

DECEMBER, 1942

What People Say ..

Publiched by PR Mallery E Co., Inc.

白色

Unsolicited compliments make interesting reading, particularly when they are as sincere and enthusiastic as these we've received.

HERE ARE A FEW EXAMPLES:

"Received the Technical Manual and want to express my appreciation of the biggest two dollars worth of technical information I ever received." E.S., CINCINNATI, OHIO

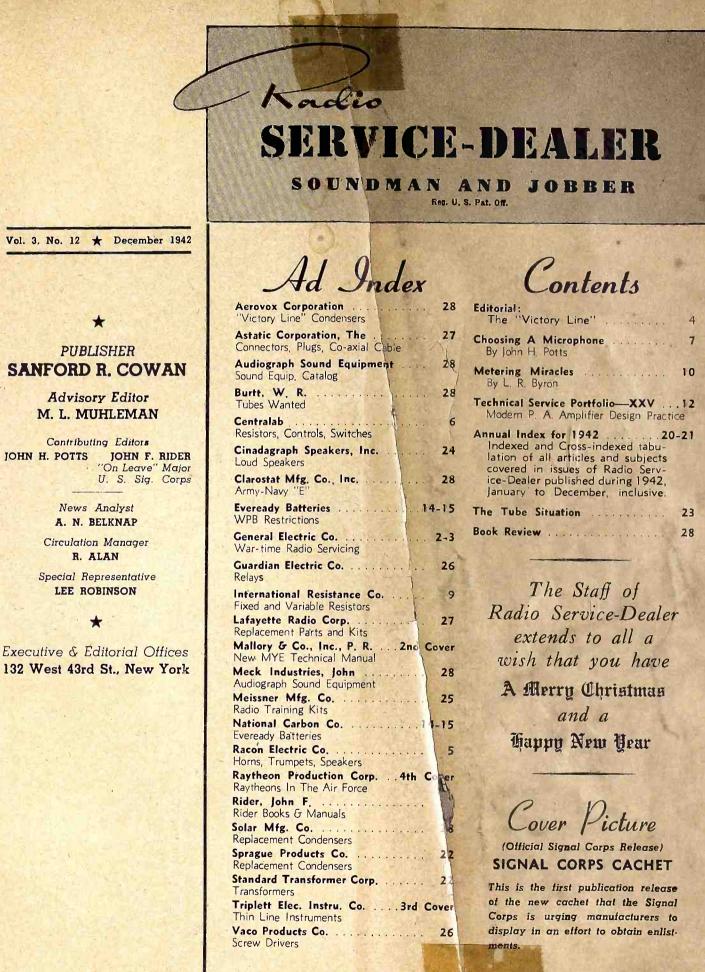
"The best buy of the year!" R.E.P., GREAT FALLS, MONTANA

"Must be within reach on the bench." L.C. DAVIS, BEREA, KY.

"Can't get by one day without referring to it."

S.E. & R. S., DULUTH, MINN. "This Manual is the best yet—something all servicemen can use." H.J. M., ALBANY, N.Y.

"Exceptionally complete in both information and data."


"Certainly great stuff. Keep up the good work." H.E.C., SUNDANCE, WYOMING

"Must say that it has exceeded my expectations . . . just what I was looking for." R.V.O., STAMFORD, CONN.

The new MYE TECHNICAL MANUAL-2000 copies of it—has found a patriotic service, too . . . in radio training centers of the Army, Navy, and Marine Corps. This 408-page book, handsomely bound in hard cloth covers, beautifully printed, is full of practical information—as useful as a voltmeter, and just as indispensable! Since the supply of Manuals for civilian use is limited, we suggest that you order your copy today from your Mallory Distributor.

P. R. MALLORY & CO., Inc., INDIANAPOLIS, INDIANA Cable — PELMALLO

Entire Contents Copyright 1942 by Cowan Publishing Corp. All rights reserved—no part of this magazine may be reproduced in any form, by any means, or translated into foreign languages without permission in writing from the publisher.

RADIO SERVICE DEALER, published monthly at 34 N. Crystal Street, East Strougsburg, Pa., by the Cowan Publish Executive and Editorial Offices at 132 W. 43rd Street, New York, N. Y. Subscription rates—United States and P for 1 year, \$3.00 for 2 years; elsewhere \$3.00 per year. Single copies 25c. Printed in U.S.A Fourd October 3, 1941, at the Post Office at East Stroudsburg, Pa., under the Act of March 3

Radio Service-Dealer, December, 1942

PUBLISHER

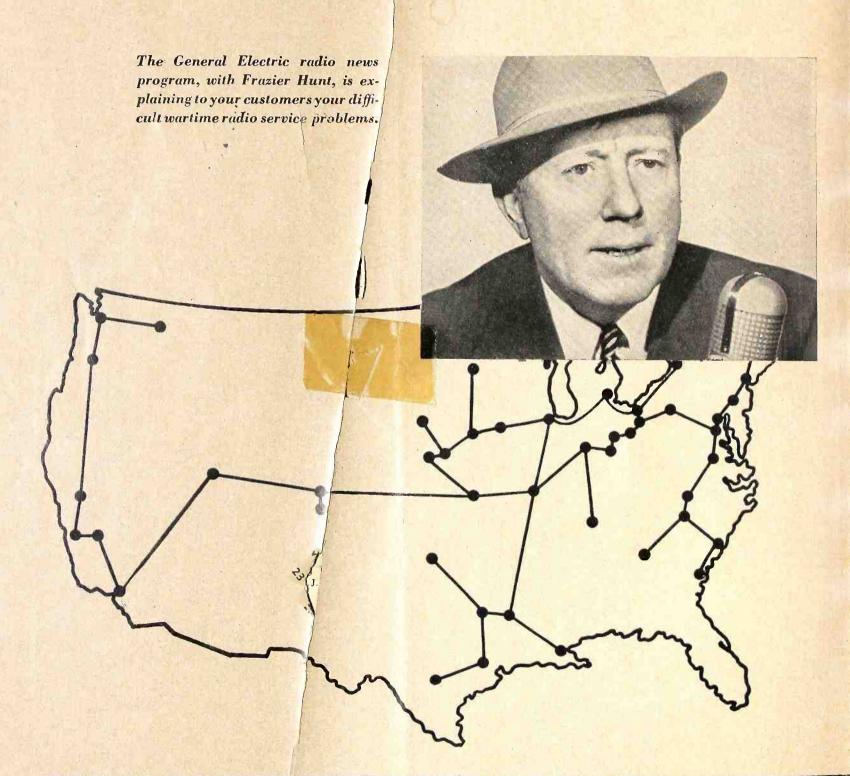
Advisory Editor

Contributing Editors

News Analyst

A. N. BELKNAP

Circulation Manager


R. ALAN

LEE ROBINSON

*

3

G.E. is telling your customers Service over 51 C.B.S.

P. R. MALLORY & CO., Inc., INU... Cable -- PELMALLO

Leader in Radio,

about Wartime Radio and 8 FM radio stations

ON DECEMBER 1, the General Electric radio news program, featuring Frazier Hunt, started telling your customers of your wartime radio service problems.

G.E. fully appreciates the difficulties under which radio service men are operating, and is anxious to prevent any public misunderstanding that would reflect on your service business.

Therefore, the G-E radio news program is pointing out over and over that, with so many radio service men now in the armed forces, the task of those still on the job is tremendous and is being met in many cases by day-and-night work. G.E. is explaining that although fewer service men are available to keep the nation's 50,000,000 radio sets working, the hard job can be done if the public will be just a little patient.

The public is also being reminded that some radio parts are now difficult to get in a hurry. Furthermore, it is being asked to remember that rubber and gasoline rationing are as hard on the service man as on themselves. So radio owners are asked to carry tubes and small sets to you, rather than ask you to go to them.

Above all, G.E. asks the public to understand that you are doing a great job under trying conditions, and that wherever possible G-E electronic tubes and other replacement parts on hand are being rushed to help keep your wartime radio service going. . . . Radio, Television, and Electronics Department, General Electric Company, Schenectady, New York.

G.E. IS TELLING YOUR SERVICE CUSTOMERS THAT:

Thousands of former radio service men are now in the armed forces. Those left in service shops are doing an important job well! Everything possible is being done to keep America's 50,000,000 radios working. A little customer patience over delays is asked for — and appreciated. Gasoline and rubber are scarce, so please bring tubes and small sets to the service men whenever possible.

Television, and Electronic Research

editorial....

The "Victory Line"

• At the request of OPA and WPB the American Standards Association is making a study to determine whether it will be feasible and practical for radio parts manufacturers to produce a "Victory Line" of replacement parts. Such a line would ostensibly take the place of Private Brands which have been nationally advertised, guaranteed and distributed since the radio industry's inception. It is well known that Private Brands are now being diverted to war equipment and are practically inaccessible for civilian radio maintenance because that classification has such a poor priority status.

Before becoming exuberant about the "Victory Line" radio service-dealers and jobbers must weigh all the facts. To help you obtain a true picture, let us quote from the ASA's first publicity release (following which our own observations will be given): "Considerable care is being exercised by the ASA committee to make sure that the quality of the standard repair parts chosen will be suitable from the set owners' standpoint . . . sufficient parts of each type will be included . . . to adequately service almost all of the modern home receivers in use today. Tubes are not included in the project.

"In the design of these standard parts the ASA is making every effort to provide units that will be mechanically interchangeable with present parts with a minimum of difficulty.

"Through simplification of the number of varied ranges now in use and the use of multi-purpose units when practicable, the actual number of parts will be held to an absolute minimum in the forthcoming standards . . . for example, some 62 standard volume controls have been proposed to serve as replacements for the thousands of different types used in home radio sets built during the past half dozen years while 9 electrolytic and 11 paper capacitors have been proposed to do a similar job in the capacitor field. Similar simplification and standardization in other radio parts such as transformers, chokes, coils, etc., is also included in the scope of the project now getting under way."

The ASA announcement also bears this very significant phrase, "the WPB and OPA are expected to allot materials for manufacture of the standardized parts and to issue limitation and price orders." Brother—do you see the "catch"? That sentence "the OPA and WPB are expected to allot materials, etc." is a joker of the first water. This writer and many parts manufacturers have been "anticipated promises" by WPB since the very inception of priorities.

The next catch, in the "Victory" plan, is that radio tube production is excluded entirely. Tube manufacturers frankly admit they are swamped with war orders, their production facilities are tied up for months to come. There are no renewal tubes available for service-dealers. What good will replacement parts be without renewal tubes?

Finally, what about a "Victory Line" that requires new tooling and additional plant facilities, which probably cannot be provided for? And don't forget the new Controlled Materials Plan, which inherently prohibits the production of parts for any civilian use! No, gentlemen, there is but one commonsense answer to the whole radio parts and tube shortage, and it is this: if the WPB and other Washington bureaus stop vacillating and decide that maintenance of civilian radio receivers (at least one in every home) is going to contribute to the war effort, morale or what have you . . . then Washington must simply allocate the necessary metals and materials to parts and tube manufacturers and the latter groups will find the ways and means of producing a short standardized line of useable replacements. We do not favor advertised brands merely because our livelihood is derived from advertising. We do know, from twenty years of practical experience in radio, that so-called "Victory Lines" would probably be sub-standard, impractical to conceive and produce and unsatisfactory in-so-far as proper distribution and substitution for standard brands is concerned.

Gasoline Rationing

• At the outset of gas rationing we implored OPA to recognize the radio service-dealers' unique status and need for supplementary additional gas. Eventually OPA issued an Order allowing radio repairmen extra gas. Correspondence in our files would indicate that in fact, they are not getting it. Local Ration Boards in big cities have denied servicedealer applicants for "C" cards on the basis that they have suitable regular means of transportation at their disposal to take care of the extra mileage they must cover. Local Ration Boards in suburban and "hick" localities deny extra rations on the premise that the customers must be made to bring in their sets rather than have them picked up, even at centralized pick-up depots, that progressive servicers have had the foresight to establish. Here is vacillation of the worst order. Either radio maintenance is entitled to recognition for its importance to the public weal, or radio repairing should be designated as "unessential." That point should be decided, but definitely. The average service-dealer is trying to handle six to eight times his normal volume of repair work because eight out of every ten radio servicemen have already entered military service. Give the average service-dealer the same amount of gas he formerly used in the conduct of his business and he will be able to handle the many-times-doubled extra volume of work now forced upon him. That is true expediting and proper use of available manpower.-That is true gas and rubber conservation. What about it OPA? When will practicable standards that lend themselves to the war effort be established? An OPA directive to all Ration Boards to grant servicemen a reasonable amount of gasoline will solve the problem once and for all. SRC

RACONS do their bit-

* Under prime and sub contracts RACON Products contribute to many phases of the war effort. For example, shown here is a RACON Marine Horn Speaker in the cabin of the B-19; and in the other extreme, on the ground a Sperry anti-aircraft detector battery, the three locator horn units of which were made by RACON.

* If space permitted we'd show how RACONs are used at Army and Air Force training bases—at shipyards aboard Navy, Coast Guard, Maritime Commission and Transport ships—in factories, and in countless industrial public-address systems.

* The most important point is this, the quality, efficiency and dependability of RACONs have long been recognized. There's nothing finer. RACONs deliver more energy per watt input. They use RACON's exclusive Waterproof, Weatherproof, Acoustic Material. The elements cannot affect RACON's efficient operation. Use RACON's when planning your next installation. There is a horn, speaker or driving unit for every conceivable purpose. Inquiries are invited—perhaps we can help you in some phase of the war effort. Ask for our free catalog, too.

RACON ELECTRIC CO., 52 East 19th St., New York, N. Y.

Radio Service-Dealer, December, 1942

Official Photos by U.S. Signal Corps; courtesy of Douglas Aircraft Co. and Sperry Gyroscope Co.

Shown here are but two of the many RACON Speakers and one type of RACON P. M. Horn Unit. The MARINE HORN SPEAKER may be used as a loud-speaker or microphone, comes in several sizes; is approved by the Bür. of Marine Inspection, Dep't. of Commerce. MARINE CONE SPEAKERS are the reentrant type, suitable for indoor or outdoor use. Stormproofed for all weather conditions. Sizes for 2, 3, 5, 8 and 12 inch speakers. RACON P-M HORN UNITS are available in operating capacities of from 5 to 50 watts.

in the same

RACON P. M.

MARINE

HORN SPEAKERS

RE-ENTRANT

TRUMPETS

SERVICEMEN

Doing Business Same OHA Stands"

> ... your Distributor can STILL Supply you with

Centralab

MIDGET RADIOHM REPLACEMENTS

Fortunately . . , your distributor can still supply you with Midget Radiohms for replacements.

The smooth wall-type resistor for which Centralab Radiohms are famous will keep that now-precious radio in good working condition.

Stick to OLD MAN CENTRALAB for Replacements . . . and always specify "CENTRALAB".

> RADIOHMS • FIXED RESISTORS • FIXED AND VARIABLE CERAMIC CAPACITORS • SELECTOR SWITCHES

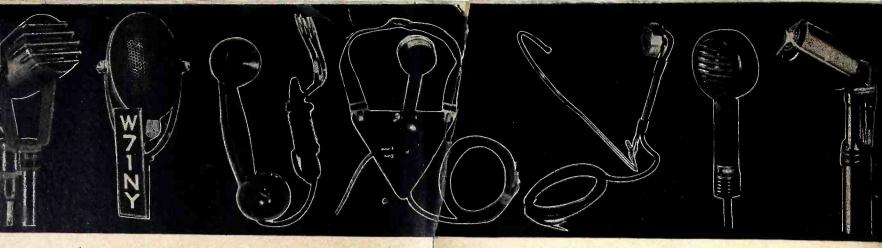
CENTRALAB: Div. of Globe-Union Inc., Milwaukee, Wis. Radio Service-Dealer, December, 1942

CHOOSING A MICROPHONE

E hope that no one, in glancing at the title of this article, or at the illustrations of mikes appearing herewith, will be led to believe that there are places where a plentiful variety of microphones is available from which he may select whatever pleases him. Far from it. And because microphones are scarce and limited in variety, it is all the more important that we be sure, before we start looking around, that the type we have in mind is the proper one for the job. Also, because we may not be able to find just what we want, we need to know if some other type, perhaps easier to get, may possibly do the trick as well. We must also consider whether the amplifier we plan to use has sufficient gain and is otherwise adaptable for use with the microphone we intend to use. Therefore some discussion of microphone sensitivity ratings is in order, particularly since these ratings have undergone revisions in recent years.

Fundamentaly, microphones may be divided into three classifications,

(1), those in which a sound wave acts upon a ribbon or diaphragm placed in an electro-magnet c or electrostatic field and thus caus 's a variation in the intensity of this electric field and, consequently, of the potential across the output term nals of the device, (2), those in which the sound wave creates a voltage across a crystal of the Rochelle salt ariety. due to the phenomenon known as piezo-electricity, (3), those wherein the sound wave causes the resistance of carbon granules to vary, an I thus varies the current in a circuit of which the granules form a part. All these types are in common use, but each has its own peculiarities, advantages and limitations.


Ribbon Mikes

In the first classification we ind the ribbon, or velocity, microphine and the moving coil, or dynamic type. In the former, a thin strip of metal is placed between the poles of strong permanent magnets so that its width is in the plane of the electromagnetic field. The difby John A. Potts

ference between the sound pressure at the front and back of the ribbon causes the ribbon to move and thus varies the electromagnetic field in synchronism with the sound frequency. Because the ribbon must be thin, light, and of low resistance in order to respond freely to high, as well as low, frequencies, it has an extremely low impedance. Therefore a coupling transformer is usually built into the microphone case, stepping up the impedance from a few ohms or less to perhaps 200 ohms or more at the output terminals. The sensitivity of the ribbon microphone is often low in comparison with many other types, but this is counterbalanced by excellent fidelity. In general, this applies to most microphones-the greater the output voltage they supply, for a given sound level, the poorer the fidelity. The ve-

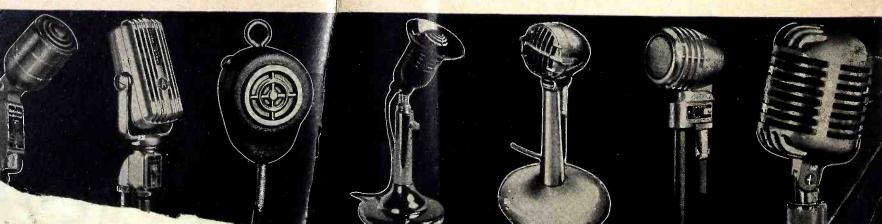
Radio Service-Dealer, December, 1942

7

MICROPHONE TYPES— (from left to right)—Electro-Voice, D ynamic; Western Electric Experimental Synchronized F-M, Condenser; Universal, Carbon handset; Universal, Magnetic field type; Universal, Military; Shure plastic cased Crystal; Webster, Super Dyme.

locity microphone is excellently adapted for studio work because of its fine fidelity. Likewise it is ex-tremely useful where the microphone must be placed in the same room with loudspeakers, because it is highly directional, especially the cardioid type, so it may be placed at such an angle to the sound waves reflected back toward the microphone that they will not get into the mike and cause acoustic howl. Because there is a transformer in the mike, it must be kept well away from magnetic fields, such as the power transformer in the p.a. amplifier, or any rotating electrical machinery in the vicinity, otherwise hum results. The output level is rated around -74 db below 1 volt per bar (we'll say more about this later on.)

The moving-coil, or dynamic, microphone also operates on the electromagnetic principle. In fact, this type of microphone is quite similar in principle to the ordinary dynamic loudspeaker. A moving coil of aluminum ribbon, attached to a dural diaphragm, is suspended in an electromagnetic field. When sound waves strike the diaphragm, it vibrates. thus causing the moving coil to move in like manner within the electric field. This movement cuts the magnetic lines of force and thus creates a voltage across the moving coil. An impedance - matching transformer, built within the mike housing, steps up the low moving coil impedance to an output value of 200-500 ohms. In some types, this transformer is


omitted and the output terminals connect directly to the moving coil, the impedance of which will be of the order of 20 ohms. This type of microphone delivers a somewhat lower output voltage (when no transformer is built into the mike) than the velocity type with the transformer o that its rating is lower-about-88 db-and therefore an amplifier with higher gain is required. If coupling transformer is used—and it should be for maxinum efficie cy-the same precautions regarding the placement of the mike with respect to electromagnetic fields must be observed, as with the velocity type. This type of microphone is responsive to sounds reaching it from all directions, and is accordingly fermed "non-directional." The advantage of a non-directional mike is that a sound source extending over wide area, such as an orchestra, an be handled by a single mike, or a speaker who has a tendency to meander around the platform may be picked up more easily and un formly. The disadvantage is that greater care must be exercised in the placement of loudspeakers in order to avoid feedback. This overcome by placing the may b mike in a reflector of some sort-the parabellic type has been used-which will make it directional.

