

RADIO WORI.D, published by Hennessy Radio Publications Corporation. Roland Burke Hennessy, editor; Herman Bernard, managing editor and business manager, all of 145 West 45th Street, New York, N. Y.

www.americanradiohistorv.co

The Balkite A5 neutrodyne, in real wainut table model cabinet by Berkey & Gay. Volume control at left, AC switch at right, drum dial at center, with space to mark in call letters.

You want DX-the more DX the merrier! But why take any chances? We positively guarantee that the Balkite Neutrodyne, made by Gilfillan, will get you all the DX you could desire! Try the set for five days. If not completely satisfied, return it in that time for prompt refund of purchase price!

so there's no squealing; easy tuning; operation on short piece of wire indoors perfectly satisfactory; no repeat tuning points; no hum; phonograph pickup jack built in; excellent tone quality; good selectivity. These are outstanding points of the receiver, ONE OF THE MOST SENSITIVE BROADCAST RECEIVERS EVER DEVELOPED. The receiver alone lists for \$135. Here you get the set, speaker and tubes at \$9.50 less than half the list price of the receiver alone!

A good many bargains in radio receivers are available today, because set manufacturers over-produced, and had to let their stock go at sacrifice prices. It does not follow that all sacrificed receivers are worth even the cut price. We turned down many "opportunities" to obtain large quantities of "sacrificed" receivers. When the Balkite was offered to us we tested its performance for five days and were delighted. We took the set apart completely to see what calibre of parts was used and how the wiring was done. When we tell you all the parts were acc-high and the wiring the best we've seen, you will know this is an extraordinary receiver. The tubes used are five 227, two 112A and one 280. The undistorted maximum power output is 780 milliwatts.

The line input must be 50-60 cycles, 105 to 120 volts. There is a voltage adjuster built in. The magnetic speaker has a matched impedance for the output of the receiver, and is itself housed in a real walnut cabinet with marqueterie inlay.

Receiver, in cabinet, less tubes and speaker, \$46.00 FIVE-DAY MONEY-BACK GUARANTEE ON RECEIVER, TUBES AND SPEAKER!

The speaker is of hand-rubbed genuine wainut and its list alone is \$35.00. Guaranty Radio Goods Co., 143 West 45th Street, New York, N.Y.

NEW DRAKE'S ENCYCLOPEDIA 1,680 Alphabetical Headings from A-

battery to Zero Beat; 1,025 Illustrations, 920 Pages, 240 Combinations for Receiver Layouts. Price, \$6.00. Radio World, 145 W. 45th St., N. Y C

MICROPHONE LIGHTERS

For cigars or cigarettes, with button switch at top. Press switch, and lighter acts instantaneously. \$1.00. Model B lighter on tray, \$1.50. Radio World, 145 W. 45th St., N. Y. C.

LOOK AT YOUR WRAPPER You will see by the date thereon when your subscription for Radio World ex-If the subscription is about to run pires. out, please send us renewal so that you will not miss any copies. Subscription Department, RADIO WORLD, 145 West 45th St., N. Y. City.

TWO FOR PRICE OF ONE! Radio World, 52 issues, and Radio News, 12 issues, in combination for spe-cial \$7 subscription price. Radio World, 145 W. 45th St., N. Y. City.

Get a FREE one-year subscription for any ONE of these magazines:

CITIZENS RADIO CALL BOOK AND SCIENTIFIC DIGEST (quarterly, four issues).

CHILLENS RADIO CALL BOOK AND SCIENTIFIC DIGEST (quarterly, four issues).
 RADIO (monthly, 12 issues; exclusively trade magazine).
 RADIO ENGINEERING (monthly, 12 issues; technical and trade magazine).
 RADIO INDEX ((monthly, 12 issues) Stations, programs, etc.
 SCIENCE & INVENTION (monthly, 12 issues; scientific magazine, with some radio technical articles).

AMERICAN BOY-YOUTH'S COMPANION (monthly, 12 issues; popular magazine). BOYS' LIFE (monthly, 12 issues; popular magazine).

Select any one of these magazines and get it FREE for an entire year by sending in a year's sub-scription for RADIO WORLD at the regular price, \$6.00. Cash in now on this opportunity to get RADIO WORLD WEEKLY, 52 weeks, at the standard price for such subscription, plus a full year's subscription for any ONE of the other enumerated magazines FREE! Put a cross in the square next to the magazine of your choice, in the above list, fill out the coupon below, and mail \$6 check, money order or stamps to RADIO WORLD, 145 West 45th Street, New York, N. Y. (Just East of Broadway).

Your Name Your Street Address

DOUBLE

VALUE! City State.....

☐ If renewing an existing or expiring subscription for RADIO WORLD, please put a cross in square at beginning of this sentence.

□ If renewing an existing or expiring subscription for other magazine, please put a cross in square at the beginning of this sentence.

RADIO WORLD, 145 West 45th Street, New York, N. Y. (Just East of Broadway)

Vol. XVII, No. 6 Whole No. 42. April 26th, 1930 15c per Copy, \$6.00 per Year [Entered as second-class matter, March N. Y., under act of March, 1879.] 1922, at the Post Office at New York. Whole No. 422

Latest Circuits and News Technical Accuracy Second to None

NINTH YEAR

A Weekly Paper published by Hennessy Radio Publications Corporation, from Publication Office, 145 West 45th Street, New York, N. Y. (Just East of Broadway) Telephone, BRYant 0558 and 0559

RADIO WORLD, owned and published by Hennessy Radio Publications Corporations, 145 West 45th Street, New York, N. Y. Roland Burke Hennessy, president and treasurer, 145 West 45th Street, New York, N. Y.; M. B. Hennessy, vice-president, 145 West 45th Street, New York, N. Y.; Herman Bernard, secretary, 145 West 45th Street, New York, N. Y. Roland Burke Hennessy, editor; Herman Bernard, business manager and managing editor; J. E. Anderson, technical editor

What Selectivity Is Not Dial Indication a Poor Criterion of Discrimination

By Percy Warren

N the operation of a broadcast receiver all that is required, as to selectivity, is that the set tune in the desired station to the exclusion of all other stations. This exclusion reters particu-larly to stations on channels near the one desired and also to very powerful locals that may be several hundred kilocycles removed. When both these requirements are satisfied the listener is satisfied for he does not suffer interference. However, both requirements for he does not suffer interference. However, both requirements are in fact the same requirement. There is no difference between the ability to put an effective damper on a station 300 kilocycles off resonance, that has an enormous field strength about the receiving antenna, and to tune out a station of small field strength that is only 10 kc off resonance.

The usual method used by listeners at large to determine whether a set is selective is to turn the dial. In these days of single dial sets the test seems easy. Tune in, turn and watch how many degrees are required to tune out a strong local and restore silence. Even two receivers are compared in this way, as to their selectivity.

Without Benefit of These

While the method has its uses, in that it affords some indication under proper conditions, without resort to measuring devices both costly to obtain and inconvenient to carry, its weakness lies in the fact that the test is made without regard to the field strengh of the station used as test, or the amplification property of the receiver.

If a given field strength were used in each instance, and the and the explicit of the strength were used in call method would be acceptable, provided one were assured that the tuned circuits were properly equalized. A very superior receiver that had one of its capacity compensators knocked out of adjustment in shipment would make a poor showing indeed when com-pared to an inferior receiver that had the benefit of original line adjustment being retained.

As a visual indication, as obtained in general practice, has little or no real value, so the statement that a receiver has a degree of selectivity, expressed as "very high" or "great" selectivity, has little or no significance. How high? How great? Selectivity can not be expressed verbally in height or greatness. It is most conven-iently shown by a curve, and comparisons between receivers effected by curving the curve, the thereas in the thereas in the second by superimposing the curves for the *same* input. One method of stating selectivity in relative values is to divide

the inductive reactance by the resistance, but who will know off-hand what the inductive reactance is, much less the R.F. resistance? Therefore selectivity can not be simply told in words, only in dia-gram. We have to discuss in words a subject that does not lend itself very well to that treatment.

Some Sidelights on Selectivity

Selectivity is not only the ability of a receiver to receive anyone particular frequency to the exclusion of all other frequencies, for if that were true the selectivity of most receivers would be nearly zero.

Operate a receiver on the peak of a mountain, 500 miles from the nearest broadcast station, and enjoy what is termed 10 kc. separa-tion, for indeed all stations are separated, even those 10 kc. apart, without a trace of interference. The receiver has some selectivity, to be sure, but it does not have to meet the burden of large differences, with high maxima, in the energy delivered to it by the antenna-ground system. The field strength of all received stations is tiny indeed, and the receiver can reach out to almost incredible distances if it is fairly sensitive, e.g., 10 microvolts www.americanra

Move this receiver to a location twenty miles outside of New York City. At once WOR, formerly tuned in and out within one division of the dial, overrides ten divisions, and WABC does likewise, so that one station about three-quarters of the way up on the dial, and another half way up, blanket distant stations for as much as 200 kc. apiece, at the extreme, and the receiver seems to have suffered greatly from the rigors of the journey. Yet the receiver has not changed at all. It used to have "10 kc. selectivity" and now it has only "50 kc. selectivity," the owner may tell you, but if he makes such a statement he is drawing on his imagination and psychology to cover up a lack of understanding of the real situation psychology to cover up a lack of understanding of the real situation.

Down to "O kc Selectivity!"

Now move the receiver to the same building in which one of the large metropolitan stations has its antenna. Lo and behold! The station with its aerial on the roof comes in literally all over the dial, and when that station is on the air, no other station can be received! The former "10 kc. selectivity" seems to have become "0 kc. selectivity," and yet the receiver is just as selective in one place as in another, and nothing has been changed in any particular whatsoever except the input as derived from the aerial. In the example of "0 kc. selectivity" the vicious condition of the station on the receiver and all curve the dial may particular

when no antenna or ground is used, but of course the coils of the receiver and the wire used to make the connections from part to part act as loops and capacity aerials, so there has been a mere substitution of the form of pickup that produces the ultimate response.

The receiver may be compared to a person who is far-sighted. Put a test chart 10 feet away from him and he may not be able to read the smallest letters, but move the chart 20 feet farther away and his vision will separate the smallest letters. The smallest letters have too strong a field of energy for his eyes to be able to select letter from letter to constitute a readable sequence. Move the chart farther away, and the input is lessened, whereupon his selec-tivity in vision becomes effective. He ceases to be subject to visual blanketing.

Relationship of Sensitivity

So when we are told that a receiver has a certain selectivity rating, we must be told the energy input, otherwise the rating lacks significance, or where comparisons are made, they must be for the same input, as in curves.

Hence, reports on receiver performance in different parts of the country and under totally different geographical conditions, not to mention weather and humidity, will vary greatly, although exactly the same receiver may be used on all tests.

There is a relationship between sensitivity and selectivity that is

There is a relationship between sensitivity and selectivity that is of the utmost importance. Consider the three-circuit tuner, used for operating a one-tube set. Use earphones. You need an excellent ground and a long aerial to be able to hear a considerable number of stations loud enough to afford enjoyment. Disconnect the aerial and you hear no sta-tions. Add two stages of audio frequency amplification and hook up the loudspeaker. Given stations may occupy a wider stretch on the dial. With aerial off, still you hear no signals. The best you can do is to produce a squeal now and again, but never can you resolve those squeals into reproduced signals. Add a stage of tuned radio frequency amplification. Now you can get a faint audible response from the loudest station without diohistory.comound

iohistory.comound

(Continued from preceding page.) Add another stage of TRF. The pickup without antenna or ground connected is large enough to afford fair volume on a few locals.

You have been increasing the sensitivity as you increased the stages of radio frequency amplification. Have you been increasing the selectivity at as fast a pace? No.

There is a strong companionship between sensitivity and selec-tivity. As the radio frequency amplification is increased, the neces-sity for greater selectivity arises, principally because of the char-acteristics of the loudspeaker and the human ear

Where Speaker and Ear Come In

Let us return for a moment to the visual indication as afforded by the receiver's tuning dial as a basis of selectivity judgment. In the example of the one-tube set the strongest receivable station, let us say WOR, comes in at 65, at 60 and 70 can not be heard at all. Compare this with a receiver having three stages of screen grid radio frequency amplification and detection. Exactly the same dial result may obtain—five divisions on either side of resonance will get rid of the strong local. Now, is the one-tube set just as selective as the screen grid set, and if not, why not?

Loudspeakers do not respond to every feeble impulse, nor does the human car so respond. It takes a definite quantity of sound to actuate the ear. This is called the threshold of hearing. So first actuate the ear. This is called the threshold of hearing. So first the reproducer's threshold has to be attained and the speaker's radiation has to be large enough to reach the minimum realm of registration of the ear. It used to be thought that the limitation existed in the detector tube—that a certain quantity of input was required to make the detector detect-but we have since come to respect the vacuum tube as an instrumentality far superior in keenness to the human car, and we assign the limitations to the sluggish loudspeaker and the sluggish human ear, undependable and inaccurate instruments both!

Brought Up to Ear Detecting Point

Receivers therefore are directly connected to a loudspeaker and indirectly connected to human ears, and any system of interference, because impulses too insignificant to move the speaker, hence gain any aural responses become magnified to the volume speaker repro-duction and audibility. Therefore if the amplification increases at a faster pace than the selective ability, the receiver with multi-tubes will give as "broad" a dial indication as the one-tube set, however, the volume will be enormously greater.

Now suppose interference suffered from a multi-tube receiver is rather severe, such a cross-talk, and we want to make some make-shift comparison between this set and the one-tube design. Since both now bring in that pernicious local over 10 degrees of the dial. both receivers are equally non-selective, it seems, although this seeming is about to come to an end.

Let us reduce the output volumes to the same level, not by putting

a resistor in series with the speaker, but by putting a condenser in series with the antenna, a tiny condenser, say. .00005 mid. Assume the output values, in quantity of signal, are the same. Now let's see. Why, the multi-tube set is indeed more selective than the onetube set, and even the dial indication shows that. The big receiver not only tunes out that powerful local nicely, but effaces it completely within one division of the dial, just as was done on the mountain-top!

Conclusions Reached

These considerations have been presented thus far

(1)-Receivers equal in selectivity will have unequal discriminating ability at unequal field strengths.

(2)—Greatly increased sensitivity requires a relatively greater selectivity to retain the original degree of segregation, because the amplification increase will apply to adjacent frequencies, and introduce interference into the audibility region, whereas it was formerly present but not audible.

(3)-Audio frequency amplification tends to decrease the apparent selectivity, since without benefit of selectivity it increases the amplitude of interfering signals possibly to the point of audibility, where the interference was inaudible before.

(4)—The total volume of the output is to be considered in connection with any visual dial tests of apparent selectivity

(5)—A receiver has a certain definite absolute selectivity, and this selectivity is independent of the input or output, being the same at maximum input or at zero input, so long as the receiver is in operation. In other words, a receiver's selectivity is absolute, but its apparent selectivity, that which we determine from unscien-tific eye and ear tests, is relative. Apparent selectivity is a fictitious quantity. (6)—All receivers receive all frequencies, but the disproportion

of response is the selectivity.

Must Be Carefully Shielded

From these considerations it is logical to draw the conclusion that any receiver that gets outside the bounds of low sensitivity must have its coils shielded, for even the tiny pickup that coils make, due to their action as stray loops, will be enough to gain a response in the speaker. Also, inferior tuning benefit will be enjoyed by the stray pickup because the pickup is accidental, and tuning is intentional, so much of the pickup will escape most of the tuning. It is also logical to assume that a receiver that rates in the ultra arceivity because the held of the stray arcs in the ultra-sensitivity class must be shielded even against pickup by the wires used for internal connections, hence a shielding subpanel, with a shield bottom piece, is required. The ultimate test is that the receiver must pick up no signals unless some external aerial is attached to the antenna post, no matter if that aerial be a piece of wire only a few inches long! Every other shielding precaution must be taken, even as to the leads to the caps of screen grid tubes, lest here too we encounter a stray and undesired antenna, or a group of such antennas, enemies of selectivity, all!

Jansky Gives Remedy for Follow-Through Interference

www.americanradiohistory.com

Prof. C. M. Jansky, Jr., investigating WMCA-WGBS interfer-ence in New York City, made several observations, three of which follow

Observation No. 7 was made a 5:45 p. m., at a fire station lo-cated at 78-80 Main Street, Astoria, New York City. This loca-tion is three-eighths of a mile east of WGBS. The intensity tion is three-eighths of a mile east of WGBS. The intensity from WGBS the next day was found to be \$2,500 m. p. m., that from WMCA 2,300 mv. p. m., the ratio being 35.6. The receiv-ing set in use was a Radiola 18 which, according to information I have received, was manufactured in 1926. The receiver uses three tuned circuits. The coils are shielded but the condensers

Using the antenna as installed it was not possible to receive VMCA without interference from WGBS. However, it is of interest to note that even after I had disconnected both antenna and ground and removed the first two tubes from the receiver, satisfactory reception from WGBS could still be obtained. This proved conclusively that the radio frequency as received was not passing through the various stages of the radio frequency amplifier and therefore the receiving set was not in proper operating condition.

This was the one location at which I was unable to secure reception from WMCA without interference from WGBS. The faults in the receiver as installed or designed were such that they could not be corrected without completely disassembling the set. The Radiola 18 was one of the very first alternating current sets placed on the market and, as I have pointed out, was built over three years ago. However, there is no question but that had this set been up to standard no interference would have here available.

have been experienced. Observation No. 8 was made at 8:30 p. m., at the home of B. S. Drew, 31-21 29th Street, Astoria, New York City. No field intensity observations were made at this location which is three-quarters of a mile southeast from the transmitter. The receiving set in use is a Freshman Masterpiece, the first three circuit, single dial receiver manufactured by this company. The receiver uses three tuned circuits, neither condensers nor coils

being shielded, and is operated from a B eliminator. This set was manufactured several years ago and in my opinion is far below the average standard of receivers in use to-day.

A type of interference was expected which, since it is rather interesting, I will discuss in some detail. WGBS could be received in great volume. As a dial reading was changed to de-tune WGBS the signal from WGBS disappeared entirely. How-ever, in tuning in WMCA signals from WGBS would appear simultaneously. The same phenomenon was experienced in tun-ing in any of the other New York stations even those removed ing in any of the other New York stations even those removed several hundred kilocycles from WGBS. It was particularly no-ticeable in tuning in WABC operating on 860 kc., separated from WGBS by 260 kc. That is, in tuning in WABC, signals from WGBS would also appear, although at all points between the dial reading for WABC and that for WGBS signals from WGBS could not be heard at all.

