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A GENERAL RLC SYNTHESIS PROCEDURE 

By Louis Weinberg 
Hughes Aircraft Company 

Research and Development Laboratories 
Culver City, California 

I. Introduction  

There is a wide variety of existing synthesis 
procedures, but as anyone conversant with the syn-
thesis field fully realizes, much remains to be 
done. The inadequacy of available procedures 
shows up particularly in a broad field of communi-
cations, namely, synthesis for prescribed tran-
sient response1. In this synthesis both magnitude 
and phase are important so that the methods for 
realising a prescribed magnitude or transfer func-
tion are inapplicable. Up to the present time 
the only procedure that could be used for the 
realization of both minimum-phase and nonminimum-
phase transfer functions has been the one that 
yields a constant-resistance lattice. This type 
of lattice suffers from many disadvantages. In 
general each of the arms requires close coupled 
or lossless coils. An important disadvantage, too, 
for those cases in which an unbalanced form of 
network is definitely preferable, is that the 
series and cross arms are so complicated relative 
to each other that without the use of ideal trans-
formers reduction to an unbalanced form is vir-
tually impossible. 

The lattice synthesis procedures treated in 
this paper realize a given transfer function with-
in a multiplicative constant. No restriction 
other than physical realizability is placed on the 
function to be realized. Among the advantages 
claimed for the final lattice are that it con-
tains no mutual inductance and all its coils are 
lossy, i.e., every inductance may be associated 
with a series resistance. In addition, the arms 
are of so simple a form as to render the lattice 
amenable to reduction to an unbalanced network. 
For the case of a transfer admittance, moreover, 
reduction can always be achieved with the use at 
most of real transformers, i.e., transformers 
with winding resistance, finite magnetizing 
inductance, and a coupling coefficient smaller 
than one. 

The dimensions of the transfer function to 
be realized depend, of course, on the type of 
system in which the synthesized network is to be 
used. If the driving force, for example, is a 
pentode which approximates a current source, a 
transfer impedance is needed. On the other hand, 
a transfer admittance is necessary for a voltage-
source drive like a cathode follower and a cur-
rent output. Finally, a ratio of output to input 
voltage calls for the synthesis of a dimensionless 
transfer function. The procedures show how each 
of these functions may be realized with the prac-
tical terminations of an open circuit, a resis-

tance, or a parallel resistance-capacitance 
combination. 

II. The Synthesis Problem Presented 

In Fig. 1 is shown a general passive, two 
terminal-pair network which may be completely 
characterized by the pair of simultaneous equaticns 

/1 " YllEl 4. Y• 12E2 

12 " Y21E1 4. Y• 22E2 

or by the inverse set 

El " z11/1 z• 12/2 

E2 s21I1 + z22I2 

(1) 

(2) 

where z12 " z21 and Y12 " Y21 by reciprocity, and 

the y's and z's are the familiar short-circuit 
admittances and open-circuit impedances, respec-
tively. Useful relations may be derived from the 
above basic equations. For example, for a pure 
resistance load of one ohm, since numerically 
E2 . -I2 the second of Eqs. 1 yields 

I2 y12  
Y - . 
12 - El Y22 e 

(3) 

an analogous relation being derived for Z12 from 

For the load an open circuit, that is with 
12 . 0, Eqs. 2 yield 

the second of Eqs. 2. 

K E2 z12 

El " ill 
(4) 

while for a short-circuit load, from Eqs. 1 may 
be obtained 

I2 

Il 

12 

In this paper the two terminal-pair network 
is particularized to the lattice shown in Fig. 2 
for which 



1 where ql is a Hurwitz polynomial, A is a positive 
z11 Za) 

(6) 
real constant, and q' • is the derivative of ql. 

1 
lt, This can always be done as demonstrated in the 

Z12 " r`b Za" reference cited. After dividing the numerator 
and denominator of the resulting K by qi to 

an analogous set of relations holding true for the obtain 
y's. Thus, with the substitution of Eqs. 6, Eq. 4 
becomes -2-

q1  
K •  K . (13) Zb - Za Aq' 

(7) H(1 + 1 ) 

ql 

whereas substitution of the y's for the lattice 
transformo Eq. 3 to 

1 
ya)  

Y12 " 1 
1 + + Ya) 

• (8) 

It is well known, furthermore, that the gener-
al form for any of the transfer functions is a 
rational function given by the quotient of 
polynomials 

me expand p/qi into partial fractions. Its resi-

dues are in general positive or negative real for 
real poles, complex for complex poles. A similar 
expansion of Aqi/qi makes the total denominator 

of K 

Aq k(d) k(d)2 

H(1 + 
q1 ' o 

(110 

where k(d) . 1, and all the residues k(d) for 
asn + asn-1 + .... + ao 
n n-1  µ 4 0 are equal to A. If (Zn - Za) and 

o 4 

bmsm + bal.1sm'..1 + .... + bo (Zn + Za) are also thought of as expanded in 

partial fractions, the residues of like terms of 
(9) (s-s3 ) .... ( s-s) pig]. and (Zn - Za) may be equated as may those of 
n . b  m 

H(1 + Aqi/qi) and (Zn + Za ). We thus obtain 
im- 4-82) (s-s4)....(s-sn) 
n k(b) _ k(a) . k (n) 

. -LW.- 4 4 °' (µ . 0, 1, 2, ... m, 
Hq(s) ' (15) 

where m is degree of q) 

where q must be a Hurwitz polynomial, that is, 
have all its zeros in the left half-plane, and H 
is a positive constant. 

k ( b) k (a) Hk (d) 

4 4 4 

where the superscripts a, b, n, and d refer re-
spectively to Za, Zn, and the numerator and de-

nominator of K, while the subscript µ designates 
III. Open-Circuited Lattice Realization for K '12 P the poles s IL-0 + Yu or s4 • -04 - jw or 

g g' 
s4 . -a in which and w4 are positive. 

It It 
It is desired to realize the given transfer 

function 

E2 p 
a 

El Hq 

Solving Eqs. 15 for the unknown Za and Zn 

(10) residues as indicated in Eqs. 16 below 

as an open-circuited lattice with as large a gain 
(that is, as small an H) as possible. The given 
function may therefore be set equal to Eq. 7; this 
yields 

Z - Z 
K --2-- b a 

Hq ;717 • 

We break q into the sum of two polynomials2, 
so that 

q • q1 Aq' 
1 ' 

(12) 

3 

(b) 1 (d) (o) 
k -(Hk k ) 
µ 2 P. IL 

a(b) jo(b) . 2.(Hk (d) + al(17) + Je)) 
Pµ 2 µ (16) 

k(a) l(H - k(d) k(")) 
µ " 2 µ 4 

(a) + (a) 1 (1 (d) .. a(n) je (n) a jp -- k 

finally yields 



(b) 1 

L O 

= (HA + 

(b) 10(n) 

PFt 

e-  
«0)) . is . a (% n) a (a) = l(H - 
o 2‘ o ' o 2 o 

a4(3) ) a(a) . -1(HA - a(b)) 
µ 2 µ 

(a) 1 (n) 
- - 

pole. If a(n) is positive, Eq. 22 is the 
4 

stronger and must be used to determine the mini-
mum value of H; if a(n) is negative, we use Eq. 

4 
21. Therefore, to summarize the two steps for 
the complex poles, we must determine first the c 

4 
(17) for each pole and then the value of H necessary 

to satisfy the stronger of Eqs. 21 and 22. 

For negative real poles the requirement that 

the residues, a(a) and a(b), be real and positive, 
4 4 

when used in conjunction with the above Eqs. 17, 
gives as the condition to be satisfied for µ 0 

a (n) 

-l e 
HA 

, (18) 

and for µ = 0 we substitute the constant one for A. 
This, of course, is the same as the conlition that 
arises in the Bower-Ordung RC synthesis', since 
for an RC lattice the poles must all be real. In 
the general synthesis considered here, however, 
the complex poles must also be provided for. The 
real parts of the residues in these complex poles 
must not only be positive, but must also be equal 
to or greater than a positive constant c4 which is 

defined below. This is seen by application to the 
residues of Za of the condition for realizability 

that is derived in Appendix I ( with a similar re-
sult holding for Zb ): 

I ( a) a 
11 I (19) 

or 

a(a) 

kt 

a(a) lei(la) 1 (A)4 
4 a 

4 

1 I (n)I 
Pp» cekt 
o 

c ( positive 
4 constant). 

C. (20) 

When the constant c is substituted in those rela-
tions of Eqs. 17 foe which µ 0, the conditions 
to be satisfied become 

and 

2c - a(n) 

1 P' 
HA 

p. 
2c a(n) 

kt  
HA 

We need satisfy only the stronger of the 
above two inequalities for any specific complex 

(21) 

By satisfaction also of Eq. 18 for the real 
poles we may thus tabulate the necessary value of 
H for each pole. In doing this we may use the 
equals sign in Eqs. 18, 21, and 22; then we 
choose a value of H greater than the largest re-
quired value, which automatically guarantees the 
satisfaction of the condition for each pole with 
the inequality sign. This is necessary, as is 
pointed out in Appendix I, in order that every 
inductance appear with an associated resistance 
and that each of the partial fraction components 
(complex conjugate poles taken in pairs)of 

k(a) 

o 

(a 1 ) 
Za = k + 

and 

k(a) 
2  

s - 8 s - 1 82 

k(b) 
(b) 1  

Zb - ko + 
- 31 

k(n) 
2 

• ••• 

▪ Odoe 

s 
32 

(23) 
(b) 
km 

be positive real. Then Za and Zb may be realized 

by inspection in the Foster manner for two-element 
kind networks; and as Appendix I demonstrates, 
every inductance will have an associated series 
resistance. 

One final point, useful in the subsequent 
procedures, is made regarding the constant term 
in Eqs. 23. As is obvious from Eqs. 17 for µ = 0, 
we always obtain this constant term. Furthermore, 
if the degree of p is less than that of q, then 

(b) (a) 
ao = ao 

while if the degrees of p and q are equal, 

_b( a) uo %k + 1 -1( H + 1). 
2‘ 

IV. Procedure Using the Integral of q 

(24) 

(25) 

An alternate procedure is obtained by making 
use of the integral of q, designated by q(-1 ). 
This method has the drawback that it may not 

always work; it works only when q(-1) is Hurwitz. 
It can be easily shown that the integral of a 
Hurwitz polynomial, unlike the derivative, is not 
always Hurwitz. It is a simple matter in any 
particular problem, however, to form the integral, 

(22) choosing the arbitrary constant conveniently, and 

then check for Hurwitz character . The advantage 
of this method is that it generally yields a net-
work with a higher gain and coils of lower Q. 

4 



The steps in the procedure for synthesizing 
an open-circuited lattice begin with 

E2 Zb - Za 

-É1 " Z Z b a 

Hq 

(-1) 

Hq  
(-1) 

(26) 

Naw qig(-1) is obviously of the same form as 

ql/q if q(-1) is Hurwitz; and the procedure fol-
1 l' 

lows along the same lines as the previous one ex-
cept for a few minor differences. The differences 
to be noted are that the constant term in the 
partial fraction expansions, i.e., for µ = 0, is 
nonexistent and the constant A is equal to one. 

For this method the useful equations that 
correspond to Eqs.17 are 

,4 o 

a(b) a (n) ) 
µ 2% µ / 

(b) 1 ( n) n(a) 2,(n) 
134 -0 4 v4 " 2v4 

ce) -;(H - ) 

(27) 

which yield for the real poles the condition cor-
responding to Eq. 18, 

a(n) 

- (28) 

and for the complex poles yield the inequalities 
that correspond respectively to Eqs. 21 and 22, 

2c - a(n) 
I   

H 

and 
2c .4. a(n) 

H 

The use of the above equations, along with the 
definition of c given in Eq. 20 allows a syn-

thesis to be carried out. 

V. Realization of Transfer Impedance 
in Form of Terminated Lattice 

A. Resistance Termination 

To obtain the transfer impedance 

E2 2_ 

12 1- Hq 
1 

(29) 

as a resistance-terminated lattice, it is possible 
to make use of the dual form of Eq. 3, 

1(z - z ) z12  2 b a  
Z =1  

1 + i(Zb + Za) 12 1 z22 
(32) 

By proceeding in a manner similar to that in 
Section III, we can then make the necessary iden-
tifications for direct synthesis of the lattice. 
The network obtained, however, is the same as the 
one obtained by application of the reciprocity 
theorem and well-known lattice equivalents to the 
open-circuited lattice of Section III. For sim-
plicity of demonstration we will therefore con-
sider the method of synthesis of that section as 
the basic one from which the other desirable 
forms of network are easily derived. 

Since, as observed previously in Section III, 
a series resistance is always present in each arm 
of the open-circuited lattice, we derive an equi-

valent lattice' 5 by removing one ohm from each 
arm, then convert to a current source by use of 
Norton's theorem, and finally by use of the 
reciprocity theorem obtain the desired network. 
The sequence of steps beginning with the previ-
ously realized open-circuited lattice for which 

E2 
K . 

El. 
Hq (33) 

is illustrated in Fig. 3. The one-ohm series 
resistance at the output terminals is omitted in 
Fig. 3(c) because the output is open-circuited. 

An improvement in gain can be effected by 
removing more than one ohm from each of the arms. 
Suppose, for the sake of illustration, that p is 
of lower degree than q so that, as noted in Eq. 24 
Ra • Rb = 1/2H. Then we can remove Ra and follow 

the same sequence of steps as in Fig. 3 to obtain 
a network terminated in Ra = 1/2H with the trans-
fer function 

E 
2 1 R 

El2 I- a  •2 q 
1 

(34) 

It is pointed out, finally, that if we stop 
(30) at the step given by Fig. 3(c), we realize a 

transfer impedance in the form of an open-
circuited lattice, where the shunt resistance is 
useful in the instrumentatiOn of the network 
since it may represent the finite internal resis-
tance of the current source. 

B. Parallel RC-Termination 

In the instrumentation of a practical cir-
cuit it is often useful to have a shunt capaci-
tance at the input or output of a network. The 
immediately preceding method showed how to 
obtain a resistance termination for the lattice 

(31) network; this part demonstrates the realization 
of a parallel RC termination. 

5 



The following artifice is restricted in that 
it can only be used for those transfer functions 
in which the degree of p is less than the degree 
of q. Suppose that the ql given by the q (11 + 

Aqi breakdown ( similar remarks applying to the 

q(-1) procedure) has at least one negative real 
zero given by ( s + a). ( If it does not and we 
wish to employ this technique we multiply numer-
ator and denominator of the transfer function by 
a linear term ( o + h) to obtain a new denominator 
from which qi is determined.) Letting the im-
pedance of tte desired termination be k/(s + a), 
we may then write for the RC-terminated lattice 
(using the additional constant k for convenience): 

E2 kp 
Z . 
12 i 

1 

j12 

q kp  l 

Aq' 
H(qi + Aqi) H(1 1) 

ql 

kp 
(s + a)q2 

Aq; 
H(1 + 

ql 

• 

Multiplying the transfer function by ( s + a)/k 
yields 

K ( s + a)Z12/k 

-E-
2 

H(1 + 
q1 

Now this function K is realized as the vol-
tage ratio of an open-circuited lattice by the 
method of Section III. Since the numerator resi-
due in the pole s. -a is zero, it is clear by in-
spection of Eqs. 17 that the residues for Za and 
Zb in this pole are each equal to HA/2. The net-
work which thus has the form shown in Fig. 4(a) 
can be transformed by removal of the RC combina-
tion from each arm, after which the successive 
applications of Norton's Theorem and reciprocity 
give 

• 

(35) 

(36) 

E z 2 e 
12 q 2 q 

1 

factor of 141 ( or of q(-1), if we are using the 

integral method). We then synthesize the re-
sulting function as the voltage ratio for an open-
circuited lattice, after which the steps illus-
trated in Fig. 4 will give Ap/(2q) as the desired 
transfer impedance for the RC-terminated lattice. 

VI. Realization of Transfer Admittance as a 
Resistance-Terminated Lattice 

As pointed out previously in Section V for 
the dual case, it is possible by use of the 
equation 

1 
Y12  - y ) . 2 b a  

Y12 . 
1 + (Y13 + Ya) +y22 

(38) 

to develop the proper identifications for the 
synthesis procedure. The simpler approach, hole-
ever, is to consider the entire procedure of 
Section III carried over to the dual problem; that 
is, instead of first synthesizing for a voltage 
ratio by means of an onen-circuited lattice, we 
now realize 

I2 Y12 

11 
(39) 

in the form of a dort-circuited lattice. The 
dual of the remarks in Section V(A) now apply so 
that we obtain a final transfer function 

I2 1 2 

Y12 ' F.1 2q 

for the same problem treated in that section. 
The final lattice with a resistance termination 
will be of the form shown in Fig. 5. 

In Appendix II, where the general problem 
of the reduction of lattices to unbalanced forms 
is taken up, it is shown that the use of real 
transformers always allows the lattice obtained 
for Y12 to be converted to an unbalanced network. 

VIl. Illustrative Example 

We desire to synthesize within a constant 
multiplier the given 

- 2 
(37) 12 q (512 + 0.76536s + 1) ( 2 + 1.84776s + 1) 

for the final desired form of network. The perti-
nent equations and steps are indicated in Fig. 4. 

To summarize the procedure, we 
given function as Z12 kp/Hq ( this 

finally achieve, where k 1/2(HA)). 
multiply this by ( s + a)/k where ( s 

consider the 
is what we 

We then 
+ a) is a 

as a resistance-terminated lattice. The given 
Y12 represents the Butterworth approximation to 

the normalized low-pass filter with n 4, where 
w2) . 1 w 2n 

the Butterworth functions are B ( 
2n% 

and 2 1 1 1Y121 a.jw " 1.1(8) 12 1 + w2n 
s.jw 

6 



We first realize 

12. E Yb Ya 

1 b a 

as a short-circuited lattice and then by trans-
formations obtain the desired Y12. 

The breakdown q = ql + Aqi for A=0.1 yields 

q (s + 1.61976s + 0.813459)(s2+ 0.59336s 
1 + 0.975703) 

and therefore 

1 

(11 

(n) 
al 

a(n) 
. -0.44509 

. 0.80988 a1 

02 . 0.29668 

0.1J4509 - j1.0854  -0.114509+j0.21483 
s + 0.80988 - j0.39693 s+0.29668-j0.94217 

By inspection we see 

= 0.44509 

We find from 

that 

+ conjugates. 

0.21483 

0.39693 

2 . 0.94217. 

1.(n)1 
c . 2 Pp p  
4 a 

4 

C1 = 0.2660 

c2 = 0.3411. 

By use of Eqs. 21 and 22, we obtain 

H 1.;" 9.8 

H2≥10.3 

We choose H=25. Therefore 

=12.5 

. 1.47255 

. 1.02746 

.- 0.5427 

0.10742 

cli a). 12.5 

(a) . 

c4a). 1.47255 

(a) 
P1 " 
(a) 
p 2 »- 0.10742. 

1.02746 

0.5427 

The lattice arms are then given by 

2.05492 ( s Ya + 0.60022) . 12.5 + 

s2 + 1.61976s + 0.813459 

2.94510 ( s + 0.36541) 

2 + 0.59336s + 0.975703 

Y = 12.5 + 
b s2 + 1.61976s + 0.813459 

2.94510 ( s + 0 .95617)  

4. 2.05492 ( s + 0.19818) 
• 

92 + 0.59336s + 0.975703 

The application of the necessary transfor-
mations gives the lattice shown in Fig. 6 for 
which 

y . 2 
12 2 04 

1 

2 ( 2 + 0.76536s + 1) ( 2 + 1.84776s + 1) 

1 

VIII. Conclusion 

A method has been demonstrated for realizing 
any transfer function by a lattice network. Each 
inductance used has an associated series resis-
tance so that lossy coils may be used in building 
the network. General methods for reducing a 
lattice to an unbalanced form have been considered 
and it was shown that if real transformers are 
allowed, i.e., transformers with winding resis-
tance, finite magnetizing inductance, and a 
coupling coefficient smaller than one, then the 
lattice realizing Y12 is always reducible to an 

unbalanced network. 

Appendix I. Partial Fraction Expansion 
of a Positive Real RLC Function 

For the driving-point functions of two-
element kind networks the Foster method of synthe-
sis can be successfully applied, that is, a partial-
fraction expansion may be made to yield terms each 
of which is positive real and therefore realizable 
by inspection. Though the method breaks down for 
general RLC functions, it may work for a particular 
type of RLC function. In this appendix we deter-
mine the necessary conditions on the residues for 
the success of the method*; we determine, in addi-
tion, the conditions necessary so that a series 
resistance can be associated with every inductance; 

*These conditions were pointed out by Dr. E. A. 
Guillemin in his Network Synthesis course at 
MO I. T. 

7 



and finally we indicate the al plication of the 
above to the synthesis treated in this paper 

The partial-fraction expansion of a positive 
real RLC impedance 

k1  k2 k3 
Z 

g gl 

k4 
s - s2 s - 53 s - s4 

can be written more explicitly as 

al 4 4 1  al - 4 1  + 

al - g 4 al 4 iwl g a 

131.1 
201 (8 + 0 ---- 

1 a1 
--."••••" I • • • 

92 + 2o1s + w2 s + a 
o 

= z1 + z2 + 

• • • 

(1.1) 

(1.2) 

so that the typical terma z1 and z, become apparent. 
To simplify exposition we have assàmed only simple 
poles; we also have considered an impedance, the 
dual of the following remarks of course applying 
to an admittance. In Eq. 1.2' 01 and cel are real 

and positive constants, the constants R, al and p1 
^ 2 2 

are real, and eicy + cel. In order for terms 

like z2 (with negative real roles) to be positive 

real and hence separatelyrealizable aE asimple 
driving-point impedance, it is clear that R must 
be positive. However, the condition on the residue 
of the partial-fraction component z1 containing 

complex poles is not so obvious, except that it is 
necessary for el to be positive. By application to 

z1 of the well known test for positive real 

characterh, the additional condition is found to be 

toll t  al 

al e  Col 

• (1.3) 

In words, then, the oondition for the exis-

tence of a positive real partial fraction com-
ponent z1 is that el be positive and the angle 

formed by the imaginary axis and the radius from 
the origin to the pole be greater than or equal 
to the angle of the residue of the pole. This is 

illustrated in Fig. 1.1 where angle e e tan-1 
(11/al) must be less than or equal to the angle 

* tan-1(0A), or the residue may lie any-

where in the crosshatched portion of the plane. 

It is desired that the inductance used in 
the synthesis of z1 have a series resistance 

associated with it. Since p1 may be positive or 

negative, two cases arise. For pr. 0, if Eq. 1.3 

is satisfied with the equality sign, then 
. 01 and the quantity ( a - 

1 lil 
appearing in Eq. I.? equals zero, so that a 
perfect coil is required. ( For the admittance 
cae all of the dissipation would be associated 
with the inductance.) On the other hand, if the 
inequality sign is used, ( al - piwi/e1) is 

greater than zero, which guarantees a lossy coil. 
For the case of a negative pi, it is possible to 

associate all of the dissipation witn the coil by 
making al - 2a, with satisfaction of 

Eq. 1.3 by the equals sign. Again, satisfaction 
with the inequality sign allows some dissipation 
to be associated with the coil. Thus, in both 
cases ( p,0, i0), use of the inequality sign 
calls for an impedance containing a lossy coil; 
and since as is demonstrated in Section III, the 
lattice synthesis procedure requires that the 
lattice arms Za and Zb have pts which are equal 

numerically but of opposite sign, it is mandatory 
that the inequality sign be used if it is desired 
to obtain lossy coils in both arms. 

The synthesis procedure of this paper 
guarantees that the Za and Zb have positive real 

partial-fraction components with lossy coils, and 
thus the arms may be realized by inspection in 
the Foster manner. 

Appendix If. Reduction of Lattices 
to Unbalanced Networks 

An unbalanced form of network, that is, one 
with a common ground from the input to the output 
terminals, is definitely preferred to a lattice. 
The problem of converting a lattice to an unbal-
anced network is therefore an important one. This 
appendix first considers general lattice equi-
valents, then passes on to reduction of the special 
types of lattices that may arise from the synthe-
sis procedure of this paper and finally shows that 
the reduction of a network realizing a Y12 is al-

ways possible with at most real transformers. 

Lattices may be transformed to unbalanced 

networks in the folloeing ways3'5: 

a) A series impedance may be removed from 
both Za and Zb and placed in series with both the 

input and output terminals ( see Fig. 11.1(a)). 

h) A shunt impedance may be removed from 
both Za and Zb and placed in shunt with both the 

input and output terminals ( see Fig. II.1(b)). 

c) A shunt impedance may be removed from the 
series arm Za and considered as a bridge across 

the remainder of the lattice ( see Fig. II.1(c)). 

8 



The ideal transformer that is necessary may be 
removed when the remainder of the lattice has 
been transformed to an unbalanced network. 

d) A series impedance may be removed from 
the cross arm as shown in Fig. II.1(d). Again 
the ideal transformer becomes unnecessary when 
the remainder of the lattice has been transformed 
to an unbalanced network. 

e) A lattice may be broken into a group of 
parallel lattices ( see Fig. II.1(e)). 

In any specific problem, to reduce a lattice 
to an unbalanced form may require the application 
of a succession of the above methods, or it may 
first be necessary to resynthesize a lattice arm 
before one of the methods may be successfully 
applied. Thus considerable ingenuity is called 
for. However, the types of lattices that are 
realized in this paper, since they contain the 
same poles in both arms, are reducible in a large 
number of problems. We mention below a few of 
the forms which can be recognized as reducible in 
general. 

If all the residues in the real poles of one 
arm are larger than the corresponding residues in 
the other arm and, in addition, the coefficients 
of the numerators of the pairs of complex poles 
in the first arm are larger than the corresponding 
coefficients of the poles in the other arm, then 
the lattice is immediately reducible to an L 
network. Since this is a very restricted form of 
network, the residues will rarely have this de— 
sired distribution. 

A completely general form of unbalanced 
network is given if, at any stage of the lattice 
reduction process, the lattice arms can be re— 
synthesized into the ladder forms shown in 
Fig. 11.2, where G represents a conductance and 
Z an impedance. A two—element kind network is 
used for simplicity of illustration. How to 
bring this about in general is a matter requir— 
ing further investigation*, but when it is pos— 
sible the lattice containing these arms can be 
reduced to the form shown in Fig. 11.3. 

For the lattice obtained in the synthesis 
of Y12' it is always possible to effect a re— 

duction to an unbalanced network if one of the 
residues in a real pole is very large, specifi— 
cally, large enough for the method to be applied. 
As an example of the reduction procedure when a 
large residue is present, consider the six—pole 

* After this had been written ( in 1951), it 
came to the writer's attention that O. Aberth 
was conducting an investigation into this prob— 
lem for RC networks as his Master's thesis 
research at M. I. T. 

lattice 
by 

Ya 

and 

shown in Fig. 11.4, whose arms are given 

Yla Y2a Y3a Y4a (II.1) 

2s + 1  3s + 4  8 2 

s2 + 2s + 5 s2 + 4s + 6 s + 2 5+ 14 

y . y + y + v + 
b lb 2b -3b Y4b 

3s + 2  
4" 7 -111—I—Z-- __2__ (II.2) 

s2 + 2s + 5 s + 4s + 6 s + 2 

1 • 
5+14 

Because of the large residue in the admit— 
tance y3a, the lattice can be reduced. First we 

remove from each arm the shunt branches v 

Y 2a' Y3b' 
(see Fig. II.5(a)). Since the 

Y4b 
drive is a voltage source the shunt branches 
may be omitted from the input terminals. Then 
we split the remaining lattice into two parallel 
lattices with a bridging branch, as shown in 
Fig. II.5(b). Finally these may be transformed, 
as shown in Fig. II.5(c) to obtain a bridged 
twin—tee network with a complicated load. 

As a last resort, if all other methods fail, 
it is possible by the use of real transformers 
always to reduce any lattice Tliiined in the 
synthesis of Y12 by the methods presented in 

this paper. The procedure is explained below. 

As is well known, any lattice may be reduced 
to an unbalanced form by the use of an ideal 
transformer. The process calls for a rotation of 
the output terminals so that the cross arms be— 
come series arms. In order to compensate for this 
rotation an ideal transformer providing a phase 
reversal is necessary. The procedure is 
illustrated in Fig. 11.6. 

However, we wish to use only real trans— 
formers, i.e., transformers possessing leakage 
inductance, winding resistance, finite magnetiz— 
ing inductance, and core loss; the equivalent 
circuit of such a real transfarmer is an ideal one 
with a series resistance and inductance and a 
shunt resistance and inductance. We shall now 
show that the form of network realized in the 
synthesis of a transfer admittance automatically 
provides the necessary series and shunt branches. 

The general procedure is best explained by 
a simple example. Without loss of generclity 
suppose we consider the lattice shown in Fig. 
II.7(a) where the numerator of yla is larger than 
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the numerator of the same pole in the cross arm, 
but the numerators of y2b and y3b are larger than 

the corresponding numerators of y2a and y3a. 

This is the form of lattice obtained in realizing 
a transfer admittance. We may remove v -lb' Y2a' 
and y3a from both arms and divide the lattice into 

a group of lattices as shown in Fig. II.7(b). 
Then the final step of rotation and use of ideal 
transformers which now, moreover, have series and 
shunt inductances may be carried as in Fig. II./ 
(c). Each of the networks within the broken lines 
represents the equivalent circuit of a real trans-
former. 

If it is desired to use physically realizable 
mutual inductance without a core-loss resistance, 
we may use another method that is often appli-
cable. The lattices that realize a transfer 
admittance may be divided into components similar 
to that shown in Fig. II.8(a). It is seen that 
the only requirement for the reduction of this 
component lattice is that Rb be greater than Ra. 

For, by removing Ra and La from each arm, we then 

obtain the network shown in Fig. II.8(b). If 
(Lb - La) is negative, we can use the mutual 

inductance form of network shown in ( c) of the 
figure for practical realization. All that 
remains is to show how to realize a sufficiently 
small Ra. This happy circumstance often comes 

about naturally in the realization of a transfer 
admittance. If it does not, it can often be 
brought about by the multiplication of numerator 
and denominator of Y12 by ( s + a) as the first 

step in the synthesis procedure, where a is a 
sufficiently small positive constant. - 

Fig. _ Two terminal-pair network. 

10 

Thus, in summary, we see that we may often 
arrive at an unbalanced form of network by the 
methods presented in this appendix. Moreover, if 
we allow realizable mutual inductance in the 
synthesis of Y12, we can always obtain an un-

balanced network. 
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Fig. 3 

Steps in the conversion of open-circuited lattice for which K=E z/E il-p/Hq to resistance- terminated 

lattice with ZusE2/I i.p/Hq. (a) Open- circuited lattice for which K=E2/E i=p/Hq. (b) Lattice equi-

valent to that in ( a). (c) Lattice after application of Norton's Theorem. (d) Lattice given by applica-

tion of reciprocity theorem, where Zi2 =E 2/I i.p/Hq. 

+HA 
z • -àw, 

E, Ez 

Ez 

E, 

Fig. 4 

Steps in the conversion of an open-circuited lattice for which K=E z/E 1.(s+a)p/(Hq) to an RC-termin-

ated lattice for which Z=E2/I I=Ap/(2q). (a) Open- circuited lattice for which K=(s +a)p/(Hq)=Ez/E i. 

(b) Lattice equivalent to that in ( a). (c) Lattice after application of Norton's Theorem, where 

2(s+a)Ei/(HA). (d) Lattice after application of reciprocity theorem with 

Z12.E2/1 1=(1/2)HAE2/(s+ a)E 1=(HA/2)K/(s +a).Ap/(2q). 
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Lattice for which Y1 1/2(P/q). 
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Graphical illustration of pole and 
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Network realized in the illustrative example where 

Y/12- -1 2(p/q). 



Z20 

Zlb Z2b 

Fig. 11.2 

Desirable form of lattice arm impedances, 

• where Gna Gnb and Znb Zna 

Gia-Gib 

Fig. II. 1 

Methods for the conversion of lattices to 

unbalanced networks. 

a) Removal of a series impedance from each arm. 

b) Removal of a shunt impedance from each arm. 

c) Removal of a shunt impedance from series arm. 

Fig. 11.3 

Unbalanced network corresponding to lattice 

with arms given in Fig. 11.2. 

d) Removal of a series impedance from the cross 

0_ 1( 
arm. 

e) A single lattice decomposed into two lattices in 
parallel. 

13 

'le 

Fig. 11.4 

Six-pole lattice to be reduced to 

unbalanced network. 
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Fig. 11.5 

Steps in reduction of lattice that contains a sufficiently large residue. 
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11:41.1. Fig. 11.6 

Reduction of a lattice by use of ideal transformer. 
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Fig. 11.7 

Reduction of a lattice by use of real transformers. 
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Fig. 11.8 

Reduction of a lattice by use of mutual inductance. 
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A General Theory of Wide-band Matching 

by 

Richard La Rosa and Lerbert J. Carlin 

Microwave Research Institute 

Polytechnic Institute of Brooklyn 
Brooklyn, New York 

It is often desirable to terminate a 
resistive generator in a resistance equal to the 
generator internal resistance-. This is particu-
larly true if the generator represents a length 
of nearly lossless transmission line because 
otanding waves on the line can be avoided by ter-
ainating the line in its characteristic imped-
ance. 

When a resistive generator supplies 
dower to an arbitrary complex load impedance, a 
two terminal pair matching network can be in-
serted between the generator ano load to termi-
aate the generator in an impedance which is 
almost equal to its internal resistance. When 
the matching is to be done over a broad band of 

frequencies, it is often not possible to obtain 
the desired quality of match with.a lossless 
!latching network; a lossy matching network must 
therefore be used. Lossy matching networks are 
also used to insert controlled amounts of attenu-
ation for equalization purposes. when lossy 
!latching networks are used, attenuation can be 
controlled independently of the matching func-
tion as long as the power-transfer efficiency is 
below a certain limit presented in this paper. 
2he power-transfer efficiency is the ratio of 
?ower actually reaching the load to the available 
?owar of the generator. 

The given load is represented by a 
lossless 4-pole E terminated in a unit resistor. 
fhe tandem combination of the matching network D 
and the lossless network E is a network S as 
shown in Fig. 1 

Fig. 1 

latching Network and Part of Load Representation 
Combined to Form a Single Network 

The network S is characterized by a 
scattering matrix (5) given by 

[5]' 
[11 121 
S12 S22 • 

(1) 

The reflection coefficient of interest 
is 15111 and the power-transfer efficiency of 
the matching network is 15121 2. R. M. Fanol 
found the restrictions on these quantities for 
the case of a lossless matching network and 
H. J. Carlin and R. LaRosa2 found in convenient 
form the limitations on 15121 2 when a lossy 
matching network makes S11 identically zero. 
R. LaRosa and H. J. Carlin have considered4 the 
general case of a dissipative matching network 
where the input reflection factor may have any 
desired value. 

The lossless network E imposes restric-
tions on the output reflection coefficient S22 
which are best expressed as integral formulas 

involving log 15221 in the integrand. These in-
tegrals were tabulated by R. M. Fanol using a 
method shown by H. W. Bode3. The integral re-
strictions essentiall¡ establish the lower limit 

of 15221 over the entire frequency range. 

The functions 15111 and S12 j2 are in 
turn limited by 15221 through the inequality 

as long as 

1512125- (1.1s111) ( 1-Is221) 

122 —5 1 > 15 1 11 

(2) 

(3) 

There is no advantage in violating in-
equality ( 3), so that inequality ( 2) controls 
the upper limit on IS1212 . Inequality ( 2) shows 
that for given ISli and 16221 functions the 
greatest power-transfer efficiency is obtained 
when ( 2) is exactly satisfied as an equality. 
This condition exists Ithen the matching network 

contains no more than a single resistor. 

Inequality ( 2) shows that for minimum 
insertion loss networks ( i.e. one resistor) in-
creased input mismatch pl will allow in-
creased power transfer Sl2 2 up to the point 
where PUJ equals 1S221; at this point the dis-
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sipation in the matching network goes to zero and 
conditions for a lossless matching structure are 
defined. If IS111 is increased beyond this poet 
another inequality becomes operative and 151214 
decreases. The maximum power transfer is obtaked 
with a lossless matching network. 

The techniques used and results dis-
cussed above can also be applied to the matching 
of an arbitrary generator to a resistive load. 
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SYNTHESIS OF EueTRIC FILTERS 
WITH ARBITRARY PILSE CHARACTERISTICS 

Byron J. Bennett 
Stanford Research Institute 

Stanford, California 

I Introduction 

This paper will deal with an insertion-loss 
method for the synthesis of electric filters, 
placing particular emphasis upon approximate real-
ization of specified phase characteristics. It 
will be shown that: 

1. A specified phase characteristic may be 
approximately realized in a filter network, pro-
vided that the approximating phase characteristic 
can also be realized in an all-pass network. 

2. An attenuation characteristic approximar 
ing a constant pass-band value in Tschebyscheff 
equal-ripple fashion can also be realized in the 
same filter network. 

Discussion will be confined primarily to the 
synthesis of low-pass filters. However, the same 
general method applies to other filter types.1 The 
conformal transformation applied here in the low-
pass case is not applicable to band-pass or high-
pass filters, but the general philosophy involving 
the analogous potential problem still applies in 
these cases. The method to be described will lead 
directly to filters which have approximately the 
attenuation and Phase characteristics desired,i.e" 
additional phase-correcting all- pass networks will 
not be required. A practical design procedure 
will be outlined first and then proof will be 
given that the procedure does lead to a network 
having approximately the attenuation and phase 
characteristics prescribed. 

II Formulation of the Problem 

A. The Insertion Voltage Ratio 

It is required to design a network to be in-
serted between R1 and R2 in Fig. 1 such that the 
resulting output voltage (E in Fig. 2) will vary 
with frequency in a prescriEed manner. The net-
work will be designed so that a given insertion 

.k 
ratio .- is obtained, in which E> and E20 are the 

0 
output voltages with and without the networkeer 
spectively. (Figs. 1 and 2.) In order that the 
network may be composed of linear, lumped, and 
passive elements, the ratio 11.. must possess cer-

tain well-known properties: 

1. It must be a rational function of p, 
where p is a complex frequency variable. (p = 
d + jw where w is anguler frequency.) 

2. Its zeros and poles mus. occur in conju-
gate pairs. 

3. Its poles must appear only in the left 
half of the p-plane since they are natural modes. 

4. It must be equal to or less than the 

quantity R1 + R for all values of «4 

2JR1 2 

= R1 11,? 
E20 21W1 R2 

so that maximum power transfer is obtained.) 

when the network matches R1 and R2 

FIG. I 
CIRCUIT WITHOUT FILTER NETWORK 

FIG. 2 
CIRCUIT WITH FILTER NETWORK 

B. An Example of Ideal Filter Characteristics 

It is thus necessary to find an approximating 
function, to be called W(p), which meets all the 
requirements Eof Section IIA so that it may be 

realized as-e- , and yet has characteristics 
20 

which approximate desired transmission character-
istics. The functipn having desired transmission 
characteristics will be termed W'(p). 

For purposes of illustration it will be as-
sumed that 10(p) has the characteristics of an 
ideal filter293 (Fig. 3): 

1. Its magnitude shall be a constant, unity, 
in the pass band which shall extend over the nor-
malized frequency range, -1 < w < 1. 

