ELECTRONIC Industries

United Nations North Africa Radio Installations RF Heating Applications * Captured Enemy Equipment Reference Guide to Electronic Uses in Industry

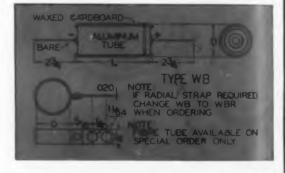
-1987-

Caldwell-Clements, Inc.

FFR

Put Your Weight Behind the Attack —Buy War Bonds

Foreshadowing the Answer to Your Capacitor Problems


FOR strenuous duty, day after day, month after month-under stress of vibration, in great extremes of humidity and temperature-the Mallory WB Capacitor has proved it can take it.

Its size has been reduced to the smallest proportions consistent with good operation and long life, yet it packs from 10 to 50 microfarads, depending on the voltage. It is supplied in a hermetically-sealed tube with waxed cardboard outer sleeve. The ends of this sleeve are spun over the aluminum rim—no chance of "shorts" when leads are bent close to the can.

WB Capacitors are obtainable in 25, 50, 150, 300, 400 and 450 DC working volts, thoroughly aged and individually tested. They can be supplied with radial straps for mounting, if required.

The WB Capacitor is only one of many described in complete detail, with interesting test data, in the latest Mallory catalog. If you do not have a copy, send for one today—and always, when you have a special capacitor problem, call on Mallory technicians. Write Mallory direct or see your nearest Mallory distributor.

P. R. MALLORY & CO., Inc., INDIANAPOLIS 6, INDIANA

A record for long life has been earned by Tobe Capacitors through an almost complete absence of "returns". Equally notable has been Tobe's ability to master difficult specifications. The "DP" Molded Paper Condenser shown below is an example. The new American War Standards "specs" are tough ones to meet—but we meet them. Ask us for samples and judge for yourself.

LONG LIFE

DA

ASSURED

Comorrow

SPECIFICATIONS "DP" MOLDED PAPER CONDENSERS

Capacity in MMFD.	DC Working Voltage	TOBE & AMERICAN WAR STANDARDS DESIGNATIONS	
	Rating	"A" Charae	cteristic "B"
1000	600-1500	CN35A102	CN35B102
1500	600-1500	CN35A152	CN35B152
2000	600-1500	CN35A202	CN35B202
2500	600-1250	CN35A252	CN35B252
3000	600-1000	CN35A302	CN35B302
4000	600-1000	CN35A402	CN35B402
5000	600 - 800	CN35A502	CN35B502
6000	600 - 800	CN35A602	CN35B602
7000	500- 700	CN35A702	CN35B702
8000	500- 700	CN35A802	CN35B802
10000	400- 600	CN35A103	CN35B103
20000	200- 300	CN35A203	CN35B203
30000	50- 150	CN35A303	CN35B303
40000	50- 100	CN35A403	CN35B403

EGYPTIAN OBELISK Central Park, New York, dates from the 18th Dynasty (1600 BC) of King Thus-Mose, the Third.

streams

SMALL PART IN VICTORY TODAY - A BIG PART IN INDUSTRY TOMORROW

PROFESSION MASSACHUSER

(For Editorial Contents of This Issue, See Page 4)

WATER AND AIR COOLED TRANSMITTING AND RECTIFYING TUBES

THE REPORT OF THE PROPERTY OF

NAVY

Original **Amperex** design and construction refinements result in trouble-free performance of **Amperex** tubes . . . effecting natural economies in the operation of transmitting equipment. With replacements difficult to obtain, the extra hours of life inherent in **Amperex** tubes are often "priceless." To engineers, everywhere, this "**Amperextra**" factor of longevity is the major consideration.

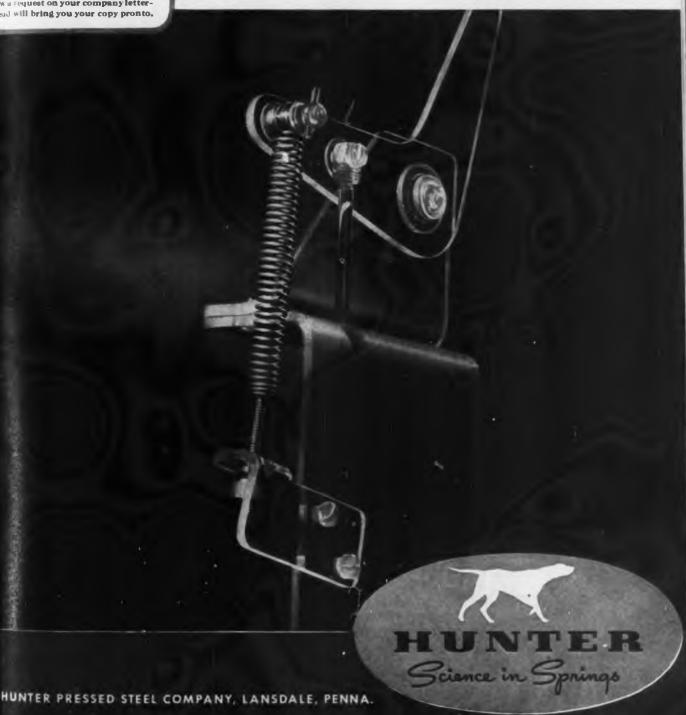
the high performance

MASTEN THE PEACE ... BUY ANOTHER WAR BOND TODAY

79 WASHINGTON STREET BROOKLYN 1, N. Y.

TAPS FOR HITLERI

We'll play the bugler's variety laterright now, we're too busy knocking little. Ilirohito and their henchmen with more and better springs. You have a problem-springs? You'll posibly find the answer in our data book "Science in Springs". It offers a great amount of useful engineering data for proper spring design. Your name below a request on your company letterhead will bring you your copy pronto.


Today's Blueprint is Tomorrow's Performance...Maybe!

AS YOU KNOW, there is a wide gap between the planning and the final performance of any product. Take only one detail—an extension spring, for example. That spring (any spring) is going to play an important part in total performance. It must be exact in every detail. Suppose this extension spring must pull a certain mass over a certain space in a given time. It'll take engineering, chemistry, metallurgy, mathematics to design and manufacture it. It may require new

testing machines or testing procedures, an investigation of metals or metal finishes, quality control by statistical methods, or new methods of production or inspection. Whatever's involved, you can be certain Hunter is well equipped for the job—and is ready for you now. You'll have the assurance that, as far as springs are concerned, your products now and for the future will perform if the springs are designed or made by Hunter.

THIS IS AN EXTENSION SPRING—a mechanical device for staring a famile force which can be used to exert a pull without motion

or which can be released (as below in the Plexiglas model) at any rate to control the movement of or transfer motion to adjacent parts,

ELECTRONIC INDUSTRIES

FEBRUARY, 1944

In this Issue

T rige
Editorial
Captured Enemy Radio Equipment
Operating Experience with HF Heating
Immediacy vs. Long Term, Looms as RTPB
Problem
Features of Inverse Feedback Amplifiers
Planning for Postwar Product Development
Michigan's" KM State Police System
Electronic Uses in Industry
Power Transformer Design
United Nations North Africa Installation
Engineer as Executive
Short Cuts in Production
Captured Enemy Radio
Modulator Load Reactance Correction
Tube Control Circuits
Production Must Increase
Winding Industrial Capacitors
Railroad Traffic Control with Carrier Current.
Recording Frequency Drift
Tubes on the Job
Survey of Wide Reading
Engineers Attend IRE-AIEE Vechnical Meeting 12
Association News
What's New
New Patents Issued
Washington News
New Books
New Bulletins

Electronic Industries, February, 1944 Vol. 111, No. 2. 35 cents a copy. Published monthly by Caldwell-Clements, Inc., 480 Lexington Avenue, New York 17, N. Y. M. Clements, Pr. 4dent; Orestes H. Caldwell, Treasurer.

.

Subscriptions: United States and possessions, Mexico, Central and South American countries, \$3.00 for one year; \$5.00 for two years, \$650 for three years, Canada, \$3.30 a year; \$550 for two years; \$7.15 for three years. All other countries \$5.00 a year. Entered as Second Class Matter, September 20, 1943, at the Post Office at New York, N. Y., under the act of March 3, 1879. Copyright by Caldwell-Clements, Ioc. 1944. Printed in U.S.A.

ORESTES H. CALDWELL Editor

M. CLEMENTS Publisher

Ja Je E.

М

latcher, Consulting Editor
McMinn, Managing Editor
Gilbert Sonhurgh Charles F. Driver Barbara Choren Lorna Choren
Davies, Washington Editor
John A. Samlern O. H. Sanler W. W. Swijert Kstelle (Scen
ck, Chicago 6, 201 N. Wells 🕮 ohone RANdolph 9225
und Executive Offices

480 Lexington Avenue Telephone PLana 3-1340 NEW YORK 17

SCREEN-GRID

THE G-E ELECTRONIC TUBE **DEVELOPMENT THAT HELPS GUARD** WAR COMMUNICATIONS AGAINST JAMMING BY THE ENEMY

TYPE GL-813

813

MOELECT

With a long and notable list of basic "firsts," G.E. continues to set the pace - with today's line of G-E transmitting, receiving and industrial tubes.

The screen-grid, for instance, was developed by General Electric's Dr. Hull. This element, added to a 3-element tube, has made it possible to change transmitting frequencies with the flick of a switch. This helps greatly in preventing the enemy from "jamming" our signals or locating our transmitters.

In addition, the screen-grid tube has greatly reduced transmitter and receiver costs, and has lightened and simplified radio equipment-by eliminating the expensive and cumbersome neutralizing parts formerly required. The screen-ILECTRONIC INDUSTRIES . February, 1944 grid also made possible the design of tubes that require much less driving power. Radio receivers were made without screen-grid tubes and could be today, but they

would require twice as many tubes and circuit elements and would probably cost twice as much.

another G.E electronic

You may be sure that all G-E transmitting and receiving tubes you buy today, or tomorrow, have everything that electronic research and engineering have thus far uncovered. They also have most exacting construction, highest efficiency, and longest serviceable life the world's finest tube factory can produce.

Ask your G-E electronic tube distributor or nearest G-E office for current prices and delivery dates.

G-E TUBES ARE "FIRST" IN INDUSTRY, TOO! For example, General Electric developed the thyratron tube, providing the precision control that makes possible today's high-speed welding of aluminum and stainless steel. This versatile electronic tube is also the heart of G-E Thy-mo-trol, a compact control unit that makes it possible to run G-E motors directly from A-C lines.

Ask for the free booklet -- "How Electronic Tubes Work." Address Electronics Dept., General Electric, Schenectady, N. Y.

• Tune in "The World Today" every evening except Sunday at 6:55 E.W.T. over CBS. On Sunday listen to the G-E "All Girl Orchestra" at 10 P.M. E.W.T. over NBC.

GENERAL ELECTRIC HAS MADE MORE BASIC ELECTRONIC TUBE DEVELOPMENTS THAN ANY OTHER MANUFACTURER

GENERAL BELECTRIC

G.E. SETS THE PATTERN

ATS In recognition of the year's outstanding contributions to the art of Television Programming AMERICAN TELEVISION SOCIETY prosents the A.T.S. AWARD STATION WRGB 1 Blackin Company - 1942-1943

he Story Behind the Plaque. Awarded to General Electric for outstanding contributions in television programming, this American Television Society recognition climaxes four years of intensive programming activity.

Despite the restrictions imposed by General Electric's all-out war effort, WRGB programming is being maintained on a regular 9 hour-per-week basis. This continued activity is the result of G E is conviction that television will grow into a mighty post-war enterprise.

After the war, General Electric will again build complete television systems—cameras and other studio equipment, monitors, relays, antennas, and a complete line of home receivers.

Here is WRGB, the nation's outstanding television station, in action.

FOR TELEVISION

Stadle - Here you see stage props being set in he main studio of television station WRGS. So the and sound are picked up by G-E teletion cameras and a motion-picture-type motion microphone. Mercury-vepor spotnets and revolving celling lamps are the cooled and electrically manipulated by remote centrol. Gool light!

Projection Room-Mation-picture projection equipment at station WRGB includes two 35-mm and one 16-mm projectors - all modifield by G-E for television.

> Transmitter - The main transmitter of WRGB is located in the Halderberg Mountains. Iz miles from studio. Transmitter output: 40 kw video, 4 kw audio.

WRGE - General Electric's workhop television station at Schenestady is the largest and best equipped station in the world. From this studie, programs are beamed through a G-E television relay to the gleat transmitter in the Helderberg Mountains nearby.

Caniral lass - Control dast, and shading dask with picture monitors, manned during a talevision broadcast from WRGB. All action is need and controlled from here.

A PLAN that will secure your place in radio broadcasting post-war

General Electric offers you "The G-E Equipment-Reservation Plan" . . . a plan designed to enable you to complete your post-war plans now. It will enable you to establish a post-war priority on a broadcast transmitter and associated equipment. It will enable us to plan definitely for large-scale post-war production, thereby giving you the fastest possible post-war delivery and the savings of planned production. Investigate this plan today and assure your place in radio broadcasting post-war. Write for your copy of "The G-E Equipment-Reservation Plan." Electronics Dept., General Electric, Schenectady, N.Y.

• Tune in General Electric's "The World Today" every evening except Sunday at 6:43 E.W.T. over CBS. On Sunday evening listen to the G-E "All Girl Orchestra" at 10 E.W.T. over NBC.

STATION AND STUDIO EQUIPMENT · TRANSMITTERS · ANTENNAS · ELECTRONIC TUBES · RECEIVERS GENERAL & ELECTRIC FM · TELEVISION · AM NO. 10 OF A SERIES EXPLAINING THE USES OF ELECTRONIC TUBES IN INDUSTRY

"Massaging" white-hot steel with the aid of G-E electronic tubes

G-E STEEL-JACKETED IGNITRONS CONVERT A-C TO D-C EFFICIENTLY AND ECONOMICALLY

HERE'S an eight-inch billet getting a "massage" that will reduce its square waistline and shape it into a roughly streamlined gun-barrel. The manipulator which feeds the billet under the hammer — back and forth, round and round — requires D-C power for this precision operation. Sturdy G-E sealed ignitrons supply the power.

These steel-jacketed electronic tubes have no moving parts, are quiet in operation; over-all efficiency is high and practically constant over the entire load range. Available in ratings from 20 amp to 200 amp, they convert A-C into D-C economically and reliably. Rectifiers using the G-E sealed ignitrons for D-C power at 250 volts or more generally will have about the same installed cost, but lower operating costs than a motor generator set. Their use permits D-C power to be economically applied to "production spots" where D-C motor drives are essential even though you have an A-C power distribution system throughout the plant.

The steel-jacketed ignitron is only one of a complete line of G-E electronic tubes now working for industry on innumerable jobs and many kinds of machinery. It is the purpose of the

ENERA

L

G-E electronic tube engineers to aid any manufacturer of electronic devices in the application of tubes. Through its nation-wide distributing system, General Electric is also prepared to supply users of electronic devices with replacement tubes.

"HOW ELECTRONIC TUBES WORK"

THIS BOOKLET will be mailed to you without charge. Its 24 pages are interestingly illustrated and written in easily understood language. Shows typical electronic tubes and their applications. Address Electronics Department, General Electric, Schenectady, N. Y.

• Tune in "The World Today" and hear th neuro direct from the men who see it happen every evening except Sunday at 6:45 E.W.T. over CBS, On Sunday listen to the G-E "Al Girl Orchestra" at 10 P.M. E.W.T. over NBC.

.E. HAS MADE MORE BASIC ELECTRONIC TUBE DEVELOPMENTS THAN ANY OTHER MANUFACTURER

And the second s

ANNOUNCING EBY MINIATURE TUBE SOCKETS WITH Long Life BERYLLIUM COPPER CONTACTS

This new socket is the result of intensive engineering to produce a unit which combines top electrical performance with assured long service life under the most rigorous conditions.

MICRO-PROCESSED BERYLLIUM COPPER CONTACTS

The close tolerances and high tensile strength of the contacts are made possible by Micro-processing, involving heat treat forming and control testing by the Carson Electronic Micrometer. As a result, these beryllinm copper contacts offer self-alignment and long life with high electrical conductivity. In addition, they are heavily silver plated, giving contact resistance between the socket and the tube pin of less than .01 dams.

TWO TYPES AVAILABLE

The low loss type with Navy grade G Steatite Casting having loss factor of .016 or less when tested in accordance with ASTM D 150-42T. Its capacity is 1.5 mmf or less at 10 mc. General purpose type with mica filled plastic casting having a loss factor of .05 or less when tested in accordance with ASTM D 150-42T. Its capacity is 5 mmf or less at 10 mc.

The new Eby sockets meet required specifications and will withstand the following tests: humidity cycle; immersion; shock; vibration; and thermal shock.

HUGHH. **EBY** INCORPORATED 18 W. CHELTEN AVE. PHILADELPHIA 44, PA.

THIS SOCKET

WAS DESIGNED

AND DEVELOPED

AT THE SIGNAL

CORPS LABORA-

TORIES AT FORT

MONMOUTH, N.J.

id les, ng renic

ted

ge. 5B-

en

th:

Ali BC.

944

The Beryllium Copper Contacts have been especially designed and Micro-processed to accure constant, even pressure on all parts of the socket pin without fatigue in the contacts after continuous use.

We would be glad to send samples and quote prices on this outstanding development in the tube socket field. This socket will give superlative performance in service. Write today.

Electro-Voice MICROPHONES

are standard equipment with the HALLICRAFTERS SCR-299

OTHER ORIGINAL ELECTRO-VOICE MICROPHONES SERVE IN EQUALLY VITAL COMMUNICATIONS FUNCTIONS OF OUR WAR PROGRAM.

THE DIFFERENTIAL MICROPHONE . . . the famous Model T-45 "Lip Mike" is one of the more recent exclusive Electro-Voice designs, developed in its present form with the close collaboration of the Fort Monmouth Signal Laboratories.

Builders of war equipment may secure additional information concerning these and ell other. Electro-Voice developments. However, if limited quantity needs may be filled by any of our Standard Model Microphones, with or without minor modifications, we suggest that you contact your local radio parts distributor. His knowledge of our products will be of invaluable aid in helping you solve your problems. He can also be an important factor in expediting smaller arders. NOTE: Any model Electro-Voice Microphane may be submitted to your local supplier for TEST and REPAIR at our factory.

ELECTRO-VOICE MANUFACTURING CO., INC. 1239 South Bend Ave. • South Bend 24, Indiano EXPORT DIVISION: 13 EAST 40th St., NEW YORK 14, N.Y. -- U.S.A. CABLES AN AN

Music in industry has proved its ability to increase plant morale and production efficiency. For every plant, regardless of size, Radiotone is the ideal instrument to use. It's a convenient. portable instrument combining radio, recording and public address.

Radiotone assures the finest radio reception . . . it records voice, orchestra or radio pro-

grams ready for instant reproduction . . . permanently records management messages and directors' meetings . . . it can be equipped with any number of loud speakers or used in conjunction with your present P. A. system.

HERE IS ONE OF INDUSTRY'S

MOST IMPORTANT TOOLS,

Radiotone requires no studio facilities. Anyone can operate it. Anyone engaged in essential war work can buy Radiotone TODAY.

DEALERS CAN PARTICIPATE NOW Write for catalog and complete details.

HOUCHIN OPTICAL CO.

Chestant St., Philadelphis

Columbus, Obio

NgV=

HTY : 944

ELECTRONIC INDUSTRIES . February, 1944

Radiotone

Will PLASTICS Revolutionize Industry?

We do not think so, not for a long time at least, but we do expect plastics to assume far greater importance in post-war engineering, architecture, and manufacturing operations than ever before.

Plastics are not likely to perform miracles. but if your business or employment involves products of wood, leather, metal, paper, fabrics, rubber, ceramics, or coating materials. you cannot afford to ignore plastics in your post-war plans.

The impetus of war research; the discovery of new materials and new methods; the eminently satisfactory performance of plastics in replacing older materials during war is bound to bring manufacturing economics and improved consumer goods when peace returns.

The intelligent use of plastics can be determined best by knowing their limitations as well as their advantages; by studying their make-up and physical properties; by recognizing the peculiar characteristics attributed to each type of plastics material.

Such knowledge and information is available through Educational Courses prepared and conducted by

172 So. Alvarado St. Div. 2 Los Angeles 4, Calif.

Donald Dew

lif. Francis A. Gudger President 626 LaSalle-Wicker Bldg. Div. 2 Chicago 1, Ill. 1220 Chanin Bldg. Div. 2 New York 17, N. Y.

John Delmonte Technical Director

ADVISORY BOARD E. F. Lougee, Chairman

Dr. Gordon

Dr. Gordon M. Kline Nat'l Bureau of Standards Spencer E. Palmer Tennessee Eastman Corp. ELECTRONIC INDUSTRIES • February.

Diemolding Corporation

WITH the RCA TUBE HANDBOOK on your desk, you have available at all times, and in concise, handy form, the most up-to-date technical data for each tube in RCA's comprehensive tube line...plus a wealth of detailed information such as the Army-Navy Preferred Tube list; definitions of general terms; tube ratings and their significance: types of cathodes and their use; outline., base., and cap-drawings; classification charts of receiving, power, and cathode-ray tubes; resistance-coupled amplifier chart; list prices; etc.

4

20

0.20

in a

* * *

The \$6.00 subscription price* brings you not only the two 738" x 5" binders finished in black fabricoid and imprinted in gold, complete with data sheets, but also additional sheets containing new and/or revised data as issued during the year! Annual service fee thereafter, \$1.50.

Fill out (or copy) Subscription Order Form shown below, and mail it with your check today. This is the only way for you to make sure of having the same completely up-to-the-minute and authoritative information about RCA tubes . . . exactly when and where you want it...that thousands of other electronics engineers are using every day. RADIO CORPORATION OF AMERICA, Commercial Engineering Section, Harrison, New Jersey.

• This price applies only in the United States and its possessions. For other countries, subscription price will be furnished un request. Orders will be accepted subject to uur ability to make deliveries.

BUY MORE WAR BONDS

* * *

SUBSCRIPTION ORDER FORM

(Demestic Order Only)

Commercial Engineering Section Radio Corporation of America 576 South Filth Street Harrison, N. J.	Date
Gentlemen:	
Enclosed is my remittance of enter my subscription to: (number RCA TUBE HANDBOOK	of copies) of the ALL TYPES HB-3 PAID
Name	
Address	

City....State

TWO VOLUMES --- 6 SECTIONS (appreximately 1,500 pages)

2-4

GENERAL INFORMATION RECEIVING TUBES TRANSMITTING TUBES (Power and Allied Types) CATHODE-RAY TUBES (Tolovision & Coefficient Types) PHOTOTUBES MISCELLANEOUS TUBES

(Sanciel Types)

1.2

¥Q,

OCK

HB-3

HAND

Ha-3

Each binder is serially numbered and is registered under the subscriber's name. Data sheets for each tube type include: (a) intended uses; (b) maximum ratings: (c) characteristics; (d) typical operating conditions; (e) physical dimensions; (f) terminal connections; and (g) the most commonly used curves plotted to easily readable scales and large enough for solving design problems.

DBOOK

nvenient loose-leaf form • Kept up-to-date • Comprehensive data Tabbed separators for quick reference

RADIO CORPORATION OF AMERICA

JOHNSON Condensers Tube Sockets Couplings Couplings Onsulators

are used in the famous

HALLICRAFTER BUILT SCR-299

JOHNSON'S are proud of their part in furnishing many of the important components for this famous transmitter. They are proud to have been selected originally by HALLI-CRAFTERS to furnish these components for the HT-4—before the pressure of war made price unimportant. They are proud that this same HT-4 was used by the Signal Corps to become a part of the SCR-299—a tribute to the dependability of HALLICRAFTERS equipment and JOHNSON parts. They are proud to have been able to expand production to furnish all of these parts needed in the SCR-299 in addition to the vast numbers of parts needed by other manufacturers. And, we are proud that these

are all standard parts made to the same specifications as our "ham" parts before the War.

JOHNSON

a famous name in Radio

Write for CATALOG 9670

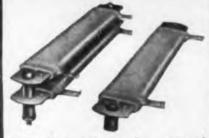
E. F. JOHNSON COMPANY • WASECA • MINNESOT ELECTRONIC INDUSTRIES • Fobruary, 19 In this new Picker Magnifying Illuminator the industrial radiographer will find a practical instrument for the magnification inspection and study of critical film areas.

for the critical study of industrial radiographs

A magnifying factor of 212X provides ample power for minute study of spot weld radiographs, or those exhibiting porosity, shrinkage cracks, gas inclusions, and similar faults. Picker Bulletin 1143 gives details, specifications, prices.

PICKER MAGNIFYING ILLUMINATOR

Telescopic lens mount adjustable to individual vision...variable intensity fluarescent illumination . . . sliding baffle hood . . . adjustable viewing angle . . . takes any length film up to 14" wide...operates on AC or DC.


1944

PICKER X - RAY CORPORATION 300 FOURTH AVENUE • NEW YORK 10, N. Y. Branches everywhere in U.S.A. and Canada LECTRONIC INDUSTRIES • February, 1944

Does Your Product Require . . . MORE COMPACT RESISTORS?

The war has proven the importance of compactness in radio, electronic and electrical equipment. Unquestionably the dimensions of many post-war products will reflect the studies that have been made to conserve space. More compact components developed for the war will find great demand for peace-time users.

The Ward Leonard Strip Type Resistor is a typical example. Its flat section permits installation in places where there is not room for a round section resistor of the same value. Other regular Ward Leonard Resistors are available for special purposes.

Strip Resistors may be mounted singly or mounted in any multiples.

The Ward Leonard Resistor Catalog shows resistors of various types. terminals, mountings, enclosures, and resistance values. Send for it.

ELECTRONIC INDUSTRIES

CH

ertio pro you qui

stu: me

d

February, 1

WARD LEONARD RELAYS • RESISTORS • RHEOSTATS

Electric control (WL) devices since 1892.

WARD LEONARD ELECTRIC COMPANY, 61 SOUTH STREET, MOUNT VERNON, N. Y.

PHYSICAL AND CHEMICAL

Lubricant. Softer than talc

> Conducts Electricity

> > Withstands mperature Extrem

13 14 15

> Absorbs, Radiates and **Conducts** Heat

PROPERTIES

Available as a smooth, black, liquid concentrate, Dag colloidal graphite puts a versatile company of physical and chemical properties at your service. Fifteen of the more important of these properties are listed here with a different color given to each for easy reference.

20

Match these properties by color with the colors on the medals below. Each medal represents a typical performance "citation" to Dag colloidal graphite. Dozens more could be shown, if space permitted, because this product is a dry film, a fluid film, a surface coating, an impregna-tion-and a few other things besides.

COLLOIDAL GRAPHITE

9 13

Mr. Dag"

6 14 15

2, 14, 13, 15 CITATION: "Drive belts and other nonconductors traveling at high speed accumulate static charges which under certain conditions may constitute a hazard. This static electricity is controlled and bled-off harmlessly by a Dag colloidal graphite conductive film."

Low Coefficient of Expansion

5 **Maximum Purity**

> **Particles Bear Like Electric Charges**

> > Insoluble in ids and Alkalies

> > > Black and Opaque

9. 13, 6. 14, 15 CITATION: "Dag colloidal graphite is used to retouch photograph negatives because of its complete opacity, because a film of minimum thickness is required and because it dries with a sharp edge.

Films Adhere Tenaciously and

> Microscopically **Fine Particles.**

> > An Excellent

Suspension

14 15

CITATION: "When the work rotating chuck of this large honing machine was assembled and run-in using Dag colloidal graphite, running-in time was reduced approxi-mately 35%, operating temper-

1, 3, 5, 14, 15

ature dropped considerably. and the danger of bearing damage due to temporary oil film failure was eliminated."

CHECK THE LIST and pick out those properties which you can use. Then state your problem to us and let our engineers give you the benefit of their experience. It is quite possible that they have already studied a parallel application. You'll pin a medal on yourself for calling in Mr. Dag.

Dag, Dildag, Aquadag, Castordag, Glydag and Prodag are regimered trade marks of Acheson Colloids Corporation. Copr. 1944 by Acheson Colloids Corp.

CHESON COLLOIDS CORPORATION PORT HURON, MICHIGAN

PIN A

MEDAL

ON

YOURSELF.

7

10 **Gas** Adsorbent

> 11 Little Photoelectric Effect

12 Miscible with **Most Fluids**

OUR NEW PLANT

steps up ARHCO production

81.44

PL-54

ARHCI

Just opened is the new American Radio Hardware factory at Mt. Vernon, New York. Dedicated to the service of our country, this new plant, with its substantially increased productive capacity, makes possible a greater output of ARHCO components than herctofore. Moreover, we are now able to produce at an even faster rate and to top our already good delivery record.

One more thing we assure you. The high quality and performance of ARHCO components will be maintained. As always, you may depend upon them for consistent service ... for vital war necessities ... for postwar industrial and radionic applications. We invite your inquiries.

SU

merican Radio Hardware Co., Inc. 152-4 MacQuesten Parkway South Mount Vernon, N. Y.

SHORI - AVE - IEIEVISION - BADIO

P-1921

Remember this of SUPERIOR SMALL METAL TUBING*

- 1. No finished stocks are carried at the mill. Every order is made as it is received
- 2. In most cases, we furnish cut or random lengths, with no fabricating
- **3.** Bright finish is assured, by use of controlled atmospheres in annealing.
- Every order is given laboratory tests for approval before shipping.
- Superior has three standard tempers: Temper =1 is annealed, Temper =2 is half-hard, and Temper =3 is full-hard.

*Seamless . . . in many metals. Weldrawn . . . welded and drawn in various stainless analyses as well as "Monel" and "Inconel".

SUPERIOR TUBE COMPANY, NORRISTOWN, PENNSYLVANIA

SUPERIOR Seamless in various analyses. WELDRAWN Welded and drawn Stainless, "Monel" and "Inconel".

SEAMLESS and Patented LOCKSEAM Cathode Sleeves

ILICTRONIC INDUSTRIES . February, 1944

The big name in SMALL TUBING

tor Uncle Sam

A PLANET Nota Meteor

IS HERE TO STAY

Ever notice how a meteor streaks across the heavens in a blaze of fiery splendor? It's a beautiful sight... while it lasts. But most meteors burn themselves out long before striking the earth. Not so a planet... though much less brilliant, it's there to stay. That's how we like to think of I. C. E. Here to stay... Born of the war... yes, but acquitting itself well, and all the better to serve you in the post-war future.

С

ER

BELMONT, CALIFORNIA

IAL

NICS

ECTR

E L

Ma.

 Λ_{i}

ELE CT

for maximum

BLOWER

performance

115 VOLT 400 CYCLE BLOWER

115 VOLT-60 CYCLE BLOWER For some application as above but

. 16 ezs.

21

For some application as above but for operation on 60 cycles supplied at 3300 R.P.M. L.R. No. 2 Blower, powered with our J49 capacitor motor, circulates 10 cu. ft. per min. continuous duty with 9 watts innut

continuous duty, with 9 woths input

J49 Dimensions:

to motor.

This L-R #2 Blower, powered with our J31A 1608 H.P. single phase Capacitor motor measures 4762" overall length, 376" over all blower diameter, 1376" overall motor diameter and weight 1972 ozs. Running at 7200 R.P.M., it circulates 22 cu. ft. per min continuously. It is designed for use in ambient temperatures up to 80° C. Production facilities enable us to offer prompt deliveries on this equipment, which is outstanding in efficiency and air delivery for its small size and light weight. NOTE: Type J31A and J49 motors are available for use in other opplications. Write for information and performance data

Manufacturers of

and Components

for Electrical, Electronic and Mechanical Applications

EASTERN AIR DEVICES, INC. 585 DEAN STREET . BROOKLYN 17, N. Y.

Control Devices

An Affiliate of THE FRED GOAT CO. INC., Special Machinery Specialists Since 1893

ELECTRONIC INDUSTRIES . February, 1944

how -hp-instruments can be combined to solve a wide range of problems ...

Two or more standard -hp- instruments combined in single cabinet make an ideal set-up for individual stations on the production bench or for a small laboratory. Illustrated is the -hp- Model 100AR Low Frequency Standard and the 202DR Audio Oscillator. A quick review of the capabilities of these two instruments will show the value of such a combination.

For example: The model 100A provides standard frequencies of 1-kc, 10kc and 100-kc. The out-put of each of these frequencies is available through separate terminals so that standards can be utilized at several stations on a production bench simultaneously. Model 202D Audio Oscillator provides extremely wide range of fre-

quencies—2 cps to 70 kc—on a direct reading scale. The dial operates with planetary drive at 5 to 1 reduction for accurate adjustment over 270°. This instrument posesses all the outstanding features of all -hp- resistance tuned oscillators — no zero setting is required.

With this combination of instruments you can calibrate audio equipment, make accurate interpolations and standardize such measurements to a high degree. You can make distortion measurements on audio amplifiers, make accurate bridge measurements and work in the supersonics. The power out-put is sufficient to drive signal generators and other equipment.

Get full information about -b/- instruments today. There are many combinations other than the on- described here that you can use to great advantage. Remember, -bp- in truments give you great economy with no sacrifice of accuracy and flexih lity. Write today giving details of our problem so that we can be of greatest help to you. There's no obligation whatsoever.

EWLEII-PACKARD COMPANY

AGING WAR

WHY have the Government's experts on electronics come to Machlett for aid in connection with the problems which arise when higher and higher voltages are employed in the wartime electronics program?

The Machlett organization has for many years specialized in the development and production of tubes for the x-ray industry, where high operating voltages (50,000 volts upward into the millions) are common-place. Nowhere else is there such a store of knowledge, skills, and techniques for dealing with extremely high voltages in vacuum tubes.

By undertaking special development contracts, and by providing enormous additional productive capacity, Machlett Laboratories are contributing these skills and techniques to the task of extending the power, the range, the effectiveness of electronic devices for waging war.

H VOLTAGE CTRONICS

NO Burning NO Pitting **NO Sticking**

Automatic Control Is **Really Automatic with** Adlake Plunger-type **Mercury Relays**

Put Adlake Plunger-type Mercury Relays of correct capacity and rating on your control panel and you've really got automatic control. No inspection. No cleaning. No servicing. Here's why . . .

The contact mechanism of Adlake Plunger-type Mercury Relays is hermetically sealed inside a glass or metal cylinder.

Dirt and dust can't get inside to "gum up" operation. And, because contact is made by liquid metal

(mercury), it is positive, chatterless, silent and impervious to burning, pitting and sticking.

For panel mounting. Can be supplied with quick or time delay action; normally open or normally closed; and for A.C. or D.C. energization. Contact rating wp

to 100 amps. A. C.; proportional D. C. ratings.

OPERATING VOLTAGE

ADLAKE MODEL

1040

RELEASE

For many kinds of service, particularly those considered "difficult," there is no other type of relay that can give such dependable service.

There's a lot more about Adlake Relays that every engineer should know.

Our complete bulletin tells the story. Ask for it -no obligation.

THE IMPORTANCE OF CRYSTALS IN Modern Warfare

Success in modern warfare depends greatly upon accurate and dependable coordination between all combat units. Precision crystals by Crystal Products Company are providing sharp selectivity on planes, tanks, ships, in every climate and under the most rigorous battle conditions.

PRODUCTS COMPANY

Producers of Approved Precision Crystals for Radio Frequency Control

FERRIS INSTRUMENTS ARE FOUND ON THE PRODUCTION LINE, TOO

For higher V.H.F. and U.H.F. work up to 500

MC., the Model 34-A

(right) is employed.

FERRIS

The Model 33-A Crystal Calibrator (left) provides accurate frequencies from 10 KC. to 100 MC.

HAR CONSTAL CALIBRATOR HEAD BETWEEN THE

THE ABOVE CRYSTAL CONTROLLED SECONDARY FREQUENCY STAND-ARDS ARE USEFUL FOR ACCURATE DIAL CALIBRATION OF RECEIVERS AND TRANSMITTERS AS WELL AS MANY LABORATORY APPLICATIONS

FERRIS INSTRUMENT

110 CORNELIA STREET, BOONTON, N. J.

B. D

ciali

duci ray D

the

tub

woi tecl tub

CONTENTS OF MANUAL

The Cathode-Ray Oscillograph: introduction. general description. high-voltage power supply. amplitiers. linear time-base generator, intensity modulation, lowvoltage power supply, mechanical considerations, conclusion.

Oscillograph Design Considerations: power supplies, amplifier design, lime-bases or sweep generators.

DuMont Cathode-Ray Equipment: description, specifications. accessories, oscillograph type comparisen list, specialty products.

DuMoni Cathode-Ray Tuber general information, installation notes, type specification sheets, tube type comparison list.

Sales and Service Information: how to order, patent notice, price list, etc.

Instrument and Tube Application Notes: frequency and phase determination, photographic measurements, observation of relay rebounce, etc.

... and how they are applied

For a dozen years past the Allen B. DuMont Laboratories have specialized in the development, production and application of cathoderay tubes.

DuMont was the first to introduce the commercialized cathode-ray tube as a practical tool for research worker, production engineer and technician. Not only have DuMont tubes and oscillographs resulted in savings in time required to investigate the many problems to which they are applicable, but they have also revealed truths in man's laws of the working forces of nature.

And now, as a further service, DuMont engineers have compiled a manual of pertinent data, together with detailed descriptions of DuMont tubes and associated equipment. This data is in looseleaf form. The binder permits constant revision to keep pace with the fast-moving cathode-ray technique. Each manual bears a serial number so that the name and address of its recipient may be duly registered. Additional pages are mailed from time to time.

Write on your business stationery for your copy. Our Engineering Department is interested in aiding you with your cathode-ray application problems.

ESMERALDAS OUITO MANI SALINAS (COLUATAOUIL SALINAS (COLUATAOUIL TALARACI LIDJA

AREQUIPA

ANTOFAGASTA

Products

and sigh & walker

PRESIDENT

SUAREZ ORUMBA

SAO PAU

UCUMAN

ORDOBA

BUENOS

AIRES

ENDOZ

SANTIACO

JANEIBO

....

TODAY, the skill and experience of the AAC Electronics and Hydraulic Divisions are devoted to serving a fighting America. However, AAC engineers are planning ahead for the great peacetime future when new and improved AAC products will be ready to meet postwar needs.

(Right) Type 500 Transmitter as designed by AAC for Panagra. Consists of multi-channel transmitting equipment, 1.000 watts each channel. Two channels may be operated simultaneously. Telephone and telegraph transmission. Frequency range 250-550 KC and 1500-12000 KC.

ALONG THE PANAGRA ROUTE

is located AAC transmitting equipment at approximately 30 different points in Colombia, Ecuador, Peru, Chile, Bolivia and Argentina—forming the nucleus of the radio navigation and communications system.

Panagra is today primarily devoting its personnel and facilities to maintenance of aerial lifelines between the Americas, across which are speeding men, mail and materials vital to the success of the democratic war efforts.

Manufacturers of PRECISION

Burbank, Calif.

Kansas

34:43:51,4044921; AND OTHER COMMUNICATIONS EQUIPMENT

Dependable Operation Of Airlines And Various Communication Services

far

Today, AAC transmitters and other AAC communications equipment play a vital part in dependable operation of warplanes on the fighting fronts, as well as airlines serving the war-busy Americans on the home fronts.

AAC Electronics Division has won distinctive leadership as one of the country's large producers of radio transmitting and receiving equipment. One outstanding example of AAC communications engineering is the equipment designed and built to meet the specified needs of Pan American-Grace Airways, Inc. Consisting of a multi-channel 1,000 watt transmitter, this equipment is used by Panagra for radio homing and communication purposes. It represents one of a complete line of transmitting equipment for use by airlines or services having similar communication needs.

At the present time practically all AAC facilities are devoted to war production. However, your inquiries are welcomed now for commercial equipment which can be supplied in limited quantities if adequate priority ratings are available.

AAC products in transport planes, cargo carriers, troop ships, bombers ... airport traffic net, police or other services where communications are crucial, can be depended upon as expertly engineered and built to the most efficient performance standards.

Products of ELECTRONICS DIVISION TRANSMITTERS • AIRCRAFT & TANK ANTENNAS • QUARTZ CRYSTALS • RADIO TEST EQUIPMENT

AIRWAYS,

(Below) Panagra airliner delivers important cargo of mail and passengers.

DESSORIES

AIRCRAFT EQUIPMENT . HYDRAULICS . ELECTRONICS City, Kans. New York, N.Y.

Cable Address: AACPRO

ORPORATION

Assuring Today's Production Perfection Insuring Tomorrow's Product Prestige

VACUUM TUBE TEST EQUIPMENT

Sherron facilities and experience encompass the full range of vacuum tube test equipment — from the "peanut" size to the giant transmitter type.

on ay, when lives and battles are in the balance, Sherron Test Equipment is helping manufacturers maintain reputations for perfection. Existing standards are high, necessarily. They'll be equally high in the postwar tomorrow when they will be spotlighted by vigorous sales competition. Manufacturers of vacuum tubes, as well as other precision instruments, can insure postwar acceptance now — with production testing equipment that assures superior product performance.

MANUFACTURERS: We offer an unusual combination of facilities to companies contemplating design, development, or production of test equipment.

ENGINEERING DESIGN, MANUFACTURING, ASSEMBLY - COMPLETE PRO-DUCTION (INDIVIDUAL UNITS OR QUANTITIES) TO SPECIFICATIONS.

SHERRON METALLIC CORPORATION 1201 Flushing Avenue Brooklyn 6, New York ELECTRONIC INDUSTRIES • February, 194

Sherron Electronics

MORE Quality QUARTZ PRODUCTION by maintaining the free cutting action of DI-MET RIMLOCK BLADES

DI-MET Rimlock quartz cutting wheels are characteristically fast, smooth, free-cutting blades ...but—the proper operation of Rimlocks not only gives better over-all results in blade life, etc., but greatly improves wafer quality as well by reducing checking and wedging. The Rimlock that lasts the longest produces the best wafers...and that's why the free cutting qualities of Rimlock blades should be maintained.

> The method is easy—merely follow the simple suggestions outlined below. They have been especially worked out to insure you more and better quartz production...

Coperate Rimiocks at the proper speed Surface speed should range from 4000 to 4500 s.f.m., which is an r.p.m. of approximately 2000 for an 8" diameter wheel. Pilipht A load of 7 lbs. is generally ample. Maintain a light firm pressure. Too much pressure dulls the blode, results in "dishing," which causes wedging and increases checking.

Results of following these 4 rules are well worth the effort. Wear is reduced to a minimum... re-sharpening (which shortens blade life) is less frequent...accuracy is maintained. And most Buse abundant realant, accurately directed. Flood both sides of blade generously and be sure coolent actually reaches the line of cut...de not compromise. Maintain quality coolent.

ELKFA

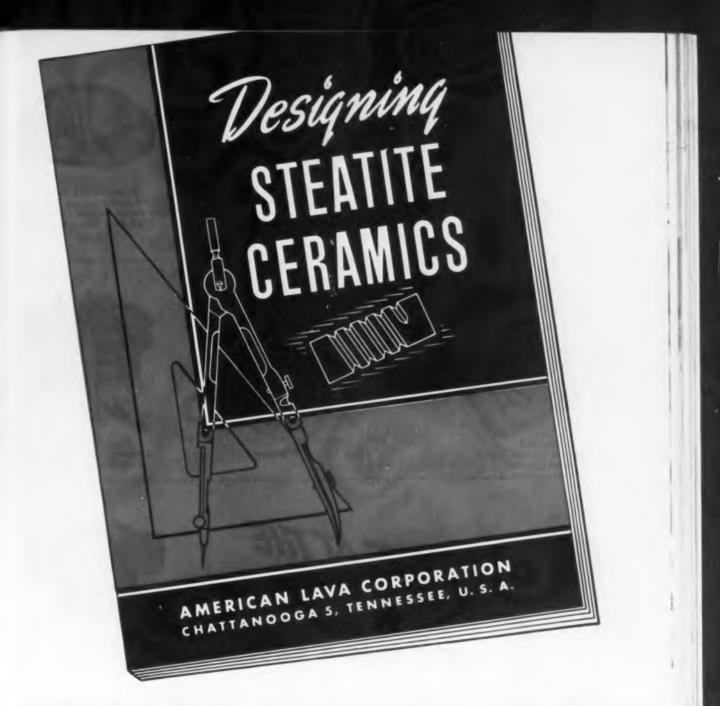
Use ample motor powerl Variation of blade r.p.m. during cutting lowors blade officiency, dulls cutting edges and destroys accuracy. A ¼ h.p. motor is recommended for general querts cutting exerctions.

important of all, the longer life of your Rimlocks produces more high quality wafers! FELKER MANUFACTURING CO.

R AVENUE, TORRANCE, CALIF.

ELECTRONIC INDUSTRIES . February, 1944

Long ago National Union engineers had to strike out for themselves in search of new metals, alloys and coatings. The extremely high temperatures employed


in tube making—brazing, for example, at 2 to 5 times the heat customarily used—ruled out the use of metals common to most industries.

So from the nation's electronic tube laboratories there has come a whole new group of metals and combinations of metals. Here are special alloys for filaments, coils, grid wires, getters, electron guns and many other uses. And as these metals have provided characteristics not previously available, they have literally pulled wonders out of the magic hat of electronics.

In metallurgy, as in other sciences related to tube making, National Union is helping to push back the frontiers of electronic knowledge. And in the war record of National Union tubes you will see how well this scientific approach to tube building is paying off. For better tubes, after the war-Count on National Union.

NATIONAL UNION RADIO CORPORATION, NEWARK, N. J. Factories: Newark and Maplewood, N. J., Lansdale and Robesonia, Pa.

WRITE FOR YOUR COMPLIMENTARY COPY TODAY

ENDLESS opportunities for new and improved electrical design are offered with ALSIMAG Steatite Ceramic Insulators. The Engineer will understand, however, that high speed economical production of the steatite pieces depends very largely upon the design of the insulator. A practical knowledge of the manufacturing processes involved is most useful in designing for low cost production as well as for better assembly.

Our Engineering and Research Staff is ready at all times to cooperate in developing the most practical design for insulators and to aid in selecting the most suitable ALSIMAG body.

Our new bulletin DESIGNING STEATITE CERAMICS contains much helpful information for all who design electrical, radio and electronic devices.

Write today for your complimentary copy.

KLIXON SNAP-ACTING CONTROLS

When it comes to controls for motor and transformer overheat protection, electrical circuit overload protection, or temperature controls for radio equipment, you want them to operate surely and accurately every time.

Klixon Controls meet all operating requirements. Actuated by the foolproof snap-acting Spencer Disc, they always make a quick clean break or positive make. Because they have no fussy, complicated parts, Klixon controls are unaffected by shock, vibration, motion or high altitude regardless of the mounting position. They are space and weight savers, too.

Klixon Controls are available in many standard types to meet your control requirements. See what they can do for you. Our engineering department will help you solve your problems. Write:*

SPENCER THERMOSTAT COMPANY, ATTLEBORO, MASS.

ELECTRONIC INDUSTRIES . February, 19

Designing, Engineering and Building for Victory...and the Future...

Ar Communications Products include: R dio Range Receivers, Glide Path Recevers, Marker Beacon Receivers, Aircraft A tomatic Direction Finders, Aircraft Tansmitters, Command Receivers, Comm and Transmitters, Small Transmitters u to 1 K.W., Interphone Equipment, E dio Telephone Equipment, Adaptors for Radio Compasses. Out of their achievem nts for war, Air Communications eng neers will bring you new knowledge a d experience of value in peacetime a iation development. Cooperative engiiring arailable. Let us help you solve y ur engineering problems of the future.

The skyways of tomorrow will be paved with new safeguards resulting from new and amazing developments in air communications. Private planes as well as great commercial airliners will

pierce the veil of fog, clouds and darkness with an ease and accuracy undreamed of only a few short years ago! Startling advancements already made in electronic communications, and assured developments yet to come, give us this portent of the future ... and Air Communications plans are directed toward that future!

Now, Air Communications precision-built Products are being used to increase the operating efficiency of America's warplanes. After victory, Air Communications skilled organization will be at the service of America's great post-war aviation industry...ready with the advanced engineering and designing ability needed to produce everything for the safety, convenience and economy of flying.

KANSAS CITY 8, MISSOURI

STA-KON HOOK UPS FOR ELECTRONIC WIRING

EARLY electronics manufacturers relied on solder. Solder is now being superseded by STA-KON* Pressure Terminals, Connectors and Disconnect Splices for wires *22 to 250 mcm AWG. Do you have the problem of making sound electrical joints that assure constant low resistance values, regardless of operating conditions? Do your plans call for vibration and corrosion-proof pressure connectors that are easy and quick to install? If so, T&B has the STA-KON* answers. Why not have our engineering specialists call on you to discuss any phase of your wiring problems? Our service specialists, T&B Wholesalers, through whom we distribute exclusively, stand ready to take care of all your material requirements.

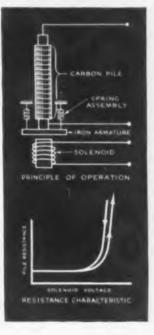
WRITE US FOR STA-KON BULLETIN 500

* Patented STA-KON: Reg. U. S. Pat. Off.

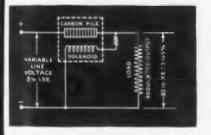
THE THOMAS & BETTS CO. INCORPORATED MANUFACTURERS OF ELECTRICAL FITTINGS SINCE 1899 ELIZABETH 1, NEW JERSEY

In Canada, Thomas & Betts Ltd. Montreal

E Flag autorded April, 1943 White Star awarded October, 1943


BOTHERED BY VOLTAGE VARIATIONS?

HERE'S HOW WEBSTER REGULATORS SOLVED THIS PROBLEM IN VITAL MILITARY APPLICATIONS


If voltage variations interfere with your design objectives, a Webster Carbon Pile Regulator may solve your problem. Sturdy, compact, reliable, they withstand vibration, shock, moisture, salt spray. Some designs are temperature compensated for minus 55 to plus 70 degrees C. ambient operating range. If yours is a highly rated war project, our engineers will gladly study your application without obligation to see if a Webster Regulator will do the job best. Please include complete circuit data and operating specifications with your inquiry.

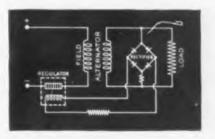
THE HOW AND WHY OF CARBON PILE REGULATORS

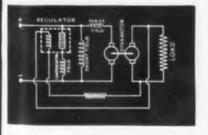
Webster Regulators function as illustrated at the right. The carbon pile is under spring compression, and this compression is more or less offset by the magnetic attraction of the armature when the solenoid is energized. The result is a steep increase of pile resistance at the critical voltage as illustrated. The solenoid circuit requires from 2 to 15 volt-amperes depending on the application. Maximum pile resistances from approximately $^{1}_{2}$ ohm to 100 ohms are available. The stable maximum control resistance range for any particular pile is of the order of 20 to 1. VR-2000 Regulators have a maximum pile dissipation of about 25 watts. (2^{13}_{16} ° O.D., 4 high, wt. 2^{1}_{4} lbs.) VR-2200 Regulators dust and up to 50-75 watts without blast. (2^{13}_{16} ° O.D., 4 high, wt. 2 lb. 5 oz.)

A Few of Many Possible Applications of Webster Regulators

VR-2000

SERIES


VR-2200


SERIES

A basic circuit for constant voltage from a variable voltage source. A regulator of this type can be added to practically any reasonably constant DC load provided the apparatus can be arranged to operate on 85 to 90% of the minimum line or battery voltage. A method of regulating the AC output voltage of an alternator or inverter by field control to compensate for load or source variations. Solenoid voltage obtained from suitable rectifier. Adaptable to existing apparatus if sufficient field excitation is available.

Compensation for variable input voltage by regulator-controlled excitation of a compensating field in a special dynamotor. Requires coordinated dynamotor and regulator design.

Method of controlling high voltage rectifier output. Regulator acts to maintain constant bleeder current by automatically adjusting field excitation, thus holding voltage constant.

eld in a special er current by automatnotor. Requires coated dynamotor excitation, thus holding voltage constant.

Dynamotors, Generators, Inverters, Small Motors and Special Instruments

TO SPEED V-DAY BUY MORE WAR BONDS

For mobile two-way communication specify KAAR RADIOTELEPHONES

KAAR PTL-10X TRANSMITTER 10 WATTS + 1600-2900 KC*

The PTL-10X is a highly efficient mediumfrequency mobile transmitter. It provides communication from a moving vehicle over distances ranging from 50 to 75 miles when used with AUTO-LOAD self-loading antenna.

The "Push-to-Talk" button on the microphone completely controls the transmitter, lighting the instant heating tubes, starting the power supply, automatically silencing the receiver, and switching the antenna to the transmitter. The standby current is zero.

Models for special applications are available, including the PTL-22X medium frequency transmitter with 22 watts output, and the PTS-22X, a 22 watt transmitter for operation in the 30-40 MC band.

KAAR AUTO-LOAD ANTENNA

This antenna, with matching coil in the base, is designed for use with the PTL-10X (or with similar medium frequency transmitting equipment) and matches the 72 ohm transmission line from the transmitter and receiver without auxiliary tuning equipment. It provides an efficient method of obtaining maximum signal strength at medium frequencies with a short antenna. It can be quickly installed on the rear bumper or on the side of any vehicle.

*Special ranges to 7000 KC available on special order

KAAR 11X RECEIVER 6 TUBES • 1600-2900 KC*

The popular 11X receiver is a crystal controlled superheterodyne for mounting in an automobile or other vehicle. It contains a no-signal squelch circuit, and is designed for commercial, civil, and military applications.

This receiver offers remarkable accessibility. The top is removed by simply pushing aside two snap catches, or the entire receiver can be whisked out of the vehicle by releasing only four catches.

ELECTRONIC INDUSTRIES . February, 19

fr

 \overline{n}

he

m

21

SEND FOR THESE NEW BOOKLETS TODAY!

Whether it's a problem of stepping up d-c power... reducing core assembly time...locating the right highfrequency insulators or high-voltage d-c capacitors in a hurry, you'll find the answer in these new Westinghouse publications. Complete listings of sizes, weights and dimensions, together with application guides make these booklets an invaluable aid in designing and ordering.

These are only four examples of the help that Westinghouse can offer in the design and manufacture of communications equipment. Other helpful publications are available on

- Micarta insulating parts Instruments
 - Rectox rectifiers
- Thermostats

and materials

Relays
 Contactors

Whatever your problem, Westinghouse Communications Equipment and Communications Specialists can help you find a quick solution. Call on Westinghouse for help. Ask for the booklets you want from your Westinghouse representative, or write Westinghouse Electric & Mfg. Co., East Pittsburgh, Pa., Dept. 7-N. J-94613

ELECTRONIC INDUSTRIES . Fobruary, 1944

Gammatrons

PIERCE THE ULTRA HIGHS

"The HK-24 is the best UHF tube for operation at 161.1-megacycles"

The work of W. L. Widlar in the ultra high frequencies is attracting national attention. After several years of research and experiment between 30-mc and 250mc at WGAR, he designed a 157.5-mc AM mobile transmitter with an operating range of 17 miles.

Two years ago the 157.5-mc special events mobile unit was modified into a 161.1-mc FM transmitter, which reduced noise and improved transmission, and has a satisfactory operating range of 20 miles from the receiving location.

Now he is engaged in testing a 10-watt 225.6-mc crystal-controlled AM transmitter, and the results will be published in the near future.

For the driver-amplifier and power-amplifier stages of these transmitters Mr. Widlar selected Gammatron tubes.

"I know from experience," he says," that the HK-24, because of its small physical size and high efficiency, is the only available UHF tube that will operate successfully at 161.1-mc."

In addition to small size and high efficiency, there are other reasons for the ability of HK-24's to pierce the ultra highs. For example, confined electron paths, getter-free bulbs that avoid metalized resistor effects, and lack of internal insulators.

Heintz and Kaufman engineers constantly utilize the results of UHF field tests to design more efficient Gammatrons, and thus they are making an important contribution to the opening of new electronic from tiers in the centimeter region.

ELECTRONIC INDUSTRIES . February, 1941

Cons in d tron post Pe

EL

guar vice nary vuls com F

and ing X-r met. are reci con

tra

0.1 ELI

ELECTRONIC PERFORMANCE is always exactly predictable with built-in CONSTANT VOLTAGE

Constant, stable voltage comes first in design consideration if the electronic miracles promised for the post-war world are to be realized.

Perfect performance cannot be guaranteed if delicate electronic devices, too sensitive to tolerate ordinary voltage fluctuations, are left vulnerable to the sags and surges of commercial power lines.

FM and television transmitters and receivers, food sorting and testing devices, scientific instruments, X-ray, sound and projection equipment, precision machinery—these are but a few of the products, once requiring frequent adjustments and constant attention by watchful operators, whose performance is now automatic and exactly predictable with *built-in* Constant Voltage.

Many new products that have not yet progressed beyond the laboratory stage because of critical voltage problems will be available to the post-war world, with built-in Sola Constant Voltage Transformers reducing their operation to a simple "just plug in" basis.

Engineers and sales executives who are responsible for product design should bear this fact in mind that the precisely controlled voltages of the research laboratory are not the voltages that will be encountered once the product reaches the user. An otherwise perfect piece of engineering may be headed for trouble at the hands of less experienced operators.

Dependably close voltage control to within $\pm 1\%$ can be made available to all electronic devices, or electrically operated equipment, with built-in automatic Sola Constant Voltage Transformers.

Without manual adjustments or supervision, they instantly reduce voltage fluctuation as great as 30% to the rated voltage required for successful operation. They protect themselves against short circuit damage. Capacities and sizes are available to meet any design requirements.

To Manufacturors:

Built-in voltage control guarantees the voltage called for on your label. Consult our engineers on details of design specifications. Ask for Bulletin 10CY-74

Transformers for: Constant Voltage - Cold Cathode Lighting - Mercury Lamps - Series Lighting - Fluorescent Lighting - X-Ray Equipment - Luminous Tube Signs Of Burner Ignition - Radio - Power - Controls - Signal Systems - Door Bells and Chimes - etc. SOLA ELECTRIC CO., 2525 Clybeurn Ave., Chicago 14, III. ELECTRONIC INDUSTRIES - February, 1944 COIL FORMS OF Storation AND Contraction AND Contraction Contracti

and a second second

And the second sec

We have adequate facilities to process coil forms up to 5 inch diameter and pressed pieces to approximately 6 inches square.