Crystal Mikes

Crystal microphones have come into vide popularity, due in part to their sensitivity and simplicity of operation. No coupling transformer is required, thus the precautions required with electromagnetic types of microphones are unnecessary. Their voltage output is relatively high, ranging up to about -64 db in the sound cell type and the frequency response characteristics are very uniform over a wide range. These mikes are essentialy non-directional and are therefore adaptable to the same applications as the moving-coil type of microphone. The "soundcell" crystal type, consisting usually of several individual crystals connected in series-parallel for maximum voltage output, is representative of the best of this type, insofar as fidelity is concerned. The diaphragm type, in which sound waves striking a diaphragm actuate a drive pin connected to the diaphragm and pressing against a corner of a crystal, which is independently supported within the mike housing at its three remaining corners, in such manner that the crystal is placed under mechanical stress. is the most sensitive type available, ranging up to -46 db. While all crystal mikes are high-impedance types, they may be used if desired, with coupling transformers when it is necessary to match a 200 or 500ohm line. In such cases, the coupling transformer high-impedance secondary is connected to the crystal output, while the 200 or 500-ohm primary feeds the corresponding input circuit of the amplifier through the

(Continued on page 19)

MICROPHONE TYPES—(from left to right)—Electro-Voice, Dynamic; Amperite, Velocity; Electro-Voice, Carbon; RCA-Ribbon-Dynamic; Assatic, Crystal; Amperite, Dynamic; Shure, Cardioid.

The high regard in which IRC

Resistors are held by Engineers and Executives of America's leading electronic industries is clearly attested by the voluntary remarks quoted at the right. These are taken from among returns to a nation-wide marketing study recently made by a wholly independent research organization. This survey was completely unbiased, with no company name or product disclosed.

PREFERRED Jon PERFORMANCE

FIXED AND VARIABLE

INTERNATIONAL RESISTANCE COMPANY

401 NORTH BROAD STREET PHILADELPHIA, PA.

WE QUOTE

"We require quality, uniformity, service — and IRC have proven without a doubt definitely reliable."

"IRC seems to be choice of engineers in the government radio research job I'm in."

"Most complete engineering data."

"Most stable as determined by laboratory tests over two-year period."

"..., In my business, Aircraft Electrical Engineering, I always specify I R C."

"Fine people to do business with."

"We handle only one line of resistors and of course that must be the best—namely IRC."

IRC files the flag of the Army-Navy Production Award for "high achievement."

METERING MIRACLES

by L. R. Byron

ES, miracles can be performed in connection with metering equipment, miracles in the way of saving instruments or in making old and discarded apparatus do the job and do it well. For, despite what the advertising boys have had to say about it, it is still possible for the technical expert to service a radio receiver with the simplest of equipment, provided he is willing to go to a little extra trouble and to use the old noodle. Too many servicemen reach for the soldering iron before stopping to think about what they are doing. I know because I've been one of them! But I reformed one day when looking at the contents of the cash till. It pays to think-to take an extra moment, and to use it wisely.

The A.C. Meter

As an example of this line of reasoning, take the man who suddenly finds that the a.c. meter he has works all right on the voltmeter ranges but that something has gone kerflooey with the 0-15 or 0-5 a.c. ampere scale. After taking off the panel of his superdooper tester with its thousand and one wires, he wisely decides to let well enough alone in view of the fact the factory is swamped with war orders and meter specialists can't take care of civilian instruments. The a.c. current can be checked by inserting a resistor in series with the load, as in Fig. 1. If the set draws one ampere, a suitable value of series resistance is 3 ohms which will give a full scale deflection on an 0-3 volt a.c. meter. There will be a slight voltage drop to the load, but the accuracy of measurement will be sufficient for practical purposes. The current is, of course, the measured voltage divided by the resistance in ohms. The power factor of such a set will be close to unity and the power therefore may be assumed equal to the product of voltage and current.

product of voltage and current. In connection with the accurate measurement of voltage on the plate of a tube having a high resistance plate load, you can use a fancy vacuum tube voltmeter or can measure the plate desistance and plate current as shown in Fig. 2. The plate voltage will be the supply voltage less the sum of the voltage drops in the plate had and cathode circuit resistances. The voltage drops are obtained by multiplying the current by the resistance. In the example shown, et us assume the current through the tube is .001 ampere. Then, t e drop across the plate load will be $100,000 \times .001$ or 100 volts. The dr p across the cathode resistor will be $1,000 \times .001$ or 1 volt. Also, let's assume the tube resistance is 100,000 ohms. Then, the sum of the voltag drops, according to Kirchoff's Voltage Law, is the sum of the individual drops and the supply voltage is 201 volts. Now, let's see what happens when we take a 1,000 ohmsper-volt meter and connect it from plate to cathode on the tube. Let's assume the meter resistance is 250,-

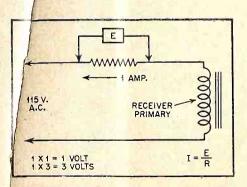


Fig. 1. To check a.c. current a resistor is placed in series with the load. 000 ohms. Under these conditions the net circuit resistance is about 172,111 ohms and the current is approximately .0011 'ampere. The meter then reads 89.9 volts. Knowing the circuit resistance, the voltage drops for the bias resistor and plate load are figured. What's left is available for the plate of the tube. If the voltmeter had a resistance of 20,000 ohms per volt and were set on the 250 volt scale, it would read 99.091 volt. This would be about 9 volts higher than the reading with the 1,000 ohms/volt meter. If a vacuum tube voltmeter were used the reading would be 100 volts on the tube. Assuming an average milliameter of 50 ohms resistance, the plate voltage reading would be 100 volts. The drop across the meter would be only .05 volt, assuming 1 ma. of current.

Milliameters

The plate milliameter can do other jobs as well. Referring to Fig. 3, the milliameter indicates the plate and screen current by reading cathode current which is the sum of the two anode currents. Knowing the value of cathode resistance, the bias on the tube is found. A look at the RCA tube manual shows the plate current is 7 ma. and screen current is 1.7 ma. for a bias of -3 volts. The cathode resistance, therefore, is 3/7 plus 1.7 or 3/8.7 ma. This is 344 ohms approximately and a 350 ohm resistor would do. Now, referring to the tube curve given by the manufacturer, the plate current is about 7.3 ma. which is pretty close to the above figure.

We put a milliameter in the plate circuit and read this value. Then, tuning the set to resonance with a strong local station, we again check

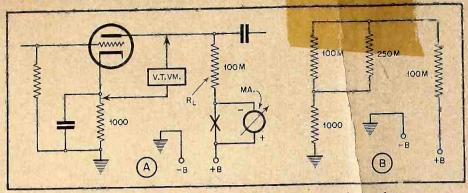


Fig. 2. Measure plate resistance and current to obtain the plate voltage, in a tube having high resistance plate load.

the plate current and find that it is down to 2 ma. Referring to the curve, we see that this value of plate current occurs when the bias on the tube is -10 volts. We now check the cathode current. We find it is 3 ma. Therefore the drop here is $350 \times .003$ or 1.05 volts and the d.c. voltage across C1 must be 10 - 1.05or about 9 volts. Thus, indirectly, we have measured the bias supplied by the a.v.c. system, without using a vacuum tube voltmeter.

Although it hasn't been used very much in recent years, the simple method of Fig. 4 is useful for checking tubes when a regular tube tester is not on hand. For example, assuming a 6C5 has a plate current of .005 ampere (5 milliamperes) and a bias of 2 volts, by cutting in series with the grid circuit another battery of -1.5 volts we raise the bias to 3.5volts and the plate current is now down to .0025 (2.5 ma.). The change in plate current divided by the change in grid voltage and multiplied by 10⁶ (1 million) equals the G_m or mutual conductance. In this case it would be 5 - 2.5 or 2.5 ma. for the plate current change. Then, .0025 divided by 1.5 gives .001666. Multiplying by 10⁶ or moving the decimal point six places to the right, we get 1,666 mhos as the G_m. The figure given by the manufacturer in

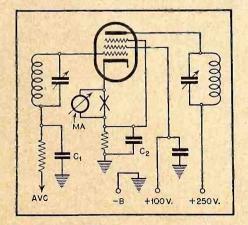


Fig. 3. The milliameter indicates the plate and screen current by means of the cathode current.

Radio Service-Dealer, December, 1942

the tube chart is 2,000 mhos and we would pass the tube as good. The shift in bias should be kept at a low figure to obtain a small shift in plate current. Then, best accuracy will result.

Computing Voltage Amplification

In order to obtain the voltage amplification of a circuit such as the one in Fig. 4, we could use a vacuum tube voltmeter for the measurement of e_1 and e_2 . The ratio of e_2 to e_1 would be the gain. Thus, if e_2 measured 10 volts and e_1 was 1 volt the gain would be 10 times. Assuming the G_m is 2,000 mhos, the plate current is .001 ampere (1 ma.) and the plate voltage is 100 volts, what will the gain be for an assumed amplification factor of 20 and a plate load of 100,000 ohms? The following formula can be used:

$$V.A. = \frac{G_{m} R_{p} R_{I}}{10^{7} (R_{p} + L_{p})}$$

where V.A. = voltage amplification $G_m = mutual \ conductance$ in mhos $R_p = plate \ resistance \ of$ tube (plate wolts/ plate current) $R_L = load \ resistance$.

Then, substituting in the formula, V.A. =

$$2,000 \times (100/.001) \times 100,000$$

$$\frac{10,000,000[(100/.001) + 100,000]}{2,000 \times 10^{10} 2 \times 10^{13}}$$

$$10^7 \times 200,000$$
 2 × 10¹²

$$1 \times 10 = 10$$

Or, the following formula can be used:

$$V.A. = \frac{MR_{L}}{R_{L} + R_{p}} = \frac{20 \times 100,000}{100,000 + 100,000} = 1$$

0

hone M — amplification fact

where M = amplification factor of tube, obtained from tube chart.

These calculations need not be performed in most cases but come in handy at times. As a more practical problem to be solved, let's take the case of an ordinary signal generator. For alignment work it is essential that a good signal generator of high accuracy be on hand.

Aligning Short-Wave Bands

The alignment of a superheterodyne on the broadcast band is comparatively simple but a good job on the short wave bands is not so easy. In the past, many servicemen have not worried too much about short wave alignment because poor reception could always be blamed on "conditions" and they could get away with it. But today many people are interested in short wave and want their receivers to operate properly. Of course, only American citizens may have such sets. In order to align the circuits accurately, the average serviceman's generator is not accurate enough to do the job unless it is checked against a standard station. A practical procedure, instead of buying a crystal oscillator, which is expensive, is to zero beat the 1,000 kc. output of the generator against a standard broadcast station. The station is tuned in and the generator, in the unmodulated position, is tuned close to the station frequency. As you get close to the station a heterodyne is heard which is somewhat high pitched. Then you approach the point where a very low frequency sound is heard. Continuing on you hear the low frequency sound again. In between, where no sound or zero beat is obtained, is the correct position of the generator signal.

The 1,000 kc. fundamental will give strong harmonic signals up to about 20,000 kilocycles. From there on you must use 5,000 kc. as the fundamental for good results. Then, in calibrating an F-M receiver, you

(Continued on page 22)

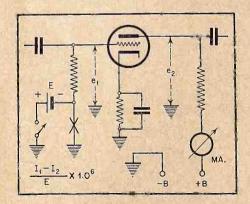


Fig. 4. A simple but old method of testing tubes when a regular tube checker is not available.

TECHNICAL SERVICE PORTFOLIO

SECTION XXV

MODERN P. A. AMPLIFIER DESIGN PRACTICE

ANY servicemen who are competent to repair or adjust even the most complicated radio receivers run into difficulties when working on public - address amplifiers. Yet the circuits in the latter are fundamentally far more simple than many which are encountered in modern radio receivers. Difficulties arise principally, we believe, because the average serviceman just hasn't bothered to familiarize himself with the circuits and peculiarities of high-gain audio amplifiers. Generally such amplifiers are purchased rather than assembled by the user, not so much because they are so difficult to manufacture, (they aren't), but because a professional appearance is essential in any apparatus

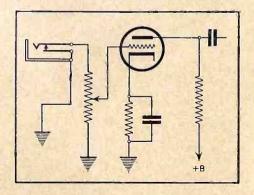


Fig. 1. This type of input circuit is employed only when using phonograph pickups or microphones with very high output. which is to be exhibited to the public and this cannot be obtained economically except in quantity production. And because these manufactured amplifiers have given surprisingly reliable service, considering their cost, it hasn't been necessary to learn the details of their design in order to handle the more usual repairs which are likely to be required.

Amplifier Modification

Now that it is no longer possible to replace amplifiers which develop serious troubles, because most manufacturers are now engaged solely in war work, a great many amplifiers which would normally be retired from service will require repair. In fact, we are going to have to put back in service many antiquated amplifiers which, in normal times, would be junked. Some will need rebuilding in order to provide sufficient gain for modern microphones or to improve their performance. Modern am lifiers, as we shall see, are much simpler than some of the older types, and we shall often find that it pays to spend a little time and effort in modernizing some of these older instruments. For modern design improvements make possible the greater gain, power output and lower hum level, required to meet present - day needs, and can be effected often with but little difficulty.

Many of the older, relatively lowgain p.a. amplifiers were designed for use with carbon microphones and, when less sensitive mikes were employed, such as the condenser type, made use of pre-amplifiers. Now, at least for p.a. work, the preamplifier is a rarity. The input circuits of such low gain amplifiers were often designed along the lines of audio amplifiers in radio receivers. The volume control was placed right in the input circuit, as shown in Fig. 1. With the advent of highgain tubes and resistance-coupled stages, concurrently with the wider use of less sensitive but better fidelity microphones, the volume control was moved to the second stage input,

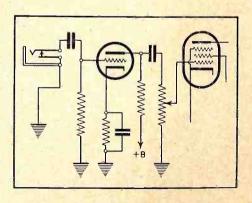


Fig. 2. In high-gain amplifiers for modern microphones, the volume control must be placed in the second stage input.

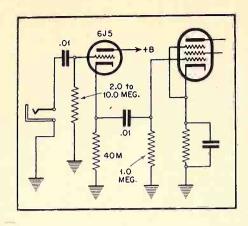


Fig. 3. The cathode follower circuit has many advantages in amplifier circuits, despite the fact that it gives no gain.

as shown in Fig. 2. This change was made necessary because the extremely high overall gain of the amplifier caused great amplification of slight defects in the volume control when it was placed in the input stage. Even a new control would seem to be extremely noisy when being adjusted. Placed in the second stage input, the gain of the first tube was devoted simply to amplifying the output of the microphone. while the amplification of volume control noises was reduced by an amount equal to the gain of the first stage.

In both Figs. 1 and 2, the input circuits are decidedly sensitive; therefore circuit-closing jacks are shown. These jacks serve to ground the input circuit when the mike plug is removed. If this were not done, considerable hum pickup might result unless the input jack were carefully shielded. Although triodes are shown in these two figures, a pentode of the single-ended type such as the 6SJ7 is now almost universally used. The single-ended type, rather than a pentode with a grid-cap, is selected because it is then possible to keep all input wiring beneath the chassis, reducing lead length and simplifying shielding of the input circuit.

Triode resistance-coupled stages have a disadvantage in that, in highgain circuits, the effective input capacitance is increased by an amount approximately equal to the static input capacity multiplied by the stage gain. This is of little consequence in input stages which normally have high shunt capacity as a result of the microphone and its shielded cable, when the volume control is in the second stage, but will cause severe high-frequency attenuation when the volume control is in the input stage and adjusted below maximum setting. Then the portion of the resistance between the moving arm and ground forms the second section of a resistance-capacity filter which reduces the high - frequency output. This effect, in interstage triode amplifiers, acts in the same way.

Cathode Follower Circuits

One method of eliminating the capacity effect of triode high-gain amplifiers is to use a cathode follower stage, such as is shown in Fig. 3. Although this is shown as an input stage, it is really seldom used other than as an interstage amplifier. Since the gain of such a stage is less than 1, the effective input capacitance is not increased, and because of the very low effective impedance of the cathode-loaded stage, the input capacitance of the following stage is reduced well below what it would otherwise be. This type of circuit, used as a coupling medium between high-gain stages of any resistance-coupled type, will improve the high-frequency response of amplifiers of more usual design.

Most commercial p.a. amplifiers are equipped with two or more input stages so that more than one microphone may be used, either simultaneously or separately. Such an input design is illustrated in *Fig.* 4. One defect of previous designs,

whereby adjusting the gain of one input circuit often affected all others, is greatly minimized in this design. Note that an 0.5 meg. resistor isolates each of the individual volume controls from the master control, which is at the input of the second tube. Thus there is effectively 1 megohm in series with each of the individual controls insofar as their effect on each other is concerned, so that the adjustment of any one control does not greatly change the resistance load on any other control. Whatever change does occur is greater when one control is at or near maximum setting while the other is adjusted near minimum.

In Fig. 4, note the absence of cathode resistors in the input stages. Here the designers have borrowed an innovation from the set field where this type of circuit has come into wide use. Ordinarily the cathode resistor is employed to make the grid bias negative with respect to the cathode. Fundamentally this is necessary to prevent the grid from going positive, and thus drawing grid current, over the positive halfcycle of the input signal swing. The positive grid potential, and consequent grid current, is objectionable in that it places an unequal load on the signal source over different portions of the signal cycle and thus causes distortion. In this circuit, this difficulty is reduced to negligible proportions by using an extremely high resistance input circuit. Thus,

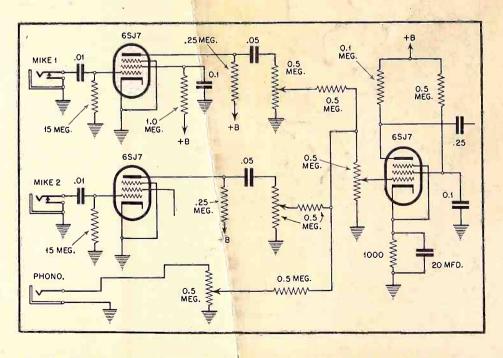


Fig. 4. This type of multi-input mixing circuit is employed in many p.a. amplifiers.

TO EVEREADY"

Here's how the recent WPB restrictions on radio batteries for civilian use affect you:

NO MORE PORTABLE TYPE BATTERIES

The fighting forces, particularly the U.S. Signal Corps, have found so many important uses for our radio batteries they are taking every one we can make. This includes, of course, the popular "Eveready" "Mini-Max" battery as well as the other portable types.

Production of this entire line has been severely cut. From now on we will concentrate on the more popular types.

"Eveready" No. 6 Dry Cells is restricted, we hope to supply enough of these batteries to fill essential civilian needs.

RADIO BATTERY DEALERS

EEDLESS to say, we regret the necessity for this drastic curtailment of "Eveready" Radio Battery line. Particularly as we know it was your support that helped create the manufacturing skill and productive capacity which have become so vital to our War Program. By the same token, you certainly can share our Pride in the job we are able to do for the Army, the Navy and the Lend-Lease Account. Meanwhile we will do our best to provide an equitable allocation of the "Evercady" Radio Batteries we are permitted to produce for civilian use. NATIONAL CARBON COMPANY, INC. Unit of Union Carbide and Carbon Corporation The words "Eveready," "Mini-Max," "Ignitor" and "Layer-Bilt" are registered trade-marks of National Carbon Company, Inc. FORVICTORY

TECHNICAL SERVICE PORTFOLIO * SECTION XXV

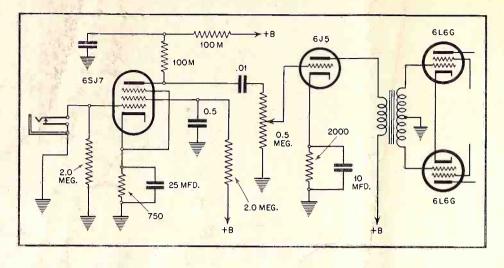


Fig. 5. Simple high-gain amplifier circuits such as this are reliable and widely used.

though the grid can and will go positive over the positive half-cycle of the input signal, it can draw but little current due to the high resistance in its input circuit, Consequently there can be but little loading, and therefore little distortion, introduced. And, the circuit is simplified by the elimination of a resistor and its associated bypass condenser. The input blocking condenser must be added, of course, to prevent a low-resistance mike from forming a path for grid current, which would defeat the purpose of the high resistance in the grid circuit.