2. Its magnitude for all other values of w 
shall approach zero. 

3. The phase associated with 10(p) shall be 
a linear function of w over the frequency range 
-1.43 < w < 1.43. 
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It has long been known that characteristics 
such as those shown in Fig. 3 cannot be realized 
exactly by a W(p) which meets the requirements 
enumerated in Section IIA. Accordingly, such char-
acteristics are only approximated by a given W(p), 
and then a network which realizes the given W(p) 
is found by standard realizat-7cm techniques. 

FIG.3 

MAGNITUDE AND PHASE OF w'(p) VERSUS ce 
(0..01 

* Multiply vertical scale by 2 to get radians. 

C. The Proposed Method  

The method proposed for obtaining a proper 
W(p) is as follows; 

1. The phase-frequency characteristic de-
sired is approximated by means of a rational frac-
tion Fa ( p), which possesses all the characteris-
tics neessary for realization as of an all- pass 

e20 
network, i.e., Fap(p) meets all conditions of Sec-
tion IIA, and its magnitude-frequency characteris-
tic is constant for all co. This approximation may 
be accomplished by any one of a number of methods. 
One of the best existing methods, making use of 
Tschebyscheff polynomial series, has been proposed 
by Darlington.' 

2. The pass-band portion of the prescribed 
magnitude-frequency filter characteristic is then 
approximated in a Tschebyscheff equal-ripple 
fashion without altering the phase characteristic. 
The steps outlined in the following sections deal 
specifically with this aspect of the problem. 

III practical Procedure for Obtaining a 
¡proper Approximating Rational Fraction 

W(o) from a Given All-Pass Type Rational 
Fraction Fap (p) 

A. Introduction 

In this section the necessary steps for ob-
taining a given approximating filter function W(p) 
will be outlined, assuming that an all-pass ration-
al fraction Fap(p) has already been obtained. The 
procedure will be divided into two parts. The 
first part will deal with obtaining a rational 
fraction G(p) whose magnitude is a Tschebyscheff 

equal-ripple characteristic in the pass band; 
proof for the stepn involved in .Ulls first part 
trill be given in Section IV. The second part yin 
deal uitil obtnining n "J(p) from a iven G(p). 

Thus, the design nrocedure will begin with an 
all-pass rational fraction, 

N(-p) 
N(p) Fap ( P) - (1) 

which has a phase-frequency characteristic approxi-
mating the desired phase-frequency characteristic. 
In Eq. 1, N(p) is a Hurwitz polynomial, i.e., its 
zeros are in the left half of the p-plane. The 
pole-zero arrangement for an Fao (p) having three 
poles and three zeros is shown in Fig. 4. The 
objective will be to find an approximating rational 

fraction, W(p) - K-F ILp) Y2--- , in which M(p), N(be-

cause of quadrantal arrangement of its zeros in 
the p-plane, will have a constant phase-frequency 
characteristic in the pass band. * 

p • cr+ P- PLANE 

o 

e 

O 

FIG.4 
POLES AND ZEROS OF AN ALL- PASS 

RATIONAL FRACTION Fop(P) 

Thus, W(p) will have the same phase characteristic 
as Falo(p), and if M(p) is nroperly chosen the 
magnitude of W(p) will be a Tschebyscheff equal-
ripple approximation of the pass-band magnitude-
frequency characteristic of WI(p). The constant 
h is real and should be so chosen that 

R1 R2  for all co. A prac-
2\fill R2 

tical consideration sometimes further governs the 
choice of Y. This will be discussed in Section V. 

B. Steps in Obtaining G(p) from F e (p)  

An initial objective will be the determina-
tion of a rational fraction 

[1,(p)12  
G(p) - 

AN(p)N(-p) ' 
(2) 

* The pole-zero arrangement of a W(p) obtained 
for the illustrative example of Section VI is 
shown in Fig. 7. For another W(p), the zeros 

• might be complex but they must always occur in 
quadrantal symmetry. 
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where L(p) is a ]1.ynomial whose zeros occur in the 
pass band and the real constant A is chosen so 
that G(m)j = varies between limits of 0 and 1 in 

Pico 
the pass-bend region. After G(p) is deternined, a 
few simple steps will lead to W(p). The polynomial 
L(p) may be considered to be a generalized Tscheby-
scheff polynomial whose coefficients depend upon 
the location of zeros of N(p). It will be inter-
esting to note that if AN(p)N(-p) is a constant 
equal to unity, L(p) will be a Tschebyscheff poly-
nomial. * 

The procedure for determining G(p) is: 

1. The quantities Zl, Z2, Z3 ....Zn are found 
by making use of the equation 

(pn2 + 1) 2 

Zn -   
Pn 

(3) 

where the pa 's are the locations of the zeros of 
N(p) [ or the zeros of N(- p)]. In the solution of 
this equation only the Zn 's with the positive real 
parts are used. 

2. The even part of the polynomial 
i=n 

P(Z) = 177-1 (1 z4z.) is transformed back into the 
=  

p-plane, agar using the transformation 
= (p2 

will be obtained from this step. 

S(m) 
A rational fraction U(P) - T(p) 

3. The polynomial S(p) will have either 
(a) the same number of zeros as N(p) 

when n is even, or 
(h) one less than the number of zeros 

in N(p) when n is odd. 
The polynomial L(p) must have the same number of 
zeros as N(p). Thus if ( a) applies, L(p) = S(p), 
and if (h) applies, L(p) = pS(p). 

4. The square of L(p) found in step No. 3 
will form the numerator of G(p), and N(p)N(-p) 
will be its denominator. The real constant A is 
now chosen so that G(p) will have a magnitude-
frequency characteristic which oscillates between 
0 and 1 in Tschebyscheff fashion in the pass band, 
i.e., -1 < ce < 1. 

In Fig. 5 the poles and zeros of a typical 
Go) are shown. If the G(p) having these partic-
ular poles and zeros is obtained from the Fap (p) 
having poles and zeros shown in Fig. 4, then the 
pole locations of G(p) are the same as the loca-
tions of the poles and zeros in Fa ( p). The zeros 
of G(p) are always located in the pass band on the 

AN(p)N(-p) would never be equal to unity in the 
the application discussed here since this would 
mean that all natural modes would occur at in-
finite frequency. The statement was made mere-
ly to indicate the relationship between L(p) 
and Tschebyscheff polynomials. 

jcu-axis. Now G(p) does not have all the character-
istics which E2 must have. It has properties 

No. 1 and No. 2 tabulated in Section IIA, but not 
property No. 3, and perhaps not property No. 4. 
The magnitude of G(p) does vary between limits of 
0 and 1 in the pass band, and it will be easy to 
obtain a W(p) from G(p). The next objective will 
be determination of W(p), which will have: 

1. The significant properties of G(p), 
2. Property No. 3 and property No. 4, 
3. A magnitude-frequency characteristic 

which approximates a constant value in the floss 
band within a specified tolerance. 

P- PLANE 

X j1 X 

 X  

X x  

cr 

FIG.5 

POLES AND ZEROS OF THE 
RATIONAL FRACTION G(p) 

C. Steos in Obtaining W(o) from G(D)  

1. If the ratio of the maximum magnitude of 
W(p) in the mass band to the minimum in the pass 
band is r, G(p) muy be modified to achieve this 
ratio by subtracting a positive real constant B 
from F(p), i.e., 

H(p) = G(p) - B - 
N(p) 

N(p)il(-o) 

where the constant B is determined from the 
equation** 

(4) 

B - (5) r - • 

Subtracting the constant B from G(p) does not 
affect any of the necessary characteristics which 
G(p) possesses but obtains the specified ratio of 
the maximum magnitude of H(p) to the minimum mag-
nitude of 11(p) in the pass band. This may be seen 
from Fig. 6 in which a magnitude-frec,uency plot 
of a typical G(p)] p=i0à is shown. It may be noted 

that if the real ponitive constant B is greater 
than unity, then, when it is subtracted from 
G(p)j. which is also real and positive for all 

P=3(1) 
w, no zeros of the resulting H(p) occur in the 

** 
Alternatively, B may be cosen to obtain a 
given rate of cutoff. 
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pass band. The reason for subtracting B from G(p) 
instead of adding is also easily seen from Fig. 6. 
Subtraction of B results in a low stop-band value 

jP-
fortheabsoluternajlitude ofi«_.102 whereas  

addition of B would lead to a higher stop-bend 
than nass-band value. 

Gtice) 

FIG. 6 

CURVE OF G(I<e) VERSUS (4 SHOWING EFFECT OF 
SUBTRACTION OF A REAL CONSTANT FROM G(p) 

2. In order to obtain a function which poss-
esses property No. 3, H(p) is modified to form a 
new rational fraction 4(p) by removing the poles 
in the right half of the p- plane and doubling the 
poles in the left half of the p-plane. Thus, 

M( o) 
- 

[N(p)12 • 
(6) 

Therefore, Q(p) meets all conditions except No. 4 
and, in addition, its magnitude has a specified r 

in the pass band. 

3. In order to meet condition No. 

W(p) must be less than R1 + R 

24R1 2 
merely multiplied by an appropriate constant K. 
Thus, 

W(P) - Y M(u)  
2 

[N(P)] 

4., i.e., 

for all u), 4(p) is 

(7) 

In this manner, a W(p) which approximates the 
characteristics desired for fa_ and, in addition, 

E20 
meets all necessary conditions of has been 
obtained (Fig. 7). 20 

IV proof That the Steps Outlined in Section 
III Produce a G(p) Possessing an Euual-
Ripple Magnitude Characteristic in  

the Pass Barg 

The procedure in this section is directed 
toward determination of a G(p) from a given Fap (p) 
as outlined in Section III. However, the proce-
dure is more detailed in order to show that G(p) 
indeed has a Tschebyscheff characteristic in the 
pass band. The reason for inclusion of some of 
the steps may not be apparent until the end. At 

each step a new function is formed using some of 
the properties of the function in the previous 
step. 

TWO ZEROS AT 
INFINITE FREQUENCY j(') 

X2 Ii 

P -PLANE 

FIG. 7 
POLES AND ZEROS OF A TYPICAL W(Q) 

A. The national Fraction Fi(o)  

Suppose a rational fraction F(p) is formed 
from a given Fap (p) by replacing the zeros of 
Fap (p) by poles. Thus, 

F(o) 1  
N(p)N(-p) • 

(8) 

The zeros of this function are located at infinite 
frequency. In Fig. 8 the nole locations of the 
F(p) function corresponding to the all-pass pole 
and zero locations of Fig. 4 are shown. 

ALL ZEROS AT 
INFINITE FREQUENCY P - PLANE 

X 

X 

FIG. 8 

POLES AND ZEROS OF Fx 

B. The Rational Fraction  

Now a G(p) which approximates a constant in 
the pass band, -1 < w < 1 , is to be obtained. 
Therefore, some means should be talen to alter the 
p-plane of Fig. 8 so that a filter-like magnitude-
frequency characteristic is obtained. A step in 
this direction is row attemnted by introducing the 
condition that the notential be constant over the 
normalized pass-band region. Mathematically, this 
may be done by considering the analogous potential 
problem of Fig. 9 in which unit positive charges 
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are at the pole locations and all negative charge 
is distributed on a conducting surface in the pass 

+ 
band. The transformation Z - " will 

transform the pass band and hence the conducting 
plate of Fig. 9 into the entire imaginary axis of 
the Z-plane of Fig. 10. 

NOZEROS(UMTNEGATIVE 
CHARGES)AT INFINITE • 

Ica FREQUENCY P- PLANE 

X 
j1 
-.-ALL NEGATIVE 

CHARGE ON CON-
DUCTING PLATE 

UNIT POSITIVE 
CHARGE-.-X 

FIG.9 
ANALOGOUS POTENTIAL PROBLEM ASSUMING 
CONSTANT MAGNITUDE ( SCALAR POTENTIAL) 

IN THE PASS BAND 

z • (P+ I) ' 
8 iy 

Z - PLANE 

CONDUCTING PLATE 

8 x 

FIG. 10 
POTENTIAL PROBLEM AS SEEN IN THE Z-PLANE 

Since two values of Z exist .for each value of p, 
two Riemann surfaces are needed to describe the 
Z-plane. Only one sheet in the Z- plane is essen-
tial to the potential problem, however. The com-
plex Z- plane potential, c¡J(Z), is now evaluated in 
the right half of the Z-plane using the method of 
images, i.e., the conducting 2late is removed and 
the poles in the left half of the Z-plane are 

placed by zeros. TFe rational fraction  

may be written: 

cy(z) 
= i=n (1Z 

7r --L) , 

re-

(9) 

where the real parts of Z1, Z2....Zn are all posi-

pi2 + 
tive and Zi - • 

Pi 

The entire imaginary axis of the Z- plane 
corresponds to the pass brrd of tie p-plane. It 
is next convenient to lerform a few mathematical 
manipulations in the Z- plane before returning to 
the p- plane. 

G. The Rational Fraction f(Z) 

ce( 7) The magnitude of the rational fraction c  
is absolutely constant on ti \imaginary axis in 
the Z-plane, and thus if c' ) is transformed bach 
into the p-plane, its magnitude in the pass band 
will be absolutely constant. However it will be 
impossiblg to obtain an absolutely constant magni-
tude for 2 with a finite number of lumped ch-

cuit elements. AccoOingly, steps will now be 
talen to modify ccrZ) in order to obtain a func-
tion whose magnitude on tie imaginary 83CiF varips 
about n constant vrlue in equal-,ipple fashion.' 

Since the magnitude of c is equal to 
unity on the imaginary axis of tie Z-plane, and 
since its phase is a monotone function of the 
imaginary component of Z, then on the imaginary 
ax4.,of the Z-plane the magnitude of the function 
aci)“..) + (-1)n varies between 0 and 2. The magni-
tude of the function f(Z), defined by 

f(Z) - e(Z) (-1)n , 
2 

varies between 0 and 1 in equal-ripple fashion. 
It should be noted that the numerator of f(Z) is 
the even part of the polynomial P(Z) needed in 
step No. 2 of Section IIIB. 

D. The Rational Fraction a(Z)  

In order to obtain a rutional fraction in the 
p- plane, the following function of Z should be 
formed: 

g(Z) = f(Z) f(-Z) . (11) 

The magnitude of this function also varies between 
0 and 1 in eciunl-ripple fashion along the imagi-
nary axis of the Z-plane. When 

G(p) = g(Z)]z_fp2 + 1)-1 (12) 

is obtained, its magnitude will vary between the 
same limits in the pass band. The zeros of g(Z) 
appear on the imaginary axis of the Z-plane and 
are double. Therefore the zeros of G(p) appear in 
the pass band and are double. The poles of G(p) 
are, of course, the zeros of N(p)N(-p). In Fig.5 
the poles rad zeros for the rational fraction 
G(p) corresponding to the all-pass ?ole-zero 
configuration of Fig. 4 are shown. 

V Realization Methods 

Once a W(p) which meets all necessary and 
sufficient conditions has been obtained, the net-, 
work may be synthesized by any one of a variety of 
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methods. For instance, constant-resistance lattice 
sections in tandem connections might be used to 
realize a given W(p). In some cases it may be 
desirable to isolate sections of the network by 
means of vacuum tubes. In many cases it may be 
convenient and desirable to realize the network as 
a reactance four- pole. If reactance four-pole 
realization is desired, it may always be obtaiped 
by methods introduced by Norton or Darlington.° 

If the network is to consist of pure reac-
tances, two pr perties in addition to the four 
properties of listed in Section IIA are neces-

sary in order to avoid ideal transformers. These 
additional properties are: 

1. If F 0 at zero frequency, then 
20 20 

must be equal to unity at zero frequency. 

E, 
2. If Z.. 0 0 at infinite frequency,then - 

20 20 
must be equal to unity at infinite frequency. This 
means that in many low-pass filter cases, B must 
be chosen to produce a W(p) which is zero at in-
finite frequency, rather than to produce a given 
r as discussed in Section MG. 

If these adjustments can be tolerated, i.e., 
if r meets specifications, practical reactance 
four- pole realization without ideal transformers 
is in many cases possible even though zeros of 
W(p) are complex. 

VI A Design Example 

A filter which has magnitude-frequency and 
phase-frequency characteristics which approximate 
those shown in Fig. 3 will now be designed. The 
reactance four-pole to be obtained will operate 
between a constant-current source and e 1-ohm 
resistance. 

The zeros of N(-p), obtained by the Tscheby-
scheff polynomial series method ares 

= 0.57280 , 

= 0.51679 + j1.10250 , 

= 0.51679 - j1.10250 . 

The rational fraction F ap ( 0) -   N(p) 

phase-frequency characteristic plotted in 
The steps outlined in Section IIIB will now 
followeds 

1. From "ek,. 3 t 

ZI = 2.01194 , 

Z, = 0.81789 - j0.31693 

= Z2 = 0.81789 + j0.31693 . 

2. The even nart of F(Z) is 3.64772Z2 + 

hes the 

Fig. Il. 
be 

214 

(  1.54797 and, when the transformation Z - u2  
o 

is used, the corresponding p-plane rational 
fraction U(p) is 

U(n) - 5.1956902 + 3.6477Z 
2 

3. Thus, 

S( p) = 5.19569 n2 + 3.64772 , 

L(0) = 0S(D) = 5.19569'3? + 3.64772 

4. Finally, 

0- 

[L(p)12  
G(P) AN(P)N(-13) 

_  26.99506 + 37.905n4 + 13.30602 

A[p6 + 1.5688p4 + 1.5757p2 - 0.72117] • 

If A is now closen so that G(j1) = 1, then 

G(P) n 26.99506 + 37.90504 -1- 13.30602 

1.386606 + 2.1753p4 + 2.1849P2 - 1 

4° 

2; 30 

20 

lo 

0.4 06 2 16 2.0 2.4 
(u ( RADIANS PER SEC.) 

FIG II 

PHASE ANO ATTENUATION CHARACTERISTICS FOR 
• TYPICAL FILTER NETWORK 

This G(p) meets conditions No. 1 end NO. 2. In 
addition its ma¡mitude varies in Tscheloyscheff 
manner between the limits of 0 and 1 in the nass 
band, i.e., -1 < a < 1. Steps outlined in Sec-
tion IIIG for obtaining W(p) from G(p) will now 
be followed. 

1. From Eq. 5, B might be obtained for a 
given r. However, as a step necessary in order 
to avoid use of an ideal transformer in this 
particular case, D is chosen so that H(0) = 0 at 
infinite frequency. Thus 

= 19.4685 , 

end from Eq. 5 

= 1.05415 • 

From Eq. 4 

H(P) - -4.445D4 - 29.23102 + 19.4685  
• 

1.3866p6 + 2.1753P4 + 2.1849p2 - 1 

2. From Eq. 6 



-4.445P4 - 29.231 D2 +. 19.46C5 

1.3866p6 + 4.4549p5 9.3316p4 

+ 11.5el? + 9.75125p2 + 4.8859p+ 1 

3. Another step necessary to rvoid use of an 
ideal transformer is to choose k in Eq. 7 so that 
W(o) = 1. With 99 chosen, condition NO. 4 is 
still met since R>+ R, R   - 

2 .D2 

will certainly be less than infinity at all real 
frequencies. Thus, Eq. 7 becomes 

-0.22832P4 - 1.50145p2 + 1  

1.3866p6 + 4.4549p5 + 9.3316p4 

+ 11.597p? + 9.75125p2 + 4.8859p + 1 

p and W(p) 

In Fig. 11 curves of attenuation nnd Phase shift 
vs. frequency for this W(p) are shown. The atten-
uation characteristic was obtained from the for-
mulas 

1 I 
Attenuation (db) = 20 log10 1771, • 

The network which realizes W(p) is ai own in Fig. 
12. 

123E4 1492• 1295, 

I2 

CIRCUIT OF LINEAR - PHASE ELECTRIC ALTER 

The particular network shown is designed to oper-
ate between an infinite-impedance constant-current 
source and a 1-ohm resistance. However, a network 
which realizes this same W(p) could have been de-
signed to operate between finite resistances. The 
resistances might even have been equal, i.e., 

R1 + R2 = 1, since for all a.) the highest abso-

2 1 2 
lute magnitude of W(p) is unity. 

VII Design Variations  

Discussion of design procedures 1.1s been 
formally restricted to low-pass filters. Although 
the same general approach may be used for design 
of other filter types, the conformal transforma-
tion is different for each type. For instance, 
for the high-pass filter the transformation is 

= (p2 + 1) -1. 

The design procedure outlined always results 
in a W(P) having double poles, and if any zeros of 
W(p) occur at infinite frequency, they must be 
double. Many practicable cases, notably many 
vacuum tube interstnges, require an odd number of 

zeros at infinite frequency. In order to obtain 
an approximating function WO(p) which has an odd 
number of zeros at infinite frequency, the follow-
ing procedure, resulting in a Wfl (p) with a pass-
band magnitude-frequency characLaristic whose 
ripples about a constant value are nearly(but not 
exactly)equal, may be followed: 

1. A proper W(p) is obtained. 

2. A polynomial formed from those zeros 
which occur in the finite p-plane is approximated 
by means of u polynomial having double zeros. 
This may be done by means of Tschebyscheff poly-
nomial series. The approximating polynomial may 
have less zeros than tie polynomial to be approxi-
mated. This will mean more zeros of Wo (p) at 
infinite frequency. In any case, all zeros will 
be double after tFis approximation. Since the 
poles are already double, a rational fraction 
Wo (p), having no double poles and an odd number of 
zeros at infinite frequency, will be obtained when 
the square root is taken. The function W0 (p) will 
have one-half the phase of W(p). 

VIII COhCLUSION 

Filters having the same phase characteristics 
as a given all-pass transfer function may be syn-
thesized using the method outlined in this paper. 
The extent of the pass band may be arbitrarily 
chosen, end if no zeros of transmission ere re-
quired at infinite frequency, then either an equal-
ripple approximation to constant magnitude in the 
pass band nay be made as close as desired, or a 
given rate of cutoff may be chosen. However, if 
transmission zeros are required at infinite fre-
quency, the size of the pass-band ripples and the 
rate of cutoff of the magnitude-frequency charac-
teristic depend upon the bandwidth of the filter, 
i.e., the size of the ripples and the rate of 
cutoff will be smaller for smaller bandwidths. 
The general method involving the analogous poten-
tial problem is applicable to filter types other 
than low-pass. The chief differences will be in 
the conformal transformation. 

In order to obtain filters whose pass-bend 
magnitude-frequency characteristic is an equal-
ripple approximation of a constant value, double 
natural modes are required. Also, when these 
filters rust hive transrission zeros at infinite 
frequency, an even minter of them is obtained. 
However, by means of n design variation described 
in Section VII, filters ray he synthesized which 
have single natural roics and an odd number of 
transmission -t infinite frequency. The 
pass-band magnitude-frequency characteristic of 
these filters uill be a close, although not 
exactly equal-ripple, nppro:dlotion to a constant 
value. 
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Abstract 

This paper describes the development of a 

stagger- tuned, band-pass amplifier at ultra-
high- frequency using grounded- grid triodes and 

having a prescribed gain- magnitude response. 

For the first time, the concepts of stagger-
tuning have been extended to grounded-grid cas-

cades so that triodes designed for ultra-high-

frequency operation can be effectively utilized 

to obtain amplifiers having large gain- bandwidth 

products and low noise-figures. 

The amplifier described uses high perform-

ance, disc- seal triodes with special four- termi-

nal interstages. The special interstages ac-
complish the impedance transformation needed 

for grounded-grid amplifiers and in addition 

have a frequency characteristic which is approx-

imately that of a single-tuned c ircuit. Because 
of this frequency characteristic, stagger-tuning 

is employed to conserve gain-bandwidth product; 

however, the nature of the characteristic re-

quires the use of novel low-pass to band-pass 

transformations to determine the correct inter-

stage tunings for a " maximally-flat" type of 

response. The feedback effects occurring be-

tween adjacent interstages are incorporated in 

the alignment and tuning procedure. 

The design and performance of an amplifier 

having a gain of 50 decibels, a bandwidth of 50 

megacycles, and a maximally- flat gain charac-

teristic will be presented. 

Text 

If one is to build high- gain band-pass ampli-

fiers for receiver or carrier applications with 
center frequencies in the ultra-high-frequency 

region, the use of pentodes and conventional 

techniques of stagger-tuning is ruled out. This 

paper describes the use of high performance 

triodes in a modified stagger- tuning scheme, in 
order to achieve 50 decibels of gain at 400 

megacycles with a filter-type amplitude- fre-

quency response, 50 megacycles wide, to-

gether with a relatively low noise-figure of 4 

decibels. 

It is seen immediately that the frequency 

specifications make the task a difficult one. 

The center frequency requirement places the 

problem in a region between lumped elements 

for lower frequencies and transmission line 
or distributed elements for the higher fre-

quencies. The bandwidth requirement calls for 

efficient interstage networks and high perform-

ance electron tubes. The traveling-wave tube, 

which is an excellent very-wide-band amplifi-

cation component, is not well suited because of 
its relatively high noise-figure, and because of 

the lack of a controlled filter-type gain charac-

teristic. 

A review of conventional electron tubes 

eliminates the pentode from consideration be-

cause of the detrimental effects of transit- time 

and lead-inductance loading. Similarly, other 
tubes must be precluded with the exception of 

presently available disc- seal triodes. Transit 

time and lead-inductance effects are negligible 
with these triodes at the frequencies of interest; 

however, the structure of the triodes necessi-
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tatea the operation of the triodes in grounded-

grid connections, in general. Of the available 

triodes of this type, the WE 416-A has by far 

the highest performance figure, a practical gain-

bandwidth product of approximately 700 mega-

cycles. 1, 2 

A. Grounded-grid Triodes  

Considerations in the grounded-grid triode 

can best be seen by examining the equivalent 

circuit shown in Figure 1. For modern triodes, 
the cathode-to-plate capacitance can be neglected. 

The output circuit of the triode consists of the 

output capacitance and the plate resistance in 

parallel. At the input, in addition to the input 

capacitance, there is the electronic loading and 

the transferred impedance from the interstage 

connected to the plate. The grounded-grid 

triode can be considered an impedance trans-

former having a step-up ratio of (da+ 1). Thus, 

the impedance transferred from tfie plate to the 

grid circuit, together with the electronic loading, 

is: 
(r p+ 

t. where it should be noted that ZioK 1 includes 

Cout of the triode but not rp. If the transferred 

impedance, Z inK+ 1, is for the moment ignored, 

the high input conductance, approximately equal 

to gm , if #4+ 1 atm , necessitates the use of 

four-terminal interstages which provide an im-

pedance transformation. An additional require-

ment on interstage K comes from the transferred 
impedance, Z inK+ 1/t4+1, which will in gen-

eral exhibit a variation with frequency, and thus 
a two-fold appearance of the characteristics of 

an interstage is produced. Thus means must be 

provided either to incorporate this transferred 

impedance or to minimize it. A combination of 

both of these methods will be used in this paper. 

If these non-unilateral effects of grounded- grid 

triodes can be properly incorporated in the inter-

stage network, the stages can be considered 

unilateral. 

The gain function ( output voltage / input 

voltage) of an individual stage will be: 

E gK+ 1 

EgK 

:t4 K+ 1 

M K 

gm ZT 
K K ( 1) 

where EgK is the grid-to-cathode voltage of the 

Kth triode, gmK,MK are the conventional trans-

conductance and amplification factor of the Kth 

triode. ZT K is the transfer impedance of out-

put-voltage to input-current for the interstage 

connected to the plate of the Kth triode: 

ZT K  E011t Eg •1.(+ 1  
'in IK 

The total  gain function of an amplifier of n 

tubes and n interstages will be: 

Eout 

Ein K 1 

ZT 
K K (/i>>1) ( 2) 

The  gain of a stage or an amplifier will 
refer to the magnitude of the gain function at 

the center frequency,W 0, of the stage or the 

amplifier. 

B. The Inter stage  

As implied previously, the center fre-

quency specifications necessitate either the use 

of lumped elements of extremely small value 

or else the use of transmission- line elements 

which at these frequencies will be quite large 

and bulky. Lumped elements are usually pre-

ferred, and the interstage networks must be 

simple in configuration for the realization of 

these elements. 

The amplifier requirements of high gain 
and a square-type gain characteristic lead one 

to consider stagger-tuning. Stagger-tuning 

provides a means of conserving gain-bandwidth 
product, and in addition, through stagger-tun-

ing, existing approximation techniques can be 

used to obtain a desirable frequency charac-
teristic, such as a maximally- flat, band-pass 

characteristic. If the criterion of network 

simplicity is kept in mind together with stagger-

tuning techniques, the desirable interstage 

specifications considered to this point can be 

summarized as follows. The interstage must: 

1. Provide an impedance transformation; 

hence, a four-terminal interstage must be 

used. 

2. Be simple in configuration and consist 

of simply realizable lumped elements. 

3. Incorporate the nodal admittances of 

the grounded- grid triode, and 
4. Provide a single pole of the transfer 

impedance in proximity to the frequency 

region of interest. 
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An interstage which satisfies these require-

ments is shown in Figure 2. 

r p 
section, the transferred impedance from the 

following interstage will be neglected; therefore, 

G 2 gm . The effects of the transferred im-

pedance will be taken up in the next section. 

In comparing Figures 1 and 2, it can be 

seen that the conductances and capacitances can 

be supplied at least in part by the input and out-

put admittances of the grounded- grid triode. An 

extensive investigation of the properties of the 

interstage has made it apparent that no addition-

al conductance should be introduced and that C1 

should not be increased, if possible, above the 

value supplied by the triode. Therefore, GI 

1 Cl = Gout, C2 Cm+ padding. In this 

Although this network appears to be a low-

pass type, through a proper choice of the values 

of the network elements, this network will provide 

a band-pass gain characteristic which is approxi-

mately that of a single- tuned circuit. This can 

be seen from an investigation of the transfer 

impedance of the interstage. 

zT 1  / s3+(+ G 2) 52 + 
LC1C 2 «C-2 

GiG2 ) s + G1 +G2 

C1C2 LC 1C 2 1 
(3) 

where s z complex frequency variable, 4r+ju.) 

Cs C 1C2 / (C 1+ C2) 

Equation ( 3) can also be written in terms of the 

poles ( points of infinite gain) of the transfer 

impedance: 

z T -- H/ ( s+ 7) (s+ (s+411C. -

H/s 3 ( 211(47) s 2 (2c,( 7+A 2) s + IA2 

where: ?)2 r. .4. 24.e? 2 

These poles can be plotted in the complex fre-

Pue,),:— plane as in Figure 3. 

(4) 

Also shown in Figure 3 is the pole- zero 

plot of a simple, single-tuned GLC circuit. 

c•Ç of the complex pole pair, 2 j , can 

be made small in relation to ri , the response 
of the network will be approximately that of a 

single- tuned circuit in the real frequency region, 

W et*? . The center frequency of the inter-

stage,W 0, is defined as the angular frequency 

of maximum magnitude of the transfer function. 

Methods will be advanced later in the paper 

which will permit the design to commence in 

a low-pass domain with subsequent transfor-

mation of the design data to the actual band-

pass domain, thereby eliminating the necessity 

of closely approximating a single- tuned charac-

t-ristic in order to utilize stagger- tuning con-

cepts. 

In the design procedure for an entire 

amplifier it is usual to specify that each inter-

stage realize a particular complex pole pair, 

—cc± jI. Knowing the desired pole locations, 

the remaining elements of the interstage, L 

and C2, can be obtained by equating the corres-

ponding coefficients of ( 3) and ( 4). Three non-

linear simultaneous equations result, which 

can be solved to provide the following design 

formulas. 

Cez 2.gc(2 --G2 = ° 
Cl ) 

¿cc — c1 — z 
ci 

where GT 

= 

L = 

Gain 

7 Az c C2, 

E out (  to 0  (9) 

E g 2Œ11-1-iWot 

(5) 

(6) 

(7) 

(8) 

In addition to the design of the interstage, 

attention must be given to the tuning of the 

interstage. Tuning adjustments must, in 

general, be employed because of the impossi-

bility of producing at ultra-high- frequencies 

the exact values of the small network elements. 

For the interstage, at least two elements 

should be variable in order to provide adjust-

ment of center frequency and bandwidth. In-

vestigations have shown that L and C2 are 

convenient elements to be varied to adjust 

center frequency and bandwidth, respectively. 

The adjustments of these two elements do not 

provide completely independent variations of 

center frequency and bandwidth; however, these 

two elements provide the greatest independent 

adjustment. 

C. Feedback 

The characteristics and formulas just 
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presented were obtained with the assumption that 

there was no feedback from the following inter-
stage. That is, the effects of the transferred 

input impedance originating in the interstage 

connected to the plate of the triode were assumed 
negligible. It remains, then, to investigate 

these effects and to determine how to incorp-

orate or to minimize them if they are pronounced. 

A thorough mathematical presentation of this 

interaction proves to be very cumbersome and 

quite devoid &- practical worth. However, for 

the situation where bandwidths of the order of 

only 10-20% of center frequency are required 

and where high performance triodes are used, 

a first order knowledge of feedback can be pro-

vided through simple graphs. 

For first order effects, the feedback from 

the (K+ 2)th triode to the Kth interstage can be 

assumed negligible. In addition, it can be shown 

that only the real part of the transferred im-
pedance, Z inK+ 1, need be considered to obtain 

an accurate measure of the feedback. This 

quantity, Re Z inK+ 1, will have approximately 

the same frequency characteristic as the trans-

fer impedance Z TK+ 1 of the parent interstage 

with the exception of being about twice as sharp. 

Therefore, only the input conductance of the 

triode (which is element Gz in Figure 2) will 

exhibit the feedback. Since only a first order 

knowledge is desired, the plate resistance of 

the triode can be ignored, thus G1 0. The 
transfer impedance of interstage K can then be 

expressed as: 

ZTK (jw) r 1 /LG2 ( 1 (.02) + 

LC IC2 -ECT 

(  1  
LC, 

2)] (10) 

M + jN 

In ( 10), it is seen that only M contains G2, 

while N does not; thus, M will contain the feed-

back. Graphs of M and N for a representative 

situation ( as in Figure 4) provide a means of 

visualizing the effects. 

The first case to investigate is where the 

center frequency of inter stage K+ 1  is equal 

to the center frequency of interstage K, i.e., 

LA) oK + 1 = LeoK = (.4) o • In Figure 4, the approxi-

mate location of W c, is shown, and it is seen 

that in this region, the magnitude of N is small 

compared to M. Therefore, the effect of M is 

predominant in Z TK, and a decrease of G2K 

because of the frequency peak of Z inK..4. 1 at 

Wo will produce an increase in the magnitude 

of ZTK. For the two stage combination, the 

overall magnitude of the transfer function in 
the frequency region nearwo will be increased; 

however, the overall band- width of the com-

bination will be decreased because the relative 

sharpness of the real part of the transferred 

impedance from interstage K+ 1 produces an 

increase of ZTK only near La o. See Figure 5. 

Next, (.4) OK + 1 is assumed to be less than 

O K. If the difference of the two frequencies 

is not too great, WOK4 1 will be located in 

the region of minimum M K . Therefore, any 

variation of MK, due to the transferred im-

pedance, will ...produce little if any effect on the 
magnitude of LTK . 

Finally, for WoK .I. i>(44K , (.4.44.1 will 

probably lie in the minimum region of NK , 

and any variation of MK will appear directly 
in the magnitude of ZTK . 

For these last two situations, a peak in 

the magnitude of Z TK will appear in greater 

or lesser degree at WoK+ l. For the cas-

caded response of two stages it is convenient 

and informative to assign the feedback effects 

to the parent stage of the feedback, K+ 1 , 

rather than the actual stage K. Thus, stage 

K+ 1 , through feedback, effectively has a 
greater gain at its center frequency, CeoK 

and consequently, has a smaller effective 

bandwidth. Where feedback is present in an 
amplifier, it can be minimized and absorbed by 

increasing the original bandwidth of stage K+ 1, 

such that with the narrow- banding effects of 

feedback, the proper effective bandwidth for 

the stage is obtained. 

The conclusion can be drawn that in a 

stagger- tuned arrangement the center fre-

quencies of the interstages should be assigned 

in a decreasing order as one progresses from 

the amplifier input to the output. This arrange-

ment will minimize the effective bandwidth 

shrinkage of the individual interstages. At 

the input to the first stage it will be seen that 

the feedback present at this point can be in-

corporated through a proper tuning adjustment 

technique. 

With the proper interstage arrangement, a 
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grounded-grid amplifier can be assumed to be 

composed of unilateral interstages. Although 

the feedback can be ignored to a first order, if 

a desired response is to be realized very closely, 

it will probably be necessary to adjust some s 

stages empirically in order to incorporate and 
minimize the feedback that appears. 

D. The Staggered- triple  

In using conventional stagger- tuning with 

pentodes, one usually determines the number of 

stages in a staggered- arrangement from the 
desired selectivity needed in the pass-band 

shape or from the desired overall magnitude of 

gain. It is well known that the most efficient 
use or the gain- bandwidth limitations of the 
interstages and tubes is obtained in an n-uple 

arrangement where n is the needed number of 

single- tuned interstages. Of course, practical 

considerations often dictate a compromise 
between ease of realizability and efficiency. 

For stagger- tuning with the triodes and 

interstages of this paper, it can be shown that 

ideally the most efficient arrangement is again 

an n-uple. However, as noted in the last section, 

a small amount of empiricism will probably be 

necessary in order to obtain the desired effect-

ive interstage bandwidths. In addition, it will be 

seen in the next section that it is not possible 

in general to find the exact tuning data to realize 

exactly a desired frequency characteristic. 

Therefore, the small empirical adjustments 

will also be needed to compensate for tuning 

inaccuracies. In order to realize as closely as 

possible a desired frequency characteristic, it 

will be necessary to determine which stages 

need adjustment. The larger the value of n 

(the number of staggered interstages), the 

smaller will be the bandwidth requirement for 

certain of the interstages. The feedback effects 

'rom the narrow stages will be greater than for 

broader stages, necessitating greater empirical 

adjustment. For a large value of n, it will not 

only be difficult to establish which stages need 

adjustment, but also how much adjustment is 

necessary. This follows because of the close-

ness of the center frequencies of the individual 

interstages. Thus, although a large number of 

stages is desired for most gain- bandwidth effi-

ciency, a small number is desired for the feed-

back problem. These considerations point to 

the staggered triple as the best compromise 

arrangement for these grounded- grid amplifiers. 

For a triple where the individual interstages 

have center frequencies at either the ex-

tremities or the center of the pass- band, the 

empirical realignment can be easily and 

accurately provided following an inspection 

of the overall triple response. 

The staggered- triple will have a pole 

complement as shown in Figure 6. 

The output of the last stage of the triple 

will usually be furnished with a load such as 

a terminated coaxial cable. If, for example, 

an amplifier is designed for use in a 50 ohm 

coaxial system, G2 of the last stage will be 

supplied by terminated 50 ohm cable rather 
than the input conductance of another 416-A. 

On the basis of the amplifier gain magni-

tude, the best stage for this decreased load-

ing would be the wide stage of the triple. 

Placing this stage last is not in accordance 

with the arrangement for minimum feedback; 

however, the interchange of the low frequency 

and center frequency stages produces a negli-

gible increase in feedback. Thus, the triple 

arrangement from input to output that will be 

used is: high- frequency stage, low-frequency 

stage, center-frequency stage. 

