

BACK IN 1924

This advertisement appeared in QST Magazine

Back in the radio magazines of sixteen years ago, you will find the names of many almost-forgotten manufacturers. But you will also find a few names that have survived through the excellence of their products. In this select group, National has a special distinction, for with National even the products themselves have survived.

The Velvet Vernier Dial has survived the greatest endurance test of all, and is *still* the most popular of all dials for amateur work. The DX Condenser has passed the toughest of all efficiency tests; it is still manufactured for commercial and industrial use.

The design features that made these products outstanding 16 years ago have become standard practice. But building to stand the test of time is still, we think, National's most exclusive feature.

NATIONAL COMPANY, INC. MALDEN, MASS., U.S.A.

they know it All Read This You don't want to see younger, better trained men push ahead of you, I know. You don't want Radio's new technical de-You don't want Radio's new technical de-velopments to baffle you either. I am velopments to baffle you either. I cash velopments to be tready to "cash sure. You want to get ready to dula-sure. Television. Frequency Modula-in" on Television. Frequency al-in" too. I have helped many alin on Television, Frequency Modula-tion, too. I have helped many al-ready in Radio to win promotions. to make more money. Read my mattere helow message below.

Men NOW in Radio

who Don't Think

J. E. SMITH, President NATIONAL RADIO INSTITUTE Established 25 years

He has directed the training of more men for Radio than anyone else—has helped men already in Radio to get ahead, and mon not in Radio to get into Radia and

If You're 1707 Working in Radio Now Read This

you want to make more money? Do you want to cash in on your present interest in Radio, Television, Frequency Modulation? Do you want a full-time job with good pay in one of Radio's many fascinating branches? Or do you want to make extra money in your spare time to boost your present income? If you want to do either of these things-you owe it to yourself to find out how I have trained hundreds of men for jobs in Radio. MAIL THE COUPON BE-LOW-TODAY.

Make Me Prove I Can Train You at Home and TELEVISION for **RADIO**

Clip the coupon and mail it. I'm certain 1 can train you at home in your spare time to be a Radio Technician. I want to send you a sample lesson free; to examine, read. See how clear and casy it is to understand. See how my Conrse is planned to help you get a good job in Radio, a young, growing field with a future. You don't have to give up your present job, or spend a lot of money to become a Radio Technician. I train you at home nights in your spare time.

Many Radio Technicians Make S30, S40, S50 a week

S30, S40, S50 a week Radio broadcasting stations employ operators, technicians, and pay well for trained men. Radio manufacturers employ testers, inspectors, service-nen in good-pay jobs with opportunities for ad-vancement. Radio jobbers and dealers employ in-stallation and servicemen. Many Radio Technicians open their own Radio sales and repair businesses and make \$30, \$40, \$50 a week. Others hold their regular jobs and make \$5 to \$10 a week fixing Radios in spare time. Automobile, police, avia-tion, commercial Radio: loudspeaker systems, electronic devices, are newer fields offering oppor-tunities to qualified men. My Course includes

Television and Frequency Modulation which promise to open good jobs soon. Charles F. Helmuth, 419 N. Mass. Ave., Atlantic City. N. J., writes: "I started Radio in the Ma-rines. Later I took the N. R. I. Course. Now I am ny own boss, and get jobs over others who were sure they had them. I owe plents to N. R. I. Training." James E. Ryan, 119 Pebble St., Fall River, Mass., writes: "I was working in a garage when I enrolled with N. R. I. I am now Radio service manager for the M------ Furniture Co. for their four stores." their four stores.

Many Make S5 to S10 a Week Extra in Spare Time While Learning

in Spare time While Learning The day you enroll, in addition to my recular Course, I stars sending you Exita Money Job Sheeta-start showing you how to do actual Radio repair jobs. Thromptout your Course 1 send plans and directions which have helped many make 5: to 510 a week extra in spare time while Learning, I zend special Radio equipment; show you how to conduct experiments, build circuits. My 50-50 training method makes learning at home interesting, fascinating, practical, I devote more than 10 Lesson Texts exclusively to Television, and in addition Television funkmentals are covered by my regular Course.

onal Servicing Instrument This Instrument makes prac-tically any test you will be called upon to make in Kadlo service work on both spare time and full time jobs. It can be used on the test hench, or earrised along when out ou ralls. It measures A.C. and D.C. voltages and currents: tests resistances; has a multi-hand oscillator for aligning any set. old or new. You get this instrument to kere as part of your N. R. L. course.

Get Sample Lesson and 64-Page Book Free - Mail Coupon

rice — main coupon Act notay. Mail coupon now for Sample Lesson and 64-pace Book, They're FREE. They point out Radlo's spare-time and full-time opportunities and those could in Tele-vision; tell about my Course in Radlo and Television; show more than 100 letters from men 1 trained, telling what they are doing and carming. Itead now money back acteement, Find out what Radlo offers you. Mail the coupon in envelope or paste on penny postcard—NOW1 J. E. SMITH. President Dept. 1BB3. National Radio Institute Washington, D. C.

J. E. SMITH, President, National Radio Institute Washington, D. C.	Dept. 1883	RICH REWARDS
Sample Lesson and 64-page tells about Radio's spare explains your 50-50 metho Technicians. (No salesman (Plaze Check)	me FREE, without obligate book, "Rich Rewards in Rad time and full-time opportu- d of training men at home to will call, Write plainly.) rk. [] 1 am NOT doing Ra	tion, your io," which inities and b be Radio
Name		Age
Address		

I want to prove that my formation is practical money-making information is nay to morey-making information is on maker Radio. My stroubles—The to maker Radio. My stroubles—The to the Radio Receiver troubles in AC. B.C. Cause and Remedy obles in AC. B.C. Radiw receiver troubles in A.C. super hatery, universal, anto, T.R.F. super hatery and a cross reference and every way to heater and other strench stress way to heater and remedy is de in the probable cause and use with the second remedy is de indiancing, neutralizing and testing Ge hatering in FREE. No, obligation for his lesson FREE. No, obligation for mail course

Please Mention This Magazine When Whiting Advertisers

Ĩ

RADIO & TELEVISION

The Popular Radio Magazine

February — 1941 Vol. XI No. 10

HUGO GERNSBACK, Editor H. WINFIELD SECOR, Manag. Editor ROBERT EICHBERG, Television and **Digest Editor**

In This Issue

GENERAL FEATURES

N

Editorial	
YOU Are the Editor— Hugo Gernsback	581
MARCH OF RADIO	
Color Television on Standard Re- ceivers	582
 New F-M Station Has Unique Christening 	583
Fluorescent Flag Glows at Night	584
Centimeter Wave Signal Genera- tor for 3000-4000 MC.	585
International Radio Review	
Connecting Head Phones to Re- ceiving Sets	586
3-Tube A.C. Set	586
Experimental Wheatstone Bridge	586
High-Fidelity All-Wave Tuner, Herman Yellin, W2AJL	589
14-Tube Communications Receiver, Charles R. Leutz	592
A Brand New F-M System for Amateurs, Ricardo Muniz, E.E., Donald Oestreicher, Warren	
Oestreicher	598

RADIO CONSTRUCTION

"Power-Plant" for the Workbench	588
High Fidelity All-Wave Tuner, Herman Yellin, W2AJL	589
14-Tube Communications Receiver, Charles R. Leutz	592
A Code Practice Oscillator, Wm. D. Hayes, W6MNU	595

Certified Circuits

When you see this seal on a set it is a quarantee that it has been tested and certified in our laboratories,

as well as privately in different parts of the country. Only constructional-experimental sets are certified.

You need not hesitate to spend money on parts because the set and circuit are bona fide.

This is the only magazine that renders such a service.

"Pull-Swing" F-M System for the
Amateur, Ricardo Muniz, E.E.,
Donald Oestreicher, Warren
Oestreicher

598

- Directional Radio Beam Indicator, Leon F. Leffingwell 602 Photo Cell Relay, L. M. Dezettel. W9SFW 620
- 4-Tube Regenerative de Luxe Receiver, W. Ward 628 Building a Small Oudin Coil, H.
- W. Šecor 630

AMATEUR RADIO

A

14-Tube Communications Receiver, Charles R. Leutz	592
Code Practice Oscillator	595
A New F-M System for Amateurs	598
Directional Beam Indicator	602
Plaque Winner for Best Station Photo	604
A Precision Frequency Monitor	606
Compressed Dipole Aerials	608
"CQ", Larry LeKashman, W210P	612

NEW FEATURES

Applied Radio—Principles of Fre- quency Modulation, F. L. Spray- berry	616
Experimental Radio-Photo Cell Relay	620
Radio Hookups	
Easy Set Building 4-Tube Re- ceiver	628
Electrical Experiments-Oudin Coil	630
Radio Patents	632

In March Issue

- An F-M Receiver for the Home Constructor-L. M. Dezettel
- 5-Tube Compact Receiver-R. W. Baetz
- Principles of Frequency Modulation-Part II-F. L. Sprayberry A Compact High Fide ity 20-Watt Am-
- plifier-H. D. Hooton, W8KPX
- A New F-M System for Amateurs-With Details of Transmitter and Receiver Construction — Ricardo Muniz, E.E., Donald Oestreicher, Warren Oestreicher
- More on the Compact Kilowatt Transmitter—Larry LeKashman Bamboo ''Beam'' Antenna Construction

ELECTRICAL EXPERIMENTS

Photo	Cell	Relay .								620
Small	Oudir	n Coil	,						,	630

TELEVISION NEWS

Color Television	582
Election Returns Televised	582
Compressed Dipole Aerials	608
Television Patents	632

MISCELLANEOUS

What Do YOU Think?	579
How to Learn the Code	595
This Month's Ham Plaque Winner	604
Practical Antenna Hints, Larry Le- Kashman, W210P	614
Frequency Modulation for the Be- ginner, F. L. Sprayberry	616
Radio Hookups	622
Question Box	625
Radio Kinks	626
4-Tube Regenerative Receiver	628
Electrical Experiments	630
Radio Patents	632
New Radio Apparatus	634
An UHF Receiver for F-M and A-M, S. Gordon Taylor	634
Book Review	601

Cover Composition by Hugo Gernsback and Thomas D. Pentz

RAD10 & TELEVISION—Published monthly on the tenth of the month. Entered as second-class matter Feb. 15. 1938, at the post office at Springfield, Mass. under the act of March 3, 1879. Trademarks and copyrights by per-mission of H. Gernaback. Text and illustrations are copyright and may not be reproduced without permission. Sub-scription price \$2.50 a year in the United States (in foreign countries, 75c additional per year to cover postage: Canada 50c additional). Make all subscription checks payable to Popular Book Corporation. Published by Popular Book Corporation. Publication Office-29 Worthington St., Springfield, Mass. Editorial and Executive Offices-20 Vesey St., New York, N. Y. HUGO GERNSBACK, President; EMIL GROSSMAN, Director of Advertising. European Agents: Atlas Publishing and Distributing Co., Ltd., 18 Bride Lane, Fleet St., London, England; Brentano's-London and Paris, Australian Agents: McGill's Agency, 179 Elizabeth St., Melbourne.

Copyright 1941 by H. Gernsback

READ CODE AND SEND

Learn Easily at Home **This Quicker Way**

No experience needed. Beginners read code quickly, copy accurately. Tf ready an op, speed up your wpm with this approved amazing all Electric Master Tele-plex Code Teacher. Only instrument which


records your sending in visible dots and dashes on specially prein visible dots and dashes on specially pre-pared paper tape—then sends back your own key work at any speed you wish. Fas-cinating, foolproof—gets results because you learn by HEARING as well as SEEING. That is why thousands agree this method is surest and quickest. While not designated standard equipment. Teleplex is used at many U. S. Army Posts, Naval Training Stations. We furnish Complete Course. lend you the New All Electric Master Teleplex. you the New All Electric Master Teleplex, and personal instruction with a MONEY-BACK GUARANTEE. Low cost, easy terms. Write today for folder S2, no obligation.

TELEPLEX CO., 67-69 Park Place, New York City

In Canada write: CANADIAN ELECTRONIC INST., TORONTO, ONT.

AMATEUR RADIO LICENSES Study for your licenses the "rhythm" way, the A.R.I. way. Acquire code proficiency in from 3¹/₄ to 8 weeks. Theory taught in un-derstandable, non technical language. Class-room courses in New York, home study courses for outside students. Write for list of calls of hundreds of licensed students now on the air.

AMERICAN RADIO INSTITUTE BROADWAY. NEW YORK. N. Y. 1123 BROADWAY.

What Do YOU Think?

Readers' Letters

WHAT ONE READER THINKS OF R. & T.

Editor,

Just a scribble to let you know how much I'm enjoying your magazine.

I note in the "What Do You Think" column, that one reader wants more "1 and 2 tube hook-ups." I have several copies from 1932 to 1935, 36 of them, Perhaps I should mail them to him. If your readers have been buying the magazine very long from newsstands, they should have, by now, all the 1 & 2 tube hook-ups they will want to play with for a lifetime. Maybe he's a new-new beginner. He should ask some of the local boys for some help on set construction. I suppose I'm a little too hard on beginners. not remembering "once upon a time" I was a beginner, too.

I'm in radio for fun-it's a hobby with me. The XYL gets a "bang" out of it, too. She says it keeps me at home where she can watch me. Maybe that's the bang she gets! What!

M. E. VAN NATTAN, 6151 Walnut Ave.

Long Beach, Calif.

(There are new hook-ups now and then. you know .--- Editor)

A YUGOSLAVIAN SHORT WAVE LISTENER

Editor.

I am a Yugoslav for the first time in the U.S.A. and am a wireless operator on a Yugoslav ship. I am also a Radio Amateur and SWL Fan.

I have at home in Split, Yugoslavia, a Hallicrafter Super-Skyrider receiver but my wish is to have one transmitter and to work with the fellows throughout the world. At present we cannot have a transmitter in Yugoslavia for private use.

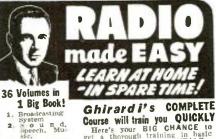
For years I have received very good phone signals from all continents, and I am sorry that I cannot show you proof of the success of my constant labors.

My greatest wish is to join the Short Wave League and to have a membership in the V.A.C. Club.

All fellows and SWL's who wish to know something about radio in Yugoslavia, and who will write me or send their cards, addresses, etc., may do so. I am enclosing my address and will be very glad when they write: I will answer all.

With best wishes to R. & T. magazine, I remain,

JOSIP A. MLADINA. Solinska cesta 40. Split, Yugoslavia, Europe.


IMPATIENT FOR EACH NEW COPY

Editor,

The tenth of each month finds me at the newsstand anxiously waiting for my copy of RADIO & TELEVISION, I truthfully believe that your magazine is the most complete and understandable radio magazine. I am typical of hundreds of other Short Wave Fans who are just starting to explore the (Continued on page 640)

Please Mention This Magazine When Writing Advertisers

peech, Muise, Muise,

29.

30.

31. 32.

33. 34.

35.

36.

Ghirardi's COMPLETE Course will train you QUICKLY Here's your BIG CHANGE to get a thorough training in basic RADIO FINDAMENTALS-quickly, easily, without previous experience or study. Today there are BIG OPPORTUNTIES and hot more jobs for men with radio training—in radio factories. In ra-dio service shops — and in all branches of the Army and Navy. RADIO SOUND. TELEVISION

branches of the Army and Navy. RAOIO, SOUNO, TELEVISION -MAOE EASY AS A. B. C. Chirardi's fautous RADIO Pith-IC's COURSE is the quickest short. Cut radio training your model of the training of the short of the short. Cut radio training you would be the training of the short of the short. Cut radio training you would be the training of the short of the cut radio schools and students when the schools and students when any other radio text is the world Get this whole 972 page that would you would student of the world Get this whole 972 page that do your whole would student of the world Get this whole 972 page that do your whole would student of the world Get this whole 972 page that do your whole would student of the world Get this whole 972 page

RADIO OPERATOR'S LICENSE GUIDE

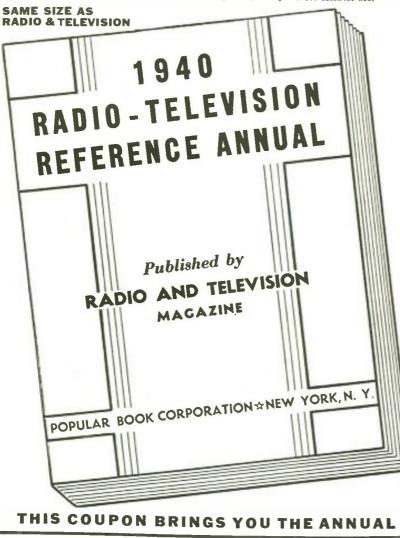
By WAYNE MILLER

By WAYNE MILLER Here's a new Guide Book that contains over 1250 questions and answers which will help you pass the new six element examinations for a commercial radio operator's license. It correctly answers all questions contained in the study guide that was recently re-leased by the Federal Communications Com-mission for the use of those proposing to take its examination. It will not only see you through your examination, but will also serve as a valuable future reference book. \$3.00 postpaid. Refunded if not satisfactory.

R. A. COWELL PUBLISHERS' REPRESENTATIVE 411 7TH STREET. BELLE PLAINE, IOWA

500 LICENSED graduates placed in past 7 years in shipping, broadcasting, aviation, police, etc.; we also teach radio servicing and repairing; new beginners' class now forming; 60-page catalog free; oldest, largest and best equipped.

MASS. RADIO SCHOOL 18 BOYLSTON ST., BOSTON, Mass., Est. 1899



Dodge's Institute, Turner St., Valparaiso, Ind.

THE FINEST RADIO BOOK **OFFERED :-**WE EVER the 1940-41 Radio-Television Reference Annual With \$1.00 subscription to

WITH our compliments, we want to send a copy of the 1940 RADIO-TELEVISION REFERENCE special subscription offer NOW. This offer is being made for a limited time only. The 1940 RADIO TELEVISION REFERENCE ANNUAL has 68 pages. large size 8½ x 11½, with over 170 Illustrations. The contents of this book has never appeared before in handy book form. Its pages for advanced radio men and techniclans, time and money-saving kinks, wrinkles, useful circuit informa-tion, "ham" transmitters and receivers, and a host of other data.

The Annuals have always been regarded as a standard reference work for every practical branch of radio eperation and service. This 1940 edition ably sustains this reputation. Every radio man wants a copy of this valuable book. Just as this book will be of unquestionable value to you, so, too, will every monthly issue of RADIO & TELEVISION. This magazine brings you big value every month. It keeps you intelligently informed about new developments in radio and television. You want the news, want it fully but concisely, want it first—that is why you should read RADIO & TELEVISION regularly. This very special offer is made for just one purpose-we want you as a regular subscriber. The Annual, whose contents appears at the right, is not sold, but a copy is FREE to you if you subscribe now.

RADIO & TELEVISION . 20 VESEY STREET . NEW YORK, N. Y.

Gentlemen: Enclosed you will find One Dollar for which enter my subscription to RADIO & TELEVISION Magazine for Eight Months. Send me ABSOLUTELY FREE and POSTPAID, my copy of 1940 RADIO-TELEVISION REFERENCE ANNUAL. □ This is a new order Extend My Present Subscription

NAME ADDRESS

СІТҮ STATE

DON'T DELAY - MAIL TODAY!

580

Please Mention This Magazine When Writing Advertisers

RT-2-41

Read the summary of contents in this FREE BOOK!

THE 1940 RADIO-TELEVISION REFERENCE ANNUAL contains a collection of the best and most important articles. Covering as they do nearly every branch of radio, they form a handy reference works. In addition, many time and labor-saving kinks, circuits and wrinkles, tried and tested by practicing Servicemen, experimenters and radio fans have been included. This book cannot be bought anywhere at any price. Yet it is yours by merely subscribing. Use the convenient coupon below.

BEGINNER'S SIMPLE INEXPENSIVE CONSTRUCTION ARTICLES

RADIO & TELEVISION

Besinner's Breadboard Special - a 1-Tube High-Gain All-Wave Receiver-Wiring Pointers for Radio Besinners-A watch Charm Size 1-Tube Stellar Beginner's Simple Volt-Milliammeter-Making a 1-Tube Broadcast Loop Receiver -A.C.-D.C. Power Supply for Battery Portables-A 1-Tube Short-Waver with Band Coll Switching.

MORE ADVANCED SET CONSTRUCTION

The "High-Seas ". Broadcast Lamp Radio-How to Build a 6-Tube 1.4-Volt Short-Wave Superhet for the "Ham" or Short-Wave Fan-Build the "Lunch Box 3" Super Set -a Broadcast Battery Portable-How to Build a Plug-Together 8 Tube Broadcast Set-The "5-in-4" AH-Wave Radio for A.C. Operation-An Easly-Built 3-Tube Midget Broadcast Superheterodyne Receiver.

THE SERVICEMEN'S SECTION

Bass Tone Control-Simplified Variable Selectivity-Prac-tical Servicing Pointers-Servicing Universal A.C.-D.C. Re-ceivers-Killing the 'Intermittent' Bug-A Service Shop A.C. to D.C. Power Supply-Sideline Money for Service-men-Adding A.V.C. to any Screen-Orid T.B.F. Receiver -Iron Particles in Speaker Air Gap.

TEST INSTRUMENTS

IC31 INSIRUMENTS A Useful Neon Lamp Tester—An Inexpensive Output Meter -Making Milliammeter Multipliers—Home-Made Frequency Modulator—The Busy Servicemen's V.T. Vol-Meter. **PUBLIC ADDRESS AND AMPLIFIERS** Build this Combination A.C.-D.C. Radio and Inter-Com-municator—Speaker Placement in P.A. Work—The Design and Construction of an Inexpensive All-Push-Pull 10-Watt Amplifier—Obscure Sources of Hum in High-Gain Ampli-fers—How to Build a High-Fidelity 5-Watt Versatile Amplifier.

"HAM" SECTION

Mam Scotter Ottra-Hils Frequency Antennas-The Beginner's Low-Cost Xmitter-Modulator Meter-Phone Monitor-The Begin-ner's "Ham" Receiver-2% Meter Acorn Transceiver. TELEVISION

How to Build a 441 Line T.R.F. Television Receiver-Use-ful Notes on Television Antennas. MISCELLANEOUS

Simple Photo-Cell Relay Set UD-Making a Burglar Alarm-How to Build A.C.-D.C. Capacity Relay-How to Make a Modern Radio Treasure Locator.

USEFUL KINKS, CIRCUITS AND WRINKLES

Making a Flexible Coupler-Two-Timing Chimo-A Simple Portable Aerial-An Improvised Non-Silp Screw-Driver. NOTE: The book contains numerous other useful Kinks, Circuits and Wrinkles. sot listed here.

(approximately)

45 ARTICLES

(approximately)

170 ILLUSTRATIONS 68 BIG PAGES

RADIO & TELEVISION 20 VESEY STREET NEW YORK, N.Y.

CU Are the Editor

By HUGO GERNSBACK, Editor

B ELIEVE it or not, you—the readers—are the real editor and it makes little difference what magazine or newspaper you read. It just means that it is always the reader who influences the editorial contents of any publication. Obvious as this is, it is seldom realized by the average reader who often has the erroneous idea that an editor is a sort of super-human creature who knows more about every subject than any one else. Nothing could be further from the truth. The editor only *interprets*; he may have set ideas of his own about certain subjects, but if he is a good editor he will keep these ideas in the background. After all, it is the reader who buys the publication, and unless he is satisfied with the ideas expressed in it, the publication won't last long. The great trouble with most readers, however, is that they take a magazine too much for granted, and the minute they do not agree with its policy, they drop it like the proverbial hot potato. Others when they do not agree with the editor in no uncertain terms— and that is precisely what the editor wants them to do. No publi-rately begin writing letters to the editor is undertain terms— and that is precisely what the editor wants them to do. No publi-ately begin writing letters to the citor wants them to do. No publi-ately begin writing letters to the citor wants them to do. No publi-ately begin writing letters to the citor wants them to do. No publi-and that is precisely what the editor wants them to do. No publi-ately begin writing letters to the citor wants them to do. No publi-and that is precisely what the editor wants them to do. No publi-and that is precisely on certain subjects. Here in Rano & TELEVISION we subjects.

Here in RADIO & TELEVISION we are fully aware of these problems and we have always been alert not only to new trends, but to criticisms, particu-larly when such criticism is of a con-structive variety.

The editor does not pretend to know it all—far from it—it is his business to present radio progress and other radio material in such form as he believes, that you, the reader, would like to have it. The editors have no pre-conceived notions as to what should go

or its readers who's conceiving set. Conceiving set. Conceiving set. Conceived notions as to what should go into the magazine and that is why they must use the guiding heads of its readers. With all this in mind and feeling that it is possible to get every really worthwhile new and constructive idea from you, the readers, the editor would like to turn this page over to the readers in order to get the best radio thoughts in America. RADIO & TELEVISION does not want this service for nothing. As an-nounced on this page, the best editorial, or editorial suggestion, which is sent in during the month will be printed here, and the writer of the best letter will be awarded every month. until further notice, a valuable radio receiving set.

receiving set. Remember that what is wanted are new or novel ideas or sug-

Remember that what is wanted are new or novel ideas or suggestions—how radio or television can be used to better advantage: how radio instrumentalities can be used more efficiently; what radio can do to help defense. Or any other worthwhile suggestion that may further the advance of radio in some way. Other short reader editorials might be on the subject of your viewpoint on radio matters that will arouse discussion with other readers. What we do not wish to print on this page are laudatory letters regarding the magazine itself, or pet peeves on subjects that are not important to radio in general. It is not necessary that your letters be long. Indeed, they can be quite short. Anywhere from 50 words up, but not more than 500 words. is desirable. All that you and we want is "meat" and the shorter and the more concise each of your editorials, the better the readers and the editors will like them. We are giving a few samples of readers' editorials which came

We are giving a few samples of readers' editorials which came in the mail, so you will understand what is wanted.

THE CODE BUGABOO

THE CODE BUGABOO If it's all boiled down to the bare facts. I think that learning the code has proved a bugaboo that has enlarged in so many minds that it scares many an embryo ham completely out. I know. it had me scared out too. Then one night I said to myself. "For-man, you're just plain lazy, learn that code or forget Ham Radio." I had a lot of wild ideas about how I'd build a transmitter and all that goes with it, I guess everyone does, but there's that ticket looning up in the way. Well, I worked for an hour and a half memorizing the code and by that time I could spell out the name of anything in the room. I'm picking up speed little by little and eventually I'll have it up to where I want it, but the hardest part, as I see it, is over with. Bob Forman, Monmouth, Ill.

Bob Forman, Monmouth, Ill.

RADIO TREASURE HUNTING

If anyone tells you that Treasure Hunting with modern radio equipment, including an unromantic head, cannot be made a profitable business—dismiss the thought. for several are paying con-siderable income tax on account of dis-coveries of man hidden valuables. They do not use one type of equipment and carry something in their heads as well

carry something in their heads as well as hands. Their finds go unheralded for they know it is possible to pay a large premium for talking too much and in the wrong company. Opportunities beckon to those who are willing to make the investment in knowledge be-fore expecting the dividend to come their way. Success in treasure hunting is based on knowledge and the ability is based on knowledge and the ability to play "dunib" if occasion demands. Those who do not believe in the efficiency of modern equipment may be made into an invaluable aid if proper made into an methods are used. Thomas E. New,

Santa Monica, Calif.

"ENGLAND CAN TAKE IT

Editor's Note: (As one half of the world never knows how the other half lives, the writer of the following letter deserves commendation for the fact that he takes the time to tell Americans regarding present-day English conditions.)

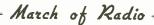
cans regarding present-day English conditions.) I have taken the trouble of send-ing you all these notes, etc., be-cause I think you may find them interesting, particularly as there are now no amateur transmitters operating in this country. so I guess you will be interested to know what is going on here. (COPY OF MAIN DETAILS FROM LETTER FROM ENGI-NEER-IN-CHIEF'S OFFICE (RADIO BRANCH), HARROGATE, ENGLAND, IN ANSWER TO QUESTIONS ASKED BY THE NORTH MANCHESTER RADIO & TELEVISION SOCIETY REGARDING AMATEUR RADIO TRANSMITTING, ETC.) 1. Relative to the confiscation of amateur radio transmitting apparatus, I have to inform you that it is the intention to return such apparatus to the owners after the war and applications for restoration should be addressed to this department on the cessation of hostilities.

of hostilities.

2. You can be assured that every reasonable precaution will be taken to ensure the safe custody of apparatus whilst held by the Post Office.

3. The call signs previously held by licensees are cancelled simultaneously with the relative licenses, and no claim to the use of a particular call in any future license could be allowed. (Continued on page 637)

for February, 1941


www.americanradiohistory.com

FREE RADIO SET A VALUABLE RADIO SET TO BE AW ARDED MONTHLY

Every month, until further notice, RADIO & TELEVISION will award to one of its readers who submits the best short editorial, to be printed on this page, a valuable radio set. Other letters published on the editorial page will receive a free subscription to RADIO & TELEVISION

All letters for the next month's contest must be received by the editors by the

For other details of this editorial contest, read further on this page.

Colored Television on Standard Receiver with New Disc

standard television receiver was made A to pick up colored television images in a demonstration by Dr. E. F. W. Alexanderson to members of the National Television Systems Committee and George H. Payne, member of the F.C.C. The picture shows Dr. Alexanderson and Mr. Pavne looking at the receiver.

The demonstration was staged at Dr. Alexanderson's home, where he had in-

stalled a two-color 24-inch revolving disk about a foot in front of the picture end of the cathode ray tube of his standard type receiver. As this whirled at 1,800 revolutions per minute, its transparent field of orange-red and greenish-blue reproduced the studio program in realistic colors. To do this, Dr. Alexanderson explained, a similar colored disk revolved before the iconoscope pick-up tube of the transmitter. Other

Dr. E. F. W. Alexanderson and George H. Payne, F.C.C. member, inspect the new twocolor filter which converts black and white receiver to reproduce colored television images.

than the two disks, everything was the same as with black-and-white television at both studio and receiver.

"In our early experiments we tried both two- and three-color disks," Dr. Alexanderson said. "With two colors and a speed of 1,800 r.p.m. of the disk, the same color succeeded itself 30 times per second, With three colors, they succeeded each other 20 times per second, producing a color flicker. So that is why we decided upon the two colors for the present. We found it did not detract much from the three-color picture. This gives very good results without flicker. and we feel it is most practical with standard commercial receivers."

The demonstration is still of a developmental nature, and General Electric has no plans for introducing color to its television programs for the present.

Prominent among members of the committee which attended the demonstration was Dr. P. C. Goldmark, in charge of television engineering for the Columbia Broadcasting System, which is also interested in adding color to its programs. While in Schenectady the members of the NTSC visited General Electric's television and new FM stations in the Helderbergs and. after the demonstration at Dr. Alexanderson's home, met with G-E scientists for a conference in the company's research laboratory.

Don Lee Television Station Has Novel Features

With excavation completed on the swim-ming pool atop Mount Lee, work-men recently reached the halfway mark on television station W6XAO, the new \$100,-000 building to be the first structure erected

exclusively for the electronics art. A novel feature of the building is that it is entirely shielded with one-ounce copht is entirely smelled with one-onnee cop-per sheeting on all four sides and the roof. The copper armored pure electro sheets came in sixty-inch wide 120-foot linear rolls and had to be applied with great pre-cision. Especial care had to be taken in soldering the scams between sheets. More than 22 600 source fact of couper work than 22,600 square feet of copper were used. The metal was applied to eliminate outside and intra-building interferences

experimental broadcast over a 50-watt

transmitter and few persons in the metro-

with the delicate cathode tube cameras, according to Thomas Lee, president of the Don Lee Television System.

Purpose of the swimming pool will be to provide a compact stage of operation for

"telecasts" of aquatic events. The pool measures $20' \ge 50'$. The two-story building will have one television stage $60' \ge 100'$ and another $25' \ge 40'$ with monitor rooms in addition 25 x 40 with monitor rooms in addition to complete office facilities, transmitter room, experimental laboratory, scene storage rooms, makeup room, lounge view-ing room, performers' lounge and other theatrical facilities. Since December 23, 1931 the Dow Lee corruption has seen 1931, the Don Lee organization has spent more than \$350,000 in television.

With W6XAO located on top of the 1700-foot mountain the television range will be about sixty miles and will bring image to homes in San Fernando Valley, points beyond Malibu, Huntington Beach and Pomona, as well as all sections of Los An-geles and Beverly Hills, said Harry R. Lubcke, Director of Television.

MOBILE UNITS ACTIVE

S ince broadcasting election returns, NBC's television station, W2XBS, has been making mostly remote pickups. The trucks have brought televiewers wrestling, hockey, boxing, football, and basketball this autumn and winter.

Du Mont Discloses Election Return Methods

Somewhat tardily Du Mont engineers have released information as to how politan area knew that it was on the air. It did not compare in coverage to the NBC they covered election returns over W2XWV. telecast on election night, which was de-It was done by means of a ticker tape scribed in last month's issue of R. & T. projected on a screen and scanned by use of the usual pick-up tube. This was an

The accompanying pictures show first the arrangement of the teletype printer feeding directly into the ticker tape projector, which flashed the images onto a translucent screen.

The second picture shows how the screen was set up to be scanned. In the third picture an operator is seen checking the patterns on an oscillograph. A hood is provided over the cathode-ray tube, so that it may be seen clearly in an illuminated room. This permits accurate monitoring of the program.

- March of Radio

Alexanderson's Daughter Christens New FM Station

While her father and mother, Dr. and Mrs. E. F. W. Alexanderson, and her friend, Miss Ellen Wellman watched, Mrs. James H. Burnham crashed a high vacuum tube against the base of the Gencral Electric's new FM antenna for station W2XOY in the Helderbergs near Schenectady. (Company engineers endeavored to create the best possible vacuum for use in this tube, but when it was broken it released no less than 370 quadrillion molecules of various gases, including some 5,000,000 molecules of Nenon, a gas so rare that only a few cubic centimeters of the pure gas are in existence.)

This official christening is seen in one of the accompanying pictures. Another shows a complete view of the new station.

The initial broadcast was put on in Proctor's Theatre at Schenectady, where Phil-Spitalny's All-Girl orchestra played before a capacity crowd of 3500. Other features were short talks by FCC member George H, Payne, Charles E. Wilson, President of General Electric, Dr. W. R. G. Baker, manager of the company's radio and television department and chairman of the National Television Systems Committee, and

A view of the new FM station, christening of which is shown in the photograph above.

Radio code classes for all students wishing to learn or brush up on code are being conducted each Monday evening at 9:00 p.m., E.S.T., over world-wide short-wave Station WRUL on the frequencies 6.04 mc, (49.6 meters) and 11.73 mc. (25.6 meters).

The lessons are for beginners, to give them a firm foundation for the study of code as a hobby or profession. Later a period of instruction for those more advanced in code practice will be inaugurated by WRUL under the direction of W. W. Chamberlain.

Students of this class of the air, from Canada to Florida and Puerto Rico, may submit their lessons after each broadcast for correcting and suggestion for study. Papers are graded and returned to students.

Dr. R. S. Peare, the company's manager of broadcasting,

In his talk, Mr. Wilson cited frequency modulation as "a nete and great achievement." He said : "Unlike the conventional method of broadcasting, which just grew, the development of FM has been carefully

planned and controlled. During several years of experiment in competition with established methods, for many purposes, it has proved itself a superior means of sending radio programs into your home, as well as for many kinds of regular and emergency communication.

Mrs. James H. Burnham, daughter of Dr. and Mrs. Alexanderson, christens new FM station with "bottle of nothing", as parents and friend watch.

> The program of music and talks was also broadcast from amplitude-modulated sta-tion WGY, and short-wave stations WGEA and WGEO.

A standard General Electric FM transmitter is used for the new FM station, which covers an area within a radius of about 50 miles from the Helderberg antenna and including Schenectady, Albany and Troy, N. Y. As FM has the characteristics of television, in that the present-type wire lines will not carry the programs, a shortwave transmitter sends the signals from W2NOY's studio in Schenectady to the transmitting station in the Helderbergs.

A G-E three-bay turnstile antenna of new arrangement is being used for W2XOV. Providing a considerable signal gain over previously available similar designs, this antenna has been built to withstand one inch of ice and a hundred-mile-per-hour wind.

RADIO GIVES CODE & SPANISH LESSONS

Spanish lessons for radio listeners are also being conducted over world-wide shortwave Station WRUL in Boston on Friday evenings at 9:30 p.m., E.S.T., on the frequencies 6.04 mc, (49.6 meters) and 11.73 mc. (25,6 meters). The classes are repeated on Friday afternoons at 5:30 p.m., E.S.T., on the frequencies 11.79 mc, (25.4 meters) and 15.25 mc. (19.6 meters), to better reach audiences of students, teachers, parents, and those interested in languages as a hobby.

The course begins with simple grammar as a basal text for students who desire to read, speak and write Spanish with the least possible delay. The Inter-America Division will examine and correct all exercises submitted by listeners, and each month there will be a review period.

FM SPEEDS USE OF RADIO IN ADULT EDUCATION

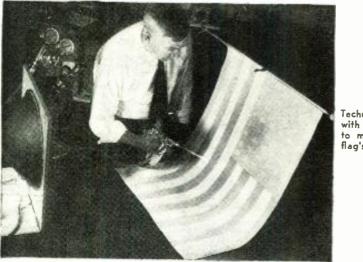
Meveland's pioneer high-frequency educa- tional radio broadcast station, WBOE, operated by the Cleveland Board of Education, has been authorized by the F.C.C. to change its type of transmission from amplitude to frequency modulation,

First station to operate in the ultra-short wave band set aside for educational stations in 1938. WBOE has been broadcasting from its own studios to receivers in each of Cleveland's 151 schools since November, 1938.

Now, as commercial FM broadcasting gets under way and high-frequency FM sets become available to the public, WBOE's programs may find listeners in homes as well as in classrooms.

Due to the British blockade, few items are received from continental Europe as mails from Nazi occupied areas seldom come through:

-March of Radio


Fluorescent Flag Glows at Night in "Black Light"

The American flag, glowing with all the intensity of democracy's spirit, shines in a darkened room when treated with certain chemicals. In daylight these flags, made by Dr. J. W. Marden, Assistant Director of Research, Westinghouse Lamp Laboratories, and Dr. N. C. Besse, assistant, appear to be plain white cloth; each, however, has been given a coating of fluorescent materials in the pattern of the flag. Two such flags have been made and a pair of ultra-violet lights is used to illuminate them. Different compounds have been used on each of the flags; one responds to one of the ultraviolet projectors and the other to the second projector, but each is unaffected save by its own projector.

Thra-violet has many wavelengths from

short to long, like the familiar color spectrum. Organic and inorganic fluorescent materials, of which there are literally hundreds in the world, are activated by many different wavelengths according to their own peculiar characteristics. One "note" of the ultra-violet scale may cause a certain phosphor to fluoresce but fail completely to affect another. The object of research has been to discover the proper wavelengths for activating a great number of different fluorescent compounds.

One flag is a "short-wave" banner which takes on its proper colors only when within reach of short-wave ultra-violet radiations. The staff is coated with zine silicate and the knob on top with zine beryllium silicate, The staff becomes green and the knob yel-

BOAKE BACK

Boake Carter, famous *netoscaster* whose voice has been missing from the ether waves for two years, is now heard thrice

weekly over the WOR-Mutual Network. There was considerable talk in which it was alleged that Carter was "suppressed" when he left the air in 1938. His return should terminate such ugly rumors. One of the most popular commentators, Carter's return proved welcome to listeners.

with fluorescent dyes to make it glow with flag's colors in "black

low white when fluorescing. The red stripes are cadmium borate; the blue field, calcium tungstate; the white stars and bars, magnesium tungstate. The second flag is of a "long-wave" variety and composed of entirely different fluorescent compounds,

The ultra-violet source is a specially designed water-cooled lamp, called a "hydrogen-discharge" lamp, This lamp is necessary because it gives a nearly continuous spectrum in the portion of ultra-violet investigated.

To make photographic records of this phenomenon, fluorescent powders are spread on a clear gelatin film mounted in front of an ordinary panchromatic plate. A yellow, photographic K2 filter is then inserted between the powders and the photographic plate to halt all but visible light,

When the lamp is turned on, ultra-violet radiations cause the fluorescent powders to become alive with light at the point where the ultra-violet would normally hit the photo negative, thereby recording in black and white, their response to the various wavelengths of ultra-violet. Thus the negative is darkened by only the visible fluorescence of the compounds and permanent records made.

NAVY "NET" NEEDS MEN

In an exclusive story the New York Times reports that the office of Naval Com-munications in the Navy Department is seeking the co-operation of Hams throughout the U. S. to fill a shortage of about 5,000 men in the personnel of the Naval Communications Reserve. The readers of this magazine are urged to co-operate.

SCHOOLS GET U.H.F. BAND FOR EDUCATION When the Federal Communications

AM station, WNYE, which it expects to Commission approved FM in May, change to FM. 1940, and recommended it for all ultra-short

Another New York educational institution, the College of the City of New York. has expressed an interest in an educational station. The University of Kentucky operates WBKY, an AM high-frequency station which broadcasts educational programs to schools and community listening centers in rural Kentucky areas. Oklahoma A. and M. is considering establishing a similar service.

Reussclaer Polytechnic Institute is reported to be building an FM station, the Universities of Illinois and Wyoming, and New River State College, Montgomery, W. Va., are collecting equipment, and at alumnus has offered the University of Michigan equipment for an FM station. Nearly a score more educational institutions and school systems are developing plans for stations in the educational band.

WBOE's new frequency allocation is 42.5 megacycles and its power has been doubled to 1000 watts,

THEATRE TELEVISION COMING

According to apparently well founded rumors, the National Broadcasting Co. is equipping a midtown New York theatre to receive large screen television images. Reports are that the images will be about 12 x 16 feet.

www.americanradiohistory.com

In explaining educational radio's request

Cleveland's school board is one of several

Education has received a construction per-

mit for its proposed FM station, KALW,

San Mateo (Calif.) Junior College and school systems of Chicago and New York

have indicated they will file applications

soon. New York's school system, like Cleve-

land, has been operating a high-frequency

March of Radio

PHOTO-ELECTRIC PHONOGRAPH RECORDS FOLK SONGS

A newly invented phonograph pick-up, created by Phileo Corporation engineers and designed along the same basic engineering principles as applied in its recently announced photo-electric radio phonograph, promises to open a new field in music research.

Students of folk music have made collecting trips into backwood regions. The inadequacies of noting down by car and hand the melodies which they heard were so obvious that at the first advent of the Edison phonograph they adapted it to their purposes. As years passed and improvements were made in recording, the inadequacies of the early records in turn became obvious. The cylinders, which had been recorded on machines somewhat resembling a modern Dictaphone, became more brittle and fragile with age, and since the precious material they contained could only be brought to life again by pressing a hard diamond or heavy steel point into their grooves, they had to be guarded with great care and only played infrequently for special problems of research,

Since these cylinders contained the only authentic record of the folk music of the last generations, it became of paramount importance to find some means of transcribing it onto newer and more durable discs.

The photo-electric phonograph pick-up recently announced by the Philco Corporation seemed to offer the most promise and therefore the engineers of the Library of Congress Phono-duplication Laboratory brought their problems to the attention of David Grimes, Chief Engineer of Phileo Corporation, who offered to attempt to design a new lightweight reproducer suitable for work with the old cylinders. After about two mouths of intensive research, E. O. Thompson, Philco Corporation engineer, working with Jerome B. Wiesner, Chief Engineer of phono-duplication for the Library, produced a machine which gives every promise of being satisfactory. Now installed in the Library of Congress, it has successfully performed every test assigned it thus far.

This will mean that the American public

Open to all junior and senior high school students who have outstanding experiments or demonstrations to exhibit, the 13th Annual Science and Engineering Fair is an ideal place to show what has been accomplished in the construction phase of club and classroom work in science. All exhibits at the Fair must be the actual creation of student participants. Cash prizes amounting to \$3,000 will be awarded for the best displays. Although the Fair, which is a continuation of the American Institute's annual industrial fairs which began in 1828,

shortly will be able to hear thousands of old American folk songs, Indian songs and voices of personalities long decased. In addition, it is expected that composers and lyricists will edit many of the eld musical renditions and create new American music which will be based upon long forgotten melodies.