The lowest input circuit in Fig. 4is utilized for phonograph pickup work. Since the output of the average crystal pickup is from 0.8 to 2.0 volts at 1000 cycles when using a record cut at an average level, there is no need for the extra gain of the first high-gain input stage. Consequently, this input circuit connects to the second stage. Because the amplification will not be very great from this point on, there is also no need to ground the input circuit when the phonograph pickup is not connected. Therefore an opencircuit jack is used.

Conventional High-gain Circuits

A more conventional high-gain input stage, followed by a transformercoupled triode stage, is illustrated in Fig. 5. The first 100,000-ohm resistor in the plate circuit of the 6SJ7, with its associated 0.5-mfd bypass condenser, forms a resistance-capacity filter to provide the extra hum reduction required in the output of the first stage. The cathode is bypassed in the usual manner, permitting the use of a lower resistance input grid leak. In this connection, it should be remembered that crystal mikes require a minimum of at least 2 megohms in the input grid circuit, to avoid excessive loading and con-

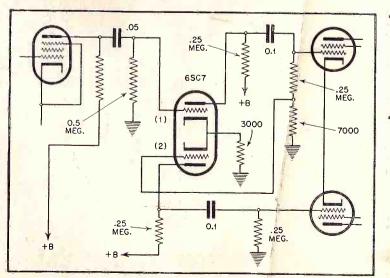
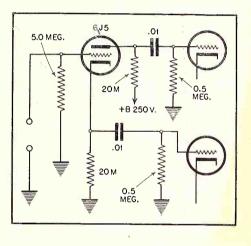
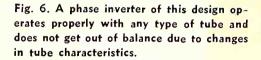




Fig. 7. A tone control, even of the simple type shown, is effective. sequent reduction of low-frequency response.

In Fig. 5, the 6J5 is transformercoupled to the output 6L6G's. Fig. 6 shows an alternative method of coupling, using a very satisfactory phase inverter circuit. The signal voltage is developed across the 20,-000 - ohm cathode resistor and the plate resistor of the same value. Since these load resistors are the same, the resulting signal voltage is the same across each. Because the cathode is always most positive at the instant the plate is most negative, the phase of the signal voltages across each is opposite to that of the other. This circuit is degenerative because the cathode resistance is unbypassed, and the amplification is less than 1 (about 0.8) across each resistance. Actually this results in a stage gain of 1.6, from grid to

grid of the output tubes. This is very slight, of course, but this shortcoming is compensated for by its simplicity, reliability and excellent fidelity characteristics.

Phase Inversion Circuit

Where the amplifier design is such that the number of tubes must be kept at a minimum, the phase inverter stage shown in Fig. 7 may be used. This circuit provides a gain of about 36 in each section of the 6SC7. The upper section, as shown, is fed by the output of the preceding stage and is coupled to one of the push - pull output tube grids. The grid return is made through a 7000ohm resistor in series with the 0.25meg. grid resistor. The signal volt-

age developed across the junction of these two resistors is 7000/257000th (about 1/36th) of the total grid voltage applied to the upper tube grid. When this signal voltage is amplified 36 times by the remaining section of the 6SC7, we see that the resulting signal voltage applied to the lower output tube grid is the same as that for the upper tube grid. However, the phase is reversed so push-pull operation of the output tubes is obtained. This circuit is not as good as the preceding one, with respect to uniformity of performance, since the analysis shows that proper operation depends upon the gain of the tube remaining constant and at a fixed value, while the preceding circuit operates properly no matter how much the gain varies. However, the high gain of the circuit of Fig. 7 has made it a favorite and, practically speaking, a surprising amount of unbalance due to variation in gain is not detectable by ear.

Tone control is usually incorporated in the input to the last stage. A suitable circuit which will provide considerable reduction in high-frequency response is shown in Fig. 8.

Resistance-Capacitance Filtering

One innovation which is coming into quite general use, and which offers a welcome saving in weight of portable or semi-portable p.a. amplifiers is the substitution of resistance-capacitance filtering in the power supply for the more usual choke-and-condenser combination. A typical arrangement of this type is shown in Fig. 9. Note that the output tube plates are fed directly from the start of the filter circuit, thus avoiding the high voltage drop which would otherwise result if the connection of the output transformer were made after the 2000-ohm filter resistor. The only filtration for the output plates is that provided by the 16-mfd condenser from rectifier filament to ground. This type of circuit is practical only with push-pull output tubes, because the hum voltage applied to the output tubes is opposite in phase and tends to cancel out. Perfect cancellation is not obtained, however, because no two output tubes are identical. Some hum always remains, but this is reduced because the output voltage is stepped down by the output transformer. Looking at it another way, the signal voltage is always greatest at the output tube plates; therefore the ra-

tio of the signal voltage to the hum voltage will be greatest when whatever hum is introduced arrives in the output plate circuit. The hum level in any p.a. system is always expressed as a ratio of maximum signal to hum, because the hum will then be blanketed by the signal.

A.C.-D.C. Circuits

Often it is desirable to operate a p.a. amplifier from either a 6-volt d.c. source or from 115 volts a.c. An amplifier which is designed to operate from either of these sources is shown in schematic form Jr Fig. 10. As illustrated, a motor-generator supplies power for 6-volt operation, while the conventional power supply is available for 115-volt a. supply. This amplifier is the Lafayette Model 458 DeLuxe Mobile type. The rated power output is 30 watts; the gain of the microphone channels is given as 130 db, and of the phonograph channels as 90 db.

In Fig. 10, the two 6J7 tubes serve as individual first-stage amplifiers for the two microphone inputs. The mixing of these two inputs (and of the phono input which is joined to one of the microphone first - stage output channels) is accomplished electronically by means of the \$C8G dual triode. Note that the top 6J7 is coupled to one grid of the 6C8G while the lower 6J7, along with the phono section, joins to the remaining 6C8G grid. The 0.25 megohm resistor in series with the phono tolume control serves to minimize the reaction on the mike control which would otherwise result when this control is adjusted, or vice versa.

The plates of the 6C8G electron mixer are joined in parallel, and ar

coupled by means of the 10,000-ohm load resistor to one grid of the next 6C8G, which is used as a phase inverter. The 5-megohm control in series with the 0.1 mfd condenser, shunted across the .001 mfd condenser in this coupling circuit forms a treble boosting device. When the moving arm of the 5-megohm potentiometer is so adjusted that all the resistance is in the circuit, the high frequencies are by-passed around this potentiometer, while the low frequencies are attenuated. Thus the high frequencies reach the phase inverter grid with but little attenuation and are consequently stronger in proportion to the lower frequencies than they otherwise would be. So treble emphasis is thus obtained. The 0.25 megohm control, to which the 0.1 bypass is connected, forms a conventional bass control, which emphasizes the bass by attenuating the treble.

The operation of the phase inverter in this circuit is similar to that described before, and illustrated in Fig. 7. Since the plate load in the

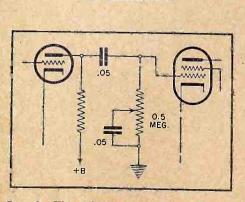


Fig. 8. This phase inverter circuit gives considerable gain as well as phase inversion.

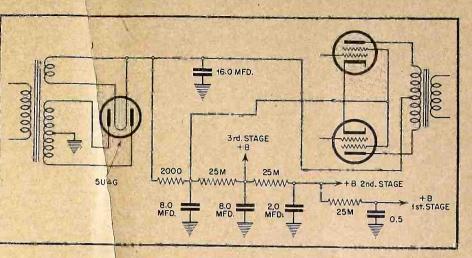


Fig. 9. Chokes are supplanted by resistors in the filter circuits of this power supply, thus saving weight and space.

circuit of Fig. 10 is 0.1 meg while that in Fig. 7 is 0.25 meg, there is less gain in the circuit now under discussion. Thus we find that the divider circuit in the 6E6 input grid is here composed of 0.25 meg in series with 10,000 ohms, instead of 7,000 ohms, as in Fig. 7. The gain of this circuit is thus estimated at 26.

The high power output obtained with this compact amplifier is secured by using a Class B output stage, consisting of two 6Y7G's. For mobile applications, the slight additional distortion which results when Class B operation is employed is more than compensated for by the high efficiency of this form of power amplification.

Eliminating Hum

In using any high gain amplifier, one of the most frequent causes of unsatisfactory operation is excessive hum. In most cases, this trouble is not caused by any fault in the amplifier design, but rather to improper or careless use of the mike or its associated cable and coupling medium. It is absolutely essential that every point between the grid of the first

tube in the amplifier and the microphone itself be completely shielded. With crystal and other non-magnetic types of microphones, this is not difficult. We must make sure that a shielded plug is used, that the microphone cable shield is continuous, with no bare spots or breaks, and that it connects to the ground of the amplifier chassis. Grounding all along the line is important. Sometimes it is found that a reduction in hum is obtained when the a.c. power plug for the amplifier is reversed in the wall connection. There are times when an external ground, connected to the amplifier, reduces hum; sometimes it makes it worse. If there is no bottom cover on the amplifier. hum pickup may result; likewise if the input tube grids are unshielded.

With magnetic types of microphones, or with other types if a coupling transformer is used, it is essential to keep the microphone and its coupling transformer well away from the an plifier, particularly from the power transformer. With very sensitive amplifiers, hum pickup will result due to electromagnetic coupling even though the coupling transformer and power transformer in the amplifier are several feet apart. Usually, though, the mike or transformer may be turned in such position that minimum coupling, and consequently minimum hum, results. Of course, nearby electrical machinery of any type creating an external field will likewise induce hum in the manner just described.

Most amplifiers are equipped with many taps on the output transformer secondary, so that a variety of output impedances are available. Sometimes it is a problem to decide just which ones to use, when it is possible to match the impedances by connecting voice coils in series or in parallel, or by selecting any pair of a variety of taps on the coupling transformer associated with the speaker. For long lines, say from 50 to 500 feet, it is fairly standard to use a 200-ohm or 500-ohm line. In such cases, the output tap on the amplifier is connected to the corresponding input tap on the speaker transformer. For short lines, the speaker voice coil may connect directly to the output transformer secondary of the amplifier. If the line is long, and the speaker voice (Continued on page 24)

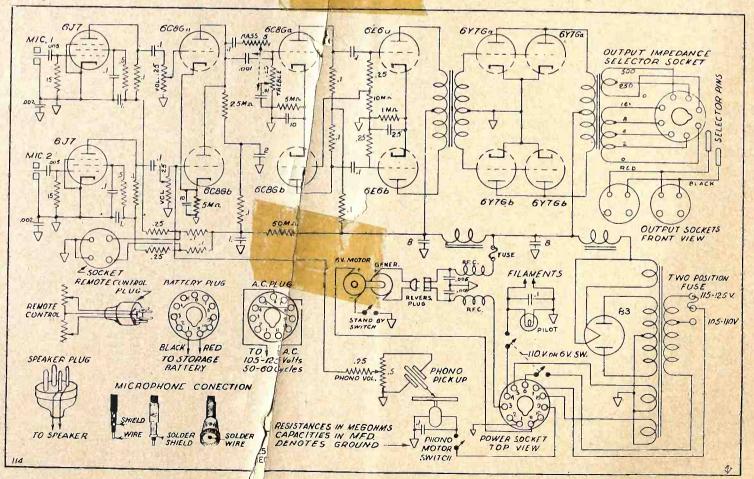


Fig. 10. A complete hematic of the Lafayette 30 watt Type 458 Mobile Amplifier.

CHOOSING A MICROPHONE

(Continued from page 8)

transmission line. Such a line may be useful when it is necessary to avoid stray pickup in strong electric fields, which are hard to shield against when a high-impedance line is used, as would otherwise be required in connection with the crystal mike.

Condenser Mikes

Condenser mikes are not often used in field radio work nowadays, partly because of their low sensitivity in comparison with other present-day high-impedance microphones, and partly because of the precautions which are necessary in their handling and application. In the condenser mike, an extremely light dural diaphragm is placed close to, and insulated from, a back plate of substantially the same shape and physical dimensions. Thus these two plates form a condenser. To the diaphragm is applied a polarizing potential, often as high as 500 volts. When sound waves strike the diaphragm they cause it to vibrate, thus varying the capacity between the diaphragm and the back plate. This variation in capacity varies the voltage across a resistor placed in series with the polarizing voltage source, by varying the electric charge on the condenser. The varying voltage across the resistor is applied to the input circuit of a high-gain amplifier.

Because of its extremely high impedance and relatively low sensitivity, it is necessary to use a pre-amplifier in conjunction with condenser mikes. Often the pre-amplifier is built right into the microphone housing. This is desirable, because the capacitance of the leads must be kept at a minmum, otherwise the sensitivity of the mike will suffer. After the pre-amplifier raises the mike voltage appreciably, the output signal is fed to the main amplifier. Although the condenser mike is highly desirable because of its excellent fidelity, the complications of the polarizing voltage source, which must be either pure d.c. or from an extremely well filtered power supply, plus the need for a pre-amplifier, have limited its applications to studio work and to special work in the sound measurement field.

Velotron Mikes

One type of mike which has been widely used is a combination of rib-

bon and condenser mike, in which a charged and insulated plate is employed in conjunction with thin strips of dural which serve to vary the electrostatic field when actuated upon by sound waves. This mike has many of the advantages of the condenser type plus considerably greater sensitivity. Two types are available; one which requires a polarizing voltage supply and another which does not. This variety of microphone is known as the Velotron. Because of its high sensitivity, less gain is required in the amplifier and the polarizing voltage, if reis determined from the formula

Microphone rating in db = 20log10 Eo/1 volt per bar where Eo is the open-circuit output voltage.

We might digress for a moment to tell what is meant by "open-circuit" output voltage. This is the voltage across the microphone output terminals, when it is connected to no load. That is, as measured with a high-input impedance device, such as a vacuum tube voltmeter. If there is a transformer built into the mike housing, this is the voltage across the transformer terminals, not across the mike element. Usually, if

MICRO	OPHONE RATINGS	
Type of Microphone	DB Rating	Impedance (ohms)
Velocity (P.A. Types)	-56 to - 70	200-2000
Velocity (Broadcast)	-74 to -100	250
Dynamic	— 88	20
Crystal	-46 to - 86	*High
Carbon	-40 to - 55	100-400 ohms

quired, need not be so completely filtered. These mikes are extremely directional and may be operated within a few feet of the reproducing speaker without feedback, provided care is taken to put the mike at such an angle with respect to the loudspeaker that no sound waves impinge directly upon the nike.

Rating Mikes-the Bar

Microphones are rated on their open-circuit output voltage for a given sound pressure input Sound pressure is expressed in terms of dynes per square centimeter, and a sound pressure of one done per square centimeter is conveniently designated as a bar. A sound pressure of one bar is equivalent to that produced when a person speaks into a microphone at a normal conversational level with the microphone about 10 inches from the speaker's mouth. The reference level upon which most microphone ratings are based is one volt per bar, which means that a microphone which delivers an output of one volt when spoken into at a normal convorsational level with the mike 10 inches from the speaker would have a rating of 0 db. Actually, no microphone will deliver an output of 1 volt under such conditions, consequently the rating is always less the 0 db. In general, the voltage output will be of the order of 1 millivolt, which is equivalent to -60db. This db rating

there are taps on the transformer, the output rating is specified as the open-circuit voltage across a 250ohm line, if the impedance happens to be this value across the taps under consideration. When the mike is actualy connected to a properly terminated line, the output voltage will be just one-half, or 6 db less, than the open-circuit voltage. In the case of crystal and other high impedance mikes, or of low impedance mikes working into grid circuits directly, the output voltage will be the same as the open-circuit voltage and consequently the rating will apply directly.

Some microphones are rated on a basis of a 10-bar reference level. This rating may be converted to the more usual 1 bar level by subtracting 20 db from the 10-bar rating. Thus a mike rated at -70 db for a 10-bar reference level would have a sensitivity of -90 db for a 1-bar reference level. It is desirable to make this conversion in every case, otherwise it will lead to difficulties when attempting to use such mikes with amplifiers of limited gain. It is unfortunate that some of the finest mikes do not have greater sensitivity, but such is the case. A tabulation of representative types of microphones and their range of sensitivity is shown in Table I. Note that the ranges given are not for a single type of mike but for the most sensi-

(Continued on page 26)

Radio Service-Dealer

Issue Page

6

1942 INDEX

January to December, Inclusive

ANTENNA

Auto

Loop

Aerials: for store demonstration Mar.	17
Altering Enemy Alien Multi-Band Sets Feb	4
Loop Coupling in 1941-42 receivers Tan	16
LOOD Receivers: hi-impedance primaries Mar	17
Silvertone /U/2 loop receiver Now	9
Switching of loops	17
Wilcox-Gay A-105 antenna loop adjust-	1
mentApr.	19

Television

Installing	Television Antennas	 • •		. May

AUDIO AMPLIFIER

Circuits

Adding Earphones for Profits, by Wil-	
tura Moday Oct	10
Class AD 1 amplifiers	16
	16
Dual opeaker ser phasing	26
	18
Lafayette Mobile Amplifier	18
Modern P.A. Amplifier Design Practice Dec.	12
More on Transformer Substitutes, by H.	12
F. Gulliver	10
Phase Inverters	16
Phase Inverters Bractical Magnetic D. Jan.	7
Practical Negative Feedback	17
RCA VHR-212: phono-radio-recorder June	11
Servicing by Signal Injection, by John	18
H. Potts	12
H. Potts Some AC-DC Design Problems, by John	6
H Potts	1
H. Potts	5
Warnam A Andance Ontouchable," by	-
Warren A. Anderson	5
	27
Zenith 22B1 Power Amplifier	10

BATTERY OPERATION

Crosley 52-FCJune	18
Improvements in since 1	19
Improvements in circuit design	18
Localling Interference with PCA DD 10 Ter	
RCA Model 26BP	24
ADR. ADR.	16
War Time Section Difficult	11
War-Time Servicing-Batteries	5

BIASING

A-F and 1-F contact-potential biasing Jan.	
Bias control in Gil Diasing Jan.	16
Bias control in Silvertone 7167 Nov.	10
Dias III Silverione Model 7180	
Bleeder Bins in Demon 116 Sept.	11
Bleeder Bias in Power amplifiers Jan.	19
Gas Gale	20
1FAF Bias	
1F-AF Bias Apr.	16
and Gratt III by low & Diday T.	6
ALCICITIE WITACIES BALL R HAWAN	
Modern P A Amelia DyronDec.	10
Modern P.A. Amplifier Design Practice. Dec.	12
	17
RCA VHR-212 biasing CVCCT	
RCA VHR-212: biasing 6K6GT tubes . June	18
Self and Semi-Fixed Bias	31
CD.	21

BOOK REVIEW

Automatic Record Changers and Re-	
1942 Replacement Vibraton Cuide Jan.	
MYE' Technical Manual by D. D. May	29
lory & Co Dec.	28

BUSINESS ARTICLES

Adding Earphones for Profits, by Wil-	
14/4 140040	ŀ
ALLCHING LINCHIV Allen Multilti Hand Cole D.L.	3.2
A Liactical Pricing Method	2:
AL DIGHT UIT COHECTIONS DAT R IV Calla Man	
Increase Your Net on Each Job Apr.	20
Industrial Sound Installations	2
Modernize Sets by Adding Recorders,	
by Willard Moody Aug. OPA Price-fixing Order Analyzed May	
Thinking Ahead on Servicing, by J. J.	
Kahn Nov.	
	1
	14
Vigilance for Victory	14
- · · · · · · · · · · · · · · · · · · ·	

CIRCUITS

(Also see "Circuit Court")

Audio See ("Audio Amplifiers")

Is	sue	Page
Receiver		- 15.45
Belmont Model 7D22	Maw	:15
Coronado C579	ent	13
Crosley 52-FC	IIne	18
Crosley 52-TO	Ant	113
Crosley 72CA	Maw	15
Crosley 72CA	Feh	15
GE-14-0/9	opt	
GE "Musaphonic" Model 85	hor	12
GE Model 40 "Musaphonic" A.FM		
Comb. Motorola 101C31	May	16
Motorola 101C31	lar.	14
THOU A-FIM MODEL 1-301	lan.	8
RUA 15X, 36X	Aav	18
RCA VIR-212:	anti	10
RCA Model 26BP	DE	16
KCA Radiola 552	lov.	10
Silvertone 101.660	Dr	15
Suverton 7057:	lar.	28
Silvertone 7072		20
Suvertone 7099 SW-A-FM	ept.	13 .
Suvertone /16/	0.**	12
Ward Model 24 BR-914 A	1100.0	20
Wilcox-Gay A-106 F-M Receptor	ar	13
Wilcox-Gay Models A-113, A-114	1.00	10
A-115 A	Dr.	13
A-115 Zenith (22B1 chassis) A-FM receiver .M	ar	10

2B1 chassis) A-FM receiver . Mar.