E. Wide- Band Synthesis Procedure  

Because of the required ratio of band-

width to center frequency of only 10-20%, and 

because a small amount of empirical adjust-

ment has been permitted, it might seem 

sufficient to employ narrow-band synthesis 

techniques. The usual narrow-band technique 

is to consider the region in the band-pass 

plane near the desired center frequency as a 

low-pass region, positioning the complex poles 

in this region in accordance with knowledge of 

the low-pass situation, i.e., ignoring the 

presence of poles outside of this region. If 

such a technique is used for the interstages 

of this report, a serious distortion of the 

frequency characteristic of the amplifier 

results primarily due to the presence of the 

real poles. Even for the modest bandwidth 

requirement herein, the empirical correction 

of this distortion to make a close realization 

of a desired characteristic is a very tedious 

and lengthy process. 

A procedure to obtain wide- band, cas -
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caded amplifiers of desired pass-band shape 

is to investigate the desired type of interstage, 

with respect to poles and zeros of the transfer 

function; to determine the poles in a low-pass 

situation which will realize the desired fre-

quency characteristic; and, finally, to evolve 

a conrormal low-pass to band-pass trans-

formation which will transform the low-pass 

pole positions to actual band-pass positions 

which can then be realized by the desired inter-

stage type. 

This process can be used here except that 

it has not been possible to find a simple trans-

formation which is exact with respect to the 

actual poles of the interstage. However, trans-
formations have been found which evolve poles 

approximating closely the actual poles of the 

interstage. One such transformation is: 

pr - s ( s2+ 1) (11) 

The low-pass pole configuration which provides 

a maximally- flat transfer characteristic and 

which is compatible with a triple is shown in 

Figure 7. Also shown in Figure 7 are the poles 

in the band-pass plane that are evolved through 
use of ( 11). It is seen immediately that the 

band-pass poles of Figure 7 are not physically 

realizable because of the poles in the right 

half plane. However, if the negative real poles 

of the triple, shown in Figure 6, are close to 

the origin, say, 3 yi 72 73 / W 0 0.3, 

(11) will provide close approximation to 

desired performance. 

If the mean coordinate of the real poles is 

greater than 0.3, a tilted pass-band results. 
For the 416-A triode, and with triple speci-

fications for a 400 megacycle center frequency 

and 50 megacycle bandwidth, the real pole 
locations are 0.5 < TAty.<1.0. If for simplicity 

the mean value of 7444. 1 is assumed, the 

error in the transformation is as indicated by 

the upper curve of Figure 8. This large error, 

incurred because the negative real poles are 

not close to the origin, leads one to consider 
another simple transformation which neglects 

the real poles entirely, 

p = (s2+ 1) (12) 

The error due to this transformation, again 

for the 416-A, is shown by the lower curve of 

Figure 8. 

The nearly equal and opposite nature of 

the errors from the two transformations in-

dicates that approximately valid interstage 

locations can be obtained for the 416-A by 

an arithmetic comparison of the pole positions 

evolved by the two transformations. These 

mean locations are shown in Table 1. The 

validity of these locations can be established 

analytically; however, for the purpose of this 

paper, the results from an experimental 

amplifier may suffice. 

The complex pole locations thus can be 

used with ( 5) - ( 9) to determine the network 

elements and gain of the triple. It is still 

necessary to establish the tuning data of the 

individual interstages of the triple. The 

approximate transformations, ( 11) and ( 12), 

can again be used to obtain this data. For 

the two necessary adjustments, it is con-

venient to adjust the center frequency and 
the frequency of the upper 3-decibel band- edge. 

The frequency characteristic of the interstage 

is then completely defined. These two fre-

quencies can be obtained by noting for each 

pole in the low-pass plane, the low-pass 

frequencies corresponding to the interstage 

center frequency and upper band- edge. 

These low-pass frequencies can then be 

substituted into ( 11) or ( 12) where the complex 

variables are now considered to be pure 
imaginary, and the real frequencies of align-

ment are obtained. For the 416-A amplifier, 

a mean comparison can again be used to ob-

tain valid, accurate tuning data. 

Rather than use an averaging process as 

above, a method has been devised which will 

provide accurate tuning data for any mean 

pole location. The method is derived for a 

criterion of zero tilt at band- center for the 

triple, and results in: 

_ a 2 v _ 40+ a ( 60 __ 1) 

where y is an alignment frequency in the low-

pass plane from  th  jv-axis), and ª 

(4,y 71 -/-2 73 ]) is the mean real pole 

location. (44 

(13) 

Thus, if it is not desired to predict 

accurately the performance of the amplifier, 

either ( 11) or ( 12), together with design form-

ulas, can be used to determine the order of 
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magnitudes oz) L and C. ( 13) can then be used 

to tune the amplifier properly to realize a 
desired frequency characteristic. 

F. The Practical Amplifier 

Using the techniques described to realize 

a desired band-pass gain characteristic with 

a staggered-triple, a complete amplifier will 

be available with the addition of a suitable 
input circuit. Also, attention must be given 

the problems of actual tuning procedures. 

The input circuit should possess the follow-
ing properties: 

1. A low noise-figure for the amplifier 

2. The incorporation of the feedback 
effects prom the high-frequency stage of 
the triple 

3. A broad-band transfer function when 

operated with a low-impedance source. 

The simplest input circuit will be a direct 

connection of the signal source to the input of 

the first triode, together with shunt inductance 

to resonate the input capacitance of this triode. 

This connection is shown in Figure 9. 

It can be shown that this circuit will pro-

vide a satisfactory transfer characteristic, in 

spite of a mismatch, for reasonably low levels 

of source impedance. 

In a manner similar to that used for the 

interstages, a qualitative knowledge of the 

feedback effects on this circuit can be simply 

obtained. Such an investigation points out that 

the feedback effects are much greater here than 

are encountered in later interstages. However, 

the effect of feedback at the input can be in-

corporated through the use of the following 
tuning procedure. First, the single- tuned 

input circuit is resonated at the center fre-

quency of the overall amplifier. The source 
is then connected and the output of the first 

stage of the triple is monitored. This first 

stage of the triple can now be adjusted for the 

proper center frequency and bandwidth, and the 
narrow-banding effects of the feedback will 

automatically be compensated. 

It should be noted that this adjustment 
technique could theoretically be used for the 

individual interstages; however, it is difficult 

in practice to introduce the source to the in-

put of an internal triode without effecting a 

frequency distortion in the alignment. 

In practice, high-impedance probes 

directly- connected into the input of each 

interstage, except the first, couple energy to 

the interstage; and the output of the interstage 

is monitored with a high impedance crystal 

detector circuit which is also permanently 

connected to the interstage. The permanent 

connection of these probes and monitors pro-

vides for a constant loading effect on the 

interstages. 

The actual tuning of an amplifier should 
be started with the last stage of the triple, 

progressing toward the input. At the input, 

however, the input circuit should be resonated, 

as mentioned above, before tuning the first 

stage of the triple. 

An estimate of the noise figure of this 

input circuit can be obtained through the use 

of conventional formulas. For the purposes 

of illustration, a WE 416-A triode will be 

used, and a center frequency of 400 mega-

cycles and a source impedance of 50 ohms 

will be assumed. For this triode, the transit 

time effects are negligible at 400 megacycles, 

and for careful construction of the input 

stage, circuit losses can be neglected. The 

noise figure of the input (and consequently 

the amplifier, since the power gain of a 416-A 

is large) is then approximately: 

1+  2.5  

gm R Source 

For a gm  of 0.04 mhos and a source im-
pedance of 50 ohms, a noise figure of 4 

decibels can be obtained. 3 

(14) 

If it is desired to cascade these staggered-

triples, a requirement of the last stage of the 

first triple is a very constant resistive load. 

That is, the second triple of the cascaded 
system must have an extrememly flat input 

impedance, constant, say, within 1% over a 

band of 15% of center frequency. To accom-

plish this it has been found necessary to em-

ploy an active input network for the second 

amplifier rather than a passive network. 

Such an active network is a grounded-cathode 

triode. Thus the input becomes the familiar 

cascode circuit, as shown in Figure 10. 4 
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For triodes such as the 416-A, the real 

part of the input impedance of the grounded-

cathode triode is sufficiently large to be negli-

gible with respect to a resistance which is 

equal in value to the source impedance. The 

imaginary part of the input impedance is capaci-

tive and can be resonated with an inductance. 

The feedback effects for the cascode will be 

similar to the direct connection because of the 
single- tuned circuits. Here again, then, the 

feedback can be incorporated through proper 

tuning adjustments. 

With this cascode circuit an extremely flat 

input impedance of desired magnitude can be 

obtained. Because of this flat input-impedance 

magnitude, cascading of two or more ampli-

fiers can be accomplished without any diffi-

culties due to inter-action between the indi-

vidual amplifiers. It should be noted that al-

though the noise figure of a cascode circuit can 

be remarkably low, it is not so in this version 

because 'of the grid resistor added for broad-

banding reasons. But since the cascode follows 

a first triple with high gain and low noise-figure, 

the second triple has almost no effect on the 

overall noise figure. 

G. Practical Example 

An amplifier has been constructed using the 

design procedures outlined in this paper. The 

amplifier consists of a cascode input circuit 

and a staggered- triple employing 416-A triodes. 
The amplifier specifications were for a center 

frequency of 400 megacycles, a 3- decibel band-

width of 50 megacycles and a maximally- flat 

gain characteristic. The cascode input circuit 

was chosen to illustrate the triple used in sec-

ond ( and later) stages in a cascade of triples. 

The direct input circuit is even simpler to 

obtain. The complete amplifier is shown in 

Figure 11. A schematic diagram of the ampli-
fier is shown in Figure 12, with only the r-f 

circuit shown and those network elements 

supplied by the triodes indicated by broken lines. 

The tuning data for the amplifier were ob-

tained in the manner indicated in Section E ( see 

Table 1). After the initial tuning of the ampli-

fier, a slight tilt is usually sustained in the 

gain characteristic because of the incomplete 

absorption of the feedback effects and because 

of the approximate nature of the transformation. 

Therefore, an inspection of the initial results 

is needed to determine which stages need 

further trimming in order to realize the de-

sired overall characteristic of the amplifier. 

The actual performance of the amplifier 

is shown in Figure 13. The observed in-

sertion gain of 50 decibels, for Curve "h" 

of the figure, agrees almost exactly with the 
calculated value, which value included the 

gain increase at the amplifier input due to 

the feedback from the first stage of the triple. 

The cascode input circuit of the amplifier 

provided an input impedance which was con-

stant within 1/2% over the pass- band. 

TABLE 1 

Complex Pole Locations and Tuning Frequencies 

for a Maximally- flat, Staggered-triple 

Center frequency: 400 3-db bandwidth: 50 

Center 

Freq. stage 

Hi Freq. 

stage 

Lo Freq. 

stage 

Pole location -24. 9 + 

j402. 35 

-11. 35+ 

j421 

-14. 1 + 

j377. 8 

Tunings... fo 

3 db 

400 420.6 377 

423.6 431.6 390.7 

All values in megacycles 
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The directly connected input circuit. 
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NETWORK ANALYSIS WITH THE AID OF THE MATRIX GENERATING POLYNOMIAL* 

by 

Herbert Kurss 

Microwave Research Institute 
Polytechnic Institute of Brooklyn 

Brooklyn 1, New York 

I. Introduction 

This investigation arose from an attempt to 
simplify the derivation of a long neglected for-
mula published by G. A. Campbell? Not only was 
this attempt successful, but from this new and 
physically evident derivation the important 
Sylvester identity2 was an immediate by-product. 
The surprising feature is that the Campbell for-
mula is the solution to a network problem while 
the Sylvester identity is regarded solely as a 
mathematical matrix identity. This feature was 
emphasized when it was soon apparent that the 
technique, implicit in this new derivation, allow-
ed one to derive with remarkable simplicity the 
Jacobi ratio theorem3 as well as theorems on equi-
valent networks. Here then is a technique which 
bridges the gap between the network analyst and 
the mathematician and whose ultimate range of ap-
plicability is yet to be charted. In order to 
accommodate the mathematical inclinations of vari-
ous groups, the following equivalent epitomize-
tions of the core of the technique can be given: 

A. The characterization of a network by 
its input-output relation, or 

B. The characterization of a matrix by 
its generating polynomial, or 

C. The characterization of a ( finite 
dimensional) operator by its spectral 
surface. 

The following pages shall elaborate upon this 
point of view and indicate its fruitfulness as a 
means of simplifying and unifying derivations, 
correlating otherwise scattered formula, and ex-
tending known results. 

II. The Network Element as an Operator 

In this paper it is sufficient to define a 
multiterminal network as an operator which effects 
a transformation between two electrical vectors. 
As can be said of any operator, depending upon the 
choice of a vector basis, one can obtain a multi-
tude of matrix representatives. In particular, 
the voltage and current vectors give rise .to the 
impedance and admittance matrices while the in-
cident and reflected waves result in the scatter-

* This work was performed for AFCRC under con-
tract AF 19(122)-3. 

ing matrix. ( This definition of a network as an 
operator is strongly indicated when one deals 
with a multiterminal waveguide junction or a non-
linear network in the small signal region, es-
pecially if these networks are non-reciprocal as 
occurs for a gyrator..) 

It should be remembered that an operator acts 
upon vectors in its domain ad transforms them 
into vectors in its range, but the domain and 
range may by accident or intent be contained in a 
larger dimensional space. The question of equi-
valent networks is then identified with the ques-
tion of those operators Which have the same pro-
jection onto a given subspace. This tall be con-
sidered in later sections. 

Although abstract operator viewpoint offers 
a convenient means for exhibiting the unity of 
the various topics, it shall be only sparsely and 
parenthetically used and a network shall, in 
general, be equated to a matrix representative. 

III. The Generating Polynomial of a Matrix 

Classical terminology describes the sum of a 
power series in a single variable as being the 
generating function of its coefficients. ( For 
example, the Bessel functions of integral order 
can be so defined and G. N. Watson hence refers to 
them as Bessel coefficients. 6) Analogously, a 
polynomial whose coefficients are the various 
minors ( or subdeterminants) of a matrix can be 
said to generate the minors of the matrix. Such 
a polynomial is a generating polynomial of the 
matrix. When formed by the mathematical process 
of polarization? ( described below), this shall be 
called the generating polynomial of the matrix. 
More precisely, given an arbitrary matrix A = 
Eaii], one introduces an auxiliary matrix Q = 
pq_ji and defines the generating polynomial of A 
with respect to Q as the polynomial in the Its 
tined from7Uhe expansion of the determinant 
IA + 2,. Essentially, this considers the n th 
order determinant IAI as a homogeneous function 
of its n2 elements aii and when each aij• •  is aug-
mented by an indeterminate kip one obtains the 
complete polarization of this determinant, i.e., 
IA + QI. 

The implications c.f this generating poly-
nomial can be gleaned from ' he fact that the spec-
tral theory of a finite operator is but the 
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special case which occurs when 2 = AE where A is 
a scalar and E is the unit matrix. The total set 
of values of the scalar A for which IA - 1E1 = 0 
is then denoted as the spectrum of A. This spec-
trum consists of a finite number of complex points 
since a polynomial in a single variable of degree 
n has at most n distinct roots. Consequently, 
when viewed as a generalization of this spectral 
theory, the vanishing of the generating polynomial 
can be said to define the spectral surface. 

In passing, one should note that the bilinear 
form or inner product often associated with a 
matrix A corresponds, essentially, to the generat-
ing polynomial of A-1 obtained when 2 has a rank 
of unity. 

The motivation for the introduction of the 
generating polynomial into network analysis is 
clear from its physical interpretation. For de-
finiteness, consider a network whose behavior can 
be stated by the matrix equation -IF ZI where 
= [Zii] and Zii are internal impedance para-

meters which represent-th-g-FiEwork. The effective 
external couplings or terminations can also be 
-characterized by a matrix, 9 = Ekiq, which re-
lates the same voltage V and current I by the 
equation V = -2I. For example, -An is the input 
impedance at terminal 1 when terminating impedances 
Xii are connected between the remaining terminals. 
Combining these last two equations, one can eli-
minate the voltage to form ( Z + 2)1 = O. It is 
now a well known result that a nontrivial current 
I can exist if and only if 12 + 21 = 0, i.e., if 
lie only if the determinant of the matrix ( Z + 2) 
vanishes. This single equation, a polynomial in 
the Ifs, is then the input-output relation of the 
network. 

Two networks are called equivalent with re-
spect to a class of terminations when each network 
presents the same input-output transformation for 
any set of terminations in the class. In other 
words, networks are called equivalent when their 
generating polynomials are equivalent, i.e., de-
pendent in the mathematical sense. It is then a 
simple but vital fact that the corresponding poly-
nomial coefficients are proportional, i.e., corres-
ponding coefficients have a common ratio. Here 
then is the parent to a family of ratio theorems. 

It is of interest to note that the number of 
terms in the generating polynomial IA + 21 is 
ec,ual to the number of minors of the matrix 2. 
If,2 is non-singular and of order n, there are 
nen minors of order m where the binomial coef-
ficient nCm is defined by the generating poly-
nomial ( 1 + x)n = E C xm. The teal number of n 
minors of all oruers is then C' = C = n m 2n n • 
2n1/n! nt. ( This last statement presumes the con-
vention that the minor of order zero is unity.) 
Of course, since the matrix has only n2 distinct 
elements only n2 of these minors are independent! 

IV. The Jacobi Ratio Theorem 

(Functionally Related Operators) 

The Jacobi ratio theorem relates the minors 
of a matrix to the minors of its inverse and ap-
plies directly to network theory where, for ex-
ample, the inverse of an impedance matrix is an 
admittance matrix. ( The theorem states3 that 
every ratio of a minor of a non-simular matrix 
to the corresponding complementary cofactor of 
the inverse matrix has the same value.) From the 
physical equation, Is given above, 

V - ZI = , it follows that 
-1 - 

7 V = 7 = 1 V , and hence _ 

1Z + 91 = 0 12-1 + 2-1 1 = o. 

(me symbol (.4. reads "implies and is implied 
by" or "if and only if".) The equivalence of 

these generating polynomials already contains the 
Jacobi ratio theorem but the presence of 2-1 is 
slightly awkward. This is not serious since 2 
can choose with a simple form, for example a 
diagonal form, leihence el is evaluated directly. 

It is illuminating to observe the absence or 
removal of 2-1 in the mathematical derivation of 
the Jacobi theorem in this implicit form of equi-
valent generating polynomials. This derivation 
proceeds from the simple identities 

+ 2 = 2(E + 2-1 2) = ( E + 22-1 )2 

which merely postulate 121 O. The associated 
determinants are related by the similar equation 

lz + 21 = lzIIE + 21 - 1E + su-11 Izle 

since the expansion of a determinant is not re-
ducible into factors, no information is lost when 
this is put in the form of equivalent polynomials, 
namely, 

lz 4- 21 = 0 ee 1E r 2 1 = ° 4=e +27.- 1= 0. 

From this the specific details of the Jacobi 
theorem are readily obtained. Upon accepting the 
additional hypothesis 121 16 0, one can employ 
the identity 

1Z + 21 2(2-1 + 2-1 ) Z 

to obtain the result of the previous physical de-
rivation, namely, 

12 + 21 = 0 19-1 + -1 1 = 0. 

From the above mathematical derivation, it 
is clear how one extends the results to any two 
functionally related matrices. Thus, if matrix 
Z is a known function of matrix S, Z = f(S), it 
follows that 
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12 + 21 - 0 (=> 1f(S) + PI = O. 

For example, the relative impedance matrix ZR and 
the scattering matrix S are related by 

ZR = ( S + E) / ( S - E) 

and hence 

lz + al - $-> l(s + E)+ a(s - E)I - o, 

a total of 2n01.1 relations between the ZR and S 
matrices when each has order n. It is significant 
to rewrite the above results as 

IzR + 21 = 0 f* IS + ( E+)/(E-4)1 = O. 

This indicates the sufficiency of a single con-
struction for a generating polynomial since a 
aifferent construction can often be reduced to the 
question of functionally related operators. 

V. "Elimination of Concealed Circuits"' 

(The Projection of an Operator)  

A familiar problem in analysis is the elimi-
nation of concealed circuits ( linear constraints). 
(At microwave frequencies this corresponds to 
fixed terminations at some of the terminal planes 
of a multiwaveguide junction.) In matrix terms 
this permits the following typical illustration: 
given 

Y1 [ all al2 1 al3 1 

Y2 a a, 1 1 a 21 e2 1 23 
;-3 ' ---- -- - 

[ a31 a32I a33 

x1 

x2 

x3 

when x3 is eliminated, determine A in 

[Y2 
rai n a21 a22] [1 

2 

1_1 1 . A t 

[1: 
2 

x1 

2 

X3 

(More succinctly, one seeks the projection of an 
operator onto a subspace which in this illustra-
tion is its range.) 

One immediate solution of the problem ex-
ploits the above incicated partitioning of the 
matrix to obtain the reduction formulae 

-1 
AI = A1 - A2 A4 A3 . 

Alternatively, one can invoke Cramerfs rule 
(a part of the Jacobi ratio theorem) to obtain 

▪ 3 

All A211 A31 

A IL 
12 '221 32 

A 1 A 
13 231 33 

yl 

Y2 

Y3 
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and hence 

Aij 

(A,)-1 = 1 [Ail A211 

Ial 
"12 A22 

denotes the cofactor of .) aii 

The Campbell solution is more involved but 
the simplicity of its derivation by the polynomial 
technique shall now be indicated. The equivalent 
generating polynomials are: 

al2 /]•2 al3 

a22 + X22 a23 

a32 a33 

111a22.c 112a12•c 

111A4/22 112 "4/21 

+ + lal - 0 or 

+ + 

where 4 = 1122 ( accessible ter-
minals) 

/ 

and 

Ao 0 

and A , =A 
c = = 33 (concealed ter- 

4/ij 

minais) 

• 
a11 + A11 a12 + Al2 

a9f 1 4. X21 a22 4' 1 22 

!Xl 111a22 Xl2a21 la o. 

(The symbol aii . ki denotes the " mor whIlch con-

tains the product a..akl elile the cofactor of 

.his minor is denotedl by Aij. 1(1. With the gener-

al case in mind aip c can be described as the pri-

mary9 superdeterminant of the concealed deter-
minant ac, this superdeterninant formed with re-
spect to the accessible element aii.) The ratio 
of corresponding coefficients in these polynomials 
contains the Campbell formula as applied to the 
above illustration, namely, 

t 
a21 a22 

1 [,a11'c 

c a21ac a22*c 

{A. 4/11 A4/12 
1 

AA.A 
4 4/21 4/22 

(When the Campbell formula is equated to the pre-
vious partitioned matrix reduction formula, one 
obtains a cheap derivation of an identity noted by 
Cullis9.) But,in addition to this Campbell for-
mula, the equivalence of the generating poly-



nomials also contains the important Sylvester 
identity2 which for this three dimensional case 
assumes the form of the single equation 

la'l 1.I/ac 

Both the Compbell formula and the Sylvester 
identity can be embodied in the single statement: 
When two matrices have the same accessible ter-
minals and with respect to these they effect the 
same transformation then every ratio of the co-
factor of an accessible minor of one of the ma-
trices to the cofactor of the corresponding ac-
cessible minor of the other matrix has the same 
value. 

VI. Alteration or Addition of Concealed Circuits  

(Operators with the Same Projection)  

A uasic tneoreit on equivalent networks is tne 
statement: 

If F. = Z, then A WPAQ 
(where 'ereads "is equivalent ton) 

The proof is immediate for from the hypothesis, 
F2Q = 2, it follows that 

IA-LI IPIIA-01Q1 
and, consequently, b and PAQ have equivalent &elem.-
ating polynomials. 

A simple but important corollary occurs when 
U = -1E for then A 'ePAP-1 for all non-singular 
matrices P. 

A corollary more directly applicable to net-
work analysis ( and indeed synthesis) is the follcw-
ing: 

If A 1- -I- land 2= 

1.1 I A2 

"3 1"14 

where P ; = 

- 
° 

1 0 
_ 

and Pi, P2, Ql and Q2 are arbitrary. 

then A ee PAQ 

This corollary is in no way limited to re-
ciprocal networks. However, if the network repre-
sented by the matrix A is reciprocal, i.e., if the 
matrix is symmetrical and the equivalent matrix is 
to be symmetrical, then Q is the transpose of P 
(Q = PT) and one obtains the familiar resultl° 
AgiPAPT. 

The discussion is easily extended to equiva-
lent networks with a different number of conceal-
ed circuits by the remark that 

A 1 01 

0 E 

The validity of this is evident since by the 
Laplace expansion of a determinant 

A 21 I° 

° lE 

A 

- im› . ;211 = o 

regardless of the dimension of E. 

VII. Compound Networks in General  

Before the interconnection of multiterminal 
networks is susceptible to treatment by the gener-
ating polynomial a bit of spade work must be done. 
Suppose two networks, distinguished respectively 
oy suuscripts k and L, are to be interconnected. 
For variety, the scattering formalism shall be usai 
wherein the incident wave a is transformed into 
the scattered wave b by the scattering matrix S. 
It shall be presumed that the behavior of the net-
works are given by 

12K = sK 24( 

= s 

-a-L 

both before ana after compounding. ( For definite-
ness, one rdef 7$Eirder each of the two networks 
as a four-terminal pair magic tee and the networks 
are then interconnected with the aid of a gyrator 
so as to form a four-terminal pair circulator. 11) 
The spade work alluded to above consists of elim-
inating the concealed bi to obtain 1) 1 = Slat where 
all the bi are independent and the new matrix SI 
is square so that bt and at are vectors of the 
same dimension. For example, from the connection 
constraints it is relatively easy to find matrices 
Cl and C2 such that C1 b = bt and a = C2 at whence 
the goal is achieved by S' Z. C1 S U2. 

It is at this point that the generating poly-
nomial scheme is applicable. As expounded in the 
preceding sections, one can now obtain equivalent 
networks by the elimination, alteration, or addi-
tion of as many concealed ai as desired. 

VIII. Compound Networks Amenable to  

Matrix Multiplication  

If the networks are more special and the 
interconnections are of a more modest nature than 
envisaged above, it is possible to cast the re-
sults of the preceding section in the form of a 

112 



matrix multiplication scheme as commonly used for 
the tandem connection of quadripoles. The results, 
without a detailed derivation, shall be listed for 
the case of a quadripole connected to a three-ter-
minal pair network where for each network the ter-
minal observables are not Vi and Ii separately 
but rather their ratio. This result has special 
relevance for a microwave network since the maxi-
mum knowledge gained from slotted line impedance 
measurements is merely the set of coefficients in 
the generating polynomial which occur when the 
polarizing matrix û is diagonal. These coef-
ficients are all the principal minors of the im-
pedance matrix and no other minors. ( Incidentally, 
since there are Inem 2n principal minors for a 
matrix of order n, including unity as the minor of 
order zero, it is readily shown that 2n - 1 inde-
pendent impedance measurements suffice to deter-
mine these principal minors and additional such 
measurements add no new information. Thus, from 

the fact that the non-reciprocal or gyrator aspect 
of a network is not determinable from the princi-
pal minors, it follows that the gyrator effects 
can not be determined from measurements which de-
pend only upon the ratio at each terminal.) 

Let the terminal pairs of the initial six 
pole be numbered 1, 2, and 3 while the quadripole 
terminal pairs are numbered 4 and 5. Furthermore, 
let terminal pairs 3 and 4 be directly connected. 
Then with primes to denote the elements of the 
equivalent three-terminal pair network and a use 
of subscripts explained in section 5, the equiva-
lence can be stated by the following matrix equa-
tion: 

ZI Z1 
11 1133 

Z8 
22 z 2.33 

11•22 z11•22..33 
Z' 

1 

Z11 Z11.33 

Z22 z22.33 

z11.22 z11.2233  

1 Z33 

[z44 z414.55 
1 Z55 

(The horizontal lines within the matrices serve 
as a reminder that these are proportional or frac-
tionall2 matrices which are only defined by the 
ratio of their elements.) 

IX. Conclusion 

The preceding sections have touched upon 
facets of multiterminal network analysis each of 
which could be expanded upon at great length. 
This was avoided here since the point which was to 
be stressed was the ease and directness in which 
basic results were obtained with the aid of the 
single technique of characterizing a matrix by its 
generating polynomial. Armed with a working know-
ledge of this method, one should be able to repro-
duce and extend the results contained herein. 
Moreover, the proceedings can be made palatable to 
the mathematician as well as to the engineer. 
However, for a deeper insight into the mechanism 
and a more co-ordinated view of the various topics 
the operator view of a network has much to recom-
mend it. 
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CONDENSED VERSION OF 

TWO bEW EQUATIONS FOR THE DESIGN OF FILTERS 

By Milton Dishal 

Federal Telecommunication Laboratories 

Nutley, N. J. 

I. INTRODUCTION  

There art some situations where a selec-
tive circuit which is equivalent to an inverse 
arm, i.e., constant-K-configuration filter is 
to be designed, and the unloaded 0 of the elements 
to be used is sufficiently high for them to be  
considered "non-dissipative". This paper pre-
sents two equations which, l'or the non-
dissipative case, specify the exact element 
values required for the filter to produce that 
attenuation shape having the highest possible 
rate of cutoff, i.e., the Chebishev attenuation 
shape. 

II. SOME EXAMPLES OF NON-DISSIPATIVE EQUIVALENT-
INVERSE-ARM FILTERS AND THE THREE CIRCUIT  
CONSTANTS Wt-ICH MUST BE CORRECTLY ADJUSTED  

Because so many of the selective circuits 
now being used, or designed, seem physically 
so different from the basic inverse arm configura-
tions, many engineers new to the field do not 
realize that the design equations for the con-
stant K configuration can be applied. 

It thus seems worthwhile calling attention 
to a few of these equivalent inverse arm filters 
to stress the wide applicability of the two 
design equations to be presented. 

It will be noticed that with one exception 
the bandpass examples art from the U.H.F. and 
microwave region, because it is mainly in this 
region that the ratio of unloaded Q to fractional 
mid-frequency Qo is high enough for the 

TTW 
elements to be considered non-dissipative. 

Figure la shows a common direct-coupled 
waveguide bandpass filter using four resonators; 
in another language it would be called a quad-
ruped tuned bandpass filter. The equivalence 
of this to the fundamental constant K configura-
tion ( either bandpass or low pass) has been 
excellently described in W. W. Mumfordts paper. 
(Reference 1 to which the reader is referred.) 
In the " language" which this present paper will 
use, the design information which the engineer 
must possess ( and which is required for all 
equivalent constant K configuration filters) 
is: 

1. The required coefficient of coupling 
Kr(r+1) between adjacent resonators. This fixes 
the size of the opening which must be made in 
the wall between adjacent resonators, and as 
is well known this opening can take the form 
of a slot parallel to the electric field vector 
which will give the equivalent of mutual-
inductance coupling between resonators, or a 
slot perpendicular to the electric field vector 
'.:hich will give the equivalent of "low-side" 
capacitive coupling between resonators, or a post 
parallel to the electric field vector which will 
give the equivalent of self-inductance coupling 
between resonators, or in general any kind of 
opening which will allow some of the electric 
and/or magnetic field of one resonator to enter 
the adjacent resonator. 

2. The required resonant frequency (fo) of each 
resonator. This fixes the distance between 
the walls of each resonator. As is well known 
the coefficient of coupling mechanism must be 
correctly considered a part of each resonator 
to which it is connected; otherwise the passband 
mid-frequency will not coincide with the 
resonant frequency. 

3. The required singly loaded Q(Q) of the 
first resonator (produced by correctly coupling 
the generator to this first resonator); and 
the required singly loaded Q (Qn) of the lest 
resonator ( produced by correctly coupling the 
load to this last resonator). If a terminated 
wave guide is used on each side of the filter, 
then this fixes the size of the opening in 
the first and last wall of the structure of 
Figure la; or if desired, these first and last 
walls can be completely closed off and, as 
Figure la attempts to show, the generator and 
load can be capacitively coupled to the first 
and last resonators by probes ( or magnetically 
coupled by loops). Whatever the method used, 
this generator and load coupling must be ad-
justed until the first and last resonators 
respectively have the required singly loaded 
Ql and Q. 



The above three well-known circuit 
constants have been discussed in a previous 
paper ( Reference 2) and methods of measuring 
and adjusting them have also been presented 
(Reference 3). 

Continuing with some other examples 
of equivalent-constant -K structures, 
Figure lb and lc show that by discarding 
the waveguide concept in favor of the 
coupled resonator concept, additional useful, 
and different-looking, filters can be 
built with the same four resonators. Figure 
lb shows the four resonators of Figure la 
rotated by 90 degrees and placed together 
ins uch a way that the openings between 
adjacent resonators produce the equivalent 
of "high side" capacity coupling. Figure lc 
shows the same four resonators arranged 
in yet another physical configuration which 
will still produce the same small-percentage 
bandwidth filtering action: there is 
equivalent "high-side" capacity coupling 
between resonators 1 and 2, mutual inductance 
coupling ( due to a vertical slot) between 
resonators 2 and 3, high-side capacity 
between resonators 3 and 4 and the generator 
sets Qi by being inductively coupled to 
the first resonator and the load sets 
Q4 by being inductively coupled to the 
last resonator. 

Figure 2 is included to stress the 
fact that the "different-looking" filters 
produced by using coaxial resonators are 
also equivalent to constant-K configuration 
filters insofar as bandpass response and 
required circuit constants are concerned. 

Figure 3 shows a triple tuned 
bandpass filter which while physically in 
no way resembling the classical inverse 
arm structure, still is described by exactly 
the same design constants as the inverse 
ann structure. It is the spherical resonator 
which is so designed that three of its resonant 
modes occur at the same frequency, i.e., 
are degenerate. The two screws shown project 
into the cavity and correctly adjust K12 
(the coefficient of coupling between the 
first resonance and the second resonance), 
and K23 ( the coefficient of coupling between 
the second resonance and the third 
resonance). The opening on the left 
is of the proper size to allow the terminated 
waveguide shown to load properly the first 
resonance, i.e., to set Qi; and the opening 
on the right allows the terminated waveguide 
shown there to load properly the last 
resonance, i.e., to set Q3. 

Finally, Figure 4 shows a three resonator filter 
using mechanical resonators for the filter 
elements. Here, the coefficient of couplings 
K12 and K21 are set by the material and diameter 
and "tap" Point used for the quarter-wave-long 
(approximately) thin rods which connect two 
adjacent resonators. Qi of the first resonator 
is correctly set by the thin low Q resonant 
rod connected to the first resonator, and 
the last resonator is similarly correctly loaded 
by the low Q rod connected to it. The coils, 
by magnetostrictive action convert the electric 
energy to mechanical energy and then vice versa 
and because of the unfortunately poor coupling 
produced by this phenomenon is usually negligible 
elcctrical loading coupled into the first and 
last resonators. 

There are many other examples of filters 
which at first glance do not resemble the basic 
inverse arm configuration, but which actually 
are equivalent to it; and in all of these many 
filters the designing engineer must know the 
required numerical valueibr all the coefficient 
of couplings in the structure; the required 
numerical value of the singly loaded Q of the 
first resonator and that of the last resonator; 
and the proper element values or physical 
lengths to produce the proper midfrequency, 
(or design information exactly equivalent to these 
three quantities). 

III. THE TkO PAIRS OF DESIGN EQUATIONS  

Figure 5 gives the two pairs of equations 
which, when infinite Q elements are used, 
supply the engineer with the above described 
information for two cases which often arise in 
practice: ( a) both the generator and load are 
resistive, and (b) one of these, either generator 
or load is reactive. An example of the first case 
would be the microwave preselectors designed 
to work from a 50 ohm generator and into a 
300 or WO ohm mixer crystal; while an example 
of the second case would be the loaded-on-one-
side-only interstage networks used in IF 
amplifier strips. 

As indicated at the top of the figure, 
the attenuation shape which will be obtained 
will be the optimum Chebishev attenuation 
shown in Figure 7C. lt is important to realize 
that the design equations of Figure 5 are given 
in terms of thevalley bandwidth" (B4) which 
is the bandwidth between the points on the 
skirt which are down by the same number of db 
as the peak to valley ratio (Vn/Vv ). The 
quantity Sn is a function of the number of 
resonators n used and the peak-to-valley ratio 
desired and the reader should note that as 
(Vp/Vv) approachs unit Sn becomes very large 



and therefore the required }Ys will be a large 
number times the fractional valley bandwidth. 
However, a required bandwidth at other 
db down rather than at the valley db down 
is very often specified and it is therefore 
necessary to get the numerical relationship 
between the valley-db-down-bandwidth and 
the specified-db-down-banduidth by using 
the shape equation at the top of Figure 5. 

IV. THE DESIGN FUATIONS FOR THE 
BUTTERAORTH RUSPONSE 

In the limit, when the peak to 
valley ratio is made to be zero db, Sn will 
become infinite and simultaneously the 
valley bandwidth will become zero. By 
correctly approaching the limit we find 
that the following simple changes in the 
equations of Figure 5 will pivc the 
design equation for the Butterworth response. 

(a) In place of the valley db down 
bandwidth (BV in the equations, use the 
3 db down banawidth BW3db. 

(b) Use unity for the numerator of the 
coefficient of coupling equations and for 
the denominator of the Q equations. 

V. APPLICATION OF THE DISIGN EQUATIONS 
TO THE LOW PASS LADDER 

If one writes the transfer impedance 
equations for the low pass ladder and 
compares them to those obtained for the 
bandpass case and uses a suitable normalizing 
procedure it is found that in the low pass 
case the frequency variable w ( i.e., 2Trf) 
is exactly equivalent to the bandpass case 
frequency variable 
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f uk) _ _   
L4J f; 

and in the low pass case the quantity 

is exactly iequivalent to the well-known 
coefficient of couplvig bandpass 

coupled circuit theorà; a.nd the quantity 
L/R in a series arm and RC for a shunt 
arm are exactly equivalent to the well-known 
resonant frequency Q of bandpass circuit 
theory. Thus to apply the equations 

of Figure 5 to a low pass ladder we do the 
following: 

in place of Bkv/f0 use wv 

in place of Q1 use Li/R1 or RiCi 

in place of Kr(r1) use 

1/i717,77,77.7 or 

1/ CrL( r+i) 
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CONVENTIONAL AMPLIFIERS 

William E. Bradley 
Co-Director of Research 

Philco Corporation 
Phila., Pa. 

For present purposes let us agree to de-

fine a conventional amplifier as one in 
which feedback is negligible so that the 
interstage coupling networks are effective-
ly isolated from each other by the vacuum 

tubes of the amplifier. As is implied by 

the adjective " conventional", such ampli-
fiers are at the present time almost uni-

versally used in electronic equipment. The 
vacuum tube used is almost always a pen-

tode. Triodes driven from the grid re-
quire neutralization and are more diffi-
cult to utilize in such circuits. Grounded 

grid triodes however isolate the input 
from the output fairly effectively and are 
here considered to be conventional ampli-
fiers. Most of the following discussion 

deals with amplifiers consisting of simple 
interstage coupling networks separated by 

pentodes. 
In order to compare conventional ampli-

fiers with other types, consider first 
their performance as a function of fre-
quency. The over-all amplification of a 

set of such stages is the product of all 
of the tube transconductances multiplied 
by the product of the separate transfer 

impedances of the interstage coupling net-
works. 
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Fig. 1 - Conventional amplifier chain. 

