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Foreword

Foreword

The chief aim of the author in the preparation of this book on
ivlathematics, is to present the subject in all its branches in a way
so different from that usually employed, as to render a difficult
subject not only easy but interesting.

It is suggested that the student when using this book have at
hand a pencil and blank sheets of paper. In this way the book
can be picked up for 15 or 20 minutes at a time and one subject
after another mastered.

To master a subject, the student's interest must be aroused,
and to this end the author has exhausted every means of unusual and
forceful presentation that he could devise.

To impress the fundamentals upon the mind thoroughly, the
explanations are further brought out by illustrations of an excep-
tional and totally unexpected character.

The subjects are presented concisely and progressively to
higher mathematics with calculations covering a great variety of
important subjects.



Foreword

The general arrangement of the book comprises: principal
divisions of practical mathematics with sub-classifications and
illustrations presented in a step by step easily understood manner
such as to arouse the interest of the student.

This book with its entirely different manner of presentation,
it is hoped will inspire a wider interest in mathematics, because it
puts at the student’s fingers ends a greater knowledge of applied
rnathematics, simplified for home study and ready reference.

The slide rule will be found very useful, especially to those
who have to make many calculations. It is explained in this
book in such a simple manner that it can be mastered in a very
short time.

The author desires to express his appreciation:

To M. E. Guissinger for capable assistance in checking calcu-
lations, etc.

To E. K. Watson for efficient help on make up, checking of
pages, etc.

Also to J. J. O'Riordan for efficient type setting, collating and
make up.

—~The Author.



Index Note

How to Use This Index

Get the habit of using this Index. It will quickly reveal a
vast mine of valuable information.

In using this index, il should be noted that the book is divided
into four sections indicated by the letters A. B, C, D, that is:

Section A. Mathematics
b B. Electrical Calculations
“  C. Mechanical Calculations
“ D. Slide Rule

Accordingly the references in the index are given with both
the section letter and page number thus:

Magnet calculations . ...............c0nann B27

which means that the item will be found in the second or B
section on page 27,

The index will be found a valuable guide -for quickly
finding eny item relating to mathematics, electrical and
mechanical calculations and the slide rule.

“An hour wilh a book would have brought lo your mind,
The secrel that took the whole year to find;

The facits thal you learned at enormous expense,
Were all on a library shelf to commence.”
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Arithmetic 1

CHAPTER 1

Arithmetic

Arithmetic is the science of numbers and the art of reaching
wesults by their use.

Signs and Abbreviations.—The various processes in math.
ematics to be performed are usually indicated by signs, both
for convenience and brevity; for instance, 24 means that 2
is to be multiplied by 4.

The table on page 2 gives the numerous signs and abbrevia-
tions commonly used.

Definitions

Abstract Number.—One that is not applied to any object; as four, six,
Addition.—The process of finding the sum of two or more numbers.

Aliquot Part.—Contained in another number an integral number of
times. Thus 614, 10, 1234 are aliquot parts of 100.

Alligation.—The method of finding the proportion and relation of
prices of the various ingredients of a mixture.

Amount.—The sum total of numbers or quantities.
Analysis.—The process of resolving a problem into its first elenients.
Antecedent.—The first term, or dividend, of a ratio.

Area.—The number of square units contained in a surface.
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2 Arithmetic

Signs dnd Symbols

plus (addition) [] square

positive O circle

minus (subtraction)  © degrees

negative /7 minutes or feet
plus or minus /7 seconds or inches
minus or plus { }( ) parentheses
equals [ :| brackets
mﬁltiplied by — vinculum

" " 2 2 two squared
divided by

23 “ cubed

TU 38.1416
square root

E .7854
cube root

e 0L Nk e X NHH I |+ +

4
iSO o @ as g is to % per cent
— greater than log,, hyperbolic logarithm -
< less than oo infinity .
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Averdge.—The calculated mean of several amounts; the number which
can be put for each of them without changing their sum.

Base.—The number, in calculating percentage, of which the per cent
is taken. .

Board Measure.—A unit for measuring lumber being a volume of a
board 12 ins. wide, 1 ft. long and 1 in. thick.

Cancellation.—The striking out of a common factor from the numer-
ator and,denominator.

Circle.—A plane figure bounded by a curved line, called the circum-
ference, every point of which is equally distant from a point within called
the center.

Circulating Decimal.—A decimal in which a figure or set of figures
is constantly repeated in the same order; a recurring decimal.

Common Denominator.—A denominator common to two or more
fractinns.

Common Divisor.—A factor common to two or more numbers.

Common Multiple.—A number exactly divisible by two or more
numbers.

Complex Fraction.—One whose numerator or denominator is a frac-
tion.

Composite Number.—A number which can be exactly divided by other
integers besides itself and one.

Compound Fraction.—A fraction of a fraction.

Compound Numbers.— Units of two or more denominations of the
same kind.

Compound Quantity.—A quantity expressed in two or more de-
nominations, as 3 qts., 1 pt.

Concrete Number.—A number used to designate objects or quantities.
Consequent.—The second term, or divisor, of a ratio.

Couplet.—A ratio, or each member of a proportion.

Cube.—The third power of a quantity.

Cube Root.—One of the three equal factors of a number.
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Cubic Measure.—A measure of. volume involving three dimensions:
length, breadth and thickness.

Currency.—The current medium of exchange in commerce and trade;
coin, bank notes, etc.

Decimal Scale.—One in which the order of progression is uniformly ten.

Decimal Fraction.—One or more of the decimal divisions of a unit;
also called decimal.

Denomination.—Name of the units of a concrete number®

Diameter of Circle.—A straight line passing through the center and
terminating at ‘the circumference.

Difference.—The number found by subtraction. .

Division.—The process of determining how many times one number
is contained in another of the same kind.

Duodecimals.—Method of computing in divisions of 12; as fractions
of a foot formed by dividing by 12 successively; as /i, /1, etc.

Equation.—A statement of equality between two expressions or num-
bers.

Equivalent.—Iqual in value.
Even Number.—One that can be exactly divided by two.
Evolution. —The process of finding the root of a number.

Exact Divisor.—A whole number that will divide a number without a
remainder.

Exponent.—A small figure placed at the upper right of a number in-
dicating how many times the number is to be taken as a factor.

Extremes.—The first and fourth terms of a proportion.

Factor.—One of two or more quantities which, when multiplied to-
gether, produce a given quantity.

Figure.—Any of the nine digits or cipher.

Finite Decimal.—A decimal that has no recurring figures; one that
terminates with the written figures.

Fraction.— A number which expresses equal parts of a unit or quantity
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Fractional Unit.—One of the equal narts into which any integral unit
may be divided.

Greatest Common Divisor.—The greatest number that will exactly
divide two or more numbers.

Improper Fraction.—A fraction in which the numerator is equal to
or exceeds the denominator.

Incommensurable Quantities.—Quantities that are not measured by
the same standard.

Index.—A small figure written at the left and above the radical sign
indicating the root to be extracted of the number under the radical sign.

Integers.—Numbers which represent whole things. Numbers are either
integral, fractional or mixed.

Involution.—The multiplication of a quantity by itself any number of
times; raising a number to a given power.

Least Common Denominator.—The least common multiple to which
the denominators of two or more fractions can be reduced.

Least Common Multiple.—Least number that is exactly divisible by
two or more numbers.

Like Numbers.—Numbers which represent the same kind of quantity.

Long Division.—The method of dividing a number by another number
of two or more figures and indicating the process in full.

Mean Proportional.—A number that is both the second and third
terms of a proportion.

Means.—The second and third terms of a proportion.

Measure.—That by which the extent, quantity, capacity, volume or
dimensions in general are ascertained by some fixed standard.

Mensuration.—The process of measuring.

Metric System —A decimal system employing as a unit of measure
the meter which is equal to 39. 37079 inches. The unit of capacity is the
liter and of weight, the gram.

Minuend.—The larger number, in subtraction, from which the sub-
trahend is taken.
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.M ixed Number.—A whole number and fraction combined.

Multiple of a Number.—Any number exactly divisible by that num-
ber.

Multiplicand.—The number to be multiplied.

Multiplication.—The process of taking a number a given number of
times.

Multiplier.—The number denoting how many times the multiplicand
— is to be taken.

Notation.—A system in which numbers are expressed by symbols.
Number.—A group of digits indicating how many times a unit is taken.
Numeration.—The system of reading numbers.

0dd Numbers.—Numbers not exactly divisible by 2.
Percentage.—One or more hundredths of a number.
Perimeter.—The length of the boundary line of a plane figure.

" Period.—One of the groups into which a number is divided, as when
a root is to be extracted.

Power of a Number.—The product obtained by using the number
a given number of times as a factor.

Prime Number.—A number that cannot be exactly divided by any
aumber except itself and one. Numbers are prime to each other when
they have no common factor.

Product.—The result of multiplying.

Proportion.—An equation expressing equality of ratios.

Quantity.—That which can be increased, diminished or measured.

Quotient.~-The result of division.

Ratio.—The relation between two numbers of the same kind.

Reciprocal of a Number.—One divided by that number.

Reduction.—Changing terms of a problem into other terms of equiva-
lent value to make it easier to solve.
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Remainder.—The number found by subtracting.
Repetend.—A figure or set of figures continually repeated.
Root.—One of the equal factors of a number.

Rule.—The statement of a method.

Scale.—Order of progression on which any system of notation is founded.
Short Division.—Process of dividing by numbers less than 12.
Significant Figure.—Any figure except a cipher.
Solution.—The process of obtaining the answer.

Square Root.—One of the two equal factors of a number.
Subtraction.—The process of taking one number from another.
Subtrahend.—The number to be taken from the minuend.
Sum.—The result of addition.

Surd.—An indicated root that cannot be extracted. A quantity that
cannot be expressed in figures.

Surface.—A magnitude having length and breadth.

Unit.—The standard by which separate things are counted or meas-
ured. A single thing or a definite quantity.

Unity.—Unit of an abstract number.

Uniform Scale.—One in which the order of progression is the same
throughout the entire succession of units.

Unlike Numbers.—Numbérs used to express different kinds of quan-
tities.

Varying Scale.—;One in which the order of progression is not the same
throughout the entire succession of units.

Volume.—The contents, or amount of space included within the boun-
dary surfaces of a solid.

Notation.—By definition, nofation in arithmetic is the writ-
ing down of a figure or figures to express a number. There
are two systems of notation.

1. Roman; 2. Arabic.
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Roman System.—In this method numbers are expressed by
means of letters. It is so called because it was used by the
ancient Romans. It is now occasionally used, as in the Bible,
for chapter headings, corner stones, etc.

ROMAN TABLE

I denotes One XII denotes Twelve L denotes Fifty
II denotes Two XIIT denotes Thirteen LX denotes Sixty
IH denotes Three XIV denotes Fourteen LXX denotes Seventy
1V denotes Four XV denotes Fifteen LXXX denotes Eighty
V denotes Five XVI denotes Sixteen XC denotes Ninety
VI denotes Six XVII denotes Seventeen C denotes One hundred
VII denotes Seven XVIII denotes Eighteen D denotes Five hundred
VIII dénotes Eight XIX denotes Nineteen M denotes One thousand
IX denotes Nine XX denotes Twenty X denotes Ten thousand
X denotes Ten XXX denotes Thirty M denotes One milli
XI denotes Eleven XL denotes Forty ClOLeeiLne on

In the Roman notation, when any character is placed at the right hand of ‘a larger numeral,
jts value is added to that of such numeral; as, VI, that is, V 4 I; XV, thatis, X + V; MD,
thatis, M + D; and thelike. I, X, and rarely C, are also placed at the left hand of other and
Jarger numerals, and when so situated their value is subtracted from that of such numerals
as, IV, that is, V — 1; XC, that is, C — X; and the like. Formerly the smaller figure was
sometimes repeated in such a position twice, its value being in such cases subtracted from the
larger; as, IIX, thatis, X — JI XXC, thatis, C — XX; and the like. Sometimes after the
sign 1D for D, the eharacter O was repeated one or more times, each repetition having the effect
of multiplying IO by ten:as 100, 5,000; 1200, 50,000; and the like. To represent numbers
twice as great as tnese, C was repeated as many times before the stroke I, as the D was after it;
as, CCIDD, 10,000; CCCID0D, 100,000; and the like. The ridiculous custom of using
the Roman notation for chapter numbers, year of copyright, sections, etc., should be discon-
tinued.

Arabic System;—In this system ten figures are used to ex-
press numbers. The figures are: :

0123456789

From left to right these figures are called: cipher, one, two,
three, four, five, six, seven, eight, nine.

With exception of the cipher, these figures are called sig-
nijicant figures because each has a value of its own. They
are also called digits.




Arithmetic . 9

Figures have two values:

1. Simple;

2. Local.

The simple value of a figure is its value taken alone, thus:
1. 2. 3

The local value of a figure is its value when used with an-
other figure or figures, thus:

12. 23. 475.

When two or more figures are used together, the position

of each figure relative to the other figure or figures is called
its place or order, thus: '

SECOND ORVDER !;l RST ORDER

When one of the figures stands by itself, it is called a unil;

pbut if two of them stand together, the right hand one is still
called a unit, but the left hand one is called ftens, thus:

F16. 1.—Analysis of the number 12.

TENS— UNITS
N .

213

F16. 2.—Analysis of the number 23,
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Again, if three figures stand together, the left hand one is
called hundreds.

HUNDREDS, TENS UNITS
w I

\

475

F1G. 3.—Analysis of the number 475.

_< NUMERATE THE FIGURES

THIS WAY ST
8 8 0
1 Z z &
< <
zZ5 3 a
w3 5 o " ;’2
=) @] z z ol
I p ol 2 L) Z
= + T + 3

memmmd | MILLIONS
HUNDRED-
THOUSANDS

N
o
-
N

5

READ THE FIGURES '
THIS WAY )

Ly
Fic. 4 —Large number illustrating how to numerate.

The number 12 (twelve) is a collection of 2 units and one
set of ten units, thus:

TEN PENNIES . 'rwo PENNIES
%@@@@ (&8
000
3= TEEN UNITS | WS

F1G. 5.—Analysis of the oumber 12.



Arithmetic 11

The number 23 (twenty-three) is a collection of 3 units and
two sets of ten units, thus:

TWO DIMES THREE PENNIES
P
[ \

/

TWO sets il ‘\
OF TEN UNITS — THREE UNITS

F16. 6.—Further analysis of the number 23.

In this way various numbers are expressed, thus:-

Eleven, one ten and one, Is expressed by 11.
Twelve, one ten and two, is expressed by 12.
Thirteen, one ten and three, is expressed by 13.
Fourteen, one ten and four, i8 expressed by 14.
Fifteen,  one ten and five; is expressed by 16.
Sixteen, one ten and six, is expressed by 16.
Seventeen, one ten and seven, is expressed by 17.
Eighteen, one ten and eight, is expressed by 18.
Nineteen, one ten and nine, {s expressed by 19.
Twenty-one, two- tens and one, is expressed by 21.
Twenty-two, two tens and two, is expressed by 22.
Forty-three, four tens and three, is expressed by 43.
Fifty-four, five tens and four, is expressed by b54.
! Sixty-five, six tensand five, is expressed by 65.

In order to easily read large numbers made up of many
figures they are divided by commas into perdods. A period

- is a group of figures containing the hundreds, tens or unils
of any denomination. Periods are separated by commas, thus;
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THIRD PERIOD SECOND PERIOD FIRST PERIOD
11811,212/3)4|7|5
COMMA
MILLIONS THOUSANDS HUNDREDS

F1G. 7.—Method of placing commas in large numbers.

the number being read thus: one hundred and eighty-one mil-
lion, two hundred and twenty-three thousand, four hundred
and seventy-five.

Scheme of Arithmetic.—An interesting notion of what arith-
metic consists of as given in Funk & Wagnall’s Standard Dic-
tionary is shown on page 13.

The following 10 formula include the elementary operations
of arithmetic,

1. The sum=all the paris added.
2. The difference=the minuend —ihe subtrahend.
3. The minuend=the sublrahend--the difference.
4. The sublrahend =the minuend —the difference.
5. The product =the multiplicand Xthe multiplier.
6. The multiplicand =the product <the multiplier..
7. The multiplier =the product the multiplicand.
8. The quotient =the dividend the divisor.
9. The dividend =the quotient Xthe divisor.
10. -The divisor =ihe dividend+the quotient.
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Scheme of Arithmetic

Notation
Basis —1 — unit
Arithmetic Alphabet
0123456789

Increased Diminished
By lens By tens '
1, 10, 100, 1,000, etc. 1, .1, .01, .001, etc.
By varying scales By varying 'scales
1o0z. 11b. 1 cwt. Y 6/1 14 oz, 11/” etc.
1pt. 1qt. 1 gal.. %1, 930z 34 cwt.
1lin, 1 ft. 1 yd. etc.

According lo the Four Ground Rules

Addition Multiplication
Subtraction Division
By involution (powers) I By evolution (roots)

Relations Expressed by

Ratios 2:3 5:6 89 etc.
Proportion (equality of ratios) 2:3::4 : 6 etc.

Practical Applications

Percentage, interest, profit and loss, reduction of weights and measures,
mensuration. etc.
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Addition
Symbol peF~ +

Addition.—Uniting two or more numbers or groups of objects
of the same kind into one is called aeddition, and the number
obtained by adding is called the sum.

The sign of addition is + and is read “plus} thus 7 + 3 is
read “‘seven plus three.”

Rule A.—Wrile the numbers to be added so that like orders of
unils stand in the same column.

B.—Commencing with the lowest order, or at the right hand,
add each-column separately, and if the sum can be expressed by
one figure, write it under the column added.

C.—If the sum of any column contain more than one figure,
write the unit figure under the column added, and add the remain-
ing figure or figures to the next column.

EXAMPLES FOR PRACTICE

7,060 248,124 13,579,802
9,420 4,321 93
1,743 889,866 478,652

4,004 457,902 87,547,289

22,227 Ans.

E——— TN
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Addition Table
1 and 2 and 3 and 4 and 5 and
lware 2| 1 are 3| 1 are 4| 1 cre 5| 1 are 6
2 ¢ 31 2 ¢ 4] 2 ¢« 5 2 ¢« 6| 2 ¢ ¢
.3 ¢ 4] 3 “ 5| 3 ¢« 6| 8 ¢« 7] 3 ¢« 8
4 ¢ 5| 4 <« 6] 4 ¢« 7| 4 ¢« 8| 4 « 9
5 “ 6 5 ¢« Y| 5 ¢ 8] b5 ¢ 9| 5 « 10
6 « 7| 6 « 8| 6 « 9| 6 «10| 6 «11
T ¢ 8 ¥ ¢ 9| T 10| ¥ 11| 7T ¢ 12
8 ¢ 9 8 ¢ 10 8 “ 11 8 «“ 12| 8 ¢ 13
9 ¢« 10 9 11 9 “12| 9 <« 13| B ¢ 14
10 11|10 12 [10 ¢ 13|10 < 14| 10 ¢ 15
6 and 7 and | 8 and 9 and 10 and
lare 7| 1 ¢ 8| 1are 9| 1 are10| 1 arell
2 ¢ 8| 2 ¢ 9| 2 10| 2 ¢ 11| 2 ¢ 12
3 “ 91 3 “ 10| 8 11| 3 ¢« 12| 3 < 13
4 < 10| 4 «“ 11 4 1) 4 ¢ 13| 4 ¢ 14
5 11| 512 5 «“13| 5 14| 5 « 15
6 ¢ 12 6 ¢ 13 6 “ 14| 6 << 15 6 16}
T “ 131 % 14} 7T 15| v 16| 7 ¢« 17
8 “ 14| 8 ¢ 15 8 “ 16| 8 «“ 17| 8 ¢ 18
9 15 9 ¢ 16 9 17| 9 < 18 9 “ 19
10 € 16 |10 ¢ 17110 “ 18|10 ¢ 19 {10 ¢ 20
ot

Example.—Find the sum of 12, 23 and 475.
The rules are applied as in figs. 8 to 11:
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ISTSTEP

HUNDREDS |
TENS UNITS

12

23
475

4TH STEP

FIGURE

2ND STEP

12
23
475

QEMAINING

3RO STEP

12
23
475

T @0
™1 0
SUM OF
FIRST
COLUMN

RULE C-ADD THE

REMAINING FIGURE

HUNDREDS
TENS UNITS

}« ADDITION OF
15T COLUMN

ADDITION OF
280 COLUMN

NiH =

10

TO TENS COLUMN.

RULE C-ADD REMAINING
FIGURE TO HUNDREDS COLUMN

FiGs. 8 to 11.—Example in addition.

Use gredt care in placing the
numbers in vertical lines, as
irregularity in writing them is
one cause of mistakes.

To check the addition, add
each column; arrange the sev- .
eral sums according to place,

THII%% CgLUMN and add the several sums so

arranged, as shown in fig. 12.

F16. 12.—~Method of checking example given
in figs. 8 to 11.
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Subtraction
Symbol IE

By definition, subtraction is the process of taking one num-
ber called the subtrahend from another number called the min-
uend. The result thus obtained, or “difference” between the
two numbers, is called the remainder, thus:

10 minuend
7 subtrahend

3 remainder.

that is, 7 subtracted from 10 leaves a remainder of 3. It
may also be expressed as:

10-7=3
that is, 10 minus 7 equals 3.
To subtract one number from another proceed as follows:

Rule—A. Write down the sum so that the unsts stand under
the units, the lens under the tens, eic., eic.

B. Begin with the units, and take the under from the upper
figure, and put the remainder beneath the line.

C. But if the lower figure be the larger, add len lo lhe upper
figure, and then subtract and put the remainder down-—ithis
borrowed ten must be deducted from the next column of figures
where il is represented by 1.
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Subtraction Table
1 from 2 from 3 from 4 from 5 from
1 leaves 0| 2 leavesO| 3 leavesO| 4 leaves 0! 5 leavesO
9 « 178 ¢« 1|4 <1 5 ¢« 1| 6 << 1
3 « 9|4 « 2[5 «“ 2|6 2 7o« 2
4 ¢« 3|5 ¢« 36 <« 3 w ¢« 31 8 ¢« 3
5 ¢« 4| 6 < 4| 7 i« 4] 8 ¢« 41 9 ¢ 4
6 «“ 517 “ 5|8 “ B 9 ¢« 5110 ““ b
w « gl 8 <« 6|9 “ 6 10 ¢ 6|11 « 6
g o« 7l 9 e« qli0 e 7|1 o« w12 <7
9 ¢ 8l10 <« 8l1r <« 8 12 ¢ 8113 .8
10 <« 9|11 ¢ 9f12 ¢« 9 13 ¢ 9|14 “ 9
11 «10l12 «10|13 <«10|14 10|15 10
6 from 7 from 8 from 9 from 10 from
6 leavesO | 7 leavesO| 8leavesO| 9 leaves 0 | 10 leavez 0
o« 11 8 ¢« 119 “ 1 10 ¢ 111 .« 1
g ¢« 219 ¢« 216 <« 2 11 ¢ 2|12 ¢ 2
o « 3l10 « 3|11 « 3|12 « 3|18 3
10 ¢ 4{11 ¢ 412 4113 ¢ 4714 <« 4
11 ¢ 5{1% ¢ 5118 « b 14 < 5|15 “ b
12 ¢« 6|13 ¢ 6|14 “ 6 16 ¢ 6|16 <« 6
13 ¢ 7|14 ¢ 7|16 ¢ 7 16 ¢ |17 <« 7
14 ¢ 8j15 ¢ 8j16 817 ¢ 8|18 < 8
15 ¢ 9|18 ¢« 917 * 9118 ¢« ¢[19 “ 9
16 < 10|17 10|18 ¢ 10{19 < 10({20 * 10
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Example.—Subtract 12 from 23:

23
12

11

Here, two units from three units leaves one unit, and one
ten from two tens leaves one ten.

Example.—Subtract 275 from 928:

928

275

653
First subtract 5 units from 8 units which leaves 3 units for the first
column remainder. As 7 tens cannot be taken from 2 tens, borrow one
of the 9 hundreds and change it to tens which equals 10 tens. Add the
two tens which makes 12 tens. Take 7 tens from 12 tens which leaves
5 tens for the second column remainder. Since 1 hundred was borrowed

from the hundred column, there are 8 hundreds left. 2 from 8 leaves 6
for the third column remainder; the total remainder being 653.

Another method is as follows:

First subtract 5 units from 8 units, and obtain 3 units for
a partial remainder. As 7 tens cannot be taken from 2 tens, add
10 tens to the 2 tens, making 12 tens; then 7 tens from 12 tens
leave 5 tens, the second partial remainder. Now since 10 tens,
or 1 hundred, has been added to the minuend, add 1 hundred
to the subtrahend, and the true remainder will not be changed;
thus, 1 hundred added to 2 hundreds makes 3 hundreds, and
this sum subtracted from 9 hundreds leaves 6 hundreds; the
total remainder being 653.

NOTE.—The process of taking ten from one column of the minuend and adding it to the
next column is sometimes called borrowing, and that of adding 1 to the next figure of the subtra-
hend is called carrying 1.
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To check the subtraction, add the remainder lo the subtrahend and if the
remainder be correct the sum will be equal lo the minuend.

Examples for Practice

892 2,572 9,999
_4§ 1,586 8,971
846 remainder.

Multiplication
Symbol 3 Y

By definition, multiplication consists in taking one of two
given numbers as many times as there are units in the other.

The number to be multiplied or increased is called the
multiplicand; the number by which the multiplicand is multi-
plied is called the multiplier; and the result thus obtained, the
broduct. '

The multiplier and multiplicand which produce the product
are called its factors. This is a word frequently used in math-
ematical works and its meaning should be remembered.

The sign of multiplication is X and is read “times” or mul-
tiplied by; thus 6 X 8 is read, 6 times 8 is 48, or, 6 multiplied
by 8 is 48.

The principle of multiplication is the same as addition, thus
3 X 8 = 24isthesameas8 4- 8 + 8 = 24.

Rule.—Place the unit figure of the multiplier under the umi:
figure of ihe multiplicand. Thus: :
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Multiplication Table

Once | 2times | 3 times | 4 times | 5 times | 6 times
1i3 1| 1are 2| 1are3| lare4| lare 5| lare 6
2 ¢ 2| 2 ¢ 4] 2 ¢ 6| 2 ¢« 8 2 10| 2 “12
3 ¢ 3| 3 “ 6| 3 ¢« 9| 3 ¢«12|3 <15| 3«18
4 ¢ 4| 4 < 8] 4 12| 4 16| 4 20| 4 24
5 ¢ 5] 5 10} 5 ““15| 5 20| 5 25| 5 30
6 ¢“ 6| 6 ““12| 6 ““18| 6 ““24] 6 ““30| 6 <36
R T Y 1L} T 2L} -7 428 ¥ 435 T ‘42
8 « 8| 8 «“16| 8 24| S 32| 8 “40| 8 «48
9 ¢ 91 9 18| 9 “RT| D 36| Q 45( 9 “b4
10 1010 “©20{10 “ 30|10 “ 40|10 *< 50|10 * 60
11 ¢ i‘l 11 22111 33|11 ““ 44|11 55|11 “ @6
12 1212 24|12 ““36{12 “48[12 <60 (12 <72
7 times | 8 times | 9 times |10 times | 11 times | 12 times
lare?7| lare8| lare 9| lare10| larel1l| 1arel?
B 14| % 16| 2 18] 2 ¢4 20} 2 ¢ 22| 2 ¢c 24
31| 324 3 27| 3 30| 3¢ 33| 3¢ 36
4 8| 4 ¢ 32| 4 w36 4 40| 4 44| 4 « 48
5 35| 5 40| 5 45| 5 50} b 55| b 60
6 42| 648 6 «“54| 6 60| 6 ¢ 66| 6 ¢ 72
T 49| T 56| T 63 TN VU V84
8¢56| 8¢«“64| 8 «“ Y2 8 80| 8¢ 88| 8 « 96
9 ¢“63| 92| 9 «“8l| 9« 90| 9 99| 9108
10 70|10 ““8C |10 ¢ 90|10 100 |10 11010 120
11 €77 111 88|11 € 99|11 €110 |11 121111 “132
12 84112 €96 (12 €108 |12 120112 <132 |12 ¢ 144
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846 487,692
8 143
Example.—Multiply 346 by 8:
346
8
2768

Taking the units of each order 8 times is equivalent to taking the entire
number 8 times. Therefore, commencing at the right hand, & times 6
units are 48 units, or 4 tens and 8 units. Write the 8 units in the product
in units’ place and reserve the 4 tens to add to the next product; 8 times
4 tens are 32 tens, and the 4 tens reserved in the last product addea, are
36 tens, or 3 hundreds and 6 tens; write the 6 tens in the product in tens’
place, and reserve the 3 hundreds to add to the next product 8 times 3
hundreds are 24 hundreds, and the 3 hundreds reserved in the last product
added, are 27 hundreds, which being written in the product each figure
in the place of its order, gives for the entire product, 2768.

Example.—Multiply 758 by 346:

758
346

4548
3032
2274

262,268

758 multiplied by 6 units is 4,548 units; 758 multiplied by 4 tens is
3,032 tens, which is written with its lowest order in tens’ place, or under
the figure used as a multiplier; 758 multiplied by 3 hundreds is 2,274
hundreds, which is written with its lowest order in hundreds’ place. Since
the sum of these products must be the entire product of the given numbers,
add the results which will give 262,268, the total product.

‘When there are ciphers between the significant figures of the
rultiplier, put the first figure of each partial product directly
under the figure mulliplied by.

NOTE.~—When the multiplier contains two or more figures, the results obtained bv mui‘iply-
‘ng by each figure are called partial products.
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Example.—Multiply 312 by 203:
312
203
936
624
63336

Rule—When there are ciphers after the significant figures of
the multiplier, place the ciphers ai the 1ight of the product of the
significant figures.

Example.—Multiply 12 by 300:
12
300
3600

Place the multiplier under the multiplicand sc that the 3 comes under
the 2 as above. Multiply 12 by 3 and add the two ciphers.

’

2347 234700
12000 900000

Italian Short Proof Method.—This method of checking mul-
tiplication is used to quickly check the result of multiplying
two large numbers by each other. 7 3

The method is as follows: 2 3

Example.—Multiply 172,856 by 375. 26 3
This is expressed as: 4

A. .. 172856 Add digits giving 29. Divide 29 by 9 giving 3 and remainder of 2.
B.... 375Add digits giving 15. Divide 15 by 9 giving 1 and a remainder of 6.
864280
1209992
518568
C..64821000 Add t}igits-g‘iving 21. Divide 21 by 9 giving 2 and a remainder
of 3.
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In line A, add together all the digits, divide the sum by .9 and place
the remainder in the square designated as 1, (page 23).

In line B, add together all the digits, divide the sum by 9, and place
the remainder in the square designated as 2.

Multiply the number in square 1 by the number in square 2, divide the
product by 9 and place the remainder in square designated as 3. In this
case 2X6=12 and 12 divided by 9=1; with a remainder of 3.

In line C, add together all the digits, divide the sum by 9, and if the
multiplication has been properly performed, the remainder will be the
same as the number placed in the square designated as 3.

Place the remainder in square designated as 4. It happened in this
particular case that the remainder number in square 3, was 3.

American Short Proof Method.-—This is another method of
proving the product of multiplying large numbers.

Example.—Multiply 24532 by 13685.

A....... 24532 Adding digits gives 16, adding again; 146=7
B........ 13685 Adding digits gives 23; adding again; 2+43=5.
122660 Multiplying 7 by 5=35
196256 Adding 3 and 5= 8
147192
73596
24532 D—— ——F

nfhni,
C....335720420 Adding digits gives 26; adding again gives 8.

Add the digits in the multiplicand; designated by A. In this case
ziving the number 16. Again add digits giving 7. Add the digits in the
multiplier B, giving in this case 23. Again add digits, giving 5. Multiply
7 by 5 giving 35 and adding digits 3+5 giving 8.

Add all the digits in the product C, giving in this case 26. Again add
digits 2+6 giving 8.
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Always add digits until a number containing only one figure remains.

If the result of the operations indicated above the line D E be the same
as the result of the operations indicated below the line, the multiplication
has been performed correctly.

Involution
or
Powers of Numbers

Symbol 7 Exponen?

By definition, involution is the continued multiplication of
a number by ilself a given number of times.

The number is called the root or first power, and the prod-
uct is called the power. '

The second power is called the square; the third power the
cube. The higher powers are called the fourth power, fifth
power, etc.

Examples.—
square of 2=2X2=4
cube of 2=2X2X2=8
The power to which a number is raised is indicated by a small “superior’”
figure called an “exponent.” Thus:

ROOT EXPONENT RQOT TAKEN TWO TIMES POWER

2'-2x2-4
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from which it is seen that the exponent indicates the number of

times the number or ‘“root” is to be taken.
The square of a number contains either twice as many figures

as the number or twice as many, less one, thus:

12=1

¥ =81
992=9,801
1002 =10,000

2FT

VOLUME OF CUBE

/

=2x2x2-8

2rt

F1G. 13.—Two foot cube illustrating cube of a number.

Examples for Practice

122=? 138 =2
231=? 2562 =1
84r=? 4758 =2

1223 =7
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Division
Symbol P~ me==

Division consists in finding the value of one of a given number
of equal parts inlo which a quantity is to be divided.

‘When one number is divided by another number, the first one
is called the dividend, and the second one, the dwzsor the result
thus obtained is called the quotient.

The sign of division is <+ and is read “divided by,” thus 8 =
2 is read “eight divided by two.”

There are two methdds of division known as:

1. Short.

2. Long.

In the method of short division the'continued subtraction is
effected mentally, the quotient alone being set down without
any werking. Evidently this method is suitable only for small
divisors, as 8 <+ 2, 1,272 = 12.

In the method of long division the operations are written
down in full, the method being applied with large divisors of
two or more figures as 13,765 + 126, To apply short division
with such a large divisor would involve too great a mental
process.

1. Short division.

To divide by any number up to 12.

Rule.—Put the dividend down with the divisor o the left of it,
with a small curved line separating it, as in the following:
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Example.—Divide 7,865,432 by 6.
6)7,865,432
1,310,905 and 2 over
" At the last it is evident that 6 is contained in 32, 5 times and 2 over.
When there is a number left over as shown, make it a fraction, with the
divisor, 6 (denominator) below the line and the number left over, 2 (nu-
merator) above the line. Place the fraction close to the quotient thus
1,310,905 2/s.
To divide any number with a cipher or ciphers after the
last significant figure in both divisor and dividend.

Rule.—Place the numbers down as in the last example, then
mark off from the right of the dividend as many figures as there
are ciphers in the divisor; also mark off the ciphers in the divisor;
then divide the remaining figures by the number remaining in the
divisor, thus:

Example.—Divide 6,000,000 by 12,000.
Cancel all ciphers to the right of the last significant figure of the divisor

and cancel as many ciphers to the right of the last significant figure of
the dividend as were cancelled from the divisor.

Thus: 12,000)6,000,000
Cancel ciphers 12)6,000
' 500

2. Long division.
To divide any number by- a large divisor of two or more
figures. _
Example.—Divide 18,149 by 56.
56)18149(324 */s¢
168

134
12
229

224
5
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Division Table
lin 2 in 3in 4in 5in
1, 1time | 2, 1ltime | 3, ltime | 4, 1 time| 5, 1time
2, 2times| 4, 2times| 6, 2times| 8, 2times| 10, 2times
3, 8 ¢ 6, 3 ¢« 9, 3 ¢« |12, 3 ¢ |15, 8 <«
4, 4 ¢ 8 4 ¢ (12, 4 ¢ [16, 4 < |20, 4 ¢
5, 5 ¢ (10, 5 ¢ (15, & “ [0, 5 ““ |85, 5 <
6, 6 ¢ [12, 6 << |18, 6 °° (24, 6 ° 30, 6 ¢
T, 0 ¢ |14, 7 ¢ (R, 7 ¢ |28, ¥ ¢ [85, ¥ ¢
8, 8 ¢ |16, 8 ¢ |24, 8 “ |32, 8 ¢ |40, 8 ¢
9, 9 ¢ 118, 9 < |27,~9 <« (36, 9 ¢ |45, 9 ¢
10,10 ¢ [20,10 ¢ 30,10 ¢ |40,10 ¢ |50,10 ¢
6 in 7 in 8in 9in 10 in
6, ltime | 7, ltime| 8, 1time | 9, 1 time |10, 1 time
12, 2times| 14, 2times| 16, 2times|18, 2times| 20, 2times
18, 3 <« |21, 3 « |24, 3 « |27, 3 ¢« |30, 8 «
24, 4 ¢ |28, 4 ¢ [32, 4 ¢ [36, 4 ¢« |40, 4 «
30, 5 ¢ |85, 5 ¢ |40, B ¢ |45, 5 ¢ |50, 5 ¢
36, 6 < |42, 6 « (48, 6 |54, 6 ¢ |60, 6 ¢
42, 7 ¢ |49, 7 ¢ [56, ¥ ¢ 63, 7 ¢ |70, T ¢
48, 8 ¢ |56, 8 “ |64, 8 ¢ |72, 8 ¢ |80, 8 ¢
54, 9 ¢ 163, 9 ¢ |72, 9 ¢ 181, 9 ¢ (90, 9 ¢
60,10 < {70,10 ¢ |80,10 << i'90,10 € 1100,10 ¢
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In the above operation the process is as follows: As neither 1 nor 18 will
contain the divisor, take three figures 181, for the first partial dividend.
56 is contained in 181 three times, and a remainder. Write the 3, as the
first figure in the quotient, and then multiply the divisor by this quotient
figure thus: 3 times 56 is 168, which when subtracted from 181 leaves 13.
To this remainder annex or ‘‘bring down’’ 4 the next figure in the dividend
thus forming 134, which is the next partial dividend. 56 is contained in
134 two times and a remainder. Thus 2 times 56 is 112, which subtracted
from 134 leaves 22. To the remainder bring down 9 the last figure in the
dividend, forming 229, the last partial dividend. 56 is contained in 229
four times and a remainder. Thus: 4 X 56 = 224, which, subtracted from
229, gives 5, the final remainder which write in the quotient with the divi~
sor, below it, thus completing the operation of long division.

Exact Divisor.—A number is said to be divisible by another
when there is no remainder after dividing.

Any number is divisible:

1. By 2, if it be an even number.
2. By 3, if the sum of its digits be divisible by 3.

3. By 4, if its two right hand figures be ciphers or express a number
divisible by 4.

4. By 5, if it end with a cipher or 5.
5. By 6, if it be an even number and divisible by 3.

6. By 8, if its three right hand figures be ciphers, or express a number
divisible by 8. .

7. By 9, if the sum of its digits be divisible by 9.
8. By 10, if it end with one or more ciphers.

9. By 7, 11 and 13 if it consist of but four places, the first and fourth
being occupied by the same significant figures, and the second and third
by ciphers.

10. An odd number is not divisible by an ¢ven number.

11. If an even number be divisible by an odd number, the quotient will
be an even number.

12. If an even number be divisible by an odd number, it is also divisible
by twice that number.

13. Every odd number except 1, increased or else diminished by 1, is
divisible hy 4.
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14. Every prime number except 2 and 3, increased or else dlmlmshed
by 1, is divisible by 6.

Prime Numbers

59 | 139 [ 283 | 3837 | 439 | 557 | 653 | 769 | 883
61 | 149 | 239 | 347 443 | 583 | 639 | 773 | 887
671151 | 241 | 349 | 449 | 569 | 661 | 787 907
7111567 | 261 | 853 | 457 | 571 | 673 | 797 | 911
731163 | 267 | 359 | 461 | 677 | €17 | €09 | 919
11| 79| 167 | 263 | 367 | 463 | 587 | 683 | 811 | 929
13| 831|173 (269 | 373 | 467 | 593 | 891 | 821 | 937
17 8| 179 { 271 | 379 | 479 | 599 | 701 | 823 | 941
19 [ 97 ) 181 | 277 | 383 | 487 | 601 | 709 | 827 | 947
23 | 101 | 191 | 281 [ 389 | 491 | 607 | 719 | 829 | 953
29 (103 | 193 | 283 | 397 | 499 | 613 | 727 | 839 | 967
311107 [ 197 | 203 | 401 | 503 | 617 | 733 | 8531 971
371100 | 199 | 307 | 409 | 509 | 619 | 739 | 857 | 977
41 | 118 | 211 | 811 | 419 | 521 | 631 | 743 | 859 | 983
43 | 127 ( 223 | 313 | 421 | 523 641 751 | 863 | 991
47 | 131 | 227 | 817 | 431 | 541 643 | 757 | 877 997
53 | 137 | 229 | 831 | 433 547 | 647 | 61| 881

=3 O W DO

Factors.—By definition a factor is one of two or more quantities
which, when multiplied logether produce a given quantity.

Thus, 4 and 5 are factors of 20 because 4 multiplied by-5 equals 20.

A prime factor of a number is one which cannot be separated
into factors.
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Thus 4 is a factor of 20 but is not a prime factor because it is made up-of
two factors,two and two; thatis, 2 X 2 = 4.

Apply the following rule to obtain the prime factors of a
given number.

Rule.— Divide the given number by any prime factor; divide the
quotient in the same manner, and SO continue the division until
the quotient is a prime number. The several divisors and the last
quotient will be the prime factors required.

Example.~—What are the prime factors of 798?

\ 2798
31399
718
19|19
1

Since the given number is even, divide by 2, and obtain the odd number
399 for a quotient. Now divide by the prime numbers 3, 7, and 19 as above,
the last quotient being 1. The divisors 2.3, 7, and 19 then are the prime
factors of 798.

Another method is to find the composite factors of a num-
ber and then find the prime factors of the composite factors.

Thus,

20 9

180 = x5 3%3

Greatest Common Div;sor.——By definition, the greatest com-
mon divisor of two or more numbers is the greatest number that
will exactly divide each of them.

To find the greatest. common divisor.
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Rule.—1. Write the numbers in a line, with a vertical line at
the left, and divide by any factor common lo all the numbers. 2.
Divide the quotient in like manner, and continue the division till
@ set of quotients is obtained that are prime lo each other. 3.
Multiply all the divisors together and the product will be the
greatest common divisor sought.

Example.~What is the greatest common divisor of 72, 120 and 440?

4/72 120 440
2|18 30 110
9 15 55

4 will exactly divide each of the given numbers, and 2, each of the quotients
obtained by dividing by 4. The last quotients 9, 15 and 55 are prime to
each other, hence greatest common divisor is 4 X 2 = 8.

Least Common Multiple.—By definition the least common
multiple of two or more numbers is the least number exactly
divisible by-those numbers. .

To find the least common multiple.

Rule.—1. Resolve the given numbers into their prime factors.
2. Multiply logether all the prime factors of the largest number,
and such prime factors of the other numbers as are nol found in the
largest number. Their product will be the least common multiple.
3. When a prime factor is repealed in any of the given numbers
it musl be laken as many limes in the mulliple, as the grealest
number of times it appears in any of the given numbers.

Example.~Find the least common multiple of 60, 84 and 132.

60=2X2X3X5

84 =2X2X3X7

132 =2X2X3X11
(2X2x3X11)X5X7=4,620
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The factor 2 appears twice in each number, hence, applying 3, of the rule
it is wtitten down in the least common multiple twice. By inspection the
factors not found in the largest number are 5'and 7, these are written down
as above together with the factors of 132, giving 4,620 the least common
multiple.

F'rac‘tlons
A fraction is a quantity less than a unit or whole number.
A HALVES _ B
ONE HALF 7/ ONE HALF 77/

&

_

A THIRDS
ONE THIRD ONE THIRD

FiGs. 14 and 15.—Graphic representation of fractional parts.

Fractions take their name and value from the mumber of parts
into which the unit is divided. Thus, if the unit be divided into
2 equal parts, one of these parts is called one-half, as M, in fig.
14; if divided into 3 equal parts, one of these parts is called
one-third, as S, in fig. 15.

Evidently from the ﬁgures. one-half or M is larger than one-
third or S.
To express a fraction by figures two numbers are required: one to express

the number of parts into which the unit is divided and the other to express
the number of these parts taken.
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The number expressing the number of parts taken called the numerator
is written above a diagonal or horizontal line and that expressing the number
of parts into which the unt is divided called the denominator is written
below the line, thus:

1 15 | 12
2 ‘8 23

: “FIVE TWELVE
ONE HALF EIGHTHS TWENTY THIRDS

F16. 16,—Method of writing fractions.

It is seen that the line may be either diagonal or horizontal. Usually
a diagonal line is used where numerator and denominator consist of one
figure each, and a horizontal line for two or more figures. :

Definitions

Complex Fraction.—One whose numerator or denominator is a fraction.
Compound Fraction.—A fraction of a fraction.

Improper Fraction.—One whose numerator equals or exceeds its
denominator. )

Mixed Number.—An integer and a fraction united,

Partial Fractions.—Fractions whose sum may be reduced to the original
fraction.

Proper Fraction.—One whose numerator is less than its denominator.

Simple Fraction.—One whose numerator and denominator are whole
numbers.

Vulgar Fraction.—One expressed by a-numerator and denominator as
distinguished from a decimal fraction. .

The following general principles should. be noted:
1. A change in the numerator produces a like change in the
value of the fraction.
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2. A change in the denominalor produces an opposite change
in the value of the fraction. .

3. Multiplying the denominator divides the fraction and -
dividing the deneminator multiplies the fraction.

4. Multiplying or dividing both terms of the fraction by the
same number does not alter the value of the fraction.

To reduce a fraction to its lowest terms.
Rule.—Divide both numetalor and denominaior by their

greatest common. divisor.

Example.—Reduce 20/, to its lowest terms.
. A Find greatest common divisor: B Divide both terms by greatest

2|20 40 common divisor:
210 20 20120
55 10 010 ~ &

1 2

2 % 2 X' 5 = 20 greatest common divisor

Find the greatest common divisor, 20 as at A, divide both terms by 20
as at B, obtaining 14 which is the lowest terms of 2%/¢.

To change an improper fraction to a mixed number.
Rule.— Divide the numerator by the denominator.
Example.—Change 49/5 to a mixed number.
4 = 49 + 5 = 94/g
To change a mixed number to an improper fraction.

Rule.—Multiply the whole number by the denominator of the
fraction; lo the product add the numerator and place the sum over
the denominalor.

Exzample.—Change 1254 to an improper fraction.
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multiply whole number by denominator 12 X 8 = 96
add the numerator. 5

sum 101

place sum over denominator —~ AU

Before fractions can be added or subtracted their denom-
inators must be the same. The least common multiple is the
least common denominator.

To reduce fractions to a common denominator.

Find the least common multiple or use the method according to
the following rule:

Rule.—Multiply each numerator ny all of the demominators
except iis own for the new numerator and. all the denominators
together for the common denominator.

Example.—Reduce 14, 14 and 3 to a common denominator.
New numerator of first fraction =1X 3 X5 =15
New numerator of second fraction =1 X 2 X 5 = 10
New numerator of third fraction =3 X3 X 2 = 18
Common denominator = 2 X 3 X 5 = 30

from which the fractions become

15 10 18
30 30 30

To add fractions.
Rule.—Reduce them lo a common denominator, add the numer-
alors and place their sum over the common denominator.
Example.—Add 15, 14 and ¥

A Reduce to common B Add numerators: C Place sum over
common denom-

o
5
g
B
]

1 X3 X5 =15) 15 inator:
1X2X5 = 10| 10 43
3% 3X2 =18 18 %
2X3X5=230) 43 (sum)
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The sum of the fractions (43/3) is an improper fraction, lietice, reduce to

mixed number.
43150 = 43 = 30 = 113/4

To subtract fractions.

Rule.—Reduce them to a common denominator, subtrac! lhe
numerators and place the difference over the common denominator.

Example.~—Subtract 3/; from 4/5. '
A Reduce to com- B Subtract the c Place difference

fmon denominator numerators over the com-
3X5=15 28 mon denomina-
4X7=28 15 . tor
7X5=235 13 (difference) 13

. 35

. To multiply fractions.

Rule.—(Case I. Multiplying by a whole number.) Mulliply
the numerator or divide the denominalor by the whole number.

Example.—Multiply 7/, by 4.

A Multiplying numerator B Dividing denominator
e X 4 = 2815 = 24[1; = 214 e X4=13=24%

Rule.—(Case II. Multiplying by o fraction.) Multiply the
numeralors for a new numerator and the denominators Jor a new
denominaltor.

Example.—Multiply 34 by 5/.

3 X5
%X =57 = 5

Division of fractions.

Rule.—(Case I. Dividing by a whole number.) Divide the
numerator, or mulliply the denominator by the whole number.
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Example.—Divide 19/,5 by 5.

A Dividing numerator B Multiplying denominator
W13 + 5 =24 %137+ 5 = 10/gs = 2/},
’

Rule.—(Case II. Dividing by a fraction.) Invert the divisor
and proceed as in multiplication.

Example.—Divide 3{ by %/,.

A Invert divisor- . B Multiply by inverted divisor
5/ inverted is 7/ Y X T = 2pg = 11/

‘The two operations 'are expressed thus;
B+ =Y X5 =121y =11y

Decimals
Symbol M @ ccimaliny

The word decimal signifies ten, being derived from the
Latin word decem.

By definition a decimal fraction is a fraction whose denom-
inator is 10 or a power of 10. It is usually written without the
denominator, the number of ciphers in the denominator being
indicated by the number of places occupied by the numerator
preceded if necessary by ciphers, and placed after a point or
period called the ‘“decimal point.”

It should be understood absolutely once and for all
that the decimal point is an item of extreme importance.

Most errors are due to writing the decimal point carelessly
s0 as to require a microscope to see it—use an “acre of lead”
if necessary to make the decimal point plainly visible.
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In the formation of a fraction a single unit is divided inte
10 parts as in fig. 19.

AS OASIT
USUALLY - SHOULD BE
MADE MADE

(TRY TO FIND IT)

ACRE OF
LEAD

Y23 23

Fics. 17 and 18.—Usual method of making a decimal point and carrect method. The au-
thor here tries to impress upon the student the importance of making a decimal point tha.
can be seen.

Here the big rectangle or unit is divided into ten parts, then any one of
these partsas LARF, is /10 of the unit. In the decimal system however it
is not necessary to write the denominator because the same law of local
value governs the decimals as the integral numbers. The “decimal point”’
{.) is always placed before the decimal figures to distinguish them from
integers.

The law of local value for decimals assigns:

The first place at the right of the decimal point to 10ths—(lst order)
the second place at the right of the decimal point to 100ths~—(2nd order)

The third place at the right of the decimal point to 1,000ths—(3rd order)

Thus in fig. 26 LARF, or /1 of the unit is written .1. Fig. 27 shows
section LARF of fig. 26 divided into 10 parts. Evidently one of these
parts is equal to one hundredth of the unit and is expressed as .01.

Similarly one of the ten parts of ra'r'f’ (fig. 28) is equal to one thou-
sandth of the unit and is expressed as .001. Evidently if several of the
parts were taken they would be expressed for instance, as .2, .03, .009.
The decimal may include parts of the several orders as .23, .145, etc.
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10

F

FIRST ORDER OR “TENTHS"(, D

a‘THIRD ORDER OR

“THOUSANDTHS"

1

OR"HUNDREDTHS"

(oo1)

23|45 SECOND ORDER

6|7|8|9 IO‘/(OI)

‘T

f

F16Gs. 19 to 21.—Graphic representation of decimal fractions or “decimals.”
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Any decimal or combination of a decimal and integer may
be read by applying the table on page 41.

A number may be made up of one or more integers and a
decimal as 23.35; this is read twenty-three and thirty-five
hundredths.

In the case of a column of figures as in addition, care should
be taken to have all the decimal points exactly under each
other.

A Y
- ——————

NUMERATE: /f :
7T womenare: p NyERaTE:
FIVE TENTHS £ EQ’S%'EE'ST”S

Q

(2]

£ o

5 z\ FIVE HUNDREDTHS
~ 5

Fics. 22 and 23.— How to read decimals (first method). Rule.— Numerate toward the decimal
point (unils, lenths, hundredihs, etc.), numerating each order and the decimal point.

The practice of putting a cipher to the left of the decimal when there is
" no integer, as, for instance, 0.5, is unnecessary.

There are several methods of numerating or reading deci-
mals; one method is to numerale toward the decimal point nu-
merating each figure and the decimal point as shown in figs. 22
and 23. '

A second method, numerating from the decimal point (be-
ginning with the first order), is shown in figs. 24 and 25. It is
immaterial which method be used, the result is the same al-
though some theoretical highbrows might object to the first
method.
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R SEESS—
. o
e NomERare:
FIRST OROEN) o TENTHS, HUNDREDTHS
2 TENTHS AND HEAD 9 g AND READ
-~ ~ FIVE TENTHS E ’3 FIVE HIUNDREDTHS
g g &
&~
&~
35
z

FiGs. 24 and 25.—How to read decimals (second method). Rute.— Numerate from the decimal
point, beginning with the first order “tenths.”

JLare = _
( )q\\ Annexing ciphers after a-deci-
mal does not change its value.

In fig. 26, LARF, is equal to one-
tenth (.1) of the large rectangle, and

Fi1Gs. 26 to 28, —Diagrams showing that nnex-
ing ciphers after a decimal does not change its
value.

ONE TENT|

.IO (larf)'. i — .I O OI'a'r'I'———\
!

0 Tl

£ EO‘IG;.I
mn-cunv--//' 1;0
{ratref” [0

'y

0

e [ e
il
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is equal to larf in fig. 27. If larf, be divided into 10 parts, each of these parts
=one-hundredth (.01) of the large rectangle. Similarly if each of these
parts, as l'a’r'f’, fig. 28, be again divided into 10 parts, each of the parts thus
obtained =one-thousandth (.001) of the large rectangle. Hence .1=.10=
.100.

The practice of annexing ciphers after decimals is a useless

waste of time.

To reduce decimals to a common denominator:

Rule.— Annex ciphers afler each decimal so thal each will have
the same number of figures or places thus:

5 annexing ciphers 500
27 for same number 270
325 of places become .325
that is to say

five tenths =five hundred thousandths
twenty-seven hundredths=two hundred

5 = .500
_ 5.0, 8 and seventy thousandths.
:2;;5 _ %;g which is read ¢ ) o™ hundred three hundred
’ ) and twenty-five » = <{ andtwenty-five
thousandths. thousandths.

in other words adding ciphers after a decimal does not change ils value. This
is. apparenf from figs. 26 to 28. _ The practice of adding ciphers after
decimals is quite unnecessary except perhaps .in a very large column of
figures to be added.

To reduce common fractions to decimals.

Rule.~Divide the numerator by the denominaior and carry
out ike diifision to as many decimal places as desired.

Examples.
Change 4/; to decimal Change % to-décimal
4 5
5)4.0 8)5.000
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To add decimals.

Rule.—Place the numbers in a column with the decimal points
under each other and add as in whole numbers.

Example.—Add .5 .25 1.75.

e
a”

|

g

To subtract decimais. -

Rule.—Place the numbers so that the decimal points are under
each other and proceed as in simple sublraction.

Example.—Subtract .72 from 1.25.

1.25
72

PR—

53
To multiply decimals,

Rule.—Proceed as in simple multiplication and poini off as
many places as there are in multiplier and mulliplicand
Thus
.1 X .0025 = .00025

Here there is one place in multiplicand and four in muiltiplier, or five
altogether,

To multiply a decimal by 10 or any power of 10.

Rule.—Move the decimal poini lo the right in the multipli-
cand as many places as there are ciphers in the multiplier.

Example.—Multiply .023 by 100
023X100=2.3
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To divide decimals.

Rule.— Proceed as in simple division, and from the right hand
of the quotient point off as many places for decimals as the decimal
places in the dividend exceed those in the divisor.

Example.—Divide 3.642 by .3
3.642+.3=12.14

To divide a decimal by 10 or any power of 10.

Rule.—Move the decimal point as many places to the left as
there are ciphers in the divisor, and divide by the number on the
left of the ciphers in lhe divisor.

Example.—Divide 47.5 by 1,000
47.5+1,000 = 0475

To convert decimals to common fractions.

Rule.—Set down the decimal as a numerator, and place as
the denominator 1 with as many ciphers annexed as there are
decimal places in the numerator; erase the decimal point in the
numeralor, and reduce the fraction thus formed lo ils lowest
terms, thus:

R
DECIMAL PLACES .
5i..25 25 1
¢ 100 100 4
PUT DOWN ONI \-’Td K‘D‘ I%?#:?TION)

PUT DOWN TWQ CIPHERS X
FOR TWO DECIMALPLACES ~ LOWEST TEhms
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Fractions and Decimal Equivalents

8ths 64ths
% = .125 & = .015626
% = .250 & = .046875
% = .375 % = .078125
% = .500 & = .109875
8% — .625 & — .140628
% = .750 3 = .171875
% = .87b 32ds 31 = ..203125
3 = .234375
¥ = .03125 3 = .265625
1 = .09375 1 = .296875
¥ = .15625 .4 = .328125
¥ := 21875 # = .359375
# = .28125 &1 = .390625
3 = .34375 # = .421875
3 = .40625 8 = .453125
if = .46875 # = .484375
3 = .53125 8 = .515625
3% = .59375 31 — .546875
i = .65625 8 = .578125
i} = .71875 8 = .609375
if = .78125 41 = .640625
i = .84375 # = .671875
8 = .90625 4 = .703125
16ths 8% = .96875 41 — .734375
s = .0625 4 = .765625
% = .1875 8 = .796875
fs = .3125 §1 = .828125
%5 = .4375 i = .859375
& = .5625 8 = .890625
# = .6875 8 = .921875
# = .8125 # = .953125
1# = .9375 # = .984375

To reduce a recurring decimal to a common fraction.

Rule.—Subtract decimal figures that do not recur from the whole
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decimal including one sel of recurring figures; set down the 1e-
mainder as the numeralor of the fraction, and as many nines as
there are recurring figures, followed by as many ciphers as there
are nom-recurring figures, in the denominator.

Example.—In the decimal .79054054, the recurring figures are 054.
Subtract 79

78975 = (reduced to its lowest terms) n7
99900 148

Cancellation

Cancellation is the process of shortening calculations by re-
jecting equai factors from numeralor and denominalor, that is
from dividend and divisor.

Example.—Divide 3X4 by 3X6.

187 2ND
OPERATION OPERATION

DIVIDE THESE DIVIDE THESE
TWO FIGURES BY3  TWO FIGURES BY 2

3 x4/ 12

S AL -2
§\><§< 1X3 3

Rule.— Reject from the dividend and divisor all faclors com-
mon lo both, and then divide the product of the remaining factors
of the dividend by the product of the remaining factors of the
divisor.

When all the factors of both dividend and divisor are can-
celled, the quotient is 1, for the dividend will then exactly
contain the divisor once.

Example.—Divide 72 X66 X 49 by 63X40X21.



Arithmetic 49

8 22 =z
72X 66 X459 _22 _
63x4agx21 "5 01220
e 5 8 2
THAT IS 4§

Since 9 is a factor of both 72 and 63 it may be rejected from both, leaving
8 instead of 72 in the dividend and 7 instead of 63 in the divisor. Next can.
cel 8 from 8 and 40, leaving 5 instead of 40 in the divisor. Now cancel 7
from 7 and 49, leaving 7 instead of 49 in the dividend; and cancel 7 again
from 7 and 21, leaving 3 instead of 21. Rejecting the factor 3 from both 66
and 3, there is left for a dividend 22, and for a divisor 5, which gives a
quotient of 4%;.

Evolution or Roots' of Numbers

‘Symbol = ‘/

The word evolution means the operation of extracting a ro0t.
The root here is a factor repeated to produce a power. Thus
in the equation 2 xX2X 2 =8, 2 is the root from which the power
(8) is produced. Evolution is indicated by the symbol v/
called the radical sign, which placed over a number means
that the root of the number is to be extracted. Thus: -

V4 means that the square root of 4 is to be extracted

The index of the root is a small figure placed over t_he radical
sign which denotes what root is to be taken. Thus V9 indicates

the cube root of 9; V16, the fourth root of 16, When there is
no index the radical sign alone always means the square root.



50 Arithmetic

Sometimes the number under the radical sign is to be raised
to a power before extracting the root, thus:

VB = VEXAX4=V6d=4

The power and the root are often combined and expressed as
a fractional exponent, thus 8% which is read the cube root of
8 squared, that is:

g% = V8l = Vbd =4

Square Root.—By definition the square root of a number o1
quantity is that number which, multiplied by itself, produces
the given number or quantity; thus 8 is the square root of 64,
because 8 multiplied by 8 equals 64.

When there is no index the radical sign alone always means
the square root, as before staled.

Rule.—1. Point off the given number into periods of two places
each, beginning with unils. 2. If there be decimals, poinl these
off likewise, beginning at the decimal point and supplying as
many ciphers as ‘'may be needed. 3. Find the greatest number
whose square is contained in the left hand period, and place it
as the first figure in the quotient. 4. Subtract its square from
the left hand period, and lo the remainder annex the lwo figures
of the second period for a dividend: 5. Double the first figure
of the quotient for a partial divisor; find how many times the
latter is contained in the dividend exclusive of the right hand
figure in the quotient, and annex it to the right of the partial
divisor, forming the complete divisor. 6. Multiply this divisor
by the second figure in lhe quotient, and subtract the product
from the dividend. 7. To lhe remainder bring down the next
period and proceed as before. in each case doubling lhe figures
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in the rool already yound 1o odlain the trial divisor. 8. Should
the product of the second figure in the root by the completed divisor
be grealer than the dividend, erase the second Jigure both from
the quotient and from the divisor, and subsiitute the next smaller
Jigure, or one small enough to make the broduct of the second
figure by the divisor less than or equal to the dividend.

-, Example.—Extract the square root of 186,624.
18'66'24)432
16
83) 266
249
862) 1724
1724

From right to left point off the given number into periods of two places
each. Begin with the last period pointed off (18). Largest square in 18is
4; put this down in the quotient and the square (16) under the 18. Write
down remainder (2) and bring down next period (66). Multiply 4 (in quo-
tient) by 2 for first number of next divisor and say 8 goes into 26, three
times.

Place 3 after 4 in quotient and also after 8 in the divisor. Multiply the
83 by 3, placing product 249 under 266 and subtract,obtaining remainder 17.
Bring down last period 24 and proceed as before, obtaining 432 as the square
root of 186,624.

Cube Root.—Extracting the cube root is a more complicated
though a similar process, as indicated by the rule following.
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Rule.—(Cube root). 1. Separate the number inlo groups of
three figures each, beginning at the units. 2. Find the greatest
cube in the left hand group and wrile ils Toot for the first figure of
the required Tool. 3. Cube this rool, subttact the resull from the
left, hand group, and lo the remainder annex the next group for a
dividend. 8. For a partial divisor, take three times the square.
of the oot already found, considered as tens, and divide the
dividend by it. The quotient (or the quotient diminished) will be
the second figure of the root. 5. To this partial divisor add three
times the product of the first figure of the Toot considered as tens by
the second figure, and also the square of the second figure. This
sum will be the complete divisor. 6. Multiply the complele
divisor by the second figure of the root, subtract the product from the
dividend, and to the remainder annex the next group for a new
dividend. 7. Proceed in this manner until all the groups have
been annexed. The resull will be the cube Tool required.

Example.—Extract the cube root of 42,875.

42,875|35
F= 27 27
3%30:=2,700 {15,875
3X (30%5)= 450
5= 25
3,175 15,875

Since 42,875 consists of two groups or periods, the cube root will consist
of two figures.

The first group, 42, contains the cube of the tens’ figure of the root. The
greatest cube in 42 is 27, and the cube root of 27 is 3. Hence, 3 is the tens’
figure of the root.

The remainder, 15,875, resulting from subtracting the cube of the tens,
will contain three times the product of the square of the tens by the units +
three times the product of the tens by the square of the units-+the cube of
the units. Each of these three parts contains the units’ figure as a factor.
Hence, the 15,875 consists of two factors, one of which is the units’ figure of
the root; and the other factor is three times the square of the tens--three
times the product of the tens by the units+-the square of the units. The
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largest part of this second factor is three times the square of the tens. If
the 158 hundreds of the remainder be divided by the 3X30?=27 hundreds,
the quotient will be the units’ figure of the root.

The second factor can now be completed by adding to the 2700, 3 X
(30X5) =450 and 5?=25.

Example.—Extract the cube root of 1,881,365,963,625.
1,881.365,063,625(12345
1

300 122 =4320p[153365

30X12 X3 = 1080
3? == 9

442891132867

300% 123t = 4538700] 20195963

23 X4 = 14760
30X 123 X e 16

45653476] 18213904

T 2285059625

300 X 1234 .= 45682
30;(< 1234 X g’= lSBlgg

457011925| 2285059625

Simple Rule for Cube Root.—Separate the number into its
prime factors when this method is possible.

Example.—Find the cube root of 74,088.

2|74,088 Proof.

237,044 L

2/18,522 2" %3 X7 =74,088

3| 9,261

3| 3,087

3l 1,020

7] 343 V74,088 =2X3X7 =42
71 a9

7 7

As stated this is an easy way to find the cube root but it
is not always practicable; accordingly a general method is nec-
essary as given above.
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The easiest, quickest and best way to obtain a cube
root, especially for those having many calculations to
make, is to look it up in a table of powers and roots.
Moreover there is less chance of error.

Mental Cube Root.—To extract the cube root of a cube of
two periods, have a small table firmly fixed in the mind.

It consists of the cubes of the numbers from 1 to 9. The cube of 1
is 1, of 21is 8, of 3 is 27, of 4 is 64, of 5is 125, of 6 is 216, of 7 is 343, of 8
is 512, of 9 is 729. Examine these cubes and it will be seen that the cube
of 8 ends in 2, and the cube of 2 ends in 8.

Then again, the cube of 3 ends in-7 and the cube of 7 ends in 3. All
others end with the same figure which has been used as a factor.

When a cube is given to extract the root, first note the “thousands.”
In the number 32,768, for example, the thousands consist of two figures,
32. Now 32 is between 27 and 64, the cubes of 3 and 4, hence the root
is between 30 and 40, or the first figure must be 3.

Disregard the other figures until the last one is reached. As the figure
is 8, it 15 evident the second figure of the root must be 2, because the
cube of 2 always ends in 8. Thus:

12,167 . 23

18 —

Cube root of the fraction m 72

This also appli€s to the first and last figure of a cube root of any number
of figures.

Compound Quantities

A compound quantity expresses units of two or more de-
nominations of the same kind, as five yards, oné foot and four
inches.

A denominate fraction is a concrete fraction whose integral unit is a
denominate number. Thus ¥/; of a day is a denominate fraction, the

integral unit being one day; so are 5/s of a bushel; ?/s of a mile, etc.,
denominate fractions.
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To reduce a compound number to a lower-denomination—
Reduction descending.

Rule.—Multiply the highest denomination of the given number
by the scale number which will reduce it to the next lower denoming-
tion and add lo the product the given number,if any,of that lower
denomination, continuing until the number is reduced o the
denomination required.

Examples.—Reduce 1 yd., 8 ft. and 7 ins. to ins.
1yd. A ft, 7 ins. _
__3 (scale factor 3 ft. = 1yd.)

3 ft.
__81ft. 10 be added Reduction descending

11 ft.
12 (scale factor 12 ins. = 1 ft.)

132 ins.
7 ins. to be added

139 ins. total

To reduce a denominate number to a compound number of
higher denominations—Reduction ascending.

Rule.—Divide ihe denominate number by that number of the
ascending scale which will reduce it to the next higher denomina-
tion; the quotient is in the higher denomination and the remainder
if any, in the lower denomination.- Continue the division untik
the number is reduced o the highest denomination required.

Example.—Reduce 139 ins, to® compound number of higher denominay
tions.

139 =+ 12* = 11 ft., 7 ins.

#NOTE 12 is scale number to reduce ins. to ft.
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In any of the measures which follow in the next section the
compound numbers may be reduced by following the rules.

Weights and Measures

By definition a measure is that by which the extent, quaniily,
capacity, volume or dimensions in general are ascertained by some
fixed standard. T here are several kinds of measure as:

1. Linear (length). 4. Weight.

2. Square (area). 5. Time.

3. Cubic (volume). 6. Angular.
etc.

Linear Measure.—There are several kinds of linear measure:
known as: 1, long; 2, surveyors’ or old land; 3, nautical.

TABLE
Long Measure

12 inches (ins. or *) make 1 foot (ft. or )

3 feet make 1 yard (v&.)
514 yards or 1614 feet make 1 rod (rd.)
40 rods make 1 furlong (fur.)
8 furlongs or 320 rods make 1 statute mile (mi.)
Unit equivalents
. ft. ins.
yd. 1 = 12
rd. 1 = 3 = 36
1 51 = 1614 = 198

fur. =
1 40 = 220 = 660 = 7,920

mi. =
1 = 8 =320=1,760 =5280 = 63,360
Scale—ascending, 12. 3- 534, 40, & descending, 8, 40, 534, 3, 12.
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TABLE
Surveyors’ or 0ld Land Measure
7.92 ins, make 1 link (1.)
25 links make 1 rod (rd.)

4  rodsor 66 ft. make 1 chain. (ch.)
80 chains make 1 mile (mi.)
Unit equivalents

1. ins.
rd. 1 = 7.92
ch. 1 = 25 = 198
mi. 1 =4 =100 = 792
1 = 80 =320 = 8,000 = 63,360

Scale—ascending, 7.92, 25, 4, 80; descending, 80, 4, 25, 7.92.

NOTE.—The denomination rods is seldom used in chain measure, distances being taken
M chains and links.

Table
Measures 'Occasionally Used

1000 mils =1 in.

1 hand =4 ins. ‘

1 span =9 ins. !

1 military pace =214 ft.

1 fathom =6 ft. :

1 cable length =120 fathoms.
TABLE

Nautical Measure Cow

6,080.26 ft, or 1.15156 statute miles = 1 nautical mile or knot®
3 nautical miles = 1 league '
60 nautical miles or 69.168 statute miles = 1 degree (at the equator)
360 degrees = circumference of earth at
equator

*NOTE.—The British Admiralty takes the round figure 6,080 ft. for length of the “meas.
ured mile” used in trials of vessels. The length between knots on the log line is 1/120 of a
nautical mile, or 50.7 ft. when a half minute glass is used; so that a speed of 10 knots is equal
t= 10 nautical miles per hour.



58 Arithmetic

Square Measure.—This kind of measure is used to measure
the area of a surface; it involves two dimensions, length and
breadth, that is:

area = length X breadth

The dimensions length and breadth may be taken in any

denomination as inches, feet, yards, etc., but both must be

A B

1 2 3

BREADTH 2:INS-

) o) 6

D C

LENGTH 3-INS-

F1G. 29 —Dnagram illustrating square measure. If the rectangle ABCD, measure 2 ins. on
one side and 3 ins. on the other, and lines be drawn at each inch division, then each of the
small squares will have an area of 1 sq. in. and the area of the rectangle will be area
ABCD =breadth Xlength=2 X3=6 sq. ins.

taken in the same denomination. The word “square” is used
to denote the product of the two dimensions, thus:

inches (length) X inches (breadth) = square inches
Square measure is shown graphically in fig. 29.
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TABLE
Square Measure

144 square inches (sq. ins.) make 1 square foot (sq. ft.)
9 sq. ft. make 1 square yard (sq. yd.)
3014 sq. yds. make 1 square rod or perch (sq. rd. or P.)
4059. rods make 1 rood (R),
4 roods make 1 acre (A)
640 acres make 1 square mile (sq. mi.)

" Unit equivalents

sq. ft. sq. ins,
sq. yd. 1 = 144
sq. rd. 1 = 9 = 1,296
R 1 = 304 = 27244 = 39,204
A 1 = 40 = 1,210 = 10,890 = 1,568,160
sq.mi. 1= 4 = 160 = 4,840 = 43,560 = 6,272,640
1 =640=2,560=102,400=3,097,600=27,878,400=4,014,489,600

Scale—ascending, 144, 9, 3014, 40, 4, 640; descending, 640, 4, 40, 30},
9, 144.
’ TABLE

Surveyors’-Square Measure
625 square links (sq. 1.) make 1 pole (P)
16 poles make 1 square chain (sq. ch.)

10 square chains make 1 acre (A)
640 acres make 1 square mile (sq. mi.)

36 square miles (6 miles square) make 1 township (Tp.)

Unit equivalents
P. sq. 1.
sq. ch. 1 = 625
A 1 = 16 = 10,000
sq. mi. 1 = 10 = 160 = 100,000

= 640 = 6,400 = 102,400 = 64,000,000

Tp. 1 J
1 = 36 =23,040=230,400=3,686,400=2,304,000,000

Scale—ascending, 625, 16, 10, 640, 36; descending, 36, 640, 10, 16, 625.

Cubic Measure.—This measure is used to find the volume or

An acre equals a square whoee

*NOTE.: —The denomination rood is practically obsolete
side is 208.71 feet.
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amount of space within the boundary surfaces of a body. I.
involves three dimensions, that is:

volume = length X breadth X thickness
As in square measure these aimensions may be taken in any
denomination but all must be of the same denomination.

The word “cubic” is used to denote the product of the three
dimensions, thus:

inches (length) X inches (breadth) X inches (thickness) = cubic snches

X [—e———— LENGTH 3FT.

=

-

h ‘l:h‘“ﬂ w

— e

/
//'

|
/

NN

st THICKNESS 3FT.~

FiG. 30.—Diagram illustrating cubic measure. If each side of the cube measure 3 ft. and it
be cut as indicated by the lines, each little cube as M, will have each of its sides 1 ft. long
and will, contain 1 X1X1=1 cu, ft. Accordingly the large cube will contain 3 X3X3=
27 cu. ft. or 1 cu. yd.
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Cubic measure is shown graphically in fig. 30.

TABLE
Cubic Measure

1,728 cubic inches (cu. in.) make 1 cubic foot (cu. ft.)
27 cubic feet make 1 cubic yard (cu. yd.)

40 cubic feet of round timber or} make 1 ton or load (T)

50 cubic feet of hewn. timber
16 cubic feet make 1 cord foot (cd. ft.)

8 cord feet or% make 1 cord of wood (Cd.)

128 cubic feet
2484 cubic feet make 1 perch of stone or masonry (Pch.)

Scale—Most of the unit equivalents are fractional except 1,728 and 27,
and are therefore omitted.
There are other kinds of cubic measure known collectively ag
measures of capacity. These are divided into two classes:

1. Liquid.

2. Dry.

Liquid measure also known as wine measure is used in measur-
ing various liquids as water, molasses, liquors, etc.

TABLE
Liquid measure
4 gills (gi.) make 1 pint (pt.)
2 pints make 1 quart (qt.)
4 quarts make 1 gallon (gal.)*
3114 gallons make 1 barrel (bbl.)
2 barrels or 63 gallons make 1 hogshead (hhd.)
Unit equivalents
pt. gi.
qt. 1 = 4
gal. 1 =2 = 8
bbl. 1 =4 =8 = 32
hhd. 1 =311 =126 = 252 = 1,008

1 = 2 =63 =252=0504=2,016

Scale—ascending, 4, 2, 4, 3114, 2; descending, 2, 3114, 4, 2, 4.
*NOTE.—There are two kinds of gallons: the U. S. gallon = 231 cu. ins.: the Bntmh
fmperial gallon = 277,274 cu. ins. .
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Dry measure is used for measuring such articles as grain,

salt, fruit, ashes, etc.
TABLE

Dry measure
2 pints (pt.) make 1 quart (qt.)