CIRCUIT COURT

AC-DC Electric Photograph	Ane	15
AC-DC Electric Phonograph AC-DC Phono-Radio	Feb.	15
Antenna Wave Trap	Feb.	16
Audio regeneration 1.	Marr	15
Dass reactor	Tom	20
Bias Control tube	Jan.	10
Dieeder hias	Tere	19
Callode coupled oscillator	Cont	12
		16
Composite fone control	Tem	19
CIVSIAL FICKUD RESponse	Trat	15
		18
F-M Alignment	Mor	18
F-M Alignment	Mar.	10
Gas gate Grid bias in Silvertone 7167	Tar.	20
Grid bias in Silvertone 7167	Jan.	
		10 16
IF-AF Bias	Apr.	
Loop preselector	Apr.	16
IF-AF Bias Loop preselector Loop Transformer Negative bias on suppressor of 6SK7 Oscillator-Converter	Jan.	20
Negative bias on suppressor of 68K7	reb.	16
Oscillator-Converter	Men.	13
Oscillator-Converter Oscillator Core Adjustment Oscillator Coupling Phono Circuit of GE Model 35 Phono compensation circuit with carico	May	16
Oscillator Coupling	red.	16
Phono Circuit of GE Model 35	Mar.	29
Phono compensation circuit with series	Apr.	13
Equalizer Phono compensation circuit with shunt	NT.	0
Phono compensation circuit with the	Nov.	8
		•
		8
Selective Regeneration	sept.	11
		16
Speaker resonance curvers Station Silender	reb.	31
Station Silender	ept.	17
		16
Wireless phono-radio recorder	May -	17
phopo radio recorder	dar.	28

COILS

_Q in coil	etc.	Tralar
Repair Rath	er than Replace, by H.	T. July
Gullinan	ci chan Replace, by H.	r .
Gibblider		Sent

CONDENSERS

Modern Slips on Intermittents, by John	1
H. Potter	
H. Potts Feb. More on Transformer Substitutes, by H.	
	1
"Q"-in colls, etc. July Saving Condensers July Testing Condensers July	1
Testing Condensers	1.
Condenser Merror Oct.	1,

ELECTRONIC APPLICATIONS

Industrial Electronics—sales & Mainte-	-
Vigilance for Victory	

COMPENSATION (See "Tone Compensation")

FREQUENCY MODULATION

onco	113	
Pilot	A-FM Model T-301	8
Slivet	tone /099: SW-AM.FM Cost	13
VV 1ICO	X-LAV A-106 H-M Recorder Man	13
Zenit	A-FM (chassis 22B1)	10
GE-L	F 115 and 116 alignment data Iuly	15
Simol	ined 1941 design of F.M. Tan	-18
Testin	ig & Aligning F-M Receivers Apr.	9
	Pilot Silver Wilco Zenit GE-L Simol	Filot A-FM Model T-301 Jan. Silveritone 7099: SW-AM-FM Sept. Wilcox-Gay A-106 F-M Receptor Mar. Zenith A-FM (chassis 22B1) Mar. General GE-LF 115 and 116 alignment data July Simplified 1941 design of F-M Jan. Testing & Aligning F-M Receivers Apr.

INDICATORS

(See "Servicing-Equipment")

INSTANTANEOUS RECORDERS

Issue Page

(See "Recording")

INVERSE FEEDBACK

Commonly Used Forms of Phase	
Inversion	17
Improved frequency response in RCA	1.00
552 Nov.	19
AP and G-Part III John F Rider Ton	6
Modern P.A. Amplifier Design Practice Dec	12
Power and degeneration	
Depation I Manuel To T	16
Practical Negative Feedback	11
Spring Cleaning-1942, by John H	
Potts	7

MICROPHONES

Choosing a Microphone, by John H. Potts	
Modernize Sets by Adding Recorders	7
by Willard Moody Aug.	9

PHONOGRAPH

Compensation

(See "Tone")

Record Changers

Crosley NP-358 Record changer adjust-	
ments Apr	13
Farnsworth P-32: service notes Inly	ę
GE LRP-32: service notes Tuly	5
RUA RMP-110: record changer adjust-	
ments	12
RCA RP-151 Record Changer Adjust-	
ments Apr	17
Silvertone Automatic Record Changer Jan	11
Wilcox-Gay "Insta-Matic" Record	
Changer	18
Recording	
A REAL PROPERTY AND A REAL	

Modernize Sets by Adding Recorders. by Willard MoodyAug.

Record Players		- AL
Emerson Phono Combination	.Apr.	16

PICKUPS

General

5

6

Unaccountable Distortion in Crystal	
Pickups	18
Soldering leads to Crystal cartridges Mar.	25
STATISTICS AND AND A DEPENDENT OF A	Tr
Compensation	
Crystal Pickup ResponseFeb.	15
Phono Compensation with series	13
EqualizerNov.	. 8
Phono Compensation with shunt	
Equalizer	8
RCA VHR-212: Compensation to prevent	
feedbackJune	18
Record player attachment tone compen-	
sation	25
Shunt and series pickups equalizers Jan.	17
DUDLIG ADDRESS	
PUBLIC ADDRESS	
Second States and the States of the States o	

Choosing a Microphone, by John H.	
PottsDec.	7
Industrial Sound InstallationsJune	28
Lafayette Mobile Amplifier	18
Modern P.A. Amplifier Design Practice. Dec.	12
the second se	

RECORD CHANGERS

(See "Phonograph")

SERVICING

Equipment

a d'aslourente	
The A.C. Meter Dec.	10
About Tube CheckersAug.	1%
Aerovox 75 Capacity-Resistance Bridge Oct.	13
A satisfactory VTVMApr	(
Design and Maintenance of Ohmmeters May	11
Milliameters	1.0
Noise Generators in Servicing, by John	
H. Potts Nov.	5
Servicing by Signal Injection, by John	
H. Potts	6
Servicing Your Signal Source June	10
Solar CE Exam-EterOct.	13
Contra car and a contra	10

see C_s . Here, the lowest frequency. signal is also obtained with maximum padder capacity and we always start from maximum capacity and work out. We select the second peak. On broadcast we select the first peak in making adjustments, since the oscillator is to be aligned on the high side of the signal.

The sensitivity of the set should be checked by running the signal generator dial in step with the receiver dial and noting any wide change in output as this is done. It takes a little practice to get the hang of turning the generator dial with the left hand while moving the receiver dial with the right, but it is a useful test. In this way, dead spots are found. Some receivers are so poorly designed that absorption takes place and there is nothing you can do about the dead spots due to coils being crowded into spaces where an ant would need to wriggle to get through. But the manufacturers don't build commercial brand radios to have perfect short wave

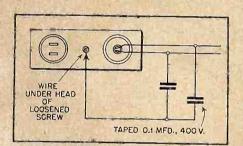


Fig. 6. A simple line filter.

response although many of them are pretty good. So just keep that point in mind before deciding your alignment job is not the best that can be done. For example, in tuning the dial of a typical set from 6 megacycles to 20 megacycles it was found that dead spots occurred 12 to 14 and 9-10. Moving a hunk of paper condenser out of the field of one of the short wave coils cleared up the condition.

Noise Filters Help

Surprisingly enough, a line noise filter seems to work very well on short wave, even better than on broadcast, and to boost signal strength. It may consist of two condensers, so arranged that each side of the power line input to the radio is by-passed to ground. The ground connection may be on the wall plate of the electric outlet and should be short and direct. This is shown in Fig. 6.

Profits in servicing these days are greatest when you go after and do

the jobs which require skill and labor rather than material. The data given here, it is hoped, will help you do just that.

The Tube Situation

The critical shortage of replacement tubes is apparent to all Service-Dealers and Jobbers. On November 27th the Crosley Corporation of Cincinnati sent a letter to all their distributors. We reprint that letter in full that all "RSD" readers may have a clear picture as to how matters stand.

TO ALL CROSLEY DISTRIBUTORS:

Many Crosley distributors are having difficulty obtaining radio tubes. This letter has been prepared to assist in this problem.

All radio tube manufacturers have on hand government orders many times their maximum peace-time production. As a result but few civilian types of tubes are being manufactured and many tube models are becoming very scarce. Government release on additional civilian tube manufacturing has been very slow due to their inability to determine exactly the number of tubes (Continued on page 25)

Of Course, I'd Rather Use My Car

... but if the boys in the service need the gas, I'm satisfied to do with less".

People have willingly given war needs a priority over civilian desires.

If you explain to your customers why If you explain to your customers why radio parts are scarce—and how you licked an "impossible" situation to get their sets operating at all—they will ac-cept those repair jobs that may be "a little less than perfect." ×

Naturally, you don't like to work on the antiquated sets you're getting today-especially with the shortage of men and materials. But. it's your patriotic duty to keep 'em playing-even if you have to improvise repairs. Of course, to do this efficiently you must know exactly what's inside the set.

That's where Rider Manuals save you time. They lead you right to the cause of failure and furnish you with the facts that speed repairs.

So. don't waste time "guessing out" de-fects and "experimenting" with possible methods of improvising repairs. Reach for one of your thirteen Rider Manuals when you begin every job. It's good sense and good citizenship to work effi-ciently today. It conserves parts and saves labor-both critically scarce right now. now.

RIDER MANUALS

OTHER RIDER BOOKS YOU NEED

The Cathode Ray Tube at Work \$3.00	
Frequency Modulation 150	
Servicing by Stonal Tracing 3 06	
Meter at Work	
Uscilator at Work 200	
Vacuum Tube Voltmeters	
AFC Systems	
HOUR-A-DAY-WITH-RIDER SERIES-on "AL-	1.1
ternating Currents in Radio Recoivers"-on "Reto-	
nance & Alignment"-on "Automatin Volume	
Control"on 'D-C Voltage Distribution."	
90c each	

JUST OUT!

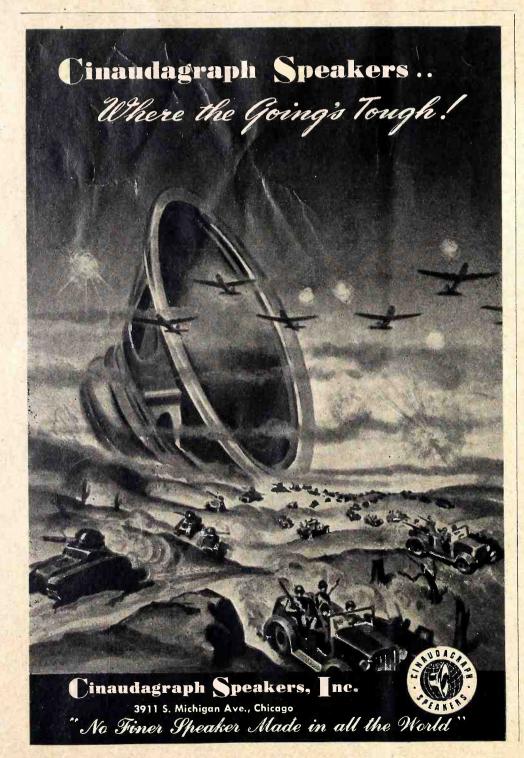
A-C CALCULATION CHARTS—Two to five times as fast as a slide rule—and more fool-proof. All direct reading—operative over a frequency range of from 10 cycles to 1000 megacycles. 160 Pages—2 colors—9½x12 inches—\$7.50.

FOR EARLY PUBLICATION

Inside the Vacuum Tube-complete elementary ex-planation of fundamentals of vaguum tubes.

John F. Rider, Publisher, Inc. 404 Fourth Avenue, - New York City Export Division: Rocke-International Electric Corp. - New York City 100 Varick St., New York City Cable: ARLAB

MODERN P.A. AMPLIFIER DESIGN PRACTICE


(Continued from page 18)

coil resistance is low, it is possible that considerable power will be lost in the line when this method of connection is used, due to the resistance of the leads.

When several loudspeakers are being used, it is essential that their voice coil impedances be identical if they are to be connected in series or parallel. If not, separate coupling transformers, with primary impedances of identical value — generally 200 or 500 ohms—should be employed. If four speakers are being used, with 500-ohm coupling transformers, they may be connected in series-parallel to provide an impedance which remains at 500 ohms for coupling to the output transformer of the amplifier. When the taps on the output transformer do not match any of the impedance values of the speaker transformer or voice coil, it is better to connect to a tap of lower impedance rather than of higher impedance, for minimum distortion. In general, considerable mismatch is possible before noticeably bad results are obtained, so don't be too academic about it.

Feedback

Acoustic howl due to feedback is one of the most common annoyances

encountered in p.a. work. The remedy, of course, is to keep the reproduced sound from the loudspeaker from getting back into the amplifier input circuit via the microphone, but there are times when this is none too easy. The first step is to place the loudspeakers in such manner that reflection of the sound back of the mike is at a minimum. When this is difficult or impossible, the next best method is to shield the mike acoustically. This is accomplished by placing it in a box padded with sound absorbent material, such as cellotex. A small hole is cut in the box to speak into. This arrangement affects the fidelity somewhat, though not as much as one might expect, but does eliminate acoustic feedback.

Trap-Circuits

Some microphones are more subject to trouble with acoustic feedback than others. This is the case when a resonant peak is present in the mike response curve. The same effect is caused, and more frequently, by peaks in the loudspeaker response. This effect can be noted by taking cognizance of the howl frequency. If a trap circuit is introduced — simply an iron-core choke and condenser in series-across the grid circuit of one of the amplifier stages, this peak may be greatly attenuated so that the microphone may be used closer to the speaker. The values of choke and condenser may be varied until the desired frequency is obtained. This is facilitated by using a calibrated audio oscillator to determine the frequency, whence it is possible to compute the required values of capacitance and inductance for the trap circuit.

Placing the microphone in another room, totally shielded acoustically from the loudspeakers, or well back on a stage, with the loudspeakers set in the walls in front and at each side of the stage, are methods frequently used to minimize acoustic feedback. When the operator of the amplifier is not in the audience, it is somewhat difficult to gauge the required vol-ume level. This is best determined by test beforehand, noting the level on an output meter connected across the amplifier output when an assistant advises that the level is satisfactory. This may then be maintained during the performance.

Volume compressors and expanders have advantages in many p.a. applications. However, these circuits are rather involved and are therefore being considered in a separate article to follow.

★ BUY WAR STAMPS ★

THE TUBE SITUATION

(Continued from page 23)

on hand for all distributors or accounts. We can, therefore, expect but little relief during the next few months.

There are tubes available, however, each tube manufacturer does not have all tubes and certain tubes are not available at all. Tube characteristics are such that your radio service man can make many tube substitutions by slight changes in the circuits, which do not affect the set's performance. Tube data sheets, which various tube manufacturers have supplied and are still able to supply, furnish this information.

To obtain tubes, it is first necessary that a PD-1-X, properly filled out, is presented to the War Production Board. The following instructions, if carefully followed, will assist you in obtaining priority assistance.

- 1. Use a separate line for each tube model number. Enter the tube model number in Column B.
- 2. In Column C, enter your physical inventory, as of December 31, as closely as possible in dollar value.
- 3. In Column D, enter your receipts of the particular model tube from January 1 to date of filing the PD-1-X. Remember that if a PD-1-X form is entered Dec. 1, 1942, the amount shown in Column D is for eleven months, and 1/11 of this amount will represent to the War Production Board your monthly purchases.
- 4. Column E is to show your inventory for each model as of the filing date. In handling your application, the War Production Board will add together Column C and Column D, and subtract from this Column E, to determine usage for the period covered. Again, considering eleven months, your monthly usage would be taken as 1/11 of this amount, that is, Column C, plus Column D, less Column E. The amount which you can request in Column F will be 11/2 times this figure. If anymore is requested, it will be denied.
- 5. Column A can then be filled out with a quantity, the cost of which will be equal to the value determined in Column F.

The handling of the PD-1-X form by the War Production Board is on the basis of simple arithmetic, as shown above. If the result of the arithmetic shows a request for more than a $1\frac{1}{2}$ month's supply, the request will be denied. The amount of time and effort necessary to obtain priority assistance by means of this form can be greatly reduced by paying careful attention to the above instructions.

After obtaining approval and a priority rating of A-3, or better, tubes may be ordered from anyone of the following companies:

Hytron Corporation, Salem, Mass. Ken-Rad Tube & Lamp Corp., Owensboro, Ky. National Union Radio Corp., Newark, N. J.

Raytheon Production Corp., New York, N. Y.

RCA Manufacturing Co., Inc., Camden, N. J.

Standard Arcturus Corp., Newark, N. J.

Sylvania Electric Products, Inc., Emporium, Pa.

Tung-Sol Lamp Works, Inc., Newark, N. J.

If certain tubes cannot be obtained from your regular source of supply or anyone of the above listed companies, do not hesitate to try another supplier. It is a strict ruling from the War Production Board that manufacturers having replacement tubes available must accept and fill orders according to priority rating, regardless whether or not previous purchases have been made by the customer. If any manufacturer should refuse to ship because they have not furnished you tubes in the past, advise Mr. Frank MacIntosh, War Production Board, Room 4320, Social Security Bldg., Washington, D. C.

We sincerely hope that the above information will be of assistance to you in obtaining those radio tubes necessary to continue your radio service operation.

(Signed) H. A. Newell General Service Manager, The Crosley Corporation

CHOOSING A MICROPHONE

(Continued from page 19) tive and least sensitive in each category. These ratings, it must be emphasized, cover only the range of sensitivities among various models of each type. They have no bearing on the relative fidelity except, as we have pointed out before, that the less sensitive are generally better insofar as fidelity is concerned. This point is of importance mainly in broadcast work; in ordinary p.a. work, fidelity is not so very important.

Determining Amplifier Ratings

Since the sensitivity of microphones is inseparably tied up with that of the amplifier with which it is to be used, it is perhaps well to discuss here the method of determining amplifier ratings too, particularly as an article on amplifiers (the "TECHNICAL SERVICE PORTFO-LIO") is also included in this issue. Amplifier gain may be found from the formula

(a) Amplifier gain (in db) $=$		
Output Power		
10 log		
Input Power		
(b) Amplifier gain (in db) =		
Output Voltage ² /output load in ohms		
10 log		
Input Voltage ² /input load in ohms		
(c) Amplifier gain (in db) =		
output voltage		
20 log plus		
input voltage		
input load		
10 log		
output load		
-		

Although these three formulas all give the same result, in practice it will save time to use the one most suited for the amplifier at hand. If the amplifier has a transformer-coupled input-and there are not many of this type used for p.a. work-we need simply consider the power in the 500-ohm line, or what ever is used in the input circuit—and the equivalent impedance of the output circuit. Thus, if the input and output impedances are identical, we find that in formula (b) we may forget about the input load and output load part of the formula and express the ratio in db based simply upon the measured output voltage squared and the measured input voltage squared.