The limitations of conventional ampli-
fiers in gain and bandwidth result from 

the shunt capacitances of the input and 

the output terminals of each tube to 
ground. These so-called " parasitic" 

capacitances dominate the design of such 
amplifiers for most purposes. 

To obtain the highest stage gain, the 

transfer impedance of the interstage coupl-
ing network must be made as high as possi-

ble over the desired band, subject to the 
condition that the shunt capacitances at 

each end of the network must include the 

parasitic capacitances of the tubes. Net-
work theory shows that there are limits to 

the transfer impedance which can be ob-
tained under this condition; it also shows 

that the transfer impedance is likely to 
fall off rapidly outside of the band for 

which it is designed. 
This leads to the most outstanding 

peculiarity of conventional wide-band 
amplifiers, which is that they are part 

amplifier, part filter. Their ability to 

reject unwanted frequencies close to their 

wide pass-band is often useful as, for ex-
ample, in television receiver design. It 
is also true that the amplitude and phase 
characteristics through the pass- band are 

subject to convenient control with a mini-
mum of design difficulty. 

The extremely direct and flexible de-
sign of the frequency characteristics of 

conventional amplifiers is due to the fact 
that they are really chains of simple 

filters each of which is easy to design 
and adjust. The over-all transfer impedance 
of the amplifier is simply the product of 

the separate stage transfer impedances and 

therefore very complex over-all character-

istics can be obtained reproducibly from 
such chains. 

At this point two main branches to the 
subject at interstage coupling design can 

be distinguished. The first branch deals 

with the design of the best possible single 

stage. Here the ideal is usually to ob-

tain flat frequency response and linear 
phase characteristic across the entire pas 

band. The final video stage of a tele-
vision receiver is often designed this way 
as are many of the video amplifiers re-

LB 



quired in television studio and broadcast-
ing equipment. 
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Fig. 2 
Parasitic capacitances absorbed in 

filter structure. 

The inLerstag -.. couplings for such am-
plifiers are wave filter sections which 

have shunt capacitances across each 

section. These shunt capacitances absorb 
the parasitic capacitances of the tubes 
while the filter properties of the net-

work ensure equal transmission across the 
pass-band. Very good approach to ideal 

characteristics can be obtained with a 
single stage in this way if enough circuit 
elements are used in the structure. 

Usually only a few circuit elements are 
used and the result is a compromise be-

tween ideal performance of the single stage 

and complexity of structure. 
The voltage amplification per stage 

through the pass band obtained in this way 

with a four- terminal interstage coupling 
is 

gm 
= c Aci) 

where C is the mean parasitic capacitance 

of the tube. The amplification is half of 

this for the same tube type with a two-
terminal interstage coupling. Since then 

the shunt capacitance is the sum, not the 
mean of the two parasitic capacitances. 

The second branch of the general sub-

ject of interstage coupling design takes 

as its objective optimum over-all perform-
ance of a set of cascaded stages. The 

frequency response of any one stage of the 
set may be very far from ideal. It is 

usual in such amplifiers to employ very 

simple interstage coupling networks, 

seldom using more than two inductances per 
stage and usually only one. The designer 
of this form of amplifier is principally 

concerned with how the stage responses 
can be made to fit together to achieve the 

results which he desires. Because the 
interstage couplings are simple and non-

interacting it is possible to control the 

complex resonant frequencies of these net-
works with great precision. These com-
plex resonances correspond to poles and 
zeros of the over-all amplification of the 

set of stages. One of the greatest ad-
vantages of this type of amplifier is the 
ease with which these poles and zeros can 

be placed in prescribed patterns in the 
complex frequency plane to realize accu-

rately design goals. 

The gain obtained in this way is not 
greatly different from that obtainable 
with ideal filter interstage couplings 
and carries the advantage of simplicity of 
circuit adjustment and flexibility of de-

sign. 

" Caw 

Fig. 3 - Three- stage maximally flat amplifier. 

As a simple example consider the ampli-

fier shown in Figure 3. Here a low pass 
amplifier achieves a maximally flat ampli-

tude characteristic with only one " peaking 
coil". Its three poles are arranged on a 
semicircle. In spite of its simplicity the 
mean low frequency gain per stage of this 

amplifier is as hich as can be obtained 

with any two-terminal interstagc coupling 
networks. Since it has only three poles, 

however, the frequency response does not 
remain flat all of the way to the nominal 

band limit,, but is down 3 db at that 

point. 
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Fig. 4 - Use of zero in right-hand plane. 

The design possibilities of so-called 

conventional amplifiers are still not 
common knowledge to design engineers. For 

example, it is not well-known that not 
only the amplitude but also the phase 
characteristic may be controlled through 
the pass-band to achieve equal amplifica-

tion and constant time delay for all pass-

band frequencies. A simple case is illus-

trated in Figure 4 where the gain and 

phase shift for the three pole, maximally 
flat response can be compared with those 
resulting from four poles and one zero in 
the right-half plane. The amplitude re-

sponses are not very different for the two 
cases but the phase characteristic of the 
second pattern is much straighter, corre-

sponding to improved transient response, 

with no loss of selectivity. A general 

recipe for obtaining perfect amplitude and 

phase characteristics through the pass-
band is shown in Figure 5. 

Interstage coupling networks providing 

zeros in the right-half plane may be 
readily constructed using principles 
similar to those used in designing bridged 

T equalizers or resistance compensated 
filters. A commonly used example is the 
resistance compensated trap circuit used 
in television receivers which provides a 

zero on the jca axis for adjacent channel 
attenuation. Changing the value of the 

compensating resistor in such a direction 
as to increase its effect moves the zero 

over into the right-half plane. 
An important property of conventional 

amplifiers in general is that the trans-

conductances of the tubes do not affect 
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Fig. 5 
Ideal pass band obtained by distribution 

of poles and zeros on circumference of circle. 

the shapes of the gain and the phase 

characteristics. This is not generally 
true of other forms of amplifiers involv-

ing feedback or, more generally, in which 
the pole and zero locations are functions 

of transconductance. Hence conventional 
amplifiers may have their gain controlled 

over wide limits with no appreciable change 

in transient response. This is important 

in amplifiers intended for pulse communica-

tion or television use. 
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Fig. 6 
Compensation for grid-to-plate 

capacitance. 

Even small traces of spurious feedback 

from plate to grid can spoil the precision 

of design of conventional pentode ampli-
fiers, especially if the gain per stage is 
high. Figure 6 shows the screen neutral-
ization circuit used in a television re-

ceiver band-pass amplifier with type 6CB6 
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tubes. This circuit is able to substan-

tially eliminate interaction between the 

interstage coupling networks used. The 
intermediate frequency amplifier pole and 

zero locations used in the design of a 

production receiver are shown in Figure 7. 
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Fig. 7 - Pole pattern of the TV-90 IF. 

A pentode tube for a conventional wide-

band amplifier has a figure of merit which 

varies directly with the transconductance 

and inversely as the parasitic capacitance 

of the tube. From a practical point of 

view, the figure of merit defined in this 

way is slightly misleading since the ex-

ternal circuits add some parasitic capac-

ity but, of course, do not affect the 

transconductance. It follows that a nigh 

transccnductance is a more valuable asset 

for many applications than a low shunt 

capacitance. 

The figure of merit for a number of con-

ventional pentodes is illustrated in 

Figure 8. It is interesting to notice 
that the figure of merit of the subminia-

ture pentode 5702 is very high while the 

shunt capacitances of this tube are so low 

as to be very much affected by the capac-

itances of the associated wiring. When 
these capacitances are added the 5702, 
while still a very good pentode, is not 

greatly different in performance from 
several other pentodes. 

The upper frequency limit to convention-
al tube operation is probably somewhere 

above four thousand megacycles, if grounded 

grid triodes are considered to be conven-
tional. Extreme delicacy of construction 

of the tube elements and difficulty of 

ccnnection to them discourage at present 
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Fig. 8 - Pentode figure of merit. 

the application of tubes of this type above 

the UHF band. The UHF band itself seems 
to be within reach of conventional struc-

tures although large scale commercial use 

Df amplifiers in television tuners for 

this band is only beginning. 
The good and bad points of conventional 

amplifiers can be summarized as follows. 
On the bad side it can be said that: 

1. Grid to cathode capacitance is 

subject to some variation in tube produc-

tion. This makes the frequency character-

istics of conventional wide-band amplifiers 

change slightly when tubes are replaced 

without circuit readjustment. 

2. They tend to be slightly non-
linear. 

3. Their absolute level of gain is 

subject to delft with change of gm. 

4. They have an amplification 

stage which varies inversely as the 

width se that conventional amplifiers are 

of doubtful utility for bandwidths greater 

than about thirty megacycles using present. 

ly available commercial tubes. 

The good points of conventional ampli-
fiers are: 

1. The ease and accuracy with which 
good frequency response and transient per-

fcrmance can be obtained in a predetermined 

frequency band together with rejection of 
frequencies outside this band. 

Z. Their relatively low cost. 

3. The independence of their fre-
quency characteristics and transient re-

sponse with respect to changes of tube 

transconductance. 

per 

band-



BROAD-BAND FEEDBACK AMPLIFIERS 

Harold N. Beveridge 

Raytheon Manufacturing Company 
Newton, Mass. 

The introduction of television and radar 

imposed the problem of designing wide-band i.f. 
and video amplifiers. Techniques using double-

tuned circuits, stagger tuning, shunt peaking, and 
series peaking are fairly well known. The use of 

resistive feedback from plate to grid in 1.f. and 
video amplifiers was pointed out by Harold A. 
Wheeler'. The practical design of this type 

amplifier was started at the National Research 

Council in Ottawa, Canada, by the author and 

A.J. Ferguson and later continued at the Naval 

Research Laboratory in Washington2. The purpose 
of this morning's paper is to indicate the simple 

basic circuits and their performance and to dis-
cuss some of the second order effect. so important 

in amplifier design. 

Fig. 1 

Fig. 1 shows the basic feedback configuration. 

The coupling networks used between such stages 

may be very simple and still give effective gain 

bandwidth performance. 
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A qualitative understanding of this type of 
feedback can be obtained by considering the 
behavior of a single video stage. This is shown 

in Fig. 2A. Ro is the plate load for the desired 

gain. Consider the input impedance ZI due to the 

feedback resistance R. 

Fig. 2B illustrates the low frequency case. 

It is apparent that the impedance presented is 

purely resistive ( IR in phase with r9) . In a 

manner similar to Miller effect, the impedance 
is given by 

Zi = 
lil A 

A is the absolute voltage gain of the stage. 

Next consider the circuit behavior at a 

frequency corresponding to the 3 db point in the 
output circuit, Fig. 2C. The feedback current 

IR is about 70% its previous value and it lags 

450. Thus, the input impedance Zi shows an in-

creased resistive component and a large inductive 
component. This will tend to "tune out" Ci. This 
type of feedback is most useful if a constant 
current generator is used to drive Zi. This 
allows the rising impedance characteristics of Zi 
at higher frequencies to result in an increase in 
gain to compensate the fall-off of gain due to the 

decreasing impedance in the output circuit. This 

is the basic mechanism by which this type of feed-

back produces broad-banding. 

Fe 

Fig. 3 

Adding a tube to drive the circuit previously 
shown produces what has come to be called a " feed-

back pair". This is shown in Fig. 3. R is chosen 

so that it effectively loads the plate of the 

first tube with a value about equal to Ro. Thus, 

the low frequency voltage gain of each stage is 
about the same. By adding inductances to tune 

both circuits to the same frequency, the amplifier 
becomes an i.f. or band-pase amplifier. 

There is an exact correspondence in these 
amplifiers between the video and i.f. case. The 
total bandwidths are identical for both. That is, 
the semi bandwidth of the i.f. Is just one-half 
the video bandwidth. This follows from the normal 

situation of having reactance change at twice the 

rate when deviating from a center frequency ( band-



pass case) than occurs when increasing from zero 
frequency ( low-pass case). 

The transmission characteristics and gain 
bandwidth product of a feedback 1.f, pair and a 
stagger pair are nearly alike. 

The pass-band shape of a pair can be adjusted 
by varying the value of En. 

Bandwidth may be varried by varying R. 
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The effects of the termination are shown for 
the 1.f. case in Fig. 4. When Ro = , the 
response is markedly doubled peaked. There is a 
value for Ro that gives a flat response. Lower 
values of Ro result in a single peaked response. 
It is not obvious, but equivalent results will be 
obtained by removing Ro and replacing it with an 
equivalent resistance across the first tuned cir-
cuit, or by placing 2Ro across each circuit. 
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PAIR 

Fig. 5 shows on an absolute scale the gain 
and measured bandwidth obtainable using 6AX5 tubes 

operated at a Gm of 4,500 umhos, a total circuit 
capacity of 9.5 UHF, feedback resistors as indi-

cated, and Ro adjusted for approximately flat 
response. Capacitance shunting the feedback 
resistance establishes a practical lower band-
width limit of 5 mc. The greatest bandwidth 
shown is 30 mc at 1 db, corresponding to a gain 
of 12 db for two stages. 
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Fig. 6 shows a feedback "triple". For the 
i.f. case, it is practically identical to a 
stagger triple. As in the case of a pair BA in 
the triple may be placed across the first circuit 
instead of the last without altering the band-
pass characteristics. However, unlike the pair, 
if 2Ro is placed across the first and last cir-
cuits, the amplitude response of the amplifier 
becomes unsatisfactory. It is difficult to com-
pare exactly gain bandwidth performance of pairs 
and triples as the result is somewhat dependent 

upon the number of stages used. Results were 
measured on a six- stage amplifier using in one 
case three pairs and in the other case two triples. 

When adjusted for equal gain, the triples gave 20% 
more bandwidth. 

Clearly the number of stages may be increased 
beyond three. The theoretical case for an in-
finite chain has been worked out by A.J.Yerguson3. 
The longer chain produces a small increase in 
gain bandwidth product compared with triples. 

Gain control is a problem in feedback 
amplifiers. The bandwidth of these amplifiers is 
a function of the Gm of those tubes having re-
sistance in shunt. Gain control is usually 
achieved by controlling the Gm of a tube around 
which there is no feedback. In the case of a 
pair or triple, the first tube le available for 
gain control purposes. In some casas, it is allow-
able or even desirable to have bandwidth increase 
when gain is decreased. The introduction of the 
germanium diode allows such control if placed 
across each tuned circuit ( 1.f. case). Varying 
the current through the diode varies the degree 
of loading across each circuit. 

Inasmuch as the bandwidth of a feedback 
amplifier is a function of tube Gm, the question 
arises as to the practical problems with such 
amplifiers. Tests were conducted on two types of 
fixed tuned 60 mc 1.f. amplifiers. One amplifier 

contained two feedback triples, the other two 
staggered triples. Measurements of gain and band-



width were made on each type amplifier with a 
large number of 6AX5 tubes. The results are shown 

in Fig. 7. It is seen that the spread in bandwidth 
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was only 2 mc for the feedback amplifier compared 
with 4 mc for the stagger tuned amplifier. The 
feedback amplifier exhibits even better char-
acteristics with respect to gain stability showing 
a change of only 4 db compared with 11 db in 

stagger tuned. Feedback amplifiers, in general, 
show good repeatability in production. 

The amplifiers so far described have employed 
the simplest possible interstage coupling networks. 

It is possible to use more complex coupling net-
works. By splitting the circuit capacitance into 
two parte, a further improvement in gain bandwidth 
product may be achieved. The factor of improvement 

may approach two. 

DOUBLE TUNED 

Pig. 8 

Fig. 8 illustrates a typical i.f. stage using 
a double-tuned circuit as the interstage coupling. 
R.Q. Twiss4 has worked out the theoretical 

analysis of such an amplifier and verified 
experimentally the results. It should be pointed 
out, however, that the more complex networks with 
larger gain bandwidth factors have poorer transient 

characteristics. 

An improvement in gain bandwidth product can 
be achieved in the video case by splitting the 
capacitance with an inductance as shown in Fig. 9. 

If the capacitances are equal, an improvement 

VIDEO 

Fig. 9 

factor approaching two is possible. 

Second order effects play a very large part 
in the practical design of wide-band amplifiers, 
and particularly so in the case of feedback 

amplifiers. The treatment of the impedance be-
tween cathode and ground, the transit angle in 
the tube, and the capacitance shunting the feed. 
back resistance are all important. 

Grid input loading in pentodes at high 
frequencies is generally appreciated as being 
present. However, it is of interest to know how 
much of this is due to transit time effects and 
how much due to cathode lead inductance. This 
has been measured. 
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Fig. 10 shows the input conductance of a 
6125 tube ae a function of frequency with a 500 
UUF cathode by-pass capacitor. It should be 
noted that the input conductance is zero at 47 me. 
The frequency at which the total cathode lead 
inductance series resonated with the by-pass 
capacitor was measured and found to be about 

48 mc. At this frequency the impedance between 
cathode and ground is practically zero, and the 
effect of cathode lead inductance is zero. As 
the input conductance is also practically zero, 
it is concluded that transit time loading is small 
compared with loading due to cathode lead in-
ductance. The change in input conductance would 
tend to produce a small slope on the flat top of 
an amplifier. Reactance between cathode and 
ground may be used either to advance or retard the 
plate current phase in a tube relative to the 
applied voltage between grid and ground. It in 
quite practical to retard or advance the plate 



current by 4 or 5 degrees. 

At i.f. frequencies in feedback amplifiers, 
there are two second order effects which compli-
cate design. Fortunately, they are of opposite 
sign and can be used to cancel one another. They 
are transit angle effects in the tube and the un-
avoidable capacitance which shunts the feedback 
resistance. 
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Fig. 11 

First, let us consider transit angle. This 
has been measured on the 64115 at 60 me and fonnd 
to be 110. Fig. 11B illustrates the relation-
ships. If left uncorrected, this loads to an 
assymmetrical response. Actually capacity always 
shunts the feedback path. For a certain capacity, 
the current IC will add to B to produce i in 
phase withe5 . An approximate correction of this 
sort is desirable. 

It is worth while considering a numerical 
example. The highest practical value of R is 
about 20,000 ohms. The total capacity, which 
should shunt it, is 0.04 MP (for 110correction). 
The tube itself has approximately 0.02 UUF. This 
leaves 0.02 UU7 for the end-to-end capacity of 
the feedback resistor. Actually most half watt 
carbon resistors have end-to-end capacities of 
the order of 0.3 UUF, about fifteen times too 
great. 

A resistor suitable for feedback amplifiers 
was developed by the International Resistance 
Company. It is known as the HPM and has a 
capacity of 0.02 UUF. Probably there are now 
other deposited film resistors suitable for this 
purpose. 

For very wide-band amplifiers, the value of 
the feedback resistor may be of the order of 
1,000 ohms. In this case the capacity in the 
ordinary half watt carbon composition resistor 
is about right to compensate for transit angle. 
The foregoing may lead the designer to ask what 
can be done for intermediate values of feedback 
resistors. Actually, the practical answer to 
this problem is to select the moet applicable 
of these two resistor types. Further adjustment 
of effective transit angle may be obtained by 

choosing the cathode by-pase capacitor in such 
a way as to leave the total cathode path to 
ground either slightly inductive or capacitive. 

Gain bandwidth product has been measured on 
feedback pairs and triples. The circuit capacity 
was 9.5 UUT and a tube Gm of 4,500 umhoe. With 
voltage gaine per stage of two or three the 
product for both pairs and triples was about 55 me 
times. With voltage gaine of eight per stage, 
the product for paire was 65 mc times and for 
triples 75 mc times. All the above is based on 
3 db bandwidths and 100 db of gain. 

VOLTAGE GAIN FOR FEEDBACK COMBINATIONS 
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Two important parameters in amplifier design 
are, of course, overall bandwidth and voltage 
gain per stage. The product of these two quan-
tities has been given above. Relatively simple 
expressions for voltage gaine are given in Fig.12. 
These apply only for the low frequencies in video 
amplifiers and the center frequency in i.f. am-
plifiers. 

The exact mathematical analysis of feedback 
amplifiers is cumbersome. However, with know-
ledge of the second order effects, gain bandwidth 
product, and the gain equations in this paper, 
the practical design of such amplifiers is rel-
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atively simple. These amplifiers, within limits, 

using resistive feedback eliminate the need for 
shunt peaking, the use of double-tuned circuits, 
and stagger tuning. Resistive plate to grid feed-
back amplifiers are inherently very stable and 

show good repeatability in production. 

1Harold A. Wheeler, " Wide-Band Amplifiers for 
Television", Proceedings of the I.R.E., Vol. 27. 

pp 429-438, July, 1939. 

2R.N. Beveridge, " Information on Broad-Band Feed-
back i.f. Amplifiers", Combined Research Group, 

Naval Research Laboratory Report CRG-93, 
Oct. 22, 1945. 

3A.J. Ferguson, "The Theory of i.f. Amplifiers with 
Negative Feedback", Report No. PRA-59, National 
Research Council of Canada, Ottawa, Canada. 

4R.Q. Twists, "The Theoretical Design and Exper-
imental Response of Single and Coupled Circuit 
Negative Feedback i.f. Amplifiers", Report T1649, 

TelecommunicatIone Research Establishment, 
Malvern, England. 

TRANSISTOR AMILIFIERS 

II; L. Wallace, Jr. 
Bell Telephone Laboratories, Inc. 

Murray Hill, N.J. 

ABSTRACT 

Mr. Wallace will discuss some of the proper- bandwidth and will indicate the order of perform-

ties of transistors which result in limitation of ance which has been achieved. 
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DISTRIBMED AMPLIFIERS 

W. G. Tuller 
Emmett H. Bradley 
Melpar, Inc. 

Alexandria, Virginia 

With the advent of greater interest in mull-
microsecond oscillography, the need for broadband 
amplifiers having increasingly high upper cut-off 
frequencies has become apparent. The conventional 
technique of cascading amplifier stages is inade-
quate to provide sufficient broadband operation 
since the maximum operating frequency of such a 
system is determined by its maximum "gain-band-
width product". 1,20 However, the distributed 
amplifier is not limited by the conventional re-
strictions on bandwidth,4,5,6 thus making possible 
the realization of amplifiers having a flat fre-
quency response from d.c. to several hundred mega-
cycles. 

The basic philosophy of the distributed ampli-
fier is not new; it was originally discovered by 
W. W. Percival7 in 1935. Not until 1948 was this 
circuit recalled to the attention of an electronic 
age, hard pressed with the need for amplifiers 
having greater bandwidths. In their original 
paper, 8 Ginzton, Hewlett, Jasberg and Noe present-
ed a comprehensive design procedure which ulti-
mately led to the realization of this broadband 
amplifier. 

Following the publication of their paper, 
considerable interest was created in this new cir-
cuit oddity, which applied traveling wave concepts 
to obtain amplification at video frequencies. 
Theoretically, such an amplifier could be designed 
to have as large a gain as desired over an arbi-
trarily wide bandwidth. It was soon found, how-
ever, that this was not the case since the upper 
cut-off frequency is limited by the high frequency 
characteristics of the tubes as well as by the 
geometric configuration of their envelopes. 

In recent years, considerable work has gone 
into the development of wide band distributed 
amplifiers using multi-grid tubes.% 10,11,12,13, 
14,15 At the present time, these amplifiers are 
commercially availaple with bandwidths in excess 
of 200 megacycle ) 0,17 Several government agen-
cies have developed distributed amplifiers whose 
upper cut-os tequencies were as high as 400 
megacycles. lc,i/ The men largely responsible for 
the development of these circuits have expressed 
their belief that this frequency represents the 
maximum upper cut-off frequency for distributed 
amplifiers using commercially available multi-grid 
tubes. Distributed amplifiers are limited to use 
at frequencies below 500 megacycles by the charac-
teristically large effect of lead inductances, and 
grid loading in tetrode and pentode tubes. 

The effects of grid and plate lead inductances 
can be largely overcome by using m-derived trans-
mission lines having a negative mutual coupling. 
Grid loading resulting from the transit angle and 
the presence of cathode lead inductance in the 
tube can be partially eliminated by inductively 
loading the screen grids and by using tubes having 
twin cathode leads. Even when great care is given 
to the consideration of these effects, the attenu-
ation along the plate and grid lines remains suf-
ficiently large to limit the maximum operating 
frequency of these amplifiers. A representative 

group of distributed amplifiers along with their 
characteristics are tabulated in Table I. 

In order to increase the operating frequency 
of the distributed amplifiers of the future, there 
are at least three alternatives. 

1. A multi-grid tube can be designed having 
symmetrical lead pairs with small lead inductances, 
a large transconductance, small grid loading at 
high frequencies, and a large figure of merit 
(ratio of transconductance to input capacitance). 

2. A tube development program can be initi-
ated to develop a new type of vacuum tube similar 
to the transmission line tube proposed by V. J. 
Fowler. 20 

3. New techniques for employing triodes in 
distributed amplifiers can be developed. 

The first and second proposals do not provide 
an immediate solution to this problem since tube 
development programs are time consuming and expen-
sive. The latter approach appears more attractive 
for a number of reasons. 

1. In recent years, triodes have been devel-
oped for operation at ultra high frequencies. 

2. Many of these tubes have been designed 
to minimize lead inductances. 

3. The effect of grid loading in these tubes 
is considerably less than in a multi-grid tube. 

In the fall of 1950, Melpar, Inc., began the 
development of a distributed amplifier using ultra 
high frequency triodes. The problem is, however, 
more difficult than it might first appear. If the 
multi-grid tubes in a distributed amplifier are 
directly replaced with triodes, a considerable por-
tion of the signal in the plate line is fed back 
into the grid line through the grid-plate capaci-
tance of the tubes. This feedback becomes suffi-
ciently large and of the proper phase to cause 
instability due to this inter-element coupling 
when more than a few tubes are utilized. For that 
reason a new technique had to be developed in 
order to eliminate this effect. 

A circuit using paired triodes and called a 
"paraphase distributed amplifier" has been devel-
oped which does isolate the grid and plate lines. 
From the schematic diagram shown in Figure 1, it 
can be seen that the tube pair is comprised of a 
cathode follower driving a grounded grid amplifier. 
When a number of these tube pairs are spaced equi-
distantly along two transmission lines having an 
equal velocity of propagation, amplification is 
obtained in a manner similar to that in a conven-
tional distributed amplifier. There are several 
advantages of this circuits 

1. The system uses triodes which minimize 
the effect of grid loading and transit time, and 
thereby make it possible for the amplifier to have 
a bandwidth of approximately two and one half times 
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that of any video or distributed amplifiers in use 
at the present time. 

2. The problem of coupling between the grid 
and plate lines is avoided by this particular com-
bination of tubes, thus reducing the possibility 
of instability in the system. 

3. Since the input tube of the paraphase 
tube pair behaves very much like a cathode follow-
er, the system provides amplification without in-
version and operates satisfactorily with maximum 
input signals of approximately three times those 
used in conventional grounded cathode amplifiers. 

In order to verify the theoretical investiga-
tions, a five tube pair paraphase distributed 
amplifier has been designed and tested. Prelimi-
nary tests on the five tube pair stage revealed a 
low frequency gain of 3 db. The voltage gain for 
the unit was flat within ±4 db up to 940 megacycles 
with the exception of a -7.8 db dip at 700 mega-
cycles (Figure 2). The shape of the amplifier re-
sponse appeared to be quite sensitive to changes 
in the plate voltage. By increasing the number of 
tube pairs, the stage gain can be increased propor-
tionally without a serious reduction in bandwidth. 
The 5675 ultra high frequency triode was chosen 
for use in this amplifier because of its favorable 
figure of merit and geometric construction. Con-
siderable care was required in the layout of the 
chassis in order to reduce the coupling effects 
between the transmission lines and to minimize the 
effect of stray capacitances. In Figure 3, the 
chassis layout for this breadboard amplifier is 
shown. 

The 5675 pencil triode is not well suited for 
use in a driver or output stage. The maximum grid 
swing of this tube is small because of the rela-
tively small operating voltage. Since the trans-
conductance of the 5675 is only 6200 µmho, an im-
practical number of tubes would be required to 
develop an appreciable power gain. Furthermore, 
the large output signal traveling dawn the plate 
line would cause the instantaneous plate potential 
of the tubes to fluctuate greatly. Since the 
transconductance of these tubes is quite sensitive 
to changes in plate voltage, serious signal dis-
tortion would result. For these reasons, parallel 
work has been done on a paraphase distributed ampli-
fier using 2C39A triodes. A stage using five tube 
pairs was designed similar to the previous model. 

Considerable difficulty was encountered in 
the layout of this stage because the 2C39A has one 
side of the filament connected internally to the 
cathode. Since the triodes in the paraphase cir-
cuit operate with the cathodes above ground poten-
tial, a method of supplying the filaments from an 
isolated supply had to be developed before the unit 
could be tested. This problem was solved temporar-
ily by the addition of a cathode line on which the 
needed filament voltage was supplied from an isola-
ted storage battery. (The addition of a cathode 
line in the distributed amplifier should be avoided 
if possible because its low impedance reduces the 
gain per tube pair.) From experimental tests on 

the unit, it has been found that the low-frequency 
voltage gain is 8.6 db, and the amplifier response 
is flat within ±2.5 db up to 470 megacycles 
(Figure )). In addition to the investigation of 
its frequency response, the 2C39A stage was sub-
jected to an impulse test. A test pulse, five 
millimicroseconds in duration and having a rise 
time of half a millimicrosecond, was fed into the 
amplifier while the output of the amplifier was 
applied to the plates of a high speed oscilloscope. 
Although the vertical deflection on the cathode-
ray tube was extremely small, it was possible to 
determine with the aid of a cylindrical lens that 
the rise time of the pulse transmitted by the 
amplifier was not appreciably different from that 
of the original pulse. 

There are several areas of uncertainty that 
must be resolved before success of the paraphase 
distributed amplifier can be predicted, and there 
are several difficulties to be overcome: 

1. It can be shown that nearly thirty tube 
pairs ( 5675 1s) are required to give an optimum 
stage gain of e, the Naperian logarithmic base, 
into a load impedance of 50 ohms. It has been 
pointed out that in conventional distributed 
amplifiers using pentodes there is a limit to the 
number of tubes that can be used in one stage; 
beyond this number, stage gain decreases because 
of line losses. In an amplifier analysis made at 
the Allen B. DuMont Laboratories, 21 it was found 
that the maximum gain was obtained with twelve 
6AN5 tubes per stage; larger numbers of tubes af-
forded less total gain. This particular number is 
not directly pertinent to the paraphase distribu-
ted amplifier, but it is important to realize that 
the number of tubes per stage cannot be increased 
without limit. Whether thirty pairs can be used 
will not be known until a large stage has been 

built and tested. 

2. A serious problem is the inefficiency of 
coupling between stages. It can be shown that the 
total gain of several cascaded stages is propor-
tional to (1 +p)m, where p is the interstage re-
flection coefficient and m is the number of stages. 
For a plate line of characteristic impedance 120 
ohms and a grid line of 50 ohms, P -0.412. With 
five stages of 5675fs, the quantity ( 1 + P)m, which 
represents the effective coupling efficiency of the 
complete amplifier, is 0.07, or 7 per cent. If 
this coupling efficiency can be improved, a con-
siderable reduction will result in the size of the 
amplifier, but there is no basis for optimism on 
this point. Although an awareness of the problem 
has existed from the very beginning, no satisfac-
tory solution has been devised. 

3. A satisfactory method must be found for 
supplying the heaters of the 2C39Als. The present 
technique of using an isolated battery or trans-
former is unattractive for a large stage. More-
over, the use of any cathode line is undesirable 
because it reduces gain by a factor of about one 
half. There is further question whether suffi-
ciently high frequencies can be passed through a 
paraphase stage of 209Als because of the diff.-



culty of maintaining sufficient impedance between 
cathodes and ground. A low capacitance trans-
former can be designed to supply each tube pair 
separately and eliminate the need for a cathode 
line. 

4. Considerable difficulty has been encoun-
tered in obtaining line terminations that would be 
resistive and even nearly constant in value over 
the range of frequencies up to 1000 megacycles. A 
parallel program has been undertaken to develop 
terminations of a novel design for the needs of 
this amplifier. If it performs as anticipated, 
proper termination of the lines will no longer be 
a serious problem. 

It is questionable whether the low "gain" 
limitation of the paraphase distributed amplifier 
can be resolved in the near future. It is of 
interest, however, to note that further work on 
triode distributed amplifiers may remove some of 
these difficulties. A "three dimensional distri-
buted amplifier", which is now under study, shows 
considerable promise (Figure 5). 

In conclusion, it can be said that distri-
buted amplifiers have developed rapidly since 1948. 
There is reason to believe that bandwidths of over 
1000 megacycles will be obtainable in the future 
with the introduction of new and more adaptable 
tubes. In the meantime, sufficient evidence has 
been uncovered to warrant a close investigation of 
the use of triodes in designing wide band distri-
buted amplifiers. 
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Laboratory4X150 100 Mc 40 Db 

Hewlett Packard 
Company 

6AK5 140 Mc 20 Db 8 V 

Spencer Kennedy 
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6AK5 225 Mc 21 Db 6 V 
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6AN5 250 Mc 16 Db 6.5 V 
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Laboratory 

6AK5 400 Mc 9 Db _ 
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Fig. 1 
Paraphase distributed amplifier. 
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Five-tube pair paraphasa 
amplifier ( RCA 56751s). 
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Three-dimensional distributed amplifier. 

TRAVELING-WAVE AND RELATED TUBES 

L. M. Field 
Stanford University 
Stanford, Calif. 

ABSTRACT 

Circuit, electronic, and matching limitations 
on the wideband amplifying properties of helix-
type tubes in the range of frequencies from 50 mc 
through the microwave range will be reviewed. 
Bandwidths of from one to several octaves in this 

range have been obtained and typical examples and 
design criteria will be given. Bandwidth and 
bandtuning of several related types of microwave 
tubes using other than a helix for wave propaga-
tion or nonpropagating structures will also be 
discussed. 
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CONTINUOUSLY VARIABLE PULSE SIGNAL DELAY SYSTEM 

by 

Carl Berkley 
Allen B. Du Mont Laboratories, Inc. 

Clifton, New Jersey 

Summary 

The technique of small artificial lines for 
the delaying of wideband signals with optimized 
amplitude and phase distortion is well known.192,3 
These lines are usually employed to produce fixed 
signal or pulse delays. Many applications would 
become possible with the availability of lines 
which could be adjusted over a large portion of 
their electrical length without appreciable change 
of the line constants. This has previously been 
accomplished experimentally with tapped delay 
lines4, and with sliding contactors. Because of 
the physically very small wires used in practical 
lines the taps and contacts are difficult to make 
without introducing undesired discontinuities. 
Also since the coil turns have to be exposed to 
the slider, difficulties arise in making good con-
tact due to dirt and atmospheric corrosion of the 
surfaces. Commutation trouble and troubles with 
shorted turns are also encountered. A method is 
proposed and has been verified in principle ex-
perimentally which eliminates these difficulties. 

Recently, continuously wound delay lines 
have become commercially available, which are gen-
erally similar to standard RG- cables, but with 
increased delay per unit length.n This is accom-
plished mostly by the use of powdered ferromagnet-
ic materials in the insulated core of the cable 
which increase the inductance per unit length and 
thereby the delay. Because of the increased in-
ductance, the characteristic impedance of the line 
is cenerally increased which is desirable for 
many purposes. If the core of the cable is made 
of magnetic material which is readily saturable, 
a magnetic field external to the cable may be 
used to alter the characteristics of the cable 
through the shielding without physical contact 

with the helix. 

The characteristic impedance L 
Zo = 

Since we are dealing with a coil with a non-lin-
ear core, a type of analysis similar to that used 
in the case of magnetic amplifiers is applicable. 7 
The inductance L, of a cored coil is given by, 
from the definition of inductance 

L N -ne-

where N = Number of turns 

1)., the flux 

i = the current 

since () = BA where B = the flux density and the 
magnetizing force is 

Ni 
H = therefore i 

N 
Hs 
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then substituting 

L d(BA) _ AN2 

Hs dH 
N 

dB 

Therefore it is seen that the inductance of 
a coil in the line is a function of the slope of 
the B/H curve. By adding a steady component to 
the field in the core either by a dc current or 
a superimposed external field from a magnet, we 
may change the slope that a signal current sees 
and therefore the characteristics of the line. 
If we use a cero having a sharp shoulder in the 
B/H curve and use a field strength sufficient to 
change the operating point from one linear re-
gion to the other, then the point along the line 
where the inductance changes abruptly will ap-
pear to be a discontinuity to any incoming sig-
nal and the signal will be partly reflected. If 
the far end of the line is terminated properly, 
no signals will appear from this path and only 
the reflected signal will be returned to the in-
put. Circuits exist and are described to sepa-
rate the reflected from the ingoing signal. 

The amplitude of the reflected signal de-
pends, of course, on the ratios of the slopes of 
the different portions of the B/H curve. With a 
commercial line having a core of material not 
specifically intended to be saturable, we have 
obtained reflections attenuated approximately 
40 db using a small horseshoe magnet against the 
cable. ( See Figure 1) The reflected pulse can 
be continuously varied by moving the magnet. It 
is necessary when doing this to have the direc-
tion of the external field coincide, or be paral-
lel, to the field in the cable solenoid, other-
wise no reflections are observed. The cause of 
this effect is not clearly understood. It ap-
pears that even if the core is saturated in one 
direction by an external magnetizing force the 
component of this force in the direction at 
right angles is zero. 

The delay of the reflected pulse with re-
spect to the incident pulse is a linear function 
of the position of the saturating magnetic field. 
This makes possible the production of an accu-

rately linear pulse delay. 

By using the line as the frequency determin-
ing elament in an oscillator as described by R. 
Palmer°, and recirculating the pulses through an 
amplifier to compensate for line losses, a linear 
frequency scale may be obtained. 

The sharp discontinuity produced may be 
thought of as a mirror or wall from which the 
waves are reflected. If we were to use a core ma-



terial such as Deltamax, which requires only a 
small field differential between the saturated and 
unsaturated regions and then produce a linearly 
increasing field along the cable perhaps by the 
use of a tapered helix wound external to the elec-
trostatic shielding braid and concentric to it, 
we would produce a movable mirror by varying the 
helix current. By supplying an audio signal, for 
example, to the helix and pulses to the cable in-
put, we could produce a PTM of the pulses. 

By moving the mirror at speeds approaching 
the group velocity in the line we obtain a Dop-
pler effect for the observer at the line input. 
The reflected beat frequencies which he sees de-
pends on the rate at which the signal overtakes 
the mirror. This results in a lowering of the 
frequency of the input phenomenon. If the pulse 
signal just overtakes the mirror when it has 
reached the end of the line, the pulse has been 
"stretched" to the full length of the line. 

For other applications, it may be desirable 
to use a core in which the inductance instead of 
varying abruptly, varies linearly with the exter-
nal field. This requires the use of materials in 
which the second derivative of the B/H curve is a 
constant and the use of small signals. By using 
such materials and a series of adjustable exter-
nal magnets along the line ( see Figure 2), we can 
do a wide variety of waveshaping and transient 
generating functions in a manner similar to that 
proposed by Blumlein, Ka_Uman, and Percival9 with 
adjustable taps on the helix. 

Fig. 1 
Oscillograms of a pulse reflectedfi.?m three 
positions along a delay line by use or a 

movable magnetic field. 
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GENERAL TRANSMISSION THEORY OF DISTRIBUTED 
HELICAL DELAY LINES WITH BRIDGING CAPACITANCE 

Dr. M. J. Di Toro 
Allen B. Du Mont Laboratories, Inc. 

