 72 -rhannel radio-relay system.

T゙\|BI, I: 11

	For $C=0 \mathrm{dbmo}$	For $C=+5 \mathrm{dbm0}$
Compressor input	-10 dbm	-10 dbm
Compressor output	-8 dbm	-5.5 dbm
Expandor input	-8 dbm	-5.5 dbm
Expandor output	-10 dbm	-10 dbm
Noise improwement	2 db	4.5 db

Tests

Extensive atural tests under different conditions have been reported. ${ }^{2,12,13}$ The results of these tests are plotted in lig. 14 and show that the ear's appraisal of the noise improvement in the presence of speech is only.

[^53]a few decibels lower that the calculated and measured noise improvement in the absence of speech. For design purpose, subjective moise improvement can reasonably be assumed as five decibels lower than the theoretical noise improvement in the absence of speech.

Crossozer Learl Sefting

The compandor crossover level determines the amount of speech compression and of speech and noise expansion, and affects the following parameters:

1) The signal to thermal noise ratio. From inspection of the expandor characteristios of Fig. 3, it is seen that the signal to thermal noise ratio is a linearly increasing function of the crossover level within the range of one to two expansion ratio.
2) The signal to intermodulation noise ratio. This ratio depends upon the multiplex power at the imput of the system, which in turn is a function of the crossover level as shown in Fig. 9 (for uncontrolled volumes), and in Fig. 5 (for controlled volumes). From inspection of

Fig: 14-Difference between subjective compandor improvement in the presence of speech, and theoretical noise improvement in the absence of speech.
the figures, it is seen that the signal to intermodulation ratio is a decreasing function of the crossover level, inasmuch as higher volume of crossover level results in a higher value of speech power at the input of the radio system, hence in higher crosstalk.

Thus, increasing the crossover level improves the signal to thermal noise ratio but simultaneously impairs the signal to intermodulation ratio. Theoretically, a compromise would be desirable to balance these opposite effects and optimize the system performance. In practice, because of continuously changing conditions of speech and noise, a balance can be attained only for short intervals. However, this balance is not critical at all, as compandors with either zero dbmo or +5 dhmo crossover level are about equally effective from a subjective viewpoint. Recently, the CCITI has recommended the standardization of crossover level to zero dbm0. ${ }^{14}$

Economical and Technical Considerations.

The best design compromise of a particular multichannel system requires the simultaneous considerations of many factors depending upon the basic requirements of that system. (See for instance, Beverage, et al. ${ }^{15}$) As these factors vary with system parameters and as they may be of different relative importance, it is not pus-

[^54]sible to state that the use of compandors will always entail the most economical solution. The system engineer, therefore, should attempt to optimize the design of the system for the desired performance with and without compandors and then compare the economics of the two cases. Where high quality is required, however, it will be found that the use of compandors always results in the most economical system.

It is interesting to notice that some mutiplex manufacturers (e.g., the one described by (arpani ${ }^{16}$) include compandors in the basic design of the multiplex, thus attaining a more economical design while preserving quality.

For a qualitative appreciation of the economy resulting from the use of compandors, the following list contains some of the most important parameters affected by compandors in a radio-relay system. For equal overall transmission performance (with and without compandors) their insertion permits:

longer hops

lower antenna gain
lower transmitted power
lower receiver sensitivity
lower frequency deviation, hence smaller bandwidth or higher number of channels
higher equipment amplitude and phase distortion, or higher number of channels
poorer antema match and sidelobe attenuation
higher external RF interference
longer transmission lines.
Intelligibility tests ${ }^{17}$ show that no significant reduction in speech quality is noticed, even with 10 compandored circuits connected in series. Intelligibility in noisy circuits, in fact, is greatly enhanced by the insertion of compandors.

Compandors are also very useful under threshold conditions, in conjunction with radio squelch circuit. ${ }^{18}$ On scatter circuits, where operating conditions are near FM threshold for a considerable percentage of the time, it is found to be very effective to use a compression ratio larger than the expansion ratio. Typical values are 10-to-1 for compression ratio and 1-to-2 for expansion ratio. The level of low-volume speech is thus raised enough above noise so that under marginal conditions intelligibility is preserved.

It should be appreciated that inherent level instability is introduced by the nature of the expansion process. The expandor, in fact, with its 1-to-2 expansion ratio doubles all input-level variations, thus halving the level stability. Therefore, more severe level stability requirements may be specified for a compandored system.

[^55]Tone-level regulation in the multiplex equipment is standard practice in high quality circuits, and is sometimes applied directly to the radio equipment. ${ }^{19}$

Conclusion

The compandor improvement can be resolved into separate contributions: quieting of the circuit by the expandor in absence of speech or between syllables, and an increased S.OR by the compressor for weak speech. The introduction of noise into the chamnel between compressor and expandor is the condition necessary to this behavior.

For system design purposes, knowledge of improvement in SNR introluced by the compandors is necessary in order to arrive at a performance figure for the system. An analysis as shown in Fig. 13 may be carried out, where the value of intermodulation moise refers to the chosen loading and the value of thermal noise corresponds to a given multihop propagation fade (for instance, exceeded for one per cent of the (ime). The subjective improvement in circuit duality for speech can be estimated by subtracting five decibels from the calculated performance figure.

Appeviox I

Holbrook and Dixon plot the average-talker volume distribution in "db above reference," the unit of speech and program volume used at the time the measurements were taken (1939). ${ }^{\text {. }}$ The parameters of the average-talker volume distribution are:

$$
\begin{aligned}
V_{0}^{\prime} & =-16 \mathrm{db} \\
\sigma & =5.8 \mathrm{db} .
\end{aligned}
$$

The volume $V_{0_{p}}$ corresponding to the average speech power of the distribution is given by: ${ }^{2}$

$$
\begin{align*}
V_{0 p} & =V_{0}+(0.115) \sigma^{2} \mathrm{db}=-16+(0.115) 5.8^{2} \\
& =-12.1 \mathrm{db} . \tag{12}
\end{align*}
$$

Holbrook and Dixon ${ }^{1}$ also show the measured relationship between "db above reference" and long-term average speech power, P, in dbm:

$$
\begin{equation*}
0 \mathrm{db} \cong+2.2 \mathrm{dl} \mathrm{~m} . \tag{13}
\end{equation*}
$$

The aserage speech power of the distribution, in dbm, is obtained as follows:

$$
\begin{equation*}
P \cong V_{0_{p}}-2.2=-12.1+2.2=-9.9 \mathrm{dbm} \tag{14}
\end{equation*}
$$

After the Ilolbrook-Dixon work was published, a newer type of volume meter-reading volume in volume units (Y') was standardized. The relationship between "db above reference" and volume units for speech in a

[^56]telephone channet was found to be approximately: 20
\[

$$
\begin{equation*}
0 \mathrm{db}=+6 \mathrm{VU} . \tag{15}
\end{equation*}
$$

\]

Therefore, the parameters of the average-talker volume distribution measured by Holbrook and Dixon, but expressed in volume units, are:

$$
\begin{aligned}
V_{0} & =-10 \mathrm{VU} \\
\sigma & =5.8 \mathrm{db} \\
V_{0_{p}} & =-6.1 \mathrm{VU}
\end{aligned}
$$

from (12) and (15)

$$
\begin{equation*}
0 \mathrm{VU} \cong-3.8 \mathrm{dbm} \tag{16}
\end{equation*}
$$

from (13) and (15)

$$
\begin{equation*}
P \cong-9.9 \mathrm{dbm} . \tag{17}
\end{equation*}
$$

Volume measurements shown by Holbrook and Dixon ${ }^{1}$ were carried out, reading the lighest peaks occurring within intervals of about ten seconds. The average speech power was measured over a much longer interval of time. However, in first approximation, it seems reasonable to assume the average speech power to be the same in every ten-second interval, when the volume is held constant. This assumption permits us to set a scale of speech power in dbm for the averagetalker distribution, according to (16). The setting of a scale of speech power on the volume-distribution graph is necessary for two reasons:

1) to set the scale of compandor crossover level in dbm0 (dbm referred to a point of zero transmission level),
2) to translate measurements of volume (V) into average speech power (dbm)-the latter being used to compute the multiplex loading.
In 1953, Subrizi reported on a number of measurements of talker volume. ${ }^{20}$ Because of talkers' changing habits, improvements in telephone sets, and other factors, the average-talker volume distribution could be expressed approximately by the following parameters:

$$
\begin{aligned}
V_{0} & =-15 \mathrm{VU} \\
\sigma & =5 \mathrm{db} \\
V_{0 p} & =-12 \mathrm{VC} .
\end{aligned}
$$

Also, the relationship between volume units and speech power in dbin was modified as follows:

$$
\begin{equation*}
0 \backslash U \cong-1 . t \mathrm{dbm} \tag{18}
\end{equation*}
$$

Therefore, the average speech power of the cumulative distribution resulted as:

$$
\begin{equation*}
P \cong-13.4 \mathrm{dbm} \tag{19}
\end{equation*}
$$

American, British, and French experimenters have, from time to time, measured talker volume over different circuits. Widespread results have been obtained
${ }^{20}$ V. Subrizi, "A speech volume survey" on telephone message circuits," Bell Labs. Rec., vol. 31, pp. 292-295; . Nugust, 1953.
for the parameters of the average talker distribution. ${ }^{21}$ An approximate indication of the measured range is given below:

$$
\begin{aligned}
& V_{0} \text { from }-16 \text { to }-6 \mathrm{VU} \\
& \sigma \text { from } 4.0 \text { to } 7.8 \mathrm{db} \\
& P \text { from }-16 \text { to }-8 \mathrm{dbm} .
\end{aligned}
$$

It should be appreciated that these differences depend upon different habits of different talkers, the type of speech, the type of material being spoken, different telephone sets and plants, etc. Different administrations and laboratories may use different values for V_{0}, σ, P, and for the conversion between VU and dbm.

In 1958, he CCIR suggested a formula for standard izing the rms white noise loading of radio systems to simulate the telephone load, for systems with 12 channels or more. ${ }^{22}$ The CCIR rms white noise loading is plotted in Iig. 15, together with Holbrook-Dixon rims speech power exceeded for one per cent of the time. It is seen that the two curves differ by at most $\pm 1 \mathrm{lb}$.
From the above considerations and bealuse the Hol-brook-Dixon monograph is the most extensive existing study of load-rating theory for uncompandored speech, Holbrook-Dixon results are used in this paper as the reference values. Since this paper aims only at a comparison between compandored and uncompandored systems, the absolute values used are not of primary concern. Nevertheless, adjusting the values used herein to a different reference is easily done by simply shifting the scales of volume and speech power on the graphs to the desired reference.

Appendix II

The standard volume meter is an rms type of instrument with a time-constant of about 300 milliseconds. For complex speech, it averages whole syllables or worls. The dymamic compressor has a considerably shorter time-constant of only a few milliseconds; hence, its action is sufficiently fast to follow the envelope of syllables. Thus, a fast level variation lasting an interval of time shorter than the VU meter time-constant, but longer than the compressor time-constant, will not be detected by the VU meter, while it will act upon the compressor variolosser, thereby changing its transmission gain.

Therefore, it is to be expected that the average power at the compressor output will be a function of the input waveform. By comparing the compressor output powers in a telephone channel for inputs of a $1000-\mathrm{cps}$ sinewave of known power and of speech volume having the same

[^57]

Fig. 15-T_oading comparison between Holbrook and Dixon (1939) and CCIR reconmendation.
rms power, we can evaluate the effect of speech waveform on the transmission gain. Neasurements made with zero dbm0 crossover level compandors, ${ }^{9}$ show that the compressor output level for speech input is approximately three decibels lower than for sine-wave input of the same power. This relationship was found to be independent of the input signal level. The same relationship can be assumed to hold in first approximation between sinewave and random noise, inasmuch as speech and random noise have similar waveform characteristics. Identical results for speech are reported by a different source. ${ }^{17}$

Thus it is seen that the relationship between compressed speech or noise output and compressed tone output depends upon the compressor time constants, but is independent of the volume input level. Hence, it is independent also of the crossover level, since the latter changes only the amount of volume compression. It follows that the results obtained with zero dbm0 crossover level compandors can be directly applied to the characteristics with +5 dbm 0 crossover level shown in Fig. 3.

Appendix III

Given a compandor with fixed compression ratio (i.e., 2-to-1), apply the volume distribution [Fig. 2(a)] to the compressor input. The volume distribution at the compressor output is altered according to the compressor characteristic. Now vary the compandor crossover level and show that the resulting variation of loading, L, is a linear function of the crossover level C.

To prove the above, refer to Fig. 16. Recall that $V_{0 p}$ corresponds to the average loading of an active channel, and that

$$
\begin{equation*}
V_{0 p}=V_{0}+(0.115) \sigma^{2} \tag{20}
\end{equation*}
$$

The variation in average loading of a channel can be written as:

$$
\begin{equation*}
L=\Delta V_{0 p}=\Delta V_{0}+\Delta\left[(0.115) \sigma^{2}\right] \tag{21}
\end{equation*}
$$

probability that oroinate is exceeded
IFig. 16-Additional average loading is proportional to compandor crossover level.

But for all compressed distribution, σ is a constant (2.9 db) since the compression ratio is constant and all compressed distributions are parallel straight lines. It follows that

$$
\begin{equation*}
\Delta\left[(0.115) \sigma^{2}\right]=0 ; \tag{22}
\end{equation*}
$$

therefore,

$$
\begin{equation*}
L=\Delta V_{0} . \tag{23}
\end{equation*}
$$

Then, it will be sufficient to show that the variations of $V_{0}, \Delta V_{0}$, are linearly related to the variations of compandor crossover level $C, \Delta C$. Owing to the similarity of triangles $A B C, A D E, A F G$, the following proportion among the sides of the parallelograms can be written down at once:

$$
\begin{equation*}
\frac{C E}{B D}=\frac{E G}{D F}=\frac{\Delta V_{0}}{K \Delta C}=\frac{\Delta V_{0}{ }^{1}}{K \Delta C^{1}} . \tag{24}
\end{equation*}
$$

where K is a constant of proportionality.
Eqs. (23) and (24) show the proportionality between average loading and crossover level.

Acknowledgmest

The author is indebted to L. C. Simpson for many hours of inspiring discussions and for his advice. The contribution of Telefonaktiebolaget L. M. Ericsson in making available the results of their experiments is gratefully acknowledged.

Piezoelectric Properties of Polycrystalline Lead Titanate Zirconate Compositions*

D. A. BERLINCOURT \dagger, member, ire, C. CMOLIK \dagger, and
H. JAFFE \dagger, semior member, ire

Abstract

Summary-Detailed data are given for the piezoelectric, elastic, and dielectric properties of lead titanate zirconate ceramic compositions near the rhombohedral-tetragonal phase boundary. These compositions have markedly higher electromechanical coupling factors, remanent ferroelectric charge, and coercive field, than ceramic barium titanate. Another interesting feature is a pronounced change in the free permittivity $\epsilon_{37}{ }^{T}$ by the poling process; this change is in opposite directions for rhombohedral and tetragonal compositions. The dielectric and elastic anisotropy ratios of poled lead titanate zirconate are much greater than those of barium titanate, indicating a greater degree of alignment of domains during poling.

I. Introdection

\int^{E}EAD titanate and lead zirconate form a complete solid solution system. A phase boundary which is virtually temperature independent exists near

[^58]the composition $\mathrm{Pb} \mathrm{Z}_{3} \mathrm{r} .55 \mathrm{Ti}_{.45}()_{3},{ }^{1 \cdot 2}$ solid solutions richer in zirconimm are rhombohedral, and those richer in titanimm have tetragonal symmetry. In 1954, B. Jaffe ${ }^{3}$ and co-workers reported that solid solutions near the phase boundary could be permanently poled. They obtained highest piezoelectric coupling at the phase boundary, with best values approximately equal to trpical values for good barium titanate.

By close control of chemical composition and processing, the present authors were able to obtain the substantially higher values of piezoelectric coupling reported in this paper. The combination of high piezo-

[^59]electric effects with high Curie point (about $350^{\circ} \mathrm{C}$) makes these ceramics important for applications involving high power level or a wide range of ambient temperatures. Variation of the ratio of zirconium to titanium in these compositions allows one to cover a considerable range of permittivity. Partial replacement of lead, titanium, or zirconium by other elements ${ }^{4,5}$ provides even wider variation of permittivity and substantial modification of other physical properties. Transducer characteristics of commercial lead titanate zirconate ceramics as function of temperature have been presented elsewhere. ${ }^{6}$

The present study presents complete sets of low-signal elastoelectric parameters at $25^{\circ} \mathrm{C}$ for poled lead titanate zirconate ceramics ranging from $\mathrm{Pb} / \mathrm{rr}_{.48}{ }^{-} \mathrm{Ti}_{.52} \mathrm{O}_{3}$ to $\mathrm{Pb} Z^{6}{ }_{6} \mathrm{Ti}_{4} \mathrm{O}_{3}$, and not chemically modified. These data are supplemented by information on total piezoelectric charge released by high compressive stress parallel to the polar axis, and by some observations on pyroelectricity.
piezoelectric (electromechanical) coupling factors ${ }^{10}$ are defined as follows:

$$
\begin{align*}
& k_{31}=d_{31} / \sqrt{\epsilon_{33}^{T} s_{11} E} \tag{1}\\
& k_{p}=k_{31} \sqrt{\frac{2}{1-\sigma^{E}}}, \tag{2}\\
& k_{33}=d_{33} / \sqrt{\epsilon_{33}^{T} s_{33} E} \tag{3}
\end{align*}
$$

and

$$
\begin{equation*}
k_{15}=d_{15} / \sqrt{\epsilon_{11}^{T} S_{55}} \tag{4}
\end{equation*}
$$

where $\sigma^{E}=-s_{12}{ }^{E} / s_{11}{ }^{E}$ is Poisson's ratio under constantfield conditions.

One poled disk of each composition served as the basis for all measurements, but each disk was representative of about 15 disks of the same composition prepared concurrently. The disks were fully plated, about 1.2 mm thick and 17 mm in diameter and poled parallel to the thickness. Measurement of f_{r} and f_{a} then yielded coupling factor k_{p} and elastic compliance $s_{11}{ }^{E}$ by:

$$
\begin{align*}
\frac{k_{n}{ }^{2}}{1-k_{p}{ }^{2}} & =\frac{\left(1-\sigma^{E}\right) \cdot J_{1}\left[\eta_{1}\left(1+\Delta f / f_{r}\right)\right]-\eta_{1}\left(1+\Delta f / f_{r}\right) J_{0}\left[\eta_{1}\left(1+\Delta f / f_{r}\right)\right]}{\left(1+\sigma^{E}\right) J_{1}\left[\eta_{1}\left(1+\Delta f / f_{r}\right)\right]}, \tag{5}\\
\frac{1}{s_{11}{ }^{E}} & =\frac{\pi^{2} d^{2} f_{r}^{2}\left(1-\sigma^{E}\right) \rho}{\eta_{1}}, \tag{6}
\end{align*}
$$

II. Procedtres

A. Measurement of Piezoclectric, Dielectric, and Elastic Constants

Piezoelectric, elastic, and dielectric constants were measured using methods recommended in an IRE Standard on Piezoelectric Ceramics which is in preparation, ${ }^{7}$ and presented in part in an earlier paper. ${ }^{8}$ Preference is given to measurements of the resonance frequency, f_{r}, and antiresonance frequency, f_{a}, of the fundamental mode of disks. For the materials here discussed, f_{r} may be identified with the frequency of minimum innpedance, and f_{n} with the frequency of maximum impedance. The symbols for piezoelectric constants, permittivities, and elastic constants here used follow the 1949 Standards on Piezoelectric Crystals. ${ }^{9}$ In addition, four
${ }^{4}$ B. Jaffe, R. S. Roth, and S. Marzullo, "Properties of piezoelectric ceramics in the solid-solution series lead titanate-lead zirconatelead oxide: tin oxide and lead titanate-lead hafnate," J. Res. Nafl. Bur. Slandards, vol. 55, pp. 239-254; November, 1955.
s F. Kulcsar, "Electromechanical properties of lead titanate zirconate ceramics with lead partially replaced by calcium or strontium," J. Amer. Ceram. Soc., vol. 42, pp. 49-51; January, 1959; and "Electromechanical properties of lead titanate zirconate ceramics modified with certain three- or five-valent additions," J. Amer. Ceram. Soc., vol. 42, pp. 343-349; July, 1959.
${ }^{6}$ D. Berlincourt, B. Jaffe, II. Jaffe, and H. H. A. Krueger, "Transducer propertios of learl titanate zirconate ceramics," 1959 IRE National. Convention Record, pt. 6, pp. 227-232, and IRE Trans. on Ultrasonics Engineering, PGUE-8, February, 1960.
${ }^{7}$ IRE Committee on Piezoelectric Crystals, Proc. IRE, to be published.
${ }^{8} \mathrm{~W}$. P. Mason and H. Jaffe, "Methods for measuring piezoelec. tric, elastic, and diclectric coefficients of crystals and ceramics," Proc. IRE, vol. 42, pp. 921-930; June, 1954.

9 "IRE Standards on Piezoelectric Crystals, 1949," Proc. IRE, vol. 37, pp. 1378-1.395; December, 1949.
where
$\Delta f=f_{a}-f_{r}$,
$J_{0}=$ Bessel function of first kind and zero order,
$J_{1}=$ Bessel function of first kind and first order, and
$\eta_{1}=$ lowest positive root of $\left(1+\sigma^{E}\right) J_{1}(\eta)=\eta J_{0}(\eta)$.
For $\sigma^{E}=0.31, \eta_{1} \cong 2.05$. The change of η with σ^{E} is negligible for the range of σ^{E} found in these ceramics.

$$
\begin{aligned}
& p=\text { density }\left(\mathrm{kg} / \mathrm{m}^{3}\right) \text {, and } \\
& d=\text { disk diameter (meter). }
\end{aligned}
$$

The hydrostatic strain constant $d_{h}=d_{33}+2 d_{31}$ of these disks was obtained from the measured response to a calibrated hydrostatic pressure (about 3 psi kMI).

At this point three bars were cut from each disk. The bars had the following approximate climensions:

Bar	I		t
A	15 mm	2	1.2 mm
I3	14	5.5	1.2
C	5	1.8	1.2

f_{a} and f_{r} of A bars, fully plated on the faces 15 mm by 2 min, were then measured to obtain k_{31} and $s_{11}{ }^{E}$ by

$$
\begin{equation*}
\frac{k_{31}^{2}}{1-k_{z 1^{2}}}=\frac{\pi}{2} \frac{f_{a}}{f_{r}} \tan \frac{\pi}{2} \frac{\Delta f}{f_{r}} \tag{7}
\end{equation*}
$$

10 "IRE Standards on Piezoelectric Crystals: Determination of the Elastic, Piezoelectric, and Dielectric Constants-The Electromechanical Coupling Factor, 1958," Proc. IRE, vol. 46, pp. 765-778; April, 1958.
${ }^{11} k_{p}$ is identical with the "radial electromechanical coupling coefficient k_{r}," of Mason and Jaffe, op. cil.
and

$$
\begin{equation*}
\frac{1}{s_{11} E}=4 \rho f_{r}^{2} l^{2} \tag{8}
\end{equation*}
$$

The length-to-width ratio of the A bars is sufficient to reduce Rayleigh corrections to less than 1 per cent. The coupling factor k_{31} calculated by (2) from k_{p} of the original disk was in all cases within 1 per cent of that measured on the corresponding A bar.

The permittivities $\epsilon_{33}{ }^{T}$ and $\epsilon_{33}{ }^{*}$ were ohtained on type B bars huly plated on the faces 14 mm by 5.5 mm . The capacitance was measured over a frequency range from 50 ke to 20 mc . The data were plotted on semilog graph paper, and values well above the lundamental thickness resonance near 1.5 mc and the first few overtones were extrapolated back to 50 kc to give $\epsilon_{i s 3}{ }^{s}$, while the measured value at 50 kc gave $\epsilon_{3,3}{ }^{7}$. In this manner the variation of ϵ with frequency was eliminated.

New electrodes were applied to A bars on the faces 14 by 1.2 mm , and the capacitance of each bar was measured in the frequency range 50 kc to 15 mc to give $\epsilon_{11}{ }^{r}$ and $\epsilon_{11} s$. The data were plotted on semilog graph paper, and the measurements well above 1 mc were extrapolated to 1 mc (near the fundamental thickness shear antiresonance frequency) to give $e_{11^{*}}$; measurements below 1 me were also extrapolated to 1 mc^{12} to give $\epsilon_{11}{ }^{T}$. The coupling lactor k_{15} wats then obtained using the relationship

$$
\begin{equation*}
k_{15}^{2}=1-\frac{\epsilon_{11} 1^{*}}{\epsilon_{11}} . \tag{9}
\end{equation*}
$$

Bars C. were depoled by heating to $600^{\circ}{ }^{\circ}$. The faces 1.2 by 1.8 mm were electroded and the bars were repoled. The fundamental resonance and antiresonance frequencies were measured using a special crystal holder which effectively placed all straty capacitances across the signal generator rather than across the test specimen. This precaution was taken in the present case because of the very low capacitance of the test specimens. Relationships used are listed below.

$$
\begin{align*}
k_{33}^{2} & =\frac{\pi}{2} \frac{f_{r}}{f_{a}} \tan \left(\frac{\pi}{2} \frac{\Delta f}{f_{a}}\right) \tag{10}\\
\frac{1}{s_{33} D} & =4 \rho l^{2} f_{a}{ }^{2} \tag{11}
\end{align*}
$$

and

$$
\begin{equation*}
s_{33} E=s_{33} n /\left(1-k_{33}{ }^{2}\right) . \tag{12}
\end{equation*}
$$

In order to obtain a coherent set of data, not involving another poling process, another value for k_{33} was

[^60]calculated from d_{h} and d_{31} measured on the original disk, $\epsilon_{33}{ }^{T}$ measured on B bars, and $s_{33}{ }^{E}$ from (12). Values of k_{33}, so calculated, differed by less than 5 per cent from values measured on (: bars after repoling.

The elastic stiffness $\epsilon_{33}{ }^{D}$ wats obtained from overtones of the thickness mode antiresonance frequency of type- 3 bars electroded on the laces 14 hy 5.5 mm . In each case the fifth, seventh, ninth, and eleventh harmonics were divided by the appropriate order and averaged. The relationship is

$$
\begin{equation*}
c_{33}^{D}=4 \rho f_{a}^{2} I^{2} \tag{1.3}
\end{equation*}
$$

The elastic compliance $s_{44}{ }^{D}$ was obtained from overtones of the thickness shear modes of ' ' bars electroded on the faces 5 by 1.8 mm . The fifth, seventh, ninth, and eleventh harmonics were measured. The relationship) used is

$$
\begin{equation*}
\frac{1}{s_{44} D}=4 \rho f_{4} I^{2} \tag{14}
\end{equation*}
$$

Poisson's ratio, $-s_{12} E / s_{11} E$, was determined on square plates 5.5 mm on a side cut irom 13 bars. The resonance frequencies of the two contour-extensional modes were measured, and from the ratio of these Irequencies $-s_{12} E / s_{11} E$ was obtained using Table Ill of the 1958 IRE Standards on Piezoelectric Crystals. ${ }^{10}$

The described measurements furnish a complete set of independent constants. Additional constants contained in Table I follow from the defining relations of 1949 IRE Standards on Piezoelectric Crystals. ${ }^{9}$

B. Measurement of Total Electric .Moment

The total ferroelectric moment was determined by measurement of charges released as test specimens were depoled by application of high compressive stress parallel to the polar axis. Cylindrical axially-poled test specimens were used, and the released charges were collected on a shunt capacitance three orders of magnitude greater than the capacitance of the test specimen. The compressive stress was applied by an hydraulic press, and the test specimens were proportioned so that hydrostatic stresses were negligible. This required a diameter/thickness ratio not greater than three.

C. Pyroclectric Measurements

Pyroelectric measurements were made at constant stress, and therefore included both the primary and secondary effects defined by (Cady. ${ }^{13}$ Above about $1.30^{\circ} \mathrm{C}^{\circ}$ anomalous dielectric charges are also included; this is discussed further in the next section. A sensitive walvanometer was connected across the test specimen, which was heated slowly. Discharge current and temperature were recorded as functions of time.
${ }^{13}$ II: G. Cady, "Piezoelectricity," McGraw-Hill Book Co.. Inc., New York, N.Y., p. 40; 1946.
table I

Comp Zr/Ti atonn ratio	k_{31}	k^{\prime}	k_{15}	k_{33}	$K_{11}{ }^{r}$	$K_{11}{ }^{\text {s }}$	$K_{37}{ }^{T}$	К゙ ${ }_{33}{ }^{*}$ Mois.	$\begin{aligned} & \mathrm{K}_{33} \\ & \text { Calc. } \end{aligned}$	$s_{11}{ }^{E}$	$s_{11}{ }^{\prime \prime}$	$5_{33} z^{*}$	$s_{33}{ }^{\nu}$	$S_{44}{ }^{\text {E }}$	$S_{44}{ }^{D}$	s_{66}	$s_{12}{ }^{\text {E }}$	$s_{12}{ }^{\prime \prime}$	$s_{13}{ }^{E}$	$S_{13}{ }^{\text {D }}$	Density
48/52	0.170	0.289	0.408	0.435	60.3	551	666	540	537	10.8	10.5	10.9	8.83	28.3	23.6	28.3	-3.35	-3.66	-3.21	-2.40	7.59
50/50	0.230	0.397	0.504	0.546	85.5	6.31	846	585	58.5	12.4	11.7	13.3	9.35	32.8	24.5	32.9	-4.06	-4.72	-4.22	-2.60	7.55
52/48	0.31 .3	0.529	0.694	0.670	1180	612	7.30	309	389	1.3.8	12.4	17.1	9.35	48.2	25.0	38.4	-4.07	-5.38	-5.80	-2.56	7.55
54/46	0.280	0.470	0.701	0.626	900	504	450	25.3	268	11.6	10.7	14.8	9.0	45.0	22.9	29.9	-3.33	-4.24	-4.97	-2.68	7.62
56/44	0.267	0.450	0.657	0.619	840	477	42.3	246	2.58	11.0	10.2	14.0	8.65	39.8	22.6	28.4	-3.22	-4.01	-4.63	-2.57	7.59
58/42	0.254	0.428	0.646	0.607	751	4.37	397	24.3	246	10.5	9.85	12.8	8.10	37.7	21.9	27.1	-3.07	-3.75	-4.12	-2.33	7.64
60/40	0. 2.38	0.400	0.625	0.585	672	410	376	240	24.5	10.4	9.75	12.05	7.92	36.9	22.5	26.7	-2.96	-3.55	-3.72	-2.17	7.60
$\mathrm{BaO}^{-1 O_{3}}$ Ceramic ${ }^{17}$	0.208	0.354	0.467	0.493	1620	1260	1900	1420		8.55	8.18	8.93	6.76	23.3	18.3	22.3	-2.61	-2.98	-2.85	-1.95	5.7
	g_{31}	g_{33}	g_{15}	$g_{33}-g_{31}$	d_{31}	d_{33}	d_{15}	$\underbrace{d_{33}-d_{3}}$		$s_{33}{ }^{n}+s_{11}$	(1) $2 s_{15}{ }^{\prime \prime}$		$Q . m$	Q_{E}	P	$C_{33}{ }^{\text {D }}$	$\frac{-s_{12}{ }^{E}}{s_{11}^{E}}$	$\frac{-s_{12} D}{s_{11} D}$	$\frac{-s_{13}^{E}}{\sqrt{s_{33}^{E} s_{11}{ }^{E}}}$	$\frac{-s_{13} D}{\sqrt{s_{33}{ }^{D} s_{11} D}}$	
48/52	-7.3	18.7	28.4	26.0	43.0	110	160	15.3			. 1		1170	380	17	14.0	0.310	0.349	0.296	0.250	
50/50	-9.35	23.1	33.2	32.4	70.0	17.3	251	24.3			. 2		950	370	27	13.5	0.328	0.404	0.329	0.249	
52/48	-14.5	34.5	47.2	49.0	93.5	22.3	494	316					860	360	36	13.4	0.295	0.434	0.376	0.238	
54/46	-15.1	38.1	50.3	5.3 .2	60.2	152	440	212			. 1		680	300	42.5	14.8	0.288	0.396	0.380	0.273	
56/44	-14.5	37.8	48.0	52.3	54.3	142	357	190			. 0		490	190	48	1.5 .3	0.293	0.394	0.373	0.274	
58/42	$-1.3 .9$	36.7	48.8	50.6	48.9	129	325	178			. 6		500	200	4.3	15.8	0.292	0.381	0.355	0.261	
60/40	-13.3	35.2	49.3	48.5	44.2	117	29.3	161			. 0		600	210	33	15.6	0.285	0.365	0.332	0.247	
BaTiO_{3} Ceramic	-4.7	11.4	18.8	16.1	-79	191	270	270			. 8		430	200	8-10	18.9	0.305	0.365	0.326	0.262	

 K are relative to air: $\epsilon=8.85 \cdot 10^{-12} \mathrm{~K}$ farad $/ \mathrm{m}$.

III. Results and Discéssion

A. Dielectric, Elastic, and Piezoelectric Constants

Piezoelectric, elastic, and dielectric properties of a series of lead titanate zirconate compositions are shown in Figs. 1 through 6; these data are listed in lable 1. Highest values of piezoelectric coupling and mechanical compliance were obtained with the $52 / 48^{14}$ limiting tetragonal composition. In other compositional series the peak piezoelectric response was obtained at $52 / 48$ in some cases and $53 / 47$ in others, always at the limiting tetragonal composition. The zirconium compounds used in this study contained 1 to 2 atom per cent hafnium. This fact was, however, disregarded in computing molar ratios from actual weight ratios.

The character of the curves showing the compositional dependence of the dielectric constant is particu-

[^61]

Fig. 1-Variation of piezrelectric coupling with atom per cent Zr^{+*} in $\mathrm{Pb}(\% \mathrm{r}, \mathrm{Ti}) \mathrm{O}_{3}$.

Fig. 3-V'ariation of piezoelectric strain constants d_{33}, d_{31}, and d_{15} with atom per cent Zr^{4+} in $\mathrm{Pb}(\mathrm{Zr}, \mathrm{Ti}) \mathrm{O}_{3}$.
larly interesting (see Fig. 4). The isotropic dielectric constant before poling was maximum at the $52 / 48$ or limiting tetragonal composition. After poling, the maximum values of $\epsilon_{33}{ }^{T}, \epsilon_{33}{ }^{S}$, and $\epsilon_{11}{ }^{S}$ all occurred at the $50 / 50$ composition. The peak value of $\epsilon_{11}{ }^{T}$ was still at $52 / 48$. With the exception of $\epsilon_{11}{ }^{T}$ the poling process moved the curves of permittivity vs mol per cent $\mathrm{PbZrO})_{3}$ to the left. One may infer that the poled state favors the rhombohedral phase. This may be ascribed to the greater number of possible positions for the polar axes in a rhombohedral crystal (eight) than in a tetragonal crystal (six), which permits a closer average ap. proach of the polar axes of crystallites to the applied field direction. A phase change by application of an electric field at constant temperature has also been fonnd in bariun titanate ceramic ${ }^{15}$ near the orthorhombictetragonal polymorphic transition. In this case the or-
${ }^{15}$ H. G. Baerwald and D. Berlincourt, "Electromechanical response and dielectric loss of prepolarized barium titanate under maintained electric bias," J. Acoust. Soc. Atmer., vol. 25, pp. 703-710; luly, 1953.

Fig. 2-Variation of piezoelectric strain constants g_{33}, g_{31}, and g_{15} with atom per cent Zr^{4+} in $\mathrm{I}^{\mathrm{h}}\left(\mathrm{Z}, \mathrm{r}, \mathrm{Ti}^{\mathrm{i}}\right) \mathrm{O}$.

Fig. 4-Variation of dielectric constants with atom per cent Zr^{4+} in $\mathrm{Pb}\left(\mathrm{Zr}, \mathrm{Ti}^{2}\right) \mathrm{O}_{3}$.

Fig. 5-Variation of elastic rompliances with atom per cent $7 r^{4+}$ in $\mathrm{Pb}(\mathrm{Zr}, \mathrm{Ti}) \mathrm{O}_{3}$.
thorhombic phase is favored. With barium titanate ceramics this effect is not maintained upon removal of the electric field, but a remanent effect in lead titanate zirconate may be explained by the much larger energy involved in the poling process.

The dielectric anisotropy of poled lead titanate zirconate is clearly demonstrated in Fig. 7, where the ratios $\epsilon_{11}{ }^{T} / \epsilon_{33}{ }^{T}$ and $\epsilon_{11} S / \epsilon_{33}{ }^{3}$ are plotted. Peak values occur at $54 / 46$, the limiting rhombohedral composition, and there is relatively little dielectric anisotropy in the tetragonal 48/52 and 50/50 compositions. Table II lists the dielectric anisotropy ratios for typical tetragonal and rhombohedral lead titanate zirconate compositions and for single crystal ${ }^{16}$ and ceramic ${ }^{17}$ barium titanate.

The elastic constants of the lead titanate zirconate compositions are shown in Fig. 5, and the elastic anisotropy ratios are plotted as functions of composition in Fig. 8. Again the greatest anisotropy was obtained with the $54 / 46$ limiting rhombohedral composition, and the tetragonal compositions show relatively little anisotropy. Table II lists elastic anisotropy ratios for typical tetragonal and rhombohedral lead titanate zirconate, and for single crystal and ceramic barium titanate. Barium titanate ceramic is in this respect quite similar to the $\mathrm{Ib} Z \mathrm{rr}_{.50} \mathrm{Ti}_{.50} \mathrm{O}_{3}$ composition, but the two lead

[^62]

Fig. 6-Variation of elastic compliances with atom per cent Zr^{4+} in $\mathrm{Pb}\left(\mathrm{Zr}, \mathrm{Ti}_{\mathrm{i}} \mathrm{O}_{3}\right.$.
titanate zirconate compositions listed in Table II are markedly different.

With ceramic barium titanate 90° domain reorientation is only about 12 per cent complete in poled specimens, but 180° reorientation is virtually perfect. ${ }^{18}$ The elastic and dielectric anisotropies of the ceramics are markedly less than in a single-domain crystal, just as would be expected with very little 90° reorientation. With the limiting tetragonal lead titanate zirconate composition, on the other hand, 90° domain reorientation is about 44 per cent complete, ${ }^{18}$ and elastic and dielectric anisotropies are relatively high. Elastic and dielectric data have not yet been obtained on single domain lead titanate zirconate crystals, so a comparison cannot be made. The poled rhombohedral ceramics have the greater anisotropy in spite of the smaller distortion of the crystal from cubic symmetry. It has generally been found that 180° domain reorientation is virtually complete, and this is not affected by crystal distortion. Switching by other than 180° accounts for the elastic and dielectric anisotropy, and the smaller distortion and greater number of degrees of freedom in the rhombohedral material allow more complete reorientation of this type than in the tetragonal ceramic.

The piezoelectric constants d_{33}, d_{31}, and d_{15} have peak values at the limiting tetragonal composition, but the peak values of g_{33}, g_{31}, and g_{15} occur at the limiting rhombohedral composition (Figs. 2 and 3). It is interesting to note that in all cases $g_{15} \sim g_{33}-g_{31}$, as pre-

[^63]

Fis 7-Variation of dielectric anisotrophy ratios with alom ner cent $7 r^{1+}$ in $\mathrm{Pb}(7 \mathrm{r}, \mathrm{Ti}) \mathrm{O}_{3}$.

TABLE II
Anisotropy Ratios

Composition	$\frac{\epsilon_{11}{ }^{T}}{\epsilon_{33}{ }^{T}}$	$\frac{\epsilon_{11}{ }^{s}}{\epsilon_{33}{ }^{s}}$	$\frac{s_{33} E}{s_{11} E}$	$\frac{s_{33} t}{s_{11} t}$	$\frac{s_{44} E}{s_{66}}$	$\frac{s_{+1} l}{-}$	$\frac{s_{13} E}{s_{12} e^{E}}$	$\frac{s_{13} n}{s_{12} l}$
$\mathrm{Pb} 7 \mathrm{rr}_{.50} \mathrm{li}_{1.50} \mathrm{O}_{3}$	1.01	1.08	1.07	0.80	1.00	C. 75	0.96	0.55
$\mathrm{I} \mathrm{b} / \mathrm{r} \mathrm{sb}_{5} \mathrm{Ti}_{14} \mathrm{O}_{3}$	1.99	1.94	1.27	0.85	1.40	0.80	1.44	0.64
$\mathrm{BaTHO}_{3}\left(\right.$ ceramic) ${ }^{17}$	0.80	0.90	1.04	0.8 .3	1.04	0.82	1.09	0.66
$\left.\mathrm{HaT}^{\text {Ti }}\right)_{2}(\mathrm{crcalal})^{66}$	17.1	18.1	1.95	1.49	2.08	1.40	2.32	1.03

Fig. 8-Variation of elastic anisotropy ratios with atom per cent
 $D=s_{33} D / s_{11} D, E=s_{13} E / s_{12} E, F=s_{13} D / s_{12} D$.

Fig. 9-V'ariation of elastic cross-ratios with atom per cent $7 \mathrm{r}^{4+}$ in $\mathrm{Pb}(7 \mathrm{r}, \mathrm{Ti}) \mathrm{O}_{3} ; A=-s_{12} E^{E} / s_{11}{ }^{E}, B=-s_{12} D / s_{11} D, C=-s_{13} E / \sqrt{s_{11} E_{S_{33}} E}$. $D=-s_{13} D / \sqrt{s_{11}^{D} s_{33} D}$.
dicted by Jaffe ${ }^{19}$ and Mason. ${ }^{20}$ Baerwald ${ }^{21}$ later derived an expression which showed that g_{15} should differ from the sum $g_{33}-g_{31}$ by a term proportional to $P_{0}{ }^{2}$. He pointed out that one would expect this term to be positive. This has always been the case with barium titanate and tetragonal lead titanate zirconate, but with most rhombohedral lead titante zirconate the term is negative (see Fig. 2).

As a check on the measured value of $\epsilon_{33}{ }^{\circ}$, a value was calculated using the free permittivity $\epsilon_{33^{T}}{ }^{\text {, }}$, the piezoelectric constants d_{33} and d_{31}, and the elastic compliances $s_{13} E, s_{33} E, s_{13} E$, and $s_{12}{ }^{t}$, using the following expressionl:16
$\epsilon_{43} T-\epsilon_{33}{ }^{\Sigma}=\frac{2 d_{31}{ }^{2} s_{33} E+d_{33}{ }^{2}\left(s_{11} E+s_{12} E\right)-4 d_{31} d_{33} s_{13} E}{\left(s_{11} E+s_{12}{ }^{E}\right) s_{33} E-2\left(s_{13} E^{2}\right)^{2}}$.
The calculated value is included in Table I along with the measured value.

The electrical utudity factor Q_{E} listed in Table I and plotted in Fig. 10 is the reciprocal of the dissipation factor obtained from bridge measurements at 1 kc and about 1 volt/mm. The mechanical quality factor Q_{M} was determined from resistance R at resonance of the thin disks by the relation

$$
\begin{equation*}
1 / Q_{v}=2 \pi f_{r} R C\left(f_{a}^{2}-f_{r}^{2}\right) / f_{n}^{2} \tag{16}
\end{equation*}
$$

where C is the low irequency (1 kc) capacitance.
It will be moted that both electrical and mechanical Q factors are higher on the tetragonal sitle of the phase boundars: The closest approach between electricat and mechanical Q lactors occurs near the phase boundary, where the coupling between electrical and mechamical effects is highest. The mechanical Q is not the same ior different modes, and may loe expected to be lower for a shear than for the planar extensional morle used here.

B. Total lierroelectric Moment

The total ferroelectric moments of the lead titanate zirconate compositions are listed in Table I. They were obtained by a measumement of short-circuit charge resulting from high compressite stress along the polar axis. The values listed were measured during stress application to $58,000 \mathrm{psi}$, a stress sufficient to catuse sub)stantially complete depolarization. With barium titanate ceramic it is also possible to determine the total ferroelectric moment by means of charge-fiek hesteresis loops or by measurement of total charges released on heating through the Corie point. In practice it is not possible to obtain meaningful data with lead titanate zirconate from hysteresis loops because of the extremely

[^64]high coercive fields at roon temperature. At temperatures high enough so thatt the coercivity is sufficiently low, the volume resistivity is not high enough to prevent leakige, so hysteresis loops are of poor quality. As will be discussed shortly, measurement of total charges released on heating through the Curie point does not give a meaningful result for the total polarization in these ceramics, due to amomalous dielectric charges which flow above about $150^{\circ} \mathrm{C}$. These anomalous charges total about one order of magnitude greater than the true lerroelectric charges.

Typical curves showing released charge as a function of compressive axial stress are shown in lïg. 11. It will be noted that total charges released were much higher for the lead titanate zirconate compositions than for barium titanate. Fig. 12 shows released charges at various levels of stress as a function of composition. It will be noted that the highest ferroelectric moment was obtained with the rhombohedral 56/44 composition. This is again probably due to more complete domain alignment in the rhombohedral compositions. As mentioned before, the crystal distortion is higher in the tetragonal compositions, and would as such favor higher polarization in an equally aligned tetragonal composition.

C. Pyroelectric Measurements

Temperature variations severely affect the magnitude of the polarization both through a change in domain alignment and a change in the spontaneous polarization of individual domains. These changes are particularly severe in temperature ranges in which crystal symmetry is altered. Barium titanate ceramics, for instance, suffer a severe loss of charge as the temperature is increased through the orthorhombic-tetragonal transition near $15^{\circ} \mathrm{C} .2^{24}$ As the temperature rises througl the C'uric point, substantially all fermelectric charges are irreversibly released. With lead titanate zirconate there are uo phase transitions from $-200^{\circ}{ }^{\circ}$ to the Courie point. There are, however, anomalous dielectric charges, which besin to flow above about 100 to $150{ }^{\circ} \mathrm{C}$. In Fig. 13 ferroelectric currents are shown as positive. Near $1.500^{\circ} \mathrm{C}^{\prime}$ the current began to decrease and at about $230^{\circ} \mathrm{C}$ the current actually reversed. The anomalous charges Howing in the temperature range $25^{\circ} 10400^{\circ} C^{\circ}$ amounted to about 1000) $\mathrm{cosul} / \mathrm{cm}^{2}$, over twenty times the ferroelectric polarization. (harge flow above the ('urie point has also been observed with poled barium titanate ceramic (1\%ig. 14). Here anomalous charge How began at about $270^{\circ} 5^{\circ}$, and total anomalous charges were over an order of mannitude greater than the ferroelectric polarization.

With lead titanate zirconate charge fow up to $1.30{ }^{\circ} \mathrm{C}$. is quantitatively reversed on cooling, and this How of

[^65]

Fig. 10 - Variation of mechanical and electrical Q factors with atom per cent Zr^{4+} in $\mathrm{Pb}(Z \mathrm{r}, \mathrm{Ti}) \mathrm{O}_{3}$.

Fig. 12- Variation of short-circuit charge with atom per cent $7 \mathrm{r}^{\mathrm{s}+}$ in $\mathrm{Pb}(7 \mathrm{r}, \mathrm{Ti}) \mathrm{O}_{3}$.

Fig. 11-Short-circuit charge vs stress parallel to polar axis, $\mathrm{P} \mathrm{P}_{2} \mathrm{Zr}_{53} \mathrm{Ti}_{47} \mathrm{O}_{3}$, $\mathrm{Pb}_{\mathrm{b}} \mathrm{Zr}_{56} \mathrm{Ti}_{4} \mathrm{O}_{3}$, and BaTiO_{3}.

Fig. 13-Variation of discharge current and temperature with time for slowly heated $\mathrm{Ph} 7 \mathrm{ras} \mathrm{Ti}_{43} \mathrm{O}_{-}$disk.

Fig. 14-Variation of discharge current and temperature with time for slowly heated $\mathrm{Ba}_{3} \mathrm{TiO}_{3}$ disk.
charges of alternate polarity on heating and cooling can be repeated indefinitely. This is not the case at higher temperatures. Thus there is an experimental distinction between pyroelectric and anomalous dielectric charge flow.

Modified lead titanate zirconate compositions recently developed begin to release substantial anomalous charges only above about $350^{\circ} \mathrm{C}$, and in this case the total ferroelectric charge may be determined from integrated current flow. These modified lead titanate zirconate ceramics have volume resistivity about 1 wo and one-half orders of magnitude higher than the unmodified material above $100^{\circ} \mathrm{C}$, and with both the modified and unmodified compositions anomalous charge flow occurs only at temperatures above which the volume re-
sistivity drops below about $10^{9} \mathrm{ohm} \mathrm{cm}$. These modified compositions have markedly reduced coercivity as well, and the ferroelectric polarization may, therefore, be determined from charge-field hysteresis loops. With these compositions there has been very close agreement between the three methods used in measuring the total ferroelectric moment.

IV. Acknowledgment

The authors wish to thank F . Brunarski for the preparation of mumerous test specimens and some of the measurements reported, and I3. Jaffe for the pyroelectric measurements. We also gratefully acknowledge the continued interest of Dr. G. W. Anderson and Dr. F. Nielson of Sandia Corp., Albuquerque, N.Mex.

Further Consideration of Bulk Lifetime Measurement with a Microwave Electrodeless Technique*

H. JACOBS \dagger, A. P. RAMSA \ddagger, and F. A. BRAND \dagger, member, ire

Abstract

Summary-A new method for measurement of the lifetime of excess carriers in semiconductors is described. Using a steady light source and measuring changes in microwave power absorption as a function of position of the sample in a waveguide, bulk lifetime can be determined. Measurements described here were made at 9600 mc. The new technique offers the following advantages: First, the method does not require electrode attachments, thus making the preparation of the samples less difficult and the actual experiment less subject to error due to non-ohmic contacts. Second, the effects of surface recombination are made less important, thus giving a greater assurace of the evalaution of bulk lifetime.

Introdiction

WIIEX equilibrium conditions in a semiconductor are disturbed due to the presence of light, heat, or injected current carriers, and the source of disturbance is removed, a finite amount of time is reguired for equilibrium to be established again. For instance, in the case of a pulse of light incident upon germanium, excess holes and electrons are created. After the light is removed, it is generally found that recombination occurs in an exponential manner until equilibrium is restored. The time for the carrier density to be redured to e^{-1} of its maximum value is defined as the litetime.

[^66]Quite recently, a pulsed-light electrodeless technique for lifetime measurements was disclosed. ${ }^{1}$ As shown in Figs. 1 and 2, a germanium sample was inserted in a waveguide in such a manner that light and microwave radiation would fall on the sample simultaneously. As light was removed from the surface the decay in conductivity could be measured by the decay in microwave ab)sorption of the sample. Following this, correlation was established between the standard photoconductive decay methods and the electrodeless microwave method. In what follows, we shall call the latter method of measurement the pulsed light microwave electrodeless technique. It has certain advantages: first, no contacts are required at the ends of the sample, and second, a considerable range of lifetimes can be studied. With this technique, however, we are still concerned with a problem common to the photoconductive decay technigues; that is, the role of the surlace.

In lifetime determinations the role of the surface is of ten ambiguous. In the work of Stevenson and Keyes, ${ }^{2}$ and in reports by Shockley, ${ }^{3}$ it is shown that for a rec-

[^67]

Fig. 1-Schematic arrangement for the measurement of lieftime by pulsed-light microwave electrodeless techuique. This arrangement allows for a comparison with the time constant of an RC network to facilitate measurement of lifetime.

Fig. 2-. Irrangement of a sample in a holder for the measurement of lifetime by pulsed-light microwave electrodeless technique. The light from a projector lamp and rotating mirror injects excess carriers in the germanium sample, thus resulting in a decrease in power as measured with a crystal detector. The recovery time after cessation of the light pulse is then used as a measure of lifetime.
tangular cross-section rod with uniform distribution of excess carriers,

$$
\begin{equation*}
1 / \tau_{p 1}=1 / \tau_{p}+\nu_{s} \tag{1}
\end{equation*}
$$

where $\tau_{p 1}$ is the measured lifetime, τ_{p} is the bulk lifetime, and ν_{8} is a term due to surlace recombination. In addition.

$$
\begin{equation*}
\nu_{s}=\left(\frac{\pi^{2} D_{p}}{t}\right)\left(\frac{1}{B^{2}}+\frac{1}{C^{2}}\right), \quad S \rightarrow x \tag{2}
\end{equation*}
$$

where $2 B$ and $2 C$ are the cross sectional dimensions of the sample, D_{p} is the diffusion constant and S is the surface recombination velocity. For the case of $S \rightarrow 0$,

$$
\begin{equation*}
\nu_{s}=S(1 / B+1 / C) \tag{3}
\end{equation*}
$$

In the case of the experiments involving pulsed light and photoconductive decay, the assumption of uniform injected carrier distribution is not valid. The excess carrier concentration distribution may fall off exponentially with distance due to the absorption of light. Hence, empirical methods must be used to determine $\nu_{s} ; i . e$., changing the nature of the surface, or increasing the size of the sample. Even this, however, does not provide data which can always be applied to (2) and (3) because it can be shown experimentally that most of the light is usually absorbed very near the surface facing the light and no matter how large the sample is, an appreciable amount of the carriers can diffuse out to the surlace region and recombine there instead of in the bulk.

It appears that the photoconductive decay methods of measuring lifetime, as described above, may be approximately correct if the surface has a low recombination velocity. One way of showing this is by considering the ratio of surface recombination current to bulk current. If this ratio is small, it can be assumed that most of the carriers are in the volume, and the techniques described above are valid. Calculations can be carried out as follows:

$$
\begin{equation*}
I_{s}=q D_{s} S, \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
I_{p}=q p_{s} D_{p} / L_{p} . \tag{5}
\end{equation*}
$$

Combining these, the ratio is

$$
\begin{equation*}
\frac{I_{s}}{I_{p}}=\frac{L_{p} S}{D_{p}} \tag{6}
\end{equation*}
$$

where I_{s} is surface recombination current, I_{p} is bulk hole current directed in and away from the surface, p_{s} is excess hole density on the surface due to light, D_{p} is the diffusion constant for holes, and L_{p} is the diffusion length.

For a lifetime of $200 \mu \mathrm{sec}$ and $S=100$, the ratio I_{s} / I_{p} is in the order of 0.2 , and this indicates that lifetime measurements describe bulk properties, particularly if the volume to surface ratio of the crystal is so high that varying the sample size does not change the resulting values as determined by the experiments.

There is still, however, a possible error if the surface recombination velocity is higher than the assumed value. For this reason, when measuring lifetime, it is best to try to eliminate surface recombination as much as possible.

To circumvent surface recombination, Blakemore' used a series of very thick silicon filters so that the light that penetrated the filters would go to an appreciable depth in the silicon sample tested. This technique requires a high degree of amplification and is subject to small amounts of light leakage. In the method to be described, the more realistic assumption is made that with visible light all of the carriers are indeed generated

[^68]in the region just next to the surface itself and as time progresses diffusion allows carriers to enter the bulk.

With this assumption, we shall describe a method of approximating the bulk lifetime in a manner which is relatively independent of the surface recombination velocity relating to the surface facing the light. In addition, we shall show that an electrodeless method of lifetime measurement can be combined in the proposed procedure.

Experimental Method

Assume that the sample is arranged as shown in Figs. 3 and 4. The light source is steady, and in electrical terms can be called a dc light source. The light beam itself is assumed to be comprised of parallel rays. The monitored microwave generator supplied a square wave modulation of the microwave energy transmitted through the sample. Measurements were made cluring the course of the experiment of the change in absorption of microwave energy as a function of the distance "d" which the surface of the semiconductor extends out of the waveguide. It is assumed that under the dc light conditions, the excess carriers decreased exponentially with distance from the surface facing the light.

It is assumed further that the excess minority carrier density is given by

$$
\begin{equation*}
p=p_{s} e^{-k x} \tag{7}
\end{equation*}
$$

where p is the excess density, p_{s} is the surface excess density, and $k=1 / L_{p}$ is the reciprocal of the diffusion length. The total number of excess carriers in the waveguide (region of interaction with the microwave) is

$$
\begin{align*}
p^{\prime} & =\int_{d}^{\infty} p d x=p_{s} \int_{d}^{\infty} e^{-k x} d x \\
& \left.=-\frac{p_{s}}{k} e^{-k x}\right]_{d}^{\infty} \tag{8}
\end{align*}
$$

and

$$
\begin{equation*}
p^{\prime}=K e^{-k i d} \tag{9}
\end{equation*}
$$

where $K=p_{s} L_{p}$ and p^{\prime} is the total number of excess carriers. The plane d is the distance from the end of the semiconductor to the plane of the waveguide. Hence if the light source is kept at a constant level, variations of the distance the sample extends from the waveguide should produce a change in the total number p^{\prime}.

It is assumed the p^{\prime} is linearly related to the change in power absorbed, . I, for small increments. In considering the \ln of both sides of (9) and plotting $\ln A$ vs d, we should expect a straight line. The slope here should be $-k$ or $-1 / L_{p}$.

In determining L_{p} experimentally, and using the relation

$$
\begin{equation*}
L_{p}=\sqrt{D_{p} \tau_{p}} \tag{10}
\end{equation*}
$$

we can determine the lifetime τ. This technique has several advantages and several possible pitfalls. On the

Fig. 3-Sichematic arrangement for the measurement of lifetime by de light microwave electrodeless technique. Klystron source supplies a square wave 1000 cycles per second. Changing the position of this sample causes little or no change in attenuation with the light off. However, with the light on, the change in power absorbed increases as the surface facing the light approaches the wareguide surface. All measurements were made at 9600 me per second.

Fig. 4-Arrangement of a germanium sample in a holder for the measurement of lifetime by de light microwave electrodeless technique. The distance d is the measured distance from the end of the sample to the upper surface of the waveguide. In the experiment, the change of absorption due to the presence of light is measured as a function of this distance.
advantageous side we can list the following factors. First, we have here a new electrodeless technique for the measurement of lifetime. We shall refer to this as the dc light microwave electrodeless method of lifetime measurement. Second, and most important, if the surface facing the light should have a high surface recombination velocity and, hence, have a dominant role in the lifetime characteristics, the dc light source will cancel out the effect of recombination on this surface. With this technique, since it is steady state in nature, it is only assumed that the decay is exponential with distance into the bulk. The absolute value of the excess carrier density at the surface is not critical because in the equations used we assumed only that the surface density was constant. The dc light microwave electrodeless method of lifetime measurement will thus measure lifetime resulting from recombination primarily in the bulk and in some cases, and to a lesser extent, recombination on the surfaces other than the surface facing the light.

In making comparisons of the two methods, we should expect that using the de light source should give values approximately equal to the values of lifetime obtained by pulsed light methods when the surface recombination velocity is low. However, when surface recombination velocities are high, we should expect the dc light source method to give lifetime values higher than the pulse light method since the latter is more subject to surface domination. In addition, we might consider the new technique as a check on samples previously measured by more conventional means such as the photoconductive decay method or the newer pulsed-light electrodeless method. This would provide greater assurance that the measurements were bulk dominated rather than affected by the surface.

The disadvantage of the proposed method is that the distance at which the microwave electric field is practically zero and attains a maximum is not as clearly defined as would be desirable. Hence measurements were necessarily made on long lifetime samples, so that even if this region is not a sharp line, the lack of definition would not be a critical factor. Experiments were carried out with samples of various lifetime to assure the fact that the region of uncertainty of d was small compared to the diffusion length.

Experimental Dita

Experiments were arranged as indicated in Figs. 3 and 4. Samples of germanium which were 3.5 mm wide by 3.5 mm thick and 3 cm long were tried. In Table I we have indicated the data obtained. In arriving at the data in Table I, the column referring to the pulsed light source contains data measured directly by experiment. The data in the column referring to the dc light source was computed as follows. Experiments were conducted, with results indicated in Figs. 5 and 6, where the logarithm of the changes in absorption is plotted against the distance from the end of the sample to the upper waveguide walls. From these plots the slopes were computed giving $1 / L$. Having determined L by experiment, τ was computed using the relationship $L^{2}=D \tau$. The question arises as to what value of D to choose. Since the samples used were measured at a resistivity of 42.8 ohm cm at room temperature, the germanium crystal was assumed to be intrinsic. Hence the ambipolar diffusion constant of $D=60.3$ was used, assuming $D_{n}=96$ and $D_{p}=44$. Using the value of $D=60.3, \tau$ was calculated. It can be observel that where the surface processing was such as to give low surface recombination velocities both methods gave good agreement. However, when the surface recombination velocity was increased by exposure to ammonia vapor, the de light source method gave slightly longer values of lifetime than the pulsed light source technique, as was predicted.

In the course of these experiments, an assumption is made that the power absorbed is linearly related to the number of carriers in the semiconductor portion located in the waveguide. This is further explained in the Ap-

TABLE I*
Experimental Data

Sample 90 AE 42.8 ohm cm Germanium Run Number	Surface Treatment	Lifetime in Seconds using Electrodeless Technique with Contimsous Light Source	Lifetime in Seconds using Electrodeless Technique with Pulsed Light Source
A	CP 4 etched and distilled water washed. Exposure to air 24 hours	1.45×10^{-3}	1.2×10^{-3}
B	Repeat A	1.45×10^{-3}	1.2×10^{-3}
E	Repeat A	$\begin{aligned} & 1.65 \times 10^{-3} \text { to } \\ & 2.7 \times 10^{-3} \end{aligned}$	2.0×10^{-3}
K	Repeat A	1.80×10^{-3}	1.3×10^{-3}
M	Following procedure A, the sample was exposed to ammonia vapor and then exposed to air for several hours	1.57×10^{-3}	0.88×10^{-3}
N	Second test after M	1.49×10^{-3}	0.88×10^{-3}
0	After N, sample was allowed to stand in air for 48 hours	1.85×10^{-3}	0.97×10^{-3}
S	Sample in 0 exposed to air another 48 hours	2.30×10^{-3}	0.97×10^{-3}
T	Sample CP4 etched again and exposed to air for 48 hours	$\begin{aligned} & 1.40 \times 10^{-3} \text { to } \\ & 2.24 \times 10^{-3} \end{aligned}$	1.75×10^{-3}

[^69]pendix. The skin depth for a sample of the resistivity stated and at 9600 me per second has been calculated to be approximately one centimeter. This corresponds to the equilibrium condition of no excess minority carriers. Since the sample dimensions were about one third of this distance, the assumption was made that the sample was "viewed" homogeneously by the microwave field. In addition, the excess carrier density added to the specimen by incident light must be small, and hence the change in power absorbed was as small as practicable from a measurements viewpoint.

Conclision

A variation of the microwave electrodeless method of measurement of lifetime using dc light has been de-

Fig. 5-Experimental data giving the change in the absorption of microwave power as a function of d. In considering the region where $\ln A$ changes linearly with d, the following parameters can be obtained: $L=0.295 \mathrm{~cm}, \tau=1 . \nmid 5 \mathrm{msec}$.
scribed. This technique is advantageous in that no contacts are required at the ends of the semiconductor sample. In addition, it is less sensitive to surface recombination velocities than previously described techniques such as the more conventional photoconductive decay method or the pulsed light microwave electrodeless method. Finally, in carrying out these experiments, an independent check was made on the values of lifetime determined by earlier methods.

Appendix

Linear Relationship in Power Absorbed AND CoNDECTINITY

In measuring lifetime during the course of the experiment, the technique involved moving the sample in various measured positions and determining the power transmitted with the light on, and off. The difference in power transmitted was attributed to injected carriers.

In mathematical language this gives

$$
\begin{equation*}
P=P_{0} c^{-a_{0} x} \tag{1}
\end{equation*}
$$

with the light off, and

$$
\begin{equation*}
P^{\prime}=P_{0} e^{-a_{0}(1+c) x} \tag{2}
\end{equation*}
$$

with the light on.

Fig. 6-Experimental data giving the change in the absorption of microwate power as a function of d. In considering the region where $\ln A$ changes linearly with d, the following parameters can be ohtained: $L=0.404 \mathrm{~cm}, \tau=2.50$ seronds.

Assume now that a_{0} is constant, as is x and P_{0}. The change in power transmitted clue to the incident light is $P-P^{\prime}$. That is,

$$
\begin{equation*}
P-P^{\prime}=P_{0} e^{-a_{0} x}\left[1-e^{-a_{0} C x}\right] \tag{3}
\end{equation*}
$$

If $a_{0} c x$ is small, the exponential can be expanded and, retaining only the second term,

$$
\begin{equation*}
P-P^{\prime}=P_{0} e^{-r_{0 x}}\left[a_{0} c x\right] \tag{4}
\end{equation*}
$$

Thus, if the change in absorption is small, the term $P-P^{\prime}$ will be linearly related to c. Furthermore, the attenuation constant is linearly related to conductivity and, hence, the total number of carriers in a given volume providing $\sigma<\omega \epsilon$.

Combining these relationships, the change in power transmitted is linearly related to the change in the total number of carriers in the volume of the waveguide.

Acknowledgament

The authors wish to thank Dr. (i. (roubau of the LT. S. Army Signal Research and Development Laboratory, Fort Monmouth, N. J. for his advice, and Dr. W. Caldwell of Bendix Aviation Corporation, Long Branch, N. J. for furnishing samples of highly perfect germanium crystals.

The Application of Linear Servo Theory to the Design of AGC Loops*

W. K. VICTOR \dagger and M. H. BROCKMAN \dagger

Abstract

Summary-An analytical technique for designing automatic gain control (AGC) circuits is presented. This technique is directly applicable to high-gain high-performance radio receiving equipment. Use of this technique permits the designer to specify the performance of the AGC system completely with respect to step changes in signal level, ramp changes in signal level, frequency response, receiver gain error as a function of receiver noise, etc., before the receiver is constructed and tested. When used in conjunction with the statistical filter theory the technique has been used to synthesize optimal AGC systems when the characteristics of the signal and noise are appropriately defined.

The mathematical derivation of the closed-loop equations is presented. The resulting expressions are simple and easy to understand by anyone acquainted with linear servo theory. Furthermore, the underlying assumptions used in theory have been tested experimentally, and the close agreement between theory and experiment attests the usefulness of the design technique.

A^{1}UTOMATIC gain control (AGC) is a closed-loop regulating system which atomatically adjusts the gain of a receiver to maintain a constant signal amplitude at the receiver output. The AGC loop is normally capable of operating over a very wide range of signal input levels. When the signal is narrow-band and its amplitude is detected synchronously, the loop is capable of performing efficiently in the presence of wide-band noise. The purpose of this paper is to derive the basic equations of the AGC loop which minimize the mean square error in the estimate of receiver gain when the signal level, noise level, and transient performance are specified.

Fig. 1 is a block diagram showing the principal clements of the AG(loop with the waveform equations at various points in the loop. The desired output of the receiver is unity. The amplitude of the signal $a(t)$ is expressed as a fraction with respect to unity. The gain of the receiver is expressed as (attenuation) ${ }^{-1}$, or $1 / a^{*}(t)$. When $a(t)=1, a^{*}(t)=1$; the gain is unity, and the receiver output is also unity. When $a(t)=0.1$, for example, $a^{*}(t)=0.1$, the gain is $1 / a^{*}(t)=10$, and the receiver output is unity. The attenuation of the receiver is introduced as a useful concept because it is the attenuation of the receiver that is required to follow the changes in signal level. The variation in attenuation of the receiver is some function of the control voltage b; thus, the receiver may be considered as a voltage-controlled at-

[^70]

Recenver attenuation $a^{*}(t)=$

$$
F(b)=\text { Function } \mathrm{I}^{\prime}\left\{\left[1-\frac{a(l)}{a^{*}(t)}\right]+\frac{n^{\prime}(t)}{a^{*}(t)}\right\}
$$

where
$\boldsymbol{a}(1)=$ amplitude of RF carrier expressed as a fractional part of unity,
$\omega_{c}=$ radian frequency of the carrier,
$n(t)=$ interference of flat spectral density over a range of frecpuencies about ω_{r},
$n^{\prime}(t)=n(t) \mid 2$ sin $\left.\omega_{c} t\right\}=$ interference of same spectral density as $n(t)$,

$$
I \times(l)=\int_{0}^{\infty} y(\tau) \times(l-\tau) d \tau
$$

$y(\tau)=$ weighting function of filter $=\frac{1}{2 \pi j} \int_{-1 \infty}^{+1 x} f(s) e^{x} \tau d s$.
Fig. 1-Convenional AGC circuit with coherent detertion.
tenuator. This idea is expressed in block diagram form in Fig. 2.

Pig. 2 illustrates a recognition of the fact that the output of the AGC loop is the receiver attenuation $a^{*}(t)$ and that this output signal is required to mateh the input signal $a(t)$ with a minimum error. The synchronous detector is easily eliminated because it does nothing more than frequency-translate the signal and the noise $n(t)$ from the carrier frequency ω_{c} to zero frequency, or dc. In proceeding from lig. 1 to Fig. 2 it should be noted that the two circuits are mathematically equivalent; the solution for the output attenuation $a^{*}(t)$ is

$$
\text { Func } I\left\{\left[1-\frac{a(t)}{a^{*}(t)}\right]+\frac{n^{\prime}(t)}{a^{*}(t)}\right\}
$$

in each case. The diagram is rearranged to provide a better understanding of what actually takes place when the loop is functioning.

The next step in the analysis is to choose a function for the variation of receiver attenuation with control voltage. If b is the control voltage (see Fig. 3), $F(b)$ is chosen to be $10 K_{A}{ }^{6 / 20} ; K_{A}$ is a constant associated with the attenuator (or amplifier) and has the dimension $\mathrm{db} /$ volt. Although $F(b)$ is highly nonlinear, it should be noted that $\log F(b)$ is a linear function.

Fig. 2-Modified comentional AGC cirenit.

Fig. 3-Nonlinear equivalent AGC circuit.

where

$$
a(l)_{\mathrm{ilbu}}=20 \log _{10} \frac{a(l)}{1}=\text { amplitude of signal expressed in } \mathrm{db}
$$

with respect to unity
$a^{*}(t)_{\text {dbu }}=20 \log _{10} \frac{a^{*}(t)}{1}=$ altenuation of receiver in db
with respect to unity
Fig. \downarrow-Inear AGC system.

Fig. 5-Simplified linear AGC system.

Having made the decision (see Fig, 3) that the attenuator characteristic should be linear in decibels, the function $1-a(t) / a^{*}(t)$ is studied and found to be approximately equal to $20 \log _{10} a(t) / a^{*}(t)$ over the range of 3 db , or 30 per cent variation in $a^{*}(t)$. Therefore, the differencing function in Fig. 2 can be replaced by the logarithmic amplifier in lFig. 3 without altering the nature of the loop, providing the loop error does not exceed 3 db . (This limitation is similar to the requirement in atutomatic phase-control systems that the phase error not exceed 30°.) Within this restriction, then, Fig. 3 is a true representation of the $A G C$ loop, and K_{D} is the constant associated with the logarithmic amplifier in volts/db. The equation of the loop as indicated in lig. 3 is

$$
a^{*}(l)=10^{K_{1}{ }^{* / 20}}\left[K_{D} 20 \log _{10} \frac{a(l)}{a^{*}(l)}+\frac{n^{\prime}(l)}{a^{*}(l)}\right]
$$

This equation can be solved for $a^{*}(t)$ by taking the

Fig. 6-Standard servo problem.
logarithm of both sides and, for convenience, expressing the answer in decibels relative to unity. When this is done

$$
a^{*}(t)_{\mathrm{dbu}}=K_{D} K_{A} \mathrm{I}\left[a(l)_{\mathrm{dbu}}-a^{*}(l)_{\mathrm{d} \mathrm{bu}}\right]+K_{A} \mathrm{~V} \frac{n^{\prime}(l)}{a^{*}(l)}
$$

It is now apparent that when the signal level and the receiver attenuation are expressed as a logarithm, the AGC loop becomes a linear system. This system is shown in Fig. 4 and may be simplified still further to the system shown in Fig. 5. The problem has been reduced to the standard servo problem indicated in lïg. 6 and can be solved for the $I I(s)$ which gives the minimum rms error in receiver gain.

This problem has been solved using the Weiner methods outlined in a previous paper. ${ }^{1}$ The input signal was
${ }^{1}$ E. Rechtin, "The Design of Optimum Linear Systems," Jet Propulsion Lab., California Inst. Tech., Pasadena, Calif., External Publication No. 204: April, 1953.
assumed to be in the form of small step changes in amplitude. The transient error was defined as the infinite time integral of the squared error:

$$
\text { transient error }=\int_{0}^{\infty}\left[a(l)_{d b u}-a^{*}(t)_{\mathrm{dbu}}\right]^{2} d l
$$

and was assumed to be independent of the amplitude noise. The additive noise is assumed to be essentially flat over the spectrum, producing a gain-jitter, σv^{2}, which is

$$
\text { gain error due to noise }=\frac{1}{2 \pi j} \int_{-j \infty}^{+j \infty}|I I(s)|^{2} \Phi_{N}(s) d s
$$

The closed-loop transfer function which minimizes the gatin-jitter while holding the transient error to a specified maximum value is of the form

$$
\Pi(s)=\frac{1}{1+\frac{1}{K_{B}} s}
$$

where K_{B} is a parameter in $\sec ^{-1}$ which depends upon the amplitude step and the noise spectral density. The solution of the loop equation for filter Y yields $Y(s)=K_{B} / s$, a pure integrator. If the loop gain is high, $1 / s$ may be approximated by $1 /(1+\tau s)$, a low-pass filter. Solving for $I(s)$ yields

$$
H(s)=\frac{G I^{\prime}(s)}{1+G Y^{\prime}(s)}=\frac{1}{\left(\frac{1}{G}+1\right)+\frac{\tau}{G} s} \approx \frac{1}{1+\frac{\tau}{G} s}
$$

where G is the dimensionless product of K_{D} and K_{A} and is greater than 10 .

To demonstrate the usefulness of the theory and the validity of the assumptions made in linearizing the loop, three experiments were performed on the AGC loop of a particular synchronous receiver.

1) The frequency response of the loop was measured using sine-wave variations in the input signal level.
2) The transient response of the loop was measured using exponential changes in the input signal level.
3) The rms error in receiver gain was measured as a function of the input-noise spectral density.

The AG(C loop forming a part of this system is similar to the diagrams shown in Figs. 1 through 6. The filter Y is a low-pass filter having essentially a single time constant of 0.4 second. The loop gain has been measured at several different values of input signal level and varied from 66 for a -40 -dbm signal level to 38 at -80 dbm. However, over a signal-level range of 3 to 6 db , the gain is essentially constant.

Frequancy Response

Using the measured values of gain, the frequency response of the AGC loop was calculated for signal levels of $-40,-60$, and -80 dbm , and the curves have been plotted in Figs. 7, 8, and 9. The frequency response of the loop was then measured using a sine-wave modulating voltage which attenuated the carrier approximately 2.5 db . The measured points are plotted in Figs. 7, 8, and 9 for comparison with the calculated curves. The experimental data may be observed to agree generally within 1.5 db of the calculated curve.

Transient Response:

The transient response of the AGC loop to an exponential change in input signal level of magnitude Δa under the restrictions outlined above can be determined by using transform relation

$$
A^{*}(s)=H(s) .1(s)
$$

where $A(s)=$ Laplace transform of the input signal and $A^{*}(s)=$ Laplace transform of the resultant output signal or

$$
A^{*}(s)=\frac{1}{\left(1+\frac{1}{G}\right)+\frac{\tau}{G} s} \times \frac{\Delta a}{s\left(1+\tau_{i n} s\right)}
$$

where $\tau_{\text {in }}=$ rise time of the input signal.
The solution of this equation expressed as a function of time is

$$
a^{*}(t)_{\mathrm{dbu}}=\frac{\Delta a_{\mathrm{db}}}{1+\frac{1}{G}}\left[1-\frac{\frac{1}{\tau_{\text {in }}} e^{-(G / \tau) t}-\frac{G}{\tau} e^{-\left(l / \tau_{\text {in }}\right)}}{\left(\frac{1}{\tau_{\text {in }}}-\frac{G}{\tau}\right)}\right]
$$

where $a^{*}(t)_{\text {dbu }}$ represents the resultant change in receiver attenuation. The amplitude of the input signal Δa is expressed in decibels. Using the measured values of loop) gain, the transient response of the AGC loop was calculated for a $3-\mathrm{db}$ exponential change in signall level at input signal levels of -40 and -80 dbm . The calculated AG(` output is plotted in Figs. 10 and 11 as resultant change in receiver attenuation.

The transient response of the AGC loop was then measured by introducing known changes in the input signal level and recording the resultant $A G C$ output (see Figs. 10 and 11). The change in input signal levei was accomplished using a current-controlled microwave ferrite attenuator which was varied by a step change in control current. The rise time of the input signal change was 4 to 5 times faster than the rise time of the resultant $A G C$ voltage change. The measured $A G C$ voltage change was expressed as db attenuation change using the measured value of K_{A}. The experimental results are plotted in Figs. 10 and 11 for comparison with the calculated curves. The experimental data agree with the calculated results to within 0.5 db .

Fig. 7-Frequency response of AGC loop; input signal level $=-40$ (bm.

Fig. 8-Freguency response ul $\backslash G C$ luop; input signal level $=-60$ (lbm.

Fig. 9-Frequency response of ACC loop; imput signal level $=-80$ dbu.

Fig. 10-Trimsient response of AGC loop.

Fig. 11-Transient response of AGC loup.

R MS Error in Receiter G．an

The operation of the AGC loop was analyzed with random noise jamming，and the root－mean－square （rms）error in receiver gatin was calculated．An experi－ ment was then performed using a synchronous receiver to determine if the AGC system performed according to the theory．The analytical method is presented first．

The mean square error for the linear system with an error spectral density of $\Phi_{s}(\omega)$ is given by

$$
\begin{equation*}
\sigma^{2}=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \Phi_{\epsilon}(\omega) d \omega . \tag{1}
\end{equation*}
$$

If the system is considered to be distortionless with re－ spect to the signal，the mean square error can be writ－ tell as

$$
\begin{equation*}
\sigma^{2} \text { distortionless }=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \Phi_{s}(\omega)|I I(j \omega)|^{2} d \omega \tag{2}
\end{equation*}
$$

Where $\Phi_{s}(\omega)$ is the noise spectral density at the input in units determined $)$ y those of the signat，and $I(j \omega)$ is the system transfer function（dimensionless）．

The jamming noise was assumed to have an rims am－ plitude of N volts and a flat spectral density of

$$
\begin{equation*}
\Phi_{N}(\omega)=\Phi_{S}(0)=\left[\frac{\Delta a(F S)}{\Delta a^{\prime}(0)}\right]^{2}\left(\frac{I}{S}\right)^{2} \frac{1}{2 B_{v}} \frac{\mathrm{db}^{2}}{\mathrm{c} 1) S} \tag{3}
\end{equation*}
$$

where
$\Delta a(F S)=$ full－scale value of the gain error curve $=12$ volts，
$\Delta a^{\prime}(0)=$ slope of the error curve in volts／ db at zero gain displacement for the signal level under investigation，
$S=$ rms amplitude of the signal in volts，and $2 B_{N}=$ the effective bandwidth of the input noise．

$$
\begin{align*}
& \sigma^{2} \text { distortionless }=\Phi_{N}(0) \frac{1}{2 \pi} \int_{-\infty}^{\infty}|I(j \omega)|^{2} d \omega \mathrm{db}^{2} \\
& \quad=\left[\frac{\Delta a(F S)}{\Delta a^{\prime}(0)}\right]^{2}\left(\frac{-}{S}\right)^{2} \frac{1}{2 B_{N}} \frac{1}{2 \pi} \int_{-\infty}^{\infty}|I I(j \omega)| \cdot d \omega \mathrm{cb}^{2} \tag{4}\\
& \quad=\left[\frac{\Delta a(F S)}{\Delta a^{\prime}(0)}\right]^{2}\left(\frac{-}{S}\right)^{2} \frac{B_{L}}{B_{N}} \mathrm{db}^{2} \tag{5}
\end{align*}
$$

where

$$
\begin{equation*}
2 B_{L}=\frac{1}{2 \pi} \int_{-\infty}^{\infty}|I(i \omega)|^{2} d \omega, \tag{6}
\end{equation*}
$$

and the approximate $A G C$ loop transfer function is given by

$$
\begin{equation*}
I I(j \omega)=\frac{1}{1+j \omega \frac{\tau}{G}} \tag{7}
\end{equation*}
$$

where
$\tau=0.4$ second，
$G=$ gain of the $\mathrm{A} G(\times$ loop，dimensionless $=$ K゙っK゙． ；
where
$K_{D}^{\prime}=A G C$ detector constant expressed in volts＇tb， and
$K_{A}^{-}=$constant associated with the gain of the receiver expressed in $\mathrm{db} / \mathrm{volt}$ ．

The rms error in receiver gain is obtained by taking the square root of（5）．
σ distortionless $=\frac{\Delta a(F S)}{\Delta a^{\prime}(0)} \times \frac{V}{S} \times \sqrt{\frac{\overline{2 B}}{2 B_{S}}} \mathrm{db}$ rms．
Eq．（8）appears in graphical form in lig． 12 for the re－ ceiver under test．Superimposed on the graph are the measured values for comparison purposes．Agreement between measured and calcutated values is within $1(\mathrm{lb}$ ．

Fig．12－Receiver gatin error vs input noise－to－signal ratio．

Conclitsion

ACC systems utilizing synchronous detection may be analyzed with considerable accuracy using the simple theoretical approach outlined here．The assumptions made in linearizing the $A G C$ loop are valid for noise－ free and noise－perturbed signals atike，and the analytical technique is a useful design tool．

The ability to achieve this goal is based on the recog－ nition that an almost linear relationship exists between signal level and receiver attenuation when they are both expressed in decibels relative to unity．With the estab－ lishment of this fact，more advanced noise theory may be directed toward the synthesis of optimum Aric systems．

Correspondence

WWV Standard Frequency Transmissions*

Since October 9, 1957, the National Bureau of Standards radio stations $W^{\prime} W^{\prime}$ and IIIIII have been maintained as constant as possible with respect to atomic frequency standards maintained and operated by the Boulder Laboratories, National Bureau of Standards. On Octoher Y, 1957, the I'Si Frequency Standard was 1.4 parts in 10^{9} high with rappect to the frequency derived from the [TT 2 second (provisional value) as determined by the [T. S. Naval Observatory. The atomic freduency standards remain constant and are known to be constant to 1 part in 10^{9} or better. The broadrast frequency can be further corrected with respect to the USS Fregucncy Standard, as indicated in the table; values are givell as parts in $10^{\prime 0}$. This correction is not with respect to the current value of frequency based on L"T 2. A mitus sizn indicates that the broadcast frequency was low.

The WIV' and IIWVH time signals are symchronized; however, they may gradually depart from U'1 2 (mean solar time corrected

WWV Freotrincy \dagger
With Respect to C'S. Srequ bicy Staniarid

$\begin{gathered} 1050 \\ 1600 \mathrm{~L}^{\prime} \mathrm{T} \end{gathered}$	Parts in $10^{10} \ddagger$
November 1	-32
2	-.32
3	-. 32
4	-32
5	-32
6	-33
7	-3.3
8	-3.3
9	-3.3
10	-3.3
11	-33
12	-32
13	-3.3
14	-3.3
15	-3.3
16	-32
17	-32
18	-32
19	-.31
20	-31
21	-31
22	-31
2.3	-31
24	-31
25	-31
26	-31
27	-31
28	-31
29	-30
30	-30

* Received by the IRE, December 28, 1959. WWWVH frequency is synchronized with that of $+30-$
+.0.day movitig aymage serombls pmotes it 15 mis Method of averaging is surl that an adjustment of frequency of the control oscillator appears on the
day it is made. No change or adjustment in the control oscillator was made during November, 1959 .

Note: Beginning January 1. 1960 . the value of the ['SFS has been arbitrarily increased by 74 parts in 10^{10} to bring it into agreement with a cesium resonator frennency of $9,192,631,770 \mathrm{cps}$. See "National standards of time and frequency in the United States, I'Roc. IRE. vol. 48, n. 105: January. 1960.
for polar variation and annual fluctuation in the rotation of the earth). Corrections are determined and published by the U. S. Naval Observatory.

IVIV and WIVYII time signals are maintained in close agreement with U'T 2 by making step adjustments in time of precisely phas or minus twenty milliseronds on Werlnesilays at 1900 ("T when necessary; retarting time arljustments were made at WIVY and WWTH on Nowember t and 18. 1950.

Nathosal Burcau of Stmbarns
Boulder, Colo.

Parametric Oscillations with Point Contact Diodes at Frequencies

 Higher than Pumping Frequency*'lhis letter is written to describe negative resistance effects obtained experimentally with point contact diodes operating as parametric oscillators at frepuencies higher than the pumping frequency: 'The signal and idler frequency in the operation reported herein are located symmetrically with respect to "m" times the pumping frequency. These results are shown to be consistent with the Manley-Rowe relations.

The types of point contact diodes which were used in these experiments have the same physical dimensions as the microwave rectifiers described in a previous paper. ${ }^{2}$ a gallium arsenide diode with the capacitybias curse of Fig. 1 produced oscillation at 11.6 .3 kme when pumped at 11.0 .3 kinc. The de bias point for this operation is indicated by an X on Fig. 1. The corresponding symmetrical lower sideband, lorated at 10.4.30 kiluc, was also observed. The circuits used were such as to suppress the 600-11nc difference frequency. Approximately 10 mw of pump power was used.

In a second experiment this diode achieved low-level oscillation at 5.30 me when pumped at 480 mc . The symmetrical signal at 4.30 mc was olserved. The pump power was about 20 mw into a matched load. (. Metual power absorbed by the diode was not determined.)

A gallium phosphide diode with capaci-tance-bias voltage curve as shown in Fig. 2 produced oscillation at 5.30 me when pumped at 470,460 , and 450 mc , respertively. (Circuit tuning was adjusted in each case.) The

* Received by the IRE, November 16, 1959. This type of operation was discussed by K. K, N. Chang and S. Bloom, ${ }^{\text {A A parametric amplifier using }}$ $1380-1.387 ;$ July, 1955.
2 W. M. Sharpless, "High frequency gallium arsenide point contact rectifiers," Bell Sys. Tech. I., wol, 38, pp. 259-269; January, 1959.

Fig. 1-Gallinm arsenide point contact diode. Capacitane it 100 ke ws bias voltage.

Fig. 2-Gallinm phosphide soint contact diode. ("apacitance at 190 kc vi bias voltage.
best bias for this operation with a pump power of approximately 30 mw is indicated by an X on Fig. 2. (Actual power absorbed by the diode was not determined.)

It is shown below that this type of operation can be ohtained if the diode possesses nonlinearities in its reactance beyond the usual linear term, i.e., C_{1} / C_{n}. Thus for a nonlinear caparity device with a large secondorder harmonic term in the equation describing the capacity is voltage characteristic, we can expert the capacity to vary at a $2 f$ rate while pumping at f. Note that $2 f_{\text {pamp }}$ is not necessarily generatted, but the caparitance variation at $2 f$ prorluces the same effect. Similarly a capacitance variation contalining a large 4 th, 6 th, ete., harmonic content will allow other types of operation; i.e., $m=2,4$, etr .

The relations governing this type of operation can be obtatined from the JanleyRowe relations.3

$$
\begin{align*}
& \sum_{m=1}^{m} \sum_{n=-\infty}^{n-\infty} \frac{m \|_{m n}}{m j_{1}+n f_{n}}=0 \\
& \sum_{m=-\infty}^{m} \sum_{n=0}^{n-\infty} \frac{n \|_{m n}}{m f_{1}+n f_{n}}=0 . \tag{1}
\end{align*}
$$

For the case where negative resistance is obtained at freguencies symmetrically located about $m f_{1}$, these relations become

[^71]\[

$$
\begin{align*}
\frac{W_{1,0}^{\prime}}{f_{1}}+\sum_{m=0}^{m=\infty} \frac{m W_{m, \pm 1}}{m f_{1} \pm f_{0}} & =0 \\
\sum_{m=-\infty}^{m=x} \frac{W_{m, 1}^{\prime}}{m f_{1}+f_{0}} & =0 . \tag{2}
\end{align*}
$$
\]

For the experimental results above, the two frequencies were located symmetrically about the pump frequency, i.e., $m=1$,

$$
\begin{align*}
\frac{W_{1,0}}{f_{1}}+\frac{W_{1,-1}}{f_{1}-f_{0}}+\frac{W_{1,1}}{f_{1}+f_{0}} & =0 \\
\frac{W_{-1,1}}{-f_{1}+f_{0}}+\frac{W_{1,1}}{f_{1}+f_{0}} & =0 \tag{3}
\end{align*}
$$

where $W_{1,0}$ is the pump power entering at f_{1}. Similar results can be written for $m f_{i} \pm f_{n}$ frequencies. Since

$$
\frac{W_{1-1}}{f_{1}-f_{0}}=\frac{W_{1.1}}{f_{1}+f_{0}}
$$

and $W_{1.0}$ is power entering the device, power must leave the device at $f_{1} \pm f_{10}$. (We have assumed that no power flows at frequencies other than $f_{1} \pm f_{0}$ and f_{0} is suppressed by circuit design.) The ratio of input power to output power is given by

$$
\begin{aligned}
G_{p+} & =-\frac{f_{1}+f_{0}}{f_{1}-f_{0}} \text { (up converter) } \\
G_{p-} & =-\frac{f_{1}-\frac{f_{11}}{f_{1}+f_{n}}}{f_{n}} \text { (down converter). }
\end{aligned}
$$

These relations indicate that power may also be delivered at both input and output ports in the absence of input (signal) power, thus acting as a generator.

The general power relations for an amplifier of this type pumped at f_{1} and operating at $m f_{1} \pm f_{0}$ are

$$
\begin{aligned}
G_{p+} & =-\frac{m f_{1}+f_{0}}{m f_{1}-f_{0}} \\
G_{p-} & =-\frac{m f_{1}-f_{0}}{m f_{1}+f_{0}} .
\end{aligned}
$$

A small signal analysis similar to Ronve's' contirms that for operation described by (3), a large C_{2} / C_{0} is required. For operation at $m f_{1} \pm f_{0}$ a large $C_{n_{m}} / C_{n}$ would be required of the nonlinear device.

It is evident from the curves of Figs. 1 and 2 that these two diodes possess nonlinearities in their $C-V$ curves that will satisfy the $C_{2 m} / C_{10}$ requirement for the experimental results reported.

The diodes were furnished to the author by W. M. Sharpless of these Laboratories. His assistance and encouragement is gratefully acknowledged.

> L. U. Kibler
> Beil Telephone Labs., Inc. Holmdel, N. J.
${ }^{4} \mathrm{H} . \mathrm{E}$, Rowe, "Some general properties of nonlinear elements, part II-small signal analysis," Proc. IRE, vol, 46, pp. 850-860; Mas; 1958.

On the Frequency Dependence of the Magnitude of Common-Emitter Current Gain of Graded-Base Transistors*

It has been experimentally observed and generally accepted that the magnitude of the common-emitter short-circuit current gain of graded-base transistors falls at a rate of 6 db per octave with increasing frequency. Considerable departure from this behavior has also been observed, however, for certain transistors. So far, little attention has been paid to the detailed theoretical examination of this important property, possibly owing to the mathematical difficulties involved in simplifying the current-gain expression for the transistor. To avoid such difficulties, the common-lase current gain a is often ${ }^{1.2}$ empirically approximated by

$$
\begin{equation*}
a=a_{0} \frac{e^{-j K / / / a_{a}}}{\left(1+j / / f_{a}\right)} \tag{1}
\end{equation*}
$$

where a_{0} is the low-frequency value of the current gain, f_{a} its. 3 -db cutoff frequency, and K a constant. This expression is found sufficiently accurate for most practical design problems, with appropriate choice of K. Using this empirical relationship, it has been shown that the common-emitter currentgain modulus $|b|=|a /(a-1)|$ exhibits a $6-\mathrm{db}$ per octave fall over a limited frequency range, ${ }^{3}$ but common experience suggests that such behavior may exist over a much wider range of frequencies. Questions arise as to whether the $6-\mathrm{db}$ per octave fall of $|b|$ is an exact law or an approximation, whet her this property is governed directly by any physical mechanism, and what the reason is for the observed departure from the $6-\mathrm{db}$ per octave law in certain cases. In this letter, the theoretical current gain of a transistor with exponential base impurity grading is examined in order to throw more light on this matter, and adequate answers to the above questions are given.

