

2 out of 3 RADIO VIBRATORS are MALLORY made

MALLORY is recognized as STANDARD

Vibrators made by Mallory are *standard equipment* in America's most popular automobile radio receivers and in 6 volt and 32 volt household receivers.

The use of Mallory Replacement Vibrators is standard practise on the part of radio service men the country over.

A mere handful of Mallory Replacement Vibrators render universal service to over 3,000,000 automobile radio sets now in use.

Mallory Replacement Vibrators save time — save inventory reduce stock investments. They are dependable in service. They provide more efficient performance and are easy to install. They build good will and good business!

Be sure your vibrator replacement work is done with Mallory. It pays — in profits, as well as in customer satisfaction — as thousands of service men can tell you.

This composite graph shows the trend of service demand for the three principal replacement items in daily service work. Check your needs with the demand — and depend on Mallory for constant progress.

P. R. MALLORY & CO., Inc. INDIANAPOLIS INDIANA Cable Address-PELMALLO

Proof-every day that when you own a SCOTT you have at your command the finest performance in the world—regardless of price! Tested by celebrated musi-cians and opera stars! Tested in almost every country in the world! And NOW—tested in one of the country's leading radio stations*—the SCOTT is again chosen as the peer of all receivers. WHY? Ask yourself this vital question when considering your new radio receiver! WHY did SCOTT tone have the most magnificent realism of all the one hundred and fifty receivers?

There under the impartial scrutiny of those engineers in the most gruelling comparison test yet de-vised, the SCOTT alone—of all receivers tested— captured all the marvelous beauty of the overtones which were broadcast—all the overtones audible to the human car the human ear.

HEAR ALL THE PROGRAM!

When your receiver misses the overtones you miss half the beauty of the program—all instruments tend to sound alike. Science shows that *fundamental* notes from voice, violin, trombone, oboe, etc., are all iden-tical—it's the *overtones alone*, or secondary tones, which enable you to tell one in-strument from another.

strument from another. Put your finger up to one ear. Shut off the sound. What you hear doesn't sound complete—you say "there's something missing." Look through a screen. Hold a sieve up to the light. Everything beyond is just the same—but colors are not so pleasing, faces are dimmer. It is the same with your radio. Every day you turn it on for entertainment—for local programs, programs a thousand miles away, pro-grams from Europe, Asia, South America! These programs are for you! The stations have been designed for you! Get the full beauty they have to offer you! More and more sta-tions are raising the fidelity of their broadcasts—and more and more are going "High Fidelity"—broad-casting lhe music as il is being played and as il was meant to be heard—with all the ephemeral and power-ful expression that was written into it—with all the enthralling 16,000 cycle overtone range, wherein lies *Name of station upon request.

630 5th Avenue, New York

*Name of station upon request.

High Fidelity Station tests them all!-

Chooses the SCOTT Chooses the SCOTT for Iwest Jone Beauty!

3 True Speakers Each amplifying its full portion of the complete tone and

akers in the most sublime beauty of all music. The SCOTT 16,000 cycle overtone range now offers you and your family the full enjoyment of popular music with all its original sparkle—offers you the world's really great music with all the inspirational beauty the composer himself meant for you to hear. The SCOTT does not overload one speaker with this full tonal range. In addition to the bass and medium tone speaker (using the sensational bass reinforcing filter) the SCOTT offers two special true loudspeakers for the higher tones (these additional speakers re-ceive direct electrical impulses through the regular circuit). Be sure that any extra "loud-speakers" in the set you are considering are not merely "resonators" screwed to the soundthe most sublime beauty of all music.

115 N. Robertson, Los Angeles

www.americanradiohistory.com

ALL THE MAGIC OF DISTANT LANDS

FULL 16,000 CYCLE HI-FIDELITY RANGE OF SCOTT

board and "vibrating" with regular tones received by the single real speaker.

Average speakers with less than 10 watts power "go to pieces", "rattle" or distort the tone when the full volume of concert music is played through them. With SCOTT 35 Watt Power you may listen to the full glory of symphonic or popular music without any distortion to the ear.

With its Highest Signal-to-Noise Ratio, its re-markable Continuously Variable Selectivity, with its exclusive Rotary Coil System and many other ex-clusive features, the SCOTT has made probably more verified world distance records than any other re-ceiver in the world.

HEAR ALL THE STORY!

HEAK ALL THE SIOKT: This is only a fraction of the magnificent story of the SCOTT. You can own a SCOTT for no more than you would pay for an ordinary good radio. A side by side comparison test is invited. Try it in your own home for 30 days. If you are not then completely satisfied that its tone is more beau-tifully clear, that its realism is more strikingly life-like than any other receiver, then return it—and there will be no obligation of any kind. Send — TODAY — for complete details of this extraordinary story, every word backed by page upon page of printed PROOF—PROOF of definite, vital superiorities—PROOF of unparalleled tone and distance performance in every quarter of the world—in every state in the Union! Send NOW for full facts!

FREE-SEND TODAY FOR DETAILS

E. H. Scott Radio Laboratories, Inc. 4440 Ravenswood Ave., Dept. 5M6, Chicago I'd like to know more about the new 23-tube SCOTT. Please send me full proofs, and illus-trated booklet above.

Name	•••
Street	
City	

overtone range.

E. H. SCOTT RADIO LABORATORIES, INC. 4440 Ravenswood Avenue, Dept. 5M6, Chicago, Illinois

1

Vol. XVIII July, 1936

Edited by LAURENCE MARSHAM COCKADAY

S. GORDON TAYLOR Managing Editor WILLIAM C. DORF Associate Editor

JOHN M. BORST Technical Editor JOHN H. POTTS Assoc. Tech. Editor

Joseph F. Odenbach Art Editor

No. 1

Reading Guide to this Issue-AMATEURS-1, 4, 5, 6, 7, 8, 11, 13, 14, 15, 16, 17, 18, 19, 21, 22, 24, 25, 31 BROADCAST FANS-1, 3, 4, 7, 12, 15, 19, 23 DEALERS-1, 2, 3, 4, 5, 6, 7, 9, 10, EALERS-1, 2, 3, 4, 5, 6, 7, 9, 10, 12, 15, 19, 21, 22, 23, 28, 29, 30, 31 DESIGNERS-1, 5, 6, 8, 10, 11, 15, 16, 17, 31 DX FANS-1, 4, 7, 15, 19, 21, 22, 23, 26, 27 ENGINEERS-1, 5, 6, 8, 10, 14, 15, 31 EXPERIMENTERS-1, 4, 5, 6, 7, 8, 10, 11, 12, 23, 25, 31 MANUFACTURERS-1, 3, 7 OPERATORS-1, 7, 14, 31 SERVICEMEN-1, 2, 4. 5, 6, 7, 8, 9, 10, 11, 12, 15, 21, 22, 25, 28, 29, 30, 31 SET BUILDERS-1, 4, 5, 6, 7, 8, 10, 11, 24, 25, 31 11, 24, 20, 31
SHORT-WAVE FANS—1, 4, 7, 13, 15, 19, 20, 21, 22, 23, 32
STUDENTS—1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 21, 22, 23, 25, 28, 29, 30, 31, 33 TECHNICIANS—1, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 25, 31 Coming

Next Month

A new oscillator-frequency meter which will be extremely useful to DX'ers, short-wave listeners and amateurs. It is so stable that, beating against WJZ's carrier from a cold start, it maintained frequency constant within 400 cycles in a one-hour test. Servicemen will find a constructional article on another RADIO NEWS development—a simple and inexpensive beatfrequency oscillator having a dependable range from 0 to far above 10,000 cycles which is expected to be ready for the August issue. For beginners there will be a combination powersupply, audio-amplifier unit to be used with any tuner, including those to be described in the Beginners Series in subsequent issues.

> B. Holcepl Secretary

H. D. Crippen W. P. Jeffery Advertising Management Virgil Malcher 205 W. Wacker Dr., Chicago

Western Representative

1	RADIO NEWS Index (January-June, 1936, inclusive)	4
2	Serviceman's Diary	5
3	Radio and Your Vote	7
4	What's New in RadioWilliam C. Dorf	9
5	What You Want to Know About Tubes	10
6	Complete Tube Chart	11
7	A Year of Metal Tubes	16
8	Data on the 6L6 TubeJ. von Lienden	17
9	Profits in Group Hearing AidsRichard Feeney	17
10	Effective, Inexpensive Audio Oscillator	18
11	New Tuning Indicator Tube	18
12	Seeing's Believing!	19
13	The "Ham" Shack (Receiving Antennas)Amateur Editor	20
14	Inexpensive Field Strength MeterJohn H. Potts	21
15	New 16-Tube SuperhetS. Gordon Taylor	22
16	5-Meter M.O.P.A. Transmitter	23
17	Crystal Control on "Five"	24
18	The "CQ'er" (I.C.W.—Mike Unit) B_y W2JCR	24
19	Testing a 5-600 Meter Super Everett M. Walker	25
20	The DX Corner for Short WavesLaurence M. Cockaday	26
21	World Short-Wave Time-Table	2 8
22	World Short-Wave Station List The Technical Editor	31
23	The Radio Beginner (Part 3)John M. Borst	34
24	Unique High-Hat TransmitterVictor Hall	35
25	The Radio Workshop	36
26	The DX Corner for the Broadcast BandBroadcast DX Editor	37
27	Australian DX InformationAubrey R. Jurd	38
28	The Service BenchZeh Bouck	40
29	Servicemen's Prize Contest	42
30	Election Profits for ServicemenThe Service Editor	44
31	The Technical ReviewRobert Hertzberg	46
32	Captain Hall's Short-Wave Page	50
33	Students' Radio Physics CourseAlfred A. Ghirardi	52

Published Monthly by Teck Publications, Inc., Washington and South Avenues, Dunellen, N. J. Lee Ellmaker President and Treas. EDITORIAL AND EXECUTIVE OFFICES 461 EIGHTH AVENUE, NEW YORK CITY, N. Y. Entered a computer of the Part Office of Duraller 25c. a copy.

461 EIGHTH AVENUE, NEW YORK CITY, N. Y. Entered as second class matter at the Post Office at Dunellen, N. J., under the act of March 3, 1879. Copyright, 1936, by Teck Publications. Inc. in U. S. and Canada. All rights reserved. Registration of title of this publication as a trade mark applied for in United States Patent Office. Printed in the United States of America. The contents of this magazine must not be reproduced without permission. We cannot be responsible for lost manuscripts, although every care is taken for their safety. 25c a copy. Subscriptions: \$2.50 a year, \$4.00 for two years. In Canada and Foreign Countries \$3.00 a year, \$5.00 for two years. Subscribers are notified that change of address must reach us five weeks in advance of the next date of issue.

www.americanradiohistory.com

From Set Manufacturers to the Homes of America ...

AS TIME MARCHES ON – Raytheon's momentum increases and it will be further accelerated by Raytheon's new line of "G" tubes.* Thousands of new sets will be equipped with Raytheon "G" tubes, paving the way for more Raytheon replacement sales.

Leading set manufacturers prefer Raytheon quality and performance, Raytheon's painstaking attention to details, Raytheon's research and production

engineers. That's why Raytheon is the fastest growing tube producer today.

Raytheon dealers and servicemen are capitalizing this

555 Howard Street . San Francisco, Cal. 415 Peachtree St. N. E. . . Atlanta, Ga.

PRODUCTION CORPORATION

established, ever growing replacement market.

A COMPLETE LINE-"G" types, standard glass and

Genuine All-Metal types. New technical information

now available. Write for it.

420 Lexington Ave.New York City55 Chapel St.Newton, Mass.445 Lake Shore Drive.Chicago, III.

RAYTHEON

* Glass tubes with octal base. 6A8G base illustrated.

www.americanradiohistory.com

RADIO NEWS INDEX

VOLUME XVII, NUMBER 7 January, 1936 PAGE

	Serviceman's Diary (Part 3)	388
	Octal Socket Standardization	388
	Radio Warfare of the Future	391
	Wired Radio	394
	Receiver Spans 5 Continents (Silver Masterpiece IV)	395
	De Luxe "Ham" Transmitter	396
	Doing Your Own Metal Work	397
	Metal Tube Duo-Diode-Trioed (6Q7)	399
	Constructing the BRL-8 "Ham" Super	400
	New 5-Band Metal-Tube Receiver (Crosley "Constitution")	402
	High-Fidelity Metal Tube Amplifier	403
	Business Building Service Letters	404
	A Mimeograph for Servicemen.	405
~	Refining the "Ocean Hopper" (Part 3)	411
	The P.C.A. "Observer" (Part 2)	412
	B.F. Oscillator Aids DX	413
	Service Contest Awards	428
	Students' Radio Physics Course (Ohm's Law for A.C.)	430

VOLUME XVII, NUMBER 8 February, 1936

Serviceman's Diary (Part 4) 4	52
Radio on the Stratoflight 4	55
Radio Makes Flying Safe 4	57
Armstrong's New Transmission System	58
Forecasts for 1936 by Leaders of the Industry 44	60
Selling Service (Part 2) 44	64
Metal Cores for R.F. Coils 44	65
Public Address Equipment 40	66
RADIO NEWS 20-Watt Amplifier 40	68
New Metal Tube (OZ4) 44	69
Impedance Matching Calculations (Part 5)	70
The BRL-8 "Ham" Super (Part 2) 42	71
5-Meter Oscillator 47	72
Broadcast Station List (U. S. by Frequency) 47	77
"Tuned" S. W. Antenna (Silver R9+ System) 47	79
Service Contest Awards 48	88
Students' Radio Physics Course (Cont'd Ohm's Law for A.C.) 49	90
Radio Workshop	02

VOLUME XVII, NUMBER 9 March, 1936

Serviceman's Diary (Part 5)	516
5-Meter Car Radio	519
How Radio Advances!	522
Armstrong's New Transmission System (Part 2)	524
An Easily-Installed Antenna Mast	527
The 5-Meter Range Beckons	528
Meter Switching for the "Ham"	529
The R. N. 20-Watt Amplifier (Part 2)	530
Radio Workshop	532
Servicemen's Output Meters	533
Crystal Service Oscillator	535
Eliminating Traffic Signal Noise	536
3 New Metal Tubes (25A6, 25Z6, 6X5)	537
Impedance Matching Calculations (Part 6)	538
Circuit Analysis of a 24-Tube Super (Midwest Royale)	539
B. B. Station List (N. American except U. S.)	543
Service Contest Awards	552
Students' Radio Physics Course (True Power)	554
Super-Sensitive V.T. Voltmeter (Part 4)	570

		an
VOLUME XVII, NUMBER 10	April, 1936 PA	GE
Serviceman's Diary (Part 6)		579
Editorial (A Growing Threat to the Freedom of	the Air)	580
How to Build an All Wave Preselector		586
Radio 600 Feet Underground.		588
Seeing in the Dark (New Electron Image Tube)		589
Selling Service (Part 3)		590
Servicemen's Output Meters (Part 2)	•••••••••••••••••	592
P. A. Profits in a Low-Cost Sound System		593
Solutions of Transmission Problems (Part 1)	••••••	594
Making Your Own Relays	· · · · · · · · · · · · · · · · · · ·	595
The 5-Meter Range Beckons (Part 2, Symposium of	on 5-Meter Equip.).	598
S-Meter Car Radio (Part 2)	• • • • • • • • • • • • • • • • • • • •	600
Test Report on a 24-Tube Super (Midwest Pound	··· · ····	601
Servicemen's Contest Awards	•) ••••••••••••••••	616
Students' Radio Physics Course (Resonance)		620
The Radio Workshop	· · · · · · · · · · · · · · · · · · ·	628
VOLUME XVII, NUMBER 11	Mav, 1936	
Serviceman's Diary (Part 7)	·····	644
That "Corner" in Television	• • • • • • • • • • • • • • • • • • • •	645
"Hello, Shreeve" (First Transoceanic Radio Tele	ephone)	647
Taking the Noise Out of Radio		650
All-Wave Signal Generator	· · · · · · · · · · · · · · · · · · ·	651
Solutions of Transmission Problems (Part 2)	· · · · · · · · · · · · · · · · · · ·	652
23-Tube Superhet (Scott All-Wave)	••••••	653
Radio Flagship of the Air	• • • • • • • • • • • • • • • • • • • •	654
The Padie Perinner (Part 1 Simple Diale on Co	· · · · · · · · · · · · · · · · · · ·	655
Unsing Viero Wayes	ystal Set)	656
The Radio Workshop		650
Black Light for Sound Recording.		659
21/2-555 Meter Receiver (Haynes R-S-R Receiver))	660
Radio News A.C. Pre-amplifier		662
Volume Expander	••••••••••••••••	663
The "Ham" Shack		6 64
New Transmitter Kit (All-Star X-mitter)	• • • • • • • • • • • • • • • • • • • •	665
The 5-Meter Range Beckons (Part 3)		666
A Real Oltra-High-Frequency Superhet	· · · • • • • • • • • • • • • • • • • •	668
Servicemen's Prize Contest	••••••••••••••••••••••	669 280
Radio Physics Course (Cont'd Resonance)	· · · · · · · · · · · · · · · · · · ·	682
-		002
VOLUME XVII, NUMBER 12	June, 1936	
Serviceman's Diary (Part 8)	• • • • • • • • • • • • • • • • • • • •	707
DX Hints for the Beginner	••••••	709
New Receivers and Equipment	• • • • • • • • • • • • • • • • • • • •	711
"Radio Nations" S.W. Stations	· · · · · · · · · · · · · · · · · · ·	712
Testing a 23-Tube Superhet (Scott All-Wave)	•••••••	713
Wavelength-Frequency Conversion Chart	· · · · · · · · · · · · · · · · · · ·	719
S.W. Station Slogans and Addresses	· · · · · · · · · · · · · · · · · · ·	720
World Short-Wave Station List (Arranged by Fre	·····	721
New Amateur Transmitter (United TFR 50-W X	"mitter)	723
5-540 Meter "Ham" Superhet (RCA Mod. ACR.	175)	121
5-Meter X'mitter-Receiver	····	720
A New Idea in Sound Systems		731
Selling Service (Part 4)	•••••••••••••••••	732
New vinration rick-Op	· · · · · · · · · · · · · · · · · · ·	733
The Radio Beginner (Part 2, Triode V.T. Receiv	ver)	734
The Radio Workshop		738
Stunt Aviation Directed by Radio	· ····	739
Students' Radio Physics Course (Cont'd Recons	unce)	746 74×
,		/ TU

Pages From A

Serviceman's DIARY

ATURDAY-Always our busiest day. Started off with a call up the hill. Note on service slip—"Check homerecording-bring extra blanks." Was ushered in to the sun porch, where a large RCA combination stood. Checked over the tubes, switched to home-recording position and held the microphone near the speaker. Plenty of pep, as shown by the acoustic feed-back. Put a stroboscope disc on the turntable—O.K. for both 78 and $33\frac{1}{3}$ r.p.m. except for slight "wow" on $33\frac{1}{3}$. Oiled leather pad on spindle under the turntable. Now normal. In stepped a young fellow dressed in a fashion-plate array and holding a thick manuscript. "I hope you have brought plenty of recording discs, I want to record my play", spoken with a smoothly-operating Harvard accent. Went out to the truck and brought him a dozen large-size blanks. Told him we could supply lots more when, as and if required. Showed him how to operate the apparatus, the proper method of talking across the mike and cautioned him to maintain a reasonably constant voice level. Stood by as he proceeded to swing into action, taking all parts. Expected the worst and got it! He gradually worked up steam until the room resounded with his shouting and shrieking. Meanwhile I kept motioning him to calm down, but no go. The mike regarded the whole discourse with stolid indifference, which seemed to arouse his anger. I finally decided to break in, shutting off the set and suggesting that we play back the recording so he could modify his delivery for better results. He simmered down a little when he found his best efforts were too violent and suggested that I stay around while some more recordings were made. Told me "O. K. by me", at the reg-ular service rate of three dollars for the first hour and two dollars per hour there-after. (Sold him two hours' time—some

people are born that way). Next—Moved on to a Capehart job, ar-riving a little late and busting in on a hen party. Chassis located on the right side of the phono compartment. Removed the partition and replaced a defective 55. O.K.! Was asked to run upstairs and check a set on the second floor. All doors closed so I knocked before entering. Was told to come in but the inmate let out a yell when I opened the door. She was dressing and apparently expected one of the women. Tried the next door, calling out, "Radio!" as a precautionary measure and walked in on a fortune teller who had been engaged for the party. Recognized her as the wife of the Armenian rug man, who carried on this little racket as a side-line. She offered to read my hand, but I thought it better not to overwork the lady's imagination. Replaced the antenna lead-in strip, removed the chassis, cleaned the volume control and tightened the socket contacts of the Radiola 17 there. Put in a new set of tubes and went out to lunch.

Stopped off to instruct a customer on the operation of his new Stromberg. Started off with WABC, then a whiff of WEAF and a shot of WOR. Switched over to short-wave and brought in London.

THE MIKE REGARDED HIM WITH STOLID INDIFFERENCE Our serviceman helps a budding young playwright to record his play but some records were spoiled until the speaker who took all parts calmed down and learned the proper microphone technique

Paris and a few German stations. All O.K. —well satisfied.

Ran over to the yacht club to complete the p.a. installation. Hooked a couple of crystal mikes in series and connected to the pre-amplifier input terminals. Also brought leads from a Packard record-changer to the main amplifier. With the speakers outside, naturally there was no trouble from acoustic feedback.

Next—An Echophone midget — Complaint, no reception below 700 kc (in frequency). A real problem—this set uses a 24 as dynatron oscillator, which still tested fair but was not functioning at the low frequency end of the range. Tried three different 24A's, but none would operate right as a dynatron. Decided the oscillator circuit would have to be redesigned, since the old 24's are now extinct. A mean job —but they like the set and are willing to pay for the work.

by for the work. Went over to one of my old customers, who has a couple of General Electric sets. This poor old lady lives all alone in one of the most beautiful homes in town and is always complaining about besiness conditions which have reduced her to such a poverty-stricken state that she is compelled to worry along with but four servants. Her radio troubles are usually triffing. She is very exacting, but pays spot cash and is a

THESE records from an anonymous serviceman's diary should be of decided interest to veteran servicemen, as well as to those whose experience in the service field is more limited. Written by a man who "knows his stuff," and shot with an occasional outcropping of humor, these items provide many hints not found in text books. More of these pages will appear from time to time.

www.americanradiohistorv.com

good booster, so we class her as a good customer. Her complaint this time was intermittent noise. As usual, everything functioned normally when I arrived. Looked over the installation. Ground and antenna O.K. Tapped the tubes. O.K. for noise. Checked power connections. Receptacle badly worn but could not prove it to be a cause of trouble. Tightened all connections on plug and receptacle. Switched on all lights. Noise started immediately. Checked all light bulbs and bridge lamps. O. K. Located the fuse box-an elaborate switchboard with cartridge fuses and noticed a tiny arc at one of the fuse clips. Pushed the fuse for better contact. Arc stopped-likewise the noise. Switched off the power and went over the entire layout, finding several carbonized clips and loose screws. Put everything in ship-shape order, pointing out the troubles to the owner, and made arrangements to have our electrician replace some of the old outlets throughout the house.

Servicemen Becoming Business Minded

By Leon L. Adelman

As time goes on it becomes more clearly apparent that the radio servicemen, as a class, are becoming more business-minded. In this important respect, they are realizing the difference between knowing their job and just make-shifting their way through. It is natural therefore, that successful servicemen are weli-informed, are thoroughly equipped—mentally and instrumentally—to meet the varied everyday demands made upon them. And it is most gratifying to actually feel the upward trend towards betterment by watching the increased yearly sales of standard parts.

I believe—after seventeen years of association with the radio industry—that service work is still in its embryonic development stages: that the next few years will bring forth most remarkable service equipment, and more important, better trained and more capable men to handle it.

Leadership gives birth to Responsibility

In pioneering the dry electrolytic condenser, Mallory assumed a definite responsibility in the application and servicing of condensers in radio sets. And Mallory has not stopped with the production of a magnificent replacement condenser line, but has carried the principle of universal application to its logical climax by publishing the Mallory Condenser Service and Replacement Manual.

In developing the Mallory Vibrator, Mallory engineering in a few short years brought about really effective all-electric automobile radio reception. But Mallory engineering did not stop with the Mallory Replacement Vibrator line. Mallory has made effective servicing of auto radio sets a practical reality through the appearance of the Mallory Auto Radio Service and Replacement Manual.

In introducing constant improvements in Replacement Volume Controls, Yaxley engineering has brought about undreamed of precision in universal applications for set servicing. And leadership again asserted its sense of responsibility to servicing in compiling the Yaxley Replacement Manual and Service Guide to team with Yaxley Replacement Volume Controls and related parts.

In discharging its responsibility to servicing, Mallory demonstrates its leadership in a most practical way. The man who employs the Mallory-Yaxley Manuals in the universal application of Mallory-Yaxley Replacement Products procures for himself the most effective tools ever devised for an ever widening scope of profitable servicing.

July, 1936

ADIO

YOUR VOTE

Radio's quadrennial political circus is now under way. From the start of the June conventions to November's Election Day, broadcast schedules will be as uncertain as a European peace treaty. Aspirants to the White House and their potential star boarders will take to the air to tell their story in whatever way they think most convincing to American voters. Don't miss them.

HE experience of previous Presidential campaigns particularly 1932 and 1928

—has convinced the major parties that Radio's microphone is a mighty weapon. It has replaced, in importance, the old junkets through the nation by the respective candidates; soap-box oratory, torch-light processions, hand shaking and yes, even baby kissing! Some of these archaic methods are still used to supplement the radio efforts, but they are perfunctory gestures. When a candidate makes a talk in Dubuque, it is actually aimed at

every fireside in the U. S. A., the aspirant's presence in Dubuque merely having a supposed added psychological effect on the local voters who are figurative props and backdrops for the show being placed on the national networks.

Modern Campaigning

Politicians have learned a lot about the importance of radio technique. They know that a candidate with a good voice and "microphone personality" is a vote-getting asset. If some of the party moguls had their way about it, they might even hold auditions to pick their "talent" in the same manner as the Delight Liver Pills Company picks its romantic tenor.

By Merle Cummings

The "auditions" for political candidates get under way in June when on the ninth, the Republi-

cans will gather at the Cleveland Municipal Auditorium to name their Presidential and Vice-Presidential candidates and, on the twenty-third in Philadelphia when the local Convention Hall will resound with the din of the Democrats going through the business of nominee hunting.

Under the head of "public service," the American Radio networks plan to cancel various commercial features at the occasion of the political parties' ma-

POLITICAL RALLIES IN THE TOWN HALL Many such meetings will be held throughout the United States during the next four months and many of them will be broadcast to the nation through the various networks

7

jor campaign addresses by both candidates and supporters. Political talks must be paid for just as any other sponsored periods, but in these solidlybooked radio days, the networks must give a rebate to the manufacturer whose feature is shoved aside for the cheering and jeering of a political broadcaster.

Convention Plans

Major outlets for the convention broadcasts are the National Broadcasting Company, the Columbia Broadcasting System and the Mutual Broadcasting System—the latter now laying full claim to being the nation's "third network."

Plans for the conven-

THESE FAMOUS COMMENTATORS WILL BROADCAST POLITICAL DEVELOPMENTS Listeners in the United States may expect to hear snappy items of political news through he medium of these commeniators and chain broadcasting. Very little of political significance will escape their keen minds and they will keep potential voters advised of the doings and sayings of campaigners for government office. Left to right they are: Boake Carter, William Hard, Edwin C. Hill, Gabriel Heatter and Lowell Thomas

tion broadcasting were made early in the spring. The Republican broadcasting committee laid down rigid rules for the broadcasters to prevent any socalled circus stunts that predominated at the 1932 conventions. This, in a way, is being fussy, seeing that the networks are giving all convention broadcasting time free of all charges, due to the policy of not accepting political periods on a commercial basis until the candidates are chosen.

According to information obtained by the writer at the time of going to press, the convention broadcasting rules call for the use of a single community microphone. This will serve the three chains, the building public-address system and the sound newsreels. Such a device will tend to eliminate the banner bedecked broadcasting booths and giant call letter plates used at previous conventions. The worst fear of such an arrangement, if it does go into effect, is that it will curtail individual scoops on the enterprise of the respective broadcasters. To offset the difficulties, the

SCANS THE NEWS FROM WASHINGTON

Frederick William Wile, veteran commentator of many campaigns, scans the political situation at Washington for broadcasters

chains will establish private mikes at points outside the convention auditoriums where announcers, political writers and narrators will be engaged to stage surprise interviews and other stunts.

The Chain Set-ups

Alfred Morton, manager of the NBC program department, is in charge of his network's convention plans while his chief microphone assignments for the Philadelphia and Cleveland events are in the hands of Graham McNamee, veteran announcer, and William Hard, political writer. Lawrence W. Lowman, CBS vice-president in charge of operations and Paul W. White, director of public events, are handling the Columbia arrangements. The chief CBS announcing and commentating will be done by Robert Trout, Washington announcer, and H. V. Kaltenborn and Raymond Gram Swing, veteran newspapermen. Both NBC and CBS plan to call upon long lists of political experts and writers in attendance at the events.

Actually, political broadcasting got under way long before the conventions. Alfred E. Smith's Liberty League dinner address, President Roosevelt's Jackson Day speech and the countless radio talks of Senators, Representatives and certain others were definitely political long before the candidates were chosen. Many of the (*Turn to page* 10)

WHO'S AHEAD?

This will be a familiar scene in broadcasting offices during the conventions and on election night. Commentators and script writers will gather around the commercial radio and teletype services to pick the latest news from the air and fing it back to the listening public through broadcasting

New Tubes Announced

Among the recent new tubes are the 1F6, 5W4, 6N6 and 6N7. The 1F6 is a 2-volt duo-diode pentode; a battery operated tube similar to the 6B7. The 5W4 is a metal full-wave rectifier tube, with a maximum current rating of 110 ma. The 6N6

and the 6N6G are equivalents of the 6B5 and the 6N7 is the metal edition of the 6A6.

Something New in Auto Antennas

The Norwest "streamline" auto antenna is mounted on rubber vacuum-cup standoffs on top of the car roof. Aluminum tubing is used for the aerial and its high polish and style of mounting lends itself to the modern streamline design of automobiles. This type of installation does

Range of This New Receiver-9 to 2400 Meters

The addition of this new 14-tube allwave set by the Midwest Radio Corp. to their line of receivers should create wide interest among broadcast and short-wave listeners because of its many new developments and unusually wide tuning range. In addition to providing reception on the regular broadcast band, 200 to 550 meters, and a tuning range up to 2400 meters, it has continuous coverage on the short-wave lengths from 200 down to 9 meters, which takes in all the amateur bands and all the short-wave broadcast tuning ranges above 10 meters and of course the airlanes and police channels. The entire range is covered in 5 bands all completely calibrated

away with the difficulty of drilling holes and it is said that the natural shielding of the *steel* car top, the added height of the antenna as compared with the under-car style, and others factors afford increased pick-up and a lower ignition noise level.

Small Gas-Engine Generator Delivers 300 Watts

Weighing only 50 pounds, the new Katolite Jr. portable power plant, made by the Kato Engineering Co., furnishes 300 watts, 110-volt, 60-cycle a.c. power. It is easily installed and it is not necessary to bolt the plant down. The fuel tank is contained in the base and the fuel consumption is approximately 10 hours' service on one gallon of gasoline. It is especially suitable

www.americanradiohistory.con

in kilocycles and meters. A few of the outstanding features include silent visual tuning, pre-balance coil assembly and automatic aerial adaption. While the set is designed to use the metal type tubes, the new "G" glass tubes with octal base are equally applicable. The circuit employs 6K7's in the r.f. stage, the mixer stage and the two i.f. stages, a 6H6 as a combination detector and a.v.c. tube, a 6C5 in the first audio stage, a 6F6 for the driver stage and four 6F6's connected in a parallel push-pull power output stage. The type 6C5 tube is used for the oscillator and for the tunalite circuit and the 5Z3 is used for rectification. The set delivers 20 watts power output and the chassis measures 20 inches long by 12 inches wide by $3\frac{1}{2}$ inches high. It is offered in several attractive consoles.

9

for furnishing power for sound trucks, "ham" transmitters, small summer cottages, camps, trailers and numerous other applications which will suggest themselves.

Model MP-420 Mobile Sound System

The Webster Company announces a combination 6 volt d.c.—110 volt a.c. P.A. system. It is designed to cover out-door gatherings up to 5,000 people. The specifications follow: 20 watts power output, gain 115 db., and universal output connection arrangements. It is equipped with two 12-inch speakers, crystal microphone pick-up and phonograph turntable.

Tiny Bias Cell

The Mallory grid bias cell used for some time by manufacturers is now available to the experimenter and serviceman. Only 5/8inch in diameter by 11/32 inch deep it is a self-contained device of practically infinite life to furnish a one volt potential no current—as grid bias for the various (Turn to page 60)

What You Want to Know ABOUT TUBES

'N studying the vacuum tubes available today, two groups can be formed. The first includes tubes of the conventional glass type manufactured prior to the introduction of the metal tube in April, 1935. The second group includes all-metal tubes and several classes of glass tubes designed to be interchangeable with metal tubes.

Glass tubes designed to be inter-changeable with the all-metal types can be sub-divided into two general classifications. First of these is the "G" classification (or group in which the tubes are glass but are equipped with the octal base first introduced on metal tubes). These "G" tubes, except for the base, appear to be exactly like certain of the conventional glass tubes and indeed they are. For example, type 6K7G is a 78 with an octal base and type 6A8G is type 6A7 with an octal base. When fitted with a "glove" shield, these tubes are practically interchangeable with the all-metal 6K7 and 6A8 types. The second group includes the "metal-glass" tubes. These M.G. tubes are the conventional glass types which correspond in characteristics to the allmetal tubes but they are equipped with the octal-type base and are covered with a close-fitting sleeve cover of shield metal. In general they are designated with the same number used for the allmetal tubes followed by the suffix MG. In receivers of modern design, the MG tubes like those in the G classification can be substituted for all-metal tubes with small realignment adjustments. The smallest of the metal-glass tubes are the "Coronet" type. These, except for height, correspond to the regular MG tubes, although they are designated with the same type numbers which apply to the all-metal tubes. The application of type designations

Your Vote

(Continued from page 8)

vanguard Presidential programs were labelled as non-partisan, although the correct use of the term was frequently debated. There were many heated moments in the pre-convention days. Henry P. Fletcher, chairman of the Republican National Committee, minced no words in deploring the refusal of the NBC and CBS to allow his "Liberty at the Cross-roads" skit on the air. Freedom of the air immediately loomed as one of the arguments. One of the points that arose was how much time could be allotted to the President in his official capacity as against the time allotted him for strictly political broadcasts. The Fletcher pro-gram finally was placed on the Mutual chain, but it was not heard in the New York area, where WOR, Newark, serves as the MBS outlet. Freedom of the air and free speech loom as vital issues and, if the discussions continue, it is quite likely that the whole American system of radio will become a campaign issue. Many public figures have come forward with opinions on the subject. In scope the subject is a very broad one, politics representing a small part of the issue.

By The Staff

 T_{a}^{HE} time has long since passed when a serviceman, an amateur or an engineer could quote from memory the "basing" and all the "characteristics" of the available vacuum tubes. From a modest beginning, the number of types has increased to a total so great that not even the type designations can be memorized with assurance. The purpose of the consolidated tube chart (which follows) is to group together the essential data on each type so that information can be had in a minimum of time.

to vacuum tubes was a haphazard process until the Radio Manufacturers' Association set up a committee of engineers from the radio tube industry to handle the numbering of tubes and associated problems connected with the new types. From this committee came the present numbering system of: a numeral to in-dicate approximate filament or heater operating voltage; a letter to show the function of the tube, and a numeral to indicate the number of elements. Thus the 25Z5 tells by its first numeral group that the filament or heater operates at approximately 25 volts, by the letter Z that the tube is a rectifier and by the final numeral that the tube has five connected elements: two plates, two cathodes and one common heater. Reference to the chart will show that more than seventy-five tubes appear under the old numbering system of an arbi-trary numeral. No doubt there are many more tubes in this class which for some reason (usually poor adaptability to circuits) were dropped by the manufacturer who introduced them.

Among the special tubes listed in the chart are several of the "spray shield" type introduced by Majestic. The replacement tubes now furnished for them are no longer sprayed with metal in

One of the stormy political incidents centered about William S. Paley and the CBS when the president of the network allotted a broadcast period to Earl Browder, secretary of the Com-munist Party. Various editorial and Congres-sional objections to the talk were made. The Hearst newspapers launched an editorial tirade against Paley that did not abate even many weeks after the Browder talk. Bernarr Mac-fadden, of "Liberty," demanded the resignation of Paley.

Other publishers termed Paley's action as fair-minded. CBS also allotted a period to Rep-resentative Hamilton Fish, Jr., an outstanding foe of radicals, to answer the Communist Party talk, and he defended the CBS action in per-mitting the Browder program on the grounds that it proved the existence of free speech in the U. S. A. Certain CBS affiliates, particularly the New England group known as the Yankee Net-work, declined to carry the Browder talk. The radio talks of Father Coughlin over his large independently-grouped network also brought about stormy political moments. One congress-man, not exactly extolled by the Royal Oak priest, served notice on the stations conveying the Coughlin programs that he holds them respon-sible for any "further libelous remarks" about him made by Father Coughlin or any other persons.

persons.

A few persons of note in public and business circles have come forth with warnings and

most cases, but are fitted with a "glove shield" soldered at the joints.

The basing views shown with the tube chart are for the bottom of the tube base or the bottom of the socket. This arrangement provides the clearest picture of connections, since construction (or service) involves the bottom of the base in all cases. The pin numbering, looking at the bottom of the base or socket, runs clockwise. In the conven-tional base glass tubes, with the filament or heater pins toward the observer, the left-hand pin is number one. In the octal base tubes, looking at the bottom of the base, the first pin in a clockwise direction from the key is the No. 1 pin. While this explanation is unnecessary in reference to the base diagrams shown, it is useful in checking the basing of new types where the pin numbers and their corresponding internal connections may be published without a diagram.

The data given in the tube chart covers essential points of interest for each type. It should be noted that the plate supply voltage is indicated. In resistancecoupled amplifiers, the actual plate voltage will be considerably lower, due to the drop in the plate resistor. In adjusting bias to the proper value, this lower plate voltage should be taken into account.

The values of internal capacitance are useful in the design of radio-frequency circuits and in figuring shunt effect on high audio frequencies in high-gain, resistance-coupled amplifiers.

Filament voltages should be held within a few percent for the older thoriated, tungsten-filament tubes such as the 01A, V99 and X99. Oxide-coated filaments and the heaters for oxide-coated cathode tubes should be maintained within 10 percent of the rated values.

values. prescriptions of varied "codes of ethics" for political broadcasters. Such action is risky busi-ness in view of stepping on the sensitive toes of the "free speech" advocates. As a result despite the fact that political talks are accepted on the same basis as any other commercial pro-grams, the campaign speakers will be allowed, directly and indirectly, to throw verbal mud at opponents. However, each network forbids ordi-nary sponsors any mention, favorably or un-favorably, of a competitor. But the rule is apparently just ignored when the Presidential year rolls around. On the occasion of receiving an honorary de-gree at Rollins College last February, Owen D. Young, industrialist, criticized spokesmen of both political parties for "abusing" the privilege of free speech. He even included the President in his appeal for the "choice word and measured phrase," although he made no direct reference to his use of the radio. His direct "scoldings" were aimed at former President Hoover, Alfred E. Smith and Senator Robinson. Quoting from their recent broadcasts, Young added this com-ment: "Without questioning their right to freedom of speech, without inquiring as to the sincerity of their belief, one may well ask whether such statements are a wise exercise of the great powers and responsibilities of trus-teeship which these men hold." Concluding, Mr. Young said: "To these great men, and *(Turn to page 56)*

