IN THIS ISSUE:

1)DIO

OGRI

July 1, 1924

15 Cents a Copy

Allerays Albreast

of the Times "

Suppressing the Carrier Waves Regeneration and Reflex Unradiating the Single Circuit A New System of Audio Frequency Saving the Storage Battery's Life Some Live Problems in Radio

YOU WILL UNDERSTAND THIS MAGAZINE---AND WILL LIKE IT

PUBLISHED TWICE A MONTH

42 MAVERICK SQUARE

RADIO PRO

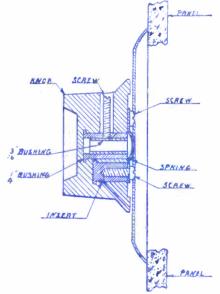
DUCTS

4 inch Dial

In designing the TRU-FIX the manufacturer has gone into every detail relative to requirements of Dials used on Radio Instruments, and after many experiments with springs, etc., adopted the last word in Dials--the spring-less TRU-FIX Dial.

21/2 inch Dial

TRU-FIX Dials are made of selected sheet brass .023 of an inch thick. The edge is very thin with a gradual contour to meet the panel and is finished in bright nickel with 100 division scale running from left to right, etched in the surface, inlaid with black enamel, thereby making TRU-FIX DIAL easily read at all times.


The Knob, highly finished, is made of Bakelite 1½ inches high with bevel edge at base and is attached to dial with a flat spring device made into the dial itself.

DISTINCTIVE AND SELECTIVE

EAST BOSTON. MASS.

The patented spring feature under the knob is one of the superior points of this dial. You are always sure of a true running dial, as it keeps the dial in perfect align-ment—always flush with panel, ensures perfect settings as the dial is not disturbed by jars or other causes. This gives you a dial that is different and one that always insures a more selective tuning. Perfect control on portable sets. Other dials cannot accomplish this features portable sets. Other dials cannot accomplish this feature.

Replaces the Vernier, as it can be moved forward or backward to within one thousandth of an inch, without backlash, and stays put.

Cross Section Tru-Fix Dials

WHY TRU-FIX IS A SUPERIOR DIAL

1. Corrects out-of-alignment of shaft with panel by spring feature made into the dial $\$

2. Corrects looseness of end play in any units used, such as Variocouplers, Condensers, Rheostats, etc., by slight friction on panel to take up this end play.

3. Corrects overbalanced units where there is a loss of friction caused by poor assembly in their manufacture and incorrect balancing of weights and metals.

4. Corrects loss of tuning adjustments, such as fading, etc., due to slight jars or vibrations, which allows the condenser or variocoupler to rotate out of position, thereby losing the station being tuned.

5. Corrects body capacity, as the metal of the dial acts as a shield when grounded. This can be done by setting a plug flush with panel and allowing the dial to touch it lightly, having the plug grounded.

These Dials, on account of the above listed features, are the only Dials to use on portable sets.

LIST PRICES

	Silver	Gold
100-3 inch Dial	\$1.00	\$2.00
102-4 inch Dial	1.25	2.50
104-21/2 inch Dial	1.00	2.00

SOLD ONLY THROUGH THE JOBBERS-JOBBERS, WRITE

RADIO FREQUENCY AMPLIFICATION with the BALLANTINE VARIOTRANSFORMER

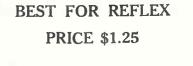
Get distance that everyone can enjoy

Let the whole family hear the announcer's "This is Station ZYX, The Voice from 'Way off Yonder!" They can—by adding BAL-LANTINE Radio Frequency to your present outfit. Providing, of course, you have a loud speaker.

The voice or music will be clear and strong. And you'll find it easier to separate the various stations. BALLANTINE Units may be hooked in between any standard receiver and its audio amplifier.

All wavelengths sharply tuned

Pure tones at maximum volume for the number of tubes employed are assured by the continuously variable feature of the BALLANTINE transformer. For, this instrument tunes sharply throughout the range of 200 to 600 meters. Pigtail connections and full shieldings prevent stray noises. Notable results have been obtained in the One-, Two-, and Three-Tube Reflexes as described in Radio Broadcast.


824 Fanny Road, Boonton, N. J.

Transformer only for panel or base......\$9.60

At dealers or postpald

Keep your set "on its toes" all summer with BAL-LANTINE Variotransformers.

RADIO FREQUENCY AMPLIFICATION with the BALLANTINE VARIOTRANSFORMER

BEST FOR CRYSTAL SETS

PRICE \$1.25

"DE-TEX-IT"

A Real Wonderful Fixed Detector That WORKS !

Why Continue Spending Money for a Crystal or a Detector That Won't Stand Up

YOUR MONEY REFUNDED IF NOT SATISFIED

If Your Dealer Cannot Supply You, Send \$1.25 to CELERUNDUM RADIO PRODUCTS CO. 1522 170 SUMMER STREET

Dept. 522, 170 SUMMER STREET

Will Stand Any Plate Voltage Positively Will Not Burn Out

BOSTON, MASS.

RADIO PROGRESS

HORACE V. S. TAYLOR, EDITOR

Volume 1

Number 8

Contents for JULY 1, 1924

	I AGE
SUPPRESSING THE CARRIER WAVE	
A NEW SYSTEM OF AUDIO AMPLIFICATION	7
BOOSTING THE WAVE LENGTH	8
DEVELOPMENT WORK PUSHED BY GENERAL ELECTRIC	9
REGENERATION AND REFLEX	11
COMMON SENSE IN SEVEN CHAPTERS	13
A POPULAR PERFORMER	14
UNRADIATING THE SINGLE CIRCUIT	. 15
SOME SENDING STATION STORIES.	18
SAVING THE STORAGE BATTERY'S LIFE	19
AMERICAN RADIO RELAY LEAGUE	21
CUTTING DOWN WAITS BETWEEN NUMBERS	23
FONE FUN FOR FANS	24
SOME LIVE PROBLEMS IN RADIO	25
EDITOR'S LOUD SPEAKER:	
HURRAH FOR THE FOURTH	29
DISCUSSING DISTORTION	29
DR. RADIO PRESCRIBES	
BROADCASTING STATIONS BROUGHT UP TO DATE	31

Don't miss the next issue of Radio Progress—Read about a New Method of Dispensing with All Your Batteries, "A," "B" and "C."

RADIO PROGRESS is issued on the 1st and 15th of each month by the Oxford Press at 8 Temple Street, Providence, Rhode Island. John F. O'Hara, Publisher. Yearly subscription in U. S. A., \$3.00. Outside U. S. A., \$3.50. Single copies, 15 cents. Entered as second-class matter, April 4, 1924, at the Post Office at Providence, R. I., under the Act of March 3, 1879. Address all communications to RADIO PROGRESS, 8 Temple Street (P. O. Box 728), Providence, R. I. Title registered at United States Patent Office.

The publishers of this magazine disclaim all responsibility for opinions or statements of contributors which may at any time become subjects of controversy.

Don't Miss the Summer Fun

D

Local stations are as good in summer as in winter.

P

If you are located within ten or fifteen miles of a good broadcasting station you might just as well get a crystal set now as wait until the winter. Static that bothers tube sets does not affect local broadcasting as received on a crystal. The RADICLEAR crystal set has no dials to turn nor slider to shift. It is an unusually toned set.

Send us check or money order for \$2.90 and we will forward a RADICLEAR postpaid.

TAYLOR ELECTRIC CO. 1206 BROAD STREET PROVIDENCE, R. I.

Hub Cycle & Auto Supply Co., Inc.

19-37 Portland St., Boston, Mass.

Automotive, Bicycle and Radio Jobbers

Exclusive New England Distributors for

Harvard Auto and Radio Batteries Uncle Sam's Master Tuning Coils

Tower's Phones

Dealers, write for Catalogues and Discount Sheets

Radio Dealers!

Practically every Radio Fan who comes into your store will subscribe to RADIO PROGRESS, if you will keep a few copies on your counter. Those who won't subscribe will at least buy a single copy.

Why not ring up some of this business on your Cash Register? We will help you and will put you in touch with our distributor in your territory.

You'll be surprised when you discover how big an item this business will amount to in the course of a year. And you take absolutely no risk, nor do you have to invest a single cent of capital.

GET ABOARD! Send us your name and address to-day.

RADIO PROGRESS, 8 Temple St., P. O. Box 728, Providence, R. I.

RADIO PROGRESS

"ALWAYS ABREAST OF THE TIMES"

Vol. I, No. 8

JULY 1, 1924

15c. PER COPY, \$3 PER YEAR

Suppressing the Carrier Waves New Method of Combining Radio and Audio Frequency

amateur finds when he tries to understand the why of radio is to get a good understanding of the carrier wave. The action of this vibration has been already explained, but will be briefly reviewed before showing how it may be omitted. When a new broadcasting station is designed, the owners apply to the radio inspector of their district, and he assigns to them a wave length and a call signal, which may consist of three or four letters. The letters which he assigns are purely arbitrary. For instance, WBAP is in Forth Worth, Texas; WCAP in Washington, and WDAP in Chicago. It is generally understood that these letters are given out in an irregular manner and no particular significance is attached to them by the public.

But when it comes to the wave length, then many people think that it has a special meaning. In this they are mistaken. There is no more connection between wave length and location than there is between call letters and the companies they represent. To be sure, certain kinds and sizes of stations are assigned certain bands of wave lengths. By a band of wave length is meant all the different figures which lie within that range. A hand from 360 to 400 meters would include 365, 370, etc. But the exact figures of any station are decided by the radio inspector in accordance with the schedule of stations near the new one. Of course, if in a certain state as just described. there is another station already working at 450 meters it is unlikely that the

By VANCE

ONE of the difficulties which the same wave would be assigned to a new singing into the microphone. The vicomer.

Getting the Proper Length

After the wave has been assigned, how does the station obtain it on their sending equipment? This is done by means of adjustments on their coils and condensers. The coil, it must be remembered, acts like a weight, whereas the condenser is a spring and the combination of the weight and the spring decide how fast the oscillation will be. To get a slow oscillation, which is the same as saying a long wave length, either the weight or the spring, or perhaps both, must be made large. If the sending station, after checking up with a wave meter which measures the length, finds that it is sending at too long a wave length, then they remedy the trouble by reducing the number of turns in the coil or cutting down on the number of plates in the condenser. After they have adjusted the apparatus to give the right wave length, the carrier wave is a continuous oscillation up and down and looks like Figure 1. This wave is obtained from the oscillation tube. The height of the curve is determined by the loudness of the wave. If the station is a powerful one and uses big tubes and a high "B" battery voltage, then the current flowing into the aerial will be large and the height up and down will be great. The number of the waves come together. It is like a waves per second depends only on the parade of soldiers marching along in frequency or wave length, and must conform to that given by the government,

Next the Audio Wave

bration of the diaphragm in the transmitter will be irregular and shaped perhaps as in Figure 2. If you inspect a victrola record under a microscope it will show a line like this. Here again, the height up and down represents the loudness, but the distance between peaks, which represents the time or shows how fast the waves follow each other, is determined by the pitch of the note being sung. The high notes come rapidly, and so the peaks are close together, but the low notes, since they are much slower in following each other, are spaced a little farther apart.

Like a Soldier's Procession It must not be thought that the speed referred to means the velocity with which the sound travels. High notes

Fig. 1. Usual Carrier Wave

and low notes both cover the ground in the same time. All music will travel a fifth of a mile in a second, so that if you hear the music from a loud band a mile away you know it took five seconds to reach you. The pitch of the note does not depend on this speed. It is determined by the closeness with which single file. The whole parade moves at the same speed, which may be three miles an hour, but up near the head of the procession we have a company which Now suppose that some one starts represents a high tone. These soldiers are marching one behind each other so radio wave, both A and B must be that they nearly step on each other's rubbed out. heels. That will represent high C on the piano. A little later in the line we

Fig. 2. Audio Wave Sung

find a company where the soldiers are spaced five feet apart. They are still marching just as fast, that is, three miles an hour, but they don't pass us in the grandstand nearly as frequently. This corresponds to middle C as shown in Figure 3. Behind them is another lot which straggle along ten feet apart. Of course, this will represent the next octave lower. This is illustrated in Figure 4. The same thing applies to radio waves. A high frequency station like KDKA, which runs at 926,000 cycles per second and a low speed station like KYW 560,000 cycles, both have waves that travel seven times completely around the earth in a second. But in the former case their soldiers are spaced close together, whereas in the latter they are more widely separated.

Audio on Radio Waves

Now let us see what happens when we impose the audio wave of Figure 2 on the back of radio wave Figure 1. This is done by the modulator tube in the sending station. The radio frequency comes in spaced just as before, but its loudness, as represented by the height up and down, is controlled or modulated by the audio frequency. Notice that the upper line A is exactly the same as the audio wave shown in Figure 2 and that line B is again the same thing, except of course, since it is the lower limit of the wave, it is turned upside down.

Fig. 3. Soldiers Like Audio

Curves A and B do not appear at all in a real picture of the wave, as sent out from the station. They are shown time, in accordance with the music, in our sketch merely to assist the eye Figure 2, they use a zero carrier, and in seeing that the peaks of the radio rather than cutting down, build it up, wave form a curve just like that of as determined by the audio wave. This Figure 2. To get a true picture of the is shown by Figure 6.

Like Surf at Seashore


A better picture of what is going on may be conveyed to the mind if you imagine yourself at Atlantic City after a big storm. The surf comes pounding in along the beach and in your hotel room you can hear it thundering on the shore. Now suppose a friend opens and shuts a window. When it is wide open the sound is loud. As he gradually closes it, it dies out more and more until when the window is shut tight the booming of the surf comes in only softly. If this up and down motion of the window is represented by the line in Figure 2, then the sound of the surf will be shown by Figure 5. Here each

individual wave of the ocean corresponds to one of the radio waves in the sketch, while the general loudness corresponds to lines A and B.

Like Ordinary Station

This operation, as just described, fits all the ordinary broadcasting stations. But the University of Illinois, which runs station WRM, has recently been trying various experiments with the

Fig. 5. Like 2, with Carrier

idea of eliminating the continuous carrier wave illustrated by Figure 1. It seems a waste of energy, both in the receiving station and in the transmitting radio to have such a carrier going all the time. They have developed a different method of sending. Instead of a carrier like Figure 1, which runs continuously and is cut down from time to

It will be observed that A and B are still just the same as shown in Figure 2, also the radio frequency is spaced just as before, that is, it is still the same wave length, but instead of having a continuous carrier, which is largely wasted, we have a zero carrier. At point C, where the singer has stopped

Fig. 6. Carrier Suppressed

for an instant and the audio wave dropped to zero, observe that the radio frequency has also been reduced to nothing, and the ether is undisturbed.

Detector Separates Waves

When either of these waves, Figures 5 or 6 is fed to a detector, it skims the audio wave off the back of the radio by suppressing the lower half of the radio curve, as already explained in our June l issue, "Changing Radio to Audio Waves." But the latter has some advantages. In the first place the tuning is somewhat sharper, since all the energy is used, rather than a fraction of it. Sharper tuning results in a clearer tone for the music you want to hear, and also in the more perfect cutting out of interfering stations. The second advantage is that all the sending station energy goes into the waves, which are wanted instead of supplying a lot of unnecessary noise. From this it follows that the sending range of the station is considerably increased.

If this new scheme of transmitting can be worked out so that it is a commercial success without too much apparatus, it bids fair to become the standard method of broadcasting.

BOARD OF TRADE LOSES WDAP

The Drake Hotel of Chicago, has recently taken over the management of WDAP. This is the station which has been run up until now by the Chicago Board of Trade. They have been putting such excellent concerts on the air that we are sorry to hear of the change. However, Mr. Jack Nelson, who has been director, will still be retained, and this probably insures equally good programs in the future.

JULY 1, 1924

6

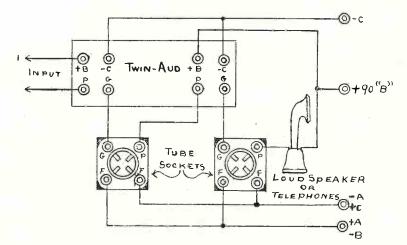
A New System of Audio Amplification

Use This in Your Two-Step Audio Frequency Receiver

By CHARLES H. M. WHITE, Consulting Engineer

results to be obtained by well balanced audio-frequency amplification. In fact, many throw together their audio amplifier parts of the circuit, after spending much time and trouble in perfecting the radio-frequency and the aerial tuning circuits. No matter how sensitive and selective the latter may be, little satisfaction will be had if poor quality results from the neglect of the former. Recently, however, there has been a marked tendency towards the improvement of audio-frequency amplification. This trend is shown by the increasing demand for the higher grade audio transformers in place of the poorly constructed and designed units selling for a lower price.