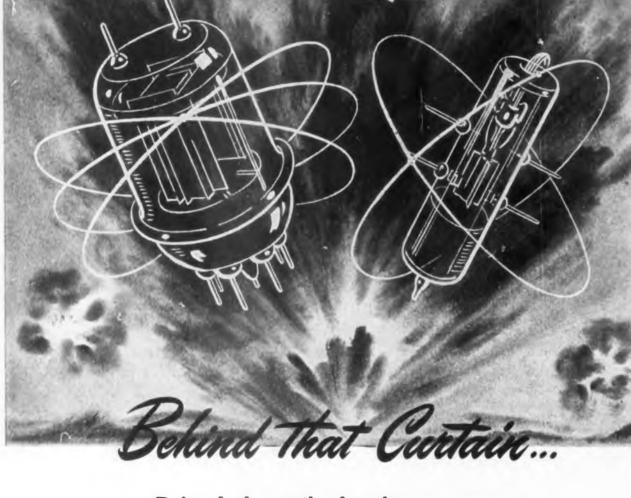
Our ceramic experience dates back to 1930...and our engineering and laboratory facilities are at your disposal.

Division of GLOBE-UNION INC., Milwaukau Stations Stations Capacitors, Rite And Valuate Stations and Valuate Licerconic Industries - Station (1997) SILVER MICA

Special purpose oil impregnated silver mica capacitors particularly useful in high frequency applications.

These capacitors made in a diameter of less than ½ inch, in capacities up to 500 MMF are of mica discs of the highest grade individually silvered for maximum stability and stacked to eliminate any "book" effect. The assembly is vacuum impregnated with transil oil. The outside metal ring or cup connects to one plate of the capacitor...the center terminal connects to the other plate by means of a coin silver rivet. All units are color coded. For additional information send for Form 586.

Type 831 lead thru" construction.


\ Type 830 Cup style assembled to a threaded brass mounting stud.

MOTION.

Type 830 with extra long terminal.

Division of GLOBE-UNION INC., Milwaukee

PRODUCERS OF VARIABLE RESISTORS + SELECTOR SWITCHES + CERAMIC CAPACITORS, FIXED AND VARIABLE + STEATITE INSULATORS

Behind the veil of military secrecy are the wonder stories of Ken-Rad electronic tubes Nearly five thousand of us are now making and sending these tubes which are helping to shatter tyranny And through Ken-Rad dependable tubes will be worked the *constructive* miracles of the great science of tomorrow

BE

AI

ELE

TRANSMITTING TUBES CATHODE RAY TUBES SPECIAL PURPOSE TUBES KEN-RAD ERECUTIVE OFFICES OWENSBORO - KENTUCKY EXPORTS IN BROAD STREET NEW TORE

METAL AND VHF TUB INCANDESCENT LAMPS FLUORESCENT LAMPS

ELECTRONIC INDUSTRIES . February, 194

NAMES OF A DESCRIPTION OF A DESCRIPTIONO

History of Communications Number Two of a Sente

COMMUNICATIONS BY ROMAN POST RIDERS

In the early days of the Romans and Phoenicians the fastest means of communication was the post riders, who carried news and War dispatches from the battle front. As fleet as their horses might have been their speed does not begin to compare with electronic voice communication. The twist of a dial and the pressing of a button-in the flash of a second the message comes through. Clear cut speech transmission with Universal microphones reduces error and expedites the delivery of the message.

Today Universal microphones and voice communication component are being used throughout the world on every battle front filling a vital need and "getting the message through."

< Model 1700-UB, illustrated at left, is but one of several military type microphones now available to priority users through local radio jobbers.

INGLEWOOD, CALIFORNIA

UNIVERSAL MICROPHONE CO., LTD

FOREIGN DIVISION: 301 CLAY STREET, SAN FRANCISCO TI, CALIFORNIA .. CANADIAN DIVISION: SOO KING STREET WEST, TORONTO I, ONTARIO, CANADA

日本市 日本市 日本市 日本市

the seeing ear...

industry to be

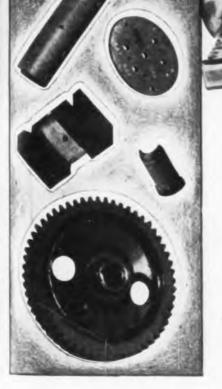
Symbolic of modern electronic equipment – these human senses amplified and extended to limitless range... thru fog and smoke... beyond the limits of normal sight and hearing... our fighting forces now SEE and HEAR at distances and under conditions that amaze the un-

ENERAL

initiated. Such are the remarkable accomplishments of a war-inspired American Electronic Industry. Censorship shrouds the Seeing Ear in secrecy but . . . in tomorrow's day of peacetime production G. I. will adapt its share of Seeing Ear developments to new products and to modernization of its pre-war products. Many of these new ideas will have direct applications in

> our Record Changers–Variable Condensers–Push Button Tuners–and other products.

Their hobby is radio too..


These are the leaders of science and communications. They are professionals in what has become a most vital element of modern civilization...radio communications and the science of electronics. Some of them wear the uniforms of top ranking military officers because we are engaged in war. Others remain civilians as doctors of science... the leaders of radio, electronic and electrical industries which are amazing the world through their achievements. Achievements which not only aid in war but which are creating the new era of industry to follow. They are the great men of today... they will be still greater tomorrow ... and they are radio amateurs. Eimac tubes are leaders too. First choice of these leading

engineers . . . first in the new developments in radio. They are first with radio amateurs too, which is no coincidence.

EIMAC 2000T

EITEL-McCULLOUGH, INC., 794 San Mateo Ave., SAN BRUNO, CALIF. • Plants located at San Bruno, California and Salt Lake Export Agents: FRAZAR & HANSEN • 301 Clay Street • San Francisco, California, U. S. A.

The Greeks had no word for it and neither do we. more's the pity. Let's coin a word and a definition by starting with Webster's definition of research—"diligent protracted investigation, especially for the purpose of adding to the sum of human knowledge."

Now let's add, "More especially creation of new substances and discovery of special services they can perform better than any previously known substance".

There you have Formica research which has been going on more than 30 years through peace and war.

Formica laminated plastic has been created in various grades suitable for many uses in many industries. Strength, lightness, easy machinability, dielectric properties, acid and moisture resistance and stable dimensions are characteristic properties which vary somewhat according to the purpose of the grade.

Acquaint yourself with the past performance of Formica and its possibilities for your new or improved peacetime product.

"The Formica Story" is a moving picture in color showing the qualities of Formica, how it is made, how it is used. Available for meetings of engineers and executives.

ORM

THE FORMICA INSULATION CO.

4647 SPRING GROVE AVENUE

CINCINNATI 32, OHIO

ELECTRONIC INDUSTRIES . February, 1944

silence that makes sound!

Keyed to

for inter-com

"to

plugs, jecks, switches and small electric motors.

mow's" de

receivers and for public address systems-transform vibrators, vitreous enomel resistore, wirewound controls

unication, portable and bottery set

In this "dead" room only the sounds which come out of the speakers are recorded. Sounds which would otherwise bounce back from the walls, ceilings or other objects are trapped and lost forever. The absence of reverberation permits scientifically accurate testing in the sound absorbing room

of Utah's complete testing laboratory.

In making practical the many warcreated radio and electronic improvements-in adapting them to today's needs and for the commercial requirements ahead, Utah engineers have designed new parts and products, developed new manufacturing devices and

methods and have instituted new, more comprehensive testing techniques. * * *

W TO I 517 1 pend

1.1 01011 derie

Every Product Made for the Trade, by Utah, is Thoroughly Tested and Approved

Radio Products Company,

850 Orleans Street, Chicago 10, Illinois

ELECTRONIC INDUSTRIES . February, 1944


1G

14

ands: Utoh speakers

When life and death ride on a slender needle

to ou have ever walked into the white hush of a modern operating room you have seen the metered instruments on which the surgeons depend as the age-old battle of life and do th is fought across the operating table. These meters must be true. They must be unfailingly precise. Life itself depends upon them. It is measuring, metering, and testing equipment of this kind—equipment that accepts the responsibility of sustained accuracy*—that is built by Boes. Whether it be for the professions, the sciences, or for production, a Boes-made instrument is worthy of the work that it must do. * SUSTAINED ACCURACY is not an easy quality to achieve. It must take into account all factors of use must then employ the design, the alloys, the construction that infallibly protect an instrument against all threats to its reliable performance. Such instruments, obviously, must be built with performance not price in mind. We invite the inquiries of those who are interested in such standards.

jor Measuring, Metering & Testing Equipment & The W W Boes Co., Dayton, Ohio LECTRONIC INDUSTRIES • February, 1944

Over the long period of years separating the past from the present, ECA has been called upon to tackle the development and production of innumerable types of specialized radio and electronic equipment. Consequently, our facilities are geared to exacting laboratory standards. We can handle the most delicate assignments with understanding care and painstaking skill.

Typical of the apparatus produced by ECA is this Rectifier Power Unit for general laboratory operation. Operating from a 105-125 volt, 50-60 cycle line, it delivers a maximum of 150 ma at 300 volts DC and has an open circuit voltage of 450 volts DC and 45 watts power output from 6.3 volts AC centertapped terminals. The hum voltage is 0.1% at 150 ma for all voltages above 150 volts. Continuous panel control of the DC output voltage is provided through a variable autotransformer.

Did you read the list marked "Killed in Action" in your paper today? A pint of your blood might have saved the life of an American boy. Visit your local Red Cross Blood Bank...Do it now.

ELECTRONIC CORP. OF AMERICA

45 WEST 18th STREET . NEW YORK II, N.Y. WATKINS 9-1870

Cal

Can a Vibrator Power Supply Rescue a Boat-Load of Men?

No... it can't! But it can help—and the rescue might be prevented and the boat lost forever, if just one vibrator power supply failed to do its job.

as ut

at of er.

ht

sit

0

44

• The compact radio transmitter that is standard equipment in many lifeboats depends on a vibrator power supply... The patrol plane that picks up the SOS... spots the drifting boat, and summons surface ships with its own powerful transmitter, has a complex electrical system that includes many vibrator power supplies. And

in the rescue ship itself are still other vibrator power supplies performing vital functions.

The dependability of $E \cdot L$ Vibrator Power Supplies under all climatic conditions — their amazing adaptability in meeting specific current requirements — have brought them into wide use for radio, lighting, communications and motor operation—on land, sea and air.

Electronic's engineers have specialized for years in the technique of vibrator power supplies. They have conducted the most extensive research ever known on power supply circuits. They have extended the practical application of vibrator-type power supplies far beyond previous conceptions.

In the electronic era of peace to come, the efficiency and economy of $E \cdot L$ Vibrator Power Supplies will find new applications wherever electric current must be changed, in voltage, frequency or type.

For Operating Radio Transmitters in Lifeboats — $E \cdot L$ Model S-1229-B Power Supply. Input Voltage, 12 Volts DC; Output Voltage, 500 Volts DC: Output Current, 175 MA; Dimensions, 7 $\frac{1}{2}$ " x 5 $\frac{1}{2}$ " x 6 $\frac{1}{4}$ ".

NEW DEVELOPMENTS

TOANKE

born under the lash of wartime necessity will find welcome use for PEACETIME PRODUCTS TOMORROW

> Sockets, Plugs, Switches, Contacts, Terminal Boards and Assemblies to perform electronic applications unheard of prior to Pearl Harbor Day was the crying need two short years ago.

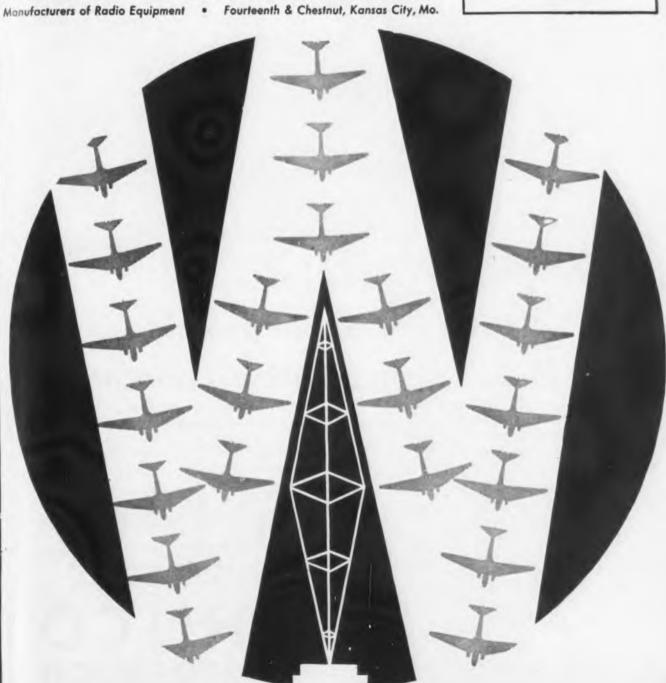
> Franklin engineers, like all American Industry, tackled the job with one purpose in mind ... to quickly supply the armed services with newly designed electrical fittings to perform required electronic applications while withstanding most severe manhandling.

> By discarding every precedent and starting from scratch Franklin engineers developed new Sockets, Plugs, Switches, Contacts, Terminal Boards and Assemblies which found high favor with manufacturers of electronic units and with the armed services.

> Franklin's New Line developed for today's war equipment will find many applications for tomorrow's peacetime electronic equipment.

A.W. FRA

175 VARICK STREET • NEW YORK, 14, N.Y.


Sockets · Terminal Strips · Plugs · Switches · Plastic Fabrications · Metal Stampings · Assemblies

IT'S WILCOX in Radio Communications

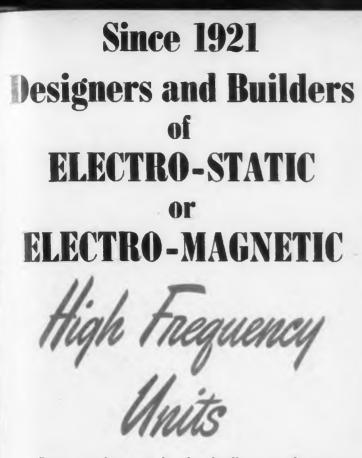
For reliable aircraft operations, dependable radio communications are essential. Wilcox Aircraft Radio, Communication Receivers, Transmitting and Airline Radio Equipment have served the major commercial airlines for many years, and now are in use in military communications in all parts of the world.

WILCOX ELECTRIC COMPANY

13 Miles above the ground ... in a Philco Refrigeration Laboratory!

Philco REFRIGERATION engineers solve a tough problem in the production of military equipment ... another example of how Philco's vast facilities for research and production are serving our armed forces.

A T Philco, airborne electronic equipment and aircraft radios pass the stratosphere test – of thin air and sub-zero temperatures – in the laboratory.


This ingenious high altitude chamber faithfully duplicates every condition of temperature and pressure from sea level up to 70,000 feet! When aircraft equipment can maintain absolute accuracy and dependability at 70° below zero, with air pressure 1/20 of normal—it's right! And only when it's right does it leave the Philco plant.

The stratosphere chamber is just one of many instances in which the skill and experience of Philco refrigeration engineers have supplied the answer to the most difficult war production problems. It's an example, too, of the precision and quality which, after the war, will again make Philco refrigerators and air conditioners *first* in engineering, *first* in convenience, *first* in advanced design!

ELECTRONIC INDUSTRIES . February, 1944

NAME AND ADDRESS OF A DESCRIPTION OF A D

For more than two decades, leading manufacturers of electronic, neon, X-Ray and (more recently) fluorescent tubes, have used our apparatus for such operations as degassing, sealing glass to glass or glass to metal (Kovar or copper).

Use of our apparatus always has afforded highly satisfactory results plus economy.

As dielectric and induction heating equipment, our better-built units are showing many points of superiority in metallurgical, plastics, plywood and dehydration applications.

It will pay you to let us supply the unit of proper frequency and power output for your particular needs Write for further information today.

ELECTRONIC INDUSTRIES . February, 1944

fter

air

nce,

1944

(Abave) Advanced custombuilt heating unit for a wide range of industrial uses. 120

(Right) Low valtage, high current supply: 1 to 9 volts at 300 amperes.

WHERE BOTTLENECKS ARE BROKEN! You can expect the best postwar production

FROM KITES-

An antenna was needed to expand the range of the Gibson Girl sea-rescue radio set. Hoffman engineers solved the problem with a box-kite — simple, sturdy, built to fly in winds from 7 to 70 miles an hour, at a specified angle. Engineering ingenuity broke a tight bottleneck in design.

TO FREQUENCY METERS

Not many months ago, Hoffman took on the job of producing crystal frequency indicating equipment of vital importance in Navy communications. The plant was tooled up, manufacturing procedures established, testing equipment installed, all in record time. Now, mass-production quantities of this high-precision equipment are rolling off the lines. Another of many important bettlenecks broken.

IT'S INITIATIVE-IMAGINATION

Kites and frequency meters are but two of the many important jobs being done by Hoffman Radio Corp. We've intentionally taken on the toughest jobs – and broken the bottlenecks. We take great pride in the flexibility and fast action of our organization. It has made our contribution to the war effort greater and will result in the production of finer equipment for our dealers as soon as the war is over.

EXTREMES

Type DY Dykanol bypass capacitors

CORNELL-DUR

602 93

are specially designed for the excessive highs and lows of temperature and humidity—the extremes of everything wind, weather and water can offer on aircraft, submarines and surface ships. The extra endurance found in these and all other C-D capacitors stems from 33 years of doing one thing well —making capacitors and nothing else. For complete description of Type DY write to Cornell-Dubilier Electric Corporation, South Plainfield, New Jersey.

IT'S C-D FOUR TO ONE: In an independent inquiry just completed, 2,000 electrical engineers were asked to list the first, second and third manufacturers coming to mind when thinking of capacitors. When all the returns were in, Cornell-Dubilier was far in the lead – receiving almost four times as many "firsts" as the next named capacitor.

AL CONTAIN

MICA · DYKANOL · PAPER WET AND DRY ELECTROYLTIC CAPACITORS

1

A

They help put electrons on Industry's payroll

WITH the aid of Automatic Electric relays and other control devices, electronic science is helping industry do a thousand new jobs-speeding new electronic ideas through the laboratory and putting them to practical use on the production line.

Automatic Electric field engineers, armed with the technique which comes from long experience in electrical control applications, are working daily with the makers of electronic devices of every kind—offering time-saving suggestions for the selection of the right controls for each job.

Let us pool our knowledge with yours. First step is to get a copy of the Automatic Electric catalog of control devices. Then, if you would like competent help in selecting the right combination for your needs, call in our field engineer. His recommendations will save you time and money.

E HAVY

Distributed by

AUTOMATIC ELECTRIC SALES CORPORATION

1033 West Van Buren Street, Chicago 7, Illinois IN CANADA: AUTOMATIC ELECTRIC (CANADA) LIMITED, TORONTO

MIRACLES OF ELECTRONICS

ELECTRONIC INDUSTRIES . February, 1944

Special radio equipment designed and manufactured by Press Wireless, Inc., is proving its worth on fighting fronts throughout the world. Rugged, high power transmitters and various other units from Press Wireless factories are standing the gaff of war-time duty with maximum dependability, accuracy and extreme simplicity of operation.

hat rock the CRA

Credit for this is due in no small measure to the skilled hands of women workers on Press Wireless production lines. In assembling radio sets as in other war-directed tasks, American women are proving that hands that can rock the cradle also rock the Axis...toward a permanent sleep!

PRESS WIRELESS, INC. 435 N. MICHIGAN AVENUE, CHICAGO

CHICAGO · LOS ANGELES · LONDON · HAVANA

Sales Office, Manufacturing Division 1475 BROADWAY, NEW YORK 18, N. Y.

PIO DE JANEIRO ' MONTEVIDEO ' BERNE ' SANTIAGO DE CHILE ' NEW YORK

LECTRONIC INDUSTRIES . February, 1944

PRESS WIRELESS, INC.

IS DEVELOPING

OR MANUFACTURING

. HIGH POWER TRANSMITTERS

DIVERSITY RECEIVERS

RADIO EQUIPMENT

AIRCRAFT AND AIRFIELD

• RADIO PRINTER SYSTEMS

• CHANNELING DEVICES

MODUPLEX UNITS "TRADEMARK"

• RADIO PHOTO TERMINALS

AND OTHER TYPES OF RADIO AND

COMMUNICATIONS EQUIPMENT

FACSIMILE MACHINES

38

st

ie

d

b

۴.

d

Remier craftsman heat treats welding and cutting dies and tools for automatic screw machines.

ELECTRONIC TOOLS OF WAR... in quantity and on time! There are no delays because Remler has the facilities and experience to do the job from design to finished product —plus the know-how to cut production time which frequently permits quotations at lower prices. This organization of skilled specialists manufactures components and complete electronic equipment for our armed forces and components for your application. Inquiries invited.

Wire or telephone if we can be of assistance REMLER COMPANY, LTD. • 2101 Bryant St. • San Francisco, 10, Calif.

PLUGS & CONNECTORS

Signal Corps - Navy Specifications

	Types	:	PL		_	N	AF	
50-A	61	74	114	150				
54	62	76	119	159				
55	63	77	120	160		11	36-1	
56	64	104	124	291	-A			
58	65	108	125	354		1	No.	
59	67	109	127			212	2938-1	
60	68	112	149					
PLP			PLO			PLS		
56	65	1	i6	65		56	64	
59	67	1 5	59	67		59	65	
60	74	6	50	74		60	74	
61	76	1 6	51	76		61	76	
62	77	1 6	52	77		62	77	
63	104	1	53	104		63	104	
64		1	54					

ELECTRONIC INDUSTRIES . February, 1944

What's Wrong With This Picture?

The thing that is wrong about this picture is that radio engineers have been doing such a bang-up job meeting and anticipating the vast needs of our military services that not enough good things can be said about them by those engaged in the field of electronics.

Seven days a week and night after night, the radio engineers are working out the multitudinous problems of design required to give our Allies the most of the best electronic equipment in the world. Raytheon is proud of its part in furnishing electronic tubes and equipment that meet engineering requirements of stamina, high quality and complete dependability under the most severe wartime demands.

DEVOTED TO RESEARCH AND THE MANUFACTURE OF TUBES AND EQUIPMENT FOR THE NEW ERA OF ELECTRONICS

ARMY-NAVY "E" WITH STAR Awarded All Four Divisions of Raytheon for continued excellence in production

RAYTHEON MANUFACTURING COMPANY Waltham and Newton, Massachusetts

R

IORTH LOOKING INTO IF you're foxy – and your requirements include chassis, chassis mounting assemblies, shelf assemblies, panels, transformer housings or cabinets – you'll look into Corry-Jamestown's ability to build them.

100000000000

We work in steel—stainless steel or aluminum with a deal of pride in our precision and our production schedules.

HERE'S SO

64

In short, with your order before us, you can be sure of two things. It will be built right! It will be delivered on time!

If this sounds interesting to you, send us your specifications. Unless your opinions differ from those of many leaders in electronic industries, you'll say our prices are as fair as our workmanship is good.

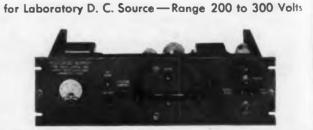
THE HARVEY "AMPLI-STRIP"

for I-F and AUDIO AMPLIFICATION

Here is "something new under the sun" —a compact, thoroughly dependable I-F and AUDIO Amplifier in convenient, practical form, all ready to use.

The HARVEY AMPLI-STRIP is built to supply the electrical characteristics you want. Developed by Harvey engineers to meet exacting performance standards, it offers a superb example of the creative and production resources of the Harvey organization.

Whatever your needs in the way of radio or electronic instruments, components or assemblies, present or projected, you will find it to your advantage to get in touch with Harvey of Cambridge.


HARVEY RADIO LABORATORIES, INC. 441 CONCORD AVENUE · CAMBRIDGE 38, MASS.

Available for operation between 1.5 M.C. and 30 M.C.

A 25-Watt General Purpose Radio Telephone Transmitter

HARVEY 106 PA REGULATED POWER SUPPLY

ELECTRONIC INDUSTRIES . February, 1944

WHEN

THE ELECTRONIC ENGINEER NEEDS HELP

U eneral Ceramics is at his beck and call to help with his insulator problems. In nine cases out of ten the solution will be STEATITE.

Electronic Engineers know that there is a very sound reason for the extensive demands made on the Steatite Industry, demands that are clearly portrayed by the almost astronomical increase in the production of Steatite insulators since 1938 (see graph).

During the course of this unprecedented progress, General Ceramics has been in the foreground both in regard to increased productive capacity and engineering skill in the development of new methods and products – meeting the strict specifications of the United States Army and Navy for the best and only the best in Steatite insulators. PROPORTIONAL INCREASE IN STRATITE INSULATOR PRODUCTION USING 1938 AS BASES

For all your insulator problems whether specialized or standard, our Engineering Department is always at your service.

ELECTRONIC INDUSTRIES . February, 1944

70 Permanent Magnets Are Used in a Flying Fortress*

IN the great Boeing B-17, permanent magnets are extremely vital parts of instruments, magnetos, compasses, audio speakers, radio equipment, the automatic pilot, and other highly complicated electrical and electronic devices. Additional permanent magnets in ground equipment help get the plane over its objective and safely home. These applications typify the constantly growing number of uses for which permanent magnets are being employed today.

Because of our 34 years of specialization in the development and manufacture of permanent magnets for peacetime products, our organization has played an important role in supplying units for numerous military machines and weapons. In many instances, uses have been increased and functions improved.

This unusual experience should prove invaluable to you in solving your engineering problems...and our specialists will be pleased to consult with you. Write us, on your letterhead, for the address of our office nearest you—and a copy of our "Permanent Magnet Manual."

Approximate, Number Auctuates with model and combat requirêments.

ELECTRONIC INDUSTRIES . February, 1944

25,000 REASONS WHY YOU MIGHT WANT TO KNOW US BETTER

. 1944

T takes a lot of research to make American glass the best in the world. At Corning, for example, more than 250 engineers and laboratory men are working steadily on new forms of glass and new uses for this amazing material. More than 25,000 formulae for glass have been developed!

Today, out of this vast experience, has emerged an amazingly versatile group of glasses in daily production under the Army-Navy "E" pennant at Corning. Glasses with an expansion coefficient practically equal to that of fused quartz; glasses that have high electrical insulating qualities; glasses that are extremely resistant to mechanical shock; glasses that can be made into intricate shapes formerly considered impossible. More than that, many of these developments have meant money saved to the customer and faster deliveries.

For example, steady progress has been made in methods of connecting glass to metal. First, we used Antimony Lead Alloy as a coupling medium; then metal coats were sprayed on glass. Today, a Hermetic Metallizing process has been developed which is a vast improvement over former techniques. And Corning's laboratory is already working on further improvements to make glass-to-metal seals better and cheaper.

If you are a manufacturer of electronic equipment, Corning's "know-how" in glass is at your service. We shall be glad to work with you at any time on any problem involving the possible use of glass. In the meantime, you may be interested in a detailed study "Glassware in the Electrical Industry." Simply write to the Electronic Sales Dept. 1-2, Bulb and Tubing Division, Corning Glass Works, Corning, N. Y.

"PYREX" and "CORNING" are registered trade-marks of Corning Glass Works ILECTRONIC INDUSTRIES • February, 1944

CHOICE OF TYPES

• Molded-in-bakelite capacitors in widest choice of designs, sizes, mountings. In brown bakelite and also in XM (yellow) low-loss bakelite.

• Silvered mica capacitors for highly critical applications. Average temperature coefficient of only .002% per degree C. Excellent retrace characteristics. Practically no capacity drift with time. Exceptionally high Q-3000 to 5000 in higher capacities.

• Type K compensating capacitors. Temperature coefficient such that product of "L" and "C" will be independent of temperature changes.

• Stack-mounting units, bakelitecase units, metal-case units, etc. • Be it tiny "postage-stamp" mica capacitor or large stackmounting unit—regardless, it's a precision product when it bears the Aerovox name.

Only the finest ruby mica is used. Each piece is individually gauged and inspected. Uniform thickness means meeting still closer capacitance tolerances. Also, sections are of exceptionally uniform capacitance, vitally essential for those high-voltage seriesstack capacitors. Meanwhile, the selection of perfect mica sheets accounts for that extra-generous safety factor so characteristic of ALL Aerovox capacitors.

Our new Transmitting Capacitor Catalog lists the outstanding choice of types. • Write on your business stationery for your registered copy.

AEROVOX

Canada

ARLAB

Cable

ELECTRONIC INDUSTRIES . February, 1944

HAMIL

LTD

CANADA

... Federal's Coaxial Transmission Line Proves Its Stamina on Every Front

In any area of combat and wherever the performance requirements are most severe, there Federal's Ultra High Frequency Coaxial Cable measures up to every test for extreme ruggedness, strength and endurance.

an Take a Be

Made of solid dielectric, flexible, moisture-proof and efficient in any temperature — meeting all specifications with precision accuracy and uniformity — Federal's Transmission Line embodies phenomenal characteristics never before achieved in coaxial cable manufacture.

Federal Telephone and Radio Corporation

issort ET

Federal is outstanding in the field because it specializes in High Frequency Coaxial Cable, with vast experience and knowledge behind its pioneering developments. It is the largest high frequency cable manufacturer, producing in volume a range of sizes from the smallest for delicate and sensitive instruments to power cable for heavy service.

> Federal's engineering skill is ready to solve any high frequency cable problem. Its productive capacity, keyed to all special demands, will make and deliver any required size, low loss, quality, Solid Dielectric Ultra High Frequency Coaxial Transmission Line.

> > Nework N. J.

Radio Ranges and Instrument Landing Systems manufactured by Federal mark the principal air routes of the Nation and control the landing at many leading airports. Pioneers in the development of Aerial Navigation Equipment, cy Federal has made specfacular contributions to aviation progress.

INTELIN DIVISION

11

Y

s٠

ts

of

g

ur

ED

There is an apparent discrepancy at this point.

The pages are either missing or the pagination is incorrect.

The filming is recorded as the book is found in the collections.

UNDER ANY TRYING CONDITION

UP A MOUNTAIN IN A TANK HURTLING THROUGH SPACE IN A FORTRESS

SPECIAL 25 AND 50 WATT

ur-Amsco

NANUFACTURERS OF DEJUR METERS. RHEOSTATS, POTENTIOMETERS AND OTHER PRECISION ELECTRONIC COMPONENTS

NEW YORK PLANT: 99 Hudson Street, New York 13, N.Y. . CANADIAN SALES OFFICE: 560 King Street West, Toronto

WITHSTANDING THE GRUELLING PACE OF A WAR PLANT

DeJur wire-wound potentiometers, in any assignment, fulfill their tasks capably and satisfactorily. The new line of these potentiometers covers a wide range of applications, for present and future use. Write for your copy of our "Special Bulletin", just off the press.

SHELTON,

HELP SHORTEN THE WAR · · · BUY MORE WAR BONDS

ELECTRONIC INDUSTRIES . February, 1944

CONNECTICUT

Corporatio

SPECIAL

ACELLENCE

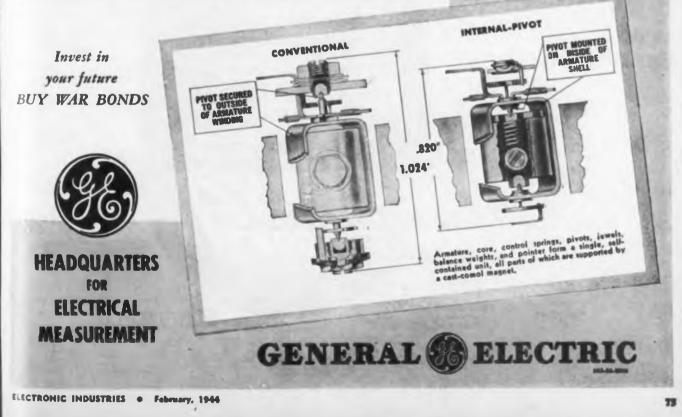
A New Design That Puts More Instrument into Less Space

These new, internal-pivot instruments were developed to fill a vital need—particularly in the radio and aircraft fields—the need for compactness. They are *thin*—in most ratings, less than 1 inch deep.

More important is the way their thinness was achieved. In the sketch below, see how the pivots are solidly anchored to the *inside* of the armature shell so they cannot work loose. The moving parts are permanently aligned with stationary parts by bolting the core assembly to a one-piece cast-comol magnet.

Other features are: large-radius pivots, high torque and good damping, lightweight moving element, and ample clearances. Added up, they give you an instrument well able to withstand vibration and hold its rated accuracy, one that is fast on response and easy to read accurately—a design that packs all-round fine performance in a small space.

For ratings, price, and dimensions, ask our nearest office for Bulletin GEA-4064, which covers instruments for radio and other communications equipment; or Bulletin GEA-4117, which describes those suitable for naval aircraft. General Electric Company, Schenectady, N. Y.


0

1944

For radio and other communications service: Type DW-51 devoltmeters, and microammeters, milliammeters, and microammeters, Type DW-52 radio frequency (a-c thermocouple type), are brass or molded Textolite.

Type DW-53 d-c voltmeters, emmeters, and volt-ammeters that are specially designed to measure voltage and current in bettery and battery-charging circuits on newsl aircraft. They meet applicable Navy specifications.

ELECTRONIC INDUSTRIES

O. H. CALDWELL, EDITOR * M. CLEMENTS, PUBLISHER * 480 LEXINGTON AVE., NEW YORK (17), N. Y

Reconversion Complexities

A

Reconversion in the radio-electronic field is not a simple problem. As things stand today there are at least three different situations to be taken into account:

- 1. Concerns which are now manufacturing radio equipment at about the same rate as they did before the war, and are planning to return to radio operation on a similar scale after the war.
- Former radio manufacturers who have tremen-2 dously increased their scale of radio operations during the war period.
- 3. Concerns formerly in some non-radio field, which have taken on radio production for the duration, and now like radio-electronic manufacturing so much that they plan to continue in radio or electronic production, postwar,

Each of the above reconversion problems will re-quire separate study. The handling of each group will call for a different postwar solution.

About paper: We don't like the paper on which this issue is printed, either. But using the thinnest-possible paper is a patriotic necessity in wartime,-to save pulp, tonnage, labor, coal and transportation. More about all this, on page 252.

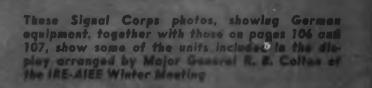
Electronic Opportunities in Motor Control

Viewing recent advances in electronic applications, an engineer of wide industrial experience makes this comment:

"I believe more tubes would be applied to industry if this effort were directed by engineers who have a control sense and background, rather than by tube engineers. Certainly, an outlay of \$400 for a 1-hp. motor control will not get us very far! Costs will come down with production, of course, but we can't build up production at that price-level.

"Industry works in grooves; commercial men are reluctant to accept radical changes until forced to do so. The keynote of the Depression period was to use what we had. For 10 years executive leaders were chosen with that idea in view. But now the war effort is stimulating development. Still it will take time to influence executive thinking. The tube has developed rapidly for welding, but not much progress has yet been made to use it for motor control on the broad scale it deserves."

Electronic Railroading

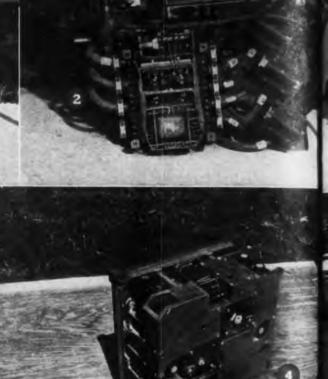

Of all the big postwar markets for radio-electronic applications, our American railroads probably lead the list. For theirs is still a virgin field, electronically speaking. Today both passengers and train crews are isolated while trains are in motion. Even the absurd anachronism of sending a flagman back half a mile remains standard railroad practice. Radio communication, now routine on the sea and in the air, must someday revise rail operation. Electronic signalling is another case in point.

Many of the terrible wrecks that have happened in recent months, might have been prevented had engineers and conductors been continuously in radio touch with dispatchers' headquarters and with other trains.

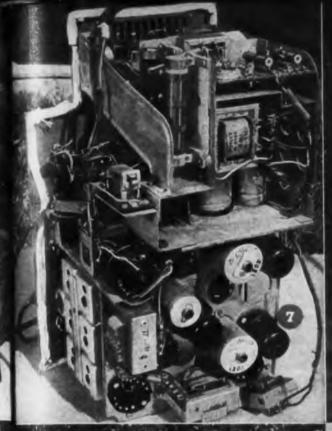
surveys of the railroads' postwar plans indicate that the moment the war is over, present heavy passenger equipment will be replaced all over the country by light-weight, streamlined trains, with running speeds of 100 miles per hour. The change will be made as quickly as car manufacturers can produce the new equipment. This will be the railroads' answer to automobile and truck competition. A reduction in long distance rates to about one cent a mile is also proposed. Such "renovation of the rails" calls also for an entire renovation of railroad signal equipment through the country, a project of tremendous magnitude-but one which can be performed quickly and efficiently, as an article on electronic signalling in this issue, clearly outlines.

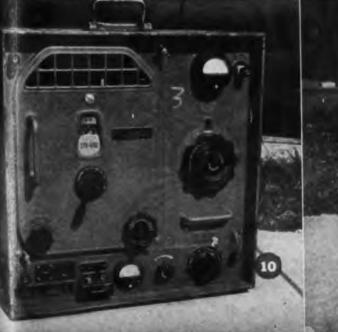
Someday, we predict, the railroads will be among the electronic industries' biggest customers.

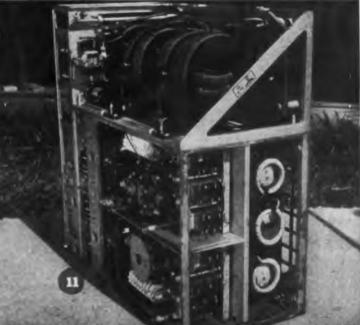
EQUIPMENT


ENEMY RAI

(See pages 122-123 of this issue in directs of many of the papers presented before the IRE-Alt meeting)







- FUG 16 receiver, modulator, and transmitter set (left to right) used in fighter planes. All receiver tubes are RV12 P-3000's.
 FUG 7, another type of airborne set for fighters.
 FUD 2 pack transceiver. Note phones, hand-mike.
- and key. 4. Rear view of FUD 2, showing two types of tubes used in this 33-38 me set.
- 5. Tank receiver type UKWEe, for 27 to 33 megacycles. Note tubes.
- 6. Rear view of German frequency meter, showing coll-changing rotor.
 7. Insides of a German commercial allwave receiver (150 kc-15 mc).
- 8. "Mock-up" of famous FUG 10 longwave communication set for bombers.
- entrom wet for nombers.
 German Torn Eb all purpose pack-type receiver.
 Type 100 WS transmitter (200-1200kc) used in division command sets, usually mounted on nemored car.

OPERATING EXPERIENCE WITH HF HEATING

by HENDERSON C. GILLESPIE

RCA Victor Division, Radio Corp. of America

An engineering approach to the solution of problems of cost, efficiency and practical application in industry

• Radiothermics is a term that is coming into use to describe the application of electrical heating at frequencies where effects in addition to the joule effect come into play. These effects have to do with the control and acceleration of heating processes rather than with any action such as might be described by the term "catalytic." That is, we are not concerned with killing bugs or bacteria by anything remotely resembling a death ray, but rather with the efficient and properly controlled use of electric power for heating purposes. The number of processes requiring the use of heat to effect chemical, physical or biological changes is very large, and many have special requirements that ordinary heating means cannot meet.

Because the advantages that can be obtained from radio frequency heating have already been discussed and published many times, it will be the writer's purpose here to classify and analyze them, rather than merely to enumerate

Fig. 1—Continuous soldering set-up for scaling capacitor containers

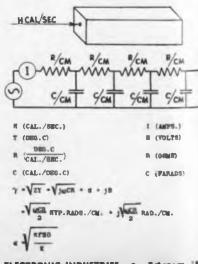
THE REPORT OF TH

them. First, let us remember that a fundamental difference between rf heating and other means of heating is that rf current generates heat within the material being treated, while conventional heat sources apply heat which must penetrate the material from the outside.

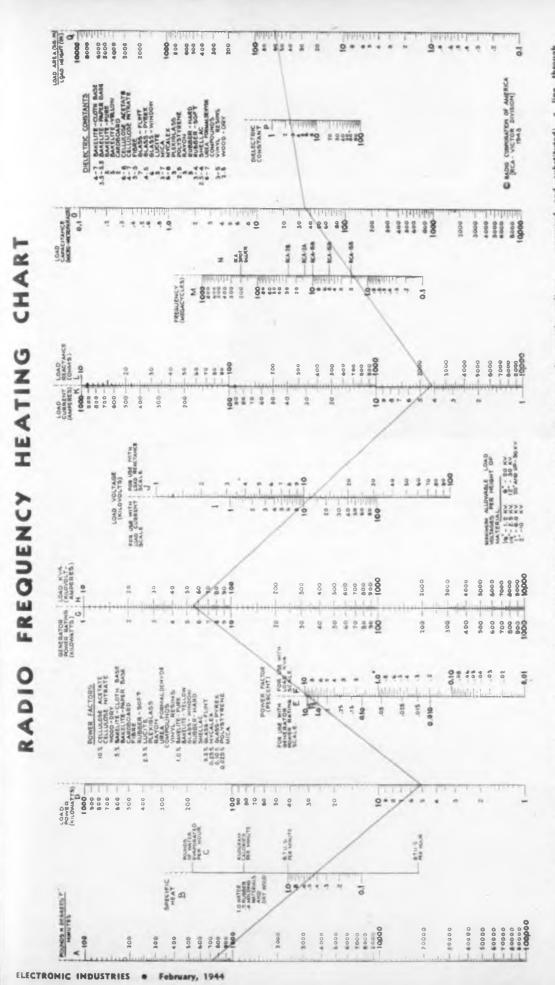
Primary effects

The primary effects of internal heating are that heat flow in the work is either eliminated as a requirement, or is controlled to an extent and in a manner not possible any other way. The advantages resulting from these effects are:

1—Saving of time and improvement in quality in processes where undesired effects are produced by prolonged heating, as the drying out of lumber being glued or oxidation of metals being annealed.


2—The temperature distribution in the work can be made uniform or the usual gradient can be reversed-that is, the temperature made higher inside than out. Uniform temperature distribution is necessary, for example, to achieve maximum plasticity in molding of either thermoplastic or thermosetting materials. An inside-out temperature gradient is desirable, on the other hand, in bonding of thermoplastic sheets, where plasticity is desired at the inner faces of the sheets but not at the outside sur-The same kind of temperafaces. ture distribution is useful in drying materials containing absorbed water or solvent liquids, where excessive outside temperature would cause surface-hardening of the material being dried. These considerations apply to heat and electrical insulating materials.

When we come to the heating of metals there is no particular problem in achieving uniform temperature distribution; the high thermal


conductivity of most metals ensures that. The problem that often does arise is one of limiting to some desired zone the area being heated. Here the effect of radia frequency induction which sharply delineates the locale of the heat generation, combined with the ability of rf equipment to deliver high concentrations of power to the work, gives us a degree of control not easily achieved by other means, if at all.

This localization of heating can be carried to a point that makes possible the surface-hardening of ordinary steels by using in place of the usual quenching bath heatflow from the surface layer into the cold metal behind it. That is, so steep a temperature gradient is established by highly localized, very rapid heating that heat flows out quickly enough to yield the quench-

Fig. 2—liluatrating correlation between the thermal and electrical problem. In the last formula, S = specific heat is calories, deg. C. x grams; D = density in grams per cu. cm. and K in the Cal. yet second per cu. cm. per deg. C.

ELECTRONIC INDUSTRIES . Pobreary, 194

R

15 01

istry

s enoften ng ia

being

radio

larply

heat

other

g can

makes

ng of

ace of heatinto hat is, ent is

1. very

75 OU

ench

PE Wees

m. In tent is

inity in

nl. pet

:M

-

3

1)

7. 1944

the leliver er to f consumptions of maximum safe operating voltage. Ressured and substituted) a line through 4 Typical problem is indicated. A block of nominality "dry" wood 15 x 10 x 2/2 in vergibing 5/3, b, is too be raised 15 y at 10 x 2/2 in one minage 5/3, b, is too be raised 15 y at 29 \pm 1 would be the rest of 15 x 10 x 2/2 in one minage 10 per case for a streem of 4.3 amperes will give the rest of 1 x this point a line through scale E, arbords in the providual for the rest of 2.5 willowaths in and a preset, arbords a through bear being in scale 0 in the required formation in the required form of 2.5 (actual values can of course be saily conditions when certain factor are rised to 3.2 medacia. This chart is the rest of 1 and a the reduced in the reduction of operating to the relation factor are rised to 3.2 medacia.

pacifor, scale K, or its reactance on scale L. To determine the reactive ohms from the dimensions of the material and its dielectric constant, compute and locate the ratio of its area to its thickness, on scale Q, and pass a line through the proper value on the dialectric constant scale. P, to find the load capacitance constant scale. The load reactance is related to capacitance and frequency, so a line drawn from scale O to the point on scale L (prequency scale M at a value which vill be the minimum allowable on the basis of the as-

Starting with a heat requirement expressed in pounds x deg. F per minute, icaele A at left) we can proceed through the specific heat value on scale B to obtain its kilowatt equivation on scale B to obtain its kilowatt equivation on scale B to obtain its aligned with the value of power-factor of the material, on scales E and F, to yield the output power regularement of the generator, scale H. Now select a point on the I and J scale, which represents it with the selected point on the G scale, and we obtain either the current in the load ca-

Fig. 3 — Radio frequency induction heating applied to surface hardening

Fig. 4—Soldering of bases on capacitor cans has been stepped up from 100 to 2500 an hour at RCA Victor through application of rf induction heating

ing required for hardening. This effect has opened up new possibilities in surface-hardening and in precision control of other heat treating processes.

Perhaps the most obvious effect of internal heating is that heat transfer from one hot body to another, with its attendant irregularities, is eliminated. The importance of this is most marked in soldering and brazing since heat transfer from a soldering iron or from melted solder in a pot is notoriously erratic., By causing heat to be transferred to the solder or brazing material from the parts to be joined, rather than vice versa, complete wetting of the hot metal by the solder is assured and tighter joints result.

In addition to the effects which follow directly from internal heat generation, there are a number of secondary effects deriving from the method of generation of rf power and its application. The first of these is probably the ability to heat without contact between the heating element, either metallic or fluid, and the work. This factor, taken is conjunction with the

Fig. 5-Electronic rivet detonator for firing explosive type rivets

Fig. 6-RCA 15-kw radio frequency generator for industrial uses

flexibility of the equipment as to power output, and the speed that can be attained, makes rf heating especially adaptable to continuous processes. Examples of this are continuous soldering set-up (Fig. 1) in use in the RCA Victor plant in Camden, N. J., and Westinghouse's tin flowing installations.

Roller electrodes may also be used in continuous processes where it is desired to apply pressure as well as to supply radio-frequency current to the work, as in seaming thermoplastic-coated fabrics with the RCA Laboratories' electronic sewing machine.

In operations such as the bonding of sheets of wood, not adaptable to continuous processes but requiring contact between the electrodes and the material, a secondary consideration is the simplicity of application. All that is necessary is to lay electrodes in the form of thin copper sheets against the surfaces of the parts to be heated and feed current into them through flexible copper straps. This consideration has led to the use of rf heating in the assembly of wooden airplane parts, the electrodes being placed between the assembly and the clamps as a means of getting heating power directly to the thermosetting glues applied between the sheets.

The heat flow considerations that enter are often so complicated as to defy accurate analysis, but can be simplified by assuming that the isotherms are parallel to the surface through which the heat is entering or leaving. The problem then reduces to a one-dimensional one, and the field problem becomes a line problem.

The terms thermal conductivity and heat capacity immediately suggest their counterparts in electrical units and we are enabled to get our line problem down on paper in the familiar representation of series resistance and shunt capacitance: temperature becomes voltage, Cals. per second become current, Cals. per deg. C. become capacitance. Ohm's law still holds, so resistance is degrees Centigrad over Cals. per second.

When the termal quantities have been put into electrical terms, the configuration representing our one-dimensional heat flow becomes recognizable as an electrical cable whose response to various forms of excitation has been analyzed (Fig 2). We know, for instance, the attenuation constant in terms of the resistance and capacitance per unit length for sine wave applied voltage.

Putting in the values of R and C corresponding to the analogous thermal properties, of, say, steel, we get a value of attenuation con-

ELECTRONIC INDUSTRIES . February, 1944

stant of 405 db per in. for a frequency of 10 cycles per second, and higher for higher frequencies. This means that if we apply a rectanguin pulse to one end of such a line, which is equivalent to applying heat energy to the surface of a block of steel in a .1 second "shot," the fundamental and harmonic components will be very rapidly attenuated as the wave travels down the line, or in from the surface.

TO.

at

2

be

2.5

Ċ7

ag.

th

цk,

d

n-

ut

C -

d-

ty

8-

m

he

ed

gh

n-

rf

en

ng

nd

ng r-

en

at

2.8

an

he

r-

n-

m

al

es

ty

ly

c-

to

of

1-- Ic ¥ne ls de ve he 11 ēs. le of lg the er ed C 115 el. n-

44

Because much of the energy of such a pulse lies in the upper frequency region, we can see the advantage of fractional-second heating where we wish to limit the temperature rise to the surface of a metal such as steel. On the other hand, the values of R and C corresponding to a heat insulating material like wood yield a value of propagation constant which shows high attenuation for frequencies above 10 cycles per minute. Thus we see the futility of trying to raise the temperature at the center of thick pieces of wood in short times by means of hot plates feeding the heat in from the surface.

Supposing now that we have decided to heat a material by high frequency, what are the require-ments as to power and frequency? If the material is a dielectric, the problem is relatively simple. The power requirement is set by the heat requirement of the piece to be heated and the time allowable. The minimum frequency can be calculated on the basis of the assumption that the power factor of the material remains constant with frequency. Converting the heat requirement per unit time into kilowatts and then dividing by the power factor of the material gives us the volt-amperes required to be produced in the work. How the volts and amperes will be propor-

Fig. 7—Radio frequency generator for production of plastic forms

tioned will then become a matter of choice, with a maximum value of voltage determined by breakdown considerations. Selecting this value, we can divide the volts by the amperes, and obtain a maximum value of capacitive reactance that our load circuit may have.

In order that the load circuit be of this value, or lower, a simple calculation of capacitance and computation of minimum frequency from this and the previously obtained reactance are necessary. When the minimum frequency (Continued on page 158)

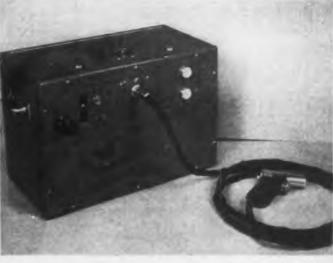

Top—Pre-forms of raw plastic before heating. Center: Electrodes with preforms in position. Bottom: Finished plastic outlet box as it contes from mold

Fig. 8—100-kw radio frequency oscillator operating at 25 megacycles for production of heat to dry rayon

Fig. 9-Radio "nail gun" or spot gluer, for the temporary bonding of thin veneers of wood prior to cutting

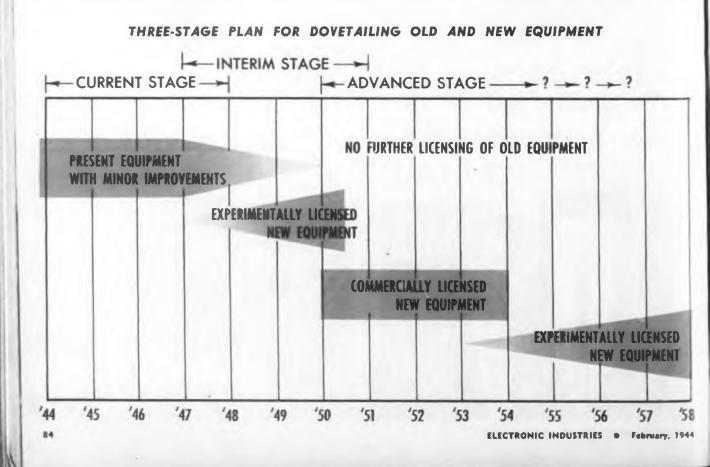
ELECTRONIC INDUSTRIES . February, 1944

IMMEDIACY vs LONG TERM

by STANLEY P. McMINN

Three-stage plan for transition appears best headache insurance—Work of practically all Panels well started

• RTPB's boiling. In the patois of the times, something's cooking. Work has been well started, under the direction of the general chairman, Dr. W. R. G. Baker. And according to Dr. Alfred N. Goldsmith. vice-chairman of the Board and chairman of the important Panel No. 1 on Spectrum Utilization, hub around which practically all other Panel deliberations must revolve. Panel activities are being carried forward with vigor that is commensurate with the gravity of the problems involved. Those problems, as most everyone knows, are nothing if not complex.


By way of further rounding out representation of all interests vitally concerned with matters R'TPB is pledged to investigate, a

number of new sponsors have been added to the previously publicized roster of eight industry and scientific groups. These new sponsors are: National Electrical Manufacturers Assn., Edison Electric Institute (electric-light companies), Society of Telephone Engineers, Society of Motion Picture Engineers, the Telephone Group and American Railway Association (operating railroads). Of these, all are noncontributing sponsors except the Telephone Group. Aeronautical Radio, Inc., has changed its status from a non-contributing to a contributing member. A Canadian representative has been added through an Observer credited to Canada's Department of Transport.

With the interval between meet-

ings of individual Panels spaced approximately two weeks, expectation is that it may require at least 90 days, but more likely four months, for each to cover deliberations that will culminate in a complete report. With that phase of the work completed, individual reports will then be turned over to an editing or coordinating committee which will compile the collected mass of facts, figures, opinions and recommendations into a final report which shall represent the considered judgment of the complete Board.

In the meantime, the nub of the whole problem—the kernel of this hard nut to be cracked-that requires the most careful and cautious consideration, involves some

LOOMS as RTPB PROBLEM

sort of a decision regarding the manner in which the solution shall be tackled.

1

١e

d

ed

a-

st

121

a -

n-

10

e -

in ee

ed

nd

e-

n -

te

he

is

e-

u -

ne

58

44

In other words, shall a solution be attempted on the basis of the immediacy of the matters involved, or might deliberations better be predicated on what may be looked upon as a long-term solution? Should the Board base recommendations on a one-year plan, which would represent quickest return to near normal, but quite conceivably might breed quite some headaches for later doctoring; or should more consideration be given to those future headaches right now by moving slower at present and spreading needed and desirable changes over a much longer period. say five to ten years?

Three-stage plan

In any case it appears inevitable that there must be some collision between the ideal and the practical Dr. Goldsmith believes that the most sensible way of softening such a jolt lies in a compromise between the two thoughts, with the transition taking place under what he calls a "three-stage" plan. In brief, the idea is this:

Stage 1—Normal commercial usages would be continued for a period of perhaps five years, during which time no new major developments would be permitted. Thus existing facilities would be utilized, with such minor improvements in the art as normally take place, without any appreciable disruption in either production or service. This would be a sort of preparatory period.

Stage 2—This might be called an interim stage, and as such could be spread over a period of from three to five years, a little more or a little less. During this time, experimental licenses would be issued. Perhaps for higher frequency uses; no more older type equipment would be licensed, although all the older types would be continued in operation. We would then have no disruption of present service, but there would be added new services as part of the transition and in preparation for later complete change-over to something better.

Stage 3—This might be termed the advanced stage. At or near the beginning of this period, all old type transmitters would be killed off, with operation henceforth confined to new type equipment al-

ELECTRONIC INDUSTRIES . February, 1944

ready in operation under experimental license for quite a time. Coincidentally, experimental licenses would be issued for still more advanced equipment. Then the whole plan would repeat itself.

A plan such as this, Dr. Goldsmith believes, represents the only logical manner in which there may be an orderly transition that will minimize present headaches and insure a future that is at least

Procedure Manual

In order that all concerned may be familiar with matters pertaining to RTPB, Dr. W.R.G. Baker's office has published a Manual, copies of which were distributed at the IRE meeting, end of January. The book contains the original organizational procedure together with amendments and changes, a list of contributing and non-contributing sponsors, a list of all Panel memberships completed prior to publication, and an outline of work assignments for each of the Panels.

partly pain-free. It was a plan of this sort that made possible smooth enough elimination of the old spark transmitters when vacuum tubes made it inevitable that scientific development had reached the point where they had to go.

Service requirements

It is the assignment of Panel No. 1, having all these matters in mind, and with an eye to see that plans for the present do not hamper those for the future, to do these things: To lay the bases of technical and scientific allocation and to formulate a series of guiding principles which will be helpful in allocation, but not hampered by current practices or established services or equipment. Postwar problems must be considered and such recommendations as are made must be acceptable to all the other Panels.

In order that this work may be carried on with the greatest dispatch and in the best manner, Panel No. 1 has been split into two committees. Their work later will be coordinated. Committee No. 1, of which Dr. Shackleford has been appointed chairman, will consider

Service Requirements. These are listed to include:

a) Radio services to be considered.

b) Necessary channel width for each such type of service.

c) Necessary service range for each type of service, with permissible secular and diurnal variations thereof.

d) Transmitter power estimated necessary for each type of service.

e) Number of simultaneously operating stations in each service required in a given locality.

f) Required quality of each such service (maximum permissable signal-to-noise ratio, maximum permissable fading of various types. maximum permissable signal, interference level, and the like). g) Estimated feasible accuracy

g) Estimated feasible accuracy of setting of the carrier frequency for each such service (frequency tolerances).

h) Necessary guard-band frequency width for each such service.

Consideration also is to be given to such points as the reason for a choice of particular frequencies for television channels, and the effect and utility of various types of modulation, including the possibility of future uses of pulse modulation.