Assuming an exponentially graded-base region resistivity, negligible recombination of minority carriers, low injection level and an ideal one-dimensional geometry, the intrinsic short-circuit current gain a (common base) may be expressed in the well-known form: ${ }^{\text {: }}$

$$
\begin{equation*}
a=a_{01} \frac{e^{\epsilon}}{\frac{\epsilon}{\theta} \cdot \sinh \theta+\cosh \theta} \tag{2}
\end{equation*}
$$

where

$$
\begin{aligned}
2_{\star}= & \Delta I^{\circ} \cdot q / k T=m \\
\Delta I^{\circ}= & \text { "built in" potential difference across } \\
& \text { the base width } I \text { " }
\end{aligned}
$$

* Received by the IRE, July 15, 1959 ,
'D. E. Thomas and J. L. Moll, "Junction transistor short-circuit current gain and phase determina tion," Proc. 1RE, vol. 46, مp. 1177-1184; June, 1058. \because R. L. Pritchard, "Electric network representation of transistors-a surves," IRE Travs, ox CIRCitt Theory, vol. CT-3. Dp. S-12: March, 1956. ${ }^{3} \mathrm{~F}$.J. Hyde, "The Current Cains of Diffusion and Drift Types of Junction Transistors," presented at the IEL: International Convention on Transistors and Associated Semiconductor Devices, May 23, 1059. To be published in Proc. IFEF, vol. 106, pt. B, suppl, no. 17.

41. Kroemer, "On the diffusion and drift transistor theory," Arch. elek. L̈bertr., vol. 8, pp. 223228; May, 1954.
$\theta=\left(\epsilon^{2}+j \omega W^{2} / D_{p}\right)^{1 / 2}$
$D_{p}=$ diffusion constant for holes in the base of a $p-n-p$ transistor structure.
If all extrinsic effects were absent (zero depletion capacitances and $\left.r_{\left(b^{\prime}\right)}\right), a$ would also be the terminal short-circuit current gain α of the transistor. This ideal case is evamined first, the important effects of the emitter depletion capacitance $C_{t e}$ being considered after certain properties of the intrinsic transistor have beell established.

At very low frequencies, e.g., when the phase angle of a is less than about 5°, expression (2) may be simplified to ${ }^{5}$

$$
\begin{equation*}
a=a_{0} /\left(1+j \omega / \omega_{\tau}\right) \tag{3}
\end{equation*}
$$

where

$$
\begin{align*}
\omega_{T} & =\frac{2 D_{p}}{W^{2}} \frac{m^{2}}{2\left(m-1+\overline{e^{-m}}\right)} \\
& \simeq \frac{D_{p}}{W^{2}} \cdot\left(\frac{m^{2}}{m-1}\right) \text { when } m \geq 4 \tag{3a}
\end{align*}
$$

The time constant ($1 / \omega_{T}$) appearing in (3) may be shown to be identical to the base transport time τ_{b}, which is defined as

$$
\begin{equation*}
\tau_{b}=C_{b} / g_{e e}\left(=1 / \omega_{T}\right) \tag{4}
\end{equation*}
$$

where
$C_{h}=$ the "base-charging" capacitance, obtained by integrating the excess equilibrium (dc) hole concentration in the base region and differentiating the "integrated charge" with respect to the emitter-base voltage, and where
$g_{\text {er }}=(q / k T) \cdot I_{e}$, the differential emitter junction conductance.

The reciprocal of the low-frequency com-mon-emitter current gain b may be written, from (3), as

$$
\begin{equation*}
\frac{1}{b}=\frac{1-a}{a}=\frac{1}{a_{0}}-1+j \omega / \omega_{\tau} a_{0} \tag{5}
\end{equation*}
$$

Eq. (5) indicates that for an ideal transistor, with $a_{0}=1$, the $6-\mathrm{db}$ per octave fall of b at low frequencies is a natural law and represents the charging of the base region with minority carriers as a succession of steady states; i.e., the instantaneous base charge distribution is negligibly different to that in the steady state for the emitter-base voltage concerned. and the total base charge accurately represented by the charge on the lumped base-charging capacitance C_{b}. For practical transistors, if the real part of (5) is small compared to its imaginary part, within the assumed low-freguency limit, this law will still apply. Now, accepting the experi-mentally-observed fact that for all except certain exceptional transistors, $|b|$ falls at 6 db per octave at much higher frequencies than defined before (3), it is to be expected that $\omega_{T} / 2 \pi$ will be the frequency at which $|b|$ falls to unity (commonly denoted by f_{1} or f_{T}); it will be shown that this property has theoretical justilieation.
${ }^{5}$ M. B. Das and A. R. Boothroyd, "Measurement of Equivalent Circuit Parameters of "ransivtors at $V I F F$," presented at the IEF International Convention on Transistors and Associated Semiconductor Devices, May 27, 1954. To be published in Proc.
$I E E$ vol. $106, \mathrm{pt}$. B, suppl. no. 15 .

Subject to the assmmption that the field factor $m \geq 4$, the general current-gain expression (2) may be simplified to

$$
\begin{equation*}
a \simeq 2 a_{0} e^{-\epsilon(z-1)} \frac{x+j y}{1+x+j y} \cdot e^{-j \epsilon} \tag{6}
\end{equation*}
$$

where

$$
\begin{aligned}
& x=\sqrt{\frac{1}{2}\left\{\left(1+\delta^{2}\right)^{1 / 2}+1\right\}} \\
& y=\sqrt{\frac{1}{2}\left\{\left(1+\delta^{2}\right)^{12}-1\right\}} \\
& \delta=\omega / \omega_{n}
\end{aligned}
$$

and

$$
\omega_{n}=m^{2} D_{p} / 4 W^{2}
$$

It is noted that the normalizing fequency $\omega_{n} / 2 \pi$ is approximately $m / 8$ times the $\left.3-\mathrm{d} \mathrm{d}\right)$ cutoff frequency f_{a}. Assuming $\delta^{2} \ll 1$, (6) maly, by expanding in power series and neglecting all except the first order term in δ^{2}, be simplified to give

$$
\begin{align*}
\left|\frac{1}{b}\right| & =\left|\frac{1}{a}-1\right| \\
& \simeq \sqrt{\left(\frac{1}{a_{0}}-1\right)^{2}+A \delta^{2}} \tag{7}
\end{align*}
$$

where

$$
A=1 / 4\left(\epsilon-1 / 2 a_{0}\right)^{2}
$$

$$
+\left(\frac{1}{a_{0}}-1\right)\left(\frac{\epsilon}{2}-\frac{3}{8}\right) \frac{1}{a_{0}}+\frac{\epsilon^{2}}{4}\left(\frac{1}{a_{0}}-1\right)
$$

F.c. (7) may be further simplified, by putting $a_{0} \simeq 1$ and using (3a), to give

$$
\begin{align*}
\left|\frac{1}{b}\right| \simeq \delta\left(t-\frac{1}{2}\right) / 2 & =\frac{\omega I^{\prime 2}}{D_{p}}\left(\frac{m-1}{m^{2}}\right) \\
& =\frac{\omega}{\omega_{\tau}} \tag{8}
\end{align*}
$$

A disregard of terms in δ^{4} and higher powers in the above series expansions is found to cause negligible error even for δ^{2} as high as 0.5 or $\delta=0.7$. Thus, from (8), it might be expected that the 6 - db per octave behatwior should hold for frequencies up to about 0.7 $f_{a}\left(\simeq 1.2 f_{1}\right)$ for $m=8$, or $0.5 f_{a}\left(\simeq 0.85 f_{1}\right)$ for $m=6$. It is difficult to extend this analytical approach further, to include much higher frequencies; it is also difficult to extend it without restriction of the value of m . However, the exact value of $|b|$ may be examined by plotting $|1 / b|$ against $\omega W^{2} / 2 D_{p}$, computed directly from (2) as shown in $1 \because i g .1$. Theoretical curses of $|1 / b|$ are given for several values of m, and for a uniform base transistor $(m=0)$, assuming $a_{0}=1$; the frequencies f_{a} and f_{1} are indicated. It is seen that the 6 -dlb per octave fall of $|b|$ is a good approximation over a surprisingly wide range of frequency, much wider than expecterl from the above approximate analysis. At very high frequencies, the fall of $|b|$ is at a much higher rate than 6 db per octave. In view of the very wide freguency range over which the behavior expressed in (8) is found to be approximately valid, it night perhaps be expected that the simple

Fig. 1-High-frequency behavior of common-emitter current xain b. Solid lines: thenretical behavior of $11 / b$. Dotted lines: 6 -db per ortave approximation. x indicates 3 -db cutoff frequency.
representation of hase-region charging by the lumper base input caparitance C_{b}, derived from the steadystate base charge, should also be valid ower a similar frequency range. This is not so, however, for the base input capacitance (in common emitter with zero collector loid) is found to be considerably frequency dependent over this range.

The presence of the emitter junction depletion capacitance has not yet been discussed but it usually modilies the icleal behavior of the transistor considerably. The modified current gain a° may be expressed as:

$$
\begin{equation*}
a^{\prime}=a \cdot-\frac{1+j \omega \frac{C_{d e}}{g_{e e}}}{1+j \frac{\omega}{g_{e e}}\left(C_{l e}+C_{d e}\right)} \tag{9}
\end{equation*}
$$

where $C_{t e}$ is the emitter diffusion capacitance. This capacitance and the emitter conductance $g_{e e}$ are, in general, frequency dependent; however, the associated frequency $g_{\text {ee }} / 2 \pi C_{\text {te }}$ is about $m / 2$ times the $3-\mathrm{db}$ cutoff frequency f_{a} of the transistor and it increases at higher freguencies. Eq. (9) may, for the present purpose, be simplified to

$$
\begin{equation*}
a^{\prime} \simeq a \cdot \frac{1}{1+j \omega / \omega_{1 e}} \tag{10}
\end{equation*}
$$

where

$$
\omega_{l e}=g_{\theta e l} / C_{t e}
$$

Combining (6) and (10), and simplifying in the same manner as in the derivation of (7) and (8), the following expression for $\left|1 / b^{\prime}\right|$ is obtained:

$$
\begin{align*}
& \left|1 / b^{\prime}\right|=\left\lvert\, \frac{1}{a^{\prime}}-1\right. \\
& \quad \simeq \omega\left(\frac{1}{\omega_{l e}}+\frac{1}{\omega_{T}}\right) \sqrt{1+\frac{\omega^{2}}{\left(\omega_{s e}+\omega_{T}\right)^{2}}} \tag{11}
\end{align*}
$$

Thus, when $\omega_{r} \gg \omega$, or vice versa, the fall of $\left|b^{\prime}\right|$ is at $6-\mathrm{db}$ per octave although the frequency at which $\left|b^{\prime}\right|$ falls to unity is determined by both ω_{T} and $\omega_{\text {er }}$ But, when ω_{T} and $\omega_{\text {te }}, i . e ., C_{b}$ and $C_{\text {te }}$ are of the same order of magnitude, the rate of fall of $\left|b^{\prime}\right|$ is greater than $6-\mathrm{db}$ per octave. The influence of C_{i} is illustrated in the figure where the behavior of $\left|b^{\prime}\right|$ is plotted for $C_{t e}=C_{b}$ in the case of $m=8$. The departure from the $6-\mathrm{db}$ per octave law is obvious.

It may be concluded that the 6 - db per octave fall of the common-emitter shortcircuit current-gain magnitude can be a good approximation to its actual behavior over the useful frequency range of the transistor, but that care must be taken not to generalize this behavior when the emitter junction capacitance is present.

M. B. Das

A. R. Boothroyd

Imperial College of Science and Technology
Elec. Fingrg. Dept.
London, S.W'.7, Eng.

A Simple Technique for Measuring the Signal-to-Noise Ratio at the Output of a Pulsed Sinusoid Matched Filter*

The usual method for measuring sig-nal-to-noise ratios in teletype receiving systems is to make the separate neasurements of signal and noise following al band-pass filter of the system. For a matched filtering system this signal-to-noise ratio may then be converted by use of bandwidth ratios to its corresponding value at the output of the matched filter where error rates may be readily calculated for comparison with experimental values.

This method of measuring signal-to-noise ratios, however, is wholly dependent on knowing the noise bandwidth of the bandpass filter and the figure of merit of the matched filter. If these are not known precisely, the accuracy of the resultant measurements will suffer. The following technique for measuring signal-to-noise ratios at the output of the matched filter does mot require a band-pass filter preceding the matched filter. If, however, the signal-tonoise ratio at the input of the matched filter is known this measurement technique could be used to determine an equivalent noise figure or ligure of merit for the matched filter.

If the input signal to the matched filter is defined as

$$
g(t)=E \cos \omega t, \quad 0<t<T
$$

the impulse response of the matched filter is

$$
h(t)=K_{g}(T-l)=A \cos \omega t, \quad 0<\ell<T
$$

where $A=K E$ is an arbitrary gain constant of the filter and T is the duration of the pulse or baud. The output signal of the matched filter is given by the convolution integral as

$$
\begin{align*}
r(\tau) & =\int_{0}^{\tau} h(t) g(\tau-t) d t \\
& =\frac{A E \tau}{2}-\cos \omega \tau . \tag{1}\\
& \quad 0<\tau<T \\
& \omega>\frac{.1 E}{4}
\end{align*}
$$

The maximum output of the matched filter is obtained at the end of the baud and is

$$
\begin{align*}
f(T) & =\int_{0}^{T} h(l) g(T-t) d l \\
& =\frac{1}{K} \int_{0}^{T} h^{2}(t) d t=\frac{A E T}{2} \tag{2}
\end{align*}
$$

where T is a multiple of $2 \pi / \omega$ or the time variation of (1) is sampled at a peak of the sinusoixal variation.

The ontput of this filter may also be determined for a white noise spectrum of N_{0} watts per cycle at the filter input. The noise power spectrum at the filter output is

$$
\begin{equation*}
\Phi(f)=N_{0}|I(f)|^{2} \tag{3}
\end{equation*}
$$

and the otal power at the filter output at the end of the baud is

$$
\begin{equation*}
\sigma^{2}(T)=\int_{-\infty}^{\infty} N_{0}|I(f)|^{2} d f \tag{4}
\end{equation*}
$$

This same power is given in terms of a time integration by the l'arseval Theorem as

$$
\begin{equation*}
\sigma^{2}(T)=\Lambda_{0} \int_{0}^{T} l^{2}(l) d l \tag{5}
\end{equation*}
$$

and the time variation of output power for the specified matched filter is

$$
\begin{align*}
\sigma^{2}(\tau)= & N_{0} \int_{0}^{\tau} h^{2}(t) d t \\
& =\frac{\boldsymbol{N}_{0} A^{2} \tau}{2} \quad 0<\tau<T \tag{6}
\end{align*}
$$

Thus both the signal voltage and the noise power increase linearly throughout the band interval, and therefore the signal-tonoise power ratio also increases linearly and reaches a maximum at time T, the end of the baud. C'sing (2) and (5) this optimum signal power to noise power ratio is

$$
\left(\frac{S}{N}\right)_{\text {opt }}=\frac{f^{2}(T)}{\sigma^{2}(T)}=\frac{\frac{1}{K^{2}} \int_{0}^{T} h^{2}(l) d t}{N_{0}}=\frac{E^{2} T}{2 V_{0}}(7)
$$

In order to measure the maximum value of the signal-to-noise ratio with a true rins voltmeter, it is necessary to calculate the relation between the maximum value of signal and the rms signal over the whole band and the maximum value of noise rompared to the rms value over the baud. If V_{1} and V_{n} represent the reading of a true rms voltmetar for signal and noise, respectively, then using (1) and (6)

$$
\begin{align*}
v_{s} & =\frac{A E}{2} \sqrt{\frac{1}{T} \int_{0}^{T} \tau^{2} \cos ^{2} \omega \tau d \tau} \\
& =\frac{A E T}{2 \downarrow 6} \tag{8}
\end{align*}
$$

and

$$
\begin{align*}
V_{N} & =\left(\frac{V_{0 . A^{2}}}{2}\right)^{1 / 2} \sqrt{\frac{1}{T} \int_{0}^{T} \sqrt{\tau^{2} d \tau}} \\
& =\sqrt{\frac{X_{0} A^{2} T}{4}-} \tag{9}
\end{align*}
$$

The signal power to noise power ratio corresponding to these meter readings is

$$
\begin{equation*}
\left(\frac{S}{N}\right)_{\text {meter }}=\frac{V_{s^{2}}}{V_{N^{2}}^{2}}=\frac{\frac{A^{2} E^{2} T^{2}}{24}}{\frac{N_{\mathrm{n}} \cdot I^{2} T}{4}}=\frac{E^{2} T}{6 V_{0}} \tag{10}
\end{equation*}
$$

Comparison of this ratio with (7) shows that the optimum signal-to-moise ratio at the filter output can be obtained from the rms voltage measurements by the following relation,

$$
\begin{equation*}
\left(\frac{S}{V}\right)_{\mathrm{opt} \cdot}=3 \frac{V^{2}}{V_{s^{2}}^{2}} \tag{11}
\end{equation*}
$$

Thus the signal-to-noise ratio determined by a true rims voltmeter at the output of the pulsed simusoid matehed filter is 4.8 db less than the optimum value at the end of the baud.
H. E. White
U. S. Army Sig. Res, and Dev. Lab. Ft, Monmouth, N. J.

The Reliability Function*

Most attempts to measure reliability of complex systems quantitatively thus far have utilized the general Poisson formula. This may be used to describe the failure of systems in the following way:

$$
\begin{equation*}
P_{n}=\frac{\left(\frac{t}{I_{n}}\right)^{n} e^{-t / t_{n}}}{n!} \tag{1}
\end{equation*}
$$

where
$t=$ Some time interval in which minimum failures are desired.
$P_{n}=$ Probability of n failures in time, t.
$t_{m}=$ Mean time between failures.
$t / t_{m}=$ Ratio of critical interval, t, to mean time between failures, t_{m}.

However, only the case of zerofailures is of interest, not how many failures occur within a larger interval of time. For $n=0$ only, the formula reduces to

$$
\begin{equation*}
P_{n}=e^{-t / t_{m}} \tag{2}
\end{equation*}
$$

This formula is virtually the umamimous proposal of the literature as the best description of systems failures. A failure distribution may be illustratel as in Fig. 1. This is a typical Poisson plot of the form a large number of these intervals to failure take. The largest number of failures tend to cluster around the value of central tendency, t_{m}, or mean time to failure. The probability distribution of t around t_{m} can be solved to give the probability of a failure after time t. If the probability of no failures in time t is plotted is $1 / h_{m}$, Fig. 2 results. Now if Fig. 2 is superimposed on liig. 1, the efferts of varying t_{m} and / on probability of suceessful operation during time $/$ can be compared.

Investigation of $\operatorname{rig} .3$ discloses an important relationship. For the probabilities of

[^72]successful operation to time $/$ of complex systems to approach 1.00 , the mean time to failure must be very large with respect to the desired operation interval. 1 . Or, if one is concerned with raising the probability of successful operation in time $/$ with regards to a proposed system, either the critical time interval, t, mast be lowered significantly or the mean time to failure must be drastically increased. This region of scant return in increased probability of successful operation for rather large increases in mean time to failure can readily be seen from the nomograph.

Fis. 1-Failure time distribution.

Fig. 2-Probability of mo falitire vs $/ / / \mathrm{m}$.

Fig. 3-Effect of changes in t and t_{m} on probability.

The nomograph (F ig. 4) is scaled to solve (2). Simply draw a straight line through any two known variables and read the third directly. As the column heading shows, the scale on the right serves a dual purpose. The left side of the line is scaled to read the guotient of t / t_{m}. The right sitle of the same line is scaled to represent the corresponding probability of successful operation during a time interval, t. The nomograph should provide a rapid solition to the formula for anyone who is often concerned with reliability problems.

Consider, for example, the following problem. A complex electronics system has been found to operate, on the average, 55 hours between failure of some component at random. If it is desirable to tind the probability with which the system should operate at least 10 minutes successifully, we need only connect 55 hours on the t_{m} saale and 10 minutes on the t scale and rearl probability $=0.9970$.

The nomograph was drawn to $\&$ times page $\left(8 \frac{1}{2} \times 11\right)$ size and reduced to increase

Fig. 4-Keliability nomograph $P_{t}=e^{-l / t_{m}}$
its accuracy: It solves the formula accurately to the fourth decimal place and a fifth plave may be interpolated by anyone familiar with logarithmic interpolation, as on a slide rule.
J. I. Colley

The Western Elec. Co. Winston-Salem, N. C.

Formerly at
I ept. of Industrial Achimin. Yale University New Haven, Comn.

A High-Speed Binary Counter Based on Frequency Script Techniques*

The work reported here ${ }^{1}$ constitutes a continuation and extension of previons experimental investigations on bistable oscillators.: Specifically, the high speed capabili-

[^73]ties of the circuit shown in Fig. 1 were to be investigated.

The block diagram of Fig. 1 depicts a frequency domain flip-flop, as well as an additional gating circuit for scale of two operations. 1nstead of the biased diodes commonly employed for pulse/no-pulse scripts, ${ }^{3}$ band-pass filters may serve as a neans to distinguish between binary states for a frequency script.

Summarizing previous results, ${ }^{2}$ the bistable oscillator may be characterized as follows:

1) Assume sustained oscillation at f_{1}. Then, an RF pulse applied to the input with length T, power level P_{i}, and carrier frequency f_{2} initiates oscillation at f_{2} and terminates oscillation at f_{1}. Analogously; due to symmetry, this is also true for switching from f_{2} to f_{1}.
2) The input power level necessary for switching of the bistable oscillator, P_{i}, is significantly lower than its stable output power level, P_{0}.
3) The instruction time, T, of the bistable oscillator defines the minimum pulse length for a given pulse amplitude, required to switch the device from one stable state to the other. It approximately equals the delay
${ }^{3}$ To the best of the author's knowledge, the term script has been introduced by L. Fein, in connection Hith misrowave losi 1 tistarich, perfornied under Con-
tract NONR $2127(00)$ in 1956 .

Fig. 2-Balanced inodulator assembly.
plus transient time within the loop of the bistable oscillator. Instruction times T $=7 \mathrm{~m} \mu \mathrm{sec}$ could be demonstrated for the 200 me mode-spacing S-band system previously described. ${ }^{2}$

In Fig. 1, the balanced modulator serves as a device to produce the alternate frequency, or, as a binary negation gate. It is readily seen that this requires a molulation input of frequency $f_{1}+f_{2}$, or $f_{1}-f_{2}$ (assuming $f_{1}>f_{2}$), which usually will be applied in pulse-form. Theoretical considerations reveal that the choice of $f_{1}+f_{2}$ is more atlvantageous. ${ }^{4}$ Accordingly; the broadband balanced modulator shown in Fig. 2 has been developed for high level operation of two RF signals in the respective frequency ratnges of 3 and 6 kmc , and has been sucressfully operated with a conversion loss of around 8 db . The various elements of the modulator are so arranged as to obtain balanced operation, resulting in 20 -db suppression of both the input as well as the modu-lating-sigual.

The functioning of the scale of two circuit of Fig. 1 is most readily explained on hand of the time diagram, Fig. 3. At a specific time, t_{0}, a counting pulse switches the bistable oscillator from f_{1} to f_{2}, and f_{2} is transmitted through bandpass filter 1 into the molulator. The second input of the modulator still receives f_{1} through the delay

- Modulation with $f_{1}-f_{2}$ leads to two new trequencies, one of which is the desired one, while the other one, closely adjacent, is highly undesirable since it represents a degenerate mode-frequency. For a modilation frequency $f_{1}+f_{2}$ this undesired component lies far outside the uselul band.

Fig. 3-Time diagram for the seale of two operation.
line and bandpass filter 2. Thus, an output of $f_{1}+f_{2}$ appears at the morlulator, which lasts until the delay line has emptied its content of f_{1}. Accordingly, the length of the resulting pulses is equal to T, or, more generally, the delay of the line used, and their repetition rate is hall the rate of the incoming pulses.

We have stated that a combination of a bistable oseillator and a balanced molulator represents a flip-flop for frequency script. With no external modnlation signal $f_{1}+f_{2}$ applied to the balanced modulator, the circuit is bistable with an output frequency of either f_{1} or f_{2}. Monostable operation may be obtained by making one mode of the bistable oscillator conditionally stable. Also, we may arhieve astable operation of the device if the modulating signal $f_{1}+f_{2}$ is applied in CW fashion. Then, the bistable oscillator will switch alternatingly from state to state, and the period of the switching waveform, t_{x}, may serve as a criterion for the ultimate switching speed of the counter, although the process of regeneration involves a certain loss of speed. It seems appropriate to refer to the modulation signal as biassignal, and to its frequency $f_{1}+f_{2}$ as biasfrequency, to carry through the analogy to the multivibrator. For display purposes, a frequency sensitive detector may be used to convert frequency script into amplitude script.

Let us consider the influence of the length of the bias frequency pulse on the circuit performance. If the pulse duration is shorter than the instruction time, $\%$, of the bistable oscillator, no switthing will owour. Increasing the pulse length to a rertain charateristic value, which theoretically should be equal to T, will then prodnce switwhing from f_{1} to f_{2} for one pulse, and back to f_{1} from f_{2} at the consecutive pulse, to give a sperific example. If the length of the bias frequency pulse is increased more and more, the tinal state in which the system is left at the end of the pulse will depend on the number of free rumning switching periods t, contained in this time-interval. This is illustrated by Fig. 4.

For the experimental investigations the S-band TW'I' bistable osidlator avaibable from previous experiments ${ }^{2}$ was combined with the balanced modulator shown in Fig. 2.

Fig. 4-Theroretical witching waveforms. Insuffacient pilse length A. minimunn switching length. B.

Fig. 5- Observed switehing waveiorm using selective detector

The mode frepuencies $f_{1}=2995$ me and $f_{2}=2800$ me led to a molulation frequency $f_{1}+f_{2}=5790$ me. The external morlulation or bias-frequency pulses were obtained by grid modulating a "T'W" amplifier fed from a standard signal generator, with pulses of $10 m \mu$ ser rise time and variable length. ('nfortunately, the circuit parameters were such that the maximum output avaibible from the balanced modulator was merely 5 alb above the instruction threshold, P_{i} min, of the bistable oscillator, due to an increase in conversion loss of 12 db at the correspondingly high input levels. From previous experience ${ }^{2}$ we realize that this instruction level is insufficient to achieve an instruction time $T=7 \mathrm{~m} \mu \mathrm{sec}$. The waveforms observed are sketched in lig. 5.

It is believed that the performance of the circuit used for the experiments could be improved, to render a switching time of 10 m $\mu \mathrm{sec}$, or less (approaching $7 \mathrm{~m} \mu \mathrm{sec}$), if. a) the rise time of the bias-frequency pulses were shorter, and b) the balanced modulator and bistable oscillator were better matched. ${ }^{5}$

The principle described here seems to be well applicable for operation with $1 \mathrm{~m} \mu \mathrm{sec}$ pulses (a generally accepted goal at present), considering the following possibilities of circuit improvement. The mole-spacing could be increased to 1000 mc at X-band, if a $1 \mathrm{~m} \mu \mathrm{sec}$ transit-time, medimm bandwidth (20 per cent) 1 W"I were available. The need for such an element has long been felt, and has also been expressed by others. ${ }^{6}$ Minimum transit-time may be purchased at the expense of banlwidth, either by using a medium-bandwidth slow-wave circuit, or by extending the principle of the extended interaction gap klystron.? It is realized that
s The use of a t watt TVT prohibited optimum efficiency of the crystal modulator, which functions most satisfactorily in the mw range.
*B. L.. Havens. "High-frequency carrier tech. niques for computer togic," presented at the PGECC Deeting, Palo Nlto, Calif.: May 19. 1959.
iT. Vessel-Berg, "A General Theory of Klystrons with Arbitrary Extended Interaction Fields, "Microwave Lab. Stantord C'niversity, Stanford, Calif., Rept. No. 370; March, 1957. Wessel-Berg describes cavity oscillations as undesired effects which should be of the multimode oscillator type. Also, H. Golde, "Fxtended Interaction Klystrons with Traveling-Wiave Cavities. "Microwave Lab. Stanford University, Stanford. Calif., Rept. No. 582; April, 1959.
with a binary frefuency soript one essentially wastes half the bandwidth available, but one also has the advantage that a combination of bandpass filters may replace the usual diode gates found in amplitude script devices.

Recent advances in microwave computer techniques ${ }^{8}$ have demonstrated the merits of certain solid state circuits to perform logical operations with a minimum of cost and complexity. Still, it seems probable that, for a class of applications, a circuit involving a short-delay TVIT might be preferable either for reasons of fast regeneration due to large bandwidth or due to the choice of script which lends itself most readily,
V. Me:

Gen. Elec. Microwave Lab. Palo Alto, Calif.

- Presented by several authors at the Symp. on Microwave Technique for Computing Sy stems, Office of Naval Res., Washington, D. C.; March 12, 1959.

Reduction of Frequency-Temperature Shift of Piezoelectric Crystals by Application of Temperature-Dependent Pressure*

New military communication systems are in urgent need of frequency-control devices with a higher degree of stability, especially with respect to varying temperature. This requirement is coupled with the necessity for miniaturization and low power consumption. Crystal ovens, therefore, which consume a great deal of power, are not practical and must be replaced by other techniques.

One possible new technique will be described in this note. It is based on the sensitivity of the frequency of thicknessshear quartz crystal resonators to extermal pressure. Fig. 1 shows the influence of a compressional stress of 100 grams on the frequency of a 3 ril overtone 1 T quart crystal resonator as a function of the orientation of such stress with respect to the crystallographic axes. ${ }^{1}$ It is noted that the observed frequency change can be either positive or negative depending upon the orientation of the stress. Dhditionally, it has been foumd that the frequency change for one particular stress orientation is always proportional to the amount of stress. If the stress is made temperature-dependent and applied to selected spots at the circumference of the crystal plate, the frequenty-temperature behavior of the plate can be morlified.

The solid curve in Fig. 2 represents a typial frequency-temperature relationship for an Al cut quartz crystal resonator. The frequency drift due to temperature thange remains within $1 \cdot 10^{-6}$ for a temperature range from 0° to $43^{\circ} \mathrm{C}$. Application of tem-perature-dependent pressure could change the frequeney of the resonator as indicated

[^74]

Fig. 1-Influence of the direction of a compressional stress on the frequency of a $32-\mathrm{mc}$ AT crystal remblator.

Fig. 2-Modification of the frequency-temperature curse of an IT erystal resonithor liss the application of temperature dependent pressure

by the two dashed lines. The two dotted curses then show how the original frequencytemperature curse of the resonator has been modified by the application of pressure. The temperature range for a frequence tolerance of $1 \cdot 10^{-6}$ is extended to twice its original value. As indicated in Fig. 2 and shown in detail in Fig. 3, bimetal strips are used to create the temperature-dependent pressure. Strip I starts to touch the circumference of the crystal at a temperature of $43^{\circ} \mathrm{C}$ and its pressure, which increases with temperature, causes the frequency shift represented hy the dashed line. To compensate for the frequency excursion at lower temperatures, a second bimetal strip is used which increases its pressure with decreasing temperature. The proper points of contact with respect to the crystallographic axes of the crystal plate can be selected with the help of the arrse in Fig. 1. Additionally, a wide choice regarding the dimensions of the bi-

Fig. 4-Design on a crystal unit with one compernsating bimetal stip.

Fig. 5-Frequency-temperature curve of a $32-\mathrm{mc}$ 3rd overtone crystal unit, with and without compensating bimetal strip; orientation angle of stress ϕ (spe Fig. 1) $\approx 70^{\circ}$.
metals permits one to adapt this method to almost any given condition. The relation between the dimensions and properties of a bimetal, the mechanical force F appplied by the strip to the crystal, and the temperature difference $\Delta(-)$ has been derived from Bernoulli's theory' of the cantileser beann

$$
\frac{F}{\Delta \Theta}=\frac{3 b t^{2}\left(\alpha_{1}-\alpha_{2}\right)}{4 a} \cdot \frac{1}{2}\left(E_{1}+I_{2}\right) ;
$$

where
$a=$ length of the bimetal strip,
$b=$ width of the bimetal strip,
$t=$ thickness of each of the two metal layers constituting the binetal strip,
$\alpha_{1}, E_{1}=$ expansion coefficient and Young's modulus of metal 1, respertively;
$\alpha_{2}, E_{2}=$ expansion coefficient and Young's modulus of metal 2, respectively.

It is obrious that many modifications of the above principle are posible. The simplified design of Fig .4 can be used if a compensation at high or low temperatures only is desired. The use of more than two strips is indicated for compensation over a wide temperature range.

Preliminary measurements on two crystal units designed according to Fig. $\&$ are depicted in Figs. 5 and 6. Only the upper temperature range is compensated. The great improvement is obvious. I「ig. 6 shows, in addition to frequency measurements, values of the resonance resistance of the crystal as a function of temperature. It is noted that the resistance does not increase with higher temperature, i.e., with increasing pressure.

Fig. 6-Frequency and resistance as a function o temperature for a $54-\mathrm{mc}$ 3rd overtone crystal unit with and without compensating bimetal serip orientation angle of stress ϕ (see Fig. 1) $\approx 80^{\circ}$.

Dging will be greatly reduced by using the new device instead of orens, since the crystal will operate at a much lower average temperature.
E. A. Gerber
[. S. Army Signal Res. and Der: Lal) Fort Monmouth, N. J.

On the Synthesis of Multiloop Systems*

It is usual to fix pole locations in multiloop systems by cut-and-try adjustment of gains. In special cases, it is possible to select gains without resorting to trial-incl-error techniques. The method to be described prosides for prediction of root loci for certain multifoop systems of order one. ${ }^{1}$ In essence, the technigue inwolves factoring the common transmission from the total loop transmission, $L(s)$, and recognizing a function of the adjustable parameters which, when the function is held constant, will fix the roots of the remainder of $L(s)$. Thus, with known pole and zero locations, the root locus for the system may be predicted.

For certain practical systems, such as the rate feedbark system of lig. 1, the required function of variable gains is readily recognized.

For Fig. 1:

$$
\begin{align*}
T(s)= & \frac{K_{1} G_{p}(s)}{1+K_{1} G_{p}(s)}+K_{2} s G_{p}(s) \\
= & -K_{1} G_{p}(s) \tag{1}\\
& 1+K_{2} G_{p}(s)\left[s+\frac{K_{1}}{K_{2}}\right] .
\end{align*}
$$

* Received by the IRE, June 23, 1950.

1. G. Truxal, - Uutomatic Feedback Control Sys tem Synthesis," MrGraw-Hill Book Co., Inc., New York, N. V., pp. 99-101; 1955.

In this case, with K_{1} / K_{2} held constant, the locus for increasing K_{1} and K_{2} is predictable by considering the poles and zeros of $G_{p}(s)$ and an additional zero at $s=-\left(K_{1} / K_{2}\right)$.

When a single-index system with the configuration of Fig .2 is considered,

$$
\begin{equation*}
T(s)=\frac{I_{1}(s) G_{p}(s)}{1+G_{p}(s)}\left[I_{2}(s)+\Pi_{1}(s) \Pi_{3}(s)\right] . \tag{2}
\end{equation*}
$$

It is evident that $\left[I_{2}(s)+I_{1}(s) / I_{3}(s)\right]$ can be selected to produce compensating poles and zeros. For example, if $I_{1}(s)=K_{1}, \quad I_{2}(s)$ $=K_{2} s^{2}$, and $H_{3}(s)=s+a$,

$$
L(s)=K_{2}^{2} G_{p}(s)\left[s^{2}+\frac{K_{1}}{K_{2}} s+\frac{K_{1}}{K_{2}} a\right]
$$

Again, the additional zeros are lixed for a constant ratio of $K_{1}: K_{2}$ and the locus can be readily predicted. In a similar manner, for $I_{1}(s)=K_{1}(s+a), \quad H_{2}(s)=K_{2} /(s+b), \quad$ and $H_{3}(s)=K_{3}^{-} /(s+c)$,
$L(s)=K_{1} K_{3} G_{p}(s)$
$\cdot\left[\frac{s^{2}+\left(a+b+\frac{K_{2}}{K_{1} K_{3}}\right) s+\left(a b+c \frac{K_{2}}{K_{1} \kappa_{3}}\right)}{(s+b)(s+c)}\right]$.
In this latter case, the compensating poles and zeros are fixed by the value of $K_{2} / K_{1} K_{3}$, and the root locus for $K_{2} / K_{1} K_{3}$ equal to a constant may be generated.

It is instructive to consider the rate feedbatck system of Fig. 1 for a particular $G_{p}(s)$. If the controlled process, $G_{p}(s)$, can be approximated by a pair of complex poles, the root locus may be drawn immediatel:

When

$$
G_{p}(s)=\frac{1}{s^{2}+2 \zeta \omega_{n} s+\omega_{n}^{2}}
$$

(1) becomes

$$
T(s)=\frac{K_{1}}{s^{2}+\left(2 \zeta \omega_{n}+\right.} \frac{\left.K_{2}\right) s}{-}-\overline{\left(\omega_{n}^{2}+K_{1}\right)}
$$

and the poles of $T(s)$ are described by

$$
\begin{aligned}
s= & -\left(\frac{2 \zeta \omega_{n}+K_{2}}{2}\right) \\
& \pm j \sqrt{\left(\omega_{n}^{2}+K_{1}\right)-\frac{\left(2 \zeta \omega_{n}+K_{2}\right)^{2}}{2}}
\end{aligned}
$$

It is noted at this point, that the magnitude of the real part of the migrating pole equals $\zeta \omega_{n}+\left(K_{2} / 2\right)$; thus, a series of vertical lines may be drawn intersecting the real axis at

$$
\sigma=-\left(\zeta \omega_{n}+\frac{K_{3}}{2}\right)
$$

Further, it can be shown2 that the locus of the poles of $T(s)$, for K_{1} / K_{2} held constant, is a circle centered at $\sigma=-\left(K_{1} / K_{2}\right)$. Given the poles of $G_{p}(s)$, the loci for various values of K_{2} and K_{2} are known. Comerselv, given the poles of $G_{p}(s)$ and the desired location of the

$$
{ }^{2} \text { The distance, } d \text {, between } \sigma=-\left(K_{1} / K_{2}\right) \text { and }
$$

$$
\begin{aligned}
s & =-\left(5 \omega_{n}+\frac{K_{2}}{2}\right) \\
& \pm j \sqrt{\omega_{n}^{2}+K_{1}-\left(5 \omega_{n}+\frac{K_{2}}{2}\right)^{2}}
\end{aligned}
$$

is a constant for a fixed ratio of κ_{1} and κ_{2}.

$$
d^{2}=\left(\frac{K_{1}}{\kappa_{2}}\right)^{2}-25 \omega_{n}\left(\frac{\kappa_{1}}{\kappa_{2}}\right)+\omega_{n}^{2}
$$

Fig. 1-Rate feedback system.

Fig. 2 -Single index sy:stem.

Fig. 3-Loci for rate feedback system with

$$
G_{p}(s)=\frac{1}{s^{2}+s_{\xi} \omega_{n}}+\omega_{n}^{2}
$$

poles of $T(s)$, the required values of K_{1} and K_{2} may he determined. Fig. 3 illustrates these loxi.

It is felt that the described technique promises substantial improvement over the usual trial-and-error method of analyaing multiloopsystems. Certainly, the technique provides for the rapid prediction of root-loci for a large class of practical systems; it remains, however, to determine the limits to which this methorl can be usefully extended.

John D. Glamb
Microwave Res. Inst.
Polytechnic Inst. of Brooklyn
Brooklyn, $\therefore . Y$.

Noise Temperature in a Radar System*

Amplifing parametric circuits have been operated as the preamplifiers in an L-band high-power rarlar system. One of the circuits was an inverting up converter, two others were amplifiers. Substantial improvements in receiver sensitivity were secured in each case. 'lhe best result: were obtained with the inverting up comserter. The exess temperature of the entire antenna-duplexer-transmission line system was $190^{\circ} \mathrm{K}$. The excess temperature caused by the up comerter and the succeeding components of the receiver was $140^{\circ} \mathrm{K}$.

* Received by the IRE, June 22. 1959.

Fig. 1-Noise temperature measurement arrangement.

The measurement system is shown in Fig. 1.

The input to the parametric circuit was switched alternately to each of the three sources; two of them at a known temperature, the antenna at an unknown temperature. The antema temperature can be computed from relative values for the noise output of the receiver. It is given by

$$
\frac{T_{3}}{T_{R}}=\frac{N_{03}}{N_{0 R}}+\frac{T_{e}}{T_{R}}\left[\frac{N_{03}}{N_{0 R}}-1\right] .
$$

Te can be computed from

$$
\frac{T_{e}}{T_{R}}=\frac{\left(\frac{V_{01}}{V_{0 R}}\right)-\left(\frac{T_{1}}{T_{R I}}\right)}{1-\left(\frac{\lambda_{01}}{V_{0 R}}\right)}
$$

Two amplifiers were also utilized in similar arrangements. They were operited singly and in cascade. L-haml Y circulators were used for isolating the amplitiers from the antenma and from eath other. An excess noise temperature of $300^{\circ} \mathrm{K}$ was observed for one amplifier in one set of measurements. The circulator forward loss could account for about $20^{\circ} \mathrm{K}$ of this excess. The L band receiver following the amplifiers had a $10-\mathrm{lb}$ noise figure. The gain of the parametric amplifier was somewhere in the range of 15 to 20 db , and the 10 db rereiver could therefore account for excess mosise of $80^{\circ} \mathrm{K}$ to $30^{\circ} \mathrm{K}$.

The tuner shown in Fig. 1 was used to match the antenna to the up converter or amplitier-input line to a VSU'R of no more than 1.05. The two terminations were also matched to a lisll R of 1.05 at the specified operating temperatures.

The radar antemna was a cosecant squared fan beam. The output moise level varied very little with azimuth in the test location. The parametric circuits easily withstood the transmitter leakage. The TR box had to be completely remosed before permanent damage to the parametric diodes occurred. Burnout then occurred in about one minute of operation.

For operating reasons, careful sturlies of the distribution of excess noise over the various components in the antema and duplexer system could not be carried out. The transmitter leakage levels were also not evaluated. The minimum discernible signal of the radar receiver was improved at least 6 (ll) by the use of the up converter. During the noise-temperature tests no unexpected difficulties were encomatered.
H. H. Grimm

Electronics I.ab. General Electric Co. Syracuse, N. Y.

Surface Resistance of Corrugated Conductors*

It was reported by Gent ${ }^{1}$ that the attenuation of a waveguide consisting of spaced discs with central circular hole transmitting on circular modes is considerably less than that of a plain circular waveguide of internal diameter equal to that of the circular hole.

This result is very doubtful because of the fact that, in some cases, much of the energy lost in corrugated conductors may have originated from those cross-products of the spatial harmonics which are neglected in Gent's paper. The author believes that the attenuation of any waveguide whose wall is corrugated cannot be less than that of the plain circular waveguide. To show this, we shall prove that the macroscopic or average surface resistance of any periodically corrugated wall cannot be smaller than that of the plail surface.

Fig. 1 shows a typical example of periodically corrugated conductors. The period p of the wall structure is assumed to be much smaller than the wavelength in question so that we can treat the field near the wall surface quasi-statically: Furthermore, when the depth of peatetration is very small, in comparison with all the structural dimensions, the wall behaves as a perfect conductor, as far as the outer lield is concerned. Then the energy lost in the wall can be calculated from this first approximation by the usual method.

Fig. 1.

For the sake of convenience, we take a right-handed system of Cartesian coordinates as shown in Fig. 1. It is evident that the average surface resistance parallel to the x-axis is larger than that of the plain wall, because of the longer path length of the surface current.

Next, we consider the average surface resistance parallel to the z-axis. At first sight, it may seem that this can be smaller than that of the plain wall because the path width of the surface current is wider in this case. It will be shown in the following discussion, however, that this advantage is over-canceled by the fact that the distribution of the surface current now becomes nonumiform.

Let us assume that $I_{x}=I_{0}$ and $I_{y}=0$ at $y=x$. To calculate the average surface resistance, we can assume without any loss of generality that $H_{0}=2 \pi / p$ numerically. By s we denote the length along the rrosssectional curve measured tuwards the direction inverse to the magnetic field. Then the

[^75]value of the magnetic potential L° is a monotonically increasing function of s so that the magnetic field on the surface is given by $|I|=d U^{T} / d s$. Therefore, if R_{\star} is the surface resistance of the plain wall, the energy lost in the corrugated wall is given by
\[

$$
\begin{equation*}
P=R_{s} \int|I|^{2} d s=R_{s} \int|I| \mid d U \tag{1}
\end{equation*}
$$

\]

If V is the conjugate harmonic function of U, the components of the magnetic field must also be the harmonic function of two variables U and V, and may be written as

$$
\begin{align*}
I_{x} & =I_{0}+\left(A_{1} \cos U-B_{1} \sin l^{\circ}\right) e^{-1^{\circ}} \\
& +\left(A_{2} \cos 2 U-B_{2} \sin 2 U^{\top}\right) e^{-21^{-}}+\cdots \\
I_{\nu} & =\left(A_{1} \sin U+B_{1} \cos U\right) e^{-l^{-}} \\
& +\left(A_{2} \sin 2 U+B_{2} \cos 2 U\right) e^{-21}+\cdots \tag{2}
\end{align*}
$$

where the A 's and B 's are constants whose values are to be determined from the actual form of the corrugation.

For the plain conductor, the A 's and B 's are all zero and the energy lost per structural perioul is given by

$$
\begin{equation*}
P_{0}=R_{s} \int_{0}^{2 \pi} H_{0} d U=R_{s} I_{0}^{2} p \tag{3}
\end{equation*}
$$

This checks with the result obtained ly the usual method.

For the energy lost per structural period of a corrugated wall, we get from (1), (2), and (3)

$$
\begin{align*}
P & =R_{\mathrm{s}} \int_{0}^{2 \pi} \sqrt{\Pi_{x}^{2}+I_{y}^{2}} d U \geq R_{z} \int_{0}^{2 \pi} I_{x} d U \\
& =R_{s} \int_{0}^{2 \pi} I_{0} d U=P_{0} \tag{4}
\end{align*}
$$

The result given by this equation can be expressed as the following theorems.

1) Under the condition of the same total current per structural period, the energy lost in a corrugated wall cannot be smaller than that lost in the plain surface of the same material.
2) The integral of the x-component of the magnetic field with respect to the magnetic potential is an invariant under corrugation.
If the power lost in the wall is divided by the current flowing per structural period, we get the average surface resistance. Thus we have the Theorem 3.
3) The average surface resistance of any corrugated conductor cannot be smaller than that of the plain conductor.
To illustrate an elementary application of the foregoing discussion, consider a rectangular corrugated surface with infinite corrugation depth as shown in Fig. 2. In this case, there are only x-components of the magnetic field on the horizontal parts of surface and only y-components on the vertical parts. We can then conclude from Theorem 2 that, in spite of the reduction in horizontal length by the ratio w / p, the energy lost in one of the horizontal parts is still equal to that lost in the length p of the plain surface. Thus the total energy lost in this corrugated surface must be larger than that for the plain ronductor by the amount which is lost in the vertical parts.

So far we have considered the case in which the quasi-static treatment is valid. There has been no complete solution of the problem when a dynamic treatment is neederl. Since, in dynamic cases, the magnetic field can go into the gap regions with less attenuation than in the quasi-static case, the author believes that the energy: lost in a corrugated conductor, in this case, must be still larger than that lost in the plain conductor. To confirm this conclusion analytically, we must perform Gent's analysis without neglecting the cross-products of the spatial harmonics.

Toshio Hosono
Faculty of Engineering Nihon University
Kanda-Surugadai
Tokyo, Japan

The Electromagnetic Energy Stored in a Dispersive Medium*

In sinusoidal time variation, the following expression is commonly used as the mean electric energy stored per unit volume of a dielectric medium:

$$
\begin{equation*}
U=\frac{1}{1} \in|E|^{2} \tag{1}
\end{equation*}
$$

where ϵ is the dielectric constant or permittivity of the medium, and $|E|$ is the absolute value of the electric field. This expression is valid only in the case where ϵ is independent of frequency. There are, however, many materials whose permittivities are not independent of frequency in some region of the spectrum; e.g., an ionized gas near its plasma frequency, some gaseous dielectrics in the microwave region, and most solid dielectrics in the infrared. In such cases we must extend the above expression for the energy storage. For this purpose we first remind ourselves of the formula in which, in circuit theory, the energy stored in a lossless passive linear two-terminal network is given by

$$
\begin{equation*}
U=\frac{|V|^{2}}{4} \cdot \frac{\partial Y^{*}(\omega)}{j \partial \omega} \tag{2}
\end{equation*}
$$

where $Y(\omega)$ is the admittance of the network and $|V|$ is the absolute value of the voltage between the terminals as shown in Fig. 1.

Consider a condenser which is insulated by a medium with frequency dependent permittivity as shown in \dot{F} ig. 2. The expression

[^76]

Fig. 1-Twoterminal network with irequency dependent admittance $Y(\omega)$.

Fig. 2-Condenser-insulated dielectric mediam having irequency dependent permitivity e(w).
for the electric energy stored in this condenser is derived as follows. First the admittance of the comdenser is calculated as

$$
\begin{equation*}
I^{\prime}(\omega)=j \omega C(\omega), \quad C(\omega)=\epsilon_{9}(\omega) C_{0} \tag{3}
\end{equation*}
$$

Where ϵ_{s} is the specitic permittivity of the insulator and C_{0} is the capacitance in empty space. The permittivity $\epsilon(\omega)$ is written as $\epsilon_{0} \epsilon_{A}(\omega)$, where ϵ_{0} is the permitivity of empty space. Substituting (3) into (2), we obtain

$$
\begin{equation*}
U=\frac{\mid \boldsymbol{V}}{4}{ }^{2} \cdot \frac{\partial\left[\epsilon_{x}(\omega) \omega C_{0}\right]}{\partial \omega} \tag{4}
\end{equation*}
$$

Since the capacitance in empty space is known to be

$$
C_{0}=\frac{\epsilon_{0} A}{d}=\frac{\epsilon_{0} \cdot \frac{1 d}{d^{2}},}{}
$$

(4) can be transformed into the equation

$$
\begin{equation*}
U=\frac{1}{4}\left(\frac{I}{d}\right)^{2} \Omega \frac{\partial[\omega \epsilon(\omega)]}{\partial \omega} \tag{5}
\end{equation*}
$$

where Ω is $A d$, the volume of the condenser. Thus the mean energy. stored per unit volume is given by

$$
\begin{equation*}
u=\frac{U}{\Omega}=\frac{1}{4} \frac{\partial[\omega \epsilon(\omega)]}{\partial \omega}|E|^{2}, \tag{6}
\end{equation*}
$$

where $|E|=V / d$ is the intensity of the electric field in the medium. E(f. (6) shows the energy stored per unit volume in a dispersive merlium.

If we get the explicit expression for the permittivity, we can easily calculate the mean energy storage per mit volume of the medium by making use of (6). The result can be shown to coincide with the one obtained by the microscopic theory which was considered by L. Brillouin in his famous paper. ${ }^{1}$ The use of (6), however, permits us to get the same result without complicated considerations.

Now let us show the appropriateness of (6). We consider a dielectric medium which contains N molecular resonators per unit
${ }^{1}$ L. Brillouin, "Sur la propagation de la lumière dans un milieu dispersif, " Compt. Rend. Acad. Sci., dans un milieu dispersif, Comp1.
volume, each having the resonance frequency ω_{0}, mass m, and charge e. Then the mean energy storage per unit volume, being calculated microscopically, is given by

$$
\begin{equation*}
u=\frac{1}{2} \epsilon_{0} \overline{|E|^{2}}+N\left(\frac{1}{2} m \dot{S}^{2}+\frac{1}{2} m \omega_{0}^{2} S^{2}\right) \tag{7}
\end{equation*}
$$

where S is the displacement of the electron from its equilibrium position, \dot{S} the derivative of S with respect to time l, and the bars over the letters indicate the time average. These terms represent the energy of the electric field, the kinetic energy and potential energy of the resonator, respectively:

Now for a lossless system the displacement S, which is found be solving the equation of motion for the electron under the action of the external electric tield $E=|E|$ cos ω^{\prime}. is represented as

$$
\begin{equation*}
S=\frac{e}{m} \frac{|E| \cos \omega l}{\omega_{0}^{2}-\omega^{2}} \tag{8}
\end{equation*}
$$

Taking (8) into account, (7) will be transformed into
$u=\frac{1}{4}|E|^{2}\left[\epsilon(\omega)+\frac{. V e^{2}}{m}-\frac{2 \omega^{2}}{\left(\omega_{0}^{2}-\omega^{2}\right)^{2}}\right]$,
where the permittivity is given by

$$
\begin{equation*}
\epsilon(\omega)=\epsilon_{0}+\frac{. \nu e^{2}}{m} \frac{1}{\omega_{0}^{2}-\omega^{2}} \tag{10}
\end{equation*}
$$

However, this can be found by substituting (10) into (6)

If the expression for permittivity $\epsilon(\omega)$ can be determined in some way, (6) yields a simple method to obtain the mean energy storage. Furthermore, in the case of a magnetic substance whose permeability is dependent on frequency, we can get a result similar to that obtained for a dielectric substance.

Thus electromagnetic energy stored per unit volume of a medium whose permittivity and permeability are both dependent on frequency is given by
$U=\left.\frac{1}{4} \frac{\partial[\omega \epsilon(\omega)]}{\partial \omega}\left|E ;\left.\right|^{2}+\frac{1}{4} \frac{\partial[\omega \mu(\omega)]}{\partial \omega}\right| \eta\right|^{2} .(11$
T. Hosono
T. Ohira

Faculty of Engincering
Nihon University
Tokyo, Japan

Immittance Properties of Nonreciprocal Networks*

In a previous communication ${ }^{1}$ dual representations of the general two-terminal-pair network were given in terms of a topological

Received by the IRE, July 6,1950 .
A. W. Keen, "A topological nonreciprocal network element", Proc, IRE, vol. 47, pp. 1148-1150; June, 1059. The following corrections liave been submitted by the author. In the third paragraph, line 10 shonld read 12.3 instead of 1.32 ; in Fig. 4, the bracketed portion in the caption should continue "...this becomes a circulator": and in footnote 9, the third word in the title shonld read "topology." This paper has now been published in IRE Trans. on Circuit Theory, vol. CT-6, pp. 188-196; June, 1959.

Fig. 1-(a) The unitor model of the typical nonreciprocal network: (b) the equivalent circuit of the driving-point impedance of the network in (a) when terminated in Zor.
nonreciprocal element called the unitor. Apart from reciprocal end-loading, each representation consisted of a single nor-mally-orientated unitor having both series $\left(Z_{b}\right)$ and shunt (Z_{a}) loading, as shown in Fig. 1 (a). This basic unitor circuit may be taken as the typical representation of the general non-reciprocal network: as such its driving-point and transfer immittance properties are of importance.

The open-circuit imperlance matrix of the circuit of Fig. 1 (a) is

$$
[Z]=\left[\begin{array}{rr}
Z_{b} & Z_{b} \tag{1}\\
-Z_{a}+Z_{b} & Z_{b}
\end{array}\right]
$$

the determinant of which is $\Delta Z=Z_{a} \cdot Z_{b}$. With loading Z_{c} at one end, the driving-point impedance at the other end is

$$
\begin{align*}
Z_{d} & =z_{11}-\frac{z_{12} \cdot z_{21}}{z_{22}+Z_{c}}=\frac{\Delta Z+z_{11} Z_{c}}{z_{22}+Z_{c}} \tag{2}\\
& =\frac{\left(Z_{a}+Z_{c}\right) Z_{b}}{Z_{b}+Z_{c}}=\frac{\left(\rho+Z_{b}\right) Z_{c}}{Z_{b}+Z_{c}} \tag{3}
\end{align*}
$$

where $\rho=Z_{a} \cdot Z_{b} / Z_{c}$, which reduces to $Z_{\text {s }}=Z_{c}$ at $Z_{a} \cdot Z_{b}=Z_{c}{ }^{2}$. Because of the equality of the principal diagonal clements in (1), and of the symmetry in $s 12, \approx 21$ of (2), the value of Z_{d} given by (3) is inwariant under transposition of the network with respect to its terminations; moreover, because of the symmetry of the internal loading, it is invariant also to transposition of the unitor abont terminal 2.

An explanation of this result is readily given in terms of the properties of the unitor. In the forward direction the unitor sets up a current z_{i} / Z_{b}, a proportion $Z_{c} /\left(Z_{a}+Z_{c}\right)$ of which flows through Z_{a} and the input source, increasing the current which would flow in the absence of the unitor by the factor $\left(Z_{b}+Z_{c} / Z_{b}\right.$, as though Z_{a} and Z_{c} were shunted by an additional tictitious impedance $\rho=Z_{a} \cdot Z_{b} / Z_{c}$, and by Z_{b}, respectively, as shown in Fig. 1(b). In the backward direction, (i.e., with source and load transposed). the action of the unitor is to preserve a balanced brialge condition between Z_{a}, Z_{b}, Z_{c} and a fourth, fictitious, element ρ whose value is given, as before, by the bridge balance condition as $\rho=Z_{a} \cdot Z_{b} / Z_{c}$. Evaluation of

(a)

(b)

Fig. 2-(a) The form of the Bott-Duffin cycle; (b) a unitor equivalent of (a) in which an alternative graphical representation of the unitor is shown.
the terminal impedance of the equivalent circuit of Z_{d} in Fig. 1 (b) confirms the result already' given at (3).

It will be nuted that in case $\mathcal{Z}_{a} \cdot \mathcal{Z}_{b}=R_{0}{ }^{2}$, where R_{0} is a real constant, ρ and Z_{c} comprise an inverse pair. An immediate application of this result is todriving-point immittance synthesis. It is known that the Bott-Duffin method of realizing a positive-real immittance function produces a cycle which is of balanced bridge form [Fig. 2(a)] and has the advantage of avoiding the need for a pair of perfectly-coupled coils or an ideal transformer (as required by the classical I3rune method) per cycle, at the cost of requiring an excessive mumber of immittance elements. By: correlation of Figs. 1(b) and 2(a), one may obtain unitor forms of the Bott-Duffin cycle; one of these is given in lFig. 2(b), in which the fictitious impedance ρ needed to account for the unitor action replaces the remainder impedance, thereby reducing the realization to canonical form. This development will be discussed in detail in a separate paper.

A constant-resistance form of Fig. 1 (a) may be had by making Z_{a} and Z_{b} an inverse pair with respect to a resistive termination R_{0}; mnder this condition the determinant of the impertance matrix in (1) is a constant, for $\Delta Z=Z_{a} \cdot Z_{b}=R_{0}{ }^{2}$. Alternatively, setting $Z_{a}=Z_{b}=R_{0}$, with Z_{c} arbitrary; results in a driving-point impedance $Z_{d}=R_{0}$, independently of the load Z_{c} because ρ is maintained at the inverse value of Z_{c} with respect to $R_{0} b y$ the unitor action. The network may' then be reorientated in either of two ways to bring $Z_{a}\left(=R_{0}\right)$ or $Z_{b}\left(=R_{0}\right)$ into the load position, as shown in Fig. $3(\mathrm{a})$ and $3(\mathrm{~b})$ respectively: In earh case, transposition of the unitor itself about terminal 2 leaves the constant-resistance property unchanged. Using the same networks immittance, transformation by a real constant may be achieved with Z_{a} (or, dually, Z_{b}) and Z_{c} similar in kind but of different magnitude;

(a)

(b)

Fig. 3-Circuits obtained by re-orientation of Fig, 1 (a): with $a=b=R_{0}$ these are constant-resistance fornns; with a and c in (a) of similar kind and of large, but different, magnitudes, a Z_{b} transformer is obtained; dually, with b and c in (b) similar in kind and of small, but different, magnitudes. a Z_{a} transformer is obtained.

(a)

(b)

Fig. 4-(a) Unit negative impedance inversion (b) unit negative impedance conversion.
i.e., such that their ratio is a real constant, If $Z_{a}\left(Z_{b}\right)$ and Z_{c} are increased (decreased) together, keeping their ratio constant, the driving-point impedance $Z_{\text {" }}$ wil! tend to a scalar multiple of $Z_{b}\left(Z_{a}\right)$ which is a simple function of the desired immittance transformation ratio.

Either positive or negative inversion of an immittance may be obtaned with a pair of unitors in a feedback loop. Negative innpedance inversion with respect to a constant R_{0} is shown at Fig. $4(\mathrm{a})$. where the shuntloaded (R_{0}) unitors, the impedance under inversion, and the access terminal-pair comprise a shunt-shunt feedback loop. In the dual, negative-admittance inversion circuit, the unitors are series loaded with conductances G_{0} and are connected, together with the admittance under inversion and the access terminal-pair, in a series-series feedback configuration, For positive inversion in either case it is necessary to invert the loop gain by inserting an ideal unit-ratio

(a)

(b)

Fig. 5-(a) A unitor network equivalent of the sym. metrical lattice; (b) a simple nonreciprocal imageparameter equalizer.
inverting transformer, thereby producing the unitor forms of three-terminal impedance and admittance gyrator, the latter of which was given in F'ig. 4 of the previous communication. Unit negative immittance conversion may be had with a pair of unitors in a positive feedback loop, with one unitor orientated for unit current gain and the other for unit voltage gain. The shuntseries feedback form shown in Fig, 4(b) provides unit negative impedance conversion (UNIC); the dual series-shunt configuration provides unit negative admittance conversion (I'NAC).

The short- and open-circuit values of Z_{d} are simply $z_{s 1}=z_{x 2}=Z_{a}$ and $z_{01}=z_{02}=Z_{b}$, giving for the image (and iterative) impedances of the Fig. 1 (a) network:

$$
Z_{11}=Z_{l 2}=Z_{1}=\sqrt{z_{\mathrm{b}} z_{0}}=\sqrt{Z_{a} Z_{b}}
$$

as for the correspondingly annotated lattice (Fig. 5(a); and for the image transfer constant

$$
\theta_{1}=\tanh ^{-1} \sqrt{\frac{\overline{Z_{s}}}{z_{0}}}=\tanh ^{-1} \quad \sqrt{\frac{Z_{a}}{Z_{b}}}
$$

which is exactly one half of that of the same lattice. An image parameter equivalent of the symmetrical may therefore be obtained by cascading a pair of similar unitor circuits; for exact equivalence, however, one member of the pair must be reversed with respect to the other in order to secure symmetry, as shown in Fig. 5(a). This equivalence may be contirmed by Bartlett's bisection theorem or by matrix methods. The forward-acting unitor of the pair has a voltage gain $\left(R_{0}-Z_{a}\right) / R_{0}$ and provides zeros of the transfer function; the back-ward-acting unitor has a voltage-gain $R_{0} /\left(R_{0}+Z_{a}\right)$ and produces the poles of this function: the overall gain is the product of the separate factors, viz. $\left(R_{0}-Z_{a}\right) /\left(R_{0}+Z_{a}\right)$, as for the lattice.

The importance of the equivalence revealed in Fig. 5(a) follows from the invariance of the image parameters of the unitor cascade under reversal of either one of the
two mitor half-sections. The reciprocity restriction may, in this way, be removed, thereby extending the class of networks which may be produced by the classical image-parameter methost to include activenetwork networks in which the unitors may be approximated by thermionic amplifier tubes or transistors on the basis of the unitor equivalents of these elements which were given in Fig. 3 of the previous commumication. A very simple example of a non-reciprocal equalizer is given in Fig. $5(\mathrm{~b})$: if R_{u} is sufficiently large to absorb r_{a} / μ a close approximation may be obtained bereplacing the unitor by a thermionic amplifier tube, preferably of high ra and high μ. Thus, by means of electronic realizations of the equivalent unitor cascade pair, the lattice form may be used as a basis for the synthesis and design of active, as well as of passive networks.
A. W. Keen

Technical College Coventry, Fingland

A System of Nonuniform Transmission Lines*

In view of the recent interest in tapered lines ${ }^{1}$ the N-port generalization of a single transmission line is indicated helow. Because of the generality of the approach adopted, the discussion gains in simplicity and clarity.

The customary transmission line equations are

$$
\begin{align*}
& \frac{d V^{\prime}}{d z}=-Z I \tag{1}\\
& \frac{d I}{d z}=-Y V \tag{2}
\end{align*}
$$

or, in vector notation

$$
\begin{equation*}
\frac{d}{d z} \phi=A \phi \tag{3}
\end{equation*}
$$

where

$$
\phi=\binom{V}{I} \quad \text { and } \quad A=\left(\begin{array}{rr}
0 & -Z \tag{4}\\
-\bigvee & 0
\end{array}\right)
$$

We will now consicler the generalization of (3) wherein $\boldsymbol{\phi}$ is a columm with \mathcal{N} entries and A is a square matrix with V^{2} entries. For the moment let usconsider the exponential taper

$$
\begin{equation*}
A=e^{-L_{0} z} 1 v^{v_{0}} e^{L_{0} z} \tag{5}
\end{equation*}
$$

where each of the λ^{2} entries of the square matrices A_{0} and L_{0} are constants (independent of z). (Of course if A_{0} and L_{0} commate, i.e.. $A_{n} I_{=}=I_{\text {. }}$ e, then $A=A_{0}$). Wefine $\widehat{\phi}$ by

$$
\begin{equation*}
\boldsymbol{\phi}=e^{-L_{0} 0} \widehat{\boldsymbol{\phi}} \tag{6}
\end{equation*}
$$

[^77]When (6) and (5) are substituted into (3) one obtains

$$
\begin{equation*}
\frac{d}{d z} \widehat{\phi}=\left(A_{0}+L_{0}\right) \widehat{\phi} \tag{7}
\end{equation*}
$$

and hence

$$
\begin{equation*}
\phi(z)=e^{\left(A_{0}+L_{0}\right) z} \phi(0) \tag{8}
\end{equation*}
$$

By combining (6) and (8) one obtains

$$
\begin{equation*}
\phi(z)=e^{-L_{0} z} e^{\left(A_{0}+L_{0}\right) z} \phi(0) \tag{9}
\end{equation*}
$$

as the solution to (3) when the matrix A has the exponential taper specilied by (5). In particular, when L_{0} and A_{0} are partitioned in a consistent manner with

$$
L_{0}=\left(\begin{array}{ll}
L_{1} & 0 \\
0 & L_{2}
\end{array}\right)
$$

and

$$
A_{0}=\left(\begin{array}{ll}
0 & A_{1} \\
A_{2} & 0
\end{array}\right)
$$

then A is given by

$$
A=\left(\begin{array}{cc}
0 & e^{-L_{1 z}} A_{1} e^{L_{2} z} \tag{10}\\
e^{-L_{2 z} A_{2} e^{L_{1} z}} & 0
\end{array}\right)
$$

In order to consider more general tapers let $K(z)$ denote the solution to the matrix equation

$$
\begin{equation*}
\frac{d}{d z} K=L(\approx) K, \quad K(0)=I \tag{11}
\end{equation*}
$$

where I is the identity matrix. One can then verify that

$$
\begin{equation*}
\phi(z)=K^{-1}(z) e^{\left(A_{0}+L_{0}\right) z} \phi(0) \tag{12}
\end{equation*}
$$

is the solution to
$\frac{d}{d z} \boldsymbol{\phi}(z)=K^{-1}(z)\left(A_{0}+L_{0}-L(z)\right) K(z) \boldsymbol{\phi}(z)$
where A_{0} and L_{0} are arbitrary constant matrices. Thus, the solution to the nonuniform line specified in (13) is given explicitly in (12). The matrix coefficient in (12) is precisely the transfer matrix for a line of length z. Finally, one should note that the exponential taper in (5) is the special case of (11) and (1.3) wherein $L(z)=L_{0}$ so that $K=e^{\ell \cdot n z}$.
H. Kurss
W.K. Kahn

Mirrowave Res. Inst. Polytechnic Inst. of Brooklyn Brooklyn, N. Y.

TM Waves in Submillimetric Region*

Karbowiak concludes in a recent paper ${ }^{1}$ that, with all transverse magnetic (TM) waves in metal waveguides, the attemation becomes proportional to (frequency) ${ }^{-5 / 2}$ at sufficiently high frequencies. It is the purpose of this letter to show that the TEM

* Received by the IRE, June 1, 1959

A. F. Karbowiak, "Guided wave propagation in submillimetric region," Proc. IRE, vol. 46, Dp.
and $T M_{01}$ waves in planar waveguldes and the TM_{01} wave in circular waveguides do not have this characteristic.

For planar waveguide, Karbowiak uses the equation

$$
\begin{equation*}
j Z_{8} k_{0}=h \tan a h \tag{1}
\end{equation*}
$$

where

$$
\begin{aligned}
& k_{0}= 2 \pi / \lambda, \\
& a= \text { distance between waveguide sur- } \\
& \text { faces, } \\
& h= h_{r}+j h_{i} \\
& Z_{s} \quad(\text { for copper } \quad \text { waveguide })=6.8 \\
& \times 10^{-6} k_{0}{ }^{1 / 2} \angle 45^{\circ} .
\end{aligned}
$$

The propagation constant is related to h by the equation

$$
\begin{equation*}
\gamma=\alpha+j \beta=\sqrt{l^{2}}-k_{n}^{2} \tag{2}
\end{equation*}
$$

He obtains two sets of approximate solutions for h. One set is for $a\left|Z_{s}\right| k_{11} \ll 1$ (at low froquencies) and is in the vicinity of $h_{0}=n \pi / a$ ($n=$ order of the mode); the other is for $a\left|Z_{s}\right| k_{0} \gg 1$ (at extremely high frequeneies) and is in the vicinity of $h_{0}{ }^{\prime}=\left(n-\frac{1}{2}\right) \pi / a$.

Eq. (1) applies to the case where only one of the two planar surfaces is an imperfect conductor. To inehade the practical case where both surfaces are imperfect, we will aleal with the following.

$$
\begin{align*}
& j Z_{s} k_{0}=h \tan (a h / 2), n \text { even. } \tag{3}\\
& j Z_{s} k_{0}=-h \cot (a h / 2), n \text { odd } . \tag{4}
\end{align*}
$$

The solution of (3) will be applied fo (1) W means of atn obvious motification. For $Z_{s}=\left|Z_{s}\right| \angle 45^{\circ}$, (3) and (4) can be put into the following forms.

$$
\begin{align*}
& \sinh a h_{i}= \mp\left(\frac{a h_{r}+a h_{i}}{a h_{r}-a h_{i}}\right) \sin a h_{r} \tag{5}\\
& a k_{0}\left|Z_{s}\right|= \frac{\sqrt{ } 2}{\sin h_{1} a h_{i}} \\
& \cosh a h_{i} \pm \cos a h_{r} \tag{6}\\
& \cdot\left[\frac{\left(a h_{r}\right)^{2}+\left(a h_{i}\right)^{2}}{a h_{r}+\frac{a h_{i}}{}}\right]
\end{align*}
$$

Where the upper sign applies for n even and the lower, for n oxld.

Fig. 1 shows the solntion of (3) and Fig. 2 shows the solution of (t). These curves were traced by solving (5) for 0.1 intervals of $a h_{r} / \pi$ by means of successive approximations. It shouk be noted that the arrows in the curves point in the direction of increasing frequency (increasing $a k_{0}\left|Z_{*}\right|$).

Fig. 1 describes the solution of (1) if the abscissa and ordinate values are divided by two. Then the curve labeled "Thes in the figure corresponds to the $\mathrm{T} \mathrm{M}_{01}$ wave for this case (only one plane imperfect) the TM ${ }_{01}$ wave by (2) converts at high freguencies to one having a negative altemationfrequency slope as stated in the reference paper. All higher order modes do so also. However, Fig. 1 shows that the TEM wave does not behave in this manner and that the value of $h_{0}{ }^{\prime}=\pi /(2 a)$, which Karbowiak atssociates with both the TEN and ITM M_{01} waves, belongs only to the latter.

Fig. 2 shows that the attemation of the $T M_{01}$ wave increases whout limit with the frequency for the practical case of both planes being imperfect.

The general behavior of the $T \mathrm{M}_{0}$ waves in circular waveguide is similar to that of the odd order waves in planar waveguide. This

Fig. 1 -Solution of $j k_{n}\left|Z_{n}\right| \angle 45^{\circ}=h$ tan (oh 2); ceven under modes in planar wateguide; arrows point in the dircetion of imronsibs frequency.

Fig. 2-Solution of $j k_{0}\left|Z_{n}\right| \angle 45^{\circ}=-h \cot (a / s / 2)$; odd order modes in planar waveguide; arrows point in the direction of increasing frequency.
may be seen from the similarity of (4) and the corresponding equation for circular "aveguides, which is

$$
\begin{equation*}
j Z_{x} k_{0}=-h\left(J_{0}(h s) / J_{1}(h s)\right) \tag{7}
\end{equation*}
$$

where s is the guide radius.
The circular TM_{01} wave behares as the TM M_{01} wave of Fig. 2 except that it takes off (low frequencies) at $s h_{r}=2.405$ rather than at $a h_{r} / 2=\pi / 2$. The circular rM_{02} wave behaves very nearly as the TM T_{03} wave of lig. 2 except that it takes off at $s h_{r}=5.520$ rather than at $a h_{r} / 2=3 \pi / 2$, and terminates at $s h_{r}=3.832$ rather than at $a h_{r} / 2=\pi$.
C. A. Martin

RCA Labs. Div. Rocky Point, N. Y.

Author's Comment ${ }^{2}$

Mr. Martin has made a valuable contribution. Whereas 1 have analyzed a wavegulde with one imperfert wall and have derived the property of negative slope of the attenuation-frequency curve, Mr. Martin's analysis is more general and reveals new features. Thus in a wareguide where all walls are imperfectly conducting (although
the negative slope of the attennation curve is still a feature of most modes) the TEMM and TM ${ }_{01}$ modes are notable exceptions. I r. Oliner has recently drawn my attention to the possibly exceptional behavior of these two modes in a waeguide with two imperfect walls (as distinct from one imperfect wall). It certainly is a very interesting and signilicant observation.
A. E. Kidrbowak

Standard Telecommunication Labs., Ltd. Enfield, Middlesex, England

Efficient Harmonic Generation*

A harmonic generator using a rectilier multiplier followed by an amplifier is more efficient than its equivalent class-C multiplier. I proposed rectifier-transistor harmonic generator is capable of high efficiency that is nearly independent of harmonic number:

Electronic systems often need efficient means for generating harmonic power. This note is a review of practical harmonic generator performance with emphasis on a circuit that seems to have been neglected.
llarmonic generators may be active or passive devices, depending on whether or not the device is supplied with power in addition to that at the fundamental frequency, for either type, we shall be concerned mainly with the ratio of harmonic output power to fundamental input power. defined as the comsersion gain $G_{r}(n)$, where n is the harmonic number. The fundamental input power is all such power supplied to the device. The harmonic output power is that which is available at the input of any trausformer used to match the device to its load, and thus includes any transformer loss.

The conventional frequency multiplier is the class-C multiplier of Fig. 1 whose resonant output circuit is tuned to a harmonic of the driving frequency f. For simplicity, we assume that the output current pulse is a clipped simusoid of phase duration 2α at the fundamental frequency: If the amplitude of the fundanental driviug voltage is E_{1}, then the maximum nth harmonic output power is obtained when $\alpha=\pi / n$ and is

$$
\begin{equation*}
P_{n}=\frac{2}{\pi^{2}}\left(g_{m} E_{1}\right)^{2} R_{L}\left[\frac{\sin (\pi / n)}{n^{2}-1}\right]^{2} \tag{1}
\end{equation*}
$$

where g_{m} is the transconductance and R_{L} is the effective load resistance. Even if the amplifier itself requires no driving power, the input power must supply the transformer loss represented by the shunt resistance R_{G}. The input power is then

$$
\begin{equation*}
P_{1}=E_{1}^{2} / 2 K_{G} \tag{2}
\end{equation*}
$$

and the conversion gain is
$G_{c}($ class $-C)=\frac{4}{\pi^{2}}\left(g_{m}^{2} R_{G} R_{L_{L}}\right)\left[\frac{\sin (\pi / n)}{n^{2}-1}\right]^{2}$

Fig. 1-Class-C frequency multiplier.

Fig. 2-Rectifier-irequency multiplier.

Fig. 3-Rectificr-amplifier frequency multiplier.

A passive harmonic generator is the rectifier multiplier of Fig. 2. This type of multiplier is specified by a comsersion efficiency

$$
\begin{equation*}
\epsilon_{d}=G_{0}+G_{c} \tag{4}
\end{equation*}
$$

where G_{0} is the fraction of the input power converted to do. Page' has shown that for $\epsilon_{d}=1$ the maximum consersion gatin is

$$
\begin{equation*}
\max . G_{c}(\text { rect. })=1 / n^{2} \tag{5}
\end{equation*}
$$

This maximum is approached, even ideally, only as both input and output powers approach zero. In practice, a G_{C} of about $\frac{1}{3} n^{2}$ seems obtainable, aud ϵ_{d} may be almost muity.

Cow suppose that the amplifier of Fig. 1 is used to amplify linearly the output of the rectifier multiplier of I ig. 2 , as clescribed by Shaull. ${ }^{2}$ In Fig. 3, the harmonic output power is

$$
\begin{equation*}
P_{n}=\frac{1}{2}\left(g_{m} F_{n}\right)^{2} R_{L} \tag{6}
\end{equation*}
$$

where E_{n} is the amplitude of the harmonic driving voltage. Assuming a practical rectifier consersion gain.

$$
\begin{equation*}
\frac{E_{n}^{2}}{2 R_{G}}=\frac{P_{1}}{2 n^{2}} \tag{7}
\end{equation*}
$$

so that

$$
\begin{equation*}
G_{c}(\text { rect } \cdot \text { amp. })=\frac{1}{2}\left(g_{m}^{2} R_{G} R_{L}\right)\left[\frac{1}{n}\right]^{2} \tag{8}
\end{equation*}
$$

This conversion gain exceeds that of the class-C multiplier for all $n \geq 2$. In addition, if the rectitier develops sufficient harmonic power, the amplifier may be operated classC, with an improvement in plate efficiency as well. Shaull ${ }^{2}$ found rectifier-amplifiers to be noisier than class-C multipliers. A recent experiment at the National Bureau of Standards does not contirm this inferiority: Shaull's noise may have been due to nonoptimum circuit impedances or to cascarling
${ }^{1} \mathrm{C}$. H. Page, "Harmonic generation with ideal rectifiers, PROC. 1 KE . vol. 46. pp. 1738-1740; October. 1058.
${ }^{2}$.i. M. Shaull, "Frequency multipliers and conVerters for measurtment and control." Tele-Tech, io Electronic Ind., vol. 14, pp. $86-89,7 \mathrm{ft} . ;$ ApHII, 1155.

Fig. 4-Rectifer-transistor irequency amplifier.
two rectifier stages before amplification rather than the single stage shown in Fig. 3.

Finally, the rectifier-multiplier becomes much more attractive if some use can be made of the input power that is una oidably conserted to de. A method for doing so uses the rectilier-transistor multiplier of Fig. 4, where both harmonic and de power supply the transistor amplifier. With a rectifier conversion efficiency $e_{d}=1$ and an optimum ratio of G_{c} (rect.) to G_{0}, the maximum transistor output power is

$$
\begin{equation*}
P_{n}=G G_{c}(\text { rect }) P_{1}=\epsilon_{\epsilon} G_{0} P_{1} \tag{9}
\end{equation*}
$$

where G is the transistor power gain, and ϵ_{c} is the transistor collector efficiency. But $G_{0}=1-G_{\epsilon}$ (rect.), so that

$$
\begin{equation*}
G_{c}(\text { rect. })=\frac{\epsilon_{c}}{\epsilon_{c}+\bar{G}} \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
G_{c}(\text { rect.-trans. })=\frac{\epsilon_{e} G}{\epsilon_{c}+G} \tag{11}
\end{equation*}
$$

with (10) as a condition. (For large n, it may be impossible to satisf (10) ; previous assumptions reguire that $G \geq\left(2 n^{2}-1\right) \epsilon_{c}$, but this inequality will amost always hold for any n of practical interest. Note that (10) usually requires a rectifier consersion gain considerably less than the possible maximum. Thus, if the transistor has appreciable power gain, it pay's to convert most of the input power to dc.) Typical values in (11), at least where the transistor is operated at morlerate frequency in class-C, are $\boldsymbol{c}_{\mathrm{c}}=0.9$ and $G=100$, vielding G_{c} (rect.-trans.) $=0.9$. The rectilier-transistor multiplier is therefore a "passive" device whose conversion gain is essentially high and independent of harmonic number.

The circuits of Figs. 3 and 4 should be useful in transmitter exciters, ratio receivers, and stable clocks. The methorl of Fig. 4, i.e., using a vacumm tube whose de plate supply and ac excitation are both generated by a rectifier multiplier, may also be useful at high power.
G. Fraxhlim Montgomery

Natl. Bureau of Standards Wiashington, I). C.

A Note Regarding the Mechanism of UHF Propagation Beyond the Horizon*

Since appreciable controversy still exists regarding the mechanism of beyond-thehorizon propagation of UlIF radio waves, it

* Received by the IRE, June 15, 1959.

MASS
NC
Fig. 1-Bhock diagram of diversity system.

Fig. 2-Cross correlation of tropospheric carrier envelopes vs time displacement of the envelopes relative to each other.
is believed that the following observations may be of interest to workers in this lield. Recently E. F. Florman and R. IV. Plush recorded simultaneously in pairs the carrier envelope amplitudes obtained from four diversity receivers in the Millstone, Mass to Sauratown, North Carolina 6.38 -mile path, at a frequency of 417 mc . Antennas at both terminals were scuuare parabolic sections of $120-\mathrm{by}-120$ feet. Measurements made with only one polarization at the transmitter indicated that the conversion of energy on the path from horizontal to vertical polarization or vertical to horizontal was very small; and as at result, if different polarizations are employed at the transmitters, we can consider that four independent paths are available at the receivers, as shown in Fig. 1.

It is well known that when sufficient spacing exists between receiving antennas, the carrier intensity level received from the diverging paths A and C or B and D will not be correlated. This was, in fact, observed as is shown in Fig. 2. The same results were also found for the converging or parallel paths. When, however, the crossed paths B
and C were compared, an appreciable correlation was observed as is seen in Fig. 2.

If the mechanism by which energy is transferred is primarily dependent on atmospheric turbulence either over the complete path or in the foreground of the antennas, it would appear that paths B and C should be as independent as the diverging, converging, or parallel paths. On the other hand, if the energy is transferred via a common "scatter volume," it would appear possible, but not necessary, that correlation could exist between paths 13 and C.

It should be emphasized that the results given here are for one specific path, and cross correlation over 30 -minute intervals. In some other transhorizon propagation cases the atmospheric turbulence in the antema foreground could possibly become important.
A. D. Watt
E. F. Florman
R. W. I'Ll'Sh

Natl. Burean of Standards Boulder, Colo.

Unusual Propagation at 2500 KC *

As is generally known, frequencies of the order of three megacycles constitute "horderline territory" between the high-frequency spectrum, with its ionospheric propagation, and the medium frequency range.

Studies made of the signal strength of station IVIVV, Beltsville, Md. from this location on 2500 kc indicate a 40 - to 50 -db variation between daytime and evening levels, caused undoubtedly by D-layer absorption. The typical daytime signal observed here is steady, with a slow fading characteristic, and rather weak, with levels generally between 20 and $50 \mu{ }^{*}{ }^{1}$ Nighttime levels may reach $10,000 \mu \mathrm{~s}$, although they usually average about 2000 .

This weak daytine condition poses an intriguing question: Can the presence of a swift-moving body in the upper ionosphere, such as an carth satellite, have any effect upon $2.5-\mathrm{mc}$ propagation, as it does at 20 mo? Theory answers with an unequivocal no, pointing out that the high absorption rates at this frequency would cancel oln any reflection which might be linked, directly or indirectly, with the satellite.

Indeed, experimentation showed that for the conditions dearriberl above ans satellitelinked effects are so small as to be immeasurable.

However, on occasion a different daytime condition has been found to exist. This is a rapid fading effect, with a variation rate of about 100 per minute and peak levels of 50-100 $\mu \mathrm{N}^{1}$. No clear explanation of this is available, althongh the rapid flutter strongly suggests some type of skwave effect, possibly sporadic-E Dachscatter, on at least one component of the wave, necessarily accompanied by a lessening of the absorption rate. At any rate, satellite-linked propagation disturbances can and to occur moder this type of condition. A detailed description of one case follows.

Such rapid flutter was observed on May 31, 1959, with a peak level of about 75 μ (higher towards the end of the observation period, about $150 \mu)^{\circ}$, and an average level of $25-30 \mu \mathrm{~s}$. The observation period lasted from $12: 50$ p.m. to $1: 11 \mathrm{p} . \mathrm{m}$., E1SST. At $12: 52$, the flutter suddenly stopped and a clear, steady beat note emerged, with a signal level of $50-70 \mu \mathrm{v}$, ending at $12: 54$, at which time the flutter resumed. At exactly this interval, the Vanguard I carrier rocket was passing in an easterly direction, just east ($71^{\circ} \mathrm{W}$.) of the propagation path, at $34^{\circ} \mathrm{N}$. lat., and at an altitude of 700 miles. The fading effect continued with a rising peak level until $12: 57$, when it again gave way to a steady slow-fading signal, with levels of $7(0-140 \mu \mathrm{v}$. At $12: 59$, the flutter resumed, and lasted with peak levels of abont $150 \mu \mathrm{~s}$ until after the end of the observation period. At the time of the second interruption, Explorer IV was several hun-

* Received by the 1 RF:, June 25, 1950. 1 All strength readings were taken with a standard S meter calibrated in microvolts at antenna ter* minals; although this may not be a perfect absolute standard, it does provide a relatively unchanging scale with which to compare measurements. The receiving equipment consisted of a Hallicrafters model SX-96 dual-conversion receiver and a dipole antenna resonant at 7050 kc ; it was therefore relatively omnidirectional at this frequency.
dred miles west of the propagation path, moving southeast at an altitude of 750 miles. No frequency variation was noticed, although the calculated maximum possible Doppler shift is far below the measurement capabilities of the receiver; this aspect, then, cannot be given much importance.

No attempt at speculation will be made here as to the cause of the effect, except to note that four other such disturbances have been noted. In all cases the flutter residual signal was noted, a correlation was established with a satellite pass, and the level of the "reflected" signal roughly equalled the peak of the residual flutter. This is not to say, however, that such disturbances always occur under the flutter condition.

It has been said that many discoveries in science resulted from apparent inconsistencies with prevailing theory: Here is vie such inconsistency.

> RaphaEl Sonfer
> 33 Fifth Avenue New York $3, \mathrm{~N} . \mathrm{Y}$.

Generalized Energy Relations of Nonlinear Reactive Elements*

Manley and Rowe ${ }^{1}$ have been referred to very frequently by the authors working with parametric amplifiers. While their theory is based upon the interaction between two applied frequencies, it is possible to generalize it to any mumber of applied frequencies. The derivation of the equations follows a pattern similar to Manley and Rowe's with the exception that a Fourier summation of n variables is used. The resultant energy relations are

$$
\begin{align*}
& \sum_{m_{1}=0}^{\infty} \sum_{m_{2} \cdots m_{n}} \cdots \sum_{n=-\infty} \\
& \overline{m_{1} f_{1}+m_{1} f_{2}+\cdots+m_{n} f_{n}}=0, \\
& \sum_{n_{n}=0}^{\infty} \sum_{m_{1}, m_{2} \cdots m_{n=-\infty}} \cdots \sum_{n} \\
& \frac{m_{2} W_{m_{1}, m_{2}, \cdots, m_{n}}}{m_{1} f_{1}+m_{n} f_{2}+\cdots+m_{n} f_{n}}=0, \tag{1}\\
& \sum_{m_{n}=0}^{\infty} \sum_{m_{1}, \ldots m_{2}, \cdots m_{n}} \cdots \sum_{-1} \\
& -\frac{m_{n} \mathrm{H}_{n_{1}, m_{2} \cdots m_{n}}}{m_{1} f_{1}+m_{2} f_{2}+\cdots+m_{n} f_{n}}=0 .
\end{align*}
$$

where $W_{m_{1}, m_{2}, \ldots, m_{n}}$ are the average power flowing into the nonlinear reactance at frequencies $\pm\left[m_{1} f_{1}+m_{2} f_{2}+\cdots+m_{n} f_{n}\right], m_{1}, m_{2}$ $\cdots m_{n}$ are integers, and $f_{1}, f_{2} \cdots f_{n}$ are the applied frequencies.

* Received by the IRE, July 20, 1959. This work was supported by Project MICIIGAN Under Department of the Army contract (DA36-039SC78801), administered by the V.. S. Army Signal Corps. 1 J. R. Manley and H. F, Rowe, "Some general
properties of nonlinear elenentsenergy relations," P'roc. IRE. vol. 44. pp. 904-913: July, 1956.

An example of the application of (1) is a two-pump parametric amplifier. In this case, we have two pumping frequencies, f_{1} and f_{2} and a signal frequency f_{3}. Eq. (1) reduces to

$$
\begin{align*}
& \sum_{0}^{\infty} \sum_{-\infty}^{\infty} \sum_{-\infty}^{\infty} \frac{m_{1} W_{m_{1}, m_{2}, m_{1}}}{m_{1} f_{1}+m_{2} f_{2}+m_{3} f_{3}}=0 \\
& \sum_{-\infty}^{\infty} \sum_{0}^{\infty} \sum_{-\infty}^{\infty} \frac{m_{2} V^{\prime}}{m_{1} f_{1}+m_{2}+m_{2} f_{2}+m_{3}}=m_{3} f_{3} \tag{2}
\end{align*}=0
$$

and

$$
\sum_{-\infty}^{\infty} \sum_{-\infty}^{\infty} \sum_{0}^{\infty} \frac{m_{3} \|_{m_{1}, m_{2} \cdot m_{3}}}{m_{1} f_{1}+m_{2} f_{2}+m_{3} f_{3}}=0
$$

Further simplification of (2) is accomplished by introducing the property of high $-Q$ resonant circuits, each tuned to f_{1}, f_{2}, f_{3} and f_{4} ($=f_{1}+f_{2}-f_{3}$) respectively. Then (2) reduces to

$$
\begin{align*}
& \frac{\|_{1,0.0}^{\prime}}{f_{1}}+\frac{\|_{1,1-1}}{f_{1}+f_{2}-f_{3}}=0 \\
& \frac{U_{0,1,0}^{\prime}}{f_{2}}+\frac{W_{1.1,-1}}{f_{1}+f_{2}-f_{3}}=0 \tag{3}
\end{align*}
$$

and

$$
\underline{\underline{I}}_{\frac{0.0 .1}{}}^{f_{3}}-\frac{\boldsymbol{W}_{1.1,-1}}{f_{1}+f_{2}-f_{3}}=0
$$

Eq. (3) is sometimes rewritten in a more familiar form as

$$
\begin{equation*}
\frac{W_{1}}{f_{1}}=\frac{W_{2}}{f_{2}}=-\frac{W_{3}}{f_{3}}=-\frac{W_{4}}{f_{1}+f_{2}-f_{3}} \tag{t}
\end{equation*}
$$

where $W_{1}=W_{1.0 .0}, W_{2}=W_{0.1 .0}, W_{3}=W_{0.0,1}$ and $W_{4}=W_{1,1,-1}$.

Cual Yeh
Nillow Run labs.
E'niversity of Michigan Ann Arbor, Mich.

$P-N-P$ Variable Capacitance Diodes*

The purpose of this letter is to describe the properties of a $p-n-p$ semiconductor diorle when it is used as a low-loss, voltage variable capacitor. lo arrive directly at the fundanental characteristics of such a structure, we shall neglect the possibility of transistor action and consider the diode to consist of two single-ended diodes placed back to back with a common base. Under this assumption, the dionle and its electrical circuit models are given in liig. 1.

In the circuit monlel of Fig. $1(\mathrm{~b}), R_{c}$ is the contact resistance, R_{p} is the bulk resistance of the p-type material, and R_{x} is the bulk resistance of the n-type material. C_{1} and C_{2} are the transitlon capacitances of the two junctions, and R_{1} and R_{2} are the usual nonlinear junction resistances associated with minority carrier injection offecte. For the direction of bias indicated in Fig. 1 (a), junction (2) is back biased, so R_{2} is very large and, except at very low freguencies,

* Received by the IRE, July 15, 1959. This work was supported in part by the Office of Naval Research.

its effect in shunting C_{2} may be neglected. Furthermore, the do operating current level will be essentially that of a reverse biased junction. If the diode is made of silicon and operated at a voltage less than the avalanche breakdown voltage, this operating current level will be extremely small. As a result, the junction resistance R_{1} will be large, and the minority carrier charge stored in the base will be very small. It follows from this reasoning that for biases less than breakdown voltage, 1) the shunting effect of R_{1} on C_{1} may be neglected except at low frequencies, and 2) conductivity modulation effects may be neglected in calculating R_{x}, the resistance of the base layer.