By use of a slightly different application of the principle of the pick-up arm of the new photo-electric phonograph, these old cylinders are being transferred onto flat disk records, so that they may be played without fear of damage to the sound grooves.

Thousands of these records, which for years have remained in dusty cases because of the danger of scratching away the valuable words and music, can now be made available to research students.

Basic reason for the better results of this experiment is the very slight 5 gram downward pressure of the sapphire stylus in comparison to the approximate 25 gram pressure on the original reproducer stylus.

The sapphire stylus need only *float* gently in the grooves to produce the necessary motion; as a result the delicate impressions in the wax cylinder are not gouged out and destroyed.

The *photo-electric* pick-up has been placed on a standard cylinder machine replacing the original pick-up. The photo-electric pick-up is connected in turn by wires to the recording unit. The sound from the wax cylinder is transcribed from the cylinder through the recorder onto a flat disc type record from which any number of additional impressions can be made.

Recently, the first extensive job of transcription was started. Percy Grainger, the renowned pianist and composer, arrived at the Library with over two hundred cylinders, recorded in all parts of the world. The Division of Music in the Library of Congress anticipates that this will be followed by the transcription, not only of the records already in the Archives, but also of other important private collections, and that the wealth of material thus obtained can eventually be made available in useful and durable form to every interested scholar.

13TH ANNUAL SCIENCE AND ENGINEERING FAIR

is held in New York City, schools from every part of the United States are represented. Last year over 27,000 people visited the Fair to view 326 exhibits representing working models, experiments, live animals and plants, and technical and mechanical projects. Entries are due March 15, 1941.

All interested students are invited to write to the American Institute Science and Engineering Clubs, 60 East 42nd Street, New York City, for complete information regarding these activities and the general club program.

FM FOR NASHVILLE POLICE

After operating an amplitude modulated emergency communications system for five years, the city of Nashville, Tenn, has ordered a complete FM system from the General Electric Company.

The system for Nashville will include 1 250-watt and 24 25-watt transmitters, and

d 30 receivers. A 200-ioot tower, to be constructed, will support a half-wave antenna of new design that provides complete light-

ning protection. Nashville is the first Southern city to adopt frequency modulation for police communication.

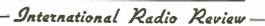
CENTIMETER WAVE SIGNAL GENERATOR FOR 3000-4000 MC.

A signed generator designed for laboratory research involving the study and development of new radio equipment to operate in the 3000 to 4000 me, portion of the radio spectrum generates test signals of adjustable intensity and frequency. As it operates at unusually high frequencies, its design is somewhat unconventional.

The oscillator is an end-plate magnetron tube, having a maximum output of about 1 watt in the frequency region of 3000 me.

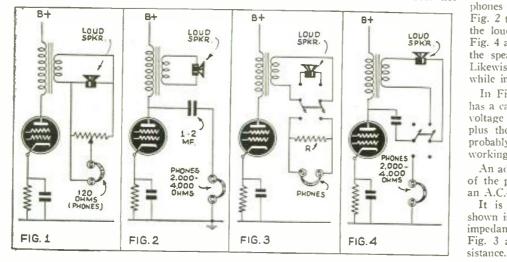
(9 cms, wavelength; 1 cm, = 0.4 inch). However, in the signal generator, outputs of 0.01 watt are ample for most tests. The oscillator feeds an antenna from which the generated signal is radiated. Control over the signal strength is obtained by means of an attenuator, and a specially designed thermocougle is used to indicate the output.

At these very high frequencies, which are in the quasioptical range, difficult problems are encountered in shielding, lead filtering, and also in modulation. The signal generator incorporates new methods of overcoming these difficulties. (Photo courtesy of RC.1)


BROADCASTS TO AMERICA

Philip Noel Baker, M.P., is seen below giving one of the "Britain Speaks" talks which he broadcasts in the BBC's North American service.

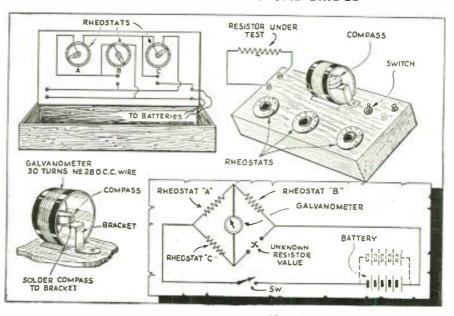
A very large number of letters from

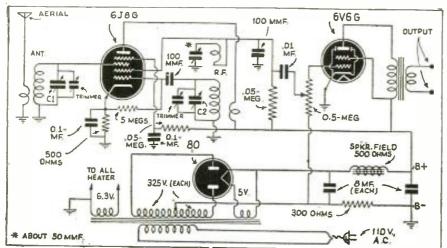

overseas listeners arrive daily and each one receives an individual reply. Letters from listeners are welcomed by the BBC, for careful analysis.

CONNECTING PHONES TO RECEIVER

SEVERAL different methods of connecting a pair of headphones to the output of a radio set which is already provided with a loudspeaker are shown in the latest issue of *Electronics and Television & Short-IVave IV orld*. In Britain, phones with resistance as low as 120 ohms seem to be

common, although these are not found very frequently on this side of the Atlantic. However, Figures 1 and 3 show desirable methods of connecting low resistance phones. You will notice that these place the phones across the secondary of the output transformer. This reviewer does not




3-TUBE A.C. SET

• A TINY 3-tube A.C. receiver was recently described in *The Australasian Radio World*. It is a set which has proven highly popular in that part of the world, and is a fourth redesign of a circuit originally issued in 1937. Basically, it employs a dual purpose tube as R.F. amplifier and detector, together with a pentode output.

The set mounts on a chassis $9 \ge 5\frac{1}{4} \ge 1\frac{1}{2}$ " and employs a midget 40 ma. power transformer. The two coils are extremely simple and may either be purchased or homewound for the desired band. The tuning condenser has a capacity of .00035 mf. and is equipped with a trimmer on each section. An additional trimmer is used as a fixed regeneration control. The high voltage output of the power transformer is 325 volts and self-bias is provided. The antenna coil is mounted above the base and the R.F. coil below to isolate the 3 units and provide short wiring. Each coil is further equipped with its own shielding can. No difficulty should be had in following the diagram below.

(See Diagram Above)

think that with 120 ohms phones, much of

a "match" would be secured, particularly

using the method shown in Fig. 3, as Amer-

ican speaker voice coils usually have an impedance of 10 ohms or less-not a very

Figures 2 and 4 will probably be more

satisfactory for the average American headphones of 2000 to 4000 ohms impedance. In

Fig. 2 the phones are used without cutting

the loudspeaker out of the circuit, but in

Fig. 4 a switch-over system is used to kill

the speaker when the phones are in use.

Likewise in Fig. 3 the speaker is killed,

In Figs. 2 and 4 the blocking condenser has a capacity of 1 or 2 mf. and a working voltage equal to the maximum plate voltage plus the peak A.C. component. This will probably not be much in excess of 500 volts

An additional condenser on the other side

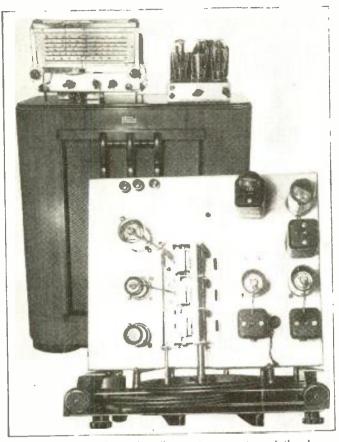
It is recommended that the resistance shown in Fig. 1 should be about twice the impedance of the voice coil and that in

Fig. 3 about 11/2 times the voice coil re-

of the phones should be used if the set is

while in Fig. 1 it remains in use.

working voltage.


an A.C.-D.C. receiver.

good match to 120 ohms.

• A SIMPLE and effective Wheatstone bridge can quickly be made from three rheostats, a battery, and a sensitive meter. This last may be a homemade galvanometer, which consists of no more than a compass surrounded by about 30 turns of No. 28 d.c.c. wire on a 1½ inch form.

The rheostats are mounted as shown in the diagram given al ove, and the resistance under test is connected across the binding posts marked X. The writer in *Radio Revista* of the Argentine suggests that each rheostat may have a value of 1000 ohms, or any other values may be used to raise or lower the range of the instrument.

The usual simple calculations of Wheatstone bridge operation are employed with this instrument. Formulas can be found in any textbook on the subject.

The picture above shows the all-wave tuner on top of the Jensen high-fidelity loudspeaker, and the small inset picture shows a top view of the all-wave tuner.

• THE rapidly increasing number of F-M broadcasting stations has increased the number of fidelity-conscious listeners. After spending some time at an F-M receiver, the average listener becomes increasingly critical of ordinary A-M broadcasts, resulting in a desire for a broadcast receiver that would reproduce the program with as great a fidelity as possible. While the TRF (tuned radio frequency) type of receiver has often been used for high-fidelity reception, it has a serious drawback in its unsuitability as an effective all-wave receiver. With proper design, however, a superhet can deliver a good signal and faithfully reproduce the output of the occasional high-fidelity broadcaster.

It was for these reasons that the writer built an all-wave high-fidelity tuner, capable of being used with the same audio amplifierspeaker system used with his F-M tuner, and able to deliver signals not too inferior in quality when compared with the F-M signals.

Ready-Made Coil-Switching Unit Used

In order to simplify construction, a ready-made 5-band coil-switching unit was obtained. This unit tunes from 530 kc. to 32.4 mc. with a special 280 mmf. tuning condenser. Especially made for amateur receivers, which demand the ultimate in tuning ease in the highly crowded Ham bands, the 3-gang condenser has a small rotary trimmer section in parallel with each large condenser section. This really gives us two tuning condensers in one, one for ordinary tuning and the other smaller section, for band-spread tuning. This band-spread icature is highly effective and a necessity not

only on the Ham bands, but on the foreign broadcast bands, where it provides that ease of tuning so sadly missing on the average "all-wave" radio. If the band-spread feature is not desired, an ordinary 3-gang, 280 mmi. condenser can be used, in which case the special band-spread dial with two knobs will not be necessary. Also, if desired, the coil unit can be procured with a different tuning range-42 mc. to 132 kc.-which includes many long wave services. A 3-gang 410 mmf, condenser will be needed with this latter coil unit, Either combination of coil switching unit and condenser gaug can be used in this tuner, but be sure to get the correct dial since they have directly calibrated scales.

Tube Line-Up

Now to the tube line-up. The R.F. stage uses an 1853-well suited for operation on the higher frequency bands, while the detector-mixer employs a 6K8, used only for mixing, since a separate tube-a 6J7GT-is used as the high frequency oscillator. In the I.F. stages we have a pair of 6K7GT tubes, followed by a 6SQ7GT performing two functions. The two diodes are paralleled for use as the second detector, while the triode section is used as a beat-frequency oscillator. Note the use of the bantam type glass tubes: these have a metal hase connected to the number one pin and a sleeve type of shield can be slipped over the glass envelope, affording effective shielding. The bantam tubes are in some respects superior to the metal type and bid fair to eventually supersede the metal type.

The output of the second detector is fed through a volume control into the output

High-Fidelity

All-Wave

Tuner

Herman Yellin, W2AJL

As the author points out—those who have listened to F-M broadcasts have suddenly become "fidelity-conscious" listeners. To provide a better equipped tuner for the ardinary broadcast, so that high quality reproduction cauld be abtained (in connection with the F-M audia amplifier previously described), the author built the tuner here described. A ready-built 5-band cail-switching unit was employed, which simplifies the construction immensely.

> jack on the back of the chassis, and thence to the external amplifier. No power-supply was built onto this tuner chassis, since the writer's amplifier furnishes sufficient power for this purpose. As the power-supply contained a regulated 105 volt supply, it is used not only for the high frequency oscillator but for the beat frequency oscillator, as well as the 6K8 screen. If a power-supply not having this regulated voltage is used, a 25 watt slider type voltage divider (15,000 ohms) can be connected across the 250 volt supply and adjusted to about 100 volts.

Fidelity on the "Broadcast" Band

Returning for the moment to the subject of fidelity, it must first of all be remembered that broadcast stations are assigned frequencies ten kilocycles apart, and since they have two side-bands, are limited to an audio band width of 5000 cycles. An exception is the case of broadcast stations just above 1500 kc, which are licensed for a greater band width. Although the former stations are not supposed to transmit audio frequencies higher than 5000 cycles, they do so, but the beat note between the higher frequencies of two adjacent channel stations is not heard because of the narrow band width of the ordinary tuner, which may cut off at much less than 5000 cycles. Increasing the band width to make these higher frequencies audible is desirable in those instances where the desired station is not flanked by adjacent channel stations within range of the receiver.

A happy solution to this problem of band width is the use of *variable* band width I.F. transformers. Using I.F. transformers having 3 degrees of band width, it is possible to

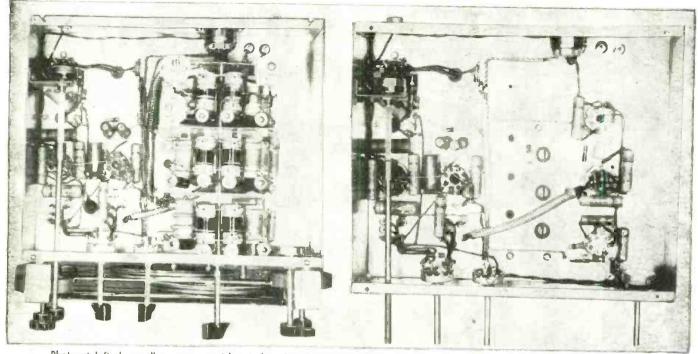
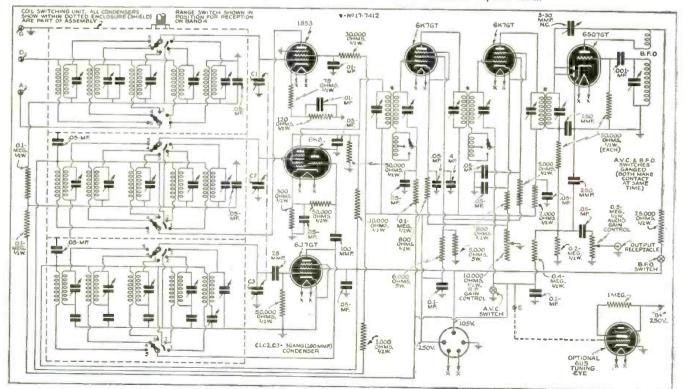


Photo at left shows all-wave tuner with switch coil unit in place. Photo at right-view of tuner before coil unit was installed.


vary the band width from the quite *sharp* position, desirable for tuning in the Ham bands or the crowded *foreign* broadcast bands, to the *medium* position suitable for ordinary work. The third position gives increased band width for listening to the *high-fidelity* stations, or some of the broadcast stations. It will be found that the high fidelity position of the LF, band width switch cannot be used on many of the stations, especially on the high-pitched whistle will be heard caused by the hetero-

dyning between that station and the station in the adjoining channel.

Beat-Frequency Oscillator

The beat-frequency oscillator was incorporated, since it didn't involve the use of an additional tube and more important, it is extremely helpful in locating those weak, distant short-wave stations. For receiving code (C.W.) signals, for which this tuner is eminently qualified, the BFO becomes a necessity. Coupling between the BFO and second detector diode plates is accomplished by a 3-30 mmf, trimmer—adjusted on a weak signal for loudest beat note. A convenient knob atop the BFO transformer allows the beat note to be adjusted to the most pleasant tone.

The coil assembly requires the use of a chassis 4 inches deep, but as this was unobtainable except in a prohibitively large chassis, a chassis 3 inches deep and 12×10 inches wide was used. This resulted in the coil assembly protruding beneath the chassis, but four one inch brass spacers raise the chassis high enough so that the coils do

Wiring diagram for the high-fidelity all-wave tuner unit here described by Mr. Yellin.

RADIO & TELEVISION

not touch the cabinet shelf. No ill effects were observed as a result of this abbreviated chassis and the unconventional appearance is not apparent when the chassis is mounted inside a cabinet.

Assembly and Wiring

In mounting and wiring the components, the tuning condenser should be mounted directly above the coil assembly, with the "front end" tubes mounted close to the condenser gang, in the positions shown in the photos. This placement will result in the shortest R.F. leads, and also will place the coil assembly right over the three steatite ockets, necessitating the wiring of these sockets, before the coil assembly is mounted inside the chassis. As a matter of fact, it would be well to wire everything on the chassis and leave the coil assembly for the last, obviating the possibility of damaging any of the coils. If the band-spread dial is used, it will be necessary to support it by bolting it to the chassis.

The lead from the 6K8 plate to the first LF, transformer is a little long, so it was shielded-not with ordinary shielding, but with the *low-capacity* type. The plate lead is covered with a piece of half-inch diameter spaghetti or sleeving, and over this is pushed some large shielding braid which is grounded to the chassis. The large diameter of the spaghetti keeps the shielding far enough away from the wire to keep the capacitance between wire and braid quite low. The same method of shielding is used over the anterma leads coming out of the antenna section of the band-switch assembly, which go to the antenna binding posts at the rear of the chassis.

The remainder of the wiring is quite straightforward, and should offer no difficulty since there is really very little of it. The audio volume control is mounted on a small bracket near the rear of the chassis with a brass shaft extension to the chassis front. The 2-pole, 3-position rotary switch used for selecting the LF, band width is mounted next to the audio gain control and next to this is the AVC-BFO switch which turns off the A.V.C. when the BFO is turned on. At the extreme left of the chassis is the R.F. gain control.

Alignment Procedure

Alignment should preferably be done with an all-wave signal generator. The I.F. transformers should first be peaked to 450 ke, with the band expansion switch in the sharp position. Either a magic-eye tube or an output meter may be used as an indicator. for LF, as well as R.F. alignment. The all-wave coil assembly is aligned at the factory, so that, if the coils and trimmers are not touched, signals will be heard even without aligning the front end, However, for best results, it is advisable to go over the trimmers. Start off with the lowest frequency band. The tuning condenser should be set at about ten per cent of its maximum. capacity, and a signal fed into the receiver -corresponding to the frequency marked on the dial at that point-and the oscillator trimmer adjusted for maximum output as indicated on the indicator. Then adjust the antenna and R.F. (detector) trimmers for maximum output. The tuning condenser is then turned to about 80 per cent of its maximum capacity and a signal fed into the

receiver corresponding to the frequency shown on the dial, and the oscillator padder adjusted for maximum response. The condenser should then be turned back to the first alignment frequency and the antenna and R.F. trimmers rechecked for maximum response at that frequency. Don't retune the oscillator padder. This procedure is followed on each of the other bands. On the two highest frequency bands, however, there is no adjustable oscillator padder, as the coils have been adjusted at the factory for proper "tracking."

A good all-wave type of antenna, with twisted-pair feeders should be used for most effective results.

Parts List

BUD RADIO

1-3" x 12" x 10" chu-sis; No. 1195

I.R.C.-(Resistors)

1-75 ohm 12 watt; type BT12 --1.20 ohm |--120 ohm |--300 ohm 2 -800 ohm |--1000 ohm |--2000 ohm |--2000 ohm |--25,000 ohm |--25,000 ohm |--25,000 ohm

1-500 ohm 10 watts; type AB 1-5000 ohm 10 watts; type AB 1-500.000 ohm potentionetr; type 13-133 1-10.000 ohm pot, wire-wound; No. W-10.000

NATIONAL UNION-(Tubes)

-65Q7 GT

AMERICAN PHENOLIC-(Miscell.)

- 1--5-prong plug in flush motor shell (for power-supply); No. 61-CP5
 1--5-prong female plug; No. PF5-11
 1-Chassis output connector; No. PC1M
 1-Output plug; No. MC1F
 1-6-prong plug (female); [for magic-eye tube]; No. PF6

MEISSNER MEG. CO .- Coils I.F. Trans. & Sockets)

--All-wave coil-switching assembly. (530 kc.-32.4 mc.), No, 13-7617 - 280 mmf, band-spread tuning condenser; No, 21-51438 1 -

21-51431 1-Electrical band-spread dial; No. 23-8211 2-456-kc, band expanding 1.F. transformers; No. 17-7412 1-436 kc, I.F. transformer; No. 16-5711 3-Octal steatile sockets; No. 25-8437 3-Octal bakelite sockets; No. 25-8209 1-3-30 mmf, trimmer; No. 22-5255

CORNELL-DUBILIER—[Condensers] 2-.01 mf. 400 volt condensers; No. DT-4S1 9-.05 mf. 400 volt condensers; No. DT-4S1 2-.01 mf. 400 volt condensers; No. DT-4P1 2-.0001 mf. mica condensers; No. 5W1-5T1 2-.00025 mf. mica condensers; No. 5W1-5T25 1-.00025 mf. mica condenser; No. 5W1-5Q25 1--4 mf. 450 volt electrolytic; No. BR-445

We Will Pav

regular space rates for good construction articles giving novel and original ideas for building such simple radio apparatus as short wave converters, receiving sets, television and frequency modulation receivers, recording equipment, power supplies, simple set and tube tester», facsimile recorders, etc.

for February, 1941

The three photos show respectively—completely finished Communications receiver (above); complete kit of parts (top left), and below—at left—the receiver partly assembled.

A Low Cost, Highly Efficient Communications Receiver

Charles R. Leutz

The accompanying article describes a 14-tube de Luxe Communications receiver. The average set-builder and Ham will be interested in this set, because all of the delicate tuned sections are factory-wired and pre-aligned, thus insuring perfect results as soon as the set is assembled and wired. The set features tuned R.F. stage, noise silencer, crystal filter, variable pitch BFO, and a direct-reading "R" meter.

• EVERY amateur needs a first-class communications receiver, but with manufactured sets costing several hundred dollars each, a good many "hams" are manucially stymied. Attempts to construct a good composite receiver are complicated and usually unsuccessful due to the lack of test apparatus for the final lining-up operations.

A solution for the above problem is the Meissner 14-tube "Traffic Master" Communications Receiver which is available in kit form. The kit includes a complete tuning unit which is factory wired and prealigned, which simplifies matters considerably. The intermediate R-F transformers are also factory peaked. The entire kit, tubes and a good speaker can be purchased for a surprisingly nominal amount.

Fig. 1 shows the complete kit parts laid out ready for assembly. Not including the miscellaneous hardware, there are 166 different parts including the 14 tubes and speaker. Fig. 2 shows the assembly of the kit parts up to the point of chassis completion. The completed receiver, ready for operation, is shown in Fig. 3. The complete schematic wiring diagram is given in Fig. 4 and Fig. 5 shows the wiring of the factory pre-aligned five band tuning unit, Detailed information on this tuning unit appeared in the July 1940 issue of RADIO & TELEvision in an article by the author, entitled "How to Extend the Tuning Range of Your Receiver."

Design Features of the Set

This communications receiver has the following essential design features:

1. A direct tuned R-F stage to insure favorable image ratio, using a modern tube especially efficient on the higher frequencies, in this case the 1853 "television" tube.

2. "Iron core" Ferrocart Intermediate R-F transformers with air dielectric trimmers.

3. An efficient "Lamb" noise silencer circuit to reduce ignition and similar abrupt electrical disturbances.

4. A Crystal-Filter and crystal-phasing condenser to regulate the obtainable degree of selectivity.

5. A variable-pitch Beat-Frequency Oscillator, free from frequency drift.

6. Stable operation insured by using a Voltage Regulator tube to feed the plate and screen-grid circuits of the oscillator tube, and the plate circuit of the beat frequency oscillator tube.

7. A direct reading "R" Meter.

8. Full frequency coverage from 530 kilocycles to 31 megacycles in five bands, with a liberal over-lap between bands,

9. A band-spread tuning condenser,

10. A separate oscillator tube, efficient over the entire frequency coverage, used in connection with a good mixer tube, in this combination—a 6J7 oscillator and 6K8 mixer.

While this kit is ordinarily used com-

plete, any individual parts or combination of parts may be secured separately. The builder therefore has considerable latitude and can utilize good parts which may be on hand. Or, individual parts such as the Crystal-Filter Assembly, Beat-Frequency Oscillator Assembly or Noise Limiter Circuit parts may be secured and added to existing receivers. This 14-tube receiver design represents the result of considerable qualified development and research work and variations are not suggested unless for some good technical reason.

- The tube array is as follows:
- Pre-aligned tuning unit, 1853 R-F amplifier, 6K8 mixer and 6J7G oscillator
- Intermediate R-F amplifier. 6L7 first IRF, 6K7 second IRF and 6H6 fullwave detector.
- 3. Lamb circuit, 6]7 and 6H6.
- 4. Audio, 6C8G inverter and two 6V6 or 6V6G's in push-pull, class AB.
- 5. Power-supply, 5V4G full-wave rectifier and VR-150-30 voltage regulator.

Construction Procedure

Construction of this multiple tube receiver is relatively simple. The kit is accompanied by a large pictorial wiring diagram showing all the various component parts, their location and their connections. A corresponding schematic wiring diagram is available for a check-up. The chassis and from

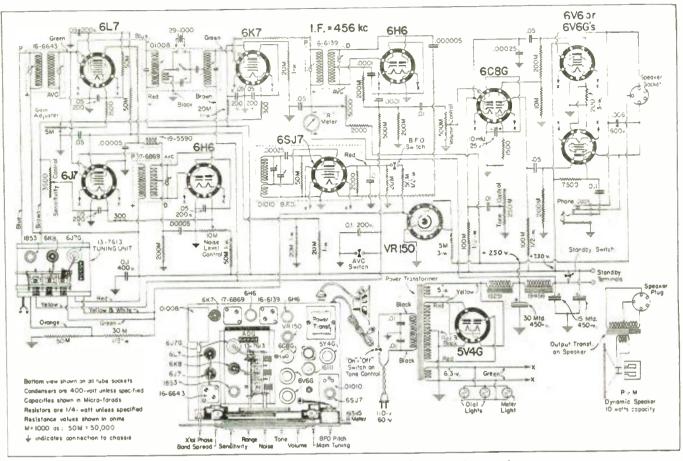


Fig. 3. Schematic wiring diagram for the 14-tube Communications receiver.

canel are drilled and all parts are ready for assembly. The assembled and wired tuning unit is the last item added to the chassis.

The construction is started by mounting the sockets into their chassis position, making sure the "key" points in the proper "irection in each case. The heavy parts can then be fastened into place, including the Power Transformer, Filter Condensers, IRF Transformers, Crystal-Filter Unit and the Beat-Frequency Oscillator assembly. After wiring the 5V4G socket, and connecting all the Power Transformer leads, the two power-supply filter-chokes can be nonnted and connected.

After completing the filament wiring, the smaller components can be in-erted and connected, including the speaker socket, R-F choke, tic lugs, fixed resistors, fixed condensers, variable resistors and the two adjustable resistors.

The toggle switches and phone jack are assembled after adding the front panel, the latter being held to the chassis with spacers and holding screws.

It is not necessary to follow any rigid procedure during wiring: however, it simplifies matters by first connecting the various leads which extend from component parts, for example the leads from the Power Transformer, IRF Transformers, Crystal-Filter, Beat Oscillator, etc. The necessary other long leads can then be connected, including the filament wiring. Then only the connections for the various resistors and condensers remain and these can be male in a very neat manner.

As each connection is made, it should be checked off on the pictorial wiring diagram, using a colored peneil. Following that procedure carefully, it is almost impossible to make a mistake or omit any of the connections. During wiring care should be taken to make sure no bare leads are accidentally grounded, also that no small bits of solder or wire fall into positions which will cause grounds or short-circuits.

After completing the chassis wiring, the tuning unit assembly can be inserted. There are nine connections from the tuning unit which are now connected to the chassis. These leads are *coded* and *readily identified*. The variable condensers in the tuning unit are set to the fully meshed position and then the dials can be lined up. The main tuning dial pointer is fastened at the extreme low frequency end of the calibration. The band-spread dial is set at zero and fastened.

Mounting the front panel, "R" meter and dial lights completes the assembly.

Check with Pictorial Diagram

The pictorial wiring diagram, which has been marked off in colored pencil, to indi-

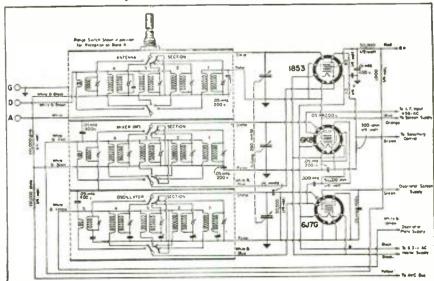


Fig. 5. Coil and switch assembly diagram.

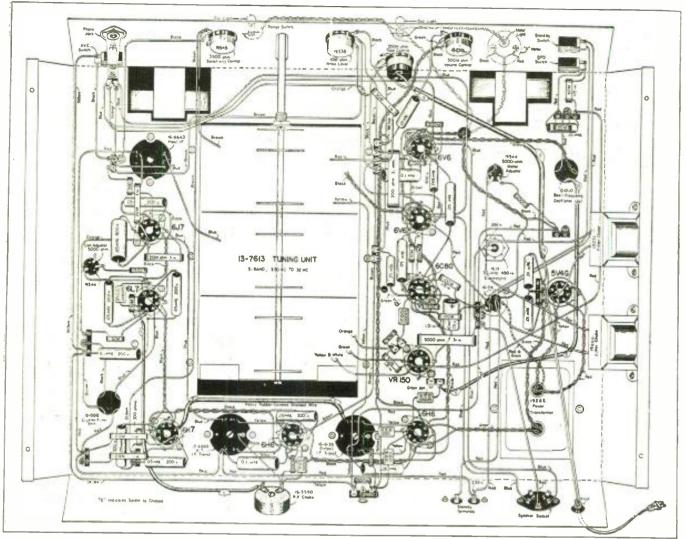


Fig. 6. Pictorial wiring diagram for the 14-tube Communications receiver.

cate wiring progress, should now be examined to determine if any wires have been omitted.

A preliminary voltage test should be made at all sockets, after inserting the tubes and connecting the speaker to the chassis, At the output of the first filter choke a voltage of approximately 250 should be obtained. At the output of the second filter choke the voltage should be about 250. Each tube plate and screen grid can be checked for proper normal voltage, taking into consideration some of the circuits are transformer-coupled and some resistance-coupled.

After checking voltages, the receiver can be given an "air" test. Provided instructions have been followed carefully and none of the factory adjustments altered, satisfactory performance can be expected without further alignment. However, if satisfactory results are lacking, the alignment should be checked in accordance with the instruction book.

For a reasonable fee, a qualified radio technicion with a good service oscillator can be called in to check over the entire receiver, in which case top-notch performance can be expected.

Excluding miscellaneous hardware, the complete list of parts making up the receiver are as follows:

*All parts, unless marked otherwise, supplied by Meissner.

List of Parts-Communications Receiver*

- 1-Tuning unit, wired and pre-aligned, No. 137613
- 1-Calibrated dial and escutcheon, No. 23-8229
- 1-Punched chassis, No. 11-8223-A
- -"R" meter and light assembly, No. 9119
- -Complete crystal filter unit, No. 01008
- -Complete beat frequency oscillator unit, No. 01008 01010
- -Input I.F. transformer, No. 16-6643
- 1-Output I.F. transformer, No. 16-6139
- Noise-silencer I.F. transformer, No. 17-6869
- 1-Power transformer, No. 19282 -Filter choke, No. 19251
- 1-Filter choke, No. 19466
- 1-30 mf., 450 v. electrolytic condenser, No. 16111
- -15-15 mf., 450 v. electrolytic condenser, No. 10111 16124

HAMS!!

Don't miss the new series of articles starting in this issue on

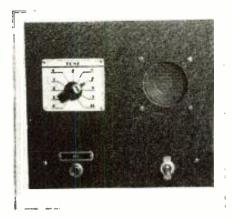
PULL-SI

Data on simple Ham and Transmitter Receiver construction will follow.

- 10-
- -R.F. choke, No. 19-5590 -Moulded octal sockets -Sprong wafer speaker socket -250,000 ohm tone control, with switch, No.

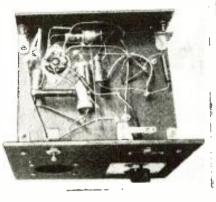
- 19287 I-500.000 ohm volume control. No. 19258 I-10.000 ohm noise-level control, No. 19338 I-3.500 ohm sensitivity control. No. 19545 2-5.000 ohm midget adjusters, No. 19544 3-Toggle switches, S.P.S.T., No. 19354 I-Phone jack, circüit-closing. No. 19360 I-10 mf., 25 v. electrolytic condenser 2-1.1 mf., 400 volt and I-.1 mf., 200 volt paper condensers condensers

- condensers -.05 mf.. 400 volt, and 6-..05 mf., 200 volt paper condensers -.01 400 volt paper condensers -.066 mf. 600 volt paper condenser -.00025, 2 ...0001, 2...00005 and 1....000005 mf. mica condensers -200 ohm, 3 watt fixed resistor -50000 ohm, 3 watt fixed resistor -50.000 and 4-20.000 ohm, 1 watt fixed re-sistors
- -50.000 and 4—20.000 ohm, 1 watt fixed re-sistors -300 ohm, 2—1500 ohm, 1—2000 ohm, 1—7500 ohm, 1—10.000 ohm, 1—20.000 ohm, 3—50.000 ohm, 5—200.000 ohm and 1—500,000 ohm 'i watt resistors -30.000 ohm and 2—100,000 ohm. $\frac{1}{2}$ watt resistors -Single insulating tie lugs -A.C. cord plug -Steel cabinet, No. 11-8224, and panel, No. 11-8219 -Set of miscellaneous hardware 2.


- 1-Set of miscellaneous hardware

RCA (Tubes)

1-1853	1-6J7	1-6C8G
1—6K8	1—6K7	1VR150
1—6J7G	26H6	1-5V4G
1—6L7	16SJ7	2-6V6 or 6V6G


UTAH (Speaker)

10" P.M dynamic speaker, 8 watt or more with output transformer for push pull 6V6's in class AB (primary impedance 10.000 ohnis) 1-10"

The photos in the accompanying group show the code oscillator from various angles; picture above shows front view; upper right photo shows rear view, and lower right photobottom view of the oscillator.

A Code-Practice Oscillator William D. Hayes, W6MNU

• WITH the increasing emphasis that is being placed on national detense and the need for capable code operators, there is a certain simple piece of equipment which should increase in popularity. The instrument referred to is the code practice oscillator. Many old timers may feel that such an instrument is heneath their dignity and that it is intended only for beginners who are struggling with the job of distinguishing "Y" from "Q." However, such is not the case. While it is true that an audio oscillator is valuable to the beginner, there is no reason to believe that it would be any less beneficial to the self-styled "speed-demon" who submerges his letters, and especially his numerals, in a sea of dots! As a matter of fact a certain "W5" was received at this station recently who was using cight dots on every "5" !

This is probably something of a record, but the operator who puts six dots on a "5" and five dots on a "6" is by no means rare! If these dot dispensers would spend a few minutes each day in keying an audio oscillator and listening critically to their own sending, there might be some improvements made. As it is now, the operator who is trying to receive one of these "dotty" stations feels like Old Mother Hubbard and her children who lived in a shoe—he has so many dots he doesn't know what to do.

Of course there are many other faults besides excessive dottiness such as running letters together; improper proportioning of the length of the dot with the length of the dash, etc. However, we all know what the pitialls are; the difficulty comes in determining which ones we are falling into. And that's where the code practice oscillator comes in !

The output of the oscillator described in this article is sufficient to permit the sending of practice material to a group of a dozen or so persons if desired, and the pitch of the note is *continuously variable* from zero up to about 1500 cycles per second.

Circuit

Since there is no need for high voltage in a unit of this kind, and since, as always, it is desirable to keep costs down, a haliwave rectifier circuit was chosen for the power supply. This eliminates the necessity for a power transformer, and also permits the oscillator to be operated on either A.C. or D.C. lines.

Only one tube is used, a type 70L7GT, which does *double duty* by serving as halfwave rectifier and oscillator tube combined. Since this tube requires a heater current of only 150 ma, the power drawn from the line when the unit is operating is only about 18 watts. Another advantage of the low heater current is that a small 10-watt resistor is adequate for furnishing the necessary voltage drop in the heater circuit. In wiring the heater circuit of the 70L7GT, the No. 2 pin should be connected to "B" negative, and the No. 7 pin to the 300 ohm dropping resistor. Needless to say, "B" negative should *not* be grounded.

Please Mertion This Madazi e When Writing Advertisers

Use Meissner

PRECISION - BUILT PRODUCTS FOR PERFECT PERFORMANCE Progressively Engineered

FOR THE EXPERIMENTER

Complete Receiver Kits "Essential" Kits for Receivers F-M Parts and Receivers Television Receiver Kits All-Wave Tuning Assemblies Antenna, R-F and Oscillator Colls Wireless Phono Oscillator Unit I-F Transformers of all kinds Tuning Condensers, Dials, Switches

FOR THE SERVICEMAN

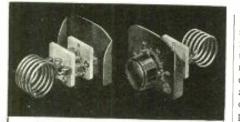
New ANALYST	SIGNAL CALIBRATOR			
Wave Traps	Line Filter			
Audio Filter	Primary Windings			
Replacement Antenna,	R-F and Oscillator Coils			
Replacement I-F Transformers				
Exact Duplicate Replacement Coils				
I-F Transformer Replacement Guide				
Coil Repair and Rewin	ding Service			

FOR THE AMATEUR

SIGNAL SHIFTER	SIGNAL BOOSTER
SIGNAL SPOTTER	SIGNAL SPLICER
TRAFFIC-MASTER	SIGNAL RESONATOR
TRAFFIC SCOUT	UNI-SIGNAL SELECTOR
MC 28-56 Converter	Antenna Relay
R-F Relays	Insulators

FOR THE SOUND ENGINEER

High-Fidelity P-A Tuner "Utility" TRF P-A Tuner Dual-Band Super P-A Tuner Specially Designed Assemblies Custom Engineered Equipment


Portable Phono-Recorder Unit

WRITE FOR FREE CATALOG NOW!

Brand new Meissner General Catalog for 1941now being mailed. A postal card will bring you this valuable guide to dependable Precision-Built parts and equipment. You can't afford to be without it so mail your request TODAY!

595

MIDGET FREQUENCY METERS

Many amateurs and experimenters do not realize that one of the most useful "tools" of the commercial transmitter designer is a series of very small absorption type frequency meters. These handy instruments can be poked into small shield compartments, coil cans, corners of chassis, etc., to check harmonics; parasitics; oscillator-doubler, etc., tank tuning; and a host of other such applications. Quickly enables the design engineer to find ont what is really "going on" in a circuit. Sold in sets of 4 in handy protective case or individually.

90606	Range 9.0 to	9.7 mc. \$1 28 mc. 1 65 mc. 1	65
90608	Range 50 to Complete se in case	140 mc. 1. et of four.	.65
IAMER M		2	50
JAMES M	NGE ST.	MFG.C	0. INC . MASS

Get the Complete Antenna Story

Steel, Aluminum, Monel Antennas, Marine Antennas, Police Antennas-they're all shown with mountings in the NEW PREMAX CATALOG NO. R-49. Send for it today.

Amateur Radio

A resistance-capacity filter is used for smoothing out the ripple instead of the more common inductance-capacity combination. The only advantage of a choke over a resistor as a filter component is that the choke introduces a much smaller D.C. voltage drop for a given impedance, thereby consuming less power. However, in this particular application the direct current voltage drop and the small amount of power consumed are of no consequence, so that a resistor is the logical choice. The effectiveness of the filter is evidenced by the excellent character of the note.

In order to stabilize the output voltage and to prevent any tendency for the oscillator to chirp when keyed, a 25,000 ohm bleeder is connected across the output filter condenser. This resistor loads the power supply very lightly, but results in a note that does not vary in pitch with keying.

To form the oscillator proper, the tetrode section of the 70L7GT is triode connected, i.e., the screen and plate are tied together, and the output transformer is connected in series with the positive lead. The 50,000 ohm variable resistor in series with the cathode controls the pitch of the oscillator, the more the resistance in the circuit, the higher the pitch. This feature of *continuously variable pitch* not only allows the operator to choose a note to suit his own tastes, but also lessens listening fatigue by making possible a slight shift in the pitch at any time.

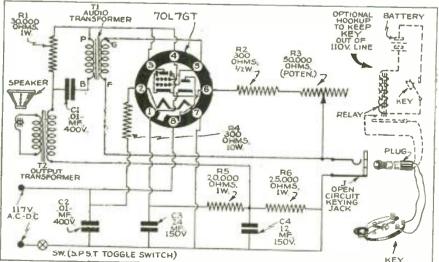
If components other than those specified in the parts list are used in the construction of the unit, it may be necessary to change the value of R1 in order to secure correct operation. Values between 10,000 ohms and 50.000 ohms should be tried.

The speaker employed is an Oxford "Little General" which has a two-inch cone and is ideally suited for the purpose. Although the impedance match is not at all critical, an output transformer which is intended to match 7000 ohms to a four-ohm voice coil was found to be very satisfactory, and is therefore recommended. The audio transformer used is of the usual 1:3 stepup variety.

Construction

Those who dislike struggling with a steel chassis will be pleased to hear that the oscillator is built up on Masonite. Because the Masonite is so extremely easy to work with, the time needed for construction is reduced over what it would be if steel or aluminum were used. Actually there are many pieces of equipment for which steel offers no particular advantage over Masonite, unless, of course, you enjoy the additional exercise.

The panel is 3/16 of an inch thick and is black crackle finished. It measures 7 inches high by 8 inches long and is cut down from a standard 7x10 panel (ICA No. 810). A small hole about two inches in diameter accommodates the speaker, and a piece of galvanized screening protects the cone from stray screw-drivers and hungry goats. The mounting screws for the speaker can be forced through the mesh of the screening, thereby holding it in place. Natural inished Masonite 1/8 of an inch thick is used for the chassis which is 7 inches long, by 6 inches deep, by 2 inches high. The three pieces of Masonite are fastened together with one-inch brass angle brackets.


Precautions

Since the key is connected to the 110-volt line, the operator should avoid connecting himself between key and ground, and it is advisable to connect the base and level of the key to the cathode circuit of the oscillator rather than to "B" negative.

Other Uses

This little oscillator can serve also as a keying monitor by connecting it across a section of the relay that keys the transmitter, or across a pair of auxiliary contacts on the key itself. By tapping across the primary of the output transformer, the tone can be used to modulate an ultra-high frequency rig or for testing a phone transmitter on the lower frequencies. In all of these applications, the characteristic of continuously variable pitch is of advantage, and still other uses will probably suggest themselves to the constructor. A glance at the circuit diagram will show that the unit is exceedingly simple, a squint at the parts list will show that it is inexpensive, and a little experience with it will convince even

Wiring diagram for the Hayes code oscillator is shown below.

the "man from Missouri" that it is a very useful gadget to have around.

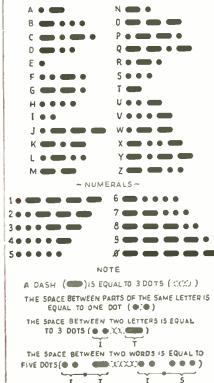
Parts List

 Parts
 List

 R1--30,000 ohms, 1, watt (IRC)
 R2--300 ohms, 1, watt (IRC)

 R3--50,000 ohms, pot. (Centralab 72-103)
 R4--300 ohms, 10 watts (Ohmite)

 R4--300 ohms, 1 watt (IRC)
 R5--20,000 ohms, 1 watt (IRC)


 R5--20,000 ohms, 1 watt (IRC)
 R6--25,000 ohms, 1 watt (IRC)

 C1--01 mf., 400 volt paper (Aerovox)
 C2--01 mf., 400 volt paper (Aerovox)

 C3--24 mf., 150 volt electro. (Aerovox "Dandee")
 C4--12 mf., 150 volt electro. (Aerovox "Dandee")

 C1--12 mf., 150 volt electro. (Aerovox "Dandee")
 T1--1:3/2 audio transformer (UTC S-1)

 T2--7000 ohm plate to 4 ohm voice coil (Thordarson T-13537)
 Speaker-2-inch permanent magnet (Oxford 2)
 aker-2-inch permanent magnet (Oxford 2 Speaker-ZMP) -Open-circuit keying jack (Yaxley) -S.P.S.T. toggle switch (Arrow) be--RCA 70L76T . meplate--Crowe Tube-Nameplate--ALPHABET ~

BRITONS CONFISCATE ALIEN **APPARATUS**

GERMANS, Austrians and Italians, who are engaged in the practice of medical shortwave diathermy, are out of luck if they live in Great Britain. There, the authorities have confiscated their equipment because such apparatus may easily be converted into radio transmitting stations. Such equipment is virtually a radio transmitter and might easily be connected to an antenna and ground, whereupon its signals could be heard in enemy territory.