8quarts .make 1 peck (pk.)
4 pecks make 1 bushel (bu.)*

Unit equivalents
qt. pt.
pk. 1 =2
bu. 1 =8 =16
1 = 4 =32=64

Scale—ascending, 2, 8, 4; descending, 4, 8, 2.

PECK

BUSHEL
Fies. 31 to 35.—Various dry measure containers. A, pint; B, quart; C, peck; D, 14 bushel-

E, bushel basket.

*NOTE.—The standard U. S. bushel is the Winchester bushel, which is, in cylinder form,
1834 ins. in diameter and 8 ins. deep; it contains 2150.42 cu.-ins. A struck bushel contains
2150.42 cu. in. or 1.2445 cu. ft. A heaped buslgel isa cylind_u:_l&% ins. in diameter and 8 ins.
deep, with a heaped cone not less than 6 ins. high. The British Imperial bushel = 8 imperial
gallons = 2218.192 cu. ins. or 1.2837 cu. ft.
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TABLE
Board Measure

1board 1 in.thick X 1 ft. wide X 1 ft.Tong = 1 ft. board measure (B.M.)
1board 2 in.thick X 1 ft. wide X 1 ft.'ong = 2 ft. board measure
1board Y4in. thiek X 1 ft. wide X 1 ft.long =1 ft. board measure

etc.

from which follows

Board Measure Rule.—Mulliply length in fi. by width in
f1. of the board and multiply this product by 1 for board an inch or
less than an inch in thickness, and by the thickness in inches and
fractions of an inch for board over 1 in. in thickness.

Example.—How many feet board measure (B. M.) in a board 12 ft-
long by 18 ins. wide by 14 in. thick?; by 134 in. thick?
18ins. = 18 + 12 = 134 ft.

board 14in. thick = 12 X 114 X 1=18 ft. B. M.
board 184 in. thick = 12 X 134 X 1¥{
=12 X 1.5 X 1.75 = 31.5 ft. B. M.

Fic. 36.—Lufkin Pacific coast log rule for large timber especially adapted to Pacific coast re«

quirements, % in. square,’ and has 12 ins. forged steel hook (Seattle pattern). Marking is

Scribner’s scale for even length logs 20 to 48 ft. inclusive.
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Measures of Weight.—By definition, weight is the measure
of the force with which bodies tend toward the earik’s center; the
downward pressure die to gravily minus the centrifugal force due
to the earth’s rotation. Weight differs from gravity in being the
effect of gravity or the downward pressure of a body under the
influence of gravity. Weight is the measure of the quantity of
matter a-body contains. Three scalesof weight are used inthe U.S.:

1. Troy (for weighing gold
silver, etc.).

2. Apothecaries (used by
druggists in compounding
medicines). ,

3. Avoirdupois. (for all
, brdinary purposes).

i

Fi16. 37 —Fairbanks platform scale with incline brackets especially adapted to weighing
wheelharrow loads or for general use. The brackets cast on the ends of the frame form
rests for incline planks so that the wheelbarro v loads may bz easily run on and off the scale.
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*Troy Weight.—This measure is used in weighing gold, silver
and jewels; in philosophical experiments, and generally where
great accuracy is required. The unit is the pound, and of
this all the other denominations in the table are divisors.

Table
Troy Measure
24 grains (gr.) make 1 pennyweight..................... pwt. or dwt.
20 pennyweights  ““ 1OUNCE.............civiirinnmneneaeannnnn, oz.

12 ounces * 1 pound

Unit equivalents

pwt. gr.
oz. 1 = 24

1b. 1 = 20 = 480 .
1 =12 = 240 = 5,760

Scale.—Ascending, 24,20,12; descending, 12,20,24.

Apothecaries’ Weight.—This measure is used by apothecaries
and physicians in compounding medicines.

Table
Apothecaries’ Measure
20 grains (gr.) make 1 scruple. .. ... 608800800 000000000000000 sc.or ®
3 scruples Cooldram. ... e dr.or 3
8 drams e OUNCE. oo e e oz.or 3
12 ounces “lpound trOy. .. ... Ih.or b
Unit equivalents
sC. gr.

dr 1 = 20

oz. 1= 3= 60

1b. 1= 8= 24 = 480

1 =12 =96 = 288 = 5,760

Scale.—Ascending, 20,3 8,12; descending, 12,8,3,20.

*NOTE -—~Troy weight 1s sometimes called goldsmiths' weight.
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Apothecaries’ Fluid Measure.—The measures for fluids, as

adopted by apothecaries and physicians in the United States,
and used in compounding medicines, and putting them up

for market, are as follows:
Table

Apothecaries’ Fluid Measure

60 minims (M) make 1 fluidrachm(dram)..................... f3
8 fluidrachms “ 1fluidounce........................... {5
16 fluidounces foolpint. . 0
8 pints ¢ “olgallon. ... Cong

Unit equivalents

} {3 m
f3% 1 = 60
0 1 = 8 = 480
Cong. 1= 16 = 128 = 7,680
1 =8 = 128 = 2,048 = 61,440

Scale.—Ascending, 60,8,16,8; descending, 8,16,8,60.

Table

Avoirdupois Weight

16 drachms (dr.) or 437.5 grains (gr.) make 1 ounce (0z.)
make 1 pound (lb.)

16 ounces
100 pounds make 1 hundred weight (cwt.}
2,000 pounds make 1 short ton
2,240 pounds make 1 long ton
Unit equivalents
oz. dr

b, 1 = 16

owt. 1. = 16 = 256
T. 1 =100 =1,600 = 25,600
1'=20=2,000 =32,000 =512,000

sﬂle—a“endingn 16, 16. lwp m; descendingn mn 100. 16. 160
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Long ton Table

28 1bs. make 1 quarter (qr.)
make 1 long hundred weight (cwt.)

4 quarters I
20 hundred weight make 1 long ton (T.)
qr. lbs.
cwt, 1 = 28
Lt.= 1 =4 = 112
1 = 20 =80=2,240

Scale—ascending, 28, 4, 20; descending, 20, 4, 28.
Also (in Great Britain):

14 1bs. =1 stone
2 stone=28 1b. =1 quarter
4 quarters=1121b. =1 long hundredweight (cwt.)

+ 20 hundredweight =1 long ton

Shipping Measure
1 Register ton =100 cu. ft.

1 U. S. shipping ton = 40 cu. ft.
= ;32.14 U. S. bu.

31.14 imp. bu.

1 British shipping ton =42 cu. ft.
='§ 32.70 imp. bu.

33.75 U. S. bu:

Circular measure Table

60 seconds (*) make 1 minute (')
60 minutes  make 1 degree (°)
30 degrees make 1 sign (S)

360 degrees make 1 circle (C)

Unit equivalents

/ ’
° 1 = 60
S 1 = 60 = 3,600
C 1 30 = 1,800 = 108,000
1 =12 = 360 = 21,600 = 1,296,000

Scale—ascending, 60, 60, 30, 12; descending, 12, 30, 60, 60.
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TABLE
Time

60 seconds (sec.”) make 1 minute (min.")

60 minutes make 1 hour (hr.)

24 hours make 1 day (da.)
365 days make 1 common year (yr.)
'366 days - make 1 leap year

12 calendar months make 1 year
100 years make 1 century (C.)

Unit equivalents

min. secC,
hr. 1 = 60
da. 1 = 60 = 3,600
wk. 1 = 24 = 1,440 = 86,400
1= 7 = 168 = 10,080 = 604,800 °
= 525,600 = 31,536,000

yr. mo. f 365 = 8,760
1 =12 =) 366 8,784 = 527,040 = 31,622,400

Scale—ascending, 60, 60, 24, 7- descending, 7, 24, 60, 60.

Fig, 39 shows a great circle,
In ccatrast with this is the small circle

Figs. 39 and 40.—Globes illustrating circular measure.

or circle passing through the center of the globe.
shown in fig. 40. In circular measure each of these circles is divided into 360°. Fig.

39 shows a quadrant M, made up of iwo radii and a 90° arc, also a sextant S, measured
with a 60° arc. Note in fig. 40, the angles L, and F, are the sume and accordingly have
the same number of degrees, but the length of each degree of L, is less than that of F.
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The Metric System.—This system was adopted in France in
1795 and its use was authorized in Great Britain in 1864, and in
the United States in 1866.

The important feature of the metric is that it is based upon the
decimal scale, hence, the student should first acquire a knowl-
edge of decimals before taking up the metric system.

The meter is the base or unit of the system and is defined
the one ten-millionth part of the distances on the earth’s surface
from the equator to either pole. Its value in inches should be
remembered.,

1 meter-: 39.37079 ins.

. ' . 1
The theory of the system is that the meter isa ———part of a quad.
10000000

rant of the earth through Paris; the liter or unit of volume is a cube of

1 . . . . . 1

10meter side; the gramme or unit of weight is (nominally) 1000 of the
weight of a liter of water at 4° C. The idea of adopting scientific meas-
urements had been suggested as early as the 17th century, particularly
by the astronomer Jean Picard (1620-1682) who proposed to take as a
unit the length of a pendulum beating one second at sea-level, at a lati-
tude of 45°,

NOTE.—The meter, as adopted by England, France, Belgium, Prussia and Russia, is that .
Jetermined by Capt. A. R. Clarke, R.E., F.R.S., 1866, which at 32° in terms of Imperial
standard at 62° Fahr. is 39.370432 ins. or 1.009362311 yards, its legal equivalent by Metric
Act of 1864 being 39.3708 ins., the same as adopted in France.

NOTE.—Captain Kater's comparison, and the one formerly adopted by the U. S. Ordi-
nance Corps, was =39.3707971 inches, or 3.28089976 feet, and the one adopted by the U. S.
Coast Survey was as above noted, 39.37043235 ins.
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It must be apparent that the meter is used like the yard in
measuring cloths and short distances.

Units of other denominations are named by prefixing to the
word meter the Latin numerals for the lower denominations and
Greek numerals for the higher denominations.

Lower denomination Higher denomination
Deci = Yo Deka = 10
Centi = Yo Hecto = 100.
Milli = Y100 Kilo = 1,000

Myria = 10,000

Thus one decimeter = /10 of a meter; 1 millimeter = one-thousandth of
of a meter and one kilometer = one-thousand meters. From this the linear
table which follows is easily understood.

Metric Table of Linear Measure

Metric Denomination . Meter U, S. value
1 millimeter = .001 = 203937 in.
10 millimeters = 1 centimeter = 01 =  3937in.
10 centimeters = 1 decimeter = Jd = 3.937in.
10 decimeters = 1 meter ~ = 1, = 39.3707 ins.
10 meters = 1 dekameter = 10. = 32.809 ft.
10 dekameters = 1 hectometer =  100. = 328.09 ft.
10 hectometers = 1 kilometer = 1,000. = 62137 ‘i
10 kilometers = 1 myriameter = 10,000. = 6.2137 mi.

The kilometer is commonly used for measuring long distances.
The square meter is the unit for measuring ordinary surfaces;
as flooring, ceilings, etc. :

A Metric Table of Square Measure
100 sq. millimeters (sq. mm.)

= 1 sq. centimeter = .155+4-sq.in
100 sq. centimeters (sq. cm.) = 1sq. decimeter =155 <+ sq.in
100 sq. decimeters (sq. dm.) = 1sq. meter (sq. m.) = 1.196+ sq. yd

1 sa. meter = 10.7639 sa. ft.
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Metric Table of Land Measure

1 centiare (ca.) (1 sq. meter) = 1.196034 sq. yd.

100 centiares (ca.) = 1 are = 119.6034 sq.yd.
100 ares (A.) = 1 hectare = 2.47114 acres
100 hectares (ha.). = 1sq. kilometer =  .3861 -sq.mi.

The cubic meter is the unit for measuring ordinary solids: as
excavations, embankments, etc.

Metric Table of Cubic Measure

1,000 cu. millimeters (cu. mm.) = 1 cu. centimeter = 061+ cu. in.
1,000 cu. centimeters (cu.cm.) = 1 cu. decimeter = 61.023+ cu. in.
1,000 cu. decimeters (cu. dm.) = 1 cu. meter = 35.314 { cu. ft.

The stere is the unit of wood or solid measure, and is equal to
acubicmeter or .2759 cord.

Metric Table of Wood Measure

1 decistere = 3.531+ cu. ft.
10 decisteres (dst.) = 1 stere = 35.3164- cu. ft.
10 steres (st.) = 1 dekastere (dst.) = 13.0794- cu. yd.

The liter is the unit of capacity, both of liquid and of dry
measures, and is equal in volume to a cube which has an edge
of one-tenth of a meter, equal to 1.05673 gt. liquid measure,
and .9081 gt. dry measure.

Metric Table of Capacity
10 milliliters (ml.) = 1 centiliter

10 centiliters (cl.) =1 deciliter
10 deciliters (dl.) = 1 liter
10 liters (1.) = 1 dekaliter

10 dekaliters (dl.) = 1 hectoliter
10 hectoliters (hl.) = 1-kiloliter, or stere
10 kiloliters (kl.) = 1 myrialiter (m}.) ,
The hectoliter is the unit in measuring liquids, grain, fruit, and roots in
large quantities.
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Dry Liquid
1 myrialiter = 10 cubic meters = 283,724 bu., =2641.74 gal.
1 kiloliter = 1cubic meter = 28.3724 bu. = 264.17 gal.
1 hectoliter = Y1 eubic meter = 2.8372+4 bu, = 26417 gal.
1 dekaliter = 10 cu. dm. = 9.08 quarts = 2.6417 gal
1 liter = 1cu.dm. = 908 quart = 1.0567 qt.
1 deciliter = /0 cu. dm = 6.1022 cu. in, = .845 gil.
1 centiliter = 10 cu. cm. = ,6102 cu. in. = .338 fluid oz.
1 milliliter = 1cu.cm. = ,06lcu.in. = .27 fluid dr.

The gram is the unit of weight, and equal to the weight of a
cube of distilled water, the edge of which is one hundredth of a
meter, equal to 15.432 Troy grains.

Metric Table of Weight Measure

10 milligrams (mg.) = 1 centigram = 15432+ gr, troy
10 centigrams (cg.) =1 demgram = 1.54324 + gr. troy
10 decigrams (dg.) = 1 gr = 15.432484- gr. troy
10 grams (g.) =1 dekagrzu'n = 35273+ oz. avoir.
10 dekagrams (Dg.) = 1 hectogram = 3.5274¢ + oz. ayoir.
10 hectograms (hg.) = 1 kilogram or

kilo 2.204624 1b, avoir.

10 kilograms (kg.) =1 myriagram 22.045621+ 1b, avoir.

10 myriagrams (Mg.) .
or 100 kilograms = 1 quintal
10 quintals or = 1 tonneau, or
1,000 kilos 1 ton = 2204.621254- 1b. avoir,

Symbol g~ o
Ratio

Ratio is the relation of onme number to another of the same
kind. Thus the ratio of 12 to 23 is expressed as 12:23 or in
the form of a fraction as 12/23.

220.46212+ 1b, avoir,
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When it is required to determine whkat the relation of one
number 1o another is, it is evident that the first is the dividend,
and the second the divisor.

When it is required to determine the relation between two
numbers, either may be regarded as dividend or divisor.

The first number is commonly regarded as the dividend.

Note the following definitions:

Terms of a ratio.—The numbers compared.
Antecedent.—The first term.

Consequent.—The second term.

Couplet.-—The antecedent and consequent together.
Observe from the definitions: '

ANTECEDENT CONSEQUENT

]
12:23

CQUPLET

F16. 41.—Example of a couplet.

Ratio problems should be solved according to the following
rules:

Rule 1.—The lerms of a ratio must be like numbers.
Rule 2.~—The ratio is an abstract number.

Rule 3.—Multiplying or dividing both terms of a ratio by the
same number does nol change the ratio of the lerms.
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Rule 4.—Fractions should be reduced io fractions having the
same denominalor; when thus reduced they will have the ratio of
Lheir numerators. 0

Example.—When steam is cut off at }{ stroke what is the ratio of ex-
pansion? This ratio is expressed as:

stroke +cut off
1+ =1xY, =4

Proportion
Symbols e : : : or :

Proportion is an equality of ratios, that is, when two ratios
are equal the four terms form a proportion. A proportion is
expressed by putting the sign = or : : between the ratios, thus:

FIRST RATIO SECOND RATIO

12:18::23: X

X NS
~

TERMS OF THE PROPORTION

F1¢. 42.—Metnod of writing out a proportion.

The proportion may also be written:
12 23

18 X
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Note the following definitions:

Antecedents.—The antecedents of the proportion are the first and third
terms.

Consequents.—The consequents of the proportion are the second and
fourth terms.

Extremes.—The first and fourth lerms.

Means.—The second and third lerms.

Note extremes and means in the following proportion:

—— Em————y
12:18=23:X
—

F16. 43.—Example illustrating extremes and means in a proportion,

Problems in proportion should be solved according to the
following rules: '

Rule 1.— The product of the exiremes is equal to the product’
of the means.

Rule 2.—The product of the exiremes divided by either mean
gives the other mean.

Rule 3.— The product of the means divided by either extreme
gtves the other exireme.

There are several kinds of proportion defined as follows:
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Simple proportion.—An equality between two simple ratios.

Compound proportion.—One in which either ratio is';:om‘bound, that is,
either ratio is the product of two or more simple ratios.

Direct proportion.—One in which each term increases or diminishes, as
the one on which it depends increases or diminishes.

Inverse proportion.—One in which each term sncreases as the term upon
which it depends diminishes, or diminishes as it increases.

Example in direct proportion.—If an engine make 475 revolutions in
one minute, how many will it make in two minutes?

small large short long
number of number of time time
rev. rev.
475 g X =1 : 2

Note that each ratio must contain quantities of the same kind. The un-
known quantity is represented by the letter X. Since from the exampleit is
evident that the consequent of the first ratio will be greater than the ante-
cedent, write down the second ratio so its consequent is greater than its
antecedent, thus:

FIRST RATIO ) SECOND RATIO

o /——-/\
e ™~

REV. TIME TIME

475:X=1:2

SMALL
SMALL TERM / T S

LARGE TERMS
UNKNOWN
QUANTITY

F1G. 44.—Example illustrating how to arrange a proportion.

Multiplying extremes and means according to Rule 1.

XX1=475%2
from which
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X = =950 rev.

475X2
1

Example in inverse proportion.—1f 12 men can dig a ditch in 18 hours,
how long would it take 23 men to dig the sameditch?

Evidently 23 men will dig the ditch in /ess time than 12 men, and the pro-
portion will be arranged thus:

gsmall numbers ) ;large number% _ %shorts . glong%

of men of men time time
Substituting
men men time time
12 g 23 = X : 18

23X =216
X =9.3 hrs., or 8 hrs., 18 min.

Short Form for Simple Proportion.—A simple proportion as

for instance:
12:18 = 23: X

may be expressed in practical form, as:
12 23

18 X
which by putting X in the numerator becomes:

X 23 23
E—EO r X = 18X—=34/2

Hence in a simple proportion the value of X, the unknown term, is the
product of one of the known terms multiplied by the ratio of the other two
terms. From the nature of the problem it is easily determined whether the ~atic

will be greater than or less than 1.

The problem may then be expressed by one equation ac-
cording to the following rules.
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Rule 1.—Find the ratio terms and put down in fractional form
making the fraction greater than or less than one as determined
by lhe nature of the problem.

Rule 2.—Multiply the ratio by the third known lerm.

Example.—If a pump deliver 23 gals. of water in 5 minutes, how long
will it take to pump 475 gals.?

The third term will be of the same kind as the unknown term; in the exam-
ple, 5 minutes. The two other known terms, 23 and 475, form the ratio.
Evidently the answer will be greater than 23 the third term, and the ratio
greater than 1. Knowing this the equation is written

unknown third ratio
term term

X = 5 X‘}27_35 =103.3 minutes

Compound Proportion.—This is an expression of equality
between a compound and a simple ratio, or between two com-
pound ratios. The principle of compound proportion is that
the product of two or more proportions is a proportion.

In stating problems in compound proportion the quantity
that corresponds to the answer required is made the third
term. Each pair of the remaining quantities is then considered
separately with reference to the answer required.

Example.—If 4 men cut 15 trees in 5 days of 14 hrs., in how many days
of 13 hrs. can 7 men cut 1914 trees?

As the answer is to be in days, make 5 days the third term. It will re-
quire less days for 7 men to cut 15 trees than for 4 men. Therefore, make 7
the first term, and 4 the second.

It will require more days for the same number of men to cut 19}4 trees
than to cut 15 trees. Therefore, make 15 the first term and 1914 the second




——— - ———— .~ - - - — - rm——

Arithmetic ' 79

It will require more days of 13 hrs. than of 14 hrs. for the same number
of men to cut the same number of trees. Therefore, make 13 the first term
and 14 the second.

Hence,

71 4
15;:19.5} =5 days: X
13J 14 J
Therefore, the fourth term, or the time required is

4x19.5X 14 X5 days
B polCay SN
TX15X 13X X o0

Short Form for Compound Proportion.—In every compound
proportion all the terms appear in ratios except one which is
of the same kind as the answer and called the odd ferm. Find
the unknown term according to the following rules.

Rule 1.—Multiply the odd term by the product of all the ratios.

Rule 2.—Make each ratio grealer than, or less than ome ac-
cording as the unknown lerm (depending upon each ratio sep-
oralely) should be greater than or less than lhe odd terms.

Example.—If it cost $4,320 to supply' 32 men with provisions for 18
cays, when the rations are 15 ozs. per day, what will it cost to supply 24
men for 34 days, when the rations are 12 ozs. per day?

men days ounces

320X 22 32 12 _ ¢4 806

Percentage

Symbol peF % .



80 Arithmetic

Percent is briefly, the rate per hundred; from the Latin per
centum meaning by the hundred, that is a certain part of every
hundred. Thus 23 per cent means 23 out of every hundred.

To illustrate, 23 per cent of one dollar, or 100 cents =2 of
100 =23 cents.

The sign for per cent is %. Thus 12% is read twelve per
cent.

Since per cent is a number of hundredths, it is usually
expressed as a decimal. 12% or ng is written .12.

Note carefully how to express percentage as foilows:
In a statement write twelve per cent 12%,.

In a calculation write twelve per cent .12.

Note carefully how to express less than one per cent. ’

Example.—Express ¥4 of 1%, as a decimal.

1 1
1 =1 —_ ==
1 of 1% 4of100 o 0025

The following terms shduld be understood:

Rate.—The number of hundredths taken.
Base.—The number on which the percentage is computed.

Percentage.—The number which is a certain number of hundredths of
the base.

Amount.—The sum of the base and percentage.

Difference.—The base less the percentage.

Percentage involves the following kinds of problems:

Case 1.—To find the percentage when the base and rate are given.
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Case 2.—To find the base when the percentage and rate are given.
Case 3.—To find the raie when ihe base and perceniage are given.
Case 4.—To find the base when the amount and rate are giten.

Case 5.—To find the base when the difference and rate are given.

Case 1.—7To find the percentage when lhe base and rale are
grven:

Rule.—Multiply the base by the rale.

Formula: P=BXR. ... eiannns (1)

Example.—What is 239, of 475?
Here 475 is the base and 239, the rate. Substituting in formula (1)
P=475%.23=109.25

Case 2.—To find the base when the percentage and raie are
given.

Ru.le —D7ivide the percentage by lhe rale.

Formula: B=P+R. ... ... . .. (2)

Example.—A farmer iost 24 sheep which was 129, of his flock. How
many sheep did he have?

Here 24 is the percentage and 12 9, the rate. Substituting in formula (2)
B =24-+.12=200 sheep

Case 3.—7To find the rale when the base and percentage are
given. :

Rule.—Divide the percentage by lhe base.

rormula: R=P=+B
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Example.—If Gilbert deposit $26 with Stevens and draw $10 what
part of it is withdrawn?

Here $26 is the base and $10 the percentage. Substituting in formula (3)
R =10+26=.384 or 3814%, withdrawn by Gilbert

Case 4.—To find the base when the amount and rate are given.

Rule.—Divide the amount by 1+-the rate.
Formula: B=A+(1+R).......co i 4)

Example.—What number increased by 25%, of itself equals 475?

Here 475 is the amount and 1.25 is one plus the rate. Substituting in
formula (4)

475+1.25=380

Case 5.—7To find the base when the difference and rate are
given.

Rule.— Divide the diffevence by 1—the rate.

Formula: B=D+1—=R)....... ... ... i .. (5)

Example.—What number diminished by 27% of itself equals 401.5?

Here 401.5 is the difference and 1—.27, or .73, is 1 minus the rate. Sub-
stituting in formula (5)
401.5+73=550

TEST QUESTIONS

1. What is arithmetic?

2. Give list of signs and abbreviations used.
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w

4

B

11.

12.
13.

14

15.
16.
17.
18.
19.

. What is the difference between Roman and Arabic
systems?

. Numerate the number 1223475.

Give ten formulae which include the elementary op-
erations of arithmetic.

. Give rules for addition.
. What is the difference between the subtrahend and the

minuend?

. Multiply 4175 by 1223.
. Give the Italian short proof method for multiplication.
10.

What is the difference between a root and an ex-
ponent?

What kind of numbers are divisible by: 2, 3, 4, 5, 6,
7, 8,9, 10, 11, and 13, odd number, even num-
ber, etc.?

What is the greatest common divisor?
Find the least common multiple of 60, 84 and 102.

What is a vulgar fraction?

What is a decimal?

Express .23 in the form of a fraction.
Numerate the decimal .0000138.

How are calculations shortened by cancellation?

Find the square root of 12143785.
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20. Explain the method of mental cube root.
21. Give a simple rule for cube root.
22 How is lumber measured by the board measure rule?

93. What is the difference between direct and inverse pro-
portion?
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CHAPTER 2

Plane Geometry

By definition, geometry is that branch of pure mathematics
that treats of space and ils relations

In other words, it is the science of the mutual relations of points, lines,
angles surfaces and solids, considered as having no properties except those -
. arising from extension and difference of situation.

Proposition.—This is a statement of something lo be done.
Thus,—

The sum of the angles of a triangle is equal to two right
angles, is a proposition to be proved. A proposition is either
a theorem or a problem.

The student should clearly understand the difference be-
tween the following:

Axiom.—A self-evident truth; a propos1t10n or principle that needs no
demonstration.

Theorem.—A proposition not self-evident that is clearly demonstrably
true or acknowledged as such; 2. a proposition setting forth something
to be proved, as opposed to problem.

Corollary.—A proposition following so obviously from another that it
requires little or no demonstration.

Postulate.—A self-evident statement claimed as basis of argument
especially regarding a geometrical construction.

Problem.—A proposition in which some operation or construction is
required, also the demonstration showing how the task is to be accom-
plishea.
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Axioms.—The self-evident truths which follow are im-
portant aJ_(ioms used as bases of proofs in goemetry.

Axioms

. Things equal lo the same thing are equal lo each other.

. If equals be added to equals the sums will be equal.

. If equals be subtracted from equals, the remainders will be equal.

. If equals be multiplied by equals the products will be equal.

. If equals be divided by equals, the quotients will be equal.

. If equals be added to unequals, the sums will be unequal.

. If equals be subtracted from unequals, the remainders will be unequal.

[N B B IR A

. The whole is grealer than any of its paris and is equal lo the sum of all
ils parls. ’

9. Things which are halves of the same lhing are equal to each other.
10. Things which are doubles of the same thing are equal to each other.

11. A quantity may be substituled for its equal in an equalion or in an
tnequality.

Postulates.—The self-evident propositions or postulates
which follow are also used as bases of proofs:

1. One straight line and only one can be drawn through two given poinis.
2. A straight line may be produced lo any required length. ’
3. A straight line is the shortesi distance between lwo points.

4. A circle may be described with any given poini as a cenler and any
given line as a radius.

5. Any figure may be moved from one place lo another without allering iis
size or shape.

6. The two adjacent angles which on~ straight line makes with another are
logether equal to a straight angle.

7. If the sum of two adjacent angles be a straight angle, their exterior sides
are in the same straight line.

8. A right angle is half a straigh! angle.
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9. All straight angles are equal.

10. Two straight lines whose exiremilies coincide must meet throughout
their whole extent.

11. All radii of the same circle, or of equal circles, are equal and all circles
of equal radii are equal.

Corollaries.—The corollaries here given should be carefully
noted:
1. Two points determine a siraight line.
2. Two straight lines can inlersect in only one point.
3. All right angles are equal.

4. From a given point in a given line only one perpendicular can be drawn
o the line.

5. Equal angles have equal complements, equal supplements, and equal
conjugales.

6. The greater of two angles has the less complement, the less supplement
and the less conjugale.

7. In a triangle there can be but one right angle or one obluse angle.

8. Corresponding parts of equal figures are equal.

9. Two points each equidistant from the extremities of a line determine the
Derpendicular biseclor of the line.

Notation.—There are a few symbols used so frequently that
they should be understood before taking up theorems. They
are as follows:

]

equality sign || parallel O parallelogram
< is less than 1 perpendicular o circle

> is greater than  Zangle A triangle
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.". therefore Theo. theorem
~Jsquare Cor. corollary
= rectangle Post. postulate

Q. E. D. which was to be proved (Latin: quod erat demon-
strandum).

Q. E. F. which was to be done (Latin: guod erat faciendum).

Definitions

Acute Angle.—An angle less than a right angle.

Adjacent Angles.—Angles lying next to each other. Angles having 2
common side and vertices at the same point.

Altitude.—The elevation of an object above its base, or the perpendicu-
lar distance between the top and bottom of a figure.

Angle.—The difference in direction of two lines which meet or tend to
meet. The lines are called the sides and the point of meeting, the vertex of
the angle. Angles are distinguished in respect to magnitude by the terms
right, acute and obtuse angles.

Apex.—The summit or highest point of an object.
Arc.—Part of the circumference of a circle.

Axis of a Figure.—A straight line passing through the center of a figure,
and dividing it into two equal parts.

Base.—The lowest part.
Bisect.—To divide into two equal parts.
Bisector.—A line which bisects.

Circle—A plane figure bounded by one uniformly curved line, all of
the points in which are at the same distance from a certain point within,
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called the center. The circle is the space contained within the circum-
ference. Of all plane figures the circle has the greatest area within .the
same perimeter.

Circumscribe.—To draw the line of a figure about or outside, such as
a circle drawn around a square touching its corners.

Complement of an Angle.—The angle added to it to form a right
angle.

Concave.—Curving inwardly.

Conic Section.—A figute for.ned by the intersection of a plane with
a right circular cone; a triangle, ellipse, parabola or hyperbola according to
the position of the cutting plane.

Conjugate of an Angle.—The angle added to it to make a perigon.
Constant.—Remaining unchanged or invariable.

Contour.—The outline of an object.

Convergence.—Lines extending toward a common point.

Converse Propositions.—Propositions so related that what is given
in each is what is to be proved in thz other.

Convex.—Rising or swelling into a round form—the opposite to con-
cave.

Curve.—A line of which no part is straight.
Degree.—The 360th part of a circle.
Describe.—To make or draw a curved line; to draw a plan.
Develop.—To unroll or lay out.

Diagonal.—A right line drawn from angle to angle of a quadrilateral or
many angled figure and dividing it into two parts.

Diameter.—A right line passing through the center of a circle or other
round figure terminated by the curve and dividing the figure symmetrically
into two equal parts.

Edge.—The intersection of any two surfaces.

Elevation.—The term elevation, vertical projection and front view—
applied to drawings—all have the same meaning.
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Ellipse.—The locus of a point which moves so that the sum of its
distances from two fixed points called the foci, is a constant.

Exterior Angle.—Angle formed by the side of a polygon and an ad-
jacent side produced. .

Foci.—Two points the sum or difference of whose distances to a conic
section is a constant. In an ellipse the sum of the distances is a constant.

Foreshortening.— Apparent decrease in length, owing to objects being
viewed obliquely; thus a wheel, when seen obliquely, instead of appearing
round, presents the appearance of an ellipse.

Generate.—To form a geometric magnitude by moving a point, line
or surface. A line is generated by moving a point; a surface by moving
a line.

Hemisphere.—Half a sphere obtained by bisecting a sphere by a plane.

Horizontal.—Parallel with the surface of smooth water. In drawing, &
line drawn parallel with the top and bottom of the sheet is called horizontal

Hypothesis.—A supposition on which a demonstration may be founded.

Hypotenuse.—The side of a right angled triangle opposite the right
angle.

Inscribe.—See circumscribe—its opposite.

Intercepted Arc.—The part of the circumference between the nter-
section of two lines with the circumference.

. Interior Angle.—One of the four inside angles made by a line cutting
two parallel lines. :

Locus.—A straight liné, surface or curve regarded as traced by one or
more points or a line moving under specified conditions. The locus of the tip
of a clock hand is a circle.

Longitudinal.—In the direction of the length of an object.

Normal.—A perpendicular to a line at the point of tangency to a curve.

Oblique.—Neither horizontal nor vertical.

Oblong.—A rectangle with unequal sides.
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Obtuse Angle.—Greater than a right angle.
Opposite Angles.—Angles which do not lie on the same side of a line.

Oval.—A plane figure resembling the longitudinal section of an egg; or
elliptical in shape.

Overall.—The entire length.
Parallel.—Having the same direction and everywhere equally distant.

P,leriyon.-—The entire space around a point. The sum of four right
angles.

Perimeter.—The boundary of a.closed plane figure.
Periphery.—Circumference.
Perpendicular.—At an angle of 90°,

Perspective.—View; drawing objects as they appear to the eye from any
given distance and situation, real or imaginary.

Plan.—Plan, horizontal projection and top view have the same meaning.

Plane Figure.—A part of a plane surface bounded by straight or curve
lines, or by both combined

Polygon.—A plane figure bounded by straight lines called the sides of
the polygon. The least number of sides that can bound a polygon is three.
Polygons bounded by a greater number of sides than four are: designated
only by the number of sides.

Projection.—The view of an object obtained upon a plane by projecting
lines perpendicular to the plane,

Quadrant.—The fourth part; a quarter; the quarter of a circle.
Quadrilateral.—A polygon having four sides.
Quadrisect.—To divide into four equal parts.

Radius.—A straight line from the center of a circle to the circumfer-
ence; half the diameter.

Rectangle.—A rectangle is a parallelogram having its angles right angles.
Rectilinear.—Right lined; straight.

Reflex Angle.—An angle greater than a straight angle.
Right Line.—Straight line.
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Scholium.—A remark pertaining to one or more preceding propositions.

Section.—A projection upon a plane parallel with a cutting plane which
intersects any object. The section generally represents the part behind
the cutting plane, and represents the cut surfaces by diagonal lines.

Sector.—The part of a circle included between two radii and the inter-
.cepted arc.

Segment.—The portion of a circle included between a chord and the
arc which it subtends.

Straight Angle.—One in which the sides of the angle extend ir opposite

directions and form a straight line. A straight angle is equal to two right
angles.

Subtended Arc.—Portion ot the circumference between the intersec-
tions of a chord.

Supp.ement of an Angle.—The angle added to it to make a straight
angle.

Surface.—Space having only two dimensions—length and breadth.

Symmetry.—A proper adjustment or adaptation of parts to one an-
other and to the whole.

Tangent.—A line which touches the circumference in only one point.
Triangle.—A polygon having three sides and three angles.
Trisect.—To divide into three equal parts.

Variable.—A quantity which, by the conditions of a problem, is sus-
ceptible of continuous change of value.

Vertex.—See angle, quadrilateral, triangle. The vertex of a cone is the
point in which its axis intersects the lateral surface.

Vertical.—Upright or perpendicular to a horizontal line or plane. Ver-
tical and perpendicular are not synonymous terms.
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Lines.—There are two kinds of lines: straight and curved. A
straight line is the shortest distance between two points. A curved
line is one which changes iis direction al every point. Two lines
are said to be parallel when they have the same direction. A
horizontal line is one parallel with the herizon or surface of the
water. A line is perpendicular to .another line when it inclines
7o more lo one side than the other.

SHORTEST DISTANCE BeTween M anD S oS

A

ANGES AT £
R CT\ON CH VERY POIN
CURVED LINE

B

Mo

PARALLEL LINES

C
. . D

PERPENDICULAR LINES

FiGs. 45 to 48.—Various lines. Fig. 45, straight; fig. 16, curved; fig. 47, parallel; fig. 48,
perpendicular.
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Angles.—An angle is the difference in direction of two lines
proceeding from the same point called the verlex.

Angles are said to be, right, when formed by two perpendicular lines.

Plane Figures.—The term plane figure denotes a plane sur-
face bounded by straight or curved lines. A proper conception

|
1
1
RIGHT | ANGLES l
|
|
i
|
1
1

S ®,

KERPENDICULAB] LINES \\

| ICOHPLENENY,
OF ANGLE ©

SUPPLEMENT T"J
OF ANGLE ©

FI1Gs. 49 to 52.—Various angles. Fig. 49, right; fig. 50, acute; fig. 51, obtuse fig. 52, com-
plement and supplement of an angle.

of the term “plane” is éssential. A plane ér plane surface is
one such that any straight line joining any two poinis lies wholly
in the surface.

Fig. 53 defines a plane surface, and figs. 54 and 55 the ordi-
nary and erroneous ideda of such surface. There is a great
variety of plane figures known as polygons when their sides
are straight lines. The sum of the length of the sides is called
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the perimeter. A regular polygon has all its sides and angles
equal. Plane figures of three sides are known as triangles; of
four sides, quadrilaterals, etc. Various plane figures are also
formed of curved sides.as circles, ellipses, etc.

Lines and Triangles

Theorem 1.—If {wo straight lines intersect, lhe opposite angles
are equal.

//'PLANE SURFACE

EVERY POINT /
ON LINE e

LIES IN THE
SURFACE

F1G. 53.—Proper conception of a plane or plane surface.

HARDLY ANY TWO POINTS SO CALLED PLANE  grpaignT
LIE IN THE STRAIGHT LINE SURFACE LINE

DRESSED

'{RREGULAR SURFACE
OF BOARD

Fics. 54 and 55.—Popular and erroneous conception of a plane or plane surface.
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In fig. 56,

Given: Lines A C and B D intersecting at O.
To Prove: LAOB= /COD.

Proof
Z/AOB+ /BOC=ast. £ or 180° Post. 6
Likewise ZBOC+ £COD =a st. £ or 180°.
. .AOB+ £BOC= «BOC+ £COD. Post. 9
C B
(@)
D . A

Fi16. 56.—T'heorem 1.

Subtract £BOC from both sides of the equation Ax. 3
*. LAOB= £COD. Q.E.D.

Theorem 2.—If two angles and the included side of one iri-
angle be equal respectively lo two angles, and the included side of
another triangle, the two trigngles are equal.

In figs. 57 and 58,

Given: A ABC and A XYZ with angle A equal to angle X3
angle B equal to angle Y, and with AB equal to XY.

To Prove: A ABC=AXYZ. .
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Proof.
Place the A ABC upon the A XYZ so that AB shall coin-
cide with its equal XY. Post. 5

Then AC will fall along XZ and BC along YZ, because
ZA=/Xand £B= /Y.

.. Cwill fallon Z Cor. 2
.". the two A are equal

(If two figures can be made to coincide in all their parts, they are equal.)

c 'z

/

A B X Y

Fics. 57 and 58.—Thaeorem 2.

UNEQUAL SIDES

EQUILATERAL
ISOSCELES

TWO SIDES EQUAL

EQUAL SIDES
OBTUSE ANGLE

N

RIGHT ANGLE
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Theorem 3.—The angles opposite the equal sides of an isosceles
Iriangle are equal.

In fig. 64,
Given: A ABC having AC =BC.
To Prove: LA= /B.

' Proof.

Assume CD drawn so as to bisect ZACB.
Then in the AACD and BCD

¢

A D B
Fi1c. 64.—Theorem 3.
AC=BC,
CD=CD,
(That is, CD is common lo the two triangles.)
and
ZACD = £BCD
(For CD bisects £ ACB.)
.. AACD=ABCD Theo. 16

~ and accordingly
ZA= /B. Cor. 8. Q.E.D.
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Theorem 4.— The sum of the three angles of a t'rianéle 1s equal
to two right angles.

In fig. 65,

Given: AABC. ‘

To Prove: LA+ /B+ £C=2rt. 4 or 180°

Proof.
Assume line BY drawn || with' AC, and produce AB to X.
&3
Y
A B X

F16. 65.— Theorem 4.

Then ZXBY+ £YBC+ ZCBA=2rt. 4 Post. 8

But /A= /XBY Theo. 12
and 2C=£YBC Theo. 13

(Because BY is parallel with AC.)
© LA+ 4B+ 24C=2rt. 4 Ax.11l. Q.E.D.
The £ A and C are the opposite interior £ of the exterior £ CBX.
Quadrilaterals
Theorem 5.— The opposile sides of a parallelogram are equal.
In fig. 74,
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SQUARE

RECTANGLE

/ j// RKOMEOID

F1cGs. 66 to 69.—Various quadrilaterals. 1. Opposite sides parallel.

TRAPEZOID
[}
o |

{

ISOSCELES
TRAPEZOID

§
o IS

RIGHT TRAPEZIUM
S

f

TRAPEZIUM

FiGs. 70 and 72.—Various quadrilaterals. 2. Two sides parallel.
FiGs. 71 and 73.—Various quadrilaterals- 3. Oppnsite sides not parallel.
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Given: [0 ABCD. . "
To Prove: BC=AD and AB=DC.

Proof.
Draw diagonal AC.
In the A ABC and ADC

AC=AC,
£LBAC= ZDCA,
LACB= ZCAD. Theo. 13

Fi16. 74.—Theorem 5.

.. AABC=AADC Theo. 2
.. BC=AD and AB=DC Cor. 8. Q.E.D.

Theorem 6.— The diagonals of a parallelogram bisect each
other. :

Given: O ABCD with diagonals AC and BD which inter-
sect at O.

In fig. 75,
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\

To Prove: AO=0C and BO=0D.

, Proof.
; In the A ABO and CDO
AB=CD Theo. 5
f also
£LBAO= «2DCO,
] £ZOBA = £0DC. Theo. 13
hence AABO = ACDO Theo. 2

F16. 75.—Theorem 6.

AO=0C
.. BO=0D Cor. 8. Q.E.D.
Theorem 7.—The sum of the interior angles of a polygon is

equal to two right angles, laken as many times, less two, as the
- figure has sides.

In fig. 76,
Given: Polvgon ABCDEF having # sides.
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p—

To Prove: Sum of the interior £=n—-2)X2rt £

Proof.

Draw diagonals from A. This divides the polygon into a
number of triangles.

The sum of the & of the A is equal lo the sum of the £ of the polygon.

The sum of the £of each A =2rt. £andthereare (n—2) A
' Theo. 4

.". the sum of the 4 of the (r —2) A, that is,

¥16. 76.—Theorem 7.

the sum of the £ of the polygon, is equal to (m—2)X
2rt. 4 Ax. 4. Q.E.D.

Circles.

Theorem 8.—If any lwo poinis be laken in the circumference
of a circle, the straight line which joins them will fall within the
circle.

Given: © ABC and points A and B in the circumference.
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To Prove: The straight line drawn from A to B will fall
within the circle.
Proof.
In fig. 83,
Take E, any point in AB, join DE, and let it meet the circle
in F.

PENTAGON

HEXAGON HEPTAGON

6 7

OCTAGON NONAGON DECAGON

8 9 10

SIDES SIDES

FiGs. 77 to 82.—Various polygons having from five to ten sides. Of these the most important
are the hexagon (six sides) and the octagon (eight sides).

DA=DE Post. 11
.£4DAB= £DBA Theo. 3
£DEB> £DAE Theo. 17
hence £4DEB> ZDBE
.DB>DE Theo. 18

hence
DF >DE
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and E is within the circle. Q.E.D.
The same may be proved of any point of AB.

Fi1G. 8.—Theorem 8.

Theorem 9.— Through three points nol in a siraight line one
circle, and only one, can be drawn.

In fig. 84,
Given: The three points A,B,C.

F16. 84.—Theorem 9.
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To Prove: Only one circle can be drawn through A, B
and C.

Proof.
Draw AB and BC.
Bisect AB and BC and erect L s, intersecting at some point O.

Any point in a | biseclor is equidistant from the ends of the line
bisected. Theo. 15

M
y

F1G. 85.—Theorem 10.

.". common point O is equidistant from points A, B and C.

.. A circle, described with center O and radius equal to
the distance between O and any one of the points, will pass
through the three points.

(The locus of a point in a plane al a given distance from a fixed point is a
circle.) .

Moreover, only one circle can be described because there is
only one point O lying in both 1s. Cor. 2. Q.E.D.
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Theorem 10.— The line of centers of two intersecting circles is
the perpendicular bisector of their common chord.

In fig. 85,

Given: Two circles intersecting at M and S and the line
OO0’ connecting the centers OO’.

To Prove: OO’ bisects MS, the common chord.

Proof.

Join the points O and O’ to M and S.
OM =0S and O'M =0'S. Post. 11

.. the two points O and O’ are each equidistant from M
and S. '

.. 00’ is the 1 bisector of MS. Cor. 9. Q.E.D.

Additional Theorems

11.—If a triangle and a parallelogram have equal bases and
equal altitudes, the triangle will be half the parallelogram.

12.—1If two parallel lines be cut by another line the exterior in-
derior angles are equal.

13.\—If two parallel lines be cul by another line the alternate
interior angles are equal.

14.—A right angle is half a straight angle.

15.—The locus of a point equidistant from the extremities of
a given line is the perpendicular bisector of tha: line.
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16.—Two triangles are equal if two sides and the included
angle of one be equal respectively to 1wo sides and the included
angle of the other.

 17.—If one side of a lriangle be produced, the exterior angle
is greater than either of the opposile interior angles.

18.—The greater angle of every Iriangle has the greater stde
opposite to it.

NOTE.—The presentation of the subject-matter of geometry as a connected and logical
series of propositions, prefaced by “Opol*’ or foundations, had been attempted by many; but it ie
to Euclid that we owe a complete exposition. There is probably little .n the Elements that is
original excépt the arrangement; but in this Euclid surpassed such predecessors as Hippocrates,
Leon, pupil of Neocleides, and Theudius of Magnesia, devising an apt logical model, although
when scrutinized in the light of modern mathematical conceptions the proofs are riddled with
fallacies. According to the commentator Proclus, the Elements were written with a twofold
object, first, to introduce the novice to geometry, and secondly, to lead him to the regular
solids; conic sections found no place therein.

NOTE.—What Euclid did for the line and circle, Appolonius did for the conic sections, but
there we have a discoverer as well as editor. Their works contain the greatest contributions to
ancient geometry. Between Euclid and Apollonius there flourished the illustrious Archimedes,
whose geometrical discoveries are mainly concerned with the mensuration of the circle and conic
sections, and of the sphere, cone and cylinder, and whose greatest contribution to geometrical
methad is the elevation of the method of exhaustion to the dignity of an instrument of research.

NOTE.—The extraordinary mathematical 1alent which came into being in the 16th and 17th
centuries reacted on geometry and gave rise to all those characters which distinguish modern
from ancient geometry. The first innovation of moment was the formulation of the principle
of geometrical continuity by Kepler. The notion cf infinity which 1t involved permitted gen-
eralizations and systematizations hitherto unthought of, and the method of indefinite division
applied to rectification, and quadrature and cubature problems avoided the cumbrous method of
exhaustion and provided more accurate results.

NOTE.—The Romans, essentially practical and having no inclination to study science qus
science, had a geometry which only sufficed for surveying, and even here there were abundant
inaccuracies, the empirical rules employed being akin to those ot the Egyptians and Heron.
The Hindus, likewise, gave more attention to computation, and their geometry was either of
Greek origin or in the form presented in trigonometry, more particularly connected with
arithmetic.
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LN =

£

10.

11.

12.

14.

15.

TEST QUESTIONS

What is a proposition?

Define: axiom, theorem, corollary, postulate, problem.

What do the abbreviations Q.E.D. and Q.E.F. stand
for?

How is a plane determined?

If two straight lines intersect, how do the opposite
angles compare?

Name the various triangles.

. What is the difference between a rhombus and a

rhomboid?

Prove that the diagonals of a parallelogram bisect each
other.

What is the sum of the interior angles of a polygon
equal to?

Show that if two points be taken in the circumference
of a circle the straight line which joins them will
fall within the circle.

Prove that through three points not in a straight line
one circle and only one can be drawn.

Show that the line of centers of two intersecting circles
is the perpendicular bisector of their common chord.

. If two parallel lines be cut by a straight line how do

the exterior interior angles compare?

What is the difference between a right angle and half
a straight angle?

What relation does the locus of a point equidistant
from the extremities of a given line bear to the
given line?
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16. Under what conditions are two triangles equal?
17. How do the angles of a triangle and the sides opposite
compare?

18. What is the magnitude of the sum of three angles of a
triangle?
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CHAPTER 3

Geometrical Propositions

In this Chapter, a number of propositions relating to lines,
triangles, quadrilaterals, etc., are given without proots foi
convenient reference. Numerous theorems with proofs are
given in the chapter preceding.

A

.F'

F16s. 86 and 87.—Propositions 1, 2 and 3, 7elating o lines.

Propositions Relating to Lines

1. If two lines intersect, then the opposite angles formed by the intersecting
lines are equal.

In fig. 86
Angle L = angle R
Angle A = angle F

2. When two lines intersect, any two edjacen! angles are equal o two right
angles.
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In fig. 86
L+ A = 180°
R+ F = 180°

3. If a line intersect two patallel lines, the corresponding angles formed by
the sntersecting line with the parallel lines are equal.

In fig. 87

[

L=L5A=A%R=R:F=F

Propositions Relating to Triangles

1. The sum of the three angles in a iriangle always equals 180 degrees,
‘Hence, if two angles be known, the third éngle can always be found.

In fig. 88

A+ B+C=180°
A = 180°— (B+C).
B = 180°— (A4 C).
< = 180°— (A4 B).

F16. 88.—Proposition 1, relating lo triangles.

£OLD OVER ON 1800
THESE LINES \

Fics. 89 and 90.—Visual proof that the sum of the three angles of a triangle is equal lo two right
angles, or 180°. Draw altitude and bisect it at R Through R, draw ke, parallel with
base and complete the rectangle hd,ms Cut out the triangle and fold over the ends on
the lines mh, kd and ds, as in fig. 90. Evidently the sum of the three angles L, A, and F,

thus folded equals two right angles or 180°
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2. If one side and two angles in one triangle be equal lo one side and similarly
located angles in another triangle, then the remaining two sides and angle are

also equal.

In figs. 81 and 92
1fg = a’, A = A’ and B = B’, then the two othersides and the remaining

angle are also equal.

-

L a . >|. l< a

‘<

F1Gs. 91 and 92.—Proposition 2, relating to triangles.

3. If two sides and one angle in one triangle be equal to two sides and a sim-
ilarly located angle in another triangle, then the Temaining side and angles are
also equal; provided, however, that the -{riangles be ¢ither both acute angled
triangles, both obtuse angled triangles, or both right angled triangles.

In figs. 93 and 94. )
Ifa = a’, b = b and A = A’, then the remaining side and angles are also

equal, the triangles in this case being both acute angled.

e N

- a -k a’ ]

F16s. 93 and 94.—Propositions 3 and 4, relating {o triangles.
A, If the three sides of one lriangle be equal to the three sides of another
triangle, then the angles in the two triangles are also equal.

In figs. 93 and 94.
Ifa =a’,b = ¥, and ¢ = ¢’, then the angles between the respective sides

are also equal. .
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5. If the three sides of one triangle be proportional to corresponding sides
in another triangle, then the triangles are called similar, and the angles in the
one are equal to the angles in the other.

In figs. 95 and 96

Ifa:b:ic =a’:'b’: ¢’-thenA = A',B=BandC =C'.

6. If the angles 1n one triangle be equal to the angles of another triangle, then
the triangles are similar and their corresponding sides are proportional.

In figs. 95 arid 96
IfA = A’,B = B’,andC = C’ then a:b:c = a’ :b' :c'.

SO

/- D
CL«——'/aa—*<—'/z.a—>lB

Fia. 97.—Proposition 7, relating to triangles.
F10. 98.—Proposition 8, relating to triangles.

7. If the three sides of alriangle be equal, that is, if the iriangle be equilaler-
al, then the three angles are also equal as in fig. 97.

Each of the three equal angles in the.equilateral triangle , fig. 97, is 60
degrees. If the three angles m a triangle be equal, then the three sides arz
also equal.
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8. A line which in an equilateral triangle bisects or divides any of the angles
tnto two equal parts, will bisect, also the side opposite the angle and be al.right
angles lo it as shown in fig. 98

If line AD, divides angle CAB, into two equal parts, it also divides liné
CB, into two equal parts and is at right angles to it.

9. If two sides in a triangle be equal—that is, if the triangle be. an isosceles
triangle, then the angles opposite these sides are also equal.

In fig. 99, if side b, equal side ¢, ‘then angle B, equals angle C.

10. If two angles in a triangle be equal, then the sides opposite these angles
are also equal.,

In fig. 99, if angles B and C, be equal then side b equals side c.

C D B

Fic. 100.—Proposition 11, relating to triangles
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11, In an isosceles triangle, if a straight line be drawn from the point where
the two equal sides meet, so that it bisecls the third side or base of the triangle,

- thei -3t also bisects the angle between the equal sides and is perpendicular to
. thebase,

In fig. 100
If & = ¢ and AD bisects CB, then angle CAD = DAB.

12, In every triangle, that angle is greater which is opposile a longer side.
In every triangle, that side is grealer which is opposile a grealer angle,

o
¥

P30 101.—Proposition 12, relating to triangles.

*
Fra. 102.-—Proposition 13, relating to triangles,
In fig. 101

If side ¢, be greater than side b, then angle C, is greater than angle B;
also, if angle C, be greater than angle B, then sxde ¢, is greater than side b,

13. In every triangle, the sum of the lengths of two sides is always greater
than the length of the third.

Infig. 102
Side @ 4 side ¢ is greater than side b.
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14, If one side of a triangle be produced, then the exterior angle is equal to
the sum of the two opposite tnterior angles.

In fig. 103

Angle D = angle A + angle C. In the case of an equilateral triangle,
angle D = 60° 4 60° = 120°.

3

®16. 103.—Proposition 14, relating to triangles.

LEG

ALTITUDE —>~

—~BASE

F16. 104.—Quadrilateral illustrating legs, bases, etc. The parallel sides are the bases; the
distance between the bases, the altitude; a line joining two opposite vertices, a diagonal.
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Propositions Relating to Quadrilaterals

g 1. In any figure having four sides, the sum of the interior angles equals 360
egrees.

Infig. 105

L+A+R+F = 360°

s ‘
A @° X
<
g b~
P.oo s 1802,
v . .
1 F NG .

Fies. 106 and 107 —Visual proof that the sum of the angles of a quadrilateral is equal to
four right angles or 360° Draw a diagonal which will divide the figure into two triangles
giving the angles L,A,F and L’,A’,F’. Fold over the angles of each triangle as directed in
figs. 89 and 90, thus obtaining angles L,A,F,=180° and angles L’,A’,F’,=180°, a total
of four righ?’ angles or 360°, as in fig. 107.

'_.——’1.
—7 ?
\
Y ‘\/A @
/ /I
‘r z i

Fi1a. 108.—Proposition 2, relating to quadrilaterals

Fio. 109.—Proposition 3, telating lo quadrildterals.
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2. The sides which are opposile each other in a parallelogram are equal.
In fig. 108

a =fand r = I.
3. The angles which are opposite each other in a parallelogram are equal.

In fig. 109
A=FandL = R.

4. The diagonal divides a parallelogram into two equal parts.
In fig. 110

triangle M = triangle S
5. If two diagonals be drawn in a parallelogram, they bisect each other.
In fig. 111

HO = OD and KO = OP

K D

Fia. 110.—Proposition 4, relating to quadrilaterals.

F16. 111.—Proposition 5, relating to quadrilaterals.

Propositions Relating to Polygons

1. By drawing all the diagonals possible from one verlex of a polygon, the
number of triangles thus oblained is always two less than the number of sides.

In fig. 112, there are
6 — 2 = 4 triangles, L,A,R and F.
2. The sum of the angles of a polygor. is equal 1o 180° multiplied by the num-
ber of sides minus two.
In fig. 112
Sum of angles = 180° X (6 — 2) = 720° or 8 right angles
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Propositions Relating to Regular Polygons
1. The angles at the cemter of a regular polygon are equal.

In fig. 113
L=A=R=F=0G.

2. Straight lines from the center lo all the vertices of a regular polygon divide
the polygon inlo as many equal isosceles triangles as there are sides.

In fig. 113, the five lines, 01, 02, 03, 04 and 05 divide the polygon into
5 triangles,

$16. 112.—Propositions 1 and 2, relating to polygons.

F16. 113.—Propositions 1, 2 and 3, relating 1o regular polygons

3. Straight lines from the center to all the vertices of a regular polygon and
berpendicular to the sides divide the polygon into twice as many right triangles
as there are sides of the polygon.

‘In fig. 113, the lines 01, 02,03, 04 and 05 and perpendiculars 06, 07,
08, 09 and 010 divide the polygon into 5 X 2 = 10 right tx_'iangl&c.
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Propositions Relating to the Circle

1. An angle inscribed in a semi~circle.is o right angle. As in fig, 114.
2. The perpendicular to a radsus at its eglremity is a tangent 1o thé circle.

Asin fig. 115.
y~ TANGENT

RADIUS
S
o
—14/
902
DIAMETER™ ™y

¥1a. 114.—Proposition 1, 7elating to circles.
F1a. 115.—Proposition 2, 7elaling to circles.

3. A radius perpendicular to a chord bisecls the chord. As in fig. 116,

4, Two tangents from an exlerior point make equal angles with the sireight
line which joins the exterior point lo the cenler of the circle. Asinfig. 117,

a
‘:90‘°
CHORD .
~%a ——%a , =<9
' RADIUS 0

F1a. 116,—Proposition 3, relating to circles.
Fia. 117.—Proposition 4, relating to circles.

POINT OF TANGENCY

Tros. 118 and 119.—Proposition 5, relating lo circles.
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5. If two circles be langent to each other then the straight line which passes
2hrough the centers of the two circles must also pass through the point of tan-
gency. As in figs. 118 and 119,

6. The angle between a tangemt and a chord drawn from the point of tangency
| equals one half the angle at the center sublended by the chord.

In fig. 120

Angle L = 15 angle F.

; )
VA /Q

#xa. 120,—Proposition 6, relating io circles.
¥10. 121.—Proposition 7, relating 1o circles.

7. The angle between a tangent and a chord drawn from the point of tangency
: equals the angle at the periphery subtended by the chord.
Infig. 121
Angle . = angle F.

8. If an angle at the circumference of a circle, between two chords, be sub-
tended by the same arc as the angle at the center between two radii, then the
angle at the circumference is equal to one half of the angle at the cenler.

Infig. 122

L =3%F.

F16. 122.—Proposition 8, relating to circles,
¥i1a. 123.—Proposition 9, relating to circles.
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9. All angles having their vertices at the periphery of a circle and subtended
by the same chord are equal.

In fig. 123
L=A=R=F.

10. An angle subtended bv a chord in a circular arc larger than one
half the circle s an acule angle—an angle less than 90 degrees.

In fig. 124

Angle L is less than 90°.

Fi6. 124 ~~Proposition 10, relating to circles.
Fia. 125.—Proposition 11, reiating to circles..

FI1G. 126.—Proposition 12, rdaling lo circles.
Fi1G. 127.—~Proposition 13. relating o ctrcles.
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11. An angle subtended by a chord sn a tércular segment less than one half
the circle is an obtuse angle, that is, an angle greater than 90 degrees.

Infig. 125
Angle F is greater than 90°.

12. The length of circular_arcs of the same circle are proportional to the cor-
responding angles at the center,

Infig. 126
L:F<1i:f.
CUMFEg RCMPEREN e
o
r

Fics. 128 and 129.—Proposition 14, relaling 16 eircles.

13. The length of circular arcs having the same cenler angle are proportionol
to the length of the radii.

Infig. 127
L:F=R:R’

14. The circumferences of two circles are proportional o their 1adif.
In figs. 128 and 129
L:F=R:R.
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Propositions Relating to .Ellipses

1. The foci are at equal distdnces from the exiremilies of the major axis, and
are also equidistant from the center of the ellipse.

In fig. 130
ML = FS and OL = OF.

9. The positions of the foct depend upon the ratio of the axes.

In fig. 130
ML : LO = HO : MO.

3. The major and minor axes of an ellipse divide the figure inlo Sfour similay
parts.
In fig. 130
g MOH = HOS =MOD =DOS
NORMAL ¢

FOCUS _ G rocus Q

o
"
)

M | MAJOR [ AXIST & ' L Mz |-"

MINOR
{AXI1S

D

F1G. 130.—Propositions 1 to 5, relaling lo ellipses.
F1G. 131.—Proposition 6, relating to ellipses.
4. The sum of the lengths of lines from the foci to any point on the curvg
{s @ constand.

In fig. 130
LG 4 FG = constant.
5. The sum of the lengths of the lines joining the foci to any point on the
curve equal length of major axis.
Infig. 130
1LG + GF = MS.
LH + HF = MS,
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6. A normal to the curve at any point bisects the angle formed by lines
from the foci to that point.

In fig. 131,

Normal NR bisects angle ¢ formed by lines LG and FG, from foci L
and F, to point Ga

TEST QUESTIONS

Lt

1. Give visual proof that the sum of the three angles of a
triangle is equal to two right angles or 180°.

2. State a few propositions relating to triangles.
3. Draw a quadrilateral showing various parts.

‘4. Give visual proof that the sum of the angles of a
quadrilateral is equal to four right angles or 360°.

S. State a few propositions relating to regular polygons.
6. How does a radius, perpendicular to a chord, cut the

chord?

7. How do the angles compare which have their vertices
at the periphery of a circle and are subtended by
the same chord?

8. State some propositions relating to circles.
. How are the foci of an ellipse located?

0. How do the major and minor-axes of an ellipse divide
tha figure? :

=]
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CHAPTER 4

Geometrical Problems

Geometrical Problems.—The following problems illustrating
how various geometrical figures are constructed, -are to be
solved by the use of pencil, dividers, compasses, and scale.

Many of these problems are such as are encountered in sheet
metal work in laying out patterns. Proficiency in the solution
of these problems will be of value to draughtsmen.

Problem 1.—To bisect or divide into two equal parts a straight line or drc
of acircle.

In fig. 132, from the ends AB, as centers, describe arcs cutting each
other at C and D, and draw CD, which cuts the line at E, or the arc at F.

D

s K

F

NE

| |
B A 1 Cc
Fic. 132.—Problems 1 and 2. To biseck a straight line or arc of a circle and to erect o per-
Dendicular to the line whichis a radial line lo the arc.

Fi16, 133.—Problems 8 To erect a perpmds'cul;r to a straight line, from a given point in that
line,”
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Problem 2.—To draw a perpendicular to a straight line, or a radial line
loanarc.

In fig. 132 the line CD is perpendicular to AB, moreover, the line CD,
is radial to the arc AFB.

Problem 3.—To erect a perpendicular lo a straight line, from a given paint
in that line.

In fig. 133 with any radius from any given point A, in the line BC,
describe arcs cutting the line at B and C. Next, with a longer radius de-
scribe arcs with B and C, as centers, intersecting at D, and draw the
perpendicular DA, ’

A

£F1G. 134.—Problem 3. Second method.

F1G6. 135.—Problem 3. Third method (boat builder's laying down method).

Second methad. In fig. 134, from any center F, above BC describe a
circle passing through the given point A, and cutting the given line at D;
draw DF, and produce it to cut the circle at E; now draw the perpendicular
AE.

Third method (boat builders’ laying down method)—In ﬁg; 135 let MS
be the given line and A, the given point. From A, measure off a distance
AB, say 4 ft. With centers A and B, and radii of 3 and 5 ft. respectively,
describe arcs F and L, intersecting at C. Draw a line through A and C.
which will be the perpendicular requireli.

Fourth method.— In fig. 136, from A, describe an arc EC, and from E.
with the same radius, the arc AC. cutting the other at C; through C, draw
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a line ECD, and set off CD, equal to CE, and through D, draw the perpen-
dicular AD.

Problem 4.—To erect a perpendicular to a straight lire from any point
without the line.

In fig. 137, from the point A, with a sufficient radius, cut the given line
at F and G; and from these points describe arcs cutting at E. Place
triangle on points A and E, and from A, draw perpendicular to line GF

Second method.— In fig. 138, from any two points, B,C, at some distance
apart, on the given line, and with the radii BA, CA, respectively, describe
arcs cutting at A and D.  Place triangle on points A and D, and draw the
perpendicular AD.

; ®

. E A
Fi16. 136.—Problem 3. Fourth method.
Fi6. 137,—Problem 4. Ta erect a perpendicular to a straight line, from any point withou! the

fine. If there be no room below ihe line, the intersection may be taken above the line, that
i8 to say, between the line and the given point.

A
ey RN
)
pRadly |
- c D
- /
Pld ’ - ey
’»” / N *
i ~3 4
o3 B . .
, A B
5
7 e
—"‘L”
-'l/ D_

F16. 138.—Problem 4. Secorid method.
i FI16. 139.~Problem 5. Through a given point to draw a line parallel witk a given line.
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Problem 5.-Through a given point to draw aline parallel with a given Jine,
In fig. 139, with-C, as center describe an arc-tangent to the given line
AB; the radius will then equal distance from given point to the given line.
Take a point B, on line remote from C, and with same radius, describe an
aré. Draw a line through C, tangent to this arc and it will be parallel to

the given line AB.

Second method —In hg. 140, from A, the given point, describe the arc
FD, cutting the given line. at’'F; from F, with the same radius, describe
the arc EA, and set off FD, equal to EA. Draw the parallel through the

points AD.
A, D
/ ]
! i
' !
E F

F16. 140.~Problem 5.

A

Fi16. 141.~Problem 6. To divide a line into @ number of equal parts.

Problem 6.—T9 divide a line inlo a number of equal paris.

_In fig. 141 assuming line AB, is to be divided into say 5 parts, drawa |,
d:ggo line AC, and space off 5 unit lengths. Join B5, and through the !
points 1,2,3,4, draw lines 11, 24, etc., parallel to B5, then will AB, be divided '

into five equal parts, Al, la, a7, 7f, and fB.
Problem 7.—Upon a straight line to draw an angle equal to a given angle.

In figs. 143 and 144 let A, be the given angle and FG, the line.
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With any radius from the points A and F, describe arcs DE and IH, cut-
ting the sides of the angle A, and the line FG.

Set off the arc IH, equal to DE, and draw FH. The angle F, is equal to
angle A, as required.

Problem 8.—To bisect an angle

In fig. 145, let ACB, be the angle; with center C, describe an arc

Y

MARRK INCh
DIVISIONS

\
12 3 4 & k"’s

F1G. 142. —To divide a given line into any number of equal parts without dividers. Let
M S, be the line and say it is to be dividzd into seven equal parts. Erect perpendiculars
M X and S Y. Lay the O, mark of the scale on the line M X, and place scale at such angle
that coincides with line S Y. Draw a light line L F, and mark the inch divisions as shown,
With a triangle and T square draw lines from the pointson L F, to M S, cutting M'S, at 1, 2,

3, etc., which divide M S, into seven equal parts.

. "
A

F
7.

\
“
)
[y
[}
.
1

(]
Upon a straight line to drow an angle equal ta g given angle
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cutting the sides at A and B. On A and B, as centers describe arcs cut-
ting at D. A line through C and D will divide the angle into two equal
parts.

Problem 9.—To find the center of a circle

Fic. 145.—~Problem 8. To bisect .an angle.
FiG. 146.—Problem 9. To find the cenler of a circls.

A Y C

FIG. 147.~Problem 9. Second method

Fi1G. 147.—Problem 10. To describe a circle passing through three given points.

l:'xc. 148.—Problem 11. i‘lmmgh two given points to describe an arc of circle with o given
vadius.
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In fig. 146, draw any chord as MS. With M and S, as centers and any
radius, describe arcs L,F, and L’,F’, and a line through their intersection.
giving a diameter AB. Applying same construction with centers A and B,
describe arcs ef, and ¢’ f’. A line drawn through the intersections of these
arcs will cut AB, at O, the center of the circle.

Problem 9.—Second method. To find the center of a circle.

In fig. 147, select three points. A,B,C, in the circumference, well apart:
with the same radius describe arcs from these three points cutting each
other, and draw two lines DE, FG through their intersections. The
point O, where they cut is the center of the circle or arc.

Problem 10.—To describe a circle passing through three given poinis,

In fig. 147, let A,B,C, be the given points and proceed as in last problem
to find the center O, from which the circle may be described. This problem

A

E -

FiG. 149.—Problem 12. To draw a langent to a circle from a given posint in the circumference.

is useful in such work as laying out objects of large diameter as an arch,
when the span and rise are given.

Problem 11.—T hrough two given poinis lo describe an arc of a circle with
a given radius.

In:fig. 148, take the given points A and B, as centers, and, with the
given radius, describe arcs cutting at C; from C, with the same radius,
describe the required arc AB.

Problem 12.—To draw a langen! lo a circle from a given poinl in the cir.
cumference. .

In fig. 149 from point A setoff equal segments AB, AD; join B}, ard
draw AE, parallebwith it, for the tangent.
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Problem 13.—O0n a given straight line AS, lo construct any regular polygon
say a pentagon.

In'fig. 150 produce the given side A5, say to the left. With center A. and
radius A5, describe a semi-circle. Divide the semi-circle into as many equal
parts as the polygon is to have sides; in this case 5 equal parts, by trial with

C

B AN\ 5

A8

Fi1G. 150.—Problem 13. On a given straight line, lo construct a regular polygon.

compasses. From A, draw A2, which gives another side of the polygon;
and no matter how many sides the polygon is to have, always draw from
A, to the second division on the semi-circle. Bisect the sides 2 A, A 5, by
lines 6 7, and 8 7, intersecting at point 7, which is the center of the polygon.
‘With center 7, and radius 7 A, describe the circle. Mark off, on the circum-
ference, the divisions 2C, CD, equal to A5. Joint 2C, CD, D5. Then
A2CDs5, is the required regular polygon.
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Problem 14.—~To ascertain approximately, the length of the circumference
of a given circle.

Infig. 151, draw 2 diameter AB. Find center C. Draw AD, perpendicular
to AB, and 3 times the length of the radius. Draw BE, perpendicular to AB.
With 30° triangle, draw angle BCH = 30°. Mark joint J, on BE. Join
J D. Then line J D, is (approximately) equal to half the circumference; and .
twice J D = the whole circumference. This method is sufficiently accurate

. . ] 1
for all practical work, because the result is wrong only by about a 100,000

D

Flf: 1151.—P'ioblem 14, To ascertain approximately, the length of the circumference of a given
1rcie.
part. This problem helps. to ascertain approximately, the length of certain
portions of the circumference. Thus }4 of JD = 34 of the circumference.
Archimedes demonstrated that the diameter is to the circumference,
within a minute fraction, as 7 is to 22, or 1 to 31/;. Thus, for all practical
purposes, it may be assumed that if the diameter = 1 in., the circumference
= 31/; ins. To describe-a circle having a circumference equal to the cir-
cumferences of any number of given equal or unequal circles: Draw a line
equal to the sum of the dicmelers of the given circles. This line is the dia~
meter of the required circle.
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Problem 15.—To find the center of a given circle, or aroof a circle.

In fig. 152, draw any two chords, 12 and 23. Bisect these chords by
perpendiculars 45, and 67, intersecting at A, Point A, is the center of the
circle or arc. The chords are not obliged to meet at 2. They may be drawn
anywhere in the circle or arc, but it is better, when possible, to let them be
at about right angles to each other. The chords may intersect. They should
not be made too short.

F1G. 152.—Problem 15. To find the center of a given circle, or arc of a circle,

FiG. 153.—Probtem 16. To draw a langent lo a given circle from any given point.)
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Problem 16.—To draw a tangent to a given circle from any given point C,
outstde the circle.

In fig. 153, 1 is the center of the given circle.Join points C1.Bisect C1,
at 2; and with center 2, and radius 2 C, or 21, describe a semi-circle, cutting
the circleat D. Point D, is the point of contact. Through D, draw CD,
which is the required tangent.

CD, is tangent because a line through the point of contact D, and center
1, of the circle makes a right angle with CD. Why?

Fi1G. 154.—Problem 17. To draw an inlerior tangent lo two unequal circles.

Problem 17.—To draw an interior tangent lo two unequal circles M and O,

In fig. 154, join centers M and O. "Bisect MO, at T, and describe a
semi-circlé on MO. From P, on the larger circle, mark off PQ = OR, the
radius of the smaller circle. With center M, and radius MQ, describe arc
QS, cutting the semi-circle at V. Join MV, and mark point W. Draw OX.
parallel withM YV, Through the points of contact W and X, draw the inter-
ior tangent WX.
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B F G

Fi16. 156.—Problem 19. To describe tangen! circles langen! lo two inclined lines,
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Problem 18.—To draw tangenis to a circle from points without.

In fig. 155, from A, and with the radius AC, describe an arc BCD, and
from C, with a radius equal to the diameter of thecircle, cut the arc at BD;
join BC, CD, cutting the circle at EF, and draw the tangents, AF, AE.

Problem 19.—Between two inclined lines to describe a series of ctrcles tan- -
gent {o these lines and langent o each other.

In fig. 156, bisect the inclination of the given lines AB, CD, by the line
NO. From a point P, in this line, draw the perpendicular PB, to the line
AB, and about P, describe the circle BD, touching the lines and cutting the
center lineat E. From E, draw EF, perpendicular to the center line, cutting

E

c F
A ° B

F16s 157 and 158.—Problem 20. To construct a triangle having a given Base and equivalent
to any rectilineal figure

AB, at F, and about F, describe an arc EG, cutting AB, at G.Draw GH par
allel with BP, giving H, the center of the next circle, to be described with
the radius HE, and so on for the next circle IN.

Problem 20.—To construct a triangle, having a given base A B, and equiva-
lent 1o any rectilineal figure, say equal in area o the iriangle CDE.

In figs. 157 and 158, produce one side CD, to F, making CF, equal to
the given base AB. Join FE. Draw DG, parallel to FE. Join FG. Then
CFG, is the required triangle.

Problem 21.—To construct a rectangle, when each of the diagonals is equal
to A B, and each of one pair of opposite sides is equal to C D.

In figs. 159 and 160, bisect ABat 1, and with center 1, and radius 1A,
describe a circle. ' With centers A and B, and radius CD, obtain points 2
and 3. Join A2, 2B, B3, 3A. Then A2B3 is the required rectangle. If
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the longer side A2 be given, instead of the shorter side, then describe arcs
at 2 and 3, with the longer side as radius.

