Everyday Mechanics

RADIO AGE

USING THE NEW AC TUBES -TWO ILLUSTRATED ARTICLE

Current Science

Frank Andrews, Pres. Blancke Auto Devices Co., 154 E. Erie St., Dept. 820-M, Chicago, Ill. CanYou Blancke Auto 154 E. Erie St., Dept. 040 154 E. Erie St., Dept. 040 155 E. Chicago, Ill. Dear Sir: I am interested in selling gas at 5c per gal. Send full details and free trial. No obligation to me. 5c per gal. Send full details and free trial. Name Sell Gasat Address Gallon? ~If so Mail me the above coupon

Frank Andrews

I want you to make big money easier and faster than you ever have before in your I guarantee \$15.00 a day to any man who becomes my distributor. Use the Coupon NOW.

Cadillac, La Salle and Delco Light

Now use as standard equipment Thermostatic Carbu-retor Control under Blanke

Great new invention brings gasoline cost down for 8,000,000 Ford Owners. Hundreds of our men are earning more than they ever made before or thought possible introducing the famous Blancke Thermostatic Control. A proved success, backed by over 351,272 public and private tests, which show beyond a doubt that it is possible for Ford Owners to reduce gasoline cost to 5c a gallon. (Affidavits and hundreds of testimonials on file.)

We Pay Our Distributors \$15.00 a Day

Can you imagine anything easier to sell than gas at 5c a gallon? No wonder our men are coining money! No wonder we can afford to offer you the most liberal, most worth while proposition you could ever dream of. The coupon will bring you full details. Get it into the mail at once!

Nothing Like It

Do not confuse the great Blancke Invention with anything else you've ever heard of. Its principle is entirely scientific—absolutely different. You can easily prove this to your advantage at our risk. All you need to do is mail the coupon at the top of this page. It will cost you nothing and will positively bring you by return mail the biggest surprise and greatest opportunity you've ever known.

FROM AGENTS

Please ship us another 100 con-trois. Other 100 came yesterday and the writer sold 9 dozen today. I. J. Phillips, Sr., Ga.

I. J. Phillips, Sr., Ga.
First I wish to thank you for
your prompt service in shipping
me the 50 controls, which I recelved today in good shape. Sode ighteen today and expect to do
better tomorrow. Look for more
big orders from me in the next
few days.
P. F. Metzler, Ala.

Mall Immediately 25 controls.
Monday, on eighteenth mail 25
more. Demonstration put it over
big. The control is a wonder.
J. F. Kellem, Ore.

Send four dozen controls and two demonstration boards. I ordered two dozen but retail sales have already exceeded that number.
P. 1. Cutter, Ore.

FROM USERS

The Thermostatle Control you sent me is all you claim. I have sold 14 devices by explaining the prin-ciple and merit of same. Paul Lees, Calif.

We had a test run Saturday and Sunday through level and hilly country, from Washington, D. C., to Martinsburg, W. Va., and back about 208 miles. Made it on 5 gallons of gas. The attachment is a wonder.

wonder. Charles F. Rougeou, D. C. Mr. T. R. Wright told me that he went 32 miles on half gallon of

gasoline.
John H. Odgers, Ontario.

Get Free Trial

Act at once if you want to Act at once if you want to get started with a sure thing. Make real money with the backing of a big, well-known responsible firm. Don't delay. We want to assign men right now to the profitable territories we have left open. Get in with a live proposition that is different. Be successful! Be independent! Make \$15.00 a day and large commissions. Mail me coupon quick for free Mail me coupon quick for free trial, proof, and full details of a big proposition that will sur-prise you.

Frank Andrews, President

Blancke Auto Devices Co.

154 E. Erie Street

Dept. 820-M

Chicago, Ill.

"Best Receiver I Ever Built; That World's Record Superhet"

THOUSANDS have made and proved the sets described by Fred Hill and illustrated by photographs and blueprints in former issues of Radio Age.

Not Too Late For You

RADIO AGE has a limited supply of past issues containing articles fully describing construction of these receivers, all built and tested in our own laboratory. These articles are accompanied by the famous Radio Age blueprints, or full page diagrams, bound into the magazines. If you plan to build a super this fall look over this list of available back issues:

JANUARY, 1927 April, 1927

Full Data on the Super 8 One Spot Super and Power Com-

pact

March, 1927 May-June, 1927.

Building Ideal Model Super 8 Using 9 Tubes on World's Record Super

We will mail any one or all of these back issues at only 30 cents each on receipt of stamps, currency or money order. Write now while they last to

Radio Age

500 North Dearborn Street
Chicago

Everyday Mechanics

RADIOS GIE Current Science

Established March, 1922

Volume 7

September, 1927

Number 1

CONTENTS

FOR SEPTEMBER ISSUE

Cover Design by A. P. Mehlum

Time to Build	3
By Armstrong Perry	
Some Interesting Characteristics of the New	
C. Tubes	5
Locating Mineral Beds by Radio	7
Current Radio Wisdom in Tabloids	8
The Froth Estate	9
The September Skies	13
Using the New A. C. Tubes in a Six-Tube R.	F.
Receiver	15
Every Day Mechanics	21
Radio Beacons to Aid Air Mail Flyers	21
Current Science	26
Astronomer Plans \$12,000,000 Telescope	26
Amateur Radio	29
Corrected List of Broadcasting Stations	38

Radio Age is published monthly by RADIO AGE Inc.
Member: Audit Bureau of Circulations.

Publication Office, Mount Morris, Ill.
404 North Wesley Ave.
Address all communications to RADIO AGE, Inc.
Executive, Editorial and Advertising Offices
500 N. Dearborn Street, Chicago, Ill.

FREDERICK A. SMITH, Editor M. B. SMITH, Business Manager

Advertising Manager HARRY A. ACKERBURG 500 N. Dearborn St., Chicago, IU.

Eastern Representative
HEVEY & DURKEE, 15 West 44th St., New York, N. Y.

Pacific Coast Representative
CONGER & MOODY, Sharon Bldg., San Francisco, Calif.
CONGER & MOODY, Higgins Bldg., Los Angeles, Calif.

Final Advertising forms close on the 20th of the 2nd month preceding date of issue

Vol. 7, No. 1. Issued monthly. Subscription price \$2.50 a year. September, 1927. Entered as second-class matter at post office at Mount Morris, Illinois, under the Act of March 3, 1879.

Copyright, 1927, by RADIO AGE, Inc.

Chats

America now has friendly representation on the National Radio Commission which regulates broadcasting and allocates wave lengths. R. C. A. has finally assumed control of the chief group of patents under which the bulk of present-day radio sets are manufactured. R. C. A. has even acquired the chairmanships of one of the important committees of the Radio Manufacturers' Association.

None of these things bother us in the least. We had not only anticipated the ascent to the heights but years ago we told our readers what the corporation was determined to do. There is no surprise in the sequel. We expressed doubt as to whether Federal Trade Commission charges of conspiracy against the big five would ever get anywhere. Does any reader know what became of that virtuous blare of trumpets?

It is to be regretted, however, that the R. C. A. should again have thrown the radio trade out of step by announcing the prospective production of a new tube and then proceeding to withhold actual delivery of the tubes far beyond the date originally announced. Result—thousands of radio buyers refusing to buy anything or to build anything until they could be assured that what they intended to buy or to build would not be "obsolete" as soon as installed.

Same old story. You will remember the situation several years ago when we all waited throughout a long summer for the arrival of revolutionary equipment, dealers grumbling, buyers disgusted and trade taking the count. One ray of sunshine pierces the gloom. This tube delay has given the independent makers of tubes a chance to step in. We understand the independents are making hay while the sun shines.

Frederick Smith

Editor of RADIO AGE.

Time to Build

By ARMSTRONG PERRY

THERE was an old fellow, who had started life with nothing and made an honest fortune in real estate, who used to whisper to his intimate friends now and then: "It's time to build!"

He meant that land and building materials were as low as they were likely to go, that increase of population soon would crowd the present housing facilities, and that those who built would profit from their foresight.

If he were alive today, he would be interested in radio and he would advise: "It's time to build."

It is time to build. Radio programs now are superlative. Once they were made up of phonograph selections because the fact that voice and music could be transmitted and received through the ether was new and interesting and any sound at all could be used in a demonstration. When the novelty wore off, uncanned music was substituted. Most of it was worse than the phonograph music but, it was interesting because we were hearing music made by real

Roy Bates of Plattsburg, New York, uses a copper tank from a wrecked rum runner for an indoor aerial.

Judging from the size of the aerial and the pile of boxes, this set builder in Colorado is going to have a real outfit.

people while they were making it. Some good programs had to be broadcast to hold the interest of listeners who could appreciate it, and the number of those who could tell classics from clatter increased. Today the broadcasters are giving us the best there is; cheap stuff is used only to fill in.

Everybody likes a fight, except those who take the beatings; every championship bout, game and race is broadcast. Everyone likes good music; the air is full of it daily. We are all hero worshippers; every aviator, athlete and politician who makes the front page is given his chance at the microphone. No one can afford to miss today's broadcasts, when a few dollars and a few hours' work enable him to crash the gate at more big events than he could reach without radio even if he owned a flock of automobiles and a fleet of airplanes.

Old and New Styles Good

It is time to build. Apparatus has been developed to the point of high efficiency. The seemingly impossible has been attained—receivers can be attached directly to any electric lamp socket. Older types of receivers, with wet batteries, dry batteries or battery eliminators can be remodelled or merely rejuvenated by overhauling. Every one of them, right down to the crystal detector, gives better results today than it ever did, because of the increased power and quality of the broadcasting stations. There is no limitation of time or money

that needs to keep a man from building a new receiver if he wants something better than the old one.

Interference has been reduced, conditions are improving. Broadcasting is under control at last.

Prices Low

Prices of parts never were so low nor the parts so good. Radio business has developed to a point where manufacturers and dealers are making liberal price reductions. Quite different from the hectic days of 1922 and 1923 when customers formed lines reaching out into the street and waited for new shipments of phones and coils to arrive.

The other day a man walked into a chain store. He forgot whatever it was that his wife sent him for and, as usual, found himself hanging over the radio counter. The store advertised: "Nothing over one dollar" and there on the counter was a five-tube radio set whose name was a household word.

He was about to ask for a dozen of those sets and had his twelve dollars in his hand when he overheard

You can plug into the house lighting circuit and operate a modern receiver.

a salesman explaining matters to another customer. The set was composed of parts that sold for five cents to one dollar apiece. Altogether they came to forty-five dollars. For the convenience of a customer who wanted to buy them all at once, the store would put them into a cabinet. each in its correct position, and fasten them there with wire and solder. They charged a little more than for wrapping them with paper, twine and gummed strips; the customer could save the difference by assembling the set himself.

He hesitated. Then a bright idea came. He bought the parts, took them home, assembled them. After he tested out the receiver and adjusted it for extra good results, he gave it some touches of individuality that he knew would please a neighbor. He invited the neighbor in to hear it. It caught his fancy and he wanted to buy it. The builder sold it and cleared \$20.

The next day he was back at the store for another kit. His first customer sent him his second. The next week he was back after his third outfit. In a month he figured out that if he could keep the neighbors away long enough he could build a set for himself with the money he had made and have enough left to pay him for the time he had spent on all of them.

There is something about a hand-

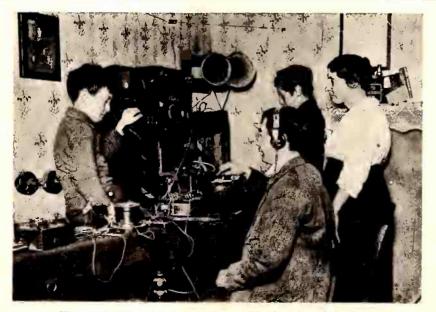
made set with the monogram of the owner on it that gets 'em. The factory-made product may be as good, or better, but it is not exclusive.

Relieves Nerve Strain

It is time to build. Hand work relieves mental strain. Driven all day by executive pressure in the ceaseless grind of business or industry, a man develops a longing to do something in his own way and take his own time about it. He may be a putterer who butchers bakelite and lumber into irregular shapes whose dimensions even geometry could not discover, or he may be a careful artisan whose finished product breathes the spirit of the artist. It makes no difference which he is. Building a radio set in the quiet of the evening in his own home relaxes the nerves, breaks up the monotony of the struggle for existence. It is an unselfish pastime, too, for a radio outfit can provide pleasure for the whole family and

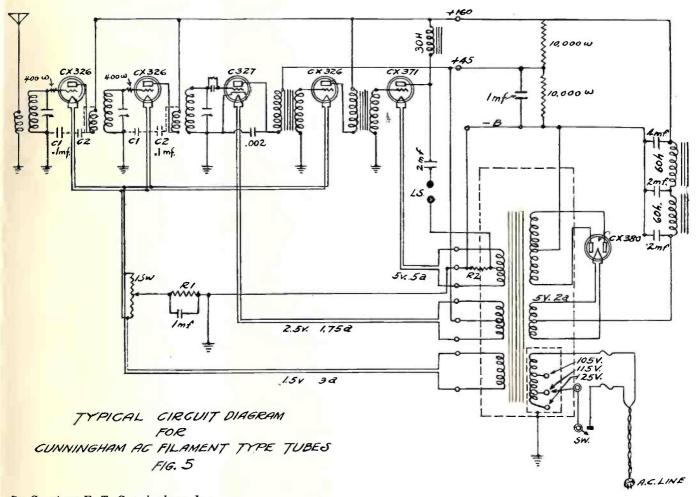
Our eyes have been used too much; the ears should be used more. Radio develops hearing. We learn to distinguish the different instruments in the orchestra and to know the announcers by their voices. It gives us an enlarged channel through which pleasurable sensations reach us from the outside world. We can lay down the fine print that makes us screw up our faces until the wrinkles become permanent. For a few hours

Or a careful artisan whose work shows the spirit of the artist.


at least we can relax, put aside the glasses that wear creases in the bridges of our noses, rest our eyes and let our ears work. It doubles the joy of life.

Radio A Time-Saver

It is time to build. Radio saves time. A man who takes a half hour of our time when he puts his message into print gives it to us in ten minutes, and more interestingly, by radio. When he talks into the microphone he has to condense. It costs one hundred dollars an hour to operate an average broadcasting station and the management counts the seconds. So does the audience. If a speaker wants to hold a radio audience more than ten minutes he has to begin by making a transatlantic flight or knocking out a world's champion.


Time is life. A man must be informed about current events or he is laid on the shelf—modern business has no use for a fellow who does not know what is going on—and if he spends an hour a day gathering information when he could get it by radio in fifty minutes, he is wasting one business week a year. It would be better to use radio and take an extra week's vacation. News, book reviews, talks on the leading plays. technical information, all are on the air regularly. Listening to them directs attention to articles and books

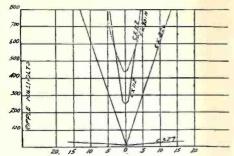
(Continued on page 39)

The set builder may be a putterer who butchers bakelite-

Some Interesting Characteristics of the A. C. Tubes

By Courtesy E. T. Cunningham, Inc.

(For further data on A. C. Tubes, see page 16)


HE NEW A. C. tubes seem to be the long sought solution for complete and economical A. C. operation of radio receivers. The new tubes replace the comparatively bulky equipment of the "A" eliminator type only recently developed. Until the cartridge type of rectifier was invented an eliminator was a bulky affair, almost as large as a good sized storage battery, and usually just as wet. Even the latest types of "A" eliminators have a chemical filter condenser in them, with a few exceptions. The only accessory to the new tubes is a small filamentheating transformer, which is very much smaller than the smallest of "A" eliminators.

The announcement of the appear-

ance on the market of the two tubes was made in the July-August issue of this magazine. There are two Cunningham types of A. C. tubes, as already made clear, in that issue; the type CX326, an all purpose amplifier, and the C327, which was designed purposely as a detector, but is also an efficient radio frequency and audio frequency amplifier when used as such.

The CX326 is similar in electrical characteristics to the 301A type. The plate impedance, however, is lower, giving the tube a higher mutual conductance. The filament construction is of the inverted V type, like that of the 301A tube, but is in form of a ribbon and oxide coated. The filamore current than the 201A tube. The temperature of the filament does not follow with changes in current flowing through it nearly as rapidly as with a light filament and therefore the filament emission to the plate is practically uniform.

In the lighter filament the temperature changes modulate the plate current, as the tube resistance rises and falls with the amount of filament emission, and the A. C. component in the plate circuit is the result. Fig. 1. is a graph showing the amount of A. C. in the plate circuit of various tubes as the center tap to the potentiometer is moved from the exact nodal point. It is very apparent that greater deviations are allowable withment is heavy and takes considerably out inducing noticeable hum in the

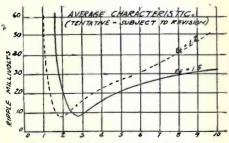

By Courtesy E. T. Cunningham, Inc.

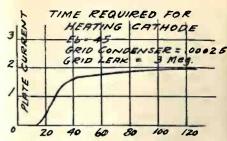
Fig. 1. Percentage of "hum" as potentiometer is unbalanced. Notice that for C327 there is little difference as to the position of the potentiometer.

new tube than in the tubes designed for D. C. filament operation.

There is a balance point between the electromagnetic and electrostatic fields set up by the alternating current and the CX326 is designed so that this point is effective when the tube is used as an amplifier. Fig. 2 illustrates the effect of the plate current on the percentage of hum. It is readily seen that the hum is at a minimum when the plate current is about three milliamperes. This also shows why the tube is not adaptable as a detector, since the plate current would be very much reduced with the grid bias method of detection and the amount of hum correspondingly increased.

When the tube is used as a radio frequency amplifier the results are about the same as those obtained with a 301A tube, since the internal construction of the elements, and therefor the inter-electrode capacity, is the same. The grid plate capacity is about 10 m. m. f. As an audio frequency amplifier the tube is also the same, possibly a little better on the low notes for some transformers.

By Courtesy E. T. Cunningham, Inc.


Fig. 2. This curve shows that the least "hum" is present when the tube is taking about three milliamperes plate current with the proper filament voltage of 1.5 volts. The "hum" increases very rapidly as the plate current is decreased below .25 milliamperes. Type CX326 tube.

The use of a bias on the radio stages as well as the audio stages is absolutely essential. The bias is necessary to keep the plate current at a value where the A. C. component is minimized (as has already been observed from the graph of Fig. 2.), and to prevent grid current from Among other things, this means that the use of a potentiometer for controlling oscillations is impossible. The radio frequency stages may have the grid returns connected to the same potentiometer as the audio stage since the potentiometer adjustment for the r. f. tubes is not as critical as for the audio tube.

With the rather high grid bias required for these tubes (see data list on these pages) the input impedance of the tubes is quit high and the selectivity of tuned circuits across the input is not impaired.

As has already been brought out, the filament voltage must be constant, as well as the plate current, and have a definite value for operation without hum. The plate current should be three milliamperes and the filament 1.05 amperes. This prevents the general practice of controlling oscillations which might occur in the r. f. by means of a rheostat in the filament circuit, or a variable high resistance in the plate current supply.

The internal construction and base of the type C327 tube is quite different from the standard 201A tube. The tube, instead of having a regular filament, has a heater filament which requires a current of 1.75 amperes, and an electron emitting cylinder around it. The cylinder is electrically insulated from the filament and connected to the center tap of a potentiometer for the plate current re-The cylinder is oxide coated and when heated by the filament inside, emits electrons to the plate. The potential distribution over the whole surface is uniform and therefore the A. C. fluctuations in the filament have no effect on the plate current. The grid and plate are also in cylindrical form, grid plate capacity is almost half that of the CX326 or 201A tube and should make an excellent r. f. amplifier. The mutual conductance is also slightly higher; the amplifica-

By Courtesy E. T. Cunningham, Inc.

Fig. 3. Time in seconds.

tion constant the same. All in all. this is the better general purpose tube of the two, and especially so for detection, and r. f. amplification in circuits where the interelectrode capacity is not neutralized or balanced out.

The cylindrical cathode is connected to an extra prong at the base of the tube, making it a five prong base, which naturally requires a special socket. Several sockets to accommodate this tube are already on the market.

Detection by the grid-bias method is not practical with this tube. When this method is used the sensitivity will be only about one-fifth as great as when a regular grid condenser and leak is used. On the graph of Fig. 3. it can be seen that there is a time element in starting the operation of the tube. About a minute is required to bring the heater to full operating temperature, for this reason there

(Continued on page 32)

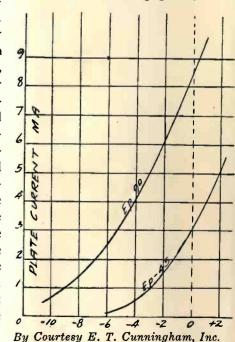


Fig. 4. Plate current grid voltage curve

for type C227 tube

Locating Mineral Beds by Radio

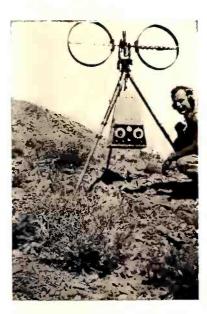
EVEN the well known and much honored prospector must now accept the very latest fashion in mineral exploration, for the radio has come into the field with eyes more powerful than all the prospectors combined. New fields will be opened in the mining world, abandoned mines promise to again start operations, while mining property throughout the world will be waiting for the radio to help in locating its underground fortunes. The radiore process, as it is named by the inventors utilizes the well known electrical principle of inducing an electric current through a conductive body and thus creating an electro-magnetic field which extends out at varying lengths. A high frequency sending set with another apparatus designed for receiving and direction finding comprises the complete outfit for the radio prospector of today.

From the broadcasting, set which is set up at any desired location in the field, an alternating electric-current of a very high frequency is sent out into the air, and creates what is called the primary field. If there are any conductive ore bodies within this radius of the broadcasting set some of the electric current will naturally flow through them. As a re-

Close-up of broadcasting set which sends out alternating electric current

Broadcasting apparatus in the field during operations

sult of the induced current flowing through the conductive ore deposit an electro-magnetic field will be created called the secondary field. The next problem for the radiore engineer is to locate the axis and depth of the mineral body.


To find the axis of the secondary field a receiving set is used with direction-finding loops mounted on the well known surveyor's transit. After the territory has been divided into smaller plots, for convenience in surveying, the radiore receiving set is set up at some point within the primary electro-magnetic field. The operator uses the usual wireless receivers to listen in as he revolves the direction —finding loops in various directions in order to determine the direction to the axis of the secondary field. If there is a conductive ore deposit anywhere under the surface to a depth of 500 feet it can be definitely located by continued observations and plotting of the area. Only ores of the sulphide group such as lead, iron, and copper, and a few ores in their natural state, can be determined with the radiore process so far. However continued experimenting is now being carried on in the mining fields of Arizona and other states of the southwest to further perfect the instruments.

The entire radiore outfit is designed for convenience in carrying about in the field work, while the total weight of every part is nearly 500 pounds. The receiving and sending sets are mounted on tripods which enable quick set-ups and moving in the field. Under normal conditions a crew of four or five men can operate one outfit. In case the terrane is hilly and rocky or covered with dense vegetation additional helpers are added.

Where the ground has been almost inaccessible for the ordinary type of prospecting the radiore process may be used to quickly determine the underground mineral conditions, the radio prospectors may even set up their apparatus hundreds of feet underground, in active mining tunnels and shafts. As an accompanying help to mining the radiore process proves to be the greatest development of the present day. Expensive and futile mining operations will be unnecessary when the ground may be explored without costly drilling.

As yet the character of the ore deposit which may be located cannot be determined with the radiore ap-

(Continued on page 39)

The "radiore" set in operation in the field. Notice the directionfinding loops

Current Radio Wisdom in Tabloids

Wildest Radio Dreams Not Nonsense

From an interview with Merlin H. Aylesworth, President of the National Broadcasting Company, which appears in the American Magazine for August.

RECENT successful experiments in television, in which persons were seen in the act of telephoning by the ones spoken to, are by no means the end of wonders that may be accomplished by the radio. To the contrary, the wildest dreams for its development are not nonsense, said Merlin H. Aylesworth, president of the National Broadcasting Company in an exclusive interview given to the American Magazine for August.

Radio has shaken off the handicap of taking limitations for granted. In radio and in pretty much everything else, the men who dare to think most boldly, even most absurdly, have been more nearly right than those who have believed that only the little things were possible, said Mr. Aylesworth.

We know for a certainty that big things are just around the corner. We expect that we shall live to see motion pictures flashed onto the walls of our homes. Science may even find a way to break down food into electrons and transmit them to our kitchens by radio and there reassemble them for nourishment. This sounds like the wildest nonsense at the moment but the radio itself seemed like nonsense only a couple of decades ago.

Our hope for radio is that it will make the people of the United States feel that they have "been some place"; that their lives will be richer, their experience wider, their appreciation of life more satisfying because they have been in touch, through this magic, with the wisest, the most talented and the most high-thinking folks of their time.

We are just beginning to find out about it ourselves. But we already know some things that have human interest. We know that there were 5,200,000 radio receiving sets in the country last June, which means, if you assume five listeners to every set, a total radio audience of twenty-six million people. New York State, with 654,000 sets, has the most listeners, and Nevada, with 7,200 sets, and New Mexico, with 7,800, the fewest. The four cities that have the largest number of listeners in proportion to their population are Los Angeles, San Francisco, Chicago, and New York, in the order named.