HOLLEY MEDAL AWARDED TO ARMSTRONG

• THE Holley Medal of the American Society of Mechanical Engineers was given to Edwin H. Armstrong, Professor of Electrical Engineering at Columbia University and inventor of the superheterodyne and other useful apparatus for radio. The award was made at the society's annual dinner at the Hotel Astor. Engineers and executives from all over the country attended this important event.

Terms: \$14.95 down, \$11.88 monthly for 12 mos.

HOWARD Model 435, a 6 tube receiver of advanced design, tunes from 540 KC to 43 MC in 4 bands. Band-spread dial electrically spreads out any desired portion of tuning range. Incorporates iron core IF's, BFO, AVC, audio gain control, headphone jack, send-receive switch and built-in dynamic speaker. Has provision for 6 volt power pack. May be converted to Model 436 or 457 at small cost on the Progressive Series Plan. **\$29.95** AMATEUR NET Time payments: \$4.50 down, \$4.50 monthly for 6 months.

MODEL 490

www.americanradiohistory.com

HYTRON LABS., 78 Lafayette St., Salem, Mass.

ALL IN

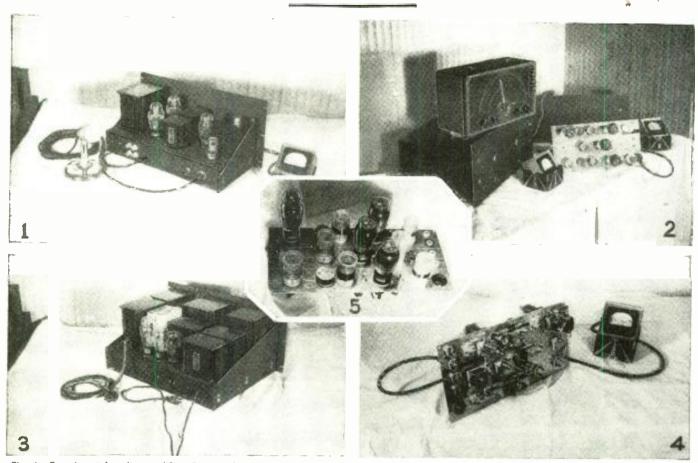


Fig. I—Experimental audio amplifier. Fig. 2—Complete test set-up for preliminary "pull-swing" F.M. investigations. Fig. 3—Power supply for F.M. Fig. 4—Experimental F.M. modulator. Fig. 5—Top view of F.M. oscillator.

A "Pull-Swing" Frequency Modulation System for the Amateur Ricardo Muniz*; Donald Oestreicher**;

Radio amateurs everywhere will be interested in this brand new system of "wide swing" frequency modulation transmission and reception here described by Mr. Muniz and his associates. A vast amount of laboratory research work has been done on this new system by the authors—all for the purpose of providing a more suitable and greatly simplified method of constructing F.M. transmitters and receivers for the Ham, RADIO & TELEVISION is glad to present this new and original F.M. system to the Ham Fraternity. This is the first of a series of articles on this subject.

• THE R. & T. reader is undoubtedly familiar with the systems of F.M. (Frequency Modulation) transmission in use today (i.e., Armstrong's system of Phase Modulation, and the system known as Reac-tion Modulation). These systems present definite and easily recognized disadvantages to the average experimenter. Complexity of equipment and circuit and, therefore, expense is perhaps the greatest reason why amateurs have not wholeheartedly engaged in F.M. experimentation.

The authors have developed a new F.M.

Radio Instructor, Brooklyn Tech, H. S., Eng. WNYE,
 *Student, Electrical Eng., Brooklyn Polytech, W2LOE,
 **Student, Electrical Eng., Cooper Union, Night.

system based on an original idea by W. J. Oestreicher. It is simple, straightforward, easily constructed, adjusted and controlled. Quality satisfactory for amateur communication is easily obtainable, while careful design will result in a high-fidelity transmitter.

Basic Principle. The experimenter has probably come across the phenomenon of oscillator "pulling," especially in super-heterodyne receivers. The fact that a stable oscillator will control a less stable oscillator's frequency when they have the proper relative amplitude and frequency difference can be experimentally and mathematically

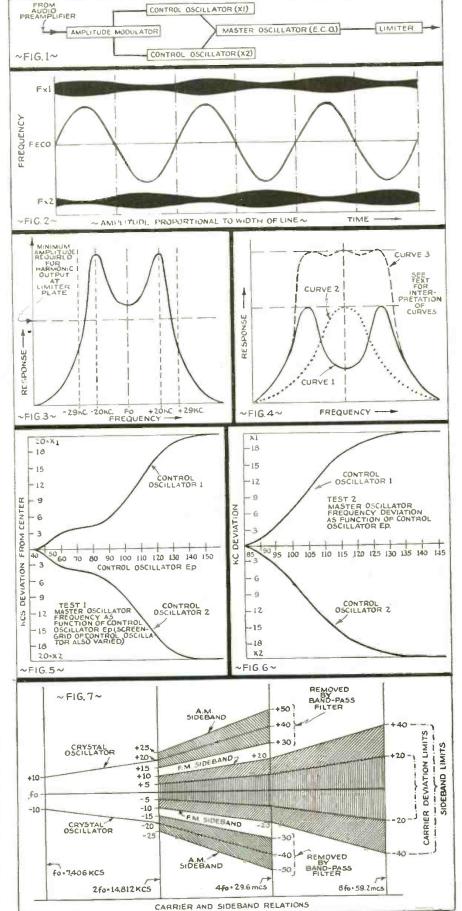
Warren Oestreicher***

proven. (It is felt that the mathematical proof, or explanation of this system is outside the scope of this article.) It is upon this fact (i.e., oscillator control) that the system here described is based.

A pair of crystal-controlled oscillators. which have output frequencies forty kilocycles apart, are modulated in amplitude and out of phase 180 degrees. The outputs are coupled to the grid circuit of an electroncoupled oscillator tuned to a frequency midway between the crystal oscillators' output frequencies. (See Fig. 1.) The frequency of the electron-coupled oscillator is pulled toward the stronger of the two signals when the coupling is correct. Since the control oscillators are varying in strength with the modulating signal, the master oscillator's frequency is swung back and forth in accordance with this signal. (See Fig. 2.)

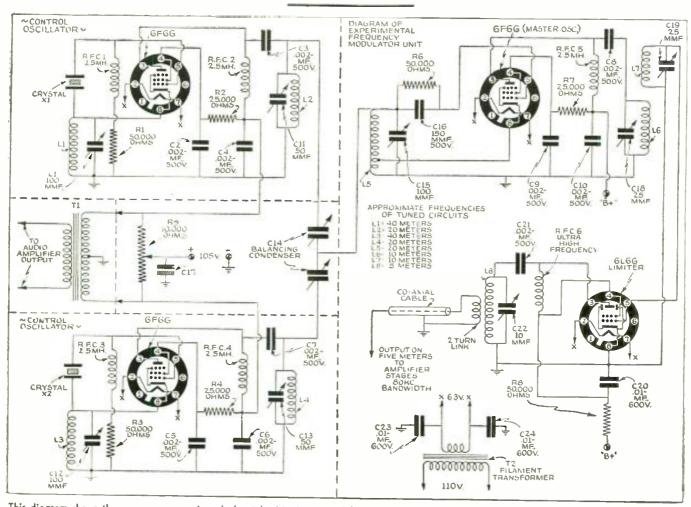
Theory. The intelligence-carrying part of any modulated radio wave is its sidebands. For distortionless transmission, the amplitude of a given sideband should be directly proportional to the signal amplitude and independent of the signal frequency. If a conventional audio system is used with a

frequency modulator, the amplitude of the intelligence-carrying sidebands is inversely proportional to the modulation frequency. That is, if the signal amplitude is held constant while the frequency is varied, the amplitude of the sidebands at 10,000 cycles modulation will be one-tenth the amplitude at 1,000 cycles. It is necessary therefore to correct this condition by designing the audio system so that the amplification is proportional to the frequency. We then have the sideband amplitude proportional only to the signal amplitude, and thus fulfill the conditions for intelligent transmission.


The output of the master oscillator is a complex wave containing components of theice the frequency of the wave in its grid circuit, where the modulation actually takes place. These components, or sidebands, are a maximum of 10 kilocycles different from the deviation limits of the control frequency. since in this communications model we have limited the audio range to speech frequencies. A hand-pass filter has been included at the output of the master oscillator, designed to pass a hand of about 50 to 58 kilocycles. It will therefore exclude the control oscillators' frequencies and modulation components. The band-pass filter is usually a critical circuit to design. However, the limiter stage is especially designed to remove amplitude variation as do the following class "C" stages, therefore a flat-top hand-pass is not absolutely essential. The "M" type curve which results from any coupling and "Q" in the neighborhood of those required for ideal flat-top hand-pass circuits is perfectly usable. (See Fig. 3.)

Since the second harmonic output of the limiter, in the five meter hand, has amplitude variation caused by the "M" curve peaks, the conventional resonance curve is used to raise the center frequency response. (See Fig. 4.)

The output of the limiter is represented by curve 1 (Fig. 4). The resultant of all the resonance curves of following stages is represented by curve 2. These curves are broadened by damping resistors until they are of approximately a shape to give a resultant curve 3, when combined with curve 1. Any minor amplitude variation left will be unimportant as limiting action at the receiver will remove it.


A series of experiments were performed in order to determine the linearity of modulation. The graph, Fig. 5, shows the results of the first experiment. It will be noticed that in this first set-up the deviation is not proportional to the signal voltage (horizontal axis). After biasing the control oscillators 100 volts positive, the almost linear curve of Fig. 6 resulted. Now the control oscillators, biased 100 volts positive, are modulated 180 degrees out of phase. Since it is necessary to keep on the linear portion of the deviation curve the minimum control oscillator voltage had to be 85 and the maximum 115, corresponding to 30% modulation. Because of the effect of the action of one control oscillator on the master oscillator, while considering a positive peak on the other, the percentage of modulation has to be twice this. or 60%.

Design. The crystal oscillators are conventional tri-tet circuits in every respect. The outputs are capacitively coupled to the master, or electron-coupled oscillator grid circuit by means of a balancing condenser.

Diagrams showing various actions taking place in the F.M. circuits here described.

Amateur Radio

This diagram shows the new arrangement worked out by Mr. Muniz and his associates, utilizing two control oscillators, which in turn control a master oscillator. In subsequent articles the authors will describe a practical F.M. transmitter, including audio system, complete with power supply and R.F. amplifier circuits, especially designed for Amateur use.

The outputs of the crystal oscillators are on their second harmonics and the grid circuit of the ECO operates midway between these two output frequencies. The crystals. Bliley type BC-3, are ground to 7396 kc. and 7416 kc., making the control oscillators' outputs 14,792 ke, and 14,832, respectively. The master oscillator is tuned to the center of these or 14,812 ke, and its output is at 29.624 ke, plus and minus 20 kc. Since part of the control oscillators' output comes through the master oscillator, the band pass filter, used to keep the response within the band millorm, must also be designed for very low response at the frequencies of the inmost modulation components of the control oscillators. As the sideband caused by the 5 kc, modulation of the control oscillator is 10 kc, from the edge of the F.M. band, the edge of the band-pass curve must change from minimum to maximum in 10 ke., and the "M" type curve, with its sharp rise offers a distinet advantage. Side-band and carrier relations are shown in Fig. 7.

Amplitude limiting occurs when a tube is greatly over-excited, so that the plate is driven to saturation on positive peaks and the grid is driven far past cutoff on negative peaks. This is also an ideal condition for frequency multiplication and the limiter is therefore an efficient doubler. Limiting action is best accomplished by operating the stage at low plate and screen grid voltages (about 100 volts), with no

grid bias, and insuring that the exciting voltage is sufficient to swing the grid from well past cutoff to well above the saturation region.

In the test model, little attention was given to drift in the master oscillator (due to temperature changes). However, the stability encountered was quite satisfactory. In the finished transmitter it is planned to include temperature compensation, if necessary, so that the drift will be held to an absolute minimum.

In order to test the preliminary model a versatile audio system was built. The system had to be of adequate power and frequency range, since it was impossible to accurately predict required power for modulation. The amplifier shown in the photos was designed and built, and while the power required for the final model was not nearly the maximum output, it was satisfactory in every respect. Since the amplifier is subject to redesign, it is considered advisable not to describe its construction now.

The power supply and audio system used in tests were designed about Kenyon "T-Line" components, A detailed description of the power supply will appear in a future article.

In a series of subsequent articles the authors will describe a practical F.M. transmitter, including audio system, complete with power supply and R.F. amplifier circuits. The transmitter is especially planned for amateur use: simplicity of design and construction combined with case of adjustment and control were prime considerations.

The authors wish to extend thanks to R.C.A. for the generous loan of instruments, and to the many other companies whose cooperation made these experiments possible.

Parts List

- BLILEY ELECTRIC CO. X-2 7416 kc. BC-3 type crystal X-1 7396 kc., BC-3 type crystal

I.R.C. (Resistors)

- 4-50,000 ohm, BT-1; RI, R3, R6, R8 3-25,000 ohm, BT-1; R2, R4, R7 1-50,000 ohm, type E, wire wound, 9 watt; R5

- 1—T-378 6.3 volt fil. transformer: T2 1—T-378 6.3 volt fil. transformer: T2 1—T-494 multimatch mod. transformer, on audie amp; T1
- NATIONAL UNION

3-6F6G tubes 1-6L6G tube

- TRIPLETT ELECTRICAL INSTRUMENT CO.
- 2-0-100 ma. sq. meters, M-327 1--0-150 ma. sq. meter, M-327
- A. D. CARDWELL MANUFACTURING CORP. 3-100 mmf. var. cond., ZU-100-AS; C1, C12, C15 2-50 mmf. var. cond., ZU-50-AS; C11, C13 1-Bilancing cond., EU-100-AB; C14 cap. 100

- mmf. 25 m 2-25 mmf. var. cond., ZR-25-AS; C18, C19 1-10 mmf. var. cond., ZR-10-AS; C22
- AMERICAN PHENOLIC CORP.

- AMERICAN PHENOLIC CORP. 9–5-prong stratite sockets, SS5 1–6-prong stratite sockets, SS6 4–Super-mip octal sockets, 54-8 8–5-prong 912-B coil forms, 24-5P 1–6-foot length of No. 72 flexible co-axial cable
- CORNELL-DUBILIER ELECTRIC CORP. 10-.002 mf., 1R-5DZ, 500 volt wking; C2, C4. C5, C6, C7, C8. C9, C10 2-.00015 mf., 1R-5T15, 500 volt wking; C16 2-.002 mf., 9M-22020; C21, C17 wking; C2, C3,
- - RADIO & TELEVISION

BUD RADIO, INC. 5-2.5 mh R.F. chokes, CH-920; RFC 1, 2, 3, 4, 5 1 -U.H.F. R.F. choke, CH-925; RFC 6

P. R. MALLORY & CO.

- A. MALLONT & CO. 4-Jack plugs, No. 75 4-Midget closed circuit jacks, No. A-2 4-01 af, 600 volt cond., TP-410; C20, C23, C24 -111 inch har knobs, No. 300 2-2,5 volt pilot bulbs, No. 170

2-2.5 voir prior builds, 30, 476 INSULINE CORP. OF AMERICA 8-Flex, shaft couplings, No. 2143 8-6-inch extension shafts, No. 1249 1-7" x 12" aluminum sheet. No. 1195

Coil Specifications

All wound on 11's inch Amphend 912-B forms L1, L3-No. 16 B, & S. enam., 10 mmus, close wound L2, L4--No. 16 B, & S. enam., 8 turns, close wound

wound 1.5 5 turns No. 20 cham., spaced in 1 inch tapped, 1°, turns from bottom 1.8 No. 16 B. & S. cham., 3 turns spaced in 112 inches 1.6, 1.7 on one form; 4 turns No. 20 cham. (1.7 var. coupled to 1.6)

A Meissner tobl - Model F.M. receiver Type 9-1023 reas used in some of the tests. A slight modification of the oscillator frequency was found sufficient to make it bring in 5-meter band 1. M. signals.

BOOK REVIEW

THE RADIO HANDBOOK-Seventh Edition. Size 7 x 10 inches, stiff cloth covers, 60% pages, profusely illustrated. Published by Editors and Engineers, Ltd., Santa Barbara, Calif.

profusely illustrated. Published by Editors and Engineers, Ltd., Santa Barbara, Calif. A most valuable book for every radio student and experimenter. Every Ham needs a copy of this book and no student should be without it. The paring chapters deal with hearing the cole, fun-damental radio and electrical theory, different types of vacuum tubes and how they work, various types of circuits such as the regenerative, super-regenerative, mixer-oscillator. IF and crystal filters, etc. Complete tables coverins, all the different receiving types of tubes is given, also bottom view of all the tubes, sockets for wiring references, etc. Following chapters deal with details, coil data, ite, on radio receiver construction, including super-heterolynes, pre-selecters and converters. Next the book takes up transmitter theory and does a fine for and includes a chapter on "frequency modu-bation." Transmit as tubes are thoroughly cov-cred, with complete tables of all the different updes; and includes a chapter on "frequency modu-bation." Transmit as tubes of all the different updes; also exciters and data on low-power trans-mitters. Data on building 400 wart speech and modulator unit is given, and then follows chapters (ther chapters deal with cathode-ray oscilloscopes with diagrams and construction data). signal generators, various types of UHF antennas, rotary erray, directive antennas, matching stubs, in-cluding a section on "micro-wave" transmitters.

ELEMENTS OF ACOUSTICAL ENGINEER-ING, by Harry F. Olson, E.E., Ph.D. Stiff cloth covers, size 64/x 94/2 inches, 344 pages, illus-trated. Published by D. Van Nostrand Co., New York, N. Y.

covers, size ova x 522 increas, 544 pines, and 5 trated. Published by D. Van Nostrand Co., New York, N. Y. The serious student of acoustic engineering will find this new work invuluable, coming as it does from an outstanding authority in the field. (Dr. Olson is Acoustic Research Director of the RCA Manufacturing Co., and whatever he has to say is sure to be of the highest caliber.) Some of the interesting and vital subjects dis-ussed by Dr. Olson in the opening chapters are plane and spherical waves, exponential horns, vibrating strings, open and closed pipes, wave illers, corrective networks, etc. The design en-gineer will find this work extremely valuable, as a vast number of technical formules are given, acoustic chambers. El etro-momentic and other acoustic chambers. El etro-momentic and other types of driving systems are discussed, and a number of useful formulas provided. Later chapters deal with such subjects as multiple lond-peaker, doust haf-des, cabinet reproducers, acoustic phase inverters, icedback as applied to a lond-peaker, bud-ative tional microphones. A new treatment is given in the important subject of telephone receivers, with typical receiver curves for different types of receivers. Phonographs are discussed, from the constic engineering point of view, including "pick-up action." Closing chapters deal with using constraint topics covered are dispersion func-ing colors, measurement of acoustic problems in and collection of sound, acoustical problems in and toriums, complete reproducing systems free guency reception of the human car, loudness of sound, etc., etc. A most valuable and timely treatise.

for February, 1941

"HAVING A SWELL TIME," WRITES ABNER BUGLE, "WISH YOU WERE HERE"

Abner Bugle is the man who used to write the ad-vertisements for Sprague

vertisements for Sprague Condensers. Nobody could juggle ad-jectives more gracefully than Abner and, when it came to slapping on the superlatives, even Abner admitted he was just about tops in his profession. But Abner ran into a snag one day, and here is how it

happened: "Look, boss," he wailed to the president of the ad-

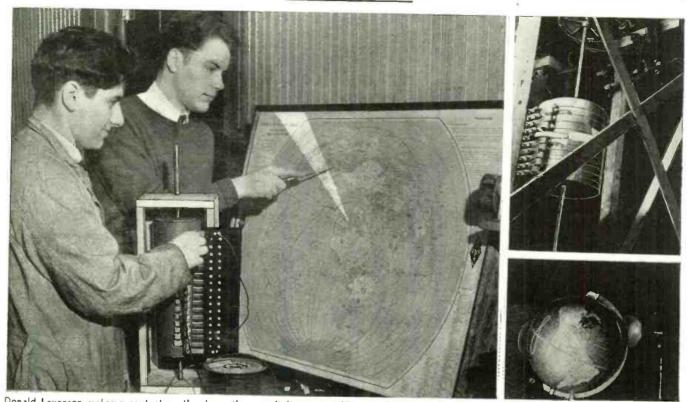
vertising agency for which he worked. "I'an in a hell-uva fix. There's nothing more to say about Sprague Atom midget dry electrolytic con-

uva hx. There's nothing more to say about Sprague Atom midget dry electrolytic con-densers." "What!" roared the president, gnashing his teeth so hard he bit the stem off his Meerschaum. "Don't be a fool. Bugle! Why. Atoms build up quicker. They stand higher surges. Their low leakage avoids overheating. They're smaller, and they've got more guts than—" "I know all that." mourned Abner. "But every cheap condenser makes just about the same claims—whether they can live up to 'em or not. They may not be as good as Atoms in a radio set, but they look just as good in an ad. I don't know what to do." "Jeepers Creepers. man!" the presi-dent's bellow shook the oil painting of the 50th million Sprague TC Tubular hanging on the wall. "And you say you're an ad-vertising expert! Of course Atoms are better. They're unconditionally guaranteed.

There isn't a firecracker in a carlead-not in a train-load-two trainloads-three trainloa's-

load-two trainloads-three trainloads-"
"I know that bosd" whiled there things in print. No matter if he fills 'em with mush and wraps 'em in tissue paper, another manufacturer might CLAIM that his condensors are as good as Atoms."
The president did not reply. Grasping pad and pencil, he suddenly began to write. For two hours, Abner stood by, pale and wan and there was no other sound as we the feverish scraping of the boss' gold "Eurobal" shat we'll say in our next ad. Listen to this:
"We're glad most condensors are bought on the basis of hard-boiled engineering tests rather than mere advertising claims. When quality is allowed to speak for itself, there can be no mistaking what it says. That's why Spragues are to-day specified by leading users throughout the world."

any specified by reacting when the world." "Splendid copy, boss-and it's all true," said Abner, breathing a deep sigh of relief. "Splendid nothing!" snorted the president. "It's perfect. What's more, you're fired, Bugle. In the future, I'll write the Sprague ads myself."


SPRAGUE PRODUCTS COMPANY North Adams, Mass.

P.S.—When last heard' from. Abner Bugle had become a beachcomber in Tahiti. "Having a swell time—wish you were here." is what he wrote on a post card and added: "It's a great life. Beats advertising to a frazzle."

Please Mention This Magazine When Writing Advertisers

1156 Commonweath Ave., Boston, Mass.

Donald Levenson makes a contact on the drum, the map lights on a 22½ degree angle, while Gilbert Devey points to the lighted section. Two photos at right show globe and selector switch, also the rotary selector switch as mounted on the beam.

Directional Radio Beam Indicator

• TWO radio amateurs transmitting and receiving over station W8NKI from the fifth floor of Engineering Hall, Carnegie Institute of Technology campus, Pittsburgh, have invented a simple, fool-proof directional SW radio beam indicator for determining the direction their beam antenna is transmitting.

Over a 41/2-month period this direction finder has resulted in a 75% increase in the percentage of completed contacts.

Needing the direction finder because they had found it impossible to tell with better than 45-degree accuracy the direction they were transmitting, operators Donald Levenson and Gilbert Devey, sophomores in the School of Electrical Engineering, built the direction finder in one month of spare time.

Before thinking of their new direction finder, operators Levenson and Devey set a convex mirror on the roof of a wing of the building 15 feet out from the transmittingroom window, and set a 200-watt electric light on a flat platform underneath the antenna to illuminate the antenna at night. The mirror reflected the position of the beam.

With the new direction finder installed correctly, says Mr. Levenson, we can transmit accurately within 221/2 degrees of the desired location. The indicator consists of an azimuthal map, mounted on a 30-by 40-inch framework with sheet-metal piesections in back, dividing the 360-degree map into sixteen sections of 221/2 degrees.

Material Costs About \$30

Working under the direction of Professor Charles Williamson, Assistant in the Physics Department, the operators bought an ARRL map, and 1500 feet of rubbercovered No. 18 twin-stranded lead-in wire for \$10. Then from 1/2-inch stock yellow pine they made a map case, $30 \times 40 \times 6$ inches. From No. 20-gauge galvanized sheet steel they cut 16 pie-sections, each 221/2inches wide.

Three 60-watt clear-glass candelabra lamps illuminate each pie-section, and strips of one-eighth by one-quarter inch black felt glued between the pie sections, keeps light from passing from one pie section to another. Underneath the ARRL map a piece of ground glass evenly diffuses the light so that the separate lamps will not dazzle the eyes. On top of the map a double thickness of clear, ground glass keeps the map clean. With the \$20 forty-pound map case complete, the operators attached two brass plates to the back and hung it on the wall.

Rotary Switch Selector Operates Unit

The heart of the system consists of a rotary selector switch with a bakelite drum 4 inches in diameter and 11 inches long. Sixteen metallic wedges, staggered along the surface of the drum, make contact with the contact fingers, lighting each pie-section separately. A hard-rubber contact strip with 16 brass contact fingers (use as many fin-

Leon M. Leffingwell

gers as you desire) has Elkonium contact points between the contact fingers, and a brass plate connects the return leads to the separate contact fingers. Next, brass tubing placed on the drum makes contact between the contact fingers and the brass circuitreturn strip. The operators then mounted the contact strip on the framework of the beam tower and mounted the drum on the beam's axle. (See Fig. 2.)

A 17-wire cable runs between the rotary selector and the ARRL map. The station operates via a beam antenna which has three parallel arms, manipulated by a worm-drive "remote control" device. The beam antenna, mounted on the roof of the building directly over the broadcasting room, regiments radio waves in one desired direction. (Fig. 3.)

Another method of operating, similar to the wall map, requires the mounting of a selector switch on a globe of the world and connecting it to the rotary selector switch on the beam.

If it costs too much to run a multiple wire cable from the transmitting room to the antenna, substitute a rotary selector switch, says Mr. Levenson, who operates this set-up on his home transmitter. W8TIN. He mounted a black plastic selector switch on the globe. Then he adjusted the telephone dial by reversing its mechanism, so that the contact springs within the dial touched each other when a direction

RULES WAIVED FOR RADIO **OPERATORS**

• AS a particular convenience to licensees drafted or otherwise called into military service, the Federal Communications Commission has suspended until January 1. 1942, that part of its rules and regulations requiring proof of satisfactory service in connection with renewal of commercial and amateur radio operators (Section 13.28 governing commercial operators, and Sections 12.26 and 12.66 affecting amateurs). This blanket exemption per-tains to nearly 100,000 operators of both classes.

General waiver of these provisions was considered. at a conference of Commission officials with rep-resentatives of interested labor organizations, including the International Brotherhood of Electrical Workers, Commercial Telegraphers Union of North America, American Communications Association. Maritime Com-mittee of the C.I.O., National Federation of Tele-phone Workers, Federation of Long Lines Tele-phone Workers, and the Association of Technical Employees of N.B.C.

The controlling factor in the formulation of this broad and simple procedure was the mutual desire to relieve those called into service of routine details. The Commission is aware of the importance of maintaining the present high standards of proficiency of licensed operators, and also of guarding against a shortage of such skilled workers, lt will, accordingly, continue to give these problems care-ful attention, and should experience indicate the need for change the Commission will act accordingly.

FROM THE F.C.C. MAIL BAG

A fake "SOS" marine distress call has been traced by Federal Communications Commission field inspectors to a New England amateur radio operator. Investigation developed that the

signal which caused useless concern and wasted valuable time was part of a dramatic program reproduced by the amateur in question to give his fellow hams "code practice." The Commission warns the amateur that transmission of this danger signal is inappropriate for code practice, or in any other situation when an actual emergency does not exist.

On the other hand, the Commission has taken cognizance of the valuable contribu-tion by amateurs in providing emergency communication during the recent Texas

H^{OW} does it perform? How will it stand up? And, how soon will it be obsolete? These are all important questions in determining the actual value of any product. The "HQ-120-X" has established a record which answers all of these questions and assures the amateur of the finest dollar for dollar value. that the "HQ" outperforms ever owned. Its ability to "s by the exceptionally few use on the market, despite the the been sold since the "HQ-12 troduced. As a matter of fac who bought other makes last

Canadian

to the "HQ" but, who this year, traded them in on the "HQ-120-X"-no obsolescence in that! So, if you intend buying a new receiver, by all means see and hear the "HQ-120-X". Its up to the minute performance and sound dollar value have been proved by thousands of users. 1

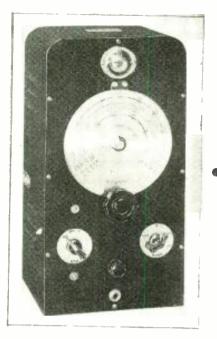
Many owners write	MAIL	COUPON TODAT:	
anything they have tand up'' is proved ed ''HQ'' receivers ousands which have 20-X'' was first in-	The HAMMARL 424-438 W. 33 Please send "		RT-2
t, we know of hams t year in preference	Name		
	Address		
Office: 41 West Ave, No., Hamilton, Ont,	City	State	
A m r	n a r	LUN	D
			and the second sec

EXPORT ADDRESS: 100 VARICK ST., N. Y. City - Cable ARLAB

flood, when regular wire facilities were

temporarily disrupted. A New Yorker is advised that the holder of a radio operator's license from the Commission who applies for another class of license is required to pass only the added examination elements for the new classification.

A Michigan inquirer is informed that the Commission issues lists of radio stations in various services, but none of ship stations. However, the Bureau of the International Communication Union, Berne, Switzerland, publishes lists of radio stations of the world, among which is a "List of Coast Stations


Please Mention This Magazine When Writing Advertisers

www.americanradiohistory.com

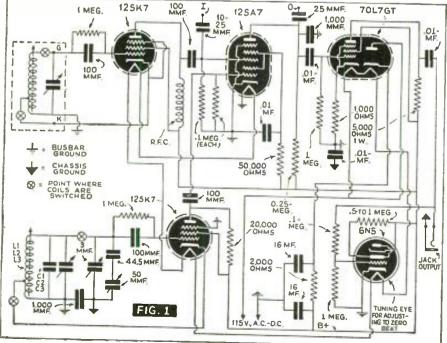
and Ship Stations."

Nor is the Commission in a position to comply with frequent requests for names and addresses of radio operators in various States. Since the Commission daily handles more than 100 such applications for new licenses, renewals or changes, the compiling of special lists is out of the question.

The call letters KHASB have been assigned the radio station in the private plane (non-scheduled aircraft) of Robert Taylor, the movie star, operating from Culver City, Calif. The last three letters—ASB—are the initials of the reel Taylor's real name, Ar-lington Spangler Brough.

 THERE are in general two methods which may be employed for determining requences of amateur transmitters. The first of these is by means of an absorption meter and the second by the utilization of the heterodyne principle. The former method of measurement consists in bringing a tuned circuit close to the transmitter whose frequency is to be measured and adjusting the frequency of this tuned circuit until a dip is noticed in the reading of the oscillator plate meter or until an indicator such as a flash-light bulb connected in series with the tuned circuit indicates resonance. This method is perhaps the only reliable one for determining the fundamental frequency of the device being measured. It will not serve as an accurate frequency measuring device, however, since numerous factors such as the closeness with which it is coupled to the circuit being

A Precision Frequency Monitor


F. J. Gaffney*

This instrument employs the heterodyne method of checking frequency; a method af calibrating the meter is explained.

measured and the sharpness of the indicating device affect its reading.

In using the heterodyne method of frequency checking, the radio frequency voltage of the circuit being measured is mixed with the voltage from an accurately calibrated oscillator whose frequency may be adjusted to obtain zero beat with the transmitter frequency. The frequency of the transmitter is then read from a dial on the shaft of the variable condenser of the calibrated oscillator. The calibrated oscillafor need not of necessity cover the same range of fundamental frequencies as does the transmitter whose frequency it is desired to check, since harmonics of the calibrated oscillator may be beat with the fundamental of the transmitter whose frequency is being measured. From this it may be seen that a variable oscillator covering any range of frequencies of 2 to 1 can be used to check any frequencies in the spectrum. If it is attempted to make the variable oscillator cover a range of frequencies of 2 to 1, however, it will be found that the accuracy with which the dial may be read is rather poor as compared to that obtainable with smaller frequency ranges. It will be remembered that the amateur bands are rather narrow bands having a harmonic

Circuit of the precision frequency monitor here described.

relationship to each other. This fact makes possible the design of a frequency meter to cover these bands alone which is capable of a high degree of accuracy. It is the purpose of this article to describe a few of the design points of such an instrument.

The characteristics which a heterodyne frequency meter should have are listed below:

I. A circuit arrangement such that the variable oscillators of the frequency meter may be accurately checked against WWV or a standard broadcasting station.

2. Band-spread of the variable oscillators such that the amateur bands cover substantially the entire dial.

3. A stability sufficiently good to enable accurate checks to be made over short periods of time without having to re-set the variable oscillators on calibration.

4. Circuit and controls so arranged that accurate checks may be made rapidly.

To accomplish requirement 1 above, the circuit shown in Fig. I was devised. In addition to the variable oscillators which are accurately calibrated, this circuit employs a built-in mixing tube and audio amplifier so that no apparatus other than the frequency meter itself is required for a frequency check. The circuit also incorporates a stable 100 and 1000 kc. oscillator (either frequency may be selected by means of a switch). This allows checking the variable oscillator at many points throughout the range of each band. Three bands are employed on the variable oscillator to give complete band spread on all of the amateur bands as will be explained presently. The 100 and 1000 ke. oscillators are extremely stable and may accurately be set on calibration by beating their frequency in a radio receiver against WWV or a standard broadcasting station. The accuracy of station WWV is within one part in 5,000,000 while that of a standard broadcasting station is within 20 cycles (this corresponds to one part in 27,500 at the low frequency end of the broadcast band). Either of these accuracies far exceeds that required for amateur use.

The operation of the device is briefly as follows: The variable oscillators are turned off and the 100 kc. oscillator turned on. Station WWV or any broadcasting station on a multiple of 100 kc. is tuned in on a radio receiver. A short wire con-

"Chief Engineer, Browning Laboratories.

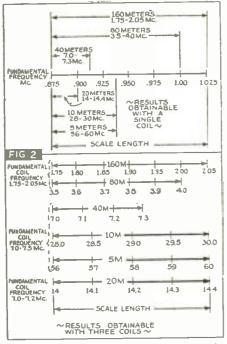


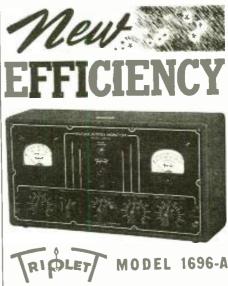
Fig. 2 above shows comparison between the results obtained with three oscillators, and those obtained with a single oscillator.

nected to the plate of the mixer tube through a small condenser is brought close to the antenna input of the receiver. If the 100 kc. oscillator is slightly off calibration. a low-pitched beating tone will be heard in the loud speaker of the receiver. A threaded brass plunger inserted in the coil of the 100 kc. oscillator and rigidly held in position by means of a spring washer is advanced or retarded slightly to change the inductance of the coil so that the 100 kc. oscillator is brought to exactly 100 kc. as indicated by zero heat in the loud speaker. The variable oscillator which it is desired to use is then switched on and the dial adjusted to any point which is a multiple of 100 kc. and which is close to the point on the dial at which it is desired to check a transmitter frequency. Frequencies which may be checked against harmonics of the 100 kc. oscillator are clearly indicated on the dial. Phones inserted in the output of the audio amplifier incorporated in the frequency meter indicate whether or not the variable oscillator is accurately on calibration. Should the variable oscillator be slightly off calibration, a tone will be heard in the phones. The variable oscillator is then adjusted by means of a small trimmer until exact zero beat is obtained in the phones. The 100 kc. oscillator is then switched off and the short lead connected to one of the mixer grids is very loosely coupled to the transmitter. The dial of the variable oscillator is then rotated until zero beat is obtained as indicated in the phones. The transmitter frequency is then read directly from the dial of the frequency meter.

To facilitate accurately setting to zero beat, a tuning eye is incorporated. As zero beat is closely approached, the iris of the tuning eye will flutter, finally opening wide at exact zero beat. This enables much more accurate setting than would be possible with the phones alone.

All of the above procedure takes much

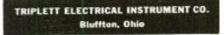
for February, 1941


longer to explain than it does to actually perform in practice. The checking of a transmitter frequency including a check of the 100 and 1000 kc. oscillator does not require more than a minute's time. Once the 100 kc. oscillator has been accurately set, frequency adjustments of the transmitter may be made and each frequency check will require less than 30 seconds.

The accuracy of heterodyne meters such as the one described above depends primarily upon the accuracy with which the dial may be read. It is thus desirable to spread the amateur bands over substantially the complete dial to obtain the greatest accuracy. Inasmuch as the amateur bands are all in harmonic relationship, it might be thought that this would be possible with a single variable oscillator. This is not the case, however, inasmuch as the widths of the amateur bands are not proportional to their base frequencies. For instance, the 40-meter band covers a range of from 7 to 7.3 mc., whereas the 20-meter band covers a range of from 14 to 14.4 mc. Thus if a range of frequencies of 7 to 7.3 is spread over the complete dial, the second harmonic of this range will cover a band of frequencies of from 14 to 14.6 resulting in incomplete spread for the 20-meter band. It has been found that to give substantially complete band spread on all of the amateur bands from 160 meters to 5 meters, three variable oscillators are required. This is illustrated in Fig. 2 where the results obtained with three oscillators are compared with those that could be obtained with a single oscillator. Using three variable oscillators and a 51/2" dial mounted directly on the shaft of a 270° straight line frequency condenser, it is possible to obtain readings on the 160-meter band to within one ke. of the correct frequency and on the 5-meter hand to within 10 kc. of the correct frequency.

Several design features affect the stability of a heterodyne type frequency meter. In general the factors affecting stability may be grouped into two classifications, (a) Those affecting variation in frequency with line voltage; and (b) Those affecting variation in frequency with temperature. Much can be done to satisfy the voltage stability requirement by appropriately placing the cathode tap on the oscillator coiland by running the oscillator tubes at low voltage. Stability with temperature variation is best obtained by locating the coils in such a position that they will change temperature the least amount during warmup of the apparatus. The coils in the instrument being described are located under the chassis (the chassis is about 7 inches from the bottom of the cabinet), so that all of the heat from the tubes, resistors, etc., which tends to rise in the cabinet will be carried away from the coils. An A.C.-D.C. circuit is employed, thus eliminating the need for a power transformer which is one source of heat. A tube complement is chosen which makes a dropping resistor for the tube filament nunecessary.

To afford a rapid frequency check, the dial of the instrument is directly calibrated in irequency. This prevents the necessity for the use of time-consuming calibration charts. In order to align the variable oscillators so that they accurately track the dial. it is necessary to have control of both the


Please Mention This Magazine When Writing Advertisers

You've solved your problem of getting maximum efficiency from your transmitter when you invest in a Model 1696-A Modulation Monitor . . . A new monitor with improved shielding—just the unit for 10-meter bands. Plug it into your AC line— make simple coupling to the transmitter output and the monitor shows: and the monitor shows:

and the monitor shows: • Carrier Reference Level • Per Cent of Modulation • Instantaneous Neon Flasher (no inertia) indicates when per cent of modulation has exceeded your predetennined set time, Setting can be from 40 to 120 per cent. Helps comply with FCC regulations. Has two RED+DOT Lifetime Guaranteed Triplett instruments. Modernisti: metal case, 112/2%7% %12," with black succe electro commel finish. . . Black and white panel. Model 1606.4. . . Amateur Net Price. . \$34.84

Model 1696-A ... Amateur Net Price ... \$34.84 Also available 45 4 rack panel mounting unit. FOR MORE INFORMATION WRITE SECTION 282 HARMON AVENUE

"**∩**" The Famous Johnson

an original Johnson development, is available in kit form from better jobbers everywhere.

The Johnson Antenna Handbook is now ready at your Jobbers-only 25c, or will be mailed direct on re-

inductance and capacitance of the variable oscillators. The inductance of the variable oscillators is controlled by means of a brass plunger similar to that described in connection with the 100 kc. oscillator. The capacitance is controlled by means of small trimmers across each variable oscillator coil. A 3 muf, variable condenser brought to a front panel control is common to all of the oscillators and is used for accurately setting the oscillator it is desired to use on calibration at any point in its range which is a multiple of 100 kc.

It is believed that the apparatus described above meets all the requirements for accurately checking amateur frequencies on any of the bands between 160 and 5 meters. In fact, although a calibration is not given on the dial, the instrument may also be used for checking 21/2 meter transmitters by simply multiplying the frequencies on the 5-meter range by two.

Compressed Dipole Aerials

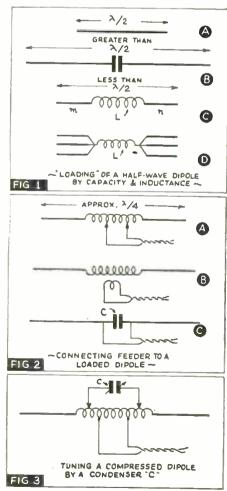
 IN a recent article* were described a few simple measurements of field strength illustrating the advantages of directional aerial systems in the reception of shortwave signals. Even the addition of a reflector to the usual dipole was shown to vield a very useful improvement in signalto-noise ratio. Unfortunately, however, the implest directional array occupies considcrably more space than a plain dipole, and when it is designed for use at wavelengths between 10 and 50 meters, cannot always be accommodated in the space available. The additional wires and spreaders will often be regarded as unsightly, whilst their weight demands the provision of well designed and strongly constructed masts. For example, a dipole and reflector resonating in the 20-meter band will involve two parallel wires each some 32 feet long, and about 17 feet apart. It is not easy to design a self-supporting arrangement of this size, whilst a wooden framework to support conductors of that length is by no means unobtrusive. These difficulties are accentuated when it is desired to erect the whole structure in a rotatable form.

For shorter wavelengths in the neighborbood of five to seven meters it fortunately becomes practicable to construct the dipole and reflector of metal tubing, which can be strong enough to support its own weight in a high wind. Even at these short wavelengths, however, there will be occasionwhen a reduction in bulk would be very acceptable. Experiments in direction finding may be quoted as an example. Just before the war the writer constructed a dipole and reflector supported by a light wooden iramework which could easily be transported by car. This was employed in the field to locate a hidden live-meter transmitter. The latter radiated vertically polarized waves, and the procedure was to rotate the receiving aerial system until signals were at a minimum, when the reflector will be in the direction of the incoming waves.

In this way it was found possible to determine direction with an accuracy of about five degrees, provided of course that the direction of arrival of the waves had not been modified by intervening objects. The aerial structure was 8 feet high and 4 feet wide, and could be fairly easily bandled when mounted upon a stont camera tripod fitted with a rotating head. It could hardly be termed convenient, however, and too much time was needed in setting it up, so that the need for a more compact arrangement giving, if possible, more pronounced directional effects was very evident.