Problem 22.—To construct a square, whose diagonal is given

In fig. 161 Bisect R S, by a perpendicular 2 3.Cut off 14, and 15, equal to
1R.or 1S, Join R5, 55, $4, 4R. Then R554 is the square required, having
-a given diagonal RS,

Problem 23.—To construct a square equal in area 10 any number of given
squares. 2

3

£16s. 159 and 160.—Problem 21. To construct a rectangle when each diagonal is equdl &
@ given line and each of one pair of opposile sides is ejual to another given line.
/ \ FiG. 161.—Problem 22. To consirua
\ / @ square with given diagonal.
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In figs. 162 and 163:

Let A, B, C be the side of the three given squares. Make D-G = A
and DH = B. Join G H. Then the square upon G H equals the squares
upon Aand B. Make DK = GHand DL.= C. Join K L. Then the
square K L N M, equals the three squares upon A, B and C.

x5 M

E A
B
c
K
G
. N
] L H 4

F1cs. 162 and 163.—Problem 23. To construct a square equal in area to any number of given
squares.,

K/

E A F_ B
l :
G C H D

F1G. 164.—Problem 24. To construct a square equal in area to any parallelogram.

Problem 24.—To construct a square, equal in area lo any parallelogram.,
Thus, construct a square equivalent to the thomhoid C DB A,

In fig. 164, make the rectangleC D F E, equal to C DB A, by producing
E F, and erecting perpendiculars C E, D F. Produce D C. Make
CG, =CE. BisectG D, at H. With center H, and radius H G, describe
a semicircle. Produce C E, to K. Then C K, is the mean proportional
if G C, C D, and a square constructed with C K as a side is equal in
wrea to the rhomboid CD B A, -
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Problem 25.—Describe a catenary having given the span and versed sine.

In fig. 165, divide half span, as AB, into any required number of equal
parts, as 1, 2, 3 and let fall BC and AQ, each equal to versed sine of curve:

A 1 : 2 3 B

’
1

’)
24

/|
3"\ \
F1G. 1656.~—Problem 25. To describe a catenary having given the span and versed sine.

L
[
)

%
0 f
.

~ T

L
S

F1G6. 166.—~Problem 26. To consituct a circle equal in area lo a given square.
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divide AO into like number of parts, 1/, 2’, 3/, as AB. Connect C’1, C2'

and C3’ and points of intersection of perpendiculars let fall from AB will
give points through which curve is to be drawn.

The catenary is the curve assumed by a perfectly flexible cord when its
ends are fastened at two points, the weight of a unit length being constant.

LG .-
\\\/’r .

A B -

FIG. 167.~—~Problem 27, To construct an equilateral triangle on a given bass.

Problem 26.—To construct, a circle equal in area lo a given square.

In fig. 166, let LF be side of the given square. Through L, draw
proportional line L 8, and with any convenient scale divide if into 12 equal
parts. At the point f, or 10th division, draw line f F, and at a point ¢,
between 11 and 12 drawl M parallel withfF. LM is the diameter of the
required circle. Bisect this diameter at O and with radius O L describe
the required circle.
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Problem 27.—To construct an equilateral triangle on a given base.

In fig 167, with A, and B, as centers and radius equal to AB, describe
arcs [ and y. At their intersection C, draw lines CA, and CB, sides of the
required triangle.

Problem 28.—To construct a square on a given base,

In fig. 168, with end points A and B, of base as centers and radius
equal to AB, describe arcs cutting at C; with C as center, describe arcs

C~

Figs. 1569 to 171.—Problem 30. To construct a parallelogram having given the sides and on
ang

Fic. 172 -Problem 31, To describe a circle about a triangle.

A
CIRCUMSCRIBED
. ¢ CIRCLE
N W
‘\“5/,// )
R INSCRIBED
SN CIRCLE
'II \\‘ \.

Fics. 173 and 174.—Problem 32. To circumscribe abowut. (fig. 173) and inscribe (fig. 174) a
circle fn o square
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cutting tﬁe others at DE; and with D and E, cut these at FG. Draw AF,
and BG, and join the intersections HI, then ABIH is the required square,

Problem 29.—To construct a reclangle on a given base.

In fig. 168, let AB, be given base. Erect perpendiculars at A and B,
equal to altitude of the rectangle, and join their ends H and I, by line HI,
ABIH, is the rectangle required.

Problem 30.—To construct a parallelogram having given lhe sides and an

angle.

A

D

L

7/
N

B

N
7/

F

C

Fi6. 175:~-Problem 33. To circumscribe a square about a circle. Second method

In figs. 169 to 17}, draw side DE, equal to the given length A, and
set off the other side DF, equal to the other length B, forming the given
angle IGH. From E, with DF, as radius, describe an arc, and from F, with
the radius DE, cut the arc at C. Draw FC, EC. Or, the remaining sides
may be drawn as parallels to DE, DF

Problem 31.—To describe a circle about a triangle.

In fig. 172. bisect two sides AB, AC, of the triangle at E and F, and
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from these ‘points draw perpendiculars intersecting at K. From the center
K, with the radius KA, describe the circle ABC.

Problem 32.—To circumscribe about and inscribe a cirele in a square.
In fig. 173, draw the diagonals AB and CD, intersecting at E.  With

B

F16. 176.—Problem 34. To inscribe a circle in a triangle.

E X

F16. 177.~Problem 35. To inscribe any reguiar polygon in a given circle.
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radius EA, circumscribe the circle. To inscribe a circle let fall from the
center (as just found) a perpendicular to oné side of the square as OM, in
fig. 174, ~ With radius OM, inseribe the circle.

Problem 33.—To circumscribe a square about a circle,

In fig. 175, draw diameters MS and LF, at right angles to each other.
Atthepoints M, L, S, F, where these diameters cut the circle, draw tangents
that is, lines perpendicular to the diameter, thus obtaining the sides of the

circumscribed square ABCD.

I .
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F1G..178.—Problem 36. To inscribe a pentagon in a circle.

Problem 34.—To inscribe a circle in a triargle.

In fig. 176, bisect two of the angles A and C, of the triangle by lmes
cutting at D; from D, draw a perpendicular DE, to any side, and with DE,
as radius, describe a circle.

Problem 35.—To inscribe any regular polygon in a given circle.
In fig. 177, draw a diameter D 5. Divide D 5, into as many equal parts
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as the polygon is to have sides, in this case, five equal parts. With points
D and 5, as centers, and the diameter D 5, as radius, describe arcs inter-
secting at 6. From 6, draw a line through Point 2 to E. Join D E, which
is one side. of the required polygon. Make E F, F G, G H, each equal
DE. JoinEF,FG,GH,HD. Then DEF G H, is the required polygon.

This method is only approximately correct. It is however, sufficiently
‘accurate for all practical work. On the same principle, an arc can (approx-
imately) be divided into any number of equal parts, or a circle into equal
sectors. By this method, a regular polygon having any number of sides

F—"" ~E

A __—B

FiG. 179.—Problem 37. To construct a hexagon upon a given straight line.

can be inscribed, (approximately) within a given circle. If a nonagon is
to be inscribed, divide the diameter into nine equal parts, and then pro-
ceed as above. To get the first side of the polygon, always draw a line
from point 6; through the 2nd division on the diameter, no matter how
many sides the polygon is to have. In a polygon, that has an even number
of sides, a line drawn from one angle to the opposite angle (a diagonal)
passes through the center. When there is an odd number of sides, a line
from an angle through the center, bisects the opposite side. Note these
facts as tests for accuracy in the work.
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Problem 36.—To inscribe a pentagon in a circle.

In fig. 178, draw two diameters, AC, BD, at right angles intersecting
at O; bisect AO, at E, and from E, with radius EB, cut AC, at F, and
from B, with radius BF, cut the circumference at G,H, and with the same
radius step round the circle to I and K; join the points so found to form
the pentagon.

Problem 37.—To construct a hexagon upon a given straight line.

In fig. 179, from A and B, the ends of the given line describe arcs
intersecting at g; from g; with the radius gA, describe a circle. With the
same radius set off the arcs AG, GF and BD, DE. Join the points so found
to form the hexagon.

Z|m
-

o R )

FIG. 180.—Problem 38. To inscribe a hexagon in a circle.

FiG. 181.—Problem 39. To construct an octagon on a given strasght line.

Problem 38.—To inscribe a hexagon in a circle.

In fig. 180, draw a diameter ACB; from A and B, as centers with the
radius of the circle AC, cut the circumference at D,.E, F, G, and draw AD,
DE, etc., to form the hexagon.

The points DE, etc., may be found by stepping the radius (with the
dividers) six times round the circle.
Problem 39.~To construct an oclagon on a given siraight line.
In fig. 181, produce the given line AB, both ways, and draw perpendicu-

lars AE, BF; bisect the external angles A and B, by the lines AH, BC,
which make equal to AB.Draw CD and HG parallel with AE and equal to



150 Geometrical Problems

AB; from centers G, D, with the radius AB, cut the perpendiculars at EF,
and draw EF, to complete the octagon.

Problem 40.—To inscribe an octagon in a square.

In fig. 182 draw the diagonals of the square intersecting at e; from the
A f g B
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FiG. 182.—Problem 40. To inscribe an oclagon in a square.
Fi6. 183.—Problem 42. To inscribe an octagon in a circle.

£ r C

F
h
A B
H D G

Fi16. 184.—Problem 42. To circumscribe .an octagon about a circle.
F16. 185.—Problem 43. To describe an ¢'II£pse when the two axes are given.

corners A,B,C,D, with Ae, as radjus, describe arcs cutting the sides at
£, h, etc.; and join the points so found to complete the octagon.
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\

Problem 41.—To inscribe an oclagon tn a circle

In fig. 183, draw two diameters AC, BD, at right angles; bisect the
arcs AB, BC, etc., at ¢, f, etc., and join the points of division to form the
octagon.

Problem 42.—To circumscribe an oclagon about a circle.

In fig. 184, circumscribe a square EFGH, about the given circle Draw

F1G. 186.—~Problem 43, Second method.

diagonals HF and EG, and tangents % 7, etc., through points where the
diagonals cut the circle to form with the intercepts, the octagon.

Problem 43.—To describe an ellipse when the two axes are given

In fig. 185, draw the major and minor axes AB and CD, at right angles,
intersecting at E.  On the center C, with AE, as radius, cut the axis AB, at
F and G, the foci; insert pins through the axis at F and G, and loop a
thread or cord upon them equal in length to the axis AB, so that when
stretched it reaches the extremity C, of the minor axis, as shown in
dotted lines. Place a pencil inside the cord, as at H, and guiding the
pencil in this way, keeping the cord equally in tension, carry the pencil
round the.pins FG, and so describe the ellipse.

Second Method.— In fig. 186 along the edge of a piece of paper, mark off
a distance ac, equal to AC, half the major axis, and from the same point, a
distance ab, equal to CD, half the minor axis. Place the slip so as to bring
the point b, on the line AB, or major axis, and the point ¢, on the line DE,
or minor axis. Set off the position of the point a. Shifting the slip. so that
the point 5, travels on the major axis, and the point ¢, on the minor axis,
any number of points in the curve may be found, through which the curve
may be traced.
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Problem 44.—To construct a spiral or volute, by means of tangential arcs
of circles.

Construct a square 1 2 3 4, and produce the sides, rﬁg. 44. With center
2, and radius 2 1, describe arc 1
A; center 3, and radius 3 A, de-
scribearc A B; center4, and radius
4 B,describearcBC;center 1,and
radius 1 C, describe C D; center
2, and radius 2 D, describe D E.
In the same way describe any

E
A
2
3 B number of arcs, EF, FG, G H.
J The curve obtained is a spiral or
C

D

TR

volute. 12 3 4, is the eye of the
spiral. The eye can be formed by
any regular or irregular recti-
lineal figure, not having a
re-entrant angle. In every case,

G| proceed as above.
F1G. 187.—Problem 44. To construct a spiral or volute, by means of tangential arcs of circles.
K D

H B

E /

G /] > P
§<
| M / ] J

c F

N ,/

F1q. 1R8. —-General notes about ellipses. If from any points G, H, in the curve of an
ellipse, lines parallel to the major axis I J, be drawn, or to the minor axis K L, bedrawn, and
the distance M N, be made equal to M H, or O P, be made equal to O G, other points, N, P,
in the elliptic curve are obtained. A line QC, or Q D, drawn from any pdint Q, in a diam-
eter E F, and parallel to a conjugate diameter A B, is called an ordinate. M H, O P, are
also ordinates. The wholeline C D, HN, or G P, is a double ordinate. Draw any cord
C D, parallel to A B. Bisect AB,CD,atQR. Then EF, drawn through Q R, is a con-
jugate diametér to A B. The minor axis is called *“‘the conjugate axis,” because of its
rélationship to the major axis. The major and minor axes are a pair of conjugate diameters.
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Problem 45.—To find the foct of an ellipse and then 1o draw the elliptic
curve by means of inlersecling arcs, the major axis P Q and minor axis T V
being given.

In fig. 189, with T, one end of the minor axis, as center and X Q, half the
major axis as radius, describe arcY, cutting the major axis at F/, F”. These
points are the required foci. Between F” and X, mark any number of points
1,2,3,4. WithcentersF’,F”, and radiusPI, describe arcs @, @, a,a. With
the same centers and radius Q 1, cut arcs a, @, @, a, at b, b, b, b. With
each focus as center and radius P2, describe arcs, ¢, ¢, ¢, ¢, With the

MINOR AXIS

X

MAJOR AXI1S

Fic. 189.—Problem 45. To construct an ellipse having given minor and major gxes.
F1G. 189.—Problem 46. The major axis and foci of an ellipse being given to find the minor axss.

same centers and radius Q 2, cut these arcs at d, d, d, d. In the same way
use points 3 and 4, to get g, g, &, . Through points b, d, g, k, draw the
curve of the ellipse. The points 1, 2, 3, 4 may be at any distance apart,
but it is more convenient to'let the divisions decrease in length toward F’,
Do not make the arcs too long, as this causes confusion.

Problem 46.—The major axis and foci of an ellipse being given to find
the minor axts.

In fig. 189, bisect P Q,at X. With X P, or X Q, as radius and the
foci as centers, strike arcs cutting at T and V. Join T V. Then TV, is
the minor axis.
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Problem 47.—Draw the curve of an ellipse by means of interseciing lines.
The lengihs of the major and minor axes AB, and CD, being given.

In figs. 190 and 191 bisect CD at E. Bisect AB, at X, by a perpendicular.
Make X G, X H, each equal to E C, or E D. With centers G, H, and radius
X A, describe arcs at K, K.K,K. With centers A, B, and radius X G, cut
thesearcsatL, M, N, O. JoinLM,MO,ON,NL, DivideAL,AN,BM,.
BO, A X, BX, each into the same number of equal parts, say four. Draw
lines from G, to 1, 2, 3,0on A L, BM. From H, through 1 (on A X), draw
a line to meet 1 G, at x. Through 2, draw a line from H, to meet 2 G, at

> =~ N Q@ X

K H K
c + D

<168. 190 and 191.—Problem 47. Draw the curve of an ellipse by mca"ns of intersecting lines.

%, Through 3, draw a line to meet 3G, at x. In the same way get points

 x,x,%, on the other side. Also get similar points for the lower half of the
ellipse, as shown by dotted lines at R and S. Through x,x,x, R, S, draw
the curve of the ellipse. The divisions on A L, A X, may be unequal, pro-
vided those on A X, be proportional to thoseon AL, A French curve may
be used for drawing the elliptic curve, through the points x,x,x. By this
method, an ellipse may be inscribed in any rectangle. By joining A G,
GB,BH, H A, arhombus is obtained. Therefore an ellipse can be circum-
scribed about a rhombus, or a rhombus can be inscribed in an ellipse.
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Problem 48.—The curse or portion of the curve of an ellipse being given,
to find the center and the major and minor axes.

Infig. 192, draw twoparallelchordsAB,CD. Bisectthemat Eand F,
Through E, F, draw G H, which is a diameter. Bisect it at K, which is the
center of theellipse. With center K, and any convenient radius, describe the
arcL M N. With centers L and M, and any radius, describe arcs cutting at
O From O, through K, draw P Q, which is the major axis With centers M
and N; and any radius, describe arcs cutting at R. From R, through K, draw
TS, which is the minor axis. Instead ofdescribing arcsatOand R, LM, M
N, may be joined and the axes through K, parallel with L M, M N, drawn.

AS

F1G. 192.—Problem 48. The curve or porison of the curse of an ellipse being given, to find the
center and the major and minor axes.

For convenience, the given ellipse may be drawn with a piece of thread as

shown in fig 185, If a small portion of the curve be given, the chords

A B, C D, must be drawn closer together, If only one end of G H, meet

the curve, draw another pair of parallel chords, and get another diameter,

then the intersection of the two diameters gives the center. The portion
of the curve given should contain at least one end of each axis.

NOTE.—To draw an ellipse when the foci and one point in the curve are given. Draw 2

fine of indefinite length through the foci. Draw a line from each focus to the given point. The

sum of these two lines gives the length of the major axis. With half the major axis as radius,

and the foci as centers, describe arcs intersecting at points, which give the ends of the minot
axis. Obtain the curve of the ellipse.
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Problem 49.~At any point A, in the curve of an ellipse, to draw a normal;
aend through any point B in lhe curve lo draw a langent.

In fig. 193, draw the ellipse with a piece of thread. From each focus,
draw a line through ‘A; to D, and C. Bisect angle D AC, by AE. The
line A E, is the required normal (or perpendicular). From the foci draw
lines to B. Produce one of the lines, say to G. Bisect the angle G BF”, by
H K. Then the line H K is the required tangent. The normal may also
be obtained by bisecting the angle F” A F”. To draw a normal at either

G K W D \/E

X

2va. 193.—Problem 49. At any point in the curve of an ellipse to draw & normal, ond through
any point l'tl the curve fo draw a langent.

exﬁmity of the major or minor axis, simply produce the axis. A tangent
at either extremity of the major or minor axes must be drawn at right
angles to the axis.

NOTE.— To draw tangential lines to an ellipse from a given point outside the curve.
Call given point 1, and place it in any position with regard to ellipge. Wit_h 1, as center
and the distance to the nearer focus, as radius, describe about half of a circle cutting the ellipse
in two places. With the further focus as center and the major axis as radius, cut the arc
in points 2 and 3. From points 2 and 3, draw lines to the further focus: These lines cut the
ellipse in two points. Call these points 4 and 5; they are the required points of contact. Draw
two lines from the given point 1, through points 4 and 5; and these lines are the required tan-

gents.



Geometrical Problems 157

Problem 50.—To get the curve of an ellipse approximately with arcs of
circles, and by the use of a paper trammel.

In figs. 194 to 196, lines A B, C D, are major and minor axes. DrewE 1,
E 2,atanyangle. MakeEG = XC,and E H=X A. Join GH. With
center E, and radii E G, E H, strike thearcs G F,H J. Draw F-L, J K,
parallel withGH.Make DM, CN, equaltoEK,and AO, B P,equaltoE L.
With centers N and M, and radius N C, describe arcs passing through C
and D. With centers O, P, and'radius O A, describe arcs at A and B. These
four arcs give approximately parts of the ellipse. On one edge of a straight

Cc

PAPER TRAMMEL

-/K
r N
: H

F

-2

E L G J

FiGs. 194 to 196.— Problem 50. To gel the curve of an ellipse approximately with arcs of circles
and by the use of a paper trammel. This method applies only when the minor azis is more
than about 3% of Lthe major axis. In making a narrow ellipse M and N will fall outside the ellipse.

slip of paper Q R, set off V S, equal to A X, and V T, equal to C X. Then
use Q R, as a trammel. Adjust the trammel Q R, in such a manner, that

NOTE.—7To describe an ellipse, having one diameter given, similar to any given ellipse,
In two similar ellipses, any two conjugate diameters of one ellipse have the same proportion
to each other as the corresponding conjugate diameters of the other ellipse have to each other.
Therefore find a fourth proporuonal to the given diameter, and the two diameters ot the given
ellipse. .This fourth proportionat gives the length of the other diameter of the required ellipse.
Dlace the two diameters bisecting each other, and at the required angle and describe the ellipse.
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point ¢, rests somewhere on the major axis; and point s, on the minor axis.
Wherever point », comes, will be a point situated in the curve of the ellipse.
Mark several points as at w, and through these points draw curves connect-
ing the arcs. E L, is a third proportional less, and E K, is a third propor-
tional greater, to the lines E G, E H. A French curve may be used to
connect the arcs through the points at w. The entire curve can be drawn
by means of points obtained with a trammel. When an ellipse has 4 short
minor axis, the points M and N, fall outside the ellipse, on the minor axis
produced. This method is exceedingly useful when representing circles in
perspective, and also in mechanical drawing when describing ellipses.
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11.
12.

13.
14.
15.
16.
17.
18.
19.

TEST QUESTIONS

. Draw a perpendicular to a straight line.

. Give the boat builder’s laying down method.
. Divide a line into a number of equal parts.
. Bisect an angle.

. Find the center of a given circle.

a given circle.

. Construct a square having its diagonal given.
10.

. Describe a circle passing through three given points.
. Find approximately the length of the circumference of ‘

. From a given point draw a tangent to a given circle.

Construct a square equal in area to any number of

given squares.

Construct a circle equal in area to a given square.

How is an equilateral triangle constructed on a given

base?
Erect a rectangle on a given base.
Describe a circle about a triangle.
Inscribe a circle in a triangle.

Inscribe any regular polygon in a given circle.

“Inscribe a hexagon in a circle.

Construct an octagon on a given straight line.

Describe an ellipse when the two axes are given.
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20. What is the method of constructing a spiral or volute
by means of tangential arcs of circles?

21. Give the method of describing an ellipse by means of
intersecting arcs.

22. Describe an ellipse by the method of intersecting lines.

23. Draw a tangent to an ellipse at a given point in the
curve of the ellipse.
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CHAPTER 5

Mensuration

Mensuration is the process of measuring.

It is that branch of mathematics that has to do with findimg
the length of lines, the area of surfaces, and the volume of solids.
Accordingly the problems which follow will be divided info three
groups, as:

1. Measurement of lines.

a. One dimension, length

2. Measurement of surfaces (areas).

a. Two dimensions, length and breadth

3. Measurement of solids (volumes).
a. Three dimensions. length, breadth, and thickness

1. Measurement of Lines
(length)

Problem 1.—To find the length of any side of a right triangle,
the other two sides being given.

Rule.—Length of hypotenuse equals square root of the sum of
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the squares of the two legs; length of either leg equals square root of
the difference of the square of the hypotenuse and the square of the

olher leg.
Example.—The two legs of a.right triangle measure 3 and 4 ft.; find

length of hypotenuse., If the length of hypotenuse and one leg be 5 and
3 ft. respectively, what is the length of the other leg?

In fig 197

AB = Y31 4= y25 =5
Infig.198" BC = v5i_3: = v35-9 = vig = 4.

3FT.

A CA

Fics. 197 and 198:—Problem 1. To find the length of any side of @ right triangle.
Problem 2.—To find length of circumference of a circle.

Rule.—Multiply the diameter by 3.1416.

Example.—What length of moulding strip is requu'ed for a circular
window 5 ft. in diameter?
5 X 3.1416 = 15.7 ft.
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As the mechanic does not ordinarily measure feet in tenths, the .7 should
be reduced to inches; it corresponds to 834 ins. from the table below. That
is, the length of moulding is 15 ft. 834 ins. (approx).

Problem 3.—To find the length of an arc of a circle.

Rule.—As 360° is to the number of degrees of the arc so is lhe
length of the circumference to the length of the arc.

CHORD OF T

HE ARC
—

S =

FIG. 199 —Problern 3 To find width of board requited for plate form.of circular pattern,

Decimals of a Foot and Inches’

=,

wa | 0V 2] 2" 37| 4|5 e | vl 8| 9| 10 ue

[ 0 .0833 |.1677 {.2500 |.3333 | 4167 {.5000 |.5833 |.6667 | .7500 |.8333 |.9167
1-16 |.0052 |.0885 |.1719 [.2552.1.3385 |.4219 {.5052 |.5885 |.6719 |.7552 | .8385 {.9219
1-8  1.0104 1.0937°|.177) | 2604 |.3437 | 4271 |.5104 |.5937 |.6771 |.7604 | .8437 [.9271
3-16 |.0156 |.0990 |.1823 [.2656 |.3490 [.4323 | .5156 |.5990 |.6823,].7656 |.8490 | 9323

1-4 1.0208 |.1042 |.1875 [.2708 {.3542 | 4375 |.5208 |.6042 [.6875 |.7708 | .8542 | .9375
5-16 | 0260 | 1094 |.19 2760 1.3594 | 4427 | .5260 |.6094 |.6927 | .7760 | 8594 |.9427
3-8 | 0012 .1146 |.1979 | 2812 |.3646 | 4479 |.5312 | .6146 {.6979 | 7812 |.8646 |.9479
7-16 ].036S |.1198 |.2031 |.2865 |.3698 |.453? 1.5365 1.6198 | .7031 |.7865 | .8698 { 9531

1-2 |.0417 [.1250 | 2083 |.2917 1.3750 |.4583 |.8417 {.8250 |.7083 |.7917 | .8750 .9583#
9-16 [.0469 |.1302 [.2135 |.2969 1.3802 |.4635 | .5469 |.6302 |.7135 |.7969 | 8802 |.9635
5-8 1.0521 (.1354 (.2188 | 3021 |.3854 |.468L |.5521 [.6354 |.7188 |.8021 | .8854 | 9688
11-16 | .0573 |.1406 [.2240 | .3073 |.3906 | .4740 | 5573 | .6406 |.7240 | .8073 |.8906 |.9740

3-4 |.0625 |.1458 | .2292 | 3125 1,3958 |.4792 |.5625 [.6458 |.7292 | 8125.].8958 [.9792
13-16 |.0677 |.1510 | 2344 |.3177 | 4010 | .4844 |.5677 | 6510 |.7344 | 8177 | .9010 | 9844
7-8 [.0729 [.1562|.2396 |.3229 | 4062 | 4896 | 5729 {.6562 | 7396 {.8229 |.9062 |.9896
15-16 |.0783 {.1615 |.2448 |.3281 | 4115 {.4948 |.578) | 6615.] 7448 |.828! | 9115 | .99<8
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Example.~—I1f the circumference of a circle be 6 feet, what is the length
.of 60° arc?

Let X = length of the arc, solving for X.
60X 6 360

360:60=6:X=—W =3—6—0=1ft.

Problem 4.—~To find the rise of an arc.

Rule 1.— The rise of an arc is equal lo the square of the chord of
half the arc divided by the diameler.

Rule 2.—Length of chord sublending an angle at the cenler §s
equal lo twice the radius limes the sine of half the angle.

Example.—A circular pattern 10 ft. in diam. has six plate forms. Find
width of board required for these forms allowing 3 ins. margin for jointsas
in fig. 199.

Each plate will subtend an angle of 360 + 6 = 60°
The *“chord of half the arc” (mentioned in rule 1) will subtend
60 +- 2 = 30°.

Applying rule 2, “half the angle” = 30° =+ 2 = 15°.

From table of “trigonometrical functions” (page 244 );sincof15° = .259,
which with radius of 5 ft., becomes

sin 15° (on 10-ft. circle) = 5 X .259 = 1.295
Applying rule 2 length of chord MS. = 2 X 1.295= 2.59

Applying rule 1 rise of arc MS, = 2.59% + 10 = .671 ft. or8Yysins. (approx.)
Add to ttx}s 3 ins. margin for joints and obtain
width of board 83+ 3 = 11Y;; Use 12 in, board

2. Measurement of Surfaces

(areas)

Problem 5.—To find the area of a square,

Rule.—<Multiply the base by the height.
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Example.—What is the area of a square whose side is 5 ft. asin fig. 200?

5X 5 = 25sq. ft.
Problern 6.—To find the area of a rectangle.

Rule.—Multiply the base by the height (i. e., widlh by length).

— SFT. ——
AREA 25 5Q.FT. -
; i
D) in
w
I
BASE

F16. 200.~Problem 5. Area of square.

Example.—What is the area of a rectangle 5 ft. wide and 12 ft. long, as
in fig. 201?
S5X12 = 603q.ft._
Problem 7.—To find the area of a parallelogram,

Rule.—Multiply base by perpendicular height.



[ —

166 Mensuration ’

Ex‘ample.—What is the area of a parallelogram 2 ft. wide and 10 ft.
long?

2% 10 = 20 sq. ft.

Problem 8.—To find the area of a triangle.

< 12 FT.
[
}_'
o AREA 60 5Q. FT. =
10 8
£
1 ' LENGTH

F1c. 201.—Problem 6. Ares of rectangle.

1

| 12 FT. . ;
i
W AREA 60 5Q.FT.
n PERPENDICULAR |
. HEIGHT
/ BASE

F16. 202.—Problem 7. Area of paraliclogram.

Rule.—Mulliply the base by half the altilude.

Example.—How mahy sq. ft. of sheet tin are required to cover a church

steeple having four triangular sides, measuring 12 ft. (base) X 30 ft.
(altitude)as in ‘fig. 2037

15 of altitude = 15 ft.
area of one side = 12 X 15'= 180 sq. ft.
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Total area (four sides) 4 X 180 = 720 sq. ft.
Problem 9.—To find the area of a trapezoid. |

Rule.—Mulliply one-half the sum of the lwo parallel sides by
the perpendicular distance belween them.

Example.—What is the area of the frapezoid shown in fig. 205?

Here LA and FR, are the parallel sides and MS, the perpendicular dis-
c ) c D

AREA OF

ONE SIDE
180 SQ.FT:

A 7. “BASE B

F16s. 203 and 204.—Problem 8. Area of triangle. An inspection of fig. 204 will show
that arca of triangle = base’ X 14 altitude because constructing a parallelogram ABCD, it
is made up of two equal triangles and its area = base X altitude. Hence )4 altitude is taken

in finding area of a triangle.

tance between them, Applying rule
area = 15 (LA+ FR) X MS
= 14 (8+ 12) X 6 = 60 sq. ft.

Problem 10.—To find the area of a trapezium.

Rule.—Draw a diagonal, dividing figure inlo lriangles; measure
diagonal and altitudes and find areu of the lriangles.
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Example.—What is the area of the trapezium shown in fig. 206 , for
the dimensions given? Draw diagonal LR, and altitudes AM and FS,

area triangle ALR = 12 X &/, = 36 sq. ft.
area triangle LRF = 12 X ?/, = 54 sq. ft,

area trapezium LARF = ........ .. .90 sq. ft.

Problem 11.—To find the area of any irregular polygon.

Rule.—Draw diagonals dividing the figure inlo triangles and
Jind the sum of the areas of these triangles.

. -‘——BFT"T"
L — A

AREA 6Q 5Q.FT.

F

N|-«——GH FT.
X

- 12 FT. =

I1G. 205.—Problem 9. Arvea of trapezoid.

Problem 12.—To find the area of any regular, polygon when
length of side only is given.

Rule.—Multiply the square of the sides by the figure for “area,
When side = 1" 4n the table following:
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Numberofsides( 3 | 4 5 6 7 8 9 101 11 12
Area when side .
=l......... ,433[ 1. [1 721|2.598/3.634|4 .828/6.181{7 6949 .366/11.196
A
LR=I2FT
AM= 6FT.
FS=9FT

o

Fi1G. 206.—Problem 10. Area of trapezium. F
Example.—What is the area of an octagon (8-sided polygon) whose sides
measure 4 ft,

In the above table under 8, find 4.828. Multiply this by the square of
one side,
4.828 X 4% = 77.25sq. {t.
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Problem 13.—To find the area of a circle.

Rule.—Multiply square of diameter by .7854.

Example.—What is the area of acircle 10 ft. in diameter?
102 X .7854 = 78.54 sq. ft.

Figs. 207 and 208 show why the decimal .7854 is used in finding the
area of a citcle,,

"

r
F
T

H e

T
T
D T SR R e L -

i

I 11T
+

1 1

+ t :
F1Gs. 207 and 208.— Showing why the decimal .7854 is used to find the area of a circle.
‘If the square be divided into 10,000 parts or small squares, 4 circle having a diameter D,

equal to a side of the large square will coptain 7,854 small squares, hence, if the area of the

large square be 1 aq. in., then the area of the circle will be 7854 + 10,000 or .7854 8q. ins.,

that is, area of thecircle = ,7854 X D XD = .7854 X1 X 1 = .7854 sq. ins.

Problem 14.—To find the area of a sector of a circle.

Rule.—Multiply the arc of the seclor by half the radius.

Example.—How much tin 1s required to cover a 60° sector of a 10 foot
circular deck?

length of 60° arc = 5%%01'3.1416 X 10 = 5.24 ft.

The reason for the above operation should be apparent without any
explanation.



Mensuration 171

Applying rule
tin required for 60° sector = 5.24 X 15 of 5 = 13.1 sq. ft.

Problem 15.—To find the area of a segment of a circle.

Rule.—Find the area of the seclor which has the same arc and
. also the area of the triangle formed by the radii and chord; take
the sum of these areas if the segment be grealer than 180°; take

the difference if less.

Problem 16.—To find the area of a ring.

Rule.—Tcke the difference between the areas of the two circles.

Problem 17.—To find the area of an ellipse.

Rule.—Multiply the product of the two diamelers by .7854.

Example.—What is the area of an ellipse when the minor and major
axes are 6 and 10 ins. respectivelv? . .
10X 6 X .7854 = 47.12 sq. ins. ' .

Problem 18.—To find the circular area of a cylinder.

Rule.—Multiply 3.1416 by the diameler. and by the height.

Example.—How many sq. ft. of lumber are, redﬁired for the sides of a
cylindrical tank 8 ft. in diameter and 12 ft. ligh; how many pieces4’ X 12’
will be required?

cylindricai surface 3.1416 X 8 X 12 = 302sq. ft.
arcumference of tank = 3.1416 X 8 = 25.1 ft.
Number 4’ X 12’ pieces 25.1 + %/} = 251 X 3 = 75.3, say 76.

Problem 19.—To find the slant area of a cone.
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Rule.—Multiply 3.1416 by diameter of base and by one-half the
slant height.

Exampie.—A conical spire having 2 base 10 ft. diameter and altitude of
20 ft. is to be covered. Find area of surface to be covered.

In fig. 210, first find slant height, thus

slant height = V52 + 202 = V425 = 20.62 ft.

12 FT.

e CEEEEEETEREETcR - SR ..

o
nr
Eu

/ /| F16. 209.—Problem 18. Area of cylindd,
Fi16. 210.~-Prablem 19. Area of cons,
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circumference of base = 3.1416X 10 = 31.42 ft.
area of conical surface = 31.42 X 15 of 20.62 = 324 sq. ft.

ferences.

Problem 20.—To find the (slant)area of the frustum of a cone.
Rule.—Multiply half the slant height by the sum of the circum-

¥YG. 211.—Problem 20. Area of frustum of a cone. This is the shape of the ordinary wooden
= 8.06.

(

k seen in wind mill towers. In the figure LR = height'of tank. Since the difference be-
tween the two diameters is two feet, RF = 1 ft., Hence slant height or LF = V11 4 8

Example.—A tank is 12 ft in diameter at the base, 10 ft at the top, and
8 ft. high. What is the area of the slant surface?

circumference 10 ft. circle = 3 1416 X 10 = 31 42 ft.
circumference 12 ft circle = 3 1416 X 12 = 37.7 ft

sum of circumferences = 69.1 ft.



174 Mensuration .

‘slant height = V 124 8* = v 65 = 8.06
slant surface = sum of circumferences X 14 slant height
= 69.1 X 14 of 8.06 = 278,5 sq. ft.

FiG. 212.—Problem 21. Volume of rectangular wedge.

3. Measurement of Solids

{volumes)

Problem 21.— 7o find the volume of a reclangular wedge.

' Rule.—Multiply length, breadth and one half height.
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Example.—Find the volume LARFMS of the bamn shown in fig. 212.
40X20X % of 10 =4000 cu. ft.

Problem 22.—To find the volume of a cylinder.
Rule.—Find the area of the base and multiply this by the length.

Example.—What is the volume of a cylinder whose diameter is 4 ft.
and length 714 ft.?
4 .78%4
16
4 47124
7854
12.5664 =area of base in sq. ft.
16 7.5=length in ft.
628320
879648
Answer, 94.24800 cu. ft.

Problem 23.—To find the volume of a cone.

Rule.—Multiply the area of the base by Y4 the altitude and the
product will be the volume.

Example.—What is the volume of a cone whose diameter is 12 ft. and
altitude 10 ft.?
Area of a circle =.7854 X sq. of the diameter
Area of base =.7854X122=113.1 sq. ft.
volume =113.1X %4 of 10=377 cu. ft.

Problem 24.—To find the volume of a sphere.
Rule.—Multiply the cube of the diameter by .5236.

Example.—Find the volume of a sphere whose diameter is 5 ft.

Cube of diameter Diam.?X .5236
5 5236
5 125
25 26180
5 10472 -
{25=5° 5236

65.4500 cu. ft.
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Problem 25.—Find the volume of a segment of a sphere.

Rule 1.—To three times the square of the radius of the seg-
ment’s base, add the square of the height; then multiply this sum
by the height and the product by .5236.

Example.—How many cu. ins. in a spherical segment, having a base
with diameter of 60 ins. and a height of 20 ins.?

Radius =60-+2=230 ins.
Three times square of radius=3X39X30=2,700
Add the square of the height

2,7004-(20 X 20) = 3,100.
Multiply this by the height, 3100:X 20 =62,000
Multiply by .5236 and obtain

62,000%.5236 =32,463.2 cu. ins.

Ruile 2.—From three limes the diameter of the sphere subtract
twice the height of the segment; mulliply the remainder by the
square of the height, and that product by .5236 for the volume.

Example.—I1f the diameter of a sphere be 3 ft. 6 ins. what is the volume
~f a segment whose height is 1 ft. 3 ins.?

3X3.5=10.5
2X1.25=2.5
8

8X1.25X1.25X .5236 =6.55 cu. ft.

Problem 26.—To find the volume of an irregular solid.

Rule.—1. Divide the irregular solid into different figures; the
sum of their solidities will be the solidity required.2.To find the
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solidity of a piece of wood or stone that is craggy or uneven, put
it inlo @ tub or cistern, and pour in as much waler as will Just
cover il; then take it out and find the conlents of that part of the
vessel through which the water has descended and it will be the
solidity required.

Problem 27.—To find the surface and volume of ény of the
five regular solids, figs. 213 to 217.

F1Gs. 213 to 217.—The five regular solids: Fig. 213, tetrahedron or solid, bounded by four
equilateral triangles; fig. 214, hexahedron or cube, bounded by six squares; fig. 215, octa~
hedron, bounded- by eight equilateral triangles; fig. 216, dodecahedion, bounded by twelva
pentagons; fig. 217, icosahedron, bounded by twenty equilateral triangles.

Rule (surface).-—Multiply the tabular area below, by the
square of the edge of the solid.

Rule (volume).—Multiply the tabular contents below, by the
cube of the given edge.

Surfaces and Volumes of Regular Solids

Number Area, Contents,
of Sides NAME, Edge =1 EFdge =1

4 |......Tétrahedron........| 1.7320 | o.1178

6 |......Hexahedron..... ..| 6.0000 1.0000
8 |[...... Octahedron... ... eo.| 3.4641 0.4714 .
12 |......Dodecahedron...... 20.6458 7.6631 =

20 |[......Icosahedron.........| 8.6603 2.1817
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Mensuration. of Surfaces and Volumes
(Summary)

Area of rectangle =lengthXbreadth.

Area of triangle =base X 14 perpendicular height.
Diameter of circle =radius X 2.

Circumference of circle =diameter X3.1416.

Area of circle =square of diameter X.7854.

area of circle X number of degrees in arc.
360

Area of surface of cylinder = circumference Xlength--area of two ends.

To find diameter of circle having given area: Divide the area by .7854,
and extract the square root.

To find the volume of a cyhnder Multiply the area of the section in
square inches by the length in inches =the volume in cubic inches. Cubic
inches divided by 1728 =volume in cubic feet.

Surface of ‘a sphere =square of diameter3.1416.

“Solidity of a sphere = cube of diameter X .5236.

Side of an inscribed cube =radius of a sphere X 1.1547.

Aréa of the base of a pyramid or cone, whether round, square or tri.
angular, multiplied by one-third of its height =the solidity

Diam. X .8862 =side of an equal square.

Diam. X .7071 =side of an inscribed square,

Radius %6.2832 =circumference,

Circumference =3.5449X ¥ Area of circle.

Diameter = 1.1283 X ¥ Area of circle

Length of arc=No. of degreesX .017453 radius. _

Degrees in arc whose length equals radius = =57]3%

Length of an arc of 1° =radius.017453

¢ “ ¢ 1 Min. =radius X 0002909
o ¢« 1 Sec.=radiusX.0000048
7 =Proportion of circumfrrence to diameter =3.1415926.

Area of sector of circleé =

7559.8696044
V7i=1.7724538
Log. =0.49715
1/m =0.31831
T/360 = 1008727
360/x =114.55
Lineal feet........... P mwereeny. X 00019 =Miles.
D 80000 000000000000000000 6 X .0006 = *“

Squareinches...............cuannnn X .007 =Square feet,



Square feet... .... ........ ... . X 11 =Square yards.
“ wyards............... .. ....X .0002067 = Acres.
Acres......... . o i . X4840 =Square yards.
CllblC inches......... ............ X .00058 =Cubic feet.
feet......... . ... .. X 03704 =Cubic yards.
Circularinches. ........... ..... . X .00546 =Square feet.
Cyl inches........ .......... ... .. X 0004546 =Cubic feet.
feet. ... ... X 02009 = “  vyards.
Links.............0 o ool X 22 =Yards.
e X .66 =Feet.
Feet... .. ... ..o i ol X 1.5 . =Links.
Widthinchains.................... X 8 =Acres per mile,
183346 circularin  .................. =1 square foot.
2200 Cylindricalin................... =1 cubic foot.
Cubicfeet..... .. .......... ..... X 7.48 =U. S. gallons.
“ inches........... .......... X .004329 =U. S. gallons.
U S. gallons ....................... X 13368, =Cubic feet
...................... X 231 = “ inches.
Cublc feet.............. ........ X .8036 =U.S. bushel
“ inches......... . . ......... X 000466 =« « o«
Cyl. feetof wate:, ...... ........ X 6 =U.S. gallons.
Lbs, Avoir. ...... e X 009 =cwt. (112)
¢ e X .00045 =Tons (2240)
Cubic feet of water.... . ... .....X 62.5 —Lbs Avou'
“.dnch L oL L. X 03617 =
Cyl. feetwater............ ....... X 49.1 = “
Cyl.inch water:.. . . . ... ... X .02842 = “
1344 U. S. gallons of water LTI =1 cwt.
268.8U.S. ¢« .. =1 ton.
1.8 cubic feet of water................ =1cwt
35.88 cubic feet of water. .. .. ...... .. =1 ton.
Column of water, 12 inches high, and 1 inch in diameter = .341 Lbs.
U.S.bushel...................... X .0495  =Cubic yards.
. X 12446 = “ feet.
R X 2150 .42 =inches.

Problem 28.—To find the volume of a cylindrical ring.

Rule.—To diameler of body of ring add inner diameter of ring;
multiply sum by square of diameter of body, and product by 2.4674.

Example —What is volume of an anchor ring. diameter of metal, being
3 ins. and inner diameter of ring. 8 ins.?
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3+4+8%32=99=product of sum of diameter and square of diameter of
body of ring.

Then 99X 2.4674 =244.2726 cu. ins.
Problem 29.—To find the sectional area of a pipe.

Example.—A pipe has an external diameter of 2 ins. and an internal
diameter of 13{ ins. Find its sectional area in sq. ins.

f

Rule.—From the area of the greater circle subtract that of the

lesser. A
area of 2 © =22X.7854=3.1416

2.4053
13 =(134) -
area of 134 © =(134)*X.7854 7363 sq. ins.

Properties of the Circle
(According to Kent)

Diameter of circle X 88623 \ _ .. of

Circumference of circle X 28209 [ =side of equal square
Circumference of circle %X1.1284  =perimeter of equal square
Diameter of circle X 7071 )

Circumference of circle X .22508 }=side of inscribed square

Area of circle X .90031 +diameter J

Area of circle X1.2732  =area of circumscribed square
Area of circle X 63662 =area of inscribed square

Side of square x1.4142 =diam. of circumscribed circle
Side of square ) X 4.4428 =cirrum.

Side of square x1.1284  =diam. of equal circle

Side of square %X 3.5449 =circum. of equal circle
Perimeter of square X .88623 =circum. of equal circle
Square inches X1.2732  =circular inches

TEST QUESTIONS

1. What is mensuration?
2 What are the three divisiors of mensuration?

3. What is the length of the hypotenuse of a triangle in
terms of the legs?
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4.
5.
6.

13.
14.
15.

16.

18.

What is the number 3.1416 used for?
What is the value of %47

What length of moulding strip is required for a cir-
cular window 5 ft. in diameter?

. Give rule for finding the length of an arc of a circle.
. If the circumference of a circle be 6 ft what is the

length of a 60° arc?

. What is the area of a rectangle 5 ft. wide and 12 ft.

long?

. How many sq. ft. of sheet tin are required to cover a

church steeple having four triangular sides, meas-
uring 12 ft. (base) X 30 ft. (altitude)?

. Give rule for finding the area of a trapezium.
. What is the method of finding the area of any ir-

regular polygon?

What is the area of an 8 sided polygon whose sides
measure 4 ft.?

Draw a diagram showing the meaning of the much
used .7854.

How much sheet tin is required to cover a 60° sector
of a 10 ft. circular deck?

What is the area of an ellipse whose two diameters
are 10 and 6 ins.?

. What is the displacement per minute of a 5X6 engine

running 600 r.p.m.?

Give rule for finding the slant area of the frustum of
a cone.
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19. What is the volume of a cone whose diameter is 12 ft.
and altitude 10 f1.?

20. Find the volume of a sphere whose diameter is 5 ft.

21. How many cu. ins. in a spherical segment having a
base whose diameter is 60 ins: and a height of 20
ins.?

22. Name five regular solids.

23. A pipe has an external diameter of 2 ins. and an in-
ternal diameter of 134 ins. Find its sectional area
in §q. ins.
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CHAPTER 6

Solid Geometry

By definition solid geometry is that branch of geometry
which includes all three dimensions of space in its reasoning.
It involves the consideration of
1. Planes;
2. Prisms;
3. Polyhedrons;
4. Solids of revolution.
a. Cylinder;
b. Cone;
¢. Sphere.

Planes.

A plane or plane surface is one such that a straight line joining
any two points in it will be wholly in the surface. It has length
and breadth but not thickness.

Properties of Planes.—1. Any three points, one of whick does not lie
in the same straight line, determines one and only one plane.

2. A line and a point not on the line determine a plane.
3. Two parallel lines determine a plane.

4. Two intersecting lines determine a plane.
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5. Two inlersecling planes cut each other in a straight line.

6. From a point oulside a plane only one perpendicular can be let fall to
the plane.

7. From a point within a plane only one perpendicular to the plane can
be erected.

8. A line parallel with a plane is one in which every point is at the same
distance from the plane.

Definitions.
Altitude.—The perpendicular distance between the vertex, or top, and

the base.
B/ g

FicG. 218.—Conditions which determine a plane A three points; B, line and a point; C, parallel
lines; D, intersecting lines. See accompanying text: Properties of planes.

Cone.—A solid generated by the revolution of a right triangle on one:
of its legs as an axis.

Cylinder.—A solid generated by the revolution of a rectangular plane
on one of its edges as an axis.

Cylindrical Surface.—A curved surface generated by a moving straight
line called the generatriz which moves always parallel with itself and con-
stantly passes through a fixed curve called the directrix. The generatrix
in any one position is called an element of the surface.

Dihedral Angle.—The angle formed by the intersection of two planes.
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Directrix.—A line which so determines the motion of another line, ot
of a point that the latter will describe some surface or curve. See cylin-
drical surface.

Element.—The generatrix in any one position.

Frustum.—That which is left of a cone or pyramid after the upper
part has been cut off by a plane parallel with the base.

Generatrix.—A line point or figure that generates another figure by
its motion.

Lateral Area.—In a pyramid each side, or triangle, is a lateral faces
the sum of their areas is the lateral area. The cylindrical surface of a
cylinder is called the laceral surface; the conical surface of a cone is the
lateral surface.

INTERSECTION

OF PLANES - STRAIGHT

F16. 219.—Two planes cut each other in a straight line,

Perimeter.—The length.of the boundary line of any. plane figure.

Plane Angle.—The angle formed by lines drawn in the two faces of a'
dihedral angle from the same point in the edge of the angle and perpen-
dicular to the edge.

Polyhedron.—A solid bounded by plane faces especially more than four.

Prism.—A solid whose bases or ends are similar plane figures, and
whose sides are parallelograms; prisms are called triangular, square, reg-
ular, etc., according as the bases are triangles, squares, regular polygons,
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etc.; and they are right or oblique according to whether the lateral edges
are perpendicular or oblique to the bases.

Revolution.—Rotation about an axis.

Sphere.—A solid, every part of whose circumference is equidistant
from a point within called the center.

Superpose.—To place one figure upon another so as to demonstrate
whether or not they are equal.

Trihedral Angle.—A polyhedral angle having three faces.
. Truncated.—Applied to a cone or pyramid whose-vertex has been cut

off by a plane, either oblique lo or parallel with the base; and *o a prism
which has been cut off, usually oblique, to the base.

L . P

BN LT

F16. 220.—Theorem 1.

Theorem 1.—A perpendicular let fall from a point to a plane
is the shortest distance from the point to the plane.

In fig. 220,

Given: PM, a perpendicular from P to plane M.

To Prove: PM shortest distance from P to plane M.
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. Proof. o
If Pbe L to the plane it is L to any line in the plane as
AB, passing through its foot M.
Co L ¢=90°
Draw any other line from P to the plane as PS. Then PS
is the hypotenuse of a right angled triangle. C
S PM < PS Q.E.D.

D

ANY POINT
IN LINE OF
INTERSECTION

FiG. 221.—Plane angle AOB which measures the dihedral angle M-HD-S made}by the inter-
secting planes.

Dihedral Angles.—When two planes cut each other, a di-
hedral angle is formed. To measure a dihedral angle take any
point in the line of intersection and erect in each plane, a
line perpendicular to the line of intersection as QA and OB
in fig. 221. The angle AOB, then measures the dihedral angle
¢ formed by the intersecting planes M and S.

Theorem 2.—When a plane bisects a dihedral angle every
point in the plane is equidistant from the faces of the angle.

In fig. 222,
Given: Plane L bisecting the dihedral angle M-HD-S.
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To Prove: PA=PB.

Proof.
From any point P in L, drop Ls to planes M and S.

Since plane PAOB is | to planes M and S, it is I to the
edge HD.

: F16. 222.—Theorem 2.

.HD L AO, BO and PO.

The 4 AOP and BOP are the plane angles of the dihedral
angles M-HD-L and S-HD-L.

Since the dihedral angles M-HD-L and S-HD-L are equal,
£AOP= £ZBOP
..PA=PB Q.E.D.
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Prisms.

A prism is a solid whose ends or bases are equal and parallel
polygons and whose sides are parallelograms.

The altitude of a prism is the perpendicular distance be-
tween its bases. The accompanying illustrations show the
appearance of various prisms.

I |I ot

CUBE o PARALELLO- OBLIQUE PARALLELO-
PIPEDON PIPEDON
fiss. 223 to 225.—Various solids 1.

TRIANGULAR PENTAGONAL
PRISM PRISM t
FiGs. 226 and 227.—Various solids 2.
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Theorem 3.—If two prisms have the three faces which bound
any solid angle in each, equal, similar and similarly placed, the
prisms are equal.

In figs. 228 and 229,

Given: Prisms A —-BDEFC and A’ —B'D’E'F'C’ with three
faces which bound the solid angles B, B’, equal, similar and
similarly placed.

H

v e cee—mrcwsadm- e damansoe -

l

Gt ~5E c'-—’ ~-JE’
B ' . D B’ D

FiGs. 228 and 229.—Theorem 3.

To Prove: The prisms are equal.

Superpose the two prisms so that B shall be on B/, and the
bases coincident. Because the three angles which contain
the angle B, are respectively equal to the three which contain
the angle B, their faces are equally inclined to. each other.
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If the plane angles which constitute one trihedral angle be equal, each
to each, to the plane angles which constitute another, the faces of the two
/£ are equally inclined to each other.
. faces AD and AC coincide with A’D’ and A’C’
and because they are equal and similar, the lines AG, AH will
coincide with A’G’, A’'H'.
.".the upper bases being equal and similar to the lower bases
and to each other, will coincide throughout and hence the

Fies. 230 to 233.—Various pyramids'. A, triangular; B, quadrilateral; C, hexagonal; D, oc-
tagonal.

other faces will coincide. Since the prisms coincide, they are
therefore equal to each other.

Pyramids.
A pyramid is a polyhedron having for ils base a polygon and
for its other faces three or more triangles which terminale in a
common veriex.
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Theorem 4.—If a plane cul a pyramid parallel with the
base: 1, the edges and the allitude will be cut proportionally;
2, the inlercepted section is similar to the base.

In fig. 234,

Given: Pyramid H —ABC and plane cutting the pyramid at
A'B’C’ parallel with the base.

B.

F1G. 234.—Theorem 4.

To Prove: 1. Eages and altitude are cut proportionally.
2. A’'B’C’ is similar to ABC.

Proof.

1. The edges and altitude will be cut proportionally, for stip-
pose a plane M, to pass through H, parallel with the plane of
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the base; then the edges and the altitude, being cut by three
parallel planes, M, S and N, will be cut proportionally, because
if two straight lines be cut by parallel planes they will be cut
in the same ratio.

2. A’B’C’ will be similar to ABC because AB is || with A’B
and the triangles HAB and HA'B’ are similar.

. HA:HA'=AB:A'B’ '
also HA:HA'=AC:AC/

Fics. 235 to 238.—Various solids. A, frustum of a pyramid; B, € and D, ungula.

If two proportlons have one ratio in each the same, the remaining
terms are in proportion.

. AB:AC=AB":AC/
Also £ZBAC= /ZB'A'C’
and the sides about the equal angle are proportional and sim-
ilarly for any other angle of the figure.

. A ABC and A’B’C’ are similar. Q.E.D.
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s Theorem 5.—Pyramids on equal bases and of the same altz-
tude are equal to each other.

In figs. 239 and 240,

Civen: Pyramids M-ABC and S-ABCD having the common
altitude OF and whose bases ABC and ABCD are equal in area.

To Prove: Pyramids equal to each other.
E

FiGs. 239 and 240.—Theorem 5.
OE is the common altitude (=Mm =Ss).

Proof.

Divide altitude OE into any number of equal portions, and
through the points of division suppose planes to pass parallel
with the bases. They will cut equal sections from the pyra-
mids. On these sections inscribe in each of the pyramids a
series of prisms. They will be equal to each other and this




Solid Geometry 195

will be true whatever the number of divisions in OE. Hence
when that number is infinitely increased the series of prisms
coincide with the pyramids.

.. MABC=SABCD Q.E.D.

Polyhedrons.

A polyhedron is g solid bounded by plane faces especially by
more than four.

»
\
-

Fi1Gs. 241 to 244.—Conic Sections: A, circle; B, ellipse; C, parabola; D, hyperbola.

There are numerous classes of polyhedrons, known as:

Conjugate.—Two polyhedra so placed or formed that the faces of one
correspond in position to the vertices of the other.

Convex.—A polyhedron in which not more than two faces pass through
any edge and where there are no summits on different sides of the plane
of a face. )
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Euler’s Theorem.—Thé sum of the number of faces and vertices of
any convex polyhedron exceeds the number of its edges by 2.

Regular Polyhedron.—One whose faces are equal and regular pol/-
gons and having all the angles equal and regular that meet at the vertices.

There are but five, if stellated polyhedra be excluded; the regular tetra-
hedron, hexahedron, octahedron, duodecahedron and icosahedron.

PLANE SURFACE ROTATION 360°
BASE

CYLINDRICAL SURFACEY

GENERATRIX

F1G. 245.—Cylinder as generated by the rotation of a rectangular plane about one of its edges.
Semi-regular Polyhedron.—A polyhedron in which all the vertices
are alike, but all the angles at a vertex are not equal.
Simple Polyhedron.—A polyhedron whose summits are distinct, none
falling within an edge and with no two faces having a common point.
Solids of Revolution.
“Under this heading is included such solids as:
1. Cylinder; '



-_ Edaaenend _— = ———— IR AR -

Solid Geometry 197

2. Cone;

3. Sphere,
being ‘“‘generated” by the revolution of a plane, having for its
boundary:

1. A rectangle;

2. A triangle;

3. A semi-circle,
respectively.

/ ALTITUDE
&

o]

F16. 246.—Right cone or cone of revolution.

Cylinders.—By definition a cylinder is a solid bounded by a
cylindrical surface and fwo parallel planes; a solid generaled by
the revolulion of a rectangular plane on one of ils edges as in
fig. 245.

Theorem 6.— The cylindrical surface of a cylinder is equal to
the surface of the sides of an inscribed polyhedron having an
infinite number of sides.

In fig. 247,
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Given: A cylinder and inscribed polyhedron.

To Prove: Surfaces of cylinder and of a polyhedron of an
infinite number of sides are equal.

Proof.

The area of the side surfaces of a polyhedron or cylindrical
surface of a cylinder is equal to perimeter of the base X height.

© SIDES 12 SIDES INFINITE NUMBER
OF SIDES

~]_ 7 N\

Fics. 247 to 249.—Theorem 6.

F1c. 250.—Oblique or scalene cone.
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In fig. 247 perimeter of the hexagonal prism is cons1derab1y
less than the circumference of the base of the cylinder.

If the number of sides of the prism be increased, the differ-
ence in its perimeter and the circumference of the base of the
cylinder becomes less, as in fig. 248.

Accordingly for an infinite number of sides, perimeter of
polyhedron = circumference of base of cylinder.

‘. Cylindrical surface of a cylinder = surface of the sides
of an inscribed polyhedron having an infinite number of sides.

RIGHT CONE OBLIQUE CONE

Fics. 251 and 252.—Frustums of right and oblique cones, showing frustum ABCD and part
cut away CDH.

Cones.—A cone is a solid figure that tapers uniformly from a
circular base to a poinl.
If the point lie in the perpendicular from ‘the center of the
base, the cone is a right cone, otherwise an obligue cone.
The slant height of a right cone is the length of one of its elements.

A right cone is called a cone of revolution, since it may be generated by
revslving a right triangie about one of its legs as an axis.
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PLANE CURVED CONSECUTIVE

ELEMENTS

Sl{JRFACE// |

Ca

SURFACE
L

F1cs. 253 and 254 —Plane and curved surfaces. Elements of a plane surface may be
drawn in the surface in any dirention as ab, cd, ef, as in fig. 253, In a curved surface
no three consecutire elements liz ia the same piane as in fig. 254.

CYLINDER

a e AA
L~ ,] PARALLEL
Y ITE | '; 7,’,; ELEMENTS
T e
| g
AL | Ll RADIAL
A W 4 ELEMENTS
“"l gl %f;
L7 LilpS
s Il I /
F /:; llm :u ’ 1l |':| /é/ R

‘Fics. 255 and 256. —Distinction between cylindricaland conical sur{aces. Fig. 255 s
elements parallel: fig. 256 , eléments radiai. Both surfaces being curved surfaces, no three

consecutive elements he in the same plane as indicated by plane LARF, passing through the
first and third of the three consecutive elements ab, cd, and ef.
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The frustum of a cone is that part which is left after cutting off the
upper part, the part including the vertex, by a plane parallel with the base.

The lateral surface of a frustum of a cone is the portion of the lateral
surface of the cone included between the bases of the frustum.

The slant height of a frustum of a cone of revolution is the portion of
any element of the cone included between the bases.

TEST QUESTIONS

1. Give eight properties of planes.

2. What are the four conditions which determine,a plane?

3. What is the shortest distance from a point to a plane?

4. What is a dihedral angle?

5. What is the difference between a cube and a parallelo-
pipedon?

6. What is a prism?

7. What is the proof of the equality of prisms?

8. Of what does the base and faces of a pyramid consist?

9. How do pyramids having equal bases and the same

altitude compare? Give proof.
10. What is a polyhedron?
11. Make drawings of various polyhedra.
12. What is Euler’s theorem?

13. Distinguish between a semi-regular and a regular
polyhedron.
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14, Name the various solids of revolution.

15. Prove that the cylindrical surface of a -cylinder is
equal to the surface of the sides of an inscribed
polyhedron having an infinite number of sides.

16. How is a cone generated?

17. How do the elements of a cone differ from the elements
of a cylinder?

18. What is a frustum of a cone?
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CHAPTER 7

Spherical Geometry

A sphere or spherical surface is @ closed surface every point
of which is equally distant from a point within called the center

The term sphere is used to denote either the spherical sur-
face or the solid bounded by the spherical surface. In most
cases it relates to the surface.

Properties of a Sphere.
1. All points on the surface are equidistant from the center.
2. All radii of a sphere or of equal spheres are equal.
3. Spheres having equal radii or equal diameters are equal.

4. A plane passing through the center of a sphere cuts the sphere in
a great circle.

5. All great circles of a sphere are equal.

6. Every great circle divides a sphere into two halves called hemi-
spheres.

7. Any two great circles of a sphere bisect each other in the diameter
which is the line of intersection of the planes of the two great circles.

8. One and only one great circle will pass through two points not
diametrically opposite.

9. The distance between two points on a sphere is the length of the
arc of the great circle joining these points.

10. The great circle arc joining two points on a sphere is the shortest
distance between the points, on the surface of the sphere.
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11. A sphere may be generated by the revolution of a semi-circle about

its diameter.

12. The diameter of a small circle decreases the farther it is from the

equator.

13. The arc intercepted by the great circle sides of a spherical angle on
the great circle at the distance of a quadrant from the vertex of this angle

measures the angle.

SPHERICAL TRIANGLE

LUNE

GREAT /

CIRCLES

DIAMETER

S N

s

OREAT GIRGLE

POLE

F16. 257.—Representation of a sphere giving pictorial definitions and illustrating how neof

to draw a spherical triangle. See Fig. 301.

14. The two spherical angles at the extremities of a lune are equal.

15. The spherical angle at the extremity of a lune determines the lune.

16. A tangent to a sphere touches the surface of the sphere in only one

point.
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Definitions.

Convex Spherical Triangle.—One in which each angle is less than
two right angles and each side is less than two quadrants.

Diametrical.—In a direction passing through the center; as if at op-
posite extremities of a diameter.

Great Circle.—Any section of a sphere made by a plane passing through
the center. Two great circles always bisect each other.

Lune.—The portion of the surface of a sphere enclosed between the
semi-circumferences of two great circles.

Normal.—A straight line perpendicular to a line or plane which is
tangent to a curve and meeting it at the point of tangency.

Polar Triangle.—A spherical triangle whose vertices are the poles of
the sides of another triangle.

Small Circle.—Every section of a sphere made by a plane not through
the center. .

Spherical Angle.—The intersection of two great circle arcs.

Spherical Cord.—The arc of a great circle which subtends an arc of
.a small circle on the surface of the sphere.

Spherical Conic.—The curve produced by the intersection of a cone
«of the second degree and a sphere whose center is at the vertex of the cone.

Spherical Harmonic Analysis.—A method by which a function is
-expressed as distributed over a spherical surface; used in a great variety
.of physical problems.

Spherical Polygon.—The space on the surface of the sphere bounded
by arcs of any number of great circles.

Spherical Sector.—A solid formed by the revolution of a circular
-sactor about any radius of the circle.

Spherical Segment.—The portion of a sphere cut off by a plane.

Spherical Triangle.—The space enclosed on the surface of a sphere
‘by the arcs of three great circles, each arc being less than a semi-circum-
ference. It may be called right angled, equilateral or isosceles.

Spheroid.—A body having nearly the form of a sphere.
Spherics.—The geometry and trigonometry of the sphere.

Spherical Zone.—The surface of a sphere between two parallel planes.
_Its altitude is the perpendicular distance between the planes.
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Theorem 1.—A plane L lo the extremity of a radius of a
sphere is tangent to the sphere.

In fig. 258,
Given: Plane MS 1 to radius OD of sphere at D.

To Prove: MS tangent to sphere.

Proof.
Connect any point A in the plane with O and join AD.

r

Fi16 258.—Theorem 1.

In the triangle OAD

£Z0ODA =90°
..OD<OA

Singe - OD is the shortest line from O to the plane, every
other line from O to the plane is greater than the radius.
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Accordingly, every point in the sphere except D lies without
the plane.
.. MS is tangent to the sphere at D. Q.E.D.

Theorem 2.—Every section of a sphere made by a plane is a
circle.

In fig. 259,

Given: Plane MS cutting a sphere in m.s. and Q center of
sphere.

FiG. 259.—Theorem 2.

To Prove: The curve of intersection m s is a circle.

Proof.

Draw O o 1 to section cut by MS; join o to C and D any
two points in the perimeter of the intercepted section; draw
OC and OD.
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In the rt. AsOoCand OoD
00=00and OC=0D
SAO00C=2A00D
.0C=0D ,

Since C and D are any two points on the perimeter of the

intercepted curve m s, all points on the perimeter are equi-
distant from o.

-

Oﬁ;’j“"'---‘—-------- C

6. 260.—~Theorem 3.

.". the curve m s is a circle Q.E.D.

Theorem 3.—The sum of any lwo sides of a spherical triangle
is greater than the third side.

In fig. 260,
Given: A ABC.
To Prove: AB4+BC>CA
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Proof.
Join A,B,C, with center O. . ;
ZAOB+ £BOC> £COA
These angles are measured by the sides of the triangle ABC.
. AB4+BC>CA Q.E.D.

TEST QUESTIONS

1. Give the properties of a sphere.

N

How is the distance between two points on a sphere
measured?

What is a great circle?
How is a sphere generated?
“What is a lune?

What is the difference between a great circle and a
small circle?

N W

7. Prove that a plane 1 to the extremity of a radius of
a sphere is tangent to the sphere.

8. What is the shape of any section of a sphere cut by a
plane?

9. Prove that the sum of any two sides of a spherical
triangle is greater than the third side.

10. What does the spherical angle at the extremity of a
lune determine?
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11. Explain spherical harmonic analysis.

12. Prove that every section of a sphere made by a plane
is a circle,
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CHAPTER 8

Descriptive Geometry

This branch of geometry is concerned with the graphic meth-
ads of representing all geometrical magnitudes and the solution of
problems relating 1o these magnitudes.

It is based on parallel projections lo a plane by rays perpen-
dicular to the plane.

If the plane be horizontal the projection is called the plan of the figure,
and if the plane be vertical, the elevation.

The drawings are so made as to present to the eye, situated at a par-
ticular point, the same appearance as the object itself, were it placed in
the proper position.

The method of representation is known as orthographic projection. In
this method the point of sight is al an infinite distance in a perpendicular
drawn to the plane of projection.

In this method the point of sight being at an infinite distance, the pro-
jecting lines drawn from any points of an object of finite magnitude to
this point, will be parallel with each other and perpendicular to the plane of
projection.

In the projection shown in fig. 261, two planes are used,
at right angles to each other.

1. The horizontal plane, H
2. The vertica! plane, V

These planes form by their intersection four dihedral angles.
The first angle is above the horizontal and in front of the ver-
tical plane. The second is above the horizontal and behind the
vertical. The third is below the horizontal and behind the ver-
_tical. The fourth is below the horizontal and in front of the
vertical.
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Problem 1.—Given the two projections of a point lo find the
point.

In fig. 261,

Let p and p’ be the projections of the point in the horizontal
and vertical planes respectively. At p and p’ erect Ls, by
. drawing lines from p and p’ L to the H and V planes re-
spectively.

The intersection P of these lines is at the point required.

VER'nCAL PLANE

P
£ 7534 IR T
ol W ! NE
e < ! GROUND LI
1
(%)
2
[-%0)
%

F1G. 261.—Problem 1.

Problem 2.—Given the projections of the extremilies of a line
to find the line.

This is simply an extension of problem 1.

In fig. 262, .

Let ms and m’s’ be the projections of the extremities of .
the line in the H and V planes respectively.
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Project as in problem 1, to locate the extremities M and S,
of the line. Join M and S, giving MS, the line required.

Problem 3.—Given. the traces of a line to find the line.
In fig. 263,

F1G. 262.—Problem 2.

Fic. 263.—Problem 3.
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Let ms and m’s’ be the H and V traces respectively of the
line.

From the points ms and m's’, the extremities of the traces,
project as in problem 2 to locate the extremities M and S of
the line.

Join M and S, giving M S the required line.

F1G. 264.—Intersection of a plane MS, with the ¥ and H planes, showing horizontal trace
hh and vertical trace vo.

Planes.—A plane is determined by its two iraces, which are
two lines cut on the projection planes.

[f the plane be parallel with the axis its traces are parallel with the
axis. Of these one may be at infinity; then the plane will cut one of the
planes of projection at infinity and will be parallel with it. Thus a plane
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parallel with the plane has only one finite trace, that is the trace made
by its intersection with the V plane.

If the plane pass through the axis both its traces coincide with the
axis. This is the only case in which the representation of the plane by
its two traces fails.

Problem 4.—To locate the point in which a given straight line
extended, pierces the planes of projection.

In fig. 266,

Let ms and m's’ be the projections of the line.

LINE CUTS
VERTICAL
PLANE HERE

LINE CUTS HORIZONTAL PLANE HERE
F1s. 265.—Problem 4.

Produce the vertical trace m's’ until it intersects the ground
- line at g/, and at g’ erect a 1 to the ground line in the H
plane and produce it until it intersects the horizontal trace
extended at k, the required point of intersection with the H
plane.

By a similar construction the intersection 4’ with the V-plane
is obtained.
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Problem 5.—To find the distance between two points M and S
in space. . :
In fig. 266,

Let ms and m's’ be the traces o/f a line joining the two points
M, S.

F1G, 266.—Problems 4 and 5.

From the ends of the vertical trace m’s’ erect s to the ground
line m'o and s'o’, cutting the ground dine at o and o’ re-
spectively. On the horizontal projection ms, erect 1s; mM’=
om' and s5' =0's’.

Join the points M’ and §’. The length of this line M'S’ is
eqnal to the length of the line MS (not shown) in space.

In order rot to complicate the drawing, the line MS in space is not shown. '

If the construction be accurate M’'S’ extended will cut ms extended at.
¢ the point of intersection with the H plane, as determined by projecting
over from g’ the intersection of the vertical trace with the axis.

The angle ¢ is the angle made by MS with the H plane.
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Conic Sections.—By definition a conic section is a section cut
by a plane passing through a.cone. _

These sections are bounded by well known curves, and the
latter may be any of the following depending upon the inclina-
tion or position of the plane with the axis of the cone.

1. Triangle

Plane passes through apex of cone

CUTTING
PLANE

CIRCLE
ELLIPS

CUTTING

UTTING
PLANE |
F;ARABOLA

HYPERBOLA

Figs. 267 to 270.—Conic
sections obtained by cut-
ting a cone with a plane;
showing position of plane
for obtaining the various
sections.

2. Circle

Plane parallel with base of cone

3. Ellipse

Plane inclined to axis of cone
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4. Parabola

Plane parallel with one zlement of cone
5. Hyperbola

Plane parallel with axis of cone

o
- A

-

Figs. 271 and 272,—Surface cut by plane passing through apex of a cone—triangle.

These sections appear as straight lines in elevation, while in
plan they appear (with exception of the triangle) as curves.
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Problem 12.—Find curve cut by a plane passing through
apex of cone as in figs. 271 and 272.

Let ABC, be elevation of cone and MS, cutting plane passing through
apex. Project point D, down to plan parallel with axis cutting base of
cone at D’ and E’, obtaining line D’E’, base of developed surface.

With D, as center and radius DA, equal to element of cone swing A,
around to base line and project down to A’. Join A’ with 1)’ and E’,
Then, A’'D’E’ is the developed surface or triangle cut by plane MS, with
cone.

Problem 13.—Find surface cut by a plane passing through
a cone parallel with its base as in figs. 273 and 274.

F16s. 273 and 274.—Surface cut by plane passing through a cone paralle! with its base—circle.

This may be found by simply projecting over to the plan. Where MS,
cuts the element AB, as at F, project over to the axis of the plan and
obtain point F’.

Similarly point L’ may be found. These points are equidistant from the
center O, hence with radius=OF’=0L’, describe a circle which is the
curve cut by plane MS, when parallel with base of cone.

Problem 14.—Find the curve cut by a plane passing through
a cone inclined to its axis as in fig. 275.
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In fig. 275, let the plane cut the elements OA and OB, of the curve
at M and S, respectively. Project S, down to §’, in plan giving one point
on the curve. With S, as center swing M, around and project down to
m’, in plan giving a second point on the curve, m’s’, being the major axis
of the curve.

o

& S

’

4 S [“3
£ \ f
i N/

§.
: = SRR
' M\\ NN TERN
S :
& o

F1Gs. 275 and 276.—Surface cut by plane passing through a cone inclined to its axis—ellipse.

_1®

To find the minor axis of curve, bisect MS, at R, and swing R, around
to horizontal with S, as center and project down to plan. Through R,
draw radius 3, and describe arc with radius 3, about O’ as center. Where
this cuts projection of R at 7, project over to plan, intersecting the ver-
tical plan projection of R at #’. Q"s’, is half the minor axis.
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To find the projection of any other point as L, or F, proceed in similar
manner as indicated, obtaining //, or f’. The curve joining these points
and symmetrical points below the major axis is an ellipse.

Problem 15.—Find the curve cut by a plane passing through
a cone parallel with an element of the cone as in figs. 277 and

278.

Let the plane MS, cut element AB, at L, and base at F. Project F, down
to plan cutting base at F’ and F”, which are two points in the curve.

M

FiGs. 277 and 278.—Surface cut by plane passing through a cone parallel with an element
of the cone—parabola.

With F, as center and radius LF, swing point L, around and project
down to axis of plan, obtaining point L’ in the curve.

Now any other point as R, may be obtained as follows: swing R around
with F as center and project down to plan with line HG.

Describe an arc in plan with a radius (=radius 77’ of cone at elevation
of point R), and where such cuts the projection of R at R’; project R’ over
to line HG, and obtain point R”, which is a point in the curve.
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Other points may be obtained in a similar manner. The curve is traced

through points F’,R”,L’, etc., and similar points on the other side of the
axis, ending at F?. Such curve is called a parabola.

Problem 16.—Find the curve cut by a plane passing through
a cone parallel with the perpendicular axis of the cone, as in
‘figs. 279 and 280.

F1Gs. 279 and 280.—Surface cut by a plane passing through a cone parallel with the axis of
the cone—hyperbola.

Let plane MS, cut element AC, at L, and base at F. Project F, down
to plan cutting base at F” and F*, which are two points in the curve. With
F, as center and radius FL, swing point L, around and project down to
axis of plan obtaining point L’, in the curve.

Now any other point as R, may be obtained as follows: Swing R, around
with F, as center and project down to plan with line HG. Describe a circle
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DEVELOPMENT OF
A SCALENE

L
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in

plan with radius r7’ (=radius of cone at elevation of point R) and where

this circle cuts the projection of R at R’, project over to line HG, and
obtain point R”, which is a point in the curve. Other points may be ob-
tained in a similar manner.

The curve is traced through points F’,R”,L’, and similar points on the

the other side of the axis ending at F”. Such curve is called a hyperbola.

It

will be noted that problems 15 and 16 are virtually worked

out in the same way. In fact the text of one will apply to the
other.