Members of the Service Requirements committee include in addition to chairman, Dr. Shackleford, these members: C. J. Burnside, W. S. Lemmon, R. Sorrell, H. Frazier, F. M. Link, G. Grammer, G. O. Milne, L. Spangenberg, O. B. Hanson, H. O. Peterson, A. J. Costigan, P. F. Siling, D. W. Rentzel, F. Walker and G. Robinson.

Committee No. 2, which will have to do with Carrier-Frequency Capabilities, is headed by W. C. Lent, formerly assistant to Dr. Shackleford but now an independent consulting engineer, and will consider these matters:

a) Propagation characteristics of each carrier frequency, as such, in relation to distance (including skip distance effects).

b) Secular and diurnal variations in the propagation characteristics in each such frequency.

c) Natural and man-made noise levels on each frequency in urban, suburban and rural locations.

d) Secular and diurnal variations in the noise levels on the various frequencies.

e) Methods of increasing signalto-noise ratio by specialized transmission and reception methods (di-

(Continued on page 208)

FEATURES OF INVERSE

by PHILIP C. ERHORN

How proper application of selective feedback makes it possible to produce equalization not otherwise obtainable

• When inverse feedback is applied to an ordinary amplifier, several important features appear, all very desirable from the standpoint of fidelity of reproduction. For purposes of illustration, Fig. 1 is a typical three-stage amplifier circuit utilizing overall voltage feedback. That is, the feedback voltage is proportional to the output voltage of the amplifier.

Another type of inverse feedback is produced when the feedback voltage is proportional to the output current. Of these two fundamental types, voltage feedback is more desirable, since it effectively reduces the internal impedance of the amplifier. This effect is similar to lowering the plate resistance of the output tubes, namely stabilization of the output impedance of the amplifier when feeding a variable reactive load, such as a loudspeaker.

The chief disadvantage of current feedback lies in the fact that where a transformer is the coupling medium between the tube **ADVANTAGES**

The application of inverse feedback to an amplifier, if present in sufficient quantity, contributes a material reduction of noise and distortion produced in the circuits. When no reactances are present in the feedback path a wide range of flat frequency response is obtained with virtually zero phase shift. The gain is made constant, and the impedance and output voltage regulation is greatly improved. Equalization is easily introduced by the addition of relatively simple networks to the feedback loop. This equalization can be set to apply at either end of the frequency range.

and the load, current feedback tends to make the primary magnetizing current sinusoidal Amplitude distortion is thereby increased. The internal amplifier impedance is also increased, obviously an unwanted effect for a loudspeaker load.

An examination of the voltage feedback loop indicates that some portion of the amplifier output voltage is returned to the input and superimposed upon the signal input voltage. If the feedback voltage is in phase opposition to the signal voltage, it will reduce the effective input voltage of the amplifier also will be reduced. This gain reduction may be offset by an increase in the original input signal.

Excursions in output voltage with frequency will be corrected by feedback. If, at some audio frequency the output voltage is lower than at the reference frequency, the feedback voltage will be low. The effective input voltage will then increase with subsequent increased output for that frequency. Converse action takes

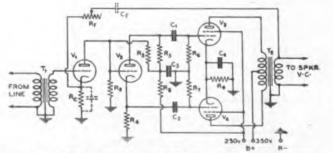


Fig. 1-Typical three-stage amplifier circuit utilizing overall voltage feedback

T,---Multiple line to grid (20-500 Ω to 100M Ω)

T₁—Push-pull plates to line or voice coll (6600 Ω P-P to 500 or 8 Ω) 35 watts, class AB, 2 tubes V.—605, 6J5

 $\begin{array}{l} V_1 & = 6C5, \ \text{eJ5}, \ \text{76} \\ V_{ar}, \ V_{a} & = 6L6G \\ R_{p} & = 500M \ \Omega \ \text{variable pot} \\ R_{0} & = -2000 \ \Omega \ 1 \ \text{watt} \\ R_{0} & = -500M \ \Omega \ 1 \ \text{watt} \\ R_{1} & = -1.0 \ \text{megohm} \ 1 \ \text{watt} \\ R_{1}, \ R_{2}, \ -50M \ \Omega \ 1 \ \text{watt} \\ R_{0}, \ R_{1}, \ -100M \ \Omega \ 1 \ \text{watt} \\ R_{n} & = -35M \ \Omega \ 1 \ \text{watt} \end{array}$

R,-250M () wire wound, 10 watts

C₀, C₇—See values in Fig. 3 C₁, C₅—0.25 Mfd. paper, 400 volts

86

C_-50.0 Mfd. electrolytic, 50 volts

Note-Power supply should be external to amplifier chassis

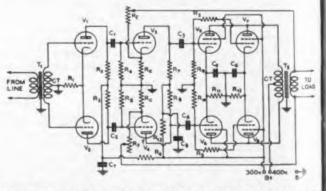


Fig. 4-Push-pull parallel amplifier to deliver 60 watts with 400 volts plate potential

T____Multiple line to push-pull grids (30-500 Ω to 120 Ω total secondary)

T_-Push-pull plates to line (3200 Ω P-P to 500 Ω) 75 wattaclass AB, 4 tubes

V1, V2-605, 6J5	R _c —2000 Ω 1 watt
V., V6C5, 6J5, 76	R50M () 1 watt
V. V. V. VBLOG	R., R
R500M Q variable pot	R, R, -100M Ω 1 watt
R	R11, R12-200 () 10 watt, wire would
R., R100M Q 1 watt	R100 (1 watt (See text)
R., R250M () 1 watt	R ₁₂ -25M Ω 1 watt
C,, C,-0.1 Mfd. paper. 400	volts
C., C 0.1 Mfd. paper, 400	volts
C., C50 Mfd. electrolytic, 50 volts	
C., C8.0 Mfd. oil filled, 600 volts	
Note-Power supply should be external to amplifier chasels	

ELECTRONIC INDUSTRIES . February, 1944

s it ble in-:fier

byl-

+ 10 >

1 8

+ 6

+4 2

÷2

0

- 2

- 4

- 6

- 8

-10

30 50

COMPARED

GAIN

80

Ш

Ш

100

200

place at frequencies where the out-

put voltage is higher than at the

reference frequency. The feedback

voltage then will be high, reducing

the effective input voltage so that

It can be seen that the output

voltage regulation of a feedback

amplifier is excellent, and distor-

tion produced by a variable output

load will be greatly reduced. For a frequency where the load im-

with and without feedback is

When a harmonic voltage is

generated by the amplifier that

was not present in the original

signal, it will be fed back so as to

Thus distortion is reduced. Be-

cause noise, such as hum appear-

ing in the output stage of an am-

plifier is greatly reduced by feed-

back, the power supply need not

have other than ordinary filtering.

feedback factor and controls the

feedback effect, where A is the

gain of the amplifier over the feed-

back loop and B is the ratio of the

feedback voltage to the total volt-age. B is negative for inverse

feedback. If this feedback factor

is considerably larger than unity,

the gain will approach -1/B. With

AB large and only resistance pres-

ent in the feedback loop, the

The quantity AB is termed the

the original component.

shown in Fig. 2.

oppose

the output voltage will drop.

resistive line input and 8 ohm loudspeaker load

-CURVE A

CURVE B

400

1000 2000

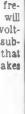
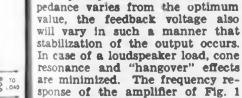

FREQUENCY IN CYCLES PER SECOND

Fig. 2-Circuit of Fig. 1, curve A showing characteristics

with no feedback, and curve B with 25 db feedback, with


Output regulation

r 8 tage ome tout put mal back 1 to duce and e of iced. fiset intage cted

udio

e 18

total

ratta.

ound

ELECTRONIC INDUSTRIES . February, 1946

amplification characteristics of the loop and consequently of the amplifier will be independent of frequency.

FEEDBACK AMPLIFIERS

Ш

IOM

5000

An interesting feature of inverse feedback is its usefulness in equalizing an otherwise flat response band of frequencies. Normal equalization may be carried out without in any way contributing to the distortion in the amplifier. Indeed, the distortion actually is reduced, particularly in the regions of flat frequency response. This method is known as equalization through selective inverse feedback, and at any given frequency the gain of the amplifier and the amount of feedback used are closely tied totogether.

Middle range

For example, if the gain at 40 cycles and the gain at 8,000 cycles are to be raised 15 db compared to a 1,000 cycle reference level, then at least 15 db of feedback must be used. The increased gain at these frequencies is not accomplished by "boosting". Instead, feedback reduces the amplifier gain 15 db for the middle range frequencies, and the gain at 40 cycles and at 8,000 cycles approaches the level existing without feedback. To accomplish this, frequency discrimination networks are inserted in the feedback These networks cause the loop. gain characteristic of the feedback loop to vary with frequency inversely as the desired amplifier gain characteristic varies with frequency. Thus it is seen that the constants of the feedback loop must be altered to give it a response curve opposite to that wanted from the amplifier.

It will be found that at the equalized frequencies, where the feedback is small, the feedback factor AB is small. Hence the gain of the amplifier no longer approaches -1/B. As a result the actual mathematics used in determining the constants of the equalizing networks becomes involved. The characteristics of the amplifler and feedback path with regard to frequency must be known. Because some of the networks are tied across the input cathode resistor (as shown by dotted lines in Fig. 1) current feedback present in this stage must also be considered in the calculations.

The usual "cut and try" methods, however, may be used for rough setting of the capacitor values necessary to produce equalized curves similar to those shown in Fig. 3. As a matter of note, current feedback of the type existing in the input stage normally contributes only a reduction in the gain of the stage and a reduction of distortion. The frequency response is unaffected since only the output current is made constant, and the output voltage may still vary with frequency.

Peaks minimized

Particularly with power pentodes and beam tetrodes in the power output stage, the effects of transient peaks may be minimized only by applying feedback which tends to produce a flat frequency response. Distortion measurements made with the circuit of Fig. 1 run unreasonably high in the absence (Continued on page 212)

87

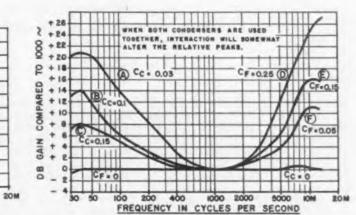
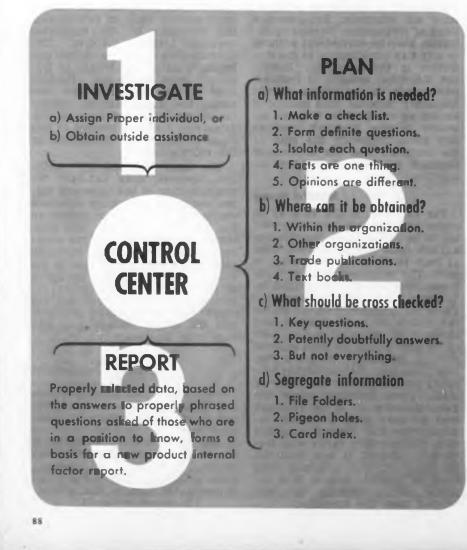


Fig. 3-Equalizing constants for circuit of Fig. 1, curves A and O with cathode condenser, and curves D and F with

series loop condenser, 34 db feedback, resistive load

PLANNING FOR POSTWAR

Determining the effect of internal factors on selection of an item suitable for the plant and available personnel


• The horizons of the electronic industries are virtually unlimited. Manufacturers engaged in this type of business are at once fortunate and under a handicap. The stimulation that the war has given to advanced thinking has had a deep rooted effect. The industry is a progressive one and as such is constantly alert to its opportunities. It has benefited by an ex-traordinary amount of "glamorizing. Much of this has been in some way connected with new uses for electronic devices and new products of an electronic nature.

TANK AND ADDRESS AND ADDRESS A

Any company that is progressive is constantly surveying the field for products most suited to its The operation. merchandising end of the industry and of each particular company has, by now, come to some rather definite conclusions as to which products will "click" with the public. For each product and company there are, however, a number of "internal factors" that must be evaluated before choosing to go ahead in producing a particular new device. A previous article dealt with the

A previous article dealt with the nature of these "internal factors";

THREE STEPS TO INTELLIGENT PLANNING

this article deals with some concrete suggestions as to gathering the data on the factors, and subsequent treatment will be given to the matter of arranging this material in workable report form.

Quick check

No matter whether the product we are considering from an internal standpoint is or is not electronic in nature, there are certain ways in which a fairly quick judgment may be made. To keep us on home base we will assume that our company is engaged in production of electronic equipment of some sort. This means that we are making something between a resistor, condenser or vacuum tube on the one hand and a transmitter, receiver or piece of test equipment on the other.

Our company, probably, has general manufacturing know-how of an assembly nature. It may have some machine shop and tooling facilities and it has some production technic. By the latter is meant planning and scheduling which runs all the way from part of a man's time in a small company to a complete department employing hundreds of people and replete tabulating machines with and comptometers as is the case in some of the large organizations.

Profitable addition?

Our company also has some highly specialized manufacturing ability, possibly vacuum tube exhaust experience or again maybe coll winding or impregnating knowhow. There is also the matter of engineering experience and aptitude. Engineering, to compete successfully in the commercial markets, has a tendency to become highly specialized and as a result of necessity becomes somewhat channeled in its thinking.

Suppose we have a new product on our doorstep; our merchandising people say it will sell and they have given us some volume and price predictions. We are now setting out to gather data on the "internal factors" which in the last analysis are going to tell us

ELECTRONIC INDUSTRIES . February, 1944

RPRODUCT DEVELOPMENT

ion with some degree of certainty whether, if volume and price develop as predicted (with proper discounting for enthusiasm), the product will be a profitable addition to our business.

on-

ring

ub-

to 1

ma-

eck

luct

in-

lec-

tain

ıdg-

s on

our

tion

ome

ak-

stor,

the

re-

nent

en-

01

ave

fa-

tion

ant

lich

fa

to '

ing

lete

and

in

m?

ome

ing

ex-

vbe

-W0

o f

pti-

uc-

121-

ome

sult

hat

luct

lis-

hey

and

set-

the

the

US

1944

٩,

Our first step should be to assign a person and to set up a central point from which inquiry can be made and to which information can be directed. There are two essentially different ways by which this can be accomplished. Either of these can prove effective and in some cases a combination of both may be required.

If someone thoroughly familiar with the company's operation is available full or part time, the task of compiling the data can be assigned to him. He should be the type of individual who has a general rather than a specific background. Engineering, accounting, production and manufacturing knowledge should be combined in that one person. He does not need to know all about any one phase but he does need to possess enough background to talk intelligently on all.

Balanced opinion

It will be preferable to assign a well-balanced man instead of one who is an outstanding specialist in any field. Even more important are those two somewhat elusive qualitiles—common sense and good judgment. If such a man is available, the company is fortunate and the work can go ahead immediately. All he will need is his central point and some sort of a plan.

If this individual is not on hand, or, as is more usually the case, is completely overwhelmed by current operating problems, it will be necessary to seek elsewhere. At present and for some time to come, it is and will be almost hopeless to just go out and hire a man to do this job. If he can be had, it will be at a salary which may prove to be a disturbance to the peace of mind of the operating group. Even then, unless he has been specially trained for this type of work, it may take a very long time-too long-for him to catch the "feel" of the operation.

The alternative is to seek the services of specialists in this type of thing, a consultant or a fully competent management firm. The initial expense may appear to be great but the type of result and its definiteness usually more than justifies the cost. Even in this case,

ELECTRONIC INDUSTRIES . February, 1944

inside assistance will be required for speedy progress. The assignment of someone who has an intimate knowledge of the intricacies of the plant, a stockchaser for instance, part or full time, to assist, is of inestimable value. This assistance, plus an organization chart and the privilege of freely consulting any or all members of the organization invariably will bring results.

When the person and the central point have been chosen, we are ready to begin the actual collection of information in accordance with a plan. This plan must include such points as:

(1) What information do we want?

(2) Where do we get it?

(3) How do we cross check it, and

(4) How do we segregate it pending reporting for analysis purposes?

It will be worth while to examine each of these separately.

A check list should be prepared. On this, the various "internal factors" discussed in the previous article should be listed and under each the necessary questions that have direct reference to the particular product being surveyed. Great care should be exercised to separate those points that require facts from those that can only be answered by opinion. More here than at another point, serious error can creep into the findings if complete understanding is not had of the psychology underlying one person's fact and another's opinion.

A fact is a fact and if correct it doesn't matter where it is obtained. Much more weight can be given to the answers on many specific questions of fact when they come from

FINDING the ANSWERS

This is the second of a series of three articles dealing with practical methods of laying plans for postwar markets. The first dealt with the nature of Internal Factors that must be considered; the third will cover a method of developing findings into a usable kind of report.—Editor. "little men" than when they are abruptly and categorically stated by a top executive. For example, the time-study man or even the timekeeper will know as a fact the hourly production capacity of a The foreman. certain machine. process engineer, production manager or superintendent are in varying degrees removed from the facts. They may, in order to ap-pear intelligent on the subject, state as a fact some figure that is a combination of what the manufacturer of that machine predicted, what it used to do and what it could do if the operator wasn't "laying down on the job."

Mistaken conceptions

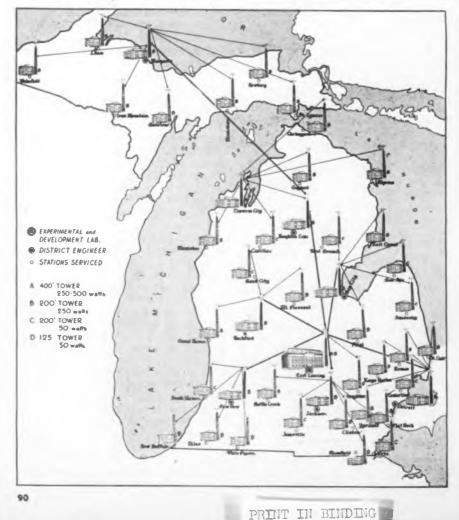
As everyone who is familiar with manufacturing knows, any plant is just crawling with mistaken conceptions of fact. Just try to know definitely what radio tube shrinkage was on a certain type on a given day in a typical vacuum tube plant, or even over the period of a week. The same can be said of reject and repair percentage in a set plant or actual scrap in a machine shop.

Opinions on the other hand become more valuable as they are obtained from higher ranking people. The right people, in other words, those who by their place on the organization chart should know, are the only ones whose opinions are of real weight.

Both fact and opinion are necessary to the successful check list. The point is, frame the question so that the same question never calls for both a fact and an opinion.

After deciding what the scope of the investigation should be and properly framing the large number of specific questions, separate them into groups. No single question should contain more than one thought. It is entirely possible to frame every question so that it can be answered by yes, no, a number or a very simple sentence. Each question should then be typed or written on a separate sheet or card. The sheets or cards can then be filed in groups either by subject or prospective source of information. With this done we are now ready to proceed in gathering data.

Every sheet containing a question must be studied for the relation of that question to the whole problem. There are probably four or five key questions in the entire


(Continued on page 232)

Administration bldg., headquarters of Michigan's police net

The manner in which the State is blanketed is illustrated by the distribution of fixed stations of various powers

A Constrained a

by CAPTAIN C. J. SCAVARDA

Communications Officer, Michigan State Folice

How 57,000 square miles an cluding 45 fixed transmitter

• The Michigan State Police now have in operation one of the most modern and complete two-way radio communication systems in the police world. In developing the network that blankets 57,000 square miles in the state, frequency modulated transmitting stations were installed in forty-five state police posts, in several industrial plants and at military locations; a portable unit that could be operated in any part of the state was built and more than two hundred mobile units were equipped with two-way radio.

In addition to the state police net there is also an extensive State Department of Conservation system, built along the same lines and operating on the same frequencies. This permits the two departments to be tied closely together and has advantages. Since many stations can operate at one time on the same frequency when frequency modulation is used, and a signal strength differential of at least 2 to 1 is present, there is a minimum amount of interference. Every state police car and every conservation department car is always within radio speaking distance of some fixed station.

War speeds program

Before the United States entered the war, Michigan began experimenting with two-way radio on a state-wide basis. The initial installations proved so satisfactory that before their completion, plans were under way for an extension of the system. Entry into the war served to speed up this program and plans for state-wide coverage with a twoway frequency modulated system, which under ordinary circumstances would have required years. were completed within six months.

Radio had been used by the Michigan State Police since 1929. It consisted of broadcasts to cars and stations but provided no method of returning information by radio to the central control station at East

ELECTRONIC INDUSTRIES . February, 1944

STATE POLICE SYSTEM

ar blanketed with a network inter and over 200 mobile units

I

ice

WO

Dst

a-

he

he

ire

odere

ice

nts La-

in

nd

bile

ay

ice ate

ys-

ies.

nts

has

ons

the

ncy

nal

ast

ni-

ery

er-

ays

of

am

red

eri-

1) a

tal-

hat

rere

the

ved

ans

-0%

em.

Im-

ars,

ths.

the). It

and 1 of

) to

Cast

1944

Lansing. Radio science had not reached the point where car to station contact could be made over distances as great as represented in a state the size of Michigan.

The advances made in the use of frequency modulation offered the state police the opportunity for which they had been looking. It made possible broadcasts from a car to its station forty or more miles away. This seemed to answer the problem of returning information from cars to their stations and from all stations to the headquarters at East Lansing.

FM solves problem

This program of expansion was started as a part of the usual plan to make use of all radio facilities as fast as developed if they seemed applicable to good police work. Declaration of war served to emphasize the need for speeding up this expansion not only because of added service it would give but also because of the increasing difficulty in obtaining critical materials.

Considerable research and experimental work had been done with facsimile, radio - teletype, alarm systems and other similar equipment but these were largely set aside until the end of the war or at least until restrictions on equipment have been lifted. When this equipment can be obtained, Michigan will be ready to adapt any or all of it to police work.

When the final determination was made as to the extent to which two-way radio would be installed, it became apparent that an extension of such service to the military areas and to certain defense plants would be of special significance to the war effort.

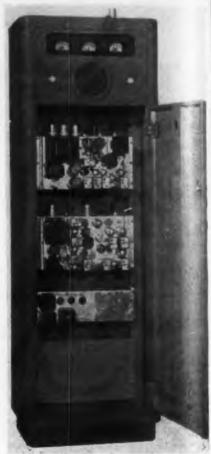
It was necessary to take into consideration the fact that no system of two-way radio even approximating the size of this one had ever been built, and therefore difficulties were bound to arise.

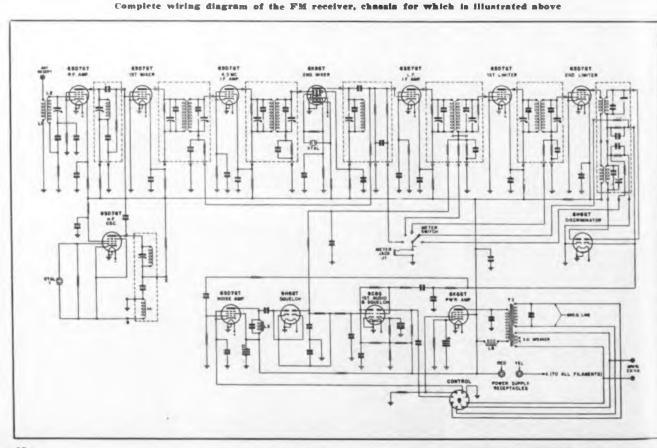
ELECTRONIC INDUSTRIES . February, 1944

One of the remote-controlled FM stations, 250 watts, 200 ft. tower

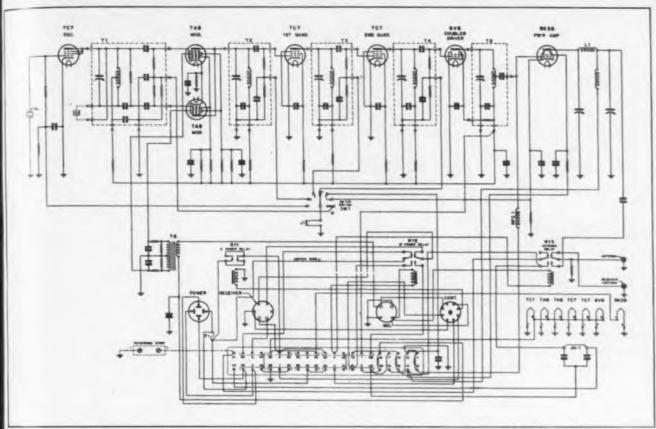
General view of dispatch office at State headquarters in East Lansing

An extensive laboratory for maintenance, repair and testing of all equipment





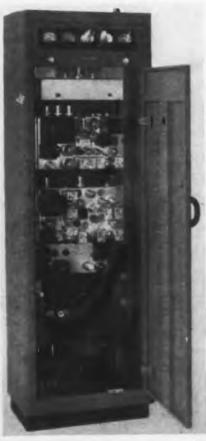
Rear view of the standard FM receiver, both mobile and fixed. (Left)—Front and (right) rear view of 50-watt FM transmitter


The radio engineers were convinced that such a vast expanse as the State of Michigan, including mountains, plains, hundreds of acres of land with an extremely high content of iron, copper and other metals, its large cities such as Detroit, Flint, and Grand Rapids, and its 15,000 miles of paved highways could be completely covered only with ultra-high frequency communication.

Amplitude modulation for this two-way service had been abandoned after conducting tests for some two months. The only FM installation in operation at that time

ELBETRONIC INDUSTRIES . Fobruary, 1944

Wiring diagram of the standard 50-watt transmitter differs from this one, which is a 30-watt unit, only in the incorporation of a pair of 807 or RK39 tubes in the output stage



was in no way comparable in size to the area proposed to be covered. Some method of utilizing an extremely weak signal had to be developed if coverage was to be complete and satisfactory during all conditions.

Again, field tests were conducted with frequency modulated equipment and the project all but abandoned, for the coverage under slightly adverse conditions just did

The 250-watt transmitter, shown left and right, is similar to the 50-watt job except for the addition of a high power output stage and accompanying power supplies. Below—Front and back of the remote control unit

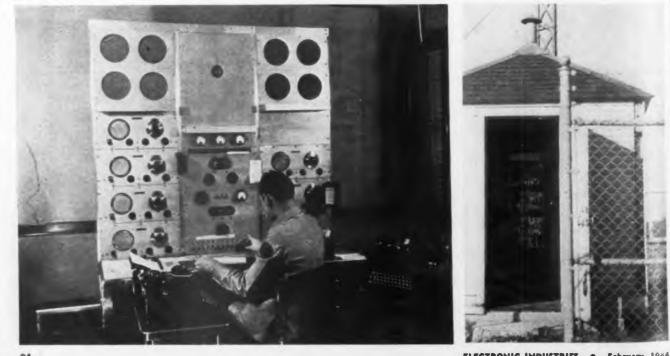
ELECTRONIC INDUSTRIES & February, 1944

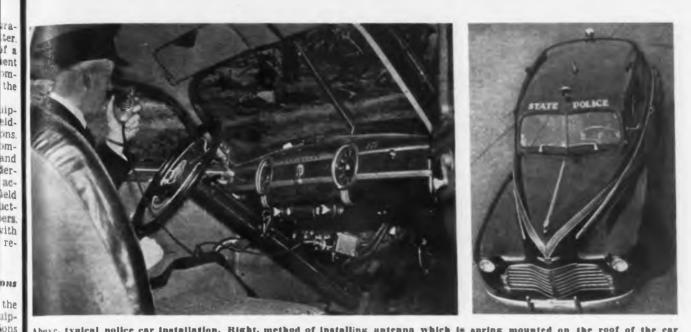
Typical district headquarters station. See accompanying map for station locations

not exist. It became apparent that equipment would have to be built and designed which would give substantial limiter saturation and subsequent noise reduction on signals as weak as one half of one (.5) microvolt.

Further tests and data were compiled at the East Lansing laboratory and the laboratories of the University of Michigan and Michigan State College. They all con-

clusively pointed to the need for extremely high overall gain in the receiver, and what was equally as important, a squelch action which would open upon a carrier input of one tenth of one (.1) microvolt, and which would give positive discrimination against noise, and open upon carrier only. The state police engineers felt that it was poor engineering practice to have squelch action operate at a higher signal input than the minimum saturation requirements of the limiter. This results in squelch cutoff of a carrier which still has sufficient amplitude to give intelligible communication at the fringe of the coverage area.


All makes and types of equipment were laboratory- and fieldtested under operating conditions. Engineers from the various companies were invited to check and tune their equipment while undergoing tests. However, to insure accuracy of results, the actual field test communications were conducted by non-technical state troopers. Women who were unfamiliar with technicalities of radio acted as receiving operators.


Receiver specifications

The director of research of the Galvin Mfg. Co. designed equipment which met the specifications set up by the state police engineers and which performed equally as well in the field. The receiver gave limiter saturation which produced a 20 db noise reduction upon an input signal of one fourth of one (.25) microvolt. The squelch action was positive on signals of one tenth of one (.1) microvolt.

The discriminator used in the receiver consists of a back to back type with two resonant circuits, each feeding an individual diode of a 6H6. The diode loads are so connected that the voltages developed in each are added to obtain the output. One leg of the discriminator is tuned approximately 25 kc

Below is a view of part of the radiophone control panel at State headquarters in Lansing. At right is shown one of four remote controlled unattended 250-watt transmitters used to cover the city of Detroit

Above, typical police car installation. Right, method of installing antenna which is spring mounted on the roof of the car

above 455 kc and the other an equal amount below. The resultant output is zero when an unmodulated signal is applied to center frequency. Audio voltage is recovered when the carrier is shifted negative or positive by modulation.

m-

lip-

mand leracleld

ers

re-

DHS

2194 as

ave

iced

an

one

tion

one

the

back

uits.

e of

un-

ped

the

mi-

5 kc

four

1

1944

As previously stated, the engineers reasoned that with all things equal, the squelch system in a receiver was comparable in importance to gain and limiter saturation. the subsequent unique Briefly squelch design operates as follows: the noise output of the FM receiver is passed through a filter to select the proper frequency band. The selected noise voltages are then amplified and rectified to provide a de control voltage which will vary in amplitude according to the noise output of the receiver.

Extreme sensitivity

This control voltage will decrease when a signal passes through the receiver because of the well-known characteristics of FM receivers to reduce noise output when a carrier is received. This controlling voltage is used in series with a voltage derived from the current rectified in the grid circuit of the first limiter. The noise-derived voltage tends to close the squelch. A noise increase at the receiver input will tend to increase both voltages, and the squelch remains closed.

A carrier at the input to the receiver will increase the squelch opening voltage and decrease the squelch closing voltage so that the total voltage tending to open the squelch is equal to the sum of the two changes in voltage. This accounts for the unusual sensitivity

ELECTRONIC INDUSTRIES . February, 1944

and discrimination against noise. By other methods, a squelch may be made to open on a weak signal, but the proper discrimination against noise will not be present.

In remote operated receiver installations, an ordinary squelch system may open when there is a general change in noise level and

the result is extremely annoying. Bursts of static, high noise levels in cities, and other disturbances which have no carrier component do not trip the squelch of either patrol car or fixed station receivers, no matter how fringy they may be set.

Q.

(Continued on page 148)

The 50-watt mobile FM transmitter, and the receiver, are mounted on wooden base boards which are floated on rubber on brackets welded to the car frame

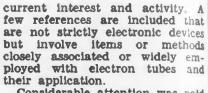
WHERE TO FIND SPECIAL INFORMATION ON

Electronic Uses in Industry

by W. C. WHITE

Electronic Laboratory General Electric Co., Schenectady, N. Y.

• The following list of references supplements those published in the June, 1943, issue of Electronic Industries. Only a few 1943 references were used in this first group. For completeness, some of these have been used again in the following list. Articles on industrial electronic applications during the year 1943 have indicated increased activity in the fields of high-frequency heating, measurements, medical devices, and motor control.


The list of references is by no means complete as many hundreds of articles on the subject were published during the year. The selection is based primarily upon electronic applications in industry and, therefore, particular attention is paid to articles in

96

trade journals where the application was treated from the viewpoint of the particular nature of a business.

Among the references included, some are of the sort describing commercially available units and equipment while others might be classed as of the "how to build" type of article. In both cases, articles have been favored for inclusion that give good basic theory plus actual circuits used.

No attempt was made to include articles in the field of radio, communication, and entertainment and most of the articles have appeared in American publications and all are in the English language. The number of articles selected for each classification is based upon

Considerable attention was paid in indexing to indicate applications and uses brought out in the articles that might not be apparent from the titles. An effort was made to include many specific uses of tubes. There have also been added certain trade names and coined words to enable the reader to gain further information on the device when only such names come to his attention.

Amplifiers

- 1. Behavior of a Balanced D-C Amplifier, Roy C. Spencer and LeRoy Schulz. Rev. of Sci. Instr.", January, 1943; v. 14. pp. 10-14.
- An Electrical Transducer Circuit for Use With Capacity Pick-Up Devices. E. V. Potter. "Rev. of Sci. Instr.", May, 1943; 2. p. 130.

Carrier Current Applications

- Carrier Current Can Provide More Kilo-watt Hours. G. S. Lunge. "Electrical West," May, 1943.
- Carrier-Current Differential Protection for
- Transformer Banks. T. A. Cramer. "AIEE Transac.", Aug., 1943; p. 545. Train Communication. L. O. Grondahl and P. N. Bossart. "AIEE Transac.", July, 1943; p. 493. 5.

Control Applications

General and Miscellaneous

- Electron Tubes Available for Industrial Functions. "Prod. Engng.", Sept., 1943;
- Electron Verod. Enging: , Functions. "Prod. Enging: , v. 14, pp. 554-557, Electron Tubes as Elements of Control. Electron Tubes as Elements of Control. Batcher, "Electronic Industries," Electron tubes & Electronic Industries," Aug., 1943; p. 65. Electronics Forges Ahead! Raymond F. Yates. "Mach. Design.", Apr., 1943;
- 9.
- Yates. "Mach. Design.", Apr., 1943; v. 15, pp. 141-144. Industrial Controls. S. J. Murcek. "Elec-tronic Industries," Dec., 1943; p. 100. Maintenance Tips Keep Electronic Con-trols on the Job. W. D. Cockrell. "Power," July, 1943; v. 87, pp. 446-448, 495c. 497a. 10.
- 496c, 497a. 11. Electronic Control Maintenance and Trouble-Shooting Tips. W. D. Cockrell. "General Electric Review," Sept., 1943; p. 489.

Furnaces, Heating

Thyratrons—For Heat Control. C. S. Stadum. "Radionics," Oct., 1943; v. I. pp. 19-21, 37-38.

ELECTRONIC INDUSTRIES . February, 1944

G-E side-register photoelectric control, focused on strip edge for accurate control of alignment of steel strip to insure uniformly wound coil

- Bectronic Circuits Actuate Automatic Combustion Control. K. D. Knoblock. Elec. Wild.", Oct. 2, 1943; v. 120, pp. 168-1170.
- Experimental Details for a Precision High 14. Experimental Details for a Precision High Temperature Control Utilizing the Hull Circuit. C. E. Waring and G. Robison. "Rev. of Sci. Instr.", May, 1943; p. 143. A Thyratton Thermal Relay. D. Ritten-erg and I. Sucher. "Rev. Sci. Instr.", Feb., 1943; p. 51. 15.

In Specific Manufacturing Operations

- lectronic Control for Steel Mill Auxi-laries. J. H. Hopper. "Iron & St. Ingr.", June, 1943; v. 20, pp. 62-72, 75. Phototube Control of Packaging Ma-chines. W. D. Cockrell. "Electronics," Oct., 1943; v. 16, pp. 94-99, 180, 182. Phototubes Control Perforating of U. S. Stamps. A. W. Hall. "Electronics," Dec., 1943; p. 124. Photoelectric Safety Control for Electric Sewing Machines. "Electronics," Aug., 1943; p. 130. lectronic Control for Steel Mill Auxi-aries. J. H. Hopper. "Iron & St. 16.
- 17
- 18
- 19. 1943; p. 130.
- 1943; p. 130. Electronics—What It Is and What It Means to the Printing Industry. W. D. Cockrell. "Printing Equipment En-gineer," July, 1943. 20.

Motors

V .

A that

vices

hods emand

paid

lons

icles

rom e to

ibes. cerined

gain vice

) his

difier.

14.

r Use

E V. 1943;

18

Kilo-

strical

n for 'AIEE

ndahi

sac.",

istrial 1943;

introl.

ries,'

1d F

1943;

'Fiec-

Con-

skiell.

1-448,

hne skrell

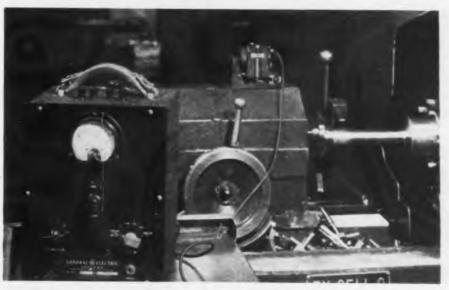
1043:

¥. 8.

1944

00.

- Amplidyne Control for Paper Making. "Electronic Industries," Feb., 1943; p. 21. (Uses tube amplifier.) (Uses tube amplifier.) W Electronic Variable-Speed Drive 69.
- 69. (Uses tube amplitter.) New Electronic Variable-Speed Drive. S. D. Fendley. "Paper Tr. Jour.", Feb. 11, 1943; v. 116, pp. 33-37. A New Electronic Variable Speed Drive. S. D. Fendley. "Power Plant Engng.", Feb., 1943; pp. 64-68. Electronic Control of D-C Motors. E. E. Moyer. "Electronics," 1943: Part 1-Outline of General Principles-May 22.
- 23
- 24
- May
- May Part 2—Reference Voltage and Speed Control Methods—June Part 3—Extending Speed Range by Elec-tronic Means of Field Weaken-ing—July Part 4—Starting, Stabilizing and Revers-ing—Sept.
- Part 5-Regeneration by Inverter Action and Stopping-Oct.
- and Stopping—Oct. 25 D-C Motor Control with A-C. B. Dalton. "Electronic Industries," O 1. Oct.
- Daron. Pleterronic Industries, Oct. 1943; v. 2, pp. 85-87, 174, 176, etc. Electronic Motor Control. S. D. Fendley. General Electric Review," Apr., 1943; pp. 225-230. 26
- pp. 225-230. Electronic Adjustable-Speed Drive Gives Wide Operating Range. S. D. Fendley. "Power," Mar., 1943; v. 87, pp. 178-2003 27 179, 210a.
- Electronic Adjustable Speed Drive. H. J. Hague, Jr. "Mill & Factory," Aug., 28
- 29
- Hague, Jr. "Mill & Fecture, 1943; p. 92. Wide Motor Speed Range With Alter-nating-Current Supply. T. R. Lawson. "Steel," June 21, 1943; v. 112, pp. 106, 108, 132. Hectifier Analysis—For Direct Current Motor Drive. E. H. Vedder and K. P. Puchlowski. "Radionics," Aug., 1943; v. Motor Drive. E. H. Ve 30.


Resistance Welding

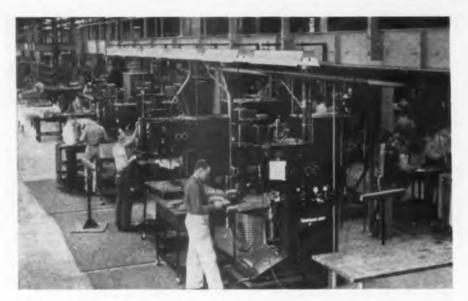
- Servicing Resistance Welding Controls. L. Webber. "Electronics," Jan., 1943; 31. B. L. V p. 78.
- Types of Electronic Controls. T. R. Jawson. "Weld. Engr.", Feb., 1943; v. 32 Lawson. "Weld. Engr.", Feb., 1 28, pp. 42-46. A-C Resistance Welding Control.
- 28, pp. 42-40.
 -C Resistance Welding Control. Glibert Sonbergh. "Electronic Industries," May, 1943; pp. 52-55, 152-153.
 esistance Welding Controls. H. L. Pal-ner. "General Electric Review," Sept., 1943. 33
- 34. 1943; p. 507.

Electron Tube Applications-Miscellaneous

- The New World of Electronics. "Electronics," Mar., 1943; p. 83.
 Electronics in Postwar Industry. A. C. Montieth. "Steel," Nov. 1, 1943; v. 113.
- Montieth. "Steel," 113; pp. 109, 118.

Here a photoelectric relay, widely used for control and limit operations in industry, counts aircraft engine valves leaving a heat-treating furnace

In the development of heavy industrial machinery G-E vibration velocity meters are used to determine the character and extent of harmful vibration


- 37. Electronics for Present and Postwar Products. "Prod. Engng.", Oct., 1943; v. 14, pp. 643-658. Some Useful Circuits Employing Thyra-
- trons and Ignitrons. A. J. Maddock. "Jour. Sci. Instr.", Mar., 1943; v. 20, pp. 37-46. Experience in the Use of Electrostatic
- 39. Fly-Ash Precipitators. Irving G. McChes-ney. "Asme Transac.", Apr., 1943; v. 65, ney. "Asme T pp. 143-148. 40.
- pp. 143-148. Dipping and Spraying Electrostatically. E. P. Miller. "Ind. Heat.", Oct., 1943; v. 10, pp. 1553-1554, etc. (serial). Electronic Elimination of Oil Mists.
- 41. Westinghouse Engr.", May, 1943; v. 3,
- pp. 42-45. Electrostatic Dip Coating Process. "Elec-tronic Industries," Feb., 1943; p. 63. Public Utility Uses of Electronic Devices.
- 43. "Electronic Industries," Dec., 1943;
- p. 68. 44.
- p. os. Electronic Megaphones. Staff of "Elec-tronics," Nov., 1943; p. 125. Two-Cycle Flasher. Samuel A. Talbot. "Rev. of Sci. Instr.", June, 1943; v. 14, p. 191 194 45.
- 181-184. pp. Analysis and Characteristics of Vacuum-46.
- Thyratron Phase-Control Circuit. Coroniti. "Proc. IRE," Dec., 1943; Tube Thyratron S. C. Coroniti, 653
- Electronic Tubes for Ultra-Violet Radia-tion. J. H. Laub. "Electronics," May, 1943; v. 16, pp. 80-85, 138, 140, 142. 47.

48. Electronic Machine Balances Rotating Parts. "Electronics," Jan., 1943; v. 16, p. 101.

High-Frequency Heating

General and Miscellaneous

- Electronic Heating Principles. J. P. Jor-dan. "Electronic Industries," Dec., 1943; 49. p. 81. What High-Frequency Heat Treating Can
- 50. Do. "Elec. Mfg.", July, 1943; p. 112. Radio-Frequency Electricity in Power Ap-plications. John P. Taylor. "Elec. 51.
- plications. John P. Taylor. "Elec. Weld", Oct. 2, 1943; v. 120, pp. 1164-
- 1167. The Theory & Practice of Industrial Elec-52.
- tronic Heating, J. P. Jordan, "General Electric Review," Dec., 1943; p. 675. Radiothermics Speeds Industry. I. R. Baker, "Radio Age," Jan., 1943; p. 6. 53. Dielectric
- High-Frequency Heating Is Many New Designs. 54. Electrostatic Makes Possible Many New Designs. "Prod. Engng.," Jan., 1943; v. 14, pp. 40-43.
- 40-43.
 55. Radio-Frequency Heating of Aircraft Parts. J. P. Taylor. "Electronic Indus-tries," Jan., 1943; p. 50.
 56. Dehydration of Food by Radio-Frequency Energy. V. W. Sherman. "Elec. Com-munication," v. 21, No. 2, 1943, p. 125.
 57. Heatronic Molding. V. E. Meharg. "Mod-

This view, made in a Western aircraft factory, shows a battery of spot welding machines, high voltage control panels being mounted on balcony

ern Plastics," Mar., 1943; v. 20, pp. 87-90.

- High-Frequency Electric-Field Heating for Non-Metallic Materials. Theodore R. Olive. "Chem. & Met. Engng.," Apr., 1943; v. 50, pp. 102-104.
 Horder M. Metallic Foreigner
- 1943; v. 50, pp. 102-104. Heating Wood With Radio-Frequency Power. J. P. Taylor. "ASME Transac," Apr., 1943; v. 65, pp. 201-212. High-Frequency Heating Speeds Plastic Maldino V. E. Meharg. "Mach. 59.
- 60. Molding, V. E. Meharg. "Mach. Design," July, 1943; v. 15, pp. 103, 200, Design," .
- 61.
- 202, 204. An Electronic "Sewing Machine." C. N. Hoyler. "Electronics," Aug., 1943; p. 91. Heatronic Molding. "Electronic Indus-62. tries," Aug., 1943; v. 2, pp. 92-93, 184, 186.
- High-Frequency Gluing of Resins. Walter Godfrey and Paul H. Bilhuber. "Modern Plastics," Sept., 1943; v. 21, pp. 89-93, 63. 154, 156.
- Radio-Frequency Heating Applied to Wood 64.
- Gluing, R. A. Bierwirth and C. N. Hoyler, "Proc. IRE," Oct., 1943; p. 529. A Radio-Frequency Gun for Spot Gluing Wood, J. P. Taylor, "Electronics," Nov., 1943; p. 106. Heat Conduction Problems in Presses 65.
- Heat Conduction Problems in Presses Used for Gluing of Wood, G. H. Brown. "Proc. IRE," Oct., 1943; p. 537. 66.

Induction (Electromagnetic)

- Induction (Electromagnetic) Electronic Generators Extend Inducting Heating Field, H. C. Humphrey, "Elec-tronics," Jan., 1943; v. 16, p. 56. Radio Tubes for Heat Treating by High-Frequency Induction, H. C. Humphrey, 67.
- 68. cy Induction. H. C. Humphrey. Feb. 1, 1943; v. 112, pp. 111-Frequency "Steel," F 112
- 69. Better Brazed and Soldered Joints Made Possible for Induction Heating. J. P. Jordan. "Prod. Engng.," Feb., 1943; v. 14, pp. 102-105. 70. Thin Case Hardening With Radio-Fre-
- quency Energy. V. W. Sherman. "Electrical Communication"; v. 21, no. 2, 1943, p. 127.
- Electric Fusion of Tinplate. G. E. Stoltz and others. "Iron G St. Engr.," Mar., 1943; v. 20, pp. 49-57.
- Casehardening Large Gears With High-Frequency Current. Glen C. Riegel. "Metal Prog.," July, 1943; v. 44, pp. 78-83.
- Magnetic Induction Field of Air Core Coils—Its Application to High-Frequency Heating in Valve Manufacture. C. B. Klrkpatrick. "Wireless Engineer," Aug., Kirkpatrick.
- Work Coils for High-Frequency Heating. "Electronics," Oct., 1943; p. 112. 74.

Indicators, Locators, Detecting **Objects**, **Prospecting**

- Clectronics vs. Sabotage. "Electronic In-dustries," Mar., 1943; p. 60.
 Locating Buried Cables Electrically. R. M. C. Greenidge. "Bell Labs. Record," Nov., 1943; p. 106.
 Metal Locators. W. H. Blankmeyer. "Elec-tronics," Dec., 1943; p. 112.
 Seismic Prospecting. Gilbert Sonbergh. "Electronic Industries," Oct., 1943; p. 62.

Measurements, Recorders, **Counters, Instruments, Testing**

General and Miscellaneous

- 79. Electron Tubes, Their Principles and Their Instrumentation Applications. Electron Luces, Their Finite Applications. Their Instrumentation Applications. A. W. Kramer. A serial starting in the May 1943 issue of "Instruments" and continuing thru the year.
 Electronic Measurements. Clark E. Jack-son. "Radio News," Aug., 1943; v. 30, pp. 28-29, 46, 48, 50.

- 81. Internal Combustion Engine "Electronic Industries," June, Engine Ar lysis June, 1943 p. 64.
- 64.
 82. Electronic Apparatus for Vibration Testing, R. O. Fehr and C. Shabtach, "Electronics," June, 1943; v. 16, pp. 54-96.
 83. Detecting Small Mechanical Movements, Joseph C. Frommer, "Electronics," July, 1943; v. 16, pp. 104-105.
- Calibrating Springs. "Electronic Indus-tries," Nov. 1943, p. 120; Dec. 1943, 84. 99
- p. 99.
 85. Strain Gages. D. M. Nielsen. 'Electronics," Dec., 1943; p. 106.
 86. Variable Waveform Unit for Testing Aluminum Welding. John W. Dawson and Hans Klemperer. "Electronics Feb. 1943; v. 16, pp. 62-66, 201.
 87. Smoke Density Measurement Using Photo Cells. R. J. Wey. "Electronic Engng.," May, 1943; vol. 16, p. 89.
 89. Industrial Applications of the Oscilloscoce. Guy Dexter, "Radio News."
- Guy Dexter. scope. Guy Dexte Nov., 1943; p. 41. "Radio News,"

Chemical Field Application

- 90. Electrolytic Conductance Measurements
- in Industry. Nathan Schnoll. "Instru-ments," Dec., 1943; p. 730. Titrometer, C. J. Penther and F. B. Rolfson, "Indus. & Eng. Chem.," May, 91. 1943
- Self-Recording, Semi-Automatic Mp. 92 chanized Electrometric Titrations. D. J. Pompeo, C. J. Penther, K. E. Halli-kainen. "Instruments," July, 1943; p. 402.
- 93. Electronic Aids in Chemistry. C. E. Jackson. "Radio News," Nov., 1943; p. 24.
- Electronics in the Chemical Industries 94. Gilbert Sonbergh. "Electronic Industria, tries," Apr., 1943; p. 52. Metallurgical Analysis. "Electronic In-dustries," Nov., 1943; p. 86. Cathode-Ray Oscillograph in Polar-ography. Tudor S. G. Jones. "Electronic Electronic
- 95. 96.
- ography. Tudor S. G. Jones. "Electronic Engng.," Feb., 1943; v. 15, pp. 367-371.

Counting

- 97. Counting Bees. A. C. Faberge. "Jour. Sci. Instr.," Feb., 1943.
 98. Electrical Counting (a book). W B. Lewis. Cambridge University Press, 60 Fifth Ave., New York City.

(Continued on page 176)

In the delicate spot welding operations involved in vacuum tube production a G-E thyratron half cycle welding control panel is used with bench welder

ELECTRONIC INDUSTRIES . February, 1944

92

Small Power Transformer Design Factors

by J. M. THOMSON,

Chief Engineer, Ferranti Electric, Ltd., Toronto

Formulas that are usable in computing load and efficiency in small power line units-Leakage reactance

(9)

ĺρ

lex-

Ic

1

Core Loss

• The following series of formulas comprise a short system usable in are chosen to meet the temperature the load and efficiency computations for small power line transformers. A few simple relations indicate the extent to which design improvements can be made and the effectivenss of each factor in the overall design.

alysia 3, p.

Test. 1.96

July

1943 Eler.

Feb. Using

Elec-

lews."

nstru-

F. B.

May,

Me-

Halli-13; p.

1943;

istries.

Indus-

c In-

Polar-

tronic

367-

"Jour.

N. 8

14, 60

etion

elder

1944

D. 1.

> Using the well known relations between the voltage, turns flux, frequency etc. and the relations between current density etc., the output that can be handled by a given core is obtained in the form of the following equation:

> $va = 2.22 f_1 A_1 f_c A_c f B D,$ (1)the 10-8 factor, sometimes noted in such relations, disappearing because of the choice of the units for B and D. Usually, however, va is known and the more convenient form is

 $A_1 A_2 = 0.45 va$, in (ins)⁴

f₁ f. f B D For the scrapless lamination illustrated in Fig. 1 (which can be punched from stock without waste), $a_e = \frac{1}{2} a_i$; $b_e = 1.5 a_i$; and $t_i = 2 (b_e + a_e) + 2a_i = 6a_i = 12a_e$.

(2)

-

Then the only other variable is bı

the ratio -.. When the transformer a

is analyzed for the minimum cost proportions, this ratio is approximately 2. However, difficulties in winding usually limit this ratio to a value less than 2. For a given design and type of winding, however, it will be a constant. Therefore: b.

c, where c has a value between

1 and 2 in the usual range. $L = 2 (a_1 + b_1) + \pi a_c$

$$= 2 (1 + c) a_1 + \frac{\pi}{2} a_1$$
 (3)

 $= 4 (1 + c) a_e + \pi a_e$ (4) For a given va and frequency the factors f, and f. are essentially

ELECTRONIC INDUSTRIES . February, 1944

are chosen to meet the temperature limitations, the product A.A. is a constant, K, or a₁ b₁ a_e b_e = K

$$a_{1} = \left(\frac{R}{0.75c}\right)^{4}$$
$$= \left(\frac{.45 \text{ va}}{f_{1} \text{ f}_{c} \text{ f} \text{ B} \text{ D}} \text{ x} \frac{1}{0.75c}\right)^{4} (5)$$

1 12 3 14

Therefore, once the flux and current densities are selected, the size of the core is fixed.

The watts loss per lb. of copper: = $(1.603 \times D)^2$ at 75°C (6) Core loss in watts: =w₁ x weight of the core in lbs. $= 0.272 w_1 t_1 f_1 a_1 b_1$ (7)

Copper loss in watts:

= w. x total weight of the copper in sq. in. (8)

= w. x t. f. A. x .321 The core loss in watts

 $= 1.63 \text{ c } a_1^3 \text{ f}_1 \text{ w}_1$

IpRp

0.24
$$\binom{2(1+c)+-}{2}$$

a,3 f. W. (10)Both of these factors are also fixed, It follows from this that the copper loss

only way the ratio core loss

can be changed when using a

scrapless punching is by changing the values of B and D. **Copper Loss**

$$\frac{0.147 \left(2(1+c) + \frac{\pi}{2}\right) f_* w_*}{c f_1 w_1}$$

ontinuea on page 228)

SYMBOLS

 $A_{z} = gross$ area of the window (in.²) $= a_{1} b_{1}$ $= a_{1} b_{1}$ $= a_{1} b_{1}$ B = may. flux density in core in 108 lines per sq. in. D = current density in 10³ amperes per sq. in. (use mean of all the windings)
i = frequency, cycles per sec.
f = copper factor
fe A = sum of all conductor cross-sections in window
i = core stacking factor
f | A | = net area of the core in sq. ins.
Ip = primary load current in amperes
l = secondary load current in amperes
N = perionary turns
N = secondary turns ings) $N_0 =$ secondary turns te = mean turn length of all the windings in ins. 11 = mean length of the core (in.) $\mathbf{v}\mathbf{p} = \mathbf{primary volts}$ $V_{a} \equiv aecondary volta$

When there are a number of secondary when there are a number of secondary windings:
 N: Is = ∑ N I of all the secondary windings
 wits loss per lb. of iron, obtained from test data

IsZs IsR.

99

IsXL

Fig. 2-In this diagram, voltage drops, core loss and magnetizing currents have been exaggerated to make the diagram easier to follow

Im

Is

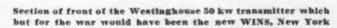
IsR

One end of Nissen hut installation showing dual-diversity receivers used for relaying programs originating in New York

A corner of the master control room in the North African station. Engineers had to rely mostly on plywood for construction

UNITED NATIONS NORTH

Morris Pierce at the antenna tuning equipment for the 50 kw transmitter


• World War II has been called the radio war. In addition to the basic, essential part played by twoway communications services, the potentialities of bombarding the enemy with a blanket of BC and SW propaganda were early recognized. Today, from "somewhere in North Africa," one short wave and four broadcast band transmitters beam 350 kilowatts of constant United Nations programs to parts of Italy, Germany, and to other European enemy and occupied nations.

It is a fine tribute to the skill and perseverance of American radio engineers that, without tools, without adequate personnel and in the midst of constant air-raids, began work on the first of the installations less than one year ago.

The work was accomplished under the command of Colonel C. B. Hazeltine, U.S.A., by the Army Psychological Warfare Branch,

which was organized in London just before the invasion of North Africa. Technical head of PWB's Radio Division is Robert M. (Morrie) Pierce, formerly chief engineer of WGAR, Cleveland. He is assisted by Charles Topmiller, former chief engineer of WCKY, Cincinnati, and W. E. C. Varley, formerly of the British Broadcasting Corporation, now chief englneer of North African installations. Lieutenant Victor Tervola, formerly with the National Broadcasting Co., was in charge of design, construction, and operation of studio facilities. Paul Von Kunits, formerly chief engineer of WINS, went to North Africa with his own crew and is still there.

The combined military and civilian forces of the PWB collaborated with the French in operating existing North African broadcast and short wave facilities, and in this way gained valuable expe-

Another view of the same transmitter, a model 50HG, which is now broadcasting the Voice of the United Nations

Morris Pierce, who was responsible for construction, at controls of WE 50 kw transmitter, formerly WABC at Wayne, N.J. Another view of the master control room radio operating now from somewhere in North Africa

AFRICA INSTALLATION

by GILBERT SONBERGH

Plywood control rooms and feeder 6000 feet long small part of problems solved in erection of outpost station

rience while setting up the present broadcasting equipment. This avoided the necessity of waiting many months before they could provide adequate coverage for the Italian and Tunisian people. While none of the existing French facilities are as high-powered as those built by the PWB, some are still in operation.

50 kw WABC transmitter

The PWB originally intended to use Signal Corps technical personnel and equipment in North Africa, but was unable to secure sufficient men and apparatus without the help of the Office of War Information, which office has been responsible for purchasing the major portion of equipment so far used.

The first transmitter to arrive in North Africa was the old 50-kilowatt WABC unit from Wayne, N. J. The site selected for the transmitter was a small French farmhouse with first floor and walls of concrete. Transformer vaults, generator rooms, and an audio room were started just prior to February 1, 1943. A small brick fan-house for water cooling equipment was put up near the building. The transmitter was installed under the direction of Robert M. Pierce in circumstances which would be considered primitive by American

ELECTRONIC INDUSTRIES . February, 1944

radio engineers, accustomed to reaching for the telephone when they need a replacement part.

No problem shortage

The installation problems which confronted the engineers in setting up this and the other transmitters were enormous. Possibly the two major problems were lack of trained personnel, and insuffi-ciency of supplies. A good deal of the equipment was found damaged on arrival. Broken insulators and other parts had to be replaced or repaired in make-shift fashion with what materials were on hand. The main oil-cooled power transformer had a cracked case. Tools and test equipment were scarce. One of the most amusing and vexatious bugaboos that faced the engineers was the constant deviation of their oil supplies to the Air Forces. On arrival at the docks, the oil barrels, almost without regard to markings, would be shipped off immediately to the airmen, with the result that the radio engineers rarely had enough oil on hand to cool the transformers. This problem was finally solved when the PWB resorted to crating their oil barrels to disguise their shape.