If we now define

$$
\begin{align*}
& C_{c_{44}}=\left(C_{1} C_{2}\right) /\left(C_{1}+C_{2}\right) \\
& R_{\text {c4 }}=R_{x}+2 R_{P} \tag{1}
\end{align*}
$$

the circuit model for this diode simplifies to that given in Fig. $1(c)$ (except at low frequencies). The Q of this circuit is then delined by

$$
\begin{equation*}
Q=1 / 2 \pi C_{\mathrm{e} 4}\left(R_{\mathrm{e} 4}+2 R_{\mathrm{c}}\right) f \tag{2}
\end{equation*}
$$

where the symbols are as delined before and f is the frequency in cps.

Eq. (2) indicates the steps that must be taken to make a high $Q p-n-p$ diode capacitor. Before discussing device design, however, it is interesting to consider several unique properties which the structure has.

First, it fotlows from the physical symmetry of the device that reversing the polarity of bias on the diode merely interchanges the roles of the junctions and does not change the terminal characteristics. Hence, the capacitance vs voltage characteristic of the device is symmetrical, as shown in Fig. 2. This characteristic is of possible utility in parametric amplifiers since the diode can be operated at zero bias, and pumped at a frequency fo to get siguificant capacitance variations at $2 f_{0}$ (see Fig. 2). It is therefore conceivable that parametric oscillations at a frequency up to $2 f_{0}$ can be obtained reatily from a pump at $f_{0}{ }^{\text {a }}$

A second property of interest is the capacitance modulation which occurs when a light beam is focused on the $p-n$ junctions. This capacitance modulation comes about because the light source produces hole-electron pairs in and near the junctions, thus
${ }^{1}$ The anthors are indebted to Proi. 11. Heffner 1 or pointing ont these facts.

Fig. 2-Caparitance vs voltage ior a $p-n-p$ diode.

Fig, 3-Change of zero-bias capacitance
vs incident light intensity. is incident light intensity.
causing a change in the voltages existing across the junctions and hence a change in the junction capacitances. A typical zerobias capacitance vs light intensity plot is given in Fig. 3. In connection with this figure, it should be mentioned that the diode headers were not designed for maximum light interception at the junction; hence, the light energy actually falling on the junctions was much less than the incident light flux.

This caparitance modulation property of the diode provides a simple means of varying the tank circuit capacitance in an oscillator and thereby producing an oscillator output frequency which is related to the incident light intensity. This effect has been used in an FM transmitter operating at 128 mc to produce a frequency shift of 3.24 me for an incident light intensity of $20 \mathrm{mw} / \mathrm{cm}^{2}$. [1 sing the curve of lig, 3 and the tank circuit relation

$$
\Delta f=\frac{f \Delta C}{2 C}
$$

we calculate a frequency change of 3.85 mc for this light intensity. The difference in measured and calculated frequency shifts may readily be accomed for by observing that the tank voltage also modulates the diode capacitance, causing its a werage value to be somewhat less than the small signal value indicated in l「ig, 3 .

Returning now to the problem of making a high Q diorle capacitor, (2) indicates that R_{r} shonld be eliminated or reduced to a practical minimum. Since this resistance is to be compared with $K_{\text {ent, }}$ which can be 0.001 ohm or lower for a $p-n-p$ device of typical dimensions, it cannot always be neglected as unimportant. However, for the purposes of estimating the ultimate performance of a $p-n-p$ diode, we shall neglect R_{C} and concentrate entirely on the $C_{\text {en }} R_{\text {eff }}$ product.

To have a concrete example before us, we shall consider the device design problem assuming that the diode is to be used in a
parametric amplifier. For this case, a suitable figure of merit for the diode as far as gain and noise figure of the parametric amplifier are concerned is the $f \alpha Q$ product, where $\alpha=د C / C$. To maximize the $f \alpha Q$ product, it is necessary to maximize the f f product of the diode at zero bias. Specification of $f Q$ at a large reverse bias is unrealistic for this application, though Q increases with increasing bias voltage, since $C_{\text {edf }}$ decreases with increasing bias voltage.

Neglecting K_{C} and rewriting (2), we have

$$
\begin{equation*}
f Q=1 /\left(2 \pi C_{\mathrm{eq}} R_{\mathrm{eq}}\right) \tag{3}
\end{equation*}
$$

It follows from this that the $f Q$ product is independent of the area of the clevice, since $C_{\text {ri, }}$ depends directly on area, while $\mathcal{R}_{\mathrm{pq}}$ depends inversely on area. That is, the $f Q$ product is a material property of the diode.

The $f Q$ product may be expressed in terms of device geometry and parameters by substituting the appropriate expressions for $C_{r, 1,}$ and $K_{r, 1}$ into (3). If we assume that both $p-n$ junctions are linearly graded, the equivalent capacitance per unit area may be expressed as

$$
\begin{equation*}
C_{\mathrm{eq}}=\epsilon(2 a q)^{1 / 3} / 2\left(3_{\epsilon \phi}\right)^{1 / 3} \tag{4}
\end{equation*}
$$

where q is the electronic charge, ε is the di elertric constant, a is the gradient of impurity density at either $p-n$ junction, and ϕ is the built in potential across either $p-n$ junction.

Unfortunately, the expression for $R_{\text {rn }}$ cannot be written so readily, since there are two types of resistance contributing to the total loss. First, there is the bulk resistance of the p-and n-type regions. Since the p-type regions will be much more heavily coped than the n-type region, we may neglect the bulk contributions of R_{p} to the total resistance and write the bulk resistance per unit area as

$$
\begin{equation*}
R_{\mathrm{Bu}, \mathrm{lk}}=R_{\mathrm{x} \text { Bulk }}=l_{\mathrm{N}}\left(q_{\mu x} \cdot V_{D}\right) \tag{5}
\end{equation*}
$$

where S_{x} is the length of the n-type region (see Fig. 1), q is the electronic charge, μ_{s} is the mobility of electrons in the base, and V_{0} is the base doping density.

There is also a resistance contribution arising from the fact that near the junctions there is a nonumiform doping density associated with the impurity density gradient. While the extent of this region in neutral material is small, the resistivity of the region is high, and its contribution to the series resistance of the device is appreciable. In fact, the ultimate $f Q$ product of diffused $p-n-p$ dioxes will be determined by this resistance, since the bulk resistances can be mate relatively small by carefully controlled fabrication techniques. An analytical expression for this resistance may be obtained when the entire diffusion protile is known, but it is usually simpler to make a graphical estimate of its value.

An upper bound on the $f Q$ product may be obtained by using the bulk resistance formula given in (5). L'sing (t) and (5) in (3), one obtains

$$
1 Q<\left(g \mu V_{D}\right)\left(3_{\epsilon} \phi\right)^{\left.1 / 3 / \pi(\pi / N \epsilon)(2 a q)^{1 / 3}\right)}
$$

where symbols are as defined earlier. I sing $\mu=300 \mathrm{~cm}^{2} /$ rolt-second, $N_{D}=10^{18} / \mathrm{cm}^{3}$, . A_{A} $=10^{20} / \mathrm{cm}^{3}$ (bulk doping density for the p regions), $l_{x}=15$ microns $=15 \times 10^{-4}$ cml, and $a=10^{2-2} / \mathrm{cm}^{4}$. one obtains a zero bias bound
on $f()$ of 100 kme . When the resistance associated with the nonumiform doping density near the $p-n$ junctions is added, the $f Q$ product decreases to about 30 kmo . With due care, this latter figure can be approached; this still represents a respectable $f Q$ product. To compare this hyure with single $p-n$ junction diodes of either the alloy or mesa type, one shonld multiply by a factor of 2 or 3 , since it is customary to quote $f Q$ ligures with several volts of reverse bias applied to the diode. U'sing this factor, the $p-n-p$ diode is about the same as the $p-n$ diode in terms of $f(Q$ product.

Because of fabrication difficulties, the $p-n-p$ diones constructed to date have larger junction areas than those of $p-n$ diodes, and, as a conseduence, the impedance level at any given frequency is higher in the latter configuration. In a typical $p-n$ diode of either the mesar or gold bonded construction, the capacitance of the diogle at a small back bias is about one micromicrofarad. At a frequency of 1 kme; this has an impedance of 160 ohms. For an area of $0.01 \mathrm{~cm}^{2}$ and the doping parameters quoted earlier, the $p-n-p$ diode has a zero bias capacitance of 250 $\mu \mu \mathrm{f}$ and an imperlance of $0.6+$ ohm at 1 kme . As a consequence of this fact, special technigues would have to be used to produce the extremely small areas required to get the proper inpedance level in the $p-n-p$ diode for a parametric amplifier application (about 50 ohms at S band). For lower frequency work, however, compromises can be made which reduce the capacitance drastically without too much loss in $f Q$ product. For example, using a base layer doping of N_{I} $=10^{16} / \mathrm{cm}^{3}$, one can readily obtain an $f Q$ product of 6 kinc at zero bias. The zero hias capacitance for a diffused $p-n-p$ diode with $\Lambda_{D}=10^{16}$ is about $8 \mu \mu$ for an area of 0.001 cm^{2}.
$P-N \cdot P$ diodes have been constructed from several different base materials ranging from $V_{D}=10^{16}$ to $V_{D}=10^{18}$. The fabrication technique is essentially as follows: a silicon slice is first lapped to a thickness of 45 microns, put in a grooved quartz boat, and placed in a diffusion furnace. Boron from either a BCl_{3} or $\mathrm{B}_{2} \mathrm{O}_{3}$ source is then deposited on the surface of the slice and diffused in from each side at a temperature of $1200^{\circ} \mathrm{C}$ to a depth of about 15 microns. (It should be noted that a $p \cdot n-p$ diode is the natural product of such a diffusion operation unless masking techniques are emploved.) "The slice is then removed antil given a light HF etch to remove possible surface oxides. Gatlimo-gold contacts are evaporated onto each side of the slice and alloyed in. The slice is then diced into small pieces, usually 0.01 to $0.001 \mathrm{~cm}^{2}$ in area. These chips are then monnted in microware diode headers to complete the unit. "lypical zero-bias $f Q$ products for diodes made in this way are given in Thable 1.
T. BbLE I

Base Resistivity $\$ L-\mathrm{cm}$	Base doping density $\underset{\mathrm{cc}}{\text { atom }}$	C゙puer bound on $f O$ calculated from (6) kme	Calculated $f\left(\begin{array}{l}\mathrm{kmc})\end{array}\right.$ including nonuniform dop. ing effects	$\begin{gathered} f O \\ \text { neas- } \\ \text { ured } \\ \mathrm{kmc} \end{gathered}$
. 6	10^{16}	12.2	6.1	6
. 1	10^{17}	47	18	10
. 02	10^{18}	102	34	16

The agreement between the last two columns is scen to be reasonably good; it may be improved by including the effects of contact resistance. A contact resistance of 10^{-4} ohm- cm^{2} will bring the measured and calculated values of $f Q$ into coincidence for the $N_{D}=10^{18}$ case. This same contact resistance will decrease the calculated $f Q$ product for the $N_{D}=10^{17}$ to 16 kmc , so that the measured and calculated values of $f Q$ are reasonably close.

Finally, it should be pointed out that $p-n-p$ dionles in materials which do not display very low junction current when reverse biased will have quite dilferent properties from those described here. In particular, if there is appreciable injection from the for-ward-hiased diode, the Q of the capacitor will be severdy deteriorated in certain frequelle? ranges.

J. F. Gibibons
 Stanford Electronics I abs. Stanford University Stanford, Calif.
 G. I. Pearsos
 Bell Tolephone Lahs.

Murray Hill, N.J.

Some Possible Causes of Noise in Adler Tubes*

Adler, ${ }^{1.2}$ has recently described a new type of low-noise amplifier in which the signal is carricd on an electron beam in the form of orbiting motion of the electrons in a magnetic field. A particular feature of this amplifier is that the conditions for coupling the signal onto the beam from the input circuit are identical to those for coupling a signal off it. Any noise on the bean, therefore, will be absorbed by the input circuit, and the amplifier should have a noise figure of zero (lb to a first approximation. Actual measurements show that the noise is not quite so low as this. The best noise ligure reported so far, ${ }^{2}$ is 1.3 db , of which about 0.4 db was accounted for by circuit losses. The purpose of this letter is to suggest reasons which might account for some of the remainder.

Consider, first, the nature of the moise signal which is absorbed from the beam. Noise arises because of random motion of the electrons at right angles to the beam axis caused by thermal velocities. Since we are concerned here with only' two degrees of freedom, the average energy per electron will be $k T_{e}$, where T_{e} is the effective temperature of the beam for these two degrees of freedom. In the plane at right angles to the beam axis, each electron will pursue a circular orbit of random magnitude and phase. At any instant in time, the electron will feed an amount of current proportional to its component of velocity in that direction into the coupling plates. The sum of the

* Received by the IRE, June 15, 1959.
* Received by the IRE, June 15, 1959. electron wave," Proc. IR 8., vol, 46, pp. 1300-1301; electron wa
June. 1958 .
${ }_{2}$ R. Adler, G. Hrbek, and (.) Wade, "A low noise electron-beam parametric amplifier," Proc. IRE, vol. electron-beam parametric amplifie
instantaneous currents caused by all the electrons between the plates is the instantaneous noise current. The summation must take sign into account, so that the sum is on the average zero and the noise is merely the rms deviation from zero. The rms value of the noise current is given by

$$
i_{n}=\frac{l}{d} \sqrt{\frac{G_{0} \times k \times T_{e} \times B}{2}}
$$

where

$$
\begin{aligned}
l & =\text { transit length of plates, } \\
d & =\text { spacing of plates, } \\
G_{0} & =\text { de bean conduciance, } \\
k & =\text { Boltzmann's constant, } \\
T_{e} & =\text { electron temperature, } \\
B & =\text { bandwidth. }
\end{aligned}
$$

When the correct matching impedance is connected between the plates, the noise current is reduced by a factor two, so that the noise power is given by

$$
P_{n}=\frac{1}{\frac{1}{4} i_{n}{ }^{2} \times R, ~}
$$

where

$$
R=8\left(\frac{d}{l}\right)^{2} \times \frac{1}{G_{0}}
$$

so that

$$
P_{n}=k \times T_{1} \times B
$$

This noise signal should not be confused with the total thermal power on the beam, which, in general, is many orders of magnitude greater, and is given by

$$
P_{\mathrm{th}}=\frac{k \times T_{e} \times I_{0}}{e}
$$

$P_{t h}$ is simply the sum of all the lateral thermal energies of the electrons. For example, taking T_{e} as $1000^{\circ} \mathrm{K}$ and B as 50 msec ,

$$
P_{n}=6.9 \times 10^{-13} \text { watts }
$$

whereas

$$
P_{\mathrm{th}}=3.0 \times 10^{-8} \text { watts. }
$$

It is clear, therefore, that when the noise signal is removed from the beam, the thermal power of the electrons remains virtuallyunaltered. All that has happened is an almost imperceptible readjustment of the amplitude and phase of the orbit of each electron which results in the wiping out of the statistical fluctuation with time of the sum of their currents. To be more exact, the smoothing applies only to a limited band of frequencies. This is the same as saying that the summation must be carried out over a time interval of $1 / B$ or longer.

The removal of noise from the beam represents, therefore, a delicate state of balance rather than any real physical removal of the source of the noise. The positive and negative thermal velocities of the electrons in the direction of the plates have been equalized for the beam as a whole, but the velocities themselves are still as great as ever. Anything which happens to upset this state of balance will thus reintroduce noise. Some of the ways this might happen are suggested below.

1) Partition noise

Any electron which is removed from the beam will upset the balance. Thus, interception current anywhere after the input
plates will canse noise. Whether the interception occars before or after the pump is immaterial becanse, although the signal level is higher after the pump, the thermal orbits are also. Thus, the remoral of an electron after the pump injects a larger noise signal into the bean. The likelihood of interception occurring is greater after the pump because the expansion of the thermal orbits will cause spreading of the beam. The seriousness of this effect must therefore depend on the gain of the tube as well as on the geonetry of the beam and the ontput plates. A further point is that the actual magnitude of this noise signal is greater than would be expected on the basis of simple partition noise bearause only the most energetic electrons are intercepted.

An example will serve as an illustration of the magnitude of partition noise. Suppose an interception of 1 per cent is observed. The average energy of the intercepted electrons might typically be two and one-half times $k T_{c}$. The noise power fed into the output plates will thus be $0.025 k T, B G$, where G is the power gain in the tube. This has to be compared with the amplified generator noise $K T_{0} B G$. Taking $T_{0}=290^{\circ} \mathrm{K}$ and $T_{\text {. }}$ $=1000^{\circ} \mathrm{K}$, the noise figure is therefore 1.086 or 0.36 db .

2) Noise caused by nonuniform cleclric field between the plates

If there is a nonumiform electric field between the plates, the contribution of each electron to the noise current will depend not only on its velocity but also on the relative field strength at that point. The cancellation of noise is therefore of a different form from that which would have occurred with a uniform field between the plates. The noise current indaced in the output plates will only be zero if the relative field experienced by each electron is the same at the output as it was at the input plates. This would be achieved, for example, by making the input and output plates identical, provided that the electrons maintained their positions in the beam. However, if space charge forces are appreciable, this will not be the case, so that the only practicable solution is to maintain as miform a field as possible between both input and output plates.

By way of example, suppose that the input plates are divided into two egual regions in one of which the field is 10 per cent stronger than in the other, and that the output plates are similar but have the positions reversed. After the beam has been through the input plates, there will be no noise on the beam as a whole, but there will be equal and opposite noise currents in each half of the beam, of magnitude $i_{n} / \sqrt{2}$. At the output plates, one of these currents will be increased by 10 per cent and the other will be decreased by the same amount. The resultant current will, therefore, be $(0.2 / \sqrt{2}) i_{n}$. The noise fed into the outpat plates will be $0.02 K T B G$, corresponding to a noise ligure of $1.06{ }^{9}$ or 0.29 db .
3) Noise caused by spread of avial velocilies in the beam
So far the assumption has been made that the electrons all move forward with equal velocity. If this is not the case, then
we have to consider to what extent a relative axial displacement of different parts of the beam will upset the balance of the noise. To simplify the situation let us consider that the beam is divided into two equal parts moving at slightly different velocities. Each half of the beam will carry a noise current, but after passing through the input plates, they will be erual and opposite, and of maynitude $i_{n} / \sqrt{2}$. Noise cancellation will be upset if, and only if, the relative axial displacement of the two halves results in a relative phase difference between them. This will depend upon what frequency we are considering. It the cyclotron frequency; there would be no phate difference. At other frequencies, it is given by

$$
\phi=2 \pi\left(f_{c}-f_{n}\right) \times+\times\left(i_{1}-i_{2}^{\prime}\right)
$$

$\phi=$ phase difference bet ween the two parts of the beam,

where

$$
\begin{aligned}
\tau= & \text { transit time between input and output } \\
& \text { plates at velocity } \\
f_{c}= & \text { cyclotron frequency, } \\
f_{n} & =\text { freguency of noise component. }
\end{aligned}
$$

and i_{1} and i_{2} are the relocities of the two parts of the beam.

Thus, we should expert 110 deterioration of the noise at the center of the band, but it would get progressively worse as we move out wards from the center. The magniturle of this effect can be iudged from the following example:

$$
\begin{aligned}
f_{c} & =500 \text { msec, } \\
f_{n} & =52.5 \mathrm{msec}, \\
\tau & =5 \times 10^{-8} \text { seconds (i.e., } 25 \text { cycles) }, \\
\left(\frac{i_{1}}{\frac{i_{1}}{2}-v_{2}}\right) & =0.015,
\end{aligned}
$$

then

$$
\begin{aligned}
\phi & =0.8^{\circ} \\
\text { noise current } & =\frac{2 i_{n}}{\sqrt{ }{ }^{2}} \times \sin \frac{6.8^{\circ}}{2}=0.08+i_{n} \\
\text { noise power } & =0.007 T_{e} B G
\end{aligned}
$$

and
noise fioure $=1.024=0.1 \mathrm{db}$.
4) Noise caused by collisions betareen electrons and ions:

If there are any ions present in the beam, either positive or negative, this may give rise to noise by disturbing the thermal orbits of the electrons. It is not yet clear whether this effect would be important in any practical cases. I safe precaution would be to use a beam potential at which the rate of ion formation is small.

By way of summary, the most important form of noise suggested is partition noise caused by interception of the beam caused, in turn, by amplification of the thermal orbits of the electrons. This is fundamental to this type of tube and must limit the gain at which any particular tube can be operated. An important contributory canse of the noise may be nomminormity of the field between the plates. Space charge depression of potential in the beam should have no effect at the center of the band, but might be a con-
tributory cause at the edges of the band in particular cases. More detailed calculations on these effects are in progress.
C. P. Iea-Willon

Services Electronies Res. Lab. Harlow, Essex, England

Althors' Comment ${ }^{3}$

Lea-Wilson, in the first part of his letter. has given an excellent account of the phys:cal situation which exists when fast-wave noise is cancelled. His explanation will answer many questions; his description of the noise absorption process as "an almost imperceptible readjustment of the amplitude and phase of the orbit of each electron . . ., should clarify this matter once and for all.

The following comments, based on experiments with a number of tubes and on a theoretical examination of their behavior, might be in order. As was recently reported, when the electron gum potentials are adjusted empirically for optimum noise figure and the input coupler is terminated by a matched load at room temperature, we find that the noise temperature measured at the output coupler remains significantly above room temperature even with the pump turned off. Hence a significant amount of noise originating in the beam appears at the ontpat even with no pamping present. This excess noise, in combination with the circuit losses, is large enough to account for the noise figure measured with the pump turned on. This would indicate that partition noise, which would increase strongly with pamping, camot be a large factor. It seems: to become a large factor when the gun is purposely misadjusted; in that case the noise figure deteriorates rapidly as pump power is increased. With optimum gun adt justment, on the other hand, only a slight increase in noise figure occurs for very high gain (30 db or over).

In view of these experimental findings, the most interesting sources of residual noise are those not affected by pumping. LeaWilson's sources 2)-4) are in this class. Source 2), the contribution due to nonuniform electric lield between the plates, is probably negligible in our experimental tubes in view of their geometry.

Contributions to the excess noise from certain other sources not considered by LeaWilson have also been examined and reported. ${ }^{+}$For example, noise carried by the other transuerse waves of the bean (the slow wave and the intermediate or synchronous wave) can produce measurable effects. Noise in the intermediate wave appears to be especially significant in some tubes. ${ }^{5}$ This noise does not involve transverse electron motion bat results from spatial factuations of the center of gravity of the beam about its axis due to the finite thickness of the beam. These fluctuations, moving along at the velocity of the stream, may induce a
${ }^{2}$ Received by the IRE, July $13,1959$.
${ }^{1}$ R. Arler, G. Hrbek, and G. Wade, The noise behavior of "uadrupole parametric amplifiers." presented at the Conference on Electron Tube Research, Mexico City, Mexico; June 26, 195\%.
${ }^{3}$ This possibility was first suggested to us some months ago by R. Kompfner of Bell Telephone Laboratories.
voltage in the input coupler which is then re-impressed upon the steam in the form of fast wave noise. For the dimensions of our experimental tubes, an easily calculated maximum possible value for this contribution is 0.6 db . The actual value must be much lower than this.

We have recently reported ${ }^{4}$ a substantial improvement in experimental tubes; using a gun in which the small first-anole aperture originally employed is replaced by a small virtual cathore, we have obtained over-all noise figures of slightly better than 1 db at both +25 and 780 me. Circuit losses still account for close 100.5 db , leaving a little less than $0.5(1)$ or an excess noise temperature of $35^{\circ} \mathrm{K}$ to be accomnted for. Thus, with this new gun there is little noise left to explain. These experiments, ats well as the theoretical examination mentioned abore, will be published in detail it the near future.
R. Able: G. Hrbe:

Research Denartment Zenith Radio Corp Chicago, Ill.
G. WADE Electronies I aboratory Stanford Cniversity Stanford. Calif.

A New Concept in Computing*

lligington ${ }^{1}$ points out that the design of logic networks consisting of majority decision elements may be carried out by using permanent-source inputs to reduce the majority elements to OR's and ANO)'s. "his practice permits the use of familiar design terhnigues. since the majority elements are made to behate as familiar elements. By failing to utilize the logical properties of the majority elements, however, this technique sometimes proxures extravagat designs

Inaltermative design method dependson operating on conventional Boolean expressions (in terms of , N.N), OR, NOT, ete.) to convert them to equivalent expressions in "majority form." . In exprescion is salid to be in majority form if it is expressed exclusively in terms of Boolean literals (with and without negation, grouping symbols (parentheses. etc.), and the majority deeision operator. The discussion that follows gives a methol for comversion to majurits. form and presents examples that show that the corresponding metworks are somewhat simpler than those developed by Wigington's methot.

The conversion methol, as given here, is restrieted to networks having 1) no more than three inputs, 2) no more than three iuputs por element, and 3) un storage function.

The first step is 10 put the given function, $f\left(A_{1}, A_{2}, A_{3}\right)$, in the following form:

* Received by the IRF, June 24, 1959.
- K. L. Wighnstum, "S new consept in compluing." Proc. IRE, vol. 47 , pp. $516-523$; Aptil, 1959.

$$
\begin{align*}
f\left(A_{1}, A_{2}, A_{3}\right)= & X\left[f_{1}(Y, Z)+f_{2}(Y, Z)\right] \\
& +N^{\prime} f_{3}\left(l^{\prime}, Z\right) f_{4}(Y, Z), \tag{1}
\end{align*}
$$

where K, Y, and Z are Boolean literals A_{1}, A_{2}, and A_{3} (not necessarily respectively) or negations thereof, and f_{1}, f_{2}, f_{3}, and f_{4} are functions chosen to satisfy (1). With the understanding that f_{1}, f_{2}, f_{3}, and f_{4} are functions of Y and Z only, (1) may be simplified to read:

$$
\begin{equation*}
f\left(A, A, A_{3}\right)=X^{0}\left(f_{1}+I_{2}\right)+X^{\prime} / 3 / 4 . \tag{2}
\end{equation*}
$$

The second step-which refuires that the given function be in form (2)-is to apply the conversion theorem:

$$
\begin{align*}
& N\left(h_{1}+j_{2}\right)+.^{\prime} h_{2} \tag{3}
\end{align*}
$$

If, aftar this second step, any term of the right-hatud member of (3) is notion majorits form (that is, if any torm contanis A. A), or ()R, etc.), that term is comberted by a second application of the two-step procedure described above. The two-step procedure is applied repeatedly matis comversion to mat pority form is womplete.

The conversion procedure desribed above is illasirated by derivations of ma-jority-element networks for 1) at parity rherker, and 2) a binary adder stage

Since, by convention, an even-parity code is an erroneons one, a three-bit parityerror detector is given by:

$$
\begin{align*}
\text { Error }= & A_{1} A_{2} H_{3}^{\prime}+A_{1} A_{2}^{\prime} A_{3}+A_{1}^{\prime} A_{2} A_{3} \\
& +A_{1}^{\prime} A_{2}^{\prime} A_{3}^{\prime} . \tag{4}
\end{align*}
$$

Arbitrarily selecting A_{1} as.X (any other (hoice would serve as well), we fator (t) to give:

$$
\begin{align*}
\text { Error }= & A_{1}\left(A_{2} 1^{\prime}+A_{2}^{\prime} A_{3}\right) \\
& +A_{1}\left(A_{2} A_{3}+A_{2} A_{3}{ }^{\prime}\right) \tag{5}
\end{align*}
$$

Comersion of (5) to form (2) is completed by expressing $A_{2} A_{3}+A_{2}^{\prime} A_{3}^{\prime}$ as a proxluct (which is done by clouble negation and repeated application of De Morgan's laws) to give

$$
\begin{align*}
\text { Error }= & A_{1}\left(A_{21} 1_{3}^{\prime}+A_{2^{\prime}}^{\prime} 1_{3}\right) \\
& +A_{1}^{\prime}\left(A_{2}+A_{3}^{\prime}\right)\left(A_{2}^{\prime}+A_{3}\right) \cdot(6 \tag{6}
\end{align*}
$$

Ey. (6), hat the desired form ; comparison with (2) show $A_{1}=x_{1}, A_{2} A_{3}{ }^{\prime}=f_{1}, A_{3}^{\prime} A_{3}$ $=\int_{2}, A_{2}+A_{3}^{\prime}=f_{3,} A_{2}^{\prime}+A_{3}=f_{4}$. Application of (3) yiekls:
Error $=$ Maj $\left[A_{1} \cdot\left(A_{1} \cdot 1_{2} A_{3}{ }^{\prime}+A_{1} A_{2}+A_{1} A_{3}\right)\right.$.

$$
\begin{equation*}
\left.\left(A_{3} \cdot A_{2}^{\prime} A_{3}+A_{1}^{\prime} A_{2}^{\prime}+A_{1}^{\prime} \cdot 1_{3}\right)\right] \tag{7}
\end{equation*}
$$

Application of (.3) to each of the latter two terms within the brackets of (7) yields:

$$
\begin{equation*}
\left.\operatorname{Maj}\left(A_{1}^{\prime}, A_{2}^{\prime}, . A_{3}\right)\right] \text {. } \tag{8}
\end{equation*}
$$

Fig. 1 expresses (8) in diagrammatio form. "The added "I)" represents a delay that might be reguired to syuchronize the imputs to the tinal element.

Derivation of a binary adfer stage proceeds in a similar fashion. If A_{1}, A_{2}, and A_{3} are the addend, angend, and low-order carry imputs to a binary adder stage, the carry (K) and sum (S) outputs are given by:

$$
\begin{align*}
K= & \operatorname{Maj}\left(A_{1}, A_{2}, A_{3}\right) \tag{9}\\
S= & A_{1} \cdot A_{2} \cdot A_{3}+A_{1} A_{2}^{\prime} A_{3}{ }^{\prime}+A_{1} A_{2} A_{3}{ }^{\prime} \\
& +A_{1}^{\prime} A_{2}^{\prime} 1_{3} . \tag{10}
\end{align*}
$$

Fig. 1-Pailits-artor detment.

Fig. 2-Idder -tage.

Conversion of (10) to majority form is as follows

$$
\begin{align*}
& S=A_{1}\left(1 I_{2} I_{3}+A_{2}^{\prime} I_{3}{ }^{\prime}\right)+A_{1}\left(A_{2} I_{3}{ }^{\prime \prime}+A_{2} I_{3}\right) \\
& =A_{1}\left(1_{2}-1_{3}+A_{2}{ }^{\prime} 1_{3}{ }^{\prime}\right) \\
& +A_{1}{ }^{\prime}\left(A_{2}+.1_{3}\right)\left(A_{2}{ }^{\prime}+A_{3}{ }^{\prime}\right) \\
& =\operatorname{Maj}\left[A_{1},\left(A_{1 \cdot} A_{3}+A_{1}^{\prime} A_{2}+A_{1}^{\prime} A_{3}\right) .\right. \\
& \left.\left(A_{1}, A_{2} A_{3}{ }^{\prime}+A_{1} A_{2}{ }^{\prime}+A_{1} A_{3}{ }^{\prime}\right)\right] \\
& =\operatorname{Maj}\left[A_{1}, \operatorname{Maj}\left(A_{1}{ }^{\prime}, I_{2}, A_{3}\right)\right. \text {, } \\
& \left.\operatorname{Maj}\left(.1_{1}^{\prime}, A_{2}^{\prime}, A_{3}{ }^{\prime}\right)\right] \tag{11}
\end{align*}
$$

$=\operatorname{Maj}\left[A_{1}, \operatorname{Maj}\left(A_{1}, A_{2}, A_{3}\right), K^{\prime \prime}\right]$.
Fig. 2 expresses (9) and (11) in diagrammatio form. It uses three three-input majority decision elements and (perhaps) a delay element. Wigington's adder stage reyuires six majority decision clements, of which two are five-input devires.

Richard l.indaman
Kemington Rand I nivac
St. Paul, Minn.

A S / N Improvement Factor on PAM-FM Whose Received Pulse is Cosine-Squared*.

The $\stackrel{\text { S improwement factor, which is }}{ }$ the ratio of the chammel signal output $\stackrel{\Omega}{ }$ to the carrier S / \AA, is an important factor in measuring the properties of the communiantion system. In P:MAFM, the ratio S/心 of the carrier is improsed by the frepueney discriminator, then the noise is limited through the pulse low-pass tilter, and further improvement of S / X is achieved by sampling. Fonmerly, bandon² nbtamed S/a,

* Received by the IRE, Iuly 1.3, 1959
* Receised by the IR : The original work in Japanese appeared in the Vath. Tech. Rep:, vol. 4, pp. 61-63: March, 1958 . ${ }^{2}$ V. D. Landon, "Theoretical analysis of various systems of multiplex transmission," RCA Rei', vol. 9. p. 322: June, 1948.

Without integration, by detemining the effective noise bandwidth of the pulse filter and sampling the noise. Hölzler-Holzwarth ${ }^{3}$ calculated S / \AA by taking the frequency characteristics of the pulse low-pass filter as the square of the cosine, withont considering sampling at receiving. Moreover, Ezaki added what was lacking in the above treat-ment-he took the characteristics of the pulse low-pass filter into consideration, and obtained the integrated demodulation type S / \AA, approaching very near to practice. However, Ezaki's result is too complicated for general use. Athough in practice many low-pass filters make the receiving pulses cosine spluared, and the integrated demodulatlon cireuit is employed, no consideration is given to them anymore and no useful formula for the S/S improvement factor of them is known; this point is clarified in this paper.

First, let the waverormand the freguency spectrum of the cosine-scuared impulse and the rectangular pulse of the width $2 T_{0}$ be respectively:

$$
\begin{align*}
& \left\{\begin{array}{l}
f(\prime)=\cos ^{2}(\pi / / 2 T) \\
g(\omega)=T \frac{\sin \omega T}{\omega T\left(1-\frac{\left.\omega^{2} T^{2} / \pi^{2}\right)}{}\right.} .
\end{array}\right. \tag{1}\\
& \left\{\begin{array}{l}
F(t)= \begin{cases}1 & -T_{0}<1<T_{0} \\
0 & \left|T_{0}\right|<1\end{cases} \\
G(\omega)=27_{0}\left(\sin \omega T_{0}\right) /\left(\omega T_{0}\right)
\end{array}\right. \tag{3}\\
& G(\omega)=27_{0}\left(\sin \omega T_{0}\right) /\left(\omega T_{0}\right) .
\end{align*}
$$

Then, if the above narrow rectangular pulse is passed through the filter with the following frequency characteristic,

$$
\begin{equation*}
\frac{\omega T_{0}}{\sin \omega T_{0}} \frac{\sin \omega T}{\omega T\left(1-\omega^{2} T^{2} / \pi^{2}\right)} \tag{5}
\end{equation*}
$$

the cosine-squared pulse whose height is $2 T_{0} / T$ appears in the ontput. Generally, since the width of the input pulse is narrower than that of the output pulse, the first term can be assumed approxinately mity within the variation range of the second term. The filter is divided into two parts, which are installed on the sending and the receiving sides. At present, for the consenience of calculation, let both sides have the same characteristics. As the receiving side bandwidth is taken to be narrower, the above assumption will make S/S the minimum, which, however, does not have much affect in practice. Therefore let

$$
\begin{equation*}
\sqrt{\frac{\sin \omega T}{\omega T\left(1-\omega^{2} T^{2} / \pi^{2}\right)}} \tag{6}
\end{equation*}
$$

be the characteristics of the sending side, and the height of the output waveform is calculated from the equation
$\left.f_{1}(t)\right|_{t=0}$

$$
=\frac{2 T_{0}}{\pi T} \int_{0}^{\infty} \sqrt{\frac{\sin \omega T}{\omega T\left(1-\omega^{2} T^{2} / \pi^{2}\right)}} T d \omega
$$

the result is approximately $(4.52 / \pi)\left(2 T_{0} / T\right)$, which is multiplied by approsimately 0.69 after it leaves the receiver filter.
${ }^{3} \mathrm{E}$. Hölzler and H. Holzwarth. "Theorie und Technik der Pulsmodulation," Springer-Verlag. Berlin, Germany. pu. 394-3198; 1957.

- T. Ezaki, "A S/N Improvement Factor on PAM-
 (Abstract in Japanese.)

Next, let C be the peak amplitude of the carrier, $c, \sqrt{ } 2$ times the effective noise voltage in a one cyele per second band, and f_{x}, the frequency difference of the carrier wave and the noise; then, assuming the coefficient is unity, the noise ontput voltage of the frequency discriminator2 is expressed by $\sqrt{2} f_{\text {re }} / C$ which, after passing through the receiver filter, becomes

$$
\begin{equation*}
\sqrt{2} \frac{c}{C} f_{r} \sqrt{\frac{\sin \omega T}{\omega T\left(1-\omega^{2} T 2 / \pi^{2}\right)}} \tag{8}
\end{equation*}
$$

This is sampled and integrated. In integrating, a step function can be assumed which keeps the voltage constant until the next pulse conmes, According to K゙leene, ${ }^{5}$ let $\alpha=0, \beta=1$, aud f_{p}, be the repeating frequency, then the relative gain is

$$
\begin{equation*}
\sin \pi T_{p}\left(b f_{p}-f_{x}\right) /\left[\pi T_{p}\left(b f_{p}-f_{x}\right)\right] \tag{9}
\end{equation*}
$$

However, the andio components fall within the range of $\left|b f_{p}-f_{s}\right| \leqq f_{m}$, where f_{m} is the maximmondio frequency. Hence the noise energy E_{n} in the audio bandwidth can be obtained from the following integration under the above conditions. By transforming $x=\omega T$;

$$
\begin{align*}
E_{n}=2 & \frac{e^{2}}{C^{2}}\left(\frac{1}{2 \pi T}\right)^{2} \int_{0}^{\infty} x^{2} \frac{\sin x}{x\left(1-x^{2} / \pi^{2}\right)} \\
& \frac{\sin ^{2}\left[\left(T_{p} / 7\right)\left(b x_{p}-x\right) / 2\right\rfloor}{\left\lfloor\left(T_{p} / 7\right)\left(b x_{p}-x\right) / 2\right]^{2}} d x \\
& \left|b x_{p}-x\right| \leqq x_{m}=2 \pi f_{m, 1} . \tag{10}
\end{align*}
$$

Since the third term of the integrand waries much faster than the first and second term, it can be independently integrated with expansion form $\sin ^{2} u / u^{2} \simeq 1-u^{2} / 4$, then;

$$
\begin{align*}
\frac{1}{\pi} \int_{\text {b, sp-sm }}^{b r_{p} 1-x_{m}} & \frac{\sin ^{2}\left[\left(T_{p} / T^{0}\right)\left(b x_{p}-x\right) / 2\right]}{\left[\left(T_{p} / T\right)\left(b x_{p}-x\right) / 2\right]^{2}} d x \\
& \simeq \frac{2 f_{m}}{f_{p}}\left[1-\frac{1}{12}\left(\pi \frac{f_{m}}{f_{p}}\right)^{2}\right] \tag{11}
\end{align*}
$$

The total noise energy is

$$
\begin{gather*}
I_{n}=2 \frac{c^{2}}{c^{2}}\left(\frac{1}{2 \pi 7}\right)^{3} \frac{2 f_{m}}{f_{p}}\left[1-\frac{1}{12}\left(\pi \frac{f_{m}}{f_{p}}\right)^{2}\right] \pi^{2} \\
\int_{0}^{\infty} \frac{x \sin x}{\pi^{2}-\frac{x}{x^{2}} d x} \tag{12}
\end{gather*}
$$

replacing $T=\mu / n f_{p}$ and integrating the last term, this becomes

$$
\begin{equation*}
I_{n}=\frac{1}{4_{\mu}^{3}}\left[1-\frac{\pi^{2}}{12}\left(\frac{f_{m}}{f_{n}}\right)^{2}\right] n^{3} f_{m} f_{n^{2}}^{2} \frac{e^{2}}{C^{2}} \tag{13}
\end{equation*}
$$

On the other hand, the signal voltage is muttiplied by ν after leaving the fregnency discriminator and passing through the receiver filter, and assuming that the voltage itself is kept constant by integration, it is expressed by νf_{d}. Then S / \AA (voltage) is obtained from

$$
\begin{equation*}
-\frac{2 \mu \sqrt{\mu \nu}}{\sqrt{1-\frac{\pi^{2}}{12}\left(\frac{f_{n}}{f_{p}}\right)^{2}}} \frac{f_{n}}{n \sqrt{n} \sqrt{f_{m} f_{p}}} \frac{C}{e} \tag{14}
\end{equation*}
$$

Assuming that the effective noise bandwidth of the intermediate frequency is approximately the intermediate frequency

BS. C. Kleene, "Analysis of lengthening of modulated repetitive pulses," ${ }^{\text {Proc. }}$ RRE, vol, 35, pp. 10491053; October. 1947.
bandwidth B, the S / S improvement factor can be obtained by dividing (14) by the carrier $S / N, C /(e \sqrt{ } B)$. Similarly, the cosinesquared pulse nonintegration type and Landon's equivalent bandwidth monintegration type can be obtained. ${ }^{1}$ Their S/N improvement factors are respectively as follows:

1) the cosine-squared pulse integration type

$$
\begin{equation*}
\left[\frac{2 \mu \backslash \bar{\mu},}{\sqrt{1-\frac{\pi^{2}}{12}\left(\frac{f_{m}}{f_{p}}\right)^{2}}}\right] \frac{f_{a} \bar{B}}{n \sqrt{n} \backslash f_{m} f_{p}} \tag{15}
\end{equation*}
$$

2) the cosine-squared pulse nonintegration type
$\left[2 \mu \sqrt{\mu \nu} \frac{\pi /(2 \mu)}{\sin (\pi \xi / 2 \mu)}\right] \frac{f_{n} / S}{n \sqrt{n} \sqrt{f_{m} f_{p}}}$.
3) the equivalent bandwidth nonintegration type (Landon type)
$\left[\frac{\pi \xi}{\sqrt{2} \xi} \frac{\nu}{\sqrt{1-\frac{\sin }{2 \pi \xi \zeta}}}\right] \frac{\ln \sqrt{\bar{B}}}{n \sqrt{n} \sqrt{\rho_{n} j_{p}}}$.
where
$T=\mu /\left(n f_{p}\right)$ half amplitude bandwidth of the cosine-sumared pulse. $0<\mu<1$
$\nu=$ signal pulse ratio of output to imput in the receiver pulse low-pass lilter
4) $<\nu<1$
$\tau=\xi /\left(n f_{p}\right)$ width of receiver sampling pulse
() $<\xi<1$
$F_{c}=\zeta n f_{p}$, elfer tive noise thandwidth of the receiver pulse low-pass filter $0<\zeta$
$n=$ mumber of division
$f_{l l}=$ maximum frequency deviation
$f_{p}=$ repeating frequency
$f_{m}=$ maximum signal frequeney
$B=$ bandwidth of the intermediate-frequency amplifier.
To investigate each lirst term, let $f_{m}=3400$ cps, $f_{p}=8000$ сp) $\stackrel{\mu}{ }=3 / 4, \nu=0.09, \xi=1 / 5$, $\zeta=0.7$, then

1) 0.966
 2) 0.91 .3
 3) 1.04 ,

which, however, are not justifiable to compare those three methods. These walues vary around the above values according to conditions. Since they are very close to mity, the S / N improvement factor of PAM-FM is approximately calculated from

$$
\begin{equation*}
I=\frac{i_{n} \sqrt{B}}{n \sqrt{n} \sqrt{I_{n} I_{n}}} \tag{18}
\end{equation*}
$$

For example, let $f_{s}=1 \mathrm{mc}, \beta=3 \mathrm{mc}, n=12$, $f_{m}=3400 \mathrm{cps}, f_{p}=8000 \mathrm{cps}$, then,

$$
I \simeq 0.924 \cdot 10^{2} \simeq 39.3 \mathrm{db}
$$

Or, if $f_{d}=3 \mathrm{mc}, B=10 \mathrm{mc}, n=24$, then

$$
I \simeq 1.69 \cdot 10^{2} \simeq 44.6 \mathrm{db}
$$

The values are rather reasonable and they clarify the meaning of the S / X improvement factor fairly well.

AkINOR1 IVATANABE
Central Laboratories
Matsushita Electric Industrial Co., Ltd. Kadoma, Kitakawachi, Osaka Japan

The Ffficiency of 100 Per Cent Inspection*

The increasing demand for high reliability components in the electronic industis places stringent limits on the efficiency of 100 per cem testing. With the quality levels contimathy decreasing, the efficerney of in sportion must constantly be increased. Al-
 cent tested before being sulmitted to the Quality Control lepartment, such lesting is never a guaramte of 100 per cent acceptable quality:

The following formmla will determine the efficiency rephired to pass any desired quality level.

$$
I:=\frac{P\left(1-P^{\prime}\right)}{P\left(1-2 P^{\prime}\right)+P^{\prime}}
$$

where
$E=$ the probability of making a correct decision on any unit.
$P=$ fraction defertive hedore test per centage of defective anits entering the test station).
$P^{\prime}=$ AQL (. Acreptable Quality level).
By mhsituting an AQL of 1 per cent for P^{\prime} and several values of P from 5 per cent to 50 per cent, 'lable 1 can be caloulated.

TABLE I

P	Total IE	\cdots	C_{5}	C.
0.0 .5	$0.83{ }^{3}$	0.1557	0.96	0.97
0.10	0.917	0.95	0.98.3	0.986
1.20	0.962	0.920	0.902	(0.9) ${ }^{\text {¢ }}$
0.30	0.978	0.904	0.995	0.996
0.40	0.985	0.990	0.907	0.908
0.50	0.9%	0.997	0.098	0.908

The Total E column is the efficiency for the entire inspection station. Suppose there are four, five, or six tests to be combucted at the station, the efficiency of each indivithal test is given by

$$
\sqrt[c]{E}
$$

where
$C=$ the mumber of tests that are to be performed
Table I indicates that E mast increase when the per cent deferolive that cnters the station incranes. The efficience of the individual tents must also be increased as the number of tests incrases. These two fators are of prime importance when considering the merits of any testing facility: The efficiency value must be derigned and lmilt into the station.

The efficiency of 200 per cent inspection can be caleulated by the formula

$$
E_{1}=1-\sqrt{1-I_{T}}
$$

E_{T} is the lotal E value in Table 1 .
E_{1} is the efficiency of the first 100 per cent inspection and E_{2} is the efficiencer of the secoud 100 per rellt inspertion. In this formula E_{1} and E_{2} are considered to be expual as in the case of most antomatic test equipment.

Table Il can be calculated for a 200 per cent inspection based on a 1 per cent $A(X)$.

Fig. 2.

Fig. 3.
buidd up to limit the pump beld. Indeed, we hase observed a time of several milliseconds to reath peak absorption at pump powers a few per cent above the threshold value.

The medhanism of spin wave excitation appears 10 differ from that disoussed by Suhal in two respects. loirst, it occurs at fields corresponding quite chosely to half the pump freguency while Suhl's methanism worksat fields about 70 per cent of the pump resonant lied. Secondly, it canses an absorption over a math harrower range of field. In Fig. 3 the thresholds for the two mechanismsare plotted agdinst the angle between the do and KF lields, The lowest thresholds appear to be equal but, thongh neither phemomenon shows exactly a

$$
\begin{gathered}
\cos \theta \\
\sin \theta
\end{gathered}
$$

variation, our phenomenon deviates from such a law less that due Sulul's.
A. F. II. 'l homson

Services EBlectronics Res. Lab. Ext. Harlow, Essen, Eng.
11. Suhn, "Subsidiary peaks in ferrommgnetic resonance at high signal levels". Pisys. Rear, vol. 101 pp. 1437-14.38; February, 1950.

A Tunable X-Band Ruby Maser*

A tumable solid-state ruby maser has not only been successfully operated at \mathbb{X}-band, but also shown to maintain constant characteristics of $20-\mathrm{d}$ b gain and $10-\mathrm{me}$ handwidth over a continuous tuming range of 205 me (from 9405 to 9610 mc). Subseduent tests have indicated that the continuouslytumable range will be extended to at least 400 me. Although voltage-gain bandwidth products of 100 me were easily achieved, products of up to 230 ne were also reached, even without fully optimizing all the parameters.

A 0.5 per cent chromium-doped ruby crystal almost filled the rectangular cavity. thus assuring a fairly large filling factor. Pump freduencies ranged from 22.85 kmo to 23.85 kme. I) (magnetic fields were of the order of 3900 to 4,300 cersteds, oriented at about 54° with respect to the ruby C-axis, thus utilizing the "push-pull" doublepumping priaciple. Helitan bath temperat tures ranged from $1.35^{\circ} \mathrm{K}$ to $1.5^{\circ} \mathrm{K}$.

The tuning mechanism of this cavity consists of only two external controls controls mounted on the maser superstructure, as shown in lig. 1. The frequency tuning control consists of a worm and gear which furns a threaded rod mounted along the outside of the waveguide run. On this rod ricles a noncontacting shorting plonger, shown in the cutaway sketch of the cavity in F"ig. 2. This plunger simultaneously tunes the signal and pump resonant frequencies as

Fig. 1.

* Received by the IRE, July 27, 1959.

Fig. 2.
required. . I large gear reduction through the worm and worm gear results in an extremely small planger travel for each revolution of the driving shaft, allowing for very line frequency tuning. Oceasional slight compensating changes in magnetic field strength and pump frequency will mannain a constant woltage-gain bandwidth prodnct.
"lhe second control is shown on the superstructure as a vertical rod topped by a knurled knob. It consists of a dielectric slug tuner made of two quarter-wave-thick teflon blocks. These are inserted down the center of the \mathcal{X}-band guide to control the signatfreguency coupling into the cavity. The blocks are shown in the cutaway portion of the $\mathbb{X}-b$ and guide in Fig. 2. A given position of this slug tumer has been found to give satisfactory performance over at least a 4 per cent bathdwidth.
lig. 2 also shows the coupling irises from the バ- and \times-band guides into the cavity.

It should be noted that the magnetic field orientation remains fised at 54° and that no external pump tuning mechanism is required because the large piece of ruby crystal with its high dielectric constant causes many more modes to appear in the pump circuit resulting in many pump resonances.

The crystal was saturated at CIV signal powers of about $0.02 \mu \mathrm{~W}$. CW pump powers were of the order of 30 to 60 mw.

The authors feel that these simplified tuning principles can be used at any band.

I' I). Gianino
F. J. I Ominick

Ewen Kinight Corp.
Needham Heights, Mass.

Frequency Response of the Two-toOne Autotransformer*

It may be of interest to some readers of the Ruthroff paper ${ }^{1}$ to know that the equation which he derives for the insertion function of the two-to-one "transmission-line" autotransformer also applies to transformers constructed with the more usual winding schene of one wire layer over another (provided that these layers are of equal width). These concentric layers may be considered ats forming a helical delay line (of length) at sufficiently high frequencies (see I•ig. 1).

It is also interesting (and, in some cases, alistressing) to observe that there exists a large number of multiple responses beyond the nominal (first) cutoff frequency with this type of transformer. The insertion loss returns to zero (in loss-free theory) at the center of each spurious response band as may be seen from an examination of Fig. 1. The solid curve is for the optimum characteristic impedance,

$$
Z_{0}=2 R_{q}
$$

while the dashed curve is relevant to a characteristic impedance, either

$$
Z_{0}=R_{v}
$$

or

$$
Z_{0}=4 R_{g}
$$

The frequency scale x in Fig. 1 is nomalized in terms of the $\lambda / 4$ frequency ω_{0}.

The insertion-loss zeros occur at every freguency where the associated delay line has an electrical length which is an integral multiple of 2π radians. The phase characteristics of this transformer have also been computed and are available to interested readers.

Fxperimental evidence demonstrates that this transformer does exhibit spurious responses as indicated by theory. ${ }^{2}$
T. R. O'Me.ara

Hughes Res. Labs.
Culver City, Calif.

* Received by the IRE, September 22, 1959 . ${ }^{1}$ C. L. Ruthr off, "Some broad-band transformers," Proc. IRE, vol. 47. pD. 1337-1312; August, 1959 . 2See, for example, P. Gillette, K. Oshima, and
R. M. Rowe, "Measurement of parameters controlling pulse front response of transformers," IRE TRANS. ON Component Parts, vol. CP-3. pp. 20-25; March, 1956.

On the Use of Physical Rather Than Four-Pole Parameters in a Standard Transistor Specification*

A plea has been made by Armstrong ${ }^{1}$ for the standardization of transistor notation and terminology. While endorsing the parposes of standardization, particularly the attempt to simplify the teathing of transistor circuitry, this writer womla like to suggest a possible danger of standardization on common-emitter parameters as proposed by Armstrong. This cat be illustrated by the following comparison bet ween the commonemilter and common-lasise conligurations for linear cirenit appliations.

The common-emitter conligaration is wictely used in the design of casaded amplilien anges: indeed, in suth amplibure paing direct-ooupling or R(eroup) ing heween stages, this choide of comliguration is neressary to athieve stage gain. However, if ithterstage coupling transformers are userl, a choice beween common-emitter and fom-mon-base stages is possible, though again, it would appear that the common-emiter condiguration is the more commonly used. Nevertheless, groul arguments exist for choosing the common-base conliguration for ratsiaded ampliler stages with interstage transformers: these follow from the adrantages to be gatined by hatwing the stage gain dependent on the common-base current gain orather that on the relatively more variable and less stable common-emitter current gain B. Not only is a more dependent that a on transistor biats and environmental ehanges, but as a fonetion of frequency, β varies much more rapidly in magniturle and phatse than cloes α. The result is that over a wide range of frequencies, the common-base conliguration permits the greater deflntion of amplifier performance live circuit elements external to the transistor. Similar advantages are fonnd for the common-hase conliguration used in ase illator circuits. ${ }^{2}$

The choice of one condiguration for specifying the transistor could be dangerous if it led to a perpetuation of the present situation -a nave restriction on the part of many transistor circuit designers to one contiguration for most applications. Rather, the solution might be an molertaking on the part of transistor manufaturers to provide simply the phesical parameters of the device in the form, for example, of the common-base physical equivalent cirnuit in which the carrier base transit characteristic (α as a function of frequency) and all the neressary loss elements (resistances of juntions, base region, etc.) ank storage elements (junction and equivalent hase storage (apacitances) are given gatatitatively with tolerances. It would then be left to the eircuit designer to calculate (using his own motation) the overall four-pole terminal and transfer parameters relevant to his choice of configuration and frequency. Nso, the following arguments exist for a standardization on phesical rather thall wer-all parameters.

A -pecification of wer-ill parameters is of limited use because one must ultimately

[^78]express these in phesical terms if their wariations with frequelley are to be known. A similar ohsertation applies when the circuit dependence upon temperature, bias, and other envirommental effects is to be known. It might be argued, therefore, that the fearhing of transistor circuitry should be based on the student's need of a grasp of transistor mechanies in physical terms. 'Ihe stustent also reguires, of course, a facility for evahuating and using over-all parameters, but it would seem that these should be taught only as a shorthand technigue for handling the true physical parameters. In this regard, it would seem dumise to teach transistor circuitry using parameters similar to those used for vacuum-tubes, such as mutual conductance. The relationship between transistors and vacumb-tubes can vertainly be made analytioally via orer-all parmators. But if circuit design is (o) proceed in physical termis (surely not in the analytical abstract), the transistor seems most easily considered as a current anplitier.

A further argument for a stambardization on the physical fransistor parameters rather than an arbitrarily chosen four-pole parameters follows from the fact that charge-rontrol parameters are most appropriate for the design of transistor switehing circuits. ${ }^{3}$ Such charge-control parameters are also physiaal, representing the dymamic behatior of the physical equisalent circuit parameters used for linear cirentit design. Providing highlevel injection efferts are avoided, these two sets of physical tramsistor parameters "an be related, so that an assessment rath be made of transient performance from a knowledge of the physical linear equivalent circuit.
D). F. PAGE

Def. Res. Telecommmu. Estah. Ottawa, Ont., Can.
${ }^{3}$ R. Beauloy and J. I. Sparkes, "The junction transistor as a charge-controlled device, ${ }^{7}$ ATE $J_{\text {., }}$ vol. 13. DD. 310-327; October, 1957.

Effect of Initial Stress in Vibrating Quartz Plates*

1.NTRODOCTIOS

It has been observed recently that a compressional stress applied to the edge of a vibrating circular quart\% plate of the $A T$ type excited in the third overtone mode cinses a chatnge in freguency ${ }^{1}$ This frefoney change may be prositive, negative, or \%ero, depending on the aximuth ψ of the applied force in the plane of the $A T$ plate. When the compressiomal stress, measured from the d° axis, is applied at about 60°, the fregurney thange is zero. The effect of compressional stress in an $A T$ plate is illustrated in Fig. 1 where the abscissat represents the

[^79]

Fig. 1-liffect of compressional stress on a quartz $A T$ plate as a function of the azimuth ψ.
angle ψ af applied force plotter against the pressure cosefticient

$$
\frac{1}{f_{0}} \frac{\Delta f}{\Delta P}
$$

Systematic experimental and theoretical studies of intial stress have been mate on a variety of differently oriented circular and square quart\% plates "This effect is of great interest with respect to the mechanism of thickness vibrations of plates. The zero effect of pressure is of practical interest for monnting $A T$ guartz plates exposed to show and vibration.

In the present paper, the essential experimentall facts are summarized, while the theoretioal explanation of this effect will be given at at a later date.

EQIIPMENT ANO MEAStrament FaCllities

Circular and square plates of various orientations were excited by electrodes plated on the surfaces perpendicular to the thickness direction. The electrodes were gold strips parallel to the Z^{\prime} axis, overlapping in the center of the plate. Electrically-conducting bourling cement was placed on the rim of the crystal. beginming at eath electrode and comtiming ahmost around to the other electrode.

A conventional crystal holder wats modified by hending the arystal support wires inward and by filing notehes in the ends (1) support the crystal at two diametrid panints on its periphery.

The hobler prowided the electrical connections from the crystal the the usillator and therelog served as the means by which pressure wats applied to the plate. The holder was mounterl in a metal frame constructed inside a crystal oven to provide a constant temperature. All measurements were mate at $25^{\circ} \mathrm{C}$.

The metal frame wats eqgipped with a lever arrangement by which the lowering of a weight would cause a force to be applied to the hoded arms and hence to the crystal. The weight was controlled from outside the oven.

The coanial leads from the holder were connected to a crystal impedance meter, the output of which was amplified and beaten to a lower frefuency when necessary; i.f. for the purpose of measuring overtone crystal modes. I Crequency counter was used to determine the differenme in freguencs. The meaturement equipnent is shown whematically in Fig. 2. The plate diameters in all cases were approximately 0.55 inch and the frequencies of the fundamental mode were about 10 mc . The force applied was 100 graths.

Fig, 2 - Blow k dagratm ol equipment for measurement of trequenty change cause by applied atreso

Fig. 3-liffer of compressional stress on various quartz plates of the orientation ($\mathrm{F}^{\prime \prime}$ ') θ vibrating at the thickuess-shear mode as a function of the azimuth \downarrow.

Meascrements

The effect of compressional stress on frequency is linear in the range investigated, up to 200 grams. The effect is independent of the order of overtone. For example, the zero pressure angle for a circular $A T$ cut coincides for the fundamental and the overtone modes. The pressure, when applied to circular disks or spuare plates and oriented so that the edge to which a pressure is applied is perpendicular to the azimuth, shows a similar effect: only a slight difference in the order of 5° was observed lsetween circular and sfuare plates. The pressure effect on square plates depends slighty on the amount of the width to which pressure is applied. Fig. 3 shows the effect of pressure on live circular guarty disks of the orientation $\left(I^{\circ} X /\right) \theta, \theta=-30^{\circ},-17.5^{\circ}, 0^{\circ}, 30^{\circ}, 60^{\circ}$ as function of the wimuth ψ. The ordinate indicate: the pressure conefficient of frequency detined as

$$
P I=\frac{1}{f_{0}} \frac{\Delta f}{\Delta P}
$$

In all cases. the angle of azimuth ψ in the plane of the plate is measured from the X axis, The pressure P is measured in grams. The pressure corefticient of plates (1Wh) as furction of θ, measured at intervals of 5°. at constant azimuth angles $\psi=0^{\circ}, 30^{\circ}$, 60°, 90°. is shown in Fig. 4. Finally, Fig. 5 shows the location of zero pressure cerefficient as function of the angles θ and ψ for circular plates having ath orientation ($\mathrm{K} Y / \mathrm{l})$.

The effect of pressure in quartz plates is different on the positive and negative side of the orientation angle θ. For the $13 T$ cut, $\theta=-49^{\circ}$, the pressure coefficient is alwats neqative, Quartz plates of the orientation (. $\left.{ }^{\prime} J\right) \theta, \theta>0^{\circ}$ have also been investigated. I'sually all three thickness modes, the two shear modes, and the extensional mode are excitable.

Fig. 4-liffect of comprossional stress in vibrating guartz plates ($F: W) \theta$ as a function of orientation θ and the azimuth ψ

Fig. 5-Lomus on pressure corfficient

$$
\frac{1}{f_{0}} \frac{\Delta f}{\Delta P^{2}}=0
$$

for quariz plates of the orientation ($1, \sqrt[l]{ }$) $\%$ as a function of θ and ψ.

Of particular interest is the behavior under pressure of the thickiness modes of quasi-isotropic plates, c.g., plates made from poled barium titanate or BZT, where thickness-shear or thickness-extensional moxles can be excited. Studies on these matterials are being carried ont.
A. I). Bulato and R. Bechmans U. S. Army Signal Res, and I lev, Lab. Fort Monmouth, N. J.

Some Bounds on the Error in the Unit Impulse Response of a Network*

Bounds are placed on the error in the unit impulse response of a network cansed by a deviation of the transfer function from some desired value. These bounds are moditications of some work published previously by the author. ${ }^{1}$ Much of the discussion of this former work is applicable here and will not be repeated.

Throughout, the transfer function of the network in question will be written here as $T(\omega) \exp j \theta(\omega)$ where the amplitude function $T(\omega)$ is never negative and $T(0)>0$. The maximum magnitude of the error in the unit impulse response will be written as $|\delta|$ and will be normalized with respert to

* Received by the [R1:, August 12, 1950
${ }^{1} P$. Chirlian "Bounds, on the error in the unit step esponse of a network," Quarl. Appl. Math., vol. 16, pp. 432-435; January, 1959.
$T(0)$. Thus, if $W(t)$ is the actual (or desired) unit impulse response, and $W_{1}(t)$ is the approximate unit impulse response,

$$
|\delta|=\frac{\left|\underline{W}(t)-\mathbb{W}_{1}(l)\right|_{\max }}{T(0)} .
$$

The error is normalized with respect to $T(0)$ since this gives a measure of the relative error rather than the absolute error (i.e., if $T(\omega)$ were replaced by $k T(\omega)$, the absolute error would increase whereas the relative error would remain constant). For the same reason, if a definite cutoff frequency ω_{r} is present, we shall normalize with respect to it and use the following defintion:

$$
\left|\delta_{1}\right|=\frac{\left|\mathbb{U}^{\prime}(t)-\mathbb{U}_{i}(l)\right|_{\max }}{\omega_{c} T(0)} .
$$

The proofs of the following theorems are similar to those of the previously mentioned paper ${ }^{1}$ and will be omitted.

It is often comenient to assume that the transfer function of a network is zero for all frequencies above a given cutoff frequency ω_{c}. 'This is called a band-limiting approximation, and the error introduced is bounded by the following theorem.

Theorem 1

$$
\text { If } T(\omega) / T(0) \leq G(\omega) \text { for } \omega>\omega_{r} \text {, then }
$$

$$
\left|\delta_{1}\right| \leq \frac{1}{\pi \omega_{c}} \int_{\omega c}^{\infty} G(\omega) d \omega .
$$

A very common expression for $C(\omega)$ is

$$
G(\omega)=\epsilon\left(\frac{\omega_{c}}{\omega}\right)^{n} \text { where } n>1 .
$$

('tilizing this expression, we obtain
Corollary $1(a)$: If $T(\omega) / T(0)<\epsilon\left(\omega_{r} / \omega\right)^{n}$ for $\omega>\omega_{\mathrm{c}}$, then

$$
\left|\delta_{1}\right| \leq \frac{\epsilon}{\pi(n-1)} .
$$

When an arbitrary transfer function is not realized exactly, but is only approximated, an error appears in the unit impulse response. Two theorems are presented here. The first bounds the error which results when the desired transfer function $T(\omega)$ $\exp j \theta(\omega)$, is approximated by $\left[T(\omega)+T_{e}(\omega)\right]$ $\exp j \theta(\omega)$. It will be assumed that the integral of the magnitude of the amplitude error function $f_{0}{ }^{\infty}\left|T_{e}(\omega)\right| d \omega$ exists, then $|\delta|$ can be bounded.

7heorem 2^{2}

If the a mplitude error function $T_{e}(\omega)$ exists hrn

$$
|\delta| \leq \frac{1}{\pi} \int_{0}^{\infty}\left|\frac{T_{e}(\omega)}{T(0)}\right| d \omega .
$$

The second theorem bounds the error produced when the desired amplitude function $T(\omega)$ exp $j \theta \omega$ is approximated by $T(\omega) \exp j[\theta(\omega)+\phi(\omega)]$ where $\phi(\omega)$ is the phase error function. It woill be assumed here that the following integrals exist.
$\int_{0}^{\infty} \frac{T(\omega)}{T(0)}|\phi(\omega)| d \omega$ and $\int_{0}^{\infty} \frac{T(\omega)}{T(0)}[\phi(\omega)]^{2} d \omega$.
: The proof of this theorem is similat to one given by A. II. Zemanian. "In approximate method of evaluating integral transforms: J. Appl. Phys., vol. 25, pp. 262-266; February, 1054.

Theorem 3

If the phase error function $\phi(\omega)$ exists,

$$
\begin{aligned}
&|\delta| \leq \frac{1}{\pi} \int_{0}^{\infty} \frac{T(\omega)}{T(())}\left\{2 \sin ^{2} \mid \phi(\omega) / 2\right] \\
&+|\sin \phi(\omega)|\} d \omega
\end{aligned}
$$

and
$|\delta| \leq \frac{1}{\pi} \int_{0}^{\infty} \frac{T(\omega)}{\Gamma(())}\left\{\frac{[\phi(\omega)]^{2}}{2}+|\phi(\omega)|\right\} d \omega$.
If. in addition, $T(\omega) / T(0) \leq M$ where $I V$ is a positive constant, then we obtain: Corollary 3(a): If the phase crror function $\phi(\omega)$ exists and $T(\omega) / T(0) \leq M$, then

$$
|\delta| \leq \frac{I}{\pi} \int_{0}^{\infty}\left\{2 \sin ^{2} \mid \phi(\omega) / 2\right\}
$$

$+|\sin \phi(\omega)|\} d \omega$
and

$$
\begin{aligned}
&|\delta| \leq \frac{M}{\pi} \int_{0}^{\infty}\left\{\frac{\{\phi(\omega)]^{2}}{2}+\right.|\phi(\omega)|\} d \omega . \\
& \text { P. N. Chiklian } \\
& \text { New York University } \\
& \text { New York, N. Y. }
\end{aligned}
$$

On the Performance of a Class of Hybrid Tubes*

It was noted previonsly ${ }^{1}$ that the bandwidth (that is, Q_{b} the loaded Q) of the output cavity is one of the determining factors where efficiency and flat gain characteristics of a broadband multicavity klystron are concerned.

In practice, the beam radii that are chosen in klystrons: operating at different frequencies are such that the parameter $\omega r_{0} / u n$ goes up with frequency (where, ω is the operating angular freguency, u_{0}, the do velocity of the beam, and ro the nominal unperturled beam radius). Under these conditions one finds that for a givel value of beam perveance, the loaded Q of the ontput cavity gove: up with frepuency, and hence reduces the frequency bandwidth over which efficient operation of the multicavity klystron as a broadband deviec can be obtained.

A method of improving the bandwidth chararteristic of multicavity klystrons by the use of coupled cavities for power extraction hats recently been suggested. ${ }^{2}$ In the present communication we insestigate a "hybrid" tube where the beam bunching section of the tube consists of a multicality klystron (stagger tuned) and the output or power extraction section is a traveling-wave circuit whose passband is broader than the operating frequency bandwidth of the bunching section. The experiments were performed at X-band.

Calculations have been made of a hybrid tube which consists of: 1) a bunching section, which is a five-cavity (multicavity)

[^80]klystron structure, and 2) an output section (for power extraction) in a slow wave structure. In the present case it is a dise loaded waveguicte operating on the forward space harmonic. Fig. 1 shows a photograph of the tube. One can compute the conventional gain parameter C and the space-charge parameter QC as defined by Pierce ${ }^{3}$ of the TW' circuit.
$$
C^{3}=\frac{K I}{+I_{0}}
$$
and
$$
4 \varrho C^{3}=\left[\frac{\omega_{q}}{\omega}\right]^{2}\left[1+\left(\omega_{q} / \omega\right)^{2}\right],
$$
where K is the circuit impedance, I and V_{0} are the de beam current and beam voltage, and ω_{4} is the redered plasma ancular frefuency: A fairly good approximate 1 reatment of the problem is possible (since some of the equations do not strietly hold under large signal (onditions)as indicated below.

1) Calculate the ac current, i, and the a velowity, ${ }^{2}$, of the bonched heam at the input to the slow wave circuit. (This (an be obtained by the application of the multicavity klystron theor ${ }^{-4}$).
2) Write then the usual TWT matching equations to find the circuit voltage at the input to the slow wave circuit.
These equations are

$$
\begin{aligned}
\frac{j l u 0 c}{\eta} \imath^{\prime} & =\sum_{k=1}^{3} V_{k} / \delta_{k} \\
-2 V_{0} \frac{C^{2}}{I} i & =\sum_{k=1}^{3} V_{k} / \delta_{k}^{2},
\end{aligned}
$$

and

$$
\boldsymbol{Y}=\sum_{k=1}^{3} V_{k}=0
$$

where the parameters V_{1}, V_{2}, and V_{3} are the circuit voltages corresponding to the three forward wawes (backward wiare is neglected here, since the slow wave circuit is assumed to be properly terminated) δ_{1}, δ_{2}, and δ_{3} are the δ 's (as defined by Pierre) assodiated with the propagation constants of the three forward wawes, and V is the total circuit voltage. One finds, for instance, with the above equations lassuming syoh hronism, that is, relocity parameter $b=0$, and neglecting losses in the slow-wave circuit, that is, losis parameter $d=0$) that the circuit voltage $V_{1}^{(i i n)}$ at the inpul to the slow ware circuit corresponding to the growing wave is given by

$$
V_{1}^{(\mathrm{i} n)}=\frac{1}{3}\left[e^{j \pi 3} \frac{U_{1} C}{n} i^{\prime}+e^{j 2 \pi 3}\left(\frac{2 V_{11} C^{2}}{I}\right) i\right] .
$$

From the above expression for $V_{1}{ }^{(i n)}$ knowing the gain parameter C, spare-charge parameter $Q C$, veloo ity parameter b and loss parameter d, emplosing some of the published curves, ${ }^{4.5}$ one cian calculate the output

[^81]

Fig. 1-Plashastaph of the "nybrat" tube.

Fig. 2-J'erformance chatacteristics of the hybrial timbe.

Fig. 3-Periormante characteristics of the liybrid twhe.
power of the tube. In the present case the computations yiehled:

1) the bandwidth obtainable is approximately 170 mc ,
2) power output $\simeq \mathbf{3 0 0}$ kilowatts (peak),
3) efficiency $\simeq 18$ per cellt.

If a cavity were used (instead of the TW section) as a power extraction device when obtaining the same bandwidth, the efficiency woukd have dropped to a value much lower than 18 per cent.

Figs. 2 and 3 show the experimental data obtained with the hybrid tube under different operating conditions. The observed efficiency of the tube is approximately 17 to 18 per cent over a 3 db bandwitth of roughly 200 mc (2.2 per cent). Also, a power output in the vicinity of 375 kilowatts was obtained.

The main factor that appears to deterthe efficiency of the present tube (just as in a " "W"l") is the gain parameter C of the TII" circuit. From this it is clear that in the class of hybrid tubes considered here, it is preferable to use a Tll circuit which hats a large C. It is not out of place to remark here that there are many more types of hybrid tubes which are attractive under different conditions.

The author would like to thank L. IT. Lindsay, J. J. I'olese, and others of this Laboratory, for their assistance in mechanical design, construction and testing of this tube.
S. 1: Yadavalli

Power Tube Dept.
G.E. Microwave Lab.

Palo. Nto, Calif.

Contributors

Bon Berlincourt (S'+7-A'50-N'56), was, born on Jamary 10, 1924 in Fremont, Ohio. He received the B.S. degree in electrical engineering from Case

1). Berincotrt dustitute of T'erhnology, Cleveland, Ohio, in 1949 and the M.S. degree in applied physies from llarvard l'niversity, Cambridge, Mass, in 1950.

Since 1950 he hat been with The Brush levelopment Co., which became part of Clevite Corp., Cleveland, Ohio, in 1952. He is now head of the Electrical Properties Section, where his lied is solid-state physies, particularly ferroelectricit! and pie\%oclectricity:

Mir. Berlincourt is a member of the Acoustical Society of America.
\because

Frank . 1. Brand (M'58) was born in Brooklyn, N. Y., on June 26, 1924. He attended Ilofstra College, Hempstead, N. Y. from 1946 to 1948

F. A. Bk.Мی! and the Polytechnic Institute of BrookIYn, Brooklyn, N. Y., from which he rereived the B.S. and M.S. degrees in physics in 1950 and 1958. respectively

In 1950, he joined the U. S. Army Signal Research and Development Laboratory, Fort Monmouth, X. J., ats a researeh physicist atud hats since been engaged in researeh and development atetivities concerned with elertron deviecs and semicondactor physics. He is currently chief of the Dhesical Electromics Branch, [:. S. Arms Signal Research and Development Laboratory at Fort Monmonth. Since 1958. Mr. Brand hats been a part-time faculty member of the lilectronic EAngineering I Eepartment of Mommonth College, West Long I3ranch, N. J
\. H. Brockinan (S'43-A'54-M'50SM'53) was born on September 8, 1918 in Richmond Beach, Wash. He received the B.S.E.E. (legree from the University of Washington, seattle, in 1943 and did graduate work at Harvard University, Cambridge, Mass., Northwestern University, Fvanston, III., and the Polytechnic lustitute of Brooklyn, l3rooklyn, N. Y., from which he received the M.I:.E. degree in 1953

From 1943 to 1945 , he was a special re-
search associate at the Radio Rescarch laboratory of ltarvard l'niversity, and from $19+6$ to 195.5 , he was a member of the engineering staff at : lirborne Instruments Iaboratory; Mineola, ․ Y. In 1955, he joined the staff of the Jet I'ropulsion Lahoratory, California lnstitute of Technology, l'asadena, as a senior research engineer, where, since 1957, he has been a research group supervisor in the clectronic research
M. H. BrockmaN section and is engaged in research in the area of deep-space commmotation and tracking. He has participated in the Explorer series satellite experiments and the Lomar probe experiments (l'ioneer III and IN').

Mr. Brockman is a member of Tau Beta Pi and \%eta Mu Tou and an associate member of the . VIEF: and Pi Ma Eppsiton.
\because
H. Terry (Cosson was born in Orange, N. J., on May 30, 1926.

He joined the Bell Telephone Laboratorics, Murray ${ }^{\text {llill, }}$

H. 'l. Cu.osson ㄷ. J., in 1951, where he was concerned with the development of travelingwave tubes alld. more recently, broadband sariable reactance amplifiers. He has recently arcepted a position with s-lं-1) latse. luc., a subsidiary of V'arian Issociates in Union, N. J., where he is working on high-power, crossedfield devices and beam-type parametric amplitiers.

Clarence Cmolik was born on Jume 7 . 1921 in Cleveland, Ohio. He received the 13.s. degree from W'estern Reserve ['niversity, Cleveland, in

C. Cmonth 1943.

He joined The Brush bevelopment Co. (now part of Clevite Corp.) in 194.3 and did research and development on magnetie recording media and ultrasonics antil 1952. Since that time he has carried out research and (levelop)-
ment projects on ceramic titanates. He is presently ceramic engineer with Clevite Electronic Components, Division of Clevite Corp., Cleveland, Ohio.

Mr. Cmolik is a member of the American Ceramic society and the American Chemical society
 born in Decatur, Ill., on September 15, 1926. He attended Millikin L'niversity, Decatur, 111. from 1946-1948, and in 1950 received the B.S. degree in electrical engineering from the University of Colorado, Boulder. He received the M.S. and I'h.I). degrees in electrical engineering in 1955 and 1958 , respertively, from the I'niversity of Illinois, Crbana.

From 19 $4+-19+6$
he served as antelectronic technician with the (". S. Navy, and from 1950-195.3 he was a development engineer at the Sindia Corporation, Dlbuquergue, N. M. During the years from 1953 to 1958 , he was on the staff of the Electrical Eingineering I epartment of the Iniversity of Illinosis, I rbana. Is a research associate in the . Intemma Laboratory, he was engaged in research on surface wave bunchers and antennas. Since 1958 , he hat been with the Collins Radio Company, Cedar Rapids, lowa where he is head of the Antemar Research Department.

Dr. Wancan is a member of Sigmat Ni, Tan Beta li, Eta Kappa Nu, Sigma Tan, and I' Wu Épsilon.
$\%$

Harold Jacobs was born in Port Che-eter, N. S., on November 21, 1917. He received the B.A. degree from Johns Ilopkins I "niVersity, Baltimore,

H. Iacons Mol., in 19.38 and the M..A. and I'h.I). rlegrees from New Jork ["niversity, New York, X. Y., in $19+0$ and 1945 , respectively:

He was employed asaphysicist at RC:A, Lancaster. Pat., from 1942 to 1945 and at Sylvania Electric Products, k゙ew Gardeus, \times. Y., from 1945 to 1949. He joined the L. S. Army Signal Research and l)evelopment Laboratory in 1949 where, as chief of the 'lube Technigues Section, he performed research pertaining to electron emission, high vacua, gas discharges and
semiconductor phenomena．In 1955，he was appointed chied of the Solid－State Devices Branch in the same organization and is pres－ ently director of this Solid－State l bevices I Ii－ vision．He has also participated in instruc－ tomal activity，having been associated with Polvechnic Institute of Brooklyn，Brooklyn， ․ V．，as an insiructor in electrical engmeer－ ing from 1946 to 1950．At present，he is Chaiman of the Eilectronic Engineering De－ partment of Mommonth College．West I．ong Brameh．N．． 1.

Hans Jatfe（ $81{ }^{\circ} 53$ ），was born in Heidel－ berg，Germany，on Febraty 25，1909．He received his traming at the Iniversities of Heidelberg，Berlin，

H．J．MFF： and Goettingen，Ger－ many and received his cloctorate in phys－ ics in 193t from the University of Goet－ tingern．

From 1935 to 19.39 he was all atssist－ ant in piezoelectric－ ity with Irofessor W．G．Cady at IVes－ lesan loniversits， Middletown，Conn． since 1940 he has been with The Brush 1 le－ velopment Co．，which became part of Clevite Corp．，Cleveland，Ohio，in 1952．He is now director of electronic research and his tield is solid－state physics with emphasis on ferro－ electricity，piezoelectricity，crystal optics， and erystal growth phenomena．

In．Jatfe is a nember of the American Physical Society and the American Crystal－ lographic Society：

1）r．Eruest ．N．Neller（．1＇49－SM＇55）was born in Zurich，Switzerland，on March 2， 1913．He received a Physics and Wathe－ matics degree，equiv－

E．A．K゙r：IIII：R alent to an ．I．S．de－ gree in 19.38 and a Doctor of＂lechnical sciences degree in 1942，both from the Swiss Federal lasti－ tute of＂lechnology， Zurich，switzerland．

From 19.38 （1） 1951，he was affili－ ated with Oerlikon Machine Tool Works in Switzerland．Dur－ ing the first six years he was phssicist in charge of interior and exterior ballistics for $20-\mathrm{mm}$ guns and the development of elec－ tronic test gear for gun powder evaluation and shell developments．In $19+1$ he designed and built the lirst digital computer in Switzerland．In 194t he became manager of Oerlikon＇s Research and Development De－ partment．Among its most important clevel－ opments are the Ipsophone in 1946，a com－ pletely antomatic telephone answering de－ vice，and the first magneric sheet dietating mathine in 1947．In 1950 he was appointed
technical executive and was sent to the U＇nited States for market studies．In 1951 he joined I Aystrom Electric Corp．，Poughkeep－ sie，N．Y．，in charge of sound recording and reproducing sustems development．He worked on basic developments on printed circuits and conducted European market analysis for tape recorder components．Ite Was responsible for the IE：C recommendation of in－line recording heads for stereophonic recordings．From 1055 to 1958 ，he was di－ rector of rescatrch for Pancllit Inc．，Skokie， III．He wats responsible for the development of solid－state and maghetic－core computer elements and the design of single purpose digital systems．

Now with Motorola Ine，Chicago，Ill．， he is staff scientist to the director of en－ gineering in the military electronics lield， where his major imerest is in complex sys－ fom performance criteria and in the reliabil－ ity and accuracy considerations for com－ puting and data processing systems and components．

Dr．Kicller has had thirts－lise European and live 1° ．S ．patent－gratod and two C^{-}．S． applications are pending．He is Vice Chair－ man of Fechnical Committee 10 RE and amember of the Arlministrative Commitee of P（iIE．Ife is a member of the Instrument Society of America，Aconstical Society of America，Rocket Society of America，Na－ tional Security Industrial Association，and the Srmed Forces Commmonications and Elec－ tronics Association．

Charles A．Krohn（M＇56）was born in New Orleans，Lat．on Nugust 31，1930．He received the B．E．E．degree in 1950 and the M．S．degree in

C．\．К゙конハ industrial manage－ ment in 1957，both from the Georgia In－ stituteor＂Jechnology， Atlanta，Ga．He has also taken additional courses in engincer－ ing and statistics．

Prior to college， he was trained and served at ant elec－ tronic terhnician in the 1° ．S．Nary． Throughout undergraduate schosl，he was emploved on a part－time basis as an elec－ tronic technician in the area of datar reoord－ ing and analysis equipment for sea－eluter sturlies at the（ieorgia Institute of Terh－ nology Engineering Experiment Station． Following gradnation，he remained at this location in the capacity of assistant research engineer，and worked on the development of data recording and amalysis equipment for radar polarization studies．He is presently a project electronic engineer at the Motorola IVostern Dïlitary Electrumio Center in Phoenis，Ariz，and is in the staft Reliability Group，where he is concerned with the development of reliability programs and reliability analysis teehniques．He is also active in reliability education，having in－ structed reliability engineering techuigucs
in both collegiate and industrial reliability courses．

Mr．Ǩrohn is a member of Phi Eta Signa， Tau Beta Pi，Eita K゙appa Nu，and Phi Kappa Phi．

I）．（）．Medroy was born in Chatham， N．J．on June 12，1928．He received the B．S． degree in ednation in 1050 and the M．S． degree in physies in

1）．O．MEI．KOM 1953 from the lai－ versily of Florida， Gamesville．

He joined Bell Telepheme Labora－ tories，Murray Hill， X．J．in 1052 where he worked on the de－ velopment of travel－ ing－wave tubes．From $195+10$ 1956 he was at White Sands l＇rove ing（irombls，N M． with the 1° ．S．Arms，engaged in the evalua－ tion of ground gnidance expuipment．I pon returning to Bell Laboratories in 1956 he continued work on traveling－wave tubes．He is currenty engaged in the development of millimeter traveling－ware tubes．

Mr．Melroy is a member of the Imerican Physical Sordety and I＇hi Kappat Phi，and is an associate member of Sigma Ni．

Vito P．Minerva（ $S^{\prime} 51-\mathrm{I}^{\circ} 58$ ）was born in Cicero，Ill．，on Hecember 8，1931．He re－ ceived the B．S．E．E．and MI．S．E．E．degrees from the University

V．P＇．Manervin of Illinois，Crbana，in 1954 and 1955 ，re－ spectivels：

From 1954 to 1955 he was a re－ search assistant at the U＇niversity of Illi－ nois Sutemat Re－ search Laboratory， where he was ent－ gaged primarily in flush monnted air－ craftantennat studies． in 1957，after 1 wo sears as a gulided missile officer in the 1 ．S．Army，he joined the antenna group of Collins Radio Compans， Cedar Rapids，Iowa．where most of his work has been in the design and development of high－Irequency grombl－hased antennas．Ite was primarily responsible for the design and development of the Collins 2.37 A series \log periodic antennats，and is presenty engaged in the further development of log period an－ temnas．

Alexancler P．Ramsa was born in Zako－ pane，Poland，on August 23，1916．He at－ tended X Ray Diffraction Shool at the Polytechnic Institute of Brooklyn，Brook－ Iyn，S．Y．，and also attended Monmouth

College, West Long Branch, … J. for two years.

He served with the Civilian Technical Corps, L"nited King-

d. P. Ramsa dom Air Liaison Mission, and with the 1. S. Army Signal Corps from 1941 to 1942. From 1951 to 1955, he worked at the U'.S...Irmy Signal Research and Development Laboratory: Fort Monmouth, \therefore. J., as a specialist in vamum tube techniques. In 1955 he was employed ats a junior engineer in the Soliel-State I Devices Laboratory at CBS laboratories, New York, N. Y. From 1957 to 1959 he has been associated with the electronic engineering department, Monmouth College, West Long Branch, N. J. He is the co-anthor of several papers on point contact transistors and also holds a patent on the formation of junctions in semiconductors and has a patent application for small-sized helices and the method of their fabrication.

Eitel M. Rizzoni (S'50-.X'52-M'57Sal'58), was born in Palermo, Italy, on January 15, 1925. He received the bachelor degree (cum laude) in

E. M. Rizzonit industrial engineering from the ''niversity of Palermo in 1947, a postgracluate diploma (cum laude) in electrical communication from the Polytechnic of Turin, Italy; in 1949, and the M.S. degree in electrical communication from the Massachusetts Institute of Technology; Cambridge, in 1952.

From 1952 to 1955, he was with RCA Italiana, Rome, Italy, an associated company of the Radio Corporation of America, where, after the installation of a record factory, he was in charge of the recording
department. In 1955, he transferred to the systems marketing and engineering group of RCA International Division, Clark, N. J. as a telecommunication system engineer Since then, he has been engaged in the design and planning of multichannel radiotelephone systems. At present, he is in Bogota, Colomlia, for the supervision of the installation and testing of a nation-wide multichannel microwave system.

$\%$

Philip R. scott, Jr. (M'58) was born in Worcester, Mass., on April 13, 1930. He received the B.S. degree in electrical engineering from

P. R. Scott, Jk. Worcester, Polytechnic Institute, Worcester, Mass., in 1952, and the N.S.E.E. degree from the University of Pennsylvania, Philadelphia, Pa., in 1958.

From 1952 to 1959, he was employed at Philco Corporation, Philadelphia, Pa., working mainly on the application of pulse circuits to special communication systems. He recently joined the Instrumentation laboratory of the Nassachusetts Institute of Technology, Cambridge, Mass.

\therefore

Michiyuki Uenohara (S'52-A'5t-M'57), was born in Kushikino City, Kagoshima Perfecture, Japan, on September 5, 1925. He received the B.E. degree in electrical engineering from Nihon University in Tokyo in 1949, and the M.S. and I'h.D. degrees in electrical engineering from Ohio State University, Cohumbus, in 1953 and 1956.

After graduating from Nihon University, he was appointed assistant in the Department of Electrical Engineering, where he taught and conducted research on microwave tubes from 1949 to 1952. In 1952, he received an appointment as a research assistant in the Electron Device Laboratory,

Department of Electrical Engineering at Ohio State C'niversity. In July, 1954, he was appointed a research associate at Ohio Sitate University and held this position for two

II. I'mohara years while he completed the reguirements for the [h.1). degree. He then taught at Nihon Couiversity for one year, and in 1957. joined Bell Telephone Labor ratories, Murray liil, N. J. Healso received the Doctor of Engineering degree from
Tohoku ['niversity, Sendai, Japan, in 1958.
1)r. ('enohara is a member of Sigma Xi. Pi Mu Epsilon, Eta Kappa Nou, Imerican Physical Society, and the lnstitute of Electrical Communication Engineers in Japan.

\nLeftarrow

IV. K. Victor was born in 1922 in New York, N. Y. He attended the ['niversity of Trexas, Austin, where he received the 13.5 . degree in mechanical

II. Ǩ. Victok engineering in 1942

Prior to his military service, he was with the Sperry Gyroscope Company, working on airborne computer and firecontrolsystems. During the war, he served with the Air Corps as a twin-engine pilot instructor. Since September, 1953, he has been associated with the Jet Propulsion Laboratory, Pasadena, Calif., where he is currently chief of the Electronics Research Section. He was previously in charge of flight and ground electronic instrumentation for the Army satellite program and was responsible for the design of the communication system used in the Pioneer lunar probes launched by the U. S. Arms:

Mr. Victor is a member of Tau Beta l'i.

Soldering Manual, Ed. by AWS Committee on Brazing and Soldering

Published (1959) by American Welding Society, 33 W. 39 St., N. Y. $18, \mathrm{~N} . \mathrm{I}^{\prime}, 154$ pages +10 index pages + ix pages. Illus 6×9. $\mathbf{6}, 5,00$.

Prepared by the Committee on Brazing and Soldering of the American Welding society, this manual covers the main details of joining metals by soldering, the shaping of the erlges or surfaces of the joints, precleaning the surfares, fluxes and methods of fluxing, jigs and fixtures, composition of solders and methods of heating, and subserpuent cleaning operations. White to most radio people soldering refers mainly to the joining of wires to terminals, this reference covers for the most part the many other applications and the joining of many different metals, with practical descriptions and illustrations of procedures. In fact, while the information is useful for the joining of electrical connections, the user should supplement the information given here with data on which fluxes and solders are permitted for wiring military (and for that matter, commercial) efuipment. There are no distinctions made between approved materials and other materials. IIth this limitation in mind, the book provides an anthoritative source of recommended practices in this art.

> Raliph R. BatchizR Concultant

Microwave Data Tables, by A. E. Booth

Published (1950) by Illiffe and Sons, L.td., Dorset House. Stamford St. London S.E. 1. Eng. oit pages. House. Stanford St.. Lon
26 tables. $109 \times 7 \frac{5}{2} . \$ 3.85$.

This reference book contains twent y-six tables selected by the author for their usefulness to microvare engineers. These include tables of db is power and voltage ratio, $\ S W \mathrm{~K}$ vs voltage and reflection coefficient, Vsillk is transmission loss by reflection, frequency to free-space wavelength in centimeters, frequency to guide wavelength in centimeters for nine rectangular waveguide sizes, dimensions and electrical characteristics of twent-eight Britishstandard rectangular-waveguide sizes, mode cutoff wavelengths and guide wavelengths in centimeters for two circular-waveguide sizes, and microwave-freguency-band designations. In addition, there are more generally useful tables of reciprocals, squares, and centimeter-to-inch consersions.

The British-standard rectangular-waveguide dimensions are identical to the JIN. or RMA-standard dimensions of this country for all of the commonly used sizes. The guide-wavelength tables cover the IAN waveguide sizes for freguency bands from 2.6 through 18.0 kmc , and also for the 26.5 to 40 , and 60 to 90 kmc bands.

The tables involving \Sill adhere to the British practice of expressing VSI'R as a number less than unity: This greatly detracts from the usefulness of these tables in this country, where lSWR is customarily defined as a ratio greater than mity. Although corresponding l'sll'R values may be conserted by the table of reciprocals in this book, the added inconvenience would usually make use of the tables inadrisable.

Tables of most of the quantities covered by this hook have been published in varions references in this country, although generally with coarser increments. lior example, tables of (th) is power and voltage ratios, ${ }^{1.2}$ and of 1 SWMR (>1) is voltage and power reflection coefficient and transmission loss ${ }^{2}$ are appended to two readily a vailable equipment catalogs. Tables of f is λ_{y} in centimeters for the principal waveguide sizes have been published by the IRE Professional Group on Microwave Theory and Techniguts. ${ }^{3}$ The latter reference is even more complete than this book in that it also tabulates λ_{g} in inches, the ratios λ_{g} / λ and λ / λ_{g}. and the quantity $1 / \lambda_{y}$ in reciprocal inches.