Consideration of the possibilities of such an improvement naturally directed attention to the compressed dipole. This form of aerial has been known for many years, and

""Aerial Reflectors," The Wireless World, October, 1940,

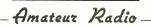

E. L. Gardiner, B. Sc.

is used by certain commercial organizations as a television receiving aerial in locations where space is very limited. It is barely mentioned, however, in most handbooks, and very little information seems to be available concerning its general use in shortwave reception. Thus there seemed good reason for carrying out practical tests on similar lines to those described in the previous article already mentioned, and in which the field strength measuring equipment could be pressed into service.

Half-wave Aerial Characteristics

The ordinary dipole, or more correctly the Hertzian half-wave aerial, resonates to a certain wavelength by virtue of the distributed inductance and capacity of the conductor. In open space the resonant wavelength is slightly more than twice the length of the dipole, which is therefore slightly

Various methods of shortening dipole aerials are shown herewith; this technique is very important, especially where there is little space to erect Lipole antennas to cover the longer waves.


less than a hali-wavelength long. The proximity of buildings or of other conductors increases the electrical capacity of the wire, and thus reduces the length necessary to resonate at any particular wavelength.

An interesting example of the effect was poticed by the writer when adjusting the length of a 20-meter aerial, one end of which was only a few feet above roof level. whilst the other was 20 feet higher. It was found that the lower end could be reduced in length by some two feet to restore resonance, thus making the two halves of the aerial unequal by that amount with respect to its electrical center. Similarly, the resonant length of a dipole can be increased if the distributed capacity of the wire be reduced. This can be done in practice by the introduction of a condenser into the center of the aerial, and shown at C, in Fig. 1 (b). Since the capacity of two condensers in series is always less than that of either alone, and the added condenser acts in series with the distributed capacity of the aerial wire, the effective value of tuning capacity is reduced. The aerial thus resonates to a shorter wavelength, or must be increased in overall length to resonate at the wavelength to which it responded before the condenser was inserted. It is possible to tune the aerial over a limited range by varying the capacity of the added condenser.

Reducing Aerial Length

As a rule, however, there is no advantage in increasing the length of a dipole, and it will be more useful to decrease it. By analogy with a tuned circuit employing a coil and condenser, the wavelength will be increased, or the aerial shortened for a fixed wavelength, if either its distributed capacity or inductance be increased. It is inconvenient to increase the capacity to any material extent. To do this by adding a condenser would imply connecting this between the two free ends of the dipole, and would only be possible by the addition of long leads which would modify the action of the whole system profoundly, or by bending the aerial round until the free ends are in close proximity. In either case the aerial becomes a closed loop, and whilst it will in fact resonate to a considerably longer wavelength than before, it is no longer a dipole, and is not within the scope of this discussion.

It is, however, quite convenient to increase the inductance of a dipole by the addition of a coil, which can be inserted at the electrical center as shown at L in Fig. 1 (c). This coil acts in series with the inductance of the wire, increasing the effective value, and thus increasing the resonant wavelength. The distributed capacity is little changed, and the overall length of the dipole must be reduced to bring it back into resonance with the original wavelength.

Being shorter, the aerial is termed a compressed or loaded dipole.

As the value of added inductance is increased the overall length must be reduced to maintain resonance at a particular wavelength, and this shortening process can be continued until finally the dipole itself vanishes, leaving only the loading coil which now resonates by virtue of its own selfcapacity. In such an extreme case there would clearly be little radiation from or reception by the "aerial," which has become a closed circuit consisting of a small coil of wire. Some intermediate case must be investigated, and for the purpose of these tests it was decided to choose a value of loading coil which would reduce the overall length to one-half of its original value, or to about a quarter wavelength. The accompanying table gives an idea of the lengths and sizes of loading coil found suitable for wavelengths of from 5 to 20 meters, No. 16 SWG enamelled copper wire was used throughout in constructing the aerials, and the loading coils were wound on a Trolitul former 11/2 in. in diameter, the turns being spaced by approximately the diameter of the wire. It must be appreciated, however, that whilst the figures given will form a satisfactory starting point from which to work when trying out compressed dipoles, they cannot be regarded as exact. The resonance of these aerials is noticeably sharper. than that of a half-wave aerial, and for best results the length should be trimmed experimentally, since it will be determined to some extent by the exact materials used, and particularly by wire diameter and turn spacing.

Approximate design data for compressed dipoles having a length of one-quarter wavelength

Wave- length meters	Approx. length of comp. dipole ft. in.	Turns in loading coil	80 olun fveder tapped across turns
5 7.0 10 20	4 0 5 6 8 0 16 0	$ \begin{array}{c} 12 \\ 16 \\ \hline 40 \end{array} $	3

In order to keep the conditions as simple as possible, the remainder of the dipoles were composed of straight single wires. It is possible to employ as the portions m and *n* of Fig. 1 (c) either conductors of larger diameter, such as copper tubes, or several spaced parallel wires joined together at the terminals of the loading coil, as sketched in Fig. 1 (d). By so doing the distributed capacity of these portions is further increased, and either the overall length or the inductance of the loading coil can be decreased somewhat. Clearly the possibilities are extensive, and for the present no attempt has been made to examine the properties of aerials which are compressed to less than a quarter wavelength, or in which multiple wires are used. Probably the chief advantage of increasing the diameter of the arms m and n lies in the established fact that by so doing the "Q" of the aerial is reduced, and it resonates more broadly over a wider band of wavelengths. This may be important in the particular case of television reception, where some slight loss in image detail may result from the excessive selectivity of a compressed dipole in which a single wire composes the arms, and for which three wires in parallel spaced by about 2 inches can be recommended. A second case which might justify this procedure

would be where a fairly uniform performance over the whole of a wave-band was desired, rather than the best possible performance at any one frequency.

Feeder Connections

Before experimental tests can be made with a compressed dipole it must be connected by a non-radiating feeder to the transmitter or receiver. Whilst any of the recognized types of feeder could be used, the aerial is symmetrical about its electrical center, and therefore lends itself to a halanced twin-wire transmission line, rather than to the concentric type. Since it is particularly necessary that only the aerial shall radiate, a low-impedance line was preferred to one of a higher impedance, in which the two conductors would be spaced by several. inches, because the latter is more likely to become unbalanced during the course of adjustments. A proprietary cable of 80 ohms. nominal impedance was selected, having the useful property that the radiation from it was too slight to be measured by the equipment used, even when the cable was not exactly matched to the aerial impedance.

The simplest and most widely used method of coupling is to break the dipole at its electrical center, and, on the assumption that its impedance at this point has the theoretical value of 72 ohms, to insert a cable of about that impodance directly. This system works well in practice, but suffers from the disadvantage that if any steps are taken which change the impedance at the center of the dipole, a mismatch to the feeder must occur. The presence of a reflector near to the dipole will have the effect of lowering this impedance, and thus tends to destroy the desired correct matching between feeder and aerial,

Matching Impedances

In the case of loaded dipoles a better method of coupling is fortunately available, since it would not be advisable to break the continuity of the loading coil. The feeder may be tapped across a few turns equally placed on each side of the center of the coil, as shown in Fig. 2 (a). Whatever the exact impedance of the feeder or of the aerial, it is now possible to get an exact match, for the impedance across a portion of the loading coil will vary from zero when the two feeder wires are attached at a common central point, up to a comparatively high value when they are separated by the whole coil. At an intermediate point, therefore, an impedance equal to that of the feeder will always exist, and can be found by trial.

An alternative method exists in the form of inductive coupling between the loading coil and a coil of a few turns connected across the ends of the feeder cable, as shown in Fig. 2 (b). For the sake of completeness a method of coupling to the extended dipole of Fig. 1 (b) may be mentioned. Here the feeder is joined directly across the series condenser, as shown in Fig. 2 (c), and the capacity of the latter is selected so that its reactance matches the impedance of the feeder. In this way an exact match to cable of any impedance is possible at one particular wavelength only, but unlike most other arrangements the system will not operate satisfactorily at harmonics of this, since the reactance of the condenser will then be different.

anali mag, speaker as nurvophene of earphone or jedance magnetic or crystal pickup any high the low rest. The second second second second second second to a second second second second second second second to describe the second second second second second tables of d.c. Price, complete with a \$2.95 tables ready to use less mike) Earphone Mike File as

SENIOR MODEL All electric. Can be used with all photestion of 50 db. prvvided. Adjustable frequency intervent by and 1730 kc. or if Jess tubes and mikely and 800 kc. Price. Set of 4 matched Tubes for Sonior Model \$1.45 DELUXE MODEL TRANSCASTER-TRANS-

DELUXE MUDEL INANJUSTIEN INANJUSTIEN INANJUSTIEN THANJUSTIEN TO THE TAIL AND THE TAIL AND THE TAIL THE TAIL AND THE TAIL AND

SPECIAL 5-TUBE TRANSCASTER This ultrathe has been engineered especially for advanced ex-tent in the second s Price

SPECIAL 3-TUBE BATT. OPERATED TRANSCASTER Uses Many professional (11 a 120 and light, Price, complete (bles and batteries less mike) \$20.00 TRANSCASTER ACCESSORIES Distance Mil TT LI Mike F C) \$7.95; High Impedat

RADIO'S MOST AMAZING ACCESSORY

icks up telepho e tres. Merely place d r wire and listen t

CONSTRUCTIONAL KITS FOR BOYS FROM 9 TO 14

PROFESSIONAL COMMUNICATION SETS S-Tube Senior Space Explorer Set. Beam Power, All-Efectric, metal tubes, dyn. spkr. 6 coils, wired, tested and ready to use.... \$15.35

6-Tube 7-Band Communications Set with tubes and all accessories, Model 7B, wired, tested and ready to use \$17.45

H. G. CISIN, Chief Engineer ALLIED ENGINEERING INSTITUTE Dept. S-72

85 Warren St., New York, N. Y.

www.americanradiohistory.com

. 2

It will be remembered that the performance of various arrangements was measured in the present case by connecting the aerial under test to a transmitter adjusted to deliver as far as possible constant power and observing the readings of a field strength meter placed at some two wavelengths from the aerial. It can be safely assumed that the behavior of the aerial under receiving conditions will be complementary to that when tested as a radiator, since the same physical factors are involved in the two cases, and provided that the incoming waves can be assumed to arrive from the direction in which measurements are made.

Amateur Radio

It was decided first to determine how the radiated field from a compressed dipole of the dimensions given in the table compared with that from a plain dipole. The latter was first set up, under the conditions of the preceding article, and the field strength at a point broadside to the aerial was noted. In this case the feeder was tapped directly into the center of the dipole. A compressed dipole was then crected in the same position, and the same feeder connected across a few turns of the loading coil, as in Fig. 2 (a). This tapping was varied until the radiation from the aerial was at maximum, no change being made to the coupling of the other end of the feeder to the transmitter, or to the adjustments of the latter. which was, of course, crystal controlled. It was noted with great surprise that the field strength from the two aerials was almost identical, whilst in the second case the feeder current and estimated current in the aerial had increased. The experiment was repeated several times, and on a number of wavelengths, with similar results. It was found that the reduction in overall length of the compressed dipole to one-half of the original was not accompanied, as had been anticipated, by a reduction in the radiated field to 50 per cent or less of its former value, but that if the feeder current was maintained the same in the two cases, the field strength was reduced to between 70 per cent and 80 per cent only, whilst if the feeder tapping point on the loading coil was adjusted to optimum performance as first described, there was practically no reduction observed. Secondly, it was noticed that, whilst no accurate method for measuring the oscillatory current within the dipoles was available, it was clear, from the usual tests of coupling a neon tube or small lamp to the aerial wire, that both the current near the center of the compressed dipole and the

voltage at its free ends was greater.

Unexpectedly Good Results

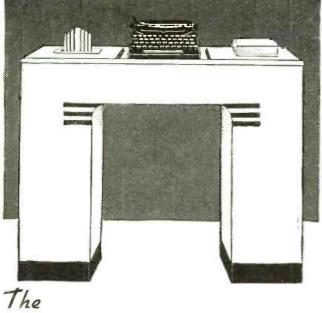
It is generally assumed that the most effective portion of a dipole in radiation or reception is that near the center, in which maximum current flows. It would therefore be expected that, if this portion be coiled up and rendered ineffective as a radiator, the radiation from the whole aerial would suffer considerably. From the evidence it seemed that this was not altogether true.

Whilst calculation of the current distribution within a loaded dipole would not be simple, it seemed likely that the following two effects were mainly responsible for the relatively good performance. First, the "Q" of the compressed dipole had been increased, as was evident from its sharper tuning, and a given amount of power induced in it would thus be expected to set up a larger oscillatory current. The radiation resistance of the aerial was almost certainly lower than that of a plain dipole, and so there would be less damping through radiation. Secondly, it was possible to reach a very effective impedance match into the feeder by the tapping adjustment, and this would still be possible when the aerial formed part of an array, and its impedance was upset by the presence of other elements. The transfer of energy into the aerial was therefore somewhat better, and in conjunction with the former point, these two factors seemed approximately to compensate for the reduced size of the aerial.

As a receiver the compressed dipole may not show up quite so well, since the improved impedance matching will not hold over any wide band of wavelengths. Attempts to confirm this by reception tests over a period indicated that in general signals were noticeably but not seriously weaker than from a full-length dipole, but that when it was possible to tune the aerial exactly to the wanted signals, this difference largely disappeared. A simple and apparently effective method for tuning the aerial was evolved, and is of particular assistance in tuning loaded reflectors. It consisted in joining a small variable condenser across a few turns near the center of the loading inductance. In the case of the five-meter band, the feeder cable was tapped across two turns of the coil, and a 15 mmf. condenser across four turns; Fig. 3. This enabled the aerial to be tuned over some two megacycles, and was fine for reception .--Courtesy Wircless World, London.

RADIO AMATEURS ON DEFENSE BOARD

• RESPONDING to the request of James Lawrence Fly, Chairman of the Defense Communications Board, that it appoint a representative and six regional advisors to the Amateur Radio Committee of the Board, the American Radio Relay League has an-


nounced the following appointments: As representative: George W. Bailey, of Weston, Mass., president of the League. As alternate and expert advisor: Kenneth B. Warner, West Hartford, Conn., secretary of the League.

As regional advisors, the following: H. L. Caveness, Raleigh, North Carolina; William A. Green, Abilene, Texas; Kenneth T. Hill, Douglaston, Long Island, N. Y.; J. L. McCargar, Oakland, California;

Please Mention This Magazine When Writing Advertisers

Fred H. Schnell, Chicago; and Dr. Burton T. Simpson, Buffalo, N. Y.

Other members of the Amoteur Radio Committee include representatives of the Federal Communications Commission, Army, Navy, and the National Youth Administration. The purposes of the committee include the study of all phases of amateur radio facilities. Based on national defeuse requirements, the committee is expected to consider all questions relating to amateur radio and its place in the defense structure. It will recommend "precautions and restrictions with respect to amateur operations under various emergency conditions, and the allocation of such amateur facilities required by the Army or Navy."

COMBINATION FOR AS LITTLE AS 10° A DAY

How easy it is to pay for this combination of desk and Remington Deluxe Noiscless Portable Typewriter! Just imagine, a small good will deposit with terms as low as 10c a day to get this combination at once! You will never miss 10c a day. Yet this small sum can actually make you immediately the possessor of this amazing office at home combination. You assume no obligations by sending the coupon.

THESE TWO EXTRA FOR YOU

LEARN TYPING FREE

To help you even further, you get free with this special offer a 32-page booklet, prepared by experts, to teach you quickly how to typewrite by the touch method. When you buy a Noiseless you get this free Remington Rand gift that increases the pleasure of using your Remington Noiseless Delaxe Portable. Remember, the touch typing book is sent free while this offer holds.

SPECIAL CARRYING CASE

The Remington Deluxe Noiseless Portable is light in weight, easily carried about. With this offer Remington supplies a sturdy, beautiful carrying case which rivals in beauty and utility the most attractive higgage you can buy.

SPECIFICATIONS

ALL ESSENTIAL FEATURES of large stand-ard office machines appear in the Noiseless Portable—standard 1-row keyboard; back spacer; margin stops and margin release; double shift key and shift lock; two color ribbon and automatic ribbon reverse; variable line spacer; paper fingers; makes as many as seven carbons; takes paper 9.5" wide; writes lines 8.2" wide. There are also extra features like the eard writing attachment, black key cards and white letters, touch regulator, rubber cushioned feet. These make typing on a Rennington Dehne Noiseless Portable a distinct pleasure. Thousands of fam-ilies now using the Rennington Dehuxe Noiseless Portable know from experience how wonderful it is!

10

MAIL

NOW

www.americanradiohistory.com

Branch and and and a state and GUARANTEE The Remington Noiseless Portable Typewitter is sold on a ine remingion proiseless romagic is perviller is sold on a trial basis with a money back guarantee. If, after ten days trial oasis with a money usek guarantee. It, and the user with the trial, you do not wish to keep the typewriter, we will take trial, you do not wish to keep the typewriter, we will take it back, paying all shipping charges. You tisk nothing in it back, paying all snipping charges. You tisk nothing in buying a Remington Portable Typewriter on terms as low as 10c a day Remington Remington Rand Inc., Dept. 300-2 465 Washington St., Buffalo, N. Y. COUPON Tell me, without obligation, how to get a Free Trial of a new Remington Deluxe Noiseless Portable, including Carrying Case and Free 32-page Typing Instruction Book-let on terms as low as 10c a day. Send Catalogue. Name..... Address..... City.....State..... 611

THIS

BEAUTIFUL DESK for only \$1.00 EXTRA

WITH ANY

REMINGTON PORTABLE TYPEWRITER

A beautiful desk in a neutral blue-green which will fit into the decorations of any home-trimmed in black and silver-and made

of sturdy fibre board-is now available for only one dollar (\$1.00 extra) to purchasers of a Remington Noiseless Portable Typewriter. The desk is so light that it can be moved anywhere without

trouble-it is so strong that it will hold six hundred (600) pounds.

With this combination of desk and Noiseless Deluxe Portable Typewriter, you will have a miniature office at home. Learn the

complete details of this offer. Mail the coupon today,

In beautiful black crackle finish with UNIVERSAL BRACKET that may be moved and locked in any position desired. Complete as illustrated, ready to plug into A.C. or D.C. house current. Includes tripod, bulb and rubber cord. Total weight 12 lbs. \$5.50 When ordering specify whether spot or floodlamp is desired.

Separate Units

Spotlamp, black crackle finish, fitted with Westinghouse frosted bulb, 6 ft. rubber cord with plug for A.C.-D.C. house current. Wt. 7 lbs. \$3.00 Floodlamp, black crackle finish, fitted with No. 1 C.E. Floodlamp, 6 ft. rubber cord with plug for A.C.-D.C. house current. Wt. 7 lbs. \$3.00 Tripod, 4½ ft. high with bronze fittings. Weight 6 lbs. \$1.65 Adjustable Tripod, made of selected straight grained hardwood fitted with sturdy clamps, large thumb nuts and solid metal prongs. Adjustable from 44" to 84". Standard head screw to fit any camera. Weight 6 lbs. \$3.00

All prices quoted FOB, New York.

GOLD SHIELD PRODUCTS Dept. RT-241 350 Greenwich St. New York

Dive, Altitude and Attack for the know. fense, Searchilkha-the Curse of the Night Bomber. How R.A.F. Fikhting Planes Attack ive three color German Bombers, Enkland Al- Raid Precautions. How Smoke Rings, Barrage Balloonis, FLIGHT MAGAZINE 20-T Vesey St., New York, N.Y. "CQ"

Amateur Radio

• AMATEUR activity is reaching the peak of the winter season. The snow and cold weather keeps the boys busy indoors. The surest sign of increased activity is the fact that 40 meter CW signals actually cover up the South American phones. Good signs bring to mind a letter in the current issue of QST. W9LEM suggests, since there already are "weeks" for everything. we have a National QSL Week. It sounds like a fine idea and there is no reason why everyone interested in cards shouldn't participate. The purpose would be to get everyone to swap cards for all their QSO's of the particular week designated as National OSL Week. It would be an opportunity to fill in cards from states that haven't QSL'd, if the entire gang got into the spirit of the thing. More than that though, it would probably revive a great deal of interest in OSL'ing, which would make for continued swapping of cards in the future.

Letters are continually arriving with various comments on "CQ". While they are all appreciated, unfortunately they do not add to the material for the column. Information is still needed and clubs and individuals are invited to contribute.

W2MUO is sorely beset with BCL trou-

Larry LeKashman, W21OP

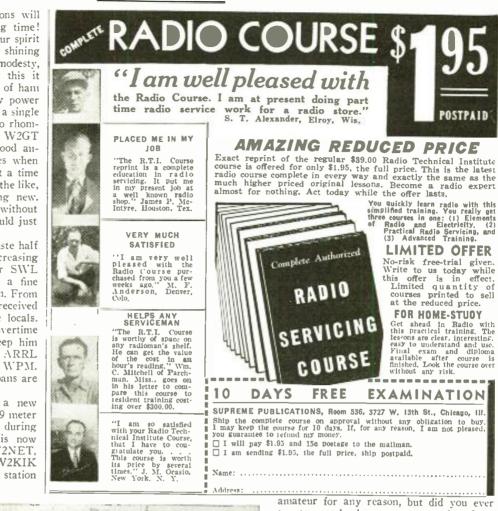
ble. Already threatened with lynching by irate neighbors. Fred is really in a quandary. Most perplexing angle is the fact that W2MUO hasn't been on the air at any time the neighbors complained. Spooks ! W2IOP has been testing some new equipment, including an RCA AR77: a 7 watt CW rig: and a 900 watt CW rig. W2VY is busy working at the new WEAF station, located at Port Washington. Next time you complain about an antenna falling down think of WJR's 700 footer which collapsed during a treak windstorm in Detroit. W2IJU is on 80 CW now, W2LYR is still a 10 meter phone bug.

W6QMI/2 is also becoming a 28 MC. convert after the results he has been getting with an indoor antenna. With a new receiver practically purchased, W2HP will soon be back on the air. Incidentally W2IOP is now working at Sun Radio in New York City. W2LNY is getting prouder and prouder of his new rig. You would too, if you had just knocked off KC4USB.

The DC Century Club files have been closed for the "duration of the war," or until world conditions justify its continuation. W2GT. Ed Hopper of Bergenfield, New Jersey, with 152 confirmed countries.

W2MUO is sorely beset with BUL from- New Je

A QSL card received "before the war" from GM6WD, Scotland; lower left—Transmitter, Receiver and E.C.O. of station W9YXO; lower right—A Japanese Ham—J5CC.



is top man. Those 152 confirmations will probably keep Ed there for a long time! Those who believe in the real amateur spirit might well take W2GT as their shining example. With all credit to Ed's modesty, and if he knew we were writing this it would never get in print, he is one of ham radio's great characters. Using low power in so far as DX men are concerned, a single 35T, and an HRO receiver, with no rhombics, V beams, or trick gadgets W2GT set up this amazing record. On good authority we have been told of times when W2GT would sit back for hours at a time and actually pass up XU's; J's, and the like, in the hopes of hearing something new. Just let's not forget Mrs. W2GT, without whose cooperation 152 countries would just be a myth.

W2BO, W8OE, and W2LNY waste half their lives in 3 ways. W2MVJ is increasing his power. Oscar Corwin, a super SWL from Frankfort, Indiana, received a fine write up in the local steel publication. From Vic Politi of Fairheld, Conn., we received some information on a few of the locals. W1IBH is off the air because of overtime on his job and lack of DX to keep him hunting. W1MFT received his ARRL code proficiency certificate for 25 WPM. KC4USA, K6IQN, and lots of Cubans are rolling in on 20 meter phone.

While not an amateur station a new Japanese station, JLG-4, is on the 19 meter band and is heard with R9 signals during the morning. W2KHR's brother is now W2MID. W9RFA is sporting W2NET, now that he lives in New York. W2KIK may be found operating army ham station W2MAP.

Amateur Radio

Shortwave listening shack of Oscar Carwin of Frankfurt, Ind.

O.M. Have You a Harmonic?

Editor, Here I sit. Beside me is a rack and panel outfit containing limiting amplifier and monitoring amplifier, in front of me a broadcast transmitter, and on the other side, a 14 tube communications receiver, and in

front of that, a copy of RADIO & TELEVISION, open at the "IVhat Do You Think?" page. Now, I too have a pet grievance to air.

First, I want to say that I am everybody's friend, and being a Ham myself have not the slightest intention of reporting any

for February, 1941

Please Mention This Magazine When Writing Advertisers

www.americanradiohistory.com

anateur for any reason, but did you ever try to watch the meters on a broadcast transmitter, watch your audio levels, and at the same time *copy prcss* at between 35 and 40 w.p.m.?

The other day I was sitting here, "cans on" and fingers tricklin' over this keyboard to the tune of W C X, press station on 7850 kc. Suddenly I hear a bang, a hiss, and a half dozen other audio frequencies besides the one I was copying, or by that time, "tryin' to copy," and behind that conglomeration, some son-of-a-so-and-so trvin' to make his young sister say hello into a mic (yes, I could hear him through the beat oscillator and he was about 400 miles away). Now, did you ever hold a match under a thermometer and watch the mercury go up? Well, if you haven't, try it some time when there's a thermometer in the shack you don't want, and, when the mercury gets to the top, watch, with your eyes well away, and you'll see what happened to my temper. To heck with the news. I turned off the beat oscillator and inside of 5 minutes had logged a half a dozen 75 meter phone stations on and near 7850 kc.

Now I don't have to tell you that a transmitter is not working at *peak efficiency* with a harmonic like that! All that power that is being radiated at *tacice* your frequency isn't doing you any good, but sure can cause someone else a lot of grief, and when it falls *outside the Ham bands* it's inexcusable! So how about you 75 meter boys giving your "rigs" the once over?

MAX FISHER (B.C. Station CJIC), 83 Summit Ave., Sault Ste. Marie, Ontario, Canada.

Master the Touch System - Quickly -

Master the Touch System - Quickly -Accurately Get the "Feel" of Typing Bener Investing Your Money. When the inventor of the provided the product of the investigation of the provided the provided the work of the provided the p

An 8-page illustrated book of instructions will show you how beat to use the "Tuch-Rite" teacher. \$2.00

GOLD SHIELD PRODUCTS

350 Greenwich Street Dept. RT-241 New York, N. Y.

614

Practical Antenna Hints Matching Stubs and Rotary Beams Larry LeKashman, W21OP

• IF all the material written about antennas was laid end to end, there probably wouldn't be enough bare space on the face of the earth to creet even a vertical.

We shall not attempt to go into the theory of the antenna. Instead, leaving that phase to more complete texts, let us see if we can extract sufficient material from acknowledged designs to really put our antenna to work. Keeping in mind that every antenna installation presents its own problems, no attempt will be made herein to discuss mobile design.

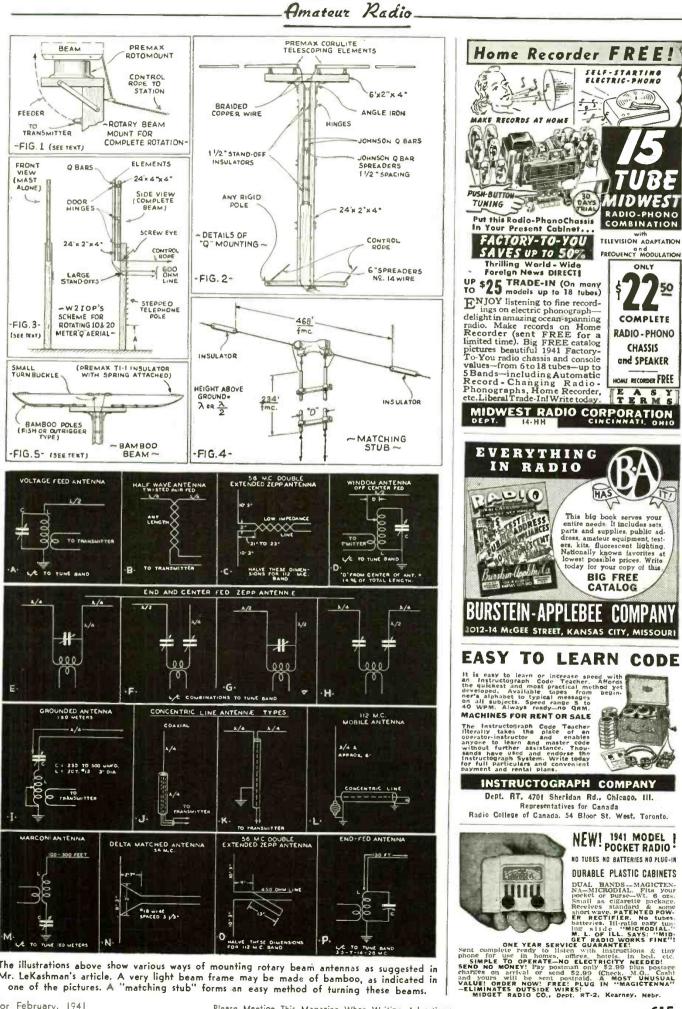
The beginner is often troubled with the tuned vs. untuned feeder arguments. The feeder system serves no other function than to transmit energy from a transmitter to the antenna itself; or conversely to transmit energy from an antenna to amplifying stages of a receiver. Thus a tuned antenna simply implies you are tuning the feeder to effect the maximum transfer of energy by achieving an impedance match. An untuned line, when operating correctly, is superior to the tuned line since it requires less apparatus to set up and operate. For example, it is possible to load up a transmitter using tuned feeders, without the flat-top radiating any energy-the load being entirely absorbed by the feeders. Such a condition, while it is not uncommon, is much less likely to occur in an untuned line. Generally speaking, if an untuned antenna draws normal current it is working satisfactorily.

The simplest type antenna, other than a mere piece of wire, is of course the untuned half-wave. At this point let us consider the most glaring drawback of any untuned antenna. This fault is their limit to onc-band operation, which means a separate antenna for each band. The antenna data chart accompanying this article shows 16 of the most fundamental antennas. Incidentally, it is from the 1941 edition of the Stancor Hamanual which is available from any amateur dealer. The concentric line antenna types are only practical for the ultra-high frequencies, because the concentric line is in itself quite expensive. However, its wonderful transmission efficiency makes it well worth consideration, wherever possible. Needless to say that in calculating dimensions, several unknown factors must enter into your figures, but principally height above ground and capacity of surrounding objects. When erecting your antenna in most cases, you must use the "cut and try" method to determine these unknowns-cutting the antenna until it "loads" correctly. Next month we will show several methods of determining length with meters and neon bulbs.

To "straddle the fence" for a moment, let us go on record as a believer in tuning units in the station. For general experimental work an antenna tuner is invaluable. Two variable condensers and a coil, sufficiently large to tune to the lowest frequency band worked, is all that is needed. A clip or else a plug system makes it possible to switch

Please Mention This Magazine When Writing Advertisers

condensers from series to parallel, and short turns on the coil if necessary. There are countless methods of mounting these units; our particular "brand" will be shown next month.


It is possible to match a tuned autenna without tuning the feeder, by the use of a matching stub. The stub is extremely difficult for the beginner to handle. At present we will leave that phase of antenna construction to any of the radio handbooks. However, there is on the market an excel-lent kit, the Johnson "Q," which makes use of a stub. See Fig. 4. The remainder of this article will be devoted to a simple rotary beam, using the Johnson "Q."

The antenna, because it has untuned feeders which are matched to the flat-top, is very efficient. The antenna is a half-wave, which radiates from the front and back, and has little gain off the ends. Since it is extremely bi-directional, 180° rotation will give 360° coverage. This eliminates costly rotary mechanism and makes possible several novel installations.

Figure 3 shows the arrangement used at W2IOP to rotate a Johnson 20 meter and 10 meter "Q." Fig. 2 shows details of the Q mounting. Premax elements were substituted for wire and adjusted to length on the ground. While elements of this sort are highly recommended, there are two substitutes that are somewhat less expensive. One is 1/2" thin-wall electrical conduit, which is available from any electric supply house. The other substitute is bamboo. In this case the poles are put under pressure and wire fastened as shown in Fig. 5. Conper-weld wire, which will not stretch, should be used and is supplied in the Johnson "Q" kits. The basic idea of hinging the "Q" to a central support, or as a matter of fact hinging any bi-directional antenna, is applicable to numerous installations. Those illustrated are merely one particular application of a flexible system,

The rotary bcam need not be elaborate, even after leaving the efficient and remarkably effective rotary half-wave. The first problem to be approached is of course 360° rotation. In the next article we shall treat in detail one more 180° rotary beam-the "8JK." From that point on, to get complete coverage with our antenna, we must have complete rotation. Fig. 1 illustrates a simple and inexpensive method of obtaining complete rotation. The Premax rotomount will easily support the weight of a 4-element beam. The diagram shows the rotomount as a hand-driven unit. This system is only practical where a direct line may be run to your operating position, otherwise a motor should be used. Motor drive, as well as further antenna facts, will be taken up next month. Ponder over these for a while and you'll begin to see why Hams get gray.

(This is the first of a series of antenna articles designed to offer helpful suggestions on your antenna problem, and if possible give you some ideas that will make your antennas work better.)

The illustrations above show various ways of mounting rotary beam antennas as suggested in Mr. LeKashman's article. A very light beam frame may be made of bamboo, as indicated in one of the pictures. A "matching stub" forms an easy method of turning these beams.

NO TUBES NO BATTERIES NO PLUG-IN **DURABLE PLASTIC CABINETS**

Applied Radio

Principles of Frequency Modulation F. L. Sprayberry*

• THE basic theory of frequency modulition is by no means new. It was put in use to a limited extent before the widespreaduse of the vacuum tube. In fact, it was the outstanding alternative in modulating systems before the vacuum tube made it possible to amplify audio frequencies. Certain applications of frequency modulation appeared in technical literature as early as 1911, and one form of frequency modulation adopted a few years later, remains in use to the present day. It is used in the "compensated wave" are transmitter at present.

Although the uses to which frequency inodulation has been put have not been extensive, the results of even this meager effort have been so revolutionary that the subject is most worthy of serious study and investigation.

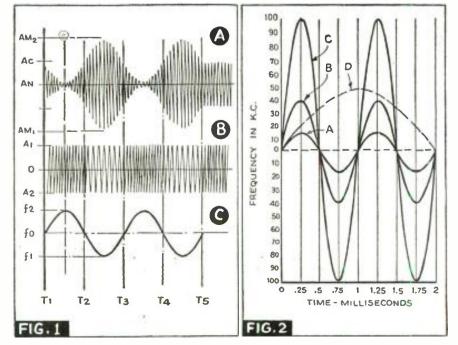
We can best approach the subject of frequency modulation (FM) by a simple comparison of it with amplitude modulation. Amplitude modulation as you know from your previous studies, consists of changing the amplitude of the carrier energy in accordance with a given signal. Frequency modulation on the other hand consists of *changing the frequency of the carrier* in accordance with the changes of the modulating signal. Great care in amplitude undulation is taken so as not to change the carrier frequency; conversely in frequency modulation great care is taken not to change the carrier amplitude.

Comparing the two modulating methods graphically as in Fig. 1, we have at A, a regular amplitude modulated envelope with which you are familiar. At B, we have a frequency modulated wave modulated by the same audio sine wave or signal as the wave at A. These graphs are of the same type-that is, amplitude of the carrier voltage is plotted vertically while the horizontal distances represent time. The audio wave form is perfectly obvious at A, as it determines the shape of the envelope. At B, however, for FM, the exact audio wave form is less obvious. Since the audio wave form is not clearly indicated in Graph B, we sometimes represent the frequency modulated wave in another way as at C. This curve (C of Fig. 1) is simply a graph of the frequency changes during modulation. Note in Fig. 1C that, as modulation progresses, the carrier actually changes in frequency, increasing to a maximum at f2 and decreasing to a minimum at i1. The dotted base line f0 shows where the carrier would remain if there were no modulation. The irequency f0 is the "base" or assigned "mid-carrier" frequency—the frequency at which the transmitter is radiating energy when it is not modulated. Frequency f1 is a lower frequency and f2 is a higher frequency than the unmodulated value.

*President, Sprayberry Academy of Radio,

The sine wave or curve shown at C of tig. I represents the manner in which the carrier frequency changes when modulated. Note that, as modulation progresses, the carrier frequency at first increases from i0 to f2 and then returns to f0 and continues reducing to f1 finally returning to f0 at time T3, which is the end of one audio cycle, The values of f1 and f2 will be discussed later but for the time being suffice it to say that f2 is greater than f0 and f1 is less than f0 by the same amount. Although this graph shows carrier frequency (vertical) plotted against time (horizontal) the exact nature of the carrier frequency changes are obvious and this curve represents equally well the wave form of the modulating signal-a sine wave in this case.

The graph of Fig. 2 is of the same type as that of Fig. 1C but is intended to show the effect of various modulation amplitudes. and modulation frequencies on the ultimate carrier. The vertical dimensions of this graph represent kilocycles deviation above (+) and below (-) the assigned or unmodulated carrier f0. The horizontal distances are graduated in very short units of time; namely, milliseconds or thousands of a second. Wayes A, B and C all complete one cycle in 1 millisecond and hence are, therefore, 1000 cycle waves but are of three different amplitudes. If they complete 1 cycle in 1/1000 of a second, naturally they would complete 1000 cycles in 1 second, A of Fig. 2 is an audio wave of small amplitude, B is of medium amplitude and C of larger amplitude. Notice carefully that amplitude or height of each wave in this case is not measured in voltage or current but in frequency deviation, Wave D completes $\frac{1}{2}$ cycle in 2 milliseconds which would mean 4 cycle in twice this time or 4 milliseconds. Its frequency is, therefore, 1000/.004 or 250 cycles. Its amplitude being $\frac{1}{2}$ that of C causes just half of the frequency deviation of wave C, while the frequency deviation occurs just $\frac{1}{2}$ as fast.


From this information, we see that the amplitude of modulation or degree of modulation expresses itself in frequency deviation—the larger the audio amplitude (amount of audio voltage) the greater the *frequency deviation* of the carrier and a strict proportionality is preserved with regard to amplitude and frequency of deviaaudio volts

tion--that is, the ratio ______ is eveles deviation

always the same value or constant regardless of the value of the modulation frequency.

The modulation frequency expresses itself (in the frequency modulated system) simply as the number of times per second that the frequency changes. None of the alternations in any way affects the carrier voltage or ultimate power. When modulation ceases the carrier returns to its fixed frequency value and continues radiating at the same power. Fig. 1B clearly shows that the carrier voltage has a fixed maximum ampli-

Fig. I shows at A—amplitude modulated wave; at B—frequency modulated wave. C shows FM audio wave form. Fig. 2 shows effect of modulation amplitudes and frequencies on the carrier.

tude for each high frequency cycle at all times whether modulated (time T1 to T5) or unmodulated (time beyond T5).

Reactance Tube Method of Frequency Modulation

So far there have been two practical methods of FM used in transmitting circuits. These are: (1) varying the frequency of the master oscillator circuit and amplifying and multiplying this frequency until the desired carrier frequency deviation and power output has been achieved and (2) using a fixed frequency oscillator and varying the frequency by a special means in some following circuit and likewise amplifying and multiplying as above.

The first method mentioned makes use of a so-called "reactance tube" which we will consider in the following. Fig. 3 shows a practical circuit by which we may follow the action.

From our former studies, we know that the frequency of oscillation of the 6SJ7 oscillator is determined primarily by the values of the tank circuit units, L2-C4-C5. We recognize this fact from the familiar basic relationship of L. C and F in the formula:

$$F = \frac{1}{\frac{2\pi \sqrt{1-C}}{2\pi \sqrt{1-C}}}$$

Now for frequency modulation we must actually change the frequency of this tank circuit both slowly and quite rapidly-in fact from 30 or 40 times per second up to high audio frequencies-10,000 cycles or more per second. For periodic changes according to a fixed wave form this might conceivably be done mechanically with a motor-driven condenser or a motor-driven coupler associated with the coil, as we find this done in FM signal generators. To make these changes in frequency correspouding with amplitude changes in a voice wave, an entirely automatic and non-mechanical method must be employed. While it is true that we might place a condenser microphone across the tank circuit and let voice waves vary the capacity and thus the frequency, there are many practical limitations to this method.

The first practical method of making proper frequency changes in a circuit like that of Fig. 3 made use of a well known principle of the vacuum tube as will now be explained.

One of the main things which characterize an inductance is the fact that the voltage across it leads the current through it by a phase angle of nearly 90°. Any other electrical device regardless of its nature or construction which can *crhibit these propertics* will act like an inductance to this extent at any rate. It may not fulfill all of the properties of inductance such as lower power factor, energy storage, etc., but it may be used in place of an inductance in circuits which require only the above mentioned properties.

There is no known way mechanically to vary the inductance value of a coil quickly. Therefore, we have to resort to a substitute inductance and the vacuum tube best fulfils this requirement.

Although no vacuum tube has these properties at any two terminals in ordinary use, we can *force* it to display these properties

for February, 1941

to a satisfactory degree. Let us first examine the phase relations of a normally operated tube and then see how we can convert its operation so that its plate signal voltage will lead its plate signal current by nearly 90°. These phase relations are to be found in Fig. 4. As we have learned, the plate current (Ip) is in phase with the grid voltage (Eg) as clearly shown here. By "in phase" we simply mean that the grid voltage and plate current are maximum (most positive) at the same instant, and both are at minimum at the same instant. This is perfectly obvious at A in Fig. 4, and is an operating characteristic of circuits such as are shown at B and C of this figure. Now as the plate current of any amplifying tube increases, it means that the load current, in increasing, produces a higher voltage drop (across the load) in direct proportion to the plate current, and hence the voltage at the plate (Ep) is in opposite phase to the plate current. At the highest value of plate voltage the plate current is lowest.

This is true in amplifiers such as in circuits B and C. Fig. 4, because the plate load resistance in the first case has no effect on the plate voltage-plate current phase, while in the second case (C, Fig. 4) it is just as true at resonance because the impedance formed by C and L forms a pure resistance equivalent. Obviously, any external reactance *would cause some phase change* in the voltage-load current phase and these conditions as previously described would not be fulfilled.

It is quite obvious in Fig. 4 that the plate signal voltage is simply the amplified grid signal voltage—180° displaced—that is, the plate signal voltage is in reverse phase to the input grid signal voltage Eg.

To carry the thought of making a tube act like an inductance further suppose we simply disregard the plate voltage wave (Ep) at A in Fig. 4 and supply a different plate voltage signal directly to the 6L7 plate from an oscillator source as in Fig. 3. Note that the oscillator has no relation to the input grid of the 6L7 at all. The oscillator is also independent of the plate current of the 6L7 tube. The new plate signal voltage which we shall supply from the oscillafor may be of any phase that we choose (with respect to the input grid of the 6L7 tube) and as we have seen, we want this voltage to lead the plate signal current (Ip) wave by 90° in order for the tube to exhibit inductive characteristics. By way of information we indicate a leading phase on a graph always by moving the wave to the left, and for 90°, it will be moved 1/4 cycle 360

to the left (because --= 90).

4 Of course, by now we have completely given up the idea that the 6L7 tube is *intended to amplify*. In this application we supply a signal to both the grid and plate and wish to make use of the reactance (inductive) properties of the tube rather than its amplifying qualities.

Refer to Fig. 3 again and note that the R.F. signal at the grid end of L2 is fed directly to the plate of the 6L7 modulator, but a blocking condenser C2 is used to prevent the D.C. applied to the 6L7 plate from being shorted to ground through L2. The value of the blocking condenser C2 is 250 mmf, and it was chosen to have a very

TAPES FOR MAC AUTOS, RECORD-ING SLIPS AND RECORDING INKS

Write AYERS AUTOMATIC CODE MACHINES 711 Boylston St., Boston, Mass,

ocial Securi

Bronze Plate

This

GENUINE

LEATH

BALLO

Estra Charge

DENTIFICATION

without

with your Mame & Mumber

on it

Please Mention This Magazine When Writing Advertisers

Applied Radio

small reactance as compared to the A.C. plate resistance of the 6L7 tube to prevent serious phase shift from the oscillator inductance L2 to the 6L7 plate. For example, the A.C. plate resistance of the 6L7 is given as greater than 1 megohin while the reactance of the 250 mmf, condenser at say 2000 KC, is approximately 350 ohms. The phase angle of a resistance and reactance in series is always "arctan (arc tangent or angle whose tangent is) X/R" expressed in the simplest terms. The numerical value of N/R by substitution, considering R to be 1 megohm, is 350/1.000,000 or .00035 which is the arctan of an angle very considerably less than 1/10th of 1 degree, a phase angle which can be entirely neglected. These values may be found in a regular trigonometric table of "natural tangents."