So far as we can discover, the male and the female audience is about evenly divided. For instance, a recent mail canvass conducted through station WEAF brought 1,943 letters signed by men, 2,190 letters signed by women, and 929 signed by "Mister" and "Misses." Naturally, the daytime audiences will consist almost entirely of women, though it might surprise you to know how many offices of busy executives now have radio sets—a few minutes of orchestra music with the after-luncheon cigar before the afternoon grind begins.

Against Radio Advertising

From address by United States Senator Arthur Capper of Kansas, broadcast over Station WIBW, Topeka.

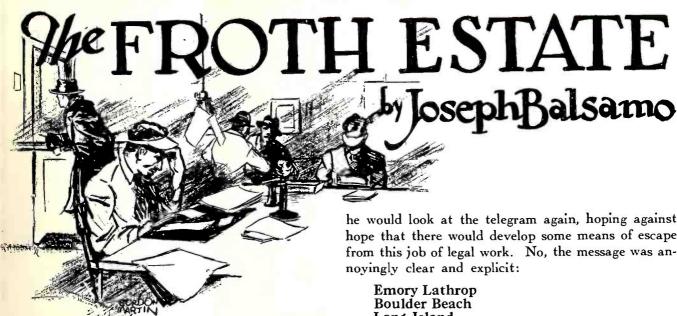
I T SEEMS to me that the radio's greatest value is in the direction of furnishing entertainment and practical information to the listeners. For that reason I have regretted to see what appears to be a growing tendency on the part of some of the broadcasters to commercialize their programs—to ultilize the air for the sale of merchandise or to make commercial appeals to comparatively small circles of people.

I do not believe this phase of broadcasting should be encouraged. I believe it was this commercial feature that was to a large extent to blame for the tangle in the wave lengths which the Radio Commission is now engaged in untangling. Commercialism is always followed by a

certain selfishness that is rather inclined to brook no interference with its plans. Radio is bigger than that and its future should not be hampered by such small, selfish interests.

Broadcasters should always remember that the interest of the public come first. I am sure that this was what Congress had in mind when the radio law was passed. The Radio Commission named to administer that law must also bear in mind that it's the listener who comes first.

Favors Advertising


Martin P. Rice, Director of Broadcasting for the General Electric Company, in an address on "Radio Advertising."

BY CONTRIBUTING to the cost of broadcasting, it (advertising) has made possible the rapid development and maintenance of a great public service which makes weather, market and stock reports, music, entertainment, education, religion, and the addresses of statesmen available to everybody, everywhere, without tax, cost or expense.

All of these objects may be termed advertising in the broad sense and if you look over the long list of broadcasting stations on the air today you will find very few of them which are not advertising something. The almost universal desire to broadcast today springs from the desire to advertise. It is an age of publicity and advertising.

There is nothing incongruous about it and nothing shocking. Probably everyone who reads a national magazine or buys a newspaper replete with the latest telegraphic reports from all over the world does not stop to consider that his purchase price is only a fraction of the publisher's cost and he may not know that the advertisers make up the difference. There can be no misunderstanding about a commercial broadcast program because the announcer always states frankly the name of the advertiser who sponsors it.

(Continued on page 45)

The story thus far

Col. Maximilian Minimil sets \$10,000,000 aside out of his personally acquired colossal fortune, for the purpose of financing the Fortunaius Gazette for his son Daly. The younger Minimil, while the great project is being organized, has some difficulty in making other people believe he intends to publish a newspaper that is to be free from the smut and hysteria of certain other dailies.

He believes a clean journal will win out. Bill Rossom, publisher of the Clarion, is a former movie actor. A horse stepped on his face, and although putting him out of the picture game, so transformed his countenance that he has the appearance of a super-man. People do what Rossom wants because of the compelling power of the Rossom face. Rossom tries to prevent the sale of the first issue of the Gazette. The Minimils win their circulation battle by a ruse and the Gazette is successfully launched.

Daly orders the city editor to discharge one of the girl reporters, giving the reason that she is so good-looking she might distract the attention of the young men from journalistic labors. The girl visits Daly in his office to protest against being dismissed and Daly falls in love with her and tells her so. She leaves Fortunatus that night, explaining in a latter to Daly that she fears he is too hasty in his wooing and she wishes to give him time to consider

the future.

XV

R. EMORY LATHROP, eminent member of the law firm of Lathrop, Lathrop and Moore, shaved himself hastily and laved his face, which extensive adventures on tee and green and fairway had given a hue not dissimilar to the calf binding on his law reports. A robust and yet a distinguished figure of a man, Mr. Lathrop.

"This knocks me out of the club handicap play," sighed Mr. Lathrop, looking out over the green hills of Long Island. "That man Minimil never takes a day off and he apparently doesn't want his legal counsel to

swing a driver, either."

Mr. Lathrop's valet laid out linen and a carefully pressed suit. This done he completed packing a Gladstone bag. It was Sunday morning and the Lathrop household was not yet astir. The head of the menage made his way to the breakfast room where Fawcett had eggs and toast and coffee waiting. As Mr. Lathrop sat down to his solitary meal he glanced again through the East windows which revealed hills bathed in hazy sunshine. A perfect day for golf. Mr. Lathrop decided

he would look at the telegram again, hoping against hope that there would develop some means of escape from this job of legal work. No, the message was an-

Long Island.

Meet me Keystone hotel, Philadelphia, Sunday morning eleven o'clock impor-

Minimil.

Mr. Lathrop gazed at the hateful yellow sheet as if to assure himself that it really meant this particular Sunday, this Sunday of perfect golf weather, this Sunday of the handicap match in which he was to have teed off with Judge Kershaw in the semi-finals of the club's midsummer tournament.

Eminent lawyers are gifted with resourceful minds and Mr. Lathrop was no exception. He found no way of evading this unwelcome Philadelphia journey, but as he studied the telegram he discovered therein an inspiration that made his countenance beam suddenly and glow as radiantly as the golden yolks of the poached eggs that smiled merrily up at him from their twin couches of golden toast.

Why, that may be early enough "Eleven o'clock. to give me a chance to go out to the Philadelphia Country Club for eighteen holes in the afternoon! Meet Traynor and Calkins there, like as not."

Mr. Lathrop was talking to himself but Fawcett, capable old sort, was listening. There was instant action. Fawcett called the country club to say that Mr. Lathrop's car would stop there in about fifteen minutes and Mr. Lathrop wished to pick up golf clubs and clothes on his way to the train.

Col. Maximilian Minimil of Fortunatus was watching alertly for the arrival of Mr. Lathrop and when that quietly attired barrister entered the lobby of the Keystone hotel, followed by two bellboys, bearing hand bags and golf bags, the Colonel stepped forward eagerly to seize his hand. Col. Minimil was clad in a suit of violent plaid, fully as noisy as his greeting. He rushed Mr. Lathrop off to his apartment in a lofty corner of the Keystone and almost pushed the eminent lawyer into a capacious chair by a window.

"It's about Daly," the Colonel said, facing Mr. Lathrop. "Boy's completely goofy over a red-headed girl reporter. Never saw her but once but just as sure he's going to marry her as if the two families had planned it when he and she were born. She's a smart one. Ran off from Fortunatus to Philadelphia to put up a bluff of making him wait. Gold digger. You know the kind. Daly will either get her back to Fortunatus or follow her here. Up to us to nip the affair in the bud. I'll pay her off and you can take care of the legal end."

"I didn't suspect Daly to be so—so susceptible," ventured Mr. Lathrop.

"Hit him all in a heap," rapped out the Colonel. "Saw her in the reporter's room and fell like a log."

"Um," mused Mr. Lathrop. "How about her? Are you sure she isn't genuinely interested in Daly?"

"Interested your eye," boomed Col. Minimil. "Interested in his bank roll!"

"And yet she ran away from it?" asked the lawyer.

"Just a poker trick, passing for a raise," snorted the Colonel.

"You give her credit for great shrewdness. Either she is full of crafty ways, Colonel, or she instinctively did the right thing about getting away and giving him time to think things over. She's either a dangerous adventuress or——." Mr. Lathrop's voice trailed off into silence and he sat considering the matter.

"Or what?" demanded the Colonel.

"Or she's in love with Daly," calmly reflected Mr. Lathrop, aloud. "In that case, Colonel, we might better go a bit carefully."

"Bunk!" shouted the Colonel, "did you ever know two young folks to fall in love like that anywhere except in one of them confession stories."

"Once," said Mr. Lathrop, a smile flickering at the corners of his mouth. "That was when Mrs. Lathrop and I met. We were married a week later."

"Say Lathrop, are you one of these sentimental lollypops or are you a lawyer?"

"I sometimes think I'm both," laughed Mr. Lathrop.
"Well you are off on the wrong foot in this case.
Only one thing to do. Make an appointment with this lady and you'll see how she will play her cards. I know 'em. Look at Adam and Eve or Cleopatra and Napoleon Bonaparte. They're all alike when they want something and they always want something."

"I'll call the young lady up for an appointment," said Mr. Lathrop. "What particular part of the Garden of Eden is she gracing with her presence and what is her name and telephone number?"

Colonel Minimil held up a forefinger as if to impress upon his attorney his client's cleverness. "Had the best detective in the country locate her," he said. "She writes stuff under the name of Amy Templeton Graves but her real name is Amy Templeton and here's the address and telephone number."

Mr. Lathrop looked at the memorandum which the Colonel handed him and almost imperceptibly raised his eyebrows as he read the street address. He got up and walked to a little table on which the telephone stood.

"Miss Templeton? Ah, Mrs. Templeton, may I speak with your daughter please? Will she return soon? Not until dinner. I see. This is Mr. Lathrop. I have just arrived from New York and would like very much to reach Miss Templeton as soon as possible. Could I call her by telephone elsewhere? Too bad, but thank you, Mrs. Templeton, I will call up again at 6. Thank you. Good bye."

"Not home?" asked the Colonel.

"Out for the entire afternoon," replied Mr. Lathrop happily, at the same time seizing a handbag and proceeding to pull forth shirts, golf socks, shirts and shoes. "Come to luncheon with me at the Country Club and we'll talk the thing over while I'm fixing up a game with a couple of near-golfers who gave me a trimming a month ago. Can't turn a wheel until 6 anyhow."

XVI

F Col. Minimil had not elected to dress himself up like an excursion boat before going to the country club this chapter in the tale of the strange adventures of Minimil and son could not have been written. But the Colonel did so attire himself. He selected a suit of plaid material which was not merely loud. It was cataclysmic. A devastating storm of cobalt blue, burnt orange, and scarlet swept across the background of gray cloth. His hat was a wide-rimmed covering of pearl gray, to match his spats. He carried a stick that had been nothing more than a dried Malacca reed in its native jungle, but which now was a polished rod surmounted by a silver knob, the size of a tennis ball. The stick looked much more like the baton of a circus bandleader than it resembled the cane of a gentleman.

Mr. Lathrop, the conservative New York lawyer, quailed at the sight of the Colonel in his Sunday outfit. But it was not the duty of a lawyer to question the sartorial taste of a client and Mr. Lathrop said nothing and appeared to observe nothing. The elevator boy breathed deeply as the upholstered Colonel entered the lift. Passing through the lobby Mr. Lathrop heard a bell boy ask the cigar counter girl: "Where is the faro game?" Out under the porte cochere a taxi driver called out to a crony across the street, "Whatsay about a little game of checkers?" A young gentleman, lolling in the tonneau of a special-bodied touring car, whistled the tune, "Horses, Horses, Horses." Beyond these trifling incidents and several scores of smiles and nods and whispered comments the Colonel's outfit attracted no attention whatever.

At the country club Mr. Lathrop had the good fortune to find Mr. Ned Traynor, an ancient golfing foe, and a match was arranged with gusto and dispatch. Mr. Traynor explained that a young lady was to play with him but that she was a corking good golfer and it would make a tip-top threesome. Mr. Traynor waited while Mr. Lathrop and the Colonel partook of a light luncheon in the grill and then the three walked out on the terrace which overlooked the first tee and the eighteenth green. They stood there a moment chatting

before saying goodbye to the Colonel and trying not to be aware that every eye in or on that part of the golf course was directed at the landscaped elder Minimil.

A girl, idly swinging a driving iron, as she waited near the first tee, looked up casually and saw the Colonel. Her prettily flushed face went white for a moment. Her eyes narrowed and she puckered her fair brow into a scowl of amazement and indignation.

Need we say that the young maiden in such evident stress of spirit was Amy Templeton? It was indeed she and indeed she had been knocked for a row. The Colonel little thought as he went forth to the golf course that he was to so dramatically betray his presence in Philadelphia to the very lady whom, in the presence of legal counsel, he had come to see. Unconscious of the tumult he was causing in the breast of the little red-headed girl reporter from Fortunatus the Colonel shook hands with Mr Traynor, waved au revoir to Mr. Lathrop and retired from the terrace.

Miss Amy stilled the beating of her heart and took her errant emotions firmly in hand. Followed, was she? The old Colonel was here to nip her romance in the bud, was he? Miss Amy smiled. It is a well known phenomenon of biology that a red-headed girl will fight for her heart's desire as savagely as a Yunnan tiger battles for his breakfast. No need to try to explain or analyze. An eagle in the air; a serpent on a rock, or near a rock; the way of a maiden with a man. The man of shallow thought assumes that when a lovely woman stoops she is stooping to folly. He does not guess that she may be reaching for a sash weight.

When Mr. Traynor advanced and introduced Mr. Lathrop to Miss Amy, adding that Mr. Lathrop had left the New York bar flat to come to Philadelphia to get a good beating at golf, the girl put two and two together and added them up to a dozen sage conclusions. This lawyer had come to the club with Col. Minimil. He and the Colonel were here to rescue Daly from a titian-haired girl reporter, who was plotting to lure Daly Minimil to the altar and thereby attach herself to the Minimil bankroll, popularly supposed to have a circumference exceeding that of a full-grown water main. Miss Amy was beautiful and yet not dumb.

She greeted Mr. Lathrop with the sweetness that comes to womankind when they are most dangerous. She welcomed him with a warm shake of the hand and a straight look out of eyes that literally swam in loveliness. If Mr. Lathrop, the level-headed legal bearcat, was a trifle groggy under the barrage of feminine charm he was crowded right up against the ropes when he heard Mr. Traynor mention her name:

"Miss Amy Templeton, Ned."

The girl saw and understood. Colonel Minimil and Lawyer Lathrop might be in Philadelphia to look up the past performances and pedigree of the Templetons but at least they had not followed her, like two silly detectives. The lawyer was obviolsly as surprised at meeting Miss Amy as the girl had been at recognizing

Col. Minimil in his appearance as King Solomon on the clubhouse terrace. The rest of the sketch would be simple. She knew him and he knew her but he didn't know she knew and she did know that he knew.

XVII

Mr. Lathrop was a golf player. Occasionally he shot under 80, which will explain a lot of things to various of his clients who had wondered why he was so frequently out of town on business during the golfing season. Mr. Lathrop loved a close contest. It irked him that he should meet Miss Amy here under the unfortunate necessity of playing golf with her during the afternoon and asking her why was she a gold digger in the evening. But that latter event could take care of itself. As long as it was afternoon and eighteen holes of good golf stretched out ahead of them, why, he would play golf. He at least would show Miss Templeton that he was able to get both distance and direction and make 'em plunk down, once he was on the green.

Miss Templeton also was a golf player. She never shot under 80 in her life but she had come close to it. She was what is known in the sport page as a money player. The greater the necessity for good shots, the better were her shots. She would now show this lawyer for the Minimil family that she was pretty fair on distance, direction and that her putting touch could turn a five into a par four.

Mr. Traynor never will forget that game of golf. He was out of it from the start. He watched a handsome, accomplished, skilful New York lawyer hook up with a lovely, determined and hard hitting girl. Mr. Lathrop sensed the spirit of conflict in her and his his spirit rose to meet hers. They halved the first hole in four, Miss Amy took the second with a five to Mr. Lathrop's six and the lawyer evened it up on the third when he made a birdie three against Miss Amy's good par four.

"I say," said the bewildered Mr. Traynor as they walked to the fourth tee, "one would think you folks had been waiting for years to settle a golf game instead of having met for the first time today."

"Let us alone, Ned," laughed Mr. Lathrop, "something tells me that a woman is going to almost lick me for the first time in my golfing career."

"You put it conservatively," exclaimed Miss Amy.

They finished the first nine with honors even. They continued on, seesawing, ding-donging, fighting for every break, studying every putt. On the sixteenth the girl hooked her drive into the rough and disaster appeared imminent. She got out with a beautiful niblick and was on in two. Mr. Lathrop's second shot went dead to the pin. Miss Amy looked at the twelve-foot putt that confronted her, took her stance and swung the club in a pendulous, graceful arc, that sent the ball spinning across the velvety turf. The ball rolled lazily toward the cup, straight as a taut string, seemingly controlled by the magic of the young lady's determination, even after it had departed

(Continued on page 30)

Suggestions About Supers

By ARMSTRONG PERRY

THE way to be happy with a superheterodyne radio receiver is to treat it as a sensible man does a new wife: try to control it and, if you can, don't worry because you cannot understand it.

For distance, volume and quality the superheterodyne is as far ahead of other types of receivers as a high-power rifle is ahead of a boy with a snowball. That is, if you have a super that works. However, the snowball, because of its very simplicity, hits many a plug hat that has never been knocked off by more complicated weapons.

It is just as easy to build a super that will work as it is to build one that will not work. These two kinds look almost exactly alike. The main difference is that the ones that work were designed by someone who knew what he was doing and were built by someone who did exactly what the designer told him to do.

The first step toward success is to go to a reliable radio shop and buy a set of blue prints, templates and instructions. A reliable radio shop, from our point of view, is one in which the management always is ready to back up any statement that it makes, by furnishing new parts, by giving free service, or by doing anything else that may be necessary in order to make a set operate as guaranteed. The dealer who sells an outfit with a statement that it will deliver certain results, and who meets complaints with suggestions about spending more money when the set fails to deliver those results, we do not rate as reliable.

The customer who stands next to you at the counter may tell you, while the clerk is wrapping your outfit, of many improvements that you can make by substituting different condensers, coils, tubes, transformers and other parts for those specified by the engineer who designed the outfit. This cuss may tell of no end of supers that he has built, and how he gets Japan on the loud speaker almost every night. Go over to his house

any evening to see how he secures his marvelous results and you will find, usually, that he has just taken his set apart because he knows of a hook-up much better than the one he used before, so he cannot give you a demonstration. With an imagination like his you would not need any receiver.

Radio experts do pick up separate parts and construct superheterodyne receivers that give maximum results. That is because they know how to measure inductances, capacities, resistances and voltages, how to plot curves, how to operate tubes at the proper position on their characteristic curves, how to test each piece of apparatus, how to locate the causes of

Does the super satisfy? See that smile! This is in a steel-frame building surrounded by elevated railways, surface cars and fifty-seven varieties of electrical devices, but it reaches out and brings in the distant stations

trouble and how to remove them. But the average set builder, working a few hours in the evening and after church on Sunday, has a long course of study and experimentation ahead of him unless he takes plans and instructions worked out by a competent radio engineer and follows them.

It is an easy matter to lay a tem-

plate on a panel and drill the holes for the apparatus that is to be fastened to it. Anyone who is handy with tools can do that. But it takes a thorough mechanic to lay out the template with the degree of accuracy required to make a super supe.

Knowledge and understanding grow, of course, as the set builder follows the plans. That is why it is ten times more fun to build a set that it is to buy one that is all ready to use. One of the first and most pleasing discoveries is that the superheterodyne receiver consists of four distinct and comparatively simple sections, each of which may be constructed and tested separately. These are: the first detector, the oscillator, the intermediate-frequency amplifier, and the second detector. This does not include the aerial and the condenser used in tuning it, nor the audio-frequency amplifier that some builders may wish to add, but these present no problems that are peculiar to the superheterodyne.

The tremendous amplification of the superheterodyne receiver makes it possible to cover long distances with a loop aerial, and this usually is tuned with a variable condenser. Sometimes the loop is tapped, so that more or less turns may be used.

The aerial picks up energy from the radio waves and delivers it to the first detector. The detector circuits are much the same as those of any other receiver. The energy passes through a grid condenser to the grid. There is a grid leak shunted across this condenser. The filament is connected to the "A" battery in the usual way. The plate output goes to the primary coil of a transformer, the same as in any set with a transformer-coupled amplifier.

The main difference between the wiring diagram of the superheterodyne and those of other receivers is discovered in the grid-filament circuit. The inductance coil in this circuit is placed in inductive relation with coils that connect with the oscil-

(Continued on page 33.)

The September Skies

By JAMES STOKLEY
Science Service Staff Writer

IT'H the coming of autumn, the skies take on a different aspect from what they had during the summer. Look high overhead this evening. There, up above you, shines Cygnus, the Swan, or the "Northern Cross." Near it are seen the Lyre and the Eagle. To the student of the stars, whether he be professional astronomer, or the merest layman, these groups in this position mean autumn just as clearly as do the falling leaves from the trees.

Let us look at Cygnus. Its long neck points to the southwest, with the brilliant Albireo—beta Cygni, the astronomer calls it—to mark the head. And to the northeast the still brighter Deneb, or alpha Cygni, marks the bird's tail. Then the two stars that form the tips of the transverse of the cross, also mark the wings of the swan.

Just why there should be a swan in the heavens is not certain. In the ancient mythology, there are several stories to account for it. According to one of them it was Orpheus, the marvelous musician. He wooed and won for his bride the beautiful Eurydice, but after that was murdered. Then he was turned into a swan, and put into the heavens near his favorite harp, which is represented by the nearby Lyre. Another story has it that the swan is the one into which Jupiter changed himself in order to deceive Leda, the queen of Sparta.

When seen with a powerful telescope, alpha Cygni, or Deneb, is found to have a companion star. But as the brighter body is of the first magnitude, and the companion of the twelfth, it is difficult to see. Albireo, the star at the southernmost end of the cross, however, is also double, and is one of the most beautiful in the sky. A small telescope, or even a good pair of powerful binoculars, if they are steadily held, shows up the two members of the pair. They

DRAGON CEPHEUS Caph

CROWN

CROWN

DIDA BEAR

DIDA BEAR

CASSIOPEIA

DIDA BEAR

CAPElla Algol

Hamol RAM

CHARIOTEER Pleiades

Pleiades

WEST

NORTH

EAST

Deneb

SWAN

Albireo

DOLPHIN

Albireo

DOLPHIN

Albireo

DOLPHIN

Albireo

DOLPHIN

Albireo

DOLPHIN

SERPENT SERPENT

BEARER

SERPENT SERPENT

BEARER

SOUTH

are of nearly the same brightness, but of very different colors, as one is distinctly yellowish, and the other blue.

EAST

A little to the north and east of the star epsilon Cygni, which is the easternmost star in the transverse of the cross, is a famous star known as 61 Cygni. This is so faint that optical aid is needed to see it well, but faint though it is, it is one of the closest stars in the heavens. It was the first star to have its distance measured.

This was done in 1838 by the great German astronomer Friedrich Wilhelm Bessel, who succeeded where astronomers for centuries had failed. After Copernicus proposed his theory in 1543, that the earth revolves in an orbit around the sun, it took many years for it to gain wide acceptance. One group of opponents of the theory, the fundamentalists of the day, objected to it on theological grounds. But there were others whose objections were more reasonable. They thought that the Copernican ideas did not explain all the observed facts, and so quite properly withheld their acceptance.

WEST


To this latter group belonged Tycho Brahe, the great Danish astronomer, and the last in the days which preceded the invention of the telescope. Tycho said that if the earth revolved around the sun in so wide an orbit, the stars should have

a yearly displacement. An object on the earth is seen in a different direction from different places, and so Tycho argued that if the earth was in one part of the year many millions of miles away from where it had been six months earlier, or where it would be six months later, the stars should be seen in a slightly different place in the sky. He had the most complete observatory, and the finest instruments that had been made up to his time. He failed to discover any annual change in the star positions. Therefore, he concluded, the earth remained in the same place with respect to the stars.

Tycho died in 1601. The telescope was invented in 1610. But even with this aid, no displacement of the stars by reason of the earth's motion was observed for many years. Finally, however, it became evident why it could not, and the Copernican system, with the sun at the center, and the earth revolving around it, found universal adherence. The reason was simply that the stars were so exceedingly distant, compared with the size of the earth's orbit, that the change in the star's position, or parallax, as it is called, was too small to be measured.

Until 1838, all efforts at measuring parallax were unsuccessful, but then Bessel succeeded. A new epoch in astronomy was inaugurated. One of the difficulties in making parallax measurements is in seasonal changes. If the astronomer measures the position of a star in the sky in January and July, for instance, with accurate instruments, the star will be found to have an apparently different place. But the change isn't all parallax. A large part of it is due to differences in temperature and other atmospheric conditions. It is very difficult to figure just how much of the difference these seasonal changes account for, and so another method is used.

A very simple experiment will illustrate the method. Hold your right index finger a foot in front of your face, and between you and some distant object, like a house. Close your right eye, and look at the house. Your finger will obscure part of the

New Crosley Musicone

The Crosley Radio Corporation at their Distributors' Convention, June 8 and 9, announced an addition to their line of loudspeakers—the Tilt-Table Musicone, pictured above.

This DeLuxe Model Speaker is of the tilt table design. Standing three feet high, is finished in a brown mahogany and has at first glance the appearance of a delicate old colonial tilt table. This latest Crosley Musicone possesses certain added characteristics of tonal quality which are highly desirable. Selling at \$27.50, it is certain to be a very popular model.

house. Now close your left eye and look at the house with your right eye. Your finger will seem some distance away from the place that it previously covered. Repeat the experiment with your finger at arm's length. Hold your finger so that when you close your right eye the same part of the house is obscured as before. But then when you look at the house with your right eye, your finger will not seem to change its position against the background as much as previously.