In this reviewer's opinion, the book is not sufficiently well adapted to American practice to justify its purchase in this country: It will be found much more useful in countries where lisll R valates less than unity are used, and where the references ${ }^{1-3}$ are not available. This reviewer hopes that the anthor will prepare a revised and more complete edition hetter suited for use in . Imerica.

> SEVMOTR B, COHN
> Stamiord Res. Inst.

Denlo Park, Calif
"Catalog P." General Radio Co. West Conoord, Mass., pp. 245-248: April, t159.
Mass., pp. $245-2+8:$ Aprin, Corp.. Pasadena, Calif., pp. D5n-Dn2: 1900.
" "Tables of constants for rectangular waveguides, mattached supplement to IRE TRANS, ox DICROWave Thenry and TECHNiQues, vol. MT'T.4; July, 1956. Reprints ayailable from Sperry Cyrosope Co. Great Neck, L. I., 太.

Modern Electronic Components, by G. W. A. Dummer

Published (1959) by Philosophical IJbrary, Inc. 15 F. +1 St., N. I. 16, N. I. 467 pages +5 index pages + viii pages. Illus $5^{1} \times 8$ Sis.00.

In his present effort, the author has condensed into one volume the characteristics of the more-commonly-used component parts from a previons series of books (a series that was directel to the componentparts engineer and the component-parts application specialist). Nearly 300 pages of completely new material have been added to this condensation.

The above might lead one to imagine that the subject compendium is meant to serve the design engineer-the general practitioner, rather than the component-parts application engineer. This is basically true. However, few of us are experts on all types of parts, and all of us could find the present book of considerable value as a reference outsitle of our own special field of major interest. In particular, the bibliography of 327 refer-ences-properly arranged at the end of each chapter-provides excellent further reading, even for the specialist.

As might be expected, the book has a certain English flavor; "ralves" instead of "racum tubes," "components" instead of "component parts," "Drogramme" and "colour" instead of "program" and "color," etc. But beneath this British veneer is a wealth of American, and some international material.

Chapter 1 introdures " \backslash Brief 1 listory of Componert Development in Great Britain." Chapter 2, "Component Specifications and

Publications," lists 161 ASESS and 108 British military and commercial specifications. In addition, the ant hor makes all attempt to internationalize the book by listing 20 A.ATO"Stranag" series military specifications and six International Flectrotechnical Commission "IEC Publication" series commercial specifications, covering resistors, apacitors, RIF cables, waveguides, and quartz crystals. It is in this chapter that we lind the only basis for serions criticism. A more complete list of specifications, inchading the Wilitary of France and West Germany, and the commercial specifications of other countries (surh as E.A. in the \mathbf{l}^{+}.S.A.) would perhaps have givell a broader international tenor to the publication. The further addition of a comprehensive cross index to the suggested specification list would have made this a truly great book.

Chapter.3, "Color Codes of Components," and Chapter 4, "Conventional Symbols for Components," compare these two specification sections of the British Services and the Standards Institution with those of the International IElectrotedinital Cummission.

Chapters 5 throngh 8 make up over 40 per cent of the book and, being technical rather than of a standards nature, have no particular national flavor, or perhaps more correctly, are completely international. The excellent bibliographies, appented to each chapter, are quite world-wide-approximately half being 1^{\prime}. S. references. Characteristics and definitions are discussed in the chapters, which also provide guides for selection and use and discuss manufacturing methods of some 20 basic types of each of these more-commonly-used component parts.

Chapters 9 through 17 are much briefer than the previous chapters. Chapter 9. "Wires, Covered Wires, and Sleeving," also treats "litz" and magnet wire, incholing ceramic covering. Chapter 10, "Radio Frequency Cables," has received the first truly international treatment. Thirtem N.STORF cable types are related to equivalent Intermational Flectroterhnical Commission varieties. as well as British, Canadian, French, I'S.A., Swedish, and Russian varieties.

Chapter 11. "Phugs and Sorkets," includes a summary of the properties of twelve commonly-used insulating materials. Chapter 12, "Relays," and Chapter 13, "Switches," include gauged and rotary types. Chapter 14. "Inductors and Magnetic Materials," lists by properties 10 grench-hardened steels and the trade name used in varions countries. A comparative table of 65 British and American permanent magnets is provided.

The last 15 chapters cover what might be called horizontal subjects, cutting across most of the previous subjects and taking on a more international flavor.

In the Preface the author summarizes your reviewer's opinion with, "This is the first comprehensive book of its kind written in the world. . . " The book constitutes a very worthwhile contribution to the engineering literature.
ilfried R. Gray
The Martin Co.
The Martin co.
Orlands, Fla.

Scanning the Transactions

A fly almost caused a plane crash recently. As the pilot was entering the final phase of his approach. landing instructions from the airport tower were momentarily obliterated at a critical moment by an interfering signal. The cause of the interference? Arcing due to a fly landing on an electric flykilling device in the airport restaurant. I'nwanted electromagnetic radiation is becoming a growing menace. The abose case is by no means an isolated example. Last year a radio cal dispatcher's voice caused a missile to explode. Radar on a military plane touched off a shelf-full of hash bulbs. An electroencephalugraph located near a hospital ele vator was found to be sending people to institutions because of spurious brain waves. An industrial heater in a Louisville factory disrupted airline communications at Cleveland, St. Louis, and Chicago. In one community an astute political candidate played havoc with his rival's radio speeches by retiring to his work shop, and running his unsuppressed electric drill whenever his opponent went on the air. So far, comparatively few people are concerned with interference control. But it is a problem that is rapidly growing in magnitude. Not only are new sources of interference being invented daily, but electronic equipment is being made more and more sensitive. We are fast approaching the point of trying to operate a microvolt cisilization in a millivolt interference environment. Interference control may well become a major field of electronics in the near future. (R. Daniels, "Trouble with a rapital l." IRE Stobent QionTERLS: December, 1959.)

Among the several stereo broadcast techniques currently being investigated is one which relies on an interesting psychoacoustic phenomenon known as the Irecedence Effect. If a sound reaches a listener from wo directions at the same instant. it will appear to him to emanate from a source midway between the two. However. if the sound from one direction is delayed slightly (from 1 to 30 msec) the listener will totally. disregard it and will locate the sound source by the direction of the first arriving sound only. This effect offers a novel way of making the 2 -channel 2 -receiver method of stereo broadcasting compatible. A mumber of radio stations currently broadcast one channel of a stereophonic program on ANI and the other channel on FAI. If the broadcaster tried for a full stereophonic effect. the listener with only one receiver would hear an incomplete or poorly balanced program. Consequently: broadcasters have had to dilute the stereophonic effect in order to preserve satisfactory reception for single-channel listeners. I'nder the Precedence Effect system, the AM and FMI transmitters are cross connected through two delay lines. Thus both transmitters carry the full program, but with the left channel delayed slightly in one and the right channel delayed in the other. This delay will go umoticed by the listener with a single receiver. Meanwhile, thanks to the Precedence Eiffect, the stereo listener will disregard the directions of the delayed sounds and will hear the left channel as coming from the left loudspeaker only, and similarly for the right chamel. (F, K. Becker, "A compatible stereophonic sound system," IRETrixs. os Broabcastini, November, 1959.)

Those interested in test equipment, whether it be in the AF, RF, or microwate range, would no doult have enjoyed seeing the 30 instruments which were shown at the Soviet exhibit at the New York Coliseum last July. For the benefit of those who didn't, the Washington Chapter of the IRE Professional Group on Instrumentation made arrangements with the Soviet Press Attaché to take pictures of the instruments and to examine their exterior appearance and electrical performance specifications. The 30 photographs, together with translated panel markings and detailed descriptions of performance ratings, have now been published by the Chairman
of the Washington Chapter in what amounts to an unusual guided picture tour of the exhibit. The tour is augmented by an enlightening commentary based on technical discussions which Chapter members had with one of the Russian engineers at the scene. The Washington Chapter is to he congratulated for undertaking this novel and informative project. (B. O. Weinschel, "IRussian test equipment for audio, radio, and microwave measurements," IRE Trans, on Instrementaтion. December. 1959.)

Man on the moon. A paper on lunar exploration in the last issue of P(GSET Transactrons is worthy of note. While it does not stress the electronic aspects of space exploration, it is interesting to electronic engincers in that it represents concrete plans for what will probably be the first trip of man to the moon and back. The need for electronic instrumentation and navigation is apparent between the lines and the requirements for light weight, reliability and accuracy are recognized as the details of the trip through space are unfolded. A realization of the magnitude of the trip is obtained from the weight breakdown table where it is seem that for a launching weight of $6,700,000$ pounds, only 8000 prounds is returned to earth. (11. W. Rosen and F. C. Schwenk, "A rocket for manned lunar exploration," IRE Trans. on Space Electroxics and Telemetry, December, 1959.)

External noise is receiving as much attention in the design of communications equipment as the noise generated within electronic systems, thanks to the recent advent of extremely quiet amplifiers. All the noises which arrive at the antema from outer space and which arise in the antenna itself and in the coupling to the first amplifier must now be given careful consideration. An examination of the problem reveals that a handsome total of at least eight sources of external noise must be considered, namely, sky background radiation, reradiation by the atmosphere, leakage from the warm earth via minor lohes of the antenna pattern, warm-carth radiation that is scattered by particles into the main lobe, noise due to the finite conductivity of metallic antenna surfaces, losses through duplexing components, and leakage from the transmitter during beam-off condition. While present information concerning many of these factors is adequate for making usable design approximations, there still remains a considerable area which is in need of further attention, especially with respect to noise due to the nonhomogeneous character of the atmosphere. (H. IV. Crimm, "Fundamental limitations of external noise," IRE Trans. on listrumentation, December, 1959.)
Designing a Yagi antenna is still a problem in spite of the fact that this type of array has been with us for more that 30 years. During this time, it has found many applications due to its constructional simplicity and its usefulness at practically all frequencies. But despite its popularity, no one has been able to develop a general method for designing Yagi antennas for maximum gain. (Gain is dependent on the height, spacing, and diameter of the elements in the array. The problem is to find the optimum set of dimensions of these parameters, Which in turn requires discovering how they are related to one another under conditions of maximum gain. Investigators have now come up with a new design approach which makes this possible at last. By introducing the motion of a surface wave traveling along the array, they lave found that the maximum gain oecurs at a definite value of phase velocity. This value is a function of the height, spacing and diameter of the elements, and thus a criterion has been found for specifying the optimum combination of these parameters. (H. IV. Ehrenspeck and H. Poehler, "A new method for obtaining maximum gain from Yagi antennas," IRE Trans. on Antencas ant Propagation, October, 1959.)

Abstracts of IRE Transactions

The following issues of Transactions have recently been published, and are now available from the Institute of Radio Engineers, Inc., 1 East 79th Street, New York 21, N. Y. at the following prices. The contents of each issue and, where available, abstracts of technical papers are given below.

Sponsoring Group	Publication	Group Members	IRE Members	NonMembers*
Aeronautical and Navigational Electronics	ANE-6, No. 3	\$1.10	\$1.65	\$3.30
Antennas and Propagation	AP-7, No. 4	2.25	3.85	7.65
Broadcasting	PGBC-14	0.60	0.90	1.80
Component Parts	CP-6, No. 4	1.50	2.25	4.50
Instrumentation	I-8, No. 3	1.25	1.85	3.75
Microwave Theory and Techniques	MTT-7, No. 4	1.60	2.40	4.80
Space Electronics and Telemetry	SET-5, No. 4	1.55	2.35	4.65

* Libraries and colleges may purchase copies at IRE Member rates.

Aeronautical and Navigational Electronics

Vor..ANE-6,No. 3 , September, 1959

The Editor Reports (p. 158)

Vector Principles of Inertial NavigationA. M. Schneider (p. 159)

A vector equation, which is derived from first principles, describes the mechanization of inertial navigation systems for use anywhere in space. A specialized form of this equation apmlies rirectly to three-dimensional motion at any speed. any altiturle, over an ellintical, rotating earth. The usefulness of this equation is illustrated by working out an example of a system design. Behavior of errors in inertial systems is also discussed.

Position Information Using Only Multiple Simultaneous Range-Measurements-H. L. Groginsky. (p. 178)

Threedimensional generalized positionmeasurement systems are analyzed in this baper. In these systems, target position is obtained by trilateration using only range data collected by a group of ν stations located in an arbitrary geometry.

The method of maximum likelihood is used to obtain a joint estimator for the target coorlinates which makes optimal use of the redundant datat when the noise is Gatussian. A simple recursion formula for the estimator is obtained for this purpose and is shown to be convergent. This formula makes it bossible to add data from a redundant number of stations at will and in proportion to their relative reliability. Further, it is shown that the recursion formula can be written entirely in termes of the changes in the successive iterative target position estimates. This technigue offers a new moans of obtaining tracking data on a moving target since it permits changes in target position to be computed directly as new data are obtained.

The covariance matrix of the joint threedimensional estimator is obtained in the case in which the measurement noise is small comfared to the distances measured. The meansfuare position error, namely, the trace of the envarianer matrix, is shown to have a simple form for the general wodimenconal system in which the target and stations are coplanar.

The geometry enters the variance expmession only through the angles of ent $\theta_{i j}$, which are the angles between the lines joining the target and the stations.

The surveillance regions of various redundant two-dimensional systems obtained by using the joint estimator are compared (1) that obtained by using only pair-wise estimation. It is found that little improvement is made when the distance of the target to all the stations is much greater than the distance between stations.
C.P.I.-A Crash Position Indicator for Air-craft-D. M. Makow and H. T. Stevinson (p. 187)

A nowel, light, simple and inexpensive position indicator for crashed aircraft has been developed and subjected to severe tests. A special pulsed transmitter with trickle-chargerl batteries and an internal antenna is potted in shock-absorbing foam transparent to radio waves and placed inside a special aerofoil. This device, held on the tail of the aircraft, is relensed automatically upon detection of any abnormal structural disturbance. Then it tumbles away from the aircraft in time to cloar the danger zone, slows down to a safe landing and transmits a distress signal from any position and under wide envirommental conditions.

Contributors (p. 201)
Roster of Members (p. 202)

Antennas and Propagation

Vol. AP-7, No. 4, Octobler, 1959
Leaky-Wave Antennas I: Rectangular Waveguides-L. O. Goldstone and A. A. Oliner (p. 307)

A microwave network approach is employed for the description and analysis of leaky-wave antennas. This approach is based on a transverse resonance procedure which yields the complex propagation constants for the leaky waves. A perturbation techniqute is then applied to the resonance equation (o) obtain results in simple and practical form. These procedures are illustrated by application to a number of practical leaky ifctangular waveguide structures. Very goorl agrement is obtained betwen the theoretioal rusults and the measured values.

A Flush-Mounted Leaky-Wave Antenna with

This pater describes the design and the measured performance of a large, flat antenna consisting of an inductive grid spaced over a conducting surface. The analysis employs the transuerse resonance method to determine the ratiatting properties of the structure. This analytical technique is shown to predict very accurately the amplitude and phase of the illumination along the ajerture of the antema.

An antenna was built with all 18 - by 24 inch aperture and tested over the freguency band from 7 -to- 1.3 kme. The results of these tests confirm the theoretieal predictions in every detail. A pencil bean from the antenna scans in the HI plane forepenclicular to the antenna) from 20° to 60° from the normal to the aperture as the freguency ehanges from 7-to-13 kme. The 11 -plane beamwidfh remains virtually constant over most of this band. The first 1H-putane cirmobe or shoulder is at heast 29 do below the main lobe from $7-\mathrm{to}-16 \mathrm{kme}$, and at least 2.3 db below from $10-\mathrm{to}-13 \mathrm{kme}$. All H-plane sidelobers beyond three or four beamwidths on either side of the main lobe are at least 40 rbb below the main lobe everywhere in the $7-t(1.3 \mathrm{kme}$ band. At the design frequancy the moasured pattern agrees with the theoretical pattern within a fraction of a db down to 40 dth below the peat of the main lober, even though the gain of the antenna at this frequency is only 3.3 db .

The Unidirectional Equiangular Spiral An-tenne-John D. Dyson (D. 329)
(Circularly polarized unidirectional radiation, over a bandwidth which is at the diseretion of the designer, is obtainable with a single antenna. The antema is constructed by wrappping balanced equiangular spiral arms on a conical surface. The nonplanar structure retains the frequency-independent qualitios of the planar models, and, in addition, provides a single lobe radiation pattern off the aper of the cone. Practical antemnas lave bern constructed with radiation patterns and input imperlance essentially constant ower bandwidthe greater than 12 to 1 and there is no reason to assume that these cannot be readily extended to more than 20 or 30 to 1

Closely-Spaced Transverse Slots in Rectangular Waveguide-Richard F. Hyneman (b. 33.5)

The traveling-wave modes associated with an infinite, periodic structure are considered. An approximate equation for the propagation constants of these modes is derived through the use of Fourier analysis and an approximate application of the reaction concept. In the homogeneons case consilered, it is found that two dominant mokes may exist: an attenuated fumdamental mode representing a perturbation of the dominant monde of a closed rectangular waveguide. and an unattomated surface wave. which is similar to the wave assoriated with a corrugaterl surface waveguide. By means of the apmoporiate variation of physical parametets, including the slot length and spacing. essentially indmemedent control of the atemuation conctant and phase velocity of the fundamental mode is possible over a wide ange. Typical curves of the propagation constant in terms of these burameters are given, and the results of experimental measurements are shown to be in close agreement with the theory:

Generalizations of Spherically Symmetric Lenses-Samuel P. Morgin (J. 3H2)

The purpose of this pather is to generalize the solutions of some spherically symmetric lens and lens-reflector problemins iccently
treated by Kay. The original problem was to find a variable-index structure, with a point source at its surface or at infinity, which would produce a beam of finite angular width, having a prescribed variation of intensity with angle. It is shown that a prescribed exit beam can lee obtained trom a point source at any given distance from the lens, and that the index of refraction may be specifed more or less arbitrarily in the outer part of the lens. A special case is solved in terms of tabulated functions.

Radiation Properties of a Thin Wire Loop Antenna Embedded in a Spherical MediumOrval R. Cruzan (p. 345)

Formulas for certain radiation properties of a spherical antenna are derived theoretically. The antenna, which consists of a spherical medium, such as ferrite, with a thin wire loop embedcled just below the surface in an equatorial plane, is driven by a slice generator. For the spherical medium, the permeability K_{m} and the dielectric constant K, are assumed to be scalars and, in general, complex. The solutions are facilitated through the expansion of the fields in terms of characteristic orthogomal splerical vector wave functions. The properties for which formulas are derived are current distribution, input impedance. input power, radiated power, power loss in the spherical medium, and the efficiency of the antenna. For radiation resistance, not only the general case formula but also the formula for electrically small antennas is given, and the clifference between these formulas, for media assumed lossless, is shown graphically.

The Conductance of Dipoles of Arbitrary Size and Shape-K. Franz and P. A. Mann (p. 353)

The real part of either the impedance or the admittance of dipoles of arbitrary size and shape can be computed rigorously without solving a boundary value problem of a partial differential equation. In analogy to a wellknown method of potential theory, fields of standing waves can be generated by integrals over current filaments so that for a given frequency there exist dipole shaped surfaces normal to the electric field surrounded by distant surtaces of vanishing elfoctric field strength. Boundaries of perfect conductors may be supposed to coincide with a dipole shaped surface and a distant closed surface. The transients of such fidds of standing waves are intimately related to the steady state of the free radiating dipole, since, before the first waves reflected from the distant enclosure have come back, the dipole cannot know whether or not it is enclosed. Corresponding to the type of current fiament, either the resistance, or the conductance, of the radiating dipole can be calculated by direct integrations, while the shape of the dipole is determined by an ortinary differential equation of first order. As an example, we compute a family of dipoles that all have the same conductance $G=(2.54!)^{-1}$ and a length $2 h$ between limits $\lambda / 2 \leq 2 h$ $\leq 1.30 \cdot \lambda / 2$.

The Launching of Surface Waves by a Parallel Plate Waveguide-C. M. Angulo and W. S. C. Chang (p .359)

The excitation of the lowest TM surface wave in grounded dielectric slab by a terminated parallel plate waveguide is discussed. The ground plane is the continuation of the lowe plate of the waveguide and the infinite dielectric slab is partialle. filling the waveguide. The thickness of the slab, the height of the parallel plate waveguide, and the frequency are such that only the lowest slow wave can propagate in the partially filled waveguide and the grounded dielectric slab.

The Fourier transform of the field scattered hy the termination of the upper plate of the wareguide is found by means of the WienerHopf technique and the far fields obtained by the method of steepest descents. The percentage of power reflected back into the waveguide,
of power transmitted to the surface wave in the slab, and of power radiated into the open space are plotted vs the thickness of the slab for different heights of the waveguide and $\epsilon=2.49$.

This method of excitation is found to be very efficient. If the dimensions of the waveguide and the slab remain within a considerably wide range, the efficiency obtained for a given frequency is very close to the optimum. Therefore, the adjust ments for maximum efficiency are not critical.

Random Errors in Aperture Distributions-

 R. H. T. Bates (p. 369)The effects of random manufacturing errors on polar diagrams of antennats are analvzed in terms of the radius of correlation and mean sfuare magnitude of the errors. The basis of the method is the Wiener-Khintchine theorem. Approximate general formulas are given for the reduction in gain and lowest probable sidelobe level. The implications of the theory are discussed.

Successive Variational Approximations of Impedance Parameters in a Coupled Antenna System-M. K. Hu and Y'. V. Ha (p, 37,3)

In this paper, a new variational formulation for a single impedance parameter of an m antenna system is presented. This formulation enables one to determine any self impedance Z_{i}, one at a time, merely' by exciting antenna i alone and leaving all the other antemas open circuted. For determining any mutual impedance $Z_{i j}$, only two inderendent excitations, one the sante as that used for determining $Z_{i s}$ and the other for determining $Z_{j j \text {, are required. }}$. Thus, if all the $m(m+1) / 2$ impedance are required, only m independent excitation conditions are needed. In contrast to this, the formulation available in the literature is based on $m(m+1) / 2$ independent excitation conditions. Because of a reduced number of excitation conditions and the way they are assumed, the physical nature of the problem is made simpler and easier to comprehend. Such comprehension helps considerably in the choice of trial current distributions for a specific application.

Two methods of evaluating the successive higher-order approximations are also given. One is based upon an orthogonalization process, and the other is based upon the successive inversion of matrices. In the evaluation of a certain order approximation, both methods have the advantage of utilizing all the work already done for the lower-order approximations; and at the same time, additional work required is considerably reduced. It is believed that the formulation, as well as the two methods of successive approximations, will also be useful in other problems.

A New Method for Obtaining Maximum Gain from Yagi Antennas-H. W. Ehrenspeck and H. Poehler (p. 379)

In conventional lagi design, ontimum performance requires separate adjustments in a number of parameters-the array length and the height, diameter, and spacing of the directors and reflectors.

By introducing the notion of a surface wave traveling along the array, it is possible to demonstrate experimentally the interrelationship between these parameters. With this, the gain then depends only on the phase velocity of the surface wave (which is a function of the height, diameter, and spacing of the directors) and on the choice of the reflector. Thus, maximum gain for a given array length, for any director spacing less than 0.5λ, can be obtained by suitable variation of the parameters to yield the desired phase velocity.

A design procedure that provides maximum gain for a given array length is mresented.

A Dipole Antenna Coupled Electromagnetically to a Two-Wire Transmission LineS. K. Seshadri and K. Iizuka (p, 386)

The properties of a dipole antenna coupled electromagnetically to a two-wire transmission line are studied experimentally: It is foumed
that the coupling of the antenna to the transmission line can be maximized by a proper choice of 1) the angular position of the antenna with respect to the transmission line, 2) the length of the antenna, and 3) the sernatation of the antenna from the transmission line. The effect of the spacing between the wires of the transmission line on the optimum barameters is investigated. It is tound that the optimum angular position of the antenna is not noticeably altered if, instead of a single antenna, an array of properly located antennas is used as the load. The advantage of an antenna array built on this coupling principle is discussed

An Ionospheric Ray-Tracing Technique and Its Application to a Problem in Long-Distance Radio Propagation-1). B. Muldrew (p. 393)

A method is given for the determination of the equation of a ray path in a known ionosphere where there are no horizontal gradients. It can partially take into account the effects of the magnetic field of the earth. The method was applied to an obligue path between Ottawa and Slough (5300 kin) to determine certain properties of the one-hop mode. From this it is shown that at times one-hop direct ray propagation is possible over this path.

The Effect of Multipath Distortion on the Choice of Operating Frequencies for HighFrequency Communication Circuits-I). K. Bailey (p. 397)
larmful multipath distortion on high-frequency facsimile services and telegraphic services operating at high speeds occurs when the received signal is composed of two or more components arriving by different modes over the same great-circle path with comparable intensities, but having travel times which differ by an amount equal to an appreciable fraction of the duration of a signal element. The dependence of multipath distortion on the relationship of the operating frecuency to the MUF is discussed and a new term, the multipath reduction factor (MRF), is introduced which permits calculation in terms of the MLF of the lowest frequency which can be used to provide a specified measure of protection against multipath distortion. The MRF has a marked path-length dependence and is calculated as a function of path length for representative values of the other parameters involved by making use of an innospheric model. It is then shown how the MRF can be used in connection with world-wide MLF prediction material to determine the minimum number of frequencies which must be assigned to a highfrequency communication service of continuous availability operating at high speed. Some comparisons with observations are discussed, and finally conclusions are drawn concerning manner of operation and choice of operating frequencies to reduce or to eliminate harmiful multipath distortion.

Analysis of 3-CM Radio Height-Gain Curves Taken Over Rough Terrain-H. T. Tomlinson and A. W. Straton (p. 405)

This report describes the effect of tetrain and meteorological conditions on the heightgain pattern of $3.2-\mathrm{cm}$ radio waves over various short transmission paths. Equivalent reflection coefficients are obtained and potential reflection areas are investigated. A study of the time variations in the height of nulls in the signal strength pattern is made and the relationship, between movement of the nulls and the corresponding refractive index distribution is considered.

Electron Densities of the Ionosphere Utilizing High-Altitude Rockets-O. C. Haycock, el al. (p, 414)

The problem of determining the electron densities in the E-region of the ionosphere is approached by using 6 -me pulse transmissions from a rocket to several ground receiving stations.

A logical and complete derelopment, using
dyadic techniques, is given for obtaining the propagation constant of the dissipative, anisotropic ionosphere. Special cases of the magnetoionic formulas are given, and comparison of the ionosphere with a distributed-constant transmission line is matle.

In a nondissipative ionosphere, formulas are developed establishing the relationship between the effective electron density and the relative transmission delay of the 6 -me pulse.

A tescription of the University of Ttalis vertical incidence experiment is given in which a $6-\mathrm{me}$ pulse from an airlorne transmitter is received simultaneously at several gromad receiving stations

The relative 6 -me time-delay data from three Aerober high-altitude rockets hanched from Itolloman Air bevelopment Center on July 1, 1953. November 3. 1953, and Ime 13. 1950, were obtained and, from these, electron dethsity was calculated. (iurves showing the profile of electron density as a function of altitude as calculated both during the rocket ascent and descent are presented. The curves indicate a general increase of electron density throughout the E-region, rising from nearly zero at 85 km to a maximum of about 2×10^{11} electrons $/ \mathrm{m}^{3}$. The maximum attitude attaned by the rockets allowed exploration up to 137 km above sea level.

A Scatter Propagation Experiment Using an Array of Six Paraboloids-Lorne 11. Doherty (1). 419)

Using an antenna system whose aperture could be varied in four-foot steps between 4 and 24 feet, aperture-tomedium coupling loss measurements have been mate on a $2720-\mathrm{msec}$, 216 -mile path. These measurements reveal an intrinsic variability in the scattering mechanism which is not accounted for in most current theories. Diversity and farling-rate measurements were also made. A simple mathematical model of the diffracted field vielis calcmated values of the normal component of the wind which agree well with the measured wind. Calculated and measured values of facling rate are also seen to be in good agreement. An estimate is made of the turbulent wind velocity.

Sweep-Frequency Studies in Beyond-theHorizon Propagation-IV. I1. Kummer (p. 428)

This baper considers the bandwidth characteristics of the propagating medium in tropospheric beyond-the-horizon propagation.

To study this problem, a frequency-sweep experiment was performed over a 171 -mile experimental circuit. A $4.11-\mathrm{knc}$ transmitter was frefuency motulated at a $1000-\mathrm{cos}$ rate over a 20 -me band. The receiver was swept nonsynchronously over the same band at a $30-\mathrm{cps}$ rate. The resultant pulses were displayed on an oscillograph and photographed at the rate of one frame every two seconds.

The experiment used a 28 -foot tramsmitt ing antenna and 8 -, 28 - and 60-font receiving antemats.

Sequences of selected sworp-frequency pictures arr shown for various antemta combinations ath transmission conditions. The bandwidths from the experiment are compared with a calculation based on the common volume geometry.

Photographs of signals recerived simultaneously from a twin-ferd horizontal diversity system are also shown and discussed.

Communications ($\mathrm{p}, 434$)
Contributors (p. 441)

Broadcasting

PGBC-14, November, 1959
Forward (p. 1)
Optimized Compatible AM Stereo Broadcast System-11. 13. Collins, Jr. and D. T. Webh (n .2)

A two-channel multiplex system for compatible AM broadeasting is described. System
objectives including compatibility, service area, and program quality are discussed. Three different methods of creating the equivalent transmitted signal are reported, and conversion of present-day momaral stations to stereo by each method is indicated. The design of receivers for recovering the two stereo tracks is examined showing the signals derived by various means of detection. Emphasis is phaced on a design resulting in a reliable, minimun cost recoiver. Field test eguipment and results are briefly considered and the level of performance that can be obtained from the system is stated.

A Compatible Stereophonic Sound System
F. K. Becker (1). 16)

New Dimensions in Sound-II. E. Swerney and (.. W. Bangh, Jr. (p). 19)

Component Parts

Information for Authors (1. 2.36)
Who's Who in PGCP (237)
High Dielectric Constant Ceramics-lielding Brown (p. 2.38)

Currently available high dielectric constant ceramics enjoy certain special advantages for use in eapacitor design. However, there are also esevere limitations which must be well understood by engineres attempting their application. This paber summarizes the principal electrical characteristics, tavorable or otherwise, of these materials and attermets to relate them to well-known basic dielectric projerties. In addition, a brief review of present knowledge of ferroelectricity in barjun titanate is given, since many of the practical probleme encountered in the use of high dieleetric constant ceramics are rooted in the inherent ferroelectrieity of the material. A fow remarks are included concerning avemes of future advance in high- K ceramic applications.

Component-Part Screening Procedures Based on Multiparameter MeasurementsRalph E. Thomas (1. 252)

A screening methodology bised on masurements of several patrameters is proposed. The methorlogy provides an improved semituantitative basis for the selection and evaluation of screening criteria. The methot is devised 1) to yield a minimum number of parameters required for effective screening with a linear function, 2) to determine thr gain in reliability obtained by screening on the basis of two parameters rather than one. there rather than two, atc., 3) to fetermine the parameters Which may be interchanger for measurement or cost rations without changing the effectiveness of the screening procedure, 4) to determine the probabilities of screening out a superior componemt and failing to sereen out an inferior component, 5) to determine the eosts associated with making the soreening procedure more stringeme, (0) to permit modification of the screnting criterial for small changes in com-ponemt-part design, or lot charaeteristics, 7) to determine the effect of alternative fature criteria on the screming criteria, and 8) to indicate when practical soreoning cannot be achieved using at linear function of the parameters selected for measurement. The methodology is based on a combination of standard statistical teclenigues, and is nowel only in maintaining a tractable amalysis of the over-all problem of screruing individual component parts by variables inspection.

Aircraft Secondary Power Generator With Direct Compensation Frequency Control-I. J. Johnson aud S E. Rauch (1, 259)

The variable sperd constant frecuency altermator swatem provides accurate freyuency control indemendent of the shaft speed. The method employed is completely electrical in contrast with the mure conventional mechanical speed control systems. The principle
of operation depends upon a constant angulas velocity magnetic fied in the alternator armature, the angular velocity being the vector sum of the mechanical velocity of the shaft and the velocity of all electromagnetic rotating field induced by the excitation of a polyphase fied winding. The polyphase fied winding is driven by a variable freguency polyphase exciter, its frequency being directly proportional to the speed deviation from sunchronous speed of the alternator rotor and shaft. The frequeney control system as described in this paper is the open-loop type and, as such, accomplishes absolute frequency eontrol with no errors arising from load or speed transients.

An experimental brushless, constant fregurncy, therephase altternator is discussed.

Delay-Line Specifications for MatchedFilter Communications Systems-R. M. Lerner, et al. (p. 20.3)

Goecifications for a witle-band multitap delay-line are rationalized by the demands of a matched-filter commonication system employing a pair of such delay lines. The delay ine is specified in terms of time-domain characteristics.

Some Rating and Application Considerations for Silicon Diodes-11. (. Lin (p) 269)

The dissiphation in a silicon rectifier depends on the characterist ics of the rectifier (threshold voltage and ohmic resistance) and the circuit constants (inductive, resistive, or capacitive load). Dissifations under these different conditions are calculated.

The maximum permissible dissipation is limited by maximum junction temperature and thermal stability. The stability criterion depends on the thermal resistance, the revetse characteristic and its change with resject to temperature, the reverse voltage, and the circuit configuration. Derating curves are obtained, based on known variations of the reverse characteristies of silicon rectifiers with temperature and voltage

The maximum permissible transient dissimation derends on the total surge energy. The energy dissibated in the rectifier is high when the load capacitane is high and the external series resistance is low

A design cmbotying all the foregoing considerations is illustratecl.

Correction to "A Comparison of Thin Tape and Wire Windings for Lumped-Parameter Wide-Band High-Frequency Transformers ${ }^{\prime \prime}$ Thomas K. OCMeara (p. 273)

Contributors (p). 2741
Annual Index, 1959 (follows p. 275)

Instrumentation

Vol. 1-8, No. 3, Dectember, 1959

Russian Test Equipment for Audio, Radio, and Microwave Measurements-Washington Chapter PGI-Brumo (). Weinschel (f). 6i)

During July, 1959, some Russian instruments were exhibited in New York City. 1hotographs of 30 of such electronic test instruments are shown, including a translation of the band inseription. The Russign specifications, reprofuced in English, appear with each photogiaph. Comments on itrme of lesser familiarity are offered.

A Time Gate for Echo-Measuring Radar Installations -I. Bacon and ,I. Q. Burgess (p). 79)

Emphasis on higher operating speed in echo-measuring ratar installations necessitates the tightening of performatherespecifications on certain componemt batis of the syatem. A can in point is the time gate and it provides the principal topic oi this paper. A flesign having a linear dynamic range of 50 ab for an error not exceeding $\pm 0.3 \mathrm{db}$ is prosented. Out-of-gate rejection is 58 db below maximum signal. Gating is accomplished by using a Zener diode. Sigual and gate pulses are separated by using
a principle which eliminates balancing. This adds a measure of stability unattainable when using baiancing techniques. Without unduly stressing detail, sufficient essentials are presented in order to duplicate the quoted results. Principal weight is placed on the design features which may be modified to fit a number of similar situations.

A Transistor Temperature Analysis and Its Application to Different Amplifiers-Werner -teiger (p. 82)

The equivalent input drift of an amplifier. which is the correction necessary at the input to restore the output to its "pre-drift" condition, is a convenient concept for the temperature analysis of transistor differential amplifiers. In this paper general expressions are derived for the equivalent input drift of a de amplifier with one transistor. The results are then applied to dilferential stages. Comdusions for the design of low-drift differential amplifiers are drawn with the possibilitios of drift combensation being taken into consideration. Experimental verification indicates that it is possible to reduce the equivalent input elrift voltage under cortain conditions to the order of 1 millivolt per 1001 centigrates.

Logarithmic Amplifier Design-S. J. Solms (p .91)

The logarithmic amplifier is uscful for signal compression, analog computation and IAGC in wide-range pulse receivers; it thas numerous possible apmlications in instrmmentation. A linlog amplitude chatacteristic may be obtained by cascading a mumber of stages having a dualslope amplitule claracteristic. This approximation, being amalyzed in detail, leads to expressions for dynamic range and approximation error.

Measurement of the bandwidth of a lin-log amplifier is discussed as well as maximization of bundwidth as affected by the choice of the number of stages. The problem of temperature combensation as it affects bandwidth and power consumption is also discussed. The problem of recovery transicuts imposed by the use of ac coupling and the advantage of bipolar design for the control of recovery characteristics are discussed.

A lin-log transistor bipolar amplifier design having an $80-\mathrm{db}$ dynamic range and a small signal bandwidth of 2.5 mc is presented. Experimental results inchoding temperat ure effects and pulse response characteristics are given. The derendence of the amplitude response on duty factor imposed by the ac coupled bipolar design is mentioned.

Fundamental Limitations of External Noise -Henry H. (rrinm (j. 97)
The development of low-noise microwave amplifiers has prompted the author to reevaluate noise sources preceding the first lownoise amplifier of a microwave receiver. This paper presents design relations, or analytical methods, which permit aporoximate evaluation of most noises encountered. Noise soturces discussed are those due to the antenna and transmission line components, the atmosphere, the warm earth, and space beyond the ionosphere. The discussion utilizes the concent of excess noise temperature currently popular in the low-noise receiver art. The conclusions reaclied are that: 1) excess noise due to absorbing media at uniform temperatures is easily evaluated using present information; 2) noise due to the nonhomogeneous atmosthere is beginning to get some attention and the need for more intensive work is indicated: 3) antenna noise leakage data are inadequate at present, but snitable measurements and computations will clearly be required in the near future; and 4) radio sky background temperatures are in the least satisfactory stage of all the pertinent factors at present, and absolute background measurements cannot be made before antenna sidelobe leakage is more carefully evaluated.

Comparison of Deviations from Square

Law for RF Crystal Diodes and BarrettersG. U. Sorger and B. O. Weinschel (p. 103)

The properties of barretters and crystal diodes as square law video detectors are examined both theoretically and experimentally. The deviation from square law characteristic as a function of input and output levels is presented. Mtaximum RF levels and audio output levels at which the ovar-ill deviation exceeds 0.1 dh are given for the PRD 610.A, PRD 631 C , FXR 7220A bartetters and for the crystal diode 1, :32 at frequencies between 1 and 10 kme. Minimum usable signals are also discusserl. and the mavimum range of accurate power ratio measurements is shown to be approximately 53 (b) for a barretter and 38 db for a video crystal. However, the crystal has the advantage in that the lower edge of its accurate range is 20 db below that of the barretter.

Correspondence (p. 112)
Contributors (p. 112)
Annual Index 1959 (follows f. 113)

Microwave Theory and Techniques

Vol, MT「T-7, No, 4, ()(TOBER, 1950)

Frontispiece (p, 400)

Guest Editorial (p. 401)

Mechanical Design and Manufacture of Microwave Structures--A. F. Harvey (p. 402) The paper gives an account of the various aspects of the design and manufacture of microwave structures. The presentation of design information such as dimensions and tolerances is first discussed. Machining and other fabrication processes are then examined. Several methods of metal casting and assoriated techniques are described and the electroderosition of waveguide components studied. Such final stages as inspection procedure, protective finishing and packaging are considered. The survey conclucles with a bibliography.

The Dependence of Reflection on Incidence Angle-Raymond Redheffer ($\mathrm{J}, 423$)

A lossy dielectric sheet has complex dielectric constant $\epsilon=\epsilon(x)$ and complex permeability $\mu=\mu(x)$, where x is the distance to one interface. This sheet is backed by a conducting surface and used as an absorber. If $|\epsilon(x) \mu(x)|>\epsilon_{0} \mu_{0}$, so that $\left(\epsilon / \epsilon_{0}\right)\left(\mu / \mu_{0}\right)-\sin \theta$ is nearly independent of the incidence angle θ, then the amplit ude reflection $R(\theta)$ is wholly determined by $R(0)$. Typical results: When $K\left(\theta_{n}\right)=0$ at one polarization, then att $\theta=\theta_{0}$ the reflection for the other polarization corresponds to al voltage standingwave ratio Sll $^{\prime} R=\sec ^{2} \theta_{0}$. At permendicular polarization max ${ }^{\prime} R(\theta)^{\prime}$ on $\left(\theta_{1}, \theta_{2}\right)$ is least, for given $|K(0)|$, if $K(0)$ is real and positive; and then $R(\theta)=0$ at $\tan ^{2} \theta / 2=R(0)$. But for paralled polarization $R(0)$ must be real and negative to get optimum performance. When the absorber functions at both polarizations the best obtainable result is $\mid R(\theta)=\tan ^{2} \theta / 2$, no matter what interval ($\theta_{1}, \theta_{i n}$) is specified. The error in the approximation is investigated theoretically and experimentally. A complete set of graphs is included, suitable for resign of those absorbers to which the theory applies. The analysis also yields an exact expression for the limiting behavior of the reffection at grazing incidence. This can be used in problems such as computation of the fiold due to a dimole over a mane earth. Finally, the theory of the Salisbury screen is re-examined as an aid in checking the other developments.

Analytical Asymmetry Parameters for Symmetrical Waveguide Junctions-M. Cohen and W. K. Kalın (p. 430)

This paper presents a systematic approach to the evaluation of (waveguide) junctions from the standpoint of their conformance to certain symmetries. Preferred sets of asymmetry parameters are found which are com-
plete, minimal in number, which go to zero when the junction represented is symmetrical, and which may often be identified with a corresponding structural symmetry defect. The asymmetry parameters are first introduced for general linear junctions, but sjecial attention is given to reciprocal and lossless junctions. The derivation of these preferred sets is based on the theory of group representations hitherto employed in the analysis of ideally symmetric junctions. One of the applications of these preferred parameters yields first-order relations among the defects of a nearly perfect hybrid-T junction which are believed to be new

Orthogonality Relationships for Waveguides and Cavities with Inhomogeneous Anisotropic Media-Alfred T. Villeneuve (p . 441)

A modified reciprocity theorem forms the basis of development of orthogonality relationships for modes in waveguides and in cavities containing inhomogeneous, anisotropic media. In the lossless case certain of these may be interpreted in terms of power flow and energy storage. The special case of magnetized gyrotropic media is discussed for longitudinal and transverse magnetization.

Mismatch Errors in Cascade-Connected Variable Attenuators-G. E. Schafer and A. Y. Rumfelt (b. 447)

The treatment of mismatch errors is extended to cover variable attenuators cascadeconnected in a system which is not free from reflections. The methot of analysis is applicable to any number of cascaded attemmators, but only the analysis of two and three variable attenuators in cascade is presented. Graphs are given to aid in estimating the limits of mismatch error.

In an example, which is considered representative of rigis rectangular waveguide systems, the limits of error are: for two attenuators in cascarle, 0.19 db in a 3 -db measurement, and 0.17 db in a $40-\mathrm{db}$ measurement ; and for three attenuators is cascade, 0.25 db in a $40-\mathrm{db}$ measurement and 0.23 db in a $7.5-\mathrm{dt}$ measurement.

A Nonreciprocal, TEM-Mode Structure for Wide-Band Gyrator and Isolator Applications -E., M. T. Jones, et al, (p. 45.3)

The theoretical and experimental operation of a novel form of TEM transmission-line network capable of operation over octave bandwidths is rescribed. This network consists, basically, of a marallel arrangement of two conductors and a ferrite rod within a grounded outer shield. The ronductors may be connected in a two-port configuration which provides, in the absence of the ferrite rod, complete isolation from zero frequency to the cut-off frequency of the first higher mode. With an unmagnetized ferrite rod properly inserted, the broad-band isolation is virtually unaffected. When the rod is magnetized by an axial magnet ic field, coupling occurs between the two ports by a process analogons to liaraday rotation.

The device may be used as a broad-band gyrator, switch, or modubator, and with the addition of a resistance load, as an isolator. The bandwidth of these components is inherently limited only by the bandwidth capability of the ferrite material itself.

High-Power Microwave Rejection Filter Using Higher-Order Modes--Joscph H. Vogelman (p .461)

In order to obtain filters capable of handling very high power, the use of radial lines and uniform line discontinuities was investigated. Forty-five-degree tapers and uniform lines were used to design a high-nower microwave filter capable of handling 700 kw at 15 pounds pressure in a 0.900 by (0.400 II) waveguide. In addition to the filtering which results from the discontinuities in the TE10 mode in the waveguide, high insertion loss elements are effected when the enlarged uniform line section is
larger than the TE_{1}, mode waveguide wavelength and when the fongth of the anlarged section is approximately $(2 n-1) \lambda_{0} / 4$. Fxtremely large insertion insses are possible by the cascading ot these elements. Tuning, in the standard-size waveguide, has no effect on the insertion loss of the higher-motle enlarged waveguide at its resomant frequency. Emfirical design formulas are evolved and the design procedure for hand-rejection filters is given, using these high insertion loss clements.

A Method for Accurate Design of a BroadBand Multibranch Waveguide Coupler-K. G. Patterson (p. 460)

A new approach is made to the problem of tabering the bratnch impetances for broadband performance. A taper is proposed, which, for a 3 -db branch coubler, is shown to give much better results in theory and practice than the currently used binomial taper.

Also, simple expressions are developed which enable the effects of waveguide junction discontinuities to be aderuately corrected, thus allowing a greater ascuracy in design to be achieved than was hitherto possible.

Correspondence (p. 47.3)
Contributors (p. 482)
Call for Papers for 1960 PGMTT Symposium (p. 485)

Space Electronics and Telemetry

Vol. SET-5, No. 4, December, 1959

A Rocket Manned for Lunar Exploration-

 M. W. Rosen and F. C. Schwenk (p. 155)The exploration of the moon is within view today. If it may be assumed that Project Mercury in the U. S. A. and similar efforts by the L.. S. S. R. will establish that man can exist for limited periods of time in space, then a trip to the moon requires mainly the design, construction and proving of a large rocket vehicle. In one concept of a manned lunar vehicle, the entire mission, the trip to the moon and the return, is staged on the earth's surface. A highly competitive technique is to stage the lunar mission by refueling in a low earth orbit. This would permit the use of a smaller launching vehicle but would require development of orbital rendezvous techniques.

This maper presents a barametric study of vehicie size for the direct-flight manned lunar mission. The main parameter is the take-off thrust which is influenced by many factors, principally the bopelants in the several stages and the flight trajectory. A close choice exists in the second stage where conventional and high-energy propellants are compared. The size of the final stage and hence the entire vehicle is governed mainly by the method of approach to the earth's surface, whether the amproach is made at alliptic, parabolic or hyperbolir velocities. The various design choices are ampiod
to an illustrative vehicle configuration.
Contemporary Plasma Physics--I,ouis Gold (b. 162)

The manifolil aspects of plasmat ;hysics are briefly described. The basic science and advanced technology embodied in this interdisciplinary field are delineated following an identification of what constitutes a plasma. With regard to the forneer, such highlights as the evolution of the method of adiabatic invariants to deal with highly nonlinear properties of plasmas are offered. Hypersonics, high impulse fuel systems, the Sherwool program, nuclear explosives, and microwave tubes represent key areas in modern technology demanding more basic knowledge of plasma interactions.

A New Approach to the Linear Design and Analysis of Phase-Locked Loops-Charles S. Weaver (p . 166)

I'sing the techniçues and philosophy of control systems theory, the thase-iockecl loop) is analyzed as a conventional feedback loop, The root-locus method tields graphs which specify how the transient response changes with signal strength. This method also reveals two thresholds which explain why a small change in signal strength or modulation may canse complete loss of detection. Charts show how the transients vary with various pole-zero patterns for both step, and ramp inputs. The feedback equation shows why the phase-locked loop is an $F M$ detector, and simplifies its design analysis to that of a simple audio network. The application of Wiener's criterion is simplified, and a new method of solution for the filter is presented which is applicable to almost any kind of signal. Because the phase-locked loop is nonlinear, there is no known solution for the filter except when the noise is white. The optimum transfer function may easily be reduced to the loop contponents. When used in an AM detector the phase-locked loop should be designed for minimum phase shift independent of the modulation.

Space-To-Ground Transmissions Beyond the Line-of-Sight Distance-Janis Galejs (p. 179)

Radio-wave transmission from above the maximum-intensity ionospheric laver to ground surface locations beyond the direct line-of-sight distance is examinet in this paper. Transmission involving lenetration of the F-layer, and subsequent ground-to-F-layer reflections, is found to be more reliable than transmission, depending upon clueting either along the F layer or between the E - and F-layers.

At a frequency approxinately three times the maximum phasma frequency (measured with respect to the transmitter location) transmission must take place in a direction along which the maximum phasma freguency increases. The transmission path is recibrocal. At a frequency approximately 20 per cent higher than the masma freguency, transmis-
sion may take place along a constant or even slightly decreasing ;lasma frequency contour. but the tranenaission is severely attenuated.

The Application of Radio Interferometry to Extraterrestrial Metrology--Marcel J. E. Golay (p. 186)

Following an introductory discussion of the interferometric method, the essential building block of an interferometric system, the interferometric link, is disenssed, esjecoially with reference to the transmit-receive problent and to the noise problem in a frequency tracking circuit. One form of phase-locker! loop) is discussed in connection with the latter.

Several possible interferometric applications are listed and a table is presented in which at attempt has been made at est imating the essential parameters of each system.

Standards for Pulse Code Modulation (PCM) Telemetry (1). 194)

The Tracking of Pioneer IV: The Elements of a Deep Space Tracking System (Abstract) H. L. Richter, Jr., and R. Stevens (p. 196)

An Interplanetary Communication System -G. E. Mueller and J. E. Taber (p. 196)

Exploring of syace by means of space probes poses some challenging problems if all useful data acquired at the probe's location is to be made available on earth. There exists a monotonic relationship for every communication system between the received energy required per unit of received information. The quantity of received datat can be increased by an increase in the received energy or more subtly by varying this montonic relationship through the choice of a more efficient communication system. Iroper screening and processing of data before their transmission can increase the amount of useful information received at the expense of other data not so valuable and can ease ground data handling problems. A telemetry system, entitled "Telebit," which makes use of some of these principles, and is a forerunner to the application of others, is described.

Deltamodulation for Cheap and Simple Telemetering-F. K. Bowers (b) 20.5)

Deltamodulation is a simple binary pulse transmission method that can be readily adapted to transmit de signal levels. It is particularly useful where only a few channels are to be sent, and where one per cent accuracy suffices. A signal-channel clemonst ration system has been built and tested. The high-speed limitation of such a system takes the form of a finite rate-of-rise, well suited to must telemetering. If, on the other hand, sudden large signal changes are apeeted, then the system may be morlified accordingly: The modified system las the interesting property of giving accuracy varying exponentially with the pulse rate (as in I'(iM), but still without the necessity of framing the pulses.

Contributors (b. 209)
Annual Index 1959 (follows p 210)

Abstracts and References

Compiled by the Radio Research Organization of the Department of Scientific and Industrial Research, London, England, and Published by Arrangement with that Department and the Electronic and Radio Engineer, incorporating Wireless Engineer, London, England

NOTE: The Institute of Radio Engineers does not have available copies of the publications mentioned in these pages, nor does it have reprints of the articles abstracted. Correspondence regarding these articles and requests for their procurement should be addressed to the individual publications, not to the IRE.

The number in heavy type at the upper left of each Abstract is its Universal Decimal Classification number. The number in heavy type at the top right is the soma number of the abstract. D.C. numbers mat ked with a dagger (\dagger) must be regarded as provisional.

U.D.C. NUMBERS

Certain changes and extensions in U.1).C. mumbers, as published in PE Notes up to and including Pl: 060, will be int reduced in this and subsequent issues. The main changes are:
Artificial satellites:
Semiconductor devices:
Velocity-control tubes,
klystrons, etc.
551.507 .362 .2 (PE 657)

Quality of received sis
nat, propagation con
nat, propagation con-

- color television
221.391 .8
(PF 651)
The "Extensions and Corrections to the ('.1).C.," Ser. 3, No. 6, August, 1959, contains details of PE Notes 598-6,58. This and other (I.1).C. publications, including individual ${ }^{1} \mathrm{E}$ Notes, are obtainable from The International Federation for Documentation, Willem Wisenplain 6, The Hague, Netherlands, or from The British Standards Institution, 2 Park Street, London, W'.1., England.

ACOUSTICS AND AUDIO FREQUENCIES

534.22-8-14

Speed of Sound in Distilled Water as Function of Temperature and Pressure -W. I). Wilson. (J. Acoust. Soc. Amer., vol. 31, ip h 1067-1072; August, 1959.) Detailed report of measurements made using an ultrasonic pulse technique

534.286-8

2
Ultrasonic Interferometry and the Determination of the Absorption Coefficient of Liquids -R. Cert. (Compl. Reni. Acid. Sci., Paris, vol. 248, file. $3536-3538$, June 22, 1959.) A simple method of measurement is described, based on the theory of the Pierce interferometer and assuming that the reciprocal of the equivalent-cirenit resistance is a linear function of the total damping of resonator, liquid and reflector.

534.75

Additivity of Different Types of Masking78281 1
\qquad 5
-R. C. Bigger, (J. Acoust. Soc. Amer., vol. 31, pp. 1107-1109; August, 1959.) At moderately hight levels the combination of critical-band masking with either remote masking or the masking of frequencies above the band resulted in a 6 -db increase in masking. This supports the hypothesis that the summation takes place within the ear or in the nervous system.
534.75

4
Residual Masking at Low FrequenciesC. M. Harris. (J. Acoust. Soc. Amer., vol. 31, pp. 1110-1115; August, 1959.) The temporary shift in the threshold of hearing following the cessation of a masking source is termed "residual" masking; its variation with frequency and with the level of a white-moise masking source is investigated.

534.75

5
Masking Patterns of Tones-R. H. EMmer. (J. Acoust. Soc. Amer., vol. 31, pp. 1115-1120; August, 1959.) Monaural masking patterns for pure tones from $250 \mathrm{c} / \mathrm{s}$ to $\$ \mathrm{kc}$ are discussed with reference to the auditory masking mochanism.

534.75

Identification of Elementary Auditory Displays and the Method of Recognition Memory -I. Pollack. (J. Acoust. Soc. Amer., vol. 31, pp. 1126-1128; August, 1959.)

534.75

7
Relation between Loudness and Duration of Tonal Pulses: Part 1-Response of Normal Ears to Pure Tones Longer than Click-Pitch Threshold-F. Miskolezy-Fodor. (J. Acoust. Soc. Amer., vol. 31, [1]. 1128-1134; August, 1959.)
534.84

8
On the New Reverberation Chamber with Nonparallel Walls (Studies on the Measurement of Absorption Coefficient by the Re-verberation-Chamber Method: Part 2)-K. Nato and M. Koyasu. (J. Phys. Soc. Japan, vol. 14, pp. 670-677: May, 19.59.) Details of construclion and performance are given. The chamber has a volume of 513 meter ${ }^{3}$ and a reverberation time of 22 s at $500 \mathrm{c} / \mathrm{s}$. Part $1: 3916$ of 1959.

621.395.623.52

9
Method of Improving Acoustic Transmission in Folded Horns-R. W. Carlisle. (J. Acoust. Soc. Amer., vol. 31, pl. 1135-1137; August, 1959.) The development of a conoidal insert for the bend of a folded horn is described.
681.84.087.7

10
The Transmission of Stereophonic Sound Field Distribution over a Single Channel using Pilot Frequencies below Threshold LevelF. Enkel. (Elekiron. Rundschar, vol. 12, pp. 347-349; ()october, 1958.) A compatible l.f. sisfem of stereophonic transmission is outlined. Amplitude-modukated and suitably phased pilot signals derived from the envelope of the output waveforms of two spaced microphones followed by a delay system are transmitted at a level close to the noise level, as part of the AF modulation. A method of obtaining compatible stereophonic magnetic-tape recordings in this way is proposed, and the use of addletonal pilot signals to give greater detail of the spatial sound distribution is suggested.

ANTENNAS AND TRANSMISSION LINES

621.315.212: [621.395.4 + 621.397 .13

11
Multichannel Systems along Coaxial Cables -.J. Bauer. (Tech. Mil. PTT, vol. 36, pp. $423-$ 4.35; November 1, 1958. In German and French.) Expanded version of 2958 of 1958.

621.372

12
Relations between the Variations of Amplitude and Phase in the Propagation of Vibratory Phenomena-J. C. Simon and C. Broussaud. (Compt. rend. Acad. Sci., Paris, vol. 248, pp. 369.3-3695; June 29, 1959.) A three-branch junction, formed by two extremities of the same feeder and a third branch capable of absorbing a certain quantity of energy, is considered; a matrix analysis leads to a general statement of phase relations involved in energy transfer.
621.372.2:621.315.212

13
Propagation of an Electromagnetic Irpulse in a Medium in which the Dielectric Loss Angle is almost Independent of Frequency11. Cote. (Compt. Rend. Scad. Sici., Paris, vol. 248, pIP. 3142-3144; June 1. 1959.) An analytical treatment gives results which are applicable to the propagation of the principal wave in a coaxial cable.

621.372 .22

14
The Transient Response of Tapered Transmission Lines-F. J. Young, E. R. Schatz and J. B. Woodford. (Comment, and Electronics, no. 4.3, pp. 223-228; July, 1959.) Determination of the transient response of the tapered line as a function of its temmations and nominal characteristic impedance. See also 15 below.
621.372.22:621.372.51

15
The Optimum Transmission-Line Pulse Transformer-F. J. Young, F. R. Schatz and
J. B. Woodiord. (Commun. and Electronics, no. 43, p!. 220-223; July, 1959.) A theory based on transient response is developed for determining the optimum taper of a transmission line.

621.372 .8

16
Synthesis of a Bent Waveguide with Continuous Variation of Curvature-M. (i. Andreasen. (Arch, elekl. Übertragung, vol. 12, pp). 463-471; October, 1958.) The optimum bending curve is derived for a specified limit of energy conversion to any given undesirable mode. The excitation of higher modes is less in al waveguide with variable curvature than in one with constant curvature (see 3929 of 1959).

621.372 .8

17
Reflection of a Pyramidally Tapered Rectangular Waveguide-K. Matsumaru. (IRE Trans. on Microwaye Theory and TechNIQtes, vol. MTT-7. pp, 192-196; April, 1959. Abstract, Proc. IRE, vol. 47, p. 1285; July, 1959.)
621.372.8:537.226

18
The Efficiency of Excitotion of a Surface Wave on a Dielectric Cylinder-J. WV Duncan. (IRE Trans. on Microwave Theory and Technipees, vol. MTT-7, pp. 257-268; Aprit, 1959. Abstract, Proc. 1RE, vol. 47, j. 1286 ; July, 1959.)

621.372.8:621.372.2

19
A Guide to the Practical Application of Tchebycheff Functions to the Design of Microwave Components-R. Levy. (Proc. IEF, 1't. (., vol. 106, pl. 193-199; September, 1959.) Practical formulas giving the broadest possible bandwidth in a given physical length are derived for stepped transformers, stepped twists and multielement directional couplers. Microwave band-pass filters with Tchebycheff equalripule characteristics are also described.

621.372.8:621.39

20
Waveguide as a Long-Distance Communication Medium-A. F. Karbowiak. (Eleclronic Eng., vol. 31, rp. 520-525; September, 19.59.) A discussion giving comparison of plain metallic waveguides with dielectric-coated ring and helix types.

621.372 .823

21
Measurement of Attenuation in Ring Wave-guides-Y'u. N. Kazantsev and V. V. Meriakri. (Radiotekh. Eleklron., vol. 4, pp. 1.31-1.33; January, 19.59.) A brief description of the apraratus for measurements on ring waveguides which consist of several equal metal rings on a common axis and separated by thin slots. This type of structure gives only small additional losses in the H_{01} wave when compared with a normal circular waveguide of the same diameter. It can be used for waveguide bends and also as a wave filter. Values of attenuation for the H_{01} wave with different ring parameters are tabulated.

621.372.823:621.372.832.43
 22
 Directional Couplers for Generating \mathbf{H}_{11}

 Waves in Circular Waveguide-A. Jaumann. (Arch. clekt. L̈hertragung, vol. 12, pp. 440-446; ()ctober, 1958.) The mode selectivity of a longslot directional coupler is calculated in terms of slot length and waveguide radius. Measurements on a $3.5-\mathrm{kme} / \mathrm{s}$ directional coupler give results in agreement with calculations of $\mathrm{TE}_{01}-$ mode purity obtainable.
621.372 .824

23
On the Problem of the Dispersion Properties of a Coaxial Waveguide both Conductors of which are Loaded with Disks-N. M. Chirkin. (Radiotekh. Elekiron., vol. 4, pp. 126127; January, 1959.) The waveguides investi-
gated have a zero dispersion over a wide band of frequencies, which decreases with increasing retardation.

621.372 .831

 24Concerning the Junction of Two Different Plane Waveguides-N. P. Marin. (Radiotekh. Elektron., vol. 4, pp. 3-11; January, 1959.) The incidence of an electromagnetic wave at a junction of two plane waveguides which have their walls directed along different coordinate systems is considered. The solution is given of an infinite system of equations in which the unknown quantities are the amplitudes of the forward and reflected waves.

621.372.831.25:621.372.852.22

25
Characteristics of a Ferrite-Loaded Rectangular Waveguide Twist-A. E. Barrington. (IRl: Trans. on Microwaye Theory and Thehniptes. vol. MTT-7, pp. 299-300; April, 1959.) Brie! report of experiments with a tapered cylinslical Ni-Co ferrite mounted centrally midway between the fanges of a 90° waveguide twist. In the region of 8900 mc a reversal of the magnetic field caused a reduction of 10 db in the transmitted power.

621.372 .832 .8

26
The Synthesis of Symmetrical Waveguide Circulators-B. A. Auld. (IRE Trans. ON Microwave Theory and Techniques, vol. MTT-7, pp. 238-246; April, 1959. Abstract, Proc. IRE, vol. 47, [. 1286; July, 1959.)

$621.372 .85+621.372 .413$

27
Perturbation of Waveguides and Cavities by Spheres and Cylinders- W. Hauser and L. Brown. (J, Appl. Phys, vol, 30, 1). 14601461; September, 1959.) A brief account of a theoretical investigation of the effect of a plane wall on the fields in a nearby cylinder or sphere.

621.372 .85

28
On Network Representations of Certain Obstacles in Waveguide Regions-H. M. Altschuler and L. O. Cioldstone. (IRE Trans. on Microwave Theory and Techingues, vol. MTT-7, pp. 213-221; April, 1959. Abstract, l'roc. IRE, vol. 47, p. 1286: July, 1959.)

621.372.85:537.226

29
Propagation in a Dielectric-Loaded Parallel Plane Waveguide-M. Cohn. (IRE Trans. on Microwave Theory and Techsigijes, vol. MTT-7, pp. 202-208; April. 1959. Abstract, Proc. IRE, vol. 47, p. 1286; July, 1959.)

621.372.852.1

30
Absorptive Filters for Microwave Harmonic Power-T. Met. (Proc. IRE, vol. 47, pl). 1762-1769; October, 1959.) The cutoff properties of certain lossy periorlic waveguide structures are utilized to obtain insettion loss up to 50 db for second-harmonic power and less than 0.1 dh for the fundamemal at S-band frequencies.
621.372 .852 .22

31
Precise Control of Ferrite Phase ShiftersD. 1). King, C. M. Barrack and C. M. Johnson. (IRE Trans. on Microwidye Theory and Techniples, vol. MTT-7, mp. 229-233; April, 1959. Abstract, Proc. IRE, vol, 47, p, 1286; July, 1959.)
621.372 .852 .223

A Regonance Isolator for Use at $4000 \mathrm{Mc} / \mathrm{s}$ —A. I). Cartwight and C, F. Davidson. (P.O. Elec. Engrg. J., vol. 52, Pt. 1, pp. 69-73; April, 1959.) A description of the use of ferrite material to provide nonreciprocal attenuation in a waveguide.
621.372.852.223:538.221:621.318.134

33
rites in Ferromagnetic-Resonance Nonreciprocal Attenuators in the $9000-\mathrm{Mc} / \mathrm{s}$ Range- U . Milano. (Note Recensioni Notiz., vol. 7, pp. 611633; November/I December, 1958; and vol. 8, pp. 3-20; January/February, 1959.) Testswere made on specimens of commercial-type material in isolators in the form of a slab placed lengthwise in rectangular waveguide and supported by polystyrene or immersed in styrofoam.
621.396.67.006.2 Testing Station at Briuck- 34
The Aerial Testin E. Missler. (Tech. Mill. BRF, Berlin, vol. 2, pr. 79-82; September, 1958.) A description of a testing site near Berlin with details of existing atud planned metal-free masts for measurements on antennas of any type and size. The proposed expansion of facilities includling the use of helicopters is outlined.

621.396.67.029.62

35
A Common Aerial System for Simultaneous Transmission and Reception of VHF SignalsJ. K. Cirierson. (Electronic Engng., vol. 31, pp. 546-549; September, 1959.) "A common antenna system that consists of five sections is described. The sections are a transmitter, a transmission cuupling network, a recoiver, a reception coupling network and an antenna. The transmission and reception coupling networks enable a single antenna to be used for transmission and recention of frequencyspaced signals without the necessity of time sharing. The coupling networks are considered in detail and practical values of components are assigned."
621.396.677.029.6:621.391.822

Effective Antenna Temperatures due to Oxygen and Water Vapour in the Atmosphere -1). C. llogg. (J. Appl. Phys., vol. 30, pp. 1417-1419; Sentember, 1959.) "Calculations of the effective noise temperature at the terminals of a high-gain antenna due to oxygen and water vapor in the atmosphere are given for the frequency range 0.5 to $40 \mathrm{kmc} / \mathrm{s}$. In the 1 to $10 \mathrm{kmc} / \mathrm{s}$ band, the effective temperature increases from about 3° to $100^{\circ} \mathrm{K}$ as the zenith angle is increased from 0° to 90°. Cialculated values of the total attenuation through the at nosphere are given."

621.396.677.8

 37Electromagnetic Prisms in Microwave Links-C. Rudilosso. (Note Recensioni Notiz.. vol. 7, [p). 634-645; November/December, 1958.) The insertion loss of a pair of reflectors which are arranged so as to replace a single reflector is calculated. An expression for the gain of such a "prism," relative to a single reflector, is derived by analogy with geometrical optics.

621.396.677.83

38
An Unusual Application of an Aerial Re-flector-R. Possenti. (Nole Recensioni Noliz., vol. 7. pp. 736-741; November/December. 1958.) A note on the solution of difficulties due to load limits of an existing radio-link antenna mast in Milan. Radiation at a height of at least 20 meters was required in three different directions and a single plane reflector was mounted on the mast and illuminated from below by three paraboloidal radiators oriented to give the correct reflected-heam direction while allowing for certain site restrictions.

621,396.677.832
39
The Design of the Corner-Reflector An-tenna-II. P. Neff and J. D. Tillman. (Commun. and Electronics, no. 43, pp. 293-295; July; 1959.) Simplified design procedures are described.
621.396.677.833.029,65:535.854 40
Reflectors for a Microwave Fabry-Perot

Interferometer-W. (ulshaw: (IRE Trans. on Microwave Theory and Tiechniques, vol. ATT-7, pp. 221-228; April, 1959. Abstract, l'roc. IRE, vol. 47, p. 12s6: July, 1959.)

621.396 .679

Fields in Electrically Short Ground Systems: An Experimental Study-A. N. Smith and T. E. Devaney. (J. Res. Val. Bur. Stand., vol. 631), pib. 175-180; September/Getoher, 1959.) Measurements of magnetic field distribution are described for a simplified radial ground system on poorly conducting soil under an electrically short, top-loaded monopole.

AUTOMATIC COMPUTERS

681.142

42
Pattern Detection and Recognition-S. II. linger. (PRoc. 1RE, vol. 47, 1. 17.37-17.52; (October, 1959.) Both processes have been carried out on an IBM 704 computer which was programed to simulate a spatial computer. The programs tested included the recognition process for reading hand-lettered sans-serif alphanumeric characters.

681.142

Compact Memories have Flexible Capa ties-1). 1 laagens. (Electronics, vol. 32, ple. 50-53; ()ctober 2, 1959.) A digital data storage system with (apacity uf to $\$ 102$ bits, and random and/or sequemtial access is described.

681.142

An Electronic Analogue Computer for Solving Systems of Linear Equations-E: lempel. (VachrTech.. wol. 8, pI. 45.3-4.5.5; ()etober, 1958. . Mathematical derivation of the operating principle and stability conditions for a conmputer consisting of amplifiers.

681.142

 45Electronic Coordinate Transformer-I. Cónzález-1heas and V . Aleixandre. (Electronic Radio Eing., vol. 36, pr. 360-36,5: October. 1959.) Circuit details are given for the const ruction of an elect ronic calculating unit which enables the polar coordinates of a vector (modulus and cosine or sime of the argument) to be derived from those of a rectangular system of axes.
681.142:061.3 46
The British Computer Society-A. S. Douglas. (.Vature, vol. 184. ppl. 945-946; September 26, 1959.) Report of a conference held in Cambridge, June 22nd-25th, 19.59.

681.142:621.374.3

47
Millimicrosecond Digital Computer LogicN. F. Mooly and R. G; Harrison. (Electronic Fingng., vol. 31, pr. $326-529$; september, 1959.) "A system of fast pulse logic is deseribed which combines the efficioncy of transformer coupled stages with digit delay tolerances approaching that of de coupled systems. Logical circuits for OR, AND, NDERTOR and RECLOCK are slown, together with a driver which nermits a 'fan out factor of 5 . Transistor circuits are used throughout."

681.142:621.374.3 48
 Binary Circuits Count Backwards or For-

 wards-11. I. Weloer. (Electronics, vol. 32, p1). $82-83$; Soptember 25. 1959.) A transistorized module is described that can be used to build logical circuits. A complete reversible counter measures $3.2 .5 \times 3.8 \times 0.7 .5$ inches.
CIRCUITS AND CIRCUIT ELEMENTS

621.3.049.7

3-D Packaging Reduces Size of Electronic Units-E. C. Hall and R. M. Janssen. (Electronics, vol. 32. गנ?. 62-6.5; (Jctober 9, 19.59.) Greater compoment densities are obtainable
using a moclule technigue in which miniature circuit elements are placed side by side, with electrical comnection made on a three-dimensional basis by a spotwolling process.

621.318.57:621.318.134

The Square-Loop Ferrit Element C. I1. Lindsey: (Proc. HEE, P't. CC. vol. 100, pr. 117-124: S. (ptember, 1959.) The shape of the outgut wavetorms when the cores are switched is exmatined by a guamtative theory which takes inte accoumt the residuat loss. Reasonable agrement with experimental evidence is shown.
621.318.57:621.372.44:681.142

Switching Circuits using Bidirectional Nonlinear Impedances-T. B. Tomlinson. (J. Brit. /RE, vol. 19, 1m, 571 -591; Neptember, 1959.) A general review of circuit logic is develoned for a bidirectional nonlinear switching element. The design of $p-n-p$ transistor driver stages is considered. A binary octal decoter circuit and a simple binary fulloadder circuit are discussed as examples.

621.318.57:621.382.2

52
High-Speed Microwave Switching of Semiconductors: Part 2-R. V. Garver. (IRE Trans. on Marowaye Theory and TechSlotes, vol. MTT-7, ग1p, 272-276; April, 1959. Abstract, Proc. IRE, vol. 47, p. 1286; July, 1959.) Part 1: 1054 of 1958 (Garver et al.).
$621.318 .57: 621.382 .3$
Design of Bistable Switching Circuits using Junction Transistors-C. Mira. (Compt. rend. Acad. Sci., P'aris, vol. 248, 11p. 3284-3286; June 8,1959 .) The relations between the different parameters which affect the switching circuit may be obtained by plotting on the same diagram a load line and the theoretical curve of the static characteristic of the circuit.

$621.372 .413+621.372 .85$

54
Perturbation of Waveguides and Cavities by Spheres and Cylinders-llauser and Brown. (See 27).
621.372 .413

55
On the Theory of the Cavity Resonator comprising Two Confocal Paraboloids of Revo-lution-H. Baumgärtel. (Tech. Mitt. BRF, Berlin, vol. 2, pp. 67-72; september, 1958.) A solution is iound for a system of equations given by I3uchitholz (2155° of 19.52).

621.372.413:537.533.8

56
The Excitation of Cavity Resonators by Secondary-Electron Resonance Multiplications - K°. Krebs and II. V. Villiez. (\%. Phes., vol. 154, 11. 27-33: January 19, 1939.) Experimental investigation of the suitability for freguency multiplication of the process analyzed in 101 below:

621.372 .5
 57
 Some Generalizations of Duhamel's Inte-

 gral for Linear Quadripoles-- $\mathrm{C}_{\text {. }}$ Wunsch. (NachrTech., vol. 8, Pb. 470-472; October, 1958.)
621.372 .5

 58The Stable and Unstable Image Parameters in Quadripole Theory (; 1 lrich. (NachrTech., vol. 8, pp. 521-525: November, 19.58.) The definition of stable and unstable image impedances by Feldteller is extembed to related parameters, and their position in the complex plane is determined.
621.372 .51

59
Matching Quadripoles- ${ }^{\dagger}$. Kirsclner. (Elektron. Rundschau, vol. 12, pp. 3.38-341; October, 1958.) Design formulas are derived for π and T-sections and groups of curves are
given from which practical design parameters can be obtained.
621.372 .54

60
Optimum Tchebycheff Third-Order Filters -11. S. Heaps amd L. J. Mason. (Electronic Radio Eng., vol. 36, pp. 3ss 391; ()ctober, 1959.) A theoretical analysis is given of a design for the detection of rectangular pulsed signals on a background of white moise. and it is shown that resulting signal/noise ratios are smaller than those obtained by the use of optinum l3uterworth filters.
621.372.54:621.372.2

61
Cascade Directional Filter--O. Wing. (IRE Travs. on Microwaye Theory ajon Techivile es, vol. MTT-7, pp. 197-201; April 1959. Abstract, Proc. 1RE, vol. 47, pp. 12851286; July, 1959.)
621.372.543.2:621.376

62
Transient Response of Band-Pass Filters to Modulated Signals-1). (). Mayne. (Proc. IEE, 1’t. C, vol. 100, pp). 144-152; September, 1959.) Laurent's low-pass band-pass transformation is used with suitable approximations to obtain the response 10 a suddenty applied carrier. The m-derived filter is analyzed.

621.372 .6

The Order of Complexity of Electrical Net-works-P. R. Bryant. (Proc. IELE, P't. C. vol. 10\%, pp. 174-188: September, 1950.) An expression for the order (i.e, the number of natural frequencies) is lerived for a RIC network. Complete sets of dynamically indenendent network variables are obtained from the network equations.
621.372.6:621-52

64
The Stability Criteria for Linear SystemsO. P'. D. Cutteridge. (Proc. IEE, I't. (', vol. 106, pp. 125-1.32; September, 19.59.) Tle various criteria can be obtained and interrelated by means of continued iractions. The Hurwitz determinants are condensed to about half their original order.
621.372.622:538.221:621.318.134

The Efficiency of a Ferrite as a Microwave Mixer-L. Lewin. (Proc. IEE, Pt. C, vol. 106, pip. 153-157: September. 1950.) It is shown theoretically that a polycrystalline ferrite should behave like a single-crystal sample. Magnetization measurements taken previonsly are explained by assuming a basic permeability line width of a fow gauss and a spread in resonant fields from point to point. The efticiency appears to be 14 db lower than for a contentional crystal mixer.

621.373

 66Selective Properties of an Oscillator System Synchronized by a Harmonic Signal-I'u. 1. Samoilenko. (Radiotckh. Elektron, vol. 4, pp. 39-42; January, 1959.) A theoretical investigation of the dependence of the amplitude and phase oscillations of an oscillator on the interference of a quasi-harmonic liMF. The effect on the system of harmonic and fluctuation noise is briefly examined.

621.373.4:621.391.822

67
On the Amplitude Fluctuation of Oscillations of Self-Excited Valve Oscillator-I. I. Gudzenko. (Radiotekh. Elektron., vol. 4, pp. 97-108; January, 1954.) Mathematical analysis of the amplitude fluctuations of an oscillator due to thermal noise and shot effect for the case of weak and strong modes of excitation.
621.373.421.13

Short-Time Stability of a Quartz-Crystal Oscillator as Measured with an Ammonia Maser-A. H. Morgan and J. A. Barnes.
（Proc．1RE，vol．47，p．1782；Octoher，1959．） Appreciable improvement in the short－time stability is achieved by immersing the crystal in liquid helium．Contrel of the pressure of the gas above the liquid impores the long－time stahility through adversely affecting the short－ time stability．

621．373．421．14 69
The Reactance Characteristics of Concen－ tric－Line Circuits with Interrupted Inner Con－ ductor－C゚．Borlen．（Flektrom．Rundschuu，vol． 12．ゥッ．335－3．38：（xtober，1058．）（Iscillator circuits in which the inner conductor is inter－ rumted，f．g．，those comprising disk－seal tubes， are investigated to determine the reactance as a function of gat and line section lengths． Normally the higher resomant frequencies of the circuit are not harmonice of the fundamental frequence：

621．373．43：621．374．5

70
Application of Delayed Feedback in Elec－ tronic Circuits－\％．Niral：（IBrit．J．Appl． Phys．，vol．10，［1］． 400 40．3；Senteuber，19．59．） A short general theory is given of a methot of generating periodic signals of controlled shape． Two simple applicatione of a dray line as a feedback loop are given．The signal frequency depends on the delay time and under certain conclitions on the triggering irequency，and this provides a method of measuring the delay time of an element in the feedback lonn．

621．373．431：621．376．32

71
Use of Relaxation Oscillators in the Genera－ tion of Frequency－Modulated Oscillations－ A．A．Vasilev．（Dokl，Akad．Nank SSSR，vol． 129，pp，85－87；November 1，1959．）An analy－ sis of the operation of a relaxation oscillator as a frequency modulator，with a series of diode circuits for transformation of the triangular waveform into sinusoidal form．
621.373 .44

72
Millimicrosecond Pulse Generator Capable of 10 Million Pulses per Second－M，Naké－ mura．（Rev．Ši．Justr．，vol．30，mp．778－782； September，1959．）The generator has a repeti－ tion rate of u_{p} to $10^{7} / \mathrm{second}$ ，pulse rise time less than $2.5 \mathrm{~m} \mu \mathrm{sec}$ and pulse widt hs from 2.5 （o） $2.5 \mathrm{~m} \mu \mathrm{sec}$ ．The negative output pulse is ad－ justable over a range of 0 to 12 volts into a 125 ！！load．There are facilities for gating， single pulses，and triggering from an outside source．

621．373．44：519．2

Electronic Probability Generator－G．M． White．（Rev．Sci．Instr．，vol．30，pp．825－829： September，1959．）Description of a ranclom－ pulse generator simulating the tossing of a coin soo times per second．The brobability of a par－ ticular side of the＂coin＂can be varied from 0 to 1.

621.373 .52

On the Problem of Starting Conditions of the Avalanche Process in Relaxation Oscil－ lators on Point－Contact Triodes－V．N． Takovlev．（Radiotekh．Elektron．，vol．4，pr．70－ 74；January，1959．）It is shown that the oscil－ lators can be considered as nonlinear voltage or current amplifiers．Conditions governing the formation of the avalanche process are given and formulas are derived for coefficients of voltage and current amplification．Circuits are shown．

621.374 .4

75
－Frequency Divider with Direct Lock－In－ T．S．Fedosova and K．A．Samoìlo．（Radiotekh．． Elektron．，vol．4，pr．4．3－53；January，1959．） Investigation is carried out by the phase－pulse methoul．The effect of phase shift in the feed－ back circuit and of anode reaction on the divider regime is considered．The effect of the
shape of the synchronized and pedestal pulses on the divider is also examined．Theoretical data atre verified by experimental results．

621．374．4：621．372．44：621．382．2
76
Generation of Harmonics and Subhar－ monics at Microwave Frequencies with $P-N$ Junction Diodes－1）．Leenov and A．Chlir， Jr．（I＇roc．IRE，vol．47，［भ．1724－1729； （October 1959．）The performances of a non－ linear resistance and a monlinear capacitance in a wide－band harmonic gemetator circuit are analyzed．The nonlinear capacitance is shown to have a considerably higher efficiency，Re－ sults of experiments with a graded－junction Si nonlineat－capacitance diode are given．

621．374．4：621．373．3．029．64

A New Microwave Harmonic Generator－ K．I）．Fromul．（．Vature，vol．184，suppl．no． 11 ， p． 808 ；September 12，1959．）Microwave power is used to maintain a very short metcury are between a＂bool＂cathode and a tungsten wire ＂anode＂（see 1722 of 1957 ）．With an estmated input power of a few watts at $2.5 \mathrm{kmc} / \mathrm{s}$ ，an output in excess of 1 mw was obtained at 10 $\mathrm{kmc} / \mathrm{s}$ ；a strong signal at $30 \mathrm{kmc} / \mathrm{s}$ was de－ tectal be a spectrum analyzer placed close to the are tube．

621．374．4．029．65：621．382．2

78
Improved Diode for the Harmonic Genera－ tion of Millimetre and Submillimetre Waves－ Ohl，Budenstein and Burrus．（See 344 ．）

621.375 .4

79
The Stability Factor and Static Gain of Transistor Amplifiers－（）．Ciralt．（Compt．rend． Acad．Sci．，Paris，vol．248，np．3415－3417； June 15，1959．）A general method relating the stability factor of disturbances of thermal origin to static gain is described．

621．375．4．078：621．316．86 80
Use of the Silicon Resistor in the dc Sta－ bilization of Transistor Circuits－J．T． Zakrewski and D．H．Mehrtens．（Nature，vol． 184，Suppl．no．11，pp．811－812：September 12， 1959．）Stabilization of grounded－emitter small－ signal stages over a wide range of temperatures is achieved with a Si resistor of high positive temperature coefficient in the emitter circuit

621.375 .432

81
Local Feedback in Transistor Amplifiers－ 11．Pfyffer．（Electronic Eingng．，vol． 3 t．D）．550－ 5．5：September，1959．）The effects of negative freelback on common－emitter amplifiers ate calculated and compared with the measured results．

621．375．9：538．569．4

82
Proposal for a Tunable Millimetre－Wave Molecular Oscillator and Amplifer－I．R． Singer．（IR1：Trans．on Microwaye Theory And Techniques，vol．MTT－7，pr． 268272 ； April，1959，Abstract．Proc．IRE，vol．47，p． 1286；July：1950．）

621．375．9：538．569．4
83
The Molecular Amplifier－11．C．Wolf．（Z． angezi．Phys．，vol．10，pp． 480 488；October， 19．58．）The principles of molecular amplification and the main charactoristics of the various types of maser are reviewed． 39 references．

621．375．9：538．569．4
84
Theory of Maser Oscillation－J．C．Kemp． （J．Appl．Phys．，vul．30，m．1451－1452；Sep－ tember，1959．）The experimentally observed amplitude－modulated nature of the signal from an inverted spin system undergoing maser os－ cillation or coherent spontaneous emission is explained．

621．375．9：538．569．4

85
Silvered Ruby Maser Cavity－I．G．Cross．
（J．Appl．Phys．，vol．30，1．14．59：September， 1959．）1＇reparation and properties are de－ scribed

621．375．9：621．372．44

86
Noise Figure of Reactance Converters and Parametric Amplifiers－1．van der Ziel．（ J ． Appl．Phys．，vol．30，1．1449：September．1959．） A simple derivation of nose figure correcting a formula of Heffner and Wade（ 77 of 1959）．

621．375．9：621．372．44
Phase Considerations in Degenerate Para－ metric Amplifier Circuits－（i，A．Klotzbangh． （1＇ROC．1RE，wol．47，IIP．1782－1783；October， 1959．）A theoretical examination of the nega－ tive resistance in the signalling circuit as a function of the phase angle betwern the［mmp and signal voltages．See also 1090 of 1958 （Bloom and Clang）．

621．375．9：621．372．44

88
Self－Quenching in Superregenerative Para－ metric Amplifiers－I．Hefni．（Flectronic Engng．， vol．31，p． 559 ；September，1959．）A qualitative reasoning of the behavior of cavity－type para－ metric amplifiers in the UHF range using Ge cliodes is given for the condition of self－bias， or external biats with highi internal resistance， applied to the diode．Increase in pump power makes frequency response multipeaked as with regenetative tube amplifiers in the coherent state．

621．375．9：621．372．44：621．385．6

Use of the Principles of Conservation of Energy and Momentum in Connection with the Operation of Wave－Type Parametric Ampli－ fiers－J．R．Pierce．（J．Appl．Phys．，vol，30， pp．1341－1346；September，1959．）Some limita－ tions on operation are explained in simple terms and certain general relations governing behavior，including the Manley－Rowe relation （ 2988 of 1950 ）ate derived．

621．375．9：621．372．44：621．385．6 90
The Quadrupole Amplifier，a Low－Noise Parametric Device－Wller，Hrbek and Wacle． （See 361．）

621．375．9：621．372．832．8

Analysis of a Negative－Conductance Am－ plifier Operated with a Non－ideal Circulator－ E．WV．Gard．（IRE Trans，on Microwaye Theory and Technigees，vol．MTT－7，pp． 288－293；April，1959．Abstract，I＇Roc，IRE， vol．47，1．1287：July，1959．）

621．375．9：621．372．85：621．318．134
92
The Gain of Travelling－Wave Ferromag－ netic Amplifiers－P．J．B．Clarricoats．（Proc． HEE（Iondon），Pt．C，vol．106，PI．165－173； Sentember， 1959.$)$ The gain of amplifier using a circular wayguide and axial ferrite rod of small cross section is determined by a general perturbation method．Methods for overcoming the low efficiency are discussed and other mossible waveguide configurations and practical aspects of construction are described．

GENERAL PHYSICS

530．12：538．569．4：621．375．9
Two Maser Experiments to Test General Relativity－H．Yilmaz．（Phys．Rev．J．ell．， vol．3，pp．320－321；October 1，1959．）A com－ parison of the velocities of light in two direc－ tions can be made to an accuracy within 1 in 10^{12} using maser techniques．The two experi－ ments involve such comparisons to test the pprinciple of equivalence and the local isotropy of the space－time continuum，respectively．
535.37

94
A Model of Phosphors on the Basis of Quantum Mechanics：Part 3－Transition Probabilities with Constant Defects and a Dis－
crete Spectrum-11. Stumpr. (Z. Nahurforsch., vol. 1.3a, pp, 171-183; March, 1958.)

Part 1:2691 of 1958.
Part 2: ibid., vol. 12in, rp. 465-478; June, 1956.
537.226

95
The Quantum Mechanical Theory of the Dielectric Orientation Polarization of Gases: Part 2-The Orientation Polarization of a Dipolar Gas consisting of Symmetric Spin Molecules in an Attenuating Electric Field-W. Maier and H. K. Wimmel. (Z. Phys., vol. 154, pp. 133-149; February 6, 1959.)

Part 1: 2901 of 1959.
537.322.2

96
Influence of the Thomson Effect on the $\theta-\phi$ Relationship for a Constrictive Resistance in Thermal Equilibrium-IV. Davies. (Vature, vol. 184, suppl. no. 13, p. 975; September 26, 1959.)
537.52

97
Investigation of a High-Frequency Resonant Discharge-A. A. Glazov and I). L. Novikov. (Zh. Trkh. Fiz., vol. 28, pp). 22952301; October, 1958.) An experimental sturly of a discharge in a magnetic field in the frequency range $50-100 \mathrm{mc}$. A theoretical and experimental analysis is made of the breakdown conditions and characteristics and the properties of the plasma in the discharge.

537.523

The Application of Schottky's Theory to Discharges with several Types of Ions and Excited Neutral Particles-J. Wilhelin. (Z. Phys., vol. 154, pp. 301-375; March 4,1959 .)

537.525

 99The Low-Pressure Plane Symmetric Dis-charge-li. R. Harrison and W. B. Thompson. (Proc. Phys. Soc. (London), vol. 74, pp. 145152; August 1, 1959.)
537.525

100
Pulse Technique for Probe Measurements in Gas Discharges-J. 1F. Wiamouth. (J. Appl. Phys., vol. 30, pp. 1404-1412; September, 19.59.)

537.533 .8

101
Frequency Multiplication by Secondary Electrons in the Centimetre-Wavelength Range -K. Krebs. (Z. Phys., vol. 154, pp. 19-26; January 19, 1959.) Fourier amalysis of the electron current produced by secondaryelectron resonance multiplication |see 737 of 1957 (Krebs and Meerbach)] shows that many harmonics are generated, so that the process appears suitable for frequency multiplication in the $\mathrm{cm} \lambda$ range.

537.56:538.56

102
Theory of Spatially Growing Plasma Waves -M. Sumi. (J. Phys. Soc. Japan, vol. 14, pp. 6.5.3-657; May; 1959.) See also 25.34 of August.

537.56:538.566

103
On the Growth of Longitudinal Waves Propagating in Plasma-f. F. Filimonov. (Radiotekh. Elektron., vol. 4, pp) 75 87; January, 1959.) An analytical treatment based on a single solution of the one-climensional linear kinetic equation describing the propagation of high-frequency signals produced by a given external force. It is shown that for a low temperature of the electron gas, it is possible to use the ordinary single-velocity approximation. The amalysis of the results permits a determination of the direction of propagation of natural waves in a plasma and al solution of the problem of the existence of increasing waves in a rectilinear electron beam.
538.221:538.569.4:537.311.62

Anomalous Skin Effect in FerromagneticsV. I.. Gurevich. (Zh. Tekh. Fiz., vol. 28, pp. 2352-2354; October, 1958.) A brief mathematical analvsis of the inomalous skin effect which is present in ferromagnetic materials at resonance at low temperature and at high frequencies when the depth of the skin layer is of the order of the length of a free path of the conduction electrons.

538.3

105
On the Singular Electromagnetic Field in the Born-Infeld Theory-S. Kichenassany. (Compt. rend. Acad. Sci., Paris, vol. 248, pp. 3690-3692; June 29, 1959.) It is shown that for this singular case the Born-Infeld theory gives the same results as Maxwell's theory.

538.566

106
Simple Derivation of Sommerfeld's Formula for the Dipole Function-O. Steiner. (Arch. elekt. Übertragung, vol. 12, 1pp. 457-462; October, 1958.)

538.566

107
Transmission and Reflection by a Parallel Wire Grid-M. T. Decker. (J. Res. .Val. Bur. Sland., vol. 6.31), pp. 87-90; July/August, 1959.) Fxperimental results are given for the transmission and reflection coefficients of a plane grid of parallel wires at frequencies near 9 kme. The results are compared with theory.

538.566:535.42

108
Diffraction by a Slit-R. Plonsey and Hwei-Piao Hsu. (J. Appl. Pliys., vol. 30, p. 1468: Scptember, 1950.) Sevoral methods of calculation of the aperture field are compared.

538.566:535.42

109
Diffraction of Electromagnetic Waves by Smooth Obstacles for Grazing Angles-J. R. Wait and A. M. Conda. (J. Res. Nai. Bur. Stand., vol. 6.3D, pı. 181-197; September/October, 1959.) "The diffraction of electromagnetic waves by a convex cylindrical surface is considered, Attemion is confined primarily to the region near the light-shadow boundary. The complex-integral representation for the fich is utilized to obtain a correction to the Kirchhoff theory: Numerical results are presented which illustrate the influence of surface curvature and polarization on the diffraction pattern. Good agreement with the experimental results of Bachynski and Neugebauer (3957 of 1959) is obtained. The effect of finite conductivity is also considered."
538.566:535.43

110
The Scattering of Electromagnetic Waves by a Corrugated Sheet-T. B. A. Senior. (Canad. J. Phys., vol. 37, pp. 787-797; July, 1959.) The "physical ontics" method is used to determine the scattering of a plane wave by a perfectly: conducting sheet having sinusoidal corrugations.
538.5^6.029.6:537.562

111
Microwave Conductivity of Slightly Ionized Air-H. Margenau and D. Stillinger. (J. Appl. Phys., vol. 30, pp. 1385-1387; September, 1959.) Values computed from experimental data are compared with others derived frons simple formulas.
538.569.4:535.853:621.372.413

112
Cavity Resonators for Dielectric Spectroscopy of Compressed Gases-HI. E. Bussey and (i. Birnbaum. (Rev. Sci. Instr., vol. 30, pp. 800804: September, 1959.) Tunable sealed-off resonators for frequencies $1,2,9$ and 24 kmc at pressures of $1000 \mathrm{lb} / \mathrm{in}^{2}$ are described.
538.569.4.029.65:535.853

113
Dispersion Measurements on $\mathbf{N a C l}, \mathbf{K C l}$
and KBr between 0.3 - and $3-\mathrm{mm}$ Wavelength -L. Genzel, 1I. Happ and R. Weber. (Z. Phys., vol. 154, ph. 13-18; January 19, 1959.) Report of tests made with the spectrometer described in 114 below:

538.569.4.029.65: 535.853

A Grating Spectrometer for the Far-Infrared Range and Short Microwaves-L. Genzel, H. Happ and R. Weber. (Z. Phys., vol. 154, pp). 1-12; January 19, 1959.) A special diffraction grating is incorporated in the equipment described which covers the wavelength range $0.2-4.5 \mathrm{~mm}$. For measurements below $1.2 \mathrm{~mm} \lambda$ the source is a mercury-vapor lamp; above 1 nm λ a klystron with frequency multiplier is used.
538.63
Negative and Oscillatory Longitudinal Magnetoresistance-K. Barrie. (Canad. J. Phys., vol. 37, pp. 89.3-896; July, 1959.) A report on the result of numerical calculations of the longitudinal magnetoresistance of semiconductors and semimetals for the case in which electron scattering is clue to the acoustic modes of the lattice vibrations and the magnetic field is so large that the quantization of the electron orbit is important.