The 50-cycle power presented several problems, in low filament voltage and overheating of power transformers. The 50 kilowatt Westinghouse transmitter, originally intended for use by WINS in New York, was an air-cooled 60cycle unit on arrival in North Africa. In converting it to 50 cycles, it was necessary to change the pitch on the fan blades and to change the air distribution so as to

> Front view of high frequency channel of Westinghouse 50GH

ties are as high built by the PW operation. 50 km W The PWB or

OHG, tione

sta-

tion

orth NB's Morngi-

le is

'KY, rley, astngiions.

for-

oad-

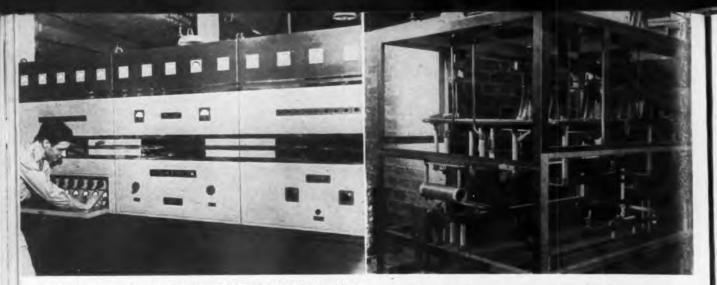
de-

n of

nits.

INS

own


ci-

abo-

ting

cast i in

xpe-

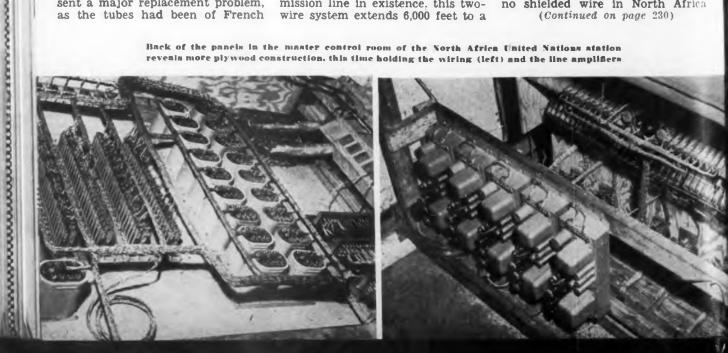
This is one of the smaller transmitters in the North Africa installation, a Westinghouse job rated at 5 kilowatts

Rear view of the rf portion of the Westinghouse 50 km transmitter, engineered for 40 cycles, now operating on 50

reach many of the component But because of the extra parts. precautions taken by the engineers in making these changes, the transmitter now runs cooler, even in the intense heat of North Africa, than it would if operating on 60 cycles in this country. This transmitter, while capable of conversion to long wave use, is used almost exclusively for short wave broadcasts into Italy.

100 kw French unit rebuilt

One of the most powerful voices emanating from North Africa is that of the old 100 kilowatt French transmitter which the Nazis failed to destroy properly. In fact, when the Americans arrived on the scene, they found that the only damage to the transmitter was from a couple of hand grenades which had broken most of the tubes and The antenna tower had sockets. been neatly dismantled by the Germans and left on the ground undamaged! But the destruction of the tubes and sockets did not present a major replacement problem, as the tubes had been of French manufacture and were now irreplaceable. However, American tubes and sockets were shipped immediately and the transmitter now has four Western Electric 298A's in the final stage and two RCA 207's in the driver stage. The transmitter was in operation within two months after the PWB took over.


Antenna construction also presented a headache to Pierce and his men. Because of the difficulty of rounding up crews to work on the antennas, barrage balloons were used to support cables which served as antennas. There were both advantages and disadvantages to this system. One advantage was that the antenna could be tuned by raising or lowering the balloon, but this was offset by the difficulty of keeping the antenna vertical in a high wind. Another serious drawback was that occasionally a balloon "took off" with the cable.

A feature of the complete installation of the 50 kilowatt WABC unit is the fact that the antenna is located over a mile from the transmitter. Perhaps the longest transmission line in existence, this twowire system extends 6,000 feet to a phasing house and four towers put up by the French.

While Pierce and his capable assistants struggled with the farmhouse transmitter, Lt. Tervola selected what had been a combination apartment and office building 15 miles away, and began to build five studios, control rooms and a recording room. There was no acoustic insulating material to be had, and the local cork industry was drafted to supply blocks or slabs some four inches thick with which to line the studio walls. floors and ceilings. Window frames were removed and the space boarded up; whereupon the windows became the double glass observation ports between each studio and its control room.

Each control room was equipped with a Western Electric 23C console. The control panel in the master control room was built out of plywood and whatever materials were at hand, by Lt. Tervola and one assistant, in the space of eight weeks. Here again, supply problems were keenly felt. There was no shielded wire in North Africa (Continued on page 230)

Back of the panels in the master control room of the North Africa United Nations station reveals more plywood construction, this time holding the wiring (left) and the line amplifiers

C. F. Kettering. General Motors Re-Engineer. search plots the time he expects it may re-

autre him to make

an original invention

54

it

le

3...

£ --

12

ld

a

3e

-y

br

h

S.

38

1-

n

ts

d

i -

ι.

of

d

ıt

)-

1.8

• There is quite a distinction on the question of training inventors. There is no sharp line of demarcation between research and invention, with this exception: An invention deals with a specific result, while research deals with the determination of factors which may be necessary to the development of that result.

Times"

20 Behind

30

40

50

60

Years

I think it was the Brookings Institute that made a survey some years ago and pointed out that if you had an education in engineering or science, your chances for making an invention would be only half as great as if you did not have

Well, that worried me a little bit and I tried to find out why it was. Out of this I got a definition of what an inventor is. An inventor is a guy who doesn't take his education too seriously.

It is no fault of the educational institutions, because as we are set up, this kid, from the time he is six years old until he graduates from school, has to take three or four examinations a year and if he flunks once, he is out; whereas an inventor can fail a thousand times and if he succeeds once, he is in. The two methods of approach are entirely different. So we say the only thing we have to do is to teach this educated boy how to fail intelligently.

ELECTRONIC INDUSTRIES . February, 1944

Charles Franklin Kettering, vicepresident and Director of Research, General Motors Corp., is one of the most widely known engineers and inventors in the world, and although his fame is founded chiefly on his accomplishments in the automotive field, it is not so well known that he got his real start as a telephone engineer and that his contributions to the science and application of electronics have been substantial.

Age - years

105 115

He is generally credited with being the father of the lighting, starting and ignition system used on all modern automobiles and since 1922 has headed up the great General Motors **Research Laboratories. Today he di**rects a large group of engineers and scientists who have made a wealth of immensely valuable contributions to the electrical, mechanical and aeronautical science. He is himself the patentee or co-patentee of approximately 140 inventions.

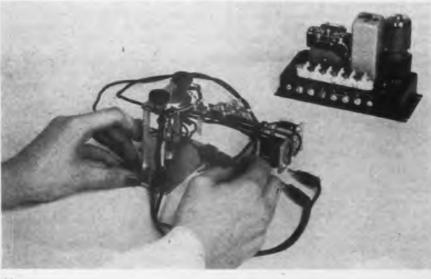
Mr. Kettering is a Fellow of the National Academy of Sciences and the holder of honorary degrees in engineering and science from seven universities. The address briefed here is from a talk delivered before the annual meeting of the American Society of Mechanical Engineers, and is characteristic of his logical, common sense view of complex problems, and of his ebullient humor.

Now, here is what I mean by that: anytime you try a new thing and set up any new experiment you are a very rank amateur, because the chances of its being a good experiment are not very great. Therefore, you have to set this thing up and try it. If it doesn't work, you have got to find out whether it doesn't work because the experiment was wrong or because it was not done well. So you have got to try it over and countercheck and check again.

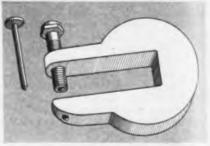
And a lot of people do not want to do that. It is pretty tedious work. I have said that the only reason that I thought our laboratory had ever accomplished anything was because none of us knew enough to get irked by the tediousness of experimentation.

Tediousness brings results

I do not know how to do any new thing without its being tedious. Therefore, the next thing that we teach these young fellows is that tediousness is a thing that you must learn to endure and like, and not resent because you have an education.


We explain to these young men that it is no disgrace to fail and that the only time that you don't want to fail on any experiment is the last time you try it. It doesn't make any difference how many times you try it, but you want to be sure that this thing is worth doing before you start it. Then keep right at it.

Now, you don't solve these problems and you don't make these inventions in a laboratory. You make them in your head. That is where every bit of this work is done. How thick and how dense the skulls of human beings are is best represented by the amount of technological apparatus we have to have in a place like ours for just getting an idea through a quarter inch of skull bone. That is all that appa-(Continued on page 224)



FIXTURES or templates used with band saw at Yellow Truck and Coach 1. 4 Co., Pontiac, Mich., speeded up production by eliminating time-consuming marking-out operations formerly required

2. V ASSEMBLY TIME of electronic pyrometer controller cut down by employ-ing Bristo multiple spline socket screws instead of tiny hard-to-hold slotted-head screws

is short cut to straight, accurate holes at Republic Aviation Corp., Farmingdale, N. Y. Pointed pin locates center. Hollow bolt is tightened to

4.* SPECIAL tool makes quick work of securing cotter pins. Round leg is inserted in cotter pin's hend and blade-end does the spreading

ELECTRONIC INDUSTRIES . February, 1944

CUTS in PRODUCTION

SOUNDPROOF ROOM at Westinghouse Sharon works for testing and research on transformer point levels. Big transformers are wheeled into room on trucks, connected to dexible leads and energized. A mike picks up acoustic output, which is amplified and metered on test panel at left

r

100

-11-

ten to

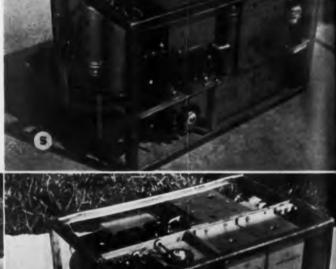
ek ns. n's

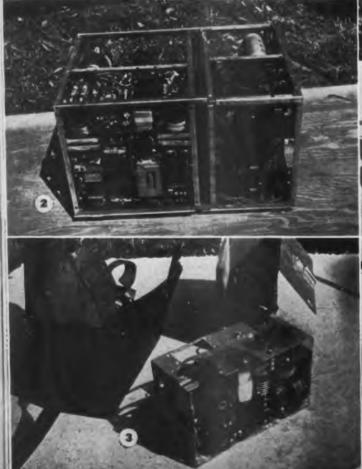
44

6. V FULLY AUTOMATIC exhaust and seal of eathode ray tubes on new high-speed machine at Ken-Rad plant, Owensboro, Ky. Type 5PB4's shown in process. Greater speed and uniformity of production results than with individual trolley exhaust. Each exhaust port has permanently in series with it a mercury diffusion pump which indexes with the tube under exhaust. There are no sweep valves between the tube and the diffusion pump to offer mechanical trouble or interfere with the high vacuum needed in C-R tubes. Automatic controls and solenoid-operated valves or switches isolate any given exhaust position from the main vacuum system if a tube failure should occur on that position. Neon lamps on top of center pedestal indicate any possible tube failure to enable operator to avoid sending such tubes on for further processing

7. A IT PAYS TO ADVERTISE safety. Messages, frequently changed, carried about Westinghouse, Louisville, Ky., plant, attract more attention than on bulletin boards

8. WAR MOTHERS holding part-time jobs at Hallicrafters Company at Clearing, Ill., are shown inspecting final amplifier tank coils for the SCR-299





CAPTURED ENEMY RADIO EQUIPMENT Jap and Italian

These Signal Corps photos, together with those on pages 78 and 79, show some of the units included in the display arranged by Major General R. B. Colton at the AIEE-IRE Winter Meeting

Photos and descriptions of enemy radio previously captured can be found in "Electronic Industries" for November, 1942; July, 1943, and September, 1943

Announced a subsection of the subsection of the

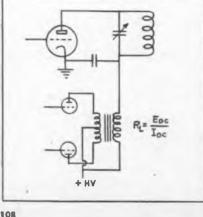
- 2. Rear view of model 13 Japanese receiver.
- 3. Baby Jap "Walkie-talkie" transceiver (model 94).
- 4. Monitoring receiver covering 140 kc to 6 mc with plugin colla.
- 5. Rear view of monitoring receiver.
- . View showing underside of monitoring receiver.
- 7. Italian pedal generator model GR-60. Operator in integral canvas chair.
- 8. Japanese direction Ander equipment set up for operation.
- 9. Close up of Japanese direction finder receiver.
- 10. Rear view of Japanese direction finder.
- 11. Italian pack-transceiver model RF-1.
- 12. Rear view of RF-1 pack transceiver.
- 13. Model RF-2 Italian pack transceiver. Note unusual directional loop.

13

C

MODULATOR LOAD REACTANCE CORRECTION

by ROBERT M. HANSON


Thordarson Electric Mfg. Co., Chicago

Design and application of choke which permits constant level grid excitation without excessive plate dissipation

• The upper frequency operating limit of a class B audio modulator can be limited by tube plate dissipation when the class C modulated rf amplifier has a relatively high capacity plate supply by-pass condenser. The addition of a small choke in the modulator circuit can permit constant level grid excitation over the audio range without danger of excessive modulator tube plate dissipation. The load circuit will act as a low-pass filter for the modulating frequencies which may be desirable. It may be of interest to analyze the conditions that affect the design of a choke for this service.

It is not the intention to recommend that these chokes be installed in all transmitters. However, this system does provide a solution for the problem of excessive high frequency modulator tube plate dissipation where large values of rf stage by-pass condensers must be used. It also provides a convenient means of adding a low-pass filter

Fig. 1—Conventional circuit for high level amplitude modulation

to the audio channel where it is desired to limit the carrier sidebands.

Fig. 1 gives the conventional circuit for the modulator of a highlevel modulation AM transmitter. The vacuum tube V1 operates as a class C rf amplifier and delivers carrier and sideband power to the antenna through a suitable coupling circuit. The grid of this tube is excited with a voltage of carrier frequency only. The carrier is modulated with audio frequency intelligence by causing the plate voltage supply of this class C amplifier to vary as a function of the audio frequency voltage.

This audio frequency power is conveniently applied by connecting the secondary winding of a suitable transformer in series with the class C rf amplifier dc voltage supply, and coupling the transformer to a push-pull class B audio amplifier. This transformer secondary winding will be required to supply an audio frequency power equal to one-half of the unmodulated class C stage power input when a condition of 100 per cent modulation The power for lower deexists. grees of modulation will be a function of the percentage modulation.

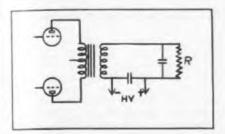
Load values

It is evident that there will be no load connected to the secondary of the modulation transformer when the class C rf amplifier is not operating. The load to the transformer under proper operating conditions will be equal to the dc supply voltage divided by the direct current for the class C amplifier. For example a transmitter operating with a class C amplifier supply of 2400 volts dc and loaded to a total in-

put current of 0.4 ampere would present a load of 6000 ohms to the modulator. The modulation transformer would be of proper turns ratio to couple this load to the class B audio amplifier tubes. The peak value of the secondary voltage of the modulation transformer for 100 per cent modulation would be 2400 volts, and the rms value for sine wave operation will be 2400/1.4, or 1700 volts.

As this ac voltage is in series with the rf amplifier dc supply, the instantaneous voltage of the supply will vary from 4800 to zero. The current to this amplifier will therefore vary from zero to twice its static value. This means that the secondary of the modulation transformer must cause an additional peak current of 0.4 ampere to flow and the rms value for sine waves will be 0.4/1.41 or 283 ampere. The audio frequency power supplied by the modulator amplifier will be the product of the rms voltage and current flowing in the load or 1700 x 0.283 = 480 watts. This power is equal to one-half of the static input power of the rf amplifier or $2400 \times 0.4/2 = 480.$

The modulator tubes will be required to deliver 500 watts of power to the primary of a transformer of 96 per cent efficiency. If the operating conditions are such that a reasonable operating efficiency of 55 per cent exists for the class B audio amplifier, the input to this amplifier will be 910 watts and the total tube plate dissipation will be 910 minus 500 or 410 watts. Any substantial decrease in the plate-toplate load for the class B amplifier tubes will result in increased plate current and increased plate dissipation. This dissipation must not exceed the permissible rating of tube. However, operating the


ELECTRONIC INDUSTRIES . February, 1944

10

economy for the transmitter would indicate that the tube rating does not exceed the normal plate dissipation any more than necessary.

Amplitude distortion

Amplitude distortion also can occur when a class B amplifier is terminated in a reactive load. This dictates that the transmitter design should be such that the modulator load is as nearly resistive as possible.

int

on

uld

the

ns-

rns

the

The

olt-

ner

uld

for

1.4,

ries

the

ply

The

its

the

ns-

nal

Wol

ves

The

bv

the

and

700

r is

in-

OF

re-

wer

r of

er-

t a

S B

this

the

be l

Any

-to-

late

ssl-

not

10

ting

1944

y

of

Fig. 2-Equivalent electrical circuit for modulator load

Fig. 2 gives the equivalent electrical circuit for the modulator load. The resistance R absorbs the audio frequency power delivered to the plate circuit of the rf amplifier. The condenser C is the rf by-pass condenser for the class C amplifier. Proper operation of the rf stage requires that the reactance of this condenser be low compared to the impedance of the plate tank circuit at the carrier frequency.

The order of magnitude of the condenser usually installed in broadcast transmitters is .005 mfd, and transmitters for higher frequencies usually operate with condensers smaller than this. Some transmitters originally designed for telegraph operation only may have condensers as large as .02 mfd.

It is apparent from the equivalent load circuit that this by-pass condenser effectively shunts the secondary of the modulation transformer. The condenser is in parallel with the load resistance which means that the load impedance will decrease as the audio frequency increases and it will also become capacitively reactive.

Decreasing load

If a grid excitation voltage of magnitude required to produce 100 per cent modulation at midband frequency be applied to the class B amplifier, and the frequency inreased, it will be found that the modulator plate current increases, the plate dissipation increases, and the power delivered to the load decreases. The actual change for a given set of conditions will depend somewhat upon the design of the modulation transformer as it will be affected by the leakage in-

ELECTRONIC INDUSTRIES . February, 1944

ductance and the coil capacities of the transformer.

This decreasing modulator load at higher frequencies has many disadvantages. It is frequent practice to measure the frequency response characteristic of the transmitter by supplying a variable frequency voltage of constant amplitude to the audio input terminals. It is possible that this frequency may be raised to the point where the modulator plate dissipation becomes excessive and the tubes are damaged. The reactive load may create annoying distortion at higher frequencies.

The fundamental way to correct this difficulty is to decrease the capacity of the by-pass condenser, but effective by-passing of the rf stage sets a minimum value. This minimum capacity will be chosen as the best compromise after considering the load impedance, the carrier frequency involved, and the minimum shunting of the audio modulator. There may be installations of telegraph transmitters having a high capacity by-pass condenser where it is desired to add a separate modulator stage without tampering with the existing equipment.

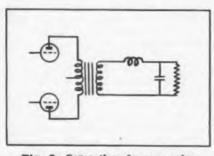
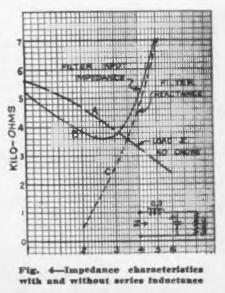


Fig. 3-Correction for excessive modulator tube plate dissipation

A method of correction for modulator load circuits where the high frequency modulator tube plate dissipation becomes excessive, involves the addition of the series inductance L shown in Fig. 3. This reactor and the condenser may be considered as a half-section lowpass filter terminated with the load resistance. Circuit values usually will be such that this system is suitable only for speech frequency equipment, and the cut-off frequency of the modulator stage probably will fall in the range of 2500 to 5000 cycles per second. However, this frequency range is adequate for such service and the attenuation of higher frequency components may be considered desirable.

It is necessary to choose a proper value for the inductance so that the choke and the condenser will form the elements of a half-section low-pass filter when terminated in the class C load impedance. The

formulas for calculating these values are quite simple.


$$L = \frac{R}{2\pi f_*} (1)$$
$$C = \frac{10^8}{2\pi f_* R} (2)$$

L-Inductance in henrys C-Capacity in microfarads R-Load impedance in ohms f.-Cut-off frequency in cycles per second

The modulator given in the previous example had a load impedance of 6000 ohms and a bypass condenser of 0.01 mfd. By substituting these known values in equation (2) we find that a suitable filter would have a cut-off frequency of 2700 cycles per second. Further substitution in equation (1) gives the proper inductance value to be 0.35 henry. The actual value used is not overly critical and actual tests were made using an available choke of 0.3 henry.

The impedance characteristic of this modulator load with and without the series inductance is shown in Fig. 4. Curve A is the impedance without the choke and shows the undesirable decrease of impedance as the frequency increases. At 5000 cycles the impedance is reduced by one-half. Curve B shows the impedance characteristic with the added choke. The impedance is somewhat lower than the condition with no choke up to about 3 kc but above this frequency the impedance will increase. Curve C shows the amount of reactance in the input of the load with the series choke. The load is seen to be substantially resistive up to 2 kc and the reactance is only 50 per cent of the nominal load impedance at 3 kc. At frequencies above

(Continued on page 218)

Process CONTROL Methods

by RALPH R. BATCHER

Consulting Editor

Part 1 of a survey of electronic circuits and their associated appliances useful in industrial measurements

• For almost thirty years, electron tubes have been definitely associated with radio receivers. Starting in the now-minor role of a detector (or a rectifier) the use of electron tubes progressed into service as amplifiers and oscillators, then, naturally, into the many-sided field of control and supervision in radio equipment. At that time so many tubes were in use in radio equipment that the extension of their use into the purely supervisory field came without comment. In fact tubes became so commonplace, that any use, no matter how important or how trivial, was accepted as matter-of-course.

In view of this, it is strange that industry as a whole has been so slow to consider that many of their problems could so easily be solved by the same tubes and with similar circuits,—circuits that already have been perfected.

In a home-radio receiver, a tube is used to keep the volume at a prescribed level, another tube or so to give a visual indication of the position of correct tuning, another may permit the operation of the controls from a remotely located easy chair. The vast majority of industrial control problems are no more complicated than these in a simple radio receiver.

Utility factors

The greatest difficulties have been in getting the plant process engineer and the radio engineer to talk the same language, since each uses what the other thinks are unusual terms to express what is in general the same effect.

This article attempts to cover the fundamentals of industrial control; to point out the lines of utility where control is easily established in non-radio fields. In the first place, tube applications fall into two main functional classes, which will be designated by the descriptive terms:—those having "survey" duties and those that are "administrative."

In the first of these classes, the electron tube is fast becoming of

primary importance as it can be arranged to watch out for and call attention to extremely small changes in many effects. In the latter class, it can also do something to correct the condition that brought about the change. In this latter work, however, the tube has to compete with many other devices that also can effect controlling action, operated by fluids, air, vacuum, electric motors, solenoid magnets and other control agents. usually called servo-mechanisms. In all these fields, the matter of automatic control is tied up closely with that of measurement. In any production process, if it is possible to make a measurement of a variation, it is generally possible to introduce corrective changes that will minimize those variations.

When a tube is used to measure and call attention to such variations, it will be found that (contrary to the usual belief) there are not many basic effects that come into the problem. The list would include the detection of changes in:

1—Electrical properties such as voltage, current or conductivity.

- 2—The position of an object due to linear or rotary movement.
- 3-Temperature.
- 4-Sound effects.
- 5-Light effects or color.
- 6—Weight or volume.
- 7—Balance, symmetry.
- 8-Magnetic properties.
- 9-Composition.
- Many of these effects are interre-

lated, as a change in temperature may cause a change in position or a dimension, etc.

Since an electron tube operates in accordance with electrical variations, they can be applied to tube circuits directly. In the case of other items in the above list, it is necessary to convert other conditions of control into their electrical equivalents. This is not an unmixed disadvantage since it per-

ELECTRONIC INDUSTRIES . February, 1944

PRINCIPLE:	OUTPUT COMPRISES A CHANGE OF:	OPTIMUM DISPLACEMENT RANGE:			
Radio frequency	Frequency of oscillator	1 x 10 ⁻⁵ to 10 in.			
Piezo-electric	Displacement	1 x 10 ⁻⁶ to 0.01 in.			
Sonic methods	Travel-time, or echo return time	Few feet to few miles			
Sonic methods	Amplitude or frequency of a tone	Adaptable to wide range			
Resistance shift	Resistance	1 x 10 ⁻⁶ in. to a few feet			
Reluctance shift	Magnetic intensity, impedance or ac voltage	1 x 10 ⁻⁶ to 1 in.			
Electronic gage	Change in voltage	10-6 to 10-3 in.			
Optical methods	Intensity, direction or color of light	10 ⁻⁶ in. to several in.			
Radio wave	Travel time of signal	1-100 miles or more			

Fig. 1-Basic methods of converting dimensional change into an electronic effect

110

FOR INDUSTRIAL USES

mits the use of a wide range of electrical expedients to modify the original function, so as to bring about a control in accordance with some revised plan-to bring linearity out of an irregular or stepped function, or to convert a linear effect to a quantity that represents a squared relation, or one that follows some other law. It also happens that electrical effects are closely associated with many industrial processes and the necessary electrical variation that can be converted and amplified to serve as a control factor is naturally present.

2

ir

ts

be

all

all

he

e-

at

uis

as

e-

1-

ir.

id

LS,

IS.

of

lv

۱V

le

1-

at

re

3-

1 -

re

10

1:

1.5

10

re

)ľ

25

j-

æ

is

al

1-

-

44

In any case, before deciding whether electronic devices will assist in some industrial production, it will be necessary to investigate the problems of converting to the electrical system.

Positional studies

It will be found that a great many characteristics of a process can be studied from their effect on the position of some item of its construction, or some part pur-posely added. For example, temperature influences the expansion of all material, and the expansion can alter the capacitance of a specially designed capacitor. The thickness of enamel, paint, paper, cloth, sheet plastics, and other dielectric materials can be measured by their effect when separating the two plates of a capacitor. If the sheet material to be tested is on a metallic base (as for instance, the thickness of paint sprayed on sheet metal), a single electrode only is needed, since the base metal forms the alternate plate of the capacitor, or it may be found desirable to apply both electrodes to the top surface of the insulator, forming two capacitors in series.

Other insulating materials can be directly placed within clamping forming a capacitor. electrodes. Continuously moving sheets are measured between roller electrodes. Torque can be measured, along with certain other types of force by its effect on a capacitance when It presses on a top electrode resting on a resilient dielectric, such as a block of sheet rubber. Pressure also can be converted to a linear movement by any of several methods; mechanical pressure by direct action against a fixed force, pressure head of a fluid or gas by its effect on a sylphon bellows or (Continued on page 172)

ELECTRONIC INDUSTRIES . February, 1944

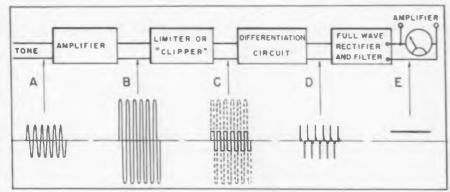
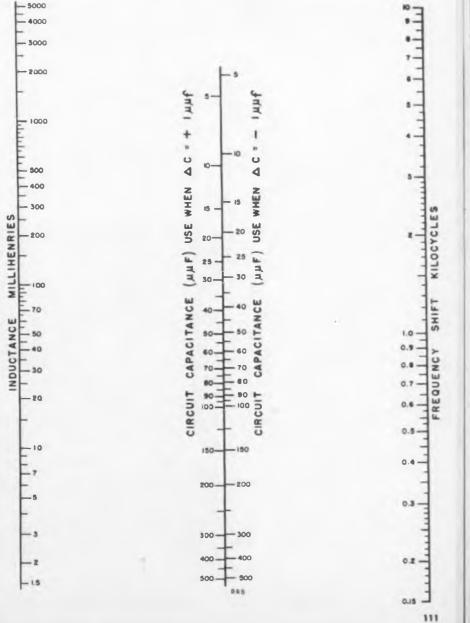



Fig. 2-Block diagram showing method of converting a variable frequency into a proportion change in current. Fig. 3-(below) Chart showing frequency shift produced by 1 mmf capacitance shift

Production MUST Increase

Major General W. H. Harrison, head of Army's Procurement and Distribution service

• This week's official forecast of the War Department that "war deliveries in 1944 must be in excess of deliveries made in 1943 to meet essential requirements and no immediate relaxation in our production effort is in sight" certainly fits the bill for the Signal Corps in its procurement task, particularly of electronic and radio equipment, for next year. This was emphatically approved Dec. 29 by Major General William H. Harrison, Chief of the Signal Corps Procurement and Distribution Service, who pointed out that the monthly load of production of electronic plants must be substantially increased during the next five or six months. The War Department report was based on answers to a series of specific questions submitted to Major General Lucius D. Clay, Director of Materiel of the Army Service Forces.

General Harrison stated flatly that there was no substance to fears in the electronics manufacturing industry of contract terminations in the sense of cutting off of war orders and such terminations will not loom for months ahead. As has been pointed out there have been and will be terminations for the production of new designs and types of communications equipment which have arisen as a result of battle experience, such as the new, more efficient walkie-talkie apparatus, and the aircraft radio sets which will withstand extremely high

112

High output imperative, with no termination in contracts in sight for long time, says General Harrison

altitudes insofar as condensers and other components are concerned. He emphasized that the radio-electronic industry has not had and does not have in prospect cut-backs in production such as have occurred in some other fields of military supplies.

Equalize loads

The Signal Corps Procurement and Distribution Service is endeavoring by every means possible to keep the industry evenly loaded and considers this to be a prime responsibility. Because of the huge task of production ahead the manufacturers realize they have to keep up a very high rate of output.

A let-down in production will be reflected directly in the cost of lives and blood of American troops, General Harrison stressed. Even though the production of Signal Corps equipment has increased 80 per cent during the last six months of 1943, General Harrison declared that there must be continued and renewed effort to boost the output in the coming months. He added his "real appreciation for the splendid job that has been done so far" by the communications manufacturing industry, but there is more to do to push ahead to final victory.

While the holiday season and the flu epidemic have combined to diminish the December deliveries, General Harrison expressed the hope that January will make up any deficiencies. He went on to express the view that any complacency, due to the successes of the last few months, must be replaced by a cycle of intense effort to increase home-front production, if unnecessary casualties are to be avoided.

General Harrison also brought out the fact that it was essential (Continued on page 232)

Modern mobile Signal Corps message center, showing kind and extent of radie transmitting and receiving equipment installed in a large trailer and used to maintain constant communication between ground units and supporting air cover

h

- 12

be to

n-

S-

ar

to s, ie ip to

oľ e-

rt n, be

al

10

to

er

44

Kraft paper dielectric is tested for presence of conducting particles with roller and amplifying device

Thickness of gluminum foil is held to close tolerances to insure proper winding and assembly of sections

Winding Industrial Capacitors

Electronic motor control insures uniformity, permits use of thinner foil and greatly increases production

• The electronic drive for winding the foil is typical of the special machinery and technics used by Westinghouse engineers in manufacturing capacitors of all kinds for industrial uses. A foot-operated solenoid enables the operator to shift the phase to provide an extremely "soft" start and a very low speed while threading the metal foil and thin paper. As soon as the foil and paper are started and the torque evenly distributed over the entire width of material, the operator merely presses the foot control and the motor accellerates to top speed smoothly and evenly without breaking the delicate foil. Even a beginner operating this machine will produce as many capacitors in a day as 24 operators would make by hand methods.

A modern capacitor is a completely static, ingenious, and relatively simple device. Its essential elements are: (1) a series of paperthin electrodes, (2) dielectric sheets to separate the electrodes, (3) a dielectric impregnating medium, and (4) a rugged and sealed enclosure to protect the whole assembly. The materials used in these four elements, and the processing and assembly technic, account for the ability of capacitors to withstand severe electrical stresses and Physical conditions of service.

ELECTRONIC INDUSTRIES . February, 1944

COVER ILLUSTRATION

This Kodachrome picture was made in one of the Westinghouse plants and shows the electronically controlled winding machine used in producing industrial capacitors.

Finished capacitor sections are assembled

The use of aluminum foil as electrode material insures greatest chemical stability and long life. The layers of paper and aluminum foil are wound with electronically controlled, accurately aligned winding machines. These specially designed machines insure freedom from wrinkles and mechanical damage to the foil and paper insulation and permit the use of very thin electrodes requiring a minimum of critical material. The ingots used for making the aluminum foil, are practically 100 per cent pure aluminum. In the winding process, alternate sheets of tested paper and foil are first wound into convenient sized sections with added insulation inserted where taps are made to foil. The area of working insulation going into each section is controlled by measuring foil length by recorder at top of machine. This measurement insures that the kva of finished unit is equal to or more than the normal rating. And this operation is carried on in an atmosphere-controlled room, to insure dust-proof assembly and proper humidity.

The kind of material used for the dielectric sheets depends upon the application. In units from 400 to 250,000 volts for direct current service, such as often used in elec-(Continued on page 222)

Railroad TRAFFIC CONTROL

by HARRY W. RICHARDS*

Remote control operation of blocks by means of rf currents carried by existing wire lines speeds rail traffic

• Through the application of electronic principles and equipment almost any existing line wire can be used to transmit both controls and indications, instantly and simultaneously, over great distances for the expediting of railroad traffic.

Transportation of materials is a vital part of our war effort. The railroads are doing a back-breaking job. Freight trains are long and heavy, carrying thousands of tons of precious war material. Their maximum speed is about 55 miles per hour. A maintained running speed of 40 mph is considered the top. But this running speed cannot be maintained at all times.

It is the stopping of freight trains that so greatly reduces their average speed. When stopped, there is great difficulty in getting up to speed again; sometimes running for an hour or more and for many miles is necessary before they can really get going. On the other hand, passenger trains can stop and resume speed almost immediately.

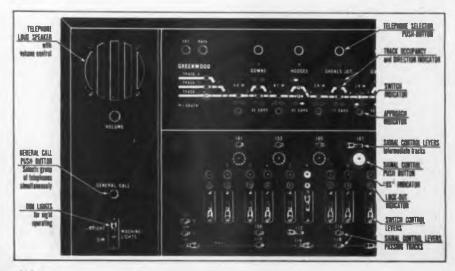
FEDERAL AUTHORITIES SHOW INTEREST IN ELECTRONIC SIGNALLING

Washington officials in charge of Defense Transportation have been made acquainted with new electronic means of improved railroad signalling, and are watching with interest the development of this new signalling method, with the purpose of securing its advantages for postwar railroad operation.

Therefore, in meeting the transportation problem of today, it is a matter of keeping freight trains rolling, while the passenger trains do the stopping.

Such plan of train operation may be accomplished through a system of centralized traffic control; the switches and signals being operated over existing wires (such as the telephone or telegraph line) and remotely controlled from a designated point in the territory.

Through centralized traffic control all train movements are handled by one operator at a central office. This system of train dispatching is built around a "control machine" consisting of a miniature track diagram on which indicating lights show the movement of trains over the territory, combined with control levers and pushbuttons by which the operator can manipulate remote switches, signals, etc. The necessity for telephone or telegraphic reports of train arrivals and departures is eliminated; traffic can be kept in motion and delays reduced to the minimum. This produces a saving in running time, saves fuel, produces a higher average speed, and greater availability of existing cars and locomotives for service.


Radio - frequency currents are used, each control or function in the territory being operated on a different frequency, to the end that many field units are operated simultaneously and independently on the same wire. Field transmitter units send indication frequencies to the central office. Control frequencies are sent out by the control machine at that office, to the field locations to operate switches, clear signals for train movements, etc., as the traffic situation requires.

Transmitting radio - frequencies over the wire in no way interferes with its original use, since they are above audible range. On the other hand telephones and other apparatus working on the line present a path of sufficiently high impedance, so that the currents being transmitted have negligible losses from the shunting effect of the line equipment.

• 36 Washington Avenue, Greenwich, Conn.

ELECTRONIC INDUSTRIES . February, 1944

Richards centralised traffic control machine showing a section of typical panel layout with control and indication features, telephone selector push-buttons, etc.

114

THE REPORT OF THE PARTY OF THE

WITH CARRIER CURRENT

Keeping in mind the ever-important factor of safety, great care must be exercised in the design of signaling equipment to the end that any failure will always occur on the side of safety. Should the operator set up an unsafe combination, the transmission does not take place, resulting in a red indication being displayed automatically by the wayside signals. This is accomplished through the interlocking of the transmitter control circuits.

4

1.

ie

n-

ng

ch

(e)

8,

n-

ire

n-

in

11-

11-

11-

nt

m-

h-

an ls,

10

als

11-

nđ

m.

ng

ier

11-

0-01

ITE

in

2

at

ed

tly

1S-

en-

by

ce,

Lte

in

a.

ies

res

re

ler

a-

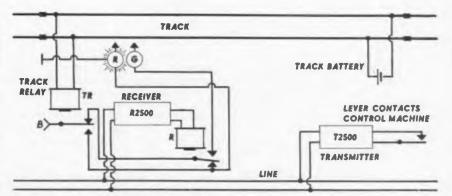
-b.

ng

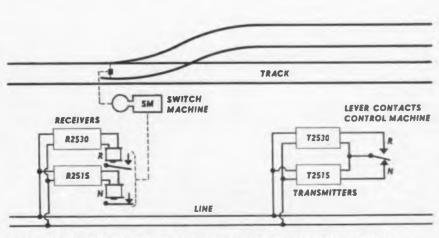
ses

he

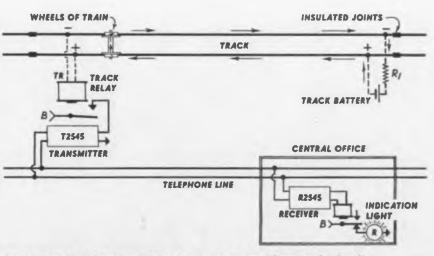
944


Indications of track occupancy are transmitted on a normally closed-circuit principle; i. e., the frequency is normally transmitted over the line when the track is clear, to hold a relay energized at the central office. When a train enters the block, the transmitter is automatically cut off, thereby deenergizing the relay at the central office, to close the circuit to the red light in the track diagram of the control machine, indicating that the block is occupied. Thus, the indication of track occupancy appears with an absence of line current and so a loose connection, broken wire, power failure, or other interruption, causes the light to show continuously-even with the track unoccupied.

The use of radio-frequency signalling current presents many advantages over that of the low frequency range, as it provides a wide band of frequencies, susceptible of division into many transmission channels, free of interference among themselves.


To avoid harmonic interference, the lowest frequency should be sufficiently high so that its second will fall outside the harmonic highest fundamental frequency used in the territory. For example: starting with a frequency of 2500 kc, the second harmonic will be 5000 kc; so that a band of frequencies ranging from 2500 to 4995 kc may be used without danger of a receiver being incorrectly operated by a harmonic from another control current. Starting with a frequency of 5000 kc provides a band twice as wide, with twice the number of possible transmission channels.

In order to utilize a broad transmission band effectively, channels (Continued on page 190)


ELECTRONIC INDUSTRIES . February, 1944

Manner in which the same type of equipment is made to control switches

Remote control of a transmitter by means of auxiliary track circuit

Recording Frequency Drift

Routine quality control tests make automatic records of temperature effects on precision frequency meters

• The most important condition that sets the pace in the continuous search for precision, is the accuracy and reliability of measuring equipment. Accuracy built in under laboratory conditions is one matter, but in many military operations operating set-ups are far removed from the controlled precision of a laboratory.

In certain frequency establishing standards for portable use, the reliability of operations depends upon the maintenance of the oscillator frequencies under all sorts of adverse conditions. Among operating variations encountered, the matter of temperature and humidity shifts are probably the most important. Temperature may vary from -30 deg C. to + 50 deg. C. or more in a short time and the humidity from near zero to nearly 100 per cent.

It is possible to eliminate a great many of the conditions in a circuit that might cause the frequency of an oscillator to shift, and it is possible to compensate for most of the rest. In any case, there are so many factors involved when both temperature and humidity changes are encountered that it is necessary to establish, by actual test on a percentage of samples, the overall quality of the product under operating conditions.

With the use of best engineering design and adequate follow-up on

116

production processes it is possible to attain a frequency stability comparable with an ordinary crystal.

Therefore, in production tests on quantities of a single item, the establishment of a standard procedure in making routine quality control tests, is of utmost importance. Slight divergences may introduce new factors that would have to be considered when the results were analyzed—and in most cases the diverence from the established routine might be unnoted.

Frequency shift recorder

Tests that fit into this category are found in the production of many items, and in most cases the introduction of automatic test equipment has eliminated inadvertent changes in the order of procedure that come about when single tests are made by different operators, possibly during different working shifts.

The following description of an automatic frequency-shift recorder under controlled conditions will show the method developed at the Allen D. Cardwell Mfg. Corp., to show the reliability of calibration of oscillators under temperature variations encountered in field operations.

Several large test refrigerators were installed, of the type shown in Fig. 1, which hold twelve fre-

quency meters at one time, in such a manner that the dials can be observed and important controls operated externally. These oscillators are then operated under any desired set of conditions, and the humidity level set initially at the required value consistent with the temperature. All oscillators are set at a test frequency, say approximately 4 megacycles, which beats with a fixed frequency of megacycles from exactly 4 8 crystal standard. The exact frequency is established in the oscillator so that it is a few hundred cycles above 4 megacycles, so any subsequent drift will show up as a change in the beat note, since the basic problem is to study the drift of the frequency as its ambient temperature is altered from -30 deg. C. to +50 deg. C.

This audio frequency is then converted to a variable current which is applied to a modified Celectray 12 point recorder, Fig. 5, so that one reading of frequency is recorded every 6 minutes. For twelve instruments tested at once, this means one reading every 30 seconds. If the temperature is increased at a rate of 40 deg. C. per hour, the points for the 12 curves are automatically recorded over a 2-hour period. With a range of 2000 cycles for a full-scale (10-in.) deflection, a typical run would appear as in Fig. 2. The recorded

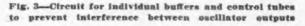
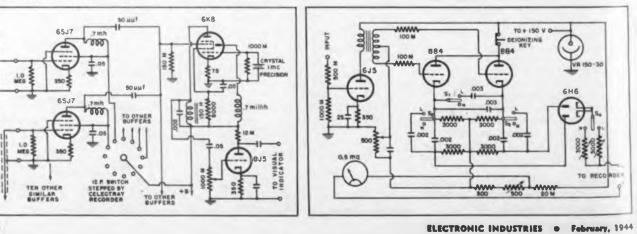



Fig. 4—Circuit to translate variations in frequency to variations in current level, to operate recorder

dois indicate the point on the curve, adjacent to a number which identifies the curve with the position of the set in the temperature compartment. It is noted that sets follow the same drift, more or less, and several of the curves are superimposed. To avoid this, if desired, the initial beat can be set at different values.

t

ds

rs

ich

ob-

ols

til-

ler

nd

at

ith

ors

1D-

ich

of

re-

red

iny

5 8

the

rift

ent

-30

nen

ent

led 5,

For ice, 30 inper ves r a of

n.) ap-

der

NE.T

1944

6

8

Several technical difficulties were taken care of before installation by the application of an electronic "distributor" which isolated each rf output signal from the others and applied these 12 frequencies one at a time to the recording equipment. This distributor is installed in the shielded chassis extending full length over the door in Fig. 1. Separate shielded leads connect each oscillator to its appropriate buffer tube, shown as to its circuit in Fig. 3.

The output of the 12 buffer tubes is combined onto one lead, which runs to the mixer tube section of a 6K8 converted tube. The triode section of this tube is used with a precision crystal as a fixed oscillator, which can be checked frequently with WWV, although slow variations in the frequency of this oscillator do not affect the accuracy of the test.

In order that only one oscillator may be effective at once, only one buffer tube is operated at a time by control of the B supply, using the special 12 point motordriven switch, that is a part of the Celectray recorder, rewired as shown in Fig. 3. It is necessary to use more than ordinary precau-

tions to shield the outputs of the oscillators from each other, and from common circuits so that sidetones are nonexistent.

The recorder has a motor-driven switch that connects a succession of 12 circuits (normally thermocouples) into a balancing circuit. Here assume that an applied amount of current simulates the thermocouple current. This current deflects a galvanometer whose mirror reflects a telescopic point of light back toward a phototube mounted behind a "controlling edge" or light baffle.

In the balanced position, a long narrow image of the lamp filament is split by this control edge and the illumination level and plate current just suffice to maintain current so that a relay remains closed and another relay open. Relay No. 2 closes at a higher current value than relay No. 1. The difference between the release current of relay 1 and the operating current of relay 2 is the "dead zone" of relay inactivity during balance. The motor is stopped in the balanced position, but drives the carriage upscale or downscale until a balance is established when the relays are both open or both closed respectively.

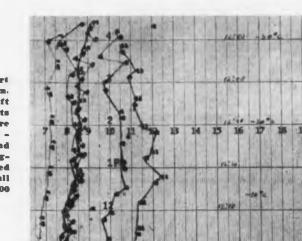

When the galvanometer current drops slightly from the balanced value the galvanometer mirror rotates to increase the phototube illumination, which raises the plate current of an amplifier tube and closes No. 2 relay also, causing the (Continued on page 206)

Fig. 2—Typical chart (full size being 10 in. wide) with 12 drift curves. Several sets of points (which are disting uish ardble by numbers and colored inks on original) are connected up with penell. Full width represents 2000 cycles

closes No. 2 relay also, causin (Continued on page 206)

Fig. 1—Temperature compariment (American Colla) equipped with facilities for checking frequency drift of 12 Cardwell frequency melers, mounted behind windows in auxiliary panel of refrigerator. Frequency converter and Celectray recorder on rolling wagon. Buffer and control tubes mounted above door with removable leads disconnected when main door is closed

ELECTRONIC INDUSTRIES . February, 1944

TUBES ON THE JOB

Mass Spectrometer in Chemistry

Production of high-octane gasoline, butadiene, or styrene involves precise, critical processes. Laboratory-accurate on a huge scale, they need controls that are exact and rapid, and the mass spectrometer has proved to be both. Previously, chemical tests in an oil refinery have been laborious and have required hours to complete. The new device thoroughly checks operation in a matter of minutes—and requires only one or two technicians.

The mass spectrometer has long been used in laboratories, particularly for exploring the field of nuclear physics. It determines both qualitatively and quantitatively the constituents of a gas. With substances that are alike chemically

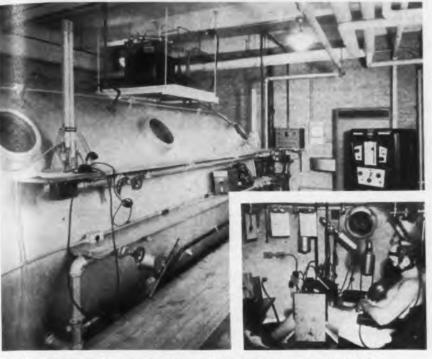
118

Curved tube passes between two poles of electromagnet of mass spectrometer

Ready for work in refinery or chemical plant, the latest model of the mass spectrometer uses 15 kw at 110 volts. Cuts time element considerably

and differ only slightly in weight. chemical analyses are extremely difficult. The mass spectrometer uses only a small quantity of the gas-it need be only a thimble uland ionizes it by impact of eiectrons from a hot filament in an evacuated tube. The stream of charged molecules is drawn along the tube into a strong magnetic field. where it is bent into an arcshaped path. The heavier the iron. the larger the radius of curvature of its path. As a result, different molecules emerge from the field at various locations-but all of the same kind leave at one particular spot. Different charged molecules are collected successively at an exit slit into a current that can be amplified and measured. In this way, constituents of any gas can be determined as to kind and proportion.

Built for use in refineries, chemical plants and similar locations the mass spectrometer is a selfcontained tool. No power supply other than 110 volts, 60 cycles is required. The instrument is extremely sensitive and can measure ion beams as small as one-billionth of one microampere. (Average antenna current for the home radio is at least one microampere.) In other words, the mass spectrometer counts as few as 6000 ions per second, which isn't many considering that about three billion billion electrons surge in and out of a 60watt lamp each second. The de-vice can readily detect, for example, the presence of one part of oxygen in 10,000 parts of nitrogen.


The mass spectrometer is expected to have many industrial uses. It may serve to check gases in protective-atmosphere furnaces. it may check completeness of evacuation processes, or it may detect presence of some undesirable constituent in process gas.

X-Ray Decompression Chamber

Something new has been added to the progress of radiology, at the University of Cincinnati, Ohio, where medical researchers are conducting experiments and collecting data on "aviator's bends." "the chokes," and abdominal cramps, all results of rapid ascension and sustained flying at high altitudes.

The chief problem encountered by engineers of the Kelly-Koett Mfg. Co., Covington, Ky., was to in-

ELECTRONIC INDUSTRIES . February, 1544

Flight chamber as it appears from outside. X-ray control at right. Inseri shows subject in typical position for radiography of body reactions

sulate the tubes' anode potentials -up to 125,000 volts-in the rarefied atmosphere representing altitudes up to 50,000 ft. The "tank" is eight ft. in diameter, fifteen ft. long, and accommodates a considerable amount of test equipment for the various radiographic technics

Already a number of valuable facts have been determined. In "aviator's bends," similar to the symptoms of divers and caisson workers under too rapid ascension to the surface, it has now been determined that the cause is the formation of tiny gas bubbles in the body tissues, not in the bloodstream as was previously supposed. The X-ray has revealed also that "the chokes" is not due, as was believed, to severe disturbances in the heart and lungs. Abdominal cramp, accompanied by swelling, is shown to result from the expansion, up to four times normal volume, of the residual gas in the abdomen. In all, much vital information is being collected through experimentation and radiography which should enable our flyers to do a better wartime job and provide later benefits to the future.

New Plating Method

Certain copper or brass parts of aircraft instruments that carry high-frequency currents must be corrosion resistant. Electrically, they must have high surface con-

ELECTRONIC INDUSTRIES . February, 1944

ductivity because of high-frequency current skin effect. Nickel, normally used to provide anti-corrosion protection, has high electrical resistance. In seeking a solution to this problem, Westinghouse engineers turned to gold, which is non-corrosive, satisfactorily conducting, but costly. Electrochemists finally evolved an answer that

disposed of this particular worry and provided a plating technic valuable in many applications unrelated to the original need. Special plating anodes are made of an alloy of copper, tin, and zinc. With these soluble anodes, copper and brass parts are plated using standard plating practices.

The plated surface has the necessary electrical conductivity for high-frequency applications and is superior to nickel in corrosion re-Further, the finish is sistance. mirror-like, being surpassed in this respect only by silver itself. As to abrasion, the surface is roughly twice as good as the usual nickel The new plating is encoating. tirely non-magnetic (not true for nickel) and is easily soldered.

Eliminating Dust in Tube Manufacture

Dirt and dust particles so small they are invisible to the naked eye are still large enough to ruin a good television camera tube. In the laboratories of the Farnsworth Radio and Television Corp. at Ft. Wayne, Ind., it was found that these minute dust particles caused a spotting of the cathode of television dissector tubes during their treatment with photo-sensitive material. Installation of a 6000 cu. ft. per minute Westinghouse Precipitron electrostatic air filter to clean the laboratory air of the invisible dust and dirt has entirely eliminated the tube cathode spotting, permitting perfect tubes to be made consistently.

Early stage in manufacture of television dissector tubes at Farnsworth. Installation of Precipitron solved cathode dust spotting problem

ninal cenhigh ered Coett o in-1944

ight.

nely

leter

the

11-

-lee-

an l of

long

netic

arc-

iron.

ture

rent

field the

ular

nles an

n be

this

n be

por-

nem-

tions

self-

pply

es is

ex-

sure

onth

an-

adio

In

ieter

sec-

ring

llion

a 60de-

ex-

rt of

ogen.

ex-

trial tases

aces.

vac-

etect

con-

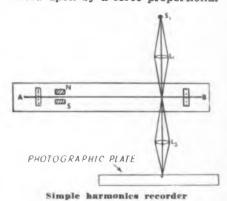
dded

t the Dhio,

are col-

nds,"

SURVEY of WIDE READING


Electronic news in the world's press. Review of engineer. ing, scientific and industrial journals, here and abroad

Harmonics Recorder

T. Tirunarayanachar (Indian Journal of Physics, Calcutta, April, 1943)

The apparatus affords a simple method of investigating the harmonic contents of a current; it is particularly recommended for studying filter performance in power units.

A small current from the output is passed through a wire A—B. The portion of the wire situated between the magnetic poles N, S is acted upon by a force proportional

to the current and the magnetic field strength; the magnet can be slid along the wire. When the frequency of any one current component coincides with a possible wire frequency, a large resonant vibration will occur. Light from source S is focussed on the wire, and provided this portion does not correspond to a node, the vibration will be recorded on a photographic plate moved perpendicularly to the direction of wire vibrations. The resonant frequency of the wire may be adjusted by varying its tension.

On Organic Isolators

H. Stoeger, W. Riedert and B. Frischmuth (Schweizer Archiv fuer angewandte Wissenschaft und Technik, Solothurn, Switzerland, September, 1943)

Relations between molecular structure of highly polymerized materials,—i. e. materials of comparatively high molecular weight,—and their mechanical and electrical properties are studied. Tables and diagrams contain a great amount of information on the characteristics of these substances, such as change of dielectric loss factor with degree of polymerization, its frequency and temperature dependence, mechanical resistance, swelling, dependence of the dielectric loss factor on chemical composition.

On Powder-Cored Coils

V. G. Welsby (Electronic Engineering, London, December, 1943)

In the concluding article of a series, a summary of various methods to determine inductance, resistance and capacitance of powdercored coils is given. Advantages and disadvantages of different circuits are discussed. Approximate errors due to inherent imperfections of standard resistances and impedances used for comparison are evaluated.

The partial-substitution seriesresonant bridge circuit shown enables a variable low-loss condenser C_k to be used to measure a wide range of inductances and gives the value of the inherent resistance of these inductances to an accuracy of

Partial — substitution series — resonant bridge

about ± 1 per cent ± 0.005 ohm at frequencies up to 500 kc. Coil in-

ductance and resistance are obtained from readings of C_{k} and R_{k} at balance with switch S open and closed.

Teletypewriter Testing

W. T. Rea (Bell Laboratories Record, December 1943)

In Bell System teletypewriters a character consists of a "start" pulse, which is always "spacing," a "stop" pulse which is "marking," and five equal-length intermediate pulses, each of which may be either "marking" or "spacing." Distortion either retards or advances the time at which a transition from one type pulse to the other type pulse is made, and can be detected by charging a condenser at constant rate beginning at the time a transition should be made and terminating at the time of the succeeding actual transition. The voltage across the condenser is then compared with the voltage it would have obtained had the transition occurred at the proper time. An apparatus to check these transition times consists of a character timer, a pulse oscillator, a condenser discharger, and an indicating circuit. Two condensers are alternately charged and discharged. All four devices and their operation are shown and described in detail.

Design of Frequency Meter

W. H. F. Griffiths (Wireless Engineer, London, November and December, 1943)

A direct-reading frequency meter. covering different ranges of from 100 kc to 60 mc, has been built; its accuracy is 0.01 per cent. The design of resonant circuits incorporated in such meters is considered in great detail. Formulas are developed for the design of a variable condenser to conform to the required linear frequency law. Influence of edge effects on the capacity are studied; these effects may be compensated for by shaping the condenser plates according to formulas derived. Constructional im-

ELECTRONIC INDUSTRIES . February, 1944

perfections and their consequences are extensively treated. To avoid inaccuracies due to inequalities of dielectric gaps distances, adjacent dielectric gaps can be connected in series, electrically. The effect of rance coils of different distributed capicitances is investigated. Errors caused by variations in the selfinductance of the condenser are discussed. The formulas are used with a particular circuit.

On Tube Circuits

Sec.

oad

ob-

d R.

and

Rec-

ers a

tart"

g,'' a

ing."

liate

lther

rtion

time

type

e is

by

tant

insi-

nat-

ding

cross ared

ob-

irred

us to

con-

rger, conand and de-

r Ingi-

De-

eter. from ; its

derpo-

ered deariae reacity y be the forim-

1944

Harry Stockman (Journal of Applied Physics, December, 1943)

A mathematical treatment of amplifiers, large-signal detectors, frequency converters and similar devices is based on the theory of related linear functions. One general set of formulas and graphs, if applied correctly, covers all circuits, unifying the study of tube behaviour of different type tubes operating under various conditions.

Vacuum-Tube Thyratron Phase-Control Circuit

S. C. Coroniti (Proceedings I.R.E., December, 1943).

In the vacuum-tube thyratron phase-control circuit the phaseshift for the grid voltage of the thyratron is obtained by inserting

the plate resistance of a vacuum tube between the thyratron plate (one side of ac supply) and no-grid terminal of thyratron grid resistor, and by inserting a condenser between this no-grid terminal of the thyratron grid resistor and the cathode of the thyratron (other side of the ac supply). Phase relations between plate and grid voltages and currents are explained, and the influence of the condenser, the grid resistor and the vacuum tube characteristics on the performance are discussed and illustrated.

Power Factor of Indian Mica

S. Datta, W. Sen Gupta and P. C. Mahanti (Indian Journal of Physics, Calcutta, April, 1943)

Power factors of mica samples from different parts of India were investigated. Condensers made from the respective materials were tested in a bridge circuit by a substitution method; the results are summarized in the table.

It is mentioned that stained and spotted mica is suitable for use in radio condensers. A few condensers were constructed with some of these mica samples and found satisfactory throughout the year under varying conditions of temperature and atmospheric humidity. Further studies on other properties of these condensers are intended.