Precisely the same procedure is used to measure star distances. A close star takes the place of your finger. A distant one is the substitute for the house in the background. In

January the close star might appear near the distant one. In June it seems a bit farther away from the distant one. The farther away from the earth the closer star is, the less is the change, or the parrallax. From this can be figured the actual distance from the earth. When a star is very far away, of course, the chance is so minute that it cannot be detected. Such methods of measurement can only be used on the closer stars.

No star is so close as to have a parallax as large as a second. A second of arc is the apparent diameter of a dime about two and a half miles away. That is, if some one two and a half miles away holds up a dime, facing you, the distance from one side to the other is larger than the change in the position of the nearest star due to the earth's yearly motion. And this despite the fact that the earth revolves around an orbit 186,000,000 miles in diameter! No wonder Tycho Brahe could not detect it!

The parallax of 61 Cygni proves to be about three-tenths of a second. This is equivalent to a distance of 11 light years. A light year is the astronomical yard. Light travels at a speed of 186,000 miles—about seven times the circumference of the earth—in a second. The distance that it will go in a year, about 6,000,000,000,000,000 miles, is a light year. Alpha centauri, the closest of all the known stars, which can only be seen from southern countries, is about four and a third light years away. Its parallax is about three-fourths of a second.

Venus, the brilliant planet in the west, which has been so conspicuous in the early summer months, has now disappeared from the evening sky. But it will soon reappear in the east before sunrise. It is now getting close to the sun. On September 10, it will be at inferior conjunction, which means that it is between the sun and earth. Then it will move to the west of the sun, so that it will rise before it in the morning. By the end of the month, it will rise two hours before the sun, and will be conspicuous to the person who stays up that late-or rises that early!

(Continued on page 37)

Using the New AC Tubes in a Six-Tube R. F. Receiver

By Frank Freimann

UCH interest has been aroused by the announcement last month of two new A. C. types, which were to have been on the market July 1. The tubes have at this writing not been available to the public, but information from manufacturers leads us to believe that dealers will have a supply of tubes when this issue of RADIO Age reaches our readers.

Our laboratory's search for sample tubes with which to experiment, resulted in getting a set of Van Horn tubes, which are similar in characteristics to the type CX-326 Cunningham tubes, and a Cunningham C-327 tube. The Thordarson Electric Co. courteously furnished a filamentheating transformer. This transthe tubes are available.

new parts that have made their appearance on the market for the new season. A photograph shows the general construction of the receiver, and pictures clearly the parts used therein. The new Remler three gang condenser tunes three Aero Coil radio frequency transformers which are the new development of the Aero Products Co. Thordarson transformers constitute the audio amplifier.

With the application of the A. C. tubes are a few problems not encountered in the ordinary tube set which utilizes either storage batteries or some "eliminating" device. After one is once familiar with the function and characteristics of the tubes, however, these problems disappear and obvious facts are presented. former will be on the market when tubes seem adaptable to any of our present popular receivers when these It was decided to incorporate the facts are observed and small devia-

from those of the type 201A tubes. The object-heating the filaments with house lighting current without introducing hum into the loud-speaker—is well accomplished. Very little hum is present even when one listens very carefully for it, and then only a few feet away from the speaker. The hum is not noticeable when a station is tuned in, nor is there any distortion of the music or voice.

The complete data on the characteristics of the Cunningham type CX-326 and C-327 is given in a separate article in this issue.

The Thordarson filament heating transformer has three sets of filament voltage taps at one end, and a cord and plug at the other end. The two top connectors are from the one and one-half volt winding which supplies current to the four "326" tubes, the middle set of terminals are the new A. C. tubes in a six-tube single-tions made to compensate for the two and one-half volt winding for the dial radio frequency set with other slight difference in characteristics heater element of the C-327 tube,

Rear View of A. C. Operated Receiver Showing Placement of Parts and Associated Wiring. The Set is Wired with Flexible Rubber Covered Wire, Simplifying Wiring and Construction. The 171 Bias Resistor and By-pass Condensor are Hidden from View Behind the Out-put Transformer.

the center terminal is connected to plus forty-volt connection, and the lower set of terminals are for the filament of the CX171 tube in the last stage of audio amplification; the center tap here is for the plate current return. In series with this plate current return lead is a 2500 ohm Carter fixed resistor R₄. The voltage drop due to the plate current flowing through it, is impressed on the grid of the CX171 tube and acts as a bias. The transformer has an electrostatic shield between the primary and secondary windings and is encased in a heavy iron case which acts as a magnetic shield and prevents induction of the 60 cycle current into other parts of the circuit and causing hum. Both of these features are quite essential to operation without noticeable hum.

Since the current supplied to the filaments of the tubes is many times larger than in any of the tubes formerly operated from battery supply, the filament wiring must be given careful study. The leads should be twisted wire to minimize induction, and should be quite heavy, though ordinary rubber covered No. 14 flexible wire was used in this set. The wires carrying alternating current should be as far removed from the coils and grid wires as possible. In this case the tubes are mounted so that the filament terminals are at the back of base board and away from the coils, except for the third r. f. tube which is mounted between the first and third r. f. transformer. A Carter heavy duty rheostat is connected in the 11/2 volt filament lead to cut the voltage to 1 volt, to accommodate the use of Van Horn tubes which have a filament terminal voltage of 1 volt. This rheostat can be left out if CX-326 tubes are to be used.

No doubt there will be cries of "wrong wiring diagram" when some of the readers take their first glance at the diagram and see the 45 volt line connected to what looks like the plate current return. But it's all right; the plate current return is to the oxide coated metal cylinder cathode which is electrically insulated from the heater filament and the high voltage through the transformer winding. This unusual connection is

PRELIMINARY SPECIFICATIONS A. C. FILAMENT TUBES

TYPE CX-326	TYPE C-327	
Filament voltage 1.5 volts	2.5 volts (heater fila-	
*	ment)	
Filament current 1.05 amperes	1.75 amperes	
Plate voltage recommended90-135 volts	45 volts (as detector	
	90-135 V as r. f. &	
	a. f. amplifier)	
Maximum180	180 volts	
Grid bias at 180 volts16.5 volts negative	13½ volts negative	
at 135 volts12 volts negative	9 volts negative	
at 90 volts 6 volts negative		
Amplification factor 8.2	8.2	
Plate impedance at 180 volts 9,400 ohms	9,400 ohms	
at 135 volts10,000 ohms	10,000 ohms	
at 90 volts 9,400 ohms Mutual conductance 180 volts880 micromhos	11,300 ohms 870 micromhos	
135 volts820 micromhos	820 micromhos	
90 volts875 micromhos	725 micromhos	
Plate current 180 volts	6 milliamperes	
135 volts	5 milliamperes	
90 volts3.7 milliamperes	3 milliamperes	
Interlectrode capacity (plate		
grid)10.5 m. m. f.	6.0 m. m. f.	
Maximum undistorted output	0.0 m. m. 1.	
at 180 volts0.160	0.140 watt.	
135 volts0.070	0.055 watt.	
90 volts0.020	0.020 watt	
Base—Standard Large "CX"	Special 5 prong type	
Mechanical Dimensions:		
Maximum overall length41 inches	4 16 inches	
Maximum diameter	113% inches	

coupling between the plate and heater, since they are now both at the same potential.

The grid return wires are all connected through a 1000 ohm resistance to the movable connection on a 20 ohm potentiometer which has its outer terminals across the 11/2 volt winding and rheostat. The plate current to all the "326" tubes flows through this resistance and the voltage drop of about 12 volts biases the grids. This is indicated in the diagram as R₂ and is by-passed by a 1 m. f. condenser C₀. The by-pass condensers across both of the bias resistors R₂ and R₃ are quite important, when these are left off a continuous audible oscillation will very likely be the result.

The Remler "right-hand" drum dial is mounted in the exact center of the front panel and the gang condenser is mounted on it, this divides the set in half, the radio frequency stages and detector are on the left side and the audio stages and filament heating transformer on the right. The first tube is a antenna coupling tube and

probably made to eliminate capacitive, will not add very much to the amplification of the set, but it permits any length of antenna to be used without throwing "off" the tuned stages.

> The radio frequency transformers are staggered to afford the greatest spacing between coils and at the same time to allow short leads and of uniform lengths. The first and second transformers are two and one half inches apart, and the second and third transformers are three and a half inches apart, while the space between the first and third transformers is five inches. It is vitally important that the wires running from the condensers to the coils are all about the same length. The wires running to the terminals No. 6 and the condenser terminals should be 4½ inches for transformer T1 and T2 (first and third), and 51/2 inches for transformer T2, the transformer mounted at the rear of the board. The terminals No. 5 on transformers T: and T: could be connected together with a piece of bus-bar wire about seven inches long, and No. 5 of transformer T2 can be connected with a 3½ inch wire to the exact center of

the bus-bar wire, from where a wire leads to the center terminal on the other side of the condensers (the side paralleling the panel). The other two terminals on that side of the condenser are also connected to the center terminal as they are all common and are finally connected to one end of resistor R3, the other side of which is connected to the center of the potentiometer R2. The lead that connects to R3 should be run to the center of the bus wire connecting the three No. 5 terminals together.

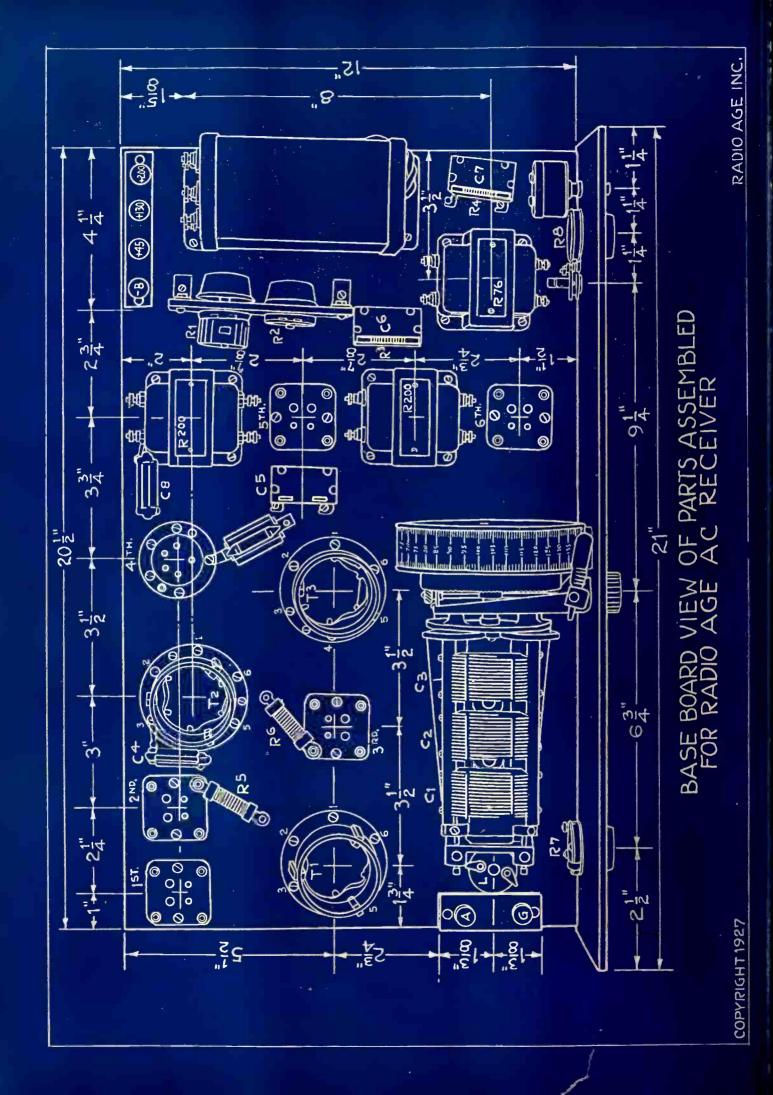
The Aero r. f. transformers are furnished in matched units, three in one box. To have the same amount on inductance in each circuit (comprised of a transformer and condenser) the above precautions in keeping all the wires the same length are necessary. The coils should not be handled roughly for the windings are supported only in three places by narrow bakelite strips and can easily be bent out of form. When this happens the set of coils will no longer be matched.

Ordinarily the method of preventing oscillations and maintaining the same sensitivity over the whole wavelength range is that of varying the plate current to the tubes, and therefor the amplification, by means of a variable resistance in the plate current supply lead. This form of oscillation control, or that of varying the filament temperature with a rheostat, is not advocated by the tube manufacturers on claims that noticeable hum is bound to result. In our experience we found neither of these methods very efficient and a quite different scheme was resorted to-that of varying the impedance of the primary of the second transformer. Instead of connecting the plate of the second tube to terminal No. 2 as in the other two transformers, it is connected to terminal No. 3 to increase the impedance of that plate circuit. A .001 m. f. condenser, C₁ is connected in series with the primary winding which helps to some degree in stabilizing the r. f. R₁ is connected directly across the primary and stabilizing condenser from No. 1 terminal on the transformer to "P" on the socket. To further stabilize the r. f. circuits

Front Panel View of Six Tube Single-Control Receiver Employing The New A. C. Tubes.

resistors Rs and Rs are connected in series with grids of the second and third tube (second and third stage). The oscillations can be controlled very easily over the whole wavelength range by increasing or decreasing the primary impedance with changes in the value of resistor R: There is however one disadvantage in using this circuit for stabilizing; that is, the secondary circuit of transformer T2 is detuned slightly when the

shunt resistor is at a low value, nevertheless there was no effective loss of selectivity noticeable.


The audio frequency amplifier is very general. The grid bias for the first audio tube is the same as that for the r. f. tubes. All of the transformer cases should be connected together and "grounded" to the center of the potentiometer, this is quite important in preventing a. c. pick-up, and also audio oscillations. A Thordarson R76 out-put transformer is an asset in this receiver, as the current which would otherwise be flowing through the loud-speaker windings might injure the speaker. A 500,000 ohm potentiometer connected across the secondary of the first audio transformer makes a very effective volume control. The two outside terminals are connected directly across the transformer terminals and the grid of the first audio tube is connected to the center of the potentiometer. The wires to the potentiometer should be twisted together into a three conductor cable.

If Van Horn tubes are employed the rheostat should be adjusted for maximum amplification and minimum In any event, however, the rheostat should never be turned full on, as the tubes might be burned out. About one third of the resistance on the rheostat should be in the circuit. Once this adjustment is made it should be left that way. Likewise the potentiometer; it should be to the point where the hum disappears or is at a minimum. The rheostat and potentionneter are mounted on a strip of bakelite two inches wide and four and one half inches long, and spaced three inches apart. Four binding posts are mounted on a strip 3/4 inches wide and four inches long, spaced

LISTS OF PARTS

THE following are the followin HE following are the parts the RADIO AGE Six Tube R. F. Receiver using the new A. C. tubes. Other parts having the same values may be substituted

- 1 Panel 7x21x3/16
- Base Board 20x12x1/ Frost sockets No. 530
- 1 Silver-Marshall No. 512-five-
- prong socket
- 1 Aero Choke Coil-60 (L)
 1 U-123 Aero Universal Tuned
 R. F. Kit (T1, T2, T3)
 2 Thordarson R200 Audio
- Transformers
 - 1 Thordarson R76 Out-put
 - transformer 1 Thordarson Filament-heat-
- ing transformer 1 Remler 3-in-line Remler Con-
- denser No. 633 (C1, C2, C3) Remler Drum Dial No. 110 1 Carter Code No. MW-1/5 .2
- ohm rheostat (R1)
 Carter Code No. MP-20 20
- ohm potentiometer (R2)
- 1 Carter 500,000 ohm Hi-pot Code No. 55 (R8)
- 2 Code No. H-400 resistors (Carter) (R5, R6) 1 Code No. P-2500-40 2500 ohm
- resistor (Carter) (R 4)
- 1 Code No. H-1000 1000 ohm resistor (Carter) (R3)
 1 X-Hi-ohm (Carter) (R7)
 1 Carter Short Jack—open cir-
- cuit Code No. 1 3 Tobe 1m.f. by-pass conden-
- sers (C5, C6, C7) Sangamo .002 condenser (C8)
- Sangamo .001 condenser (C4) Sangamo grid condenser
- 1 Cuttler-Hammer filament switch
- 3 meg-ohm grid leak 6 Eby binding posts

one inch apart. An extra binding post is shown in the photograph which may be disregarded.

The set is ready for a test after all the connections are checked and re-checked. On turning on the light current to the transformer and B eliminator, if one is used, there will be a very loud hum bursting out of the speaker. After the set "hums" for about a half minute (until the detector tube heater is white hot) the hum will suddenly subside, and then with adjustment of the potentiometer The drum dial is will disappear. then revolved until a station is heard on the upper part of the drum. But before tuning in your station loosen all of the adjustment screws of the alignment condensers which are between each set of plates. Screw down the adjustment screw nearest to the drum dial until the signal is the loudest; if the station gets weaker loosen the screw to the point where it will be loudest again. Now make the same adjustment on the middle alignment condenser. In approaching the point of maximum signal strength the set lengths. A slight re-adjustment will

may break into oscillation. In that case set the stabilizing resistance to a point where the set will stop oscillating. The next alignment condenser is then adjusted, and in the same manner. After this adjustment turn the drum dial back and forth across the station, that is, so the station will be tuned in and out, and at the same time go over the condensers again until the loudest signal is heard, or until oscillations occur. It is a good idea to adjust the stabilizer to a position right below the point where oscillations start, and then make the alignment adjustments until oscillations start, then back off the stabilizer to stop the oscillations, and again make your condenser adjustments until oscillations occur, finally the further adjustment on the condensers will not induce oscillations (whistles), unless the stabilizer is turned up. The circuits will now be tuned to resonance at the high wave-lengths. If the coils are properly matched and the gang condenser is accurate the alignment should hold for the lower wave-

soon determine this. If re-adjustment is necessary to get the loudest signal it means that either the coils are not matched or the gang condenser is "off." During all these adjustments a small antenna of about twenty feet should be used.

The total current consumed in the plate circuits is about fifty milliamperes. The average B battery eliminator will handle the set, though the voltage to the plate of the 171 tube will be less than 200 volts. It will be about 150. The bias regulation however, will be automatic, and adjust itself to any plate voltage. A B battery eliminator having about a 80 milliampere capacity is advantageous, and in a set where more than six tubes are used is absolutely necessary.

October Supers

Get the October Radio Age for illustrated articles on three of the latest superhet circuits. An important number.

REMLER

Radio Parts

Are Specified in the

AC Tube Receiver

Drum DIAL

The Remler Drum Dial gives a full 15 inches of dial space, divided into 200 divisions—2 for each broadcast channel.

Calibration strips are rigidly mounted, yet easily removable and renewable. Call letters are readily written in.

Spiral gear drive gives quiet operation and no back-lash. Socket and 6-volt lamp furnished for illumi-

Easily mounted, round drilled hole required

The Remler Drum Dial will drive all standard akes of condensers either single or in gangs one, two or three condensers.

Mounting template is included in each carton. Right or left-hand mounting. Calibration strips are supplied for either clock-wise or counter clock-wise rotation of dial.

No. 110.-Remler Drum Dial-Price

\$450

Once more the quality and accuracy of Remler Radio Apparatus wins important endorsement. Again parts that are built for maximum service are used to give maximum results. Your Radio Age AC Tube Receiver deserves the improved reception which only Remler Parts can give.

GRAY & DANIELSON MANUFACTURING CO. 260 First Street

CHICAGO

SAN FRANCISCO

NEW YORK

Eastern Warehouse, ELKHART, INDIANA

3-in-Line CONDENSER

Complete insulation of each rotor permits its use with any system of neutralization.

Balancing Condensers are integral with the main unit and are quickly adjusted by means of conveniently located regulating screws. Amnle space is allowed between sets of plates. Frame is die-cast aluminum with black crystal-line enamel finish.

The Three-in-Line Condenser can be mounted interchangeahly with other Remier Condensers. Special staggered connection of plates makes it self-shielding, preventing interstage coupling. All insulation is of genuine Bakelite.

Maximum capacity of each section, .00035 mfd.

Price

\$15<u>00</u>

Twin-Rotor Condensers \$5.00

Fveryday Mechanics

Radio Beacons to Aid Air Mail Flyers

By S. R. Winters

AT COLLEGE PARK, Maryland, where six years ago the Air-Mail Service of the United States Post Office Department was inaugurated, there has just been dedicated the first aircraft radio beacon for the promotion of civil aviation. There, at this landing field, the first airplane laden with postal matter departed from the now time-worn hangars for New York City; today, this same spot marks the genesis of radio aids to air navigation. The dedication of the College Park aircraft radio beacon station-the

This is Captain Maurice Graham, Western Air Express Pilot, flying the air mail between Los Angeles and Salt Lake, who in thirteen months from April 17, 1926, to May 17, 1927, has flown 125,000 miles, a world's record for any similar period of time. During that time, Graham has never been forced down for trouble or weather, has never defaulted a trip for any cause, and has never failed to start on scheduled time regardless of weather conditions. This is said to be a record unparalleled in the history of flying. He is to be nominated for the Clifford B. Harmon trophy given each year to the most meritorious feat for the advancement of aviation.

forerunner of 40 similar installations along the 8,234 miles of civil airways across the continent-was without formal exercises. The event, none the less impressive, was attended by Dr. George K. Burgess, Director of the Bureau of Standards; Dr. J. H. Dellinger, Chief of the Radio Laboratory, and the technical staff responsible for the erection of the station. Appropriately signalizing the completion of this safety aid to flying, Dr. Burgess congratulated Haraden Pratt, actively in charge of the work, while the latter was winging his way far above the field in the test airplane. Using a radio telephone, located in a wooden shack on the outskirts of the College Park aviation field, the Director of the Bureau of Standards, in communicating with the airplane in flight, said: "Mr. Pratt, I hear you very plainly. I am interested in what you are doing out here and am pleased

to note that you have such a complete setup. Now, I must be going back to the Bureau to do some work. Goodbye."

Previously, Dr. Burgess had inspected the directive beacon for guiding aircraft in a zone of safety; he had donned a helmet and climbed aboard the radio-equipped flying craft; and then posed with Dr. Dellinger and the eight members of his technical staff for a photograph. The Director of the Bureau of Standards listened attentively to Dr. Dellinger as the latter related how the ignition system of this airplane had been shielded to minimize interference with radio communication; how a satisfactory receiving set, with but one control, had been installed on this craft; and how, by means of a visual indicator, aviators may be directed in a zone of safety by slender beams of radio when consulting

a device on the instrument board of the airplane.

In the sense of being the genesis of radio aids to civilian aeronautics, the beacon station at College Park bears an analogy to the relation betwen the "Zero Milestone," in Washington, D. C., to the public highway system. The latter is the starting point in reckoning the mileage of the network of highways: This beacon station not only marks the starting point in developing radio aids to air navigation but the results of experiments now in progress will serve as a chart for erecting more than 40 other radio beacons along airways across the United States-for directing aircraft carrying passengers, postal matter, and express.

The directive beacons in transmitting a double-beam radio wave will set up a well-defined path or zone of safety for the airplane in flight. Established at intervals of

-Copyrighted by Harris and Ewing.

The "Wireless Airplane" has arrived! Dr. George K. Burgess, Director of the Bureau of Standards, and Dr. J. H. Dellinger, Chief of the Radio Laboratory of the Bureau and other members of the laboratory staff, are seen examining the airplane at College Park, Maryland, which is guided exclusively by radio waves. The course of safety is automatically indicated by vari-colored lights flashed on the instrument board of the airplane.

200 miles along the airways, in their functioning they are somewhat like marine radio beacons or lighthouses for mariners, in that aviators are thus offered a guiding hand when enveloped in fog or obscured in darkness. This beacon transmits two directed radio beams, continuously sending on each a characteristic signal. The airplane, equipped with an ordinary radio receiving set, if traveling at equal distances from the lines set up by these radio beams will receive signals of equal intensity; off the well-defined path, there is an inequality of signals and the pilot corrects his course until the signals are again equalized.

The marker beacons, established at 25-mile intervals along the 8,234 miles of airways, will serve as mileposts to aviators, indicating the distance already traveled and how many more miles must be traversed before reaching their destination. These marker beacons do not overlap the function of the directive beacon since the former do not define the course of flight. Instead, these very lowpower radio transmitting stations will flash a charactertstic signal and upon being intercepted by the aviator he is automatically informed of his location. Extremely simple transmitting sets have been designed for this purpose and these mileposts along the air highways instead of conflicting with the function of the directive beacon will materially supplement its effectiveness.

Radio-telephone stations, located at 200-mile intervals along the more than 8,000 miles of civil airways, will serve as mediums for imparting weather forecasts, information about landing fields, and other navigational facts, to aircraft in flight. For this purpose, radio telephony is necessary since aviators are not usually trained in the technique of the Morse International telegraph code and are not, therefore, qualified telegraph operators. The use of the radio telephone on aircraft necessitates the adoption of specially armored cable for the engine ignition systems. Once the engines have been shielded to eliminate interference, conversations between pilots in flight

Radio installation in aircraft, mail-carrying transport, showing transmitter, reel and control box

and persons at ground radio stations may be effected at distances of 100 miles or more. Officials of the Bureau of Standards recently conducted experiments which form the basis of this estimate.