JULY 1, 1924


As an engineering problem the lower speed of oscillation presents nearly as serious problems to be mastered as the higher, but they are of a different nature. In radio amplification we want selectivity, but with audio frequency we do not want selectivity since we wish to amplify equally over the entire audiofrequency band because voice currents are composed of frequencies from 200 to 2,000 oscillations per second, approximately, while music ranges from 30 cycles for the deep bass notes of an organ to 5,000 cycles per second to the extreme high tones of a violin. The problem of keeping the oscillation transformer from being selective and still making it sensitive over the entire audible range, which is 30 cycles to 5,000 cycles, is indeed difficult and has been mastered by only a few manufacturers.

Just as there is a marked tendency for a radio-frequency circuit to oscillate. there is a similar tendency for the audio circuit to do it, too. Ofttimes this vibration takes place at an audible is a certain electrical reaction between frequency, that is below 10,000; it takes the form of a howl. Then again, the

other words, an audio-frequency circuit ity amplification is obtainable over the has regenerative principles of feedback entire audio-frequency range without the which tend to make it selective, or more sensitive to one frequency than another. Many radio engineers have tried to cure howling by using a transformer of a lower ratio in the second stage, but, personally, I am not in strict accord with such practice, since the solution, to my mind lies in the transformer itself and

MANY fans do not realize the good range, but it results in distortion. In oscillation. The result is that high qualtendency towards howling or distortion. This arrangement also has the advantage of cancelling out quite a bit of tube noise in the same manner as push-pull amplification, and yet, for volume per tube as well as quality of received note, it is, in my opinion, superior.

> Since the Twin-Aud is really nothing not in reducing the ratio for the later more than two well designed audio-fre-

transformers is the fact that they give more amplification than those of lower ratio but their main disadvantage is that they are more selective and show a tendency to oscillate at a certain frequency, generally audible and so produce howling and distortion.

Many radio engineers realized the benefits of high ratio and therefore set about the task of curing its ills. Recently, the Peerless "Twin-Aud" has been developed. A Twin-Aud is two separate audio-frequency transformers mounted on the same transformer core. There the magnetism of the two because of depend upon the amount of "B" battery this style of mounting, which can be and the type of vacuum tubes used. oscillation takes place above the audio used to counteract any tendency towards

stages. The advantage of high ratio quency transformers mounted together so that their magnetic fields exert a corrective effect unobtainable with two separately mounted transformers, the hookup is similar to those made with two of ordinary type. The arrangement however, makes it possible to assemble the two stages more compactly than with the two separate units. As a matter of general practice it is well to use a "C" battery if more than 45 volts of "B" battery are employed. A "C" battery not only clarifies reception but also reduces the "B" battery current which makes your batteries last much longer. The amount of "C" battery will

Continued on Page 8

Boosting the Wave Length By E. J. BUSSARD

WLW Broadcasting Station began using ever, should 360 meters be the maxitheir new 423 meter wave, it was found that many owners of receiving sets did quired. If there is only an inductance not know how to adjust their radios to tune in on the high wave length. It appears that there are quite a number of receiving sets on the market, manufactured one to three years ago, which will tune to wave lengths no higher than 400 meters. It can be readily seen that a radio of this nature is of no value for hearing programs between 400 and 600 meters.

In the majority of cases, these receivers are of the single circuit type. It is easy to correct this type of set to receive higher wave lengths. The most common method is to insert a small loading coil (explained below) in the antenna circuit. In quite a few cases, however, it is only necessary to increase the length of the receiving antenna by adding, say 50 feet of wire. Another common method is to remove the adjustable condenser from the series connection with antenna circuit and place it in parallel with the variocoupler coil of the receiver.

Making a Loading Coil

A few words of explanation of the various methods may be interesting. By a loading coil is meant an inductance coil; usually only a few turns of wire are necessary, placed in the antenna lead, one side of the coil being connected to the antenna lead-in and the other to the aerial binding post. This method is especially adapted to sets having only an inductance coil or variocoupler for tuning. To construct a loading coil, take a tube three to three and a half inches in diameter and wind it with 20 to 40 turns of No. 24 or No. 26 gage D. C. C. (double cotton covered) wire. This tube should be of insulating material such as formica, hard rubber, etc., although cardboard tubes are often used with success. The size of this coil will be determined by the size of the inductance already in the receiver. For instance, if the tuner will receive stations broadcasting on 400 meters at its highest setting, only 8 to 12 turns of wire will be required to raise window has been built in the side of the audio amplifier.

When The Crosley Radio Corporation's the wave length to 430 meters. How mum, then 20 to 25 turns would be recoil in the receiver for tuning, then a small fixed condenser of approximately .00025 Mfd. capacity, connected one terminal to the antenna binding post and the other to the ground binding post, will be very satisfactory. If the circuit is tuned by a condenser used in series with a variocoupler, the wave length range may be increased enough by connecting it in parallel with the stator.

The Variometer Set

A few complaints have been received from people using three-circuit tuners. Undoubtedly the difficulty here lies in the type of variometers used and it will, in the majority of cases, be necessary to substitute variometers having the proper characteristics for tuning between 200 and 600 meters. In a few cases, it may be possible to wind a few turns of wire on the variometer and correct this defect to some extent, but the novice will find no little difficulty in doing this.

KDKA'S NEW STUDIO

When changes, now under way, are made in the Pittsburgh Post studio of the world's pioneer broadcaster, KDKA, the famous Westinghouse station will have a pickup studio perhaps better than anything of its kind in the world.

The new Pittsburgh Post studio is now being installed in a separate operating room, built-in to the main one, in which will be installed all apparatus necessary for the operator to change over microphones or make adjustments to the amplifying apparatus.

The new operating room is noiseproof and will have a two-way connection with the transmitting station located in East Pittsburgh 14 miles away, so that changes made during the operation of the station will be instantaneous.

Window for Booth

In this operating booth will be located all the amplifying apparatus and the various switches which are usually seen in the ordinary studio. In order that the operator can see what is going on, a

operating room. This window can be closed when the station is working to permit conversation between the transmitting station operators without its being broadcast.

This change is one of numerous ones that have been made in the Pittsburgh Post pickup station of KDKA, its first since they began broadcasting from downtown Pittsburgh.

It is not generally known that East Pittsburgh, where the sending aerial is located, is 14 miles cast of Pittsburgh and that most of KDKA's broadcasting is done from outside points, or pick-up stations as they are called. In broadcasting events from Pittsburgh and the surrounding district KDKA uses 34 pick-up points.

CAN YOU TALK ILO?

It is the Popular Radio Language

The Spanish and French lessons taught by radio from the WLW Broadcasting studio of The Crosley Radio Corporation met with such hearty responses from the listener-pupils, that a new language will be added in September. Ilo, "La Internaciona Linguo," will enable listeners in other countries to enjoy more fully the numbers announced from the Crosley station, for plans now being formulated will include the studio director's announcements in several languages. In addition to the announcements, students will be taught the Ilo language in the regular Crosley Radio University classes. Fred Smith, who spent many years in Europe, is studio director of the WLW station and will supervise the classes.

NEW SYSTEM OF AUDIO

Continued from Page 7

If any radio fans are interested in the further construction and characteristics of this circuit as shown in the diagram, I shall be pleased to put them on the right path if they will only address me in care of Radio Progress enclosing a self-addressed envelope. If you are now getting imperfect audio-amplification you will do well to give this new system a trial before you make changes in your circuit. A receiver is no better than its

Development Work Pushed by G. E. Latest Device Prevents Interference from Lighthouse Signals

of the art, although every one will admit that wonderful progress is being made. The thousands of experimenters who are trying out new hook-ups all the time have accomplished a great deal in developing radio, but the time has come when more laboratory work is needed to make much further advance. For this reason a large experimental radio station will shortly be built by the General Electric Company for a more complete investigation of radio phenomena and broadcasting. It is understood that the cost of the experimental station will be approximately \$150,000, and that it will be located on land recently acquired by the company in Schenectady.

While no plans have been drawn for the new station it is understood that the General Electric Company will build a power house capable of delivering high power at various frequencies, and antenna structures will be erected for a wide range of wave lengths so that systematic investigation can be made of the advantages of various frequencies in solving the many problems with which radio now has to deal.

Interferes with Code

At present the ordinary wave length used ranges from about 250 up to 550 meters for ordinary broadcasting. If either higher or lower lengths are used, interference is found from the code of amateurs or commercial ship stations. But in addition to this band of frequencies several of the big stations have been tied together by wave lengths of around 100 meters. This is low enough so that it avoids trouble from the 150 to 200 meter band of the amateur practicing code. By the word "band" is meant all the different speeds of vibration which give wave lengths within these limits. That is, it would take in frequencies from 151, 152, 153, etc., up to 200 meters.

The requirements of the present-day

N ONE of the big radio companies are reports at noon, an afternoon concert and also a lower wave length of 107 satisfied with the present state for those at home, evening stock and meters which has been found particumarket quotations, weather reports, larly well adapted to long distance musical programs, plays and religious transmission for re-broadcasting. services, have filled up the available several occasions during the early spring, time. It has also been found that the WGY's programs have been re-broadcast space available in the power house and by the British Broadcasting Company in operating section of the big broadcasting London and thus made available to the station is not sufficient to permit ex- British Isles as well as to France and perimental work without interfering other continental countries. with the regular programs. On this only one of the experimental developaccount a new station was considered ments to which WGY has contributed. necessary for intensive experimental work.

2XI Equals WGY

The broadcasting station now known the world over as WGY was originally built, several years ago, for experimental purposes. Operating under the experimental license 2XI, it has conducted various radio experiments, and added materially to the fund of available knowledge.

Even now you will sometimes hear the call 2XI late at night and some times the music will come through even

-MARNARNARA Annalan Anna

Fig. 1. Old Lighthouse Waves

better than from WGY, while again it may be somewhat inferior. This is owing to the fact that new stunts are constantly being tried, and if they seem promising are worked out at greater length in the daboratory. But such experiments take considerable time and lots of space for the set-up.

Two Wave Lengths Together

It is well known by advanced radio fans and those familiar with the workings of this station that the regular programs have been broadcast for many months at two wave lengths-the regular one of 380 meters available farmer and to all that large proportion

On This is

Why You Don't Get 107

The reason the average radio has not been able to pick up this 107 meter wave is because the lowest wave length which most sets can get is around 250 or 275 meters. In order to build over a set to receive this short wave length, which runs at a much higher frequency or speed of vibration, it is necessary to redesign the coils and condensers so that they are considerably smaller than what is used at present. Even when the variable condensers are turned so that they read zero on the diaf it must be remembered that there is still quite a bit of leakage capacity, even in the best instruments. To this must be added the leakage capacity between the various wires in the set. When all these facts are thought of it is not surprising that the ordinary radio can not be made to oscillate at the tremendous frequency of three million times a second, which is the equivalent of a 100meter wave.

Blazing the Trail

No one believes that radio and radio broadcasting will remain stationary. The remarkable advances which have been made in the last few years indicate a continued rapid development. The General Electric Company aims to perfect broadcasting so that it may become even more reliable and satisfactory. The service which radio now renders to the broadcasting program, including stock to those using standard receiving outfits of the population in outlying districts is

9

greater factor by further perfecting.

Light Ship Radio

An illustration of one of the devices just put out from their laboratory which may be mentioned is an improved sending apparatus for fog signals.

Marked improvement in the sending of signals from lightships and lighthouses has been achieved through the development by radio engineers of the General Electric Company of a vacuum tube radio transmitter expressly designed for this sort of work. In tests which have just been completed on Lightship 108, at Staten Island, the new tube set showed superior efficiency as compared with a typical spark set, of the type which has been used for a number of years by the United States Bureau of Lighthouses.

The diagrams explain this action more fully. They show how the waves look for sending the letter D in code. D is made by sending a dash and two dots. Figure 1 shows the wave form under the old scheme. It will be seen that dash consists of several series of impulses, each one starting strong and then dying away. These individual impulses are

400	MM		-		
Fig.	2.	Letter	"D."	New	Style

caused by the spark breaking across the spark gap. Each time a spark occurs, a train of waves is sent out. Of course, this wave train gradually fades out, because of the resistance in the circuit. It is very much like a piano. When a piano key is struck the note starts quite loud and then gradually dies away. If the same note is struck in rapid succession, then the tone will be sustained, but the ear will be able to catch the different individual impulses and a picture of the note will look just like Figure 1. The dots are made in the same way as the dashes, except they are not prolonged for the same length of time.

Does Not Waste Energy

Figure 2 shows the new scheme of sending out the waves. Here the tube set gives an oscillation which does not die down at all. This is known as a sustained wave. Here again the dash and dot are alike except that the dash a very smooth wave at an exact and year-your own and that of a friend.

that the second style of sending will be much more efficient than the first. There is the same difference between a lot of jerks and a steady pull.

During the tests, both of the fog signal radio transmitters were adjusted to give about ten amperes in the aerial. It was found that the total power consumed by the spark set averaged around 2300 watts, which was nearly 50 per cent. greater than the power consumption of the tube set, the latter being about 1650 watts.

Saves 26 Bulbs Burning

The watts are a measure of the power used, or expressed in another way, of the fuel consumed per hour in running the station. One of the most popular size of incandescent lamps which you use for lighting your kitchen is the 25watt bulb. In cutting the power as just mentioned, there is a saving of 650 watts which would keep 26 ordinary electric lights burning continuously. This, you see, is quite a worth while result.

This will have a direct bearing on the question of fuel supply to lightships and lighthouses, since the power for these sets is supplied by gas engine driven generators, in which kerosene is usually burned. If the lightship or lighthouse is in an inaccessible location, graph Company stated recently that as is often the case, a considerable saving in fuel and other expenses can be effected if fuel ships are not required to make the trip as frequently as at present

The tube set was shown to be safer to operate and much more simple than the spark sets heretofore in use. The efficiency of the set is due to the use of the latest type of sending tube, called the XL.

Won't Knock Out Music

This set, the development of which has now been completed by the General Electric Company, was particularly welcomed because of its non-interference characteristics. The spark sets heretofore used have been the cause of many complaints from listeners to broadcasting stations, who have been annoyed by interference originating with these sets. This condition will be remedied by the use of the tube sets.

invaluable, but it can be made an even is considerable longer. It is easy to see unvarying wave length, and only radios tuned to this particular speed will pick them up. The older sets were adjusted to give this same length, as closely as possible, but they did not send out a pure wave. Various harmonics or higher frequencies (shorter wave lengths) were radiated at the same time and it was these extra and unwanted vibrations which caused all the trouble to neighboring broadcast listeners.

Lighthouse Bureau Tests

The outcome of the tests with the new set was a recommendation by Superintendent of Lighthouses of the Third District, J. T. Yates, to the Bureau of Lighthouses in Washington, that these tube sets be generally adopted for the bureau's radio beacon stations.

The radio signals sent out during fog have played no small part in the safe guiding of vessels and the saving of life. The signals are transmitted at 1000 meters in combinations of dots and dashes which enable pilots of vessels within range to determine, from the combination, what station is sending and its direction from the ship. Each station sends in regular repetition.

Got Your License?

The American Teephone and Telemore than forty broadcasting stations throughout the United States that were formerly infringing their patents had taken licenses. Inquiries in regard to licenses and applications for licenses are being received in considerable numbers. Permits under the patents of the American Telephone and Telegraph Company are being granted to broadcasting stations now infringing under conditions which have been generally accepted as fair and reasonable.

PRIZES FOR SUBSCRIPTIONS

Head Phones or

Transformers

FREE if you secure two subscriptions This is because the new sets send out for RADIO PROGRESS for one

Regeneration and Reflex Hook-up of Trirdyn Shows An Unusual Combination

THERE has been considerable in- are inserted, only these two tubes are position of the handle is about one-half quiry recently about the Trirdyn set. This word (pronounced Try-Are-Dine) is made up of the numerals 3R3, combined with the popular ending "dyn," which comes from the Greek word meaning powerful. These three R's stand for regeneration, reflex and radio frequency.

What the Three R's Mean

In this connection it might be well to explain the meaning of these three terms. Regeneration is used in the same sense as with the ordinary set. This signifies that there is a tickler coil connected in series with the plate or output circuit, which feeds energy back to the grid, in the customary manner. This is the same action, which is the subject of the patent litigation between Major Armstrong and DeForest, which, up until recently, has been called the Armstrong Patent, but has only just been awarded by the courts to Lee De-Forest.