QN N W N =

~J

10.

11.
12.

TEST QUESTIONS

. What is descriptive geometry?

. How many projection planes are used?

. Find a point whose two projections are given.

. What are the traces of a line?

. How is a plane determined?

. Locate the point in which a given straight line ex-

tended, pierces the plane of projection.

. What is a conic section?
. Find the curve cuf$by a plane passing through the

apex of a cone and inclined to the axis.

. What curve is cut by a plane passing through a cone

parallel with an element of the cone?

What is the curve cut by a plane intersecting a scalene
cone parallel with the base?

Draw the development of a scalene cone.

Find the curve cut by a plane intersecting a scalene
cone oblique to the base.
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CHAPTER 9

Analytical Geometry

Analytical geometry may be defined as that branch of geom-
etry in which position is indicated by algebraic symbols and the
reasoning conducted by analylic operations.

Y

Y AXS

RECTANGULAR

ORIGIN

X’ o) X

X AXIS

YI

£16. 285.—Rectangular axes.

Axes and Co-ordinates.—It is assumed that the points, lines
and figures here considered lie in one and the same plane and
accordingly the plane need not in any way be referred to.

The position of any point in this plane s fixed by ils dislances
from two axes. The axes may be rectangular as in fig. 285, or
oblique as in fig. 286. -
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Rectangular axes are generally used; however, sometimes it-is more
convenient to use oblique axes.

The position of a point is fixed by two co-ordinates, as shown
in fig. 287, known as

1. Absp_i_ssa;
2. Ordinate.
OBLIQUE Y

YI
F1u. 286.—Oblique axes,

An abscissa is the distance of any point from the axis of or-
dinates (the Y axis) measured on a line parallel with the axis
of abscissae, that is, the X axis.

An ordinate is the distance of any point from the axis of ab-
scissae (the X axis) measured on a line parallel with the axis of
ordinates, that is, the Y axis.

In fig. 287, the abscissa of the point P is PH, and the ordi-
nate PD. To distinguish abscissae and ordinates they are rep-
resented by the symbols x and y respectively as indicated in
the figure.
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A point 1s referred to as the point a,b, when its co-ordinates
are

x=a (abscissa)

y=>b (ordinate)

Note that the abscissa is always mentioned first.

Since the two intersecting axes divide the plane into four
quadrants it is necessary to distinguish the quadrant contain-
ing a given point. The quadrant is indicated by the signs
(positive or negative) given to the co-ordinates as in fig. 288.
For instance a point x=a¢ and y=»5 is in the first quadrant

Y

I
]
T

ABSCISSA

<

ORDINATE

U _-_’_\
e

F1G. 287.—Rectangular axes illustrating co-ordinates.

(as shown in fig. 288). If the point were in some other quad-
rant its position would be expressed as follows:
2nd quad x=—a; y=-+b
3rd quad x=—a; y=—b
) 4th quad x=+a; y=—b
When no sign is given. the value of x or ¥ is +.
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Equations and Leei.—If x,y in fig. 287 be the point P and
assuming that x =0 (zero), then P lies-on the Y.axis at a dis-
tance above the origin 0, corresponding to the value given to y.

The equation x =0 will be satisfied for all values given to ¥
and accordingly this is the equation r{ the Y axis.

Similarly y =0 indicates that the point lies on the X axis,
and accordingly this is the equation of the X axis.

The equation x=o0, y=a, is the equation of a point P on the y axis,

as in fig. 289.

2ND Y |sT

QUADRANT QUADRANT
X =- x +
y + y +

X
3RD 4TH

. QUADRANT. QUADRANT
X - X +

y — y — -

|

Fic. 288.—Co-ordinate signs for the form quadrant.

An equation x =g, where ¢ is a constant, as in fig. 290, ex-
presses that P lies on a parallel with the Y axis through a point
m on the axis of X such that om=a.

Every line parallel with the Y axis has an equation of this form.
Similarly, every line parallel with the X axis has an equation of the

form y=», where b, is some definite constant.

These are simple cases

of the fact that a single equation, in thé current co-ordinates of a variable
point (x, ¥) imposes one limitation on the freedom of that point to vary.

The co-ordinates of a point taken at random in the plane will, as a rule,
not satisfy the equation, but infinitely many points, and in most cases
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infinitely many real ones, have co-ordinates which do satisfy it,.and these
points are exactly those which lie upon some locus of one dimension, a
straight line or more frequently a curve, which is said to be represented
by the equation. i

Problems.

" Problem 1.—7To find the equation of a straight line parallel
with one of the axes.
Y

P

s

F16. 289.—Point P on the Y axis.

<
o

b oconoaooa)

3
X

F16. 290.—Point P illustrating equations.
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In fig. 291,
LP is the straight line || with the X axis at a distance OL =b.
Let x,y be the co-ordinates of any point P on the line. Then

the ordinate NP is equal to OL. Hence y =5 is the equation
of the line.

Y P
L 4
o )
-2 X
O N X

Fi1G. 291.—Problem 1,

Y B

fe) N X

Frc. 292.—Problem 2.

Problem 2.—7To find the equation of a straight line which
passes through the origin.

In fig. 292,
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OP is the straight line. Let tan NOP =m, and x,y the co-
ordinates of any point P on the line, then

NP =tan NOP XON

.".y=m x is the required equation.

Problem 3.—7To find the equation of any straight line.

In fig. 293, ’
Let LMP be the straight line meeting the axes in the points
L, M.
Let OM=¢, and let tan OLM =m.
Y /'Z_
/
Ql
M ﬁ
L =
o N X

FiG6. 293.—Problem 3.

Let x,y be the co-ordinates of any point P on the line.
Draw PN parallel with the Y axis, and OQ parallel with the

line LMP, as shown.

Then NP =NQ+QP=0N tan NOQ+OM.

But

NP=y, ON=x, OM=¢, and tan NOQ=tan OLM=m
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Soy=mx—+c
which is the equation of any straight line.

Problem 4.—To find the equation of a siraight line in terms
of the intercepts which il makes on the axes.

In fig. 294,

Let A, B be the points where the straight line cuts the axes,
and let OA=¢a, and OB =b.

Let the co-ordinates of any point P, on the line be x y.
Draw PN parallel with the axis of y, and join OP.

Y
\ -~
B
i
a \l X
0 N . A
£16. 294, —Problem 4.
Then A APO+ APBO= AABO;
ay-+bx=ab,
or X, Y_
= 1.

This equation may be written in the form

Ix+my=1.
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where [ and m are the reciprocals of the intercepts oh the axes.
Problem 5.—7To find the equation of a circle referred {o any
rectangular axes.
In fig. 295,

Let C be the centre of the circle, and P any point on its
circumference.

Let d,e, be the co-ordinates of C; x,y the oo-ordmates of P
and let a, be the radius of the circle.

Y

—_—
A
y

= d

o) M N X

F16. 295.—Problem 5.

. Draw CM, and PN, parallel with OY, and CK parallel
with OX.

Then (CK)24- (KP)2= (CP)?
But CK=x—d,and KP=y —e;
L (x—d)*4-(y —e)*=a?
is the required equation,
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If the centre of the circle be the origin, d and e will both
be zero, and the equation of the circle will be

22492 =q?
Problem 6.— To find the equation of a parabola.
In fig. 296, .
Let S be the focus, and YY’ the directrix.
Draw SO perpendicular to YY’ and let OS =2a.

Y .

M

L £

l—2a

F
O A\S N X :

Y \p\

Fi1G. 296.—Problem 6.

Take OS for the axis of x, and OY for the axis of y.

Let P be any point on. the curve, and let the co-ordinates
of P be x,y.

Draw PN, PM, perpendicular to the axes, as shown, and
join SP.
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f f= Foci < a -

¢ = Va?-b?

FI1G. 297.-——The ellipse. A curve generated by a point moving so that the sum of its distonces
Jrom two fixed points is always corstant. The fixed points are called the foci. Equation of
ellipse with center at origin: 5

X2
atu=t
where g and b are half the major and minor axes.

te—Q —>

2¢
f f=roci

¢ =Vai+ b2

F1G. 298.—~The hyperbola. A curve generaled by a point moving so thal the difference of its
distances from two fixed points is always constant.

\
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(Y]

Then, by definition, SP =PM;

hence (PM)?= (SP)2= (PN)2+ (SN)?
that is x2=yt+ (x —2a)?
yt=4a (x —a)

the required equation of the curve. R
If the parabola be taken with its axis along the X axis and
vertex at origin, the equation becomes

yt=4 ax

TEST QUESTIONS

" 1. Define analytical geometry.
2. How is the position-of any point determined?

What is the difference between an abscissa and an
ordinate?

Which of the two co-ordinates is mentioned first?
Give the sign of the co-ordinates of the four quadrants.
In which quadrant are both co-ordinates minus?

_ Give the equation for a point which lies in the X axis.

W

0 ~N O AN =

 Find the line whose equation is lx 4+ my=1.
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CHAPTER 10

Trigonometry

Trigonometry is that branch of mathematics which ireais of
the measurement of plane and spherical triongles, that is, the
delermination of three of the paris of such iriangles when the
numerical values of the other three parts are given.

Since any plane triangle can be divided into right angled triangles, the
solution of all plane triangles can be reduced to that of right angled tri-
angles; moreover according to the theory of similar triangles, the ratios
between pairs of sides of a right angled triangle depend only upon the
magnitude of the acute angles of the triangle, and may therefore be re-
garded as functions of either.of these angles.

Trigonometry is divided into three branches:

1. Plane;
2. Spherical;
3. Analytical.
Plane trigonometry deals with plane triangles, and spherical trigonome-
try with spherical triangles, the difference being shown in figs. 300 and

301. Evidently the kind of trigonometry the mechanic is interested in is
plane trigonometry. Spherical trigonometry is useful in navigation.

This chapter explains plane trigomometry.

Angles.—When two lines meet, as shown in fig. 299, they
form an angle with each other. The point where the two lines
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meet or intersect is called the verfex of the angle. The two
lines forming the angle are called the sides of the angle.

Angles are measured in degrees and sub-divisions of a degree. If the
circumference (periphery) of a circle be divided into 360 parts, each part
is called one degree and the angle formed by two lines from the center of
the circle to the ends of this small part of the circumniference is a one degree
angle.

A .

SIDE DEGREES
VE%
(@) - B

FiG. 299.—leique angle showing parts and how measured.

As the whole circle contains 360 degrees, one half of a circle contains
180 degrees, and one quarter of a circle 90 degrees. A 90 degree angle
is called a right angle.

An angle larger than 90 degrees is called an obfuse angle, and an angle
less than 90 degrees is called an acufe angle. Any angle which is 1ot a
right angle is called an oblique angle.

NOTE.—Angles. The side of the angle that revolves is called the terminal line. The side
from which the revolution is measured is called the initial line. An angle is said to be in the
quadrant in which its terminal line is located. A positive angle is ore in which the terminal
line revolves in a counter-clockwise direction. A negative angle is one in which the terminal
line revolves in a clockwise direction.



Trigonometry 239

When two lines form a right or 90 degree angle with each otber, one
line is said to be perpendicular to the other.

Triangles.—Every triangle has six parts:
1. Three angles.
2. Three sides.

PLANE TRIANGLE SPHERICAL A
1 TRIANGLE ——

GREAT
CIRT.LE

cem—ean—

/ /;" 4 /
/ '{/’/' / './
A4
SPHERICAL
PLANE SURFACE SURFACE

71Gs. 300 and 301.—Plane and spherical triangles illustrating blane and spherical branches
of trigonometry.

o S F B

F1c. 302.—Angle showing that the length of a degree depends upon the diameter of the circle
on which it is measured. .
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When any three of these parts are given, provided one of
them be a side, the other parts may be determined. The de-
termination of the unknown parts is called the solution of
triangles.

Measurement of Angles.—In trigonometry the arcs of circles
are used to measure angles. The unit of measurement of angles
is the degree (°). In this system of measurement, the circumfer-
ence of every circle is supposed to be divided into 360 equal parts,
called degrees; thus, a degree is /30 of the circumference of any
circle. A degree is divided into 60 parts called minutes

COMPLEMENT SUPPLEMENT
OF ANGLE A0B OF ANGLE AOP

— A
Do : ANGLE
ANGLE
0B B8 o) B

Fics. 303 and 304.—Compl and suppl t of an angle.

expressed by (), and each minute is divided into 60 seconds,
expressed by ("), so that the circumference of any circle contains
21,600 minutes or 1,296,000 seconds.

Evidently, then the length of a- degree depends upon the
diafneter of the circle as shown in fig. 302.

The complement of an angle is the difference between 90° and the argle;

the supplement of an angle is the difference between 180° and the angle.
These terms are illustrated in figs. 303 and 304.

Trigonometrical Functions.—A function is a quantity in
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methemalics so connected with another quantily that if any al-
leration be made in the latter there will be a consequent alleration
in the former. The dependent quantity is said to be a function
of the other. Thus, the circumference of the circle is = func-
tion of the diameter.

These functions may consist of:

1. Ratios.
2. Lines (“‘natural functions”).

In the first instance they are defined by referring to a triangle made by

OPPOSITE SIDE

(o) S

ADJACENT SIDE B

Fic. 305.—Angle @ and constructed trianglz OAB for expressing trigonometrical functions as
ratios.

drawmg (as in fig. 305) a perpendicular from any point A on one side of
a given angle, MOS or ¢, to the other side, as AB.

It will be noted that the triangle thus formed is a right triangle, that is,
angle ABO = 90°. In this triangle the trigonometrical functions, expressed
as ratios are as follows:

Sine of the angle § = AB _ = M

AO hypotenuse

Cosine of the angle § = O—B = gdiacentiside

CA  hypotenuse
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AB _ opposite side
Tangent of the angle § = OB~ adiacent side
OB - adjacent side
BA  opposite side
0__A_ _ hypotenuse
OB  adjacent side
_ OA _ hypotenuse

toftheangle § = — = 2 " __
Cosecan = AB  opposite side

. Cotangent of the angle § =

Secant of the angle § =

. COTANGENT i
A
X
S
A N
S & / -
~ Q& & z
< S S
2) A %a 1]
ul [0]
S & Z z
N o Z =
& © © P
D
VERSED
COSINE SINE
o . B S

Fic. 306.— Natural tﬂ'ﬂonomeirical functions, or functions expressed as lines.

For the sake of brevity the names of the functions are contracted, thus:
for sine 6, write sin 6; for cosine 6, write cos 6, etc.

The cosine, cotangent (cot.) and cosecant (cosec) of an angle are respect-
jvely the sine, tangent and secant of the complement of that angle.
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In the second instance the trigonometrical functions.are
defined by certain lines whose lengths depend upon the arc
which measures the angle. These are virtually ratios but by
taking what corresponds to the hypotenuse OA, of the triangle
AOB, in fig. 305as a radius of unity length of a circle the de-
nominators of the ratios become unity or 1, and disappear leav-
ing only the numerators, that is, a line instead of a ratio or
function; these lines are the so called “natural functions,”
thus in fig. 306.

Sineangle § = ———— =" = AB
radius 1
Cosine angle § = OB = OB
radius
MS MS
Tangent angle ¢ = 5 " rdim = MS
Cotangent angle ¢ = tangent of complement of angle ¢
- FL _FL _
T OF  radius GC
OM OM
S tangle § = — ="
=R B (0] radius
Cosecant angle ¢ = secant of complement angle o
OL OL
T OF radius oL
Versed sine angle 6 = —gg— = % =BS

It is these natural trigonometrical functions that are especially useful,
rather than the functions expressed as ratios, because, with the aid of the
table of natural trigonometrical functions given on page 244, the exact
lengths of the functions for an arc of unity radius can be found.

Change of Sign.—Whether the value of a function is + or —
(positive or negative) depends upon the quadrant.

If a circle be divided into four quadrants by a vertical and a horizontal
diameter the upper right hand quadrant is called the first, the upper left
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Natural Trigonometrical Functions

Degree Sine \':osi_ne ‘Tangent | Secant | Degree Sine Cosine | Tahgent | Secant

0 00000 | 1.0000 | .00000 | 1.0000 46 7193 | .6947 | 1.0385 | 1.4305
1 01745 | .0908 | 01745 | 1:0001 | 47 7314 | .6820 | 1.0724 | 1.4663
2 03490 | 9994 | .03192 | 1.0006 | 48 748t | L6691 | 1.2108 [ 1.4045
3 .0523¢ | .9988 | 05241 [1.0014 | 49 L7547 | L6361 | 1.1504 [ 1.5242
4 06076 | .9976 06993 | 1.002¢ | S50 .7060 | .6428 | 1.1018 | 1.5887
5 .08716 | .9v62 | 08749 [ 1.0038 | 81 17| L6203 | 172340 | 1.5800
[ 10453 | .0045| 10510 [1.0085| 2 7880 | 6157 | 1.2700 | 1.6243
7 a2187 | .e92s | .12278 [ 1.0075 | 83 .7986 | 6018 | 1.3270| 1.6616
8 392 | L9003 | .1s08 |1.0008 | 54 .8000 [ .5878 | 1.3764 | 1.7013
] 564 | 9877 | .158¢ {1.0125| 35 81921 5736 | 1.4281] 1.7434
10 736 | Lo8i8| L1763 110154 | s6 8290 | .5592 | 1.4826 | 1.7883
1 1008 L9816 | 1944 j1.0187 | 57 .8387 | 6446 | 1.3300 | 1.8361
12 208 | .9t81{..2126 {1.0223 .8480 | .5209 | 1.6003 | 1.8871
13 2250 | e7a4| .2309 ]1.0263| s 8572 | 5150 | 1.8643 | 1.0416
N 2419 | 0703 | .2493 |1.0806| 60 | .see0| .s000 | 1.7321| 2.0000
15 2588 | ,9650 {1.2679 |1.0853] e1 8746 [ 4848 | 1.8040  2.0627
18 2756 | .9613| .2867 |1.0403| 62 .8820 | 4605 | 1.8807 | 2.1300
17 2924 | 0563 | .3057 [1.0457] 63 L8910 | 4540 | 1.9626 | 2.2027
18 3000 | .es11| .3240 |1.0515| 64 .8988 | ".4384 | 2.0503 { 2.2812
19 L3256 | L9485 | .3443 |1.0876| 65

20 .34200 | 0307 | 3640 |1.0842| 68
21 L3584 9336 | 3839 |1.0m11| 67
22 L3746 9272 [ 4040 | 1.0755 | 8
23 .3907 92051 L4245 | 1.0864 | 9
2% L4067 0135 | 4452 |1.0046 | 70
25 4226 9003 | 4663 |1.1034 | 71
26 L4384 .8088 | 4877 |1.1126 | 72
27 L4540 | .s910 | 5005 |1.1223{ 73
28 4605 | 88201 .3317 [1.1326] 74

. 20 4848 6746 | 5543 [1.1433 | 75
30 5000 | .8e60 [ 5774 |1.1547| 78
31 5150 .8572| .6009 |1.1666} 77
-82 5299 8480 | .6240 |1.1792) 78
33 5446 8387 | L6494 [101024| 70
34 .5502 8200 | 6745 |1.2062| 80
35 L5736 8192 | 7002 }1.2208 | 81
36 | .5878 .8090 | .7265 {'1.2361
37 .6018 ,7086 | ,7536 {1.2521 ] 83
38 L8167 L7880 | .7813 |[1.2600| &
39 .6203 7771 L8008 | 1.2807 | 85
40 .6428 7660 | .8391 |1.3054 | 86
4 .6561 7547 | .8093 | 1.3250 | 87
42 6601 7431 | 0004 |1.3456 | 88
43 6820 | .7314 | 0325 |1.3673| 89
4 6947 L7193 | .D657 {1.3802 | 90
43 7071 7071 | 1.0000 | 1.4142 f— — —_ -—_

NOTE.—For intermediate values reduce angles from degrees, minutes and secouds te

degrees and decimal parts of a ‘degree (as 40° 21’ 30" = 40.358°) interpolate or consult a larger
table. :
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the second, the lower left the third, and the lower right, the fourth, as
in fig. 314. The signs of the functions in the four quadrants are as follows:

SINE COSINE, TANGENT
el 3 \
COTANGENT COSECANT
SECANT.
e ) \
pad’ . ¥

ANGLE O

VERSED SINE

COMPLEMENT
OF ANGLE O

F16s. 307 to 313 —The natural trigonometrical functions each shown separately for clear-
ness. As elsewhere stated the cos., cot, and cosec. of an angle are respectively the sine, tan,
and sec. of the complement of the angle.

. Sine and cosecant
Cosine and secant
Tangent and cotangent

First
quad.

+
+
+

Second Third Fourth
quad. quad. quad.

+ - o
- - 4

Functions of the Supplement of an Angle.—The sine of an
angle is equal lo the sine cf ils supblement, and the cosine, tangent
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and colangent are each equal o minus the same functions of its
supplement. That is:

sin (180°— ¢) =sin ¢

cos (180°— ¢) = —cos ¢

tan (180°— ¢)=—tan ¢

cot (180°— ¢) = —cot ¢

2ND 1sT

QUADRANT QUADRANT

3RD 4TH

QUADRANT QUADRANT

F16. 314.—The four quadrants.
Law of Sines and Cosines.—All formulae for the solution of
triangles- are based on:

1. The law of sines;
2. The law of cosines.

together with the fact that the sum of the three angles of a tri-
angle equals 180°.



Trigonometry 247

In a triangle, any side is lo any other side as the sine of the
angle oppostte the first side is lo the sine of the angle opposile
Lhe other side; that is, if @ and*b be the sides, and A and B the
angles opposite them:

Law of sines.

In a triangle, the square of any side is equal to the sum of the
squares of the other two sides minus twice their product times Lhe
cosine of the included angle; or if a, b, and ¢, be the sides and
the angle opposite side @, be denoted A, then:

a?=b24cz2—2 bccos A Law of cosines.

from which a="V'b2+c2 -2 bc cos A.

The Right Triangle.—The process of “solving’” a triangle
vonsists in finding the parts not given.

In any triangle there are six parts:
1. Three sides;
2. Three angles.
The sides are denoted by italic letters as
. a b c
and the angles opposite these sides by capital letters as
A .B C

This arrangement of symbols is shown in fig. 315.

Any triangle can be solved if three paris, of which one is a side
be given.

Since in a right triangle the right angle is a part of it, a
right triangle requires only two additional parts for solutton—two
sides; or one side and an acute angle.
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For convenience in solving triangles the formulae should be
arranged in tabular form so that any formula to be used can
be quickly selected as here given:

In fig. 315,
. a
s P=q cos ¢>=—c-
b
tan ¢=% cot ¢)='£

F16. 315.—Symbols used to denote sides and angles nf a triangle.

— cosec ¢>—E
seC ¢ = =
£ C=90° LA+ £B4 £C=180°
a2=c2_b2 2=¢2—q2

c?=a?+b?
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To solve a triangle apply the following rule:

Rule.—S¢lect a formula containing two of the given parts sub-
stituting the given values lo find a third part. Continue this
Dprocess until all the parts are found.

Choose the shortest way to solve a triangle.

Example 1.—The hypotenuse of a right triangle is 1.4142 and one of
the sides is 1. Find the remaining parts.
B

A - (o4

¥iG. 316.—Triangle for example 1.

In fig. 316, a1

1.4142)1.0000000(.7071
98994

100600
98994

16060
14142

- 1918
that is sin A =.7071
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This is the natural function and the angle corresponding is
given in the table on page 244, and here reproduced in part.
Accordingly, to find the angle where sin=.7071 consult the
table, which gives the angle A as 45°.

Natural Trigonometrical Functions.

Degree|| Sine | Cosine | Tangent | Secant

a2
43
44

45 7071
A w

\

\
ANGLE

NATURAL SINE OF 45° ANGLE

Solving for the other parts
LA+ £B+ £C=180°
but C=90°. Hence, substituting

B-+45+-90 =180
B =180 — (45+90)
. B=45°

Solving f(_)r ¢

Cos A=—
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or b=ccos A
=1.4142 cos A
cos A =cos 45° =.7071
Substituting
b=1.4142x.7071 .
. =.999981

being a close approximation of 1 by the four place table.

Example 2.—Solve by logarithms a triangle whose hypotenuse is
47.653 and a side 21.34.

21.34

a=

A C

¥16. 317.—Triangle for example 2.

In the solution which follows, the logarithms should be obtained from a
table of logarithms of trigonometric functions to each minute.

In fig. 317. 2
sin A=;

log sin A=log ¢—log ¢
log 21.34=1.32919
log 47.653 =1.67809

log sin A=9.65110—-10
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A =26° 36'14"
cos A=—
C

. log b=log c+log cos A
log 47.653 =1.67809 .
log cos 26° 36’ 14"’ =9.95140-10
log b=1.62949
b =42.608

F16. 318 to 320.—Various oblique triangles.

The Oblique Triangle.—Although oblique triangles may be
‘solved by the use of right triangles, this method is sometimes
awkward and the solution is rendered more simple with the
epecial formulae here given.

In figs. 318 to 320 let fall the 1 CD and call it 4.

Then in fig. 318, '
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. h
sin A—E

in fig. 319, .
sin A =sin (180°—A) =

o=

and in fig. 320,
sin B = (180° - B) =2-

By division

Similafly

and SinC ¢

Evidently these formulae are used for the solution of tri-
angles having given

1. One side and two angles, or

2. Two sides and an angle opposite one of them.

H

The formulae taking the form
. sin A
“sin B

etc. i

Example 3.—Solve the oblique triangle in which is given
2=36.738. A=36°55' 54", B=72°5" 56" . -
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In fig. 321,
C=180°—(A+B)=180°~109° 1! 50" =70° 58’ 10*
' To find b To find ¢
b_sin B . . ¢_sin C
a sin A a sin A

F16. 321.—Triangle for example 3.

F16. 322 —Triangle for example 4.
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loga=1.56512 loga=1.56512
log sin B=9.97845-10 log sin C=9.97559—10
colog sin A =0.22123 - cologsin A=0.22123
log b=1.76480 log ¢=1.76194
b=58.184 c=57.80

Example 4.—Solve the oblique triangle in which is given
a=23.203,b=35.121, A=36° 8’ 10"

In fig. 322,
To find B and B’ To find ¢ and ¢’
sin B=1_) c_sin C
sin A a a sin A
log b=1.54556 log a =1.36555
log sin A =9.77064 —10 log sin C =9.99421 —10 -
colog a =8.63445—10 colog sin A =0.22936
log sin B =9.95065— 10 log ¢=1.58912
B=63°12 ¢=38.825
B’=180°—B=116° 48’
loga=1.36555
To find C and C’ log sin C’ =9.65800—10
C=180°-(A+B)=80° 39" 50" colog sin A =0.22936
C’'=180°—(A+B’)=27°3'50" log ¢/’ =1.25291
¢’ =17.902

Trigonometric Formulae.—A tabulation of the various for-
mulae used is here given in convenient form for reference.
The relations are deduced from the properties of similar tri-
angles. Radius=1.

sin A
cos A’

cosA:sinA:x1l:tan A, whence tan A=

cos A,
sin A’

sin A : cos A 1 1:cot A, whence cotan A=

cosA:1l i 1:sec A, whence sec A=

cos A’
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sinA:1 :z1:cosecA, whencecosecA=sin—A

tanA:1 1:cotA, whence tan A—ﬁ
Functions of the Sum and Difference of Two Angles
sin (A4-B) =sin A cos B4-cos A sin B
cos (A+B)=cos A cos B—sin A sin B
sin (A—B) =sin A cos B—cos A sin B
cos (A—B)=cos A cos B+4sin A sin B

By addition and subtraction the following equations are ob.
tained from these formulae.
siri (A+B) +sin (A—B)=2sin A cos B
sin (A+B)—sin (A—B)=2 cos A sin B
-cos (A+B)+cos(A—B)=2cos Acos B
cos (A—B)—cos (A+B)=2sinAsinB

sin A+sin B Zsm% (A+B) cos 15 (A— B) tan 14 (A+B)
sin A—sin B 2cos / (A+B)sin ¥4 (A— B) " tan % (A-B)

cos A+cos B 2cos Y5 (A+B)cos 5 (A—B) cot 14 (A+B)
cos B—cos A~ 2sin 14 (A+DB) sin 14 (A-B) “tan ¥ (A—B)

sin (A+B) tan A+tan B
sin (A-B) “tan A—tan B

sin (A+B) tan A+tan B

———  t=tanA+tan B A+B)y=""T<" "~ _
cos A cos B an A+tan | tan (A+B) l1—tan A tan B
sin A=B) _ A _tanB tan (A~B)= tanA-tan B
cos A cos B l1+4tan A tan B
cos (A+B)=1—tanAtanB cot (A+B)=COt A.cot B—1

cos A cos B cot B+cot A
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cot A cot B41

cos (A—B)
cot B—cot A

= A A—B)=
sAce B l14tan Atan B cot ( )

Functions of twice an angle

sin 2A =2 sin A cos A :
2tanA cos 2A =cos? A—sin? A

t‘an2A=1_tanz A e cot2A=cot’A—l
2cot A
Functions of half an angle
sin%A=:§:\/1—c;SA- cos %'A=:§:‘)1+c;sA

1—cos A 14cos A
A5 A = T t LA = SO BE o
tan 24 :t‘ll'-}-cosA cot 7% i‘/l—-cosA
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15.
16.
17.

18.
19.
20.
21.
22.
23.

TEST QUESTIONS

Of what does trigonometry treat?

How are angles measured?

How many parts has a triangle?

What is the difference between the complement and the
supplement of an angle?”

. Nametwoways of expressingtrigonometricalfunctions?

. Define sine and versed sine of an angle?

. Explain fully how the natural functions are obtained.

. Why is the value of a function positive or negative? +
. Give formulz for the functions of the supplement of

an angle.

. Give the law of sines and the law of cosines.
11.
12.
13.
14.

Of what does the process of solving a triangle consist?

What must be given in order to solve a triangle?

Give the formula used in the solution of triangles.

The hypotenuse of a right triangle is 1.4142 and one
of the sides is 1. Find the remaining parts.

Solve by logarithms a triangle whose hypotenuse is
47.653 and a side 21.34.

Can oblique triangles always be conveniently solved by
the use of right triangles?

Solve the oblique triangle in which is given a=36.738,
A=36°55 54", B=72°5"56".

Given a=23.203, b 35.121, A=36° 8’ 10”; solve.

How are trzgonometrwal formulae deduced?

Give functions for sum and difference of two angles.

Give formulz obtained by addition and subtraction.

Give formula for functions of twice an angle.

Give formulz for functions of half an angle.
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CHAPTER 11

Algebra

Algebra is that branch of maihemalics in which letlers, signs
and figures are used in making calculations instead of only signs
and figures as in arithmelic.

By the aid of algebra it is possible to express obscure or involved quan-
tities which are set down as equations and the problem solved by treating
the equations according to certain definite rules.

Success in solving equations involves a knowledge af the mean-
ing of the various parls which make up the equation so that it can
be properly ‘“‘handled”’ or manipulated.

Symbols.—Letters of the alphabet are used fo represent
quantities in algebraic equations. It is usual to represent known
quantities by the first three letters of the alphabet as a, b, c,
and unknown quantities by the last letters as, x, ¥, 2.

NOTE.—Algebra. Note the following divisions. Boolian or logical algebra. A method of
dealing with concepts of logic by means of algebraic symbols and operations.—double a., that
form of algebra in which the symbols indicate lines, their lengths and their directions.—graphic
a., algebra in which curves are used to express the relations of quantities; multiple or n-waya.,
that algebra in which heterogeneous units are combined and multiplied; pure a, algebra in
which all the units are definitely related; rhetoricala., the discussion of problems by algebraic
methods, but in ordinary language; algebra without notation.—universal &.—a method of
reasoning by symbols, of which the general definitjons may be applied to any process of ad-
dition and others to any process of multiplication; multiple units treated algebraically.
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Signs.—These are characters indicating the relation of quan-
tities, or an operation performed upon them.
Thus, as in arithmetic

+ (plus), sign of addition.

— (minus), sign of subtraction.
X (times), sign of multiplication.
=+ (divided by), sign of division.
= (equals), sign of equality.

< (is less than)

> (is greater than)

~ (difference of two quantities). Thus @ ~b denotes that the difference
of the quantities @ and b is to be fouad.
|

() parentheses. Thus: (a—b) x indicates that the quantity obtained by
subtracting b from g is to be multiplied by x.

- - - (continuation). Read: “and so on.”
. (therefore).
- (vinculum), thus: a+4Xy, same as (a+b) y.

}signs of inequality.

v ——(radical). Indicates that a root of the number to which it is pre-
fixed is to be extracted.

=+ plus or minus.

Since the signs’just given have exactly the same meaning
as in arithmetic, no further explanation is necessary.

Coefficient.—This is a number prefixed to a quantity to
denote how many times the quantity is to be taken. Thus:
3ay means ay+ay+ay. '

Exponent.—A small figure called an exponent is placed to
the right of and slightly above a numeral or mathematical
svmbol, to denote the power to which the magnitude is to be
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raised. Thus: x? (x squaré) means xXx. Hence, the ex-
ponent indicates the number of times the quantity is to be laken
as a factor.

Algebraic Expressions.—Any combination of algebraic sym-
bols, coefficients and signs, as 2ax+4by is known as an ex-
pression.

A term of an algebraic express1on is any combmatlon of symbols and
coefficients not separated by a sign.

Thus, in the expression 2ax +4by, the terms are 2¢x and 4by.
There are numerous kinds of expressions. Thus:
x4y (two term) binomial expression
a+x+y (three term) trinomial expression

Similar or like terms are those which differ only in their
numerical coefficients. Thus:

4ay*+6ay?

Dissimilar or unlike terms are those which are not similar.
Thus:
daxy?+2axty

The degree of a term is the number of literal factors which
it contains. Thus:

2a is of the first degree, since it contains but oze literal factor;
ab is of the second degree, since it contains fwo literal factors;
3a2b? is of the fifth degree, since it contains five literal factors.

Homogeneous terms are those of .the same degree.
Thus: 3abx and y*
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Addition

In algebra the process of collecting the lerms of an expression
inlo an equivalent expression is called addition. It involves the
collection of both positive and negative quantities.

Addition may be divided into three cases:

1. Like terms with the same sign;
2. Like terms with different signs;
3. Unlike terms.

Case 1.—Like terms with.the same sign.

Rule.—Add the numerical coefficients, prefix the common sign,
and annex the common letters.

Example.—Add 2ax+-3ax+12ax

2ax
3ax
12ax

17ax
Here it is not necessary to prefix the common sign to the
answer, as in the absence of any sign, -+ is understood.

Example.—Add —2ax—-3 ax—12ax

— 2ax
— 3ax
0 —12ax
—1%7ax

Note the minus sign is prefixed to the answer.

Case 2.—Like terms with different signs.

Here it is necessary to distinguish between quantities whick
are the exact opposite of each other in condition or quality.



Algebra 263

Thus on the thermometer scale, temperatures above zero are - tempera-
tures, and below zero, — temperatures.

Adding a negalive quantily is equivalent lo subtracting a posi-
tive quantity of the same absolute value.

Thus:
x+(~y)

x=y

is the same as

" Rule.—Subtract the less coefficient from the grealer; affix the
common symbols and prefix the sign of the greater coefficient.

Example.—Add 2x—12x

—12x
2x
—10x
Example.—Add 2x— 4x+43x—10x.
1st step 2nd step’
2x— 4x —14x
3x--10x 5x
5x—14x — 9%

Case 3.— Unlike terms.

Rule.— Add together the terms which are like terms by the rule
in the second case, and put down the other terms each preceded

by its proper sign.
Example.—Add 2x+43y—8z, 10y—3x+4-2z, 3x+2—y.
2x+ 3y—8z

—3x+4+10y+-22
3x— ¥y +2

2x4+12y— 6242
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Subtraction

This is the process of taking one quantity from another.

The subtrahend is the quantity to be subtracted.
The minuend is the quantity from which it is to be subtracted.

The remainder is the result of the operation.

Rule.—Change the sign of the sublrahend and add the resull
to the minuend.

Example.—Subtract 7a from 10a.
Here 7a is the subtrahend and 10a the minuend.

10a
— Ta
3a

Example.—Subtract —7a from 10a.

Changing sign of subtrahend —7a becumes +7a, hence
10a
e
17a

Example.—Subtract 5x%y —3ab+m? from 3x%y —2ab+4n.

Changing the sign of each term of the subtrehend and adding the result
to the minuend,
3x2y —2ab+4n
—5xty+3ab —m?
=2xy+ ab+4n—m?

Parentheses and Brackets

In algebra the parentheses are very frequently used and
accordingly it is important to know the rules respecting them.
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Rule.—When an exb'ressz'on within parentheses is preceded by
the sign + the parentheses may be removed.

Thus a+(b—c)
is the same as
a+b—c

Rule.—When an expression within parentheses is preceded by
the sign — the parentheses may be removed if the sign of every
term within the parentheses be changed.

Thus- the expression
a—(b—c)
indicates that the quantity b—c is to be subtracted from a.

Accordingly applying the rule, the quantity

a—(b—c)
is the same as
a—b4c

Rule.—Any number of lerms in an expression may be pul
within parentheses and the sign + placed before the whole,

Rule.—Any number of lerms in an expression may be pul
within parentheses and the sign — placed before the whole, pro-
vided the sign of every lerm within the parentheses be changed.

It is often convenient to put two or more terms within
brackets.

Brackets have the same meaning as parentheses but are
used for complicated expressions, for instance:

(x=3)+a &G—4)

h- 3x (a—b) — s
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Multiplication
Algebraic multiplication involves three cases, as in multi-
plying: '
1. A single term by a single term.
2. An expression by a single term.

3. An expression by an expression.

Preliminary to considering these three cases, a clear under-
standing should be had of the Rules of Signs which follow.

Rule.—Positive X positive = positive.
Thus (+1) X (+1)=+1

Rule.—Negative X negative = positive.

Thus (-1)X(-1)=+1

Rule.-—Positive X negative =negative.

Thus (+1) X(—1)=—1
Case 1.—A single term by a single term.

Rule.—Multiply the coefficients and affix the symbols. Make
the product + when the factors have the same sign and —~ when
they have different signs.

Example.—Multiply 2a by 3b
2aX3b="06¢h.
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Example.—Multiply —2a by 3b.
(—24) X (+3b) = —6ab

~ Law of Exponents.—’i‘o multiply two like quantities having
exponents add the exponents.

Case 1.—A single term by a single term.
Example.—Multiply x2 by x3.

XX x? = x243 = x5
Case 2.—Single terms with fractional exponents.

Rule.—1In a fractional exponent the numeralor denoles a powe:
and the denominaior a rool.

Example.—x% =3Vx2
Case 3.—An expression by a single lerm.

Rule.—Multiply each term of the multiplicand by the mulli-
plier, and connect the products with the proper signs.
Example.—Multiply a+b by 2x.

a+b
2x

2ax+2bx
Example.—Multiply a+b—c¢ by —2x.

a+b—c
—2x
—2ax—2bx+2cx

Case 4.— An expression by an expression.

'Rule.—Multiply each lerm of the multiplicand by each term of
the multiplier; if the terms have the same sign, prefix the sign -+
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to the product; if they have different signs, prefix the sign —:
then collect these resulls lo form the complete product.

Example.—Multiply M4-S by M4.S.
M4S
M+S

Multiplying each term by M gives M2+M S

Multiplying each term by § gives ~ M S48

Adding terms gives M24+2 M S4S
This is shown graphically in fig. 323.
~+S M
7)) 2
Sl M
0|s® MS
A

F16. 323.—Diagram illustrating the product obtained by multiplying M+S by M+S.

Example.—Multiply —x—x*+1+42% by x+1.

It is convenient to have both multiplicand and multiplier arranged in
the same order of powers, and to write the partial products in the same
order,

Arranging the expressions according to the ascending powers of x, thus,

1—x4x2-2x3
4+
I—xtxi—x
r—a24x3—xt
F I
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Division

The process of division is somewhat more difficult to explain
and understand than the foregoing operations, and accordingly
division should be studied and thoroughly understood by the
student.

ivision is the reverse of multiplication; that is, in multipli-
cation the product of given factors is to be determined; in
division the product and one of the factors is given to deter-
mine the other factor.

There are three cases, as, in dividing:

1. One single term by another.
2. An expression by a single term.
3. An expression by another expression.

Law of Signs.—Since the dividend is the product of the di-
visor and quotient, it follows that

‘When divisor is 4+ and dividend +, then quotient is +

“ “ “ ¢« “ “ ““ [T
T

“" “ £ I “" (x4 “ €< (11

Rule.— Like signs produce +; unlike signs —.

Rule.— Write the dividend over the divisor with a line between
them; if the expressions have common factors, remove the common
factors; prefix the sign + if the expressions have the same sign,
and the sign — if they have different signs. One power of any
quantity is divided by another power of the same quantily by sub-
tracting the index of the latter power from the index of the former.
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Case 1.—One single term by another.

Example.—Divide 12ab by 2a.
12ab

247 _6b
2a
Example.—Divide a* by a2.
-a—‘. = a‘ —~2 =a’
a!

Case 2.—An expression by a single term.

Rule.—Divide each term of the dividend by the divisor, by the
rule tn Case 1, and collect the resulls with their Dbroper signs, lo
form the complete quotient.

Example.--Divide 12a%b+6a%hc—3a%bc by —3a?

12a%b+6a%bc — 3athe
—3a2

= —4ab—2bc+bc=—4ab—b¢

Case 3.—An expression by another expression.

Rule.—1. Arrange both dividend and divisor according lo as-
cending powers of some common letter, or both according to de-
scending powers of some common letter. 2. Divide the Jirst term
of the dividend by the first term of ihe divisor, and but the result
Jor the first term of the quotient. 3. Multiply the whole divisor
by this term and subtract the product from the dividend. 4. Te
the remainder join as many terms of the dividend, laken in order,
as may be required, and repeat the whole operation. 5. Continue
the process until all the lerms of the dividend have been taken down.

Example.—Divide m?+2ms+s? by m-ts.
m--s)m2+2ms~+st(m+s
m2--ms
ms+s?
ms+s?
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Example.—Divide 3 a*—10 %0422 a?0* —22a B*+15 P by a*—2 ab 43 b*
a*—2 ab+-3 b?)3at — 10a%h 4-22a2h* — 22ab° + 1564(3a2 - -4ab4-5b°
3at— 6a%h+ Sarb?
—4 a%b+13a%h — 22ab®
—40%+ 8a2bt—12ab?
5a2b* — 10abs 155
5a2h? —10ab* +15h4

The importance of arranging both divisor and dividend ac-
cording to the same order of some common letter will be seen
by attempting to do the above example with the terms arranged
without regard to order.

Factoring

Factoring is the process of finding what expressions will divide
a given expression; that is, the process of resolving an expression
into ils factors.

Example.—Factor the expression a*+3a.
Since each term contains @, divide by a, thus:
a)a*+3a
a*+3
that is a*+3a=a(a2+3)

The student should note very carefully the following:
1. x®—y" is divisible by x—y if #» be any whole number.
2, x®—y® is divisible by x+y if n be any ever whole number.
3. a*+4y" is divisible by x+y if » be any odd whole number.

4. x"4y" is never divisible by x4y or x--y, when n is an evern whole
wumber.
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As an example in the use of the above items consider the
expression x7—y7. Is it divisible by x—y or x+3?

The index 7 is an odd whole number, and the simplest case of this kind
is x—y, which is divisible by x—y, but not by x+y. Accordingly x7 —y7
is divisible by x—y and not by x+y.

Again take x#—y?, the index 8 is an even whole number, and the simplest
case of this kind is x2—»?, which is divisible both by x—y and x+y; hence
x8—y8 is divisible both by x—y and x-+y.

Equations

An equation is a proposition expressed usually by the symbol
(=) denoting the equality of two quantities, that is, an equation
4s the expression of the equality of two things.

Thus x =y indicates that whatever value be given to x is equal tc what-
rever value be given to y.

“The expressions on either side of the = symbol are called the sides or
-members of the equation.

" An identical equation is one in which the two sides are equal whatever
-numbers the symbols represent. An equation of cendition is one which
-is not true whatever numbers the symbols represent, but only when the
.symbols represent some particular number or numbers. Thus 10—x=3
.cannot ‘be true unless x=7.

A letter to which a particular value or values must be given in order
- that the statement contained in an equation may be true is called an u#n-
. known quantity. Such particular value of the unknmown quantity is said
‘to satisfy ‘the equation, and is called a rool of the equation. To solve an
.equation is to find the root or roots.

‘In the sotution of equations the following axioms should be
-noted:

'1.'If-equal. quantities be added to equal quantities, the sums will be
equal.
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2. If equal quantities be subtracted from equal quantities, the re-
mainders will be equal.

3. If equal quantities be multiplied by equal quantities, the products :
will be equal.

4. If equal quantities be divided by equal quantities, the quotients will
be equal.

5. If the samé quantity be both added to and subtracted from another,
the value of the latter will not be changed.

6. If a quantity be both multiplied and divided by another, the value
of the former will not be changed.

7. Quantities which are equal to the saine quantity are equal to each
other. -

Equations may be classed as

1. Simple;
2. Simultaneous;
3. Quadratic.

Simple Equations.—An equation that contains the first power
of the unknown quantity or quantities axy and no higher
power is called a simple equation. This is an equation of the
first degree.

The solution of equations will present no difficulty if the
following general rule be remembered and applied.

General Rule.—Whatever be done lo one side of an equation
must be done lo the other side in order not o desiroy the equality.

Thus in the equation x-+3 =y adding 6 to both sides gives
x+3=y
6 6

x+9=y+6
that is
x+43=y is the same as x+9=v+6
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The following examples will illustrate methods used in
“handling” or solving equations.

1. Transposition
a. Single;
b. Double.

Example.—Solve the equation x+43a=2c.

Rule.—Any "term may be transposed from one side Of an
equation to the other by changing ils sign.
Accordingly,
x+3a=2
x=2c—3a

this is evident from the following:
Subtract 3 ¢ from both sides of the equation, thus:

x+3a=2c
—3a —3a
x =2c—3a
Example.—Solve the equation 3 x—2=x-+19.
Single Transposition. " Double Transposition
3x—x=1942 x+419=3x—2 lst transposition
x—3x=—2-—19 2nd transposition
2x=21 —2x=-21
x=101%% . x=10%

2. Clearing of fractions.

Rule 1.—Divide the least common multiple by the denominator
of each lerm of the equation and multiply the quotient by 1he
numerator of the term.

Example.—Solve the equation Z_9 =%—§
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The least common multiple of the denominators is 24.

Dividing least common multiple by denominators and multiplying quo-
tients by numerators:

8x—18=16x—9
Transposing (double transposition):
16x—9 =8x—18
16x—8x=9 —18
8x=-9
x==13

Rule 2.—Multiply each term of the equation by the least com-
mon mulliple.

- Example.—Solve the equation g g =4—x—§

The least common multiple of the denominators is 24.
Multiplying numerators by least common multiple:

24x_72_%x_72

3 4 6 8
Clearing of fractions:
8x—18=16x—9
Collecting and transposing:
—9=8x«, that is
8x=-9
=—13

Simple Equation Problems

The usefulness of algebra is clearly seen in its application
to the solution of problems. In these problems, certain quan-
tities are given and another called the unknown quantity. The
latter, which is represented by one of the last letters of the
alphabet, is to be determined. the solution being possible be-
cause of the relation of the unknown to the known quantities.
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It is not possible to give general rules for the solution of such
problems and the siudent must rely on his ingenuity.

The following hints will be found helpful:

1. Express the unknown quantity, or one of the unknown quantities,
by one of the final letters of the alphabet.

2. From the given conditions, find expressions for the other unknown
quantities, if any, in the problem.

3. Form an equation in accordance with the conditions of the problem.
4. Solve the equation thus formed.

Problem.—The sum of two numbers is 475 and their difference 23,
find the numbers.

Let x denote the smaller number. Since the difference of the two num-
bers is 23, then-

x+4-23 =the greater number

Also since the sum of the two numbers is 475 then
x+(x+23) =475
2x+423=475 )
2x =452 2
x =226 the smaller number .
x4 23 =249 the greater number.
Problem.—Stevens is three times as old as Gilbert and eight years ago
Stevens was seven times as old as Gilbert. What are their ages at present?
Let x =Gilbert’s age
Then 3x =Stevens’ age
x—8=Gilbert’s age 8 years ago
also 3x —8 =Stevens’ age 8 years ago.

According to the relation between ages:
3x—8=7(x—8)
3x--8=7x—56
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Transposing and collecting:

—4x=—48
x= 12
That is, Gilbert’s present age (x) is 12 yrs. and Stevens’ age (3x) 3X12

=36 yrs.

Indeterminate Equations.—When a simple equation con-
tains two unknown quantities it is impossible to determine the
value of the unknown quantitics definitely because if any value
be assumed for one of the unknown quantities there can be
found a value corresponding for the other unknown quantity.

Simultaneous Equations.—Two separate equations consid-
ered together are called simultaneous equations when they rep-
resent simultaneous relations between the unknown quantities.

The solution of simultaneous equations is important, and
the student should practice on this subject until he is thor-
oughly familiar with the methods employed.

Simultaneous equations are solved by elimination of one of
the unknown quantities. This may be done by:

. Addition;

Subtraction; .-
Substitution; ~
. Comparison.

- W N

The following will- illustrate the solution of simultaneous
equations by these methods: N

1. By Addition.

Example.—Solve the simultaneous equations:
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By addition,
x+y= 7
3x—y=13
4x =20
x=5
Substituting this value of x in equation (1),
S54y=7
y=7-5=2

2. By Subtraction.

Example.—Solve the equations:

Multiply equation (2) by — (minus) and subtract.

x+y=7
—3x+y=-13

By subtraction, 4x'=20
x=5

Substituting this value of x in equation (1),

S54+y=7
y=7-5=2

3. By Substitution.

Example.—Solve the equations:

J Substituting this value of y in equation (2),
3x—(7—x)=13
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Removing parentheses,
3x—-74+x=13

Transposing and collecting,
4x=20
x=5

Substituting this value of x in equation (3),
y=7-5=2

4. By comparison.

Rule.—Find the value of the same unknown from each of the
fwo given equations and set these values equal to each other.

Example.—Solve by comparison the equations:

XY= T e e 1)
=y =18 e 2)
Find the value of y in each equation.
V= e X i 3)
—y=13=3% . e 4)

Equating equations (3 and 5):

T—x= —13-I—3x
—4x=-20
x= 5

Substituting this value of x in equation (1),
5+y=7
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Simultaneous Equation Problems
(twn unknown qﬁantities ,

Problem.—A railway train after traveling an hour is detained 24 min-
utes, after which it proceeds at six-fifths of its former rate, and arrives
15 minutes late. If the detention had taken place 5 miles further on,
the train would have arrived 2 minutes later than it did. Find the original
rate of speed of the train, and the distance traveled.

Let 5x =original speed of train

y =total distance traveled.
Then will .
y—5x'=distance to go after detention.

Thus remaining distance at the original speed would consume

v—>5x

5x

hours

and at the increased rate of speed it would take

:y__ic hours
6x

Since the train is detained 24 minutes, and yet is only 15 minutes late
at its arrival, it follows that the remainder of the journey is performed in
9 minutes less than it would have been if the rate had not been increased.

9 minutes is % of an hour, therefore

If the detention had taken place 5 miles further on, there would have
been y—5x —5 miles left to be traveled. Thus,
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Subtract (2) from (1), thus:

Substitute this value of x in (1) and it will be found by solving the
equation that y =4714. .

Problem.—Gilbert and Steven weigh together 230 lbs. and twice
Steven's weight is 60 1bs. more than 3 times Gilbert’s weight. Find the

weight of each.
Let x=Steven’s weight

y=Gilbert’s
Then, weight of Steven and Gilbert together is
x+y=230 ... . s (D)
Since twice Steven’s weight is 60 Ibs. more than 3 times Gilbert’s weight
2 x—60 =8 Y. . e i e (2)

The two equations (1) and (2) represent the conditions of the problem,
Multiply (1) by 3 and transpose in (2)
3x+3y=690
2x—3y= 60
By addition 5x =750
x=150 lbs. (Steven's weight)
Substituting the vaiue of x in equation (1)
150+y =230 lbs.
y=230—150=280 lbs. (Gilbert’s weight)

Quadratic Equations

A quadratic equation is one which contains the square of the
unknown quantity but no higher power.
There are two kinds of quadratic equations:

1. Pure: 2. Adfected.
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A pure quadratic equation is one which contains only the
square of the unknown quantity, as for instance 2 x2=50,

An adfected quadratic equation is one which contains the first
power of the unknown quantity as well as its square, as for
instance 2x2 —7x+3=0.

A pure quadratic is easily solved but in an equation such as
4x24+-8x =12

it is necessary to find some way of grouping x? and x together
which will give a single term in x, when the square root of both
sides is taken. The process is indicated in the rule which fol-
lows for completing the square in x.

Rule.—1. Group all the lerms in x* and x on one side of the
equation alone, placing the terms containing x* first. 2. Divide
through by the coefficient of x*. 3. Add to both sides of the equa-
tion the square of one half of the coefficient of the x term. 4. Take
the square root of both sides (the left hand side being a perfect
square). Then solve as for a simple equation in x.

Example.—Solve the equation x2—10 x+4-24=0.
Applying the rule just given: 0

1. Group all the x2 and x terms on one side of the equation alone, placing
those in x2 first, that is by transposition

—-10x=-24
2. Coefficient of x? being 1 in this example no division is necessary.
3. Add to both sides the square of one half the coefficient of the x term.
The coefficient of the x term is 10 and the square of half the coefficieny

is (1—0)2
2.
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2 2

10 10

1 —_ = =
x*—10x+ 2) 24+(2)

x2—10x+25=—24+425

The left hand side of the equation has now been made into a perfect
square.

4. Take the square root of both sides.

x—5=41
transposing

x=5=+1
that is

x=6or 4.

Points on Quadratic Equations.—1. Every quadratic equation can
be put in the form x?+px+¢=0, where p and ¢ represent some known
numbers, whole or fractional, positive or negative.

2. A quadratic equation cannot have more than two roots.

3. When the terms are all on one side, and the coefficient of the square
of the unknown quantity is unity, the sum of the roots is equal to the co-
efficient of the second term with its sign changed, and the product of
the roots is equal to the last term.

Problem.—Find two numbers such that their sum is 15, and their
product is 54.

Let x =one of the numbers

then
15—x =the other
and by supposition *
x (15—x)=54
By transposition
2?—15x=—-54

therefore

2 2

taking the square root of both sides
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| therefore
! 15 3
—7:|:7—90r6.
If x=9
15—x=6
If x=6
15—x=9

Thus the two numbers are 6 and 9. Here although the quadratic equa-
tion gives two values of x, yet there is really only one solution of the .

problem.
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TEST QUESTIONS

1. What is the difference between a symbol and a sign!

O 00 N O

16.

17.
18.

19.
20.

Give the various signs used in algebra.

. What is the difference between a coefficient and an

exponent?
Give examples of binomial and trinomial expressions.
What is the degree of a term? .
Give example of homogeneous terms.
Name the three cases in addition.
What is a rule for adding a negative quantity?

. Give the rule for subtraction.
10.
. Give rule for removing parentheses.
12.
13.
14.
15.

Subtract 5 x*y —3ab+m? from 3 x*y -2 ab+4n.

Multiply — 2a by 3b.
Multiply M+S by M+S.
What are the rules of division?

Give axioms upon which the solution of equations
depends.

Explain the methods of single and double transposi-
tion in solving equations.

Solve the equation 3x— 2=x+19.

The sum of two numbers is 475 and their difference
23; find the numbers.

What are simultarneous equations?
Solve the equations x+vy=17 and 3x—y=13.
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21. What is a quadratic equation?

22 What is the difference between a pure and an adfected
equation? :

23. Give a few points on quadratic equations.
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CHAPTER 12

Calculus

In higher mathematics, calculus is a method of calculating
which consisls in the investigation of the infinitesimal changes of
quantilies when the relations between the quantities are known.

There are two divisions of the subject known as:

1. Differential calculus;

2. Integral calculus.

One is the exact opposite of the other.

Differential calculus has to do with the division of a quantity
inlo infinilesimal small parts, whereas integral calculus con-
siders the addition of these small paris lo produce the quantity.

The process employed in these two branches of calculus is
called respectively:

1. Differentiation;

2. Integration.

Differential Calculus

In fig. 324 take a line and divide it into such a large num-
ber of parts that each one of these parts is infinitesimally
small. Calling the length of the line x, the length of one of
the infinitesimally small parts is represented by the expression

Azxor éx or more frequently dx
which is called the differential of the line x.
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In fig. 324 only one dimension was considered,-—length.
Differentiation may also be applied to areas and volumes.

Thus in fig. 325 let L be a square having sides of the. length x.

Now suppose the length of each side be increased by an infinitesimally
small amnunt dx shown greatly exaggerated in the figure. = This wiil give
a new and larger square, made up of

old square L +strip M +strip S+little black square E.
The areas of these several parts are

area old square L =xXx=x2
“ stripM =xdx
[ £ S =xdx

“

Iittle black square E =dx Xd»

dx

+1.YH LI

< X >
F1G. 324.—Straight line illustrating the differential. :
from which the area of the addition is

. ' M+S+E =xdx+xdx+ax?
=2 xdx+dx?

In figs. 326 to 328 it will be noted that the smaller dx becomes,

the smaller in more rapid proportion does dx* the area of the little
black square E, become.

In fact the area of the little black square E decreases so much more
rapidly than the strips M and S, that it may be disregarded.

Thus by increasing the length of the sides x of the square L in fig. 328
by the length dx its area is increased by the quantity

2xdx
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that is
L+M4S=x2 4+ 2xdx

If, instead of increasing the sides of the square by dx as in
fig. 325, they be decreased by dx as in fig. 329, the area of the
square is reduced by the amount 2 x dx. This infinitesimal
area is equal to the differential of the square.

From this the rule follows:

C

D'dx

£1G. 325.—Square illustrating the differential. Case 1. .

. Rule.—To find the differential of any power of x, reduce the
power of x by one, mulliply by dx and place bézfore the quaniily
a coefficient which is the same number as the power of x being
differentiated; thus the differential of x7=7 x® dx.

By similar investigation it is found that the *‘differential of”
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1

the following quantities, expressed by enclosing the quantity
in parenthesis, is

d(x3) =3xdx

d{x*) =4x%dx

The object of differentiating any quantity is lo gel the value
of the infinitesimals which make up the quantity.

Finding the value of the infinitesimal, that is the differential whose

gradual addition makes the quantity, is the same as finding out the rate

of growth. That is, differentiation gives the ‘‘rate of growth” or accelera-
tion. :

A constant quantity, since it has no rate of change cannol be
differentialed. Hence, its differential is zero, but if a constant
quantity such-as 12 be multiplied by a variable quantity such
as x, the differential of 12 x=12 dx, and the differential of
2x2=2 times 2xdx=4xdx. Also the differential of

' 2 %2412 -3 x3=4xdx+0 —9x2dx
=4xdx —9x%dx

Two Variables.—Sometimes there are two variable quantities
dependent upon each other and it is required to find the rate

of change of one with respect to the rate of change of the other;
when the rate of change of one is known.

Take for instance the equation
x=y+2

If a definite value be given to one of the variables, a corre-
sponding value can be found for the other, thus:

If x=0, then y=—2
If y=0, x=2 etc.
Now in fig. 330 draw the line MS through the points x=2 and y=--2,

»
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Select any point on the line as A, and another point € very close to A.
The co-ordinates of the point A will be x and y and of the’ point C

x+dx
y+ay
Hence in the little triangle ABC
AB=dx
BC =dy
and -
Y| C
a ’ A/l=
(&)
dx
x B
ol
>

1"‘ .

F16. 330.-+Line corresponding to the equation x=y+2.

—tang =B =%
tanzBAC—tamﬁ-—-A—B—dx
Accordingly if either dx or dy and tan ¢ be known the other can be
found.

. dy . d
Sometimes tan ¢ or Iyi is expressed by yx and d—; by 2.
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To differentiate a fraction take the differential of the numer-
alor times the denominator minus the differential of the denomi-
naior limes ihe numeralor all divided by the square of the denomi-

nalor. Thus:
(u) vdu —udv
=)=
v v

Square Root.—The differential of the square root of a quan-
tity is equal fo the differential of the quantity divided by 2 times
the square root of lhe quantity. Thus if

du -
=l u"% du
2%

v=u’ that is, v=+/u, d@¥) =

Miscellaneous.—Formulae for differentiating algebraic func-
tions are here given for reference:

o D 5. d(xy) =x dy+y dx
x ydx—xdy
2. d(ax)=a dx. 6. d(;) ey
3. d(x+y)=dx+dy 7. d(xm) =mx=1 dx
dx

Mediate Differentiation.-—This is the process of differentiat-
ing a variable with respect to some other variable. It is used
when it is necessary to find the differential of several terms,
some containing x, and some y.

To differentiate a variable x with respect to some other vari-
able y apply the rule which follows.
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Rule.— Differentiale the expression first as to x and then mul-
tiply by x, or vice versa.

Maxima and Minima.—To find the maximum and minimum
value of x in an equation containing x and y:

1. Differentiate the equation with reference to y.
2. Solve for the value of x,.
(See end of paragraph on Two Variables, page 292.)

3. Make the result obtained in 2 equal to 0 and then solve
for the value of y in the resulting equation.

Example.—To find the value of x which will render the function y a
maximum or minimum in the equation of the circle 32+x?=R2.

dy x . x .

Frie —;‘, making —;—0 gives x=0.

d? y ¥+
y3

The second differential coefficient is —=

When x =0, y=R; hence %1= R which being negative, y is a max-

imum for R positive,

In applying the rule to practical examples, first find an ex-
pression for the function which is to be made a maximum or
minimum.

If in such expression a constant quantity be found as a factor, it may
be omitted in the operation; for the product will be a maximum or a mini-
mum when the variable factor is a maximum or a minimum.

Any value .of the independent variable which renders a function a
maximum or a minimum will render any power or root of that function. *

a maximum or minimum; hence square both members of an equation to
free it of radicals before differentiating.
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Integral Calculus

In the process of differentiation, a quantity is divided into
infinitesimal parts, the opposite process is applied in integra-
tion, that is the infinitesimals are added. Hence integration
is the opposite of differentiation. By definition, an integral
is @ functional expression derived from a differential.

An integral is indicated by the sign:

which is read ““the integral of.”

/4x3 dx = x*

is read “‘the integral of 4x3 dx = x4.”

Consider the line in fig. 324 of indefinite length x, to be made
up of an infinite number of small parts, as dx.

For instance:

The integral of these parts could be expressed as:
dx+dx+dx+dx...................

continued to infinity but the integral sign expresses the same
thing thus:
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ﬁx=x

‘meaning the summation of all the parts which make up the
line of the length x.
Now the length x being indefinite and in order to sum up
any definite portion of the line x it is integrated befween limits.
These limits are placed at the top and bottom of the integral

sign thus
. /‘upper limit
lower limit

Thus if the upper limit=5 and the lower limit 2 it would

be expressed:
=15
ﬁx
x=2

These two limits indicate exactly between what two points
the length of the line is to be determined.
In order to solve the expression:

x=5 x=5
dx =(x) o
x=2 x=2

substitute inside of the parentheses the upper limit and sub-
tract the lower limit, thus:

x=2 v
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Accordingly 3 is the length of the line between the points
2 and 5.

Finding the value of an area involved integrating one quan-
tity with respect to another.

The integral
x=F
ydx
1=a

cannot be easily solved but the expression is simplified by
replacing the y by some term containing x. This is illustrated
in the following example.

Example.—Find the area included between a curve the x axis and the
ordinates x=¢ and x=».

. b
, Area=A=/;dx
; a

The value of y in terms of x is found from the given equation and sub-

} stituted in the formula. The initial value of x is g, and the fina) value 5.

Similarly, the area included between a curve, the Y axis, and the hori-
zontal lines y=c¢ and y=d is

d
area=A= J xdy

C

v#hqre ¢ and d are the limits of y.

Example.—Find the area bounded by the parabola y?=4x, the x axis
and the ordinates x=4 and x=9.

Fig. 331 shows the area to be found.
The required area is indicated by the expression e
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Substitute in (1) the value of y in terms of x thus
y=4x y=2+/%

%S
yee

F1G. 331.—Diagram illustrating accompanying example.

Substituting in /1)
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1
2

3

4.
o

10.
11,

12.
13.
14.
15.
16.
17.
18.
19.

TEST QUESTIONS

. What is calculus?

. What is the difference between differential and inte-
gral calculus?

. What processes are employed in differentiai and in-
tegral calculus?

Give an example illustrating differential calculus.

Give various symbols used for expressing the differ-
* ential.

. If the sides of a square are decreased by dx how much

is the area of the square reduced?

. Give rule for finding the differential of any power
of x.

. What is the differential of x* and of x*?
. What is the object of differentiating any quantity?
Can a constant quantity be differentiated?

What methods are employed in differentiating two
variables?

Give rule for differentiating a fraction.

How is the square root of a quantity differentiated?
What is the differential of  Vu?

Give formule for differentiating algebraic functions.
What is mediate differentiation?

Explain maxima and minima.

Define integral calculus.

What does the sign f indicate?
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20. Explain the process of integral calculus.
21. How is a variable integrated between limits?

22. Find the area included between a curve, the x axis
and the ordinates,

23. Find the area bounded by the parabola y*=4x, the
x axis and the ordinates x=4 and x = 9.
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Electrical Calculations i

Electrical Calculations

(Direct Current)

OHM'S LAW

SYMBOLS

MEANING OF SYMBOLS

_ PRESSURE
CURRENT = RFSISTANCE
THAT IS
ce . VOLTS
AMPERES = YOLTS

RESISTANCE=-PRESSURE

R E CURRENT
= THAT IS
_ _VoLTS
| onms = AMPERES

PRESSURE =
CURRENT X RESISTANGE

E = ' R THAT IS .
VOLTS =

i AMPERES X OHMS
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Example.—A circuit having a resistance of 5 ohms is under a pressure
of 110 volts. How much current will flow?

From Ohm's. law, amperes = volts < resistance = 110 = 5 = 22
amperes.

Example.—If the resistance of a circuit be 10 ohms, what voltage is
necessary for a flow of 20 amperes?

From Ohm’s law, volts = amperes X resistance =26 X 10 = 200
volts.

Example.—On &Y10 volt circliit what resistance is necessary to obtain
a flow of 15 amperes?

From Ohm’s law, resistance = volts + amperes = 110 + 15 = 7lg
ohmas.

OHM TABLE*

Inter-
Date | national | Legal B. A. !Siemens'
;Ohm Ohm Ohm Ohm

International Ohm.(1893—4| 1. 1.0028 | 1.0136 | 1.0630
Legal Ohm ..... ...| 1884 .9972 1. 1.0107 | 1.0600
B.A.Ohm ...... .| 1864 . 9866 L9804 | 1. 1.0488
Siemens' Ohm....... ceee .9407 .9434 L9535 | 1.

Example.—Two cells of a battery are connected in series and in op-
position. One cell tests 1.05 volts and the other 1.79. What is the re-
sultant voltage in the circuit?

1.79—1.05=.74 volt.

Example.—If an arc lamp require a current of 8 amperes, how much
electricity does it consume per hour?

Since one coulomb=one ampere second, the quantity of electricity con-
sumed per hour is

amperes _, fseconds .
3 Ix 160X 60 f 28,800 coulombs.

*NOTE.—In the above table to reduce, for instance, British Association ohms to Inter.
national ohms, multiply by .9866, or divide by 1.0136; to reduce legal ohms to International
ohms, multiply by .9972, or divide by 1.0028, ctc.
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A current of one ampere will deposit .0003286 gramme of
copper in a copper voltameter, or .0003386 gramme of zine in a
zinc voltameter.

Ohm'’s law shows that the strength of the current falls off in
proportion as the resistance in the circuit increases.

Divided Circuits.—The relative strength of current in several
branches in parallel is proportional to their conductivities.

Example.—If,in -2 branchesithe resistance of R =10 ohms, and R’=

ohms, the current through R will be to the current through R’, as loto 2;

or, as 2:1, or, in other words, 24 of the total current will pass through R,
and )4 through R’. The joint resistance of the two branches between
A and B, will be less than the resistance of either branch singly, because
the current has increased facilities for travel. In fact, the joint con-
ductivity will be the sum of the two separate. conductivities.

Example.—Two branches in parallel have a resistance of 100 ohms

each. What is the joint resistance? .

1 1 2 100
100-{-100 160" ; the reciprocal is - =50 ohms.

The following formula may be applied for joint resistance

Joint resistance = E

Example.—One of two parallel branches has a. resistance of 10 ohms
and the other 20 ohms. What is the joint resistance?

Substituting in formula (1}:

A}
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1020 _ 200 =624 ohms.

. stance 10%20 _
Joint resistance 10520 = 30

This rule cannot be employed for more than two branches at
A time.
Example.—A curretit of 42 amperes flows through three conductors in

parallel of 5, 10 and 20 ohms resistance respectively. Find the current
in each conductor.

Solution.—Joint conductance = —é—-}- —

DRY CELL
SHORT CIRCUITED

THROUGH AMMETER

25 AMPERES

Fic. 1.—~Application of Ohm’s law to find internal resistance of a dry cell.

Supposing the current to be divided into 7 parts, 4 of these parts would
flow in the first conductor 2 in the second and 1 in the third.

The whole current is 42 amperes.

$of 42=24,
3 of 42=12,
3 of 42=6.
' o
Current in first conductor =24 amperes.
“  “gcond “ =12 “ } Ans.
o & t']:‘i!_d 4 = 5 '3
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Power.—The electric unit of power is the watt which is equal
to one volt X one ampere, that is

Powerorwatts=IE...................... @
but by Ohm’s law
* E=IR
~2 ONE ONE ..
. HORSE POWER WATT seeee
SHipri
2

—_—

10 FT
ONE MINUTE

i

Figs. 2 and 3 ~—Examples 1llustratmg one horse power and one watt. Rules: One horse
power =33,000 ft. 1bs. per minute. One watt=one ampere X one volt,

Substituting this value of E in equation (1)
Power=I’R........................ ... 2)

Example.—A current of 12 amperes flows through a resistance of 23
ohms. What is the power? .
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Substituting in equation (2):
Power =122 X 23 =3,312 watts

Electrical Horse Power.—One watt is equivalent to one joule
per second or 60 joules per minute. One joule, in turn, is
equivalent to .7374 ft. Ibs., hende 60 joules equal:

60 X .7374 =44.244 ft. Ibs.

AMMETER > 50 WATY
LAMP

VOLT METER LAMP ON
% AMPERE @) @ 5 Houns\é

100 VOLTS

Y X100 X5 = 250 WATT HOURS

F'x. 4..—~Example illustrating watt hours Rule Watt hours =amperes Xvolts Xhours.
Since one horse power =33,000 ft. Ibs. per minute, the elec-

trical equivalent of one horse power is

33,000+44.244 =746 watts,

or, 746

Tk .746 kilowatt (kw.)

Again, one kilowatt or 1,000 watts is equivalent to
1.000-+-746 =1.34 horse power
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Example.—What is the horse power delivered by a dynamo which fur-
nishes 23 amperes at 475 volts?

23X475
746

horse power = =14.6

Joule’s Law.—The heat generated in a conductor by an electric
current 1s proportional lo the resistance of the conductor, the time
during which the current flows, and the square of the strength of
the current.

Calories per second =ohms X amperes? X seconds X .24
expressed by symbols

H=2412RT
in which
H =heat or calories. per second.
R =ohms. o
1 =amperes.

T =time in seconds.
Example.—How much heat is produced by a current of 20 amperes
flowing for % hour in a circuit whose resistance is 6 ohms?
H=.24X6X20?X (30 X60) =1,036,800 calories
Example.—How much greater is the heating effect of a current of 32

amperes than that of one of 8 amperes, in a wire of 10 ohm resistance?
No time is mentioned.

32%32xX10=10,240
8X 8X10=640
10,240 +640 =16 times as great

Example.—A current of 10 amperes passes through a wire one centi-
meter in circumference. The wire has a resistance of .3 ohm per 100
meters. How many degrees will its temperature be increased?

The watts per second due to the passage of the current are given by the
expression I?R =100X.3=30.
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The surface area or 100 meters of the wire is 10,000 square centimeters,
The calories expended on 100 meters are 30X.24=7.2.

The calories per square centimeter are the product of 7.2 by the area
of the wire, or 7.2X10—4=.00072 calorie. Dividing, .00072 by .00025
gives 2.88° C., the degrees C. above the temperature of the air to which
the wire would be heated by such a current.

Thermo-Voltage.—-When two dissimilar conductors are con-
nected and the joint heated,-a difference of pressure is produced.

The following table gives the difference of voltage set up by
contact of some of the metals.—

Y. 5.—Simple compass. It consistsof a magnetic needle resting on asteel pivot, protected
by a brass case covered with glass, and a graduated circle’marked with ‘the letters N, E,
S, W, to indicate the cardinal points. g,b, isaleverwhich arrests the needle by pushing it
against the glass when the button d, is pressed.

Zinc Iron

Lead }.210 Copper }.146
Lead | Copper

Tin }'069 Platinum }238

Tin " Platinum
Iron }'313 Jarbon }'113
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Magnetism

Magnetism.—If two points such as minute magnet poles act
upon each other the action will vary inversely with the square of the
dislance separating them and with the product of the strength of
the poles.

Expressed by a formula

in which
F =force
N =a constant
m and m’ =magnetic quantities acting upon each other
I =distance between m and m’
Example.—Two equal magnet poles act upon each other with a force

of 3.4 dynes. The distance between them is 2.5 cm. What is the strength
of each?

By the conditions of the problem, m=m’, and the formula becomes
m!
F =%
Substituting for F and ! their values

2
34 =2m—520r m2=2.52X3.4=21.25and m=4.6
Each pole, therefore, is equal to 4.6 unit.magnet poles.

Rule.—The number of lines of force {called induction, per
square centimeler) set up in an empty helix (air core solenoid).
equals the product of the number of turns (per centimeter in length
of the coil) limes the number of amperes multiplied by 1.257.
When the inch is used the constant is 3.2.
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Example.—How many turns of a solenoid to the inch are required to
set up an induction of 400 lines with a current of 5 amperes?

"One ampere turn gives 3.2 lines of force; 400+-3.2=125 ampere turns;
125+5=25.

Example.—A current of 5 amperes flows through a 24 in. helix of 192
turns. How many lines of force per inch inside the coil?

192 +24 =8 turns per inch. 8X5X3.2=128.

| AMPERE 2 AMPERES 5 AMPERES

Figs. 6 to 8 —Amperg turns. By definition the ampere turns.are cqual to the product of
the current passing through a coil multiplied by the number of turns in the coil. Thus, in fig.
6 1 ampere X1 turn = 1 ampere turn; in fig. 7, 2amperes X2turns = 4 ampere turns;
in fig. 8, 5 amperes X5 turns =25 ampere turns.

Rule.—One ampere turn seis up 1.2566 wunils of magretic
pressure. Accordingly

magnetic pressure =1 .2566 Xturns Xamperes

The unit of magnetic pressure is the gilber! (named after
William Gilbert, the English physicist) and is equal to
1+1.2566 ampere turn =.7958 ampere turn

Example.—How many gilberts generated by 23 amperes flowing in 2
solenoid of 475 turns?