The aircraft radio beacon station at College Park, Maryland, is at once the original and model of all future radio aids to air navigation. There, under the direction of Dr. J. H. Dellinger, Chief of the Radio Laboratory of the Bureau of Standards, the first radio beacon was erected under authority of the United States Department of Commerce for the development of civilian aeronautics. A similar installation is being made by the Bureau at Bellefonte, Pennsylvania, and both of these beacon stations will be available for radio service to commercial air lines after July 1. The other four aircraft radio beacon stations available now or soon are: The station of the Army Air Corps at McCook Field, Dayton, Ohio; two stations of

the Ford Motor Company, located respectively at Dearborn, Michigan, and Chicago; and a station installed by the General Electric Company at Hadley Field, New Brunswick, New Jersey. The commercial lines which these radio aids will serve are, respectively, the Pitcairn Company, operating the New York to Atlanta route, and the National Air Transport, Inc., operating the New York to Chicago route; and the Ford Motor Company, operating out of Detroit

The model station at College Park includes a wooden tower, 70 feet high, painted a deep shade of yellow, with a flag at its apex. This towering latticework is the main supporting structure for two triangular loop antennas, from which double-beam radio waves are emitted for guiding aircraft. A radio room, 10x 14 feet in dimension, containing the vacuum-tube transmitting set, the goniometer, and other necessary radio equipment, is located directly un-

der this tower. The tower is approximately 10 feet in circumference at its base; gradually narrowing down to a peak at its apex. It extends over the top of the radio room so that there will not be an unbalanced electrical effect in the operation of the radio equipment in conjunction with the triangular loopantenna.

Extending from the apex of this tower are four wires, running to four points of the compass, to distances of 150 feet. At the termini, the wires are connected to pulleys, which in turn are staked to posts by means of 200-pound weights. These antenna wires, forming a single-turn triangular loop, are run back to the radio room, the wires being supported 8 feet above the ground by three posts set in concrete. These socalled base wires are insulated from the posts by use of large glass insulators. The 200-pound weights at the termini of the base wires serve the purpose of slackening or tightening the antenna.

The wires leading from the top of the tower appear, at first glance, to be guy wires but in reality they constitute the antenna system—the somewhat odd arrangement of two

A double-beam radio beacon for aircraft

Showing ignition shielding installed on Liberty motor as means of suppressing noises in radio reception on aircraft

enormous loops crossed at right angles. It is a giant loop antenna when compared with our usual conception of loops; 1,256 feet of wire being utilized in constructing the two single-turn triangular loops. The College Park aircraft radio beacon station was constructed by Haraden Pratt, Francis W. Dunmore, and Carl B. Hempel of the Radio Laboratory of the Bureau of Standards. The radio aids to air navigation are being developed and perfected under the direction of Dr. J. H. Dellinger, Chief of the Radio Laboratory, who is leaving Washington soon for a three months' study of aids to air navigation in European countries. The Aeronautics Branch of the Department of Commerce is vested with the work of establishing radio beacon stations, a step of far-reaching significance.

Preliminary to determining the equisignal zone of a directive radio beacon, the Bureau of Standards made ground tests with radio equipment installed on a motor truck. Fortunately, the equisignal line corresponded with the test road, thus facilitating the ease of making observations. At points 13, 21, 34, 38, and 51 miles distant from the transmitting station observations were made on crossroads running perpendicular to the equisignal line. The width of the zone at these points was found to be as follows: at 13 miles 360 feet, at 21 miles 400 feet,

at 34 miles 400 feet, at 38 miles 450 feet, at 51 miles 500 feet. In measuring the width of the zone at these points the following method was used:

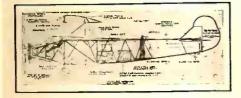
The signals were tuned in and the radio amplifier adjusted until the strength of the signals was of medium intensity. The motor truck was then driven back and forth on a line at right angles to the equisignal line until the middle point was found; that is, where the intensities of the signals were equal. Then the truck was slowly driven north until the inequality of the signals became noticeable, this point being taken as one limit of the zone. The truck was then driven due south past the middle point of the zone until the inequality of the signals again became noticeable. This point was taken as the other limit of the zone, the distance between the two limits as determined was taken as the width of the zone.

The equisignal zone thus determined was found to extend due west, not exceeding 500 feet in width at any point up to 50 miles from the transmitting station. "As the distance from the transmitting station increased," reports the Bureau of Standards, "the sharpness of the zone decreased, which necessitated closer observation to determine the exact width of the zone. It is interesting to note that observations could not be made close to overhead wires of any kind or in the lee of a high hill or wooded section. It was found that wires running parallel to and in the immediate vicinity of the equisignal zone have the effect of blending the two signals, distorting the position of the zone, and in many cases doubling the strength of both signals."

In an airplane test using a 200-foot trailing wire antenna the results were markedly different, owing to the directional characteristics of the trailing wire. This test showed that signals were stronger when the airplane was flying away from the transmitting station than when flying toward it. This effect resulted in an apparent shifting of the equisignal

(Continued on page 48)

"B" Batteries encased in a parachute sack as they looked after their 25,000 foot drop from an army balloon. They were still good for further use


Batteries Drop 25,000 Feet Still Working O. K.

Just how durable is a radio dry battery? Captain Hawthorne C. Gray of the U. S. Army Air Corps, satisfied himself on this point recently when he broke all previous world altitude records for free balloon flights in reaching a height of 42,470 feet at Scott Field Air Depot, Belleville, Ill.

At a height of approximately 25,000 feet, the radio "B" batteries and dry cells, with which his balloon was equipped, were hurled overboard in a specially made parachute; were recovered uninjured and returned by parcel post to Captain Gray without packing, in the condition shown in these photographs.

Captain Gray, in a letter to National Carbon Company, makers of the Ever-ready Batteries so ignominiously treated, writes:

"The same set of batteries was used in my altitude flight of March 9th and is still in condition to be used again. The "B" batteries tested 21 volts each, and "A" batteries tested 23 amps."

Diagram Shows Plane Features

This diagram gives some of the new details of the construction of Commander Noel Davis' plane "Pathfinder" in which he will attempt the 3,600 mile non-stop flight from New York to Paris

this summer for the \$25,000 Orteig prize. Some of its unusual features are the huge 900 gallon tas tank in the fuselage, smaller gas tanks in the wings of the plane, which are of unusual thickness, shock absorbers on landing gear, deflated life preserver raft stored in the fuselage and a special designed instrument which shows whether the ship is on even keel. The "Pathfinder," now in process of construction at the Keystone Aircraft Factory, Bristol, Pa., is to have three Wright whirlwind engines developing over 200 H. P. each. The plan three Wright also has a short-wave broadcasting set. The large gas tank is divided into partitions to prevent the splashing which might disturb the equilibrium of the ship.

Edward Manley, radio operator of Putnam-Baffin Island Expedition, testing out his transmitting apparatus.

Radio Nearest Pole

When the schooner "Morrissey," in charge of Captain "Bob" Bartlett, Peary's skipper of his North Pole days, comes abreast of West Baffin Island with the members of the Putnam-Baffin Island Expedition aboard, it will mark the nearest that radio has ever been taken to the Magnetic Pole.

The Putnam-Baffin Island Expedition, headed by George Palmer Putnam, left New York on June 11 for West Baffin Island, a region unvisited by white men since its discovery by Luke Fox in 1631. Radio scientists are especially interested in the outcome of radio experiments so near the actual center of the earth's magnetic force. Radio operations and experimental work will be in charge of Edward Manley, of Marietta, Ohio. The Morrissey's radio equipment, as shown here, includes a generator-powered transmitter (shown at extreme left of picture), a battery-powered transmitter with the UX 852 tube (shown at top of wooden shelf), two especially built radio receivers, one short wave, one long wave, and a Equipportable battery transmitter. ment includes 37 dry batteries, which can be used for portable purposes.

The battery-powered transmitter shown above, in addition to the UX 852 tube, which will be used for the first time in Northern waters, has four radio frequency chokes. The circuit is shown as a tuned plate and tuned grid circuit, for use on 33 and 20 meters. Twenty "B" batteries supply 900 volts as power.

Electric Arc Decomposes
Water

What will 6,000 volts of direct current, at the rate of 5 to 6 amperes, do to a stream of water? Here's the answer. The heavy current decomposes the water into its constituents, hydrogen and oxygen, and reburns the hydrogen to form more water.

In addition, slight impurities in the water are burned, the flame being colored reddish-purple by potassium salts, golden yellow by sodium, and green by copper.

The photograph was taken in the East Pittsburgh works, U, S. A. of the Westinghouse Electric and Manufacturing Company, where the machine was under test as a generator of plate current for radio work. One side of the circuit was the water pipe, from which a piece of heavy copper wire dipped into a porcelain insulator. As the water flowed into the bowl-like top of the insulator and spilled over the sides, the current arced through the water and returned to the generator through a wire entering the lower portion of the insulator.

The arc varied in length from three to five inches, and expended 25 kilowatts power—enough to light 600 ordinary 40-watt house lamps.

Film Feeding Device

Edward Amet, Los Angeles inventor, exhibits a model of a new film feeding device which can take from 1 to 25,000 pictures per second. This invention, he believes, is the only bona fide fast film feed in existence, aside from the secret methods used by the Government in aerial photography

urrent Science

Astronomer Plans \$12,000,000 Telescope

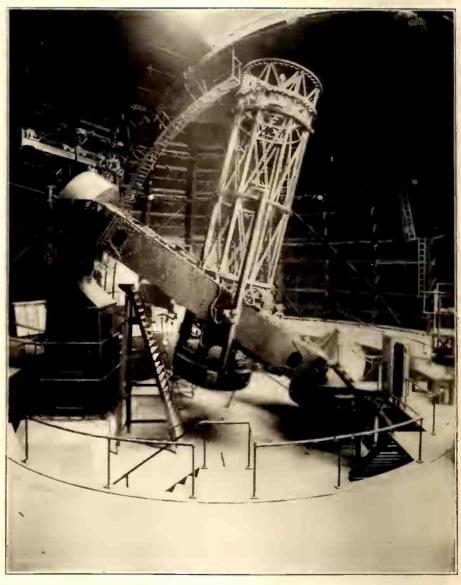
By JAMES STOKLEY Science Service Staff Writer (Copyright, 1927, by Science Service, Inc.)

HE astronomer is never satisfied.

Recently Dr. Edwin Hubble, of the Mt. Wilson Observatory, estimated that he had observed nebulae in the sky so far distant that their light takes 140,000,000 years to reach us. As light travels 186,000 miles in a single second, these distant objects are something like 840 million million million miles away.

And yet the human eye desires to see still farther, and better.

To do this three things are necessary, in the opinion of Dr. Hubble. His views are shared by other astronomers.

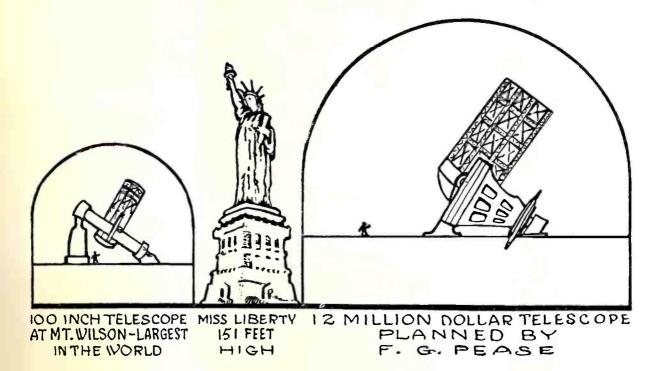

First of all, astronomers need better photographic plates.

Then they need more big telescopes in the southern hemisphere.

Lastly, they need one or more super-giant telescopes. Such an instrument has already been planned by Francis G. Pease, builder of the great 100-inch reflecting telescope at Mt. Wilson—the one with which Dr. Hubble worked.

The need of the big telescopes in the southern hemisphere arises from the shape of the globe on which we live. Unless a telescope is precisely on the equator, there is a piece of the sky that it can never observe. If the telescope is in the northern hemisphere, like those in the United States, there is a large circular area, centered at the South Pole of the heavens, which never rises above the horizon at all. And a still larger circle of stars never rises high enough to be really satisfactorily observed.

The equator is not the ideal loca-



One hundred-inch reflecting telescope of the Mt. Wilson Observatory in California, now the largest in the world

tion for a telescope, however. While two telescopes. One should be well on this imaginary line it is theoretically possible to see every star in the heavens at some time or other, those around both poles never rise very high. The best way to do is to have

to the north of the equator, the other well to the south.

For many years several American observatories have had branches in southern countries. The Lick Ob-

servatory, of the University of California, has one in Chile. Here are observed stars that are invisible in California. The observatory of Harvard University has had a branch since 1889 in Peru. Now they are moving to South Africa, where conditions are better.

Largest Southern Telescope

At this branch will be not only the instruments from Peru, but also some new ones. Chief of these will be a great reflecting telescope with a mirror five feet in diameter. This will be the largest telescope in the southern hemisphere. It is already being constructed in a plant in Pittsburgh. This is the same plant that made the six-foot mirror for the big telescope at Victoria, B. C., the largest outside of the United States.

Like all reflecting telescopes, this great instrument will have a mirror which takes the place of the convex lens in the telescope of most familiar type. The mirror is dish-shaped, and faces the stars. It is at the bottom of the telescope. The light of the star is reflected back from it, and a smaller mirror at the top of the telescope reflects the light to the side. Here it can enter the eye of the astronomer or fall on the sensitive photographic plate.

The Harvard astronomers will have company, even though they are so far

away from home. Within the last two years the University of Michigan and Yale University have established branch observatories in South Africa, but at both of these stations are refracting telescopes, not reflectors.

There are other reflecting telescopes in the southern hemisphere, though not as large as the new Harvard one. Nearly a century ago, the great English astronomer Sir John Herschel, took his great 4-foot telescope, at that time one of the largest that had been built, to the Cape of Good Hope. He was the first astronomer to use a large instrument in southern latitudes. From his researches arose the British Royal Observatory at the Cape.

Australia also has a big reflector. This is a more modern instrument than Sir John's, for it was built in 1870. Its mirror is also four feet in diameter. This year it has been overhauled for use in observing Pons-Winnecke comet.

\$12,000,000 Telescope Planned

But all these instruments fade into insignificance before a telescope that has been planned by F. G. Pease, designer and constructor of the 100-inch Mt. Wilson telescope. According to Mr. Pease, the principal item necessary for the construction of this monster research instrument is the cost. Twelve million dollars, he esti-

mates, would provide it. A large amount, of course, but only about a third the cost of a modern battleship! And how much more good would the telescope do for the world than the battleship, for it would increase man's knowledge of the universe about him!

There are mechanical difficulties to be solved before such an instrument could be made, it is true. However, Mr. Pease probably knows more about such matters than any man living. This is what he says:

"The question has often been asked 'How large a telescope can be built today?' My reply would be that anything up to a hundred feet in aperture can be built provided one wants to pay for it."

One of the problems to be solved is the material of which to make the Present telescope mirrors are mostly made of glass. On this is coated a layer of silver to reflect the light, much as in the ordinary looking The chief difference is that the telescope mirror is silvered on the front instead of the back. Hold a coin to your looking glass and you will see the reason. In the glass you see two coins, one bright, reflected from the silver on back, and one faint, reflected from the glass surface. In astronomy such a double image would be a serious defect. So the silver is coated on the front, and

Great nebula in Orion, photographed with the 100-inch telescope. Such objects as these would be shown in far greater detail with a still larger telescope, such as Mr. Pease has planned

is renewed occasionally.

However, in the large size contemplated there might be some defects of a block of glass as huge as would be required. Glass transmits heat slowly. When the temperature goes down, the great mirror would cool on its surface sooner than inside. The result would be that the outside would contract a little and the mirror would be slightly twisted until it reached the same temperature throughout. Though very minute, the twisting would be enough to be serious in accurate observing. So it may be that some metallic alloy, which transmits heat quickly to its interior, will prove better than glass.

Faster Photographic Plates

But astronomy doesn't want merely bigger telescopes. Even more welcome to the world of star-gazers would be better and faster photographic plates. Most astronomical observations today are made with the aid of photography. If you visit the modern astronomer at an observatory, you are not likely to find him peering through a telescope. Instead, you will probably find him looking through a microscope at a photographic negative made with the telescope.

tory enough photographs might be made to keep the astronomers busy for a month. The plate has one great advantage over the eye because it doesn't get tired. If you look through a telescope, you see as much in the first second as you will see if you look steadily for an hour. Of course, if there is a lot of fine detail, it may take time to give it careful scrutiny. But long gazing doesn't make details visible which were at first invisible. In fact, the eye gets tired, and really sees less after prolonged looking than at first.

The photographic plate is untiring. If a star of a certain brightness can be photographed in five minutes, one half as bright can be photographed in ten minutes, or one a quarter as bright in twenty. Some nebulae are so faint that even in the great Mt. Wilson telescope they can not be seen with the eye. But when a photograph of one is made with a long exposure, it is revealed in all its glory. Sometimes exposures as long as twenty or thirty hours are made, on several nights. All night long the plate is exposed, and then covered at the approach of dawn. Then the next night it is again uncovered, and it is kept pointed at the object for all of that In a single night at a big observa- night. In this way things are seen

in the sky that without photography would have remained ever beyond our ken.

But photographic plates are not perfect. Some are more sensitive to light than others. The fast plates that the newspaper photographers use in their cameras record a scene even in poor light in a fraction of a second. The "wet plates" that the photoengraver used in making the illustrations for this article require long exposures with brilliant arc lights.

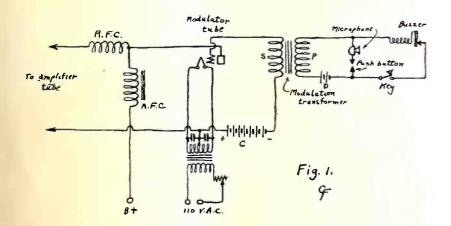
Fast Plates Show "Grain"

It might then seem that the astronomer should merely use the same kind of plates as the newspaper camera man. However, as soon as you begin to magnify the picture on one of these plates, the "grain" appears. It is like looking at a halftone reproduction of the photograph of Mr. Pease on this page. As soon as you look at it through a magnifying glass, the dots that make up the picture become so evident that the picture is no longer recognizable. In the plate, the grain is irregular, unlike the uniform rows of dots, but it is no less troublesome.

The plate of the photoengraver does not suffer from this defect. Even (Continued on page 37)

Francis G. Pease, builder of the 100-inch telescope, who has planned one three times as large, to cost an estimated total \$12,000,000

AMARCHE ROUIO


Improved Radiophone Modulation Circuit By CHARLES F.FELSTEAD, 6CU

If the modulation transformer circuit shown in the accompanying diagram is used by the transmitting amateur, not only are switches and jack eliminated in the radiophone transmitter, but the wiring is made much less complicated. In the usual modulation circuit, a jack is connected to the modulation transformer primary and the *D* battery, and plugs are connected to the microphone, and buzzer and key. If a push button is put in series with the microphone

Works All Continents

Colonel Clair Foster, radio amateur, of Carmel, California, has just set a record for his fellow members of that exclusive amateur club known as WAC—"worked all continents"—to shoot at.

Colonel Foster on June 10, communicated from California with an amateur station in South Africa, working with only a standard broadcast listener's receiving tube as a transmitter and with B battery power. It has just become known that on the same day Foster successfully worked with Shanghai, China.

as shown, the operation of the set will be more simple; and the cost of the jack and plugs will be saved. Some manufactured microphone assemblies have push buttons built into the handles; so, when a microphone of that type is used, no extra push button is necessary. Otherwise, with the ordinary microphone, a small push button will have to be connected in series with it. When neither key nor push button is closed, no current flows from the D battery. When the operator wishes to use voice, he presses the push button; and to use buzzer-modulated C. W., he operates the telegraph key.

By establishing communications with South Africa and China, Colonel Foster has now worked all of the continents, in each case accomplishing communication by means of the ordinary receiving tube and B batteries. The conversation in Africa was carried on with folSR, J. M. Davidson, Salisbury, Rhodesia, and in China with ac8HB, P. O. Box 266, Shanghai.

Regarding his record-making talks with these two continents, Mr. Foster says: "This makes all continents worked with my little transmitter, with the same identical 201A tube and Eveready batteries."

All the foreign stations were worked on 38.2 meters, or near it, except eg5HS, in England, on 20.2 meters.

Mr. Foster's accomplishment is believed to set a record for long distance communication with low power. In the California to Africa conversation, a distance of 14,000 miles was traversed.

Amateurs Elect Kerrigan

Vincent Kerrigan, head of the Inspection and Test Department of the Bremer-Tully Mfg. Company at Chicago has been elected President of the Chicago Nines Club. Other officers elected at the semi-annual business meeting, July 5, are Clifford Agazim, Vice-President, George Schmidt, Secretary, and Elmer Enke, Treasurer.

As many will remember, the Chicago Nines Club was organized in December, 1925, by a number of active Chicago amateurs. The first meeting, held at station 9VJ owned by Elmer Enke had nine charter members. At the present time the club has thirty members, the limit set by its constitution. The members are all licensed amateurs and many of them are employed in the engineering and laboratory departments of Chicago radio manufacturers.

The Club is operating its own station 9CN, operating on 21 and 42 meters with 250 watts.

For Superhet Fans

THE most popular series of How-to-Make articles ever published in Radio Age were those on the Worlds Record Super 8 and 9. These articles were published in the issues of Nov. 1926 and January, February, April and May, 1927 and included blueprints. We have a limited supply of these back numbers at 30 cents each. Send stamps, currency or money order.

Crosley Extends Programs

Announcement is made today by the National Broadcasting Company that Powel Crosley, Jr., president of The Crosley Radio Corporation of Cincinnati, has purchased the programs of the Blue Chain for broadcast through the Crosley station, WLW.

The Blue Chain programs will be brought to Cincinnati after the first week in September. They will go on from 8:00 o'clock to 10:00 o'clock on Wednesday and Friday nights with the possibility of the addition of Collier's hour from 9:30 to 10:30 on Sunday nights. The New York broadcasts through WLW will in-

clude such entertainment features as the Maxwell Coffee hour, Don Amaizo, and others already popular. Besides these, the station will broadcast such national events as have been the Presidential messages, the receptions in Washington and New York for Lindbergh, the Eucharistic Congress, and the Dempsey-Tunney fight.

With the purchase of the Blue Chain programs by WLW, Cincinnati takes its place as one of the greatest radio centers in the world. Three big chains may now be heard there without interference, in addition to the excellent programs furnished by the Cincinnati stations.

New Wisconsin Station

Wisconsin has a new radio station—WTMJ, The Milwaukee Journal. Upon completion of the new station, The Journal, following the suggestion of the Federal Radio commission, will discontinue broadcasting over WHAD, which it has operated jointly with Marquette University since 1923. Marquette will retain the license of WHAD and operate as the station of an educational institution.

Journal officials also announce the purchase of WKAF. WTMJ will replace the old call letters.

THE FROTH ESTATE

(Continued From Page 11)

from the impact of the clubhead. It touched the very rim of the cup and trembled there—and failed to drop. One would have said that Mr. Lathrop's hands trembled a bit as he perfunctorily sank the easy putt which gave him the hole and put him one up.

Miss Amy laughed and in her cheerful congratulation of the hated enemy there was not the least evidence of repressed dismay.

"What a great sport that girl is!" said Mr. Lathrop to himself. "I wish Col. Minimil was in hell."

"I'll lick him if I have to break an arm," said Miss Amy. "If I can't choose Col. Minimil's tailor I at least can spoil his lawyer's afternoon."

"Never saw anything like it," said Mr. Traynor.
"Neither of them know I am here."

Miss Amy won the seventeenth hole by smashing a long drive straight for the green, lifting a spoon shot to the edge and chipping dead to the pin. She had made par and Mr. Lathrop was one over.

Thus they walked to the eighteenth tee all even. The lawyer, watching the girl as she teed up for what was likely to be the deciding shot of the game, inwardly prayed that she would get a good drive. He hoped she would win. But he was determined she should not. It wouldn't be fair to her to let down an ounce. What a hard-shooting, genuine jewel she was!

Miss Amy having teed up the ball, stood and silently contemplated it for a moment. She was conjuring up a fancy that the little pellet was Col. Minimil and she was going to sock him. It was her star drive of the afternoon. Two hundred yards down the fairway and well on the way to another par.

Mr. Lathrop, on the other hand, addressed his ball with a secret wish that it were the seat of a pair of tremendously plaid trousers. He also made a magnificent drive. The girl was on with her second. A, long putt would give her a birdie. His second rolled into

a trap at the edge of the green. He would need two to get down, barring a miracle of luck. Mr. Lathrop walked up to his ball and prepared for the last desperate chance to halve the hole and avert defeat. He lifted it to within two inches of the cup, a marvelous shot out of the sand and over a mat of rough that bordered the trap.

Miss Amy met his eye as he stepped to the side of the green. She smiled her appreciation of his fine skill. Mr. Traynor, twenty yards off the green, carelessly chipped up, and realizing that he was of only nominal consequence in this strange threesome he asked permission to hole out and make way for the final effort of the two embattled ones.

That left the field to Miss Amy. Once again she studied the slopes of the undulating green. She surveyed every inch of the ten feet that separated her ball from the cup and victory. She settled herself for the stroke and from the instant the clubhead touched the ball it was apparent the lawyer from New York had lost a contest. As the ball clinked into the cup Mr. Lathrop strode over to shake Miss Amy's hand. "Immense," he said, "Great! It is an honor to have been whipped by you."

She and Mr. Lathrop were comparing cards as they walked up to the clubhouse, Mr. Traynor preceding them. She stopped a moment and as the big brief and lawsuit man from New York paused with her she asked him in a very calm little voice and with the ghost of a smile at the corners of a really serious mouth:

"Mr. Lathrop, you will admit, won't you, that even a woman sometimes plays the game?"