I experienced this type of interference in a large number of receiving sets in studies which I made in 1926. Investigation has shown that it is due to the flow of grid current which is produced in the radio frequency amplifier tubes. It can be entirely eliminated if a grid battery is inserted. It

being impossible for me to insert a grid battery in this receiver, I increased the plate voltage to the receiver. This tends to decrease grid current and in fact completely eliminated the interference. Apparently the receiving set had not been used with too low plate voltage. Increasing the plate voltage not only eliminating the interference but gave more satisfactory operation of

the receiving set in other ways. Observation No. 9 was made at 10 p. m., at the home of Mr. Charles Ketcliffe, 2302 29th Avenue, Astoria, New York City. The receiving set in use was a home-made three circuit re-ceiver in which neither the coils nor the condensers were shielded. This set and one set at the home of Mr. Drew may be concidered as having calculations for the terms of the terms. be considered as having selectivity characteristics far below the average. The antenna in used had a length of approximately 50 feet. WMCA could be received without any interference from WGBS whatsoever. This receiver location is five-eighths of a WGBS whatsoever. This rece mile east from the transmitter.

Dynamic Sound Waves

Complex Pressures Handled in System That Capitalizes the Even Harmonics

By John C. Williams

[The following article is the seventh of a consecutive series on dynamic speakers which began with the March 15th issue wherein "Designs of Dynamic Speakers" was discussed. The pot magnet or field coil, the voice coil and the bafile were treated. The second article, "A Comparative Test of Dynamic Results," appeared in the March 22nd issue, in which comparisons were made between magnetic and dynamic speakers. In the March 29th issue, "Hum Reduction in Dynamic Speakers' was discussed. Reverse wound coils and condenser-choke systems were included. In the April 5th issue, "Wave Forms of Hum Reducers' was the topic. The use of the bucking coil and some remedies for hum were discussed. In the April 12th issue the subject was "Why Coils Have Lay and Condensers Lead." The effect of potential difference in atomic stability was shown. The subject of the article in the April 19th issue was, "What Makes a Dynamic Speaker Sound So Weit." The effect of bafiles, cone stiffness and dampers were among the mechanical means analyzed.—Editor.]

OME sound curves of musical instruments are reproduced S herewith. Years ago the importance of the study of sound, > herewith. Years ago the importance of the study of sound, while consistently advocated as a profitable branch of study and intensively worked at by some students, was generally more or less neglected by the greater number of students of physics for electrical subjects in general, and only recently has the subject of sound come into its own with the advent of talking movies. Sound measuring problems associated with them, and color features, too, share in the new interest.

There are three types of wave motion, (1) by water, (2) by light and radio and (3) by sound. In the previous article the water waves were used as a basis of analogy mostly, but now we shall describe the *difference* in order to clear up a point.

Radial Propagation of Water Waves

Water waves are propagated radially outward from the exciting Water waves are propagated radially outward from the exciting source's axis as a result of an initial depression caused say by a stone dropping in. The stone falls to the bottom of the lake, but the surrounding water tends to *fill the depression* due to the stone's previous displacement, and the water rushes in so fast that the hollow area actually *overflows* momentarily. This requires water which is supplied by the surrounding area. As the water tends to establish a stable level again the original disturbance travels radially outward in pursuance of this effect of gravitation and the amplitude of the original wave disturbance gradually grows less at a considerable distance radially (as com-pared to the original amplitude of the wave) and finally dies out, due to the inertia of the water, a considerable time later. Now,

paren to the original ampirude of the wave) and finally dies out, due to the inertia of the water, a considerable time later. Now, if a sound were directed so as to travel through the water, rather than on the surface, the time of transit will be very much less, because the under surface compressibility of water is nil, compared to the compressibility of the surface.

Light and radio waves are essentially electro-magnetic disturb-ances and are propagated through space by virtue of their effect in displacing the atomic structure of the ether. It will be remem-bered in this connection that the charge or difference of potential between the terminals of a *charged* condenser was shown to be due to a temporary rearrangement of the constituent parts of the

FIG 1 VE AWAY FROM A VIBRATING MEMBRANE. SOUND WAVES MOVE

THE CONNECTION BETWEEN SOUND WAVE MOTION IN AIR, AND ITS REPRESENTATION AS A CURVE OF SINE WAVE CONTOUR.

atomic structure of the condenser dielectric. The approximate radial direction of propagation is the natural consequence of energy at high levels seeking a common level.

Pressure Variations of Atmosphere

Sound waves are really nothing more than atmospheric pressure Sound waves are really nothing more than atmospheric pressure variations, and because increasing air pressures are due to the air being compressed, and decreasing air pressure is due to the air being removed or rarified, the sound wave is said to consist of compressions and rarefactions and these two terms are sometimes condensed to the expression "sound-pressure." It was seen previously that water waves were an up-and-down puttion, but sound waves are a two surfaces the particle last

It was seen previously that water waves were an up-and-down motion, but sound waves are a two-and-iro motion. (described last week as a pass-it-along system). The air particles involved in sound wave transmission merely move back and forth as the com-pressions and rarefactions advance from their source, but it is impossible to make a readily understandable graph of a sound wave by representing the exact state of things, therefore we have to resort to an artifice which while not exact, is a convenient and universally used fiction. So if we look at Fig. 1 we see a sound wave due to a membrane being struck, and the same sound wave again in Fig. 2, with its sine wave counterpart. Inspection shows that the maximum pressure point of the sine wave curve corresponds to the point on the sound wave repre-

wave curve corresponds to the point on the sound wave reprewave curve corresponds to the point on the sound wave repre-sentation where the dots (which represent air particles) are closest together. We know that when air particles are closest together the pressure is highest. Thus is the compression. Where they are farthest apart is the point of vacuum or rarefaction, shown by the bottom loops of the curve.

Lateral Cut and Hill-Dale Records

Now it was previously mentioned that there was a connection Now it was previously mentioned that there was a connection between the sine wave outline on a phonograph record and the actual sound wave output of the source, hence if a comparison of the two wave records as detailed in Fig. 2 be made, the connection ought to be apparent. Of course it is understood that between the cut sine wave sound record and sound wave pressure source there is a train of electrical receiving, amplifying and recording comparison wave sound apparatus which is incidental to the making of the sine wave sound record. The Victor records are transverse cut (lateral type) and the old Edison cylinder and disk records were vertically cut (hilland-dale type).

So much for connected ideas in this respect. But we cannot

So much for connected ideas in this respect. But we cannot hope always to think and deal with simple sound effects. Progress in this, as with other things, always leads to the necessity of the study of the more complex state of the art and accordingly we must make a resume of sound quality as applied to people's voices, loudspeakers, or any other two similar sound sources. By this time it is probably apparent that if we all talked alike a sound analysis of our several voices would look exactly the same, and under these conditions your voice would sound exactly like mine and a third person could not tell who was talking. Now, this would be the case if there were no such thing as sound quality, *i.e.*, it is this quality that makes your voice sound different from mine. Likewise it is the main reason why two loudspeakers normally do not sound alike either. We customarily deal with complex sound waves and the various effects they can be made to produce or reproduce. to produce or reproduce.

www.americanradiohistory.com

б

FIG 3 THE COMPLEX RESULTANT OF TWO SIMPLE WAVES. THE UPPER ONE IS THE RESULTANT.

Overtones Make for Quality

The basis of sound quality, the property that makes one complex sound pleasant to listen to, and another complex sound unpleasant, is the presence of *overtones* (or sound frequencies that accompany the principal sound wave but bear a certain positive or negative relation to it), and their relative amplitude to the fundamental.

Overtones that are pleasant to listen to are those that bear a simple relation to the fundamental, such as all even harmonics. The major and minor chords are whole fractions of the fundamental tone to which they are related. But odd harmonics don't mix well psychologically or otherwise and as a consequence they have no place in symphonic compositions, jazz or pleasant loudspeaker reproduction, but as there is always a use for so-called waste products, so there is for the odd harmonic and they find their best and most forceful expression in the auto horn and other warning devices. A portrayal of sound wave output of an automobile horn was made and proved very jagged.

mobile horn was made and proved very jagged. As non-harmonious sounds are not interesting generally, and their study in relation to what I have in mind not specially useful, at this point I shall return to the subject of complex harmonious tones.

The Simple Tones Analyzed

Fig. 3 shows two simple musical tones that are sounding simultaneously. The upper curve is what you hear because of the mixture of the two waves below. This is only a single instance of the resultant of acoustic mixture, but represents, in principle at any rate, the additive process by which we hear complex sound effects. The upper curved line is obtained from the lower by adding successive parallel positions of the two curves in the following mauner:

Inspection will show that the axis A is common to both sound curves. Now, if I measure the distance of the starting points of curves A and B at similar instants of time along the time axis I will find places where the two curves lie below the time axis, while at other points the curves are above. At still other places there is as much of A curve value below the axis as there is B curve value above.

Now, these pressure changes vary in such way with one another that their combined or resultant effect, as it is called, tends to produce the irregular curve R. The successive points of curve R therefore are obtained by adding up all the plotted values of A and B.

We can start at the extreme left hand end on the curves A and B. Here these are both seen to be below the axis, and since this is so the sum of the two points below the axis gives a single value for the R at the same time, nearly twice as far below its axis (the upper curve). The simplest plan is to divide the two times axes into the same number of equal time intervals by placing dots along each axis to designate the similar instants of time. Then, using a scale graduated in any convenient units of length, the distances of A and B above or below the line can be read easily, and it is necessary to remember only that in places where the A curve is farther below the axis than B is above, the resultant curve position will be below its axis, and in the reverse case. if A curve is below, the resultant curve position will be above. Thus the addition of these curves is seen to be algebraic and we hear only sound that curve R represents, when the two simple sounds A and B are sounding together.

Union of Amplexities

I suppose someone will now ask: "What kind of a resultant pressure curve would exist if two complex sound pressure curves were added up?" or, "What would simple and complex sound pressure curves produce when added up?" Each is another of those easy-to-ask and hard-to-answer questions. Since the question is assumed to have been asked, it must be answered.

The resultant of two complex sounds always will be a discord, unless the two complex sounds each contain some simply related harmonics. The second case will produce the same effect as the

www.americanradiohistory.com

first moderated by the respective amplitude of the single tone and its harmonic counterpart in the complex wave form.

The addition of sound waves is an everyday occurrence and it is also most natural and therefore the condition under which we transmit and receive sound intelligence. After all, sound wave transmission would be very irksome to listen to if composed of simple tone frequencies alone. In last week's article the influence of harmonics was only briefly discussed but now it can be gone into at greater length.

Variable Air Column

We talked about the effects that could be obtained with organ pipes. Those were the result of standing waves in an air column. But the air column was fixed and the fundamental tones and harmonics obtainable were directly due to the manner in which the organist caused the pipes to be blown. Let us consider for a moment the case of a variable air column, the slide trombone. Here the sound frequencies are due mainly to the length of the tube, which is controllable. The farther the slide is moved out, the lower the pitch of the emitted sound. The trombone provides a continuously variable source of fundamental tones and usually three *prominent* associated harmonics, all of which are higher than the fundamental. There are lower harmonics, too, but their influence is not as prominent.

Another instrument rich in harmonics is the clarinet. It lends acoustical color and brilliance to an orchestra. The organ was cited previously as a source of simple tones, but this is mainly a property of the larger pipes so blown, that they speak their fundamental. Some organ pipes approach the upper limits of audibility and intervening combinations of pipes are very rich in harmonics also, but organ quality is largely in the hands of the organist, upon whose skill depends whether he pleases you or not, whereas an expert trombonist never can make a poor trombone sound well, as a trombone is not subject to being retuned readily.

The oboe also produces a note of almost sine wave contour, and its quality is very much at the control of the player. Of course this controllability is somewhat necessary whenever any musical instrument is played.

Components Determined

The analysis of complex sound waves is undertaken when it is desired to investigate and determine the value of components that make up a complex tone. Addition of sound waves, or synthesis,

A SECTIONAL VIEW OF A HELMHOLTZ RESONATOR.

is easy, but subtraction, or analysis, is very difficult and lengthy. Some readily understood methods of sound analysis will be presented for the benefit of those to whom this phase of the subject is new.

Fig. 4 shows a section of a semi-spherical hollow light-weight oval ball, with a large opening at one end and a small opening that fits the aural cavity more or less. The air column enclosed by the ball is resonant to a given acoustic frequency. Now, you are supposedly equipped with a number of these "resonators" and you listen to various components of a complex sound wave (provided the selected source is sounding continuously) you can pick out various resonant frequencies. The operation of this device, called the Helmholtz resonator, is not affected by normal differences in the user's hearing, because he is interested only in the relative amplitude, or loudness, of the sound frequency he hears as he listens through the resonator. This is a simple way of demonstrating sound analysis and it depends mainly on the use of a tuned cavity to detect the presence of resonant sound frequencies in much the same way that you tune your radio set to respond to a desired broadcasting station. In truth you are obtaining by analysis the desired frequency from a welter of sound frequencies, as the radio listener selects the desired frequency from those that abound in the ether!

Harmonic Analyzer

A more exact method of analysis of complex sound wave pressure recordings in sine wave form is the use of the harmonic analyzer. This method is mechanical and depends for its operation mainly upon the experience and skill of the operator and the accuracy of the curve analyzed. Loudspeaker cone responses may be analyzed by mechanical means also, and accurate results obtained, but a more popular method is to measure the sound-pressure where a dete-mination of the amplitude of various cone vibrations is to be studied. This method was outlined in the first article of this series and can be referred to.

A simple and direct way of studying the vibration of a sounding body at constant frequency is to arrange a series of light carbon granule-type microphones in expanding spiro-planar or conical spiro-planar form, and arrange each to be connected to an amplifying device in such order that the microphone nearest the cone center is connected at the extreme right and all the others in succeeding order are situated so that the end of the "line up" is the microphone connection nearest the left-hand end.

This forms a sort of reversed series and if the cone now be placed in vibration and successive readings of the amplified voltage be recorded as ordinates of a curve, a wavy line of voltage varia-tions will result which will mirror the standing waves set up on the cone. The shape of this curved line will determine whether the vibration response irequency of the cone contains harmonics, and if so, whether odd or even. This method does not measure longitudinal waves.

Flat Surface Radiation

The next part of our story is concerned with the radiation of sound waves by a flat surface. Roughly speaking, flat membranes (or surfaces) when vibrating as shown, propagate sound energy away from the source, and the principal wave front is located on or near the axis of the vibrating portion of the membrane, which is its source. Now, this state of affairs is all right just as long as the plate vibrates under conditions of equal atmospheric pressure (on either side of the plate) and the vibrations set up by the hammer are simple in character, as depicted. But suppose, to begin of the single big one. Will the picture change in any way? To save time I'll say no. But if the plate now be struck on the edge, that is, at right angles to the plane of the paper, the membrane will emit a very different sound. It will be higher in pitch and will seem not to possess the marked planar transmission characteristics that the first system of excitation did.

This is called longitudinal vibration and it can be shown that

the membrane vibrates in a very peculiar manner when struck in this way.

If a nearly uniform coating of lycopodium powder or fine sand be dusted over the surface of the membrane and then the edge be tapped squarely, the particles will assume a variety of different curves at once, with a small circle in the center, then four irregular lines joining the corners, then four semicircular lines on each edge, then four semicircular lines on each edge are formed.

If the plate be bowed, the plate will be vibrated differently, but the cutline of the various lines traced by the particles on the plate neve) will be remotely outlined like the form of and when the plate is vibrating transversely.

But even though the transverse and longitudinal modes of vibraton are so very different, the influence of the longitudinal wave on the quality of reproduction of a speaker cone is not slight, because reflection effects in the cone material produce high frequency back-ground noises and influence the pitch of the speaker, as differentiated by the influence, or distortion, produced by the operating trans-former, and the rate of transverse propagation on the cone.

Longitudinal Pressure Detected

Fig. 5 shows a way of detecting the presence of longitudinal waves in a metal rod. The body of the responsive pendulum is just touching the metal rod, and the rod is securely held between two cork supports, and may be rubbed firmly with a rosin-coated formula elath. The rod will emit a high size between the detection of the size The rod will emit a high-pitched singing note and flannel cloth. the pendulum will vibrate vigorously. Also the rod may be tapped lightly and a direct pulse will travel through. The pendulum will move again. If the bar be given a transverse knock with the hammer the pendulum will not swing, proving that we had end-to-

end vibration in the first place. Fig. 6 shows the material of a speaker cone (greatly magnified) under a condition of vibration. Previous mention has been made of the fact that a speaker was louder in front of the cone than behind but no complete wave form was given. Here it is now. behind but no complete wave form was given. Here it is now. The compressions from various equi-radial points converge to produce a sound image by interference and this resultant wave front seems to come from the apex of the cone, but this is easily seen not to be true, actually. Similarly other parts of the cone produce images seemingly centered on the apex of the cone, and thus the sound is the center of the cone. That is, good speakers It is one of the problems of the designing engineer to create this property of illusion to its fullest extent.

The effect of longitudinal vibration in the cone is to create the background noises, which are very helpful in creating illusion.

Measured by Comparison

Perhaps someone will want to ask whether longitudinal sound effects can be measured usefully. They can, but only indirectly, from observations of the transverse radiator. If you could be sure that the cone edges moved outward radially, it would be easy to mount the edge of the cone or microphones (carbon granule type) and see how the registered variations at this edge would compare with those due to the transverse witheritour. compare with those due to the transverse vibrations.

The interesting feature about all sound output measurements in which conical membranes are involved is the great diversity of results obtained, and on this account one can amass a wealth of experience in a very short time. Someone will ask: "Do speaker cones emit simple tones, as for instance, like those of the big organ, when the pipes are blown, so as to sound the fundamental frequency?" The answer is yes. All loudspeakers have a funda-mental frequency. In most modern speakers this fundamental is near 100 cycles, although it is not absolutely pure, having weak higher frequency harmonics, or inharmonic higher frequency tones mixed in with it, which vary in prominence according to the amplitude of the fundamental.

The desired loudspeaker is one that will radiate all uniformly-impressed electrical audio frequencies as uniform acoustic frequencies, *i.e.*, will have a flat response output characteristic. The ideal may be approached but never can be attained. Most of us want a lot of *boom* in our speakers, *i.e.*, a large response at between 80 to 120 cycles, and are even willing to forego a certain amount of realism in reproduction by excluding by means of filtering devices all frequencies above 4,000 cycles.

Listener's Range of Hearing

The audibility range is subject to more than one definition as to its limits but judging by the reactions of some radio enthusiasts, especially as regards their taste in loudspeaker reproduction, their audibility range must be between the points where their hearing

is best! It would be very serious for the points where their itering is best! It would be very serious for the rest of us if some of these folks were sound frequency censors. The *energy of harmonics* plays a big role in the analysis of loudspeaker cone output. This topic may be found fully treated in Professor Dayton C. Miller's "The Science of Musical Sounds." This particular curve relates to the analysis of an organ tone produced by blowing a large organ pipe so that it produces a lot of harmonics—the analyzed curves follow below the resultant in numerical harmonic order and the 8th and 12th harmonic are seen to have a very considerable portion of the energy of the whole tone. In a loudspeaker the same thing is true to a degree—except that the harmonic is dictated largely by the period of the associated baffle device—being influenced more by box-like baffles than by

large flat boards. Fig. 7 shows the essential arrangement of a device to project the resultant wave form of the output of a sounding body on a screen. The diagram is practically self-explanatory but a brief resumé will be given.