Radio frequency amplification is made use of in the first tube. This increases the volume of the incoming carrier wave and so extends the range considerably. The reflex action takes place by using this same first tube, which already has been used as a radio amplifier, in the further capacity of an audio frequency amplifier. It is in this manner that we get the three R's referred to above.

Use of the Third Tube

So far we have employed only two tubes. The waves coming in through the first are amplified and passed to the second as a detector. From there they are looped back through the first again, and amplified at audio frequency, thus amount of feedback. Pushing on the a secondary connected to the grid. increasing the loudness of the signal, as knob, thus separating the coils. produces well as the range. The jack, which ap- the action between them, and so cuts It is also the stator of the variocoupler pears on the front of the panel is con- down on the regeneration. With aver- for introducing regeneration to the denected at this point, and when phones age operating conditions the normal tector. Primary and secondary coils are

connected, but if it is desired to use a way out. loud speaker, then the phone plug is panel. Of course, the set is turned the withdrawn and this connects in the other way around so that the right hand third tube, which acts as a second step of audio. This makes the music loud enough to be heard on any loud speaker. Figure 1 shows the appearance of this

set with the cover closed. The numerals in circles referring to the different parts fier. are the same throughout all the dia-

grams. Aside from the two rheostats, Nos. 4 and 5, the panel has only three cuit.

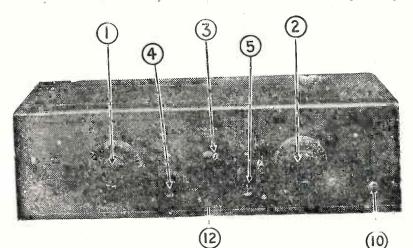

now shown at the left. An explanation of the figures shows: 1-This is the variable condenser, tuning the grid circuit of the radio ampli-

Figure 2 shows a rear view of the

side of the set viewed from the front is

2-The same thing in the detector cir-

3-Is the movable coil governing the controls. Dials 1 and 2 adjust the

Fig. 1. Outside View of Trirdyn

capacity of the grid circuits of the radio | feedback. It corresponds to rotor of a furnishes the sharp tuning of the set. Handle 3 controls the amount of feedback. But instead of turning it, it is pushed in and pulled out in the usual Crosley manner. When it is pulled out it brings the movable coil (connected in the plate circuit) up close to the stationery coil (detector grid circuit). This gives close coupling and a large a primary in series with an aerial and

amplifier and the detector. This is what variocoupler, and is adjustable by pushing in and out.

> 4-The rheostat controlling the filament current of both radio and audio amplifiers.

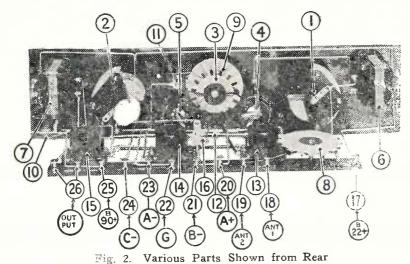
5-The same for the detector.

6-First stage audio transformer.

7-Second stage ditto.

8-Antenna coupler. This consists of

9-The radio frequency transformer.


both wound on this stator in regular spider web construction.

step only.

11-By-pass or stopping condenser in detector plate circuit.

12-Main switch for shutting off entire set.

Hook-up is Shown Figure 3 shows a simplified hook-up 10-Phone jack for use with first audio of the set, leaving out the filament connections, which are standard. Figure 4 shows the same hook-up in the pictorial style. The way the circuit works is this. The radio waves come from the aerial to the adjustable loading coil L

frequency amplifier.

14-Second tube detector.

15-Third tube. Second stage of audio amplification.

16-Grid condenser 00025 mid. and grid leak 1 to 4 megohms depending on tube used for detector.

17-""B" plus terminal for detector.

18-Aerial connection, giving sharp tuning.

19-Aerial connection, giving louder results, but not sharp as 18.

20-"A" plus battery terminal.

21-"B" minus battery terminal.

22-Ground.

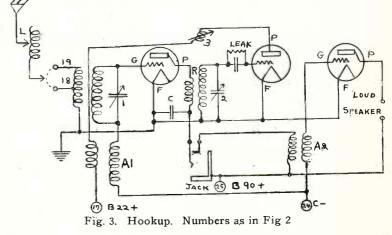
23-"A" minus battery terminal.

24-"C" minus battery terminal battery is not needed if only 45 volts of "B" battery are used on the amplifiers. In that case, posts 23 and 24 are to be connected together by a short piece of wire, but where a higher voltage is used on the amplifiers, then it is desirable to connect a "C" battery. Its voltage should depend upon the amount of "B" battery used in accordance with the table on the direction sheets, which ac- and out of use. The other terminal of mary of audio transformer A2 is incompanies every amplifier tube.

26-Loud speaker terminals.

13-First tube, both radio and audio | hown in the upper left hand corner of figure 4. This coil is actually mounted on the inside wall of the cabinet.

This loading coil is used only to compensate for different lengths of aerial. With a short one, 25 feet or so, the en-


JULY 1, 1924

one of these two terminals. These are the leads of the primary coil. No. 18 has only a few turns, and so gives very loose coupling, resulting in sharp tuning. No. 19 has more turns, and so the tighter coupling gives less selectivity, but increased volume. The secondary of this coil, wound on the same spider web, runs to the grid of the first tube. It is tuned by condenser 1.

Output to Transformer

The output from the plate runs through primary of radio transformer R. back through condenser C to the filament. The secondary of this transformer runs through grid condenser and leak to the grid of the detector tube. It is tuned by variable condenser 2. The plate circuit of the detector passes through the adjustable tickler 3, and then the primary of the first audio transformer, A1.

The secondary of the audio transformer impresses the audio frequency. on the grid by running through the secondary of coil 18. Since this latter is a radio frequency coil, and has only a few turns, it does not affect audio frequency at all. The audio output from the plate after going through the primary of radio transformer R, (which again does not affect it, owing to its few turns), reaches the jack. If the phones are

aerial the lead-in is connected direct to

tire coil is used. A 100-foot antenna will plugged in, the signals are heard with need not more than the first tap in se- one radio and one audio amplification, ries, and if it is as long as 150 feet, then as just described. But if the phone plug the entire loading coil is disconnected is pulled out of the jack, then the pricoil L is connected to binding post Al serted in series. The secondary of A2 25-"B" plus battery 45 to 90 volts, or A2, or, as just mentioned, with a long goes to the grid of the third tube and Continued on Page 13.

Common Sense in Seven Chapters

The night range of sending and receiving stations is much greater than the day range. Do not expect to hear stations a great distance away in the daytime. There are nights, rare in winter, and common in the summer, when it is impossible to bring in distant stations. This is due to atmospheric conditions beyond human control. This condition should be met philosophically as something that cannot be avoided, and not used as the basis of a complaint to the radio dealer who sold you your set.

2. Batteries Are the Fuel

A radio set will not work satisfactorily when the batteries are run down or nearly so. Keep your storage battery well charged, or if you use dry cells, always use some that are in good condition. Test your B batteries with a voltmeter occasionally and renew them when the voltage is 1/3 below normal. This is 15 on 22 volt block or 30 on a 45 block.

3. Watch the Details

Don't talk about the wonders and mysteries of radio, and the scientific and delicate sets that have made it possible, and then condemn the dealer or manu-

the aerial disconnected, the vacuum tubes burned out, or the batteries connected with the wrong polarity. A scientific instrument, even so popular a one as a radio set, must be treated in an intelligent manner.

4. Learn the Art of Tuning

If you have not learned to tune properly, but manage to tune in one long distance station, don't condemn your set because you do not hear them all. The fact that you heard one distant station shows that the set is all right; all you need is patience and practice, and you will be able to get the same far away stations as your neighbors.

5. Brighter Tubes Means Less Life Don't expect to get louder or clearer music when your vacuum tubes are turned up brighter than normal. If anything, the reception you receive will be less loud and there will be unpleasant noises introduced. Remember, also, that a slight overload on the tubes will make them burn out in a fraction of their normal life.

6. Don't Miss To-day's Program Radio does not change overnight any

1. Night Range Versus Day Range | facturer when your set won't work with | more than does the automobile, the phonograph or the sewing machine. The set that you buy to-day will be good a year from to-day, and probably for many more years. The long-distance receiving sets in thousands of homes at present are practically identical, except for some refinements, with the sets that were used by radio-telegraph enthusiasts five years ago. If you have postponed getting a good set because you are waiting for a radical change in radio, you are missing more enjoyment than the individual who puts off buying an automobile for the same reason.

7. Lightning Protection Simple

With a loop or an indoor aerial there is of course no need for antenna protectors. In the case of the outdoor aerial, the condition is somewhat different. During a storm the aerial may pick up some static electricity, which should be provided with an easy path to the ground, in order to protect the receiving instruments. The danger is not that the aerial will be struck, but that the static charges are likely to overload your receiver if not provided for by an approved lightning arrester.

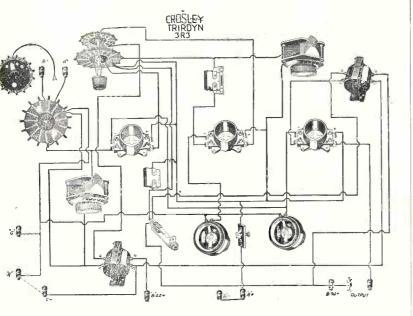


Fig. 4. Pictorial Hookup of Trirdyn

REGENERATION AND REFLEX Continued from Page 12.

the output from the plate runs through the loud speaker in the usual manner.

Advantages of the Trirdyn

It will be seen that this set will not radiate and cause trouble to the neighbors, even though it employs a feedback control. If this regeneration is turned too high so that the detector oscillates. it will not squeal into the air as many other receivers do, since the radio frequency tube is inserted between it and the detector. This tube does not oscillate. Furthermore, the loose coupling between the primary and secondary of 8, the antenna coupler, would stop any radiation originating in the set from getting out into the air.

Another advantage is the sharpness of tuning. It has been found that two stations differing by only a few meters in wave lengths can easily be separated. Any kind of tubes can be used, but UV-200 and 201-A are usually recommended for this outfit.

Picture of a Popular Performer

Mr. Edwin F. Goldman

Mr. Edwin F. Goldman, is shown here. He is the conductor of the famous Goldman Band. Indeed, it was his ability which founded and has kept up this well known group of musicians. WJY, New York, (405 meters) are fortunate to beable to broadcast such good music as this aggregation of players is producing. If you want some good, lively dance

THEIR DANCE MUSIC IS GOOD music, tune into them some evening, and you will be delighted.

> The programs, arranged and directed by Edwin Franko Goldman, are noted as being the most unique and most ambitious hand concert programs attempted by any organization in the country, and the fact that the Goldman Band is the only organization to have given seven consecutive New York seasons is proof enough of the exceptional success of the attempts.

PUTTING MADISON SOUARE ON THE AIR

In bringing signals of adequate volume from the Democratic National Convention at Madison Square Garden, New York, to the antenna of WGY, at Schenectady, N. Y., the sound energy picked up by the microphones in New York was amplified at six different points on the journey.

As the voice or sound was picked up by the microphones in Madison Square Garden and converted into electrical vibrations, an amplifying unit built up the energy to counteract the loss sustained in transmission over wires to the studio of WJZ at Aeolian Hall on 42nd street, New York. At the control room of WJZ the signal was amplified for feeding to the air and part of the energy, normally sent to the station was diverted by wire to the Walker Street Terminal of the Western Union. Here the signal was boosted or amplified for the third time and sped on its way Schenectady-ward. At Sedgwick avenue, where the control wire leaves the New York city cable and goes into an open wire, strung on poles, a fourth amplification took place. This fourth stage gave the signal sufficient strength to reach the control room of WGY in Schenectady. There a fifth stage of amplification was applied to the message to overcome line loss over the quarter-mile of wire between the control room and power station. The last power amplification took place at the power station and the signal was then impressed on the radio apparatus and given to the listening fans tuned in on 380 meters. The journey of an electrical vibration from Madison Square Garden to the ear tuned in to WGY is made with the speed of light.

To assure good service to its followers WGY had nine operators along the circuit. The men were apportioned as follows: At Madison Square Garden, one man; WJZ control room, one man; Walker Street terminal, one man; Sedgewick avenue, two men; WGY control room, two operators; WGY power station, two men.

Unradiating the Single Circuit

This Will Also Increase the Selectivity of Your Receiver

THE single-circuit regenerative re- elaborate sets for two reasons :----it is ceiver is probably more used in the United States to-day than all other circuits combined. Among the obvious reasons for its popularity are its simple controls, low cost, and good results for small investment. It is the radio "Ford." But the single circuit is losing its popularity in favor of more expensive and neighbor has him badly beaten.

By HARRY A. NICKERSON

not sufficiently selective, and it radiates when improperly operated.

Because of its many good features, it is unfortunate that it should be the target for so much abuse. When the owner of the expensive set begins to compare his "stations heard" and "distance" records, he often finds his single-circuit

Mr. William Van Hoogstraten

Ten Feet of Wire Does It

This article is not intended to describe a "cure-all" for the two great defects of the single-circuit, but it does tell how, by the mere addition of ten feet or so of wire, the single circuit will gain marked selectivity and give less offence as a re-radiator. The idea may be adapted to other forms of single-circuit than that most commonly used, but the directions apply specifically to the singlecircuit described as "a varioeoupler set, using the tickler coil for producing regeneration" or as "the standard singlecircuit regenerative set" or, sometimes. as "the Armstrong hook-up."

Fig. 1 illustrates the "standard single-circuit;" "S" is the stator of the variocoupler, which usually has from 60 to 80 turns of No. 22 or No. 23 wire. "R" is the rotor of the coupler. The arrow T pointing toward the stator is the tap switch; the dots represent four switch points or taps on the stator. If taps are taken from the coil to two sets of switch points, it is suggested that the set which is fine tapped (only one turn per tap) be eliminated and the taps used be four at most, connected as shown in the figure. It has been found that two or three taps in the standard single-circuit will give all the fineness of control desired, since the condenser is used for the fine tuning.

Note that the grid return is connected to the "A" Battery Plus, not to "A" Minus. This connection is recommended Continued on Page 16

PHILHARMONIC ORCHESTRA

The New York Philharmonic Orchestra is one of the most popular musical organ izations in the East. Our photograph shows William Van Hoogstraten, its conductor. Radio fans, who tune to 455 meters, will be able to pick up the Stadium Concerts of this orchestra from station WJZ three times a week.

High and Low Divide

In operation, the radio frequency comes in from the aerial through condenser C, which is adjusted for fine tuning, then through coil S, and out the tap switch T, which gives coarse tuning. to ground. The secondary, or grid circuit, is hooked up to the grid, through grid condenser and leak and to coil S, through tap switch T to the filament. The output starts at plate T, then to the rotor R of the variocoupler to the point X, where the radio and audio frequency divide. The radio, or high frequency, goes through the by-pass condenser Cb and back to the filament, but the low or audio frequency goes from X through the phones and B battery to the filament.

Fig. 2 shows the same single circuit with the changes made for its improvement. It has become a set with an untuned primary P, which is inductively coupled to the secondary formed by stator of the variocoupler.

is connected across the original coupler stator winding. No changes are made in the grid condenser or in the tickler connections, or in the battery hook-up. The real change is in the winding of the untuned primary outside the usual stator coil. The correct position of this winding and the number of turns in it are both a matter of experiment, but very excellent results may be had without the necessity for experimenting, providing the general directions given are followed.

Primary Not Tuned

The action in this case is as follows: The radio waves come down the aerial through coil P to ground. This primary does not need to have an adjustable tuner, as it will respond to all wave lengths. The secondary coil S, which is the stator of the variocoupler, is connected to the grid through the grid leak and condenser as before. The other end of the secondary runs to ground through the tap switch T, which gives coarse tuning. Fine tuning is accomplished by the adjustable condenser C, which you will notice is in parallel with the secondary.

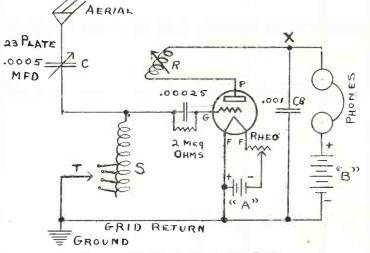


Fig. 1. Typical Single Circuit Radio

action which occurs when two coils are just the same as before. spaced close together and one of them carries an alternating current. In such a case, a corresponding voltage is induced or generated in the other coil.

Such a set has a good reputation, not only for selectivity, but because it re- as low as three. This works well with radiates but little. The variable con- a long antenna, say 150 feet. and short denser is removed from the aerial, and wave lengths, below 400 meters.