The legal gentleman laughed an uneasy acquiescence. What more did she mean than what she had merely said?

"How," asked the tortured Mr. Lathrop of himself, "am I ever going to tell this girl I am Col. Minimil's lawyer?"

A MARVELOUS RECEIVER

has been developed in the RESEARCH LABORATORIES of the

SCOTT TRANSFORMER CO.

It's the Receiver You've Been Waiting

Full Particulars Will Be Given In

OCTOBER RADIO AGE

JOBBERS—We have a real proposition for you. Write for it.

SCOTT TRANSFORMER CO.,

7620 Eastlake Tr.,

CHICAGO

Best Hookups—Thirty Cents Each!

We have laid aside a limited number of back issues of RADIO AGE for your use. Below are listed the best hookups and diagrams to be found in them. Select the ones you want and enclose 30 cents in stamps for each one desired

March, 1926

-Improving the Browning-Drake.

Rheostatless Tubes in a Set.

-How to Make a Wavemeter—Blueprint.

May, 1926
—Short Wave Transmitter—Blueprint.
—Simplifying Battery Charging.
—Protecting Your Inventions.

June, 1926

—Simple Srystal Set. —Golden Rule Receiver—Blueprints.

August, 1926

—Receiver, Transmitter and Wavemeter,

—Beginners 200 mile Crystal Set.

—Changing to Single Control.

September, 1926

—How to Make a Grid Meter Driver.

—Short Wave Wavemeter.

—Power Amplifier for Quality (Blueprint)

October, 1926

-Crystal Control Low Power Transmitter (Blueprint.)

Raytheon Design for A B C Elimination

-What Type Loud Speaker to Use.
-Nine Tube Super Brings Back Faith.

November, 1926

--Blueprints of the Henry-Lyford.
--Worlds Record Super With Large Tubes.
--How to Use a Power Tube in Your Set.

December, 1926

Starting Radio with Crystal Set.
Six Tube Shielded Receiver.
Types of Rectifiers Discussed.

January, 1927

—Full Data on Worlds Record Set.

—Dual TC Receiver.

—Clough Super Design.

February, 1927

—Building the Hammarlund-Roberts.

—Making a 36 Inch Cone Speaker.

—Browning Drake Power Operated.

March, 1927

—Ideal Model Worlds Record Super.
—Building the Hammarlund-Roberts.
—Ridding Supers of Repeat Points.
—Loop and Four Tubes.

April, 1927

Ideal Model Worlds Record.
Inexpensive B. Eliminator.
One Spot Superhet.

May-June, 1927
—Complete Trouble Shooter for Supers.
—9 Tubes for Worlds Record Super.

July-August, 1927

—Building Vacuum Tube Voltmeter

—Low Power Crystal Control Transmitter.

Radio Age, Inc., 500-510 N. Dearborn St., Chicago

The New A C Tube

(Continued from page 6)

will be a loud hum on turning on the set. The hum disappears in about 30 seconds and the set starts functioning properly.

Fig. 4 shows the grid voltage plate current curves for the C327 tube, for 45 and for 90 volts. When the tube is operated at about 50 volts the same grid bias may be applied to it as for the amplifier tubes. The grid return is connected with the cathode cylinder and to the bias resistor. The grid return to the center of the potentiometer is not at all critical.

Mechanically the construction of both tubes is more rugged than that of any of the earlier tubes. The detector tube seems more free from mechanical v i b r a t i o n s which are transmitted to the loud-speaker than in the case of the tube with a light filament. The filament voltage, by the way, is not as critical as the type 326 tube. In any case variation in line voltage will not effect the tubes sufficiently to make any difference in their characteristics, either the 326 or 327.

The circuit diagram, Fig. 5, is typical for a five tube receiver using house lighting current for power supply to filaments and plates of the tubes. This circuit shows a single transformer for both high and low voltage, although a separate transformer may be used for filament and for plate current supply, in fact, it is the recommendation of transformer manufacturers to have it so, for flexible operation. The by-pass condensers C1 and C2 are not necessary, though they may prove of advantage in reducing interstage coupling in some The radio frequency transcases. formers and variable condensers may be of any type or manufacture. A 171 type tube is recommended for the last stage.

The grid return is to bias resistor R2 which should have a value of about 2500 ohms for correct voltage drop to be impressed on the grid of the CX171. R1 is the bias resistor for the three CX326 tubes. Since the three tubes draw about nine milliamperes (at 135v.) the value of this resistor should be

1300 ohnis. (.009 amperes X-1300 ohms equals 11.7 volts), the voltage drop will increase for larger plate voltage automatically. In figuring the bias resistor R1 the plate current for the CX326 tubes only should be considered, as the plate current return for the CX371 and C327 is not through this resistor. The bias resistor for two CX326 tubes would be 2000 ohms (.003 X 2000 is 12 volts drop), similarly the proper bias resistance for one tube would be 4000 ohms, for four tubes 1000 ohms, and for five and six tubes, 800 and 700 ohms respectively. The voltage drop across the bias resistance is not effective on the plate of the tube and should be substracted from the total plate voltage. The voltage drop across the bias resistors can be measured with a high resistance voltmeter used for measuring voltages supplied from "B" eliminators.

There is no volume control shown in this diagram, but a variable resistance of about 10,000 ohms may be connected across the primary of one of the r. f. transformers, or a potentiometer connected across (500,000 ohms) the secondary of the first-audio transformer with the grid connected to the sliding arm instead of directly to the transformer.

The "B" eliminator is connected as usual, but only two voltage taps are shown here, the 45 and 160 volt taps. The eliminator should be in a metal case if it is to be installed in the same case with the receiver, and should be "grounded".

EDITOR'S NOTE—Other articles on the use of A. C. tubes in various types of receivers will be published in early issues of RADIO AGE. The A. C. tube in Super construction will be an early and interesting feature.

For Superhet Fans

THE most popular series of How-to-Make articles ever published in Radio Age were those on the Worlds Record Super 8 and 9. These articles were published in the issues of Nov. 1926 and January, February, April and May, 1927 and included blueprints. We have a limited supply of these back numbers at 30 cents each. Send stamps, currency or money order.

Radio World's Fair

The Radio World's Fair of 1927 will be held at the Madison Square Garden, New York, September 19 to 24 and G. Clayton Irwin, Jr., general manager, declares it will be the finest exhibition thus far presented in the radio field in this country. The New York and Chicago shows are thoroughly national in character and they are not only interesting to the public but provide a stimulus for the trade that could not be achieved in any other way.

Several important radio events will take place in New York during the week of the show. The fourth annual radio industries banquet will be held in the Hotel Astor on the evening of September 21. Major Herbert H. Frost, chairman of the speakers' committee, visited President Coolidge at Rapid City, S. D., recently and invited the chief executive to be the speaker of the evening. The President's reply will be received at an early date. The proceedings will be broadcast. It is expected that seventy stations will be connected in the chain that will give the country an opportunity to hear the music and speeches. More than three hundred entertainers will participate in the program.

Realizing the public interest in the broadcast of this event the committee has decided to designate the day of the banquet as "National Radio Day." Broadcasting will begin from the banquet hall at 9 p. m., New York time. Broadcasters are to be requested to make their programs for Wednesday, September 21, "National Radio Day Programs," stirring interest in the occasion by the character of their broadcast and, as last year, presenting a program that will lead up to the beginning of the banquet program at 9 o'clock, Eastern time.

The National Association of Broadcasters will hold its fifth annual convention during the week of September 19 at the Hotel Astor. Officers will be elected on the morning of the 21st.

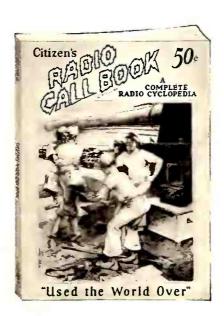
The Garden display will include scores of improved radio products for the 1927-1928 fan.

Suggestions About Supers (Continued from page 12)

lator tube. This oscillator tube takes energy from the batteries and produces an oscillating current. frequentcy of the oscillations may be varied by a tuning condenser and the frequency always is different from that of the wave that is being received through the aerial.

For example, if the set is tuned to receive a 100-meter station, the incoming waves have a frequency of 3,000,000 per second. The oscillator may be tuned to produce 3,100,000 waves or oscillations per second. These oscillations will combine with those received from the transmitting station and, by heterodyne action, a frequency of 100,000 is passed along to the first amplifying tube. reason that only 100,000 oscillations per second reach the amplifier is that 100,000 times per second the oscillations from the two sources of power, the transmitting station and the oscillator tube of the receiver, get in step and help each other, while the rest of the time they buck each other and prevent each other from going on. The rectifying action of the detector tube is necessary here, in order to produce this beat frequency of 100,-000 per second, but this first detector does not reduce the frequency enough to produce sound waves in a phone.

It is this reduction of high frequencies to lower frequencies that gives the superheterodyne receiver its distinctive character and its high amplifying power. High-frequency current always is more difficult to control than low-frequency current.



After it is thoroughly tested, it can be mounted on good panels and placed in a neat portable case with built-in loop and loud speaker

which high-frequency current passes part of a circuit to other parts or to other circuits where it is not wanted and where it makes trouble. more the high-frequency current is amplified, the more troublesome it becomes.

The superheterodyne receiver rids itself of these troublesome high fre-

Inductance coils, resistances and al-quencies right at the first tube, with most every part of a set through the help of the oscillator. After that it amplifies the low-frequency curshows effects different from those rent to any desired extent and finally produced by low-frequency current. passes it through the second detector, Energy may be transferred from one which reduces it to audible frequencies. When the frequencies are low enough to produce sound, they can be passed along to an audio-frequency amplifier, or directly into the phones or loud speaker. The changes of frequency have no more effect upon the words or music that are being received than the number of

THE September issue of the CITIZENS RADIO CALL BOOK is now on sale.

This issue contains a complete and up-to-date list of all broadcasting stations with new assignments of wavelengths, etc., a wonderful rotogravure section showing pictures of your favorite radio artists and the latest hints on how to improve your receiver for best reception.

Also, a wonderful array of construction articles showing how to build all of the latest circuits which have been thoroughly tested and designed in our laboratory complete with fine drawings and illustrations so simply arranged that any novice can build the highest grade receivers.

On sale at all the leading radio stores and newsstands. Published four times yearly.

CITIZENS RADIO CALL BOOK

508 S. DEARBORN STREET CHICAGO, ILL.

times a ball is thrown or batted has on the shape of the ball, unless distortion occurs by reason of faulty design or operation of the circuits.

The third section of the superheterodyne is the intermediate-frequency amplifier. This may contain from one to three tubes, or more. The circuits are typical amplifier circuits. The plate output of the first detector tube goes to the primary coil of the first transformer. It produces a current of higher voltage in the secondary coil of this transformer, by induction, and this goes to the grid of the first amplifier tube. The plate output of this tube goes to the primary coil of the next amplifying transformer, and from the secondary coil of this transformer a current of still higher voltage goes to the grid of the next tube, and so on.

Both the primary and secondary coils of the first transformer, which receives the output of the detector tube, are shunted by condensers. The transformers that receive the output of the amplifier tubes have no such condensers.

The primary coils of the transformers that receive the output of the amplifying tubes connect with the positive terminal of the "B" battery, at the end of the coils opposite the plate connection. They connect also with a coil in the plate circuit of the oscillator tube. The secondary coils of the first two of these amplifying transformers are connected back to the secondary coil of the transformer between the first detector and the first amplifier tube. The secondary coil of the third amplifying transformer connects with the grid leak and condenser of the second detector tube. on one end. The other end of this coil connects with the plate of the second detector tube, through a condenser. Also it connects with the filaments of all tubes except the oscillator, on the positive side.

The fourth section of the receiver is the second detector. This tube receives the amplified radio-frequency current from the last amplifier and reduces it to audible frequencies. The current passes into the phones or loud speaker, or into an audio-frequency transformer if one is added, through

A superheterodyne receiver in the experimental stage. It is a good idea to make panels of dry wood, mount the parts and try out the set. This may prevent mistakes that would be costly with more expensive materials

the plate circuit. The return wire from the phones, speaker or amplifier goes to the negative terminal of the "B" battery. Also it connects with the primary coil of the transformer that is next to the first detector tube, and with the positive terminal of the filament of the first detector tube. There is another wire from the plate of the second detector tube to a condenser and a wire from the other side of the condenser to the positive terminal of the "A" battery.

The negative terminals of the filaments of all the tubes connect with a rheostat that governs the supply of current from the "A" battery. As is usual in radio-frequency amplification, the "A" battery is shunted by a potentiometer, which steadies the action of the tubes. The sliding contact in the middle of this potentiometer leads to the secondary coils of three of the transformers: the one next to the first detector and those in the first and second stages of amplification. There is a by-pass condenser between the slider and the potentiometer and the wire leading from the positive terminal of the "A" battery to the filaments.

The oscillator circuit is the only one that looks exceptional to a man who has studied the diagrams of other types of receivers. The grid and plate are connected by a variable condenser. The wires from the grid and plate each go to a coil. These two coils are separated by a condenser. The positive terminal of the filament,

which connects of course with the "A" battery, connects also with the coil in the grid lead and with the condenser that separates this coil from the coil in the plate lead.

If an outside antenna is used with a superheterodyne receiver it should be designed to work with the receiver. Usually, fifty feet is long enough. The longer the antenna the more it broadens the tuning and decreases selectivity. For the super, the antenna does not need to be as high as for less powerful sets.

Ordinary types of audi-frequency amplifiers can be used to increase the volume of the super. They are connected to the second detector in the usual way. It is not necessary to tear down the super and build the audio-frequency amplifier into it. The amplifier can be built as a separate unit and connected.

Shielding is important in the superheterodyne. Usually it is provided for in the kit and instructions.

Amateurs who want to bring in code signals from stations that transmit continuous waves add a second tube to the oscillator of the super.

Parts for a superheterodyne receiver cost well over a hundred dollars. The work of assembling these requires a considerable amount of time. It is folly, therefore, to try to save a few dollars by buying poor parts. The condensers should be of exactly the capacities specified. There are many small fixed condensers that are satisfactory for some purposes but that do not have the exact capacity indicated on the labels.

H. A. Snow, formerly with the United States Bureau of Standards, found in his experiments that the amplification factor in a superheterodyne receiver using four tubes ahead of the second detector was 3500. A receiver using uncompensated untuned radio-frequency amplification with three tubes has an amplification factor of about 600. This explains why a super often brings in stations all the way across the continent, even in the worst radio weather of summer. It is not always easy to build and adjust one so that it works perfectly, but the results that it will deliver make it worth all the effort.

WLW's Artists' Bureau

Formation of an Artists' Bureau, announced by Powel Crosley, Jr., president of the Crosley Radio Corporation, Cincinnati, Ohio, who operate the well-known broadcasting station WLW, is said to mark the beginning of a new epoch in broadcasting studio management. In the opening of this Bureau, which provides a booking service for the station's outstanding individual artists and organizations, a step has been taken in the direction of a closer relationship between the artists and the studio, and toward a more complete service to the public in making available for outside appearance the most successful of its performers.

Artists and organizations who have affiliated themselves with the Bureau are: the Heermann trio; William J. Kopp, orchestra director; Lydia Cleary Dozier, soprano; Marjory Garrigus Smith, pianist; the Lyric Male Quartet; the Crosley "Pups"; Johanna Grosse, organist; the Crosley Cossacks; and Melville Ray, tenor.

We Carry a Complete Line of Parts for the Following Circuits:

KARAS EQUAMATIC TWO DIAL Worlds Record Super Ten

Melo-Heald Fourteen Tubes St. James Super Tyrman Ten Victoreen Super Aerodyne Camfield Super 9 Strobodyne Silver-Marshall Magnaformer 9-8

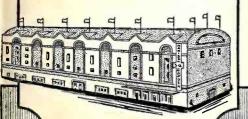
Sampson T. C. Aero Short Wave Sargeant's Infradyne Aero Seven Tube Phasatrol Sampson Radio Frequency Choke Coil Chicago Daily News Receiver

In writing us SPECIFY just what hook-up you are interested in

WHOLESALE

RETAIL

NEWARK ELECTRIC CO.


CHICAGO

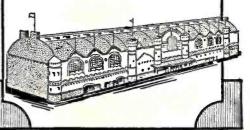
ILLINOIS

NEW YORK CITY

1927

ers. Among the many new innovations will be "The Theatre of Wonders," a storehouse of magical and practical inventions you can't afford to miss.

Special business sessions for the

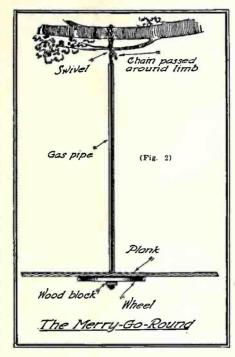

Radio shows open daily from 1:00 p. m. until 11:00 p. m., Monday to Saturday inclusive.

National Radio Day September 21

COLISEUM CHICAGO

Ост. 10~16 INCL. 1927

How To Make An Outdoor Gym


BY ALL means make an outdoor gym this fall if you have even a small plot of vacant ground, such as back of the house. It will give you pleasure, not only in the building of it, but particularly after it has been made. More than this you can invite your friends and thus make your own home the most popular place in the neighborhood. Here are a few plans and suggestions you can use.

Some boys find that it pays to enlist the aid and enthusiasm of other boys right from the start. Then the work of construction is lessened and all of the boys have a mutual interest. You can form a committee consisting of your friends and have each agree to do an equal part. Anyone who joins the agreement will vote as do the others in special problems which come up.

If possible, choose a place where there are a few trees. These not only give shade but will help to support some of the apparatus. If you wish you can set a timber in a crotch formed by a large limb and support the other end with a post of suitable height. The horizontal beam can be from eight to twelve feet long. The ends must be securely wired or nailed in place. A block under the outer end will prevent the nails from pulling out.

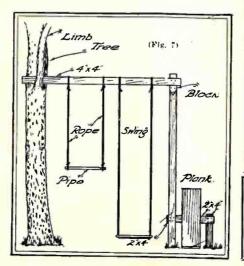
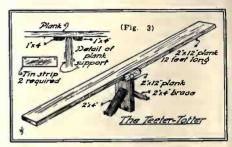

From this beam you can hang a swing, and also a piece of gas pipe for doing "stunts." There may also be room enough for a single rope and an old auto tire. If you wish you can run a short piece out from the right end, one end nailed to the tall post, the other supported by a short stake. This, then forms a suitable support for a teeter-totter and requires only a plank to complete it. Cleats nailed to the under side of the plank at the middle, will prevent it from working out of balance. Even though the post is set snugly in the ground, braces of either wire or wood should be set each side, anchored near the top and set in the ground to prevent side-play.

Figure 2 shows an interesting



merry-go-round that is really different. Fasten a short piece of chain to a limb and attach a swivel to it, preferably with a ring. Attach a longer chain to this and run it through a gas pipe. Fit a large iron wheel with a plank on top onto the lower end of the pipe, setting it fast with a set screw. The lower end of the chain is kept from slipping up the pipe by tying or otherwise securing it to a block of wood or piece of iron.

In use this merry-go-round not only revolves very freely, but there is an up-and-down motion, too, which is quite exciting. The swivel prevents twisting the chain in two and it can be used indefinitely. Wire the

plank to the wheel. As a rule the plank should be at least three feet from the ground. The pipe lends stiffness which is desirable.

For a separate teeter-totter, the type shown in figure 3 will serve well. The support is a piece of plank of the same width as that used for the teeter-totter, sunk in the ground at least three feet and braced well on each side. The plank should be at least twelve feet long and two inches thick. Cleats are nailed cross-ways of the plank at the center on the underside. Notice that the edges of the cleats are rounded off as well as the upper edge of the plank support. This permits easy operation. The two heavy sheet iron pieces on each side of the plank prevents it from moving out of place.

These and many other pieces of apparatus can be made from scrap materials.

October Supers

Get the October Issue of Radio Age for latest circuits

48 W. Fulton St., Gloversville, N. Y.

"Received the Townsend all O. K. It is the best in the World and that is saying some. I have a Radiola 4 tube. Get more stations than ever before. Some of them are CFCF, CKNC, WGY, KDKA, WGZ, WIP, WWI, KTHS, KOP, KOA, WHAS, WTAM and KSD—besides 4 in Chicago, all in the East and then some."

1927.

A. W. Gale.

Replaces "B" Batteries

The letter above speaks for itself—proves beyond doubt that the Townsend "B" Socket Power is the most remarkable value in Radio today. Sam E. Fry of 1415 Holmes St., Kansas City, Mo., writes: "Eliminator works fine. Showed it to a friend and he wants one also. I will say it sure heats hatteries. I get stations I never got before on a 6 tuhe set." Charles Ellis, 88 Jones Ave., Columhus, Ohio, says, "Your Eliminator is working fine. Have had station WJAX and others over 1,000 miles distant. Picked up 22 different stations one evening and around 30 another time. My neighbor has a \$27.50 Eliminator and I don't see that it works any better than yours."

Delivers up to 100 volts on any set, on D. C.

Delivers up to 100 volts on any set, on D. C. or A. C.—any cycle. Full tone, clarity and volume.

Tested and approved by America's leading Radio authorities—Radio News and Popular Radio Laboratories

ORDER TODAY!

Simply fill out the coupon and slip it into an envelope with only \$1.00 and mail at once. Your Townsend "B" Socket Power Unit will he sent promptly. Deposit only \$5.85 plus postage with the postman. Try out for 10 days—then if not delighted with improvement in reception, return it to us and purchase price will be refunded. will he refunded.

TOWNSEND LABORATORIES 713 Townsend St., Dept. 31, Chicago, Ill.

Attach Only \$1.00 to this Coupon! SEND TODAY

TOWNSEND LABORATORIES 713 Townsend St. Dept. 31, Chicago, III

		Dept.	31, 0111	,050,
	Attached fin			
	B" Socket P			
lus postage	on guarant	eed 10-d:	ay free trial	

	• •	•	٠.	•	•	٠	•	•	•	٠	٠	٠	•	٠	۰	٠	٠	*	٠	۰	٠	•	٠	•	•	•	•	•	٠	•	•	•	•	•	•	•
A ddress																														•				•	•	•
A																	_																			

September Skies

(Continued from page 14)

But Saturn, the ringed planet, is still with us in the evening sky, in the constellation of the Scorpion, while Jupiter is now visible throughout the night. It is in the constellation of the Fishes.

One astronomical event that is not always so welcome, is the coming of autumn. This occurs on the evening of September 23, at 8:17 p. m. At that moment the sun will be directly over a point on the earth's equator and will enter the sign of Libra, the scales. This is the autumnal equinox, and days and nights will be of equal length. But this will be attended by no earthly happenings connected with or caused by it. The old idea of the "equinoctial storm" has been completely overthrown by science, though of course, like so many old superstitions, many people still believe in it.-Copyright 1927, by Science Service. Inc.

\$12,000,000 Telescope (Continued from page 28)

with the most powerful microscope, no one has ever seen the grain of a wet plate of this kind. But the astronomer cannot use it, because it would take such long exposures.

What a boon it would be for him if he had a plate as fast as the news plate and as grainless as the wet plate! Perhaps this is an ideal impossible of attainment, but photographic research laboratories are working on the problem. Even a plate twice as fast as those used at present and with no coarser grain would mean that every existing photographic telescope would immediately have its light-gathering power doubled. So perhaps the next great advance in astronomy will originate in the chemical laboratory of a photographic plate factory!

This was the idea expressed by Dr Hubble. In his estimation, the needs of astronomers at present are threefold. First of all, is needed better and faster plates. And then, comes more large telescopes in the southern hemisphere. Last of all comes the great telescopes surpassing in size the present instruments.

Would You Like To Earn More Money-in Work That's Almost Romance?

Then be a RADIO EXPERT/

If you're earning a penny less than \$50 a week, clip coupon below. Get my big Free Book telling about opportunities for big money in Radio. Television, trans-At-lantic Radio telephony, many other wonderful inventions

and developments constantly creating big new Radio opportunities. Here's work that's al-most romance, a NEW, speedy, growing, live-

most formance, a NEW, specially, growing, Mower profession.

And Radio needs trained men! Salaries from \$50 all the way up to \$250 a week are not unusual. You can easily learn Radio for bigger pay by my tested, practical methods. Hundreds of men have already done it. You learn quickly in your spare hours AT HOME—it's all so interesting to you that it's easy!

Extra Dollars For You Almost At Once

Think of making \$15, \$20. \$30 extra every week "on the side." without interfering with your regular job! I'll teach you to do it almost at once after you start your Radio training on the met and the while you'll be setting ready for the bigger Radio jobs at all the while you'll be setting ready for the bigger Radio jobs at all the while you'll be setting ready for the bigger Radio jobs at all the while you'll be setting ready for the bigger Radio jobs and you don't need to leave hank while learning, when you can have now, while you're wasting now. And you don't need to leave hank while learning, when you learn hy my practical methods. And you don't need to leave hank while learning, when you learn hy my practical methods. And you don't need to leave hank while learning, when you learn hy my practical wind. You have now, while you're wasting now. And the while you'll be setting ready for the bigger Radio jobs and you don't need to leave hank while learning, when you learn hy my practical wind.