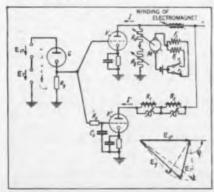
Synchronizer for Motors

F. Kirschstein (Elektrische Nachrichten-Technik, Berlin, February, 1943)

Several circuits all using the phenomenon of frequency-following, are discussed. By frequency-following the author understands that an oscillation of one frequency is made to synchronize another oscillation, the frequency of which is not very much different, by comparing the phases of the two voltages and deriving a controlling magnitude which effects the desired synchronization. A discriminator or frequency measuring cir-cuit, frequency division, circuits used for quartz clocks, synchronization of several transmitter frequencies and the motor control to be described in detail are shown and explained.

The device has been developed to make a motor shaft rotate at definite speeds regardless of variations of the mains voltage, heating in the coils of the driving motor, changing frictional resistances, etc. The arrangement shown in Fig. 1 was used to control the speed of the shaft by the frequency of an electrical oscillation generated by the oscillator (for instance a tuning fork oscillator, supplying a fundamental wave of constant frequen $cy f_{r}$). The frequency divider yields a sub-multiple f_s/n of f_s according to its adjustment.

(Continued on paye 196)


ELECTRICAL PROPERTIES OF INDIAN MICA

Source			Power factor			
source	Designation and color	Kind or quality	Average	Spread %		
Bihar	Bengal Ruby CRed DRed ARed FRed	Clear Stained Stained Stained and slightly spotted Stained and slightly spotted	0.0104 0.0173 0.0252 0.0147 0.0144	0.0092-0.0112 0.0101-0.0259 0.0182-0.0319 0.0105-0.0210 0.0102-0.0232		
Madras	Muscovite Green C-Green D-Green A-Green M177-Green M242-Green M236-Green	Clear Stained Stained and slightly spotted Stained and slightly spotted Stained and spotted Slightly stained with black metallic spots Stained and slightly spotted	0.0116 0.0241 0.0313 0.0294 0.0144 0.0319 0.0198	0.0102-0.0126 0.0151-0.0316 0.0250-0.0400 0.0189-0.0460 0.0112-0.0177 0.0265-0.0366 0.0134-0.0272		
Rajputana 03 N 65	0273—Green N756—Green 6552—Green K162—Green	Slightly stained with black metallic spots Stained with black metallic spots Stained with black metallic	0.0165 0.0186 0.0216 0.0227	0.0143-0.0173 0.0178-0.0198 0.0159-0.0377 0.0177-0.0328		
	L333-Red N758-Red N759-Red	spots Stained Stained and slightly spotted Stained with metallic spots	0.0172 0.0192 0.0206	0.0151-0.0199 0.0140-0.0280 0.0163-0.0245		
Travaricore	M624—Red R41Red L999—Red M25—Red	Stained and spotted Stained and heavily spotted Heavily stained and spotted Phlogopite, heavily stained	0.0329 0.0732 0.0752 0.0815	0.0202-0.0387 0.0366-0.0962 0.0422-0.1010 0.0494-0.1150		
Mytore Orisca U.P Punjab	M620—Green M894—Green 1581—Green 1306—Red	Clear Stained Clear Stained and slightly spotted	0.0118 0.0203 0.0440 0.0293	0.0102-0.0181 0.0132-0.0264 0.0245-0.0761 0.0162-0.0533		

DSCILLATOR

Fig. 1. Synchroniser for motors

Fig. 2. Phase comparison circuit and vector diagram

ENGINEERS ATTEND IRE-A

Digests of most of the papers in lengthy program cover. ing practically every phase of electronic applications

• The annual IRE Winter Meeting started off Thursday evening, January 27, with the address of Major General R. B. Colton on enemy communications equipment, to the assembled members of the IRE and AIEE in the Engineering Societies Building, New York City. The major part of the AIEE technical sessions had occupied the first days of the week of January 24.

The paper of Major-General Roger B. Colton, Chief of the Signal Corps engineering and technical services represented the first complete technical description and exposition of captured items of enemy Army communications equipment.

He described the equipment in full detail and discussed circuit design considerations. A highlight of his address was his exposition of the German and Japanese airborne radio system. General Colton discussed in detail the transmitters, receivers, direction finders and interphone systems used by the Nazis and the Nips. He made an extensive analysis of the ground radio equipment used by the enemy forces and the ground wire apparatus including field telephone and telegraph instruments.

Induction heating

The IRE meeting itself was opened at 10:00 a.m. on January 28 by Dr. B. E. Shackelford, Chairman. Dr. L. P. Wheeler, retiring president of the IRE, handed the gavel to Professor H. M. Turner, 1944 President. The technical sessions followed the ceremony.

H. C. Humphrey, of the Baltimore radio division of Westinghouse, discussed applications of induction heating to the manufacture of tin plate. Application of electronic methods to the fusion of electrolytically deposited tin plate, Mr. Humphrey said, represents an important technological advance in the steel industry. It has played a prominent part in the conservation of tin, whereby tin plate is now produced using considerably less tin than heretofore. Handling operations have been greatly reduced, **CAPTURED RADIO**

Many of the units of captured enemy radio equipment referred to on the opposite page, and exhibited by Major-General Colton as a feature of the IRE-AIEE meeting, are illustrated on pages 78-79 and 106-107.

and the rate of production of tin plate speeded up to 500 feet per minute, with some installations being made in anticipation that in the near future these tin lines may be operated at 1,000 feet per minute. One tin mill alone has 3,730 kw installed capacity of electronic high frequency generators operating at 200 kilocycles, which is comparable to the total installed power of all the broadcast stations in the United States. Advantages of high frequency induction heating using vacuum tube oscillators as source of energy include: (1) No physical contact with the strip; (2) Work is kept at ground potential; (3) Heating can be quickly matched to speed of changes in speed of strip-line; (4) Exceptional speed and uniformity of heating; (5) Makes it practical to combine plating and fusion lines. This pioneering example of high frequency electronic equipment of substantial power handling capacity at work in industry undoubtedly is the forerunner of many processes where high frequency heating has as yet been unthought of but where, if applied, it would produce a superior product, speed up operation, and effect operating economies.

Resonator control of electrons

Lloyd P. Smith of RCA delivered a paper, "The Limitations Imposed by Quantum Theory on Resonator Control of Electrons." When an electron passes through a cavity resonator in which there is a very high frequency electromagnetic field, it is a consequence of the

quantum theory of the interaction of the electron with the field that a transfer of energy from the electron to the field or vice versa must take place in steps of one quantum of energy hv. When this is taken into account it can be shown that when the field intensity in the resonator becomes sufficiently low, the total energy exchange which can take place in transit is less than that calculated on a classical basis. The difference was calculated for short transit times and transit times comparable with a half period. The departure from the classically computed energy exchange becomes serious when the maximum exchange that could take place on a classical basis becomes comparable with the energy hv of one quantum. The field strengths and frequencies where this effect is noticed were indicated and the effect of this limitation on velocity modulated beams was discussed.

Maxwell's equations

Three papers authored by General Electric men were delivered by J. F. McAllister, Jr. They dealt with equivalent circuits for Maxwell's Equations. They were:

- "Equivalent Circuit of the Field Equations of Maxwell – I" – Gabriel Kron
- "A New Approach to the Solution of High Frequency Field Problems" — J. R. Whinnery and Simon Ramo
- "A.C. Network Analyzer Studies of Electromagnetic Cavity Resonators" — J. R. Whinnery, C. Concordia, W. Ridgway, and Gabriel Kron

A method has been developed for solving transient or steady-state electromagnetic field problems using equivalent circuits. By means of a Network Analyzer, it is possible to obtain field distributions in the neighborhood of odd-shaped bodies, such as antennas, cavity resonators, and wave guide discontinuities. The circuits apply to conducting and non-conducting regions of space, regions of different dielectric constant and permeability. re-

ELECTRONIC INDUSTRIES . February, 1944

122

THE REPORT OF THE PARTY OF THE

the sur tia sol

ti

8.

ci

giot.

sug betw may Cr any ate

exis

CODI

thes

dim

plac

sion

net

poir

volt

troi

poin

any

in

the

WOI

lem

en

em

the

Ho

ant

suf

sio

ing

all

ret

en

T

AIEE TECHNICAL MEETING

giols of lossy dielectric, etc. Moreover, broad physical pictures are suggested by the correspondence between circuits and fields that may have high value.

Circuits have been developed for any orthogonal curvilinear coordinate system. If a type of symmetry exists for which the problem becomes two-dimensional in any of these systems, the general, threedimensional network can be replaced by a simpler, two-dimensional one. Junction points in the network can be identified with points in space, and currents and voltages at the junctions with electromagnetic field values at those points.

The network itself operates at any convenient frequency, which in general will differ from that of the actual problem. The same network suffices to represent any problem frequency, although for a given network and fixed number of elements, the accuracy increases as the problem frequency is lowered. However, it is possible to realize any degree of accuracy by use of sufficient elements.

Preliminary tests on two-dimensional problems have been made using existing network facilities. In all cases the agreement with theoretical values has been close enough to indicate the validity of the equivalent circuits used, and to suggest that information is potentially available on problems not yet solved.

Design versus service

Irwin W. Stanton of RCA analysed prewar and postwar problems in connection with radio and television instruments. Among the topics covered were:

(a) Interpretation and meaning of service; (b) cause and justification of need for service; (c) service as related to engineering with specific suggestions for improvement; (d) prewar methods, procedures, and problems, and (e) postwar methods, procedures, and problems.

Fluctuation noise

C. M. Burrill, also of RCA, discussed experiments relating to the statistical theory of fluctuation hoise. By means of apparatus for counting the number of selected time periods in which the waveform under investigation exceeds a series of given values, the author

FLECTRONIC INDUSTRIES . February, 1944

had made some statistical observations of fluctuation noise. These experiments were planned in order to compare results with the theoretical probability function for the noise envelope, which had been obtained by others from the statistical theory of fluctuation noise. The paper described the tests made and discussed the extent of the agreement found. It was considered likely that limitations in the counter operation were responsible for at least some of the deviation of the experimental results from the theory and the effect of these limitations was discussed.

Noise modification

In his paper, "The Modification of Noise by Certain Non-Linear Devices," Dwight O. North of RCA revealed experiments in which a narrow band of radio-frequency noise, obeying the normal error law, was put through non-linear devices. The spectral composition of, and the statistical law obeyed by the emerging noise were analytically determined. Devices considered were a rectifier, a square-law instrument, and the so-called linear detector. The response of the linear detector to a combination of noise and sine signal was exhibited, leading to a practical arrangement for noisemetering in which the conventional, but far less rugged thermocouple is supplanted.

British radio production

F. S. Barton, of the British Air Commission, discussed the present wartime setup in England for the control of radio research, development, and production so as to direct it completely to the benefit of the war effort and the armed forces. Mr. Barton approached the subject from the historical angle, stressing the cooperation of the RAF, Army and Navy, and their methods of dealing with the trade.

AN tube standardization

Lt. C. W. Martel, Signal Corps, presented a paper prepared by him in conjunction with Mr. J. W. Greer, Bureau of Ships, on the (Continued on page 244)

ENEMY RADIO INFERIOR, SAYS WAR DEPT.

• Captured enemy signal communications equipment, gleaned from world battle fronts, is being turned against its former owners through expert study that reveals secrets of Nazi and Japanese production technique and psychology, the War Department reveals.

In the past year, the Enemy Equipment Identification Service of the Signal Corps, Army Service Forces, has identified, catalogued and studied more than 10,000 pieces of enemy signal material material which daily gives up important information.

The Identification Service has found, for example, that German design was frozen five years ago. Although the freezing made for speed in production, obtained further through interchangeability of parts, it has boomeranged—the Nazis have been unable to keep pace, at least in this line, with the rapid-fire technical developments of the United Nations. Basically, the German equipment is sound, but often too bulky for completely efficient field service.

German psychology is clearly re-

vealed in the equipment handbook furnished each Nazi soldier. Given minute instructions about each piece of equipment, nothing is left to the German's imagination. He can't make many mistakes if he follows the instructions, but at the same time, he is not likely to be able to adapt himself or his equipment to fluid situations.

The majority of the Japanese radio sets are handmade of inferior material—much of the materials having been purchased on U. S. distress markets during the depression. The Japanese signal equipment is generally small and can be carried into jungle action, but as one returning officer remarked: "If the stuff won't work in battle—and often it doesn't—it doesn't matter if it's smaller and easier to handle than ours."

The Identification Service trains other Signal Corps troops in the battlefield utilization of captured equipment. Captured equipment, after being studied in Washington and at Signal Corps laboratories, is sent to communications schools for study by men in training.

ASSOCIATION NEWS

Pacific Coust Electronic Mfrs. Assn.

Over sixty of the leading electronic and component parts manufacturers in the west have formed the West Coast Electronic Manufacturers Association. Sol Smith has been appointed secretary-manager and can be addressed at 811 W. 17th St., Los Angeles 14, Calif.

The newly formed organization, which reports having approval of the Army Signal Corps and also of the WPB, was to function as a complete West Coast Unit at the formal induction of officers immediately following its January meeting.

The present prime objectives of the members in the Association are: 1.—Full utilization of existing manpower and manufacturing facilities of the electronic industry in the West. 2.—Supply of all proper information to interested Government agencies which will allow the Pacific area to make full contribution to the war effort. 3.— Clarifying various Government regulations and rulings and disseminating the information to all members. 4.—Attempt to secure uniform consideration on problems affecting renegotiation and termination of contracts, selective service, wage stabilization, and other matters of mutual interest. 5.—Distribution of information amongst the membership as to commodities manufactured by them, thus enabling them to utilize the facilities of West Coast manufacturers to the fullest possible extent by their purchasing departments.

Conventions and Meetings Ahead

- Institute of Radio Engineers (330 West 42nd Street, New York), Feb. 2, New York.
- Radio Club of America (11 West 42nd Street, New York), Feb. 10, Columbia University, New York.
- American Physical Society (Karl K. Darrow, Columbia University, New York), Feb. 25, 26, Brooklyn, N. Y.
- Society for Measurement and Control (New York Section Meeting), Feb. 29, New York.
- Optical Society of America (A. C. Hardy, MIT), March 2-4, New York.

New Panel and Committees for RTPB

Some additional representation on Panels of the Radio Technical Planning Board is to be authorized Because their particular problem are not entirely amenable to solution tions that might suit standalo broadcast conditions, international broadcasters have sought and are to be permitted representation through a Panel all their own, bringing the number of Panels up to fourteen. Other interests which have requested representation on various Panels include the railroad people who see the need for careful consideration of the possible use of radio for communications and for other uses peculiar to railroad operation; and the larger taxicab companies similarly want attention to possible use of radio in the more efficient handling of taxicab fleets. Both are to have representation through the formation of committees to work with interrelated committees on the various panels, and thus will be afforded a voice in determining final reports and recommendations.

Ewell K. Jett, who gives up the post of Chief Engineer of FOC to become a Commissioner, has had long experience in administrative work and is considered an allocations expert

Chief Engineer Jett Appointed Member of FCC by Roosevelt

• The selection of FCC Chief Engineer Ewell K. Jett as a member of the Federal Communications Commission by President Roosevelt is regarded as a merit appointment of the highest quality and places on the Commission an outstanding Government radio engineer and a most able administrator and executive. Lt Jett, who is a retired Navy officer, has been a mainspring in the allocations of radio frequencies since he left the Navy and came with the former Federal Radio Commission in 1929.

The very broad background and experience of Commissioner Jett in Governmental radio engineering activities and in communications in all its fields will be invaluable to the FCC in its coming postwar problems in allocations of radio frequencies and the planning for the many new radio and electronic services. He has the particularly important post in the present postwar technical planning of the radio-electronic industries of being the FCC Observer on the Radio Technical Planning Foard with which he has closely worked since its inception. During the creation of the RTPB he was the likison representative of the FCC and the Federal Government with the Radio Manufacturers Association and the Institute of Radio Engineers, and in the initial conference which led to the RTPB establishment, he was a major participant.

The new Commissioner has also directed the alloca-(Continued on page 236)

ELECTRONIC INDUSTRIES . February, 1944

ELT

124

"Nothing Like Being Rugged, Eh Kid?"

Our mechanized Army must have brains, but brawn still counts. The big fellow

wrestling interminably with 155 millimeter shells serves his greedy howitzer with the broad back developed by endless months of bone-tiring drill.

If it cannot take the jolts, vibrations, concussions, and extreme atmospheric variations of mechanized global war, the best electronic fighting equipment in the world is useless. Hearts of this combat equipment — electronic tubes — have two strikes against them from the start. Inherently delicate and fragile by nature, still they must be as rugged as the men who depend upon them.

Bump, vibration, immersion, life, and other punishing tests prove the mettle of Hytron tubes before they leave the factory. More important still, results of these tests form the basis for continual improvements in construction and processing. Throughout manufacture — in stem, mount, sealing-in, exhaust, aging, basing, and test departments — engineers, foremen, and skilled operators are ceaselessly striving to achieve in Hytron tubes not only the tops in electronic performance, but also the peak of dependable stamina which combat demands.

ELECTRONIC INDUSTRIES . February, 1944

WHAT'S NEW

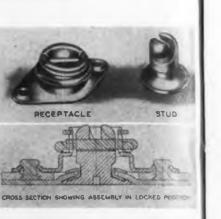
Devices, products and materials the manufacturers offer

ard electrodes are of stainless steel, but

Stratosphere Chamber

Model 20S100 stratosphere chamber is model 205100 stratosphere chamber is one of a number of special types of such equipment manufactured by Tenney En-gineering, Inc., Montclair, N. J., this one having been completed for Eclipse Avia-tion. The chamber is designed to pro-duce a temperature of -100 deg. F. and duce a temperature of -100 deg. F. and to simulate conditions at an altitude of 53,000 ft. Work space measures 30 x 30 x 36 in. Such cabinets are supplied for three ranges of low temperatures: -40 deg., -70 deg. and -100 deg. F. Tem-perature-humidity cabinets also are sup-plied but without the altitude feature. Humidification facilities are standard with all cabinets with all cabinets.

Level Control


The Trimount electronic control functions on the principle of variations in the volume of emission of electrons in a standard high current amplifying tube. When the contents, (liquid) of a contain-er make contact—or leave contact—with an antenna or metal rod electrode that is mounted on insulated supports in the container, the volume of flow of elec-trons in this tube is changed. This variation in electronic flow activates a magnetic relay to open or close an elec-tric load circuit. Because the voltage impressed on the electrode is less than 1 millivolt and the current is .1 milliampere, all possibility of chemical reaction on the contents is eliminated. Stand-

126

ard electrodes are of stainless steel, but may be made of any specified metal, and they are mounted in any of several types of support to meet local conditions. Each electronic switch is fitted as standard, with an auxiliary emergency tube circuit which automatically gives a signal and carries on the operation should the regular electronic circuit fail for any reason Once installed it requires

for any reason. Once installed it requires no attention. The manufacturer is the Trimount Instrument Co., 37 West Van Buren St., Chicago, Ill.

New Fastener

Elastic Stop Nut Corp. of America, Union, N. J., has acquired world rights to a new fastener which will add to the to a new fastener which will add to the scope of this company's work in present war production as well as in postwar commercial use. The new fastener is a spring-lock lightweight unit of rugged construction suited for holding engine cowlings of high-speed war planes and for radio equipment, or at any point where a quick-acting vibration-proof, non-retting fastening is packed where a quick-acting vibration non-rattling fastening is needed.

Marking Fluid

Identification marking fluid is being compounded in twelve different distinct colors by the Dayton Rogers Mfg. Co., 2835 Twelfth Ave., South, Minneapolis, to coincide with arbitrary code system in the average stockroom. The compound may be used on layout work or in inspection departments, for the identification of metal parts, etc. The use of the fluid does not require polishing or finishing of the ma-terial to be identified. It is simply terial to be identified. It is simply brushed on and dries instantly. A re-mover obliterates part numbers and other identification marks no longer needed. Packed in handy combination brush-in-cover containers for shop was Ink pads and marking pens are also furnished with this identification material

and will ultimately trip at 125 per cent of rated current in an ambient of 25 deg. C. (77 deg. F.). The actuating element in the circuit breaker is the snapacting Spencer disk which provides positive make and break. This disk is unaffected by motion, vibration or shock encounby motion, vibration or shock encoun-tered in aircraft and mobile equipment. Breakers can be had for trip-free or non-trip-free operation, and are avail-ble in three frame sizes with current ratings from 35 to 200 amperes for cir-cuits up to and including 30 volts dc or 220 volts ac. Manufacturer is Spencer Thermostat Co., Attleboro, Mass.

Insulating Varnish

The Watson-Standard Co., Pittsburgh, Pa., has developed a new insulating varnish. Although formulated without the use of critical materials, the new particular the second particular particular the second particular to the product is intended to equal prewar varnishes. The new product designated by the manufacturer as "V-2315", makes the manufacturer as "-2315", makes use of available materials without sacri-fice of any of the requirements of insulat-ing varnish. The new product is heat-enduring, and is resistant to water, acids and alkali. High dielectric strength.

ELECTRONIC INDUSTRIES . February, 1944

E

The new Klixon, D-7229, D-7230, D-7231, remote-control circuit breakers are designed for operation and control of any remote electrical load. These breaker-relays indicate circuit operation

and can be reset from a control panel. The breaker is calibrated to precision tolerances and will carry at least 115 per cent of rated current continuously,

Remote-Control Breaker

Don't make Sensitive Circuits Fight Corrosion too!

Dielectrics for precise electrical instruments must have more than good electric properties—their chemical composition has to be such that they do not promote electro chemical corrosion. Lumarith, cellulose acetate plastic, does not form decomposition products harmful to copper when in contact with current carrying wires and moisture. In film and foil form, it is used as a protective lining for coils, tubes, bobbins and spools. Lumarith, too, can be molded into these and other electrical shapes—in any color, opaque or transparent. Lumarith is tough, resistant

Lumarith Plastics in Film . . . Foil . . . Molding Materials and Other Forms to solvents, chip-proof and lightweight.

Write for Celanese Celluloid Corporation's electrical booklet. It will supply you with pertinent facts regarding Lumarith's electrical advantages. Complete data on dielectric strength, resistivity, etc. are included. Celanese Celluloid Corporation. The First Name in Plastics, a division of Celanese Corporation of America. 180 Madison Avenue. New York City 16. Representatives: Dayton. Philadelphia, Cleveland, Chicago, St. Louis, Detroit, Los Angeles, Washington, D. C., Leominster, Montreal, Toronto.

A CELANESE PLASTIC

In addition to the original 33002 and 33102 exclusive Millen "Designed for Application" steatite crystal holder sockets there is now also available the new 33202 for the new CR1 holder. Essential Data:

Туре						Pin Dia.	P in Spacing
33002						.125	.750
33102							. 500
33202							.500

250,000 Velt Capacitor

The .02 mfd 250,000 volt capacitor illustrated is the latest type industrial specialty unit. It consists of liquid impregnated capacitors housed in a wet process porcelain tube and filled with a liquid dielectric. The end caps are the Westinghouse solder seal type which act both as a mounting arrangement and terminals. This unit is built for total submersion in salt water and for operation under the severest condition. Voltage

ratings range from 7,500 volts to a quarter of a million volts in single units. Manufactured by Industrial Speciality Co. 1725 West North Ave. Chicago 22, III.

Wire-Wound Controls

A new space-saving wire-wound control, Type 43, has been developed by Clarostat Mfg. Co., Inc., 285-7 N. 6th St., Brooklyn, N. Y. This midget control measures $1\frac{1}{6}$ in. in diameter by 9/16 in. behind mounting surface. The bakelite body is completely enclosed by the dusttight metal cap, or by the attached switch. The control virtually matches in both size and general appearance the well-known Clarostat Type 37 or midget composition-element control. The wire winding is curved and held in a concentric slot in the molded bakelite body.

PRINT IN BINDING

The alloy contact arm presses gain the inside surface of the winding control is supplied with or with switch, in resistance values up to 10 onus, linear tapers only; and is re at 1½ watts.

Production Plugs

Developed for use with the Rotin testing electronic equipment, production plugs are now generally able. Plugs are 5 in. long and in diameter, so that the handle will ject above the average if trans

condenser, making it readily accessible They have a heavy steel barrel and an fitted with a wooden handle to perseready removal from socket. All pins an case hardened steel and may be replaced when worn or broken. In both the data and loktal plugs, the center key extend through in the form of a threaded ro to permit a cable to be fastened firms in position without strain on pin connections. In addition to the octal at loktal types, these plugs are available in 4, 5, 6 and 7 pin models, small an medium. Manufacturer is Communication Measurements Laboratory, Il Greenwich St., New York.

Tiny Fluorescent Lamp

No larger than a been de escent lamp has been de Westinghouse Electric & Mf Pa. For the No larger than a marble, a new flu been develop escent developed Pittsburgh, Pa. modern fluorescent lamp officiency been obtained in a miniature size lip source. The lamp contains two s electrodes in a gaseous atmosphere discharge takes place when about discharge takes place when about volts ac or 140 volts dc is applied act the electrodes. This creates an ult violet radiation that is retransformed high efficiency) into a green lightcomplished by the phosphor coating the interior of the bulb. Other colors possible but green phosphors conve "black light" to visible light most efficiently. A tiny resistor in the lamp stabilizes current flow after discharge gins.

Ionization Gage

A new Ridenour-Lampson ionization gage control and indicator requires m meter, plate current of the gage unibeing indicated by a 6E5 tube both during normal operation and during the out gassing operation. The current in mil reamperes is read directly from a staticalibrated in 50-scale divisions from 0-100 in which full scale reading may be either 0-2.5, 0-5, 0-10, 0-50 or 0-250 mm depending upon the setting of a rate selector. Shadow angle of the eye of ha 6E5 can be set reproducibly to abut 1/50th of full scale. Provision is made for plugging in a plate microammeter or protective sensitive relay. Manufacture is Herbach and Rademan Co., 522 Markes St., Philadelphia, Pa.

ELECTRONIC INDUSTRIES . February, 1944

AMERTRAN HERMETICALLY SEALED TRANSFORMERS FOR 400 CYCLE OPERATION

PROOF AGAINST Shock - Vibration Fungus -Altitude .

IDEAL FOR Airborne Installation Fine Wire Applications MINIMUM Weight . Dimension

FLEXIBLE

5128

ol Arrangement

tin

atio

dui

out alers

scal from ay

mm rang abo le f 07 tur ark

1944

Pioneer Manufacturers of Transformers, Reactors and Rectifiers for Electronics and Power Transmission

Anyone familiar with AmerTran test methods will understand why the worst conditions of warfare only serve to bring out the best in AmerTran Hermetically Sealed Transformers. Random units from the production line are constantly subjected to immersion, impact and vibration tests often exceeding in severity those prescribed by the government. Thus, we speak conservatively when we say AmerTran Hermetically Sealed Transformers conform to today's rigid requirements.

Used as transformers, Wave Filters and Reactors in the latest 400 cycle apparatus, these magnetic components may be specified with absolute assurance of dimensional conformance and uniformity. The enclosing cases and terminal boards are die made, meeting close tolerances. In all, AmerTran Hermetically Sealed Transformers are worthy products of a company that has specialized in transformer manufacture for more than forty years.

AMERICAN TRANSFORMER COMPANY 178 EMMET STREET, NEWARK S, NEW JERSEY

AMERTRAN

"That tone is so rich and full I can almost see the orchestra!"

IN THOSE DAYS YOU DIDN'T CALL IT

... but the "juke box" application of electronics back in 1928 was just as revolutionary as some of the electronic devices which are reshuffling military methods today... and may be reflected in your business operations tomorrow! Having designed and built the first commercial portable radio, Operadio naturally appeared among the pioneers who converted music reproduction from a purely mechanical to an electronic process. When the pressure of war work eases, the application of electronics to *your* product or process will find seasoned engineering and manufacturing "know-how" at Operadio.

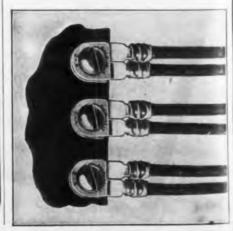
OPERADIO PLANT BROADCASTING FOR MUSIC AND VOICE-PAGING

OPERADIO MANUFACTURING COMPANY, ST. CHARLES. ILL. SYMBOL OF ELEGTRONIC & EXCELLENCE SINCE 1922

Millen Plug

Made in black or red regular bakehte as well as in low loss brown mica, filled bakelite for rf uses, No. 37212 plug, made by James Millen Mfg. Co., Inc., Malden, Mass., has a small circular depression on top for color coding or polarity indication. The plug is designed primarily for use with No. 37222 captive head posts and No. 37202 plates, has standard 4 in spacing.

Substitution Sockettes


A complete line of adapter mockettes has been developed by J. F. D. Mfg. Co., 4111 Fort Hamilton Parkway, Brooklyn, N. Y. to permit the substitution of available tube types for types difficult or impossible to get. Adapters are completely wired, largely eliminating the need for re-wiring sets. Adapters include: Loktal to octal; 5-prong to octal; octal to 4prong; octal to octal; loktal to 5-prong; and others to permit a great variety of substitutions.

Shockproof Relay

Designed for airplane use where the utmost precaution must be taken against unintewtional operation Type 17AXX relay will withstand acceleration tests of better than 90 gravitational units. Despite its rugged construction, the relay is small in size, and light in weight. Units of this type are regularly supplied with series coils for any direct current, or with shunt colls for use on 12- or 24-volts dc. The manufacturer is Struthers-Dunn, Inc., 1321 Arch St., Philadelphia, Pa.

Two-Way Terminals

Developed by Aircraft-Marine Products Inc., Harrisburg, Pa., the interlocking studs allow two or more terminals to be used on a single stud where there are no barriers to control the positions.

ELECTRONIC INDUSTRIES . February, 1944

FM, PHASE, DIRECTION AND POLARIZATION MODULATION

Direction or Polarization Modulation

It is intended to minimize fading and to receive signals within the dead zone, and further away. Either direction of propagation or direction of polarization of the wave is varied; a transmitter for the former method is illustrated.

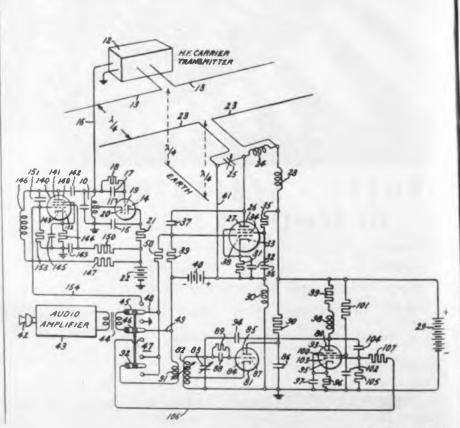
The unmodulated output of the oscillator tube 11 is radiated from dipole antenna 13. Dipole antenna 13 lies parallel to the surface of the earth, a quarterwavelength above it. A similar dipole antenna 23 is placed parallel to antenna 13 and lies one quarter-wavelength from antenna 13 and one quarter wavelength above the surface of the earth; it acts as reflector for the waves radiated from antenna 13. o does the ground. By tuning circuit 24, 25, 26, the reflecting properties of antenna 23 may be controlled and the direction of maximum radiation varied in a vertical plane. Tube 26 is the tuning element, it is con-

Tube 26 is the tuning element, it is connected so as to operate as capacitance. Its magnitude is controlled by the voltage across resistor 39. Any change in this voltage causes a change in remonant frequency of the circuit and, consequently, in the direction of maximum radiation. With switch 47 in the position shown, audio signals from microphone 42 are amplified and applied to resistor 39 so as to change the direction of maximum radiation from antenna 13 in accordance with the intensity of the audio signals to be transmitted. The different dotted lines in the second figure indicate the paths of maximum radiation at different times.

with the intensity of the audio signals to be transmitted. The different dotted lines in the second figure indicate the paths of maximum radiation at different times. An ordinary AM receiver may be used for reception of these signals, which appear to sweep past receiving antenna 63 for a certain value of audio voltage. Of

course, the beam may be swept in a horizontal plane, care being taken in a instances that a reflected beam passes i receiver only once during each sweep. Alternatively, if switch 17 is more downward, the beam radiated from a core of 2 will be swent up and down

Alternatively, if switch 47 is moved downward, the beam radiated from terna 13 will be swept up and down a vertical plane at a constant rate () instance, of the order of 20 to 50 k when there is no signal from microph-42; this sweep frequency will be trolled by the audio voltage amplitud Tube 81 continuously supplies controllaoscillations, the frequency of which a



CON

modulated by reactance tube 80 which has its grid 103 connected to audio amplifier 43. A special receiver designed for this type of modulation is shown; it de tects a carrier wave intermittently paing the receiver with a frequency depending on the audio voltage.

Ing the receiver with a frequency depending ing on the audio voltage. A third type of transmission is produced with switch 47 in its upward position. The beam of antenna 13 is swept up and down at a constant rate and the high frequency carrier wave is frequency modulated by varying the voltage on control grid 152 of reactance tube 140 in accordance with the audio voltages as in conventional frequency modulation transmitters. In all instances, the carrier wave intensity is maintained constant to minimize selective fading.

wave intensity is maintained constant to minimize selective fading. In another method described the plane of polarization of the transmitted wave is varied between a horizontal and a vertical plane in response to the signal intensity. A suitable transmitter circuit is shown and discussed. It has one antenna emit

Vacuum Tube Voltmeters U.H.F. Noisemeters Pulse

> Generators Moisture Meters

MEASUREMENTS CORPORATION

Boonton, New Jersey

THIS ORANGE BOX CONTAINS GOAT ELECTRONIC TUBE PARTS...

> Typical electronic tube parts — II — in GOAT bases that have been stamped, drawn and formed on BOAT machines, sins and process.

Wherever electronic tubes are made, you will probably see this orange GOAT box. For GOAT serves almost every electronic tube manufacturer with a tremendous variety of stock and special parts, made of any metal to any specified degree of accuracy. Because of experience gained since the days of radio infancy, GOAT has been able to meet the demands of this industry for greater quality, durability and quantity production. GOAT'S recognition, today, is based on this consistent ability to handle tough jobs requiring skill, precision and efficiency.

GOAT METAL STANDA

CUSTOMER

A DIVISION OF THE FRED GOAT CO. INC., EST. 1893 314 DEAN STREET . BROOKLYN, 17, N. Y.

STAMPING GROUNDS

Small Trenh John

fluence in the peacetime world are those which are continually being revised as new information is revealed.

For that reason, long-range planners are turning now to organizations in a position to reveal new scientific findings.

Sperti, Inc. is such an organization.

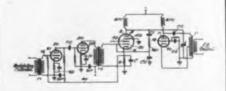
For Sperti is more than a manufacturer of navigation instruments, more than a producer of advanced electronic and irradiation equipment, more than a pioneer in the use of biodynes.

Beyond Sperti there are laboratories devoted to pure research, staffed by eminent scientists, co-operating in enlarging the sphere of human knowledge.

Sperti, Inc. exists to bring their mature discoveries to the attention of the commercial world.

Through Sperti, Inc. you may acquire information of great value in shaping your postwar plans. Or the immediate future may bring advances of marked importance to your organization.

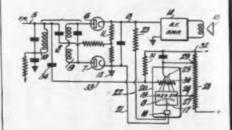
To make sure that such information comes to your attention, it is recommended that you establish and maintain a contact with Sperti, Inc.

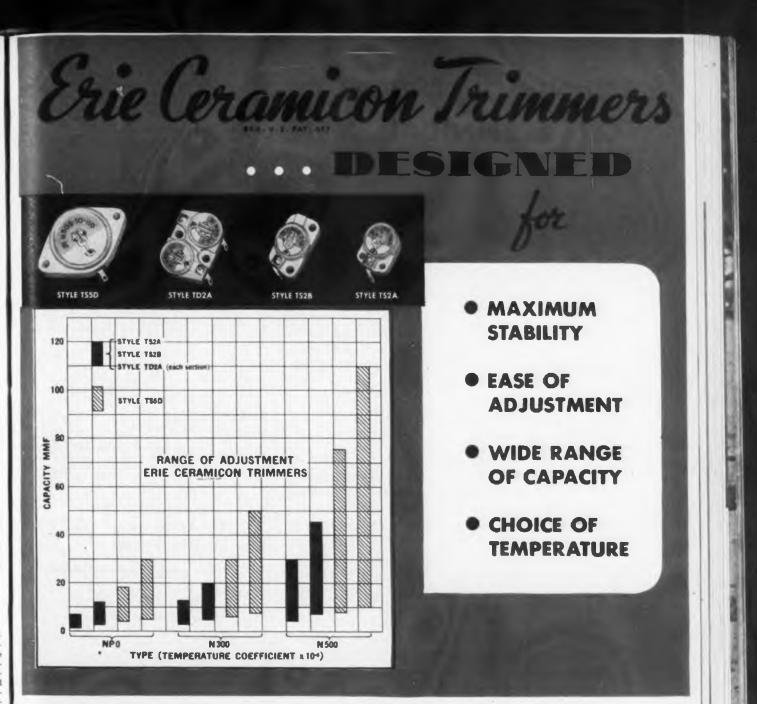

RESEARCH, DEVELOPMENT, MANUFACTURING. CINCINNATI, OHIO

ting horizontally polarized waves and an other antenna emitting vertically polar-ized waves. The intensities of radiation of these antennas are controlled by audio voltages in opposite sense

Any receiver for amplitude modulation which is more sensitive to waves of one which is more sensitive to waves or one polarization than to the other may be used. Similarly to the three possible modulations of the directional beam, the polarized wave may be modulated in three ways. The second type of modulation con-sists in varying the frequency at which sists in varying the frequency at which the plane of polarization changes in ac-cordance with the intensity of the mod. ulating signal; while in the third type of modulation, the plane of polarization is varied at a constant frequency modulated. H. W. Kline, General Electric Co., (P) Feb. 21, 1941, (1) Nov. 9, 1943, No. 2,334.011. 2.334.011.

Reactance Tube Modulator


The cathode of the reactance tube 1 RC; C is a complete by-pass at the operation frequency of the oscillator (10, C_{ω} L₁) but is effective at the modulation frequency so that voltages of modulation frequency and below are developed across These voltages are degeneratively fed R. back by lead 40 and resistor 19 to control


grid 21 of tube 20. Distortion inherent in the audio amplifier tubes 20, 30, and in reactance tube 2 is reduced by the nega-tive feedback. Another embodiment intion is described and claimed. J. Rankin, RCA, (F) Dec. 5, 1941, Nov. 23, 1943, No. 2,334,726.

FM Tuning Indicator

Two different visual indications,--103responding to resonance and off-resonance tuning and to presence or absence of a carrier wave, respectively,—com-bined in one unit make it possible to dis-tinguish between resonance condition and no signal condition. One indication reno signal condition. One indication re-sponds to variation in mean signal fre-quency and the other to signal intensity. The dc component of the detected signal, which varies in amplitude and polarhal, which varies in amplitude and polar-ity with tuning, is utilized to provide one visual indication, in the present example the light pointer 17 of a polarized milliam-meter. The scale 18 cooperating with this pointer affords the second indication.

It constitutes part of the plate of indicator tube 20 and is coated with material which becomes fluorescent when bombarded with electrons. Grid 20 controls the electron flow to plate 19; its potential is derived from the incoming signal over coupling capacitor 34. In the absence of a received ELECTRONIC INDUSTRIES . February, 1944

AS shown in the chart above, Erie Cerami-con Trimmers cover the wide range of temperature coefficients and capacities that are in most popular demand.

The three available temperature coefficients, zero, -300 parts per million per °C, and -500 parts per million per °C, provide

a choice that covers most practical applications for temperature com-pensation. The high ratio of maximum to minimum capacity, combined with a low minimum capacity in each of the four standard styles of Ceramicon Trimmers, allows a

wide range of applications. The sturdy base, silver-ceramic construction, and soldered connections, assure inherent stability. The rotor of Erie Ceramicon Trimmers is stamped with R for identification. Temperature coefficient and capacity range are also printed on the rotor.

These and many other features are completely described in Erie Ceramicon Trimmer Data Sheets. If you are looking for a high quality trimmer that incorporates temperature compensation in its operation, write for a copy of these data sheets.

ERIE RESISTOR CORP. ERIE, PA. LONDON ENGLAND TORONTO CANADA.

SOUND OPPORTUNITY FOR TECHNICAL MEN

Wurlitzer—established in 1856, the recognized leader in its field—offers these engineering positions:

Radio and Electronic Development Engineers

Staff Engineers-

Requirements: B.S. in Electrical Engineering or equivalent; at least five years' experience in radio engineering and research; familiarity with all phases of circuit development; ability to design and develop engineering projects.

Development Engineers----

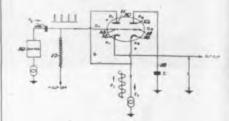
Requirements: Graduate engineer with a minimum of two years' practical experience in engineering or technical service; natural aptitude for design and development work; ability to solve detailed engineering problems. Today-Wurlitzer is concentrating its full productive energies on fabrication of war materials, with which those men selected will be associated until Victory is won. But the long-range plans we are also making today, foreshadow a future bright with opportunity. The Wurlitzer technical and engineering staff has been hand-picked. To it we seek to add qualified men eager to affiliate with a closely knit, progressive organization resolved to maintain its top-rung industrial leadership. The men we choose and who choose us-will be forward-looking, resourceful, earnest in their efforts to create, improve and perfect. These qualifications are basic. If you have them and are interested in learning more about the opportunities we offer, write-telling us about yourself. An interview can be quickly arranged. Employment subject to local WMC Regulations.

Write Today to

THE RUDOLPH WURLITZER COMPANY

North Tonawanda, New York

ATTENTION: TECHNICAL PERSONNEL DEPT.

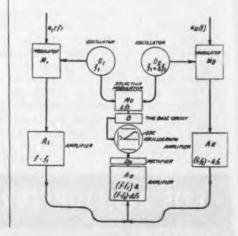

VURLIZER

THE NAME THAT MEANS Music TO MILLIONS

signal scale 18 is not fluorescent, though pointer 17 is at zero position as it would also be for exact tuning when scale 18 is fluorescent. The two voltages may connected to any one indicating device which affords two separate indication. W. L. Carlson, RCA (F) Aug. 7, 19 (1) Nov. 16, 1943, No. 2,334,473.

Phase Discriminator

One of the ac voltages, F_1 the phases of which are to be compared, is applied to plate 11 and cathode 16. The other ac voltage, F_n is shaped to produce intermittent pulses and these are impressed on the grids 13 and 14 of the twin triodewhich are ordinarily biased beyond cutoff. Upon application of a pulse to the


grids, one of the plates will pass current. depending on the instantaneous polarity of ac voltage F_1 . A corresponding voltage will be developed across condenser C, its sign and magnitude is an indication of the polarity and amount of phase displacement between the two voltages F_1 and F_2 . The voltage across the condenser will remain unchanged until one of the plates again passes current. S. H. M. Dodington, Scophony Corp. of America. (F) July 22, 1942, (I) Nov. 30, 1943, No. 2,335,265.

ELECTRONIC INSTRUMENTS

Measuring Phase Differences

The apparatus indicates the phase difference φ between waves e_1 (f) and e_1 (f) of equal frequency f. These waves are modulated with the outputs of oscillators o_1 and o_2 and amplified; the resultant waves may be considered as having the same frequency f-f₁, but a phase difference $\varphi = 2 - \varphi \Delta f_1 t$, which is a periodic function of time. They are combined, function of time. They are combined function of the they are combined in deflection plates of a cathode-ray oscillograph. Frequency Δf_1 controls a time base circuit supplying the other pair of deflection plates. The combination wave will have a maximum amplitude if $\varphi = 2 - \pi \Delta f_1 t$ is an even multiple of π and a minimum if it is an odd multiple

(Continued on page 204)

ELECTRONIC INDUSTRIES . February, 1944

THE TYPE 26-B Joudspeaker

Type 26-B Loudspeaker equipped with two Jensen U-20 Drive Units, When so equipped will handle safely power input of 40 watts. Weight 23 lbs,

> Type 26-B Loudspeaker equipped with single Jensen U-20 Drive Unit. When so equipped will handle safely power input of 20 watts. Weight 221/4 lbs.

HE Type 26-B Loudspeaker is designed for voice reproduction when used by itself. It is also excellent as the high frequency component of a wide range loudspeaking system. One Type 26-B Loudspeaker provides uniform sound distribution both as to frequency and power over a horizontal angle of 120° and a vertical angle of 40°. Made of one piece cast aluminum. 22″ wide, 14½″ deep, and 20″ high, including Drive Unit and Adapter. Supplied with heavy universal mounting bracket. Complete specifications upon request.

SOUND REINFORCEMENT AND REPRODUCTION ENGINEERING

NEW YORK 37 W. 65 St., 23 SAN FRANCISCO 1050 Howard St., 3 LOS ANGELES 1000 N. Seward St., 31

mtinued **HIGH ACHIEVEMENT**

INVEST IN WAR BONDS & STAMPS

138

6 MONTHS AGO, the men and women workers of Horni won the coveted Army-Navy "E" Award for high achievement in producing vital Army and Navy materials. These men and women and the management of Horni pledged their utmost to surpass that record. TODAY, we are pleased to announce the addition of a star to our flag, FOR CON-TINUED HIGH ACHIEVEMENT ... fulfilling our pledge. WE AGAIN PLEDGE maximum war production as our minimum goal . . . until our fighting men return victoriously.

WAR DEPARTMENT ARMY SERVICE FORCES OFFICE OF THE CHIEF SIGNAL OFFICES -

4 October 1945

Mr. Paul P. Horni, President, Herni Signal Manufacturing Company, New York, New York.

Dear Mr. Hornis

In talking recently with the Commanding General of one of our Mediterranean The-atre Army Corps here on a short trip, he impressed upon me the urgent need of mine detaction equipment of the (Consored) type. This equipment provides us a direct means of saving the lives of our soldiers.

I noted your fine production results of (Censored) in September and hope the men and women of Herai will continue to put everything you have into production this and the coming months. The need is urgent, and the more sets you produce, the less will be the paim and anguish of our fight-ing treeps everseas.

Horni

Sincerely yours, He moles

E. C. Ingles. Hajor General, Chief Signal Officer.

WAR DEPARTMENT OFFICE OF THE UNDER BECRETARY -----

28 August 1945

To the Nen and Women of the Horni Signal Nanufacturing Corp. 310 Hudson Street New York, New York

I am pleased to inform you that you have won for the second time the Army-Mavy Production Award for meritorious ser-vises on the production front.

Ton have continued to meintain the high standard that you set for your-selves and which wen you distinction more than six months ago. You may well be proud of your achievement.

The White Star, which the renos-al adds to your Army-Navy Production Award flag, is the symbol of appresiation from our Armsed Porces for your continued and determined effort and patriotism.

HORNI SIGNAL MANUFACTURING CORP.

Sincerely yours.

-# Robert P. Patterson Under Secretary of Way

NEWARK, N. J.

ELECTRONIC INDUSTRIES . February, 1944

The Horni organization appreciates the understanding and cooperation of the many municipalities, regarding their own needs for the duration.

NEW YORK, N. Y.

OUR weapons These are

• Never before in history has a war been fought with cathode ray tubes, transmitting tubes, quartz crystals, tungsten wire, X-ray equipment and other electronic devices.

But these weapons are convincing the enemies of peace that the days of reckless war-making are over. On the battlefronts, on the oceans, and in the skies all over the world, these new weapons are saving lives and winning battles for the United Nations, and bringing confusion, consternation and defeat to the enemy.

We who make NORELCO electronic products are doubly proud of these new weapons because, in addition to helping to win the war today, they are among the devices that will build a new and better world tomorrow.

For our Armed Forces we make Quartz Oscillator Plates; Amplifier, Transmitting, Rectifier and Cathode Ray Tubes for land, sea and air-borne communications equipment.

For our war industries we make Searchray (X-ray) apparatus for industrial and research applications; X-ray Diffraction Apparatus; Electronic Temperature Indicators; Direct Reading Frequency Meters; High Frequency Heating Equipment; Tungsten and Molybdenum in powder, rod, wire and sheet form; Tungsten Alloys; Fine Wire of practically all drawable metals and alloys: bare, plated and enameled; Diamond Dies.

And for Victory we say: Buy More War Bonds.

NORTH AMERICAN PHILIPS COMPANY, INC.

Executive Offices: 100 East 42nd Street, New York 17, New York Factories in Dobbs Ferry, New York; Mount Vernon, New York (Metalix Division); Lewiston, Maine (Elmet Division)

ELECTRONIC INDUSTRIES . February, 1944

chief engineer RE: Heating non-metallie materials with "Cold heat"

Westinghouse Thermo setting batted

10,000,

-300 F. Throughout material

J-08055

Jim: This Westinghouse development may be the answer to our heat-curing problems. Imagine putting stuff like plywood between two plates, and heating it uniformly to 300 deg. F. in 3 minutes, with radio waves!

NO TO

this is any now

like

paper,

ELECTRONIC INDUSTRIES . February, 1944

This thermo-electronic heating equipment generates heat uniformly throughout the material-like the "artificial fever" you read about. Best of all, there's no overheating of the outside surface and underheating in the center.

This cuts heating time as much as 95%, they claim, because you don't wait for heat to penetrate to the center-it's already there! This speeds up chemical reactions, too.

As I understand it, Jim, there are some limitations. Some materials with low "heat loss factor" like hard rubber just won't heat as fast as others. Size of surface and degree of dryness required from wet materials are other limiting factors. But aside from these, I think we should check into this. Why don't you give this thing a look?

101

eating

The modern way to test bond or contact resistance down to 0.0001 ohm.

Fast – Accurate – Easy to Use

The new Shallcross Low-Resistance Test Sets, Types 645 (Army range) and 653 (Navy range), include all of the features of the Shallcross Milliohmmeter and Aero Gun Models while providing greater portability, ease and speed of operation.

The Tester itself is supported conveniently in front of the operator by means of adjustable shoulder straps. Measurements as low as .0001 ohm are made, simply by attaching the fixed clamp to one side of the bonded surface, and touching the hardened points of the Pistol Grip Exploring Probe to the other side. The weight of the Pistol Grip Exploring Probe is reduced to a minimum by incorporating the meters, batteries, etc. in the suspended Tester cabinet.

In addition to their widespread use in testing aircraft bonding, these Shallcross Test Sets are unexcelled for testing railroad bonds, radio equipment, contact resistance of relays, circuit breakers, switches, and various others. They make bar-to-bar resistance measurements on commutators as simple as taking a voltmeter reading.

The two new models are similar, except that Type 645 (Army range) is 0.005 and 0.5 full scale, whereas Type 643 (Navy Range) is 0.003 and 0.3 ohms full scale.

WRITE FOR "BOND TESTER" CATALOG A copy of the Shallcross Low-Resistance Test Set Catalog describing these and other Shallcross models in full detail will gladly be sent on request. Write for Catalog

ENGINEERING + DESIGNING + MANUFACTURING Dept. El-24, Collingdale, Pa.

Bendix Streamlines Pacific Coast Radio Div.

Bendix Aviation, Ltd., Norh Hollywood, Calif., producer of a r-craft radio and hydraulic equipment, is now operating as the P cific Division of Bendix Aviat Corp. The change-over from Bedix Aviation, Ltd., organized sev n years ago by Bendix Aviation Corp. as a California corporation, will fect only administrative and lend Palmer Nicholls, considerations. has been made a vice-president of the, parent company. He and Mel M. Burns will continue as exc.utives in the new division, operations and personnel remaining theaffected. Principal reasons for the change are to streamline corporation activities and to avoid confusion which has existed because of the similarity in names of Bendix Aviation, Ltd., Bendix Aviation Corp., Bendix Products and other Bendix subsidiaries.

Philips Completes Removal

Offices of three of the Philips companies have been consolidated and now are located at 100 East Executives 42nd St., New York. and staffs of the wire, electronic tube, quartz crystal and Elmet divisions have been transferred from Dobbs Ferry, N. Y., though pur-chasing department and all pro-duction personnel will remain duction personnel will remain there. The industrial electronics equipment division, now at 419 Fourth Ave., has moved to the new location, as has the Philips Metalix Corp., the factory remaining at 896 South Columbus Ave., Mt. Vernon, N. Y. Philips Export Corp. has moved from the Hotel Roosevelt. the warehouse remaining at 437 Eleventh Ave., N. Y., and the service department at 40 Cedar St., Dobbs Ferry, N. Y.

RFC Money for 100 Plants

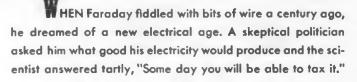
Defense Plant Corporation, subsidiary of RFC, has financed 100 plants doing radio and scientific work, according to Secretary of Commerce Jesse Jones. Last spring the number was 54, the bill being \$60,000,000. Present commitments are up nine million and a little more.

ANEPA Cuts Staff

The Army-Navy Electronic Production Agency has dropped neariy one-third of its staff, as compared with the middle of 1943. The reduction amounts to about 50 per cent in the Washington headquarters personnel, and 28 per cent in the field staff.

ELECTRONIC INDUSTRIES . February, 1944

11

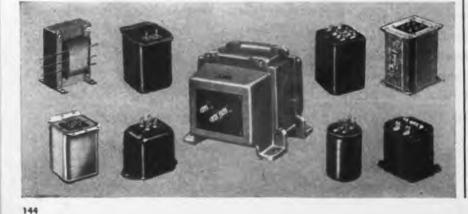

142

"THE BOSS IS POUTING BECAUSE HOGARTH WON'T TRADE HIS ECHOPHONE EC-1 FOR ANYTHING WHATSOEVER"

Echophone Model EC-1 (Illustrated) a compact communications receiver with every necessary feature for good reception. Covers from 550 kc. to 30 mc. on three bands. Electrical bandspread on all bands. Beat frequency oscillator. Six tubes. Self-contained speaker. Operates on 115-125 volts AC or DC.

ECHOPHONE RADIO CO., 201 EAST 26th ST., CHICAGO, ILLINOIS

After the war the twentieth century results of electrical science, shaped and tested by military needs, will transform the world. And at the core of this technical revolution will be the coordinator of electronic energy—the transformer. In the most literal sense, Stancor engineers are planning now to contribute fundamentally to the transformation of the future.



TRANSFORMATION

OF THE FUTURE

Transformers * STANDARD TRANSFORMER CORPORATION 1500 NORTH HALSTED STREET - CHICAGO

Speed Made Reeves VP

Hazard E. Reeves, executive vicepresident, Reeves Sound Labor. -tories, 62 W. 47th St., New York 19, N. Y. announces the appointment of William C. Speed as vice-presdent in charge of manufacturing. Mr. Speed, who has, since the coganization of the Reeves company, been identified with crystal production, is a director of the company as well. He is also vice-preident of Audio Mfg. Corp., Stanford, Conn., and New York. Prior to his present work, Mr. Speed w s associated with the Vitapho Corp., Paramount Studios. Paris

Harper with Haines

S. M. Harper, one of the deans among manufacturers' representatives, is now general manager and chief engineer of the Haines Mig. Co., Brooklyn, N. Y., manufacturer of laboratory apparatus and highfrequency heating equipment.

Salinger at Farnsworth; Henroteau Added to Staff

After a year's absence devoted to specialized instructional work at Indiana institutions, Dr. H. Salinger has returned to Farnsworth Television & Radio Corp., Fort Wayne, Ind., and will take up active work in that company's research laboratories. At the same time, Dr. Francois C. Henroteau has been added to the Farnsworth research staff. Dr. Henroteau was for 14 years, chief of the astro-physics division of the Dominion Observatory in Ottawa and is well known for his astro-physics and television research work.

Dr. H. Salinger who has returned to research duties for Farnsworth ELECTRONIC INDUSTRIES . February, 1944

FOR A MODERN . . . WAR HORSE

The ignition harness can well be described as an airplane engine's nervous system. One of Connecticut Telephone and Electric Division's latest war assignments is the production of this assembly for the manufacturer of a world-famous aircraft motor.

"Connecticut" war production also includes military field telephones, head sets, switchboards, electronic devices and special ignition parts.

A pioneer in communications and ignition systems, this division of Great American Industries, Inc. is geared for advanced engineering and manufacturing of precision electrical parts and equipment. When you are planning electrical or electronic improvements in

your postwar products or manufacturing methods, our development engineers are ready to offer constructive help.

CONNECTICUT

VICTORY AND JOBS AFTER VICTORY depend on holding the line against inflation. Never bid up a price: never buy what you don't need; make war bonds your investment in tomorrow.

CONNECTICUT TELEPHONE & ELECTRIC DIVISION

MERIDEN *

(1944 G. 4. 1., Inc., Meriden, Conn.

Engineered for FASTER CONTACT BREAK

You can now design your product for better Snap Action Switches.

- 1. Better contact pressure is maintained until the snap-action is actually begun.
- 2. The contacts break with maximum accelerating force.

Those two facts account for the rapidly rising preference for ACRO-SNAP Switches. The spring forces involved are engineered to compel one spring to "trigger" the other. So regardless of how slowly the actuating member is operated, the contacts break with optimum acceleration. Careful analysis also shows that good contact pressure is maintained until the snap-action suddenly takes place. These facts are borne out by laboratory tests in industry and by record breaking performance in all branches of the Armed Forces. In writing, kindly explain details of applications you contemplate.

ACRO ELECTRIC COMPANY 1308 Superior Avenue, Cleveland 14, Ohio

Power Tube Division Added by Machlett

Machlett Laboratories, Inc., which has its home office in Springdale, Conn., has opened a power tube division in Norwalk, Conn. Machlett is the pioneer producer of X-ray tubes in this country, and for a number of years has been a leading source of supply of tubes for the X-ray equipment industry here and abroad.

The production of X-ray tubes demands the utilization of an 15sortment of specialized skills and talents which extend considerably more deeply into the fields of glass fabrication, metallurgy, and highvacuum technic than do other conventional branches of electronics. The reason lies in the fact that X-ray voltages (50,000 volt upward into the millions) are so much higher than those heretofore encountered in most electronic devices. However, many of the new applications now being developed under pressure of wartime needs are based on the use of elevated voltages, thus imposing sharp new requirements on tubes for their operation.

Apply X-ray tube technic

To get some of these devices out of the laboratories into large-scale use in the field has been largely a problem of tube production. By the application of X-ray tube production technic to this problem, Machlett Laboratories have demonstrated remarkable capacity in relieving this bottleneck.