By "inductively coupled" is meant the | The operation of the output circuit is

First, as to the exact number of turns in this outer or "untuned" circuit. If wound directly over the original stator winding, where selectivity is desired especially, the number may be reduced to

For short antennas, the number may be from 4 to as many as 15, but not more than ten seems to give better results than the larger number. The number 7 was selected, as it seemed to average best in tests made by the writer.

While this is not shown in the diagram, it is evident that if desired, the outer coil might be tapped, say at 2, 4, 7, 10 and 15 turns, so that trial might be had of the various numbers to see which would give the best results. If the original single circuit has two switch levers with their separate sets of switch points, use could be made of the points connected to the fine taps, by disconnecting these from the stator coil and using them on the outer coil winding. to vary it. In this case, the switch lever used with the fine taps would be connected to the ground.

Use of Sealing Wax

This outer winding should be of double cotton or silk covered wire, of gauge No. 18 to No. 24. The writer used No. 22 D. S. C. (double silk covered). If there is any doubt as to the quality of the insulation, a strip of paper may be wound on the stator and the outer winding wound over this. If care is used, a drop of sealing wax will hold the ends of the outer coil firmly enough in place, or collodion may be used as a binder, plus the drop of wax.

The length of wire necessary to wind the outer coil may be computed by figuring each full turn to be 31/7 times the diameter, plus a foot or two extra for connections.

To avoid undesirable hand-capacity, the rotor of the condenser must be connected to the ground as shown. This is absolutely essential. The condenser should be shielded with a strip of copper or tinfoil on the back of the panel. This also is grounded.

The winding of the 7-turn coil must be carefully done. The 7 turns may be wound closely together or spaced. They may be placed at either end of the stator or in the middle, or be wound so as to cover the whole length of the stator, spaced.

Winding the Primary

If the coupler stator is wound half on one end of the tube and half on the other end with shaft between, and consists of 80 or more turns. it is suggested that by all means, the 7 turns be wound just

July 1, 1924

above the middle of the stator winding metres is reached with maximum setting on the half of the stator coil that is connected to the grid of the tube, at its end away from the middle of the winding. If, on the other hand, the stator winding is continuous, the 7-turn outer winding may best be wound at the end of the stator winding, or near its middle, toward the "filament" end of the stator winding rather than toward the "grid" end.

Care should be taken that the 7-turn coil be wound over some part of the to reach 550 metres. stator that is sure to be used when tun-

BADIO PROGRESS

of the variable condenser.

It will probably be found that 45 to 65 turns of the stator coil may be used with a 23-plate variable condenser in shunt with it, to cover nicely the broadcast band of wave-lengths. The number of turns used will, of course, depend on the closeness of winding of the turns and the diameter of the stator winding form. If an 11 or 13-plate condenser is used. probably at least 65 turns will be needed

Do not expect to hear distant stations

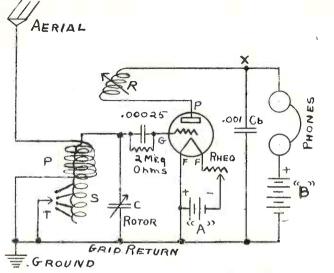


Fig. 2. Squeals Have Been Extracted from Fig. 1.

the lower half of the stator in Fig. 2, then when the switch lever was set on the highest tap, the 7 turns would perhaps be too far away from the stator coil in use to give the necessary energy transfer required for proper operation of the set.

In case it is found that the variable condenser "C" will not tune down to, say, 250 metres, without setting the variable condenser "C" at practically its minimum capacity, it will be found that tuning will be improved by taking off another tap in the stator coil, so a less number of its turns may be used.

If, on the other hand, when using the highest number of turns of the stator, it is found that considerably higher than 550 metres is reached, a part of the end a good single-circuit may be improved of the stator coil winding (not from the in selectivity and in lessened tendency grid end of the stator, of course) should be removed until a little more than 550 by making the hook-up that of Fig. 2.

ing. For example, if it were wound on with this changed single-circuit unless the tickler connections in the original circuit are so made that regeneration is obtainable over the broadcast band. If the set refuses to make a rushing or clicking (sometimes a violent squawk) in the phones when the tickler dial is moved through its circle of revolution. the leads to the tickler (rotor) should be reversed. If regeneration is still lacking, a larger phone condenser, a new tube, an antenna-ground system with lower resistance, higher filament current, a higher or lower "B" voltage or new B battery, change in value of grid-leak. a new grid condenser, or the attention of some radio expert, may be required to remedy the lack of regeneration. A regenerative set that won't regenerate won't give better results if the changes suggested in this article are made. But to re-radiate when improperly operated

WHICH WOULD YOU DO?

A thorough plan to adapt radio to the public school is now being tried out by the research director of the Oakland, Cal., public schools with the help of KGO, the Pacific Coast station of the General Electric Company. Tests already made show the boys and girls like school a lot better since the radio has been put in.

Dr. Virgil Dickson, research director of the Oakland schools, reports that the committee working on this problem is divided into two groups which do not agree. One believes that a lesson by radio should be limited to a subject of special importance, broadcasting a good speaker who knows more about it than anybody else. This is the lecture type of lesson and will be limited to specialiete

Group two thinks that radio should be a means for giving actual classroom lessons. They believe that radio may take the place of the classroom teacher and give the same kind of lesson; however, the regular teacher will listen in, and point out upon maps, globes or charts, the topics referred to by the radio instructor. The classroom teacher will also direct operations of the class and see that pupils make proper notes.

The lecture plan of group one has already been tried out by broadcasting one lesson in music and another on Indian customs. Reports from various schools listening in prove that both lesons were successful. Opinions of group two have not yet been proved. as the test lessons on geography. Shakespeare, and commercial arithmetic have not yet been fully reported. Under both systems the radio teacher was helped by some of her pupils speaking into the microphone. This made it seem real to the class.

The attention of the children was held by musical numbers. Plans for the lesson included music Shakespeare played for five minutes at the beginning. again in the middle and once more at the end of the talk. By this means the minds of the students and teachers were freshened for the attention necessary to grasp the main points in the talk. The five minutes of music in the middle of the lesson let slower pupils catch up with their note taking. At the end of the lesson the five minutes of music seemed to rest the entire class and put them in smiling humor before dismissal.

Some Sending Station Stories

HENRY FORD ON THE RACES

Most of the thirteen million automobile owners are interested in the Inter- Little Symphony Orchestra, is arrangnational 500-Mile Race at Indianapolis, ing a series of international radio conyet only about one hundred and fifty certs and musical programs which will thousand of them get an opportunity to be broadcast from Station KDKA. A see it. But this year, The Prest-O-Lite schedule is being prepared in which one Company, whose enormous factory is di- evening will be devoted to each nation, rectly across the road from the Speed- and the concert will be broadcast in the way, broadcast the race through the Chi- language of that nation as well as in cago Tribune Station, WGN, and the the English language. Although KDKA speed fans got a realistic impression of has already broadcast several programs the race on their radio. A special wire in Spanish for the South American and was run from a soundproof booth in Latin countries and other broadcasting front of the judge's stand at the Speed- stations have transmitted concerts in way direct to the broadcasting station foreign tongues, this is the first time at Chicago.

everything that was doing at the huge is also endeavoring to secure the consuls 21/2-mile brick oval. Telephone lines of the various nations to deliver the welfrom all important points at the track coming address. The national "dish" of led to the sending booth. For instance, the nation whose concert is being broadexperts stationed at the pits told the cast, which will be served with the restory of the pit stops of the cars. Re- freshments for the broadcasting artists, porting the standing and the speeds of will also be an additional feature. the cars was a job requiring quick thinking, as the race proved to be the fastest and most bitterly fought in the history of the classic. Now one driver was ahead, then another.

The broadcasting was very realistic. The roar of the motors, the cheering of the crowds, the quick commands of the drivers as they stopped for supplies and hasty adjustments were so graphically transmitted from the pits that listeners said. "Everything was there except the smell of burning rubber." Henry Ford supplied an unexpected feature by addressing the radio fans on the significance of the race in relation to the automobile industry. Mr. Ford, who himself was a builder and pilot of racing cars in the early days of his career, was referee of the race.

It is reported that the broadcasting aroused unusual interest. Hundreds of thousands of sets tuned in and in radio stores, garages and private homes great crowds followed the progress of the race on special charts. Thousands of telegrams, letters, and applause cards were received thanking The Prest-O-Lite Company and the Chicago Tribune for the wonderful program, and congratulating them on their success.

ARE YOU A FOREIGNER?

Victor Saudek, conductor of the KDKA that a complete series of international Arrangements were made to cover concerts have been arranged. Mr. Saudek

CANOEING BY RADIO

How beneficial and valuable from advertising purposes a radio broadcasting station can be to a municipality was recently beautifully illustrated in Springfield. Mass., in connection with a shipment of canoes from Old Town. Me. to a Springfield hardware establishment. The shipping tag bore the name of the bardware store and nothing else but the inscription. "Springfield, the home of WBZ." With the number of cities and towns throughout the States with the name Springfield, mail clerks might have experienced some difficulty in locating the consignee. But the additional material on the tag referring to the Springfield Westinghouse radio station left little doubt as to where the canoes were going.

HAND ORGANS NOT INCLUDED

A curious fact has been noted by Station WBZ in comments from radio listeners regarding organ broadcasts. Very few persons, prior to radio, ever heard an organ other than in a church or a "movie," and the idea of an organ studio is novel to them. Through courtesy of WBZ, fans have hours later in the evening." the

been able to compare two organs, the one in the Steinert Studio where the Aeolian organ is played and the one in the Estey Studio bearing that name.

ANNOUNCED IN THREE LANGUAGES

Fans who receive broadcasts from Canada's premier radio station CKAC, are familiar with the fact that all announcements have been made in French and English.

Soon, a third language will be added: "La Internaciona Linguo"-ILO. the perfect radio auxiliary international language-simple, neutral, expressive and logical.

Jacques N. Cartier, director, and his staff of announcers and story-tellers, are studying Ilo, and find it extremely easy to learn.

By the time the new big plant of CKAC has been installed, everybody connected with the studio expects to be able to talk Ilo, and then this musical "tongue" will be on the air regularly.

Heretofore, CKAC has found two languages enough for its needs, but now that constantly increasing numbers of radio enthusiasts are clamoring for Ilo-"Well, not to advance is to recede," according to J. N. C., "and in Ilo all fans have a new standard! There is no other way possible for us to satisfy everybody. All non-English and French fans, within our range, advocate Ilo."

Mr. Cartier points out that CKAC serves a hig Italian colony, a Greek village, a miniature Vaterland, a tiny Chinese town, a large Jewish settlement and several other small colonies.

"SLEEPING SICKNESS"

A radio fan in Charlottesville, Virginia, writes that the only trouble with the Westinghouse Station KDKA is that the directors in charge of the station have sleeping sickness. The concerts are received very clearly and distinctly and are enjoyed regularly each evening according to the letter, but this listener requests that "KDKA stay up a few

Saving the Storage Battery's Life Don't Commit First Degree Murder on Your Battery

THE storage battery is the most implates would buckle under such a of gas bubbles are given off from both portant piece of apparatus used in radiophone receiving sets to light the vacuum tube filaments, and sometimes to operate the plate circuits; it is often called the heart of radio set equipment. Good signal reception depends to a large extent upon the care which the batteries receive so as to avoid getting hissing, frving and scratching noises (which are often blamed upon static electricity) along with the signals.

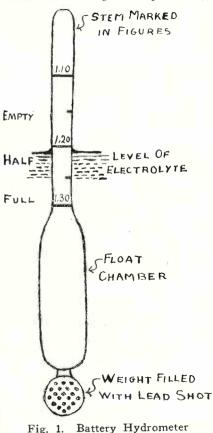
Many persons have an idea that electricity is actually stored in these devices, just the same as if a lot of apples were put away for winter use in a basket. As a matter of fact, it is the energy of electricity that is put into the cell, and withdrawn later with a limited loss. What occurs is, that the energy of the charging current changes the chemicals in both positive and negative sets of plates into a different chemical form. After the charging current is cut off, the battery is connected to the radio outfit; when its circuit is closed, these chemicals are changed back to their original form, and in doing so, generate electrical energy.

Acid and Alkaline Cells

There are two types of storage batteries on the market: the first consists of specially prepared lead plates standing in a solution of sulphuric acid and water. The other is known as the Edison battery; its plates are made of nickel steel, and contain nickel peroxide and spongy iron immersed in a solution of caustic potash. Both kinds have their advantages and disadvantages, there being no perfect storage cells made. Storage battery capacities are rated by their manufacturers in ampere-hours. Thus a 60-ampere hour cell will supply 6 amperes of current for 10 hours, 3 amperes for 20 hours, or 1 ampere for 60 hours. That is, the current times the hours equals 60. But it would ruin a storage battery to take 60 amperes out of it in one hour's time; the of a recharging period. Copious streams

By W. S. STANDIFORD

rapid discharge rate. Batteries in plates; oxygen at the positive and hydroradio service, as contrasted with those gen at the negative. These bubbles appear used for automobile lighting and self- at first in small quantities, but they instarting, operate at extremely low dis- crease more plentifully as the plates are charge rates, one, two, or three amperes completely charged. The acid and water being about an average current: it depends upon the number and kind of tubes used.


Radio vs. Auto Batteries

Conditions of battery working in the automotive and radio fields differ considerably; the radio field demands a steady current discharge without frequent recharging, while the automobile EMPTY outfit is constantly being recharged with the result that the current consumption is at a minimum. As storage batteries have, before the advent of radio sets, been used mainly in intermittent work. their ratings in ampere-hours is based on this method of operation and will not be exactly true in continuous use. In purchasing and using storage batteries, the above facts should be kept in mind, and cells bought which have a large ampere hour rating. The radio novice should realize, that while a 40 ampere hour battery costs less than one of 120 ampere hours, the former will become exhausted in one-third of the time of the larger one, thus making it necessary to bother with frequent recharging, which costs money and loss of time.

When Is It Charged?

For the benefit of those amateurs who have a recharging outfit and are unable to tell when a storage cell is fully recharged, the following pointers will be of interest. The completion of charging is known by several signs. The colors of both plates are fully restored, the positive being a rich dark chocolate brown and the negative a light gravish blue color. The density of the acid is brought back to its highest value, 1.275 to 1.300. The pressure is over two volts and in some cases may be 2.5 at the end

mixture at this stage looks quite milky.

When nearing completion of the charge, a fine spray is given off from the surface of the acid, (called electrolyte). This gas is a mixture of oxygen and hydrogen and it is very explosive. On this account, the battery ought to be kept away from all flames.

The acid spray is quite corrosive and it should be kept away from carpets and upholstering. The most used device for testing whether a storage battery is fully

drometer" and it can be bought at any automobile or electrical supply store for 50c to \$1.00. The explanation of the working of this instrument is simple. Sulphuric acid used in battery solutions and known as "electrolyte" is heavier than water alone. The hydrometer merely indicates the relative weight of the solution as compared with that of pure water. As a charged storage battery discharges, the sulphuric acid leaves the water and goes into the plates, forming lead sulphate. When a battery is discharged, a large amount of the acid has combined with the lead compounds in the plates. Naturally, as the solution is weak in acid, it is lighter, and the float of hydrometer sinks deep. But when a battery is fully charged and the acid is in the mixture, the latter has become leavier, thus forcing the hydrometer to ride high.

The same action is noticed in swimming. It is much easier to learn in salt water than in fresh, because the salt water, being a lot heavier, buoys a person up. It is even more marked for a person swimming in the great Salt Lake, in Utah. Here the water is so salient that it is very heavy and it is impossible for a swimmer to sink in it. Going still further, if you take a pan of mercury and lay a flat iron in it. you will find that the iron itself will float on the surface of the quicksilver.

In reading a hydrometer the line right opposite the surface of the liquid is used. Where the water touches the float there will be a little curve in the surface, but no attention is paid to this. When we say the hydrometer reads 1.220, we mean that the lever of the electrolyte comes opposite that point. This is illustrated in Figure 1. Only the float of the hydrometer is shown. It is ordinarily contained in a glass syringe which is used to suck the liquid out of the battery cell. The float consists of three parts: the upper part or stem is marked with lines and figures showing the condition of the battery; the middle is the float chamber and is hollow to make it light; the lowest part is a weight and is usually filled with lead shot, so that it will sink and hold the hydrometer right side up. Oftentimes the lead shot are held from rattling by a small amount of sealing wax. amount of current were being sent ing the electrolyte up and down with a

nearly 1.300. A specific gravity of 1.260 the plates not only buckle, but also a may be obtained.

charged, or otherwise, is called a "hy-| indicates a quarter discharged battery.] 1.225 shows that it has been one-half used; 1.185, three-fourths gone and 1.150 entirely discharged. Under no circumstances is it advisable to let any battery get more than threequarters discharged, because the formation of a hard crust of lead sulphate increases so rapidly, that it is difficult to reduce it by recharging. A storage battery should never be left in a discharged condition, but should be recharged again without delay. Another important point to remember is that a fully charged battery (even if it is not used) will gradually discharge itself through electrical leakage in from 10 to 15 weeks. Ordinary water from faucets or wells should not be used to make electrolyte or refill batteries on account of the iron and other impurities which it contains. Boiling won't help. Use nothing but distilled water and also chemically pure sulphuric acid. They can be obtained at any garage.