64-Page Book Sent Free

4-Page Book Sent Free
When I receive your coupon
Il mail you my hig 64-page
ook immediately. It's filled
with photos and facts about
the opportunities in Radio,
and tells how you can prepare, quickly and easily
in your spare time at home,
to be an expert in this field.
No previous Radio experience needed to take advantage of this offer. No
special schooling required. Mail coupon'
now—address J.E. Smith
President. President.

terial Given Free of Extra Cost With your training you get free of extra cost 6 great outflist of real Radio practice material. With these 6 outflis you can huild 100 real Radio circuits. This is the practical kind of home-training. You learn to hold a iobnot on paper—ON THE PAY-ROLL. Send coupon helow for details of this offer.

J. E. SMITH, President, National Radio Institute, Dept. K-91, Washington, D. C.

Dear Mr. Smith: Kindly send me your 64-page Free Book which tells about learning Radio for higger pay. Also send information on your offer of 6 outfits of material free of extra cost. I understand this places me under no ohligation.

Name	 	 •	
Address	 	 	
Town	 	 State	

Correct List of Broadcast Stations

KDKA	Westinghouse Electric & Mfg. CoE. Pittsburgh, Pa. 315	KFUM	W. D. Corley
KDLR	Radio Electric Co	KFUO	Concordia SeminarySt. Louis, Mo. 545
KDYL	Intermountain Bdcstg CorpSalt Lake City, Utah 258	KFUP	Fitzsimmons General HospitalDenver, Colo. 227
KELW	Earl L. WhiteBurbank, Calif. 229	KFUR	Peery Bldg. Co., IncOgden, Utah 225
KEX	Western Broadcasting CompanyPortland, Ore. 222	KFUS	Louis L. ShermanOakland, Calif. 256
KFAB	Nebraska Buick Auto CoLincoln, Neb. 309	KFUT	University of Utah Salt Lake City, Utah 500
KFAD	Electrical Equipment CoPhoenix, Ariz. 273	KFVD	Chas. & W. J. McWhinnieVenice, Calif. 208
KFAU	Independent School DistBoise, Idaho 285	KFVE	Benson Broadcasting CorpSt. Louis, Mo. 234
KFBB	F. A. Buttrey & CoHavre, Mont. 275	KFVG	First M. E. ChurchIndependence, Kars 225
KFBC	W. Z. Azbill San Diego, Calif. 248	KFVI	KFVI Broadcasting CoHouston, Texas 238
KFBK	Sacramento, Calif. 535	KFVN	Carl E. Bagley Fairmont, Minn. 229
KFBL	Leese Bros. Everett, Wash. 224	KFVS	Cape Girardeau Battery StaCape Girardeau, Mo. 224
KFBS	School District No. One Trinidad, Colo. 238	KFWB	Warner Bros. Pictures
KFBU	Bishop N. S. ThomasLaramie, Wyo. 428	KFWC	L. E. WallSan Bernardino, Calif. 222
KFCB	Nielson Radio Supply Co	KFWF	St. Louis Truth Center
KFCR	Santa Barbara Broadcasting Co. Santa Barbara, Calif. 211	KFWH	F. Wellington Morse, Jr. Eureka, Calif. 254
KFDM	Magnolia Petroleum Co Peaumont, Texas 375	KFWI	Radio Entertainments, IncSan Francisco, Calif. 268
KFDX	First Baptist ChurchShreveport, La. 236	KFWM	Oakland Educational SocietyOakland, Calif. 236
KFDY	South Dakota State CollegeBrookings, S. D. 394	KFWO	Lawrence Mott
KFDZ	Harry O. IversonMinneapolis, Minn. 216	KFWV	KFWV Studios Portland, Ore. 229
KFEC	Meier & Frank Portland, Ore. 214	KFXB	Bertram C. Heller Los Angeles, Calif. 353
KFEL	Eugene P. O'Fallon, Inc	KFXF	Colorado Radio Corp
KFEQ	Scroggin & Co	KFXH	Bledsoe Radio Company El Paso, Texas 242
KFEY	Bunker Hill & Sullivan Kellogg, Idaho 233	KFXJ	Mt. States Radio Dis., Inc(Portable) Colorado 216
KFGQ	Boone Biblical College Boone, Iowa 210	KFXR	Classen Film Finishing CoOklahoma City, Okla. 224
KFH	Hotel Lassen Wichita, Kans. 246	KFXY	Harry M. Costigan Flagstaff, Ariz. 205
KFHA	Western State College of ColoGunnison, Colo. 254	KFYF	Carl's Radio Den Oxnard, Calif. 238
KFHL	Penn. CollegeOskaloosa, Iowa 212	KFYR	Koskins-Meyer, IncBismarck, N. D. 240
KFI	E. C. Anthony, IncLos Angeles, Calif. 468	KGA	Northwest Radio Service CoSpokane, Wash. 261
KFIF	Benson Polytechnic Institute	KGAR	Tucson CitizenTucson, Ariz. 234
KFIO	North Central High School Spokane, Wash. 246	KGBS	A. C. DaileySeattle, Wash. 203
KFIQ	First Methodist Church——Yakima, Wash. 208	KGBU	Alaska Radio Co
KFIU	Alaska Electric Light & Power CoJuneau, Alaska 226	KGBX	Foster Hall Tire CoSt. Joseph, Mo. 288
KFIZ	Commonwealth ReporterFond du Lac, Wis. 268	KGBY	Dunning & Taddikon
KFJB	Marshall Electric Co	KGBZ	George R. MillerYork, Nebr. 213
KFJF	National Radio Mfg. CoOklahoma City, Okla. 272	KGCA	C. W. GreenleyDecorah, Iowa 248
KFJI	E. E. Marsh Astoria, Ore. 250	KGCB	Wallace Radio InstituteOklahoma, Okla. 216
KFJM	University of North DakotaGrand Forks, N. D. 331	KGCG	Moore Motor Co
KFJR	Ashley C. Dixon & Son. Portland, Ore. 283	KGCH	Wayne HospitalWayne, Nebr. 294
KFJY	Tunwall Radio Co	KGCI	Liberty Radio Sales San Antonio, Texas 220
KFJZ	W. E. Branch Ft. Worth, Tex. 250	KGCL	Louis Wasmer Seattle, Wash. 231
KFKA	Colo. State Teachers College	KGGN	Concordia Bdcstg. Co
KFKB	J. R. Brinkley Milford, Kan. 242	KGCR	Cutler's Broadcasting Service
KFKU	The University of Kansas Lawrence, Kans. 254	KGCU	Mandan Radio Assn
KFKZ	State Teachers College Kirksville, Mo. 225	KGCX	First State BankVida, Mont. 225
KFLR	University of New Mexico	KGDA	Home Auto Co
KFLU	San Benito, Texas 236	KGDE	Jaren Drug CoBarrett, Minn. 205
KFLV	Swedish Evangelist Church Rockford, Ill. 268	KGDJ	R. Rathert Cresco, Iowa 203
KELA	George Roy Clough Galveston, Texas 270		V. G. Koping Stockton, Calif. 217
KFMR	Morningside College Sioux City, Iowa 441	KGDP	Boy Scouts of America Pueblo, Colo. 224
KFMX		KGDR	Radio Engineers
KFNF	Henry Field Seed CoShenandoah, Iowa 270		William Erwin AntonyShreveport, La. 213
KFOA	Rhodes Department Store	KGDY	J. Albert Loesch
KFOB	KFOB, Inc		Frank J. Rist Humboldt, Nebr. 207
KFON	Nicholas & Warriner, IncLong Beach, Calif. 242	KGEF	Trinity Methodist ChurchLos Angeles, Calif. 263
KFOR	Tire & Electric Co	KGEH	Eugene Broadcast Station
KFOX	Tech. High School Omaha, Nebr. 258	KGEK	Beehler Elect. Equipment Co
KFOY	Beacon Radio Service St. Paul, Minn. 285	KGEN	E. R. Irey & F. M. Bowles El Centro, Calif. 225
KFPL	C. C. Baxter Dublin, Texas 275	KGEO	Raymond D. ChamberlainGrand Island, Nebr. 205
KFPM	The New Furniture Co	KGEQ	Fred W. HerrmannMinneapolis, Minn. 203
KFPR	Los Angeles County Forestry Dept. Los Angeles, Cal. 232	KGER	C. Merwin Dobyns
KFPW	St. Johns M. E. Church	KGES	Central Radio Electric Co
KFPY	Symons Investment CoSpokane, Wash. 246	KGEU	L. W. Clement Lower Lake, Calif. 227
KFQA	The Principia St. Louis, Mo. 322	KGEW	
KFQB	Lone Star Bdcast CoFort Worth, Texas 261	KGEY	J. W. DietzDenver, Colo. 201
KFQD	Anchorage Radio ClubAnchorage, Alaska 345	KGEZ	Flathead Broadcasting Ass'n
KFQU	W. E. Riker	KGFB	A. G. Dunkel Iowa City, Iowa 224
KFQW	C. F. Knierim Seattle, Wash. 217	KGFF	Earl E. Hampshire Alva, Okla. 205
KF/QZ	Taft Products Co	KGFG	Full Gospel ChurchOklahoma City, Okla. 216
KFRC	Taft Products Co	KGFH	Frederick RobinsonLa Crescenta, Calif. 224
	Don Lee, Inc. San Francisco, Calif. 254	KGFI	M. L. Eaves Fort Stockton, Texas 220
KFRU	Stephens College	KGFJ	Ben S. McGlashan Los Angeles, Calif. 208
KFSD	Airfan Radip CorpSan Diego, Calif. 441	KGFK	Kittson County Enterprise
KFSG	Echo Park Evan. AssnLos Angeles, Calif. 275	KGFL	Trinidad Broadcasting CoTrinidad, Colo. 222
KFTL	C. C. Baxter Dublin Tex 252	KGFM	
KFUL	Thomas Groggan & Bros	KGFN	Haraldson & Thingstad Aneta, North Dakota 200
	, , , , , ,	,,	

Time To Build

(Continued from page 4)

that should be read and saves unnecessary reading.

Most men are interested in science, but it is almost impossible to grasp scientific conceptions without having some scientific experience. The fact that so few men maintain chemical laboratories, astronomical observatories, botanical gardens or zoological collections indicates that most forms of scientific research are beyond the reach of the multitude. Radio, one of the newest sciences, is basically as old as any; it is the only one that is wide open to rich and poor, sound and crippled, educated and unschooled.

It is impossible to build a radio set without opening the mind to new worlds of thought. It is impossible not to wonder how a smelly liquid, poured into a container with leaden plates, will cause a current of electricity to flow through wires and make a fibre of metal become luminous. A set builder cannot escape the thrill that comes when a slight adjustment causes an inert tangle of wires and metal plates to come to life and open the door for him into the midst of a frenzied multitude yelling because a horsehide-covered sphere, rebounding from a willow stick, has flown over a fence and escaped from the scene of its recent activities.

A set builder who studies radio cannot but be awed by the mystery of the electron, which he can control in some of its wanderings although he cannot see it. According to science it is the very basis of our physical being, the things from which all other things, animate and inanimate, are formed.

Radio An Obligation

It is time to build. Domestic duty requires that our homes shall not remain below the general level, that our loved ones shall have every opportunity that others enjoy. One home in five has radio—the rest should have it.

Civic duty demands that we do our best to follow the trend of politics and the devious ways of politicians. Public works worth a million dollars

cost us two millions, or possibly five, by the time they are paid for. The money comes directly out of our pockets, it is taken from those who are dependent upon us. War plunges us into debts from which there is no escape; our last war with Mexico, which was fought nearly a century ago, is not paid for yet but there are those who want to start another one.

We cannot read all the political propaganda, yet it is necessary to know two sides all the time or run the risk of becoming the tools of predatory groups whose real leaders have not the nerve to face an honest man and answer a straight question. Radio helps, because character is revealed in a voice even when lying words are carefully studied and artfully spoken. We can listen, and then get behind the real leader who knows the situation and is ready to help us fight our battles.

It is time to build. What is the use of living in the greatest age in history and not being a part of it?

Radio Aids Miners

(Continued from page 7)

paratus. After the required locations and measurements are made test drilling is done to obtain definite information of the ore deposit.

For thousands of years the great underground mineral mysteries have been held as silent secrets of nature until here and there a prospector or mining company locates some trace of the great fortunes yet unknown. Millions of dollars have been expended in searching for mineral deposits which might be located in northern Alaska or in Southern Africa, but no better method other than the faithful pick and shovel or diamond drilling has been used. But today a new method of prospecting and exploration has entered the mining world with the development of the radiore process which has electrical eyes more powerful than any human's eyes. Nature's mineral secrets will be revealed where least expected. The future will see even a greater development of radio as the most valuable tool in the mining

-NEW!-

THORDARSON

POWER SUPPLY TRANSFORMERS

Here is a power unit that will satisfy the ever increasing demand for improved quality of reception. A split secondary 550 volts either side of center, makes possible full wave rectification, using two 216-B or two 281 tubes. Current capacity, 130 milli-amperes. The low voltage secondary, 7½ volts, will supply two UX-210 power tubes, enabling the use of push-pull amplification in the last audio stage.

The Double Choke Unit 2099 is designed for this power unit. Contains two individual chokes of 30 henries, 130 milli-amperes capacity each.

T-2098 Transformer, \$2000 4½"x5¾"x5¾" List Price

T-2099, Choke Unit, \$1400 314"x476"x556" List Price

The new R. C. A. and Cunningham A. C. filament tubes will be very popular with the home constructor this season. The Thordarson Transformer T-2445 is designed especially for these tubes. Three separate filament windings are provided.

Sec. No. 1, 1½ volts, will supply six UX-226 amplifier tubes.

Sec. No. 2, 21/2 volts, will supply two UX-227 detector tubes.

Sec. No. 3, 5 volts, will supply two 5-volt power tubes.

In addition to the above, this transformer is equipped with a receptacle for the B-supply input plug. Supplied with six-foot cord and separable plug for attachment to the light circuit. Transformer in compound filled, crackle-finished case. Dimensions: 234"x534"x434".

A. C. Tube Supply, \$1000 List Price 1000

THORDARSON ELECTRIC MFG. CO.
World's Oldest and Largest Transformer Makers
Transformer Specialists Since 1895
500 W. Huron St. Chicago, Ill.

KGFP	Mitchell Broadcast CoMi	tchell, South Dakota 21	2 KWBS		
KGO	General Electric Co	Oakland, Calif. 38	KWCF		
KGRC	Gene Roth & Co	San Antonio, Texas 22	KWG	Portable Wireless Telegraph CoStockton, Calif. 3	
KGRS	Gish Radio Service	Amarillo, Tex. 24	KWKO	C Wilson Duncan Studios	22
KGTT	Glad Tidings Tabernacle, Inc	San Francisco, Cal. 20	KWLO	Luther CollegeDecorah, Iowa 2	49
KGU	Marion A. Mulrony			State College of WashingtonPullman, Wash. 3	94
KGW	Oregonian Publishing Co	Portland Ore 49	KWTC		
KGY	St. Martins College				44
KHJ	Times-Mirror Co			G Chamber of Commerce Brownsville, Texas 2	70
KHO				KXL Broadcasters	
	Louis Wasmer	Spokane, wash. 37	KAL		
KICK	Atlantic Automobile Co	Anita, Iowa 46	KYA	Pacific Broadcasting CorpSan Francisco, Calif. 3	
KJBS	J. Brunton & Sons Co.	San Francisco, Calif. 22	KYW	Westinghouse Electric & Mfg. Co	
KJR	Northwest Radio Service Co			Preston D. AllenOakland, Calif. 2	
KKP	City of Seattle, Harbor Dept				
KLDS	Reorganized Ch. of Jesus Christ	, Independence, Mo. 23	WAAF	Chicago Daily Drovers Journal	59
KLIT	Lewis Irvine Thompson	Portland, Ore. 20	WAAN	1 Isaiah R. Nelson	49
KLS	Warner Brothers	Oakland, Calif. 24	WAAT		
KLX	Tribune Publishing Co			V Omaha Grain ExchangeOmaha, Nebr. 3	
KLZ	Reynolds Radio Co				
KMA	May Seed & Nursery				
KMED	W. J. Virgin				20
KMIC					
	J. R. Fouch				
KMJ	Fresno Bee	Fresno, Calit. 36	WABC		
KMMJ	M. M. Johnson Co				
KMO	Love Electric Co	Tacoma, Wash. 25	WABV	8	
	Voice of St. Louis				
	Radio Corp				48
KNRC	C. B. Juneau	Santa Monica, Calif. 37	WADO	C Allen TheaterAkron, Ohio 2	97
KNX	Los Angeles Express				
KOA	General Electric Co.			M. R. L. Miller	
KOAC	Oregon Agriculture College.				
KOB	N. Mex. College of Agric St				
	Oamaha Central High School				
	Oklahoma College for Women				
KOIL	Mona Motor Oil Co.				
KOIL					
	KOIN, Inc.				
KOLO	Gerald K. Hunter.			Amateur Radio Specialty CoBrooklyn, N. Y. 2	41
	Fisher's Blend Station, Inc				30
	Frank A. Moore			Edison Elec. Illum	01
KPCB	Pacific Coast Biscuit Co.	Seattle, Wash. 23	l WBAA		
KPJM	Wilburn Radio Service				
KPNP	Central Radio Co				
KPO	Hale Bros., Inc.	San Francisco, Calif. 42	2 WBAC		68
KPPC	Pasadena Presbyterian Church.	Pasadena, Calif. 22	WBAP		00
KPRC	Houston Printing Co	Houston, Texas 29	I WBAV	Waldrum Drug Co	48
KPSN	Star-News.	Pasadena, Calif. 31			
KOW	First Baptist Church				
KQV	Doubleday-Hill Electric Co.				
KRAC	Caddo Radio Club		WRBN	A Atlass Investment. Chicago, Ill. 3	89
KRE	Berkeley Daily Gazette	Berkeley Calif 25	WBBP		40
KRLD	Dallas Rado Laboratories			D 111 37 77 0	
KRLO	Freeman Lang & A. B. Scott				
					00
	N. D. BrownRadio Sales Corp				004
KSAC	Kanene State Agricultural Call	Manhettan V 22	WBBZ	J. Creek Laboo Broadcasting Co. Chicago, III. 2	20
	Kansas State Agricultural College	c. Mannattan, Kans. 33	WBCN		00
KSBA	W. G. Patterson.	onreveport, La. 26	WBES		165
KSD	Pulitzer Publishing Co.	St. Louis, Mo. 54	WBET		00
KSCJ	The Journal	Sioux City, Iowa 24	WBKN	N Arthur FaskeBrooklyn, N. Y. 2	
KSEI	Broadcasting Association.			H Braun's Music House Detroit, Mich. 2	
KSL	Radio Service Corp			S. G. J. Schowerer	
KSMR	Santa Maria Valley Railroad			Y Baruschrome Corp	
KSO	Berry Seed Co				26
KSOO	Sioux Falls Bdcst. Ass'n			Birmingham Broadcasting CoBirmingham, Ala. 2	:44
KTAB	Associated Broadcasters			Baltimore Radio Exchange	250
KTAP	Robert B. Bridge	San Antonio, Texas 22	9 WBRI		:32
KTBI	Bible Institute	Los Angeles, Calif. 28	3 WBRS		
KTBR	M. E. Brown	Portland, Ore. 28	3 WBSC		
KTCL	Amer. Radio Tel. Co			Charlotte Chamber of Commerce Charlotte, N. C. 2	
KTHS	New Arlington Hotel			Westinghouse Elect. & Mfg. CoSpringfield, Mass. 3	
KTNT	N. Baker	Muscatine Iowa 25	6 WBZA		133
KTUE	Uhalt Electric.	Houston Tevas 21	3 WCAC		275
KTW	First Presbyterian Church				366
KUJ	Puget Sound Broadcasting Co				117
KUOA				J. C. A. Entrolein Columbus Obio 5	135
KUOM	University of Arkansas			H. C. A. Entrekin	270
	University of Montana				724
KUSD	University of South Dakota				224
KUT	University of Texas			M City of Camden, N. J. 2	
KVI	Puget Sound Broadcasting Co				
KVOO	Southwestern Sales Corp	Bristow, Okla. 34	9 WCAT		
KVOS	L. Kessler	Seattle, Wash. 21	0 WCAU	U Universal Broadcasting CoPhiladelphia, Pa. 2	610

For economy—service—lasting satisfaction—there are no finer Power Units made, even at twice the price. Thousands of satisfied the price. users back this statement. See for yourself. "A-B" Unit has variable control with 40 milliamperes capacity at 135 volts.
"A"Unit has Westinghouse electrical equipment.
Both operate on 50 or 60 cycles at 110 volts A.C.

Send No Money Just state Unit wanted and we will ship day order is received, by express C. O. D. subject to examination on arrival. 5% discount if cash is sent with order. Modernize your set at 50% saving. Send today.

WORLD BATTERY COMPANY So. Wabash Ave., Dept. 31, CHICAGO, ILL.

Station WSBC owned and operated by World Battery Company

Permits just the right amount of fila-

ment current—no more, no less, while sufficient current is there—for each tube's best individual performance. Insist on Amperite. Nothing else will do. Eliminates hand rheostats Simplifies wiring.

Send for FREE Radiall Book

Fully explains Amperite operation. Gives seasons most popular Hook-Ups and valuable Construction Data. Address Dept. RA9

RADIALL CO.,

50 Franklin St., N.Y. Price \$1.10 complete (in U.S.A.) Sold Everywhere

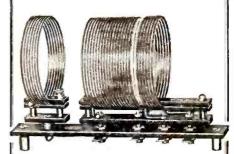
The "SELF-ADJUSTING" Rheastat

October Supers

Get the October Radio Age for three good circuits.

Frank D. Pearne

Readers of Radio Age, and all radio constructors who have been following the development of radio since the early days of broadcasting will learn with poignant regret of the passing of Frank D. Pearne in June. Mr. Pearne was found lifeless at the wheel of his car in a garage near his home in Chicago. Mr. Pearne had been suffering from heart trouble and had been planning a long rest. His funeral was directed by Masonic brothers and was an impressive ceremony, attended by a large number of personal and professional friends who admired and loved Mr. Pearne for his sturdy character, his unfailing kindness and his important contributions to the art of radio transmission and reception.


Simultaneously with the inauguration of popular broadcasting in 1922 Mr. Pearne became a friend of those who wanted to know how to build He had been instructor in electricity at Lane Technical High School for more than ten years at that time and was already familiar with the practice and theory of radio. His forte was the helping of beginners. Thousands of readers of Radio Age in 1922 and 1923 depended upon Mr. Pearne to help them over the rough spots. His articles and drawings appeared in Radio Age regularly and he was technical editor of this magazine, as well as technical editor of the Chicago Herald and

The editor of Radio Age has probably a better knowledge of the unselfish work performed by Mr. Pearne in behalf of radio beginners than has any other person, except probably Mrs. Pearne. She many times had to protect Mr. Pearne from the hundreds of persons who called his residence by telephone by day and night, threatening to deprive him of needed rest and of time for his high school work. No letter was too insignificant for this friend of radio. He answered all queries personally, giving the same time and careful thought to the reply to the small boy who was experimenting with crystal sets as he gave to the

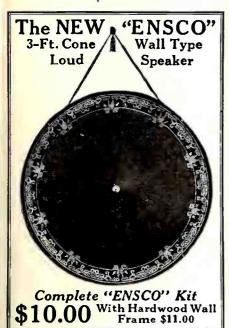
TRANSMITTING APPARATUS

A Complete Stock at "Chi-Rad"

In addition to our regular broadcast apparatus we carry a very good stock of transformers, chokes, grid leaks, high test condensers, etc., for transmitting purposes.

NEW SHORT-WAVE COILS

Specially built by "Chi-Rad". Write for descriptive bulletin and catalog. Dealers and setbuilders please use business letterhead when writing for discounts.


CHICAGO RADIO APPARATUS CO.