Number of ampere turns =23 X475=10,925
Since 1 gilbert =.7958 ampere turn
Number of gilberts =10,925+.7958 =13,728.
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Rule.— The traction or weight a magnel will lift when attached
lo ils armature is equal lo the square of the number of lines of force
per sq. in. multiplied by the area of contact and divided by
72,134,000. '

Example.—A bar of iron is magnetized to 12,900 lines per sq. in.; its
cross section is 3 sq. ins. What weight can it sustain, assuming the ar-
mature not to change the intensity of magnetization?

PERMEABILITY =D /
H A

A

Fres. 9 and 10 .—Illustrating the effect of introducing an iron core into a solenoid. Few
lines pass ‘through the air ¢6re, while many pass through the iron core. The number of
lines B, passing through a unit cross section of the iron core divided by the number of lines
H, passing through a unit cross section of the air core is called the permeability and designated
by the Greek letter &

12,9001 X3
m =6.92 1bs.

The reluctance of a material is the tnverse of ils permeabilily,
and is expressed as follows:
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reluctance = 1 _ 1eng'th u} ins. (o.r cm.)
permeability *  cross section in sq. in. (or cm.)

Equivalents.—The following equivalents will be found use-
ful.—

Multiply or

To change To ) divide
Lines of force per sq. cm. Lines of force per sq. in. X6.45
Lines of force per sq. in. Lines of force per sq. cm. +6.45
Magnetizing force per sq. cm. Ampere tumns per in. in length ;—(g.isand
Ampere turns per in. in length Magnetizing force per sq. cm. fg.zsand
B
NERFY E 1[ i ,’
3 L ]
AT
=g A g_—_ -
¥ .'! aoon ‘f x
|| ] /T)’
”m?- = O/Il: 1;?[%—?"
N, Lok 1 |
y / e | .l
Y1 14 T/
" /. Lo ]
- = AN ,_.l_ =
men | L7 g
L+ j ""i! |-

$r0. 11 —Hgsteresis loop or curve showing how B, changes when H, is periodically varied. In
the figure H = number of lines of force per sq. cm. (strength of field) and B = number of
lines of induction per 8q. cm. If now H, be gradually diminished to zero, it is found that the
value ‘of B, for any given value of H, is considerably greater when that value of H, was
reached by decreasing H, from a higher value, than when the same value was reached by in«
ereasingH, from a lower-values

There is a loss of energy due to hysteresis.

Ewing gives the value for the energy in ergs dissipated per cubic centi-
meter, for a complete cycle of doubly reversed strong magnetization for
2 number of substances as follows:
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Ergs per Cubic Centimeter
(According to Ewing)

Energy dissipated
Substance (ergs)

Very soft annealediron. ....... ............ciiiiiina.., 9,300
Less * . e e e 16,300
Hard drawnsteel wire. ................ ... cviiivuennn.. 60,000
Annealed A 70,000
Samesteel glasshard ....... ... ... .. ... ... .. ... .. ... 76,000
Piano steel wireannealed.................... ... ...... .... 94,000
o “ " normal tempPer. ... ... 116,000

o “ “oglasshard. ... o e 117,000

16,0007 ppaNEALED RSl
12,0001
8,000}

4,000

0 5 10 20 30 40 %0

P10 12.—BH curves for iron and steel

Approximately 28 foot pounds of energy are converted into heat in
making a double reversal of strong magnetization in a cubic foot of iron.

Example.—A ring of iron 200 cm. long with a cross section of 30 sq.

cm. and a permeability of 700 when 50,000 lines of force pass through it,

. has wound upon it a coil of 400 turns. How much current is required to
set up this magnetization? .

Number of lines =magnetic pressure +reluctance.

1.,,200_ 200 2
R ~706°30 T 21.000 -
eluctance 700 X 30 21.000 210
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Number of lines: 50,000 =1 .257-><4‘00><1+%)

=210><1 .257 X400 X1
2
=1051.257 X400 XI
=42,0001.257 X1
=52,794 X1
I=50,000+52,794
1=.95 ampere.

Electro-magnetic Induction.—The unit of electric pressure,
called the wolf, is the electric pressure produced by cutting
100,000,000 lines per second, usually expressed 108.

Example.—If a coil of wire of 50 turns cut 100,000 lines in Y1e0.0f
a second, what will be the induced voltage?

The number of lines cut per second per turn.of the coil is
100,000 X 100 = 10,000,000
The total number of lines cut by the coil of 50 turns is
10,000,000 X 50 = 500,000,000
which will induce a pressure of
500,000,000 =108 =5 volts

Table of Sparking Distances in Air*

Distance. Distance.
Volts. (Inches.) Volts. (Inches.)
B000. .75« s ciienesonnnnss .225  60000......... A S0 SO0 4.65

10000, ..o vcavienenenineas .47 700005 . . cieies cooe eis oo ate 4.83
2 10 1+ aesa o400 800005 5o s s oo oos wie oo 1
SO . . e o i - o ooty 1.625 J00000. i 55 Fo sroe s vnnn

................... 2.00 130000........00000..... 12,95
45000......... oo o s v oS 2.95 150000, . 15.00

*NOTE.—These values are correct for effective sinusoidal voltages.
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Table of Induction Coil Dimensions
Length of spark...... $ inch 4 inch 1inch 2 inches
Size of bobbin ends, . 24 x13 2 X 3x% 4X23ix%}
Length of bobbin..... 4 53 6} 63 °
Lenhgth and diameter
of Core.ue.vnnnann. X1 62§ 61x3 —
Sizeof base.......... TiIX3IX1E 9X5X2 1431X6X13 12X73x3%
Size of tinfoil sheets. . . X2 53 X3} 6x4 6X6
Number of tinfosil
sheets............. 36 40 40 60
Size of paper sheets. . 5X3 6341 9%X5
Primary coil......... No. 18 No. 18 2 layers No. 21ayers 14B ]
16, silk W.G. silk
. covered. covered.
Secondary coil....... 21b. No. 40 11b, No. 40 1x Ibs.No.38 2 Ibs. No. 36,

‘Coil * Winding Calculations.—The following formule are
being given without the usual individual illustraticns, the re-
lations being sufficiently clear to those requiring their use. [t
should be noted that it is impossible to accurately state the
value of turns per sq. in. ohms per cu. in., etc. These values
are dependert upon winding conditions, and will therefore,
vary considerably between different types of machines, and
even between different sizes of coils. ‘The tables as given are
average values and results derived therefrom’ do not under or-
dinary conditions vary more than 5%, either way. All re-
sistance data is based on 68° F. or 20° C.

Referring to fig. 13 the following is the notation:

L =Length of winding space s =Resistance per lineal in. (Table A

D =Outside diameter of winding

d =Diameter of insulated core

M =Mean diameter

T =Thickness of winding

V =Winding walume

R =Total resistance

¢ -=Resistance per cu. in. (Table B)

p =Resistance per 1b.

N =Total number of turns

n =Turns per sq. in. (Table D)

W =Total weight of insulated wire
w = Weight per cu. in. (Table E).
m = Weight per 1000 ft, (Table F)
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Resistance Per Inch

Table A
B.&S.] OHMS . &S.| _OHMS B.&S.| OHMS .
8 | .0000552 || 19 | .0006698 | 30 | .008583 Formul showing the
9 | .0000659 20 . 0008450 31 | .01082 relations between given
10 | ‘oovos31 || 21 | Coo106s 32 | 01365 factors
11 | .o001047 || 22 | .001343 33 | o722 :
12 | 0001322 [| 23 | .001693 34 | .oum D-d
13 | .ocot666 || 2¢ | 002136 35 | 02736 T=—1
kR AE AR Ak :
. .003396 37 | .043
AE- AR IE -1 EE | B ssa
1 9 | 106920
18 | ‘0005312 || 29 006309 10 | ‘08725 *MNs=Wp

[
]
1
f L I l

P16. 13.—Diagram of coil to accompany éoil winding calculations.

D+4d _ _ __R
M=——2——T+d N=LTn= v
_ | 4V+rLd? _&_ _ _ *MNm
D _\)_ﬂ,_ W--p =Vw=rsMLTw 12,000
V=,,MLT_-_M=_E‘_=E

To find size of wire, take the size having in the tables following a value
nearest corresponding to that determined by either of the following for-
mulee:
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18 Electrical Calculations

=R n=20
v : LT

The following examples show the easiest method of working
out the three principal forms of coil winding problems:
(By; slide Rule))
Example.—Given bobbin and wire—to find the winding data.

L=4" D=4" d=115" No. 24 Enamel.
Given:
D=4 R =46.23X4.488 (Vr)
d =1.125 subtracting =207.4 ohms.
2)2.875 dividing
T =1.438 (D -d . N =4Xx1.438%2,100 (LTn)
2 =12,090
ddi R
d =1.125 adding +Ms
M=2.563 (T+d) Also N =:207.4 = (8.038 X .002136)
M =3.1416 X2.563 =12,060 turns
=8.038 W =46.23%X.2178 (Vw)
V =8.038x4X1.438 =10.07 Ib.
=46.23 cu. in. (#MLT) Also W=207.4+20.60 R
=10.07 Ib. P

Example.—Given bobbin, resistance and insulation of wire—to find
size of wire.

Given: L=23{" D=1%" d=1" 400 ohms. Silk ename’

V =8.635 cu. in. =46.29 ohms.,

By the above method: r=400+-8.635 ( R )
A"

Table B indicates No. 30 Silk enamel as being nearest in value to that
required.

Example.—Given winding length and diameter of insulated core, re
sistance and wire—-to-find the number of turns.

Given: L=2 d=4" R =125 ohms. No.30S. S,
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Electrical Calculations 21

V=125+58.45 R
=2.140 cu. in, r

Then by the first methods

£3 T=.4175
Do V(4X2.140)+(3.1416 X2 X 4% N=2%.4175X6810 LTn)

3.1416 X2 =5,693 turns

=1.235*

—_—

Armature Calculations

For valuable assistance in the preparalion of this section, the au-

thor is indebted to Mr. P. E. Chapman of St. Louis, Mo., noted

authority on armalure windings and manufacturer of armaiure
winding machines.

Example in Design.—Determine size of wire, num-
ber of turns, etc., for an 8x8 in. armature, for a flux
of 7¢,000 lines per sq. in., 110 volts, 1,200 r.p.m., §
horse power.

Cross sectional area of armature = 8 X8 = 64 sq. ins.

Deduct teeth and shaft from diameter before figuring core area. Thus
teeth say 74 in. deep, shaft 114, a total of 314 off of 8 in. or net 43{ X8 =
38sq.ins. corearea. Fluxin this size core should be 70,000 to 75,000 lines—-
say 70,000 <38 =2,660,000 lines.

Now since it requires 10% or 100,000,000 lines of force cut per second to

. generate one volt, the number of times this flux must he cut per second to
generate the given 110 voits is

required rate of cutting _ 110100,000,000
total flux 2.,660.000

= 4,135 times per sec.
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The number of inductors (wires) necessary ;to place on the armature to
cut 4,135 times per second will depend on the;‘ speed, thus
total times per wire per sec. _ 4,135

revolutions per sec. 1/60 0f1,200
from brush to brush. As {here are two inductors per turn, there are two

paths in parallel from brush to brush, hence the total number of turns on
the armature will be

number of inductors =

=207

¥x2=207 -

Approximate Turns Per Sq. In.
(American Enagneled Magnet Wire Co.)

WIRE T 10 mii § mil 4 mil - 2 mil

B.&S. Diam. Double Single Double Single Bare

Gauge Inches Cotton Cotton Silk Silk Enamel Wirse
16 0508 270 321 359 387
17 0453 328 396 447 487
18 0403 395 487 567 616
19 0359 16 689 715 776

8 mil 4 mil
20 0319 27 716 115 86 88 980
21 0284 162 50 850 107 112 1240
22 0263 1160 1160 133 140 15R0
23 .0226 1070 1420 1420 1686 173 1970
24 .0201 1270 1725 1725 2050 2160 2470
26 0179 1490 2090 2090 2520 2770 3170
26 0169 1740 2500 2500 3090 3460 3940
27 .0141 2025 3020 3020 3810 4270 4950
28 0126 2360 3630 3630 469 540 6250
29 0112 2700 4270 4270 566 660
30 0100 3080 §100 5100 694 826 10000
31 0089 3470 5920 5920 842 1083 12620
82 0079 8310 6940 6940 10100 1343 16020
33 0070 4380 8110 8110 12120 16838 20400
34 .0063 4880 30 9430 14510 2100 26200
35 0056 6400 10860 10850 1727 31900
36 0060 5920 12350 12350 2040 31820 40000
3 1% mi

37 0044 18000 2778 4340 51600
88 .0039 20580 3306 5408 66700
39 0035 23450 3953 6940/ 81600
40 .0031 26450 4626 8850 104000

For five horse power at 110 volts

to which must be added about 109, to allow for armature losses in a motor,
or field losses in a dynamo, say 38 amperes.

Since there are two paths through the armature in parallel,
amperes per circuit=38+2=19
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There are many factors that affect the size of the wire selected for any
particular winding. In any event the maximum permissible temperatwea
is the final controlling factor. In well proportioned motors and dyna}mqs
(not including turbines) 40° C. rise above the room temperature is md_l-
cated by good practice as a maximum. Temperatures higher than this
should be avoided. Among those factors which increase the temperature
are the wattage loss in the wire itself, loss in the irorn core of the armature
and stator, loss in commutator friction and brush resistance and bearing
losses.

L]
Outside Diameters of Wires
(American Enameled Magnet Wire Co.)
Number KIND OF INSULATION ENAMEL AND- |
B.&S.G. D.C.C. Enameled. s.C.C. D. 8. C. S.8.C. S.C.C. 8.8.C.

12 L0908 .0827 0868 0848 0828 0878 084%
13 10810 .0738 0765 0760 0740 .0788 0760
14 L0731 .0668 . .0686 0681 .0661 0705 0680
16 L0661 L0587 L0616 L0611 .0591 .0633 0608
16 .0598 .0523 L0653 .0648 .0528 L0569 L0544
17 0543 L0468 0498 10493 10473 .0613 10488
18 10498 0417 10448 10443 0423 L0462 0437
19 0444 .0372 .0398 .0394 10374 0413 .038
20 L0410 .0333 L0365 20360 10340 .0378 .0363
21 .0365 .0298 .0326 20325 L0305 .0338 0318
22 10334 0266 10294 10294 0274 03086 .
23 10306 .0237 0266 L0266 10246 .0277 L0257
24 .0281 0212 0241 L0241 .0221 .0262 .0232
26 10269 101895 0219 L0219 10199 .0229 10209
26 .0239 L0169 ,0199 L0199 .0179 0209 .0189
27 10222 01515 ‘0182 0182 10162 .0192 0172
28 0206 01355 0166 10166 0146 0176 L0185
29 .0193 01215 0153 10163 10133 10162 0142
30 L0180 101075 0140 ,0140 0120 0148 .0128
31 L0169 .00965 0129 L0129 .0109 .0137 L0117
32 0160 00865 L0120 .0120 0100 0127 .0107
33 10161 .00765 0111 L0111 £0091 L0117 .0097
34 L0143 00685 0103 9103 0083 0109 10089
35 0136 100606 .0096 .p096 L0076 L0101 .0081
36 L0130 00646 0090 0090 .0070 0095 .0076
37 L0125 0049 0085 .0085 0065 10089 .0069
38 20120 10044 0080 .0080 0060 .0084 006
39 20116 0038 L0075 L0075 ~00E 007 0058
40 L0112 .0034 0071 L0071 1 0074 0054

D. C. C.= Double cotton covered.

8. C. C.= Single cotton covered,

. 8. C.= Double silk covered.
8. C, = Single silk covered.

The only factor that decreases the temperature is ventilation.

This is markedly influenced by the speed and freedom with which the
air plays over the various parts, as for instance, the windage of the arma-
sure, any fans, or whether ventilation is \restricted by more or less
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enclosure, etc. Temperature calculations, therefore, become very com-
plex, so much so that they are usually 1gnored and the following rule of
thumb, which will be found very accurate, is used for motors and dynamos
of moderate size and of the somewhat freely ventilated types.

Rule.—For continuous duty, armatures, rotating fields and
other moving parts, 400 circular mils per ampere of current. For
stationary parts, whether stators, fields or armatures, about 600
ctrcular mils per ampere. For extra large size machines of the
lotally enclosed type or when run in hot places, these allowances

must be increased.

Example.—What size wire should be used on the armature of a five
horse power, 110 volt motor, assumed to take 20.6 amperes per circuit ?

20.6X400=28,240 circular mils.
The nearest size to this is No. 11 or 8,234 circular mils.

To calculate the size wire for a slotted armature a single slot should
be considered, and the wire chosen if possible with reference as to how it
will fit in the slot, that is, the size should be such as to fill the slot with.
the least amount of waste space. In design, the approximate width of the
slot is obtained by muitiplying the diameter of the wire over insulation by
the number of turns per layer and adding double thickness of slot insulation
and an allowance for clearance.

The depth of the slot may be obtained by multiplying the diameter of
the wire by the number of layers of the winding, adding thickness of the
slot insulation and making an allowance for slot closing sticks, which on
small very tightly wound armatures may be as thin as 3¢ in. but are
usually about 14 in. up to Y4 in. thick on 5 or 10 A.p. armatures, and se]- ’
dom as thick as 34 in. on any size armature.

Where the wires are of sufficient size to warrant layer winding owing
to the narrow width of the slot, hexagonal bedding seldom occurs, for the
narrow width of the slot dictates that only a few turns will occur in a
layer. Even where this bedding occurs there will be lost space at the end
of each layer, so that in calculations the bedding factor should be ignored.

To find the number of inductors per slot when the speed and
flux are fixed, the following formula may be used:
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108 X volts o o
flux X slots X rev. per sec. **&% e

Example.—How many inductors per slot are required, to generate 110
volts, with a total flux of 1,920,000 lines, 24 slots and 1,200 revolutions per
minute, two;pole ?

108 = 100,000,000

and
1,200 rev. per minute =
1,200 + 60 = 20 rev. per sec.
Substituting in (1)

L]
inductors per slot =

100,000,000x 110
1,920,000 <24 <20

Example.—If the slots of a 24 slot, 24 coil armature be 4 in. wide and
there be 12 inductors per % coil per slot arranged as a three layer coil
winding, what is the maximum size wire that can be used, and current
capacity for a four pole machine? If flux be provided to generate 110
volts what horse power will be developed?

inductors per slot = = 12

F16. 14.—Fairbanks Morse Type TR machine armature construction.

The table on page 20 gives the outside diameter of variously insulated
wire. Double cotton covered should be selected for this armature.

About 1 in. in width would be allowed for slot insulation and a few
thousandths more for cleavance, leaving the net slot width say .42 in.
In the example, since there are 12 conductors per } coil and the wire is in
3 layers, the curns per layer would be 12-+3 =4; which would give .42+4
=.105, the maximum outside diameter of the wire that can be used.
No. 11 wire .1017 outside diameter is the nearest size.

The area of the No. 11 wire is 8,234 circular mils (page 112) which at
400 mils per ampere gives a capacity of 20.6 amperes.

Four pole machines of this size usually have wave wound armatures
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which have two paths, therefore the carPying capacity of the machin?
would be 2 times 20.6 amperes or 41.2 amperes.
At 110 volts:
watts =41.2X110=4,532
Horse power would therefore =4,532+-746=6.1

from which must be subtracted the armature losses which may run as
high as 15%, making the net answer say 5 h.p. (Field losses are figured
separately.)

CIOO0<

Fics. 15 and 16. —Fairbanks Morse wire wound armature coils of type TR machine.
In construction, the coils are form wound and are thoroughly insulated and baked before
assembling in the slots. Material of great mechanical strength as well as high insulating
value is used, and the coils are subjected to repeated dippings in insulating compound and to
repeated bakings, thus thoroughly driving oitt all moisture and making a coil which is prac-
tically water proof and which will withstand fough hand’ing. These coils when completed,
are placed in the slots, where they are retained by bands on the three smaller sizes and by
hardwood wedges on the larger sizes. Cores of all sizes are provided with ventilating spaces.
running from the surface to the central opening of the core, so that air is drawn through the
core and blown out over the windings by the revolution of the armature.

After having determined the size of wire, number of turns
per coil, the drop or voltage loss due to the resistance of the
winding should be determined to see if this loss be within
limit.

Example.—If the average length per turn of the coils in the armature

of the previous example be 2 ft., what is the drop or loss of voltage in
the armature?

For 12 turns per coil
length of each coil=12X2=24 ft.

Now while the machine has 4 poles, being wave wound, there ére two
paths in parallel, hence only half of the coils or 12 coils need be considered
in determining the drop.
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Accordingly,
length of 12 coils =24 X12 =288 ft.

According to the table on page 112, the resistance of No. 11 wire at
140° Fahr. is .00126 ohm per foot, hence
resistance of 12 coils =288 X .00126 = .36 ohm
According to Ohm’s law

current = volts , or volts =current Xohms
ohms

Substituting in the expression for volts,
volts or “drop” =20.6X36=7.42

which is within standard practice.

Magnet Calculations.—In figuring field magnets, the unit
ampere turn is frequently employed and is defined as the magnetic
force due to a current of one ampere flowing through one turn of @
magnet winding; numerically it is equal to the product of one turn

multiplied by one ampere.,

Thus, one ampere flowing through 10 turns, gives 1 X 10 = 10 ampere
turns. Again, 10 amperes flowing through 10 turns gives 10 X 10 = 100

NOTE.—To find the speed when the volts, flux, and number of inductors are fixed, use

&his formula: )
100,000,000 X volts

HATR R (T = flux X number of slots X inductors per slot

NOTE .—To find the strength of field when the volts, inductors and speed are, fixed,

use the formula:
100,000,000 volts

flux =
inductors per slot X number of slots X rev per sec.

NOTE.—To find thc colts when the inductors, flux, and speed are fixed use the formula:

volts = flux X nductors per slot X number of slots X rev. per sec.
100,000,000
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ampere turns, Having fixed the voltage and size  of wire it makes no
difference in the magnetic effect how many turns are tontained in the
winding, that is, for a given voltage and size of wire the ampere turns
remain the same regardless of the sumber of turns in the winding

Thus, if 10 amperes flow through 10 turns of the winding the result is
10 X 10 = }00 ampere turns. Now, if the number of turns be doubled,
the resistance of the winding will be doubled which will cut down the
current one half, that is, 5 amperes X 20 turns = 100 ampere turns.
Of course, this is not strictly true where the magnet is made up of more
than one layer, because the diameter of an outer turn being ter than
that of an ianer turn, its length and resistance is greater, the resulting
effect being to slightly decrease the ampere turns as each layer is added.
The reason then For increasing the number of turns in a magnet winding
is to cut down the current sufficiently to prevent overheating of the winding.

Example.—If the winding on a spool 8 ins. in diameter be one inch thick,
what is the average diameter of the turns?

The diameter of the inner layer turns is 8 ins‘., and the outer layer
turns, 8 4+ 2 = 10 ins., hence,

average diameter of the turns = 14 (8 < 10) = 9 ins,

Example.—If the magnet of the previous example contain 500 turns,
what is the length of the winding?

The average diameter of the turns, as obtained, being 9 ins.,

length of winding = 52@’:”‘%&0 = 1,178 1t.

Example.—1f a winding one inch deep be placed on an 8 in. spool,
what is the smallest size wire that will give 10,000 ampere turns with
110 volts? : .

average diameter of turns = 14 (8 + 10) = 9ins.
length of average turn == %ZMIS = 2.36 ft.

The sectional area of the smallest wire (in circular mils) is obtained
from the formula

12 X length average turnin feet X ampere turns

Mareawire = ——~— & TS e N
volts
Substituting
area wire = L) BE isith) 5% HU{LED = 2,575 circular mils

110

*NOTE.—In the tormula, 12 is che resistance of 1 mu foot of copper at 130° Fahr
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0

nearest size wire from table is No. 16 B, & S. gauge.
Having determined the minimum size of wire, the next step
is to find how many turns must be placed on the spool to prevent

undue heating.
The watts lost by the current neating the winding s equal fo

the square of the current multiplied by the resistance, that is
watts lost=amperes? X ohms. :

Table of Constants

. ke for Length, | € O for Welght, | @ Oonstant for Realst-

] ance.

@

=& |Double | Single | Singie [Double | Single Single |Double{ Bingle | Bingle

Cotton | Cotton | Silk | Cotton | Cotton| Bilk | Cotton |Cotton| 8ilk

0 40.9 504 567 | 137 .162 n 115 512 576
1 0.4 6.1 | 727 £38 8if 920
Fol 60.2 78.0 8.7 97 1.257] 1445
a 68.3 89.7 104.7 313871 1.8 2.08
2 8.6 | 133 | 185 | aus | .. 169 214 291 3.46
25 97.2 185, 163 3.4 4.36 5.7
26 14, 263, 207, 4.65 6 65 3.2
n 185, 202, 255, (=] 1,75 | 131
H 148, 226, 1. 0845 | 122 it £.60 14.62 | 15.82
o 182, o, 387, 1485 | 23,7 31.6
an 201, a3, 40 20.7 4.4 48.8
8 6. 357, 51 29.36 50.25 | 704
a2 255, 454, 63, 0687 | 1048 132 418 74.4 | 107.2
3 a8, 642, 812, 60.33 | 114.5 | 168.
B 334, 656, | 1023, &1 170.5 | 266.5
a6 a5, 712, 1140 118.2 24, 34.8
35 387 811 1340 0492 08% 115 | 160. 385.5 | 555.
81 | 422 897. | 1582 220.5 | 463, | 808,
83 | 457, 1023, 1825 6M. 1192,
a9 408, 1170, | 2165. 412 972, 1795,
w Baz. 1300, 2525, 038 0615 0888 | 557, 1360,  [2645.

In proportidning the winding for depth and length, the depth of the
winding must be such that there will be from 1 to 2 sq. ins. of surface
per watt. With 1 sq, in. per watt, the magnet in operation will be “hot,’”
and with 2 sq. ins., “‘warm.”

Example.—How much radiating surface (neglecting the ends) on a
magnet whose outside dimensions are 9 ins. diameter, 6 ins. long

area outer cylindrical surface = 9 X 3.1416 X 6 = 169.6 sq. ins.

Example.—An 8 in. spool is to be wound with No. 16 wire to a depth
of 1 in., which, as calculated in a previous example, is the smallest size
wire that will give a required 10,000 ampere turns with 110 volts. How
many turns of wire must be wound on the spool to prevent undue heating?

For winding magnets what is known as magnet wire is used, the wire
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generally having a single covering of insulation as enamel, silk, cotton oi
paper.

By reference to the table on page 19 the nurhber of turns per sq. in.
of cross sectional area is obtained. Taking a portion of the winding cov-
ering an inch length of spool 1 in. deep the sectional area of this portion
is 1 sq.in. Referring to the table of magnet wire on page 19, No. 16 wire
single covered, will wind 312 turns per sq. in., that is, per inch length ot
spool. The length of the average turn being 2.36 ft. (as calculateq in 2
previous example)

FiG. 17. —Method of placing two layer lap winding coils in armature slots. In a two layer
winding one side of a coil will be at the bottom of a slot and the other at the top of another
slot. To place coils in slot, put in the lower sides first as, 1, 2, 3, 4, of coils A, B, C, D, leav-
ing the other side of each coil outside its slot. Evidently when enough coils to make up
the inner layer_have been placed this way, the upper layer side of the last coil so placed can be
put into the slot. Thus, after lower layer side 4, of coil D, is put in the slot, the upper layer
side 5, may be put in position on top of side 1, of coil A, thus moving the last coil from point
D, to D’, indicated by the dotted line.

length of winding per inch of spool =312X2.36="736 ft.
and from table its resistance being 4.016 ohms per 1,000 ft.

736
1,000

resistance of winding per in. of spool = of 4.016=3 ohm.,

The outside diameter of the winding being 10 ins.,
radiating surface per inch of spool = 10 X 3.1416 = 31.4 sq. ins.

Now, in any electric circuit, the energy lost by heating the wire, or
watts =ampereszXohrns..........................(1)
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but by Ohm’s law

volts

amperes = ohms

Substituting this value for amperes in equation (1)
_ volts?
~ ohms

And if the coil be designed for “warm' working by allowing 2 sq. i,
radiating surface per watt, then it must be so proportioned that

. volts?
watts lost = (Tms-zx ohms

volts?

radiating surface = 2 X wattslost = 2 X

In order to determine the length of the coil, first find what resistance
would be necessary if the winding were to consist of only the one inch
portion fust considered. To do this, solve equation (2) for resistance.

thus

2 X volts
ohms Y ERgives 0000099 20990999508950000 ..(3)

This will give a resistance much greater than the 3 ohms as calculated
for that portion of the winding, hence, the spool length of the winding
must be increased until the resistance of the winding has a value as ob-
tained by equation (3). Thus, substituting in equation (3), 110 volts, and
31.4 sq. ins. radiating surface in equation (3), the necessary resistance of
the winding for “warm'’ working, is

2 X110

314

Accordingly, since the resistance of the winding is proportional to its
length

ohms = =7

length of winding =1 in. x% =234 ins.
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F1a. 22 —Method of placing armature in Chapman machine. Point the commutator ead
of the core toward you and select a pair of slots which give the correct span for the coils
“spotting” them with the thumb and fingers as shown. Set the core in the jaws with their
edges aligned, the jaws overhanzing the slot about .005 to .010 of an in. the slots projecting.
See that both sides are clear and free. Tighten up with the left hand. Let the larger part
of the armature project in cord winding. (It will hold them.) The illustration shows the
winding machine or head proper, equipped with 3 in. jaws, carrying the lead former and
twister. When setting open slot cores, set about !4 of the width of the siot under the jaws,
that is, allow about 3 of the slot to project. This is especially desirable where the core is
small in diametar,

S —

NOTE.—Number of armature slots. As a rule there are not less than ten slots per

le. In multi-polar machines there are at'least three or four slots in'the space between ad-

jacent pole tips. The area per slot on machines above five horse power is approximately

one sq. in. and roughly the capacity of a slot of thisarea is about 1,000 ampere turns for machines
designed to work nn Jess than 500 volts.
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Power of a Motor.—The difference between power and work
should be clearly understood. o

work =distance Xresistance (Ibs.)

work _ distance Xresistance (Ibs.)

wer =
PO time time

foot pounds per minute

horse power =
po 33,000

(33,000 foot pounds per minute =1 horse power)

NOTE.—Number of commutator bars. This depends on the voltage between the
bars. The number of bars may be a multiple of the number of slots. A large number of com.
mutator bars improves the commutation but this advantage is offset by increased difficulties
encountered in construction.

NOTE.—Current density in armature inductors. In determining the intensity of
current.much depends upon the provision for ventilation and operating conditions, In gen-
eral 400 cir. mils per ampere is safe for overloads or ‘for operation in hot engine rooms
.a greater area may he used. For fields and stators use 600 mils per ampere up.

NOTE.—Magnetic densities. In small machines the density in the air gap is rarely
over 32,000 lines per sq. ia.; in large machines the density may be as high as 60,000 lines per
sq.in. Density in teeth is usually about 100,000 lines per sq. in. being somewhat less in very
small machines. Density in magnet core: cast iron may be worked up to about 40,000
or 50,000 lines per sq. in.; wrought iron and cast steel being about 95,000 to 105,000 or more
lines per sq. in. Density in yoke: for cast iron the density should be about 30,000 lines per
sq. in.; for cast steel, about 75,000 lines, and for wrought iron forgings about 85,000 lines.
Density in armature core: this may be taken at from 85,000 to 90,000 lines per sq. in. for
drum’'armatures : .

NOTE.——Dynamo losses. These are the mechanica} losses due to friction, ardelecs
trical losses in the core, field and armature. Friction loss. This ranges from 3 tc 5% in,respec-
tively, small and large machines of good design. Core loss. In well designed machines this
should not exceed 2% of the output et full load. Field loss. A portion of the electrical
energy generated in the armature is lost in exciting the field magnets. Armature loss. This
is usually termed the copper loss since it 1s due to the resistance of the winding; it is a very
variable quantity and is equal to the square of the current multiplied by the resistance of a
section of the winding between brushes.

NOTE .—Armature paths in wave and lap windings. A wave winding has but two
paths through the armature, regardless of the number. of poles; whereas a lap winding has
as many paths as there are peles. This distinction is important in figuring the size of wire
for the winding to carry the curent without undue heating.
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Example —If the armature pull of a motor having a two foot pulley
be such that a weight of 500 lbs. attached to the rim, is just balanced,
and the speed be 1,000 revolutions per minute, what is the horse power?

Here, the distance that the pull acts from the center of the shaft is
one foot, hence for each revolution the resistance of 500.pounds is over-
come through a distance equal to the circumference of the pulley or

x Xdiameter =3.1416 X2 =6.2832 feet,

The work done in one minute is expressed by the following
equation:

{ work | [ .:44) (circumference) | - )
{ per }={¥e1§)1;t}><[ of pulley }x{rezog.tt:z?:} =foot pounds
Iminute) (%) | infeet j (PeTTnUley

= 500 X 6.2832 X 1,000 =3,141,600

(&S )

Fra.23.—Prony brake for determining brake horse power. It consists of a friction band
ring which may be placed around a pulley or fly wheel, and attached to a lever bearing uport
the platform of a weighing scale in such a manner that the friction between the surfaces in
contact will tend to rotate the arm in the direction in which the shaft revolves. This thrust
is resisted and measured ¢n pounds by the scale. In setting up the brake the distance be-
tween the center of the shaft and point of contact (knife edge) with the scales must be accu-
rately measured, the knife edge being placed al the same elevation as the center of the shaft. An

internal channel permits the circulation of water around the interior of the rim a3z shown.
to prevent overheating.
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Hence, the power developed is

31,416 +33,000 = .952 h. p.

The formula for brake horse power is

in which

=]
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F1G. 24.—Characteristic curves for a General Electric type RC, 714 horse power 230 volt
commutating pole shunt wound motor of open construction,

P =unbalanced pressure or weight in pounas, acting on the lever arm
at a distance L;

L =length of lever arm in feet from center of shaft;
N =number of revolutions per minute.

Simplifving. equation (1) becomes
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BH.P.<2*LNP_ 5001004PLN ... .. @)

33,000

It should be noted in equation (1) that if L=33+2x the
equation becomes

_ \
2z 33 yp-NP @)

BHP.=
33,000 2= 1,000

&
H.P

)
z
wl
=
(=)
&
o
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z
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F16. 25.—Characteristic curves for a Westinghouse type MC-50 230 volt series wound en
closed motor for a steel mill crane and hoist service.

Accordingly, in order to use the simplified formula (2) the
arm L is made 33 +2= or 5.285 feet, very approximately 5 ft.
3%{s inches.

27 X3X1,000X30 _

B.H.P.=
F 33.000

17.1
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Using formula (2)
B.H.P.=.0001903X30%x3X%1,000=17.1

220X 65

I =EH.P.=
nput=E . H.P 746

=19.17.

and since the output is 17.1 horse power,

output _  brake horse power _ 17.1

efficiency =— = 2 =
y input electrical horse power 19.16

=899%,.

Batteries

Batteries.—The voltage of a battery is equal to the voltage of
a single cell X the number of cells in series.

Example.—What is the voltage of a battery consisting of four 1% volt
cells in series?

voltage=13X4=6

The amperage of a cell depends upon its voltage, internai
Tesistance and resistance of the external circuit.

The internal resistance of a primary cell is much greater than
that of a secondary cell.

Example.—If a 1} volt dry cell show 25 amperes on short circuit what
is its internal resistance?
According to Ohm’s law
R=E+I
Substituting in the formula
internal resistance =1.5+25=.06 ohm.
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Example.—If a 1} volt storage battery show 250 amperes on short
circuit what is its internal resistance?

internal resistance = 1.5+ 250 =.006 ohm.

Voltage of a Secondary Cell.—This depends on the density
of the electrolyte, the character of the electrodes and condi-
tion of the cell; it is independent of the size of the cell.

Wit
ll'll\l:‘,"l'!l-;!‘l!Ilw.fill!l-" Wity

(I

i

N

#16.26 ~~How 06 test a dry cell. Place terminal of ammeter on proper pole of cell and
momentarily touch the other terminal with the ammeter lead. Cell should *‘kick”’ 25 to 30
amperes if fresh. Don’t buy a dry cell without testing it yourself. In testing, don't hold the
connection any longer than necessary to read the ammeter. If a dealer objects to eells beinz.
tested it is evidence that they are no good and that the dealer is dishonest.

The voltage of a lead sulphuric acid cell when being charged
is from 2 to 2.5 volts. While the cell is being discharged, it de-
creases from 2 to 1.7 volts. The voltage due to the density of
the electrolyte may be calculated from the following formula:

V=1.854.917 (S—s)
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in which
V =voltage;
S=specific gravity of the electrolyte;
s =specific gravity of water at the temperature of observation.
Example.—If a storage battery require about 3 amperes for charging,
how is this current obtained from a 110 volt circuit?

Each 16 candle power carbon filament lamp in the lamp bank would
give approximately 14 ampere with the cells in series in the lamp circuit.
Therefore, 3X3 or 9 lamps should be used in parallel to give 3 amperes-

Specific Gravity Table

Sulphuric acid Water Specific gravity
(Per cent.). (Per cent.). of Mixture,
50 50 1.398
47 53 1.370
44 56 1.342
41 59 1.315
38 62 ] 1.289
35 . 65 1.264
32 . 68 1.239
29 71 1.215
26 74 1.190
23 77 1.167
20 80 1.144
17 83 1.121
14 86 1.098
10 90 1.068

The amperes obtained will be slightly less due to the opposition offered
by the internal resistance of the battery.
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F1a. 27 —Load curve showing use of storage battery as an aid to the generatmg machinery.
In the diagram, it is seen that the battery discharges at minimum and maxifmum loads and
is charged at other times, the battery furnishing current for the entire minimum load and
part of the maximum load.

In the selection of a storage battery the number of cells is
determined by the vollage of lhe system. Thus, according to

Gould:
Voltage of System Number of Cells Voltage of System Number of Cells
110 60 220 120
115 64 230 126
125 70 250. 138

NOTE.—The size of a 110 volt battery can be determined thus, assuming that the bat-
tery will be.charged at any time during the day convenient to operate the dynamo and thad
the battery will be atle to furnish current for lamps as follows:

Number 4
of 3 Number Ampere Hours
Time Lamps Amperes | of hours col. 3 Xcol. 4
S.p.m. to 10 p.m. Twenty 16 ¢. p. 10 5 50
10 p.m. to 6a.m. Two 8¢.p. 3 8 4
6a.m.to 8a.m. Six 16 ¢c. p. 3 2 6

Total 60
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Comparison of the Baume and Specific Gravity Scales at 60° Fahrenheit

Degrees|Specific| Degrees Specific| Degrees|Specific|Degrees |Specific,
Baume |Gravity| Baume Gravity| Baume |Gravity| Baume Gravity

1.000 17 1.133 34 1.306 51 1.542
1.007 18 11142 35 1,318 52 1.559
1.014 19 1.151 36 1,330 53 1.576
1.021 20 1.160 87 1.342 h4 1.593
1.028 21 1.169 38 1.355 55 1.611
1.036 22 1.179 39 1.368 56 1.629
1.043 23 1.188 40 1.381 57 1.648
1.051 24 1.198 41 1,394 58 1.666
1.058 25 1.208 42 1.408 59 1.686
1.066 26 1.218 43 1.421 60 1.707
10 1.074 27 1.229 44 1.436 61 1.726
11 1.082 28 1.239 45 1.450 62 1.747
12 1.090 29 1.250 46 1.465 63 1.768
13 1.098 30 1.261 47 1.479 64 1.790
14 1.107 31 1.272 48 1.495 66 1.812
15 1.115 32 1.283 49 1.510 66 1.836
16 1.124 33 1.295 50 1.526

DRI I~

Strength of Dilute Sulphuric Acid of Different Densities at 59° Fahr,

Strength of Dilute Sulphuric Acid
of
Different Densities at 59° Fahr.

Per gent. Specific Per <;ent.- Specifie
0 o
. Sulphuric Acid Gravity Sulphuric Acid Gravity

100 1.842 23 1.167
40 1.306 22 1.159
31 1.231 21 | 1151
30 1.223 20 | 1144
29 1.215 19 1.136
23 1206 18 1129
27 1198 17 1.121
26 1.190 16 1116
25 1172 15 1.106

24 1.174 14 1.098
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Size of Storage A Battery required.—The proper size battery
Jjor use with a radio set depends upon

1. Type of tube used

2. Number of tubes

3. Average number of hours used. each night

4. Facilities for recharging together with the convenience
desired.

Properties of Tubes

(According to Westinghouse Union Battery Co.)

Filament Plate Voltage N%. { Plate
Type of Tube “C" | Millia.
Bat'ry | Noem.
Volts | Amp. Detector | Ampl. | Volts |Opatn.§
UV-198, UX-199, C-299
X-299 3.9 08 45 00 4.5 2.5
UV-200, UX-200, C-300 .
CX-300 Y 50 |1, 18-22.5 | .ooon ) iiiii | aienn
UV-201-A, UX-201-A, : .
C-301-A, CX-301-A 5.0 [0.25 45 00 45 3.0
135 9.0 4.0
UX-112, CX-112 5.¢ | 0.5 22.5-45 | 157.5 | 10.5 7.9
135% 9.0 5.8
7.5 2.5
6.0 2.4
UX-120, CX-120 3.0 22.5 6.5
UX-210, CX-210 7.6 35 2.0
7.5 27 18.0
7.5 18 12.0
6.0 10.5 6.0
6.0 9.0 4.5
6.0 7.5 3.0
6.0 4.5 1.0
C-11, C-12, WD-11
WD-12 1.1 .25 cevrsseas | eciia | sevee we.
DV-2 4.5 26 45 90 4.5 3.0
DV-3 3.0 o7 45 90 4.5 2.5

Example.—A given set uses 5 UV201-A tubes. Each tube requires 3
ampere, 5 tubes require 114 amperes and a 5 volt battery is needed. The
6BRO-7 baftery has a capacity of 60 ampere hours. 60 divided by 114
gives 48 hours. 48 divided by 3 equals 16. If used 3 hours a night, the bat-

~ tery would give 16 nights of service per charge. The 6BRO-11 would give
about 27 nights service or about twice as much service per charge.
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Alternating Current

The alternating current is represented by the sine curve as
shown in fig. 30. . .

The equation of the sine curve is
y=sin¢

180 REVOLUTIONS
PER MINUTE 900 REVOLUTIONS

FREQUENCY'IS%‘T‘HG'GO PER MINUTE

CYCLES PER REV.OF ARMATURE
- NUMBER OF POLES . g= &
2 3

EIGHT POLE ALTERNATOR
FREQUENCY 60

F10. 28 —Diagram'of aryalternator and engine, illustrating Srequency. The frequency or
eycles per second is equal 1o the revolution of armature fer second multiplied by one-half the
number of poles per phase. In the figure the armature makes 6 revolutions to ope of the
engine; one-half the number of poles=8-+2=4, hence frequency = (150 X4 X6)+60 =60.
The expression in parentheses gives the cycles per minute, and dividing by 60, the cycles per
second, 0

in which y, is any ordinate, and ¢, the angle of the corres-
ponding position of the coil in which the current is being
generated.

The symbol ~ is read ‘“‘cycles per second.”

Thus, in an 8 pole machine, there will be four cycles per revolution,
If the speed be 900 revolutions per minitte, the frequency is.

370 ~80~
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Form Factor.—This denotes the ratio of the virtual value of
an alternating wave to the average value. That is

form factor = v —1rtual val}l_e_ = —7—0—7 =1.11

average value .637

Inductance.—The unit of inductance is called the henry.
The formula for the henry is:

L=N><I‘

108
3600 REVOLUTIONS
150 REVOLUTIONS PER MINUTE

PER MINYTE
. 900 REVOLUTIONS

PER MINUTE //

B

TWO-POLE ALTERNATOR
FREQUENCY 60

F1G. 29 ~Diagram answering the question: Why are alternators always built multipolar?
They are made multipolar because it is clesirable that the frequency be high. It is evident
from the figure that to obtain high (requency would require too many revolutions of the
armature of a bipolar machine for mechanical salety—especially in large alternators. More-
over, a double reduction gear in most cases would be necessary, adding complication to
the drive. Comparing the above illustration with fig. 28 shows plainly the reason for
multipolar constraction.

NOTE.—The henry and the C.G.S. lines. One volt is produced when a conductor cuts
100.000,000, that is, 108 C.G.S. lines per second. The formula for the henry is frequently given
for a single layer air core coil expressed in C.G.S. units, as 47 area Xtotal amperes Xturns X
K + (length X10%) and unfortunately it gives a correct answer. Various authorities differ as
to whether 108 or 10° C.G.S. lines should be used and do not always agree with themselves.
1 C.G.S. unit pole at 1 ¢.m. distance produces a flux density of 1 C.G.S. line per &q. c.m.
One unit pole produces 4 lines = 12.5662 lines, hence C.G.S. current unit =12.5662 lines under
unit conditions. This C.G.S. current unit s nof an ampere, and here’s where the confusion
starts. It is constantly confused with the ampere—it is 10 amperes and a good name for it is
deka-ampere. The henry is not 10° C.G.S. lines, but 105, Now 10° is simply a corruption caused
by confusing the C.G.S. current unit (deka-ampere) with the practical ampere and combining
the deka-ampere to ampere magnetic correction divisor (10) with the voRage constant of
divisor 108.—P. E. Chapman. ’
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where

L =coefficient of self induction in henrys;

N =total number of lines of force threading a coil when the
current is one ampere;

T =number of turns of coil.

\EQU\VALENT D.C—y

i R\
.9 e VIRTUAL
1 l AVERAGE

F16. 30 —Maximum, virtual and average volts The virtual value of an alternating pressure
o1 current is equivalent lo that of a direct pressure or current which would produce the same
effect. If a Cardew volt meter be placed on an alternating current circuit in which the volts are
oscillating between maxima of +100 and —100 volts, it will read 70 7 volts, though the
arithmetical mean is really only 63.7; not withstanding this, 70 7 steady volts would be required
to produce an equal reading. T he word effective is ly, yet erron ly used for
virtual,

The inductance of a coil is calculated from the formule:
L=4rm2+ (IX108). . vnevneiinennese. (1)
or "~ (L=tmtrizsax109)
for a thin coil with air core, and
L=4r22n2y+ (IX10®) e e e i o (2)

for a coil having an iron core. In the above formule:

L =inductance in henrys;
7=3.1416;
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7 =average radius of coil in centimeters;
1 =number of turns of wire in coil;
p#=permeability of iron core;

{=length of coil in centimeters.

Example.—An air core coil has an average radius of 10 centimeters
and is 20 centimeters long, there being 500 turns, what is the inductance?

Substituting these values in formula (1)
L =.4X(3.1416)2 X 102 X 5002 + (20 X 108) = .00494 henry,

6 TURNS

A

INDUCTANCE
I HENRY |

SQUARE OF TURNS N\ SQUARE OF TURNS
=3X3=9 = 6X6=36

RATIQ OF INCREASE B TURNS2 <+ A TURNS2 =36+9 =4
INDUGTANCE COIL B =INDUCTANCE COIL A X RATIO =1X.4 = 4 HENRYS

Fics. 31 and 32.—Diagrams illustrating relation of number of turns of an inductive coil and
the inductances.

The Henry being a very large unit, it is the custom to
express inductance in thousandths of a henry, that is, in mzlli-

henrys. The answer then would be .049353x1,000=49.35
milli-henrys.

~ Example.—An air core coil has an inductance of 50 milli-henrys; if an
iron core, having a permeability of 600 be inserted, what is the inductance?

The inductance of the air core coil will be multiplied by the permeability
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of the iron; the inductance then is increased to
50 X600 =30,000 milli-henrys, or 30 henrys.

Ohmic Value of Inductance.—The ohmic equivalent of the
inductance reactance of an alternating circuit is expressed by
the formula

in which

X =ohmic equivalent of inductance
f=frequency

L =inductance

ONE COULOMB
ABSORBED BY PLATES

CAPACITY
ONE FARAD ~

CONDENSER

F16. 33.—Diagram - iJlystrating a ferad. A condenser is said to have a capacity of one
farad if it will absorb one coulomb of electricity when subjected to a pressure ®bf one volt.
The farad is a very large unit, and accordingly the microfarad or one millionth of a farad
is often used, though this must be reduced to farads before substituting in formule.

Example.—A coil of wire is of such inductance that a current changing
at the rate of one ampere per second induces a reverse pressure of .025
volt. An a.c. having a frequency of 100 passes through #t. Neglecting
the ohmic resistance, what is the ohmic equivalent of inductance?

Substituting the given value in equation (1)
Xi=2rX100X.025 =15.7 ohms (equivalent).
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[ ]
Capacity
Capacity.—A condenser is said to have a capacity of one farud
if one coulomb (that is, one ampere flowing one second), when
stored on lhe plates of the condenser will cause a pressure of one
volt across its lerminals.
The farad being a very large unit, the capacities ordinarily encountered
in practice are expressed in millionths of a farad, that is, in micrefarads
-~a capacity equal to about three miles of an Atlantic cable.

—_—

Ohmic Value of Capacity.—The ohmic equivalent of capacity
is expressed by the formula

Ul

C ¢ ¢’

-

F1G. 34.—Parallel connection of condensers. Like terminals are joined together. The capacity
of such arrangement is equal to the sum of the respective capacities, that is C=c+c'+c”

C”
FiG. 35.—Series or cascade connection of condensers. Unlike termiunals are joined iogether
as shown. The total capacity of such connection is equal to the reciprocal of the sum of the

. 1,1 1
veciprocals of the several capacities, that is, C=1+ 3 ot & + o
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in which X¢=ohmic value of capacity; C=capacity; f={fre-
quency.

Example.—What is the resistance equivalerit of a 50 microfarad con-
denser to an alternating current having.a frequency: of 100?

Substituting the given values in the expression for ohmic value

X = 1 _ 1 1
2xfC  2X3.1416X100x. 000050 031416

Lag and Lead

Lag.—If there be inductance in an a.c. circuit, the current
will lag; if there be capacity, the current will lead in phase.
The formula for angle of lag is

=31.8 ohms

: reactance_2-fL e Q)

e = & S 00000000000 A

‘resistance R

Example 1.—A circuit through which an alternating current is passing
Ras an inductance of 6 ohms and a resistance of 2.5 ohms. What is the

angle of lag?
Substituting these values in equation (1),

6
=5 24
tané=>=

Referring to the table of natural sines and tangents on page 153 the
corresponding angle is approximate}y 67°. ]

Lead.—If there be capacity in an a.c. circuit, the current will
lead. The formula for angle of lead
1

o eSS oanannseoaas 1
resistance R




Electrical Calculations 51

Reactance

The term ‘‘reactance’ means simply reaction.

The term reactence, alone, that is, unqualified, is generally
understood to mean induciance reactance.

Inductance reactance is simply inductance measured in ohms.

Example. —An alternating current having a frequency of 60 is passed
through a coil whose inductance is .5 henry. What is the reactance?

Here f=60 and L =.5: substituting these in formula for inductive re-
actance,
Xi=27 fL=2X3.1416 X60 X .5=188.5 ohms

The quan!.lty 2x fL or reactance being of the same nature as a re-
sistance, is used in the same way as a resistance. Accordingly, since, by
Ohm’s law

E=RIL.....cooiiiiiiit. 9000000000000a000 1)

an expression may be obtained for the volts necessary to overcome re-
actance by substituting in equation (1) the value of reactance previously
given, thus

Example.—How many volts are necessary to force a current of 3
amperes with frequency 60 through a coil whose inductance is .5 henry?
Substituting in equation (2) the values here given

¥

E=27fL I=27X60X.5X3=>566 volts.

Example. —In a circuit containing only capacity, what is the
reactance when current is supplied at a frequency 0£100, and the capacity
is 50 microfarads?

1
50 mij = —_— = 5
microfarads 50><1'000'000 00005 farad
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capacity reactance, or

1 1
27fC "~ 2%3.1416 X100 X. 00005

X, = =31.83 ohms

Inipedance

Impedance.—This term means the total opposition in an elec-
tric circust to the flow of an alternating current. All power circuits
for a.c. are calculated with reference to impedance.

30

nEs'lsn'NcE'-l conms
CURRENT'4A |
. IMPEDANCE- rvoLTs b
OHMS
20— — A
. L
z. 4
0 Zs 1/
8 |l d
z
ém ’/ :
$ /
= y
5
o
0 1 2z 3 4 5 6 1 8 3 10

INCHES OF IRON CORE

F1a. 36.—Impedance curve for coil with variable iron core. The impedance of an indue-
tive coil may be increased by mouving an iron wire core into the coil. In making a test of this
kind, the current should -k ‘kept: constant with an adjustable resistance, and volt meter
readmgs taken, first without the iron core, and again with 13 2, 3, 4, etc.,‘inches of core
inserted in the coil. By plotting the volt meter readmgs and the positions of the iron core
nn section paper as above, the effect’ of inductance is clearly shown.

For a circuit which does not contain capacity

tmpedance =V resistance? +-reactance?. . .. (1)

Example.— If an alternating pressure of 100 volts be impressed on
a coil of wire having-a resistance of 6 ohms and inductance of 8 ohms;,
what is the impedance of the circuit and how many amperes will flow
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through the coil? In the example here given, 6 ohms is the resistance
and 8 ohms the reactance. Substituting these in equation (1)

Impedance = V6248 = v 100 =10 ohms.
The reactance is not always given but instead in some problems the
frequency of the current and inductance of the circuit. An expression

to fit such -cases is obtained by substituting 2zfL for the reactance as
follows: (using symbols for impedance and resiatance)

Zo VR CZrLY. o oee e .:{2)

50 - 60 ~ 70
FREQUENCY

P16. 37 —Curve showing variation of the current by increasing the frequency in a circuit
having inductance and capacity.: The curve serves to illustrate the “critical frequency” or
frequency producing the maximum current. The curve is obtained by plotting current
values corresponding to different frequencies, the pressure being kept constant.

Example,— -If an alternating current, having a frequency of 60, be
impressed on' a coil whose inductance is .05 henry and whose resistance is
6 ohms, what is the impedance? :

Here-R =6; f=60, and L =.05; substit_uting these values in (2)
Z= V64 (2= x60%.05):= V391'=19.8 ohms.

For a circuit having resistance, inductance and capacity.
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impedance = V res_stance®+ (inductance reactance —capucity reactance)?

or using symbols,
Z= VR (X;—X.)r...... OO OD e 00R00aE0TDaaE -(3)

Example.—:A current has a frequency of 100. It passes through a
circuit of 4 ohms resistance, of 150 milli-henrys mdactance and of 22
microfarads capacity. What is the impedance?

a. The ohmic resistance R, is 4 ohms,
b The inductance reactance, or
' 1

X¢=27fL=2%3.1416 X 100X .15 =94.3 ohms. }
note that 150 milli-henrys are reducéd to .15 henry before substituting
in the above equation. *
¢. The capacily reactance, or
1 1

X°=21rfc=2x3. 1416 X 100 X . 000022

=72.4 ohms
note that 22 microfarads are reduced to .000022 farad before substi-
tuting in the formula.

Substituting values as calculated in equation (3)
Z =41+ (94.3—72.4) = V496 =22.3 ohms.

Power Factor

The term power factor may be defined as: The number of
walls indicated by a wall meler, divided by the apparent wails, the
latter being the walls as measured by a volt meter and ammeter.

The power factor may be expressed as being equal to

true power _  lrue walls __  lrue watls
apparent power apparent watts volts)(amberes
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The power factor is that quantity by
which the apparent watls must be mul-
liplied in order lo give the true power,

That is,

lrue power = apparent watls X power

Numerically, the power factor is
equal lo the cosine of the angle of phase
difference between current and pressure.
that is

)

power factor =cos ¢

3=
e
Z
a

Electrical equipment cost varies inversely
(approximately) as the power factor so that
a system designed for 70 per cent power
factor costs about 40 per cent more than one
designed for unity power factor.

In the case of a manufacturer who pur-
chases current his power rate must contain
all of the generating cost as well as a profit
on these costs so that if the power factor of
the generating system be low, the manufac-
turer in his power rate pays the interest
charges upon the extra investment caused
by low power factor.

Fic. 38.—Angularity of the connecting rod , dnalogy of power factor. Pressure due to
steam acting on the piston is applied to the wrist pin in the axial direction AC. Let distance
AC, represent this pressure. Draw CB, perpendicular to connecting rod AP. Then will

C, represent tne apparent pressure applied to P, the crank pin; AB, the active component
or actual pressure applied to P, and BC, the no energy component. Power factor =AB
+AC, =Cos¢. Example.~—If 1,000 lbs. pressure be applied by piston and AB +AC=.9,
then the actual pressure applied at P =1,000X.9 =900 Ibs.
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Example.— If in an alternating .current circuit, the volt meter and
ammeter readings be 110 and 20 and the angle of lag 45°, what is the ap-
parent power and true power?

The apparent power is simply the product of the current and’ pressure
readings or
apparent power = 20X110=2,200 watts _ .

The true power is the product of the apparen'é_ power multiplied by the
cosine of the angle of lag. Cos 45°=.,707 hence

true power =2,200X.707 =1,555.4 watts

i 100 Relation of magnetizing current qq
% to working current for
328 <L Different Power Factors |
A\ —r— — ]
s 8 N fagnetinng C¢ M .
T8 N |1 Watt C t W
w N
oy} N
gn ™
£ 68
6
© 60
S %
52 ~ <
43 \'
L]
0 =
T3 s 7 9 w13 1s 1719 2
Magnetizing Factor
v i

v

P14 39 .—-Power factor curve. By aid of this curve the magnatizing kva. can be determined
for any power factor, For instance, a line with 60 per cent. power factor and a load of

. 150 kw. requires 150 multiplied by 1.3 =195 magnetizing kva.

Example.— A circuit having a resistance of 3 ohms, and a resultant

reactance of 4 ohms, is connected to a 100 volt line. What is: 1, the im-
pedance, 2, the current, 3, the apparent power, 4, the angle of lag, 5. the

power factor, and 6, the true power?
1. The impedance of the circuil.
Z = V3:44? =5 ohms.

2. The current. '
current = volts +-impedance =100 =5 = 20 amperes.
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3. The apparent power.
apparent power = volts Kamperes =100}20=2,000 watts.

4. The angle of lag.
tan ¢ =reactance -+resistance=4+3=1.33. From table of nat-
ural tangents (page 153) ¢ =53°.

5. The power factor,
The power factor is equal to the cosine of the angle of lag, that is,
power factor =cos 53°=.602 (from table).

*6. The true power.
The true power is equal to the apparent watts multiplied by the
power factor, or

{rue power = volts Xamperes X cos ¢
=100 X 20 X .602=1,204 watts.

Example.—An alternator delivers current at 800 volts pressure at a
frequency of 60, to a circuit of which the resistance is 75 ohms and .25
henry.

Determine: a, the value of the current; b, angle of lag; ¢, apparent power;

d, power factor; e. true power.

a. Value of current

pressure E

impedance  VRz4(2xfL)?

800

~/752+(2x3 1416 X60 X .25)* = 6.64 amperes
b. The angle of lag

tang = reactance _2 wa=2x3.1416x60>< .25
" resistance R 75

current =

=1.25

¢ =angle of lag=1.25=51° 15’ (interpolating from table, page 153).

c¢. The apparen! power
apparent power = volts Xamperes =800 %6.64 =5,360 watts
=5.36 kva.
d. The power factor
power factor =cosine of the angle of lag
=¢os 51° 15’ =,626.
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e. The true power

true power =apparent power Xpower factor
=5,360.626 =3,355 watts.

Thic radius determines
e copper in generator
and feeders or limits the
duty of existing generators

and feeders

Thys line shows how
much-wark the above
heating value can'be
made to deliver at

variouspower-factors

L—700 H.P:Work Value
Wattmeter Readin X The ultimate result at
850 H.P.Work Value unity power-factor is -

150 H.P.gained by raising 100% work

Power-factor from 70%to 85%

Group of Induction Motors r
700 H.P.-70% Power-factor

4 s
L Group of Induction Motors (610 HP)L
S and Synchronous Motors (240 H.P.):

850 H:P.at 85% 2
-~

)

Same load on generatorsl/ Power-factor o
and feeders )

A { P
//‘ : /
{ 1T
Y

Gain for consumer-150 H.P without
increasing féeders - Gain for Power
Company revenue from 150 H.P. motor
from same generator and feedzr

x

Fics. 40 to 42.—Typical power factor diagram showing gain by raising the power factor;
. 42 shows benefits to consumer and power company on the basis shown in fig. 41
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70% Power factor

{3 (3 Phase)

Voltmeter Ammeter

F1G. 43.—Meter reading on three phase circuit 70% power factor.

Alternators

The voltage of an alternator at no load is expressed by
the formula

E=4.44 XN XfX¢ X107

This expression gives the mean effective voltage. Should the voltage
curve have a sine wave form, then the maximum voltage is equal to the

mean effective voltage multiplied by Vv 2 that is, by 1.41.

In the above formula:

E =the no load voltage at the terminals of one phase of the
winding;

N =number of turns in series per phase,
f =number of magnetic cycles per second;

¢ =magnetic flux, in megalines simultaneously linked with the
N turns. (One megaline =1,000,000 c.g.s. lines.)
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Voltages Generated in Various Single Phase Windings

Correction factor for voltage of
variously distributed windings

Single coil winding E=1.000
Double coil winding E=.707 Xsingle coﬂ wmdmg
Triple coil winding E=667x *“
_ Quadruple coil winding E=.854x *“ “
Multi-coil or thoroughly dis- :
tributed winding E=637x *“ “

The terms single, double, triple coil, etc., in the accompanying table
indicate whether the inductors are arranged in one, two, three, etc.,
equally spaced single coils per pole piece, the single coil being constituted
by the group of inductors lying in one slot. The conditions are equivalent
to the component voltages generated in each group being in one, two,
three, etc., different phases, irrespective of the number of resultant wind-
ings into which they are combined.

In any alternator the number of magnets required

frequency X 60
revolutions per minute

Example.—How many magnets required for a single phase alternator
running at 900 7.p.m. to give a frequency of 60?

Substituting in formula (1)

Number of magnets= 2X609>(§060 8

The value of the armature ampere turns which tend to distort and to
diminish or augment the effect of the ampere turns on the field magnet
is sometimes calculated as follows:

A=.707><I XTXP
in which s
A =armature ampere turns; .

I =current per phase;
T =turns per pole per phase;
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P =number of phases;
s=product of the distribution and pitch factors of the winding.

This value of ampere turns, combined at the proper phase angle with
the field ampere turns gives the value of the ampere turns available for
producing useful flux.

Example.—How many field magnets are required on a two phase alter-
nator direct connected to an engine running 240 revolutions per minute,
for a frequency of 60?7

An engine running 240 revolutions per minute will turn
240 +-60 =4 revolutions per second.
A frequency of 60 requires

60-+4 =15 cycles per phase per revolution, or
15X2 =30 poles per phase.
Hence for a two phase alternator the total number of poles required is
30X2=60.
1t is thus seen that a considerable length of spider rim is required to
attach the numerous poles, the exact size depending upon their dimensions
and clearance. ’

The flux that must enter the armature from each pole at full load
full load voltage per phase X108
- No. of inductors in
frequency ><(series per phase ) xK

K is a multiplier depending on the relative values of the width of che
winding on each side of a coil, the span of the polar arc and pitch of the
joles.
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Transformers

For any transformer or reactive coil:

Let E = v/mean® of the induced voltage;
¢ =total flux;
B’’ =lines of force per sq. in.
A =section of magnetic circuit in sq. ins.
N =frequency in cycles per second;
T =total turns of wire in series.

Then

This equation is based on the assumption of a sine pressure wave and
is the most important of the formulae used in the design of an alternating
current transformer.

By substituting and transposing, an equation can be obtained for any
unknown quantity.

Thus if the volts, frequency and turns be known, then

E X108
@ =21m ..... 4080908 000000080000000000300D0000A S 2)
but
d=B A e, 3)
Therefore
E X108

=m’, .................................. (4)
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which equation gives at once the cross section of iron necessary for the
magnetxc circuit after the total primary turns, and the density at which
it is desired to work the iron have been decided.

Again, if the volts, frequeAncy, cross section of core, and
4ensity be known, then transposing equation (4)

_ EXI10% .
4.44XN XB"XA

The core loss is generally neglected in the measurements.

T=

The voltage and current relations are approximately as
follows:

primary voltage: secondary voltage=primary-turns:
secondary turns

primary current: secondary current =secondary turns:
primary turns

The hysteresis loss is caused by the reversals of the mag-
netism in the iron core, and differs with different qualities of
iron. With a given quality of iron, this loss varies as the 1.6
power of the voltage with constant frequency.

Steinmetz gives a law or equation for hysteresis as follows:
Wy=nB1*
W g =Hysteresis loss per cubic centimeter per cycle, in ergs (=107 joules)
4 =ronstant dependent on the quality of iron.

If N =the frequency,
V =the volume of the iron in the core in cubic centimeters,

P =the power in watts consumed in the whole core,
then

P =»NVBI:107 .
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and

1 P

“NVBe10T

The copper losses in a transformer are the sum of I2R losses
of both the primary and secondary coils, and the eddy cur-
rent loss in the conductors. In any well designed transform-
er, however, the eddy current loss in the conductors is neg-

100
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F16. 44.—Efficiency curve -of Westingfiouse 375 Ew. transformer: Pressure 500 to 15,000
volts; frequency 60. Efficiencies at different loads: full load efficiency, 98%: 3 full load
efficiency, 98%:; 3% full load efficiency, 97.6%: ¥ full lead efficiency, 96.1%; regulation
non-inductive load, 1.4%; load having ‘9 power factor, 3.3%.

ligible, so that the sum of I?R losses of primary and secondary
can be taken as the actual copper loss in the transformer.

The efficiency of a transformer is the ratio of the output
watts to the input watts. Thus
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Output watts _ Output

Efficiency = >
Input watts  Output+Core loss+Copper loss

The core loss, which is made up of the hysteresis loss and
eddy current loss, remains constant in a constant potential
transformer at all loads, while the copper loss, or I?R loss,
varies as the square of the current in the primary and sec-
ondary.

Full load x5 .
Core loss X24 +I?R X5+ full load X5

All-day efficiency =

|< 200 ;l <«———— 200
10
10 k . 10 10 10
Y20 20J\
20 -—
100 ’<— 100 —>

Fias. 45 and 46 .—Two winding transformer -and a single winding or auto-transformer.
Fig."45 shows 2 200:100 volt transformer having a 10 amp. primary and a 20 amp. secon-
dary, the currents being in opposite directions. If these currents be superposed by using
one winding only, the auto-transformer shown in fig. 46 'is employed where the winding
carries 10 amp. only and requi”es only one-half the copper (assuming the same mean length
of turn). If R, be the ratio of an auto-transformer, the relative size of it compared with

R_lz 1. For example, a 10 kw. trans-

a transformer of the same ratio and output is as

former. of 400 volts primary and 300 volts secondary could be replaced by an auto-trans-
133-1
133

214 kw. transformer could be used to wind an auto-transformer of 400 : 300 ratio and 10 kw.
output.

former of 10 X =2.5 kw.; or, in other words, the amount of material used in a
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Transformers for Twe and Three Phase Motors.
Single phase transformer voltages

Delivered

voltage of 110 volt motor 220 volt motor
circuit :

Primary Secondary Primary Secondary

1,100 1,100 122 1,100 244
2,200 2,200 122 2,200 244

Very small transformers should not be used, even when the motor is
large compared to the work it has to do, as the heavy stirting current may

burn them out.

The fol_lowing‘table- gives: the proper sizes of transformer for three
types of induction motor.

Capacities of Transformers for Induction Motors.

Kilowatts per transformer 1
Size of motor Two single Three single One three
horse power phase phase phase
transformers Transformers *ransformer
1 0.6 0.6
2 1.5 1.0 2.0
3 2.0 1.5 3.0
5 3.0 2.0 5,0
7 4.0 3.0 7.5
10 50 4.0 10.0
15 7.5 5.0 15.0
20 10.0 7.5 20.0
30 15.0 10.0 30.0
50 25.0 15.0 50.0
75 40.0 25.0 75.0
100 50.0 0.0 100.0
“____L
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A. C. Motors

Synchronous Motors.—The speed of a synchronous motor is
that at which it would have to run, if driven as an alternator,
to deliver the number of cycles which is given by the supply
alternator.

The following simple formula gives the speed relatiops bet‘ween alternators
and motors connected to the same circuit and having different numbers

of poles.

PXR
r=
»
16
1 4
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AMPERES IN FIELD MAGNET

F1a. 47 —Diagram illystrating the method of representing the performance of synchronous
motors. The V shaped curve 15 obtained by plotting the current taken by motor under
different degrees of excitation, the power developed by the motor remaining constant.
The current may be made to lag or lead while the load remains constant, by varying the
excitation. A certain value may be reached by varying the excitation, which will give
a minimum current in the armature; this is the condition of uvnity power factor. If now
the excitation be diminished the current will lag and increase in value to obtain the same
p-wer; if the excitation be increased the current will lead and increase in value to obtain
the same power The results plotted for several values of the excitation current will give
the V curve as shown. This is an actual curve obtained by Morley on a 50 kw. machine
running unloaded as a motor. Other curves situated above this one may be obtained for
various loadings of the motor.




68 Electrical Calculzgtions

in which
7 =Revolutions per minute of the motor?
p =Number of poles of the motor;
R =Revolutions per minute of the alternator;
P =Numbeér of poles of the alternator.
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F16. 48.~Starting ‘torque.curves, for a. synchrorious motor with low and_high resistance
squirrel’ cages on the armature. In order that a synchronous motor may’ pull into st€p,
it is necessary to accelerate it until synchronous speed is quite closely. appro_agbgd. ’ljhe
nearer this approach, the more powerful is the synchronizing action. The slip of an induction
motor depends upon the load and also upon the resistance in the cage winding. !f a high
cage resistance be used in order to provide a high ‘starting torque, it is quite possible that
the slip will be so great that sufficient synchronizing action cannot be developed to pull the
motor intostep. The curves show the difference in effect of high resistance brass bars and
iow resistance copper bars.
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Squirrel Cage Motors.—The slip of a squirrel cage induction
motor varies from 2 to 5%, of synchronous speed depending
upon the size.

The slip is obtained from ‘tlie following formula:
Slip (rev, per sec.) =S,~S,

or, expressed as a percentage of syrichronism, that is, of the synchrongus
speed,

Stip (%) = =310
s

Maximum Starting Current for Squirrel Cage Motors
(According to Century Electric Co.)

Maximum Minimum
Number of Starting Current Static Torque
Poles in Percentage of In Percentage of
: Full Load Current Full Load Torque

Fractiorial Horsepower 60 and 50 cycle

4 4509, 250%,
6 4159, 2009,

Fractional Horsepower 25 cycle

2 4509, 2509,
4 4509, 200%

All othgr motor sizes not included above. 60, 50, 40 and 25 cycle

2 4509, 175%
4 4509, 1759,
6 4159, 1509,
8 4159, 1359,

10 3759, 1259,

12 3759, 1259,
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where
S, =synchronous speed, or 7.p.m. of the rotating magnetic field;
Sq ==speed of the armature.

The synchronous speed is deterinined the same as for synchronous
motors by use of the following formula:

2
S

where
S, =synchronous speed or 7.p.m. of the rotating magnetic field:
P =Number of poles;
f =frequency.

The following table gives the synchronous speed for various frequencies
and different numbers of poles:

Table of Synchronous Speeds

R.P.M. of the rotating magnetic field, when number
of poles is
Frequen .
S e \ 6 | 10 16 20 24
25 1,500 500 300 188 150 125
60 3,600 1,200 720 450 360 300
80 4,300 1,600 060 600 480 400
100 6,000 2,000 1,200 750 600 500
120 7,200 2,400 1,44Q 900 720 600
] 125 7,500 | 2,500 1,600 938 750 625
- .

Exampic.—A 60 cycle, sixteen pole, three phase motor has a slip a2t full
load of 6 per cent; at what speed does the armature turn at full load?

Synchronous speea =45C 7.p.m.
Slip =450%5 per cent=27 7.p.m.
Armature speed =450~27 =423 r.p.m.
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Check

. synchronous speed —armature speed
l = =
Slip (=%) synchronous speed

%100

450—-423 27
450 X100 450 X1 per cent
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Fre. 49.—Efficiency .of. 60 cycle, squirrel cage induction motors anoo% load, 3 to 50 A.p.
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F16. 50.—Power factor of 60 cycle, squirrel cage induction motors at 100% load, 50 to
500 h.p.
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Internal Resistance Induction Motors —This type motor has
an armature so construcied as to obtain a high resislance (ohmic
or spurious) while starting and a low resistance while Tunning
withoul external connections, 1o avoid the very heavy slariing
current and lo increase the slariing lorque.

In order to give maximum siarting torque. total armature resistance
should be
n=vet@E+y)?
Where r, =rotor resistance per circuit reduced to field system
x, =rotor reactance per circuit reduced to field system
r =resistance per field circuit
y =reactance per field circuit.

External Resistance or Skp Ring Motors.—In this type the
starting torque and the starting current are under the control

of the operator and may be varied at his will. The slip ring

—_—

WOTE —Effect of changes in voltage und: frequency on induwction motor operationi.
According to B. G. Lamme, some variations from normal voltage and frequency are generally
permissible with any induction motor, but such variations are always accompanied by changes
from normal performance. With either the voltage or. the frequency differing from normal
the following perfurmance changes must bé expected*

Conditions Power Factor Torque Slip
Voltage high Decreased Increased Decreased
Voltage low Increased Decreased Increased
Frequency high Increased Decreased Per cent slip unchanged
Frequency low Decreased Increased Per cent slip unchanged

Usually a variatioa of either voltage or frequency not exceeding 10% is permissible and
within this limit the efficiency remains approximately unchanged. The voitage and fre.
quency should not be varied simultaneously in opposite directions, that is, one decreased
and the other increased. If an induction motor must operate on frequency other than stand-
ard, the performance will be better if the voltage be changed in proportion to the equare root
of the frequency. Thus a 400 volt, 60 cycle motor operating on 663§ cycles will have very
nearly its normal operating characteristics if the voltage be raised to 400 X V663§ +60 =420
yolts, Decreasing the voltage much below normal is seldom permissible on account of re-
sulting .increased temperature rises. An increase in the frequency results in a considerable
reduction in the maximum load which an induction motor can carry.
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motor accordingly permits the heaviest loads te be started
slowly and smoothly with no objectionable line disturbances.