> Hot weather is severe on storage batteries, as it causes the water to evaporate much faster during this period than at other times, thus uncovering the tops of the plates, and allowing the action of the electric current to bend and twist them until they are no longer useful. A new battery then is required, which unfortunately is quite an expensive piece of equipment. Keep a close watch on the water, adding to it twice a month. The acid does not evaporate and needs replacing only if it has been spilled or has leaked away through a cracked jar. Caution, in making up acid electrolyte; always pour the acid slowly into the water, stirring it with a glass rod; do not reverse this proceeding or it will fly up into your face.

Overcharging a battery in the summer time will also heat the plates and electrolyte, causing evaporation from the tops of them and ruining the battery. As a matter of fact, the evaporation of water in a battery is continuous in cold as well as hot weather, although it is heavier during the latter months. Another cause of battery trouble is charging while the level of the electrolyte is lower than the tops of the plates. If the solution covers only one-half of the plates' surface, a normal charging rate acts on the lower half as if a double A fully charged battery should read into a battery, with the result that hydrometer syringe, the same results

loosening of their active material occurs, which will therefore fall to the bottom of the cell where it is not only useless, but short-circuits the plates if it piles high enough. Rapid overheating causes damage, resulting in considerable exvense later

Inexperience or carelessness in undercharging, if continued for some time, also makes the plates become harder and offer greater resistance to the charging current. Should a normal charging current be sent into a battery in the above condition, it will produce enough heat to make their plates buckle.

Winter weather is also hard on storage batteries; they should not be kept in any place where they will freeze, as once frozen, a storage battery is totally and permanently ruined. Freezing causes the grids in the plates to expand and crack, thus allowing their "active material" to soften and drop to the bottom of the container. The greatest damage is done when a battery freezes while it is in a discharged condition. The safest course to pursue in the winter time is to keep the battery fully charged, whether it is used for radio work or on your automobile.

It is a fact, proved by experience, that a fully charged battery will stand a lower temperature than one that is discharged; the contrast between them is very interesting. Thus one fully charged won't freeze until a temperature of 70 degrees below zero is reached, while a discharged one freezes at 14 degrees above zero. A quarter discharged battery congeals at 60 degrees below zero. and if half discharged, at 20 degrees below zero. Another point to be remembered in the winter is that when distilled water is added to the electrolyte to maintain its level above the tops of the plates, the water must be thoroughly mixed with the solution before a battery is exposed to the possibility of freezing. Should the water not be well mixed with the electrolyte, freezing and damaging of the battery will result. even though the latter be fully charged.

The best way to stir the electrolyte and water is to charge the battery for a short time after it is full. In this way the bubbles and gases, which are given out, will mix up the solution perfectly. In case this is not possible, then by suck-

American Radio Relay League

DUTCHMAN ARRESTED FOR SENDING

for an experimental radio amateur of regards." Holland to communicate with hams in this country has helped the standing of tempted as a pastime for the Shenanamateurs in the Netherlands, according doah's crew, but part of a systematic to a report received by the American program for testing out the possibilities Radio Relay League.

graph amateur was decorated with a Relay League learned from the Navy gold medal for the skill with which he Department that a short wave transtalked across the Atlantic ocean on short mitter was being installed on the airwavelengths, amateurs in Holland were ship for the express purpose of enabling regarded as something equivalent to the its operator to communicate with amaboll weevil. The authorities were in- teurs should it be needed in emergency clined to think they were a menace to during flights. their community.

men of the country had kept abreast of any ever installed on an aircraft; it of progress much better than the laws, has facilities that allow the use of with the result that H. J. Jesse, Jr., a practically all wave lengths from 100 prominent radio experimenter at Leiden, meters to the long waves commonly Holland, was made the defendant that used by big commercial stations. The the courts might decide whether it was advantage of the complete equipment is lawful for a citizen to transmit.

It was charged that Jesse's telegraph and telephone station was not intended tion finding and other purposes, of all for public communication and that messages had been exchanged "without authority having been obtained from the minister of Waterstaat." (That's what excluded from this arrangement, for the they call the Radio Inspector.) He had in fact, taken part in trans-atlantic radio tests and communicated with amateurs in the United States as far west as Nebraska.

The defense pointed out that regular telegraphic communication in competition with commercial traffic was not intended and that the case was in the class with work concerning laboratories. The clerk of the open ministry congratulated the defendant for having communicated with a station in America. It was shown the defendant was not guilty and the case was dismissed.

AIRSHIP GOES "ON THE AIR"

Rochester, N. Y., recently showed that radio messages can come from a point high up in the air as well as "through it." The radio operator on the Navy's big airship Shenandoah gossiped for a while with radio amateurs below.

one message in code. "You are the first The decision that it is not a crime bunch that have waked up to-day. Best

This was not a casual greeting, atof short wave amateur communication. Even after a prominent French tele- Some time ago the American Radio

The radio outfit on the Shenandoah The science of radio among the young is now regarded as the most complete to give the crew of the airship a chance to avail itself of assistance, for direcclasses of radio stations which would be useful in time of emergency.

Even the broadcast band has not been Shenandoah's operator, after sending the foregoing message to amateurs, shifted over from code to voice and gave the following message to station WHAM:

"We have been hearing your broadcast station WHAM, at Rochester, and it is coming in fine. If WHAM cares to, they might report our position to the Naval Air Station at Lakehurst." The operators at WHAM immediately forwarded the telegram to Lakehurst and then turned on the transmitter and informed the Shenandoah they had complied with the request.

LISTEN FOR "ARCTIC" ON 120 METERS

William Choat, radio operator for the Canadian Government Steamer "Arctic," which is leaving Quebec the first of July on her annual trip to Baffin Bay, may when to be at their stations for combe the first amateur operator to relay munication with the expedition, a defiback to Canada and the United States nite schedule has been arranged during

"To the Rochester amateurs," read the complete details of the winter experiences and home-coming arrangements of Captain Donald B. MacMillan, Arctic explorer.

> The departure of the "Arctic," under the Northwest Territories Branch of the Canadian Department of the Interior, comes at a time when the arrival of davlight in the Far North is beginning to shut off the radio contact between Mac-Millan and radio amateurs of the American Radio Relay League in Canada and the United States.

> The radio messages that have come from Donald Mix, the explorer's radio operator last fall and winter, have become gradually less frequent as darkness began to leave the polar regions. Of late there have been only a few weak messages that have sufficed to show the "Bowdoin's" crew have come through without hardship. The last one told of the explorer's plan to start for home soon.

> This year the "Arctic" will carry a short wave I. C. W. (interrupted continuous wave) outfit which will enable its operator to transmit on the amateur wavelengths between 100 and 150 meters. This equipment is in addition to her two regular sets, consisting of a standard 600-meter 2-kw. spark transmitter and a continuous wave transmitter working on a 2,100-meter wavelength.

> The Radio Branch of the Department of Marine, which looks after the radio equipment on the "Arctic," wants to carry ou tests with amateurs of the American Radio Relay League in Canada and the United States, and had the special short wave equipment installed for this purpose.

> The call which has been assigned to the "Arctic" is VDM, while that of Mac-Millan's ship is WNP. Special permission has been granted for all Canadian licensed amateur stations to use the wavelength of 120 meters during specified hours, although transmission on this wave will not be permitted for any other communication.

In order that amateurs will know

RADIO PROGRESS

which Mr. Choat will listen for signals. If will stand watch on the short wavelength daily, except Wednesday and Saturdays from 11 p. m. to midnight, Eastern Standard Time. Saturday, however, the hours will be extended from 11 p. m. to 3 a. m.

The "Arctic" is a wooden ship of 762 tons gross and carries sails in addition to her engines. As it is impossible to insulate the heavy guys which hold the three 80-foot masts, the ship is not regarded as ideal for radio work, although it is expected that this handicap can be overcome by the use of high power.

The ground for the radio equipment is provided for in the form of a copper plate secured to the side of the ship. If this should be torn of when the vessel encounters ice floes, it will become necessary to utilize the engine propeller.

NOW SAY DOCTOR MAXIM

Hiram P. Maxim, the inventor, upon whom the honorary degree of Doctor of Seience was just conferred by Colgate University at its 106th commencement, has been president of the American Radio Relay League from its beginning. In fact, it was Dr. Maxim who first thought of organizing a non-commercial association of radio amateurs, and from that time to this, he has championed the cause of the transmitting amateurs of the country.

This new honor comes at a time when Dr. Maxim's work in behalf of amateur radio is beginning to secure recognition from radio experimenters in all parts of the world. In recent years long distance tests of the A. R. R. L. with amateurs in Europe, Australia, New Zealand and South America have brought the amateurs of this country into world-wide prominence, which gave rise to Dr. Maxim's election as president of the Temporary Committee of Organization of the International Amateur Radio Union.

This committee is designed to knit together the radio societies of the world in the same way that the American Radio Relay League has done with those in the United States and Canada. Interest in amateur radio in foreign countries is increasing fast, and the proposed

which Mr. Choat will listen for signals. international association will be a powle will stand watch on the short wave erful influence in world affairs.

> The international union of amateurs will bring to the experimenters of foreign nations many of the privileges enjoyed by telegraph operators in North America, as well as recognition of their value in times of emergency. The amateurs of the United States have frequently been a wonderful help in areas affected by storms and other disasters. Their merits have been recognized by the railroads and the government.

A WIRELESS QUESTIONNAIRE

A check-up of amateur radio conditions in all foreign countries is being made by the American Radio Relay League to learn the amateur progress throughout the world. In recent months sending operators have been at work in countries where it did not seem possible there could be the slightest interest in radio.

Apparently there are few places where experimenters cannot obtain equipment for building radio sets if they persist. In countries where their existence has not been recognized, they are called "bootleg" operators. The radio laws in most countries are poor.

With these conditions in mind, Charles A. Service, assistant secretary of the A. R. R. L., has sent this questionnaire to radio societies in about twenty countries:

"Digest of government radio laws now in force or pending, relative to amateur radio, both receiving and transmitting.

"System of call letters used? Numerals, letters or combinations? Are they assigned by the government or individuals? Is the call list published and by whom? Cost?

"What is the name, title and address of the government department or official in charge of radio activities in your country?

NEW HIGH POWER STATIONS STARTING

The Class B stations are the powerful broadcasters, which can be heard over a large part of the United States. The United States Department of Commerce lists 49 Class B stations at present, and 14 more are being built. Some of these have not been revealed to the public as yet, but bigger stations are already planned for Chicago, Cincinnati, Denver, Hartford, Hot Springs, Huston, New Orleans, and New York.

Broadcast Bill delights in golf, And will improve his play, By following the golfing "pro" Who broadcasts every day. At home last night he took a ball And placed it on a "tee." He swung.—and tho he missed the ball, He made a "hit," you see. —By Del.

NOVEL TOOLS FOR THE FAN

Two rather interesting tools have just been put on the market by Stevens & Company. One of them is a Spintite wrench for turning round thumb screws or nuts. Such nuts are used for the four terminals of vacuum tube sockets, as well as on many other places in the radio. It has always been rather awkward to tighten these with pliers, especially in a compact set. This tool, as shown in our picture, has a large number of sharp teeth on the inside of a

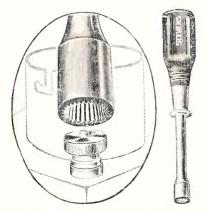


Fig. 1. Wrench for Round Nuts

tube, which fits tightly over the nut. This tube has a hole which is bellmonthed at the end. This allows it to fit tight on a nut, even though it may vary a bit from standard size. By pushing this wrench down over the head of the nut a good grip is obtained and it is easy to turn it down tight enough so there is no danger of a loose contact.

Vise Will Not Mar Threads

Another new tool made by the same company is a Screw Clamp. This is a sort of vice, but as shown in Figure 2, it has three holes tapped in the jaws. These take numbers 6, 8, and 10, screws, which are the only sizes used in most sets. By clamping a screw in one of these holes, it can be held securely while it is cut to the right length, or filed as desired. In this way there is no danger of marring the thread. This will be appreciated by those who have found the end of a screw so hadly damaged that it is next to impossible to start the nut on it.

RADIO PROGRESS

Cutting Down Waiting Time

Oftentimes you have heard the announcer say, "One minute, please," and then after waiting five minutes by your watch have wondered how he gets that way. Of course, it is not the director's fault, as it takes considerable time to get the artists in place, and being somewhat temperamental, they have to be treated in a leisurely fashion.

But station WTAM, Cleveland, the radio station of the Willard Storage Battery Company, has recently tried an experiment in reducing this waiting time by broadcasting alternately between two studios. On the night of May 28 they made a record for a new type of broadcasting.

An average of three seconds was maintained between numbers on the program in spite of the fact that alternate selections were rendered at two points, seven miles apart.

The stunt was worked between the Cleveland Plain Dealer studio and the Willard station of WTAM. Half of the artists were at one place and the rest at the other. All the announcing was from the Plain Dealer studio.

Especially interesting is the fact that the switch over from one point to the other was accomplished without the aid of any signal or communication other than the radio itself. This was done by use of a code word spoken so that listeners were unaware that a code signal for the switch over was being given.

Both studios were equipped with receiving sets tuned to the station's wave. The Plain Dealer station led off and the first number was followed by the announcer explaining what was being done. He ended his announcement with the word "studio" which was the code sig-

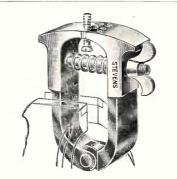


Fig. 2. Screw Clamp

nal for the operator in the transmitting room to cut in, and to the artist at the Willard studio to start broadcasting.

As the music stopped at the Willard studio, the operator threw his switch, cutting back to the Plain Dealer station where the announcer had been listening on a receiving set. Allowing three seconds to make the change in connections, the announcer started his statement of the next number.

"Studio" being the last word of every announcement, was the signal for the operator to throw his switch from one studio to the other but to the listening radio faus it was just part of the announcement.

While one station was broadcasting, artists at the other were taking their places, to be in readiness to follow. In this way shorter intervals elapsed between numbers than could have been possible if all the broadcasting had been done from one place.

REINARTZ RECEIVES REWARD

John L. Reinartz, famed radio experimenter of South Manchester, Conn., was honored at a special meeting at the Seaman's Church Institute in New York recently when he was presented with a cup by the special committee of the Executive Radio Council of the Second District. The cup is to be offered annually to the amateur who contributes the greatest advancement in radio communication for the year.

This is the first time this cup has been awarded, and Reinartz has thus been signally honored by the amateurs of the second district for his accomplishments in the development of receiving and transmitting circuits, which made recent transatlantic amateur work postible. The cup will be awarded on the same basis as the Institute of Radio Engineer's "Liebmann Prize,"—for merit only.

DISCARD ALL YOUR BATTERIES

Don't miss the next issue of RADIO PROGRESS, as you will find a description of a new method of dispensing with all your batteries. "A," "B" and "C."

Fone Fun For Fans

He Didn't Shake-Much Sam had passed through a harrowing experience. He had seen a ghost.

"Ah jes' come out of de cowshed," he said, "an' ah had a pail of milk in mah hand. Den ah hears a noise by de side of de road an' de ghost rushes out."

"Did you shake with fright, Sam?" asked one of his dusky audience.

"Ah don't know what ah shook wid. Ah hain't sayin' suttin ah shook at all. But when ah got home ah found all de milk gone, an' two pounds o' butta in de pail."-Progressive Grocer.

Professor (in engineering class)-What's a drydock?

Stude-A physician who won't give any. out prescriptions .- Crosley Radio Weekly.

He Gets a Date

She-Isn't the sunset beautiful? He-Yes, but what chance has it with your face around ?- Tennessee Tar.

A Case in the Short Circuit Court A chap was arrested for assault and battery and brought before the judge.

Judge (to prisoner): "What is your name, your occupation, and what are you charged with ?"

Prisoner: "My name is Sparks, I am an electrician, and I am charged with batterv."