Passaic, New Jersey 

Abstract 

Helical delay lines are dispersive trans-
mission systems because their group velocity of 
propagation increases with increasing frequency. 
The use of bridging capacitance to reduce this 
dispersion is known, but no general analysis has 
been presented previously for distributed ( i.e. 
non-lumped) lines. This paper derives the general 
equations for the proparation constant and the 
impedance of such distributed helical delay lines 

with bridging capacitance. The prcblem requires 
the solution of integral equations, which is 
effected using Fourier transforms. The general 
conditions for linear phase propagation are de-
rived, and design data are given for the bridging 
capacitance geometry, along with the other delay 
line parameters such as delay, usable bandwidth, 
length, diameter, and the line's impulse response 
overshoot or echo. 

Introduction 

Delay lines are becoming of increasing use-
fulness in various applications. An important 
reason for this is their suitability in the time 
domain synthesis of networks. In particular, 
continuously wire-wound electrical delay lines 
of the helical type, when suitably phase corrected 
to eliminate dispersion, constitute a simple, 
small network component which can displace the 
bulkier delay lines comprising lumped induc-
tances and capacitances. As a result, consider-
able attention has been given to the design of 
helical delay lines ( Ref. 1 - 6). 

Dispersion in Delay Lines 

One of the major difficulties in the trans-
mission of signals along helical delay lines 
arises because the line's inductance per unit 
length L decreases with increase of frequency f. 
As a result, the phase shift in radians per unit 
length B=Wir..U. ( where C is the capacitance to 
ground, per unit length) is not linear but is 
concave downward with frequency. This is shown 
in Fig. la ( from Ref. 1 and 5). The group time 

delay dB/didof a wave packet ( or bundle of fre-
quencies) of width df := de/27r and centered at f 
thus decreases with increase of frequency. Ac-
cordingly, if to the input of such a line is 
applied a unit impulse ( or delta) function, 
whose spectrum comprises equally all frequencies, 
the higher frequencies arrive at the output of 
the line sooner than the lower frequencies. The 
wave shape of the input impulse function thus 
becomes changed. An example of this, in an 
actual delay line, is given in Fig. 2a ( from 
Ref. 1; see also Ref. 7, Fig. 1). 

Such transmission media, in which the group 
time delay is not constant for all frequency 

regions of finite applied signal spectrum, pro-
duce elongation in time, or dispersion, of the 
output impulse response. It has been shown 
(Ref. 8) that in a transmission system whose 
transfer function is A4*)) exp -jB(14)), dispersion 

is caused by large values of the mean squared 
weighted group delay distortion A(dAB/dbb) and 
mean squared values of amplitude slope dA/dfil 
Here A(o) is the amplitude response vs frequency 
of the transmission system, B(u)) is the phase 
shift, andilB(Lt) is the phase distortion. The 
latter is the deviation of B from the ideal value 
given bytatd, where tdi the delay, is defined as 

the average value of A'4dB/da. 

Phase Distortion Correction 

Of these two sources of dispersion, only 
that due to the phase distortion/113,ot' helical 
delay lines, is considered here together with an 
analysis of its correction. The use of bridring 

capacitances to reduce the phase distortion/18 
has been suggested previously ( Ref. 1, 3, 4, 9). 
Bridging capacitance in distributed helical delay 
lines can be conveniently obtained by the use of 
a reciprocating winding as in Fie. lc ( Ref. 1, 
2, 5), by bridge capacitance strips ( Ref. 3), or 
by a conductive coating of the winding ( Ref. 4). 
The beneficial action of such bridge capacitance 
is realized by comparing Fig. 2a with Fig. 2b 
(from Ref. 5). 

An elementary insight as to why briduing 
capacitance works follows from Fig. lb. Une 
observes that the effective inductance of a coil 
with bridge capacitance increases with increase 
of frequency. This annuls the decrease in L, 
shown in Fig. la, providing a suitable value of 
bridge capacitance is used ( Ref. 2, 3, 6). 

No general analysis of signal transmission 
through such phase-corrected or dispersionless 
delay lines has ever been presented previously 
for distributed ( i.e. non-lumped or smooth) 
lines. It is the object of this paper to formu-
late the general problem, present the solution, 
and ultimately show a set of design curves from 
which the optimum bridging capacitance geometry 
may be determined. Such design curves are given 
below under Design Data, wherein are shown the 
inter-relations between the various helical 
delay line parameters such aidelay, bandwidth, 
length, diameter, and impulse response overshoot 
or echo. Those not interested in the following 
analysis should now go to that section below 
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wherein are given the design data. 

General Transmission Theory 

Consider the general formulation of the 
problem and its solution. The configuration of 

interest is that of Fig. 3. It comprises an infi-
nite helix with capacitance ( not indicated) to a 
nearby ground bus. It is assumed that between two 
elementary lengths of helix dx and dy, separated 
by the distance y, there exists ( unintentionally) 
a mutual inductance M(y) and ( intentionally) a 
bridge capacitance Cb(y). The ( complex) current 
in the helix, at a distance x, from an arbitrary 
origin, is 1(x), while the ( complex) voltage to 

ground at x is V(x). 

It is not difficult to show that the inte-
gral-differential equations between I(x) and V(x), 
in terms of the functions M(y) and Cb(y), and the 

fixed parameters Lo and C, are 

dV(x) 
= jwLofm(y) I(x+y) My (1) 

dx 
-00 

di(x) dx Ja4[1:(x)+Ie(y)U(x)-V(x+y)idyl 

00 

(a) 

The symbol meanings are: 

Lo = unit inductance, henry/meter, at zero fre-

quency 

C= unit capacitance to ground, farads/meter 

M(y)= mutual inductance, henry/sq. meter, between 
two elementary sections of line length dx 
and dy, separated by y meters. 

Cb(y) = bridge capacitance, farads/sq. meter, 
between two elementary sections of line 
length dx and dy, separated by y meters. 

m(y)== M(y)/1.0 

c(y):= C(y)/C 

I(X)=V: complex current, amperes, in helix at x 
meters from an arbitrary origin. 

V(x)= complex voltage, volts, to ground at x. 

Exact formulas for Lo and for m ( in terns of 
Elliptic functions) are known ( Ref. 11). 

The solution of Eq. 1 and 2 is effected by 
the usual process of assuming 

V(x) = A exp -.1(ux/v) ( 3) 

I(x) = (A/Z) exp (-jwx/v) ( 4 ) 

where A= arbitrary ( complex)constant 
Z = characteristic impedance of the line 

phase velocity, meter/sec 
= phase delay, radian/meter. 

insertion of Eqs. 3 and 4 into Eqs. 1 and 2 
gives 

z(Z/wLoa) = 21111(y) cos (wy/v) dy 

= 2 Il (z) Ki(z) 

*c 
z/(Zwea) = 1+2fe(y)[1-cos(wy/v)]dy 

o 

(5) 

(6) 

where z.,u3a/v= phase delay in 1 radius ( a) of 
line length, 

a = radius of helix, meters. 

The rather interesting thing from Eq. 5 and 
6 is that the significant functions are not m 
nor c, but rather their Fourier ( cosine) trans-
forms. The transform of Eq. 5 has been deter-
mined by Blewett ( Ref. 4.) The It and Ki func-
tions are the modified Bessel functions of the 
first and second kind, which have been tabulated 
(Ref. 12). Accordingly, using Y(z) as the 
Fourier cosine transform of c(y), defined by 

Y(z) = ey) coe(wy/v) dy (7) 

o 

it is possible to arrive at the following neat 
formulas for the phase velocity v and the 
characteristic impedance Z in terms of the 
radian frequency Wand the other line parameters: 

(vo/v)2. ail(z)Fl(z)C1*Y( 0)-Y(z)] ( 8) 
(z/z.)2= 2I1(z)Ki(z)/D.4.y(o)-y(z)] (9) 

where y 0 1,4-C-1; = phase velocity at zero 
frequency 

Zo rerl o7C. = characteristic impedance at 
zero frequency. 

The problem of phase distortion correction 
now reduces to that of selecting the bridge 
capacitance Fourier transform function Y(z) such 

that vo/vz-- 1 for the largest part of the pass 
band. It is also apparent that this is only 
done at the expense of getting a worse variation 
of the characteristic impedance Z. 

It is now convenient to restate the func-
tion matching problem of Eq. 8 in another way 
which also gives the residual amount of phase 
distortion after correction from bridge capaci-
tance. 



The phase shift for a length of line equal 

to one radius(a) is z=t41a/v. In an ideally phase 
corrected line, the phase velocity v does not 
change from its zero frequency value of vo. The 
corresponding phase shift in one radius length of 
an ideally phase corrected line would be zomet/vo. 
The phase deviation from this ideal phase shift, 
used here as the phase distortion, is thus 
ABlazo-z. From Eq. 8, one obtains 

1 --
,C.B12--z [Eel( Z)Ki( Z)jC1+Y(0)-Y(z)]] 2 -1 

width ( along helix length) of bridge 
bus 

p = width ( along wire length) of bridge 
bus 

d = winding pitch 

C = capacitance between one helix wire and 
one bridge bus strip perpendicular to 
it ( see Fig. 5). 

The reason in choosing the linear function 
(10) of equation ( 13) for c(y), and the corresponding 

geometry of Fig. 5, is that the Fourier trans-
form of c(y) has the simple form 

This can in turn be solved for the needed bridge 
capacitance transform function Y(z), giving 

1 
  . 
[?Ii(z)Ki(z)D.4.(ABi/z)j] 1 (11) 

On putting j,BrO in this, one obtains the formula 
for the capacitance transform function resulting 
in no phase distortion as 

[Y(0)-Y(z)1 1 = 
1 

2I1 (2)Ki (z) 
1 (12) 

Both Eq. 12 and Eq. 11, for various fixed 
values of £ 81, are shown in Fig. 4. 

The problem now reduces to that of finding 
suitable bridge capacitance c(y) function, and 
its corresponding Fourier transform Y(z), such 
that Y(z) comes within the supposedly tolerable 
and pre-assigned phase distortion limits of4étB 
and ne  of the curves of Fig. 4. 

Synthesis of Bridge Capacitance Geometry 

81n2 ( wz/2a)j 
Y(0)-Y(z) = 

(wz/2a) 2 
(14) 

The adjustable parameters of the bridge bus 

are the g and w defined above. In Eq. ( 14) these 
comprise scale changes in both the ordinates and 
the abscissa z. Accordingly, a convenient way 
to fit E. ( 14) to the ideal phase correction 
curve shown by4113170 in Fig. 4, is first to plot 
both Ea. 12 and Eq. 14 on log-log paper. The 
curve of Eq. 14 is then moved vertically to 
adjust g, and horizontally to adjust w, until a 
fit with the4 and - tolerances of AlB1 is ob-
tained. 

As an example, Fig. 4 shows the suitable 

orientation of the ( dash line) curve of Eq. 14 
with the plots of Eq. 11, for the case where 
4BI= 0.05 radians. It is noted that the proper 

a location of the dash line curve is when it is 
tangent to both the B1  0.05 and -0.05 radian 
phase distortion curves of Eq. 11. 

The synthesis problem of finding a suitable 
Y(z) does not have a unique solution. One method 
of solution will be indicated herein, which has 
both mathematical simplicity and is easily real-
izable physically. The bridge capacitance geome-
try in mind is that of Fig. 5. It is not diffi-
cult to show that the direct bridge capacitance 
function c(y) of Eq. 2, for the geometry of Fig. 
5, is 

c(y) iLL j = JPCp [ " d2C 3. IYI ] (13) 
"  

where g ratio of total helix capacitance to the 
bridge bus, to the helix capacitance to 
the ground bus, for a length d of helix. 
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The residual phase distortion is of the 
form indicated by Fig. id. As a result, some 
rather important parameters emerge which are of 
interest in the impulse response of tne line. 
The first is the known relation ( Ref. 13) between 
the echo, or impulse overshoot, of Fig. ld and 
the residual ( sinusoidal) phase distortion 4E' . 
This relation is 

e = J1(.48 )/J0(à&B ) (15) 

where J's are Bessel functions of the first kind. 

The second important parameter is the value 
z1 where the dash line curve of Ea. 14 inter-
sects, for the last time, the curve forAIB:O. 
This is taken as the " useful" bandwidth of the 
delay line. ( It should be recalled that the 
dimensionless variable z is related to the fre-
quency f by the expression zs2Eafe.) 

Along with these data on overshoot or echo 
e and useful bandwidth fl, one also obtains by 
this process the bridge capacitance peometrical 
parameters (e and w/2a) which, for FLB11 = 0.05, 



are g=3.5 and w/2a = 0.55. Proceeding in this 
way for other values of4114, it is possible to 
arrive at other sets of values of the parameters 

zl, g and w/2a. 

These relative parameters are related as 
follows to those of a line of length b. Since 
the phase distortion of a line of leneth a isAB1, 
that for a line of length b isABabel/alm2AAB1, 
where A aspect ratio of the line= b/2a line 
length/line diameter. Hence 

Algae/2413i. (16) 

The important parameter of delay-bandwidth 
product ( Ref. 1) now can be obtained. The zero 
frequemz delay tdo in a line of length b is 
todab1LoC. The useful bandwidth fl of the line is 
related to z1 by the equation frizi/2/a4T7 
Hence, the delay-bandwidth product, in Cycles, is 

Delay-Bandwidth, Cycles, ( z1/2riBi)AB. ( 17) 

By the use of Eq. 15, relating the line's 
residual phase distortion AB to its impulse 
response echo e, and Eq. 16 and 17, topeth,r wit 

the values of z1,AB1, p and w/2a obtained from 
Fig. 4 in the manner described, it is possible to 
arrive at the useful design data described in the 
next section. 

Design Data 

In the previous section the general trans-
mission theory is indicated of infinite length 
distributed helical transmission lines in which 
finite mutual inductance M and bridge capacitance 
Cb are present, ( along with the usual capacitance 
C to ground) between all turns ( Fig. 3). Linear 
phase transmission results when KO. 12 is satis-
fied ( see Ref. 10 for a special case). 

The design of a suitable phase linearizing 
bridging capacitance geometry, to satisfy Eq. 12, 
is solved for the particular geometry of Fig. 5. 
The important parameters in this geometry are 
e (= helix capacitance to bridge bus/capacitance 
to ground bus) and w/2a (e., width, along helix 
length, of bridge bus/line diameter). 

A residual oscillatory phase distortion of 
maenitudeAB remains. This results in an echo or 
overshoot e of the line's impulse response ( Eq. 

15). The useful bandwidth of the line, defined 
as the frequency within which the line's phase 
distortion remains within a pre-assigned value of 
AB, is also found. In consequence, the important 
delay line parameter of delay-bandwidth product, 
expressed in Cycles, is determined ( Eqs. 16 and 

17). All of these design data are shown in Figs. 
6 and 7. 

Example of Bridge Capacitance Design 

The use of the design data contained in 
Figs. 6 and 7 is best indicated by a specific 
example. Suppose it is desired to design a 

phase-corrective bridge capacitance geometry of 
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the type of Fig. 5 for a line of 0.25 in diameter. 
Suppose that this line should have a useful band-

width of at least 1 Mc., a delay of 10 microsec., 
and an impulse response overshoot which should 
not exceed 0.1. 

The delay-bandwidth product is 10 cycles. 
From Fig. 6, one determines that the line's 

value of A(re. length/diameter) must be 26. Thus 
the line must be at least 6.5 in. in length, and 
should be designed with a unit delay of not more 
than 1.5 microsec./in. From Fig. 7, the bridge 
capacitance parameters are found to be àr. 0.9 
and w/2a= 1.6. These data, alone with those 
already presented ( Refs. 1, 2 and 5) are suf-
ficient to enable one to arrive at the other 
common parameters of the line such as Lo, C, Zo, 
etc. 

Symbol Definitions 

A(e) e amplitude vs frequency response of line. 
A e line aspect ratio= line length/line 

diameter:: b/2a. 
a ze. radius of helical line ( meters). 

B(t) e phase lad vs frequency response of line. 
b length of line (meters). 
C e line unit capacitance to ground ( farads/ 

Meter). 
Cb(y)e bridge cpacitance(farads/sq.meter) between 

two elementary sections of line length 
dx and dy separated by y (meters). 

c(y) Co/C 

d c winding pitch of helix(meters). 
AB u phase distortion ( radians). 
ABlazo-z = phase distortion ( radians) 

radius(a) leneth of line. 
e e impulse response echo or overshoot 

frequency ( cps). 
fi c useful bandwidth of line ( cps). 
g ratio of total line capacitance to the 

bridge bus, to the line capacitance to 
the ground bus, for a length d of helix. 

1(x) = complex current ( amperes) in helical line 
at x (meters) from an arbitrary origin. 

modified Bessel function of the first 1 - 
kind. 

Bessel functions of first kind. 
modified Bessel function of the second 

kind. 
Lo = line unit inductance ( henry/meter) at 

zero frequency. 

= Line unit inductance ( henry/meter) at 
frequency f. 

M(Y) = mutual inductance ( henry/sq.meter) between 
two elementary sections of line length 
dx and dy, separated by y (meters). 

M/Lo. 

width (meters), along line length, of 
bridge bus. 

time delay ( sec) of line of length b. 
complex voltage ( volts) of line to 
ground at x. 

✓ .= phase velocity of line (meters/sec) at 
frequency f. 

vo phase velocity of line (meters/sec) at 
zero frequency. 

Jo,J1 
K1 = 

m(Y) = 
P 

td e 
V(x) 

in one 



Là = radian frequency= 21f. 
w = width ( meters), along line length, of bridge 

bus. 
x = distance along helical line ( meters). 
Y(z) = Fourier cosine transform of c(y). 
zr.u)a/v= phase delay ( radians) in one radius(a) 

of line length. 
Z m characteristic impedance of line ( ohms) at 

frequency f. 
Zo = characteristic impedance of line ( ohms) at 

zero frequency. 
zo= ta/v0 phase delay(radians) in one radius(a) 

length of ideal phase corrected line. 

1) M. 

2) M. 

3) H. 

4) J. 

5) M. 

Le 

la 

lb 

Id 
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Fig. 1 
Phase corrected helical 

delay line with bridging 
capacitance, and impulse 

response echo. 
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Fig. 2 
Impulse response of helical delay lines, without 
and with phase corrective bridging capacitance. 

Fig. 3 
Distributed helical delay line with bridging capacitance, 

mutual inductance, and capacitance to ground. 
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Graphs of equations 11 and 14. 
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Fig. 5 
Bridging and ground capacitance 

geometry. 
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DISTRIBUTED CONSTANT DELAY LINES WITH 
CHARACTERISTIC IMPEDANCES HIGHER THAN 5000 OHMS 

William S. Carley 
U. S. Naval Ordnance Laboratory 

White Oak, Silver Spring, Maryland 

Abstract  

Artificial delay lines with character-
istic impedances of greater than 5000 ohms 
have been developed for use with fractional 
microsecond pulses. These lines have 
delays ranging from 0.2 to 0.5 micro-
seconds per axial inch. The attenuation of 
a one microsecond pulse may be as low as 
0.2 db/microsecond of delay. Equations are 
given for the design of self-compensated 
multilayer delay lines. Experimental 
results are given for lines designed from 
these equations. Comparison of rise times, 
attenuations, time delays, and character-
istic impedances of lines wound with vari-
ous sizes of formex and teflon insulated 
wire is made. Photographs of the pulse 
response of these lines to 0.3, 0.4, 0.6 
and 1.0 microsecond are shown. 

Theory  

Distributed constant electromagnetic 
delay lines are becoming increasingly use 
ful circuit elements in present day elec-
tronic equipment. The characteristic 
impedance of these lines has been liigted 
to values between 400 and 3,000 ohms. 1, 
Applications exist for lines with higher 
characteristic impedance. A brief dis-
cussion of the factors that determine the 
delay time and characteristic impedance 
will be given followed by a detailed des-
cription of methods for increasing the 
characteristic impedance. 

The delay 
characteristic 
constant delay 
the simplified 
Figure 1 where 
lected. These 

and 

time, phase velocity, and 
impedance of a distributed 
line can be derived from 
equivalent circuit of 
all losses have been neg-
are 

tc, irr. 

= 

and G <<u)C the following more general 
equations apply:3 

1-1 #(ThT - 2:c) (4) 
P.cult—Cfri 

[ Rz  I.  RG  —  36 2 )., 
and Zoelii- Jel (4,44,1 LL zwz LC ewt c 2 

G 
ZU, C 

Z 
R — 

rzeurl 

21 (5) 

(6) 

The design equations given in the following 
paragraphs have been derived on the assump-
tion that the line is lossless. 

It has been observed that the inductance 
of a delay 1ine decreases at higher fre-
quencies.D1 0 17 This is caused by the phase 
shift per turn increasing so that although 
the turns are still magnetically linked as 
the frequency increases they add less and 
less to each other's magnetic field. A 
plot7 of normalized inductance t and time 
delay vs. sr-reappears in Figure 2 where 

d 2  mean diameter of line, 
Lo = inductance at low frequencies, 
To = time delay for low frequencies, 

= length of line. 
The actual expression7 is 

zi (x) K1 (x), (7) 
L. 

where I1(x) and K1(x) are modified Besse 
Functions of the first and second kind, 0 

(1) and x = ed- ed 
a F' 

where x is the axial wavelength along the 
(2) line. 

(3) 

where L = inductance per unit length 
and C = capacitance per unit length. 
If R and G, the resistance and conductance 
per unit length, are present but R<<cuL 

The effect of turn to turn capacitance 
has been studied. 0 97 At low frequencies 
the effect of this capacitance is negli-
gible as the phase of the voltage in each 
turn of the coil is the same. As the fre-
quency increases the phase of the voltage 
in each turn changes. Thus the effect of 
the turn to turn capacitance increases 
with frequency. 
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The capacitance between turns is in 
parallel with the inductance of each turn. 
If this capacitance is C', the net imped-
ance of the incremental series arm of our 
distributed constant line is 

jet, Lt  
- £4,2 Lt c' 

(8) 

where Lt = the self inductance per turn= 
N = the total number of turns, 

Ke 

3.6 I. fa+ tka e a a_ 

where a = diameter of bare wire 
t = wire separation. 
Ke= dielectric constant of the 

insulation on the wire 
For close wound coils 

c', 7Tcl Ice  
3.6 112- lib- a 9 

where b = over-all wire diameter with 
insulation. 

(9) 

(10) 

From Figure 2 it is apparent that Lt 
decreases with increasing frequency. It 
is also evident from equation ( 8) that 
the effect of C' is at least in the direc-
tion of reducing the variation of the 
series arm impedance with frequency and 
thus equalizing the delay time. 

Another me;th9d of equalization is the 
use of patches. 4",'J Patches are bridging 
capacitors over a number of turns, acting 
in similar fashion to our turn to turn 
capacitance except that it is a lumped 
type of compensation instead of a distri-
buted type. 

The purpose of the investigation, 
reported in this paper, was to produce 
self-equalized distributed constant lines 
having relatively large delays and high 
characteristic iffipedances. To achieve 
these goals both L and C were increased, 
but L was increased by a considerably 
larger factor than C. 

In order to obtain as large a delay 
as possible it was decided to use the com-
plete core as a ground. The capacitance 
per unit length can be varied by control-
ling the thickness and dielectric constant 
of the insulation material placed between 
the core and the winding. This large 
capacitance per unit length would necessi-
tate a correspondingly large inductance 
per unit length in order to secure a high 
characteristic impedance. 

The secret of success for the high 
characteristic impedance line is the 

method of obtaining the high inductance. 10 
First of all a small wire size was chosen. 
Most of the work was done with B & S 
gauge #46 and #44 wire. A bank winding 
with approximately 3 layers was found 
necessary to obtain the necessary induc-
tance. 

A derivation of the equations for 
compensation of a multilayer line will 
not be attempted in this paper. It is 
my anticipation to submit it for publica-
tion in the near future. Basically the 
effective capacitance between turns for 
a multilayer winding is derived assuming 
a bank winding, and is inserted in an 
expression similar to equation (8). A 
convenient expression for this approxi-
mate solution is 

Co-  K ri:  , farads/meter(11) 
T  

where Co = 

K = 

To = 

T = 

E = 
g = 

capacitance to core per axial 
meter, 
a factor depending on number 
of layers, ( See Table 1) 
the time delay per meter axial 
length at low frequencies, 
the minimum allowable time 
delay per meter axial length, 
8.854 x 10-12 
turns per meter per layer 

Table 1 

Winding layers 

1 
2 

5 

1 
14 
76 
172 
324 

In case the number of layers does not 
come out even, successful results have 
been achieved by plotting number of 
layérs against K and reading the value 
of K from the graph. 

If the time delay per meter is high, 
the time delay variation over the desired 
pass band must be very small for good 
pulse reproduction. For the most part, 
in the lines described in this paper, the 
time delay was so high that To/T was made 
equal to 1. 

Although it is not evident in the 
form Viven, equation ( 8) has a pole at 
x = 1.3. These lines then could give a 
reasonably flat delay time up to x = 1. 
From the definition of x ( below equation 
(7)) better frequency response or larger 
time delays without excessive distortion 
can be achieved with a small diameter 
core. 
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It may be noted in passing that 
equation ( 11) does not reduce down to that 
given in reference ( 6) for a single layer 
winding. This is no doubt caused by 
several errors in reference ( 6). 
We know 

2 Ir E0 
co _eh  

Xe ned b 

farads/meter(12) 11 

where Ked = dielectric constant of 
insulation between core and winding. In 
many cases the first term in the denomina-
tor of equation ( 12) is negligible in com-
parison with the second. 

For a long solenoid 

10 .77" 2 Nz ci z x 10 -1 henries/meter(13) 

The time delay per meter and the character-
istic impedance are given by equations ( 1) 
and ( 3). With these equations and 
equations ( 11), ( 12) and ( 13) a self-
compensated line can be designed. 

Line Construction  

Most of the lines were wound on 3/16 
inch diameter polystyrene cores 12 inches 
long. These cores were given several 
coats of silver conducting paint to form 
the ground strip. Although the cores 
could be slotted after an overnight drying 
period, a much cleaner cut was made if the 
drying period was increased to several 
days. The cores were axially slotted 
forming 36 thin strips, each strip being 
about 0.015 inch wide. The slots were 
about 0.003 inch wide. A one inch length 
of the core was left unslotted to facili-
tate the connection of the external 
ground lead. A photograph of the slotted 
core and the slotting equipment is shown 
in Figure 3. The core was covered with a 
layer of insulating material to serve the 
dual purpose of insulating and controlling 
the winding-to-core capacitance. A piece 
of thin teflon tape was wound around the 
core. A number of small pieces of scotch 
cellophane tape held the teflon on the 
core until the line was wound. The scotch 
tape was removed piece by piece as the 
winding of the line progressed. 

The winding was done on a lathe. In 
order to provide uniform wire tension, 
secure a good winding and prevent break-
age, the wire feeding device shown in 
Figure 3 was used. The wire tension was 
adjustable over a range of about 10 to 70 
grams. The tension was continuously 
indicated on a scale by a pointer. 

A wire guide attached to the longi-
tudinal feed of the lathe was placed 

about 1/16 inch from the core, which was 
chucked in the lathe. The longitudinal 
travel of the wire guide could be as low 
as 0.00066 inch per turn. As this 
distance is a fraction of the wire 
diameter, the result was a multiple 
layer coil approximately bank wound. The 
far end of the core was attached to a 
counter chucked in the tailstock. A 
steel drill rod was inserted through a 
hole in the core for rigidity. A 10 inch 
long winding was wound on the core. 
Lines were wound with speeds varying 
from about 200 to 800 rpm. 

A short length of #26 wire was 
soldered to the ends of the winding and 
secured to the winding with polystyrene 
dope. A magnified view of the end of 
the line showing details of construction 
appears in Figure 4. 

Measurements  

The method for determining the 
characteristic impedance of these delay 
lines was based upon the fact that no 
reflections occur in an idealized delay 
line terminated in its characteristic 
impedance. The value of the character-
istic impedance in a practical case 
involving complex waves must therefore 
be compromised for minimum reflections 
over the band of frequencies for which 
the line is designed to operate. The 
lines were terminated at the input as 
well as the output to minimize any 
possible secondary reflections at the 
input. A suitable means of determining 
the effective characteristic impedance 
when the line is used to delay rectangu-
lar pulses is to feed the pulse itself 
into the delay line and to adjust the 
terminating impedances for minimum 
reflections. A block diagram illustrat-
ing the experimental method for deter-
mining the characteristic impedance of 
these delay lines and for recording the 
response of the delay lines to rectangu-
lar pulses appears in Figure 5. The 
pulse generator was of the delay line 
type.' RG65U delay line cable was used. 
This pulse generator was triggered by a 
Lavoie type LA- 592A pulse generator. A 
Hewlett Packard type 212A pulse generator 
was used on occasion in observing the 
response of the lines to pulses of 
greater than 1 microsecond duration. A 
Tektronix type 517 oscilloscope was used. 
During parts of the work a Dumont type 
248 or Tektronix type 513D oscilloscope 
was used when the type 517 was not 
available. The oscilloscope sweep was 
triggered by the input pulse. A camera, 
mounted on the oscilloscope, was used to 
record the wave shapes of the pulse at 
the input and output of the delay line. 
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A video amplifier was placed between the 
delay line and the pulse generator. The 
load impedance of the video amplifier was 
made equal to the characteristic impedance 
of the line. A diagram of the video 
amplifier appears in Figure 6. 

The pulse distortion and attenuation 
were also measured with the equipment 
connected as shown in Figure 5. The 
oscilloscope camera was used to record 
the wave forms of both the input and out-
put pulses. Measurements were made 
directly from the photographs as the 
sweep of the type 517 oscilloscope is 
linear and the sweep time in milli-micro-
seconds per centimeter is quite accurate. 
The vertical gain was kept constant for 
both input and output pulses so that 
attenuation measurements could be made 
from the photographs. 

The delay time as well as the rise 
time and fall time was likewise measured 
on the oscilloscope. The delay time was 
defined as the time between the mid-point 
of the leading edge of the input and out-
put pulses. The rise and fall times were 
defined as the time duration between the 
10% and 90% values of the pulse amplitude. 
The pulse duration was defined as the time 
between the 10% values. The attenuation 
was measured by comparing the amplitudes 
of the input and output pulses. 

Although the quality of the lines 
was determined from the pulse response, 
as a further check some data were taken 
with sinusoidal waves. In order to 
determine the validity of some of the 
equations a line was connected to a r.f. 
signal generator through a 10,000 ohm 
resistor. The Tektronix 517 oscilloscope 
was used as a VTVM. With the line short 
circuited, the frequencies at which the 
impedance of the line was a minimum was 
noted. The line was thus electrically 
A/2, , -V etc. long. The measure-

ments were repeated with the line open 
circuited, the line then being 32 

11.11A- etc. long electrically. From this 
data along with the measured values of Lo 
and Co and the physical dimensions of the 
line, x could be calculated. 

Results 

The data on a particular line, 
typical of those wound, appears below: 

Core diameter 0.188 inch 
36 slots 
dielectric: teflon 0.001" 6 layers 
length 10 inches 
winding 1305 turns per inch ( 0.00076 

inch per turn) 
#44 single formex wire C.0020 inch in 

diameter (. 0O23" over-all) 

The electrical characteristics of 
the line measured at 1000 cps were: 

R = 1901 ohms 
L = 17.6 millihenries 
G = 0 
C = 441 micromicrofarads 
The following quantities were calcu-

lated from these measurements: 
Zo = 6320 ohms 
td = 2,84 microseconds 
With a 1 microsecond pulse the 

experimental data obtained on this line 
were: 

Zo = 6500 ohm resistance 
td = 3 microseconds 
tri= rise time of the input 1 micro-

second pulse = 0.09 microsecond 
tr = rise time of the output 1 micro-

second pulse = 0.14 microsecond 

as tr.it 2 + Z 
ri r.t 

where tri = rise time of output pulse if a 
perfect input pulse were applied to the 
line. 
Thus tri = 0.1 microsecond. 

Photographs of the input and output 
pulses of one #44 wire line appear in 
Figure 7 for pulse durations of 0.30, 
0.37, 0.62, and 1.0 microseccnds. Input 
and output waveforms superimposed to a 
larger scale are also included in Figure 
7. (Note: If one defines the pulse 
duration as the time between 50% amplitude 
points, one should subtract 0.1 micro-
second from the values of pulse duration 
given in this paper.) The reflections 
which appear between the input and output 
pulses no doubt occur at points where 
the spill over from true bank winding was 
particularly bad. All photographs were 
taken with the same value of terminating 
impedance which was the value obtained 
as the best impedance match with a 0.3 
microsecond pulse applied. In some cases 
with longer pulse durations, slightly 
better waveforms can be secured by reter-
minating the line. An example will be 
shown later. In some cases a better 
termination was secured when a small choke 
was inserted in series with the resistor. 
A plot of vs x appears in Figure 8 for 
a typical sglf-compensated multilayer line 
along with the theoretical curve for an 
uncompensated line. It is observed that 
the variation in time delay for a compen-
sated line is reasonable up to values of 
x in the neighborhood of 1. The series 
of points above the curve are from the 
open circuit data and the lower series 
from the short circuit data. 

Lines with higher characteristic 
impedances have been obtained using a 1/4 
inch diameter core and 2 3/8 layers of 3 



TABLE 2 

unartaultetiolluo UF A » rum Ur 3 LAYER BANK WOUND DELAY LINES 

Zo td ( usec) rise times (usec) 
Dia. atten- td/" 

Wire Core Length meas. calc. meas. calc. tri tr tri uation 
db/usec 

usec fo(Mo) 

#36 F 1/2 " 4.94" 7,500 6,980 1.45 1.52 0.1 0.33 0.315 0.47 0.29 1.4 
_ 

#44 F 1/4 " 9.3 " 10,000 9,500 4.5 4.3 0.08 0.24 0.22 0.2 0.48 2 

#41 Teflon 1/4 " 2.7 " 7,540 7,000 0.53 0.58 0.09 0.18 0.15 0.45 0.20 2.9 

#42 F 1/4 " 10 " 6,500 6,530 3.4 3.3 0.08 0.26 0.24 0.13 0.34 1.9 

#44 F 3/16" 10 " 6,500 6,320 3.0 2.8 0.09 0.14 0.11 072 0.30 4.2 

#44 Teflon 3/16" 8.1 " 9,64C# 9,800 1.75 1.7 0.12 0.26 0.230 0.33 0.22 2.0 

#46 HF 1/8 " 3.9 " 7,500*1 6,420 0.79 0.78 0.08 0.125 0.096 0.3 0.20 4.6 

#46 Teflon 1/8" 6.2" 9,060 9,050 1.1 1.1 0.08 0.15 0.123 0.42 0.18 3.6 

• 50 microhenry choke in series with resistance 

** 100 microhenry choke in series with resistance 

mil teflon tape to separate the winding 
from the core. With a 0.3 microsecond 
pulse the characteristic impedance was 
9000 ohms in series with a 400 microhenry 
choke. The input impedance ( shunt 
impedance in output of video amplifier) 
was 7400 ohms in series with a choke of 
400 microhenries. Photographs of the wave-
forms of this line appear in Figure 9. 
This particular line had only 14,165 turns 
and the winding was 9.3 inches long. It 
had a time delay of 4.5 microseconds, or a 
time delay of almost 0.5 microsecond per 
inch. When the line was reterminated far 
a 1.0 microsecond pulse, the terminating 
impedance turned out to be a 10,200 ohm 
resistor. The output impedance of the 
video amplifier was increased to 11,000 
ohms. The waveforms of this termination 
also appear in Figure 9. This line was 
wound with #44 wire. 

The characteristics of several 3 
layer self-compensated lines are compared 
in Table 2 for the case of an input pulse 
of one microsecond duration. The cut off 
frequency fo is computed on the basis of 
the rise time. 14 

eíti ir - • 
° 77,1 

(12) 

It will be observed from Table 2 that the 
smaller the core diameter the higher fo. 
Self-compensated lines wound with teflon 
wire have a higher characteristic 
impedance and lower time delay than those 
wound with formex wire due to the lower 
capacitance between turns. The attenua-

tion in db.per axial inch is about the 
same for both types af wire indicating 
that the copper losses are much greater 
than the dielectric losses in the fre-
quency range of operation. The data on 
teflon insulated wire lines should be 
considered as preliminary data only and 
not necessarily indicative of its per-
formance in this type of line. It is 
possible that the teflon lines may have 
some shorted turns. The teflon wire used 
was single teflon which has the same 
nominal insulation thickness as formex. 
It is apparently quite difficult to 
secure a continuous layer of teflon on 
the bare wire. It is thus possible, in 
multilayer construction, to get shorted 
turns. This possibility should be 
reduced for a single layer winding. 
Further experimental work is being per-
formed in this area. 

It will be observed that many of the 
lines in Table 2 are less than 10 inches 
long. This occurred due to wire breakage 
or some other mechanical failure. Some 
lines have been wound with more than 3 
bank wound layers. Increasing the 
number of layers will increase the time 
delay and decrease the characteristic 
impedance because the effect of turn to 
turn capacitance will increase faster 
than the inductance increases. There are 
more minor reflections due to spill over 
in this type of line. 

Conclusions 

From the data presented, delay lines 
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with impedances higher than 5000 ohms and 
reasonable attenuations for pulse widths 
less than 1 microsecond can be obtained. 
It appears that the attenuation and minor 
reflections can be reduced if a better 
winding technique can be developed to 
reduce spill over. The preliminary 
investigation of teflon insulated magnet 
wire for multilayer delay lines has been 
disappointing. Further work along these 
lines is planned. It is possible that a 
combination of self-compensation and 
patches may yield higher time delays per 
axial inch than self-compensation alone. 

The author is deeply indebted to 
Mr. Edward F. Seymour and Mr. J. F. 
FeoFles ( Naval Ordnance Plant, Indiana-
polis, Indiana) for their general assist-
ance and for the designing of the wire 
feeding device and the core slotting 
device. The author wishes to acknowledge 
the encouragement of Mr. M. F. Davis and 
others in the Electricity and Magnetism 
Research Division of the Physics Research 
Department. 
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Fig. 3 
-.7ound delay line, slotted core, slotting equipment and mire feeding device. 
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Fig. 4 
End of a wound line illustrating coro 

details, dielectric and winding. 
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HELICAL WINDING EXPONENTIAL-LINE PULSE TRANSFORMLIUS 
FOR MILLIMICROSECOND SERVICE * 

J. Kukel and E. M. Williams 
Carnegie Institute of Technology 

Pittsburgh 13, Pennsylvania 

Introduction  

The transient properties of exponent5ally-
tapered transmission lines have been described by 
Schatz and Williams' and the design of simple 
pulse transformers utilizing these transient 
properties has ber discussed in a second paper 
by these authors. - It has been demonstrated 
that expon-,ntill-lina sections offer a means of 
realizing the pulse transformation of milli-
microsecond pulses which are beyond the range 
of application of conventional ferromagnetic-
core transformers with present-day core materials 
and techniques. Where appreciable transfor-
mation ratios or pulse lengths of more than a 
few millimicrqseconds are involved, the simple 
line sections required have resulted in struc-
tures which are frequently unwieldy and difficult 
to fabricate. Attempts to increase the ratio of 
electrical length to physical length by using 
solid or liquid dielectric materials have met 
with some success, but the improvements attain-
able are limited in scope because of dielectric 
losses, frequency dependency of the dielectric 
constant, and structual difficulties. Further-
more the use of a dielectric to increase the 
ratio of electrical length to physical length 
results in a structure of undesirably low im-
pedance level. 