The Heyland Diagram.—By aid of this diagram it is pos-
sible to calculate horse power output, ksag input, amperes per

I

| 71
RESISTANCES]

a
o
<
2
@
o
w

'_
Z
w
24
24
>
(&}
o
74
“
]
ul
Lt
o
n

]
&l

REVERSE

TORQUE

m'E
A T AT

F1a. 51.~8peed tcrque and current curves of a polyphase induction motor with different
values of secondary resistance. For constant torque any variation in the armature te-
sistance requires a proportionate variation in the slip. If the slip with a given torque be
10%, for instance, it must be 209, for double the resistance. The armature resistange
may be in the wirdings themselves as in internal resistance motors, or it may be entirely
separate from the machine and connected to the windings by suitable means, as shown
'n external resistance or slip ring motors.
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terminal, per cent power factor for different loads, per cent
inrush at starting under full voltage, per cent torque at start-
ing, maximum or pull out torque, per cent slip of motor at
different loads and actual r.p.m. of motor atrdifferent loads.

Fi1a. 52.— Heyland 'diagram ior calculating horse power output, krainput, amperes per ter-
minal, per cent power factar for different loads, per cent inrush at starting under full volt.
age, per cent torque at starting, maximum or pull out torque, per cent slip of: motor at
different loads, and actual 7.p.n. of motor at.gifferent loads.
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—

All of this data may be obtained from the diagram, after ob-
{aining from test under no load conditions, and with the arma-
ture blocked, the volts, amperes and kw input to the motor.

The following example indicales Dblainly just how the dala is
oblained. ‘

Example.—Ina test of a 5 i.p. 220 volt, 3 phase. 60 cycle, 1,200 s.7.p.m.
slip ring motor, 17 amperes per terminal, the noload and blocked armature
tests gave the following results:

NO LOAD BLOCKED ARMATURE

Volts | Amperes | Kva { Kw. | P.f | Volts { Amperes | Kva. | Kw Pt

Test...| 230 12 4.770| .550 | 11 5 | 1143 35.5 [7.020 13.980| 56 7
Ratioed | 220 11.5 (4370 .....] .... | 220. 68.3 | 26.000

1

With scale of 250 v4 to one division, 4,370 kva =17.5 div.

Resistance betw;en (euuinalsd =.97 =total resistance of armature, hot.

Short circuited full voltage blocked 1*R =68.3%x.97=4,520 sa=18.1
divisions.

Full load of § h.p X746.=3,730 va=14.9 divisions.

With O, as center, and a radius of 100 divisions, strike arc AB, which
is the power factor arc. Draw OC, through 11.5 power factor and lay
off OF, equal to 17.5 divisions (no load condition).

Draw OD, tin-ough 56.7 power factor and lay off OE, equal to 104
divisions. (Full voltage blocked armature condition.)

Through F and E, draw arc FKEG, with center at H. This is input
arc of motor. Connect E and G, draw JG, perpendicular to EG.

With center at J, draw arc through F and G, This is output arc of
motor.

Lay off ST, equal to full load, which equals 14.9 divisions. Draw GT,
through to K. OK, equals kvg, input full load, from which full load am-
peres is calculated to equal 17,8 amperes. (OK, equals 27.2 divisions,
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multiplied by scale of 250, equals kvg; this, divided by 220 volts and

1.73 for three phase, equals' 17.8 amperes.) OK, extended to L, gives
a power factor of 689 for full load.

Draw EP, equal to 18.1 divisions, as per second paragraph above, and
PQ, perpendicular to intersection of EP.

[TTTTTTTL]

STARTING UNDER MAXIMUM TORGUE

[

— L] NHEReny ,;“I

/

/

Ta

Ay
—dy)
%7— P
x. A

<
(=]

PER CENT 8YNCHRONOUS SPEED

2 1%,

= X{\‘/
& E: L/ AN
20 E 4 N

Vi

25 650 75 100 126 150 176 200 225 250

PER CENT FULL LOAD TORQUE

" Fic. 53.—Speed torque curves for Wagner slip ring motors with armature short circuitea
(inherent speed torque) and with resistance inserted to give maximum torque at standstill,
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Fig. 54 —Speed’torque curves of’ Wagner slip ring_motor equipped with machine type speed
controller Raving eight steps of resistance. The diagram shows the speed torque curves of a
slip ring motor used with a machine type controller. If the machine driven require full Joad
torque at all speeds, the intersections of the speed torque curves with the 100% torque line,
show the motor speeds with the controller handle on the various steps.
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With scale of 250'sa, to one division, 26 kva =104 div. With center I,
on HJ, draw arc FQG. This is synchronous torque arc.

Extend GE, to M, the latter being 100 divisions above line FG. Draw MN,
perpendicular to IG,XY,then in divisions is per cent slip; in this case
9.2% Then r.p.m. is 90.89%, of synchronous r.p.m. or 1,090 r.p .m,

Per cent inrush equals

104

27.2

which is 383%, of full load; with power factor read at D, as 56.7%,. Maxi-
mum, or pull out torque equals

8—; or substituting =

R 2t gor 3009 of full load

TS

FYa. 55.~ Domestic ‘split phase-induction motor speed torque curve. Operation.and char-
acteristics. “The speed of an induction motor depends upon the number of poles of the
motor and the frequency of the current upon which it is operated. This is why only cer-

;ain. definite speeds are obtainable. The speed changes very slightly from no load to full
oud .



78 Electrical Calculations

QW _ 35

TS 1 or 263%,, which is per cent starting torque of full load when

armature rings are short circuited, in the case of a slip ring motor FK, is sec-

ondary amperes. = per cent efficiency.

KZ
synchronous h.p. X33.000
2 =X synchronous 7.p.m.

= torque in pounds at 1 foot radius.

Single Phase Induction Motors.—This type is generally
called split phase.
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Trc. 56. —Speed torque curve of split phase induction motor. The pull up torque is the
greatest load torque the motor will pull through and go on up to speed, that is, 1t is the
lowest torque point on the motor curve helow pull out, In the above curve it Vcomcu,ies
with the starting torque; if the motor had a higher starting torque, as shown dotted, ghe
pull up torque would be at A; or if the centrifugal switch opened below its best operating
speed as shown by the horizontal dotted iine, tne oull up torque would occur at Bx
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Fic. 57.—Speed torque curve of repulsion start induction motor.
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F1G. 58«—Speed ‘torque curve of repulsion induction motor. The starting torque is about|
two and. one-half times full load torque and the starting current is about two and one-half]
to three times full load current. The speed torque curve is very similac to that of a com:
pound wound d.c. motor. As the motor speeds up, the torque increases until the maximum|
torque point: is reached, which insures that the motor will bring up to full speed any loadj
that it will start. Due to the somewhat drooping speed torque characteristic, this motor
tends to throw off its load as it is overloaded. As the applied voltage is decreased, the
motor speed decreases and the power requiredito drive a constant torque load decreases.|
“The current on overload, therefore, does not increase as rapidly as in the case of the in-
duction motor or the repulsion start induction motor At light loads, the speed 6f this
motor- may be above synchronism.
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For single phase or two phase machines it is 1 to ,-7; for three phase,
1 to .612, or six phase, 1 to .7 or 1 to .613 depending upon the kind of
connection used for the transformer.

Example.—A two phase rotary receiving alternating current at 426
volts will deliver direct current at 600 volts, while a three phase rotary
receiving alternating current at 367 volts will deliver direct current at
600 volts.

Motor Generator Sets.—The combination of a motor and a
dynamo or alternator is used in preference to rotary converters
when it is desirable that the generating element be independent
of the a.c. line voltage so that any degree of voltage regulation
can be obtained.

Some of these sets are used for frequency changing.

The frequency obtained at the slip rings will depend on the speed of
rotation, the number of poles for which the changer is wound and the
frequency of the supply circuit.

The old formula holds:

r7.p.m. X L

= ————" +line frequenc
N 50 q 'S

Or excitation frequency.
N=slip ring frequency
P =number of poles
7.p.m—revolutions per minute of rotor

Example.—Assume 60 cycle excitation and a 6 pole machine
at 1,200 7.p.m. then

460 =120 cycles.
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The maximum speed for standard frequency changers is 2,200 7.p.m.
When frequencies are required which would demand higher speeds for any
particular machine, it will be necessary to select a frequency changer,
having a greater number of poles, withra correspondingly lower basic speed .

The power input to the stator from the commercial lines for an induc-
tion frequency changer at full load is approximately equal to the kilowatt
rating of the machine at the frequency of the commercial circuit plus the
excitation losses of approximately 10 per cent.

A. C. Windings

In the operation of an alternator the maximum pressure gen-
erated may be expressed by the following equation:

ZN
Ew="—fF(1)
in which
E =volts;
f=frequency;

Z =number of inductors in series in any one magnetic circuit;
N =magnetic flux, or total number of magnetic lines in one pole or in one
magnetic Circuit. R

The maximum value of the pressure, as expressed in equation
(1), occurs when 6=90°.

The virtual Xalue of the volts is equal_l to the maximum value
divided by V2, or multiplied by 3 V2, hence,

1 V2Zx=fZN _222fZN @

s 0 10°
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This is usually taken as the fundamental equation in designing
alternators. It is, however, deduced on the assumptions that
the distribution of the magnetic flux follows a sine law, and
that the whole of the loops of active inductors in the armature
circuit act simultaneously, that is the winding is concentrated,
000,000 LINES OF FORCE

t f_‘rLT | MAXIMUM PRESSURE= .57 VOLTS

TUAL PRESSURE = |.it VOLTS
— AVERAGE PRESSURE:IVOLY

A\l
N\

180° 360°

REREV. PER SE

AVERAGE PRESSURE -

. ﬁw"gaw «A8fvovts

F16, 59 —Flementary alternator;, developing one average volt. 1f the 1oop make one revolu-
tion per second, and the maxinfum number of lines of force embraced by the loop in the
position shown (the zero position) be denoted by N, then each limb will cut 2N lines per
second, because it cuts every line during the right sweep and again during the left sweep.
Hence each limb develops an average pressure of 2N units (C.G.S. unitg), and as both
limbs are connected in series, the total pressure is 4N units per revolution. Now, if the
loop make f revolutions per second instead of only one, then f times as many lines will be cut
per second, and the average pressure will be 4N f units. Since the C.G.S. unit of pressure
is 50 extremely small, a much greater practical unit called the volt is used, which is equal
to 100,000,000, or 10¢°C.G.S. units is employed. Henge average voltage =4Nf <108, The
value of N, in actual machines is very high, being several million lines of force. The illus-
tration shows one set of conditions necessary to generate one average volt. The maximum
vressure developed is 1+.637 =1.57 volts; virtual pressure =1.57 X.707 =1.11 volts.

The Kapp Coefficient.—In practice, the coils are often more
or less distributed, that is, they do not always subtend an exact
pole pitch; moreover, the flux distribution, which depends cn
the shaping and breadth of the poles, is often quite different
from a sine distribution. Hence, the coefficient 2.22 in equa-
tion (2) is often departed from, and in the general case equa-
tion (2) may be written
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Ersire = M:..,._.-........... e e s e e ..(3)

10®

where £, is a number which may have different values, accord-
ing to the construction of the alternator. This number k&, is
called the Kapp coefficient because its significance was first
pointed out by Prof. Gisbert Kapp.

The value of %, is further influenced by a “‘breadth ceefficient’
or spread or span ‘“‘factor.”

NOTE.—The values of the spread factor as given in the table below are based. upon
the same number of inductors being placed in each of the slots and all of the slots being used.

Spread Factor
Slots per phase
per pole
Single phase Two phase Three phase
1 1.000 1.000 1.000
2 707 .924 .966
3 .663 911 .960
4 .653 .906 .958
6 .644 .903 .956

NOTE .—Voltages generated in various single phase windings. The terms single,
double,’ triple coil, etc., in the table below, indicate whether the inductors are arranged ip
one, two, three, etc., equally spaced single coijp per pole piece, the single coil being determined
by the group of inductors lying in one slot. The conditions are equivalent to the gom-
ponent voltages generated in each group being in one, two, three, etc., different phases, irre-
spective of the number of resultant windings into which they are combined.

+. Correction factor for voltage.

Type of Winding of variously distributed windings
Single coil winding. .. civiereeeitiieeteenraetaanone e..| E=1.000
Double coil winding. .............. J PPN eec.s..] E= .707 Xsingle coil winding
Triple coil Winding .......covvieneenrnnnisneneeiinronns E= 667X “ * "
Quadruple coil winding .. .................. .. veee.] .E= 654X " @ .
Multi-coil or thoroughly distributed winding.,............. E= B37Xx «* “

NOTE.—Spread factor. To correct for the distortion due to spreading, a factor, known
as the spread factor, is introduced into voltage calculations. For practical estimation this
reduction factor may be taken as .96 in the case of a distributed three phase winding; .90
for a distributed two phase winding and .84 for a single phase winding distributed over twe
thirds of the pole pitch.
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Windings for turbines (on account of the high speed) must
be quite different from those driven by steam engines. Ac-
cordingly, in order that the frequency be not too high, tur-
bine driven alternators must have very few poles—usually
two or four, but rarely six.

Table of Frequency and Revolutions

REVOLUTIONS
FREQUENCY
2 POLE 4 POLE 6 POLE
25 1,500 750 500
60 3,600 1,800 1,200
100 6,000 3,0Q0 2,000

Reconnecting A. C. Windings

Yoltage Changes.—Nearly all commercial motors are ar-
ranged so that they can be reconnected for two voltages.

To makethese changes, the polar-groups are connected in series for the
higher voltage and in parallel for the lower voltage.

In changing to higher voltages it should be noted that motors as-manu-
factured are provided with insulation good for 550 volts or for 2,500 volts.

The capacity of the insulation should accordingly be considered and no
change be made beyond the capacity of the insulation.

In making a voltage change, the wollage per coil or per turn
must be approximalely the same afler reconnection as before.

Example.—A motor is connected series-star for three phase 440 volts,
How should it be connected for 220 volts?
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desired figure,, 50 is found, which is under the vertical heading ‘“‘three phase
2 paraltel star.” This is the correct answer: that is, if a motor be connected
three phase series star for operation on 440 volts, it must be connected
three phase 2 parallel star,as shown infig.61,tooperate correctly on 220
volts.

Frequency Changes.—For the same number of poles a change
in frequency will cause the speed to vary directly as the fre-
quency.

SERIES STAR TWO PARALLEL STAR
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Fias. 60 and 61.—Winding diagrams illustrating a 440 volt series star connected motor and
{ reconnection for operation at 220 volts as described in the accompanying text.

In making a frequency change if the speed is to remain the
same, the number of poles must be changed in lthe same ratio as
the frequency, or approximately so:

Example.—If a motor have four poles and be operated on 25 cycles, it
will have a synchronous-speed of 3,000 +4 =750 7.p.m. If the motor is to
have the same speed on 60 cycles, the nearest possible pole number is 10
and the synchronous speed will be 7,200+10=720 r.p.m. It is apparent
that in very few cases of this kind is it possible to re-connect the same
winding.
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Phase Changes.—The change most frequently desired is
from -two to three phases, or from three to two phases.

Example.—A three phase 440 volt motor is to be reconnected for two
phase 440 volts. What changes must be made?

In the table on page: 86. it is seen that the winding as it stands on 440
volts is four pole three phase series delta. Select the horizontal column

3 PHASE SERIES DELTA" 2 PHASE 2 PATH

l—soa VOLTS~

T
]
5
[
=
o
T
<

—— 440 VOLTS———]

=440 VOLTS

v
~308 VOI.TS—E

f16s. 62 and 63.—Winding diagrams illustrating a 440 volt series star connected motor and
reconnection for two phase operation indicated in the table on page 86, the voltage is reduced
to 308 volts.

in the table marked three phase series delta and follow it across, looking
for a vertical column showing the value 100, since the desired two phase
voltage is the same as the present three phase voltage or 100 per cent.
Inspection shows that there is no 100 under any twoé phase connection.
This indicates at once that a three phase series delta connected motor
which is normally operated on 440 volts cannot be changed and operated
on two phase 440 volts, without rewinding. .
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Speed Changes.—The speed of an induction motor may be
changed by regrouping the field coils for a different number
of coil groups. In this connection it should be noted that an
increase in the number of poles will decrease the speed, whereas,
a decrease in the number of poles will increase the speed.

To reverse a two phase four wire induction motor, inter-
change the connections of the two leads on either phase.
For a two phase thiee wire motor, interchange the two outside leads.
For a three phase machine, interchange the connections of any two leads.

Condensers

It may be said that economical operation of a generating and
distributing system is dependent on the maintenance of a rela-
tively high power factor.

In a plant the power factor may be improved to some ex-
tent by re-arrangement of the molors so lhat they will operate
more nearly at full load.

There are two types of equipment available for correcting
low power factor:

1. Synchronous condenser;
2. Static condenser.

Low power factor operation results in increased losses in
alternalors, exciters, distribution lines, transformers, and in the
consumer’s plant. '

NOTE.—The running fuse sizes given in contemporary tables are too small, and therefore
a menace to polyphase motors. They should be eliminated, or if an over zealous inspection
department insist that running fuses must be used, they should be at least 214 times the rating
of the motor or more. The most satisfactory running fuses, or, those that will do the motor
the least damage, are the so called “starting’ fuses of these same tables, although they are
possibly a little large.—~Chapman.
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The following formula gives the currents at various power
factors that will be required to carry a 75 kw., 550 volt, single
phase motor load:

1. Watts
E (%) P.F.

These currents for power factor 100 to 50 are given in'the
following table:

Currents for Various Power Factors

% Power Factor.................. 100 90 80 70 60 50
Current..............ccounvn.... 136.3 151.5 170.5 195 228 273
Koa..oooooooooiiiiiiiii... 75 83 9 107 125 150

Another factor that this table shows well, is that at lower power factors,
there is considerable line drop, which necessitates impressing over voltage
at the supply end; making the voltage regulation poor, )

The regulation of transformers is approximately 1%, at unity*power
factor, and 39, at 709, power factor.

The effect of low power factor on the lines can best be shown
by examples.

Example.—Assume 2 distance of two miles and a load of 100 w. It
is desired to deliver this load at about 2,300.volts, 3 phase, 60 cycles,
with an energy loss of 109.

Each conductor at unity power factor would require an- area of
25,000 cir. mijls; at +9 power factor, 30,820 cir. mils, while at .6 power
factor, 69,500 cir, mils would be necessary., From this is will be seen
that the investrnent in copper will have to be nearly 2.8 times as much
at .6 power factor. as at unity. If the same size wire were used at .6 as
at unity, the energy loss would be 2.8 times the' loss at unity, or 28%,.
Low lagging power factor on a system, therefore, will generally mean
limited 6utput of the prime movers, greatly reduced kilowatt capacity
of alternators, transformers and lines, as well as increased energy losses.
The regulation of ihe entire system will also be poor,
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Power Factor Improvement—Table 1

(The figures below X kilowatt input = leading kwa. required to improve from one power
factor to another.)

ORIGINAL DESIRED POWER FACTOR . ORIGINAL DESIRED POWER FACTOR

rowER, : - rowRS o

rACTOR FACTOR T
%v 100% | 95% | 0% | 85% | 80% % 0% | 95% | 90% | 85% 80 %
20 4.899 | 4.5670 | 4.415 { 4.279 | 4.149 61 1,299 970 815 .679 .549
21 4,656 | 4.327 | 4.171 | 4.036° | 3.906 62 1.208 937 781 8468 516
23 4.433 | 4.104 | 3.949 | 3.813 | 3.883 63 1.233 <904 748 813 482
23 4.231 | 3.902 |} 3.747 | 3.8I1 | 3.481 64 1.201 872 J16 .581 450
24 4.045 | 3.716 | 3.561 | 3.425 | 3.20% [.1] 1.169 840 085 1. 549 419

o o o O A
25 3.873 | 3.544 | 3.389 | 3.253 | 3.123 1] 1.138 .810 854 518 388
26 3.714 | 3.385 | 3.2290 | 3.094 | 2.964 67 1.108 779 0624 488 358
27 3.566 | 3.238 | 3.082 | 2.946 ) 2.816 68 1.078 750 594 458 328
28 3.420 | 3.100 | 2.944 | 2.809 | 2.879 69 1.049 720 565 429 298
29 3.300 | 2.971 | 2.816 | 2.680 ! 2.550 70 1020 891 536 400 270
30 3.180 | 2.851 | 2.698 | 2.560 | 2.420 71 992 863 507 372 241
31 3.067 | 2.738 | 2.583 | 2.447 | 2.317 72 984 635 480 344 214
32 2.961 | 2,632 | 2.476 | 2.341 | 2.211 73 .9368 608 452 318 .186
33 2.861 | 2.532 | 2.376 [ 2.241 | 2.111 74 908 .580 426 ;289 .158
34 2.766 |'2.437 | 2,282 | 2.146 | 2.016 75 882 553 398 202 132
’
35 2.676 | 2.347 | 2.192 | 2.058 | 1.926 76 855 527 371 235 105
36 2.592 | 2.283 | 2.107 | 1.972 | 1.842 77 829 344 209 078
37 2.511 | 2.182 | 2.027 | 1.891 | 1.761 78 E 474 318 182 052
38 2.434 | 2.105 | 1.950 ; 1.814 [ 1.884 79 776 447 292 156 026
39 3361 | $:032° ] 1.877 | 1.741 } 1.611 80 750 421 266
y3
40 2.291 063 | 1.807 | 1.871 | 1.541 81 1724 395 240 104
41 2,225 | 1.896 | 1.740 | 1.605 | 1.475 82 .698 369 214 078
42 2161 | 1.832 | 1.676 | 1.541 | 1.410 83 872 343 052
43 2,100 | 1.77F | 1.615 | 1.480 | 1.349 84 846 317 182 026
44 2.041 | 1.712 | 1.567 | 1.421 | 1.291 85 620 291 136
45 1‘:985\%5__1_‘_5_0.1/’ 1.365 | 1.235 86 .593 265 100
46 1.930 | 1.602 | 1.446 | 1.310 | 1.180 87 567 .238 .082
47 1.877 | 1.548 | 1.392 | 1.257 | 1.128 88 540 211 056
48 1.828 | 1.499 | 1.343 | 1.208 | 1.077 89 512 183 028
49 1.779 | 1.450 | 1.395 | 1.159 | 1.029 90 484 155
. ' - 5 A
50 1.732 1 1.403 | 1.248 | 1.112 982 91 456 127
51 1.687 | 1.358 | 1.202 | 1.087 936 92 426 097
52 1.643 | 1.314 | 1.158 | 1.023 892 93 395 086
53 1.600 | 1.271 ; 1.116 980 850 94 .263 034
54 1.559 | 1.230 | 1.074 989 808 95 329
oh

55 1.518 | 1.189 | 1.034 808 7 96 .292
56 1.479 | 1.150 859 329 97 251
57 1.442 | 1.113 957 822 691 98 .203
58 1.405 | 1.076 920 785 854 99 142
59 1.368° | 1.040 884 748 818 100
60 1.333 | 1.004 849 713 583

Example.—Total kw. input of plant from watt meter reading 100 kw.at a power factor
of 60%. The leading reactive kva necessary to raise the power factor to 909, is found by
‘multiplying the 100 kw. by the factor found in the table which is .849. 100 kw.X.849 =84.9
kra; If static condensers be used, choose the standard unit nearest to 84.9. If synchronous
motors be used, see example under the table on page 93.
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Power Factor Chart

Present Percent Desired
Power Factor Reactive Av-a ‘Power Factor
iy 100 —
] 180 —
»] 170 —
504 150 —
4 1 1
- H0 —]
1 140 — i
| 130 —; i
55 — 120 — 95 —
1 "o — ]
1 ey ]
- - 99 — 90 _.
: 60 — a0 1
1 7= ]
h 60 — 85—
65 — 50 — E
] 40— 4
E 80 —
N 30 — 1
70 —1 20_ -3 -
] 10— 75 ]
A o3 ]
75 7] C05.&2Present Power Factor ]
J Cos8:Desired PowerFaclor 55|
. CsReactive kv-ainpercent ]
] \of present kw load, i
80 — Cetank-tan8 ]
] 65 —
85 — i
4 60—
S0 —

F1es.-64.to 67— -Chart for tise in determining the per cent reactive kva. required to raise
thé power factor to a desired valte. Example: To find the “’per cent reactive kva.” neces-
sary toraise the power factor from present. power factor to desired power factor, lay a straight
edge across the chart connecting these two values. Read the reactive kvs. in per cent of
the present kw. load on the middle scale.
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Example.—Assume a load of 450 kw. at .65 power factor. 1t is desired
to raise the power factor to .9. What will be the rating of the condenser?

Referring to the diagram, fig. 69., it is necessary to start yvith 450
kw. At .65 power factor, or 692 kza., this has a wattless lagging com-
ponent of V6922—4502=525 kva. With the load unchanged and the
power factor raised to .9, there will be 500 apparent kva., which will have
a wattless component of V/500%+4502 =218 kva.

It is obvious that the condenser must supply the difference between

525 kvg. and 218 kva. or 307 kva. A 300 kva. condenser would, there-
fore, meet the requirements.

Power Factor Improvement—Table 2

. Reactive Kv-a. P.F. Reactive Kv-a: P.P. ] Reactive Kv-a.
1.00 .000 .83 672 66 1.138
.99 142 .82 608 85 1.169
98 203 .8t 724 64 1.201
97 251 80 750 1.233
.96 292 79 776 62 1.266
~ 1 .
95 329 78 802 60 1.299
94 363 77 .829 1.333
93 395 76 .855 59 1.368
92 426 75 .882 58 | 1.405,
91 456 74 909 57 | 1.442
» " ]
.90 73 936 56 1.479
89 512 72 964 55 1.508,
.88 540 71 992 54 1.559
.87 567 70 1.020 .53 1.600
86 593 69 1.049 .52 1.643
.85 '.820 .68 1.078 .51 1.687
.84 846 .67 1.108 .50 1.732

NO'.I"E.--The figures in the table show the amount of reactive kva. for each kw. energy load
at various power factors. For synchronous motors, the figures show the leading reactive kva.
per kw. input, For induction motors or a load with lagging power factor, the figures show the
lagging reactive kva. per kw. energy load.

Example.—Refer to the table on_page -91.. Assume improvement desired by substitution
.8 power factor synchronous motor for induction motors. For each kw. load driven by induc-
tion motors operating at average power factor of .6, the table shows there is 1.333 lagging
reactive kva.For each kw. input in .3 power factor synchronous motor, the table shows a leading
reactive kea. of 75, If .8 power factor synchronous motors replace .6 power factor induction
motors, each k. in synchronous motors reduces the lagging reactive kra, 1,333 4 .75 =2.083 kva.
The total reduction necessary to improve the power factor is shown by the table on page9l
to be 84.9 kea. The capacity in .8 power factor synchronous motor required is 84.9 +2.083 =
40.8 kw. A 50 h.p.—.8 power factor motor should be recommended.
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Fic. 68.—Diagram for power factor correction as explained in the accompanying example.
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t1G. 69.—Diagram for synchronous condenser calculations.
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Load,

) with Chll.'lie in
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Variations in Powar Factor

Tower Factor Correction Table
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% Fic. 70.—Curves for synchronous motors; reaction k2. avail-
; able for power factor correction at different A.p. outputs.
] Assume motor field current is held constant at normal value.
- & These curves are based on average values and therefore are
gggggsgssgﬁ' approximate. 1, 1 p.f. belt driven moters; 2, .8 p.J. belt
“““““““ H driven motors; 3, 1 p.f. air compressor motors; 4, .8 p.f.
'—"l motors of 50% overload MG sets; 5, .85 p.f. motors of con-
tGinuous rated motor generator sets.
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A ]

PERCENTAGE WATTLESS K VA,CORRESPONDING TO GIVEN KW. CORRECTED
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Fra. 7L.—Curves showing the amount of wattless component required to raise .the power
factor of a given w. load to required higher value. The wattless components are expressed
as percentages of the original kw. load. The numbers at the right which indicate the
points of tangency of the power factor curves to the 100 per, cent. line, show the mount
of wattless component required to raise a given kw. load of given lagging power factor to
unity power factor. Obviously the addition of further wattless component in a.given case
would result’in a leading power factor less than unity,
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F1G. 72.—Curves showing determination of static condenser required to give desired cor-
rection in power factor. Follow horizontal line corresponding to present power factor of
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Calculations for Static Condensers.—The kva. of static con-
densers required to correct any given power factor to any desired
power factor is entirely dependent on the kw. load of the plant,
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q:‘-u|.!.||.|_|-.'. T AN
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F16. 73 .—Chart showing the relation of energy load to apparent load and wattless compos=
nents at different power factors.

Ezample.—Present load=100 kw. at 459, power factor. Desired
power factor =859,

Present koa. = 1—%) =222 kva.

Present reactive kva. = V2222 — 1002 = 198 kva.

1G. 72. —Text continued.

load until it intersects curve representing power factor desired. The vertical projection of
this intersection on the base gives the size of condenser required in per cent of kw. load.
Example.—Load 300 kw. Present power factor 60 per cent; power factor desired 90 per cent .
Projection of intersection of 60 per cent power factor line with 90 per cent power factor curve
giver desired condenser as 84.9 per cent of 300 kw. or 255 kva.
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Kva. at desired power factor= 1%(5) =117.8 kva.

Corrective effect needed =198 —61.6 =136.4.

Size of standard condenser =150 kva.
Capacity in Micro-Farads per Mile of Circuit for Three Phase System

Reactive kva. at desired power factor = V117.8:—100%=61.6 koa.

_Size Diam. | Distance Cagacity Size Diam, | Distance C“E‘."“‘Y
B.&S. | in Ain | _Cin || B.&S. | in “Ain : in
inch. inches. mxcro:farads incha inches. ’Em‘:“)‘l

0000 .46 12 .0226 4 .204 12 .01874
18 .0204 18 .01726

24 .01922 24 .01636

48 .01474 48 .01452

000 41 12 .0218 -5 .182 12 .01830
18 .01992 18 .01690

24 .01876 24 .01602

48 .01638 48 .01426

00 .363 - 6 .162 12 .01788
18 .01946 18 .01654

24 .01832 24 .01560

48 .01604 48 -0140

o .325 12 02078 7 144 12 .01746
18 .01898 18 .01618

24 .01642 24 .01538

48 .01570 48 .01374

1 289 12 .02022 8 .128 12 .01708
18 .01952 18 .01586

24 .01748 24 .01508

48 .0154 48 .01350

2 .258 12 .01972 9 .114 12 .01660
18 .01818 18 .01552

24 01710 24 .01478

48 .01510 48 .01326

3 .229 12 .01938 10 .102 12 .01636
18 .01766 18 .01522

24 .01672 24 .01452

— 43 .01480 48 .01304
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Distribution Systems.—The inductive effect of one line upon
another is equal to the algebraic sum of the fluxes due to the
different conductors of the first line, considered separately,
which link the secondary line.

Inductance per Mile of Three Phase Circuit

Size Diam, Distance Self in- Size Diam. Distance | Self in- I
B.&S. in din ductance L | B, & S, in . din ductance L
inch, inches. henrys. inch. inches. henrys.
0000 .46 12 .00234 4 .204 12 .00280
18 .00256 18 00300
24 .00270 24 .00315
48 .00312 4% .00358
000 41 12 .00241 5 182 12 .00286
18 .00262 18 .00307
24 .00277 24 .00323
43 .00318 48 .00356
00 | 3365 12 .00248 6 .162 12 .00291
18 .00269 18 .00313
24 .00285 24 .00329
48 .00330 48 .00369
0 .325 12 .00254 7 144 12 .00298
18 .00276 18 .00310
24 .00293 24 .00336
48 .00331 48 .00377
1 .289 12 .00260 8 128 12 .00303
18 .00281 18 .00325
24 .00308 24 .00341
48 .00338 48 g
2 .258 12 .00267 9 114 12
18 .00288 18
24 .00304 24
48 .00314 48
3 229 12 00274 10 .102 12
18 .00294 18
24 .00310 24
48 .00351 48
T
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INDUCTANCE IN MILLIHENRIES
PER 1000 FEET OF CONDUCTOR
SOLID CONDUCTORS
si Resist- Distance between centres (inches) F
1Z€ ance
B. & S.| at 20°C.
Gauge| Oh
Peff§°°° 6 | o 12 {18 | 24 | 30 | 36|42 | 60 | 72
10 1.0259 |.3052 |.3299 |.3473 |.3720 1.8894 4031 1.4141 [.4236 .4452 45663
8 ;6452 |.2911 |.8158 {.3332 |.3579 {.37564 |.3890 4000 |.4096 [.4311 4422
6 4058 1.2770 |.8017 |.3191 8 1.3618 |.3749 |.3859 |.3954 |.4170 1.4281
4 .§252 2629 |.2876 |.3050 |.3297 [.3472 |.3608 (.3718 3813 |.4029 .4140
2 Y605 |.2488 |.2736 |.2909 {.3156 |.3331 [.3467 |.8577 .3672 (.3888 |.3999
1 11272 |.2418 {.2665 |.2839 |.3086 |.3261 3397 |.3507 [.3602 |.3818 |.3929
1/0 1009 |.2347 |.2594 {.2768 1.3015 {.3190 |.3326 3436 |.3531 |.3747 .3858
2/0 08003 |.2276 |.2523 {.2697 {.2944 |.3119 {3255 .8365 |[.3460 1.8676 |.3787
3/0 .06347 1.22 2453 |.2627 {.2874 |.2949 |.3185 {.3295 |.3390 .3606 .3717
4/0 05088 |.2186 |.2382 |.2556 |.2803 [.2978 .3114 3224 |.3319 [.3535 |.3646
STRANDED CONDUCTORS
Size Rf:‘:: Distance between centres (inches)
Circu- | at 20°C.
lnxl's Ohma0 r 1 :
i 1 {
Ml'per:%,ols 9|12|18124‘3° 86\42 60 | 72
4B.&S.| .2598 |.2604 |.2861 .3025 |.3272 |.3447 |.3683 |.3693 3788 |.4004 14115
g .1633 2464 |.2711 |.2886 |.3132 l.3307 |.3443 3553 |.3648 3864 |-.3975
1 1294 ‘2381 | 2688 [.2812 |.3059 |.3234 |.3370 |.3480 |.8675 .3791 .3902
1/0* | ‘1027 |2318 | 2565 | 2739 2986 [3161 3297 |.3407 3602 3718 |.3829
2/0** _0B164 1.2248 |.2496 .2669 |.2916 |.3091 1.3227 1.8837 3482 |.3648 L3759
3/0 ¢ 106470 |.2178 |.2425 |.2599 i.2845 |.3021 .3167 |.3267 .3362 .3578 |.3689
4/0 ** .05126 |.2106 |.2853 .2527.|.2774 .2949 |.3085 |.3195 |.3290 |.3506 |.3617
250,000 .04344 .2057 |.2304 |.2478 |.2725 |.2900 |.2036 |.3146 ].3241 3457 |.3668
300,000| .03625 |.2001 2248 |.2422 |.2669.|.2844 |.2980 |.3090 I‘3185 .3401 1.3512
350,000/ .03102 |.1954 |.2201 |.2375 2622 [.2797 |.2933 |.3043 3138 |.8354 |.3465
400,000 .02722 |.1914 |.2161 2335 |.2582 |.2757 |.2893 |.3003 .3098.3814 134256
450,000 .02418 |.1877 |.2124 |.2298 2546 |.2720 |.2856 |.2966 .3061 (.3277 }.3388
500.000| .02177 |.1847 |.2094|.2268 |.2515 1.2690 .2826 |.2936 |.3031 3247 1.3358
1

Resistances above are for Hard-drawn Copper having @ conductivity of 97.3
per cent. of thé International Annealed Cobper Standard. These resistances do

pot allow for Skin Effect.
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INDUCTIVE REACTANCE IN OHMS
PER 1000 FEET OF CONDUCTOR

SOLID CONDUCTORS FREQUENCY 60 CYCLES PER SECOND
Distance between centres (inches) I
Size
B.&S.
Gauge 6 9 12 18 24 30 36 42 60 72
10 |.11505 1.124387/.13093 |.14026 |.14685 |.15198 .156612 .15970/.16785 ..17203
8 1.109731.11906 |.12561 |.18493 [.141563 .14666 |.16080 |.15438 16253 |.16671
6 |.10441 [.11874 [.12029 |.12961 |.18621 .14134 ,14548 |.14906 .15721 |.16139
4 1.09909 .10842 [.11497 {.12429 /18089 18602 (.14016 |.14374 [.15189 |.165607
2 1.09377(.10810 |.10965 |.11897 12567 | 13070 |.18484 (.13842 14657 .1507b,
1 1.09111 ].10044 .10699 [.11631 |.12291 .12804 |.13218 |.13576 |. 14391 |.14809
1/0 |.08845(.09778 [.10438 [.11865 |.12025 1.12588 |.12952 [.18810 .14125 .14543
2/0 108579 (.09512(.10167 |.11099 .11759 12272 (,12686 |.13044 |.18859 14277

8/0 1.08313 |.09246 1.09901 [.10883 {.11493 ‘.12006 12420 |.12778 |.13598 14011

4/0  1.08047(.08980 |.09635 |.10671 [.11227 |.11740 112154 |-12512 18327 .18745

S8TRANDED CONDUCTORS FREQUENCY 60 CYCLES PER SECOND

Distance between centres (inches)

450,000 0707 | .0801 | .0866 | .0959 | .1025 | .1076 1118/ 11164 1236 .1278

500,000 |.0696 -0790| .0855) .0948 | .1014 | .1065 | .1107 1148 11225| 1267
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INDUCTIVE REACTANCE IN OHMS

PER 1000 FEET OF CONDUCTOR

SOLID CONDUCTORS

FREQUENCY 25 CYCLES PER SECOND

STRANDED CONDUGTORS

Size ‘ Distance between centres (inches)
&S,

Gauge | ¢ “‘l 9 l 12 ‘ 18 ‘ 24 | s0 | 86 | 42 | 60 | 72
10 . 06335 |.06507 |.06657 06996 07170
8 06113 |.06285 |.06435 [06774 (06948
6 05891 |.06063 |.06213 [.06552 06726
4 02669 |.05841 |.05991 06330 [06504
2z 08447 |.05619 |.05769 06108 (06282
1 08336 |.05508 |.05658 [.05997 (06171

1/0 05225 |.06397 |.06547 | 05886 06060
2/0 0oaT4 |-05286 05436 [06775 06949
3/0 04514 |- 108003 |.06175 |-05326 05664 05837
40 203 104678 |.04892 |.05064 |.05214 | 05553 05728

FREQUENCY 25 CYCLES PER SECOND

Size
Circu-

Distance between centres (inches)

lar
Mils

18

24

30

86

42

60 72
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A three phase three wire transmission'line spaced at the corners of an
equilateral triangle as regards capacity acts precisely as though the neutral
line were situated at the center of the triangle.

The capacity of circuits is readily calculated by applying the following formulz:
38.83 sc 1077 .
= _log (D=ag) Per mile, insulated cable with lead sheath;

38.83 X103
C= log (ak +g) .per mile, single conductor with earth return;

19.42 X103
C=jog (3A +a) Per mile of parallel conductors forming metallic circuit;

)
VR X} g Emd\ EL+ E1 N
a [<}
g = a «
‘XL IIv 4 VRO @ S
& %] w
L : %
p=1 [
e 2
@ [=}
2 z
2 Z
v
OHMIC RESISTANCE OHMIC DROP
OHMIC RESISTANCE OHMIC DROP
R - (ACTIVE_PRESSUREY)
g Ea
%
5 3 g
, 8
R 2|& z
B> 3 ]
ZVRY X g g EmV ErE o
5
0y _I_ O
VR sm7e 3 VRl

FY¥6s. 74 t0-77, —Triangles for.obtaining -graphically,.the impedance, impressed pressure,

#tc., in alternating current circuits. For a full explination of this method the reader is

referred to Vol. 4, Chapter 48, on Alternating Current Diagrams in Audel’s Engineers and
Mechanics Guide.

in which
@€ =Capacity in micro-farads; for a metallic D =Tnside diameter of lead sheath;
circuit, C =capacity between wires d =Diameter of conductor;
¢ =Specific inductive capacity of insulating h =Distance of conductors above ground;
material; = 1 for arc, and .2.25 to 3.7 A =Distance between wires.

fer rubber;
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Frequency.—The number of cycles per second, or the fre-
quency, has a direct effect upon the inductance reactance in an
alternating current circuit, as is plainly seen-from the formula

X;=2'i€ﬂ;

The natural period of a line, with distributed inductance
and capacity, is approximately given by
7,900
vLC

where L, is the total inductance in milli-henrys, and C, the
total capac1ty in micro-fatads. e

Skin Effect.—In a conductor carrying alternating current,
the current tends to flow near the circumference rather than through
ghe center of the conductor. This is called skin effect.

Approximate values of the effective resistance of straight
copper conductors at 68° F. can be obtained by multiplying
the actual ohmic resistance by factors given in the following
table.

Factors to Obtain Effective Resistance from
Ohmic Resistance

Diameter ©
et Diameter Approxi- Frequency ]

A;:eprxxri. Frequency Bare

Copper mate a. Copper miate Area -

condictor | in Greular' |, 80 | 100 [|Conductor|inGrEuar | pg 6 w0
2.00 | 4,000,000 | 1.265 | 1.826| 2.560 || 1.000 | 1,000,000 | 1.020 | I.111 7
1.75 | 3082500 1.170 | 1.622 | 2.272 || .75 "563,500 | 1.007 | 1.040 i ?{ge
;.gg 2,800,000 i.gssg igg Logs || .20 250,000 | 1.002 | 1.008 | 1.039-

25 |1, . . . 211600 | 1.001 .

1.125 :| 1,265,625 | 1.035 | 1.168 | 1 545 ’ 0 1006} 1.027
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To calculate skin effect, its area in circular mils multiplied
0y the frequency gives the tatio of the wire’s ohmic resistance to
its combined reststance.

That is to say, the factor thus obtained multiplied by the resistance
of the wire to direct current, will give its combined resistance or resistance
to alternating current.

The following table gives these ratio factors for large conductors,

RATIO FACTOR FOR COMBINED RESISTANCE

Circuldy mils X 5 Circular mils X
freqiency Factor frequency Factor
10,000,000 1.000 80,000,000 1.158
20,000,000 1.008 90,000,000 1.195
30,000,000 1.026 100,000,000 1.230
40,000,000 1.046 125,000,000 1.332
650,000,000 1.070 150,000,000 1.443
60,000,000 1.096 175,000,000 1.630
L'IO,OOO,OOO 1.126 200,000,000 1.622

Wires should be so spaced as to lessen the lendency to leak-
age and 1o prevenl the wires swinging logether or against towers.

The following spacing is in accordance with average practice.

SPACING FOR VARIOUS VOLTAGES

Volts Spacing Volts Spacing .| Volts' Spacing
5,000 28 ins. 45,000 60 ins. | 90,000 -96 ins,

15,000 40 ins. 60,000 60 ins. 105,000 108 ins,

30,000 48 ins. 75,000. 84'ins 120,000 120 ins,
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The Three Circuits.—The transmission of alternating cur-
rent power involves three separate circuits, one of which is
composed of the wires forming the transmission line, while the
others lie in the medium surrounding the wires. The constants
of these circuits are interdependent; although any one may vary
greatly from the others in magnitude.

The following table gives a comparison of the three circuits.

TOTAL DROP
RESISTANCE .05 OHM 100 VOLTS
L]
COPPER = 1,000 ‘-020 VOLTS
T

F16. 78.—Single phase line, used as basis of comparison in obtaining the relative weights of
copper required by polyphase systems, as indicated in figs. 79 ta 86.

‘The Three Circuits

The eleetric circuit The magnetic circuit The dielectric circuit
Current / Magnetic flux ¢ Dielectric flux ¢
Yoltage E = RI Magnetomotive force F = ni|Electromotive force E = Q/C
Electric power Magnetic energy Dielectric enérgy
Resistivity | Reluetivity Elastivity 1/K
. Reluctance B Elastance S
Resistance B = W/I? Inductance L = ¢/¢ | Capacitance C = y/E
- Reactance z = wL — 1/wC
Impedance z = 4/ r? 4 z*

Conduttivity ¥ Permeability » = B/H Permittivity K

¢ = W/E*| Permeance M = ¢/dxF Permittance
Conductance : (Capacitance) C

g= r/z? g qus‘u:l.‘"“ge = 57?“‘"—'—
——-———fA—dmittance y=1/z=g & jb =\g*+b*
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SINGLE PHASE COPPER
TWO WIRE . 1,000
SINGLE PHASE g
THREE WIRE % 375
TWO PHASE
FOUR WIRE
4000

+

TWO PHASE
THREE WIRE

1,457
729

-

THREE PHASE
THREE WIRE
STAR CONNECTED

il

THREE PHASE
THREE WIRE
DELTA CONNECTED

750.

i

THREE PHASE .
FOUR WIRE 4™ WIRE FULL SECTION

333

STAR WNNECM

FOUR WIRE

STAR CONNECTED

THREE PHASE
) 4™ WIRE ONE HALF SECTION

291.7

5

¥16s. 79 to 86.—Circuit diagrams showing relative copper economy of various alternating

surrent systems.
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Choice of Voltage.—The most economical voltage for a trans-
mission line depends on the length of the line and the costoi
apparatus.

No fixed rule can be estaplished for proper voltage based on
the length, but the following table will serve as a guide:

Usual Transmission Voltages

Length of line Voltage
in miles
1 500 to 1,000
1to 2 1,000 to 2,300
2to 3 2,300 to 6,600 |
3to 10 3
10to 15 2
15to 20 4
20 to 40 6
40 o .60
60 to 100
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D. C. Wiring Calculations |

D. C. Wiring Calculations.—The Board of Underwriters
specifies that the carrying capacity of a conductor is safe when
the wire will conduct a certain current without becoming
painfully hot.

Circular mil=area of a circle ore mil (.001 in.) in diameter.
Square mil=.001X.001=.000001 in.

Mil foot=a volume one mil in diameter and one ft. long.

Lamp foot =one 16 candle power lamp at a distance of one ft. from the
voint of supply.

Ampere foot =the product of one ampere multiplied by one ft.

T'he formula for size of wire is

circular mils— 2mPeres X ft. x 21.6
“drop”

veeeenes(1)

Example.—What size wire should be used on a 250 volt circuit to
transmit a current of 200 amperes a distance of 350 feet to a center of
distribution with a loss of three per cent. under full load?

The volts lost or drop is equal to 250X.03=7.5 volts.
Substituting the given value in formula (1)

350200 21.6
"'—W—'=201,600

Diameter = /201,600 =449 mils or .449 in.

circular mils=

From the table (on page 111) the nearest (larger) size of wire is 0000 B,
W.G. or 0000 B. & S. gauge.*
*CAUTION.—The size thus obtained should be compared with the table of carrying cap-

acity of wires as given on page 125 to see if the wires would have to carry more than the
allowable current.
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VOLTS  FEET onms  PERuSE"  ame

4 4 J-2.000 2
300 25.00 + 200 7 T—
400 20000+ 16
15 730% -3
300 15,000~ ?g T
o 1q <900 e
200 10,000 - I _—igao -5
e AR LR
7000 ° w1 "‘320 o ;
J - 8wo -
o 6,000 NT3e - %
d - + + [
00| s,oog_ ouf 9 1 1719000
80 4,000-] + e 9[/'- o
70+ s - ST & .
s 30001 o1 e
|50 ! 220000 |20
40+ ey -
- sa000 30
20- [3a000 -
40000 |~ a0
20 50000 [ so
60000  [-@0
7 “Fraec0 10
80000 80
90000 90
8- F0qoon (100
8-
14 L L
-
51 200000 |-200
- 200;
.- -30qeo0, |- 300
s s/ B3 009 oaeee I
. / ¥ .007 D ;
J I ,0051: s —4'00,000 _— 00
2-‘ 100-] D0aF" [-90q000 |-500

F16. 87.—Chart for calculating d.c. or a.c. wiring circuits of ordinary length and high powet
factor, such as for incandescent lamps.

Example.—To find the size of wire to carry 10 amperes a distance of
100 feet with a 2 volt drop.

Solution.—First—Place a straight edge on 2 volts on volts scale and
10 amperes on amperes scale. Read at point of intersection on ohms scale
—which reading is 1.2 ohms.
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Second—V’lace straight edge on 1.2 on ohms scale and 100 feet on feet
scale and read at point of intersection on B. & S., C. M. Gauge—which
reading is No. 10—the size of wire desired.

After the wire size has been calculated it is necessary to determine
whether this wire will safely -carry the current. Safe carrying capacities of
wires, as given in the ‘‘National Electrical Code’’ of the National Board
of Fire Underwriters, will be found in the table on page 125.

From this table we find that 10 amperes is permissible for No. 10 wire
with any type of insulation.

Properties of Copper Wire

Giving Wﬂights. length and resistances of wires of Matthiessen's Standard Conductivity for both
. & S. G. (Brown & Shurpe Gauge) an . W. G, (Birmingham Wire Gauge) from sactiont
October 1903, of- the Ameriran Institute of Electrical Engineers,
Gauges. To the nearest fourth significent digit. Length. Resium;?‘
Diameter. Area. we"‘:" Feet per Ib.| oo ?'3(')‘6%;“.
Circul per 1,000 feet. -
B.&S, | B.W,G, Ioches. A | J @ 68°F.
0000 0.460 211,600 640.5 1.561 .04893
0000 1 0.454 206,100 623.9 1.603 .05023
000 | 0.425 180,6G0 546.8 1 829 .05732
000 0.4096 167,800 508.0 1.969 06170
00 | Q.38 144,400 437.1 2.288 .07170
00 0.3648 133,100 402.8 2.482 07780
0 | 0.340 115,600 349.9 2,858 .08957
0 0.3249 105,500 319.5 3.130 09811
0.3000 90,000 272.4 3.671 .1150
1 0.2893 83,690 253.3 3.947 1237
2 0.2840 80,660 244.1 4.096 .1284
3 | 0.2590 67,080 203.1 4.925 .1543
2 0.2576 66,370 200.9 4.977 1560
4 | 0.2380 56,640 171.5 5,832 .1828
0.2294 52,630 159.3 6.276 .1967
5 | 0.2200 48,400 146.5 6.826 .2139
4 0.2043 41,740 126.4 7.914 .2480
0 2030 ) 124.7 8.017 2513 |
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Properties of Copper Wire

(Continued)
{  Qsoges. To the nearest fourth significent digit, Length. Resistapce. |
Dismeter. . | Area. Vet | Feetpertv. | Obme
D.&S. | B.W.G.| TInches Creuiar | P! ot @ 68° F,
' 5 0.1819 33,100 100.2 9.980 .3128
7 0.1800 32,400 98.08 10.20 .3196
8 | 0.1650 27,230 82.41 12.13 .3803
] 0.1620 26,250 79.46 12.58 ¢ .3944
9 | 0.1480 21,900 66.30 15.08 AT27
7 0.1443 20,820 63.02 15.87 4973
10 | 0.1340 17,960 54.35 18.40 .5766
8 0.1285 16,510 49.98 20.01 .6271
i1 0.1200 14,400 43.59 22.94 7190
° 0.1144 13,090 39.63 25.23 .7908
12 | 0.109 11,880 35.96 27.81 .8718
. 10 0.1019 10,380 31.43 31.82 ,9972
13 0.0950 9,025 27.32 36.60 1.147
1 0.09074 8,234 24.93 40.12 1.257
14 | 0.08300 6,889 20.85 47.95 1.503
12 0.08081 6,530 19.77 50.59 1.588
15 | 0.07200 5,184 15.69 63.73 1.997
18 0.07196 5,178 15.68 63.79 1.999
16 | 0.06500 4,225 12.79 78.19 2.451
14 0.06408 4,107 12.43 80.44 2.523
17 | 0.0580 3.364 10.18 98.23 3.078
15 0.05707 3,257 9.858 101.4 3.179
16 0.05082 2,583 7.818 127.9 4.009
18 | 0.04900 2,401 7.268 137.6 4.312
17 . | 0.045260 2,048 6.200 161.3 5.055
19 | 0.042000 1,764 5.340 187.3 5.870
18 0.040300 1,624 4.917 203.4 6.374
19 0.035890 1,288 3.899 256.5 8.038
20 | 0.035000 1,225, 3.708 269.7 8.452
21 | 0.032000 1,024 3.100 322.6 10.13
20 0.031960 1,022 3.092 323.4 10.14
21 0.028460 810.1 2.452 407.8 12.78
22 | 0.028000 784.0 2.313 1.4 13.21
22 0.025350 642.4 1.945 514.2 16.12
23 | 0.025000 625.0 1.892 528.6 16.52
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Properties of Copper Wire
(Concluded)
Gauges. To the nearest fourth significent digit. Leagth. Resistacon, §
1. Dismeter. Area. wfjf_"' Feet per Ib, ;)er ?3&"“
- Cirodl = per 1,000 feat!
4B.&8. |B.W,G. Inches. i @ 68° .
23 0.022570 509.5 1.542 648.4 20.32
24 | 0.022000 484.0 1.466 682.6 21.39
24 0.020100 404.0 1.223 817.6 25.63
4 25 | 0.020000 400.0 1.211 825.9 25.88
26 | 0.018000 324.0 .9808 1,020 31.96
25 0.017900 320.4 .9699 1,031 32.31
27 | 0.016000 256.0 7749 1,290 " 4D.45
26 0.015940 254.1 .7692 1,300 40.75
{ 27 | 0.014200 201.5 .6100 1,639 51.38
28 | 0.014000 196.0 .5933 1,685 52.83
29 | 0.013000 169.0 .5116 1,955 61.27,
28 €.012640 159.8 .4837 2,067 64.79
] 30 | 0.012000 144.0 .4359. 2,294 71.90
] 20 0.011260 126.7 .3836 2,607 81.70
30 0.010030 100.5 .3042 3,287 103.0
31 | 0.010000 100.0 .3027 3,304 103.5
32 | 0.009000 81.0 .2452 4,078 127.8
31 0.008928 79.70 .2413 4,145 129.9
33 | 0.008000 64.0 .1937 5,162 161.8
32 0.007950 63.21 .1913 5,227 163.8
& 0.007080 50.13 .1517 6,591 206.6
34 | 0.007000 49.0 .1483 6,742 211.3
{4 3 0.006305 39.75 11203 8,311 260.5
35 0.005615 31.52 .09543 { 10,480 328.4
36 35 | 0.005000 25.0 .07568 | 13,210 414.2
37 0.004453 19.83 .06001 | 16,660 522.2
. 36 | 0.004000 16. .04843 | 20,650 647.1
38 - 0.003965 15.72 .04759 | 21,010 658.5
39 0.003531 12.47 .03774 | 26,500 830.4
40 0.003145 9.888 .02993 | 33.410 1047,
I

NOTE—It should be noted that the Underwriters prohibit the use of wire smaller than No.
14 B. & S. gauge, excent as allowed for fixture work and pendant cord.
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* Table of Various Wire Gauges

5 j 8. 4| 5¢é L g :
k3 On g,z we 8 8 £x Sug = k3
5% g¥ea | 286 | ege =g | Bg. ;33 £E0 5%
LR AR - il tR ORE s
58 skng | Esa 838 | 5 E 8% g3 R
25 | 2 £56 | @203 | Bg | of | &% | %] =B
0000000 .500 0000000
000000 460 464 000000
00000 .439 .450 43
0000 46000 454 393 .400 400 0000
000 40964 425 .362 .360 3586 372
00 380 .331 .330 .3282 348 00
[] 32486 340 .307 .305 2994 324 o
1 930 300 .283 .285 2777 .300 1
2 25763 .284 .263 .265 2591 276 2
3 22942 259 244 .245 2401 252 3
4 20431 238 .225 .225 2230 232 4
] 18194 207 .205 2047 212 5
6 16202 203 192 .190 1885 192 6
7 14428 180 177 .175 1758 176 7
8 12849 165 .162 .160 1605 160 8
9 .11443 .148 .148 .145 .1471 .144 9
10 .10189 .134 .135 .130 .1351 .128 16
11 .090742 .120 .120 L1175 .1205 .116 11
12 .080808 .109 105 .1050 <1085 .104 12
13 071961 095 .0920 .0925 0928 .0920 13
14 064084 083 .0800 .0800 0816 08380 ..08l 14
15 057068 .072 .0720 .0700 .0726 07200 .0720 15
16 050820 065 .0630 .0610 .0827 06500 .0640 16
17 045257 0. .0540 .0525 .0546 .0560 1
18 040303 049 70 .0450 .0478 04960 .0480 1
19 035890 042 0410 .0400 0411 04000 .0400 19
20 031961 035 0350 0350 .0351 0. .0360 20
21 028462 032 0320 .0310 .0321 03150 .0320 21
22 025347 028 0280 .0280 .0290 02950 .0280 22
022571 025 0250 .0250 .0261 02700 .0240 23
24 020100 022 0230 .0225 .0231 0 .0220 24
25 017900 020 0200 .0200 .0212 023600 .0200 25
26 015940 018 0180 .0180 .0194 02050 .0180 26
27 014195 016 0170 .0170 .0182 01875 .0164 27
012641 014 0160 .0160 0170 01650 .0148 28
29 011257 013 0150 .0150 0163 01550 .0136 29
30 010025 012 0140 .0140 0156 01375 .0124 30
31 008928 010 0130 .013Q 0146 01225 L0116 31
32 007950 9 0120 .01 0136 01125 .0108 32
33 007080 008 0110 .0110 0130 01025 .0100 33
34 006305 007 0100 .0100 0118 009, .0092 34
35 005615 0095 .0095 0109 00900 .0084 35
36 54 004 0090 .0090 0100 00750 .0076 36
37 004453 0085 .0085 0095 .0068 37
38 003965 0080 .0080 0090 00575 .0066 38
39 003531 0075 .0075 0083 00500 .0052 39
003145 0070 0070 0078 00450 .0048 40
41 .0044 41
42 .0040 42

NOTE.—The sizes of wire are ordinarily expressed by an arbitrary series of numbers.
Unfortunately there are several independent numbering methods, so that it is always necessary
to specify the method or wire gauge used. The above table gives the numbers and diameters
in decimal parts of an inch for the various wire gauges in general use.
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To facilitate finding the equivalent sizes the accompanying table of
wire equivalents has been prepared.

Table of Wire Equivalents

w | NUMBER OF WIRES v
ol .. :
o~ ]
&l o« L) ® I w0 @ ~ - o © w ¥
S RIS | BB |5 |8 |82 |3
- w - < »
0000) 3 12 | 15 [ 18 | 2 | 26 | 27| 30| 33| 3 |2
000} ! 13 (18 19 | 22 | 25 |28 |3 | 3| % le
oo{, 1 W7 [ 20| 23 2 | S| 32|35 | B pyg
0 1 15[ 18 | 21 ) 2 | 27 3 | 38 (2 §F7
1 1 16 (10 | 22| 25 | 28 [ 31 | 38 | a7 | a0 P
2 1 17 23 (26 | 20 | 32 | 35 [ 38 gy oure
3 1 18 21 | 24 | 27 | 30 | 33 |36 | 3 |35
o 7| 1 19 25 [ 28 | a1 | 34 | 37 | w0 JyTiN8ET
8 8 1 1 20 |23 [ 28 | 20 | 32 | 35 | 38 [grr 719
e 9| 1 1 21 |24 [ 27 | 30 | 3 { 36 | 30 |3753 &80
{10 1 191022 | 28 | 2 | a1 |3 | 37| w0 JgTlyst?
g1l t 20 | 23 26 | 20 | 22 | 35 | 38 [yrisnoeis
o2 1 2 24 27 0 33 36 39 |104+1811+13
13| 1 9 22 25 28 31 34 37 11417124 14
"1 20 | 2 2| 2 | 32 | 138 [Hig3+15
18 1 2 27 | 30 | 38 | 38 | 39 h3iio)ie+18
18] 1 28 28 31 34 7 40 Ne+20015+17
2 26 | 20 | 32 | 35 | 38 hgioiliet s
2 271 30 | 33 | 36° 39 hgiazliz+19
. 22 28 31 k3 3 40 _h74+23/18420
3| 26 | 20 32 | 35 | 38 [igioni9421
24 27 30 33 38 39 lig+25i20+22
2 28 | 31 | 34 | 37 | 40 londaglari2s
BB 2| %) B BT
27| 30 1 33 | 36 | 3 bolioglazyas
2 34 37 | 40 _P342024+28
20 | 32 ( 35 | 38 Byionesy?
ol 3% | ¥ bsy 28
31 o | w0 per¥inis
2R B Ermasim
33 36 [ ® bgisgis
2831 3¢ | 37 | 90 Boyiiaos
2932 35 | 38 Boyggan+as
3033 38 | 8 E)ia7laaiad
3138 87 | a0 BT 3al33785
HER g2
343 <t
25 38[37+39
36 39138440
37)40

Figuring in Watts Instead of Amperes.—T/e power requsred
lo operate most electrical appliances is marked in watts.

The proper size of wire for a 660 watt circuit will depend upon the
voltage for which the lamps are made. For example: a 16 candle power
lamp which consumes 56 watts on 110 volt circuit will take, 56+110=.5
or }4 ampere of current, while the same lamp, if made for 220 volts, will
take only 55+-220=.25 or }{ ampere. Therefore, eleven 16 candle power
56 watt lamps will require a current of 514 amperes at 110 volts, or 234
amperes at 220 volts.
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TABLE FOR TAPS, BRIDGES OR OTHER WIRES AT
.NEGLIGIBLE DROP"

WireNos.‘ o| 1 z|ii4 5|6l7 8'10!12:1“6',gl

160':30 100
680(560[435

260|200

i 52 v.\ 300
1,085{860|

o 80 65| 50
& 110,v.|1.280

9| 6
345 2801220 xbo‘xoo' 40(25

NOTE.—In using this table, it is only necessary to calculate the lamp feet of the tap and
take the size of wire corresponding to the nearest greater number of lamp feet in the table.
The lamp feet specified by this table should not be exceeded by more than 10 per cent. Thus,
if a tap measure 108 iamp feet, in 110 volt lamps, No. 12 wire wauld be used, but if ic
measure 115 lamp feet, it would be advisable to use No. 10 wire.

In calculating a three wire installation proceed as follows:—

Example.—lf in calculating a three wire feeder, the over all voltage
be 220 volts, the drop=4.4 volts, twice the distance =400 feet, and the
current =20.5 amperes, then,

4.4 volts
400 feet X20.5 amperes

=.0005366 ohms per foot,

In the table of the properties of copper wire which gives the resistance
of various sizes of wire, it will be noted that at all of the given tempera-
tures No. 8 wire has a resistance greater than the value just calculated,
therefore, No. 6 B. & S. gauge wire should be used .for the outer wires
of the feeder. In the table the resistance is given per 1,000 feet, hence

_it is only necessary to move the decimal point to obtain the resistance
per foot. This table is shown on pages 111 to 113.

If the calculation be based on the lamp voltage, 110 volts,
the formula (1) must be modified to

drop x4
2 X distance X amperes

=resistance......coeeeenen. .(2)

In this case, drop=2.2 volts; 2Xdistance=400 feet, and
current =41 amiperes, then.
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2.2 volts x4 8.8

400 feet x41 amp, 16,400 ~ " 0>000 ohm.

Size of the Neutral Wire.—In three wire circuits, the size
of the neutral wire will depend to a great extent upon operating
conditions. In the case of installations which occasionally have
to bg. worked as two wire systems, the cross section of the
neutral wire should be equal to the combined cross section of
the two outer wires.

Figuring in Watt Feet.—By definition a watt foot is the
product of one watt multiplied by one foot; it is a convenient unit
for quick calculation with the aid of tables.

30 Volts

Rule.—To find the size of wire to carry a given number of watts a given
distance, on 30 volt circuits, multiply the distance in feet by the total number
of walls to be carried (thus oblaining the watl feet), and use the size: of wire
i the table specified for the nearest number of watl feet.

Table of Watt Feet for 30 Volts

Between 0and 18,870 watt ft. use No. 12 wire
G 18,870° « 29,000 « « « « 10 «
“ m'mo “ 46.545 “ “© # “@ 8 ]
a 46,545 ¢ 73,018 4« 4« « &« g a
a 73,018 “ 116,363 % « « @& 4 =&
& 116,363 « 186,180 « = « « 92 «
g 186,180 « 232,727 4« &« 4« « 1 &
a 232,727 « 290,000 % « 4« « (g «
@ 290,000. “ 372,362 « « « « Qp 4

Example.—Ten 20 watt lamps are to be installed in a barn 200 ft.
distant. What size wire is required for a 30 volt circuit?

prad=10xzoxzoo=4o.ooo watt ft. Nearest size wire from table s
0. 8.
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110 Volts

Rule,—In using the table just given for 110 volts multiply either the walls
or the distance by 32§, because for a given load "the current is reduced
110+30 =324 times as compared with 30 volts. '

A. C. Wiring Calculations

The formula for size of wire for a.c. circuits is

| circular mils = watts x feet < M (1)
% loss X volts* """

in which M, is a coefficient which has various values according
to the kind of circuit and value of the power factor. These
values are given in the following table:

o

Values of M.

"POWER FACTOR.

SYSTEM i
1100 98] .95} 90} 85| .80 5] .70 .65 | .60

Two phase |1,0801,125| 1,200 1,330| 1,500]'1,690| 1,920) 2,200 2,556/ 3,000

: i
Single phase | 2,160 2,249) 2,400 2,660| 3,000] 3,380 3,840 4,400| 5,112| 6,000
(4 wire) )

%Three phase 1,080| 1,125| 1,200 1,330| 1,500 1,690 (1,920 2,200(2,556 3,000

(3 wire) 4

—_—
. NOTE.—The above table is calculated as follows: For single phase M =2,160 +power
tactor? X 100; for two phase four wire, or three phase three wire, M =14 (2,160 =power fac-
tor?) 100. Thus the value of M, for a single phase line with power factor .95 =2,160 +.952 X

100=2,382.
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It must be evident that. when 2,160 is taken as the value of
M, formula ‘1" applies to a two wire direct current circuit and
also to a single phase alternating current circuit when the
power factor is unity.

In the table the value of M, for any particular power factor
is found by dividing 2,160 by the square of that power factor
for single phase and twice the square of the power factor for
two phase and three phase:

Since the two phase system is virtually two single phase sys-
tems, the four wires of the two phase system are half the size
of the two wires of the single phase system, and accordingly,
the weight is the same for either system, when the load, volt-
age and power factor are the same in each case.

*Values of T.

Power Factux
SyYsTEM" -, ] ;
100 | .98 90 | .80 [ 70
{
Single phase.......... 1.00 .08 | .90 .80 [ .70
{Two phase, 4 wire..... 2.00 | 1.96 | 1.80 | 1.60 | 1.40
|[Thee phase, 3 wires.. [| 1.78 | 1170 | 1,55 | 1.38 I 121

Although there is no saving in copper in using two phases,
the two phase system has the advantage over the one phase
system in that it is more desirable on power circuits, because
two phase motors are self-starting.

*NOTE.—This table is for finding the value of the current in liﬁe. using the formula I =
W = (E XT), in which 1=current in line; E =voltage between main conductors at receiving
or consumers’ end; W =watts. For instance, what is the current in a two phase line trans-
mitting 1,000 watts at 550 volts, power factor .80? I =1,000+(550 X1.6() =1.13.
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—— il e R

- Example.—What size wires must be used on a single phase circuit
200 feet in length to supply 30 kw. at 220 volts with loss of 4%, the power
factor being .9?

The-formula for circular mils is

watts X feet XM

circular mils = m

..................... bo0aaocooo il

Substxtutmg the given values and the preper value of M from the
table in (1)

%2
circutar mils o 30:000200X2,660

o =82.438

Referring to the table of the propemes of copper wire, on pages a1
to 113 the nearest larger size wire is No. 1 B. & S. gauge having an area of
83.690 circular mils. :

Drop.—In order to determine the .drop or volts lost in the
line, the following formula may be used:

drop='% loslso>:)volts X S-eeeeenn(l)

in which the 9 loss is a percentage of the applied power, that
is, the power delivered to the consumer and not a percentage of
the power at the alternator. “Volts” is the pressure at the
consumer’s end of the circuit. ‘

Example.—A circuit supplymg current at 440 .volts, 60 frequency,

with 5% loss and .8 power factor is composed of No. 2 B. & S. gauge wires
_spaced one foot apart. What is the drop in the line?

According to the formula

% loss X volts
>*100

Substituting the given values, and value of S, as obtained from the
table for frequency 60

drop = xS
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5X440
dro = xl =22 VOltS
P="700
6
Value of *“‘S” for 60 Cycles
96 power factor 90 power factor .80 power factor .70 pewer factor
q: A Bpacing of Bpacing of Bpacing of Bpucing of
in L
’."i"s_ d::br conductors conductors h d
uge —_ -
] P P ,,,,,,, P 1,,| ,,,I,,, e e
500,0001500,000 [1.21{1.45/1.62/1.77/1.9%1.32/1.80/2.11 [2.44 3.75 1.2—7‘1.89 2,25 .“IS.DCILH.LW 2.12/2.53(2.02
300,000§300,000 J1.15(1.29 1.831.4!]1.5?1.1 ATIL66/1.8412.0201.11)1.46)1.681.90 2.121 Il”
0,0004211,600 f1.131.22/1 B4/ LA11.131.3301.45(1.5811:6301.63(1.97 1.43)1.88( 1. ¥501.00(1.14/1. d
000/167,800 [1.09 1.18[1.221.281 1.0811.2311.331.44/1.53]1.0011.. 1.41).15 1.02(1.
00(133,100 [1.07|1.14|1.18(1.21 1. 1.0311.1601.24 1321 4001001 1.27/1.361.00(.00(1.

0]108,500 |1.051.10/1.141.17
1] 83,600 |1.04(1.08{1.20{1.131.
2| 68,370 [1.02(1.0/1.08l1.10

1.15(1.2241.00(1.00/
1.14[1.1001 1.05/1.11§1.00(1,00
1.081.141.00/1.00 1.00(1

82,630 [1.02(1.04(1.06/1.07]1. 1031, ! 1.00{1.
:;;:;’g}:.oox.o“mm 1.00/1.00{1.00/1.00{1.001.00{1.00}1. woifx. 1,
: :33} 100 1.00/1.001.001, 1 1,001, Lmlx.oo!lm_x.
: ;:::;g 1.00]1.00{1.001.00 1.002.001.001.00{1.60/1.00(1.0041.001.00 1,001
10| 10,380

Additional Wiring Formuise.—For most practical purposes
the following formule can be used to determine the size of
<opper conductors, current per wire, and weight of copper per
circuit for any system of electrical distribution.

DXW

Area of wire in circular mils = =2 K
a of wi ircular mils Bk
Current in main wire = -V!T. P= —D>iW__
E cmXEZ
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Value of “S” for 25 Cycles

98 power factor 90 power factor 80 power factor .70 power facter
Sie | Ares
of in Spacing of Bpacing of Spacing of £ Spacing of
wire eircull.r 4 rey 1 1
B. &S| "mils.
gauge T
1”1 12"~24’ 12 le | 812247
500,000 500,000 |1 .4 | 5 l.4jl. 2
$00,000{300 000 |1.041.20 1.1 1.1 Il.’d.&
©.000|217,600 J1.03{1.07]1. 1 T3t
000] 167,800 |1.001.051.4 1.001 4
00133,100 f1-00{1.0: 100 .
0]105,500 1.00(1. 1,001
1] 83,600 J)J
| 2| 66,370 1. 1.001
3] 52,630
4] 41,740
5] 33,100 1.00{1.001.00:1.00 1.001
6] 26,250
3| fesio
9 13:(»" 1 .00
10l 10380 |

. D2XWXKXA
Weight of ¢ = ds.
ight of copper BxEE 1,000, pounds

In these equations the symbols used denote the following
quantities:
W =total watts delivered
D =distance of transmission, one way in feet-

E =voltage between main wires at the receiving or consumers’ end of
circuit

P =loss in line in per cent. of power delivered, i.e. of W, this being a
whole number. K, T and A, are constants given in the following table:

Wiring Formula Constants

| Values of K Values of T
System v.]u.dA‘ Per Cent. Power Factor Per Cent. Power Factor
100 95 %0 85 80 [» 100 95 90 85 80

I -
. D Cl— 504 | 2160 | 2400 | 2060 | 3000 | 3380 | 1.00 [ 1.05 1 111 ] 117} 1-20
;.{;}’,:::'.”;,ec_ 1598 | Toso | 1200 | 1330 | 1500 | 1690 | .50 | .53 | .55 | .50 .50
EBhase S wire.| 9.00 | 1080 ) 1200 | 1350 | 1500 w00 58| 61| ‘es| ‘e8| 72
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Physical Properties of Copper, Aluminum, Iror and Steel Wire

Physical Propertl Copper °€lpumlam ron S‘Steel
T Ammealed [ Rard Drawn | Pure | B BB AR
Canductivity, ﬁatihf%é % Stan a'n_&a 90to102 | 96 to99 | 611063 16.8 8.7
Ohms per mil-foot at - 20°

(034 T 10.36 10.57 18.7 62.9 116.7

Ohms per mile at 68° F. = 20° C..... | 54600 | 55700 | 88,200 | 332,000 | 632,000
8 cir. mils | cir. mils | cir. mils | cir. mils | cif. mils
Pounds per mile-ohm at 6§° F. = 20° )
(So00000000000 ihposeon ggoonce F 875 896 424.0 £700 8000
Temperature co-efficient per degrees
Mean valties. .. .coovvviiiiiinnes .00233 .00233 .0022" 0028 f....iieees
Temperature co-efficient per degrees
C. Meanvalues.........covvunus .0042 .0042 .0040 L0050 |... o0
Specific gravity. Mean values. . 5 8.89 8.94 2.68 7.77
Pounds per 1,000 feet per circular mil, | 003027 .003049 | .000909 002652 002671
Weight, in pounds per cubicinch..... .320 .322 o .283
Specific heat. Mean values..........
elting point in déegrees F
VAlUEE. o otrers s ieiciaianien
Melting pomt in degreeo C. Mean
values. ., coevsrcrsccrrernncs

Degrees F .....................
Mean co~eﬂ’|c|ent of finear expansion.
Degrees C.oovvvvvvnnonniiarnaes

Tensile strength. ...
SoLip Wire
Pounds per.
square inch  |Elastic limit.......

Modulus of elasticity|

Tensile strength, .+

CONCENTRICy
STRAND
Pounds, p:l: Elastic limit....... e fo B
uare in 3 8
= 5,000,000] 12,000,000 A&ags%x. 18, 000000
‘\Modulusofelasticity\ 12038000 “083000 10,080,000, ......00. 22000000

Power Wiring Calculations

D. C. Motors.—The proper size of wire may be readily deter-
mined by means of the following formula:

circular mils = H.P. X746 >_<L x21.6
in which EXDXK




124 Electrical Calculations

H.P. =horse power of motor:
746 =watts per H.P.:

L =length of motor circuit from fuse block to motor;

21.6 =ohms per foot run in circuit where wires are one mil in diameter;
E =voltage at the motor;

D =drop in percentage of the voltage at the motor;
K =efficiency of the motor expressed as a decimal.

The average values for K, are about as fo

llows: 1 H.P., .75; 3 H.P., .80;
5 H.P., .80; 10 H.P. and over,

90 per cent.

Example.—What is the proper size of wire for a 10 h.p., 220 volt motor
with 2%, drop on 200 ft. circuit?

Substituting the given values in the above formula:

. . 10X746X200x21.6 , .
l = =5 y
circular mils 59054 4% 0 36,992
The nearest larger value to this result, in the table

of carrying capacities
of copper wire (page 125 ), is 41,740, corresponding to No. 4 wire, B, &
S. gauge.