		(\mathbf{M}	Ы	ンヒ		EI	Ú	B	E		C	HA	K			
TYPE	DESCRIP	PTION	BASING	FIL	CAPAC	MICRO-F	ES ARADS	OPER	ATIN	G			NS	AND	СН	ARAC	TERIST	CS
NO.	TYPE	CATHODE	SEE SOCKET CONNECTION CHART	CURRENT AMPS.	GRID- PLATE	INPUT	Ουτρυτ	WHEN USED AS	PLATE SUPPLY VOLTS	SCR. GRID VOLTS	GRID BIAS VOLTS (NEG.)	PLATE CURRENT M A.	AMPL. FACTOR	RESIS. OHMS	MOT. COND. µMHOS	UNDIST.	DAD RESIS.	CUT-OFF BIAS VOLTS
			1.1	vo	LT	D.C.	DE	TECTOR	AN		MPL	.IFI	ER	тив	ES	•		
WD-11	TRIODE	FIL.	4 F SPEC.4 PIN	0.25	3.3	2.5	2.5	GRID LEAK DET.	<u>45</u> 90		+A 4.5	2.5	6.6	15500	425	0.007	15000	
WX-12	TRIODE	FU	MED.4 PIN	25				NON MICROPHONIC	135		10.5	3.0	8.2	15000	440 610	0.040	15000	
00+	TRIODE		SM.4 PIN	.25				AMPLIFIER	135	ĺ	9.0	3.5	8·5	12700	645	ĺ	15000	
			2.0	VO		D.C.	DET	ECTOR	AN	DA	MP	LIF	IER	TUE	BES			
15	PENTODE	HEATER	5F SM 5 PIN	.55				DET- OSC BIAS DETECT.	135	67.5	15	1.85	500	800000	750			
30	TRIODE	FIL.	SM.4 PIN	0.060	6.0	3.7	2.1	AMPLIFIER	135		9	3	9.3	10300	900	0.07	20000	
31	TRIODE	FIL.	4D SM.4PIN	0.130				AMPLIFIER	135		22.5	8	3.8	4100	925	0.185	7000	
72	TETONNE	Ell	4K	0.050	0.015	6.0	11.7	DETECTOR	180	67.5	6 3	1.7	610	.95MA	640		50000	9
52			MED.4 PIN	0.000	MAX.			AMPLIFIER	180	67.5	3	1.7	780	1.2 M-A	650	0.70	7000	9_
33	PENTODE	FIL	MED.5PIN	0.260				AMPLIFIER	135	135	13.5	14.5	70	50000	1450	0.30	7000	
34	CUT-OFF	FIL	4M MED.4 PIN	0.060	0.015	6.0	15.6	AMPLIFIER	135	67.5	3	2.8	360	0.6M-1-	600			27
49	DOUBLE	FII	5C	0.120				CLASS A	135	67.5	20	5.7	4.5	4000	620	0.17	11000	27
10	TRIODE		GC	0.260				CL.B(AVG.2TUBES)	180		0	4 70 30 10 70 35				3.0	90 <u>000</u> 10000	
104	TRIODE	FIL.	SM.GPIN 4K	0.200	0.007	A. C.		(BOTH SECTIONS)	135	675	3	47035	720	0.90MA	750	1.9	100 00	20
144	TEINUVE	116.	SH-4 PIN	0.080	MAX. 0.8	5	6	OSCILLATOR SECT.	135	07.5	- 00005 b	2.3	/20	0.2011-	- 30			~ ~
1A6	HEPTODE	FIL.	SM.GPIN	0.060	0.25	10.5	9	MIXER	(a)180 (b)180	67.5 45	1 8	1.3		0.5M~ 0.6M~	300 250	CONVERSION CONDUCTARCE	R _{c2} 0.02M [^]	22.5
1 <u>84</u> 951	TETRODE	FIL	4K 5M. 4 PIN	0.060	0.007 MAX.	4.6	11	IST DETECTOR	180 180	67.5 67.5	6 उ	1.7	780	1.0M-~-	650			9
<u>185</u> 255	DUPLEX Diode Trigde	FIL	GM SM-G PIN	0.060	3.6	2	3	TRIOPE ANPLI.	135		3	0.8	20.0	35000	575			
1C6	HEPTODE	FIL	GL	0.120	1.5	6	6	OSCILLATOR SECT	180	67.5	0.05MA	3.3		0.75 M-1	325	CONVERSION CONDUCTANCE	Rc 2 0.02MA	14
1F4	PENTODE	FIL.	5K	0.120				AMPLIFIER	135	135	4.5	8.0	340	0.2M-	1700	034	16000	
1F6	DUO DIODE PENTODE	FIL.	GT	. 060	.007	4	9	R.F.DET AMPLI	180	67.5	1.5	2.0	650	1 MEG.	650	LISTOR .	B MEG.	12.0
	A.F. DET AMPLI. 135 SUPPLY 2.0 PLATE RESISTOR .25 MEG. SCREEN RESISTOR .B MEG.																	
			0 6		1				<u>135</u>									
			2.5	vo	LT /	4.C.1	DET	ECTOR	AN	DA	MP	LIF	IEF		BES			
24A	TETRODE	HEATER	2.5	VO	LT	4.C.	DET 10.5	DETECTOR AFAMPLIFIER	250 250	45 25	2.0 MP	o.s	IEF	2.0M-~-	BES		0.25Mz	
24A	TETRODE	HEATER	2.5 5 E MED 5 PIN	VO 1.75	LT /	4.C.	DET 10.5	DETECTOR A.F. AMPLIFIER R.F. AMPLIFIER	250 250 180 250	45 25 90 90	2.0 MP 5 1 3 3	0.5 4.0 4.0	1000 600 630	2.0M-~ 0.4M-~ 0.6M-~	500 1000 1050		0.25MA 0.1 M-A	15
24A 26	TETRODE TRIODE	HEATER 1.5 v.ac Fil.	2.5 5E MER SPIN 4D MED 4PIN	1.75 1.5 v 1.05 a	LT / 0.007 //AX: 8.1	4.C. 1 5.0 3.5	10.5 2.2	DETECTOR A.F. AMPLIFIER R.F. AMPLIFIER AMPLIFIER	250 250 250 180 250 135 180	45 25 90 90	2.0 MP 5 1 3 3 10 14.5	0.5 4.0 4.0 5.5 6.2	1000 600 630 8.3 8.3	2.0M-7- 0.4M-7- 0.GM-7- 7600 7300	500 1000 1050 1100 1150	0.0B 0.18	0.25MA 0.1 MA 0.1 MA 0.	5
24A 26 27	TETRODE TRIODE	HEATER	2.5 5E MED SPIN 4D MED 4PIN 5A	1.75 1.5 v 1.05 a	LT /	4.C. 5.0 3.5 3.5	10.5 2.2	ECTOR DETECTOR A.F. AMPLIFIER R.F. AMPLIFIER AMPLIFIER BIAS DETECTOR	250 250 250 180 250 135 180 250 135	45 25 90 90	2.0 MP 5 1 3 3 14.5 30 9	0.5 4.0 4.0 5.5 6.2 4.5	1EF 600 630 8.3 8.3	2.0M- 0.4M- 0.GM- 7600 7300 9000	500 1000 1050 1100 1150 1000	0.08 0.08	0.25MA 0.1 M - L 0.0 500 10 500	-5 -5
24A 26 27	TETRODE TRIODE TRIODE	HEATER 1.5 v. AC FIL. HEATER	2.5 5E MED S PIN 4D MED 4 PIN 5A 5A 5M.5 PIN	1.75 1.5 v 1.05 a 1.75	0.007 //AX: 8.1 3.3	5.0 3.5 3.5	DET 10.5 2.2 3.0	ECTOR DETECTOR A.F. AMPLIFIER R.F. AMPLIFIER AMPLIFIER BIAS DETECTOR AMPLIFIER	250 250 250 180 250 135 180 250 135 180 250	45 25 90 90	2.0 MP 5 1 3 3 1 4.5 30 9 13.5 21	0.5 4.0 4.0 5.5 6.2 4.5 5.0 5.2	1EF 600 630 8.3 8.3 9 9 9	2.0M- 0.4M- 0.6M- 7600 7300 9000 9250	500 1000 1100 1150 1150 1000 1000 975	0.08 0.18 0.18 0.165 0.30	0.25M 0.1 M 0.1 M 0.1 M 0.1 M 0.1 M 0.0 0 10 50 0 13000 19000 34000	15
24A 26 27 <u>35</u>	TETRODE TRIODE TRIODE REMOTE	HEATER I-SVAC FIL- HEATER HEATER	2.5 5E MED S PIN 4D MED 4 PIN 5A SM.5 PIN 5E	1.75 1.5 v 1.05 a 1.75	0.007 MAX: 8.1 3.3	4.C. 5.0 3.5 3.5 5.0	10.5 2.2 3.0	ECTOR AFAMPLIFIER R.F. AMPLIFIER AMPLIFIER BIAS DETECTOR AMPLIFIER IST DETECTOR AMPLIFIER	250 250 250 180 250 135 180 250 135 180 250 250 250 250 180	45 25 90 90 90 90	2.0 MP 5 1 3 3 10 14.5 30 9 13.5 21 7APP. 3	0.5 4.0 4.0 5.5 6.2 4.5 5.0 5.2 5.2 6.3	1000 600 630 8.3 8.3 9 9 9 9 9 9	2.0M- 0.4M- 0.6M- 7600 7300 9000 9000 9250 0.8M-	500 1000 1050 1150 1150 1000 975 1020	0.08 0.18 0.18 0.165 0.30	0.25MA 0.1 MA 0.1 MA 10 500 13000 13000 19000 34000	15 15 5 50
24A 26 27 <u>35</u> 51	TETRODE TRIODE TRIODE REMOTE CUT-OFF TETROPE	HEATER I-5 V.AC FIL. HEATER HEATER	2.5 5E MED SPIN 4D MED 4PIN 5A SM. 5 PIN 5E MED 5 PIN	1.75 1.75 1.5 v 1.75 1.75	LT / 0.007 //AX. 8.1 3.3 0.007 //AX.	4.C. 5.0 3.5 3.5 5.0	0.5 2.2 3.0	ECTOR DETECTOR A-F-AMPLIFIER R.F. AMPLIFIER BIAS DETECTOR AMPLIFIER JST DETECTOR AMPLIFIER CINCLE AMPLI	250 250 250 180 250 135 180 250 135 180 250 250 250 180 250 180	45 25 90 90 90 90 90	2.0 MP 5 1 3 10 14.5 30 9 13.5 21 7APP. 3 31.5	2LIF 0.5 4.0 5.5 6.2 4.5 5.0 5.2 4.5 5.0 5.2 4.5 5.0 5.2 4.5 5.0 5.2 4.5 5.0 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2	1EF 1000 600 630 8.3 9 9 9 9 9 9 9 9 9 9 9 305 420 3.5	2.0M-1 0.4M-1 0.6M-1 7600 7300 9000 9250 9250 0.8M-1 0.4M-1 1650	500 1050 1150 1150 1150 1000 1000 975 1020 1050 2125	0.08 0.18 0.08 0.165 0.30	0.25MA 0.1 M - 0.1 M - 0.1 M - 10 500 10 500 13 000 19 000 34 000 34 000	50 50 50
24A 26 27 <u>35</u> 51 45	TETRODE TRIODE TRIODE REMOTE CUT-OFF TETRODE TRIODE	HEATER HEATER HEATER	2.5 5 E MED SPIN 4 D MED 4 PIN 5 A SM. 5 PIN 5 E MED 5 PIN 4 D MED 4 PIN	1.75 1.75 1.75 1.75 1.75	LT /	4.C. 5.0 3.5 3.5 5.0	0.5 2.2 3.0	ECTOR DETECTOR A-F-ANPLIFIER R.F. AMPLIFIER AMPLIFIER BIAS DETECTOR AMPLIFIER IST DETECTOR AMPLIFIER SINGLE AMPLI. PUSH-PULL (avg 2 trues)	AN 250 250 180 250 135 180 250 250 135 180 250 250 135 180 250 250 135 180 250 250 250 135 180 250 250 250 180 250 250 250 250 180 250 250 250 250 250 250 250 25	45 25 90 90 90 90 90	2.0 MP 1 3 10 14.5 30 9 13.5 21 7APP. 3 3 3.5 5 5 70	0.5 4.0 4.0 5.5 6.2 4.5 5.0 5.2 6.3 6.3 6.5 31 36 447070	1000 600 630 83 83 99 99 99 99 99 99 99 99 99 99 95 305 420 3.5 3.5	2.0M- 0.4M- 0.4M- 7600 7300 9000 9000 9250 0.8M- 1650 1700	500 1000 1100 1100 1100 1000 975 1020 2125 2050	0.08 0.18 0.18 0.18 0.165 0.30 0.82 2.0 10	0.25M 0.1 M 1 0.1 M 1 0.0 0 500 10 500 13000 19000 34000 34000 2700 4600 9000	50 50
24A 26 27 <u>35</u> 51 45 46	TETRODE TRIODE TRIODE REMOTE CUT-OFF TETRODE TRIODE DOUBLE GRID	HEATER HEATER HEATER FIL.	2.5 5E MER SPIN 4D MED.4PIN 5A SM.5 PIN 5E MED.5 PIN 4D MED.4 PIN 5 C	VO 1.75 1.5 v 1.05 a 1.75 1.75 1.50 1.75	LT /	5.0 3.5 3.5 5.0	10.5 2.2 3.0	ECTOR A.F. AMPLIFIER A.F. AMPLIFIER AMPLIFIER BIAS DETECTOR AMPLIFIER JST DETECTOR AMPLIFIER SINGLE AMPLI. PUSH-PULL(AVG 2TVBES) CLASS A CI & (AVG.2 TUBES)	250 250 250 180 250 135 180 250 250 250 250 250 250 180 250 250 180 250 250 250 250 250 250 300	45 25 90 90 90 90 90	2.0 MP 5 1 3 3 10 14.5 30 9 13.5 21 7APP. 3 3 1.5 5 6 70 33 0	LIF 0.5 4.0 4.0 5.5 6.2 4.5 5.0 5.2 6.3 6.5 31 36 44™70 22 8 ™70	1000 600 630 8.3 8.3 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 5 420 3.5 3.5 5.6	2.0M- 0.4M- 0.6M- 7600 7300 9000 9250 0.8M- 1650 1700 2400	500 1000 1050 1100 1100 1000 975 1020 1050 2125 2050 2350	0.08 0.18 0.18 0.165 0.30 0.82 2.0 1.25 16	0.25M 0.1 M 0.1 M 0.1 M 0.1 M 0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	50 50
24A 26 27 <u>35</u> 51 45 46	TETRODE TRIODE TRIODE REMOTE CUT-OFF TETROPE TRIODE DOUBLE GRID TRIODE	HEATER HEATER HEATER FIL. FIL.	2.5 SE MED SPIN 4D MED.4PIN 5A SH.5 PIN 5E MED.5 PIN 4D MED.4 PIN 5C MED.5 PIN 5B	VO 1.75 1.75 1.75 1.75 1.50 1.75 1.75	LT / 0.007 //AX. 8.1 3.3 0.007 //AX.	4.C. 5.0 3.5 3.5 5.0	10.5 2.2 3.0 10.5	ECTOR A.F. AMPLIFIER A.F. AMPLIFIER R.F. AMPLIFIER AMPLIFIER BIAS DETECTOR AMPLIFIER IST DETECTOR AMPLIFIER SINGLE AMPLI. PUSH-PULL(AVG 2 TUBES) CLASS A CL.B (AVG.2 TUBES)	250 250 250 180 250 135 180 250 135 180 250 250 250 250 180 250 250 250 250 250 250 250 250 250 25	45 25 90 90 90 90	2.0 MP 5 1 3 3 10 14.5 30 9 13.5 21 7APP. 3 31.5 56 70 33 0 0 16 5 1 5 1 5 1 5 1 5 1 5 1 1 1 1 1 1 1 1 1 1 1 1 1	LIF 0.5 4.0 5.5 6.2 4.5 5.6 5.2 6.3 6.5 31 36 5.7 22 8 ™ 70 22 8 ™ 70 23 1 36 8 № 7 31 36 8 № 7 8	1000 600 630 8.3 8.3 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	2.0M- 0.4M- 0.6M- 7600 7300 9000 9250 9250 0.8M- 1650 1700 2400 60000	500 1000 11000 1150 1000 1000 1000 1000	0.08 0.18 0.08 0.165 0.30 0.82 2.0 10 1.25 16 20 2.7	0.25MA 0.1 M - L 0.1 M - L 0.1 M - L 0.1 M - L 0.2500 10 500 10 500 13 000 19 000 34 000 34 000 34 000 34 000 34 000 5000 min. 5500 Min. 5500 Min.	15 15 50 50
24A 26 27 <u>35</u> 51 45 46 47	TETRODE TRIODE TRIODE REMOTE CUT-OFF TETROPE TRIODE GRID TRIODE PENTODE TWIN	HEATER HEATER HEATER FIL. FIL. FIL.	2.5 5 E MED S PIN 4 D MED 4 PIN 5 A SM. 5 PIN 5 E MED 5 PIN 4 D MED 5 PIN 5 C MED 5 PIN 5 B MED 5 PIN 7 B	VO 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75	LT / 0.007 //АХ. 8.1 3.3 0.007 ///АХ.	5.0 3.5 3.5 5.0	DET 10.5 2.2 3.0 10.5	ECTOR A.F.AMPLIFIER A.F.AMPLIFIER R.F.AMPLIFIER AMPLIFIER BIAS DETECTOR AMPLIFIER SINGLE AMPLI. PUSH-PULL(AVG 2 TUBES) CLASS A CL.B(AVG.2 TUBES) AMPLIFIER CLA (PARALLELCONH.)	AN 250 250 180 250 135 180 250 135 180 250 250 250 250 250 250 250 25	90 90 90 90 90 90 90 90	2.0 MP 5 1 3 3 10 14.5 30 9 13.5 21 7APP. 3 3 3 5 5 6 70 33 0 0 (6.5 6	0.5 4.0 5.5 6.2 4.5 5.0 5.2 4.5 5.0 5.2 6.3 6.3 6.3 6.5 5.2 6.3 6.3 6.5 7 7	1EF 1000 600 630 8.3 9 9 9 9 9 9 9 9 9 9 9 9 9	2.0M-A- 0.4M-A- 0.6M-A- 7600 7300 9000 9250 9000 9250 0.3MA 1650 1700 2400 2400 11000	500 1000 1050 1150 1000 1150 1000 975 1020 2050 2125 2050 2350 2350 3200	0.08 0.18 0.18 0.18 0.165 0.30 0.165 0.30 10 1.25 16 20 2.7 0.37	0.25MA 0.1 M A 0.1 M A 0.1 M A 0.0 0 500 13000 19000 34000 34000 34000 5000 min. 5500 min. 5500 min. 7000 35000	15 15 50 50
24A 26 27 <u>35</u> 51 45 46 47 53	TETRODE TRIODE TRIODE REMOTE CUT-OFF TETRODE TRIODE DOUBLE GRID TRIODE PENTODE TWIN TRIODE	HEATER HEATER HEATER FIL. FIL. FIL. HEATER	2.5 5 E MED SPIN 4 D MED 4 PIN 5 A SM.5 PIN 5 E MED 5 PIN 4 D MED 5 PIN 5 C MED 5 PIN 5 B MED 5 PIN 7 B MED 7 PIN LG. PIN CIRCLE	VO 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 2.0	LT /	4.C. 5.0 3.5 3.5 5.0	DET 10.5 2.2 3.0 10.5	ECTOR A.F. AMPLIFIER A.F. AMPLIFIER R.F. AMPLIFIER AMPLIFIER BIAS DETECTOR AMPLIFIER IST DETECTOR AMPLIFIER SINGLE AMPLI. PUSH-PULL(AVG 2TURES) CLASS A CL.B(AVG.2TUBES) AMPLIFIER CL A (PARALLELCONH) COMPLETE CL.B (BOTH SECTIONS)	AN 250 250 180 250 180 250 180 250 180 250 180 250 180 250 180 250 180 250 180 250 180 250 180 250 180 250 185 180 250 185 180 250 250 180 250 250 180 250 250 250 250 250 250 250 25	90 90 90 90 90 90 90 90 90 90 90	2.0 MP 5 1 3 3 10 14.5 30 9 13.5 21 7APP. 3 31.5 56 70 33 0 0 16.5 6 0 0	LIF 0.5 4.0 5.5 6.2 4.5 5.0 5.2 6.3 6.5 31 36 44™70 22 8™70 22 8™70 12™75 31 7 28™50 35™50 35™50	1000 600 630 8.3 8.3 9 9 9 9 9 9 9 9 9 9 9 5.6 150 35	2.0M-A- 0.4M-A- 0.6M-A- 7600 7300 9000 9250 9250 0.8MA 1650 1700 2400 2400 60000 11000	500 1000 1050 11000 1150 1000 975 1050 2125 2050 2350 3200	0.08 0.18 0.18 0.18 0.165 0.30 0.82 2.0 10 1.25 16 20 2.7 0.37 8 10	0.25MA 0.1 M A 0.1 M A 0.0 500 10 500 13000 19000 34000 34000 34000 34000 34000 5000 min. 5500 min.	50 50
24A 26 27 <u>35</u> 51 45 46 47 53 55	TETRODE TRIODE TRIODE REMOTE CUT-OFF TETROPE TRIODE DOUBLE GRID TRIODE PENTODE TWIN TRIODE DUPLEX DIODE TRIODE	HEATER HEATER HEATER FIL. FIL. FIL. HEATER HEATER	2.5 SE MED SPIN 4D MED.4PIN 5A SM.5 PIN 5E MED.5 PIN 4D MED.4 PIN 5C MED.5 PIN 5C MED.5 PIN 7B MED.5 PIN 7B MED.5 PIN 5C MED.5 PIN 5C 5C MED.5 PIN 5C 5C MED.5 PIN 5C 5C 5C 5C 5C 5C 5C 5C 5C 5C	VO 1.75 1.75 1.75 1.75 1.75 1.75 1.75 2.0 1.0	LT /	5.0 3.5 3.5 5.0	10.5 2.2 3.0 10.5	ECTOR A.F. AMPLIFIER A.F. AMPLIFIER R.F. AMPLIFIER AMPLIFIER BIAS DETECTOR AMPLIFIER JST DETECTOR AMPLIFIER SINGLE AMPLI. PUSH-PULL(AVG 2 TUBES) AMPLIFIER CL.ASS A CL.B(AVG.2 TUBES) AMPLIFIER CL A (PARALLELCONH.) COMPLETE CL.B (BOTH SECTIONS) DIODE DETECT. TRICDE AMPLI.	AN 250 250 180 250 135 180 250 135 180 250 250 250 180 250 250 180 250 250 250 250 250 250 250 25	45 25 90 90 90 90 90 90	2.0 MP 5 1 3 3 10 14.5 30 9 13.5 21 7APP. 3 31.5 56 70 33 0 0 1(6.5 6 0 0 13.5 20 13.5 56 70 33 0 0 1(6.5) 6 0 0 1(7)	$\begin{array}{c} 0.5 \\ 4.0 \\ 4.0 \\ 5.5 \\ 6.2 \\ 4.5 \\ 5.0 \\ 5.2 \\ 4.5 \\ 5.0 \\ 5.2 \\ 4.5 \\ 5.0 \\ 5.2 \\ 3.1 \\ 3.6 \\ 7 \\ 22 \\ 8 \\ 7 \\ 7 \\ 28 \\ 5.5 \\ 5.2 \\ 3.1 \\ 3.1 \\ 7 \\ 28 \\ 5.5 \\ 5.2 \\ 3.1 \\ 3.1 \\ 7 \\ 28 \\ 5.5 \\ 5.2 \\ 3.1 \\ 7 \\ 28 \\ 5.5 \\ 5.2 \\ 3.1 \\ 7 \\ 28 \\ 5.5 \\ 5.2$	1000 600 620 8.3 8.3 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	2.0M-A- 0.4M-A- 0.6M-A- 7600 7300 9000 9250 9250 0.8M-A- 0.4M-A- 1650 1700 2400 2400 11000 8500 7500	500 1000 1050 1150 1000 1000 1000 975 1020 2050 2350 2350 3200 3200	0.08 0.18 0.08 0.165 0.30 0.82 2.0 10 1.25 16 20 2.7 0.37 8 10 0.16 20 2.7	0.25MA 0.1 M -L 0.1 M -L 0.1 M -L 0.1 M -L 0.1 M -L 0.25MA 10 500 10 500 10 500 34 000 34 000 34 000 34 000 34 000 34 000 35 000 10 000 20 000 20 000 20 000	50 50 50
24A 26 27 <u>35</u> 51 45 46 47 53 55 56	TETRODE TRIODE TRIODE REMOTE CUT-OFF TETROPE TRIODE PENTODE TRIODE TWIN TRIODE TWIN TRIODE TRIODE TRIODE	HEATER HEATER HEATER FIL. FIL. FIL. HEATER HEATER	2.5 5 E MED S PIN 4 D MED 4 PIN 5 A SM. 5 PIN 5 E MED 5 PIN 4 D MED 4 PIN 5 C MED 5 PIN 5 B MED 5 PIN 7 B MED 7 PIN LG. PIN (IRCLE 6 G SM. 5 PIN 5 A SM. 5 PIN	VO 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 2.0 1.0 1.0 1.0	LT /	5.0 3.5 3.5 5.0 2.0	DET 10.5 2.2 3.0 10.5 4.0 2.2	ECTOR A.F.AMPLIFIER A.F.AMPLIFIER R.F.AMPLIFIER AMPLIFIER BIAS DETECTOR AMPLIFIER IST DETECTOR AMPLIFIER SINGLE AMPLI. PUSH-PULL(AVG 2TUBES) CLASS A CL.B(AVG.2TUBES) AMPLIFIER CLA (PARALLELCONN-) COMPLETE CL.B (BOTH SECTIONS) DIODE DETECT. TRICDE AMPLIFIER	AN 250 250 180 250 135 180 250 135 180 250 250 250 250 250 250 250 25	90 90 90 90 90 90 90	2.0 NP 5 1 3 3 10 14.5 30 9 13.5 21 7APP. 3 3 3 1.5 5 5 6 70 3 3 0 0 (6.5 6 0 13.5 20 13.5 5 6 0 13.5 20 13.5 5 6 0 13.5 20 13.5 5 6 0 0 13.5 20 13.5 5 6 0 0 13.5 5 6 0 0 13.5 5 6 0 0 13.5 5 6 0 0 13.5 5 6 0 0 13.5 5 6 0 0 13.5 5 6 0 0 13.5 5 6 0 0 13.5 5 5 6 0 0 13.5 5 5 6 0 0 13.5 5 5 6 0 0 13.5 5 5 6 0 0 13.5 5 5 6 0 0 13.5 5 6 0 0 13.5 5 6 0 0 13.5 5 6 0 0 13.5 2 1 3 1.5 5 6 0 0 1 1.5 5 2 1 7 7 7 7 7 7 7 7 7 7 7 7 7	Contemporal and the second sec	1 E F 1000 600 630 8.3 9 9 9 9 9 9 9 9 9 9 9 9 9	2.0M-A- 0.4M-A- 0.6M-A- 7600 7300 9000 9250 9000 9250 0.3MA 1650 1700 2400 2400 11000 11000 11000 8500 7500 9500	500 1000 1050 1150 1000 1150 1000 975 2050 2125 2050 22500 22500 22500 3200 3200 1100 1450	0.08 0.18 0.08 0.165 0.30 10 1.25 16 20 2.7 0.37 8 10 0.35 8 10 0.16 0.35	0.25MA 0.1 M A 0.1 M A 0.1 M A 0.1 M A 0.0 0.25MA 0.0 0.2500 13000 34000 34000 34000 34000 34000 34000 35000 6400 5000 min. 5500 min. 55000 min. 50000 min.	15 15 50 50
24A 26 27 <u>35</u> 51 45 46 47 53 55 56 57	TETRODE TRIODE TRIODE REMOTE CUT-OFF TETRODE TRIODE PENTODE TRIODE TWIN TRIODE TWIN TRIODE TRIODE TRIODE TRIODE TRIODE	HEATER HEATER HEATER HEATER FIL. FIL. HEATER HEATER HEATER HEATER	2.5 5 E MED SPIN 4 D MED 4 PIN 5 A SM. 5 PIN 5 E MED 5 PIN 5 C MED 5 PIN 5 C MED 5 PIN 5 B MED 5 PIN 5 C 5 B MED 5 PIN 5 B MED 5 PIN 5 C 5 B MED 5 PIN 5 C 5 A 5 A 5 A 5 A 5 A 5 A 5 A 5 A	VO 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 2.0 1.0 1.0 1.0	LT /	A.C. 5.0 3.5 3.5 5.0 2.0 3.2 5.0	DET 10.5 2.2 3.0 10.5 4.0 2.2 6.5	ECTOR A.F.AMPLIFIER A.F.AMPLIFIER A.F.AMPLIFIER AMPLIFIER BIAS DETECTOR AMPLIFIER IST DETECTOR AMPLIFIER SINGLE AMPLI. PUSH-PULL(AVG 2TUBES) CLASS A CL.8(AVG.2TUBES) AMPLIFIER CLA (PARALLELCONH) COMPLETE CL.8 (BOTH SECTIONS) DIODE DETECT. AMPLIFIER DETECTOR AMPLIFIER	250 250 250 180 250 180 250 180 250 180 250 180 250 250 180 250 250 250 250 250 250 250 250 250 25	45 25 90 90 90 90 90 90 90 90 90 90 90 90 90	2.0 NP 5 1 3 3 10 14.5 30 9 13.5 21 7APP. 3 31.5 56 70 33 0 0 13.5 56 70 33 0 0 13.5 55 20 70 33 0 0 13.5 55 20 70 70 70 33 0 0 13.5 55 20 70 70 70 70 70 70 70 70 70 7	Contemporation of the second	1000 600 620 8.3 8.3 8.3 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	2.0M-A- 0.4M-A- 0.6M-A- 7600 7300 9000 9250 9250 0.8MA- 1650 1700 2400 11000 60000 11000 8500 7500 9500 2.0MA	500 1000 1050 1100 1150 1000 975 1020 2125 2050 2350 2350 2350 3200 3200 3200 1450 1450	0.08 0.18 0.18 0.18 0.18 0.18 0.18 0.165 0.30 1.25 16 2.0 1.25 16 2.7 0.37 8 10 0.65 10 1.25 16 2.7 0.37 8 10 0.16	0.25M 0.1 M 0.1 M 0.1 M 0.1 M 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.2 0.0 0.2 0.0 0.2 0.0 0.2 0.0 0.2 0.0 0.2 0.0 0.0	5050
24A 26 27 <u>35</u> 51 45 46 47 53 55 56 57 58	TETRODE TRIODE TRIODE REMOTE CUT-OFF TETRODE TRIODE PENTODE TRIODE TWIN TRIODE DUPLEX DIODE TRIODE TRIODE TRIODE TRIODE REMOTE FUNTODE	HEATER HEATER HEATER FIL. FIL. FIL. HEATER HEATER HEATER HEATER HEATER	SE MED SPIN 4D MED. 4PIN 5A SM. 5 PIN 5E MED. 5 PIN 4D MED. 5 PIN 5C MED. 5 PIN 5C MED. 5 PIN 5B MED. 5 PIN 5B MED. 5 PIN 5B MED. 5 PIN 5B MED. 5 PIN 5C MED. 5 PIN 5B MED. 5 PIN 5C MED. 5 PIN 5C 5C MED. 5 PIN 5C 5C 5C 5C 5C 5C 5C 5C 5C 5C 5C 5C 5C	VO 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 2.0 1.0 1.0 1.0 1.0	LT /	A.C. 5.0 3.5 3.5 5.0 2.0 3.2 5.0 5.0 5.0	DET 10.5 2.2 3.0 10.5 10.5 4.0 2.2 6.5 6.5	ECTOR A.F.AMPLIFIER A.F.AMPLIFIER A.F.AMPLIFIER AMPLIFIER BIAS DETECTOR AMPLIFIER JST DETECTOR AMPLIFIER SINGLE AMPLI PUSH-PULL(AVG 2TUBES) AMPLIFIER CLASS A CL.B(AVG.2TUBES) AMPLIFIER CLA(PARALLELCONN-) COMPLETE CL.B (BOTH SECTIONS) DIODE DETECT. AMPLIFIER DETECTOR AMPLIFIER DETECT. AMPLIFIER	AN 250 250 180 250 135 180 250 135 180 250 250 190 250 190 250 190 250 250 250 250 250 250 250 25	4-5 2.5 90 90 90 90 90 90 90 90 90 90 90 90 90	2.0 NP 5 1 3 3 10 14.5 30 9 13.5 21 7APP. 3 3 3 1.5 5 6 70 0 13.5 5 6 0 0 13.5 20 13.5 20 13.5 20 13.5 20 13.5 20 13.5 20 13.5 5 6 0 0 13.5 20 13.5 5 6 0 0 13.5 20 13.5 5 6 0 0 13.5 20 13.5 5 6 0 0 13.5 5 6 0 0 13.5 5 6 0 0 13.5 5 6 0 0 13.5 5 6 0 0 13.5 5 6 0 0 13.5 5 6 0 0 13.5 5 6 0 0 13.5 5 6 0 0 13.5 5 6 0 0 13.5 5 6 0 0 13.5 20 13.5 5 6 0 0 13.5 20 13.5 5 6 0 0 0 13.5 20 13.5 3.8 3 10 20 13.5 3.8 3 10 20 20 13.5 3.8 3 10 20 20 13.5 3.8 3 10 3.8 3 10 3.8 3 10 3.8 3 10 3.8 3 10 3.8 3 10 3.8 3 10 3.8 3 3.8 3 10 3.8 3 10 3.8 3 10 3.8 3 10 3.8 3 10 3.8 3 10 3.8 3 10 3.8 3 10 3.8 3 10 3.8 3 10 3.8 3 10 3.8 3 10 3.8 3 10 3.8 3 10 3.8 3 10 3.8 3 10 3.8 3 10 3.8 3 3.8 3 3.8 3 3.8 3 3.8 3 3.8 3 3.8 3 3.8 3 3.8 3 3.8 3.8	Definition of the second seco	1000 600 620 8.3 8.3 9 9 9 9 9 9 9 9 9 9 9 9 9	COM-A- 0.4M-A- 0.6M-A- 7600 7300 9000 9250 9250 9250 0.8M-A 1650 1700 2400 1700 2400 1700 2400 1700 2400 1700 2400 1700 2400 1700 2400 250 2000 1700 2400 2400 250 2000 1700 2400 2000 2000 9500 2.0M-A- 0.8M-A	500 1000 1050 1150 1000 1150 1000 1000	0.08 0.18 0.08 0.165 0.30 0.82 2.0 10 1.25 16 20 2.7 0.37 8 10 0.16 20 2.7 0.37 8 10 0.16	0.25MA 0.1 M - A 0.1 M - A 0.1 M - A 0.1 M - A 0.1 M - A 0.2 500 10 500 19 000 34 000 34 000 34 000 34 000 90 00 64 00 90 00 80 00 80 00 80 00 80 00 90 00 80 00 80 00 90 00 80 00 80 00 90 00 80 00 90 00 80 00 90 00 80 00 90 00 80 00 90 00 80 00 90 00000000	15 15 50 50 50 7
24A 26 27 <u>35</u> 51 45 46 47 53 55 56 57 58 59	TETRODE TRIODE TRIODE REMOTE CUT-OFF TETROPE TRIODE TRIODE TRIODE TRIODE TRIODE TRIODE TRIODE TRIODE TRIODE TRIODE TRIODE TRIODE	HEATER HEATER HEATER FIL. FIL. FIL. HEATER HEATER HEATER HEATER HEATER	2.5 SE MED SPIN 4D MED 4PIN 5A SM. 5 PIN 5E MED 5 PIN 4D MED 5 PIN 5C MED 5 PIN 5C MED 5 PIN 7B MED 7PIN LG. PIN (IRCLE 6G SM. 6 PIN 5A SM. 5 PIN 7B MED. 7PIN LG. PIN 5A SM. 5 PIN 7B MED. 7PIN C SH. 6 PIN 7A MED. 7 PIN 7A	VO 1.75 1.00	LT /	A.C. 5.0 3.5 3.5 5.0 2.0 3.2 5.0 5.0 5.0	DET 10.5 2.2 3.0 10.5 4.0 2.2 6.5 6.5 6.5	ECTOR A.F.AMPLIFIER A.F.AMPLIFIER R.F.AMPLIFIER BIAS DETECTOR AMPLIFIER IST DETECTOR AMPLIFIER SINGLE AMPLI. PUSH-PULL(AVG 2TUBES) CLASS A CL.B(AVG.2TUBES) AMPLIFIER CLASS ATUOE BIAS DETECT. AMPLIFIER DETECTOR AMPLIFIER DETECTOR AMPLIFIER IST DETECT. AMPLIFIER IST DETECT. AMPLIFIER IST DETECT. AMPLIFIER IST DETECT. AMPLIFIER CLASS A TRIODE CLASS A PENTODE	AN 250 250 180 250 135 180 250 135 180 250 135 180 250 250 250 250 250 250 250 25	45 25 90 90 90 90 90 90 90 90 90 90 90 90 90	2.0 NP 5 1 3 3 10 14.5 30 9 13.5 21 7APP. 3 3 3 1.5 5 5 6 70 3 3 1.5 5 5 6 70 3 3 1.5 5 5 6 70 3 3 1.5 5 5 6 70 3 3 1.5 5 5 6 70 3 3 1.5 5 5 6 70 3 3 1.5 5 5 6 70 3 3 1.5 5 5 6 70 3 3 1.5 5 5 6 70 3 3 1.5 5 5 6 70 3 3 1.5 5 5 6 70 3 3 1.5 5 5 6 70 3 3 1.5 5 5 6 70 3 3 1.5 5 5 6 70 3 3 1.5 5 5 6 70 3 3 1.5 5 5 6 70 3 3 1.5 5 5 6 70 3 3 1.5 5 3 1.5 5 5 6 70 3 3 1.5 5 3 8 3 1.5 5 3 1.5 5 70 70 70 70 70 70 70 70 70 70	0.5 4.0 5.5 6.2 4.5 5.6 4.5 5.0 5.2 6.3 6.3 6.3 6.3 31 36 447070 22 8 7070 22 31 36 447075 31 7 28703550 6 8 5:0 2:0 2:0 8:2 2:0	1000 600 630 83 83 99 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	2.0M-A- 0.4M-A- 0.6M-A- 7600 7300 9000 9250 9000 9250 0.3MA 1650 1700 2400 2400 11000 11000 2400 2500 2.0MA 9500 2.0MA 9500 2.0MA 9500	500 1000 1050 1150 1000 1150 1000 975 2050 2125 2050 2125 2050 22500 3200 3200 3200 1100 1450 1225 1100 1450 2600 2600	0.08 0.18 0.08 0.18 0.18 0.18 0.18 0.18	0.25MA 0.1 M - 0.1 M - 0.1 M - 0.1 M - 0.1 M - 0.2 500 1 3 0 0 0 3 4 0 0 0 3 5 0 0 0 3 5 0 0 0 3 5 0 0 0 2 0 0 0 0 2 0 0 0 0 4 7 0 0 0 0.2 5 M A 0.2 5 M A 5 0 0 0 6 0 0 0	15 15 50 50 7 50
24A 26 27 <u>35</u> 51 45 46 47 53 55 56 57 58 59	TETRODE TRIODE TRIODE REMOTE CUT-OFF TETRODE TRIODE PENTODE TRIODE TWIN TRIODE TWIN TRIODE TRIODE TRIODE TRIODE TRIODE TRIODE TRIODE TRIODE TRIODE TRIODE TRIODE TRIODE TRIODE	HEATER HEATER HEATER HEATER FIL. FIL. HEATER HEATER HEATER HEATER HEATER	2.5 SE MED SPIN 4D MED 4PIN 5A SM. 5 PIN 5E MED 5 PIN 4D MED 5 PIN 5C MED 5 PIN 5C MED 5 PIN 5C MED 5 PIN 5B MED 5 PIN 5B MED 7 PIN LG. PIN CIRCLE 5A SM. 6 PIN 5A SM. 6 PIN 7A MED. 7 PIN LG. PIN CIRCLE 4D 7A MED 7 PIN CF SM. 6 PIN 7A MED 7 PIN CF SM. 6 PIN 7A 7A 7A 7A 7A 7A 7A 7A 7A 7A	VO 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 2.0 1.0 1.0 1.0 1.0 1.0 1.0 2.0	LT /	A.C. 5.0 3.5 3.5 5.0 2.0 3.2 5.0 5.0 5.0	DET 10.5 2.2 3.0 10.5 (0.5 (0.5) (0.5	ECTOR A-F-AMPLIFIER A-F-AMPLIFIER A-F-AMPLIFIER AMPLIFIER BIAS DETECTOR AMPLIFIER IST DETECTOR AMPLIFIER SINGLE AMPLI. PUSH-PULL(AVG 2TUBES) AMPLIFIER CLASS A CL.8(AVG.2TUBES) AMPLIFIER CLA (PARALLELCONN.) COMPLETE CL.8 (BOTH SECTIONS) DIODE DETECT. AMPLIFIER DETECTOR AMPLIFIER IST DETECT. AMPLIFIER CLASS A TRIODE CLASS A T	AN 250 250 180 250 180 250 180 250 180 250 180 250 250 180 250 250 250 250 250 250 250 25	45 25 90 90 90 90 90 90 90 90 90 90 90 90 90	2.0 NP 1 3 3 10 14.5 30 9 13.5 21 7APP. 3 3 3 5 5 6 0 0 13.5 20 7 20 13.5 20 13.5 20 13.5 5 5 6 0 0 13.5 20 7 21 7 APP. 3 3 1.5 5 5 6 0 0 13.5 20 7 0 13.5 5 5 6 0 0 13.5 20 7 0 13.5 5 5 6 0 0 13.5 20 7 0 13.5 5 5 5 6 0 0 13.5 5 5 5 5 6 0 0 13.5 5 5 5 6 0 0 13.5 5 5 5 6 0 0 13.5 5 5 6 0 0 13.5 5 5 6 0 0 13.5 5 20 7 7 7 7 7 7 7 7 7 7 7 7 7	PLATE P PLATE P 0.5 4.0 5.5 6.2 4.5 5.0 5.2 4.5 5.0 5.2 6.3 6.5 31 36 44™70 22 8 ™70 22 8 ™70 23 5 ~ 0 5 ~	1 E F 1000 600 630 833 83 9 9 9 9 9 9 9 9 9 9 9 9 9	2.0M-A- 0.4M-A- 0.4M-A- 0.4M-A- 0.4M-A- 0.4M-A- 7600 7300 9000 9250 9000 9250 9250 0.8MA 1650 1700 2400 60000 11000 8500 7500 9500 2.0MA 9500 2.0MA 0.8MA 2400 40000 800	500 1000 1050 1100 1150 1000 975 1020 2050 2125 2050 2125 2050 2125 2050 2125 2050 2125 2050 2125 2050 1020 102	0.08 0.18 0.08 0.18 0.08 0.165 0.30 1.25 16 2.0 10 1.25 16 2.7 0.37 8 10 0.16 2.7 0.37 8 10 0.16 2.7 0.35 10 1.25 15 10 1.25 10 10 1.25 10 10 10 10 10 10 10 10 10 10 10 10 10	0.25MA 0.1 M A 0.1 M A 0.0 M A 0.0 SO O 1 3 0 0 O 1 3 0 0 O 3 4 0 0 O 6 4 0 O 5 0 0 0 M IN 2 0 0 0 O 2 0 0 O O 0 0 0 O O 2 0 0 O O 0 0 O O O 0 0 O O 0 O O 0 O O 0 O O 0 O O 0 O O O 0 O O O 0 O O 0 O O O O	15 15 50 50 50 7 50
24A 26 27 <u>35</u> 51 45 46 47 53 55 56 57 58 59 2A3H	TETRODE TRIODE TRIODE REMOTE CUT-OFF TETROPE TRIODE GRID TRIODE PENTODE TRIODE TRIODE TRIODE PENTODE REMOTE CUT-OFF PENTODE REMOTE CUT-OFF PENTODE TRIODE TRIODE TRIODE	HEATER HEATER HEATER HEATER FIL. FIL. FIL. HEATER HEATER HEATER HEATER HEATER HEATER HEATER HEATER	5E MED SPIN 4D MED.4PIN 5A SM.5 PIN 5E MED.5 PIN 5C MED.5 PIN 5C MED.7 PIN 5C MED.5 PIN 5C	VO 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 2.0 1.0 1.0 1.0 1.0 1.0 2.0 2.5 2.8	LT /	A.C. 5.0 3.5 3.5 5.0 2.0 3.2 5.0 5.0 5.0	DET 10.5 2.2 3.0 10.5 4.0 2.2 6.5 6.5 6.5	ECTOR A.F. AMPLIFIER A.F. AMPLIFIER R.F. AMPLIFIER BIAS DETECTOR AMPLIFIER JST DETECTOR AMPLIFIER JST DETECTOR AMPLIFIER SINGLE AMPLI. PUSH-PULL(AND 2TURES) CLASS A CL.B(AVG.2TURES) AMPLIFIER CLASS ATRIODE (DOF DETECT. AMPLIFIER DETECTOR AMPLIFIER DETECTOR AMPLIFIER DETECTOR AMPLIFIER DETECTOR AMPLIFIER DETECTOR AMPLIFIER CLASS A TRIODE CLASS A PENTODE CLASS A AB CLASS A CABLER CLASS	AN 250 250 180 250 135 180 250 135 180 250 135 180 250 135 180 250 135 180 250 250 190 250 250 250 250 300 400 250 250 250 250 250 250 250 2	4-5 2.5 90 90 90 90 90 90 90 90 90 90 90 90 90 100	2.0 NP 5 1 3 3 10 14.5 30 9 13.5 21 7APP 3 3 3 1.5 56 70 33 3 1.5 56 0 0 13.5 20 13.5 20 13.5 20 13.5 20 13.5 20 13.5 20 13.5 20 13.5 20 13.5 20 13.5 20 13.5 20 20 13.5 20 20 13.5 20 20 13.5 20 20 13.5 20 20 20 13.5 20 20 20 13.5 20 20 20 20 20 20 20 20 20 20	Definition of the second seco	1000 600 620 8.3 8.3 9 9 9 9 9 9 9 9 9 9 9 9 9	X TU 2.0M-A- 0.4M-A 0.6M-A 7600 9000 9250 0.8MA 1650 1700 2:400 60000 11000 8500 7500 9500 2.0MA 0.8MA 2400 8500 7500 9500 2.0MA 0.8MA 24000	500 1000 1050 1150 1000 1150 1000 1050 2050 2	0.08 0.18 0.08 0.18 0.08 0.165 0.30 1.25 16 2.0 1.25 16 2.7 0.37 8 10 0.16 2.7 0.37 8 10 0.16 2.7 0.37 8 10 0.16 2.7 0.37 8 10 0.26 1.25 1.25 1.25 1.25 1.25 1.0 0.26 1.25 1.0 1.25 1.0 0.16 1.25 1.0 0.16 2.7 0.37 8 1.0 0.26 1.0 0.16 1.25 1.25 1.0 0.16 1.25 1.25 1.0 0.16 1.25 1.25 1.0 0.16 1.25 1.25 1.0 0.16 1.25 1.25 1.0 0.16 2.7 0.37 0.16 1.25 1.25 1.0 0.16 2.7 0.37 1.0 0.16 2.7 0.37 1.0 0.16 2.7 0.37 1.0 0.16 2.7 0.37 0.0 0.16 2.7 0.37 0.0 0.16 2.7 0.37 0.0 0.16 2.7 0.37 0.0 0.16 2.7 0.37 0.0 0.16 2.7 0.37 0.0 0.16 2.7 0.37 0.0 0.16 2.7 0.37 0.0 0.16 2.7 0.37 0.0 0.16 2.7 0.37 0.0 0.16 2.7 0.37 0.0 0.16 0.0 0.16 0.0 0.16 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	0.25MA 0.1 M - A 0.1 M - A 0.1 M - A 0.1 M - A 0.1 M - A 0.2 500 10 500 10 500 34 000 34 000 34 000 34 000 34 000 34 000 35 000 400 35 000 10 000 20 000 47 000 0.2 5 M A 0.2 5 M A 5 000 6 000 6 000 6 000 6 000 6 000 5 000 6 000 7 00000000	15 15 50 50 50 7 50
24A 26 27 <u>35</u> 51 45 46 47 53 55 56 57 58 59 2A3H 2A5	TETRODE TRIODE TRIODE REMOTE CUT-OFF TETROPE TRIODE PENTODE TRIODE TWIN TRIODE TWIN TRIODE TRIODE TRIODE PENTODE TRIODE TRIODE TRIODE TRIODE TRIODE TRIODE TRIODE TRIODE TRIODE TRIODE	HEATER HEATER HEATER FIL. FIL. FIL. FIL. HEATER HEATER HEATER HEATER HEATER HEATER HEATER HEATER	2.5 5 E MED SPIN 4 D MED.4 PIN 5 A SM.5 PIN 5 E MED.5 PIN 4 D MED.4 PIN 5 C MED.5 PIN 7 B MED.5 PIN 7 B MED.7 PIN 1 G F SM.6 PIN 5 A SM.5 PIN 6 F SM.6 PIN 7 A 1 G PIN 1 G PIN	VO 1.75 1.75 1.75 1.75 1.75 1.75 1.75 2.0 1.0 1.0 1.0 1.0 1.0 2.0 2.0 2.5 2.8 1.75 2.0	LT /	A.C. 5.0 3.5 3.5 5.0 2.0 3.2 5.0 5.0 5.0	DET 10.5 2.2 3.0 10.5 4.0 2.2 6.5 6.5 6.5 6.5 	ECTOR A.F. AMPLIFIER A.F. AMPLIFIER R.F. AMPLIFIER BIAS DETECTOR AMPLIFIER IST DETECTOR AMPLIFIER IST DETECTOR AMPLIFIER SINGLE AMPLI. PUSH-PULL(AVG 2TUBES) CLASS A CL.B(AVG.2TUBES) AMPLIFIER CLA (PARALLELCONN-) COMPLETE CL.B (BOTH SECTIONS) DIODE DETECT. AMPLIFIER DETECTOR AMPLIFIER DETECTOR AMPLIFIER DETECTOR AMPLIFIER IST DETECT. AMPLIFIER IST DETECT. AMPLIFIER IST DETECT. AMPLIFIER IST DETECT. AMPLIFIER SINGLE AMPLI. CLASS A TRIODE (2 T U BES) PENTODE	AN 250 250 180 250 135 180 250 135 180 250 135 180 250 250 250 250 250 250 250 25	45 25 90 90 90 90 90 90 90 90 90 90 90 90 90	2.0 NP 5 1 3 3 10 14.5 30 9 13.5 21 7APP. 3 3 1.5 5 5 6 70 3 3 1.5 5 5 6 70 3 3 1.5 5 5 6 0 0 13.5 3 1.5 5 5 6 0 0 13.5 3 1.5 5 5 6 0 0 13.5 3 1.5 5 5 6 0 0 13.5 3 1.5 5 5 6 0 0 1.3 5 5 6 0 0 1.3 5 5 6 0 0 1.3 5 5 6 0 0 1.3 5 5 6 0 0 1.3 5 5 6 0 0 1.3 5 5 6 0 0 1.3 5 5 6 0 0 1.3 5 5 6 0 0 1.3 5 2.1 7 APP. 3 3 1.5 5 5 6 0 0 0 1.3 5 2.0 1.3 5 3 3 1.5 5 5 6 0 0 0 1.3 5 2.0 1.3 5 2.0 1.3 5 3.8 3 3 1.5 5 3.8 3 1.5 5 3.8 3 1.5 5 3.8 3 1.5 5 3.8 3 1.5 5 3.8 3 3 1.5 5 3.8 3 1.5 5 3.8 3 1.5 5 3.8 3 3 1.5 5 3.8 3 7 1.5 5 3.8 3 7 1.5 5 3.8 7 7 7 7 7 7 7 7 7 7 7 7 7	Contemporal and a contemporal	IEF 1000 600 630 83 83 99 9 9 9 9 9 9 9 9 9 9 9 9	CONTACT NOT CON	500 1000 1050 1150 1000 1150 1000 1000	0.08 0.18 0.08 0.18 0.08 0.165 0.30 10 1.25 16 20 2.7 0.37 8 10 0.35 10 0.35 10 0.26 10 1.25 16 20 2.7 0.37 8 10 0.26 10 1.25 10 10 1.25 10 10 1.25 10 10 1.25 10 10 1.25 10 10 1.25 10 10 10 10 10 10 10 10 10 10 10 10 10	0.25MA 0.1 M - 0.1 M - 0.1 M - 0.1 M - 0.1 M - 0.2 500 1 3 000 3 4 000 3 4 000 3 4 000 3 4 000 3 4 000 3 4 000 3 5 000 3 5 000 3 5 000 2 0 000 2 0000 2 0000 2 0000 2 0000 2 0000 2 0000 2 00000000	15 15 50 50 7 50
24A 26 27 <u>35</u> 51 45 46 47 53 55 56 57 58 59 2A3H 2A5 2A5	TETRODE TRIODE REMOTE CUT-OFF TETRODE TRIODE DOUBLE GRID TRIODE PENTODE TRIODE TRIODE TRIODE TRIODE TRIODE REMOTE CUT-OFF TRIODE TRIODE TRIODE TRIODE TRIODE TRIODE TRIODE TRIODE TRIODE TRIODE TRIODE DENTODE	HEATER HEATER HEATER HEATER FIL. FIL. HEATER HEATER HEATER HEATER HEATER HEATER HEATER HEATER HEATER HEATER HEATER HEATER HEATER	2.5 SE MED SPIN 4D MED 4PIN 5A SM.5 PIN 5E MED 5 PIN 4D MED 5 PIN 5C MED 7 PIN LG.PIN CIRCLE 3M.6 PIN 5A 5A 5A 5D MED 7 PIN LG.PIN CIRCLE 4D MED 7 PIN CF SM.6 PIN 5A 5A 5A 5A 5D MED 7 5D MED 7 5A 5A 5A 5D MED 7 5D MED 7 5D MED 7 5D MED 7 5D MED 7 5D 6F SM.6 PIN 6F SM.6 PIN 4D MED 7 5A 5A 5A 5A 5A 5A 5A 5A 5A 5A	VO 1.75 1.75 1.75 1.75 1.75 1.75 1.75 2.0 1.0 1.0 1.0 1.0 1.0 2.0 2.5 2.8 1.75 2.0 1.75 2.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1	LT /	A.C. 5.0 3.5 3.5 5.0 2.0 3.2 5.0 5.0 5.0 5.0 5.0 5.0	DET 10.5 2.2 3.0 10.5 (0.5 (0.5 (0.5 (0.5)	ECTOR A-F-AMPLIFIER A-F-AMPLIFIER R.F. AMPLIFIER BIAS DETECTOR AMPLIFIER BIAS DETECTOR AMPLIFIER IST DETECTOR AMPLIFIER SINGLE AMPLI. PUSH-PULL(AVG 2TUBES) CLASS A CL.8(AVG.2TUBES) AMPLIFIER CLA (PARALLELCONH) COMPLETE CL.8 (BOTH SECTIONS) DIODE DETECT. AMPLIFIER DETECTOR AMPLIFIER DETECTOR AMPLIFIER DETECTOR AMPLIFIER CLASS A PENTODE CLASS AB (2 T UBES) PENTODE TRIODE 2TUBES DIODE DETECT.	AN 250 250 180 250 180 250 180 250 180 250 180 250 180 250 250 250 250 250 250 250 25	4.5 2.5 90 90 90 90 90 90 90 90 90 90 90 90 90	2.0 NP 5 1 3 3 10 14.5 30 9 13.5 21 7APP. 3 3 3 5 5 6 0 0 13.5 20 13.5 20 13.5 20 13.5 20 13.5 20 13.5 20 13.5 20 13.5 20 13.5 20 13.5 20 13.5 20 13.5 20 20 13.5 20 20 13.5 20 20 13.5 20 20 13.5 20 20 13.5 20 20 20 13.5 20 20 20 20 20 20 20 20 20 20	LIF 0.5 4.0 5.5 6.2 4.5 5.0 5.2 6.3 6.5 3.1 36 447070 22 8 701275 3.1 7 287.50 6.3 5.50 5.2 3.1 7 287.50 6 8 5.0 2.2 8.2 2.6 3.5 2.0 8.2 2.0 8.2 2.0 8.2 2.0 8.2 2.0 8.2 2.0 8.2 2.0 8.2 2.0 8.2 2.0 8.2 2.0 8.2 <th>IEF 1000 600 630 833 833 99 9 9 9 9 9 9 9 9 9 9 9 9</th> <th>2.0M-A- 0.4M-A- 0.6M-A- 0.6M-A- 0.6M-A- 7600 7300 9000 9250 9000 9250 9250 0.8MA 1650 1700 2400 2400 11000 8500 7500 9500 2.0MA 0.8MA 2400 40000 8500 7500 9500 9500 9500 9500 9500 9500 9</th> <th>500 1000 1050 1050 1000 1000 975 1020 2050 2125 2050 2125 2050 2125 2050 2125 2050 2125 2050 2125 2050 2125 2050 2125 2500 3200 1100 2500 2500 2500 2500 2500 2500 2</th> <th>0.08 0.18 0.08 0.18 0.08 0.165 0.30 1.25 16 2.7 0.37 8 10 0.16 2.7 0.37 8 10 0.16 0.26 1.25 3 2.7 0.35 10 0.26 1.25 3 10 0.26 1.25 3 10 1.25 1.25 3 10 1.25 1.25 1.25 3 10 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25</th> <th>0.25M 0.1 M 0.1 M 0.1 M 0.1 M 0.1 M 0.1 M 0.0 0 13000 13000 13000 34000 34000 34000 34000 34000 34000 5000 MIN 5000 10000 20000 20000 20000 20000 20000 20000 10000 5000 10000 5000 3000 7000 8000 3000 7000</th> <th>15 15 50 50 50 50</th>	IEF 1000 600 630 833 833 99 9 9 9 9 9 9 9 9 9 9 9 9	2.0M-A- 0.4M-A- 0.6M-A- 0.6M-A- 0.6M-A- 7600 7300 9000 9250 9000 9250 9250 0.8MA 1650 1700 2400 2400 11000 8500 7500 9500 2.0MA 0.8MA 2400 40000 8500 7500 9500 9500 9500 9500 9500 9500 9	500 1000 1050 1050 1000 1000 975 1020 2050 2125 2050 2125 2050 2125 2050 2125 2050 2125 2050 2125 2050 2125 2050 2125 2500 3200 1100 2500 2500 2500 2500 2500 2500 2	0.08 0.18 0.08 0.18 0.08 0.165 0.30 1.25 16 2.7 0.37 8 10 0.16 2.7 0.37 8 10 0.16 0.26 1.25 3 2.7 0.35 10 0.26 1.25 3 10 0.26 1.25 3 10 1.25 1.25 3 10 1.25 1.25 1.25 3 10 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25	0.25M 0.1 M 0.1 M 0.1 M 0.1 M 0.1 M 0.1 M 0.0 0 13000 13000 13000 34000 34000 34000 34000 34000 34000 5000 MIN 5000 10000 20000 20000 20000 20000 20000 20000 10000 5000 10000 5000 3000 7000 8000 3000 7000	15 15 50 50 50 50
24A 26 27 <u>35</u> 51 45 46 47 53 55 56 57 58 59 2A3H 2A3H 2A5 2A6 2A7	TETRODE TRIODE TRIODE REMOTE CUT-OFF TETRODE TRIODE DOUBLE GRID TRIODE PENTODE TRIODE TRIODE PENTODE REMOTE CUT-OFE TRIODE TRIODE TRIODE TRIODE TRIODE TRIODE TRIODE TRIODE TRIODE TRIODE	HEATER HEATER HEATER HEATER HEATER HEATER HEATER HEATER HEATER HEATER HEATER HEATER HEATER HEATER HEATER HEATER HEATER HEATER HEATER HEATER	2.5 5 E MED SPIN 4 D MED. 4 PIN 5 A SM. 5 PIN 5 E MED. 5 PIN 4 D MED. 5 PIN 5 C MED. 5 PIN 5 C MED. 5 PIN 7 B MED. 5 PIN 7 B MED. 7 PIN 1 G. PIN CIRCU 6 G SM. 6 PIN 5 A SM. 6 PIN 7 A MED. 7 PIN 1 G.P. PIN 6 F 3 M. 6 PIN 4 D MED. 7 PIN 1 GF 3 M. 6 PIN 7 A MED. 7 PIN 1 GF 3 M. 6 PIN 7 A 1 GB 1 GF 5 M. 6 PIN 7 C	VO 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 2.0 1.0 1.0 1.0 1.0 1.0 2.0 2.5 2.8 1.75 0.8 0.8	LT / 0.007 //AX. 8.1 3.3 0.007 //AX. 2.0 3.2 0.007 MAX. 0.007 MAX. 2.0 3.2 0.007 MAX. 4 2.0 3.2 0.007 MAX. 4 2.0 3.2 0.007 MAX. 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	5.0 3.5 3.5 5.0 2.0 3.2 5.0 5.0 5.0 5.0	DET 10.5 2.2 3.0 10.5 (0.5 (0.5) (ECTOR A.F. AMPLIFIER A.F. AMPLIFIER R.F. AMPLIFIER BIAS DETECTOR AMPLIFIER JST DETECTOR AMPLIFIER JST DETECTOR AMPLIFIER SINGLE AMPLI. PUSH-PULL(AND 2TURES) CLASS A CL.B(AVG.2TURES) AMPLIFIER CLASS ATRIODE (L.A (PARALLELCONH) COMPLETE CL.B (BOTH SECTIONS) DIODE DETECT. AMPLIFIER DETECTOR AMPLIFIER DETECTOR AMPLIFIER DETECTOR AMPLIFIER CLASS A TRIODE CLASS A B (2 T U BES) PENTO DE TRIODE 2 TUBES DIODE DETECT. TRIODE AMPLI OSC SECTION	AN 250 250 180 250 135 180 250 135 180 250 135 180 250 135 180 250 250 100 250 250 250 250 250 250 250 2	4-5 2-5 90 90 90 90 90 90 90 90 90 90 90 90 90	2.0 NP 5 1 3 3 10 14.5 30 9 13.5 21 7APP. 3 3 3 1.5 56 0 0 13.5 20 20 13.5 20 20 20 13.5 20 20 20 13.5 20 20 20 20 20 20 20 20 20 20	$\begin{array}{c} \textbf{O} \cdot \textbf{S} \\ \textbf{A} \cdot \textbf{O} \\ \textbf{A} \cdot \textbf{O} \\ \textbf{A} \cdot \textbf{O} \\ \textbf{S} \cdot \textbf{S} \\ \textbf{G} \cdot \textbf{C} \\ \textbf{G} \\ $	1 E F 1000 600 630 833 99 9 9 9 9 9 9 9 9 9 9 9 9	2.0M-A- 0.4M-A- 0.6M-A- 0.6M-A- 0.6M-A- 0.6M-A- 7600 7300 9000 9250 9000 9250 0.8M-A 2400 2.400 8500 7500 9500 2.0M-A- 2400 40000 8500 7500 9500 2.0M-A- 91000	500 1000 1050 1150 1000 1150 1000 1050 2125 2050 2350 22500 2350 2350 1020 1050 2050 2350 2050 2350 2550 2550 1225 1100 2600 2500 2500 2500 2500 2500 2500 25	0.08 0.18 0.08 0.18 0.08 0.165 0.30 1.25 16 2.7 0.37 8 10 1.25 16 2.7 0.37 8 10 0.16 2.7 0.37 8 10 0.16 2.7 0.37 8 10 0.16 2.7 0.37 8 10 0.26 1.25 1.25 10 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25	0.25MA 0.1 M - A 0.1 M - A 0.1 M - A 0.1 M - A 0.1 M - A 0.2 500 10 500 34 000 34 000 34 000 34 000 34 000 34 000 35 000 35 000 35 000 10 000 20 000 47 000 0.2 5 M A 5000 47 000 0.2 5 M A 5000 3000 7000 8000 7000 8000 7000 8000 7000 8000	15 15 50 50 50 50
24A 26 27 <u>35</u> 51 45 46 47 53 55 56 57 58 59 2A3 2A3H 2A5 2A3H 2A5 2A6 2A7	TETRODE TRIODE TRIODE REMOTE CUT-OFF TETROPE TRIODE TRIODE PENTODE TRIODE TRIODE TRIODE TRIODE TRIODE TRIODE TRIODE TRIODE TRIODE TRIODE TRIDE PENTODE TRIODE TRIDE PENTODE TRIODE TRIODE TRIODE TRIODE TRIODE TRIDE PENTODE TRIODE TRIODE TRIODE TRIODE TRIODE TRIODE TRIODE TRIODE TRIODE TRIODE TRIODE TRIODE TRIODE TRIODE TRIODE	HEATER HEATER HEATER FIL. FIL. FIL. FIL. HEATER HEATER HEATER HEATER HEATER HEATER HEATER HEATER HEATER HEATER HEATER HEATER HEATER	2.5 5 E MED SPIN 4 D MED.4 PIN 5 A SM.5 PIN 5 E MED.5 PIN 4 D MED.4 PIN 5 C MED.5 PIN 7 B MED.5 PIN 7 B MED.7 PIN 5 A SM.5 PIN 6 F SM.6 PIN 5 A SM.5 PIN 6 F SM.6 PIN 4 D MED.4 PIN 7 C SM.7 PIN 7 C SM.7 PIN 7 C	VO 1.75 1.75 1.75 1.75 1.75 1.75 1.75 2.0 1.0 1.0 1.0 1.0 1.0 2.0 2.0 2.0 2.0 2.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1	LT /	A.C. 5.0 3.5 3.5 5.0 2.0 3.2 5.0 5.0 5.0 5.0 7 8.5	DET 10.5 2.2 3.0 10.5 (0.5 (0.5) (0.5	ECTOR A.F. AMPLIFIER A.F. AMPLIFIER R.F. AMPLIFIER BIAS DETECTOR AMPLIFIER IST DETECTOR AMPLIFIER IST DETECTOR AMPLIFIER SINGLE AMPLI. PUSH-PULL(ANG 2 TOBES) CLASS A CL.B(AVG.2 TUBES) DIODE DETECT. AMPLIFIER DETECTOR AMPLIFIER DETECTOR AMPLIFIER DETECTOR AMPLIFIER DETECTOR AMPLIFIER DETECTOR AMPLIFIER DETECTOR AMPLIFIER IST DETECT. AMPLIFIER IST DETECT. AMPLIFIER DETECTOR AMPLIFIER AMPLIFIER AMPLIFIER AMPLIFIER AMPLIFIER AMPLIFIE	AN 250 250 180 250 180 250 135 180 250 135 180 250 250 250 250 250 250 250 25	4.5 2.5 90 100 100 100 100 100 100	2.0 NP 5 1 3 3 10 14.5 30 9 13.5 21 7APP. 3 3 1.5 5 5 6 70 3 3 1.5 5 5 6 70 3 3 1.5 5 5 6 0 0 13.5 20 7 4.5 3 3 1.5 5 5 6 0 0 13.5 3 1.5 5 5 6 0 0 13.5 3 1.5 5 5 6 0 0 13.5 3 1.5 5 5 6 0 0 13.5 3 1.5 5 5 6 0 0 1.3 5 5 6 0 0 1.3 5 5 6 0 0 1.3 5 20 7 0 0 0 1.3 5 20 7 0 0 0 1.3 5 20 7 0 0 0 1.3 5 20 7 0 0 0 1.3 5 20 7 0 0 0 1.3 5 20 7 7 7 7 7 7 7 7 7 7 7 7 7	0.5 4.0 5.5 6.2 4.5 5.0 5.2 6.3 6.3 6.3 6.3 6.3 3.1 36 447070 22 8 7075 31 36 447075 31 7 287550 6 8 5:0 2:0 8:2 2:0 8:2 2:0 8:2 2:0 8:2 2:0 8:2 2:0 8:2 2:0 3:5 2:5:0 3:5 2:5:0 3:5 2:0 8:0 3:1 3:1 3:1 3:1 3:1	JEF 1000 600 630 83 83 99 9 9 9 9 9 9 9 9 9 9 9 9	X TU 2.0M-A- 0.4M-A 0.6M-A 7600 9000 9250 0.3MA 0.4M-A 0.650 9000 9250 0.3MA 0.4M-A 1650 1700 2400 600000 11000 8500 7500 9500 2.0M-A 0.8M-A 2400 40000 8500 9500 2.0M-A 91000 0.1M-A 91000 0.36MA 0.36MA	500 1000 1050 1150 1050 1050 1050 200 200 200 200 200 200 200 200 200	0.08 0.18 0.08 0.165 0.30 10 1.25 16 20 2.7 0.37 8 10 0.35 10 0.35 10 0.26 0.26 10 1.25 16 20 2.7 0.37 8 10 0.26 10 1.25 16 0.26 10 1.25 16 0.26 10 1.25 16 0.26 10 1.25 16 0.26 10 1.25 16 0.26 10 1.25 10 10 10 10 10 10 10 10 10 10 10 10 10	0.25MA 0.1 M - 0.1 M - 0.1 M - 0.1 M - 0.1 M - 0.2500 13000 34000 34000 34000 34000 34000 34000 35000 35000 35000 35000 35000 2000000	15 15 50 50 50 7 50

www.americanradiohistorv.com

.