A study has been made of a slow-wave 
structure which uses single-layer shielded 
helices of varying turn density or varying pitch 
which is suitable for service as an exponential 
transmission line3 for millimicrosecond pulse 
operation. The slow-wave properties of helical 
transmission lines of uniform pitch have long 
been recognized and have foun0 les, in the radio 
art for delay line structures 409° and in the 
traveling-wave tube. 7 A helical line of vary-
ing pitch has been suggested for use as a broad-
band transition structure from the conventional 
coaxial line to a helical line of uniform pitch.' 
The advantages of a tapered helical line for 
pulse transforming purposes are apparent when 
it is realized that relatively great electrical 
lengths are realized with short physical dimen-
sions and that desirable impedance levels are 
readily obtainable. The helical winding exponen-
tial pulse transformer consists of a coaxial 
structure comprising a constant diameter 

* This paper is part of a dissertation submitted 
by Joseph Kukel in partial fulfillment of the 
requirements for the degree of Doctor of 
Philosophy at Carnegie Institute of Technology 
This work was supported in part by the Office 
of Naval Research under contracts N7onr30306 
and N7onr30308. 

cylindrical outer shell which serves as the 
outer conductor and a concentric single-
layer helical inner conductor. The inside 
conductor is of constant diameter and varying 
turn density in the case" of the wire helix 
and varying pitch in the case of the tape 
helix. 

Design Problems of the Tapered Helix 

In utilizing tapered helices in exponen-
tial transmission line pulse transformers the 
major problem to be solved is the selection of 
the type and form of helix which will lead to 
an economical transformer design. This problem 
was approached through a study of the major 
types of helices which appear to be particularly 
appropriate for this application. This paper 
describes the properties of these helices and 
the results of some tests of experimental trans-
formers. 

The pulse behavior of exponentially-
tapered transmission lines can be calculated 
when such parameters as inductance, capacitance, 
resistance, and conductance per unit length 
are known. In the transformers constructed 
to date resistance and conductance are negli-
gible or nearly so. The effect of the other 
parameters is most conveniently expressed in 
terms of impedance level and propagation 
velocity along the line. The methods of this 
paper are concerned ultimately with these 
latter parameters. 

A limited amount of information about 
the inductance and capacitance per unit length, 
the characteristic impedance, and veldcity of 
propagation of coaxial cables with concentric 
single-layer uniform helicoidal inner con• 
ductors has been available, but the information 
is incomplete in that helical lines of large 
densities only, that is, many turns per unit 
line length, were considered. Recently, 
Kirschbaum'' has made a rigorous analysis of 
uniform helical lines including cases of low 
turn density. Some of Kirschbaum's results 
are used in this paper. 

Uniform Helical Lines  

Inductance. Capacitance. and Impedance in the  
Uniform Wire Helical Line  

A uniform wire helical line is one in 
which the inner conductor has a uniform turn 
density. For infinitely long lines in the 
axial direction, the unit inductance and unit 
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capacitance expressions ( from Kirschbaum) are: 
L-)4Real)  {1_4r+ (tre   

4.9 I;.(41.0 01(.1,tel,R)-1 

Kt/1'4% k R.) R,) Col ( 243- -11 (1) 
Qm11) j 

I _  R,  
{ZereeR) + 4 c 2rItE.Cdel" 

lç,(mtÉt.re,) I,J^m1)-Ri)eene} 
where 

L = inductance per unit length along the 
helical conductor. 

C = capacitance per unit length along the 
helical conductor. 

€0 - permittivity cf free space. 
/co = permeabilitz, of free space. 

It= dielectric constant of the material 
filling up the region between the inner conductor 
and the sheath. 

'ft-= number of turns of the helix per unit 
length in the axial direction. 

R1 = radius of the helix, the tranverse 
distance between the axis of the helix and the 
wire center of the helix. 

R2 = inner radius of the sheath. 
r = radius of the wire of the helix. 

helix angle = 
/-

In - modified Bessel function of the first 
kind of,order m. 

= derivative with respect to the argu-
ment crIm . 

Km = modified Bessel function of the second 
kind of order m. 

Km = derivative with respect to the argu-
ment of Km. 

(2T\ 

The expressions for L and C were found after mak-
ing the following assumptions: 

1. Wire radius r 
2. The sheath and wire are of infinite 

conductivity. 

3. The dielectric occupying the space 
between the wire helix and the sheath is homo-
genous, isotropic, and of zero conductivity 
and loss. 

4. The inductance is calculated under 
steady current conditions ( frequency—', 0) and 
the capacitance under electrostatic conditions. 

The characteristic imfedance of the wire 
helix is given by 

=.F7E" (3) 
The complexity of the expressions for L and C 
results in an inconvenient expression for the 
characteristic impedance. Kirschbaum has made 
graphical plots of Zo in terms of various 
dimensionless parameters contained in the 
expression for Zo. Four sets of these plots 
are given in Figures 1-4. For the region to 
the right of the dotted dividing line of Figures 
1-4, the inductance and capacitance can be 
expres!;ed with sufficient accuracy with 

Mi. I (2) 

L _ /* 11,  (1 e 

- 71zEfe: cos fee cm 

(4) 

(5) 

The characteristic imled:ince is then given by 

"Fe R. 141d- o ir 
where 

ffi> 
'eh/4z) 

= impedance of free space = 376.7 

(6) 

ohms. 

/1 1/7/70 = velocit;, of light = 3 X 108 meters 

per second. The expressions given in equations 
(4) - (6) are often employed with helical lines 
of the type under consideration without con-
sideration as to their limits of application. 
Figures 1-4 indicate the region of application 
together with slight deviations due to wire 
size. 

Velocit3, of Propagation in the Uniform Wire 
Helix 

The velocity of propagation along the 
helical conductor is dependent upon the turn 
density of the helix. The veloci% at a turn 
density of zero for which the line becomes an 
ordinary coaxial line with a straight inner 
conductor not concentric with the sheath, that 
is, having eccentricit, is 

ir 
fTtt/7:—.E. 

The velocity for 

r—ealé 

infinite turn density is 

(7) 

ir _  (8) 
° (- (el)z 

The velocity of propagation for values of turn 
density other than those of zero and infinity 

lies somewhere between the values given in 
equations ( 7) and ( 8). For those values of turn 
densitz, for rhich equations (4), ( 5), and ( 6) 
are valid the velocity of propagation is 

  I iee(fier 
1/1zAe. " (tr 

(9) 

Properties of the Uniform Tape Helix  

The uniform tape helix differs from the 
uniform wire helical line in that a perfectly 
conducting tape is used instead of a wire con-
ductor. The expression for capacitance is 
given by 

-& = 1.ke.R031, (lo) 

The velocity of propagation on the helix in the 
tape direction is 
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Grey 

where 
C = capacitance per unit length on the helix 

in the tape direction. 
v = velocity of propagation on the helix 

in the tape direction. 
R1 = radius of the helix. 
R2 = inner radius of the sheath. 
r-. pitch of the tape, the tape width 

measurpd in the longitudinal direction. 
R. = dielectric ccnstant of the material 

between the tape and the sheath. 
le = helix angle = cotiM9 

The assumptions made in calculating the ex-
pressions given in equations ( 10) and ( 11) are: 

1. Tape is of infinitesimal thickness. 
2. Coaxial line is infinite in extent. 
3. The sheath and tape are of infinite 

conductivity. 
4. The dielectric occupying the space 

between the tape and thé sheath is homogeneous, 
isotropic, and of zero conductivity and loss. 

5. The tape helix is a butted-tape helix; 
one in which the spacing between succesive 
turns is zero. 

6. Capacitance is calculated assuming 
a un4eorm charge density on the tape and the 
velocity of propagation ( frequency---,0) assum-
ing that the current is restricted to flow 
in the helix direction. 

Equation ( 10) is exactly the same as the 
capacitance expression for a wire helix of large 
turn density given in equation ( 5). A very 
close similarity is expected ( in this instance 
exactly the same) since a wire helix of large 
turn density appears physically to be somewhat 
the same as a butted-tape helix. The velocity 
expressions, equations ( 9) and ( 11) also agree 
for large turn density for then 

[1.-e eell(g) 

in equation ( 11). The expression for the unit 

inductance ip tape direction is 

L./4gendtdOt  4 1111  /40etzIF 1 (12) 

MVP a -1 he (le 

The characteristic impedance is given by 

4-4VeVe (10,e(k 
e 

Figure 5 gives 4 plot of the characteristic 
impedance, equation ( 13), for various ratios 
of (R2/R1 ). The equation for the dotted straight 
lines of Figure 5 is  

4=er ik f[1-Rpiet 

(13) 

(14) 
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This is the same as the special impedance ex-
pression for the wire helix, equation ( 6). 

Comparison of the impedance data of the 
wire helical line and the tape helical line 
shows that much lower impedance values can be 
obtained with the tape line than with the wire 
line. 

Helical Exponential Lines  

Impedance Level Distribution 

If the turn density of the wire helix or 
the pitch of the butted-tape helix is made to 
vary slowly, the characteristic impedance, or 
more appropriately, the impedance level at any 
particular point is given approximately by 
either the uniform wire helical line charac-

teristic impedance expression or the uniform 

butted-tape helical line characteristic im-
pedance expression evaluated at that point. 
Evaluation at the point in question implies 
the use of the turn density or the pitch at 
that particular point. Under the conditions 
of small variations of impedance level almost 
any impedance level distribution cap be 
effected. The impedance level distribution 
of immediate interest is that of an exponential 
transmission line. Suppose that the values 
of the impedance level distribution desired 
lie in the range for which equation ( 6) is 
valid in one instance and equation ( 14) in the 
other instance. Equating the exponential 
transmission line impedance distribution to 

either equation ( 6) or ( 14), 

(15) 
where 

Zl - nominal impedance at the input of 
the exponential line. 

flare coefficient (assumed positive). 
x distance measured along the helix 

from the input of the line. 
Solving for 1- , the turn spacing for the wire 

line and the axial tape width for the tape 
line, 

r= R, [1_ 6722.1 (wai (16) 
The distance X can be approximated by 2nyel. 
where AYt is the number of turns from the input 
end at which the position X occurs. The turn 
spacing or the axial tape width at the nen turn 
is given by, 

//111'2. - -2 
vrt ,° R e (elk( k) (17) 



The total axial length of the helical line is 
found by summing  rftx  

îrm _ p (R. fiip (_FÀa 

Zlik n' \ 

where 
S = total number of turns 
= length of the helical 

2r1R1 
nearest inte7er). 
series given 111 equation (18) is a geometric 

and  is summable.  

Pelleell [e eeRir_ (19) 

_zrR,Ts 
I— e  

(to 
The 
progreselon 

/e 3 

eve 

The ratio of axial length to the length of the 

y ell conductor is given by, 
-;21KRA1   , flpme2) -e  (20 

erR,s zirge 

The percent change in impedance level per turn 
based on the impedance level of the preceding 
turn is, 

% change per turn 
. ( 1_ e -ZirR,I) 

As implied earlier, expressions for im-
pedance level, derived for uniform lines, lose 
some accuracy when applied even to gradually 
tapered lines. At present the relation between 
rate of taper and the accuracy with which uniform 
line expressions can be applied is not known. 
However experimental tests of the transformers 
constructed to date have disclosed no inaccuracies 
within the experimental eeeor. The experimental 
error in studies of millimicrosecond pulse 
response are, however, quite high so that this 
problen is considered important for further study. 

If impedance level variation per turn as 
small (approximately 5% or less), then equation 
(21) becomes 
% change per turn - (22) 
The value of the flare coefficient and the de-
sired upper limit for the impedance level change 
per turn in conjunction with equation ( 22) gives 
the maximum allowable value for the helix radius. 
Equations ( 19) and (20) can be rewritten using 
the approximation of equation ( 22). 

-    L. (I \ Ipalqiez ÍR.z) (23) 
m ZrraZAIii C-1.1/ 112 U?2.1_1 e e 

/11.1 

Ee itR'erri ( Is) 

of the line 
conductor 

(21) 

2wR,S - (ZRagii, "\ Pee(le) 124) 
where 

2 e nominal impedance level ratio of 

transformation; the ratio of the output level to 
the input level of impedance. 

Por given values of impedance level ratio 
of transformation and helical line length, the 
axial line length, equation (23), becomes a 
minimum when 

- 
el, e,Z.06 
R (25) 
This ratio then permits the evaluation of R2 
for minimum axial length since equation ( 22) 
gives the value of R1 after the impedance level 
change per turn is specified. 

In some instances the impedance level 
distribution desirel may not lie in the region 
of application of equations ( 6) and ( 14). As 
a result a semi-graphical method of evaluation 
nest be used. The impedance level for each 
turn is calculated from the input level of 
impedance and the percent change of impedance 
level per turn. The corresponding turn spacing 
or tape pitch is found from the curves of 
Figures 1, 2, 3, 4, and 5. By summing the turn 
spacing or tape pitch, the axial line length 
is found. 

For those instances fo- which the desired 
impedance level distribution overlaps into the 
two regions discussed, the analysis can be 
broken into two parts. In the one part is used 
the semi-graphical analysis and in the other the 
analytical analysis. 

The desirable low impedance level character-
istic of the tape line and the ease of con-
struction of a wire line can be combined to form 
a line containing both tape and wire. The im-
pedance curves of both lines overlap for close 
wound helices, and hence for suitable impedance 
level distributions, one portion of the line can 
be tape and the other portion wire with the 
proper transition between the two ( impedance 
levels the same at the junction). 

Propagation Velocity 

An exponential distribution of impedance 
level placed on a helical line does not 
necessarily imply that the line will operate 
as an exponential transmission line.* A basic 
requirement in the exponential transmission 
line is that the velocity of propagation be 
constant. For a uniform helical line the 
velocity of propagation along the helical con-
ductor as well as on the sheath in the direction 
of the helix is not a constant with respect to 
the turn spacing or tape pitch, helix radius, 
and sheath radius but is dependent upon these 
quantities. The propagation velocity under 

Such a line would neverthelese operate as a 
transformer but prediction of Ito properties 
would be very difficult. 



the assumption of small helix angle is given by 
equation (8) and shall be taken as the nominal 
velocity of propagation of the helical exponen-
tial line. For the special caseeR0e 2.06 
the propagation velocity is 

137 - 
(26) 

Since the velocity of propagation of a helical 
exponential is of the order of a constant, the 
line should operate to a first approximation as 
an exponential transmission line. 

The ratio of the axial length to the length 
of the helix of a helical exponential trans-
mission line is not the same as the ratio of 
the axial length of the helical line to the 
electrical length of a corresponding two wire 
or coaxial exponential line Where the electrical 
length is the same as the length of the helix 
of the helical line. They differ because the 
nominal helical propagation velocity is not the 
same as the propagation veleclt;: of the two 
wire and coaxial lines. 

Frequency. 4ttenuation. and Breakdown Effects  

The inductance of a uniform helical line 
was calculated assuming a constant current. If 
the current is given a monochromatic character-
istic, the effective inductance becomes a 
function of frequency. When the frequency is 
increased to a level so high that turns having 
currents which are appreciat.ly out of phase 
with each other and which are magnetically 
coupled with each other, then the effective 
inductance le adversely affected and is thus 
decreased. A plot nf inductance versus wave 
length for unshielded coils but applicable for 
shielded coils is given by Blewett and Rabel. 4 
In the use of the helical line as a pulse trans-
former the decrease in unit inductance for the 
most important frequency components of the pulse 
to be used must be small in order that the 
exponential transmission line theory be appli-
cable and in order that unnecessary phase dis-
tortion be small. 

No mention has been made of attenuation 
effects due to the finite conductivity of the 
conductors and the finite power factor of the 
dielectric. If the conductors are made of 

copper or something comparable the attenuation 
effects due to conductor energy loss can 
usually be considered negligible. For small 
real energy losses an lenalysis of the type given 
by Schatz and Williams"- is applicable. 

A butted tape line of the type that has 
been considered is not physically realizable. 
However, if a line is constructed with spacing 
between succesAve turns small compared with 
the tape width, then the butted tape analysis 
is reasonably correct. A factor Which in-
fluences the spacing between suc>e¡Avl turns 
of the tape line as well as the wire line is 
dielectric breakdown. The spacing must be 
sufficiently large such that the greatest 

potential difference that will exist between 
two adjacent turns is not sufficient to cause 
dielectric breakdown. 

Experimental desults  

Two helical exponential transmseion 
lines were constructed, one of the wire type 
and one of the tape type. A complete picture 
of the disassembled wire line is given to 
Figure 6 and a partial picture of the dis-
assembled tape line is given in Figure 7. The 
helices were wound on lucite tubing in order 
to insure low loss and dielectric constant not 
far from one. Incorporated in the low impedance 
level end of both lines for broadband matching 
is a 5C22 hydrogen thyratron which is suitable 
for short pulse work10 and which serves in 
this instance as a switch between the helical 

line and a pulse forming line (not shown). 
Pictures of input and coreesponding output 

pulses for the line terminated in its output 
level of impedance are given in Figures 8 and 
9. The pulse results compare favorably with 
expectel results. Tibl 1 contains the cal-
culated parameters along with some experi-
mental data. A close examination of the given 
pictures and the given data indicates that the 
operation of helical transmis ion lines with 
exponential impedance level distrihution is 
comparable to that of exponential trans-
mission lines and is suitable as a pulse trans-
former for millimicrcsecond service. 
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Fig. 5 
Characteristic impedance of 

shielded tape helices. 

Fig. 7 
Exponential- line secticn pulse 

trartfcrmer ccnsisting of tapered 
tyre and cylindrical outer 
shell tc.gEth€,r with inteual 

hydrcgen-thyr>ttron. 
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Fig. 6 
Exponential- line secticn rulsc 
transforrer ccnsisting of tapered 
wire helix and cylinirice. outer 

shell together with integral 
hydrcgen-thyratron. 
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LINE PARAMETERS WIRE LINE TAPE LINE 

Helix radius ( inch) 0.766 0.878 

Liheath radius ( inch) 1.47 1.47 

Wire diameter ( inch) 0.032 

Tape thickness ( inch) 0.003 

Tape spacing ( inch) 0.01 

Axial length ( feet) 5.8 7.4 

Axial wire length 
tape 

1/14.4 1/14.2 

Number of turns 

ete Velocity of propagation (7r\) 
sec. 

210 

108 

230 

3.8 x 108 

Flare coefficient inper meter) 0.082 0.0643 

% change in impedance level per turn 1.0 0.9 

Calculated input level of impedance ( ohm) 315 143 

Experimental input level of impedance ( ohm) 290 145 

Calculated output level of impedance ( ohm) 1600 1120 

Experimental output level of impedance ( ohm) 1590 1070 
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Tin DOMkIY MDPROXIMATION BY USE OF FADE! AFPROXIMANTS 

R. D. rmsDALE 
Trm vr:Tolt 

CeDEN, NE U JERSEY 

Introduction 

In engineering applications of netuorks or 
servomechanisms, it is often necessary to synthe-
size a complicated transfer function. 

It is particularly convenient if the com-
plicated transfer function can be approximated 
by a ratio of rational polynomials, which then 
can be physically realized as a network by 
Brunets method or otherwise. It is also de-
sired that the approximation be effected in 
such a way that the error in the time domain 
is small and predictable. 

It is possible to approximate a given trans-
fer function to minimize the error in the complex 
frequency domain ( the direct approximant), or to 
minimize the error in the time domain ( the in-
direct approximant). The direct approximant was 
first developed by Fade 1 in 1892. However, the 
indirect approximanp has been discussed only 
recently by Mathers4. 

Here, the basic theory is presented and is 
used to develop successive Fade approximentsfor 
several functions useful in network theory. The 
results are summarized in tables and the accuracy 
of approximation is illustrated by plots. 

The Fade Yethod 

Consider the approximation of a function 
F(Z) ('where Z may be complex) which is analytic 
about the origin. For every power series 

F(Z) • ao + al Z+  ( 80 #0) (1) 
and for every specified ordered pair of integers 
p,q, it is possible to find two rational poly-
nomials N(Z) and D(Z) which satisfY two con-
ditions: 

1. The degree of N is p or lower and the 
degree of D is q or lower. 

2. The coefficients of N and D are deter-
mined so that the power series of FD-N begins 
with the ( p / q / 1) st or a higher power of 
Z.--that is, so that — 

F(Z)D(Z) -N(Z) '1172, P (2) 

If in !4ile:lim N and D can be found so that 
(2) is ii-EiTrifreT,-then G(Z), the corresponding 
Fade approximant to F(Z), is the rational fun-
ction 

- N(Z) (py,--,= ( GZ) cl F(Z) (3) 

To each F(Z), then, there corresponds a 
sequence of Fade approximants for different 
choices of p and q. These successive approx-
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imants can conveniently be entered in a double 
entry Fade Table of successive approximants. 
Each diagonal of this table provides an in-
finite sequence of distinct successive approx-
imants for F(Z). 

1(( 

q ( 0,0) ( 1,0) 
1 0,1) ( 1,1) 
Y 0,2) 

(0.3) 
... 

For example, 
of F(Z) are 

(0,0) = 

(0,1) : 

the 

ao 
aob 

(2,0) 

(2,2) 

• • • 

successive Fade approximants 

(1,0) LI ao alZ 

(1,1) = aod / cZ 

These are are all normalized to give 
F(0) • ao for Z = 0 

The basic problem of determining the co-
efficients of the polynomials N and D can be 
approached in different ways, depending on the 
form of F(Z). 

1. One can equate coefficients in equa-
tion (1) and solve simultaneously the result-
ing p q / 1 linear equations. In actual 
problems this procedure is often lengthy. 

2. Formal solutions for N and D can be 
written in the form of determinants which must 
then be expanded. See Appendix I. 

3. It is sometimes possible to exploit 
the fact that an algebraic function is com-
pletely determined, up to a multiplying con-
stant, when the locations of its poles and 
zeroes ( and their multiplicity) are knomn. 
See Hellman and Straus? and Appendix II. 
The left-hand side must have a zero at 7. = 0 
if the right-hand side has one. 

4. If by some artifice, one can obtain 
the continued fraction expansion of F(Z), 
he can then find the required coefficients. 
See Perron2 and Wa119. 

Advantages: 

There are several definite advantages and 
useful features of the Fade method: 

1. The approximant is given directly as a 
ratio of rational polynomials. This result is 
especially useful when dealing with transfer 
functions and when synthesis by a network is 
necessary. 



2. Cne can specify in advance the number of 
zeroes p and the number of poles q i.e. the degree 

of the numerator and denominator of the rational 
function which is the approximant. 

3. After building up a Pads Table for a given 
function one can get successive approximants by 
merely reading down any diagonal of the table. 
This procedure yields a rapidly converging 
sequence of approximants which have a small 
number of poles and zeroes. 

4. If one approximant is known, others can 
often be obtained by use of recursion relations. 

It is important to decide whether our approxim-

ations are to be made in the original domain (s) 
or in a transform domain ( Z). We may approximate 

a transfer function F(s) to minimize the error 
in F(s) itself ( a direct approximant in the e 
domain), or we may approximate F(s) to minimize 
the error in the corresponding f(t) ( an indirect  
approximant using an auxiliary E plane). 

The direct approximation is, of course, 
generally easier to obtain than is the indirect 
one. Both are discussed here. 

One can define the " best" approximation in 
several different ways. The criterion of least 
mean squares is it useful one and is the one 

given by the Fade approximants. 

The Direct Pad é Approximant 

If it is required to approximate a given 
function F(z) by G(z), a ratio of rational 
polynomials, so that the error is a minimum in 
the least squares sense, the procedure is 
straightforward. 

With F(Z) = 8.0 + alZ + + anZn + 

consider the integral I along the unit circle 
in the Z plane 

*1)" 
= ji(z) — cz,ft(z)] 2 dé) 

—ir z = 

If all polynomials Qs(Z) of specified degree 

n are considered, it can be shown that to minim-
ize I one must set Q(z) = q, where q1.1 is the 

nth partial sum of the series for F(Z), i.e. 

_ n 
qn - e a.Z 

= 0 1 

(4) 

However, here G(z) is to be a rational 

function and not the polynomial qn(Z). So one 
merely sets GT77 equal to the ratio of two 
rational polynomials N and D of specified degrees 
p and q, and determines the coefficients of 
these two polynomials in such a way that the 
power series expansion of ÇÈ(z) - G(z) :1 about 
Z = 0 begins with ZP (1 , i.e., so that re-

lation ( 2) is satisfied. 
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, N(Z) 
Then G(Z)= (0,q) is 

D(Z) 
direct Padé approximant of F(Z). 

The Indirect Pad é Approximant 

called the 

The discussion is aided by reference to a 
diagram. 

A Direct Padé 
Pow  

Approximant 
/
g(t) = f(t) - C(t) 

G( s) 

*z) =0 +7teGs(2) 

G1( z) 

To a function f(t) there corresponds a Laplace 
transform F(8). The objective is to approximate 
F(s) by G(s), a ratio of rational polynomials, 
in such a way that le ( t)j , the error in the time 
domain, is a minimum in the least squares sense, 
where 

le (01 =if(t) _ 
The general procedure is as follows 

1. From f(t), get F(s) 

2. Use the conformal transformation S 

and form F( 3,----+ 1 + ZT(Z) 

5. Remove the m zeroes of(Z) at Z = -1 by 

forming Fi(Z) - (1 .4. z 

4. Expand Fl(Z) in a power series about Z = 0 

and iproceed as before to find G1(Z) by a direct  
Fade approximant. 

- S) 5. Work back through(Z) to G(S) = 
-'9 %1 + S/ 

The constant K has been introduced as a normaliz-
ing factor, to be chosen so that G(o) = F(o). 
This G(S) is the indirect Padé approximant of F(s) 
and,will be, in general, different from the direct 
Fade approximant. 

Examples and Plots 

The time function j1 (t) has been studied as 

the impulse response of a two-termina4 network 
with maximum gain-bandwidth product. The 
corresponding Laplace transform is 

F(S) ='‘,17-+-7 - S 

2 4 6 s , s 
= 

2 8 — 
(5) 

It is instruc-



tivp to find both the direct and the indirect 
Fade approximants (0,1) of this F(S) 

The Direct Approximant of F(s). Now 

(0,1) = , S b but a = b because F(o) = 1, and 
+  

so (0,1) = = . Also p + q 4 1 = 2. Now 

b muet be determined so that FD-N = iSifrom ( 2). 

Substitution yields b = 1, and so the direct Fadé 

approximant of1/1 + S2 - S is ( 0,1) = 1 
S + 1 

(0,1) - s 4, ( ) 

By continuing in this fashion it is possible 
to form a Table of direct Fade approximants 
for N(1 S2 S 

(o,o) 

1 
(1,0) 

1 —5 
,o) 

2-257£ 52 
2. 

54/ 

(0,2) a  OM 2. 

.5"-/-25 -," 2 SL4,2512 

The work of constructing such a table 
can be reduced by using the relation for 
the reciprocal of F(S) 

1  (p,q) for F(S)- 1 
(q,p) 

Two other methods of obtaining a direct approx-
imant are given in Appendix I and II. 

The Indirect Aporoximant of F(S).  

1. For f(t) 
t , FU)...d17477 - S 

F( if114Ze -(14) 
1-Z  - 
1+Z 1+Z 

3.1F(Z) has a zero at Z -1, so form 

15(z) rrer22  
Fl(Z)= 1.z - (i+z) 

In series Fi(Z)= a4bZ+.....= 0.414+ 0.172Z 

4. As before set (0,1)=z-L -. But dzrac because 

Fi(0)=a, and so (0,1) = ac ii = G,(z) 
z c D r 

and p + q 4 1 = 2 

Now c must be adjusted to satisfy relation ( 2). 

Substituting the series yields c = ZLI = -2.41, 

-2.41a and so G ( Z) 
1 777747 

5. Thene ( Z) - ( 1 4 z)1 G1(z) _ ac1 .1.+cZ)  

2Kac  
And so G(S) = KAKI - 

1 4 S - (c-1)S 4 ( c41) 

,222177 .  0.414 
S 4 . 1 S 4 0.414 

Note that K has been set at 0.707 so that 

G(0)=F(0)=1. 

Thus for the function1777 - S, the indirect 
Pad é approximant (0,1) is 0.414/S + 0.414. This 
result may be compared with the direct approximant 

1 found earlier. 
S + 1 

The results of this part of the discussion are 
summarized in the curves. Figure 1 shows the 
direct and indirect ( 0,1) approximants to F(S) 
in the S domain, while Fig.2 shows the correspond-
ing fits to f(t) in the time domain. It is 
evident that the indirect approximant gives the 
better fit to f(t), as it should. With S = 

the amplitude and phase curves for F(j40) are as 
given in Fig. 3. 

These first approximants of low degree should not 
be expected te yield close fits. However, the 
fit improves considerably for successive approxi-

manta. For example, the second indirect Fade 
approximant is 

(1,2) - ,0.512 ( S + 1)  
4 0.352S + 0.512 

for which the corresponding time function is 

g(t) 0.725e -0.426t sin(0.575t 4 4,o ) 

Figures 4 and 5 show how much the fit is improved 
in both the $ domain and the time domain by the 
second successive approximant. 

Mathers4 has shown that the error in the time 

domain for the third successive ap1A-oximant ( 2,3) 
has a maximum value of 1.1% at t = 7. For higher 

order approximants the error was found to be too 
small to determine with a slide rule. 
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Appendix I  

In the body of the paper one method of find-
ing a direct Pad é approximant was given. It is 
possible to formalize the process by the use of 
determinants. 

We wish to approximate a function 

F(x) = a0 + ax + a2x2 + , which is analytic 

about the origin,by a ratio of rational poly-
nomials N and D 

N = aouo it1x+ it xP 

D = 

ak _x#2 

a e_p2 a w 
• 

a p41 a p-tz a 1 

(9) 

As an example of this determinant method, 
find the direct Padé approximant (0,1) for the 
function V171.7 _ g 

From ( 5) ao = 1, al = -1, a2 = ¡.4 a, = 0 ( 10) 

From ( 8) N = a° 0 = ao2 = 1 

1 al ao 

1 a, S From ( 9) D = - , = - alS + ao = S + 1 
al I 

So (0,1) - 11:11 1 
S + 1 

As a further example, repeat the above process to 
find the next direct Pade approximant ( 1,2) 

N = 

From ( 8) and ( 10) 

ao al 0 

al a2 aoS 

a2 a, ao + a1S 

From (9) and ( 10) 
(7) 

D = uo + ulx + u2x2 + ... + uqxq 
ao al 52 

Here N and D are two arbitrary polynomiale D = al 82 S = - t ( 82 + 2S + 2) 
whose p + q + 1 coefficients are to be deter-
mined so that the Taylor series of the function 
FD - N begins with xeerior a higher power of 
x i.e. so that relation ( 2) is satisfied. 

After substitution of ( 7) into relation ( 2), 
it is possible to show that both N and D can 
be written in determinant form as 

Pla.x i#e 
a 13-141 

a2 a3 1 

- So ( 1,2) = N  2  
D S2 + 2S + 2 

Appendix II 

' It is sometimes possible to find Pads 
eV"' approximants by using information concerning the 

N = a #.112 al=41 ea ix ( 8) zeroes and poles of an algebraic function i.e. 

by using the fact that an algebraic function is 
completely determined, up to a multiplying con-
stant, by the nature and location of its zeroes 
and poles. 

Consider finding a direct Pad é approximant 
and of F(S) 117-p _ g with the change of variable 

S = einh u, this function becomes 

F(S) = cosh u - einh u. 

a Zaix p+o ... am+, 
Ls 
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Then substitution into ( 2) gives a term 



(sinh u)2n on the right hand side. Then one can 
exploit the fact that all the real roots of 

7 

1.0 

.7 

sinh u must lie at te origin. Further details 

are given by Mothers'. 
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FREQUENCY TRANSIENTS IN IDEALIZED LINEAR SYSTEMS 

R. Gold 

Electronics Department 
Hughes Aircraft Company 

Division Hughes Tool Company 
Culver City, California 

Of great value in the study of the transient 
behavior of systems is the information obtained 
about the inertia of the system. Thus, in pulsed 
communications, important use is made of the con-
cepts of rise time and time delay. One might, 
perhaps, expect that the inertia of a given linear 
system would he similar regardless of the type of 
applied transient excitation. In reality, the 
information which is eventually to he extracted 
must be scrutinized before the truth of this 
statement is accepted or rejected. For example, 
in Slide 1, a single frequency 4J1 is passed 
through an i-f amplifier. If the amplitude of 
this sine wave is suddenly changed, the detected 
envelope will exhibit a transient- like behavior 
which would depend only on the time constant of 
the network. If, instead, the frequency is 
suddenly changed and the output of the network 
then passed through an appropriate frequency 
detecting device, the resulting transient behav-
ior would depend in a marked way on the magnitude 
of the frequency change. A swing from toi,"3 
would result in a longer transient period, if we 
are interested in detecting instantaneous fre-
quency. 

Certainly this dependence of transient time 
on the magnitude of a change must be caused by a 
nonlinearity. In an FM detection system this 
nonlinearity is introduced by an amplitude limiter 
or any device which tends to eliminate the 
effects of amplitude modulation. 

In 1942, a rather comprehensive study of the 
frequency transients problem was publishedl. 
Slide 2 shows a set of curves which give quanti-
tative information concerning the inertia of a 
linear system to a sudden change in frequency. 
The linear system chosen is one which is often 
used in analysis ( i.e., an idealized filter with 
a rectangular passband about some center fre-
quency). As the ratio of the frequency shift to 
bandwidth increases, the percent overshoot 
increases and the total transient lasts longer. 
Of special significance is the fact that the 
time of initial rise to the new value is the 
same regardless of the magnitude of the transient. 
This result does not seem to he particularly 
reasonable physically and is one of the points of 
more detailed investigation in the present imper. 

Another point of interest is the limiting 
case of the above result. When the ratio of 
deviation to bandwidth approaches zero, the 
result becomes identical with the corresponding 
result for the amplitude modulated case. Thus, 
for very small frequency shifts, the detecting 

system introduces no nonlinear distortion, and 
all the methods of linear system analysis may be 
used. A way of evaluating the degree of non-
linearity of a system and its subsequent effect 
on the desired information is by reference to 
the principle of superposition. If the response 
of a given system to a pulse is the same as the 
result obtained by superposing two step responses, 
it is quite safe to consider the system linear. 
As will be shown later, the region over which an 
FM system may he considered linear will depend on 
the duration of time as well as the magnitude of 
the disturbance. 

Slide 3 shows some of the mathematics used 
to derive the results. In all cases when the 
carrier frequency is high, it is possible to 
write the output i ( t) in the form given by 
Equation 1. The instantaneous frequency is then 
given by Equation 2. The block diagram illus-
trates the type of equipment needed to reproduce 
the instantaneous frequency. 

Slide 4 shows the types of disturbances 
considered. In the first case, a frequency step 
is considered,wherein the frequency of the input 
carrier is suddenly changed. In the second case, 
the frequency is changed for a duration T and 
then suddenly brought back to its original value. 
In the general case of an arbitrary modulation, 
the chief difficulty lies in obtaining an analytic 
expression for i ( t). This is a straightforward 
problem in Fourier Transform; however, the 
integrals are usually of too complicated a 
nature to treat. In our case the i ( t) may be 
found for all networks for which the response to 
a suddenly applied sine wave is known, since the 
input voltage is merely a superposition of such 
waves. In Slide 5 the response of a physical 
single tuned circuit to a frequency step is 
shown for different values of frequency deviation. 
We note that the time to build up is smaller for 
larger deviations, although the overshoot and the 
length of the transient are larger. Comparing 
these results with those for the rectangular 
filter, it must be concluded that variations 
from constancy of amplitude response and linearity 
of phase response can change the response wave-
form quite radically. It is also interesting to 
note that the form of the response curves varies 
from overdamped to highly underdamped as the 
deviation increases. This is another interesting 
case of the effects of nonlinearity. 

In Slides 6, 7, 8, and 9 is shown the 
instantaneous frequency when the input is a fre-
quency pulse. The network considered is again 
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the rectangular filter with zero phase shift. 
Slide 6 illustrates the case when the disturbance 
lasts an appreciably shorter time than the natural 
lag of the network. The difference in wave shape 
between the actual response and that obtained by 
superposition is shown by comparing Curves 1 and 2. 
This difference became quite marked for x > 4 with 
respect to the damping. The more rapid decay of 
the true result and its greater smoothness may 
thus be attributed to nonlinear damping in the 
sense that the damping appears to depend on the 
pulse width. 

In Slides 7 and 8, the width of the frequency 
pulse is increased. In both cases the ratio of 
deviation to bandwidth is one-half. It is noted 
that the shapes of the curves are not very differ-
ent from the imaginary " linear" curves. In 
Slide 8, we note that the ripples on the true 
curve exceed those of the imaginary one. This 

leads to the fact that the degree of damping 
depends in some inverse manner on the pulse width. 

Finally. Slide 9 treats the case w = 
a relatively small deviation. .‘ s one would expect, 
the variation from the true to the linear result 
is very small. 

411 of the curves indicate that the resolu-
tion obtained is of the same order of magnitude 
for both an AM and an FM system through which a 
sequence of pulses is transmitted. One might 
conclude that the same bandwidth would he needed. 
On the basis of the curves shown, this conclusion 
seems to he acceptable provided that the deviation 
is not made larger than the bandwidth. 

1. Salinger. P.: "Transients in FM", Eve, IRE, 
August, 1942. 
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TRANSIENT ANALYSIS OF JUNCTION TRANSISTOR AMPLIFIERS 

W. F. Chow 
General Electric Cnmpany 
Syracuse, New York 

Introduction 

The major sources nf transient 
behavior in transistor amplifiers are 
considerably different from thosein vacuum-
tube amplifiers. Vacuum- tubes, operating 
in a frequency region below the U.H.F. 
band, are limited in their transfer char-
acteristics by the existence of inter-
electrode capacitances. These capacit-
ances are functions of the electrode 
geometry as well as the operating point 
of the tube. Ps the operation of the 
tube approaches .the ultra-high frequency 
region, transit-time effects will be 
encountered. Transit time considerations 
will materially change the frequency and 
transient response analysis of vacuum-tube 
circuits. However, transit time effects 
are negligible for most audio and radio 
frequency applications of vacuum tubes. 

In a vacuum tube, electrons travel 
between the cathode and plate by virtue 
of an electric field gradient. Evacua-
tion of air in the space between the 
cathode and plate minimizes obstruction 
of the electron path. Modulation of the 
electric field gradient causes a signal to 
appear in the plate circuit. In a tran-
sistor, however, carriers travel between 
the emitter and collector by virtue of a 
concentration, rather than electric field 
gradient. For n-p-n type transistor, the 
carriers are electrons and for p-n-p 
types the carriers are holes. The paths 
of the carriers are through the base re-
gion of the transistor, and hence the 
carrier paths are obstructed by the 
atomic structure of the semi-conductor 
and impurity materials which comprise the 
base layer. Modulation of the concentra-
tion gradient causes a signal to appear 
in he collector circuit. 