How Phonodeik Works

A brilliant source of light (arc light) is placed behind a condenser lens which transforms the radially impinging light rays to parallel rays, and these in turn pass through the lens system and strike a small light-weight mirror, which is rotatably mounted on a light-weight steel pivoted axle. A quartz fibre is attached to the diaphragm and passes around the axle two or three times and is attached to the spring, which places the whole moving system under a slight tension.

The light bean, already focused on the small rotatably mounted mirror, is reflected to the four-sided rotating mirror shown, and this mirror is now started, resulting in an arc of light being proin an arc of next the organ pipe is sounded by blowing it easily, and the arc of white light on the screen assumes the form of the curve shown in Fig. 2. Thus we can see what our organ pipe tone looks like. Also, tuning forks, violins and voices are easily projected. (Continued Next Week)

E TO TRANSVERSE VIBRATION OF A CONE. SOUND-EFFECTS DUE

An Accurate Method of Ma

Vacuum Tube Voltmeter, Much Keener Than Human

By Capt. Peter

FIG. 1 THE CIRCUIT OF A VACUUM TUBE VOLTMETER THAT MAY BE USED FOR MAKING ADJUSTMENTS OF A CIRCUIT FOR HIGHEST EFFICIENCY. THE TUBE IN QUESTION MAY BE EITHER THE DETECTOR OR THE POWER TUBE.

A MATEUR radio experimenters usually judge the effects of changes in their circuits by ear. That is, if they make any change whatsoever they listen to the effects of *that* change. If the change results in louder response, or better quality, the circuit is left as changed, or it is changed further in the same direction and manner, but if the change results in a weaker sound output, or poorer quality, the circuit is either left in its original condition or a change in it of opposite kind is made. This is the tuning method employed in nearly all instances and it is often used in selecting plate and grid voltages, in adjusting trimming condensers, and in selecting tubes. This method is all right as long as the changes to be effected

condensers, and in selecting tubes. This method is all right as long as the changes to be effected are of major proportions. If a change which alters the perform-ance only a little bit is to be made, the ear method of judgment is not sensitive enough because the ear does not possess sufficient resolving power in respect to differences in volume intensity. For example, in many receivers the volume from a particular station appears to be equally strong over several divisions of a tuning dial. Actually, there is one point where it is stronger than at all others, assuming correct and conventional design of the tuner. The object of tuning is to find this point. It cannot be done accurately by ear for the reason just stated. ear for the reason just stated.

Use of Milliammeter

In receivers having grid bias detectors a very keen method of telling which of two adjustments is better is provided by putting telling which of two adjustments is better is provided by putting a milliammeter in the plate circuit of the detector tube. If the receiver is not of the grid bias type, it is a simple matter to arrange it temporarily so that it works in this way. The circuit arrangement of a grid bias detector with a meter in the plate circuit is shown in Fig. 1, in which M is a milliammeter measur-ing directly the rectified plate current and indirectly the signal voltage impressed on the grid. The greater the signal voltage impressed on the grid the greater will the deflection on the meter be, assuming that the grid bias has been adjusted to the right value. In case the detector operates on the grid bias principle the grid

In case the detector operates on the grid has principle the grid battery Eg or an equivalent grid bias resistor is provided and it battery Eg or an equivalent grid bias resistor is provided and it its not necessary to make any changes in the circuit, except to put the milliammeter in the plate circuit in series with a suitable rheostat Rh to limit the current to a suitable value. The primary of the coupling transformer normally in the plate circuit need not to be taken out, and in some instances it is not necessary to remove a plate coupling resistor that may be in the circuit. How-ever, if the detector tube is followed by a resistance coupling it is well to put Rh in shunt with the coupling resistor. Eb in the figure indicates the plate battery voltage. Of course, this, too, is provided in the receiver and therefore no special pro-vision need be made. If the receiver employs the grid leak-condenser method of detec-

If the receiver employs the grid leak-condenser method of detec-tion the condenser may be short-circuited and the grid return made to a suitable negative potential. This is most easily provided by a battery Eg.

How to Use It

It will be recognized that the circuit in Fig. 1 is nothing but a vacuum tube voltmeter. Now if the tube in question is the regular detector in the receiver, that is simply used as a vacuum tube voltmeter. The only difference between this and a conven-tional vacuum tube voltmeter is that the detector circuit is not

calibrated in volts, while a vacuum tube voltmeter is. For the purpose of noting relative effects of changes introduced into a purpose of noting relative effects of changes introduced into a circuit it is not necessary to know what the voltages are, but only to know whether a given change results in a greater or smaller signal voltage on the grid of the detector tube. The greater the deflection on the meter M the higher is the signal voltage on the grid of the tube. As a test of the effect of the signal voltage on the deflection on the meter M is broadcast station. When the station is not tuned in the deflection on the meter is very small, and it should be adjusted by means of Rh so that it is.

Then when the station is tuned in the deflection increases to a certain maximum. As the circuit is detuned by turning the condenser in the same direction the deflection again goes down to a very small value. This experiment may be done while listening to the station. This will give a striking comparison between the volume of sound and the deflection of the meter.

Having established the correspondence between the deflection of the meter and the intensity of the signal voltage on the grid of the detector tube, we are ready to make use of the meter to stab-lish which of two adjustments is the better. For example, it can be used to find the exact tuning point, which cannot be done by listening alone.

Suppose that the circuit has been tuned in accurately on a given Suppose that the circuit has been tuned in accurately on a given station by this method and it is desired to find what grid bias on the radio frequency tubes will give the greatest response. The bias is simply changed by definite voltage values, say 1.5 volts at a time, and the meter is observed for the greatest deflection. That which gives the greatest deflection is the bias that gives the greatest amplification. This does not necessarily give the final adjustment, however, for there are other factors entering into the choice of bias.

The Best Screen Voltage

In the same manner the best screen grid voltage can be found In the same manner the best screen grid voltage can be round by varying the voltage applied and observing which gives the greatest deflection on the meter M. Of course, it is understood that the tuning should not be changed while an observation is in progress, and also that the strength of the signal from the station should not vary. It would not do to tune in on a distant station while the indian for antirally wroup conclusions wight be reached subject to fading, for entirely wrong conclusions might be reached.

subject to lading, for entrepy wrong conclusions high be taken if any at all. The effect of changes in the plate voltage on the amplification can be determined in the same manner, qualitatively. The effect of shielding on the amplification can also be studied by means of this instrument, although this is a little more complex, the effect of shield is removed or installed the circuit involved because when a shield is removed or installed the circuit involved is detuned. The circuit then would first have to be tuned in accuis defuned. The circuit then would first have to be funed in accu-rately with the shield off and the deflection on the meter M noted. Then the shield should be put on and the circuit again funed in accurately, with the aid of the meter, and the deflection again noted. Comparing the deflections obtained when the shield was on and off gives a relative estimate of the effect of the shielding. When the receiver is gang-funed it is necessary to tune the circuit from which the shield is removed separately because other-wise sourious results will be obtained. wise spurious results will be obtained.

Still another application is to the determination of the effect of coupling between the primary and secondary windings in a radio frequency transformer. For example, the first observation may be taken when the primary has a large number of turns. Then the turns may be removed, five at a time or so, and an observation taken at each time. As a rule, there will be a greater deflection for one combination of turns than any other. This experiment should be conducted on a broadcast frequency in the middle of the band, say 950 kilocycles.

Uncertainty of Signal

There is one disadvantage of using a broadcast signal as a source of voltage when making these tests, and that is its continual variation due to modulation. The time to take an observation is variation due to modulation. The time to take an observation is when there is no sound, or when the carrier is unmodulated. This, however, does not occur often nor for any length of time when it does occur. If one had to wait for unmodulated signals it would take a long time to make a series of tests. Therefore it is prefer-able to provide a local signal, which may be done by setting up a small oscillator and coupling it loosely to the input of the radio receiver or the apportune up at the test.

receiver, or the apparatus under test. The circuit diagram and its design constants are given in Fig. 2. While the signal from this oscillator may vary a little, it will remain fairly constant if the filament, grid and plate voltages are kept constant during a run and if the coupling between the oscillator circuit and the receiver is maintained the same throughout. Moreover, it will be unmodulated, which is important. The method described here for determining the intensity of the

8

king Receiver Adjustments

Ear, Enables Precise Alignment of Gang Condensers V. O'Rourke

signal voltage at the detector is especially suitable for adjusting the trimmer condensers on a gang-controlled receiver. First, the receiver is tuned in as accurately as possible, using the meter as a guide. Then one of the trimmer condensers is adjusted until the deflection on the meter is as high as it can be made by adjusting this condenser. Then the next condenser is adjusted in the same way, and so on until all the trimmers have been adjusted. It will be found that the deflection can be increased greatly by trimming up the circuit in this manner. It should be remembered that the greater the deflection the more sensitive the receiver will be, because the deflection is a direct measure of the intensity of the audio output of the detector.

Audio Measurements

While the detector in the receiver can be used as vacuum tube voltmeter for measuring the effects of changes in the circuit ahead of that tube, it cannot be used for measuring effects of changes in the audio amplifier, but the method is applicable to the audio amthe audio amplifier, but the method is applicable to the audio amplifier as well, because it is only necessary to convert the power tube to a vacuum tube voltmeter. The simplest way of doing this is to connect the milliammeter, in series with a high variable resistance, in the plate circuit of the output tube and changing the grid bias until practically no plate current flows when no sig-nal is being impressed on the grid to the tube.

When measurements are made on the audio amplifier a broadcast signal cannot be used because the audio component will vary From zero up to rather high values without any consistency. Neither can the local radio frequency oscillator be used because that would not yield any audio signal voltage. However, two radio frequency oscillators such as that shown in Fig. 2 can be used, provided that they are adjusted to slightly different frequencies, to provide an audio signal of constant amplitude. If it is desired to run a performance curve, it may be done, but in this case the radio frequency oscillators as well as the vacuum tube voltmeter should be calibrated.

Precautions Unneccessary

Precautions Unneccessary In adjusting either the detector or the output tube to be a vacuum tube voltmeter precautions are necessary to prevent dam-age to the meter in the plate circuit. In the first place, the re-sistance in series with it should be so high at the beginning that no damage can occur even if the grid bias on the tube has not been made greatly negative. Then the bias should be increased until practically no current flows. It is necessary that the bias be so high that the tube is operated near the plate current cut-off point, for only there will the tube function effectively as a rectifier of the signal voltages applied to the grid. A little experimenting will show the bias that will cause the greatest change in the plate current when a given signal voltage is applied, and that is the bias to be sought.

the bias to be sought. When only small changes in the signal voltage are expected the resistance in series with the milliammeter may be made smaller so that small signal voltage changes will produce large changes in deflection of the meter. If it takes a change of several volts to change the deflection of the meter from its zero setting reading to full scale reading, this method is not much more sensitive than the ear, and therefore such an adjustment of the grid bias and the vari-able resistance should be avoided when accurate adjustments of

able resistance should be avoided when accurate adjustments of the circuit are to be made. The value of the resistance Rh depends on the tube used as volumeter on the plate voltage applied, and on the sensitivity of the meter M. Suppose the meter has a range of 0-1 milliampere and the total voltage in the circuit is 180 volts, the resistance in the circuit cannot be less than 180,000 ohms. Of course, the portion of the resistance used will not be so high because the internal resistance of the tube will be high when the proper bias has been found. has been found.

has been found. In the case of a 227 tube with 180 volts in the plate circuit the proper bias for most effective detection is about 24 volts. In the case of a 245 power tube with 250 volts on the plate the proper bias for detection or voltage rectification is about 70 volts. With these voltages applied to the grids the resistance in series with the meter may be reduced considerably without danger.

Other Meters Applicable

While it is desirable to use a meter of 0-1 milliampere sensitivity less sensitive meters can also be used. It is only necessary to use a lower resistance in series with it. For example, a 0-5 milli-ampere instrument can be used successfully. For this meter the maximum value of the resistance might be of the order of 50.000 ohms. It is also possible to use a low range voltmeter in place of the milliometer because a voltmeter is pothing but a millio of the millianmeter because a voltmeter is nothing but a milli-ammeter with a resistance built in. The external resistance in that

FIG. 2 THE CIRCUIT OF A RADIO FREQUENCY OSCILLATOR THAT MAY BE USED FOR SUPPLYING THE UNMODU-LATED SIGNAL VOLTAGE NEEDED FOR MAKING MEASUREMENTS WITH THE VACUUM TUBE VOLT-METER.

case, of course, would be less than when a milliammeter is used. The total resistance of a voltmeter is the product of the ohms per volt and the voltage range of the meter. For example, if the resistance per volt is 2000 ohms and the range of the meter is 0-7.5 volts, the total resistance is 1,500 ohms.

Current Drain Heaviest by Far for Power Tube

The design of modern sets is such that the current drawn by the detector and voltage amplifier is almost negligible in comparison with the current drawn by the power tube. A 245 tube, for example, takes normally a current of 32 milliamperes. The remaining tubes take an average of 3 milliamperes or less per tube. It would require 10 voltage amplifier tubes at this rate to draw a current equal to that drawn by the power tube. If the power pack operates at 80 milliamperes and the bleeder current is taken as 30 milliamperes, there is enough current for six voltage amplifier tubes, besides the power tube, assuming that each voltage amplifier takes 3 milliamperes

With the gain in the use of screen grid tubes, high mu tubes, and resistance coupling, the current drawn from the power pack is con-tinually being reduced, while that drawn by the power stage is being increased. The tendency to reduce the number of tubes in the audio amplifier also reduces the requirements on the B supply, at least as far as the voltage regulation goes. It appears now that the time will not be long before there will be a single audio tube on the power supply, the remaining tubes being radio frequency amplifiers.

amplifiers. In the Loftin-White amplifiers there is even a greater difference between the current in the power tube and the tube ahead of it. For example, the power tube takes about 32 milliamperes and the tube ahead not more than about 50 microamperes. This is one of the main differences between a voltage and a power amplifier. When a 250 tube is used in the Loftin-White the difference is even greater. That tube takes a current of 55 milliamperes where-as the tube ahead of it is often adjusted to take less than 50 micro-amperes. There is then a ratio of about 1,000 to 1. It is obviously an advantage from the point of view of economy to arrange a circuit so that only the last tube takes a considerable

to arrange a circuit so that only the last tube takes a considerable current, that is, to use some form of resistance coupling. Not only can the B supply be built on more modest proportions, but the tubes, exclusive of the power tube, will last much longer. Indeed they will last almost indefinitely in a resistance coupled amplifier. And then we have the superior quality as a clear gain on top of the economy

RADIO WORLD

Sidebands Explained Modulation Does Not Change the Frequency of By J. E.

FIG 1 (a) A RADIO FREQUENCY WAVE OF AMPLITUDE A. (b) AN AUDIO FREQUENCY WAVE OF AMPLITUDE &A. (c) A COMPLEX WAVE RESULTING FROM MODU-LATING (a) WITH (b), THE PERCENTAGE MODULA-TION BEING k/100. THE SCALE IS SUCH THAT k EQUALS 2/3.

NE immediate result of the debate on sidebands that appeared in the March 22 issue of RADIO WORLD was a large number of letters proving that the subject is still debatable, debated and misunderstood. Do sidebands really exist? The an-swer must be that they do not. Yet they do in one sense. Engineers who talk glibly of sidebands know exactly what they mean, and as far as they are concerned they really exist. Yet, they don't. Is there any wonder that the subject should be debatable and misunderstood?

One current misconception of the meaning of sidebands is that the carrier frequency of a modulated signal varies continually within the two sideband limits. For example, if a certain carrier frequency is modulated by audio signals ranging from zero to 10.000 cycles it is thought by some that the carrier frequency con-tinually varies between the limits 10.000 cycles above and 10.000 tinually varies between the limits 10,000 cycles above and 10,000 cycles below the unmodulated carrier frequency. This conception is based entirely on misunderstanding of what is going on. The carrier frequency remains constant all the time, or at least it should in a well-modulated signal. It has no width in the radio spectrum, but has merely a point location. If, for example, it is 1,000 kilocycles when it is unmodulated it is 1,000 kc when it is modulated, and that whether it is modulated with a frequency of 30 per second or 10,000 cycles per second.

Wobbulation

There is one exception. In the early days of broadcasting the carrier frequency did vary a little as a result of modulation. but the variation did not depend on the frequency of modulation but on the amplitude. Neither did it vary by amounts compar-able with 10,000 cycles. The greatest variation was probably not more than 200 cycles in the worst of transmitters. This frenot more than 200 cycles in the worst of transmitters. This fre-quency variation due to modulation was called "wobbulation." In modern transmitters there is no wobbulation. The Federal Radio Commission will not tolerate it and the broadcasters them-selves do not desire it. This kind of frequency variation does make the signal "broad" and it is for that reason that it is taboo. We need not consider it further We need not consider it further.

We need not consider it further. We repeat for the sake of avoiding a misunderstanding that the carrier irequency of a broadcast station does not vary during modulation. It is fixed at a certain number of cycles per second. It is contended by one group that a modulated wave is a radio wave the amplitude of which varies according to the frequency and amplitude of the modulating signal. They are right. It is contended by another group that a modulated wave is equivalent

to three waves, the carrier and its two side frequencies, with certain quantitative relationships among the amplitudes. They, too, are right, provided they make certain reservations, which they always do, either explicitly or implicitly. Those who understand the problem do not debate it at all. They admit the equivalence of the two viewpoints and make use of it whenever it is con-venient to do so. However, there have been a few instances in which those who did understand the problem have argued against the effectual existence of side frequencies but they have done co the effectual existence of side frequencies, but they have done so, it seems, because of commercial expediency.

Meaning of Sidebands

Too frequently the term "sidebands" is used when the meaning is "side frequencies." It is improper to speak of sidebands when a certain radio frequency carrier is modulated by a single audio side frequencies. The complex signal resulting from the modula-tion, after having been resolved into its three components, does not occupy a band in the frequency spectrum. It occupies three distinct points, for there are three distinct frequencies. If the distinct points, for there are three distinct frequencies. If the carrier frequency is 1,000,000 cycles and the modulating frequency is 100,000 cycles, the three distinct frequencies are 1,100,000, 1,000,-000, and 900,000 cycles per second. There is no band of frequen-cies 200,000 cycles wide occupying the spectrum space between 1,100 and 900 kc. If there is to be a band there must be fre-quencies of every gradation between the limits. The fact is there are only three frequencies, and they occupy definite points in the spectrum. spectrum.

If there are many modulating frequencies impressed on the same carrier there will be two side frequencies for each modulating frequency. These modulating frequencies for definition inter-ing frequency. These modulating frequencies may be impressed on the carrier simultaneously or in rapid sequence. If they are modulating simultaneously the several pairs of side frequencies will co-exist, but if they are modulating in sequence only one pair of side frequencies will exist at a time. This is obvious.