415 So. Dearborn St., Dept. RA, Chicago

WINDSOR HORN and CONE Loudspeaker 8 WINDSOR FURNITURE COMPANY 1416 Carroll Avenue, Chicago, Illinois Los Angeles Branch, 917 Maple Ave

****	77 1 1 177	1	71 0 1 0 0 7 7 7 7
	University of Vermont Burlington, Vt. 254		Lancaster Elec. Supply & Const. Co. Lancaster, Pa. 252
WCAZ	0 0	WGBB	
WCBA	~	WGBC	
	Wilbur Glenn VolivaZion, Ill. 345	WGBF	Fink Furniture Co
WCBE	Uhalt Radio Co	WGBI	Scranton Broadcasters, Inc
WCBH		WGBS	Gimbel Brothers Astoria, L. I., N. Y. 349
	Hotel Chateau Baltimore, Md. 384	WGCP	Lanter Piano CoNewark, N. J. 280
	C. H. Messter	WGES	Oak Leaves Broadcasting Corp
WCBS	H. L. Lewing Springfield, Ill. 210	WGHP	G. H. PhelpsDetroit, Mich. 319
	Washburn-Crosby CoAnoka, Minn. 405	WGL	International Broadcasting CorpSecaucus, N. Y. 294
WCFL	Chicago Fed. of Labor	WGM	Verne and Elton SpencerJeanette, Pa. 208
	C. G. UnderLakewood, N. J. 211	WGMU	J Atlantic Bdcst. CoNew York, N. Y. 201
	C. E. Whitmore Camp Lake, Wis. 227	WGN	The Tribune Chicago, Ill. 306
WCLS	WCLS, IncJoliet, Ill. 216	WGR	Federal T. and T. CoBuffalo, N. Y. 303
	Culver Military Academy Culver, Ind. 258	WGST	Georgia School of Technology
	City of Pensacola, Fla. 250	WGWB	Radiocast Corporation Milwaukee, Wis. 219
WCOC	Crystal Oil Co	WGY	General Elec. Co
WCOM	172nd Field Artillery Manchester, N. H. 238	WHA	University of Wisconsin Madison, Wis. 319
WCOT	Jacob ConnOlneyville, R. I. 225	WHAD	Marquette University Milwaukee, Wis. 294
WCRW	Clinton R. White Chicago, Ill. 224	WHAM	Stromberg-Carlson Tel. Mfg. CoRochester, N. Y. 278
	Congress Square Hotel CoPortland, Maine 361	WHAP	W. H. Taylor Finance Corp New York, N. Y. 236
wcso	Wittenberg College Springfield, Ohio 256	WHAR	F. D. Cooks Sons
WCWK	Chester W. KeenFort Wayne, Ind. 229	WHAS	Courier-Journal & Louisville TimesLouisville, Ky. 461
WCWS	Bridgeport Bdcst. StaBridgeport, Conn. 214	WHAZ	
WCX	Detroit Free Press	WHB	Sweeney School Co
WDAD	Dad's Auto Accessories, Inc		C. C. Shaffer Oil City, Pa. 261
WDAE	Tampa Daily TimesTampa, Fla. 268	WHBC	Rev. E. P. Graham
WDAF	Kansas City Star Kansas City, Mo. 370	WHBD	
WDAG	J. Laurence Martin Amarillo, Texas 263	WHBF	Beardsley Specialty CompanyRock Island, Ill. 222
	Trinity Methodist Church El Paso, Texas 234	WHBL	James H. Slusser Chicago, Ill. 204
WDAY			C. L. Carrell Chicago, Ill. 201
WDBJ	Richardson Wayland Elec. Corp. Roanoke, Va. 231	WHBN	
	Bdcst CoCleveland, Ohio 227	WHBP	Johnstown Automobile Co
WDBO	Orlando Broadcasting CoOrlando, Fla. 288	WHBQ	
WDBZ	Boy Scouts of America Kingston, N. Y. 216	WHBU	Bings Clothing—Riviera TheaterAnderson, Ind. 219
WDEL	Wilmington Elec. Specialty Co Wilmington, Del. 265		D. R. Kienzle
	Dr. George W. Young Minneapolis, Minn. 263		St. Norbert's College
	Chattanooga Radio Co., Inc	WHDI	W. H. Dunwoody Institute
	Doolittle Radio Corp	WHEC	Hickson Electric Co., Inc
	Dutee Wilcox Flint, Inc	WHFC	Triangle BroadcastersChicago, Ill. 216
	Radio Industries Broadcast Co	WHK	The Radio Air Service CorpCleveland, Ohio 265
WDZ	J. L. Bush Tuscola, Ill. 278	WHN	Loew's State Broadcasting StationNew York, N. Y. 395
WEAF	National Broadcasting Co	WHO	Banker's Life Co Des Moines, Ia. 535
WEAI	Cornell University	WHT	Radiophone Broadcasting Corp Deerfield, Ill. 416
	Bor. of N. Plainfield North Plainfield, N. J. 240	WIAD	Howard R. Miller Philadelphia, Pa. 220
WEAN	The Shepard Co	WIAS	Home Electric Co
WEAO	Ohio State University	WIBA	Capital Times-Strand TheatreMadison, Wis. 240
WEAR	Willard Storage Battery Co. Cleveland, Ohio 400	WIBG	St. Paul's Protestant E. ChurchElkins Park, Pa. 441
WEBC	Head-of-the-Lakes Radio StationSuperior, Wis. 242	WIBI	Frederick B. Zittell, Jr. Flushing, L. I., N. Y. 268
WEBE	Roy W. WallerCambridge, Ohio 248	WIBJ	C. L. Carrell Chicago, Ill. 201
WEBH	Edgewater Beach Hotel Chicago, Ill. 366	WIBM	C. L. Carrell
WEBJ	Third Avenue Railway Co	WIBO	WIBO Broadcasters, Inc
WEBO			N. J. National Guard
	Tate Radio Corp	WIBS WIBU	The Electric Farm
	H. H. Howell Buffalo, N. Y. 242		
	Beloit College Beloit, Wis. 259 Chicago III 242	WIBW	C. L. Carrell Chicago, Ill. 204 WIBX, Inc Utica, N. Y. 238
WEEI	E. Denemark Station Chicago, Ill. 242 The Edison Elec. Illuminating Co. Boston, Mass. 448	WIBX	A. D. TrumMontgomery, Ala. 231
WEHS	A. T. Becker Evanston, Ill. 216	WIBZ	Bridgeport Bdcst. StationBridgeport, Conn. 214
	Emanuel Missionary College Berrien Springs, Mich. 238	WICC	Benson Radio CoSt. Louis, Mo. 258
		WIL	
WEPS	Great Lakes Broadcasting Co	WIOD	Earl G. Fisher Co
WEW	Matheson Radio Co., Inc. Gloucester, Mass. 297 St. Louis University	WIP	
WFAA	St. Louis University St. Louis, Mo. 353	WIAG	Hotel Raleigh Waco, Texas. 448 Norfolk Daily News Norfolk Neb 286
	Dallas News & Dallas Journal Dallas, Texas 500	WJAG	Norfolk Daily News
	Times Publishing Co	WIAM	
WFBE	First Baptist Church Knoxville, Tenn. 234	WIAD	D. M. Perham
WFBG	Garfield Place Hotel Co	WJAR	The Outlet Co
WFBJ	The Wm. F. Gable Co	WJAS	Pittsburgh Radio Supply House Pittsburgh, Pa. 270
WFBL	St. John's University Collegeville, Minn. 273	WJAX	City of Jacksonville Jacksonville, Fla. 337
WEDM	The Onondaga Co	WJAY	Cleveland Broadcasting Corp. Cleveland, O. 227
WFBR	Indianapolis Power & Light CoIndianapolis, Ind. 225	WJAZ	American Bdcast. Corp
	Fifth Infantry National Guard Baltimore, Md. 225	WJBA	D. H. Lentz, Jr
WFBZ	Knox College Galesburg, Ill. 248	WJBB	Financial Journal St. Petersburg, Fla. 345
WFCI	Frank Crook, Inc	WJBC	Hummer Furniture Co
	F. D. Fallain Flint, Mich. 349	WJBI	Robert S. Johnson Red Bank, N. J. 256
WFHH	Chamber of Commerce Clearwater, Fla. 366		E. F. Goodwin
WFI	Strawbridge and Clothier Philadelphia, Pa. 405	WJBL	Wm. Gushard Dry Goods CoDecatur, Ill. 213
WFIW	The Acme Mills, Inc		Valdemar Jensen
WFKB	Vesta Battery Corp. Chicago, Ill. 224		Gensch and Stearns
WFLA	Boca Raton Radio Corp. Boca Raton, Fla. 213	WJBT	John S. Boyd Chicago, Ill. 389
WFRL	Flatbush Radio Labs Brooklyn, N. Y. 219	WJBU	Bucknell University Lewisburg, Pa. 214

Kit contains "ENSCO" Direct-drive unit. designed and Datented by Clyde J. Fitch; Beautifully decorated Albambra FON-O-TEX Cone Material; Metal Aperes; Extension Pin and 12 page illustrated Book of Instructions for easy assembly of any of six sizes of Cone or Roll shape Wall, Pedestal or Console speaker. You can build it in less than en bour. Static materially reduced—winter results all summer.

The "World's Finest Loud Speaker" Now within the means of every one. At your dealer's or direct from any of the offices listed below. Send check, money order or C. O. D. Shipping charges paid. Absolute (money-back) guarantee.

ENGINEERS' SERVICE COMPANY

25 Church Street, New York
73 Cornhill, Boston
28 E. Jackson Blyd., Chicago
331 Bay Street, Toronto, Ontario
Member RMA

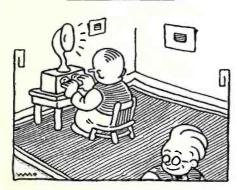
60-page Réference valing

POLK'S REFERENCE BOOK

POLK S REFERENCE SHOWS DOWN TO MAIL ADVERTISERS by use of Direct Mail Advertising, 60 pages of Direct Mail Advertising, 60 pages the use of Direct Mail Advertising, 60 pages full of vital business facts and figures. Who, where and bow many prospects you have. Over 8,000 lines of business covered. Write for your FREE copy.

R.L. POLK & CO., Detroit, Mich. 599 POLK DIRECTORY BUILDING Branches in principal cities of U. S.

AMERICAN RADIO


advanced student of radio who was working on super hets.

Radio Age takes this opportunity gladly to say for the thousands of radio fans who knew and loved him that he has left a record of service that will stand as an enduring monument to remind us of a man who was big enough to give the best he had to his fellows with little thought to immediate rewards. Frank D. Pearne was a kindly neighbor, a patient instructor, a loyal friend. His passing is a great loss to radio.

Brazil a Growing Market

Brazil is a good market for radio receiving sets, according to a trade bulletin issued by the Electrical Equipment Division of the Department of Commerce. There are many crystal receivers of local manufacture in use, the report states but the demand for the larger types of tube sets is growing rapidly because of the general desire of the listeners to pick up Buenos Aires broadcasting stations. In many parts of Brazil it is necessary to use a large receiver in order to hear the nearest station satisfactorily. Practically all complete receiving sets and parts now imported into Brazil are of American origin.

The development of the demand for radio receiving sets during the last few years, though impeded a great deal in the beginning by Government regulations, has of late been rapid, the report reveals. Radio enthusiasts have formed societies in Rio de Janeiro, Sao Paulo and fourteen other cities, thus stimulating interest.

"Now I know what becomes of little boys who can't remember their A B C's.' "What's that?

—"They grow up and become radio announcers and forget their call letters."

Quick, easy tuning—more volume, clearness, stability with an X-L VARIO DENSER in your circulf. Endorsed by experts, specified in all latest and best hook-ups.

MODEL "N" — Micrometer adjustment easily made, assures exact oscillation control in all tuned radio frequency circuits, Neutrodyne, Roberts 2-tube, Browning-Drake, Silver's Knockout, Capacity Range 1.8 to 20 Mfd. Price \$1.00.

1.8 to 20 Mfd. Price \$1.00.

MODEL "G"—Obtains the proper grid capacity on Cockaday circuit filter and intermediate frequency tuning in super-beterodyne and positive grid bias in all sets. Capacity range. Model G-1 .00002 to .0001 Mfd. Model G-5 .0001 to .0005 Mfd. Model G-10 .0003 to .001 Mfd. Price each with grid cips \$1.50.

X-L PUSH POST—Push it down with your thumb. Insert wire, remove pressure, wire is firmly held. Vibrations will not loosen, releases instantly. Price each, 15c. Also in strip of 7 on black panel marked in white. Price \$1.50. Fire wings of the price of the price

50.

g diagrams showing use of X-L units in the new LOFTIN astant coupled radio frequency circuit, and in other populss. Send for yours today.

X-L RADIO LABORATORIES
2424 N. Lincoln Ave., Chicago, III.

	C. Carlson, Jr		Seventh Day Adventist ChurchMemphis, Tenn. 210
WJBY	Electric Construction Co		Radio Service Laboratories
WJBZ	Roland G. Palmer Chicago Heights, Ill. 208	WWRÓ	Paul J. GollhoferBrooklyn, N. Y. 204
WJJD	Supreme Lodge, L. O. of MooseMooseheart, Ill. 266		Premier Electric Co
WJPW WJR	J. P. Wilson Ashtabula, Ohio 208 Station WJR, Inc. Pontiac, Mich. 441		Mack's Battery Co
WJZ	Radio Corp. of America Bound Brook, N. J. 454	WMBU	Paul J. Miller
WKAQ	Radio Corp. of Porto Rico		Robert A. Isaacs
WKAR	Michigan State College	WMC	Commercial Pub. Co
	Laconia Radio Club		Greely Sq. Hotel Co
WKBB			First Methodist Church Lapeer, Mich. 234
	H. L. Ansley Birmingham, Ala. 219	WMRJ	Peter J. PrinzJamaica, N. Y. 207
	K. & D. Electric CoWebster, Mass. 229		Madison Sq. Gard. Bdcast. CorpNew York, N. Y. 236
	N. D. WatsonIndianapolis, Ind. 252	WNAC	Shepard Stores
WKBG	C. L. Carrell Chicago, Ill. 201		University of Oklahoma Norman, Okla. 240
WKBH	Callaway Music CoLaCrosse, Wis. 220	WNAL	Omaha Central High SchoolOmaha, Nebr. 258
	F. L. Schoenwolf		Lenning Brothers Co
	Monrona Radio Mfg. CoMonroe, N.ich. 205	WNAX	Dakota Radio Apparatus Co
	J. W. JonesNewburgh, N. Y. 208	WNBA	M. T. RaffertyForest Park, Ill. 208
	Radio Electric Service CoYoungstown, Ohio 214	WNBF	Howitt-Wood Radio Co Endicott, N. Y. 207
WKBO		WNBH	New Bedford Hotel
WKBP		WNBJ	Lonsdale Baptist Church
	Starlight Amusement Park	WNBL	Gray, Trimble & Smith Electric Co Bloomington, Ill. 200
WKB2	P. M. Nelson	WNBO	John Brownlee Spriggs
WKRI	First Baptist ChurchNew Orleans, La. 252	WNBR	Popular Radio Shop
WKBU	H. K. Armstrong	WNBQ	Gordon P. Brown Rochester, N. Y. 203
	Knox Battery and Electric CoBrookville, Ind. 217 Churchill Evang. Ass'nBuffalo, N. Y. 217	WNJ	Herman Lubinsky
	K. L. AshbackerLudington, Mich. 200	WNRC	W. B. Nelson
	Edward A. Dato	WNYC	
	Kirk Johnson & CoLancaster, Pa. 252	WOAI	Southern Equipment Co
WKRC	Kodel Radio CorpCincinnati, Ohio 333	WOAN	J. D. VaughnLawrenceburg, Tenn. 286
WKY	WKY Radio CoOklahoma City, Okla. 288		Franklin J. WolffTrenton, N. J. 240
WLAC	Life & Casualty Ins. Co	WOC	Palmer School of ChiropracticDavenport, Iowa 353
WLAP	Virginia Avenue Baptist ChurchLouisville, Ky. 268	WOCL	A. D. NewtonJamestown, N. Y. 224
WLB	University of MinnesotaMinneapolis, Minn. 246	WODA	O'Dea Temple of Music
WLBC	D. A. BurtonMuncie, Ind. 210	WOI	Iowa State College
WLBF	E. L. Dillard	WOK	Chicago Beach Hotel
WLBG	R. A. GamblePetersburg, Va. 214	woko	
WLBH	Joseph J. Lombardi Farmingdale, N. Y. 232	WOKT	Titus-Ets CorporationRochester, N. Y. 210
WLBI	Legion Broadcasters, Inc	WOMT	Mikado Theater Manitowoc, Wis. 222
WLBL	Wisconsin Dept. of MarketsStevens Point, Wis. 319	WOO	John Wanamaker
WLBM		WOOD	Walter B. Stiles, Inc
	William Evert Hiler Chicago, III. 204	WOQ	Unity School Kansas City, Mo. 337
WLBO WLBP	Frederick A. Tribbe, Jr	WORD WORD	L. Bamberger and Co
	E. Dale Trout Atwood, Ill. 203	WORD	State Market BureauJefferson City, Mo. 469
WLRR	Alford Radio Company Belvidere, Ill. 322	wow	Woodman of the World
WLBT	Alford Radio Company Belvidere, Ill. 322 Harold Wendell Crown Point, Ind. 322		Main Auto Supply Co
WLBV	John F. Weimer & D. A. SnickMansfield, Ohio 207	WPAP	(See WQAO)
WLBW	Petroleum Telephone CoOil City, Pa. 294	WPCC	North Shore Cong. Church Chicago, Ill. 224
WLBX	John N. BrahyLong Island City, N. Y. 204	WPCH	People's Broadcasting CorpNew York, N. Y. 309
WLBY	Aimone ElecIron Mountain, Mich. 210	WPEP	Maurice MayerWaukegan, Ill. 216
WLBZ	Thompson L. GuernseyDover-Foxcroft, Maine 208	WPG	The Municipality of Atlantic City. Atlantic City, N. J. 273
WLCI	Lutheran Association	WPRC	Wilson Printing & Radio Co
WLIB	Liberty Weekly, Inc	WPSC	Pennsylvania State CollegeState College, Pa. 300
WLIT	Lit BrosPhiladelphia, Pa. 405	WPSW	Philadelphia School of Wireless TelPhiladelphia, Pa. 203
WLS	Sears Roebuck & Co	WQAA	Horace A. Beale, Jr. Parkersburg, Pa. 216
WLTS	Lane Technical High School Chicago, Ill. 484		Electrical Equipment Co
WLW	Crosley Radio Corp	WQAN	Scranton Times Scranton, Pa. 261 Colvery Baptist Church Cliffeide N. J. 305
	Paulist Fathers	WQAO	Calvary Baptist Church
	Round Hills Radio Corp	WRAF	The Radio Club (Inc.)LaPorte, Ind. 208
WMAK	Norton Laboratories Lockport, N. Y. 545	WRAH	S. N. Read
WMAI	M. A. Leese Washington, D. C. 303		Economy Light Co
	First Baptist Church Columbus, Ohio 234		Lombard College
	Chicago Daily News Chicago, Ill. 447	WRAV	Antioch College
	Kingshighway Presbyterian ChurchSt. Louis, Mo. 248		Avenue Radio & Electric Shop
	Macon Junior Chamber of CommerceMacon, Ga. 270	WRAX	Beracah Church, IncPhiladelphia, Pa. 283
WM BA	LeRoy Joseph BeebeNewport, R. I. 204	WRBC	Immanuel Lutheran ChurchValparaiso, Ind. 238
WMBB	American Bond & Mortgage CoChicago, Ill. 252	WRC	Radio Corp. of AmericaWashington, D. C. 468
WMBC	Michigan Broadcasting Co., IncDetroit, Mich. 244	WRCO	Wayne Radio Co
WMBD	Peoria Heights Radio LabPeoria Heights, Ill. 205	WREC	WREC, IncWhitehaven, Tenn. 254
WMBE	Dr. C. S. Stevens	WREO	Reo Motor Car CoLansing, Mich. 231
WMBF	Fleetwood Hotel CorpMiami Beach, Fla. 384	WRES	H. L. Sawyer Woloaston, Mass. 217
	Havens & Martin Richmond, Va. 207		Wash. Radio Hospital Fund. Washington, D. C. 319
	Edwin Dudley Aber. Chicago, Ill. 204		Rosedale Hospital, Inc
	Moody Bible Institute. Chicago, Ill. 263	WRK	Doron Bros
WMBJ	Wm. Roy McShaffrey Monessen, Pa. 232 Ronford Radio Studios Lakeland, Fla. 229	WRMII	University of Illinois
AA IAI DT	Comord Radio StudiosLakeland, Fla. 229	AA LCIAI O	Attantic Ducasting Committee Fork, N. 1. 201

New Aero Circuits Worth Investigating

The Improved Aero-Dyne 6 and the Aero 7 and Aero 4 are destined to be immensely popular this season!

Here are three new Aero circuits of unusual merit. Each is constructed around a set of improved Aero Universal Coils—the finest and most acaptable inductances ever offered! Learn about them NOW if you are interested in accuring finest selectivity, greatest range and power, truest tone quality and hest all-round radio reception.

AFRO UNIVERSAL TUNED RADIO FREQUENCY KIT

Especially designed for the Improved Aero 6. Kit consists of 4 twice-matched units. Adaptable to 201-A. 199. 112, and the new 240 and A. C. tuhes. Tuning range below 200 to above 550 meters.
This kit will make, any circuit better in selectivity.

will make any circuit better in selectivity, range. Will eliminate losses and give the greattone and range. Will e est receiving efficiency.

AERO UNIVERSAL TUNED RADIO FREQUENCY KIT

Especially designed for the Aero 7. Kit consists of 3 twice-matched units. Colls are wound on Bascelite skeleton forms, assuring a 95% air di-electric. Tuning range from helow 200 to ahove 550 meters. Adaptable to 201-A, 199, 112. and the new 240 and A. C. Tuhes.

AERO RADIO FREQUENCY REGENERATIVE KIT

An exceptionally efficient kit for use in the Aero 4 and other similar circuits. Consists of one Aero Universal Radio Frequency Transformer and one Aero Universal 3-circuit Tuner. Uses 201-A, 112, 199 and new A. C. Tuhes.

A NEW SERVICE

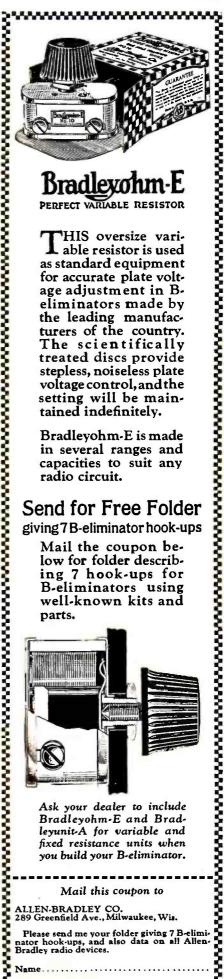
We have arranged to furnish the home set builder with complete Foundation Units for the above asmed Circuits and for the Chicago Daily News 4-Tube Receiver and the Aero Transmitter Set. drilled and engraved on Westing-house Micara. Detailed blueprints and wring diagram for each circuit included free. Write for Information and

You should be able to get any of the above Aero Coils and parts from your dealer. If he should be out of stock order direct from

AERO PRODUCTS, Inc. 1772 Wilson Ave., Dept. 106, Chicago, III.

Radio Tabloids

(Continued from page 8)

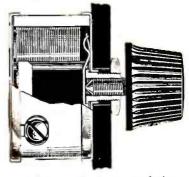

It is difficult to refer to the results of broadcast advertising without mentioning specific cases which might be undesirable, but ample evidence of its efficacy is available. The manufacturer of a tooth paste, whose product sold side by side with that of competitors, put on a radio "hour." He could not fail to notice that in districts covered by the broadcasting his sales increased many fold, while in other districts they remained about the same. Similar results have been had in radio receiving sets

Chinese Radio

Admiral W. H. G. Bullard, in an address before the National Electrical Manufacturers' Association.

ADIO both for broadcasting or communication plays a very small part in the Republic of China. The Chinese Government maintains a few small powered costal stations for communication with ships at sea. The importation into China of any form of radio apparatus is prohibited by decree of Chinese Government, as such apparatus is classified as munition of war, although for those who have the proper influence, the ban may be lifted. An attempt to bring in radio apparatus is not an offense and if one is caught doing so, there is no penalty nor is the apparatus confiscated; it is simply not allowed to enter, and if one is caught in one port it is usually the practice to try another port.

Broadcasting as practiced in the United States is practically unknown. There is one small station in the International Settlement in Shanghai and the owner simply has to pay the police to keep away from it to allow him to continue. Recently, a change is coming over responsible officials, particularly in the Northern sections, notably in Manchuria, where the so called ruling War Lord has been convinced by one of his aids—a returned United States student—that radio broadcastng might fulfill a long felt want. In consequence, an American doing business in China has given a contract to erect a broadcast station in Mukden which is about ready to operate,


Bradlexohm-E

'HIS oversize vari-L able resistor is used as standard equipment for accurate plate voltage adjustment in Beliminators made by the leading manufacturers of the country. The scientifically treated discs provide stepless, noiseless plate voltage control, and the setting will be maintained indefinitely.

Bradleyohm-E is made in several ranges and capacities to suit any radio circuit.

Send for Free Folder giving 7 B-eliminator hook-ups

Mail the coupon below for folder describing 7 hook-ups for B-eliminators using well-known kits and

Ask your dealer to include Bradleyohm-E and Bradleyunit-A for variable and fixed resistance units when you build your B-eliminator.

Mail this coupon to

ALLEN-BRADLEY CO. 289 Greenfield Ave., Milwaukee, Wis.

Please send me your folder giving 7 B-elimi-nator hook-ups, and also data on all Allen-Bradley radio devices.

Address.....