TYPE	DESCRI	PTION	BASING	FIL.	CAPAC	MICRO	CES	UPER MILES	PLATE	SCR.	GRID	PLATE	AMP	PLATE	MUT.	MAX	RECOMM.	CUT-OFF
NO			SOCKET	CURRENT	GRID	THERO	OUT-	WHEN USED AS	SUPPLY	GRID	BIAS	CURRENT	FACTOR	RESIS.	COND	UNDIST. OUTPUT	LOAD RESIS.	BIAS
140.	TYPE	CATHODE	CHART	11115	PLATE	INPUT	PUT		VOLTS	VOLTS	VOLTS	M.A.		UHMS	PHHOS	WATTS	UHMS	VOLTS
			3.2	5 V (OLT	D.C.	. DE	TECTO	R /	AND	AN	APL	FIE	RT	JBE	S		
00	TRICE	F · · ·	4D	0				AMPLIELED	175		225	6 5	37	6300	525	0.110	6500	
20	INIUDE	TIL.	SM.4 PIN	0.132				GR. LEAN NOT	133		- L.J + A	1.5	5.3 6.2	17000	370	0		
<u>v-99</u> X-99	TRIODE	FIL	SPEC. 4 PIN	0.063	3.3	25	2.5	AMPLIFIER	90		4.5	2.5	6.6	15500	4-25	0.007	15500	
22	SCREEN	FIL.	4K	0.132	0.020 MAX	3.3	12	R.F. AMPLI.	135	67.5 22.5	0.75	<u>3.7</u> 0.3	160	0.32MA 2.0M-~	500		0.25M-~	7.5
	UNID		- 120.TFIN								A A							
			5.0	, v(ULT	D.C	. 08	ILLIO	r A	ND						3		
124	TRIODE	FIL	4D	0.25	0.8	4.0	2.0	AMPLIFIER	135		DC AC 9.0	6.2	8.5	5100	1650	0.13	9000	
714	TRIADE	EU	4D	0.25				AMPLIFIER	135		27.0 295	17.3	3.0	1820	1650	0.40	3000	
AL/	CONADOD		MED.4 PIN	0.2.5			0.5		180		40.5 43.0	20	<u>3.0</u>	1750	1700	0.79	4800	
200A	TRIODE	FIL	MED.4 PIN	0.25	8.5	5.2	2.0	GRIERK DET.	45		-A	1.5	20	12000	670			
01A	TRIODE	FIL	4D MED.4 PIN	0.25	81	3.1	2.2	AMOULTIEP	4 5 90		4.5	2.5	8.0	11.000	725	0.015	25000	
10	TRIADE	FII	4D	0.25	8.8	3.4	1.5	BIAS DETECT	135		9 4.5	3.0 0.1	8.0	10000	800	0.055	20000 0.25M-2	
40		1.16.	MED.4 PIN		0.0			AUDIO AMPLI.	180		3	0.2	30	0.15MA	500	`	0.25M	
		18 - 184	6 7	3 \/		AC	OR 1	D.C. DETE	TOP			MPI	_1F1	ER TI	BE	S		
-			0.0	• • • •		, V .										-	0.2544	
36	TETRODE	HEATER	5E	0.30	0.007	3.7	9.2	AMPLIFIC	100	67.5 55	6 .5	1.8	470	0.55M~	850		0.6341-	7
	1		SM. 5 PIN		MAX.			BIAS DETECTOP	250	90	<u>20</u>	3.2	595	0.55M-	1080			7
37	TRIODE	HEATER	SM R PIN	0.30	2.0	3.5	2.2	AMPLIFIER	90		6	2.5	9.2	11500	800	0.03	17 500	
		_	FE						250	100	81	7.5	9.2 80	8400	950	0.34	13 500	
38	PENTODE	HEATER	SHL 5 PIN	0.30				AMPLIFIER	135	135	13.5	9	100	0.1M-2	1000	0.525	13 500	
20	REMOTE		55					IST DETECTOR	250 90 TD 250	90	25 7APP.	66	120	0.18-2	1200	£.5	10000	
44	CUT-OFF	HEATER	SM.5 PIN	0.30	0.007	3.5	10	AMPLIFIER	90	90	3	5.6	360	0.375M-	960			42
41	PENTANC	UEATTO	68	0.40	-74A.			AMPLIFIER	180	180	13.5	18.5	150	81000	1850	1.5	9000	TE
	TERIODE	REALER	SH. G PIN	0.70				PENTODE	250	250	18	32 34	150	68000 79000	2200	3.4 3	7600	
42	PENTODE	HEATER	6B	0.70	#2.00-		A B ***	AMPLIFIER	315	315	22	42	230	0.1M-A	2300	5	7000	
52	DOUBLE	EII	5C	0.70	+2 GR.T	U PL, CL.	A-D-TRI	CLASS A	110		-58 -0	43	5.2	1750	3000	1.5	2000	
56	TRIODE	r	MED.5 PIN	0.50				CL.B (AVG. 2 TVBES)	180		0	61040 0.8	100	91000	1100	6	9000 MIN.	
75	DIODE	HEATER	SM. 5 PIN	0.30	2.0	2.0	4.0	TRIODE AMPLI.	250		2	0.1					0.25M-~-	
76	TRIODE	HEATER	5G Sm.gpin	0.30	2.8	3.5	2.5	AMPLIFIER	90 250		0 13.5	5.0	13.8	9500	1450	0.25	50000	
77	PENTODE	HEATER	6F	0.30	0.007	4.0	11	DETECTOR	250	100	4.3	22	1500	1.5 M-A-	1250			7 5
70	REMOTE	NEATED	GF	0.30	0.007	40	11	IST DETECTOR	250	100	10	2.3	1300	1.319136	1230			7.5
70	PENTOPE		SM.G.PIN		MAX.			AMPLIFIER	250	100	3	7.0	1160	0.8M-~-	1450		14000	42
79	TRIODE	HEATER	SH.GPIN	0.60				BOTH SECTIONS	250		0	20 TO 60		0-	-	8	14000	
85	DUPLEX DIODE TRIODE	HEATER	6G SM.GPIN	0.30	2.0	2.0	4.0	DIODE DETECT.	180 250		13.5	ی 8	8.3	8500	975 1100	0.16	20000	
20	TRIPLE	UFATED	6F	0.00				CLA TRIODE	250	250	31	32	4.7	2600	1800	0.9	5500	
07	GRID	nlai ek	SM 6 PIN	0.40				CL. BTRIDDE (2TUCK)	250	230	0	6 10 50	120	,		5	10000 MIN.	
6A3	TRIODE	FIL	4D	1.0				SINGLE AMPLI.	250 325	SELA	45 63	60 130 T0 150	4.2	008.	5250	3.3	2500 5000	
			11CV. 4 MIN					(2 TUBES)	325	FIXED BIAS	63	140 70200	100	AFAC	2200	15	3000	
LA	PENTODE	FIL.	D 15 MED. 5 PIN	0.30				CL.AB (2TUBES)	230	230	55	32	SELF-E	<u></u>	00-~	4.2	16000	
12A5	PENTODE	HEATER	7F	6.3V.0.6A 12.64.03A	8.5	4	2	AMPLIFIER	100	100	15	17 39			1700	0.65	4500	
	TWIN		78	0.0				CL.A PARALLEL CONN.	294		6	7	35	11000	3200	0.37	35000	
6A6	TRIODE	HEATER	LG. PIN CIRCLE	0.8				COMPLETE CL.B	250 300		0	28 TO 50 35 TO 50				8	8000	
647	HEPTODE	NEATER	70	0.30	1.0	7	5.5	OSC. SECTION	250		50000-1	4		-		(a)	R _{c2} 0.02.M-	
			SM.7PIN		0.3	8.5	9	MIXER SECTION	250	100	3	4	FO	0.36MA	520	CONDUCTANCE	7000	45 VOLTS RMS
CDE	DUAL	HEATER	6D	0.80				SINGLE TUBE	# 325		0	45 a 51 9	ວຽ	24000	2400	4 5.2	7000	15
000	TRIODE	JENIEN	MED. 6 PIN	V.UU				TWO TUBES	* 250		0	33 6.5				8.5	10000	38
	DUPLEX		70					DIODE DETECT.	" 525 100	100	3	5.8	285	0.3M-A-	950	13.5	10000	42
687	PENTODE	HEATER	SM.7 PIN	0.30	0.010 MAX	3.3	10	R.F. AMPLIFIER	250	100	3	6.0	800	0.8M-	1000		0.2 4.4	17
SCC	PENTADE	HEATED	6F	0.30	0.007	52	6.8	DETECTOR	250	100	3.8	0.00		-			0.25M	
000	REMOTE		SH.G PIN	0.50	MAX.		0.0	AMPLIFIER	250	100	3	2.0	2500	5.0M-	1225			7
606	CUT-OFF	HEATER	SH.G PIN	0.30	0.007 MAX.	5.2	6.8	AMPLIFIER	250	100	3	8.2	1280	0.8M	1600			50
6E5	RAY	HEATER	6R SM.GPIN	0.30				TUNING	ANGL	E 15 90	E 250 P AT E) **(THR) &=0*, /	JIM~)T ANGLE	ARGET 25	AT E	0.25 m.a	AND SHA	vow
656	TWIN	HEATER	7B	0.60				COMPLETE CL.A	180		20	23	6.0	2150	2800	0.75	15000	
	TRIODE	1	7F		2.0	2.5	3.0	TRIODE AMPLI	100		۲ <i>.</i> 5 3	56 <u>3</u> .5	6.0 8	1750	5400	0.6	14-000	
6F7	PENTODE	HEATER	SM.7 PIN	0.30	800.0	3.2	15	PENTODE IST DET.	250	100	10	65	900	OREMA	1100			F 0
CGE	CATHODE	ULATED	6R	0.30	MAX.			TINING MORATER	WITH	PLAT	5 E 250	0.3 V. (THRU	1M^)	CARGET 2	50% I	L=0.25	m.a. AND SH	ADOW
CUO	RAY		SH-GPIN	0.00				TORTING INVICATOR	ANGLE	E IS 90	• AT E	$c = O^{\nu};$	ANGL	EISZER	D AT E	e =22	APPRO	х.
ON/U	TRIODE	HEATER	OCTAL MED.	U.00								SAME	AS	040				

www.americanradiohistorv.com

	1		1		CAPA	CITAN	CEC.	1	OPERA	TING	i co	NDIT	IONS	5 AN	D CHAP	RACT	ERIS	TICS	
TYPE	DESCRIP	TION	BASING	FIL	MICR	-MICRO	FARADS				SCR.	GRID	DIATE	A	PLATE	MUT	MAX.	RECOMM	CUT-OFF
	<u> </u>		SOCKET	CURRENT	6.010	1		WH	EN	SUPPLY	GRID	BIAS	CURRENT	AMIPL	RESIST.	COND.	UNDIST.	LOAD	BIAS
NO.	TYPE	CATH-	CHART	A MPS.	PLATE	INPUT	PUT		^3	VOLTS	VOLTS	VOLTS	M.A.	FACIOR	OHMS	UMHOS.	WATTS	OHMS	VOLTS
├	<u>1 </u>		1			<u>ا</u>			DOM			(NEG.)					1		1
						<u>.5 v</u>	ULI	AL	PUN	EK.	AMH	1111	EK	IUR	52				
10	TRIODE	FIL.	4 P	1.25	-			AMPL	IFIER	350		31	16	8.0	5150	1550	0.9	11000	
			MED. 4 PIN	1,	<u> </u>					425		39	18	8.0	5000	1600	1.6	10000	
50	TRIODE	FIL.	MED. 4 PIN	1.25				AMPI	IFIER	450		84	-+5	3.8	1900	2000	4.6	4350	
—			·	CEO	IEC			A 17	BOW						710	EC		1556	
				SER	123	FILF	INIE		PUV							22			
43	PENTODE	HEATER	68	0.34	Į			AMPL	FIER	95	95	15	20	90	45000	2000	0.9	4500	
10			6 B	0.4-3						96	96	1.9	50	100	40000	3800	2.75	1500	
48	PENTODE	HEATER	MED G PIN	30 V.	1			AMPL	IFIER	125	100	22.5	56	<u>├</u> ──		3900	2.5	1 500	+
12 47	PENTODE	HEATER	7K	0.31				AMPL	IFIER	135	135	13.5	9	100	0.1M-~	975	0.55	13500	
	& DIODE		SM. 7 PIN	12.6 V.				RECT	FIER	125 RMS			30 MAX	.[
				ME	ΤΑΙ	. DE'	TEC	TO	r an	DA	MP	<u>P</u> LIF	=1E	R ⁻	TUBI	ES			
CAO	HEDTADE	HEATED	8A		1	7	4.5	OSC-S	ECTION	250		50000-^-	4	Т					
0H0	HEFRONE	HCAI CK	OCTAL 8P	0.5	0.05	13	13.0	MIXER	SECTION	250	100	3	4		0.3644	5208	ON DUCTANCE		
605	TRIODE	HEATER	60	0.30	2.0	4.5	14	QSCIL	LATOR	90	ļ	0		-	10000				
OFF	-		OCIAL6	·				AMPL	IFIER	250		2	8	20	66000	2000			
615	IKIODE	HEATER	OCTAL SP	0.30]		AMPI	LIFIER	250		2	0.1	1.00	00000	1300		0.25 M-2	
			75					PENTO	E ANP.	250	250	16.5	34	185	79000	2350	3	7000	
16 F6	PENTODE	HEATER	OCTAL	0.70				CL AP	PENYDON	250	250	20 340☆	51	6.2	2700	2300	0.85	4000	
1 1			7 PIN			1		AMPL	(2TUBES)	375	250	26 FILED	34				19	10000	
6н6	TWIN DODE	HEATER	7Q0.7 P.	0.30				DIODE	DET.	AC			2 MAX				-		
077	DENTRE		7R		I			DETE	CTOR	250	100	3.8						0.25M-1	
607	PENIODE	HEATER	7 PIN	0.30	0.002	8	15	AMPL	IFIER	2.50	125	3	4	2520	2.014.0	1550			9
	<u>├</u>		79					ST DE	TECTOR	250	100		۲_	2500	£.UM-1L	1425			
1 6K7	PENTODE	HEATER	OCTAL	0.30	0.005	8	12		IFIER	250	125	3	10.5	990	0.6M-1	1650			52
			7 PIN					AUL	IFIER	2.50	100	3	7	1160	0.8M-2	14-50			4-2
			-71/	ļ				PWR.	MPLI.	2.50	2.50	14v	72	135	22500	6000	SCR.G.C	URRENT 5MA	
	TETRACT		Y SMALL					AMP.	ELF BIAS	375	125	9	24				4.2	14000	
610	TEIRODE	HEATER	OCTAL	0.9				FIXED	BIAS	375	250	17.5	57				4.0	4000	
1 ·			7 PIN	1				2TVOES?	HIL BIAS	400	2.50	20.0	8810168	·			40	6000	
								(23)	FIX.BIAS	400	300	25.0	102 10 2 30				60	3800	
6L7	HEPTODE	HEATER	OCT. 7 PIN	0.30	PL 0.001	6 1 5	13	MIX	ER	250	150	63 IS	3.3	L ₂₋₄ =8.3	2.0M-~	350	CONDUCTANCE		61.45
COR	DUPLEX		7V				A.C.	DIODE	DETECT	100	100	63 D	0.35	70	0.87M-L	800			63 12
6Q/	TRIODE	HEALEK	OCT. 7 PIN	0.30	1.2	v	47.5	TRIOD	E AMP.	250		3	1.1	70	0.58M-A	1200		0.25H-1-	
6R7	TRIODE	HEATER	7 V.O.7 P.	0.30	2.0	6	4.5	DIODE DE	AMPLIFIER	250		90	9.5	16	8500	1900	85.0	15000	
25A6	PENTODE	HEATER	75 0.7 P.	0.34				AMPL	IFIER	95	95	15	20	90	45000	2000	0.9	4500	
<u> </u>			I	123.04.	[100	155		30	100	40000	2 500	6.13	3000	
						R	ЕСТ	TIFL	ER	٦	ΓUE	3 E S)						
				_				× 4 6 1101 77	Martine	- 1 - 4							Tex		
						1PS VO	L. PER	ANOPE	CURR CAMP	S) INVE	SEVOUS	PLATE CI	DRR. FI	TERCOND	FUSER CATU	HEATER	MAX-DCV	OLTS DEL. TO FIL	TER (NOM-)
BA	FULLWA	VE GA	S COLO) 4J H.	4 P		-	350	0.350	10	000	1.0	0	- ER CUITP					300
вн	FULLWA	VE GA	5 COL) 4J M.	4 P. –	- -	-	350	0.125	IC	00	0.4	0						300
BR	HALFWA		S COL	D 4H H	4 P	- -	-	300	0.050	<u> </u>	350	0.2	0				3	00	
1-V	HALFWA		C. HEATE	R SM. 4	PIN 0	.3 6	3	350	0.050	10	000	0.2	0		5	00	4	00	
		H10	H .	4	c L_			350	0.125		000	0.4	-0				3	00 1	225
08	FULI, WAN	E VA	c. FIL	· MED.4	PIN 2	.0 5.	<u>ا</u> ۲	400	0.110	1	00	0.3	5				3	70 1	275
				1 1	2			550	0.135	1	500	0.3	0 20	HENRI	ES	_	-		125
81.	HALF WAY	E VACU	IUM FIL	· MED. 4	PIN I	25 7.	5	700	0.085	2	000	FULL W	AVE				7	50	550
82	FULLWA	F MERC	URY	40	- 7	.0 2	5	500	0.125	11	00	0.4	-0		-		-		425
UL		VAP	OR	MED.4	- PIN					114	0					•			765
83	FULL WAV	E	OR FIL	- 4 (MED. 4	PIN 3	.0 5	0	500	0.250	14	-00	8.0	30				5	30 -	400
8211	GULL MAN	HIG	H	4		0 =		500	0.25		00						-		
UJ V	I ULL WAY	C VACL	WH TEALE	MED.4	PIN		· •	300	0.52	114	-00	0.8	NU				5		285
0Z3	FULL WAV	EGA	S COLD	51			-	350	0.075 MA	×. 17	50	0.7	20				4	25	300
074	Em	-	<u> </u>	311-5 	2				0.075 #4	x									
024	FULL WAV	E G A	5 COLI	0cT.4	-PIN	_ -	-	350	0.030 MI	N. 15	50	0.2	20				4	25	300
5Y3	FULL WAY	EHIG	H FII	DCTAL	1ED. 2	.0 5	0		SAME		4 5	TYP	E 8	30					
	Personal and a second		. · · ·	SHELLS	PIN		-			+			`						
525	FULL WAV	EVA	e FIL	· MED.4	PIN 3	.0 5	.0	500	0.250	14	00	0.7	0				4	BO 3	360
6Z4	F/IL \ \A/AV	HIG	H UFATE	g 51		5 0	2	350	0.000		00	0.2	0		-	0.0	A -	25	7.0-
84	I YEL WAY	VA	C.	"SH-5		o c.		530	0.000										200
1272			HEATE	Rland		.3 12	6	250	0.060		100	0.3	so		3	50	3	10	
16231	HALF WA	NE VA	C. m=m=	. I . Ind	F 44				0.200	, .	700	0.4	LO RE		R 3	50	+		
1663 2670	HALF WA		H UFATE	p 6		2 01		120								50	1 2	00	
1223 2525	HALF WA		HEATI	R 61		.3 25	.0	125	0.100	5 ·	700	0.2	20 0	OUBLE	<u>R</u> 3	50	2	20	
2525	HALF WA		H HEATT	R GI		.3 25	.0	125			700 T()	0.2 BFC	20 D	OUBLE	R 3	50	1	20	
25Z5	HALF WA		H HEATT	R GI		.3 25	.0 L R	I25 RECT			700 TU	o.2 BES	20 0	OUBLE	R 3	50		20	
2525 5W4	HALF WA RECTIFIER DOUBLER		H HEATT	SH S		.3 25 IETA 5 5.	.0 L R	125 RECT	0.110		700 TUI	D.2 BES	<u>20</u> 0	OUBLE	R 3	50	2 1 3	70	
5W4	HALF WA		H HEATT	5H 6 5H 6 0et. 5		.3 25 IETA 5 5	.0 L R 0 3	125 EC7 350	0.110		700 TUI	BES		OUBLE	<u> </u>	50	3	70	275
5 W 4	HALF WA RECTIFIER DOUBLER FULL WAVE	HIG VACU HIG	H HEATT	SH S		.3 25 IETA .5 5. .0 5.	.0 L R 0 3 .0 4	125 REC7 350 400	0.110 0.125		700 TUI 00	0.2 BES 0.5	20 D	OUBLE	R 3	50	3 ⁻ 47	20 20 70 25	275
5W4 5Z4 6X5	HALF WA RECTIFIER DOUBLER FULL WAVE FULL WAVE		H HEATT	SH 4 R 61 SH 6 OCT. 6 R 0CT. 5 R 0CT. 6	E PIN C	.3 25 IETA .5 5. .0 5.	.0 L R 0 3 .0	125 EC 350 400 350	0.110 0.125 0.075		700 TUI 00	0.2 BES 0.5	20 b	OUBLE	5	50	2 1 3 ⁻ 47 47	20 20 70 25 20	275
5W4 5Z4 6X5	HALF WA RECTIFIER DOUBLER FULL WAVE FULL WAVE FULL WAVE RECTIFIE	HIG HIG VACU E HIG VACU E HIG VACU E HIG VACU	H HEATT	SH 4 SH 6 SH 6 OCT. 6 R 0CT. 6 R 0CT. 6 P 70	E PIN C PIN C PIN 1 PIN 2 S DIN C Q C	.3 25 IETA 5 5. .0 5. 0.6 6.	.0 L R .0 .0 .0 .0	125 RECT 350 400 350	0.110 0.125 0.075 0.075		700 TUI 00 250 700	0.2 BES 0.5 0.2	20 D	CTIFIC		50 50 00	2 1 3 4 4 4 4 0 2	20 20 70 25 25 25	275

www.americanradiohistorv.com

SPECIAL TUBES										
TYPE	FILA	MENT	BA	SING	CHARACTERISTICS					
NO.	VOLTS	AMPS	VIEW	SHIELD CONN. TO	USE & DIMENSIONS					
2S 4S	2.5	1.35	5D	CATHODEPIN	APPROXIMATELY 40MA ON EAD DIODE PLATE AT SOVOLTS DC. DUPLEX DIODE DETECTOR					
24 S	2.5	1.75	5E	CATHODE PIN	SAME AS 24A					
275	2.5	1.75	5E	CATHODE PIN	SAME AS 27					
35 5 5	2.5	1.75	5E	CATHODE PIN	SAME AS 35					
555	2.5	1.0	6G	CATHODE PIN	SAME AS 55					
565	2.5	1.0	5A	CATHODE PIN	SAME AS 56					
575	2.5	1.0	6F	CATHODEPIN	SAME AS 57					
57 A S	6.3	0.4	6F	CATHODE PIN	SAME AS GCG EXCEPT HEATER AMPS.					
585	2.5	1.0	6F	CATHODE PIN	SAME AS 58					
58AS	6.3	0.4	6F	CATHODE PIN	SAME AS 6DG EXCEPT HEATER AMPS.					
75 S	6.3	0.3	6G	CATHODE PIN	SAME AS 75					
85AS	6.3	0.3	6 G	HEATER PIN ADJACENT TO CATHODE PIN	SIMILAR TO 85 EXCEPT AMP. FACTOR = 20 MUTUAL COND = 1250 ; PLATE CURR. = 5.5MA. PLATE VOLTS = 250V; GRID BIAS = -9V.					
182B	5.0	1.25	4D	NO SHIELD	SIM. TO 45 EXCEPT FIL. VOLTS, AMP. FACT. \$ 5.0 MUTVAL COND. = 1800, PLATE CURR. = 18 MA. PL. VOLTS = 250 V. GR. BIAS = - 35V.					
183	5.0	125	4D	NO SHIELD	SIM. TO 4 SEXCEPT FIL. VOLTS: AMP. FACT. # 3.0, MUT. COND.= 1500, PL. CURR.= 20 MA., PL. VOLTS= 250V1 GR. BIAS = - 5.8 V.					
485	3.0	1.25	5A	NO SHIELD	SIM. TO 27 EXCEPT HEATER VOLTS; AMA FACT = 12.8 MUT COND = 1300; PL. CURE = 52 M.A.; PL. VOLTS=180V.; GR. BIAS= ~10V.					
950	2.0	0.12	5 K	NO SHIELD	SIM. TO 33 EXCEPT FIL AMPS; PL. CURR. = 7 MA. POWER OUTPUT:= 0.45 WATTS, PL. Q SCR. VOLTS = 135 V. MAX CONT. GR. BIAS=-165					
2A7S	2.5	1.0	7C	CATHODEPIN	SAME AS 2A7					
222 G84	2.5	1.5	4B	NO SHIELD	SIMILAR TO I-V					
6A7S	6.3	0.3	7C	CATHODEPIN	SAME AS 6A7					
6B7S	6.3	0.3	70	CATHODE PIN	SAME AS 6B7					
6C7	6.3	0.3	7G	SEPARATE PIN	SAME AS 85A-S					
6D7	6.3	0.3	7H	SEPARATE PIN	SAME AS 6C6					
6E7	6.3	0.3	7H	SEPARATE PIN	SAME AS 6D6					
6F7S	6.3	0.3	7E	CATHODE PIN	SAME AS 6F7					
6Y5	6.3	0.8	6J	SEPARATE PIN	SIMILAR TO 674 84					
625	12.6	0.4 0.8	6K	NO SHIELD	SIMILAR TO 624 84					

COMPARISON CHART SIMILAR CHARACTERISTICS									
OCTAL BASE G L A S S	METAL GLASS	METAL	GLASS						
5Y3	5Z4MG		80						
6A8G	6A8MG		6A7						
6C5G	6C5MG	6C5							
6F5G	6F5MG	6F5	75 TRIODE						
6F6G	6F6MG	6F6	42						
6H6G	6H6MG	6н6							
6J7G	6J7MG	6J7	77						
6K7G	6K7MG	6K7	78						
6L7G	6L7MG	6L7	•						
6N7G	6N7MG		646						
	GNGMG		6B5						
6Q 7G	6Q7MG	6Q7							
6R7G	6R7MG	6R7							
6X56	6X5MG	6X5							
686	6B6		75						
6P7	6P7		6F7						
25A6G	25A6MG	2546	43						
25Z6G	25Z6MG	25Z6	25Z5						

TABLE OF COMPARATIVE TYPES									
OCTAL BASE GLASS	METAL GLASS	METAL	GLASS						
5V4			83V						
6L6G		6L6							
1C7G			106						
1D5G			1A4						
1D7G			1A6						
1E5G			184						
1F5G			1F4						
1H4G			30						
1H6G ·			^{1B5} /255						
1J6G			19						

BASE CONNECTIONS OCTAL BASE TWO VOLT GLASS TUBES

OCTAL BASE "G" TYPES	EQUIV. TYPES	1	2	3	4	5	6	7	8	ТОР Сар
4C76	106	NC	+F	Ρ	G362	G	G ₂	-F	NC	G4
1D5G	1A4	NC	+F	р	G۲	NC		-F	NC	G_1
1D76	1A6	NC	+F	Ρ	G3G2	G_1	Gz	~F	NC	G₄
1E5G	1B4	NC	ŧ۶	Ρ	G2	NC	1	-F	NC	G1
1F5G	1F4	NC	+F	Ρ	G2	G1		-F	NC	
1H4G	30	NC	+F	Ρ	NC	G1	-	-F	NC	
1466	185/ 25 5	NC	+F	Ρ	D(+)	D(-)	G	-F	NC	
1J6G	19	NC	+F	P	G1	G٤	Pa	-F	NC	

14

www.americanradiohistory.com

A YEAR OF METAL TUBES

Are metal tubes worth while? This review of the first season of metal tubes, based on interviews of tube and set manufacturers, engineers and dealers, indicates an affirmative answer.

J UST one year ago the idea of metal tubes was introduced to the public and shortly thereafter receivers using metal tubes were offered for sale. For some months the question as to whether metal tubes were worthwhile was beclouded by propaganda for and against. Between the enthusiasts and the pessimists among the manufacturers and dealers, the public was left pretty much to make up its own mind as to whether it believed in the new development-or whether it would insist on glass tubes. The answer of Mr. and Mrs. Public was

16

unanimous and spectacular.

ODAY there can be no question about the status of metal tubes in the mind of the average radio-set purchaser, but it is nevertheless interesting to review the phenomenal rise of the metal tube. Its development and acceptance have not been entirely a path of roses. In the first few months of production there were many complaints. concerning mainly the short life of certain types of metal tubes. The principal reason for this condition was that the tremendous demand resulted in a premature rush of production in the tube factories which kept them going at high speed twenty-four hours a day. The second reason was that several different types of tubes were introduced simultaneously and all of them put into immediate heavy production.

It is a safe guess that had an equal number of new glass tubes been brought out simultaneously, and suddenly rushed into high-speed production, just about the same amount of trouble would have been encountered.

Previously the glass tubes had been introduced one at a time and in each case their acceptance by set manufacturers was slow enough to permit the

By The Staff

"bugs" of production to be ironed out before a sizable demand developed. This is a logical course of procedure, as no new vacuum tube type can be fully perfected until it has gone through its "baptism of fire" in actual receiver circuits under conditions of normal use.

Under the circumstances, the tube manufacturers really did a remarkable job. They faced an unprecedented situation. They could not introduce metal tubes one type at a time because it would be a little bit ridiculous for set manufacturers to develop receivers which would use one or two metal tubes and glass tubes for the balance. Moreover, set manufacturers would have been hampered in going into full production because they would have to revamp their designs from week to week as additional types of metal tubes were introduced. Also, the inclusion of one or two metal tubes in a radio receiver would offer little buying appeal to the public, whereas the introduction of allmetal-tube receivers undoubtedly contributed very largely to the tremendous radio sales experienced during the past ten months.

Early Criticisms

Much of the early criticism of metal tubes was unquestionably justified. From the standpoint of metal tube proponents. however, it is only fair to state that metal tubes received the blame for all sorts of failures for which they were not responsible.

During the season just closed there were of course some manufacturers who were unwilling to use the metal tubes. Some of the more conservative pre-

ferred to wait until the metal tubes had They produced proven themselves. some mighty fine glass-tube sets. Others had completed their production plans before metal tubes were available and decided to carry on with glass tubes rather than undertake the expense involved in altering these plans. Most of this latter group of set manufacturers did subsequently change over to metal tubes and others are planning to do so next season.

Favor Metal Tubes

The general acceptance of the metal tube has definitely put the production plans for the coming year on an even more extensive scale than last year. A check was made on this point among engineers who have been and are now engaged in designing receivers for the 1936-7 season. The engineers consulted favor the metal tubes to the last man. The editors believe without any question whatsoever that metal tubes have arrived but that glass tubes will be used on some special jobs and as replacements in old receivers. This opinion is based on rather extensive inquiries and investigation among set manufacturers, dealers and tube manufacturers.

The investigation made by RADIO NEWS included a visit to the RCA Radiotron plant at Harrison. New Jersey, with the object of looking into the whole question of metal tubes versus glass from a technical and a tube production standpoint and to review the metal tube development now that the heat of controversy has subsided. Following are some of the conclusions reached. The metal tube is not radically revolutionary in its effectiveness as compared with similar glass types. It has several advantages, each in (Turn to page 45)

	V						7								UNNINGHA	
				Ef	់1 _f	Ep	Esg	Eg	١p	Isg	mu	Rp	Gm	PLAT	E AND SC	
STATI CHA	C AND	DYNAM	MIC CS	6.3	0.9	250	250	-14	72	5	135	22500	6000	010011	11000	
MAXI	MUM F	RATING	35:			-										
SINGL	E TUBE	CLASS	A1 AMP.			375	250								24 WÁTI	"s
PUSH-F	PULLEL	ASSA	AMR	\downarrow		375	250								24 WATT	s
PUSH-P	PULL CL	ASS AB	AMR		_	400	300			·					24 WAT	rs
					_	400	300								24 WAT	TS
					_ T	YPI	CAL	- OF	PER	AT	ION	l				
TYPE OF BIAS	Ep	Esg	Eg	PEAK / GRID-V	A.F. OLTS	lp ZERO STG.	Ι _Ρ ΜΑΧ. 513.	lsg ZERO SIG.	Jse MAX SIG		DAD HMS		ARMO		OUTPUT WATTS	PEAK
				S	ING	LE T	UBE	CLA	SSA			FIFR		uno		
FIXED	375	125	-9	8		24	26	0.7	1.8	14	.000	9	8	4	4.9	
SELF	375	125	-9	8.	5	24	24.3	0.6	2	14	,000	9	8	4	4	
SELF	250	250	-14	14		72	79	5	7.3	2	.500	10	9:7	2.5	6.5	
FIXED	300	200	-12.5	14	5	4.9	<u>78,</u> 55	25	7.2		,500	10	9.7	2.5	6.5	
SELF	300	200	-11.8	12,	5	51	54.5	3	4.6	4	,500	11	10.7	2:5	6.5	
FIXED	375	250	-17.5	17.	5	57	67	2.5	6	4	.000	14.5	11.5	4.2	11.5	
					PL	SH-P	ULL	CLASS	S A1	AM	LIFI	ER				
FIXED	250	250	-16	32		120	140	10	16	5.0	000	2		2	14.5	
	230	200	-10	35.	2	120	130		15	5,	000	2		5	13.8	
FIVED	400	250	- 20		۲۰		ULL	LAS	S AB	<u>1</u> AN	PLIF					
FIXED	400	250	-20	40	•	88	126	4	9 12	6,0	500	1		1	20	
SELF	400	250	-19	43.	B	96	110	4.6	10.8	8	500	2		2	20.5	
FIXED	400	300	- 25	50		100	152	5	17	6,	600	2		2	34	
FILED	400	300	-23.5	57	-+	112	128	6	16	6,	600	2		5	30	
		_ 300	23	- 50	P	ISH-P		.5 1.459	12 AB-	1. 3. AM	008	0.6 = R		0.6	23	
FIXED	400	250	-20	57		88	168	4	13			-1\ 			40	
FIXED	400	300	- 25	80		102	230	6	20	3,	B00	*			40	180
																aau

DRIVER, NOT OVER 2 PER CENT. SUBSCRIPT 1 IN A1 AND AB1 INDICATES NO GRID CURRENT IS DRAWN. SUBSCRIPT 2 IN AB2 INDICATES GRID CURRENT IS DRAWN DURING A PART OF THE CYCLE.

Profits in GROUP Hearing AIDS

By Richard Feeney

S ERVICEMEN and dealers are realizing that they must have one or more profitable side-lines. allied to the radio or electric field, if they are to watch the black figures mount on the balance sheet at the end of their business year. A field comparatively unexplored and as yet not subject to the intense competition present in ser-

vicing and public-address work is the installation of group hearing-aid systems in churches, theaters and auditoriums. This field offers profitable opportunities if gone after with earnest and serious intent (*Turn to page* 57)

www.americanradiohistorv.com

Data on the 6 L 6 TUBE

By J. van Lienden

A NEW type of metal power amplifier tube, recently released, is expected to become the most frequently used audio tube for large receivers. It is constructed on an entirely new principle. The electrodes are arranged in such a way as to concentrate the electron current into a beam of high intensity.

This results in an excellent power tube which has a high power output at high efficiency and low distortion. Even in circuits which do not require any grid current a maximum power of 34 watts is obtainable with but 2 percent. harmonic distortion. A maximum of 60 watts can be had from a pair of 6L6tubes when they are operated "AB₂," that is, when the grids go positive during a part of the cycle.

The tube is a tetrode, and contains a screen-grid (but no suppressor grid). Due to the nature of the internal construction the screen does not absorb any appreciable power and the space charge itself provides the suppressor action. Like other multi-element power tubes, the power sensitivity is high and a large power output can be obtained without driving the grids positive.

The Table shows the characteristics of the 6L6 tubes under different conditions. It will be seen that the second harmonic distortion of a single tube is high. This was done intentionally since it permitted the third and higher harmonics to be very low. The second harmonic can be cancelled in push-pull circuits, this results (*Turn to page 59*)

An Effective AUDIO Oscillator By Frank J. Burris W6KGG

T is believed that the beat-frequency oscillator described herewith is one of the simplest that has ever been offered, yet the results procurable with it are equal to some instruments which cost over two hundred dollars. Aside from only two tubes, a variable condenser and an audio output transformer, the remainder of this hook-up should not cost over three dollars.

A beat-frequency oscillator is an instrument for supplying a continuous band of audio signal energy and, to be most useful, should have a range of about 50 to 10,000 cycles per second. The most practical method of obtaining this range is that of heterodyning two radio frequencies, then rectifying and amplifying the result in an audio amplifier, since the nature of the plate impedance in the detector circuit determines what envelope frequency will be amplified. But all is not quite so simple as it sounds. In the first place, we will concern ourselves with only good wave shapes of audio frequency, a fairly uni-

THE AUTHOR'S MODEL OF THE OSCILLATOR

Constructed in an old cabinet, the model shown here includes a meter and switch which are employed for special microphone tests and are not shown in the circuit

form output response over the band, and no lock-in effect at the lowfrequency end.

In the unit described here these requirements have been adequately met as follows: If one plots out on graph paper two sine waves (Figures 2A and 2B) of same amplitude but varying in frequency, say, 6 to 10 cycles, then plots the sum of their upper halves as rectified and then constructs an average wave as fed into the audio amplifier, he will find that the audio wave is like that of Figure 2A. Hence we strive for a balanced wave and find that a closer approach is had by reducing the amplitude of one of the waves as shown in Figure 2B. Too great a reduction results in loss of audio signal energy, so it is found that the best results are obtained with a radio-frequency mixing ratio of about ten to one. Though it is theoretically impossible to obtain a sine audio wave from any combination of two sine radio waves, nevertheless our results are most satisfactory.

Secondly, a good level response may be expected over the band, due to simplicity in the amplifier and its inherent characteristics. If the output characteristic is measured (*Turn to page 56*)

THE "INNARDS"

The assembly is in the left-hand compartment except for the zeroadjusting condenser shown at right of the partition

circuit design are assured through the use of the new 6G5 cathode-ray tuning indicator just introduced by the National Union Radio Corporation. The triode amplifier section of this new tube has a remote cut-off characteristic which spreads out the operating range over a 22-volt variation in a.v.c. potential. The earlier type 6E5 tubes were designed for

(*Turn to page* 45)

Seeing's Believing! (A Report on a Television Demonstration)

By The Television Reporter

SEEING'S believing! As far as television is concerned, that old adage has enhanced significance. And now that RADIO NEWS has seen the fruits of America's foremost television engineers' research labors, we are more assured than ever that sight-and-sound programs can be made available to the public whenever the radio moguls give the order to shoot the works. The television predictions made by the RADIO NEWS Television Reporter in the May, 1936, issue, seem to be as correct as Emily Post's calling card.

David Sarnoff, president of the Radio Corporation of America, formally announced that the New York transmissions (on an experimental basis) would begin on June 29, 1936. One of the preliminaries to the launching of the metropolitan visual broadcasts was a special demonstration for the editors of the RCA television transmitter and latest model home-type receiver. The impressive test at Camden, New Jersey, was attended by two members of the RADIO NEWS staff— Laurence M. Cockaday, Editor, and Samuel Kaufman, Broadcast Editor.

The Experimental Receivers

 $T_{\rm a}$ maze of Camden streets to a low, garage-like structure one mile airline from the main plant where the transmitter was located. The only external evidence of the secretive receiving work that had been going on at the spot was the 10-foot vertical doublet antenna atop the building.

An average-size radio console contains all of the sight-and-sound receiver equipment. The kinescope apparatus has been cleverly arranged in the cabinet to conserve space. By keeping the long cathode-ray tube vertical, the depth of the cabinet is considerably less than in other types of television receivers using the valve in a horizontal position. A chrome mirror lining on a raised phonograph-type lid reflects the 5 by 7-inch picture to the viewers.

What We Saw

T HE image and voice of Frank E. Mullen, manager of the RCA department of information, were the first program items of the demonstration. The image was fluorescent green in color, but the figure was easily recognized. Mullen was smoking and the puffs were easily discernible at the receiving end a mile distant. Some of the visiting editors and writers, including our own Mr. Cockaday, stepped before the iconoscope at the transmitter and were heard and viewed by a portion of the press delegation at the other end. Then came the highlight of the day! The sensitive

Then came the highlight of the day! The sensitive eye of the iconoscope was turned to an open window to pick up in minute detail a fire-fighting exhibition especially staged for the occasion by the Camden Fire Department. The fire apparatus was clearly seen as it clanged up to the smoking structure. And the synchronized sound made the reproduction as complete as any talking newsreel. Ladders were quickly raised, fireman after fireman mounted, hose was hoisted up and the streams of water were clearly seen as they were played over the smoking roof. The entire building and considerable background was clearly reproduced. Automobiles crossing the Philadelphia-Camden Bridge were even visible on the receiver screen. A billboard that conveniently extolled the merits of the RCA radio receiver was easily read by the television audience.

The outdoor fire-fighting scene was quite spectacular and demonstrated what we might expect in the way of news event pick-ups. The engineers had the benefit of bright sunshine over most of the area of the television scene.

And "Movies" Too

THE transmission of a talkie short completed the program. This too was impressive and enjoyable.

So much for the performance! Now, back to the equipment. The receiver has a single tuning knob for both sight and sound. It tunes from 48 megacycles with sound on 46 megacycles. The television sidebands are $1\frac{1}{2}$ megacycles wide. The sound frequency is $2\frac{1}{4}$ megacycles lower. Synchronization of sight and sound is simple, it merely being necessary to tune in the image and the accompanying sound is automatically set.

A single antenna (10-foot vertical doublet, as previously indicated) is used as well as a single oscillator in the receiver. There is, however, separate i.f. for image and sound. The picture i.f. frequency is 10 to $11\frac{1}{2}$ megacycles and the sound i.f., $8\frac{3}{4}$ to 9 megacycles.

How Tuning Is Done

I N all there are 33 tubes in the receiver, most of them being standard types. The 9-inch cathode tube is the most expensive component, its nearest equivalent on the present market listed at \$105. The tube is especially sheathed and its face protected by a pane of shatterproof glass. This precaution was deemed essential to protect the consumers, as well as the equipment, from any harm in the event of the tube's breaking.

At a first glance, it seems that there are so many manual controls on the set that it might require the services of an engineer to operate them. But the operation is really quite simple; once the controls are set, they'll need very little further attention.

In addition to the central sight-and-sound tuning knob on the face of the set, there are six picture-and-phone controls for contrast, brightness, selectivity, high frequency tuning, density and modulation. Seven controls on the top of the unit regulate speed, focus, synchronization, size and vertical and horizontal framing. These on the top rarely need any attention. The set has a 350-watt drain from the a.c. mains.

The iconoscope at the transmitter, the brain child of Dr. Vladimir K. Zworykin, RCA director of electronic research, is said to be capable of doing anything a motion-picture camera can do. Two 802 tubes are used in the Camden transmitter. A 30-watt carrier was used at the press demonstration.

Ralph R. Beal, RCA chief engineer; E. W. Engstrom, • in charge of RCA television and facsimile engineering; Dr. Zworykin and Mr. Mullen (*Turn to page* 55)

AMATEUR *RECEIVING* ANTENNAS

THE amateur too often devotes endtion of his transmitting antenna and completely disregards his receiving aerial. He uses any piece of wire strung off the ground that happens to be available. True, the transmitting aerial is important and an approach to perfection is necessary in order to put out a good signal, particularly on the high frequencies, but so, too, is the receiving antenna. It is a safe wager that more than 50 per cent of the licensed stations in the country disregard its importance!

MPORTANCE of the receiving antenna cannot be stressed too much. If a station has a good transmitting antenna and a poor one for receiving, the net result is the signals are heard at distant points, but successful contacts are few, and the man with the poor receiving antenna is the one who is most troubled with the interference problem. In the case of strong signals, the haphazardly strung piece of wire will suffice, but in the reception of weak ones it is another story. In many cases a good antenna, when compared with a poor one, on a receiver will raise a R4 to R5 signal to R8 or R9.

IN ITALY

Amateur and Listening Post of A.

Passini, whose con-

tacts include North

and South America,

Asia and Africa. Mr. Passini is also

an Official Radio News Observer

Testing various types of antennas with a receiver which includes a dependable meter for checking signal strength tells the story. The human ear is known to be a very poor audiometer. Large differences in signal input, without observing the calibrated input, are not aurally detectable! However, when measuring carrier strengths of the

A CZECH AMATEUR STATION Captain B. Seidl of Prague, Czechoslovakia, operator of station OK1LL, is known throughout the world through this transmission to other amateurs

same signals with different antenna, the results are surprising.

For the purpose of tests conducted by the writer, three different antennas were tried: a vertical 33 feet high, an L type 132 feet long and a 20-meter doublet. The tests were made, of course, on 20 meters with all three, and with the first two on the lower frequency bands. The doublet and L antennas were strung from northwest to southeast, which happens to be the most desirable for reception in the Middle Atlantic States.

Noise Level

A factor which enters into the picture is noise level—disturbances that may range from negligible inputs to as high as several microvolts. As a matter of fact it is this noise level combined with the tube noise level of a receiver that limits sensitivity. If both could be eliminated, the sensitivity of receivers could be increased almost indefinitely. However, this idea is entirely utopian and cannot possibly be achieved as long as vacuum tubes are used for amplification and detection.

At the location where the tests were made, the man-made noise level was negligible (there being only a small amount from occasional automobiles), so all we had to contend with was the tube "rush." And here are some of the results obtained:

NY2AE in the Canal Zone was tuned in on the vertical antenna. His carrier strength we will assume to be one. On the L, his carrier level increased to slightly more than twice the previous input level, and with the doublet it increased to ten times the original voltage level. This sounds almost unbelievable, but it's true. At the same time it might be pointed out that the signals received on all three antennas were what the average amateur would call R9 without the use of some visible signal-strength recording device.

NY2AE was working G5NI, so we tuned to him and made the same series of tests. It will be noted the change in direction was about 90 degrees. G5NI was 15 degrees off the axis of the doublet and L and NY2AE more than 70 degrees. G5NI was putting in a very strong signal at the time. With the vertical, his carrier strength was twice as strong as NY2AE's; with the L,

A Department for the amateur operator to help him keep up-to-date

DX ON 5 METERS

On May 9th, a Saturday night, from 11:30 p.m. E.S.T. to 1:05 a.m. Sunday morning a peculiar condition of the upper atmosphere made possible the first two-way phone contacts between the Mid-dle West and the East Coast on five meters. At least twenty sta-tions in the West were reported heard on the East Coast and your editor, through his station W2JCY, heard at least 18 stations situated around the Chicago area and some in Wisconsin, Michigan and western Pennsylvania. Mr. Cockaday also has confirmations of three two-way five-meter contacts between Chicago and his station in New York, the best of which was a fifteen-minute talk with W9AUQ in Oak Park, Illinois, operated by Al L. Cox. A comprehensive re-port on this five-meter DX will be given in an article next month. Sounds encouraging!

five times, and with the doublet, 50 times. Another test was made on ZL2FA in New Zealand. He was using c.w. and had remarkable signal strength. The signal increase was 9 to 1 when changing from the vertical antenna to the doublet.

Similar comparative tests were made on 40 other stations operating in the 20-meter 'phone and c.w. bands. The results were about in the same proportion on all signals recorded. Obviously, it pays to do some experimenting with the receiving antenna as well as the transmitting aerial. At the same time the tests showed up the high degree of inaccuracy in the R system of giving reports on amateur signals. As we pointed out before, signals over a wide range of input could be classified as R9. This would seem to explain why in so many instances, when two stations establish contact, one reporting the other R9 on the first transmission and then, on the second, coming back with a "sorry O.M., on your first transmission your signal was just roaring in here, but now the QRM has you down. I could hear your heterodyne and that's about all!" It is all because the ear is so misleading. The "R9" signal (*Turn to page* 53)

You Need This HAM Gadget

by John H. Potts

THIS new and simple Radio News test instrument employs one type 1B5 due diede triede and one type 20

duo-diode triode and one type 30 tube. The pick-up coil, for 5 meters, consists of a 3-inch loop of heavy wire tuned by a 50-mmfd. Hammarlund midget condenser. For lower frequencies suitable coils are substituted for the 3-inch loop. For use at some distance from the transmitter a pick-up wire may be connected to one of the coil terminals for added sensitivity. The incoming signal is applied to one diode section of the 1B5 and the rectified voltage drop across R1 furnishes the grid bias for the triode section of this tube. The plate circuit is direct-coupled to the grid of the 30 tube, with the plate cur-rent return passing through R2. Variations in this current make corresponding changes in the voltage drop across R2 and likewise the grid potential of the 30.

A O-1-ma. meter is connected in the plate return circuit of the 30 and will give more than half-scale deflection with a moderate carrier signal input, either modulated or

CIRCUIT-CONSTRUCTION This illustration shows the inside view of the various parts and tubes. Below:

un-modulated. For use as a monitor, phones may be plugged in the jack provided. Since the connection is made in the return circuit, any accidental short occurring in the output circuit will not injure the plate battery or tubes.

The entire unit is assembled on the cover of a 6 inch by 6 inch by 6 inch Insuline metal cabinet, with the batteries inside. All parts are insulated from the cabinet.

The instrument as it stands is highly sensitive. For high power rigs, the sensitivity may be reduced by varying R1. If, for any reason, increased sensitivity is desired, it may be obtained by using an extra $22\frac{1}{2}$ volt battery in the output circuit.

The apparatus may be readily adapted to a wide variety of applications. As a tube voltmeter, the terminals designated "link" may be opened and the external circuit Figure 1B connected. The grid voltage without battery "C" in the circuit may be adjusted to give a reading near maximum deflection on the output milliammeter. Note the voltmeter reading at this adjustment. Next, with the terminals "A" and "B" connected to the unknown voltage, the output meter will now deflect downward. Additional biasing battery "C" is added until the output meter reading returns to the original setting. The voltmeter will then indicate directly the unknown voltage plus the initial voltage, if d.c., and will give indications proportional to the positive peak if a.c. is being measured. A calibration for a.c. may be conveniently made at 60 cycles, checking against a regular a.c. meter. If the circuit under test is open, a high-resistance leak may be connected (Turn to page 53)

Technical Data and Description of a New

16-TUBE SUPERHET (Hammarlund Super-Pro) By S. G. Taylor

IN the winter of 1934 the writer had an opportunity to conduct some "on the air" tests of an early laboratory model of the Hammarlund "Super-Pro." The intervening sixteen months have been spent by the engineers in refining each part and function to the highest possible degree with the result that the final receiver as recently placed on the market is an unusually complete job suitable for dependable use in every type of radio reception service above 540 kc., whether amateur, commercial, regular broadcast or short-wave broadcast.

Excellent Fidelity

As a broadcast receiver it provides excellent fidelity together with a degree of sensitivity which represents the maximum that can be used even in good locations. Selectivity is variable ranging from a degree adequately broad to permit excellent fidelity of tone at one extreme, to a sharpness which results in decided side-band cutting at the other extreme. A very effective system of a.v.c. is included but in addition, by flipping a switch, the sensitivity may be controlled manually, and individual controls are provided for r.f. and i.f. sensitivity. This permits any desired balance of i.f. and r.f. gain with the result that the best combination for maximum signal-to-noise ratio is readily attained in any location. With the a.v.c. system in operation, these two types of gain are still subject to manual control to limit sensitivity to a degree permitted by the local noise level.

Primarily the "Super-Pro" is a communications type receiver. All of the features mentioned in connection with the broadcast range likewise apply to all the short-wave ranges. In all there are five bands providing complete coverage from 540 to 20,000 kc. In the three highest ranges, which combined cover

LISTENING POST TESTS

In the author's listening post, in an apartment house where the noise level is high, this receiver has daily been bringing in "Ham" phone stations from all points of the world—and s.w. broadcasters and commercials pound in at all hours of the day and night

> from 2500 to 20,000 kc., electrical band-spread tuning is employed. The main tuning dial is used to adjust the receiver to the particular range to be covered then the fine tuning within that range is accomplished by the duplicate tuning control and dial just at the right of the center of the front panel. The bandspread is approximately the same on all frequencies and is equal to about 1 degree per $4\frac{1}{2}$ kilocycles, or 70 kc.

per inch of dial scale. Sixteen tubes are employed, 14 of which are shown on the schematic diagram below. There are two stages of tuned r.f. amplication on all bands, four i.f. stages and three a.f. stages. The a.v.c. system employs a dual-purpose 6B7 tube as a.v.c. amplifier and rectifier. The first detector or mixer is a 6A7 and the r.f. oscillator is a separate 6C6. Another 6C6 is used as a beat-frequency oscillator. The power supply is a separate unit not shown here. It includes a 5Z3 rectifier and a (*Turn to page* 59)

S TABILITY equal to that obtainable on lower amateur frequencies may be obtained at 5 meters by following standard M.O.P.A. design practice, provided certain precautions are taken with respect to mechanical layout and choice of tubes.

S IGNALS from the transmitter described, operated at Hewlett, Long Island, have been received on a standard all-wave superheterodyne using two sharply-tuned, transformer-coupled i.f. stages. Absence of frequency modulation has been further demonstrated by satisfactory reception of 'phone signals on this same receiver operated with its beat oscillator in the "ON" position. Attempts to receive typical modulated oscillators of the long-line type have, by way of comparison, proven completely

THE CHASSIS LAYOUTS

The two views below show the top and bottom of the r.f. unit. At bottom is the combination modulator and power supply.

5-METER M.O.P.A. B_y C. A. Nuebling

fruitless on this type of receiver. C.W. reception of the emitted signal is completely practical, comparing favorably with present-day 40- or 80meter transmission.

The circuit shown in Fig. 1 is fundamentally sound in every respect; all "tricks" have been avoided. There are no twin tubes, push-pull stages which are hard to excite, or pentodes in the final stages which are difficult to keep from going "up in smoke" when under modulation. By avoiding all so-called short cuts and concentrating on highfrequency facts, a stable, high-efficiency transmitter can be constructed.