538.632

116
Methods of Improving the Stability in Devices based on the Hall Effect-D. 1). Voelkov. (Zh. Tekh. Fiz, vol. 28, pl. 2248 2254; October, 1958.) The investigation shows that the main reasons for the temprature instability in these devices are a) the inhomogeneity of the crystal lattices of the sample and b) the rectification and the insufficient equipotentiallity of the Hall contacts.

539.12

117
A Comparison of the Charges of the Electron, Proton and Neutron-A. M. Hillas and T. E. Cranshaw. (Nathre, vol. 184, suppl. no. 12, pp. 892-893; September 19, 1959.) A report of experiments to determine whether matter in which there is an excess of neutrons is electrically neutral. For a comment by H . Bondi and R. A. lyttleton, see ibid., vol. 184, suppl. no. 13, p. 974 ; September 26, 1959.

GEOPHYSICAL AND EXTRATERRESTRIAL PHENOMENA

523.164:551.507.362.2 118

Measurement of Cosmic Noise at Low Frequencies above the Ionosphere-J. P. I. Tyas. C. A. Franklin and A. R. Molozzi. (Nahure, vol. 184, pr. 785-786; September 12, 1959.) A description of the basic design features of a $2-15-\mathrm{mc}$ frectuency-sweep radiometer. The equipment is to be launched as an artificial satellite for the measurement of cosmic noise.

523.164 .32

119
Solar Investigations in Japan-T. Khatanaka. (Priroda, no. 8, pp. 77-81; August, 1959.) A description of interferometric investigations carried out during the lGY by Tokyo Observatary, in the range $67-9500$ nic of the intensity distribution over the solar clisk. The radio, noise on 200 me seems to originate in the solar atmosphere $50,000 \mathrm{~km}$ above the visible solar surface. Recordings of radio noise betwern 200 and 9400 inc are shown and the relations of solar flares, magnetic storms and radio wave attenuation are considered.
523.164 .32

120
Observations of the Fine Structure of Enhanced Solar Radio Radiation with a NarrowBand Spectrum Analyser-O. Elgarioy. (Nature, vol. 184, suphl. no. 12, pp. 887-888; September 19, 1956.) An extension of the work (lescribed earlier (1141 of 19.58).
523.164.32:32:523.75

121
Association of Radio Outbursts with Solar Flares-1. D. de Feiter, A. D. Fokker and J. Roosen. (Nature, vol. 184, suppl. no. 11, pp. 805-806; September 12, 1959.) Data covering the period July, 1957-1)ecember, 1958 have been examined for a relation between RF bursts and flares. A greater-than-normal percentage of impulsive flares of importance 1 were accompanied by RlF bursts.

523.164.32:523.75

122
Distribution of Flares on the Selar Disk associated with Noise-L. R. McNarry. (Nature, vol. 184, suppl. no. 11, p. 806; September 12, 1959.) Results for periods bet ween June, 1957 and July, 1958 indicate that present conditions in the solar corona favor moise emission at l'Ilf from flase occurring in the northwest guadrant of the solat disk
523.164.32:523.78 123
Eclipse Observations of Microwave Radio Sources on the Solar Disk on 19 April 1958 H. Tanaka and T. Kakilumal. (Rept. Jonosphere Kesearch, Japan, vol. 12, pre 273-284; september, 1958 .) Results are given of abserwations of flux density: polarization and brightnese distribution made in , Tapan on four frequencies in the range 1000 me -9400 me.

523.164.32:550.385.4

124
On the Relation of Solar Eruptions to Geomagnetic and Ionospheric Disturbances: Parts 1 and 2-K. Simo and V. Hakura. (Rept. Ionosphere Research. Japan, vol. 12, pp. 285-300; : September. 195\%.) A statistical analysis of data indicates that the characteristics of solar RF bursts catu be related to S_{c} type stoms, slort-wate fades or a combination of both types of disturbances. Sce 1178 of 1959 (Hakura).

523.164 .4

125
Red-Shift Absorption Spectrum of the Cygnus-A Radio Source-R. 1). Davies and R. C. Jennisom. (Nature, vol. 184, suppl. no. 11, plp. 80.3-804: September 12, 1959.) Results do not confirm the observations of Lilley and McClain (Astrophys. J., vol. 12.3, pp. 172-17.5: January, 19.56.)

523.165

126
Terrestrial Corpuscular Radiation-A. E. Chudakov and E. V. (Forchakor. (Priroda, no. 8, pp. 86-89; August, 1959.) A note on the two Van Allen zones which are attributed to changed particles moving in closed trajectories formed by magnetic trabs due to the earthis magnetic field. A graph based on American and Russian rocket clata shows the variation of the intensity of those zones with height. A maximum intensity is recorded at a distance between 20 and $30 \times 10^{3} \mathrm{~km}$ from the center of the earth.

523.165

127
Fermi Acceleration of Electrons in the Outer Van Allen Belt-J. A. Crawforcl. (I'hys. Ker. l.ett., vol. 3. pr. $316-318$; October 1. 1959.)

523.34

128
The Physical Nature of the Surface of the Moon-(i. Fielder. (J. Brit. Interplanetary Soc., vol. 17, pp. 57-58; March/April, 1959.) "Evidence conerming the structure of the lunar rock is reviewed. It is probable that it is vesicular in nature.
523.75:621.391.812.5

129
Apparent Observation of Solar Corpuscular Clouds by Direct Continuous-Wave Reflexion -J. J). Kraus and W. R. Crone. (Nature, vol. 184, pp. 965 966; September 26, 1959.) A report of observations in Ohio of Doppler sig-
hals centered on 1.5 mo which were first recorded at 06.31 U.T. on 15 th April 1959. The observations are discussed in relation to a solar flare of importance 3 which reached a maximum at about 0900 ['.T. on April 13, 1959.

523.755

130
Kellogg and Ney's Model of the Solar Corona-D. E. Blackwell and 1). IV, Dewhirst: E. P. Ney and P. J. Kellogg. (Nature, vol. 184, pp. 1120-1123; October 10, 1959.) Critical comment on 2943 of 1959 and authors' reply.

550.38:551.507.362.1

131
Some Results Obtained by Measuring the Magnetic Field at the Earth with a Space Rocket-S. Sh. Dolginov and N. V'. I'ushaov. (Dokl. Akad. Nauk SSSR, vol. 129, pu. 77-80; November 1, 1959.) Results obtained using magnet nemeters with a range of $\pm 3000 \gamma$ and a telemetry chamel sensitivity of $000 \mathrm{\gamma} / \mathrm{V}$. where $1 \gamma=1 \times 10^{-5}$ oersted, indicate that at a distance of $2-5$ earth rarlii the magnetic field does not depend only on the earth potential but also on external sources such as charged solar barticles. Measured values, recorded by spate linckt, are lower than ralentated omes. The difference between these values reaches a maximum at $22 \times 10^{3} \mathrm{~km}$ and a minimum at $23 \times 10^{3} \mathrm{~km}$.
550.384

132
The Analytical Representation of the Geomagnetic Field-G. Fanselau and H. Kantzleben. (Geofis. pura e appl.. vol. 41, 111. 3372: September-December, 1958. In (German.) The representation of the geomagnetic field for the epoch 1945 by series of spherical functions ul, to 15 th order are discussed. Within the limits of accuracy reached the permanent geomagnetic field may be derived only with respect to sources within the earth.

550.385

133
On the Characteristic Intervals of Pulsations of Diminishing Periods ($10-1 \mathrm{sec}$) in the Electromagnetic Field of the Earth and their Connection with Phenomena in the Upper Atmosphere - V. A. Troitskaya and M. V. Mel'nikoval. (Dokl. Akad. Nank SSSR, vol. 128, jup. 917-920; October 11, 1959.) Investigation by high-speed recording of the daily variation of the earth's electromagnetic field has shown that during strong magnetic storms characteristic intervals of pulsation occur. The decreasing period of these pulsations can be directly comrelated with the sharp atmospheric disturbances and the development of aurora in lower latitudes. Records obtained during two scevere magnetic stoms in 19.58 are discussed.

550.385:551.510.536

134
Evidence concerning Instabilities of the Distant Geomagnetic Field: Pioneer I-C. P. Sonett, D. L. Judge and J. M. Kelso. (J. Geophys. Res., vol. 64, pr. 941-943; August, 1959.) A report of some preliminary observations suggesting directional instability in the field.

550.385:621.317.42

135
Measurement of the Rapid Fluctuations of the Earth's Magnetic Field-M. Sauzade and E. Stefant. (Compt. rend. Acad. Sci., Paris, vol. 248, pp. 3325-3327; June 8, 1959.) A ferroxcube probe in circuit with a photoelectric fluxmeter [3571 uf 1958 (Sauzade)] may" be used to observe fluctuations at frequencies up to $20 \mathrm{c} / \mathrm{s}$.

550.385.4

136
Geomagnetic Storms and the Earth's Outer Atmosphere-T. Obavashi. (Repl. Ionosphere Research, Japan, vol. 12, pp. 301-3.35; September, 1958.) Hydromagnetic oscillations of the
ionized outer atmosphere are considered theoretically and discussed in relation to observations of geomagnetic pulsations (see 3673 of 1959). The geomagnetic storm on February 11, 1958 is analyzed in terms of hydromagnetic disturbances in the outer atmosphere. During such storms a corpuscular "cavity" $2-5$ earth radii in size is formed enclosing the earth's magnetic field. A model of the interplanetary space is proposed. 42 references.

550.385.4(98)

 137On the Electric Field of the Polar Magnetic Storm-S. Akasofu. (Rept. Ionosphere Rcsearch, Japan, vol. 12, pp. 268 272; September, 1958 .) It is suggested that proton and electron streains rushing into the ionosphere have a common powerful polarized field betwen thein which might give rise to the currents associated with polar magnet ic storms.
$551.507 .362 .1+629.19$
138
The Laws of Motion of Artificial Celestial Bodies-lu. A. Kyabov. (Priroda, no. 8, pp. 11-18; August, 1950.) The critical velocities of artificial satellites are discussed and the observed trajectory of the first cosinic rocket launched on January 2,1959 is exanimed. A rocket designed to reach the moon must have an initial velocity of approximately 10,780 meters/second.
551.507.362.2 139
An Application of Dynamic Programming to the Determination of Optimal Satellite Tra-jectories-R. Bellmall and S. Dreyfus. (J. Brit. Interplanetary Soc., vol. 17, pp. 78-83; MayAugust, 1959.)

551.507.362.2

140
Orbits of Artificial Satellites-W. T. Thomson. (J. Brit. Interplanetary Soc., vol. 17, pp. 83-87; May-August, 1959.) Orbits are specified by three nondimensional parameters at rocket burn-out and expressions giving the periods of closed orbits in terms of the parameters are derived.
551.507.362.2

141
The Continued Progress of Satellite 1958$\delta 2$ (Sputnik III)-B. K. May and 1). E. Sinith. (Nature, vol. 184, pp. 765-767: September 12, 1959.) Report of the progress of the satellite since November 1, 1958 and of the methods used for predicting its flight at the Radio Research Station, Slough. Warlier progress has been reviewed by King-Hele (154.5 of 1959).
551.507.362.2:539.16

142
Satellite Observations of Electrons Artificially Injected into the Geomagnetic FieldJ. A. Van Allen, C. F. Mcllwain and (i. II. Ludwig. (J. Geophys. Res., vol. 64, ple 877891; August, 19.59.) The geomagnetically trapped electrons resulting from the high-altitude nuclear detonations of the Argus experiment have been observed on four radiation detectors in satellite 1958e (Explorer IV). The measurements for several satellite passes through the Argus "shells" are described and the significance of the results is summarized.
551.507.362.2:551.510.53

143
Mass-Spectrometer Measurements of the Ionic Composition of the Atmosphere by the Third Artificial Earth Satellite-V. (. Istomin. (Dokl Akal. ,Vauk SSSR, vol. 129, pi. 81-84; November 1, 1959.) Discussion of results obtained from an analysis of 15,000 mass-spect rograms taken between the 15 th and 25 th of May, 1958 at heights of $225-980 \mathrm{~km}$ in the latitude interval $27^{\circ}-65^{\circ} N$. Graphs show the variations of relative ionic intensity as a function of height and latitude. Above 500 km molecular ions are no longer observed.
551.507.362.2:621.391.812.33 144 The Faraday Fading of Radio Waves from an Artificial Satellite F. H. Hibberd. (J. Geophys. Res., vol. 64, p1. 945-948; August, 1959.) "Faraday fading of signals from an artificial satellite is analysed in terms of the difference between the Doppler shifts of the ordinary and extraordinary components in the ionospliere. A procedure is outlined for determining the vertical distribution of electron density in the upper ionosphere. Explanations are given for the apparently excessive values of electron content yidded by measurements of Faraday fading and for the observation that the rate of Faraday fading is not exactly inversely proportional to the square of the wave frequency."

551.507.362.2:621.396.969.35

145
Radio Detection of Silent Satellites-C. Roberts, P. Kirchner and D. Bray. (OST. vol. 43, рр. 34-35; August, 1959.) A brief description of the characteristics of reflected signals from a standard-frefuency transmitter within the skip distance received on 10, 15 and 20 mc . See also 3805 of 1958 (Kraus and Dreese).

551.510 .52

146
Diurnal and Semidiurnal Variations of Wind, Pressure, and Temperature in the Troposphere at Washington, D. C.-M. F, llarris. (J. Geophys. Res., vol. 64, pp. 983995 ; August, 1959.)

551.510.535

Turbulence at Meteor Heights-C. 0 . Hines. (J. Geophys. Res., vol. 64, pp. 939-940); August. 1959.) An outline of a new methorl of studying motions at meteor heights by assuming that they are perturbations associated with oscillating waves propagated through the atmosphere.

551.510 .535

148
Study of the New Model of the Ionosphere: Part 1-O). Burkard. (Cieofis. pura e appl., vol. 41. [1]. 13.3-140; september-1)ecember, 1958 . In (iemman.) The variation with height of the electron density is calculated for three cases, and good agreement is obtained between the morlel (370.5 of 1959) and the results of moon echo observations.

551.510 .535

149
Effect of Small Irregularities on the Constitutive Relations for the Ionosphere- K . G. Budden. (J. Res. Vat. Bur. Siand, vol. 6.3D, pp. 1.35-149: September/October, 1959.) A theoretical treatment of the modification of refractive index due to small irregularities. The latter may play an important part in the propagation of VIJF radio waves.

551.510 .535

150
Stratification in the Lower Ionosphere-C. Ellyett and J. M. Watts. (J. Res. Val. Bur. Stand., vol. 6.3D, pp. 117-1.34: September/(t)tober, 1959.) A surver of the evidence for stratification at heights below 100 km . Over 100 references.

551.510.535

151
Electron Collision Frequencies in Nitrogen and in the Lower Ionosphere-A. V. Phelps and J. L. Pack. (Phys. Req. Lell., vol. 3, pp. 340-342; October 1, 1959.) By using an improved version of the electron drift-velocity tube in the laboratory measurements, and an improved analysis of rocket data, the two sets of results are brought into agreement. Reevaluation of the rocket data involves the energy dependence of the electron collision frequency.

The Possible Occurrence of Negative

Nitrogen Ions in the Atmosphere-F.D. Stacey. (J. Ceophys. Res., vol. 64, pp. 979-981; August, 1959.) If negative ions are formed, and laboratory experiments show that they may be. a strong pressure demendence of the electron-ion recombination copficient is to be expected. At the very low F-region pressures, the rate of disappearance of free electrons could follow an attachment law.

551.510 .535

153
Tides in the F2 Ionospheric Layer-P. Hlerrinck. (.Vature, vol. [84, suppl. no. 14, pp. 105.5-1056; October 3, 1959.) A brief report of the results of a harmonic amalysis of the mean diurnal variation of the layer semithickness y_{m} tharing the period 1952-1958 at LiopotdvilleBinza, Belgian Congo.

551.510 .535

 154A Theory of Spread F based on a Scatter-ing-Screen Model-I. Renau. (J. Geophys. Res., vol. 64, рр. 971-977; August, 1959.) Oblique rays from the sounder are scattered by a scattering screen into the F region whence they are reflected back to the sounder. For frepuencies apmeciably higher than the Fregion penetration irequency, there is a linear relation between the minimum virtual height of the returned signal and the operating fiequency: All virt ual heights above this minimum value and below the normal vertical incidence value are possible; this fact aceounts for spread echors being enclosed by two sharply defined boundaries. This hypothetical picture agrees with that obtained from acthal jonograms but requires that the screen be above E-region heights.

551.510.535

155
Magnetic Control of the Variations of the Critical Frequency of the F_{2} Layer of the Ionosphere-R. (i. Rastogi. (Canal. J. Phys., vol. 37, mp. 874-879: July, 1959.) The true magnetic latitude reference is shown to give more satisfactory results than the idealized geomagnetic latitude reference when considering diurnal and latituelinal variations of $\mathrm{i}_{0} \mathrm{~F}_{2}$ at low latitudes. See also 224.5 of July, 1959.

551.510 .535

 156Measurement of Ionospheric Electron Densities using an RF Probe Technique-I. E . Jackson and J. A. Kane. (J. Geophys. Res., vol. 6t, 1p. 1074-1075; August, 1959.) The probe consists of a 28 -foot dipole operating at 7.75 mc and has been flown in a rocket over Fort Churchill. Above 110 km it behaves as a capacitor, the capacitance of which is telemetered to the ground. The local electron density in the ionosphere may be calculated from these values be using a simplified form of the Appleton-Hartree equation. The electron densities obtained using such probes are in good agreement with those obtained by normal methods.

551.510.535:523.164

157
Investigation of Winds and Inhomogeneities in the Ionosphere using a RadioAstronomy Method-1'. V'. 'itkevich and lu. L. Kukurin. (Radiotekh. Electron., vol. 4, pp. 17-20; January, 1959.) Description of measurements made using three parabolic mesh-type reffectors of area $170 \mathrm{~m}^{2}$ spaced approximately 300 meters apart, and operating at a wavelength of 6 meters. Ionospheric wind velocities of $70-90$ meters $/$ second were recorded.
551.510.535:621.391.812.63

158
Ionospheric Investigations using the SweepFrequency Pulse Technique at Oblique Inci-dence-V. Agy and K. Davies. (J. Res. Nat. Bur. Stand., vol. 6.3D, pp. 151-174: September /October, 1959.) A review of oblique incidence investigations, especially those carried out at the National Bureau of Standards showing
diurnal and seasonal variations on two eastwest paths of 1150 km and 2.370 km . There is a discrepancy of about 3 per cent between the observed and calculated MLF.

551.510.535:621.391.812.63 159
 The D Region of the Ionosphere-(See 307.)

551.510.536:539.16

160
The Argus Experiment-N. C. Christofilos. (J. Geophys. Res., vol. (04, pp). 8(0)-875; August. 1959.) "A geophysical experiment on global scale was conducted last fall. Three small Abombs were detonated beyond the atmosphere at a location in the south Atlantic. The purpose of the experiment was to study the trapping of the relativistic electrons (produced by the β decay fission fragments) in the geomagnetic field. The released electrons are trapped by this field oscillating along the magnetic lines between two mirror points. In addition to this motion the electrons drift eastward, creating a thin electron shell around the earth. The lifetime and location of the thus-created global clectron shell were meatsured by satellite- and rocket-borne instruments, Auroral huminescence was observed at the conjugate points. The electron shell exhibited remarkable stability during its lifetime. No motion of the shell or change in its thickness was detected."

551.510.536: 539.16

161
Optical, Electromagnetic, and Satellite Observations of High-Altitude Nuclear Detonations: Part 1-1'. Newman. (J. Geophys. Res., vol. 64, pp. 92.3-9.32; August, 1959.) "Ater each of the high-altitude detonations in the Argus experiment, visual auroras were observed in the detonation area. After the third event an aurora was observed in the conjugate areat. After the second and third events, signals attributed to hydromagnetic waves were detected in the conjugate region; these sigmals hat a periodicity of about 1 cyele/second. The maximum change in the magnetic field was about 1 gamma. If propagated along the magnetic line of force the velocity was about $2000 \mathrm{~km} / \mathrm{second}$. Sporadic E was observed after the third event in the conjugate area. Comparative records of the 5577 A and 3914 it lines were obtained in the detonation area.

51.510.536:539.16

Optical, Electromagnetic, and Satellite Observations of High-Altitude Nuclear Detonations: Part 2-A. M. Peterson. (J, (Geophys. Res., vol. 64, mp. 933-938; August, 1959.) "The radio effects of the Argus detonations were measured using a) 30 -me radars designed to obtain echoes from the aurora or from the earth's surface mirrored in an enhanced ionospheric layer, b) VIF receivers for monitoring distant transmitters or atmospheric noise sources in search of changes in signal strength, c) riometers for recording cosmic noise absorption or VIIF shot-created noise at 30, 60, and 120 mc . Results incluted 1) auroral echors in the vicinity of the launch moint after all three shots and near the conjugate points after the first and third shot, 2) sudden depressions of 6 to 12 db of the signal from Figland (19.6 kc) at Madrid and the Azores, 3) no ionospheric absorption at the conjugate location.

551.510.536:539.16

163
Project Jason Measurement of Trapped Electrons from a Nuclear Device by Sounding Rockets-I.. Allen, Jr., J. I.. Beavers, II, W. A. Whitaker, J. A. Welch, Jr., and R. B. Walton. (J. Geophys. Res., vol. 64, p]. 893-907; August, 1959.) High-altitude soumding rockets have been used to observe electrons injected into the geomagnetic field from the high-altiturle nuclear detonations of the Argus experiment. The
results of these observations agree with those measured by satellite Explorer IV. The trapping of neutron decay β particles from largeyield high-altitude explosions in the Pacific was also observed.

551.510.536:539.16

164
Theory of Geomagnetically Trapped Electrons from an Artificial Source-J. A. Welch, Jr., and W. A. Whitaker. (J. Geophys. Res., vol. 64, pp. 909-922; August, 1959.) The history of electrons resulting from the high-altitude nuclear detonations of the Argus experiment is treated theoretically, and the results are compared with the Jason rocket data and the Explorer 1V satellite data.

551.594 .21

165
Modern Theories of Thunderstorm Elec-trification-J. A. Chalmere. (Giofis. pure c appl., vol. 41, pp. 189-193; SeptemberDecember, 1958. In English.) (ritical comparison of theories [e.g., 444 of 1957 (Wilson)]. Suggestions are made for investigations to determine the correctness of convection theories. 18 references.

551.594.221

 166Very-Low-Frequency Radiation Spectra of Lightning Discharges-W. I. Taylor and A. (i. Jean. (J. Res. Vat. Bur. Stand., vol. 6.3I), pp. 199-204, September/(c (oher. 1959.) An analysis is given of the ground-wave portion of 33 "sferics" waveforms recorded from cloud-to-grounc| discharges between 150 and 600 km from Boulder, Colo. Fieduencies of peak energy lie between 5 and 20 kc .

551.594.5

167
Diurnal Variation of Aurora and Geomagnetic Disturbance at New Zealand Antarctic Stations-T. Hatherton and G. (;. Miflwinter. (Nature, vol. 184, sumpl. no. 12, ip. 889-890; Septentber 19. 1959.) A relation exists between aurora and geomagnetic disturbance but the main features of diurnal variation of auroral incidence are not related to local geomagnetic variations.

551.594.5

168
Low-Frequency ($100-\mathrm{kc} / \mathrm{s}$) Radio Noise from the Aurora-R. L. Dowrlen. (A) Athere. vol. 184, supisl, no. 11. 11. 803; September 12. 1959.) Strong RF noise, recorded on one occasion at frequencies up to 180 kc is reported.

551.594.5:550.385

Auroras, Magnetic Bays, and ProtonsR. (C. Bless, C. W. (iartlein, I). S. Kimball and G. Spragute. (J. Gpophys. Res., vol. 64, np. 949953: August, 1959.) Observational evidence indicates that aurora and magnetic bays both have the same cause and occur at the same geographic location. Calculations show that these batys can be explained by a wind novement of positive ions generated by incoming solar protons.

551.594 .6

170
Observations of "Whistlers" and Very-Low-Frequency Phenomena at Godhavn, Greenland-F:. l'ngstrup. (.Vature, vol. 184, suppl. no. 11, pp. 806-807; September 12, 1959.)

LOCATION AND AIDS TO NAVIGATION

621.396.96

A Unified Analysis of Range Performance of C.W., Pulse, and Pulse Doppler RadarJ. J. Bussgang, P. Nesbeda and 11. Safran. (PROC. IRE, vol. 47, pp. 1753-1762; October, 1959.)
621.396.96:621.391.82

172
Detection of a Signal in Normal Noise and Chaotic Reflections-1: D. Zubakov. (Radio-

Wkh. Flektron., wol. 4. [1). 28-38; Jamary, 1959.) Examination of the mathematical theory of optimum detection of radar signals in the presence of noise and reflection from local objects.

621.396.96: 621.391.82

173
Realistic Simulation of Radar Clutter-J. Atkin, H. J. Bikel and M. Weiss. (Electronics, vol. 32, ply. $78-81$; selstember 25, 19.59.) A Gaussian noise source at 30 mc and a delay line are used.

621.396.969.3

174
Radar Echoing Area Polar Diagram of Birds-J. Edwards and li. W: Ifoughton. (.Vature, vol. 184, suppl. no. 14. p. 1059; ()etober 3, 1959.) Measurements have berm made with a high-resolution X-band radar, of the echoing area of single birds in various attitucles of Hight.

621.396.969.30

175
Electromagnetic Back-Scattering Measurements by a Time-Separation Method - C C. C. H, Tang. (IRE I'rais. on Mifomwive Theory and Techniques, vol. MTT-7, ph. 209 213; Abstract, Proc. IKE, vol. 4h, , 1286; July, 1959.)

MATERIALS AND SUBSIDIARY TECHNIQUES

535.215:546.23

170
Saturated Photocurrents in Hexagonal Selenium-M. Polke, (;. Storch and F. Stïckmann. (Z. Phys., vol. 154, pi. 51-61; Jantary 19. 1959.) The photoconductivity of thin vapor-deposited se films was innvestigated in the temperature range -180° to $+20^{\circ} \mathrm{C}$

$535.215+535.37: 546.48$ '221 177

Photoconductivity Excitation and Luminescenoe Spectra of CdS Crystals-V. 1. Broude, V. V. Eremenko and V. S. Medvedev. ($Z \mathrm{~h}$. Tekh. Fiz., vol. 28, pp. 226.3-226.5; ()ctober, 1958.) Investigation at $20^{\circ} \mathrm{K}$ showed a close relation between the yellow luminescence and photoconductivity in Cils crystals. It also revealed two types of orange luminescence oi difierent origin.

535.215:546.48'221

178
Nonstationary Processes in Photoconductors: Part 2-Slow Build-Up of Photoconduction in CdS Single Crystals for Low Excitation Intensities-k. W. Beier and W. Wantosch. (.4 m . Phys., Lps., vol. 2, píp. 406-412: January 27,1959 .)

Part 1: 1061 of 19.56 (Bijer and V'ogel).

535.215:546.48'221
 179
 Photosensitive Spin Resonance in CdS-

 J. Lambe, I. Baker and C. Kikuchi. ($P^{\prime} h y s$. Rez. Lepll, vol. 3, mb. 270-271: September 15, 1959.) Direct observation and ittentification of a trapping center in Colsi crystals with traces of iron impurities is reported
535.215:546.48'221

180

Photoconduction of Activated Cadmium Sulphide Layers with Electron ExcitationF. Lature. (Z. Phys., vol. 154, prl. 267-285; March 4, 1950.) Report on investigations of reversible changes of conductivity in molyerystalline activated cols layers under constant and modulated bombardment with electrons of energy $10-80 \mathrm{kev}$.

535.215:546.48'221

 181Investigation of the Spectral Distribution of Photoconductivity in CdS Single Crystals at 77 and $20^{\circ} \mathrm{K}-{ }^{\circ}$. 1. Broude, V^{\prime}. V^{\prime}. Eremenko and M. К゙. Sheinkman. (Zh. Tekh. Fiz., vol. 28, pp. 2142-21.51; October, 1958.) An examination of the spectral dependence of the photocurtent and the photocarrier lifetime and also of the
relation of these magnitules to the absorntion coefficient of light at different wavelengths.
535.215:546.48'221:537.311.33

182
Investigations of Charge-Carrier Diffusion and other Forms of Energy Transport in CdSJ. Auth and R. Riddler. (Ann. Phys., L.pz.. vol. 2. pp. 351-364; January 27, 1959.) The distribution of charge-carrier concentration in partially illuminated Cll crystals is investigated at room temperature and at $80^{\circ} \mathrm{C}$ using the method described in 292 of 1957 (Auth and Niekisch).
535.215:546.561-31

183
Spectral Distribution of Photoconductivity in $\mathrm{Cu}_{2} \mathrm{O}$ Crystals at $20^{\circ} \mathrm{K}-\mathrm{V}$. V. Eremenko. (Zh. Tekh. Fiz., vol. 28, ple. 2261-226.3; (Wetuber. 1958.) Investigation of the absorption speetrum of Cugo at low temperature reveals a number of narrow lines or exciton lines which, by confirming the mechanlsur of the internal photoeffect, have a maximum disposed at the fringe of the light absorption in the crystal. Results of a comparison of the spectrum with the spectrum distribution of photoconductivity at low temperature are shown graphi\cdots,

535.215:546.817'221

184
Modification of PbS Noise Spectra by Radiation-R. L. Williams. (Canted. J. Phys., vol. 37, pp. 841-847; July, 1959). Detailed wavelength st udies at $\mathrm{C}_{2} \mathrm{CO}_{2}$ remperatura have shown that generation-recombination noise can be obtained with light of the $2.4-\mu$ region and $1 / \mathrm{f}$ noise with radiation of the $1.0-\mu$ region.
535.215-15

185
Relationship between Signal-to-Noise Ratio and Threshold of Response of Infrared Photoconductors Limited by Generation-Recombination Noise-IV. E. Spicer. (J. Appl. Ples.. vol. 30, pp. 1381-1384; September, 1950.) The signal/noise ratio varies as exp $\beta / i / 2 k T_{0}$, where $E i$ is the threshold response of the photoconductor, T_{D} its temperature. and β is a constant between 1 and! .

535.37:535.215

186
The Temperature-Dependence of the Fluorescence of Photoconductors-H. A. Klasms. (J. Phys. (Chem. Solids, vol. 9, pi. 18.5 197: March, 1959.) Theoretical discussion of the effect of temperature on a two-state model of a Huorescent photocontluctor

535.37:546.47'221

Associated Donor-Acceptor Luminescent Centres in Zinc Sulphide Phosphors-E. F. Apple and F. E. Williams. (J. Electrochem. Soc., vol. 10(, pn. 224-230; March, 1959.) A comprehensive study of $\mathrm{ZnS}-x$ (C'u or Ag), y (Cat or In) shows two emission bands. The shorter wavelength band does not involve the ground state of the coactivat or or donor whereas the longer wavelength band does. Both bands involve the ground state of the activator or acceptor.

537.37:546.47'221

188
ZnS Phosphòrs with P, As, Sb, Coactivators -IE. F. Apple. (J. Electrochem, Soc., vol. 106. pp. 271-272; March, 1959.)

535.37:546.47'221

189
Emission Spectrum of Copper-Activated Zinc Sulphide in the Region of Partial Thermal Extinction-H. Payen de la Caranderie and 1). Curie. (Compt, rend. Acud. Sci., Püis, vol. 248, pp. 3151-31.53; June 1, 1959.) Interaction between ontical centers and the crystalline lattice accounts satisfactorily for the effects observerd.
535.37:546.47'221

190
Changes in Trapping Levels of Zinc Sul-
phide Phosphors Resulting from Positive-Ion Bombardment-W. T. Allen and C. II. Bachman. (J. Electrochem. Soc., vol. 106, pp. 211 217; March, 1959.) Report of experimental procedure and the results obtained from measurements of the amount of visible light emitted by $\mathrm{ZnS}-\mathrm{Ag}$ phosphors 5.0 msec after excitation by weak ultraviolet radiation. Bombardment by ions caused an increase in the number of traps at the lowest trapping level 0.28 ev deep as well as the creation of new traps at depths slightly greater and slightly less than 0.28 ev . This effect was independent of the ions used for bombardment. New traps also appeared at deeper trapping levels: 0.37 ev for $\mathrm{Ar}^{+}, 0.38 \mathrm{ev}$ for $\mathrm{H}_{2}{ }^{+}$, and 0.39 ev for $\mathrm{O}_{2}{ }^{+}$ion bombardment.
535.37-15:538.569.4

191
Paramagnetic Resonance Detection of the Optical Excitation of an Infrared Stimulable Phosphor-R.S. Title. (Phys. Rev. Letl., vol. 3, ple. 273-274: Septembet 15, 1959.) The results for SrS -Eu,Sm agree with those obtained by other methods and support the simplified bandtheory model.
535.376:546.561-31 192
Electroluminescence at Point Contacts in Cuprous Oxide and the Mobility of Cu^{+}Ions at Room Temperature-R. Frerichis and 1. Liberman. (Phys. Rev. Lell., vol. 3, pl). 214-21.5; September 1,1959 .) The measured value of the mobility is about $5 \times 10^{-10} \mathrm{~cm}^{2} /$ volt-second.

$537.226+538.221$

193
Arrangement of Boundary Surfaces between Dielectrics or Ferromagnetics- K. Funk. (Elektron. Rumdschau, vol. 12, DP). 349 350); October, 1958.) An increase in capacitance or reduction of losses in capacitors or ferrite cores with air gat can be achieved by suitably shaping the boundary surfaces.

537.226

194
Relaxation Polarization Dielectrics. An Assessment of the System ($\mathrm{Sr}, \mathrm{Ba}, \mathrm{Ca}$) $\mathrm{TiO}_{3^{-}}{ }^{-}$ $\mathrm{Bi}_{2} \mathrm{O}_{3}-\mathrm{TiO}_{2}-\mathrm{R}$. M. Glaister and J. W. Woolner. (J. Electronics Control, vol. 6, inp. 385-396; May, 1959.) (eramic solid solutions of the system $\mathrm{SrTiO}_{3} \mathrm{Bi}_{2} \mathrm{O}_{3} \cdot n \mathrm{TH}^{2} \mathrm{O}_{2}$, with n from 0 to 4, have been investigated, and the effects of substituting Bat or Ca for Cr studied. Results of measurements of permittivity and loss tangent are given.

537.227

195
New Ferroelectrics of the Complex Forms $\mathrm{Pb}_{2} \mathrm{Fe}^{3+} \mathbf{N b O}_{6}$ and $\mathbf{P b} \mathrm{Y}_{2} \mathrm{Yb} \mathbf{N b O}_{6}$ (i. A. Smolenskii, A. 1. Agranovskaya, s. N. Popor and V.A. Isupov. (Zh. Tekh. Fiz., vol. 28, pp. 21.522153; ()ctober, 1958.) A brief report of an investigation of the temperature dependence of dielectric conductivity and loss angle.

537.227/.228.1

196
Dielectric Polarization and Piezoelectric Properties of Ferroelectric Solid Solutions Consisting of Metaniobates of Calcium, Strontium and Barium in Lead MetaniobateV. A. Isupov and V. 1. Kossakov. (Zh. Tekh. Fis., vol. 28, ps. 2175-2185; ()ctober, 1958.) An investigation of the dependence of the Curie temperature of these solutions on the content of lead metaniobate. The spontaneous polarization in these polycrystalline specithens has a value greater than 20 microcoulombs $/ \mathrm{cm} .^{2}$ l'iezoelectric characteristics are shown graphically
537.227:546.431'824-31 197
Theoretical Treatment of the Movement of 180° Domain in BaTiO_{3} Single Crystal-R. Abe. (J. Phys. Soc. Japan, vol. 14, np. 633642; May, 1959.)
537.227:546.824-31

198
Ferroelectric Properties of a Material made
of Titanium Oxide-L. Nicolini. (Nuoto Cim., vol. 1.3, pp. 257-264; July 16, 1959. In English.) A rejort of tests made to prove the existence of ferroelectric properties in a ceramic-type material prepared from TiO_{2} by a technique described in 1048 of 1953.
537.228 .1

199
Lead Zirconate Piezoelectric CeramicsA. E. Crawford. (Brit. Commun. Electronics, vol. 6, pp. 516-519; July, 1959.) The effects of additives on the characteristics of lead-zirconate-titanate are briefly discussed. See also 4086 of 1959 (Jaffe).

537.311.31:538.632

200
Hall Effect in Copper and $\mathrm{Cu}_{3} \mathrm{Au}$ at Low Temperatures-W. F. Love. (J. Phys. ('hem. Solids, vol. 9, pp. 281-284; March, 1959.) Measurements on single crystals at temperatures down to $4^{\circ} \mathrm{K}$.
537.311 .33

201
Semiconducting Compounds with a General Formula $\mathrm{ABX}_{2}-1$: 1 . Zhuze, V. M. Sergeeva and E. I. Shtruni. (Zh. Tekh. Fiz., vol. 28. pJ. 2093-2108; October, 1958.) Investigation of ternary compounds which crystallize in the chalcopyrite ($\mathrm{Culos} \mathrm{S}_{2}$) pattern and which were first synthesized in 1953 by Ihahn. Data are givern on new compounds some of which crystallize in tetragonal systems. All these compounds proved to be semiconductors.

537.311 .33

202
$P-N$ Junctions at Low TemperatureB. M. Vul. (I)okl. 1 kad. Nank S.SSR, vol. 129 , pl). 61-63: November 1, 1959.) The investigation shows that at a sufficiently low absolute temperat ure T, when the energy of ionization in semiconductors is less than $k T$, where k is the Boltzmamn constant, the electron concentration in the conduction band and the hole concentration in the valence band are very low compared to the impurity concentration.

537.311 .33

203
Delineation of Junctions in Semiconductors by Electroscopic Powders--I. A. Amick and B. Goldstein. (J. Appl. Phys., vol. 30, pi). 1471-1472; September, 1950.) Materials are used in the form of dry powders or suspensions of triboelectrically charged powders. Techniques and observed results are described.
537.311 .33

204
The Influence of Internal Electric Fields in a Semiconductor on its Field Emission-M. 1. Elinson. (Rudiotekh. Elektron., vol. 4, pp. 140142; January, 1959.) A brief mathematical analysis.
537.311.33:535.215
Measurement of Minority-Carrier LifeMeasurement of Minority-Carrier Lifetime by means of the Surface Photovoltaic Effect-P. Gosar. (Compl. rend. Acad. Sisi., Paris, vol. 248, 117. 3139-3141: June 1, 1959.) A calculation is mate of the concentration of minority carriers near the illuminated surface of a semi-infinite semiconductor. Results are in quantitative agreement with measurements of rate of signal decas:

537.311.33:538.632:621.317.3

206
Hall Effect Measurement in Semiconductor Rings-R. G. Pohl. (Rev. Sci. Instr., vol. 30, pp. 783-786; September, 1959.) The ring is placed in an alternating magnetic field nomal to the plane of the ring. The current induced in the ring interacts with the field to produce a Hall voltage between the inner and onter edges which can be expressed as a function of parameters of the material. The advantages of this method are described and mobilities determined using this and normal technigues are compared.
537.311.33:546.28

Energy Bands in Silicon Crystals-1: Bassani. (Nuovo Cim., vol. 13, py. 244-245; July 1, 1959. In English.) An extension of the work described in 1178 of 1958 to include energy values at the points where K is equal to $2 \pi \mathrm{a}^{-1}\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$ and to $2 \pi \mathrm{a}^{-1}\left(\frac{1}{2}, 0,0\right)$.
537.311.33:546.28 208
The Solubility of Orygen in Silicon-1I. J. lirostowski and R. 1I. Kaiser. (J, Phys. Chem. Solids, vol. 9, pp. 214-216; March, 1959.) "The intensity of the fine structure of the $1100 \mathrm{~cm}^{-1}$ silicon-oxygen absorption at $4.2^{\circ} \mathrm{K}$ has been used to determine the tem-perature-dependence of the concentration of oxygen in solid solution. Above $1000^{\circ} \mathrm{C}$ the logarithm of this concentration is a linear function of the reciprocal of the absolute temperature, and the heat of the precipitation reaction is $22 \pm 2 \mathrm{kcal} /$ mole."

537.311.33:546.28

Effect of Oxygen in Silicon on Phosphorus Diffusion-I. L. Hartke. (J. Appl. Ihys., vol 30, pI, 1469-14i0; September, 1959.)

537.311.33:546.28

210
The Diffusion of Impurities into Evaporating Silicon-R. L. Batdorf and F. M. Smits. (Bell. Lab. Record, vol. 37, pp. 330-333; September, 1959.) A vacuum system for the simultancous diffusion of 1 ' and Ga into evanorating Si is described.

537.311.33:546.28

211
Investigation of Surface Conditions during Impurity Diffusion in Silicon-G. Feutlade. (Compl. rend. Acad. Sci., Paris, vol. 248, 11). 3136-3138: June 1, 1959.) A "limiting condition" for diffusion is defined and diffusion processes are classified in three groups according to the nature of the surface reactions.

537.311.33:546.28

Hot Electrons and Carrier Multiplication in Silicon at Low Temperature - $I \mathbb{I}$. Kaiser and G. 11. Wheatley. (Phys. Rev. Lefl., vol. 3, 1pp. 3.34-336; (Ictober 1, 1959.) At temperatures where most carriers are frozen out on impurity levels, new effects of an applied electric fielid are observed. The electrical resistivity and Hall corefficient in phosphorus-doped silicon were measured at $20^{\circ} \mathrm{K}$ as a function of the electric field (0.5 to $10^{3} \mathrm{v} / \mathrm{cm}$), particular attention being paid to the breakdown region.

537.311.33:546.28:535.215

213
On the Current/Voltage Characteristic of Diffusion-Type Silicon $n-p$ Junctions- V^{\prime}. M. Tuchkevich and V. E. Chelnokow. (2h. Tekh. Fis., vol. 28, pi. 2115-2123; ()ctober, 1958.) The samples were illuminated by a 500 -watt lamp provided with a water filter in order to cut out the infrared part of the spectrum. The V/I characteristic and temperature dependence of the photovoltage and whotocurrent of these junctions are shown graphically:

537.311.33:546.28:535.37

214
Recombination Light Emission and Electron Multiplication in Silicon-S. Müller. (Z. Vaturforsch., vol. 13a, pp, 240-241; March, 1958.) The effect noted earlier |c.g., 1088 of 1956 (Newman)] is investigated by tests on n-type Si disks with resistivity $10 \Omega \mathrm{~cm}$ to determine whether carrier multiplication occurs at the luminous regions. The results are in agreement with the assumption of Chyoweth and McKay (3096 of 1956).

537.311.33:546.28:535.37

215
Visible Light Emission from Metal/Silicon Contact-M. Kikuchi. (J. Phys. Soc. Japan, vol. 14, p. 682; May, 1959.) A brief report on the appearance of light spots at a back-biased contact, and correlation with its photoresponse.
537.311.33:546.28:539.12.04

216
Electron Bombardment of Silicon-1). E. Hill. (Phys. Rev., vol. 11t, pp. 1414-1420; June 15, 1959.) After bombardment with highenergy electrons, the following properties of single-crystal si were measured: carrier removal rate and temperature dependence of resistivity and Hall coefficient.
537.311.33:546.28:539.12.04

217
Some Effects of Fast Neutron Irradiation on Carrier Lifetimes in Silicon-R. W: Beck, E. Paskell and C. S. Peet. (J. A ppl. Phys., vol. 30, pı. 14.37-14.39; September, 19.59.)
537.311.33:546.28:621.314.63

218
Silicon as a Material for Power RectifiersF. W'. (i. Rose, J. Shields and 1. Williams. (Trans. S. Ifr. Inst. Elec. Eng., Vol. 49, 1tt. 12. pp. 391-410; December, 1958. Discussion, pp. 410-416.) A review with 50 references.

537.311.33:546.289

219
Effect of Various Etches on Recombination Centers at a Germanium Surfaces- (F . Wallis and s. W"ang. (J. Electrochem. Soc., vol.106. ph). 231-2.38; 1 \because (roh, 1959.) (ie samples were
 and silver etch. Iodine A and electrolytic etches produce recombination centers of one type and the remaining etches eenters of anothar tapr. The affects of baking on the etched simples are disensed.

537.311.33:546.289

220
Investigation of the Industrial Etching of the Surface of Single-Crystal Germanium before Fusing Indium into It - R, E. Smolvanskiĭ, V. M. Gunevich, A. M. Rallkhlinand M. 1. L.ukasevich. (Zh. Tekh. Fiz., vol. 28, j1. 21.352141 ; ()etober, 1958.) The thiekness of the (ie surface layer distorted by cutting and perlishing is found to be 90μ. some terhmical advice is given concerning the etching of (i w to be used in different tepers of apparatus and hatving a fused In-(ie $p-n$ junction. The best etching solution was found to be one of Na()H in Hus).
$\begin{array}{lr}\text { 537.311.33:546.289 } & 221 \\ \text { Micropyramids on Germanium Formed }\end{array}$
Micropyramids on Germanium Formed during Microalloying - R. Zuleeg. (J. Appl. Phys., vol. 30, pD. 1461-1462; S.plember. 1959.)

537.311.33:546.289

222
g-Factor of Electrons in GermaniumL. M. Koth and B. Lax. (Phys. Rev. Left., vol. 3. pp. 217 219: September 1, 1959.) Theoretical and experimemtal values are compared.

537.311.33:546.289:534.2-8

223
Attenuation of Sound in a Germanium Crystal at Ultra High Frequencies and Low Tem-peratures-E. R. Dobbs, 13. B. Chick and R. Truell. (I'hys. Rey. Lett., vol. 3. bip. 332-.3.34; (October 1.1959.) The ultrasonic attentations of compressional and shear waves in a high purity (ie crystal were measured at frequencies up to 6.50 mc and temperatures down to $1.5^{\circ} \mathrm{K}$. Results at the highest fremuencies bat room temperature show (evidence of dislocation resonance. Attenuation is wery small at temperatures bolow about $20^{\circ} \mathrm{K}$.

537.311.33:546.3-1'87'86

224
Temperature Dependence of the Electrical Properties of Bismuth-Antimony AlloysA. I. Jain. (Phys. Reri, voi. 114, pl. 15181.528: Jume $1.5,19.59$.) Resistivity, Hall effect and lattiere batameters are disetssed.
537.311.33:546.48'221:621.317.321 225
Measurements of Contact Potential on Measurements of Contact Potential on Cadmium Sulphide IV . Scharff: and IJ . Wioth. (\%. angrai, Phws. vol. 10, pr. 4.56-4.58: October, 1958.1 '(exsurements were marle on a
number of ('dS crystals with different impurity content and structure using a rotating-armature method lescribed ibil., vol. 10, 1pp. $424-$ 428 : September. 1958 (Shatafs). For an acoustic method of meatsuing contact potential see ihid., vol. 10, pp. 455-456; October, 1958 (Schataffs).
537.311.33:546.49'241

226
Preparation and Properties of HgTe and Mixed Crystals of $\mathrm{HgTe}-\mathrm{CdTe}-\mathrm{W}$. D. Latwson, S. Nielsen, E. H. Putley and A. S. Young. (J. Phys. (hem. Solids, vol. 9, p1r. 32.5 .329; March, 1959.) Hg T (is found to be a semiconductor with activation energy - 0.01 ev and mobility ratio $\mathbf{- 1 0 0}$. It is opague to infrared radiation, but mixed crsstals of HgTr-CdTe show absorption edges which vary in position with composition. Photoconductivity has been observed in mixed crystals.

537.311.33:546.681'86

227
Oscillatory Magneto-Absorption in Gallium Antimonide JA-1149-S. Zwordling, B. Lix, K. J. Button and L. M. Roth. (J. Phys. (Chenn. Solids, vol. 9, pp. 320-324; March, 1959.) Measurements at photon energies just above the futtinsic absarntion ofge show an orcillatory spectrum similar to that for direct transitions in Ge. The energy gap is found to be $0.81 .3 \pm 0.001$ eve and the electron effective mass ($0.047 \pm 0.00 .3$) mo.

537.311.33:546.682'19

228
Anomalous Electrical Properties of p-Type Indium Arsenide-J. R. Dixom. J. A ppl. Phys., vol. 30, pr. 1412-1416; September, 1959.) Anomalies in the Hall-constant/temperature relation wre investigated experimentally. An explanatory mechanism is proposed and predictions based on this motel about the removal of the anomalies are confirmerl by experiment.

537.311.33:546.682'86

229
A Reliable Method for the Production of High-Purity Indium Antimonide-K. F. Hulme. (J. Electronics (ontrol, vol. 6, pp). 397-4()2; May, 1959.)
537.311.33:546.682'86:539.23 230

Investigation of Thin Films Obtained by Evaporation of Indium Antimonide in a Vacuum - (i. A. Kurov and Z. (i. Pinsker. (Zh. Tokh. Fiz., vol. 28, p1. 21.30-21.34: (October, 1958.) Films produced after only ten or twelve evaporations in vacuo are of the n or p type in which the mobility of the charge carrier depends on the size of the crystals.

537.311.33:546.682'86:539.23

231
Electron-Optical Investigations of the Structure of Vapour-Deposited InSb Films 1.. Reimer. (Z. Vatueforsch. vol. 13a, p. 148152; Fobruary, 1958.) The crystal structure of In N b films 500 A thick was investigated as a function of the temperature of the supporting Sio) fim, using electron diffraction and mieroscops: The best structure was obtained for at sumport temperature above $400^{\circ} 0^{\circ}$ during deposition. Hall-effect measurements on films $>1 \mu$ thick give results in agreement with these findings.

537.311.33:546.742-31

232
Optical Properties of Nickel Oxide-R. Nowman and R. M. Chrenko. (Phys. Req.

537.312.62:621.318.57

233
High-Speed Superconductive Switching Element Suitable for Two-Dimensional Fabri-cation-V. 1. . .ewhouse and J. W. Bremer. (J. Appl. Phys., vol. 30, pf. 1458-1459: September, 1959.) Results are given of experiments on the supercondurting-to-nomal transition of Su films Ahe to the magnetic fell of current in an adiaednt transverat film.

537.533.8

234
Electron Reflection and Secondary Electron Emission from Metallic Surfaces for LowEnergy Primary Electrons: Part 1-1. M. Bronshtein and V. V. Roshchin. (Zh. Tokh Fis., vol. 28, 1pp. 2200-2208; ()ctober, 1958.) A description of the apparatus and the method for measuring the reflection and the secondary electron emission coefficients of Ni in the range $0.2-30 \mathrm{ev}$. The reflection coefficient for Ni is found to be 0.1.3.
537.582

235
Temperature Dependence of the Work Function of Silver, Sodium and Potassium C. R. Crowell and R. A. Arinstrong. (Phys. Reac, vol. 114, pp. 1.500-1.506; June 1.5, 19.59.)

538.22:538.569.4

236
Sign of the Ground-State Cubic-Crystal Field Splitting Parameter in $\mathrm{Fe}^{3+} \ldots$ (is c^{-}
 september 1,1959) it is shown experimentally that the parameter is positive for $Y=$ Ga garnet and $\mathrm{R} \mathrm{b}=\mathrm{Al}$ sulphate.

538.221

237
Antiphase Antiferromagnetic Structure of Chromium-L. M. C'orliss, J. M. Hastings and R. J. Weiss. (Phys. Req. I.ett., vol. 3, pp. 211212; September 1, 195\%.) A morlel which fits the observations is suggested.
537.221
Direct
Measurement of Domain Wall Energy-1.. F. Bates and 1'. F. Davis. (Proc. Phys. Soc.. vol. 74, pp. 170-176; August 1. 1959.) The (morgy of a Bloch wall has been measured in a thin perminvar ring by a modification of a method used by Williams and (ioertz (J. Appl. Phys., vol. 23, pp. 316-32.3; March, 19.52.)

538.221

239
The Silver-Based Heusler Alloys-F. (). Hall. (Phil. Mag., vol. 4, pl. 730-744; Junc. 1959; plates.) The structures of some fifty allows have been studied with a view to explaining their magnetic properties
538.221

240
Transitions from Ferromagnetism to Antiferromagnetism in Iron-Aluminium Alloys, Theoretical Interpretation-11. Sato and A. Arrott. (P/hys. Req., vol. 114, [1p. 1427-1440; June $15,1959$.)

538.221

241
Transitions from Ferromagnetism to Antiferromagnetism in Iron-Aluminium Alloys. Experimental Results - A. Arrott and I1. Sato. (Phys. Reze. vol. 114, pp. 1420-1440; June 15. 19.59.)

538.221:534.213-8

242
The Behaviour of Plane Ultrasonic Waves in Homogeneously Magnetized Single Crystals -(;. Simen. (Z. Vuburforsch., vol. 13a, pr). 84 89: February, 1958.1 The velocity of ultrasonic Wave propagation in ferromagnetic single crestals is affected by the magnetic state of the crsstal, and the damping of waves depends on the electrical conductivity of the crystal (see also 1278 of 1959). An expression is derived for calculating these effects.
538.221:534.6-8

243
A Resonance Method for the Measurement of Ultrasonlc Absorption in Fermmagnetic Specimens - 11. I. Gavehlich. (Z. Naturforsch.. vol. 13a, pp. 90 98; February, 1958.) A method is clescribed for the measurement at $10^{7} \mathrm{cDs}$ of sound absurption and velocity, and damping efferts due to magnetic processes in small disk shecimens, The umberlying theory and difficulties of the methoul are discussed.
538.221:538.632

244
Remarks on the Measurement of the Hall Effect in Ferromagnetics-K. M. Koch, W. Rindner and K^{-}. Strmat. (Z. Natwforsch., vol. 13a, pp. 113-116; February: 1958.) The importance of the accurate allignment of ferromagnetic strif) suecimens with the direction of the field is discussed with reference to measurements and to the separation of the ordinary from the extraordinary component of the llall effect at low field strengths.
538.221:539.2

245
Canted Spin Arrangements-P. (i. de Gennes. (Phys. Rev. Ictl., vol. 3, pp. 209-211; September 1, 1059.) A discussion of the "ordered" Fe-Al alloy and su-substituted S - Fe garnet spin systems.
538.221:539.2:537.311.31 246
Spin-Dependence of the Resistivity of Magnetic Metals-R. J. Weiss and A. S. Marotta. (J. Phys. Chem. Solids, vol. 9, pp. 302-308; March, 1959.) The theory of Friedel and de Gennes (J. Phys. Chem. Solids, nos. 1-2, pp. $71-77 ; 1958$.) is extended in terms of the spindependence of the magnetic resistivity; and applied to metals of non-half-integral spin such as Ni and Co .
538.221:621.318.134

247
The Influence of Hydrostatic Pressure on the Curie Point of a $\mathrm{Ni}-\mathrm{Zn}$ Ferrite- K . Werner. (Ann. Phys., L.pz., vol. 2, pp. 403-405; January 27,1959 .) The application of hydrostatic pressure up to 6000 atm. to a ferrite (15 per cent $\mathrm{NiO}, 35$ per cent $\mathrm{ZnO}, 50$ per cent $\mathrm{Fe}_{2} \mathrm{O}_{2}$) raises the Curie temperature by about $5^{\circ} \mathrm{C}$. See also 2142 of 1954 (Patrick).
538.221:621.318.134 248

The Effect of Dispersion Corrections on the Refinement of the Yttrium-Iron Garnet Struc-ture-S. Geller and M. A. Gilleo. (J. Phys. (hem. Solids, vol. 9, pur 235-237; March, 1959.) Recalculation allowing for dispersion of the CoNa racliation by the metal atoms. See 3180 of 1958 .

538.221:621.318.34

249
Size Effects on the Ferrimagnetic Resonance Absorption of Polycrystalline Ferrites and Garnets-H. Vonemitsu. (J. Phys. Soc. Japan, vol. 14, מ户, 688-089; May, 1959.) Measurements at 9345 me show that the resonance line width is of the form $a+\alpha D)^{2}$ where $\left.{ }^{1}\right)$ is the diameter of the spherical sample, and a, α are constants for a given sample. α de. pends strongly on porosity.
538.221:621.318.134:538.569.4

250
Dipolar Magnetodynamic Ferrite ModesW. II. Steier and P. D. Coleman. (J. Appl. Phys., vol. 30, pr. 1454-1455; September, 1959.) The characteristic equation for axially symmetrie modes is given, and an experimental arrangement for their observation is described. Experimentall and theoretical values of resonant frequency as a function of biasing magnetic field are compared, for a particular mode.

538.221:621.318.134:621.318.57

251
Uniform Rotational Flux Reversal of Ferrite Toroids-E. M. Gyorgy and F. B. Hagedorn. (J. Appl. Phys., vol. 30, pil. 1368-1375; September, 1959.) A mechanism is proposed for high-speed flux reversal, and analysis gives results in very good agreement with those obtained from uniform rotation in isotropic thin films. Experimental confirmation of a highspeed switching mode in ferrite toroids is given.
538.221:621.318.134:621.372.622

252
The Efficiency of a Ferrite as a Microwave
Mixer-Lewin. (See 65.)
538.221:621.318.57

253
A Contribution to the Study of Switching in a Ferromagnetic Core fed by a Perfect Voltage Source-C. Durante. (Compl. rend. Acad. Sci., Paris, vol. 248. If. 3412-3414; June 15, 1959.) U'sing Maxwell's equations it is possible to predict behavior of a ferromagnetic core under the action of a constamt voltage. Expersions are derived for the switching time and the dynamic hysteresis cycle.

538.221 : 621.318 .57

254
Influence of Different Parameters on the Switching Time of Ferromagnetic Cores-I. Lagasse and C. I)urante. (Compt. rend. Acad. Sci., Paris, vol. 248, pp. 35.39-3540; June 22. 1959.) The expression derived in 253 above is discussed and applied to the construction of coils with cores having nearly equal switching times.

538.222

255
The Heat Capacities of Seven Rare-Earth Ethyl Sulphates at Low Temperatures-1H. Meyer and P.L. Smith. (J. Phys. Chem. Solids, vol. 9, pp. 285-295: March, 1959.)
538.222

256
Thermal and Magnetic Properties of Praseodymium Ethyl Sulphate below $1^{\circ} \mathrm{K}$ H. Meyer. (J. Phys. Chem. Solids, vol. 9, pp. 296-301: March, 1959.)
538.222:537.311.31

257
Theory of the Resistance Minimum in Dilute Paramagnetic Alloys-A. D. Brailsford and A. W. Overhauser. (Phys. Rev. Lefl., vol. 3. mp. 331-332; October 1, 1959.) The resistance minimum is explained theoretically in terms of the scattering of conduct ion electrons by paramagnetic ions in random solution.

538.222:538.569.4

258
Paramagnetic Resonance Line Shapes- ${ }^{2}$. Swarup. (Canad. J. Phys., vol. 37, pp. 848-857: July, 1959.) A study of the line shape of the transitions of various concentrations of Cr^{+++} ions in potassium cobalticyanide and potassium aluminium alum single crystals has been made at 9300 mc . The shape changes gradually from Lorentzian to Gaussian with increasing Cr concentration. ALorentzian shape is reported for the Gd^{+++}ion in lanthanum ethyl sulphate.

538.222:538.569.4

259
Stress and Temperature Dependence of the Paramagnetic Resonance Spectrum of Nickel Fluosilicate - W. M. Walsh, Jr. (Phys. Req., vol. 114, pp. 1473-1485; June 15, 1950.)

538.222:538.569.4

260
Pressure Dependence of the Paramagnetic Resonance Spectra of Two Dilute Chromium Salts-IV. M. Walsh, Jr. (Phys. Re\%., vol. 114. ple. 1485-1490); June 15, 19.59.) The results obtained are not adequately explained by theory.

538.222:538.569.4

261
Synthetic Ruby as a Secondary Standard for the Measurement of Intensities in Electron Paramagnetic Resonance-1. S. Singer. (J. Appl. Phys., vol. 30, pp. 146,3-1464: September, 1959.)

538.222:538.569.4:621.375.9

262
Controlling the Habit of Potassium Cobalticyanide Crystals-A. E. Rennie and S. Nielsen. (Bril. J. Appl. Phys., vol. 10. p. 429; September, 1959.) Growth conditions affecting crystal shape are noted, with reference to the shape suitable for maser applications.
541.133:621.319.45

263
A Method of Measurement for the Objective Assessment of Electrolytes for Electrolytic Capacitors-P. Werner. (NachrTech., vol. 8, pp. 467-469; October, 1958.) A quality factor
for electrolytes is proposed based on a measurement of oxidation time with constant oxidation current.
548.5:621.365.42

264
Production of Crystals from Unstable Alloys -A. Fischer. (2. Naturforsch., Vol. 13a, pio. 105-110): February, 1958.) A 40-kva graphitetube oven is described for working at $2500^{\circ} \mathrm{C}$ and a pressure of 150 atm. The decomposition of unstable semiconductor and phosphor crystals is thereby avoided.

MEASUREMENTS AND TEST GEAR

621.3.018.41(083.74)

265
Comparison and Evaluation of Caesium Atomic-Beam Frequency Standards-J. Holloway; W. Mainberger, F. 11. Reder, G. M. R. Winkler, L. Essen and J. V. L. Parry. (Proc. 1R1E, vol. 47, pp. 1730-1736; October, 1959.) "Caesium atomic beam frequency standards of different design have been compared, and the principal sources of errors in these devices have been studied. The unresolved discrepancy found between the standards was about 2 parts in 10^{10}. The characteristics of the standard, sources of errors, and the details of the comparison tests are discussed in this paper."
621.317.3.029.63:621.391.822

266
A Noise Source with Saturated Diode for 20-cm Wavelength and its Absolute Calibration by Comparison with a Heated Resistor-H. Prinzler. (NachrTech., vol. 8, pp. 495-500; November, 1958.) Details are given of the noise generator and its control circuit, the reference standard, and the calibration circuit with trombone section which enables errors due to mismatch to be eliminated. See also 1492 of 1958 (Mollwo).
621.317.31.014.6

267
Simple dc Amplifier for Measuring Very Small Currents-G. Elliott and J. A. Radley. (J. Sci. Instr., vol. 36, pp. 410-411; September, 1959.) A single-stage push-pull amplifier is used with a sensitive galvanometer to measure currents of the order of $5 \times 10^{-6} \mu \mathrm{~A}$. Stability precations are listed.

621.317 .311 .081 .1

268
Suggested Modifications to a Method for the Determination of the Absolute AmpereM. Romanowski and R. Bailey. (Canad. J. Phys., vol. 37. pp. 896-898; July, 1959.) The induction method is discussed and it is proposed that in addition to Briggs' modification (J. Sci. Instr., vol. 13, pr. 127-129; April, 1936) the search-coil should be replaced by a homopolar generator, thus eliminating the need to calibrate the large mutual inductance and the problems associated with current reversal.
621.317.335.3

269
The Method of Layer Doubling-E. Biller. (Z. angezw. Phys., vol. 10. Ip, 458-459; October, 1958.) A method is described for determining complex dielectric constants by means of standing waves in the microwave range using specimens of the same materials with lengths in the ratio $1: 2$.

621.317.336:029.62

270
The Measurement of Balanced Impedances at VHF-H. N. Edwardes. (I'roc. IRE (. 4 ustralia), vol. 20, pp. 343-349: June, 1959.) A balanced standing-wave detector accurate to within about ± 3 per cent is described.

621.317 .34

271
Measurement of Nonlinear Distortion of Dipoles and Quadripoles-1.1. Dekker. (PTTBedrijf, vol. 9, p11. 1-9; April, 1959.) Basic circuits for the measurement of nonlinear distortion are described. Results obtained using
these cireuts show the importance of highquality resistors in transmission equipment.
621.317.39:531.78

272
Sensitive Transducers use One-Tube Crystal Oscillator-L. J. Rogers. (Electronics, vol. 32. pp. 48 49: October 2, 1959.) A single tube oscillator for use with electromechanical transducers is described. A sensitivity up to $2.50 \mathrm{c} / \mathrm{m}$ of translucer capacitance with long-term statbility equivalent to 4 parts in 10^{3} is obtained.
621.317.4:537.311.33 273
Small Magnetic-Field Mapping Probes of Thin Semiconducting Films-J. W. 13uttrey. (Rer, Sici. Justr., vol. 30, pp). 815-817: Soptember, 1959.) "The Hall effect in thin semiconducting films has been employed to produce a magnetic field mapping probe of very small active area. Germanimm probes having active areas of approximately 10 square microns were tound to have al sensitivity of approximately $1(0)$ oresteds. Results obtained on thin InSb films indicate small area probes of this material should be sensitive to fields smaller than five sersteds."

621.317.44.087.4

274
Sensitive Recording Magnetic FluxmeterP. Lerond and A. Thulin. (J. Sci. Instr., vol. 36, pr. . 388 -389; September, 1959.) A ballistic galvanometer with a taut suspension is 1 sert. Its restoring torgue is balanced out by photo-electric-mechanical feedback governed by the galvanometer spot position.

621.317 .723

275
Using Feedback in Electrometer Design D. Allemden. (Electronics, vol. 32, rp. 71-7.3; October 9, 1959.) The design of a high-sensitivity wide-band electrometer is described, for measuring currents in the range $10^{11}-10^{13} \mathrm{~A}$. Fepdback-path integration is an optional feature for use when maximum bandwidth is the main requirement
621.385.3:621.317.723 276
The Development of a New Type of Electrometer Valve-Frommhold. (See 3.59.)
621.317 .729

277
New Method for Mapping Electric Fields(3. M. Gershtein. (Radiotekh. Elektron., vol. 4, pp. 1.37-1.39; Jantary, 19.59.) The methorl is based on the shockley-Ramo thoorem of induced currents. The electric-field intensity along the line of motion of a charget probe is represented by a CRO trace of the current induced in the probe. Two models are deseribed, using a) rectilinear probe movement, and b) a fixed probe adjacent io a rotating cyclinder with seginented structure.

621.317.75.001.4:621.373.44

278
Spectrum Generator for Testing of PulseHeight Analysers-J. E. Draper and IV. J. Alston, III. (Req. Sci. Instr., vol. .30, pp. 805809 ; September, 1959.) The generator produces voltage pulses of width $1-4 \mu \mathrm{sec}$ having three pulso-height frefuency distributions: a) delta shaped over the range $0-100 \mathrm{v}$, or $0-0.1 \mathrm{v}$; b) uniform over the same range; c) triangular

OTHER APPLICATIONS OF RADIO AND ELECTRONICS

[^82]bardment-T. K. Bierlein and B. Mastel. (Req. sci. Instr., vol. 30, ppr. 8.32-8.33; September, 1959.) The etching process involves 165 me excitation to increase ionization in the chamber.

621-52:629.113

281
Electronics guides your Car- V°. K . Zworvkin and L. E. Flory. (Rudio and Eilectronics, wol. 30, 1p1, 99-101, 104; April, 1959.) Report of stages in the development of a vehicle control system from one in which the ghifance equipment is part of the road, to one which is completely athtomatic, with erpupment in both velicle and road surface
621.318.381.078.3:538.569.4

282
A Synchronized Autodyne Detector and its Application to the Stabilization of Magnetic Fields with Proton Resonance-W. MiillerViarmuth and P. Servez-(ravin. (2. . Naturforsch., vol. 1.3.1, mp. 194203 ; March, 1958.) With the circuit described a relative field stability better than 1 part in 10^{6} can be obtained.

621.36:537.322

283
Theory of Reversible Electric Heating - R . 1)ahllerg. (Z. angeut. Phyc., vol. 10, pp. 467470; ()ctober, 1958.) Theoretical treatment of thermofectric heating in line with the investigation of cooling (3449 of 1959).

621.362:621.387

284
Thermoelectric Properties of the Plasma Diode-l.ewis and Reitz. (See 366.)

621.384 .611

285
Stochastic Acceleration in a $5-\mathrm{mev}$ Cycla-tron-R. Keller, I.. I ick and M. Fielecaro. (Compl. rend. Acad. Sci, Paris, vol. 248, ple. 31.54-31.56: June 1, 19.59.) A 5 -mev cyclotron has been constucted fed be a generator which, tmlike that of a synchrocyclotron, does not follow a frepuency frogram but produces a voltage varying in a random manner. The resulting beam is more intense than that of a synchrocyclot ron of cortesponding voltage.

621.384.612.11

286
The World's Largest SynchrophasotronA. A. Kolomenskii and M. S. Rabinovich. (Priroda, No. 8, pp, 57-61: August, 1959.) A general description of the accelerator built in 10.57 . It hats a magnetic ring weighing ower 36,000 tons, and diameter 70 meters. Protons can be accelerated to an energy of $10^{10} \mathrm{ev}$.

621.384 .8

287
A High-Resolution Eletrostatic Lens used as an Analyser of Electron Velocities-A. N. Kabanov and V. I. Milyutin. (Radiotekh. Elektron., vol. 4, pp. 109-119; January, 1959.) Description of the design and input circuit of a single cylindrical es lens operating as a velocity analyzer with a resolving nower of $60,000: 1$.

621.384.8:621.385.833
 288
 Construction of an Electrostatic Velocity

 Filter. Use in Electron Microdiffraction-R. Beaufils. (Compt. rend. Acad. Sci., Paris, vol. 248 , pp. 3145-3147; Jume 1, 1959.) The apmaratus, which is used in obtaining electron-diffraction diagrams for alloys, eliminates from a beam all electrons suffering an energy loss $>4 \mathrm{ev}$.
621.385 .833

289
An Electron Microscope of Universal Applicability for Electron Diffraction-H. Bethge. (0)plik, vol. 16, p1, 33-42; January, 1959.) The instrument described incorporates three es lenses and one intermediate magnetic lens. Aecessorios for electron-diffaction investigations are described ibid., pl. 4.3-49 (Bethge and Brauer).
621.385 .833
An Electron-Lens System Excited by Permanent Magnets with a New Astigmatism Compensator-11. Kimurat and S. Kaltagiri. (1)plik, vol. 10, pp. 50-55; Jamuary, 1959. In English.)
621.385 .833

291
The Combined Effect of Phase and Amplitude Contrast in Electron-Microscope Images -F. Lenz and W. Scheffels. (Z. Naturforsch., vol. 1.3a, 1p). 226-2.30; Marcli, 1958.) The effect of defocusing on cont rast is investigated.
621.385.833:535.767

292
Some Remarks on the Accuracy Obtainable in Electron Stereomicroscopy-K. 1. (varrod and J. IF. Nankivell. (Optik, vol. 16, D1!. 27-29: January, 1959. In English.) The uncertainty in the callibration of the stereo-angle is not likely to be a major source of error, contrary to the suggestion of llelmeke and Orilumam (118.3 of 195(6). See also Brit. J. Appl. Phys., vol. 9, נp. 214-218: June, 1958.

621.398

293
Variable Audio-Frequency Tele-voltmeter -ll R. Jlarant. (Proc. /RE (Australia), wol. 20, pp. 3.38 34.3; June, 1959.) A time-tivision multiplex telemetry system is described for monitoring up to 22 voltages at a remote installation.
621.398:621.816 294
Amplitude-Modulation Radio-Telemetry of Nerve Action Potentials-R. M. Morell. (A)ature, vol. 184, 111. 1129-11.31; October 10, 1959.) Inscrintion of a telemetry system in which a pulse is transmitted to a specimen at a distant point and the response to the stimulus is transmitted to the point of origin.
621.398:621.3.066

295
Electromechanical Switches for Telemetering Systems-A. S. Kramer. (Electronic. vol. 32, 1p. 54-5.5; ()ctober 2, 1959.) A table of specifications, performance data and applications is given.
621.398:621.318.57 296
Electronic Commutators in Multiplex Tele-metering-A. A. Kramer. (Electronics, vol. 32, pp. $76-77$; September 25, 1959.) A table of clanacteristics and suggested applications of some commutators for use with time-division multiplex is given.
621.398:621.396.934

297
Missile-to-Ground Telemetry of Variable Data-K. Zeilinger. (Elektron. Rundschan, vol. 12, mp. 345-346: October. 1958.) Details are given of a French telemetry systenl. A 2.5watt airborne transmiter of lengt $l_{1} 19.5 \mathrm{~cm}$ and diamater 10 cmprovides five lid chanmels, one of which has 1.5 switcherl signal inputs, which modulate the amplitude of a 90 me carrier. Methoods of data recording and pvaluation are also deseribed.

621.398:621.397.9:629.19

298
System Design Criteria for Space Tele-vision-A. J. Viterbi. (J. Rrit. /RE, vol. 19, pm, 561-570; semtember, 1959.) The theory and design of a vero-narrow-band telemetry sistem is described for relaying to the earth the images of planets recorded by a space velicle. The main feature is the phase-locked-loop discriminator which enables very-narrow-band signals to be selarated from noise. For a typical mission to Vemus the received power would be about 1.6×10^{-18} watts.

propagation of waves

621.391.812.6

299
Simple Methods for Computing Tropospheric and Ionospheric Refractive Effects on

Radio Waves-S. Weisbrod and L. J. Anderson. (PROC. IRE, vol. 47, pD. 1770-1777; October, 195\%.) "The paper describes a simple and accurate method for computing ionospheric and tronospheric bending. The only assumptions made are that the refractive gradient is radial and that the refractive index profile can be approximated by a finite number of linear segments whose thickness is small compared with the earth's radius. These assumptions are reatily justifiable in all practical cases. Since there are no limitations on the angle of elevation and the shape of the refractive index profile. the method has a wide application and it is extencled to cover other refractive effects such as retardation, Doppler error and Faraday. rotation.
621.391 .812 .62
Radio-Wave Scattering by Tropospheric Irregularities-A. D. Wheelon. (J. Res. Nat. Bur. Stand., vol. 631), pp. 205-23.3; September /()ctober, 1959.) A review of theoretical work, published and unpublished, on radio-wave scattering by turbulent irregularities. 81 reforences.
621.391.812.62.029.64 301
Tests Conducted over Highly Reflective Terrain at 4000,6000 and $11000 \mathrm{Mc} / \mathrm{s}-\mathrm{A}$. Oxchufwud. (Commen. and Electronics, pp. 26.5-270; July, 19.59.) A report of acrial-height/path-loss investigations over four highly reflective paths.

621.391.812.621

302
Synoptic Study of the Vertical Distribution of the Radio Refractive Index-B. R. Bean, L. I. Riggs and J. I). Horn. (J. Res. Nat. Bur. Stund., vol. 631), pp. 249-254: September/(october, 1959.) An exponential correction applied to the refractive-index leight distribution facilitates the analysis of air-mass characteristics.

621.391 .812 .63

The Propagation of Fading Waves-R. P' Mercier. (Phil. Map., vol, 4, pp. 763-i76; June, 1959.) A scalar wave with random variations of amplitude and phase across the wave front is assumed as a simple model of a ratlio wave after it has left the ionosphere. The fluctuating in-phase and quadrature components are assumed to have a Caussian probability clistribution which is described in terms of two parameters: the first measures the extent to which the signal is randomly phased and the second the change in phase of the modulation on the signal. Records of claytime fading on 16 kc analyzed on this basis show that the modulation is highly correlated at the innosplece and that it is generally phase modulation.

621.391 .812 .63

304
Some Problems of Radio Wave Scattering in the Ionosphere-V. 1). Gusev. (Radiotekh. Filektron., vol. 4, pp. 12-16; January, 1959.) Investigation of the part played by inhomogeneous waves in the angular spectrum of a scattered field when the ionosphere is illuminated by plane and diverging waves. A spacetime correlation function is derived
$621.391 .812 .63 \quad 305$
Correlation of Waves of Different Frequency after Passage through a Layer of a Statistically Inhomogeneous Medium-M. F. Bakhareva. (Radiotekh. Elektron., vol. 4, pp. 88-96; January; 1959.) Correlation corfficients are obtained for the amplitude and phase fluctuations of wo waves of different frequency: traversing a medium with large random inhomogeneities of refractive index. A comparison is made with experimenta! data obtained by frequency-scatter sounding of the ionosphere. Values obtained for the magnitude of
inhomogeneities in the F and E layers coincide with values found by correlation at various points.
621.391 .812 .63

306
The Relations between Field Strength and the Limits of the Transmission-Frequency Range (LUF, MUF)-B. Beckmann. (Nachrtech. Z., vol. 11, pi. 523-528; October, 1958.) A single formula is derived for calculating field strength in the frequency range from LLEF to MIF using LLF, MOF and FOT (OWF) data. Satisfactory agreement with measured field-strength values is obtained.
621.391.812.63:551.510.535 307

The D Region of the Ionosphere-B. Bjelland, O. Ifolt, B. Landmark and F. Lied. (Vature, vol. 184, suppl. no. 13. pp. 973-974; September 26, 1959.) Preliminary results are given of observations at Kjeller and Tronsö, Norway, of ionospheric cross-modulation and partial reflections from the D region.
621.391.812.63.029.45

308
A Study of VLF Field-Strength Data both Old and New-J. R. Wait. (Geofis. pura eappl., vol. 41. pp. 73-85; September-1)ecomber, 1958. In English.) Attenuation rates are (lerived from VILF data obtained in 1922/1923 byRound et al. and from recent measurements. For middle latitudes daytime rates of less that 2 db per 1000 km path length are found. These accord with values derived from "spheries" waveforms and are compatible with mode theory (see, e.g., 2869 of 1958). Over 40 references.
621.391.812.63.029.62:523.75 309

The S.I.D. Effect on the VHF Scatter Propagation associated with the Great Solar Outburst of July 29, 1958-T. Obayashi. (Rept. Jonosphere Research Japan, vol. 12, pi. 330-338; September, 1958.) The fade-out of a 49.68-inc scatter-propagation signal coincident with solar flare is considered in relation to an enhancement of the type observed earlier by Bailey et al. (24.3 of 19.56.)

621.391.812.7

310
Observation of Multipath Propagation over the Short-Wave Transmission Path Osaka-Frankfurt-on-Main-B. Beckmann and K. Vogt. (Nachrtech. Z., vol. 11, pp. 519-523; October, 1958.) Analysis and discussion of results obtained during reception of pulse transnissions between Osaka and London at 14 and 19 me. Observations were made in the forward and backward directions and include back scatter reception of $19.56-\mathrm{mc}$ transmissions from London.

621.391 .812 .8

311
Errors in Ionospheric Forecasting-C. M. Minnis and G. H. Bazzard. (Electronic Radio) Eng., vol. 36, pp. 380-38.3: (October, 1959.) Errors due to incorrect estimation of solar activity, and consequently the vertical-incidence critical frequency; are analyzed. It is concluded that a tepical value for the standard deviation of the error in forecasting $f_{n} \mathrm{~F}_{2}$ is 1.5 per cent, and n forecasting $f_{2} E, 5.5$ per cent.

621.391.826.2

312
Study at 1046 Megacycles per Second of the Reflection Coefficient of Irregular Terrain at Grazing Angles-R. E. McCravin and L.. J. Malonev. (J. Res. Vat. Bur. Stand., vol. 6.3T), pp. 2.35-248; September/()ctober, 1959.) The reflected signal is considered to be made up of a specularly reflected component and a Rayleighdistributed component, and the contributions of these components are examined as a function of terminal height.

RECEPTION

621.391.81.029.62/.64
On the Graphical Method of Calculation of the Field Strength for Effective Earth Radii other than $4 / 3$ Times the Actual Radius and for any Antenna Heights and Frequencies-K. Tao and K. Sawaji. (J. Radio Research J.abs, Japan, vol. 6, pp. 311-372; April, 1959.) Fieldstrength curves for two ground constants, frequencies from $30-10,000 \mathrm{mc}$, and antenna heights up to 20,000 meters have been worked out by a graphical method which is simpler than that pronosed by CCIR. 48 graphs are reproduced.
621.391.812.63:621.396.666 314
Reception of Space-Diversity Transmitters -J. W. Koch. (W'ireless World, vol. 65, pp. 512-514; November, 1959.) Transmissions on 9.5 mc from widely spaced and closely spaced transmitters in England have been received at Boulder, IT.S.A. Results show that the resultant field at the receiver has a Rayleigh distribution; there is no diversity gain.
621.391 .82

315
Radio Interference : Part 6-The Control of Radio Interference-(C. W. Sowton. (P.O. Elec. Engrg. J., vol. 52, it. 1, In, 43-46; April, 19.59.$)$ The preparation of specifications and corles of practice is surveyed and details of U.K. regulations are given.

Part 5: 954 of 1959 (Sowton and Britton).
621.396.62:621.376.332

316
FM Receiver using New Dynamic Limiter -J. (;. Spencer. (Wireless Womld, vol. 65, mp. 492-498; November, 1959.) The receiver described incorporates a recently developed limiter and discriminator circuit 11.379 of 19.58 (Head and Mayo)].

STATIONS AND COMMUNICATION SYSTEMS

621.376 .5

317
Investigations of Pulse Modulation Meth-ods-II. Hönicke. (NuchrTech., wol. 8, nos. 10 and 11, pre $456-460$ and 501-510. October, 1958; and vol. 9, pp. 29-35; January, 1959.) The frequency spectra of PAM, PPHAM, and PWM pulse trains for various sampling methods are calculated using Fourier transformation, and formulas giving spectral components are tabulated. Morlulator circuits shown were used for the experimental verification of results. Modulation and demodulation techmiques are described and the practical limitations of sampling theorems hased on an ideal low-pass filter are discussed with reference to measurements.
621.39:621.372.8

318
Waveguide as a Long-Distance Communication Medium-Karbowiak. (See 20.)
$621.395 .4+621.397 .131: 621.315 .212$
Multichannel Systems along Coaxial Cables -J. Bauer. (Tech. Mill. PTT, vol. 36, pp. $423-$ 4.35: November 1, 1958. In German and French.) Expanded version of 29.58 of 1958.
621.396:523.1

320

- Searching for Interstellar Communications -G. Cocconi and P. Morrison. (Nature, vol. 184, pp. 844-846; September 19, 1959.) Discussion of the possible frequency, transmitted power and form of signals originating in an interstellar communication system.

621.396:629.19

Exotic Radio Communications-J. R. Pierce. (Bell Lab. Record, vol, 37, pp, 323-329; September, 1959.) Possible communication systems of the future, using earth satellites as passive and active refectors, are discussed.

Voice-Frequency Telegraphy System Type FM-WTK $3 / 6$ for Short-Wave Telephone Links-11. J. Neumann. (Nachrtech. Z., vol. 11, pp. 510-514; October, 1958.)
621.396.43:523.5

323
Methods and Equipment for Meteor Scatter Propagation-E. Roessler. (Nachrlech. Z., vol. 11, pj) 497-503; October, 1958.) A table comparing existing scatter links is included. See also 4198 of 1959 (Grosskonf).

SUBSIDIARY APPARATUS

621-526
324
A Digital Remote Position Control-K. G. 1lilton. (Eilectronic Engng., vol. 31, pp. 512519; September, 1959.) A description of a servo shaft-position control system using digital techniques throughout. The logical circuit arrangements and methods of stabilizing are discussed, together with the design procedure.
621.311.61.078:621.375.4

325
Inverse Feedback Stabilizes Dry-Cell Current Sources-G. E. Fasching. (Electronics, vol. 32, 13. 78; October 9, 1959.) A transist or emilterfollower circuit enables constant heavy currents to be drawn from dry cells despite variations in cell voltage.
621.311.62:021.382.2

Power Supply Design using Silicon Diodes -H. A. Kampf. (Electronics, vol. 32, pp. 60-62; October 2, 1959.)
621.311.62:621.382.3 327 Constant-Current-Coupled Transistor Power Supply-E. Gordy and 1'. Hasenpusch. (Electronics, vol. 32, p. 60-61; ()ctober 9, 1959.) By feeding a constant current through a fixed resistor across the supply output, an unattenuated error voltage can be applied to the errorcorrecting amplifier of a series-regulated power supply.

621.311.62.078.3: 621.382 .3

328
Designing Highly Stable Transistor Power Supplies-E: Baldinger and IV. Czaja. (Electronics, vol. 32, no. $70-73$; September 25,1959 .) Design technigues are summarized and a circuit is described with over-all stability $\pm 250 \mu \mathrm{v}$ and $<40 \mu \mathrm{v} / \mathrm{h}$.

621.314.5:621.318.57

 329Transistors and Saturable-Core Transformers as Square-Wave Oscillators-(.) C. Fleming. (Electronic Engng., vol. 31, pp. 54.3545; September, 1959.) "The use of transistors ats switches for the de supply to saturable core transformers is clescribed and it is shown that by this means small and efficient convertors and invertors can be constructed. The cominon base, common emitter and common collector configurations are considered and methods of obtaining a multi-phase output are described."

621.316.72.078

330
A Method of Reducing the Time Lag of Transducers which have an Exponential Re-sponse-I. Whitlow and M. J. l'orter. (Electronic Engng., vol. 31, pp. 536-542; September, 1959.) The response of a translucer such as a thermocouple is corrected for phase and amplitude by adding its output voltage to its amplified derivative. Details of a drift-corrected de simplifier and highly stable power sumply are given.
621.316 .722

331
The Stabilization of DC Voltages by Switched Transistors--(;). Meyer-Brötz. (Elektrom. Rundschau, vol. 12, np. 342-344; October, 1958.) Stabilizing circuits are riscussed in which transistors function as continuous-control de-
vices or as switches driven by a schmitt trigger circuit. Comparison is also made with a tran-sistor-switched rectifier circuit.

621.316.722.078

332
Method of Amplitude Control of AC Signals -J. B. Cormwall. (J. Sci, Instr., vol. 36, pp. $395-396$; September, 1959.) "A circuit for controlling the rins value of an ac signal is analyzed and practical results are discussed. The speed of response is such that for rates of change of 2.5 per cent per second the output is controlled continuously within 1 per cent. In alternative arrangement for maintaining, at a preset level. Whe loak value of repetitive pulses is also given."

621.316.722.1:621.383.2

333
Zener Diodes as Reference Sources in Transistor Regulated Power Supplies-K. E. Aitchison. (Proc. IRE (.1 Hstralia), vol. 20, pp). 350-351; June, 1959.) A summary of the relevant properties of Zener diodes including a figure of merit representing the maximum value by which supply variations may be reduced. Methods for controlling the over-all temperature coefficient are considered.

621.352

334
Ammonia - Vapour - Activated BatteriesH. S. (Gleason, J. M. Freund, L. J. Minnick and W. F. Meyers. (J. Electrochem. Soc., vol. 106, pp. 157-10U: Marcla, 1959.)

TELEVISION AND PHOTOTELEGRAPHY 621.397.132
 335

NTSC Colour-Television Signals-J. Davidse. (Electronic Ralio Eng., vol. 36, pp. 370-376; October, 1959.) A consifleration of some statistical properties of NTSC color television signals obtained from normal picture material. Measurement equipment is described.

621.397.132

336
Propagation Tests of Colour Television in Band I with the Modified NTSC System-K. Bernath. (Tech. Mith. PTT, vol. 36, nj. $413-$ 423; November 1, 1958. In German and French.) Subjective assessments of picture quality of 625 -line test transmissions were made by several observers at various localities within 60 km of the transmitter. Conditions of observation and reception and an analysis of the assessments are tabulated.

621.397.132:621.391.83

 337Gradation Correction in Colour Television -J. Kaashoek. (.Vachrtech. Z., vol. 11, pp. $515-$ 518; October, 1958.) A circuit is described for obtaining variable gamma correction which depends on luminance and is free from other color distortion. The gamma range covered is $0.4-1$ and the correction can be made colordependent.
621.397.62:621.398

338
The Recording of TV Viewing and Radio Listening Statistics-E. W. P. Harris and G. D. Robinson. (Brit. Commun. Electronics, vol. 6, pp. 510-514; July, 1959.) General description of an automatic system in which information regarding the receiver switching is relayed by land-lines to a central station where it is recorded on perforated tape and then made immediately available for visual assessment or for data processing using punched cards.

621.397.74

339
Communications in Independent Television -1.. F. Mathews. (J. Bril. IRE, vol. 19, pp. 545-5.52; September, 1959.) The provision of radio and cable links for the interchange of television programs between different transmitters, for outside broadcasts and for control and monitoring services is chacribed, A new
vision and sound monitoring link between London and Birmingham operates at 7.304 and 7404 nc ; associated $460-\mathrm{mc}$ equipment provides an engineers' speech channel and an automatic alarm system.
621.397.9:621.039 340
The Use of Television for the Microscopical Examination of Radioactive Metals-IE. C. Sykes. (J. Bril. IRE, vol. 19, pu. 555-560; September, 1959.) Measurement of microstructural features can be made from the monitor screen.
621.397.9:621.398:629.19

341
System Design Criteria for Space Television -Viterbi. (Sce 298.)

TUBES AND THERMIONICS

621.382.2/.3 342

The Characteristics and the Noise of Silicon $p-n$ Diodes and Silicon Transistors-B. Schneider and M. J. O. Strutt. (Arch. elektr. Übertragung, vol. 12, 1!. 429-440; October, 1958.) Carrier recombination and generation is considered as a catuse of the differences between the characteristics of Si and re diodes. Characteristic curves fon Si diviles are derived taking account of recombination and diffusion. A method of noise measurement in the forward direction is described which gives results in agreement with the calculated values of differential admittance and noise. Noisp-figure formulas are also derived for Si transistors allowing for recombination in the emitter depletion layer.

621.382 .2

343
Zener Diode Characteristics-M. R. Nicholls. (Electronic Engng., vol. 31, p. 559; September, 1959.) Measurements on Zener diorles show that the V / I relation is exponential tor currents below the "constant-voltage values." This region may be useful for conversion of linear to logarithmic functions.
621.382.2:621.374.4.029.65

344
Improved Diode for the Harmonic Generation of Millimetre and Submillimetre WavesR, S. Ohl, P. P. Budenstein and C. A. Burrus. (Rev. Sci. Insir., vol. 30, pp. 765-774; September, 1959.) The performance and stability of si dioles can be greatly improved by bombarding the Si surface with positive ions. The methods of bombardment are described and also the method of mounting the Yi , the construction of two waveguide circuits for harmonic generation and the optimunn working conditions. A comparison is made between measured and calculated HF output.
621.382.2:621.372.622

345
Delay Distortion in Crystal Mixers-T. Kawahashi and T. I'chida. (IRE Trans. on Micronvide Theory asd Techsiofes, vol. MTT-7, pp. 247-256; April, 1959. Abstract, Proc. IRE, vol. 47, p. 1286; [uly, 1959.)

621.382.2:621.376.233

346

The Germanium Diode in Demodulator Circuits-J. Mcinhard. Nachrtech., vol. 8, pp. 489-495; November, 1958.) The design of demodulator circuits is discussed on the basis of two-pole theory and a special analysis of the diode characteristic.

621.382.22

347
Investigation of the Impedances of Germanium Diodes and Diode Circuits-IV. Drechsel. (NachrTech., vol. 8, pp. 482-488; November, 1958.) Measurements on pointcontact diodes are discussed. The results provide an indication of the performance characteristics of diode rectifier circuits.
621.382.3:538.63

348
Transistors in Magnetic Fields-P. C. Trivedi and G. P. Srivastava, (Electronic Kadio Eng., vol. 36, pp. 368-370; October, 1959.) Changes in the value of α^{\prime} of $p-n-p$ alloy junction Ali transistors have been investigated exprementally. The results show a decrease of about 10 per cent with an increase of transverse field of approximately 8 kg . Longitudinal ficks do not show at marked effect in AF transistors but an increase in current gain has been observed in RF transistors.

621.382.3.012.8

349
Transistor " h " Parameters- R . Hutchins and J. I). Martin. (Electronic Radio Eing., vol. 36, pp. 38.3-387; ()ctober, 1959.) Morlifications to a Boothroyd-Almond bridge (214 of 1955), which permit the measurement of complex hybrid parameters, are shown to facilitate the derivation of corresponding equivalent circuits.
621.385.032.212.3

350
The Magnesium Oxide Cold Cathode and its Application in Vacuum Tubes-A. M. Skellett, B. G. līirth and I). W. Maver. (Proc. IRE, vol. 47, 1p. 1704-1712; October, 1959.) The preparation of the cathode and its operation are described and details of surface potential, emission and other measurements are given. Its application in a pentode valve is discussed.