The beginning was made in their Springdale plant, but the need for additional facilities to be devoted specifically to the production of tubes other than X-ray types soon became apparent, and led to the establishment of the plant in Norwalk. Work on the new plant was started late in 1942, production on a pilot scale was started in the Spring of this year, and full-scale production of several badly-needed tube items for the U. S. Signal Corps and the British Air Commission has been in progress for some time.

Machlett Laboratories have indicated that they expect the added laboratory facilities and additional production capacity to enable them to develop and make available still more advanced types of X-ray tubes after the war. They also expect to offer a comprehensive line of tubes of the high-power, highvoltage and ultra-high-frequency varieties.

Westinghouse Men Move

Editorial Service of Westinghouse Electric & Mfg. Co. has been moved to the Park Building, Pittsburgh. The new address is 306 Fourth Ave.

ELECTRONIC INDUSTRIES . February, 1944 ELE

FIGHTING COMPONENTS for FIGHTING EQUIPMENT

In the vanguard of invasion, you'll find the SCR-299 Mobile Radio Unit built by Hallicrafters—and, in

this famous unit, you'll find B & W's specialized facilities well represented.

Standard B & W Air Inductors with rugged, armor-type construction take competent care of all amplifier plate coil requirements. Not only is the complete Antenna Tuning Unit a product of the specialized B & W

facilities for electronic equipment production, but B & W engineers collaborated closely with Halli-

crafters on its design and construction details.

Proud of their part in the SCR-299, B&W engineers welcome similar assignments where the utmost in performance, ruggedness, and dependability are prime considerations.

ER & WILLIAMSON

FAIRFIELD AVENUE, UPPER DARBY, PA.

AIR INDUCTORS · VARIABLE AIR CONDENSERS ELECTRONIC EQUIPMENT ASSEMBLY

Exclusive Export Representatives: Lindeteves, Inc., 10 Rockefeller Plaza, New York, N. Y., U. S. A. ELECTRONIC INDUSTRIES & February, 1944

... 6 diameters, & faces

There can be no let-up to the ever-increasing bomb-loads that America's smooth-working planes must dump on the enemy. The outstanding performance of these great bombers and fighters is a tribute to American Industry.

The magneto-shaft illustrated is only a small part of a complicated aircraft engine, but it is typical of the careful machining that is bringing our boys back alive from so many dangerous missions. This shaft must be cylindrically-ground on 6 different diameters and 4 separate faces, and both the faces and the diameters must be ground to a 12-16 micro finish.

Ace has learned a lot from the exacting standards of production for war. The knack, and the modern machinery that have made possible mass-production methods without sacrificing high standards of accuracy, open new possibilities to post-war manufacturers.

If you are thinking in terms of small parts that call for stamping, machining, heat-treating, or grinding, it will pay you to consult with Ace. Quotations from samples, blueprints, or sketches.

The complete story on Ace facilities and capabilities. Send for a copy.

1239 E. ERIE AVE., PHILADELPHIA 24, PA. 148

MICHIGAN'S FM STATE POLICE SYSTEM

(Continued from page 95)

All transmitters in the Michigan State Police system are phase-modulated. A pair of 7A8 balanced modulators produces approximately a 400 cycle phase upset of the output of the crystal oscillator. This, when multiplied 32 times throughout the following quadrupling stages, produces a 15 kilocycle deviation each side of center carrier frequency.

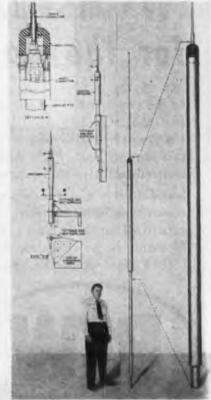
Fixed transmitters

Two sizes of fixed station transmitters are in general use in the system. For the smaller areas, 50 watts output is used, while the larger produce 250 watts. Both are now standard Motorola FM transmitters and need no further description with the exception that they were specially constructed to allow installation of two receivers to facilitate reception of split frequency operation.

At the outset of the program, after the engineering and design requirements were standardized and specifications created, the state police engineers started the tremendous task of field surveying each location to determine what was needed in the way of power, antenna height, and location, so as to cover adequately each area two-way with the patrol cars, and to furnish reliable point-to-point communication between East Lansing and the district headquarter stations.

At each survey the initial objective was to cover the area with a minimum amount of power in order to lessen sky-wave or skip interference as well as interference between network stations. Actual test communications were conducted at each proposed antenna site with portable equipment. Field measurements were taken and the height of the antenna tower thereby computed. The actual location of the tower was dependent upon the noise level.

In many cases the station was built five to ten miles from the control point, at great expense, involving property procurement and control line rental, in order to insure perfect coverage. An attempt was made in each instance to increase the antenna height or improve the location, rather than increase the power output. A coaxial antenna is used at all stations and is fed by 7% in. concentric, gas-filled transmission line.


Due to the long distances of communications from Michigan's patrol cars, as much as 50 to 60 miles in many places. it was decided to standardize upon a power output of 50 watts for all mobile

transmitters. This transmitter u s a pair of 807 tubes in the output stage and, when using the receiver power to supply current to stages preceding the final amplifier, a power output of 60 or 65 watts is realized. This also has now become a standard Motorola mobile transmitter.

All mobile antennas are ¼ ware roof-top-molybdenum steel rolls mounted through the center of the top upon a coiled spring which allows them to strike obstructions without damage. They are fed with Copalene concentric transmission line. Due to a slight mismatch between the transmission line and antenna, standing waves appear upon the line which result in points of high and low impedance. For this reason, the length of the line is critical and it must be terminated at an impedance slightly higher than its characteristic impedance to match the base of the whip.

All mobile units are first mounted upon a piece of % in. treated plywood covered with copper screen. This, in turn, is floated in rubber mounts on bolts which have been electrically welded to the floor of the trunk compartment. This method has proved superior to screwing the base plates directly to the metal floor, especially from a water damage standpoint.

All fixed stations operate upon a frequency of 37,500 kilocycles, while mobile units transmit on 37,380 kilocycles. This split frequency

Type of conxini antenna used in Michigan FM police system ELECTRONIC INDUSTRIES • February, 1944

EL

INSTALLED THE STATE-WIDE 3-WAY F-M POLICE RADIO SYSTEM FOR THE STATE OF MICHIGAN

Matopola

STATE OF MICHIGAN COMPLETELY COVERED

> 45 CENTRAL STATION TRANSMITTER - RECEIVER UNITS AT POLICE POSTS THROUGHOUT THE ENTIRE STATE OF MICHIGAN

MFG.

REMOTE STATION HOUSING TRANSMITTER AND DUAL RECEIVERS AT BASE OF ANTENNA TOWERS

GALVIN

260 PATROL CARS USING 50 WATT TRANSMITTERS AND 2 CRYSTALS FOR DUAL-CHANNEL 3-WAY OPERATION

CORPORATION · CHICAGO

EL CTRONIC INDUSTRIES . February, 1944

everything that is best in means performance, long life and dependability ର

Filters and Transformers For Your Particular Problems

Through years of exacting experience has come the built-in performance standard that has made ADC Filters and Transformers the choice of men who know "what's what" in this field. Dependability is the watchword of every Filter and Transformer bearing the ADC mark...high operating efficiency is the inevitable performance record. If you have a critical design or production problem...something unusual...something that calls for more than the ordinary, then pin your faith to ADC Products. They will never fail you because they are dependable under all service conditions.

> In addition to Filters and Transformers, Audio Development Company manufactures an extensive line of specialized communication components reactors, equalizers, key switches, jacks, jack panels, plugs and other electronic equipment.

150

Audio Development Co.

2833 13th Ave. S., Minneapolis, Minn.

operation for a system of this magnitude has advantages, particul rly in that at no time can another fixed station cover up the weak fanals from a mobile unit which may be operating at the area fringe. It does, however, eliminate car-to-car transmissions due to the fact that all mobile receivers are tuned to 37,500 kc, while transmitters operate upon 37,380.

Each fixed station is equipped with a switch which allows the perator to cut off his 37,500 kc fixed station receiver which is at the transmitter remote location. This leaves only the output of the mobile receiver on the control line and greatly facilitates copying a mobile unit with a weak signal. This is seldom used, however, for all mobile receivers are adjusted with higher audio gain which results in mobile signals predominaing over fixed station transmissions.

As car-to-car transmissions may at times be highly important, Michigan has installed the extra 37,500 kc crystal in each car, which may be switched into the circuit by a small push-to-hold switch mounted upon the control head at the driver's fingertips. As the two frequencies are but 120 kilocycles apart, the various tank circuits in the transmitter are able to follow this frequency change with but little loss in efficiency. Reliable car-tocar transmissions are possible over distances up to 20 miles, and even beyond, when one of the cars seeks a more favorable location from which to operate.

Little interference

In spite of the unusually large number of stations operating in the Michigan system, all on one frequency, very little interference is encountered. In the Detroit area. for example, four class B stations (250 watts of power and 200 ft. towers) operate within a 40-mile radius, all able to cover Detroit's highly industrial area. Ten to twelve patrol cars operate out of each station, without interference from any one of the other stations. At all times they can communicate with any one of the other stations. However, when their own station transmitter comes on the air, it completely obliterates the other three. This is due to the well known characteristic of FM, in which the strongest signal takes control. This again calls for a comprehensive study in the design, antenna location, and height, as well as the power output of any multi-station system. As long as a 2 to 1 power ratio is maintained, no loss of communication will result from other transmitters in the system.

This immediately creates a reason for single frequency operation

ELECTRONIC INDUSTRIES . February, 1944

MEDIUM TANK, M-4 PHOTO BY US ARMY SIGNAL CORPS

BUTTONED DOWN and ROLLING

Rolling all over the world. Hitting the enemy where it hurts him the most, covering infantry, scouting, fighting. Fighting and talking. Talking by radio to coordinate all in a pattern of Victory.

151

ELECTRONIC INDUSTRIES . Fobruary, 1944

We'll help you MAKE 'EM LAST

Pincor's number one job right now is to supply fighting men with fighting tools. Our plant is on an all out war production schedule but our service department is pledged to make your present Pincor equipment last for the duration. Bring your service problems to us-but please bring only Pincor problems; there just aren't enough hours in the day to take care of any others. DYNAMOTORS . . CONVERTERS . . GENERATORS . . D C MOTORS . . POWER PLANTS . . GEN-E-MOTORS

PIONEER GEN-E-MOTOR 5841 WEST DICKENS AVENUE, CHICAGO 39, ILL. Export Address: 25 WARREN STREET, NEW YORK 7, U.S.A. · Cable Address: SIMONTRICE, NEW YORK BUY MORE BONDS!

for not only state systems but all stations in a county network or city network which will definite eliminate, once and for all, the ism lated communication problem Re have at the present time by the adoption of separate and rando: channels of communication by adjacent county or city instrumental ities.

The Michigan State Police has program now underway whereby new city and county FM installations are adopting the frequen of 33,100 kilocycles. This is result ing in a city and county network that is highly mobile and efficient in combating rapidly moving criminals. It provides constant emergency communication to all mobile units which may, when necessary leave their own area and travel in other sections of the state so equipped. It further provides simplification of the State's monitor and communication problem with these county and city agencies Under this system only one receiver operating on 33,100 kc will be required in each state station; whereas, at present they are compelled to install as many receivers as there are frequencies in operation.

System operation

The entire radio system revolves around the headquarters station at East Lansing. Here there is a five thousand watt amplitude modulated transmitter on 1642 kc, a 500 watt radio telegraph transmitter for inter-state traffic and the 250 watt FM transmitter for two-way communication. At Houghton Lake there is another five thousand watt AM transmitter and at Paw Paw a 1000 watt unit. These serve as relay points for the East Lansing station.

The hub of the system is the dispatch office, manned twenty-four hours a day by uniformed dispatchers with many years' experience in the police field, civilian

			OD RANTER	ART REPORT	Dut
		-	- 24		
	****	- Parts -	First Br .		
. her					
-1-		- 14.0		_	-
-	-	No. 1	M Lon		22
-					-
	BRE AND INCOM	-			
				- Bet Dolati	Line -
	-	Tele		Ten las	
las.		-		-a	Raine
	-		1	Read	- Per Lans
	-	-			
-					And Anno
-		WTARA	or anti-		
-		WEYADA	or annos		
N.H.				orm t	66.100

SIMPLER MORE COMPACT HIGH CURRENT CIRCUIT SWITCHING

ALL CERAMIC, HIGH CURRE

witche

Never before have load-break switches with so many high current taps been so compactly arranged, yet perfectly insulated. They simplify bigb current circuit switching and provide greater operating convenience in a variety of applications. These non-shorting, single-pole, multi-point rotary selectors are made in 5 models, rated at 10, 15, 25, 50 and 100 amperes, 150, 300 volts A.C.-from 134" diam. to 6" diam.with any number of taps up to 11, 12, 12, 12 and 8 respectively. May also be used on low voltage D.C. at reduced current ratings. Two or three units can be connected in tandem to form multi-pole assemblies. For full details, write for Tap Switch Bulletin.

Send for Catalog and Engineering Manual No. 40 Write on company letterhead for your copy of this most complete, helpful guide in the selection and application of Rheostats, Resistors and Tap Switches.

OHMITE MANUFACTURING CO. 4994 WEST FLOURNOY STREET . CHICAGO 44, U.S.A.

Features

- * Ceramic Construction ★ Compact, All-Enclosed
- ★ Slow-Break, Quick-Make
- * Silver-to-Silver Contacts
- ★ Self-Cleaning Action

RIGHT WITH

- Low Contact Resistance
- 🛨 Cam & Roller Mechanism
- ★ High-Strength Ceramic Hub
 - ★ Insulated Steel Shaft
 - * Back-of-Panel Mounting

HOW PRE-WAR EXPERIENCE PAVED SANBORN'S WAR-WORKING WAY

Sanborn Company's part in helping to produce vitally important victory equipment was "in rehearsal" prior to the war. Into each piece of communication war device that Sanborn produces today for the Army and Navy goes the result of a qualifying experience.

For seven years prior to devoting our complete facilities to war production, Sanborn electronic and electro-mechanical engineers had developed and produced several types of vacuum-tube electrocardiographs which have been recognized by the medical profession as leaders in their field. That was the electronic chapter of Sanborn's 25-year experience in the design and manufacture of medical diagnostic instruments. And today, new chapters are being written by our electronic engineers in their work for the armed forces, whose requirements of precision were found to be no more exacting than those of the medical profession.

Past electronic successes, plus the ever widening knowledge gained by present assignments, are bringing to Sanborn Company increased recognition in the research, development, and production of electronic-mechanical instruments of precision. Should such problems arise in your work, Sanborn will be a name to remember.

SANBORN COMPANY MAKERS OF ELECTRONIC INSTRUMENTS CAMBRIDGE 39, MASS. telephone operators, radio operators, and clerks.

For administrative purposes the state is divided into eight districts. In each district is a district headquarters station which has supervision over from 1 to 7 sub-stations. The headquarters dispatch office at East Lansing has direct contact with each district headquarters with the exception of district numbel 8 which is reached by relig through Houghton Lake. Thus it is fairly simple to route traffic from sub-station to district headquarters and thence to dispatcher. Information going back to a sub-station may follow the same channels or go direct over the 1642 kc network. Many of the sub-stations are heard at East Lansing so that much of their traffic can be handled direct, with the district station copying for record purposes.

Traffic routing

The dispatch office is a supervising agency with full authority, as well as a coordinating office and information center. The dispatcher's authority over all movement of mobile equipment is absolute and can be questioned only by the Commissioner or the superintendent of the uniformed division. With this authority goes also a very large measure of responsibility and for that reason great care is used in the selection of this personnel.

All traffic coming to or going from the dispatch office must go over the dispatcher's desk. Here records are compared on thousands of file cards which are constantly being made, revised, or cancelled. The information gained through these operations is passed on to other departments as the case may indicate.

The dispatch office has access by telephone to all state departments in Lansing. The records on automobile and operator licenses are available 24 hours a day and in an emergency the dispatcher can locate practically any state official needed. The files of the record bureau, identification bureau, detective bureau and other headquarters offices of his own department are accessible to him at any hour when an emergency demands.

Car spotting

A large map of the entire state is maintained in the dispatch office upon which the movements of cars are recorded. For this purpose the state is divided into patrol areas, each distinguished by a letter and number. As cars go out on patrol from their various stations the dispatch office is notified by radio and these car numbers are pinned on the map at the appropriate location. The dispatcher

ELECTRONIC INDUSTRIES . February, 1944

Thumb screw holds down plate and actuates Micro Switch

idea or original

Charles Bruning Company Uses Two

Micro Switches

to Provide Utmost Protection

to Operator of Bruning Printers

Fibred left side of Model 75 bringe Schieb Ansoel

of Micro Switch. A second Micro Switch is on the right side. The basic Micro Switch is a thumb-size, feather-light, pl

The basic Micro Switch is a thumb-size, feather-light, plastic enclosed, precision, snap-action switch, Underwriters' listed and rated at 1200 V.A., at 125 to 460 wits A.C. Capacity on D.C. depends on load characteristics. Accurate repeat perfermance is experienced over millions of operations. Wide variety of basic twitches and actuators meets requirements varying from high vibration resistance is estimated for a force and motion as low as 2/1000 Oz. In. Many toos of metal housings are available. Charles Bruning Company of Chicago are the manufacturers of Bruning Printers and Developers, widely used by engineers and draftsmen in every branch of industry. Bruning Printers, which produce black and white prints, are compactly built to do a big job in small space.

The thumb-size, feather-weight Micro Switch is a natural complement to such a design, and the Charles Bruning Company uses two Micro Switches to provide utmost protection to the operator.

The two Micro Switches are located at each end of the Bruning Printer to make it impossible to remove the end plates, which shield the quartz lamp, while the lamp is still burning. This is accomplished by so locating the thumb screws, which hold the end plates in place, that they cannot be turned without actuating the Micro Switch and automatically disconnecting the power from the quartz lamp.

This use of Micro Switch by the Charles Bruning Company is typical of the varied applications in which this small, compact, precision switch is filling the needs of industry. Wherever space is at a premium, wherever small movement and small energy are vital factors in design—Micro Switch has come to be recognized as the one precision switch that will best meet all requirements.

Micro Switches represent a distinct saving in engineering expense over the cost of specially-designed switches. They insure a better product because they are absolutely dependable for millions of accurate repeat operations. The basic Micro Switch is no larger than your thumb— $11/16'' \equiv 27/32'' \ge 1.15/16''$. It weighs only an ounce.

With Micro Switch it is just a matter of naming your requirements. Micro Switch can meet them. It is available in over 2000 different combinations of electrical characteristics, housings, and actuators.

Does your design call for the unusual in precision switching? You can count on help from Micro Switch. Send for Micro Switch Handbook Catalog No. 60. For full information on aircraft design you should have Handbook Catalog No. 70. too.

Buy all the Bonds you can!

Micro Switch Corporation, Freeport, Illinois - Branches 43 East Ohio Street, Chicago (11) • 11 Park Place, New York City (7) • Sales and Engineering Offices: Boston • Hartford • Los Angeles

The trademark MICRO SWITCH is our property and identifies switches made by Micro Switch Corporation.

therefore knows the approximation of all state police cars a all times when they are on patrol

The dispatcher's desk is in the center of a large room, with the switchboard office and the radio phone and radiotelegraph room opening from it. It is set up in duplicate so that two officers ca operate it at one time, each havin ready access to all controls and telephones. There are also a third and fourth position which have a cess to the telephones.

The dispatchers can broadcast on either the FM two-way system of the one-way AM or on both at ontime. Or one can be operating the FM while the other is putting out an emergency dispatch to all car and stations on the 1642 kc transmitter. Ordinarily the radio operator handles most of the traffic on the 1642 kc system, but when seconds count, as they quite often do in this work, the dispatcher uses that method for the first broadcast. The operator copies and repeats.

The East Lansing post of district No. 1, located in another building uses the same FM transmitter that is used in the dispatch office. Duplicate control consoles answer this requirement and it is seldom, if ever, that both offices really need to go on the air at the same time

Engineers' duties

In order to maintain this vast system of communication, a field engineer is assigned to each engineering district. He operates out of the district headquarters station servicing from 6 to 8 fixed stations and 40 to 50 mobile units. Each engineer is supplied with a two-way equipped automobile and a complement of testing equipment including tube testers, oscillators, meters, frequency excursion indicators, as well as complete frequency measuring equipment.

All equipment, both mobile and fixed, is checked and the frequency measured at least once every two months. An engineering report is filled out after each such routine check and is sent to engineering headquarters at East Lansing, where it is carefully tabulated for cost and the use of expendable parts. Thus, through this system, any unit which is costing too much becomes immediately apparent, and the Chief Engineer may order it removed from service and sent to the East Lansing laboratory for analysis.

A two-man tower crew is employed the year around to maintain the 45 radio towers and the 10,000 ft. of % in. gas-filled coaxial transmission line. They have a specially designed truck equipped with a winch and all necessary tower maintenance materials.

As the communications channel map indicates, some point-to-point ELECTRONIC INDUSTRIES • February, 1944 ELECTRONIC INDUSTRIES is published under wartime conditions in conformity with all government regulations controlling the use of paper and other materials

Paper tonnage used in this issue is actually less than that used in our small initial issues of 1942, the base year for computing paper quotas.

ELECTRONIC INDUSTRIES' paper stock is lighter in weight and its dimensions are smaller because this magazine is conforming with the spirit as well as the letter of the government regulations. These regulations, while uniform in principle, do not affect all business magazines alike, being applied to publishers rather than to individual magazines.

Having published only its first three issues in 1942, ELECTRON-IC INDUSTRIES has had an unfavorable base which makes its present paper usage less than that of an older contemporary. When paper restrictions are removed, ELECTRONIC INDUSTRIES will return to its former standards of paper quality, weight and page size.

The Publishers

Felsenthal PLASTICS

...are on every fighting front

In Radar, Communications equipment

> Tanks, Jeeps and other Ordnance

> Submarines, Ships and Landing Craft

> Transport, Fighter and Bomber Planes

You will find calibrated dial faces printed as well as screened, plain and fluorescent, for top lighting and back lighting, flat and formed to shape, laminated and unlaminated . . . and name plates for all types of apparatus...and crystals (transparent windows) over dials... and maps printed on transparent plastic . . . templates and protractors for plotting ... and computers to help our navigators and bombardiers to get them there and bring them back and hundreds of other special parts flat, formed and molded.

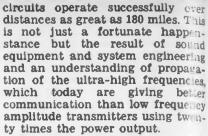
Our experience in producing these precision parts in plastic is available to you too. Write for our Booklet No. 2B. It will give you a better understanding of how and why we can work with you on your War... and your Post-War... requirements.

G. FELSENTHAL & SONS Manufacturers Since 1899 4108 W. GRAND AVENUE • CHICAGO

157

n the

their extra sensitivity, wide frequency response and high operating efficiency provide improved intelligibility and greater safety at all altitude levels.


BUY WAR BONDS FOR VICTORY!

4916-22 W. Grand Ave., Chicago 39, Ill.

PIONEEL MANUFACTURINE OF PREMAMINE MAGNET OYNAMIC TRANSDUCED

PERMOFLUX

CORPORATION

The results of careful pre-installation planning and engineering are amply repaying the State of Michigan. Coverage and point-topoint circuits of communication perform in exact accordance with the original specifications created on paper at the outset. Two-way mobile communication is absolutely solid up to and including their minimum requirements of 40 miles from fixed stations. Where this radius, by necessity, had to be increased to handle a larger area, careful thought, planning, and engineering made it a reality.

Additional plans are underway to make the state headquarters at East Lansing even more capable of complete supervision. A 400 ft. tower has been erected at a remote location, free from man-made and electrical interference. Present indications are that coverage from this antenna will be exceptionally good and that the value of the entire system will be substantially increased.

Editor's Note — Oscar G. Olander, State Police Commissioner, has directed this program from its inception. Captain C. J. Scavarda, Communications Officer of the Department, and Chief Dispatcher William W. Bouck have been responsible for the immediate supervising of all activities. All technical and engineering details have been handled by Chief Engineer Frank W. Walker. Professor Daniel E. Noble, Director of Research for the Galvin Mfg. Co., Chicago, collaborated on technical design.

HF HEATING

(Continued from page 83)

has been established, we can then check our assumption of a value of power factor, and allow a factor of safety for voltage determined by conditions. For instance, voltage should be lower than shown for wood gluing operations where squeezed-out glue will reduce the breakdown voltage; higher frequency is then indicated. The feasibility of the application is immediately determined from the standpoint of generating equipment.

This determination of power and frequency is made as simple as it is by the assumption of constant power-factor with frequency. Published tables of this quantity for a wide variety of materials, as well as measurements in our own labor-

ELECTRONIC INDUSTRIES . February, 1944

CONTRACTOR CONTRACTOR

End of an Enemy

In a split second this enemy plane will be blasted from the skies by a shell from one of our antiaircraft guns on the ground.

How can a gun hit a plane going 300 miles an hour 20,000 feet up...when it takes the shell 15 seconds to get up there and in that time the plane has gone more than a mile? Besides, the shell curves in its flight. Wind blows it. Gravity pulls on it. Even the weather affects its velocity.

The answer is the Gun Director — an electrical brain which aims the guns. Swiftly it plots the plane's height and course. Instantly it solves the complex mathematical problem, continuously matching the curved path of the shell to the path of the plane so that the two will meet. It even times the fuse to explode the shell at the exact instant.

The *electrical* Gun Director has greatly increased the deadliness of anti-aircraft gunfire. Developed by Bell Telephone Laboratories and made by Western Electric, it is one of many war weapons now being produced by the peacetime makers of Bell Telephones.

Until the last enemy plane is knocked down, buy War Bonds regularly—all you can!

159

LECTRONIC INDUSTRIES . February, 1944

ing) for continuous operation. Solder or screw terminals. Signal colors: Red, amber, white, green. Suggested Aircraft Applications:

LANDING	GEAR	OIL PR	ESSURE
RUNNING	GEAR	RAD	010
OXYGEN	FLOW	FUEL PR	ESSURE
	"BOMBS	AWAY"	

Withstands Shock in Industrial Uses

Meets need never before supplied in industry—dependable indication where filament lamps are liable to fail under shock and vibration. For electrical manufacturing simultaneous readings on test equipment —railways, etc.

SEND FOR SIGNALETTE BULLETIN Ask for Engineering data. Outline needs for test samples. Address El Monte Office.

atory, show that it is always useful for the purpose of making an estimate of the feasibility of a dielectric heating application. Borderline cases—that is, where the problem requires frequencies near the limit of present-day generating equipment—demand further investigation, usually in the form of experiment, to arrive at a final decision.

The simple multiplications and divisions involved in computing operating parameters for a dielectric heating application can most easily be carried out on the nomographic chart which has been prepared for the purpose.

Two disturbing factors enter into many dielectric heating applications, namely, water and air. The first makes the power requirement higher than calculated from the specific heat of the material, even when present in small percentages. It is often necessary to raise the temperature well above the boiling point; under this condition a moisture content of 10 per cent will double the power requirement if the material is porous enough to allow the complete escape of the Although the presence of water. water raises the power factor and thereby reduces the number of load circuit kwa required, this effect is almost always over-balanced by the increased kw requirement. When water is present in localized regions in the material, it may cause an uneveness in heating that will vary in magnitude according to the manner in which the wet spots enter into the electrical field.

Effect of dampness

To generalize, it may be said that when the damp region is essentially in shunt with drier parts. the excess power taken by it tends to equalize temperature rise, whereas a layer of high moisture content in series with a layer of low moisture content may well cause over-heating of either. An instance of the first case occurs when a laminated wood structure is heated with the lines of electric flux extending parallel to the plane of the boards: here relatively dry boards and wet glue lines are in a parallel relationship as far as current flow goes, and more power is absorbed by the glue. This may be sufficient to raise the temperature of the glue more rapidly than that of the wood until the water is boiled out of the glue line, after which power absorption swings over to the wood and at elevated temperatures, say 275 deg. F. practical equality of temperature will exist. On the other hand, it is possible,

if proper precautions are not taken in certain drying operations to produce wet and dry layers in series relationship as regards current flow, with the dry layer taking

more than its share of the power. One case of this went to the extent of producing a red hot surface on a block of asbestos-like material while the core remained damp and cool. Such a condition is far from typical of drying by rf, but is mationed to illustrate what may be encountered.

Getting power in

Air enters into the dielec ic heating picture because of its ffect on maximum operating voltage. It usually is necessary that the condenser plates extend to or beyond the edge of the block being heated, so that breakdown between the electrodes is determined by the dielectric strength of the air. We are much more limited as to voltage if a series air gap becomes neces-For dielectric materials of sary. low power factor, say below 10 per cent, the gradient in the air gap is proportional to the square root of the dielectric constant;

$$\frac{E_{A}}{D_{A}} = .84 \times 10^{6} \times K \% \sqrt{\frac{Watts|cu. ln}{P.F. \times F.}}$$

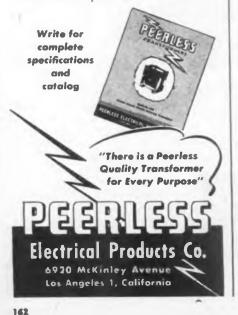
whereas for dielectric heating with plates in contact with the work, the gradient is inversely proportional to the square root of the dielectric constant. The ratio of the gradients in the two cases is then seen to be the dielectric constant.

Tight coupling required

The problem of getting power into dielectric materials becomes one of feeding a capacitive load of a power factor ranging between wide limits and of a value of capacity that may vary from a few micromicrofarads to several thousand. The generator proper consists of a vacuum tube oscillator operating at plate voltages of, say, 5,000 or 10,000. Where the voltage required at the load is below the plate voltage, tight coupling to the tank circuit, either by the mutual between the tank coil and a secondary or pickup coil, or by direct coupling to a tap on the tank coil, and parallel resonating of the load capacitor, offer the simplest means consistent with flexibility. Series resonating of the load when the capacity is small is generally used when an rf load voltage higher than plate voltage is required. Quarter wave lines or equivalent networks for impedance inversion and matching are also useful.

Turning now to heating of conducting materials, we will recall that the statement was made tha a high degree of localization could

ELECTRONIC INDUSTRIES . February, 1944


and Television Equipment

Outstanding quality is maintained through Peerless design, the development of special winding and impregnation equipment and rigid adherence to difficult specifications. Peerless Stock Transformers are available in a broad range of designs and capacities.

Equipment

Peerless is now building special transformers for Aircraft and other military equipment. These transformers are designed for light weight, small size and protection against moisture or exposure to any climate. Special transformers will be built to your specifications, for similar military services.

be obtained. This is made possible by the attenuation suffered by alternating magnetic fields in conductors, and is a function of the electrical characteristics—resistivity and permeability—of the material, and of frequency.

As in the heat flow problem, our thinking can be much simplified by reducing the problem of calculating the penetration of varying flux inward from the surface of a conductor to a line problem, the equivalent line consisting of the inductance per unit length and the shunt conductance per unit length of the material. We then have a line containing one reactive component per element of length and one resistive, just as we had in the case of the heat flow analog. The transmission characteristic can then be expected to be similar, and because the interchange of position from shunt to series of the reactive element cancels the change in its sign, the attenuation and phase shift constants turn out to be identical in form.

Frequency requirements

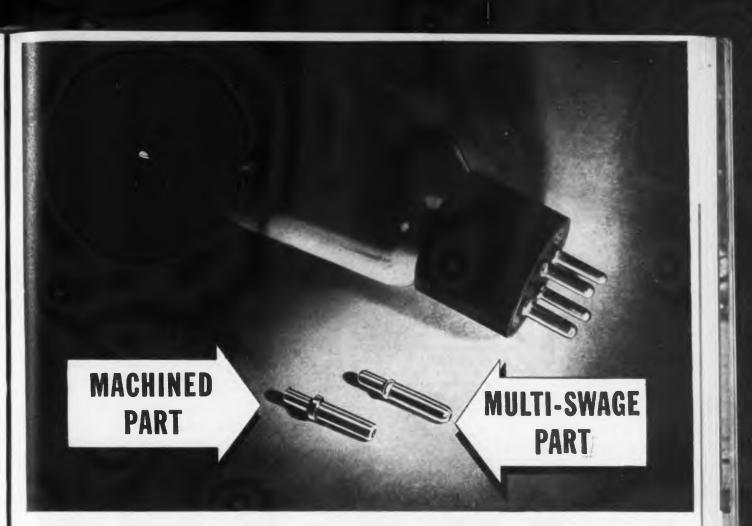
The steady state solution is all we need to know here, so substitution of values of series inductance and shunt conductance in the expression for attenuation yields the penetration depth, as usually defined, by solving for the case when the attenuation equals one neper. The frequency requirement for induction heating applications is now apparent: if the magnetic flux is entirely dissipated in the metal, there will be as complete absorption of the incident energy as possible. As a practical matter, the frequency should be high enough so that the penetration depth is small compared to half the thickness of the piece being heated.

It is of interest to note what happens to the penetration depth in the induction heating of steel for hardening. The temperature to which it is necessary to go to harden is so high as to raise the resistivity almost ten times while the permeability is falling to that of space. Between the two effects a ten to thirty times increase in penetration depth occurs. At a megacycle, actual values for steel are 1.5 mils at room temperature and fifty mils at temperatures above the Curie point. The value of penetration depth given for the cold steel is based on the full value of permeability.

In hardening by the self-quenching process, the power concentration may be as high as 500 kilowatts per cu. cm. This throws an interesting sidelight on the role of hysteresis losses. If we take the Steinmetz coefficient of hysteresis loss for an ordinary steel and apply it to a calculation of loss per cu. cm. for saturation value of

magnetization, we get a maximum value of hysteresis loss of something like five thousand watts per cu. cm., or one-half of one per cent of the total. It becomes evident then, that we are dealing with eddy current heating only. The conclusion to be drawn as to the effective permeability is that it is practically unity, and our calculations of penetration depth should be modified accordingly, to yield a value of five to ten mils for st el at room temperature, at a megacycle.

The effect of frequency on distribution laterally of the current under an inductor cannot be estimated by the simplifying procedure of reducing it to a line problem; it must be treated as a field problem and therefore remains correspondingly complicated. It can be said, however, that the penetration depth is the scale factor that applies, so that frequency enters in a square root relation.


For experimental confirmation. a series of hardening tests was run on samples of plain carbon steel at two frequencies: one-tenth and one megacycle. The chief results of these tests show that at the higher frequency, full hardness can be obtained down to a thickness of five mils, but that the minimum thickness obtainable at .1 mc. is something like twenty mils. From the power requirement of 500 kilowatts per cu. cm., or 10,000 per sq. cm. of surface, it is evident that not many sq. cms. can be treated at a time. It then becomes necessary to heat only a small portion of the piece at once, and cover the whole area progressively (Fig. 3)

Depth of hardening

This particular application of induction heating, that is, surface hardening by self-quenching. makes necessary the use of frequencies in the range between 1 Other surface treatand 1 mc. ments make similar demands on frequency to obtain the desired results. Heating plated surfaces, for example, to improve the quality of the plate, can be done at these frequencies without unduly disturbing the base metal. The use of higher frequencies for limiting the heating to thinner layers cannot be expected to achieve the desired results without markedly increasing the power concentration above that already obtained.

Although it is not meant to imply here that a limit has been reached in this direction, it is true that voltage breakdown of the air between the inductor coil and the work is the limiting factor and rather special means will have to be taken to go much farther. Of course, where the dimensions and electrical characteristics of the

ELECTRONIC INDUSTRIES . February, 1944

Why most electronic tube contacts are made by MULTI-SWAGE

ORIGINALLY, electronic tube contacts were machined out of solid rod of a section as large as the largest diameter of the finished piece. The center hole was drilled out. When made by the Bead Chain "Multi-Swage" Process, contacts are automatically swaged from flat stock. As no machining or drilling are required, there is no waste from cutting down or drilling. Therefore the economy of "Multi-Swage" is considerable.

Savings of over seventy-five percent in the cost of finished contacts has been realized by electronic tube manufacturers through the use of "Multi-Swage" parts. Assembly, also, proved less costly. Any number of "Multi-Swage" contacts can be staked-in simultaneously.

Back the Attack

THE MOST ECONOMICAL METHOD OF PRODUCING SMALL

It is well worth your while to see if the small solid or hollow cylindrical metal parts you are using can be made by the "Multi-Swage" Process. Our Research and Development Division will gladly work with you. Plan to have the parts of your post-war products made by "Multi-Swage."

These are typical "Multi-Swage" products. This process will turn out large volume speedily while maintaining close tolerances accurately.

Buy War Bonds

METAL PARTS TO CLOSE TOLERANCES WITHOUT WASTE

THE BEAD CHAIN MANUFACTURING COMPANY 102 MOUNTAIN GROVE STREET, BRIDGEPORT 5, CONNECTICUT ELECTRONIC INDUSTRIES + February, 1944

WASHINGTON

Latest Electronic News Developments Summarized by Electronic Industries' Washington Bureau

LAST LAP—The Army Signal Corps and the Navy have asked the electronic-radio manufacturing plants to race their production at the greatest speed possible, as if they were runners on the last lap, to secure during this first half of 1944 the apparatus and equipment needed for the projected European invasion. Yuletide holidays and the "flu" attacks caused a setback in the month by month gains in deliveries which had been achieved in such magnificent fashion by the industry during the last half of 1943. Therefore, since production had picked up during the past three weeks of January, the months of February and March are allimportant.

POSTWAR ACTIVITIES—Military authorities, charged with the responsibility of placing the vital electronic-radio apparatus in the hands of the fighting forces, are sympathetic with the manufacturers' blueprinting of their conversion schemes during offwork moments. But a few manufacturers, behind with their Army-Navy deliveries, have been reported as having engaged in actual negotiations on postwar sales of apparatus. This is unfair to the other companies.

CRACK DOWN?—The military authorities could well "crack down" on such recalcitrant manufacturers. Lack of adequate electronic-radio equipment may well mean loss of American lives—two years ago, it was "too little, too late," which should not be repeated.

CONTRACT TERMINATIONS—The Baruch-Hancock blueprint for a standard form of a fixed-price war contract termination clause will aid manufacturers in their postwar planning by letting them know what they uniformly may expect in present and future cutbacks. The 6 per cent ceiling for profit on termination claims with reimbursement for items of operating costs like depreciation, research, engineering development, advertising, special tooling, etc., generally is felt to be fair treatment.

BLUEPRINT DETAILS—The War and Navy Departments and other Government procurement agencies are slated to follow up this blueprint with detailed regulations. The Baruch-Hancock report was important enough for the Radio Manufacturers Association to transmit its full text to all member companies.

COMPONENTS' BOTTLENECK—For the Army and Navy and the WPB Radio and Radar Division it has been just one headache after another, or maybe call them "bottlenecks." Now the cycle of troubles has turned away from the subcontractors to the prime contractors who at present have not been placing their orders fast enough among the components' manufacturers. Thus the prime contractors, at least many of them, now have a larger backlog of piled-

up orders than the component subcontractors. Six months ago it was the other way around.

ALLOCATIONS EXPERT—The designation of Chief Engineer E. K. Jett as FCC Commissioner not only is one of the few appointments to that Commission in which qualifications and knowledge were the measure but also is most important to the electronic-radio industry because it places on the FCC a man thoroughly versed in the problems of postwar frequency allocations.

CLOSE COLLABORATION—Mr. Jett has been a leading figure in allocations of radio wavelengths at a number of international conferences and for the domestic spectrum. Incidentally, the Interdepartment Radio Advisory Committee which handles government frequencies is collaborating more closely with industry on the latter's postwar needs than ever before.

TEMPORARILY RETARDED—The invasion military needs are coming first. Therefore, the recent program to provide half a million radio tubes for civilian receiving sets has to stand aside for the time being and these tubes are not yet being distributed to the retail market except in driblets. After the pressing military requirements have been fulfilled, the civilian tube manufacturing situation will be greatly relaxed. The problem was under discussion at meetings of the WPB Radio Tube Industry Advisory Committee on Feb. 3 and the Radio Tube Distributors Committee will take it up on Feb. 10.

MICA CUTBACK—Because of famine and political unrest in India, the principal source, the WPB has announced that allocations of good stained and better quality mica for capacitor manufacture for 1944 have been revised downward to 85 per cent of the average consumption during the first nine months of 1943—it may go lower as the situation worsens. Mica requirements over the 85 per cent allowance must be obtained from lower qualities, WPB officials stated. India has been the major supplier of high grade mica for several years, and is contributing about 95 per cent of all mica for the war needs of the Allies.

MISCELLANY—An unfortunate newsparer criticism of the WPB Radio and Radar Division's Labor Advisor Harold Sharpe of the CIO UERMWA has been rectified as untrue; this able union official has been most valuable in solving the industry's manpower "headaches." —Baruch soon is scheduled to formulate broad government policies on disposition of military surplus apparatus and materials; Jesse Jones likely to head this program; no concrete plans yet in sight for electronic radio equipment as Army and Navy need all for pending offensives.—Roland C. Davies, Washington Editor. National Press Building.

ELECTRONIC INDUSTRIES . February, 1944

non-non-neuron concernation and the second s

wherever a tube is used...

A beam of light is reflected across the paint of opera-tion, then into a photo-tube in this solety application.

THERE'S A JOB FOR

Relays BY GUARDIAN

Where makeshift mechanical devices rudely thrust your workers' hands and fingers away from punching and forming dies, the electron tube in combination with a relay offers definite advantages for safer power press operations.

Instantly responsive, dependable and simple-a beam of light, if broken or modulated, actuates the electron tube; the relay breaks the circuit and locks the controls in the "off" position until the full light beam is restored. Typical of relays which may be used in conjunction with such a photo-tube safety application, is the Series 5 D.C. Relay by Guardian. In hundreds of other ways-especially in your postwar developments—wherever a tube is used there's usually a job for Relays by Guardian.

* Not limited to tube applications but used wherever automatic centrol is desired for making, breaking, or changing the characteristics of electric circuits.

Series S D.C. Relay. Maximum switch capazity two normally open-two normally closed-or DPDT Contacts. Resistance range .01 up to 15,000 ohms. Send for bulletin 14.

CHICAGO 12, ILLINOIS

GUARDIAN G ELECTRIC 1622-R W. WALNUT STREET A COMPLETE LINE OF BELAYS SERVING AMERICAN WAR INDUSTRY

165

Rectifiers ... Phototubes and Electronic Tubes ...

are designed for ... and deliver long-life, dependable service

Prompt Shipments on Most Types

Write for Catalog

CONTINENTAL ELECTRIC COMPAN

CHICAGO OFFICE

166

GENEVA, ILL.

NEW YORK OFFICE

metal being heated demand it 1 r good efficiency, higher frequency may become necessary. However, calculation of the penetration depth will show that even so pour a conductor as carbon has only a 1/16-in. penetration at a megcycle.

Coupling to lond

The problem of coupling between generator and load becomes, on the basis of the consideration just ou lined. one of obtaining sufficient concentration of flux to localize the heating to the desired degree. Normally this concentration will not exist in the inductive element drectly associated with the tub the amount of positive reactance needed in the oscillator circuit proper being of such a value that the permeability of space being what it is, several feet of wire are needed. Voltage and current carrying considerations make this reactance take the form of a coil of copper tubing ¹/₄-in. - 1 in. in diameter and something of the order of ten to twenty ft. long, wound up into a single layer solenoid.

To bring the field of a coil like this down to the point where it is concentrated in the region immediately about a ring of metal $\frac{1}{3}$ in. wide by 2 or 3 in. in diameter requires something differing from the usual coupling scheme. The device found most useful for this kind of work is the current transformer, consisting of a broad sheet of copper wrapped as closely around a ten to twenty turn coil as voltage limitations will permit. A coupling coefficient of 75 per cent or better is obtained and the need for tuning of the secondary circuit is eliminated.

The elimination of tuning capacitors in the secondary circuit has two advantages: the difficulties involved in carrying the high secondary currents, which may reach a value of over a thousand amperes at powers of 100 kw, are limited to the inductor coil and leads, and there is no need to follow the changes in reactance of the secondary circuit that accompany the rise in temperature of the work. When the total heating time is less than a second, this latter advantage becomes very considerable.

Inductor forms

The inductor coil itself consistof one or more turns of copper tubing, bent to shape or machined out of a solid block of copper and provided with a channel capable of carrying up to three gallons per minute of cooling water, depending on the power level. For heating objects in a continuous process, as on a conveyor belt, one or more inductor rails on each side of the belt can be used, cross connected at the

ELECTRONIC INDUSTRIES . February, 1944

This Aircraft Relay Is a Military Secret

...But Here Are the Clues to Its Better Performance

In wartime, we can't mention names or tell the story in full. But the facts are not without significance, even with many details omitted.

One of the first types of aircraft relay to be accepted for military use was equipped with Mallory contacts. As planes improved, and greater performance was demanded, the relay needed further development. The manufacturer needed a better material—and, being pressed for delivery, he needed it fast.

Thanks to Mallory engineering research, it was possible to recommend a new material manufactured by an entirely new metallurgical process -Elkonite* G-12. When this was backed with Mallory 3 Metal, the improved specifications were met. Production was started without a moment's delay because previous development had paved the way.

Like the relay manufacturer of this story, many design engineers prefer to consult Mallory first —often while plans are still on the drawing board. They've learned that Mallory engineering saves time and money: that it frequently anticipates tomorrow's trends. Why not bring your next problem to these same engineers who, for over a period of twenty years, have earned for Mallory the name of "Contact Headquarters."

P. R. MALLORY & CO., Inc., INDIANAPOLIS 6, INDIANA The Liberty and Justice for All-Buy More Wat Bonds: The Liberty and Justice for All-Buy More Wat Bond

long lines — or want 200 to 500 ohms for that perticular job - or find you must use balanced line connections because of noise or circuit conditions - or if you want to work standard high impedance on regular shorter lines, ONE Microphone, the TURNER U9-S. can fill all your needs. A twist of the switch shown at back of Model U9-S can give you your choice of impedances. Adjustable to semi or non-directional operation. Level -52DB at high impedance. Response is free from peaks and holes from 40 to 9,000 cycles. For sure-fire performance under any and all acoustic and climatic conditions, for rugged dependability without distortion, always specify Turner Microphones.

For complete information and prices on U9-S and other mikes pictured, Write TODAY.

FREE We've a copy of Turner's new Microphone Catalog for YOU. Write for yours NOW.

> Crystals Licensed Under Patents of the Brush Development Co.

9X-D

Dispatche

The TURNER Company Pioneers in the Communications Field CEDAR RAPIDS, IOWA, U.S.A. ends of the current transformer so the current is carried up one de and down the other, (Fig. 4). In any case, the inductor must be accurately made if even heating i to be obtained. For surface hardering this requirement is especially rid, because, in order to concentrate the power to the necessary deg ee, a spacing of 1/32 in must be mintained with a maximum variation of ± 5 mills allowable if uniformity of case is to be had.

Efficient inductor

An example of an inductor design that meets the requirements for good efficiency is shown in the current transformer and inductor assembly of the rf rivet detonalor (Fig. 5). The problem was to couple inductively to the rounded head of an aluminum alloy rivet. The outside diameter of the rivet head is ¼ in., and, to get tight couplag the current had to be led in a circular path less than 1/2 in in radius, with the additional requirement that the inductor and leads be rigid enough to withstand the application of some 50 lb, pressure.

R. A. Bierwirth of the RCA Laboratories produced the design illustrated, which is essentially an edge-wise wound strap of copper making a complete circular loop at the small end. Lead inductance is kept at a minimum and tight coupling to the head further assured by cupping the end of the coil to the radius of the rivet head. The anodic film on the rivet head serves as electrical insulation between inductor and rivet. The reason for heating the rivets is to detonate an explosive charge in the rivet which serves to expand the far end. They are used for "blind fastening," where access can be had to only one end of the rivet. These rivets are a development of the DuPont Co.

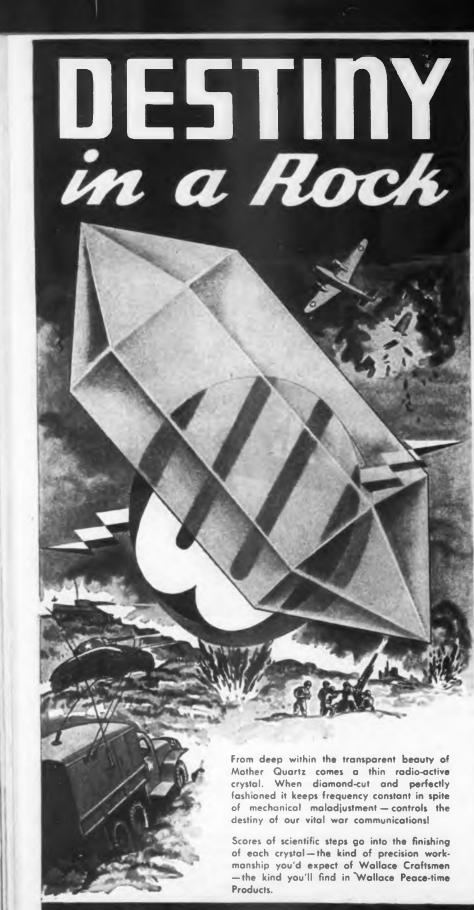
Propèller molding

Wartime requirements and the factors involved in meeting them as quickly as possible have largely determined the equipment development program to date. Because of our ability to supply converted of transmitting equipment in the 15 kw power range immediately, we were able to render assistance to the aircraft industry in accellerat-ing ordinary gluing operations as well as the curing of compregwood airplane propellers. The latter are propellers for variable pitch assen blies made of laminated wood inipregnated with phenolic molding resins. Before molding, the preform is about 9 in. thick at the hub, and heating to the curing temperature by steam-heated die is a tedious process. By pre-heating to within 40 or 50 degrees of the curing temperature, the overall time of the molding cycle has been cut from 8 or 9 hours to 4 hours and, as

A NEW PLASTIC*

* 1421 CAST ROD

FORM AVAILABLE Cast Rod Maximum length—10" PHYSICAL PROPERTIES COLORpale yellow to water white MACHINABILITY-good, similar to brass SPECIFIC GRAVITY-1.04-1.06 IMPACT (Dynstat)-.07-.08 ft. lbs. FLEXURAL STRENGTH-(Dynstat) 7500-10,000 lbs./sq. in. WATER ABSORPTIONless than 0.1% in 24 hrs. DIELECTRIC CONSTANT-2.4 to 2.5 POWER FACTOR-.0006-.0009 SOLVENT RESISTANCE-Generally insoluble in most solvents but swells in aromatic hydrocarbons.


The General Electric Plastics Divisions have developed a new material with unusual characteristics. This new plastic has the ability to withstand very high temperatures without melting. It has high dielectric strength, low power factor, and low dielectric constant. This material has been successfully used for applications in the radio industry where other plastic materials have proved unsatisfactory. For further information write section 0-248, One Plastics Avenue, Pittsfield, Mass.

Hear the General Electric radio programs: "The G-E All-girl Orchestra" Sunday 10 P.M. EWT, NBC. "The World Today" were, every weekday 6:45 P.M. EWT, CBS.

GENERAL C ELECTRIC

169

LECTRONIC INDUSTRIES . February, 1944

mentioned earlier, a better product obtained.

By designing specifically for rf generating purposes, a substantial reduction in size, as compared to modified transmitting equipment, was achieved in the RCA 15-B generator (Fig. 6).

In the field of more conventional molding than that of the compregwood propellers, a large number of applications can be handled at considerably less power, so a 2 kw init has been found useful (Fig. 7) A generator of this size serves to preheat to curing temperature in 45 seconds a mass of molding material weighing approximately 1 lb. Such equipment, applied to compression molding work, is capable of spe ding the operation two or thee times for the larger pieces. Molding times on smaller ones may not always be reduced to this extent, but application of rf heating may still justify itself on the basis of improving quality by uniform plasticizing prior to molding.

Drying applications, as may be expected from the high heat of vaporization of water, require equipment of somewhat greater capacity. A 100 kw 25 mc generator, developed for a pilot plant installation for rayon drying, is scheduled to go into operation at an early date (Fig. 8).

High speed heating

For very high-speed heating, the highest frequencies are necessary to prevent difficulties with voltage breakdown. A 200 mc oscillator has been used in "spot gluing" operations where it is desired to set up a thermo-setting glue in a matter of a second (Fig. 9).

The overall cost of heating by radio-frequency has been worked out on the basis of present day equipment costs, tube depreciation and power rates. As is to be expected, it decreases with increasing powers, due to lower cost per generated kw of the equipment. An average figure of 4 cents per kwh can be used for estimating purposes. In using this kind of information, it should be borne in mind that the kw requirement meant is that actually delivered to the work, and does not in general involve heating auxiliary apparatus such as hot plates, dies, or ovens.

In carrying on the development work in connection with these applications it has been a matter of prime importance to be able to make contact with the potential users of the equipment. They have served to suggest the application and to guide us in carrying it out in a practical way. Now that equipment is in the field, a considerable body of information built up on operating experience is being obtained, from which we will produce more efficient equipment.

ELECTRONIC INDUSTRIES . February, 1941

170

Wm.T.WALLACE MFG. CO.

General Offices: PERU, INDIANA

Cable Assembly Division: ROCHESTER, INDIANA

"Let's Get Our Rectifiers from B-L! They're Rectifier Specialists!"

Selenium

from Milliwatts to Kilowatts!

If you have an A.C.-D.C. conversion problem, let B-L engineers help you. We have successfully produced many applications formerly thought impractical.

Copper

Sulphide

B-L Metallic Rectifiers have been favorably known to the electrical industry for many

years. They are reliable, efficient, designed to get your job done right!

We invite the submission of your A.C.-D.C. conversion problems. We are equipped to render a thorough engineering service—at no obligation.

Write today for Bulletin 85 giving full details about B-L Metallic Rectifiers

Get MORE Advantages with "COPROX" Rectifiers

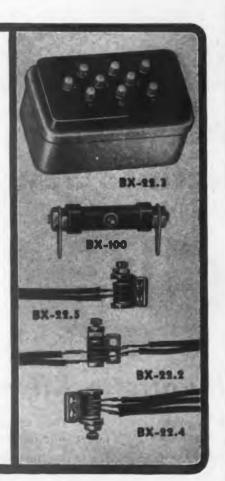
- Brodley's copper oxide ("Coprox") recti Meticulous testing procedures and rigid fiers have high leakage resistance, combined with LOW forward resistance.
- Gold contacts on "Coprox" pellets combat

oging.

- standards insure excellent stability. All "Coprox" ratings are conservative. Even standard "Coprox" mountings are
- Even standard very adaptable.
- "Coprox" rectifiers are supplied with presoldered lead wires, or with terminals
- having special provisions to prevent over-
- heating during soldering.

In "Coprox" rectifiers Bradley has incorporated the very latest technical advances. Extensive application experience, and knowledge of circuit design and manufacturing problems, have prepared Bradley to accept AND MEET unusual specifications for "Coprox" rectifiers. So write Bradley for more data and help on rectification problems.

"Coprox" BX-22.3 Double bridge rectifier with current and temperature-current characteristics balanced to better than 1% over a range of -40° C to $+70^{\circ}$ C. Rated up to 4.5 volts A.C., 3 volts D.C., 5 milliamperes D.C.


"Coprox" BX-100 Center tap, full wave rectifier. Completely enclosed in Bakelite. Low capacitance. Rectifies high frequency current. Rated up to 4.5 volts A.C., 3.0 volts D.C., 500 microamperes D.C.

"Coprox" BX-22.5 Single half-wave rectifier rated up to 4.5 volts A.C., 3.0 volts D.C., 2.5 milliamperes D.C.

"Coprox" BX-99,9 Full wave rectifier rated up to 4.5 volts A.C., 3.0 volts D.C., 5 milliamperes D.C.

"Coprox" BX-22.4 Double half-wave ' rectifier rated up to 4.5 volts A.C., 30 volts D.C., 25 milliamperes D.C.

172

Luxtron* photo-electric cells are another Bradley achievement. Write Bradley for complete technical data.

TUBE CONTROL CIRCUITS

(Continued from page 111)

on a Bordoni tube. The capacitance shift method of altering the 1 equency of an oscillator is mentioned because it is so common

Fig. 1 lists a few of the principal types of motion and displacement converters that are in common lise. Some of these work best will en handling rapid and continuously varying displacements, others with slow changes. There are, however, many other devices that should be considered when laying out any test.

A motion of only a few millionths of an inch applied to the positioning one of the elements of a tuned circuit will produce large changes in the resulting frequency. On the other end of the range, by using other set-ups, a move-ment of several feet can be converted to a similar shift, so the method is not only simple but is quite versatile in its range.

Basic rules

The following basic rules hold for any oscillator circuit tuned by a capacitor:

Let C equal the normal capacitance in the circuit, and $\triangle C$ the incremental capacitance caused by some movement to be measured.

It will be found that a one micromicrofarad change in capacitance affects the output frequency as follows:

C=total capacitance lo Let circuit in mmf, and L=millihenries

Then the frequency change= 5.033 106 $\left(1 - \sqrt{\frac{c}{C \pm \Delta C}}\right)$ $\Delta f =$ VIC 5.033 109 1 1 VL VC VC+1/

cycles per second. A somewhat larger frequency shift is occasioned when C reduces the capacitance in the circuit than if it increases the total capacitance. This accounts for the double sign in the denominator of the last term of the formula, and the double-indexed scale at the center of the nomographic chart, Fig. 2, that permits the selection of circuit constants to give a desired frequency shift when the capacitance is altered by one micromicrofarad

As is usual in a chart of this sort, a straight line from the point on the frequency-shift scale at a value where a conveniently measured frequency change is to be found, crossing the other two scales, will indicate the circuit capacitance and inductance that will produce that shift with a one micromicrofarad capacitance change For other ranges, if the values on

ELECTRONIC INDUSTRIES . February, 1944

almost two doors made better tuber rpast in design and a

Federal always has

mode Better Tubes

response in design and construction is quality of materials, is available acaship, is performance. The burkground of this record all achievement is the intensive re-sourch and development of a scien-tific and producing organization, that has not and continues to maintain the highest standards of the table building art. And is support of Fodoral table quality and performance is resident contensor service, sivery respired and properts to hundle the publicate of broadcast staticate in

amer-

Tederal's estab-

This is ally Pederal's estab-ting application for building bet-ter humanitting and rootlying tables rests on an enduring founda-tion; why Federal tabes doubly and the second rest infection, now adopted by many loading broad-tion of the second rest is a second better you resultable to you here a particular tabe problem to solve, Federal service will prove profitable to your interests.