The 89 oscillator of this M.O.P.A. transmitter is operated on 20 meters, electron coupled. The plate circuit is tuned to 10 meters and feeds into the second tube, an 89 doubling from 10 to 5. An 802 buffer provides ample excitation to an 801 in the final stage running 60 watts input. The omission of an r.f.c. in the grid circuits of the 89 doubler and 802 stages is rather unusual. However, by so doing, stray capacities are avoided and a high leak resistance provides a minimum of grid losses. Inductive coupling is desirable from the 802 buffer to the final stage to furnish maximum energy transfer and to further isolate the modulated stage from the rest of the transmitter. The use of a triode in this stage was thought desirable when one studies the interelectrode capacities of pentode and screen-grid tubes. The tank circuit of the 801 is of the split-stator variety, supplying high efficiency by virtue of the high l.c. radio. This is accomplished by reducing the circulating tank current and consequently the heating of this circuit and of the tube itself.

The power supplies are mounted on the lower shelf along with the modulator, and supply 600 volts for the 801 final, 500 volts for the 802 buffer and 450 volts for the oscillator and doubler. This transformer is a special U. T. C. job delivering 600 volts at 350 ma. which feeds all the r.f. stages. The modulator consists of a pair of 59's in Class B, driven by a single 59' Class A; all of which is run from the second supply of 450 volts at 200 ma. The speech amplifier (not shown) consists of a 6F5 high-mu triode, resistancecoupled to a 6C5 (Turn to page 56)

TESTING THE RIG ON DX Lieutenant Clark at the transmitter during tests at the Westchester Listening Post (W2JCY), other operators taking care of logging reports of stations in the First District

Experimenting with CRYSTAL Control on "FIVE" By Ralph Clark

ITH the development of sharp superheterodyne retuning ceivers for 5 meters it is becoming imperative that transmitters utilizing crystal control be designed for use on this band. The writer, who has been experimenting with crystal control transmitters for the last year, placed on the air during December 1935 such a transmitter and has been conducting experiments in cooperation with the editors of RADIO NEWS since that time. The results have been so gratifying that it was considered advisable to place before other experimenters the circuit arrangement for a crystal-control exciter of 30 watts power. The diagram ac-companying this article gives all the details of this job which is part of a transmitter being constructed for instal-lation at W2JCY. Mr. Cockaday's transmitter will, however, contain an additional linear amplifier using two 304A tubes in the final stage. Such a transmitter, with suitable audio channels, will be suitable for wide-band television transmission as well as for voice-frequency work.

The present model utilizes three of the new 6L6 tubes in the crystal oscillator (which at present is 20 meters) and the first and second doubler stages, with two RK25 tubes in the output. The inter-stage coupling employed is very simple, using impedance circuits. The present audio channel is a completely metal-tube job (using 6L6 tubes class A-B) which drives the exciter unit with 100 percent modulation out of any type of high-quality microphone.

The results on reception at various distant points in the First, Second and Third Districts have been very gratifying, it being easy to put R8 and R9

signals East as far as Stratford, Connecticut and Southwest well in to the Third District. Reports on quality have indicated "broadcast quality" type of signals with this rig. It is interesting to note that tests at various points with sharply tuned receivers of the superheterodyne variety such as the ACR 175 and the Midwest job pulled in these signals remarkably well with high fidelity reception without any swinging

The CQ'er _{By W2JCR}

UNIQUE and practical gadget which has been in use with the 5-meter transmitter at W2JCR is described here because of the interest displayed in it by other 5-meter stations. The "CQ'er" as shown in the accompanying photograph is a combination i.c.w. oscillator and microphone input unit which is connected to the input of the speech amplifier of the trans-The switch on the front panel mitter. is a 3-position affair. When thrown to the left it connects in the i.c.w. oscillator, automatically turning on the tube filaments. When thrown to the right the i.c.w. feature is cut out, the microphone is cut in and the microphone battery automatically connected. In the middle position of the switch all batteries are disconnected. The pilot light shows when the switch is in either of the two operating positions.

The i.c.w. circuit provides dual tone. Two type 30, two-volt tubes are used. each with small audio transformer connected in its circuit as a conventional audio oscillator. The output of the two tubes is mixed in the winding of the microphone transformer. The tone of either oscillator can be varied over a wide range by means of the filament potentiometers and the overall pitch of the two oscillators can be changed simultaneously by varying the filament rheostat. This combination of three controls provides the utmost in flexibility and any combination of tones desired may be obtained. This unusual arrangement provides a distinctive "trademark of the air" for any station using it.

Practice at W2JCR is to adjust one

being noticed. On such receivers the signals from this transmitter cut through interference from frequencymodulated transmitters when it completely covered up the band upon which transmission was being made. From these indications the utilization of such transmitter circuits as shown above should do much to eliminate the QRM now found on the (*Turn to page* 59)

of the carrier or frequency modulation

THE CONTROL PANEL

At the lower right is the microphone terminal strip and just above it the key jacks. At the left are the output terminals with the 3-position switch in the lower center and just above it the pilot light. The knobs at the right and left regulate the two audio tones individually and the center knob varies the two tones simultaneously

oscillator at a high frequency that will cut through the QRM and the other one for a rather low frequency. The microphone battery (*Turn to page* 58)

Test Results On A

5-600 METER SUPER (RCA Model ACR-175) By Everett M. Walker

W2MW

PERATING tests recently completed on the new RCA model ACR-175 receiver at the author's amateur station and at RADIO NEWS short-wave listening posts show that it offers many features of interest to both the amateur and short-wave listener. The receiver is designed primarily for use in amateur stations and therefore contains all of the features that make for simplified operation, elimination of interference on crowded bands and copying of telegraph and telephone signals—features which are, of course, equally advantageous in all classes of short-wave reception.

The set is an eleven-tube superheterodyne employing ten metal tubes and one electron-ray tube as a tuning indicator and signal strength indicator. Its wide range of frequency coverage is unusual in that it covers continuously from 500 to 60,000 kilocycles or 600 meters to 5 meters in four bands.

Technical specifications on the receiver were published last month in "The Ham Shack." In review, however it might be pointed out that the set is mounted in a black crinkle-finish metal cabinet. The ten tubes used in the set proper are: three 6K7's as radio-frequency and intermediate-frequency amplifiers; two 6J7's as oscillators; one 6L7 as first detector; one 6H6 as second detector and automatic volume control; one 6F5 first audio amplifier; one 6F6 as audiooutput tube; and one 5Z4 rectifier. The tuning indicator, a glass tube, is a 6E5.

Band-Spread Tuning

The tuning is controlled by a master dial mounted in the center of the set. which is calibrated in megacycles. The amateur bands are clearly identified. and a 100-to-1 ratio vernier control spreads these bands out sufficiently to make tuning of stations a simple matter, even on the higher frequencies. For instance, on the 20-meter amateur 'phone band more than twenty divisions are available and on the 75-meter 'phone band stations are spread out over nearly forty divisions on the high-ratio pointer which travels over a 360-degee scale marked off in 100 divisions.

Nine controls are mounted on the

front panel, the tuning dial of course UNDER being in the middle. The ACR-175 They are, from left tests at the lis to right: 1, combined power, tone amateu control and standby switch; 2, calibrated signal-input (sensitivity) control;

orated signal-input (sensitivity) control; 3, crystal phasing control; 4, a.v.c. "onoff" switch; 5, dual-ratio vernier tuning control; 6, range switch; 7, audio gain control; 8, beat oscillator "on-off" switch; and 9, calibrated heterodyne control. A headphone jack which cuts out the speaker is mounted on one end of the cabinet.

Signal Strength Meter

One of the interesting features, particularly to the amateur, is the calibrated signal input control. This unit facilitates an accurate check and comparison of the strength of incoming signals. These values, of course, vary with different types of antenna, but once the most ideally suited aerial is found, it is possible to gauge the intensity of signals far more accurately than can be done by the human ear. The meter makes use of the electron-ray tuning tube and a calibrated sensitivity control. Much interest was found in observing the strengths of signals over a period of time in the test made at the amateur station post.

Six amateur bands are covered by the receiver, including the 5-meter band. On tests made on the 40-meter amateur band, the receiver proved to be ex-tremely sensitive and selective. Amateurs in both the United States and Canada are licensed to use c.w. only on this band, and it is estimated that more than 40 percent of the licensed stations operate on this channel. It is so extremely crowded and interference is a real problem. The ACR-175 handled exceptionally well here. The beatoscillator seemed to have ample power to provide a good beat frequency and at the same time showed no tendency to cause blocking. The crystal filter cir-cuit was found exceptionally valuable in picking out signals that otherwise were smothered by interference. Extreme selectivity is afforded, and in

www.americanradiohistorv.com

UNDER TEST AT R. N. LISTENING POST The ACR-175 receiver is shown here during "on the air" tests at the listening post in a city apartment house. The results of these tests and those conducted at the author's amateur station are described in this article

> several instances comparatively weak signals that were practically unreadable without the filter in the circuit were completely isolated after careful adjustment of the phasing control and the beat-frequency pitch control.

On the 75-meter 'phone band stations from all sections of the country were heard. The crystal also functioned well on 'phone signals, it being possible to adjust the phasing control to a high degree of selectivity before extreme distortion was noticeable. At the same time it helped to eliminate a large proportion of the heterodyne interference encountered. The tuning indicator also helped in adjusting the crystal filter circuit. It facilitated holding the peak carrier adjustment while phasing for the elimination of interference.

Stations Logged

On 20 meters stations from all parts of the world were copied over a short period of time. Hundreds of stations period of time. Hundreds of stations were logged. In one evening some of the outstanding were: G5NL, HI5X, W9HCV, XEIQ, XE1AJ, SU8NA, W9KFL, CO6OM, W4BGO, W5SF, CO2WZ, YV4AC, W9EMU, W6ANQ, W6CFJ, W5EEH, XE2N, W5BDB, NV2AE HH5TA CO8VB W6ISH CO8YB, NY2AE, HH5TA, W6ISH. CO2HY, W6FJ, W5ELC, W6CZ W6AM, VK2XQ, W6DTE, W6EZ, W6AM, VK2XQ, W6DTE, W6BYO, G6LK, W5JO, W6JH, W6QD, EA7AV, EA5BE, EA5AO, ZL2FA, W6DNN, W6CQG, TI2AV, CO7CX, G5NI, CO7CX, W6LLQ, ZL2NQ, W7FP, VE4OF, VE4CW. K6CNČ XE3W, CO2KC, HP1A, OA4AK and W6LR.

A few of the stations heard on 75meter phone and 80-meter c.w. were: W4CVQ, W8LWD, W9MM, W4BYA, W8BWH, W3ZY, W8ABS, W3BIN, W8BRC, W8CS, W8CEI, W9NGZ, VE3GO, W1ADM, VE2GP, W9LOK, W9JPK, W4KN, W4AWZ, W4AUP, W3SL, W4BYY, CO8YB, W9IZT, W4ACZ, W8NSL, (Turn to page 55)

CUBAN SHORT-WAVE STATION Observer Lopez took this beautiful photograph of the Cuban station COCD 6130 kc. which is surrounded by a grove of stately palm trees.

THE fortieth installment of the DX Corner for Short Waves contains the World Short-Wave Time-Table for 24hour use all over the world. Consult it regularly and make your all-wave set pay big dividends!

Recommendations for Station Reports

To make the work of compiling station reports as efficient as possible it is recommended that our Observers send in reports on post cards at any time during the month that the stations are logged. This allows the work of the editor to be spread out during the month instead of working on an enormous amount of mail around the 30th. Please remember to keep your infor-mation on stations logged specific! To further classify our recommendations

of last month it is thought best that reports be arranged in three ways:

No. 1-New Stations

No. 2—Station Changes No. 3—Exceptionally Fine 'Catches' No other information than this should be included on the card except the Observer's or listener's name and address and the fact that he is either a Listener or an Observer for his territory. A standard form for this would be the following:

NEW STATIONS

W2XAF, Schenectady, New York, 9530 kc., 31.4 meters, daily 4 p.m. to midnight, E.S.T. (from verifications).

STATION CHANGES

HCJB, Quito, Equador, changed fre-quency from 8900 kc. to 8590 kc., daily

LIKES HIS RADIO AND CAR This is Frank Sakely, Sr., ardent short-wave listener of Roseburg, Ore-gon, who is proud of his hobbies that help him to see and hear so much of distant places.

for the

Conducted by

Laurence

1:30 to 4:30 a.m., E.S.T. (from announcement).

THE WORLD'S ORIGINAL ORGANIZATION OF

S.W. PIONEERS Official RADIO NEWS Listening Post Observers

LISTED below by states are the Official RADIO NEWS Short-Wave Listening Post Observers who are serving conscientiously in logging stations for the DX Corner. United States of America

Observers who are set ving contentions of a logging stations for the DX Corner. United States of America
Alabama, J. E. Brooks, L. T. Lee, Jr.,
William D. Owens; Arizona, Harry Wolf;
Arkansas, James G. Moore, Caleb A. Wilkinson, Claude H. Dalrymple, Charles Holt,
John Hartshorn, Chester A. Joerger; California, Eugene S. Allen, A. E. Berger, C. H.
Canning, Earl G. DeHaven, G. C. Gallagher,
Werner Howald, Robert J. McMahon,
Oriente I. Noda, George C. Sholin, James
E. Moore Jr., Phil E. Lockwood, Hank G.
Wedel, H. H. Parker, Fred A. Pilgrim,
Frank Andrews, Fred M. Craft, Radio Fellowship, George C. Akins, Gabriel M. Costes,
Bernard L. Wood; Colorado, Wm. J. Vette,
T. B. Mechling; Connecticut, H. Kemp,
George A. Smith, Harold R. Smith, Philip
Swanson, Herbert J. Hyde; District of
Columbia, Philip R. Belt; Florida, James
F. Dechart, George H. Fletcher, E. M. Law;
Georgia, C. H. Armstrong, Guy R. Bigbee, James L. Davis, John McCarley, R. W.
Winfree, Owen Reeve, Ed McKay; Idaho,
Bernard Starr, Lawrence Swenson, Melton
and Gilpin Amos; Illinois, E. Bergemen,
Larry Eisler, Robert Irving, R. O. Lamb;
Charles A. Morrison, Phillip Simmons, Ray
A. Walters, Floyd Waters, Robert L. Weber,
J. Ira Young, Evert Anderson, Eddie Zarn,
Louis Horwath Jr., Heinie Johnson, Gus

DRIGINAL ORC
Bartsch, Arthur Evans, Leo Herz, Bruce
Holmgren; Indiana, Freeman C. Balph,
Arthur B. Coover, Earl R. Roberts, Henry
Spearing, Ted Stark; Iowa, Clarence Morman, E. P. Webb; Kansas, William Schumacher, C. W. Bourne; Kentucky, W. W.
Gaunt, Jr., George Krebs, Charles Miller,
William A. McAlister, James T. Spalding,
J. E. Wilson; Louisiana, Roy W. Peyton,
Irving G. Couvillion; Maine, Danford L.
Adams, M. Keith Libby, Vincent M. Wood,
R. C. Messer, Clayton D. Sands, H. Francis Shea; Maryland, Howard Adams, Jr.,
J. F. Fritsch, Forrest W. Dodge, Lyman F.
Barry, Oliver Hersowitz, Wm. J. Thomas
III, August J. Walker; Massachusetts,
Armand A. Boussey, Walter L. Chambers,
Arthur Hamilton, Sydney G. Millen, Harold
K. Miller, Roy Sanders, Donald Smith,
Robert Loring Young, James B. Robbins,
George James Ellsworth, Albert Pickering,
Jr., W. C. Reichardt, Francis T. Reilly,
G. L. Harris, Edward J. Dailey, Jr., James
A. McGregor, Jr; Michigan, Ralph B.Bald,
win, Stewart R. Rupple, Jerry M. Hynek,
Lewis W. Jones; Minnesota, M. Michaelson, E. M. Norris, Dr. G. W. Twomey,
Walter F. Johnson, Preston C. Richardson;
Mississippi, Mrs. L. R. Ledbetter; Missouri,
C. H. Long, Walter A. Greiner, R. C.
Ludewig, Merton T. Meade, Lewis F. Miller,
Raymond W. Sahlbach; Montana, Henry
Dobrovolny, Charlie E. Hansen; Nebraska,
Hans Andersen, P. H. Clute, Harold Hansen,
Louis T. Haws, John Havranek; Nevada,
Don H. Townsend, Jr.; New Hampshire,
Paul C. Atwood, Alfred J. Mannix; New
Jersey, William Dixon, Morgan Foshay,
George Munz, R. H. Schiller, Paul B.
Silver, Earle R. Wickham, George W. Osbahr, A. Kosynsky, Robert F. Gaiser, Mor

www.americanradiohistory.com

ton Dennis Meehan, Fletcher W. Hartman, Peter J. Tortoriello; New Mexico, G. K. Harrison; New York, Donald E. Bame, John M. Borst, H. S. Bradley, William C. Dorf, Capt. Horace L. Hall, Robert F. Kaiser, I. H. Kattell, W. B. Kinzel, Wil-liam Koehnlein, T. J. Knapp, A. J. Leon-hardt, Joseph M. Malast, S. Gordon Taylor, Edmore Melanson, Joseph H. Miller, R. Wright, Harry E. Kentzel, Howard T. Neu-pert, A. C. Doty, Jr., Thaddeus Grabek, Kenneth L. Sargent, Robert J. Flynn, George Pasquale, Frank J. Flora, James E. Lynch, Pierre A. Portmann, A. J. Unnlauf, Alvin H. Behr, E. Scala, Jr., Daniel H. Carey, Kenneth Dressler, Gerald Liccione, Harry J. Potthoff; North Carolina, W. C. Couch, E. Payson Mallard, H. O. Murdoch, Jr.; North Dakota, Billie Bundlie, Ray N. Putnam; Ohio, Paul Byrns, Charles Dooley, Virgil Scott, Stan Elcheshen, Albert E. Emerson, Samuel J. Emerson, R. W. Evans, Clarence D. Hall, Donald W. Shields, C. H. Skatzes, Orval Dickes, Edward DeLaet, M. L. Gavin; Oklahoma, H. L. Pribble, Robert Woods, W. H. Boatman, Wade Chambers; Oregon, Harold H. Flick, George R. John-son, James Haley, Ernest R. Remster, Ned Smith, Virgil C. Tramp, Jack Frost; Penn-sylvania, Haarold W. Bower, Roy L. Chris-toph, John Leininger, George Lilley, Edward C. Lips, Charles Nick, Hen F. Polm, C. T. Sheaks, K. A. Staats, F. L. Stitzinger, Walter W. Winand, J. B. Canfield, Charles B. Marshall, Jr., S. G. DeMarco, R. H. Graham, Thomas R. Jordan, John G. Mc Conony, Steve Scibal, Jr., Leon Stabler, Joseph Stokes, R. B. Oxrieder; Puerto Rico, Manuel E. Betances, A. N. Lightbourn, Jose D. Caro Costas, Jr.; Rhode Island, Carl Schradieck, Joseph V. Trzuskowski,

. .

orner SHORT WAVES

M. Cockaday

EXCEPTIONALLY FINE CATCHES HS8PJ, Bangkok, Siam, 10,955 kc., 27.38 meters, Mondays 8 to 10 a.m.. E.S.T. (from announcement).

This new form of reporting will enable us, it is hoped, to get all re-ports in the issue in which they were

GREETINGS FROM ICELAND

L. P. O. Sigurdsson of that country says "Hello" to fellow observers all over the world. He uses a 7-tube receiver with a short-wave converter (shown on top of set)

intended and will guarantee an up-todate time-table.

Reports of Listening Post Observers and Other Short-Wave Readers of the DX Corner

Listed in the next column is this month's consolidated reports of shortwave stations heard by our wide world listening posts. Each item is credited with the Observer's surname. This allows our readers to note who obtained the information. If any of our Readers can supply Actual Time Schedules, Correct Wavelengths, Correct Frequencies and any other Important Information (in paragraphs as recommended) the DX Editor, as well as our Readers, will be grateful for the information. On the other hand, readers seeing these reports can try their skill in pulling in the stations logged and in trying to get complete information on these transmissions. The report for this month, containing the best information available to date, follows:

AMATEURS AND SWL'S TO THE RESCUE

Scene in amateur station WIBPZ where short-wave listeners helped the owner handle hundreds of relief messages during the recent floods in their home city of Springfield. Top row: From left to right, George Ellsworth, L.P.O., and his two pals, Red and Gordey. Below: Left to right, Fred Pinney holding the microphone, and Lyman Brown. The station is Mr. Pinney's.

new calls for this station are reported as follows:

TPA2, 15,244 kc., reported heard 6:55-11 a.m., E.S.T. (Hynek). Cham-bers and Stark report this station heard at 2 a.m.

heard at 2 a.m. TPA3, 11,880 kc. reported heard till 12:30 p.m. E.S.T. (Twomey, Moore). TPA4, 11,720 kc. reported 6:15-9 p.m. and 11 p.m.-1 a.m. E.S.T. (Twomey, Koehnlein, Partner). TYB, Paris, France, 12,250 kc. re-(Turn to page 30)

(Turn to page 30)

SHORT-WAVE LISTENING POST OBSERVERS

EUROPE Radio-Coloniale, Pontoise, France;

Spencer E. Lawton; South Carolina, Edward Bahan, Ben F. Goodlett; South Dakota, Paul J. Mraz; Tennessee, Charles D. Moss, Eugene T. Musser, Darrell Barnes; Terri-torv of Hawaii, O. F. Sternemann; Texas, James Brown, Carl Scherz, Bryan Scott, James W. Sheppard, John Stewart, Overton Wilson, Isaac T. Davis, Arthur Immicke, Earl P. Hill; Utah, Earl Larson, A. D. Ross; Vermont, Eddie H. Davenport, Dr. Alan E. Smith, John Eagan; Virginia, G. Hampton Allison, L. P. Morgan, D. W. Parsons, Gordon L. Rich, Gaines Hughes, Jr., E. L. Myers, A. T. Hull, Jr., Wheeler T. Thompson, E. W. Turner, Douglas S. Catchim; Washington, Glenn E. Dubbe, A. D. Golden, J. Wendell Partner, Jack Perry, Wesley W. Loudon; West Virginia, Kenneth R. Boord, R. E. Sumner, Fred C. Lowe, Jr.; Wisconsin, Willard M. Hardell, Walter A. Jasiorkowski, E. L. Frost, How-ard E. Sauberlich; Wyoming, L. M. Jensen, Dr. F. C. Naegeli, Eric Butcher.

Official RADIO NEWS Listening Post Observers in Other Countries

LISTED below by countries are the Official CRADIO NEWS Short-Wave Listening Post Observers who are serving conscientiously in logging stations for the DX Corner. Argentina, J. F. Edbrooke, Santiago E. Roulier. Australia, Albert E. Faull, A. H. Garth, H. Arthur Matthews, C. N. H. Richard-son, R. H. Tucker, Harold F. Lower, E. O. Stafford, Ron Gurr. Belgium, Rene Arickx.

- Bermuda, Ralph Clarke.
 Brazil, W. W. Enete, Louis Rogers Gray, Flavio Mascarenhas.
 British Guiana, E. S. Christiani, Jr.
 British West Indies, D. G. Derrick, Edela Rosa, N. Hood-Daniel, Aubrey H. Forbes.
 Canada, J. T. Atkinson, A. B. Baadsgaard, Jack Bews, Robert Edkins, W. H. Fraser, Fred C. Hickson, C. Holmes, John E. Moore, Charles E. Roy, Donglas Wood, Claude A. Dulmage. A. Belanger, Robert B. Hammersley, Cyril G. Clark, Fred Cox, Arthur Church, Arthur E. MacLean, George L. Loke.
 Canal Zone, Bertram Baker.
 Canal Zone, Bertram Baker.
 Canal Zone, Bertram Baker.
 Colombia, J. D. Lowe. Italo Amore.
 Cuba, Frank H. Kydd, Dr. Evelio Villar, Augusto Anca, Juan Manuel Salazar, Jose L. Lopez, Rafael Penalver y Ballina.
 Czechoslovakia, Ferry Friedl, Joe Klar.
 Demmark, Hilbert Jensen.
 Dominican Republic, Jose Perez.
 Dutch East Indies, E. M. O. Godee, A. den Breems, J. H. A. Hardeman.
 Dutch West Indies, Rein J. G. van Om-meren.
 Egypt, Aram Iskanian.

meren. Egypt, Aram Iskanian. El Salvador, Jose Rodriguez R. England, N. C. Smith, H. O. Graham, Alan Barber, Donald Burns, Leslie H. Colburn, C. L. Davies, Frederick W. Gunn, R. S. Houghton, W. P. Kempster, R. Lawton, John J. Maling. Norman Nattall, L. H. Plunkett-Checkemian. Harold J. Self, R. Stevens. L. C. Styles, C. L. Wright, John Gordon Hampshire, J. Douglas Buckley, C. K. McConnan, Douglas

Thwaites, J. Rowson, A. J. Webb, F. Crowder, J. E. Puyenbroek. France, J. C. Meillon, Jr., Alfred Quaglino, S. F. Carville.

- Crowder, J. E. Puyenbroek.
 France, J. C. Meillon, Jr., Alfred Quaglino, S. F. Carville.
 Germany, Herbert Lennartz, Theodor B. Stark.
 Guatemala, Luis Diez.
 Holland, L. Hintzbergen, R. Groeneveld.
 Iceland, Arni Sigurdsson.
 India, D. R. Wadia, A. H. Dalal, Terry A. Adams, Harry J. Dent, H. W. Kamen.
 Iraq, Hagop Kouyoumdjian.
 Italy, A. Passini, Dr. Guglielmo Tixy.
 Japan, Masall Satow, Tomonobu Masuda, Shokichi Yoshimura.
 Malaya, D. A. Seneviratne.
 Malta, Edgar J. Vassallo.
 Manchukuo, Anatol Kabatoff.
 Mexico, Felipe L. Saldana, Manuel Ortiz G.
 New Zealand, Kenneth H. Moffatt, B. A. Peachey, Eric W. Watson.
 Newfoundland, Frank Nosworthy.
 Norway, Per Torp.
 Palestine, W. E. Frost.
 Panama, Alberto Palacio.
 Peru, Ramon Masias.
 Philippine Islands, Victorino Leonen, Johnny Torres.
 Portugal, Iose Fernandes Patrae, Jr.
 Scotland, Duncan T. Donaldson.
 South Africa, Mike Kruger, A. C. Lyell, C. McCormick, H. Westman.
 South West Africa, H. Mallet-Veale.
 Spain, Jose Maria Maranges.
 Straits Settlements, C. R. Devaraj.
 Sweden, B. Scheierman.
 Switzerland, Dr. Max Hausdorff.
 Turkey, Hermann Freiss, M. Seyfeddin, A. K. Onder.

27

WORLD SHORT WAVE TIME-TABLE

Compiled by LAURENCE M. COCKADAY

Hours of transmission for the World's Short Wave Broadcast Stations

1.0					-																_	_			_			_
Г	Τ					Γ							FU	II IN	10	CAL TIME	T											
		10			1	1	-		1		-	F A O					+-	-	10			-	-	-7	A	-	e	-
0	9	10	11	M	1	2	3	4	5	0	1	EAS	IL	RN	STA	NDARD TIME	8	9	10	11	N	1	2	3	4	э	0	1
01	02	03	04	05	06	07	08	09	10	11	12	GRI	EE	NWI	СН	MEAN TIME	13	14	15	16	17	18	19	20	21	22	23	00
												Walles					T											
1 1	101	JR	S	OF	. т	R/	AN	SM	lis	SIO	N	length	6	all F	requer	ncy City	H	00	RS	C	F	TR	AN	ISM	MI	SSI	101	V
Ľ				•				•		0.0		Meters	s Le	tters	Kc.	Country												
	-	-	-	-		-	<u> -</u>	-	-		D	13.93	W	8XK	21540	Pittsburgh, Pa.	O		-	-				\square	\square	_		
-				1	1	1	5	S		XS	D	13.97	G	SH	21320	Daventry, England	D	-										
-	-				1	-	5	S		XS	P	16.86	- GS W	SG 3XAI	17790	Daventry, England	P	D	D	DO	0	b	0	D	D	D		-
							1		1		F	16.88	PI	HI	17775	Huizen, Holland	P	P	ľ		-	S			Ľ			
-					-	+	+	+	+			16.89	D PP		17760	Zeesen, Germany Riobamba, Fo	D	D	D					9	e	5	S	-
	-				-	1-			1			19.52	H.	AS3	15370	Budapest, Hungary	S	5				-						
<u> </u>	+	-	-	+	10	10	4		-	-		19.50	D. W	IR 2XAD	15340	Zeesen, Germany Schenectady, N. V.	-	-	-	D	O	D	D				l	-
_							1		1_			19.60	G	SP	15310	Daventry, England			-		~		-	F			D	D
-		-	-	D	D	D	D	D	D	D		19.62	D		15290	Buenos Aires, Arg. Zeesen, Germany	-	 	-	S	5	1	1					
				1	-	-	+	-	-	D	D	19.65	W	2XE	15270	New York, N. Y.	D	D	P	D	D	P	P	D	P	P		
	+	1-		+				1	D	P	P	19.68	TI	PA2	15244	Daventry, England Pontoise, France	D	D	V		V		V	~				
-	-	-			-			T	T	S	V	19.71	PC	J	15220	Huizen, Holland	W	W	W	0	D	0			6	0	-	-
							D	b	D	D	D	19.72	D	B	15200	Zeesen, Germany	D	D	Ď	V	V	10	V	~	P			
				-	-	-		-	-	-	-	19.76	GS	50	15180	Daventry, England		D	0	D	D	D	D	D	D	D		
					1	1			XS			19.84	HY	√J	15140	Vatican City			Ĭ									
F	+	-	-	D	-	-	+		0	P	D	19.85		H	15110	Zeesen, Germany				-		-			E		\square	-
S	S	S										22.00	SP	Ŵ	13635	Warsaw, Poland				C	C	-				S	S	S
	2	5	F	XS	XS	-	+	-	-	V	5	22.95		D /59(PNE)	13075	Suva, Fiji Islands	C	5	S	-			5	D	D	D		-
	10					D	D	D				25.25	Ť	A3	11880	Pontoise, France		10	1	D	D	D	0	D	Б	6		
P	+		-		+	-	+	-	1-	-	-	25.27	GS	SE SE	11870	Pittsburgh, Pa. Daventry, England	-	D	D	D	D		-		\vdash	D	D	D
				1		1						25.31	DJ	P	11855	Zeesen, Germany					Ø	D	_					
1	11		-	-	+	-	+	-		-		25.30	W	9XAA	11830	New York, N. Y. Chicago, Ill.	-			D	D	D	D	H	H	6	6	H
					1.							25.40	12	RO	11810	Rome, Italy	D	D	P	P	D	Þ						
D	10	D				1	1		1	-		25.43	D	D	11795	Zeesen, Germany Zeesen, Germany	-		-	P	D	D	D	B	B	D	D	D
	P	D	R	D	D	1	1		-	D	V	23.53	GŠ	D	11750	Daventry, England		D	D	D	D	0	D	Ð	D	Б	D	Ď
H b	Н	Б	В	D		-		+	1	+		25.58	TF	PA4	11720	Pontoise, France									\square		D	D
D	D	D		[1							25.62	HJ	4ABA	11710	Medellin, Col.				P	D		-			I	D	Þ
IN	IM	SE	sa	sa	-	1		D	D	D	D	27.93	JV	M	10955	Bangkok, Siam Nazaki, Japan									B			-
E	1		Sa	sa	-		-	I	II		I	28.14	JV	N	10660	Nazaki, Japan		-	-				D	D	Ę			
D	D				1-							30.43	EA	Q	9860	Madrid, Spain						I	¥			P	P	D
	-						K	K	-	-		31.00	CC)N	9677	Macao, Asia									C	-	E	-
C												31.14	12	RO	9635	Rome, Italy						<u> </u>	D	D	B	9	5	t
P	R	B	D			-	+					31.25	HJ CF	1ABP	9600	Cartagena, Col.	-		—		_							Ð
Þ	-	Pas	-		I							31.27	HÌ	H3W	9595	Port-au-Prince, Haiti					P							D
	-		-	M		-	-	-	-	-		31.27	W:	BL BXAU	9595	Geneva, Switzerland Philadelphia, Pa	-	-		D	D	D	D	D	D	52	Sa	_
					5	S			5	S	S	31.28	VI	2ME	9590	Sydney, Australia	S	S	5	S			-			-		
10	B	D				-	1			-		31.28	H	.j 25 I	9590	Huizen, Holland Panama City, Pana	-	-	5	5	5	S	-	\square	\square		-	A
	To.	-	XS	D	D	I	XS	XS	XS	XS	XS	31.32	VE	3LR	9580	Lyndhurst, Australia												-
D	Б	Б	D	D	-		-			XS	D	31.32	W	XK	9580	Daventry, England Millis, Mass.	D	D	D	D	D	T	1	r	I	1	P	B
XA	DXA	M	M	~	b	-			-	-		31.38	HJ	1ABE	9560	Cartagena, Col.		0	6	XA	XA				D	D	5	KS
Þ	B	Ď		Ď	D	B						31.45	DJ	N	9540	Zeesen, Germany Zeesen, Germany	D	Б	В						D	Б	Б	Б
P	D	P	D	-		-	-		D	D	0	31.48	W2	2XAF	9530	Schenectady, N. Y.	-		-	D	n	D	6		P	D	P	D
			D	D	Þ							31.55	ĞS	B	9510	Daventry, England			-		Б	Þ	Б	Б	Б	D		
FC	S	C			-	-	-	XS	XS	XC		31.55	HJ	U GMF	9510 9490	Buenaventura, Colo.		-	-	-	6	C		\square	H			
D	D	D	I	I								31.82	ĊĊ	сн	9428	Havana, Cuba	P	D	D	D			P	D	D	P	D	D
XM	XM	XM	AT			-	-	-	-	-		32.88	H.ª	TB	9125 8775	Budapest, Hungary Quito, Foundar		-	-				_	\square	C	2	S	XM
	N.		0	D	D			D	D			34.29	ZB	W	8750	Hong Kong, China										~	Ž	
13	B			-			-	-		-		34.62 34.92	YN	VA VA	8665 8590	Camaguey, Cuba Managua Nic	-	-	-	-		-						-
D	D	D	T	Ι	I			-		-		38.20	HC	2JSB	7854	Guayaquil, Ecuador												D
-						-		-			D	38.48		P	7797	Geneva, Switzerland Nazaki, Japan	D	D					-	<u>↓ </u>	AM	De	22	-
											Sa	41.20	SM	ISSD	7281	Stockholm, Sweden		-										
-				_	-		-		-		-	41.61	E.A CR	6AA	7177	Tenerife, C. I. Lobito, Angola Afr		U		-			T	1			\vdash	-
-			_			-	-		-	-	-	42.15	HE	89B	7118	Basle, Switzerland		-	~		_					W		
B	D	-		_							>	42.37	HI	3MR 3C	7080	Georgetown, B. G. La Romana, D. R	5	5	3	-	D	D			P	D	D	R
AC				-	-	-	D		D	m		44.14	HI	Н	6796	San Pedro, D. R.				-	AC	AC	-		S			AC
D	D	I	I	-		4			4		2	44.44	TI	ÉP	6710	Nazaki, Japan San Jose, Costa Rica	-	-		-	-	-	. 4			I	D	D
VE	T	T	T	5								45.00	HC	2RL	6667	Guayaquil, Ecuador		-	<u> </u>		VE	VA				S	S	S
Б	D			-								45.38	RV	72	6611	Moscow, U. S. S. R.					Î	ins					AS	125
Th		71	Th	D	0	D				-		45.80	HI	4D RCC	6550	Trujillo, D. R.			-	XS	XS	XS	-		XS	XS	XS	XS
D	0	-m	• 11	Y								46.01	ŶV	6RV	6520	Valencia, Venezuela				B	Ď	В	_			B	K	B
R	F	0				-	-		-	-		46.08	HI	L SARD	6510	Trujillo, D. R.			-	-							D	P
LV.		~		_		-	1	1		1		70.62	لغم	~	0720	can, coloniola	1		1	1	L		. 0	s 1	4	6 I	i = J	C N

americanradic

WORLD SHORT WAVE TIME-TABLE

17

(Continued from the Previous Page) Hours of transmission for the World's Short Wave Broadcast Stations

								1	T	_						15		Т	T	T	Т	T		T	Ι			٦
													FILL	IN LO	CAL TIN	16		$ \rightarrow $		_		+	_	_	+	_	_	_
8	9	10	11	M	4	2	3	4	5	6	7	EAS	TERN	STA	NDARD	TIME	8	9	10	11	N	1	2	3	4	5	6	7
01	02	03	04	05	06	07	08	09	10	44	12	GRE	FENM	(ICH	MEAN 7	TIME	13	14	15	16	17	18	19	20	21	22	23	00
01	02	00	0-+	00	001	51	00	00			16									-1			- 1		-		-	
				0		n 4	110		100	10		Wave-	C	Francis	men Cite	,	ЦС	1110	20	0	F -	TP	AN	SN	119	SI	ON	ı I
Ы	100	JR	5	UF	ľ	RA	VN S	Mc	155	201	N	length Meters	Letters	Ke	. Count	try	п	101	10	0		117.					01	•
XC	IXS											46.50	HJ4ABC	6451	Ibague, Colo	ombía									1			XS
D	D											46.53	HJIABE	6447	Barranquilla Puerto Plata	\mathbf{D}, \mathbf{Col}			-+	D	B	D				0	Б	Ы
D	p	D									-	46.80	TIPG	6410	San Jose, Co	osta Rica				_	D	D		_		va	R	P
T	D	D	-	T			-	-		_		47.00 47.06	HI3U YV4RC	6383 6375	Santiago, D. Caracas. Ver	. K. nezuela			-+			_				3	Ê	D
D	tb										P	47.24	HRPI	6350	San Pedro S	ula, D. R.		_	_	_	P	R	S		T	T	P	P
H	F	Sa	Sa	-	\vdash					-	-	47.54	YV12RM	4 6300	Maracay, Ve	enezuela			\pm	-		1	-		-	-	-	-
XS	XS											47.77	HIG	6280	Trujillo, D. Sancti Spirit	R.						T		T	T	T	1	Ŷ
ks	XS	XS										48.12	HRD	6235	La Ceiba, H	ond.					S	S		-	-	-		-
L	E	F										48.15	OAX4G	6230 1 6225	Lima, Peru Cienaga, Co	lombia			_	_			_					AM
b	D	I	I	I						_		48.50	HIIA	6185	Santiago, D.	.R.			-	D	D	P			-1			KI
Re	P	R	D	-		-				_	-	48.54 48.62	AEXA HJ3ABF	6180	Bogota, Colo	ombia				D					_	_		XŚ
TD	TD	Ď	D									48.70	CJRO	6160	Winnipeg, C	anada				-		-	-	-	-			-
D	1	D	D	SA								48.78	HI5N	6150	Trujillo, D.	R.						-			_			R
R	R											48.78	HJ2ABA	A 6150	Tunja, Colo Caracas Ver	mbia nezuela				P	P	B			PI	D	D	В
XA	XA			5	S							48.78	HJSABC	6150	Cali, Colomi	bia				D	S	S	n		0	D	D	XA
D	R	R	n	R	D	M						48.78	COKG	6150 6140	Santiago, Ci Pittsburgh	uba Pa.	-	P	4	P		V	V		2	V	~	2
F		-	2	P								48.89	CR7AA	6136	Lourenzo M	arques, A.	S	S	S		D	P	D		-		D	D
R	R	R	R									48.94 48.98	HIJARY	6130 C 6125	Havana, Cu Bogota, Col				-+							D	ъ	Б
Ľ	Ľ	K										49.02	W2XE	6120	New York,	N. Y.		D	YAN	YA	YA	XA	AX	XA	D	50	D	D
D	P	P	SA	D								49.10 49.18	W3XAL	6110	Halifax, N. Bound Broo	5. k, N. J.			3		~				AH		~	
3	J	J	J	J								49.18	W9XF	6100	Chicago, Ill.	ra Africa	YE	YC				Xe	XC	D	D	D	D	SA
R	D	D	XS	XS		-	AL	P	V	V	V.	49.20	CRCX	6090	Toronto, Ca	inada	~ ~			_			S	Ś	Б	D	D	D
Ľ.	10-	Ve	80						XA	XA		49.32	VQ7LO	6083	Nairobi, Ke	nya, Afr.	E	E	-+	D	3	B	XS	32			S	5
19	125	B	D	-			-			D	D	49.34	W9XAA	. 6080	Chicago, Ill.		D	D	D	D	Ď	Þ	D	D	D	D	D	D
F	In										XS	49.34	ZHJ	6080	Penang, S. S.	S.	XS		\vdash								_	P
٣	10		-	-			D	I	I	I	I	49.33	OER2	6072	Vienna, Aus	stria	I	D	D	D	D	P	P	Þ	ę	P	SA	0
5	S	2	AG	AG	K	53	-			XE	XC	49.42	VE9CS	6070	Vancouver, Cincinnati	B. C.	D	P	D	D	D	p	Ď	Ď	Ď	Ď	Ď	B
D	D					20						49.50	W3XAU	1 6060	Philadelphia	1, Pa.				C	e	n	D	D	D	D	D	D
F	D	D		-	-			-		-		49.50	OXY HI3ABI	6060 6050	Skamlebaek Bogota, Col	, Denmark				3	2	0	2		-	2	-	Q
Б	15	Б										49.59	HI9B	6050	Trujillo, D.	R.					D				_	-	P	D
YE	HP2	YE	-	50	-	-	-		-	-		49.63	HJJABI HJJABC	6045 G 6042	Bogota, Col Barranouilla	a, Col.					XS	XS	S				X5	XS
Ê	1											49.67	WIXAL	. 6040	Boston, Ma	SS.				-	D	-		-	S	S	S	E
HR	R	R	D	D	Th	Th	-	-	-	-		49.75	VE9CA	6030	Calgary, All	berta, Can.		XS	XS	XS	Þ	P	P	XS		S	S	Ď
Ľ	1-						-					49.83	DJC	6020	Zeesen, Ger	many Mex	-	-	\vdash	P	D	D	D	D	V	-	D	D
P	44	R	S	5	S	-	-			N	N	49.83	ZHI	6018	Singapore, i	Malaya	N			~		-	-	-	-	-	-	
D	D	D	1	50			1					49.90	HJ3AB	H 6012	Bogota, Col Havana Cu	lombia uba	-	D	D	B	B	V	U		3	B	B	0
D	D	D	D	Sa	I		-					49.92	HJIABJ	1 6006	Santa Mart	a. Col.	-	R	D	-	R	n		-		C 3		D
F	1			-	H				-	-	D	49.96	VE9DR HP5K	6005	Montreal, C Colon, Pana	an. Ima	B	LV	0	0	Б	P				30	D	D
Ľ			-	SA			1					49.96	VE9DN	6005	Montreal, C	anada		-	D	P	D	D	B	D	D	D	D	D
D	D	U	U	D	-	-	-	-	-	-		50.00	RV59	6000 6000	Mexico City Moscow, U.	S. S. R.				~		I	I	Ď	D	Б		
F	E		Th					-			e	50.17	XEVI	5980	Mexico City	v, Mex.	5	S	S		D	D	D	-	D	D	-	+
K	17	F	32		-	\square	-	1	-		3	50.17	HJ2A B	C 5976	Cucuta, Col	lombia								-			D	D
L.		D	D					-				50.21	XECW	5975	Xantocam, Bogota Col	Mexico	-			D								
U	10	V					-		S			50.25	HVJ	5969	Vatican Cit	ý.		1		_	h	F	R	-			5	D
P	R	52	5-	-		-	-		-	-	-	50.42	YNLF TG2X	5950 5940	Managua, Managua, Managua	Nicaragua City, G.	P	1		-	1		1				Ľ	1-
B	B	D	Ja				-					50.59	HJ4AB	E 5930	Medellin, C	olombia	-	-	\square	D	D	R		+	-	-	D	Xe
XS	XS	C	C	-		-	-		-	-	-	50.72	HH2S HRN	5915	Port au Pri Tegucigaloa	nce, Haiti 1. Hond.		1			P	U	S	S	S	D	D	D
B	TB	5	2				1_					50.85	YV8RB	5900	Barquisime	to, Ven.	-			-	HR	D	+	-	-	-	B	B
R	Б	D			-	-	+	+	+	-		51,15	HIIJ TIGPH	5865	Alma Tica.	Costa Rica				-	Ţ₽	Б		1	1			1D
Ьb	1B				1							51.63	YV7RN	10 5810	Maracay, V	'en.	-	S	C	P	+B	0	D	2	2	8	R	
D	PAR.	AU	AU		-	-	-	+	+	+	-	51.72	VV2RC OAX4D	5800 5780	Lima. Peru	mezuela		Ă	MAL	AN		1			-	-		1
	In		B	D	D		1_	P	P	-		55.45	ZBW	5410	Hong Kong	, China	D	D	+-	-	-	-	-	-	+	D	D	D
D	D	D	D	D	D	ID.	ID	D	UU	1.0	D	1 70.21	KV13	427.	> Nabarovs	A. DIDCITA	-	1	-	-	-	INC. NO. INC.	ALC: NO. OF COMPANY	-	-	-	-	-

List of Symbols

www.americanradiohistory.com

A—Thursday, Sunday C—Monday, Wednesday, Friday D—Daily F—Tuesday, Thursday F—Friday G—Tuesday, Thursday, Saturday I—Irregularly J—Tuesday, Thursday, Friday, Sunday

K—Monday, Friday
L—Wednesday, Saturday
M—Monday, Wednesday, Thursday
O—Monday, Tuesday, Wednesday, Friday
P—Except Tuesday, Wednesday
S—Sunday
T—Tuesday

Th—Thursday V—Sunday, Wednes**day** W—Wednesday Z—Tuesday, Friday AC—Monday, Thursday, Saturday AG—Tuesday, Sunday AH—Monday, Wednesday, Saturday AH—Except Monday, Sunday

—Monday, Thursday —Tuesday, Saturday —Saturday —Except Saturday, Sunday I—Except Monday —Except Sunday —Except Tuesday, Sunday a—Except Saturday AN-A-M-XY-XSa-

heard talking to the Queen Mary. (De-Laet, Thomas.)

HAS3, Budapest, Hungary, 15,370 kc., reported heard Sunday 8-9 a.m., E.S.T. (H. R. Smith, Hartshorn,) HAT2, Budapest, Hungary, 6952 kc.,

reported heard testing. (McGregor.)

HAT4, Budapest, Hungary, 9125 kc., 5 kw., reported heard 5-7:10 p.m., E.S.T. (Gavin, Andersen, Nosworthy, Stabler, Dressler, Herz, Miller, Harts-horn, Kemp, Pasquale, Scala, H. R. Smith.)

CT1AA, Lisbon, Portugal, 9650 kc., reported heard Tuesday, Thursday and Saturday, 4:30-7 p.m., E.S.T. (Putnam, McGregor, Reilly, Scala, Choo, Jordan, Hamilton.) Observer Hynek says the frequency is 9625 kc. Observer Fletcher says he also hears this station on about 11,980 kc., irregularly

ORK, Ruysselede, Belgium, reported heard 3:50-4 p.m., E.S.T. (Adams.) OER2, Vienna, Austria, 6072 kc., reported heard 5-6 p.m., E.S.T. (Betances.)

Radio-Phillips-Iberia, Madrid, Spain (no call letters as yet), reported heard on about 45 meters, 6750 kc., 7-9 p.m.,

on about 45 meters, 6750 kc., 7-9 p.m., E.S.T. (Harris.) LKJ1, Jeloy, Norway, 9530 kc., re-ported heard 5-8 a.m. and 11 a.m.-5 p.m., E.S.T. (Bourne.) SPW, Warsaw, Poland, 13,635 kc., reported heard Monday, Wednesday and Friday, 11:30 a.m.-1 p.m., E.S.T. (Vassallo, Self, Westman, H. R. Smith, Pasquale, Shea, Jacobs.) HBF, Geneva, Switzerland, 16 me-ters, heard testing Sunday 10:05 to 10:35 a.m., E.S.T. (Cindel.) HBJ, Geneva, Switzerland, 20 me-ters, heard testing Sunday 10:05 to 10:35 a.m., E.S.T. (Craig, Cindel.) HBO, Geneva, Switzerland, 11,390 kc., heard on first and second Tues-days of the month at about 1:30 a.m.,

days of the month at about 1:30 a.m.,

Lays of the month at about 1:30 a.m., E.S.T. (Chambers, Ishkanian.) I2RO, Rome, Italy, 9635 kc., now carries the American hour 5 to 6 p.m. on Wednesdays and Fridays. (Put-nam, Craig, Coover, Tucker, Choo, Andersen, Herz, Loke, Hansen, Sau-berlich Gavin.)

berlich, Gavin.) IAC, Rome, Italy, reported on 12,800 kc., 4 to 5 p.m., E.S.T. (Rog-(Turn to page 48)

MISSOURI ON THE MAP Meet L.P.O. Ray W. Sahlbach, shown tuning his 6-tube Zenith. His logs to RADIO NEWS are accurate and cover the whole world

WBIAN

PROUD OF EACH OTHER AND RADIO NEWS

Beverly Joy, six years old and an ardent short-wave fan, helps her father George J. Ellsworth, Official Short Wave Listening Post Observer for RADIO NEWS, in all matters pertaining to reception. From Dad's expression the trio, Dad, Beverly and "our own" magazine, seem to get along swell together

The DX Corner (Short Waves)

(Continued from page 27)

ported heard 1:30-2:30 a.m. with TPA3 program (Miller).

New station in Belgrade, Jugoslavia, 6090 kc. 250 watts heard testing 2-4 p.m. E.S.T. (Stokes, Andrews, N. C. Smith, Styles, Clarke). Some of these reports say the time on the air is 3:45-4:45 a.m. and 6:30-7:30 a.m. E.S.T. Soon to be on 82.3 meters also.

CT2AJ, Azores, 4002 kc. reported heard 6:30-7:30 p.m., E.S.T. (Kentzel). PCJ, Huizen, Holland, 9590 kc. is

PCJ, Huizen, Holland, 9590 kc. is now on Wednesday nights 7-10 p.m.
E.S.T. (Dressler, Mechling, Miller, Adams, Reilly, Thomas). They are also on the air on 15,220 kc. Sunday morning at 9:30 a.m. E.S.T. (Bourne).
DZA, Zeesen, Germany, 9675 kc., reported heard 5-7 p.m., E.S.T. (Loke, Stark, N. C. Smith, Vassallo.) Re-ported heard 4:45-10:30 p.m. (Scala.)
DZB, Zeesen, Germany, 10,042 kc., reported heard 5-7 p.m., E.S.T. (Ja-cobs, Hull, Chambers, Stabler, Hor-wath, Vassallo.) (Also reported heard 7-9 p.m., E.S.T. (Partner.)
DZE, Zeesen, Germany, 12,130 kc., reported heard 7-9 a.m., E.S.T. (Hull, Vassallo.)

Vassallo.)

DZH, Zeesen, Germany, 14,460 kc., reported heard irregularly noon to 2 p.m., E.S.T. (Sauberlich, Ludewig, Vassallo.)

DJD, Zeesen, Germany, 11,770 kc., reported heard 4:50-10:45 p.m., E.S.T. (Herz.)

DJM, Zeesen, Germany, 6079 kc., 7:30-9:30 p.m., E.S.T. (Herz.) LZA, Sofia, Bulgaria, 20 meters, re-

ported heard Sundays all day long starting at 6 a.m., E.S.T. (Self.) L.P.O. Ishkanian says he heard them at 11:30 a.m.

GSH, Daventry, England, 21,470

LISTENING POST IN VIRGINIA This is the shipshape short-wave DX corner of L.P.O. D. W. Parsons of Virginia Beach. His receiver is a modified Lafayette Superhet installed in a cabinet of the owner's design

kc., reported heard 6-8:45 a.m., E.S.T. (DeLaet.)

GSI, Daventry, England, 15,260 kc., reported heard 12:15-2:15 p.m., E.S.T. (Hynek, Thomas.)

GSJ, Daventry, England, 21,630 kc., reported heard early mornings sign-ing off at 8:45 a.m., E.S.T. (Sauberlich.)

GSM, Daventry, England, 11,200 kc., reported heard at 1:15 a.m., E.S.T. (DeLaet.)

GSN, Daventry, England, 11,820 kc., reported heard 2:15-4:20 a.m. (Loke, Miller.) Observer Stark reports them from 12:15-2 a.m., E.S.T. Observers Sahlbach and Dickes report hearing them Saturday afternoone them Saturday afternoons.

GSO, Daventry, England, 15,180 kc., reported heard 1-5:45 p.m., E.S.T. (Jacobs, Stabler, Sahlbach, Hull, De-Laet, Putnam, Coleman, Herz, Dickes, Shea, Partner, Loke, Costes, Salazar.)