621.385.032.213.13

351
Current Fluctuations in the Oxide Cathode -M. Chisholm and L. Jacob. (Nature, vol. 184, suppl. no. 14, pp. 1058-1059; October 3, 1959.) Slow, marked fluctuations in both the conduction and emission currents were observed for certain values of anode potential. Over the temperature range explored, a threshold at $1100^{\circ} \mathrm{K}$ was indicated.
621.385.032.213.13:621.327.5

352
Cathode Emission Measurements in LowPressure Discharges-A. D. Forster-Brown and M. A. Cayless. (Bril. J. Appl. Phys., vol. 10, pp. 409-411; September, 1959.) A probe method is used to measure zero-field emission. Good agreement is obtained with earlier methods [e.g., 649 of 1958 (Cayless)].

621.385.032.213.63:537.226

353
New Properties of Electron Emission of Systems containing Thin Dielectric LayersM. I. Elinson and A. G. Zhdan. (Kadiotekh. Electron., vol. 4, pD. 135-137; January, 1959.) An investigation is reported of the emission characteristics of a W- $\mathrm{SiO}_{2}-\mathrm{SiO}_{2} \mathrm{C}$ system. A laver of quartz is deposited from the vapor plase onto a tungsten point fixed to a curved base. Carbon is introfuced into the quartz layer by thermal diffusion and electrical con-
tact is made between the tungsten and the external layer. A stable fiell emission is observed. Breakdown occurs at $5-10 \mathrm{kv}$. After breakdown the emitter actuires a typical "crater" shape and anmmalous emssion is observed. Lowering the temperature from $6.50^{\circ} \mathrm{C}$ to room temperature increases the emission current. Possible explanations of the phenomena are noted and the constant-current voltage/temperature characteristic for an experimental diode is shown.
621.385.032.26

354
Nonlaminar Flow in Magnetically Focused Electron Beams from Magnetically Shielded Guns-T. W. Johnston. (J. Appl. Phys., vol. 30, pp. 1456-1457; September, 1959.) An experimental confirmation of theory.

621.385.032.269.1

355
Trajectory Plotting in Electron Guns-G. D. Archard. (Proc. Phys. Soc., vol. 74, pp. 177182; August 1, 1959.) "A method of representing space charge on a resistance network analog by means of leak resistances is described and applied to the determination of trajectories in several conventional and unconventional electron guns.
621.385 .1

356
Planar Diode Flow and the Langmuir Limit -11. Moss. (J. Electronics Control, vol. 6, pp). 40,3-414: May, 1959.) A treatment based on simple electron ballistics is given, and the results are discussed in relation to those of Langmuir's classical work.
621.385.1:537.533

357
Application of the Relaxation Method to the Solution of Space-Charge Problems-l'. A. Lindsay. (J. Electronics Control, vol. 6, pp). 415-431; May, 1959.)
621.385.1:621.391.822.33

358
On the Problem of the Flicker Noise Spec-trum-A. N. Malakhov. (Radiotek/. Electron., vol. 4, pp. 54-62; January, 1959.) A brief survey of experimental and theoretical results on the problem of flicker noise in various systems. Possible methods of eliminating or reducing this noise are discussed. 41 references.
621.385.3:621.317.723

The Development of a New Type of 359 trometer Valve-E. A. Frommhold. (NachrTech.. vol. 8, [pp. 461-466; ()ctober, 1958.) Design and constructional problems relating to electrometer and galwanometer tubes are cliscussed and two new tubes are clescribed and compared with existing types.

621.385 .6

360
Defocusing of a Plane Cycloidal Electron

Beam Influenced by a Space-Charge ForceK. Y'a. Lizhdvoil. (Radiotekh. Elektron., vol. 4, [p). 120 125; January, 1959.) Investigation of the traveling of a phane electron beam in crossed electric and magnetic fields. An expression is found for the estimation of the surface charge acting on the outer electrons of the beam in the direction of the magnetic field. Conditions are determined under which it is necessary to compensate the space charge in order to prevent a large divergence in the beam
621.385.6:621.375.9:621.372.44

The Quadrupole Amplifier, a Low-Noise Parametric Device-R. Adler, $\mathrm{C}_{\text {r }}$. Hrbek and (.) Wade. (Proc. IRE, vol, 47, pp, 1713-1723; October, 1959.) Unusually low noise combined with high stable gain is achieved by the action of a transverse quadrupole fick upon a fast cyclotron wave. A descrimion of the device and an analysis of its amplification process are given and experimental tubes operating in frequency bands between 400 and 800 mc are nescriberl.
621.385.6:621.375.9:621.372.44

362
Use of the Principles of Conservation of Energy and Momentum in connection with the Operation of Wave-Type Parametric Amplifiers -lierce. (See 89.)

621.385.62

363

Harmonic Current Growth in VelocityModulated Electron Beams - T. B. Mihran. (J. Appl. Phys., vol. 30, pp). 1346-1350; September, 1959.) (irowth was discovered in the results of a series of disk-electron calculations on bunching in klystrons, and second-harmonic growth was observed experimentally. A physical explanation is given.
621.385 .63

Interaction of a Modulated Electron Beam with a Travelling Electromagnetic WaveV. N. Shevchik and I. P. Oleinikova. (Radiotekh. Elekiron., vol. 4, pp. 128-130; January, 1959.) A brief mathematical analysis.
621.385 .63

365
Travelling-Wave Valves-C. H. I)ix. (Wireless W'orld, vol. 65, pp. 476-481; November. 1959.) Interaction processes between electrons and fields in the two main types of travelingwave tube are discussed.
621.387:621.362

Thermoelectric Properties of the Plasma Diode-H. W. Lewis and J. R. Reitz. (J. A ppl. Ih hys., vol. 30, 1]r. 1439-1445; September. 1959.) The thermocectric properties of a gasfilled diode with a high density of positive ions are discussed in detail and the results of the analysis are compared with experimental ditat.

States in a Sequential Machine

A "sequential machine" is any device producing prescribed sequences of outputs in response to given sequences of inputs. The theoretical problem of designing a machine, satisfying certain specifications with the fewest possible number of states, is now under study by IBM scientists.

The operation of a sequential machine is not necessarily completely specified. Some states may have no specified transitions for certain inputs, and some states may have no
assigned outputs. For this general case, a technique has been developed for reducing a given machine to an equivalent machine with a minimum number of states. The procedure is to construct a state diagram of the machine which describes input and output sequences. Then through the use of a tran-sition-matrix representation, a minimumstate diagram is obtained, which is equivalent to the original machine in the sense that it will produce the same sequences of
outputs for the given sequence of inputs. Earlier reduction procedures have been applicable only to state diagrams having known transitions for each input at each state. The extension of the procedure is important since many practical sequential machines (such as computers) require a specified operation for only a certain set of sequences of inputs.
IBM.RESEARCH

Investigate the many career opportunities available in exciting new fields at IBM.

From the home of Phanned Pioncering

All New:

Ready for you at the

IRE Show

Booths 3608-3610

439 RECORDING OSCILLOGRAPH , . ALL NEW inside
and out - ufility engineered features: 14 charmels; dara numbering; weight 15 lbs.; rugged advancèd design.
 including wire and foil units.

450 PORTABLE RECORDER NEW AND NEEDED! A utility engineered, reasonably priced null-balanced portable recorder with SELF CONTAINED POWER. Lightweight, adjustable speeds, accuracy sensitivity, and other features usually only available in external powered models.

20-E QUICK-VIEW COLORBAR VISUAL MONITOR A new visual monitor with EEZE-READING bold bright colorbars and simple operational hook-up. Ideal for observation of strain gage network alignment; magnetic tape editing; jef engine function analysis, etc.

Units for delivery now

ELECTRONICS and INSTRUMENTS, INC.
The home of Planned Pioneering
TWX - TU $1407 \quad$ Phone LU 4-711
P. O. Box 6216, Pine Station, Tulsa 10, Oklahoma

SERVICED BY
Systems Engineering Offices of Airsupply-Aero Engineering Division
THE GARRETT CORPORATION . . . In all principal cifies
Opportunilies atailable for Electronic Engineers in research and development. Contact Personnel Manager.

Kodak reports on:

a simple-minded stunt with a little honest fudging . . . a little something for the taxpayers . . . what the big wheels do

A tough window for the infrared

Here represented is a nice piece of infrared technology. We take pride in it, even though they tell us it will never replace the foot-soldier.
Our simple-minded stunt photo demonstrates that a 3 -inch flat of the new Kodak Irtran Optics, Type AB-l can be fused so securely into a stainless steel mounting that plunging it at $200^{\circ} \mathrm{C}$ into tap water generates steam but does no harm.
We have developed this Irtran material for transmitting in structurally adequate thickness more than 90% of impinging energy from 3 to 6μ. Not only does it withstand thermal shock, weathering, humidity, and abrasion, but, defeating the emissivity of "hotwindows," it retains its high transmittance at $800^{\circ} \mathrm{C}$ and, possessing a refractive index less than 1.4 , requires no coating to cut reflection losses.
The only fudging was a bit of detergent in the water. We justify this on the grounds that dividing the steam among a cloud of bubbles made the test more severe by increasing the cooling rate.

For the dope on what we can make in Kodak Irtran lenses, domes, prisms, fluts, and substrates for interference filters, write Eastman Kodak Company, Special Products Division, Rochester 4, N. Y.

Microelectronics

The theme of microelectronics is that if you want environment-immune, highly "intelligent" circuitry that can handle problems of logic and fit into a tenth of a cubic inch of space or so, you quit at an early stage of the design thinking of transistors, diodes, capacitors, resistors, and such. Instead you think of the circuit as one or more plates half a millimeter thick and fab-
ricated as intricately as necessary out of various conductive, semi-conductive, and dielectric materials disposed among the three dimensions of each plate.

The technique uses Kodak High Resolution Plates on which the geometry of the various sub-circuits is photographed from drawings at great reduction. These then become the masks under which are exposed to ultraviolet light the circuit substrate plates that have been coated with Kodak Photo Resist. Where the mask passes u-v, subsequent processing removes the resist and lays open the substrate for either removal of material or insertion of other materials by evaporation, printing, electro-deposition, or chemical deposition.
Send to Eustman Kodak Company, Spe cial Sensilized Products Division, Rochester 4, N. Y., for a reprint of "The DOFL Microelectronics Program." Thus we nudge you toward grear undertakings.

A kind word for triacetate tape

The time has come for a few carefully framed remarks from us about recording tape, a product which we do not offer in the United States, even though Kodak Pathé has done well with tape in France for about a decade. In this country we do make base for magnetic tape. This we sell to several competent organizations who practice their respective rival methods of depositing iron oxide on it.

Our base is cellulose triacetate, the same as in Kodak Aerographic Films for precision mapping from aloft. We

cast it from solution on the nigh miraculously smooth peripheries of 18 foot wheels like this one. In the 330° of rotation allotted for preliminary

This is another advertisement where Eastman Kodak Company probes at random for mutual interests and occasionally a little revenue from those whose work has something to do with science
evaporation of the solvents before stripping off as sheet, the thicknessalong with any thickness errorsshrinks by $4 / 5$. This situation favors the maintenance of thickness with great uniformity. Except for infrequent replating, these prodigious wheels have been rotating with stately unbroken angular momentum night and day, winter and summer, weekends and workdays for a full generation of mortal man.

Not only do our tape-making customers rival each other in excellence of deposition, but our cellulose triacetate has a rival of its own in polyethylene terephthalate, which is known as polyester. Because of the slightly higher price of polyester tape, it has often been assumed on all counts superior. This misconception hurts us.* The price difference at least partially stems from the higher salable yield that the tape manufacturer gets from cellulose triacetate. He has to reject less tape for deformation or "skew" and has the inherent thickness uniformity of the solvent-evaporation method to thank.

Though most of the tape being bought today is our beloved cellulose triacetate, there is a place for polyester. That we admit. It's very good for humidity amplitude and devilishly strong.

Cellulose triacetate, on the other hand, has only 15% ultimate residual elongation, not 45%. It does not go on stretching and stretching when overloaded by apparatus design that leans too heavily on strength of the tape base. In many applications a stretch of large and unknown magnitude could have a sneaky effect on the results.

One other factor puts cellulose triacetate high with the man to whom the word "dropout" is an expression of horror. A dropout is caused by an inhomogeneity. Our cellulose triacetate, by the nature of its manufacture, is not likely to contribute inhomogeneity. Believe us.

Don't write to us ahout the foregoing unless you just happen to be in a mood for correspondence. All we ask is that you bear our assertions in mind when the occasion arises to specif. magnetic recording tape.
*Another thing that disturbs us is inclusion of cellulose triacetate under the generic term "acetate."

AN IMPORTANT ANNOUNCEMENT TO ALL IRE MEMBERS AND SUBSCRIBERS

The IRE Professional Group on Antennas and Propagation has just published the "Proceedings of the URSI International Symposium on Electromagnetic Theory," held at the University of Toronto, Canada, on June $\mathbf{1 5 - 2 0}$, 1959, as a special supplement to Volume AP-7 (1959) of the IRE TRANSACTIONS on Antennas and Propagation.

Those who registered at the Toronto Symposium will automatically receive one copy as a part of their symposium registration fee. PGAP members and others may obtain a copy by ordering at the rates indicated below. There will be no free distribution because of the special nature and large size of the supplement.

This imposing 400 -page volume, comprising invited papers by 54 of the world's leading authorities, promises to be one of the outstanding reference works in its field. The subjects covered include Diffraction and Scattering Theory, Radio Telescopes, Surface Waves, Boundary Value Problems, Propagation of Waves, and Antennas. The complete program may be found on page 18 A of the June, 1959 issue of the PROCEEDINGS OF THEIRE

IRE members and subscribers are urged to order their copies now by returning the form below to the IRE, accompanied by remittance made payable to The Institute of Radio Engineers.

The Institute of Radio Engineers, Inc.
1 East 79 Street, New York 21, N.Y.

ORDER FORM FOR PGAP TORONTO SYMPOSIUM PROCEEDINGS

No. of Copies
Price per Copy
Amount Paid

	PGAP Members	$\$ 8.00$	$\$$
	Other IRE Members	$\$ 12.00$	$\$$
	Libraries	$\$ 12.00$	$\$$
	Nonmembers	$\$ 16.00$	$\$$

TOTAL REMITTANCE \$

ORDERED BY (Please Print):

SHIPPING ADDRESS:

High voltages at high power. Tricky business - but a specialty of the Carad Corporation. Take this 30 kv , 3.3 ampere DC power supply, for instance. Carad designed and built this one in 70 days for Eitel-McCullough, Inc. It supplies beam voltage for production testing of high-power klystrons -80 to 100 hours a week. One important characteristic is its ability to withstand severe load arcing - and protect the klystron being tested. This Carad supply will clear itself in 30 to 50 milliseconds and includes special reactors to limit current surges. For custom systems involving high-voltage supplies, pulsers, modulators or special transformers, investigate Carad's unusual capabilities.

CARAD CORPORATION

2850 Bay Road • Redwood City • California

[^83]

These manufacturers have invited PROCEEDINGS readers to write for literature and further technieal information. Please mention your IRE affiliation.
(Continued from page 106A)
1'resident of Stetson-Ross Machine 'lool Corporation of Seattle. The new firm will specialize in the manufacture of precision industrial and laboratory electronic test instruments for the military and commercial markets.

Anti-Coincidence Preamplifier

This firm also announces their completely transistorized Model 501 Anticoincidence Preamplifier. This instrument is designed particularly for low-level Beta work. Any existing scaler may now be converted to a low-level anti-coincidence counter. The Model 501 is used with a geiger tube detector and cosnic ray umbrella type detector, such as the new

Amperex 18515 or 18517 , to reduce the background count from 22 counts per minute to approximately 1 or 2 counts per minute. With this system there is no further need for the large, heavy 3000 \# lead shield for background protection. Any impulses from the umbrella or guard tube gate the detector circuitry so that background count will not appear at the scaler output. Voltage dividers are provided for the independent adjustment of the high voltage for guard and detector. Input impedance is 0.5 megohm. Sensitivity is from 0.1 volt to 20 volts. Resolving time is 400 microseconds. The Model 501 provides a 20 volt negative going pulse 20 microseconds wide to the scaler. The scaler used with this instrument may be switched to read guard tube output, detector output (withoul anti-cuincidence) and 60 cps test signal. A test position on the Model 501 is provided which puts a 60 cps square wave into both the detector and guard circuits to test the anticoincident circuitry.

Dielectric Test Set

Designed by Peschel Electronics, Inc., R.F.D. \#1, 'lowners, I'atterson, N. Y., for testing samples of magnet wire (twist test) in accordance with Military and Commercial Standards, Model P5 AC-1 features a transparent test cage mounted on the front panel to receive the specimen pieces of magnet wire twisted in accordance with test requirements. A microswitch interlock on this test cage dour prevents the application of high-voltage if the door is left open. linds of the magnet wire slip into miniature mercury cups to facilitate contact with the high-voltage without the necessity of scraping insulation from the fine magnet wire.

Other features include continuously adjustable testing voltage from zero to 5,000 volts rms, a dual scale KV meter for accurate setting of test voltage, a push button high voltage "ON" control actuating a holding type contactor, plus usual safety and convenience controls. A fault relay deenergizes the high voltage and a reset push button must be operated again to obtain high voltage, providing that test cage door is closed. These controls and the interlock make it impossible to touch any high voltage circuits. Panel and metal cabinet are at ground potential to insure safety.

Though used mainly by manufacturers of magnet wire, the unit may be used as a standard hipot tester by plugging test leads into high voltage jacks at the rear of the unit.

The $0-5 \mathrm{KV}$ rms test set is optionally available with other output ranges.

BASIC BUILDING BLOCKS

 FROM KEARFOTT

SIZE II
SYNCHRONOUS MOTOR

Featuring pull out torque efficiency of 50% nominal with 3.4 watts input and 3 watts pull out power, this synchronous motor represents a major achievement in terms of performance for a unit of this extremely small size. Additional advantages made possible by Kearfott's unique design include resistance to envirommental extremes, light weight construction and low unit cost. This motor and its variations are available in production quantities.

TYPICAL

CHARACTERISTICS R172
Excitation: Phase 1 Phase 2 Voltage 40 V 40 V Frequency $400 \mathrm{CPS} \quad 400 \mathrm{CPS}$ Power 2.3 Watts 2.3 Watts Current $\quad 0.157$ Amps 0.157 Amps

Performance:

Synchronous Speed 8000 RPM
Stall Torque $\quad 0.2 \mathrm{In} .02$.
Pull Out Torque $\quad 0.35 \mathrm{in} .02$. Pull in Torque $\quad 0.15 \mathrm{in} .02$.
Write for complete data.

FROM KEARFOTT

FERRITES

Kearfott's Solid State Physics Laboratory formulates, fires and machines permanent magnet ferrite materials of various compositions. Typical highefficiency array utilizes Kearfott PM-3 ferrite material with specially designed pole pieces to produce a design both smaller and lighter than other arrays of equivalent magnetic field strength. Because magnets may be custom engineered to specific requirements, user is not restricted to stock magnet types, thereby providing greater latitude in parameters for focusing arrays. Pole pieces may also be provided according to specification, with the added assurance that, because of special Kearfott design techniques, B axial magnetic fields approximately $10^{\prime \prime}$ ' higher than those generally obtained in standard types may be produced.

TYPICAL

CHARACTERISTICS

Peak Magnetic
Field Strength
Period
Length
Inside Diameter
of Pole Pieces
Outside Diameter
Weight

Write for complete data.

1200 gauss 0.560 in 5.64 in.
0.400 in . 2.0 in . 3.2 pounds

BASIC BUILDING BLOCKS
 国
 FROM KEARFOTT

ROTARY

SWITCH
Kearfott's rotary switching devices for missile and aircraft systems are used to sequence or sivitch circuitry as a function of time or shaft position. Used in conjunction with sensitive relays or solid state switching techniques, high current loads can be handled. These switches consist primarily of shaftassembly and bearing mounted cylinder divided into conducting and non-conducting segments with continuous tlack for common input. Multiple conductor "broom" type brushes ride on each cylinder track while number of tracks and segmentation of each is function of the number of circuits and type of "onoff" sequencing required

TYPICAL

CHARACTERISTICS P1280-11A

Number of switching tracks: 2
Angular Segmentation (both referenced to 0 start):

Track 1 - Non-conducting about $0^{\circ}+50^{\circ}$
Track 2-Conducting $0^{\circ} \cdot 180^{\circ}$
Non-conducting $180^{\circ} .0^{\circ}$
Mechanical Accuracy of
Segmentation:
$\pm 1^{\circ}$ (better as required)
Starting and Running Torque: 0.1 oz .-in.

Current Capacity:
50 ma at 28 V / Brush (suitable for any sensitive relay or solid state switching circuits)

W'rite for complete data.

Free Gyro

Vertical Gyro

Dircetional Gyro

TINY

CERAMIC

CAPACITOR
.....but
MUCIN SUBminiature CERAMIC CAPACITORS CAN BE MADE EVEN SMALLER

CUSTOM DESIGNED and shaped to meet your SMALLEST space dimensions your most exacting requirements! your most exacting requirements!

MUCON's unsurpassed experience in extreme miniaturization plus a variety of ceramic materials plus a wide range of leads, shapes gives you the very last word in MICRO-SMALL ceramic capacitors.

MUCON's custom facilities are MUCON's custom facilities are
geared to a policy of IMMEDIATE SERVICE no matter the quantity. Send for catalog/representative.

Mitchell 2-1476-7-8

CORPORATION
ST. FRANCIS ST., NEWARK 5, N. J.

These manufacturers have invited PROCEEDINGS readers to write for literature and further technical information. Please mention your IRE affiliation

(Continued from rage 2118.A)

PRD Sold To

 Harris-IntertypeHarris-Intertype Corp., Cleveland 1.3 , Ohio, announced that it has completed an agreement for the acruisition of Polytechnic Research and Development Conn-pans- from the Polytechnic Institute of Brooklyn.
"P RI)," as Polytechnic Research and Development is generally known, is one of the nation's leading producers of microwave test equipment for advanced work in the communications field, both omerdial and defense, including space and misike programs.

George S. lively, chairman and presdent of Harris-Intertype, said purchase of the Brooklyn company will be largely for cash, although the price was not disclosed. The transaction is expected to be completed within a few weeks.

MIr. Ernst Weber, president of Polytechnic Institute of Brooklyn, is also presdent of PRIJ. An international authority on microwave electronics, he is the 1959 president of the Institute of Radio Engingers.

According to Dively, present plans are
present organization as a decentralized subsidiary of Harris-hatertepe. Both Dively and lieder said the hope to maintain the traditionally close relationship between PRD and Polytechnic Institute of Brooklyn.

Harris Now 20\% in Electronics

In making the announcement lively said, "This is another major move in the electronics phase of our growth and diversitication program. The first step, other than the increasing application of eleatronics to printing equipment, was our purchase two years ago of the Gates Radio Company, (nancy; Illinois. Adding PR I) sales of over $\$ 5$ million per year to those of Gates brings Harris-Intertype's eecIronic Imsiness up to about 20% of its total sales.

North American Moves To New Plant

North American Electronics, Inc., Lyme, Adas., ammines the removal of its plant and offices from Broad Street to the former General Electric Building on Linden St_{t}, in the same city

John O. Cimaglia, president of N.A.E., declared toxlay that this was the first step in the company's expansion program, designed to greatly enlarge production facilities to meet increased demand for the semiconductor products which they make.

In making the move, N.i.E. will quadruple its old plant size to 26,000 square feet. Along with this increase in
(Continued on page 114.4)
to centime the operation of PRI) by the
cont mime the operation of PR I) by the

ETCHED
METAL PARTS? TOLERANCES CRITICAL?

call buclibee meats

Micron range tolerances are standard practice with B.M.C. photomechanical techniques. Storage tube, mesh, transistor evaporation masks, intricate metal parts, mechanical filter screens, etched shaver combs, etched orifice plates, all are produced more perfectly by electroforming or mechanical etching. advantages:

1. No tool distortion and burrs.
2. Processing of parts too small or intricate for stamping or machining.
3. Ease of handling.
4. Parts or sheets of parts furnished pre-tooled for final processing.

BUCKLE MEANS GO. ST. PAUL, MINNESOTA-CAPIIOI 7.6371 Etching on metal and glass, electroforming, manufacturers of fine mesh for storage and
image lubes, micron sucres, shadow masks for color TV. V., evaporation masks for transistors.

Available now - ceramic "extras" in more than 40 tube types

SMALLER SIZE

VIBRATION SURVIVAL

extreme heat survival

IMPACT SURVIVAL

EXACT DIMENSIONAL UNIFORMITY

LOWER DIELECTRIC LOSS

Cable address EIMAC San Carlos

TYPE R TRANSISTOR-RISETIME PLUG-IN UNIT CHARACTERISTICS
Callectar Supply 1 to 15 v continuously adjustable, positive or negative. Current capability-400 ma.
Mercury-5witch Pulse Generotor Risetime less than 5 m $\mu \mathrm{sec}$, omplitude $0.02 \times$ to 10 v across 50 ohms, positive or negative. Overall riselime with Type 541A: $12 \mathrm{~m} \mu \mathrm{sec}$. Overall risetimes with other Tektronix OscilloscopesTypes 543, 545A, 555: $12 \mathrm{~m} \mu \mathrm{sec}$-Type 551: $14 \mathrm{~m} \mu \mathrm{sec}-$ Types 531A, 533, 535A: $23 \mathrm{~m} \mu \mathrm{sec}$.
Blas Supply +0.5 to $-0.5 \vee$ and $+5 \times 10-5 \mathrm{v}$, continuously variable.
Colibrated Vertical Deflection $0.5,1,2,5,10,20,50$, and $100 \mathrm{ma} / \mathrm{cm}$ collector current.
Type R Transistor-Risetime Unit.
$\$ 300$

The Type R I'nit can trigger the Oscillossope surep either on the start of the lest pulse only. or un both the start and finish to display delay, rise, starage. and fall times simulta neously.

TYPE 541A CHARACTERISTICS

Vertical Response DC-to-30 MC passband, 12. musec risetime, $50-\mathrm{mv} / \mathrm{cm}$ deflection factor with Type K Plug-In Preamplifier,
Signal-Delay Permits observation of leading edge of signal that triggers the sweep.
Versatility - Other Plug-In Preamplifiers available for many specialized applications.
Sweep Range $0.1 \mu \mathrm{sec} / \mathrm{cm}$ to $5 \mathrm{sec} / \mathrm{cm}$ in 24 directreading steps. $5-x$ magnifier increases calibrated range to $0.02 \mu \mathrm{sec} / \mathrm{cm}$. Continuously adjustable from $0.02 \mu \mathrm{sec} / \mathrm{cm}$ to $12 \mathrm{sec} / \mathrm{cm}$.
Triggering Fully automatic, or amplitude-level selection with preset or manual stability control.
Accelerafing Potential 10 kv for bright display with fast sweeps and low repetition rates.
Amplitude Calibrator 0.2 mv to 100 v in 18 steps. Square wave, frequency approximately 1 kc .
Regulation -Electronically-regulated power supply.
Type 541 A, without plug-in units \$1200
Type K Plug-In Preampllfer
$\$ 135$

The Type R Transistor-Risetime Unit, when plugged into a Tektronix Oscilloscope, supplies a fast-rising pulse and the required supply and bias voltages for measurement of transistor rise, fall, delay, and storage times. The Type R Unit can be used with all Tektronix Type 530 Series, Type 540 Series, and Type 550 Series Oscilloscopes.

When the Type R Unit is used with the Tektronix Type 541A Oscilloscope, risetime of the combination is $12 \mathrm{~m} \mu \mathrm{sec}$. The Type 541 A is a fast-rise general-purpose oscilloscope that adapts to many specialized applications through its plug-in vertical preamplifier feature. Nine plug-in preamplifiers are presently available, others will be announced in the near future.

Please call your Tektronix Field Engineer for complete details. If desired, he can arrange a demonstration in your own application.

ENGINEERS-interested in furthering the advancement of the oscilloscope? We have openings for men with creative ability in circuit and instrument design, cathoderay fube design, and semicanductor research. Please write Richard Ropiequel, V.P., Eng.

Tektronix, Inc.
 P. O. Box 831 - Portland 7, Oregon

Phone CYpress 2.2611 - TWX-PD 311 - Cable: TEKTRONIX TEKTRONIX FIELD OFFICES: Alberlsan, LII., N.Y. - Albuquerque, N.M. - Annondale, Vo. Allanto, Ga.- Buffolo, N.Y. Cleveland, Ohia. Dallas, Tex. ${ }^{-}$Dayion, Mhio. Denver, Colo. Endwell, N.Y. - Greensbara, N. C. - Houstan, Tex, © Lathrup Village, Mich. Lexingtan, Mass, East Las Angeles. Canf. West Las Angeles, Con. Minneapolis, Mmn. Mission, Ment rbura Flo
 tektronix engineering representatives: Hawtharne Electranics; Portlend, Oregon, Seotile, Woshington.
Tektranix is renresented in 20 overseas countries by qualfied engineering orgonizations.

Recorded Events,

only when referred to

Time...

have significance!

and with today's accelerating technology, the need for the most accurate time reference available becomes more acute. It is available and free; the standard time and frequency transmissions of the National Bureau of Standards radio stations WWV and WWVH are accurate to better than 1 part in 50 million and are placed at the disposal of anyone having a receiver capable of tuning to one or more of the transmitting frequencies.
The new Model WWVT receiver. designed especially for remote operations under extreme environmental conditions, is a highly-sensitive crystal-controlled instrument capable of utilizing WWV and WWVH transmission.

A 6-position dial switches instantly to any Standard Frequency - 2.5, 5, 10, 15, 20 or 25 mc. It is small, light-weight and rugged - sealed metal case and potted components, all transistorized and battery operated, and has better than 2 mv sensitivity. Priced at S545.00

Send for bulletin \#159A which details many free services available from WWV \& WWVH.

SPECIFIC PRODUCTS
Box 425, 21051 Costanso, Woodland Hills, Calif.

NEWS Producls/

(Continued from rage 110.4)

space, the company will increase the number of its employees accordingly

The move represents not only an increase in space and facilities, but also an addition to its present prodnct line. To its line of silicon diodes and cartridge rectifiers, N.A.E. will add a new line of transistors.

Formed two years ago in December, North American Electronics, has already seen considerable expansion in that period. Other officers in the company include: Arthur Bruno, vice president and chief engineer; Felix Piech, treasurer; I)r. Walter Henry, clerk.
47. Kiver St., Wellesley Hills 81, Mass., in 3 to 6 digits, and from 1 to 6 preset banks. The Model 2044, 4-digit and 4 -bank counter is shown. Although, initially, this series is designed for toroidal winding machines, other variations will soon be awailable. Some features include: all electronic circuitry, completely transistorized, solid state power supply, plug-in output relay, cold-cathode counting tube elements, reinforced fiberglas cabinet, low power drain, less than 10 watts at 115 volts ac.

Toroidal Inductors

Type TQA precision inductors manufactured by United Transformer Corp., 150 Varick St., New York 13, N. Y., provide a solution to stable oscillators for frequencies from 400 cycles to 75 kc .

The 2000 Series l'reset Counters are available from Oxford Engineering Co.,
BOESCH
> subminiature toroidal coil winders

MODEL SM

NEW MINITOR

SM winds $1 / 16^{\prime \prime}$ I.D. toroids. New MINITOR winds $1 / 32^{\prime \prime}$ I.D. Write for complete data.

BOESCH MANUFACTURING CO., INC., DANBURY, CONN.

tam -1 joap \dagger CAPACITOR STABLLITY ASSURED BY 250-HOUR PERFORMAMEE LOAD TEST

...expanded TI line of type SCM

 solid tantalum capacitors meets MIL specs

Another assurance to you of Texas Instruments capacitor reliability 250 -hour performance load test on a sample basis of all lots of the Type SCM series.
Your margin of design safety is greater with tan-TI-cap capacitors. Type SCM capacitors are 100% tested for capacity, dc leakage and dissipation factor, and are aged under load at elevated tempera-
ture. SCM units in all 203 standard ratings (6-35 volts, 1-330 $\mu \mathrm{fd}$.) meet and exceed the electrical and mechanical requirements of MIL-C-55057 (Sig. C) and/or MIL-C-21720A (NAVY) specifications for solid tantalum capacitors.
Contact your nearest authorized TI distributor or TI sales office today for your immediate and future delivery requirements.
\dagger trademark of Texas Instruments Incorporated

- Dimension "A" determined by suspending a one-pound weight from one lead and rotating the case from the vertical position to the horizontal position, and then repeating the procedure for the other lead. ** Meets all requirements of MIL.C. 55657 and MIL-C.21720A including dimensions.

荌

All lots of Type SCM ranTicap capacitors are tested for performance stability at rated temperature and voltage prior to release for shipment. Performed on a lot-sample basis, the test is run for 250 hours or until performance stability is established by successive time interval measurements of the principal parameters of each test capacitor.

Write to your nearest TI sales office on your company letterhead for Bulletin DL-C 1173 which gives detailed specifications on the complete SCM series.

Texas
 INSTRUMENTS I NCORPORATED SEMICONDUCTOR.COMPONENTS DIVISION 13500 N. CENTRAL EXPRESSWAY POST OFFICE BOX 312 . DALLAS.TEXAS

IS YOUR COMPANY ON THE OFFENSE FOR DEFENSE?

SIGNAL is your infroduction to the men who control the growing \$4 billion dollar government radio-electronics spending

Abstract

Never before have our armed forces so badly needed the thinking and products of the electronics industry. Advertising in SIGNAL, the official journal of the Armed Forces Communications and Electronics Associafion, puts you in touch with almost 10,000 of the most successful men in the field-every one a prospect for your defense products!

Share in the defense and the profits! Company membership in the AFCEA, with SIGNAL as your spokesman, puts you in touch with government decision-makers!

SIGNAL serves liaison duty between the armed forces and industry. It informs manufacturers about the latest government projects and military needs, while it lets armed forces buyers know what you have to offer to contribute to our armed might. SIGNAL coordinates needs with arailable products and makes developments possible.

But SIGNAL, is more than just a magazine. It's part of an over-all plan!

A concerted offensive to let the government, which has great faith in industry and the private individual producer, know exactly what's arailable to launch its farsighted plans. Part of this offensive is the giant AFCEA National Convention and Exhibit (held this year in Washington, D.C., June 3-5). Here, you can show what you have to contribute directly to the important buyers. Your sales team meets fellow manufacturers and military purchasers and keeps "on top" of current government needs and market news.

Besides advertising in SIGNAL which affords yearround exposure by focusing your firm and products directly on the proper market . . . besides participation in the huge AFCEA National Convention and Exhibit . . the over-all plan of company membership in the AFCEA gives your firm a highly influential organization's experience and prestige to draw upon.

As a member, you join some 170 group members who feel the chances of winning million dollar contracts are worth the relatively low investment of time and money. On a local basis, you organize your team (9 of your top men with you as manager and team captain), attend monthly chapter meetings and dinners, meet defense buyers, procurement agents and sub-contractors. Like the other 48 local chapters of the AFCEA, your team gets to know the "right" people.

In effect, company membership in the AFCEA is a "three-barrelled" offensive aimed at putting your company in the "elite" group of government contractorsthe group that, for example in 1957, for less than $\$ 8,000$ (for the full AFCEA plan) made an amazing total of 459.7 million dollars!

This "three-barrelled" offensive consists of
(1) Concentrated advertising coverage in SIGNAL, the official publication of the AFCEA;
(2) Group membership in the AFCEA, a select organization specializing in all aspects of production and sales in our growing communications and electronics industry; and
(3) Attending AFCEA chapter meetings, dinners and a big annual exposition for publicizing your firm and displaying your products.

If you're in the field of communications and electronics . . and want prestige, contacts and exposure . let SIGNAL put your company on the offense for defense! Call or write for more details-now!

Official Journal of AFCEA

Wm. C, Copp \& Associates

72 West 45th Street, New York 36, New York MUrray Hill 2-6606
boston • Chicago • Minneapolis
Los Angeles • San Francisco

MEM WAVEGUIDE FERRITE ISOLATORS

Specially designed to offer maximum isolation with minimum insertion loss, six broadband isolators cover a frequency range of 3.95 to 26.5 KMC/S.

Conservatively rated at 5 watts, these rugged units can dissipate FIVE TIMES as much power with only temporary electrical characteristic degradation.

PRD IYPE	FREQUENCY (KMC/S)	MINIMUM ISOLATION	LENGTH (INCHES)
1205	$3.95-5.85$	16 db	$81 / 4$
1204	$5.85-8.20$	20 db	$61 / 8$
1206	$7.05-10.0$	24 db	5
1203	$8.20-12.4$	30 db	$61 / 4$
1208	$12.4-18.0$	24 db	6
1209 F1	$18.0-26.5$	24 db	$41 / 2$

Complete specifications on the PRD Type 1203, 1204. and 1205 are contained on page A-21 of the PRD Catalog E-8. For a copy of this 160 page designers' workbook containing data on hundreds of quality microwave instruments from PRI), the company that's FIRST IN MICROWAVES, send your request on your company letterhead please.

If you want specifications on PRD Waveguide Ferrite Isolators, simply fill out inquiry card in this magazine. \& DEVELDPMENT CD., INC.

Factory \& General Office:

202 Tillary St., Brooklyn 1, N. Y. ULster 2-6800
Western Sales Office:
2639 So. La Cienega Blvd., Los Angeles 34, Calif. UPton 0-1940

These manufacturers have invited PROCEEDINGS readers to write for literature and further technical information. Please mention your IRE affiliation.

(Continuted from page 11t.t)

These toroid inductors are center tapped for oscillator circuits and employ an extremely stabilized core for maximum temperature stability, TQA muits are available as stock items in ninetcen inductance values ranging from 7 mhy to 22 heuries, laboratory adjusted to 1% accuracy. Maximum Q is approximately 160 at 7.5 ke ranging down to 20 at 400 cps and (o approximately 30 at 75 kc for low inductance values. Hum pickup is extremely low due to a uniform toroid winding plus a high permeability outer case, providing 80 db at coupling attemuation.

TQA units are hermetically sealed to MIL-T-27. specifications and carry MII. identification TF $+\mathrm{RX} 20 \mathrm{Y} Y$. The case is $\frac{11}{16} \times 1 \frac{9}{32} \times 1 \frac{21}{32}$ inches; weight four ounces.

Spectrum Analyzer

The Type 190 Spectrum Analyzer was developed by Ferranti Electric Inc., Electronics Division, 95 Madison Ave., Hempstead, L. I., N. Y., originally as part of the Type 123 Noise Neasuring Equipment. The latter instrument measures AM and FM noise in a narrow band and is specially suited to the requirements for noise measurement encountered in CW Doppler radar sustems.

The Type 190 is useful to engineers working on other parts of such systems who do not need the RF head.

Frequency Kange: The equipment measures power level in a selected bandwidth in the range 500 cps to 90 kc (a version with an upper frequency limit of 145 kc is under development).

Bandwidth: 70 cps or 1 kc by switch selection.

Presentation: Automatic using a swept oscilloscope or manual for accurate power measurements using a thermal meter once the frequencies of interest have been determined.

Sensitivity: The instrument can handle signals from 0.1 volt to 1 microvolt (100 db range).

Accuracy: $\pm 2 \mathrm{db}$ from 500 cps to 90 kc .
(Continued on page 129.A)

MOTOROLA announces a NEW

QUALITY ASSURANCE PROGRAM

Th his new Motorola "Meg-A-Life" quality-assurance program provides users of semiconductor devices with:

1. Written certification of reliability with orders of 100 units or more.
2. Established specifications as severe as those required for military units.
3. Close quality control tolerances, with minimum and maximum parameters, AQL and inspection levels completely specified.

Under this new Motorola program, each production lot of a "Meg-A-Life" branded device is subjected to complete electrical, mechanical. environmental and life tests identical to those required for Military approved units. The purchaser receives written certification that units passed the specified tests and a copy of the actual test results is made available.

All tests and sampling are made in accordance with military specifications representing the most adverse conditions under which the devices would be used. The Motorola "Meg-A-Lite" certificate provides the industrial user with an assurance of reliahility never before possible and makes possible the elimination of duplicate testing.
The first available Motorola "Meg-A-Life" devices are the 2N650A. 2N651A and 2N652A Industrial Alloy Transistors. Other Motorola semiconductors will be announced under the "Meg-A-Life" brand.

NEW
MOTOROLA
"MEG-A-LIFE"
INDUSTRIAL
ALLOY
TRANSISTORS

Motorola types 2N650A, 2 N651A and 2N652A are the first to be offered under the Motorola "Meg 1 -Life"brand.Units are designed to provide extremely reliable amplifier and switching service in the audio frequency range

- Meet or exceed mechanical and environmental requirements of MIL-S-19500•PC $=200 \mathrm{mw}$
- Operating and storage temperature: to $100^{\circ} \mathrm{C}$
- BVCBO $=45$ volts $\cdot \operatorname{BVCER}(R=10 K)$ $=30$ volts

Type Number	hie (VCE $=6 \mathrm{~V}, \mathrm{IE}=1 \mathrm{ma}$)	
	MAX.	
2N652A	100	225
2N651A	50	120
2N650A	30	70

FOR COMPLETE INFORMATION and specifications on "Meg-A.Life" Industrial Alloy Transistors, contact your Motorola Semiconductor District Office:
ahberiflo. mem insey

 oftiolt m, micmicam 13131 Lynden Avenue
GRoodwh 37171
cmicaco 3s. Himols 234 me ti Diverse) Avenu
menteris ar, \qquad 71316 th Avenue
Literiys 3198

ELECTRONIC ENGINEERS

MITRE
 CORRPORATION

MITRE, a system engineering and development organization, was formed under the sponsorship of the Massachusetts Institute of Technology to provide engineering solutions for the varied and complex problems inherent in integrated air defense systems.

The Corporation is organized to undertake complete large-scale systems projects from design through equipment prototype engineering and subsystem development through final evaluation of the interactions of the operational systems.
Within this context, MITRE's Electronic Warfare Department is engaged in a wide range of activities designed to maximize system effectiveness in the face of electromagnetic disruption and deception. The design, development and analysis efforts of the Department span the entire ECM and ECCM technologies with emphasis on quick reaction and system compatibility. Professional work assignments involve the improvement of inbeing systems and the development of equipment and techniques for use in advanced systems.

Electronic engineers with an interest or experience in countermeasures, and an appreciation of the complexities of large-scale system synthesis are invited to investigate the long-term opportunities currently available.

Resumes in complete confidence should be directed to Dana N. Burdette, Personnel Director, Dept. 4-MD

THE MITRE CORPORATION

244 Wood Street - Lexington 73, Massachusetts
\mathcal{A} brochure more fully describing $\mathcal{M I J R E}$
and its activities is available on request.

Positions Wanted

By Armed Forces Veterans

In order to give a reasonably equal opportunity to all applicants and to avoid overcrowding of the corresponding column, the following rules have been adopted:

The IRE publishes free of charge notices of positions wanted by IRE members who are now in the Service or have received an honorable discharge. Such notices should not have more than five lines. They may be inserted only after a lapse of one month or more following a previous insertion and the maximum number of insertions is three per year. The IRE necessarily reserves the right to decline any announcement without assignment of reason.

Address replies to box number indicated, c/o IRE, 1 East 79th St., New York 21, N.Y.

SENIOR ENGINEER-CHIEF

Age 43; broad electronic experience with vacuum tube and transistor circuitry, analog computers, gyro systems, power supplies, miniaturization and printed circuitry. Senior Member IRE. Tau Beta Pi, Eta Kappa Nu. Will relocate for an outstanding opportunity. Box 2051 W.

ENGINEERING TEACHER

B.S. and M.S. in E.E. 2 years industrial re. search, 2 years applicable military, and 4 years full-time teaching on the faculty of a major east coast university. Desires position of permanence with good family living conditons. Summer income opportunity desirable. Available June 1960. Box 2052 W.

ELECTRICAL ENGINEER

B.S. in physics, graduate work in E.E.; $71 / 2$ years experience in electronics of which $31 / 2$ years is in commercial data processing. Have published articles and hold patents in electronics. Desires overseas position. Box 2053 W.

ENGINEER

BSEE., extensive antenna and R.F. experience, design and project supervision. Broad background includes sales and engineering management, contract negotiations. Desires position as General Manager of antenna company, or participant in ownership management of antenna consulting firm or small growing company. Box 2054 W.

COMPONENTS ENGINEER

E.E. degree. 10 years solid experience in electromechanical components-development, evaluation, application and standardization. Desires a challenging, responsible position in a supervisory capacity, New York, Long Island area preferred. Box 2055 W .

ELECTRONIC FIELD ENGINEER

Graduate engineer, BSEE., several years experience, age 32, fair health, seeking position as electronic engineer-sales engineer, field engineer, coordinator customers' technical requirements either commercial or military customers, or supervisor equipment installation and installation checkout. Preparation with company training course desirable. Box 2056 W.

RESEARCH AT COLLINS

SHAPE OF PROGRESS

Yesterday's basic and applied research in antennas has become today's technology in broadband antenna design at Collins Radio Company. Pictured here is a Collins Logarilhmic Periodic Antenna. It performs functions previously requiring a large number of antemats. The Logarithmic Periodic concept is based on a structural geometry in which the electrical characteristics repeat periodically as the log of the frequency. Since only minor changes
occur over each period, the characteristics are essentially constant over the entire frequency range.

Collins Radio Company Research Laboratories direct far ranging programs in circuits. advanced systems, antennas and propagation. mechanical sciences, and mathematics toward advancing scientific knowledge and developing new technologies. Collins provides freedom of activity in basic research for the physicist and engineer capable of looking beyond the apparent limits of today's science. In applying the new concepts thus created. Collins has attained an enviable position of leadership in electronics. Unique professional opportunities are now being offered. Your inquiry is invited.

COLLINS RADIO COMPANY • CEDAR RAPIDS. IOWA • DALLAS. TEXAS • BURBANK. CALIFORNIA

CIRCUIT DEVELOPMENT ENGINEER

your future: a challenging opportunity with an industry leader

At Texas Instruments, your future is filled with specific, stimulating growth assignments in evaluating and characterizing transistors and special semiconductor devices. You'll participate in such transistorization projects as:

```
- AM, FM, and TV recelverg
- mudio mind video, l-f and ruf amplifler:s
- h|fil mind electronle orgamen
- nonllnear and swliching circults
- compufer system loglc
- servo and power ampliflerg
```

With TI ... receive liberal company-paid benefits, including profit sharing (over last several years, an average of more than 12% of base salary)...enjoy premium living in a moderate climate with excellent neighborhoods, schools and shopping facilities ... work in a plant selected as one of the 10 outstanding U. S. industrial buildings of 1958 .

Interviews will be held in your area soon. If you have an Electrical Engineering degree and/or knowledge of transistor circuitry, please send a resume to:
C. A. Besio, Dept. $200-\mathrm{Pl}$

GROUND SUPPORT EQUIPMENT

PROJECT ENGINEERS-EE \& ME

Experience in ground support equipment built to military specifications.

ENGINEERS-EE

Some experience desired in ground support equipment

SEMI-CONDUCTOR

 ACTIVITIESPHYSICISTS or CHEMISTS
Significant educational and experience background in solid state physics. For participation in the following areas of research and development.

Photoelectrits
Magnetics (ferrites, magnetic
films, etc. 1
Dielectrics
Semiconductor Materials las applied to diodes, transistors $\&$ Hall-effect devices)
Microminiaturization
Kollsman is seeking a limited group of exceptional men to participate in its continuing growth in the field of automatic navigation and flight instrumentation. These openings offer unusual opportunity with an organization intimate enough to allow individual recognition, yet large enough to assure stability

Please send resumes to T. A. DeLuca

Subsidiary of Standard Coil Products Co., Inc.

80-08 45th Avenue,
Elmhurst, New York

By Ammed Forces Veterans

(Conthured from: page 120.4)
ENGINEERING MANAGERTECHNICAL REPRESENTATIVE
Retiring Navy (abtain. Engineering Duty Of ficer. Senior Member TRE. Wesires to locate in Southern California. (iraduated Saval Academy 1926. 3 years sea duty, 12 years civilian electron ics engineer. Returned to active duty $19+1$. 9 year- technical adminimator in Naval laboratories: + years comptroller in Naval Shipyard with collateral duty at Project Ulficer for elec. tronic data processing. Available late spring 1960. Bex 2057 II

MARKETING DIRECTORSALES MANAGER

Desires to relocate. Connecticut preferred. Ex cellent background in building and managing electronic sales organizations, Experienced in di recting all phases of marketing activities. Age 37, married. Resume furnished on request. Box 2001 W.

UNIVERSITY ADMINISTRATOR

11 years college administration and teaching experience, plus industrial research, electronic de sign and development Currently combucting year's research in industry. Have directed grant programs, technical adult education, research, taught undergraduate and graduate. BS. and MS. in F.E. Married. Age 36. Fxcellent references. Interested in challenging college position. Prefer Rucky Mountain area. Box 2062 W.

ELECTRICAL PATENT POSITION

BEF. Polytechnic Institute of Brooklyn 1958. Comat linard officer deaires position in Patent branch of organization located near a law school. patent, law school and engineering experience. 5180x 2063 W .

 Positions Open

为童

The following positions of interest to IRE members have been reported as open. Apply in writing, addressing reply to company nientioned or to liox No.
The Institute reserves the right to refuse any announcement without giving a reason for the refusal.

Proceedings of the IRE
I East 79th St., New York 21, N.Y.

DIRECTOR OF ELECTRONICS

Director of electronics K and 1) with aeronautical applicationc. Suburban location near Sew York City. Salary $\$ 30,000$ plus. Doctor's degree de-sirable. Ilox 1098.

ENGINEERS

The Pratt \& Whitney Aircraft Division of United Aircraft Corp., East Hartford, Conn. has openings for graduate engineers in the areas of I'ropulsion Systems Performance Analysis, Ileat Transfer Research, Ültra High Temperature Materials, Dynamics, Vibrations, Structures Re-
(Continucd (:n page 121.1)

To the creative engineer, there is nothing more stimulating than to work in a creative environment. Space engineering programs now in progress at Martin-Denver demand unusual creativity and may be your ticket to the personal and professional achievements which you are seeking. Make your desires and qualifications known to N. M. Pagan, Dir. of Tech. and Scientific Staffing, The Martin Company, (Dept. DD7) P. O. Box 179, Denver 1, Colo.

MARTIN-DESIGNED CIRCULAR SPACE COMPUTERS ARE AVAILABLE FREE TO INTERESTED PERSONS BY WRITING TO T.HE SAME ADDRESS
search, Experimental Testing, Technical Report Writing and Propulsion Systern Control En. gineering. Many of these openings are in our advanced Development Grouns where we are presently conducting studies in solid and liquid propellants, ion propulsion, arc jet, plasma jet. and other allvanced forms of propulsion. Openings are available at both the Conn. and Florida facilities. For more information, contact Mr. Henry M. Heldmann, Employment Office.

NSTRUCTOR OR ASSISTANT

 PROFESSORSRetirement of a staff member creates a vacancy in the Electrical Technology Dept. for February 1960. Teaching area is mainly in electronics at the technican level. Minimum requirements are BEE. or B.S. in E.E. and 2 years of industrial experience. Starting salary $\$ 5000$ to $\$ 7000$. Opportunity for an additional $\$ 2000$ through evening and summer teaching. Fxcellent pension system and other fringe benefits. Write to Prof. J. De France, Dept. of Elec. Tech., New York City Community College, 300 Pearl St., Brooklyn 1, New York.

DEVELOPMENT ENGINEER

Development Engineer to head a small development group in the field of small electronic components. Degree or its equivalent, and experi-

...
 NEW OPPORTUNITIES IN
 LOW-NOISE AMPLIFIERS SEMICONDUCTOR DEVICES ELECTRON-BEAM DYNAMICS MICROWAVE CIRCUITS tV and radio receiver design engineers

Chicago, III., and Menlo Park, Calif.

The continuing expansion program at Zenith has creatednew opportunities for engineers with experience in the above fields
The fast-wave electron-beam parametric amplifier, conceived at Zenith, has opened up challenging new fields for research and development activity from UHF to SHF bands. Broad company interests in the microwave-tube area provide fertile atmosphere for original ideas and individual initiative.

An expanding research program in new fields centered around compound semiconductors provides opportunities for individuals with backgrounds in the solid-state art. Development of special devices for highly specific purposes, in collaboration with applications engineers, represents another area of active interest in the semiconductor field.
Positions are now available in the Research Department at Chicago; some openings are available in the San Francisco Bay Area. Congenial small-group atmosphere prevails, with all the advantages of a large, progressive company.
Interested applicants please contact:

DR. ALEXANDER ELLETT
Zenith Radio Corporation
6001 Dickens Avenue
Chicago 39, Illinois

BErkshire 7-7500
ence in this field required. Write Philadelphia Plant Employment, International Resistance Co., 401 North Broad St., Philadelphia 8, I’a.

PROFESSORS

Rank of Assistant Professor or Associate Professor, depending on qualifications. Salary $\$ 5500$ to $\$ 8500$ for session, 10 months nominal, 9 months actual. Start February or September 1960. Duties will include offering graduate courses and helping to develop research facili. ties. Opportunities for curriculum experimentation. Various sources of additional income available. Substantial allowance for relocation. Exceptionally good retirement plan. Fully accredited Electrical Engineering Dept. in medium sized university (700 undergraduate students in en. gineering) located in a very pleasant uncrowded city of 350,000 . Address resume to Dean Otto Zmeskal, College of Engineering, University of Toledo. Toledo 6, Ohio.

technical sales engineer

Knowledge of Government operations and experience in microwave tube field desired. Retired service personnel would be considered. Good position in growing company. Please call or write American Radio Company, Inc., 445 Park Ave., New York 22, N.Y. Pl-3-5046.

PRODUCTION FOREMAN

Production Foreman-Electronic Transformer: 5 years (+) experience in coil winding business. Familiar with general machineshop equip. ment and vacuum potting techniques. New company. Excellent opportunity. Sunny San Diego, Apply Atlas Transformer Co., 1839 Moore St., San Diego 1, Calif.

ASSOCIATE PROFESSOR

Electrical Engineering faculty being expanded in rapidly growing department, graduating first class in 1960. Current positions available to rank of Associate Professor and to 9 months salary of $\$ 6000$, depending upon education and experience. Background emphasis preferably upon electronics and advanced circuit theory. Opportunity for research and other industrial programs in the area. Send full background to Chairman, Electrical Engineering, University of Bridgeport, Bridgeport, Conn.

ENGINEERS

ASSISTANT DIRECTOR RESEARCH \& DEVELOPMENT: E.E. graduate with an advanced degree, who has history in electronics, audio, transducers, pulse circuitry and electromechanical devices. Supervisory experience desired in organizing and planning $R \& D$ programs.

CHIEF RESEARCH ENGINEER: Electronic engineering graduate trained in audio, video and transistor circuits. Supervisory ex perience in R\&D planning.

SENIOR MECHANICAL ENGINEER: Experienced in product design \& development of small mechanisms, precision and electromechanical devices, speed reduction systems.

SENIOR \& JUNIOR ELECTRONIC ENGINEERS will find ample opportunities and challenges in Gray Manufacturing Co., 16 Arbor St., Hartford, Conn.

ASSISTANT PROFESSOR

Assistant Professor of Electrical Engineering, University of North Dakota, Grand Forks, North Dakota. Position open September 1960. Must have M.S. degree and some experience in teaching or industry. Will teach electronic and circuitry courses to undergraduates primarily, with some graduate teaching available, if desired. Suhmit resume to Chairman, Electrical Engineering Dept.

A many-ampere source of ions, this device is believed to be the most powerful in operation in any laboratory. Already it is providing new insight into thermonuclear fusion. It may lead to new concepts in propulsion including a method of producing thrust for missions beyond the earth's atmosphere.

Accomplishments like this are the result, we believe, of a unique research environment. Among other things, we encourage independence of scientific thought and action. And, we make determined efforts to free scientists from tedious routine help direct their full mental powers towards scientific achievement.

Complex calculations, for instance, are handled by the nation's largest industrial computational facility. Unusual assistance - at operational and theoretical levels is available from outstanding leaders in other disciplines.

We believe that this combination of facilities and services is unequaled. If you are interested in corporate-sponsored studies into the fundamental nature of matter in an environment where success comes easier, write today.
Please write to Mr. W. B. Walsh, or phone Hartford, Conn., JAckson 8-4811, Ext. 7145.

Research Opportunities in many areas...
Plasma Physics Microwave Diagnostics

Gaseous Electronics

Nuclear Engineering Cryogenics Energy Conversion Instrumentation Electrical Propulsion

An Invitation To Join ORO...Pioneer In Operations Research

Operations Research is a young science, earning recognition rapidly as a significant aid to decision-making. It employs the services of mathematicians, physicists, economists, engineers, political scientists, psychologists, and others working on teams to synthesize all phases of a problem.

At ORO, a civilian and non-governmental organization, you will become one of a team assigned to vital military problems in the area of tactics, strategy, logistics, weapons systems analysis and communications.

No other Operations Research organization has the broad experience of ORO. Founded in 1948 by Dr. Ellis A. Johnson, pioneer of U. S. Opsearch, ORO's research findings have influenced decision-making on the highest military levels.

ORO's professional atmosphere encourages those with initiative and imagination to broaden their scientific capabilities. For example, staff members are taught to "program" their own material for the Univac computer so that they can use its services at any time they so desire.

ORO starting salaries are competitive with those of industry and other private research organizations. Promotions are based solely on merit. The "fringe" benefits offered are ahead of those given by many companies.

The cultural and historical features which attract visitors to Washington, D. C. are but a short drive from the pleasant Bethesda suburb in which ORO is located. Attractive homes and apartments are within walking distance and readily available in all price ranges. Schools are excellent.

For further information write:
 Professional Appointments

OIP:RATIIONS RE:SI:ARCH OIFIICE:

(ORO) The Johns Hopkins University

6935 ARLINGTON ROAD
BETHESDA14, MARYLAND

(Continued from page 124A)

ASSISTANT \& ASSOCIATE PROFESSORS

Assistant \& Associate Professors, 1Plı.D., 200 graduate students. Ideal dry mountain climate. Income $\$ 10,000$ up with research. Chairman, E.E. Dept., University of New Mexico, Albuquerque, New Mexico.

ASSISTANT \& ASSOCIATE PROFESSORS

Applications are invited for Assistant \& Associate Professors of E.E. Candidates should be well qualified academically and should have some research experience, preferably in Control Systems, Solid-state devices, Microwaves, Telecommunications. Salary scales are competitive with industrial and research establishments. Additional stipends are offered for summer research work. Address applications to Chairman, Dept. of E.E., McMaster University, Hamilton, Ontario, Canada.

STAFF ENGINEER

A high level staff engineering position is available for an experienced engineer who desires a position without line responsibilities. The position requires ability to study systems and circuits proposed and under development with a view to stecring engineering effort along productive paths. A superior educational background and considerable experience are required in carrier telephone, electronic switching, micro. wave systems, and related circuitry. Salary: open. Northern California area. All replies wilt be kept confidential. Reply to Box 2008.

ELECTRONICS INSTRUCTOR

Post High School Institution-Degree re-quired-Permanent, hospitalization and noncontributory pension system provided. Start February 1, 1960. Write giving complete resume and salary required to New York Trade School, 304-326 East 67 St., New York 21, N. Y. Att: Director, Electronic Training.

MICROWAVE SPECIALIST

Microwave physicist needed for applying microwave techniques to the study of plasma flows and ionized regions around high speed models and in shock tubes. Measurements and study of the radiofrequency energy emitted by the passage of high-speed models and of the transmission and reflection characteristics of the wake are required in order to evaluate the effects of these characteristics and also as an aid to further the knowledge of flow phenomena at extreme speeds. Applicant should have advanced degree with a good background in microwave propagation and field theory as well as ability to work with microwave hardware. He should be capable of taking the initiative in the application of microwave techniques and in the interpretation of results. Write Personnel Officer, NASA, Ames Research Center, Moffett Field, Calif.

ELECTRONIC ENGINEER

Young Electronic Engineer, experienced is circuit design, to work as assistant to one of the outstanding engineers in the country in the design and development of precision analog equipment. This is once-in-a-career opportunity for the right individual to learn from one who has, over the past 15 years, established a proven record of accomplishment in the analog field. Apply Milgo Flectronic Corp., 7620 N.W. 36th Ave., Miami +7 , Florida.

AC Seeks and Solves the Significant-Since GM has pledged its resources to this nation's defense, AC plans to forge to the forefront in the international race for technological superiority. The resolution of scientific problems even more complex than AChiever inertial guidance-that's what AC now has on its agenda / This is AC QUESTMANSHIP. It's an exciting creative quest for new ideas, methods, components and systems . . . to promote AC's many projects in guidance, navigation, control and detection / Questmanship is readily apparent in AC Manufacturing, headed by Mr. Roy McCullough, AC Works Manager. His group "offers an outstanding challenge to engineers capable of understanding the most advanced scientific concepts . . . and developing the techniques and tools to implement those concepts on a production basis" / There may be a position for you on our specially selected staff . . . if you have a B.S., M.S. or Ph.D. in the electronics, scientific, electrical or mechanical fields, plus related experience. If you are a "seeker and solver," you should write AC's Director of Scientific and Professional Employment, Mr. Robert Allen, Oak Creek Plant, Box 746, South Milwaukee, Wisconsin.

[^84]

ELECTRONIC ENGINEERS
 STAVID

offers all 3 most important position considerations.
CAREER OPPORTUNITIES based on solid, long-term growth...
TOP EARNINGS fully commensurate with experience...
CHALLENGING ASSIGNMENTS made possible by project diversification.

STAVID has immediate openings in career opportunities in airborne, shipboard and ground-based systems and equipment. Degree or graduate degrees, Electrical or Mechanical Engineering, Physics or Math. Positions available at all levels in research, design, development and field service engineering.

WEAPONS SYSTEMS

Feasibility Sfudies
Advanced Designs
Counfermeasures
Sysfems Analysis
Missile Guidance
Bombing \& Navigation
Logic Design
Data Transmission
Display Development
Missile Detection
Applied Mathemafics

STAVID's facilities in Plainfield, New Jersey, of the foothills of the Watchung Mountains, are near excellent schaals, madern shapping facilities and ample hausing accammadatians. With New Yark City just 45 minutes away, and the New Jersey shore within ane hour's drive, the Plainfield area pravides an ideal enviranment for wark, recreatian and camfartable suburban living,

For complete defails, please send defailed resume to:
J. R. CLOVIS, Personnel Department IR-2

Lockheed Electronics Company Stavid Division

 Positions Open

STAFF OPENINGS-ELECTRICAL ENGINEERING DEPT.

Staff openings for September 1960 in Electrical Engineering Dept. Mostly undergraduate instruction. Attractive salary, living conditions. Recreation center of the West. Correspondence invited. I. J. Sandorf, Chairman, l)ept. of E.E., University of Nevada, Reno, Nevada.

PROFESSOR

The University of Alaska has an opening for an Assistant Professor of Electrical Engineering -to teach and do research on the ionosphere, the aurora, or on problems in communications or power in the North. Industrial experience or advanced degree required. Write Airmail to Dept. of F.E., University of Alaska, Box 497, College, Alaska.

RESEARCH ENGINEER

Engineering or Physics degree. 5-10 years experience in inertial guidance systems and/or components. Aid in developing concepts of advanced guidance systems and in promulgating written and verbal communications on the subject to other groups in allied fields. Send resume to G. A. Neshet, Litton Industries, Beverly IIills, Calif.

RESEARCH SCIENTIST

Physics degree, advanced preferable. Experienced in thermodynamics, cyrogenics, vacuum technology, optics. Aid in developing space stimulation techniques. Send resume to G, A. Nesbet, Litton Industries, Reverly Hills, Calif.

SCIENCE AND ENGINEERING

Opportunities at Robert College, Istanbul, Turkey for qualified men in civil engineering or mathematics, interested in combining teaching and the development of limited research and consulting activities with the opportunity to live in a vital part of the world: strengthening staff, modernizing tundergraduate curricula, beginning graduate programs in engineering, developing undergraduate and later graduate programs in sciences, constructing new science and engineering building to preprare engineers for the industrial and technical development of Turkey and the Mildule East. Address inquiries to Dean Howard P. Hall, School of Engineering, or Prof. Frank Potts, Acting Dean, School of Sciences, Robert College, Bebek, Post Rox 8, Istanbul, Turkey, with copy to Near East College Assoc., 40 Worth St., Room 521, New York 13, N. Y.

ENGINEERING EDITOR
Young engineer with an interest in technical publications work has an excellent ombrtunity for a permanent position on the IRE headquar ters staff as assistant to the Managing Editor. Send resume to E. K. Gamnett, Managing Editor, Institute of Radio Engineers, 1 East 79 Street, New York 21, N.Y.

1960 Radio

Engineering Show

March 21-24, 1960
New York Coliseum

These manufacturers have invited PROCEEDINGS readers to write for literature and further technical information. Please mention your IRE affiliation
(Continued from page 118.A)

Silicon Alloy Transistors

A new line of silicon alloy transistors for military and iudustrial electronic applications has been introduced by National Semiconductor Corp., Danbury, Conn.

Designated by type numbers 2 N 1440 2 N 1441 , and 2 N 1442 , these transistors are specifically designed for small signal applications, such as audio, servo and dc amplifiers. Low noise and high gain amplification characteristics at low collector currents are said to make these transistors suited for front end applications.

Unique features claimed for these units include: highest device dissipation at elevated temperatures $\left(100 \mathrm{nmw}\right.$ at $125^{\circ} \mathrm{C}$ in free air); highest junction and operating temperatures; and, guaranteed maximum current gain and maximum collector cutoff current at $150^{\circ} \mathrm{C}$.

For increased mechanical strength, wafer mounting tabs are welded on both ends to supports. The firm states further that these transistors exceed the requirements of military specification MlL-T19500 A.

Rack-And-Panel Connectors

The Series 8007, Varicon connector with screw actuating device (to provide positive lock against vibration plus easy engagement and disengagement) is available with 75,100 and 130 contacts. Series 8008, without screw actuating device, available with $80,95,110,125$ and 140 contacts. Both Series are available with or without cover from Elco Corp., "M" St. below Erie Ave., Philadelphia 24, Pa.

Contacts and contact rows are at $0.150^{\prime \prime}$ spacing; contacts are of standard, phosphor bronze, nickel plated, gold glashed. Insulators are glass-filled diallyl

Engineers • The Probability is High That

Your Creative Ideas

Will Reach Tangible Form at Sanders

This company owes its surprising growth (from a handful of brilliant men 8 years ago to a $1200-$ man organization today) to the originality of its conceptions in diverse electronic fields. (Examples of Sanders' firsts include PANAR ${ }^{\text {® }}$ radar, TRI-PLATE ${ }^{\star}$ microwave products, FLEXPRINT ${ }^{\circledR}$ flexible printed circuits.)

If you have the capacity to father genuine technical innovations, you will find engineer-management receptive at Sanders Associates. You will be encouraged to demonstrate the practicality of a promising idea, and assisted in doing it. And you can rely on receiving professional and financial recognition for creative contributions.

Right now opportunities are available at Sanders on a variety of commercial and defense projects, including a very sophisticated seeker system for the U.S. Navy's Eagle Missile, which it is believed will provide superior performance in the face of increasingly effective countermeasure techniques.

To learn more about opportunities for you at Sanders - and the advantages of our location in the progressive New England community of Nashua, New Hampshire (less than an hour from downtown Boston), send a resume to Lloyd Ware, Staff Engineer, Dept. 908.

CURRENT OPENINGS

systems engineers

ECM, ASW, Missile, Telemetry, Microwave, Data Reduction and Communications.

CIRCUITS ENGINEERS

RF, Video, Audio, Data Processing, Transmitters, Receivers, Test Equipment, Power Supplies. Both transistor and vacuum tube experience.

analytical enginers

Data Systems, Weapons and Countermeasures.

INSTRUMENTATION ENGINEERS

Gyro Development
Gyros, Accelerometers and related products.

Systems Development

Electromechanical and electrohydraulic systems. Analytical background helpful.

Servo Development

Develop electrohydraulic servo valves and other hydraulic and mechanical control components.

Product Engineering

Design evaluation for cost reduction and productibility; engineering assistance in tooling and production problems.

PRELIMINARY DEVELOPMENT
 SENIOR ENGINEERING SPECIALISTS

Honeywell Aero Preliminary Development Staff has several openings for technically qualified and mature engineers with significant military system development experience. Each man will provide guidance and support in his specialty to Honeywell design projects for the best use of advanced techniques in development of new airborne systems. These staff positions offer scope for original personal contributions and will require active participation in the formula tion and execution of Division engineering programs. Among the openings are:

WEAPON DELIVERY AND CONTROL SYSTEMS
 SPECIALIST

Background of system and computer development for bombing, fire control, or navigation. Firsthand experience with system analysis, tie-in requirements, analog and digital computers, operations analysis, and weapon effectiveness evaluation.

DETECTION SYSTEMS

 SPECIALISTPrimary background of airborne radar development in one or more areas such as AMTI, Doppler, pulse Doppler, automatic tracking, and countermeasures. Experience in infrared or communications will be valuable. Experience should include system analysis, design requirements, equipment development, and performance evaluation.

ELECTRONIC CIRCUIT AND PACKAGING SPECIALIST

Background of circuit design for ad vanced control and computation equipment. Should be familiar with dc, low frequency, pulse and rf techniques. Must be able to establish sound analytical basis for circuit design to specific levels of reliability and performance. Must be experienced with solid state devices and prepared to contribute to Aero Division work on microcircuit techniques. To discuss openings for these and other specialties, wirite or phone
J. R. Rogers, Chief Engineer Preliminary Development Staff, Dept. 364B

Honeywell

AERONAUTICAL DIVISION 2600 Ridgway Road,
Minneopolis 14, Minnesoto
To explore professional opportunities in other Honevwell operations coast to coast, send your application in confidence to II. K. Eckstrom, Honeywell, Minneapolis 8, Minnesota.

These manufacturers have invited PROCEEDINGS readers to write for literature and further technical information. Please mention your IRE affiliation. (Continued from payc 129.4)
phthalate. Female insulator has Varicon contact recessed in holes below insulator surface; male insulator has forked contact exposed, with collar molded around contact pattern for positive protection of contact against damage. Collar also is designed for mating in only one possible position.

Both Series have male guide pin and female guide socket to align comnectors properly during engagement and disengagement. Each pin and socket, in addition, is designed to permit 6 monnting and therefore 36 polarizing positions; with a theoretical possibility of over 100 polarizing variations. Polarization may be changed, if necessary, eveil after connector is mounted to chassis, by use of a small special tool.

Screw actuating device is permanently assembled to the insulator at the factory. Removal of knob is all that is required io assemble cover. Metal inserts are riveted to insulator center to act as guide or mut; mylon washers are inserted between moving parts to reduce friction and avoid metal wear. This design allows the use of screw actuating device with or without cover. Both cover and/or device can be factory assembled to the male or female member of the comector.

Audio Transmission Test

A test set for checking the characteristics of transmission lines and other voice band equipment has just been amounced by the Hallamore Electronics Co., a Division of the Siegler Corp., 714 N. Brookhurst St., Anaheim, Calif.

The test set, model TMS-0100, utilizes-swept-band techniques to reduce the time needed to check-out a transmission network over the 200 to 400 cycle band.

The TMS-0100 employs a swept-frequency generator to provide a simusoidal wave of adjustable constant amplitude at all frequencies in the voice-band, a measuring system to compare network input and output regardless of the absolute power level, and a cathode ray tube to display a visual form, the information necessary to evaluate network characteristics.

The entire unit is housed in a single $19^{\prime \prime}$ chassis for rack-mounting or in a portable cabinet. The controls and the $\bar{\sigma}^{\prime \prime} \mathrm{CR} \overline{\mathrm{T}}$ face are located on the front pane. $A \mathrm{CR}^{-} \Gamma$
(Continued on pagc 132A)

SYSTEMS ENGINEERS

ELECTRONICS ENGINEERS

CHALLENGING R\&D OPPORTUNITIES

Fundamental and applied research in the fields of hydrodynamics, acoustics, electronics, network theory, servomechanisms, mechanics, information theory and noise reduction. Also design of electronic instrumentation for underwater ordnance and application of analogue and digital computers.

Opportunities for Graduate Study
Faculty Appointments for Qualified Applicants
Excellent Working and Living Conditions
Send Resume to

ARNOLD ADDISON, PERSONNEL DIRECTOR
ORDNANCE RESEARCH LABORATORY THE PENNSYLVANIA STATE UNIVERSITY BOX 30, UNIVERSITY PARK, PA.

> A Bendix York, we have a number of immediate openings for Electronic Engineers and Physicists.

> There are many worthwhile advantages awaiting the Professional Engineer who chooses to advance his career with us at Bendix York.

A white rose...

The white rose is a symbol at Bendix York . . . a symbol with two meanings. Both of vital importance to your future.
First, the white rose is the official flower of York, Pennsylvania. It is a symbol of the good life in our dynamic community, located in the heart of the scenic Pennsylvania Dutch region. It is a wholesome, happy area with excellent schools, delightful recreational opportunities and many cultural advantages. Here-away from high-pressure, high-cost, big-city living-you will enjoy the fuller, more rewarding life that you want for yourself and for your family.

Second, the white rose is a symbol of perfection . . . the perfection for which we strive at Bendix York-perfection in the engineering and scientific pioneering and development in missile electronics that is our principal objective.
We offer a small Division's assurance of individual recognition and advancement, and yet you have the security and employee benefits of a large corporation.

We would like to have the opportunity to tell you more about Bendix York. We invite you to contact us-by dropping us a post card, by giving us a call or, if you will, by sending us a brief resume. Address Professional Employment: Dept. P

YORK DIVISION
York, Pennsylvania Phone: York 47.1951

Life is great in Phoenix because the sun spends more time here than in any other major city in the United States. Golfing, gardening, picnics, fishing and boating are year-round activities, Every short drive is an adventure; you're 90 minutes away from pinc-forested mountains; it's four hours to Mexico; six hours to deep-sea fishing.

All this, of course, adds considerable meaning to opportunities for personal and professional growth at Motorola. Here, the project approach enables the engineer to see his ideas to completion - from design, construction, to field testing. The responsibility for "closing the loop" is yours you'll work in an atmosphere of success, as attested by Motorola's many achievements in military electronics. Write today to Mr. Bob Worcester, Dept. C-2.

ELECTRONIC ENGINEERS, MECHANICAL ENGINEERS, PHYSICISTS

System Analysis, Design \& Test

Radar . Missile Guidance * Navigation
Combat Surveillance - Communications
Field Engineering - Data Processing and Display
Circuit Design, Development and Packaging Microwave - Pulse and Video

Antenna - Transistor - R•F and I•F
Servos - Digital and Analog
Technical Writers and Ilfustrators, Quality
Control Engineers, Reliability Engineers,Test Engineers
(M) motorola

Western Military Electronics Center/8201 E. McDowell Rd., Scotisdale, Arizona

Motorola also offers opportunities at Riverside, California and Chicago, Illinois

These manufacturers have invited PROCEEDINGS readers to write for literature and further technieal information. Please mention your IRE affiliation.
(Continued from page 130A)
with P7 phosphor and an amber filter is used to increase and accentuate persistance time and to reduce blue phosphor response.

Typical of the capabilities of the TMS. 0100 test set is its use in checking the insertion gain or loss of transmission circuits in service. By using two independent signal channels, one operating with the sweep generator to establish an input power reference level and the other detecting changes in output, two distinct traces are produced on the tube. These traces represent the input reference and the voltage appearing across the load. Frequency is located on the horizontal axis and can be established by built-in markers appearing as pulses at 1000 cps intervals. The vertical deflection shows signal amplitude. The departure from coincidence of the two trace lines at any frequency is a measurement of network gain or loss. Coincidence may be established by the regulation of attenuators graduated in decibels from which the gain or loss is read directly. Instruments located at widely separated points may be synchronized for end-to-end circuit measurements.

In addition this model will also provide a whole-band display of relative input impedance and the transmissionfrequency output characteristics of nega-tive-impedance repeaters, equalizer networks and hybrid networks, where proper operation depends on incircuit adjustment.

Time Delay Relays

Wheaton Engineering Corp., 920 Nanchester Rd., Box 191, Wheaton, Ill., announces the most recent addition to it's growing family of time delay relays.

Weighing $\frac{1}{3}$ an ounce and of crystal can size, Model E404 will fit into many systems previously impossible due to size limitations.

The input stage performs one or more of the following functions: rectification and filtering on ac timers; overvoltage and transient suppression on input power surges; voltage regulation. The timing stage is a conventional RC integrator. To secure a high degree of timing accuracy

UNUSUAL ENGINEERING SUCCESS can be achieved in the creative climate at Martin Orlando. Talented young engineers and scientists carry big assignments in challenging electronics and missile programs. New projects and an expanding engineering department present rewarding opportunities to men who can manage and staff im. portant new assignments.

WORK WHERE YOU WANT TO LIVE
Engineers have discovered the fun of fishing, water skiing, boating, and swimming in the 54 lakes inside Orlando's city limits. They cook out more, spend more time with their families out-of-doors, and play more golf every month of the year than ever before.

FOR OUR FREE BOOKLET, write Mr. John F. Wallace, Director of Employment, The Martin Company, Orlando 21, Florida

SKILLED ENGINEERS, scientists, and production men moved into a new facility in Orlando, Florida, just two years ago. Working in the stimulating environment of a new \$21-million plant, these men have written a most unusual growth record for five major electronic and missile projects and several advanced research programs at Martin Orlando. The professional advancement of the men who manage and staff ambitious new programs has kept pace with this rapid progress. Investigate new programs in Communications, Guidance and Control, Reliability and Quality, Radar Systems and Operations Analysis. You may move into a groundfloor position by sending your resume now.

DURING IRE, VISIT MARTIN ORI ANDO
AT WALDORF-ASTORIA

In large degree, the ultimate success of this country's defense mission may rest upon the effective operation of a long-range communications link now being studied at Sylvania's Amherst Laboratory. So exacting are the requirements of this system that techniques available to present-day technology would provide only marginal performance.
Considerations of the first magnitude involve supra-reliability and minimal degradation during single or multi-path operation in a continually changing environment, despite electromagnetic disruption from natural or man-made sources.

Sylvania's Amherst Laboratory invites research scientists and engineers with advanced degrees to bring new concepts and techniques to the task of setting the parameters for, and demonstrating feasibility of, an operable system.

Send your confidential inquiry to
Dr. R. L. San Soucie
Amherst Laboratory / SYLVANIA ELECTRONIC SYSTEMS
A Division of
SYLVANIA曾
GENERAL TELEPHONE \& ELECTRONICS
II 36 Wehrle Drive - Williamsville 2 I, New York

New NEWS Products

These manufacturers have invited PROCEEDINGS readers to write for literature and further technical information. Please mention your IRE affiliation.
(Continued from page 132A)
throughout temperature range, four different means of conpensation are utilized. Each means is tailored to specific time delay intervals and temperature ranges. Also since each timer has an internally regulated voltage source for the timing network, the change in timing with changes in input voltage is negligible.

The transistorized sensing stage is adjusted to trigger at a preselected value of charge on the timing capacitor. In all these electronic timers the output function occurs at less than 1 RC leading to simplicity of detection and ensuring timing precision because of the steep slope of the charging curve below 1 RC .

When the transistorized sensing stage triggers on, another separate transistor is driven by the output of the sensing stage.

The unit is now available in prototype and production quantities.

Tunnel Diodes For Experimentation

Because of its electrical properties, the tumel diorle manufactured by the Radio Corporation of America, 30 Rockefeller Plaza, New York 20, N. Y., is extremely useful as a high-frequency oscillator, low-noise amplifier, high-speed switch, self-excited converterand clipper, and in communications and storage devices. All of these functions can be handled with low power and low heat dissipation. The negative resistance characteristic of the tunnel diode - the simultaneous increase in voltage with decrease in current-pernits the units to supply energy rather than dissipate it through a large portion of its cycle. The instantaneous transfer of charge carriers which gives rise to this characteristic is called the tumnel effect.

RC.A's initial sample types include twelve tumel diodes designed for operation up to $1,000 \mathrm{mc}$ with power consumption ranging from 0.75 milliwatt to 3 milliwatts. Nominal peak currents (tunnel currents) range from 1.8 milliamperes to 6.8 milliamperes. For maximum usefulness of the negative resistance characteristic, the ratio of peak current to minimum current is maintained in excess of 4.5 to 1 .

This mesa device consists of a p-n junction $1 / 1000$ of an inch in diameter and 80 angstroms in width (about 1/150 the wave-length of visible light). This unit is mounted in a new miniature, low inductance ceramic case specially designed for ultra-high-frequency applications. The package, rleveloped at RC.1's Laboratories hy Dr. Charles Mueller, has an inductance of 0.4 inillinicrohenry, which is believed to be lower than that of any available semiconductor case.
(Continued on page 137A)

Use your
 IRE DIRECTORY!
 It's valuable!

AREAS OF PROFESSIONAL EXPERIENCE: (please check boxes) - Computers Electron Tubes

Telemetry Circuit Theory

Power Generation
FUNCTIONS PERFORMED:
Research
Development/Design
Technical Writing Project Management/Supervision Systems Analysis

- Testing/Process Control

970」

[^85]
Are your talents being recognized?

Most engineers have had to face an unpleasant fact. Often an employer will hire from outside to fill a supervisory post. Entirely qualified men "inside" are passed over. The problem is generally one of communication. The employer simply does not have adequate knowledge of his employees' abilities and promise.
Hughes-Fullerton's new Professional Capabilities Register reflects the complete engineering-orientation of this fastest-growing Hughes activity. (From 800 to nearly 6,000 people since 1957. Planned, scheduled growth.)
The Register makes instantly available a complete record of every individual's abilities, interests and accomplishments. Previously hidden talents can now be put to use. Often these can mean the difference when reassignments or promotions are being made. Your potentials become a very real resource of Hughes-Fullerton Research and Development Staff.
Areas covered in the Register range from language skills through patents to books and articles published. It includes teaching experience, professional affiliations. All data is kept up-to-date and handled by automatic data processing equipment for utmost efficiency.
Hughes-Fullerton's philosophy of giving precedence to the needs of engineers has worked well. Hughes-Fullerton was first with three-dimension radar...a major breakthrough in the state of the art. Other vital areas of interest include advanced data processing and electronic display systems.
These are a few reasons why you should investigate Hughes-Fullerton. Openings exist at several experience levels for a variety of engineering specialties. For full information fill out the post card and mail it today!

Creating a new world with ELECTRONICS

FULLERTON RESEARCH \& DEVELOPMENT FULLERTON, ORANGE COUNTY, CALIF.

These manulacturers have invited PROCEEDINGS readers to write for literature and further technical information. Please mention your IRE affiliation.

> (Continued from page 134A)

Digital Process Controllers

A new series of transistorized addsubtract digital process controllers has been developed by the Dynapar Corp., 7312 ․ Ridgeway Ne., Skokie, Ill., for a wide range of industrial bieclirectional measurement and control applications.

These inflede: autmmatic machine or material positioning, measuring or cutting-to-length, coilwinding, pulse-tachometrywherever precise forward and hackward motion or up-and-down quantities must be meatsured to control other equipurat. The controllers provide direct-reading mumerical display of the measurement, and have prowision to actuate varions control functions on production equipment when a preset mumber (or series of numbers) is reathed.

Controllers accept input pulser from two lines-one for addition, one for smbtraction. Modified unitsaccept inputs from one line if the add and subtract pulses are opposite in polarity. The units operate at rates up to 20,000 counts per second and higher. The positive and negative combt: are displayed on the panel by either illuminated mumerical tubes (Nixies) or glow counter tube decades; remote or primted readout also a wailable.

Optional features: Dual or multiple preset numbers to actuate a series of control functions; binary outputs; simultaneous add and suberact; counting through \%ero: explosion-proof design.

Input sensitivity: One volt RMS at 1 ma. Initized plug-in transistorized circuitry is unaflected by wear. Controllers are housed in dust-tight all-steel enclosures with pull-out chassis design.

Alumina Powder For Potting

A basically new approach in the protection of electronic components was revealed today b, L. W. Kirkwood and R. S. Key of Bell Telephone Laboratories, 463 West St., New York 14, N. Y. 'They described how alumina powder (aluminum oxide) can be used successfully to insulate, or "pot" transformers and other electrical components within hermetically sealed cans. A paper describing the development was presented at the National Conference

ENGINEERS

NOW-CHOOSE YOUR ASSIGNMENT AND LOCATION THROUGH OUR NATION-WIDE PLACEMENT SERVICE SALARIES \$7,500 TO \$18,000

Abstract

We can offer you a large selection of diversified positions with America's foremost electronic organizations. Some positions for non-citizens. The follawing are just a few of a large number of desiratble epportunities,

SR. ENGR.-_DIGITAL COMPUTERS_

 Exp. required in systems, logical desien, packaging, system integration or pulse circuitry. To $\$ 15,000$ flight test evaluation-Sr. Opp. in Ground \& Flight Test on data links. precision transducers, telemetering equipment, power supplies, circuit monitors and impedance matching units To \$15,000RF ANTENNA—Proi. Engr. $\$ 15,000$ INFRA RED-Proj. Engr. $\$ 15,000$ CIRCUIT DESIGNERS - 2.5 years Transistor experience. $\$ 11,000$

ADVANCED SYSTEM DEVELOPMENT

 -Supervisory position in digital computer, fire control or missile guidance development. To $\$ 17,000$PhYSICIST Phd,-Nuclear experience pertaining to radiation from propulsion units-unusual opportunity. To $\$ 18,000$

Project leader-Antenna Pedestals. \$13,000

SR. ENGINEER-DEVELOP Airborne \& spaceborne communications systems. \$15,000

Just tell us what you would like to do and where you would like to locate. and we will handle everything for you without cost or obligation.

LOCATION DESIRED

POSITION DESIREI)
\square New England

Servo-Mechanisms Navigation Counter Measures Telemetering Nucleonics Ind'l. Instruments Components Circuit Design

WHAT SATISFIED ENGINEERS SAY:

Dear Mr. Brisk
Thers is to adrise 30 I bave accepted (moln) ment with as ap osest leader at \$15,000.
Your service has been, a real help 10 me. for 1 am sure. I could not bare fornd this wnusual opening b) myself. Thank you.
H.M.P.

Dear Mr. Briak:
1 bave saday advised
Coln fint 1 Com pants port ! "ould be pleased to accept their offer. Itat August lst as a somor
engmees at $\$ 13,000$. The apportunity The opportunity is one of the most
outst.veding I hate seen.

A National Electronic Placement Service Established in 1937. You are ossured of prompt and completely conflentiol service by

Employment Counselors Since 1937
Department \mathbf{A}
12 South 12th St., Philadelphia 7, Penna.
WAlnut 2-4460

[^86]

OPERATION "FUTURE" -your future!

Let Abbott's be your Personal Agent in presenting your qualifications to the nascientists. You'll find this of engineers and ice extremely effective in placing you where your ability background and effort will your ability, background and effort will
yield the greatest rewards.

If you are placed through us, our clients will pay all expenses and our service charges.
SALARY RANGES— $\$ 10,000-\$ 25,000$ DIRECTOR OF ENGINEERING-Naviga-
tion systems
CHIEF ENGINERSS-M S Ph D system
CHIEF ENGINEERS-M.S. Ph.D., systems ENGINEERING
tems, data processing
tems, data processing
STAFF ENGINEERS-Microwave devices PROIECT ENGINEERS - Computers, tems, tubes, device development RESEARCH ENGINEERS-Space technology systems communications
SENIOR ENGINEERS-Radar
development
DESIGN \& DEVELOPMENT ENGINEERSAntennas, transmitters, radar, telecom. munications, gyros, components
Recognized for over 37 years, among leading companies, for confidential placement of engineering, scientific and administra-
tive people.

MR. GORDON B. BUCKINGHAM TECHNICAL PERSONNEL
a 13130~2res

EMPLOYMENT SPECIALISTS
0 Tremont Street Boston 11. Massachusetts HAncock 6.8400

NEWS New Products

on Application of Electrical Insulation in IVashington, D. C. The first use of alumina in this application was made by $11 . \mathrm{S}$. Feder, also of Bell Taboratories

Ntumina powder does not show the disiddantage of melting at low temperatures. Its melting print is oner 1500 C $(270)^{\circ} \mathrm{F}$, well above the operating temperatures of any electrical apparatus. It does not expand or contract to any moticeable extent under wikle flactumions of temperature, so no strains are imposed on the component. Nlso, it doesn't need to be cured or wheanized for use, as some of the plastic potting compounds do, and thus no strains develop from theme proceses.

The ponder posseses another adsantage over aphalts, eposy remins, and other cimilar potting componanda, in that it mathtans its dry, gramular form in use The electrical component can be remosed for inspection or repairs at will, simply by breaking the seal on the cat and pouring ont the powder

Thumina is completely inert. Thus, there is no tire hazard, either during pontting operations or in use, in contrast to infalmmable asphalts or resins. Since alumina is stable to such high temperature, it can be used as a sitgle potting compound to cover the gamut of temperature ranges.

The preferred phywical form of the alamina is spherical. In this shape the gramules pack well, but do not hate the abra-ive characteristics of more irregubar shapes. Naterial of thin type is readily dailable att prices competitive with comventional materials.

The teat program on alamina potting componads was performed on t! pical, me-dium-aized clectronic power transformers, which were impregnated with a polsmerizing varnioh before potting and encosing

Audio Response Plotter

The Sudio Response l'loter, Model ARP'2, which providen permanent penwritten frequency response curves of any audio-range equipment, is described and illustrated in a bulletin which outlines the product's applications, features, and includes a bonet diagram. Applications inchude: electrical response curves of amplifiers, broadcasting eqfuipment, hearing aids
filters, networks, equalizers, and transformers; acoustical response curves of room acoustics, $1 \mathrm{ii}-\mathrm{Fi}$ installations, microphones, speakers, earphones, phonograph cartridges, and recording systems: viloration analysis equipment. The manufacturer is Southwestern Industrial Electronics Co., a division of Dresser Industries. Inc., 10201 Westheimer Kd., l'. O. Box 22187, Houston 27, Texas.

Gridded TW Tube

A new one-kilowatt traveling wase tube combining a periodic focused permancut magnet (Pl'N) with a gridded gum is becing produced by Hughes Products, Electron Tube Div., International : Sirport Station, Los Angeles 4.5, Calif.

'The tube, which operates in the S-hant from 2.0 to 4.0 kuc, will be particularly useful to ratar systems builders and users.

Combination of permanent magnet focusing with a grideled gun produces at traveling wase amplitier exhibiting full one-kilowatt power output characteristics with low power consumption.

I'se of a control grid, however, enables the tule to operate with a very fast response time with much Jower power consumption amb impler modulation problemes.

Traveling wave tubes with gridded guns at this power level have been available but only with solenoid focusing, according to the firm. D'ermanent magnet focusing offers such advantages as light weight, no solenoid power supply neremen, low heat generation and better reliability

K゙nown as the MAS-1F traveling wave amplifier, the new tube is the result of solution of certain technical problems by the company's research and development laboratories.

One of its primary uses is ats a linal ontput tube. If still more power is reguired it can be used to drive other high powerol traveling wave tubes of klystrons. Its peak ontput is in excess of kw at only 0.5 watt input. By cascading two tulees an output of 1 kw can be obtained with less than 0.5 mw of drive.

Complete specifications can be obtained from the firm.

Motor-Generator Bulletin

A two-page technical bulletin just published by the Holtzer-Cabot Motor Div., National Pneumatic Co., Inc., 125 . Amory St., Boston 19, Mass., provides detailed performance data and design specifications on the new $\mathrm{RBG}-2407$ miniature motor-generator unit. The unit consists of a low-inertia control motor (geared or direct output) and a $10 \mathrm{v} / 1000 \mathrm{rpm}$ ac (ragcup rate generator and is designed for precision instrument applications requiring a compatet and commercially priced device.

3 SENIOR ELECTRONIC ENGINEERS

An exceptional opportunity exists for three unusually qualified engineers to join our expanding Flectronics Research Staff. We are seeking engineers with demonstrated creative ability to serve as technical advisors in the fields of Microwave and Communication Systems Research. Electronic Instrumentation and Electronic Component Materials Development. The environment is midway between academic and industrial research and offers the opportunity to develop research programs of greatest appeal to you and your assoclates.