Analogies of Side Frequencies

Does the sideband conception have no place in the scheme? It does in connection with the apparatus used for producing modu-lation, detection, and tuning. If the modulating frequency is likely ation, detection, and tuning. If the modulating frequency is likely to have any value between zero and 10,000 cycles per second, the apparatus must be designed so that it makes no difference in the final results in respect to volume what the value of the modu-lating frequency happens to be. The equipment must be designed so that it will handle any frequency in a certain band of the spectrum. It is this band that is called the sideband. For example, if the modulating frequency is likely to have any value up to 10,000 cycles and the carrier frequency is 1,000 kc, the equipment must be designed to handle any frequency lying in the band of 10,000 cycles and the carrier frequency is 1,000 kc, the equipment must be designed to handle any frequency lying in the band of the spectrum between 990 and 1,010 kc, the two sidebands being the two slices out of the spectrum that lie between 990 and 1,000 kc and 1,000 and 1010 kc. The first of these is the lower side-band and the second the upper side band. The sidebands are the loci of all the side frequencies that may occur as a result of modulation by irequencies lying in a given band of the audio spectrum

It may help to illustrate the meaning and production of side fre-It may help to illustrate the meaning and production of side re-quencies by drawing on analogies. Suppose two automobiles are traveling on the same highway. First in the same direction and then in the opposite direction. Let one of them travel at the rate of 5 miles per hour and the other at 75 miles an hour. In this case the lower speed corresponds to the modulating frequency and the higher speed the carrier frequency. We might call one the modu-lating speed the other the carrier speed lating speed and the other the carrier speed.

Taking speed and the other the carrier speed. When the two cars are moving in the same direction the *relative* speed seems to be 70 miles per hour, that is, the carrier speed minus the molulating speed. Thus 70 miles per hour would be the lower side speed, corresponding to the lower side frequency. If the cars are traveling in opposite directions the *relative* speed appears to be 80 miles per hour. This would be the higher side speed, corresponding to the higher side frequency.

Extending the Analogy

Are these side speeds real, or are they mere mathematical fictions? To anything stationary they do not exist at all, but in so tions? To anything stationary they do not exist at all, but in so far as the two cars involved are concerned, they are real. Suppose the two cars should collide. There would be greater damage if they collided when going in opposite directions than when going in the same direction, and the difference would be in the proportion of the relative speeds, 80 to 70. This ratio is not great and con-sequently the amount of damage would not be greatly different. For a similar reason when the ratio of the two side frequencies in a modulated radio wave is small, the same tuner will bring in

by Familiar Analogies the Carrier—Conflicting Conceptions Reconciled

Anderson

both without much relative suppression to either, or it will reject both with nearly the same damage.

both with nearly the same damage. Let us extend this analogy by making the ground speeds of the two cars very nearly equal. For example, let the speed of one be 51 miles per hour and that of the other 49 miles per hour. The upper side speed, as we have called it, would then be 100 miles per hour and the lower side speed would be only two miles per hour. If the cars should now collide going in the same direction no damage would result, but should they collide while going in op-posite directions there would be great damage. No one would argue against the assertion that the relative speeds are real. If any one should have the temerity to do so he would change his mind by a should have the temerity to do so, he would change his mind by a moments consideration of the consequences of a collision should he be in one of the cars.

Zero Beat

We might extend the analogy by assuming that the two cars are traveling at the same speed of 50 miles an hour with respect to the roadway. One of the relative speeds would still be 100

to the roadway. One of the relative speeds would still be roo miles per hour but the other would be just zero. We have similar situations in radio. Suppose the two side fre-quencies had ratios 50 to 1, the ratio of the two relative car speeds. One tuner could be adjusted to either but not to both at the same time. If it is adjusted to one it would do great damage to the other, or in other words, it would suppress it. There is also a correspondence between the two cars going at the same speed and radio phenomena. The zero relative speed

the same speed and radio phenomena. The zero relative speed inds its counterpart in the zero beat and the double relative speed unds its counterpart in the zero beat and the double relative speed finds its counterpart in the sum frequency. Those who have tried to hold two oscillators at zero beat know the difficulty of doing so. There is much growling indicating that the relative frequency of the oscillators is changing. It is also difficult to hold two cars going at exactly the same speed, and hence to maintain a given distance between them when they are going in the same direction.

Doppler's Principle

Let us take another illustration of the production of side frequencies due to relative motions, one which is familiar to all students of physics. Suppose a person is riding on a train past a road crossing at which there is a bell. On the approach of the train the bell is heard at a given pitch. At the instant the person on the train passes the bell there is a marked lowering of the pitch. Does the passes the bent there is a marked towering of the pitch. Boes the bell ring with one pitch when the train is approaching and with a lower pitch when the train is receding, or is it ringing with the same pitch all the time? Obviously, the pitch of the bell does not change just because a train is passing. The train does not change

the make-up of the bell. Nevertheless, the person riding on the train can hear the pitch change. What makes the frequency of the sound from the bell change. change? change. What makes the frequency of the sound from the bell change? Are the two frequencies heard by the passenger mathe-matical abstractions or are they real frequencies that affect the ears of the passenger in a normal manner? Or does the ears of the passenger in a normal manner? the passenger change the instant he passes the bell? When the train approaches the bell, the frequency heard by the

When the train approaches the bell, the frequency heard by the passenger is higher than that emitted by the bell, and when the train recedes, it is lower than the frequency of the bell. The approach frequency is the upper side frequency of that of the bell, and the recession frequency is the lower side frequency. These frequencies are just as real to the passenger as any other sound that he may hear. They exist to the passenger but not to a person standing near the bell. The change in the pitch of the bell as observed by the passenger is known as the Doppler Principle.

passenger is known as the Doppler Frinciple. The change in the pitch is due to the relative motion of the train and the sound waves from the bell. When the train is approach-ing it meets the waves, that is, the succession of condensations and rarefactions of the air constituting the sound wave. Consequently the person on the train perceives a greater number of these sequences person on the train perceives a greater number of these sequences per second than he would do if he were standing near the bell. When the train is receding, on the other hand, the train moves in the same direction as the sound wave, and the passenger perceives a smaller number of condensations and rarefactions of air per sec-ond. The number of such changes in the air pressure on the ear drum determines the pitch, or frequency, of the sound. Hence the pitch is lower on recession than on approach. To the person on the ground near the bell there is no change in pitch provided he himself is not moving toward or away from the bell.

Returning to Radio

The Doppler effect was observed experimentally and then it was explained mathematically. It is interesting to observe that the mathematical form of the expression for the two side frequencies in the case of the Doppler effect is not unlike the expression for the side frequencies in the radio case.

In Fig. 1 we have a set of curves representing (a) an unmodu-

www.americanradiohistory.com

FIG 2

(a) A CURVE REPRESENTING THE LOWER SIDE FRE-QUENCY CONTAINED IN THE COMPLEX WAVE (c) OF FIG. 1. (b) A CURVE REPRESENTING THE UPPER SIDE QUENCY CONTAINED IN THE COMPLEX WAVE (c) OF AMPLITUDES ARE DRAWN TO SCALE BUT NOT TO FREQUENCY.

lated radio frequency wave, (b) an audio frequency wave, and (c) a modulated radio frequency wave resulting from the combination of the curves in (a) and (b). In (c) the wave starts unmodulated, goes through two cycles of modulation, and finally ends up un-modulated. The two curves inclosing the modulated wave are called the auxiliary of the curve. The anyeloue is not a part of called the envelope of the curve. The envelope is not a part of the curve and should be disregarded. In fact, it was drawn only as a guide for obtaining the proper amplitudes of the modulated wave.

The Question

Now the question is, "Does the modulated wave consist of a Now the question is, Does the modulated wave consist of a radio frequency wave the amplitude of which varies in accordance with the amplitude and frequency of the modulating waves?" Ob-viously it does. Where, then, do the side frequencies come in F None is shown in the drawing of the modulated wave. It is here that mathematics come in. The complex wave in (c) are be approximated in mathematical terms as

can be expressed in mathematical terms as

(1)e = A(1 + kcosqt)sinptin which e is the intensity of the complex wave at any instant of time t, A is the amplitude of the carrier wave (a), k is the relative modulation, q is 6.28 times the frequency of the audio wave (b), and p is 6.28 times the frequency of the radio wave (a).

(b), and p is 0.28 times the frequency of the radio wave (a). When k is zero the carrier wave is unmodulated and when it is unity the wave is 100 per cent. modulated. In (c) the value of k is 2/3 and the wave is 67 per cent. modulated. In (c) the value of room to the curves in (b) and (a) respectively. Their occurrence in the expression for the composite wave show how they enter to produce the complex wave. The factor (1+kcosqt) is that which causes the amplitude of the wave to change.

to produce the complex wave. The factor $(1+k\cos qt)$ is that which causes the amplitude of the wave to change. It can be shown by a simple trigonometric transformation of the expression in (1) that this expression is identically equal to e=Asinpt+0.5kAsin(p-q)t+0.5kAsin(p+q)t......(2) This expression represents three distinct waves similar to that in (a) of Fig. 1. In fact the first term on the right of the equality sign represents that wave without alteration. It is the unmodulated corrige term. sign represents that wave without alteration. It is the unmodulated carrier term. The second term represents the lower side frequency, and p-q is 6.28 times the side frequency. The third term represents the upper side irequency, and p+q is 6.28 times that frequency. The amplitudes of the side irequency terms are equal to each other and equal to $\frac{1}{2}$ kA. Thus if the per cent, modulation is 67 and the amplitude of the carrier is 60 millivolts per meter, the amplitude of either side frequency wave is 20 millivolts per meter.

Equivalence of expressions

Since the two expressions in equations (1) and (2) are mathe-matically equal and physically equivalent it makes no difference which is used in studying modulation phenomena. If certain rewhich is used in studying modulation phenomena. It certain re-sults are obtained by considering the expression in (1), that is, the variable amplitude conception, the same results must necessarily be obtained by considering the expression in (2), that is, the conception of a carrier wave and two side frequency waves. In various studies the desired results are more easily arrived at by considering equa-tion (2) and for that reason it is used. For example, in studying the effects on the modulation of tuning it is easier to consider the complex wave as composed of three independent waves of slightly different frequencies and computing the suppression of those which different frequencies and computing the suppression of those which are off tune

Suppose that carrier irequency is quite different from either of Suppose that carrier frequency is duite different from effect of the side frequencies, and that a very selective tuner is adjusted to the carrier frequency. It is clear that the two side frequencies are suppressed in a degree depending on the selectivity of the circuit and the relative amount by which the side frequencies differ from the carrier frequency. This is easy to see after the complex wave has been resolved into its components, but it is not at all easy to see the the time is a complex form. to see it when it is in its complex form

AFFIRMATIVE

By Lewis Winner

N view of the facts that only tubes amplify and that a high degree of sensitivity is admittedly desirable it is obvious that it is also desirable to have receivers of many tubes. It is more than desirable, it is necessary. How else can a high degree of sensitivity be obtained when nothing provides it save tubes? Less than a decade ago we did not use tubes in receivers at all. Crystal sets were in vogue, and practically all receivers outside of the large laboratories were of this type. With one of these receivers it was possible to listen to a local broadcast station with a sensi-tive headset, provided that every precaution had been taken to conserve the extremely feeble signals that were at that time in the air. A loudspeaker was out of the question and very few people thought of the possibility of using one.

After a short time it was found that better results—londer and clearer signals could be received with a tube detector, especially if that tube was made to regenerate, and consequently crystals were rapidly displaced by tube receivers. DX became a new term in the radio fan's vocabulary and lists of distant stations received came into being.

Tubes Multiply

Before the efficacy of more tubes was realized every means was taken to make the receivers of that day more and more sensiwas taken to make the receivers of that day more and more sensi-tive. Experiments were made with variable grid leaks, variable grid condensers, special detector tubes, variable by-pass condensers in the plate circuit, antennas of every description, grounds, coils, tuning condensers, and different headsets. While a great deal was accomplished in this manner, real DX with good volume was unknown

And then came the idea of using tubes for amplifying the detected audio frequency signals. First one stage of audio, then two, three, and sometimes four and five. Plenty of volume could be obtained for the headset, and soon it was realized that a loud-speaker could be used to advantage. This change was brought about by using amplifying tubes. It was found desirable to use at least two stages of audio frequency amplification. However, more than two did not work out so well because there was too much amplification for the tubes and the speakers then available. This practical limitation was not against the use of more tubes for amplification, but against the size of the tubes and the capabilities of the speakers.

The need for greater selectivity—greater than could be obtained with one tuner and regenerative detector—arose, and that brought into use another tuner and a radio frequency amplifier. The first radio frequency amplifier tube was not primarily added to increase the selectivity but to prevent radiation from an oscillating receiver. But it was soon realized that both increased selectivity and radia-tion prevention could be secured by the addition of a radio frequency amplifier. It was not long before no one ever thought of building a receiver which did not have a radio frequency amplifier tube ahead of the detector. Its desirability was self-evident, and nothing has arisen since then to change the situation in the direction of fewer tubes

Tubes Continue to Multiply

If one radio frequency amplifier ahead of the detector was desirable, then certainly two of them would still be more desirable. That it was is attested by the phenomenally rapid rise of the Neu-trodyne, a circuit containing three tuners, two radio frequency tubes, and a detector. The circuit for the first time made trauscontinental reception a reality, and it made unique reception a fact. That is to say, it made it possible to select the desired station and to exclude all stations momentarily undesirable.

Was it the tuners that made trans-continental reception possible? Of course not. If was the two added tubes that did the trick.

Of course not. It was the two added tubes that did the trick. They amplified the feeble radio impulses from the remote stations and made them as strong as if they had emanated from a local station. The tuners added made the selectivity satisfactory for such high sensitivity as the tubes provided. When the Neutrodyne was ultimately displaced it was not by any receiver having fewer radio frequency amplifiers, but by receivers having more. Means were found for stabilizing such multi-tube receivers and to make practical use of the immense amplification, and the Neutrodyne itself provided one of the best methods of stabilization. It is doubtful that a greater number of radio frequency tubes

It is doubtful that a greater number of radio frequency tubes than was provided for in the Neutrodyne had ever been necessary

www.americanradiohistorv.com

Resolved, That RF is G

if it had not been for the fact that human laziness had to be served amplification necessitated greater selectivity, which meant a greater number of timers. The Neutrodyne had three, all independent. This independence made the highest possible amplification just about all that was needed, provided that any one cared to solve the nurzle of exact tuning. the puzzle of exact tuning.

Gang Tuning

Laziness demanded unified tuning control Immediately this was Laziness demanded unined tuning control immediately tins was installed in a receiver some of the sensitivity of the Neutrodyne type receiver was lost, and more tubes had to be used in order to make up for it. It was cheaper to add more tubes than to spend the time required to tune three independent resonant circuits. The result was not only greater simplicity of tuning but also greater constituity and calculativity. It is now nothing unusual to see a sensitivity and selectivity. It is now nothing unusual to see a receiver which will consistently receive trans-continental stations with loudspeaker volume and with a single tuning control.

What made this increased sensitivity possible? The tuners? Only indirectly in that it made unique reception possible. Was it the gang tuning? Not at all. That militated only against the reception of the distant stations because of decreased selectivity. Was it the added tubes? Absolutely. It was the increased ampli-fication that the added tube provided. We are forced to the conclusion that many tubes are not only desirable, but that they are necessary under modern reception conditions.

Best Stabilizer

One of the best means discovered for stabilizing a radio frequency amplifier, and, strange as it may seem, for increasing the selectivity, is to shield the various stages, especially the tuning coils. This, unfortunately, introduces a certain amount of loss in the amplification, but this is more than offset by the gain con-tributed by one tube. Hence the shielding and the addition of a tube makes the set more selective, more stable, and more sensitive. It is the amplification in the tubes added that makes this refinement possible. Again the facts confute any assertion that many tubes in a receiver are not desirable.

Shielding can be made effective against feed back without at the same time lowering the selectivity and amplification by making the space between the coils and the shielding large That is, if the shields are of given dimensions it is best to use coils of rather small diameter, or if the coils are fixed in size, to make the shields large. The diameter of the coil inside a circular shield should be about one-third the diameter of the inside dimensions of the be about one-third the diameter of the inside dimensions of the shielding. When there are many timers and many amplifying tubes it is practical to reduce the separation considerably without making any appreciable sacrifices in the desirable features of the circuit. Without plenty of amplification the shielding must be impractically large or no shielding at all can be used. This limits impractically large or no shielding at all can be used. This limits the usefulness of the receiver to local reception, unless the receiver be made so large that it will occupy the major portion of the living room.

Volume Control Necessary

Many of the objections raised against receivers of many tubes is that the amplification is so great that it cannot be controlled. These objections are valid in many instances, but to raise them is no argument against the use of receiver with a high degree of sensitivity. It is an argument for having a volume control that has sufficient range to limit the amplification to the required amount. Of course, a receiver without a volume control cannot be sensitive, for it would be useless except for the reception of the most distant stations. On all other stations all the tubes, with the possible exception of the first two, would be hopelessly overloaded. If the receiver is to be used for local stations only it would be just as well to use a crustal or a one-tube set

well to use a crystal or a one-tube set. No matter what receiver of a given degree of sensitivity is used No matter what receiver of a given degree of sensitivity is used it must have a certain volume control range, and the greater the sensitivity the wider that range must be. Hence a multi-tube receiver capable of trans-continental reception must have a very wide volume control range indeed. The signals, for example, from a station clear across the country may not have a signal strength of the receiver of more than one microvel wer meter. The crim at the receiver of more than one microvolt per meter. The gain in the receiver must be so great that this weak signal can be built up to loudspeaker volume under the worst conditions. On the other hand, the signal strength from a local station may be as great as 500,000 microvolts per meter. The volume control must be such that this can be surpassed so that the speaker delivers no more sound than it does on the distant station. Therefore, the range of the volume control must be 500,000 to one. It is easy to provide such a range but it is not always done. Note that it is always a simple matter to cut the volume out, but it is only possible by means of tubes to build it up. Again, many tubes are a necessary condition.

ained Faster than Lost

NEGATIVE

By Herbert E. Hayden

T HE need of many tubes in a modern radio receiver is admitted. It is only a question of how many tubes are needed for a given sensitivity. It is possible to build a receiver having 100 tubes, which is no more sensitive than a well-constructed receiver having two or three tubes. It is also possible to build a receiver with five or six tubes which is so sensitive that there never will arise a reasonable need for a more sensitive one. Simple adding tubes to a receiver does not add to the sensitivity. It all depends on how they are added. Much hoodwinking of the public has been practiced on this ques-

Much hoodwinking of the public has been practiced on this question of tubes and sensitivity. It is easy to convince the average radio fan that an eight-tube receiver is more sensitive than a four-tube set, but it is mighty difficult to explain to him why the four-tube set runs rings around the eight-tube circuit, if it does, and it does that quite frequently. The average fan is sold on a certain eight-tube set because he is certain that it will do what no other set will do. But the more-than-average fan sticks to the four-tuber. Now these two fans may be close friends and may exchange notes.

"I got Denver last night, clear as a bell on my new eight-tuber," says the average fan, a New Yorker, one morning when he sees his friend. "That's nothing," replies the more-than-average fan, a commuter from New Jersey, "I get KFI every night on my old four-tuber." Of course, the average fan puts this down as plain boasting and discounts it all the way back to Chicago. But one evening the New Yorker pays his New Jersey friend a visit and is invited to tune in KFI, and he does it. Then he goes home with the determination to lop off four tubes from his eight-tuber. Of course, being an average fan, he does not know which tubes to cut out, nor how to do it. Hence he asks somebody who knows the tricks, and he is told that it is not done that way. He has to start from scratch, although he may get suggestions for making worthwhile improvements in the eight-tube receiver.