GSP, Daventry, England, 15,310 kc., reported heard 6-8 p.m., E.S.T. (At-kinson, Putnam, Coover, Salazar, kinson, Putnam, Coover, Salazar, Herz, Stabler, Dickes, DeLaet, Shea, Costes, Partner.) GBC, Rugby, England, reported

SHORT-WAVE STATION LIST

Arranged by Countries and Cities

			~ •				~ 1	~ ,		Logation	Call	Matara	Ke Cl	lass
NORT	H AN	1ERI	CA		Abbreviati	ons For	lass (Lolumn		Location	WLK	18 44	16.270	P
	ALASKA	4			A—Amateur B—Broadcast	F—Fr P—Pl	equency. none	v Standa	ard	Lawrenceville	WMA	22.40	13,390	P
Location	Call	Meters	Kc. Cl	ass	E—Experimen	tal T—T	ime Sign	als		Lawrenceville	WNA	32.72	9,170	P
Anchorage	WXE	50.04	5,995	Р	Location	Call	Meters	Kc. Cl	ass	Lawrenceville Lawrenceville	WNB WNB	$28.10 \\ 51.28$	10,675 5,850	P P
	CANAD				Verocruz Ver	VE12	45.46	6 600	р	Lawrenceville	WOA WOF	44.41	6,755 9.750	P P
		A. A			Xantocam	XECW	50.21	5,975	B	Lawrenceville	WOK	28.44	10,550	P
Calgary	VDC	66.81	4,490	Р	TIM	NITED ST	ATES			Lawrenceville	WOY	63.11	4,753	P
Calgary Calgary	VE9CA VE9CA	$25.30 \\ 49.75$	11,860 6,030	В В	U	ALLEORN	ALES			Ocean Gate Ocean Gate	WOO WOO	17.51 23.36	17,120 12,840	P P
Calgary	VE9CG	49.10	6,110	В	Bolinas	KEC	58.76	5,105	Р	Ocean Gate	WOO	35.05	8,560 4,753	P P
BRI	TISH COLU	JMBIA			Bolinas	KEE	38.89	7,715	P P	Ocean Gate	WOY	70.22	4,272	P
Anyox Campbell River '	CZQ	55.56 61.66	5,400 4 865	P P	Bolinas	KEI	31.61	9,490	P	Wayne Wayne	W2XE W2XE	16.89	17,760	B
Claydon Bay	CZP	66.59	4,505	P	Bolinas Bolinas	KEJ KEL	33.30 43.73	9,010 6,860	P P	Wayne Wayne	W2XE W2XE	19.65 25.36	15,270	B
Prince George	CZO	66.59	4,505	P	Bolinas Bolinas	KEM KER	19.37 28.87	15,490 10.390	P P	Wayne	W2XE	49.02	6,120	В
Prince Rupert Rossland	CGP CFU	$55.56 \\ 52.58$	5,400 5,705]	Р Р.В	Bolinas	KES	28.82	10,410	P		NEW YOR	ĸ		
Sage Creek	VXX	55.50 53.00	5,405	P P	Bolinas	KIKB	58.71	5,110	P	Buffalo Buffalo	W8XH W8XH	7.32	41,000	E
TwoBrothersLake	VDV	66.81	4,490	P	Bolinas Bolinas	KKL KKQ	19.39 25.11	15,475 11,950	Р Р	Buffalo	W8XH	8.43	35,600	Ē
Vancouver Vancouver	VD0 VD0	67.63	4,805 4,436	P	Bolinas	KKR	19.40	15,460	Р Р	New York	W8XH W2XDV	9.50 3.49	86,000	Ē
Vancouver Vancouver	VĒ9BK VĒ9CS	62.63 49.43	4,790 6.070	P B	Bolinas	KKZ	21.91	13,690	P	New York New York	W2XDV W2XDV	7.32 7.77	41,000 38.600	E
Waterloo Mines	ĊŹV	61.98	4,840	Р	Bolinas Bolinas	KQG	14.44	18,000	P	New York	W2XDV	8.43	35,600	E
	MANITOB	A			Bolinas Bolinas	KQJ KÖR	16.65 16.63	18,020 18,040	Р Р	Rochester	W8XAI	9.50	31,600	Ē
Winnipeg	CJRO	48.70	6,160	B	Bolinas	KÕZ	16.69	17,980	P	Rocky Point Rocky Point	WDG	28.90	4,534	P
Winnipeg	VE9CL	48.78	6,150	B	Bolinas	KWE	19.44	15,430	P	Rocky Point Rocky Point	WDN WDS	65.93 15.87	4,550 18,900	P P
NE	W BRUNS	wick			Dixon	KEZ KWN	28.85	21,060	P P	Rocky Point	WEA	28.28	10,610	E ਜ
Fredericton	VE9AS	46.69	6,425	B	Dixon Dixon	KWO KWU	19.45 19.54	15,420	P P	Rocky Point	WEF	28.25	10,620	P
St. John	VE9BJ	49.20	0,090	Б	Dixon	KWV	27.68	10,840	P	Rocky Point Rocky Point	WEF WEG	31.61 40.45	9,490 7,415	P P
Holifor	OVA SCO	TIA 25.36	11 835	R	Dixon	KWY	39.66	7,565	P	Rocky Point	WEJ- W2XBI	44.51	6.740	E
Halifax	CHNX	49.10	6,110	Ĩ	Los Angeles Los Angeles	W6XKG	8.43	35,600	E	Rocky Point	WEL-	22 50	9 050	ਸ
Halifax Halifax	VE9CF VE9HK	49.18 49.02	6,120	B	(Portable)	W10XFZ	7.40	40,600	E	Rocky Point	WEN	40.50	7,407	P
	ONTARI	o			(Portable)	W10XFZ	8.67	34,600	Е	Rocky Point	WEM- W2XBJ	40.54	7,400F	, E
Kenora	CFD	53.00	5,660	P	(Portable)	W10XFZ	9.65	31,100	Е	Rocky Point	WES- W2XBI	31.75	9.450	E
London London	VE9BY VE9BY	17.34 46.69¦	6,425	B		CONNECTI	CUT			Rocky Point	WET	31.68	9,470	E
Red Lake	CFJ CRCX	$53.00 \\ 25.40$	5,660	P B	Storrs		0.75	86,000	E		W1Y2 W2XBJ	21.63	13,870	E
Toronto	CRCX	49.26	6,090	B			3.49	400,000		Rocky Point Rocky Point	WKM WKU-	15.91	18,800	Р
PRINC	E EDWARI) ISLAN	ND	n		FLORIDA	A			Rocky Point	W2XBJ WKW-	20.23	14,830	E
Charlottetown	VE9EH	49.34	0,080	В	Hialeah	WNC	19.93	15,055	P	Deeley Deint	W2XBJ	15.77	19,020	E
During and a first lite	QUEBEC	42.00	6 9 40	р	Miami Beach	WND W4XB	73.23 49.67	4,097 6,040	B	Rocky Point	WQB-	10.70	17,900	-
Drummondville	CGA	43.80	18,180	P		ILLINOI	s			Rocky Point	W2XBJ WQF	16.72 16.74	17,940	P P
Drummondville Drummondville	CGA CGA	21.82 22.49	13,740 13,340	P P	Chicago	W9XAA	16.87	17,780	E	Rocky Point Rocky Point	WON WÕO	51.50 44.61	5,825 6,725	E P
Drummondville	CGA3	22.58	13,285	P	Chicago	W9XAA W9XAA	25.30 49.34	6,080	B	Rocky Point	ŴÕP	21.58	13,900	P
Drummondville	CGA4	67.19	4,465	P	Chicago	W9XBS W9XF	46.69 25.26	6,425 11,880	E B	Schenectady	W2XAD	19.57	15,330	B
Drummondville	CGAS CJA6	30.20 24.79	12,100	Ē	Chicago	W9XF	49.18	6,100	B	Schenectady	W2XAF	31.48	9,530	в
Drummondville Drummondville	CZA CZA	17.33 62.70	17,310 4,785	Р Р		MARYLAN	ND			Cincinnati	OHIO	40.50		R
Montreal Montreal	VE9BA VE9BA	19.75 48.94	15,190	B B	Beltsville Beltsville		20.00 30.00	15,000 10.000	F F	Cincinnati	WOAAL	49.50	0,000	D
Montreal	VE9DN	19.83	15,130	B	Beltsville	ŴŴŶ	60.00	5,000	F	Philadelphia	WIXAU	31.28	9.590	в
Montreal	VE9DN	31.40	9,555	B	N	IASSACHUS	ETTS			Philadelphia	W3XAU	49.50	6,060	B
Montreal	VE9DR	49.96 25.46	11,780	E	Boston	WIXAL WIXAL	13.98 19.67	21,460 15.250	B B	Pittsburgh	W8XK	13.93	21,540	B
Montreal Montreal	VE9DR VE9DR	31.31 49.96	9,580 6.005	E B	Boston	WIXAL	25.45	11,790	B	Pittsburgh Pittsburgh	W8XK W8XK	16.87	17,780	B
SA	SKATCHE	WAN			Boston	WIXAV	4.88	61,500	Ĕ	Pittsburgh Pittsburgh	W8XK W8XK	25.27 48.86	11,870 6,140	B
Hudson Bay	JAA I OIIL	WAN			Chicopee Falls Chicopee Falls		4.96 5.41	55,500	Ē	Pittsburgh	W8XKA	5.41	55,500	Ē
Junction Regina	VXV VXU	54.15 54.15	5,540 5,540	Р Р	Chicopee Falls Chicopee Falls		7.77 8.43	38,600 35,600	E E		TENNESS	EE		
Portable	VXW	54.15	5,540	P	Chicopee Falls		9.50	31,600	E	Memphis	W4XCA	9.50	81,600	E
	MEXIC	0			Millis	ŴiXK	31.35	9,570	B		WASHINGT	ON		_
Guadalajara,	MILLARI	0				MICHIGA	N			Seattle Seattle	WVD WVD	34.80 50.04	8,620 5,995	E P
Jalisco Merida Vucatan	XEDQ XAM	31.51 26.80	9,520	B	Detroit	W8XWJ	9.50	31,600	E		WISCONS	IN		_
Merida, Yucatan	XEMB	36.56	8,205	B		MISSOUF	RI			Milwaukee	W9XAZ	9.50	31,600	E
Mexico, D. F.	XBJQ	27.27	9,520	P	St. Louis	W9XPD	9.50	31,600	Е	<u></u>	-			
Mexico, D. F. Mexico, D. F.	XDA XDA	$25.51 \\ 32.00$	11,760 9,375	E P		NEW JERS	SEY			CENT	RAL A	ME	KIC A	Ł
Mexico, D. F. Mexico, D. F.	XDA XDC	51.19 31 92	5,860	P F	Bound Brook Bound Brook	W3XAL W3XAL	16.87 49.18	17,780	B B		COSTA R	ICA		
Mexico, D. F.	XEBT	50.00	6,000	B	Bound Brook	W3XL	17.33	17,310	E	Cartago	TIN	20.69	14,500	P
Mexico, D. F. Mexico, D. F.	XEIO	40.65 50.25	7,380 5,970	В	Deal Deal	WMI	+0.09	19,850	P	Puntarenas	TISWS	39.74	7,550	B
Mexico, D. F. Mexico, D. F.	XEVI XEXA	50.17 48.54	5,980 6,180	B B	Lawrenceville Lawrenceville	WCN WKA	59.10 14.25	5,077 21,060	P P	San Jose San Jose	TIEP	22.36 44.71	13,420 6,710	B B
Mexico, D. F.	XICB	41.96	7,150	B	Lawrenceville	WKF WKK	15.61	19,220	P P	San Jose San Jose	TIFA TIGPH	47.17 51.52	6,360 5.823	B
Veracruz, Ver.	XEFT	49.02	6,120	B	Lawrenceville	WKN	15.14	19,820	P	San Jose	TIPG	46.80	6,410	B
Veracruz, Ver.	XEUW	49.83	6,020	В	Lawrenceville	WLA	10.36	18,340	P	San Jose	TRUU	45.80	0,350	В

nradioh

31

Location	L	Call	Meter	s Kc. C	lass	Location Bogoto	Call	Meters	Kc. C	lass	Location	Call	Meters	Kc. Cl	lass
San Jose San Jose		TITE TITR	45.11 25.45	6,650 11,790	B	Bogota Bogota	HKE HKV	42.08	7,130	BB	Macoris San Pedro de	HIH	44.05	6,810	В
San Ram	on		54.30	5,525	В	Bucaramanga Buenaventura	HJ2ABD HJU	50.10 31.58	5,988 9,500	B B	Macoris Santiago de los	HIIJ	51.15	5,865	В
Guatemal	la City	TGF	ALA 20.69	14,500	Р	Cali Cali	HJ5ABC HJ5ABD	48.78 46.23	6,150 6,490	B	Caballeros Santiago de los	HIIA	48.50	6,185	B
Guatemal Guatemal	la City la City	TGS TGWA	52.26 50.00	5,740 6,000	B B	Cartagena Cartagena	HJIABD	21.25 41.21 31.28	7,281	B	Caballeros Santiago de los	HI3U	47.00	6,383	В
Guatemal	la City la City	TGX TGXA	50.12 48.94	5,984 6,130	B	Cartagena Cienaga	HJIABP	31.25	9,500	B	Santiago de los	HIOP	48.78	6,150	В
Guatemal	la City	TG2X	50.50	5,940	B	Cucuta	HJA7 HJ2ABC	55.56 50.21	5,400	PB	Trujillo Trujillo	HIG	47.77	6,280 6,510	B
	•	HONDUR	AS			Ibague Manizales	HJ4ABC HJ4ABB	46.50 49.10	6,451 6,110	B B	Trujillo Trujillo	HIT	45.25 50.17	6,630 5,980	B B
La Ceiba San Pedro	o Sula	HRV HRP1	48.12 47.19	6,235 6,357	B B	Manizales Medellin	HJ4ABL HJ4ABA	49.46 25.63	6,065 11,710	B B	Trujillo Trujillo	HIZ HI4D	47.54 45.80	6,310 6,550	B B
Tegucigal Tegucigal	pa pa	HRN HRW HBV	51.06	5,875	BE	Medellin Medellin	HJ4ABD HJ4ABE	52.08 50.59	5,760 5,930	B B	Trujillo Trujillo	HI4V HI5N	46.51 48.78	6,450 6,150	B B
Tela			47.24	0,330	E	Pereira	HJ4ABG HJ4ABC	42:25	6,080	B	Trujillo Trujillo	HI6Z HI7P	48.94 44.12	6,130 6,800	B B
Managua	1	YNA	20.72	14,480	Р	Santa Marta Sinceleio	HJIABJ	49.95	6,006	B		HAITI			
Managua Managua		YNGU YNLF	32.27	9,300 5,950	B B	Tunja	HJ2ABA	48.23	6,220	Ĩ	Port-au-Prince Port-au-Prince	HH2R HH2S	31.43 50.72	9,545 5,915	E B
Managua Managua	bezoz	YNVA YNIGG VNF	34.92 46.51	8,590 6,450	B B F	GU	IANA, BR	ATTISH	7 090 /	N D	Port-au-Prince Port-au-Prince	HH2T HH3W	$25.45 \\ 31.27$	11,790 9,595	E B
ruerto Ca	ibezas	DANIAM	23.00	12,000	Ŀ	Georgetown	VP3MR VP3BG	42.37 41.55	7,0807	А, В В		JAMAIC	A'		
Colon		HP5F	A 49.34	6,080	B	GU	IANA, D	UTCH			Stony Hill	VRR4	25.88	11,595	•••
Colon Colon		HP5H HP5K	49.42 49.96	6,070 6,005	B B	Paramaribo	PZH	42.02	7,140	В	VII	RGIN ISL	ANDS	4 995	F
Panama C Panama C	lity	HPC HPF HPSP	29.15	10,290	P P B	Guavaquil	ECUADO HC2CW	OR 35.73	8.404	в	St. John St. Thomas	WTDX	69.85 69.85	4,295	Ē
Panama C Panama C	City	HP5J RXC	31.28	9,590	B P	Guayaquil Guayaquil	HC2ET HC2JSB	65.21 38.20	4,600 7,854	B B				4,295	Б
SC		LI ANA			•	Guayaquil Quito	HC2RL HCETC	45.00 44.12	6,667 6,800	B B	I		ч Е –		
BC		D AIV		IGA		Quito Quito	HCJB HCK	34.18 50.98	8,775 5,885	B	Vienna	OEJ	A 39.28	7,632	Р
Buenos Ai	res	LRU	19.62	15,290	В	Riobamba	PRADO PRADO	19.43 45.34	6,618	, в В	Vienna Vienna	OER2. OER3	49.41 25.42	6,072 11,801	B B
Buenos Ai Buenos Ai	res	LUSCZ	31.31 42.37	9,580 7,080 <i>4</i>	А, В Р		PARAGU	AY			Vienna	AZOPES	16.79	17,870	Р
Hurlingha	m	LSL2	30.09	9,964	P	Asuncion Asuncion	ZP10 ZP11	36.50 78.95	8,220 3,800	B B	San Miguel	CT2AJ	74.77	4,002 A	., B
Hurlingha	m m	LSM LSN	14.20	21,1301	P, B P. B		PERU					BELGIUM	A .		
Hurlingha Hurlingha	m m	LSN LSN	14.51 20.65	20,680 14,530	P P	Lima Lima	OAX4D OAX4G	51.90 48.15	5,780 6.230	B B	Ruysselede Ruysselede	ORG ORK	$15.62 \\ 29.03$	19,200 10,330	P B
Hurlingha Hurlingha	m m	LSN LSN2	20,72 30.32	14,480 9,890	P P	Lima Lima	OA4R OCI	42.02 16.08	7,140 18,670	B P	Ruysselede	ORP	22.72	13,200	P
Monte Gra Monte Gra	ande ande	LQK LQL	7.25	41,400 41,040	E E	Lima	OCI	48.00	6,250	Р	Skamlebaek	DENMAR	19.61	15 300	F
Monte Gra Monte Gra	ande ande	LSF LSG	15.08	19,000	P P p	Cerrito	URUGUA CWH	22.83	13,140	Р	Skamlebaek Skamlebaek	ŎXŶ OXY	31.51 49.50	9,520	B
Monte Gra Monte Gra	ande	LSI	30.50	9,830 20,680	P P	Montevideo	CWD	51.46	5,830	P		FRANCE	6	-,	-
Monte Gra Monte Gra	ande ande	LSX LSY	28.98 14.47	10,350 20,730	Р Р	Barquisimeto	VENEZUE VV8RB	50.85	5,900	в	Calenzana La Turbie	TYZ TY4	9.30 7.60	36,144 39,473	E E
Monte Gra Monte Gra	ande ande	LSY LSY3	28.82	10,410 18,115	P P	Caracas Caracas	YV2RC YV2RC	25.65 51.72	11,695 5,800	В В	Paris Pontoise	FYB TYA	28.36 24.56	10,578 12,215	T P
		BOLIVIA				Caracas Caracas	YV3RC YV3RC	31.55 48.78	9,510 6,150	B B	Pontoise Pontoise	TYA2 TYB	33.19 24.49	9,037 12,250	P P
La Paz La Paz		CP5 CP6	49.34 32.89	6,080 9,120	B B	Caracas Caracas	YV4BSG YV4RB	50.00 44.94	6,000 6,675	B B	Pontoise Pontoise	TPA2	37.14 19.68	8,075 15,243	P B
La Paz		ČP7	19.60	15,300	P	El Valle Maracaibo	YV9RC VV5RMO	47.00 46.87 51.28	6,375 6,400	B	Pontoise Ste Assise	TPA4 FOO FOE	25.60	11,880	B B D
Marinicu		BRAZIL	14.24	21.070	Ð	Maracaibo Maracaibo	VV7RMO VV11RMO	51.63 48.96	5,810 6,128	BB	Ste. Assise Ste. Assise	FRO-FRE FTA	16.44	18,240	г Р Р
Maripicu Maripicu		PSA PSD	18.55	16,162	B P	Maracay Maracay	YVR YVR	16.40 32.76	18,296 9,168	E P	Ste. Assise Ste. Assise	FTD FTI	15.12 30.49	19,840 9,840	Р Р
Maripicu Pernambuc	:0	PSH PRA8	29.34 49.77	10,220 6,028	Р В	Maracay Maracay	YVQ YVQ	22.47 44.96	13,350 6,672	P P	Ste. Assise Ste. Assise	FTK FTM	18.89 15.50	15,880 19,355	P P
Rio de Jan Rio de Jan	eiro eiro	PRF5 PSK	31.58 36.65	9,501 8,185	B P	Maracay San Cristobal Valencia	YV12RM YV10RSC	47.62 52.45	6,300 5,720	B B D	S.S. Ile de France	FIN FNTO	24.47	12,260 8,830	P P
Sepetiba Sepetiba		PPQ PPU	25.71 15.58	11,670 19,260	E P	Valencia	YV13RV	40.01 47.39	6,330	B	S.S. Normandie	FNSK	07.98 22.71	4,413 13.210 8.830	P P P
		CHILE		10 (00		WE	ST IN	DIES	5		S.S. Normandie S.S. Normandie	FNSK FNSK	67.98 68.34	4,413 4.390	P P
La Granja La Granja		CEC	15.24 18.92	19,080 15,855	P P		BAHAMA	S		_	S.S. Paris S.S. Paris	FNSM FNSM	33.96 67,98	8,830 4,413	P P
La Granja Santiago		CEC CEC CB615	31,43	9,545 6 150	B	Cat Cay Nassau	ZFO ZFS	$56.60 \\ 66.40$	$5,300 \\ 4,512$	P P		GERMAN	Y		
Santiago Santiago		CB954 CB960	31.47 31.25	9,540 9,600	B B		BERMUD	Α			Doeberitz Nauen	DOA DFB	67.72 17.12	4,430 17,520	P P
	C	COLOMBI	Α	,,	2	St. George St. George	ZFA ZFB	59.70 29.84	5,025 10,055	PP	Nauen Nauen	DFL DGK	27.63 1 44.91	0,850 6,680	P P
Barranquill Barranquill	la. la	HJA3 HJA3	20.08	14,940	P	S.S. Monarch of	ZFD	29.03	10,335	Р	Nauen Nauen	DGU DHO	31.18 14.99 2	9,620 20,020	P P
Barranquill Barranquill	la la	HJA3 HJA3	39.88 40.16	7,522	Р Р	S.S. Monarch of	VOIM	67.72	0,830	P D	Nauen	DIP	15.04 1 20.83 1	4,410	Б Б Б
Barranquill Barranquill	la la	HJA3 HJA3	46.76 61.66	6,416 4,865	P P	S.S. Queen of Bermuda	VOIP	33.96	8 830	P	Nauen	DZA (DJI)	14.90 2 31.01 20.88 1	9,675	P P F
Barranquill Barranquill	la la	HJA3 HJA3	70.59 88.83	4,250 3,376	P P	S.S. Queen of Bermuda	VQJP	67.72	4,430	р	Nauen	DZC DZE	29.15 1	0,290	E E P
Barranquill Barranquill	a a	HJIABB HJIABF	46.51 49.43	6,450 6,070	B B		CUBA				Nauen Nauen	DZH DZS	20.75 1 24.73 1	4,460 2,130	Ê P
Barranquill Barranquill Bogoto	a	HJIABG HJIABK HIP	49.05	0.042 7,074	В В В	Camaguey Havana	CO9JQ COCD.	34.62 48.94	8,665 6,130	B B	Norddeich Norddeich	DAF DAF	17.38 1 23.54 1	7,260 2,745	Р Р
Bogota Bogota	:	HJA2	20.09 51.50 40.27	5,825	г Р Р	Havana Havana	CMB2 COCH	51.90 31.82	5,780 9,428	Ē B	Norddeich Norddeich	DAF DAF	35.42 69.44	8,470 4,320	P P
Bogota Bogota		ĤĴŇ HIP	50.42 40.19	5,950 7,465	B	Havana Havana	CMA3 COCO	19.35 1 49.92	5,505 6,010	E B	Norddeich Norddeich	DAN DAN	18.00 1 26.46 1	6,665 1,340	E T
Bogota Bogota		НĴО НЈŶ	40.54 16.27	7,400 18,440	Р Р	Sancti Spiritus Sancti Spiritus	CO9WR CO9WR	25.42 1 47.85	1,800	B B	Zeesen Zeesen	DJA DJB	31.38 19.74 1 40.92	9,560 5,200	B B
Bogota Bogota	i	HJY HJ3ABD	30.21 49.57	9,930 6,050	P B		CUKG	48.78	o,150	В	Zeesen Zeesen	DJD	+9.83 25.49 1 16.80 1	0,020 1,770 7,760	в В В
Bogota Bogota]	HJ3ABF HJ3ABH	48.54 49.90	6,180 6,012	B B	La Romana	HI3C	43.48	G 6,900	В	Zeesen Zeesen	DJG DJK	65.50 24.93 1	4,580	Ē
bogota]	njsABi	49.02	°0,045	В	Puerto Plato	HIIS	46.66	6 430	B	Zeesen	DĬI -	10.95	5110	R

IBLI IBGI IBGI IBDK ICEJ ICEJ

CT3AQ

PIIJ PCJ PCJ PHI PHI

MADEIRA

NÉTHERLANDS

70.00 22.99 70.00 26.15 22.99 70.00

42.36 19.71 31.28

16.88

25.57

4,283 13,050 4,283 11,470 13,050

4.283

7,082 A, B 15,220 E 9,590 E, B 17,775 B 11,730 B

26.83 11,180 B

PPPEPP

Location

Zeesen Zeesen Zeesen Zeesen S.S. Berlin S.S. Berlin

S.S. Berlin S.S. Berlin S.S. Berlin S.S. Berlin S.S. Bremen S.S. Bremen S.S. Bremen S.S. Bremen

S.S. Bremen S.S. Bremen S.S. Bremen S.S. Cap Arcona S.S. Cap Polonio S.S. Deutschland S.S. Deutschland S.S. Deutschland

S.S. Deutschland S.S. Deutschland S.S. Deutschland S.S. Deutschland S.S. Deutschland S.S. Europa S.S. Europa S.S. Europa S.S. Europa S.S. Europa S.S. Hamburg S.S. Hamburg S.S. Hamburg S.S. Hamburg S.S. Hamburg S.S. Hansa S.S. Hansa S.S. Hansa S.S. Hansa S.S. Hansa S.S. New York S.S. New York

S.S. New Yor S.S. Oceana S.S. Oceana S.S. Oceana S.S. Oceana S.S. Reliance S.S. Reliance S.S. Reliance

S.S. Reliance S.S. Reliance

Szekesfehervar

Szekesfehervar Szekesfehervar Szekesfehervar Szekesfehervar Szekesfehervar Szekesfehervar

Reykjavik Reykjavik Reykjavik

Coltano Coltano Coltano Coltano Coltano

Fiumicino Fiumicino Golfo Aranci, Sardinia

Rome Rome Rome Rome

Rome Rome

Rome Rome Rome

Rome S.S. Conte Rosso S.S. Conte Rosso S.S. Conte di

S.S. Conte di Savoia S.S. Conte Verde S.S. Conte Verde S.S. Elettra S.S. Rex S.S. Rex

Savoia S.S. Conte di

Funchal

Dordrecht Huizen Huizen Huizen Huizen

Zeesen Zeesen

Zeesen

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	R. 29.48 10,17; 61.54 4,87. 19.95 15,04; 40.00 7,500 24.45 12,277 68.18 4,400 50.00 6,000 25.00 12,000 45.38 6,611 55.81 5,375 19.86 15,104 19.67 15,250 39.34 7,626 50.04 5,995 29.76 10,080 59.52 5,040 TATE 19.84 15,123 50.26 5,969 IA 13.93 21,540 31.31 9,580 24.96 12,020 31.61 9,490 30.74 9,760 37.59 7,980	10,177 4,873 15,040 7,500 12,277 4,400 6,000 12,000 6,611 5,375 15,104 15,250 7,626 5,995 10,080 5,940 15,123 5,969 7,300 11,495 21,540 9,580 12,020 9,580	B B B B B B B B B B B B B B B B B B B
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccc} & 0.1.34 & 4.3.7 \\ 19.95 & 15,044 \\ 40.00 & 7,504 \\ 24.45 & 12,271 \\ 68.18 & 4,400 \\ 50.00 & 6,000 \\ 25.00 & 12,000 \\ 45.38 & 6,611 \\ 55.81 & 5,375 \\ 19.86 & 15,104 \\ 19.67 & 15,250 \\ 39.34 & 7,626 \\ 50.04 & 5,995 \\ 29.76 & 10,080 \\ 59.52 & 5,040 \\ \hline \mathbf{TATE} \\ 19.84 & 15,123 \\ 50.26 & 5,969 \\ \hline \mathbf{IA} \\ \mathbf{IA} \\ 41.10 & 7,300 \\ 26.10 & 11,495 \\ 13.93 & 21,540 \\ 31.31 & 9,580 \\ 24.96 & 12,020 \\ 31.61 & 9,490 \\ 31.28 & 9,590 \\ 30.74 & 9,760 \\ 37.59 & 7,980 \\ \hline \end{array}$	4,3/2 15,044 7,500 12,270 4,400 6,000 12,000 6,611 5,375 15,100 15,250 7,626 5,995 10,080 5,040 15,123 5,969 7,300 11,495 21,540 9,580 12,020 9,580	PPPPB PPPPPP BB BP B B F
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	45.38 6,611 55.81 5,375 19.86 15,104 19.67 15,250 39.34 7,626 50.04 5,995 29.76 10,080 59.52 5,040 TATE 19.84 15,123 50.26 5,969 IA 41.10 7,300 26.10 11,495 13.93 21,540 31.31 9,580 24.96 12,020 31.61 9,490 30.74 9,760 37.59 7,980	6,611 5,375 15,104 15,250 7,626 5,995 10,080 5,040 13,123 5,969 7,300 11,495 21,540 9,580 12,020 9,580 12,020 9,590 9,590	B, PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP
DHDL 23.00 10.103 P Variativ ST (V 22.00 13.053 B Tashkent Tashkent RAU 16 DHDL 23.00 13.040 P Lisbon CSL 48.78 6,150 B Tashkent RIM 19 DDCP 23.00 13.040 P Lisbon CTIAA 19.56 15.340 B Tiflis RIR 25 DDCP 23.00 13.040 P Lisbon CTIAA 10.9 9,650 B Tiflis RIR 25 DDCP 23.06 8.283 P Lisbon CTICT 24.93 12.082 B VATICAN STA DDCP 36.00 8.232 P Lisbon CTICT 24.93 12.082 B Vatican City HVJ 19 DHEY 18.23 16.460 P Parede CTIGO 24.20 12.366 B Vatican City HVJ 19 DHEY 30.00 6.328 P Bucharest YOI 21.44 13.950 B AUSTRALIA	19.86 15,104 19.67 15,250 39.34 7,626 50.04 5,995 29.76 10,080 59.52 5,040 TATE 19.84 19.84 15,123 50.26 5,969 IA 14 41.10 7,300 26.10 11,495 13.93 21,540 31.31 9,580 24.96 12,020 30.74 9,590 30.759 7,980	15,104 15,250 7,626 5,995 10,080 5,040 15,123 5,969 7,300 11,495 21,540 9,580 12,020 9,490 9,590 9,760	PPPPP BB BPB BPFB BPFB BFFB BFFBB BFFBB BFFBBB BFFBBBBBBBB
DHDL 67.98 4.413 P Lisbon CTIAA 19.56 15.340 B Titlis RIR 25.5 DDCP 23.00 13.040 P Lisbon CTIAA 19.56 15.340 B Titlis RIR 25.5 DDCP 33.96 8.830 P Lisbon CTIAA 19.56 15.340 B Titlis RIR 25.5 DDCP 33.96 8.830 P Lisbon CTICT 24.93 12.082 B VATICAN STA DHEY 13.040 P Parede CTIGO 24.20 12.396 B Vatican City HVJ 19 DHEY 33.06 8.830 P Bucharest YOI 21.54 13.950 B Caulfield VK3ZX 41 DOAI 23.00 13.040 P Bucharest YOI 50.00 6.00 B Caulfield VK3ZX 41 DOAI 29.50 10.163<	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7,300 11,495 21,540 9,580 12,020 9,590 9,760	PP BB BP BP B B F
DDCP 36.00 8,328 P Lisbon CTICT 24.93 12.082 B VATICAN STA DDCP 67.98 4,413 P Lisbon CTICT 31.00 9,677 B Vatican City HVJ 19 DHEY 23.00 13,040 P Parede CTIGO 24.20 12,396 B Vatican City HVJ 19 DHEY 29.50 10,163 P RUMANIA OCEEANIA OCEEANIA DHEY 33.96 8.830 P Bucharest YOI 21.34 13,950 B AUSTRALIA DOAI 23.00 13,040 P Bucharest YOI 50.00 6,000 B Caulfield VK3ZX 41 DOAI 23.00 13,040 P Madrid EAQ 30.43 9,860 B Lyndhurst. Victoria VK3LR 13 DHJZ 23.00 13,040 P Madrid EHY 29.79 10,070 E Victoria VK3LR 31 DHJZ 23.00	TATE 19.84 15,123 50.26 5,969 IA 41.10 7,300 26.10 11,495 13.93 21,540 31.31 9,580 24.96 12,020 31.61 9,490 30.74 9,560 37.59 7,980	15,123 5,969 7,300 11,495 21,540 9,580 12,020 9,490 9,590 9,760	88 88 88 88 88 88 88 88 88 88 88 88 88
DHEY 23.00 13.040 p Parede CTIGO 48.40 6,198 B DHEY 29.50 10,163 P RUMANIA OCEANIA DHEY 33.96 8,830 P Bucharest YOI 21.54 13,950 B AUSTRALIA DOAI 18.07 16,600 P Bucharest YOI 50.00 6,000 B Caulfield VK3ZX 41 DOAI 23.00 13,040 P Madrid EAQ 30.43 9,860 B Lyndhurst. Victoria VK3LR 13 DOAI 30.96 8,328 P Madrid EAQ 30.43 9,860 B Lyndhurst. Victoria VK3LR 31 DHJZ 23.00 13,040 P Madrid EHY 14.37 20,860 P Victoria VK3LR 31 DHJZ 23.00 8,380 P Madrid EHY 29,79 10,070 E <t< td=""><td>IA 41.10 7,300 26.10 11,495 13.93 21,540 31.31 9,580 24.96 12,020 31.61 9,490 31.26 9,590 30.74 9,760 37.59 7,980</td><td>7,300 11,495 21,540 9,580 12,020 9,490 9,590 9,760</td><td>BP B B B F</td></t<>	IA 41.10 7,300 26.10 11,495 13.93 21,540 31.31 9,580 24.96 12,020 31.61 9,490 31.26 9,590 30.74 9,760 37.59 7,980	7,300 11,495 21,540 9,580 12,020 9,490 9,590 9,760	BP B B B F
DHEY 36.00 6,328 P Bucharest YOI 21.54 13.950 B DHEY 67.98 4,413 P Bucharest YOI 50.00 6,000 B Caulfield VK3ZX 41 DOAI 23.00 13,040 P SPAIN VIZ3 26 DOAI 29.50 10,163 P Madrid EAQ 15.21 19,720 P Victoria VK3LR 13 DOAI 36.00 8.328 P Madrid EAR125 42.74 7,020 B Victoria VK3LR 31 DHJZ 23.00 13,040 P Madrid EHY 14.37 20,860 P Welbourne VK3LR 31 DHJZ 29.50 10,163 P Madrid EHY 29.79 10,070 E VK3ME 24 DHJZ 33.96 8,830 P Madrid EHY 29.79 10,070 E VLJ <td< td=""><td>IA 41.10 7,300 26.10 11,495 13.93 21,540 31.31 9,580 24.96 12,020 31.26 9,590 30.74 9,760 37.59 7,980</td><td>7,300 11,495 21,540 9,580 12,020 9,490 9,590 9,760</td><td>BP B B B B B F</td></td<>	IA 41.10 7,300 26.10 11,495 13.93 21,540 31.31 9,580 24.96 12,020 31.26 9,590 30.74 9,760 37.59 7,980	7,300 11,495 21,540 9,580 12,020 9,490 9,590 9,760	BP B B B B B F
DOAI 18.07 16.000 P SPAIN Califield VK3ZX 41 DOAI 23.00 13.040 P SPAIN Fiskville VIZ3 26 DOAI 33.96 8.830 P Madrid EAQ 30.43 9.860 B Lyndhurst. Victoria VK3LR 13 DOAI 67.98 4.413 P Madrid EAR 125 42.74 7.020 B Victoria VK3LR 31 DHJZ 23.00 13.040 P Madrid EHY 14.37 20.860 P Melbourne VIX- DHJZ 29.50 10.163 P Madrid EHY 14.37 20.860 P Melbourne VK3LR 31 DHJZ 29.50 10.163 P Madrid EHY 29.79 10.070 E VK3ME 24 DHJZ 36.00 8.328 P Stockholm SM5SD 41.20 7.281 B Sydney VLJ 30 DHAO 36.08 8.328 P	41.10 7,300 26.10 11,495 13.93 21,540 31.31 9,580 24.96 12,020 31.61 9,490 31.28 9,590 30.74 9,760 37.59 7,980	7,300 11,495 21,540 9,580 12,020 9,490 9,590 9,760	BP B B B F
DOAI 33.96 8.830 P Madrid EAO 15.21 19,720 P Victoria VK3LR 13 DOAI 36.00 8.328 P Madrid EAO 30.43 9,860 B Lyndhurst. Victoria VK3LR 13 DOAI 67.98 4.413 P Madrid EAR 125 42.74 7,020 B Victoria VK3LR 31 DHJZ 23.00 13,040 P Madrid EHY 14.37 20,860 P Melbourne VIV- DHJZ 29.50 10,163 P Madrid EHY 29.79 10,070 E VK3ME 31 DHJZ 36.00 8,328 P SWEDEN Sydney VLJ 30 DHAO 33.96 8,830 P Stockholm SM5SD 41.20 7,281 B Sydney VLJ 30 DHAO 67.98 4,413 P SwITZERLAND Sydney VLK 18 DHRL 23.00 13,040 P Basle	13.93 21,540 31.31 9,580 24.96 12,020 31.61 9,490 31.28 9,590 30.74 9,760 37.59 7,980	21,540 9,580 12,020 9,490 9,590 9,760	B B F
DOAL 07.98 4,413 P Madrid EAR125 42.74 7,020 B Victoria VK3LK 31 DHJZ 23.00 13,040 P Madrid EHY 14.37 20,860 P Melbourne VIV- DHJZ 33.96 8,830 P Madrid EHY 19.37 20,860 P Melbourne VK3ME 31 DHJZ 36.00 8,328 P SWEDEN Sydney VLJ 30 DHAO 33.96 8,830 P Stockholm SM5SD 41.20 7,281 B Sydney VLJ 37 DHAO 36.00 8,328 P SWITZERLAND Sydney VLK 18 DHAO 36.00 8,328 P Swinzy VLK 18 DHRL 23.00 13,040 P Basle HB9B 42.15 7,118 B Sydney VLK 28 DHRL 29.50 10,163 P Basle HB9B 79.56 3,770 B FIJI ISLAND </td <td>31.31 9,580 24.96 12,020 31.61 9,490 31.28 9,590 30.74 9,760 37.59 7,980</td> <td>9,580 12,020 9,490 9,590 9,760</td> <td>B F</td>	31.31 9,580 24.96 12,020 31.61 9,490 31.28 9,590 30.74 9,760 37.59 7,980	9,580 12,020 9,490 9,590 9,760	B F
DHJZ 33.96 8,830 P SWEDEN Melbourne VK3ME 31 DHJZ 67.08 4,413 P Stockholm SM5SD 41.20 7,281 B Sydney VL3 30 DHAO 33.96 8,830 P Stockholm SM5SD 41.20 7,281 B Sydney VLJ 30 DHAO 36.00 8,328 P Stockholm SM5SD 41.20 7,281 B Sydney VLJ 37 DHAO 36.00 8,328 P Stockholm SMTZERLAND Sydney VLK 18 DHRL 23.00 13,040 P Basle HB9B 42.15 7,118 B Sydney VLK 28 DHRL 23.00 13,040 P Basle HB9B 79.56 3,770 B FIJI ISLAND DHRL 36.00 8,328 P Prangins HBF 15.83 18,950 P Suva VPD 22 DHRL 67.98 4,413 P Prangins	31.61 9,490 31.28 9,590 30.74 9,760 37.59 7,980	9,490 9,590 9,760	
DHAO 35.96 8,800 F F 10000 100000 10000 100000	37.59 7,980	= 0.00	BBP
DHRL 23.00 13.040 P Basle HB9B 42.15 7,118 B Sydney: VLZ 37 DHRL 29.50 10,163 P Basle HB9B 79.56 3,770 B FIJI ISLAND 50 B FIJI ISLAND 50 FUJI ISLAND 50	18.37 16,330 28.50 10,525	16,330	P P P
DHRL 36.00 8.328 P Prangins HB9AQ 85.11 3.525 B FIJI ISLAIND DHRL 36.00 8.328 P Prangins HBF 15.83 18,950 P suva VPD 22 DHRL 67.98 4,413 P Prangins HBF 15.83 18,950 P suva VPD 22 DDFT 23.00 13,040 P Prangins HBH 16.23 18,480 P suva VPD 38 DDFT 29.50 10.163 P Prangins HBJ 20.64 14,535 P	37.69 7,960	7,960	₽
DDFT 23.00 13,040 P Prangins HBJ 20.64 14,535 P Suva VPD 38	22.93 13,075	13,075	B
DDFT 33.96 8.830 P Prangins HBL 31.27 9,395 B HAWAIIAN ISLA	38.00 7,890	7,890 S	P
DDFT 36.00 8.328 P Prangins HBO 24.94 12.030 P Incommentation ISLA DDFT 36.00 8.328 P Prangins HBP 38.48 7,797 B Kaluku KEQ 40 DDFT 67.98 4,413 P Prangins HBP 30.0 7.444 B Kabuku KEQ 400 25	40.71 7,370	3 7,370	P
DDFF 23.00 13,040 P Transing ID2 T0.00 (ATT B Kaluku KKH 39 DDFF 29,50 10,163 P UNITED KINGDOM Kaluku KKP 18	39.89 7,520 18.71 16,030	7,520	P P P
DDFF 36,00 8,00 F Bodmin GBJ 16.11 18,620 P Kahuku KQH 18 DDFF 36,00 8,328 P Bodmin GBJ 16.11 18,620 P Kahuku KRO 51 DDFF 36,00 8,328 P Bodmin GBJ 16.11 18,620 P Kahuku KRO 51 DDFF 67.98 4,413 P Bodmin GBK 26.11 11,420 P Kahuku KRO 51	18.77 15,985 51.32 5,845 6.49 46.200	15,985	P P
HUNGARY Bodmin GBK 32.43 9,250 P Manawahua KGXA 7 Daventry GSA 49.57 6,050 B Manawahua KGXA 7 Daventry GSB 31.55 9,510 B Manawahua KGXB 6	7.58 39,600 6.34 47,300	40,200 39,600 47,300	P P P
HAS3 19.52 15,370 B Daventry GSC 31.31 9,580 B Manawahua KGXC 8 HAS5 17.51 17,130 B Daventry GSD 25.53 11,750 B Ulupalakua KGXH 6	8.02 37,400 6.20 48,400	37,400 48,400	P
HAT 21.92 13,685 B Daventry GSE 25.30 11,860 B Olupatakua KGXJ 7 HAT 55.56 5,400 B Daventry GSF 19.81 15,140 B Waikiki KGXK 6	6.06 49,500	40,700 49,500	P
HAT3 35.03 8,565 B Daventry GSH 13.97 21,470 B NEW ZEALAN HAT4 32.87 9,125 B Daventry GSI 19.66 15,260 B Wellington ZLT 24	AND 24.40 12 295	12 295	P
ICELAND Daventry GSJ 13.93 21,530 B Wellington ZLT 27 Daventry GSK 11.49 26,100 B Wellington ZLT 33	27.30 10,990 33.71 8,900	10,990 8,900	P P
TFJ 24.52 12,235 B Daventry GSN 25.38 11,820 B Wellington ZLW 16 TFK 33.15 9,050 B Daventry GSO 19.76 15,180 B Wellington ZLW 16	40.60 7,390 16.36 18,340 24.38 12.300	7,390 18,340 12,300	P P P
IFL 58.94 5,090 B Daventry GSP 19.60 15,310 B Rugby GAS 16.39 18,304 P PHILIPPINE ISLA	LANDS)S	•
IAC 16.90 17,750 P Rugby GAW 16.48 18,200 P Cebu, Isl of Cebu KZGG 51 IAC 23.44 12.705 P Rugby GBA 14.72 20,380 P Iloilo,Iloilo Island KZGH 51	51.50 5,825 51.77 5,795	5,825 5,795	P P
IAC 25.44 12,795 F Rugby GBB 22.08 13,585 P Manila KAX 15 IAC 35.80 8,380 P Rugby GBC 17.56 17,080 P Manila KAY 20 IAC 45.11 6,650 P Rugby GBC 17.56 17,080 P Manila KAY 20	15.02 19,980 20.03 14,980	19,980	P P
IAC 68.89 4,355 P Rugby GBC 22.07 12,780 P Manila KAZ 36 IAF 10.06 29.820 E Rugby GBC 34.56 8,680 P Manila KAZ 36	36.95 8,120 34.44 8,710	8,120 8,710	P P P
IAF 53.40 5,415 P Rugby GBC 60.30 4,975 P Manila KBI 14 IAG 9.80 30,610 E Rugby GBC 67.72 4,430 P Manila KBJ 22 IAG 9.80 30,610 E Rugby GBC 67.72 4,430 P Manila KBJ 22	14.19 21,140 22.66 13,240	21,140 13,240	P
IRJ 22.89 13,105 P Rugby GBS 24.49 12,250 P Manila KTO 18 IRM 30.52 9.830 P Rugby GBS 24.49 12,250 P Manila KTO 18 URS 20.12 0.960 P Rugby GBS 24.69 12,150 P Manila KTP 36	18.47 16,240 36.95 8.120	0,718 16,240 8,120	P P P
IRS 50.12 9,900 P Rugby GBU 13.45 22,300 P Manila KTR 27 IRW 15.37 19,520 P Rugby GBU 24.41 12,290 P Manila KUS 16 IRV 18.61 16.120 P Rugby GBU 24.41 12,290 P Manila KUS 16	27.50 10,910 16.46 18,220	10,910 18,220	P
I2RO 54.05 5,550 B Rugby GBW 20.73 14,440 P Manila KZGF 51 I2RO1 49.30 6,085 B Rugby GBX 18.56 16,150 P Manila KZRM 25 I2RO1 49.30 6,085 B Rugby GBX 28.87 10.390 P Manila KZRM 48	51.72 5,800 25.34 11,840 48.86 6,140	5,800 11,840 6,140	P,B B B
12RO2 42.98 6,980 B Rugby GCA 30.90 9.710 P Manila NPO 33	33.82 8,870	8,870	Ť
12RO3 31.14 9,635 B Rugby GCB 32.33 9,280 P		7.120	В
12RO3 31.14 9,635 B Rugby GCB 32.33 9,280 P 12RO4 25.40 11,810 B Rugby GCB 32.33 9,280 P IBEJ 22.99 13,050 P Rugby GCS 33.26 9,020 P TAHITI IBEJ 70.00 4,283 P Rugby GCW 30.61 9,800 P Papeete 42	42.13 7,120		
12RO3 31.14 9.635 B Rugby GCB 32.33 9.280 P INTO 000 12RO4 25.40 11.810 B Rugby GCS 33.26 9.020 P TAHITI IBEJ 22.99 13.050 P Rugby GCU 30.15 9.950 P TAHITI IBLI 22.99 13.050 P Rugby GCW 30.61 9.800 P Papeete 42 IBLI 22.99 13.050 P Rugby GDS 43.45 6.905 P (Continued next mode)	42.13 7,120 month))	

Line Voltage Dropping Resistor The Clarostat series "MT" line voltagedropping resistor is housed in a standard metal tube style casing with an 8-prong octal base. The manufacturer points out that it meets the underwriters' requirements regarding "hot" terminals and high leakage resistance to ground since the "live" parts are thoroughly insulated and metal covered. It is available in several types, to provide the proper voltage drop for practically any pilot lamp and tube combination.

ameri

GBZW GBZW

GMBJ

GMBJ

GMBJ GDLJ GDLJ GDLJ GDLJ GFWV GFWV

33.96 67.98

17.00

33.96

67.98 17.00 22.68 33.96 67.72 17.00

22.68

Rugby S.S. Aquitania S.S. Aquitania S.S. Aquitania S.S. Berengaria S.S. Berengaria S.S. Berengaria S.S. Empress of

Britain S.S. Empress of Britain S.S. Empress of

Britain

S.S. Homeric S.S. Homeric S.S. Homeric S.S. Homeric

S.S. Majestic S.S. Majestic

PPPPPP

P

P

PPPPPPP

8,830 4,413

17,640

8,830

4,413 17,640 13,220 8,830 4,430 17,640 13,220

P P P P

PPPPPB

INSTALLING THE AMPLIFIER STAGE Here the amplifier is shown with the 1-tube receiver described last month. The combination provides comfortably audible speaker operation on powerful local stations

BESIDES performing all the functions described in the first two articles of this series, the modern radio receiver *amplifies* the signal (multiplies its strength or intensity) many thousands of times. This article will be devoted to the addition of an amplifier tube to last month's one-tube battery set to make the received signals louder. At the same time this unit is so constructed as to adapt it for use with other crystal sets or battery sets.

Amplification can be accomplished either before or after the detector or both before and after. An amplifier ahead of the detector must operate at the original frequency of the incoming signal; it is called a radio-frequency amplifier. An amplifier stage after the detector is called an audio-frequency amplifier. The difference in results obtained is that an audio-frequency amplifier is intended primarily to make received stations come in louder. If the signal from a distant station is too weak to be detected, no amount of audio-frequency amplification can bring it in. Radio-frequency amplification increases sensitivity and will add new stations. It also provides the opportunity for additional tuned circuits and therefore sharper tuning.

Tubes Are Versatile

Why is it that the same tube can work as a detector or as an amplifier? This brings us back to the theory of tubes.

An amplifying stage consists of atube and some means of coupling it to the previous tube. First let us confine our attention to the tube itself. Last month we showed a so-called "static characteristic", which illustrates the variation in plate current due to changes

This series of articles is presented desire to obtain a thorough working those who have some theoretical the practical experience which is so

Part 3—One-Stage

By John M.

in grid voltage while the plate voltage remains fixed. Actually the plate voltage does not remain fixed during operation because the phone or transformer in the plate circuit has resistance and inductance which cause a voltage drop across it when the tube plate current flows. This voltage drop will change when the plate current changes, which results in a change of plate voltage. Curves which take these things into consideration are called "dynamic characteristics". These enable the radio man to determine the best plate and grid voltages, etc., and to find the other necessary constants of the circuit. However, these curves do not lend themselves to an easy explanation of the tube's functions. Therefore, we are sticking to the static characteristic which better illustrates what happens.

Used as Amplifier

Figure 1 illustrates the characteristics of a tube and shows the way it amplifies. The grid is given a fixed negative voltage so as to bring the operating point to the center of the straight portion of the curve. The detector utilizes the bend of the curve, as explained last month, but the amplifier must work on the straight part. The way to make the tube do the required work is to give it the correct fixed negative voltage or "bias" also called "C-bias" because it would require a third or C-battery. So in the case of Figure 1 if the fixed bias is equal to OP, the tube is an amplifier, if it is equal to OQ it is a detector.

When working a tube as an amplifier, there are two things to look out for. The first one is to keep the variation of grid-voltage due to the signal within the limits of the straight part of the

PHONES

www.americanradiohistorv.co

and Instruction for Beginner

for the benefit of beginners who knowledge of radio, and also for knowledge of the subject but lack essential to thorough understanding

Audio Amplifier

Borst

"curve", and never to let it run over a bent part. As long as the straight portion of the characteristic is utilized, the plate current will vary in exact proportion to the grid-voltage. As soon as the grid-voltage becomes too large so that the tube works on a bend during a part of the cycle, the plate-current variations no longer correspond to the grid-voltage variations, in other words there is distortion. This is illustrated in Figure 2. It is seen that the tops have been cut off the highest peaks. For this reason, it is essential that the applied signal voltage should never exceed OP or PX. In a good arrangement OP should equal PX.

Grid Always Negative

The second limitation is that the grid should never be allowed to go positive. As soon as this happens grid current will flow and the grid current will cause a voltage drop in the grid circuit which usually has a high resistance. This voltage drop subtracts from the signal voltage and therefore is another cause for distortion. In practice then, it is only possible to use that part of the straight portion of the characteristic which is situated to the left of the zero line.

The fixed grid voltage or bias should then be chosen at the center of this straight portion.

The manufacturers have listed the proper grid bias for different plate voltages, so it is not necessary to make a curve (they are made by measurements). But this explanation should clarify the meaning of these figures. It should also be clear now that if the recommended grid bias is 2 volts, the peak of the signal voltage on the grid should never exceed 2 volts. This is

equal to 1.4 volts as shown by an a.c.

voltmeter as only the peaks resets 2 volts, whereas the voltmeter shows an average rather than peaks. If the signal is likely to exceed this value, one must look for another tube which has a larger fixed bias. Sometimes the same tube with a higher plate voltage will need the larger bias and would then be suitable. The coupling device usually consists

The coupling device usually consists of a transformer or a network of resistors and condensers. It is important to prevent the plate voltage of the previous tube from reaching the grid of the next one. A transformer does this, generates a signal voltage in the secondary and gives some amount of step-up. The voltage in the secondary would be three times the voltage in the primary if a 3-1 ratio transformer were used,

THE MOMENT OF SUSPENSE The constructor's big moment of suspense comes when he is connecting up the device just before putting it into operation. If it works immediately—boy! That is the thrill of a lifetime

for instance. Of course this adds to the amplification.

In our particular case a 30 tube is employed with a plate voltage of 45 volts. Since the plate voltage is so low and our signal is rather weak, we need a grid bias of about one volt. This can be obtained without the use of an extra battery. The filament requires but two volts while the battery supplies 3 volts, the extra volt is lost in the resistor R1. If we place this resistor in the negative leg of the filament circuit, the negative side of the battery will be 1 volt negative with respect to the negative side of the filament. All we have to do is to connect the lead marked "F" of the transformer to the negative A terminal and 1 volt (*Turn to page* 57)

Unique High Hat Transmitter By Victor Hall

RADIO announcers no longer feel offended when told that they are "talking through their hat." The reason for this is that now they literally do speak through their bonnets. O. B. Hanson, NBC chief engineer, and his staff, have designed a micro-wave transmitter built right into a handsome silk hat.

The talking topper was put into first practical use on Easter Sunday when announcer George Hicks, carefully groomed in a cutaway of the best Park Avenue manner, mingled with society folk to describe the Easter parade, his utterances being sent to the network studios via the tiny transmitter.

NBC's silk-hat transmitter operates on a frequency of 270,000,000 cycles

www.americanradiohistory.cor

with a power of 0.2 watt and a working range of ¼ mile. At its first application, the network's mobile unit—a more powerful transmitter on a truck —relayed the walking announcer's words to the chain headquarters for rebroadcasting over regular channels.

The transmitter assembly in the crown of the hat weighs but 11 ounces. A belt of the cartridge type, to be worn under the announcer's coat, contains the power supply. The B battery unit is designed in the form of a hunter's belt, with each (*Turn to page* 59)

P

Items of interest for beginners, experimenters and radio constructors.

Conducted by The Associate Editor

Special Lathe for the Workshop The South Bend Lathe Works announces a 9-inch lathe with underneath belt motor drive. The lathe is mounted on either a frame or cabinet bench with the motor

drive unit and motor supported on a pivoting frame to the underside of the bench

top. The lathe can be had in either the flat belt or the V-belt style. The former has a three cone headstock providing six spindle speeds which range from 39 to 630 r.p.m. The V-belt style has a four cone headstock with eight spindle speeds which range from 44 to 585 r.p.m. Both cut screw threads from 4 to 40 per inch, and with a fine screw thread cutting attachment the number is increased to 80 threads per inch.