This simply means that the Λ .C. changes in the plate current of the 6L7 due to this plate signal are substantially in phase with the high frequency voltages applied to the plate from L2.

By means of R4 and the attendant network C3 and R5, the inner control grid of the 6L7 is also supplied with the high irequency voltage from the same point; namely, the top of coil L2. Analyzing this circuit, we find the inner-control-grid input capacitance of 7.5 mmf. to be in parallel with C3 which we will say is adjusted to 7.5 mmf. In parallel, these will total 15 mmf. These two capacities are in turn shunted by a .5 meg. resistor R5, and the group is in series with a 50,000 ohm resistor (R4).

First, we must note that the reactance of a 7.5 mmf, condenser at 2000 KC, is approximately 10,600 ohms.

In all of the work to follow, the accuracy is not intended to be better than 1/10th of 1% as only three significant figures are retained.

(1)
$$Xc = \frac{1}{2\pi FC}$$

 $Xc = \frac{1}{2\pi FC}$

 $\begin{array}{r} 6.28 \ge 2 \ge 10^6 \ge 7.5 \ge 10^{-12} \\ = 10.600 \text{ ohms approx.} \end{array}$ Where: Xc is in ohms $\begin{array}{r} \pi = 3.14 \ (2\pi = 6.28) \\ F = 2.000.000 \ \text{cycles} \ (2 \ge 10^6) \end{array}$

$$C = 7.5 \times 10^{-12}$$
 fd.

Now two condensers of equal capacity would have just half of this total reactance or 10,600/2 = 5,300 ohms. The impedance of these capacities with the 500,000 ohm resistor across them would be as expressed by the following formula:

$$Z = \frac{RXc}{\sqrt{R^2 + Xc^2}}$$

which by substitutions equals-

$$Z = \frac{500.000 \times 5300}{(500.000)^2 + (5300)^2} = 5.299.7 \text{ ohm}$$

We must resort to mathematics to find the phase angle between the voltage across and current through this entire combination. However, the student familiar with such work can see at a glance that the phase angle is very nearly -90° —that is, voltage lagging current. We will show the

method of arriving at the value without depending on estimation entirely.

From the geometry of the vectors forming these values we may obtain—

tan

$$\vartheta = \frac{R}{r}$$

Substituting values in the inverted expression-

R	Note: This is read:
$\vartheta = \tan^{-1} =$	Theta equals the an-
X	gle whose tangent is
	minus R over X.
500,000	Also, may be written.
$\vartheta = \tan^{-1}$	R
5.300	$\vartheta = \arctan - $ and
	X
$\vartheta = \tan^{-1} - 94.3$	read: Theta equals
	arc tangent minus
	R over X.

 $\vartheta = 89^{\circ} 25'$ approximately (from table of natural tangents)

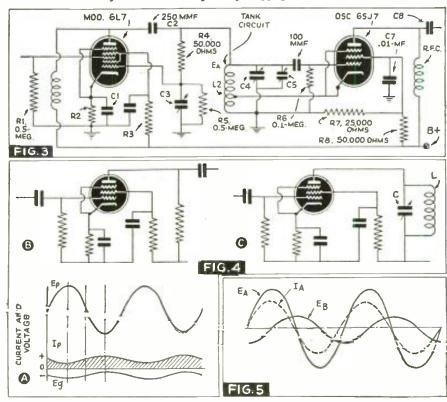
You could substitute the proper values in either the "sin" or "cos" functions, and by referring to complete tables of trigonometric functions, find the same angle; namely, nearly $-89\frac{1}{2}$ degrees and hence very nearly -90° .

From the above calculations, we find that there is no longer any reason to consider the 500,000 ohm resistor because it has an insignificant effect on the phase angle of the circuit. In other words, it changes the phase from -90° (for a perfect condenser) to $-89\frac{1}{2}$ degrees, an amount of phase shift which could not ordinarily be measured. From the A.C. viewpoint, we could, therefore, ignore the 500,000 ohm resistance R5 and simply consider the reactance. However, we are actually more interested in the method than the answer, and so we shall continue the exact analysis.

Since the condenser-resistance combination which we have just studied is in series with another resistance, we may express their sum as—

(2)
$$Zt = Z1 + Z2$$

Where: Zt is the total impedance from the top of L2, Fig. 3 to ground, Z1 is 50,000 ohms and Z2 is 5,299.7 ohms.


The numerical addition of these two impedances is a complicated procedure but is relatively easy to follow even if you are not familiar with the mathematical principles. Z1 is a pure resistance, and of course, has no phase angle. On the other hand, Z2 has a resistance element R5 and a reactance element X (of C3) and that part of it which is a pure reactance has a phase angle of -90° or is at right angles electrically to the resistance part which, of course, has an angle of 0° . In other words, we may consider the condenser-resistance combination to be made up of two series elements as well as these parallel elements. These must be expressed as though they were in series in order to add the two impedances. The facts that we have at hand are the impedance value (5,299.7) and the phase angle (-89°25'). These two completely describe the impedance when written as-

5,299.7 /-89°25' and read

5.299.7 phase minus 89 degrees 25 minutes.

The equivalent series circuit which would be identified exactly as above would have a resistance and condenser in series. The resistance element is found by multiplying

Fig. 3—"reactance tube" FM modulator. Fig. 4—diagrams used to explain FM action. Fig. 5—curve showing voltage lagging the current.

RADIO & TELEVISION

The theory behind the operation of this unit is not at all difficult to understand. You will notice that the grid return is 22½ volts minus, with respect to the filaments of the tube. If the photo-cell were pulled out, this negative voltage on the grid of the tube would be sufficient to cause plate current cut-off. However, with the photo-cell tulle in its socket, we find that there is a grid return path, through the photo-cell tube to plus "B" also. Photo-cells have a characteristic similar to a resistor and when light falls on the cathode surface the resistance effect changes, depending upon the amount of light that reaches it. This means that more or less plus voltage gets onto the grid of the tube, as the light is varied, and the plus voltage bucks the negative voltage already there. Therefore the net negative voltage on the grid is lowered, causing plate current to flow and pull down on the relay armature. The 3 megohin potentiometer is varied until the proper action is obtained with the amount of light you are using.

Many circuits have appeared for A.C.-D.C. operation in the past. This unit will find application where portability is required. It isn't necessary to use as large an "A" and "B" battery as is shown in the photograph, as long as the "B" battery used has a $22\frac{1}{2}$ volt tap.

There isn't much to putting this little unit together, as you can see. The chassis is only $4'' \ge 2'' \ge 2''$ but you can make it any size you prefer. A chassis like the one used in this model can be purchased already formed and punched. If a chassis as small as this is used it will be necessary to mount all parts except the relay and finish the wiring up to the relay, leaving leads just long enough to mount and wire the relay afterwards.

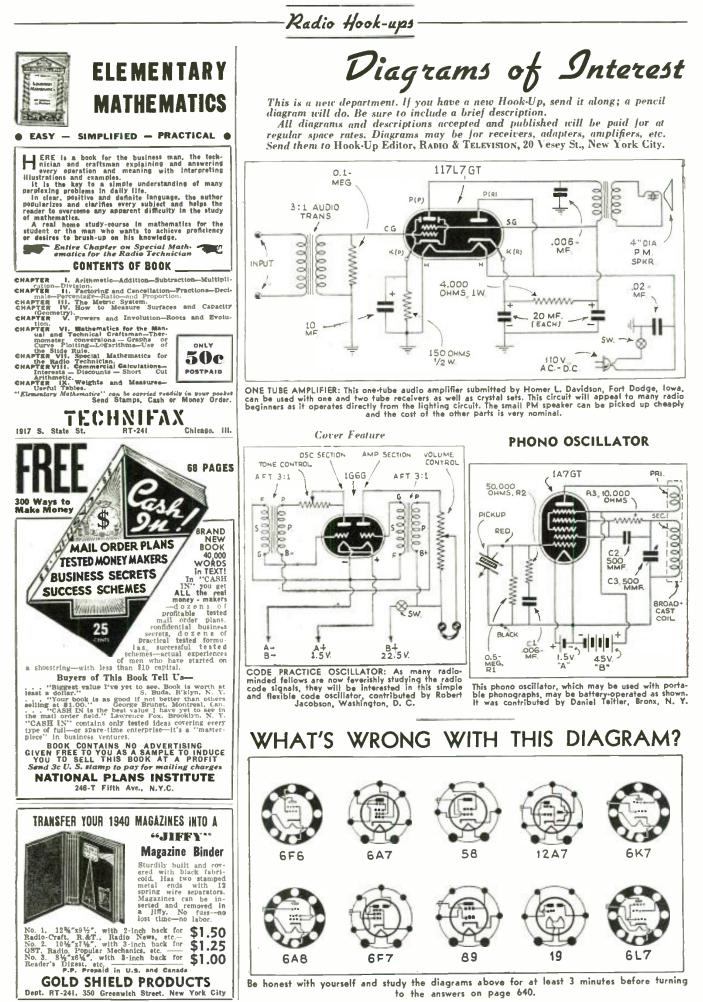
The sensitivity control has a screw-driver slot on the shaft. A three-screw terminal strip is mounted on the back of the chassis. The center terminal is wired to the armature of the relay and the two ontside terminals are each connected to one of the contacts. In this way you have a choice of a "normally open" or "normally closed" relay control circuit.

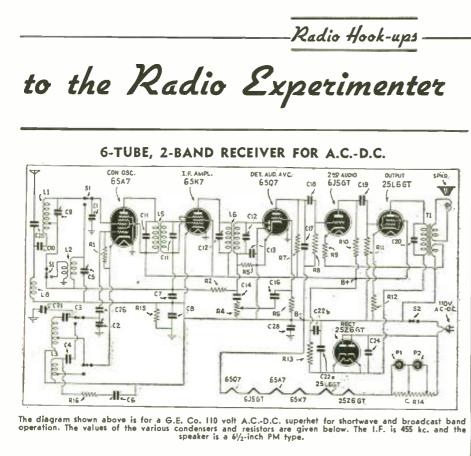
Since the greatest *change* in light gives the surest action, it is important that no extraneous light be permitted to fall on the photo-cell. It is a good idea to build a light tight box to fit over the entire photocell relay unit. Cut a hole about $1\frac{1}{2}$ ²⁷ in diameter on the side just in front of the photo-cell. If a lens whose focal length is equal to the distance between the opening and the photo-cell is mounted over the opening, still better action will result.

The light used should, if possible, be in the form of a concentrated beam which may be secured by means of reflectors or lenses. A 32 candle-power automobile headlight bulb makes a good light source. It can be operated from a storage battery or 6 volt step-down transformer. However, even a good flashlight will work.

even a good flashfight will work. List of Parts 1—Ajustment control, 3 megohms 1—Knight S.P.D.T. relay, 5000 ohms 2—4-prong sockets 1—G.M. photo cell 1—Singeohm, ½ watt resistor 3—feet 4-wire cable 1—3-lug terminal strip 1—Drilled chassis base 1—Orilled chassis base 1—With atterizy, 1½ volts 2—"B" batterizy, 45 volts 2—"B" batterizy plugs Miscellaneous hardware

10 BEST BOOKS 10[¢]


RADIO FANS EVERYWHERE—these fine ten cent text books give you an excellent foundation for the study of RADIO. They are clearly written, profusely illustrated and contain over 15,000 words in each book. You'll be


amazed at the wealth of information contained in these handy books. Excellent for reference—ideal for every technical library. YOUR MONEY BACK if you are not satisfied.

PROMPT SHIPMENTS

Please Mention This Magazine When Writing Advertisers

- Description Symbol C-1 Antenna section tuning condenser C-2 Oscillator section tuning condenser "B" band padder 5900 mmf. mica capacitor ±5% C-3 C-4 2-20 mmf. "D" band antenna trimmer 655 trimmer "D" band satting 2-20 mmt. "D" band oscil-lator trimmer -05 mfd. paper capacitor 6-1 mfd. paper cabacitor 5-15 mmf. "B" band antenna trimmer -01 mfd. paper cabacitor 470 mmf. intea cabacitor .002 mfd. paper cabacitor C-6 C-7 C-8 C-9 C-10 C-13
- Symbol
 Description

 C-16
 .02 mfL
 paper capacitor

 C-17
 220 mmL
 mica cabacitor

 C-18
 .005 mfL
 paper capacitor

 C-20
 .01 mfL
 paper capacitor

 C-21
 .215 mmL
 Buber capacitor

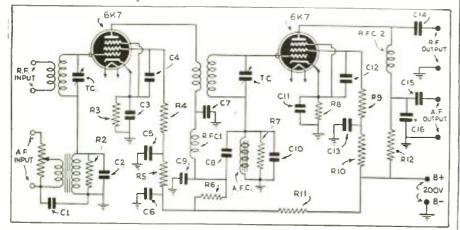
 C-22
 .00 mfL
 J30 V.

 Lator trimmer
 C-22b 30 mfL
 J30 V.

 C-22b 30 mfL
 J30 V.
 dry electrolytic

 C-24
 .05 mfL
 paper capacitor

 C-25
 .01 mfL
 paper capacitor


 C-34
 .05 mfL
 paper capacitor</t

Description

Symbol

Description Symbol ¹¹₂ inh anteina choke Itial lami, Mazda No, 44 Itial lami, Mazda No, 44 Itial lamp, Mazda L-8 P-1 R-1 R-2 R-4 R-5 2.2 hierohms carbon resistor 2 mcSohms volume control 470,000 ohms carbon resistor 15 mcSohm carbon resistor 1,9 mcSohm carbon resistor 3300 ohms carbon resistor 3300 ohms carbon resistor 470,000 ohms carbon resistor 150 ohms carbon resistor 150 ohms carbon resistor 150 ohms carbon resistor 150 ohms carbon resistor 161-0,000 ohms carbon resistor 170,000 ohms carbon resistor 170,000 ohms carbon resistor 100 ohms carb R-6 R-7 R-8 R-10 R-11 R-12 R-13 R-14 R-15 R-14 R-16

COMBINATION R.F. AND A.F. AMPLIFIER

Frank H. Tooker of East Orange, N. J., sent us this diagram. The values of the various condensers and resistors are as follows:

C1=0.1 mf. C2=.0001 mf. C3=0.1 mf. C4=.01 mf. C5==0.1 mf. C6=1.0 mf. C7=.0001 mf. C8=_.01 mf. C9=:.001 mf. CI0=.0001 mf.

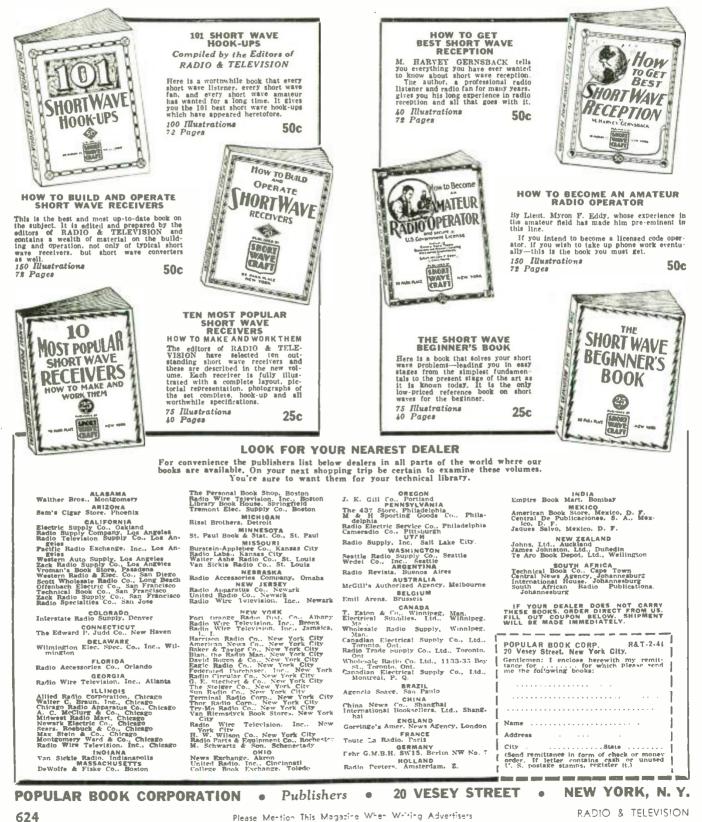
CI1=0.1 mf. C12=.01 mf. CI3=0.1 mf. CI4=.00025 mf. C15=.01 mf. CI6=.001 mf. R1=100,000 ohms R2=100,000 ohms R3=2000 ohms R4=10.000 ohms

R550,000 ohms	R9==1
R6=20,000 ohms	R10=
R7 <u>—100,000</u> ohms	RII = 1
R8==2000 ohms	R12==
AFT=audio frequency transfo	rmer, i
AFC=audio frequency choke,	700 he
RFC-I and RFC-2=R.F. chokes	, 25 m
T.Ctuning condensers, gand	bet

10,000 ohms 50.000 ohms 20 000 ohms 20,000 ohms ratio 3:1

enries ı.h.

RADIO RADIO AMATEUR By G.W.Shuart COURS PRICE 50¢ MORT WANT OLD THE Your Money Back_ If the RADIO AMATEUR **COURSE** does not represent the greatest book value fered to the radio "fans" **50c** To convince you may there better book buy today, the publishers "O convince you that there isn't a of the RADIO AMATEUR COURSE make the sensational offer of a moneyback guarantee on such a low-priced book. Stop in at any of the many dealers handling this book and examine it. See for yourself if the RADIO AMATEUR COURSE isn't just the book you've always wanted. Printed on the finest coated paperwell illustrated attractive 4-color cover--complete with radio information you must have. It contains a step-by-step program for obtaining a short-wave radio education. Written by GEORGE W. SHUART, W2AMN, foremost short-wave authority **148 PAGES** 61/4 x 91/2 INCHES OVER 150 RADIO DIAGRAMS and TECHNICAL PHOTOGRAPHS


RADIO AND TELEVISION 20 Vesey Street New York, N. Y. See Page 624 for list of our dealers. _____ **RADIO AND TELEVISION** 20 Vesey Street, New York, N. Y. Gentlement: I enclose herewith my remittance of Fifty Cents (50c) for which please send me POST-PAID, my copy of the RADIO AMATEUR COURSE. (Remit by check or money order: register letter if you send cash or unused U. S. Postage stamps.) Name Address

623

for February, 1941

YOU buy parts, tubes, kits, accessories from your local radio dealer—that's what countless thousands of short-wave fans do. Now through a nation-wide distribution service our numerous books are available at your favorite radio dealer-right where you buy other radio equipment. It's more convenient. saves time and you can inspect the books before you buy. Ask your dealer to show you all the books advertised on this page-they're always in stock.

624

www.americanradiohistorv.com

Ray Question

Edited by Herman Yellin, W2AJL

Short-Wave Receiver

Please publish a diagram of a short-wave receiver, using a oK7, 6C5 and a 616 tube -S. Kalista, Coaldale, Pa.

Shown here is a 4 tube T.R.F. receiver answering your A. specifications, Either 6K7 or 6SK7 tubes may be used in the R.F. and detector circuits. Condensers C-1 and C-3 are 35 mmf. tuning condensers, while C-2 and C-4 are 100 mmf, band-setting condensers. The coils can be any two-winding, all-wave plug-in

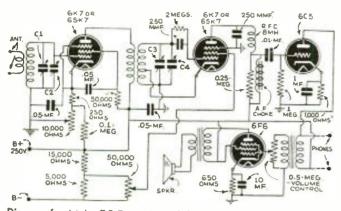


Diagram for 4-tube T.R.F. receiver of the regenerative type. No. 1246.

coils. The detector grid coil is tapped about 20 percent of its length above ground. It it is desired to use phones, they may be connected across the primary of the interstage audio transformer. Use an output transformer having a primary impedance of about 4000 ohms. The audio choke in the plate circuit of the detector is one of the 500 henry low-current types of chokes,

Eliminating Ignition Noises

How can I eliminate ignition noises picked up by the antenna lead-in on my auto radio?-L. Morosic, McCook, Nebraska, A. The antenna lead-in-that is the connection from the antenna proper to the receiver, can and should be shielded by using low capacity cable. This is similar to ordinary shielded wire except for the much greater thickness of the cable caused by the increased space separating the inner conductor and the outer shield braid. This outer braid should be well grounded at the receiver end, while the inner wire is connected to the antenna terminal post of the receiver.

Regeneration Receiver Trouble

2 I recently completed the receiver described on page 22, volume 2, of the Gerusback Educational Library. I am using a type 36 tube instead of the one diagrammed and incorporating an A.C. power-supply. However, the set appears to be insensitive and no oscillation can be obtained .- H. S. Emigh, Jackson, Miss. A. The most common cause of lack of regeneration and nonoscillation in regenerative receivers is a reversed tickler winding. Always try reversing the two leads to the tickler or plate winding, We would also suggest, if you have not already done so, to use a 15,000 or 25,000 obm control in series with the cathode for controlling volume, instead of the filament control shown in the original set. Either ground one side of the filament or ground the center tap of the filament winding,

Space Charge

What is meant by the space charge of a vacuum tube and what effect has it on the operation of the tube?

A. Not all the electrons emitted by the cathode or filament of a vacuum tube are attracted to the plate. Some of them, having low velocities, remain bunched up around the cathode and act as a screen, lowering the plate current: that is, causing a plate current lower than would result if there were no space charge. These electrons around the cathode keep falling back on the cathode, giving way to other low velocity electrons which also remain near the cathode, only, in turn to be drawn back to the cathode. Increasing the plate voltage, will, of course, reduce the space charge effect for a given filament temperature.

Time Signals

Is there any meaning or code to the signals preceding the sending out of the time signal or dash at the exact hour?

A. The time signal, as transmitted by American Naval stations, begins at five minutes before the hour. It consists of the transmission of a dot for every second, omitting the dot at the following seconds :---

29, 51, 50, 57, 58, 59 during the first minute 29, 52, 50, 57, 58, 59 during the second minute, 29, 53, 56, 57, 58, 59 during the third minute,

29, 54, 56, 57, 58, 59 during the fourth minute.

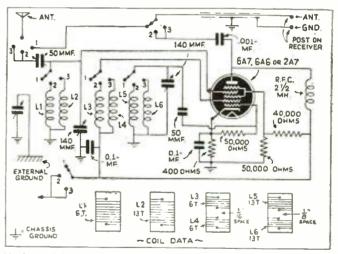
29, 51, 52, 53, 54, 55, 56, 57, 58, 59 during the fifth minute,

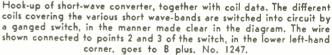
At the end of the 60th second of the fifth minute, a one second dash is sent, the beginning of which is the time signal,

NAA at Arlington, Virginia, sends time signals almost every hour on a number of frequencies. Their schedule follows, Time is GMT, using the 24 hour clock.

113 kc. at 1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23 and 24 o'clock.

4390 kc. at 2, 3, 8, 9, and 10 o'clock.

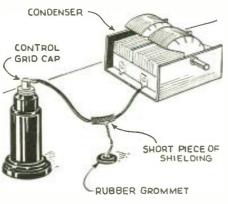

9425 kc. at 2, 3, 4, 5, 6, 7, 8, 9, 10, 13, 14, 15, 16, 17, 19, 20, 21 and 22 o'clock,


12,630 ke, at 2, 3, 8, 9, 10, 14, 15, 20, 21, 22 o'clock.

17,370 ke. at 14, 15, 20, 22, and 21 o'clock,

Short-Wave Converter

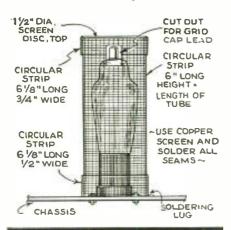
Can you send me more detailed information on the conerter shown on page 648 of the March issue?-E. S. Iwasko, Lansing, Mich.

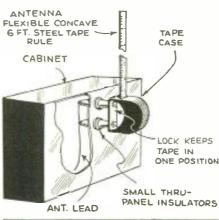


A. We are reprinting the diagram of this efficient short-wave converter. All parts values as well as coil information are shown. The coils can be wound with No. 20 wire on 114" diameter forms, 3^{3}_{4} " long, space wound to fit the available space. Covering the 13 to 30 meter and 30 to 60 meter bands, it has a novel switching arrangement built around the 6-pole, 3-position switch. On two of its positions, the converter is connected to the receiver as a converter on one of the two short wave bands, while on the third position or position No. 1 in the diagram, the converter is disconnected from the antenna and the antenna is connected to the receiver. The switch can be of the 3-deck rotary type, with two poles per deck,

Queries to be answered by mail (not on this page) should be accompanied by fee of 25c (stamps, coin or money order). Where schematic diagram is necessary, our fee is 50c up to 5 tubes; for 5 to 8 tubes fee is 75c; over 8 tubes, fee is \$1.00. No picture diagrams can be supplied.

The Cover Kink First Prize Winner **IMPROVISED FIXED** CONDENSER

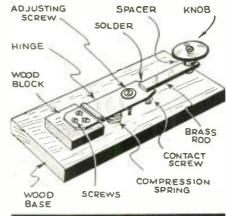

When I need a very small fixed condenser I use the following kink. I substitute one of the wires in the circuit, to which the capacity connection must be made, by a shielded wire from which the shield has been removed for a short space. To this shield a wire is soldered and the condenser is ready.-Oleg Melnikoff.



TUBE SHIELD

This tube shield is made of copper screen. used for window screening. First cut a piece the height of the tube and about 6" long. Cut a notch about 1/4" x 11/2" in the center of the 6" edge to pass the grid cap lead. Bend this piece into a 11/2" circle and solder. It is advisable to use acid core solder. Next cut a piece $6'' \ge \frac{1}{2}$ and bend it into a slightly larger circle and solder it to serve as the base. Two soldering lugs are soldered at the bottom in positions where the socket bolts can go through them, to hold down the base and ground it. Then cut another piece $6'' \ge 34''$ for the top circle and form a circle slightly over 11/2" and solder. A $\frac{1}{2}$ x $\frac{1}{2}$ " notch is cut in this piece also. Last of all a piece about $\frac{1}{2}$ " in diameter is cut for the top and soldered to the top circle.—Bruce H. Stribling,

(Copper or other metallic screen makes a very good shielding material, whenever sheet metal is too expensive or is not available for shielding purposes. Due to the overlapping fields set up between the wires forming the screen, the effect is the same as if solid sheet metal was used. A ground connection


Radio Kinks

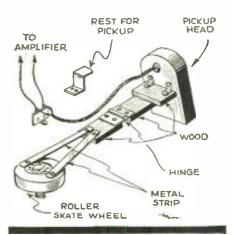
"STEEL RULE" ANTENNA

A steel rule of the collapsible concave type makes an excellent antenna for portable radio sets. It is especially convenient for transmitters, since the radiating portion can be adjusted quickly to the exact desired length. Depending on the construction of the cabinet of the portable outfit, the case of the rule can be mounted inside or outside. Two "midget" size feed-through insulators make an excellent support.-Kurt Rutter,

HOME-MADE TELEGRAPH KEY

Here is a home-made telegraph key that really works. All materials needed, including the lock hasp, are indicated in the diagrams. Mount the hinge section of the hasp on a wood block on a wood base. Set the compression spring in a hole bored in the base and put in the contact screw. The adjusting screw (with a washer to keep it

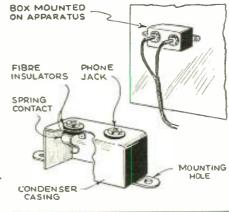
from slipping through the hole in the hasp) is next put in place. With the knob attached to the brass rod, it is soldered onto the end of the hasp. The contact space and spring tension is adjusted by using the adjusting screw and the contact screw. The key is then ready for operation. In place of the lock hasp any small hinge could easily be substituted.-Robert Vadney.

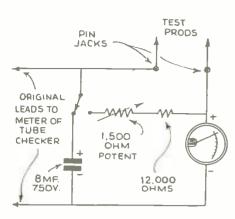

can be easily soldered to such wire screen. and for many purposes a "screen" shield like this will fill the bill very nicely.)

RADIO KINKS

of favorite to the Kink Editor

MAKESHIFT PICK-UP ARM


Here's an emergency arm for the phonopickup. Although it is not streamlined it works just as well. The bearing for the arm is an old roller skate wheel, onto which are soldered two nuts to hold the arm. The two metal strips which fasten to these nuts in turn hold a small wooden strip which is cut in half and held together by an easy action hinge. The other end of the wood can then be fastened to the pickup head with small angles. The wire from the pickup is allowed to ride free in the air and is an-

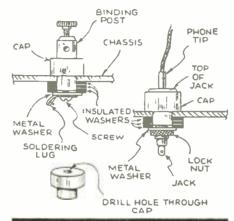

chored to a binding strip to one side. Two small angles are also used to provide a rest for the pickup. The roller skate wheel and the hinge provide casy action in all directions, and there is not any excessive weight on the record.-Butler Roberts.

TERMINAL POST

The construction as you see is very simple. The only thing you need, which can be obtained easily enough from an old radio set, is the can-type by-pass condenser. It can be used for many things. The materials you need are two phone jacks and four washers; the holes are already drilled. It makes a nice appearance on sets that are exposed. It is also useful for the workbench, where meters have to be quickly connected and disconnected .- James Barrett.

published on these pages will win their senders 8 months' subscription to RADIO & TELEVISION. The best kink published each month will win a 2 years' subscription. Read these kinks: they will be of real use to you, besides indicating what is wanted. Send a typewritten or ink description with sketch

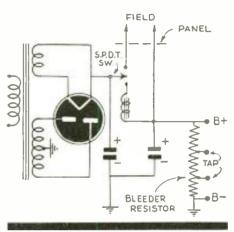
READING HI OHMS ON TUBE CHECKER


The high voltage obtained from the 89 tube and electrolytic condenser removes the necessity for usual copper oxide rectifier or B battery, Even though the meter has a low sensitivity (of say 125 ohms per volt) and reads 0-5 or 8 ma, instead of the usual 0-1, it is possible to use it as an ohumeter without impairing its original function. Simply disconnect one lead and follow the diagram. Potentiometer, SPDT switch and two pin-jacks are mounted on the panel. The fixed resistance is determined by the internal resistance of the meter used. The 0-8 meter I use requires 12,000 in series with a 1500 ohm potentiometer, in order to adjust the indicator for zero reading at full scale, when test prods are connected. If not sure of the resistance necessary, try high

ones first and then substitute lower ones until the full scale reading is obtained. Then using several known values across the prods, a scale can be calibrated easily. The limit of good measurability with my set-up-using 0-8 meter, plus an 8 mf. electrolytic condenser, is about 2 megohus. -Den Chamberlin.

Radio Kinks

TOOTH-PASTE TUBE CAPS AS INSULATORS


Here is a use for the composition cap of tooth-paste and shaving cream tubes. By drilling a small hole through it, each cap makes an excellent extruded insulated washer for mounting binding posts on metal chassis. By using the larger sizes and drilling a larger hole, they can also be used to insulate phone tip jacks from metal chassis. In either case, flat insulated washers of

suitable thickness and diameter are slipped over the end of the cap, to take up the slack when cap extension does not come flush with the inside of the panel. These caps are usually of different colors, which makes for quick and easy identification in various applications. A great variety of sizes is also available.-G. A. Soderlund.

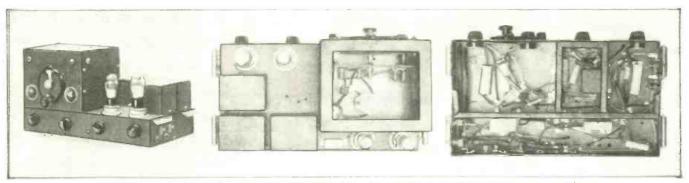
FILTER WRINKLE

Here is a filter kink I used on a recently constructed power supply. I wanted to hitch up a dynamic speaker on a small set with

low plate drain. At the same time I didn't want to use the field winding as a filter choke permanently in the supply. I solved the problem with a S.P.D.T. switch, two binding posts, and a little re-wiring .--William Whitehead.

Simply fill in the coupon at the left and mail together with check or money order. Register letter if each or unused U. S. postage stamps are sent. To ever shipping charges on the lands, add ho your remittance the amount in-dicated: If you are lecated east of the Mississippil, add 15c; west of the Mississippi, add 15c; fortign countiles, add 40c. RADIO & TELEVISION, 20 Vesey St., N.Y.C.

for February 1941


City

Name

Please Marri - This Magazine When Writing Advertisers www.americanradiohistory.com

TODAY!

Easy Set Building

Several views of the 4-tube regenerative receiver here described are shown in the accompanying photos.

4-Tube Regen. De Luxe Receiver

• THIS four-tube regenerative receiver has given such excellent satisfaction that the writer feels sure other readers, especially beginners in radio set construction, will want to know the details. By means of *plug-in* coils all the short-wave bands are covered and the *broadcast band* stations as well. Extra smooth regeneration control is provided by means of a dual potentiometer scheme which the writer has worked out. Even with a short antenna, in a crowded city apartment, surprising results have been obtained with this set.

Main Points of Interest : Each point has its own advantage, but taken collectively

W. Ward

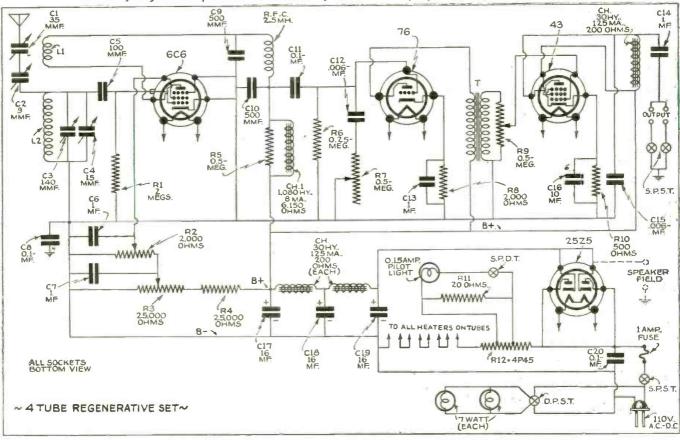
For those who hate to tackle the building of a superhet receiver, this super-refined "regenerative" receiver, which has given such remarkable results for Mr. Ward, will find a ready welcome. Remarkable "foreign" station reception has been accomplished with this set using only a short aerial, in a congested city section. they really do things to, or rather for, the old reliable regenerative circuit.

Vernier Antenna Trimmer-2 condensers used.

Vernier Tuning Condenser-2 condensers used.

Vernier Regeneration-2 potentiometers instead of one.

Twin Filter System-using 2 chokes.


Dual Light Switch for on and off.

Dual 110 V. Pilots-Illuminate interior, check on power.

1 Amp. Fuse.

Dual electrical outlets on rear of chassis.

The wiring diagram is simple to follow, even for beginners and no aligning of 1.F. stages has to be followed.

RADIO & TELEVISION

1 Power Cord plug-in (to table or desk lamp, or transmitter).

Dual jacks in output-separate switch for each.

1 Speaker-magnetic or PM. dynamic.

2 Phones or extra speaker. Tone Control and noise eliminator for C.W. (code) reception.

Audio volume control permits operation of regeneration control at its peak, or most sensitive position.

Tubes exposed on chassis for better cooling, plus visual indication of set being turned on.

Partition shielding of each stage is one of the main reasons for this receiver's high stability and selectivity.

Ground connections are made to a separate network mounted on small standoff insulators, thereby removing the hazard of a grounded chassis. The only connection between chassis and ground is through a 0.1 mf. condenser.

Details of Set

The antenna control condensers are of two different types:

C1-is a National 35 mmf. dual spaced experimenters' type variable, which connects to the antenna and a Bud 1-9 mmf. 6L6 neutralizing semi-variable condenser between the National Condenser and the Hammarlund coil. The National is set at 50 on the dial and the Bud is then set to give smooth regeneration on the hand in use. The Bud must be set with a fibre screwdriver or 10" dowel-stick. The 2000 ohms regenerative control No. 1 is set at center position; the 25,000 ohm control No. 2 is then advanced until regeneration occurs, and left in this position. Regeneration is now controlled by the No. 1 2000 ohm control. The 15 mmf, condenser is set around 10 on the National "B" dial, then the 140 mmf, is set at the bottom of the band and left there, all tuning being done with the 15 mmf. condenser. If two stations interfere, tune the one you want to its loudest point and adjust the antenna condenser slightly and the "offender" will disappear. There is a minimum amount of static disturbance on this receiver, but when used on C.W. (code) even this may be removed by setting the tone control properly. The advantage of the audio volume control is immediately apparent to the veteran, but even the novice will soon recognize its value. With this control almost $o \vec{p}$, the European stations roll in at room colume; with it on, they chase you out of the house! Amateur phone at Puerto Rico and California are clearly heard and held during three to four contacts. One West Coast Ham was held for one hour and fifteen minutes.

I can hear you say that a Broadcast Station antenna system must have been used to get these results. I will try to explain my location as best I can.

A brownstone house in the heart of New York City; receiver located in rear basement, right near the window-a thirty-five foot antenna with double insulators spaced one foot apart, running from fence to house -the outside insulators spaced about four feet from both ends. The lead-in is only eight feet long, which I believe is the main reason for my success. Once again, keep your lead-in as short as possible!

I used the same length antenna clevated up in the air ten floors, with its corresponding long lead-in, and the noise was terrific, with no gain in signal strength! I might add that this house is surrounded by all steel buildings and for a period of one year this set has performed the same way, even during the hottest summer days! The author has incorporated in this receiver all the refinements and advantages which he believes to be essential for good results. After all, that is the one thing that counts in any receiver-RESULTS!

The fourth can in the parts list, not shown in the picture, sets in the space behind the first audio tube No. 76, and covers the Thordarson choke No. 1. The Bud 1-9 mmf. antenna condenser fits into the space to the left of the 6C6 detector tube.

It is of prime importance that the builder try to use the same parts as here described, in order to obtain the same results-use parts with the exact values specified.

Parts List

HAMMARLUND

and L2 One SWK4-17-270 meter kit and one SWK4-250-560 meter kit (B.C. coil) 4-prong tsolantite socket T.1 1—4-prong (solantite so 1—2.5 mh. R.F. choke

BUD

C2-One 1-9 mmf. 6L6 neutralizing condenser NATIONAL

C1--35 mmf. dual-spaced midget condenser C3--140 mmf. single-spaced midget condenser C4--15 mmf. dual-spaced midget condenser Type "B" Verneer dial and illuminator

CENTRALAB

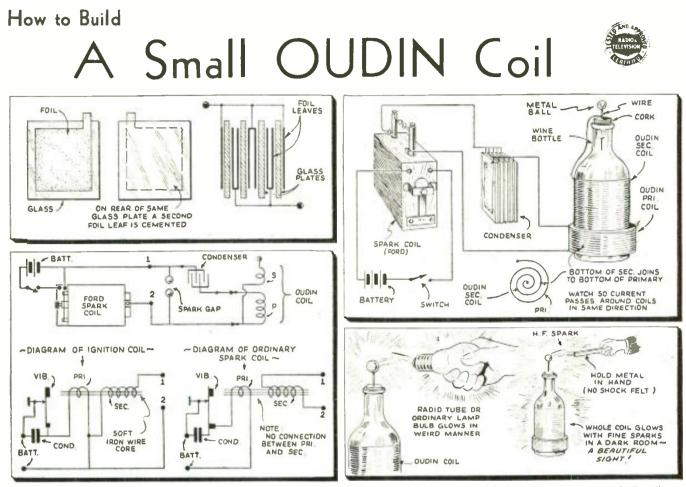
2-2000 ohm regeneration control 3 25,000 ohm regeneration control R7-R9-32 meg, tone and volume control SPRAGUE (Condensers) SPRAGUE (Condensers)
 C5- 100 mmf. mica, 600 v.
 C6. C7-1.0 mf., 400 v. condenser; paper
 C13. C14-1.0 mf., 400 v. condenser; paper
 C8. C11. C20-0.1 mf., 600 v. condenser; paper
 C17. C18. C19-16. mf., 250 v. condenser; paper
 C16-10 v. f. 50 v. condenser; conc. C16-10 mf., 50 v. condenser; paper C9, C10-500 mmf. mica, 600 v. I.R.C. (Resistors) R1-2 incodent, i_2 w, resistor R4-2 incodent, i_2 w, resistor $R5-i_2$ incodent, i_3 w, resistor $R5-i_4$ incodent, i_2 w, resistor R0-50 ohm, 1 w, resistor R10-500 ohm, 1 w, resistor R10-500 ohm, 1 w, resistor AMPERITE R12-4P 45 ballast tube THORDARSON (Trf. and Chokes) $T \rightarrow 3$ to 1 audio transformer CH $\rightarrow 3$ chokes 30 henry, 125 ma., 200 ohms CH $\rightarrow 1$ choke, 1080 henry, 8 ma., 6150 ohms LITTELFUSE 1-Metal covered fuse mount 1-Fuse, 1 amp., 250 v. AMPHENOL 2-6-prong sockets, above chassis type, 1 standard type 1—5-prong socket, above chassis type 1—4-prong socket, above chassis type E. F. JOHNSON -Standoff insulators, 5%" high, 6/32 hardware MISCELLANEOUS 2-Etched metal dial plates, 0.100. 134" diameter
2-Bar knobs for above
4-Round bakelite knobs with arrow
2-Jewelled pilot brackets with candelabra bases for 7 w., 110 v. bulbs, 1 red, 1 green, ½" 2-Jewelled pilot brackets with candelabra bases for 7 w., 110 v. bubbs, 1 red, 1 green. ½" diameter
2-Jewels: 1 red. 1 green. ½" diameter for sides
2-7 w., 110 v. pilot lamps
1-No. 40 brewn head. 0,150 ma. dial light
1-Chassis base, 18" x 10" x 3"
1-Detector can. 9" x 714" x 7" H
4-Choke cans. 4" x 3" x 3½" H
4-Choke cans. 4" x 3" x 3½" H
4-Iandles
2-14" x 1" brass spacers
3-14" x 4" shaft couplings
1-12" fibre shaft
1-Picec of bakelite ¼" x 9" x 6" for mounting tunine, head-spread and antenna condensers
2-Pand bearings
5-On-off switch plates
Machine screws, nuts, washers, rubber grommets, spighetti, fibre washers

1 TREASURE FINDER **BLUE PRINTS and INSTRUCTIONS** For Building the Following Treasure Finders and Prospecting Outfits Folder No. 1. The "Radioflector Pilot"—consists of a 2-tube transmitter and 3-tube receiver. Principle: radiated Wave from transmitter loop is reflected back to receiver loop. Emits visual and aural signals. Tubes used: two 1A5G—two 1N5G—one 1H5G.
Folder No. 2. The "Harmonic Frequency Locator"—Transmitter radiates low frequency wave to receiver, tuned to one of Harmonics of transmitter. Using regenerative circuit. Emits aural signals. Tubes used: one 1N5G.
Folder No. 3. The "Beat-Note Indicator"—Two oscillators so adjusted as to produce beat- -one 1N:6G.
 Folder No. 3. The "Beat-Note Indicator".-Two oscillators so ndjusted as to produce beatnote. Emits visual and aural signals. Tubes used: Three type '30.
 Folder No. 4. The "Radio-Balance Surveyor".-a modulated transmitter and very sensitive loop receiver. Principle: Balanced loop. Emits visual and aural signals. By triangulation depth of objects in ground can be established. Tubes used: Seven type '30.
 Folder No. 5. The "Variable Inductance Monitor".-a single tube oscillator generating fixed modulated signals and receiver employing two stages R.F. amplification. Works on the inductance principle. Emits aural signals. Tubes used: six type '30.
 Folder No. 6. The "Hughes Inductance-Balance Explorer".-a single tube destitue transmitter and sensitive 3-tube receiver. Principle: Wheatstone bridge. Emits aural signals. Tubes used: two type '30.
 Folder No. 7. The "Radiodyne Prospector".-a a completely shielded instrument. Principle: Balanced loop. Transmitter, receiver and batteries enclosed in steel box. Very large field of radiation and depth of penetration. Emits aural signals. Tubes used: two type '30. With any one of the modern geophysical methods described in the Blue-Print patterns, Radio outfits and instruments can be con-structed to locate metal and ore deposits (prospecting): finding lost or buried treas-ures; metal war relics; sea and land mines and "duds"; mineral deposits; subterranean water veins; oil deposits (under certain cir-cumstances); buried gas and water pipes; tools or other metallic objects sunken in wa-ter, etc. ter, etc., etc. Each set of blueprints and instructions enclosed in heavy envelope (9½" x 12½"). Blueprints 22" x 34"; eight-page illustrated 8½" x 11" fold-or of instructions and construction data ... Add 5c for postage TECHNIFAX CHICAGO, ILL.