Carriers move through the base of a 
transistor by a diffusion process, and 
transit time effects are of considerable 
importance even at low frequencies. In 
frequency and transient response analysis 
this fact constitutes the major difference 
between vacuum tubes and transistors. 
This paper will show how the transit- time 
phenomena in transistors may be taken into 
account in the equivalent circuit of the 
transistor, and how such an equivalent 
circuit may be simplified for practical 
transient response calculations. Al-
though the analysis presented here has 
been restricted to junction transistors, 
it is applicable to point-contact types 
also insofar as the latter approximate 

J. J. 73uran 
General Electric Company 
Syracuse, New York 

the junction units in fundamental phy-
sical behavior. The circuit analysis 
is further restricted to small input 
signals, i.e., to transistors operating 
as linear (Class A) amplifiers. 

Derivation of the Equivalent Circuit. If 
the effects of carrier transit in the 
base region of a transistor are complete-
ly neglected, the low-frequency a.c. 
equivalent circuit of the transistor 
may be represented by a T-network such 
as illustrated in Fig. la. ( The equiva-
lent IT configuration may also be used). 
The circuit shown is for a grounded base 
amplifier where re, rh and r, are the 
a.c. resistances of the emitfer, base 
and collector respectively. o< is the 
current amplification factor and ie and 
ic are, respectively, the emitter and 
collector currents. Still neglecting 
the effects of carrier diffusion through 
the base region, the circuit of Fig.la 
may be modified to include equivalent 
capacitances which result from the tran-
sistor geometry. Such an equivalent 
circuit is illustrated in Fig. lb where 
Ceb Cec Cob are the emitter-base, ' '  
emitter-collector and collector-base 
capacitances respectively. Cc is the 
collector capacity, and is due to the 
high-resistance barrier between the base 
and collector regions. In currently-
available junction transistors, the 
effects of the interterminal capacitances 
Ceb• Cec and Ccb are usually negligible 
compared to the effects of Cc and 

carrier diffusion. Consequently, the 
interterminal capacitances will be 
neglected in the ensuing analysis. The 
collector capacitance Cc, is a function 
of the collector voltage, but may be 
considered constant for a fixed opera-
ting point and for small-signal analysis 
1,2,3 

• 
In order that the equivalent circuit 

of Fig. lb can be modified to include 
the transit time effects of carrier move-
ment through the base, a study of the 
basic diffusion equation must be made. 
From the diffusion equation, it may be 
shown that the current amegcation 
factor, cet , is given by Ji 1,5 e 

OC ( jt41)rz2. (jtà) :sect]" ' 4.j(41Tm ( 1) 
ie 
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where W is the width of the base region, 
Lm is the carrier diffusion length and 
Tm is the carrier lifetime. A mathemati-
cel analogue to Eq. 1 is found in the 
current transfer function of a distri-
buted parameter RC transmission line. 
Thus, from the transmission line transfer 
characteristic: 

° ( jte) sechjY(jw) Z ( jtJ) ( 2) 

ii 

it is apparent that the diffusion process 
in the base may be represented by a trans-
mission-line equivalent circuit such as 
illustrated in Fig. 2. When the trans-
mission line analogue of the carrier 
diffusion process is included in the 
equivalent circuit for the transistor, 
the circuit of Fig. 3 is obtained. This 
is the basic equivalent circuit from 
which a simplified transient analysis 
technique will be derived. 

It should be noted that Eq. 1 may be 
employed directly in the solution of 
transient response problems whenever the 
effects of circuit elements external to 
the transistor can be neglected. In 
particular, this applies to transistor 
amplifiers having small load resistances. 
Equation 1 has been solved for a step in 
emitter current, but the results are 
sufficiently inyolved to require omission 
from this paper'. 

The propagation of a pulse by a 
transmission line is characterized by two 
basic results: dispersion and delay. 
Dispersion refers to the attenuation and 
phase-shifting of certain frequency com-
ponents in the transmitted signal by the 
selective character of the transmission 
line, and leads to a "spreading out" in 
time of the pulse wave front. Delay may 
be considered as due to the finite phase-
velocity property of the transmission line 
and is manifested by a time lag between-
the input and output signals. Both dis-
persion and delay are intrinsic proper-
ties of the transient response of tran-
sistor amplifiers. These properties may 
be treated separately by a circuit 
approximation to the transmission line 
analogue as shown in Fig. 2. For example, 
only one section of the line may be used 
to represent the dispersion effect, and 
the remainder of the line may be re-
placed by an ideal delay line to repre-
sent the delay property. The ideal delay 
line has the transfer characteristic: 

j 

e (3) 
Ii 

where K is the delay time ( seconds). 
Using the approximate representation, the 
transmission line of Fig. 2 may be 
illustrated as indicated in Fig. 4. The 
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current transfer function of this net-
work is readily shown to be: 

o ( w ) _  1 

ie 4. GR RC  

1 + GR 
At very low frequencies (‘)-> 0), Eq. 4 
approaches the value le 4 GR), which will 
be denoted as 0( 0, the low-frequency 

current amplification factor. The 
frequency at which the current ratio 
given by Eq. 4 is 3 db below 0( 0, is 
the OC -cutoff frequency, 1' 0(0. The 
time constant corresponding to roc () will 
be denoted by roe. Equation 4 may, 
therefore, be written as: 

io -Kit..' 
(jw) e  ..ezolo  

ie 1 4 ic.)T..‹ (5) 

where: 

1-0( 

2 r o 

-Kjte 
e (4 ) 

1  1  and Coco= 

21T RC oe o 

For most junction transistors currently 
available,o( o is very close to unity 

(oco ) 0.9). Hence, the conductance G 

in Fig. 4 is usually very close to zero 
(infinite resistance) and can be ne-
glected in the equivalent circuit. 

Using the delay-line approximation, 
the a.c. transistor equivalent circuit 
illustrated in Fig. 1 is modified as 
shown in Fig. 5a. Denoting the current 
ratio given by Eq. 5 as ee , the equiva-
lent circuit of Fig. 5a is redrawn as 
shown in Fig. 5b. It is quite obvious 
that the circuit of Fig. 5 is a great 
deal simpler to deal with in circuit 
calculations than the transmission line 
equivalent of Fig. 3. As will be borne 
out later, calculations based upon the 
delay-line approximate circuit are 
sufficiently close to experimental re-
suits to warrant the circuit's consid-
eration in practical design problems. 

Frequency and Transient Response 
uaiculations. To illustrate the use 
of the equivalent circuit of Fig. 5 in 
transient response calculations, consid-
er the junction- transistor amplifier of 
Fig.6a. The voltage generator of inter-
nal impedance R,, generates a step volt-
age which is api3lied to the emitter of a 
grounded base transistor amplifier ter-
minated by a load resistance, RL . The 
voltage response, as measured across RL 
will be determined from the equivalent 
circuit of Fig. 6b. In Fig. 6b, the 
current source ai e of Fig. 5b has been 
converted to a voltage source, ec where:-

• 



ec = ie 

and Z, is the parallel combination of 
rc ana C. Thus: c 

Zc -  rc rc 

1 4 reCc ji,) 1 .4 l'o 

(6) 

(7) 
The voltage transfer characteristic for 
the transistor amplifier circuit may be 
calculated from the Kirchoff equations 
for the network of Fig. 6b. In matrix 
form, these equations are: 

te i i 4re 4rb ) (-rb) [le i 

ec (-rb) (Ze4RL 4r.e) ic (8) 

When Eq. 8 is solved for ic, it is found 
that the delay term e-Kiw appears in both 
the numerator and the denominator of the 
resulting expression. To simplify the 
transient calculation, it is desirable 
that the denominator of the transfer 
function be a polynomial in ( j4J) and 
contain no e-Kile term. This can be 
achieved if the delay term is expanded 
as follows: 

e -Kjw 1-Kjw !(Ki) 2 (") - (Kiw) 34 ... 
2! 3! (9) 

Since K is usually very small ( of the 
order of 0.1es in junction transistors), 
all but the first three terms in Eq. 9 
will be neglected. If this is done, the 
voltage transfer function of the approxi-
mate equivalent circuit illustrated in 
Fig. 6b is given by: 

%2 -Kjud 
e0(ito)_abtaljw+a2(w) 4C oe 

eio «eh1 jw t b2( j (4 )2 (lc) 
The coefficients ai, 134, C, of Eq. 10 are 
in terms of the circuit an transistor 
constants: 

ae „ RL rb 

al -7 0L rb (r« rc) 

- - n r  
b 

Co 0(0 RL ro 

130 Z (listre)(RLtrerb )trb (RLtre ll-0(01) 

(110) 
bl= Uzi. ro)(rb[ReretRL ]fRIARerel) 

102= 

r0 'roc ( rb+retRg)÷1X0 K re 

ti,Te f(Rere)(reRL )tRL 

0( 0 rc rb K2 

101: 

An experimental transistor amplifier 
of the type illustrated in Fig. 6, was 
built to test Eq. 10. As measured with-
in an estimated accuracy margin of t20, 
the experimental circuit constants are 
as follows: re . 3011, , 200/4 
re , 600 K11,0(0 . 0.9, -11..« 10-" sec., 
ore , 10 -q sec., K .5 x 10- sec., - 

R - 5011, RL . 10 r fl. The voltage 7 - 
transfer function derived experimentally 
is compared to that derived theoreti-
cally from Eq. 10 in Fig. 7. Since the 
bandwidth of the experimental curve is 
somewhat greater than the theoretical 
bandwidth, it may be expected that the 
theoretical transient response calcula-
tion will lead to a conservative esti-
mate of the physical response. 

Transient response analysis pro-
ceeds directly from Eq. 10. Assuming 
that the input voltage, ei, is a step 
function given by 

1 e, = — 
S 

where S is the Laplace operator (d/dt), 
Eq. 10 becomes, in terms of S: 

e0(s) a0 + al 5f a2 S2 

(be+bi b2 S2) 

Co e-KS 

S ( I)( .1 S b2 

where: 

(13b) 
It is generally found that r » A; for 
this condition, Eq. 13a becomes: 

eo(t) _ e-A(t-Ki[g(t-K)1 ( 14) 
b2Ar 

In Eqs. 13a and 14,M(t-K) is a step 
function which is delayed in time, from 
the reference t = 0, by K seconds. Thus, 
the delay property of the transistor 
appears as a factor of the dispersion 

The inverse transformation of the first 
term in Eq. 12 leads to a time function 
which is the response of the equivalent 
circuit to the step input when the 
transistor is considered as a passive 
circuit, i.e. when ge is short-circuited. 
For good amplifiers, this term will be 
negligible. Inverse transformation of 
the second term in Eq. 12 results in: 

eo(t)_  c o  ifr'7:A(t-K)-Ae-r(t-K) µ(t-K) 

A _r J (13a) 

A r _ - _ o b1 I( bl 2 b 
2 b2 + 
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function, the latter being a simple 
exponential in Eq. 14. Using Eq. 14, the 
theoretical transient response is com-
pared to that obtained experimentally 
in Fig. 8. The same circuit and circuit 
constants are used here as were employed 
in the frequency-response calculations 
relating to Eq. 10. From Eq. 14, it 
is apparent that the total rise time,TR, 

TR , K (15) 
A 

Defining the response rise time, tR, as 

simply 1/A, Fig. 9 illustrates the 
variation of tR with collector resistance, 
collector capacitance, cut-off frequency 
and load resistance as calculated from 
Eq. 14. It should be cautioned that the 
curves illustrated in Fig. 9 are 
approximate relationships calculated for 
a specific case, and should therefore be 
referred to as indicative of trends 
rather than as references for universal 
calculations. 

Conclusion. The equivalent circuit for 
a Junction transistor may be modified 
by the inclusion of a transmission line 
analogue for the representation of 
diffusion phenomena within the base re-
gion. Such an equivalent circuit may 
then be used for transient response 
calculations. However, the resultant 
analysis would be so algebraically in-
volved as to make the technique im-
practical for most design purposes. If 
the transmission line is replaced by a 
simple lumped-parameter R-C network in 
series with an ideal delay line, an 
equivalent circuit will be obtained which 
is much more amenable to simple design 
calculations than the transmission-line 
circuit. Calculations based upon the 
delay-line approximate circuit lead to 
conservative frequency-and-transient-
response calculations. However, these 

(a) 

are close enough to experimental results 
to justify the design utility of the 
delay-line equivalent Circuit. 
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Fig. 2 - Transmission line analogue of equation 1. 

Fig. 3 - Basic ac transistor equivalent circuit. 

Fig. 4 - Delay-line approximation of the transmission line analogue shown in Fig. 2. 
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-4 Fig. 6 - AC circuit for a grounded base transistor amplifier. 
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THE GROUNDED-COLLECTOR TRANSISTOR AMiL1FIER 
AT CARRIER FRE4I/ENCIES 

F. R. Stansel 
Bell Telephone Laboratories, Inc., 

Murray Hill, N. J. 

Summary 

Expre;:sicns are derived fur input resistance, 
output resistance and ratio of input to output 
voltage and current at low frequencies for trans-
mission in both the base-to-emitter and the 
emitter-to-base directions. These expressions 
are extended to the carrier frequency range (up 
to approximately twice the alpha cutoff fre-
quency) by considering the effect of the varia-
tion of alpha with frequency, of collector capac-
itance and of load capacitance. Experimental 
eviuence is presented which verifies the equa-
ticns obtained and inuicates that the method of 
computing the effect of frequency may be applied 
to other transistor circuits. 

Introduction 

Of the three fundamental transistor cir-
cuits, grounded-base, grounded-emitter, and 
grounded-collector, only the grounded-collector 
circuit may have a high input impedance. This 
high input impedance, together with its approx-
imately unity voltage amplification makes the 
grounded-collector transistor amplifier similar 
in both operation and use to the vacuum-tube 
cathode-follower circuit. Unlike the cathode-
follower, the grounded-collector circuit is a 
bidirectional device, that is, it is capable of 
transmitting signals in either of two directions. 
There are also questions of stability in the use 
of grounded-collector transistor circuits which 
do not exist in vacuum-tube cathode-follower 
circuits. 

The grounded-collector circuit has been , , 
discussed in a general way by previous writers.'' 
It is the purpose of this article to extend 
these treatments and particularly to discuss the 
effects resulting from operating the grounded-
collector amplifier at frequencies above the 
audio-frequency range. In addition to obtaining 
relations which may be useful for design pur-
poses, the experimental uata presented verifies 
a method of computing the effect of frequency 
variation which may be applied to other transis-
tor circuits. 

In this article the low frequency.equations 
for the input and output resistance, and for the 
ratio of input to output voltage and current will 
be derived and their physical significance dis-
cussed. Following this there will be a discus-
sion of the effect of frequency on transistor 
circuits and the basic principles cited will be 
applied to the low frequency equations previously 

derived. In the concluding portion of the 
article some experimental observations which 
verify the aerived results will be given. 

As previously mentioned, the grounded-
collector is bidirectional, that is, the input 
may be either applied between the base and 
ground and the output taken from emitter to 
ground as shown in Figure 1, or the input may 
be applied between the emitter and ground and 
the output taken from base to ground as shown 
in Figure 2. The convention used in this arti-
cle is to refer to the first connection ( Figure 
1) as transmission in the XI direction and the 
second connection ( Figure 2) as transmission 
in the IX direction. 

Input Resistance - XI Transmission (Output - 
Resistance - IX Transmission) 

The quantity Rxy as defined in Figure 1 is 
both the input resistance of a grounded-collector 
amplifier when transmitting in the XI direction 
and the output resistance when transmitteg in 
the IX direction. kallace and Pietenpol' have 
given the value of this quantity. Using the 
notation of Figure 1. 

Rzy = rb + 1 (re _ rel)/(Ry + re) 
(1) 

It is frequently desirable to express this re-
lation in terms of the current amplification 
factor a eich is defined as ( ie/ài e)eb and is 
equal to 

r + rb 
a 

rc + rb 
(2) 

By solving ( 2) for rm and substituting in ( 1) the 

following is obtained 

Rxy = rb + 1 4. (rc 

rc 

+ rb)(1 - a)/(Re + re) 
(3) 

hy consists of the base resistance rb in series x 
with an equivalent resistance R.2,7 whose value is 

RI = 
"Zr 

re 

1 + ( re + rb)(1 - a)/(Ry + re) 
(4) 



Generally Rjcy i8 so large that the initial rb 
term of ( 1) or (3) may be neglected and Rxy may 
be considered approximately equal to R. 

Equation ( 4) can be further simplified by 
introducing the approximation rb << re valid for 
most transistors of both point contact and junc-
tion types. Equation (4) then becomes 

rc 

R/y =   
1 + r0(1 - a)/(Ry + re) 

which may be rearranged in the form 

1 '- 1 1 - a  
R' r R + r 
xy c y e 

or using conductance notation 

Gs gc + ( 1 - a) Gye xy 

in which Gye = 1/(Ry + re ). These equations 
shows that the input resistance for XY trans-
mission, neglecting the series resistance rb, 
can be considered as composed of two resistors 
connected in parallel. One resistor is the 
collector resistance of the transistor re and 
the second is the resistance (Ry + re) divided 
by ( 1 - a). Since re is small, generally of 
order of 25 ohms, it frequently is negligible 
compared to Ry. 

Consider the case of junction transistors. 
For this type re is quite large, often one or 
more megohms, so that the efrect of this resist-
ance is frequently of second order importance. 
a is generally only slightly less than unity so 

that ( 1 - a) is a small quantity and (RI + re)/ 
(1 a) is large increasing in magnitude the 
nearer a is to unity. Therefore the input re-
sistance of a grounded-collector amplifier using 
junction transistors is high and is determined 
largely by the load resistance and a, but can 
not exceed re. 

Figure 3 shows the value of R' xy/re plotted 
as a function of (Ry + re)/re for values of a 
found in both junction and point-contact tran-
sistors. Junction type transistors have values 
of a less than unity and the curves applicable 
are the solid lines in the center portion of 
the figure. Point-contact transistors, on the 
other hand, generally have values of a greater 
than unity and the curves applicable to these 
transistors are the dotted lines in the upper 
and lower portion of Figure 3. 

(5) 

(6) 

(7) 

For a less than unity ( junction transistors), 
R' increases as a and (Ry re)/re are increased. xy 
As the load resistance Ry is increased the curves 
for various values of G. Converge and a has in-
creasingly less influence on the value of 

=Accoruing to C3) and as shown in Figure 3 the in-
put resistance is always positive for values of 
Q. less than unity. khen the errect of frequency 
is considered it will be shown that circuit 

For a greater than unity ( point-contact 
transistors), the input resistance is more 

complicated and may under some conditions be 
negative. For these types of transistors 
collector resistance re is generally lower and 
therefore this term has more effect than in a 
junction transistor. The quantity 1 - a is 
negative so that kki consists of a positive 
resistance re and a negative resistance 
-(Ry + re)/(a 1) in parallel. 

For very small values of Ry, less than the 
value given by the following expression, 

Ry rb(a - 1) - re (8) 

R is positive. As Ry is increased ? Rxy de-
creases becoming zero àt the value given in (e). 
For values greater than (6), RXy is negative 
and increases in magnitude as Ry is increased 
until R is increased to the value given by Y 

(9) 

For R equal to (9), Rxy is infinite. For 
greater values of Ry, Rxy is positive decreasing 
and approaching re asympotically as Ry is in-
creased. The corresponding variation of Rly is 
shown by the dotted curves of Figure 3. 

Input Resistance - YX Transmission (Output  
Resistance - II Transmission) 

The quantity Ry x as defined in Figure 2 is 
both the input resistance of a grounded-collector 
amplifier when transmitting in the YA direction 
and the output resistance when transmitting in 
the XI direction. In the same manner as (3) its 
value is found to be 

(1 - a)(re + rb) 

As in the case at R y, Ry consists of the xx 
emitter resistance re in series with an equiva-
lent resistance Rh whose value is 

R;rx . (1 - a)(re + rb)  
1 + re/(Rx + rb) 

In contrast with equation ( 5), in ( 11) the 
term 1 - a is in the numerator rather than in 
the denominator so that R4x has a low value, it 
is therefore not correct to consider Rh as an 
approximation for Ry, in the same manner that 
h/y was considered an approximation for R. 

Introducing the approximation rb<K re ( 11) 
may be rearranged in the form 

configurations are possible which have a negative 
input resistance even with a less than unity. 
1his case is covered in a later section. 



1 1 [ 1 
Rx + rb 

1  

or using conductance notation 

gc + Gxb 
= - a 

(12) exi rLey r 
cb 

rb(1-a) + r 
1e 

ay 
(16) 

(13) = ( 1-a) (l+rb/re) +( Ry+re)/re (17) 
_ Y xy 

in which Gxh = 1/(Rx + rb) 

Equations ( 12) and (13) indicate that Rij,x 
can be considered as the two resistors ( 1 - a) re 
and ( 1 - a)(Rx + rb) connected in parallel. 

For a junction transistor the collector re-
sistance re is generally high enough so that the 
first branch has little effect on the value of 

Rrx and the following approximation is usually 
valid for the total input resistance 

nyx re + (1 - a)( Rx rb) (14) 

As 1 - a is a small fraction and re has a value 
of 10 to 50 ohms, Ryx will in general be quite 
small. 

The variation of the Rjrx/re as a function of 
(Rx + rb)/re is shown in Figure 4. As in the 
previous case, the curves applicable to junction 
transistors are shown in solid lines and the 
curves applicable to point-contact transistors 
are in dotted lines. Note that the curves appli-
cable to junction transistors are plotted to a 
different scale of Re,x/re than those applicable 
to point-contact transistors. 

For a less than unity ( junction transistors), 
RIx is always positive and increases as (Rx + rb) 
is increased with a limiting value of ( 1 - a) re. 
As transistors having increasingly higher values 
of a are used, Rà1.x is decreased. The limit is 
reached when a is unity. For this case Riju  is 
zero for all values of (Rx + rb). 

For a greater than unity ( point-contact 
transistors), Rjrx is always negative. The total 
input resistance Ryx is positive for values of 
Rx less than 

re - rb (a - 1) 
Rx -   (15) 

(a - 1) - re/(re + rb) 

For Rx equal to the value given by (15), Ryx is 
zero. For larger values of Rx, Ryx is negative 
increasing in absolute magnitude as Rx increases 
and approaching the limiting value -(a - 1) re. 
The corresponding variation of Rjrx is shown by 
the dotted lines in Figure 4. 

Ratio of Input to Output Voltage and Current 

These ratios may be found by solving the 
mesh equations for a grounded-collector tran-
sistor For xy transmission these ratios are 

For most transistors rb <C<. re and re <K re 
so that the term outside the bracket in (16) and 
the ( 1 + rb/re)term in (17) are essentially unity. 
For large values of R, the voltage ratio ap-
proaches unity while the current ratio is ap-
proximately 

2- (1-c) + ay/re 
xy 

(18) 

For a lest) than unity ( junction transistors), 
the output voltage and current are both in phase 
with the input voltage and current for all values 
of RY* For a greater than unity ( point-contact 
transistors) the output voltage and current are 
in phase with the input voltage and current if 
R, has a value greater than ( 9). If Ry is greater 
tfian ( 8) and less than (9) the input and output 
voltages are in phase and the input and output 
currents are 180* out of phase. If Ry has a 
value between zero and (6) the output voltage and 
current are both 160° out of phase with the in-
put voltage and current. 

ey 

For YX transmission 

yx 
 RX 

rb   E rerbl (19) = 1 + 
(re+11) ( 1-a) [  

1 
1-a 

(20) 

if rb« rc and ax Tc, ( 19) is approximately 

ez.1 rb r. 
= 1 + + 

ix Rx Rei-a) 
- -Yx 

(21) 

As in the case of XI transmission the input and 
output voltages are approximately equal. 

For a less than unity ( junction transistors) 
the output voltage and current are both in phase 
with the input voltage and current for all values 
of R. For a greater than unity ( point-contact 
transistors) the output voltage and current are 
both 160° out of phase with the input voltage and 
current when Rx is less than the value given by 
(15). For values of Rx greater than ( 15) the 
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input and output voltages are in phase while the 
input and output currents are 160° out of phase. 

Effect of Frequency 

All of the preceding equations have assumed 
that the frequency is low. As the frequency is 
increased, four effects modify these equations. 
They are: 

(1) Variation of a both in magnitude and 
in phase with frequency. 

(2) Effect of capacitance shunted across 
re. 

(3) Effect of capacitance shunted across 
the load and generator resistances, that is, 
across Rx and Rye 

(4) Effect of variation of re and rb with 
frequency. 

Ryder and Kircher 1 have discussed the fre-
quency characteristic of a for point-contact 
transistors. Their observations were that the 
phase shift of L is "related to the amplitude 
in the same way as if the characteristic were 
that of a ' minimum phase' passive circuit.!" 
Based on these observations, D. E. Thomas „ has 
suggested that a can be represented by the equa-
tion 

ao 
1 + JO 

(22) 

in which ae is the value of a at low frequency, 
n is the ratio of the operating frequency to the 
cutoff frequency, fe, and fe the frequency at 
which the magnitude of a is 1/127 that of the 
low frequency value.* 

A more exact expression for a 

1/2 
a = ao sech ( j 2.43 CI) (23) 

has been derived by Pritchard 4 from the theoret-
ical treatment of NP junctions by Shockley, Sparks 
and Tea1. 5 By introducing the cosh function and 
expanding into an infinite series it may be shown 
that (22) is a first approximation for ( 23). In 
an unpublished communication with the author 
Pritchard has pointed out th. while this approx-
imation is quite good in magnitude, the differ-
ence being less than .1 db at 1.8 fe, the agree-
ment in phase is not so good. At the cut-off 
frequency fe the two expressions differ by 13°. 

Hence on the basis of both theoretical consid-
erations and experimental data which follows the 
use of the simpler expression ( 22) is justified 
at lower frequencies. At higher frequencies a 
more complicated expression such as ( 23) may be 
required. 

*This cut-off frequency can also be defined as 
the frequency at which a has a phase angle of 
45*, that is the real and imaginary parts are 
equal. 

The author has made a series of measure-
ments on NPN junction and experimental FN? 
alloy ( or "diffused junction") transistors. 
The circuit used, which is shown in Figure 5, 
consisted essentially of a grounded-base ampli-
fier excited from an oscillator through a ter-
minated attenuator and a high-value resistor R2. 
Because of this resistor the input current is 
proportional to the attenuator setting. The 
load resistor R3 in the collector circuit is 
small and the output current is measured by the 
voltmeter shunted across this resistor. To meas-
ure cutoff frequency the oscillator is set at a 
low frequency and the attenuator is adjusted for 
a suitable output voltage. The attenuator set-
ting is then reduced 3 db and the oscillator fre-
quency increased until a frequency is reached at 
which the output voltmeter reads the original 
value. 

Measurements were made on six NPN junctions 
and two PNP alloy transistors. At each fre-
quency the ratio la/à01 was computed using 
equation ( 22) and compared with the measured 
ratio. For frequencies less than twice the cut-
off frequency the computed and the observed re-
sults were well within the limits of experimental 
error, often less than .1 db which was the small-
est step on the attenuator. Typical data for 
three transistors are listed in Table I. At 
frequencies above twice the cutoff frequency the 
difference between the observed values and the 
values computed by ( 22) increases, but if ( 23) 
is used instead of (22) the agreement is still 
good. The variation in phase was checked by 
remeasuring these transistors in a grounded-
emitter circuit similar to Figure 5. It can be 
shown that assuming a varies in accordance with 
(22), the cutoff frequency of a grounded-emitter 
stage fà ( defined in the same manner as fe ex-
cept that the transistor is operated in a ground-
ed-emitter circuit) is given by 

fà = (1-a) fc (24) 

In all cases the computed and measured values of f 
fà were within the limits of experimental error. 

For operation of transistors in circuits at 
higher than audio frequencies, the cutoff fre-
quency is one important parameter. Figure 6 
shows the variation of cutoff frequency of a 
typical NPN junction transistor as a function 
of emitter current and for various collector 
voltages. Some variation in these curves exists 
from unit to unit, but all units checked show an 
increase in cutoff frequency with collector volt-
age and a maximum cutoff frequency at some value 
of emitter current between .5 and 2 milliamperes. 
Cutoff frequency may also be affected by am-
bient temperature but this variation is not uni-
form from unit to unit. In some units the cut-
off frequency has been observed to increase with 
increasing temperature and in some to decrease 
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TABLE I 

Measured and Computed Values of a for Three 

NPN Junction Type 

f, = 1800 kc 

a = . 985 

joss in 0. ( db)  

NPN Junction Type 

f, = 1000 kc 
a = .971 

Loss in a (db)  

KC Cal. Meas. Dif. KC Cal. Meas. Dif. 

200 .05 0 -.05 250 .21 .2 -. 01 

600 .46 .5 +.04 400 .64 .6 -.04 
800 .78 .9 +.12 500 .97 .9 -.07 

1000 1.17 1.3 +. 13 650 1.53 1.5 -.03 
1200 1.60 1.8 +.20 800 2.15 2.2 +.05 
1500 2.29 2.4 +.11 900 2.58 2.6 +.02 
1800 3.01 3.0 -.01 1000 3.01 3.0 -.01 
2200 3.96 3.6 -.36 1300 4.30 4.3 0 
2500 4.67 4.4 -.27 1500 5.12 5.2 +.06 
3000 5.77 5.5 -.27 1800 6.27 6.4 +.13 
4000 7.74 7.7 -.04 2000 6.99 7.1 +.11 
4500 8.60 8.5 -.10 2500 8.60 6.9 +.30 
5000 9.40 9.5 +.10 3000 10.00 10.5 +. 50 

Transistors 

PNP Alloy Type 

fe = 160 kc 
a = .64 

Loss in a ( db) 

KC Cal. Meas. Dif. 

50 .40 .4 0 
60 .57 .6 +.03 
70 .'-(6 .8 +.04 
00 .97 1.0 +.03 
90 1.19 1.3 +.11 

100 1.43 1.5 +.07 
120 1.96 2.0 +.04 
150 2.74 2.7 -.04 

lc,0 3.55 3.5 -.05 
200 4.09 4.0 -.09 
250 5.37 5.4 +.03 
300 6.55 6.6 +.05 
400 6.60 b.b +.20 
500 10.32 10.8 +.48 

with increasing temperature. This change is not 
large, generally not exceeding a total of 20% 
for the temperature range of 80°F to 120°F. 

J. M. Early 6 has shown that because of 
secondary effects the complete expression for 
re and rb includes a correction factor which 
varies with frequency. The corresponding cor-
rection factors for r, and a are negligible. 
In this article these correction factors have 
not been introduced since in most cases these 
terms are small enough to be negligible. For 
more a exact treatment the effect of the varia-
tion of re and rb with frequency will have to 
be considered. 

Input Admittance - XI Transmission  

The generalized input admittance is ob-
tained from ( 5) by substituting for a equation 
(22), for 1/r, the value g, + yec, and for 1/Ry 
the value Gy + jià:Cy . Assuming that re « Ry 
and after some purely mathematical steps, the 
following equivalent input conductance and cap-
acitance are obtained: 

G' = g, + 
xy 1 + + ‘12 

(1 - a, + d)Gy 2n fc Cy ao if (25) 

a G o y  (1 - ao 2)Cy ( 26) 
C' = c + 

c 211 fo ( 1 +cY) 

in which C - efc. 

1 + 
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It was previously shown in equations ( 6) and ( 7) 
that, at sufficiently low frequencies, Illy is 
equivalent to a circuit composed of two parallel 
resistances. Equations ( 25) and ( 26) are gen-
eralizations of ( 6) and ( 7). This generalized 
equivalent circuit, which is shown in Figure 7, 
consists of three parallel resistances represent-
ing the three terms of ( 25) and three parallel 
capacitances representing the three terms of ( 26). 
To make the equivalent circuit complete Figure 7 
shows the impedance rb although as previously 
discussed this term can generally be neglected. 

The table in Figure 7 lists the values of 
these six parallel branches ( giving the resistance 
branches in terms of either their resistance or 
their conductance) for three conditions. The 
first line marked "all frequencies" are the gen-
eralized terms obtained from ( 25) and ( 26). The 
last line marked " zero frequency" are the values 
obtained from ( 6) and (¡) which are identical with 
those in the first line with Q set equal to zero. 

A useful approximate set of values can be 
obtained from ( 25), and ( 26) by assuming that the 
CÎ terms in 1 + 0 and 1 - a, + 02 can be neg-
lected. This approximation is valid up to the 
order of .05 to .1 of the cutoff frequency depend-
ing on the value of a, and is frequently useful 
in design of circuits in the frequency range up 
to 100 to 200 kilocycles. The values of the com-
ponents in Figure 7 using this approximation are 
given in the second line of the table in this fil-
ure. This approximation shows that at low fre-
quencies the input conductance and capacitance 
of a grounded-collector amplifier are nearly in-
dependent of frequency. The only term in this 
approximate equivalent circuit dependent on 



frequency is R3 ( or G3). As this term is also 
dependent on the load capacitance Cv, the effect 
of frequency can be minimized by making Cy small. 

For higher frequencies equations (25) and 
(26) are too complicated to discuss in general 
terms. Rather some illustrative curves will be 
given for a grounded-collector amplifier using a 
typical NFN junction transistors whose parameters 
are 

ao = • 98 

re = 1 megohm 

fc = 2 megacycles 

cc = 5 micromicrofarads 

Initially the case when the load capacitance C, 
equals zero will be considered. 

Figure b shows the resistance component of 
the input impedance as a function of frequency 
for several values of load resistance. As the 
load resistance Ry is increased the input resist-
ance increases but an upper limit on the input 
resistance is placed by branch R1 ( see Figure 7) 
which is numerically equal to the value of re of 
the transistor. 

Figure 9 shows the variation of input re-
sistance with frequency for transistors having 
other values of ao than ae = . 96 with the load 
resistance Ry fixed at 50,000 ohms. Again the 
limiting value of input resistance is re. 

Figure 10 shows the input capacitance for 
the case given in figure 8. For small values of 
load resistance Rv the input capacitance is large-
ly determined by the component C2. As the load 
resistance is increased the value of C2 decreases 
and the input capacitance approaches the collector 
capacitance cc as a limiting value. The variation 
of input capacitance with frequency, while not 
large even with small values of Ry, decreases as 
Ry is increased so that for large values of Ry 
the input capacitance is essentially independent 
of frequency. 

Next consider the modifications of the input 
resistance ( or conductance) when a capacitance 
Cy is added across the load. The effect of this 
capacitance is given by the third term in (25). 
Because this term has a minus sign the effect will 
be to decrease the input conductance, or to in-
crease the input resistance. If the value of Cv 
is increased sufficiently the negative value or 
the third term in (25) can be made greater than 
the sum of the two positive terms thus making the 
input conductance negative. Such a negative in-
put conductance has been measured experimentally. 

When discussing the zero frequency case for 
point-contact transistors it was pointed out that 
since ais greater than unity one of the parallel 
resistances in the equivalent circuit has a neg-
ative sign. This condition is also true for the 
general case (25) in which R2 ( or 02) is negative 
when ae is greater than unity. 

,Input Admittance - IX Transmission 

The input admittance for IX transmission 
can be obtained in the same manner as for XI 
transmission assuming that rb « Rx. The re-
sults are 

1-a +rg) (Ec+Gx) 2nfe020.0(ce+Cx) '"& 1 0  (27) 
Yx (1 - a0)2 

(1-a0+)2)(cecx) ac (gc + Gx) 
of =   (26) 
Yx (1 - a0)2 + 02 2nfc[(1-ao)2402] 

Equations (27) and ( 26) define an equivalent cir-
cuit in the same manner as in the case of XI 
transmission. This equivalent circuit is shown 
in Figure 11 and the values of resistance or con-
ductance and of capacitance for the several 
branches are given in the table of this figure. 
As in the previous case when O is equal to zero 
(27) and (28) reduces to the zero frequency case 
previously discusalid in(12) and ( 13). 

The approximation previcusly used in the 
case of XI transmission can not be used in this2 
case as 02 is associated with the term ( 1 - ab) 
which at low frequencies is of the same order as 
02. 

The characteristics of the input resistance 
and capacitance for IX transmission are in many 
ways inverse of those for XI transmission. This 
may be seen by comparing Figures 8, 9, and 10 
for XI transmission with Figures 12, 13 and 14 
which are similar curves for the same transistor 
with IX transmission. 

The input resistance for XI transmission 
(see Figures 8 and 9) is nearly constant at low 
frequencies and decreases as the frequency is 
increased. In contrast, for YX transmission the 
input resistance ( see Figures 12 and 13), in-
creases quite markedly with frequency at low 
frequencies. At frequencies higher than about 
half the cutoff frequency the input resistance 
becomes nearly constant approaching an asymptotic 
value. This asymptote is essentially Rx for low 
values of Rx. For higher values of Rx this 
asymptote is reduced in value by the parallel re-
sistance components R1 and R3 (see Figure 11). 

The input capacitance also varies quite 
markedly with frequency. Because of the negative 
sign of C2 and C3, the capacitance has a negative 
sign over a large portion of the frequency range. 
At frequencies higher than about half the cutoff 
frequency the magnitude and variation of the input 
capacitance diminishes and it approaches the value 
cc + Cx asymptotically, 

For point-contact transistors, the denomin-
ator of hi and R2 ( or tie numerator of G1 and 02) 
in Figure 11 becomes (a - 1). For low 
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frequencies where 02 is less than (a - 1) these 
terma will have a negative sign as in the zero 
frequency case. As frequency is raised a value 
of 0 will be reached above which these components 
will have a positive sign. The component R3 ( and 
G3) of Figure 11 has a positive sign for both 
point-contact and junction transistors. Since 
this component depends on the load capacitance 
Cx, it is possible at carrier frequencies to ad-
just Cx so that the positive conductance of G3 
cancels the negative conductance of Gl and G2. 

For point-contact transistors C2 and C3 re-
tain their negative sign. C1 may have a positive 
or negative sign in the same manner as R1 and R2. 

Experimental Observations 

A series of measurements were made to veri-
fy the foregoing mathematical treatment. The 
larger portion of these measurements was made 
using NPN junction transistors although some 
measurements were also made using point-contact 
and PNP alloy transistors. All observations 
checked computed results within the limits of ex-
perimental observations. 

Figure 15 shows the measured ratio of input 
to output voltage of a grounded-collector ampli-
fier as a function of the load resistor. These 
measurements were made at 30 kilocycles using an 
NPN junction transistor with a constant output 
voltage of .005 volts. The two curves show the 
theoretical ratios for transmission in the XY and 
in the IX directions, computed using (16) and (19) 
respectively. Except for low values of load re-
sistance, the measured values, as indicated on 
Figure 15, check very closely the computed curve. 
For XI transmission there is a possibility that 
some of the error was because of neglecting the 
effect of stray inductance in series with the iced 
which at low values of load resistance may be ap-
preciable. 

Figure 16 shows the ratio of input to output 
voltage as a function of frequency for three tran-
sistors, a NPN junction transistor, an experi-
mental PNP alloy transistor and a point-contact 
transistor. These curves were all taken trans-
mitting in the XI direction and with a load of 
5620 ohms. In all cases, the voltage ratio is 
very close to unity, increasing very slightly as 
the frequency increases. From 10 kilocycles up to 
the cutoff frequency the variation in voltage is 
in the order of a few tenths of a decibel while 
even out to several times the cutoff frequency 
there is only a small change in voltage ratio. 