Several new features of the adjustable type motor drive include: down drive to the lathe spindle, to insure a powerful, silent and efficient drive; completely enclosed mechanism with no moving parts exposed, screw type belt tension adjustment for any desired pulling power and belt tension release for shifting belt to change spindle speeds. Other features are: new twin gear reverse for right and left hand threads and feeds, a ball thrust bearing on the headstock spindle, larger spindle bearings, felt shear wipers on saddle, etc.

While it is primarily intended for the home workshop the lathe can be used for a great many professional applications. Readers can obtain further information by writing to the editor of this department.

Eliminating Interference Caused by Heater Controls

Tropical fish are indirectly guilty of causing radio interference. The connection

lies in the thermostatic control heater employed in the fish tank for maintaining the water at a prescribed temperature. An inexpensive, poorly-constructed device of this kind causes the transmission of interfering radio waves in the immediate neighborhood, as it breaks and makes contacts to the heater element. This type of interference is easily eliminated by connecting a by-pass condenser of .5 to 1. mfd. across the contact points.

> JOHN PRATT Los Angeles, Cal.

Photo-Electric Device Performs Many Experiments

American boys now have the opportunity of studying the wonders of the photoelectric cell—one of the radio industry's contributions to science. The American Toy Fair, recently held in New York, showed a trend towards scientific toys, one of the most prominent of which was the "Electric Eye" manufactured by the A. C. Gilbert Company.

The kit, practical for adult's experiments too, includes a photo-conductive type cell which uses the element selenium, a sensitive relay and a power relay all on a rack mounting. Countless stunts and experiments can be performed with the kit. Exploring the field of photoelectricity is especially fascinating in view of the wide use of the electric eye in television, industrial counting and sorting applications, talking pictures and many other fields.

The Gilbert Electric Eye contains instructions for such stunts as lighting an electric light with a match, controlling electric trains by a wave of the hand and silencing a radio with a flashlight.

While many detailed instructions for experiments are given, the owner is encouraged to use them as a guide in devising still additional applications.

Pipe Stem Makes a Handy Lab. Tool

I believe my fellow experimenters will like my little kink of using a pipe-stem as a neutralizing tool and test prod. For the aligning tool I use a $\frac{1}{2}$ -inch piece of steel cut from a clock spring which is ground to fit into the end of the stem as shown in the drawing. It is held fast in the stem with glue or cement obtained at any hardware store.

To use a pipe stem as a test prod simply insert a phone tip or needle at the

shank end with a flexible connecting lead run through the shaft of the stem. AMBROSE T. HENNK,

St. Cloud, Minn.

A Handy Tool for the Workshop

Radio set builders and experimenters will be especially interested in the Livermore "five-in-one" multiple hand punch. It can punch out holes in sizes of $\frac{1}{2}$, $\frac{3}{4}$, $\frac{1}{16}$, $1\frac{3}{16}$ and $1\frac{1}{16}$ inches in metal up to 16 gauge (*Turn to page* 64)

THE DX CORNER S. GORDON TAYLOR

(For Broadcast Waves)

DX Calendar

The DX broadcasts listed below are those which are expected to continue according to replies received to inquiries sent to the stations. Most of them are expected to continue through-out the summer although, of course, there may be some changes in present plans. The times given are Eastern Standard Time.

w canesaays—	
8:30—9:30 p.m.	1420 kc., KCMC, Texarkana, Ark., 100 watts. (Radio News) (tips)
Thursdays-	······································
3:30 a.m.	740 kc., KMMJ, Clay Center, Nebr., 1 kw. (tips)
Saturdays—	
12:01—12:30 a.m.	980 kc., KDKA, Pittsburgh, Pa., 50 kw (tips)
3:15—3:30 а.т.	830 kc., WEEU, Reading, Pa. 1 kw., (tips)
Sundays—	
1—1:15 a.m.	640 kc., KFI, Los Angeles, Calif. 50 kw., (tips)
1—1:15 a.m.	1420 kc., KGGC, San Francisco Calif. (Radio News) (tips)
Monthly—	
1:30—2 a.m.	1060 kc., WJAG, Norfolk, Neb. 1 kw. (tips) (2nd Friday)
2—2·20 a.m	1420 kc., WJBO, Baton Boune, La.
	1 kw., (Badio News) 3rd Saturday)
24 a.m.	1420 kc. WJBO, Baton Rouge, La., .1 kw., (1st Sunday)

Those Foreign Stations

Many a disappointment is suffered by DX'ers when they tune in foreign language programs only to find, when the station signs, that they are listening to a U. S. station broadcasting in a foreign tongue. Unique among the stations doing this is WBNX, 1350 kc.. New York City. This station broadcasts programs in ten different languages and will shortly have an opportunity to fooi more DX'ers by virtue of the fact that its power is being increased from 250 watts to

OBSERVER COVERT

"Wireless 'Op'" of the "Good Ship DX," a feature of the KGGC broad-casts at 1:00 a.m., E.S.T., Sundays, which are skippered by Luther L. Putnam. The cat is the mascot

1000 watts day and night. To further com-plicate matters for the DX'ers this station has just acquired a 200-watt short-wave outlet to operate under the call W2XIS daily relaying the WBNX programs daily on 31.6 megacycles.

XEAW Verifications

Many DX'ers have had difficulty in obtain-ing verifications from XEAW. Their efforts are quite likely to be successful if the following suggestions are heeded: address your letter and report to Radio Station NEAW, Box 948, Mc-Allen, Texas. Mark it for the attention of Mr. II. D. Munal, Manager, and enclose 10c in coin.

Listening in an English University

<section-header><section-header><section-header><text><text><text><text>

Notes from Readers

Notes trom Readers Observer Kalmbach (Cheektowaga, N. Y.): WIOD does not want reports from listeners. WCAX verified within three days. WBNY wants reports and will verify promptly. Ac-cording to the Buffalo *Evening News* there is a new network known as the "Empire State Network" which includes the following stations: WINS, WBNY, WSAY, WABY, WMBO, WESG, WSYR, WIBX and WNBF. WBEN is now using 5 kilowatts during the daytime and a new vertical antenna.

www.americanradiohistory.com

A WESTERN DX'ESS

The lady herself, L.P.O. (Mrs.) A. C. Johnson of Henry, So. Dakota, one of the few active DX listeners of the gentler sex-or are we wrong about the number?

Observer Lonis (Hannibal, N. Y.): The best DX heard recently at my listening post have been 1YA, 3YA and 4YA (heard best from 5 to 6 a.m. EST), also CX16 and LR1 (heard best \$:30.9 p.m. EST). Static is increasing rapidly and will probably shortly blot out the distant stations.
Observer Goss (Brooklyn, N. Y.): The TP's have been disappointing this spring. Only 1YA, 2BL and 4YA have been at all consistent and they were usually weak. Have also been able to send reports to KGMB and 3GI.
Observer Meehan (Elizabeth, N. J.): Have now received a total of 331 verifications during the past 16 months. The following list showing the number of days 1 had to wait for verifications from certain stations may be of interest. Many other stations took about 30 days to reply to my reports but these I am not including. WLB, 232 days; KIUP, 111 days; WHO, 49 days: WSVA, 48 days; WGY, 89 days; WVVA, 117 days; WHK, 44 days; WPAD, 100 days; WAAW, 47 days.
Observer Botzum (Reading, Pa.) has been made a member of the "6000-12,500 Mile International Radio Club.". He has gualified for this appointment through verifications of 20 foreign stations over 3500 miles distant. Observer Botzum, 633 Moss Street, Reading, Pennsylvania).
Observer Trice (Sharon, Pa.): A QSL card received from CMLS.

vania). Observer Trice (Sharon, Pa.): A OSL card received from CMGH. 790 kc., Mantanzas, Cuba states that their daily schedule continues from 6:55 a.m. to 1 a.m. the following day. Observer Gordon (Erie, Pa.) sends out an SOS for a copy of the March, 1935, issue of RADIO NEWS. He has every issue for 1934, 5 and 6 except this one. If any reader has this issue and doesn't need it Observer Gordon will

OBSERVER BOTZUM

Recently qualified for the "Professional DX Ace" degree in the International DX Ace" degree in the International 6000-12,500 Mile Club by submitting 20 veri's from stations 3500 miles away

veri's from stations 3500 miles away be glad to buy it as he wants to bind his copies in book form. If you have this issue please write to him as follows: Harry M. Gordon, 317 East 10th St., Erie, Pa. Unfortunately RADIO NEWS does not have this back issue in stock. Observer Parfitt (Villamont, Va.): Summing up the DX results obtained this year I find that I had three new stations in September, 11 in October, 27 in November, 15 in December, 22 in January, 29 in February and 20 in March. This makes 127 for the season and brings my total of verified stations up to 554 with 32 re-ports outstanding. Can any reader offer any dope on these: What Spanish-speaking station was on 650 kc. during March with good signal strength and playing Spanish music but no aunouncements? What Spanish-speaking sta-tion was on 1050 kc. February 28th from 4:15 a.m. to 4:45 a.m. EST? What station is on 1205 kc., 5-6 a.m. with music, yelling, dancing, laughing, etc.? (I don't think it was TGW on 1209 kc.) Station CMCO, 1200 kc., Havana, announced at 3 a.m. March 29th that interna-tional reply coupons are no good in Cuba. Does anyone have definite information on this? Heard a station on 1450 kc. giving weather and temper-ature for Columbia at 3-3:10 a.m. EST. Very weak and plenty of QRM. Can anyone tell me whether this was British Columbia or Colombia, South America as broken English was spoken but could not tell what accent? Deserver Diedrich (Moline, IIL): Veris re-received from HIX, LR1, CMKM, 3GI, 3KZ (600 watts, Melbourne) and 2GN (100 watts,

1.

1. .1 .5 .6 .05 .05 .1 .3 .1 .1 .05 .2

Sydney Melbourne Crystal Brook Canberra

Maryborough Warrnambool Swan Hill

Launceston

Townsville Melbourne

Sydney Brisbane

Perth Newcastle Wagga Mackay Katoomba

VERIFIES WITH PHOTO

This little 100 watter on 1160 kc. verifies promptly. Reports should be ad-dressed to CMHJ, P. O. Box 112, Cienfuegos, Cuba. (Observer Parfitt)

dressed to CMHJ, P. O. Box 112, Cienfuegos, Cuba. (Observer Parfit) Goulburn, Australia). The morning of Sun-day, Feb. 23rd offered most remarkable TP re-ception I have experienced since the spring of 1933. Transpacific stations were so clear and loud that they seemed to be right in the same room with me. Among the stations which I have heard recently are 32 TP's. Of these 4BC and 2UW are the most consistent of the Aussies; 1YA and 4YA of the New Zealanders. New Zealand stations start coming in about 3 a.m. CST and the Aussies about 4 a.m. During April a large number of TP's were heard. Have been hearing the Aussies along after day-light, in fact some of them do not come in well until daylight. On the whole the best hour seems to be from 4:30-5:30 a.m. CST. Observer Truax (Aurora, III.): Several times I have heard a station on 640 kc. which I am positive signs the call COCK. I have not been able to figure this one out as I can find no record of a station with these call letters. CMBX has changed from 1380 kc. to 1060 kc. KELO, 1110 kc. can be heard here at almost any hour. LS2, 1190 kc., is heard best about 9 p.m. CST. Observer Meade (Kansas City, Mo.): On Sunday, April 12th heard a station signing off with "Goodbye My Love" and calling itself the "23-hour station of Chicago". The call was given as WYZ, the frequency was 560 kc. and the location Galena, Illinois. I find no such station listed. On the morning of April 7th I heard WMC, Memphis, Tennessee, rendering valuable service which included, anong other things, giving the names of the dead and in-ipred and the hospitals to which the injured individuals had been taken. This once more proves the value of radio in emergencies and points out an opportunity for service which many broadcast stations have overlooked. Observer Halsey (Texarkana, Ark.): Since February 1st I have logged 130 new stations bringing my total B for this season to 480. Have recently been listening on the 160-meter and 75-meter amateur phone bands. On the former my best catch is K7CSZ,

of 16-tube Midwest receivers. (Address: H. V. Gribhle, Traffic Box 42, Minneapolis, Minne-sota). Observer (Mrs.) Johnson (Henry, S. D.): My radio has just about folded up and until I get it repaired or get a new one my DX'ing is at a standstill. KGDY, 1340 kc., has a test program the first Sunday of each month, 4-4:30 a.m. EST. I received a nice letter of verifica-tion from this station. Observer Davis (Elkhart, Texas): Signal strength of the TP's has improved but an in-crease in static has offset this increase with the result that all except a few from across the Pacific have been too broken up to copy. 4YA and 1YA have been especially strong. Inci-dentally 4YA announces its call and location about 4:30 a.m. CST and again about 4:45 a.m. nearly every morning. It has been stated that 3AR has moved from 630 kc. to 580 kc. If so, what station am I still hearing on 630 kc? Al-though I have been unable to catch the call let-ters, the announcer sounds exactly the same as 3AR's announcer. What station was on 1565 kc., March 14th, 8-9 p.m. CST? I could not get the call letters but they were featuring mu-sic from Warner Brothers String Band. Ob-server Davis arranged an excellent two-hour program dedicated to RADIO NEWS by KNET on

AUSTRALIAN DOPE

1100

1110 1120

1130 1140

1180 1190 1200 2KY 3DB 5PI 2CA 4MB 3YB 3SH 7LA

2UW 4BC 6ML 2HD

2HD 2WG 4MK 2KA 4TO 3KZ 2CH 5KA

The following information and up-to-date list of Australian stations is submitted by Observer lurd of Queensland, Australia: The figures preceding the letters in the calls of Australian stations represent the various states. These allocations are 2—New South Wales, 3—Victoria, 4—Queensland, 5—South Australia, 6—Western Australia and 7—Tas-mania. Amateur stations use the prefix VK. National stations do not carry advertising and are supported by listener taxes. Commercial stations are permitted to broadcast advertising programs and it is from this that they obtain their revenue. Amalgamated Wireless, Ltd. in-tend shortly to establish a short-wave station in Perth, West Australia. This will have a world-wide range and will be conducted along lines similar to VK2ME and VK3ME. The list of Australian stations now on the air is as follows: (The stations marked "A" are the National stations and "B" the Commercial stations)

inila inila Austra The tation	range r to V alian st statior 1s and	K2ME and VK3ME ations now on the air is marked "A" are "B" the Commercia	C. The list of r is as follows: the National 1 stations)	1190 1200 1210 1210	2CH 5KA 6KG 2GF	Sydney Adelaide Kalgoorlie Grafton
Call	Kc.	Location	Kw. Class	1220 1230	4AK 2NC	Oakey Newcastle
580 590 610 640 670 690 710 730 740 770 800 820	3AR 7ZL 2FC 5CK 2CO 6WF 7NT 5CL 2BL 3LO 4QG 7HO	Melbourne Hobart Sydney Crystal Brook Corowa Perth Launceston Adelaide Sydney Melbourne Brisbane Hobart	4.5 A 1. A 3.5 A 7.5 A 7.5 A 3.5 A 7. A 2. A 3. A 3.5 A 2.5 A .1 B	1240 1240 1260 1270 1280 1290 1310 1310 1320 1330 1330 1340	GIX 3TR 3WR 2SM 3AW 4BK 2TM 5AD 3BA 2BH 4RO 2XN	Perth Sale Shepparton Sydney Melbourne Brisbane Tamworth Adelaide Ballarat Brokem Hill Rockhampton Lismore Geelong
830 850 870 900 910 930 930 950 950 950 950 980 980 980 990 000	3GI 5RM 2GPR 3MA 4WK 3UZ 2UE 5DN 3BO 4AY 6AM 2GZ 4GR 3HA	Sale Renmark Sydney Perth Mildura Warwick Rockhampton Melbourne Sydney Adelaide Bendigo Ayr Northam Orange Toowoomba Hamilton	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1350 1360 1360 1370 1380 1410 1420 1440 1440 1450 1440 1450 1470 1480 1480 1480 1500	3GL 4PMO 3HS 4BH 2GN 2KO 2WL 4IP 5MU 7UV 3MB 2AY 4BU 3AK	Port Morseby, Papua Gunnedah Horsham Brisbane Goulburn Newcastle Melbourne Wollongong Ipswich Murray Bridge Ulverstone Birchip Albury Bunderbcrg Melbourne

the morning of April 19th. He reports that the program went over in a big way and that no less than 40 performers took part in the broadcast. Concerning DX he reports that April 23, 24 and 25 were the best mornings he ever experienced. During these days he suc-ceeded in tuning in 40 Australian and New Zealand stations with crystal clearness and many other somewhat weaker.

WOW

This vertical radiator, 454 feet high, is said to be doing an excellent job for this 5 kw. station at Omaha. The transmitter is located in the buildings at the right. (Courtesy Observer Atkins)

Observer Atkins (Lawrence, Kansas): Static has been prevalent here most of the night, usu-ally clearing up about 1 a.m. I have recently received the following new stations: KGU, Honolulu; WPRP, Porto Rico (100 watts); KFQD, Alaska; WNEL and WKAQ, Porto Rico; CMG and CMBN, Havana. 4YA has also been received. Would like to correspond with foreign DX'ers and will answer all letters received. (Address: Dudley Atkins, III, 1721 Indiana St., Lawrence, Kansas). Observer Covert (San Francisco, Calif.): KGGC which puts on a weekly Radio News tips program has been heard in New Zealand during special tests conducted late at night by the station engineers. The broadcast band has been relatively dead here for some time due to the unusually high static level. Observer Sholin (San Francisco, Calif.): TGW, 1210 kc., 10 kw., Guatemala City, offers free samples of Guatemalan coffee to listeners who report their programs. TIGPH operates on 650 kc. with 1 kw. and is on the air until 8 p.m. or later PST. Verifies reports. Address: Apartardo 800, San Jose, Costa Rica. 1YA, 2YA, 3YA and 4YA were heard here about R7 during April. A few Aussies were also heard. The Japs have practically passed out of the picture. JOHK, 770 kc., is best but is only about R3-4. Observer Tucker (Bluff, Alaska): In a re-port dated March 7th he states that reception

about R3.4. Observer Tucker (Bluff, Alaska): In a re-port dated March 7th he states that reception of U. S. stations was at that time fair, but somewhat unsteady. Reception from California and Hawaii has been consistently good. The four YA's of New Zealand were received well as was also 4QG of Australia.

As was also 400 of Australia. Observer Clancy (Lethbridge, Alberta): The Canadian Radio Commission stations were on continuously during the Moose River disaster and this permitted several new ones to be logged. CMBX seems to have settled down on 1065 kc. KNX, WHO and WJZ are among the Amer-ican stations that have applied for 500 kw. power. 1YA, 2YA, 3YA and 4YA have been coming in fair to good during April.

coming in fair to good during April. Observer Coales (Southsea, England): Be-ginning with April DX in English is rarely good and this season is exception as the spring months have been a washout. I did not hear a single U. S. transmitter during April and had good reception from South America only on the morning of April 5th. I wonder if DX'ers in the U. S. A. realize how lucky they are in their choice of sets specially designed for DX. Your prices are much cheaper too, and the U. S. A. manufacturers much more enterprising. Not one of our leading manufacturers supply their sets in chassis form. One has to buy the complete outfit—cabinet, loudspeaker, etc. Some

of the smaller firms will supply chassis and make sets to order.

of the smaller hrms will supply Chassis and make sets to order. Observer Pellatt (London, England): The English transmitters will increase power from 50 to 100 kw., Regional stations first then the National stations. A conference is to be held with a view to installing a new and more pow-erful transmitter at London Regional. A new 20 kw. transmitter is to replace the old 1 kw. one on the Island of Askoy, near Bergen, Nor-way. It is expected to be testing around June 15th. Saarbrucken, Germany, 1249 kc., 17 kw., the frequency formerly occupied by Nice. Juan les Pins (France), now uses for an interval signal an extract from the song "Deutsch ist die Saar". P.T.T. Nice-Corsica has discarded its old interval signal from the "Dance of the Cuckoos" in favor of the old aria "Knowest Thou The Land" from the opera Mignon. The Sicilian station Palermo is now in the southern network and will exchange programs with Rome, Naples and Bari. Naples and Bari.

Naples and Bari. Observer Phillips (Cambridge, England): Statistics from the International Broadcasting Union in Geneva show that nearly 25,000,000 families in the European Zone (which includes North Africa, Palestine, etc.) listen to the radio. Great Britain leads the other countries with 6,780,560 licensed receiving stations. Germany is second with 6,142,921. Some countries such as Palestine have increased the number of re-ceivers over 100% during 1935.

Observer Watson (Christchurch, New Zea-land): Among the American stations heard this season are WCKY, WTCN, KVOO, WJJD, KNX. WKBZ, WTEL, WCAZ, WTMV, KFXR, KGKB, WBBM and CMKC.

M. Nishimori (Hiratsuka, Japan) sends in the following list of changes in the frequencies of Japanese stations as proposed by the Japanese authorities. The date when these changes take place has not been officially announced:

W. BARRON, NEW ZEALAND Branch Secretary of the N.Z.D.X.R.A. and member of the N.Z.D.X. Club, this DX'er has recently qualified for membership in the International 6000 to 12,500 Mile Club

	kc.		kc.
Call	New	Location	Old
IOAK I	590 kc.	Tokyo	870 kc.
JOJK	610 kc.	Kanazawa	710 kc.
юкк	630 kc.	Okayama	700 kc.
IODG	640 kc.	Hamamatsu	635 kc.
IOUK	650 kc.	Akita	645 kc.
IOTK	670 kc.	Matsuye	625 KC.
IOVK	080 KC.	Hakodate	080 KC.
IOBK 1	090 KC.	Osaka	750 KC.
	700 KC.	Kaiio	000 kc.
	710 KC.	Keijo	720 kc.
IORK I	720 KC.	Nagova	810 kc.
	740 kc.	Kokura	735 kc
IFAV	750 kc.	Taihoku	670 kc
IOAK	760 kc	Dairen	650 kc.
IOHR	770 kc.	Sendai	770 kc.
IOPK	780 kc.	Shidzuoka	780 kc.
IOGK	790 kc.	Kumamota	760 kc.
IOIK	810 kc.	Sapporo	830 kc.
IOFK	830 kc.	Hiroshima	850 kc.
IOAK II	870 kc.	Tokyo	590 kc.
IOLK	910 kc.	Fukuoka	680 kc.
IOOK	920 kc.	Niigata	920 kc.
ÍOÃG	930 kc.	Nagasaki	930 kc.
јовк II	940 kc.	Osaka	1085 kc.
JONK	950 kc.	Nagano	940 kc.
JODK II	970 kc.	Keijo	610 kc.
JOXK	980 kc.	Tokushima	980 kc.
јоск п	990 kc.	Nagoya	1175 kc.
JOBG	1000 kc.	Maebashi	970 kc.
JOFG	1020 kc.	Fukui	990 kc.
JOHG	1050 kc.	Kagoshima	1050 kc.
JOIG	1060 kc.	Toyama	1060 kc.
ЈООК	1070 kc.	Kyoto	960 kc.

Five new Japanese stations are to be erected at Obihiro, Yamagata, Kofu, Miyazaki and Tottori. Their operating frequencies have not (Turn to page 51)

a masterful engineering triumph —the HAMMARLUND "SUPER-PRO" CRYSTAL FILTER! Its outstanding features—features that have never appeared heretofore in any such unit set a new standard in crystal filter design.

The selectivity control is noteworthy. This control varies selectivity from the knife-like point desired for C.W. to the wider degree of selectivity re-quired for practical phone reception. Another original feature is the crystal

transformer with its two impedance

matching windings and air-dielectric tuning capacitors. Placing the crystal

"

between the two windings secures maximum crystal efficiency. An accurately ground Isolantite holder provides a precise and uniform air-gap. Carefully lapped holder plates insure absolute flatness. The wipingmotion switch is trouble-free and ab-solutely noiseless. Thus dependable and effective results are positively

guaranteed. This crystal unit is but one of the many, many features of the HAM-MARLUND "SUPER-PRO" RECEIVER. Send today for the complete "SUPER-PRO" story.

Mail Coupon for **Complete** Details

Send for it today. It will be mailed at once.

RADIO TRAINING ASS'N. OF AMERICA

4525 Ravenswood Ave., Chicago

EXTRA COST OF This time-saving trouble-finder and circuit analyzer cluded.

Dept. RN-67

www.americanradiohistory.com

Conducted by Zeh Bouck, Service Editor

INSTALLING automatic volume control in the process of modernizing receivers capable of a reasonable degree of rejuvenation is not the simple matter most servicemen wish it were. General directions would suffice for only a handful of specific instances. As a rule, if any rule at all can be established, each receiver must be considered as an individual problem.

HE following notes on adding a.v.c. to a Majestic Model 50, contributed by G. Demey, of Bruges, Belgium, is a good example of general principles, and should be of considerable assistance to servicemen running up against comparable jobs. "The Majestic 50 is really a satisfactory receiver, its main desideratum being lack of a.v.c. In the case under consideration, I removed the 51 i.f. tube and the detector; and changed the sockets for a 58 i.f. amplifier and a 2A6 detector, with the circuit altered for a.v.c. I replaced the 645-ohm volume control with a 600-ohm fixed resistor. A new 500,000ohm volume control was connected as shown in Figure 1, and the original resistor of 35,000-ohms was replaced with a 2000-ohm resistor (marked X). The revised connections are all shown in the diagram. The a.v.c. action and general results are all that could be desired."

Prize Kink

To our mind the best tip to the harassed serviceman that we have come across in many moons is contributed by W. D. Wibong, of the W. and W. Radio Shop, Fort Worth, Texas. Here it is: "In trying to look around a corner in a periscopic fashion to see the end color of a resistor, I find a dental mirror to work quite nicely. It is also a great help in tracing circuits through a maze of half-hidden wires. The magnification afforded by such mirrors relieves eye strain and contributes to the speed and accuracy of many a service job. Try it on some tubular condenser with the capacity marked on the side you can't see!"

Ionization-Good and Bad

There was a time when any tube that showed a blue haze was considered a gassy —defective—tube. A present day hangover from the O1A era has resulted in many perfectly good tubes being thrown into the discard. Sylvania News points out that there are three reasons for blue glow —and that only one of the three is indicative of a bad bulb. A fluorescent glow, usually around the inside surface of the glass envelope, is characteristically of a violet color and varies with the intensity of the signal. This is of the harmless

FIGURE 1

variety. A similarly innocuous blue haze, due to mercury vapor, will be noticed on the types 82 and 83 rectifiers.

Gas also causes a blue haze and this is detrimental to the action of the tube. It will usually be discerned in the vicinity of the plate, and will be accompanied with erratic action—distortion in the case of an a.f. tube. The fact that this gas haze may also vary with the signal strength often leads to confusion between fluorescent haze and ionization in a defective tube. These hazes can be differentiated by means of a powerful horseshoe magnet. The glow in a gassy tube will not be affected by the presence of the magnetic field, but a haze deflection will be noticed in the true fluorescent phenomenon.

In cases of severe gas, the entire tube will glow, and the set will be altogether inoperative.

Philcos 620 and 16X

"I have run across several instances of trouble with the Philco 620, due to a shortcircuit in the tone-control condenser connecting to the plate of the 42 power tube. Remedy: Substitute a 400-volt capacitor -.02 to .05 mfd, depending upon the depth of tone control desired. Trouble with the shadow tuner in the 16X and similar jobs can be corrected by disconnecting and transferring the leads to the plate circuit of the second intermediate-frequency tube." -Eugene C. Drobeck, Manila, P. I.

An Alignment Tip

"The Majestic 20 has probably caused servicemen more grief than any other chassis. The instructions for getting at the works are to unsolder certain wires in order to remove the bottom cover. However, I have found it much easier to remove all the screws at the bottom, permitting the parts attached to fall away still connected. To replace the bottom, all that is necessary is a 1-inch screw to hold the inside support of the condenser pack. The other parts can then be replaced quite easily with the original screws. "One of these Majestics had been de-

"One of these Majestics had been decreasing in volume for some time until at last only the very strong stations could be heard. A check-up showed all voltages and parts okay. I found it, however, impossible to realign the r.f., due to excessive capacity in one circuit. Remembering that a short-circuited turn of wire around a coil reduces its inductance, I wound one turn of bell wire around the grid end of the coil and short-circuited it. It was then easy to bring the r.f. condenser into alignment. The turn was doped in place and the owner said that the set worked better

FIGURE 4

www.americanradiohistory.com

FIGURE 2

than when new. It would have been easy to remove a turn or two of wire, but this method seems as good. (This set can also be pepped up by reducing the detector cathode resistor to 2000 or 1500 ohms. Too low a value will cause distortion on strong signals, however)."—Chris L. Schultz, Brazil, Indiana.

We can't agree with our contributor on the argument that the short-circuited turn is as good as a turn or two taken off the The turn might well result in inductor. loss of signal strength or broad tuning. However, the short-circuited turn idea is an excellent one to determine quickly if one circuit is tuning to too low a frequency, a condition that might well be suspected if the trimmer condenser is way out and sharp alignment cannot be secured. Before leaving the turn in place permanently, or removing a turn or two from the coil, see if there isn't some way of reducing the capacity of the circuit, perhaps by bending the condenser plates, or replacing shielded grid leads with a lower capacity type. Changing the inductive value of the circuit, while it may result in better action over part of the dial, will usually upset tracking in other portions.

SERVICE SALES PROMOTION

The envelope stuffer shown in Figure 3 has brought results to Ralph S. Harrison, Bethesda, Ohio—as one might suspect from its general get-up and the sales suggestion carried on the detachable coupon. Mr. Harrison has also played up his amateur radio activities to their greatest advantage and this angle has resulted in considerable service business.

A tip to you servicemen who go in for refrigeration sales in the summer months: Take an oscilloscope and an RCA vibration pickup (Figure 2) along with you on your radio service calls. Maneuver for a chance to talk refrigeration, and ask permission to measure the vibration on the refrigerator being used. Set up the pickup and the oscilloscope—with the pickup on the refrigerator, itself, first, then on the kitchen table. Let the mistress of the house watch the test. If the vibration exceeds that of the new job you're selling, suggest that she drop into your shop to listen to and SEE a silent refrigerator. (N.B. Don't bother trying this on an Electrolux! But it's a fine sales argument for this refrigerator if it happens to be the one you're selling. However, any of the modern mechanical designs will show up well on the RCA pickup.)

The P. R. S. M. A.

Among the most active of all service organizations is the Philadelphia Radio Servicemen's Association. This affiliation publishes a highly-interesting and useful service magazine, the P. R. S. M. A. News, which is available to non-members at (Turn to page 53)

• With many new stations on the short waves, and the real DX season now here, the superselectivity of the 1936 MASTERPIECE IV really separates 'em, to bring in stations the world over... clean and clear of noise and interference.

Couple this variable 8 to 18 kc. super-selectivity to the superbly quiet sensitivity and perfect tone... add to all this easy, simple operation, plus permanent logging on the accurately calibrated dial... and you have the reasons why champion DX'ers choose and depend on the 1936 MASTERPIECE IV. Whatever it is that is new, snd honestly contributes to greater reception, MASTERPIECES always have it first and best.

Finest Laboratory Construction

Custom-designed, custom-built, every set laboratory adjusted to the most exacting precision standards...this champion distance-getter, this superb musical instrument, brings you every worthwhile feature of advanced radio engineering—many of them exclusive in the MASTERPIECE IV. Truly, it has every right to be termed the "Rolls Royce" of Radio!

New Tube Equipment

The 1936 MASTERPIECE IV is equipped with eight-pin sockets which take either the new octal-based glass or metal tubes. New 19-tube equipment gives a total of 27 separate tube functions. Its extraordinary inherent quietness, tremendous selectivity, sensitivity and reserve

McMURDO SILVER CORPORATION G.P.H. Inc. 3352 N. Paulina St. Chicago, III.

power, its unlimited distance range and unequalled clear tone make MASTERPIECE IV the outstanding choice for superior foreign reception.

New Low Prices . . . Easy Terms

The new perfected MASTERPIECE IV is now offered at the lowest price in its history. New, liberal time-payment plan enables you to enjoy it NOW ... and pay for it out of income. Check the coupon for details.

Try it for 30 Days

Try the new MASTERPIECE IV for 30 days in your own home or laboratory, under your own reception conditions. If it fails to PROVE its ability to outperform any other all-wave receiver, at any price, return it to our laboratory undamaged and get your money back.

1	
Name	····
Address	
City	State
1 ,	7RN

Now you can add a genuine RCA Cathode Ray Tuning Indicator to almost any receiver having automatic volume control! This RCA Kit makes your set like a '36 model. Easily installed. Kit, including 6E5 tube, socket, escutcheon, bracket, cable, everything necessary, only \$3.00. Stock No. 9688.

UNIVERSAL AUDIO TRANSFORMER -

This replacement unit couples *any* general-purpose triode such as -01-A, 26, 27, 30, 37, 55, 56, 76, 85, 6C5, to the grid of any class A amplifier tube, singly or push-pull.

Metal Case. Size 2 x 2-3/8 x 2-7/8 inches including lugs. Stock No. 9632. Price \$2.

A Service of the Radio Corporation of America

Zeh Bouck Service Editor

FIRST PRIZE Equipment Plus Display

The letterhead of Webber's Radio and Electric Shop declares that it is the "Best equipped radio service shop in northwestern Colorado," a slogan that, judging from Figure 1, is based on fact. The equipment, which is mostly Weston, includes a model 665 selective analyzer, a 664 capacity meter, an all-wave oscillator and a tube tester. A 15-watt high-fidelity amplifier is employed for test work, and also for the sound broadcasting of news items. The speakers can be heard three and a half miles out of town! A similar 30-watt amplifier is used on P.A. work, in conjunction with a crystal and ribbon mike.

The generator on the counter is for charging storage batteries, which are placed beneath. The screen suspended from the ceiling, in front of the tube display, is employed as an aerial in testing and ser-

FIGURE 2

tograph — the Supreme 385 Automatic, Weston-Jewell analyzer and the Triplett Master Unit Model 1200, volt, resistance and milliampere meter—so arranged that

For a permanent or separate automobile speaker the Model 870 VS 6-inch or 930 VS 8-inch NOKOIL Reproducer housed in our attractive vehicle cabinet, as shown above, is positively unbeatable.

A Demonstration means A Sale

Write for further particulars, complete catalog and name of your nearest distributor.

WRIGHT-DECOSTER, Inc. 2255 University Ave., St. Paul, Minnesota Export Dept.: M. Simons & Son Co., New York. Cable Address: "Simontrice." Wright-Decoster, Inc., Guelph, Ontario

FIGURE 1

vicing auto radios. Equipment shortly to be added consists of an R.C.A. oscilloscope, signal generator and modulator.

The busy season at Webber's is during the fall and winter, when as many as thirty-eight radios have been in the shop at one time! Automobile radio service hits its high in the summer.

Electrical wiring is a sideline, as are electric ranges, one of which may be seen on display in the photograph.

SECOND PRIZE

A Most Efficient Layout

The shop of the Ansol Radio Service (Figure 2) offers an encouraging note to the newcomer in the radio service game, who may be worried about that little item known as overhead, and who may wonder where he can find space for a fully equipped shop. Much of the essential test apparatus will be recognized in the phothey can be readily demounted for use in the field. The bench itself is sturdily constructed, as is attested by the dressed fourby-four legs.

Mr. Soloway is a member of the Radio Manufacturers Service, and specializes in Philco, RC.A. and Zenith.

THIRD PRIZE Eye Level Charts

The serviceman who has fumbled about in drawers and folders for tube and calibration charts will appreciate the disposition of them by Mr. Blend, as shown in Figure 3.

The instrument panel is thirty inches high and seven feet long, constructed of plywood sections twelve inches wide. Thus any single panel can be remodeled without disturbing the others. The equipment includes a point-to-point tester, an all-wave signal generator, two speakers with universal input transformers, a Supreme 85

THIS MONTH'S PRIZE WINNERS

FIRST PRIZE—Ten dollars to Webber's Radio and Electric Shop, P. O. Box WW, Steamboat Springs, Colorado, for display!

SECOND PRIZE—Five dollars to S. Soloway, of Ansol Radio Service, 12 Jefferson Street, Monticello, N. Y., for a tip to the newly trained serviceman, showing how a service bench can be located in almost any corner of the house!

THIRD PRIZE—Four dollars to Harvey Blend, Liberty Radio Service, 830 Blue Hill Avenue, Dorchester, Mass., for arranging his tube charts and instrument calibrations where they do the most good!

FOURTH PRIZE—To G. Demey, 31, Gerard Davidstraat, Postchecker, 112265, Bruges, Belgium. Three dollars for a picture of how a foreign serviceman works!

Congratulations and thanks from RADIO NEWS and its thousands of servicemen readers!

FIGURE 3

tube checker, neon condenser tester, the RADIO NEWS tube tester plus ohmmeter ranges and a neon short tester. Current radio periodicals and service manuals are all within easy reach. The central instruments are lighted by a small hooded light, such as may be purchased in any five-andten-cent store. The main light is arranged on a sliding rod so that it may be best positioned for work.

FOURTH PRIZE A Belgian Service Shop

G. Demey, who, as Figure 4 would suggest, specializes in Midwest radios, nevertheless writes to us from across the Atlantic: "In the upper part of the photo you will see the American and Belgian certificates of membership in the Radio Relay League, Rider's manuals, "Modern Radio Servicing," and a Philco oscillator.

FIGURE 4

The panels from left to right contain an ammeter (most useful in the power line of a set being tested), a full complement of voltmeters, ohmmeters, an output meter and the RADIO NEWS tube tester."

The Contests will be suspended for the summer months for vacations, to be resumed in October.

STATE.....

AGD

CHIC

It's MORE Fun

To Ride With Music Just drive in and see this remarkable G-E Metal-tube Auto Radio. It's easily installed in any make of car. You have the choice of steering post or instrument panel control. Your nearest G-E Radio LIST PRICE

Dealer will gladly arrange a demonstration. \$49.95

GENERAL 🛞 ELECTRIC

The Original Metal-tube Radio APPLIANCE AND MERCHANDISE DEPT. GENERAL ELECTRIC COMPANY BRIDGEPORT, CONN.

ELECTION YEAR PROFITS for Servicemen

by Zeh Bouck

THE public is being sold on the idea that "radio will elect the next President." Ever since that immortal cry of "twenty-four votes for Underwood" plagued the weary ether at the Democratic National Convention back in 1924, radio's place in politics, particularly in a presidential campaign, has been firmly fixed in the minds of the listening public.

WITH every succeeding year, radio has become more and more the campaigner's stump, and it is probable that more radio receivers are in operation on election night than on any other given time throughout the year. It is America's favorite program !

It is inevitable that the radio serviceman will capitalize on this vast amount of listening, even without special effort on his part. However, with organized endeavor, he can do much to make the cash register tinkle, not merely as a result of emergency calls on election eve, but to a more consistent tune from now until November 4th. Regardless of what candidates lose, the alert serviceman is bound to win!

The logical start, if you get to this article in time, is to circularize your old customers and new prospects on the theme of the Republican and Democratic National Conventions. We suggest something along the following lines, mimeographed, and accompanied with a short personal note differentiating between your established clientele and new contacts:

The fight is on! Bigger and better than anything in the prize ring! Will you be at your ringside seat, reserved for you by radio, during the Republican and Democratic National Conventions?

Should your radio let you down at a crucial moment, call on us. Emergency work is a part of our service. But why not let us anticipate any possible trouble by putting your radio in first-class condition NOW—with a special CAMPAIGN MONTH'S GUARANTEE, that is our contribution to a matter of national importance.

We'll guarantee to put your receiver in perfect working order, and to protect you against all possible types of failure—excepting line power—from now until the morning after Election Day! This guarantee covers not merely our own work, but everything previously done to the set, manufacturer's parts, tubes—everything.

The serviceman will admit that this is an attractive guarantee. At the same time, it is an easy one to live up to. Check all tubes carefully and discard those that are the least suspicious. Result: Immediate tube sales, plus practically one hundred percent protection on the tube question. As for other possible failures not concerned with your own immediate servicing, tack fifty cents on each bill, and you will be more than compensated for the one set out of ten that may go bad between now and November 4th. As a matter of actuaries, the average set put in really first class

condition by the observant serviceman is a good risk for better than six months.

Election Headquarters

The serviceman should erect a campaign bulletin board in his show window, announcing all important political addresses scheduled for broadcasting. Such events may also be used as the basis for followups to such prospects as did not respond to former sales literature. Needless to say, the serviceman should install loudspeakers in front of and within his store for the transmission of such speeches and for the announcement of election returns.

A "plurality contest" is also an excellent idea for attracting prospects to your shop, and making the public generally conscious of you as a radio serviceman. Offer whatever prize you can afford-a new receiver. complete set of tubes, one year free radio service, etc.-to the person making the closest guess as to the plurality with which either Republican or Democratic presidential candidate will win over the other. All entrants should be required to fill out a blank, stating, in addition to the estimated plurality, name, address and type of radio owned. This latter information will be useful in later circularization. A daily bulletin should be published announcing the highest estimated pluralities for both candidates, the average estimated pluralities, and the percentage of entrants favor-ing the leading candidate. These announcements will attract repeat customers to your shop.

Merill Lindley, serviceman of Indianapolis, Ind., is making recordings of important political radio addresses, and renting them, plus equipment and services, to local political organizations for their own rallys.

Make your service shop RADIO ELEC-TION HEADQUARTERS—and see to it that your activity is publicized in your local papers!

Election Day Reminders

In many states and districts, registration some time previous to election is a requirement to vote on November 3rd. A small card will be appreciated by many of your clients:

To vote on Election Day, you MUST REGISTER.

DON'T NEGLECT YOUR VOTE -nor the (Turn to next page) opportunity of learning at the earliest pos-sible moment by radio just what hap-pened to it! Why not have us check your radio to insure perfect reception Election Eve and Night?

A week before election day, a follow-up will be effective in many delinquent cases: ELECTION DAY — Tuesday, November 3rd! Your voting place is located at (give address). Polls open at...... a.m. (time), and close promptly at..... p.m. First returns are scheduled to be broadcast by station...... (insert call letters and frequency) at.....

call letters and frequency) at..... p.m. BE PREPARED! All bars and liquor stores are closed while the polls are open! Also, we shall probably be flooded with emergency radio repair work Election Eve. Why not let us check your radio NOW, and guarantee you perfect reception THEN?

THEN? Another short card: Election returns will be broadcast over our public-address system, Election Eve-ning, starting at..... (insert time). We shall be happy to repeat them for the benefit of those 'phoning in for informa-tion. However, why not receive them di-rectly? We have a supply of radios at-tractively priced—and also for rent at special Election Night rates. Or let us check your own receiver, and guarantee you against failure as the re-turns come through! A variation of the above:

turns come through! A variation of the above: Election returns will be broadcast over our P.A. system, Election Evening, start-ing at..... We shall be happy to repeat them for the benefit of those 'phon-ing in for information. Call us, if your set fails, for service or returns. However, why not let us check your set today and guarantee you perfect recep-tion Tuesday evening?

Tuning Indicator

(Continued from page 18)

only an 8-volt range, consequently a voltage divider was required to prevent overload on strong, local signals, causing re-duced sensitivity to weak signals. In most designs, a voltage divider is not needed with the new 6G5.

The installation in a typical a.v.c. cir-cuit is shown in Figure 1. An incoming signal causes current to flow in the diode detector circuit and the resulting voltage drop across R1 is applied through the a.v.c.

network resistors R2, R3 and R4 to the control grid of the 6G5. A ray-control electrode which regulates the flow of electrons to the target of the 6G5 is attached directly to the plate of the triode section of this tube. The voltage supply for this plate is obtained through the 1-megohm resistor. When a strong signal is present in the receiver detector circuit, the a.v.c. voltage is a maximum and therefore the negative voltage applied to the control grid of the 6G5 is likewise high. Under such conditions, very little current is drawn by the 6G5 triode plate and little current will pass through the 1-megohm plate resistor. The potential of the ray-control electrode will therefore be substantially the same as that of the target and will have little control action. For weak signals, the grid bias will be less, the plate current greater, and the resulting voltage drop across the plate resistor higher. The ray-

control electrode will then become negative with respect to the target, repelling the flow of electrons to the screen. This causes the characteristic shadow to appear on the circular target. Figure 2 shows the shadow angle in degrees resulting from various gridbias potentials on the 6G5 tube.

This tube should be of particular interest to servicemen, since it simplifies the installation of a tuning indicator on any set which has a.v.c. Many other applica-tions, such as tube voltmeter, output meter, high-resistance continuity testing, etc., will suggest themselves.

Metal Tubes

(Continued from page 16)

(Continued from page 16) isself perhaps rather minor, but accumulated they reach rather important proportions. Per-metal tube is that the use of metal for the enve-lope of a tube opens up a whole new line of been under investigation and development for the past iorty years, first in the incandescent lamp mounfacturing plants and laboratories and later is development. The glass-enclosed vacuum has been under investigation and development for the past iorty years, first in the incandescent lamp my radio tube manufacturers. The result is that is development had been perfected to what now appears to be the highest possible degree. In the countered in the development of the glass tube the metal tube up to the glass tube standard it would be distinctly worth while, but actually the metal tube has progressed somewhat beyond this opint and it is a practical certainty that the next very or two will see further developments in metal tubes shortly to be introduced, one of which has aready progressed beyond the possibilities of joint and it is a practical certainty that the metal tubes shortly to be introduced, one of which has aready progressed beyond the possibilities of point in metal tube. The foregoing is at the moment perhaps a mewhat intangible point in favor of the metal tubes, but it must nevertheless be recognized as an extremely important one if vacuum-tube and therefore radio development is to continue to nitely. Shielding accessories are therefore not when the shielding is more effective. Moreover, the variations in capacity and re-sistance in critical r.f. and i.f. circuits, resulting intend. With glass tubes many of the complica-tions which are so hard to track down in a new duet tube shielding. This source of trouble is automatically eliminated when metal tubes is an ob-vious advantage. Then, too, the shell is un-

quate tube shielding. This source of trouble is automatically eliminated when metal tubes are used. The smaller size of the metal tubes is an ob-vious advantage. Then, too, the shell is un-broad advantage. Then, too, the shell is un-stronger and more rigid due to special spring bracing and to wider spacing of the internal eads between the elements and the tube base. Many believed that it was not possible to maintain a high vacuum in a metal shell, but at high vacuum in a metal shell, but at the development work on this one problem has been carried to a point where the metal tube, as now being made, is equal if not superior to the glass tube in this respect. Actual life tests above that the modern metal tube can be de-pended upon to average at least as many hours of service as its glass equivalent. The skeptics brought up numerous points when metal tubes were introduced, supposedly, to prove that metal tubes had inherent drawbacks, the would be interesting to look back on some of these in the light of the experience of the past year. One point was that one could no longer eriver. This is obviously a fact, but is of little consequence, as a metal tube will remain cool if the filament is unlighted. If a tube is warm to on for a few minutes it is certain that the filament is lighted. Another objection was that the metal tubes run hotter to the touch than do glass tubes. It is true that the metal tubes *feel* warmer, but in no case does their actual temperature reach unsual propertions. The metal is a better ondor a few minutes it is certain that the filament is lighted. Neither glass nor metal tubes glass of power is the same regardless whether the shell be glass or investing any appreciable amount of power is the same frequenciable to handle in any case. More im-tered of the tube is of little importance. No tube is the same tegardless whether the shell be glass of the shandling any appreciable amount of power is the same date. The metal is a better is the flament is the fact that the metal shell radiates to b

THE WESTON CHECKMASTER (MODEL 771)

- 1. Tests all tubes has spare sockets
- 2. Neon Short Check while tubes are hot
- 3. Cathode Leakage Test
- Individual tests on elements of diodes
- 5. Voltage ranges for point-to-point testing
- Resistance ranges for continuity testing
- **7.** Neon high resistance leakage test
- 8. All readings on one legible, open-scale meter-the famous WESTON 301 in modern rectangular form
- 9. Positive line voltage control
- 10. Striking design and finish for home or store use

Convenience, simplicity of operation, and dependable accuracy are combined in this new CHECKMASTER. It's extremely portable . . . yet its striking design and finish makes it ideal for shop and counter use. Get full information on Model 771. Return the coupon below.

WESTON ELECTRICAL INSTRUMENT CORPORATION 615 Frelinghuysen Avenue, Newark, N. J.

Name
Address
CityState

HRO JUNIOR SUPERHETERODYNE

The HRO Junior is a superheterodyne receiver, outstanding for its excellence and low price. It is designed expressly for those who are interested in world-wide short wave reception, and who demand the performance of a commercial-type receiver, but do not require the highly specialized features that necessarily increase the cost of a receiver designed expressly for two-way commercial service.

expressly for two-way commercial service. A nine tube circuit (including two stages of preselection and two stages of I. F. with air dielectric trimming condensers), a precision built tuning condenser, separate shielded coils, and strict adherence to National's high standard of quality permits the attainment of unsurpassed selectivity and sensitivity. Laboratory calibration of each coil range, plus the unique easy-reading tuning dial (no perplexing intermingled tuning scales) provides an accurate means for logging and locating stations. Fast or slow tuning is accomplished by the clever arrangement of the tuning drive mechanism. Only one knob is used—no unhandy double or two position knobs.

For those desiring the specialized features of a crystal filter, S meter and amateur band spread, we recommend the standard HRO.

Write for an illustrated description of both receivers.

NATIONAL CO., INC. MALDEN, MASS.

territories. We are the originators of this type instrument **TELEPLEX CO.** 72Cortlandt St., New York City

Manufacturers of VITREOUS TRANSMITTING GRID LEAKS VOLUME CONTROLS • POWER RHEOSTATS

\$11.95

Write for Complete Free Catalog ELECTRAD, Inc. 175 Varick Street, New York

THE TECHNICAL REVIEW

Advance Laboratory Practice in Electricity and Magnetism, by E. M. Terry and H. B. Whalin. Third edition. McGraw-Hill Book Co., 1936. This book was written for students who are following a college course in physics. It will be of interest to radiomen because considerable space is given to measurements employed in radio work. There may be some advantage in the study of a book which deals with all electrical phenomena rather than with a limited subject. The physics laboratory employs instruments which are foreign to many radio workers and it would seem that some of these instruments may become useful.

The opening chapter advises the reader regarding the best systematic way of making experiments, then turns to the definition of electrical units and the relations between the electrostatic, the electromagnetic and the practical systems. The second chapter consists of a discussion of galvanometers. Thereafter the chapter headings are: Measurement of Resistance; Measurement of Potential Difference; Measurement of Current; Measurement of Power; Measurement of Capacitance; Magnetism; Self and Mutual Inductance; Elementary and Transient Phenomena; Sources of Electromotive Force and Detecting Devices for Bridge Methods; Alternating Current Bridges; Conduction of Electricity Through Gases; Photometer and Optical Pyrometer; Fundamental Radio-Frequency Measurements; Electron Tubes; Oscillators and Amplifiers.

Each chapter gives some of the theory of the subject and discusses the principles and practice of measurement of the required electrical constants.

Technical Manual, published by Hygrade Sylvania Corp. This is a new edition of the now familiar tube manual. This time several improvements have been included. It is supplied with a spiral binding so that it will lay flat when opened. Then, each tube has a page or several pages to itself; the headings no longer start half-way down the page. Of course, this manual contains all the new tubes and metal tubes which were available at the time of printing. The information on each tube consists of a socket connection diagram, characteristics showing the proper voltage, currents, etc., and a discussion on the best way of using the tube.

In addition there is considerable data on tubes in general, typical circuits, a list of interchangeable tubes and a bias resistor chart.

Clarostat Volume Control Replacement Guide. Compiled and presented by Clarostat Mfg. Co., Inc., Brooklyn, N. Y. 80 pages, $8\frac{1}{2}$ by 11 inches.

This well-prepared book tells the serviceman just what control to use for every volume control and tone control replacement job. It lists hundreds of different receivers, of both old and new styles, and should prove of real value to practicing servicemen who want to make a profit out of their business.

Review of Articles Appearing in the April, 1936, Issue of the Proceedings of the Institute of Radio

Engineers

Automatic Compensation for Class B Bias and Plate Voltage Regulation, by R. J. Rockwell and G. F. Platts. A method of automatically compensating for the effects of bias and plate-voltage regulation in class B stages is outlined. It obviates the necessity of using heavy current bleeders where rectifier bias supply is used, and is shown to be more desirable than battery bias. A typical installation using low power tubes is described, but the principle may be applied to installations of any desired power.

Scanning Sequence and Repetition Rate of Television Images, by R. D. Kell, A. V. Bedford and M. A. Trainer. This paper considers factors which affect the apparent steadiness of television images, namely: line flicker, flicker of the image as a whole, alternating current ripple in the deflecting circuits, a.c. ripple in the video frequency signal and various kinds of beating of the a.c. ripple with the various scanning frequencies.

A Proposed Wattmeter Using Multielectrode Tubes, by John R. Pierce. For direct measurements of small amounts of power, or measurements over a wide range of frequencies, standard dynamometer wattmeters are unsatisfactory. The author proposes a new method using vacuum tubes.

Radio Panel Lamps and Their Characteristics, by J. H. Kurlander. The deceiving simplicity of dial lights has caused set manufacturers no small amount of trouble. The author treats these lamps as an integral part of the receiver and gives some practical information about them that radio men will appreciate.

A Fundamental Suppression Type Harmonic Analyzer, by J. H. Piddington. The principles and design of an harmonic analyzer of novel form are described. It operates by suppressing the fundamental and passing the harmonics through an amplifier with a calibrated gain control to a cathode ray oscillograph or vacuum tube voltmeter.

Frequency Control by Low Power Factor Line Circuits, by C. W. Hansell and P. S. Carter. This paper points out the advantages of concentric conductor lines as lower power factor of high Q resonant circuits for controlling the frequency of very high frequency oscillators.

very high frequency oscillators. Calculation and Design of Class C Amplifiers, by Frederick Terman and W. C. Roake. A method of calculating the performance of a class C triode amplifier is presented. It is shown how the results of the analysis may be applied in a straightforward manner to lay out class C amplifiers on paper, and to predict power output, power input, plate loss, etc., for any particular set of operating conditions.

Description and Characteristics of the End-Plate Magnetron, by Ernest G. Linder. A new type of magnetron is described which is especially adapted to the generation of centimeter waves.