GEOPHYSICAL-

PROSPECTING OUTFITS

1917 8. STATE ST. RT-241 i TECHNIFAX 1917 So. State. Chicago. 11. Enclosed herewith \$...... for which mail to address below: Treasure Finder No. 1, 2, 3, 4, 5, 6, 7. Complete set of seven folders, 🗖 NAME ADDRESS


I CITY STATE

Please Mention This Magazine When Writing Advertisers

www.americanradiohistorv.com

RT-241

Electrical Experiments

The small "bottle-type" Oudin coil here illustrated can be built at insignificant cost, and it will provide many weird and interesting effects. The Oudin coil consists of a single layer of fine copper wire wound on an old wine bottle, together with a primary of a few turns of heavy wire wound around the base of the coil. The exciter is simply an ordinary spark coil of the ignition type; the condenser is made from a few glass plates, such as old photo negatives, coated with tin-foil.

• THE electrical experimenter can have a lot of fun with a small Oudin coil wound on an old wine bottle, as shown in the accompanying picture. This small, yet powerful, high frequency coil can be excited irom a spark coil of the ½ inch variety, more frequently known to the experimenter as an *ignition* coil. Some people know them more affectionately by the term of Ford spark coil.

The cost of making this apparatus is practically nil, provided you can pick up a second-hand Ford coil from your local garage; or possibly you already have a -imilar spark coil on hand.

The other parts necessary are a fixed spark gap, comprising a couple of small balls, a glass plate condenser constructed as hereafter described, and the Oudin coil itself, which only requires a small amount of wire wound evenly on a glass bottle (or even a cardboard tube about the size of a one-quart wine bottle).

The glass plate condenser may comprise half a dozen old photo negatives, or else pieces of thin window glass, measuring about $5 \ge 7$ inches each. Each side of the window glass is coated with a piece of the or other metal foil, cementing the foil to the glass by means of thin shellae or banarri oil. The foil leaves are cut $\frac{1}{2}$ inch smaller all around than the size of the glass plate , to avoid sparking over the edges from one plate to the other. Every other metal foil plate is connected to a common terminal,

as indicated in the diagram.

The Oudin coil has a primary and secendary winding as the diagram shows. The secondary winding comprises a single layer of about No. 28 insulated or bare copper wire, the turns being spaced a slight distance apart. This can be done easily in a lathe, or if wound by hand—this spacing can be done by winding on a small string or thread along with the wire, the thread being removed afterward (or left in place for that matter).

At the lower end of the Oudin coil a primary winding is arranged, and this may consist of from 6 to 8 turns of No. 12 or 14 rubber covered wire, wound in a single laver about one inclu greater in diameter than the diameter of the bottle. One easy way to wind this primary coil is to wind a strip of cardboard (such as used for packing purposes) around the bottom of the Oudin secondary, so that the cardboard is about 1/2 inch thick. The primary winding may then be wound over this cardboard. In the event that bare wire of No. 12 or il gauge is to be used, the turns should be soaced about 14 inch. The advantage of the have wire is that spring clips may be used to make connections to the condenser, and these permit varying the number of turns in use,

The upper end of the Oudin secondary coil is connected to a brass or copper rod, supporting a small metal ball at the top. In order to obtain the maximum discharge of high frequency sparks from the metal ball on top of the Oudin coil, the following adjustments should be made. The vibrator of the spark coil may be adjusted for best results; next the number of glass.plates and tiu-foil leaves in circuit in the high voltage condenser may be varied; and thirdly, the number of Oudin primary turns in use may be varied by means of the clips as aforementioned.

For those who have the time to do a little experimenting different types of windings may be tried on the Oudin coil; also different types and diameters of primary coils may be tried. As long as no spark takes place between the primary and secondary windings on the Ondin, the smaller the diameter of the primary, the more intense the sparks produced at the free end of the Oudin secondary, Next, the greater the number of turns of fine wire used in the Oudin secondary, the higher the voltage and the longer the sparks produced; but there is a happy medium here, as with too fine a wire, the sparks are too thin and stringy to be spectacular. No. 28 or 30 has been found very effective for this size high frequency coil. Like all other electrical apparatus, the more electrical energy we pump into the Oudin coil, the more spectacular the high frequency spark discharges produced. This size coil may have a considerably greater amount of energy supplied to it than that available from a small half-inch ignition coil, and if you happen to have a larger size spark coil of the vibrator type, you can try it on the Oudin. When excited by a ½ to ¾ inch ignition Electrical Experiments

coil, such as the Ford type, high frequency sparks 2 to 3 inches or more in length will be liberated from the ball terminal atop the Oudin.

A number of interesting experiments for home lectures, radio clubs, etc., can be performed with a small Oudin, such as the one here described. Evacuated tubes, including old radio tubes and incandescent lamps, may be lighted by holding them in the hand and approaching the metal base toward the ball terminal of the Oudin. A spark will jump between the ball and the base of the lamp. and it will be illuminated with a weird bluish glow. Lamps may be lighted in this way without any shock, if one keeps his fingers away from the metal lamp base.

To draw sparks into the body from the ball terminal on the Oudin, hold a piece of metal such as a screw-driver or pair of pliers in the hand. The high frequency sparks will jump to the piece of metal and no unpleasant shock will be felt. A slightly disagreeable shock is felt if the bare finger is approached toward the Oudin high voltage terminal. Many other experiments will suggest themselves to those who huild the Oudin coil, such as "electric duels," the production of an illuminated cone between two rings of wire, one much smaller than the other and one ring grounded, etc.

While Oudin coils have been excited from vacuum tube oscillators, such as used for radio transmitters, the size and power of the transmitting tube required to produce equivalent results is prohibitive to the average experimenter with a limited pocketbook, compared to the method here described. Of course with larger Oudin or Tesla coils, giving sparks from one to five feet in length, the exciting circuit utilizes a high voltage transformer, a rotary spark gap being used in the condenser circuit feeding the Oudin primary, and of course no vibrator is used with the transformer.

LOCKING IN "END-TURNS"

For the first turn, lay a piece of tape under and come to the second turn; bring the free end over the first turn, under the second turn and wind on two or three more turns, then pull the free end tight and cut it off. For the last turn, six or seven turns from the last, lay on a piece of tape and wind on one or two turns : then lay on loop, allowing a couple of inches in the loop, then wind on three or four turns and lay the free ends back over the winding and wind on the last turn. Hold it, slip the free end of the single strip between the free ends of the loop, and pull the loop through and out, then take up the slack in the remaining free end and cut it off .-- H. L. Kidwell,

for February, 1941

SUPER SPECIALS of the attractive items listed here are brand new. ALL are in PERFECT WORKING ORDER, in many es, the parts alone total more than the price we are asking. 100% satisfaction guaranteed or your money cases, the parts alone total more than the price we are sensity. Total sufficient extra remittance for pareel ordunded. ORDER FROM THIS PAGE. Use the convenient coupon below. Include sufficient extra remittance for pareel post charges, else order shipped express, collect. Any excess will be refunded. C.O.D. shipments require 20% deposit. If full remittance accompanies order, deduct 2% discount. Send money order, certified check, new U, S. stamps. No C.O.D. to foreign countries. ORDER TODAY LIMITED QUANTITIES **PROMPT SHIPMENTS ASSURED** 2-SPEED PHONOGRAPH TURNTABLE AMAZING BLACK LIGHT !! AMAZING BLACK LIGHT!! Proverful 300-Watt Ultra-Violet Bulb The best and most prac-tical source of ultra-Violet Bulb The best and most prac-tical source of ultra-Violet Bulb for general experi-mental and entertainment substances brilliantly lumi-substances brilliantly lumi-

Adapts any phonograph for both 33-1/3 and 78 R.P.M. This ingenious device, by simply replac-ing your present turntable.

Wall

....

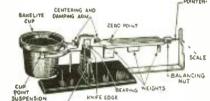
Shp. Wt. 1 lb. ITEM NO. 87 YOUR PRICE

LIFTS MORE THAN 20 TIMES ITS OWN WEIGHT

ing your present (unriable automatically modernizes your machine to play 33-1/3 R./P.M. high-fidelity trans-cription records as well as the standard 78 R.P.M. tions furnished, Feit-covered turntable measures 12" in diameter and fits all standard phonocraphs. Packed in original box. Original price \$3, Shp. Wt. 3 lbs; JTEM NO, 89 YOUR PRICE \$.95

2-WAY LAMP

mamental dual purpose lamp


Ornamental dual purpose lamp. Can be used as a table or sanity lamp in one position. By turning swirel base it be-comes a bracket lamp which may be mounted on wall. Hanger in base is provided for this. Handsome design. B as made of pressed glass, polished wood and plated metal stand. Comes with round shade colorfully decorated with rib-bon design, or more elaborate futed shade with fower design. Height of lamp 12%; shade %; Complete with cord. Shipping wat. 2 lbr.

ITEM (Plain Shade) NO. 120 98c

ITEM (Fluted Shade) \$1.05

BENNETT LABORATORY BALANCE

A compact laboratory balance made of finest quality tested materials. Extreme sensitivity (to 2-100ths gram or 2-7ths grain). Weighs to one decimal pt, further -POINTER-

KNIFE EDGE CENTERER

than usual low priced counter scale. Will handle up to 100 grams (about 4 oz.), Bakelite pan: tool styel knife edse: agate bearing for long life and accuracy. Ideal for photographic work and lab use. Handsome stream-ling daslim. Graduated either in metric or apothecary stream. Shipping wst. 2 lbs. Stem, Shipping wgt. 2 lbs. TEM NO. 122 OUR PRICE

A POSTAL CARD BRINGS IT TO YOU SEND FOR IT TODAY

AC, outlet, Current consumption from the set in the set of the set in the set of the set

6

\$2.00

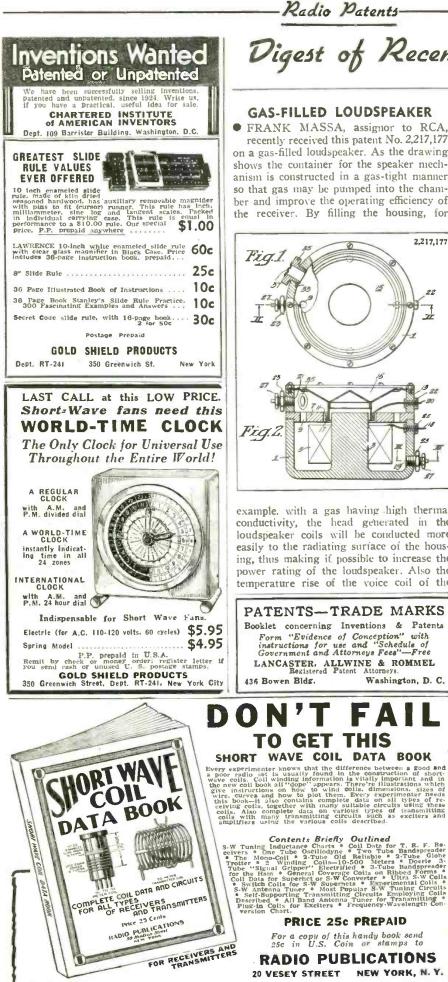
.....

ULTRA MAGNET

\$4.95 ITEM NO. 125 YOUR PRICE

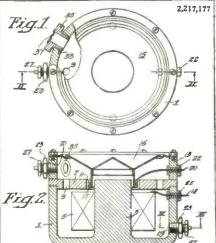
HUDSON SPECIALTIES CO., 40 West Broadway, N.Y.C. IT'S EASY TO ORDER-CLIP COUPON-MAIL NOW DPDER FROM THIS PAGE. HUDSON SPECIALTIES CO., 40 West Broadway, Dept. RT-241, New York, N. Y.

I have circled below the numbers of the items I'm ordering. My full remittance of \$..... (include shipping charges) is enclosed. OR my deposit of \$..... is enclosed (20% required), ship order C.O.D. for balance. No C.O.D. order for less than \$2.00. (New U. S. stamps, check or money order accepted.) Circle Item No. wanted: 86, 87, 89, 97, 120, 121, 122, 123, 124, 125


Name Address City

Send remittance by check, stamps or money order; register letter if you send cash or stamps.

ß


www.americanradiohistory.com

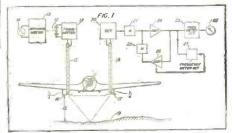
Digest of Recent Radio Patents

GAS-FILLED LOUDSPEAKER

 FRANK MASSA, assignor to RCA, recently received this patent No. 2,217,177 on a gas-filled loudspeaker. As the drawing shows the container for the speaker mechanism is constructed in a gas-tight manner so that gas may be pumped into the chamber and improve the operating efficiency of the receiver. By filling the housing, for

example, with a gas having high thermal conductivity, the head generated in the loudspeaker coils will be conducted more easily to the radiating surface of the housing, thus making it possible to increase the power rating of the loudspeaker. Also the temperature rise of the voice coil of the

PATENTS-TRADE MARKS Booklet concerning Inventions & Patents Form "Evidence of Conception" with instructions for use and "Scheduls of Government and Attorneys Fees"-Free LANCASTER, ALLWINE & ROMMEL Begistered Patent Attorneys. Washington, D. C.


the Bell Telephone Laboratories of New York, have recently received U.S. patent No. 2,206,903 on a Radiant Energy Distance Measuring System. One of the applications of this distance measuring device, is that of determining the height of an airplane above the ground. The distance is measured by radiating waves from one point to another, and receiving these waves reflected back at the first point.

loudspeaker will be greatly reduced, if a highly thermal conductive gas is used as the

conducting medium in the magnetic gap in

which the voice coil operates.

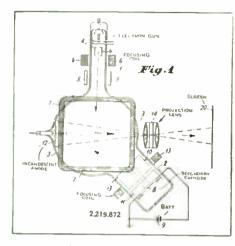
The time interval between radiation and reception is a measure of the distance, and is determined by cyclically varying the frequency of the transmitted waves, at a known rate and over a known range. The frequency difference between the wave being transmitted and the received reflected wave, is therefore, a measure of the distance to the reflecting surface. The measurements are

obtained by beating together the transmitted wave and the echo wave, and measuring the frequency of the resultant difference frequency beat wave.

RECEIVER VOLUME CONTROL

ROBERT B. FOSTER of Los Angeles,

Calif., was awarded patent No. 2.219,302 for an improved volume control for use on radio receivers. The claims in this patent can best be visualized by a study of the eleventh claim in this patent which reads as follows:


In a radio control apparatus, the combination with a cabinet, a radio receiver therein, the receiver having a variable tuning means adjustable to different broadcast station positions, means for shifting the same, and a loud-speaker. Further, means are provided of varying the volume of the loud-speaker, an adjustable cam for each broadcast station of the variable tuning means, means ior operatively connecting the volume, varying means with all of the cams of the variable tuning means, but with one particular cam at a time, the latter cam corresponding to and depending upon the specifically shifted station-tuning position of the tuning device, and separate means at the outside of the cabinet for each of the cams for separately adjusting each of the cams, said adjusting means being spaced and located in positions corresponding to the station positions of the tuning means.

www.americanradiohistorv.com

Radio Patents

TELEVISION IMAGE PROJECTOR

LEONARD MORRIS MYERS of Middlesbrough, England, assignor to RCA, recently received this patent No. 2,219,872 on a very interesting and unusual method of producing television images in the form of modulated heat patterns, suitable for projection on a large screen. This invention reproduces television pictures or images, not by fluorescent effect in a fluorescent

screen, but by heating a picture reproducing electrode to meandescence and thus obtaining pictures by light, due to heat. The diagram shows how a secondary cathode is heated by a battery or other source of current. The images projected on to it by the usual cathode-ray gun are, in turn, reflected on to an incandescent anode. From this point the images are radiated through the projection lens on to a screen.

DIRECTIONAL ANTENNA

PHILIP S. CARTER of Port Jefferson. N. Y., recently received a re-issued patent No. 21.609, covering a clever system of directional antenna which does not use a reflector.

The present invention obviates the necessity for reflectors and provides an antenna which is nearly aperiodic over a wide range of frequencies. Use is made of the phenomena of attenuation along radiating wires in order to obtain unidirectionalism without the use of reflectors.

Generally speaking, the invention comprises a pair of approximately equal length antenna radiating sections which are relatively long with respect to the length of the communication wave and angularly disposed with respect to each other, each section, in turn, heing composed of a plurality of radiating elements connected together by means of phasing members. In practicing the invention, it is essential that the radiating elements comprising each section be substantially coaxial with respect to one another so that they extend in the same direction and that the phasing elements connecting the radiating elements together shift the phase of the energy an amount just enough to make the ears of the radiation patterns of the different elements in each section add. It will thus be appreciated that the phasing elements which serve to provide maximum radiation from the system and thus maximum attenuation due to radiation should not reverse the phase of the currents between adjacent radiating elements.

Lowest Priced Publications for Experimenters

10 FOR 50C

Here is a large number of radio, short-wave, and me-chanical "how-to-make-it" designs. Each is a special publication originated by masters in their respective fields. For the low price of 50 CENTS, you buy TEN complete pamphlets with photographic reproductions, romplete me-chanical layout, and full description to make it possible for anyone to build the project in question.

PLEASE ORDER EACH PROJECT BY ITS PUBLICA-TION NUMBER, and use the special coupon below. We accept money-orders, cash. checks or new U. S. stamBs. (No foreign stamps.) If you send cash or stamps, register your letter. Money refunded if you are not satisfied. ANY TWENTY-FOUR PUBLICATIONS FOR ONE DOLLAR.

SHORT-WAVE RECEIVER PUBLICATIONS

HOW TO MAKE THE "OSCIL-LODYNE" I TUBE WONDER SET. HOW TO MAKE THE "19" TWIN-PLEX (ONE TUBE PERFORMS AS TWO) RECEIVER.....No. 102 HOW TO MAKE THE WIZARD I-TUBE 50-WATT TRANSMITTER. No. 103 HOW TO MAKE THE IMPROVED 3-TUBE DOERLE SET FOR BAT-TERY OPERATION......No. 104

HOW TO MAKE THE A.C.-D.C. "CASH BOX" RECEIVER. No. 118 HOW TO MAKE BEGINNER'S 2-TUBE ALL-WAVE SET....No. 119

HOW TO MAKE THE 1-TUBE-ALL-ELECTRIC OSCILLODYNE. HOW TO MAKE THE 2 TO METER TWO-TUBE LOUDSPEAK METER TWO-TOBE LOCOLOGIC No. 107 HOW TO MAKE THE 3-TUBE BATTERY SHORT-WAVE RECEIV-No. 108 ER. No. 108 THE BRIEF-CASE SHDRT WAVE RECEIVER AND HOW TO BUILD

HOW TO BUILD THE I-TUBE "53" TWINPLEX RECEIVER. No. 113 HOW TD BUILD THE HAM-BAND "PEE-WEE" 2-TUBER.....No. 115

RADIO BROADCAST RECEIVER AND SPECIAL RADIO PUBLICATIONS

HOW TO BUILD THE 2-TUBE "PENTODE PORTABLE" BROAD-CAST SET......No. 122 HOW TO BUILD THE GERNS. BACK ONE-TUBE PENTODE LOUDSPEAKER SET.....No. 124 HOW TO BUILD THE WORLD'S SMALLEST ONE TUBE BATTERY RADIO......No. 125

HOW TO BUILD A 6-TUBE BAT-TERY ALL-WAVE "FARM PORT. ABLE" SET.......No. 126 HOW TO MAKE AN A.C.-D.C. ONE-TUBE "DEAF AID." No. 127 HOW TO BUILD A PIANOTRON. No. 128

NICAL PROJECTS PUBLICATIONS MECHA

HOW TO MAKE A SOUTH SEA OUTRIGGER CANDE.....No. 131 HOW TO BUILD A PEE.WEE AUTOMOBILE......No. 132 HOW TO BUILD A DUAL-CON-TROL GLIDER. No. 133 133

HOW TO BUILD A SIMPLE PORT. ABLE REFRIGERATOR.....No. 138 HOW TO BUILD A XYLOPHONE. HOW TO BUILD THE ROWMO-BILE.....No. 140 HOW TO BUILD LARGE TESLA AND OUDIN COILS GIVING 18-INCH SPARKS......No. 141 HOW TO MAKE AN ARC WELD-ER......No. 142 HOW TO USE AN A.C. ARC WELDER......No. 143

RADIO PUBLICATIONS • 20 Vesey S	tree	et •	New	Yo	rk, N	.Y
RADIO PUBLICATIONS, 20 Vesey Street, New	Yor	k, N.	Υ.		R&T	
I enclose \$ for the publications listed by number, at right, at the rate of 50c FOR ANY TEN PUBLICATIONS NO	101	102	103	104	105	106

eight, at the rate of 50c FOR ANY TEN PUBLICATIONS, NO ORDER FOR LESS THAN Sub ACCEPTED, \$1.00 for 21 publica-tions. These publications are to be sent to me postpaid. I have placed a circle around each number which I want. Address

115 121 127 133 139 145 118 124 130 136 142 148 149 State Ε ADIO Ε **OFFERS YOU** 6 COPIES R&T FOR 50c

For a limited time only, and as long as they last, we will send you six back numbers of RADIO & TELEVISION assorted, your choice, for 50 cents.

The usual price for six copies would be \$1.50, and most publishers charge a higher price for back numbers over one year old.

year old. We can supply only the following back num-bers: Sept. 1931; Sept., 1934; Aug., Oct., 1935; 1936—all issues except Apr., May and Oct.; 1937—all issues except Feb. and Aug.; 1938— all issues except March and Nov.; 1939—all issues except Jan. March and April; 1940—all issues except Jan. March and April; 1940—all issues except Jan. and April; 1941—all issues to date. If you do not specify copies, we will send as-sorted numbers to fill your order. Note, we cannot exchange the copies for ones that have been sent to you. exchange the copies for an arrivation of you. Every copy of RADIO & TELEVISION con-tains information which you should have. Here is a chance to get those copies. As only a small supply of back numbers on

Please Merting This Magazine When Wilting Advertises

hand, this offer will be withdrawn as soon as they been sold. have

We order.	accept Rush	U. S. your	stamp order 1	s, U. oday.	s.	coin,	or	money

20 Vesey : Gentlem 25c for po	TELEVISION Street. New York, N. Y. en: I enclose herewith 50 Sitage), for which you are pers of RADIO & TELEVI.	to send me si-
••••••		
Name		···· ···· · ····
Address		
City		Rtate

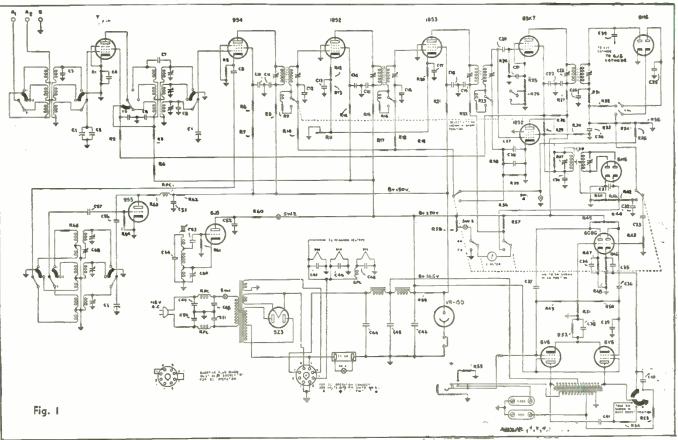
fre February 1941

New Radio Apparatus An U.H.F. Receiver For "FM" and "AM"

• THE public is showing definite signs of active interest in the new FM broadcasting. Already broadcast listenets are buying receivers capable of tuning in both the regular and FM programs. But what is the radio enthusiast whose interest extends beyond broadcast programs going to do about it. Is he going to be satisfied to have equipment which tunes only a single limited range of the ultra-high frequency spectrum -the range of 40 to 50 megacycles where FM is to hold forth, for instance? Or will he want to "go the whole hog" and equip himself to tune over the entire presently useful portion of the U.H.F. range of any from 30 to 100 mc, or higher? And isn't he going to want to listen in on services other than FM in this range?

Many hams and experimenters of the type that pioneered the now ordinary shortwaves have been pondering these questions —and many have come to the conclusion that they want to "shoot the works" by huilding or otherwise procuring equipment which will tune in not only the FM broadcasters, but the other FM and AM regular and experimental stations, the 5-meter and 2%-meter "ham" bands, the television audio broadcasts, etc. There is however, considerable doubt as to just what provisions all this calls for in a receiver. It is hoped that the following brief description of a receiver

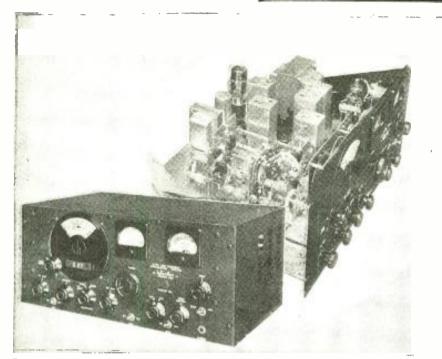
S. Gordon Taylor


made available to the public in recent months for these very purposes will help to clear up these doubts, or at least prove suggestive, both to those who plan to design and build their own equipment and those who plan to buy.

The Hallicrafters Model S-27 is a strictly ultra-high frequency receiver designed to provide complete reception facilities for the various types of services now operating (or planned) in these frequency ranges, with the exception of the video portions of television and the actual transcription of facsimile broadcasts.

It covers the continuous range of 27 to 145 megacycles in three bands of 27-45, 45-82 and 81-145 mc, and switches from one band to another in the same manner on the conventional shortwave receiver and this, incidentally, is something which many have believed impossible without serious losses. But with demonstrated sensitivity of better than one microvolt throughout the 27-46 mc, band, two microvolts for the 45-82 mc, hand, and 4 microvolts in the least sensitive spot of the 81-145 mc, range, this receiver definitely disproves the supposition that band-switching prevents attainment of high sensitivity. The S-27 is a "communications" type receiver, with a relatively large number of controls to provide the needed flexibility for all-service operation. Its primary difference from the communications receivers so popular for tuning the lower frequencies lies in its provision for FM reception, including a much wider range of adjustable selectivity, and an audio system capable of super fidelity.

Its flexibility in operation is indicated by the following summary of the controls provided on the front panel. These include: Tuning "wheel" with illuminated main and bandspread dials, A.V.C. off-on switch, manual R.F. and audio gain controls, antenna trimmer condenser to insure accurate R.F. tracking despite loading variations of different antennas, broad-sharp I.F. expansion switch, automatic noise-limiter off-on switch, AM-FM changeover switch, beatfrequency oscillator off-on, B.F.O. pitch control. send-receiver switch. 4-position audio-filter tone control switch, band switch, headphone jack, and meter balance adjustment. The main dial is fully calibrated in megacycles and the band-spread dial carries the conventional 0-100 calibration. The meter, which is an "S" meter for AM operation, is automatically switched to serve as a carrier-center indicator for accurate FM tuning.


New Radio Apparatus

65

NO.

18

34 35

Front View—Combining the wide flexibility of a Communications receiver, with the tone quality of a fine broadcast receiver, this new model provides reception of both "FM" and "AM" stations, throughout the range of 27 to 145 megacycles.

Chassis View—Here the receiver is shown with one panel bracket and R.F. shield removed to disclose the assembly of the R.F. section. Acorn tubes are utilized in the R.F., oscillator and mixer stages for maximum sensitivity.

No

13

The complete circuit diagram with capacitor and resistor values appears in Figure 1. Of the total of 15 tubes, 11 are used for both FM and AM reception. These include the R.F. stage, mixer, oscillator, 2 I.F. stages, audio amplifier and phase-inverter stage, push-pull output stage, B.F.O., voltage-regulator tube, and rectifier. When the AM-FM switch is set for AM reception an additional, sharply tuned I.F. stage is inserted in the circuit, plus a diode which serves both as detector and automatic noiselimiter. In the FM position a limiter tube and the discriminator-detector are substituted for these two. The movement of this switch also automatically makes all other necessary circuit changes, including switching of the meter and of the A.V.C. systems.

At the ultra-high frequencies the R.F. circuits become especially critical as to the tubes employed, circuit design and parts layout. The S-27 is one of the first standard receivers to employ acorn tubes. Not only are these capable of higher gain, but their low internal capacity is much more favorable for such circuits, where absolute mininum capacities are essential to efficient operation and wide-range coverage. Tubes of this type are employed for the R.F. stage, oscillator, and mixer. They are inounted projecting through the interstage shield partitions in such position that their grid and plate leads (which are at opposite ends of the tubes are right at the circuits with which they are associated. Other leads are kept to minimum length also. This is accomplished by the carefully planned R.F. layout (shown with its shield cover removed in one of the accompanying photos) in which the coils are mounted directly on the gang-switch terminals, the tuning gang is immediately adjacent to the switch assembly, etc.

The entire R.F. assembly is not only separately shielded but is on a separate sub-chassis, point-supported on the main chassis to eliminate microphonic vibration trouble.

To insure normal life for these acorn tubes, their plates have only 150 volts applied. This supply voltage for both oscillator and mixer is held constant by a VR-150 voltage regulator tube. This offsets linevoltage variations, stabilizes oscillator tuning and permits more uniform mixer operation.

One valuable point worth mentioning in particular is the oscillator coupling system in which a small pick-up coil, closely coupled to the oscillator grid coil, transfers the output to the mixer cathode circuit through a 300-mmf. condenser. This arrangement was adopted after all the conventional coupling and injection schemes failed to produce satisfactory results.

It may be well to point out that the intermediate frequency employed is 5.25 mc. This frequency avoids the peaked, sideband cutting characteristic that would obtain with the conventional low I.F. which, when expanded to maximum would not provide satisfactory band-width for FM reception. Also, this high I.F. results in far better image selectivity.

Parts List					44 45
RESISTORS					46
OHMS 250 1,000 10,000 2,000 1,000 100,000 100,000 ; 600			Ň	ATTS 1/3 1/3 1/3 1/2 1/2 1/3 1/3 1/3	47 48 50 51 52 53 54 55 56 57 58 59 50
8 00 000 0 000 35	R.	F.	Gain	1/3 1/3 Control 1/3	57 58 59 60

	OHMS 120 40 000 00,000 100 000 00,000 100 000 00,000 100 000 50 000 100,000 50 000 100,000 50 000 100,000 250 000 15,000 250 000 15,000 250 000 15,000 250 000 15,000 250 000 15,000 250 000 15,000 50 000 250 000 15,000 50 000 250 000 15,000 50 000 250 000 15,000 50 000 250 000 250 000 250 000 250 000 50 000 250 000 250 000 50 000 250 000 250 000 50 000 250 000 250 000 50 000 250 000 50 000 250 000 50 000 250 000 50 000 250 000 50 000 50 000 250 000 50 000 50 000 50 000 50 000 50 000 250 000 50 000 50 000 250 000 50 000 50 000 250 000 50 0000 50 000 50 0000	WATTS //3 //3 //3 //3 //3 //3 //3 //
	3 200 25 000 50,000 300 5 000 20,000 35	0 Wire Wound 11/2 1/3 1/3 1/3 1/3 1/3
CAPACITY 60 mr f 15 mmf 50 mmf 300 rmf 10. mmf 300 rmf 300 rmf 10. mmf 300 rmf 300	CONDENSER VOL Per Ant 600 400 400 400 600 400 600 400 600 400 4	

New Radio Apparatus Latest Radio Apparatus News

New Interference Locator

• THE Interference Locator is an entirely new device, designed in cooperation with outstanding jublic utility engineers and radio interference operialists to provide an inexpensive, highly sensi-tive and rugged portable device for the location and isolation of radio interference elimination. It is equally useful in the hands of the radio service-man who is interseted only in "moise" complaints arising from electrical devices attached to power lines, or to the public utility engineer, whose job

interference locator of improved type fitted with a directional loop antenna. and An.

it is to eliminate radio noise sources from the power or distribution line itself. In addition, the Sprague IL-2 Locator is ideally adapted for *locat-ing underground pipes*.

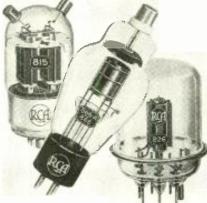
The Locator operates either from self-contained batteries for portable operation, or directly from 115 volt A.C. or D.C. lines. It is equipped with directional loop antenna; an extensible pole antenna is also provided.

is also provided. Tuning ranges selected by a switch are 500 to 1700 KC: 1.7 to 5 MC; and 15 to 32 MC. Sensi-tivity is such that an input signal of less than two microvolts will produce a deflection of 10% on speaker unit, the Locator is equipped with a two-range calibrated output meter, thus providing a visual as well as audible measure of interference intensity. Headphones may be attached in locations where high extraneous noise levels exist. A cali-brated volume control may be used with the output meter to measure interference suppression devices. Loop antenna can be switched to audio input as a search coil for audio frequency interference pick up or for use as a *buried pipe finder*. A special coaxial cable, complete with connectors is also available at extra cost, for remote use of pole antenna as a probe.

New RCA Tubes

THE Radiotron Division of RCA Mfg. Co. has announced the following new tubes: 354 Power Amplifier Pentode (miniature type): 815 Transmitting Push-Pull Beam Power Amplifier; 826 Transmitting Triode (for ultra-high frequency use): 866-A/866 Half-Wave Mercury-Vapor Rec-tifier; 1625 Transmitting Beam Power Amplifier (with 12.6-volt heater): 1626 Transmitting Triode (with 12.6-volt heater). The 364 is intended for use in the output stars.

(with 12.6-volt heater). The 3S4 is intended for use in the output stage of light-weight A.C.D.C. battery-operated portable equipment. This new tube has essentially the same characteristics as the miniature type 1S4, but is designed with a filament having a center-tap to permit of either a series-filament or a parallel-filament operating arrangement. The series ar-tangement requiring only 50 milliamperes has been provided especially for equipment utilizing a source of rectified power for the filament supply.


province especially for equipment utilizing a source of rectified power for the filament supply. The 815 is a new push-pull beam power ampli-fier designed for radio amateur use at ultra-luidh frequencies. Its high efficiency and high power sensitivity permit full power input with very low driving power. A single 815 operated in push-pull class C telegraph service is capable of handling a power input of 75 watts with less than ¹/₄ wat of driving power at frequencies as high as 150 megacycles. The total maximum plate dissipation of the 815 is 25 watts. The 815 is also u-seful as a modulator and as a undiplier. A single 815 can modulate another 815 can be used as a doubler or tripler and at the same time drive an 815 as power amplifier. Mechanical features of the 815 include its balanced and compact structure of beam units, close electrode spacing, short internal leads to minimize lead inductance and resistance, and a "Micanol" wafer octal base. The heaters of the 815 are arranged for either 12.6- or 6.3-volt operation. operation.

The 826 transmitting triode has been designed especially for use at ultra-high frequencies. It may be used as an oscillator, R.F. power amplifier, and frequences multiplier at maximum ratings at fre-quencies as high as 250 megacycles and at re-duced ratings at frequencies as high as 300 mega-cycles. Maximum plate dissipation of the 826 is 60 watts in class C telegraph service. The 826 features a double-helical filament center-tapped within the tube so that effects of filament inductance can be minimized. In addition, two short, heavy leads are brought out from the grid and from the plate to individual terminals in order to reduce the inductance of these internal connections. All terminals are placed at one end of the bulb so that short leads can be used in neutralizing circuits. circuit».

circuits. The 866-A 866 is a new half-wave, mercury-yapor rectifier to supersede the well-known RCA types 866-A and 866. This new tube combines the ability of the 866-A to withstand high peak in-verse voltage and the ability of the 866 to conduct at relatively low applied voltage. The 866-A/866 employs a ceranic cap insulator and is constructed in a dome-top balb. This construction minimizes damger of bulb cracks caused by corona discharge. An edgewise wound ribbon filament made of a new alloy material provides a large emission re-serve and improved life. Two 866-A/866's oper-ating in a full-wave rectifier are capable of de-livering to the input of a choke-input filter a rectified voltage of 3180 volts at 0.5 ampere with good regulation. good regulation.

The 1625 transmitting beam power amplifier is similar to RCA-807 but it has a 12.6-volt heater

Three new types of RCA tubes recently introduced —the 815 is a transmitting amplifier; the 826 a transmitting triode for UHF; the 866-A/866 a half-wave mercury vapor sectifier mercury vapor rectifier.

In the February, 1941 Number of RADIO-CRAFT

Opportunities in Military Radio

Radio Blackout on the High Seas

Radio Service Data Sheets

Using a Radio Set to Test Radio Sets

Visual Dynamic Servicing-Part II

Modern Microphone Technique (Part I-The Microphone)

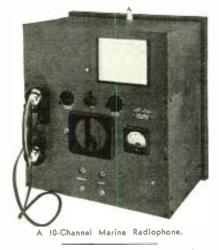
Smallest Radio Tubes!

"Electric Eye" Burglar Alarm

F.M. 24-Watt Audio Amplifier-Part III

and a 7-pin base. Because of these features, the 1625 is particularly suitable for use in aircraft radio transmitters. The high power sensitivity of the 1625 makes it especially useful in frequency-nultiplier service where high harmonic output is essential. It may also be used as a crystal-oscilla-tor and buffer amplifier in medium-power trans-mitters with an input up to a half-kilowatt. The 1625 can be operated at maximum ratings at fre-quencies as high as 60 megacycles and at reduced ratings at frequencies as high as 125 megacycles. Its maximum plate dissipation rating is 30 watts (ICAS). The 1626 a transmitting trigd of the transmit

(10.88). The 1626, a transmitting triode of the indirectly heated type with 12.6-volt heater, is designed espe-cially for R.F. o-cillator service in applications requiring unusual stability of characteristics. The maximum plate dissipation is 5 watts. The 1626 may be operated at maximum ratings at frequen-cies as high as 30 megacycles, and at reduced ratings at frequencies as high as 90 megacycles, Because of its 12.6-volt heater rating, the 1626 is particularly suitable for use in aircraft radio transmitters.


10-Channel Marine Radiophane

• TO its line of marine radiophones Hallierafters, Inc., has added the "Scagoing" Model HT-12, a 50-watt unit which combines wide operating range with the utnost m operating simplicity. Receiving and transmitting channels, ten of each, are crystal-controlled to thininate manual tuning, and manual switching is avoided through inclusion of a voice-controlled automatic relay system.

of a voice-controlled automatic relay system. A corro-ion proofed metal case, 20 inches square by 12 inches deep, houses both the transmitter and receiver sections. On its front panel are arranged the few simple controls, the telephone handset, a built-in loud-speaker and a meter which provides a visual check on transmitter operation. The power supply is a separate unit and is avail-able in two types, one for direct operation from a 12-volt ship's hattery, the other from a 110-volt the supply is either 32 or 110 volts D.C., a rotary converter being utilized to adapt it to these supplies. supplie -.

supplie. With the receiver channel selector switch set for the channel of the nearest shore telephone sta-tion (or for the ship-to-ship channel) the owner can keep in constant touch with what is going on and will hear calls intended for him. In addition, provision is made for connection of an automatic hell ringer which will ring only when his boat is called.

The receiver is a sensitive and selective 7-tube superheteradyne with one stage of pre-selection, built-in 1.F. waverap and highly effective A.V.C. and Q.A.V.C. systems.

New Bulletin by Amphenol

New Bulletin by Amphenol The new Amphenol hlue book catalog No. 67 for 1941 has arrived. Every imaginable type of ocket, plug, connector, etc. is illustrated and accessories of all kinds for radio, aircraft and cleatrical purposes. Insulating materials, coil forms, etc., of Amphenol 912-A and poly-styrene insulated co-axial cables and fittings for HF and UHF applications are included. The catalog con-tains illustrations in detail of the newest co-axial applications. Steatile sockets and plugs are shown, plug for special cable connections, adapters of all kinds, test instrument accessories, miniature sockets and connectors, all types of microphone connectors, circuit-hreaking power plugs, etc. Laboratory punch and dies for making holes in assortment of radio hardware. Plugs and a goodly assortment of radio hardware. Plugs and a goodly assortment of radio hardware. Plugs and a goodly is assortment of radio hardware. Plugs and a goodly assortment of radio hardware. Plugs and a sockets are now available in different colors, which is often desirable for special radio apparatus. espe-cially "test" instruments.

New Radio Apparatus

Multi-Section Plug-in Filter

• RECOGNIZING the inefficiency of ordinary plug-in filordinary plugin fil-ters, engineers of the Sprague Prod-ucts Company have designed LF-2, a special multiple sec-tion and inductance and capacity filter for use on very

installation at the power outlet to which the inter-fering device is connected, the LF-2 unit takes much of the guesswork out of selecting the proper filter for any electrical device drawing up to ½ ampere. It has proved effective for interference-producing electrical shavers, hair dryers, erasing machines and similar electrical equipment.

New Raytheon Tubes

• FOUR interesting new tubes have been intro-duced by the Raytheon Production Corporation. These recently developed tubes are the types 6SD7GT, 6UoGT, 7L7 and 7N7. The 6SD7GT and 6U6GT fall into the bantam category, while the 7L7 and 7N7 are of the "lock-in" type. These new types may be briefly described as follows:

follows:

These new types had be intenv described as follows: Type 6SD7GT is a semi-remote cutoff rela-tively high transconductance pentode, for use as an R.F. and I.F. amplifier. Type 6U60T is a hean-power amplifier de-signed for reasonably high output, at lower supply voltage than normally required. Type 7L7 is a "lock-in" hase sharp cut-off, relatively high transconductance pentode, for use where the higher transconductance types are not required. Type 7N7 is a "lock-in" hase twin triode having separate cathode leads, with consequently increased circuit versatility.

Type 7N7 is a "lock-in" hase twin triode having separate cathode leads, with consequently increased circuit versatility. The 6S107GT pentode, a semi-remote cutoff amplifier of the heater type, may be mounted in any position. It has a small wafer octal 8-pin base with metal shell. The heater voltage is 6.3 volts and the current .3 amp. Maximum plate voltage is 300. Maximum screen voltage 125; plate dissipation 4 watts. The 6U6GT beam power amplifier is a heater type tube, can be mounted in any position and its base is an intermediate shell octal 7-pin. The tube has 6.3 volt heater and draws .75 amp. Maximum plate voltage is 200, screen voltage 135, plate dissipation 11 watts. The power output of this tube in class A1 is 5.5 watts with 200 volts on the plate. The 7N7 twin triode amplifier of the heater type has a locking-in 8-pin hase. This is a twin triode amplifier of phase inverter in radio re-ceivers. Heater voltage is 7 and heater current is .64 amp. Maximum plate voltage is 20 and maximum plate dissipation per plate is 2.5 watts. The tube has an amplification factor of 20. The 7L7 pentode is a sharp cutoff amplifier and has a locking-in 8-pin base. The tube has 7 volt heater and draws .32 amp. Maximum plate voltage 250 volts and maximum screen voltage 125. Plate dissipation 1.5 watts. This tube was designed for use as a high frequency or audio amplifier in radio receivers.