Federal Telephone and Radio Corporation

VACUUM TUBE DIVISION

ATT

ing transmitting pacific require

Newark, N. L

Every part of every Cannon Connector is rigidly held to close tolerances through a well established quality control system.

Such precision not only assures absolutely dependable operations, but it is the main reason why original assemblies are made with ease, and why all parts are so easily interchangeable.

Take the AN line for instance: Split shells (pioneered by Cannon) of flawless alloys, fittings that are die-cast instead of stamped, contacts that are milled from bar stock to give close tolerance and low voltage drop.

Cannon Plugs are never made to meet a price. Their quality

174

is controlled from raw materials to finished unit. The low cost of Cannon Plugs is due to efficient and large scale production.

For easier assembly-for more dependable service-use Cannon Plugs for all electric circuit connections.

CANNON BATTERY CONNECTOR-GB-3-34B Receptacle and GB-3-21B Plug shown at left are adapted to general industrial uses as well as quick disconnect of engine starting units in aircraft. This Cannon line covers a wide variety of types which are listed in the New Battery Connector Bulletin-free upon request. Address Department A-122, Cannon Electric Development Co., 3209 Humboldt St., Los Angeles 31, California.

Cannon Electric Development Co., Los Angeles 31, Calif. Canadian Factory and Engineering Office:

Cannon Electric Co., Ltd., Toronto, Canada

Representatives in principal cities—consult your local telephone book

the inductance scale are divided by 190, the frequency scale is multiplied by 10. A capacitance change of less than 1 mmf will cause a correspondingly lesser shift.

Now consider that a pair of plates separated .001 in. in air has a capacitance of 225 mmf per in. of (dielectric) area. For other spacings the reciprocal law holds -with a normal spacing of .0325 in. the capacitance would be 10 mmf and a spacing of .0204 would give 11 mmf or 1 mmf additional capacitance. Thus a movement of .002 in. in this case would result in a capacitance change of one mmf which would fulfill the condition of the above relation. In any given circuit, tuned with a variable capacitor, the value of $\triangle f$ varies as the third power (cube) of the emitted frequency, as the latter is changed by altering the setting of the capacitor.

Capacitive pickup

The variety of shapes and materials that might go toward making up a capacitive type of displacement pickup, is large. It is not even necessary to use air as the dielectric and at least one installation uses the capacitance between two wires in an oil tank to indicate the oil level.

An advantage of the capacitive type is that it can be arranged to work in both directions, that is with a push and a pull. It is independent of temperature, humidity, and its driven plate can be made light enough so that it does not interfere with the operation of the mechanism to which it is attached. Change in the capacitance of an oil film in a bearing has been used to determine its thickness, (although the shunting resistance also found will modify the test method somewhat).

ro

au

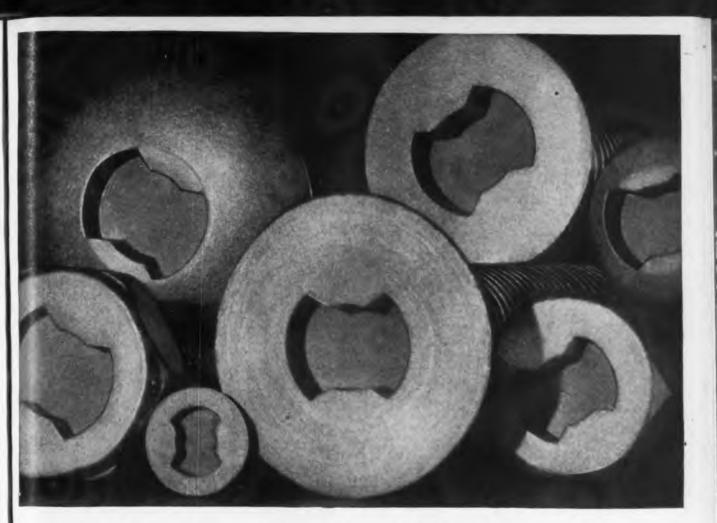
an

HI

bi

hi

ty


ha

EL

In converting greater displacements of the reciprocating type, the motion of a sheet of dielectric between a "live" plate and the grounds of a machine can be used to alter the capacitance.

By the proper selection of the L and C values in the circuit, almost any frequency change desired can be obtained from a very small capacitance variation. Methods whereby frequency variations can be converted to an electrical voltage variation will be outlined later in this review.

It is also possible to alter the frequency of an oscillator by the physical movement of an iron core moved in-and-out of an inductance. The computation of an anticipated shift, however, in this case is not reliable from formulas, as the variation in inductance with the position of the core cannot be determined accurately except by actual measurement. The method has advantages, however,

They "Cancel-Out" a lot of Handicaps

The phrase isn't ours. It comes from the assembly lines . . . where new factors for speed, safety, simplicity, and lower cost are rated high. CLUTCH HEAD Screws "cancel-out" the handicap of slow-down hesitation. The wide roomy clutch offers an easy bull's-eye target for the "greenest" operator, inviting speed born of confidence . . . the automatic entry of the Center Pivot Driver into dead center of the recess speeds and eases the drive home . . . and that same definite torque grip assures the operator there is no hazard of slippage. Then there is the CLUTCH HEAD Lock-On feature which nullifies the handicap of fumbling around hard-to-get-at spots by uniting screw and bit as a unit for easy one-handed reaching. In field maintenance, too, CLUTCH HEAD simplifies operations by solving hitherto accepted problems. Service men prefer this modern screw because it may be operated with the ordinary type screwdriver . . . even with a piece of flattened steel rod in an emergency. They know also that, where screws have to be removed, saved, and used again, the CLUTCH HEAD Lock-On feature obtainable with the Center Pivot

Hand Driver "cancels-out" the serious handicap of dropped and lost screws.

Get personally acquainted with these many exclusive features. Send for assortment of CLUTCH HEAD Screws, sample Center Pivot Bit, and fully illustrated Brochure.

CLUTCH HEAD Screws are contributing importantly to many phases of the war effort. They are available in Standard and Thread-forming types for every purpose... production backed by the extensive resources of this Corporation and by responsible Licensees.

UNITED SCREW AND BOLT CORPORATION

CLEVELAND

ECONOMY is an important feature of this Center Pivot Assembler's Bit. No "back-to-the-factory" shipment is necessary for reconditioning. A brief application of the end surfaceto a grinding wheel fully restores original efficiency.

NEW YORK

ELECTRONIC INDUSTRIES . February, 1944

CHICAGO

over the capacitance-change rangement in certain cases.

Reconversion

Having produced a freque cy modulated signal, the next question concerns the translation of the frequency drift into a variable voltage or current.

The most usual conversion consists in amplifying, limiting, differentiating and then integrating the incoming frequency so that what comes out is a current that is proportional to the frequency. This process is outlined in Fig. 3. and an example of a typical circuit is shown in Fig. 4 on page 116 of this issue

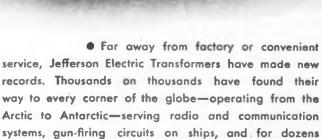
The signal is amplified and "clipped" so that its amplitude above a certain level (plus and negative) is eliminated. This often done by a push-pull stage of thyratron tubes. The resulting square wave is passed through a differentiating circuit which takes note only of the voltage changes as the square wave reverses from positive to negative. A series of constant level pulses, having a frequency equal to the original frequency results, which is rectified in a full wave circuit and smoothed out in a filter to operate a control mechanism.

Conversion of a frequency modulated signal into a change in level also can be accomplished by the now-well known discriminator circuit in an FM receiver although this method is not so frequently used. Another conversion method makes use of the pull-out energy transfer as the circuit values in one of two equal frequency oscil-lators is altered. This method is useful when the frequency shift is not large.

(NOTE—other types of control and conver-sion systems will be taken up in later parts of this series, followed by data on the com-mon methods for actuating the process con-trol devices themselves so as to bring about corrective influences.—R.R.B.)

ELECTRONIC USES IN INDUSTRY

(Continued from page 98)


Electrical Quantities

- 99. Electronic Curve Tracer. Philip Pacia Feb., 1943; v. 16, po 'Electronics," 87-90, 202.
- An Improved Current Integrator. 100. "Rev. of Sci. Instr.," Mar., 1943 Blair. D 64.
- Insulation Testing of Electric Windered 101. C. M. Foust and N. Rohats Transac.," Apr., 1943; p. 203. Photoelectric Potentiometer AE N. Rohats
- Transac., Potentiometer 102. Photoelectric Potentiometer D. F. Hang. "General Electric Revie Recorde
- A Self Balancing Potentiometer. T Harrison, W. P. Wills and F. W. S "Electronic Industries," May, 1943; 103. P 68.
- Sensitive Cathode-Ray Voltme V. Harvatik. "Rev. Sci. Inst: 104 AZ V. Har 1943; Z. V. Harvalik, "Rev. Sci. Inst: Sept., 1943; p. 263. 105. Electronic Load Regulator for Mel®

ELECTRONIC INDUSTRIES . February, 1944

(Lic:

ALL OVER THE WORLD

of other purposes that War demands have indicated. Expert, specialized engineering, competent and adequate research,—and experienced transformer craftsmen

insure the correctness of design and the thoroughness of construction that mean transformer excellence. You can be sure of filling your requirements exactly by

coming to transformer headquarters ... JEFFERSON ELECTRIC COMPANY, Bellwood, (Suburb of Chicago) Illinois. Canadian Factory: 60-64 Osler Avenue, W. Toronto, Ont.

Testing. B. E. Lenahan. "Electror July, 1943; v. 16, pp. 116-117, 260. 254

- 106. Applications of the Cathode-Ray Coll. Iograph to Electric Power Systems. Forrest. "Jour. Sci. Instr.," May, v. 20, pp. 69-75. 107. A Guide to Cathode-Ray Patterns.
- wyn Bly. A paper-bound part hler published by John Wiley & Sons, inc. New York City.

Electron Microscope, Diffraction Camera, Mass Spectograph

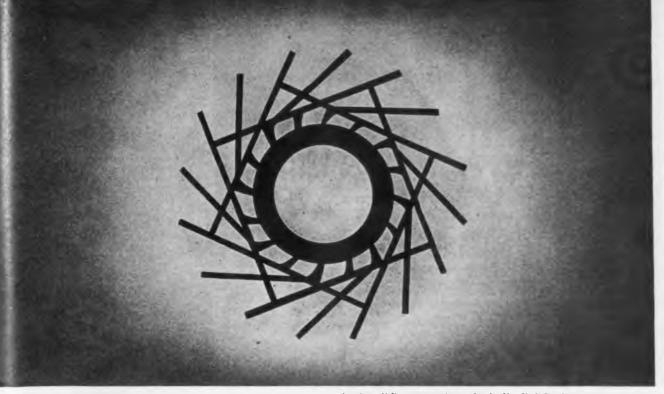
- 108. Simplified Electron Microscopy. C H. Bachman. "Electronics," Feb., 1943, p. 78.
- 109. Electron Microscopy in Chemistry. V K, Zworykin. "Ind. & Engng. Chem." Apr., 1943; v. 35, pp. 450-458.
 110. Applications of the Electron Microscope In Metallurgy. V. K. Zworykin. "Metals Tech.," June, 1943; v. 10. Tech. Pub. No. 1594, 25 pp.
- No. 1594, 25 pp. A Compact High Resolving Power Elice 111. A Communication of Applied James Hillier. "Jour. of Applied Physics," Dec., 1943; p. 658.
 Polystyrene Replicas. "Electronic Industries," Oct., 1943; v. 2, pp. 74-75.
 Voltage Stabilizer for Electron Diffraction Power Supply. S. H. Bauer, J. M. Hastings and D. P. MacMillan. "Rev. of Sci. Instr.," Feb., 1943; p. 30.
 Mass Spectrometer Aids Research. John A. Hipple. "Electronics," Nov. 1943; p. 1043; p. 1044; p.

Light, Illumination, Heat

- 115. Electronics Applied to Heat Transfer
- Tests. Robert V. Brown. "Electronics," July, 1943; v. 16, pp. 113-115. An Inexpensive Stroboscope for High-Speed Photography. S. Silverman and W. H. Warhus, "Rev. of Sci. Instr.," 116.
- W. H. Warhus, "Rev. of Sci. Ins Sept., 1943; p. 273. 117. High-Speed Electronic Photo Light, Palme, "Electronic Industries," July, 1943; p. 87.

Meteorology

- Radio Sounding in the United States. C. B. Peare. "Electronics," Jan., 1943; p. 82.
- 119. Improved Cosmic-Ray Radio Sonde. Pickering. "Rev. of Sci. Instr.," 1943; v. 14, pp. 171-173. Cosmic-Ray Radio Sonde. Stua June
- 1943; v. 14, pp. 171-173.
 120. Cosmic-Ray Radio Sonde. Stuart H. Pomerantz. "Radionics," July, 1943; v. 1, pp. 3-7, 28.
 121. The Radio Sonde. W. H. Pickering. "Proc. IRE," Sept. 1943; p. 479.
 122. Tubes in Meteorology. Gilbert Sonbergh. "Electronic Industries," Aug., 1943; p. 479.
- bergh. "Elec 1943; p. 62.
- 123. Determining Cloud Depths. S. R. Win-ters. "Radio News," Oct., 1943; p. 44. Time
- 124. Calibration of Camera Shutters With the Cathode-Rav Oscillograph. Theodore H Bullock. "Electronics," July, 1943; v Theodore H Bullock.
- 16, pp. 106-109, 250-252. Measuring Projectile Velocity. "Elec-
- tronic Industries," Oct., 1943, p. 66. Electronic Time Meter. "Rev. of Sci. Instr.," Aug., 1943; p. 255. 126.

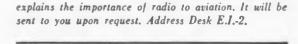

Medical, Psychological

- 127. Medical Science Joins Hands With Electronics. W. E. Gilson. "Electronic," Mar., 1943; v. 16, pp. 144-145, 236
- etc. 128. Applications of Electronics to Physical Structure of Control Structure of Control
- 128. Applications of Electronics to Physiology. W. E. Gilson, "Electronics," Jan., 1943; v. 16, pp. 86-89, 206.
 129. An Electronic Stimulator for Use in General Physiology. R. H. Thorp and Donald Robinson. "Electronic Engnd," Oct., 1943; p. 188.
 130. Therapeutic Radionics. S. R. Winlem, "Radio News," July, 1943; v. 30, pp. 17-19, 74-78.
 131. High-Ergenery, Therapy, W. D. Difference, Therapy, M. D. Difference, Therapy, M. D. Difference, Therapy, M. D. Difference, Therapy, M. D. Difference, Ther
- 131. High-Frequency Therapy. W. D. Oli-phant. "Electronic Engng." (a serial) Sept., 1943, p. 142; Oct., 1943, p. 206; Nov., 1943, p. 252. 132. Dosimetry and Local Distribution of Energy in the Electric High-Frequency

*

EL

ELECTRONIC INDUSTRIES . February, 1944


American Airlines tangent airport plan for New York City from "Airports and Air Traffic Control" by Glen A. Gilbert, Chief Air Traffic Control Division, C.A.

The Shape of Things to Come

In air transportation especially, the pattern of the future will not be the pattern of the past. No other field holds the prospect of greater advancement nor offers fuller opportunity for sound development.

In things which have made air travel safe and efficient — radio range beacons, markers, communication transmitters and receivers, airport traffic controls—RADIO RECEPTOR, as a pioneer, has contributed its full share of development, and will continue to lead in design and manufacture.

To "the shape of things to come" in aeronautical radio, RADIO RECEPTOR will bring more than 20 years of practical experience. These have been years of successful accomplishment in prewar aviation radio equipment plus outstanding developments born of the present conflict.

Our non-technical booklet, "HIGHWAYS OF THE AIR,"

"Although an airway may be loosely defined as a designated route for aircraft plying from airdrome to airdrome, it cannot really be said to exist on a practical scale without airways communications, airdrome traffic control, and radio navigational aids. These are the three components furnished, over some 70,000 miles of foreign military airways, by the Army Airways Communications System Wing."—An excerpt from "The Army Airways Communications System," by Lt. W. Faveett, Jr. Headquarters, AACS.

Kadio Receptor Co.

INCORPORATED

NC

E

ELECTRONIC INDUSTRIES . February, 1944

1922

S I

For Meritorious Service on the Production Front

IN

RADIO AND ELECTRONICS

251 WEST 19:1 STREET

NEW YORK 11. N. Y.

Amphenol builds low-loss solid dielectric coax and twinax cables conforming to latest approved Army-Navy specifications. To fill your low-loss cable requirements, specify Amphenol-all sizes-vinyl covering or cotton braid as specified.

Amphenol also builds superior type cables with polystyrene or mica-filled bakelite dielectric-coax or twinax-all sizes.

LOW-LOSS CONNECTORS

Every Type and Size for Dielectric Cables.

For a completely balanced low-loss circuit, use Amphenol Low-Loss Connectors with Amphenol Low-Loss Coax or Twinax Cables.

Small, compact, sturdy, water-proof, easy-toassemble-these connectors are of unit construction -no air spaces to lessen efficiency—high dielectric insulation of polystyrene or mica-filled bakelite.

Amphenol Low-Loss Connectors give long service-sure, positive contact. The special engineering design relieves conductor strainless chance of failure due to vibration or pulling of cable.

SPECIAL CABLE ASSEMBLIES

Depend upon

Amphenol Coaz and Twinax Cables are fur-nished on reels. Also sup-plied cut-to-length, with or without connectors.

mality

SEND FOR AMPHENOL DATA SHEETS

American Phenolic Corporation Chicago 50, Illinois	
Place and data should be the 17. To Old 10.	

send data sheets on Amphenol Low-Loss Cables and Connectors

Name Company Street City.....State.....

180

Field. К. S. Lion 133.

- 134.
- Field, K. S. Lion, "Jour, of Appr Physics," Oct., 1943; p. 545, RCA Develops Stethoscope Age," July, 1943; p. 27. Electrical Amplifying Stethoscope Photo-Electrocardiscope, G. E ovan, "IEE Jour," Pt. III, June, v. 90, pp. 38-52; Amplifying and Recording Teci-in Electro-Biology, With Special ence to the Electrical Activity o Human Brain, G. Parr and W. Walter, "IEE Jour," Pt. III, Sept, v. 90, pp. 129-144. Improved Low Frequency Analyser Grey Walter, "Electronic Engng," 1943; v. 16, pp. 236-240. 135. the
- 136.
- 137.
- Improved Low The Improved Low The Electronic Engrig, Grey Walter, "Electronic Engrig, 1943; v. 16, pp. 236-240. Electronic Aids in Biological Sci R. R. Batcher, "Electronic Ind, 1943, p. 62; Aug., 1943, p. 86. The Encephalophone. C. A. Beeve R. Furth, "Electronic Engrig," 419. 138. R. Furth "Ele 1943; p. 419. Crime Detection. News," Sept., 1
- R. P. Turner. 130 Sept., 1943; p. 20.

Miscellaneous

- 140. Airplane Instrument Illumination Ultraviolet Light, K. D. Scott. Magazine of Light," July, 1943; v 4, p. 22. no.
- Ceramics for High-Frequency 141 "Bell Lab. Re.
- Ceramics for High-Frequency in tion. M. D. Rigterink. "Bell Lab. R May, 1943; v. 21, pp. 290-295. Telephone Type Relays in Elect Applications. C. J. Don and L Galton. "Electronic Industries," i Electron 142. Galton. "Ele 1943; p. 68. Mar.
- An Accurate High Sensitivity Api zor Oil McLeod Gauge. J. Bannon. Rev of Sci. Instr.," Jan., 1943; p. 6. 143.
- Electronic Applications; A New riculum in Electrical Engineering 144 New Grey and R. H. Frazier. "Electronics" Oct., 1943; v. 16, pp. 122-124 304-309
- Graphical Symbols. A tabulation of those commonly used in the electronics field. B. Dudley. "Electronics," Apr 145. 1943; p. 84.

Oscillators

- 146. Non-sinusoidal Wave Generators. W P. Bollinger. "Radio," June, 1943; p 21
 147. An Automatic Frequency-Controlled Oscillator and Amplifier for Driving Mechanical Vibrators. E. V. Potter. "Rev of Sci. Instr.," July, 1943; v. 14, no 7, p. 207.
 148. Flip Flop Circuits. S. E. M. Susskird "Electronic Industries," Nov., 1943. p 78.
- 78
- Wide Range Electronic Generator Mittelman, F. S. Grodins and A. C. "Electronics," Dec., 1943; p. 132. 149. С

Rectifiers

- 150. Ignitron for Direct Current Power, W
- Schwarz. "Power PI. Engng.," Mar., 1943; v. 47, pp. 76-79, 110. Ignitron Rectifier Testing. L. F. Dvirt "Electronic Industries," Nov., 1943 p 151. 107
- Why Use Rectifiers for Plating? L W. Reinken. "Metals & Alloys," Mar., 1943, v. 17, pp. 533-535. 152
- Analysis of Rectifier Operation. O H. Schade. "Proc. IRE," July, 1943, pp. 153. 341-361.
- Vacuum Rectifiers Working With Can-denser Input. R. G. Mitchell. "Wireless Engineer," Sept., 1943; p. 414. 154.

Regulators, Exciters, Stabilizers

- Voltage Regulating Transformers. R 0 Lambert. "Electronic Engng.," Figure 1943.; v. 15, pp. 384-387.
- 156. Electronic Regulators for A-C Geler-ators. Arnold Benson. "Electronics"
- ators. Arnold Benson. "Electronics. Apr., 1943; v. 16, pp. 104-107. 157. Electronic Exciter for A-C General rs. Arnold Benson and Ralph Heidbick "Electronics," Aug., 1943; v. 16, pp. 112-114, 261. 158. Electronic Voltage Regulators
 - E. L.V.

ELECTRONIC INDUSTRIES . February, 1944

LECT

CONTINUOUS COVERAGE -- 100 KC. TO 120 MC. . ALL FREQUENCIES FUNDAMENTALS

A complete wide-range Signal Generator in keeping with the broader requirements of today's testing. Model 1632 offers accuracy and stability, beyond anything heretofore demanded in the test field, plus the new high frequencies for frequency modulated and television receivers, required for post-war servicing. Topquality engineering and construction throughout in keeping with the pledge of satisfaction represented by the familiar Triplett trademark.

Of course today's production of this and other models go for war needs, but you will find the complete Triplett line the answer to your problems when you add to your post-war equipment.

• Triple shielding throughout, Steel

• All coils permeability tuned. Litz wire wound impregnated against humidity with "high-Q" cement.

• Note sections individually shielded with pure copper. Entire unit encased in aluminum shield.

1943; v. 49, pp. 327-331. (Part) serial.) INDEX A Adjustable Speed Drive... 86 Amplidyne Control R Balanced DC Amplifier..... Balancing Rotating Parts..... Basic Tube Circuits..... 48 Bees, Counting..... 97 **Biological Analysis** ***** Biological Applications Blood Pressure Recording..... Boiler Water Testing..... 90 C Cable Location..... Calibrating Springs..... Camera Shutter Calibration..... Capacity Pick-Up Amplifier 54 124 Current.....See Main Heading Coil 94 Colorimeter Combustion Control..... Control Circuits Cosmic Ray Radio Sonde......119, 120 Curriculum, Electronics..... 44 Curve Tracer 99 Cyclograph 95 the D aq DC Amplifier the 'Sc Differential Transformer Protection..... gur Dip Coating Process..... 47 Dipping, Painting...... Displacement Actuated Controls....... Dynamic Balancing..... Dynograph 48 The R me the Explosion Safeguarding..... Fabric Cementing..... Flip-Flop Circuit...... Fly-Ash Precipitator Food Dehydration..... MA ELECTRONIC INDUSTRIES . February, 1944 ELE

Ingston Hogg. "Wireless World,"

"Anybody Got a Stick of Gum?"

THAT last bump was *it*. The waist gunner picked himself up from the floor and clung to his gun as the huge ship was brought back into control. He took a quick look out, whistled softly and spoke through the Intercom to the rest of the crew.

"Somebody better hurry up with a stick of chewing gum before our left wing leaves us!"

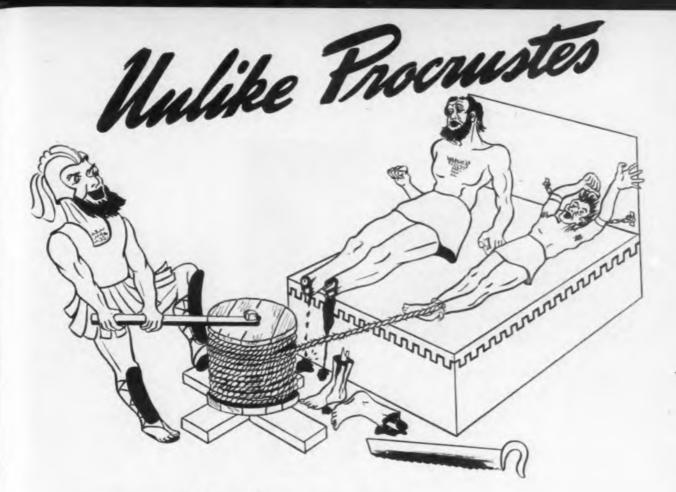
The ability of our flying men ... and our flying equipment ... to "take it" is one of the major marvels of the war, and playing its full share in the success of our aerial forces is the Communications System. No place here for equipment that's merely good. It must be the *best*, for failure in Communication may be more serious than the failure of an engine or a landing gear.

It is to these superlative standards that Rola builds equipment for the Army-Navy Air Forces . . . highly specialized transformers and coils, supersensitive headphones, and other electronic parts having to do with Communications. And it is to these same standards that Rola will build its after-the-war products, whatever they may be. The ROLA COMPANY, Inc., 2530 Superior Avenue, Cleveland 14, Ohio.

MAKERS OF THE FINEST IN SOUND REPRODUCING AND ELECTRONIC EQUIPMENT

AFTER THE WAR - - - the name to look for in **RADIO ANTENNAS**

Today, BRACH produces only for Victory. But after the war, Brach will be ready with trained craftsmen and still more "know-how" to turn out superior antennas and other radio and electrical products for which dealers and public have been patiently waiting.


World's Oldest and Largest Manufacturers al Padio Antennas and Accessories 55-65 DICKERSON STREET NEWARK N. J.

> WANTED RADIO ENGINEER For Important War and Postwar Work

Well established company located in Kansas City, Missouri, has fine opportunity for Radio Engineer with ability to design circuits for piezo-electric crystals. Must have knowledge of crystal industry, constructive imagination, and drive. Firm anticipates rapid postwar expansion. In reply give full details of education, experience, and date available. Also indication of salary expected. Application held in strict confidence.

ELECTRONIC INDUSTRIES 480 Lexington Ave. New York 17, N. Y.

G Gas Engine Analysis Gasorine Sulphur Content..... Gaunes Strain..... Gear Hardening... 156 64.65 Graphical Symbols, Electronic. H Insulation, High-Frequency Ceramics, Insulation, Testing..... Integrator, Current, Labeling Machines..... Lie Detectors Locators M Machine Balancing..... N Nema Code in Welding Oil Mist Precipitation.... Oil Prospecting Ore Separation -0.0See Main Hea Packaging Machines Paint Draining Paint Machinery Perforating of Stamps Phase Control Analysis Phase Shift Measurement

WE FIT THE "BED" TO THE NEED (ELECTRONICALLY SPEAKING)

Remember Procrustes the Stretcher, who treated travellers with such solicitous violence? Each was tied to a bedstead. The short ones he stretched to make them long enough; the long ones he butchered to make them short enough.**** Sometimes in business there's a temptation to fit the need to the "bed"...to utilize stock designs and stock devices, even if they don't quite answer the specific requirements. But that's not the Bunnell policy. If you are interested in efficient electronic

equipment for a specific application, you can bank on Bunnell to "build the bed" to fit your needs.

New Metal Surfaces Made by Spraying

Molton metal is now sprayed or atomized on to metal surfaces for the purpose of salvaging worn bearings, shafts, cylinder walls and such parts. Metallizing, as the process is called, is also used for putting a non-corrosive coating on iron or steel surfaces subject to corrosion such as cylinder walls of internal combustion engines, valve gates and such parts in contact with water. The metals to be sprayed may be aluminum, zinc, stainless steel, high carbon steel or other alloys depending upon the character of the surface desired. The sprayed surface may be "over built" and machined down to size to obtain accurate surfaces.

Metal spraying guns have been perfected for use with various types of gases for heat, depending upon the melting temperature of the metal to be sprayed.

We hope this has proved interesting and useful to you, just as Wrigley's Spearmint Gum is proving useful to millions of people working everywhere for Victory.

> You can get complete information from The Metallizing Company of America, 1330 W. Congress St., Chicago, Illinois.

Permanent Magnets

Rough threading-cooling

locks metal firmly to surface, producing a permanently

tight bend.

Sprayed journal before finish-

ing-Main bearing journal after surface has been

Metallized.

Y-101

All Shapes, Sizes and Alloys. Alnico magnets cast or sintered under G. E. license. Chrome, Tungsten and Cobalt magnets stamped, formed or cast.

THOMAS & SKINNER STEEL PRODUCTS CO. - INDIANAPOLIS, IND. 42 YEARS' EXPERIENCE

R
Radio Sonde
Radiothermics
Railway Communication
Rectifier Analysis
Rectifier Circuit Design153, 154
Rectifier Filter Design
RectifiersSee Main Heading
Rectifier Testing
Regeneration in Motor Control
Register Control
Regulation, AC Generator
Relays for Tube Circuits
Repairing Welding Control
Replicas for Microscope Use
Resin Heating
Rinse Water Testing
Rotating Part Balancing

S

abotage Protection
Safety on Sewing Machines
Sawtooth Wave Generator
Seismic Amplifier
Seismic Prospecting
Seismograph
Self-Balancing Potentiometer
Servicing Electronic Controls
Servicing Welding Control
Sewing Machine (HF)
Sewing Machine Safety
Smoke Measurement
Soldering by High Frequency
Sorting
Spectrometer, Mass
Speed Control
Spraying Paint
Spring Calibration
Square Wave Generator
Stamp Perforating
Steel Mill Applications
Stethoscope
Stimulator, Electronic
Strain Gages
Stroboscope
Sulphur in Gasoline Measurement
Symbols, Electronic

Temperature Control12, 13, 14, 15, 115
Therapeutic Applications
Therapeutics, Measurements
Thermal Relay
Thymotrol
Thyratron Circuit Analysis
Thyratron Control Maintenance
Time Interval Meter
Tin Plate Flowing
Titration, Titrometer
Train Communication
Transducer Circuit
Transformer Bank Protection
Transformers, Constant Voltage
Trouble Shooting
Turbidity Measurement
Turbine Balance Detector

	-	
Ultraviolet M	lotor Lighting	
Ultraviolet S	ource	
Utilities Use	of Oscillosc	ope106
Utility Use o	of Carrier	
Utility Use o	f Electronics	

V

Vacuum Gau	ge, Oil	
Variable Spee	d Drive	
Vibration Test	ting	
Voltage Regu	lator	
Voltage Regu	lator, Generator.	
Voltmeter, Se	nsitive	

W

Wave Generators	146-149 Incl.
Weighing	
	See Heading
	Regulation
	Compensator
	101
ELECTRONIC INDU	Abol wanded a Stigty

The second second

STRUTHERS-DUNN

5,288 TYPES OF RELAYS

Each available in countless coil combinations

1321 ARCH STREET, PHILADELPHIA 7, PA.

DISTRICT ENGINEERING OFFICES, ATLANTA & BALTIMORE + BOSTON - BUISALD - CHICAGO - CINCINNATI - CLEVELAND DALLAS - DENVER + DETROIT + HARTFORD - INDIANAPOLIS - LOS ANGELES + MINNEAPOLIS - MONTREAL NEW YORK - FITTSBURGH - ST LOUIS - SAN FRANCISCO - SEATTLE - SYRACUSE - TORONTO - WASHINGTON

that is CROSS-INDEXED for QUICK-FINDING of PRODUCTS and MANUFACTURERS

LISTING ALL MANUFACTURERS OF

FINISHED PRODUCTS RAW MATERIALS PARTS AND COMPONENTS EQUIPMENT AND ACCESSORIES ASSOCIATED APPARATUS LABORATORY EQUIPMENT PRODUCTION EQUIPMENT MAINTENANCE EQUIPMENT

USED BY

Responsible executives in Engineering, Purchasing, Production and Maintenance in

> MANUFACTURING COMPANIES GOVERNMENT SERVICES COMMUNICATIONS — MILITARY AND CIVIL INDUSTRIAL ELECTRONIC USERS INCLUDING AVIATION ELECTRONIC DISTRIBUTORS

14,000 Handpicked total circulation

> 11,000 Paid subscribers

And HERE IS WHAT YOUR ADVERTISING WILL DO -

-Amplify your free listing.

- 2-Catalog your product in a year-round reference work.
- 3-Reach the industry's buying power.

4-Give you immediate, nationwide promotion.

- 5-Keep in touch with neglected accounts. 6-Tell story of contribution to war and explain delivery situation.
- 7-Maintain association of company name and product.

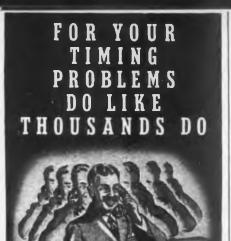
To be published as a section of

in March

REGULAR CLOSING DATE, FEBRUARY 1st (Advertisers who desire space but did not reserve same before February 1st, should wire (collect) for deadline of final form.)

Every manufacturer in the radio-electronic field can use the ELECTRONIC ENGINEER-ING DIRECTORY in at least two ways:

- 1—Use the listings of other manufacturers to BUY.
- 2—Use his own free listings, plus his own advertisement, to SELL.


Whether you are engaged in war or commercial production — whether you are planning for immediate or postwar markets — whether you expect the war to continue for a long time or end soon — it will be to your advantage to have the best possible advertisement in the industry's outstanding directory.

This directory will not only give you industry-wide contacts for sales and prestige but its year-long life will provide a hedge against a sudden need of industrial promotion.

In the ELECTRONIC ENGINEERING DIRECTORY, your advertisement will reach the buying power of the industry on a year-round basis. The directory goes straight to the responsible engineers and executives who initiate, authorize and direct electronic activity.

PLEASE MAKE RESERVATION EARLY

CALDWELL-GLEMENTS, INC., 480 Loxington Avenue, NEW YORK 17, H. Y .- Telephone PLaza 3-1340

e Haydon

DC MOTOR

Reversible - com-pact - light in weight - seven

segment commutator - low reac-tance rotor wind-ting - alnico field - totally enclosed. Sealed-in lubrica-tion enclosed for his

tion good for life

AC MOTOR

AC MOTOR Available 450 RPM to 1 REV. per month; manufac-tured to your spe-cific voltage, ire-quency, speed and torque re-quirements. The 110 volt, 60 cycle J-RPM units con-sume only 2 watts

sume only 2 watts, have 5 in. oz. starting and syn-chronous torque.

WRITE YOUR

TODAY

Whether your timing problem is for war production or for a post-war product, contact our Timing Engineering Service Department. Learn how special self-starting miniature synchronous motors ... operating on AC as well as DC currents with speeds of 450 RPM to as low as one revolution per month can profitably be designed into your product as a precision timing device or control instrument.

Haydon motors have brakes for instant stop . . . are reversible and possess shift devices for automatic reset.

*

*

Complete data describing latest developments in the Timing Engineering field is recorded in this new Haydon catalog packed with vital facts on time engineering

CORPORATE

Gorestville, Connecticut

RAILROAD TRAFFIC CONTROL

(Continued from page 115)

must be placed as close together in frequency as practical. The factors which limit the spacing are: (1) the width of the band required to be transmitted and (2) the sharpness and selectivity of the filters employed in the receiving units.

As only a narrow band is required for the operation of relay circuits, the channels may be spaced as close as 5 kc, provided a sharply tuned filter is used at the receiving end. However, from the standpoint of conserving materials in manufacturing, the channels can be spaced further apart, say at 15 kc intervals, thereby securing equally satisfactory operation with broader and simpler tuning.

Transmitter, receiver units

The transmitter and receiver units are small and compact, each occupying a shelf space approximately six inches square. They are housed within the standard signal instrument case on the roadway. In the photographs the units are shown equipped with metal tubes. However, under present war conditions, glass tubes can be more readily obtained; and this substitution is intended in connection with the accompanying circuit diagrams of the units.

Traffic control transmitter and receiver units

The transmitter, in simple form, consists of a self-controlled electron-coupled oscillator coupled to a power amplifier output stage, as shown. Two tubes of 6L6G type are used in the unit.

The output of the amplifier stage goes to line wire L1 through the condenser C1, of about .05 mid capacity. The L2 side of the line is grounded to the transmitter chassis through condenser C2 of like capacity.

The unit is keyed by an external switch or relay contact SW, connected in the B+ lead to the amplifier stage; so there can be no output to the line when the switch is open.

A simple form of receiver circuit is shown diagrammatically. The unit includes a built-in sensitive relay mounted in a vertical posttion, so that its back contact would be closed by gravity when the relay is de-energized-a safety precaution, in accordance with good signal practice. Contact terminals are brought out to the top of the instrument case. Terminals are also provided for connections to Terminals are the transmission line and to the power supply.

The unit comprises a 6J7G amplifler tube, a 6H6 diode detector, and a 6Z7G power amplifier output tube. When no signal current is received from the line, the output tube is biased to cut-off through the bias resistor R1 and the Mallory cell MC, connected in its grid circuit. There being no line current, no current will flow in the circuit of the diode 6H6.

When the designated frequency is present on the line, the current received is amplified through the 6J7G. The amplified current then flows through the plates and cathodes of the 6H6. producing a posi-tive bias voltage which flows from the cathodes to the grids of the 6Z7G, making the grid more positive, so that plate current will flow to energize the relay K. By this circuit arrangement, a failure of the plate current would leave the relay de-energized, so that the red indication light would be continuously displayed.

The rheostat R2 in the cathode circuit of the 6J7G provides an adjustment of sensitivity so that the plate current through the relay can be regulated to the desired value regardless of the strength of the signal received from the line.

The receiver pickup coil is coupled to line terminal L1 through a condenser C1, which may have a capacity of .002 mfd. The bottom end of the coil and the L2 line terminal are connected to the chassis ground through a condenser C2, of .05 mfd capacity.

A milliammeter may be inserted in the closed-circuit jack, for ad-ELECTRONIC INDUSTRIES . February, 1944

ELI

190

... for everystoling ... War os upt ... save time and warry ... call

entral soar

THOUSANDS OF **MAN-HOURS SAVED**

Allied's Complete, Centralized Service **Speeds Procurement of Everything in Radio and Electronics**

It happens every day . . . every hour! . . . From all parts of the Country . . . from the United Nations . . . come urgent calls for vital supplies to keep production humming to hurry development projects . . . to aid men in training, and men in action. For it is a well-known fact that Allied is able to deliver the goods ... fasterand save precious man-bours all the way down the line! . . .

Because-here, under one roof are concentrated the largest and most complete stocks of radio and electronic equipment available today!

Because-Allied's procurement experts are in constant contact with all leading manufacturers and have latest "supply data" at their finger tips!

Because-Allied's complete centralized service simplifies procurement and expedites delivery of many diversified needs at one time...for the Armed Forces, Industry, Laboratories, Government Offices, Training Centers. An experienced technical staff often suggests practical solutions for design and application problems.

You, too, can simplify and speed procurement ... by dealing with this one central source! All it takes is one call or wire ... one order for everything . . . one bookkeeping entry . . . one check! Prove it to yourself . . . you'll save many man-hours.

ALLIE

Pelivers the Goods

Microphones

Headphones Public Address

Power Supplies Converters

Intercom

Generators

Plugs & Jacks

Speakers Receivers

Meters

Tools

Test Equip.

Training Kits Code Equip.

Radio Data Handbook Formulas, standards, data, tables and chards data, tables and chards most commonly used in solution of radio and electronic problems, Price net, only 25¢

Rheostats Colls

Photo Cells Hardware

Sockets

Relays Switches

Rectifiers

Wire & Cable

BRAND RESISTORS

• Globar Brand Resistors, built to specifications, tabulated below, will reduce your production costs, improve the performance of your circuits, help take the headaches out of your service department and strengthen your reputation for quality devices.

A resistor is essentially an energy dissipator and as such it should be rugged. Since the demands of electronic circuits are quantitatively exacting, a resistor should be electrically and mechanically stable so that it will retain indefinitely its established resistance value at normal loading. A good resistor should withstand, without suffering a permanent change in resistance, the maximum accidental over-voltage to which it might be subjected in service. Moreover, it should be free from microphonic effects, inductance and capacity. It should have a comparatively straight line temperature and voltage characteristic and it should not be affected by humid atmospheres.

Globar Brand Resistors are built to meet these requirements.

This company was one of the first manufacturers of electronic resistors and today Globar Brand Resistors, steadfast against abuse, are serving as precision weirs in the electron arteries and capillaries of electronic circuits throughout the world. A trial in your electronic circuits will serve to verify these claims.

PHYSICAL AND ELECTRICAL SPECIFICATIONS

PART	WATT RATING	RANGE	OVERALL	OVERALL
997-A	1/5	150 Ohms ta 4.7 Megahms	21/64"	76.6
763-A	1/4	47 Ohms to 15 Megohms	5/8	7/32
759-A	1/2	33 Ohms In 15 Megohms	3/4	1/4-
766-A	1	47 Ohms to 35 Megohms	1 1/8"	1/4-
792-A	3	22 Ohms to 150,000 Ohms	1 7/8"	15/32
774-A	5	33 Ohms to 220,000 Ohms	2 5/8"	15/32"

TYPE "CX" RESISTORS

997-CI	1/4	t to 150 Ohms	21/64	7/64
763-CX	1/2	1 to 47 Ohms	% '	1/32
759-CX	I	1 to 33 Olims	3/4 °	1/4"
766-CI	2	1 to 47 Ohms	11/0"	1/4"
792-(1	4	I to 22 Ohms	1 7/0"	15/32
774-CR	6	1 to 33 Ohms	2 5%	15/32

ALL BESISTORS COLOR CODED According to R. M. A. Standards. ORDER BY PART NUMBER, RESISTANCE VALUE AND TOLERANCE.

Globar Division

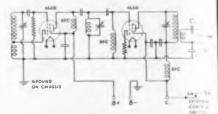
NIAGARA FALLS, N. Y.

[Carborundum and Globar are registered trade-marks of and indicate manufacture by The Carborundum Company] 192 justing the pickup current on the relay through the setting of the sensitivity control R2.

Control machine

The traffic control machine, located at the central office comprises a layout of switch and signal controls, indicating devices, etc., by which the operator can handle traffic over any given territory, with efficiency and safety. The illustration covers a single track railroad with passing sidings, but the layout can be arranged to cover multiple-track operation as well. While the centralized traffic control system eliminates the telephone in train dispatching, certain telephones can be selected by pushbuttons on the control machine for emergency use.

The upper portion of the machine comprises a diagram of the trackway, the track being represented by a white line 3/16 in. in width, painted on a black background. Electro - magnetically actuated switch indicators in the diagram display a clear picture of the routes set up. Small red lights are illuminated to show the occupied track sections. Both the switch indicators and the occupancy lights are operated by frequencies transmitted from the roadway, as hereinafter explained. Amber colored lights indicate the approach of the train, while arrow lights show direction of traffic movements.


Across the lower portion of the control panel are mounted the switch control levers, the signal control levers, and push-buttons. The switch control levers, when moved to the down or to the up position, send out the control frequencies to operate the switch machine on the roadway to the normal or reverse position, respectively.

Accompanying each switch lever is a white "OS" light and a red "lock-out" indication light. The "OS" light is illuminated when the train is occupying the switch track circuit, and is also lighted momentarily during the time the switch is traversing its stroke while being moved from one position to the other. The red light is illuminated when the switch forms part of a route over which the signal has been cleared for train movement, the transmission of the control

frequencies to the switch being ut off while the light is showing To change the route after the sinal has been cleared, the operator must first move the signal lever to its center (stop) position, after which the switch control can be chan d, provided there is no train pproaching.

The signal control levers, local ed above the signal control pushbuttons, are moved to the right or to the left to establish direction of traffic movement; while the pushbutton, when pressed, sends but the frequency that will clear the signal for that direction.

Circuit diagram of transmitter

Individual push-buttons can be provided to select certain telephones, the pressing of the button actuating a transmitter to send out the frequency selected to operate the 'phone bell. A "general call" push-button, when pressed, selects a group (or all) of the telephones simultaneously. When general information is to be given, the operation of this button eliminates the necessity of calling each one indi-vidually. This feature is useful in locating persons who are "somewhere on the line." A switch is provided on the panel to dim the machine lights for night operating. by reducing the voltage on the lamps.

In dispatching traffic, the operator follows the indication lights on the track diagram, and to manipulate the switch and signal controls, in order to clear the way for the heavy freight train, while the passenger train is put through the side track, stopping the passenger train if necessary, in order to let the freight pass it.

Typical transmission circuits

The following typical circuits will serve to illustrate the simplicity of the system described, when applied to the remote control and indication of switches, signals, and the like.

In a typical signal control the "normal" (or red) position of the signal control lever is with its contact open, so that the transmitter T2500 delivers no current to the line. The receiver R2500 at the signal location will have its relay R de-energized, thereby completing

General Electronics Industries Specializes in Specific Applications of Electronics to **Solve Individual Production Problems**

• For assistance in your postwar production planning, you are invited to call upon the research engineering skill, experience and facilities of one of the largest organizations specializing in electronics. General Electronics Industries is prepared at this time to

study your electronics requirements and to design or develop the application that will fit your individual purpose. Thus, you will gain a head start in your future postwar production, with the perfect electronic devices General Electronics Industries will be ready to supply as soon as its manufacturing facilities are no longer engaged in all-out war effort.

GENEBAL Division of Auto-Ordnance Corporation NEW MILLORD . NEW YOR Write to Engineering Department, General Electronics Industries, 342 West Putnam Avenue, Greenwich, Connecticut.

LECTRONIC INDUSTRIES . February, 1044

GREENWICH · STAMFORDI · BRIDGEPORT · NEW MILFORD · NEW YORK 193

Frequency stability is better than 2% over a 24-hour period after initial warm-up. Normal performance is considered at either 120 or 270 Volts R.M.S. output where the change in output voltage from no load to full will not exceed 4%. Output voltage may be continuously varied with same degree of regulation from 80 to 140 volts on the 120 volt tap and the output transformer, and from 180 to 300 volts on the 270 volt tap.

Descriptive Bulletin Sent on Request

194

COMMUNICATION MEASUREMENTS LABORATORY 114-118 GREENWICH ST. NEW YORK 6, N. Y. a circuit over its back contact to the red signal light.

When the signal lever is moved to its "clear" (or green) position, the closing of the contact causes the transmitter to deliver its output (2500 kc) to the line. Relay R will then be energized through receiver R2500, thereby opening its back contact, and through the front contact the circuit is established to the green signal light.

When the track relay TR is deenergized by the passing of the train, current is cut off from the green light and the circuit established over the back contact of TR, to the red signal light.

The switch control lever operates in two positions, in a vertical direction, down for the switch "normal" (position for the train to pass straight through) and up for the switch "reverse." When in its normal position, the lever contact N is closed, thereby causing transmitter T2515 to deliver its frequency to the line wire. Relay N, associated with the receiver R2515 at the switch location, will then be energized, and through one or more contacts of this relay the circuit is established to the switch machine SM, thereby operating the switch to its normal position.

When the control lever is moved upward to the reverse position, contact N will be opened and contact R will be closed, so that transmitter T2530 will now deliver its frequency to the line. Relay N then will be de-energized and relay R associated with receiver R2530 will be energized, thereby establishing the circuit to the switch machine SM to operate the switch to its reverse position.

Track circuit control

The running rails are divided into blocks by insulated rail joints, which isolate each track section electrically from the adjacent sections. The intermediate rail joints in the block are "bonded" so as to form a continous conductor for the track current. Across one end of the block is connected the terminals of a track battery, usually about 2 volts for a track circuit one mile in length. Across the far end of the block is connected the terminals of the track relay, having a resistance of about 2 ohms. The length of a block may be anything from a few feet up to a mile, the latter being considered maximum for positive operation under all weather conditions. When the track is clear, current flows down one side to the track, through the coils of the relay, and back over the opposite rail to the battery, energizing the relay. A resistor R1 is usually inserted in one of the battery leads to limit the current drawn

On Land - Sea - Air

A Gew FERRANTI PRODUCTS

Transformers
Rectifiers
Reactors
Filters
Equalizers
Plate-Filament Transformers
Aero Transformers
Electrostatic Voltmeters
Clip On Ammeters
Industrial Voltmeters

• Engineering Service Full Facilities for Wiring and Assembly of Complete Equipments FERRANTI equipment is prominent in our fight for victory in '44. The new General Sherman tank with its gyro-stabilized turret, the latest form of underwater sound equipment and America's newest bombers with their improved detecting devices, utilize electronic equipment dependent on transformers and inductors for their efficient and reliable operations.

With a capacity now ten times that of recent years, and still growing, Ferranti has been able to keep ahead of military needs and thereby offer reasonably fast deliveries on nearly all Ferranti products.

CONSULT WITH FERRANTI NOW — wherever Quality and prompt delivery are of paramount importance.

FERRANTI ELECTRIC INC., R.C.A. Bidg., NEW YORK 20, N.Y.

boyour ENGINEERS have a TOUGH

Are you engineers having trouble finding an exactly correct electrical power supply for today's war products? Are you planning the power supply for your future products? Then let Wincharger Engineers help you. They can save you lots of time and worries if you need:

MOTORS

- Built in and shell type motors
- Adjustable speed motors
- Syncronous Motors
- Rotary Electrical aviation equipment
- Dynamotors and Inverters
- Motor Generator sets

Railroad Car Lighting Generators

from the battery when the track is occupied.

When a train enters the block from either end, the relay is shunted out by the path of low resistance offered by the wheels and axles of the train across the running rails, whereupon the track relay will become de-energized remaining open as long as the trait is in the block.

A transmitter T2545 is controlled over the front contact of the track relay, so that the frequency will bcontinuously transmitted over the line while the block is clear. A receiver R2545 at the central office energizes a relay R. When the track relay is de-energized by a train the transmitter will be cut off through the opening of the relay contact. The receiver relay R then will become de-energized; and through the back contact of this relay the circuit is completed to the red track occupancy indication light on the track diagram of the control machine.

The railway field offers unlimited opportunity for the application of electronics devices to the operation of automatic block signals, cab signaling, automatic train recording, detection of dragging car equipment, communication, etc. In fact, the multiplex transmission of frequencies, all operating independently of each other, can be utilized in so many ways that its adaptability is almost beyond present comprehension.


In the operation of yards and terminals, an entire route may be set up by the transmission of a single frequency, involving the operation of a number of switches and crossovers which are controlled simultaneously through one "route" control lever. Through a frequency allocation, the important routes can be set up selectively, using a different frequency for each route. A study of traffic movements at a particular location will, in many cases, disclose the possibility of consolidating the operation of controls.

While this system is most important in the present emergency, it also is a most valuable improvement for postwar use. Any installation can be easily expanded by adding the required transmitting and receiving units to the line.

WIDE READING

(Continued from page 121)

The toothed metal disk rotating with the shaft generates an ac voltage, proportional to the speed of the shaft, in the telephone coil. The voltage from the frequency divider and the voltage derived from the telephone coil are compared as to their relative phase, and a current I which is a function of this phase difference is passed through the winding of an electromagnet hav-

CORPORATION

NEWARK, NEW JERSEY

FOR an exact record of machine hours the Industrial Time Totalizer provides distinct advantages over written or personal checks. This visible Totalizer will give a record up to 10,000 hours. On equipment of pre-determined life expectancy the Totalizer, by showing the hours in use, visibly signals when replacement ought to be made. Whether your product is now made for the war effort or to compete in postwar markets the application of Industrial Time Totalizers is worth your immediate attention.

NDUSTRIAL

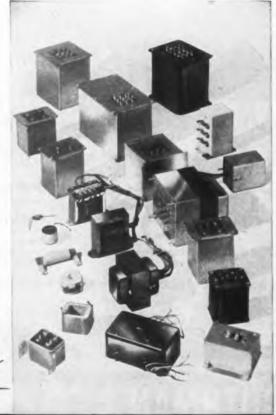
TIMER

SOME TYPICAL APPLICATIONS Conveyors Diesel Generators Drill Presses Molding Machines Oil Burners Punch Presses Refrigerators Radio Transmitters Welding Machines Vacuum Tube Devices and many other types of machines

INDUSTRIAL TIMER

110 EDISON PLACE

... PARTS manufactured exactly to the most precise specifications.


Long manufacturers of component radio parts, MERIT entered the war program as a complete, co-ordinated manufacturing unit of skilled radio engineers, experienced precision work men and skilled operators with the most modern equipment.

MERIT quickly established its ability to understand difficult requirements, quote intelligently and produce in quantity to the most exacting specifications.

Transformers-Coils-Reactors-Electrical Windings of All Types for the Radio and Radar Trade and other Electronic Applications.

311 North Desplaines St.

COIL & TRANSFORM

CHICAGO 6, ILL

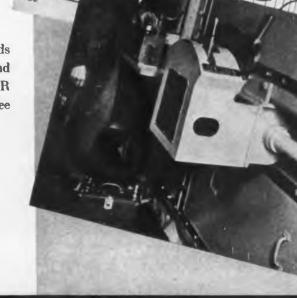
ing a soft iron core. A copper or aluminum disk rotates in the air space of the electromagnet and the eddy currents in the disk effect the desired braking on the shaft.

If by suitably connecting the motor, the shaft is made to rota e with a speed such that the tell phone-coil voltage frequency is approximately f_r/n , frequency folloing sets in, and the shaft rotates synchronously just as if driven by a synchronous motor.

This may be seen from Fig. 2. which shows the voltage vectors in the phase comparison device and a circuit diagram of the electrical apparatus. The controlling ac voltage E., plus the telephone coil vol age E, are rectified and applied to resistor R_s, and the voltage E_s across this resistor controls the plate current of the amplifier tube V; this current flows through the coil 8 of the braking electromagnet. Th other parts may be omitted in a simple modification of the apparatus. Assuming the arrangement to be synchronized and E_{st} and E_{st} to be approximately 90 deg. out of phase (heavy lines in the diagram), there will be a synchronizing force immediately the wheel departs from the synchronous speed. Should it tend to rotate at a higher speed, vector E, would rotate to the right and the resulting voltage E, would increase. Consequently, the braking current also increases reducing the speed of shaft and wheel. Similarly, a decrease in speed causes a reduction in braking current and an increase in shaft speed. It will be seen that, once the arrangement has been made to operate synchronously by a suitable regulation of the driving motor, the driving torque acting on the shaft may vary without disturbing synchronous operation. The limits, according to Fig. 2 are set by the condition that the phase difference between E., and E, in the optimal case 90 deg., must not reach 0 or 180 deg.; at these values changes of ϕ will not cause corresponding changes in E, so that the brake has no synchronizing effect.

For small control voltages E., and small telephone coil voltages E, the braking force of the disk is small. and small variations in the driving moment will make the phase difference ϕ pass through the whole range from 0 to 180 deg. At larger amplitudes of E., and E, and corresponding stronger braking effects the permissible variations in the driving moment are greater. It is, however, impossible to compensate for any desired variation of the driving torque by correspondingly increasing the control voltages because, at a certain strength of the control, oscillations of the rotating arrangements about its synchronous position occur which increase synchronization stops. The until reason is the lag of the braking cur-

THE ABC OF NOISE MEASUREMENT


Acceptability of a product, for military use now and for post-war markets, may hinge on the noise and vibration factors. At all times, in any product with moving parts, noise and vibration are important.

But noise is an acoustic phenomenon which can be measured electronically. To assist the busy design engineer—who has no time to become expert in acoustics or electronics—we have prepared THE NOISE PRIMER, the A B C of noise and vibration measurement. Basic principles are discussed simply and completely —standards, instruments, procedures.

Compare your measurement methods with accepted standards. In this, and many other ways, THE NOISE PRIMER should be a real help. Write for your free copy today.

Ask for BULLETIN No. 852

THE NOISE PRIMER

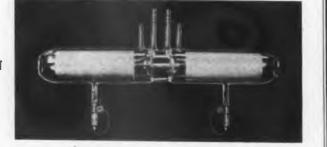
GENERAL RADIO COMPANY Cambridge 39, Massachusetts

PLASTIC PARTS

Large or small quantities. Produced to your specificotions. Precision machining, stamping and forming all plastics. No molds required. Send your blueprint, or write for bulletin.

PRINTLOID, Inc.

93 Mercer Street


New York 12, N. Y

FUSED QUARTZ Apparatus

of the finest quality in any required shape

ELECTRONIC TUBE insulators of fused quartz are not affected by thermal shock. High surface resistance, non-hygroscopic.

QUARTZ HYDROGEN ARC

NEWARK, N. J.

ULTRAVIOLET LAMPS For Fluorescence Tests • Photo Chemistry Laboratory Usage HANOVIA CHEMICAL AND MFG. CO.

DEPT. EI-7

200

rent with respect to the phase difference ϕ , caused by the inductance of the electromagnet.

The simplified device can the fore only compensate for small variations in the driving torque, fur instance those variations occurring while the driving motor is left itself for a couple of minutes. If wider variation of the driving mitor are to be compensated for, the additional regulator shown in the diagram may be used, provided the variations are gradual and not abrupt. The operation of the adc tional regulator is based on compensating for slow variations the driving torque by an additional braking torque; then the result ing driving torque varies about the mean for which the simpler circuit alone has its optimum working condition.

A second similar tube V' is connected parallel to tube V. The grid of tube V' obtains the controlling dc voltage over an RC element; two relays R_1 and R_2 are inserted in the plate circuit.