Review of Contemporary Literature

Literature Better Mixer Controls, by A. E. Thiessen. General Radio Experimenter, April, 1936. De-scription of a new type of step-by-step volume control that combines the essential features of low noise level and absolute dependability. Power Supplies. The Aerovox Research Worker, February and March, 1936, issues. Current radio receivers employ power packs of varying complexity, some so involved that their operation is not readily understood from the usual circuit diagram. This two-part article clearly explains the functioning of all types of packs, both for receiving and transmitting purposes.

packs, both for receiving and transmitting purposes. Coil Manufacturing Costs, by M. E. Fagan. Radio Engineering, April, 1935. A complete analysis of one of the most important phases of radio receiver manufacture. The "Turnstile" Antenna, by George H. Brown. Electronics, April, 1936. A new ultra-high-frequency radiating system which econ-omizes energy by concentrating it in a horizontal plane equally in all directions. Calibrating Microphones by Means of a Ray-leigh Disk, by Michael Rettinger. Communica-tion and Broadcast Engineering, April, 1936. The purpose of this article is to outline the theory and practice associated with the de-termination of the frequency response of micro-phones. **Eree Bulletins**

Free Bulletins

Engineering Bulletin A 14-page bulletin, bearing the title, "The Relation of Modulation Products with Multi-Tone Signal to Harmonic Distortion with Mono-Tone Signal in Audio Amplifier Analysis", is issued by the Engineering Department of the Ken-Radio Corporation. Copies are obtainable free of charge from RADIO NEWS, 461 Eighth Avenue, New York City.

A Valuable Tube Chart Readers will find the 9th edition of the Ray-theon tube chart of great assistance in their work. It measures 11 by 32½ inches, is printed in two colors and the internal connections, as viewed from the tube sockets are given on all types of tubes. The operating characteristics of the tubes are very complete and the informa-tion is compiled in such a manner for easy and quick reference. A copy of this chart is avail-able to our readers free of charge. Address requests to RADIO NEWS, 461 Eighth Avenue, New York City.

Public Address Equipment The general catalog of the Operadio Manu-facturing Company describes a very extensive line of high-quality fixed and portable sound reproducing systems, loud speakers, microphones, complete call systems and other essential acces-sories. Sound engineers will find it a worth-while guide. Copies are obtainable free of charge from RADIO NEWS, 461 Eighth Avenue, New York City.

Latest Bulletins A series of large catalog sheets describing loud speakers, power transformers and audio chokes for amateur equipment and audio ampli-fying systems, volume controls and replace-ment auto vibrator units, are available free for the asking from Utah Radio Products Company. Send requests to RADIO NEWS, 461 Eighth Avenue, New York City.

Refrigeration Booklet A new booklet entitled "Information About Commercial Refrigeration" has just been issued by the Frigidaire Corp. Compiled from field studies and laboratory research, the book con-tains a wealth of information on the subject of refrigeration and would be a very helpful book to radio men who expect to enter the refrigera-tion field as a companion business. For a free copy write to RADIO NEWS, 461 Eighth Avenue, New York City.

New Catalog of Short-Wave Receivers Short-wave listeners and amateurs will want to obtain a copy of the Harrison 1936 catalog listing a full line of popular communication type short-wave receivers, a novel multi-kit unit and popular antenna systems and other accessories. Through the courtesy of the Harri-son Radio Company, this catalog is free to our readers. Send in your request to RADIO NEWS, 461 Eighth Avenue, New York City.

"Radio Handbook" Reference Manual for Amateurs and Experimenters

Experimenters Containing 360 pages and hundreds of diagrams, charts and tables, the 1936 edition of "The Radio Handbook", pub-lished by the Pacific Radio Publishing Co., is rapidly establishing itself as the standard reference manual of short wave fans experimenters and amateurs. The fundamentals of radio are ex-plained, and constructional data are given on receivers and transmitters to satisfy both beginners and "old timers". The price of this fine book is \$1.00. Readers desiring copies may order them directly from RADIO NEWS, 461 Eighth Avenue, New York City. Send check or money order; do not put cash in the mails. mails.

RADIO NEWS Booklet Offers Repeated For the benefit of our readers, we are repeating below a list of valuable technical book-lets and manufacturers' catalog offers, which were described in details in the February, March, April, May and June, 1936, issues. The majority of these booklets are still available to our readers free of cost. Simply ask for them by their code designations and send your re-quests to RADIO NEWS, 461 Eighth Avenue, New York, N. Y. The list follows: F1—Catalog of Radio arts. The National Co., Inc. Free. Mh1—Sound Equipment catalog. Inter-World Trading Corp. Free. Mh2—Radio Parts catalog of Bud Radio, Inc. Free.

Mn2—Radio Faris calling c. ____ Free. Mh3—Amateur Equipment catalog of Whole-sale Radio Service Co., Inc. Free. Mh4—Tube Tester Booklet of Supreme In-struments Corp. Free. A1—Condenser Replacement Manual of P. R. Mallory Co., Inc. Free to servicemen. A2—"Your Future in Radio", 32 page book of Sprayberry Academy of Radio. Free to read-ers seriously considering a modern education in radio.

radio. A3-Radio Capacitor Catalog of Solar Mfg. Co. Free. (Turn to page 51)

Radio men all over the country are taking their hats off to Sylvania. Here's an example of service that means something!

●If you haven't a copy of this valuable book, send for one NOW! Here are just a few of the features of this new Technical Manual:

1. A 50% increase in contents.

- 2. 141 tube types listed with important circuit application information given on each type.
- Characteristics on all types are the latest, including all the standard types of metal tubes. 3.
- A section on circuits has been increased to include 13 typical radio receiver and amplifier circuits which show proper use of the most popular types of tubes now being employed.
- 5. Curve data on ballast tubes for battery sets The convenient pocket-size has been retained in spite of the large increase in material.

Clip this coupon right now! It will mean cash in your pocket!

Hygrade Sylvania Corporation, makers of Sylvania Radio Tubes and Hygrade Lamps. Factories at Emporium, Pa., Salem, Mass., and St. Mary's, Pa.

SYLVANIA THE SET-TESTED RADIO TUBE

Hygrade Sylvania Corporation
RN-76 Please send me the new Sylvania Technical Manual
I enclose 15c in stamps.
Name
Address.
City
State

(Continued from page 30)

ers.) Also reported on 17,699 kc. with program to Asmara 10:30 to 11 a.m., E.S.T. (Hull, Holt.)

IQA, Rome, Italy, 14,730 kc., heard transmitting program to Asmara 10 a.m., E.S.T. (Hull, Holt.)

RV59, Moscow, U. S. S. R., 6000 kc., has an English program Monday,

has an English program Monday, Wednesday and Sunday, 4 to 6 p.m., E.S.T. (Westman.) **RNE**, Moscow, U. S. S. R., 12,000 kc., now heard Wednesday, Friday and Saturday. 12 m. to 2:30 a.m., Mos-cow time. (Reilly, Shea.) Observers Hull, Cox and Salazar say they are on daily 4 to 6 p.m., E.S.T. Observer Twomey says that he hears them 11:15 Twomey says that he hears them 11:15 to 11:30 p.m., E.S.T. Still another report says Sundays 9 to 10 p.m., E.S.T.

ASIA

RIS, Tiflis, Transcaucasian Repub-lic, 13,740 kc., heard testing 3:30 to 4 p.m., E.S.T. (Hull.)

HS8PJ, Bangkok, Siam, 10,995 kc., reported on the air Mondays 8 to 10 a.m., E.S.T. (Sholin, Partner, Shea.) Observer Kemp says he has heard them also on 10.070 kc. with the call HS5PJ. They have also been reported heard on 10,190 kc.

neard on 10,190 kc. ZHI, Singapore, S. S., 6010 kc., re-ported heard Mondays, Wednesdays and Thursdays 6 to 8:10 a.m., E.S.T., and also on Sunday after 7 a.m., E.S.T. (Sholin.) Observer Costes says the frequency is 6018 kc. and that they are on daily 5:40 to 10 a.m., E.S.T., Sundays 6:10 to 8:40 a.m., E.S.T.

ZHJ, Penang. S. S., 6080 kc., re-ported heard 7:40 to 8:40 p.m., E.S.T. (Costes.

F3ICD, Saigon. French Indo-China, will soon he on the air again on 9520 kc. (Lunn, Lower.)

XGOX, Shanghai, China, reported heard on 9600 kc., then on 9500 kc., then on 9460 kc. and lately on 9550 kc., transmitting daily 6:30 to 8:20 a.m., E.S.T., on Sundays 7:30 to 9:30 a.m., E.S.T. (Partner, Costes.)

ZBW, Hongkong, China, 8750 kc., reported heard as per time-table reg-ularly. (Gallagher.)

www.americanradiohistory.com

tion for listeners who hear their sta-tion. We recommend that our readers try for it

CQN, Macao, 9490 kc., reported heard Mondays and Fridays 4 to 7 a.m., E.S.T. (Brown.) Observer Scala says the frequency is 9605 kc. and re-ports hearing them 7 to 8 a.m., E.S.T.

JVM, Nazaki, Japan, 10,740 kc.. on the air 4 to 5 p.m. on Tuesdays and Thursdays with American test pro-gram. (Coleman, DeMarco, Perry, Twomey, Ishkanian, Messer, Hartner, Gallagher.) They are also reported on the air Saturdays 10:30 p.m. to 12:45 a.m., E.S.T. Observer Richard-son reports them daily 4 to 7:30 a.m., E.S.T.

JVN, Nazaki, Japan, 28.14 meters, reported carrying same program as JVM, 4 to 5 p.m., E.S.T., Tuesday and Thursday. (Shea, Jacobs, Galla-(Shea, Jacobs, Gallagher, Messer.)

JVH, Nazaki, Japan, 14,600 kc., reported on same program and time as JVM and also on 12 m. to 1 a.m., E.S.T. This station may replace JVN entirely for the rest of the summer. (Perry, Partner.)

IN PEACE AND QUIETUDE

Not all of our short-wave observers have these kind of surroundings in which to read of short-wave activities in RADIO NEWS. Werner Howald, L.P.O. for California, is the lucky reader pictured

1111)

Chicago, Ill.

-

Name.

833 W. Jackson Blvd. Dept. M.

□ Send me your FREE 136 page Catalog

Address.....

Send me your FREE Political P. A. Bulletin.

1 X

BIRNBACH

LIST PRICE COMPLETE

\$**4**.25

48

ARIZONA DX CORNER

Here's the set-up of Observer Harry Wolf of Camp Verde, Arizona. No-tice the prized certificate and ever-present RADIO NEWS Short-Wave Time-Table

JVP, Nazaki, Japan, 7510 kc., re-ported heard Mondays and Thursdays 4 to 5 p.m., E.S.T., irregularly. (Pas-quale, Ishkanian, Messer.)

PMN, Bandoeng, Java, 10,260 kc., reported heard Sunday 7 to 10 a.m.,

E.S.T. (Self.) PLP, Bandoeng, Java, 11,000 kc., reported heard 6:30 to 10 a.m., E.S.T. (Richardson, Amos, Gallagher.)

AFRICA

AFRICA CNR, Rabat, Morocco, 12,830 kc., heard after 3 a.m. (Chambers.) ZTJ, Johannesburg, South Africa, 6098 kc., heard 5 to 6:30 a.m. and 3 to 5:30 p.m. E.S.T. (De Marco, Mallet-Veale.) CR6AA, Lobito, Angola, Africa, 7170 kc., reported heard Wednesday and Sundays 2:30 to 4:30 p.m., E.S.T. (T. Adams.) V07LO (Narobi, Africa, reported heard as per Radio News time table. (Ishkanian.) CR7AA, Lourenca Marques, Mozambique, 6137 kc., 300 watts, reported heard daily 12 N. to 3 p.m., E.S.T. (Westman.) FIQA, Tananarive, Madagascar. 6000 kc., reported heard 10 to 10:45 a.m. E.S.T. (T. Adams.) ETB, Addis Ababa, Ethiopia, 11,955 kc., heard Sundays 4:30 to 4:50 p.m., E.S.T., ask-ing for reports to be sent to Radio News. This station due to recent developments in Ethiopia may now be off the air, however. (Styles, Shea, Messer, Hull, Kentzel, Nos-worthy, Rogers, H. R. Smith.) NORTH AMERICA

NORTH AMERICA

TFJ, Reykjavik, Iccland, 24.52 meters again on the air as per schedule. (Messer.) VE9DR, Montreal, Canada, 6005 kc., re-ported heard Saturdays, 5.6 p.m., E.S.T. (Kent-zel, Scala, Rogers, Shea, Millen.) Observer Herman says he hears them S a.m.-1 p.m., E.S.T.

E.S.T. VE9DN, Drummondville, Quebec, Canada, 6005 kc., 4 kw., reported heard Saturday nights with messages for the far north, 10:30 p.m. 12:30 a.m., E.S.T. (Herman, Twomey, Sahl-bach)

with messages for the far north, 10:30 p.m. 12:30 a.m., E.S.T. (Herman, Twomey, Sahlbach.)
VE9CA, Calgary, Alta, Canada, 6030 kc., reported heard 7 p.m. 1 a.m. (Loke.)
CRCX, Toronto, Canada, 6150 kc., reported heard 6.12 p.m., E.S.T. (Craig, Ishkanian, Puyenbroek.)
W9XG, West Lafayette, 2800 kc., 1 kw., re-ported heard Tuesday and Thursday, 7:30-8:30 p.m., E.S.T. (Kemp.)
W2XAF, 31.48 meters. reported best heard American station, 6-8 p.m., E.S.T. (Allison, T. Adams, Ishkanian.)
W2XAD, Schenectady, N. Y., 15.330 kc., re-ported heard 11 a.m. 2 p.m. E.S.T. (Millen, T. Adams, Puyenbroek.)
W3XL, Bound Brook, N. J., 6425 kc., heard testing with W1XAL. (Cox.)
W1EW, an American Airlines plane was re-cently heard testing while flying along the Con-necticut River to N.B.C. and sending flood con-ditions to that agency. (Kemp.)
CFAC, 960 k.c. conducts a DX tips program by L.P.O. A. E. MacLean and his partner every Saturday night, 1:30 a.m. E.S.T.

W9XF, Chicago, Illinois, 6100 kc., 10 kw., is now on the air Tuesday, Thursday, Friday and Sunday. 12 noon-1 a.m., 5-12 p.m. and on Monday. Wednesday and Saturday, 12-1 a.m., E.S.T. (Immicke, Ellsworth.) W8XAL, Cincinnati, Ohio, 6060 kc., 10 kw.. reported heard now 6:30 a.m.-8 p.m. and 11 p.m.-2 a.m. E.S.T. (Immicke.) W2XGB, Hicksville, L. 1., 6425 kc., heard S-10 p.m., E.S.T., and asking for reports. Will verify. (Brown. Belanger, Graham, Lopez, Dressler, J. E. Shields.) W9XAA, Chicago. Illinois. 11,830 kc., is now on from 8 a.m. onwards. (Kentzel, Adams, Styles.)

verify. (Brown. Belanger, Graham, Lopez, Dressler, J. E. Shields.)
W9XAA, Chicago. Illinois. 11,830 kc., is now on from 8 a.m. onwards. (Kentzel, Adams, Styles.)
WQP, Rocky Point. L. I., 13,900 kc., has been heard relaying N.B.C. programs Sundays, 2.2.45 p.m. E.S.T. (Kentzel.)
W2XE, Wayne. New Jersey, has the following program, 21.520 kc., 11 p.m., 1 a.m.; 15.270 kc., 1-4 p.m.; 11.830 kc., 4-10 p.m.; 6120 kc., 11 p.m., E.S.T. (Putnam.)
A DX tip program on KCMC, Texarkana, is held on Wednesdays. 8:30-9 p.m., E.S.T. conducted by O.L.P. James Halsey and O.L.P. Charles Holt of Radio News.
W6XKG, Los Angeles. Calif., 35.6 megacycles reported heard 1:30-5 p.m., E.S.T. (Wennberg.)
KEJ. Bolimas, Calif., 9010 kc., reported heard 11 p.m.-12 midnight E.S.T., relaying N.B.C. programs 11 p.m.-12 midnight, E.S.T. (Hull, Moore.)
KKO, Bolinas, Calif., 11,950 kc., heard relaying N.B.C. programs 11 p.m.-12 midnight, E.S.T. (Herman, ISAkanian. H. R. Snith. Nosworthy.) Observer Frost says the time is 7 to 9 p.m., E.S.T. XEQ, Mexico City, Mexico, has changed frequency from 6180 kc. to 6130 kc. and is on the air from 8 to 9 p.m., E.S.T. (Merman, ISAkanian. H. R. Snith. Nosworthy.) Observer Brost says the time is 7 to 9 p.m. and 5:30 to 10:30 p.m., E.S.T. (Retances.)
XEUW, Mexico City, Mexico, 12,000 kc., reported heard 10 a.m. to 3:30 p.m. and 5:30 to 10:30 p.m., E.S.T. (Retances.)
XEUW, Mexico City. Mexico, 9620 kc., heard testing on 14,700 kc., 5 to 7 p.m. (Erost.)
XEET, Vera Cruz, Mexico, 9620 kc., heard testing on 14.60 ym., E.S.T. (Retances.)
XEUW, Mexico City. Mexico, heard testing on 14.700 kc., 5 to 7 p.m., E.S.T. (Satasa. Subo, 12,000 kc., reported heard 10 a.m. to 3:30 p.m. and 5:30 to 10:30 p.m., E.S.T. (Retances.)
XEUW, Mexico City. Mexico, heard frequency from 6180 kc. to 6130 kc., heard frequency to 6240 kc. and is heard from 4 to 6 p.m. daity E.S.T. and Wednesday and Saturday 9 to 11 p.m., E.S.T. (Satas

changed herefuller to the anged to 6295 kc. Take your choice.
COKG, Santiago. Cuba, 6150 kc. is heard evenings until 1:45 a.m. E.S.T. (Sands. Salazar. Hansen, Akins. Stokes, Gavin.)
COPG, Santiago. Cuba, reported heard on about 11.435 kc. irregularly by Fletcher.
VRR4, Kingston, Jamaica. 11.599 kc., reported heard 4.5 n.m. and at about 9.45 p.m..
E.S.T. (Gavin, Rogers.)
CENTRAL AMERICA
HH3W, Port au Prince, Haiti, 9595 kc., reported heard 1.2 p.m. and 7.9 p.m., E.S.T. (MacLean, Kosvnsky, Brown, Hynek, Stabler, Shea, Salazar, Costes.)
Station signs off with the sound of a train running.
HH2Y, Port au Prince, Haiti, heard on 31 meter band Sundays about 10:30 a.m., E.S.T. (Salazar.)
H13C, Santiago, D. R., 43.48 meters heard 7:30.9:30 n.m., E.S.T. (Harris, Dickes.)
H19B, Santiago, D. R., 6050 kc., reported heard 6.11 p.m., E.S.T. (Lowe, Hynek, Stabler.)
H17. Truiilo, D. R., 6630 kc., 200 watts, reported heard on Sunday 11 p.m.-1 a.m., E.S.T., with a DX program. (Atkinson, Gavin, Kosvnski, Ballina, Clarke, Mechling, Style, Oxrieder, Lowe.)
H115, Puerto Plata, D. R., 6420 kc., reported

ski, Ballina, Clarke, Meching, Style, Oxfleder, Lowe.) H11S, Puerto Plata, D. R., 6420 kc., reported heard 7-8 n.m. (Kentzel.) H1Z, Truiillo, D. R., 6300 kc., 200 watts, re-ported heard Sundays, 7:40-10:40 a.m., daily 12:10-11:10 a.m. and 4:40-5:40 p.m., E.S.T. On Tuesdays and Fridays they are also on from 8:10-10:10 p.m., E.S.T. (Gavin, Sahlbach.) Observer Betances says the frequency is 6280

kc. H15N. Trujillo. D. R., 6130 kc., reported heard 1:30.2 a.m. (Costes.) Observer Betances says the frequency is 6145 or 6150 kc. H11A, Santiago de los Caballeros. D. R., signs off at 8 n.m., E.S.T. (Allison.) H14V. Trujillo. D. R., 6475 kc., reported heard 9:10 p.m., E.S.T. (Osbahr, Ballina, Car-ville.)

heard 9.10 p.m., E.S.T. (Osbahr, Ballma, Car-ville.) TIEP, Trujillo, D. R., 6710 kc., this station reads reports made to the station by American listeners 8.9 p.m., F.S.T. (Gavin.) TIRCC, Truillo, D. R., 6550 kc., 500 watts, heard daily 12 midnight-3 a.m. and 5.6 p.m., on Thursdays they are on from 7-12 p.m. and Sundays on from 12 poon to 9 p.m., HRD, La Ceiba, Houduras, 6235 kc., 250 watts, reported heard daily 7 to 10 p.m., E.S.T., and on Sundays 12 noon to 11 p.m., E.S.T. (Turn to have 54)

(Turn to page 54)

Precision Without Extravagance

Model 1206 DEALER NET \$84.33

Modern automobile radio sets are now so de-signed that the tubes and power pack including the vibrators are accessible without removing the chassis from the car. The radio service dealer appreciates that much time can be saved by "going over" the set in the car first.

TRIPLETT Master Unit Testers are ideally suited for this work. Volt-Ohm-Milliammeter, Tube Tester, Signal Generator and Free Point Tester are separate and distinct instruments. Each can be used with radio set in the car.

This is just another reason why the Triplett Master Unit Test Set is the most popular tester among radio servicemen. It is a complete portable laboratory with the testers that the professional serviceman needs in his daily work. Each instru-ment can be purchased separately and the entire laboratory thus built up over a period of time.

50

CAPT. HALL'S PAGE

HERE in the eastern part of the United States we have found through actual experience and correspondence that there are very few short-wave stations that the listeners living in these parts cannot tune in. African, Asian and Australian stations are our most distant catches, but even these can be (and are) snared by the careful and patient tuner. Some of the newest and rarely heard stations have been logged by East Coast listeners when they had escaped the early attention of most of our Western listeners. Whether this is due to the fact that we spend more time at our receivers here or pay more attention to our antennas, we will not attempt to say.

URING the past month our reception report has proved to be varied and in some instances rather perplexing, as several stations were only heard once and then some are as yet unidentified. Of course, the most interesting stations proved to be the 14 meg. phone amateur band with the low-powered Australian "hams" taking first place. Between the hours of 11:30 p.m. and 2 a.m. the "Aussies" rolled in and a dozen could be logged with no difficulty at all. Among the best heard were VK3KX, VK5JC, VK2AZ, VK2BK, VK2YW, VK2GF. European amateur stations were often elusive during the winter, but with the coming of summer they started up at twilight and carried on all through the evening. EA5BE and EA3ER, Spain; G5ML and G5NI, England, are on the air nightly. But real DX began when J4CP was logged one morning at 3:45. Mexican, Costa Rican and South Americans are here, there and everywhere

Turning our attention from the DX possibilities of the 20-meter amateur band we find the 31-meter band bristling with new stations. By far the best is "Radiodefusora Cartagena," whose call letters, after much disputing, have been definitely settled as HJ1ABP. This station (using American custom-built equipment) operates on 9.60 megs. and requests reports be sent to Post Office Box 32, Cartagena, Colombia, S. A. Their programs consist of American recordings, English and Spanish announcements.

HJ1ABE, "La Voz de los Laboratorios Fuentes," abandoned the terribly congested 49-meter band and took a chance on 31 meters, only to find conditions there almost as bad. This station's 9.50 meg. signals are now being heard with good signal strength and excellent quality. Reports should be addressed to Post Office Box 31, Cartagena, Colombia, S. A.

www.americanradiohistorv.com

A newcomer operating on 6.12 megs., with the call letters HJ3ABX and located in Bogota, Colombia, has been heard nightly until 11:15 p.m. Signature sign-off is the striking of chimes and the playing of "Indian Love Call." The announcer repeatedly informs listeners that they are "La Voz de Colombia."

XEWI, 11.94 megs., Mexico City, is often heard requesting that reports of reception should be sent to Post Office Box 2874 or telephone in.

GAA, 14.72 megs., Rugby, England, is active nearly every morning at 10 a.m., calling "Hello, LSL or LSY, Buenos Aires."

"La Voz de la RCA-Victor," or HIT, signs off every night at 8:30 p.m. with the playing of "Victory." The station announcer requests that reports be addressed to Apartado 1105, Trujillo City, Dominican Republic.

HJ1ÅBB, 6.45 megs., Barranquilla, Colombia, has been striking the inevitable gongs (three, then one) during the course of station announcements. Rarely is this station free of code interference.

HC2JSB, Guayaquil, Ecuador, may have a regular schedule, but rarely adheres to it. Heard operating on 7.85 megs., but with a weak, poor signal strength and code and rhumbas were coming through together.

HI3C, La Romana, Dominican Republic, has a fine signal whenever heard on their special broadcasts on Monday from 10:30 to 11:30 p.m. The frequency used is 6.9 megs. Four chimes are used for an identification signal and with the playing of "Sousa's March," this station signs off.

VSJ, San Salvador, has been heard testing on 14.48 megs. and 8.19 megs. This is a fairly new commercial phone circuit and the operator has been "caught" counting from one to ten and A-Z at very unusual times: viz., 10 a.m. or 10 p.m. and midnight.

VJZ, Rabaul, New Guinea, has been heard on Sunday between 5:30 and 6:00 a.m. operating on 13.88 meg. Invariably the program consists of recordings. VK4HA advises us that they are testing on Mondeus hitting that they are testing on

of recordings. VK4HA advises us that they are testing on Mondays between 4 and 4:30 a.m. on 7.12 meg. Power 20 watts (try and log them!). Address reports to: H. B. Mangle, Sisley Street, St. Lucia, Brisbane, Queensland, Australia. Are you one of those verification collectors who sent a report of reception to XBJQ, the Mexican station operating on 11 meg. and ARE YOU STILL WAITING FOR AN ANSWER? Here is the reason your veri never came Mexican station operating on 11 meg. and ARE YOU STILL WAITING FOR AN ANSWER? Here is the reason your veri never came through. Senor R. Bravo, operator of XBJQ, owned by the National Bank of Mexico, in-formed us that although from 100-200 reports reached him every day, he answered each and every one. But the QSL cards were sent to the New York branch of the bank to be forwarded to the listeners. Senor Bravo requests that all future reports of reception of either XBJQ or his amateur station (XE1Q) be addressed to P. O. 2825, Mexico City. The 6 meg. (RV59) Moscow station has been eluding listeners but RNE, 12 meg., has been heard every day at about 3:30 p.m. On the even hour the "Internationale" is played and the woman announcer says, "Hello. Hello. Here is Moscow." Musical selections are played, but the inevitable discussion of Soviet conditions continues to be the popular fare. HC2RL, insists that they are operating on 45 meters (6.66 meg.) and that they broadcast twice weekly, on Sunday from 5:45 to 7:45 p.m. and on Tuesday from 9:15 to 11:15 p.m. The output power is 150 watts using 100% modula-tion. They begin and conlude each broadcast with the playing of the Ecuadorian anthem. Address all reports to Dr. Roberto Levi, P. O. Box 759, Guayaquil, Ecaudor. By the way— this station has a new card which is very attrac-tive.

Metal Tubes

(Continued from page 45)

applications—particularly in ultra-high-frequency operation—this actually proved to be a draw-back, but so far as operation on frequencies up to 30 megacycles is concerned it is by no means a serious consideration. Moreover, this char-acteristic is one which can be altered when and if the popularity of the ultra-high-frequencies warrants. warrants

This brings us to the one feature that makes the metal tubes less desirable than glass at the present time and that is the matter of price. It would seem that even the most pessimistic of unprejudiced observers will have to agree that in view of the fact that metal tubes are amenable to future development, whereas basic improve-ments in glass tubes had just about come to a standstill, the advantages of the metal over the glass mark the season of 1935-1936 as one of distinct fundamental progress so far as tubes are concerned.

The DX Corner (Broadcast Band)

(Continued from page 39)

been determined as yet but will be selected from the following frequencies: 119, 600, 620, 660, 800, 820, 840, 850, 860, 890, 900, 960, 1010, 1030 and 1040 kc.

The Technical Review

(Continued from page 47)

My1—Information on a new antenna system. echnical Appliance Corp. Free.

My1—Information on a new antenna system. Technical Appliance Corp. Free. My2—Condenser bulletin of Cornell-Dubilier Corp. Free. My3—Free. Instructive bulletins on measur-ing resistance and proper use of resistors to ex-tend meter ranges. Aerovox Corp. My4—Free. Folders on Polyiron core coils. Aladdin Radio Industries, Inc. My5—1936 condenser catalog. Sprague Spe-cialties Co. Free. Je1—Sound Equipment Catalog of the Web-ster Co. Free. Je2—Radio Parts Catalog of Allied Radio Corp. Free.

Je2-Radio Faits Catalog of Fined Idate Corp. Free. Je3-Transmitter Bulletins of the Collins Radio Co. Free. Je4-Radio Supply Catalog of Wholesale Ra-dio Service Co., Inc. Free. Je5-Spring Radio Catalog of Radolek Co. Je5-Free.

2 P.A. SYSTEMS COST OF THE FOR Universal 6 V (D.C.) or 110 V (A.C.) (Patent Pending)

Permanent Mag net Speakers re-duce storage bat-tery drain by 3 tery amperes.

Amplifier and Turntable built in one unit

20 Watts Out-

Two 12" Per-manent Magnet Speakers Hand Type Dual Diaphragm Crystal Micro-phone

> System MP-420

The economical system for the ra-dio service dealer. This system can be used on either 6 V D.C. or 110 V A.C. by plugging-in the right power pack. Thus you have two complete systems. It can be used for any kind of rental and has many distinct applications for sales where this type is most ideal.

The plug-in type power pack is an exclusive WEBSTER-CHICAGO development (patent pending). The use of the phonograph turntable and pickup as an integral part of the sys-tem reduces size and cost. Excellent frequency response and low hum level.

The Webster Company Section JU6 3825 W. Lake St. Chicago, III. Without obligation please send me. More information on System MP-420. Enter my name for "Sound Engineering." Ie................... up-to-date pamphiets coverti-engineering and sales de-tails. If you wish one, send in your name. Printing will be limited to those 3325 desiring this Chicag informa. informa. tion.

Address....

City.....State.....

Name.....

Manufactures a complete line of synchronized public address systems, sound equipment am-plifiers and accessories of all kinds.

WEBSTER-CHICAGO

STRICT DEALER POLICY

FULLY LICENSED

TIME PAYMENT PLAN

RADIO PHYSICS COURSE

Alfred A. GHIRARDI

Lesson 52. Resonance

F the e.m.f. applied to a series circuit having inductance and capacitance is kept constant, but the frequency is increased, the current in the tuned circuit varies as shown by the resonance curve a^+ (A) of Figure 1. At first the current increases slowly, then as the resonant frequency (400 kc. in this case) is approached, the current increases very abundly and after passing through a sharp abruptly and after passing through a sharp maximum at 400 kc. (peak), falls very rapidly at first and then more slowly. The voltages across the tuning coil and condenser go through similar changes. The phase between the current and the e.m.f. also changes. It is a negative angle (current leads e.m.f.) at frequencies below resonance, since the capacitive reactance predominates; it is zero at resonance (cur-rent and e.m.f. changes are in phase) and becomes a positive angle at frequencies above resonance (current changes lag behind voltage changes), since then the in-ductive reactance predominates. At the low frequencies the reactance of the condenser is high, so very little current flows.

receiver is said to "tune sharply." If the resonance curve is more flattened due to resistance, there is not very much difference between the current set up in the tuned circuit by the wanted station and that set up by other unwanted stations of different frequencies, so they may all be heard at once, causing interference, and the receiver is said to "tune broadly."

At resonance, the magnitude of the current in the circuit is controlled entirely by the resistance. Its effect is very important in the tuned circuits of radio receivers. The curves at (B) of Figure 1 show the effects of adding various resistances to the circuit whose resonance curve was shown at (A). The smaller the resistance of the circuit, the greater are the voltages across the condenser and the inductance coil. This is due to the fact that the voltage across these reactances is equal to the product of the reactance and the current (E = XI). The latter, controlled entirely by the resistance at resonance, in turn produces greater voltages across the reactance when less resistance is in the circuit.

It is seen from (B) of Figure 1 that in the tuned circuits having the higher resis-

Figure 1. Resonance curves for series tuned circuit, showing the effect of resistance on the current which will flow, and the sharpness of tuning, when a constant voltage of various frequencies is applied to it

Likewise, at the high frequencies the reactance of the coil is high, so very little current flows. This principle is used in radio receivers to separate the signal of the station it is desired to receive from those of all other stations which may be induced in the antenna at the same time by the passing radio waves. When the tuned circuits of the receiver are set at resonance for a particular station broadcasting on a certain frequency, the signal currents from this station will build up comparatively large voltages across the inductances and condensers in the tuned circuits and hence the signal is heard loudly. The tuned circuits offer a much higher impedance to the flow of currents of all other frequencies both above and below this resonant frequency, as shown by the resonance curves. Consequently the incoming voltage impulses from stations of other frequencies cannot set up much current in the tuned circuits, and hence very little voltage is developed across the tuning inductors and condensers and applied to the grid input circuits of the amplifying tubes. If the resonance curve is sharply peaked, the current falls off sharply for all frequencies other than the resonant frequency, and the

tance, the current at resonance is very much less than that in the circuits having low resistance, for the above reasons. These are *broadly* tuned circuits. For frequencies much above or below resonance, the currents are practically the same in each case, for here the ohmic resistance is only a small part of the total impedance of the circuit, since the inductive and capacitive reactances do not equal each other, and therefore the current is determined mainly by the net reactance. The curves are not symmetrical about the resonant frequency the *capacitive reactance predominates*, and above the resonant frequency the *inductive reactance predominates*.

New Aluminum Recording Blanks

To have a minimum of groove or background noise, the new aluminum recording blanks made by the Universal Microphone Company are put through a special heat treatment, have a highly polished surface and are coated with a composition of special alloy aluminum material which is not subject to deterioration with age.

The Service Bench

(Continued from page 41)

\$1.00 a year. The scope of their activities —or should one say oscilloscope?—is somewhat indicated in the photograph of Figure 4, showing their booth at the Philadelphia Radio Show. The oscilloscopes are to the left and right. The P. R. S. M. has certainly demonstrated, beyond cavil, the benefits to be gained by intelligent organization.

by intelligent organization. Servicemen in British Columbia should get in touch with The Associated Radio Technicians of British Columbia. This orlead to one side of the O1A filament. Turn the controls to "Leakage 1", "Voltage 5" and "Regulator 100". This test should not be used on electrolytic condensers.

The lads are passing around the word that the new Lynch under-car auto aerial is an excellent bet as the auto radio season is getting into full swing. Many prospects can be caught going and coming—a good auto antenna needed for the summer vacation, and a new one on their return, after a few weeks of rutted mountain roads have scraped everything clear except the crankcase and running boards.

Taking a page from the auto service industry—and perhaps a line or two from RADIO NEWS—the R. C. A. (Parts Division, Camden, N. J.) has developed the

ł

PUT THIS CARD INSIDE YOUR R.	FREE INSPECTION We will gladly inspect your Radio and Test the Tubes Free of Charge if you will fill out this Card and Mail it to us.	
SHORT WAVE CERTIFIED TELEVISION RADIO & ELECTRIC SERVICE		
"ANY MAKE RADIO REPAIR	RED"	Your Name
SHORT WAVE RADIOGRAMS RADIO-TELEGRAPH SENT EVE STATION W8FYV FREE OF CHARGE BAT VISITORS WELCOME U. S. & FOREIGN	R C A TUBES READY BATTERIES TERY RECHARGING 50c.	Address
RALPH S. HARRISON LICENSED RADIO OPERATOR BETHESDA, OHIO	Ň	Reception Good 📋 Poor 🛄 None 🗌
FIGURE 3	serviceman	's "Three Point Plan"-com-

ganization is a live gang of servicemen, working for the good of the craft, and publishing an interesting monthly magazine. The address is Vancouver, B. C.

SERVICE NOTES

Tobe Deutschmann announces that their neon light condenser tester can be modernized to provide positive indication on intermittents by shorting (with a convenient switch) the common plate-grid

Ham Gadget

(Continued from page 21)

across the terminals "A" and "B" to provide a closed path for the grid bias voltage.

For use with low resistance circuits, the instrument may be operated as an output meter of extreme sensitivity without any external apparatus. The link is left closed, the loop is removed and the circuit under test connected to the loop terminal posts. At audio frequencies, the 50 mmfd. tuning condenser will have no effect. This will be found quite useful for aligning, checking hum levels, etc.

R2 is specified as 300,000 ohms. With some type 30 tubes, it may be necessary to change this value slightly. The value should be such that the no-signal current reading on the 1 mil meter is 30 to 50 micro-amps.

The "Ham" Shack

(Continued from page 21)

may have had a good signal strength, but when a stronger one came in on top of it, it "passed out of the picture."

While, as we already have proved, carrier strength in microvolts is entirely dependent on the antenna and the sensitivity of the receiver, under a given set of conditions, it is possible to determine more accurately by meter the comparative signal strength of an incoming signal than by most other means available to the amateur. serviceman's "Three Point Plan"—combining technical assistance and service merchandising.

The "Three Point Plan" consists of an attractive filing cabinet containing technical data, a book entitled "101 Service Sales Ideas," and a book on "Service Business Methods," written by John F. Rider. These components are illustrated in Figure 5 and will prove invaluable to the progressive serviceman and can be had on a typical merchandising plan from R. C. A. at what amounts to a truly nominal cost.

It means, too, if amateurs relied on meter readings in giving R reports, they would be (perhaps) more disappointing to the listener on the other end, but at the same time they would show what chance a signal has of competing with the QRM at a given location, with a given receiver and antenna. A milliammeter in the plate circuits of the i.f. tubes of the superheterodyne will be quite suitable for this purpose and will show up any difference in carrier.

All this is by way of proving that by giving some attention to the receiving antenna much better results may be had. It would appear from these tests that the doublet gives better results than the L type and vertical antennas. It might be pointed out, however, that the vertical antenna might have been a better performer on signals having vertically polarized waves. Most amateurs use horizontal antennas and therefore the polarization is largely horizontal.

The half-wave receiving antenna, like the transmitting antenna of similar type, gives its best performance when operating at the frequency for which it is cut. Results will be satisfactory on other bands, however, but if good two-band operation is desired, such as 20 and 40, a doublet antenna may be used. A number of the aerial kit manufacturers are making these units for the amateur bands as well as the shortwave broadcasting bands. Also several sellers of kits have doublets that are suitable for all-band operation. One of these in particular has a 30-meter half-wave doublet section with 78-foot feeders, and is so designed that, providing the feeders are kept at their exact length (even though it may be necessary to coil them up in a corner), it will give good results on all (Turn to page 54)

BUSINESS, WITH NATIONAL UNION **RADIO TUBES PLUS** FREE EQUIPMENT ASK NOW...

How can I get these: □ Tube Testers □ Oscillographs □ Set Analyzers □ Metal Cabinets □ Shop Coats □ Sound Equipment

NATIONAL UNION RADIO CORP. OF NEW YORK 570 LEXINGTON AVENUE, NEW YORK, N. Y.

TRIMM

Street.....

A type of phone to meet every requirement, from the highest to the lowest. Precision built throughout. Amateurs, commercial operators, short wave listeners, hard of hearing, hospitals, scientific research workers, and others will find a Trimm headset for every application.

If it's a headset, Trimm makes it Write for full infor-mation. RADIO MFG. CO. 1770 W. Berteau Ave., Chicago, III.

A A C C A I N S 4 Intest type tubes AC or DC with Dynamic Speaker, Built in Aerial, Two tone Cabinet, Pentode Power Output, New Illuminated Airplane Dial with unbrenkable Lens. Covers entire Broad-cate Band. Just the radio for the Boy. Office or take on trips. Weight 10 lbs. use on any 110-125 volt current, Price complete with tubes \$10.95 FOB Kearney. 5 tube model (not pictured) \$11.95 or 5 tube model (not pictured) \$13.95. Will ship COD if part pay-ment of \$3.00 sent with order. Midway Padio Disattant Midway Radio Distributor 1715-7th Ave., Kearney, Nebr.

The "Ham" Shack

(Continued from page 53)

amateur bands from 160 meters down.

Another important point in using a doublet receiving antenna is to be sure the feeders are matched to the input of the receiver. Receiver antenna input impedances range from as low as 72 ohms (the impedance of the average twisted pair) to 600 ohms. Most of them are in the vicinity of 400 ohms. A 400-ohm line would be one with No. 14 wire spaced at about 2 inches. Variation of as much as 50 ohms in im-pedance match will make little difference. Obviously, the twisted-pair feeder far from matches the input impedance of the aver-age receiver. Therefore, it is necessary to use some form of matching transformer to meet the requirements of the particular receiver.

On receivers that are not equipped with antenna connections for a doublet, but have only antenna and ground terminals, a special coupling transformer may be used. Such an arrangement will not throw the feeders out of balance, whereas if the feeders were connected to the antenna and ground posts of the set, one side of the line would be grounded to the chassis, and consequently unbalance the feeders. Many set manufacturers make or recommend a specific type of coupler for their receivers.

If it is found that a particular location

The DX Corner (Short Waves)

(Continued from page 49)

(Anca, Salazar, McKay, Gavin, Pickering, Kosynsky, Sands.) Observer Sahlbach says daily 8 to 11 p.m., E.S.T.
HRN, Tegucigalpa, Honduras. This station has an American appreciation hour Sundays 8 p.m. to 12 midnight, E.S.T. (Young, Osbahr.) TGWA, Guatemala City, Guatemala, 9450 kc., 8 p.m. to 12 midnight, E.S.T. (Richardson, Sauberlich.) TG2X, Guatemala City, Guatemala, 5940 kc., heard daily 1:55 to 2:30 a.m. and 5:30 to 6:30 a.m., E.S.T., relaying long-wave station TGW. (Cox, Sands, Akins.) YN1GG, Managua, Nicaragua, 6400 kc., reported heard 1 to 2:30 p.m. and 7 to 10 p.m., E.S.T. (Loke.)
YNLF, Managua, Nicaragua, has changed frequency to 6451 kc. and is reported heard S to 9 a.m., 12:30 to 2:30 p.m. and 6:30 to 10 p.m., E.S.T. (Amos.)
YNVA, Managua, Nicaragua, S675 kc., reported heard irregularly. (N. C. Smith, Ballina.)
HP5K, Colon, Panama, 6005 kc., reported heard 7:30 to 9 a.m. 12 non to 1 a m. and 6 to

fina.) HP5K, Colon, Panama, 6005 kc., reported heard 7:30 to 9 a.m., 12 noon to 1 p.m. and 6 to 9 p.m., E.S.T. (Bower.) YSJ, San Salvador, El Salvador, 14,485 kc., reported heard 11 to 11:30 p.m., E.S.T., testing with nusic. (Hull.) Observer Frost says the irequency is 14,450 kc. and he reports hearing the station 4 to 5 p.m., E.S.T.

SOUTH AMERICA

VP3MR, Georgetown, British Guiana, 42.4 meters reported heard 4:30-9 p.m., E.S.T. (Harris, Shea.) PZIAA, Paramaribo, Dutch Guiana, re-ported heard evenings on about 14,050 kc. (Kentzel.)

HJIABB, Barranquilla, Colombia, 6447 kc., 300 watts, reported heard 11:45 a.m.-1 p.m. and 5:30-10 p.m. (Ishkanian, Dressler, Craig, Gavin.)

HJIABE, Cartagena, Colombia, has changed frequency to 9560 kc. with the same schedule as before. (MacLean, Costes, Stabler, Cox, Carville, Mechling, Dickes, Stokes, Ortiz, Part-

Carville, Mechling, DICKES, SIGKES, OTT., ATT. ner.) HJ1ABP, Cartagena. Colombia, 9600 kc., re-ported heard 6:45-9:45 p.m., E.S.T. (Harris, Styles, Hartshorn, Jacobs, Brown, Gavin, Sala-zar, Sahlbach, Messer. Partner, Horwath, Pick-ering, Holt, Mechling, Moore, Wilkinson, Perry, Akins.) The station announces in Span-ish, English and French. Observer Anca says the program is S·10 p.m. Observer Rich says the program is from S·11 p.m., E.S.T. Ob-server Oxrieder says frequency is 9610 kc. HJ2ABC, Cucuta, Colombia, has reported change in frequency from 5900 to 5970 kc., ac-

provides only enough space for a good transmitting antenna, there is no reason why the transmitting antenna should not be used for reception as well. It would naturally be as good a receiving per-former as on transmitting. The only problem, of course, is switching from transmitting to receiving. With the Zeppelin type antenna and its normal 600-ohm line, the problem of changeover is somewhat complicated. Several stations have been known to install relay switches in each side of the line which automatically connect the antenna to the transmitter when the power switch is thrown. Manual control could be used, although it is somewhat more inconvenient. The spacing between feeders should not be decreased at the switching point, if at all possible, as this would vary the impedance of the line at this point.

However, with the twisted-pair type of feeder or a medium-impedance, spaced line (400 ohms) a double-pole, double-throw switch may be used conveniently. With the former type the voltage in the line is comparatively low and insulation is not an im-portant factor. Therefore switching from antenna to receiver is a simple matter.

Another important advantage in using a doublet for receiving is the fact it is possible to get away from man-made inter-ference. The antenna may be strung far enough away from such equipment so that the pick-up is slight.

Similar input tests made on the 40- and 75-meter bands showed that the antenna was just as important there.

cording to Observer Loke. HJ3ABE, Bogota, Colombia, reported heard on approximately 12,510 kc., 10:30-11:20 p.m., E.S.T., rings four gougs as identification. (Hull.) HJ3ABX, Bogota, Colombia, 6125 kc., re-ported heard 5:15-11:30 p.m., E.S.T. (Perry, Costes, Betances.) HJ4ABC, Ibague, 6451 kc., reported heard 7-10 p.m., E.S.T., except Sundays. (Hull, Gav-in, Loke.) HJ4ABD, Medelin, Colombia, 5760 kc., re-ported heard 6-11 p.m., E.S.T. (Kentzel.) HJU, Buenaventura, Colombia, 9510 kc., 1 kw., reported heard Mondays, Wednesdays and Fridays 12 noon to 2 p.m. and S-11 p.m., E.S.T. (Trice, Gavin, Perry, Partner, Holt, Styles, Lamb, Moore, Cox, Amos, Frost, Spielman.) YV6RV, Valencia, Venezuela, 6520 kc., re-ported heard 5-1:30 p.m., E.S.T. (Sands, Ga-vin.) YV3RC, Caracas, Venezuela, 6150 kc., re-

ported heard 5-1:30 p.m., E.S.T. (Sands, Gavin.)
YV3RC, Caracas, Venezuela, G150 kc., reported heard 11 a.m.-2 p.m. and 4-10 p.m., E.S.T. (Gavin, Jordan.)
YV5RMO, has been off the air for weeks.
Who knows why? (Betances.)
YV8RB, Barquisimeto, Venezuela, has changed frequency from 5580 to 5900 kc. Observer Oxrieder says the change is to 5895 kc. LRU, Buenos Aires, Argentina, 15,280 kc., 19.6 meters, 5 kw., has been reported heard announcing in Spanish and French on Sundays, 11 a.m.-4:30 p.m. (Partner, Stokes, Adams, Jacobs, Gavin, Westman, Hansen.)
LRX, Buenos Aires, Argentina, 9580 kc., 5 kw., reported heard S-10 p.m., E.S.T. (Partner.)
LSX, Buenos Aires, 10,350 kc., reported heard Wednesdays 10-11 p.m., E.S.T. (Richardson.)

OCEANIĄ

ardson.)
DCEANIA
ZLT, Wellington, New Zealand, 11,050 kc., reported heard 12:45-1:15 a.m. (Kentzel.)
PD, Suva, Fiji Islands, 13,075 kc., 12:30-130 a.m. (Kentzel, Putnam, Moore, Miller.)
VJZ-VKZ, Rabul, New Guinea, 12.9 meters, reported heard 2.9 a.m. and also from 6 a.m. onward. (Lower, Costex.)
WK2DL, Canterbury, Sydney, Australia. This is the station of Mr. W. T. Phelps and transmission of 41.1 meters, Sundays, 7.9 p.m., E.S.T. Reports appreciated, will verify. (Lunn.)
VK2ME, Sidney, Australia, 9590 kc., reported heard 1.2 a.m., Saturday nights, and on Sundays, 5-9 and 9:30-11:30 a.m., E.S.T. (Galagher, Shea, Amlie, N. C. Smith, Choo, Schram. Tortoriello, Carville.)
MK3LR, Lyndhurst, Australia, 9580 kc., reported heard 3:15-7:30 a.m., E.S.T. (Bedard, Schram, Schram, Schram, Shea, Amlie, Puyenbroek. Choo.)
WK3ME, reported variously on 9490 kc., 9495
Ko, and 9510 kc. heard 4:30-7 a.m. (Koehn, Nosworthy, Choo, Allison, Amlie, Schram, Saturday, Amlie, Schram, Katurday, Amlie, Schram, Shea, Amlie, Puyenbroek, Choo.)
WK3ME, reported variously on 9490 kc., 9495
Ko, and 9510 kc. heard 4:30-7 a.m. (Koehn, Nosworthy, Choo, Allison, Amlie, Schram, Shea, Amlie, Nosworthy, Choo, Allison, Amlie, Schram, Katuratia, Statura, Statu

Readers Who Are Awarded "Honorable Mention" for Their Work in Connection with This Month's Short-Wave Report

Work in Connection with This Month's Short-Wave Report S. F. Carville, James A. McGregor Jr., R. B. Oxrieder, Peter J. Tortoriello, Charlie E. Han-sen, Rafael Penalver y Ballina, J. E. Puyen-broek, Fletcher W. Hartman, Vincent W. Thurn, George L. Loke, John C. Kalmbach Jr., Oliver Amlie, Edward DeLaet, W. J. Thomas III, Preston C. Richardson, Hans Andersen, John Hartshorn, Fred Leonard Gilmore, Terry A. Adams, Howard Adams Jr., Ralph Clarke, C. McCormick, John G. Hampshire, Joe Klar, Bob Katzenburg, U. L. Jacobs, J. Lunn, H. Mallet-Veale, N. C. Smith, E. L. Frost, Earle R. Wickham, George Sangrik, Arthur B. Colever, G. Hampton Allison, Charles Spielman, Caleb A. Wilkinson, R. W. Sahlbach, James M. Cole-man, J. T. Atkinson, G. L. Harris, Leo Herz, Robert Roger, R. H. Tucker, Chan Hwa Choo, Albert Pickering, Arthur Hamilton, Thomas P. Jordan, Ted Stark, Louis Hortwath Jr., Frank Nosworthy, George C. Akins, Howard Sauber-lich, R. L. Young, George James Ellsworth, Jose L. Lopez, Fred A. Pilgrim, Harry Wolf, Harold H. Flick, R. C. Messer, Joe H. Ziglin-ski, Werner Howald, Arni Sigurdsson, Harold Self, G. W. Twomey, Manuel E. Betances, H. Francis Shea, Gabriel M. Costes, Kenneth Dressler, R. O. Lamb, Frank Andrews, Juan Manuel Salazar, Leon Stabler, Lewis Miller, Rodney M. Craig, Jarold E. Shields, George H. Fletcher, James Brown, A. Belanger, Joseph Stokes, George W. Osbahr, Harold F. Lower, James E. Moore Jr., R. C. Ludewig, Sydney G. Millen, Fred Cox, F. T. Reilly, G. C. Galla gher, O. C. Dickes, Melton and Gilpin Amos, William Koehnlein, S. G. DeMarco, Charles Holt, Jerry M. Hynek, Wade Chambers, Tom Mechling, J. Wendell Partner, Manuel Ortiz, Cayton D. Sands, R. N. Putnam, A. Kosynsky, A. T. Hull Jr., Ed McKay, Robert Herman, John Wennberg, Howard Adams Jr., R. H. Graham, Arthur Immicke, Orville Brown, Paul V. Trice, Malcomb L. Gavin, Augusto Anca, Harry E. Kentzel, Jack Perry, Fred C. Lowe Jr., George Sholin, Anton J. Cindel, A. E. Mae-Lean, H. Westman, Aram Ishkanian, Harold W. Bower, Enrico Scala Jr., S

Seeing's Believing

(Continued from page 19)

<text><text><text><text><text><text><text>

would determine the requirements and further development necessary to the establishment of a "public television service." "We have gone much beyond the standards fixed elsewhere for experimental equipment," he declared. But at this point, the usual addendum of caution was made, as follows: "But this is a far cry from the expectations of such a service aroused by pure speculation on the subject. There is a long and difficult road ahead for those who would pioneer in the development and establishment of a pure television service."

5-600 Meter Superhet

(Continued from page 25)

W5AXF and W9GIC. A few of the stations heard on 40 meters in-clude: W9KGW, W9LEP, W9UZJ, W6MLM, W9LXN, W9AA, W9RME, W40UT, W9PKZ, W4AZK, W80KY, C08YB (phone), W3FM, W5FNG, W80MR, CM6RC, W9KA, VE3AEM, W5EXW, PZ2AK and W9CRP. The 10-meter amateur band was practically dead during the entire time the receiver was on test. Only during one evening did it open up, then, in addition to a number of local stations, W9FFU, W5JC, W6IWY, W9BLU, OA4J and NY2AE were heard. Few signals on 5 meters could be copied due to no fault of the receiver, but because most of the transmitters used on this band are modulated oscillators and, of course, suffer a good deal of frequency modulation. The selectivity of the i.f. amplifier is such that it does accommodate the broad character of these "swinging" signals. However, it was found that about 20 percent of the 5-meter signals were stable enough to be in-telligible. One crystal-controlled 5-meter signal was copied, and its stability and quality compared favorably with 20-meter 'phone signals.

Some Other Checks

Some Other Checks During the short time this receiver was under test at the New York Listening Post in Uni-versity Heights, the Bronx, some excellent results were obtained on the short-wave broadcast bands. A brief check was also made on some of the amateur bands. Here again the results were excellent. On the 20-meter phone band, for in-stance, the following stations were heard: V53BC, H15X, NY2AE, G6LK, CO2HY, G5JO, G5NI, G5DY, F8CU, G5PT, T12FG, V011, XE3AG, G5QS, PAOFB. So far as short-wave broadcasting is con-cerned no attempt was made to compile a really extensive log. It was concentrated rather on picking up some of the more difficult or more distant stations. Of course a flock of European stations in Italy, Germany, France, England, Spain and Holland were brought in. These are just the garden variety of reception. It should stations were tuned in at frequent intervals with decidedly favorable signal-to-noise ratio and with use.

tar more than ample volume for ordinary nome use. A better indication of the sensitivity and favor-able noise level of this receiver is found in the fact that at this listening post it was found pos-sible to tune in Australian, Japanese and Russian stations; also Portuguese, Belgian and Swiss. On the whole, the record of reception was par-ticularly good considering the short duration of operation at this location. In the 50-meter band where congestion is ex-tremely bad the crystal filter proved highly effec-tive as an aid in separating stations which oper-ate so close together in frequency as to cause serious heterodynes. In some cases it was pos-sible to separate two stations which without the crystal filter were both completely masked by the heterodyne caused by the beat of their carriers.