Judge: "Officer, put this guy in a dry cell."-The Inland Merchant.

The Goodnight Message

The patter of tiny feet was heard on the stairs and Mrs. Blank raised her

THIS BEATS THE AIRPLANE

The fact that radio waves can be made to go "there and back in nothing flat" was demonstrated at WTAM, radio station of the Willard Storage Battery Company, broadcasting from the Cleveland Plain Dealer studio.

A late dance concert of request numbers was being put on the air when a fan called the studio by long distance telephone from St. Thomas, Ontario. placed his loud speaker to the telephone and sent back over the wire the same nusic that was being sent out by radio return was instantaneous with the start. fore getting to taps 4 to 7. The presfifteen feet away.

hand for stillness among the members of her bridge club.

"The babies are going to give me their goodnight message," she whispered. Listen, it always gives me a feeling of reverence."

The silence was intense as the women listened: "Mama," came the shrill whisper, "Willie found a bug."-Crosley Radio Weekly.

Foretaste

Little Bob: (about to go out with mother)-Mama, you must take some money with you."

Mother-No, Bob, I'm not going to use

Little Bob-Yes, you must have money for chocolate; I might start crying on the street, you know .- Detroit News.

Blame Father

"How'd you get so bowlegged?" asked one corner ornament of the other in the neighborhood of Pike and Madison streets on the lower East Side. "Did they let you walk too soon?"

"Naw," growled the bow-shinned one; "my old man used to swat flies on my head, an' he swatted me so hard he bent my pins."-Radio Merchandise.

He-If you hadn't taken so long getting ready, we should have caught that train!

She-Yes, and if you hadn't hurried me so, we shouldn't have had so long to wait for the next one!-Crosley Radio Weekly.

nals was so great that the music came back from Canada at the same instant that it was going into the microphone in the next room.

Here is the circuit of the music; telephone wires carried the signals from the studio to the transmitting set, seven miles away. From there the ether carried them to St. Thomas. about 100 miles, straight across Lake Erie. From 3 were not used either, but of course, St. Thomas they were put on the wire the wire to which they are connected again, going about 400 miles around the lake to get back to the studio. And the since the electricity flows through it be-

The speed of the round trip of the sig- speed could be increased just a little is not detrimental.

more so that the music returned to the sending just an instant before it left, it would save an immense amount of trouble, as the artists could be dispensed with entirely, by hooking the receiver up to the sending station. This would result in a sort of perpetual motion.

DEAD END TURNS ARE BADS

Most radio sets contain a tap switch, working on switch points, which are connected to taps on a coil. This may be a variocoupler, or perhaps a spider web coil and the taps are often located from one to ten turns apart. These coils are usually made too big. This is necessary, since the manufacturer does not know what wave lengths you are trying to get, nor can he tell how short an aerial you are going to use. The length of the coil is governed very largely by these two considerationsthe longer the wave length, the more wire you need in the coil and antenna. But for a given wave length, the longer, the aerial, the shorter must be the coil, since it is the sum of the two working together that picks out the station you want. If the manufacturers of your radio knew you were going to use an aerial of exactly 100 feet they could cut down the wire in your coil so that the longest wave length would be receivd on the last tap.

But after you have installed your set, you will find that most of your work is done on only a few buttons of the inductance switch. Say there are ten switch points and you use only Nos. 4, 5, 6 and 7. Then the extra turns beyond the seventh are not doing you any good. On the contrary, they are really causing harm. This is for two reasons. First, the extra wire reduces the sharpness of tuning somewhat as it tries to vibrate at its own particular wave length. Besides that, additional and unnecessary losses will be created in this superfluous wire. To avoid these two troubles, it is well to unwind and discard the extra unnecessary turns. By doing this you have increased both the selectivity and also the loudness of your set.

In this illustration Taps No. 1, 2 and cannot be discarded as it is in circuit, Some one has suggested that if the ence of these switch points, while useless,

Some Live Problems in Radio

Static Hardly Bothers the Commercial Station Now

By E. F. W. ALEXANDERSON, Consulting Engineer General Electric Co.

the early stages. When long distance radio was first put to important use, during the war period, many thrilling episodes occurred.

One of these took place in a station that had been hastily reconstructed and forced into the service of maintaining communication with France while we were yet building and experimenting in radio. Originally the station had been of the Marconi type, but had become obsolete, and its reconstruction consisted in setting up a high-frequency alternator and building a primitive transmitting plant around it. Trouble soon developed in the antenna insulation. Often an insulator would blow up with an explosion, but sometimes it would give a warning by a flickering light.

Spy is Discovered

The station was strongly guarded by marines who were quick on the trigger, and one dark night the guard saw a flickering light in one of the wooden shacks which was used to house the outdoor tuning coils. He thought it was an enemy spy and would not take any chances, so he peppered the shack with his automatic rifle. After a little while the insulator exploded and the station went dead. This gave the marine convincing proof that somebody had planted a bomb.

Firearms played no part, however, in the final solution to this problem of insulator breakdown. It was technical knowledge acquired by scientific investigation that furnished the means of eliminating the trouble. This is but one such incident.

Not Many Precedents Here

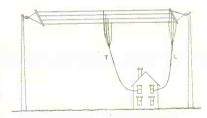
in all its phases has afforded an unusual opportunity for the application of scientific engineering methods. In most between these two. This relation beother branches of engineering there are tween kilowatts and words is a chain many previous cases to help the engi- comprising four separate links which are neer in his choice of methods. In radio being studied by specialists in the folcommunication there were but few such lowing subjects:

T HE real romance in research lies in precedents; practically every problem was a new one and had to be solved by new means. In addition to this element of newness, there was the additional complication of having to deal with forces of Nature which are not under control and therefore subject to the law of chance. At the outset these laws of Nature were very little understood and all of them are not yet entirely known. For instance, what are the causes of fading and exceptional increase of signal strength, or periodic fluctuation of signals? It can only be stated that these phenomena are observed to have something to do with the change from daylight to darkness and that they are more pronounced at the shorter wavelengths.

> That great enemy of radio communication, atmospheric disturbance, or static, is by this time pretty well understood and under control. It is really this fact that makes commercial radio communication at all possible.

Making a Business of Code

To bring about order and reliability in sending signals, we must take into account the effect of probability and averages. This can be readily understood by radio amateurs or broadcast listeners. When we receive clear signals from across the continent, we tell the world about it. Similarly, when the sportsman catches a big trout. he tells his friends of it as an event. But, professional fishermen succeed in furnishing fish for the market every day. Thus it is the aim of the radio engineer to explore the sea of the ether, to weather its storms, and to provide continuous service day and night.


The transoceanic radio station is a The development of commercial radio power station. Its input is kilowatts and its output is words. The problem scribed in greater detail a little later. of radio engineering is to fix the relation

- (1) Efficiency and cost of sending.
- (2) Wave transmission and fading.
- (3) Static.
- (4) Speed of sending messages.

Efficiency and Cost of Radiation

The first subject deals with the radio power station and the aerial. Four types of antennas are used in the system of the Radio Corporation of America. Three of these are adaptations of old structures, but the fourth, the Radio Central antenna on Long Island, is designed from the ground up.

Figure 1 shows two different styles of aerial. The difference depends entirely where the lead-in is attached. If it comes from the ends of the wire, as shown at L, then from the similarity with the letter, it is called an "L" type

Fig. 1. L and T Aerials

aerial. But if the lead-in comes from the centre, then it makes a "T" antenna. Of course, both lead-ins should never be used together, as shown in the diagram. Either L or T must be omitted. Figure 2 shows another well-known type of construction. It is called the umbrella. Only one pole is needed, and from its top the various aerial wires radiate out in all directions. From four to ten of these may be used. Part way down an insulator is inserted and below this the wire acts only as a guy. Figure 3 shows the Beverage antenna, which will be de-

The radiation efficiency of an aerial depends upon the effective height, the ground resistance and the wavelength. In antennas for long waves most of the energy is absorbed locally and only a small proportion is radiated.

26

The object of modern aerial design has been to get the biggest radiation for a given antenna cost, as well as the biggest for the power consumed. These two greater is the cost of antenna structure requirements are opposed to each other, and, as usual in design, a compromise must be arrived at. A high radiation efficiency can be had only by the use of a very expensive antenna. There is a third requirement that the operating voltage must be kept within practical The best compromise between limits. these needs has been obtained in the long multiple tuned Beverage antenna with moderately high towers operated at high potential. The Radio Central antenna has twelve ground connections distributed over a distance of three miles, and has 300 miles of wire buried in the ground. Through these devices the

Fig. 2. Umbrella Aerial

ground resistance has been reduced to 1/20 ohm. Antennas of types previously used had ground resistances of about 2 ohms. The losses in the ground have thus been reduced to less than 3 per cent.

The practical measure of the power of a transmitting station is not the energy radiated, but the product of the amperes in the aerial, and its effective height. This unit of radiation is called the meter-ampere.

Tremendous Power

If we have an aerial 60 feet high (equivalent of about 20 meters) and the ammeter in the line reads 10 amperes, then the radiation will be 20 x 10 or 200 meter-amperes. The radiating power used in a typical transoceanic telegraph station is about 50,000 meter-amperes, whereas a representative broadcasting or ship station has the power of only a few hundred meter-amperes. The distance that can be covered under normal daylight conditions by a transmitting station is about proportional to the numher of meter-amperes used. provided that mitting station must have to serve the a wavelength has been selected which is suitable for communication over such a distance.

RADIO PROGRESS

Wave Transmission

The second subject is wave propagation. The longer the wavelength the and the lower is the radiation efficiency. From this point of view, it would seem that long waves would be undesirable. If sending were limited to the hours of darkness, this would be true, but in commercial communication the daylight hours are the most important, and during those hours the absorption of the short waves is so great that better and more economical communication is obtained by the long waves. For each distance there is a certain wavelength which gives the best compromise between absorption and radiation efficiency.

One Cause of Fading

The absorption of short waves is high over dry sandy ground. It is also found that irregular land and water break up short waves into several paths which meet again in such a way that the oscillations combine. The waves will thus unite sometimes in phase (in step) and cause an increase of signal strength, and sometimes out of phase thus causing periodic fading of the signal. Practical experience can be summed up in the rule that the most economical wavelengths reliable daytime communication for over any distance is about 1/500 of the distance. It is about 3,000 miles from New York to Europe. As there are around 1,600 meters to the mile, this makes the distance 4.800.000 meters across the water. Dividing this by 500 as just described, we get the answer of about 10,000 meters for the best wave length for talking to Europe. This is one of the most popular frequencies in use to-day for this service.

Atmospheric Disturbances "Static" The third subject deals with the atmospheric disturbances. Our modern receiving systems eliminate about ninetenths of the static, but the balance left determines the speed of receiving the message.

We now know enough about these subjects to enable new radio circuits to be calculated with the same ease as we design a motor. The engineer starts at the receiving end and gathers his facts and reasons backward in order to determine what power, wavelength, etc., the transpurpose most economically.

This can best be illustrated by an ex- called "wave antenna" invented by Bevample. The first step in planning a new erage. In its simplest form it consists

station is to make measurements of static at the places where the signals are to be received. These measurements should extend throughout the season of the year when conditions are worst.

All disturbances were originally called "static," because they were thought to be like static electricity. The idea which is the basis of modern work is different. however. The ether is imagined to be a disturbed ocean with waves of every length rolling in from all directions. These waves are of the same nature as the signal wave. The disturbing waves, which are of different length from our signals, can be shut out in the same way that is used for cutting out other signals, that is, by tuning. But disturbing waves which have the same length as our signal are just like it in every way, and so pass through the tuning system like the signal.

Elimination of "Static"

This shows that some additional way must be found if we want to get rid of the static which happens to be the same wave length as the station we are listening to.

If a radio set is built to be sensitive to waves coming from only one direction, then static from any other point can be shut out even if it does have the same wavelength. This is the principle of directional reception, on which the receiving stations of the Radio Corporation are based.

Each improvement in the direction effeet of the receiving system has helped speed up traffic. The development of the

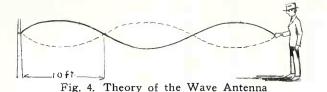
Fig. 3. The Beverage Invention

receiver at Riverhead, Long Island, has already reached the point where messages from Europe are received on an aerial 30 miles long and signals from South America on another antenna 20 miles long. The aerial consists of two telegraph wires mounted on wooden poles.

The Wave Antenna

The basis of this system is the so-

JULY 1. 1924


of a single wire, one wavelength long, mounted on telegraph poles or even laid on the ground. This antenna is sensitive to waves from only one direction. The radio wave coming in from the ether starts a vibration in the end of the wire and trave's along this conductor with the velocity of light. In the meantime, energy is continuously added to the wave in the wire from the ether oscillation which travels alongside it, so that the wave in the wire keeps building up and so is strongest at the far end of the conductor, where the receiving set is located.

Selection of Receiving Site

Static usually comes from the land side and so if the signal comes from the ocean we can design the receiving system so that it reduces the static, but not the signal.

An interesting case was found which shows this action clearly. It was desired to send a message from A to B (Figure 5). But unfortunately, powerful static was flowing towards B from the same point. It would have been impossible to keep up communication on bad days. This was overcome by building Station C off to the side as shown.

As actually constructed, the aerial is | A could send to C without any trouble, several wave lengths long. The one shown in Figure 3 equals three waves. Notice that the aerial has a ground connection through a coil spaced each wave length apart. The coil is adjusted by experiment, so that instead of oscillating as a whole, the antenna is broken up into several vibrating sections. This is like the clothes line experiment, which has been mentioned before. Figure 4 shows a clothes line 30 feet long, which is vibrating in three ten-foot sections. It will be easily appreciated that there will be a lot more energy in this line, than there would in only a single tenfoot length, but the speed of oscillation. that is the wave length, is the same in either case.

Won't Work for Broadcasting

Another advantage of this type of construction is that by having several grounds in parallel, the resistance is reduced considerably below that of a single ground. Of course, such an aerial will not work for broadcasting. It has to be tuned to receive only a particular wave length from one certain direction. As an illustration, if you wanted to hear KDKA only, then you could build such an antenna and the volume of tone would be deafening, but you could not get another station at all. This is no objection when considering a trans-Atlantic station, which is built to work with only one other place in Europe.

because it lay outside the static belt, and C could relay the message on to B because it was nearly right angles to the direction of the static flow, and so the Beverage antenna would pick up the signal along the line in which it pointed, but did not bring in any static.

Two lines of favorable direction were thus substituted for the one less favorable; just like a sailboat which requires two tacks to arrive at a point straight to the windward. This is a very unusual case, but it shows that a practical solution can be found even under most unfavorable circumstances.

Speed of Commercial Signalling

The fourth subject deals with the speed of reception. It has been found in wireless that the quickest signalling speed depends on the relative loudness of the signal and the static. Here is the reason:

The shortest part of a code letter is a dot. The letter D, for instance. is made up of a dash followed, by two dots, like this, -... and of course the faster the speed the shorter must be the dot. So if the loudness is kept constant, then the total energy in the dot sign must be inversely proportional to the speed.

If a dot lasts for say one-lifth of a second, it has used up a certain amount of energy, but if we let it run for only a tenth of a second, obviously there will veloped by which charts can be made to be one-half as much energy as before. show by curves the intensity of the sta-

When the strongest 'bang' of static at any time contains as much energy as a dot in the telegraphic code, it may be mistaken for a dot, or it may break up a dash into two dots, thus signaling the wrong letter. So it is necessary to send code slowly enough so that the total energy of a dot is somewhat greater than the maximum energy of a single atmospheric impulse. Thus if the wave amplitude (or loudness) is doubled, the length of the dot may be shortened to one-half. This explains why in practice the sending speed is proportional to the power and also why it is inversely proportional to the atmospheric disturbance.

Measurement of Signal and Static

. It can thus be seen that in developing new stations we must have accurate data on the intensity of the static. Methods have been developed for measuring signal strength as well as atmospheric disturbances. The unit of measurement is microvolts per meter. The meaning of this term is "millionth parts of a volt per meter effective height of the receiving antenna."

For instance, suppose we have an aerial thirty feet effective height. This is the equivalent of ten meters. When we measure the signal strength, we find

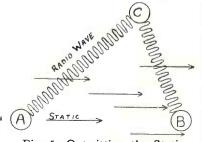
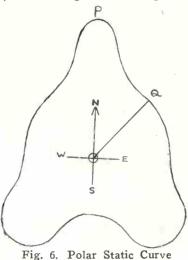


Fig. 5. Outwitting the Static

the pressure is 1,000 microvolts, then the strength of the signal coming in was 1,000 divided by 10, which equals 100 microvolts per meter. If the aerial had been twenty meters high the reading would have been twice as great, or two thousand. Dividing 2,000 by 20 gives us 100 again, which is, of course, correct, as the strength of the signal coming through the air does not depend on what kind of aerial it will strike shortly. Static strength is measured in the same way.