Applicants should have advanced degrees, a minimum of ten years of top level research experience. and should be recognized in one of the following fields through their technical contributions as evidenced by publications:

Microwave and Communication Systems

Experienced in Microwave Components: Antema Development; Radar Sys-tem-: Radio Astronomy: Electro-Magnetic Propagation Analysis; Solid State Amplifiers: Telemetry Systems

Electronic Instrumentation

Experienced in Magnelic Recording; Transistor Circuit Development; Transducer Development: Electronic Instrumentation for Industrial Automation.

Component Materials

Experienced in Development of Micro-Miniaturization Components: High Temperature Materials for Electrical Components: Advanced Component Reliability Development: Iligh Velocity Acceleration: New Fnergy Source-

As a foundation staff member you will be associated with a mature. inde. pendent research organization with a staff of over 600 engineers and scientists contributing to a wide variety of military and industrial research programs.

You will receive a salary commensurate with the duties and responsibilities of this top level technical position. In addition you will participate in liberal insurance and retirement programs as well as receive four weeks vacation after your first full calendar year of service. Our location also offers excellent cultural and recreational opportunities.

If this is the unusual professional opportunity you have been looking for, reply in confidence to:

A. J. Paneral

ARMOUR RESEARCH FOUNDATION
 of Illinois Institute of Technology

10 West 35th St.
Chicago 16, III.

SCIENTISTS ENGINEERS stretch your imagination

... at Beckman Instrmments, last refuge of the Non-Organization Man. Here's a company that is concerned with the man, his mind and his original contributions.
Commercial, industrial and military projects tickle the fancy of unconstrained intellects at these Beckman Divisions:
Beckman* $/ \begin{aligned} & \text { Scientific and Process Instruments Division } \\ & \text { Systems Division } \\ & \text { Helipot Division }\end{aligned}$
Don't get crushed in the Orgamization Mill...look into these imagination stretching positions...

ENGINEERS/SCIENTISTS...
at all levels in the fields of precision electronic components and analytical instrumentation for engineers and scientists with degrees in engineering or physical science. Some of our specific needs include project engineers, senior scientists or engineers, product engineers and senior electronic engineers. We also have openings for exceptional recent graduates.
And you can stretch your legs in Orange County, too, where you and your family will enjoy Southern California living at its barbecuing best.
Overcome your own organizational inertia...phone, wire or write Mr. T. P. Williams for all the parameters.
Beckman Instruments, Inc. Fullerton, California B.I.I.
Telephone TRojan 1-4848; from Los Angeles OWen 7-17\%1. (C) 1960

New Products/
PROCEEDINGS
These manufacturers have invited PROCEEDINGS
readers to write for literature and further technical readers to write for literature and further technical information. Please mention your IRE affiliation.

Bulletin M()-i.14 inchules motor sperdworgue and sperel-voltage curves, complete dimensions, and wectrigal characterialios of the ralle gentratur and combined unt.

I cops of Bulletin X()-3.14 maty be ohatned by writing to the firm.

Small Oscilloscope CR Tube

Sn improved three-inch rectangular faceplate cathocle-rav tube for oscillosoope applabituns luse is amomoned by the Electronic Tube Division of Allen B. Du Mont Laboratories, Inc., 750 13loomlield Tre.. Clifon, X. I. Registered an type 3Blll', the new whe is all improved replacement for typa ${ }^{2}$. SP^{\prime}

 plate to minimize parallan cormors ame , new gum stru*ture for greater rigidity and improved electrical stabilits.

Achal facephate measurements are $3 \times 1 \frac{1}{2}$ inches. and the werall length is 9! inches. Fonds and defledion are celerpor stal ic.

Complete sperilitations on the 313月) are avalable from the Filecomon 'lube Sales lupartment at the tirm.

Small-Size

335-Watt Transformer

Arnold Magnetics Corp., 401.3 II. Jobferson Blod., Loss dagoles. Calii.. .tnnombes the addition of a $3.3 .5-$ watl 1 rathsformer to its line of small-si\%. high-temperature power trallsformers.

Unit operates over a wide temperature range of $-55^{\circ} \mathrm{C}$ to $+130^{\circ} \mathrm{C}$, and is designed to meet MIL-- ${ }^{-1} 27.1$, Class "S." It occupies a chassis monnting space of $1 \frac{9}{16} \times 3^{\prime \prime}$, and is $3 \frac{5}{16}{ }^{\prime \prime}$ high. The small size is made possible by a new design employing high-temperature wire wound in shallow coils which are widely distributed. This results in a short thermal path, thereby minimizing hot spot temperatures. Rating curves are given for 25,75 and $100^{\circ} \mathrm{C}$ ambient temperatures.

A primary voltage of 115 volts, 400 cps , is standard, with secondary voltages available from 5 to 2000 volts. Breakdown voltage: 3000 VRMS, windings to case. Life expectancy: 10,000 hours under conclitions specified in MIL-T-27.A. Regulation: 5% maximum, at full ratings.

Designated "Thin Tran" Series 883. this (ratusformer is fully encapsulated and hermetically sealed to meet the environmental reguirements of MIL-F.-527213. Unit weighs 2.3 pounds, providing a power-to-weight ratio of 140 watts/pound. Complete information will be sent on request to the firm,

Pulse Mixer

A new pulse mixer, luyically similar to their pulse gate, is now available from Harvey-Wells Electronics, Inc., East Natick, Industrial Park, East Natick, Mass.

The unit consists of two gating transistors with a common output pulse transformer. It differs from the pulse gate in that two pulse rates can be mixed and amplified.

Electrical specifications of the unit are: input/output, negative four-volt $1 / 10$ microsecond pulses; supply voltages and currents, negative 15 -volts, 30 milliamperes; plus 10 -volts, 0.3 milliamperes; and clamp voltage negative four-volts at plus 20 milliamperes. Detailed product and application data is available from the Research and Ilevelopment Div.

Photoelectric Shaft Position Encoder

The new Type RD-17 DIGISYN, a probluct of Wayne-George Corp., 588 Commonwealth Ave., Boston 15, Mass., is a highly precise, photoelectric, shaft-position encoder. It gives angular position data in 17 -digit cyclic binary code with \pm one-

[^87]

STANFORD RESEARCH INSTITUTE

Invites

ELECTRONIC ENGINEERS

PHYSICISTS

MATHEMATICIANS

to participate in research for:

PROPAGATION

CONTROL SYSTEMS
MICROWAVE COMPONENTS
SYSTEMS ANALYSIS IN
Missiles
Spoce Systems
Communications

ANTENNAS

COMMUNICATIONS THEORY
MATHEMATICAL RESEARCH
INFORMATION THEORY
COMPUTER MAGNETIC DEVICES

If you are interested in research as a way of life, SRI offers you varied and professionally stimulating research in an atmosphere of quiet dignity.

You can share rewarding professional association, excellent research facilifies and responsible assignments with the delightful bonus of living and working in California's San Francisco Bay Area.

Projects are open to qualified personnel on the MS and PhD level who have 3 years or more experience in Electronic Engineering or Applied Physics.

Advanced study opportunities Industrial level salaries.

Write to...

PROFESSIONAL EMPLOYMENT MANAGER
STANFORD RESEARCH INSTITUTE MENLO PARK, CALIFORNIA

TO WORK ON
RECEIVERS
TRANSMITTERS
TERMINAL EQUIPMENT
IN THE LF/HF SPECTRUM SSB-DSB-ISB-AM-FM-CW-FSK

Qualified Personnel are invited to send RESUME'TO
Mr. Ernest Matson, Sr. DEPT, R-119 700 FENIMORE ROAD MAMARONECK, N.Y.

These manufacturers have invited PROCEEDINGS readers to write for literature and further technical information. Please mention your IRE affiliation.
digit accuracy. This is better than ± 10 seconds of arc. The 17 -digit accuracy for 1 shaft revolution is obtained in unambignous form without the use of gears. The 26 lb., 10 -inch diameter unit includes power supplies, amplifiers and cont rol electronics. It may be used wherever it is necessary to read a shaft position in digital form, either for recording on magnetic or punched tape, or for application to a digital computer. Typical applications include tracking, servo, machine control and mavigation systems.

The Type RID-17 DICisfiN consists of a glass dise coded by an array of 'paque and transparent segments, a flash lamp to illuminate a radius of the conle disc. a multi-element photo sensitive light detector, 17 transistorized amplitier channels and all power supplies and control electronics. The unit operates from 115 Y 60 cycle or 400 cycle primary power. Designed to meet applicable portions of MIL-E-41.58B, all circuits feature solid state components. Modular, plug-in, electronic assemblies are easily replaced.

Alarm/Control System

Designed primarily for utilities, pipelines, railroads and similar companies which monitor and control unatemded locations remotely from a central control point, a new Alarm/Control system has been placed on the market by. General Electric Co., Communication Products Dept., Lynchburg, \irginia.

The new equipment may be used with various sypes of tranmission media, such as microwne, carrier current, or wire lines. The control siguals employed are in the

This something significant is the increased emphasis on interdivisional engineering programming between the 7 different Divisions of General Dynamics, of which Stromberg-Carlson is the Electronics Arm.
Pooling of knowledge in diverse fields of endeavor greatly enlarges the professional scope of the individual engineer. For instance, three divisions of the corporation are deeply involved in Anti-Submarine Warfare work: StrombergCarlson, Electric Boat and Convair (as well as General Dynamics' Canadian subsidiary, Canadair, Ltd.). In this endeavor all make use of research findings developed with the aid of Stromberg-Carlson's new sonar test facility in Rochester, N. Y. This is the nation's largest indoor, underwater acoustic facility.
Take other areas of special interest to Stromberg-Carlson engineers: Instrumentation and safety systems for nuclear reactors and ground testing equipment for missile systems. Here interchange of information with General Atomics, Electric Boat and Convair Divisions adds a new dimension to StrombergCarlson's electronics capability.
Long a solidly established growth company, StrombergCarlson can also add another plus value to its long-term opportunities for engineers-the financial strength of the large and diversified parent, General Dynamics Corporation.

RESEARCH SCIENTISTS

Advanced degree EE's and Physicists to handle conceptual studies in areas of solid state circuitry and semi-conductors; molecular electronics; hydro-acoustics; digital data transmission; and speech analysis. Also openings for advanced degree mathematicians for study projects in information theory and related areas.

DEVELOPMENT ENGINEERS

Current openings at intermediate through technical supervisory levels for men experienced in global and inter-global communications systems; microwave circuit design; digital handling and display equipment; doppler radar; and air navigation control instrumentation.

CONSUMER PRODUCT DESIGN ENGINEERS
Intermediate to senior level openings for engineers to work on stereo, hi-fi, auto radio and commercial sound systems, with experience in audio and R. F. field utilizing transistorized circuitry. Also openings for engineers experienced in design of special switching and electro-mechanical circuitry for telephone systems.

Also positions for:
Field Service Engineers; Production Test Engineers; Test Equipment Design Engineers; Military Sales Engineers.

Attached to moving vehicles, the miniaturized Link response block, shown above,transmits identifying radio frequencies in response to voltages induced from buried interrogator loops, accomplished with no external connections. This Link-developed system, called Tracer,* can control airplane, truck, bus and railroad traffic.
Other engrossing projects currently underway include • a visual worldwide flight-path recorder for simulated jet training "flights" - a missile mission study program • an electronic flight monitoring and control device for incoming aircraft • a space-vehicle flight trainer.

Located in Binghamton, New York and Palo Alto, California, Link's constantly expanding programs offer a variety of provocative challenges in such fields as digital and analog development, general and video circuit design, electronic packaging, engineering psychologist, ASW-AEW, control systems, space systems.

Look into Link.
Send your resume now to either:

Mr. C. D. Rutman
Link Division,
General Precision Inc.
P.O. Box 1318

Palo Alto, California

Mr. A. U. Darrah
Link Division,
General Precision Inc. Binghamton, New York

LINK DIVISION, GENERAL PRECISION INC.
Binghamton, New York • P.O. Box 1318, Palo Alto, California

These manufacturers have invited PROCEEDINGS readers to wite for literature and further technical information. Please mention your IRE affiliation.

(Continuad from rag. 1+2.1)

form of tones which provide commmacation between the control point and remote locations. They may be used to check a single location or as many as 100 different points.

Ten functions may be cherked at cach point. The signals will indicate whether a certain preacheduled action is taking plate at a remote lexation or whether fault hate occurred.

It the combul terminal, a smatll comonde is momed on the operator's desk and a cable commects this with rack-mommed tome equipnsemt The console has a latnk of 10) indicator lamps to show the stabions being relected and a second bank to show whether any fanlts are present. I dial is emplosed tos seleet and cheek the de-ired station and to operate remotelyonombulled erpuipment at whatended distant points.

It the mattemed station. the tone equipment is monmed in stamdard rehty racks and requires two pancls 3_{2}^{1} inches deep. One panel hats switching equipmant for remote selection and the sorond conbans the tone receiver and power supply.

Peak Responding Voltmeter

\therefore new peak remponding Violomelor. Nodel 305.1 , is anmomed by Ballantine Laboratories, Bownton, … J. The new int strument meanaren peak or peak-to-peak valaes of ather repelitive waveforms- di-torted or madisworter sine-wavers or pulaes. Its opernting moxte can be seleceded on respotad to a peak-to-perk atal pesitive or negative peak of the w. 1 dererm.

The de compunent of the waseform is not medaured be the instrument.
"The fretuend range when ates-aring
 but distorled watseforms with harmomic(evtending up lo 2 me, boweser. can alon be medsured. D'ulsen with duration from 0.5
 rate from 5 10 500.1000 ppe catl aton be meavired.

The woware is 210.5% depending om the "adeform meatured. The prectingm of the reading in better that 0.5% at any part of the siale.

The Model 305 A can be used as a wideband amplifier with a gain of 86 db and a subure impedance of approximately 3 ohms in series with 0.22μ. The maximm output voltage from amplifier is 150 wolts μp. The amplifier output is intended to be used for waveform monitoring only into loads above 30,000 ohins and below $10 \mu \mu$ f.

The instrument has a magnetically regulated power transformer in addition to an electronically regulated power supply.

Miniaturized Digital

 Readout

A minathrized digital readonn, mamed Series 120000 , is announced by Industrial Electronic Engineers, Inc., 5528 Vineland Ave. Corth Hollwwood, Calif. It is the latest model of a complete line of rearprojection type digital readouts manulactured by this cumpany:

It is designed for use with digital computers antrol eguipment, instrmments. production and insentory controls, and other electronic or clectrical test equipment.

The principle of "peration is rearprojection. When one of the twelve lamps at the rear of the unit is lighted, the lamp projects the corresponding digit on the condensing lens through a projection lens onto the viewing screen at the front of the unit.
'The light source comes from sul-miniature lamps, either No. 327, 328, or 330. Voltage is from 6 volts in 28 volts. An ontstanding feature is the quick disomnect at the rear for lamp replacement.

The size of the character displayed on the viewing screen is ${ }_{8}^{5 "}$ high. The case is aluminum and it may lee mumated on oneinch centers. It weighs approximately four onnes

Dinensions-3i" long oserall, $1^{\prime \prime}$ wide, and $\frac{5}{16}$ " high. Other specifications include single-plane in-line presentation, mo mosing parts, low unit cost, long operating life, and rear wiring for easy installation.

The miniaturized digital readont is priced at $\$ 35.00$ each. Quantity prices are available upon request. It is available from stock in single units or in assemblies.

Printed Circuit Connector Catalog

A new 30-page catalog section, featur= ing a large variety of printed comnectors offerod to the industry, is being released by
Outstanding achievements in communications, guidance and instrumentation are earning increased recognition within the Missile Electronics Industry for the young and growing Space Electronics Corporation.
Possessing a wealth of experience in missile/space electronics that is unsurpassed by any comparable firm, Space Electronics' staff already has advanced striking new concepts and provided significant and practical developments for the nation's missile and space programs. One such contribution is
SARUS

qualified engineers and scientists are invited to inquire.

WANTED: MEN, AT LEAST ONE STEP AHEAD FOR

SILICON DEVICE TECHNOLOGY

With an excellent balance of commercial and military prograns, Shockley Tramsistor Corporation offers important rewards in satisfaction and salary to gifted engineers and scientists who can contribute to the solution of new prohlems in silicon device research and development.*
Training equivalent to advanced degree, preferably Ph.J). level, in E.E., physics, chemistry or metalhurgy and evidence of productivity through articles, patents or creative Pla, D. Hiesis repuired.
Activities include theory and experiment on semiconductor phenomena releant to device operation, fundamental studies of impurity diffosion, device fabrication techniques including metallurgy and surface chemistry. design of electrical methods and equipment for device evaluation and controf of probluction, applications engineering.
We would like the opportunity to tell you more about the Shockley Transistor Corporation, a wholly onned subsidiary of lBeckman Instrmments, inc. which is celehrating 25 achievement years in electromics.
Orop) us a brief biographicat sketch, indicating your area of interest, and we'll reply promptly: Address R. E. Cumingham, Roon 100.

Shockley rransistor corporation
 A SUBSIDIARY OF BECKMAN INSTRUMENTS. INC.

STANFORD INDUSTRIAL PARK, PALO ALTO. CALIFORNIA

- It's our policy to encourage technical publications. Recent examples are: Bul. of the Amer. Phys. Soc. Vol. IV, pps. 409 and 455 (1959). "Structure and Properties of Thin Films," pps. 298-327, Wiley (1959).

ELECTRONIC DATA PROCESSING

A challenging opening exists for an experienced Electronic Data Proc. essing engineer who is capable of initiating and directing research programs in this area. His background should cover all electronic aspects of data processing including specific research experience in logical design, memory development, circuit design, imput/output development and reliability. This position offers an exceptional opportunity to develop creative research programs for industry and government, coupled with excellent facilities (a ITnivac 1105 computer installation), and stimulating staff associations.

As a Foundation staff member you will receive a competitive salary, and liberal benefits including insurance and retirement programs, up to four weeks vacation, tuition free graduate study and generous relocation al. lowance.

Qualified personnel are invited to send a resume of their qualifications to:

A. J. Paneral

ARMOUR RESEARCH FOUNDATION

 of Illinois Institute of Technology10 West 35th St.
Chicago 16, III.

These manufacturers have invited PROCEEDINGS readers to write for literature and further technical information. Please mention your IRE affiliation.
(Continurd from pogr 1H5.9)
H. H. Buggie Division, Burndy Corp., Toledo 1, Ohio.

In addition to many standard mard rereptacles, terminal strips, comtant strips. ant miniature series $E\left({ }^{\circ}\right.$ comaial rommertors, twelve pages are used to illustrate and provide design and engincering data on printed arcuit commedors that hase been designed by the company engincers for special applications. The catalog seotion is the first to feature sperial mate and female connectors and card reapmales.

Standard types are avalable with 10 . 15,18 , and 22 contacts, while the sperial series features designs with 4 to 46 comtacts in number. General specifications include details of construction and description of materials and terminations.

The catalog section has been prepared for the electronics design and specifu:ations engincer in need of a thorongh reference on printed circuit connectors. It is available by making requests on company letterhead.

Time Delay Relay

The new Stli Series relay avalathe from Curtiss-Wright Corporation, Electronics Division, Components Department,

Eraluating the adequacy of grid design when the grid is unerenly lieated by gamma rays and suljeet to hydranlic loads, is basically a problem of determining thermal and mechanical stresses...Maximum stresses are calculated for a solid plate' with basic modifications in the equations, such as setting Poisson's ratio to zero and soluing compatibility equations bettueen the ring and grid.

GAMMA RAY HEATING

 progran in nuckar system design and rest. For additional information, urite to: Mr. M. J. Doumey, Dcpt. B-28, Bertis Atonic Ponper Laboratory, Westinghonse Electric Corporation, P. O. Box 1526, Pittsburgh 30, Pa.

Strain Gages shown on $1 / 4$ Sale Model of PWR Top Grid

At Bendix Systems Division, advanced communications research is being carried out for the Nation's most challenging space and defense systems. New opportunities are offered in such areas as:

SATELLITE COMMUNICATIONS - Equipment design and system studies for the SAC Polar Satellite Communications System.
JAM-RESISTANT COMMUNICATIONS-Analysis, design and laboratory demonstration of jam-resistant modulation and AFC techniques.
MISSILE SYSTEM COMMUNICATIONS-Analysis of EAGLE communication requirements \& instrumentation techniques.
SATELLITE NAVIGATION-Preliminary system design of airborne, ground and satellite equipments for global navigation.
PROPAGATION-Applied research \& analysis of propagation through the plasma sheath surrounding hypersonic vehicles.
MAGNETOHYDRODYNAMICS-Advanced studies in MHD mode coupling for information transfer.
RADIATION-RESISTANT SUBSYSTEMS-M\&TC equipment designs for airborne and space radiation environment.

Ann Arbor, home of The University of Michigan, is an ideal residential and professional environment for Bendix scientists and engineers. Your academic program can be continued with day-time graduate studies at U . of M. You can enjoy year 'round recreation, Big-Ten sports, concerts, and plays available in the Ann Arbor area. You will live in residential areas so close to work that big city commuting is unnecessary.

Contact us today for information about career opportunities in:

ANTENNA DESIGN
 CIRCUIT DESIGN NETWORK SYNTHESIS INFORMATION THEORY

Bendix Systems Division

These manufacturers have invited PROCEEDINGS readers to write for literature and further technical information. Please mention your IRE affiliation.

620 Pa-atic Are., West Cahduell, K. J.
 airlorone and missile appliation reguirements. "The S'IR relay provides: Instantaneots resetting. Isolated bad contamPreser T/l) 20 180 secompl- miniature -ive. Voltage compernoation, Smbicont tembperature compensation. Neets show alld viluration enviromments. Single Pole Pouble Threw Combacts, and is llametically: scaled.

The S'lR relay will reset the in-tant it is deenergized, providing the sime time delay period for cath -woterding exhe This mperational adoantage hals ineen achieved by employing a special thermal element in congunction with a pair of
 tion utilizes the leesting and cowling innor-ral- to obtain the mal time delay ferime

Voltage ampensation is prosiderl for uperationt on 22 to , 32 volts ds: Temperat ture eampenation is wer the ramge of $-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$. The mit maty be operated moder high shock and vihramom

Power drain les- that1 3 Watt- after the timing period: 10 watt daring timing. Contact rating 2 amperes att 28 wolle du resistive lomal I ppresimate dimencons
 ing.

Miniature Switch

A new miniature rutary -witch 11 !" body diameter de-igned for low power selector switching applications hat lowen developed by Trolex Corp., Niplemr: IIl., a subsidiatry of (hicamo Folephone Supply Corp. Conformit! and reliabilit! is attamed! hy new athomaterd manufarturing processes. Permathently pentioned lermimals are molded into hou-ing amd canmot turn or twist out of phate. The de-ign prevents solder from ramming (lown iblo cir-

conit demente durime soldering. Nobded glass alkid homsing eveerls MII. -tandarcls, hat high menhanical wrength. how toxicity and mondrift characteristics. Ty pe 212 is not -ubjeet to breakage daring ordimary hatheling nor accialental dropping. Wafers (all be -tacked direntlo on top of each other with no spacers required. Laminated coins silver contacts provide reliable contact life for a minimum of 10 kr ,(0)O) croles thru 12 positions withont apprect able increase in contact resistance. Jrole

Standard layouts handle most circoits: are (puickly adapted to more complex circuits. Flexible tooling provides combless emmact arrangements without special torling. (Now in production for delivery approximately 3 to + weeks from receipt of order. Price based upom quantity and design requirement.)

Synchro Brochure

A reference data browhure on Size 8 Synchro Commonents is now a ailable from Induction Motors of California, 6058 Walker We.. Matwool, Calif. The breThure will le of particular salue for the appliation of syuchros in the design of control systems, computers, fire control methanies, missile settinge and matny other applications.

The new brewhere contains general edectrical spectiliations for borque rereiners, torpue transmitters, comerol transformers, resolver tramsmitters, vector resolvers, linear transformers, and comten differentials. The design options and meentuical characteristics are also linted.

The syehoros are manufactured in gen-

Coples of the new horohure. Batletin 204. at well ats information on size 11 sbhros, wopserio moturs, and whemide. may be whtaned by writing direed t", the limm.

Micro-Microammeter

The Montel titat enomonial instramemt for measuring de currents from $10: 1010{ }^{11}$ amperem. is atailatbe from Keithley Instruments, Inc., $12+15$ Eurlit Sie.. Cleveland 6, Ohis. It i- priceal at
 procketion tera. monituring intallations. athl labratary mearmembelt of miero-

rurrents. Its larse, mirror-acole prevent-17
 Sermary is within 3% of full sate down (1) 10 milli-microathreren. . Nditional feat-ture- include: a live-vith output al ug 10

 aponec apeed, and optional contact meter variatioms.

Details: atrout the Moxdel tht Mieremicroammeter are awailable in Keithke Engineering Dotes, Vid. i Xio 5

Pot Cores

Ferroxcube Corporation of America, Sangertio-, \. Y.. a producer of magnetic ceramios hate expated it- facilities to meet the groming demand for its miniature

... from conceptual realization of a product through obsolescence

Abstract

It has long been the policy of General Electric's Ordnance Department to insure the operational capabilities of its products through a totally integrated quality control program. Quality control starts at the proposal stage when a master Q.C. plan is formulated. As advanced design progresses, quality control engineers work closely with design groups in areas that will affect quality and production costs. Coincidentally incoming materials are subjected to rigid quality controls and continuing liaison is maintained with vendors to insure maintenance of specifications. As a product moves into the production phase continuous monitoring of manufacturing processes is performed, not only to certify previous reliability criteria but with a view to improving product capabilities through institution of better production procedures. Cost-production evaluation is also carried out to prove feasibility of any given Q.C. plan on an individual product. Immediate openings for experienced Q.C. Engineers on such programs as Torpedoes... Other Underwater Weapons...Fire Control Directors... Missile Launching and Handling Equipments...Inertial Guidance Equipments... Navigational Equipments... If you possess a degree in engineering and from 3 to 12 years experience in quality control, we invite you to investigate these openings:

Q.C. ENGINEER - TEST PLANNING
 a.c. ENGINEER - COMPONENTS

Q.C. ENGINEER - SYSTEMS

Applicants for these positions should have a BSEE, BSME or BS in Physics with emphasis having been placed on electronics. Must be able to work well with other people and analytical ability to reach sound solutions to problems. It is desirable to have some Fire Control and/or Radar experience and also be familiar with digital techniques, printed boards and transistorized circuits.

Please forward your inquiries including salary requirements in complete confidence to:

Mr. R. G. O'Brien Div. 53 MB

ORDNANCE DEPARTMENT
 of the Defense Electronics Division

general
electric
100 Plastics Ave., Pittsfield, Mass.

THE INDUSTRY IS GROWING BUT ARE YOU GROWING WITH IT?

We have an outstanding national reputation for assisting scientists and engineers to relocate to positions and firms at the FRONTIERS OF AMERICAN TECHNOLOGY.*

THE LEADING FIRMS IN THE INDUSTRY—WHERE THE MOST EXCITING AD. VANCES IN SCIENCE AND TECHNOLOGY ARE OCCURRING-HAVE ASKED US TO HELP LOCATE THE TALENT THEY NEED. (They pay our fee)

Inquiries are handled confidentially and PROMPTLY. Just send us a brief resume that includes your professional and financial aspirations. Be sure, also, to tell us the part of the country in which you'd like your children to grow up.

If you include your phone number, we'll call you up immediately.

* (If you're interested just in money, not frontiers, write to us anyway.)

PROFESSIONAL \& TECHNICAL RECRUITING ASSOCIATES
(A Division of the Permanent Employment Agency)
Suite 203, 825 San Antonio Road
PALO ALTO, CALIFORNIA

Emen SAN JOSE

Current Career Opportunities

In Commercial Products
R\&D

electronic engineers PHYSICISTS

experienced in Industrial Electronics and Automation

Creative top level engineers and physicists are needed now to work on advanced assignments in the design of optimum systems using electronic and mechanical components.

FMC Central Engineering's current expansion into automatic measurement and control fields offers permanent career opportunities for technical accomplishment on important company-sponsored, longrange programs. Systems engineers, circuit designers and specialists needed to staff new million dollar laboratories.

With corporate headquarters in San Jose, California, FMC is highly diversifed in both machinery and chemicals, with 15 divisions operating throughout the U.S. and overseas.

BS required and advanced degrees desirable for these responsible positions. Experienced applicants or recent graduates should send complete resume:

Contact E. M. Card, Jr., or C. F. Duvall at FMC Central Engineering, P.O. Box 760, San Jose, Calif. Phone: CYpress 4-8124.

Putting ideas to Work
Central Engineering Laboratories

FOOD MACHINERY AND CHEMICAL CORPORATION

Look beyond the obvious...

. . . as you consider your future in the electronics industry. First, what is the obvious? It's obvious that you're in demand. You don't have to worry about getting your material wants satisfied.

But, when you look beyond the obvious, you realize that you want something more than simple "want satisfaction" out of your career. You want pride-pride in the importance of your personal, individual contribution.

At Melpar, where we are now working on 120 advanced defense and space exploration projects, we have significant opportunities for the professional engineer or scientist who wants to be proud of his contribution to advancing the state of electronic art.

Senior-level positions are available in the

 following areas of this time:Reconnaissance Systems
Airborne Equipment
Ground Data Handling Equipment
Simulation \& Training Systems
Communication \& Navigation Systems
Ground Support Equipment
Detection \& Identification Systems
Antenna \& Radiation Systems
Physical Sciences Laboratory
Production Engineering
Quality Control
Field Service Engineering

INTERVIEWS ARRANGED IN YOUR LOCALE

For details wire collect or write to:
Professional Employment Supervisor

A SUBSIDIARY OF WESTINGHOUSE AIR BRAKE COMPANY 3322 Arlington Boulevard, Falls Church, Virginia

In Historic Fairfax County
10 miles from Washington, D.C.

second $b y$ second

Because of Aero's all encompassing interest in controls, its engineers have for years been working in the area of human factors engineering. The speed and complexity of space age machines demand an optimum interaction (within parameters of reliability, weight, cost) between man and the machine. One of several techniques for measuring the optimum man-machine relationship is SSOA (Second by Second Operational Analysis) . . . an analysis of perceptual inputs and motor outputs for each second of a mission; a basis for later workload analysis.

Techniques such as SSOA and achievements such as electrically suspended gyros, adaptive flight control systems, guidance and control systems for space vehicles are examples of Aero's interest in airborne controls. Their competence has been demonstrated by contributions to Mercury, Scout, X-15, Sergeant, Thor, Atlas, Titan, and others.

Current expansion has created openings for senior and junior engineers and scientists in these and similar programs. Your inquiry will get prompt and confidential attention.


```
SECOND BYSECOND OPERATIONAL ANALYSIS
```

SYMBOLS USED:
DIRECTIONAL:
$t=$ UP, INCREASE, ON , OPEN, ADVANCE, IN, FORWARO
F = OOWN, DECREASE, OFF, CLOSE, RETARD, OUT, BACK
d= LEFT
H RIGHT
$+=$ CENTER,NEUTRAL, NORMAL
PERCEPTUAL: MOTOR:
σ = observe out
c = OBSERVE IN
$\partial=$ LISTEN
M : SENSE BY TOUCH
LH= LEFT HAND
$L H=$ LEFT HAND
RH= RIGHT HAND
RH= RIGHT HAND
$\lambda=$ LEFT FOOT
$L=$ RIGHT FOOT
$\sim=$ SPEECH
$h=$ SPEECH

season
 by season

Honeywell engineers and their families experience wide variations in climateand their activities vary as much as the climate. Some spend winter in hiber-nation-type activities such as reading by the fireplace. More enterprising souls enjoy outdoor activities like skating, skiing, ice fishing, ice boating, sleighriding. Griping about the weather seems to be a universal pastime, and Minnesotans are no exception. Yet, ask a Minnesotan who has moved away what he misses most - he'll tell you it's the seasonal changes. The foot-and-ahalf snowfalls, the melting springs when everything begins to turn green again, the warm, pleasant summers, the colorful autumns. Such pronounced changes seem to stimulate mental as well as physical activities. It's a good place to live and a good place to raise a family. And it's part of the living that Honeywell engineers and their families enjoy.
For further information on working at Honeywell Aero-and living in Minneapolis, please send a resumé to Bruce Wood, Dept. 364A.

Microwave Research Supervisor

Nationally known research organization has an exceptional opportunity for an Electronic Engineer or Physicist with ontstanding technical and adminstrative competence, to direct its broadly diversified research and development activities in the following areas:

> MICIROW IVI: COMPONENTS PROIPITIOX STUIOIES SPECIAI, TEST EQUIPMENT INTERFERENCE EVAIUATION ANTENNH DEVEIGOPMENT

As Microwave Research Supervisor you will be joining a staff of approximately 100 electronics research and development engineers with a growing reputation. Our enviroment is midway between academic and industrial research and offers an unusinal opportunity to develop research programts of greatest appeal to you and your staff. You will receive a competitive salary plus liberal insurance and retirement benefits in addition to four weeks vacation after one full calendar year of service. Our location in a major midwestern city ollers excellent cultural and recreational opportunities.
If you are an exceptionally qualified engineer with ant advanced degree and 8 to 10 years of diversified microwave reapard experience who desires an musnal opportunity for professional advancement, send a complete resume, in confidence, to:

Hox 2009
Institute of IRadio Enginpers 1 Wani zinh Nireet, Now Vork 21. N.V.

PHYSICISTS AND RESEARCH ENGINEERS

THE RADIATION LABORATORY OF THE JOHNS HOPKINS UNIVERSITY HAS POSITIONS FOR PHYSICISTS

OR RESEARCH ENGINEERS IN THE FIELD OF:

MICROWAVE PARAMETRIC PHENOMENA

AND FOR RESEARCH ENGINEERS IN THE FIELDS OF ELECTROMAGNETIC ENVIRON. MENT STUDIES AND RADAR
THIS UNIVERSITY LABORATORY OFFERS A variety of interesting problems IN FUNDAMENTAL RESEARCH FOR QUALIFIED PERSONS WITH ADVANCED DEGREES CAPABLE OF INDEPENDENT and creative effort.

- Favorable Arrangements for Doctoral and Post Doctoral Study in the University Graduate School - Faculty Privileges for Senior Staff
- Excellent Laboratory Facilities Located Near the University Campus
- Broad Opportunities for Personal Development

Address Inquiries To:

RADIATION LABORATORY THE JOHNS HOPKINS UNIVERSITY
Hamewaod Campus, Baltimore 18, Md.

ONE DOOR TO ALL NEW ENGLAND

AN EMPLOYER SPONSORED SERVICEOur employer client assumes all expenses.

THE NEW ENGLAND CLEARING HOUSE FOR ENGINEERS-Save time while getfing maximum coverage by letting us act tis your personal representative.

THERE'S A BONUS IN BETTER LIVING FOR THE WHOLE FAMILY

Two immediate openings: ELECTRONIC SPECIFICATION ENGINEERS - Prepare specifications which adequately describe the performance and design of complete missile and radar systems. Basic electronics or physics degree or an equivalent plus a minimum of at least two years in missile systems, radar or similar equipment required.
TECHNICAL WRITERS-Predare technical progress reports for the government or prepare handbooks on operation, service, maintenance and overhaul of missile and radar systems. Minimum of two years experience in writing for advanced electronic equipment and the ability to andiyze complex equipment required.
You will join one of the most progressive expanding organizations in the weapons system field todar and will benefit in its growth as well as grow and develop in your profession.

Please send three copies of your resume, including present salary and salary require. ments to-Robert M. Hale-Account Mana. ger

EMPLOYERS' SERVICES of New England

Suite 2, 21 School Sircet, Boston 8. Mass.

These manufacturers have invited PROCEEDINGS readers to write for literature and further technical information. Please mention your IRE affiliation.

(Continited from puge 1.50 A)

which are in turn controlled by switch position. Remote control boxes are available for remote indication and control. The waveguide portion of the switch is supplied pressurized on request.

All units are plated nickel over silver over copper. Sizes range from 2.6 to 90 kmc . Deliveries: 2 weeks on most items from receipt of order. Prices: $\$ 591$ to $\$ 919$, dependiug on size.

Variable Delay Line Box

Valor Instruments Inc., 1.321t Crenshaw 131-d., Gardena, Calif., has designed a new variable delay line box which delivers any delay up to $0.79 \mu \mathrm{sec}$ with an accuracy of 0.8% of the maximum delay by means of binary switching. Reflections, ordinarily associated with variable delay lines, are eliminated because the unused portion of Morel 44.3133 is discomnected from the circuit by means of the switching.

Specifications: Rise time is $0.05, \mu$ sec for the maximum delay and decreases as lesser delays are used; Impedance: 100 ohms; Attenuation: 3.5%; Size: $3^{\prime \prime} \times 3^{\prime \prime}$ $\times 5^{\prime \prime}$

Uses: The variable unit may be connected into a circuit to determine the specifications of the delay line that will provide optimum characteristics or, as a substitute until production protot ype delay line is delivered.

Universal Joint

A new telescoping miniature universal joint has been designed by the Falcon Machine \& Tool Co., 209 Concord Turnpike,

Cambridge Mass. This device allows greater freedom in the design of systems, such as magnetron and klystron drives, servodrives, and so forth, where the precise transmission of information is cusential.

professional opportunities at Honeywell Aero

INERTIAL SYSTEM DEVELOPMENT

Systems Analyst-employs mathematical techniques such as operational calculus, matrix algebra, and difference equations to the solution of problems concerning performance characteristics of various system configurations including analysis for error introduced by sensors and computer, requirements for alignment, and optimization of the system configuration.
Digital System and Logic Designer-requires familiarity with capabilities of various digital computer configurations and ability to employ system and logic relations in specifying necessary configuration for solving inertial navigation problem.
Electronic and Mechanical Designers-engineers with background in transistor circuitry, inertial sensor development and evaluation, and precision mechanical equipment design are needed to perform component development and evaluation, and to design mounting and alignment equipment.

APPLIED RESEARCH

Programmer Analyst-mathematician with experience in the use of medium and large scale digital computers for analysis of scientific problems.
Human Factors Engineer-capable of analysis and direction of experiments in human motor skills, and application to man-machine sys-
tems involving automatic control techniques.
Systems Analyst-capable of conducting research studies involving new techniques of space navigation and guidance.

DESIGN AND DEVELOPMENT

Flight Control Systems-analytical, systems, and component engineers to work in areas such as advanced flight reference and guidance systems. Positions range from analyzing stability and control problems, systems engineering-through design, testing, and proof of electrical and mechanical equipment -including flight test and production test.
Advanced Gyro Design-Engineers with two and up to twenty years' experience in precision gyro and accelerometer development, servo techniques, digital techniques, solid state electronic development, advanced instrumentation and magnetic component design.
Electronic Circuit Designers-experienced in the areas of analog /digital computers, transistor circuits, servos, instrumentation, and or gyro stabilization.
For the less experienced professional engineer, there are opportunities in the Evaluation Laboratory which lead to careers in any of the above fields.
To investigate any of the above professional opportunities at the Aeronautical Division, please write in confidence to Bruce Wood, Dept. 364C

To explore professional opportunities in other Honeywell operations coast to coast, send your application to H.K. Eckstrom, Honeywell, Minneapolis 8, Minnesota.

1433 Stinson Blvd. NE, Minneapolis 13, Minnesota

An unusual opportunity to perform original research and to apply this specialty to the theoretical and practical problems encountered in modern systems. At General Electric's Advanced Electronics Center at Cornell University, you'll find a stimulating technical atmosphere.
A limited number of Junior and Senior level engineering and mathematical positions are now available. Background should include knowledge of applied probability, logical design and/or communications theory.

Projects include those in Authentication Systems, Secure Transmission Systems, Coding and Decoding Research, Correlation and Matched Filter Theory.

Plectase address inquiries to Mr. J. R. Colgin. Dept. 53-MB

These manufacturers have invited PROCEEDINGS readers to write for literature and further technical information. Please mention your IRE affiliation.
(Comminued from page 154.f)

Two preloaderl ball splines provide lateral travel and a minimum amount of thrust on commected components. The two universal joints feature sealed-in lubrication of preloaded lwearing surfaces between hurnished sockets and precision balls giving continuons contact. This design atssures zerobacklash for the entire assembly

Body components are type 30.3 stainless steel; balls are of type $4+0$ stainless.

Standard assemblies have $\frac{10}{\prime \prime}$ lateral travel; greater travel awailable on special mits. Standard joints are avalable in following sizes: $\frac{3}{16}{ }^{4}$ body with choice of $\frac{3}{32}$ "
 body with $\frac{1}{4}^{\prime \prime}$ bore. Torque ratings for the three body sizes are 16,64 , and 256 inch ounces respectively:

Stepper Motor Catalog

Technical brochure, Sp9-1, a 12 page booklet describing a new line of stepper motors and pulsed stepping devices produced by The A. W. Haydon Co., 2,32 Elm St., Wiaterbury, Comm., has been published.

For each of the new units in this line-series 18100 motors, rotary stepping
switrhes, pulse dividers, precision seguences, commers, interval timers and positioning devices-complete information is given. This inclades prodect features. application and construction details.

Well illustrated, the booklet contains schematic drawings of application circuitry as well as pulse profiles. Copies of the two color brochure may be obtained by writing to the firm.

Snap-acting Switches

To satisfy a wide variety of assembly reguirements, Unimax Switch, Division, The W. L. Maxson Corp., Ives Road, Wiallingford, Comm., now provides subminature precision snap-acting switches with three kinds of sodder-lug terminals, as well as smap-on terminals and terminals for printed-rircuit wiring.

The somer-lug terminals include the short type with hole for wires up (1) \#18. a single-turet lug, and a double-turret lug.
((intunucal an page 158.t)

More than "just an engineer" . . . he's the man you need for your most sensitive technical position!

When "just anyone" wonlt du for at highly important position . . . consider our exerutive searell service.

Our function is to lomate and recruit the highest calibre techinical exerntives. enginerrs and scientists. . . at all degree and experience levels.
The cost of our service is modest . . . much less than it would cost your organization to condact the extensive search ne make. A growing mmber of small and medium size firms weleome this eronomy and are delighted with the exceptional individuals we recommend,

Fill that vital technical or managerial post with the right man. We will locate lim for you: Your inquiry will be promptly answered and trated with the utmost confidence.

Extending existing modulation systems to make more space available in the spectrum, and possibly even broadening the useful spectrum . . . this is a fundamental problem in modern communications. It is the problem to which ITT Laboratories is devoting intensive effort.
At the low end we're designing a new type antenna for very low frequencies. With a conventional antenna this would require a tower more than three miles tall. On the top side - at the high end we're making radiation pattern surveys for the super high frequency bands. Here the entire antenna consists of a few millimeters of number eighteen copper wire. We're matching these efforts with advances in componentry . . for instance, the parametric amplifier and now the ingenious ferroelectric converter which converts solar heat to high voltage
electricity to power new satellite communications. If you are a communications engineer who would like to be associated with some of the most significant programs in modern communications development . . . if you would like to work with men who are stretching the spectrum toward direct current at the bottom and the cosmic rays at the top . . . write Manager Professional Staff Relations . . . tell him your interests, your background and the kind of work you would like.

ITT LABORATORIES
A Division of International Telephone and Telegraph Corporation

500 Washington Avenue, Nutley, New Jersey

Fort Wayne, Indiana - Palo Alto and San Fernando, Culifornia

Don't bother telling us how it happened . . . we almost know. It was Spring -or Fall, no matter-and there you were, alone with That Other Girl. You couldn't have been thinking of your professional future because you'd had to explain to her dad that you didn't drive a locomotive. But she was lovely, desirable and it seemed unthinkable not to share your breakfast Wheaties with her the rest of your days. So, of course, you married her instead of the boss' daughter and your father-in-law turned out to be a grand guy even though he now tells people proudly that you. make TV sets or something.

Which pretty much leaves your career up to you, doesn't it?
We have some advice for you; well not guarantee that it's impartial, but check it for logic anyway: Look for a leading electronics corporation which is essentially an engineering firm, where not only your immediate supervisors but top management will be engineers. Being engineers, they're more likely to recognize ability and to reward achievement fairly and impartially. It figures, we think, that where there's an atmosphere of mutual confidence, respect and understanding you'll realize your maximum potential at least a little sooner and more surely. You may be pretty sure that Bendix, Kansas City, meets the specifications outlined above or instead of mentioning them at all wed probably follow the crowd by speaking only vaguely of "opportunity" and "challenge." You have criteria of your own... measure Bendix with them and let us help you if we may.

That girl you did

 marry will like Kansas City. So will you and the children. Practically everyone does.Mail brief confidential resume to: MR. T. H. TILLMAN, BENDIX, BOX 303-OD, KANSAS CITY, MO.

KANSAS CITY, MISSOURI

These manufacturers have invited PROCEEDINGS readers to write for literature and further technical information. Please mention your IRE affiliation.
(Continued from page 156.1)
The turret lugs are flat so that wires do not slip when wrapped around the terminal.

The snap-on terminals lit miniature . .XP or Ark-1.es Quick-Comect female terminals. The printed-cirenit terminals are designed to tit $\frac{3}{32}$-inch slots in wiring boards and have holes to allow ready consection of component leads beneath the board.

I data sheet giving details of 1 "animal switches with all dive terminal styles is available on request to the firm.

VSWR Amplifier

An improved version of the Nara USW'R Amplifier hats been introduced bs the Narda Microwave Corp., 118 Herrick Rd., Nineola, $\mathrm{N} . \mathrm{I}$. Designated Model $4+113$, the unit is transistorized and bat-tery-operated and has builtin provision (0) show the state of battery charge. "The amplifier's own meter is used to indicate this.

The Model 41 B is supplied with aickel-cadmitum batteries. providing complate independence from line voltage flue that ions. Batteries recharge automatically when unit is plugged in.

- special protective circuit permits switching and conned-disconned with no danger of bolometer burnout. I'rovision is made for tooth crystals and high amd low current bolometers. Do expanded scale is claimed to offer the highest gain of all SSUR amplifiers on the market, and prorides the same sensitivity at both exparaded and normal stages (0.1 microvolt at 200 ohms for full scale)

The standard model is designed for operation (1,000 cps $\pm 1 \%$ plug-in irefluency networks are available for 315 4,000 ($\rho \mathrm{ps}$ and broad-band applications). Bandwidth is $25-30 \mathrm{cps}$; the range is 72 db (60 dh in 10 (l) steps, 11 db continuous).

Attemator accuracy is ± 0.2 (1 b maximum cumulative. Meter linearity is 1% of full scale

The Nards Model $4+1[3$ is priced at $\$ 225$ and is available from stock. Sditonal information is a mailable from Nard representatives or by writing directly to the address shown above.
((imprinted on rage 102.4)

The scientific data that will some day enable us to probe successfully to the very fringes of the universe is being recorded and transmitted at this moment by the space laboratory Explorer VI, a satellite now in orbit around the earth This project, carried out by Space Technology Laboratories for the National Aeronautics and Space Administration under the direction of the Air Force Ballistic Missile Division, will advance man's knowledge of: The earth and the solar system...The magnetic field strength in space ...The cosmic ray intensities away from earth... and, The micrometeorite density encountered in inter-planetary travel Explorer VI is the most sensitive and unique achievement ever launched into space. The $29^{\prime \prime}$ payload, STL designed and instrumented by STL in cooperation with the universities, will remain "vocal" for its anticipated one year life.

How? Because Explorer VI's 132 pounds of electronic components are powered by storage batteries kept charged by the impingement of solar radiation on 8,000 cells in the four sails or paddles equivalent to 12.2 square feet in area Many more of the scientific and technological miracles of Explorer. VI will be reported to the world as it continues its epic
 flight. The STL technical staff brings to this space research the same talents which have provided systems engineering and over-all direction since 1954 to the Air Force Missile

Programs including Atlas, Thor, Titan, Minuteman, and the Pioneer I space probe.

Important staff positions in connection with these activities are now available for scientists and engineers with outstanding capabilities in propulsion, electronics, thermodynamics, aerodynamics, structures, astrophysics, computer technology, and other related fields and disciplines.

Inquiries and resumes

Take...

- forefront work essential to our National defense
- Constant variety of interesting projects
n the academic atmosphere of a great University
- big Company orderliness plus small-group freedom
- inspirational elbow-rubbing with outstanding men
- a milieu free from dogma, time clocks, petty details
- "doing" as well as "thinking" projects
- stability, permanence, most fortunate living conditions
- leading institutions nearby for advanced degree work
blend-and see why so many leading

Large-scale dynamical model of gas in operation engineers and scientists come to and remain at

SYLVANIA MOUNTAIN VIEW OPERATIONS

on the San Francisco Peninsula

SYLVANIA MOUNTAIN VIEW OPERATIONS

occupy large, established facilities 45 minutes south of San Francisco in the Stanford-Berkeley scientific complex. They include

ELECTRONIC DEFENSE LABORATORIES - renowned quick-reaction electronic warfare capability, R\&D and fabrication being performed by the Systems Engineering Laboratory, Equipment Engineering Laboratory, Advanced Analysis Department and Equipment Fabrication Facility.

RECONNAISSANCE SYSTEMS LABORATORY - R\&D on advanced ground and airborne reconnaissance systems involving antenna systems, receiving systems, data processing systems, related circuitry and hardware.

SPECIAL TUBE OPERATIONS - R\&D and Product Engineering of microwave tubes and devices for missiles, radar, ECM, navigational devices. Includes the widely-known Microwave Physics Laboratory research in plasma physics, ferromagnetic materials and gaseous electronics.

REWARDING ASSIGNMENTS NOW AT B.S., M.S., AND Ph.D. LEVELS IN

System Concept, Planning and Design ... Receivers Tranamitters... Digital Data Handling... Circuit Design Instrumentation... Product and Mechanical Engineering Electronic Packaging...Environmental Testing...System Integration and Evaluation...Theoretical and Experimental Physics... Microwave Tube Research, Development and Production...Solid State Physics...Sales Engineering ...Engineering Writing

SYLVANIA MOUNTAIN VIEW OPERATIONS
Box 188, Dept. B 2, Mountain View, California

1,01R1: l.) (fill

Core logic is one of the new techniques being applied by the Research and Development staff at Hermes Electronics Co. to produce a new family of digital equipments. The growing demand for these and other equipments have created a number of career opportunities for engineers and scientists with backgrounds in magnetic core circuits, computer logical design, and transistor circuits for digital and pulse applications.
Hermes Electronics Co. is a unique organization where responsibility and initiative are encouraged. Here you will also find the stimulation and environment of a young and growing company. Your association will be with staff members who are in the vanguard of many of today's rapidly expanding technical frontiers.
Salaries and other benefits are comparable to those of major research and development organizations. The company's location in Cambridge, Mass. affords unequaled cultural, living and recreational facilities. Liberal educational benefits are allowed for graduate study at leading universities in this area.

Interested scientists and engineers are invited to address inquiries to: Mr. E. E. Landefeld, Personnel Director.

Hermes
Electronices Co.
75 CAMBRIDGE PARKWAY
CAMBRIDGE 42. MASSACHUSETTS

These manulacturers have invited PROCEEDINGS readers to write for literature and further technical information. Please mention your IRE affiliation.
(Comtinued from pagc 158A)

Designed primarily to measure ensirommental parameters, the ES-102, a prexuct of Santa Barbara Instrumentation Corp., 111 State St., Santa Barhara, Calif., can be used with any transducing element having contact closures as the output presentation. Digital accelerometers and temperature end-instruments are typical examples. Humidity; pressure, velocity, angular position, radiation level, and so forth, are cther possible parameters. The ES-102 provides 24 channels for recording up to 20 events per secont, and one time channel for correlation. Typical system
(Continued on page 164.1)

SCIENTISTS ENGINEERS CALIFORNIA

offers you and your family

- A world center of the electronic industry for CAREER ADVANCE. MENT
- The High Sierra and the Pacific Ocean for RECREATION
- Some of the nation's finest public schools for your CHILDREN
- World Famous Universities for advanced study
- major cultural centers
while living in such places as
Exciting San Francisco
Fabulous Southern California Cultural Palo Alto
companies pay interview, relocation and agency expenses
submit resume in confidence to:

PROFESSIONAL \& TECHNICAL

 RECRUITING ASSOCIATES(a Division of the
Permanent Employment Agency) 825 San Antonio Rd. Palo Alto, Calif.

New Gateway to Achievement in Astronautics and Aeronautics Republic Aviation's New Research \& Development Center

Engineers and scientists whose minds are challenged by unsolved problems across the entire spectrum of technologies concerned with space exploration and upper atmosphere flight, are invited to inquire about the exceptional facilities for both theoretical and experimental investigations provided by Republic's new Research and Development Center (scheduled to open Spring 1960).

Openings at all levels (including top level supervisory) in nearly every area of Electronics related to Advanced Flight \& Weapons Technology:
Navigation \& Guidance Systems / Radar Systems / Information Theory / Radio Astronomy / Solid State \& Thermionic Devices / Microwave Circuitry \& Components / Countermeasures / Digital Computer Development / Radome \& Antenna Design / Miniaturization-Transistorization / Radiation \& Propagation (RF,IR,UV) / Telemetry.SS8 Technique / Receiver \& Transmitter Design

Please forward resumes to: Mr. George R. Hickman
Technical Employment Manager, Dept. 14B

Farmingdale, Long Island, New York

Optically as far as the first obstruction. For some, the same applies to mental vision. By seeing beyond the apparent obstacles, eslablished theories or accepted principles, Fairchild Semiconductor Corporation has been able to achieve spectacular product innovations in transistors. Because of this faculty, the company has grown from an original nucleus of eight scientists to a complement of more than fourteen hundred in little more than two years.
From continuing research and development work through engineering, tooling, manufacturing and testing of products on the line, the success of Fairchild is built on the abilities of its men to see around the obstacles and move beyond. It has resulted in products more advanced than any others of their type and in a solid reputation for quality workmanship.
In a rapidly growing company with many challenging programs (e.g. current work on Esaki diodes and micro-logic circuits), there is a constant need for men who can see beyond the first obstacles. If yours is a relevant background and you find our approach attractive, we would like very much to hear from you.

SCIENTISTS d ENGINEERS FOR RESEARCH PROGRAMS IN IONOSPHERIC PROPAGATION \& HF COMMUNICATIONS

Abstract

Our accelerated growth in these fields offers attractive opportunities to jain senior scientists ond engineers of stofure now involved in challenging, odvonced projects such os Project Teepee and other related fields. Responsible assignments furthering the state-of-the-art in these fields, plus campelitive salaries and outstanding growth potential are offered to men who can contribute to the progress of these important progroms.

SENIOR IONOSPHERIC PHYSICISTS

Ph.D. preferred plus several yeors' experience in the study af ionospheric phe. nomena. Should be familiar with present knowledge of upper afmosphere physics and possess an understanding of current programs using rockets and sotellites for studies in F-region and beyond. Qualified men with supervisory abilities will hove an exceptional opportunity to assume project leadership duties on an HF project already under woy invalving F-layer propagation studies backed by a substantial experimental program.

SENIOR DEVELOPMENT ENGINEERS

Appointments are available for Senior Grade Scientists and Engineers who hove current state-of-the-art experience in the design and development of highfrequency receivers and tronsmitters. Must have background in HF linear circuif theory and HF equipment praclical design. These positions will consist of about 50% development work including breadboarding; 50% engineering.

SENIOR ELECTRONICS ENGINEERS

 R \& D OPERATIONS LIAISONChallenging positions are open for ambitiaus Electronics Engineers of deman. strated technical competence to direct the incorparation of modern ideos into field equipment and actively participote in the equipment transition from bread. board to operational status. These are senior appaintments as lioisan between our R \& D Equipment Development Lab and Field Operotions. An E.E. degree is required; ability to communicote effectively.

Our lacation: in the suburban Washington, D.C. area. Excellent post-groduate study available in several nearby universities-company-sponsared, of course. Housing: in well-established neighborhoods with superior selections. Relocalion allowance is liberol.

Send Resume in Complete Confidence to: Robert J. Heid, Techmical Employment Manager

> RESEARCH \& DEVELOPMENT LABORATORIES ACF INDUSTRIES INCORPDRATED Riverdale. Maryland \quad WArfield $\boldsymbol{J - 4 4 4}$

These manufacturers have invited PROCEEDINGS readers to write for literature and further technical information. Please mention your IRE affiliation.

(${ }^{\circ}$, minurd from pagr 163.1)

applications are in monitoring large industrial control systems and transportation inmact and temperature recorders. Large tape storage emables long unattended recording intervals. I atta reduction is situplifred and electomerhanical connters can eliminate mmereesairy reduction by providing quick aceess information. The ESS102 is avalathle for purchase or for lease. W'rite for sperifications.

DeMatteo General Sales Manager at Pyramid

The appointment of Mario A . DeMatter ats general sales manager of Pyramid Electric Co., 507 26th St., 「nion City, … J., was annomuced today: The electronios firm, with distributor sales and warehousing here, factories in I arlington, S. C. and Gastomia, … C., manufactures capacitors and rectiliers.

For the past eight years Dealatteo nats with Astron Corp. where he was assistant general sales manager, haviag moved up from distributor sales manager.

Prior to that he spent three sears with Cornell-1)ubilier Electric Corp, as manager of its distributor division.

DeNatteorattended ['inion Junior Col lege, Cranford, ‥ J., The T"niversity of Somth Carolina, and Rutgers C'niversity.

Microwave Filter

A new 1,3-element low-pass filter that features a more compact design is now available from Frequency Standards, Asbury Park, N. J., arcording to Harry C. Dolan, General Sales Manager for the firm.

The filter, Model FS-23L, has 1 db slown freguency of 2300 me and a power

Engineers who seek professional achievement in missile ground support will find there are many missiles and many missile ground support opportunities at Cape Canaveral with Pan Am.

Investigate our career engineering openings by addressing your resume to Mr. J. B. Appledorn. Director of Technical Employment, Pan American World Airways, Inc., Patrick Air Foree Base. Florida, Dept. C-14.

KNOWLEDGE-Our Challenge!

BOULDER LABORATORIES, THE NATIONAL BUREAU OF STANDARDS
Boulder, Colorado

- By performing basic and applied research in radio propagation, radio standards, radio svstems, and cryogenic engineering, PHYSICISTS, MATHEMATICIANS, and ELECTRONIC ENGINEERS can contribute to the NBS goal of leadership in these fundamental areas in an atmosphere which enhances opportunities for individual advancement in professional status.

Close to the University of Colorado, large city (Denver) advantages, and mountain recreation (winter and summer), the Boulder Laboratories Professional Staft is a research group, moderate in size but tremendous in the scope of its national and international activities.

Positions are filled in accordance with applicable U. S. Civil Service procedures. Starting salaries range from $\$ 4,490$ to $\$ 12,770$ per year. Āddress inquiries to:

Roy W. Stockwell. Jr. U. S. Department of Commerce, National Bureau of Standards, Boulder, Colorado

H
 DEVELOPMENT ENGINEERS

career opportunities
For 75 years, Honeywell has been "first in controls"-in the home, in industry, in business, and now climbing into space. Within this diversified area, choice and lasting careers currently exist for the following engineers:
INFRA-RED. Graduateengineer with 3 to 5 years' experience in the, field of electronics. One to 2 years' experience in infra-red systems, design and applied research. Knowledge of optic system application desirable.
RF-VHF. Graduate engineer with 3 to 5 years' RF development experience. Design experience in perience. Design experience in radio frequency Rarcur type pulse range and up. Radar type pulse circuits and anten
perience desirable.
If you are a qualified engineer interested in one of these openings, send information on your background and accomplish. ments to R. C. Duncan, Dept. 397. Honeywell, 2753 Fourth Avenue South, Minne. apolis.
To explore professional opportunities in other Honeywell operations coast to coast, send your application in confidence to H.D. Eckstrom, Honeyuell, Minneapolis 8, Minn.

Honeywell Fint in Cartiols

These manufacturers have invited PROCEEDINGS readers to write for literature and further technical information. Please mention your IRE affiliation.
(Comtimed from fage 10t.1)
hatulling capacity up to 2 kw peak. The maximum insertion loss is 0.5 db in the pass-band; the input ISUK is $1.5: 1$ bekow the 0.1 dls.

Write to the firm for alditional infor. mation.

Differential DC Amplifier

A true differential de amplifier is now in production by the Allegany Instrument Co., 1091 Wills Nountain, Cumberland, Md. Chopper stabilized, the Nodel 510 features kow moise of 14 microvolts ms over the entire bandwidth of de to 25 kc . An output of $\pm 100 \mathrm{ma}$ at 10 volts, with continuously variable gat to 1000 N , makes the amplifier a flevitule general-purpose instrument. It is available in individual case or cight to a $19^{\prime \prime}$ rack. For detailed information write to the firm.

Ferrite Phase Shifter

Kanter Corporation Model PN 105Band temperature compensated ferrite phase shifter, :t prothec of Rantec Corp., Calabasas, Calif., produces $\pm 90^{\circ}$ of phatice shift, thaintaining absolute phase stability within $\pm 15^{\circ}$ over the temperature range $-10^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$. Sperial matehing techniques are utilized which maintath the input VSWR less than 1.15:1 for all control coil current ranges over the temperature range specitiod. Control coil inngedance is 200 ohms and reguires 100 ma current for maximum phase shift. The unit is rated at 2 kw peak, 2 watts areage. Also available in other frequency bands.

Surge Test Adapter

The Model 142 Surge Test . Adapter available from Wallson Associates, Inc,
(Continucl en pum losit)

General Electrics Nissile \&Space Vehicle Dept. Building News $14,000,000$ Space Research Center

17 miles from Philadelphia, Near Valley Forge Park

Back in 1956 this General Electric organization outgrew its quarters in Schenectady, N. Y. and moved to Philadelphia. Since then its research and development staff has increased 5 -fold. A new move is fast becoming imperative and will be met by the $\$ 14,000,000$ Space Research Center now under construction on a 132 acres site near Valley Forge Park. This construction will feature unique facilities, to be utilized in a long-term program, to expand the activities in the realm of space research and the development of space vehicles and sys-tems-areas in which MSVD has already contributed so many notable advances:

- the FIRST re-entry at ICBM range with both heatsink and ablation methods
- the FIRST recovery of payload from space
- the FIRST movies of earth from space
- the FIRST flight demonstration of effective space vehicle stabilization control and navigation (control systens of interplanetary capacity)
- the FIRST measurements in space of earth's magnetic field and infrared radiation
- the FIRST meteorological information from space
- the FIRST organic plastic ablation material for nose cone re-entry protection capable of withstanding temperatures from 5,000 to $13,000^{\circ} \mathrm{F}$

Currently a broad diversity of programs are under way at MSVD, offering assignments of exceptional interest to engineers and scientists qualified to work with a researchoriented organization. Your inquiries are invited regarding the following areas: Systems Engineering - Aerodynamics • Thermodynamics • Guidance \& Control • Instrumentation \& Communication • Plasma Physics - Gas Dynamics - Aeromedical Design Engineering - Antenna \& Microwave Design - Space Mechanics • Structural Design • Energy Conversion Human Factors • Advanced Power Systems • Reliability Engineering - Producibility Engineering • Arming and Fuzing Systems • Applied Mathematics \& Computer Programming

Write in confidence to: Mr. Thomas H. Sebring, Div. $\overline{5} 3 \mathrm{M1} 13$
Missile \& Space Vehicle Department

GENERAL ELECTRIC

3198 Chestnut St., Philadelphia 4, Pa.

Now offering...
creative careers in ordnance

Expanding operations in an exciting, growing company have created unusual career opportunities for ordnance engineers. Assignments on research and development projects will require the mature judgement of from two to ten years' experience in the field and present a combination of stimulating challenge and an ideal professional climate for contribution and personal development.
The company: the Crosley Division of Avco Corporation. There, confidence and personnel morale stem from aggressive management, a progressive approach to individual effort, and maximum support for all projects. Definite creative career opportunities are available now. Experienced personnel can choose from:

- Ballistics
- Arming and Fuzing
- Non-nuclear Weapons Systems Analysis
- Target Damage Evaluation
- Warhead Design
- Shells System Design
- Microminiature Electronic Assemblies Design
- Projectile Design

For complete information, write or call: Mr. P. B. Olney, Manager of Scientific and Administrative Personnel Dept, P-20, Crosley Division, Avco Corporation, 1329 Arlington Street, C'incinnati 25, Ohio. Phone: KIrby 1-6600.

These manufacturers have invited PROCEEDINGS readers to write for literature and further technieal information. Please mention your IRE affiliation.

(Comthlisd from page loba)

912-914 Westfield Ave., Elizaberh, N. J., for use as an accessory with either the Wallson Type 138 號 141 : Silicone Rectilier Test Sets. The adapter may also be used atone, and a permanent cabinet is prorived for positioning when desired. The Type 142 supplies single $\frac{-1}{2}$-wave sibunevidal surge currents. adjustable letween 5 and 75 amperes at a maximum repetition rate of 4 per minute. Pronisions atre made to monitor the muput thromigh a 50 mm shum with an osidlosiope using the syme signal provided.

Sipecifications are: pener impur; 120 whts. 60 eps; werall :ize: $211^{\prime \prime}$ lomg. $8^{\prime \prime}$ high. $16^{\prime \prime}$ wide; weight 25 panuls; delivery: 4 weeks from stode; price, 570 .om rack mounting. $\$ 725.0 \%$ complete in
self contained cabinet-F.O.B. Blizabeth, N. J.

Ceramic Triode

An improved, ruggedized version of the GL-6897 high mu, coplanar ceramic lighthouse triode has been ammonced by General Electric Co., Schencetady 5, N. Y.

The new (il-6897, designed for reliable long life CIV operation. has a typical power output of 20 watts at 1850 me with 3.3 percent plate efficiency. plate current of 100 mit. plate voltage of 600 volts, and RF drive power of 2.5 witts.

It is shoek tested to $400 \mathrm{~g} \mathrm{~g}_{\mathrm{s}}$ and can be purchased to specification MLL-E$1 / 10.37 .1$.

The (il. 08897 is immediately aratable in prochation quantities for microwave frepuence communcations service applications in grounded-grid. power atmplitien. oscillator or freguency matapler cirats. [an such service, it will operate at freeptemcies up to 2900 mic.

For farther information contact the limo direot

IINCOLNLABORATORT

invites inquiries from persons with superior qualifications.

SOLID STATE Physics, Chemistry, and Metallurgy

RADIO PHYSICS and ASTRONOMY

NEW RADAR TECHNIQUES

COMMUNICATIONS:
Techniques
Psychology
Theory
INFORMATION PROCESSING

systems:

Space Surveillance
ICBM Detection and Tracking
strategic Communications
Integrated Data Networks
SYSTEM ANALYSIS

Research and Development
LINCOLNLABORATORY
Massachusetts Institute of Technology

New Programs at

 CONVAIR - POMONAof the Army's new

RED - EYE

Shoulder Fired

MISSILE

and developers of the Navy's
and TARTAR MISSILES

Reter to the reverse side of this page for odditional information and positions.

Pleosse fill out the convenient confidential inquiry card and mail to:

CONVAIR / POMONA

CONVAIR DIVISION OF

GENERAL DYNAMICS CORPORATION

EMPLOYMENT INQUIRY
 PROFESSIONAL

This eard may be folded and sealed or stapled and mailed in complete conflence. It will enable he profesaional ataff at Convair-Pomona to make a preliminary evaluation of your background. be acknowledjed.
PERSONAL INFORMATION (PLEASE PRINT)
NAME
STREET ADDRESS.
CITY \& STATE
COLLEGE GRADUATE: YES \square NO \square DEGREE: B.S. \square M.S. \square PH.D. \square
MAJOR SUBJECT: AERONAUTICAL ENGINEERING \square ELECTRONIC ENGINEERING

SENIOR ENGINEERS AND SCIENTISTS

who are interested in extending their career will find the New Programs offered by Convair-Pomona an excellent challenge.

Convair-Pomona is engineering the Red-Eye, shoulderfired Missile, which American infantrymen will use against attacking aircraft. This is one of the most advanced projects in its field. Other programs on advanced Terrier and Tartar Missiles, along with still highly classified projects, provide excellent long-range positions.

In your association with Convair-Pomona you join a group of men who are leaders in their respective fields of scientific endeavor-men whose contributions to science are significant. You will find a warm friendly atmosphere the type of atmosphere that is conducive to your best competitive effort - where every endeavor is made to insure that your salary is commensurate with that effort.

You will find a wide diversification of interesting, challenging assignments at Convair-Pomona. You will also find that our engineering department is one of the most modern and best equipped in the country.

The excellent location of this modern air-conditioned plant offers unsurpassed living conditions. Suburban Pomona is only thirty minutes from Los Angeles and Hollywood and in close proximity to many recreational centers; the mountains, the desert, the ocean and is within America's finest year-round living climate.

Assignments are available now for engineers and scientists with training and experience in one or more of the following specialties:

> ELECTRONICS ENGINEERS - (Circuits-Analysis, Design, Development, Guidance and Control Systems, Systems Analysis, Component Evaluation, Test Equipment Development, Microwave and Antenna Development, Publications Engineering, Electronic Packaging, Test Engineering, Flight Analysis, Instrumentation, Radar Systems) PHYSICISTS (Radio and Radar Systems, Physical Electronics, Solid State Physics, Magnetics, Optics, Microwave Electronics, Infrared Systems, Theoretical Physics) AERONAUTICAL ENGINEERS (Aerodynamics, Structural Dynamics, Aeroelasticity, Aerothermodynamics) MECHANICAL ENGINEERS Thermodynamics) (Applied Mechanics,

If you are a qualified engineer or scientist, we urge your prompt inquiry on the attached Professional Employment Inquiry form. Interviews in your area will be arranged for qualified applicants.

These manufacturers have invited PROCEEOINGS readers to write for literature and further technical information. Please mention your IRE affiliation.
(Continued from paye 168A)

Frequency Synthesizer

A new low frequency synthesizer, designated tupe XI'I3 is now available from Rohde \& Schwarz (USA), Inc., 111 Lexington Ave., Passaic, N. J.

The new symhesizer can either he used alone or in combination with the synthesizer type XIX. Together, these two syothesizers cover the frequency range from 30 cps to 30 me , with the $\mathrm{X} \mathrm{C}^{\circ} \mathrm{B}$ acting as vernier in crystal-locked steps of 10 cps and a continuously variable oscillator for the interval of 10 cps with a scale graduation of 10 millicycles per division. This combination XUS-X゙「B covers the entire frequency range up to 30 mo with the accuracy of the master crystal $\left(10^{-8} \pm 5\right.$ millicycles.

I'sed alone, the XI'13 is a high class low frequency synthesizer ranging from do to 100, 1,000 and $10,000 \mathrm{cps}$ in 3 ranges with crystal locked steps of $1 ; 10$; and 100 cps and maximum error of 0.5 ; 5 ; and 50 millicycles.

Output voltage is contimuonsly variable from .3 millivolts to 3 volts, simsoidal and spurious frequencies suppressed by more than 60 dt . This instrument finds application in the calibration of direct reading frequeney meters, in the investigation of mechanical resonant systems such as timing forks or resonant relays, in measuring low-frefuency crystals and in control enginerering.

Quartz Crystal Measurements

Reprints of a paper entitled "Measuring lnstruments for Determination of Flectrical Characteristics of Quartz Over the Range From 0 to 300 mc " by Herbert Flicker of Rohde \& Schwar\%, Munich. West Germany, are available from the Passaic, N. J. office by let terhead request

The paper was recently delivered at the Symposium on Frefueney Control, sponsored by the ('. S. Signal Corps, R\&I) Laboratories, Fort Monmouth, ‥ J. It

Computer Engineers

Capable of Advanced Research and Development in

 TRANSISTORIZED AIRBORNE DIGITAL COMPUTING SYSTEMSWide latitude is accorded the qualified individual team member at our Advanced Electronics Research and Development Laboratory. Under the direction of Dr. Arthur S. Robinson, a broad program of exploration is in progress in the development of new concepts in solid state airborne digital computers and digital control systems. This program is the logical extension of the Bendix developments which, in 1955, resulted in the first successful fully transistorized automatic flight control system.

If you find satisfaction in defining and solving advanced problems in computer technology, the work of this Laboratory has a great deal to offer. If you are currently qualified in one of the following areas...

Digital Systems Synthesis	Pulse Techniques
High Speed Switching	Input-Output Devices
Logical Implementations	Transistorized Circuits
Magnetic Memory	Micro-Miniaturization

Logical Design

...we suggest that you send a brief resume of your experience and educational background to Dr. Robinson, or telephone Engineering Personnel at ATlas 8-2000 in New Jersey, or BRyant 9-8541 in New York.

ECLIPSE-PIONEER DIVISION

AVIATION CORPORATION

Route 46 at 17, Teterboro, New Jetsey

For Instance...

gp
Here are just ten fine employment opportunities from GUILFORD's many hundreds of listings

TOP LEVEL SCIENTIST
PhD in EE, Physics or Math. Our client offers prestige research appointmentsto $\$ 25,000$

PROJECT MANAGER Mgmt. opty. available for talented Engr. For key spots in new functionto $\$ 25,000$

MKTG. MGR., EE or ME Indust'I Electro-Mechanical exp. desired. Compensation can in clude bonus or option $. \$ 14,000-\$ 20,000$

| TEST ENGINEER

 Excellent opening which must be filled quickly. Act now to take advantage $\$ 10,000-\$ 15,000$
| ASW

People at all levels to build apidly growing dept.
I $\$ 11,000-\$ 20,000$
I
COMPONENT DESIGN ENGR.
Exp. in Filters, Transformers, Mas. Amplifiers, Networks $\$ 10,000-\$ 18,000$

PHYSICISTS

Solid States, Molecular, InfraRed Tubes, Dynamics

mathematicians

Numerical Analysis, Feasibility Information Theory, Programmers $\$ 10,000-\$ 16,500$
technical publications | MGR.

Exp. in writing, editing, and supervision of others

I

RADAR SYSTEMS MGR
Overseas Assignment
\$20,000-545,000

ALL EXPENSES PAID

See us during the IRE Show in NEW YORK in March, Belmont Plaza Hotel, PL 5-1200.

Guilford
 Personnel Service Managemenf Consulfants

Seven Saint Paul Street Baltimore, Maryland Mulberry 5-4340

(Continned from fauc 151.4)

covers instrmments and techniques for the precise measurement of quartz crystal characteristics in accordance with the IRE standards.

Microwave Diodes

Latest addition to a line of miniaturized microwave diodes designed and produced by Sylvania Electric Products Inc., Semiconcluctor Dis., Wiburn, Mass., for spectialized applications in radar communications, missiles, satellites and other witical electronic equipurnt is a point comtact mierovave mixer for we in the kin band frequency spectrum. Sylania is a subsidiary of General Tulephome \& Electronics Corp.

In addlition to meeting the edectrical performance requirements of conventional ceramic or metal microwave diesles up to ten times their size, "Miern-Min" Type IN918 diodes "are also their match in ruggedness and stability," he added.

The maximum comersion loss of the new silicon diode is less than 7.5 (th) whereas the output moise ration doe's not exced 2.5 times. Type 1 No18 uperalles as a mixer at $16,000 \mathrm{mic}$.

The "Miero-Min" diondes are anited for the growing trend toward printed circuitry in microwatce equipment. Ifermetically
sealed in minature glase emelopes, they form an integral part of mierowave cireuits in wave gutule, comvial line, microwave strip transmission line, or any other trans. mission line, They also employ greatly simplitied holder compared with those required by their larger connterparts.

Tunnel Diodes

The General Electric Co., Semiconductor Products Dept., Syraclec, ‥ Y., has made sample quantities of its serond tumnel diode, a $\mathrm{t}, 000$ menatorle device, a a alable to clectronie industry designers, it was disclosed here toxlety.

The newest thaned dione is prised at sisy dollars and is immediately , walable in limiterd gmantites.

Foatures of the new tanmel dionte inclate a minimam peak w walkey corrent ration of 5 w 1 , a ly pialal peak point current

Navigation Systems
Communication Systems

Servos
Transistors
Transmitters
Receivers
Antennas

CAREER OPPORTUNITILSS

With a company making premium grade electronic equipment for aircraft for over 30 years. Located in the beautiful lake region of Northern New Jersey, less than 35 miles from New York City.

- transistor Circuit engineer
- tacan engineers
- RECEIVER ENGINEERS
- tRANSMItTER ENGINEERS (VHF \& UHF FREQUENCIES)
- NAVIGATION EQUIPMENT ENGINEERS
- ANTENNA DESIGN ENGINEER
- test lab. ENGINEERS

Enjoy the pleasure of working in a new laboratory in a company whose products are known as the highest quality in the industry.

Write or call collect: Personnel Manager
alrcraft radio corporation
Boonton, N.J. DE 4-1800—Ext. 238

ELECTRONICS ENGINEERS: YOU CAN KEEP IT ON COURSE

With The World Leader In Continuous Wave Doppler Navigation Systems

Twelve years of research and development in the field of continuous wave doppler has brought Ryan Electronics leadership in airborne elec. tronics, ground velocity indicators and radar navi gation systems.
This leadership has earned Ryan Electronics important multi-million dollar contracts for navigation systems for America's major military aircraft. In addition, systems utilizing Ryan. pioneered C.W doppler techniques are involved in some of the most advanced mis. siles in our nation's arsenal. These projects,
plus advanced study in future space application of the same principle, call for a continually grow. ing staff of electronics engineers of exceptional skill and ambition.

Expanded facilities of Ryan Electronics at San Diego and Torrance in Southern California provide the optimum for working, living, educating your children and pursuing your own advanced studies. For full particulars, send resume or write for brochure to Ryan Electronics.
Department 5, 5650 Kearney Mesa Road,
San Diego 11, California.

HRE-SIXGER, INC.
A SUBSIDIARY OF THE SINGER MANUFACTURING COMPANY
Science Park, State College, Pa.

Professional Opportunities Are Available For

Electrical Engineers

with interest and experience in the following fields:

- Design and Development of:

Industrial Electronics and Power
Controls and Instrumentation Electronics

- Operation \& Maintenance of Nuclear Devices

For information please urite to:
Personnel Manager

Brookhaven National Laboratory

UPTON, LONG ISLAND. N. V.

These manufacturers have invited PROCEEDINGS readers to write for literature and further technical information. Please mention your IRE affiliation.
(Contimued from Proge 1才2.A)
rating of t -milliampere, which is held to $\pm 10 \%$ and a mpical negative conductance of $0.005-\mathrm{mh}$).

Other chatracteristics are identical with the other germanim tume diode being ollered by the company

Both der ice are hancl-made falooratory samples and thus are higher priced than they will be when the mase prochuction phase is reathed

Samples of the other Ci-f tumuel dinde which has a minimum peak to vallev emrrent ratio of 8 to 1 , are priced at senenty tive dollars ead. They were tirs made wailable to the industry hat september.

Both tumel diodes are packaged in the T()-18 standard tromsistor honsing. Pinn ane and two are positive electrodes conaerted imternally to reduce ked induct. dace. 'in three is the meative electrode and is comberted to the case.

Both the Z.J-56 and the new $2 . \mathrm{J}-50.1$ are rated for an operating junction tembperature of minus $55^{\circ} \mathrm{C}$ (1) phas $100^{\circ} \mathrm{C}$ They have typial peak point volatge of 55 -millicolts and typical valley pront wht ages of 350 -millivolts.

Operational Amplifiers

Combining the transistors efficiency and reliability with the flexibility of operational amplifiers, the 1.30) Series Implitiers produced bo Burr-Brown Research Corp., Box $64+4$, Tueson, Arizona are weful in many applications. Basic units are high gain differemial de amplifier devigned to be uned with external iecolback. Stable with any resistive feedthatk, the uner man -elect the "closed-loop" pertirmance bast strited to his application. Typical applications include de and as amplifiers, integrators, current and wohage regulators, preamplifiers, selective liters. and many whers.

TYpical units feature gains of 10.000 and input impedance of 100 K . Outpuls to ± 10 volts at 200 ma are available. Both germanium and silicon units are pack.ıged in a case meatiring $1^{\prime \prime} \times 2 \frac{1}{2}$ ". Prices range from $\$ 65$ to $\$ 98$ for germanimm to $\$ 310$ for silicon Available from stock to 30 dars.

Build Your RADAR Career On This Solid Foundation!

Abstract

The Weapons System Concept is one more step forward in a long series of "firsts" for the men who pioneered this field with the SCR-270, the first long range radar. In ground, shipboard and airborne radar, Westinghouse is the recognized leader in advanced programs and techniques. As Westinghouse builds new levels of accomplishment on this solid foundation, new career opportunities in radar development are created. Westinghouse-Baltimore invites inquiries from radar engineers with experience or interest in the following fields:

- Operations Research and Analysis
- Systems Development and Evaluation
- Transmitter and Receiver System Development
- Advanced Antenna Systems
- Molecular Electronics
- System Synchronization
- Data Processing
- Liaison and Field Engineering
- Advanced Displays and Monitoring
- Network Synthesis
- Microwave Systems
- Systems Reliability Prediction
- Advanced Systems Automated Test

Engineers and Physicists

Time to rediscover your future in Minnesota, Opportunity-land, U.S.A.

Think bate k fisc sears. Perhaps tell. Are you prosereanh eitisiactorik toward that soat-that hasa cruel ot prore-sonal recomnition--son once that the the cultural so rial and recreational onhon has the edinral, metal and recreational on
 as: We certainly hope an. But just in cane you

We need lon kevel engineers amblyy-ici-ts for
 mon challenging defense and industrial project chatombling peraotalitios in field of anluance technology. loud work in an environment that respect creative freedom, encourages individual talent- -and. cognizes professional improve

Mr, G. P. Lambert
Manager Professional Employment
Mechanical Division (ieneral Mills 16? 0 (central Avenue De
Minne:tphis 13. Minnesota

Name
Address
City
College \qquad

 life here in Minmeatolin. In tl vols would, tho. Chameen are sou would live on thin washings dis farce of a late. bark ur golf comose, A bort frise would take bon to wane of the be -it human his easy. country lismg. yoni have all the ont anatase a major co-minmban center can oft
 efficient tranmortation-and on and ont

Send today far all the fact if sand lake to re
discover sour fume in ans of these tells

- Systems Configuration
- Electronic Circuit Design
- Micro-wave Development
- Atmospheric Physics
- Transistor Circuitry
- Advanced Digital Computer System Design
- Electronic Product Design
- Advanced Pulse and Video Circuit Development
- Advanced Inertial Navigational Systlem Development
- Optical and Infra-Red Equipment Engineering
- Electron Optics

General Mills

electronic equipment development engineer

Nuclear Instrumentation

There are perhaps only a dozen engineers in the country who combine a knowledge of transistor circuitry with mu-- lear equipment requirements, particularly to the extent of the outstanding individual contributor who will soon retire. from this well-known nuclear organization

The new man we seek must have significant experience in electronics and be thoroughly familiar with all types of transistor eirruits, pules. A.(... D.C. multivibrators, etc. We must also be well grounded in nuclear equipment such as counters, ion chambers, sealers, pulseheipht analyzers, time. of-flight analyzers and related equipment.

This is an opening of high inoportance, both for this organization and for a man who prefers to work a- a key "individual contributor." assisted closely by two or three les: experienced engineers and technicians . . with a well. equipped laboratory and shop at his disposal.

Salary Open

Write fully in complete confidence to:
BOX 2010
Institute of Radio Engineers, 1 East 79th St.,
New York 21, NY.

These manufacturers have invited PROCEEDINGS readers to write for literature and further technical information. Please mention your IRE affiliation.

Metallized Paper-Plastic Capacitor

Cornell-Dubilier Electric Corp., attila ate with Federal lactic Electric (0 . Phathlede, \. I.. ammonncen miniature metallized paper-plastic filo capacitors for military, industrial and other high-grate electronic equipment for operation from $-55^{\circ}{ }^{\circ}$ (1) $+125^{\circ}$ C $^{\circ}$ without white drating.

$$
y, y+1 \text { 多 }
$$

Designed as Type JTWK゙, there raparciturs are hermetically-sealed in tulnalar metal rates with glass-to-metal end seals and are available in various mounting styles for efficient chassis design.
 for use in power supply bier circuits, be pass functions and where high insulationresistather values are not essential, as well ats applications in which occasional mos mentars voltage breakdowns can be weer abed.

Temperature characteristics of these capacitors, such as dissipation factor and capacitance change are comparable to those of stanchard paper-dielectric capacitors, but afford higher capacitance values than are generally obtainable with the same size paper-dielectric or metallizedpaper types.

Available in three different internal circuit configuration, Type . WTWK is supplied in 200. 400 and 600 volt sizes. EnkiHerring Bulletin No . 185. showing specitications and availability of the JlTWK capacitors, is a mailable on request

Flight Simulation Table

Micro Gee Products, Inc., 6.319 West Slatusm Ave., Culver City, Calif. announces the New Model 17A Two- axis Flight Simulation 'Gable which enables "flight testing" of complete missile or airspace craft stabilization and control symtens on the ground, as contrasted to such programs where gyro and accelerometer dynamics are linearity simulated. One of these New Model 17A Tables has just been placed in operation on the Pacific Missile Range.

The Model 17.A two-degrees-of-freedom table is also used for angularly displacing gyros and accelerometers, in pitch and roll, either statically or dynamically.
(Contracted on race t 180.4)

女

Expanding the Frontiers of Space Technology

in QUALITY ASSURANCE

Quality assurance at Lockheed parallels in importance and augments the research and development, projects and manufacturing organizations. Quality assurance engineers establish audit points, determine functional test gear, write procedures and perform related tests.

These activities, supported by laboratories, data analysis, establishment of standards, and issuance of reports, all insure that Lockheed products meet or surpass contractual requirements. Economy and quality are maintained at every stage to produce the best products at the least cost. As systems manager for the Navy POLARIS FBM; the Air Force AGENA Satellite in the DISCOVERER Program and the MIDAS and SAMOS Satellites; Air Force X-7; and Army KINGFISHER, quality assurance at Lockheed Missiles and Space Division has an important place in the nation's defense.

Engineers and Scientists - Such programs reach far into the future and deal with unknown and stimulating environments. It is a rewarding future with a company that has an outstanding record of progress and achievement. If you are experienced in any of the above areas, or in related work, we invite your inquiry. Please write: Research and Development Staff, Dept. B-33, 962 W. El Camino Real, Sunnyvale, California. U.S. citizenship or existing Department of Defense clearance required.

Lockheed MISSILES AND SPACE DIVISION

SPECIAL TUBES FOR SPECIAL USES:

PHOTOMULTIPLIER TUBES / KLYSTRONS / MAGNETRONS SPECIAL CATHODE RAY TUBES / TV CAMERA TUBES / StORAGE TUBES

E.M.I. Electronics Ltd. is one of the world's leading pioneers in the development of special high-performance tubes for military and commercial use. Through the Hoffman Electron Tube Corp., its United States Representative, a wide range of E.M.I. tubes are now available from inventory for such systems as missile and satellite tracking, ground mapping, weather radar, air traffic control, early warning, combat situation plotting by tactical television cameras, closed circuit television for industry, airborne radar, automatic landing, nuclear radiation scanning, and spectrophotometry \quad You can rely on E.M.I. for the highest standards of accuracy and reliability. Visit us at the IRE Show, Booth \#1520 W Write for full technical information to:

North Atlantic Series RB500 Ratio Boxes

Measure A.C. Ratios From - 0.011111 To +1.11111...with accuracy to 1 ppm

With any of North Atlantic's RB500 Ratio Boxes you can now measure voltage ratios about zero and unity-without disrupting test set-ups.
And-a complete range of models from low cost high-precision types to ultra-accurate ratio standards - in portable, bench, rack mount, binary and automatic stepping designs-lets you match the model to the job.

For example, characteristics cov ered by the RB500 Series include:

Frequency: $\mathbf{2 5} \mathrm{cps}$ to 10 kc . Accuracy: 10 ppm to 1.0 ppm Input voltage: $0.35 f$ to $1.0 f$ Input impedance: 60 k to 1 megohm
Effective series impedance: 9 ohms to 0.5 ohms
Long life, heavy duty switches
Name your ratio measurement and its probable there's a North Atlantic Ratio Box to meet them - precisely. Write for complete data in Bulletin IIE

Also from North Atlantic ...a complete line of complex voltage ratio. meters...ratio test sets... phase angle voltmeters

NORTH ATLANTIC inulusiries, inc.
603 Main Street, Westbury, N. Y. EDgewood 4-1122

satisfies more

 application requirements... faster, easier, at low cost

Panoramic Subsonic

Spectrum Analyzer
 LF-2a
 0.5 cps. to 2500 cps.

EXCLUSIVE FEATURES:

- Adjustable scan widths- 2 cps to 500 cps
- 10 secand "quick loak" an external scope
- Exceptional adjustable resalution (selectivity): 0.1 cps to 20 cps
- Low cost - Easy to use

Unusually fiexible and versatile, the economical Model LF-2a automatically separates and measures the frequency and amplitude of discrete or random signals between 0.5 and 2500 cps . . . and displays these data on either an integral chart recorder or external scope. More application requirements are satisfied by providing analyses of
spectrum segments—as narrow as 2 cps , as wide as 500 cps-plotted over the full width of the calibrated $12^{\prime \prime} \times 4 \frac{1}{2}$ " chart record. A calibrated funing control enables rapid selection of the center frequency of the spectrum portion of interest. Frequency selectivity-or resolution -is independently adjustable from 0.1 cps to 20 cps for more accurate detection and measurement of either closely spaced discrete signals or noise.
Scan intervals range from just 10 sec . for "quick look" location and evaluation of signals on an external scope, to 16 hours for tharough statistical analysis.
Among the LF-2a's many proven uses are: Vibration and Acoustic Analysis - Random Waveform Studies - Spectrol Power Density Analysis - Medical Investigations Servo Analysis - General Low Frequency Waveform Studies
With optional auxiliary equipment, the LF-2o is used for Spectral Power Density Analysis and Frequency Response Curve Tracing. Adding the Ponoramic LP-1a Sonic Analyzer extends the analysis range to 22.5 Kc.

522 So. Fulton Ave., Mount Vernon, New Yark
Phone OWens 9-4600 Cables: Panoramic, Mount Vernon, N. Y. State

NOW...A NEW APPROACH TO FUNCTION GENERATION
 The Link Analog Function Generator

Link's analog function generator offers a new level of performance for analog computation and simulation. Key to this outstanding performance... a Link-developed rectilinear servo motor with solid-state servo-amplifiers and a ceramic-film resistance element.
This new function generator eliminates the high drift and complex design of diodes generators, provides high-speed operation without the limited flexibility of optical techniques and the inherent backlash, friction and inertia problems of existing servo generators.

IT PROVIDES:

RELIABILITY-Modular design - Automatic failure protection - Simplified maintenance

ECONOMY-Standardized components • Printed circuits
FLEXIBILITY— Plug board programming - Rack mounted or table top use
VERSATILITY-Numerous functions or function groups can be generated with minor modification, or by connecting one or more generators in series.

The analog function generator, first of a line of DIALOG* components and system building blocks to be introduced by Link, is another example of Link's unique computer capability. Thoroughly experienced in analog and digital techniques, Link can provide the most objective, economic solution to computation, simulation and control problems. For additional information on Link's new Function Generator or its broad computer capabilities - and your copy of Link's DIALOG* catalog - write to Industrial Sales Department.

DIALOG* (Link Digital-Analog System Components and Building Blocks)

LINK division
GENERAL PRECISION
INC.

```
(Continucd from pagc 1%0.1)
```

The smooth operation, clue to sperially designed, driven penduhm medhaisms, also enables use of the table as all owillatting table to determitue the threstod \cdot (hata*teristies of high performance gyros and accelerometers.

Features of the table indude evtended angular travel ower prior models and the ability wondle a 25 -pound bad. The natural frequency of each axis is in evers of 15 cps . Adjustable damping is provided and the threshold of each avis is less than 0.005°.

The table will follow signals such as those from an analog computer, a low frequency function generator, a tape recorder, or a digital-io-analog converter.
(Continuct on page 18?-1)

ROBOTEC

SEMICONDUCTORIZED VOLTAGE REGULATED POWER SUPPLIES
electronically culs off output in leas than 30 microseconds with overlood or short circuit. Permits sote con. tinuous operotion into deod short. Models up to 100 volts and 10 amperes. Write for literature RI.

ARNOLD: WIDEST SELECTION OF MO-PERMALLOY POWDER CORES FOR YOUR REQUIREMENTS

For greater design flexibility, Arnold leads the way in offering you a full range of Molybdenum Permalloy powder cores . . . 25 different sizes, from the smallest to the largest on the market, from $0.260^{\prime \prime}$ to $5.218^{\prime \prime} \mathrm{OD}$.
In addition to pioneering the development of the cheerio-size cores, Arnold is the exclusive producer of the largest 125 Mu core commercially available. A huge 2000 -ton press is required for its manufacture, and insures its uniform physical and magnetic properties. This big core is also available in three other standard permeabilities: 60, 26 and 14 Mu .