Much Ado About Nothing

What is the trouble with this particular eight-tube set? There is no one trouble in particular. There is only a lot of lost motion in it—much ado about nothing. There is amplification galore but t is not made to do anything. There is a lack of co-ordination unong the stages.

imong the stages. There is a close analogy between multi-tube receivers and largerolume business. One receiver may have a large number of tubes with a very small gain per stage. It is like a large-scale business vith a very small margin of profit. Another receiver may have only a small number of tubes with a large gain per stage. That is like a small business with a large margin of profit. Some receivers have been put out which had a loss per stage, and many of these were multi-tube receivers. They are like big business rentures in which the sales amount to less than the costs. One game practiced by certain designers is to put in a tube to

One game practiced by certain designers is to put in a tube to implify the signals to a certain point, then to put in some form of losser to keep that gain from getting out of control, largely for the purpose of adding another tube so that it can have something o do. This is followed by a losser put in to allay the fear that he amplification will become too great. And this losser prepares he stage for another tube. This see-saw game goes on until the otal number of tubes in the receiver is at least one more than he number of tubes used in the receiver made by a competitor, or htil the receiver presents a truly imposing appearance

Types of Lossers

There is only one way of gaining amplification in a receiver, and hat by taking advantage of the properties of vacuum tubes. But here are countless lossers. To name them all would be to write book on what not to do to get the best radio receiver. It might eem to some fans that many radio engineers know half a dozen uch books by heart, and that they took advantage of everything hat the books contained. But this is not fair to the engineers, or in most instances it is really the fans themselves who are to lame. It is really not necessary to read any of these books in rder to do all that they say should not be done to build the best ecciver.

One of the most effective lossers, as far as sensitivity is concerned, s lack of line-up of the tuned condensers and the tuning coils n gang controlled receivers. If the receiver has only one tuned ircuit there is no chance of going wrong on this score. If there are only two tuned circuits on the same control there is only one chance. And if there is any number of tuned circuits there is always one chance less of going wrong. But suppose there are ten tuned circuits? There are nine possibilities of going wrong, and in many instances all nine have been taken advantage of to make the receiver as bad as possible. The proper thing to do is to line all the condensers and the coils up so that all the tuned circuits are in tune with the same frequency at the same dial setting, no matter what the irequency may be. To do that is quite a job, and few there are who can do it.

But even if the tuned circuits are a little out of tune, if the circuit has enough tuners and enough amplifier tubes there will be both sensitivity and selectivity. Plenty of it, in fact, unless the mismatching is very bad.

This fact calls for shielding another effective losser. The only real object of shielding is to introduce losses. It may be said that the object is to stabilize the circuit, but that is only a clever way of avoiding the unpleasant word "loss." Or it may be said that the object of the shielding is to prevent feedback, which is only another way of avoiding saying the same unpleasant word. Those who are frank enough to admit that shielding is a losser

Those who are frank enough to admit that shielding is a losser usually wriggle out of the difficulty by saying, in some way or other, that shielding losses are introduced in order that a greater gain may be effected as a result. Their way of looking at it is that shielding loss is a sort of income tax which is only a small fraction of the total gain. Who does not want to pay an income tax, provided that the rate is low?

This is indeed an optimistic view of the matter, but those who hold it usually forget to mention the fact that the rate of taxation is frequently 100 per cent. Who, by the way, has not taken out one tube in a receiver to find that the sensitivity went away up? This signifies, not a 100 per cent. tax, but perhaps 110 per cent. There are many receivers of this kind, and they are usually of the multi-tube, well-shielded type.

Another method of avoiding the gain that the tubes pile up is to couple them very loosely. Very small primaries placed far away from the tuned secondaries are used. This is particularly the case in screen grid tube receivers, which normally require closer coupling than three-element tubes. When the useful load on a tube is made very small, as it is when the coupling is not sufficiently close for the tube, there is much ado in the tube but it does not produce any results. Of course, that is one of the necessary conditions for using a long array of high gain tubes in a receiver.

There are many other methods for preventing amplification in a receiver oversupplied with high gain tubes. One is to put a resistance in the grid leads of all the tubes. It is surprising how effective this is in preventing amplification and in making a multi-tube receiver practical. Still another way is to put high resistance in the plate circuits of the tubes. They serve to put high, useless loads on the tubes, and hence to prevent the full signal output from reaching the next tube. Or in some instances they serve to cut down the effective plate voltage so that the tube does not amplify much, if any at all. And still another way of accomplishing the same thing is to cut

And still another way of accomplishing the same thing is to cut down the screen voltage in screen grid tube receivers. It is easy to set the screen voltage so that even if everything else is as it should be for high amplification, the tube acts only as a signal blocker. Indeed, in most screen grid tube receivers this fact is taken advantage of in controlling the volume, that is, the amplification.

Indeed, in most screen grid tube receivers this fact is taken advantage of in controlling the volume, that is, the amplification. Low resistance shunts across the tuned circuits are also used in some cases to prevent amplification when there are so many tubes in the circuit that it would be impossible to handle it if the full gain were permitted. Likewise shunts are put in the antenna circuit for the same reason and with the same object. Resistances in series with the tuning coils are also resorted to, usually in the guise of small, "efficient" coils. Primaries wound with resistance wire is another method of circumventing high gain. The excuse for doing this is that high resistance primaries put high loads on the tubes and make them more efficient as amplifiers. This excuse is actually believed by some. But "those in the know" appreciate the fact that high resistance primaries cimply out a uscless

This excuse is actually believed by some. But "those in the know" appreciate the fact that high resistance primaries simply put a useless load on the tubes and reduce the amplification. It would be just as well to put high resistances in series with the primaries externally. The effect is exactly the same. Any load on a tube must be useful if it is to add anything to the amplification.

It may help some to appreciate what is being done when lossers of various kinds are put in a circuit by drawing on a common analogy. The gain contributed by the tubes may be likened to the acceleration of a motor car resulting from feeding it more gas, and the loss contributed by the various lossers is like the retardation of the motor car resulting from applying the brakes. Nobody but an automobile novice will step on the brake and the accelerator at the same time. But nearly everybody does the thing in radio sets. Designing radio engineers do it just because they can "get away with it," leaving the impression that the multi-tube receiver is a world-beater in sensitivity. They are not content with a single brake on each tube, but they clutter up every tube with all the brakes that have been found.

[Herewith is the fifth of a series of articles detailing the design and experimental work being done on an AC circuit using two threegang condensers in connection with screen grid tubes. Laboratory tests compelled many changes in the course of the experimental work. However, as the author states in the following article, the design shown this week is semi-final.-Editor.]

BAND pass filter pre-selector has been chosen definitely for the circuit I have been experimenting with for five weeks and **7** The end of the second experimenting with low weeks. Also, one of the sections of the first three-gang condenser is to be used as a series ground condenser for the antenna primary winding alone,

to even up the radio frequency amplification. There will be three stages of screen grid radio frequency ampli-fication, using AC tubes, while a filament transformer will be a part of the chassis assembly, as will a voltage divider, so that we will run no risk of obtaining incorrect voltages, or of depending too confidently on the capacity of filament windings of a power amplifier with which it is suggested this circuit be used.

227 Tube Used As Output

The mere fact that a power amplifier is to be used makes it inadvisable to use a 245 tube as output, since the power amplifier will have two stages of audio, and it would have its first stage biased less by far than the output of the preceding circuit. So a 227 tube will be used as output, and the full voltage as obtained from the 180-volt tap of the power amplifier will be applied to the sixth

The 6-Cir

April 26, 1930

Design In Its Semi-Final Evils It Avoids By Herman

surely will bring in distance, two stages of audio should be used, making four stages, all told. A dynamic speaker is necessary. Four stages are a great deal of audio frequency amplification, but can be utilized with success. When a little station in Wisconsin Four stages are a great deal of audio frequency any four stages are a great deal of audio frequency any four stages are a great deal of audio frequency any four stages are a great deal of audio frequency and in Wisconsin is brought in at New York with "local volume" on the speaker, it becomes obvious that those who like their DX loud should make proper audio preparations to insure such enjoyment. True, local stations will be too loud, at maximum volume, but the volume control virtually will cut off the signal completely, if desired, so more well use no more volume than you desire. The point is rather will need for you can to provide as much audio amplification as you will need, for you can

DESIGN OF THE SIX-CIRCUIT SCREEN GRID TUNER, WITH BAND PASS FILTER AND 227 OUTPUT.

www.americanradiohistory.com

tube's plate. At 180 plate volts, the negative grid bias should be 13.5 volts, for amplification, under which conditions 6 milliamperes will Depending on the resistance of the load to be placed on flow. the final plate circuit, the effective plate voltage, hence the plate

the final plate circuit, the effective plate voltage, hence the plate current, may be a little less than the stated 6 milliamperes. It will surprise many to be told that the 227 as an output tube is a good one, outranking the 112 or 112A of battery-set operation. at the rated voltages. At 135 plate volts, with 9 volts negative bias, 7 milliamperes of plate current will flow, and the maximum undistorted output will be 120 milliwatts in the case of the 112A. Now, the 227, at the maximum rated plate voltage of 180 volts, at 13.5 volts negative bias, not only will stand half again as much grid swing before overloading, as compared with the 112A at 135 volts, but has a maximum undistorted power output of 164 milliwatts, an improvement of more than 36 per cent. The 112A has an amplification factor of 8, while the 227 has an amplification factor of 9. The mutual conductance of the 112A is 1,600 micromhos under the stated conditions, and that of the 227 is 1,000 micromhos under the stated conditions, and that of the 227 is 1,000 micromhos, but the mutual conductance, or change in plate current for a given change in grid voltage, is not a figure of merit for a tube used for output purposes.

When Tubes Are Over-Voltaged

It is true that the 112A, if 180 volts are applied, will exceed the It is true that the 112A, if 180 volts are applied, will exceed the other in all directions except mu, but 180 volts should not be applied to the 112A, as the tube's life would be halved. By ignoring tube life the voltage on the 227 could be lifted to 250, so that with equal life reduction inflicted on both—say, halving the normal life of 1,000 hours—the 227 always would retain the lead. So it is a fact indeed that the 227, when worked at 180 volts with proper bias, is a good output tube, beyond the 112A, hence properly semi-power tube class, although this fact is seldom stated. It is conceivable that persons who desire only moderate volume will work the present design into a loudspeaker, preferably the

will work the present design into a loudspeaker, preferably the magnetic or inductor type, without invoking the aid of a power amplifier. For such persons no extra equipment is needed except a B eliminator that furnishes 180 volts, although the precaution should be taken to choose one of the 60 or 65 milliamperes type, taber than the 35 milliamperes type. The circuit will work on rather than the 35 milliamperes type. The circuit will work on either, but better results are obtainable from the larger capacity eliminator, because the regulation is better, the voltage obtained being therefore nearer the rating, even with the six-tube draw.

Use Dynamic With Power Amplifier

As for feeding a power amplifier, which is recommended to those who like plenty of volume on distant stations, for this circuit always subtract, never add, on these radio machines. The voltage divider has been arranged a little differently this week, and a boosting resistor of 300 ohms or less is used for maintaining the grid of the first RF tube at a higher bias than obtains on the grids of the rest of the RF tubes or the first audio

Right or

[The following questions and answers are based on technical infor-mation contained in last week's issue. Read the present issue care-fully and know the answers to next weeks questions before they arc asked.—Editor.]

OUESTIONS

One--A good outdoor antenna is essential to get the most distant reception out of any receiver.

Two-A good ground is not essential, since most receivers work

just as well without as with one. Three—If best the results are to be obtained with any broadcast receiver it is necessary to select a set of matched tubes. Four-Weather conditions do not affect radio reception in the

least, contrary to general opinion. Five-It is possible to predict what the weather conditions will

be the following day by observing reception from distant stations in various directions.

Six-All crackles heard in radio receivers are due to static, that is, to electrical discharges between clouds or between clouds and the earth.

Seven-DX reception is practically impossible in the Spring and Summer.

Eight-Weather does not in any way affect the efficiency of a receiver.

Nine-A milliammeter and a voltmeter can be used as a direct reading ohmmeter provided that they are associated properly with resistance and a voltage source. Ten—The addition of an extra radio frequency amplifier stage

in a receiver does not always increase the sensitivity of the receiver.

ANSWERS

One-Right. There is no better way of insuring distance than using a first class antenna. The signal picked up is directly propor-

14

cuit Tuner

Form Is Outlined— Are Listed

Bernard

tube. The object of heightening the bias here is not to cope with any enormity of amplitude, for the amplitude is least here, but for avoiding stray detection that results in cross-modulation.

What It Does Not Do

The receiver, as it is working now, in conjunction with a power

amplifier that has one stage of resistance audio and one stage of push-pull audio feeding 245s, does *not* do any of the following: It does *not* cross-modulate, whereby a station of strong signal strength is tuned out, only to ride through again elsewhere on the dial along with the program of another station to which the receiver now is tuned.

It does not produce resonance hum, that is, develop a hum when a station is tuned in, although there would be no hum when no station was tuned in. (Actually, resonance hum is encountered at resonance, whether a station is receivable at that frequency or

not, where the vice exists.) It does not get off balance at one end of the tuning spectrum when balanced for the other end. The tuning condensers may be trimmed at the highest receivable frequency, the most exacting place to choose, and yet resonance will prevail at the lowest radio frequency you can tune in, because of the extreme accuracy and ruggedness of the gang condensers used, the equality of the inductances of the coils and the position of the wiring connections. For purposes of inductive equality, if for no other, all the coils are wound with the same number of turns on both primaries and secondaries.

It does not oscillate, unless you want it to. That is, the circuit may be built and the potentiometer arm at the low end of the voltage divider may be set so that no oscillation takes place at the highest receivable frequency, even when the volume control is advanced to maximum. This affords a sensitive and selective receiver, but those who want oscillation may adjust the arm of the voltage divider potentiometer so that the circuit will oscillate.

It does not overload the detector, since real power detection is used at a bias of around 16 volts, hence the first tube to overload would be the last tube, the 227 output, which is best practice. A receiver should be as distortionless as its final tube, not as distor-tionless as its detector, otherwise the detector is permitted to

tional to the height of the antenna and therefore the higher it is the louder the signals will be.

the louder the signals will be. Two-Wrong. While a receiver may work fairly well without a good ground it will work immeasurably better with one. Not only does it make the antenna a better collector of radio signals but it stabilizes the circuit. It acts as a sort of anchor. Three-Right. To answer this in the affirmative it is necessary to make some modification. If matching means that tubes having characteristics which make them work most efficiently into the coupling devices in the set, then the statement is right. If it means that they should be selected because they have certain inter-electrode that they should be selected because they have certain inter-electrode capacities the matching can be done more cheaply with trimmers. Four—Wrong. The weather has a great deal to do with the

strength of signals received from distance stations and the amount of noise that accompanies them. Five—Right. While the connection between weather conditions and radio reception has not been worked out fully, the connection

is well enough understood that it is possible to make predictions.

Six--Wrong. It is true that many of the noises that are heard are caused by atmospheric electricity, possibly most of them are due to the disturbances from the electric power system. Seven-Wrong. DX reception is usually more consistent during

these seasons and if the receiver is sensitive enough satisfactory

reception can be obtained. Eight—Wrong. There are many parts in a receiver which are affected by moisture. For example, the insulation in coils and the sounding board in the loudspeaker are likely to absorb moisture.

Absorption usually will make the set less sensitive and selective. Nine—Right. The method of doing this was explained in an article by William A. Forbes in the April 19th issue of RADIO WORLD.

Ten-Right. Often the addition of another stage of RF amplification results in a worse receiver because of instability.

distort ahead of the other, and when the detector distorts you have distortion greatly amplified by the audio channel. It does *not* fail to tune in the entire frequency spectrum of broadcasting (550 to 1,500 kc.) More than half the receivers in use do fail to cover the frequency hand. It does *not* pick up any signals unless antenna is corrected.

Copper Ground Bar

A single filament winding is used for the secondary, since the waried use of heater type tubes makes this possible. The center unvaried use of heater type tubes makes this possible. tap of this secondary is grounded to the copper bar which is used as the ground connection in all instances, except the antenna winding alone, which is intercepted by the series condenser. All ground leads are run directly to this ground bar, and the bar is connected to the ground binding post and to B minus, so that all ground currents will be assured of a low impedance path. Even an ground currents while assured of a fow impedance path. Even the bypass condensers are connected to the ground bar. Although the diagram does not show the fact specifically, since it is schematic and not a pictorial diagram, the condenser frame is grounded directly to the bar, and the grid return ends of the coils likewise are treated, and are not interconnected to the condenser lead and the common path to around for these two mode theory of a conthe common path to ground for these two made through or over one wire to the bar. The whole object of the ground bar is to avoid any common coupling in the ground lead except in the low impedance bar, for the receiver is rendered more sensitive and more stable by that method, and even the selectivity is increased.

New Mechanical Layout

The mechanical layout of the receiver has been changed from what was shown in previous issues. The shields formerly were on bottom, attached to a flap built in the subpanel, at right angles to its under side, but now the shields are on top. The available width of the subpanel, for a 7x21 inch front panel, was consumed The available entirely by the shields, and their size was therefore determined by the distance divided by the number of shields, considering the symmetrical desirability of six shields. Into one of the shields the filament transformer was built, while the five remaining shields housed the identical coils.

Since the shields have been changed, so as to be larger, and since their wall thickness and even their height have been increased, the number of turns for the secondaries is not the same as pre-viously given. The thickness of the walls and the distance between them and the coil inside alter the effective inductance. Hence a coil wound with a given number of turns of wire, used unshielded, will be all right for a given capacity tuning condenser. Put that coil in a certain shield and it will not tune in the highest wavelengths at all. Put on more turns and the circuit will get the highest but may miss the lowest wavelengths. So coils, condensers and shields have to be considered together, and the tables of number

of turns, that we have to be considered together, and the tartes of infinite of turns, that we have been brought up on since we got interested in radio, do not mean anything in this shielded age. As the shields are not in final condition, but will be exercised some more, the coil data can not be given exactly and finally, but it is exercised that wark used, not only will these data be published is expected that next week not only will these data be published, but also photographs of the final receiver

Semi-Final Circuit

So far as the circuit goes that is shown this week, let us regard it as semi-final, so as to leave room for any improvements that can be developed during the sixth week of experimental work. It is confidentially expected that after the disclosures in the May 3d issue next week, the constructional data can be published, which would mean in the May 10th issue.

Not much has been said about what the circuit has done in any of the stages of its development, but rather more of what it has not done.