With amplifiers having a high impedance input, such as the unadorned grid input with only a 2megohm leak from grid to ground in the circuit, the matter of obtaining a

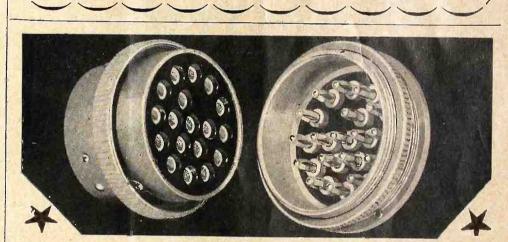
power ratio leads us into difficulties. For, if the 2 megohm resistance is replaced by a 20-megohm resistor, the gain of the amplifier will not be increased in the slightest degree, yet the ratio of output power to input power will be greater. This formula (a) will not work in such instances. This should be qualified by stating that the formula applies only in such cases where the microphone impedance equals that of the input resistor employed. Because the amplifier resistance will always be much higher than the impedance of the mike, the gain will be the same no matter whether the input resistor is 2 megohms or 20 megohms. Because of this anomaly, it is now customary to state in the amplifier rating just what input resistance is assumed in making the calculations. Usually this is specified as 150,000 ohms. Actually, the resistor used is always higher than this value.

A much better form of rating amplifiers is to specify the voltage input required for full output. If for instance, we know the microphone rating to be -60 db, then we also know its output (open-circuit) is 1 millivolt for a sound pressure of 1 bar. If we have an amplifier which will deliver full rated output for 1 millivolt or less input, then we may rest assured that it has adequate gain for the microphone we have in mind, rated at -60 db. Otherwise we will have to calculate the voltage which will appear across the amplifier output load when operating at full rated output, determine the input voltage on the basis of the microphone output, and taking into consideration the load of the amplifier input circuit ,and consider the load resistance in the output and input circuits. Then, by applying formula (c), we may calculate the gain required for full output or, if we already know the gain, we may determine whether or not it is adequate.

In general, an amplifier with a rated gain of 130 db will take care of even the most insensitive mike encountered in public address work, operating the amplifier at an output level of approximately 10 watts. This is adequate for most large halls,—in fact, you can do a lot with even 5 watts in an enclosed space. For outdoors, considerably greater power is required, and consequently a greater gain or a more sensitive mike.

RENEW YOUR SUBSCRIPTION TO RADIO SERVICE-DEALER TODAY. 12 ISSUES COST \$2; 24 ISSUES COST \$3. FOREIGN \$3 PER YEAR

Radio Service-Dealer, December, 1942


RADIO CORP.

901 WEST JACKSON BLVD., CHICAGO, ILL. . 265 PEACHTREE STREET, ATLANTA, GA.

1000000

Nationally known radio, electronic and sound parts from Lafayette's complete stocks are in daily use by technical schools handling Military training courses.

Camera Fans: Photographic Equipment at lawest prices. Write for FREE PHOTO-GRAPHIC CATALOG!

"Right Down Our Alley"

AFAYETTE

Contributing to the war effort, Astatic Corporation facilities are being utilized today mainly in the manufacture of essential products requiring special engineering skill and precision. Among these are Aircraft Radio Plugs and Sockets, as illustrated, along with complete Co-axial Cable (concentric) connectors, and similar equipment for the U. S. Army Air Corps and the Navy. The tooling and assembly of delicate, precision products of this type comes naturally to Astatic workers, long experienced in the manufacture of Microphones and Pickups for radio, public address and phonograph equipment. Wartime production of this kind is "right down our alley."

• Here are three "Victory" condensers or satisfactory replacements for servicing radio sets. They are (a) Type PBS cardboard-case dry electrolytics, single, dual, triple section, 25 to 600 v. D.C.W., with handy adjustable mounting flanges. (b) Type PRS-V "Dandees" or tubular dry electrolytics, single and dual section, 25 to 450 v. (c) Ever-popular Type ----84 paper tubulars, 400 to 1600 v. extra-sealed for long service. These three "Victory" types can handle 90% of your usual service needs.

Ask Our Jobber ...

Ask him for your copy of the new "Victory" catalog which will help you in the present wartime situation. Or write us direct.

THE FIRST NAME IN SOUND

John Meck Industries-Liberty at Pennsylvania Ave., Plymouth, Ind.

We will pay list less 50% for the follow-ing tube types, of standard manufacture, individually cartoned. We cannot supply priority rating. Would consider buying your complete stocks at slightly better discount. WIRE us collect if you can furnish over 100 tubes. WRITE us if you have less than 100 for sale. Deposit wired or mailed with each of our orders, balance COD.

Attention

185/255 2A3 2A4C 5U4C 5V4C 5Y3G or CT 5Z3 6C5	6]5 C or CT 6K7 C or CT 6L6 C or CT 6SQ7 C or CT 30 45 70L7CT 76
6H6 C or CT	80 2051
	BURTT
308 Orpheum Bidg.	Wichita, Kansas

Book Review

MYE TECHNICAL MANUAL, published by P. R. Mallory & Co., Inc., Indianapolis, Ind. Stiff cloth cover, $8\frac{1}{2}$ " x 11" page size, 407 pages including index and tube base wiring diagrams. Price \$2.00.

To properly review this volume, the Fifth Edition of MYE, consisting of 13 excellent Sections, would in itself require a book. Suffice, then, to say that the 1942 MYE is the best yet. By listing the titles of the 13 Sections we outline its broad content: 1, "Loud Speaker Design & Application" — 2, "Superheter-odyne First Detectors & Oscillators" -3, "Half-wave & Voltage Doubler Power Supply Systems"-4, "Vibrators & Power Supplies"-5, "Phonoradio Service Data"-6, "Automatic Tuning" — 7, "Frequency Modula-tion" — 8, "Fundamentals of Television Engineering" — 9, "DC Dry Electrolytic Capacitors"-10, "Practical Radio Noise Suppression"-11, "Vacuum Tube Voltmeters" - 12, "Useful Servicing Information"-13, "Receiving Tube Characteristics."

Profusely illustrated with schematics, wiring diagrams, graphs, photos, charts, nomograms and tables, the MYE Manual will prove invaluable to all who are engaged in any phase of radio-television-electronic maintenance work.

EICOR EXPANDS

»» Eicor, Inc., manufacturers of Dynamotors, D.C. Motors, Converters, Power Plants, and other rotary electrical ap-paratus, moved to 1501 W. Congress Street, corner of Congress and Lafin, Chicago, to provide more factory space and production facilities to meet the tremendously increased need for Eicor Products in the war program.

Well Done"

★ The Army-Navy "E" Pennant now flies over the Clarostat plant. It is visible evidence that Uncle Sam is well pleased with the allout war production efforts of Clarostat workers, engineers, management. It is his way of saying "Well Done."

And to you it means not only maximum support of the war effort, but a pledge of continuing Clarostat service, production and reputation in the peace to come.

CLAROSTAT MFG. CO., Inc. · 285-7 N. 6th St., Brooklyn, N. Y.

... B for Bessie coming in at 1,000 feet. Can't see a thing through this soup. What are your orders?¹⁷

A bomber pilot, returning through a storm from a successful mission, phones his field for help in landing. He is depending upon his communications to see him through . . . safely.

Our armed forces all over the world are depending upon Raytheon tubes . . . and Raytheons are coming through!

Service men and dealers everywhere know the dependable qualities of Raytheon tubes

RAYTHEON

B

PRODUCTION CORPORATION NEWTON, MASS. LOS ANGELES CHICAGO NEW YORK ATLANTA

DEVOTED TO RESEARCH AND THE MANUFACTURE OF TUBES FOR THE NEW ERA OF ELECTRONICS

۲

R

"B for Bessie coming in at 1,000...

SERVICE-DEALER

SOUNDMAN AND JOBBER Reg. U. S. Pat. Off.

Vol. 3. No. 12 🖈 December 1942

Ad Index Aerovox Corpora

adio

PUBL	ISF	IER
SANFORD	R.	COWAN

Advisory Editor M. L. MUHLEMAN

Contributing Editors JOHN H. POTTS JOHN F. RIDER "On Leave" Major U. S. Sig. Corps

> News Analyst A. N. BELKNAP

Circulation Manager R. ALAN

Special Representative LEE ROBINSON

*

Executive & Editorial Offices 132 West 43rd St., New York

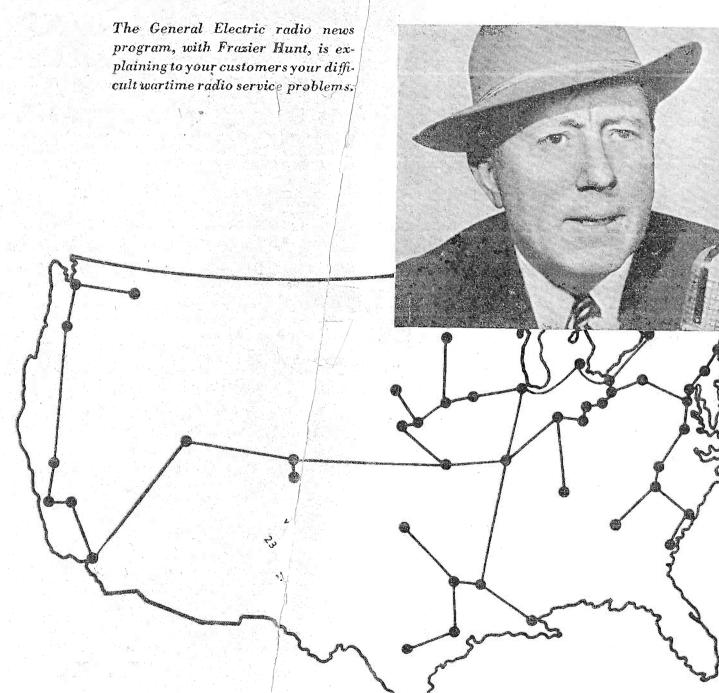
	Aerovox Corporation "Victory Line" Condensers		
	Connectors, Plugs, Co-axial Cable	27	(
	Audiograph Sound Equipment Sound Equip. Catalog	28	1
	Burtt, W. R	28	
	Centralab Resistors, Controls, Switches	6	
	Loud Speakers	24	
	Clarostat Mfg. Co., Inc.	28	
1	Eveready Batteries		
	War-time Radio Servicing	Z-3	「「「「「」」
	Guardian Electric Co.	26	52.0
	International Resistance Co. Fixed and Variable Resistors	9	
	Lafayette Radio Corp. Replacement Parts and Kits	27	
	Mallory & Co., Inc., P. R 2nd Co New MYE Technical Manual	28	and a second
	Audiograph Sound Equipment	25	C. States C.
	Meissner Mfg. Co. Radio Training Kits National Carbon Co.		
	Eveready Batteries Racon Electric Co.	5	a constant
	Horns, Trumpets, Speakers Raytheon Production Corp. 4th C	1.2.2	
	Raytheons In The Air Force Rider, John F.		
	Rider Books & Manuals Solar Mfg. Co.	28	
	Replacement Condensers Sprague Products Co.	22	
	Replacement Condensers	2.2	1. A. 1. 2.
	Transformers Triplett Elec. Instru. Co3rd C	over	
	Thin Line Instruments Vaco Products Co.	26	
	Screw Drivers		are

Contents

Editorial: The "Victory Line"	4
Choosing A Microphone By John H. Potts	7
Metering Miracles By L. R. Byron	10
Technical Service Portfolio—XXV Modern P. A. Amplifier Design Pract	. 1/2 ice
Annual Index for 1942)-21
The Tube Situation	23
Book Review	28

The Staff of Radio Service-Dealer extends to all a wish that you have A Merry Christmas and a Happy New Year

Cover Picture


(Official Signal Corps Release) SIGNAL CORPS CACHET

This is the first publication release of the new cachet that the Signal Corps is urging manufacturers to display in an effort to obtain enlistments.

Entire Contents Copyright 1942 by Cowan Publishing Corp. All rights reserved—no part of this magazine may be reproduced in any form, by any means, or translated into foreign languages without permission in writing from the publisher.

RADIO SERVICE DEALER, published monthly at 34 N. Crystal Street, East Stroudsburg, Pa., by the Cowan Publisher Executive and Editorial Offices at 132 W. 43rd Street, New York, N. Y. Subscription rates—United States and D for 1 year, \$3.00 for 2 years; elsewhere \$3.00 per year. Single copies 25c. Printed in U.S.A From the October 3, 1941, at the Post Office at East Stroudsburg, Pa., under the Act of March 2

G.E. is telling your customers Service over 51 C.B.S.

CENERAL (28) ELECTRIC

Leader in Radio,

about Wartime Radio and 8 FM radio stations

ON DECEMBER 1, the General Electric radio news program, featuring Frazier Hunt, started telling your customers of your wartime radio service problems.

G.E. fully appreciates the difficulties under which radio service men are operating, and is anxious to prevent any public misunderstanding that would reflect on your service business.

Therefore, the G-E radio news program is pointing out over and over that, with so many radio service men now in the armed forces, the task of those still on the job is tremendous and is being met in many cases by day-and-night work. G.E. is explaining that although fewer service men are available to keep the nation's 50,000,000 radio sets working, the hard job can be done if the public will be just a little patient.

The public is also being reminded that some radio parts are now difficult to get in a hurry. Furthermore, it is being asked to remember that rubber and gasoline rationing are as hard on the service man as on themselves. So radio owners are asked to carry tubes and small sets to you, rather than ask you to go to them.

Above all, G.E. asks the public to understand that you are doing a great job under trying conditions, and that wherever possible G-E electronic tubes and other replacement parts on hand are being rushed to help keep your wartime radio service going.... Radio, Television, and Electronics Department. General Electric Company, Schenectady, New York.

G.E. IS TELLING YOUR SERVICE CUSTOMERS THAT:

Thousands of former radio service men are now in the armed forces. Those left in service shops are doing an important job well! Everything possible is being done to keep America's 50,000,000 radios working. A little customer patience over delays is asked for — and appreciated. Gasoline and rubber are scarce, so please bring tubes and small sets to the service men whenever possible.

Television, and Electronic Research

editorial...

The "Victory Line"

• At the request of OPA and WPB the American Standards Association is making a study to determine whether it will be feasible and practical for radio parts manufacturers to produce a "Victory Line" of replacement parts. Such a line would ostensibly take the place of Private Brands which have been nationally advertised, guaranteed and distributed since the radio industry's inception. It is well known that Private Brands are now being diverted to war equipment and are practically inaccessible for civilian radio maintenance because that classification has such a poor priority status.

Before becoming exuberant about the "Victory Line" radio service-dealers and jobbers must weigh all the facts. To help you obtain a true picture, let us quote from the ASA's first publicity release (following which our own observations will be given): "Considerable care is being exercised by the ASA committee to make sure that the quality of the standard repair parts chosen will be suitable from the set owners' standpoint . . . sufficient parts of each type will be included . . . to adequately service almost all of the modern home receivers in use today. Tubes are not included in the project.

"In the design of these standard parts the ASA is making every effort to provide units that will be mechanically interchangeable with present parts with a minimum of difficulty.

"Through simplification of the number of varied ranges now in use and the use of multi-purpose units when practicable, the actual number of parts will be held to an absolute minimum in the forthcoming standards . . . for example, some 62 standard volume controls have been proposed to serve as replacements for the thousands of different types used in home radio sets built during the past half dozen years while 9 electrolytic and 11 paper capacitors have been proposed to do a similar job in the capacitor field. Similar simplification and standardization in other radio parts such as transformers, chokes, coils, etc., is also included in the scope of the project now getting under way."

The ASA announcement also bears this very significant phrase, "the WPB and OPA are expected to allot materials for manufacture of the standardized parts and to issue limitation and price orders." Brother—do you see the "catch"? That sentence "the OPA and WPB are expected to allot materials, etc." is a joker of the first water. This writer and many parts manufacturers have been given such "anticipated promises" by WPB since the very inception of priorities.

The next catch, in the "Victory" plan, is that radio tube production is excluded entirely. Tube manufacturers frankly admit they are swamped with war orders, their production facilities are tied up for months to come. There are no renewal tubes available for service-dealers. What good will replacement parts be without renewal tubes?

Finally, what about a "Victory Line" that requires new tooling and additional plant facilities, which probably cannot be provided for? And don't forget the new Controlled Materials Plan, which inherently prohibits the production of parts. for any civilian use! No, gentlemen, there is but one commonsense answer to the whole radio parts and tube shortage, and it is this: if the WPB and other Washington bureaus stop vacillating and decide that maintenance of civilian radio receivers (at least one in every home) is going to contribute to the war effort, morale or what have you . . . then Washington must simply allocate the necessary metals and materials to parts and tube manufacturers and the latter groups will find the ways and means of producing a short standardized line of useable replacements. We do not favor advertised brands merely because our livelihood is derived from advertising. We do know, from twenty years of practical experience in radio, that so-called "Victory Lines" would probably be sub-standard, impractical to conceive and produce and unsatisfactory in-so-far as proper distribution and substitution for standard brands is concerned.

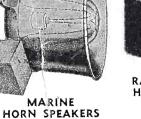
Gasoline Rationing

• At the outset of gas rationing we implored OPA to recognize the radio service-dealers' unique status and need for supplementary additional gas. Eventually OPA issued an Order allowing radio repairmen extra gas. Correspondence in our files would indicate that in fact, they are not getting it. Local Ration Boards in big cities have denied servicedealer applicants for "C" cards on the basis that they have suitable regular means of transportation at their disposal to take care of the extra mileage they must cover. Local Ration Boards in suburban and "hick" localities deny extra rations on the premise that the customers must be made to bring in their sets rather than have them picked up, even at centralized pick-up depots, that progressive servicers have had the foresight to establish. Here is vacillation of the worst order. Either radio maintenance is entitled to recognition for its importance to the public weal, or radio repairing should be designated as "unessential." That point should be decided, but definitely. The average service-dealer is trying to handle six to eight times his normal volume of repair work because eight out of every ten radio servicemen have already entered military service. Give the average service-dealer the same amount of gas he formerly used in the conduct of his business and he will be able to handle the many-times-doubled extra volume of work now forced upon him. That is true expediting and proper use of available manpower.-That is true gas and rubber conservation. What about it OPA? When will practicable standards that lend themselves to the war effort be established? An OPA directive to all Ration Boards to grant servicemen a reasonable amount of gasoline will solve the problem once and for all. SRC

RACONS do their bit-

* Under prime and sub contracts RACON Products contribute to many phases of the war effort. For example, shown here is a RACON Marine Horn Speaker in the cabin of the B-19; and in the other extreme, on the ground a Sperry anti-aircraft detector battery, the three locator horn units of which were made by RACON.

* If space permitted we'd show how RACONs are used at Army and Air Force training bases—at shipyards aboard Navy, Coast Guard, Maritime Commission and Transport ships—in factories, and in countless industrial public-address systems.


* The most important point is this, the quality, efficiency and dependability of RACONs have long been recognized. There's nothing finer. RACON's deliver more energy per watt input. They use RACON's exclusive Waterproof, Weatherproof, Acoustic Material. The elements cannot affect RACON's efficient operation. Use RACON's when planning your next installation. There is a horn, speaker or driving unit for every conceivable purpose. Inquiries are invited—perhaps we can help you in some phase of the war effort. Ask for our free catalog, too.

RACON ELECTRIC CO., 52 East 19th St., New York, N. Y.

Radio Service-Dealer, December, 1942

Official Photos by U.S. Signal Corps; courtesy of Douglas Aircraft Co. and Sperry Gyroscope Co.

RACON P. M. HORN UNITS

RE-EN/TRANT TRUMPETS

Shown here are but two of the many RACON Speakers and one type of RACON P. M. Horn Unit. The MARINE HORN SPEAKER may be used as a loud-speaker or microphone, comes in several sizes; is approved by the Bur. of Marine Inspection, Dep't. of Commerce. MARINE CONE SPEAKERS are the reentrant type, suitable for indoor or outdoor use. Stormproofed for all weather conditions. Sizes for 2, 3, 5, 8 and 12 inch speakers. RACON P-M HORN UNITS are available in operating capacities of from 5 to 50 watts.

5

ame Old, Stands

SERVICEMEN ... your Distributor can

STILL Supply you with

MIDGET RADIOHM REPLACEMENTS

Fortunately . . , your distributor can still supply you with Midget Radiohms for replacements.

The smooth wall-type resistor for which Centralab Radiohms are famous will keep that now-precious radio in good working condition. Stick to OLD MAN CENTRALAB for Replacements . . . and always specify "CENTRALAB".