Figures 17 and lb show a series of measure-
ment of input admittance of a grounded-collector 
amplifier using a NPN junction transistor and a 
10,000 ohm load resistance. These measurements 
were made using a precision admittance bridge 
suitable for use at frequencies up to at least 
500 kilocycles. 

According to ( 25) and (26), both the con-
ductance and the capacitance components of the 
admittance are linearly related to the load 
capacitance. Figure 17 shows observed values 
of input conductance and Figure 18 observed 
values of input capacitance both as functions 
of load capacitance and at several frequencies. 
It will be noted that the predicted linear re-
lation was observed. 

In equation ( 25) it will be noted that the 
term containing the load capacitance, Cy, has a 
negative sign. Hence, as load capacitance is 
increased the input conuuctance should decrease 
and if the load capacitance is made large enough, 
it should be possible to obtain a negative input 
conductance. Figure 17 shows that this decrease 
in conuuctance with increasing load capacitance 
was observed and for frequencies of 75 kc and 
above negative values of input conductance were 
measured. 

More extensive measurements were made at 300 
kilocycles of the input admittance of a grounded-
collector amplifier using a NPN junction tran-
sistor. At any one frequency equations ( 25) and 
(26) may be written in the form. 

= gc + kiGy - k2Cy (29) 

Cly = cc + k3Gy + k4Cy (30) 

in which ki,k2,k3,k4 are functions of a, the oper-
ating frequency ana the cutoff frequency. Equa-
tion ( 29) indicates that a plot of Glv as a func-
tion of should be a family of parallel straight 
lines having slopes equal to 1(1 and intercepts 
proportional to the value of the parameter Cv. 
Similarly the plot of g, vs CY' of C . vs e and 

Y 
of C' Y vs C are all faallies of straight lines. 
X Y 

The experimental measurement when plotted 
shows such families of straight lines. Table II 
summarizes these data. The measured value of each 
of the four slopes, 1(1, k2, k3 and k4 is tabulated 
for several values of the parameter. The values 
of these slopes computed from measured values of 
ao and cutoff frequency are included in this table. 
In general the computed values are somewhat higher 
than the measured values but the results are all 
within limitations of experimental error. 
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TABLE II 

Experimental Verification of Equations (25 and ( 26)  
by Input Admittance Measurements at 300 kc  

ki cy 

0 .1128 
50 .31411 .1160 
98.74.t .1160 
199.6pg .1203 
Computed value. .1340 

G' = gc + k1C 
xy  y 

Cy'  ac + k3C 
c y 

.1016 x 10-6 

.1030 x 10-6 

.1004 x 10-6 

.0949 x 10-6 

.1190 x 10-6 
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Fig. 2 
Grounded-collector amplifier 

transmitting in the XY direction. 
(a) schematic; 

(b) equivalent circuit. 
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Fig. 3 
Variation of input resistance 

as a function of load resistance 
XY transmission. 



Fig. 4 
Variation of input 

resistance as a function 
of load resistance - 

YX transmission. Note 
that scale for Fq,x/r 

is different f'6T c 
positive and negative 

values. 
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for transistor same as Fig. 8 
except having other values of 
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..,•.:e.r& 

•OP 
e 

_ 

Fig. 12 
Input resistance (YX transmission) 

for same transistor as Fig. 8. 
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for transistor same as Fig. 8 
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Input conductance as a function of 
load Capacitance. XY transmission, 

Ry = 10,000 ohms. 
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Input capacitance (YX transmission) 

for same transistor as Fig. e. 
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SYMMETRICAL PROPERTIES 

OF TRANSISTORS AND THEIR APPLICATION 

George C. Sziklai 

RCA Laboratories 
Princeton, N. J. 

ABSTRACT 

There are certain transistor characteristics 

which are not present in vacuum tubes. Some of 

these characteristics may be best classified as 

symmetrical properties. 

The first kind of symmetry may be found in 

the complementary characteristics of the NPN and 

PNP transistors. One is the symmetrical counter-

part to the other, as a hypothetical positron 

triode would form a counterpart to the conven-

tional electron tube. 

This property may find a number of uses. As 

the base current is changed in the same direction 

in both units the emitter- collector current flow 

will increase in one and decrease in the other. 

A pair of these units fed from the same signal 

will provide a single ended push-pull output. 

Such a single ended push-pull circuit operates 

without a transformer or phase inverter. 

Another application of the use of PNP and 

NPN transistors in combination is the use of two 

complementary units to form a direct coupled 

amplifier. The collector of a PNP transistor can 

be connected directly to the base of an NPN 

transistor and the power applied through the 

emitter. By this means a long chain dc ampli-

fier can be built. This circuit provides a 

somewhat lower voltage or current gain than a cb 

per stage 

The complementary symmetry of transistors 

find an interesting application when it is 

applied both in cascading and for providing push-

pull amplification. Such a two stage direct 

coupled Class B amplifier does not contain any 

parts other than the transistors themselves when 

operating from a high input resistive source 

directly into a 16 ohm loud- speaker voice coil. 

Most transistors display another symmetrical 

property involving a single unit. This symmetry 

permits a current flow between the emitter and 

the. collector in either direction and it is 

controllable by the base current. There is no 

comparable action in vacuum tubes since this 

would require an anode omitting electrons and a 

thermionic cathode accepting them. With tran-

sistors however, units with high degree of 

symmetry can be constructed. This is particular-

ly true for the alloying process of transistor 

making. 

The single unit symmetry has many interest-

ing applications since it provides a fast bi-

directional switch. A single symmetrical tran-

sistor can provide a sawtooth current with very 

high efficiency and with a minimum number of cir-

cuit components. A symmetrical transistor pro-

vides a very simple clamp circuit, balanced 

modulator, phase and FM detector. 

A STUDY OF TRANSISTOR 

CIRCUITS FOR TELEVISION RECEIVERS 

Robert D. 

After the discovery and a study 

George C. Sziklai, 

Lohman and Gerald B. Herzog 

RCA Laboratories 
Princeton, N. J. 

ABSTnACT 

of the Parallel with this development some experience 

symmetrical properties of junction transistors, 

several circuits were developed which are 

particularly useful in television systems. 
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was obtained with point contact transistors both 

in pulse and v- h- f circuits which appeared to 

be useful in television circuitry. In view of 



these encouraging tests, it was decided to make 

a general study of transistors in television 

receivers. For this purpose, the development 

of a completely transistorized television re-

ceiver was undertaken. An experimental model 

using 37 developmental transistors and a 5- inch 

kinescope, housed in a plastic cabinet 13 x 12 x 

7 inches, was constructed. This portable re-

ceiver operates on asingle channel using a self-

contained loop, and has a total battery- power 

consumption of 13 watts, more than 25 per cent 

of which is consumed by the kinescope heater. 

The development of a complete experimental 

receiver, even with a number of compromises, 

provided an opportunity to deal with the problems 

found in every stage and circuit of the receiver. 

Although experimental point- contact transistors 

have recently been developed which will provide 

oscillations for the entire v-: h- f television 

band, considerable difficulty was found in pro-

viding wide- band r- f gain using transistors at 

these frequencies. This problem was much less 

difficult at intermediate frequencies and at the 

intercarrier-sound frequency. The second-

detector problem of obtaining high rectification 

efficiency with low load impedances was solved 

by using a transistor detector. The video ampli-

fier problem was complicated by the requirement 

for a high input impedance; however, with a 

combination of junction and contact transistors 

a stable, high gain video amplifier with a 

relatively high input impedance was built. An 

audio system using complementary symmetrical 

junction transistors was designed to produce 

high output with good efficiency. 

In the synchronization and deflection por-

tion of the receiver circuits were devised for 

using transistors in ways which differ from the 

analogues of amplifier tubes. A single transis-

tor was used as a d- c setter, sync separator and 

sync amplifier. A simple and reliable horizontal 

a- f- c system was developed by utilizing the 

symmetrical properties of transistors. Point-

contact transistors were found to beparticularly 

economical pulse and sawtooth oscillators. The 

complementary symmetry principle was used to pro-

vide vertical deflection with high linearity and 

efficiency. In the horizontal deflection cir-

cuits, the fast high- current switching ability of 

transistors was used advantageously. An effic-

ient circuit using the symmetrical property of 

the transistor, which has no analogue in electron 

tubes, was devised for horizontal deflection. 

Fig. 1 



CONDUCTANCE CURVE DESIGN OF RELAXATION CLCUITS 

Keats A. Pullen 
Ballistic Research Laboratories 
Aberdeen Proving Ground, Md. 

Summary. Design of non-linear repetitive 
circuits using electron tubes requires data not 
readily available on static tube characteristics 
curves. A technique for use of the recently de-
veloped conductance curves to this design problem 
has been developed. 

The application of the technique to the de-
sign of multivibrators and blocking oscillators 
requires knowledge of the dynamic loop gain, the 
plate voltage swings, the dynamic tube conduct-
ances, and the static circuit characteristics. 
Determination of the switching time and the init-
iation bias are considered. ghe effect of the 
conductance of the positive grid and the effects 
of tube conductances are studied. 

Several examples of multivibrator and block-
ing oscillator designs illustrating use of the 
method are presented. Experimental confirming 
data are included. The agreement with theory is 
examined. 

The Relaxation Type Circuit 

The relaxation circuit is an electronic 
configuration having clearly definable active 
periods for its active elements and clearly de-
finable quiescent periods for the active elements. 
The active elements may be triode, tetrode, pen-
tode, or multielement electron tubes, transistors, 
fieldistors, magnetic amplifiers, or any other 
form of element capable of controlling the trans-
formation of energy. 

Analysis and design of relaxation circuits 
may be divided into two phases. The first phase 
might be called the passive phase. The second 
phase is the active phase. The technique of 
calculation of the passive phase is well under-
stood. The correction for plate conductance on 
the passive phase decay characteristic in multi-
vibrators has been handicapped by the lack of 
adequate plate conductance data, however. De-
termination of the initiation point and the 
active transition characteristics has likewise 
been hampered by lack of adequate data on dynamic 
parameters of the active element. The determi-
nation of initiation conditions and the character-
istics of the active transition is studied after 
a discussion of dynamic data presentation for 
electron tubes for use in re.laxation type oscil-
lators. 

Dynamic Data Presentation 

The problem of presentation of dynamic data 
for application to the design of comparatively 1 
linear tube circuits has already been described . 

1. l'or Bibliography See Proceedings of National 
Electronics Conference, 1950, page 120 

dhere a wide degree of variation of the range of 
the parameters of the tube must be available, 
however, previously described forms of curves may 

not prove adequate. 

The use of a logarithmic plate current scale 
on the standard plate or screen conductance type 
characteristics curves provides the required range 
of data on at least the static parameters. Choice 
of suitably scaled contour values for the conduct-

ance contours could then provide the dynamic data. 

A set of logarithmic curves on the 6SN7 (6J5) 
triode has been prepared on one triode section of 
a 6SN7 tube ( Fig. 1). As can be noted, the plate 
current ran¡e is from one microampere to ten milli-
amperes. The grid bias range is from zero to 
minus 26 volts. The transconductance and plate 
conductance contours plotted are those having 1, 
2, 5, 10, 20, 50,0 te micromhos up to the maximum 
value provided in the tube at zero bias. 

Although the reluirement of a curved load 
line would initially appear to lower the useful-
ness of the semi-logarithmic plot, the operation 
of plotting the curved load line does not appear 
to be difficult. The usefulness of the spreaJing 
of the data in the low transconductance area more 
than offsets the inconvenience in cases where a 
wide range of data must be provided. 

During the initiation of transition in the 
multivibrator, dynamic characteristics on both 
active elements must be known. The initiation of 
the transition is controlled by the element which 

has been switched off and is slowly drifting back 
toward a conducting condition. The conducting 
element is providing a static amplification dur-
ing the initial phases of triggering of the multi-
vibrator. The tri7gering of the blocking oscilla-
tor, discussed later, develops in somewhat simi-

lar manner. 

Electron Tube Multivibrator 
Initiation and Transition 

The initiation of multivibrator transition 
in a free-running multivibrator occurs as a re-
sult of the slow drift of the bias of the tube 
which has been switched off back toward the con-
ducting condition. Transition may be expected to 
start immediately upon establishment of an open 
circuit loop amplification of approximately unity. 
The drift of bias, neglecting the effect of loop 
amplification, would be comparatively uniform. 
The effect of the rise of loop amplification is to 
speed up the transition by introduction of a volt-
age in series with the discharging capacitor which 
acts in such a direction as to change the bias 
more rapidly. If, for example the amplification 
of triode one is minus Al, and triode two is minus 
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A2' the voltage change, neglecting the effects of 

capacitances, in the plate of triode two from a 
change in voltage E0 in the grid of triode one is 

EoA1A2. Consequently, the apparent voltage applied 

at the grid of tube one now becomes E0(1 + A1A2). 

Expanding this equation with successive cycles of 
feedback, one gets a product series. 

The voltage rise due to amplification of course 
does not occur instantaneously. The rate of rise 
depends on the stray circuit capacitances as well as 
the amplifications of the two amplifier tubes. 
Strictly, at least two build up functions will in-
terract to control the time delay around the loop. 
The difference equation governing one cycle of am-
plification may be written 

(dE nat)/(dE n_i MO= I + Ain A2n 

-e - 8 ' ( t-tn)) ( 1 - e 82 (1-tn) ) 
From ( 1) the amplification ut any insant may lie 
written as 

n 

dE n/dt LI + AIJ A2j (He -81 1(t-ti)) 
j=0 

(1-e -821("-1) )] ( OE 0 /dt) (2) 
or the amplification may be written as 

(dE n/dt)/(dEo/dt) = VA [I + A I j A2j (1-e-81J(t-ti) n i=0 

(I- e- 8 2i (t- ti) )] (3) 

In these equations 6.. = Glj. ( t)/Cij.(' t). 6 2j = G2  (t)/ 

C2j (t) ' where the G's and the C's, being variable, 

must be calculated from the circuit parameters by 
the use of equations (6). 

(I) 

Ifthevaluegf(t-. t1) is chosen such that 

6..ij (t-t.j) and 62jj.( t-t.) are very small compared to 

unity, then ( 3) may be simplified. Taking t - t. = 

at., then (3) becomes  
n 2, 

VA = TT 1.14-A • A . 8.8 . j P t. 
j=o 11 21 eJ 

Taking the logarithm both sides of ( 4) 
verts the product into a series. 

2, 
Log VAn = Log [I +Ali A2i Sii 82i Pti j (5) 

e° 
The right hind side of (5) could be expanded into a 
power series, the value ofàtj allowed to approach 

zero, and definite integral obtained if convergence 
may be assumed. Since in one transition, Alj 

varies between zero and a finite value, and A2j be-

tween a finite value and zero, the assumption of 
convergence appears to be reasonable. 

(4) 

con-

The physical significance of (4) and (5) is 
rather interesting. The effect of amplification in 
the multivibrator is to cause a multiplication of 
voltage change on successive loops around the feed-
back circuit. Consequently, relatively small rates 

of change of bias can be converted into extremely 
high rates of change at the steepest point in the 
transition. This steepness may be great enough to 
render the steepest part of the transition difficult 
to observe on even the highest speed oscilloscopes. 

Practical use of ( 5) does not require trans-
formation into a definite integral. The choice of 
a value of LItj to satisfy the relation A A 

lj 2j 61j 
2 

6 Alt. = c 4 0.1 on an iterative basis enables one 
23 j 

to determine the time required per incremental ratio 
of amplification change. The relation in its pre-
sent form does not readily indicate the rate of 
change of bias with time, but gives the rate of 
change of amplification. Conversion of the rate of 
change of amplification to rate of change of volt-
age requires division of àt by ( 1 + c)i since the 

initiating voltage for each pees around the loop 
should be reduced to 1/(1 + c)" of the final output 
voltage of the previous passage around the loop. 

A table giving values of Alj, A2j, 6 62j, 

àt , and 1/(1+c)1 may be formulated for a given 

multivibrator. The values of Clj, C2j, Glj, and 

G2j must be determined in order that the deltas 

may be used in the determination of both amplifi-
cation values and the net bias values may be found. 
The equations for these functions are 

Glj 1/R 1 GP1 1/1tC2 

G2j = l/à- + G 2 + 1/RC). L2 P 

C11 Cpkl Cpcl Cck2 

+ ( 1 + A2j) Ccp2 + Cd 

C2j. = Cpk2 + Cpc2 + ckl 

+ ( 1 + A) C + C 
lj cpl d 

The correct value of j must be determined on the 
basis of the chosen value of c, and the amount of 
the total bias chanGq. If the basic increment 

o is taken as 10 ' volts, for example, 

E cj - Eco = (1 + c)iLiEo = ( 1 + c)ix 10-3 volts. 

Proceeding in the indicated manner, one finds 
several interesting results. The first is that 
the rate of transition in a multivibrator may reach 
1000 volts per microsecond. The second is that the 
second tube apparently is cut-off before the first 
tube reaches zero bias. 

(6) 

Examination, however, of the plate voltage 
change in the second tube required to carry the 
.first tube to grid conduction shows that a nominal 
bias change on the second tube of the order of 
between one and five volts is sufficient to provide 
full transition. Integration of Al4A2, as a func-
tion of input bias shows the bias J J change at 
tube one required for the active portion of the 

121 



transition. When the integral of A .A . with re-
lj 2j 

spect to the bias on the first tube numerically 
equals the initial negative bias on tube one, 
transition should be nominally completed. 

The input capacitance of the second tube pre-
vents the nominal voltage changes read from the 
tube characteristics contours from being realized. 
If 6lj . 62j' the loss of voltage change due to 

time constant would be the same, percentagewise, 

on each tube. Where 6lj is not equal to 62j, how-

ever, approximately 6lj/(lj 6 .+ 62j ) of the potential 

voltage change available in tube two will be re-
alized for a time delay producing approximately 
62j/(6l + 62j) of the potential voltage change 

available in tube one. Proper timing and switch-
ing results if this correction is made. 

Effect of Plate Conductance on the 
Relaxation Time of a Multivibrator 

The decay circuit which controls triggering 
in the conventional multivibrator is a resistance-
capacitance combination which holds a decaying 
negative potential on a tube grid. Three resis-
tors are included in the decay path for the cap-
acitance. The first of these is the conducting 
tube load resistance, the second the conducting 
tube plate conductance, and the third the grid 
resistance in the grid of the non-conducting tube. 
If the coupling circuit is reduced to its simplest 
form, the plate load resistor and the plate con-
ductance in parallel are effectively connected in 
series with the grid resistor. The rate of decay 
is determined by this combination. The plate con-
ductance may be read from the plate characteris-
tics curve as in Fig. 1 or Fig. 2. The decay 
action may be assumed to continue until the unity 
loop amplification condition is reached. 

Experimental Tests- Multivibrator 

The main purposes of the experimental tests 
on the multivibrator were two. The first of 
these was to examine the predictability of the 
initiation point. The second was to attempt to 
learn something about the triggering of multivi-
brators. The tests were made with the circuit 
shown in Fig. 3. One set of tests was performed 
With 27,000 ohm load resistors and a 250 volt 
supply, the second with 1000 ohm load resistors 
and an 85 volt supply. The reason for the dif-
ference was to establish one design requiring 
near cutoff bias at the initiation point, and the 
other design requiring very little bias at the 
initiation point. Table I gives initiation con-
ditions for the four tests made. 

Table I 
Multivibrator Initiation 

Load Impedance 27000 ohms 
Approx. Initiation bias 
tube one -25.5 volts 
Initiation Loop Gain 1.21 
Corrected Loop Gain 0.88 

1000 ohms 

-5.4 vole 
1.28 
1.003 

In the initial tests giving loop amplifications 
of 1.21 and 1.26, the initiation point could be 
moved back and forth smoothly across the initiat-
ing pulse by shifting the applied bias. Fig. 4 
shows a series of oscillograms of this test with 
different values of bias. The time constant in-
volved proved to be that of the 0.01 microfarad 
capacitor and the 270,000 ohm resistor effecting 
the grid of tube one ( Fig. 3). The circuit be-
haved as if the capacitor were returned to ground 
potential instead of appearing to have zero 
signal potential difference across the capacitor 
which would be expected at unity loop gain. Re-

duction of the coupling capacitor size to 0.001 
microfarads proved the correctness of the analy-
sis. 

The requirement of slightly less than unity 
amplification for initiation with the 27,000 ohm 
load resistors at first appears curious. The 
possibility of existence of this condition with a 
large gain margin had been postulated on the basis 
that with loop amplifications very close to unity, 
the system might not reach stability before the 
unity amplification point had been reached. This 
condition apparently can occur. The corrected 
initiation points, corrected for the time constant, 
were calculated from the time constant of the 
pulse build-up and were also checked by experi-
ment. Amplifications checked within about five 
percent. 

The Blocking Oscillator 

The blocking oscillator uses a tube and a 
transformer to initiate and form a pulse through 
uncontrolled regeneration ( Fig. 5). Initiation, 
as in the multivibrator, results from slow decay 
of the charge stored in a capacitor. The capaci-
tor in this case is in the grid return lead. 

The presence of the transformer provides 
several interesting characteristics to the block-
ing oscillator. For very slow rates of change 
of bias, the transformer will behave as if it 
were without appreciable resistance, reactance, 
or magnetic coupling. When the grid voltage 
leaks off to a point that the effect of the grid 
voltage change on the transconductance produces 
sufficient change of plate current, the trans-
former behaves as a unity coupled transformer-
phase inverter. Its load is then the grid leak 
resistor until zero bias is reached, then the 
grid conductance and the grid leak resistor. 
After cycle reversal, the loading exits in re-
verse order. 

Answers to two questions were desired in 
the tests performed on the blocking oscillator. 
The first of these was: "Does the blocking os-
cillator initiation point vary with the slope of 
the applied triggering pulse?" A corollary 
question was " If so, does it vary in such a way 
that LGM (dEc/dt) is approximately constant?" 
The second question was "What is the appearance 
of the blocking oscillator load line?" 

The significance of the first question is 
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that L9m(dEc/dt) will be constant if a loop gain, 

with the transformer behaving purely as an in-
ductance, of a fixed value is required for initia-
tion of the blocking oscillator. The measurements 
made indicate that the triggering of the blocking 
oscillator tested does appear to depend on the 
slope of the trigger pulse. In fact, to at least 
a roue approximation, the function LCm (dEc/dt) 

does appear to be a constant at the initiation 
point. To date, the pressure of other work has 
prevented determination of the initiation gain 
required with the blocking oscillator. 

The circuit of Fig. 5 was designed to pro-
vide access to both the cathode current and the 
plate voltage to permit oscillograph recordings 
to be made of the load line. Two typical load 
lines obtained are shown in Fig. 6. The first of 
these was made without the two clamper diodes 
(hie vacuum) across the sawtooth generator cir-
cuit. As can be noted, the load line rises as 
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Logarithmic current plate characteristics 

curves - 6SN7 tube - triode one. 
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expected, but then drops vertically and follows 
the zero current axis. This condition apparently 
is a result of the load line drift with accumu-
lation of rectification bias. With the clamping 
diode to discharge this bias, the load line takes 
a more conventional appearance. 

Conclusions 

The design of relaxation oscillators of at 
least two types appears to be aided by the use of 
a logarithmic plate current conductance type of 
plate or screen characteristics curve set. The 
presence of the dynamic conductance information 
enables one both to obtain a superficial feel of 
the functioning of the circuit and in at least 
some cases to obtain considerable detail informa-
tion not otherwise calculable about a circuit 
design. The information obtainable, in fact, may 
be of sufficient use in many design problems to 
justify taking the conductance type contours as 
preliminary data for the determination of the de-
sign. 

  1 

ee5c) 
132 

1 

ee5c) 
132 

Gr .2800 
4.131 

TR1OOE 2 

Ah -. 
% 

 •0 ...., 

— 
— , 

-- g '- 

- 

- 
eo .....,-----
o ;•• oc,oi 

_ 
or-----,,, 
, - 

\ 

E,-VOL 300 

Fig. 2 
Linear plate characteristics curves - 

6SN7 tube - triode two. 



Fig. 3 
Test multivibrator circuit. 
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Test blocking oscillator circuit. 
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TRANSISTOR RELAXATION OSCILLATORS 

Stanley I. Kramer 

Fairchild Guided Missiles Division 
Wyandanch, New York 

Introduction 

Several variations of the basic relaxation 
oscillator are discussed which provide certain 
advantages. These include lower peak currents 
and a closer realization to idealized rectangular 
waveforms. 

Review of Conventional Circuit 

The conventional circuit places a capacitor 
across the emitter input and utilizes the nega-
tive resistance for switching. This configur-
ation is shown in fig. 1(a) and its operation 

Eee Ecc 

(a) 

Fig. 1 - basic Relaxation Oscillator 
end Emitter N-Curve 

can be analyzed in conjunction with the emitter 
N-curve. The emitter N-curve is the volt-amp 
characteristic of this circuit taken from 
emitter- to-ground end is shown in fig. 1(b). 
'[nia concept for analysis has been described 
elsewheren but is reviewed here briefly as a 
basis for the discussion to follow. 

The curve described by the solid _tine abed 
is a plot of emitter current versus emitter 
voltage to ground and can be obtained point by 
point or dynamically. The segment ab represents 
the high input resistance at cut-off and is 
generally of the order of 1 megohm, bc is the 
negative resistance region which is largely a 
function of Rb and alpha, ana cd represents 
saturation, the slope being a function princi-
pally of re and the external circuitry.2 

Considering the operation of the circuit, 
capacitor C slowly charges from point a to the 
peak point b. At this instant the emitter 
resistance breaks down and the current suddenly 
increases. The voltage across C, however, can-
not change instantly and corresponds in effect 
to a zero impedance load line which intersects 
the N- curve et d. The capacitor then proceeds 

to discharge through the emitter, whose impedance 
to ground is defined by the slope of dc, to the 
valley point c. Fiore the current suddenly de-

creases and the capacitor again prevents any 
change of voltage which causes the current to 
return to the value corresponding to point a and 
the cycle is complete. 

Two undesirable features of this circuit are 
the sloping top in the collector waveform ( Fig. 
k) caused by the changing emitter current in 
segment ci-c ( Fig. 1(b)) aria the vary high peak 

d 

o 

Fig. 2 - basic Collector Xaveform 

currents, especially of the emitter, which exist 
at point d. 

Modified Circuit 

Fig. 3(a) shows u modification of the basic 
circuit having most of its desirable features 
and law of its shortcomings. The changes in the 

Eee Eee e eg 
ie 

( b) 

Hg. 3 - Modified Relaxation Oscillator 
and Emitter U-Curve 

basic circuit are the addition of a loading 

resistor, Rg in series with C and the elimination 
of 4. Fig. 3(b) is the corresponding ii- curve 
for this circuit and is referred to in the 
analysis wnich follows, beginning at a', the 
voltage at the emitter rises as capacitor C 
charges from Lee. At la' the current is suddenly 
increased by the switching action, but this time, 
although the capacitor voltage remains momenta-
rily constant, the voltage across the emitter 
terminals is subject to change due to the drop 
in ligs. Thus bid' has a slope corresponaing to 
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the resistance Rs. From de the voltage falls due 
to the discharge of C to ce. Here, again, the 

emitter resistance changes abruptly and cede is 
generated parallel to bed' to complete the cycle. 

Emitter Loaded Circuit 

If Rs <K Re, this circuit degenerates to the 
simple case of a loading resistance in series 
with the emitter es shown in Fig. 4. The N-curve 
of this circuit taxen at the points shown in the 

ECC 

kig. 4 - Emitter Loaded Relaxation Oscillator 

diagram appears somewhat different than the 
previous one, but is actually equiNalent. This 
is shown in Fig. 5. ( a) and ( b) are oscillo-
scope traces of the operating circuits of Figs. 
3 and 4, respectively, and ( c) is a superposition 

Fig. 5 - Emitter Li-Curves of Oscillating 
Circuits; ( a) Circuit of Fig. 3, 
(h) Circuit of Fig. 4, ( c) Super-
position of ( a) and ( h) 

of the two curves. Curve aebedece is Fig. 3(b), 
whereas aubeduce is obtained across C in Fig. 4. 
It will be noted that the current end points are 
substantially the same except for those corres-
ponding to a, und a" which is generally second 
order and due to the approximation that 118 is 
very much less than the emitter resistance in ab. 
This shows, therefore, that resistance loading 
of the emitter is equivalent to altering the N-
curve by a controllable amount in the saturation 
region. The slope of the curve in this case is 

approximately equal to Rs if Re = O. This is 
shown by the following analysis which mutes use 
of the equivalent circuit of Fig. A. 

- * 

Rs re 
rb 

Ve 

Fig. b - Equivalent Circuit of Emitter LoLoed 
Relaxation Oscillator 

The loop equations are 

4 = (Rererb+Rb)Ie ( reRb)Ic 

0 = ( rerb*Rb)I e + ( rb+Rh+rc+Rc)Ic 

Solving for Ve/le 

Rin = = Ie 

(Rs+re*rb*Rb)(rbeb+re+Re)-(rb+Rb)(rm+rb+Rb) 

rb + Rb * re + Re 

In the saturation region the internal para-
meters re, re, rm, and rb are very small, general-
ly less than 100 ohms.3 If these are small 
comparen with the external circuitry the 
expression reduces to 

Rin = Rs 
Rb Re 

ReRc 

and if, in addition, Re is made zero, the final 
expression reduces to 

hin = R 6 

In a similar manner it can be shown that 
with Re = 0, alpha approaches unity during 
saturation. Alpha by definition is 

rb + rm. 

rb + re 

In the subject circuit, hoer, this 
becomes 

rb + Rb + rm  

rb + Rb + rc 

and if rb, rm and re are small compared with Rb, 
alpha is very nearly unity. The consequence of 
this fact is that during saturation Aie = -1, 

Aie 
ana the net current through the base is constant. 
This results in the flat topped waveform illus-
trated in Fig. 7. Thus, two effects have been 
achieved. First, the N-curve has been altered 
to permit large amplitude waveforms without 
excessive peax currents by controlling the satu-
ration region and secondly, the waveform has been 
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Fig. 7 - Typical Waveform of Emitter Loaded 
Circuit 

flattened by adjusting alpha to unity by removal 
of Re and by taking the output at the base. 

Time Constants 

The foregoing discussion using the N-curve 
analysis makes no mention of the time constants 
involved. This is more readily analyzed with 
the aid of the simplified equivalent circuit of 
Fig. 8 which assumes; 1. re is infinite during 
cut-off and zero during saturation, 2. rc is 

\Se Sc 

Ecc 

Fig. 8 - Simplified Equivalent Diagram 

zero during saturation and 3. 11« Rb. Then, 
starting from cut-off ( point a' in Fig. 3(b), Se 
and Sc are open ana capacitor C charges toward 
Eee with a time constant (Re + Rs)C. When the 
peak point is reached, the switches close and C 
begins to discharge toward Eco with a time 
constant RsC. The discharge continues until the 
valley point is reached at which time the 

switches re-open and the cycle is completed. 
It should not be concluded from the foregoing 
that the charge time is necessarily longer than 
the discharge time, since the voltages involved 
are different for the two cases. By making Eee 
and Re small, it is possible to obtain a sym-
metrical waveform or even to go beyond. To 
summarize, the cut-off time is a function of the 
time constant (Rs + Re)C and voltage Eee, whereas 
the time spent in saturation depends upon time 
constant RsC and voltage Ecc. This is not exact 
since the transistor characteristic, naturally, 
enters into the analysis. 

Performance 

The amplitude of the output voltage is 
comparable with that obtainable from the basic 
one und in practical circuits may approach the 
collector supply voltage. However, the waveform 
has a flat top unlike the sloping top of Fig. 2 
and so the useable amplitude for most appli-
cations is considerably greater. 

The top of the waveform for Rs = 2K is 
generally flat within 10% for W.E. 1698 and 1768 
transistors. By trimming R5 it is posible to 

make the top absolutely list or even give it a 
positive slope. A typical waveform is shown in 
Fig. 7. 

The pulse width is determined largely by the 

product Re and it is essential that the ratio 
be controlled. The limitation being that large 
values of C should not be used with very small 
values of h since this may cause excessive dissi-
pation by maintaining high peux currents lor too 
long u time. 'ihe wevelorm in Fig. 7 has a period 
of 1 millisecond and was obtained with hs a 1K, 
C = . 1 ufo. The rise and fell times are compar-
able with those obtained in other transistor 
relaxation oscillators end vary Irom . 1 to .4 
microsecono for the rise time with baE. 1698 and 
1768 transistors, and roughly taice this figure 
lor the fait time. 

One of tale principal advantages of this 
circuit is the reduction or both the pea È and 
average currents compared with those obtained 
in tne classical circuit. In this case the 
peek emitter current can be held at any otsired 
value beyono the valley point by proper choice 
of Rs (see kig. .3(b)). 

hile tne discussion up to now has been 
oirecteo at free running oscillators, these 
circuits are equally amptable to mono-stable 

or triggered operation by proper choice or 
emitter bias. Synchronization pulses may be 
injectea either at the buse or emitter depending 
on the polarity of the pulse voltage. lids is 
often u oietinct advantage over the circuit of 
Fig. 1 which can only be triggered at the base, 
the emitter being effectively bypessea by the 
capacitor. 

Finally, the reliability is increased by 
controlling the slope of the saturation region 
of the à-curve with stable elements external to 
the transistor. Ibis can be used in conjunction 
with other, more airect, schemes or stabilization 
to obtain even better uniformity. 

A comparison betaeen this circuit and the 
basic one is shown in lable I es a lunction of 
transistor characteristics. The particular 
batch of: transistors used in the test has 
considerably poorer uniformity than is uaually 
encountered, but helps to cemonstrete the 
improvement in uniformity obtainable. 

elooilied Circuit with Split Load 

A variation of this circuit is shown in 
Fig. y anere a finite he is inserted end the he 
network is positioned between emitter aria 
collector. Much of wnat has been ebià con-
cerning emitter louding also applies to this 
circuit. The principal difference is that Etc 
now finite. Performance of this circuit is 
similar to the previous one, but two separate 

outputs may be taken; one from the base and the 

is 
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other from the collector. The waveshapes are 
practically iCenticel except for opposite polarity 

Eee Ecc 

Fig. 9 - Relaxation Oscillator with Out-of-Phase 
Outputs Obtainable from Collector bnd 
xis se 

und their relative amplitudes may be edjusted by 
proper choice of he and Rb. It is not iumediate-
ly obvious that the waveforms should be e4ual and 
opposite but if he is large compared with the 
other circuit parameters as is generally the 
case, nearly all of the emitter current must flow 
through he aria of course tnrough Rb. 

The flat topped waveform is not theoreti-
cally realized in this circuit since alpha is not 
necessarily unity during saturation. This is a 
conse4uence of Re being finite, but practically, 
the slope can be reduced to 10% or less of the 
total amplitude. 

Narrow-Pulse Genere tar 

The final circuit to be discussed is useful 
for generating short, high amplitude, rectangu-
lar pulses. The circuit diagram is shown in one 
form for Fig. 10(0.4 Quite arbitrarily, ground 
has been chosen to be the base. By a simple 

eCC 

(b) 

Fig. 10 - Aarrow-Pulse Generator 

transformation, which consists primarily of 
moving the signal ground to the collector, the 
circuit of Fig. 10(b) is obtained. This is 
similar to the circuit of Fig. 3 with two main 
differences; first Rs has disappeared and second 
Re is returned to the base instead of to ground. 
This circuit now combines the features of ' the 
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basic circuit (Fig. I) in that R6 is omitted, with 
those of the moeified circuit ( Fig. 3) where Rc is 
omitted and output is taken from the base. 
Analysis of this circuit follows the ones de-
scribed earlier ana need not be repeated. The 
omission of h5 results in rather narrow pulses 
(order of a microsecond) but with high peak 
currents. The peak current is especially high 
with zero collector loud since this forces the 
saturation segment of the N-curve to have a very 
small slope and pulls point a, Fig. 1(b) far out 
to the right. In orear to prevent failure of the 
transistor cue to excessive current, it has been 
painfully ueterminca that the maximum safe 
capacity for the 1768 end 1698 transistors is no 
more than . 01 ufd. The 1768 transistor while 
aesignee for low frequency work is nearly as last 
as the 1696 and is less subject to damage from 
overloaas. ihe maximum pulse amplitude that was 
obtainable using a 45 volt supply was 30 - 40 
volts aepending on the transistor. Tnis is 
pushing to the limit and should not be attempted 
without an adequate supply ol transistors. At 
lower voltages or with larger values of kc the 
circuit is quite safe, however. Lither version 
of Fig. 10 may be usea accoraing to the polarity 
aesired. with the positive side of Ece grouneed, 
positive pulses are obtained in fig. 10(a), nega-
tive in Fig. 10(b). 

Returning Re to the base in 10b, results in 
better stability and ass first discussed by 
Anderson, bias is obtained from the collector 
current dowing through Re. Most of the tran-
sistors used in this circuit operated as mono-
stable oscillators with Re greater than about 
20K. II astable operation is desired an addition-
al positive bias may be shunted from emitter to 
ground. 

Triggering or synchronization is applied to 
the emitter or base according to which version is 
being used arm the sensitivity °I the mono-stable 
circuit is dependent on the bias. 

Fig. 11 is a typical waveform showing a 30 
volt pulse. The markers are spaced at 1 micro-
second intervals. 

Fig. 11 - Pulse Waveform 
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Table I  

Circuit of 
Fig. 1 

Circuit of 
Fig. 3 

Re T Amplitude T Amplitude 
(us) ( relative) ( us) ( relative)  

1* 2.0 8 750 2.0 --
5 3.8 12 875 2.0 1180 1.9 
7 2.8 7 875 1.9 -- --

29 2.0 11 875 2.2 500 1.4 
39 2.4 13 825 2.0 __ --
45 2.8 14 1150 2.0 1300 1.0 
53 2.2 7 675 1.8 -- --
33 3.3 9 850 2.0 750 1.6 
59 1.8 6 650 1.9 -- --
69 2.3 16 1335 2.3 1600 ,t) 
67 1.6 8 240 1.6 -- --
11 3.6 10 800 1.9 950 1.6 
25 2.6 10 775 2.0 700 1.7 
2 2.0 5 545 1.7 -- --

52 3.1 14 825 2.2 1100 2.1 
30 4.3 20 1000 2.3 2100 2.6 
40 4.1 20 890 2.0 1400 2.2 
24 4.2 20 1125 2.2 2400 2.4 
50 2.1 10 875 2.1 -- --
18 3.3 11 675 2.0 -- --
56 2.8 10 900 2.0 1200 1.7 
12 3.1 8 750 2.0 -- --
38 4.3 20 1025 2.3 2800 ,. 6 
60 2.0 6 725 2.0 -- --

32 3.4 8 860 2.0 1550 1.6 
28 2.4 7 775 2.0 -- --
20 3.4 8 712 2.0 1300 1.7 
42 2.8 10 800 2.1 1050 1.6 
22 2.5 11 835 2.2 1200 1.8 
46 4.5 17 1000 2.2 2300 2.2 
4 2.6 9 560 1.9 __ --
34 3.6 10 .800 2.0 1100 1.6 
44 3.1 14 912 2.2 1100 1.9 
36 3.2 6 750 1.8 __ 

odd numbered transistors are type 1698, even 
are type 1768 

** these transistors could not be made to 
oscillate under the prescribed conditions. 
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