One fact stressed was that stray pickup was suffered. This enables reception of stations without aerial or ground, which is a bad leature. Such stray reception proves the circuit is sensitive. but it also proves that not all of the pickup derives the benefit of tuning in all of the tuned stages, hence selectivity suffers. For of tuning in all of the funed stages, hence selectivity suffers. For this reason not only will the metal subpanel have a shield bottom piece, to bottle up the wiring inside that acts as an adventitious aerial, but even the hole cut out to pass the drum of the dial will be bottled up, and each of the tubes will have a shield of its own, so that the six sockets will not make a sieve out of the subpanel and thus frustrate other shielding precautions. The tube shields will serve as stoppers over the bakelite wafers on which the sockets are built sockets are built.

Next week also we hope to be able to give the constants, particularly for the voltage divider and the potentiometer. The divider's resistance values were all worked out and verified experimentally, but then the change was made calling for a higher voltage on the plate of the last tube than on the plates of any of the other tubes. That makes a new set-up necessary, and the whole calculation was upset. The calculation has been made anew, but has not been checked against practical results. As slide rules do slip once in a while, the checkup is perhaps more important than the computation.

The data as finally given will reveal how to wind your own coils, make your own shields, use your present apparatus as far as it covers requirements, and will reveal the performance, includ-ing selectivity analysis and sensitivity rating in microvolts per meter.

Stations in United States and Canada, Effective May 1

(*) New frequency, effective May 1st. Change to this on list of stations by frequency, published in March 29th issue

									-				
CANADA	s.	Station	kc	Station	kc	Station	kc	Station	kc	Station kc	<u> </u>	Station	be
CEAC	<i>KC</i>	WBAK	. 1430	WFIW	940	WKBP	1420	WPOE	1370	KFIM 137	0	KIR	970
CEBO	890	WBAD	. 1000	WFIC	1450	WKBQ	1350	WPSC	. 1230	KFJR 130	10	KLCN	1290
ČFCA	840	WBAX	1210	WELA	620	WKBS	1310	WPTF	680	KFJY 131	0	KLO	1370
CFCF 1	1030	WBBC	1400	WSUN	620	WKBW	1480	WOAM	560	KFKA 88	0	KLPM	1420
CFCH	600	WBBL	. 1210	WGAL	1310	WKBZ	1500	WŐAO	1010	NFKB 105		KLRA	1390
CFCN	690	WBBM	. 770	WGBB	1210	WKEN(*)	1060	WPAP	1010	KFLV 141	0	KLS	1440
CFCO	060	$ W BT \dots $. 770	WGBC	1430	WKIC	1200	WQBC	1360	KFLX 137	ň	KLZ	560
CFCR	630	WBBK	. 1300	WGBF	630	WKRC	550	WQDM	1370	KFMX 125	0	KMA	930
CFCY	960	WBBZ	1200	WGBI	600	WKY	900	WRAF	1200	KFNF 89	0	KMBC	950
CFIC 1	1120	WBCM	1410	WGCM	1210	WLAC	1470	WRAK	1370	KFOR 121	0	KMED	1310
CFLC 1	1010	WBMS	. 1450	WGCP	1250	WLAP	1200	WRAW	1310	KFOX	0	KMIC	1120
CFNB 1	1210	WBNY	. 1350	WGES	1360	WCMS	1250	WRBI	1310	KEPM 131	0	KMIJ	1210
CFQC	910	WBOW	. 1310	WGH	1310	WLBC	1310	WRBI	1370	KFPY 134	å l	KMO	240 860
CFRB	960	WCLB	. 1500	WGHP	1240	WIRE	1420	WRBL	1200	KFOD 123	ŏ	KMOX(*)	1110
CHCA	690	WCLO	1310	WGL	1370	WLBG	1200	WRB0	1210	KFQU 142	0	KFQA	1090
ČHCK	960	WCMA	1400		720	WLBL	900	WRBT	1370	KFΩW 1420	0]]	KMTR	570
CHCS	880	WCOA	1340	WGR	550	WLBW	1260	WRBU	1210	KFRC 610	0 .	KNX	1050
СНСТ	840	WCOD	. 1200	WGST	890	WLBX	1500	WRC	. 950	KFRU 630		KOA	830
CHGS 1	120	WCOH	. 1210	WGY	790	WI.BZ	620	WREC	600	KFSG 112		KOR(*)	1170
CHLS	730	WCRW	. 1210	WHA	940	WIEY	1410	WREN	1220	KFUL 129	ด้ไ่	KOCW	1400
CHMA	200	WCSC	. 1310	WHAD	1120	WLEY	1370	WRHM	1250	KFUM 1270	ő i	КОН	1370
CHNS	930	WCSO	1450	WHAM(*)	1160	WLIT	560	WRIN	1370	KFUO 550	0 1	KOIL	1260
CHRC	880	WDAE	1220	WHAS(*)	1300	WLOE	1500	WRK	1310	KFUP 1310	0	KOIN	940
CHWC	960	WDAF	610	WHAT	1310	WLS	870	WKNY	1010	KFVD 1000	0	KOL	1270
CHWK 1	210	WDAG	1410	WHAZ	1300	WLTH	1400	WRUF	830	KEWB 05	8 I :	KONC	920
СНҮС	730	WDAH	1310	WIIB	860	WLVA	1370	WRVA(*)	1150	KFWF 120	ő 📑	KOOS	13/0
	380	WDAY	. 940	WHBC	1200	WIWI	1100	WSAI	1330	KFWI 936	0	KORE	1420
CIBC	960	WDBO	. 930 1120	WHBD	1370	WMAC	570	WSAJ	1310	KFWM 930	a 1	КОҮ	1390
)	690	WDEL	1120	WHBF	1210	WMAF	1410	WSAN	1440	KFXD 1420	3 1 1	KPCB	1500
CJBR	960	WDGY(*)	1170	WHRO	1410	WMAK	900	WSAR	1450	KFXF 920	, L	KPIM	1500
CJCA	580	WDOD	1280	WHBU	1210	WMAL	630	WSRZ	280 740	KFXJ 1310	i l	KPO	680
CJCB	880	WDRC	1330	WHBY	1200	WMAN	1210	WSBC	1210	KEXP 1310	6 1	KPPC	1210
	690	WDSU	1250	WHDF	1370	WMAO	670	WSBT	1230	KFXY 1420	j j	KPO	1500
CIGX	630	WDWF	1210	WHDH	830	WMAY	1200	WSFA	1410	KFYO 1420	j 1	KPŘC	920
CIHS	910	WD7	1070	WHDI	1180	WMRA	1500	WSGH	1400	KFYR 550)]	KPSN	1360
CIOC 1	120	WEAF	. 660		1170	WMBC	1420	WSDA	1400	KGA 1470		KPWF	1490
CJOR 1	030	WEAI	1270	WARO	1440	WMBD	1440	WSIA	1210	KGAR 1370		KOV	1380
CJRM	600	WEAN	780	WHEC	1440	WMBG	1210	WSM	650	KGBU 900		KŘF	1010
CIRW	600	WEAO	570	WHIS	1420	WMRII	1420	WSMB	1320	KBGX 1310	i l i	KREG	1500
CISC	580	WBRC	1210	WHK	1390	WMBI(*)	1040	WSMK	1380	KGBZ 930	F	KRGV	1260
CKAC	730	WBKE	920	WHN	1010	WMBO	1310	WSPA	1420	KGCA 1270)]	KRLD(*)	1070
ČKCD	730	WBT(*)	1040	WHO	1000	WMBO	1500	WSPD	1340	KGCI 1370		KRMD	1310
CKCI	880	WBTM	1370	WHOM	1450	WMBR	1370	WSSH	1410	KGCR 1210	1 1	KRSC	1120
CKCK	960	WBZ	. 990		1430	WMC	780	WSVS	1370	KGCX 1310	i i	KSAT	1240
CKCO	200	WBZA	. 990	WIBA	1210	WMCA	570	WSYR	570	KGDA 1370) İ	KSCI	1330
CKCR 1	010	WCAD	1220	WIBG	930	WMES	1500	WTAD	1440	KGDE 1200)]	KSD	550
ČKCV	880	WCAE	1220	WIBM	1370	WMPC	1500	WTAG	580	KGDM 1100	11	KSEI	900
CKCF	730	WCAH	1430	WIBO	560	WMRI	1420	WIAM(")	1080	KGDY 1200	1	ASL(*)	1190
CKGW	690	WCAJ	590	WIBR	1420	WMSG	1350	WTAR	780	KGEF 1300		ASMR	1200
CKIC	930	WCAL	1250	WIBU	1310	WMT	600	WPOR	780	KGER 1360	i l i	KSOO(*)	1380
CKMC 1	210	WCAN	1280	WIBX	1200	WNAC	1230	WTAW	1120	KGEW 1200	Î	KSTP	1460
ČKMŎ	730	WCAP	1280	WICC	1190	WBIS	1230	WTAX	1210	KGEZ 1310) F	KTAB	560
CKNC	580	WCAU(*)	820	WIL	1200	WNAY	570	WTBO	1420	KGFG 1370) F	KTAP	1420
СКОС 8	880	WCAX	1200	WILL	890	WNBF	1500		1450	KGFI 1500	! 봄	STAR	620
CKOW	840	WCAZ	1070	WILM	1420	WNBH	1310	WTMI	620	KGFK 1200		(TBI	1300
CKPD 12	210	WCBA	1440	WIND	1300	WNBI	1310	WTNT	1470	KGFL 1370) F	TRS	1450
CKSH 1	110	WCBD(")	1040	WIP	610	WNBO	1200	WTOC	1260	KGFW 1310	Í	XTHS(*)	1070
CKUA	580	WCBS	1210	WIS	1010	WNBR	1430	WWAE	1200	KGFX 580	i F	KTLC	1500
CKWX	730	WCCO	810	WISN	1120	WNBX	1200	WW	920	KGGC 1420	l F	(TM	780
CKX	540	WCDA	1350	WJAC	1310	WNBZ	1290	WWNC	570	KGGM 1220		(TNT(*)	1160
CNRA	630	WCFL	970	WIAG	1060	WNI	1450	WWPI	1500	KGHF 1320		TSA	1200
CNRC	590	WCHI	1400	WIAR	890	WNDX	560	WWVA(*)	1180	KGHI 1200	I F	TSL	1310
CNRD	840	WCKY	1490	WIAS	1290	WNRC	1440	KBTM	1200	KGHL 950	· F	CTSM	1310
CNRE	580	WEBC	1290	WJAX	900	WOAL	1100	KDR	13/0	KGIQ 1320	<u> </u>	TUE	1420
CNRL 9	910	WEBE	1210	WJAY	610	WOAN	600	KDEN	1210	KGIW 1420		CTW	1270
CNRM	730	WEBO	1210	WJAZ	1490	WOAX	1280	KDKA	980	KGIX 1420	i F		1500
CNRO		WEBR	1310	WIBC	1200	WOBT	1310	KDLR	1210	KGIZ 1500	Ŕ	USD	1390
CNRR	960	WEBW	1210	WIRK	1370	WOBU	580	KDYL	1290	KGJF 890	F	KUT	1500
CNRS	910	WEDH	1420	WIBL	1200	WOCI	1000	KECA	1430	KGKB 1500	K	(VEP	1500
CNRT 8	840	WEEI	590	WJBO	1420	WODA	1250	KEIW	710	KGKL 1370	F	<u><u><u>v</u></u></u>	760
CNRV 10	030	WEHC	1490	WJBU	1210	WODX	1410	$\mathbf{K}\mathbf{F}\mathbf{X}(\mathbf{*})$	1120	KGKY 1420	L F	VL	1370
CNRX	(80	WEHS	1420	WJBW	1200	WOI	640	KFAB	770	KGKY 1500	4 F	(VOO(*)	1260
CHIKA	090	WELK	1370	WIBY	1210	WOKO	1440	KFBB	1280	KGMB 1320	Ŕ	VOS	200
UNITED STATE	s	WENR	590 870		1130	WOL	1310	KFBK	1310	KGMC 1310	K	WCR 1	1310
WAAF 9	920	WBCN	870	WJKS	1360	WOOD	1270	KFBL	1370	KGMD 1500	K	WEA 1	210
WAAM 12	250	WEVD	1300	WIR	750	WOPI	1500	KEDV	550	KCO 700		WG 1	1200
WAAW	0/0	WEW	760	WJSV	1460	WOQ	1300	KFEL	920	KGNF 1430	K	WF	1060
WARC	200	WFAA	800	W/W	1210	WOR	710	KFEQ	680	KGNO 1210		WKC	1350
WBOO	860	WFAN	610 1200	WEAD	760	WORC	1200	KFGQ	1310	KGRS 1410	K	WKH	850
WABI	200	WFBE	1200	WKAR(*)	830	WORD	1490	KFH	1300	KGU 940	K	WLC 1	1270
WABZ 12	200	WFBG	1310	WKAV	1310	WOV	1130	KITA	1200	KGW 620	K	WSC 1	1220
WACO 12	240	WFBL	1360	WKBB	1310	wow	590	KFIF	1420	KHI 1200	K	WWG 1	1260
WADC 1.	520	WFBM	1230	WKBC	1310	WOWO*	1180	KFIO	1230	KHO 590	L K	XL	5/0
WAIII	540	WEDE	1270	WKBF	1400	WPAW	1210	KFIU	1310	KICK 1420	K	xõi	1200
WAPI(*) 1	130	WFDV	1310	WKBI	1380	WPCC	560	KFIZ	1420	KID 1320	K	XRO 1	1310
WASH 12	270	WFDW =	1420	WKBN	570	WPEN	1500	KFJB	1200	KIDO 1250	K	YA 1	230
WBAA 14	400	WFI	560	WKBO	1450	WPG .	1100	KFU	1480	KIRS 1070	K	YW(*) 1	1140
	-						1100 1	ASA JI	1210 1	M M M M M M M M M M	1 15	LFKA]	.020

When to Deduct for the Resistance of the Meter Used in Tests

If a low value is used for each potentiometer, say 1,000 ohms, it is best to turn off the current from the battery whenever a reading is completed and while readjusting for another because there is an appreciable drain from the battery. When values as high as 10,000 ohms are used the current is relatively small. An inexpensive 0 to 1 milliammeter having an internal resistance of 88 ohms is available for use as current indicator. More expensive meters of the same range having only 27 ohms internal resistance can also be obtained. It should be remembered that, for any given type of meter, the greater the maximum scale reading the lower type of meter, the greater the maximum scale reading the lower the internal resistance of the meter. Thus a milliammeter having a

range of 0 to 100 milliamperes has a resistance of one ohm and one of the same type having a range of 0 to 1 milliampere, 27 ohms, the resistance increasing with the sensitivity. Whatever current meter is used, its internal resistance should be

ascertained so that it may be subtracted from the measured resis-tance in case it is necessary. Whether to deduct it or not depends on percentages. The meters used as a rule are accurate to one per cent. and the reading may deviate still more, possibly as high as five per cent. Hence if the internal resistance is less than five per cent. of the measured value of the total resistance it is not worth while to make the deduction.

www.americanradiohistory.com

FIGHT IS BEGUN TO ELIMINATE **CLEAR CHANNELS**

Washington.

The primary ailment of broadcasting, according to Commissioner Harold A. Lafount of the Federal Radio Commission, is that there are "entirely too many stations on the limited number of avail-able channels." Cramming of more than 600 stations on the 90 available broadcast channels has resulted in inter-channel interference and heterodyne whistles, he said

Broadcasting on the whole is not a profitable business and this, he declared, leads to "too much competition in certain localities, resulting in the presenting of mediocre programs with an excessive amount of advertising."

was optimitstic The Commissioner was optimitistic about the future of television, and de-clared that both television and synchronization of broadcasting stations on the same channel are in sight, and that broadcasting stations will be permitted to use power up to a maximum of 100,000 watts. Regarding television and synchro nization, he said that both "are in the experimental stages and will require millions of dollars and some few years to perfect

Wants Clear Channels to Stay

Commissioner Lafount is opposed to the elimination of the 40 cleared channels, saying that the operation of two stations on the same wave at great geo-graphical separation does not work out. Although a station operating on one coast cannot be heard consistently on the other it is capable of interfering with a station operating on the same wave, he said. Hence it is not practical, he contends, to let two stations operate on the same channel, as some persons insist should be done.

Power, he declared, is the only real means of reducing the effect of static, both natural and man-made, and therefore power is necessary to provide the rural and suburban listener with the same clear reception as is available to the city listener, he maintained. For that reason he said, he is a believer in cleared channels and high power for stations. He admitted that a number of small local, low-power stations for local programs is necessary, but asserted that most persons are chiefly interested in the programs broadcast from the stations in the metropolitan centers

Robinson's Proposal

Elimination of all 40 cleared channels set aside for the exclusive use of high power stations will be proposed to the Commission by Commissioner Ira E. Rob-inson, former chairman. He claims that this is the only practical solution of the

"We cannot have so many favored 'big fellows' as now without having too many 'under dogs,'" he said.

"I would devote all cleared channels to regional uses," he declared, "thereby relieving the squeeze which is at present so interfering among the small stations. There is no reason in the world why any one of the channels now cleared can not be used by at least two stations widely separated geographically, thereby releas-ing one channel for use elsewhere.

"There is only one practical solution to the radio problem in America, and that is through dependable regional stations.

Musical Taste and Mentality

7 OU have taken the stand in favor Y of popular music and jazz and similar diddies that the air is filled with. I wish to come in defense of chamber and symphonic music.

Jazz is intended for and is good enough for those whose souls are in their feet. It appeals only to our primitive instincts, which are simple enough. But even this is a mere invention by those who make jazz an easy-running and well-paying business.

Syncopation beats in music are nothing The best classical composers have new. Those made use of them when necessary. who can feed themselves exclusively on jazz are like cows who thrive on grass only.

It certainly is revolting to see how this pest of organized sound is being fed to the radio listeners. The advertisers who monopolize the air conclude that the prospective patrons are fit for nothing better. They give awkward quartets, silly dia-logues in which the man speaks in bass and the woman giggles hilariously at random, and the jungle jazz. The morons send in applause cards. The result is a deplorable condition for those who know better. The old saying still holds good "Tell me who your friends are and I'll tell you who you are." One can judge the mentality of the individual by the type of music he prefers. We want more and music he prefers. better music.

J. KAHN, 2117-83rd St., Brooklyn, N. Y.

* * Can't Find Quiet Set

M R. STRUDEMAN, in the April 12th issue gives some very good advice when he tells us to "read RADIO WLDOR carefully. But in one direction his opportunities for observing are limited. I fully agree with him that AC receivers are noisy, generally, but cannot agree that they are invariably so. Nor can I agree that battery sets are always quiet

In over five years of trial I have never succeeded in producing a receiver that I considered "quict" either DC or AC. But

that does not prove it can't be done. For distance and selectivity the old battery receivers are yet to be surpassed. The first set I had was an old-style Radiola second harmonic Super of the semi-portable coffin box type. The first station I ever tuned in from my home in Southwestern Michigan was WEAF at 4 p. m. of a day in June. I challenge any high-gain screen grid modern receiver to which I ever heard KGO from the same location. And all on only six 199 tubes working on dry cells.