WRNY	Experimenter Publishing CoCoyetsville, N. Y. 309	WSRO	Harry W. Fahrlander Hamilton, Ohio 384
WRR	City of Dallas, Tex. 353	WSSH	Tremont Temple Bap. ChurchBoston, Mass. 250
WRRS	F. G. Leavenworth Racine, Wis. 322	WSUI	State University of Iowa Lowa City, Iowa 422
WRSC	The Radio Shop	WSVS	Seneca Vocational SchoolBuffalo, N. Y. 205
WRST	Radiotel Mfg. Co., IncBay Shore, N. Y. 211	WSYR	Clive B. MeredithSyracuse, N. Y. 225
WRVA	Larus & Brother Co., IncRichmond, Va. 254	WTAD	Ill. Stock Medicine CorpQuincy, Ill. 236
WSAI	United States Playing Card CoCincinnati, Ohio 361	WTAG	Worcester TelegramWorcester, Mass. 517
WSAJ	Grove City College	WTAL	Toledo Broadcasting Co
WSAN	Allentown Call Publishing Co. Inc Allentown, Pa. 222	WTAM	Willard Storage Battery Co Cleveland, Ohio 400
WSAR	Daughy & Welch Electrical CoFall River, Mass. 252	WTAQ	Gillette Rubber Co
WSAX	Zenith Radio Corp. Chicago, Ill. 204	WTAR	Reliance Electric Co
WSAZ	Chase Electric ShopHuntington, W. Va. 242	WTAS	Richmond Harris & Co
WSB	Atlanta Journal Atlanta, Ga. 476	WTAW	A. & M. Coll. of Texas College Sta., Texas 309
WSBC	World Battery CoChicago, Ill. 232		Williams Hardware CoStreator, Ill. 322
WSBF	Broadcasters	WTAZ	Thomas J. McGuireLambertville, N. J. 220
WSBT	South Bend Tribune South Bend, Ind. 238	WTHO	W. J. Thomas Radio CoFerndale, Mich. 219
WSDA	City TempleNew York, N. Y. 227	WTIC	Travelers Insurance Co
WSEA	Virginia Beach Broadcasting CoVirginia Beach, Va. 219		Technical Radio LaboratoryMidland Park, N. J. 207
WSIX	638 Tire & Vulc. CoSpringfield, Tenn. 213		L. J. Crowley
WSKC	World's Star Knitting Co. Bay City, Mich. 492	WWJ	
WSM	Nashville Life & Accident Ins. CoNashville, Tenn. 341		Evening News Assn
WSMB	Saenger Amuse. Co. New Orleans, La. 322	WWL	Loyola University New Orleans, La. 275
WSMK	S. M. K. Radio Corp. Dayton, Ohio 297		Chamber of Commerce
WSOE	School of EngineeringMilwaukee, Wis. 270		Woodside Radio LaboratoriesWoodside, N. Y. 268
WSOM	Union Course LaboratoriesWoodhaven, N. Y. 246	WWVA	John C. Strobel, JrWheeling, W. Va. 389

Dominion of Canada

CFAC	Calgary Herald	CKCD	Vancouver Daily ProvinceVancouver, B. C. 411
CFCA	Toronto Star Pub. & Prtg. Co	CKCK	
CFCF	Marconi Wireless Teleg. Co., (Ltd.) Ca. Mont., Que. 411	CKCL	Dominion Battery CoToronto 360
CFCH	Abitibi Power & Paper Co. (Ltd.) Iroquois Falls, Ont. 500	CKCO	Ottawa Radio Association Ottawa, Ont. 434
CFCK	Radio Supply CoEdmonton, Alta. 517	CKCX	Int'l Bible Students Ass'nToronto 291
CFCN	W. W. Grant (Ltd.) Calgary, Alta. 434	CKFC	First Congregational ChurchVancouver, B. C. 411
CFCR	Laurentide Air ServiceSudbury, Ont. 410	CKNC	Canadian National Carbon CoToronto, Ont. 357
CFQC	The Electric Shop (Ltd.) Saskatoon, Sask. 329	CKOC	Wentworth Radio Supply Co
CFRC	Queens University	CKY	Manitoba Tel. SystemWinnipeg, Man. 384
CFXC	Westminster Trust CoWestminster, B. C. 291	CNRA	Canadian National RailwaysMoncton, N. B. 322
CFYC	Commercial Radio (Ltd.)Vancouver, B. C. 411	CNRC	Canadian National Railways
CHCS	The Hamilton Spectator	CNRE	Canadian National RailwaysEdmonton, Alta. 517
CHIC	Northern Electric Co	CNRM	Canadian National Railways
CHNC	Toronto Radio Research SocietyToronto, Ont. 357	CNRO	Canadian National RailwaysOttawa, Ont. 434
CHUC	International Bible Ass'nSaskatoon, Sask. 329	CNRQ	Canadian National RailwaysQuebec, Que. 341
CHXC	R. Booth, JrOttawa, Ont. 434	CNRR	Canadian National Railways
CHYC	Northern Electric Co	CNRS	Canadian National RailwaysSaskatoon, Sask. 329
CJCA	Edmonton Journal Edmonton, Alta. 517	CNRT	Canadian National Railways
CJGC	London Free Press London, Ont. 329	CNRV	Canadian National RailwaysVancouver, B. C. 291
CKAC	La PresseMontreal, Que. 411	CNRW	

October—The Super Number!

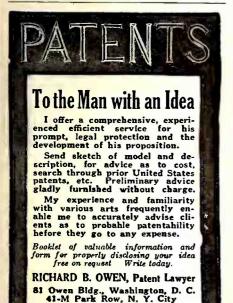

At least three of the latest super designs will be fully described and illustrated in the October issue of Radio Age.

The 1928 Infradyne
World's Record 10 Tube
Thompson Super Seven

It is going to be a super year in more ways than one. Get the October issue for an early start on your building program. The circuits mentioned above are only a part of the volume of good things scheduled for that issue. On the stands about September 25, or send thirty cents in stamps to

Radio Age

500 North Dearborn Street Chicago

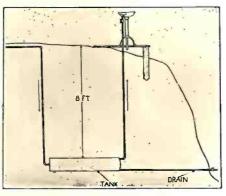

For Radio Frequency Amplifiers. \$2.75

Not until you eliminate the squeals of R. F. oscillations can you know what wonderful reception is possible with your set.

phasatrol stops R. F. oscillations, not temporarily, but once and for all! Also simplifies tuning and makes it easy to get distance clear. Ask your dealer.

Write for free hook-up circular for any set or circuit.

175 Varick Street, New York, N. Y. Dept. 62 A



Home-Made Cooler

Cool water for the home, summer cottage, or golf course may be provided by the installation of a simple cooling system. This arrangement consists essentially of an ordinary galvanized iron hot-water tank buried in a horizontal position at least eight feet below the surface of the ground and connected to a drinking fountain or faucet placed at the surface.

The tank should be placed so that one end will be slightly lower than the other. The inlet pipe is connected to the higher end. To the lower end, at the bottom, is attached a drain pipe which is used to remove water from the tank during cold weather or when the system is cleaned. The outlet pipe to the fountain or faucet runs from the upper side of the lower end. To facilitate draining, the tank should be placed near an embankment, or near a cellar into which the drain pipe is run.

Several coolers of this type have been installed at the Fairlawn golf course near Akron, Ohio. from the surface sprinkling system often reaches a temperature near the boiling point, but after being passed through the tank it emerges from the fountain at about fifty degrees Fahrenheit.

The most satisfactory size of tank is a 40-gallon one. Where the consumption of water is great, a larger size should be used. It has been found that cooler water will be produced if the tank is buried in clay soil, rather than in sand.

See Page I for facts about back Issues of this magazine covering famous World's Record Super.

FROST-RADIO DE LUXE VARIABLE HIGHRESISTANCES HIGH RESISTANCES

Vastly improved and infinitely hetter than any
other high resistances.

Have highly polished Bakelike cases and dust cover.

Two terminal type, plain.

\$1.76

With Switch, \$2.10

Three terminal type, plain,

\$1.75

With switch, \$2.10

Bakelite \$1.25

With switch, \$2.10

FROST-RADIO JACKS

FROST GEM-JACS
Project only 1 in. hack of
panel. Self cleaning sterling
silver contacts. Hand
hulfod frame.
40c
45c
FROST PAN-TAB JACKS
May be used for either panel
or table mounting. A
heavy, eturdy jack that is
precision hult in every
detail. 65c to ADATTERS
Genuine Barelite construction, with highest quality
finish.
No. 611 changes UV199—

finish.

No. 611 changes UV199—
C299 to UV base socket,
60c

No. 540 changes UX199—
CX299 to UV base
socket, 250

FROST-RADIO BAKELITE SOCKET

Genuine Bakelite. with nickel silver contact springs which grip tube prongs al-most entire length. For all UX and CX tubes, 40c

FROST-PLUGS

In eingle and double auto-matic type, with frames of moulded Bakelite. Single type, 50c Double type, 75c

HERBERT H. FROST, INC. Main Offices and Factory ELKHART, IND.

Philadelphia Pittsburgh St. Paul

New Orleans Los Angeles Washington, D. C. Buenos Aires, Argentina

FREE RADIO

Size 28x33 inches with rule for measuring distances. List of radio stations, with call letters, and wave length, FREE if you send us name and addresses of five friends who have radios and what kind.

124 W. Austin Ave. A. V. VIKING. CHICAGO

MAR-CO Illuminated back-panel controls set the 1927 style.

Radio Aids Air Mail (Continued from page 24)

zone in the direction of flight—when flying across the equisignal zone. The shift was greatest when the airplane was flown at right angles to the equisignal line. When flying to or from the transmitting coil the shift was not noticed.

The apparent displacement of the equisignal zone in the direction of flight was more marked the greater the altitude of flight. Twenty miles from the radio beacon station this shift at an altitude of 1,000 feet was found to be one mile; that is, an airplane flying in one direction across the equisignal zone found this zone displaced from its true position one mile in the direction of flight; an airplane flying in the opposite direction found the equisignal zone displaced one mile in the new direction of flight. At 2,000 feet this zone displacement appeared to be 2 miles, and at 3,000 feet it appeared to be 4 At all altitudes, however, with the airplane in a stall so that the trailing antenna hung vertically or when the airplane was flying toward or away from the beacon station there was no zone displacement, the zone being located in the position determined by ground tests.

"The result of these tests," indicated the Bureau of Standards, "in which a light antenna weight and a 200-foot trailing wire were used, showed that the apparent shift in the equisignal zone was due entirely to the type of receiving antenna used and its inclination to the vertical. By using a short trailing wire with a much heavier weight the antenna hung in a nearly vertical position, thus eliminating the zone displacement effect to a large extent. Such an antenna is best suited for this type of reception, as any ambiguities arising from an apparent shift in the equisignal zone when the airplane is turned are practically overcome. The use of a coil antenna in place of a trailing wire is equally effective in this respect, but cannot be worked over as great a distance."

Of the future of this far-reaching system of guiding aircraft by slender beams of directed radio, Dr. Dellinger states:

"In carrying out its newly assigned responsibilities to provide aids to air navigation on the civil airways, the Department of Commerce has concluded that radio aids are indispensable. As the first step in establishing these radio aids the Bureau of Standards has been assigned certain research work and is setting up model installations.

"It has been established that the airways must be provided with a

system of radio telephone transmitting stations and directive beacons at certain intervals. At smaller intervals between the directive beacon, probably every 25 miles, are to be located the marker beacons. It is not yet certain whether the beacons will operate by means of an audible or a visual signal on the airplane, and the determination of this is one of the principal objects of the investigations now in progress.

CLASSIFIED ADVERTISEMENTS

If you have anything to buy or sell, don't overlook RADIO AGE'S classified advertisements.

The classified advertising rates are but four cents per word for a single insertion. Liberal discounts are allowed on six and twelve-time insertions, making rate of 3 and 2 cents a word per insertion respectively. Unless placed through an accredited advertising agency, cash should accompany all orders. Name and address must be included at foregoing rates. Minimum contract charge \$1.00.

All Classified ads for October issue must be sent in by Aug. 25.

AGENTS

RADIO AGENTS—Make Big Money—Easy! selling Marvelous New Sets and Accessorles. Buy from factory at lowest prices. Get New Catalog with thousands of nationally advertised bargains. FREE Call Book. Write today. American Auto and Radio Co., Dept. 138, American Radio Bidg., Kansas City, Mo.

Soil Radio Sets on time \$10.00 down buys 5 tube set. Agents get my special prices. Bargain Speakers; order now. T. King, 609 Onelda St., Syracuse, N. Y.

AIRPLANES

SEND FOR free illustrations and plans of our wonderful two-place, companion type, small, high lift wing monoplane, and information ou how to build this ship, and be sure it will fly; also propeller literature. Crawford Airplane Manufactory, 2225 American Avenue, Long Beach, Califordia.

BOOKS AND MAGAZINES

Judge Lindsey's "companionate marriage" hoax exposed! Rich debate! Flays other "doctrines". Exponent 15c, Orlando, Fla. Consigned: Newsdealers, Agents.

FREE-Two big New Magazines and information worth hundreds of dollars to you. Ensise 2s stamp. Salesmanager, Box 74-R. Beaver Dam, Wisconsia.

What could be better than magazine subscriptions for gifts. Send stamp for our epsolal list of subscription bargains. Middend Products, Dept. R. A., 524 Courtland Ave., Park Ridge, Illinois.

Twentieth Century Book of Receipts. Fermulas and processes, an 807 cloth bound book containing 10,000 never formulas for the manufacturer, werksbop, leberatory, office and home. Sent prepaid upon receipt of \$4.00. Send dime for our 48 page catalog of latest and bast praotical, scientific mechanical and ladustrial books. Midland Products Co., Dept. RA, 524 Courtland Ave., Park Ridge. III.

BOYS

Boye get a three foot model aeroplane free. No selling. Write for particulars. Aero Shop. 3050 Huribut Ave., Detroit, Michigan.

RADIO SET FREE, form magazine clubs among friends. Club list free. Spensories Agencies, Los Angeles, Breatwood Heights, California.

BUSINESS OPPORTUNITIES

PEOAN-Orange-Fig Groves "On the Guil". Monthly payments. Guaranteed care. Big, quick returns. Suburban Orchards, Dept. R, Blioxi, Mississippi.

MAKE RADIO PANEL LAMPS. Inventor can supply necessary parts. Easily assembled, Rests on top of radio cabinet. Lights dials. Information free. Sample Lamp \$1.25. Postpaid. Robert Stevenson, Lancaster, Ohio.

LAND FREE If planted to bananas. Bananas bear a full trop the second year. \$5.00 monthly will plant five erres, which should pay \$1.500 profit annually. Reliable Companies will cultivate and market your bananas for 1/3. Bananas ripen every day and you get your check every 90 days. For particulers address Janthe Plantation Co., Empirs Building. Block 766, Pittsburgh, Pa.

FOR SALE—Patent on fountain mop and duster. I have party offerod to take five hundred dozen per month. Lester Doak, McMinnville, Tennessee.

DOGS

BEAUTIFUL REGISTERED BULL PUPS \$15. Bull-dogs. 801 Rockwood, Dallas, Texas.

ELECTRICAL

ELECTRIC FUN! Seventy stunts, 110 volts, \$1. Cecutting, Campbell, Calif.

FORMULAS

20c-Any Formula, 20c. "Hawkins," 215R Lasanimas, Colorado Springs, Colorado.

MISCELLANEOUS

NEUTROOYNE AND METERODYNE ARE GOOD AS FAR AS THEY GO. THE BEST ONE TUBE SETFOR PYORRHEA IS 21-0-01NE (tooth-paste). SATISFACTION GUARANTEEO. FIFTY CENT TUBES BY MAIL. IODINE PRODUCTS COMPANY, LAUREL. MISS.

"MUSIC Composed" to words. Bauer Bros., (fermerly of Sousa's Band). Oshkosh, Wis.

GILLETTE STYLE Razor with 10 Blades 69e Prepald. Loud Speaker \$3.89, Speaker Unit \$1.10 prepald. Transformer 25c, Mole Station A. New Haven, Conn.

PANEL ENGRAVING

SINGLE PANEL and medium quantity engraving of highest quairty. Also panel drilling, meter cutouts and machine engraving on small parts. Careful attention to single panels and special work. Write for price-list. A. L. Woody, 19 S. Wells Street, Chicago.

PERSONAL

LONELY HEARTS: Exchange letters: meke interesting new friends in our joily slub. Perticulars free. Eva Moore, Box 608. Jacksonville, Fiorida.

RADIO

EXTRA HEAVY Antenna wire 7 No. 18 \$1.50 100 feet. 17 No. 22 braided 3/8" wide \$2.00 100 feet all pre-pald. George Schulz, Calumet, Michigan.

MR. H. SADZECK. 1655 Addison St.. Chicago, III.. writes us as follows: "I bought one of your Redio Trouble-Shooters. Just the thing I have been looking for. Dendy. Please send me catalog er literature of other parts you carry. Tbanking you for this favor, I am (Signed) H. Sadzeck." It will pay you to Investigate at Universal Test Equipment Co., 2939 N. Oakley Ave., Chicago, III.

Radio Books—Construction of a modern Super Heterodyne Type Receiver Including Testing and Operation \$1.00; Henley's 222 Radio Circuit Designs, 267 pages, \$1.00; The ABO of Vecuum Tubes used in Redio Reception 132 pages, 75 cents; Henley's Workable Radde Receivere 198 pages \$1.00; Experimental Wireless Stetions 392 peges \$2.00; Wireless Telegraphy and Telephony Simply Explained 154 pages \$1.00. Sent prepaid on receipt of price. Send dime for our 48 page catalog of latest and best practicel, scientifie, mechanical and industrial books. Midlend Products Co., Dept. RA, 524 Courtland Ave., Park Ridge, Illinois.

SILICON Transformer Steel cut to order .014". 10 lbs. 25 cents. 5 lbe. 30 cents, less than 5 lbs. 35 cents per lb., 4 cuble inches to the lb. postage extra. At least ½ cash with order—balance C. D. D. Geo, Schulz, Calumet, Michigan.

PURE ALUMINUM and lead rectifier elements, beles drilled, with bress serous and nuts per pair 1-16", 1"x4", 18c, 1x6, 15c, 1/x5, 17c, 1/x5, 19c, single elements half price. Sheet aluminum 1-16", \$1.00, 1-8" \$1.90, Lead \$1.00 square foot all pregaid. Gee. Schutz, Calumet, Michigan.

CONDENSERS. 880 VOLT FILTER, .1 mfd 45c, .25 51c, .5 60c, 1. 75c, 2. \$1.20, 3. \$1.80, 4. \$2.40, 1500 VOLT FILTER, .1 51c, .25 60c, .5 75c, 1. \$1.05, 2. \$1.95, 3. \$2.70, 4. \$3.80. ELIMINATOR BLOCKS, 2. 2. and 8. \$5.76, 2. 2. 8 and 1 \$6.15, 2. 2. 8, 1 and \$8.60, .1 and .1 in series 90c. Many other capacities. Acmo transformers and chokes. THE RADIO CLUB, INC., La Ports, Ind.

IVDRY RADID PANEL beats them all. Write for FREE Sample. Ivoryllte Radio Panel Co., 3330 Ave. G Fort Worth, Texas.

Complete kit for S-M 7 tube Super including every part—Panel, dials, etc. Guarantee new and perfect. First \$41.50. P. E. Chapman, 841 Preston, Philadelphia, Pa.

AMAZING RADIO OFFER, 3 new S-M 7 tube Super Hets engraved panels—Sub-base completely wired. Beautiful folding loop FREE. The choice of experts—Coast to Coast on loop. Without cabinet \$52.50 each. Tho Radio Mospital, 84

Iron core chokes 20H-25 MA \$1.00. 30H-60MA \$2.25. 30H-85 MA \$2.75. 30H-125 MA \$5.75. 50H-85 MA \$2.75. 50H-125 MA \$5.75. Follower follower in the second power requirements. Radio Parts Sales Co., Orange, N. J.

10% off all standord radio apparatus laboratory tested radiotron UV 201A's at only \$1.70. Postage propold. Petato Radio Laboratories, Wauwatosa, Wisconsin.

METERS—CONDENSERS—"B" eliminator parts. Power transformers \$2.00 up. High grade chokes \$2.25 up. Write for lists of specials. We can quote prices on any material you require. Radio Parts Sales Co., Orange. N. J.

CHOKES 100.—50. or 30 Henry 125 M. A. \$5.75. 30H. 85 M. A. \$2.75. 420V and 6V transformers \$4.00. \$50V \$33.50. 280V—\$2.00. 5-1 Ratio Audio Transformers 10 for \$5.00. Write for Ilsts. Radio Parts Sales Co., Orange, New Jersey.

RUBBER STAMPS

RUBBER STAMPS and supplies. 20c per line. Cushlon Mounted. Catalog for stamp. Newman & Son, Auburn, Nebraska.

RUBBER STAMPS! Name, Address, two lines 25c. Three Lines 35c. C. Brush Company, Auburn, Nebraska.

SALESMEN WANTED

75 MILES ON I GALLON—New Moisture Gas Saver. All Cars. I Free. CRITCHLOW. A2-91, Wheaton, III.

STAMMERING

STAMMERING quickly and cheaply cured in your own home. Free book of facts with proof of cures. Write, Mohr, 34 Fernhill Avenue, Buffalo, New York.

TYPEWRITERS

TYPEWRITERS, all standard makes, \$10 up. Fully Guaranteed. Free Trial. Write for COMPLETE Illustrated lists. Northwestern Typewriter Exchange, 121 N Francisco Ave.. Chicago.

WANTED TO BUY

Full value paid for old GOLD Jewelry, eliver or platinum. Packages returned if our offer not satisfactory. Elaine Specialty Company, 3330 Ave. G. Fort Worth, Texas.

Radio Age Classified Ads Bring Results

ou're there Crosley

These approved cabinets have been selected by Powel Crusley, Jr., as ideal consoles, acoustically and mechanically, for the institution of the Crosley "BANDBOX." Genuine Musicones built in. Crosley dealers secure them from their jobbers through

Necure them from their 1905.
through H. T. FOBERTS CO., 914 S. Michigan Ave., Chicago, III.
Sales Agents for Approved Console Factories: SHOWERS BROTHERS COMPANY
THE WOLF MFG. INDUSTRIES

Improved

Musicones

A tremendous Crosley radio achievement for 1927-28

Recent court decisions which clarified the radio patent situation have paved the way for still greater Crosley triumphs,

Now—completely available to Cros-ley—and amplifying Crosley suprem-acy in fullest measure, are the enor-mous resources, great discoveries and ideas embodied in patents of

1deas embodied in patents of
1—The Crosley Radio Corporation.
2—The Radio Corp. of America.
3—The Westinghouse Co.
4—The General Electric Co.
5—The American Telephone & Telegraph Co.
6—The Hazeltine Corporation.
7—The Latour Corporation.
under which Crosley is now licensed to manufacture.
Here are the seven big things which

eensed to manufacture.

Here are the seven big things which represent radio's greatest advancement, brought together by Crosley and combined with the experience, mass production method and leadership of the Crosley organization. No wonder a waiting radio world pronounces the "Bandbox" at the unprecedented price of \$55, Crosley's paramount achievement.

The Bandbox is Shielded

Radio coils are surrounded by magnetic fields similar in every respect to the magnetic field around the earth that moves the needle of a compass but around radio coils these fields make nuisances of themselves by feeding back on each other. Heretofore it has been customary to make inefficient coils with inefficient fields to prevent such feeding back. The Crosley Bandbox incorporates copper shields around each coil to prevent such feeding back. The coils consequently can be made and are very much more efficient. The amplification of the receiver is, therefore, much higher—the sensitivity is greatly increased. Condensers are also completely shielded from each other in separate metal compartments. Hitherto, only high priced sets have enjoyed this super radio advantage.

There is No Oscillation

The Bandbox employs completely balanced or neutralized radio frequency stages to prevent oscillation, instead of the common form of losser method. More costly, to be sure, but extremely necessary in achieving such results as are obtained by this marvel of radio reception. reception.

For Sharpness—The Acuminators

"Bandbox" acuminators enable "fishers" for distant stations to bring them in loud and clear. As powerful telescopes magnify distant scenes, acuminators increase the volume of far-away signals so they seem like local programs.

Volume Control

This is another big "Bandbox" feature which permits full brass band power for those who want their dance notes strong and loud. For others, it cuts volume down to a soft and gentle murmur, without distortion.

shadowy corners. A single knob permits full tuning for ordinary reception of local, nearby and super-powered stations.

Installation Simplified

A woven cable, containing vari-colored rubber covered leads makes installation and hook-up easy for the veriest novice. No waiting for the radio service man, should the batteries be changed.

Easily Adapted to Consoles

Simply remove serews in escutcheon and in base of set. Lift off metal case. Chassis now stands ready for installation in console eabinet. Opening in console eabinet permits control shafts to protrude. Escutcheon screws in place and—Presto! the console radio is complete.

For A C Operation

strong and loud. For others, it cuts volume down to a soft and gentle murmur, without distortion.

Illuminated Dial

A Master Station Selector has an illuminated dial for easy reading in strong and loud. For others, it cuts a special Bandbox is available at \$65, wired specially for use with the Crosley Power Converter at \$60. This special Bandbox utilizes the new R.C.A. AC tubes which have made the operation of radio receivers direct from house current so simple, efficient and de-

pendable. The first three tubes employed in the AC model are UX 226. These go into the radio frequency sockets. The detector tube is UY 227, with indirectly heated emitter. Another UX 226 is used in the first audio stage. Raw A C current heats the filament of all UX 226 tubes. Power tube UX 171 is in the last audio socket. This makes the "dog houses" runble sonorously and the bass drums deeply boom.

Although Musicones improve the reception of any radio set, they are perfect affinities in finish, beauty and reproductive effectiveness for Crosley Radios. A new model huit in the form of a Colonial Tilt-Table with brown mahustany finish, stands 3 feet high. Price \$27.50.

16-Inch Super Musicone
(As pictured with Bandhox) \$12.75

12-Inch Ultra Musicone
\$9.76

The Power Converter

The power converter which smooths the alternating current is a marvel of engineering ingenuity. Only half the size of an ordinary "A" storage battery, it supplies the required A, B and C eurrents, without hum. Finished in brown frosted crystalline. There are models for 25 and 60 cycle eurrent. A snap switch shuts down the set and power coverter completely.

Price of Power Converter-\$60

You owe it to yourself to see the "Bandbox" and listen to its remarkable performance. If you cannot easily locate the nearest Crosley dealer, his name and address will be supplied on request. Write Dept. 63.

Crosley recommends the use of five power tube, or Cunningham equivalents prices, with each Bandhox. While Radio-a superior performance for 135-volt

201-A Radiotrons and one UX171
which are furnished at standard tube
tron UX-171 is 180-volt tube, it gives
"B" batteries.

THE CROSLEY RADIO CORPORATION

Powel Crosley, Jr., Prcs., Cincinnati, O. Prices slightly higher west of the Rocky Mountains.