Measuring instruments have been de-


tic in all directions. Such charts are made for every hour of the day.

One of these charts is shown in Figure 6. This tells us that most of the static is coming in from the North, as the distance from zero in the center out to the point P is large. To the East and West the static is not so bad, but the best direction of all is toward the South, where it will be seen that only a little disturbance is shown. In other directions, like the northeast for instance, it is possible to find how strong the static comes in by drawing the line in that direction. Q shows such a line to the northeast and from it we see that only a moderate disturbance would bother us from there. If the diagrams throughout the year resemble the one shown in Figure 6, it proves that the best way of setting up an aerial would be to have it run north and south, with the free end to the south.

Static Charts

Examination of these charts will show what portions of the static can be eliminated by directional reception and what the intensity will be of the static which cannot be eliminated. Assume that this maining hours. If this is not fast investigation shows that the total static for the afternoon hours of the summer is 500 microvolts per meter. Reception under such conditions without the directional receiving system would be totally impossible. Suppose, however, that the polar charts show that only 10 per cent. of the static falls within the quadrant from which the signals are to

be received. The portion of the static which cannot be eliminated has then a strength of 50 microvolts per meter (10% of 500). A transmitting station that can give a signal of 50 microvolts per meter could then be expected to handle traffic at a rate of 20 words per minute during the worst hours of the day and at a higher rate during the re-

enough to handle the expected volume of traffic, it may be decided to use a signal intensity of 100 microvolts per meter. This would speed up receiving to a rate of 40 words per minute during the worst hours.

Prediction of Traffic Capacity Information is now available on trans-

RADIO PROGRESS 8 Temple St. (P. O. Box 728) Providence, R. I.	Date
	bscription to RADIO PROGRESS
foryear $\begin{cases} 1 & yea \\ 2 & yea \end{cases}$	ars \$5.50
Signat	ture
Send it t	to this address
Paid by (PRINT)	
Check	
Cash	
Money order	

JULY 1, 1924

mission efficiency, from which it can be predicted what radiating power is needed in the transmitting station in order to give the desired signal strength at the receiving station. Assume that a signal of 100 microvolts per meter requires a transmitting station of 50,000 meteramperes. This would be a station of the size used in transatlantic service. On the other hand, suppose that no attempts were made to reduce static interference by directional reception and that it was expected to receive a message by increasing the signal strength. This would require a strength ten times as great, which would mean a radiated energy one hundred times as great. Such à use of brute force would not be practical nor economically possible. These figures are right for most cases of talking to Europe.

Talk Round the World

There is now a chain of Americanbuilt stations around the earth which are either in operation or in construction. When the chain is completed, it will be possible to link them together, and send a signal which will automatically be relayed from station to station and circle the earth with the velocity of light. If it is sent from New York, it can be relayed over San Francisco, Honolulu, Shanghai, Sweden or Poland, and back to New York. It would arrive oneseventh of a second later than the time it started

The fact that radio telegraphy has now definitely attained the commercial stage does not mean that the end of its development has been reached. By the continued application of scientific engineering principles to the solution of its problems, as they arise, radio telegraph service will grow to fill a greatly extended field of utility. But this is not all. The knowledge which has been gained in making radio telegraphy dependable is now available for application to broadcasting. There is reason to believe that the same principles will go a long way toward eliminating the uncertainty that to-day attends the daily reception, over long distances.

HURRAH FOR THE FOURTH

As you have noticed, we are very patriotic in this issue, and have the covers dressed in Red, White and Blue. The next thing to decide is how to celebrate the big day. The general talk now is to make the Fourth "Safe and Sane." But when you spring this idea on the boys, they do not take to it very kindly. How can a compromise be effected between the older folks, who frown on giant firecrackers, and the younger ones, who must have some excitement?

Radio Reconciles Them

This is where radio comes in. We venture to predict that there is not a boy or girl in the country who would not prefer to have a radio set rather than a lot of firecrackers. When you realize that a good crystal set, together with phones, can be bought for around five or six dollars, it is hard to turn the youngsters down on the question of economy. Of course, this suggestion will not apply to families who live more than 15 or 20 miles from a good sized broadcasting station, for that is about the limit which any ordinary crystal set will pick up. The occasional reports of 500 and 1,000 miles are either made by unreliable persons, or else the program was received on the crystal as re-radiated from some nearby user of a high-powered vacuum tube radio.

So You Can Hear, Too

There is one further great advantage about giving the boys a radio set. It is something like sirable feature occurs is in the presenting your son with a train loud speaker. Sometimes a set of cars at Christmas time-that will operate very nicely using ear

cause he does not get much of a is plugged in, the orator seems to chance to play with it himself. be talking with his mouth full of For this reason, it is perhaps best to suggest two or three pairs of phones.

DISCUSSING DISTORTION

We might almost have said, "Disgusting distortion," as next to the squeals from your neighbors' oscillating sets this is probably the worst feature of radio at present. Some people use this word without a clear understanding of just what is meant. Suppose you are listening to a concert from a distant station and it gets weaker and weaker until you can hardly hear it. That isn't distortion. That's fading. Or perhaps in the middle of a song you hear a terrible squeal. That is your neighbor's set being improperly operated. Or, again, some one starts putting in a load of coal near by. That is static.

Turn Down Tickler

But when you hear a station protty well,-a man talking loud enough to be heard easily, but his words are very difficult to grasp so that you have to put your whole mind on it before you can catch what he is saying,—then that is distortion. It may come from any one of three places. Perhaps it is in the set. If so, there may be several reasons; a tickler coil turned up too far will cause it. So will a tube which is improperly adjusted. Poor audio transformers are also a source of such trouble.

Another place where this undeis, he will probably complain be-phones, but when a loud speaker

mush. In such a case we naturally blame the horn. There has been considerable improvement in the last year or so in the matter of proper designs of this unit. The modern loud speakers are a great improvement over those of a year or two ago.

Blame the Station

The third place to look for the distortion is in the broadcasting itself. When the sending station has its pick-up, (the microphene where the artist sings), connected by a *short* line to the sending apparatus and the aerial, then no trouble is experienced. But if, as is occurring more and more frequently, the performance is given in one city and it is connected by long distance telephone to the broadcasting studio, 50 to several hundred miles away, then serious distortion may be introduced by the characteristic of the toll line itself.

Why the R's

A wire line is guite different from the ether in this respect. The latter is entirely non-selective in its effect on sounds. The letter S and the letter T, for instance, are both reduced in loudness by the same proportion as they are transmitted through the air. But. unfortunately, this is not true of a wire telephone line. When talking over the long distance the sounds of some letters will be reduced to half, while others will be almost entirely suppressed. As an example, the sound of R does not carry through very well. This is why telephone operators when repeating the number you have

Continued on Page 30

NOTE: In this section the Technical Editor will answer questions of general interest on any radio matters. Any of our readers may ask not more than two questions, and if the subjects are of importance to most radio fans they will be answered free of charge in the magazine. If they are of special interest to the questioner alone, or if a personal answer is desired, a charge of fifty cents will be made for each answer. This will entitle the questioner to a personal answer by letter. However, if the question requires considerable experimental or development work, higher rates will be charged, which may be obtained upon application.

when the tap switch is moved slightly? come in well it shows that your aerial or much looseness in the tap switch, and not any better on his aerial, which is alfor this reason a poor contact is made ready known to be good, then the diffibetween the switch point and the switch arm. This trouble occurs fairly frequently in the average set. The remedy is simple. Take off the rotating arm and bend the spring toward the contacts. When the arm is now replaced the tension between it and the contact points will be considerably greater than before, and so the current will have no difficulty in flowing across the break. If the adjustment is properly made, then no sound will be heard in the receiver as the switch handle is oscillated back and forth a small amount.

Question. What is the best way of finding out whether a trouble is inside or outside the set?

Answer. It is a rather difficult matter to be sure in which of these places the trouble lies if reception is only fair. Of course, if nothing is heard it always indicates that the set is out of order, for even a poor aerial and ground will bring in some local music. The best way of testing out the equipment in case local stations are heard, but no distance, is to borrow the aerial and ground of some friend whose outfit is working well. The doubtful set may be transported as a whole with "A" and "B" batteries, unless it is known by a meter test that the batteries are in first class shape. If this is the case, then the neighbor's batteries may be borrowed for temporary use to save transporting this extra weight. When a 200 tube is used, only the coarse Connect your radio to your friend's aerial wire is in circuit, and so the control is

Question. Why does the music stutter and ground. If now the distant stations Answer. This shows that there is too ground is at fault, but if reception is culty must lie in your set itself.

> Question. What kind of rheostat is used in Crosley sets?

> Answer. This is a rather special rheostat, which is designed for use with all the different kinds of vacuum tubes. An ordinary 6-ohm rheostat is satisfactory for WD-11, WD-12 and UV-200, but has not high enough resistance for a 199 or 201A. A rheostat should have a resistance of about 20 ohms to work these latter tubes. It might be asked why a 20-ohm rheostat wouldn't work with a UV-200. There are two reasons. In the first place this takes one ampere for the filament current, and that is too much to run through a 20-ohm rheostat without overheating it. Even if the rheostat handle is turned so that the amount of resistance in the circuit is only one or two ohms, the condition will not be helped. These high resistance units are wound with fine wire and running one ampere through such a small diameter causes too much heat.

> A second objection is the fact that a twenty-ohm resistance does not have nearly as sensitive control as when used with a UV-200 tube. That is, a very small movement of the handle causes too big a change in the brightness of the filament. Crosley gets around this trouble by building half the resistance of coarse wire and the other half of fine.

accurate and there is no overheating. When a 201A is substituted, the control handle is turned around to the left to include some of the fine wire in series with the coarse. This is sufficient to bring the total resistance up to 15 or 20 ohms as desired.

Question. Will a vernier condenser increase the selectivity of my set?

Auswer. No, a vernier condenser does not increase the selectivity or volume of a radio. It is intended to do only one thing, and that is to make it easier to adjust for any given wave length. Once adjusted, the station is no louder or clearer.

DISCUSSING DISTORTION Continued from Page 29

called will often say "thrrrrrree," thrilling the R to make sure that you hear it.

Of course, the telephone companies have been working on this problem for a long time, and they have some long distance lines which by careful design have been made pretty nearly distortionless. Many of their wires are not fixed in this way. This accounts for the fact that with the same set and loud speaker you will sometimes get a speech through very clearly when relayed from a distant city, and at other times the enunciation will be very poor. This is noticed more with speech than with music, since we know what the words ought to sound like, while distorted music may be the fault of the artist.

JULY 1, 1924

K

KWH KYQ KYW KZM

WAAB WAAC

WABA WABE WABT WABL WABM WABN WABP WABT WABU WABX WBAA WBAD WBAH WBAK WBAN WBAP WBAV WBAW WBA WBAY WBBF WBBG WBBM WBBO WBBO WBBR WBR WBT WBU WBZ WCAD WCAE

WCAE WCAH WCAJ WCAL WCAM WCAP WCAR

WCAS WCAT WCAU WCAY WCBC WCBD WCK WCM WCX WDAE WDAF WDAG WDAH WDAK WDAP WDAR WDAU

WDAX WDBH WDBK WDBR WEAF WEAH WEAT WEAJ WEAM WEAN WEAO WEAP WEAU WEAY WEB WEBH WEV WEW WFAA WFAB WFAH WFAN WFBW WFI WGAQ WGAW WGAY WGAZ WGI

WGL

UNITED STATES BROADCASTING STATIONS ARRANGED ALPHABETICALLY BY CALL LETTERS

W.L. wave length in meters; K.C., frequencies in kilocycles; W.P., watt power of station. Abbreviations: W.L.

	kilocycles; W.P., watt power of station.	
KDKA KDPM KDYL KDYL KDYQ KDYQ KDZE KDZE KDZE KDZE KFAD KFAA KFAA KFAA KFAA		
KFBB KFBK KFCF KFCM KFCZ KFDH KFDV KFDX	F. A. buttey & Co., Have, Mont. Kimball-Upson Co., Sacramento, Cal Frank A. Moore, Walla Walla, Wash. Richmond Radio Shop, Richmond, Cal. Omaha Central High School, Omaha, Neb University of Arizona, Tucson, Ariz. Gilbreth & Stinson, Fayetteville, Ark. First Baptist Church, Shreveport, La.	.360-833-100 .360-833-100 .360-833-100 .259-1160-100 .360-833-150 .360-833-200 .360-833-100
KFDY KFEL KFEQ KFEV KFEX KFEZ KFFQ KFFV	Omaha Central High School, Omaha, Neb University of Arizona, Tucson, Ariz. Gilbreth & Stinson, Fayetteville, Ark. First Baptist Church, Shreveport, La. *So. Dakota State College, Brookings, So. Dakota. *Winner Radio Corp., Denver, Col. J. L. Scroggin, Oak, Neb. Feix Thompson Radio Shop, Casper, Wyo. Augsburg Seminary, Minneapolis, Minn. Amer. Society of Mech. Engineers, St. Louis, Mo. *Markehoffel Motor Co., Colorado Springs, Col. Graceland College, Lamoni, Iowa.	.360-833-150 .254-1180-100 .360-833-150 .263-1140-250 .263-1140-250 .360-833-250 .286-1050-100 .360-833-100
KFFX KFFY KFGC KFGD KFGH KFGJ KFGX KFGZ	McCray Co., Omaha, Neb Pincus & Murphy, Alexandria, La Louisiana State University, Baton Rouge, La Chickasha Rad, & Elec. Co., Chickasha, Okla *Le.and Staniord Jr. Univ., Stanford Univ., Cal Mo. Natl. Guard, 138th Infantry, St. Louis, Mo. First Presbyterian Church, Orange, Tex Emmanuel Missionary Col., Berrien Sprs., Mich.	.278-1080- 100 .275-1090- 100 .254-1180- 100 .248-1210- 200 .265-1130- 100 .250-1200- 500 .268-1120- 250
KFHD KFHF KFHX KFI KFIF KFIX KFIZ	 Graceland College, Lamoni, Iowa. McCray Co., Omaha, Neb. Pincus & Murphy, Alexandria, La. Louisiana State University, Baton Rouge, La. Chickasha Rad, & Elec, Co., Chickasha, Okla *Leand Staniord Jr. Univ., Stanford Univ., Cal. Mo. Natl. Guard, 138th Infantry, St. Louis, Mo. First Presbyterian Church, Orange, Tex. Emmanuel Missionary Col., Berrien Sprs., Mich. Utz Electric Shop, St. Joseph, Mo. Central Christian Church, Shreveport, La. Fallon & Co., Santa Barbara, Cal. Robert W. Nelson, Hutchinson, Ks. Earle C. Anthony, Inc., Los Angeles, Cal. Benson Polytechnic Institute, Portland, Ore. R. C. of Jesus Christ of L.D. Sts., Ind'p'nd'n'e, Mc Daily C'm'nw'lth & O.A.Heulsm'n, Fond d'L'c.Wis Seattle Post Intelligencer, Seattle, Wash. Delano Radio and Electric Co., Bristow, Okla Brinkley-Jones Hospital Association, Milford, Ks. 	.225-1330-100 .265-1130-150 .360-833-100 .229-1310-150 .469-640-500 .360-833-100 .240-1250-250 .240-1250-250
KFJC KFJK KFJM KFKB KFKQ KFKX KFLR KFLV KFMQ	Seattle Post Intelligencer, Scattle, Wash Delano Radio and Electric Co., Bristow, Okla University of N. Dakota, Grand Forks, N. Dak Brinkley-Jones Hospital Association, Milford, Ks. Conway Radio Laboratories, Conway, Ark Westinghouse Elec. & Mfg. Co., Hastings, Neb University of N. Mexico, Albuquerque, N. M Rev. A. T. Frykman, Rockford, Ill University of Arkansas, Fayetteville, Ark Freimuth Dept. Store, Duluth, Minn Carleton College, Northfield, Minn Roswell Broadcasting Club, Roswell, N. M Henry, Field Seed Co., Shenandoah, Iowa	.270-1110-100 .234-1280-100 .280-1070-100 .286-1050-500 .250-1340-100 .341-880-1000 .254-1180-100 .229-1310-100
KFMS KFMX KFMZ KFNF KFOA KFPT KFQB KFOC	The Rhodes Co., Seattle, Wash	.454- 660- 500 .360- 833- 500 .254 1180 100
KFQD KFSG KGN KGO KGU KGW KHJ KHQ	 Kild Brothers Radio Shop, Tait, Cal. *Chovin Supply Co., Anchorage, Alaska. Echo Park Evangelistic Ass'n, Los Angeles, Cal. Northwestern Radio Mfg. Co., Portland, Ore. General Electric Co., Oakland, Cal. Marion A. Mulreny, Honolulu, Hawaii. Portland Morning Oregonian, Portland, Ore. Times-Mirror Co., Los Angeles, Cal. Louis Wasmer, Seattle, Wash. 	. 492- 010- 300
K JR K JS K LS K LX K LZ K NT K NV K NV K NX	Imes-Mirror Co., Los Angeles, Cal. Louis Wasmer, Seattle, Wash. Northwest Radio Service Co., Seattle, Wash. Bible Institute of Los Angeles, Los Angeles, Cal Tribune Publishing Co., Oakland, Cal. Reynolds Radio Co., Denver, Col. Gravs Harbor Radio Co., Aberdeen, Wash. Radio Supply Co., Los Angeles, Cal Electric Lighting Supply Co., Los Angeles, Cal N. M. C. of Agri. & Mech. Arts, State Col., N. M. Detroit Police Dent., Detroit, Mich.	270-1110- 100 360- 833- 750 360- 833- 250 508- 590- 500 360- 833- 500 263-1140- 250 254-1180- 100 360- 833- 100
KOB KOP KQV KSD KTW KUO KUS KWG	N. M. C. of Agri, & Mech. Arts. State Col., N. M. Detroit Police Dept., Detroit, Mich Hale Bross, San Francisco, Cal Doubleday-Hill Electric Co., Pittsburgh, Pa First Presbyterian Church, Seattle, Wash Examiner Printing Co., San Francisco, Cal Citv Dye Works & Laundry Co., L. Angeles, Cal Portable Wireless Tel. Co., Stockton, Cal	422-710-500

WAAF WAAF WAAM WAAW WAAZ

31

W.L. K.C. W.P.