But there are other considerations. I became thoroughly disgusted with all storage batteries long before radio was popularized and that disgust has never subsided. Anything that will get rid of storage batteries is a joy.

is common practice to compare radios with automobiles and along this line I might say that my neighbor does everything with his Ford that I do with my Packard—but still I prefer the Pack-And for the same reason my multitube AC receiver is a far greater delight

than any battery outfit. Now. I am not going to quarrel with Mr. Strudeman nor any one else but just wanted to chat a little.

The greatest trouble with the radio business today from the viewpoint of the consumer is not from the receivers but from the press agents of those who make and sell them.

A. B. GARDNER Box 296, Coconut Grove, Fla.

www.americanradiohistory.com

TELEPHONE CO. DEMONSTRATES 2-WAY VISION

Two-way television telephony was demonstrated for the first time recently by the officials of the American Telephone Telegraph Company and the Bell and Telephone Laboratories in New York City. In 1927 the same companies dem-onstrated one-way television telephony when President Hoover's voice and image were observed in New York by a group gathered in the Bell Laboratories. The apparatus used in the present demonstration is a refinement of the appa-ratus used at that time.

In discussing the system Walter S. Gifford, President of the American Telephone and Telegraph Company, said:

"On account of its present complexity and high cost," he said, "no substantial commercial field is yet in sight for tele-vision requiring good images. There is still a large amount of technical work to do which gives promise of decided improvement over the means and methods uow available.

Distance No Barrier

"While this equipment has for convenence been installed only a few miles apart," he continued, "and while wire cir-cuits in ordinary underground telephone cable have been employed for the transmission channels, it might equally well have been installed hundreds or thousands of miles apart.

"It might employ either wire or radio for the connecting channels, as was shown in the initial demonstration of telewas vision by the American Telephone and Telegraph Company in April, 1927. With suitable telephone channels of whatever sort available, the element of distance is not a controlling factor, although in this form of electrical communication, as in all others, greater distance, ordinarily involves somewhat greater complexity and expense for channel facilities

Complicated Indeed

"Despite the fact that the research and development work of the past three years," said Mr. Gifford, "has resulted in great improventent and simplification of the equipment required for television, it the equipment required for television, it is still necessarily complicated and ex-pensive, requiring expert attention and large units of apparatus. These facts arise out of the inherent technical re-quirements for satisfactory television transmission. While substantial progress has been made on the technical side the has been made on the technical side, the future commercial possibilities of tele-vision are still uncertain. In line with our long established policy of fully exploring and developing every field which gives promise of possible improvement in extension of electrical communication, we

extension of electrical communication, we expect to continue our television work." The new apparatus is called the Ikono-phone, coined irom two Greek words meaning image and sound. The principle of the system is based on a loudspeaking telephone in conjunction with a television telephone in conjunction with a television apparatus.

SMOKING STAND SET

The construction of an AC screen grid receiver to be housed in a smoking stand, intended for the present issue, will be published in "Radio World" next week, May 3rd.

The National Velvetone Push-Pull Power Amplifier (shown at right) consists of an AC-operated filament-plate supply, with two stage trans-former audio amplifier and output transformer built in. Made only for 110-V., 50-60 cycles. Sold only in completely wired form, licensed under RCA patents.

RCA patents. The new Power Amplifier has been developed and built to get the very most out of the MB-29. It is a com-bination power supply and audio ampli-fier, using a 280 tube for a rectifier, one stage of transformer audio with a 227 tube and a stage of push pull amplification with two 245s. It furnishes all power for itself and for the MB-29. as well as the audio channel. Order catalog PPPA, list price, completely wirde and equipped with phonograph WRITE FOR jack, (less tubes) \$97.50. Your price. WHOLESALE PRICES

PRICES

Push-Pull Amplifier

View of National Velvetene Push-Puil Power Amplifier an expertly made A, B and C supply and audio amplifier producing marvelous tone quality.

GUARANTY RADIO GOODS CO. 143 WEST 45TH STREET

NEW YORK CITY

Insulated outleads are provided on this RF choke. Order Cat. RF-CH-50 at 50c.

Guaranty Radio Goods Co. 143 West 45th Street, New York City

TRIAL SUBSCRIPTION, 8 WEEKS. \$1.00. Send \$1 and we will send you Radio World for 8 weeks, postpaid. RADIO WORLD, 145 West 45th St., N. Y. City.

Wound with non-insulated wire plated with genuine silver, on grooved forms, these coils af-ford high efficiency because of the low resistance that silver has to radio frequencies. The grooves in the moulded bakelite forms insure accurate space winding, thus reducing the distributed ca-tion constant. Hence the secondary reactances are identical and ideal for gang tuning. The radio frequency transformer may be per-pendicularly or horizontally mounted, and has braced holes for that purpose. It has a center-taped primary, so that it may be used as antenna coil with half or all the primary in circuit, or as interstage coupler, with all the primary for any other type tubes, including pentodes. The three-circuit tuner has a center-tapped

The three-circuit tuner has a center-tapped primary, also. This tuner is of the single hole panel mount, but may be mounted on a chassis, if preferred, by using the braced holes.

The secondaries are for .0005 mfd. tuning only. There are no models for .00035 mfd.

These coils are excellent indeed for popular circuits like the Diamond of the Air and tuned radio frenquency. Diameters of form, 3 inches. Two-winding coil, order Cat. GRF @ 99c. Three-winding coil, order Cat. G-3 CT @ \$1.49.

GUARANTY RADIO GOODS CO. 145 West 45th St., N. Y. City (Just East of Broadway)

Please mail me C.O.D. at stated prices, plus few cents stra for postage, the following coils on 5-day money-back guaranty: □ G3cT at \$1.49 GRF at 99c.

Name		 	 	
▲ ddre:	3S .	 	 	
City			Stote	

Here is a 0-1 milliammeter, accurate to plus or minus 1%, clearly legible to two-one hundredths of a milliampere at any reading (20 microamperes). This expertly made precision instrument is offered at the lowest price so far for a 0-1 ma. Order Cat. FO-1 at \$5.95. C. O. D.

Internal resistance 88 ohms.

Guaranty Radio Goods Co. 143 West 45th Street, New York City

ARISTOCRAT FLOOR SPEAKER With Molded Wood Horn and Horn Motor built in. Good value. \$12.00. Acoustical Engineering Associates, 143 W. 45th St., N. Y. C.

115 Circuit Diagrams of Latest Commercial Receivers and Power Supplies

S CHEMATIC diagrams of the latest factory-made receivers, giving the manufacturer's name and model number on each diagram, are now obtainal le for the first time—including the most important screen grid receivers. These diagrams were collated by John F. Rider, author of "Trouble Shooter's Manual." The 115 diagrams, each in black and white on sheets 8½ x 11 inches, constitute a supplement to the diagrams contained in "Trouble Shooter's Manual."

There is no duplication of the diagrams that appear in the "Manual." The 115 diagrams are additional and being up-to-date the diagram presentation started in the "Manual."

All Owners of "Manual" Need These Diagrams

OU triple the value of "Trouble Shooter's Manual" by getting these 115 new Y diagrams of latest receivers and power supplies. Every service man needs all the diagrams he can get. Here is the list of 115 diagrams, known as Catalog SP-No. 1:

Audiola 30B and 7330 Screen Grid Balkite Model F Cresley 41A, 42 A.C. Crosley 609, 610 A.C. Crostey 20, 21, 22 screen grid Crosley 308, 318, 338 screen grid Crosley 804 A.C. Crosley, 405, 415, 425, 825 screen grid Cresley 60S. 61S. 62S screen grid Sonora Electric phonograph 7P Sonora A30, A32 Sonora B31 screen grld Sonora A36 Sonora A40 Sonora A4 Kennedy royal 80 Kennedy model 10 Kennedy model 20 screen grid Stewart-Warner 900 A.C. Sonora A44 Stewart-Warner 950 battery screen grid Stewart-Warner 950 A.C. screen grid Stewart-Warner 950 A.C. screen grid Stewart-Warner 950 D.C. screen grid Automatie Electrie model B screen grid Radiola 44 screen grid Radiola 47 screen grid Majestie 90 Majestie 9PA pawar unit Majestie 9PA pawar unit Majestie 9PA power unit Stromberg-Carlson 641 screen grid Stromberg-Carlson 642 screen grid Stromberg-Carlson 642 screen grid Stromberg-Carlson 642 screen grid Stromberg-Carlson 646 screen grid Edison R1, R2 and C2 Edison R1, R2 and C2 (25 sycles) Edison R4, R5 and C4 Parts list for Edison R4, R5 and C4 Edison Cl American Bosch 54 D.C. tereen grid American Bosch 54 D.C. tereen grid Victor R32 and RE45 Grebe SK 4 A.C. screen grid (sarly model) Grebe SK 4 A.C. screen grid (late model) Grebe SK 4 D.C. screen grid (late model) Grebe A28 DeLuxe console Traveler A.C. power pack Eria 224 A.C. screen grid Silver-Marshall SOB screen grid Silver-Marshall SOB screen grid Silver-Marshall SOD screen grid Silver-Marshall SOD screen grid Silver-Marshall SOB screen grid

All American Mohawk 70, 73 and 75 All American Mohawk 70, 73 and 75 Gulbranson Model C (aarlv model) Gulbranson Model C (late model) Bremer-Tully 7-70 and 7-71 Bremer-Tully 81 and 82 Earl 21, 22 Earl 31, 32 Earl 41, 42 Philco 65 screen grid Philco 76 screen grid Peerless Electrostatic series, screen grid Fada 20 and 20Z Fada 22 battery Fada 25 and 252 screen grid Fada 25 and 25Z screen grid with M250 and M250Z Electric units Fada 35 and 35Z screen grid Fada 75 and 77 screen grid Brunswick 5 NC8 Radio Chassis Schematic Brunswick 5 NC8 Audio Chassis Schematic Brunswick 5 NC8 and 3 NC8 Audio Chassis Schematic Brunswick 5 NC8 and 3 NC8 Audio Chassis Schematic Brunswick 5 NC8 ablnet wirling Brunswick 3 NC8 Radio Chassis Schematic Brunswick 3 NC8 cabinet wiring Brunswick Si4, S21, S31, S81, S82 screen grid Radie Chassis Schematic Brunswick S14, S21, S31, S81, S82 screen grid Radle Chassis Actual Brunswick S14, S21, S81, S82 Audle Chassis Schematie (25 cycle) Brunswick S14, S21, S81, S82 Audio Chassis Schematie (60 cycle) Brunswick S14, S21, S81, S82 Audio Chassis Actual (25 cycle) Brunswick S14, S21, S81, S82 Audio Chassis Actual Brunswick S14, S21, S81, S82 Audio Chassis A (60 cycle)
Brunswick S31, Audio Chassis Schematle (60 cycle)
Brunswick S31, Audio Chassis Actual (60 cycle)
Brunswick S KR8 Rabio Chassis
Brunswick S KR8 Audio Chassis Schematic
Brunswick S KR8 Audio Chassis Schematic
Brunswick S NO Radio Chassis Schematic
Brunswick S NO Socket Power Schematic
Brunswick S KR9 Audio Chassis Schematic
Brunswick S NO Socket Power Actual
Brunswick S K R0 Audio Chassis Brunswick 3 KR0 and 3 KR6 Radio Chassis Brunswick 3 KR0 and 3 KR6 Radio Chassis Brunswick 5 KR, 5 KR0, 2 KR0 Socket Power Brunswick 5KR, 5KR0, 3KR0, 2KR0, 5KR6 Socket Power Brunswick 5KR, 5KR0, 2KR0, 5KR6 Radio Chassis Amrad Bel-Canto series Sparton 89, Sparton 89A, Sparton 49 Sparton ensemble

Sparton 931, 301 D.C., Sparton 931 A.C. Sparton 110 A.C., Sparton 301 A.C.

Here is an opportunity to obtain these hard-to-get wiring diagrams of modern radio receivers. The sheets are punched with three standard holes for loose-leaf binding. Each diagram is on a separate page. As you will see by glancing through the above list, these diagrams include the popular receivers of the day. Electrical constants are indicated on the majority of the diagrams and in many cases the actual chassis layouts are shown with color coding.

These schematics will save you a good deal of time. No more tracing circuits! The diagrams are a necessary part of your working equipment. We cannot offer individual drawings. Please use coupon below.

Subscribe for RADIO WORLD for six months at the regular price, \$3.00, and have these diagrams delivered to you free! No other premium with this \$3.00 offer!

RADIO WORLD, 145 West 45th Street, New York, N. Y. ist East of Broadway.

Just Last of Broadway.
 Enclosed find \$3.00 for which send me RADIO WORLD for six months (26 issues, one each week for 26 weeks) and as a premium send me postpaid, FREE, Cat. SPK No. 1, consisting of 115 separate diagrams, compiled by John F. Rider, as listed in your advertisement.
 Enclosed find \$6.00 for which send me RADIO WORLD for one year (52 issues) and as a premium send Rider's "Trouble Shooter's Manual" free.

□ Enclosed find \$9.00. Send me RADIO WORLD for a year and a half (78 issues) and send both of above premiums free.

□ This is a renewal of an existing subscription. (Put cross in square, if true.)

Name

Address City State

www.americanradiohistory.com

Spring Action Diagonal Nipper

A DIAGONAL cutting nipper is the second most useful tool for radio work, next to the soldering iron. Non-friction spring action adds convenience of use, as the handles are sprung back just far enough for a com-fortable grip, and the jaws are closed by easy pressure or the handles.

For cutting wire, a constant operation in your work, this tool is most serviceable, as it makes a clean cut, right through fuzzy insulation as well as through metal. The cut is far more incisive than with the common disgonal cutting pilers. With the diagonal nipper you can cut wire not only along its iength, but wherever it may be attached, since accessibility is perfect. A cut can be made any piace where the diagonal nipper can enter, since the cutting can be done at the tip. Pilers with diagonal cutters can only ply, not cut, at the extremity.

With the disgonal nipper insulation can be bared from wire ends for soldering. Also acrews up to 8/32 machine screw used in radio can be nippyed off at any point with ease firm application of pressure with one hand.

The device is used extensively in radio set factories and by custom set builders and radio experimenters.

Size $5\frac{1}{2}$ 'long; weight $1\frac{5}{2}$ lbs.; material, drop forged steel; finish, nickel plated.

Send \$3.00 for 6 months' subscription for Radio World and ask for No. 177 Nipper, free. RADIO WORLD, 145 West 45th Street, New York, N. Y.

Put cross here if renewing subscription.

Nothing Finer Than This Dynamic in Tone Quality!

Try This AC Dynamic Erla—No Matter on What Set and You Will Verify These Facts: Tone Unexcelled, sensitivity most remarkable

Sensitivity most remarkable T o WORK this speaker, put plug into 4C wall socket, lamp socket or convenience outlet of set, connect speaker types to output posts of set, and tune in. Here are the technical data on the AC dynamic Erla: low feet long power leads with one-inch terminal the Outside diameter of central magnet pole, 1.5 inches Perhot of ageaker, 8 inches Outside diameter of central magnet pole, 1.5 inches Firsthile spring mounting of the of cone, and moving coll Moving coll accurately center-mounted Depth of magnet structure, 4.5 inches Built-in full-wave Westinghouse Rector dry rectifier Huisky output transformer built in; heavy core, shielded Superior workmanship Thick feit builfers on front of cone edges Built in power transformer for rectifier Will stand output of 250 tubes in push-pull and work superbly in any tubes, single or push-pull Tore quality is unsupassed Must actione was work offered splar. So convinced are we that you will be origoing from that twe sak you to buy it at no risk to yourself whatweer. Order one shipped C.O.B. Try it for in that time, do so and we will refund your purchase put be and expressing you laid out. This widest guarany applies only to the Bria chassis.

PLEASE GIVE US TWO WEEKS for changing your address, showing new renewal expiration date, etc. Subscription orders are arriving in such large numbers that it takes two weeks to effectuate the change. RADIO WORLD, 145 West 45th St., N. Y. City.

RADIO WORLD'S BOOK SERVICE has been found of great value not only

by radio fans, constructors, etc., but also by radio and other technical schools throughout the country. See the radio books advertisement in this issue.

Quick Action Classified Ads Radio World's Speedy Medium for Enterprise and Sales 10 cents a word – 10 words minimum – Cash with Order

AGENTS WANTED-Over 500.000 articles, low wholesale prices, directory with Keystone Post. Agents Mail Order Guide 25c. Morrion, 2305 Gratz, Philadelphia.

AMAZING NEW LIQUID FLUX for soldering. Superior to anything ever used or money refunded. Large bottle \$1. Sample 50c. Furmhold, 109-24 208th Street, Bellaire, N. Y.

"AUDIO POWER AMPLIFIERS," by J. E. Anderson and Herman Bernard, the first and only book on the subject. \$3.50. Hennessy Radio Publications Corporation, 145 West 45th St., N. Y. City. **BARCAINS** in first-class, highest grade merchandise. B.B.L phonograph pick-up, theatre type, suitable for home, with vol. control, \$6.57; phono-link pick-up with vol. control and adapter, \$3.50; steel cabinet for HB Compact, \$3.00; fourgang .00035 mfd with trimmers built in, \$1.95; .00025 mfd. Dubilier grid condenser with clips, 18c. P. Cohen, Room 1214, at 143 West 45th Street, N. Y. City.

YOU NEED Haan's "Radio Trouble Shooting." 328 pages of practical radio information. Price \$3.00. Details on request. "Radio Service Magazine." \$1.00 yearly. Sample copies ten cents. Radio Service Library, P.O. Box 4422. Crafton, Pittsburgh, Pa. ARISTOCRAT FLOOR SPEAKER-With Molded Wood Horn and Horn Motor built in. Great value \$14.00. Acoustical Engineering Associates, 143 W. 45th St., N. Y. C.

"EVERYBODY'S AVIATION GUIDE." By Maj. Page. \$2 postpaid. Also "Modern Aircraft" by same author. \$5. postpaid. Radio World, 145 W. 15th St., N. Y. City.

LACAULT'S BOOK, "Superheterodyne Construction and Operation." and Radio World for 8 weeks for \$1. Radio World, 145 W. 45th St., N. Y City.

"MATHEMATICS OF RADIO."—A great help to everybody interested in radio. \$2 postpaid. ".adio World, 145 W. 45th St., N. Y. City,

The Most Complete Radio Book Service!

Your Opportunity to Obtain Any of the Outstanding Volumes from One Source "AUDIO POWER AMPLIFIERS"

21

By J. E. Anderson, M.A., and Herman Bernard, LL.B.

The First and Only Book On This Important Subject

Ine First and Only Book On Lins Important Subjett

mercially, and the superstantiation of the superson importance of such power amplifiers com-"Audio Power Amplifiers" is for those who know something about radio. It is not for novices. But the engineers of manufacturers of radio receivers, power amplifiers, sound installations in theatres, public address systems and phonograph pickups will welcome this book. Engineers—even chief engineers—of the Bell Telephone Laboratories, Kaulo Conjunting of America, Westinghouss Electric & Mir, Co., Western Electric, Photophone, Vitaphone and the like needs't be afraid they won't learn something from this little book.