A new high-permeability core of 147 Mu is available in most sizes.

These cores are specifically designed for low-frequency applications where the use of 125 Mu cores does not result in sufficient Q or inductance per turn. They are primarily intended for applications at frequencies below 2000 cps .

Most sizes of Arnold M-PP cores can be furnished with a controlled temperature coefficient of inductance in the range of 30 to $130^{\circ} \mathrm{F}$. Many can be supplied temperature stabilized over the MIL-T-27 wide-range specification of -55 to $+85^{\circ} \mathrm{C}$. . another special Arnold feature.

Graded cores are available upon special request. All popular sizes of Arnold M-PP cores are produced to a standard inductance tolerance of +
or -8%, and many of these sizes are available for immediate delivery from strategically located warehouses.

Let us supply your requirements for Mo-Permalloy powder cores (Bulletin PC-104C). Other Arnold products include the most extensive line of tapewound cores, iron powder cores, permanent magnets and special magnetic materials in the industry. - Contact The Arnold Engineering Cu., Main Office and Plant, Marengo, Illinois.

ADDRESS DEPT. P-02

bRANCH OFFICES and REPRESENTATIVES in PRINCIPAL CITIES - find them FAST in the YELIOW PAGES

DIALCO PILOT LIGHTS

with Built-in Resistor

(a patented dialco feature)

for the Neon Glow Lamp NE-51H (High Brightness)

RUGGED: The NE-51H Neon Glow Lamp is made to resist vibration and is proof against sudden failure. It may be operated at about 3 times the level of current applied to the standard neon lamp, and it will produce 8 times as much light-with long life! Requires low powerless than 1 watt on 250 V circuit. Recommended for AC service (may be used on DC circuits above 160 V). BUILT-IN current-limiting resistor (U.S. Patent No. 2,421,321): For use on 105-125 volt and 210-250 volt circuits. In DIALCO Pilot Lights, the built-in resistor is completely insulated in moulded phenolic and sealed in metal.

COMPACT: Units are available for mounting in $9 / 16^{\prime \prime}$ and $11 / 16^{\prime \prime}$ clearance holes... in a wide choice of lens styles and colors, terminal types, metal finishes, etc.
Meet applicable MIL Spec and UL and CSA requirements.
Every assembly is available complete with lamp.
SAMPLES ON REQUEST - AT ONCE - NO CHARGE
Ask for Bulletin No. 100 and Catalogue L-161B.

60 STEWART AVE., BROOKLYN 37, N. Y. - HYacinth 7-7600 See us at Booths 2829-283I, Kadio Engineering Srow, March 21-24, 1960

These manufacturers have invited PROCEEDINGS readers to write for literature and further technical information. Please mention your IRE affiliation.
(Continucd from potge lNo.1)

General Radio Traveling Exhibit

An manation in exhibits-a traveling instrument displatio demonstration vehicle-designed l)y the General Radio Co., W.-.t Concord, Mass., was previewed on Friday, December 4 , in the Garden City Hotel, Garden City, Long lskand, New York.

Produced to bring a full complenent of the latest developments in electronic measuring erfuipment directly to lowal government agencies, laboratories, industry and eduational institntions, the car-a modified station wagon-carries weer 1.500 pounds of instruments mounted on six collipsible tables, which can be set up in an hour by a three-man tean of engineers.

Equipment on display at the hotel inchuded an indurtance bridge (Type 16.32-A), unit oscillator (T'ype 1210-C), unit amplilier (Type 1206-B), amplifier and null detector (Type 12.31-B); also a graphic level recorder (Type 1521-:N), randem noise gencrator (Type 1.390-B3), suund and vibration analyzer (Type 15.54-A and sound level meter (Type 1551-B). Other instruments displaved were a pulse, sweep and time-delay generator (Type 1.391-13), time-delay generator (Type 1.392-A), mit pulser (Type 1217-1) and unit pulse amplifier (Type 1219-1). A self-rontained portable impedance bridge (Type 165()-i) featuring the Orthomill ganging device to facilitate low- Q balancing was also at the show. Additional items on display were components, ancessories and coavial fittings, plus a variety of Caria autotransformers, three terminal eapacitors and an adjustable regulated power supply.

The show will go on to Fort Mommoth, New York Naval Shipyard, Bell Telephone Labs, ITT l.abs, and then proceed to Stanford. Comn., Elmsford, ‥ Y., and Somerville, X. J., for local plant-lab viewing.

Standard Seminar

Over 20 electrical-electronic standards' specialists from L^{*}. S. and Canadian govermment agencies recently met for a 3_{2}^{1}-flay General Redio seminar-workshop (linie on precision inductance and capaciance mensurements at low frequencies.

Held at the plant in West Concord, Dass., the meeting was attended be engineers from the Xational Burean of Standards and the Canadian Natimal Research Comuril; also top techuical persomel from the primary standards laboratories of the Signal Corps, Frankfort Arsenal, Aberdeen Proving Ground, Redstone Arsenal, Burean of Ships, Royal Canadian Nasy, U. S. Air Force. Bu:dir, and BuOrd-Bureau of Ships.

The symposium, featuring ten lectures and six-workshop sessions, was conducted by 1. G. Easton, R. A. Soterman, P. K. MeElroy, J. F. Hersh, II. P. Hall, R, A, Boole, 1), II. Chute, J. F. Eberle and C. L. Woodford of General Radio.

Another highlight of the meeting was a plant tour and a question answer program-evaluation and future-trends session.

[^88]
IF YOU INSTALL

BECAUSE ONLY LAMBDA GIVES YOU A 5 -YEAR GUARANTEE!

Each Lambda Power Supply carries a written guarantee that warrants full performance to specified ratings for five full years.

Lambda, alone, offers this unprecedented guarantee because Lambda specializes in the design and manufacture of just one product - power supplies.

Each unit is built from the ground up to rigid quality standards in a modern, completely integrated plant. Nothing is overlooked to provide you with the finest performance. When you buy a Lambda Power Supply, you are assured of a unit that is conservatively rated -
a unit designed to provide continuous-duty service at all specified loads and ratings.

Lambda power supplies are available in a wide range of rack, portable and bench models for laboratory and production service. Of particular interest to electronic designers are:

L-T Transistor-Regulated Series
0.1 and 0.2 AMP, 0.32 VDC

Com-Pak Tube Regulated Series
200-400-800-1500 MA
$0-200,125$-325, $325-525$ VDC
Write for free 32-page catalog for complete specifications, dimensions, performance ratings and prices on Lambda's full line of tube-regulated and transistorized power supplies.

Watch for Lambda's exciting new solid-state power supply developments.

SENSITIVE RESEARCH .01\% ACCURATE .005\% STABLE
 VOLTAGE STANDARD

The Model STV is an extremely accurate and stable reference source for use with "null balance" devices such as potentiometers and other infinite impedance comparators. It is at least equivalent in accuracy to the best unsofurated standard cells and is superior in almost all other respects to both saturated and unsafurated types.
While the Model STV is essentially a zero current drain saurce, it can be operated into any impedance without damage. It can be short circuited indefinitely without affecting accuracy or life expectancy and it will almost instantaneously regain its ariginal open circuit vollage when the short is removed. Vibralian from transpartatian, expasure ta extremes of temperature, and operating posilian do not affect its accuracy.

Specifications - Type "A"

Input: $90-135$ v.; $60 \mathrm{cps} ; 25$ va.
Output: 1.0000 v . and 1.0185
Accuracy: $\pm .01 \%$ of nominal listed output (certificate furnished to . 001% af actual autput).

Stability: ${ }^{-} .005 \%$ of actual output, far 100 125 v . input and $20^{\circ}-30^{\circ} \mathrm{C}$. $.01 \%$ far $90 \cdot 140 \mathrm{v}$. input and $15^{\circ}-35^{\circ} \mathrm{C}$

Temp. Range: $15^{\circ} \mathrm{C}-35^{\circ} \mathrm{C}$ (aperates with reduced accuracy beyond these limits, but with its voltage exactly reproducible)
Operational Life: 25,000 hours minimum.
Size: $93 / 6^{\prime \prime} \times 75 /^{\prime \prime} \times 5^{\prime \prime}$. Weight: 10 lbs .
The Model STV is available for $19^{\prime \prime}$ rack panel maunting and in $3^{1 / 2^{\prime \prime}} \times 3^{\prime \prime} \times 3^{\prime \prime}$ cons for OEM users (input must be regulated to 1%). Write for additianal infarmatian on all types and special versions.

For information
UNITED MINERAL \& CHEMICAL CORP.
18 Hudson Sireet New York 13, N.Y. Phone: BEekman 3-8870

See us at the Radio Show, Booth 1627 B

TUBES AND SEMICONDUCTORS

 YES!-WE HAVE IT ON THE SHELF! For Immediate Delivery!IF YOU ARE LOOKING FOR FAST SERVICE CALL US

ELECTRONIC TUBE SALES INC.
74 Cortlandt Street, New York 7, New York
BArclay 7-4140 TWX—NY 1-4042

from the USUAL.....

DELAY LINES

by C-A-C

In the C.A-C line of quality toroidal components, the design and manufacturer of delay lines has become a growing series of custom projects.

From simple types used in communication system to complexities such as this design for use in sonar gear, C-A-C's design engineering in lumped constant delay lines plays a big part in developing the component to meet your tighest requirements.

Terhnical data sheets are available.
COMMUNICATION ACCESSORIES CO.
Lee's Summit, Missouri - Phone Kansas Cify, Broadway I-1700
A Subsidiary of Collins Radio Company

Multiplexers for Telemetry...

When quantity of information is the problem, consider this:
Rantec multiplexers couple two, three, four or six telemetry signals of slightly different frequencies to a single antenna system. No interconnecting cables... pressure sealed capable of withstanding both low and high frequencies, shock, vibration, salt spray and humidity.

TYPICAL SPECIFICATIONS*

number of CHANNELS	MIN. GHANNEL SEPARATION	MIN, ISOLATION BETWEEN CHANMELS	MAX INSERTION LOSS	FREO. RANGE
2	3mC	1808	2.508	215-240
3	3MC	1808	1508	215-240
4	3 MC	2008	1.500	215-260
¢	змс	2008	1.508	215-260

* These specifications are for typical models. Other models are available differing in respect to minimum channel separation, isolation and frequency range, rantec corporation

ran mo
 Calabasas, California

Rantec also specializes in Antennas and Microwave
Ferrite Components

(Crumurd firm pagk 182.-1)

New Plant

The Electrodynamic Instrument Corp., which has been operating at 2511 Rohinhoore and 2508 Tangley Rd., mosed to a new plant on January 31. 1960.

The companys new location on which a long term lease has been negotiated is at 1841 Old Spanish Trail, Houston, Texas EIC has been oecupsing three boiktings in the Village totalling 8.0 ON s soluare feet of spare, but the newly remonated strusture on OST will prowide more than 17.500 square feet, President fore Houghtom stated.

EIC came into existence just four vears ago when Itoughton and Pan E: Madeles, exerutive vice president, decided to leave their posts as design engineers with another focal instrument manufarturer to launch their own company. EIC's extensive research and manulacturing programs extend into the fieds of seismic tape recordings and data processing systems, well logging instrmmentation, digital readont systems, precision transformers, portable and laboratory test erfuipment and transistorized power supplies.

Telemeter Discriminator

Deeco Instruments, Inc., 147.3 :Irminta St., Van Nuys, Calif., ammonces production of a new telenctering discriminator desiguated . Wodel . 1115 . It is a plugin modular unit designed for rack momenting, four being accommodated on a standard $19^{\prime \prime}$ rack panel.

The basic chassis includes a limiter amplifier and driver amplifier with a front panel meter to read subararier deviation. A gain pot is incerporated to adjust the de output level

Each chassis alceepts a phog-in-sub(comptuntid un pug. 188.:1)

When Reliability is a must. . . specify EMPIRE

edp

 EMPIRE DEVICES PRODUCTS CORP.AMSTERDAM, NEW VORK

Why it pays you to specify
 Bendix QWL Electrical Connectors for use with Multi-conductor Cable

For use with multi-conductor cable on missile launching, grourd radar, and other equipment, the Bendix* QWL Electrical Connector meets the highest standards of design and performance.
A heavy-duty waterproof power and control connector, the QWL Series provides outstanding features: - The strength of machined bar stock aluminum with shock resistance and pressurization of resilient inserts. . The fast mating and disconnecting of a modified double stub thread. The resistance to loosening under vibration provided by special tapered cross-section thread design. (Easily hand cleaned when contaminated with mud or sand.) - The outstanding resistance to corrosion and abrasion of an aluminum surface with the case hardening effect of Alumilite 225 anodic finish. - The firm anchoring of cable and effective waterproofing provided by the cable-compressing gland used within the cable accessory. - The watertight connector assembly assured by neoprene sealing gaskets. - The addi-
tional cable locking produced by a cable accessory designed to accommodate a Kellems stainless steel wire strain relief grip. - Prevention of inadvertent loosening insured by a left-hand accessory thread. - The high current capacity and low voltage drop of high-grade copper alloy contacts. Contact sizes 16 and 12 are closed entry design.
These are a few of the reasons it will pay you to specify the Bendix QWL electrical connector for the job that requires exceptional performance over long periods of time. *trademark
Export Sales and Service: Bendix International Division, 205 E. 42 nd St., New York 17, N. Y. Canadian Affiliate: Aviatian Electric Lid., 200 Laurentien Blvd., Mónreal 9, Quebec. Factory Branch Offices: Burbank, Calif.; Orlanda, Florida; Chicaga, Ill.; Teaneck, New Jersey; Dallas, Texas; Seattle, Washingtan; Washingtón, D. C.

Scintilla Division
Sidney, New York

FROMTHEDESIGNLABORATORIESOF

Precision standards for measuring pulses

An ultra stable instrument for scintillation spectroscopy, other random puise measurement. Linear. ity: within 1%; Stability: 2% per week; and Accuracy: within 2%, full scale. Six position dial sets count ranges to $30,100,300,1000,3000$, or
10,000 counts per second. Paired pulses are resolved within 5 microseconds. Ten millivolt output available to drive recorder. Impedance: greater than 20,000 ohms. Accepts pulses as small as 0.5 micro. second rise time, 15 volts negative amplitude.

A fundamental amplifier providing approximate gain of 3200 in six steps. Incorporates two ultra stable feedback amplifiers. Resolution time less than 5 microseconds. Linearity: within 0.25%. Recovers from up to 10 times overload in 5 microseconds. Accepts 3 mv to 1 volt DC (negative) pulses having a rise time of 0.25 microseconds or greater. Amplifier noise level: 50 microvalts. Output: positive pulses greater than 100 volts DC. Approximate gain: $100,200,400,800,1600$, or 3200.

COUNT RATE METER CRM-100

Price: $\$ 325.00$ F.O.B. LaGrange, III.

LINEAR AMPLIFIER LA-101

Price: $\$ 325.00$ F.O.B. LaGrange, Ill.
SINGLE CHANNEL ANALYZER D. 102

Price: $\$ 425.00$ F.O.B. LaGrange, Jllinois

An extremely precise instrument for analyzing pulse amplitudes. Lower discriminator is set by a ten. turn potentiometer covering 0 to 85 volts. This forms the lower gate amplitude. Upper gate of the window can be set from 0 to 8.5 volts. Instrument counts any pulse within 0.1% of the window setting. Both differentiated and overcounts are available fower discriminator. Setter than volts per day for for the window. Accepts positive pulses at least 0.25 microsecond accepts positive pulses at least input impedance: more than 20,000 ohms. Output pulses are negative, 20 volts amplitude 0.5 micro pulses are negative, 20 volts amplitude 0.5 micro second wide.

Literafure available covering our complete line of electrometers, power supplies. differential analyzers,
referonce voltage sources, and related instruments. Inquiries are solicited covering simular instru
yra ELECTRONICS CORPORATION
P.O. BOX 184 = LAGRANGE, ILL. -
SALES REPRESENTATIVE

SALES REPRESENTATIVE:
ROBT. M. LUNDGREN \& CO. - P.O. Box 201 - Batavia. Ill. TRemont 9.3486

These manufacturers have invited PROCEEDINGS readers to write for literature and further technical information. Please mention your IRE affiliation.

```
( ('ontinued from page 186.4)
```

chassis containing the band pass filter, discriminator and low pass filter. 18 plug-in channel selectors provide standard telemetry channels 1 through 18.

Linearity is within 1% of handwidth, and sensitivity is 50 my to 10 Y .

Complete technical data is available from the firm.

Rectifier

PEK Labs, Inc., $402+$ Transport St., Palo Alto, Calif., announces the availability of the PEK 597.3 high voltage rectifier or surge limiting diode.

Rated at 75 kb peak inserse voltage and 800 watts a cerage plate disipation the 5973 is suited to applications where low

ANSWER: By act of Congress, the U.S. Bureau of Standards determines the primary standard, based on the revolution of the earth. All DeMornay-Bonardi microwave instruments are calibrated at frequencies which are verified by our secondary standard, which, in turn, is periodically calibrated, point for point, by the U.S. Bureau of Standards.

One way to properly match a microwave transmission line is by using a D-B Stub Tuner to reduce mismatch losses and utilize the total energy available.
D-B stub tuners in the 2.6 to 18 KMC range have a new scale and vernier that gives precise resettability in longitudinal travel. A new micrometer scale on the probe meas-
ures penetration with very high accuracy.
Probe wobble is eliminated, and no resonances can occur under any conditions. You can correct VSWR as high as $20: 1$ with amazing accuracy (1.02). You can tune with precision... reset to original settings with certainty that phase and magnitude have been duplicated.

Ditto for higher frequencies. D-B tuners in the 18 to 90 KMC range are not simply scaled-down units - they're engineered for ultramicrowave ${ }^{\circledR}$ use. All the above features are available, plus micrometer positioning which provides readability to $.0001^{\prime \prime}$.

Write for data sheets-they detail all features, applications, dimensions, sizes. Bulletin DB-919.

SUPRAMICA 555 ceramoplastic

the world's most nearly perfect precision-moldable electronic insulation

for total reliability. . at high temperatures

 ... specified in EOURNS IndansducersWhy did Bourns, Inc. select SUPRAMICA 555 ceramoplastic as the insulating base for its ultra high-temperature differential pressure transducers?

Bourns' engineers cite three reasons .. . each a contribution to the total reliability of these airborne telemetering devices. "First is temperature. The sensitive element of the mechanism must withstand high operating temperatures. Next, SUPRAMICA 555 offers a combination of excellent insulating characteristics, which are essential to the highly accurate functioning of the potentiometer. In addition, this ceramoplastic material is readily moldable into complex shapes, such as that required for this intricate part."

For other applications SUPRAMICA 555 is used under operating conditions as high as $+700^{\circ} \mathrm{F}$. . . SUPRAMICA 555 is one of the many ceramoplastic and glassbonded mica insulation materials produced by Mycalex Corporation of America, in precision-molded and machinable formulations. Whatever your insulation need there is a Mycalex product to meet it-for example, SUPRAMICA 620 machinable ceramoplastic, which has a maximum operating temperature of $+1550^{\circ} \mathrm{F}$. Write today outlining your design problem for specific information.

General Offices and Plant: 126K Clifton Blvd., Clifton, N. J. Executive Offices: 30 Rockefeller Plaza, New York 20, N. Y.

((ome nucd from rage 188.4)

tube drop is important such as in radar where it is used as a charging diode or limiter. 1t is also suitable for use in high voltage power supplies for dielectric ar rable testing, or in air cleaners or precipitrons.

As a rectifier the 5973 will operate at an average of 1.25 amperes to 40 kv and one ampere 1075 kr . As a limiter, peak currents as high as 20 amperes at 75 kv apply

Spectrum Analyzer

A telemetering analyzer with automatic optimtun logarithmic display of subcarrier channels and simultaneous linear display of inclividual channels is now a a ailable in the Model TA-100I--120L, from Probescope Co., Inc., 8 Sagamure Hill I)rive, Port llashingtom, N. Y

All FX/FXI subcarrier channels will be linearly displayed along the horizontal axis of the \log scan cathode-ray tule and at the same time individual portions of the spectrom can be analyzed on a second cathode ray tube. A searching marker is available to insure analyzer accuracy. As the linear analyoer is thed thru the speetrum a marker signal will appear on the \log display to pinpoint signals for detailed analysis.

Logarithmic and linear scanning analyzers are self contained and can be used and purchased separately:

Frequency ranges are $\mathbf{3 , 5 0} \mathrm{cps}$ to 8.5 kc or 120 kc logarithmic display and $1,3 \mathrm{cps}$ to 85 kc or 120 kc linear display: Sweep width, 150 cps to 22 ke .

Other features include: 60 me dymamic range, 500 microcolt sensitivity and linear and logarithmic amplitude scale.

A 3 point marker and synchronous sueep generator attachments are also available.

Frequency Standards

The James Knights Co., Sandwich, Ill, anmennes new relinements in its $\boldsymbol{1 K N}^{-}$ Sulzer FS-110TT frequency standards, including the newly available supplemental Frefuency. Invider to furnish subharmonic frequencies. All sulb-harmonic frequencies, including the coumonly used $1,000,400$, and 60 cps have the same order of stability, 5×10^{-10} per day or better, as the FS$1100 \mathrm{~T}^{\circ}$ standard itself. Fresurucies as low as 1 pulse per second are availatile. The new unit measures. $\left.33^{\frac{3}{6}}{ }^{\prime \prime} 11 \times 12_{2}^{\prime \prime} \mathrm{I}\right) \times 6^{\prime \prime} \mathrm{H}$, and is a vailable for table or rack mounting. It is desigrated the FS-1100TI).

Normal ouputs for the $\mathrm{FS}-110$ or fre quency standard is 1.0 me and 100 ke simultaneonsly with 1 volt a a ailable to 50 ohin loads. At these freguencies it offers a minimum stability of 5×10^{-10} per day after initial aging. Output frequencies in the $900-1300$ ke range and 3.5 and 5.0 me range are now available on special order. The FS-1100T is fully transistorized, with a domble proportional control oven, representing an adranced stage of crystallography, electronic circuitry, thermal and mechanical design. It is a compact unit measuring $\left.4_{16^{3}} \mathbf{3}^{\prime \prime} 11 \times 12^{\prime \prime} 1\right) \times 6^{\prime \prime} \mathrm{H}$, a a ailable for table or rack mounting. It is designed for $24-32$ volt operation.

The FS-1100TP is a companion power
(Continucd on page 194A)

UNITED MINERAL \& CHEMICAL CORPORATION

Specialists in insulation-, conductor-, semi-conductor-materials
semiconductor materials
Germanium
Bismuth Antimonides Arsenides

Selenides Tellurides
HIGH PURITY ELEMENTS

Aluminum	Chromium
Antimony	Cobalt
ARsenic	Copper
Barium	Gallium
Bervllium	Germanium
Bismuth	Hafnium
Cadmium	Indium
Calcium	lipdium
Cerium	llon
Cesium	Lead

UNITED MINERAL \& CHEMICAL CORP., Metols Division 16 Hudson Street; New York 13, New York

 Beekman 3-8870 $d c$ power supplies

the

standard for the "state of the art" for over 14 years

More than 120 standard active models transistorized vacuum tube
magnetic

For complete specifications send for
Catalog B-601.

Lepco

131-42 SANFORD AVENUE FLUSHING 55, N. Y. IN 1.7000

$$
\text { TWX \# NY } 4.5196
$$

NEW FUSION-SEALED glass capacitors defy environmental stresses

Corning's NEW CYF Capacitors are guaranteed to be four times better than MIL specs require on moisture resistance.
Here are two new capacitors that are practically indestructible under severe environmental stresses.

For example the CYF's will withstand MIL-STD 202A moisture conditions for over 1000 hours with no signs of deterioration.

And you'll find that both the CYF-10's and CYF-15's do better on all counts for the specifications set forth in MIL-C-11272A.

To make the CYF's impervious to environmental stresses, we've completely encapsulated the glass dielectric element in a glass casing. This encapsulation is completely fusion-sealed against moisture, salt, corrosion and weathering.

Here's the basic availability picture:
At $125^{\circ} \mathrm{C}$. you can get CYF-10's in 5-150 uuf @ 500 VDC and $160-240$ uuf @ 300 VDC.

At $125^{\circ} \mathrm{C}$. you can get CYF-15's in 160-510 uuf @ 500 VDC and $560-1200$ uf at 300 VDC.

If you need high reliability and miniaturization, the CYF's-the only Fusion-Sealed Capacitors available-are worth looking into. Stocked by Erie Distributor Organization for imınediate delivery in small quantities. For details, write to Corning Glass Works, 542 High Street, Bradford, Pa. Or contact our sales offices in New York, Chicago, or Los Angeles.

[^89]

These manufacturers have invited PROCEEDINGS readers to write for literature and further technical information. Please mention your IRE affiliation.
(Continued from rage 191.1)
supply mit operating on 115 r ac. A feature of this power supply is the internal nickel-cadminm battery that will proside stand-by power for up to 12 hours operation in the event of power failare or to permit transport of an operating unit. "「his feature, for example, permits the fresuency standard to be calibrated in Washington, I). C., then transported operating to any point in the country. "The FS- $1100{ }^{\prime}{ }^{\prime} 1$ ' measures $3 \frac{3}{16}^{\prime \prime} 11 \times 12 \frac{1}{2}^{\prime \prime} \mathrm{I} \times 6^{\prime \prime} \mathrm{H}$, and is a vailable for table or rack mounting.

Plug-In Transistor Chopper Kit

The Solid State Electronics Co., 15,321 Rayen St., Sepulvedi, Calif., anmonnes the availability of a new circuit designer's phug-in transistorized chopper kit which includes application notes. The kit is being introduced at a lower than standard price to acquaint circolt designers with wew applications.

This kit comains three choppersModels 501', 601' and 701'. 'These units are plug-in versions of the Moclels 50, 60 and 70 solder-ill types. 'They provide for immediate insertion into a standard 7 -pin miniature socket and are also directly solderable into a printed circuit hoard. These solid state choppers are designed to alternately comect and disomnect a load from a signal source. They may also be used as a demotulator to comert an ac signal to de. They are capable of linearly switching or chopping voltages over a wide dynamic range which extends down to fraction of a millivolt and up to 10 volts. ["nlike mechanical choppers which can only be designed to operate over a narrow and comparatively low frequency range due to mechanical limitations, these transistorized choppers are inertialess devices that can be driven from de to hundreds of kilocycles.

The Notels 501' and 60P are germanium units for operation from $-55^{\circ} \mathrm{C}$ $10+90^{\circ} \mathrm{C}$, whereas the Model 70 P utilizes silicon transistors exclusively for high temperature applications up to $150^{\circ} \mathrm{C}$. Only carcfully matched pairs of transistors are utilized.

The beauty of this Capacitor is more than skin deep!

ACTUAL SIZE TYPE A CAPACITORS

Allen-Bradley Type A capacitars are available in the mest frequantly used types and capacitance values.

General Purpase Type in capacifance values fram 10 mmf ta .01 mmf .

Stable Type in capacl. tance values from 10 mmf to 0.1 mmf .

Temperature Compensating Type in character. istics from N4700 ta Pio0, and in capacilance values fram 10 mmf ta 510 mmf .

Type A Capacitor...

One size

for all values...
Designed for high
speed assembly

Compare the attraclive Allen Bradley Type A ccramic capacitors with all the rest... you'll see instantly why more and more engineers are specifying them and will not accept substitutes -because there aren't any! The exclusive "Auto-Coat" process makes possible-for the first time a capacitor of real beauty, precise physical uniformity, plus consistent and reliable quality and performarice.

The smooth, tough insulating coating and the inherent mechanical uniformity of Type A capacitors permit easy hand or accurate automatic insertion on printed boards. Also, the "Auto-Coat" process prevents rundown on leads-costly wire cleaning and crimping to prevent soldering failures are unnecessary.

For full information on the superior physical and electrical properties of A-B I'ype A capacitors, send for Technical Bulletin 5401.

ALLEN - BRADLEY Quality Electronic Components

Allen-Bradley Co., 114 W. Greenfield Ave., Milwaukee 4, Wis.

In Canada: Allen-Bradley Canada Ltd., Galt, Ont.

NEW SILICON "PILL"VARACTOR

GREATLY REDUCES THE PACKAGE AS A FACTOR IN CIRCUIT DESIGN

specifically developed for:

- amplifiers at the higher microwave frequencies (1000 mc and above)
- travelling wave parametric amplifiers
- microwave computers as sub-harmonic generators
- amplifiers in which stray susceptance effects must be minimized
- applications of varactors to stripline circuits - modulators for frequency synthesis

Experimental quantities are available with these nominal specifications	$\begin{gathered} \text { TYPE } \\ \text { NUMBER } \end{gathered}$	-CAPACITANCE TOLERANCE (Zero Bias)	$\begin{aligned} & \text { TYPICAL a } \\ & \text { AT }-6 \text { volts } \end{aligned}$
	MA.4255X	0.5-1.4 $\mu \mu \mathrm{f}$	60-80
	MA-4256X	1.2-2.5 $\mu \mu \mathrm{f}$	50
	MA-4257X	2.5-4.0 $\mu \mu \mathrm{f}$	30

-Package shunt capacitance $\sim 0.2 \mu \mu$. Series lead inductance $<10^{-\ominus}$ henries.

Write or call:

MICROWAVE ASSOCIATES INC.
 BURLINGTON, MASSACHUSETTS
 BRowning 2-3000 • TWX Burlington, Mass. 942.

Advertising

 Index $\| \sqrt{L}$
IRE News and Radio Notes 14A
IRE People 24A
Industrial Engineering Notes 56A
Meetings with Exhibits 8A
Membership 76A
News-New Products 36A
Positions Open 123A
Positions Wanted by Armed Forces Vet
erans 120A
Professional Group Meetings 46A
Section Meetings 62A
Table of Contents IA.2A
DISPLAY ADVERTISERS
A C Spark Plug Div., Gerieral Motors Corp. I27A
ACF Industries, Inc. 164A
Abbott's Employment Specialists 138 A
Accredited Personnel Service 137A
Ace Electronics Associates, Inc. 48 A
Actioncraft Products 108A
Airborne Instruments Lab., Div. of Cutler-Ham
mer. Inc. 4A
Aircraft Radio Corporation 172A
Air-Marine Motors, inc. 24A
Allen-Bradley Co. 195A
Allied Radio 84A
American Time Products, Inc. 99A
Amperex Electronic Corp. 70A
Amphenal-Borg Electronics Corp., Amphenol
Connector Div 80A
Andrew Corp. 71A
Armed Forces Communications \& Electronics
Association 116A
mour Rese139A, I46A
Arnold Engineering Co. 181A
Augat Brothers, Ine. 30A
Avco Corp., Crosley Div. 168A
Ballantine Labs., Inc 60A
Baracket, Albert J. 199A
Bassett, Inc., Rex 118A
Bead Chain Mfg. Co. 44A
Beckman/Berkeley Div. 57A
Beckman Instruments, Inc. 140A
Beckman Instruments, 84 A
Bell Telephone Labs. 6A
Bendix Aviation Corp., Bendix.Pacific Div. ...138ABendix Aviation Corp., Bendix Products Div. . . II7ABendix Aviation Corp., Bendix Systems Div. . 148A
Bendix Aviation Corp., Eclipse.Pioneer Div. 148 A
171ADiv. Electro158a
Jube Section
Tube Section 82Aendix Aviation Corp. Yosk Dir.188A
Bendix Aviation Corp., York Div. I3IA
Binswanger Associates, Charles A 156A
Boesch Mfg. Co., Inc. 114 A
Bomac Laboratories, Inc. fa
Bourns, Inc. 93A
Brookhaven National Lab. 199A
Buckbee Mears CO_{0} IIOA
Burlingame Associates 184A
Burndy Corp. 90A
Burnell and Co. Inc. 63A
Bussmann Mfg. Div., McGraw Edison Co 53A
C8S Electronics. Div. Columbia Broadcasting
System77A

a new package concept for AC-DC
 laboratory standards

time-saving, easy-to-operate
calibration consoles - accurate within $.05 \%$ in D.C. $.1 \%$ in A.C.

There's remarkable simplicity and precision in these Weston AC and DC Calibration Consoles - design simplicity that is readily apparent in clean, uncluttered panels . . . operating simplicity that now enables one operator to perform the work in ${ }^{1}$;; the time previourly required by two skilled operators . . . with the precision of Weston engineering and craftsmanship that assures ultimate accuracy. Highly stable and readily adjustable, these consoles are truly value-packed.

Unique switching networks automatically divide scales into any number of equal parts regardless of range. It's no longer necessary to calibrate each checkpoint or set up extra equipment to obtain required outputs. Operation is reduced to four or five simple steps.

These consoles typify Weston Jeadership in long-term reliability and stability. All are supplied in blue-gray cabinets or ready for mounting in standard $19^{\prime \prime}$ rack panels. Also available: an oil bath which accommodates up to 12 Weston Normal Standard Cells . . . maintains temperatures within , 01C. Removable racks also fit baths at U'.S. Bureau of Standards.

For full information, contact your lucal Weston representative . . or write to Daystrom-Weston Sales Division, Newark 12, V, J, In Canata: Daystrom Ltd., 840 Caledomia Rd., Tomonto 19, Ont. Expont: Daystrom Int'l., 100 Empire St., Newark 12, N.J.

MODEL 66 CONTROLLED TEMPERATURE BATH
MODEL 62 AC AMMETER CALIBRATOR

See these calibrators of the Daystrom Exhibit at the IRE Show

WESTON

WORLD LEADER IN MEASUREMENT AND CONTROL

$100 ̂$ ic operation, $\overline{1} \frac{1}{2}$ voltage ranges covering 1 mv to 300 volts.

NORTH ATLANTIC PHASE ANGLE VOLTMETERS
 For Production Line, Laboratory, Ground Checkout

Now, combined in one compact package, all the functions required for precise measurement of voltage, phase angle, quadrature, impedance and power factor. Measurement of AC signals which previously required extensive equipmentor which could not be made at all-can be accom. plished simply and accurately in the laboratory, on the production line or in the field. For broadband or single frequency operation.

READ
 DIRECTLY
 Total Voltage
 - Phase Angle
 - In-phase Voltage
 Quadrature Voltage

Specifications: Abridged specifications of the Model 301 Broadband Phase Angle Voltmeter are shown below. Specifications of other models on request.

- Frequency range 10 cps to 100 kc
- 1 mv to 300 volts full scale
- Accuracy $1 / 2^{\circ}$ absolute; special technique $.01^{\circ}$
- $0-360^{\circ}$ phase angle without ambiguity
- Nulling sensitivity 5 microvolt
- Signal and/or reference isolation
- Optional filters plug in from front
- Bench or rack mounting

Model 202. For production line or checkout applications. Characteristics similar to Model 301 but designed for single frequency operation.

Model 401 AC To DC Phase Sensitive Converter permits conventional DC instrumentation to be used for AC measurements. Single or double ended DC output proportional to rms fundamental, in-phase or quadrature component of AC signal.

Plug. In Accessories for Phase Angle Voltmeters include reference isolation resistance summing, and bridging transformer modules for eliminating ground loops and adapting voltmeter to ratiometer applications.

Write for detailed spec ifications and applica. ion information

NORTHATIANTIC industries, inc.
603 Main Street, Westbury, New York EDgewood 4.1122

Advertising Index \qquad

Capitol Radio Engineering Institute .90A

Card Corp.
Century Electronics \& Instruments, Inc 107A Chicago Telephone Supply Corp. 95A Clare \& Co., C. P.
Clearprint Paper Co Ill
Clevite Transistor Products, Div. of the Clevite
Corp. 25A, 150A
Cohn Corp., Sigmund 98A
Collins Radio Co
Communication Accessories Co. . 185 A
Convair/Pomona Div. General Dynamics Corp of
America . I69A.170
Cornell-Dubilier Electric Corp. Cover 3
Corning Glass Works 193A

Dale Products, Inc. 56A
Dallons Laboratories, Inc 38A
Delco Radio Div, of General Motors Corp. 58 A
DeMornay-8onardi ...I89A
Dewey Corp., G. C. ...I3A
Dialight Corp.|82A

E S C Corporation65A
Eastman Kodak Co. I05A
Ehrenfried, A. D.
199A
Eitel-McCullough, Inc. ... II2A
Electronic Associates, Inc.
Electronic Research Associates, Inc.8A
Electronic Tube Sales, Inc.184A
Elgon Metalformers Corp. 46A
Empire Devices Products Corp. 187A
Employers' Services of New England154A
English Electric Valve Co., Ltd. 12A
Ercolino. M. D. 199A
Essex Electronics 56A

Fairchild Semiconductor Corp. . . 73A, 163A
Food Machinery \& Chemical Corp. .. I51A
Freed Transformer Co., Inc. 199A
General Electric Co., Advanced Electronics Cen-
ter at Cornell UniversityI56A
General Electric Co., Heavy Mil. Electronics Dept.29A
General Electric Co., Missile \& Space Vehicle
Dept. ..167A
General Electric Co., Ordnance Dept., Defense
Electronics Div. 149A
General Magnetics, Inc.72A
General Mills, Inc I76A
General Motors Research Laboratories 79A
General Products Corp.30A
General Radio Co. Cover 4
Gertsch Products, Inc. 72 A
Gudebrod Brothers silk Co., Inc. 90A
Guilford Personnel Service172A
Gyro Electronics Corp.I88A

HR8-Singer, Inc. I74A
Hallmark, Clyde E. 199A
Harrison Laboratories, Inc.II4A
Heath Co. 74 A
Hermes Electronics Co.10A, 162A
Hewlett-Packard Co. 50A.51A
Hirschmann Co., Inc., Carl 98A
Hoffman Electron Tube Corp.I78A
Hoover Electronics Co. 28A
Huggins Laboratories 62A
Hughes Aircraft Co.I35A-136A
Hughes Products, Industrial Systems Div.96A

Institute of Radio Engineers3A, I00A, I06A
Instruments for Industry, Inc. 64

PROFESSIONAL CONSULTING SERVICES

Advertising rates
Professional Consulting Service Cards.
\[\begin{array}{ll} 1 insertion \& \$ 25.00
12 insertions \& \$ 180.00 \end{array} \]
50% discount to IRE members on 3 or more consecutive insertions.
In IRE DIRECTORY $\$ 25.00$ flat rate
I inch onlr. no cuts or display type.
New rate effective January 1961 insertion $\$ 30.00$ i2 insertions $\$ 240.00$
50% discount to IRE members on 3 or more consecutive insertions.
In IRE DIRECTORY $\$ 30.00$ flat rate

Advertising restricted to professional engineer ing and consulting services by individuals only. No product may be offered for sale, and firm names may not be mentioned in cards.
Transistor Circuits
ALBERT J. BARACKET
MS IN EE \& Staff
Development, and design of transistorized and
standard regulated power supplies; broadeast
and closed circuit TV camera and synchonizing
circuitry both military and commercial.
36 Commerce Road
Cedar Grove, N.J.
CEnter 9.6100

W. J. BROWN

 \& StaffFel.AIEE., M.IEE., Sen.Mem.IRE. INTERNATIONAL CONSULTANTS
35 Years Exer.utive Electrical Engineering Experierce in U.K. and U.S.A. 71 Gurley Rd. Stamford, Conn., U.S.A. Cables-Browninter Stamiord, Conn.

MARKET DEVELOPMENT*

A. D. Ehrenfried and associates Technical product planning-product and market evaluation-market development programs-all by graduate engineers.
-Ref.: IRE/PGEM paper
Concord, Massachusetts EMerson 9-5500

M. D. ERCOLINO

Antenna Laboratories and Engineering Staff
Consultation and Develonment Antennas, Systems, Baluns, Rotators,

Rotatable Antenna Masts
Asbury Park, N.J.
PRospect 5.7252

CLYDE E. HALLMARK

 and associatesSpecializing in Instrumentation-Automatic Con-trol-Television-General Electronics-Semicon. duetor \& Magnetics Application-5ystems Re. duetor \& Magne tics Applich.
ENGINEERING SERVICE-CONTRACT R\&D
New Haven
Indiana

LEONARD R. KAHN

Consultant in Communications and Electronics Single-Sideband and Frequency-Shift Systems Diversity Reception. Stereophonic Systems Television Systems

81 South Bergen Place, Freeport, L.I., N.Y. FReeport 9-8800
J. A. Matthews
J. B. Minter

Consulting Engineers for
Professional Sound Recording, Disk mastering, Tape Editing, Dubbing, elc.
106 Main St.
Denville, New Jersey
OAkwocd 7.0290

Telecommunications Consulting, Engineers Worldwide Exneripnre"
V. J. Nexon S. K. Wolf M. Westheimer WIRE. CARRIER, RADIO, MICROWAVE, TROPO SCATTER
Feasibility Studies. Terrain Surveys, System Design. Job Supervision, Government Proposals, Market Research, Product Planning.
1475 Broadway, New York 36, N.Y., BRyant 9.8517
E. M. OSTLUND \& associates Electronic Engineers
Radio-Microwave-Carrier-Communication-ControlSystems and Equipment
Consulting-Research-Development
ANDOVER, NEW JERSEY
e1: PApkway 9.6635
P.E.N.I.

NATHAN GRIER PARKE and staff

Consulting Applied Mathematicians Research - Analysis - Computation

Bedford Roaa - Carlisle, Massachusetts Telephone EMerson 9-3818

PAUL ROSENBERG \& associates
Established 1445
Consultation, Research \& Development in Applied Physics
100 Stevens Ave., Mt. Vernon, New York MOUnt Vernon $7>8040$ Cable: PHYSICIST

MYRON M. ROSENTHAL \& staff

Microwave \& Electronic Systems
19 Brookline Dr., North Massapequa, N.Y.
PErshing 5-2501

HAROLD A. WHEELER	
Consultation Microwaves Antennas	- Development VHF - VLF mponents
HUnter 2-7876 Antenna Laboratory:	Great Neck, N. Y. 5 mithtown, N. Y.

A COMPLETE LIST

of exhibitors at the 1960 Radio En gineering Show, together with a complete program of technical papers and social events for the annual IRE International Convention, will be featured in next month's issue, to give you plenty of advance planning time before you come to the show. Complete product descriptions and photographs will make this an "exhibit in print" for those IRE members who will be unable to attend.

Give your products
MORE RELIABILITY and BETTER PERFORMANCE with

In stock for immediafe delivery
TOROIDAL INDUCTORS

- MIL Grade 4-Mefal Case
- MIL Grode 5 - Molded
- Unsased Unirs
- Highest Q
- Highest self resonant freq.

- Low temperature coefficient - No hum pickup-astatic construction - Can be supplied with center tops

FREQUENCY RANGE: SOOCP TO ISKC

Type	Max 0	Inductance	Range
T1-11	290	1 MH to	50Hy
11-12	255	1 MH to	30 Hy
TI-1A	250	1 MH to	30 Hy
TI-1	210	SMH to	20 Hy
TI-4	195	5 MH to	5 Hy
T1-5	130	SMH to	2 Hy
T1-16	72	1 MH to	2 Hy
FREQUENCY RANGE: IOKC TO SOKC			
T1-13	303	1 MH to	500 MH
11-2	205	1 MH to	500MH
T1-6	279	1 MH to	400MH
T1.7	200	. 500 MH to	200 MH
T1-17	110	. 100 MH to	100 MH
FREQUENCY RANGE: 30KC TO 200KC			
T1-18	115	1 MH to	100 MH
T1-8	140	. 1 MH to	100 MH
T1-10	185	1 MH to	200 MH
Ti.9	175	1 MH to	500 MH
T1-19	100	. 1 MH io	5 MH
T1-3	260	. 1 MH to	10MH
71-3A	310	10 MH to	100 MH

fREQUENCY RANGE: 2OKC TO JOMC

$\mathrm{TI}-21$	205	.010 MH to .150 MH
$\mathrm{T} 1-22$	250	.010 MH to .700 MH
$\mathrm{TI}-23$	210	.010 MH to .500 MH
$\mathrm{TI}-20$	305	.050 MH to 5 MH

Cot. No.	Imped, level-othme	Appl.	Malt std.	mil Type
MGA 1	$\begin{aligned} & \text { Pir. } 10,000 \text { C.T. } \\ & \text { Sec. } 90,000 \\ & \text { Split \& C.T. } \end{aligned}$	Interitoge	90000	TFARXISAJ001
MGA 2	Pri. 600 splif Sec. 4, E, 16	Matcheng	90001	TFARXI AA 8002
mGA 3	Pri. 600 Splít Sec. 135.000 C.T	Input	90002	TF4ix) 0 a 2001
mGa 4	Pri. 800 Split Sec. 600 Split	Matching	90003	TFARXI6A 1001
mga 5	$\begin{aligned} & \text { Pri. } \begin{array}{c} 7.600 \mathrm{Top} \\ \text { Sor } \\ \text { S.000 Sple } \end{array} \end{aligned}$	Output	90004	TF48x13A8001
MGA 。	$\begin{aligned} & \text { Pri. } 7,000 \text { Tap } \\ & \text { Sec. } 4,800,16,16 \end{aligned}$	Output	90005	TF4RX13AJ002
mGA 7	Pri. 15,000 C.t. Set. 000 split	Output	90000	TF4RXI3A5003
mGA	Pri. 24,000 C.t. Ser. 600 Split	Output	90007	TF4RXI 3a 10004
MGA 9	Pri. 60.000 C.t. set 600 splif	Output	90008	TF4inxizaj00s

FREED TRANSFORMER CO., INC.
1720 Weirfield St., Brooklyn (Ridgewood) 27. N. Y

PUBLISHED BY ROME CABLE DIV. OF ALCOA, ROME, N. Y. PIONEERS IN INSTRUMENTATION CABLE ENGINEERING

INSTANT MAIL. Not long ago, one of the wire services carried a story that should gladden the heart of letter writers from coast to coast. The big news is the use of microwave radio or coaxial cables for speeding letters to their destination. Naturally, much researching, development and experimental work are yet to be done before facsimile mail will be unveiled by Uncle Sam. However, as of December 1, a commercial service linking Washington, New York, Chicago, Los Angeles and San Francisco has been in operation. So instant mail joins the many other wonders and conveniences of the electronic world.

UHF GIVES WEATHER REPORT. High in the sky, all over the world, heliumfilled balloons carry radio-sonde transmitters which telemeter changes in air pressure, humidity and temperature. All three measurements are converted into radio signals . . . and measuring and reporting goes on and on until the balloons burst at 20,000 feet. The UHF signals are picked up by a ground antenna and fed to an FM receiver which has a tapper bar that records on special graph paper. If your work involves telemetering, data recording, circuit-control testing, or computers, you probably will want a copy of Bulletin RCD-400. It covers the cable you can get from Rome for such purposes. Write to Rome Cable Corp., Dept. 1220, Rome, New York. Or contact the Rome representative in your area.

NAME THE TONE. Any tone imaginable can now be generated electronically with an electronic music synthesizer recently installed at Columbia University. The synthesizer produces musical sounds in response to code signals fed into the system on perforated tape. It will be used in a program of composition and research in electronic music, conducted by Columbia and Princeton Universities under a grant of the Rockefeller Foundation.

WHO PAYS FOR WHAT? New ground rules have been handed down for electronic contractors handling defense work. The new way to figure who pays for what goes into effect July 1, 1960, and covers both negotiated and fixedprice contracts. All the details are wrapped up in "Revision No. 50 Armed Services Procurement Regulation." You can get the whole story by sending 35 cents for each copy you want to the Government Printing Office, Washington $25, \mathrm{D} . \mathrm{C}$.

CABLEMAN'S CORNER. To help you in replacing or reordering cable, it has become standard practice for most cable manufacturers to identify their cable in one of several ways. These include the stamping of solid conductors, the inclusion of marker threads or tapes within the cable structure, and surface printing or molding the insulations or jackets. Of these methods, the use of marker threads or tapes is the most popular. Manufacturers of Under-writers-labeled products are assigned specific colors for their marker threads, and most manufacturers extend the use of these same threads in other cable products whenever it is practical. Other information appearing on marker tapes often includes unit length markings and the date that the cable was manufactured.

[^90]Advertising $\begin{gathered}\text { Index }\end{gathered}$

Interelectronics Corp. .64A
International Business Machines Corp. 103A International Telephone \& Telegraph Corp.

I57A

Jet Propulsion Lab., Cal. Inst. of Techn. 87A Johns Hopkins Univ., Operations Resch. Office 126A Johns Hopkins Univ., Radiation Lab.154A
Jones Div., Howard B., Cinch Mfg. Co.76A
Jones Electronics Co., Inc., M. C., Sub. of Bendix
Aviation Corp.
.52A

Kahn, Leonard R. 199 A
Kay Electric Co
Kearfott Co.. Inc. 109 A
Kennedy \& Co., D. S.IIA
Kep:o. Inc. I91A
Knapic Electro-Physics, Inc. 19A
Knights Co., James
Kollsman Instrument Corp.I22A

Lambda Electronics Corp. 183A
Lapp Insulator Co., Inc.78A
Link Div., General Precision, Inc.I44A, I80A
Litton Industries, Inc., Electronic Equipments
Div.140A

Lockheed Aircraft Corp., Missiles \& Space Div. 177A
Lockheed Electronics Co., Stavid Div.I28A

Marconi Instruments, Ltd. 40 A
Martin Co., Denver Div. I23A
Martin Co., Orlando Div.I33A
Massachusetts Inst. of Technology. Instrumenta.
tion Lab.I41A
Massachusetts Inst. of Technology, Lincoln
Lab. 168 A
Matthews, J. A. \& J. B Minter I99A
McGraw-Hill Book Co., Inc.31A
Measurements, A McGraw Edison Div. 202A
Melpar, Inc.
I51A
Microwave Associates, Inc. 196A
Millen Mfg. Co., Inc., James 94A
Millivac Instruments, Div. of Cohu Electronics 69A
Minneapolis-Honeywell Reg. Co., Aeronautical
Div.130A, 152A-153A, I55A

Minneapolis-Honeywell Reg. Co., Marion Instru-
ment Div.
.44A
Minneapolis-Honeywell Reg. Co., Ordnance
Div. 166 A

Mitre Corp. I20A
Motorola, Inc., Semiconductor Div. II9A
Motorola, Inc., Western Mil. Electronics Cen-

Mucon Corp. 110 A
Mycalex Corp. of America I90A

Narda Microwave Corp. 27 A
Narda Microwave Corp., High Power Electronics
Div. 26A

New Hermes Engraving Machine Corp. 108 A
Nexon, V. J., S. K. Wolf, M. Westheimer 199A
Nippon Electric Co., Ltd.39A
North Atlantic Industries, Inc.178A, 198A

Ordnance Research Lab., Penn. State Univ. . .I30A
Ostlund, E. M. I99A
Pan American World Airways, Inc., Guided Mis-
siles Range Div. 165 A
Panoramic Radio Products, Inc. I79A
Parke, Nathan Grier 199A
Permanent Employment Agency, Prof, and Tech-
nical Rec. Assn.150A, 162A
Philco Corp., Lansdale Tube Co. Div. 41A
Polarad Electronics Corp.67A.68A

- floating input
- isolated output

IN NEW SANBORN CHOPPER AMPLIFIERS

INDIVIDUAL SET-UPS

portable, self-contained unit amplifier
The Model $350-1500$ Low Letel Anplititer provides extremely versatile measurement of low level signals through use of two interchangeable plug-in circuits - one for thermocouple applications, another for DC strain gage work (other plug ins now in development). Floating input and isolated output make the $350-1500$ useful when signal measurements are made in the presence of large ground loop volt ages. The 10-1 $2^{\prime \prime}$ high x 4-3 $16^{\prime \prime}$ wide $350-1501$ may be used individually with its own power supply to drive a 'scope, meter, optical element, etc. or as a preamplifier in 6 - or 8 -channel 350 series recording systems.

MULTI-CHANNEL INSTALLATIONS

8-unit 7" high modules for "850" series direct writers

Compert Model w50-1501. 1 Low Letul Protmplificrsare economical, space-saving units for large installations such as aireraft and missile development and test facilities where many recording chamels are used to monitor strain gage and thermocouple outputs. Required 440 cps chopper drive voltages can be supplied for up to 16 channels with the Model 850-1900 MOPA.

	350.1500	850.1500A
Sensitivity	20 uv input for 1 volt output, or 10 chart div with Sanborn iecorder; X1 to X2000 attenuator	100 uvinput for 1 volt output, or 10 chart div. with Sanborn recorder: X1 to X200 attenuator
Input	Floating, can be grounded	
Input Impedance	100,000 ohms	200,000 ohms
Output	Floating or grounded 'independent of input)	
Output Impedance	350 ohms	
Output Capabilities	+25 volts across 1000 ohm load	
Bandwidth	DC-100 cps 3db)	
Linearity	± 0.15 of futl scale	
Common Mode Performance	120 db for 60 ops and 160 on for GL with 5000 uhms ullbalance in surice	
Noise	2 uv peak-to.peak over a 0 to 100 cps bandwidth	
Drift	± 3 uv for 24 hours	
Gain Stability	二0.1', for 24 mours	
	specifications subject to change without notice	

Complote specifications and application data ate avallable from Eanborr Sales. Engineurins Reprecentaliubs in puricipal citeq throughout the United States, Canada, and foreign countries.

SANBORN NS
 INDUETRIAL DIVISION

175 Wyman Street, Waltham 54, Mass.

MEASUREMENTS' improved
 VHF Radio Noise and Field Strength Meter

frequency range 15 Mc to 150 mc

USES

- Tor measuring electrical noise
- As a tuned ref voltmeter
- As a null indicator for ref bridges and slotted lines
- For directional-antenna pattern measurements
- For signal-to-noise ratio measurements
- For measurement of harmonics - As a carrier-voltage meter

BOONTON, NEW JERSEY

Megacycle IM enter
 0.1 Mc to 940.0 Mc

Determines resonant frequency of tuned circuits, antennas, transmission lines, by-pass condensers, chokes, etc. Measures inductance and capacitance. Also used as a signal generator, wave meter, frequency meter,
and in many other
applications.
This compact, lightweight
grid -dip meter is available
in the frequency
ranges indicated meter, frequency meter,
and in many other
applications.
This compact, lightweight
grid -dip meter is available
in the frequency
ranges indicated meter, frequency meter,
and in many other
applications.
This compact, lightweight
grid -dip meter is available
in the frequency
ranges indicated $\begin{gathered}\text { mes compact, lightweight } \\ \text { applications. } \\ \text { The fin many other } \\ \text { grid-dip meter is available } \\ \text { in the frequency } \\ \text { ranges indicated } \\ \text { meter }\end{gathered}$
Write for Bulletin $\begin{gathered}\text { mes compact, lightweight } \\ \text { applications. } \\ \text { The fin many other } \\ \text { grid-dip meter is available } \\ \text { in the frequency } \\ \text { ranges indicated } \\ \text { meter }\end{gathered}$
Write for Bulletin meter, frequency meter,
and in many other
applications.
This compact, lightweight
grid -dip meter is available
in the frequency
ranges indicated

 meter, frequency meter,
and in many other
applications.
This compact, lightweight
grid -dip meter is available
in the frequency
ranges indicated. -

(1)
 Advertising Index
 \qquad

Polytechnic Research \& Der. Co lat. 118A Power Designs, Inc.

Radio Corp. of America, Def. Electronic Products

Radio Corp.
Radio Engineering Labs., Inc. 21 A
Ranter Corporation 186 A
Raytheon Co., Govt. Equipment Div. I01A
Raytheon Co., Microwave Power Tube Div. .. 37A
Raytheon Co., Semiconductor Div.85A.86A
Republic Aviation Corp. 162A
Rheem Semiconductor Corp.192A
Rixon Electronics. Inc.
Ronde Schwarz Sales Co. 47A
Rome Cable Corp. 200A
Rosenberg, Paul .. I99A
Rosenthal, Myron M. 199 A
Ryan Aeronautical Co. I73A
Rye Sound Corp. ..II8A
Sanborn Co. 201 A
Sanders Associates, Inc. I29A
Scientific-Atlanta, Inc. 91 A
Sensitive Research Instrument Corp.I84A
Shockley Transistor Corp. I46A
Sola Electric Co. 61 A
Space Electronics Corp. 145 A
Space Technology Labs.159A
specific Products ...
Sperry Semiconductor Div., Sperry Rand Corp. 83A
Sprague Electric Co. 5A, 7A
Stackpole Carbon Co. 35A
Stanford Research Institute I42A
Stoddart Aircraft Radio Co., Inc. 194 A
Stromberg-Carlson Co.42A-43A, I43A
Superior Cable Corp.
Sylvania Electric Products, Inc., Amherst Lab. I34A Sylvania Electric Products, Inc., Electronic Tube
Div.33A-34A

Sylvania Electric Products Inc., Electronic Syr-
terms Div.
160A-161A
Sylvania Electric Products Inc., Semiconductor
Div. 49A

Sylvania Electric Products Inc., Special Tube Operations Div.97A

Tarzian, Inc., Sarkes, Semiconductor Div. 92A
Technical Material Corp.I42A
Tektronix, Inc.II3A
Texas Instruments, Inc., Apparatus Div.89A
Texas Instruments, Inc., Geosciences and Instru-
mentation Div. 75 A
Texas Instruments, Inc., Semiconductor Com-
ponents Div. 55A, 115A, I22A
Transitron Electronic Corp.66A

United Aircraft Corp., Research Labs. 125A
United Mineral \& Chemical Corp. 184A, 191A
U. S. Department of Commerce, Nat'l Bureau of

Standards 166A
U. S. Semiconductor Products, Inc.94A

United Transformer Corp.Cover 2

Varia Associates, Tube Div.81A

Western Devices, Inc. 88 .
Western Gold \& Platinum Co.54
Westinghouse Electric Corp., Baltimore Div. .I75A
Westinghouse Electric Co., Betti Atomic Power
Lab. ...147A
Weston Instruments, Div. Daystrom Inc. I97A
Wheeler, Harold A. I99A

Zenith Radio Corp
124A

SOLITAN

Cornell-Dubilier's truly dry tantalum capacitors for

transistorized circuits

Subminiature Solitan capacitors - truly dry, solidstate electrolytic capacitors by Cornell-Dubilier - are specifically designed for transistorized applications in computer and military circuits. Immediately available in production quantities, Solitan capacitors offer these outstanding advantages: wide useful temperature characteristics; remarkable stability of capacitance with time and temperature; freedom from corrosion and service aging; unusual resistance to shock and vibration; indefinite shelf life; low dc leakage; low dissipation factor. For engineering assistance and complete data on C-D

Solitan tantalum capacitors, write for Bulletin 537 to Cornell-Dubilier Electric Corporation, South Plainfield, New Jersey. Manufacturers of consistently dependable capacitors. filters and networks for electronics, thermonucleonics, broadcasting and utility use for 50 years.

SPECIFICATIONS AND FEATURES

- Ratings up to 6.0 mfd at 35 voits DC Working, or 60.0 mfd . at 6 volts. - Wider useful temperature characteristics within range of -80 C to -85 C . . Freedom from corrosion and leakage. Extremely small size. - Remarkable stability of capacitance with time and temperature. - Metal cased, hermetically sealed.

[^0]: Orices in major citles-Chicago - Kansas City • Los Angeles • Dallas • Dayton - Washington • Seattle - San Francisco - Canada: R-O-R Associates Limıted, 1470 Don Mills Road, Don Mills, Ontario - Export: Maurice I. Parisier, 741 - 745 Washington St., N. Y. C. 14, N. Y.

[^1]: (coutimucd on puge s.e.t)

[^2]: (Comtimued on fage 4.e.1)

[^3]: Add this heterodyne unit (Model 7570 Series) to measure frequencies up to 1000 Mc .

[^4]: See us at the IRE Show-Booth 1424

[^5]: (Comtinued on paers - 0.4)

[^6]: Beckman
 Scientific and Process Instruments Division
 *Note low noise level...less than . 003 microvolt
 2500 Fullerton Road, Fwillerton, Califorsia

[^7]: * Original mamuscript received by the IRE, April 30, 1959: revised manuscript received, October 5, 1959.
 \dagger Collins Radio Co., Cedar Rapids, lowa.
 ${ }^{1}$ K. H. DıHamel and F. K. Ore, "Log periodic feeds for lens and reflectors," 1959 IRE Nafional Convention RECorin, pt. 1, pp. 128-1.37.

[^8]: ${ }^{2}$ R. W. Klopfenstein, "A transmission line taper of improved design." Proc. IRE. vol. 44, pp. 31-35: January, 1956.

[^9]: ${ }^{3}$ R. F. Collin, "The chatacteristic impedance of a slotted cousial line," IRE Trans. on Mickowave Theory and Techniques, vol. MT「-4, pp. 4-8; January, 1956.

[^10]: 6J. A. Stratton, "Electromagnetic Theory," Me-Graw-Hill Bewk Co., Inc., New York, N. Y., pp. 114-116; 1941.
 ${ }^{6}$ F. IB. Hildebrand, "Methods of Applied Mathematics," PrenticeHall, Inc., Englewood Cliffs, N. J., pp. 138-139; 1952,
 ${ }^{\text {'O O D D. D. Kellogg, "Foundations of Potential Theors;"; Dover Publi- }}$ cations, Inc., New York, N. Y., pp. 311-315; 1953.

[^11]: ${ }^{8}$ J. D. Kraus, "Electromagnetics," MrGraw-Hill Book Co., Inc., New York, N. Y., pp. 426-427; 1953.
 ${ }^{9}$ Klopfenstein, op. cil., p. 32.

[^12]: ${ }^{10}$ G. A. Deschamps, "Determination of reflection coefficients and insertion loss of a waveguide junction," J. Appl. Phys., vol. 24, pp. 1046-1050; August, 1953.
 ${ }^{\text {i }}$ F. L. Wentworth and D. R. Barthel, "A simplified calibration of two-port transmission line devices," IRE Trans. on Microwave Theory and Techniques, vol. MTT-4, pp. 173-175; July, 1956.

[^13]: ${ }^{12}$ A. Sommerfeld, "Electrodynamics," Academic Press, Inc., New York, N. Y., pp. 198-211; 1952.

[^14]: ${ }^{13}$. Morse and Feshbach, op. cil., pt. 2, pp. 1108-1109.

[^15]: * Original manuscript received by the IRE, fune 25, 1959: revised matuscript received, October 8, 1959.
 \dagger Bell Telephone Labs., Inc., Murray Hill, N. 1.
 \ddagger-F-I) Lats., Inc., Varian issociates, "nion, … . Furmerly at Bell Telephone Labs., Inc., Durray Hill, N. J.
 ${ }^{1}$ ㄱ. F. Dietrich, unpublished work.
 2 J. I'. Laico, H. L. Melowell, and C. R. Moster, "A medimm power traveling-wave tube for 6000 - 11 e radio relay," Bell Sys. Tech. J., vol. 35, pp. 1285-1.346; ㅅovember, 1956.

[^16]: ${ }^{3}$.. . C. Beck, "llaveguide investigation with millimicroserond pulses," Bell Sys. Tech. J., vol 3.5. pp. 35-65; January, 1956.
 iv. II. Goodall, mupublished work.

[^17]: ${ }^{5}$ H. 'T. Closson, IV. F. I anielson, and R, J. Niekson, "Automatic measurement of small deviations in periodic stoctures," Rer. . Sif. Instr., vol. 29, pp. 855-85); October, 19.58.

[^18]: * Original manuseript received by the IRE, March 4 , 1959; revised minuscript received, July 29, 1959. A brief presentation of this Work was given at the Wixteenth Anmal Conf. on Electron Tube Research, [niversite Laval, Quebec, Can., Jnne, 1958.
 \dagger Bell 'lelephone Labs., Inc., Murray lill, N. J.
 ${ }^{1}$ G. F. Jlermann, M. J'enohara, and A. Uhlir, Jr., "Noise figure measurements on two types of variable reactance amplifier using semiconductor diodes," Proc. IRE, vol. 46, pp. 1.301-1303; June, 1958.
 ${ }^{2}$ H. Ileffner and K. Kotzebue, "Experimental characteristics of a microware parametric amplifier using a semiconductor diode," Proc. IRE, vol. 46, p, 1301: June, 1958.
 ${ }^{3}$ B. Salzherg and F. W'. Sard, "' low-noise wide-band reactance amplitier," Proc. IRE, vol. 46, p. 1303; Jme, 1958.

 411. C. "'orrey and C. A. Whitmer, "Crystal Rectifiers," M.I.T. Kad, Jab. Ser., McGraw-Hill Book Co., Ine., New York, X. Y., vol. 15; 1948.
 ${ }^{5} \mathrm{P}$. D. Strum, "Some aspects of miver erystal performance," Proc. IRE, vol. 41, pp. 875-889; July, 1953.
 ${ }^{6}$ P' D. Strum, "Sunte on noise temperature," IRI: 'Vrans. on Microwaye "heory asd Techntques, vol. MTT「-4, pp. 145-151; July, 1956.
 ${ }^{7}$ 'G. C. Messenger and C. T. MeCoy, "Theory and operation of crystal diodes as mixers," I'roc. IRE, vol. 45, pp. 1269-1283; September, 1957.
 ${ }^{8}$ C. 'T. MrCoy, "Present and future capabilities of microwave crystal receivers," Proc. IRF, vol. 46, pp. 61-66; Jamary, 1958.
[^19]: ${ }^{10}$ A. E. Bakanowski, "The Nonlinear Capacitor as a Nixer," 2nd luterim Rept., Task 8, Crystal Rectifiers, Signal Corps Projects 2-7-32.34; December, 1954.
 ${ }^{11} \mathrm{H}$. E. . Rowe. "Sone general properties of nonlinear elements. II, Small signal theory;" l’roc. IRE, vol. 46, pp. 850-860; May, 1958.

[^20]: ${ }^{12}$ C. I'. Quate, R. Kompfner, and D. A. Chisholm, "The reflex klystron as a negative resistance type amplilier," IRE Trans. on El.fctron Devices, vol. El)-5, pp. 173-179; July, 1958.

[^21]: 13 This statement impues that we are concerned only with a firstorder nonlinearity process and that the pump is a purely sinusoidal excitation.

[^22]: ${ }^{14}$ The noise contribution from the circuit is about $10^{\circ} \mathrm{K}$.
 ${ }^{15}$ The dynamic range of the diode is defined as the range where pump voltage can be swept without driving into either breakdown or large forward conduction.

[^23]: * Original manuscript received by the IRE. March 2.3, 1959; revised manuseript received, May 21, 1959.
 \dagger Western Military Electronics Center, Motorola, Inc., Phoenix, Ariz.

[^24]: ${ }^{3}$ Western Military Electronics Ctr., Morotolal. Ine., Phosenix, Ari\%, unpublished internal report.

[^25]: 2"Inestigation of Electronic Equipment Reliability as Affected by Electron Tubes," Aeronautical Radio, Ine., Washington, I). C., Interhase Rept. No. 1, Contract NOher-64508, p. 11; March 15, 1955.
 ${ }^{3}$ 1). J. Wavis, "An analysis of some failure data," J. Amer. Statistical Association, vol. 47, p. 114; June, 1952. A general discussion of reliability models, as well as the referenced point, is contained in this article.

 4 Ibid., p. 117.

[^26]: ${ }^{8}$ B. Fpstein, "Truncated life tests in the exponential case," Ann. Wath. Statistics, vol. 25, pp. 555-56t; September, 1954.
 ${ }^{9}$ I3. F.pstein and ․I. Sobel, "Sequential life tests in the exponential case", Ann. Math. Statistics, vol. 26, pp. 82-93; March, 1955.

 10 "Reliability of Military, Electronic Equipment," Rept. by the Advisory Group on Reliability of Electronic Equipment, Office of the Asst. Sec'y of I lefense, Washington, D. C., pp. 89-90; June 4, 1957.

[^27]: ${ }^{11}$ A. Hald, "Statistical Theory with Engineering Applications," John \iilev and Sons, Inc., New York, N. ソ... p. 742; 1952. This test is also shown in many ot her statistics books.

 12 "Electronic Reliability in Military Applications," :Jeronantical Radio, Inc., Washington, D. C., Gen. Kept. No. 2, Contract Nobsr64508. pp. 24.3, 246; July 1, 1957.

[^28]: ${ }^{13}$ Natl. Bur. of Standards, "Table of the Binomial Probability Distribution," U. S. Govt. P'rinting Office, Washington, D. C., Appl. Math. Ser. 6; 1950.

[^29]: ${ }^{14}$ IV. R. Bennett, "Methods of solving noise problems," Proc. JRE, vol. +t, pp. 609-614; May, 1956. A discussion of distributions is contained in this article,
 ${ }^{15} \mathrm{~J}$. B. Heyne, "On an analytical design technique," 1958 IRE National Cosyention Record, pt. 6, pp. 121-122. Derivation is shown as Appendix A.

[^30]: ${ }^{16}$ R. H. Hinrichs, "A Second Statistical Method for Analyzing the Performance Variation of Electronic Circuits," Convair, San Diego, Calif., Rept. ZX-7-010, Contract No. AF0t(645)-t; Felruary 15, 1956.

[^31]: 17 "Reliability and Components Handbook," Western Military Electronics Ctr., Motorola, Inc., Phoenix, Ariz., sec, 3.2.1, 3.2.2; initially issued December 19, 1955.

[^32]: 18 "Reliability Stress Analysis for Electronic Equipment," Radio Corp. of America, Camden, N. J., Tech. Rept. No. TR1100; Norember 28, 1956. Available as Publication No. PB131678, Office of Tech. Services, Dept. of Commerce, Washington, D. C.

[^33]: ${ }^{19}$ B. J. Flehinger, "lReliability improvement through redundancy at various system levels," 1958 IRE National Convention Record, pt. 6, pp. 137-151.
 ${ }^{20} \mathrm{~J} . \mathrm{P} . \operatorname{Lipp}$ " "Topology of switching elements vs reliability,"IRE Trans. on Reiliability and Quality Control, PGRQC-10, pp. 21-33; June, 1957.

[^34]: ${ }^{21}$ To the knowledge of the writer, derivation of (16) is unpublished. As pointed out by J. II. S. Chin, Sperry Gyroscope Co., Great Neck, N. Y., in personal correspondence, (16) is the solution of

 $$
 R=1-\int_{0}^{1} p\left(t_{1}\right) d t_{1} \int_{0}^{t-t_{1}} p\left(t_{2}\right) d t_{2} \cdots \int_{0}^{t-\sum_{i=1}^{n-1} t_{1}} p\left(t_{n}\right) d t_{n}
 $$

 where
 $n=$ number of elements, i,
 $t_{i}=$ time at which i th element fails,
 $p\left(t_{i}\right)=$ failure probability density function of the i th element (see Fig. 3).
 ${ }^{22}$ R. W. Crosby, "Group Redundancy," presented at the Military Electronics Reliability and Maintainability Symp., Griffiss AFB, Rome, N. Y.; November, 1958.
 ${ }^{23}$ J. R. Rosenblatt, "On prediction of system performance from information on component performance," Proc. Western Joint Computer Conf., pp. 85-94; February, 1957.

[^35]: ${ }^{24}$ H. F. Blanton, "Reliability prediction technicque for use in design of complex systems," 1957 IRE NAthova. Convention Record, pt. 10. pp. 68-79.
 ${ }_{25}$ I). E. Johnston and I). T. At-Ruer, "A Summary of Component Failure Rate and Weighting Function Data and Their Cese in Systems Preliminary Design," Wright Air Dev. Ctr. Dayton, Ohio, Tech. Rept. No. 57-668, ASTIA Dor. No, AD-1+2120.

[^36]: ${ }_{26}$ R. L. V'ander Hamm, "Component part failure rate analysis for prediction of equipment mean life," 1958 IRE National Convention Record, pt. 6, pp. 72-76. See p. 75.

[^37]: ${ }^{5}$ E. V. Appleton, "The antomatic synchronization of trionle oscillators," Proc. Cambridge Phil. Soc., vol. 21, pp. 2.31-248; 1922-192.3.
 ${ }^{6}$ B. van der Pol, "Forced oscillations in at circuit with monlinear resistance," Phil. Mag., vol. 3, pp. 65-80; January, 1927.
 " I3. vati der Pol, "The nonlinear theory of electric oscillations," F'rac. IRE, vol. 22, pp. 1051-1086; September, 1934.
 ${ }^{8}$ D. G. Tucker, "Forced oscillations in oscillator circuits, and the syonchronization of oscillators," $J . I E E$, vol. 92, pt. 3, pp. 2262.34 : September, 1945 .
 ${ }^{9}$ R. Adler, "A study of looking phenomena in oscillators," J'roc. 1RE, wl. 34, pp. 351-357; June, 1946.
 ${ }^{10}$ M. . I. Cartwright, "Forced oscillations in nearly sinusoidal systems," J. IEE, vol. 95, pt. 3, pp. 88-96; March, 1948.
 ${ }^{1} \mathrm{I}$. Koga, " Δ new frequency transformer or frequency changer," Proc. IRE, vol. 15, pp. 669-678; August, 1927.
 ${ }^{12}$ B. van der Fol and J. Fan der Mark, "Frequency demultiplication," Vature, vol. 120, pp. 36.3-304; September 10, 1927.
 ${ }^{13}$ II: A. Marrison, ". A high precision stamdard of frequency," Proc. IRE, wol. 17, pp. 1103-1122; July, 1929.
 ${ }^{14}$ R. M. l'age and 11 . E : Curtis. "The van der Pol four-electrode tubse relaxation oscillation circuit,: P'Rac. IRF, vol. 18, pp. 19211929; November, 1930.
 ${ }^{15} \mathrm{~J}$. Gros\%kowski, "Frequency division," Proc. IRE, vol. 18, pp. 1960-1970; Nowember, 1930.
 ${ }^{16}$ V. I. Andrew, "The adjustment of the multivibrator for frequency division," l'roc. IRF: vol. 19, pp. 1911-1917; November, 1931.
 ${ }^{17}$ V. J. Andrew, "A simplified frequency dividing circuit," Proc. IRE, vol. 21 , pp. 982-983; July, 1933.
 ${ }^{14}$ G. Buikler and N. I'. Roberts, "The syochronization of a simple relaxation oscillator," A W. Tech. Ref., vol. 4, wo. 4. pp. 165-180: 19.39.
 ${ }^{19} \mathrm{~J}$. Groszkowski, "The interdependence of frequency variation and harmonic content, and the problem of constant-frequency oscillators," Proc. IRE, vol. 21, pp. 958-981; July, 193.3.

[^38]: ${ }^{2 n}$ G. Builder, "A stabilized frequency divider," Proc. IRE, vol. 29, pp. 177-181; : April, 1941.
 ${ }_{21}$ P. G. Sulzer, "Modified locked-oscillator frequency dividers," Proc. IRE, vol. 39, pp. 15.35-15.37; December, 1951.
 ${ }^{22}$ A. A. Andronow and C. E. . Chaikin, "Theory of Oscillations," English Language ed., Princeton University Press, Princeton, N. J.; pp. 112-118, 163-177; 1949.

[^39]: ${ }^{23} \mathrm{IB}$. Yan der l'ol, "On relavation oscillations,"" Phil. .IIag., vol. 2, pp. 978-092; November. 1926.
 ${ }^{24}$ Andronow and Chaikin. op. cil., pp. 18-20.

[^40]: * Approved by the IRE Standards Committee, June 11, 1959. Reprints of this Standard, 60 IRE 23. S1, may be purchased while available from the Institute of Radio Engineers, 1 East 79 Street, New York, N, Y., at $\$ 0.60$ per copy. A 20 per cent discount will be allowed for 100 or more copies mailed to one address.

[^41]: 1 This is a revision of the defintion of differential gain in "IRE Standards on Television: Definitions of Pelevision Signal Measurement Terms, 1955 (55 1RE 23. S1)," ए'roc. IRE, vol. 43, pp. 619622; Nay, 1955.
 ${ }^{2}$ This is a revision of the delinition of differential phase in "IRE Standards on Television: I efinitions of Television Signal Measurement Terms, 1955 (55 IRE 23. S1)," PRoc. IRE, vol. 43, pl. 619622; May, 1955.

[^42]: 5 The methods discussed in Section 4 are for illustration only. They are not intended to preclude other methods now in use, or which may be devised in the future, provided that such methods meet the requirements of Section 3.

[^43]: ${ }^{6} \mathrm{H}$. P. Kelly, "Inifferential phase and gain measurements in color television systems," IRE Trass. on Broadocast and Thelevision Reciners, vol. BTR-1, pp. 1+-17; luly, 1955.
 ${ }^{7}$ Ibid., see Fig. 11.

[^44]: - Ibid., see liig. 9

[^45]: ${ }^{9}$ See Section 3.682, paragraph 20-1'll of Part 3, in the "FCC Rules Covering Radio Broadcast Services." The FCC standards for color television broadcasts specify tolerances which apply to 1) the phase shifts and 2) the amplitudes of subcarriers for saturated primaries and their complements at 75 per cent of full amplitude, with respect to a) the sync burst phase and b) standard values. No requirements are specifically given for differential gain and phase as such.

[^46]: * Original manuscript received by the 1RE, March 26, 1959; revised manuscript recrived. August 25, 1959.
 $\dagger \mathrm{RCA}$ International Division, Clark, N. J.

[^47]: ${ }^{1}$ B. D. Hollbrook and J. T. Dixon, "Load rating theory for multichamel amplifiers," Bell Sys. Tech. J., vol. 18, pp. 62t-64t; October, 1939.
 ${ }^{2} \mathrm{C}$. II. Carter, A. C. Dickieson, and D. Mitchell, "Application of compandors to telephone circuits," Trans. AIEE (Commun. and Electronics), vol. 65, pp. 1079-1086; $19+6$.

[^48]: ${ }^{3}$ IV. R. Bennett, "Cross modulation requirements on multichannel amplifiers below overload," Bell Sys. Tech. J., vol. 19, pp. 587-610; October, 1940.

[^49]: 4"Tables of Binominal Probability Distribution," Dept. of Com* merce, Natl. Bur. of Standards, Washington, I). C., Appl. Math. series.

 5 "Tables of Cumulative Sums of Binominal Probabilities," U. S. Army Ordnance I ept., Washington, I). C.
 ${ }^{6}$ J. Dutka and S. J. Mehlman, "The Distribution of Noise Power in an N-Hop FM Radio Relay System," presented at the Second Natl. Symp. on Global Communications, St. Petersburg, Fla.; i lecember, 1958.

[^50]: ${ }^{2}$ Holbrook and Dixon, op. cit., Figs. 3 and 4.
 8 R. O. Irew and E. IV. Kellog, "Starting characteristics of speech sounds," J. Soc. Mot. Pic. Telev. Engrs., vol. 34, pp. 43-58; January, $19+0$.

[^51]: ${ }^{9}$ Telefonaktiebolaget, L. M. Ericsson, Stockholm, Rept. No. 865-1084 (unpublished); see also, L. M. Ericsson Leaflet No. 1260e.

[^52]: 10 I'inst max is the maximmm value observed on an oscilloscope for a physical signal; hence, it represents the upper limit of the observations. For the uncompandored case, it should be noted that the maximum voltages measured by Telefonaktiebolaget L. M, Eriesson are somewhat lower than the upper limit of Ilolbrook-I)ison observations (see Holbrook and 1)ixon, op. cit., broken line of Fig. 3). Instead, they check closely with Holbrook and I ixon overload expec. tation of 0.1^{\prime} per cent (curie $\epsilon=0.001$ of their Fig. 3).

 The peak factor is a decreasing function of the number. n, of ative channels. In the case of controlled volumes, for a given mumber, N. of channels in system, n is the mumber of active chammels exceerled one per cent of the time, as shown in l’ig. 4. In the case of uncontrolled volumes, for a given λ, there is no way of determining the exact number, n, of active channels. It can only the sid that n will likely be somewhere between the maximum possible value $n=\lambda$, and the average value $n=0.25 \mathrm{~N}$. I Holbrook and Dixon have chosen conservatively the value $n=0.25 \mathrm{~N}$ (dotted line of their Fig. 4). Ifere, the slightly less conservative value of n equal to the number of channels exceeded one per cent of the time is used (solid curve of their Fig. 4). This choice is arbitrary. However, its justification is found in the statement by llolbrook and Dixon (op. cit., p. 642) that their approximation- $n=0.25 N$-tends to give load capacities slightly higher than required for a very small number of chamels but that the difference diminishes rapidly as the number of chamels is increased.

[^53]: ${ }^{12}$ M. C. Karp, M. K. Kebby, and F. . K. Rudisuhle, "Application of compandors to F.If radio relay systems with frenuency division multiplex," IRE' TraNs ox Microwate Theory and Pechatiotes, vol. M"I" ${ }^{\prime}-2$, pp. 30-40; April, 1954.
 ${ }^{13}$ Caruthers and Boxall, "A Miniature Compandor for General I'se in W"ire and Radio Communication System," Lenkurt Electric Co., San Carlos, Calif., Rept. No. 0-509.

[^54]: ${ }^{14}$ "Red l3ook," Internatl. Tel. and Tel. Consultative Comm., vol. 1, pp. 2.39-30t; June, 1957.
 ${ }_{15}$ See, for instance, H. H. Beverage, E. A. Laport, and L. C. Simpsnn, "Sy'stem parameters nising tropospheric scatter propagation," RCA Reqi, vol. 16, pp. 4.32-457; September, 1955.

[^55]: ${ }^{16}$ I). Carpani, "Telettra," Tech. Info. Bull., pp. 10-17; July, 1957.
 ${ }_{17}$ G. Haessler, "Sprachubertragung mit I) ynamikkonpression," FT\%, vol. 12, pp. 659-664.
 is ' 1 . A. Combellick, "Channelizing frequency modulated scatter communication system," Signal, vol. 12, pp. 51'-52; August, 1958.

[^56]: 19 "Design of a Nation-Wide Multichannel VHF System for the Empresa Nicional de Telecommunicaciones, Colombia, S. A.," RCA Internatl. Div., Clark, N. J. (Unpublished).

[^57]: ${ }^{21}$ M. Toutan and M. Thue, "Determination experimentale de al puissance transmisse par un circuit telephonique," Cables and Transm. (Paris), vol. 10, no. 2, pp. 145-151; April, 1956.
 ${ }_{22}$ Documents, CCIR Study Groups, Period 1956-1959, Doc. No. IX/78-E., p. 3; August 20, 1958.

[^58]: * Original manuscript received by the IRE, April 24, 1959; revised manuscript received, September 4,1959 . This work was supported D. Sandia Corp., Alburpuerque, N. Mex., under l'urchase Orders $11: C-727$ and $51-42.32$.
 \dagger Clevite Corp., Electronic Res. Dis., Cleveland, Ohio

[^59]: ${ }^{1} \mathrm{G}$. Shirane and K . Suzuki, "Crystal structure of $\mathrm{Pb}(/ \mathrm{r}, \mathrm{Ti}) \mathrm{O}_{3}$ " J. Phus. Soc. Japan, vol. 7, p. 33.3; May-lune, 1952.
 ${ }^{2}$ E., Sawaguchi, "Ferroelectricity persus antiferroelectricity in solid solutions of $\mathrm{Pb} / \mathrm{rO}_{3}$ and $\mathrm{P}_{\mathrm{ll}} \mathrm{liO}_{3}, " J$. Phes. Soc. Jupan, vil. 8, pp. 615-629: September-October, 195.i.
 ${ }^{3}$ B. Jafle', R. S. Roth, and S. Marzullo, "Ibezoelectric properties of lead zircoanate-lead titanate solid-solution ceramic ware," J. Appl. Plyy., vol. 25, pp. $809-810$; June, 1954.

[^60]: 12 The extrapolation was made to 1 me because the fundamental resonance was near this frequency, and the degree of extrapolation was thus minimized. For $\operatorname{la3}^{\infty}, T^{\circ}$ the extrapolation was to 50 kc because the resonance of the fundamental lateral mode was near this frequency. For application in (15), this is convenient, since nearly all other constants were measured near 50 ke also.

[^61]: ${ }^{14}$ Henceforth the composition will be given as a simple numerical ratio with atom per cent $Z_{r^{i+}}$ as mmerator and atom per cent Ti^{4+} as denominator.

[^62]: ${ }^{16}$ D. Berlincourt and H. Jaffe, "Elastic and piezoelectric coefficients of single-crystal barium titanate," Phys. Rev., vol. 111, pp. 143-148; July 1, 1958.
 ${ }^{17}$ R. Bechmann, "Elastic, piezoelectric, and dielectric constants of polarized barium titanate ceramics and some applications of the piezoelectric épuations," J. Acoust. .Soc. Amer., vol. 28, pp. 347-350; May; 1956.

[^63]: ${ }^{18}$ D. Berlincourt and H. H. A. Krueger, "Domain processes in lead titanate zirconate and barium titanate ceramics," to be published in J. Appl. Phys.

[^64]: 19 H. Jaffe, "Volume electrostriction in barium titanate ceramies," Phys. Reá. Vol. 7.3, p. 1201: Dat' 15, 1948.

 20 II. . P' Mason, "Flectrostrictive effect in barimm titanate ceramics," Phys. Rez.. vol. 74, pp. 1134-1147; November 1, 1948.
 ${ }^{21} \mathrm{H} . \mathrm{G}$. Bacrwald, "Thermodvamic theory of ferroelectric ceramics," Phys. Rea'. vol. 105. pp. 480-486; January 15, 1957.

[^65]: ${ }^{22}$ D. Berlincourt, "Recent developments in fermelectric transducer materials," IRE "rans. on l'itrasonics Enginfering, vol. 4, pp. 5.3-65; August. 1956.

[^66]: * Original manuscript received by the IRE, June 11, 1959; revised manuscript received, August 25, 1959.
 \dagger U'. S. Army Signal Res. and Dev. Lab., Ft. Mommouth, N. J.
 \ddagger Monmouth College, IVest Long Branch, N. J.

[^67]: ${ }^{1}$ A. P. Ramsa, H. Jacobs, and F. A. Brand, "Microwave techniques in measurement of lifetime in germanium," 1954 IKR: National Convention Record, pt. 3, pp. 159-168.
 ${ }^{2}$ I). T. Stevenson and R. J. Neves, "Neasurenent of carrier lifetimes in germanium and silicon," J. Appl. Phys., vol. 26, pp. 190-195; February, 1955.
 ${ }^{3}$ II. Shorkley, "Electrons and IIoles in Semiconductors," D. Van Nustraml Cü., Jnc., N. Y. p. 323; 1050,

[^68]: ${ }^{4} \mathrm{~J} . \mathrm{S}$. Blakemore, "Lifetime in p-type silicon," Phys, Reí, vol. 110, pp. 1301-1308; June 15, 1958.

[^69]: * Note the same sample is used in all cases. In the first four runs listed in the table, with low lifetime surfaces, there is good agreement in the de light microwave electrodeless technique and in the pulsed light microwave electrodeless technique. As the surface is contaminated by the ammonia, the de light technique gives longer values of lifetime as predicted since this method more accurately measures bulk lifetime. In the last step (T) the sample was again surface cleaned and the agreement in the two techniques reappears. It should be noted that the ambipolar diffusion constant was used. Calculations indicate that for material of this specific resistivity, $D=60.3$. In using a different resistivity specimen, it is necessary to recalculate the diffusion constant based upon the resistivity and type of semiconductor in order to interpret the slope correctly in terins of lifetime.

[^70]: * Original mamuscript received by the IRE, April 6, 1959; revised manuscript received, September 1, 1959. This paper presents the results of one phase of research carried out at the Jet Iropulsion L.aboratory; Californial Institute of Technology, under Contract No. DA-04-495-Ord 18, sponsored by the Department of the Army Ordnance Corps.
 \dagger Jet Propulsion L_ab., California Inst. of Technology, Pasadena, Calif.

[^71]: ${ }^{3}$ J. M. Manley and II. H.. Rowe, "Some general properties of nonlinear elements-part 1, general energy relations," PROC. 1RF. vol. 44, pp. 904-913; July. 1956.

[^72]: * Received by the IRE. September 29, 1958.

[^73]: * Received by the IRE, April 24, 1959; revised manuscript received, June $1,1959$.
 ' Contract $N 123(62738) 6578 . A$, sponsored by the Naval (ordnance Res. Lab., Corona, Calif., 1056.
 :V. Met, "On multimorle oscillators with connt.nt time detay, Proc. IRE, vol. 45, pp. 111 リ-112 August, 1957.

[^74]: * Received by the 1 RE, July 10, 1959.
 E. A. Cerber. Precision fremuency control for guided missiles," Proc. First IRE Nath. Convention on Military Eilectronics. pp. 9t-98; June 17-19, 1957.

[^75]: * Received by the IRE, June 19, 1959.

 IA. W. Gent. "The Attenuation and Propagation Fartor of Spared-Dise Cirrular Waveguides, pre-
 sented at 1 EE Convention on Long-Distance Iransmission by Waveguide, January 29-30, 1959,

[^76]: * Received by the IRE, June 8, 1959.

[^77]: * Received by the IRE, July 10, 1959. This work was performed in connection with the U. S. Army Signal Res. and Dev. Iab., Contract No. DA-36-0.3) sc-78001.
 '1. Jacobs, "A generalization of the exponential transmission line," Proc. IRE, vol. 47. pp. 97-98; January. 1959.

[^78]: * Received by the IRE, July 20, 1950.
 ${ }^{111}$. L. Armstrong, "On the ale for revision in transistor terminology and notation," Pruc. 1RE, vol 40. pp. 1040-1450; December, Miss.

[^79]: * Keceived by the IRE, luly 24, 1959.

 1F. A. Gerber, "Precision frequency control for keided miswilen," 1057 ! RF, Vatmonal. Convention ReCORD, pt. 1. pp. 9)-98.

[^80]: * Received by the 1 RF, August 11, 1959.
 S. V. Vadavalli, "Effect of beam coupling coefficient on broad-band operation of mult icavity klystrons, PRUE. IRE: vol. 46, Dp. 1957-1958; Derrember, 1958.
 Wide hand Beaver, R. I. Jepson, and R. I, Walter, Wide band klystron amplifiers, ${ }^{7} 1957$ WESCON CoN-
 vENTION RECORD, vention kiecord, Dt. 3. m. Iil-113.

[^81]: 11. K. plearce "Tlaveling Wave Tubes," D. V'an Nostrand Con Jme Ptincton N. J.: 1950
 -C. K. Birclsail and G. R. Brewer, "Traveling wave tube characteristics ior finite values of Caye IRE Trans. on Filectros Devices. wol, lid-1, pp. 1-11; August, 1954. See for instance. S. V. Vadavalli, "Application of the potential analog in multicavity klystron design and operation," Proc. 1 KEF , vol. 45, pp. 1280-128\%; September. 105\%.
 ${ }^{3}$ (G. R. brewer abdil. K . Birdsall! "Taveling wave tube mpopagation whetante," IRE TrANs. on Fllectron Devicies, whi b:D-0. Dp. 140-144; Aprit, 195%.
[^82]: 535.854:621.3.029.6 279
 Asymmetric Fringes in Multiple-Beam Systems-J. L. Farrands. (npik, vol. 16. mp, 14-18; January, 1959. In English.) The asymmetrical satwooth shape of interference fringes can be produced by the addition of a coherent wave of variable phase. Suitable apparatus is described and applications for microwave interferometry are noted.
 537.534.9:620.18 280
 Improved Method of Etching by Ion Bom-

[^83]: DESIGNERS AND MANUFACTURERS OF SYSTEMS AND PULSE COMPONENTS

[^84]: GUidange/navigation/GONTROL/DEtECtion/ac spark plug The Electronics Division of General Motors

[^85]: Please complete this card, fold, staple and mail. The information you give constitutes the first phase of the Professional Register Program and will enable our professional staff to make a preliminary evaluation of your abilities. All inquiries will be answered immediately. When you complete the Program, the inventory of your talents and capabilities witure progress at HUGHES.FULLERTON. Name

 Address

[^86]:

[^87]: (Continned on puge 112A)

[^88]: (Combunced on foge 28s.1)

[^89]: A DIELECTRIC AND CASE-Fused Structure of Same Glass Composition.
 B FOIL PLATES-Completely embedded in Glass.
 C CONNECTION-Welded for Reliability.
 D TERMINAL SEAL-True Glass-to-Metal Seal.
 E WASHER-Added Terminal Strength.
 F TERMINALS-Copper-clad nickel-iron, hot tinned.
 G ROUNDED-All Edges, for Maximum Strength.

[^90]: These news items represent a digest of information found in many of the publications and periodicals of the electronics industry or related industries. They appear in brief here for easy and concentrated reading. Further information on each can be found in the original source material. Sources will be forwarded on request.