JULY 1, 1924

	- U U U U U U U U U U U U U U U U U U U	v.L. K.C. W.P.
VAK	*Lockport, N. Y Chicago Daily News, Chicago, Ill. Paramount Radio Corp., Duluth, Minn Alabama Polytechnic Institute, Auburn, Ala Kingshighway Presbyterian Church, St. Louis, Mo.	273-1100- 500
WMAQ	Chicago Daily News, Chicago, Ill.	448- 670- 500
WMAT	Paramount Radio Corp., Duluth, Minn	266-1130- 250
WMAV	*Alabama Polytechnic Institute, Auburn, Ala	250-1200- 500
WMAY	Kingshighway Presbyterian Church, St. Louis, Mo.	261-1150-100
WMAZ WMC	"Comparcial Appeal" Memphis Tenn	500- 600- 500
WMU	Doubleday-Hill Elec. Co., Washington, D. C	261-1150- 100
WNAC	Shepard Stores, Boston, Mass	278-1080- 100
WNAD	University of Oklahoma, Norman, Okla	360-833-100
WNAN	Syracuse Radio Telephone Co., Syracuse, N. Y	286-1050- 200
WNAP WNAS	Tar Padio Corp & Austin Statesman Austin Tex	360- 833- 100
WNAT	Lenning Brothers Co Philadelphia, Pa.	360- 833- 250
WNAV	Kingshighway Presbyterian Church, St. Louis, Mo, *Mercer University, Macon, Ga "Commercial Appeal," Memphis, Tenn Doubleday-Hill Elec. Co., Washington, D. C Shepard Stores, Boston, Mass University of Oklahoma, Norman, Okla Syracuse Radio Telephone Co., Syracuse, N. Y Wittenberg College, Springfeld, Ohio Tex. Radio Corp. & Austin Statesman, Austin, Tex Lenning Brothers Co., Philadelphia, Pa People's Tel. & Tel. Co., Knoxville, Tenn Dakota Radio Apparatus Co., Yankton, S. D Pagan Organ Co., Lima, Ohio Apollo Theatre, Belvidere, Ill.	236-1270- 500
WNAX	Dakota Radio Apparatus Co., Yankton, S. D	.244-1230- 100
WOAC	Pagan Organ Co., Lima, Ohio	.205-1130- 150
WOAG	Apollo Theatre, Belvidere, Ill.	360- 833- 100
WOAH WOAI	Southern Equipment Co. San Antonio, Tex	384- 780- 500
WOAL	William E. Woods, Webster Groves, Mo	229-1310- 100
WOAN	Vaughn C'nserv't'ry of Music, Lawrenceb'rg, Tenn	.360- 833- 200
WOAP	Kalamazoo College, Kalamazoo, Mich	283-1160- 100
WOAV	Penn. Nat'l Guard, 2d Bat, 112th Int., Erie, Pa.	526- 570- 500
WOAW WOAX	Franklyn I Welif Trenton N L	240-1250- 500
WOC	Palmer Sch. of Chiropractic, Davenport, Iowa	484- 620- 500
WOI	Iowa State College, Ames, Iowa	.360- 833- 500
WOK	Pagan Organ Co., Lima, Ohio. Apollo Theatre, Belvidere, Ill. Palmetto Radio Corp. Charleston, S. C Southern Equipment Co., San Antonio, Tex William E. Woods, Webster Groves, Mo Vaughn C'nservit'ry of Music, Lawrenceb'rg, Tenn Kalamazoo College, Kalamazoo, Mich Penn. Nat'l Guard, 2d Bat, 112th Inf., Erie, Pa. Woodmen of the World, Omaha, Neb Franklyn J. Wolf, Trenton, N. J Paimer Sch. of Chiropractic, Davenport, Iowa. Iowa State College, Ames, Iowa Pine Bluff Co., Pine Bluff, Ark John Wanamaker, Philadelphia, Pa	265-1130- 250
WOO	Pine Bluff Co., Pine Bluff, Ark John Wanamaker, Philadelphia, Pa Western Radio Co., Kansas City, Mo L. Bamberger & Co., Newark, N. J Mo. State Marketing Bureau, Jefferson City, Mo. Pennsylvania State College, State College, Pa Donaldson Radio Co., Okmulgee, Okla Wisconsin Dept. of Markets, Waupaca, Wis *New Haven, Conn	360- 833- 500
WOQ WOR	I Ramberger & Co Newark N I	405- 740- 500
WOS	Mo State Marketing Bureau, Jefferson City, Mo.	441- 680- 500
WPAB	Pennsylvania State College, State College, Pa	.283-1060- 500
UVDAC	Donaldson Radio Co., Okmulgee, Okla	.360- 333- 200
WPAH	Wisconsin Dept. of Markets, Waupaca, Wis	360-833-500
WPAJ WPA K	*New Haven, Conn.	360- 833- 250
WPAK WPAL	*Avery & Loeb Flee Co. Columbus Obio	286-1050- 500
WPAM	Augrhach & Geutell, Topeka, Kas	360- 833- 100
WPAZ	John R. Koch (Dr.), Charleston, W. Va	273-1100- 100
WQAA	Horace A. Beale, Jr., Parkesburg, Pa	360- 833- 500
WQAC	E. B. Gish, Amarillo, Tex	283-1060-100
WQAM WQAN	Electrical Equipment Co., Milanii, Fla	280-1070- 100
WQAO	Calvary Baptist Church, New York, N. Y.	360- 833- 100
WQAQ	Abilene Daily Reporter, Abilene, Tex	.360- 833- 100
WQAS	Prince-Walter Co., Lowell, Mass	265-1130- 100
WQAX	 Bonaduson Dept. of Markets, Waupaca, Wis *New Haven, Conn. North Dakota Agri. Col., Agri. College, N. D. *Avery & Loeb Elec. Co., Columbus, Ohio. Auerbach & Geutell, Topeka, Kas. John R. Koch (Dr.), Charleston, W. Va. Horace A. Beale, Jr., Parkesburg, Pa. E. B. Gish, Amarillo, Tex. Electrical Equipment Co., Miami, Fla. Scranton Times, Scranton, Pa. Calvary Baptist Church, New York. N. Y. Abilene Daily Reporter, Abilene, Tex. Prince-Walter Co., Lowell, Mass. Radio Equipment Co., Peoria, Ill. * Calumet Baking Powder Co., Chicago, Ill. Rice Institute, Houston, Tex. * Immanuel Lutheran Church, Valparaiso. Ind. Doren Bros. Electric Co., Hamilton, Ohio. 	448- 670- 500
WOJ	*Calumet Baking Powder Co., Unicago, III	360- 833- 200
WRAA WRBC	*Immanuel Lutheran Church, Valparaiso, Ind	278-1080- 500
WRK	Alter Institute, Housen, Fexencier, Valparaiso, Ind Doren Bros. Electric Co., Hamilton, Ohio No. States Power Co., St. Croix Falls, Wis Lombard College, Galesburg, Ill Antioch College, Vellow Springs, Ohio Flexon's Garage, Gloucester City, N. J. Radio Sales Corp., Scranton, Pa. Radio Corp. of America, Washington, D. C. Doren Bros. Electric Co., Hamilton, Ohio University of Illinois, Urbana. Ill. Tarrytown Radio Research Lab., Tarrytown, N. Y S. E. Mo. State T'chers' Col., Cane Giradeau, Mo. Clemson Agri. Col., Clemson College, S. C. J. A. Foster Co., Providence, R.	360- 833- 200
WRAL	No. States Power Co., St. Croix Falls, Wis	.248-1217-100
WRAM	Lombard College, Galesburg, 111	244-1230- 250
WRAV	Antioch College, Yellow Springs, Onio	268-112(~ 100
WRAX WRAY	Radio Sales Corp. Scranton, Pa.	. 280-1070- 100
WRC	Radio Corp. of America. Washington, D. C	469- 640- 500
WRK	Doren Bros. Electric Co., Hamilton, Ohio	.360- 833- 200
WRL	Union College, Schenectady, N. Y.	360- 833- 500
WRM	University of Illinois, Urbana, Ill.	273-1100- 150
WRW WSAB	S E Mo State T'chers' Col Cape Giradeau Mo	360- 833- 100
WSAC	Clemson Agri. Col., Clemson College, S. C.	360- 833- 500
WSAD	J. A. Foster Co., Providence, R. I	261-1150-150
WS.\H	A. G. Leonard, Jr., Chicago, 111.	248-1210- 500
WSAI	Crows City College Grove City Pa	360- 833- 250
WSAJ WSAR	Clemson Agri. Col., Clemson College, S. C, J. A. Foster Co., Providence, R. I. U. S. Playing Card Co., Cincinnati Ohio, Grove Citv College, Grove City, Pa, *Doughty & Welch Elec, Co., Fall River, Mass. Seventh Day Adventist Church, New York, N. Y. *Clifford W. Vick Radio Const. Co., Houston, Tex. Curtis & McElwee, Canandaigua, N. Y.	254
WSAP	Seventh Day Adventist Church, New York, N. Y.	263-1140- 250
WSAV	*Clifford W. Vick Radio Const. Co., Houston, Tex.	360- 833- 100
WSAW	Curtis & McElwee. Canandaigua, N. Y	448 670 1000
WSAX WSAY	*Chicago Radio Laboratory, Chicago, Ill.	232-1290- 100
WSB	Atlanta Journal, Atlanta, Ga	428- 700- 500
WSL	J. & M. Electric Co., Utica, N. Y	. 273-1100- 100
WSY	Irving Austin, Port Chester, N. Y. Atlanta Journal, Atlanta, Ga J. & M. Electric Co., Utica, N. Y. Alabama Power Co., Birmingham, Ala	360-833-500
WTAB	*Fall River Daily Herald, Fall River, Mass.	275 1000 150
WTAM	*Fall River Daily Herald, Fall River, Mass * Johnstown, Pa The Willard Storage Battery Co., Cleveland, O Orndorff Radio Shop, Mattoon, Ill. S. H. Van Gorden & Son, Osseo, Wis Reliance Electric Co Nortolk, Va Charles E. Erbstein, Elgin, Ill., near Edison Electric Illum. Co., Boston, Mass *College Station Texas.	389- 770-1000
WTAM WTAN	Orndorff Radio Shop, Mattoon, Ill.	.240-1250- 100
WTAQ	S. H. Van Gorden & Son, Osseo, Wis	.225-1330- 100
WTAR	Reliance Electric Co., Nortolk, Va	.280-1070- 100
WTAS	Charles E. Erbstein, Elgin, 111., near	246-1220-100
WTAT	*College Station Texas	280-1070- 250
WTAW WTAY	*Oak Leaves Broadcasting Station. Cak Park III	283-1330- 500
WTG	Kansas State Agri. Col., Manhattan Ks	.360- 833- 500
WWAD	Wright & Wright, Inc., Philadelphia, Pa	.360- 833- 500
WWAE	Alamo Dance Hall, Joliet, Ill	.227-1320- 500
WWAF	Edison Electric Illum. Co., Boston, Mass *College Station, Texas *Oak Leaves Broadcasting Station, Cak Park, Ill Kansas State Agri. Col., Manhattan Ks Wright & Wright, Inc., Philadelphia, Pa Alamo Dance Hall, Joliet, Ill Galvin Radio Supply Co., Camden, N. J Michigan College of Mines, Houghton, Mich Detroit News Detroit Mich	244-1230- 250
WWAO WWJ	Defroit News, Detroit, Mich	.517- 580- 500
WWL	Detroit News. Detroit, Mich Loyola University, New Orleans, La	. 268-1120- 100
_		
* 1	Iterations and additions	

* Alterations and additions.

For Summertime Radio by Roadside Stream or Rolling Surf ----

Here are the makings for as fine a little portable set as you will see anywhere this summer. A set you will show with pride and your friends will listen to with real enjoyment. Furthermore, it can be made really portable, just about camera size. If you can't do the work yourself, let your radio friend do it for you.

A Coto Compact Portable Set is Easily built. Two tubes give Loud Speaker Volume on near Stations. Excellent D. X. on Phones

Superior Audio Amplification for the Coto Portable Set

The writer of this advertisement listened last night to Chauve Souris from Boston via WEAN. Two tubes and Table Talker, fine volume and splendid tone. Never heard better reception on any set. That is the kind of radio this 5 to 1 ratio transformer gives every time.

\$5.00 Туре 4000

And a Real Compact Variocoupler in Polished Brown Bakelite

Is Your Dealer Fails You Cilo This Special Coupon The compactness of the Coto Air Condenser and The compactness of the Coto Air Contenset and this popular variocoupler enables you to build your set on panel 5 x 10 or even 4 x 8 inches. Size of variocoupler is only $3\frac{3}{4}$ x 3 x $3\frac{3}{4}$ inches, yet it operates perfectly over the whole broadcasting band of wavelengths. Mounts either on base or operates perfectly ov band of wavelengths. paneL

\$5.50

Coto-Coil Co.

Providence, R. I.

Volume, Sharp Tuning and Lasting Efficiency

The electrical characteristics of this SILVER PLATED Condenser with Vernier are really remarkable. For the .0005 Mfd. Condenser, maximum capacity is .000540, minimum capacity .0000240, power factor .00063. Even if you do not understand the significance of these figures, the tuning of your Coto set will tell you.

Type 3505 .0005 Mfd.....

\$5.00

200 to

600 Meters

Other capacities are .001 Mfd. \$6, and .00025 Mfd. \$4.50.

Don't attempt bon t attempt to substitute parts if you want best re-sults. Enclose coupon and money order with letter giv-ing dealer's name.

GIBLIN RADIO APPARATUS

The Giblin Broadcast Receiver

THE Giblin Radio Frequency Broadcast Receiver makes it possible to obtain radio entertainment without the necessity of erecting outside antenna wires or using a troublesome ground wire. A small, loop aerial placed near the set will pick up signals, which, though they have come long distances, and are weakened by hills, valleys, trees and buildings, will be clear and of great volume. Many families, living in apartments where it is undesirable or impossible to erect antenna wires, can now hear enjoyable, ever-changing programs through the day and evening by "listeningin" with a Giblin Radio Frequency Broadcast Receiver.

The set comprises two stages of radio frequency amplification, a detector and three stages of audio frequency amplification. The parts are mounted on a sub-base to which a Bakelite panel is attached. It is enclosed in a handsome solid mahogany cabinet.

The Giblin Audio-Frequency Amplifying Transformer Price \$4.50

The Giblin Radio-Frequency Amplifying Transformer Price \$5.00

Buy Giblin Products from your dealer

Write for descriptive circulars

STANDARD RADIO & ELECTRIC CO. PAWTUCKET, RHODE ISLAND