Details of Chapter Contents

ON Details of Chapter Contents
On the previous of th

Two Other New Books by the Same Authors

"The Superheterodyne," a new volume, deals with the theory and practice of this receiver in a detailed and pertinent minner, tully illustrated. The theoretical discussion proceeds to a receiver embodying the theory stated. Full constructional data. Order Cat. ABSH. "Footbold on ftadio,' for the sheer novice, the only book published that is really for the person who knows nothing about radio. Fully understandable by any one. Freely illustrated. Order Cat. FOR.

"Trouble Shooter's Manual"—"Mathematics of Radio"

EXAMPLE CONSTRUCT SIMILATION OF STATE Whathematics of Kadio" The three books by John F. Rider, Institute of Radio Engineers, are "Mathematics of Radio," "Trouble Shoater's Manual," and "Treatise on Testing Units for Service Men." "Mathematics of Radio," 128 pages, 8½ x 11", 119 illustrations, bridges the gap between the novice and the college professor. It gives a theoretleal background so necessary tor a proper understanding of radio and audio circuits and their servicing. Flexible cover, Order Cat. MOR. "The first comprehensive volume devoted exclusively to the topic uppermost in every service man's mind is "Trouble Shoater's Manual," just published. It is not only a treatise for service niem, telling them how to overcome their most serious problems, and fully diagramming the solutions, but it is a course in how to become a service man. It gives all the details of servicing as they have never been given before. Finding the right inde of attack, applying the renedy promptly and obtaining the actual factory-drawn diagrams of receivers always have been a big load on the service man's chest. But no more. This book is worth hundreds of dollars to any one who shoots trouble in receivers—whether they be factory-made, custom-bailt or home-made receivers. MORE THAN 100 WIRDING DIAGRAMN OF RECEIVERS MADE BY MORE THAN FORTY DIFFERENCE

This book is worth fundreds of dollars to any one who shoots trouble in receivers—whether they be factory-made, custom-built on theme made receivers. MORE THAN 100 WIRING DIAGRAMS OF RECEIVERS MADE ENV MORE THAN FORTY DIFFERENT SET MANUFACTURERS ARE FULLISHED IN THIS BOOK, INCLUDING OLD MODELS AND LATEST MODELS! RUA ATWATCH KINT, CHOSLEY, MAJESTIC, ZENITI, STROMHERG CARLSON, KOLSTEL, FEDERAL, FADA, ETC. 240 pages, size $8\frac{1}{2}\times11^{\circ}$; 200 illustrations. Imitation leather cover. Order cat. TSM. Treatise on Testing Units for Service Men." is a 43-page. Hherally illustrated book on testing units and chronits. Tells what equipment a service man should have and how to use it most effectively and quickly. Rapidity of operation is one of the points stressed throughout this valuable book, as a service main's time is his chief stock in trade. Order Cat. TTU. Radie World, 145 West 45th Street, New York, N. Y. (Just East of Broadway.—Phone BRYant 0558.)

Radio World, 145 West 45th Street, New York, N. Y. (Just East of Broadway,—Phone BRYant 0558.) Enclosed please find \$...... for which please enter my subscription for RADIO WORLD for specified period and send tree (postpaid) the one premium book designated by my cross in square.
 REL
 \$1.00 for 8 weeks (8 issues)

 \<1</td>
 \$2.00 for 16 weeks (16 issues)

 F(0)
 \$3.00 for 6 months (26 issues)
 \$4.00 for 34 weeks (34 issues) L MOR \$5.00 for 42 meeks (42 issues) □ MWT
 MWPR

 \$6.00 for 1 year (52 issues)

 TSM
 PRK

 \$7.00 for 60 weeks (60 issues)

 \$10.00 for 86 weeks (86 issues)

 \$12.00 for 2 years (101 issues)

 \$12.00 for 2 years (101 issues)
 □ APAM □ TEL REM VDB 🗆 MAN Address.....

"Elements of Radio Communication"

AUDIO POWER AMPLI

FIERS

ANDE RSON AND BERNARD

The latest book by Prof. John H. Moreroft, of the Engineer-ing Department of Columbia University, and past president of the Institute of Radio En-gineers, is his "Elements of Radio Communication," We re-gard this as the best elementary book to inform you authorita-tively on the technical phases of radio in form you authorita-tively on the technical phases of radio in form you authorita-tively on the technical phases of radio in a state one radio. The brown is a state of radio in the the elements of radio, contain-ing nucli material never before published. It has 226 pages, illustrations and a complete Cloth bound. Order Cat.

170 index.

M By the same author: "Principles of Radio Communication." second edition. This book is for advanced students. If is, the standard of excel-lence in its field. Cloth bound. Order Cat. MP.

"Radio Receiving Tubes"

The need for an up-to-date book on radio tubes that answers all the important questions has been filled by James A. Moyer, Director of University Extension, Massachusetts Department of Education, and John F. Wostrel, instructor in radio engineering, Direktor, and John F. Wostrel, instructor in radio engineering, Direktor, and John S. The essential principles underlying the operation of vacuum tubes are explained in as non-technical a manner as 1st consistent with accuracy. The book covers the construction, action, reactivation testing and use of vacuum tubes as well as specifications for vacuum tubes and perfision measure-ments. 297 pages, cloth bound. Order Cat, MWT. By the same authors:

"Practical Radio" including the testing of radio receiving sets, 378 pages, 223 illustrations. Cloth bound. Order Cat. MWPR.

"Practical Radio Construction and Repairing," 319 pages, a companion volume, new second edition. Order Cat. MWPRC.

(NOTE: The standard book on tubes for advanced students "The Thermionic Vacuum Tube," by Hendrik Van der Bijl. (der Cat. VDB.)

(NOTE: The standard vacuum Tube," by Hendrik Van der Dijt. Order Cat. VDB.) RADIO WORLD, the first and only national radio weekly, ninth year, publishes all the latest circuits and news of radio. Its technical presentations are highly authoritative. Construc-tion of ultra-sensitive and solective circuits is featured recu-larly. Subscribe for RADIO WORLD and follow the develop-ments on pentodes. Loftin-White amplifiers, band pass filters, pre-tuners, Superheterodynes, screen grid tubes, push-pull, etc.

RADIO WORLD, a weekly paper published by Hennessy Radio Publications Corporation. from Publication Office. 145 West 45th Street. New York. N. Y. Vol. XVII, No. 6. Whole No. 422. April 26th, 1930. 15c per copy, \$6.00 per year. [Entered as second-class matter, March, 1922, at the Post office at New York, N. Y., under act of March, 1879.] Roland Burke Hennessy, president and treasurer, M. B. Hennessy, vice-president; Herman Bernard, business manager and managing editor; J. E. Anderson, technical editor.

www.americanradiohistory.com

Other Books

Uther Books
"ABC of Television," by Raymont Francis Yates, tells the whole story and rives data on construction of a television receiver. 210 pares, 100 illustrations, Cloth bound, Order Cat, TEL, "The Radio Manual." by G. E. Sterling of U. S. Dept, of Commerce end Roht, S. Kruze, formerly technical editor of QST. Nearly 500 pages 359 illustrations. Bound in nexible tabrikold. Order Cat, MAN. "Diake's Encyclopedia." new edition, 242" thick, weighs 35, bs. 920 pages, 1,025 illus-trations. Order Cat, DRA. "Experimental Radio." by R. R. Ramsey, Ph.D., Prof. Physics, Indiana University, 255 pages, 168 illustrations. Cloth cover. Order Cat, RFX.

A.B.S., 168 illustrations. Cloth cover. Order Cat. RFX.
"Fundamentals of Radio." by Ramsey, 372 pages, 402 illustrations. Order Cat. RFM "Principles of Radio." by Keith Henney.
M.A., director, laboratory. Radio Broadcast.
477 pages, 305 illustrations. Order Cat. RFM.
"Radio Telegraphy and Telephony." by Ru-dolph L. Duncan and Charles E. Drew, of Radio Institute of America. Order Cat. RTT.
"The Superheterokyne." by R. E. Laccault.
93 pages. 68 Ellustrations; rloth cover Order Cat. REL

High Key	est (Tub	Grade es at
De	ç i 2	ant
	·	
P r	1 C	es:
Screen	n Grid	Tubes
224	at	\$1.43
222	at	1.88
Pov	wer Tu	ıbes
250	at	4.95
210	at	3.25
245	at	1.28
112A	at	.78
171A	at	.78
Otl	her Tu	ıbes
227	at	.90
226	at	.68
280	at	1.13
281	at	2.95
201A	at	.53
240	at	1.60
The above com lar tubes used severely low pr of the very firs a five-day m above tubes licenses grante affiliated compa All prices are discount alread	stitute the s in radio tod ices the Key st quality. oney-back are manu d by the mies. net and re y deducted.	nine most popu- lay. Despite the v tubes are firsts Besides, there is guaranty! The factured under RCA and its present extreme
GUARANTY RA 45th St., N.Y.C. Enclosed please at once tubes mari 245 AC spreen 245 AC spreen 280 AC ancert 280 AC metrific 280	DIO GOODS Sity. (Just E find \$ ked below: grid tube riter ar reen grid se se ube	CO., 143 West ass of Bradway). for which ship
Name		
City Put eress here sired. Canadian remittar press money order. 5-Day mol	If C. O. D. nee must be ney-back	. State . shipment is de- by postal er ex- c guaranty

Equip Yourself Now With Necessary Meters!

<text><text><text><text>

RADIO WORLD 145 W. 45th St., N. Y. City-Published Weekly. All Newsstands. 15s per sepy-\$3, six menths-\$8 a year

RADIO WORLD "RADIO NEWS" and ONE YEAR @ \$7.00

square. RADIO WORLD, 145 West 45th Street, New York, N. Y

0-60.0-300 HIGH RESISTANCE **DC VOLTMETER** With three 28" tipped leads built in

A portable type, high resistance meter. 21/5" outside diameter, for close reading of direct current voltages up to 60 volts, and for reading DC voltages up to 300 with Office reat ended 50% volts. Three vari-colored 28" insulated leads, with jack tips, are built in. Black is minus, yellow is (0 volts maximum and red is 300 volts maximum. These volt-ages are marked at the meter outlets. Cat. J-246. Net price, \$2.28.

J-246 Woltmeter, ror measuring all direct eurrent voltages, in-cluding B elimina-tors. 0-60, 0-300 (double range).

Multiplier, with tack terminals to increase range 0-300 range te 0-600. Cat. J-106JT (with jack terminals), net price. \$1.18. Order One C. O. D.

Prices!

GUARANTY RADIO GOODS CO. 143 West 45th St., N. Y. City

Wholesale AC OR BATTERY MODEL

Write or wire! Guaranty Radio Goods Co. 143 West 45th St., New York City

w americanradiohistory com

CAT, KH-3 AT 85c

CAT. KH-3 AT 85c A single .00035 mfd. condenser with nonremovable shaft, having shaft extension front and back, hence uscful for ganging with drum dial or any other dial. Shaft is ¼ inch dlameter, and its length may be extended % inch by use of Cat. XS-4. Brack-ets built in enable direct sub-panel mounting, or may be piled oft essily. Front panel mount-ing is practical by removing two small screws % inch long. Condenser made by Scovill Mfg. Co.

The most precise and rugged equalizing condenser made, with 20 immfd. maximum, for equalizing the capacity where gang con-provided with built-in trimmers. Turning the screw alters the po-sition of the moving plate, hence the capacity. Cross-section reveals special threaded brass bushing into which screw turns, hence you can not strip the thread. Useful in all eircuits where trimming capacity of 100 mmfd. or less is specified.

CAT. EQ-100 AT 35e

EXTENSION SHAFTS, TWO SIZES

CAT. XS-4 AT 10c

CAT. FL-4 at 30e

Flexible insulated coupler for uniting coll or condenser shafts of ½ inch diameter. Provides option of insulated circuits

A two-gang condenser, like the single type, KHS-3, but consisting of two sections on one frame, is Cat, KHD-3, also made by Scovill. The same mount-ing facilities are provided. There is a shield between the respective sections. The tuning characteristic is modified straight frequency line. Order Cat, KHD-3 at \$1.70.

DRUM DIAL CAT DD-0-100 @ \$1.50 A suitable drum dial of direct

One of the finest, strongest and best gang condensers ever made is this three-gang unit, each section of full .0005 mfd. capacity, with a modified straight frequency kine characteristic. The net weight of this condenser is 3.44 lbs. Cat. SC-3G-5 at \$4.80.

HeRE is a three-gang condenser of most superior design and workmanship, with an accuracy of at least 99% per cent, at any setting — rugged beyond anything you've ever seen. Solid brass plote perfectly aligned and protected to the fullest extent against ary dis-placement except the rotation for tuning it has both did and bottom mounting facilities. Shaft is %, inch diameter and extends at front and back so two of these three-gangs may be ised with a single drum dial for single tuning control. For use of this condenser with any dial of %" side of shaft.

drive type is obtainable for "4" shafts or %" shafts, and with 0-100 scales. An escutcheon, is furnished with each dial.

For condensers with %" diameter shaft, to accommodate to dials that take ¼" shaft, order Cat. XS-8 at 15c. FOUR-GANG .00035 MFD. WITH TRIMMERS BUILT IN Trimming condensers are built inte this model. The condenser may be mounted on bottom or on side. The shaft is removable, also the plates are removable, so you can take out one section and operate as a three-gang. Enclosed find \$......for which ship designated parts: Tuning condensers for short waves, especially suitable for mixer circuits and short-wave adapters. These con-densers are .00015 mfd. (156 micro-microfarads) in capacity. They are suitable for use with any plug-in-coils. Order Cat. SW-S-150 @ \$1.50. Cat. SW-S-250 @ \$1.50. Four-gang .00035 mfd, with trimmers built in. Shaft and rotor blades removable. Steel frame and shaft, aluminum plates. Adjustable tension at rear. Overall length, 11 inches. Weight, $3\frac{1}{2}$ lbs. Cat. SPL-4G-3 @ \$3.95. Street Address..... City..... State..... the following merchandise as advertised: □ Cat. XS-4 @ 10c □ Cat. EQ-100 @ 35c □ Cat. SC-3 G-5 @ \$4.80 □ Cat. SPL-4 G-3 @ \$3.95 □ Cat. FL-4 @ 30c □ Cat. SW-S-150

Here is a handy aid to salvaging condensers and coils that have $\frac{1}{4}$ diameter shafts not long enough for your purpose. Fils on $\frac{1}{4}$ with the extension shaft and provides $\frac{3}{4}$ with extension shaft and the bore or opening are $\frac{1}{4}$ diameter.

diameter bore, use Cat. NS-8, one for each three-gang. Tension adjusters shown at right, other side of shaft.
SALIENT FEATURES OF THE CONDENSER
(1)—Three equal sections of .0005 mfd. capacity each.
(2)—Modified straight line frequency shape of plates, so-called midline.
(3)—Sturdy steel frame with rigid steel shields between adjacent sections. These shields minimize electric coupling between sections.
(4)—The frame and the rotor are electrically connected at the two bearings and again with two sturdy springs, thus insuring positive, low resistance contact at all times.
(5)—Both the rotor and the stator plates are accurately spaced and the rotor plates are accurately centered between stator plates.
(6)—Two spring stoppers prevent jarring when the plates are brought into full mesh.
(7)—The rotor turns as desired, the tension being adjustable by set-screw at end.
(8)—The shaft is of steel and is % inch in diameter.
(9)—Each set of stator plates is mounted with two soldering lugs so that connection can be made to either side.
(10)—Each stator scetton is provided with two soldering lugs so that connection can be made to either side.
(11)—The shelf thras splates and the generous proportions of the frame insure low resistance.
(12)—Provision made for independent attachment of a trimmer to each section.
(13)—The steel frame is sprayed to match the brass plates.
(14)—The condenser, made hy America's largest condenser manufacturer, is one of the best and sturdles very made, assuredly a precise instrument. .00035 TWO-GANG

GUARANTY RADIO GOODS CO., I43 West 45th St., N. Y. C.ity (Just East of Broadway.)

□ Cat. XS-4 @ 10c □ Cat. KH-3 @ 85c □ Cat. KH-3 @ 15c □ Cat. KHD-3 @ \$1.70 □ Cat. RL-3 @ 12c 🗆 Cat. DD-0-100 @ \$1.50 Cat. SW-S-250 ALL PRICES ARE NET

Set and Tube Tester. Cat. R-245, shown two-thirds actual size, a handy, dandy instrument for service men and experimenters.

All Vital Tests Made Instantaneously and Simultaneously!

WHEN the R-245 is plagged into the wacated socket of a set and the re-moved tube is placed in the proper supplies all the voltages and currents. You see the vital tests made right before your eyes, all three meters registering im-mediately, all three reading at the same time.

Here are some of the questions answered y the Tester when plugged into the reby

by the rester when the plane or heater voltage (no matter if DC or AC)? What is the plate voltage at the plate

itself? What is the plate current drawn by the

What is the plate current drawn by the tube? Is the tube in good condition or does it require replace-ment? (Tube chart in instruction sheet gives necessary reference data.) What is the grid bias voltage? What is the cathode voltage? What is the screen grid voltage? Besides, when meters are used independently, you can answer these questions? What is the screen grid carrent? What is the line voltage (no matter if AC or DC)?

(Just East of Broadway)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
Name
Address

CityState

1.5

The three-meter assembly, in the crinkle dark brown finish carrying case, which is sturdy steel, with slin-on cover of same finish. The handle is genuine leather. The buckled strap holds the cover on.

Assembly, in the house she in the transmister of the service is grounded, by connection sheet. Reality of the object of the connection that does not show a light is the grounded side. The Hummation tester will disclose continuities and opens. It is as

which provides connection that does not show a light is the grounded side. The Illumination tester will disclose continuities and opens. It is as handy as a pencil and fits in your vest pocket. It works an voltages from 100 to 100. There are two electrodes in a Neon lamp in the top of the instrument. On At both electrodes light. On DC only one lights, and that one is negative of the line, the light being on the same side as the lead to the Neon lamp. Hence the illuminator shows whether tested source is At' or Dt', and, if DC, which side is negative. Even hamp. Hence the illuminator shows whether tested source is At' or Dt'. Besides it test source is At' or Dt'. Besides it test source is one show a light. Also, the device will test which fuses are blown in fused house lines. At' or Dt'. Besides it test source is one show a light. Just thesh on the illumination tester momentarily. It will has about 4.000 thashes. Remit with order and we will pay carriage. **Order Cat. BRT at 90 Cents**

Order Cat. BRT at 90 Cents For those who desire unusual voltage range, or want to test tubes that have unusual bases, etc., adapters are available. Multiplier R-106-TJ is used to increase the DC voltage readings from 200 to 600. This adapter enables tests of sets using up to 600 volts DC, hence those with 210 or 250 output tubes. Remit with order and we pay carriage. Order Cat. R-106. Price, with built-in tip jacks, \$1.80. Multiplier R-560-TJ, increases the 140-volt AC scale to 560 volts DC, Remit with order and we pay carriage. Price, with built-in tip jacks, \$2,25.

Multiplier R-above, in each carriage. Price, with parts in the set of the se

www.americanradiohistory.com