Calibration Checks

Calibration Checks A final check was made to determine the accuracy of the dial calibration. This check was made on the amateur phone ranges as follows: in the 1800-2000 kc. band the calibration was off only 4 kc. At 3900-4000 kc. it was right on the dot. The greatest variation was in the 14150-14250 band. Here the calibration was 60 kc. off, or one part in 230. In the 10-meter range, 28000-29000 kc., it was off one part in 315. On the 5-meter band the calibration was almost un-believably accurate, there being no detectable error whatsoever. A crystal controlled station known to be operating on 56 meg. came in ex-actly on 56 meg. and another station which was known to be operating almost exactly on 60 meg. came in at 60 meg. on the dial. Thrended particularly for amateur operation, the RADIO NEWS tests give convincing evidence that the designers of the ACR-175 have suc-ceeded in building-in a high degree of efficiency. This efficiency seems to be maintained on the short-wave broadcast ranges as well. The re-ceiver is therefore a highly satisfactory one for all types of short-wave reception and demon-strates more than average efficiency even on the regular broadcast band of 540-1500 kc.

56

netically and electrostatically. Useful frequency range 20 to 20,000 cycles. Average weight, 3¹/₄ oz. Cubic content, 21/4 cu. in.

Ask for Bulletin 1003 AMERICAN TRANSFORMER COMPANY

NEWARK, N. J. 177 EMMET ST.

Chicago Wheel & Mfg. Co., 112 S. Aberdeen St., Chicago, III.

Your Vote

(Continued from page 10)

even to the President of the United States, all held in such high esteem, may we not appeal for the choice word and the measured phrase, spoken with malice toward none and charity toward all?"

the choice word and the measured phrase, spoken with malice toward none and charity toward all?" According to Thomas H. Reed, chairman of the Committee on Civic Education by Radio, in a study prepared for the Radio Institute of the Audible Arts, broadcasting has revolution-ized the technique of the political campaign. Dr. Reed, a distinguished educator, declared: "The radio audience, not being a mass audience, is not to be influenced by bellowing, arm-waving, or even by any of the subtler physical arts by which a speaker sways a crowd. The radio audience is made up of myriads of individuals and small family groups. No one likes violent noises in his living room, and even small noises reach portentous volume as they emerge from a loudspeaker. The mere strength of wind and nasal resonance have ceased to be factors in politics to the manifest advantage of democ-racy. Today, any man who has something to say, and can get a chance on the air, can say it to his countrymen without regard to whether his voice is a light tenor or a rumbling bass." Dr. Reed's point is an intelligent one for the listener, but it is not practiced politically. For example, the Democratic vice-presidential can-didate of 1932—John Garner—was kept as far from a microphone as possible, because he did not possess a "radio voice" and his broadcast utterances as Vice-President were so rare in-deed that it is difficult to recall one of them. President Roosevelt, on the other hand, an ac-knowledged good "radio voice," kceps up a schedule of frequent radio talks which, while technically non-political. do carry political sig-mificance. It has been noted, too, that Hoover, since leaving the White House, has greatly im-proved as a radio speaker. His former mono-tone has yielded to an enlivened style of deliv-ery including inflections and emphasis lacking in the past. The Republican radio committee has been operating about a vear for the current can-

ery including inflections and emphasis lacking in the past. The Republican radio committee has been operating about a year for the current cam-paign. Thomas Sabin, formerly of Station WBZ, Boston, directs the G.O.P. radio activi-ties. He is assisted by John Elwood, a former vice-president of NBC. Elwood is a nephew of Owen D. Young. William Dolph, former radio chief of the NRA and manager of Station WOL, Washington, heads the Democratic radio com-mittee.

Washington, heads the Democratic radio com-mittee. In addition to the usual talks put on by the respective parties in every campaign, indica-tions are that a strong degree of showmanship will be injected. Such devices as theme songs, entertainers, playlets, etc., can be expected to exploit the candidates just as they exploit other sponsors' preducts. But it's a long way from tenors to tenures and it will take more than music to get a candidate into office. It is estimated that about a half-million dol-

It is estimated that about a half-million dol-lars will be spent on combined political broad-casts this year. But this does not represent added profits to the networks. Because other com-mercial programs have to be cancelled to make room for the political periods, the figure largely represents substituted rather than increased revenue.

represents substituted rather than increased revenue. Political events will claim a large share of the news commentaries of such men as Edwin C. Hill. Gabriel Heatter and Lowell Thomas, on NBC: and Frederic William Wile and Boake Carter on CBS. The "March of Time" feature of CBS also expects to devote a large portion of the series to political dramatizations. So keep your ear to the loudspeaker these days and follow the candidates and commentors through the campaign. You will hear plenty! How will it affect your vote?

5-Meter M.O.P.A.

(Continued from page 23)

transformer-coupled to the 59 driver. This unit provides sufficient gain for a crystal mike, but it is not shown, as it is assumed that most every "ham" has his own "pet" speech amplifier and mike.

mike. Construction of such a transmitter is rela-tively simple and can be achieved by the aver-age amateur with very few tools. The chasses measure 17 inches by 12 inches by 2 inches and are finished in black crackle. For optimum results the layout shown should be followed carefully. Special precaution should be given to the isolation of the final stage from the metal sub-panel. It has been found that losses as high as 30-40% result when coils and con-densers as well as the tube itself are mounted close to the metal base. Consequently, to avoid this the entire chassis around the final stage was cut out and a piece of bakelite fastened in its place. This design also eliminates the ne-cessity for shielding the 802 buffer. It might be assumed that chances of oscillation in this stage would be high, but such is not the case.

If a circuit is well laid out and isolation of high-impedance circuits kept in mind, shielding can be almost entirely dispensed with and, as a result, higher efficiency achieved.

All coils are wound with No. 14 enameled copper wire with the exception of the oscillator grid and final plate, which are of No. 12. The remainder of the transmitter is more or less straight-forward practice, as can be seen in Figures 1 and 2.

Straight-forward practice, as can be seen in Figures 1 and 2. In adjustment, nothing could be more simple. With the 801, 802 and 89 doubler out of their sockets, apply plate voltage to the oscillator. Check the screen and suppresser voltage with a voltmeter. They should read approximately 200 volts and 45 volts respectively. This tube should oscillate immediately and can be checked with a neon bulb. Operation is identical with any other electron-coupled oscillator. The plate circuit is tuned to 10 meters by watching for a dip in plate milliameter of this tube. It is possible to use the crystal oscillator circuit, shown in Figure 3, with this rig with similar results when substituted for the electron-coupled in its socket and its plate circuit also tuned to resonance. Likewise with the 802 buffer. The next step is quite important and deals with the loading of the 802 buffer with the grip of the 801. This can be done most effectively by discon-nection the plate mote the coupled by discon-

buffer. The next step is quite important and deals with the loading of the 802 buffer with the grip of the 801. This can be done most effectively by discon-necting the plate voltage from the final stage and placing the 801 in its socket. By watching the grid meter on this tube and rotating the grid condenser, a sharp rise in grid current will result. When properly tuned, the grid current should read between 18 and 20 milliamperes. If a lower reading is obtained, bend the grid coil near or further away from the buffer plate coil. Once this coupling is found, the stage should be neutralized in the usual manner by checking the dip in grid current as the tank condenser is rotated through resonance. The antenna coupling will depend on the type of antenna or feeder used. In the original tests a Zepp feeder was used, inductively coupled to the plate end of the tank. The remaining step is to connect the modulator and speech and the rig is ready for QSO. The first stations worked were "locals," all of which gave R9-plus carrier and broadcast-quality modulation reports, stating that it was the best quality they had heard on the band. Later contacts were made at a greater. distance with W2BW and W2DKJ in New York City, both reporting very sharp R9 signals. On one par-ticular QSO, W2BW was able to receive our signals through an extremely high noise-level, which practically blotted out even stations less than a mile away. This would tend to indicate that a sharp signal will push through QRM and QRN much better than the average "wobbu-lated" signal. At another time, it was possible for W2ECE and so on one of the newer all-wave superhets which go down to 5 meters. In this case per-fect reception was accomplished when tuned to zero beat with the beat oscillator operating. His report was: "Inst like 20-meter phone." Nothing could have been more encouraging than that!

Audio Oscillator

(Continued from page 18)

and known it makes little difference what the response is except for convenience, as a cali-bration curve may be made of the apparatus. Thirdly, we minimize the lock-in effect through the use of a screen-grid tube in one of the oscillators, supplemented by placing the separate oscillator coils at right angles or by shielding. Thus we can get down to practically a smooth zero-beat. The layout otherwise is not

in the least critical. So now for some construc-

in the least critical. So now for some construc-tion details. Referring to Figure 1, a 6A7 functions as an electron-coupled oscillator and mixer. Then we have a 6A6, one triode of which performs the duty of beat-oscillator while the other is em-ployed as a one-stage audio amplifier. Six-volt tubes allow convenient operation from either storage battery or transformer. Well-filter d.c. should be supplied the plate circuits if a power pack is used in place of small B batteries. However, the drain here is very low, making the use of B batteries practical. The 300- and 500-ohm resistors should be wire-wound, while all other resistors may be of the carbon type. The 10-mmfd. condenser which couples the 6A7 tube to the second plate of the 6A6 may be made by wrapping some No. 26 d.c.c. wire upon an inch length of push-back wire. The amount of coupling is increased from a few turns until the quality of the audio output signal gets no stronger but begins to get a little secondary fuzz on it. This will not be difficult to determine, and then removing one or two turns leaves us at optimum conditions. Some weak signals may come through with no coupling condenser at all. This is nothing to be alarmed about, since it is negligible. The two tuning coils consist of 225 turns

of about No. 30 d.c.c. wire on a 2-inch form, wound in side-by-side pies with center-tap. All sections must be wound in the same direction. For zero beat the total tuning capacity across each coil should be the same for each circuit and the 350-mmfd. tuning condenser should be at minimum. In order further to spread out the lower audio frequencies it is advisable to use a straight-line-frequency type condenser and modify the lower capacity end of C2 by filing the rotor to give a more gradual contour at mini-mum capacity setting. C12, across the other oscil-lator coil, serves to set the audio signal to zero when the tuning condenser is at minimum. If zero beat cannot be obtained with the condensers available, take a few turns off the coil of the circuit which must be made to oscillate at a higher frequency. For greater high-frequency range, reduce the mica shunting capacities sim-ultaneously across both tuned circuits. The output transformer may have a secondary to suit any particular need and is left to the builder. And lastly, about calibrating. This is very

suit any particular need and is left to the builder. And lastly, about calibrating. This is very nicely done if a piano is handy, as one can plot ten or twenty points over the range on graph paper and then neatly mark the tuning dial ac-cordingly. Also, a city 110-volt supply makes a nice source, since a small amount of coupling can be made to an audio amplifier and then the oscillator can be made to beat with the 60 cycles, all its harmonics and sub-harmonics. Above this limit, say 300 or 600 cycles, a good ear can easily double any given frequency heard and thus provide the next higher point. A 50-percent increase in frequency is had from the "sol" key of the "do-mi-sol-do" scale.

Beginners Series

(Continued from page 35)

bias results. See the circuit of Figure 3. In our model, the very strongest stations could just reach the maximum signal allowable of 1 volt neak.

Constructional

Constructional The illustrations clearly show the layout and construction of the unit. The Fahnestock clips are so arranged that it is easy to connect the two units together, or to operate either one separately. It was found necessary to make a small change in the unit described last month in order to have the original switch control the filament of both tubes. This is done by adding a Fahnestock clip and connecting it to the nega-tive filament terminal of the detector socket.

The original A— clip is moved over towards the left and the new one put in its place; then both are connected as shown in Figure 4. The amplifier is built on a $\frac{1}{2}$ -inch baseboard 5 inches wide and 6 inches deep (the same depth as the old unit). Mount the parts as shown in the top view photograph. The trans-former has its wires marked; the side which has the plate (P) and B+ wires coming out should be turned towards the front. The socket is mounted with the filament terminals towards the back.

is mounted with the filament terminals towards the back. The Fahnestock clips on the left edge of the baseboard should be placed so that they come exactly opposite the phone terminals of the one-tube set. Soldering lugs should be employed at each Fahnestock clip. You should also use a small drill to make holes for all screws to avoid splitting the baseboard. The wiring is simple. Be sure to connect the transformer wires right. The red wire, marked G, goes to the grid terminal of the socket, while the one marked F should go to the A— Fahne-stock clip, the one which has the resistor con-nected to it. This is important for obtaining the right negative bias on the grid.

Operation

Connect the two units together as shown in the top view, keeping in mind the polarity of the A terminals. Then connect the batteries as shown in Figure 5. A 45-volt B battery is employed, the same one as used with last month's set. Those who wish may try higher voltages, but then a 3-volt battery should be inserted at X, with the negative side connected to the transformer, the positive side to A—. The actual operation and tuning remain the same as described last month, because the addition of the amplifier stage does not add any con-trols.

of the amplifier stage does not add any con-trols. Readers who made the crystal set described in May can also employ this amplifier unit. The two units can be connected up without any fur-ther changes except that there is no filament switch. You would have to take the tube out or disconnect one of the filament wires to turn off the amplifier. The remedy is to put a switch on the main panel and place two Fahne-stock clips at the back of the baseboard, the connections are then as shown in Figure 6. It is possible to use this amplifier with the diode detector described in the May issue, but this would be rather impractical and wasteful. It is therefore recommended that those having the diode receiver convert it for triode opera-tion as described in the article last month. In this way greater sensitivity and output volume will be obtained. Then the one-stage audio amplifier described in the present article can be added as explained above.

Parts List

Amplifier unit: R₁—15-ohm wire-wound filament resistor T—United Transformer Co. interstage trans-former, type U31 1 Eby base mount socket, four-prong 8 Fahnestock clips, 1 inch overall Baseboard, 5 inches by 6 inches by ½ inch thick Lugs, screws, push-back wire

Hearing Aid

(Continued from page 17)

<text><text><text><text><text>

57

DEAL DIRECT WITH LABORATORIES No middleman's profits to pay—you buy at wholesale price, direct from labora-tories . . . saving 30% to 50%. In-creasing costs mean higher prices soon. Take advantage of Midwest's sensa-tional values. As little as \$5.00 down puts a Midwest in your home on 30 days free trial. You are triply protected with Money-Back Guarantee, Foreign Reception Guarantee and Parts Guarantee. and Parts Guarante

Exact resistance unknown? That's easy. Install Aerovox Slideohm of sufficient total resistance. Place band for best results. Tighten screw. You now have a positive, permanent, non-fluc-tuating fixed resistor of exact value required. • Quality wire on crack-proof refractory tubing. Vitreous enamel coating with cleared track for contact band. 30, 50, 75, 100 and 200 watt ratings. 1 to 100,000 ohms. Additional contact bands for voltage divider use.

DATA New 1936 catalog covers most complete line of condensers and resistors. Sent on request, with sample copy of monthly Research Worker.

its use 5-watt power output is obtained. The amplifier is equipped with a jack connected in the input circuit of the first tube, permitting direct operation with a velocity or crystal type microphone. There is also a high-level input jack connected in the input circuit of the second stage for use with a carbon microphone or phonograph pick-up. The amplifier has tone control and an output connection arrangement for an electro-dynamic type speaker. The specifications show that the harmonic con-tent of the amplifier output is 6 percent at 5 watts, the frequency response flat within 2 db. from 100 to 10.000 cycles, and the gain 116 db. The power line is fused and for safety the amplifier is completely enclosed in a protective, well-ventilated steel screen. The overall dimen-sions of the amplifier are 634 by 714 by 12 inches.

Calls Heard

By J. F. Quigley, 645 Polk Boulevard, Des Moines, Iowa, on 20-meter 'phone: EI2J, G5ML, ON4VK, VP9R, CO2AN, CO2AL, CO2KC, CO2WZ, CO6OV, CO6ML, H12K, H15X, HP1A, LU5CZ, LU6AP, TI2AV, T12RC, XE1G, XE2CV, XE2N, K5BL, K6FJF, K6LJD, CO2HY, VE1FE, VE1CR, VE1EQ, VE2FR, VE2SQ, VE2EW, VE2BW, VE2BE, VE2AM, VE2BG, VE2HP, VE2CJ, VE2HY, VE3DF, VE3IT, VE3QS, VE3LL, VE3KV, VE3NF, VE3KF, VE3EO, VE3PM, VE3HC, VE3IX, VE3OK, VE3AAQ, VE3MU, VE3BK, VE4HI, VE4GD, VE4FI, VE4LA, VE5CL, VE5DK, VE5JK, VE9AL. By Nathan Solmon, 501 West 156th Street,

VE3OK, VE3JAQ, VEJMU, VEJMK, VESOK, VESJK, VESK, CO2RY, CO2WZ, COGOM, CO8VE, CO2RA, CO2RY, CO2WZ, COGOM, CO8VE, CASAF, CO2RY, CO2WZ, COGOM, CO8VE, CASAF, H12V, H11W, H12KA, H12W, H15X, H16O, H17G, HK1ABM, HP1AK, 4HBH, LU5CZ, LU6AP, NY2AE, T12AV, T13AV, VOII, VP9R, XEIG, XEJG, XEJCK and YN1OP, By H. Mallet, Veale, Silverland, Private Bag, P. O. Dindhoek, S. W. Africa, on 20 meter phone: W1BR, W1CHG, W1HV, W1JRC, W2GDU, W3BFS, WSECL, W9GUY, W9KAA. By F. Earle Hall, Winchendon, Mass, on 20 meter phone: LUBDR, LU4BH, LU4BL, LU4AB, LU6K, V14AB, LU6KE, U17AZ, LU6AP, LU5CZ, LU1EX, LU9FA, LU1DA, LU5AN, LU5CZ, LU1EX, LU9FA, CU1DA, LU5AN, LU5CZ, LU1EX, LU9FA, LU1DA, LU5AN, LU5CZ, LU1EX, LU9FA, CU1DA, LU5AN, LU5CZ, LU1EX, LU9FA, CU1DA, LU5AN, LU5CZ, LU1EX, LU9FA, CU1DA, LU5CZ, LU1EX, LU9FA, CU1DA, LUSAN, LU5CZ, LU1EX, LU9FA, CU1DA, LUSAN, LU5CZ, LU1EX, LU9FA, CU1DA, LUSAN, LU5CZ, LU1EX, LU9FA, W12CZ, W75W, V52KZ, VF6YB, G6LK, G5HD, G6CY, G5YU, G6FY, W7NC, VP9W, VF5A, VF5BU, F3DH, F12L, LA1G, HP3O, HB9B, ON4PA, ON4AC, PABAP, ON4AC, VE2NC, VF5WB, VF5WH, VE2NC, H15A, H12P, VE3NC, T15AC, VE3NC, VF3W, V52NC, VF3WH, V52NC, VF3WH, V52NC, V52NC,

YT7VN,	W8NKI,	HAF2L,	CT2BD,	VK2PX,
VE1HJ,	LA5Y,	VE1EP,	VK2KS.	LX1IW.
W3GU,	W3GAP,	W8ADN.	K4CVV.	W3HZ.
U3VE,	FA8WH,	HB9AJ.	YR5PI.	VK3UH.
U6WB,	SU5NK.	VK6KZ	. UICV.	U1BC.
CM7AB.	,		,,	,

The CQ'er

(Continued from page 24)

serves also as the plate battery for the oscil-lators and the 3-volt value is ample for the purpose. The oscillator filaments are con-nected in series, making the total filament drain 60 milliamperes, and a $4\frac{1}{2}$ -volt C battery is used to supply this and will last for months in the average station. Thus the total battery equipment consists of two of these $4\frac{1}{2}$ -volt C

batteries, the extra 1½-volt portion of the microphone battery serving to operate the 2-volt, 60-ma. pilot light. The transformers used in the oscillator cir-cuits are two of the tiny push-pull input trans-formers ordinarily used in midget receivers. Their quality is unimportant. The microphone transformer is a good quality Amertran "Silcor" type J-771. The unit as shown here is adaptable to all sorts of changes. It may be used with a single-button microphone, and for those who do not care for the dual-tone idea, one oscillator may be eliminated. Likewise this oscillator scheme whereby the tone is varied by means of either

a filament rheostat or a grid-return potentiometer is applicable to code practice oscillators and because of its continuously variable frequency range will be found much more convenient than the usual shunt resistor or shunt condenser arrangement. For this particular model a Federal anti-capacity switch of the four-pole-double-throw type was employed. A Yaxley gang switch would serve the purpose just as well, although less compact. The Insuline cabinet employed accommodates the equipment nicely. Its dimen-sions are 9 inches long, 5 inches wide and 6 inches high. The chassis is also a standard Insuline unit 8½ inches by 4¾ inches by 1½ inches. Clarostat potentiometers (200 ohms) and rheostat (50 ohms) were used, although any other units of similar values would serve the purpose.

any other units of similar values would serve the purpose. One or two hints may be useful to those who may want to duplicate this model using the same chassis and cabinet. The chassis is a little wide to slip into the front of the cabinet due to the front flanges on the side walls. If part of one of these flanges is cut away, this difficulty will be overcome. In the model shown here a section about 2 inches long by 5/16 inch wide was cut away between the mounting screw holes in the flange at the right. This cut-out section is hidden from view when the panel is in place. If this plan is followed it will be neces-sary to insert 3/16 or ¼-inch bushings between the panel and chassis. No screws need be used for this purpose, as the mounting screws used for the lower terminal strips and the switch

plate will serve to fasten the chassis rigidly to the panel. It is a good idea to attach the chassis direct to the panel in drilling these mounting holes in order to be sure that the holes will line up exactly and also to save duplication of effort.

16-Tube Super

(Continued from page 22)

(Continued from page 22) type IV rectifier for the grid-bias supply. Front panel controls are sufficient in number to provide the utmost flexibility for all types of service. They include r.f. gain, fidelity—selec-tivity, main tuning, bandspread tuning, i.f. gain, a.f. gain, tone, and beat frequency pitch. In addition there are five switches: send—receive (standby), a.v.c.—manual, c.w.—phone, head-phones—speaker and a.c. off-on. The construction is unusually rugged through-out. The band-change switch was designed espe-cially for this receiver. It is built in five sec-tion unit in which silver-plated knives engage spring contacts of silver-plated bronze. Each of these contacts has six separate fingers to in-sure dependable and low-resistance connections. The switch has no stop and may therefore be rotated in either direction from one position to any other position. Controlled by this switch are twenty-five coils

rotated in either direction from one position to any other position. Controlled by this switch are twenty-five coils in separately shielded compartments of five coils each, thus the four coils for any given range are individually shielded from another. The five antenna coils are provided with elec-trostatic shields between their primaries and secondaries to avoid capacity coupling between the antenna and the first two. This makes the use of a good doublet antenna particularly ef-fective and permits the fullest advantage to be taken of the characteristics of a good antenna, both from the standpoint of signal pick-up and neise reduction. The receiver is available in either rack or table mounting form. There is also a model available which includes a crystal filter.

also a model available which includes a crystal filter. The author has had one of these receivers in operation for some weeks in his listening post and has been obtaining excellent results from every standpoint. Particularly impressive is the excellent signal-to-noise ratio and the re-sulting high degree of usable sensitivity. A more complete report covering "on the air" tests which are now in progress at this listening post will follow in a later article.

Crystal Control

(Continued from page 24)

(Continued from page 24) 5-meter band in metropolitan areas. The photograph accompanying this article shows the transmitter installed at the West-chester Listening Post (W2JCY) from which station some of the experimental transmissions were carried out. The exciter is mounted in one cabinets recently developed for amateur use. The bottom section contains the power supply, the middle section contains the exciter. At the top are shown the three Triplett meters, the first for plate current on the first three tubes, the center one for grid current on the final and the third plate current on the final exciter stage. The four controls attached to the tuning con-densers, for lining up the various stages, are switches at the right of the lower panels are for the filament and the two at the left of these and n.f. units. Most of the test work on this transmitter has been conducted from the author's transmitter has been conducted from the author's transmitter has been conducted from the author's the filament and the two at the calls W2IRM and N2IRM. As the experimental works on this prome and also at various heights from some of the tall buildings in lower New York. These and N2IRM. As the experimental works on this prome and else placed on the air at W2ICY, a complete description of the rig will be given in RADO NEWS.—Ralph Clark, Licutenant J. C.

Unique Transmitter

(Continued from page 35)

of the thirty cells resembling an elongated 14-gauge shotgun shell. These deliver 180 volts for the set's plate circuit. The other side of the belt carries a 4-cell A battery of 6 volts for the filament circuit and a standard type flashlight battery of 1½ volts to energize the hand mike. The belt also contains controls and switches. The microphone is of convenient size. It is

a high-level output unit of the carbon type. A not-too-conspicuous wire links all circuits with the transmitter and antenna in the hat. The antenna consists of a hollow aluminum rod sticking 6½ inches out of one side of the hat. So, these days when an announcer puts on his top hat for an assignment, the program is likely to be "on the hair" as well as on the air.

6L6 Tube

(Continued from page 17)

in the unusually low percentage of distortion in the push-pull Class A and Class AB circuits. The operating instructions warn especially against exceeding the ratings. It is important not to exceed the dissipation rating with normal line voltage variations. Similarly, the heater voltage should be kept close to 6.3 volts; in no case should it go above 7.0 volts. Resistance coupling can be employed only when no grid current flows, that is in Class A, and Class AB, conditions and only in self-biased circuits. The resistance in the grid circuit should not exceed 0.5 megohm. Furthermore, resistance coupling should not be used if the filament voltage

is likely to rise more than 10 per cent. above its normal value. In fixed biased circuits, the maximum allowable resistance in the grid cir-cuit is 50,000 ohms. The physical dimensions of the tube are: maximum overall length 4 5/16 inch, maximum diameter 1% inch. This is the first of the metal tubes which has a greater diameter than the standard 1 5/16 inch of all the others. A stand-ard 7-pin octal socket is used and the prong ar-rangement is shown in Figure 1. Figure 2 and Figure 3 are families of plate-voltage, plate-current curves for different values of grid-bias and for two different screen-voltages. Technical information for this article was sup-plied by RCA engineers.

R. M. A. Convention

Washington, D. C .-- The Radio Manufacturers Association will hold its twelfth annual convention on June 17-19 in the Stevens Hotel of Chicago, Ill. Plans for sales promotion projects will be presented to the convention.

weeks. Bachelor of Science Degree. Radio (television, talking pictures and the vast electronic field) offers unusual opportunities for trained radio engineers. Courses also in Civil, Electrical, Mechanical, Chemical, Aeronautical Engineering; Business Administration and Accounting. Low tuition, low living costs. World famous for technical two-year courses. Those who lack high school may make up work. Students from all parts of the world. 53rd year. Located in picturesque hill and lake region of northern Indiana. Enter September, January, March and June. Write for catalog. 1676 College Ave., Angola, Ind.

For describing athletic events, parades, crowds, etc., from press boxes, balconies, the tops of sound cars, etc., and for com-mercial interstation, police and amateur transmission work. Priced low. Fits the hand per-fectly. Wide frequency response and typical Brush sound cell operation. No button current or polarizing voltage and no input transformer is required. Size only 3th inches x 1thz x thz

Input transformer is required. Size only 3¹/₄ inches x 1¹/₂ x ¹/₂ inches. Weight 3 oz. Output level minus 66 D. B. Shipped complete with 15 feet of cable. Can be furnished on special order with locking type plug and socket for stand connection. Details—Data Sheet No. 8. Free. Send for one. Send for one.

FEATURES

- 1. Emission
- 2. Metal Tubes 3. Shorts
- 4. Leakage
- 5. Resistance
- 6. Electrolytics
- 7. By-Pass Condensers
- 8. Neon Alignment

MODEL CT

\$845 NET

WODEL CN....\$9.95-Same as model CT with selector switch instead of patch connections and measures leads hot. Here's what the Service Men say about the New Million Tube Tester! "Most valuable purchase of test equipment we made during the last year." "It shows up weak tubes better than my expensive — tester." If your jobber cannot supply you—order direct—20% deposit required on C. O. D. orders. Tear out this ad and send it to us NOW for complete information!

Centre St.

WHAT'S NEW IN RADIO

WILLIAM C. DORF

(Continued from page 9)

tubes in a radio receiver. Special mountings have been developed and can be obtained either as an individual unit or as an in-

tegral part of a strip for connecting several cells in series.

Tiny Storage Battery

A rechargeable battery measuring only 1 by $2\frac{7}{8}$ by $3\frac{1}{2}$ inches, especially designed for use with hearing-aid equipment, is introduced by the H. E. Clark Company. It is available in three types to deliver 2.2,

4.4 and 6.6 volts with a single charge capacity three times that of the standard hearing-aid dry cell of equal size. The battery is "spill-proof" and may be safely carried in the pocket. Its weight is only a few ounces. The dimensions of the sure" a few ounces. The dimensions of the small self-regulating charger also marketed by this company is 2 by $2\frac{1}{2}$ by 4 inches. It operates from the 110-volt a.c. line supply.

Cathode-Ray Tuning Indicator

The Magic Lion Manufacturing Company introduces a cathode-ray tuning indicator device housed in a bronze-finished metal statuette of the "Lion of Lucerne," copied after the famous statue hewn from the solid rock in Lucerne, Switzerland. The device presents a pleasing appearance and at the same time is a helpful tuning indicating device for the receiver. It can be

www.americanradiohistory.com

easily connected to any type of set whether or not it incorporates an a.v.c. circuit. The tubes employed include the 6G5 and either the 6E5 or 2E5 "magic eye."

Portable Set Analyzer

The Clough-Brengle Company introduces an improved model 85 "Unimeter" with an easy-to-read 5-inch fan type meter. This convenient point to point set analyzer and all-purpose testing unit has a.c. and

d.c. voltage ranges of 0-15, 150 and 750 volts, resistance ranges up to 2 megohms and current ranges to 150 ma.

Line Voltage Compensator

The Sales-On-Sound Corp. makes this special line-voltage regulating device to compensate for fluctuating power line

voltages. A unit of this kind safeguards theatre amplifiers and makes it possible in those locations troubled with variable line voltages to provide a smooth-running performance. It maintains a 110-volt in-put to the amplifiers at all times, from line voltages of 80 to 145 volts.

Beat-Frequency Oscillator Kit Now Available

Servicemen will be interested in the Philco beat-frequency oscillator kit, designed to be quickly and easily assembled and wired. All of the necessary eyeleting work on sockets and output connections is done beforehand by the manufacturer and the shield cans are spun into place on the sub-base, which should make it a simple matter for the serviceman to mount the necessary parts on the chassis and wire the units in accordance with the instruction sheet furnished with the kit.

Super-Regenerative Receiver

The latest product to be announced by the National Company is the Model 1-10 ultra-high frequency super-regenerative receiver which has a wavelength coverage of 1 to 11 meters (frequency 300 to 27 megacycles). The circuit comprises one r.f. stage using a 954 type "acorn" tube, a selfquenching super-regenerative detector with a type 955 "acorn" tube which is transformer-coupled to the first audio stage employing a 6C5, in turn resistance-coupled to the 6F6 power-output tube. Singlecontrol tuning is employed, utilizing the famous National "micrometer" dial.

R.F. Plate Chokes

The Ohmite Manufacturing Co. recently brought out a new line of single-layer wound r.f. plate chokes for transmitting equipment. The new units are wound on porcelain tubes and are covered with an insulating moisture-resisting material to hold the turns firmly in place. Because of the single-layer winding, the difference in potential between the adjacent turns is small and the possibility of breakdowns between turns or collapse due to inductive effect are minimized. Four types are available for use with equipment from 5 to 160 meters.

New Velocity Microphone

The Electro-Voice Manufacturing Company has introduced a series of highfidelity velocity microphones, new in

design and construction. The ribbon assembly is suspended from the frame in a shock-proof mounting and it is protected by an inner screen. To obtain maximum flux a cobalt magnet of improved design is employed. The microphone is available in several models with output levels ranging from minus 85 to 64 db. The specifications state that the upper cut-off begins at 14,000 cycles. All models can be supplied in either low or high output impedance.

Portable P. A. System

The Operadio model 112 mobile P. A. system operates from a 6 volt storage battery and is designed to deliver up to 20 watts power output, Class A. The dualspeed turntable can play records up to 16 inch size. The amplifier is complete with a crystal, contact-type hand microphone and the circuit is designed to mix microphone and phonograph inputs. If desired the complete unit can be set on the front seat of a motor car alongside of the driver and for this purpose the bottom of the case is adjustable to any angle to maintain a level turntable, regardless of the pitch of the seat itself. With electioneering about to break on all fronts, here is a complete sound reproducing system designed to carry

the message of the candidate with clearness and volume to his audience.

Metal Tube Power Amplifier

The accompanying illustration shows the new Morlen 38-watt sound amplifier. The tube equipment comprises two 6F5's and two 6C5 triodes in the voltage amplifier,

two 6F6's as "power-drivers" and four 6F6's in the output stage. It is equipped with a two-position input mixing circuit and a universal output of 4, 8, 15 and 500 ohms.

D.C.-A.C. Inverter

The new line of American Television & Radio Company's d.c.-a.c. inverters features long-life vibrators, four-point voltage regulators, quiet operation and built-in filters. Included are 16 different types designed to operate on d.c. input voltages ranging from 6 to 220 volts and to supply a.c. output voltages of 110 or 220 volts.

The overall dimensions of the unit shown are $3\frac{7}{8}$ by $7\frac{3}{4}$ by 8 inches.

Personal Receiver

An announcement was recently received from the Pilgrim Electric Corp. of their model 4Z compact table-model receiver designed to operate from either 110 volt a.c. or d.c. line supply. An adapter is available for 220 volt operation. The tubes employed include one 78, one 6C6, one 38 and a type 76. It has a tuning range from 170 to 555 meters. The set is housed in a walnut-finished steel cabinet.

A New Instrument for the Serviceman

Exceptional versatility is featured in the new model TA tube tester and point-topoint analyzer announced by the Million Radio and Television Laboratories. It tests

61

And The Same

Exclaimed Julius Caesar, whenever he waxed enthusiastic about something PERFECT . . , and if you spoke Latin, that's the way you would describe the Index to Rider's Manuals. Suppose you have a set on your bench. . . You want service data. . . What's the first step? There's no sense drag-ging down all the Manuals and hunt-ing through the pages. . . So you look in the 96 page Index! It's easy to find the manufacturers because their names are alphabetically arranged and for further convenience, identi-fying group letters are on the top of each page. To find the model number takes but a moment, because they are listed numerically. . . You want the sche-matic, the socket layout, alignment data? The volume and page number are indicated. . . Everything you need is in the Index. Just remember this: EVERY-THING ON EVERY PAGE IS

THING ON EVERY PAGE IS INDEXED.

AND here's just one more reason why thousands of Servicemen throughout the world are using Rider Manuals— No Manual can ever be better than its Index and the Rider Manual Index is ne plus ultra.

SPEND

AN HOUR A DAY WITH RIDER AND STREAMLINE YOUR SERVICING

Last Chance!

all metal and glass tubes in present-day use and incorporates a neon short-testing circuit, d.c. voltmeter ranges up to 500 volts, ohmmeter ranges of 0-5000 ohms and 0-3 megohms capacity measurement range

· Antity

of .01 to 3 mfd., and current-measuring ranges of 0-100 ma. and 0-10 amperes.

A.C.-D.C. Superheterodyne

The Emerson model 119 all-wave set features "micro-selector" tuning and is

Read Classified Advertising—It Pays **Kead Classified Advertising—It rays** Advertisements in this section twenty cents a word for each insertion. Name and address must be included at the above rate. Cash should accompany all classified advertisements unless placed by an ac-credited advertising agency. No advertise-ments for less than 10 words accepted. Objectionable or misleading advertise-ments not accepted. Advertisements for these columns should reach us not later than 3rd of 2nd month preceding issue. TECK PUBLICATIONS, INC. 461 Eighth Ave. New York, N. Y.

A.C. Auto Generators

TURN scrap into money. Autopower shows you how easily and economically auto generators can be converted into A.C. or D.C. generators and D.C. motors, 2 to 1000 volts; for sound, radio, power, light, or welding. No previous experience necessary—complete information all in new book, with simple instructions and illustrations. Endorsed by thousands. Only \$1.00 postpaid. Autopower, Inc., 414-A S. Hoyne Ave., Chicago.

Agents	Wanted

AGENTS: Stick-on-Window Sign Letters. 500% profit. Write today. Metallic Letter Co., 422 N. Clark, Chicago.

Correspondence Courses

USED Correspondence Courses and Educational Books sold or rented. Inexpensive. Money-back guarantee. Write for Free Catalog listing 4000 bargains. (Courses Bought.) Lee Mountain, Pisgah. Alabama.

BIG BARGAIN Catalogue Courses 10c. Hanfling, P-799 Broadway, New York. For Sale

MASTERPIECE IV Latest Model. Perfect condition. Best cash offer takes it. Box 83, Perth Amboy, N. J. Patent Attorneys

PATENTS—Advice and booklet free. Highest refer-ences. Best results. Promptness assured. Watson E. Coleman, Patent Lawyer, 724 9th Street, Washington, D. C.

PATENTS. Instruction "How to Establish Your Rights" and form, "Evidence of Conception" sent Freel Lancaster, Allwine & Rommel, 414 Bowen Building, Washington, D. C.

Patents and Inventions

INVENTIONS COMMERCIALIZED. Patented or un-patented. Write Adam Fisher Company, 278 Enright. St. Louis, Missouri.

Welders

150 Lb. Arc-Welder 110-220 volts. Uses up to 3/16 rod. Complete \$29.50. 60 lb. Spot Welder, 16 gauge or 3/16 wire \$15.00. Literature. Maywood Electric Co.. Dept. A, Maywood, Ill. Children (1998)

Wind Driven Lights

Mallory & Co., Inc., P. R..... Midway Radio Distributor..... Midwest Radio Corp..... Million Radio & Television Lab.....

National Company, Inc.46National Radio InstituteBack CoverNational Schools64National Union Radio Corp. of N. Y.54Norwest Radio Laboratories64

RCA Institutes, Inc.57RCA Manufacturing Co.42Radio City Products Co.42Radio & Technical Publishing Co.41, 50Radio & Television Institute46Radio Training Association of America.39Raytheon Production Corp.3Readrite Meter Works.63Remington Radio & Electric Corp.62Rider, John F.62

Scott Radio Labs., Inc., E. H.1Silver Corp., McMurdo41Solar Mfg. Corp.53Sprayberry Academy of Radio43Standard Transformer Corp.52Sundt Engineering Co.58

Teleplex Co..46, 50Tri-Jay Products Co..62Trimm Radio Mfg. Co..54Triplett Electrical Instrument Co..49Tri-State College.59Try-Mo Radio Co., Inc..51

Utah Radio Products Co..... 44

Webster Co., The.51Weston Electrical Instruments Corp.45Wholesale Radio Service Co.43Wright DeCoster Co., Inc.42

Zephyr Radio Co..... 48

ELECTRIC LIGHTS-WIND DRIVEN-You build them. Write, Wind Motor Electric, Brainerd, Minnesota.

INDEX TO ADVERTISERS

Aerovox Corp. Alden Products Co. Allied Radio Corp. American Transformer Co. Amy, Aceves & King, Inc.	58 60 48 56 55
Birnbach Radio Co., Inc Brush Development Co., The	48 60
Cameradio Co	64 55 59 56 50 57 61
Dodge's Institute	18
Electrad, Inc. Z Electro-Voice Mfg. Co., Inc	46 58
First National Television, Inc	52
General Electric Co	14 54
Hallicrafters, Inc., The	52 59 58 51 47
Instructograph Co S	54
Kato Engineering Co S Ken-Rad Corp., Inc., The	50 51
Lincoln Engineering School	51

McElroy, T. R. 56 Mallory & Co., Inc., P. R. ... Inside Front Cover

equipped with an 8-inch dynamic type speaker. The tube equipment comprises one 75, one 43, one 25Z5, two metal 6A8's and two metal 6K7's. The set is enclosed in a walnut cabinet measuring 1634 inches high.

A New Instrument

The Solar Manufacturing Corp. introduces a new capacitor-analyzer and resis-

tance-bridge designed to meet the requirements of the engineer as well as the serviceman. All readings are secured direct from a color-coded panel. This unit is available in two models, both of which are housed in wood cabinets with detachable hinged covers.

Two New Parts

The Bud double-spaced, two-gang midget condenser shown at the left of the illustration has a capacity of 35 mmfd. per section. It is primarily intended for use in trans-

mitters. At the right of the illustration is the Bud crystal holder, recommended for use with crystals covering frequencies from 500 to 7000 kc. Will hold crystals up to 1_{32} inches square by .25 inch thick. It has an adjusting screw to permit fine pressure adjustment of floating plate to crystal.

Portable Battery Set

In the design of the new International Kadette model 400 receiver the salient point is low battery current drain. Com-

pletely portable with aerial attached and all batteries self-contained, the set weighs approximately 25 pounds. Employing 3 standard $1\frac{1}{2}$ volt dry cells for "A" supply the set is designed to provide approximately 300 hours of battery life. It is a dual wave-band set providing both standard and short-wave programs. The tubes used comprise one 1C6, one 34, one 1B5 and one 950.

Crystal Microphone

The Turner "Hi-Level Master" model 24 crystal microphone is designed to have a frequency response flat from 500 to 6000 cycles with a rising low frequency characteristic of approximately 5 db. at 50 cycles. The instrument has an output level of minus 54 db. It is especially suited to

broadcast studio use and public-address requirements.

All-Wave Set with Volume Expander

. The accompanying photograph shows the new Crosley "Barkentine" console. It

utilizes 11 metal type tubes, covers a frequency range, in 4 bands, from 150 to 19,-000 kc. The outstanding feature of this receiver of which there are many, is the "Auto Expressionator", a circuit for reproducing the volume variation of music as it is rendered by the artist. Other features include an automatic bass compensator, live rubber mounted tuning unit, large dial with timelog tuning, and a special sounding board.

5-Tube Table Model

The General Electric model A-54 universal a.c.-d.c., dual wave-band, 5-tube re-

ANNOUNCES THE RANGER SERIES Outstanding line of Radio Testers with

The Ranger Series takes the spotlight. A complete new line of quality radio testing equipment. All Ranger testers are newly designed throughout and incorporate the very latest engineering developments.

Built in durable metal cases with electro-enamel hard wearing finish. All accessories can be carried in special built-in compartments . . . no extra carrying cases required.

The Ranger series offers you the latest advancements and the opportunity to bring your testing equipment up to the minute in keeping with 1937 developments. See these outstanding new numbers at your jobbers. Compare the appearance, compare the accuracy. Keep your costs per call to the minimum by standardizing to Ranger Test Equipment.

Write for complete catalogue

Readrite TESTERS AND METERS
Readrite Meter Works 715 College St., Bluffton, Ohio Please send me more information on The Ranger Series
Name
Address
CityState

ceiver covers a frequency range from 7500 to 540 kilocycles. The metal tubes employed

include the new types 6Q7, 25Z6 rectifier and a 25A6 power amplifier pentode.

Latest Instrument

A frequency modulator-signal generator which employs no motor has just been in-troduced by the Triumph Manufacturing Company. The "Wobbulator," as it is called, provides a directly calibrated frequency range of 100 kc. to 30 megacycles

with constant 30 kc. band-width frequency modulation. Working in conjunction with a cathode-ray oscillograph, it is especially designed for visual alignment of i.f. and r.f. receiver circuits.

Service Business Becoming More Complex

By Samuel C. Milbourne

The radio service business will become more and more complex as time goes on. In the past few years straight T.R.F. cir-cuits have given way almost totally to the superheterodyne. The latest trend in receivers seems to be towards the perfection of the final detector and audio stages as therein can be found the majority of program distortion. High-fidelity systems are becoming more and more prevalent testing to the fullest the serviceman's knowledge of his business. The near future will see the cathode-ray tube come into its own through its use in television, test apparatus and control circuits. The average serviceman would even now be hopelessly lost if he could not rely on accurate test instruments for his electrical eyes, ears and nose and standard radio manuals for his memory. A combination of standard test instruments (tube checker, analyzer and signal generator) plus a set of standard radio manuals plus common sense can still render good radio service.

A Telephone Extension in Your Car

A new invention by Dr. Domenico Mastini of Turin, Italy, permits the operation of an automatic telephone from the car of a subscriber. The communication between the car and the home is accomplished by ultra-short waves. The problem has been so worked out with relays, etc. that the car owner operates his dial telephone in the car just like he would handle the one at home. When speaking, the speech travels by radio to his home, from there through the telephone apparatus to the exchange and to the other subscriber. The apparatus also provides for incoming calls. A bell will ring to warn the driver.

www.americanradiohistory.com

RADIO NEWS FOR JULY, 1936

The Radio Workshop

(Continued from page 36)

in thickness. The tool is made of hardened steel, punches-out clean round holes, is easy to use and should meet a long-felt want for cutting holes in iron, aluminum or other metal chassis, sub-panels, etc.

Soldering Without an Iron

The following soldering kink makes for a simple and easy soldering job that will really hold and will prove useful for those

occasions where an iron cannot be used or where an alcohol lamp or blow torch is not available. Simply wrap a 3 to 4 inch strip of rosin-core solder around the joint that is to be soldered. It should be wrapped closely and tightly and it must be rosin-core. The heat can be derived from matches or a candle. It does not seem possible that matches will supply sufficient heat to melt the solder and heat the copper joint so that the solder will hold, but I tried it and found that it worked. The new long souvenir matches measuring approximately 4 inches in length provide a larger and longer flame over the job that much easier. W. N. CHELSEY, standard type size match and made the

Chicago, Ill.

Radio on the Green Diamond

The newest diesel-electric stream-lined train, known as the "Green Diamond" and used on the Illinois Central Line between Chicago and St. Louis, is now equipped with radio. A General Electric 12-tube receiver is located in the diner-lounge while loudspeakers with individual volume controls are located at forward and rear end of each chair and lounge room.

Making Airplane Landings Safe

An automatic radio-controlled steering apparatus, which will land the airplane safely without the aid of the pilot, has been developed by United Air Lines' engineers at the Oakland, Calif. airport. The new "giro-pilot" is operated by radio beams and controls the airplane rudders and ailerons so as to follow a curved beam down to the so as to follow a curved beam down to the field. The pilot, when picking up the beam, throttles down to 85 miles per hour and then lets the robot do the rest. The plane will be landed safely regardless of fog or bad weather. This development will eliminate many accidents, it is believed.

Printed by Art Color Printing Company, Dunellen, New Jersey, U. S. A.

IT'S FREE! With a Subscription

For Radio News

E VEN a casual glance at the list of contents given below will prove, beyond a doubt, that the 1936 RADIO DATA BOOK is one of the most useful radio volumes ever published. It supplies the hard-to-get information that is invaluable for reference work in every line of radio. YOU need a copy-no matter what your connection with radio. And, you can obtain this great book absolutely free of charge! Simply return the coupon below with your remittance of \$1. (Canada & Foreign \$1.25) for a 5-month subscription for RADIO NEWS and we will rush a copy of the 1936 RADIO DATA BOOK to you without any additional cost! If you are already a subscriber and want this book, mail the order blank with your remittance and your present subscription will be extended. Act now-our supply of these valuable books is limited!

TELEVISION

Disk vs. Cathode-Ray Systems A Canadian Television Station New Wide-Frequency-Range Cable

METAL TUBES

Descriptions and Characteristics Typical Metal Tube Receivers

SHORT-WAVE RECEPTION AIDS

Verifying Short-Wave Calls Station Identification Charts World-Wide Mileage Chart World "Alphabets" Chart Wavelength-Frequency Chart

SHORT-WAVE CIRCUIT DESIGN

Single-Tube All-Wave Set A Band-Spread Portable 3-Band Short-Wave Set 9-Tube Amateur Receiver The Browning All-Wave Set R. N. Short-Wave Converter

AMATEUR RADIO

A 10-Meter Transmitter A Crystal Transmitter Antenna Systems A ¾-Meter Transmitter Amateur Transmitting Tubes International Call Letters

BROADCAST RECEIVERS

Complete List of Contents

A Universal Superhet 2-Volt DX'ers Super Superhet De Luxe Trap-Circuit Tenatuner Broadcast-Band DX Converter

SERVICE AND SOUND EQUIPMENT

Using the Cathode-Ray Oscillograph A. C. Operated Pre-Amplifier All-Purpose P. A. System 12-Tube Portable Amplifier Sound-Head Servicing Profits in Extension Speakers Service Sales Tips

ENGINEERING DESIGN

Ultra-Sensitive V. T. Voltmeter Calculating Voltage Divider Constants V. T. Power-Output Formulas

RADIO EXPERIMENTING

Care of Soldering Irons Simple R. F. Indicator A Live-Wire Tip Chart of Tap and Clearance Drills Transformer Providing 11 Voltages Home-Made Radio Cement To Prevent "Motorboating" Band-Spreading

RADIO EXPERIMENTING (Continued)

1936 RADIO DATA BOOK

PUBLISHED BY

Line Noise Filter Inexpensive Output Indicator Increasing Voltmeter Range Copper Wire Table Photo-Cell Amplifier Transformer Design Table Interstation Noise Suppressor System Extension Speaker Hook-Up

STATION LISTS

U. S. Broadcast Stations U. S. Time Signals World Short-Wave Stations

Mail Coupon Now !

RADIO NEWS, Dept, 367 461 8th Ave., New York, N. Y.

Enclosed find \$1. (Canada & Foreign \$1.25). Enter my subscription for 5 issues of RADIO NEWS and send me a free copy of the 1936 RADIO DATA BOOK. If renewal, check here ().

Name.....

Address.....

City.....State.....

How I Got My Start in RADIO

And Established My Successful

RADIO SERVICE BUSINESS WITHOUT CAPITAL

Read This True Story By

E. LAMAR JOHNSTON, ROME, GEORGIA

"I WAS an untrained worker, with no regular job—sick and tired of skimping along, working for low wages when I could find work—and going farther in debt. One day I saw an advertisement of the National Radio Institute which said that they would train me at home to make more money in Padio

Radio. "Frankly, at first I was doubtful whether I could learn Radio at home, as I knew noth-ing about electricity or Radio. But I knew that I needed training to get ahead and Radio struck me as an industry which offered plenty of opportunity for trained men to make good money.

"So I sent for their Free Book, 'Rich Rewards in Radio'—and after reading it and learning

JOHNSTON'S MODERN SERVICE DEPARTMENT in Rome, Georgia. All equipment was bought from Radio servicing profits. Johnston is on the left—his helper on the right.

about their practical Course, and after read-ing the letters from N. R. I. men who had made good—I enrolled right away. I have never regretted it since. "The very first lessons I received showed

many ways that I could make money. I could start just as soon as I learned them. In a few weeks, I worked three hours and mours and made one five dollar bill clear profit. Every lesson taught me more ways to make money that I could cash in on just as soon as I learned them.

"Working with the Radio parts and equip-ment which I received as part of the Course showed me exactly how to do actual Radio work. I actually built the circuits and testing apparatus which were described in the Les-

apparatus which were described in the Les-sons. This made earning money easier and quicker. "Since that time I have spent all my time in Radio work. I have married, bought my own home—a nice place valued at \$3,500— and have the nicest, most pleasant type of work in the world. My Radio business beings me a good income and Law my own brings me a good income-and I am my own boss

"I started my present business—now one of the largest and most profitable Radio firms in Rome, Georgia—with money I made servicing

I had and selling sets. have training to do this— training which goes far be-yond the usual sort—train-ing in ALL branches of

ing in ALL branches of Radio. "That is the kind of training the National Radio Institute gives—the kind a man must have to get ahead in Radio. I honestly feel that any man who wants to make more money—and who is willing to spend a little of his spare time tional Radio Institute's Free Book today."

(Signed) E. LAMAR JOHNŠTON

Many Make \$30, \$50, \$75 a Week in their Own Business or in Radio

Jobs Like These The world-wide use of Radio sets has made many oppor-tunities for you to have a spare time or full time Radio business of your own. Over 20,000,000 Radio sets are now in use in the U. S. More than \$235,000,000 worth of sets and parts were sold in 1934! Millions of sets are going out of date and must be rebuilt or replaced! About \$60,000,000 are spent EACH YEAR for repairs, servicing, new tubes, etc. Radio Sales and Servicing is a TRE-MENDOUS BUSINESS— with many opportunities for well trained Radio Experts! And Radio offers many job opportunities, too. Broad-casting stations use engineers, **Jobs Like These** opportunities, too. Broad-casting stations use engineers,

J. E. SMITH, President National Radio Institute, Department 6GR Washington, D. C. Dear Mr. Smith: Without obligation, send me the Sample Lesson and your free book about spare time and full time Radio opportunities, and how I can train for them at home in spare time. (Please write plainly.) Name......Age..... Address 14x1 State City

If you do not want to cut this cover-simply write us on a postcard

www.americanradiohistory.com

E. LAMAR JOHNSTON, Rome, Georgia Graduated from the National Radio Institute on February 25, 1929, Today Mr. Johnston owns a profitable Radio Sales and Service business. Maybe you too should get into Radio. Read what Johnston says—then find out what Radio offers. Mail coupon.

operators, station managers and pay up to \$5,000 a year. Radio manufacturers use testers, inspectors, foremen, engineers, servicemen and buyers and pay up to \$6,000 a year. Radio Deal-ers and Jobbers employ hundreds of servicemen, salesmen, managers, for jobs up to \$75 a week.

Many N. R. I. Men Make \$5, \$10, \$15 a Week in Spare Time While Learning

The day you enroll, N. R. I. starts sending you Extra Money Job Sheets which quickly show you how to do Radio repair jobs. You get plans and ideas that have made good spare time money for hundreds of fellows.

Money Back if not Satisfied

When you enroll, you get an agreement to re-fund every penny of your tuition if you are not satisfied with N. R. I. Lesson and Instruction Service when you graduate.

64-Page Book of Facts Sent FREE -MAIL COUPON

Mail the coupon for your copy of "Rich Rewards in Radio" -the same book which started E. Launar Johnston towards success in Radio. It's free to anyone over 15 years of age, It tells you all about Radio's spare time and full time op-portunities; about N. R. I. Training; what others who have taken it are doing and earning. Mail the coupon now-in ah envelope or paste if on a penny post-eard.

J. E. Smith, Pres. National Radio Institute Dept. 6GR Washington, D. C.