A. C. Motors.—If the efficiency and power factor of an

a.c. motor at a given horse power load be known, the current
in amperes per phase which will be required to drive the motor
at rated voltage is given by the formula:

horse power X746
amperes = :
K X volts Xefficiency X power factor

in which

K =1 for single phase;
=2 for two phase, four wire system,
=3 for three phase, three wire system.

Example.—A 50 horse power, 440 voit motor has a full load efficiency
of .9 and power factor of .8. How much current is required: 1, for single
phase motor; 2. for three phase. three wire motor?
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1. For single phase molor.
Substituting in the formula and taking K=1

50746

— - =117.6
1X440%x.9X .8

amperes =

2. For three phase, three wire molor.

Substituting in the formula and taking K=Vv3=1.73
50X 746

AMpEres = §73s 140X 9.8 ~ 078

Table of Amperes per Motor

H.P. Per Cent. Eff. Watts Input. 50 Volts. 100 Volts. 220 Volts. 500 Volts,
ﬁ 70 800 16. 7 4 2
1 70 1600 32 15 7 3
8 75 2980 60 27 14 ]
8 80 4660 93 42 21 9
7% 85 6580 132 60 30 13
10 85 8780 178 80 40 18
15 85 13200 264 120 60 26
20 85 17600 352 160 80 35
28 85 21900 438 199 100 44
30 90 24900 498 228 113 850
40 90 33200 664 301 151 88
80 90 41400 828 37m 188 83
80 90 49700 994 452 226 90
70 20 58000 1160 527 264 116
80 90 “66300 1330 603 302 133
00 90 74600 1490 678 330 149
100 0 82600 1660 755 377 166
120 g0 99500 1990 005 453 169
150 124000 2480 1130 564 248

17 o
.P. K W. 125Vs. 250V 500 Vs, H.P.
LK. W. mgc. 250\4’-. 500 Vs, 2 120-. N

1. 2 1.3 80, 40.
3. 16 4 2.7 37.5 ‘300 150 75 50.
3. 24 12 (-3 4.0 40, 320 160 80 83
5. 40 20 10 6.7 50. 400 100 67
7.8 60 30 15 10. 60. 480 240 12¢
10. 80 40 13. 75. €00 300 150 100
12.5 100 50 25 17. 100. 800 400 200 134.
15. 120 60 30 20, 125, 1000 500 250 167.

20, 160 80 40 27. 150. 1200 600 300 201,
25. 50 200 .
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Example.—A 50 horse power single phase 440 volt motor, having a
full load efficiency of .92 and power factor of .8, is to be operated at a
distance of 1,000 feet from the alternator. The wires are to be spaced
6 inches apart and the frequency is 60, and % of loss 5. Determine: A,
elecirical horse power; B, walls; T, apparent load; D, current; E, size of wires;
F, drop,; G, vollage al the alternalor,

A. Electrical horse power

E.H.P. _brake ho'rse power _ gi =543
efficiency 9z
or,
54.3 X746 =40,508 watts
B' Walls
watts =E.H.P, X 746 =54.3 X 746 = 40,508
C. Apparent load

actual load or watts _ 40,508

apparent load or kva= power factor  ~ 8 =50,635
D. Current
ST =appgren‘t,<)llcizd or kva =504,46_(1)35 - 115‘ amperes
E. Size of wires
cir. mils= Watts X feet XM 40,508><1,000><3,3‘80=1 41,443

% loss X volts? = 5X4402

From table page 111, nearest size larger wireis No. 000 B. &S. gauge

Fl Droj)

5X440

drop = 2 10ssXvolts o X1.17=25.74 volts.
100 100

NOTE.—Values of S are given on page 121
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G. Voliage at alternator

' alternator pressure =volts at motor+drop =440-4+25.74 = {35.7 volts

"The following table gives minimum size wire for d.c. motor
wiring when wires are concealed or partly concealed, also good
practice for open wires.

Minimum Wire Sizes for D.C. Motors
(Western Electric Co.)

Size wire B. & S. Gauge Size wire B. & S. Gauge

30 110 220 30 110 220

H.P. volts volts volts H.P. wvolts wvolts volts
U 4 .- . 3 .. 10 14
Y 14 .o .o 4 .. 8 12
124 10 14 14 5 .. 6 10
1 8 14 14 7Y% .. 4 8
2 .. 12 14 10. .. 3 6

This table shows only safe size of wire to avoid overheating. - If motor
be over 30 ft. from dynamo, larger wire ruust be used, Find amperes in
the table which follows and select size of wire by using the table of watt

ft., page 117 ,. dmdmg the watt ft., by the proper factor for voltages other
than 30.

Approximate Amperes Taken at 30 Volts

Motors ~—Mazda Lamps—
Horsepower Amperes Watts Amperes
e 2% 10 .3
b7 5 20 7
Yy 9 40 1.3
% 16 75, 2.5
1 30 XY .
Amperes Amperes
} in. 4 blade fan motors...... .80 Coffee percolator ..........14.0
!2 in.. 6 blade fan motors....1.00 Water heater............... 15.6
Clatiron. . .oeeeiiiiiieennn, 16.4 Soldering iron.............. 10.0
Foaster.................... 15.0 Cleaner...........ccouuv... 4.0
Jischeater................ 15.0 Washing machine........... 8.0

Vater heater............... 9.4 Sewing machine............ .66
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Data Relating to Standard Annealed & Cleaned
Bare Copper Cable Stranded

Approximate Values

i ‘Weight ht ‘Resistance

cgae | S | Eie | Bamg | S | oM | Amane | RIS

In Strand Inches Inches Pounds Pounds Inches Foor 20° C.
2,000,000 91 .1482 1.8302 8164, 32548, 1.56874 00530
1,750,000 91 .1386 1.5257 5304, 28480, 1.36404 .00607
1,500,000 91 1284 1.4124 4623, 24409, 1.17831 .00707
1,250,000 91 1172 1.2892 3853, 20344 98170 .00852
1,000,000 61 .1280 1.1520 3081, 16268, 78494 .01060
950,000 61 1248 1.1232 2927, 15455, . 74618 01115
900,000 61 .1215 1.0935 2773. 14641, 70724 01179
850,000 61 1181 1.0629 2619. 13828, .86852 01247
800,000 61 L1145 1.0305 2465. 13015, .62810 1325
750,000 61 1109 9981 2311. 12202, .58922 01413
700,000 61 L1071 .9639 2157, 11389, 54954 01514
650,000 61 .1032 .9288 2003. 10576. 51020 .01630
600,000 61 .0992 .8928 1849. 9763, 47146 .01767
550,000 37 1219 .8533 1694, 8944, 43181 01025
500,000 37 .1162 8134 1540. 8131. .39237 .02118
450,000 37 .1103 7721 1388. 7318, .35234 02349
400,000 37 .1040 7280 1232 6505. .31431 .02648
350,000 37 0973 .6811 1078 5692, .27512 .03026
300,000 19 1257 .6285 923 4873, . 1 .03531
250,000 19 1147 .5738 769 4060. .19635 04233
211,600 19 .1055 .5275 647.1 3416.7 .1 04907
167,772 19 094 .4700 513.2 2709.7 .13187 06293
133,0 7 .1378 L4134 405 2143.2 10429 07935
105,628 ? .1228 .3684 321.7 1698.6 08303 10007
83,69 7 .1083 32719 255.2 1347.5 08559 12817
66,358 7 0973 2019 202.4 1088.7 .05205 15725

52,624 7 7 .2601 160.5 847 4 .04132
41,738 7 0172 .2316 127.3 672.1 .03276

26,244 7 0612 1836 80.0 422.4 . 02059 30767
16,512 7 .0486 1458 50.3 265.6 01298 62686
10,384 7 .0385 1155 31.6 166.8 .00815 1 00848
6,528 7 .0305 0915 19.9 105.1 .00511 1,59718
4.108 7 0242 0726 12.5 66.0 .00322 2.54192

Construction of Stranded €opper-Conductiors

To ascertain the diameter of the wires in a cable of any given capacity, divide the circular mils,
capacity of the cable by the number of wires in the strand and extract the square root of the quotient.
The result thus obtained gives the di in mils. of the wires com; 'ng7the strand.

To ascertain the diameter of a concentric strand of 7, 19, 37, 61, gf‘ﬂ or 169 wires:

7 wire strand, diameter equals 3 times diameter wires composing strand
19 wire strand, diameter equals 5 times diameter wires composing strand
37 wire strand, diameter equals 7 times diameter wires composing strand
61 wire strand, diameter equals 9 times diameter wires composing strand
91 wire strand, diameter equals 11 times diameter wires composing strand

127 wire strand, diameter equals 13 times diameter wires composing strand
169 wire strand, diameter equals 15 times diameter wires composing strand

The dizmeter of a 49-wire ccnductor, rope lay (7x7), equals 9 times the diameter of the individual
w'iéu'lm'd the diameter of a conductor of 133 wires (7x19) equals 15 tirmes the diameter of the indi-
vidual wires.

To ascertain in circular mils. the capacity of a cable of which the number and diameter of the
coglfonent wires are given, square the diametes (in mils.) of the individual wires and multiply the
product by the number of wires in the strand.

All rules and data here given are based upon strands in which all of the individual wires are of
the same size. The use of two or more different sizes of wire in the same strand complicates the sub-
ject to such an extent as to prevent giving specific instruction or rules..
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Current per Phase in Motor Circuits
110 Volts 220 Volts 140 Volts
HP.
1-ph. 2-ph. 3-ph. 1-ph. 2-ph 3-ph -ph 2-ph. 3-pb.

1 1272 | 557 | 6.43 63| 278| 3224 318) 13 [ 161
2 2380 | 1010 | 11.54 f| 11.00{ 5.05 | 5.77 595 | 282 | 28
3 3030 | 1424 | 1644 | 1715 | 72| 822 || 853( 3856 { 411
5 5230 | 2292 | 26050 || 26015 | 1146 | 1325 1| 1307 | 573 | 663
735 @875 | 3442 | 3070 || 3437 | 17.21 | 1985 || 1719 860 | 993
10 00.60 | 45.30 | 52.40 || 45,30 | 22.65 | 26.20 | 22.65 | 1132 | 13 10
16 {11328 | 6640 | 7aro || 6674 | 3320 | 3840 (| 332 | 1660 | 19.20
20 |12 | 874 | 1013 876 | 4370 | 507 438 | 218 | 2535
25 |l 21000 | 1096 |1267 | 1095 | 4.8 | 634 547 | 7.4 | 31.70
a0 | 2630 [1315 |152.0 |[131.5 | 658 | 780 658 | 120 | 3800
35 || 3210 |1605 | 1858 | 1605 | 80.2 | 92.9 | soo | 0.1 | 46.4
0 | %500 [175.0 2021 || 1750 | 875 |[1010 || 875 | 437 | 50.8
45 | 3040 [1670 | 22706 | 1970 | 685 | 1138 985 | 493 | 56.9
0 |l42s0 [2140 |2472 [ 2140 | 1070 | ®36 || 1070 | 535 | e1.8
60 | 6130 [256.5 |2062 [ 2565 |128.2 | 14811 | 128.2 | 641 | 741
70 |l eil.0 | 30620 0 |l 3055 | 1830 |176.5 |l 1527 | 76.3 | 88'3
75 |l ese0 | 3280 [ 3791 [ 3280 [1640 | 1895 Il 640 | 820 | 94.7
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Elevators

Roping.—The simplest roping or hitch is 1:1 shown in fig. 88.
Here the peripheral velocity of the rope sheave is equal to the
elevator speed. With 2:1 roping the peripheral velocity of the
rope sheave is twice the elevator speed.

2:1 roping gives, usually, twice the capacity at half the speed. Thus
an elevator rated 2,500 lbs. at 300 f.p.m. 1:1 roping could be roped 2:1
to carry 5,000 lbs. at 150 f.p.m. See fig. 89.

Gearless machines are 1:1 roped for 600 f.p.m. and above. For 500 or
450 f.p.m. they may be either 2:1 or 1:1. For 400 f.p.m. they are almost
always 2:1 roped. The selection of one or the other depends on the speed
and d,uty. 1:1 roping is sometimes called “direct hitch” or “straight
hitch.” '

The object of using 2:1 roping instead of 1:1 roping in cer-
tain cases is to get the advantage of the lower first cost of the
higher speed driving unit.

Thus, for example, an elevator rated 10,000 lbs. at 100 f.p.m. would
have a lower first cost if it used a hoisting machine with a combination
of gear ratio and sheave diameter suitable for 5,000 lbs. at 200 f.p.m.
and roped 2:1 than if the hoisting machine were built with a gear ratio

suitable for 100 f.p.m. and a load of 10,000 lbs. Such a machine could
not be built economically with a single worm and gear.

A compound geared machine, that is a worm geared machine with an
additional spur gear reduction, roped 1:1, could be used instead of the
single geared machine ropeq 2:1, and there are certain cases, especially
where the elevator speed does not exceed 100 f. p.m. where a compound
geared arrangement is preferred.

Extension of Elevator Ropes.—This acts in the case of sud-
den stopping or starting of a load attached to a wire rope to
ease the stress a little. In the case of a short rope the elastic
extension is small, but it increases proportionally to the in-
crease in length of rope. This needs to be given due weight
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POWER SHAFT

Fic. 88.—Direct (1:1) traction drive or
method of transmitting power from the
power unit to the car by means of fric-
tional contact of the rope in passing one
or more times around the drive pulley.
This arrangement, since it does not em-
nloy a drum where size has to be consid-
ered, can be used for lifts of any height,
and is the prevailing type today.

COUNTER WEIGHT

POWER
2 . 1 SHAFT
®
DRIVE
PULLEY
S _/IDLER
PULLEYS,
o \
REDUCTION
— PULLEYS
1 L] 1
A 7
\\ _/
F1G. 89. — Geared, or 2:1 ffiction
CAR \\/ drive, or frictional contact trans-
mission with reduction gear pul
COUNTER WEIGHT leys—a type used for moderate
speed elevators.
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Extension of Elevator Ropes
(According to American Steel & Wire Co.)

Length of rope Exteasion for cast steel | Extension for plow steel

in feet rope in feet in feet

500 0.833 1.000
1000 1.667 2.000
1500 . 2.500 3.000
2000 3.333 4.000
2500 4.167 5.000
3000 5.000 6.000
3500 5.833 7.000
4000 6.667 8.000
4500 7.500 9.000
5000 8.333 10.000

in any problem involving fast acceleration, jerks or shocks on
a wire cable and the final safety factor should take into con-
sideration these points.

Horse Power.—The horse power required for an elevator
motor is

L XS

horse power = Ex33.000 *

in which

L =unbalanced lcad in pounds;

S=speed of elevator in feet per minute;

E =efficiency of the system generally taken at 50%.

Example—What size motor will be required for an elevator having an

unbalanced load of 2,000 lbs. 400 ft. per minute speed and overall effi.
ciency of 50%,?
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2,000<400

533,000 e

horse power =

 Example—A certain elevator has a capacity of 3,000 lbs.; car speed 200
ft. per minute and with 1,000 lbs. over counter-weight; 65% overall effi-
ciency. Determine from chart the size of motor required.

The net load to be lifted will be 2,000 lbs. The diagonal line for 2,000
Ibs. cuts the 200 ft. per minute vertical line at the harizontal line which

omo O ooo
oM TN O

e
L
E
(=
o
(W)
o
=
=]
x
"3
=
(=]
=

SPEED OF CAR IN FEET PER MINUTE

Fro. 90 .—Elevator motor, horse power diagram, Three factors determine the horse power
of the motor that should be used, namely, the weight to be hoisted, the speed of travel
and the efficiency of the elevator. In the diagram, the efficiency of the elevator is assumed
o be 50 per cent. To determine the proper size motor to use in any case follow the diag-
onal line corresponding to the unbalanced load up to the point where it crosses the vertical
Jine corresponding to the speed desired. The horizontal line at this point will indicate
the horse power of motor required.

corresponds to about 25 /i.p. This will be the size of the motor required if

the overall efficiency of the elevator be 50%. If 65% be the known effici-
ency, the required horse power will be less.

251

h = X— =19. .

orse power 5 X % 19.2, say 20
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In. the following formula for the determination of torque
required to start an elevator, the starting efficiency has been
assumed at 20 per cent as outlined below.

If this efficiency in any case be lower, the elevator will not start with
the torque as derived by thé formula.

If the efficiency be greater and allowance be not made in the formula, the
derived torque may be so great that the start will be abrupt unless some
control arrangement, external to the motor, be included to reduce the
initial torque.

Te 5,252 XL XSx215
33,000 .5X%7r.p.m.

- BXLXS
r.pm.

in which

T =Torque in pounds at one ft. radius on the motor shaft.
L =Net load in pounds.

S=Full speed of elevator in ft. per min.
7.p.m.=Full load speed of motor selected.

NOTE.—~Power required for traveling cranes and hoists. Ulrich Peters, in Machinery,
Noveinber, 1907, develops a scries of formulz for the power required to hoist and to move
trolleys on cranes. The following is a brief abstract. Resistance to be overcome in moving
a trolley or crane bridge. P\ =rolling friction of trolley wheels, Pz = journal friction of wheels
or axles, P; =inertia of trolley and load. P =sum of these resistances =
. Fi+Fad \4 :

Pi+PetP=(T+L) \ — 5 — +T32t) in which T =weight of trolley, L = load, Fi =coeffi-

sient of rolling friction, about .002 (.001 to .003 for cast iron or steel); F2 =coefficient of journal
riction, =.1 for starting and .0l for running, assuming a load on brasses of 1,000 to 3,000
sounds per square inch; (I*2 is more apt to be .05 unless the lubrication be perfect); d =diam-
:ter of journal; D =diameter of wheels; V =trolley speed in feet per minute; t =time in seconds
n which the trolley under full load is required to come to the maximum speed. Horse power =
wuin of resistances Xspeed in feet per minute +33,000. Force required for hoisting and lowering:
“h =actual hoisting force, F ° =theoretical force or pull, L =load, V =speed in feet per minute
of the rope or chain, ¢ =hoisting speed of the load L, ¢ +V =transmission ratio of the hoist,
- =efficiency = F° + F»_ The actual waork to raise the load per minute =FhV =Lc =F°V +e.
Che efficiency e, is the product of the efficiencies of all the several parts of the hoisting mechan-
sm, such as pulleys, windlass, gearing, etc. Methods of calculating these efficiencies, with
xaruples, are given at length in the original paper by Mr. Peters.
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Telpher Motors.—The sizes of motor for telphers and hoists
will depend upon the class of work to be done; the motors for
telpher tractors vary from 5 to 15 4.p. and for the hoists, from
3 to 75 h.p., the loads being from 500 Ibs. to 30,000 Ibs. The
load factor for the tractor motor is .25 and for the h01st1ng
motor .16. The driving wheels and the motors may be
connected by geafts or by chain drive. “The maximum service
efficiency of the motors is that correspondmg to the efficiency
obtained between one-half and three-quarters full load. The
motors are of slow or medium speed.
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Radio

Wave Length.—The formula tor wave length is

wave length = 300’0_00’000 ........ (1)
wave frequency in cycles per sec.

From the formula it is seen that the shorter the wave length
the higher lhe frequency.
Examples.—What are the frequencies for wave lengths of 10 and 200
?

meters? From formula 1 300,000,000
wave frequency=,——... T Y ¢

wave length'

substituting 10 in formula 2

wave frequency=§2mol%.;000 =30,000,000 cycles or 30,000 kilocycles
substituting 200 in formuld 2
wave frequency =3—0.%L00 =1,500,000 cycles or 1,500 kilocycles

that is, for a 10 meter wave, the frequency is (30,000 +1.500) or 20 greater
than for a 200 meter wave.

Combination of Resistances.—Circuits may contain resist-
ances in serzes or in parallel, equal or unequal. If the resistances
be connected in series as in fig. 91, the total resistance is the
sum of all the resistors in the circuit. Thus the equation may
be written

R eff.= R1+ R2+ R3+ R4+ R5 etc.

It will be noted on examination of the diagram that in ceries circuits
the current is the same through all of the resistors but that the voltage
drop across the resistors depends upon the value of the individual resistor.

A Y
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In some circuits there are resistances in parallel. If the nu-
merical values of the resistances be equal then the effective
circuit resistance can be obtained from the following equation:

in which

Fi1c. 91,—Circuit with resistances {n series.

R=Value of one of the resistors
N= Number of resistors in the circuit.

Example.—A circuit contains 6 resistors in parallel and the resistance
of each is 12 ohms. What is the effective resistance?

Substituting in formula 1
2
effective resistance = 16: =2 ohms.

Formula (1) is to be used only when the resistors are all of equal value.

.
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Fig. 92 shows a circuit having several resistors in parallel
and of unequal value. For such circuits the following formula
should be used:—

. 1
Reffective = 777 7 «.eoeeeeinnn (2)
S AL
R R,
Example.—The circuit in fig. 92 contains resistors in parallel whose
resistances are: 10, 6, 5, and 7 ohms. What is the effective resistance?

Substituting in formula (2)

/ ]

Ri =R, = R;= R

Fi1c. 92.—Circuit with unequal resistances in parallel.

1

Reffective=1 1 1 1
otsts 7
L1 1 .1 1
Sol == ], 2= .166; - =.2; -=.14
VINE 165 6 557

Adding: .14-.1664.24.14 = .606.
Substituting .606 for the denominator in the formula

R effective %56 =1.6 ohms,
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Resistances in Series and Parallel.—In networks having re-
sistors in series and parallel the solution of the effective value
of resistance is obtained by breaking up the circuit into its
local circuits; solving each portion consisting of parallel circuits
and then resolving them into simple series circuits.

Example.—Find the effective value of the resistance in the circuit

shown in fig. 93.

Ry

2 Rq

Q|
:

F1c. 93.—Circuit with resistances in series and in parallel,

First solve all the branch circuits thus:

Circuit Ry: Re: R3 has an effective resistance of 3 ohms.
Circuit Rs: Rg: Ry has an effective resistance of 2.5 ohms.
Circuit Rg: Ry has an effective resistance of 2.2 ohms.

As the above paraliel circuits are in series with resistor Ry, the effective
value of resistance is found by adding 10, 3, 2.5 and 2.2 together. This
totals 17.7 ohms.

Resistor Ry is connected across the voltage supply and the etfective
value of the resistance network R; to Ry is in turn connected across Rio.
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Thus Ry is in parallel with the 17.7 ohm resistance of the network. Solv-
ing for parallel circuits 50X 17.7/504-17.7 the effective total circuit re-
sistance is 12.8 ohms.

Knowing that the voltage applied is 100 volts and the effective resist-
ance is 12.8 ohms and applying Ohm's law

100

"8 7.8 amperes.

Impedance and Reactance.—The formula for reactance of a
circuit due to capacity is

1000000
¢ =——— ohms
6.28fC
in which
f=frequency
C=capacity in microfarads.
The formula for reactance due to inductance is
X; =6.28fL ohms
in which
L=inductance in henries.

Resonance.—A circuit is tuned to resonance when the re-
actance due to inductance is equal to the reactance due to
capacity. In a resonant circuit the two reactances cancel each
other and the frequency at which any combination achieves
this condition may be determined from the equation

* 159200

in which
L=inductance in microhenries.
C=capacity in microfarads.
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Example.—A coil having an inductance of 203 microhenries is tuned
with a condenser set at .0005 microfarad. To what frequency does the
combination tune?

Substituting in formula (1)

S ) )

V/203 X .0005
=500,000.

. C.p.s.

meaning 500,000 cycles per second or as usually expressed 500 kilocycles

per second.

Electric Welding

Welding Currents.—It is difficult to give universally appli-
cable figures covering current, speed, etc., for electric arc weld-
ing because of the effect of conditions under which the work is
done, the character of the work, and the varying skill of op-

erators.

The following figures for bare metallic electrodes, are based
on favorable working conditions and a skilled operator How-
ever, they are approximations only and are given merely as a

general guide.

Electrode Amperes Corresponding
Diameter Hand Plate Thickness
in Inches Welding in Inches

Y 50~100 Up to s

3% 100-150 Up to ¥

14 125-175 Above 14

5% 150-200 Above I{

Y 175-350 Above 33

Y 225400 Above 34
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Electric Heating

_The application of electrical energy to domestic and indus-
tpal heating has numerous advantages. The choice of mate-
rial for a heating unit depends upon temperature conditions.

The average use of water is from 20 to 125 gallons per family
per day; temperature 104° Fahr. for bath purposes; 150° Fahr.
for dish washing.

If water be heated as required for use, a large ciemand.'Z to 5 k.. is cre-
ated for a short time and under usual conditions, does not secure a suf-
ficiently low energy rate to be economical.

Efficiency and Gallons per 24 Hours

of Water Heated to 104° Fahr.
(36 gal. tank covered with 1 in. hair felt insulation on tank and 1 in.
magnesia covering circulation piping. Cold water 39° Fahr. Faucet close
to tank.)

No. gal. hot wa-

Kind of Kind of - Efficiency| ter available (at

system equipment Watts | per cent.|104° Fahr. per 24
hrs.)
Storage Outside circulation 600 82 7%
Storage Outside circulation | 1,000 76 117
Storage “Clamp on" 750 78 89
Intermittent | Outside circulation 3,000 73 330
Intermittent| Outside circulation | $,000 69 525

Space Heaters.—As its name implies a space heater is for
diffused instead of concentrated heat, such as room heating.
The electric. energy requix:ed to _heat an ordinary sized room.when the
outside air is near the freezing point ranges from about 1 to 2 watts per
cu. ft.
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Loss of Heat per Sq. Ft. of Surface

Kind of Surface pE, tl;ol:l'r Kind of Sufface Igl' %mu;,
4in. brick wall... ... .68 Window, single glass. ... 776
_8in. brick wall.. ... . .46 Window, double glass. . . .518
12 in. brick wall .. .. ... 32 Skylight, single glass. ... 1.118
16 in. brick wall....... .26 Skylight, double glass.. . .621
20 in. brick wall....... 23 Ceilings, fire proof. ... .. 145
Floors, fire proof. .. ... 124 Ceilings, wooden beams. 104
Ordinary wooden wall,
lathed and plastered..! .1

In the table above, isshown loss of heat per sq. ft. of window and wail
surface, for one degree Fahr.. difference of inside and outside temperature,
the loss being expressed in heat units per hour.

Example.—What will be the loss of heat per hour in a single room,
wooden structure when the temperature inside is maintained at 70° Fahr.,
while the outside is at 32°. Size of room 10X10% 10, having three 3X6
windows. Here all surfaces must be considered.

Area of windows =3 (3X6) =54 sq. ft.
Area of walls=4 (10X10) —54 = 346 sq. ft.
Area of floor =10X10=100,

B.t.u. lost through windows = (70 —32) X.776 X 54=1,592.4
=(70—-32)X.1 X346=1,314.8
=(70-32)X.083X100= 3154

B.t.u. lost through walls
B.t.u. lost through floor

Total loss of heat per hour

...................

=3,222.6 B.L.u.

The maximum safe operating temperature of the space
heater is between 700° and 800° Fahr.

Building Heating, Thumb Rule .—As a rough approxima-
tion, a rule of thumb is as follows:
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.35 watts per cu. ft. (See 4)
Plus 3.5 watts per sq. ft. of wall area (See B)
Plus 35. watts per sq. ft. of glass area (See C).

A. This takes care of the heat required for raising the temperature of the
air approximately one complete change of air per hour. For more frequent
changes, increase the wattage proportionately.

B. This takes care of the loss of heat through the walls. In figuring the
wall area, the area of the four sides of the rooms and the ceiling and the
floor are all included and a deduction is made for the glass aréa. The rule
assumes good building construction, such as a good 12 in. brick wall or well
made; double frame wall.

C. For measuring glass area, the overall area of the frame is measured ahd
this area is deducted from the total wall area.

The above rule assumes a temperature elevation of 70° Fahr.

or, in other words, external temperature of zero, room tempera-
ture of 70° Fahr. If the room adjoin other heated rooms,
allowanc¢e must be made, based on the difference in tempera-
ture between the.room under consideration and the adjoining
rooms.

This thumb rule is for rough estimates only. It will agree quite closely
with more complicated calculations in some cases, but on the other hand,
there may sometimes be a considerable error so that it must be used cau-

ﬁouls'l{l The following two examples will illustrate how the above rule is
applied:

. Ex«_zmple.—Small house 12 ft. X 10 ft. X9 ft. high, good construction, 12
in. brick walls, with 3 windows each 3 ft. X5 ft., is to be heated to 70° Fahr.
with zero temperature outdoors and one complete air change per hour.

.35 (12X 10X9)
Plus 3.5 [(12x10><2)+(12><9x2)+(10x9><2) —(3X5%3)]
Plus 35(3 X5X%X3)

Equals 4,022 watts. Eight 500 watt space heaters should be used, which
will give a total of 4,000 watts.
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Voltage Factors on Basis of 110 Volts

Voltage. .........| 100 | 120 | 150 | 200 | 220 | 240 | 32 I
Factor.....cve..| 91 |1.09 | 1.36 | 1.82 | 2.0 [ 2.18 [ 0.29 |

Nichrome Wire—110 Volts

Watts Amperes B. & S. Size Ohms 75° F Length
250 2.27 25 43 6 21 Ft. 2 Ins.
300 2.72 24 36.4 22 0
350 3.2 23 31.0 24 0
400 3.64 23 27.2 21 0
450 4.10 22 24.1 23 5
475 4.32 22 23.0 22 4
500 4.55 22 21.8 21 ]
550 5.0 21 19.8 24 5
575 5.23 21 18.9 23 2

5.46 21 18.1 22 4

615 56 20 17.7 27 6

640 5.82 20 17.0 26 6

660 6.0 20 16.5 25 8

700 6.36 20 15.6 24 4

750 6.81 19 14.5 28 5
Nichrome Ribbon—110 Volts—.l{;” Width

Watts Amperes Thickness Ohms 75° F Length ?
400 3.64 .003 27.2 9 Ft. 10 Ins.
425 3.87 .0035 25.6 10 9
440 4.00 .0035 24,7 10 5
450 4.1 .004 24.1 11 7
475 4.32 .0045 22.9 12 5

500 4.55 .0045 21.8 11 8
525 4.77 .005 20.8 12 6
550 5.0 .005 19.8 11 11
575 5.23 .0056 18.9 12 10
600 5.46 .0056 18.1 12 3
625 5.68 .0063 17.4 12 11
650 5.91 .0071 16.7 13 11
660 6.00 .0071 16.5 13 10
675 6.15 .008 16.1 15 [}]
700 6.36 .008 15.6 14 -7
750 6.82 .0089 14.5 15 1
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Electro-Plating

A boiler is necessary in large plating rooms where hot water
is not available, or where close temperature regulation of hot
solutions is desired. In general practice, one boiler A.p. will
heat 25 gals. of water or its equivalent from 60° Fahrenheit
in one hour, to a temperature rise of 150°. Using this as a
basis gives the following formula for determining the k.p. re-
quired for a given job:

Properties of Electro-Plating Elements

Electro-Chemical
a A Ampere Hours
Atomic | Common uivalent Grams
Element Sygnbol Gravity Weight Valences li‘al’er Ampere P"D Gr‘-!x::dn
Second
K. 0.870 39,10 1 -000406 0.685
NA. 0.971 23.00 1 .000289 1,163
BA, 3 80 137.37 2 .000713 0.39%0
CA. 1,54 40.07 2 000208 1.338
MG, 1,74 24.32 2 .000126 2,202
AL. 2.70 27.1 3 a 2.969
ic CR. 6.92 52.0 3 .000180 1.544
oUs CR. 6.92 52.0 2 .000270 1.030
Ic MN. 7.42 54.93 3 .000189 1.463
OUS MN. 7.42 54.93 2 .000284 0.975
ZN. 7.00 65.37 2 .000339 9.820
CD. 8.65 112.4 2 000582 0.477
IC FE. 7.28 55.9 3 .000193 1,439
OoUs FE. 7.28 55.9 2 .000289 0.196
Ic CO. 8.7 58.97 3 .000203 1.365
ouUs Co. 8.72 58.97 2 .000305 0.909
IC NI. 8.80 58,68 3 .000202 1.371
OUS NI. 8.80 58,68 2 » 000304 0.914
Ic SN. 7.30 118.7 4 000308 0.901
OUs SN. 7.30 118.7 2 .000616 0.451
Ic PB. 11.4 207.2 4 0005335 0.518
OouUs PB. 11.4 207.2 1 001070 0.259
H. 0.0695 1.008 1 00001044 26 60
Compared to air| -
IC SB. 6.70 120 2 5 000249 1115
OUS SB. 6.70 120.2 3 .000415 0.669
I BL 9.78 208.0 5 000430 0.645
ouUs BI. 9.78 208.0 3 .0007185 0.387
Ic 3 5.73 74.9¢ 5 000155 1,790
OUS AS. 5.73 74.96 .3 000259 1.073
Ic U. 8.90 63.57 2 000329 0.843
ous Cu. 8.90 63.57 1 000659 0.422
IC HG. 13,595 200.6 2 .001039 0.268
OUS HG. 13,595 200.6 1 | 002079 0.134
AG. 10.5 107.88 1 .001118 0.249
IC PT. 21,37 8 4 000505 0.550
OoUS PT. 21.37 94.8 T 001010 0.275
IC AU. 19.3 197.2 3 000681 0.408
OUS AU, 19.3 197.2 3 002040 0.136
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Temperature rise X gallons of solution to be heated __ A
25150 Xtime in hours

.D.

Temperature rise in this formula is the difference between
60° Fahr. and the temperature to which solution is to be heated.
Time in hours is the time allowed to bring the solution to the
required temperature. It is usually not practical to figure
more than 3 hrs. to heat a solution.

Rate of Deposit.—It has been found that @ current of one
ampere will deposit 017253 grain, or 001118 gramme, of silver
per second on one of the plates of a silver voltameter, the liquid
employed being a solution of silver nitrate: containing from 15
to 209, of the salt. The rate of hydrogen similarly set free
by a current of one ampere is .00001044 gramme per second.

Therefore, knowing the amount of hydrogen thus set free, and the chem-
ical equivalents of the constituents of other substances, the weight of their

elements that will be set free or deposited in a given time by a given current,
can be calculated.

The rate of deposit is proportional to current.

However, since there is a certain amount of hydrogen liberated in the
plating process, there is also a partial solution of the metal, so that there is
always a deduction to be made from the theoretical value. Thus:

Gold gives about 80%0 90%

Nicke] * “  80to95%
Silver “ “ 90to95%
Copper “ 989,

An ampere of current maintained for one hour, which serves
as a unit of quantity called the “‘ampere hour” represents:
Gramme., ,........oovne. o 0376 Grain............. o 00 58
Ounce Troy. .o...vvenn-s 100121 Ounce Avoirdupois. . ... .00132
which multiplied by the chemical equivalent will furnish the weight of
any substance deposited
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The rate of deposit should be varied to suit the nature and
form of the surface of the object.

Large smooth surfaces take the greatest rate of deposit, while other more
rough and irregular surfaces require a slower rate.

The length of time for plating depends on the current rate.

Amperes Required.—The amount of current required for
plating articles with svarious mietals ‘is given in the table
following:

Amperes required to plate one square foot.

Solution of Metal. Average amperes
Nickel. coviii ittt i et e e teeaann goooo 4
23 LT 6to 8
Bronze.......i.oioiiiiiiiii i 6to 8
L07e] o747 6to 8
Acid COPPer.. .ttt ettt i i e 10 to 12
SIVer. . .o it i i e 2
Gold.........cooiiininnnn. 0060060 000000D6000a0 0000 1%
4 o V< U 10
Cadmium.. .. .oiiiiiieiiir ittt iiiieie e rennns 6to 8
Chromium.. ... .. ..civiiiiiiieiiiiieieneernnrennnn 1 per sq. in.

Example. If the plater figure on plating with nickel, about 20 sq. ft. of
surface, by referring to the table, it will.be seen that each sq. ft. requires
about four amperes, which would make, it necessary to -use approximately
80 amperes.

Again, to plate about 10 sq. ft. with copper, note each sq. ft. requircs
between six and eight amperes, which would mean about 70 additional
amperes, or the total for the two would approximate 150. If this be the
maximum output, a 150 ampere dynamo would be sufficient.

Dynamo Wiring.—The following table shows the proper size
of conductors for the different size dynamos and distances be-
tween dynamo and tank.
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The sizes of bars are shown in round and flat.
they need not be of the exact dimensions given, but should be of equal o

greater cross section.

Size of Main Conductors.

If flat bars be used

b 5 t0°20 Feet * 20 to 35 Feet 35 to 50 Feet 50 to 65 Feet
ynamo
Round Flat | Round Flat | Round Flat | Round
Amperes ‘Bars Bars Bars Bars Bars Bars BI:’\I l};l-.r:

100 o« % [ J (R I 74

200 oiinee] B | 5% 124

300 ] N ] B | 74 TR B | 1%x b

500 % 1 1 % W% | 18 2 x4

750 % 11 2 x4 % 2%x Y| 13 [3 x4
1,000 .cnen| 17 Bgx M| 14 RMx | 136 {3 xk| 14 [ K4
L500 .. coournrmn % |124x M| 1% Bxle] 1% (4 x%| 16 ¥
2,000 1 IBx M| 134 [4 x5 2 Ux U | 28 4 a8
2500 v Wy |3 x5 126 PUx ¥ | 24 IS x ¥ | 234 [43x]
3,000 ........nun.. 13 4 2% | 2% (4 x 16| 236 |434x! 256 44x1Y4
4000 ] 2 |x 3| B4 §5 xl | 24 |e4xiY | 3 [B4xilg
5000 wornwet 234 [434x V6 | 23 14%4x1Y4 | . SMxIY | 3 [5Mi2
17.500 .| ¢ [434x1) S46x134 | ... 516x2. 4 |7 x2
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Natural Trigonometrical Functions

Degree Sine Cosine | Tangent | Secant | Degree [ Sine Cosine | Tahgent | Secant
o .00000 | 1.0000 { .00000 | 1.0000, 46 (7193 | L6047 1.0355 | 1.4395
1 01745 0008 | 01745 ) 1.0001 47 .7314 | .6820 1.0724 | 1.4663
2 03490 .9994 | .03492 | 1.0000 48 .7431 .6691 1.1106 | 1.4945
3 .05234 .0986 | .05241 | 1.0014 49 5T 68561 1.1504 | 1.5242
s 08076 995 06993 | 1.0024 50 .7660 | .6428 1.1018 | 1.5557
8 08716 9062 | 08740 | 1.0038 | ~51 am .6203 172340 | 1.5800
6 10453 L9945 | .10510 | 1.0053 52 L7860 | 6157 1.2799 | 1.6243
7 .12187 .9925 .12278 | 1.0073 53 7986 | 6018 1.3270 ] 1.6616
8 | 1302 | .0003| .1105 [1.0008] s+ X .soe0| .s878 | 1.3784 | 1.7013
] <1564 L0877 | .1584 | 1.0125 55 8192 | .5738 1.4281 | 1.7434
10 .1736 L9848 | .1763 | 1.0154 56 .8200 | .5502 1.4826 | 1.7883
11 +1908 L9816 [ 3944 | 1.0187 57 8387 | 5446 i.5300 } 1.8361
12 2079 L9781 | ,2128 |1.0223 58 8480 5200 1.6003 | 1.8871
13 2250 19744 ,2309 | 1.0263 59 8572 | (5150 1.6643 | 1.9416
4 22419 L9703 | .2493 | 1.0300 60 8660 | .5800 1.7321 | 2.0000
15 .2588 L9659 | .267¢ | 1.0333 61 8748 | 4848 1.8040 | 2.0627
16 .2756 L9613 | L2867 | 1.0403 62 8823 | .4695 1.8807 ( 2.1320
17 <2024 .9563 | .3057 | 1.0437 63 8910 | 4540 1.9626 | 2.2027
18 - .3090 J9511 | 3249 |} 1.0515 64 8988 | .4384 2.0503 | 2.2812
19 3256 L9455 | L3443 | 1.0576 65 L9063 | .4226 2.1445 | 2.3682
20 34200 .9307 | 3640 | 1.0642 66 D135 | L4067 2.2460 { 2.4586
21 3584 9336 ] .3539 | 1.8711 67 .9205 | .3807 2.3580 | 2.5803
22 3746 L9272 4040 | 1.0783 68 L9272 | 3748 2.4751 | 2.6695
23 +3907 .9205 | .4245 | 1.0S04 2] L0336 | 3584 2.6031 { 2.7904
24 4087 0135 L4452 | 1.0946 R 9397 L3420 2.7475 ] 2.9238
28 4226 9063 | .4683 ] 1.1034 s 94551 ,3256 2.9642] 3.07185
26 A384 8988 | -.4877 | 1.1126 72 L9511 . 3080 3.0777 3 3.2361
27 4540 .89:0 | .5095 | 1.1223 Kt L9563 | 2024 3.2709 ) 3.4203
28 .4695 .8820 1 .5317 | 1.1326 74 9613 } .2750 3.4874 | 3.6279
29 L4848 5746 | .5543 | 1.1433 It 9659 1 2588 3.7321 | 3.8637
30 5000 8660 | .5774 | 1.137 K 9703 | L2419 4.0108 | 4.1338
31 5150 L8572 | .6009 | 1.1666 77 9744 | L2250 4.3315 | 4.4454
32 5299 J8480 ; 6249 | 1.1792 7 9781 2079 4.7046 | 4.8007
33 5446 8387 | .6494 |1.1924 K 9816 | ,1008 5.1446 | 5.2408
:'M 5592 8200 | .6745 | 1.2062 8 9848 | .1736 5.6713 | 5.7588
35 8738 L8192 [ L7002 | 1.2208 81 9877 | 1564 6.3138 | 6.3924
36 .5878 8000 | .7265 |'1.2361 82 0903 1 .1392 7.1154 | 7.1863
37 6018 .7086 | 7536 | 1,2521 83 .9025 | .12187 | 8,1443 | 8.2058
38 .6157 | .7880 | .7813 |1.2600 | 84 0945 | .10453 | 9.5144 | 9,5068
39 6203 Baxs .5008 | 1.2867 85 .9962 | ,08716 | 11.4301 | 11.474
40 6428 L7660 | .8391 | 1.3054 88 .9976 | .06976 | 14.3007 | 14,335
411 6561 J7547 | .8693 | 1.3230 87 .9986 | .05234 | 19.0811 | 19.107
42 6691 L7931 0004 | 1,3456 88 .9094 | ,03490 | 28.6363 | 28.054
43 6820 L7314 | 9325 | 1.3673 89 9998 | .01745 | 57.2900 | 57,290
44 6047 L7193 | 9857 | 1.3002 20 1.0080 Inf. Inf. Inf.
43 707, | L7071 | 1.0000 | 1.4142 —_— —_ — —_

153

NOTE.—For intermediate values reduce angles from degrees, minutes and second | {1
degrees and decimal parts of a degree and interpolate or ~onsult a larger table.
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Powers, Roots, etc.

No, Square Cube Square Root  Cube.Root Reciprocal
1 1 1 1.00000 1.00000 1:00000
2 4 8 1.41421 1.25992 .60000
3 9 27 1.73205 1,44224 .33333
4 16 64 2.00000 1.568740 .25000
5 26 125 2.23606 1.70997 20000
6 36 216 2.44948 1.81712 16666
17 49 343 2.64675 1.91293 14285
8 64 512 2.82842 2.00000 12600
9 81 729 3.00000 2.08008 .11111

10 100 1000 3.16227 2.16443 0000
11 121 1331 3.31662 2.22398 09090
12 144 1728 3.46410 2.28942 08333
13 169 2197 4.60555 2.35133 07602
14 196 2744 3.74165 2.41014 07142
15 225 3376 3.87298 2.46621 06666
16 266 4096 4.00000 2.51984 06250
17 289 4913 4.12310 2.57128 05882
18 324 5832 4.24264 2.62074 05665
19 361 6859 4.35889 2.66840 05263
20 400 8000 4.47213 2.71441 05000
21 441 9621 4.68257 2.75892 04761
S 484 10648 4.69041 2.80203 04545
23 529 12167 4.79583 2.84386 04347
24 576 13824 4.89897 2.88449 04166
256 625 15625 5.00000 2.92401 04000
26 676 17576 5.09901 2.96249 03846
27 729 19683 5.19615 3.00000 03703
28 784 21952 5.29150 3.03658 03571
29 841 24389 5.38516 3.07231 03448
30 900 27000 5.47722 3.10723 03333
31 961 29791 5.56776 3.14138 03225
32 1024 32768 5.65685 3.17480 03125
33 1089 35937 5.74456 3.20763 03030
34 1156 39304 5.83095 3.23961 02941
35 1226 42875 5.91607 3.27106 02857
36 1296 46666 6.00000 3.30192 02777
37 1369 50653 6.08276 3.33222 02702
38 1444 54872 6.16441 3.36197 02631
39 1621 59319 6.24499 3.39121 02564
40 1600 64000 6 32455 3.41995 02500
41 1681 68921 6.40312 3.44821 02439
42 1764 74088 6.48074 3.47602 02380
43 1849 79507 6.65743 3.50339 02326
44 1936 865184 6.63324 3.63034 02272
45 2026 91126 6.70820 3.55689 02222
46 2116 97336 6.78233 583 02173
47 2209 103823 6.85665 3.60882 02127
48 2304 110692 6.92820 3.63424 2083
49 2401 117649 7.00000 3.65930 02040
50 2500 126000 7.07106 3.68403 02000
51 2601 132651 7.14142 3.70842 01960
52 2704 140608 7.21110 3.73251 01923
53 2809 148877 7.28010 3715628 01886
54 2916 157464 7.34846 3.77976 01851
65 3026 166375 7.41619 3.80295 01818
56 3136 176616 7.48331 3.82586 01785
57 8249 185193 7.54983 3.84350 0-754
58 3364 195112 7.61577 3.87087 01724
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Mechanical Calculations 1

Mechanics

Mechanical Powers.—By definition the mechanical powers
are mechanical contrivances that enter into the composition of
Jormation of all machines.

‘They are:

1. The lever.

2. The wheel and axle.
3. The pulley.

4. The inclined plane.
5. The screw.

6. The wedge.

These can in turn be reduced to three classes:

1. A solid body turning on an axis.
2. A flexible cord.
3. A hard and smooth inclined surface.

They all depend for their action upon what is known as the principle
“of work, that is: The applied force, multiplied by the distance through which
it moves, equals the resistance overcome, multiplied by the distance through
which it is overcome.

The principle of work may be also stated as follows: .

Work put into machine =lost work +work done by machine.
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The Lever.—The following general rule holds for all classes
of lever:

Rule. The force P, multiplied by ils distance from the ful-
crum, is equal to the load W; multiplied by ils distance from the
Julcrum. That is:

Force X distance=load X distance. . ....... 0);
Example.—What force applied at 3 ft. from the fulcrum will balance

;P FIRST ORDER ‘i"

1 ~ —
[ - F&
SECOND ORDER V‘e’
{ . 1
P Fda
=< 30 6_-’

lW THIRD ORDER

—
, . £

Fics, 1 to 3/~Diagramsiof the three orders of lever illustrating the accompanying examples.

a weight of 112 Ibs. applied at 6 ins. from the fulcrum? Here the dis-
tances or “leverages’ are 3 feet and 6 inches.

The distance must be of the same denomination; hence reducing ft. to
ins., 3X12=36 1ns.

-
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Applying the rule
ForcexX36=112X6
Solving
112%6

Force = 36 - 18.67 or 1824 Ibs.

This solution holds for all levers as illustrated in figs. 1 to 3.

Wheel and Axle.—Comparison of the wheel and axle with a
1st order lever shows that in principle they are the same thing.
The general equation (1) on page 2 applies to the wheel and
axle.

F1Gs, 4 and 5.—Principle of the differential hoist.As the crank is turned clockwise the cable
winds on B, and unwinds'on A, and since B is larger in diameter, the length of cable between
the two drums and load is gradually taken up, thus lifting the load. Evidently by makmg
the difference in diameter of the two drums very small an extremely largs leverage is ob-
tained, thus enabling very heavy weights to be lifted with little effort. The load will re-
main suspended at any point, because the difference_in the diameter.of the lwo_ drums §s fop
small to overbalance the friction of the parts. Fig. 5’ shows the end of thé lifting operation.

Chinese Wheel and Axle.—This is a modification of the
wheel and axle and is used for obtaining extreme degree of

leverage. Its principle and construction are shown in figs.
4 and 5,

The Pulley.—Pulleys are classed as fixed or movable.

In the fixed pulley no mechanical advantage is gained, but its vse is
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of the greatest importance in accomplishing the work appropriate to the
pulley, such as raising water from a well.

The movable pulley, by distributing the weights into separate parts, is
attended by mechanical advantages proportional to the number of points
of support.

a——

w4

Fi16s, 6.t0 12. —FElementary pulley combinations - illustrating accompanying rule for
relation between force applied and foad lifted and. showing how the load may be increased
from 1 to 7 times per unit of force applied. Of course a greater fange may be secured by
additional palleys, but tbere is a limit in practice to which it is mechanically expedient.

The following rule expresses the relation between the force
and load.

Rule.—The load capable of being lifted by combination of
pulleys is equal to the force Xthe number of ropes supporting lhe
lower or movable block.

W5
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The Inclined Plane.—By such substitution of a sloping path
for a direct upward line of ascent, a given weight can be raised
by another weight weighing less than the weight to be raised.

The-inglingd plane becomes a mechanical power in consequence
of its supporting part of the weight, and of course leaving only
a part to be supported by the power.

Rule.—As the applied force P, is to the load W, so is the height,
H, to the length of the plane W.

PULLEY

INCLINED
PLANE

F1g. 13—Inclined plane. A load or weight W, may be lifted by a smaller weight P, \?
because the load is partly supported by the inclined plane,

That is:
Force : load =height : plane length................. 2)

Example.—What force (P) is necessary to raise a load of 10 lbs. if the
height be 2 ft., and plane 12 ft.?

Substitute in equation (2)
P!10=2:12
Px12=2X10

P="—"2""=—=1%1bs.

The Screw.—This is simply an inclined plane wrapped around
a cylinder.
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The screw is generally employed when severe pressure is to be exerted
through small spaces; being subject to great loss from friction it usually
exerts but a small power of itself, but derives its principal efficacy from
the lever or wheel work with which it is very easily combined.

Rule.—As ihe applied force is lo the load so is the pilch lo the
length of thread per iurn, that is:

Applied force : load =pitch : length of thread per turn........ (3)

Example:—If the distance between the threads or pilch be { in, anda
force of 100 Ibs. be applied at the circumference of the screw, what weight
will be moved by the screw, the length of thread per turn of the screw
being 10 ins.

THICKNESS
OF WEDGE ————

LENGTH OF WEDGE

FiGs. 14 and 15.—Application of the wedge in raising a heavy load.

Substituting in equation (3)

100 : load = ¥ : 10
load X ¥ = 10x100
10X 100
load =——= 4,000 Ibs.
4
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The Wedge.—This is vtriually a pair of inclined planes in
conlact along their bases or back to back.

Rule.—As the applied force is to the load so is the Lhickness
of the wedge lo ils length; that is:

Applied force : load =thickness : length of wedge........ 0000000003 4)

Example.—What force is necessary to apply to a wedge 20 ins. long
and 4 ins. thick to raise a load of 2,000 Ibs.?

Substituting in equation (4)
Applied force: 2,000=4:20
20 : 4 =2000 : applied force
applied force X 20 =4X2000
4% 2000
20

applied force = =400 Ibs.

Principle of Moments.—When two or more forces act upon a
rigid body and tend to turn it about an axts, then equilibrium will
exist if the sum of the moments of the forces which tend to turn the
body in one direction equals the sum of the moments of those which
tend to turn it in the opposite direction about the same axis.

The lever safety valve when at the point of blowing is a good illustra-
tion of the above principle.

Newton’s Laws of Motion.—Ist Law. Ifa body be at rest, it
will remain at rest, or if in motion it will move uniformly in. a
straight line until acted upon by some force.

ond Law. If a body be acted on by several forces, it will obey
cach as though the others did not 2xist, and this whether the body
be at rest or in motion.

3rd Law. If a force act to change the stale of a body with
respect to rest or motion, the body will offer a resistance equal and
directly opposed to the force; or lo every action there is opposed an
equal and opposite Teaction.
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Physics

Mechanical Equivalent of Heat.—One pound falling through a
distance of one foot represents one foot pound of work.

In 1843 Dr. Joule of Manchester, England, determined by numerous
experiments that when 772 foot pounds of energy had been expended on
one pound of water, the temperature of the latter had risen one degree,
and the relationship between heat and mechanical work was found; the
value 772 foot pounds is known as Joule's equivalent. More recent ex-
periments give higher figures, the value 778, is now generally used but
according to Kent 777.62 is probably more nearly correct. Marks and
Davis in their steam tables have used the figure 777.52.

Pressure Scales.—The term vacuum is defined as ¢ space de-
void of maiter. This is equivalent to saying a space in which the
Dbressure is zero. According to coinmon usage it means anyspacein

|

GAUGE
PRESSURE

©
O

el B
ABSOLUTEL,
PRESSURE?

BT
SRV

ATMOSPHERIC
PRESSURE

—|0|
®

Cao

Fic. 16.—Elementary boiler or closed vessel illustrating the difference between gauge, and
absolute pressure.
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which the pressure is less than that of the atmosphere. This gives
rise to two scales of pressure:

Gauge pressure is expressed as absolute pressure by adding,
14.74, or for ordinary calculation, 14.7 lbs.

Thus 80 Ibs. gauge pressure =80+14.74=94.74 Ibs. absolute pressure.

Absolute pressure is expressed as gauge pressure by sub-

tracting 14.7.
Thus 90 lbs. absolute pressure =90—14.7 =75.3 lbs. gauge pressure,

The pressures below atmospheric -pressure are usualty ex-
pressed in lbs per sq. in. when making calculations or “inches
of mercury” in practice.

Barometer.—By definition. a barometer is an instrument for
measuring the pressure of the atmosphere,

Pressure in Ibs. per sq. in. is obtained from the barometer
reading by multiplying by .49116.
Thus, a 30 inch barometer reading signifies a pressure of
49116X30=14.74 lbs. per sq. in.

Pressure of the atmosphere per square inch for various readings of
the barometer.

Barometer Pressure 1 Barometer Pressure
(ins. of mercury) | per sq. ins., Ibs, | (ins. of mercury) | per sq. ins., lbs.
28.00 13.75 29.921 14.696
28.25 17 .88 30.00 14.74
28.50 14.00 30.25 14 .86
28.75 14.12 30.50 14 .98
29.00 14 24 30.75 15.10
29.25 14 .37 31.00 15.23
29.50 14 .49
29.75 14 .61

The above table is based on the standard atmosphere, which by defini*
tion =29.921 ins. of mercury =14.696 lbs. per sq. in., that is 1 in. of mer-
cury =14.696 +-29.921 =.49116 lbs. per sq. in.
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Energy.—By definition, energy 7s stored work, that is, the

ability to do work, or in other words, to move against resistance.

The measure of actual energy is the product of the weight of the body

into the height from which it must fall to acquire its actual velocity. If

v=the velocity in ft. per sec. according to the principle of falling bodies,

h, the height due to the velocity =#? +2g; and if w =the weight, the energy

=14 m?=we*+2g=wh. Since energy is the capacity for performing

work, the units of work and energy are equivalent, or FS=14 mi*=wh.
Energy exerted =work done.

Conservation of Energy.—The doctrine of physics, that
energy can be transmitted from one body to another or trans-
formed in_its manifestations, but may neither_ be created nor
destroyed.

Work.— The overcoming of resistance through a certain dis-
tance. The unit of work is the footf pound.

Power.—By definition, power is the rate at whick work is
done; in other words, it is work divided by the time in which
it is done.

The unit of power in general use is the horse power* which
Is defined as 33,000 fool pounds per minule.

Expansion-and Contraction.—Practically all substances ex-
pand-with increase in temperature and contract with decrease
of temperature. The expansion of solid bodies in a longitudinal
direction is- known as linear expansion; the expansion in volume
is called the volumetric expansion.

The following example will illustrate the wuse of the table
on next page:

Example.~How much longer is a 36 in. rod of aluminum when heated
from 97 to 200° Fahr.?

*NOTE.—The term “horse power” is due to James Watt, who figured it to represent
the power of a strong London draught horse to do work during a short interva!, and used it as
a power rating for his engines

L[]
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Increase in temperature 200 —97 = 103°
Coefficient of expansion for aluminum from table =.00001234.
Increase in length of rod =36 X .00001234 X103 = .046 in.

Linear Expansion of Common Metals
(Between 32 and 212 degrees Fahr.)

Linear expansion
per unit length

per degree Fahr.

Aluminum. ....ovvvvi v nnnns 000000000 ... 00001234
Antimony.........ccevveieniinnnn.. v 00000627
Bismuth......oooiitvii it iiiiieiienie e, 00000975
Brass....coiiiieioniiiiemennans et 00000957
Bronze....... . i it 00000986
L0573 o 00000887
GOld. ..o it e e 00000786
Iron, cast..... RPN 0000600060006000000000 00 00000556
Iron, wrought.......cooiiniiii i iinnns. 00000648
Lead...... e, P 00001571
Nickel............ e ey 00000695
Steel.. .o i e e e 00000636
B 5« F SRS S 00001163
Zinc, cast .

ZomEn ed} ................................. 00001407

Volumetric expansion=23Xlinear expansion.

Melting Point of Solids.—The temperatures- at which a
solid substance changes into a liquid is called the melting
point.

The following table gives the melting point for commercial metals:

Melting Points of Commercial Metals

Degrees Fahr.
R P PP FRRRP 1,200

...........................................

..... R)000 0000000000 00000380 0000000000000 0l
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Table—Continued
Degrees Fahr,
Cadmium......... e e ieeeee reemenaes yeeteanes 610
Iron, cast......co.iviiiiicniennannnns 10000000000 2,300
Iron, wrought.................. ceeesossnsennsens 2,900
Lead........... eaecerannnen 4000000 000O0000O0 06 620
Mercury. ...... 00000000 0000000p00C teeseseacsns.. —38
Steel....... 900000000000 00 10000000000000000 eess.-2,500
B ¢ N 446
Zinc, cast... ........ .... e aiaee e 785

Gravity.—By definition gravity is the force that aliracts
Jes, at or near the surface of the earth, toward the center of
- ~qrth. ‘This force varies at different points on the earth’s

surface. OPEN TO
| ATMOSPHERE -

FEATHER

T e

FEATHER AND
LEAD FALL
TOGETHER

LEAD REACHES
BOTTOM FIRST

Fi6s. 17 and 18. —Experiments with falling bodies. Place a feather apd a_piece of lead
in a long tube and pump out the air. If the tube be suddenly inverted it will'be found that
the two objects fall side by side from top to bottom as in fig.' 17 . If the top be left open
80 that the objects are surrounded by air, when the tube is inverted, -as in fig. 18., it wils
be found that the lead reaches the bottom before the feather.
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Velocity.—In physical problems, velocity is generally ex-
pressed in feel per second, and in engineering work, n feet per
minule.

The formula is

S
Vem
t
in which
S =space, or distance;
. V=velocity;
t =time.

Falling Bodies.—A body falling freely from rest to the earth
acquires during the first second a velocity of 32.174 ft. per second
per second; al the end of the second second, a velocity of 32.174+
32.174 =64.348 ft. per second, and so on.

Mass.—The formula for mass is ™

R "
Mass = ﬂ_t_
in which B 4
g=acceleration due to gravity. If the weight and g be taken at the
same place their ratio will be constant for all places.
1

00
Example.—The mass of a 100 1b. weight equals ﬂ=3'11 Ibs. On

the surface of the sun, where the force of gravity is 28 times as great as on
the earth, the same object would weigh 2,800 lbs., but its mass would be

28 X100
m=3.11 Ibs. as before.

It will be observed that both mass and weight are taken in pounds.
This double use of the word pound is customary,.although somewhat am-
biguous. Mass is an important factor in the study of motion.
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Center of Gravity.—Briefly, the center of gravity of a body
is that point of the body about which all ils paris are balanced, or
which being supported, the whole body will remain al rest, though
acted upon by gravity.

The center of gravity may be found by calculation, and in some cases,
more conveniently by experiments, as in fig. 19.

CENTER OF
GRAVITY

F1G. 19.—Method of finding the center of gravity of the lever. The center of gravity of the
Tever 1s the point where the bar would be in equilibrium if balanced over a knife edge or any
other support with a sharp corner placed at right angles to the lever, as shown in the figure.

Momentum.—In popular language momentum may be de-
fined as the power of overcoming resislance as possessed by a
body by virtue of ils motion; that which makes a moving body
hard to stop. Numerically it is equal to the product of mass
of the body multiplied by its velocity.

momentum =mass X veloctly

using symbols “ =m Xv
= .E)_ X bl
g
in which w =weight

g =acceleration due to gravity =32.17

Friction.—By definition, friction is that force which acis
between two bodies at their surface of conlact so as lo resist their
sliding on each other; it is the resistance to motion when one
body is moved upon ancther.
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Belts and Pulleys

Tc; calculate size of pulleys the following formula is used

in which

D =diameter of driver pulley

£1G. 20.—-One . horse power transmitted by belt illustrating the rules A single belt one inch
eide and iravelling 1,000 feet per minute will transmit one horse power: & double belt under

Che same conditions will transmit two horse, power.

“ T

d= “ “ driven
R =revolutions per minute of driver pulley
T = [ . .é “ driven “

The following formulae are derived from equation (1)

g PR @)
T
R=Y L o ("
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Example.—Find the diameter of pulley required on engine to run a
dynamo at a speed of 1,450 revolutions per minute, the dynamo pulley
being 10 ins. in. diameter and the speed of engine is 275 revolutions per
minute.

Substituting in formula (1)

_10x1450 _ _, . .
D= 275 =53 ins. nearly

Example.—If the speed of engine be 325 revolutions per minute, diam- -
ater of engine wheel 42 ins. and the speed of the dynamo 1,400 revolutions
per minute, how large a pulley is required on dynamo?

Substituting in formula (2)

_42x325

= =98¢ ins.
4=—00 "4 ins

Example.—What will be the required speed of an engine having a belt
wheel 46 ins. in diameter to run a dynamo 1,500 revolutions per minute,
the dynamo pulley is 11 ins. in diameter?

Substituting in formula (3)

_11x1500

R 46

=359 nearly.

Example.—If a steam engine, running 300 revolutions per minute, have
a belt wheel 48 ins. in diameter, and is belted to a dynamo having a pulley
12 ins. in diameter, how many revolutions per minute will the dynamo
make?

Substituting in formula (4)

48 X300
12

=1200
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¢

Shop Calculations

A-FRAME
B-ANVIL
C-SPINDLE
D-SLEEVE
E-THIMBLE

F1G. 21.—~Starrett micrometer caliper.

How to Read a Micrometer Caliper.—Readings in ten
thousandths of an inch are obtained by the use of a vernier, so
named from Pierre Vernier, who invented the device in 1631.
As applied to a caliper this consists of ten divisions on the
adjustable sleeve, which occupy the same space as nine divisions

on the thimble.

The difference between the width of one of the ten spaces on the sleeve
and one of the nine spaces on the thimble is therefore one-tenth of a space
on the thimble. In fig. 23 the third line from O on thimble coincides
with the first line on the sleeve. The next two lines on thimble and sleeve
do not coincide by one-tenth of a space on thimble; the next two, marked
5 and 2. are two-tenths apart, and so on.
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In opening the tool, by tuming the thimble to the left, each space on
the thimble represents an opening of one thousandth of an inch. If,
therefore, the thimble be turned so that the lines marked 5 and 2 coincide,
the caliper will be opened two-tenths of one thousandth or two ten thou-
sandths.

Turning the thimble further, until the line 10 coincides with the line
7 on the sleeve as in fig. 24, the caliper has been opened seven ten thou-
sandths, and the reading of the tool is .2507.

THIMBLE THIMBLE

g 0 =) ") o
WAl
| 2]

-
|| o [l
341 09876543210 09876548310
: E SLEEVE SLEEVE

RRETT

5 \
=

Fics. 22 to 24.—How to read Starrett’s ten-thousandths micrometer caliper.

To read a ten thousandths caliper, first note the thousandths as in the
ordinary caliper, then observe the line on the sleeve which coincides with
a line on the thimble. If it be the second line, marked 1, add one ten
thousandth; if the third marked 2, add two ten thousandths, etc.

Formulae for Speed of Gears.—When three factors are
known, the fourth can be found by using one of the following
formulae:

. Revs. of follower Xteeth on follower
Revs. of driver = -
teeth on driver
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Revs. of driver Xteeth on driver
teeth on follower

Revs. of follower =

Teeth on driver =Revs. of follower Xtee.th on follower
Revs. of driver

Revs. of driver X teeth on driver

T foll =
eeth on follower Revs. of follower

As in the case of pulleys, great speed changes are made by trains of
gears in place of a pair Examples are found in hoists, clocks, lathes, etc.

¥16. 25.—Diagram to accompany formulae for speed of gears.
i

Each pair in the train has its driver and follower, and_if the shafts be
parallel it is usual to get the speed change by keying two gears of unequal
size on every shaft, except the first and last.

Rule.—The product of the number of teeth on all the drivers
divided by the product of the number of teeth on all the followers is
the velocity ratio.

Example.—Assume that a train of gears has three drivers, A,B,C, and
three followers L, M, and N, as in fig. 25. A has 14 teeth and drives
L having 70 teeth. Pinion B, on same shaft with L, has 13 teeth and
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drives M, having 104 teeth. Pinion C, has 15 teeth, and is on the same
shaft with M; C drives N having 75 teeth. What is the velocity of A to N?
teeth on A Xteeth on B Xteeth on C

Velocity ratio=
Oty TaH0= esth on L X teeth on M X teeth on N

_lax13xis 1
70X104X75 200

Fis. 26.—Simple train of lathe gears for thread cutting.

Knowing the velocity ratio of the train, it is easy to find the 'speed of
N, if the speed of A, be known. If A runat 1800 revolutions per minute,
N will make only 9 revolutions; for 1800--200=9. .

When the speed of the first driver or the last follower is also
known, the speed may be figured from the rule foliowing.
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Rule.—Multiply the revolutions per minule of the first driver by
the continued product of the number of teeth on all drivers, and
divide by the continued product of the teeth on all followers. The
quotient will be the revolutions per minute of the last follower .

Lathe Gearing.—n figuring change gears, the number of
threads per inch 10 be cut corresponds lo the revolutions of the driver,
and the number of turns on the lead screw Lo move the carriage one
inch corresponds. to the speed of the follower.

Simple Gears

Rule.— The number of threads o be cut multiplied by the leeth
on the spindle stud equals-the number of threads on the lead screw
multiplied by the teeth on the lead screw gear.

Expressed as a formula:

threads to be cut  _ teethon lead.screw gear
threads on'legdscrew teeth on spindle stud
Example.—1f a lathe fiave 6 threads.on the lead screw and 40 teeth
on the lead screw gear, how many threads will be cut if a 24 tooth gear
be placed on the spindle stud?
threads to be cut=g)_
6 24

threads tbbe cut=g—g><6=10

The above assumes that the lathe is geared 1:1; that is, the lathe screw
constant is equal to the number of threads per inch on the lead screw.
if the lathe be not so geared, the lathe screw constant should be used in
place of the threads per inch on the lead screw.

This example shows how the figuring can be done when the gears are
on the spindle stud and lead screw; but the problem is usually one o
finding out what gears to use.
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o

Example.—Assume seven threads are to be cut, and there are five
threads per inch on the lead screw. What gears must be used?

threads to be cut =,teeth on lead screw gear
threads on lead screw teeth on stud gear

7 _ teeth on lead screw gear

5 teeth on stud gear

4G, 27.—Compound train of lathe gears for thread cutting.

The ratio of the gears is as 7: 5. By multlplymg both 7 and 5 by any
number, such as 6, gives

42 _ teethon lead screw gear
30  teeth on stud gear

If gears with 30 and 42 teeth be not available multiply by some other
number as for instance multiplying by say 4 gives

4X7 _ 28 _ teeth on lead screw gear
4X5 20  teeth on stud gear
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Compound Gears

Example.—Assume that a gear having 90 teeth is needed upon the
lead screw to cut a given number, of threads. If the set of gears furnished
fail to provide a. 90.gear, but provides one of 45 teeth, placing this on
the lead screw and meshing the two to one compound stud into the train
completes the desired ratio, and advances the tool as if the 90 tooth gear
had been used. g

Speed for Drills.—The following peripheral cutting speed is
recommended where high speed cutting tools are used:

Castiron............ e 55 ft. per min.
Machine steel................... KL
Wroughtiron.................... 40 «“ o«
Tool steel, annealed.............. 25 e«
Brass............... ... 100 ¢«
Bronze......................... 70 ¢«
Grey or red fibre.... % .......... 5 *“ o«

To find the cuttmg speed of a revolving shaft:

Rule.—Multiply the diameter of the shaft in inches by 3.1416
and mulliply the product by the r.p.m. of the shaft, and divide by
12, which will give the peripheral speed in ft. per min.

Example.—A shaft 1 in. in diameter revolves 134 r.pun. What is the
cutting speed?
1X3.1416X134

=35 ft. in.
12 35 ft. per min

Milling Machine Indexing.—The calculations by which the
index tables are produced and which must be followed for
determining the circle and moves for indexing numbers not
given in the tables can, perhaps, be best understood by taking
several practical examplés which follow.
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Example.—Indexing less than 40 divisions. Assume that a piece of
work mounted between centers is to be divided into 20 equal parts. This
will require 1/ of a turn of the spindle for each division, and since the ratie
between worm and worm wheel is 40 to 1, this will require /2 or two turns
of the worm and, therefore, two turns of the index crank. The gears
connecting the worm shaft and the index crank shaft are equal in size.

Example.—Indexing more than 40 divisions. It is desired to divide
the circle into 80 divisions. This time the worm wheel will make /s of a
turn, while the worm and index crank will make 40/s0 or 34 a turn. In both
of the above cases the index pointer always engages the same hole in the
index plate, consequently it is immaterial which one of the even number |
circles of holes it is set to.

Example.—Indexing 152 divisions. From the above two examples it
is evident that the ratio between worm and worm wheel is 40 to 1. Note
the following rules:

TR UUTTURE TN

Rule 1.—Forty divided by the number of divisions required will
delermine. the number of turns or the fractional part of a turn to be
made by index pointer, which was two turns for 20 divisions, and
Y5 a turn for 80 divisions. Now, following this rule, divide 40 by
152, which, expressed in the form of a fraction, is 4/ s,, of which:

Rule 2.—The denominalor represents the circle to be used and
the numeralor represenls the number of holes in this circle over
which the index pin must be passed for each division.

Applying . these rules to the first example gives the fraction 49/z0. If the
pin were in the 20 hole circle, it would pass over 40 holes, or two turns
for each division. Now, referring to the example in question, the index
plate does not have a circle containing 152 heles.

It is therefore necessary to transform this fraction into an equivalent
fraction whose denominator will be the same number as the number of
holes in one of the circles of the index plate. It does contain a 38 hole
circle. Hence, transform the fraction 49/15, to the equivalent fraction or
10/35 by dividing both the numerator and denominator by 4.

Applying Rule 2 to this new fraction 38 is the circle to which the index
pin must be adjusted, and it must move over a series of 10 holes for each
of the 152 divisions into which the work is to be divided.
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Example.—Indexing 33 divisions. The fraction now takes the form ot
40 /,,. The plate doas not contain a 33 hole circle, neither does it contain an
11 hole circle nor a 3 hole circle, and since these are the only numbers
which can be evenly divided into 33, make the transformation by multi-
plying instead of dividing. It is found that the plate does contain a 66
hole circle; therefore, by multiplying both numerator and denominator
by 2, gives the equivalent fraction or 8/, in which 66 is the circle and 80
is the number of holes over which the pin must pass for each division;
but since 80 holes are more than the 66 hole circle contains, divide 80
by 66, and find that it is contained once with 14 left over; therefore, the
pointer must make one complete turn and 14 holes in addition.

Example.—Indexing 395 divisions. The fraction is 40 /ses =% /150 =8%/19, in
which case use the 79 hole circle and index over eight holes. The highest
number that can be obtained with a high number indexing attachment is
7960. The fraction is 4°/19s0 =1/19». Here use the 199 hole circle and index
one hole for each of the 7960 divisions.

Differential Indexing.—In differential indexing the spindle
or driven shaft and the index plate are connected by a train of
gearing which causes the plate to turn either in the same or
opposite direction to that in which the crank is turned.

The total movement of the crank at every indexing is, therefore, equal
to its movement relative to the plate, plus the movement of the plate,
when the plate revolves in the same direction as the crank, or minus the

. movement of the plate, when the plate revolves in the opposite direction
to the crank.

N =number of divisions required;

H =number of holes in index plate;

n =number of holes taken at each indexing;

V =ratio of gearing between index crank and spindle;

x =ratio of the train of gearing between the spindle and the index plate;

S =gear on spindle q .
G =1st gear on stud }dnvers,
Gz2=2nd gear on stud dHAvane
W =gear on worm ?

Py =}% if HV be greater than Nn;
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x =lin;-1ﬂifHVbelessthanNn;

x -\—i; (for simple gearing);

x —g—G—(for compound gearing);
! . |

As applied to the spiral head of a mﬂhng machine made by Brown &
Sharpe Mfg. Co. V is equal to 40 and the index plates furnished have the
following numbers of holes:—(15, 16, 17, 18, 19,_20), (21, 23, 27, 29, 31,
33), (37, 39, 41, 43, 47, 49).

The -gears furnished have the following numbers of teeth:—24 (2) 28,
32, 40, 44, 48, 56, 64, 72, 86, 100. These index plates and gears pxowde
for the indexing of all divisions up to 382:

85° a

In selecting the index circle to be used, it is best to select one
with a number having factors that are contained in the change
gears on hand, for if H contain a factor not found in the gears,
x cannot usually be obtained, unless the factor be cancelled by
the difference between HV and Nz, or unless N contain the
factor.

Multiplying the numbers of holes in the plates by 40 gives all the values
of HV that can be obtained with the regular index plates. Following is
a table of these products, which will be found convenient to use, especially
when many combinations are to be obtained.

15X40 600 21 X40 840 37 X40 1480 n
16 X40 640 23 X40 920 || 39 X40 1560
17 X40 680 27X40 | 1080 - 41 X40 1640
18 X40 720 29 X 40 1160 43 X40 1720
19 X40 760 31 X40 1240 47X40 1880
20X40 | 800 - 33X40 1320 || ~ 49 X40 1960
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— — T T T

When HYV is greater than N7 and gearing is simple, use 1 idlet.

When HV is greater than N» and gearing is compound, use no idlers.

When HYV is less than Nz and gearing is simple, use 2 idlers.

When HYV is less than N7 and gearing is compound, use 1 idler.

Select #, so that the ratio of gearing will not exceed 6; 1 on account of
the excessive stress upon the gears.

Example.—N=59. Required H, » and x.

Assume H =33 - n=22
. (33X40) —(59%22). _ 22 _ 2
o - 33 3 3

Select .gears giving this ratio, as 32 and 48, the 32 being the gear on
spindle.and the 48 the gear on worm. HYV is greater than N»n and the
gearing is simple, requiring one idler.