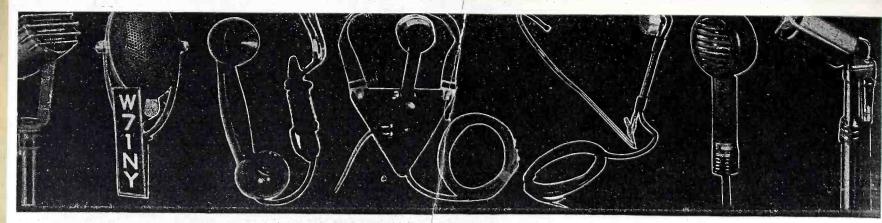
> RADIOHMS • FIXED RESISTORS • FIXED AND VARIABLE CERAMIC CAPACITORS • SELECTOR SWITCHES

CENTRALAB: Div. of Globe-Union Inc., Milwaukee, Wis.

CHOOSING A MICROPHONE

E hope that no one, in glancing at the title of this article, or at the illustrations of mikes appearing herewith, will be led to believe that there are places where a plentiful variety of microphones is available from which he may select whatever pleases him. Far from it. And because microphones are scarce and limited in variety, it is all the more important that we be sure, before we start looking around, that the type we have in mind is the proper one for the job. Also, because we may not be able to find just what we want, we need to know if some other type, perhaps easier to get, may possibly do the trick as well. We must also consider whether the amplifier we plan to use has sufficient gain and is otherwise adaptable for use with the microphone we intend to use. Therefore some discussion of microphone sensitivity ratings is in order, particularly since these ratings have undergone revisions in recent years.

Fundamentaly, microphones may be divided into three classifications,


(1), those in which a sound wave acts upon a ribbon or diaphragm placed in an electro-magnetic or electrostatic field and thus causes a variation in the intensity of this electric field and, consequently, of the potential across the output terminals of the device, (2), those in which the 'sound wave creates a voltage across a crystal of the Rochelle salt variety, due to the phenomenon known as piezo-electricity, (3), those wherein the sound wave causes the resistance of carbon granules to vary, and thus varies the current in a circuit of which the granules form a part. All these types are in common use, but each has its own peculiarities, advantages and limitations.

Ribbon Mikes

In the first classification we find the ribbon, or velocity, microphone and the moving coil, or dynamic type. In the former, a thin strip of metal is placed between the poles of strong permanent magnets so that its width is in the plane cf the electromagnetic field. The dif-

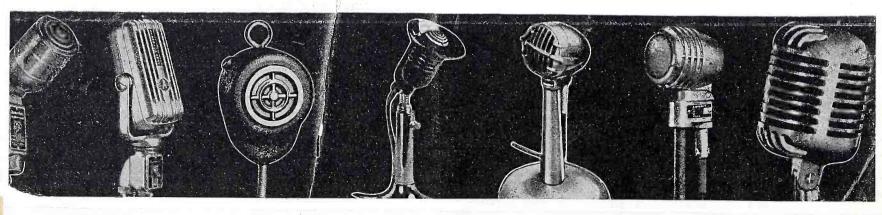
by John A. Potts

ference between the sound pressure at the front and back of the ribbon causes the ribbon to move and thus varies the electromagnetic field in synchronism with the sound frequency. Because the ribbon must be thin, light, and of low resistance in order to respond freely to high, as well as low, frequencies, it has an extremely low impedance. Therefore a coupling transformer is usually built into the microphone case, stepping up the impedance from a few ohms or less to perhaps 200 ohms or more at the output terminals. The sensitivity of the ribbon microphone is often low in comparison with many other types, but this is counterbalanced by excellent fidelity. In general, this applies to most microphones---the greater the output voltage they supply, for a given sound level, the poorer the fidelity. The ve-

MICROPHONE TYPES-(from left to right)-Electro-Voice, Dynamic; Western Electric Experimental Synchronized F-M, Condenser; Universal, Carbon handset; Universal, Magnetic field type; Universal, Military; Shure plastic cased Crystal; Webster, Super Dyne.

locity microphone is excellently adapted for studio work because of its fine fidelity. Likewise it is ex-tremely useful where the microphone must be placed in the same room with loudspeakers, because it is highly directional, especially the cardioid type, so it may be placed at such an angle to the sound waves reflected back toward the microphone that they will not get into the mike and cause acoustic howl. Because there is a transformer in the mike, it must be kept well away from magnetic fields, such as the power transformer in the p.a. amplifier, or any rotating electrical machinery in the vicinity, otherwise hum results. The output level is rated around -74 db below 1 volt per bar (we'll say more about this later on.)

The moving-coil, or dynamic, microphone also operates on the electromagnetic principle. In fact, this type of microphone is quite similar in principle to the ordinary dynamic loudspeaker. A moving coil of aluminum ribbon, attached to a dural diaphragm, is suspended in an electromagnetic field. When sound waves strike the diaphragm, it vibrates, thus causing the moving coil to move in like manner within the electric field. This movement cuts the magnetic lines of force and thus creates a voltage across the moving coil. An impedance - matching transformer, built within the mike housing, steps up the low moving coil impedance to an output value of 200-500 ohms. In some types, this transformer is


omitted and the output terminals connect directly to the moving coil, the impedance of which will be of the order of 20 ohms. This type of microphone delivers a somewhat lower output voltage (when no transformer is/built into the mike) than the velocity type with the transformer so that its rating is lower-about-88 db-and therefore an amplifier with higher gain is required. If a coupling transformer is used—and/it should be for maximum efficier cy-the same precautions regarding the placement of the mike with respect to electromagnetic fields must be observed, as with the velocity type. This type of microphone is responsive to sounds reaching it from all directions, and is accordingly termed "non-directional." The advantage of a non-directional mike is that a sound source extending over a wide area, such as an orchestra, can be handled by a single mike, or a speaker who has a tendency to meander around the platform may be picked up more easily and uniformly. The disadvantage is that greater care must be exercised in the placement of loudspeakers in order to avoid feedback. This may be overcome by placing the mike in a reflector of some sort-the parabolic type has been used-which will make it directional.

Crystal Mikes

Crystal microphones have come into wide popularity, due in part to their sensitivity and simplicity of

operation. No coupling transformer is required, thus the precautions required with electromagnetic types of microphones are unnecessary. Their voltage output is relatively high, ranging up to about -64 db in the sound cell type and the frequency response characteristics are very uniform over a wide range. These mikes are essentialy non-directional and are therefore adaptable to the same applications as the moving-coil type of microphone. The "soundceN" crystal type, consisting usually of several individual crystals connected in series-parallel for maximum voltage output, is representative of the best of this type, insofar as fidelity is concerned. The diaphragm type, in which sound waves striking a diaphragm actuate a drive pin connected to the diaphragm and pressing against a corner of a crystal, which is independently supported within the mike housing at its three remaining corners, in such manner that the crystal is placed under mechanical stress, is the most sensitive type available, ranging up to -46 db. While all crystal mikes are high-impedance types, they may be used if desired, with coupling transformers when it is necessary to match a 200 or 500ohm line. In such cases, the coupling transformer high-impedance secondary is connected to the crystal output, while the 200 or 500-ohm primary feeds the corresponding input circuit of the amplifier through the (Continued on page 19)

MICROPHONE TYPES—(from left to right)—Electro-Voice, Dynamic; Amperite, Velocity; Electro-Voice, Carbon; RCA-Ribbon-Dynamic; Astatic, Crystal; Amperite, Dynamic; Shure, Cardioid.

The high regard in which IRC

Resistors are held by Engineers and Executives of America's leading electronic industries is clearly attested by the voluntary remarks quoted at the right. These are taken from among returns to a nation-wide marketing study recently made by a wholly independent research organization. This survey was completely unbiased, with no company name or product disclosed.

PREFERRED Soo PERFORMANCE

FIXED AND VARIABLE

INTERNATIONAL RESISTANCE COMPANY

401 NORTH BROAD STREET PHILADELPHIA, PA.

WE QUOTE

"We require quality, uniformity, service — and IRC have proven without a doubt definitely reliable."

"I R C seems to be choice of engineers in the government radio research job I'm in."

"Most complete engineering data."

"Most stable as determined by laboratory tests over two-year period."

"... In my business, Aircraft ElectricalEngineering, I always specify i R C."

"Fine people to do business with."

"We handle only one line of resistors and of course that must be the best—namely IRC."

IRC fliesthe flag of the Army-Navy Production Award for "high achievement."

METERING MIRACLES

by L. R. Byron

YES, miracles can be performed in connection with metering equipment, miracles in the way of saving instruments or in making old and discarded apparatus do the job and do it well. For, despite what the advertising boys have had to say about it, it is still possible for the technical expert to service a radio receiver with the simplest of equipment, provided he is willing to go to a little extra trouble and to use the old noodle. Too many servicemen reach for the soldering iron before stopping to think about what they are doing. I know because I've been one of them! But I reformed one day when looking at the contents of the cash till. It pays to think-to take an extra moment, and to use it wisely.

The A.C. Meter

As an example of this line of reasoning, take the man who suddenly finds that the a.c. meter he has works all right on the voltmeter ranges but that something has gone kerflooey with the 0-15 or 0-5 a.c. ampere scale. After taking off the panel of his superdooper tester with its thousand and one wires, he wisely decides to let well enough alone in view of the fact the factory is swamped with war orders and meter specialists can't take care of civilian instruments. The a.c. current can be checked by inserting a resistor in series with the load, as in Fig. 1. If the set draws one ampere, a suitable value of series resistance is 3 ohms which will give a full scale deflection on an 0-3 volt a.c. meter. There will be a slight voltage drop to the load, but the accuracy of measurement will be sufficient for practical purposes. The current is, of course, the measured voltage divided by the resistance in ohms. The power factor of such a set will be close to unity and the power therefore may be assumed equal to the product of voltage and current.

In connection with the accurate measurement of voltage on the plate of a tube having a high resistance plate load, you can use a fancy vacuum tube voltmeter or can measure the plate resistance and plate cur-rent as shown in Fig. 2. The plate voltage will be the supply voltage less the sum of the voltage drops in the plate load and cathode circuit resistances. The voltage drops are obtained by multiplying the current by the resistance. In the example shown, let us assume the current through the tube is .001 ampere. Then, the drop across the plate load will be $100,000 \times .001$ or 100 volts. The drop across the cathode resistor will be $1,000 \times .001$ or 1 volt. Also, let's assume the tube resistance is 100,000 ohms. Then, the sum of the voltage drops, according to Kirchoff's Voltage Law, is the sum of the individual drops and the supply voltage is 201 volts. Now, let's see what happens when we take a 1,000 ohmsper-volt meter and connect it from plate to cathode on the tube. Let's assume the meter resistance is 250,-

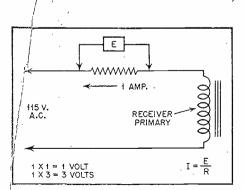


Fig. 1. To check a.c. current a resistor is placed in series with the load.

000 ohms. Under these conditions the net circuit resistance is about 172,111 ohms and the current is approximately .0011 ampere. The meter then reads 89.9 volts. Knowing the circuit resistance, the voltage drops for the bias resistor and plate load are figured. What's left is available for the plate of the tube. If the voltmeter had a resistance of 20,000 ohms per volt and were set on the 250 volt scale, it would read 99.091 volt. This would be about 9 volts higher than the reading with the 1,000 ohms/volt meter. If a vacuum tube voltmeter were used the reading would be 100 volts on the tube. Assuming an average milliameter of 50 ohms resistance, the plate voltage reading would be 100 volts. The drop across the meter would be only 05 volt, assuming 1 ma. of current.

Milliameters

The plate milliameter can do other jobs as well. Referring to Fig. 3, the milliameter indicates the plate and screen current by reading cathode current which is the sum of the two anode currents. Knowing the value of cathode resistance, the bias on the tube is found. A look at the RCA tube manual shows the plate current is 7 ma. and screen current is 1.7 ma. for a bias of -3 volts. The cathode resistance, therefore, is 3/7 plus 1.7 or 3/8.7 ma. This is 344 ohms approximately and a 350 ohm resistor would do. Now, referring to the tube curve given by the manufacturer, the plate current is about 7.3 ma. which is pretty close to the above figure.

We put a milliameter in the plate circuit and read this value. Then, tuning the set to resonance with a strong local station, we again check

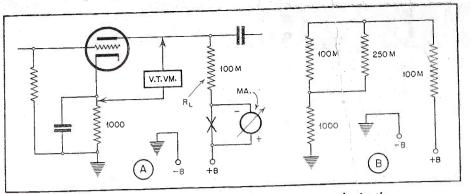


Fig. 2. Measure plate resistance and current to obtain the plate voltage, in a tube having high resistance plate load.

the plate current and find that it is down to 2 ma. Referring to the curve, we see that this value of plate current occurs when the bias on the tube is -10 volts. We now check the cathode current. We find it is 3 ma. Therefore the drop here is $350 \times .003$ or 1.05 volts and the d.c. voltage across C1 must be 10 - 1.05or about 9 volts. Thus, indirectly, we have measured the bias supplied by the a.v.c. system, without using a vacuum tube voltmeter.

Although it hasn't been used very much in recent years, the simple method of Fig. 4 is useful for checking tubes when a regular tube tester is not on hand. For example, assuming a 6C5 has a plate current of .005 ampere (5 milliamperes) and a bias of 2 volts, by cutting in series with the grid circuit another battery of -1.5 volts we raise the bias to 3.5 volts and the plate current is now down to .0025 (2.5 ma.). The change in plate current divided by the change in grid voltage and multiplied by 10⁶ (1 million) equals the G_m or mutual conductance. In this case it would be 5 — 2.5 or 2.5 ma. for the plate current change. Then, .0025 divided by 1.5 gives .001666. Multiplying by 10⁶ or moving the decimal point six places to the right, we get 1,666 mhos as the G_m . The figure given by the manufacturer in

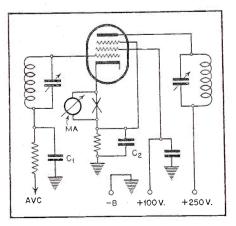


Fig. 3. The milliameter indicates the plate and screen current by means of the cathode current. the tube chart is 2,000 mhos and we would pass the tube as good. The shift in bias should be kept at a low figure to obtain a small shift in plate current. Then, best accuracy will result.

Computing Voltage Amplification

In order to obtain the voltage amplification of a circuit such as the one in Fig. 4, we could use a vacuum tube voltmeter for the measurement of e_1 and e_2 . The ratio of e_2 to e_1 would be the gain. Thus, if e_2 measured 10 volts and e_1 was 1 volt the gain would be 10 times. Assuming the G_m is 2,000 mhos, the plate current is .001 ampere (1 ma.) and the plate voltage is 100 volts, what will the gain be for an assumed amplification factor of 20 and a plate load of 100,000 ohms? The following formula can be used:

$$V.A. = \frac{G_{in} R_{p} R_{L}}{10^{7} (R_{r} + R_{r})}$$

where V.A. = voltage amplification $G_m = mutual$ conductance in mhos $R_p = plate$ resistance of tube (plate volts/ plate current) $R_L = load$ resistance.

Then, substituting in the formula, V.A. =

 $2,000 \times (100/.001) \times 100,000$

$$\frac{10,000,000[(100/.001) + 100,000]}{2,000 \times 10^{10}} = \frac{2 \times 10^{13}}{2 \times 10^{12}} = \frac{10^{17} \times 200,000}{1 \times 10} = \frac{10}{10}$$

Or, the following formula can be used:

$$V.A. = \frac{MR_{L}}{R_{L} + R_{p}} = \frac{20 \times 100,000}{100,000} = 10$$

where $M = amplification \ factor \ of tube,$ obtained from tube chart.

These calculations need not be performed in most cases but come in handy at times. As a more practical problem to be solved, let's take the case of an ordinary signal generator. For alignment work it is essential that a good signal generator of high accuracy be on hand.

Aligning Short-Wave Bands

The alignment of a superheterodyne on the broadcast band is comparatively simple but a good job on the short wave bands is not so easy. In the past, many servicemen have not worried too much about short wave alignment because poor reception could always be blamed on "conditions" and they could get away with it. But today many people are interested in short wave and want their receivers to operate properly. Of course, only American citizens may have such sets. In order to align the circuits accurately, the average serviceman's generator is not accurate enough to do the job unless it is checked against a standard station. A practical procedure, instead of buying a crystal oscillator, which is expensive, is to zero beat the 1,000 kc. output of the generator against a standard broadcast station. The station is tuned in and the generator, in the unmodulated position, is tuned close to the station frequency. As you get close to the station a heterodyne is heard which is somewhat high pitched. Then you approach the point where a very low frequency sound is heard. Continuing on you hear the low frequency sound again. In between, where no sound or zero beat is obtained, is the correct position of the generator signal.

The 1,000 kc. fundamental will give strong harmonic signals up to about 20,000 kilocycles. From there on you must use 5,000 kc. as the fundamental for good results. Then, in calibrating an F-M receiver, you

(Continued on page 22)

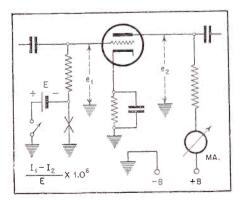


Fig. 4. A simple but old method of testing tubes when a regular tube checker is not available.

TECHNICAL SERVICE PORTFOLIO

SECTION XXV

MODERN P. A. AMPLIFIER DESIGN PRACTICE

ANY servicemen who are competent to repair or adjust even the most complicated radio receivers run into difficulties when working on public - address amplifiers. Yet the circuits in the latter are fundamentally far more simple than many which are encountered in modern radio receivers. Difficulties arise principally, we believe, because the average serviceman just hasn't bothered to familiarize himself with the circuits and peculiarities of high-gain audio amplifiers. Generally such amplifiers are purchased rather than assembled by the user, not so much because they are so difficult to manufacture, (they aren't), but because a professional appearance is essential in any apparatus

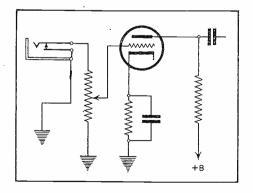


Fig. 1. This type of input circuit is employed only when using phonograph pickups or microphones with very high output. which is to be exhibited to the public and this cannot be obtained economically except in quantity production. And because these manufactured amplifiers have given surprisingly reliable service, considering their cost, it hasn't been necessary to learn the details of their design in order to handle the more usual repairs which are likely to be required.

Amplifier Modification

Now that it is no longer possible to replace amplifiers which develop serious/troubles, because most manufacturers are now engaged solely in war work, a great many amplifiers which | would normally be retired from service will require repair. In fact, we are going to have to put back in service many antiquated amplifier's which, in normal times, would be junked. Some will need rebuilding in order to provide sufficient gain for modern microphones or to improve their performance. Modern amplifiers, as we shall see, are much simpler than some of the older types, and we shall often find that it pays to/spend a little time and effort in mødernizing some of these older instruments. For modern design improvements make possible the greater gain, power output and lower hum level, required to meet present - day needs, and can be effected often with but little difficulty.

Many of the older, relatively lowgain p.a. amplifiers were designed for use with carbon microphones and, when less sensitive mikes were employed, such as the condenser type, made use of pre-amplifiers. Now, at least for p.a. work, the preamplifier is a rarity. The input circuits of such low-gain amplifiers were often designed along the lines of audio amplifiers in radio receivers. The volume control was placed right in the input circuit, as shown in Fig. 1. With the advent of highgain tubes and resistance-coupled stages, concurrently with the wider use of less sensitive but better fidelity microphones, the volume control was moved to the second stage input.

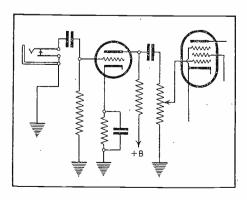


Fig. 2. In high-gain amplifiers for modern microphones, the volume control must be placed in the second stage input. age developed across the junction of these two resistors is 7000/257000th (about 1/36th) of the total grid voltage applied to the upper tube grid. When this signal voltage is amplified 36 times by the remaining section of the 6SC7, we see that the resulting signal voltage applied to the lower output tube grid is the same as that for the upper tube grid. However, the phase is reversed so push - pull operation of the output tubes is obtained. This circuit is not as good as the preceding one, with respect to uniformity of performance, since the analysis shows that proper operation depends upon the gain of the tube remaining constant and at a fixed value, while the preceding circuit operates properly no matter how much the gain varies. However, the high gain of the circuit of Fig. 7 has made it a favorite and, practically speaking, a surprising amount of unbalance due to variation in gain is not detectable by ear.

Tone control is usually incorporated in the input to the last stage. A suitable circuit which will provide considerable reduction in high-frequency response is shown in *Fig. 8*.