NEW CATALOGS

R.S.L. Issue New Catalog

• A NEW catalog of over 200 pages has just been released by Radio Service Laboratory, 1191 Elm Street, Manchester. New Hampshire. This publication contains up-to-the-minute radio parts and sound equipment information. Easy-to-read type, hundreds of illustrations, and order blanks in the rear of catalog, ntake it a valuable reference book for anyone connected with the radio industry. radio industry.

Mailory-Yaxley

Hallory-Yaxley • FOR the radio service man, whether his busi-ness be large or small, the new Mallory-Yaxley radio service encyclopedia will prove invaluable. All sorts of replacement apparatus, including all types of controls such as potentioneters, by-pas-condensers, vibrators, etc., are listed. A great deal of useful information on how to check various circuit troubles is given at the end of the encyclopedia, together with several pages of different types of control circuits. Also several pages of different condenser circuits are included, and a valuable chapter on "vibrators"—together with diagrams—is included. A second catalog by Mallory-Yaxley shows an elaborate line of approved precision products, in-cluding condensers, jacks, selector switches, theo-stats, vibrator packs, disc rectifiers for battery chargers, etc., elaborately illustrated and described.

COMMERCIAL NOTICES

Under this heading only advertisements of a commercial nature are accepted. Remittance of 10c per word should accompany all orders. Copy should reach us not later than the 10th of the month for the second following month's issue. Less than I year old. Will demonstrate. Write for appointment, L. Feldman, 566 W. 191st Street, Apt. 15, New

INSTRUCTION

A.C. GENERATORS A.C. GENERATORS 110 VOLT A.C. AUTOMORILE GEN-erators. Easily installed. Perfect per-formance. Operates amplifiers. movies etc. Lolay Manufacturing, 150 Lelay Building, Minneapolis, Minn.

BUSINESS OPPORTUNITIES FOR SALE. IN NORTHERN W. VAL town of 25,000, radio repair and source eulphment business. Owner in full health: no reasonable offer rough Mitte-Joseph R. Silvernan, Philps-Clinic, Johns Hopkins Hosp., Balt-nore, Md.

DIATHERMY MACHINES

FOR SALE — DIATHERNY MACHINES FOR SALE — DIATHERNY M.-chine, custom-built by radio engineer, Machine substantially built with high patient safety factor, 2⁺0⁻300 watts out-put. Neat professional abpearance. Au-tomatic safety time switches, All neces-sary backs and electrodes. 16 meters, Cost \$550.00, Will sacrifice for \$150.00

INSTRUCTION LET A GRADUATE ELECTRUCAL euklneer heb you solve your radio or electrical problems, harse or small. Satisfaction Ruaranteed. Write details for price quotation. William Haves, hox 1433-T. Oakland. California. \$13.00 STEAM EXCINEERING (Yourse-8 Yols, \$4.10), Radio and Elec-trical text-book barkains-met list. Life of Napolicon 3 do hue volumes \$3.00, \$10.00 New Cyclonedia St. Marece 1300 pp \$4.50; Hopking "EXPrice 1300 pp \$4.50; Hopking "Expression mental Science," 2 wols, \$3.50, Harry Ackerson. Box 322, Ramsey, N. J. MOTORS

York City.

RECONDITIONED MOTORS, 1/50 CONDENSEITS to UP, TUBES III, HP, AC-DC, Nickel \$1.50; 1/30 HP, Free lists, Petter, 1311-T McGee black \$2.50. Fully suprameted, F.O.R.; Kanast City, Mo.

New York, Wonderful value limited quantity, Act Promptly! Gold Shield Products, Den. 241, 350 Greenwich St., New York City.

PATENT ATTORNEYS

INVENTORS — PROTECT YOUR rights before disclosing your invention to anyone. Form "Evidence of Con-ception"; "Schedule of Government and Attorneys' Fees" and instructions sent free. Lancaster. Allwine & Rom-mel, 438 Bowen Building, Washington, D. C.

QSL-CARDS-SWL

QSLs, SWLs. COLORFUL - ECO-nomical, W9KXL, 819 Wyandotte, Kansas City, Mo.

RADIO PARTS

Under this heading we accept advertisements only when goods are offered for sale without profit. Remittance of 3c per word should accompany all orders. Copy should reach us not later than the 10th of the month for the second following month's issue.

RIDER'S MANUALS, VOLUMES 1-and all other makes and models at low-VI, complete and in brand new condi-tion, \$25.00, E. Sontos, 33 Hinelunan REDCONDITIONED GUARANTEED you get any free list of reconditioned, communications receivers cheap. Free guaranteed Receivers! Practically all relation receivers at an at a storals, ins. Time Payments. Send for list, Wise.

W2AVA, 12 West Broadway, York New YORK, NATIONAL SW3 A.C. FOR SALE, good shape bandspread coils for the 20, 40 and 80 meter bands minus power supply—\$10.00, W9CHP, H. Fulmer, 319 N, 69th St., Wanwatosa, Witter, St.

WORD

NO ADVERTISEMENT TO EXCEED 35 WORDS, INCLUDING NAME AND ADDRESS

BARTER AND EXCHANG

YOU Are the Editor (Continued from page 581)

4. If, and when experimental wireless facilities are restored, the question of an adjustment of fees and of the grant of fresh licenses will be given consideration. (This was in answer to the following ques-tion,—"Will new licenses for transmitting have to be taken out after the war, or will

Construct a second of the secon

those holding them at the time of confiscathose holding them at the time of confisca-tion be able to carry on with the old license until the number of months, etc., for which it is still available are ended?" R. LAWTON, Secretary, North Manchester Radio & Television Society, Manchester, England.

Address—Readers' Editorials, RADIO & TELEVISION, 20 Vesey Street, New York, N. Y.

Please Mention This Magazine When Writing Advertisers

NO ADVERTISEMENT TO EXCEED 33 WORDS. INCLUDING NAME AND ADDRESS Space in this department is initeded solely for the benefit of our readers, who wish to BUY or EXCHANGE any-thing in the Radio, Photographic and other merchandise; there-for we charge only ic a word. Each word in a name and address is counted. Remittance should accompany order. Only one advertisement can be accepted from any reader in any one issue. Copy should reach us not later than the 10th of the month for the second following month's Issue.

New Radio Apparatus

FREE CATALOGS and INFORMATION

By carefully reading the advertising columns, you will find many offers to furnish literature containing valuable technical information that will help you in your work. Use this list freely.

FirmBusinessOfferNo.CettAde. PageABC Radio Laborarories Allied Engineering Institute Allied Radio Corp.Set Mfr. Mail OrderInformation (Tree Sol.) Parts Mfr.Information (Tree Sol.) New Radio Dictionary Radio Builder's Hand- bookFree Sol. (Free Sol.) (De Free Sol.)Free Sol. (De Free Sol.)Free Sol. (De Free Sol.)Free Sol. (De Free Sol.)Free Sol. (De Free Sol.)Free Sol. (De Free Sol.)Free Sol. (De Free Sol.)Free Sol. (De (De Sol.)Free Sol. (De	_					
Allied Engineering Institute Allied Radio Corp.Kit Mfr Mail OrderCirculars 1941 Radio Catalog New Radio Dictionary Radio Builder's Hand- bookFree 100609 100American Radio Institute Amperite Co. Apers. Matenatic Code Ma- chines Bliley Electric Co.Radio School Parts Mfr.Replacement Chart Engineering Builletin Builterine Canaler System Co. Coandler System Co. Coale System Co. Coale System Co. Coale System Co. Coale System Co. Coale System Co. Coale System Coandler System Coa	Firm	Business	Offer	.No.	Cost	
Allied Engineering Institute Allied Radio Corp.Kit Mfr Mail OrderCirculars 1941 Radio Catalog New Radio Dictionary Radio Builder's Hand- bookFree 100609 100American Radio Institute Amperite Co. Apers. Matenatic Code Ma- chines Bliley Electric Co.Radio School Parts Mfr.Replacement Chart Engineering Builletin Builterine Canaler System Co. Coandler System Co. Coale System Co. Coale System Co. Coale System Co. Coale System Co. Coale System Co. Coale System Coandler System Coa	ABC Radio Laborarories	Set Mfr	Information		Free	610
Allied Radio Corp. Mail Order 1941 Radio Catalog New Radio Dictionary Radio Builder's Hand- book Free 591,97 American Radio Institute Amperite Co. Radio School Parts Mfr. Replacement Chart Replacement Chart TS* Free 604 Ayers. Automatic Code Ma- chines Parts Mfr. Replacement Chart Replacement Chart TS* Free 607 Billey Electric Co. Parts Mfr. Circular Engineering Bulletin Builtein D.2 Free 606 Bridge, Harry P. Stamps Information D.7 Free 606 Bud Radio. Inc. Barts Mfr. Literature Free 606 Cannon. C., C. Co. Parts Mfr. Folder T.20 Free 606 Convell. R. A. Parts Mfr. Folder T.20 Free 607 Codel Assido Co. Radio School Catalog Free 617 Goldentore Radio Co. Mail Order Information Free 619 Goldentore Radio Co. Mail Order Information Free 619 Goldentore Radio Co. Mail Order Information Free 610 Harmarhund Mfg. Co. Set Mfr. Information Free 610 Harwey Radio School Mail Order Informat						
New Radio Dictionary Radio School Apperite Co. Ayers, Automatic Code Ma- chine Billey Electric Co.Radio School Parts Mfr.New Radio Dictionary Radio Booklet Replacement Chart Information10c FreeBridge, Harry P. Bud Radio, Inc.Parts Mfr.Circular Engineering Bulletin Bulletin Bulletin Bulletin ColecularD.2 E.6Free601Bridge, Harry P. Burd Radio, Inc.Stamps Parts Mfr.Circular LiteratureD.2 E.6Free600Burd Radio, Inc. Candler System Co. Candler System Co. Candler System Co. Cantered Institute of Ameri- ean InventorsStamps Parts Mfr. InventorsFree600 FreeFree620 Free620 	· ·					
American Radio Institute Appendix Co.Radio School Parts Mfr. Code MachinesRadio Builder's Hand- bookIDAmerican Radio Institute Apern. Automatic Code Ma- chinesRadio School Parts Mfr.Booklet Replacement Chart Information"S"Free507Billey Electric Co.Parts Mfr. CurcularCircular Engineering Bulletin Builtein Cannon, C. F. Co. Code Course Parts Mfr. Folder Code Course Days Mir. Folder FolderD.2Free620Contracted Institute of Ameri- can Inventors Collentoner Radio Co. Code MachinesTreeFree632Codel Moren Radio Co. Harrison Radio Co. Harrison Radio Co. Harrison Radio Co. Mail OrderInformation Literature Information CatalogFree579Halicrafters. Inc. Harrison Radio Co. Harrison Radio Co. Mail OrderSet Mfr. Harrison Radio Co. Mail OrderLiterature Information Information Information Information Information Information Information Information Information Information PreeFree601Lancaster, Allwine & Rommel Mail OrderMail Order Information InformationFree602Lancaster, Allwine & Rommel Mail OrderFree613Lancaster, Allwine & School Millen, J., Mirg. Co., Inc. Set Mfr. CatalogSet Mfr. CatalogFree614Lancaster, Allwine	Allied Radio Corp.	IVIALI OLUCI	_			371571
American Radio Institute Amperite Co. Ayers. Automatic Code Ma- chinesBooklet Parts Mfr. Code MachinesBooklet Replacement Chart InformationIPBilley Electric Co.Parts Mfr. Code MachinesCircular Engineering Bulletin Bulletin Bulletin Curcular Engineering Bulletin Bulletin CaladogD.2 E.6 6Free 601Bridge, Harry P. Bud Radio, Inc. Burstein-Applebee Co. Candler System Co. Candler System Co. Concellation Code CourseStampsCircular Engineering Bulletin Bulletin Code CourseD.2 E.6 6Free 601Candler System Co. Candler System Co. Concellation Applebee Co. Candler System Co. Code CourseParts Mfr. Inventors BookletLiterature BookletT.20 FreeFree 610 FreeCowell, R. A. Dodge's Institute Gold Shield ProductsSet Mfr. Mail OrderLiterature Information Laterature Holf Bargain CatalogFree 610, IZ FreeFree 610, IZ FreeHallicrafters. Inc. Harry Radio Con Hudson Specialties Co. Hudson Specialties Co. Hudson Specialties Co. Hudson Specialties Co. Hudson Specialties Co. Hudson Specialties Co. Mail OrderLiterature Information Information Information Information Hormation FreeFree 631 FreeLanceaster, Allwine & Rommel Mister Mfr. Johnson, E. F., Co.Set Mfr. Mail OrderLiterature CatalogFree 633 FreeLanceaster, Allwine & Rommel Mister Mfr. Millen, J., Mfg. Co., Inc. Nite, Kate Yarts Mfr. Millen, J., Mfg. Co., Inc. Nation CatalogSet Mfr. CatalogFree 633 Free <td></td> <td></td> <td></td> <td></td> <td>TUC</td> <td></td>					TUC	
American Radio Institute Amperite Co.Radio School Parts Mfr.Booklet Replacement Chart InformationFree579 Free670 FreeBiley Electric Co.Parts Mfr.Circular Engineering Bulletin Bulletin Bulletin Bulletin ApplebeD.2 E.6Free601 E.7Bridge, Harry P. Burdskin. ApplebeStamps Parts Mfr.Information LiteratureD.2 E.6Free601 E.7Bridge, Harry P. Burstein-ApplebeStamps Parts Mfr.Information LiteratureJ.7 E.6Free601 E.7Burstein-ApplebeCo Code Course Parts Mfr.Code Gause Parts Mfr.BookletT.20 FreeFree615 FreeConcell, R. A. Dodge's Institute Goldentoer Radio Co. Harrow Radio SchoolParts Mfr. CatalogInformation CatalogFree579 Free614 FreeGoldentoer Radio Co. Harrow Radio SchoolSet Mfr. Mail OrderLiterature Information Information Information Information Information FreeFree603 Free603 Free604 Free603 Free604 FreeFree604 Free603 Free604 Free604 Free603 Free604 Free604 Free604 Free605 Free607 Free607 Free607 Free607 Free607 Free607 Free607 Free607 Free608 Free607 Free607 Free607 Free607 Free607 Free607 Free607 Free607 Free607 F					10-	
Amperite Co. Ayers. Automatic Code MachinesParts Mfr. Code MachinesReplacement Chart Information"5"Free604Billey Electric Co.Parts Mfr.Circular Engineering Bulletin BulletinD.2Free601Bridge. Harry P. Burstein-Applebee Co. Candler System Co. Candler System Co.StampsCircular LiteratureA.7Free601Candler System Co. Candler System Co. Candler System Co. Candler System Co. Candler System Co. Candler System Co.Parts Mfr. InformationLiterature Book of FactsFree615Code Course Parts Mfr.Folder T.20T.20Free610Concell, R. A. Dodge's InstituteOrganization Publisher's Rep. InformationInformation Publisher's Rep. InformationFree57Goldentone Radio Co. Harrison Radio Co. Harrison Radio Co. Harrison Radio Co. Harrison Radio Co. Harrison Radio Co. Harrison Radio Co. Mail OrderLiterature Information Information Information InformationFree601Harvey Radio Shop Mail OrderMail Order InformationInformation Information InformationFree603Harvey Radio Shool Mail OrderCatalog InformationFree60176600Harvey Radio Conpany Mail OrderInformation InformationFree602Harvey Radio Cono Mail OrderInformation InformationFree603Harvey Radio Cono Mail OrderCatalog SchoolFree602Masa, Radio School Mildey Radio Co.Stool<		D # C 1 1				
Ayers. Automatic Code Ma- chineCode MachinesInformationFree617Biley Electric Co.Parts Mfr.CircularD.2Free60Bridge, Harry P. Bud Radio. Inc.StampsInformationE.610cBud Radio. Inc.Parts Mfr.LiteratureFree620Burstein-Applebee Co. Cannon. C. F. Co.Mail Order1941 Catalog57FreeCannon. C. F. Co.Parts Mfr.FolderFree601Cowell. R. A. Codel shield ProductsPublisher's Rep. Mail OrderInformationFree579Dodge's Institute Goldentone Radio Co. Harry Radio Conopany Hudson Specialties Co. Hudson Specialties Co. Hutona Radio Conopany Mail OrderLiterature InformationFree603Lancaster, Allwine & Rommel Mise Radio Conp. Miled Producer Co. Mail OrderMail Order InformationFree603Lancaster, Allwine & Rommel Mail OrderRadio School Radio SchoolSourd Recording Outer InformationFree631Hatise Radio Conp. Mile Reportaer Co. Nidget Radio Co. National Company, Inc. National SchoolPatent Attorneys Sound Recording BookletSokel H CatalogFree632Miles Reporteres National Company, Inc. National SchoolRadio School Radio SchoolCatalog CatalogFree615Miles Reporteres National						
chines Biliey Electric Co. Bridge, Harry P. Bud Radio, Inc. Burstein, Applebec Co. Canadler System Co. Caladog Canadler Co. Set Mfr. Harrison Radio Co. Harrison Radio Co. Mail Order Information Information Hury Radio Co. Mail Order Information Information Free 603 Hytron Laboratories Instructograph Company Harrison Radio Co. Millen Reproducer Co. Millen Reproducer Co. Nillen Reproducer Co. Nillen School N. Y. Institute of Photog- raphy New York Y.M.C.A. School Radio School Ra				"S"	1 1	
Biltey Electric Co.Parts Mfr.Circular Engineering Bulletin BulletinD.2 E.6 10cFree 10cBridge, Harry P.StampsInformationFree601Bud Radio. Inc.Parts Mfr.LiteratureFree632Burstein-Applebee Co.Code CourseBook of FactsFree615Cantons. C. F Co.Parts Mfr.1941 Catalog57Free601Chartered Institute of Ameri- can InventorsOrganizationFree612Free632Code CourseBook of FactsTree614Free632Codel tone Radio Co.Set Mfr.1941 Bargain CatalogFree610,12Coldentone Radio Co.Mail OrderInformationFree610,12Hamaralund Mfg. Co.Mail OrderInformationFree610Harrison Radio Co.Mail OrderInformationFree631Haurs Radio CompanyMail OrderInformationFree631Hytron LaboratoriesTube Mfr.InformationFree631Instructograph CompanyPatent AttorneysBookletFree632Maison SchoolKit & Parts Mfr.IcatalogFree632Maison Kfg. Co.Mail OrderInformationFree632Lancaster, Allwine & RommelRadio SchoolKit & Parts Mfr.Free632Maison Company. Inc.Nater Mfr.InformationFree632National Company. Inc.Set Mfr.InformationFree635 </td <td>•</td> <td>Code Machines</td> <td>Information</td> <td></td> <td>Free</td> <td>617</td>	•	Code Machines	Information		Free	617
Bridge, Harry P. Bridge, Harry P. Bull Raio. Inc. Burstein-Applebe Co. Canton. C. F. Co.Stamps Parts Mfr. InformationE.6 Bulletin10c Free10c FreeBurstein-Applebe Co. Cannon. C. F. Co. Charterel Institute of Ameri- can InventorsMail Order OrganizationInformation FreeFree620 Free612 Free612 Free612 Free612 Free612 Free612 Free613 Free614 Free614 Free614 Free614 Free614 Free614 Free614 Free614 Free614 Free614 Free614 Free614 Free614 Free614 Free614 Free614 Free614 Free614 Free616 Free612 Free614 Free614 Free614 Free616 Free616 Free616 Free616 Free616 Free616 Free616 Free616 Free616 Free616 Free616 Free616 Free616 Free616 Free616 Free616 Free617 Free610 Free616 Free616 Free616 Free616 Free616 Free616 Free617 Free610 Free618 Free616 Free616 Free616 Free617 Free616 Free616 Free617 Free617 Free616 Free616 Free616 Free617 Free616 Free616 Free616 Free617 Free616 Free616 Free616 Free<						
Bridge, Harry P. Bud Radio, Inc.StampsBulletinE.7FreeFree620Bud Radio, Inc. Burstein-Applebe Co. Cannler System Co.Parts Mfr. Code CourseLiterature Book of FactsFree620Cannor, C. F., Co. Charterel Institute of Ameri- can InventorsParts Mfr. InventorsBook of FactsFree601Cowell, R. A. Dodge's InstitutePublisher's Rep. Mail OrderInformation 1941 CatalogFree614Codel Course can InventorsPublisher's Rep. Mail OrderInformation 1941 Bargain CatalogFree614Goldentone Radio Co. Goldentone Radio Co. Harry Radio Shop Hury Radio ShopSet Mfr. Mail OrderLiterature InformationFree610Harvey Radio Conopany Hytor LaboratoriesMail Order InformationLiterature FreeFree631Hancy Radio Conopany Hytor LaboratoriesMail Order LaboratoriesLifermation InformationFree631Lancaster, Allwine & Rommed Mails OrderPatter Markon Radio SchoolGatalog Radio SchoolFree632Mass, Radio Conopany, Indiget Radio Conopany, Indiget Radio Conopany, Inc. Midwest Radio Conopany, Inc. National SchoolSet Mfr. Radio SchoolHart Marchany Radio SchoolGold Mark Radio SchoolFree632Mass, Radio School N, Linstitute of Photog- raphy Netson Co.Kit & Parts Mfr. Parts Mfr.Gatalog CatalogFree635Midwest Radio Conopany, Inc. Midex Radio SchoolRadio SchoolGatalog CatalogFre	Bliley Electric Co.	Parts Mfr.		D-2		601
Bridge, Harry P. Bud Radio. Inc. Burstein-Applebe Co. Canlor, C. F. Co. Cannon, C. F. Co. Cannon, C. F. Co. Code CourseStamps Parts Mfr. Parts Mfr.Circular Information Book of FactsA. 7 FreeFree620 FreeConnon, C. F. Co. Code CourseParts Mfr. Parts Mfr.Information Booklet57Free601 FreeCowell, R. A. Dodge's InstituteQrganization OrganizationInformation CatalogFree614 FreeCodel course Coldentone Radio Co. Gold ProductsSet Mfr. Mill OrderInformation LiteratureFree614 FreeHallicrafters. Inc. Harrison Radio Co. Harrison Radio Co. Mail OrderSet Mfr. Mail OrderLiterature Information Information Information LiteratureFree602 FreeHallicrafters. Inc. Harrison Radio Co. Harvey Radio Company Henry Radio Shop Mail OrderSet Mfr. Information Information Information Information Information Information Information Information Information Information FreeFree603 FreeLancaster, Allwine & Rommel Mail OrderParts Mfr. CatalogInformation Information Information Information Information FreeFree612 FreeLancaster, Allwine & Rommel Mildegt Radio Co. Set Mfr. Mildegt Radio Co. Nidwest Radio Cor. Set Mfr.Parts Mfr. Information Information Information Information Information FreeFree612 FreeMildegt Radio Co. Mildegt Radio Co. Nidwest Radio Con. Nidwest Radio Con. Nidwest Radio Con. Nidwest Radio Con. Nid			Engineering Bulletin	E-6	10c	
Bridge, Harry P. Bud Radio, Inc.StampsInformationFree620Burstein-Applebec Co. Cannon, C. F. Co.Mail OrderH41 Catalog57Free630Cannon, C. F., Co. Chartered Institute of Ameri- an InventorsParts Mfr.FolderFolderFree631Code Course can InventorsParts Mfr.FolderBook of FactsFree632Code Cause can InventorsOrganizationFree632Free632Codel Antone Radio Co. Goldentone Radio Co.Set Mfr.1941 Bargain CatalogFree614Gold Shield ProductsMail OrderInformationFree61214, 22, 1			Bulletin	E-7	Free	
Bud Radio, Inc.Parts Mfr.LiteratureFree590Burstein-Applebe Co, Candle System Co.Mail Order1941 Catalog57Free615Candle System Co.Code CourseParts Mfr.FolderT.20Free604Chartered Institute of Ameri- can InventorsPublisher's Rep.InformationFree57Free604Cowell, R. A.Publisher's Rep.InformationCatalogFree57575757Dodge's InstituteRadio SchoolSet Mfr.InformationFree61257575757Cold entone Radio Co.Set Mfr.InformationFree610,1214, 2232			Circular	A-7	Free	
Burstein-Applebee Co. Candler System Co. Cannon, C. F. Co.Mail Order Code Course1941 Catalog Book of Facts57Free615Cannon, C. F. Co. Cowell, R. A. Dodge's InstituteParts Mir. Radio SchoolBookletT.20Free632Cowell, R. A. Obdge's InstitutePublisher's Rep. Radio SchoolInformationFree614Goldentone Radio Co. Goldentone Radio Co. Set Mfr.InformationFree614Goldshield ProductsMail OrderCatalogFree614Halicrafters, Inc. Harrwer Radio Cono Mail OrderLiteratureFree602Harver Radio Cono Harver Radio CompanyMail Order Mail OrderInformationFree603Hytron Laboratories Johnson, E. F., Co.Mail Order Tube Mfr. Tube Mfr.InformationFree604Lancaster, Allwine & Ronmel Milen Corp. Millen Con.Patent Attorneys Radio SchoolBookletFree632Lancaster, Allwine & Ronmel Miles Con.Radio SchoolSet Mfr. Tube Mfr.InformationFree632Lancaster, Allwine & Ronmel Milen SchoolSet Mfr. SchoolInformationFree632Miles Reproducer Co. National Company, Inc. National Company, Inc. National Company, Inc. National SchoolSet Mfr. School1941 CatalogFree632Milen School Radio SchoolSet Mfr. School1941 CatalogFree615Milen School National SchoolSet Mfr. Radio School1941 CatalogFree579	Bridge, Harry P.	Stamps	Information		Free	620
Candler System Co. Cannon, C. F., Co. Chartered Institute of Ameri- can InventorsCode Course Parts Mfr.Book of Facts FolderFree601 FreeChartered Institute of Ameri- can InventorsInventors OrganizationDodge's Institute Radio SchoolInformationFree579Dodge's Institute Goldentone Radio Co. Gold Shield ProductsPatts Mfr.Information 1941 Bargain Catalog CatalogFree614Hallicrafters, Inc. Harnison Radio Co. Harrison Radio Co. Mail OrderSet Mfr.Literature Information—ListFree610Harrison Radio Co. Harrison Radio Co. Hudson Specialties Co. Johnson, E. F., Co.Set Mfr. Mail OrderLiterature Information InformationFree603Hause Specialties Co. Mail OrderInformation InformationFree614Free614Johnson, E. F., Co. Mais OrderParts Mfr. CatalogInformation InformationFree615Johnson, E. F., Co. Mais SchoolParts Mfr. Radio SchoolCatalog Radio SchoolFree615Midget Radio Co. Midwest Radio Co. National Company, Inc. National SchoolSet Mfr. Radio SchoolInformation Radio SchoolFree615Midget Radio Co. Mail OrderSet Mfr. Parts Mfr.Information InformationFree615Midwest Radio Co. Midget Radio Co. National Company, Inc. National SchoolSet Mfr. Radio SchoolInformation CatalogFree615Midget Radio Co. Netson Co. N. Y. Institute of Photogr Radio School	Bud Radio, Inc.	Parts Mfr.	Literature		Free	596
Candler System Co. Cannon, C. F., Co. Chartered Institute of Ameri- can InventorsCode Course Parts Mfr.Book of Facts FolderFree601 FreeChartered Institute of Ameri- can InventorsInventors OrganizationDodge's Institute Radio SchoolInformationFree579Dodge's Institute Goldentone Radio Co. Gold Shield ProductsPatts Mfr.Information 1941 Bargain Catalog CatalogFree614Hallicrafters, Inc. Harnison Radio Co. Harrison Radio Co. Mail OrderSet Mfr.Literature Information—ListFree610Harrison Radio Co. Harrison Radio Co. Hudson Specialties Co. Johnson, E. F., Co.Set Mfr. Mail OrderLiterature Information InformationFree603Hause Specialties Co. Mail OrderInformation InformationFree614Free614Johnson, E. F., Co. Mais OrderParts Mfr. CatalogInformation InformationFree615Johnson, E. F., Co. Mais SchoolParts Mfr. Radio SchoolCatalog Radio SchoolFree615Midget Radio Co. Midwest Radio Co. National Company, Inc. National SchoolSet Mfr. Radio SchoolInformation Radio SchoolFree615Midget Radio Co. Mail OrderSet Mfr. Parts Mfr.Information InformationFree615Midwest Radio Co. Midget Radio Co. National Company, Inc. National SchoolSet Mfr. Radio SchoolInformation CatalogFree615Midget Radio Co. Netson Co. N. Y. Institute of Photogr Radio School	Burstein-Applebee Co.	Mail Order	1941 Catalog	57	Free	615
Cannon, Ć. F., Co. Charterel Institute of Ameri- can InventorsParts Mfr. InventorsFolder BookletT.20Free Free604Cowell, R. A. Dodge's InstitutePublisher's Rep. Radio SchoolInformation CatalogFree579Goldentone Radio Co. Goldentone Radio Co. Harrison Radio Co. Harry Radio CompanySet Mfr. Miil OrderInformation InformationFree610,12 FreeHallierafters. Inc. Harry Radio Company Hutson Specialties Co. Mail OrderSet & Parts Mfr. Mail OrderLiterature Information InformationFree603 FreeHutson Specialties Co. Hutson, E. F., Co.Mail Order Mail OrderInformation Information InformationFree615 FreeLancaster, Allwire & Rommel Mikige Radio Corp. Midget Radio Corp. Midget Radio Corp. Mile Redourp. Mile Redourp. Mile SchoolPatent Attorneys Radio School Set Mfr. Set Mfr. Set Mfr.Information Information InformationFree612 FreeMiles Reproducer Co. National Company, Inc. National Company, Inc. Net Ming, J., Mfg. Co., Inc. National SchoolSet & Parts Mfr. Radio SchoolInformation Set & Parts Mfr. InformationFree615 FreeNational Company, Inc. National SchoolRadio School Radio SchoolCatalog CatalogFree616 FreeNet Orbotog- raphySchoolSchool Radio SchoolCatalog CatalogFree617 FreeNet Orbotog- raphySchoolSchoolCatalog CatalogFree617 FreeMile		Code Course	v v		Free	601
Chartered Institute of Ameri- can InventorsInventors OrganizationBookletFree632Cowell, R. A. Dodg's InstitutePublisher's Rep. InformationInformationFree579Goldentone Radio Co. Goldentone Radio Co.Set Mfr. Mail Order1941 Bargain CatalogFree610,1 FreeHallierafters. Inc. Harrison Radio Co. Harrys Radio SchoolSet Mfr. Mail OrderLiterature InformationFree602Harrison Radio Co. Harry Radio Sop Hudson Specialties Co. Mail OrderMail Order InformationInformation InformationFree603Hudson Specialties Co. Hudson Specialties Co. Mail OrderMail Order InformationInformation InformationFree631Hytron Laboratories Instructograph Company Mails OrderTube Mfr. CatalogInformation InformationFree632Lancaster, Allwine & Rommel Maise Radio SchoolRadio SchoolRadio School60.Page Catalog BulletinsFree632Midget Radio Corp. Midget Radio Corp. Set Mfr. Midwest Radio Corp. Set Mfr.Set Mfr. InformationInformation InformationFree632Miles Reproducer Co. National SchoolsSet Mfr. Radio SchoolInformation Radio SchoolFree615Miles Reproducer Co. National SchoolsRadio SchoolCatalog SchoolFree579New York Y.M.C.A. Schools Premax ProductsTrade SchoolBookletFree579New York Y.M.C.A. Schools Premax ProductsTrade SchoolBooklet </td <td></td> <td>Parts Mfr.</td> <td>Folder</td> <td>T.20</td> <td>Free</td> <td></td>		Parts Mfr.	Folder	T.20	Free	
can InventorsOrganizationCowell, R. A.Publisher's Rep.InformationFree579Dodge's InstituteRadio SchoolCatalogFree614Goldentone Radio Co.Set Mfr.1941 Bargain CatalogFree614Gold Shield ProductsMail OrderCatalogFree614Hallicrafters, Inc.Set Mfr.LiteratureFree601Harrison Radio Co.Mail OrderInformation—ListFree601Harry Radio CompanyMail OrderInformation—ListFree603Henry Radio CompanyMail OrderInformationFree603Hurty Radio ShopMail OrderInformationFree604Hudson Specialties Co.Mail OrderInformationFree615Johnson, E. F., Co.Parts Mfr.Catalog966WFree615Instructograph CompanyCode MachineInformationFree612Mas. Radio SchoolRadio School60/Page CatalogFree615Midget Radio Corp.Set Mfr.1941 CatalogFree615Midget Radio Corp.Set Mfr.1941 CatalogFree615Midget Radio Corp.Set Mfr.1941 CatalogFree615Midget Radio Corp.Set Mfr.1941 CatalogFree615Midert Radio Corp.Set Mfr.1941 CatalogFree615Midert Radio Corp.Set Mfr.1941 CatalogFree615Midert Radio Corp.Set Mfr.19				1-20		
Cowell, R. A. Dodge's InstitutePublisher's Rep. Radio SchoolInformation CatalogFree579Goldentone Radio Co. Goldentone Radio Co. Goldentone Radio Co.Set Mfr.1941 Bargain CatalogFree614Gold Shield ProductsMail OrderLiteratureFree614Hallicrafters, Inc.Set Mfr.LiteratureFree605Harrison Radio Co. Harry Radio CompanyMail OrderInformationFree603Henry Radio ShopMail OrderInformationFree603Hytron LaboratoriesTube Mfr.InformationFree614Hytron LaboratoriesTube Mfr.InformationFree615Johnson, E. F., Co.Parts Mfr.Catalog966WFree612Mass, Radio SchoolRadio SchoolRadio School60.Page CatalogFree615Midget Radio Co.Kit & Parts Mfr.1941 CatalogFree615Midget Radio Co.Sound RecordingBulletinsFree615Midget Radio Co.Sound RecordingBulletinsFree615Midget Radio Co.Used Courses72.Page CatalogFree615Midget Radio Co.Used Cour			DOORICE		1100	0.52
Dodge's Institute Goldentone Radio Co. Goldentone Radio Co. Gold Shield ProductsRadio School Set Mfr. Mail OrderCatalogFree579Hallicrafters. Inc. Harmarlund Mfg. Co. Harrison Radio Co. Mail OrderSet Mfr. Information—List Information—List Information Information Information Information FreeFree610,12, 14.22. 32Hallicrafters. Inc. Harrison Radio Co. Harry Radio Company Hudson Specialties Co. Johnson, E. F., Co.Set Mfr. Mail Order Information Information Information Information Information Information Information FreeFree610 FreeHauson Specialties Co. Johnson, E. F., Co.Mail Order Parts Mfr.Information Catalog Orde Machine InformationFree631 FreeLancaster, Allwine & Rommel Meissner Mfg. Co. Miller Radio Co. Miller Radio Co. Miller Radio Co. Miller Radio Co. Miller Radio Co. Miller Radio Co. Set Mfr.Information InformationFree632 FreeMilder Radio Co. Miller Radio Co. Miller Radio Co. Miller Radio Co. Miller Radio Co. Miller Radio Co. Miller Radio School Miller Radio SchoolSoud Recording BulletinsFree615 FreeMiller Radio Co. Miller National Radio Institute Radio SchoolRadio School Radio SchoolGatalog FreeFree579 FreeNational Acoli Institute Radio SchoolRadio School Radio SchoolGatalog FreeFree579 FreeNew York Y.M.C.A. Schools Premax Products Radio SchoolRadio School Radio SchoolGatalog CatalogFree579 F			Information		Eree	570
Goldentone Radio Co. Gold Shield ProductsSet Mfr. Mail Order1941 Bargain Catalog CatalogFree614 FreeHallicrafters. Inc. Harrison Radio Co. Harrison Radio Co. Harrison Radio Co. Mail OrderLiterature Information—ListFree601 FreeHarrison Radio Co. Harry Radio Company Hutson Specialties Co. Hytron LaboratoriesMail Order Mail OrderInformation—List InformationFree603 FreeHury Radio Shop Hutson Specialties Co. Hytron LaboratoriesMail Order Code MachineInformation InformationFree632 FreeJohnson, E. F., Co.Parts Mfr. Parts Mfr.Catalog Code Machine966WFree632 FreeMais Radio School Midwet Radio Co. Midget Radio Co. Set Mfr.Patent Attorneys Information602-Page Catalog BulletinsFree632 FreeMidwet Radio Co. Midwet Radio Co. National Company, Inc. National SchoolsSet Mfr. Radio SchoolInformation InformationFree632 FreeMailoradio Institute New York Y.M.CA. Schools Premax ProductsRadio School Radio SchoolCatalog CatalogFree579 FreeNew York Y.M.CA. Schools Premax Products Premax ProductsParts Mfr. Radio SchoolCatalog CatalogFree579 FreeNew York Y.M.CA. Schools Premax Products Premax ProductsParts Mfr. Radio SchoolCatalog CatalogFree579 FreeNew York Y.M.CA. Schools Premax Products Premax ProductsParts Mfr. Radio SchoolCatalog Circulars on each book <br< td=""><td></td><td></td><td>1</td><td></td><td>1</td><td></td></br<>			1		1	
Gold Shield ProductsMail OrderCatalogFree610,12, 14, 22, 32Hallicrafters, Inc.Set Mfr.Literature"HQ" BookletFree80, 14, 22, 32Harryey Radio CompanyMail OrderInformationInformationFree60, 12, 14, 22, 32Harvey Radio ShopMail OrderInformationInformationFree60, 12, 14, 22, 32Henry Radio ShopMail OrderInformationInformationFree60, 12, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14	U III					
Hallicrafters, Inc.Set Mfr.Literature[14, 22, 32]Hallicrafters, Inc.Set Mfr.LiteratureFreeBC.Harrison Radio Co.Mail OrderInformation—ListFree605Harry Radio CompanyMail OrderInformationFree603Henry Radio ShopMail OrderInformationFree604Hudson Specialties Co.Mail OrderInformationFree603Hytron LaboratoriesTube Mfr.InformationFree607Instructograph CompanyCode MachineInformationFree615Johnson, E. F., Co.Parts Mfr.Catalog966WFree615Mass, Radio SchoolRadio SchoolRadio School80kletFree632Mass, Radio Co.Set Mfr.1941 CatalogFree615Midget Radio Co.Set Mfr.1941 CatalogFree615Midget Radio Co.Set Mfr.1941 CatalogFree615Miles Reproducer Co.Sound RecordingBulletinsFree617Miles Reproducer Co.Sound RecordingBulletinsFree570National SchoolsRadio SchoolCatalogFree577National SchoolsRadio SchoolCatalogFree579New York Y.M.C.A. SchoolsTrade SchoolCatalogFree579New York Y.M.C.A. SchoolsTrade SchoolCatalogFree579Radio & Technical Publ. Co.Radio SchoolCatalogFree579						
Hallicrafters, Inc. Harmarlund Mfg. Co. Harrison Radio Co. Mail OrderSet & Parts Mfr. Information LiteratureLiterature "HQ" Booklet Information—List Information Free 603 Free 604 Free 604 Free 604 Free 604 Free 604 Free 604 Free 603 Free 604 Free 604 Free 604 Free 604 Free 604 Free 604 Free 605 Free 605 Free 605 Free 605 Free 605 Free 605 Free 606 Free 606 Free 606 Free 607 Antenna Handbook Antenna Handbook Doklet Mais School Mais School Mais School Mais School Mais School Radio School Madis School Madis School Madis School Set Mfr. Miles, J., Mfg. Co., Inc. Parts Mfr. Miles, J., Mfg. Co., Inc. Parts Mfr.Jate Part Attorneys Parts Mfr. 1941 Catalog Bulletins Literature Literature Free 615 Free 615 Free 615 Free 616 Free 616 Free 616 Free 617 Miles, J., Mfg. Co., Inc. Parts Mfr. National Company, Inc. Set & Parts Mfr. School New York Y.M.C.A. Schools Radio School New York Y.M.C.A. Schools Premax Products Parts Mfr. Radio School Radio	Gold Shield Products	Mail Order	Catalog		r ree	1
Hallicrafters, Inc.Set Mfr.LiteratureFreeB.C.Harmmarhund Mfg. Co.Mail OrderInformation—ListFree605Harrvey Radio CompanyMail OrderInformationFree603Henry Radio ShopMail OrderInformationFree603Henry Radio SopMail OrderInformationFree603Henry Radio SopMail OrderInformationFree603Hudson Specialties Co.Mail OrderCatalog966WFree601Johnson, E. F., Co.Parts Mfr.Catalog966WFree607Lancaster, Allwine & RommelPatent AttorneysBookletFree632Maise Radio School60-Page CatalogFree632Midget Radio Co.Set Mfr.1941 CatalogFree635Midget Radio Co.Set Mfr.InformationFree615Milen, J., Mfg. Co., Inc.Naris Mfr.CatalogFree615Millen, J., Mfg. Co., Inc.Naris Mfr.CatalogFree570National Company, Inc.Set & Parts Mfr.CatalogFree577National SchoolsRadio SchoolCatalogFree579Nelson Co.Used Courses72-Page CatalogFree579Nelson Co.Used Courses72-Page CatalogFree579New York Y.M.C.A. SchoolsTrade SchoolBookletFree579Radio SchoolRadio TextbooksCirculars on each bookFree579<						
Hammarlund Mfg. Co. Harrison Radio Co.Set & Parts Mfr. Mail Order"HQ" Booklet Information—ListFree603Harrison Radio Co.Mail OrderInformationFree603Henry Radio ShopMail OrderInformationFree603Hurson Specialties Co.Mail OrderInformationFree603Hytron LaboratoriesTube Mfr.InformationFree631Hytron LaboratoriesTube Mfr.InformationFree631Johnson, E. F., Co.Parts Mfr.Catalog966WFree632Lancaster, Allwine & RommelPatent AttorneysBookletFree632Mass, Radio SchoolRadio School60.Page CatalogFree632Midget Radio Co.Set Mfr.1941 CatalogFree615Midwest Radio Corp.Set Mfr.InformationFree615Midwest Radio Corp.Set Mfr.InformationFree615Midwest Radio Corp.Set Mfr.InformationFree615Millen, J., Mfg. Co., Inc.Parts Mfr.CatalogFree617Millen, J., Mfg. Co., Inc.Parts Mfr.CatalogFree579Nelson Co.Used Courses72-Page CatalogFree579Nelson Co.Used Courses72-Page CatalogFree579Nelson Co.Used Courses72-Page CatalogFree579New York Y.M.C.A. SchoolsTrade SchoolBookletFree579Radio & Technical Publ. Co.<					_	
Harrison Radio Co.Mail OrderInformation—ListFree610Harvey Radio CompanyMail OrderInformationFree603Henry Radio ShopMail OrderInformationFree603Hudson Specialties Co.Mail OrderCatalogFree631Hytron LaboratoriesTube Mfr.InformationFree631Johnson, E. F., Co.Parts Mfr.Catalog966WFree632Lancaster, Allwine & RommelRadio School60.Page CatalogFree632Maissen Mfg. Co.Kit & Parts Mfr.1941 CatalogFree632Midget Radio Co.Set Mfr.1941 CatalogFree615Midwest Radio Corp.Set Mfr.1941 CatalogFree615Millen, J., Mfg. Co., Inc.Parts Mfr.CatalogFree617Millen, J., Mfg. Co., Inc.Parts Mfr.CatalogFree617National Company, Inc.Set & Parts Mfr.LiteratureFree579National SchoolsRadio SchoolCatalogFree579Nelson Co.Used Courses72-Page CatalogFree579New York Y.M.C.A. SchoolsTrade SchoolBookletFree579New York Y.M.C.A. SchoolsTrade SchoolCatalogFree579Radio & Technical Publ. Co.Radio TextbooksCirculars on each bookFree579Radio & Technical Publ. Co.Radio TextbooksCirculars on each bookFree579Radio & SchoolTrad						
Harvey Radio Company Henry Radio ShopMail OrderInformationFree603Henry Radio ShopMail OrderInformationFree604Hudson Specialties Co.Mail OrderCatalogFree601Hytron LaboratoriesTube Mfr.InformationFree601Johnson, E. F., Co.Parts Mfr.Catalog966WFree607Lancaster, Allwine & RommelPatent AttorneysBookletFree607Maiss, Radio SchoolRadio School60.Page CatalogFree595Midget Radio Co.Set Mfr.InformationFree615Midget Radio Corp.Set Mfr.InformationFree615Midget Radio Corp.Set Mfr.1941 CatalogFree615Miles Reproducer Co.Sound RecordingBulletinsFree615Milen, J., Mfg. Co., Inc.Parts Mfr.CatalogFree579National Radio InstituteRadio SchoolCatalogFree579National SchoolsRadio SchoolCatalogFree579Nelson Co.Used Courses72-Page CatalogFree579Nelson Co.Used Courses72-Page CatalogFree579New York Y.M.C.A. SchoolsRadio SchoolCatalogFree579Radio & Technical Publ. Co.Radio TextbooksCirculars on each bookFree579Radio & Technical Publ. Co.Radio TextbooksCirculars on each bookFree579Remington RandTypewr	Hammarlund Mfg. Co.	Set & Parts Mfr.	"HQ" Booklet		Free	605
Henry Radio Shop Hudson Specialties Co. Hytron Laboratories Instructograph Company Johnson, E. F., Co.Mail Order Mail OrderInformation CatalogFree Free604 FreeInstructograph Company Johnson, E. F., Co.Ode Machine Parts Mfr.InformationFree607 CatalogFree607 CatalogLancaster, Allwine & Rommel Mass, Radio SchoolPatent Attorneys Radio SchoolBookletFree607 CatalogMass, Radio SchoolPatent Attorneys Radio SchoolBookletFree632 FreeMiesner Mfg. Co. Midget Radio Corp. Set Mfr.Kit & Parts Mfr.1941 CatalogFree615 FreeMillen, J., Mfg. Co., Inc. National Company, Inc. National SchoolsSet Mfr.1941 CatalogFree615 FreeNational SchoolsRadio SchoolGatalogFree615 Free615Nelson Co. N. Y. Institute of Photog- raphyNadio SchoolCatalogFree579 FreeNew York Y.M.C.A. Schools Radio SchoolTrade SchoolBookletFree579 FreeNew York Y.M.C.A. Schools Radio SchoolTrade SchoolBookletFree579 FreeRadio Corp. New York Y.M.C.A. SchoolsParts Mfr. Parts Mfr.CatalogR49FreeNew York Y.M.C.A. Schools Radio SchoolTrade SchoolBookletFree579Radio ConolParts Mfr. CatalogCatalogFree579Remington Rand Sprayberry Acad. of Radio Superviter Mfr.SchoolSchoolFree </td <td>Harrison Radio Co.</td> <td>Mail Order</td> <td>Information—List</td> <td></td> <td></td> <td>610</td>	Harrison Radio Co.	Mail Order	Information—List			610
Hudson Specialties Co. Hytron Laboratories Instructograph Company Johnson. E. F., Co.Mail Order Tube Mfr.Catalog InformationFree631Instructograph Company Johnson. E. F., Co.Parts Mfr.InformationFree615Lancaster, Allwine & Rommel Mass. Radio SchoolPatent Attorneys Radio SchoolBookletFree632Mass. Radio SchoolRadio School60-Page CatalogFree520Meissner Mfg. Co.Kit & Parts Mfr.1941 CatalogFree615Midget Radio Corp. Miles Reproducer Co.Sound Recording Sound RecordingBulletinsFree615Millen, J., Mfg. Co., Inc. National Company, Inc.Set & Parts Mfr.LiteratureFree617National Company, Inc. Netional SchoolsSet & Parts Mfr.LiteratureFree617National SchoolsRadio SchoolCatalogFree579Nelson Co.Used Courses72-Page CatalogFree579New York Y.M.C.A. SchoolsTrade SchoolBookletFree579Premax Products Radio SchoolBookletFree579Radio SchoolCatalogFree579Radio K Technical Publ. Co. Radio SchoolRadio TextbooksCirculars on each book CatalogFree579Premax Products Radio & TextbooksParts Mfr.CatalogFree579Remington Rand Sprayberry Acad, of Radio Superme PublicationsPublisherCatalogFree601Superme PublicationsPublisher </td <td>Harvey Radio Company</td> <td>Mail Order</td> <td></td> <td></td> <td>Free</td> <td>603</td>	Harvey Radio Company	Mail Order			Free	603
Hytron LaboratoriesTube Mfr.InformationFree597Instructograph Company Johnson, E. F., Co.Parts Mfr.Catalog966WFree615Lancaster, Allwine & Rommel Mass, Radio SchoolPatent Attorneys Radio SchoolBookletFree632Mass, Radio Co.Kit & Parts Mfr.1941 CatalogFree595Midget Radio Co.Set Mfr.InformationFree615Midwest Radio Corp.Set Mfr.1941 CatalogFree615Miles Reproducer Co.Sound RecordingBulletinsFree615Milen, J., Mfg. Co., Inc.Parts Mfr.CatalogFree617National Company, Inc.Set & Parts Mfr.CatalogFree617National SchoolsRadio SchoolCatalogFree579Nelson Co.Used Courses72-Page CatalogFree579Nelson Co.Used Courses72-Page CatalogFree579Nelson Co.Used Courses72-Page CatalogFree579Nelson Co.Used Courses72-Page CatalogFree579New York Y.M.C.A. SchoolsTrade SchoolBookletFree579Premax ProductsRadio SchoolCatalogFree579Radio & Technical Publ. Co.Radio SchoolCatalogFree579Radio & Technical Publ. Co.Radio SchoolCatalogFree579Radio & Technical Publ. Co.Radio SchoolCatalogFree579Radio & Technical P		Mail Order	Information		Free	604
Instructograph Company Johnson, E. F., Co.Code Machine Parts Mfr.Information CatalogFree615Lancaster, Allwine & Rommel Mass, Radio SchoolPatent Attorneys Radio SchoolBookletFree607Mass, Radio SchoolRadio School60.Page CatalogFree520Midget Radio Co.Set Mfr.1941 CatalogFree615Midwest Radio Corp.Set Mfr.1941 CatalogFree615Miles Reproducer Co.Sound RecordingBulletinsFree615Millen, J., Mfg. Co., Inc.Parts Mfr.CatalogFree576National Company, Inc.Set & Parts Mfr.LiteratureFree577National SchoolsRadio SchoolGatalogFree577National SchoolsRadio SchoolCatalogFree579Nelson Co.Used Courses72-Page CatalogFree579New York Y.M.C.A. SchoolsTrade SchoolBookletFree579Parts Mfr.CatalogCatalogFree579Radio & Technical Publ. Co.Radio SchoolCatalogFree579RCA Institutes, Inc.Radio SchoolCatalogFree579Remington RandTypewriter Mfr.CatalogFree579Sprayberry Acad. of Radio Supreme PublicationsPublisherInformationFree601Supreme PublicationsPublisherInformationFree613Supreme PublicationsPublisherInformationFree613 </td <td>Hudson Specialties Co.</td> <td>Mail Order</td> <td>Catalog</td> <td></td> <td>Free</td> <td>631</td>	Hudson Specialties Co.	Mail Order	Catalog		Free	631
Johnson, E. F., Co.Parts Mfr.Catalog966WFree607Lancaster, Allwine & RommelPatent AttorneysBookletBookletFree632Mass, Radio SchoolRadio SchoolKit & Parts Mfr.BookletFree632Meissner Mfg. Co.Kit & Parts Mfr.1941 CatalogFree579Midget Radio Corp.Set Mfr.1941 CatalogFree615Milles Reproducer Co.Sound RecordingBulletinsFree617Millen, J., Mfg. Co., Inc.Parts Mfr.LiteratureFree617National Company, Inc.Set & Parts Mfr.LiteratureFree579National SchoolsRadio SchoolCatalogFree577National SchoolsRadio SchoolCatalogFree579Nelson Co.Used Courses72-Page CatalogFree579Nelson Co.Used Courses72-Page CatalogFree579New York Y.M.C.A. SchoolsTrade SchoolBookletFree579New York Y.M.C.A. SchoolsTrade SchoolBookletFree579Radio a technical Publ. Co.Radio TextbooksCirculars on each bookFree579Remington RandTypewriter Mfr.CatalogFree611Sprayberry Acad. of RadioRadio SchoolS2-Page BookFree611Suprague Products CompanyParts Mfr.CatalogFree579Remington RandTypewriter Mfr.CatalogFree611Suprague Prod	Hytron Laboratories		Information		Free	597
Lancaster, Allwine & Rommel Mass, Radio SchoolPatent Attorneys Radio SchoolAntenna Handbook Booklet25cMass, Radio SchoolRadio SchoolG0.Page CatalogFree632Meissner Mfg. Co.Kit & Parts Mfr.1941 CatalogFree579Midget Radio Corp.Set Mfr.InformationFree615Millen, J., Mfg. Co., Inc.Set Mfr.1941 CatalogFree615National Company, Inc.Parts Mfr.CatalogFree579National Radio InstituteRadio School64-Page BookFree579National SchoolsRadio SchoolCatalogFree579Nelson Co.Used Courses72-Page CatalogFree579Nelson Co.Used Courses72-Page CatalogFree579New York Y.M.C.A. SchoolsTrade SchoolBookletFree579New York Y.M.C.A. SchoolsTrade SchoolBookletFree579Radio & Technical Publ. Co.Radio TextbooksCirculars on each bookFree579Radio at the functionTypewriter Mfr.CatalogFree579RCA Institutes, Inc.Radio SchoolSchoolSchoolFree601Sprague Products CompanyParts Mfr.CatalogFree601Sprague Products CompanyParts Mfr.CatalogFree579Remington RandTypewriter Mfr.CatalogFree601Sprayberry Acad. of RadioSchoolS2-Page BookFree611 <tr< td=""><td>Instructograph Company</td><td>Code Machine</td><td>Information</td><td></td><td>Free</td><td>615</td></tr<>	Instructograph Company	Code Machine	Information		Free	615
Lancaster, Allwine & Rommel Mass, Radio SchoolPatent Attorneys Radio SchoolAntenna Handbook Booklet25cMass, Radio SchoolRadio SchoolG0.Page CatalogFree632Meissner Mfg. Co.Kit & Parts Mfr.1941 CatalogFree579Midget Radio Corp.Set Mfr.InformationFree615Millen, J., Mfg. Co., Inc.Set Mfr.1941 CatalogFree615National Company, Inc.Parts Mfr.CatalogFree579National Radio InstituteRadio School64-Page BookFree579National SchoolsRadio SchoolCatalogFree579Nelson Co.Used Courses72-Page CatalogFree579Nelson Co.Used Courses72-Page CatalogFree579New York Y.M.C.A. SchoolsTrade SchoolBookletFree579New York Y.M.C.A. SchoolsTrade SchoolBookletFree579Radio & Technical Publ. Co.Radio TextbooksCirculars on each bookFree579Radio at the functionTypewriter Mfr.CatalogFree579RCA Institutes, Inc.Radio SchoolSchoolSchoolFree601Sprague Products CompanyParts Mfr.CatalogFree601Sprague Products CompanyParts Mfr.CatalogFree579Remington RandTypewriter Mfr.CatalogFree601Sprayberry Acad. of RadioSchoolS2-Page BookFree611 <tr< td=""><td>Johnson, E. F., Co.</td><td>Parts Mfr.</td><td>Catalog</td><td>966W</td><td>Free</td><td>607</td></tr<>	Johnson, E. F., Co.	Parts Mfr.	Catalog	966W	Free	607
Mass. Radio SchoolRadio School60.Page CatalogFree579Meissner Mfg. Co.Kit & Parts Mfr.1941 CatalogFree595Midget Radio Co.Set Mfr.InformationFree615Midwest Radio Corp.Set Mfr.1941 CatalogFree615Miles Reproducer Co.Sound RecordingBulletinsFree617Millen, J., Mfg. Co., Inc.Parts Mfr.CatalogFree596National Company, Inc.Set & Parts Mfr.LiteratureFree577National Radio InstituteRadio SchoolCatalogFree579Nelson Co.Used Courses72-Page CatalogFree579Nelson Co.Used Courses72-Page CatalogFree579Nelson Co.Used Courses72-Page CatalogFree579New York Y.M.C.A. SchoolsTrade SchoolBookletFree579Parma ProductsParts Mfr.CatalogFree579Radio & Technical Publ. Co.Radio TextbooksCirculars on each bookFree579Radio at Technical Publ. Co.Radio SchoolCatalogFree601RCA Institutes, Inc.Radio SchoolCatalogFree611Sprayberry Acad, of RadioRadio School52-Page BookFree611Sprayberry Acad, of RadioRadio School52-Page BookFree611Sprayberry Acad, of RadioRadio School52-Page BookFree613Supreme PublicationsPublisher <td< td=""><td>-</td><td></td><td>Antenna Handbook</td><td></td><td>25c</td><td></td></td<>	-		Antenna Handbook		25c	
Meissner Mfg. Co. Midget Radio Co.Kit & Parts Mfr.1941 CatalogFree595Midget Radio Co. Midwest Radio Corp.Set Mfr.InformationFree615Miles Reproducer Co. Millen, J., Mfg. Co., Inc. National Company, Inc.Set Mfr.1941 CatalogFree615Mational Company, Inc. National SchoolsParts Mfr. Radio SchoolCatalogFree596National SchoolsRadio School64-Page BookFree577National SchoolsRadio SchoolCatalogFree579Nelson Co. N.Y. Institute of Photog- raphyUsed Courses72-Page CatalogFree579Neadio & Technical Publ. Co. Radio & Technical Publ. Co. Radio & Technical Publ. Co. Radio SchoolBookletFree579Radio & Technical Publ. Co. Radio & Technical Publ. Co. Radio SchoolCatalogFree579Radio & Technical Publ. Co. Radio SchoolCatalogFree579Remington Rand Sprayberry Acad. of Radio Supreme PublicationsTrypewriter Mfr. Parts Mfr.CatalogFree601Sprayberry Acad. of Radio Supreme PublicationsRadio School52-Page BookFree613Sprayberry Acad. of Radio Supreme PublicationsRadio School52-Page BookFree614Sprayberry Acad. of Radio Supreme PublicationsPublisherInformationFree613Teleplex Co. Universal MicrophoneCata Mfr. Parts Mfr.CatalogFree614Supreme PublicationsPublisher	Lancaster, Allwine & Rommel	Patent Attorneys	Booklet		Free	632
Midget Radio Co.Set Mfr.InformationFree615Midget Radio Corp.Set Mfr.1941 CatalogFree615Miles Reproducer Co.Sound RecordingBulletinsFree617Millen, J., Mfg. Co., Inc.Parts Mfr.CatalogFree596National Company, Inc.Set & Parts Mfr.LiteratureFree577National SchoolsRadio School64.Page BookFree577National SchoolsRadio SchoolCatalogFree579Nelson Co.Used Courses72.Page CatalogFree579New York Y.M.C.A. SchoolsTrade SchoolBookletFree579Premax ProductsParts Mfr.CatalogFree579Radio & Technical Publ. Co.Radio SchoolCatalogFree601RCA Institutes, Inc.Radio SchoolCatalogFree601RcAi Institutes, Inc.Radio SchoolCatalogFree611Sprayberry Acad. of RadioSchoolS2-Page BookFree611Sprayberry Acad. of RadioRadio School52-Page BookFree613Supreme PublicationsPublisherInformationFree613Supreme PublicationsPublisherInformationFree614Suprend Parts Mfr.CatalogFree613Supreme PublicationsPublisherInformationFree613Teleplex Co.Code MachinesFolderS-2Free613Teleplex Co.<	Mass. Radio School	Radio School	60-Page Catalog		Free	579
Midget Radio Co.Set Mfr.InformationFree615Midwest Radio Corp.Set Mfr.1941 CatalogFree615Miles Reproducer Co.Sound RecordingBulletinsFree617Millen, J., Mfg. Co., Inc.Parts Mfr.CatalogFree617National Company, Inc.Set & Parts Mfr.LiteratureFree617National Radio InstituteRadio School64.Page BookFree577National SchoolsRadio SchoolCatalogFree579Nelson Co.Used Courses72.Page CatalogFree604N. Y. Institute of Photog- raphyPhotographyBookletFree579New York Y.M.C.A. SchoolsTrade SchoolBookletFree579Radio & Technical Publ. Co.Radio TextbooksCirculars on each bookFree579RadiocraftersParts Mfr.InformationFree601RCA Institutes, Inc.Radio SchoolCatalogFree611Sprayberry Acad. of RadioSchoolS2-Page BookFree611Sprayberry Acad. of RadioRadio School52-Page BookFree613Supreme PublicationsPublisherInformationFree613Supreme PublicationsPublisherInformationFree614Supreme Aco.Code MachinesFolderS-2Free613Supreme PublicationsPublisherInformationFree614Supreme PublicationsPublisherInfor	Meissner Mfg. Co.	Kit & Parts Mfr.	1941 Catalog		Free	595
Midwest Radio Corp. Miles Reproducer Co.Set Mfr.1941 CatalogFree615Milles Reproducer Co.Sound Recording Parts Mfr.BulletinsFree617Millen, J., Mfg. Co., Inc.Parts Mfr.CatalogFree617National Company, Inc.Set & Parts Mfr.LiteratureFree596National Radio InstituteRadio School64.Page BookFree577National SchoolsRadio SchoolCatalogFree579Nelson Co.Used Courses72.Page CatalogFree604N. Y. Institute of Photog- raphyPhotographyBookletFree579New York Y.M.C.A. SchoolsTrade SchoolBookletFree579Premax ProductsParts Mfr.CatalogR.49Free579Radio & Technical Publ. Co.Radio TextbooksCirculars on each bookFree579RadiocraftersParts Mfr.InformationFree601RCA Institutes, Inc.Radio SchoolCatalogFree601Sprayberry Acad. of RadioRadio School52-Page BookFree601Sprayberry Acad. of RadioRadio School52-Page BookFree613Supreme PublicationsPublisherInformationFree613Teleplex Co.Code MachinesFolderS-2Free613Teleplex Co.Code MachinesFolderS-2Free614Universal MicrophoneParts Mfr.InformationFree614 <td>-</td> <td>Set Mfr.</td> <td>Information</td> <td></td> <td>Free</td> <td>615</td>	-	Set Mfr.	Information		Free	615
Miles Reproducer Co.Sound Recording Parts Mfr.BulletinsFree617Millen, J., Mfg. Co., Inc.Parts Mfr.CatalogFree596National Company, Inc.Set & Parts Mfr.LiteratureFree1.F.C.National Radio InstituteRadio School64.Page BookFree577National SchoolsRadio SchoolCatalogFree579Nelson Co.Used Courses72.Page CatalogFree604N. Y. Institute of Photog- raphyPhotographyBookletFree579New York Y.M.C.A. SchoolsTrade SchoolBookletFree579Premax ProductsParts Mfr.CatalogR.49Free579Radio & Technical Publ. Co.Radio TextbooksCirculars on each bookFree579RadiocraftersParts Mfr.InformationFree601RCA Institutes, Inc.Radio SchoolCatalogFree611Sprague Products CompanyParts Mfr.CatalogFree611Sprague Products CompanyParts Mfr.CatalogFree611Sprayberry Acad. of RadioRadio School52-Page BookFree613Supreme PublicationsPublisherInformationFree613Teleplex Co.Code MachinesFolderS-2Free617Universal MicrophoneParts Mfr.InformationFree614			1941 Catalog		Free	615
Millen, J., Mfg. Co., Inc. National Company, Inc.Parts Mfr. Set & Parts Mfr.Catalog LiteratureFree596National Radio Institute National SchoolsSet & Parts Mfr. Radio SchoolLiterature 64.Page BookFreeI.F.C. FreeNational Schools Nelson Co.Used Courses Photography School72.Page Catalog BookletFree579New York Y.M.C.A. Schools Premax ProductsTrade School Parts Mfr.BookletFree579Radio & Technical Publ. Co. Radio & Technical Publ. Co.Radio School Parts Mfr.Catalog Radio SchoolR.49Free579Remington Rand Sprayberry Acad. of Radio Supreme PublicationsTypewriter Mfr. PutisherCatalog InformationFree601Supreme Publications Teleplex Co.PublisherInformation InformationFree613Teleplex Co. Universal MicrophoneCode Machines Parts Mfr.FolderS-2Free614Free607Free614Free614			-			
National Company, Inc.Set & Parts Mfr.LiteratureFreeI.F.C.National Radio InstituteRadio School64.Page BookFree577National SchoolsRadio SchoolCatalogFree579Nelson Co.Used Courses72.Page CatalogFree604N. Y. Institute of Photog- raphyPhotographyBookletFree579New York Y.M.C.A. SchoolsTrade SchoolBookletFree579Premax ProductsParts Mfr.CatalogR.49Free579Radio & Technical Publ. Co.Radio TextbooksCirculars on each bookFree579RadiocraftersParts Mfr.InformationFree601RCA Institutes, Inc.Radio SchoolCatalogFree611Sprague Products CompanyParts Mfr.CatalogFree611Sprayberry Acad. of RadioRadio School52-Page BookFree613Supreme PublicationsPublisherInformationFree613Teleplex Co.Code MachinesFolderS-2Free607Universal MicrophoneParts Mfr.InformationFree614		· · · ·		1		
National Radio InstituteRadio School64-Page BookFree577National SchoolsRadio SchoolCatalogFree579Nelson Co.Used Courses72-Page CatalogFree604N. Y. Institute of Photog- raphyPhotographyBookletFree579New York Y.M.C.A. SchoolsTrade SchoolBookletFree579Premax ProductsParts Mfr.CatalogR-49Free579Radio & Technical Publ. Co.Radio TextbooksCirculars on each bookFree579RadiocraftersParts Mfr.InformationFree601RCA Institutes, Inc.Radio SchoolCatalogFree611Sprague Products Company Sprayberry Acad. of RadioRadio School52-Page BookFree613Supreme PublicationsPublisherInformationFree613Teleplex Co.Code MachinesFolderS-2Free607Universal MicrophoneParts Mfr.InformationFree614			v v		-	
National SchoolsRadio SchoolCatalogFree579Nelson Co.Used Courses72-Page CatalogFree604N. Y. Institute of Photog- raphyPhotographyBookletFree579raphySchoolTrade SchoolBookletFree579New York Y.M.C.A. SchoolsTrade SchoolBookletFree579Premax ProductsParts Mfr.CatalogR-49Free579Radio & Technical Publ. Co.Radio TextbooksCirculars on each bookFree579RadiocraftersParts Mfr.InformationFree601RCA Institutes, Inc.Radio SchoolCatalogFree611Sprague Products CompanyParts Mfr.CatalogFree611Sprayberry Acad. of RadioRadio School52-Page BookFree613Supreme PublicationsPublisherInformationFree613Teleplex Co.Code MachinesFolderS-2Free607Universal MicrophoneParts Mfr.InformationFree614						
Nelson Co.Used Courses72-Page CatalogFree604N. Y. Institute of Photog- raphyPhotography SchoolBookletFree579naphySchoolTrade SchoolBookletFree579New York Y.M.C.A. SchoolsTrade SchoolBookletFree579Premax ProductsParts Mfr.CatalogR-49Free579Radio & Technical Publ. Co.Radio TextbooksCirculars on each bookFree579RadiocraftersParts Mfr.InformationFree601RCA Institutes, Inc.Radio SchoolCatalogFree611Sprague Products CompanyParts Mfr.CatalogFree611Sprayberry Acad. of RadioRadio School52-Page BookFree613Supreme PublicationsPublisherInformationFree613Teleplex Co.Code MachinesFolderS-2Free607Universal MicrophoneParts Mfr.InformationFree607						
N. Y. Institute of Photog- raphyPhotography SchoolBookletFree579New York Y.M.C.A. SchoolsTrade SchoolBookletFree579Premax ProductsParts Mfr.CatalogR.49Free596Radio & Technical Publ. Co.Radio TextbooksCirculars on each bookFree579RadiocraftersParts Mfr.InformationFree579Remington RandTypewriter Mfr.CatalogFree601Sprague Products Company Sprayberry Acad. of RadioRadio SchoolCatalogFree611Supreme PublicationsPublisherInformationFree613Teleplex Co.Code MachinesFolderS-2Free613Universal MicrophoneParts Mfr.CatalogFree607			U U			
raphySchoolNew York Y.M.C.A. SchoolsTrade SchoolBookletFreePremax ProductsParts Mfr.CatalogR.49FreeRadio & Technical Publ. Co.Radio TextbooksCirculars on each bookFree579RadiocraftersParts Mfr.InformationFree601RCA Institutes, Inc.Radio SchoolCatalogFree611Sprague Products CompanyParts Mfr.CatalogFree611Sprayberry Acad. of RadioRadio School52-Page BookFree613Supreme PublicationsPublisherInformationFree613Teleplex Co.Code MachinesFolderS-2Free607Universal MicrophoneParts Mfr.InformationFree614						
New York Y.M.C.A. SchoolsTrade SchoolBookletFree579Premax ProductsParts Mfr.CatalogR.49Free596Radio & Technical Publ. Co.Radio TextbooksCirculars on each bookFree579RadiocraftersParts Mfr.InformationFree601RCA Institutes, Inc.Radio SchoolCatalogFree611Sprague Products CompanyParts Mfr.CatalogFree611Sprayberry Acad. of RadioRadio School52-Page BookFree613Supreme PublicationsPublisherInformationFree613Teleplex Co.Code MachinesFolderS-2Free607Universal MicrophoneParts Mfr.InformationFree607			POORICE		1.tec	517
Premax ProductsParts Mfr.CatalogR.49Free596Radio & Technical Publ. Co.Radio TextbooksCirculars on each bookFree579RadiocraftersParts Mfr.InformationFree601RCA Institutes, Inc.Radio SchoolCatalogFree601Remington RandTypewriter Mfr.CatalogFree611Sprague Products CompanyParts Mfr.CatalogFree611Sprayberry Acad. of RadioRadio School52-Page BookFree613Supreme PublicationsPublisherInformationFree613Teleplex Co.Code MachinesFolderS-2Free607Universal MicrophoneParts Mfr.InformationFree607			Realizat		F	570
Radio & Technical Publ. Co.Radio TextbooksCirculars on each bookFree579RadiocraftersParts Mfr.InformationFree601RCA Institutes, Inc.Radio SchoolCatalogFree601Remington RandTypewriter Mfr.CatalogFree611Sprague Products CompanyParts Mfr.CatalogFree611Sprayberry Acad. of RadioRadio School52-Page BookFree613Supreme PublicationsPublisherInformationFree613Teleplex Co.Code MachinesFolderS-2Free579Triplett Electrical Inst. Co.Parts Mfr.CatalogFree607Universal MicrophoneParts Mfr.InformationFree614				D in	1	
RadiocraftersParts Mfr.InformationFree601RCA Institutes, Inc.Radio SchoolCatalogFree579Remington RandTypewriter Mfr.CatalogFree611Sprague Products CompanyParts Mfr.CatalogFree611Sprayberry Acad. of RadioRadio School52-Page BookFree613Supreme PublicationsPublisherInformationFree613Teleplex Co.Code MachinesFolderS-2Free579Triplett Electrical Inst. Co.Parts Mfr.CatalogFree607Universal MicrophoneParts Mfr.InformationFree614		1	U U	17-42	1	
RCA Institutes, Inc.Radio SchoolCatalogFree579Remington RandTypewriter Mfr.CatalogFree611Sprague Products CompanyParts Mfr.CatalogFree611Sprayberry Acad. of RadioRadio School52-Page BookFree18.C.Supreme PublicationsPublisherInformationFree613Teleplex Co.Code MachinesFolderS-2Free579Triplett Electrical Inst. Co.Parts Mfr.CatalogFree607Universal MicrophoneParts Mfr.InformationFree614						
Remington RandTypewriter Mfr.CatalogFree611Sprague Products CompanyParts Mfr.CatalogFree601Sprayberry Acad. of RadioRadio School52-Page BookFree601Supreme PublicationsPublisherInformationFree613Teleplex Co.Code MachinesFolderS-2Free579Triplett Electrical Inst. Co.Parts Mfr.CatalogFree607Universal MicrophoneParts Mfr.InformationFree614						
Sprague Products CompanyParts Mfr.CatalogFree601Sprayberry Acad. of RadioRadio School52-Page BookFreeI.B.C.Supreme PublicationsPublisherInformationFree613Teleplex Co.Code MachinesFolderS-2Free579Triplett Electrical Inst. Co.Parts Mfr.CatalogFree607Universal MicrophoneParts Mfr.InformationFree614		1	U U			1
Sprayberry Acad. of RadioRadio School52-Page BookFreeI.B.C.Supreme PublicationsPublisherInformationFree613Teleplex Co.Code MachinesFolderS-2Free579Triplett Electrical Inst. Co.Parts Mfr.CatalogFree607Universal MicrophoneParts Mfr.InformationFree614			- · · ·			1
Supreme PublicationsPublisherInformationFree613Teleplex Co.Code MachinesFolderS-2Free579Triplett Electrical Inst. Co.Parts Mfr.CatalogFree607Universal MicrophoneParts Mfr.InformationFree614						
Teleplex Co.Code MachinesFolderS-2Free579Triplett Electrical Inst. Co.Parts Mfr.CatalogFree607Universal MicrophoneParts Mfr.InformationFree614		1				
Triplett Electrical Inst. Co.Parts Mfr.CatalogFree607Universal MicrophoneParts Mfr.InformationFree614	1 _ 1				_	
Universal Microphone Parts Mfr. Information Free 614				S-2	1	
			Ú			1
Co., Ltd.		Parts Mfr.	Information		Free	614
	Co., Ltd.					