Example.—N=319. Required H, # and x.

-Assume H=29 n=4

' g (319X 4)—(29X40) _ 116 _ 4
a . = e—e e =
T 29 29 1

“When the ratio is not obtainable with simple gearing, try compound
gearing. ‘-1% can be exp{q.sse(_i as follows: ?—;:g— or,% for which there-are
available gears.

HV is less than N»n and. thg gearing is compound, requiring one idler.

Example;—Spacing for quarter degrees. Required H; n and x for
spacing 14 degree or 1440 divisions.

Assume H=33 ' - n=1

(1440 1) —(33X40) _ 120 or 64 X100
. 33 33 40X 44

dne idler is required.

Aliquant or fractional spacing.

Example.—Required: A vernier to read to 1-12 degree or 5 minutes,
the: scale being divided to degrees. .
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Each Vernier space can equal 11-12 degree.
11 1 11 4320

127360 ~ 4320 > 11
Assume H=18 n=2

spaces in whole circle =392% spaces.

8
Then (39277 X2) - (18 X40)

18 - 18 11 C18 711 T 40X 44 .
One idler is required.

F16. 28.—Brown & Sharpe automatic spur gear cutting machine. The cutier spindle 1s sup-
ported in heavy bearings and is provided with a balance wheel, keyed to the tapered end
of spindle, to steady the cutting action. The spindle has keys for driving cutters with either
new or old size keyways. Ti is driven from a worm sliding in a splined horizontal driving
shaft, through a bronze driving gear, which is fitted to integral keys ¢ the spindle itself.
Positive clutches and integral keys are used to eliminate the possibility of backlash in the
spindle driving mechanism. The spindle can be removed and smaller sizes substituted and
the spindle outer bearing may be adjusted for wear. The work spindle slide has a tapered
gib on the inside of the way which provides an added guide when the slide is locsened for
adjustment. The slide has a positive bearing on both sides of the flat and dove-tail ways
to take end pressure. A central oiling station located on the cutter slide assures positive
lubrication of the spindle bearings and the cutter slide ways. The indexing mechanism is
also lubricated from a central station within the case itself. The cooling piping is arranged
to avoid sharp bends and air pockers.
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Gears

The author is indebled to the Brown & Sharpe Mfg. Co., Provi-
dence, R. I., for the formulae relating to spur, bevel, worm and worm
wheel gears.

SPUR GEARING.

Two spur gears in action are comparable to two correspond-
ing plain rollers whose surfaces are in contact, these surfaces
representing the pitch circles of the gears.

Pirce oF GEARs.

For convenience of expression the pitch of gears may be

gtated as follows:

F(G. 20.—Spur gears with reference letters fo accompany formulae.
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Circular pilch is the distance from the centre of one tooth tor
the centre of the next tooth, measured on the pitch line.

Diametral pitch is the number of teeth in a gear per inch of
pitch diameter. That is, a gear that has, say, six teeth for each
inch in pitch diameter is six diametral pitch, or, as the expres-
sion is universally abbreviated, it is “six 'pitch.” This is by
far the most convenient way of expressing the relation of
diameter to number of teeth.

Module is the pitch diameter of a gear divided by the
number of teeth.

FORMULAS.
N =number of teeth.
s =addendum and module.
¢ =thickness of tooth on pitch line.
"’ =chordal thickness of tooth.
f =clearance at bottom of tooth.
L' =working depth of tooth. .
D" 4+f =whole depth of tooth.
D’ =pitch diameter.
D =outside diameter.
D’ bottom diameter.
P’ =circular pitch.
P =diametral pitch.
H =height of arc.
s’ =distance from chord to top of tooth.
6 =14 the angle subtended by circular pitch.

4
P- St
ra EoraD 7 2 ore 2% orm DX
Ple pior=D'7 -50r=—5 3 T = N2
I P’ D’ D
$= pror=;or= .3183 P/ or = N "Nt
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Gear

’

P o 7 15708
t PR P
{
=3
s+f= I';57; or = .3683 P’
D”=2s;lor=%
D" +f= "";57; or = .6866 P’

'

FiG. 30.—Bevel gears with reference letters to accompany formulae—axes at right angles.

, N NP ' ae . DN
D =?,or=—7r—,or—.3183P N,or—N+2
D——'D’-i-z.<:;or=N+2 N=D'P;or=D P—2
P 0 P
90° FIPCA ot
6= = 2
N

1’
. s"=s5s4+H
t" =D’ sin' b .
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D" = D2 (D" 4 f); or __Nr_%sy_rg

BEVEL GEARS—AXES AT RIGHT ANGLES.

FORMULAS,
N, =

gear.
Ni= }Number of teeth{ o4

pinion.
P =diametral pitch. P’ =circular pitch.

a, = } centre angle =angle of edge: { gear.
ay = or pitch angle. pinion:

B =angle of top. B’ =angle of bottom,
8a= } angle of face { gear.

&= pinion.
ko= : .
Iz: - } cutting angle { gs;ﬁ;on.

A =apex distance from pitch circle.

A’ =apex distance from large bottom of tooth.

D’ =pitch diameter. D =outside diameter.
s =addendum and module.
¢t =thickness.of tooth at pitch line.
J =clearance.at bottom of tooth.

D" =working depth of tooth.
D" +f =whole depth of tooth. 2 a =diameter increment,

b =distance from top of tooth to plane of pitch circle.
F =width of face.
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2.314 sin & s+

’ —
tan 8 N ; or A

ga= 90°— (a5 + B); go = 90° — (a4 F)
h=a—pg

A=L e ]
2PJN¢ + Nb.

N
A=2Psina
, A N
A= cosﬂ’;°F=-2Psinacosﬂ7
A= smcosﬂ .

N N+ 2cos @ 4
53 2Asina;°r= D yore pr
)

P
, N NP DN
Dan,or- = ; Or = N+2cosa;°r=D
D=D'+2a

20=25COS X
b= atan af@forger = b for pinion
a for pinion = b for gear
14 a
1

1.1
s+ f = .3683 P;or = Atan §'; or=-———"l

P
D'=2s

D" 4+f = 2157

P

;or = .6866.F

Tacosa

- s= —P—~;or = —;0r= .3183 P’;or = Atan 8
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t
P = —- = —— pr—
F 3,or 5 f =

NoTe.—Formulas containing notations without the desiznating letters ¢ and b apply
equally to either gear or pinion. 1f wanted for one or the other, the respective letters are
vimply attached.

*The formula giving the lesser value of F should always be used.

BEVEL GEARS WITH AXES AT ANY ANGLE.

F1G. 31.—Bevel gears with reference letters to accompany formulae—axes at any angle.

FORMULAS.

C =angle formed by axes of gears.

N, = % gear
N, = } number of teeth ;inio ~

P =diametral pitch
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P’ =circular pitch.
o . gear.
e } angle of edge =pitch angle{ pinion.
S =angle of top.

B’ =angle of bottom.
g = gear.
2= } angle of face { pinion.
Z:: } cutting angle { ;g)tia:ir(.)n
A =apex distance from pitch circle.
A’ =apex distance from large bottom of tooth.
D =outside diameter.
D' =pitch diameter.
2 a =diameter increment.
b =distance from top of tooth to plaue of pitch circle.

NOTE.—The formulae for tooth parts av given on page 31 apply equally to these cases

in C

tan @, = —o cotaa=N—f’+cotC
Ny o cosC Na.sin C
N, ™

tan%:_sxﬁ_; cota',.=NN_“C+cotC
a ’  SIn .
— +cos C
N, t

NOTE.—The following formulae are correct only for *values of C less than 90°, If C be
greater than 90° see pages 37 and 38.

2sin
tan f = ; Or=
N

LS

A ?

2.314 sin & s+

maEnss o -l

Za = 90°— (@ + B) forcasesIand II; or = B, for case IIT;
or = go®— (a,— @) for case IV. :

tan B’ =
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a and & apply equally to either gear or pinioa.
the respective letters are simply attached.

g = 90°—(a, + )

/1=0.’—'ﬂ'
Ao—N
2 Psin«x
Al = &
cos £’
I)’=1—\]-'or=§B
P w
D’ = .DN A; or =D . 2C0s @
N +2cos @ P
*D=D"+2a

D =D’, for gear in case III; or =D’—2 a, for gear in

Case IV.
2a =2S5cos

b =5sin a

Note.—Formulas containing notations without the designating letters

* For cases I and II and for pinions in cases III and IV

If wanted for one or the other,

The formulas given for @, and.a, '(when>C, N, and N, are

known) undergo some modifications for values of C greater than
o
g0°.

For bevel gears at any-angle but. go® we may distinguish four

cases; C, Ng, N; being given.

I. Case. See pages 35 to 37.
I1. Case. C is greater than go°.

sin (180—C) sin (180—C)

tan a,; = ; tan ap =

=2 t—cos (180-~C) =2 —cos (18c—C)-

N, N,
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III. Case. ag= 0% a,=C—qo0°
I7. Case.
tan ag=—0E o aym — 30 E
M b 20
cos E N, N, 08 E
For an example to apply-to Case III., the following condition
must be fulfilled:

N, sin (C—g0°) =N,
To distinguish whether a:-given example belongs to Case II. or
Case IV., we are'guided by the following condition:

. . oy { smaller than N,, we have Case II,
Is: Nq sin (C—90°) { larger than N;, we have Case IV

UNDERCUT IN BEVEL GEARS.

By undercut in gears is understood a special formation of
the tooth, which may be explained by saying that the -elements
of the tooth below the pitch line are nearer the centre line of
the tooth than those on the pitch line. Such a tooth outline is
to be found only in gears with few teeth. In a pair of bevel gears
where the pinion is low-numbered and the ratio high, we are apt
to have undercut. For a pair of running gears this condition
presents no objection. Should, however, these gears be intended
as patterns to cast from, they would be found useless, from the
fact that they would not draw out of the sand.

If a pair of bevel gears with teeth constructed on this basis
have undercut, we can nearly eliminate the undercut—and for
the practical working this is quite sufficient—by taking as a basis
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for the construction of the tooth outline a pressure angle of 20°.
The question now is: When do we and when do we not have
nmdercut? Let there be:

N = number of teeth in gear.
#n = number of teeth in pinion.

#a/N? + n?
- -
where we have undercut for p less than 3o.
This formula is strictly correct for epicycloidal gears only. It
is, however, used as a safe and efficient approximation for the
involute system.

7 /
| —

%

) | WORM
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Worm and Worm Wheel

L =lead of worm.
N =number of teeth in gear.
m =turns per inch of worm.
d =diameter of worm.
d’ =pitch diameter of worm.
d”’ =diameter of hob.
D =throat diameter.
D’ =pitch diameter of worm wheel.
B =blank diameter (to sharp corners).
C =distance between centres.
P ~diametral pitch.
P’ =circular pitch for worm wheels or axial pitch for worms.

:,,}See figs. 32 to 35..

s =addendum and module.
t =thickness of tooth at pitch line.
* =normal thickness of tooth.
f =clearance at bottom of tooth.
D" =working depth of tooth.
D" +f =whole depth of tooth.
b =pitch circumference of worm.
9 =width of worm thread tool at end.
w =width of worm thread at top and width of hob tool at
end.
& =angle of tooth of worm wheel with its axis, or the angle
of thread with a line at right angies to its axis.
If the lead is for single, double, triple, etc., thread, then
L=P,2P 3P, etc

In multiple threaded worms and their mating wheels, if the
angle 6 is more than 18° the tooth parts snould be figured on
the normal as for spiral gears. In using the formulas for spiral
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gears, it should be borne in mind that while P’ is the axial pitch
for worms it is the circular pitch for splral gears.

& = 60° to go°
T e 2

m

,_D

N +2

N !
p-NE ; or = N

4

N
D=2 2

P
b=nr(d—25); or =nd
tan 0 = I_‘ Practical only when width of wheel on wheel pitch

b circle is not more than 24 pitch diameter of worm.

" =tcos §
r = 4_ 2s

2
rll =T,+D” +f

D' +d D' +d
C = ar —s; or 22l

2 2

. a e
B=D+2 (7'_,.' COS _) A measurement of sketch is
2

generally sufficient.
& =ds2f

=.3095 P’ Nore.—Hob and worm should be marked, as per example :
7 = - P 4 turns per 1” single .25 P’; .25 R, H.
3354 2 turns per 17/ double .25 P’; .50 L. H.

NOTE.—The notations and formulas referring to tooth parts, given on pages 31 and 32,
for spur gears, apply to worm wheels and are here 1sed.
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Heat

Thermometer Scales.—Three scales are in general use
1. Fahrenheit.
2. Centigrade.

3. Reaumur.

The Fahrenheit thermometer is generally used in English speaking
countries, and the Centigrade or Celsius thermometer in countries that
use the metric system. In many scientific treatises in English, howeve .,
Centigrade readings are also used, either with or without their Fahrenheit
equivalents. The Reaumur thermometer is used to some extent on the
continent of Europe.

Fahrenheit Scale.—The number of degrees between the two fixed
points is 180. The freezing point is 32 above zero, hence the boiling point
is 32°4-180°=2]12°,

* Centigrade Scale.—The number of degrees between the two fixed
points is 100. The freezing point is zero, hence the boiling point is 100°.

Reaumur Scale.—The number of degrees between the two fixed points
is 80. The freezing point is zero, and accordingly, the boiling point, 80°.

The following conversion fractions will be found convenient
to obtain equivalent readings.

1 degree Fahrenheit = 5/9 degree Centlgrade = 4/9 degree Reaumur
1 ki Centigrade = 9/5 : ahrenhelt = 4/5
1 Reaumur =9/4 *“ =5/4 = Cent1grade

Temperature Fahrenheit ='9/5 X temp. C + 32° = 9/4 R 4 32°
Centigrade = 5/9 X (temp Fahr, —32) = 5/4 R
eaumur =+4/5-temp. C = 4/6 (Fahr..— 32¢;
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Specific Heat.—Defined as the ratio of the quantily of heat
needed 1o raise ils lemperalure one degree to lhe amouni needed
o raise the lemperature of the same weight of waler one degree;
expressed as a formula,

B.t.u. required to raise temperature of substance 1°
B.t.u. required to raise temperature same weight water 1°

Specific heat =

from this it follows that,
> .

1.3654

C .
FAHR. 212° 32° 0° - 450.6°
ABS. 673° 493°459.6° Q°

F16. 36.—Graphical method of determining the absolute zero. In construction draw a.
horizontaliline torepresenttemperatures to any scale and mark on it points representing the
freezing point anc{J boiling point of water, marked 32° and 212° respectively. From 32°
set out, at right angles to the line of temperature, a line of pressure AB, = 1 atmosphere to
any scale, and at 212° a line CD = 1.3654 atmospheres to the same scale. ~ Join the ex-
tremities bB, of these lines to intersect the line of temperatures. It is assumed by physicists
that, since the pressures vary regularly per degree of change of temperature between certain
limils within the range of experiment, they vary also at the same rate beyond that range, and,
therefore, that the point of intersection of the straight line DB, produced gives the point at
which the pressure is reduced to zero, this point being known as the absolute zero.

Specific heat = B.t.u. required to heat one Ib. of a substance 1°F,

One of the simplest methods of determining specific heat is by
mixing the substance with water.

Example. Suppose that six pounds of mercury at 100° C, be poured
into two pounds of water at 0°C, and that the resulting temperature of the
;‘mixture" is 9°. The specific heat S, of the mercury can then be found as

ollows:

In falling from 100° to 9° the six pounds of mercury give out
6 X (100—9) X S, or 546 S heat units. These have gone to heat two
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pounds of water from 0° to 9°, which requires 2 X 9, or 18 heat units,
Hence, we may write,
546 S = 18
Therefore, S.= 18 + 546 = .033

As given by Rontgen, the specific heat of various substances is as follows:

Specific Heat of Various Substances

o Solids 0051 Liquids
PPer.......... . 095 Water........... 1,
‘Wrought iron.... .1138 Sulphuric Acid... .335
Glass........... .1937 Mercury......... .0333
Cast iron....... .1298 Alcohol (ann) ... .7
Tead........... .0314 Benzine. . ... ... 95
00000000000 .0562 Ether........... 5034
Steel Sott.... .1165
° \Hard.... .1175
Brass............ .0939
e.oooeen...... 504
Gases
Constant Constant
pressure  volume
Air. ..o .23751 .16847
Oxygen......coeveeeennnnenn. .21751 .15507
Hydrogen.................... 3.409 2.41226
Nitrogen......... ... ....... 2438 17273
Ammonia.............. ... .508 299
Alcohol............. ... ... 4534 .399

Absolute Temperature.—According to various experiments
that have been made with pure gases with the use of air ther-
moemeters, it has been found that air expands approximately

96 of ils volume per degree increase in temperature at zero F.

%i of its volume at 0° C.

NOTE.—Specific heat of gases. Experiments by Mallard and Le Chatelier indicate
a continuous increase in the specific heat at constant volume of steant, carbon dioxide, and
even the perfect gases, with nse of temperature. The variation is inappreciable at 212° F.,
but increases rapidly at the high temperatures of the gas engine cylinder.
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Accordingly, by cooling the air below zero, the reverse process should be true;
that is to say, for each degree F. decrease in temperature, the volume at

zero would be contracted :1351)—6 It must be evident then, if a volume

of a peifect gas could be cooled to —459.6° F. it would cease to exist,
giving the theoretical point known as the absolute zero. However, all
gases assume the liquid form at very low temperature, and accordingly
do not obey the law of contraction of gases at and near the absolute zero.

High Temperature Judged by Color.—The following table
has been generally accepted, giving the colors and their corre-
sponding temperature as below:

Deg. Deg. Deg. Deg.

Cg §g C F
ipi heat .. 525 977 Deep orange heat.. -1,100 2,021
glfup;eeﬁtrf:gt ...... 700 1,292 Clear orange heat.. 1,200 2,192
Incipient cherry red White heat....... 1,300 2,372
1088500 0000000000 800 1,472 Bright whiteheat.. 1,400 2,552
Cherry red heat . 1,652 . . 1,500 2,732
Clear cherry red heat 1 000 1,832 Dazzling white heat . écgo 0 3(;2

Conductivity.—This is the relative value of a malterial, as com-
pared with a standard, in affording a passage through itself or
over its surface for heal.

Latent Heat.—Defined as that quantity of heat which dis-
appears or becomes concealed in a body causing a ‘‘change of
state,”” as in changing ice into water or water into steam.
Latent heat causes a change of state without a change in
temperature.
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99 95 Ioo

Per Cent of Fixed Carbon in Combustibla

Combustion

The chemical
compounds formed
by the combina-
tions of carbon and
hydrogen called

. hvdro-carbons, are:
Methane or marsh.
gas (CH,) having
a heat value of

combustibles and fixed carbon in combustion as deduced by

F1G. 37.—Curve of relation between heat value per pound of
Kent.

oltiianﬂlog Jo puniog 3ad ‘() I'q

l . & 23,616 B.t.u.;ethy-
Z s
r w3 lene or olefiant gas
\ ;’-8 e (C.H,), having a
\ S5 value of 21,344
oI ‘g B.t.u.; acety-
¢~ 8% lene(C,H,),having
\ z _33
~ & %2 a heat value of
N 92 E: aboutl8,196B.t.u.;
la-.l ,ga benzole (CsHs),
o 2 § having a heat value
% ¢= of about 18,000
g  B.au.
] 9 83
i " 33
=]
h
: - s
¢ ®» o - O g3
LHVHDO NNVWTIONIY -
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If these gases be completely consumed so as to develop the number of
heat units given, the products will be carbon dioxide (CO:) and water
(H.0). The igniting temperature of these gases varies from 580° to 667° C.

Air Required.—The theoretical amount of air per pound of
coal varies between 7 and a little over 11 pounds.

Air Required for Different Fuels

: : Air theoretically
Air theoreticall :
Fuel required per i laegou(x)reg E":{
pound of coal ’gen erated
Illinois bituminous, poor quality. .... 7.0 7.6
Illinois hituminous, good quality.. ... 9.4 7.55
Anthracite, average............. . 10.2 7.65
Semibituminous, Pocahontas. .. 11.2 7.5
Liquidfuel........................ 14.24 7.04
Let the ultimate analysis be as follows:
Per cent
Carbon. ... 74.79
Hydrogen........ovviiieiii i e 4.98
L 3L 6.42
Nitrogen. .. ..o 1.20
Sulphur. ... e 3.24
Water. . oo e 1.55
1N5000000000000 0000000000800 a0a0000%00000 9Q00000900000Aa000g 7.82
100.00

Expressed numerically, the theoretical amount of air for the above analy-
tls s as follows:

TAT9C X224 =1.9944 O needed
(0498 — '(%T“z) Hx8= 0418 « =
0324 Sx1 - 034« =
Total 20.686 “
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One pound of oxygen is contained in 4.32 pounds of air.
The total air needed per pound of coal, therefore, will be 2.361 X4.32=
10.2.

The weight of combustible per pound of fuel is .7479.0498*4-.0324 +
.012.=.84 pounds, and the air theoretically required per pound of com-
bustible is 10.2 + .83 =12.14 pounds.

The above is equivalent to computing the theoretical amount of air
required per pound of fuel by the formula:

o
Weight per pound =11.52 C + 34.56 (H—-g) +4.32 S

where C, H, O and S, are proportional parts by weight of carbon, hydrogen,
oxygen and sulphur by ultimate analysis.

Ques. Is it possible in practice to obtain perfect combus-
tion with the theoretical amount of air?

Ans. No.

Heating Value of Fuels.—In calcuiating the heating value of
a fuel the result is brought down to a comparative basis of
evaporation from and at 212 degrees Fahrenheit, and mean atmos-
pheric pressure.

Under this condition one pound of water is turned into steam by the
addition ot 970.4 heat units. The quantity of water which can be evap-
orated under these conditions by one pound of pure and dry carbon is
14.94 pounds. As a heat unit is equal to 778 foot pounds, and as a pound

of carbon contains about 14,500 heat units, the heat it contains would
be equal to 14,500 multiplied by 778 =1,281,000 foot pounds.

In the case of hydrogen, one pound of the fuel would evaporate about
65 pounds of water.

Dulong’s formula for the heating value per pound of dry fuel is

B.t.u.=14,600 C-+62,000 (H—sg) + 4,000 S

where C, H, O and S are the proportionate parts by weight of
carbon, hydrogen, oxygen and sulpbur.

*NOTE.—Available hydrogen.
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““ Available” Heating Value.—If 9 lbs. of water which would
result from the burning of one pound of hydrogen and the giving off
of 62,000 heat unils, the water being cooled o the temperature of
the air, be passed into a hot furnace, it will be decomposed into
eight pounds of oxygen and one pound of hydrogen.

Example.—If one pound of hydrogen be bumed in just enough air to
supply 8 pounds of oxygen the hydrogen and air be supplied at 62° and the
products of combustion escape at 212°F ., what is the net available heating
value?

’ B.tu. B.i.u.
Total heating value of 1 pound of hydrogen....... 62,000
Heat lost, latent of 9 pounds of water at 212°F.=
O70. 430 ottt e 8,733.6

Nine pounds of water heated from 62°F. to 212°F.. 1,440

Nitrogen with 8 pounds oxygen heated from 62°F.
10 212°F. =83.32 X 150 X .2438 (specific heat)...... 971 11,1446

Net available heating value..................... 11,1446 50,855.4

Example.—If the air supply be double that required to effect the com-
bustion of the hydrogen, the other conditions being the same as in the first
example, what is the net heating value? * :

B.t.u.
Net available heating value (from example 1)..... 50,855.4
Excess air 8 X4.32 pounds
Heat loss due to excess air 4.32* X150 X.2375t = .. 153.9 153.9
Net heating value (including loss by excess air)............... 50,701.5

*NOTE.—4.32 1s the proportion of air to orygen by weight;

{NOTE.—.2375 ir the specific heat ot air.
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Calculation from Average Analysis

Avail- Total Differ- Fixed Differ.
able H. C. ence Carbon ence

Pocahontas........ 3.89x3=11.67 84.87 73.20 74.84 +1.&4
Thacker........... 4.27%X5=21.35 78.65 57.30 56.57 — .63
Pittsburgh......... 4.15%X5=20.75 75.24 54.49 53.31 - .68
Darlington......... 4.01X5=20.05 75.19 55.14 54.69 — .45
Mahoning.......... 3.71X5=18.55 71.13 5258 50.95 —1.63
Upper Freeport..... 3.94%X5=19.70 72,65 52.95 51.63 —1.32
Jackson............ 3.22X5=16.10 70.72 54.62 52.78 —1.84
Hocking Valley..... 3.34%X5=16.70 68.03 51.33 49.64 —1.69

Heating Value of Gaseous Fuels.—The accompanying table
gives the calorific value of the more common combustible gases,
together with the theoretical amount of air required for their
combustion.

Weight and Heating Value of Various «Gasses at 32° F. and Atmos-
pheric Pressure with Theoretical Amount of Air Required
for Combustion

Cubicfeet/Cubicfeet
Cubicfeet| B.t.u. |B.tu.| of air of air
Gas Symbol | of gas per per | required| required

per pound| pound | cubic [per pound|per.. cubic
foot | of gas [footofgas

Hydrogen.......... H 177.90 | 62000 { 349 | 428.25 2.41
Carbon monoxide... CO 12.81 4450 347 30.60 2.3

Methane........... CH¢ 22.37 | 23550 | 1053 | 214.00 9.57
Acetylene ......... C:H, 13.79 | 21465 | 1556 | 164.87 11.93
Olefiant gas........ C*H¢ 12.80 | 21440 | 1675 | 183.60 14.33

Ethane............ | _CHs 11.94 | 22230 | 1862 | 199.88 16.74
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Example—Assume a natural gas, the analysis of which in percentages
b{ volume is oxygen=.40, carbon monoxide=.95, carbon dioxide=.34,
olefiant gas (C'Hf) =.66, ethane (C?H®) =3.55, marsh gas (CH*)=72.15
and hydrogen=21.95. All but the oxygen and the carbon dioxide are
combustibles, and the heat per cubic foot will be,

From CO = ,0095 X 339 = 3.22
CHt = .0066 X 1,675 = 11.05
C*H¢ = 0855 X 1,859 = 65.99
CH' = .7215 X 1,050 = 757.58
H = .2195 X 346 = 75.95

B.t.u. per cubic foot 913.79

Calculated Theeretical Amount of Air Required per pound of
Various Fuels '

Weight of constituents in one
*pound dry fuel Air’ required
Fuel per pound
’ of fuel
Carbon | Hydrogen| Oxygen pounds
per cent | per cent | per cent

Coke...coovvvvvivnnnnn. 94, ves e 10.8
Anthracite coal .. 91.5 3.5 2.6 117
Bituminous coal. 87. 5. 4, 11.6
Lignite. .. ..oovevevann. 70. 5 20. 8.9
00d. .. iiiie e 50. 6 43.5 6.
1) P 85. 13 1. 14.3

Example—Assume a blast furnace gas, the analysis of which in per-
centages by weight is, oxygen=2.7, carbon monoxide=19.5, carbon
dioxide =18.7, nitrogen=59.1. Here the only combustible gas is the
carbon monoxide, and the heat value will be,

.195X4.450 =867.8 B.t.u. per pound.

The net volume of air required to burn one pound of this gas will be,

.19530.6 =5,967 cubic feet.
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Oxygen and Air Required for Combustion of 32 Degrees and 29.29

Inches. By Weight
1 2 3 4 E) [ ] 7 8 ° 10
Nitrogen| ,;
|Atomic Oxygen_|perpqund] Air per | product [ .0,
Oxidisable  [Chem-{ or . d offperpound) 3,
e ; | Cremient Productof  |Perpound luma 11 of | valoe
%-nnbmlb: w:go! g::w reaction combustion ooluﬁn 1 fl"s?«"z':x’ g::'::;f "m“'l“ 3 &u‘o‘uu'
weight| c o 1B
pounds | Pomds ‘pounds
Carbon.......... C |12 |C+20=CO, Carbon dioxide...| 2.667| 885 | 11.52 | 12.52 | 14,600
Carbon. . C [12 | C+0=CO [Carbon 1.333 443 | 576 | 6.76 | 4,450
€arbon monoxide.] CO | 28 | CO+0=CO, Cnrbon dioxide, . 571F 1.9 2.47 3.47 | 10,1503
Hy A H |1 2&;0-}{(0 ........... 8 | 26.56 | 34.56 | 35.56 | 62,000
Methase. ....... Jenf 18| SHHi0S c":g“w‘:',;’;‘j.’fm 4 | 1328 | 1728 | 18.28 | 23,650
Salphur. ....... 2| 8 | 82| S4+20=50; [Sulphur dioxide.. 1 | 332| 432 532 4,050

Oxygen and Air Required for Combustion at 32 Degrees and 29.92

Inches. By Volume
1 2 i 1 12 13 14 15 16 17 18
Volumes Volumey . | VelumeperVotume off Volume offVolume ef]Vohime of
ol
Oni. Chemicaflcolumn 1 oxyp-n Volumes of pound o oxveen, [PC mbuse |pe- nd{Pou of
tancs e | ymbol | coloing | bini Tormed  [ia” aasoss poind °r P b = o
= iy with volums colump 1 |PECPOmC eolu}nn“)lé 16+ column
volume wvloﬂ:l cubie foet] cubic feot [° ol feey [ cubic feet "';“'b'c
1C 2 2COs 14.95 29.89 29.89 | 112,98 | 142.87
1C 1 2CO 14.95 14.95 29 89 56.49 86.38
2CO 1 12.80 6.40 2.80 24.20 37.00
2H 1 2H,0 179.32 89.68 179 32 | 339.08 | 518.41
1C4H 4 1CO 2H.0 22.41 44.83 7.34 | 169.55 | 236.89
18 2 1S0. 5.60 11.21 ll 21 42.39 §3.60
* Ratio by weight of O to N -3 P :
t uzmpoznd- e N e nd of ©. ReEBurd S5 19 % ko i

The net air required for combustion of one cubic foot of the gas will be,
CO = .0095 39 =

X 2. 02
C'H¢ = .0066 X 14.33 = .09
C'H* = 0355 X 16.74 = .59
CH¢ = 72156 X 9.57 =~ 6.90
H - .2195\)( 241 = 83

Total net air per cubic foot 8.13
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(for pure carbon and 500°F, stack temperature

CO2 and Fuel Losses.

According to Hays
Pct. pre- Pct. pre- Pct. pre-
ventable ventable ventable
Pet, - Fuel Pct. Fucl Pct. Fuel
COas Loss CO: Loss COa Loss
10, ...l 5.69 L 22,79
98... .o 6.04 48 ...000h..... 24.21
96............ 6.4, 46............. 25.76
94............ 6.78 44 ...l 27.44
9.2............ 708  42............. 29.29
L TN 7.58 4. e 31.28
88. ... 8.02 3.8 it 33.58
86............ 8.47 36,00l 36.08
84, ... 8.95 4.l 38.87
82 ...t 9.44 3.2 i, 42.01
8. d &b ooaoaoadaoaac 45.28
- 10.51 2.8, 49.64
7.6 d 28... ... 54.34
% T 11.7 24 ...l 60.32
7. : 22, ..t 66.3
7. ? 0000000000000 74.
6. 18,0 vut 83.56
6. 000000000000 95.45
6. 1.4
6. 1.2
6. 1.
5. 8
5. 6
5. 4
52, it 21.47 2
CO2 AND AIR EXCESS
(According to Hays)
Percentage Percentage Percentage Percentage
CO: air excess COs air excess
15 38 7 158.7
14 47.8 8 195.7
13 59.2 6 245
12 72.5 5 314
11 88.1 4 417
10 107. 3 590
9 130. 2 935
i 1970
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Air

Air is a mechanical mixture composed of 78%, by volume of
nitrogen, 21 9%, of oxygen, and 1%, of argon. The weight of pure
air at 32° Fahr. and atmospheric pressure (29.92 ins. of mercury
or 14.7 Ibs. per sq. in.) is .08073 Ib. per cu. ft.

The volume of a pound of air at the same temperature and pressure
is 12.387 cu. ft.

The weight of air at any temperature or pressure is:

1.325XB

W== ———9299002000050099002000007 08}

“in which
W =weight in Ibs. per cu. ft.
B =height of barometric pressure in ins. of mercury.
T =absolute temperature Fahr.

The absolute zero from which all temperatures must be
counted when dealing with the weight and volume of gases is
assumed to be —459.6° Fahr. Hence, to obtain the absolute
temperature T used in the formula above, add io the lemperature
observed on a regular Fahrenheit thermomeler the value 459.6.

1n obtaining the value of B, 1in. of mercury at 32° Fahr. may be taken
as equal to a pressure of 491 1b. per sq. in.

Example.—What is the weight of a cubic foot of air at atmospheric
pressure (29.92 ins. of mercury) at 100° Fahr.?

Substituting in formula (1},
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1.325X29.92

e 100+459.2

=.0709 lb.

The specific heat of air, that is, the heat units required to raise
the temperature of 1 1b. of air 1° Fahr. equals, at constant pres-
sure .2375 B.t.u. and, at constant volume .1689 B.f.u.

The pressure of the atmosphere varies with the elevation.
The pressure decreases approximately one-half pound for every
1,000 feet of ascent, being measured by a barometer in inches of
mercury.

To obtain the pressure in lbs. per sq. in. from the barometer
reading, multiply the barometer reading by .49116.

Thus, a 30 inch barometer reading signifies a pressure of
,-49116X30=14.74 Ibs. per sq. in.

The following table gives the pressure of the atmosphere in pounds
square inch for various readings of the barometer. 2 po bt

Pressure of the atmosphere per square inch for various readings of
the barometer:

Rule.~—Barometer in inches of mercuryX.49116 =lbs. per sq. in.

Barometer Pressure Barometer Pressure
(ins. of mercury) | per sq. ins., Ibs. { (ins. of mercury) | per sq. ins., Ibs.
28.00 13.75 29.921 14.696
28.25 13.88 30.00 14.74
28.50 14.00 30.25 14.86
28.75 14.12 30.50 14.98
29.00 14.24 30.75 15.10
29.25 14.37 31.00 15.23
29 .50 14.49
29.75 14.61

Weight and Volume of Air
1 cu. ft. of air at 32° F. and atmospheric pressure weighs .080728 Ib.

.0005606 1b. per sq. in.

TapScn fada ={.015534 in. of water at 62° F,
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For air at any other temperature T° Fahr. multiply by 492 +(460+4T).
1 1b. pressure per sq. ft.=12.387 ft. of air at 32° F.

1« * “ sq.in.=1784, ¢ oo

1in. of water at 62° F. =64.37 * * « * * ¢

For air at any other temperature multiply by (460+4-T) =492

At any fixed temperature the weight of a given volume is proportional
to the absolute pressure.

Water

Water freezes at 32° and boils at 212° Fahr. when the
barometer reads 29.921 ins.

The boiling point of water will lower as the altitude increases; at an
altitude of 5,000 feet, water will boil at a temperature of 202° Fahr.

MAXIMUM
DENSITY

Fies. 41 to 44.—The most remarkable characteristic of water: expansion. below and above iis
temperature or ** point of maximum density” 39.1°Fahr. Imagine one pound of waterat 39.1°F.
placed in a cylinder baving a cross sectional area of 1 sq. in. as in fig,42, The water havi
volume of 27.68 cu. ins., will fill the cylinder to a height of 27.68 ins. 14 the liquid be cooled
it will expand, and at say the freezing point 32° F., will rise in the tube to a hei %t of 27.7 1ns.,
as in fig.43 before freezing. ~Again, if the liquid in fig 42 be heated, it will also expand and

rise in the tube, and at say the boiling point (for atmospheric pressure 212° P, i
the tube to a height of 28.88 cu. ins.gag in fig. 4. ep 12°B.), will cccupy

BOILING
POINT
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At its maximum density (39.1° F.) water will expand as heat is added,
and it will also expand slightly as the temperature falls from this point.
An increase of pressure elevates the boiling point.

The weight of a cu. ft. of water at maximum density is 62.425 Ibs.

Water contains, mechanically mixed with it, about 5%, of its volume of
air, hence the necessity of air pumps for surface condensers.

The compressibility of water is from .000040 to .000051 for one atmo-
sphere decreasing with increase of temperature.

1 1b. of water = 27.464 cu. ins.
=.12 U. S. gallon.
1 cu. in. of water =.03607 lb. at 62° Fahr.

Expansion of Water.—The follbwing table gives the relative

volumes of water at different temperatures, compared with its
volurne at 4° C. according to Kopp, as corrected by Porter.

Expansion of Water !

Cent. |Fahr.| Volume. | Cent.|Fahr.[ Volume. |Cent. |Fahr.| Volume.
4° | 39.1° 1.00000 35° 95° 1.00586 70° 158° 1.02241
5 |4l 1.00001 40 104 1.00767 75 167 1.02548
10 | 50 1.00025 45 113 1.00967 80 176 1.02872
15 |59 1.00083 50 .| 122 1.01186 85 185 1.03213
20 |58 + 1.00171 55 131 1.01423 90 194 1.03570
23 77 1.00286 60 140 1.01678 95 203 1.03943
30 |8 1.00425 65 149 1.01951 100 212 1.04332

Steam is the invisible vapor of water and is classified as: wet,
dry, saturaled, superhealed or gaseous.

'-ﬁ

NOTE.—The white cloud seen issuing from an exhaust pipe,' and ignorantly called steam,
is not steam, but 1n reality, a fog of minute liquid particles produced by condsusation.
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THE HEAT AND WORK REQUIRED

TO MAKE STEAM

Stage 2 Stage 3 Stage 4

Stage 1
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£16S. 45 to 50.—From ice to steam, illustrating the six stages in the making of steam from

ice at 32° Fahr.
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The author does not agree with the generally accepted calculation for
the external latent heat, or external work of vaporization and holds that
it is wrong in principle. The common method of calculating this work is
based on the assumption that the amount of atmosphere displaced per
pound of steam, is equal to the volume of one pound of saturated steam
at the pressure under which it is formed; it is just this point wherein the
error lies, as will now be shown. The volume of one pound of water at
212° atmospheric pressure, is 28.88 cu. ins. Now, if this water be placed
in a long cylinder, having a cross sectional area of 144 sq. ins. it will occupy
a depth of .0167 ft.

If a piston (assumed to have no weight and to move without friction) be
placed on top of the water as in stage 4 (fig. 48)), and h=at applied, vapor-
1zation will begin, and when all the water has been changed into saturated
steam, the volume has increased to 26.79 cu. ft., as in stage 6, (fig:50 )¢ that
is, the volume of one pound of saturated steam at atmospheric pressure is
26:79 cu. ft.

ITZ CLOWD
RLY KNOWN

“SATURETED OR
< GRY STEAM
CONDENSATION ON (=5 o
SIDE OF VESSEL ~ ; ;
e " ] Y SURFALE

EXPLOSION OF & .
BUBBSLEN 3\ < VARGRIZATION - %
DISENGAGEMENT:.
HEATED, CENTRAL.
A SRTON.
ZO0L QUTER 3
PORTIONT— i » CONDENE TION_
EXPANSION OF THE [t e L SCORPLETE)
STEAM:GLOBULES T =i IF CCNBENSATION
GLOBULE DISEN GAG- e EXPANSION
» NG FROM HEATING. CHANGE OF STATE
SUREACE (leAL) L r
DISENGAGEMENT) L. e et HERIG PRESS-
! 3 U5 FRESSURE
THE HEAD CF
ATEF:

YEAL b P 1
HEATING SURFACE y bhe %

’
'h-—-HEi«T SU2PLY

f1c. 51..~The phenomena of vaporization or process of boiling.
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Since the area .of the piston is 1 sq. ft., the linear distance from the
bottom of the cylinder to the piston is 26.79 ft., but the piston has not
moved this distance. The initjal position of ‘the piston being .0167 ft.
above the bottom of the cylinder, its actual movement is

26.79 — .0167 =26.7733 ft.

Accordingly, the work done by the steam in moving the piston against

the pressure of the atmosphere to make room for itself or

external work =area pision X pressure of almosphere X movement of pistor:
=144 sq. ins. X 14.7 Jbs. persq. ins. X 26.7733 1t.
=56,673.72 ft. 1bs.
The erroneous method of making this calculation is to consider tue
movement of the piston equal to the distance between the bottom of the
cylinder and the piston, or 26.79 ft., which would give for the external

work
@ 14414.7 X26.79 = 56,709.07 ft. Ibs.
being in excess-of the true amount by
56,709.07 — 56,673.72 =35.35 ft. lbs.

0167 ft. X144 sq. ins.'xl4.7_ =35.35 ft. Ibs.

Moticn is purely a relative matter, and accordingly something must
be regarded as being stationary as a basis for defining motion; hence the
,question: )

Is the movement of the piston in stage 6 (fig. 50) to be referred to a station-
ary water level or to a receding waler level?

‘The author holds that the movement of the piston referred to a stationary
water level gives the true displacement of the air and is accordingly the
proper basis for calculating the external work. It must be evident that
since the ‘water alreddy existed at the beginning of vaporization, the
atmosphere was already displaced to the extent of the volume occupied
T)y the water, and therefore this displacement must not be considered as
contributing to the external work done by the steam during its formation,
The amount of error (35.35 ft..Ibs.) of the common calculation, though very
small, is an appreciable amount; its equivalent in heat units is

35.35-+-777.52=.0455B. t. u.

or-’

The thermal equivalent of the external work is
56,673.72+777.52=72.89 B. t. u.
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Steam Table

giving

Properties of Saturated Steam

TOTALHEAT
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The Steam Takle.—By definition the properties of steam
given tn tabular form. A few values are given above to illustrate
how to use the steam table.

For table giving values from 29.74 in. vacuum to over 5,000 1bs. absolute
pressure, see Audel’s Engineers and Mechanics Guide Vol. 1.
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The following examples illustrate how to use the steam table:

Example.—How many heat units are saved in heating 25 Ibs. of feed
water from 90° to 212°?

In column 4, total heat in the water at 212°=180
In column 4, total heat in the water at 90°= 58
Heat units saved per 1b. of feed water =122
Total heat units saved =122 25=3,050 B. t. u.
Example.—What is the weight of 20 cu. ft. of steam at 150 1bs. absolute
pressure?

The weight of 1 cu. ft. steam at 150 Ibs. abs. is given in column -9 at
332 1b. Twenty cu. ft. then will weigh: .332X20=6.64 lbs.

Example.—How much more heat is required to generate 26 Lbs. of steam
at 150 lbs. abs., than at 90 lbs. abs.

In column 5 total heat in steam at 150 lbs. abs.=1,193.4
In column 5 total heat in steam at 90 lbs. abs.=1,184.4

Excess heat required per pound (weight) = 9 B.t.u,
Total for 26 1bs. =9X26=234 B. t. u.

Example.——How much heat is absorbed by the cooling water, if a con-
Jensing engine exhaust 17 lbs. of steam per hour at a terminal pressure
»f 18 lbs. absolute into a 284 inch vacuum.

1n column 5, total heat in the steam at 18 lbs. abs. =1,154.20
In column 4, total heat in the water with 2814’ vacuum=_ 58.00
Heat to be absorbed per lb. of steam .............. =1,096.2

Total heat absorbed by the cooling water per hour
1,096.2%X17=18,635.4 B. t. u.

Factor of Evaporation.—Defined as the quantity which when
mulliplied by the amount of sleam generaled al a given pressure
from water al a given temperature, gives the equivalent evaporation
from and at 212° Fahr.
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Expressed as a formula:
- H—h
F ST crreeseeeeeesresssencacencans (1)
fa which F =Factor of Evaporation,

H =Heat above 32° Fahr. in the steam at given pressure.

k =Heat above 32° Fahr. in water-at given.pressure.
H'=Heat above 32° Fahr. in steam at atmospheric pressure.
k' =Heat above 32° Fahr. in water at atmospheric pressure.

Pormula (1) just given is expressed in the simplest form as

Here 070.4=H' —h’ =1150.4—180 (see steam table)

Example:—What is the factor of evaporation for steam at 200 pounds
pressure when the feed water is delivered to the boiler at a temperature of
150° Fahr.? From the steam table, the heat H, in the steamat 200 pounds

ressure =1,199.2' B.t.u. The heat k, in the feed water above 32°at 150°
E‘ahr. is 150—32=118 B.t.u. Substituting these values in formula 2

1,199.2—118
970.4

“The meaning of it is that if a-boiler were generating, say 1,000 pounds of
steam per hour at 200 pounds pressure, from feed water at 150° Fabr. it
would absorb the same amount of heat from the fire as when generating

1,000X1.1142=1114.2 Ibs.

of steam “from and ot 212°", that is generating steam at atmospheric
pressure from feed water at 212°.

F= =1.1142

Example.—A boiler evaporates 1,000 pounds of steam-at 95 pounds
gauge pressure and the feed water is heated to 110°. How much steam
will it evaporate from and a! £212°7

Referring to the table or. page 64 , the factor of evaporation given
for steam at 95 lbs. pressure with feed water at 110°, is 1.145.
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Steam and Hot Water Heating

Loss of Heat from Buildings.—To determine the size of a
heating plant it is necessary to first estimate the loss of heat
from the building. This is figured on a basis of B.t.x. lost
per hour.

AYTACH PiPE i
ON FLANGE sMOKE

Example.—What willbe the
loss of heat in B.l.u. per hour
in a sing'e room of a brick res-
idence if the temperature in-
side be maintained at 72 de-
grees F., when the temperature
outside is at 30 degrees, the
construction being as follows:
16-inch brick walls; four 3 X6
windows, northern and western
exposure; fire proof flooring and
ceiling; size of room 15X20X
14 (high). Area of windows
4X(3X5)=60.

FIG. 52.—Andrews vertical tubular boiler. An example of a heating boiler which has ade.
quate heating surface. Most heating boilers have a ridiculously small amount of heating
surface and are accordingly very wasteful of fuel. Sec page 73.
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Loss of Heat per Square Foot of Surface
Material B.lu. Material B.Lu.
per hour per hour
Masonry Partitions, Floors and
4 inch brick wall........... 68 Cellings
g « o« a0 .46 .| Stud partition, lath and
12 « &« o« T 32 plaster one side......... 26
16 ¢ & & .. 26 | Stud partition, lath and
20 "« “ w« o 23 plaster both sides....... .15
Ordinary lath and plaster
ceiling separating un-
heated. space from
heated rooms........... .26
For reinforced concrete add Floor, single, thickness 3{
20 per cent to brick values mch, warm air above
12 inch stone wall, » and cold space below:
block masonry. .......... 45 A. Noplaster beneath
16 inch stone wau OlStS ........... .20
block masonry........... 4 B. Lath and ° plaster
20 inch stone wall, beneath joists... -12.
block masonry. -......... .36 Floor, double, thickness
24 inch stone wall, 1}% inches, warm room
block masonry......... .. .3 above and cold space
28 inch stone wall, below:
block masonry........: 27 A. No plaster beneath
36 inch stone Wa_n OlStS ........... 13
block masonry. . 25 B. Lath and plaster
44 inch stone wall, beneath joiste.. .08
block masonry..... 0aoooo 2 Miscellaneous
Planks Wgod as -ﬂqclzc.ring .......... 834
i i cetlling........... 1
sginchpipe plapks........| 3 ), SO 22
21 k¥ o« « 23 Fxre proof flooring........ 124
3 « o« « 2 c “ c;xhng. 900pa000 G 145
it as flooring. ....... 31
Windows, Skylights, and D;e;rtxen o FOIPE e gé
R Outside Walls Wood under slate or com-
Single window............ 1.10 position roof. ........ . 3
“ : double glass. 62 Wood, underiron......... 17
Double “ ............ .50 "Tile (no boards underneath)| 1.25
Single skylight............ 1.16 Cement 100f...0000.n.....l 6
%4 inch sheathing and clap-
boards................. .30
% inch sheathing, paper 03

and clapboards
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’

Area of walls 2(154-20) X 14 —60 =920 square feet
“ “ floor 15X20= 300 “ “
“ ' ceiling 15X 20 = 30 “ “

The values given for heat losses in the table should be increased as fol-
lows:

For mnortheastern, northwestern, western or

northern exposure.....cooeevvireenes 4420 t0 30%,.
For rooms 13 to 14%4 feet high........... 614%.
For rooms 1414 to 18 feet high............ 10%,.

When building is heated during the day only 30%.

When building remains for long periods without
heat.. . i e 50%.

B L. lost through windows= 60X1.1 X(72°—32°) =2,640
walls =920X .27 X(72°—32°) =9, 1936

“ “ “  floor =300X .124X(72°—32°) =1 1488

“ “ “  ceiling =300X .145X%(72°—32°) =1 ,740

Total loss of heat per hour, normal conditions .15 8043 t.u.

This loss is increased: 30 %, by northern and western exposure; 612 %
for high ceiling, that is, total loss of heat per hour under the special con

dition is:
15,804 X1.365=21,573 B.t.u.

Estimatihg Radiation.—The amount of heat given off by
ordinary radiators is commonly taken as

1. For steam

250 B.tu.

2. For hot water

150 B.t.u.
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The following table gives values for the various systems when

the air is at 70° Fahr.

Heat Given Off by Radiators

Temperature B.tl.u.
System Working degrees  |per square foot
pressure %5 per hour

Steam (low pressure)......, 5 lbs. gauge 228 250
“ (atmospheric)...... V] 0-lbs.s ~4- - ‘212 - 227

% (so called vapor)....| 5§ in. vacuum 203 213

¢ (vacuum) 10 ¢ “ 192 195

“ “ 15 4 @ 179 174

“ “ 20 « “ 161 146
Water....ovvvneniniienenoeeniin, ;a0 160 150

The values 250 and 150 for low pressure steam and hoi water
resvectively although only approximate, are standard values for

ordinary calculations.

Radiation Tables
(For steam and hot water)

Cu. ft. of Cu. ft..of

Dwellings space using space using

steam hot watér

Living rooms, one side exposed......... 50 to 55 25 to 30
@ “ “twosides “ .......... 45 “ 50 20 “ 25

@ “  three “ “ 40 “ 45 15, 20
Sleeping ¢ ... ... oo 50 “ 70 30 « 35
Halls and bathrooms. ................ 40 ¢ 50 20 “ 30

. Public Buildings

OffiCeS. v e vvvreveananeaanassoaanrennns 50 “ 25 30 “ 40
8853550 00000800a00000000000000000006 40 “ 60 20 ¢ 30
Factoriesandstores. .. .....ocvvvuno .. 70 ¢ 100 40 “ A0
Assembly halls and churches............ 100 « 60 “ 80
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Example.—How many sq. ft. of radiator surface are required to heat
a room for low pressure steam and hot water radiators when the heat loss
is 22,293 B.t.u. per hour?

Total heat loss per hour is 22,293 B.t.u.

For steam sc‘iuft. radiator surface =22,203 <250 = 89
“ hot water & @ @ =22,293--150=149

Size of Mains.—Tle steam main can be determined by taking
the total amount of direct radiation to which add 25 per cent for
piping, and from this total extract the square root, dividing same
by 10, which gives. the size of main to use. This is for one pipe
work. For two pipe work, one size less is sufficient, and the return
can be one or two sizes less than the supply. A steam main should
not decrease in size according to the area of its branches, but very
much slower. ’

Example,—Having 500 feet of direct radiation add to it 25 per cent or
125, which equals 625. The square root of this is 25, which divided by 10
gives 214, or the size of the pipe. For handy reference and practical use
:he following table can be used, though not not exactly in accord with the
oregoing.

Size of Steam Mains

- Radiation One-pipe work Two-pipe work
%25 square f%e't %% in&:h %% Xiy in‘c‘:h
50 X174
w o 2 L S a
2
900 ¢ “ 31 ¢ 3 X244 ¢
1,250 ¢ @ 4 “ 314 %3 G
1,600 ¢ “ 4 “ .4 X3% ¢
2,060 ¢ . 5 “ 414 %4 a
250 ¢ g £ ¢
3:600 “ “ . M S >>§6 .
6,500 ¢ . 9 “ 8 X6 G
8,100 ¢ G 10 “ 9 X6 !
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Heating Surface Factors for Green House Heating

Temperature of water in heating pipes Steam
Temperature 40° ) o o Three Ibs.
oIf’ g 140 160 180 200 pressure
in house =
Square feet of glass and its equivalent proportion to
one square foot of surface in heating pipes or radiator.
40° 4.33 5.25 6.66 7.69 8.
45° 3.63 4.65 5.55 6.66 7.5
50° 3.07 3.92 4.76 5.71 7.
55° 2.63 3.39 1.16 5. 6.
60° 2.19 2.89 3.63 4.33 6.
65° 1.86 2.53 3.22 3.84 5.5
70° 1.58 2.19 2.81 3.44 5.
75° 1.37 1.92 2.5 3.07 4.
80° 1.16 1.63 2.17 2.73 4,
85° .99 1.42 1.92 2.46 3.5
* Sizes of Hot Water Mains
Radiation Pipe
75'to 125 square feet 114 inch
125 ¢ 175 « @ 112
175 ¢ 300 ¢ “ 2 3
300 “ 475 ¢ e 215 «
475 ¢ 700 ¢ “ 3 G
700 @ 950 “@ [ 3 % @
950 “1,200 “ “ 4 “
1,200 “1,575 & & 414 «
1,576 “1,975 ¢ “ 5 “
1,975 “2,375 ¢ “ 54 «
2,375 “2,850 ¢ e 6 “

In hot water, flow mains may be reduced in size in proportion to the
branches taken off. They should, however, have as large area as the sum
of all branches beyond ‘that point. It is advisable that the horizontal
branches be one size larger than the risers. Returns should be same as
dows.

* NOTE—As recommended by the William Page Roiler Co,, New York.
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Table of Mains and Branches
1 {\l/lain . . Brancn
l%m. Y. AR N .
14in. ¢ a . i
2 in., “ @ 2 .
25 in, “ 4« ,..2,1%in.and 1, l/m., or 1, 2’ m. and 1,1} in.
3 in, ¢ 4 ,..1,2)4in.and 1,2 in., or 2,2 in.and 1,1}4in.
3lsin, “ € ...2,2in. or 1,3 in.,and1,2 in. or 3,2 in.
4 in, 4 “ ...1,34in. andl 2}4in., or 2,3 in.and 4,2 in.
41}5in, ¢ ¢ ,..1,3%in.and 1,3 in.,, or 1,4 in.and 1 214 in.
5 in. ¢ g ...1,4 gn.and1,3 in., or 1 414in. and 1, 2}41in.
6 in, ¢ 4 ...2,4 in,and1,3 in., or 4 3 in. or 10, in.
7 in. 4 “ ...1,6 in.and1,4 in., or 3,4 in.and 1,2 in.
8 in, ¢  ,..2,6 in.and1,5 in., or 5,4 in.and 2,2 in.

Properties of Radiators

Peerless Two-Column Radiators Peerless Three-Column Radiators
For Steam and Water For Steam aud Water
N Heartno Soerace—Squase Frer o . HeaTing Suaracc — Squaat Feev
‘Ne.
or Len‘lh 4S-in. | 38.in. 2-in. 26-in. 20-in. | 20-in, of Lelﬂh 45-4a. | 3g-in. 32-in. 26.4n. | 22.in. 18-in.
us::l pze;'g 0. “Sd y.: ‘Hs.;"!.: ,\;‘:?'?( ;‘g'g"hrl; »I‘lggl}(l z"s‘ql‘ih‘: 3::-‘ J.’fs'l'g HeugM Heuhx Hu:hl ’!‘imh:l H:‘;l?ll ;ni.h:l
pclqée per Sec per Lo pec f o per L. pee Sec per Sec pe‘rq's«: er‘gec pﬂ’gec per Soc. rlgae.
2 s w| 8| ex| syl 4| ¢ 2|3 121 10 W 6| 4%
S| 7sg) as| 12| 1o 8 7 6 | 3 | el 1| as| ws] uK| 9| %
411 20 16 13 1034 9 3 4110 24 20 18 15 12 9
s|124] 25| 20| 16 13 | uy 1w s|iv| a0 | 25| 2% | 18X | 15 | 1Y
611 30| 24| 2 16 14 12 61 36| 30| 27 22 18 | 13%
71741 38 28 2335 | 183 | 164 14 7 (17| 42 3s 3134 | 26 21 15%
8|20 40 | 32| 26| 2135 | 1835 | 16 8|2 48 | 40| 36 30 24 | 18
9122% ] 45 36 24 21 18 912218 sS4 45 WY BY | 27 204
10 | 25 50 40 335 | 262 23% 20 10 2§ 80 50 45 37 30 22
a7 ss 36 2014 | 253 | 22 | 112734, 66 | 55| 49lg| 41kg| 33 | 24
123 1 248 32 28 24 |12 |30 72| 60| S4 45 36 {27
1l 32sg) 65 | 52| a3s8| 3exg [ 3osg | 26 | 13 |3214| 78| es | sebg| 48% | 39 29%
14138 70| s6| 4636 | 37 323 | 28 | 14|38 84| 720 63 52 42 | ak
1513736 75| 607 s0 40 3s 3 |15 |ag]| 90| 75| 6134 6% | 45 | 3y
16 | 40 80 | 64 | S35 | 425 | W | 32 | 16 9 | 80 | 72 48 | 36
1 aag| 851 68| 5635 | asyf | 393 | 34 | 17 | 4214 d02 | 85 ( 7634 | 63 51 ”ﬁ
18 | 45 9 | 72 42 36 |18 |45 108 | 90 | 8t 67 s4 | 40
19 ) 47% ] 95 76 6315 | S0% | 44% | 38 19 | 47% | 114 95 8| T | 57 23
20 | SO 100 , 0 6634 | 5338 | 4635 40 20 | S0 120 | 100 90 75 60 45
21 | 5286 | 108 41 70 56 49 42 |2t |s2%4| 126 | 105 | 9avg| 7831 €3 | 47}
22| 85 110 88 73% | 383 | 1Y 44 22 58 132 | 110 82 66 493
23|57 nis | 92| 763 | 6135 | 3335 | 46 | 23 | 576 | 138 | -n1s | 10334 | 86}5 | 69 513
24 | €0 120 | 96| 80 64 56 48 |24 144 | 120 | 108 72 | 4
25 | 6254 | 125 | 100 | 8355 | €635 | 5835 | so | 25 |62 150 125 | 11234 93 | 75 | s6
26 | 65 130 | 10¢ | 86 693 | 6035 | s2 | 26 156 § 130 | 117 97¥5 | 78 | S8
27 6755 | 13s5+| 108 72 63 s4 |-27 | 6744 i.162 v 135 | 12134 | 10134 | 8t 1.
2817 140 | 112 | 9335 | 7435 | 65 | s6 | 28 {70 168 | 140 | 126 108 84 | 63
29 | 72541 145 | 116 77 -e135 | s8 | 29 | 7204} 174 | 145 | 13034 ) 108% | 87 | 6534
30 )75 .1 L 120 80 70 60 30 | 7S 80 | 150 | & 112 90 674
31 [ 727547] 155 | 124 103;4 | 825 | 7234 | 62 30 | 7731 186 | 155 | 1393¢ | 11634 | 93 | 9%
32 | 80 160 | 128 | 10635 . 853 | 745 | 6¢ |32 192 ! 160 | 144 120 96 | 72
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The respiration of one adult person will vitiate hourly about
500 cu. ft. of air, to which should be added vitiation from other
sources, such as moisture from the body, methods of illumina-
tion, etc., making a requirement of about 1,000 cubic feet per
hour of fresh air for each adult person in average living rooms
and places of assembly.

The fresh air from the outside passes through registers at a
velocity from 200 to 300 feet per minute. The dear openirigs
of a register will be approximately two-thirds of its full area;
thus a 12 by 15 register would have an available area of 120
inches. The fresh, warm air, passing at this rate per minute,
would supply from 10,000 to 15,000 cubic feet an hour, and meet
the requirements of a family of from 10 to 15 persons

The requirement of Massachusetts Laws in the ventilation of schoo)
rooms is 30 cubic feet of fresh air per minute for each pupil. Thus, the
averagé room providing for 50 pupils would require 1,500 cubic feet per
minute, or 90,000 cubic feet per hour Contemplating a movement of the
air at the rate of 5 feet per second, and supply and exhaust registers—2 by
214 feet each—or an area of 5 square feet will insure the desired result.

For churches and general assembly halls; the requirement is 15 cubic
feet per minute for each person.

Steam Heating Boilers
25:1

The Heating Surface.—The author after a laborious exami-
nation of about one hundred boiler catalogues found that while
nearly all gave the grate area, very few gave the area of heating
surface (for obvious reasons).

While, for example, he found that in one size of the Vance
boiler 38 square feet of heating surface per square feet of grate is
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provided, in another make boiler (the name ought to be printed

in large letters) only 8.3 square feet of heating surface is pro-
vided per square foot of grate.

Where there is any regard for economy an adequate amount
of heating surface will be provided.

THE CELLAR o
HEATING SURFACE

t~ THE WATER
HEATING SURFACE

F16. 53.~The principal reason wl,\ﬁvathe tenants get no hot water. It's not the fault of the
ménufacturer, he simply builds what the public is willing to pay for and does not worry

about the coal bills

According to the American Society of Heating and Ventilation Engineers:
“The grate surface to be provided depends on the rate of combustion
and this, in turn, on the attendance and draught, and on the size of the
boiler. Small boilers are usually adapted for intermittent attention and
a slow rate of combustion. The larger the boiler the more attention is
giverr o it and the more heating surface is provided per square foot of
grate.”

“The following rates of combustion are common for internally fired
heating boilers’:

S%. ft.ofgrate...............v.... 4to8 10to 18 20to 30
Lbs. coal per sq. ft. of grate per hour 4 6 10

The following table from Kent gives some proportions and
results that should be obtained:
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75

Proportions and Performance of Heating Boilers

Low | Medium High
boiler | boiler boiler
1 square foot of grate should burn... . . 3 4 |5 pounds coal per
our
woou “ownoow " develop. | 30,000 40,000 [50,000 B.t.u. per
hour
“ e Y0 " willrequire....| 15 | 29 25 square feet heat-
' ing surface
oo “oeon " supply..... 120 | 160 [200 square feet ra-
| diating surface

Steam Heating Boiler Tests

Fuel « Area | Number Steam
Nuraber | anthracite of of produced 8 Lour
of pounds per grate | sections| per pound rating
boiler | square foot square [including| of square feet
of grate feet dome coal

0 4.39 1.23 1 7.5 200

1 5.12 1.23 2 8. 250

115 5.28 1.23 3 8.5 275

2 5.44 1.23 s 9. 300

The above tests (as given in one manufacturer’s catalogue), of severai
cast iron boilers all having the same size grate, but with different number
of sections, show the importance of an adequate amount of heating surface.
1t is simply a matter of whether the purchaser prefers a cheap boiler and
big coal bills, or the expensive boiler and small coal bill—that is for him
to decide.
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Plumbing

The plumber in his work comes in contact with many ar-
ticles such as pipes, fittings, fixtures, etc., made of various
materials such as lead, iron, brass, etc.

Varieties of Modern Babbitts

-y =T

2 Che £ g cSo - & 25
5% g€ | & | S | g 'u E | 32
o3 22 5 < 28 e B 3 o E
@z 23 S < |83 € 3 & | ==

12, 000 0000 85. 3.

15. oooe 4| oooo ‘82. 3
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15, 6.75 6. 0000 3.25
12.50 ceee | 15, 70 000 2.50

10. ceee | 25, 61. ‘.

0600 8. oooa 45. 4], 6.

4, 6. 00 90 86. 000 4,

0000 6. 6. o oo 82. 6.

1.50 3.50 1. 87. erse 1.

3. 123 000 6. 88. 0000 1, 1.

4. 0000 3. 90, 0000 2. 1.

A 5. 83. 0000 6.

2, 10, 20. 66. 2.

3. 9. 30, 55. 3.

4, 8. 40, 44, 4.

5, 1. 50. 33. voas 6.

6. 6. 60. 22, pore | 6

- >
Properties of Lead and Tin
Weight

Ingredients | Melting Point |Specific Gravity
Per cu. in. | Percu. ft

Lead ‘620°Fahr. 11.07to11.44| 4106 709.7

“Tin | 449° Fahr. 7.297 to 7.409 .2652 458.3
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Sheet Metal and Wire Gauges

[Unl(ed States Washburn [Birming-| Brown &
Steel British & Moen or ham Sharps or
and Imperial United States or American
No: Sheet Iron | Standard | London | Steel Wire | Stubbs Wire Gaugd
0000000 500 500 e . s
000000 46875 464 iem . e
00000 4375 132 agoa
0000 40625 400 Ki1) 3938 454 .460
000 376 373 425 3628 425 40964
00 34375 348 .380 .3310 .380 .36480
- o .3125 324 .340 .3065 .340 .32495
1 .28125 .300 .300 .2830 .300 28930
2 .265625 278 284 .2625 284 25763
3 .25 262 .269 2437 259 22942
4 .234375 .32 238 .2268 .238 " .20431
13 .21875 212 .220 .2070 .220 .18194
(] 303125 .182 .203 1920 .203 .16203
[ -
1 L1875 176 .180 1770 180 14428
L 171875 - 180 166 1620 163 12849
9 .15625 a4 148 .1483 148 211443
10 .140625 228 134 1350 134 .10189
1" 126 116 120 1208 120 09074
12 .109375 104 108 " 1085 .108 .08081
13 09375 092 095 L0815 095 07196+
14 078128 .a80 .083 .0800 .083 00408
16 .0708125 072 - .072 0720 -072 06707
16 06285 084 065 0625 065 .05082
17 .06625 .066 .058 0540 058 04526
18 .05 048 049 0475 049 .04030
19 04375 040 040 0410 042 08589
20 .0876° 036 .035 0348 036 03196
21 034375 4032 L0315 L0317 032 02846 .
22 03126 .028 .029¢ .0286 028 025347
23 L0281 024 027 L0258 025 .022571
24 026 022 026 .0230 022 Q201
© .26 021875 020 .023 0204 020 0179
26 01875 018 0200 .0181 018 01694
27 0171875 .0t6e .0187 0173 .018 014195
28 016626 0148 0165 .0162 014 012641
29 0140625 0136 L0165 .0160° 013 011257
30 L0125 L012¢ L0187 L0140 012 .010025
81 .0109375 L0116 L0122 L0132 010 008928
32 01016626 .0108 0112 L0128 009 00796
33 009375 0100 0102 .0118 008 00708
84 0085937 .0092 0095 0104 007 .0063
36 .0078125 0084 . .009 L0095 005 .00661
36 0070312 on7e 0075 0090 .004 005
87 0066406 .0n68 .0065 0085 coon 00445
88 00625 0060 L0057 .0080 e 003965
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Solder Required for Wiped.Joints.
(According to Hutton)

Size of pipe ns....... I V4 34 1 114 | 114 water | 114 waste

Ounces of Solder. ... \ 9 l 12 I 16 ‘ 16 ‘ 18 ‘ 18
Size of pipeins. | 134 water | 2 waste \‘ 3 waste| 4 waste| 4 vertical
Ozs. of Solder

20‘20'24|34'.28

Sheet Metal and Wire Gauges.—The thicknesses of sheet
metals and the diameters of wires conform to various gaug-
ing systems.

Much confusion has resulted from the use of gauge numbers,
and in ordering materials, it is preferable to give the exact
dimensions in decimal fractions of an inch.

While the dimensions thus specified should conform to the gauge or-
dinarily used for a given class of material, any error in the specification
due, for example, to the use of a table having “rounded off”’ or approximate
equivalents, will be apparent to the manufacturer at the time the order
is ptaced. Furthermore, the decimal method of indicating wire diameters
and sheet metal thicknesses has the advantage of being self-explanatory,
whereas arbitrary gauge numbers are not. The difference in various
gauges will be apparent from the table on page 77.

Table of Brazing Solders’

Description Copper Zinc Tin Lead
Coppersmiths’ strong spelter............ 75 25
Coppersmiths’ spelter.........ooveeeens. 58 42
Ordinary refractory spelter.......oo..v.. 50 50
Hard whitesolder. .. ....ccoverenncsecnns 571 | 28 1414
Half white, easily fusible..............-- 44 50 414 1%
Spelter, readily fusible.,............... 3314 | 6634
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Brazing.—Brass or gun metal united by this process will
produce a joint as hard as the metal pieces united.

Iron and steel, especially small pieces of finished work, may
be united by the same means.

Miscellaneous Brazing Solders

PERCENTAGE
Characteristics Color

Copper Zinc Tin | Lead
58 42 " |Very strong Reddish yellow
53 47 Strong Reddish yellow
48 52 Medium Reddish yellow
54.5 43.5 1.5 0.5 Medium Reddish yellow
34 66 Easily fusible White
44 50 4 2 Easily fusible Gray
55 26 15 4 White solder White '

Wrought Pipe

Wrought Pipe.—The term “wrought iron pipe” is often erro-
neously used to refer to pipes made to Briggs' standard sizes.
rather than of the material, hence, in ordering pipe, if iron
pipe be wanted instead of steel, care should be taken to specify
genuine wrought iron, or guaranteed wrought iron pipe.

For calculating heating plants, etc., the following table w111
be found useful:
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Properties of Standard Wrought Pipe

c T POV A o N R Gy
Rlomt oLy of
e | o e | L S
B T LR e e R SN S8 | e [T e
¥nches | Inches | Inches-§ Inches [ Inches | Inches B8q. Ine!| 8q. Ina.| 8q. Ins] Feet Foet Fesot
“ K .269 K 1.272 845 129 057 072 | 9.431 | 14,109 ||2533.775] 24 U5 27
R 1 540 384 088 1.698 | 1.144 229 A J125 B 7.073 |10.493 [J1983.789) 424 425 18
% .67 93 091 212t 1.549 358 L9t 167 || 5.058 | 7.747 || 754 360] 587 .568 18
123 8400 .22 109 2.639 1.954 S84 304 250 |§ 4.547 | 6 141 [] 473.006]] .850 852 4
3 1.860 8% 113 3.209 | 2589 868 .53 333 1 3.637 | 4.835 || 2700034)f 1 130 { 11} 4
) 1.318 1.049 133 4.131 | 3.208 1358 84 494 | 2.004 | 3.641 186618 1 678 1.684 14
15 1" 1060 ( 1.380 140 5.208 | 4.335 [} 2 164 1498 669 § 2.30t | 2.767 962780 2.272 2,281 11l
1379 1 900 1610 148 $989 | 5.058 || 2.835 | 2 036 799 || 2.010 | 2373 T0.733 3.717 271 134
H 2.578 | 2.067 15¢ 7.461 6404 ] 4.430 | 3.3 1.07% 1.608 '| 1.847 429108 3 852 3.678 13159
4 2.875 | 2 469 203 9032 | 7757 [} 6492 | ¢.738 1.704 1.328 1.547 30.077f 5.793 5 819 1
3 3.500 | 3 088 216 [10.098 | 9.638 [} 9.621 7.303 | 2228 | 2 oot 1.245 19.479% 7 378 7.616 8
3 4.000 [ 3.548 226 12.566 | 11.146 [ 12 508 | ¢ 836 | 2 680 984 1078 14,565 9.100 9202 Y
4 4.500 | 4.028 a7 14.137 ] 12.648 1 15,004 | 12.730 | 3.17¢ ) .848 M8 11.312 § 10.790 10,889  }
434 5.000 | 4.508 247 [45.708 [ 14,156 | 19.636 | 15.047 | 3 688y 763! 847 9.030 || 12.538 12,642  }
8 5563 | 5.047 258 17470 15.856 [.24.306 | 20.008 | 4.300 686 J158 7.198 || 14.617 14.810 8
] 6.425 | €.065 280 | 20.813 § 19.054 [ 34.472 | 28.881 | §.581 576 .62% 4 984 || 8.974 19.185 B
7 7628 7.023 301 [ 23.985 | 22,003 | ¢5.604 | 38.738 | 6.926 500 543 3.717 || 23.54¢ | 23 Tev 8
8 8.625 ] 8.071 277 [ 27.006 | 25.358 § 58.428 | 51.161 | 7.265 442 473 2 815 || 3¢.606 | 25 000 ]
E ] 8.625 | 7.981 323 || 27.008 | 25 073 | 58.426 | 50 027 | 5.399 2 478 2.978 || 28.554 | 28 809 8
* 9.625 | 8.941 U2 §30.238 | 26,080 § 72.760 | 62 786 | 9 974 398 427 2094 133,907 | 34 188  }
10 10.750 | 10.192 279 f§33.772 | 32.019 || 80.763 | 51.585 | 9.178 355 314 1 785 f) 31.200 32 000 E
10 10.750 | 10 336 307 []33.772 | 31.843 [ 00.763 { 80.891 | 10.072 355 378 ) 785 |f 34.240 | 35 000 8
10 10 750 | 10 020 385 |33 7721 31.470 | 00.763 | 73 855 ] 11,008 383 38 1.1426 || 40 483 | 41 132 8
H 31 750 | 11 000 375 §] 36.914 | 34.538 J108.431| 95 033 | 13.401 325 347 1.515 [ 45 357 | 46 247 &
13 12.750 | 12 000 330 || 40.058 | 37.982 | 127.476| 114 800| 12.876 2909 318 1.254 1 43.773 | 45.000 1]
13 12.750 | 12 000 375 | 40 055 | 37.609 127 876|113 097 14 579 00 318 1273 || 49.562 | 50.706 3
> g
Average Weight of Cast Iron Pipe
(According to Abendroth)
Diam. in ins. 2 3 4 5 6 8 10 12 ] 15
Weight in Ibs. per 5 ft. length
Standard..........|{17}4 221413215 4215|5215 85| 115 | 165 | 225
Extra heavy........} 2715|471 | 65 |85 100 | 170 | 225 | 270 | 37%
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Cast Iron Pipe.—In packing the annular space or socket of
bell and spigot pipe, the amount of material necessary is given

in the following table:

Oakum and

Lead for Caulked Joint

Size of Pipe
Material f
2 i 3 | 4 5 6 7 8 | 10
Oakum......... 3 4| 5 | 6y | 74| 84| 9| 12
(Ft. reqd.)......
Lead........... 14| 24| 3 | 3| 45| 5%4| 6 | 7%
(lbs. reqd.).....

Soil Pipe.—The regular length of pipe shall be such as to

lay 5 ft.
than the following:

Weight of Soil Pipe-

Including hub the average weights shall be not less

Single Hub Double Hub
Size, Inches
Per §' Length Per Foot, Including Per 5’ Length
Pounds Hub, Pounds Pounds
2 2744 Sks 271
3 4714 934 47%
4 65 13 65
5 85 17 85
6 100 20 100

Individual lengths of pipe and fittings may weigh 5% less than desig-
nated above, but only when the average weight of a given size and make
of pipe and fittings selected at random is not less than above shown.

Radius of Fittings.—The standard radii for bends, offsets
and traps are as given in the following table:—



82 ‘Mechanical Calculations

Offsets.—The radii of the behds on offsets, both regular and
14 bend offsets, shall be as follows:

Diameter, 2 37 4" 5 6*
Radius, 27 215" 3" 315" 47
The angle of the bends of regular offsets shall not be more than 76
degrees.

The angle of bends of eighth bend offsets shall be 45 degrees.

Traps.—The radii of all traps shall be as follows:

Diameter, 2r 3 4" 57 6’

Radius, 2 214% 3* 31 4
‘The caulking room at