Resistance-Capacitance Filtering

One innovation which is coming into quite general use, and which offers a welcome saving in weight of portable or semi-portable p.a. amplifiers is the substitution of resistance-capacitance filtering in the power supply for the more usual choke-and-condenser combination. A typical arrangement of this type is shown in Fig. 9. Note that the output tube plates are fed directly from the start of the filter circuit, thus avoiding the high voltage drop which would otherwise result if the connection of the output transformer were made after the 2000-ohm filter resistor. The only filtration for the output plates is that provided by the 16-mfd condenser from rectifier filament to ground. This type of circuit is practical only with push-pull output tubes, because the hum voltage applied to the output tubes is opposite in phase and tends to cancel out. Perfect cancellation is not obtained, however, because no two output tubes are identical. Some hum always remains, but this is reduced because the output voltage is stepped down by the output transformer. Looking at it another way, the signal voltage is always greatest at the output tube plates; therefore the ra-

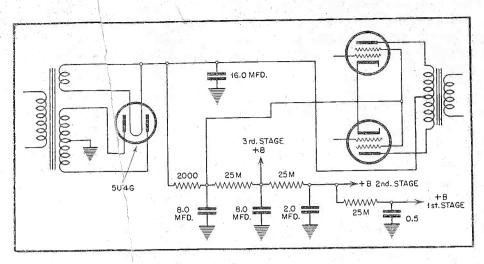


Fig. 9. Chokes are supplanted by resistors in the filter circuits of this power supply, thus saving weight and space.

tio of the signal voltage to the hum voltage will be greatest when whatever hum is introduced arrives in the output plate circuit. The hum level in any p.a. system is always expressed as a ratio of maximum signal to hum, because the hum will then be blanketed by the signal.

A.C.-D.C. Circuits

Often it is desirable to operate a p.a. amplifier from either a 6-volt d.c. source or from 115 volts a.c. An amplifier which is designed to operate from either of these sources is shown in schematic form r Fig. 10. As illustrated, a motor-generator supplies power for 6-volt operation, while the conventional power supply is available for 115-volt a.e. supply. This amplifier is the Lafayette Model 458 DeLuxe Mobile type. The rated power output is 30 watts; the gain of the microphone channels is given as 130 db, and of the phonograph channels as 90 db.

In Fig. 10, the two 6J7 tubes serve as individual first-stage amplifiers for the two microphone inputs. The mixing of these two inputs (and of the phono input which is joined to one of the microphone first-stage output channels) is accomplished electronically by means of the 6C8G dual triode. Note that the top 6J7 is coupled to one grid of the 6C8G while the lower 6J7, along with the phono section, joins to the remaining 6C8G grid. The 0.25 megohm resistor in series with the phono volume control serves to minimize the reaction on the mike control whi h would otherwise result when th's control is adjusted, or vice versa.

The plates of the 6C8G electron mixer are joined in parallel, and ar

coupled by means of the 10,000-ohm load resistor to one grid of the next 6C8G, which is used as a phase inverter. The 5-megohm control in series with the 0.1 mfd condenser, shunted across the .001 mfd condenser in this coupling circuit forms a treble boosting device. When the moving arm of the 5-megohm potentiometer is so adjusted that all the resistance is in the circuit, the high frequencies are by-passed around this potentiometer, while the low frequencies are attenuated. Thus the high frequencies reach the phase inverter grid with but little attenuation and are consequently stronger in proportion to the lower frequencies than they otherwise would be. So treble emphasis is thus obtained. The 0.25 megohm control, to which the 0.1 bypass is connected, forms a conventional bass control, which emphasizes the bass by attenuating the treble.

The operation of the phase inverter in this circuit is similar to that described before, and illustrated in Fig. 7. Since the plate load in the

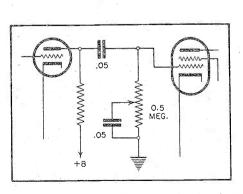


Fig. 8. This phase inverter circuit gives considerable gain as well as phase inversion.

circuit of Fig. 10 is 0.1 meg while that in Fig. 7 is 0.25 meg, there is less gain in the circuit now under discussion. Thus we find that the divider circuit in the 6E6 input grid is here composed of 0.25 meg in series with 10,000 ohms, instead of 7,000 ohms, as in Fig. 7. The gain of this circuit is thus estimated at 26.

The high power output obtained with this compact amplifier is secured by using a Class B output stage, consisting of two 6Y7G's. For mobile applications, the slight additional distortion which results when Class B operation is employed is more than compensated for by the high efficiency of this form of power amplification.

Eliminating Hum

In using any high gain amplifier, one of the most frequent causes of unsatisfactory operation is excessive hum. In most cases, this trouble is not caused by any fault in the amplifier design, but rather to improper or careless use of the mike or its associated cable and coupling medium. It is absolutely essential that every point between the grid of the first

tube in the amplifier and the microphone itself be completely shielded. With crystal and other non-magnetic types of microphones, this is not difficult. We must make sure that a shielded plug is used, that the microphone cable shield is continuous. with no bare spots or breaks, and that it connects to the ground of the amplifier chassis. Grounding all along the line is important. Sometimes it is found that a reduction in hum is obtained/when the a.c. power plug for the amplifier is reversed in the wall connection. There are times when an external ground, connected to the amplifier, reduces hum; sometimes it makes it worse. If there is no bottom cover on the amplifier, hum pickup may result; likewise if the input tube grids are unshielded.

With magnetic types of microphones, or with other types if a coupling transformer is used, it is essential to keep the microphone and its coupling, transformer well away from the am plifier, particularly from the power ransformer. With very sensitive amplifiers, hum pickup will result due to electromagnetic couping even though the coupling transformer and power transformer in the amplifier are several feet apart. Usually, though, the mike or transformer may be turned in such position that minimum coupling, and consequently minimum hum, results. Of course, nearby electrical machinery of any type creating an external field will likewise induce hum in the manner just described.

Most amplifiers are equipped with many taps on the output transformer secondary, so that a variety of output impedances are available. Sometimes it is a problem to decide just which ones to use, when it is possible to match the impedances by connecting voice coils in series or in parallel, or by selecting any pair of a variety of taps on the coupling transformer associated with the speaker. For long lines, say from 50 to 500 feet, it is fairly standard to use a 200-ohm or 500-ohm line. In such cases, the output tap on the amplifier is connected to the corresponding input tap on the speaker transformer. For short lines, the speaker voice coil may connect directly to the output transformer secondary of the amplifier. If the line is long, and the speaker voice (Continued on page 24)

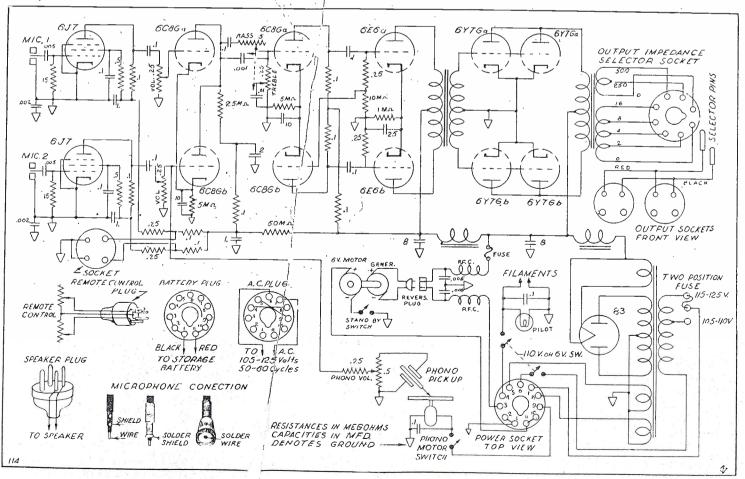


Fig. 10. A complete

hematic of the Lafayette 30 watt Type 458 Mobile Amplifier.

CHOOSING A MICROPHONE

(Continued from page 8)

transmission line. Such a line may be useful when it is necessary to avoid stray pickup in strong electric fields, which are hard to shield against when a high-impedance line is used, as would otherwise be required in connection with the crystal mike.

Condenser Mikes

Condenser mikes are not often used in field radio work nowadays. partly because of their low sensitivity in comparison with other present-day high-impedance microphones, and partly because of the precautions which are necessary in their handling and application. In the condenser mike, an extremely light dural diaphragm is placed close to, and insulated from, a back plate of substantially the same shape and physical dimensions. Thus these two plates form a condenser. To the diaphragm is applied a polarizing potential, often as high as 500 volts. When sound waves strike the diaphragm they cause it to vibrate, thus varying the capacity between the diaphragm and the back plate. This variation in capacity varies the voltage across a resistor placed in series with the polarizing voltage source, by varying the electric charge on the condenser. The varying voltage across the resistor is applied to the input circuit of a high-gain amplifier.

Because of its extremely high impedance and relatively low sensitivity, it is necessary to use a pre-amplifier in conjunction with condenser mikes. Often the pre-amplifier is built right into the microphone housing. This is desirable, because the capacitance of the leads must be kept at a minmum, otherwise the sensitivity of the mike will suffer. After the pre-amplifier raises the mike voltage appreciably, the output signal is fed to the main amplifier. Although the condenser mike is highly desirable because of its excellent fidelity, the complications of the polarizing voltage source, which must be either pure d.c. or from an extremely well filtered power supply, plus the need for a pre-amplifier, have limited its applications to studio work and to special work in the sound measurement field.

Velotron Mikes

One type of mike which has been widely used is a combination of rib-

bon and condenser mike. in which a charged and insulated plate is employed in conjunction with thin strips of dural which serve to vary the electrostatic field when actuated upon by sound waves. This mike has many of the advantages of the condenser type plus considerably greater sensitivity. Two types are available; one which requires a polarizing voltage supply and another which does not. This variety of microphone is known as the Velotron. Because of its high sensitivity. less gain is required in the amplifier and the polarizing voltage, if reis determined from the formula Microphone rating in db = 20 log10 Eo/1 volt per bar where Eo is the open-circuit output voltage.

We might digress for a moment to tell what is meant by "open-circuit" output voltage. This is the voltage across the microphone output terminals, when it is connected to no load. That is, as measured with a high-input impedance device, such as a vacuum tube voltmeter. If there is a transformer built into the mike housing, this is the voltage across the transformer terminals, not across the mike element. Usually, if

MICI	ROPHONE RATINGS	
Type of Microphone	DB Rating	Impedance (ohms)
Velocity (P.A. Types)	-56 to - 70	200-2000
Velocity (Broadcast)	-74 to -100	250
Dynamic	88	20
Crystal	-46 to - 86	*High
Carbon	-40 to - 55	100-400 ohms

DICI

quired, need not be so completely filtered. These mikes are extremely directional and may be operated within a few feet of the reproducing speaker without feedback, provided care is taken to put the mike at such an angle with respect to the loudspeaker that no sound waves impinge directly upon the mike.

Rating Mikes-the Bar

Microphones are rated on their open-circuit output voltage for a given sound pressure input Sound pressure is expressed in terms of dynes per square centimeter, and a sound pressure of one dyne per square centimeter is conveniently designated as a bar. A sound pressure of one bar is equivalent to that produced when a person speaks into a microphone at a normal conversational level with the microphone about 10 inches from the speaker's mouth. The reference level vpon which most microphone ratings are based is one volt per bar, which means that a microphone which delivers an output of one volt when spoken into at a normal conversational level with the mike 10 inches from the speaker would have a rating of 0 db. Actually, no microphone will deliver an output of 1 volt under such conditions, consequently the rating is always less the 0 db. Ĩn general, the voltage output will be of the order of 1 millivolt, which is equivalent to -60db. This db rating

there are taps on the transformer, the output rating is specified as the open-circuit voltage across a 250ohm line, if the impedance happens to be this value across the taps under consideration. When the mike is actualy connected to a properly terminated line, the output voltage will be just one-half, or 6 db less, than the open-circuit voltage. In the case of crystal and other high impedance mikes, or of low impedance mikes working into grid circuits directly, the output voltage will be the same as the open-circuit voltage and consequently the rating will apply directly.

Some microphones are rated on a basis of a 10-bar reference level. This rating may be converted to the more usual 1 bar level by subtracting 20 db from the 10-bar rating. Thus a mike rated at -70 db for a 10-bar reference level would have a sensitivity of ---90 db for a 1-bar reference level. It is desirable to make this conversion in every case, otherwise it will lead to difficulties when attempting to use such mikes with amplifiers of limited gain. It is unfortunate that some of the finest mikes do not have greater sensitivity, but such is the case. A tabulation of representative types of microphones and their range of sensitivity is shown in Table I. Note that the ranges given are not for a single type of mike but for the most sensi-

(Continued on page 26)

Radio Service-Dea

January to December, Inclusive

Issue Page ANTENNA Ăuto Loop Loop Aerials: for store demonstration Mar. 17 Altering Enemy Alien Multi-Band Sets Feb. 4 Loop Coupling in 1941-42 receivers Jan. 16 Loop Receivers: hi-impedance primaries. Mar. 17 17 Silvertone 7072 loop receiver May 17 Witcox-Gay A-105 antenna loop adjustment 19

6

18 24

16 11

Television

Installing	Television	Antennas	

AUDIO AMPLIFIER

Circuits

BATTERY OPERATION

Crosley 52-FC June Improvements in circuit design Jan Locating Interference with RCA BP-10 Jan RCA Model 26BP Apr. Silvertone "Powr-Shifter" Sept. War-Time Servicing-Batteries Mar.

BIASING

. . . .

A-F and 1-F contact-potential biasing. Jan.	16
Dias control in Silvertone 7167	10
Dias in Silvertone Model 7180 Cont	+11
Diceuer Dias in Power amplifiants	10
Gas Gate	19
IF-AF Bias	
KP and G-Part III to Isto F Pitter Apr.	16
KP and G-Part III by John F. Rider Jan.	6
Metering Miracles, by L. R. Byron Dec.	10
The decision Annumer Design Prophing Des	12
	17
ACA VAR-212 higsing 6K6CT to have the	18
Self and Semi-Fixed Bias	31

BOOK REVIEW

Automatic Record Changers and Re-	
COLUCIS, DV. IONN H Ridow Ton	:5
+274 INCULACCINCILE VINEATOR CHINGS have D	
	20
MYE Technical Manual, by P. R. Mal-	29
lory & Co Dec.	
	28

BUSINESS ARTICLES

Adding Earphones for Profits, by Wil-	
1001 4 102 00 4 V	10
	- 4
4 Lactical Fricing Method	22
	- 8
ANGLESSE I DHY NAT ON HOWE LOD	20
Tring Stridt SUUTION Tring	28
modelinze dels hy Adding Recorders	20
by Willard MoodyAug.	. 8
OPA Price-fixing Order Analyzed May	
Thinking Ahead on Servicing, by J. J.	7
Kahn Nov.	
"Too Little Too Leta"	13
"Too Little-Too Late"July	3
"Victory Dinner"	14
Vigilance for VictoryJan.	4

CIRCUITS

(Also see "Circuit Court")

See ("Audio Amplifiers")

Issue Page, Receiver Belmont Model 7D22 May Coronado C579 Crosley 52-FC Crosley 52-TO Crosley 72CA . . Sept. . . June Crosley 52 TO Crosley 72 TO Crosley 72CA Emerson GH 437 and GH 438 GE-LC-679 GE "Musaphonic" Model 35 GE Model 40 "Musaphonic": A-FM Comb Torola 101C31 Pilot A-FM Model T-301 RCA 15X, 36X RCA VHR-212: RCA Model 26BP RCA Model 26BP RCA Model 26BP RCA Adiola 552 Silvertone 101.660 Silvertone 7072 Silver Apr. May Feb. 2........ Sept. Apr. May Mar. Jan: May June Apri Nov Apr. Mar. Sept. Nov. June Mar. Wilcox-Gay A-106 F-M Receptor Wilcox-Gay Models A-113, A-114; CIRCUIT COURT

	· · · ·
AC-DC Electric Phomograph	A
AC-DC Phono-Radio	Apr.
Aptenno Wawa Tran	Feb.,
Antenna Wave Trap	Feb.
Audio regeneration	May
Bass reactor	. Jan.
Bass reactor Bias Control tube	Jan.
Bleeder bias	Tan.
Cathode coupled oscillator	Sent.
Bleeder bias Cathode coupled oscillator Cascade Limiter	May
Crystal Pickup Response	Fab
Eliminating feedback	Tuno
F-M Alignment	Mar
F-M Carrier Systems	ALdI.
Eliminating feedback F-M Alignment F-M Carrier Systems Gas gate Grid bias in Silvertone 7167 High gain portable IF-AF Bias	war.
Grid bias in Silvertone 7167	jan.
High gain portable	Nov.
TEAE Bing	Apr.
IFAF Bias Loop preselector Loop Transformer Negative bias of supresson of CCE2	Apr.
Loop Tropoformed	Jan.
Negotino hier	. Feb.
Negative bias on suppressor of 6SK7	Sept.
Oscillator-Converter	May
Oscillator-Converter Oscillator Converter Oscillator Core [Adjustment Phono Circuit of GE Model 35 Phono compensition circuit with card	Feb.
Oscillator Coupling	. Mar.
Phono Circuit of GE Model 35	. Apr.
Phono compensition circuit with serie Equalizer	s .
Equalizer	. Nov.
Phono compensation circuit with shunt	
"Powr-Shiftr" Selective Regeneration Self & Semi-Fixed Bias	Nov
"Powr-Shiftr"	Sent.
Selective Regeneration	E.F.
Self & Semi-Fixed Bias	Fab
Speaker resonance curvers Station Silencer Variable basstreble tone control Wireless phonoradio resorded	· reb.
Station Silencer	. Sept.
Variable bass treble tone control	. May
Wireless phono-radio recorder	Way -
in mercas phono-raulo recorder	. Mar.

COILS

"Q" in coils, etc. Repair Rather than Replace, by H. F Gulliver . July

CONDENSERS

	Modern Slants on Intermittents, by John H. Potts
	H. Potts
-	F. (+11/1/1/191
	U -in couls, etc
	"Q"-in colls, etc. July Saving Condensers. July Testing Condensers
	Testing Condensers

ELECTRONIC APPLICATIONS

Electronic Equipment-Sales & Service . Sept.
Industrial Electronics-sales & Mainte-
nance / Arra
Vigilance for Victory

COMPENSATION

(See "Tone Compensation")

FREQUENCY MODULATION Circulits

CHCH				1.12				
Pilot	A-FM M	odel	T-301 .			 .	. Ja	n.
Silven	tone 709	9: S'	W-A M-	FM -			Sar	1
Wilcd	x-Gay A-	106 F	-M Ree	ento	r .		Ma	*
Zenit	ı A-FM	(chase	sis 22B	1)			.Ma	r.
Gene			- •					

GE IF 115 and 116 alignment data ... July Simplified 1941 design of F-M Jan. Testing & Aligning F-M Receivers Apr.

1942 INDEX

Issue Page

17

6 12

28 18 12

INDICATORS

1.5

14

14

8 18

18 16

40

28

1.0

20 13

. 10

1.5 20

10 16

1.6 20

16 13

16 16 29

13

8

16 31 17

16 17 28

5

6

6

16

15 13

14

13

13 10

13----

(See "Servicing-Equipment")

INSTANTANEOUS RECORDERS

	(See "Recording")	'
	INVERSE FEEDBACK	
	Commonly Used Forms of Phase Inversion	211
	improved frequency response in RCA	
`	KP and G-Part III John F. Piden	ov.

and G rate III, John F. Rider Jan.	6
Modern P.A. Amplifier Design Practice Dec.	12
Power and degeneration Top	76
Practical Negative Feedback Feb	11
Spring Cleaning 1942, by John H. Potts Mar.	11
Potte	
1 0005	- 7

MICROPHONES

Choosing a Microphone, by John H.	
Potts Dog	
Modernize Sets by Adding Recorders.	
by Willard Moody	

PHONOGRAPH

Compensation

(See "Tone")

Record Changers

Crosley NP-358 Record changer adjust-	
ments	1
Farnsworth P-32: service notes	
GE LRP-32: service notes	
RCA RMP-110: record changer adjust-	
mentsJuly	1
RCA RP-151 Record Changer Adjust-	
ments Anr	1
Silvertone Automatic Record Changer .Jan.	֔
Wilcox-Gay "Insta-Matic" Record	,
Changer	1
Recording	
Modernize Sets by Adding Recorders, by	

Willard Moody Aug. 8

Record Players

Emerson Phono Combination Apr. 16

٠.