New "Hamanual"

• THE fifth edition of the "Hamanual" has just been amounced by the Standard Transformer Corporation. This is a 48 page, two color catalog which describes completely twelve different trans-mitters and six amplifiers. A complete circuit is given on each unit in blueprint form. All the component parts lists are shown, together with the original manufacturers' part numbers. This year for the first time a complete array of power-supply kits is offered. Many other new features are incorporated in the book. The Hamanual is available either from the Stancor distributor or direct from the factory at 15 cents net.

Bulletin Analyzes Radio Interference Faults

• SERVICEMEN who have made it a point to study radio interference elimination as a means to increased profits in this rapidly growing phase of the business, will find much of general interest in an entirely new 8-page bulletin, "Radio Inter-ference Elimination for Public Utilities." just issued by Sprague Products Company.

This includes a complete description of the causes and cures of radio interference on power transmission and distribution lines as developed by Sprague engineers in more than three years of field and laboratory work. Although it is written primarily from the angle of the public utility company and deals with problems relating directly to public utility power lines, the booklet should prove helpful to servicemen who specialize in interference elimination work. It will serve as a guide in helping them diagnose radio noise com-plaints. plaints.

A copy will be sent free upon request to bona fide radio servicemen.

New Meissner Catalog

New Meissner Catalog • THE new 1941 general catalog showing the various products of the Meissner Manufacturing Company has come to the reviewer's desk. This is an unusually interesting catalog, as it contains to an unusually interesting catalog, as it contains to a complete FM console and table models in cabinets. Television receiver "kits" are also listed and we find a liberal assortment of "receiving set kits, including a 12-tube all-wave "hone" receiver. Other receiving set kits include 7. 8, and 9 tube jobs; student midget sets: A.C.-D.C. portable superhet; and 4. 5, and 6 tube receiving set kits. Another section of the catalog covers P-A tuners and kits, the new Meissner Analyst (a test instrument for servicemen), a signal calibrator, all-wave tuning units, phono oscillators, I.F. transformers of both the air and iron-core type, etc. Other apparatus covered in the catalog are—filters, R.P. chokes, variable condensers, and several interesting dials—including tho-e with "hand-spread."

Sun Sound Systems Catalog

• SI'N RADIO CO. of New York City has just reacted and illustrated 24-page public address booklety that should prove of interest that should prove of inter

sons upon request.

Please Mention This Magazine When Writing Advertisers 1.4 1. 16 1 5

FREE TO YOU! **RADIO PARTS AND ACCESSORIES**

IMPORTANT TO PRESENT SUBSCRIBERS

If you are already a subscriber or have recently subscribed to the matszine, this offer stills helds sood for you, to, We marcly will lengthen your sub-erription for either 7 months, as the case may be. There is a place on the coupen which pro-vides for this.

RADIO TELEVISION City (Send remittance in form of check or money order. If you send eash or unused U. S. postage stamps, be sure to register your letter.)

 \Box I am a subscriber now. Lengthen my subscription for months:

I am circling the numbers of the parts I wish to have you send me Free. Nos. 1 2 3 4 5 6 7

20 VESEY STREET NEW YORK, N.Y.

PROMPT SHIPMENT

ASSURED!

Please Mention This Magazine When Writing Advertisers www.americanradiohistorv.com &

Index to Advertisers

A	
Allied Engineering Institute Allied Radio Corporation 591, American Radio Institute Amperite Co.	610 609 597 579 604 617
Bliley Electric Co., Bridge, Harry P. Bud Radio, Inc.	637 601 620 596 615
с	
Cannon, C. F., Co. Chartered Institute of American Inventors	601 604 632 637 579
D	
Dataprint Company 614. Dodge's Institute	619 579
F Flight Magazine For Sale Ads	612 637
Goldentone Radio Co	614 632
н	
H Hallicrafters, Inc. Hammarlund Manufacturing Co., Inc. Harrison Radio Co. Harvey Radio Company Henry Radio Sopeialties Company. Hudson Specialties Company.	605 610 603 604 631
Hytron Laboratories	597
I	
Instructograph Company	615
	607
Lancaster, Allwine & Rommel.	. 632
M Mass. Radio School. Meissner Mfg. Co. Midget Radio Corporation Midwest Radio Corporation Mides Reproducer Co. Miles Reproducer Co. Millen, James, Mfg. Co., Inc.	579 595 615 615 617 596
N	
National Company, Inc., Inside Front C National Plans Institute National Schools Nelson Co., Net York Y. M. C. A. Schools	622 577 579 604 579 579
Р	
Premax Products Premium Distributing Service	596 617
R	
Radio Amateur Course Radio & Technical Publ. Co. Radiocrafter- Radio Publications	.623 579 601 633 580 579 611
S	
Sprague Products Company Sprayberry Academy of Radio Inside Back (Supreme Publications	601 over .613
T (22	6.20
Technifax 622 Teleplex Co. Triplett Electrical Instrument Co.	629 579 607
W III	61.4
Universal Microphone Co., Ltd.	614

(While every precaution is taken to insure accuracy, we cannot guarantee against the possibility of an occasional change or omission in the preparation of this index.)

Printed in the U.S.A.

Please Mention This Magazine When Writing Advertiser

www.americanradiohistorv.com

Readers' Letters -----

What Do YOU Think?

(Continued from page 579)

short wave fields, and like the others I rely upon your FB magazine to furnish me with understandable and complete data.

I recently built my first receiver from a circuit appearing in your magazine, and it works very well. I am also planning to build my transmitter from circuits in your magazine, as soon as I am a little more advanced: I can easily follow your diagrams, although I am a beginner. I am a SWL and will swap cards 100% promptly with anyone who desires such.

In closing, I believe that your editorials should be praised, as they put the short wave experimenter in a high position and prove the importance of radio in war and peace, which is especially important in these troubled times.

DICK VESTY.

Box 305. Alexandria Bay, New York

A SUGGESTION

Editor. The equipment in my S-W shack consists of three standard receivers. The one to the left is used for my home-made public address system.

I have been reading R. & T. for some time and I do sincerely believe R. & T. is the most complete magazine for all om's & yt's interested in radio. The departments that interest me are: What Do You Think, the Want Ads, and Circuits. It would be very I'B if you awarded some kind of trophy or certificate to SWL photos. Your magazine is "tops" with me.

Here is a "different"

QSL card collection-

not stations "worked"

-but stations put on the air! Photo above shows approximately

600 amateurs put on

the air by the American Radio Institute.

WILLIAM A. WHITE, JR., 2109 E. 3rd St., Superior, Wis, 1933 and '34, especially the "Doerle" sets. This would greatly increase R, & T,'s popularity among us fellows of 14 or 15, who have to work for our money, as these sets cost less to build.

Another suggestion is that you return the Barter & Exchange column to its former "iree" status.

> Phill Adamsak, 4650 Forman Ave. North Hollywood, Calif.

(We constantly endeavor to present sevcral simple articles in each issue, which will appeal to the beginner. We think you will agree that some excellent beginner's articles have appeared in recent numbers of RADIO & TELEVISION.—Editor)

HE'LL EXCHANGE CARDS

Editor,

The receivers here are a 5-tube Emerson and a 7-tube Zenith. Most of my DXing is done on the 20 meter band. I have logged 32 countries, verified 28 of them. The antenna is a 110 foot Marconi, and a 35 ft. doublet. I have been reading R. & T. for about a year now, and just renewed my subscription. Well, I'll have to be wishing your FB magazine 73 (best regards) now. If any of you SWL's want my card, send me yours, and you'll get mine by return mail.

Yours DNingly.

THORNTON LYFORD, 260 Woodlawn Ave. Hubbard Woods, Ill.

IX-STIDENTE Cases Party reaso NUCT ROLL ROLL ROLL state uponts IZANY WILL WILT' ADAL 1011 6.48 601 FL NAME VILLE AND ADDRESS 10.0 OND NO. NO. OF 381 93876 AND REAL POINT AND A CALL No. 6. KO STREET OF THE OF THE OF THE OF -THE REAL PARTY AND ALLES MALES WARE aberte ettabi witte einer einen sinne einer einen fente

A "BRICKBAT"

Editor. I am just a beginner in the radio game, but I feel entitled to make a criticism of your magazine. It is excellent for hoaryhaired hams and their like, but what about us beginners? I first bought your magazine because of a couple of beginner's articles in it. The next few months it was OK, and I got into the habit of buying R. & T. as it came on the stands. I was getting my money's worth then, but for the past few months it seems too complicated. I suggest that you reprint some of your articles of ANSWERS TO PUZZLE DIAGRAM ON PAGE 622

6F6, control grid missing pin #5
6A7, control grid missing, Cap 58, suppressor grid missing, pin #4
12A7, screen grid missing, pin #3
6K7, screen grid missing, pin #4
6A8, screen grid missing, pin #4
6F7, grid missing, triode section, pin #5
89, screen grid missing, pin #3
19, grid missing, output section, pin #4
6L7, screen grid missing, pin #4
Symhols show bottom view of socket.

FULL EQUIPMENT nciuded with SPRAYBERRY **RADIO TRAINING** Experience Easily Acquired at Hor Home HOW TO MAKE

OVER 100 EXPERIMENTS

plus Many Other Special Features

ALL DESIGNED TO HELP YOU MAKE FAST PROGRESS!

SPRAYBERRY Training starts right at the beginning of Radio . . . unfolds each subject in a simplified, logical, understandable style. You easily learn Television, Frequency Modulation. Signal Tracing. Mobile Radio (Auto-Tank), Aviation Radio, Electronics, Facsimile Radio. Radio Set Repair and Installation Work. You learn quickly in your spare hours . . . AT HOME OR AT CAMP.

Training Prepares You for a Business of Your Own **Or Good Radio Jobs at Excellent Pay!**

The great, fascinating and progressive field of Radio and Televisiun offers many opportunities to the man who wants to get ahead. There is good money to be made. My Training is designed to give you quick access to these opportunities. SPRAY-BERRY Methods are thorough and practical. Your Training will not Interfere with your present work.

You Get Professional Test Equipment plus Experimental Outfits!

TESTER-ANALYZER

RADIO RADIO RADIO RADIO EQUIPMENT for conducting actual experiments with your own hands, I show you how to create Radio defects. .. how to correct them. This practical "beforehand" experience will come in handy zgain and again when you are called on to do actual Radio repsir work later on.

All

Equipment

Becomes

Your

Personal

Property

READ WHAT THESE FELLOWS SAY ABOUT THE NEW PRACTICAL SPRAYBERRY TRAINING

EARNED \$250 SINCE STARTING

MONEY IN RA

SPRAYBERRY ACADEMY OF RADIO

146 RADIO PARTS

"I have only completed one-third of the Sprayberry Course and 1 find it very interesting, which makes it easy to learn. "By deroting several hours of my spare time daily to studying and servicing, 1 have made about 2500 gross since starting the Course," Earl W. Hostetter, R. No. 4. Lebanoa, Pa.

"SO MUCH FOR SO LITTLE"

Now just a few words about your Course-the more I get milt, the more I wonder how you can give so much for

"MADE OVER \$300 NET IN SIX MONTHS" While over soon net in SIX Months While I have not hunk out my "shinkle" yet. I have made over \$300 net in the past six months, doing some full and some part time Radio servicing. "I am completely satisfied in every way with your Course, and I am might's glad I signed on the 'doited line,' making me a student of the Sprayberry Academy of Radio." Wendell M. Caldwell, 93 Hickory St., Rochester, N. Y.

Cash In on Radio's Rich Opportunities

No matter if you desire to BE YOUR OWN BOSS in your own business or hold down a good job in Radio. my Training will give you the useful informa-tion and knowledge to win success. Days of delay mean precious time wasted. Start training for a money-making Radio career—right now.

-THE SPRAYBERRY COURSE IS SOLD REMEMBER UNDER & MONEY-BACK AGREEMENT

EARN WHILE YOU LEARN

My BUSINESS BUILDERS show you how to put your equipment to actual use in handling money-making Radio Service Jobs shortly after you bedin training. you

begin training. Learn More About the SPRAYBERRY Method And How Easy It is to Start The complete details of my funda-mental Course and Advanced Training Course ... all features are fully de-scrihed in my new, valuable 32-page FREE Ecook, Send for your coopy. No obligation.

No Previous **Experience** Needed

RADIO TOOLS

makes no difference your education has I can fit you quickly good-paying Radio job. ke it easy for you to Radio principles and been. I ca for a good I make it grasp Rad remember in the

City

DON'T DELAY! ACT NOW!

SPRAYBERRY ACADEMY OF RADIO F. L. Sprayberry, Pres.

445-B University Place. N. W. Washington, D. C.

Please send my FREE copy of "HOW TO MAKE MONEY IN RADIO.

Name Age

Address

State Tear off this coupon, mail in envelope or baste on penny postcard.

RUSH THIS COUPON for BIG FR BOOK

New High fidelity FN-AN TUNER

MODEL S-31 High Fidelity Tuner for Frequency Modulation and Amplitude Modulated Reception.

Now you can have FM-AM reception by a turn of the bandswitch with the Model S-31 Hallicrafters commercial FM-AM Tuner. Covering the broadcast (AM) band and the 40-51 mc. high frequency (FM) band. The Tuner combines the FM and AM circuits in one chassis with either instantly available at the turn of the bandswitch. SPECIFICATIONS - 9 tubes - Frequency range, band one; 550 to 1600 kc., band two; 40 to 51 mc. - Power output 130 milliwatts undistorted - Output impedances 500 and 5000 ohms - Power consumption 120 watts - Controls: bandswitch, radiophone switch, main tuning, audio gain, tone control, "S" meter adjustment, phone jack. Operating from 115-125 volts, 60 cycles AC. Panel dimensions 19" x 8¾". Dust cover dimensions 17" x 8¾" x 11½". Write for prices.

AMPLIFIER FOR MODEL S-31 TUNER

The Model S-31, a Hallicrafters amplifier, delivers 25 watts of high fidelity audio power to either speaker or 500 ohm load. Designed for rack mounting and for use as a companion unit to the FM-AM Model S-31 Tuner, it will provide reproduction of sparkling depth and brilliance.

SPECIFICATIONS - 6 tubes - Fidelity 2 DB from 50 to 15,000 cycles gain - Channel No. 1, microphone (high impedance) 96 DB - Channel No. 2, phone (low impedance) 60 DB -Power output 25 watts - Power consumption 100 watts -Output impedance No. 1, 500 ohms; No. 2, 8 ohms; No. 3, 4 ohms. Dimensions: panel 19" x 834". Dust cover 18" x 834" x10". Write for prices.

USED BY 33 GOVERNMENTS · · · SOLD IN 89 COUNTRIES