PICKUPS

General	
Unaccountable Distortion in Crystal Pickups	1
Soldering leads to Crystal cartridges Mar.	2
Compensation	
Crystal Pickup ResponseFeb.	1
Phono Compensation with series	
Equalizer	2

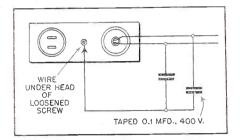
Phono Compensation with shunt Equalizer RCA VHR-212: Compensation to preventNov. feedbackJune Record player attachment tone compen-

·12

PUBLIC ADDRESS

Choosing a Microphone, by John H.
PottsDec. Industrial Sound InstallationsJune
Lafayette Mobile AmplifierDec.
Modern P.A. Amplifier Design Practice.Dec.

RECORD CHANGERS


(See "Phonograph")

SERVICING

	Equipment	
		'i
	About Tube CheckersAug.	<u></u> 1
	Aerovox 75 Capacity-Resistance Bridge. Oct.	1
	A satisfactory VTVMApr	
	Design and Maintenance of Ohmmeters May	1
	MilliametersDec.	1
	Noise Generators in Servicing, by John	
	H. PottsNov.	
	Servicing by Signal Injection, by John	
	H. Potts	
۰.	Servicing Your Signal SourceJune Solar CE Exam-EterOct.	1
	Solar CE Exam-EterOct.	1

see C_s . Here, the lowest frequency signal is also obtained with maximum padder capacity and we always start from maximum capacity and work out. We select the second peak. On broadcast we select the first peak in making adjustments, since the oscillator is to be aligned on the high side of the signal.

The sensitivity of the set should be checked by running the signal generator dial in step with the receiver dial and noting any wide change in output as this is done. It takes a little practice to get the hang of turning the generator dial with the left hand while moving the receiver dial with the right, but it is a useful test. In this way, dead spots are found. Some receivers are so poorly designed that absorption takes place and there is nothing you can do about the dead spots due to coils being crowded into spaces where an ant would need to wriggle to get through. But the manufacturers don't build commercial brand radios to have perfect short wave

Fig. 6. A simple line filter.

response although many of them are pretty good. So just keep that point in mind before deciding your alignment job is not the best that can be done. For example, in tuning the dial of a typical set from 6 megacycles to 20 megacycles it was found that dead spots occurred 12 to 14 and 9-10. Moving a hunk of paper condenser out of the field of one of the short wave coils cleared up the condition.

Noise Filters Help

Surprisingly enough, a line noise filter seems to work very well on short wave, even better than on broadcast, and to boost signal strength. It may consist of two condensers, so arranged that each side of the power line input to the radio is by-passed to ground. The ground connection may be on the wall plate of the electric outlet and should be short and direct. This is shown in Fig. 6.

Profits in servicing these days are greatest when you go after and do

test when you go after and do A

the jobs which require skill and labor rather than material. The data given here, it is hoped, will help you do just that.

The Tube Situation

The critical shortage of replacement tubes is apparent to all Service-Dealers and Jobbers. On November 27th the Crosley Corporation of Cincinnati sent a letter to all their distributors. We reprint that letter in full that all "RSD" readers may have a clear picture as to how matters stand.

TO ALL CROSLEY DISTRIBUTORS:

Many Crosley distributors are having difficulty obtaining radio tubes. This letter has been prepared to assist in this problem.

All radio tube manufacturers have on hand government orders many times their maximum peace-time production. As a result but few civilian types of tubes are being manufactured and many tube models are becoming very scarce. Government release on additional civilian tube manufacturing has been very slow due to their inability to determine exactly the number of tubes

(Continued on page 25)

"Of Course, I'd Rather Use My Car

... but if the boys in the service need the gas, I'm satisfied to do with less".

People have willingly given war needs a priority over civilian desires.

If you explain to your customers why radio parts are scarce—and how you licked an "impossible" situation to get their sets operating at all—they will accept those repair jobs that may be "a little less than perfect."

Naturally, you don't like to work on the antiquated sets you're getting today—especially with the shortage of men and materials. But, it's your patriotic duty to keep 'em playing—even if you have to improvise repairs. Of course, to do this efficiently you must know exactly what's inside the set.

That's where Rider Manuals save you time. They lead you right to the cause of failure and furnish you with the facts that speed repairs.

So, don't waste time "guessing out" defects and "experimenting" with possible methods of improvising repairs. Reach for one of your thirteen Rider Manuals when you begin *every* job. It's good sense and good citizenship to work efficiently today. It conserves parts and saves labor-both critically scarce right now.

RIDER MANUALS

OTHER RIDER BOOKS YOU NEED

 The Cathode Ray Tube at Work
 \$3.00

 Frequency Modulation
 1.50

 Servicing by Signal Tracing
 3.00

 Moter at Work
 1.50

 Oscilator at Work
 2.00

 AFC Systems
 2.00

 HOUR-A-DAY-WITH-RIDER SERIES—on "Alternating Currents in Radio Receivers"—on "Resonance & Alignment"—on "Automatic Volume Control"—on "De Voltage Distribution."

 900 'each

JUST OUT!

A-C CALCULATION CHARTS—Two to five times as fast as a slide rule—and more fool-proof. All direct reading—operative over a frequency range of from 10 cycles to 1000 megacycles. 160 Pages—2 colors— $9\frac{1}{2}\times12$ inches—\$7.50.

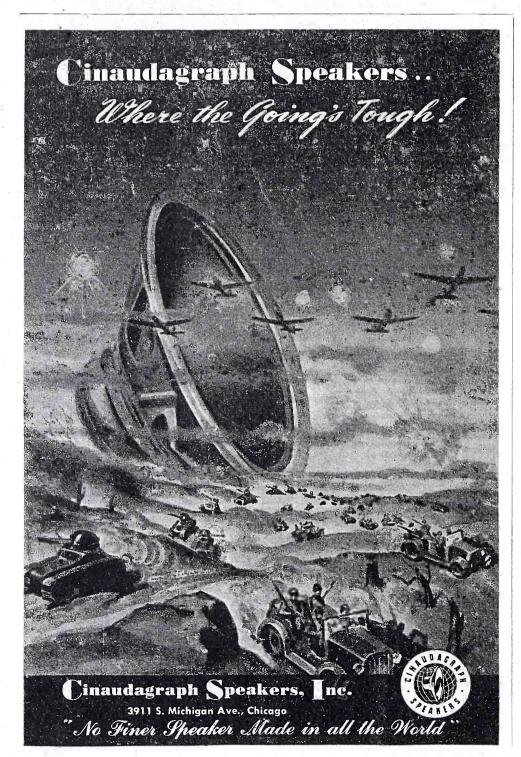
FOR EARLY PUBLICATION

Inside the Vacuum Tube-complete elementary explanation of fundamentals of vacuum tubes.

John F. Rider, Publisher, Inc. 404 Fourth Avenue, - New York City Export Division: Rocke-international Electric Corp. 100 Variek St., New York City Cable: ABLAB

MODERN P.A. AMPLIFIER DESIGN PRACTICE

(Continued from page 18)


coil resistance is low, it is possible that considerable power will be lost in the line when this method of connection is used, due to the resistance of the leads.

When several loudspeakers are being used, it is essential that their voice coil impedances be identical if they are to be connected in series or parallel. If not, separate coupling transformers, with primary impedances of identical value — generally 200 or 500 ohms—should be employed. If four speakers are being

used, with 500-ohm coupling transformers, they may be connected in series-parallel to provide an impedance which remains at 500 ohms for coupling to the output transformer of the amplifier. When the taps on the output transformer do not match any of the impedance values of the speaker transformer or voice coil, it is better to connect to a tap of lower impedance rather than of higher impedance. for minimum distortion. In general, considerable mismatch is possible before noticeably bad results are obtained, so don't be too academic about it.

Feedback

Acoustic howl due to feedback is one of the most common annoyances

encountered in p.a. work. The remedy, of course, is to keep the reproduced sound from the loudspeaker from getting back into the amplifier input circuit via the microphone, but there are times when this is none too easy. The first step is to place the loudspeakers in such manner that reflection of the sound back of the mike is at a minimum. When this is difficult or impossible, the next best method is to shield the mike acoustically. This is accomplished by placing it in a box padded with sound absorbent material, such as cellotex. A small hole is cut in the box to speak into. This arrangement affects the fidelity somewhat, though not as much as one might expect, but does eliminate acoustic feedback.

Trap-Circuits

Some microphones are more subject to trouble with acoustic feedback than others. This is the case when a resonant peak is present in the mike response curve. The same effect is caused, and more frequently, by peaks in the loudspeaker response. This effect can be noted by taking cognizance of the howl frequency. If a trap circuit is introduced — simply an iron-core choke and condenser in series-across the grid circuit of one of the amplifier stages, this peak may be greatly attenuated so that the microphone may be used closer to the speaker. The values of choke and condenser may be varied until the desired frequency is obtained. This is facilitated by using a calibrated audio oscillator to determine the frequency, whence it is possible to compute the required values of capacitance and inductance for the trap circuit.

Placing the microphone in another room, totally shielded acoustically from the loudspeakers, or well back on a stage, with the loudspeakers set in the walls in front and at each side of the stage, are methods frequently used to minimize acoustic feedback. When the operator of the amplifier is not in the audience, it is somewhat difficult to gauge the required volume level. This is best determined by test beforehand, noting the level on an output meter connected across the amplifier output when an assistant advises that the level is satisfactory. This may then be maintained during the performance.

Volume compressors and expanders have advantages in many p.a. applications. However, these circuits are rather involved and are therefore being considered in a separate article to follow.

🖈 BUY WAR STAMPS 🖈

THE TUBE SITUATION

(Continued from page 23)

on hand for all distributors or accounts. We can, therefore, expect but little relief during the next few months.

There are tubes available, however, each tube manufacturer does not have all tubes and certain tubes are not available at all. Tube characteristics are such that your radio service man can make many tube substitutions by slight changes in the circuits, which do not affect the set's performance. Tube data sheets, which various tube manufacturers have supplied and are still able to supply, furnish this information.

To obtain tubes, it is first necessary that a PD-1-X, properly filled out, is presented to the War Production Board. The following instructions, if carefully followed, will assist you in obtaining priority assistance.

- 1. Use a separate line for each tube model number. Enter the tube model number in Column B.
- 2. In Column C, enter your physical inventory, as of December 31, as closely as possible in dollar value.
- 3. In Column D, enter your receipts of the particular model tube from January 1 to date of filing the PD-1-X. Remember that if a PD-1-X form is entered Dec. 1, 1942, the amount shown in Column D is for eleven months, and 1/11 of this amount will represent to the War Production Board your monthly purchases.
- 4. Column \hat{E} is to show your inventory for each model as of the filing date. In handling your application, the War Production Board will add together Column C and Column D, and subtract from this Column E, to determine usage for the period covered. Again, considering eleven months, your monthly usage would be taken as 1/11 of this amount, that is, Column C, plus Column D, less Column E. The amount which you can request in Column F will be 1½ times this figure. If anymore is requested, it will be denied.
- 5. Column A can then be filled out with a quantity, the cost of which will be equal to the value determined in Column F.

The handling of the PD-1-X form by the War Production Board is on the basis of simple arithmetic, as shown above. If the result of the arithmetic shows a request for more than a $1\frac{1}{2}$ month's supply, the request will be denied. The amount of time and effort necessary to obtain priority assistance by means of this form can be greatly reduced by paying careful attention to the above instructions.

After obtaining approval and a priority rating of A-3, or better, tubes may be ordered from anyone of the following companies:

Hytron Corporation, Salem, Mass. Ken-Rad Tube & Lamp Corp., Owensboro, Ky. Raytheon Production Corp., New York, N. Y.

RCA Manufacturing Co., Inc., Camden, N. J.

Standard Arcturus Corp., Newark, N. J.

Sylvania Electric Products, Inc., Emporium, Pa.


Tung-Sol Lamp Works, Inc., Newark, N. J.

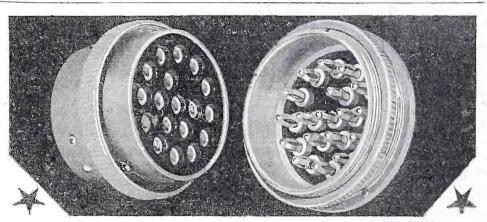
If certain tubes cannot be obtained from your regular source of supply or anyone of the above listed companies, do not hesitate to try another supplier. It is a strict ruling from the War Production Board that manufacturers having replacement tubes available must accept and fill orders according to priority rating, regardless whether or not previous purchases have been made by the customer. If any manufacturer should refuse to ship because they have not furnished you tubes in the past, advise Mr. Frank MacIntosh, War Production Board, Room 4320, Social Security Bldg., Washington, D. C.

(3)

We sincerely hope that the above information will be of assistance to you in obtaining those radio tubes necessary to continue your radio service operation.

(Signed) H. A. Newell General Service Manager, The Crosley Corporation

National Union Radio Corp., Newark, N. J.

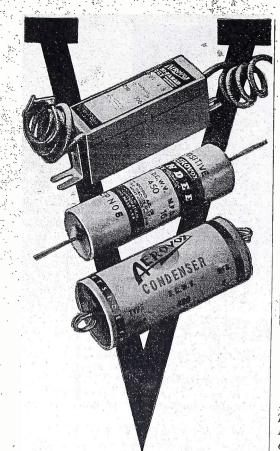

power ratio leads us into difficulties. For, if the 2 megohm resistance is replaced by a 20-megohm resistor, the gain of the amplifier will not be increased in the slightest degree, yet the ratio of output power to input power will be greater. This formula (a) will not work in such instances. This should be qualified by stating that the formula applies only in such cases where the microphone impedance equals that of the input resistor employed. Because the amplifier resistance will always be much higher than the impedance of the mike, the gain will be the same no matter whether the input resistor is 2 megohms or 20 megohms. Because of this anomaly, it is now customary to state in the amplifier rating just what input resistance is assumed in making the calculations. Usually this is specified as 150,000 ohms. Actually, the resistor used is always higher than this value.

A much better form of rating amplifiers is to specify the voltage input required for full output. If for instance, we know the microphone rating to be -60 db, then we also know its output (open-circuit) is 1 millivolt for a sound pressure of 1 bar. If we have an amplifier which will deliver full rated output for 1 millivolt or less input, then we may rest assured that it has adequate gain for the microphone we have in mind, rated at -60 db. Otherwise we will have to calculate the voltage which will appear across the amplifier output load when operating at full rated output, determine the input voltage on the basis of the microphone output, and taking into consideration the load of the amplifier input circuit ,and consider the load resistance in the output and input circuits. Then, by applying formula (c), we may calculate the gain required for full output or, if we already know the gain, we may determine whether or not it is adequate.

In general, an amplifier with a rated gain of 130 db will take care of even the most insensitive mike encountered in public address work, operating the amplifier at an output level of approximately 10 watts. This is adequate for most large halls,—in fact, you can do a lot with even 5 watts in an enclosed space. For outdoors, considerably greater power is required, and consequently a greater gain or a more sensitive mike.

RENEW YOUR SUBSCRIPTION TO RADIO SERVICE-DEALER TODAY. 12 ISSUES COST \$2; 24 ISSUES COST \$3. FOREIGN \$3 PER YEAR

LAFAYETTE WILL SOLVE YOUR PROBLEMS! RADIO KIT RADIO KITS DESIGNED for your special requirements . . . radio kits carried in stock for immediate delivery . . . replacement parts for the kits you are now using-quick shipments on your orders. Write for diagrams. FOR CODE CLASSES: A complete stock of McElroy Telegraph Keys and automatic equipment. If you are just starting a code class, let Lafayette assist you in setting up circuits based on our past experience. INSTRUCTORS: FREE 130-page general catalog-Write Dept. 12K2, 901 West Jackson Boulevard, Chicago, Illinois. Camera Fans: Photo-graphic Equipment at lowest prices. Write for FREE PHOTO-Nationally known radio, electronic and sound parts from Lafayette's complete stocks are in daily use by technical schools handling Military training courses. lawest prices. Write for FREE PHOTO-GRAPHIC CATALOG! LAFAYETTE RADIO CORP. GRAPHIC CATALOG! 901 WEST JACKSON BLVD., CHICAGO, ILL. 265 PEACHTREE STREET, ATLANTA, GA.


"Right Down Our Alley"

Contributing to the war effort, Astatic Corporation facilities are being utilized today mainly in the manufacture of essential products requiring special engineering skill and precision. Among these are Aircraft Radio Plugs and Sockets, as illustrated, along with complete Co-axial Cable (concentric) connectors, and similar equipment for the U. S. Army Air Corps and the Navy. The tooling and assembly of delicate, precision products of this type comes naturally to Astatic workers, long experienced in the manufacture of Microphones and Pickups for radio, public address and phonograph equipment. Wartime production of this kind is "right down our alley."

Radio Service-Dealer, December, 1942

27

Here are three "Victory" condensers or satisfactory replacements for servicing radio sets. They are (a) Type PBS cardboard-case dry electrolytics, single, dual, triple section, 25 to 600 y.
D.C.W., with handy adjustable mounting flanges.
(b) Type PRS-V "Dandees" or tubular dry electrolytics, single and dual section, 25 to 450 v.
(c) Ever-popular Type ---84 paper tubulars, 400 to 1600 v. extra-sealed for long service. These three "Victory" types can handle 90% of your usual service needs.

Ask Our Jobber ...

Ask him for your copy of the new "Victory" catalog which will help you in the present wartime situation. Or write us direct.

John Meck Industries-Liberty at Pennsylvania Ave., Plymouth, Ind.

AttentionTube DistributorsWe will pay list less 50% for the following
ing tube types, of standard manufacture,
individually cartoned. We cannot supply
priority rating. Would consider buying
your complete stocks at slightly better
discount. WIRE us collect if you can
furnish over 100 tubes. WRITE us if you
have less than 100 for sale. Deposit
wired or mailed with each of our orders,
balance COD.185/255615 C or GT
2A32A4C616 C or GT
68C7 or GT
5V4C5V4C68C7 or GT
5V4C5V4C68C7 or GT
5V4C5V3G or GT
5V3G or GT52345
615 C or GT
508 Orphoum Bldg.Book Review


MYE TECHNICAL MANUAL, published by P. R. Mallory & Co., Inc., Indianapolis, Ind. Stiff cloth cover, $8\frac{1}{2}$ " x 11" page size, 407 pages including index and tube base wiring diagrams. Price \$2.00.

To properly review this volume, the Fifth Edition of MYE, consisting of 13 excellent Sections, would in itself require a book. Suffice, then, to say that the 1942 MYE is the best yet. By listing the titles of the 13 Sections we outline its broad content: 1, "Loud Speaker Design & Application" — 2, "Superheterodyne First Detectors & Oscillators" -3, "Half-wave & Voltage Doubler Power Supply Systems"-4, "Vibra-tors & Power Supplies"-5, "Phonoradio Service Data"-6, "Automatic Tuning"-7, "Frequency Modulation"-8, "Fundamentals of Television Engineering"-9, "DC Dry Electrolytic Capacitors"-10, "Practical Radio Noise Suppression"-11, "Vacuum Tube Voltmeters" — 12, "Useful Servicing Information"-13, "Receiving Tube Characteristics."

Profusely illustrated with schematics, wiring diagrams, graphs, photos, charts, nomograms and tables, the MYE Manual will prove invaluable to all who are engaged in any phase of radio-television-electronic maintenance work.

EICOR EXPANDS

»» Eicor, Inc., manufacturers of Dynamotors, D.C. Motors, Converters, Power Plants, and other rotary electrical apparatus, moved to 1501 W. Congress Street, corner of Congress and Laflin, Chicago, to provide more factory space and production facilities to meet the tremendously increased need for Eicor Products in the war program.

"Well Done"

The Army-Navy "E" Pennant now flies over the Clarostat plant. It is visible evidence that Uncle Sam is well pleased with the allout war production efforts of Clarostat workers, engineers, management. It is his way of saying "Well Done."

And to you it means not only maximum support of the war effort, but a pledge of continuing Clarostat service, production and reputation in the peace to come.

CLAROSTAT MFG. CO., Inc. - 285-7 N. 6th St., Brooklyn, N.Y.