There are two resistors connect ed in parallel to the plate circuit of tube V: R, which is adjusted by dc motor M, and R_b which is adjusted by hand. M is a serieswound motor with two field windings F1 and F2 oppositely wound. so that the motor rotates in either direction according to whether the armature is supplied by \mathbf{F}_1 or \mathbf{F}_2 The supply voltage is connected by relays R1 and R2; R1 operates a connecting contact r, and R, a separating contact r₂. At both relays, the difference between attracting and releasing current is about 10 per cent of the attracting current. Furthermore, resistors parallel to R and R₂ cause K, to operate at greater currents than R, so that R, releases at a current considerably higher than R₂ attracts.

At normal driving torque, the de current has a value so that the complete current through the winding maintains phase difference ϕ at 90 deg. Then a current J flows through V' at which relay R is operated while R₁ is inoperative so that motor M does not rotate Upon an increase of the mean driving moment, angle ϕ decreases and current J' increases. Relay R1 operates and motor M reduces the resistance of resistor R. until the additional braking current has reduced the resulting driving torque to such an extent that the phase angle ϕ is again 90 deg[•] and J' has again its normal value. Then R, is released and the main regulation only is operating. Similarly, upon an extended decrease of the driving moment, current J' decreases and the control motor M increases R. until the effective driving moment and J' have again their normal values.

In this manner, it is possible to maintain the rotating arrangement

HALLICRAFTERS WAS READY!

Under the abnormal climatic and operating conditions of war, the Signal Corps SCR-299 communications truck, built by Hallicrafters, is providing peak performance for the Allied armed forces, fighting throughout the world.

Hallicrafters peacetime communications equipment is meeting the wartime qualifications and demands of the Military!

Just as Hallicrafters Communications receivers are meeting the demands of war Today—they shall again deliver outstanding reception for the Peace—Tomorrow!

World's largest exclusive manufacturer of short wave radio communications equipment...First exclusive radio manufacturer to win the Army-Navy Production Award for the third time.

SUPERIOR ENGINEERING

Radiart has a large and competent staff of twentyone electrical and radio engineers. Their combined efforts toward better vibrator construction and longer service life have been very successful and have given RADIART VIBRATORS an enviable, nation-wide reputation.

The large quantities of RADIART VIBRATORS and VIPOWERS now being delivered to our Armed Services are ample evidence of that high quality.

Radiart Engineers are constantly on watch to maintain that reputation and whenever possible to raise still higher the Radiart Standard of Quality.

Radiart Corporation 3571 W. 62nd. St. CLEVELAND 2, OHIO

BUTTON TYPE. FLAT OR STEPPED TYPE SQUARE, OBLONG AND ROUND CLOSEST TOLERANCES

EXCELLENT FINISH

MINIMUM LAPPING GREAT SAVINGS IN MAN HOURS AND COSTS

> PROMPT DELIVERIES Send for full information

Gemex Company

UNION, NEW JERSEY

at synchronous speed for hours, without regulation by hand being necessary.

The braking magnet must be adjusted to the no-load torque re-quired for the driving of the uncontrolled device. It may be taken as a guide that the mean of the additional braking torque of the eddy current brake should equal this no-load torque, and that the variations of the braking current due to the main regulation should be about 10 per cent of the mean braking current. As a rough approximation, the braking force P acting on the disk may be computed from the formula: P=vB² Fgd; where v is the velocity at the cir-cumference of the disk, B the density of the magnetic flux in the disk, F the cross-section of the disk within the magnetic field, g the conductivity and d the thickness of the braking disk. B is found from $B = \mu w J/d'$, where w is the number of windings, J the current, d' the width of the slot in the electromagnet in which the braking disk rotates. The actual magnitude of the braking force was, in the reported experiments, found to be about three times the computed one.

To obtain as great a braking torque as possible, the lever on which the braking force acts should be made as long as possible. In the arrangement described, for which the no-load torque was 2 kgm, the lever had to be 35 cm, though a large electromagnet was used. A large ring made of strong Duraluminum (5mm) was mounted on the rotating arrangement in a suitable way.

The function of the regulating device corresponds essentially to that of a synchronous motor which acts on the same shaft in addition to the actual driving motor. The advantage of the device described over a synchronous motor is that the telephone coil and the braking disk are much easier added to an already existing arrangement than a correspondingly strong synchronous motor. Further, the synchronizing torque is comparatively great because of the amplification of the eddy current brake. Actually it has been possible to satisfactorily synchronize a big ring-shaped turntable with a tube of 12 W plate dissipation.

Impedance of a Transverse Wire in a Rectangular Wave Guide

S. A. Schelkunoff (Quarterly of Applied Mathematics, April, 1943)

Approximate formulas are derived for the internal and external impedance of a thin wire carrying uniform current and extended between two walls of a rectangular wave guide.

ELECTRONIC INDUSTRIES . February, 1944

ELE

202

A CONTRACTOR CONTRACTO

The Fight Begins!

LY

EVERYWHERE Allied forces are on the march – backed by the finest technical equipment available. HAMMARLUND radio receivers are right in there pitching for nothing less than unconditional surrender of the rest of the Axis.

> THE HAMMARLUND MFG. CO., INC. 460 West 34th Street, New York, N. Y.

> > 205

HAMMARLUND

OF OUA

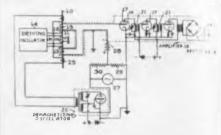
AS CRYSTAL specifications become more and more rigid, more and more communication equipment builders are meeting the "specs" by acting on the suggestion, "Let's call in Crystalab."

There are good reasons for this fact:

1 From the beginning, Crystalab has been meeting the rigid specifications set by the U. S. Coast Guard, the U. S. Signal Corps, and other branches of the armed services . . . the standards which are the basis of specifications now used by most of the industry.

2 Crystalab testing equipment, much of it designed and built by our own engineers, is unsurpassed in the industry. It includes instruments for testing the performance of crystals under all temperature and frequency conditions. Thus, when a crystal leaves Crystalab, it is accurate to highest precision standards.

Crystalab service goes far beyond crystal manufacture and testing, however. Our laboratory is available for special work in the design and calibration of new electronic circuits of all kinds. Our engineers are experienced in all phases of communications research, design and building.


Whether your need is crystal supply, or specialized help in the solution of electronic problems, there is an excellent possibility that you will find the answer in the words

> Copyright 1944 by Crystol Research Laboratories, Inc. CRYSTAL RESEARCH LABORATORIES INCORPORATED TWENTY-NINE ALLYN STREET, HARTFORD, CONNECTICUT

NEW PATENTS

(Continued from page 136)

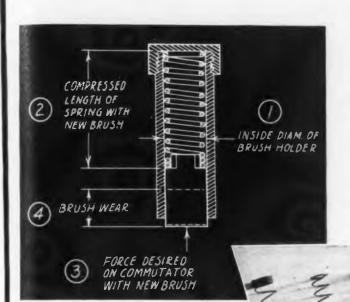
of π . From the location of these matrix and minima on the cathode ray at the phase difference ϕ between the inal input waves e_1 (f) and e_2 (f) can be derived. Calibration may be made to gerimentally. It is suggested to enable of an airplane, e.g., by measuring the abrates difference between waves reflered by the airplane and picked up by distant receivers. M. M. Levy, Intributal Standard Electric Corp. (F) 1941, (I) Nov. 1943, No. 2,33

Measuring Magnetic Fields

Intensity and direction of an unknown magnetic field are to be determined. In or rod 10 in made of magnetostrictive material, the permeability of which function of stress. It is supported in the middle at 11 and made to vibrate longita dinally by piezoelectric crystals 12 and 13 which are driven by oscillator 14 (3 to 20 kc). As it vibrates, its permeability varies periodically causing the magnetiflux induced by the unknown ambient flux induced by the unknown ambient magnetic field to vary with it. The volt-age induced in coil 15 by the changing magnetic flux is amplified in tubes 17, rectified in rectifier 19 and indicated by ammeter 20, Oscillator 26 operates inter-mittently 1 to 10 times per percent and ammeter 20. Oscillator 26 operates inter-niitently, 1 to 10 times per second, and supplies ac current (the frequency of which is different from the frequency oscillator 14 and several times that of the ac supply 27) in coil 25 which serves to demagnetize the bar once in every cycle During the demagnetizing period, tube i cycle is blased beyond cut-off by the age supplied by source 27 w ac volt which also energizes demagnetizing oscillate Other embodiments are described. oscillator R. 1 Wyckoff, Gulf Research & Development Co., (F) May 8, 1941, (I) Nov. 16, 1943, No. 2,334,593.

HF AND UHF

HF Measurements


The circuit is intended to measure voltages or wavelengths of balanced parallel transmission lines without destroying the balance. For this purpose, the heater and cathode leads of the diode voltmeter run wholly inside one of the lines. The vollmeter circuit is shown in the diagram T. H. Clark, RCA (F), June 5, 1942, (1) Nov. 30, 1943, No. 2,335,486.

UHF Push-Pull Amplifier

An influence of the plate voltage on the control grid voltage is caused by the grid plate capacitance at low frequencies and at high frequencies, is counteracted by the inductances of the electrode supply leads. However, at still higher frequen-(Continued on page 234)

ANALY COULD BE COULD COU

"Micro-Processing" Makes Possible this New Design Concept for Better BRUSH SPRINGS

Instrument Specialties engineers have devised a simplified design procedure for determining the best brush spring to do a specific job; based upon only four brushholder design details:

- 1-Inside diameter of brush holder.
- 2-Working length of spring when
- assembled with a new brush.
- 3 Force desired on the commutator.
- 4 Allowance for brush wear.

From these four details of your motor design, I-S engineers will design the one best "Micro-processed" brush spring giving longest brush life consistent with easy assembly.

"Making Beryllium Copper Behave" The story behind the development of micro-processing. "Predicting Spring Performance of Beryllium Copper Wire & Strip" Why beryllium copper varies in hardening response and what to do about it. The exceptional physical and electrical properties of beryllium copper, when Micro-processed, enable the designer of brush springs to establish new values of performance without increasing the cost of the springs.

Micro-processing eliminates all of the guesswork by controlling and directing the inherent proper-

> ties of beryllium copper to achieve desired new standards of performance in service.

> Whether you are interested in the actual design of better brush springs, or desire to

improve the working efficiency of equipment and would like I-S to design your brush springs with you, contact us and compare on your own springs — for your own use — the decided difference that Micro-processing makes.

Samples take about a week; quantity deliveries are shipped in 4 to 6 weeks.

INSTRUMENT SPECIALTIES CO., INC.

FIELD ENGINEERING OFFICES: DOSTON - CHICAGO - CLEVELAND - PHILADELPHIA - NEW YORK 205 FOR THE WANT OF A HORSESHOE NAIL

Battles will Not be Lost in This War''For the Want Of" a Small but Vital Object

Valpey Crystals are performing their indispensable duty in wink-of-an-eye communications, from the foxholes of New Guinea to the bombers over Berlin ... exclusively an ally for the Allies.

PRECISION-CUT UTTERLY DEPENDABLE THROUGH VALPEY CRAFTSMANSHIP

Special low frequency unit developed primarily for use in vital war equipment.

Do you have a communications problem in which the use of crystals is expedient? In War...In Peace...Toss Your Probfem in Valpey's Iap.

BUY MORE AND MORE AND MORE BONDS

206

RECORDING FREQUENCY DRIFT

(Continued from page 117)

motor to drive down scale the potentiometer contact and the carriage that holds the ink pens. When a new position of balance is reached, the potential across the galvanometer decreases to zero and the light beam returns to the balance position, thus reducing the illumination that reaches the phototube, opens No. 2 relay and stopping the motor at the correct position. A similar change occurs when the applied current level rises -the illumination on the phototube decreases, relay 1 opens and the carriage is reversed and driven upscale.

Automatic rebalance

The net result is that any current injected into the galvanometer circuit is automatically balanced out by the motor-driven rheostat that tends to follow up all the changes. The position of this rheostat therefore is a measure of the current level. Every 30 seconds the position of the rheostat pointer is recorded on a chart. The circuit is changed between each reading to energize another buffer tube so that the next reading indicates the result of the frequency shift on a different instrument, until all 12 are recorded whereupon the series is repeated. By the use of colored inks and a printed number alongside of each dot, the separate curves can be easily distinguished. In Fig. 2 a pencilled connection between some of the sets of points has been added to show what is lost by not having colors appear on the printed reproduction.

Frequency to current conversion

The final problem is that which converts a variation in frequency into a variable current. This is accomplished in the circuit in Fig. 4.* This circuit delivers a maximum of 500 microamps. to the recorder if exactly a 2000 cycle (or 4000 cycle) tone is applied to its input, depending on the L-H switch position, shown. These switches are all operated by a single control. All frequencies less than these maximums are directly proportional to the current. Thus the chart scale is 2000 or 4000 cycles wide and the drift readings are easily interpreted. The chart speed is adjustable and in special cases a higher speed than two readings per minute can be made, although this rate is satisfactory for a two-hour run.

Humidity and temperatures are recorded manually although the temperature time curve for the refrigerator shown in Fig. 1 follows a close repetition pattern and the rate of temperature rise need not be checked. **R.R.B.**

•See also Fig. 2 on page 111 this issue which describes the operation of this frequency indicator.

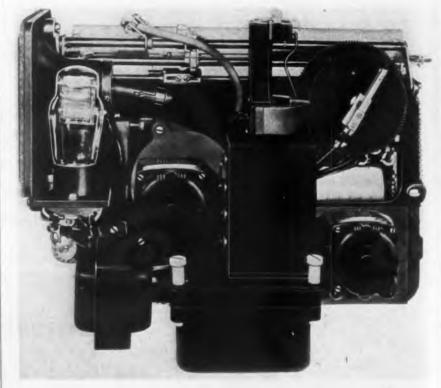


Fig. 5—Rear view of Celectray (Tagliabue) 12-point recorder. Amplifier tube and light, focusing lens, (upper left), and reflecting galvanometer (center). One motor drives the pen movements, and the other advances the chart

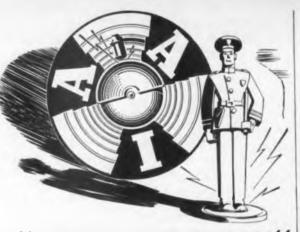
A Message to Garcia ...

1898

After weeks of torturous travel at sea and through matted jungles the famous message was delivered to General Garcia.

1944

Today military messages of vital importance are delivered in a split second by means of modern radio and electronic devices.


Sentinel

THE effectiveness of modern radio communications is playing a prominent part in winning the war for the United Nations. And Sentinel Radio is proud to be playing an effective part in it. Four Sentinel plants are producing vital wartime equipment to help the quick conversion of battle strategy into victorious action.

After the war Sentinel, conditioned by wartime experiences, will produce radio and electronic equipment to convert sales strategy into actual sales for Sentinel dealers.

SENTINEL RADIO CORPORATION 2020 RIDGE AVENUE, EVANSTON, ILL.

YOUR GUARD PROBLEM ANSWERED

And the second s

208

"AUTOMATICALLY"

• Multiplying efficiency many times while reducing to a minimum the necessity for human guards, A.A.I. Automatic Alarm systems are today protecting American industries, large and small, from the constant threat of sabotage, espionage and theft. Employing tiny robot sentries, or detectors, electronically operated, Automatic Alarms, on duty 24 hours a day, detect and report danger and dispatch guards to the actual zone of disturbance. Simple to install, easy to maintain and relatizely low in cost, Automatic Alarms will serve you efficiently and economically. Consider this modern miracle of protection for your properties and plants.

Immediate Delivery!

R-9 QUARTZ CRYSTALS

for FREQUENCY CONTROL and SPECIAL APPLICATIONS

ACCURATE and DEPENDABLE

We are equipped to handle any type or size order. May we quote you on your future requirements? Immediate delivery.

R-9 CRYSTAL COMPANY, INC. 907-909 PENN AVENUE PITTSBURGH, PENNA.

G-E Operates Course on Naval Equipment

A thirty-day course in electronic applications for Navy personnel and civilian instruction is being conducted by the Receiver Division of the General Electric Co.'s Electronics Department. According to George Devine, who is supervising the course, "the purpose is to instruct those attending classes in (1) fundamental electronics theory, (2) installation and maintenance of specific equipment, and (3) practical application and operation of the equipment. Daily quizzes are given, both for the purpose of grading students and to serve as a check not only on the instructor but to rate the ability of class members to absorb the day's work."

Classes were started about three months ago, each class running about thirty days with sixteen students attending the first two The course has been so classes. successful that the present class has jumped from sixteen to thirtytwo pupils. The men taking the course come from navy yards all over the country, including Pearl Harbor, Alaska, and inland ports. such as those located on the Great Lakes. About one-third of the students are civilian maintenance electrical engineers, the other twothirds being navy men and officers.

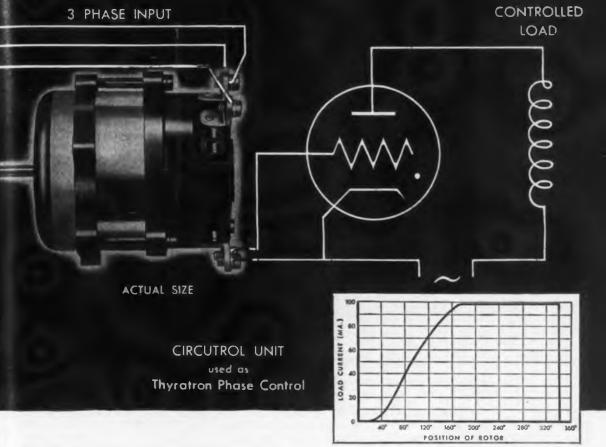
RTPB PROBLEMS

(Continued from page 85)

rectional operation, type of modulation and the like).

As a part of deliberations on these subjects the chairman has asked that only technical and not human factors be considered, and proposed that pulse transmission versus continuous wave be studied with regard to fading and general performance to determine which system should be recommended for each frequency range. He also asked for consideration of bandwidth ratio, which is the ratio of channel to carrier-frequency, and recommendations as to whether it should be constant or vary with each service and with each carrierfrequency.

Members of the Carrier-Frequency Capabilities committee include: W. C. Lent, chairman, M. L. MacAdam, L. P. Wheeler, W. B. Lodge, H. B. Marvin, C. M. Jansky, Jr., G. F. Leydorf, W. S. Alberts (alternate) and H. O. Peterson.


"Cleared" members

It is obvious that in any deliberations concerning frequency allocations, consideration will have to be given to various government and military services which for security reasons are secret and must remain so for quite some time. Nevertheless, some members of some Panela

ELECTRONIC INDUSTRIES . February, 1944 LECT

Here's a versatile unit with many electronic control applications...THE KOLLSMAN CIRCUTROL

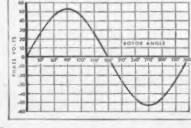
Typical of the many special applications for which design engineers have found the Kollsman Circutrol particularly suited, is phase control of Thyratron type units. In this application the unit offers accurate linear control, as shown by the above graph.

When used as a rotatable transformer, the Circutrol Unit produces a phase voltage which varies sinusoi-

dally with the angular position of the rotor as shown in the graph at right.

Another advantage of the unit as a rotatable transformer is that it is designed to withstand continuous rotation at speeds up to 1800 R.P.M., although many applications require nothing more than positioning of the rotor.

GLENDALE, CALIFORNIA


Electrically, the Circutrols are motor-like precision units having high impedance two- or three-phase stator windings and single-phase rotors. Units are available which operate from 32, 115 and 220 volts, 60 cycles, and 110 volts, 400 cycles.

These units may also be used as single or polyphase induction regulators, controllable volt-

age modulators, single or polyphase alternators or phase shifters.

For complete information about the Kollsman Circutrol write to Kollsman Instrument Division of Square D Co., 80-12 45th Ave., Elmhurst, N. Y.

209

FLMHURST, NEW

CISION INJECTION MOLDING

SINKO TOOL & MANUFACTURING COMPANY, 351 NO. CRAWFORD AVENUE, CHICAGO, ILLINOIS

have been cleared as appropriate persons to receive classified data for use in guiding their delibera tions and shaping recommendations. Thus Panel No. 6 has a committee of cleared members; Panel No. 1 includes 16 members who have been cleared, some for design nated frequencies and some for the entire spectrum. Other Panels also include cleared members. It is expected that there will be to great difficulty in getting add tional members cleared should that be required.

Dr. Goldsmith points out that while certain groups in RTPB may restrict their efforts to a relatively few problems, others must of n-cessity consider the entire field. He feels that RTPB as a whole will work for many years and this applies particularly to the engineer-ing groups and the broadcasting people who will desire to study radio technical matters probably into the indefinite future.

For the present, immediate plans of Panel No. 1, summarized following its first meeting on December 22, are the preparation of an ideal frequency spectrum as the basis for deliberation from which it may be possible to weld the ideal and the practical together into something workable for a long time. In any case, both committees are to focus attention on broadcasting problems, including television, in this order: standard broadcasting, high frequency broadcasting, television, and relay links essential to television

Television objects

Members of Panel No. 6, which has to do entirely with Television and has D. B. Smith as chairman, met in New York on November 26 and as a result of that gathering has been divided into a number of committees each charged with consideration of specific problems. The committees are:

1-Television Channel (Chairman, D. E. Harnett): Number of channels; desirability of commercial operation on all channels versus desirability of reserving some channels for experimental opera-UHF tion; width of channels; channels to be opened in the next

five to 10 years; color television. 2—Synchronization and Video Modulation (Chairman, T. T. Goldsmith, Jr.): Desirability of specifying a single synchronizing signal; RMA, Philco and DuMont synchronizing signals; video amplitude modulation versus video frequency modulation.

3-Review of Old Standards and Proposed New Standards (Chair-man, Dr. G. R. Town): Review of technical developments during the war period; review of old television standards in view of these developments; consideration of new standards (Turn page)

ELECTRONIC INDUSTRIES . February, 1944

ELEC

hands

Cxtra

More than just sheet steel specialists, ours is an organization where top emphasis is placed upon the men and women responsible for designing and building our products. Working as a team, over a long stretch of years, we've welded together a fine group of exacting, conscientious artisans, supplemented by skilled replacements and additions due to the war.

We build cabinets, chassis, panels and racks for diversified electronic equipment . . . quickly, precisely, economically. The hundreds of different dies available will reduce the cost of the dies needed on your job and may, in many instances, eliminate die-cost entirely. Because of these unique facilities, we manufacture to required specifications at the lowest possible cost. Moreover, we'll go over your plans with you...make recommendations if they can be helpful...suggest means of expediting deliveries. Briefly, ours is an extra pair of hands... offered willingly as part of a firmly-established policy of unselfish service to our clients.

> The services of a Karp engineer are available for a discussion of your problems.

ANY QUANTITIES - ANY METAL - ANY SIZE - ANY FINISH

124 30th STREET . BROOKLYN 31, N.Y.

IE ATTACK ... BUY MORE WAR BONDS

CABINETS CHASSIS RACKS PANELS

211

ELECTRONIC INDUSTRIES . February, 1944

ARTISANS

HET

AREA.

4—Frequency Allocation and Service Limits (Chairman, B. Ray Cummings): Frequency allocation; service area minimum acceptable signal; propagation characteristics; location of carrier within channel; inter-channel inter: ence; channel separation within a given area.

5—Standards of Good Engineering Practice (Chairman, J. E. Brown): Characteristics and idjustments of transmitters; single sideband filter; methods of measurement:

6—Relay Links (Chairman, F. J. Bingley): Studio-transmitter links; remote pick-up links; inter-station links; chain broadcasting of television programs; frequency allocations for relay links.

Future equipment

The matter of frequency allocations for television obviously will depend to a degree upon the development of equipment suitable for operation at higher frequencies presently under deliberation. To help in clarifying this question, Panel No. 6 has requested Panel No. 3 which has to do with High Frequency Generation, to furnish it with curves of the maximum steady state power available at bandwidths of 4. 5, 7 and 10 megacycles, as a function of carrier fre-quency. Curves are desired based upon high frequency generating equipment at present available and on equipment which may reasonably be anticipated to be available in the future, for example, after two, five and 10 years. The information is to be based on the assumption that present television standards will be maintained except in matters pertaining to band width.

Meetings of practically all the various RTPB Panels either have been held recently or are scheduled for the immediate future. In the meantime all minutes and reports are being handled through Mrs. Martha Kinzie, secretary to Dr. W. R. G. Baker, chairman of RTPB, at the General Electric Co., Bridgeport, Conn.

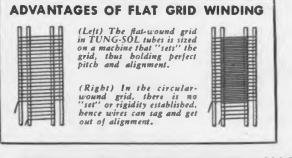
FEEDBACK AMPLIFIERS

(Continued from page 87)

of feedback. Logically then, extensive equalizing should not be carried out altogether in the power amplifier. Distortion will not be reduced for high and low frequencies where its presence is most objectionable to the ear. Some equalizing can take place in the power amplifier, and the remainder can be delegated to a preceding preamplifier. Note also that any distortion and noise introduced by circuits external to those within ELECTRONIC INDUSTRIES • February, 1544

ALSO

LECT


212

GOOD GRIDS ASSURE GOOD RECEPTION

The engineers at TUNG-SOL are skeptics. They never accept anything as final in the manufacture of electronic tubes. Research and development are continuous in the TUNG-SOL laboratories.

The "flat grid" for beam type tubes was a Tung-Sol refinement. "Flat" winding made possible the perfect alignment of beam type grids, which was difficult to achieve with the conventional circular or oval winding. Another grid-making "bug" eliminated by Tung-Sol was the tendency of grid supports to "bow" in any direction. The supports of all Tung-Sol grids remain true and parallel.

And so it has been with every detail of design and construction of TUNG-SOL electronic tubes. Long before Pearl Harbor they were "Vibration-Tested." That is one of the reasons why they have stood up so well in war service. Manufacturers of Electronic Controls and Devices, and users of Electronic Equipment will find TUNG-SOL tubes dependable and efficient. TUNG-SOL engineers are at your service in the development and improvement of electronic products of all kinds.

TUNG-SOL LAMP WORKS INC., NEWARK 4, NEW JERSEY

ALSO MANUFACTURERS OF MINIATURE INCANDESCENT LAMPS, ALL-GLASS SEALED BEAM HEADLIGHT LAMPS AND CURRENT INTERMITTORS

the signal

Oby -

and

DAVY JONES' LOCKER HOLDS NO THREAT FOR THIS IMMERSION-PROOF. SHOCK-PROOF TRANSFORMER

A product of the M-Y-TC Service Department

Typifying the bread edvances possible through close collaboration between the Army, Navy and N•Y•T engineers, this unit conforms to the most exacting requirements of modern military equipment.

Embodying the very latest in design, its proportions have been engineered to permit maximum performance, while utilizing only a minimum of space.

The immersion-proof case has been custom-built to do a specific job, further illustrating the policy of the N · Y · T Sample Department of meeting individual mechanical and electrical requirements. Your inquiries are invited.

Ν.

NEW YORK TRANSFORMER COMPANY

WAVERLY PLACE, NEW YORK,

to a circuit point about equal potential to the cathode, rather than to ground. However, when the heater is operated from a transformer common to the other stages, this phase shift actually of no consequence compared that realized with an ordinary interstage transformer, or the more usual two-tube phase inverters.

The elimination of the coupling capacitor and any decoupling net work between the first two stages, the absence of cathode by-pas capacitors in these stages, and excellent balance in phase inverter contributes materially to the low inherent phase shift of the ampli-Because rather large current fier. feedback is also present in the cathode circuit of the phase inverter, no gain is contributed by The actual stage gain this stage. is close to unity for each side.

Tube capabilities

An example of receiving type tubes doing the work of more expensive class B tubes is shown in the circuit of Fig. 4. Four type 6L6G tubes connected in push-pull parallel deliver an output in excess of 60 watts at a plate potential of only 400 volts. Since these tubes are capable of high distortion, inverse feedback is applied in a balanced fashion to both sides of the amplifier comprising the voltage driver and power output stage.

Any distortion generated in the push-pull input stage is reduced by current feedback in the common cathode circuit and the balance is improved. The resistors R. connected between each parallel pair of 6L6 grids are sometimes necessary to squelch parasitic oscillations at inaudible frequencies common to this connection. Transformer input is shown since perforce a balanced input is neces-A two-stage preamplifier sary. should easily drive the power amplifier from an ordinary source.

Ordinary power supplies may be used for either of these amplifiers, but a heater winding on the plate transformer should not be used for the amplifier heater circuits. The amplifier tubes should be allowed to reach proper operating temperature before the plate voltage is applied. A voltage surge caused by light loading of the power supply during this heating period may cause momentary oscillation to occur. If the amplitude of the oscillations reaches a high value. stem flashover in the 6L6's may result as well as puncture of the output transformer insulation. The presence of such oscillation may be noted on an ac voltmeter con-nected across the amplifier output A slight reduction in the amount of feedback used will also clear up the condition if a check shows that it exists.

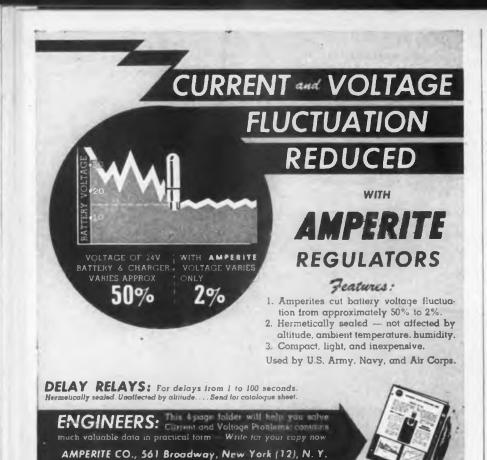
	RATING DA		made possible by longstand-
V	TYPE 1	R.M.S. Voltese Rating	ing research and experience.
And the second second	Manlaum Wattege Rating	based on wallog-	
Resistance Value	12 watts 9 watts	9 kv. max. 10 kv. max.	
Up to 1.9 megohms 2.0 to 10 megohms	based on voltage		1
Above 10 megohms	wat 2	R.M.S. Voltage Rating	
	Meximum Wettage Rating	based on wattage	050
Resistance Value	22 watts	15 kv. max. 20 kv. max.	AA Key
Up to 3.9 megohms 4.0 to 20 megohms	15 watts based on voltage		
Above 20 megonms	Resist	ence Tolerance1-	an set
Temperature Rating		um acceptable tolerance ±10%.	
Temperature Rating Maximum recommende	d not spot to hand		
ture for continuous	Cous	ermetically-sealed to withstand solt	
(Ambient plus riser.	d ambient tempera- (a) He	ater immersion tests.	PANEL
A THE FOR FULL WOTTONG .		esigned to withstand aircraft vibration	
		esigned to withstand different	
A-movimolely .Vere	per degree C between (b)	and 10g acceleration tests.	
20°C and 130°C.			
	And		
	-	121	
	-1-	3	Part of the second seco
- 1-			
10-		*	TYPE 1
			5-9/32" x 1-1/16"
Any - State		14	3600 ohms to
	Concession of the local division of the loca		100 megohms
			the second s
-L			
-L		Concession of the local division of the loca	
-L			
-C			
-6	TYPE 2		
			5
9-	TYPE 2 25/32" x 1-1/16" 6800 chms to		Reute
9-	25/32" x 1-1/16"		AGUE
9-	25/32" x 1-1/16" 6800 ehms te		NUMBUR

SPRAGUE MEG-O-MAX HIGH-RESISTANCE, HIGH-VOLTAGE RESISTORS

Less than 3 months from the presentation to Sprague Koolohm Resistor engineers of the problem of designing high-resistance value units capable of dissipating power at voltages up to 20 kv. and at high ambient temperatures, the first Sprague Meg-O-Max Resistors were on the job! Moreover, they used practically no critical materials, were of smaller physical size, and presented a degree of resistance stability and mechanical ruggedness not available in other units, exclusive of costly wire-wound meter multiplier types!

Entirely unique in construction, Meg-O-Max Resistors are formed of a series of molded segments. These are joined non-inductively, and the assembly is then encased in a hermetically-sealed, rugged glass envelope provided with ferrule terminals to withstand aircraft vibration tests, salt water immersion tests, and tests for mechanical shock produced by rapid acceleration.

In addition to use as a high-voltage bleeder and as a broad accuracy meter multiplier for a voltage indicator, Meg-O-Max Resistors find many applications in measuring instruments, rectifier systems, high-voltage dividers, and as broad accuracy meter multipliers. Specify Meg-O-Max for High-Resistance – High-Voltage requirements.


Data sheets gladly sent upon request. Samples sent only on firm's request, giving details of application.

> SPRAGUE SPECIALTIES COMPANY Resister Division • North Adams, Mass.

A NEW DEVELOPMENT BY THE MAKERS O

ELECTRONIC INDUSTRIES . February, 1944

RESISTORS

In Canada: Atlas Radio Carp., Ltd. 560 King St. W. Toronia

"Look Ahead with ERWOOD"

ENGINEERING CONSULTANTS

Manufacturers of

*

Sound Equipment and Electronic Products

225 WEST ERIE STREET

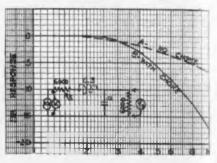
DO YOU SEE CLEARLY

YOUR COURSE IN THE POSTWAR PERIOD?

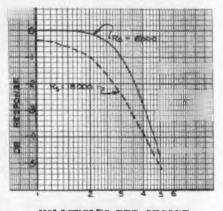
If your product is not engineered to the postwar standards that will be needed, you will benefit by using our extensive experience in meeting the technical problems of radio, sound and electronic projects.

Our own postwar plans have been definitely crystallized. While our entire productive capacity is devoted to war work, our consultation service will be available. Simply address:

CHICAGO, ILLINOIS


THE ERWOOD COMPANY

4 kc the load appears as an inductive reactance.


MODULATOR LOAD

REACTANCE CORRECTION (Continued from page 109)

The frequency response characteristic of the circuit for a generator internal impedance of 6000 ohms is given by Fig. 5. Curve A shows the attenuation without the choke and illustrates the effect of the by-pass condenser. Curve B represents the condition with the choke added and shows an improved frequency response up to the cut-off frequency and increased attenuation at higher frequencies

KILOCYCLES PER SECOND Fig. 5—Frequency response

KILOCYCLES PER SECOND Fig. 6—Frequency response

These curves represent the condition where the source impedance is equal to the load impedance.

A class B audio amplifier will present a higher ratio of source to load impedance but this does not seriously affect this system. The effect is to cause the attenuation of the output voltage beginning at slightly lower frequency, and the attenuation at frequencies above cut-off is slightly increased. The change in frequency response for a generator impedance of 18,000 ohms instead of 6,000 ohms is shown in Fig. 6.

Fig. 7 shows the relative magnitude of the excitation voltage of the series choke operating in the circuit of Fig. 5. The ordinate expresses this rms voltage as a percentage of the 100 per cent modulation output voltage appearing

ELECTRONIC INDUSTRIES . February, 1944

ANNUMBER OF A DESCRIPTION OF A DESCRIPTI

RAYTHEON VOLTAGE STABILIZERS

CONTROL FLUCTUATING VOLTAGE TO ± 1/2%

130 YOU

JUST OFF THE PRESS

New Stabilizer bulletin DL48-537. Contains operating characteristics, graphs and complete specifications. Write for your copy, today.

RAYTHEO

MANUFACTURING

90 WILLOW ST WALTHAM MASS

Constant AC voltage is essential for reliable, accurate operation of a wide variety of electrical equipment. When these devices are connected to ordinary supply mains, the unstabilized input voltage often varies as much as from 95 to 130 volts thus impairing the accurate operation of the equipment. A Raytheon Voltage Stabilizer, incorporated into the product, overcomes the disadvantages of fluctuating line voltages by providing an accurately controlled source of power held to $\pm \frac{1}{2}$ %.

[0]

110

100

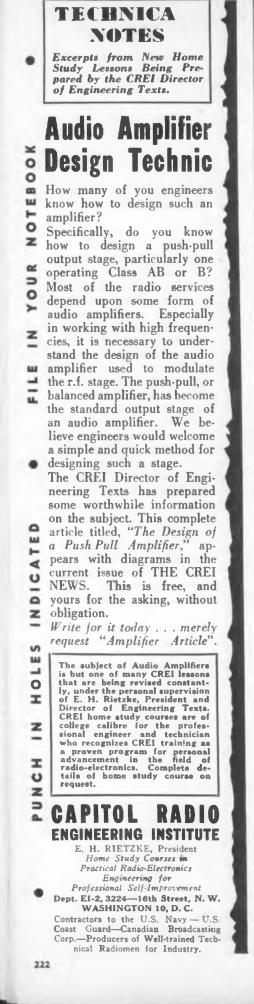
90

Entirely automatic in operation, the Raytheon Voltage Stabilizer has no moving parts . . . nothing to wear out, consequently requires no maintenance. Simply connect it to line and from there on it will take care of itself.

Raytheon Voltage Stabilizers built-in new equipment or offered as an accessory not only improve the performance but also increase the salability of the product.

Users of many types of electrical equipment not having voltage stabilization will find that Raytheon Voltage Stabilizers improve the performance and reltability of their equipment.

Raytheon Voltage Stabilizers are equally suitable for use in equipment for the laboratory, production or unattended locations.



ANNOUND AND A REAL AND A REA

ELI

rected system increased from 0.28 ampere at 1 kc to 0.44 ampere at 5 kc indicating that the load impedance was decreasing. The plate dissipation of the amplifier tubes was greatly increased at the high frequency. When the choke is included, the plate current increases slightly for frequencies up to 2500 cps as would be expected from data shown by curve B of Fig 4, and then it decreases for higher frequencies. It is now possible to further increase the input frequency beyond 5 kc at constant amplitude without danger of damaging the amplifier tubes.

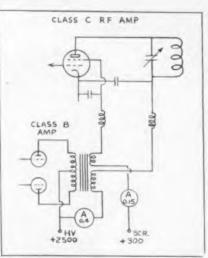


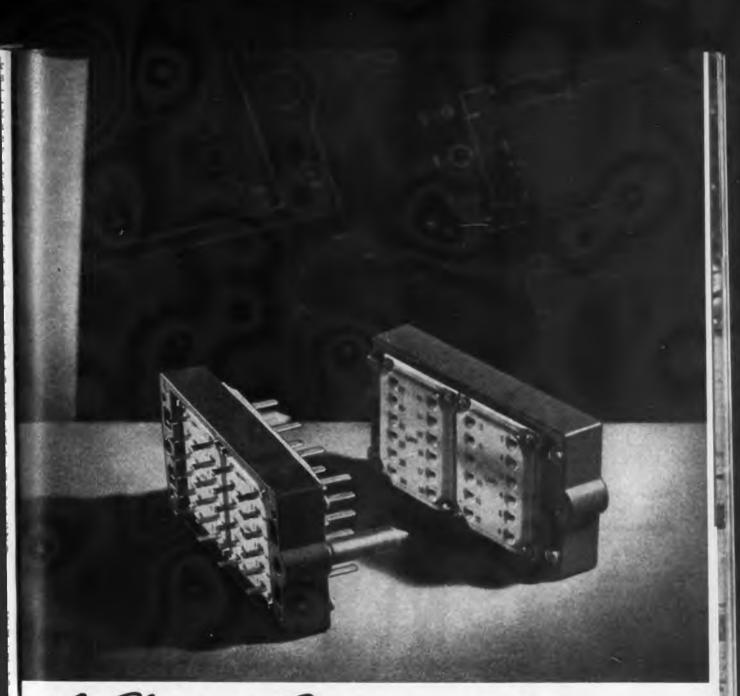
Fig. 9-Circuit with separate plate and acreen windings

This system may also be used for pentode types of rf amplifier tubes. Fig. 9 shows a typical installation where separate plate and screen modulator windings on the modulation transformer are used. The usual system is to arrange the turns ratio of the secondary windings so that the plate and screen instantaneous voltages will become zero at the same time. Assumed operating conditions for the example are a plate supply of 2400 volts at 0.4 ampere with 0.01 mfd by-pass condenser. The screen grid supply is assumed to be 300 volts at a current of 0.15 ampere and a 0.02 mfd by-pass condenser is assumed to be installed.

It is necessary to install the series chokes in both plate and screen supply leads, and the circuit constants should be adjusted so that both plate and screen circuits have approximately the same cut-off frequency. Failure to do this will result in unsatisfactory operation of the class C amplifier as the ratio of the plate and screen voltages would not remain constant, and they would not be in phase at all frequencies.

We have previously determined that the plate circuit would have a choke of 0.35 henry installed and the cut-off frequency would then be 2700 cps. The screen circuit has

a load impedance of 300/0.15 or 2000 ohms. Substitution of this value and the above cut-off frequency value of 2700 cps in equation (2) gives a condenser value of 0.03 mfd. The shunt condenser in the transmitter should therefore be increased from 0.02 to 0.03. N w by substitution of the load impdance value of 2000 ohms and the cut-off frequency of 2700 cps in equation (1) the required series choke is found to be 0.12 henry, The maximum rms signal volta e for the screen winding of the modulation transformer would be 300/1.4 or 215 volts. The maximum excitation voltage for the screin supply choke would be 215 times 1.3 or 280 volts rms.


These chokes must be carefully designed for satisfactory operation. The plate circuit should have an inductance of 0.35 henry with a direct current component of 0.4 ampere and a variable ac excitation reaching a maximum of 2200 volts rms at 3500 cps. The dc resistance of the winding must be low and a value of 50 ohms would be reasonable. The winding must be properly insulated to withstand this excitation voltage and possible transient voltages during operation. The screen supply choke would have an inductance of 0.12 henry with a direct current component of 0.15 ampere and a maximum excitation voltage of 215 volts rms at 3500 cps. A reasonable value of winding resistance would be 200 ohms.

WINDING CAPACITORS

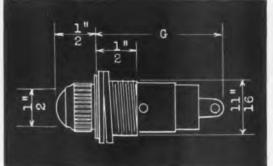
(Continued from page 113)

tronic and communication circuits, the working insulation consists of special capacitor paper of purified wood cellulose. Research and experience have proven this material best for high voltage dc service, particularly when necessary to operate at elevated temperatures. A multiplicity of thin sheets of the insulation is wound into working sections with thin aluminum foil electrodes. A minimum of three sheets at any voltage, and an increasing number of sheets for higher voltages, insure against the possible line-up of defects and conducting particles that may be encountered in the use of a fewer number of relatively thick sheets For ac applications, a kraft paper is often used.

To remove any trace of moisture after assembly, the capacitor units are vacuum-processed and then impregnated with a non-explosive, non-inflammable liquid dielectric called Inerteen. In processing, a group of units is placed in a vacuum treating oven and dried for approximately 200 hours by application of heat and vacuum. This process is continued until the rate of moisture emission, as determined by direct measurement, has reached

An Electronic Part. . ENGINEERED TO A SPECIFIC NEED

This is a special-purpose electronic part. It is a plugreceptacle assembly for use with rack-panel type of mounting. Twenty-four silver-plated phospherbronze contacts are provided, each male and female contact full floating between steatite plates. Heavy guide pins and matching holes in the frame assure perfect alignment.


We don't know that your product has any need for such a part as this. We do know, however, that this part is most exactly suited to its special requirement, just as are hundreds upon hundreds of other parts which have been created through Lapp engineering and Lapp production facilities directed to the solution of specific problems.

With a broad basic knowledge of ceramics—their capabilities and their limitations—Lapp has been able to simplify and to improve many types of electronic equipment through engineering and production of sub-assemblies that make most efficient use of porcelain or steatite and associated metal parts.

There may be a way you can improve performance, cut costs and cut production time through use of Lapp-designed and Lapp-built sub-assemblies. We'd like to discuss your specific requirements with you. Lapp Insulator Co., Inc., LeRoy, N. Y.

wide range of standard applications requiring a small light. The Series 1110 Lights mount in an 11/16" holehave 1/2" Jewels - and are available for either long or round lamp. Lamp is removable from front of panel. Well ventilated for cool operation. Jewel colors: red, green, amber, blue, opal, and clear. Also available with Polarized discs.

MANUFACTURING COMPANY

1315 NORTH NINTH STREET, SPRINGFIELD, ILLINOIS

Also Furnished

in Shutter Type or with

Polarized Lens

Complete information on request.

PRINT IN BINDING

hand

a minimum under the correct tom. perature conditions and a pres ure of less than 100 microns. Provision are made for feeding Inerteen nto the capacitors individually Ind from the bottom of the capa to container and at a carefully on. trolled rate to permit the escape of surface moisture that is released as the Inerteen impregnates he paper. Previously dehydrated Inerteen is being allowed to flow gradually into the capacitor units. It is transferred from the sealed domain through filters directly into the capacitor units, avoiding any contamination through contact with the oven walls or external surface of the capacitor cases.

Many capacitors are hermetically sealed by soldering the porce ain bushing to the metal case. Thi eliminates all gaskets, or the use of cork, gum, or similar materials for sealing terminal bushings to the case. A metallic band, integral with the porcelain glaze permits bonding direct to the porcelain A typical design consists of a single piece of wet-process porcelain, Metallic bands are made a par of the glaze, forming a surface to which solder adheres.

The metal mounting ring and terminal stud are soldered to thes bands to form the complete bushing, after which the assembly i threaded over the lead and soldered to the capacitor case. The lead is soldered at the top of the terminal stud to form a hermeti-cally sealed capacitor. This insure against moisture entrance, or any contamination of the insulating medium. It is positive insurance against leaks regardless of position in which unit may be mounted of operated. The one-piece porcelain and solder seal eliminates the twopiece porcelain, and the multiple gaskets. Should the bushing even become damaged through accident or abuse, it may be replaced with minimum expense or loss of operating time.

8

DINGENIDDR DXDCULTUVE

(Continued from page 103)

ratus is for, not to solve the problem-but to change a mental attitude that is inside the skull. And that is a very difficult thing to de

That brings up another funda mental thing; to try to find ou what the limiting factors are on the job at which you are working. For the last twenty-five years, between the two wars, fuels have improve fifty octane numbers. We fough the other war with 50 to 60 octane and now we are from 100 to 150 That is two octane numbers a year or so. After we moved up two octanes, everybody would tell you didn't do any good to go up and other two, but you couldn't go back the two that you just last came u

WHAT'S BUZL' Maybe it's an order to commence firing ... or to advance to new positions ... or to correct the range ... crackling over a communications system built by Waters Conley. And more than likely, the men who send and receive these combat orders learned how on Waters Conley signal training equipment.

> NOW, we make many electronic communications devices to help our fighting men win battles on every fighting front. But the moment peace comes, our technicians will be ready to apply the skill acquired under the stress of war to the arts of peace. The electronic future holds great promise of many things for the enrichment of civilian life ... and in the forefront you will find Waters Conley opening vast new markets for you.

MPA

onola

WATERS CONLEY COMPANY In peacetime, America's oldess and largest manufacturer of portable phomographs ROCHESTER, MINNESOTA 17 East 42nd Street, New York 224 South Michigan Avenue, Chicago

225

ELECTRONIC INDUSTRIES . February, 1944

n b

tti

de

th

ye gh n(

00

3.11

10

Pointing the way.....

Today, as a result of American engineering skill ingeniously applying amplification principles to highly specialized instruments, thousands of amplifiers by "Eastern" help to guide our army and navy bombers with unerring accuracy in success-

BACK THE ATTACK * BUY WAR BONDS *

fully completing their vital missions.

Our engineering staff invites your inquiry—large and small production runs, even single units, receive our usual prompt attention. W'rite for Bulletin 1-96.

EASTERN AMPLIFIER CORP. 794 E 140th St., New York 54, N.Y. on, but we said, "Why don't we find the limiting factor of octane? What is the limiting factor?"

Well, everybody said, "Why, "e wouldn't want to know that. You haven't any engines that will use it." And so we have tried to find out what the limiting octane fuel rating is. We think it runs on an extended scale, if we extend our present octane scale, it will run up some place between 350 and 400, you see, and I think it just as en y to go up there as it is to take cuts on it every year, or go up two octane numbers a year.

Well, now, you get into all sorts of problems with the commercial fellows because they say, "Well, you can't move up because we haven't got the equipment," and so forth; if we go up there, they say, you haven't really got the engines that would use it. We know what, but nevertheless if you know what your limiting factor is, then you know how to work the thing.

One of the things that you must take into consideration, that is very much more important than a patent, is, a great many people will think you crazy, and that is very much better protection than any patent.

Ignorance factor

I would sooner have my competitor think I am crazy than have a whole pack of patents, because he won't pay any attention to what I am going to do as long as he knows I am crazy. I had a monopoly of the lighting and starting ignition business for five years because everybody knew the breaker mechanism I used in my ignition system was all wrong and nobody copied it. They infringed every patent I had, but they didn't infringe my ignorance factor.

Therefore, whenever you look at a thing and whenever you get these young fellows to look at something and they say, "Well, the fellow who did that was crazy" if you are going to train him to be an inventor, you say, "Well, now. I wouldn't say it that way." I would say, "One of us must have been crazy, or maybe both of us, a little bit."

Whenever you look at a piece of work and you think the fellow was crazy, then you want to pay some attention to that because either he is or he isn't. But, one of you is likely to be, and you had better find out which one it is. It makes an awful lot of difference.

I have been taking out patents for many years and making inventions for many years. When I first began to apply for patents I found out that almost all of my inventions had been made fifty or sixty years before. So I drew a set of coordinates and I plotted how

"End of the Line" is only the Beginning

• This is the end of the Sylvania Radio Tube production line.

Here trained operators begin a series of tests designed to safeguard high-quality manufacture from any bit of human error.

Standardized precision testing instruments enable them quickly to determine basic radio tube fitness. The slightest defect dooms a tube to instant destruction. Then come more exhaustive and specialized tests for any deviation at all from specification in the quality inspection and customer inspection departments.

Every Sylvania Radio Tube must pass these rigorous tests — and pass them with a perfect score — before shipment from the factory. This painstaking precision test system is your insurance for Sylvania quality that you can sell with complete confidence.

Quality That Serves the War Shall Serve the Peace

RADIO DIVISION Y EMPORIUM, PENNSYLVANIA

SYLVANIA ELECTRIC PRODUCTS INC.

RADIO TUBES, CATHODE RAY TUBES, ELEC-TRONIC DEVICES, INCANDESCENT LAMPS, FLUO-RESCENT LAMPS, FIXTURES AND ACCESSORIES

much behind I was. Then as I went along a little more in the industry I gained, and so the curve began to have a slope. In other words, I was only forty, thirty, twenty-five or twenty years behind, and so on. Now, when I project that curve down until it cuts the base line, that's how old I will be when I make an original invention. That comes out to be a hundred and twenty-five. That is the reason why I am trying to take good care of myself, because I would like to live to make an original invention.

The job's the boss

We have one rule, and only one rule, and that is: The only boss in our laboratory is the job. The job is the boss. Do you think that engine is any good? What does the engine think about it? Is that piston better than the one you had in the engine before? What does the engine say about it? Your opinion isn't worth anything.

If the engine says, "I like this one and don't like that one," and that happens to be contrary to your own ideas, that's just too bad; you were wrong. After all, all this work and all this research is only to correct the mentalities or to turn over a few molecules in our heads so we think straight.

We try to teach our boys in the laboratory and every other place that this getting a new idea, this questioning of things, is a very important idea. We have done a lot of questioning on various things, and we get certain rules and regulations which we write down; and we kind of accept those things as being fundamental dicta.

We have taken ordinary lubricating oils that, on our Diesel engines, would not run a thousand miles without gumming up, and have gotten them to run a hundred thousand miles without gumming up, by adding certain anti-oxidents and detergents and so forth. From a thousand to a hundred thousand is a good gain in percentage.

Positive results

Therefore, all along the line of these perfectly obvious things, when you get not 5 or 10 per cent but thousands of per cent gain, by questioning the thing intelligently, and intelligently analyzing it, you get the inspiration of the fellow working against a perfectly negative objective, by giving him a perfectly positive result.

You can't slow down too far or you just never get any place at all, because there is a normal increment of improvement made by the development of the industry. But there are a lot of these problems where, if you have any solution at all, the question of how long it is

going to take to get it doesn't mean anything. But you must show the fellow who is going to work on that job that there is some chance to get out on the thing, or he wont try it. di

23

But you must know whether the thing is worth doing first, and then you are always going to come to the time when you cannot solve the problem. Those are dark day. Those dark days, of whether you go ahead or stop, are the determining factor of whether you are a success or a failure. But you must intelligently analyze that point.

Therefore, you have to teach these boys how to get along with people, especially when you are working on a new thing and everybody comes in and says, "What the hell are you doing that for? That is no good." You have got to keep their spirits up under those conditions.

We believe that we can even take educated young men and teach them to be inventors, without ruining their educations.

TRANSFORMER DESIGN

(Continued from page 99)

The ratio is increased by increasing the current density or by decreasing the flux density.

Returning to the core of general dimensions since $A_1 A_2 = K$, then for a given rating an increase in A_1 decreases A_2 , and the copper loss will decrease as A_1 is increased (B and D assumed constant). The core loss is increased since the weight of the core is increased. copper loss

The ratio <u>core loss</u> can there-

fore be changed by varying A_1 or by varying the flux and copper densities.

Since power is required to magnetize the core the ampere-turns in the primary winding are greater than the total ampere-turns in the secondary windings. This current is wattless but increases the copper loss in the primary winding because of the higher current flowing in the primary winding.

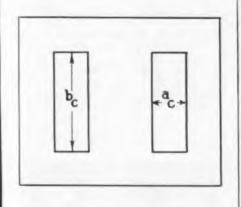
Magnetizing Voltamperes

 $= \mathbf{w}_{m} \times \text{weight of the core in lbs.}$ $= \mathbf{w}_{m} \times \mathbf{t}_{1} \mathbf{f}_{1} \mathbf{A}_{1} \times \mathbf{0.272}$

 w_m is obtained from tests on a large number of cores so as to obtain a minimum and maximum value as well as an average value as it varies widely even for cores of the same punching made of the same lot of steel at the same time.

In addition there is a drop due to the resistances of the primary and secondary windings. When there is only one secondary winding these drops and their vector addition can be shown very simply by a vector diagram. This diagram is given in Fig. 2 with the voltage

ELECTRONIC INDUSTRIES . February, 1944


WWWW

drops and core loss and magnetizing currents exaggerated to make the diagram easier to follow. It also assumed that the transformer ratio is one to one.

This diagram shows that the poltage drop is the vector differnce between V_p reversed and V_p and that the resistance component important at high power factors and the leakage reactance at low. The drop is a maximum when the power factor of the load is the same as the power factor of the Lansformer leakage impedance.

When there are two or more econdary windings, the calculation of the voltage drops becomes involved and soon becomes imposstble. However, in small units, 500 va or less, the power factor of the load is high, nearly 100 per cent, and the resistance drop in the windings is the most important factor and can be calculated quickly. Further, there is usually one winding with a va rating very much greater than the others and its voltage drop can be calculated fairly simply.

When, however, the large va winding feeds a rectifier with a condenser input or a voltage doubling connection, then the leakage reactance becomes important. In these circuits power is drawn from the capacitors at a constant rate while the transformer feeds power back into the capacitor during a small part of the cycle. The

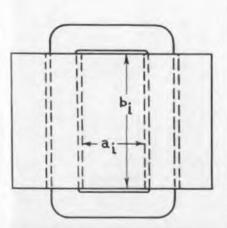


Fig. 1—Scrapiess type of punched out lamination

ELECTRONIC INDUSTRIES . Fabruary, 1944

AC SENSITIVE RELAYS... WITH DC PERFORMANCE

The conventional AC relay of shaded pole construction has two limitations.

- Its power sensitivity is only a small fraction of that afforded by the same relay operated on DC.
- (2) It cannot be successfully operated on a gradually variable voltage or current without passing through states of instability and chattering. This limits its usefulness to circuits in which the input is sharply changed from one level to another and rules it out for sensitive control on continuously variable AC.

SIGMA has perfected a complete unit which is an adaptation of most SIGMA Sensitive relays to AC operation with neither of the above disadvantages, by incorporating within the relay housing a midget selenium rectifier of the full wave type, with or without a filter condenser as circumstances dictate. Operation is attained on continuously variable AC with no instability or chatter, and at practically the same power sensitivity afforded on DC. Unit is more compact and saves space.

Gould-Moody Black Seal glass base instantaneous recording blanks

AVAILABLE

IMMEDIATELY!

Broadcasting stations! Recording studios! Schools! "Black Seat" Recarding Blanks may be obtained without delay on an AA-2X rating which is automatically available to you.

Send us your priority rating, and we'll ship these famous, bettersounding, longer-wearing, more satistying blanks immediately. Two weights — thin, flexible, interchangeable with aluminum, or medium weight. Four holes. Center-flow thread action. Won't age, horden, dry out or deteriorate.

Old Alaminum Blanks Recoated with "Black Seal" Formula on Short Notice

shorter the time of current input, the higher the peak value of the current. This current must flow through the leakage reactance of the transformer. The leakage reactance therefore reduces the peak value of the current but lengthens the time interval during which the current flows.

The output voltage drops in order to give the necessary differences between the transformer input voltage to the capacitor and the average voltage retained by the capacitor, and thus supplies the condenser with the energy necessary to carry it through the noncharging period.

NORTH AFRICA INSTALLATION

(Continued from page 102)

for the many audio circuits. Finally metal braid was secured from the Air Forces and insulated wire threaded through it inch by inch. Eight radio lines—some of them phantoms within phantoms—connect the studies with the various transmitters, all within a radius of 15 miles. These lines, part French, part British, part American, have so far rendered good service.

The first station went on the air June 14, Bastile Day, and was operated in part by control room and other engineers who had been trained on the spot. Besides the two 50kw and one 100kw stations in the broadcast band, there is the former WINS 50kw transmitter. which is capable of both long and short wave emissions.

About results

At a nearby point an installation of dual diversity receivers permits the rebroadcasting of OWI New York and BBC London short wave programs. The North African studios maintain their own news desk and program staff and command four languages. The intensive effort involved has been repaid in this modern war of ideas and propaganda. Although technics involved cannot be discussed, it is a well-known fact that among the more tangible results have been the blowing up of bridges and other transportation mediums, and communication and manufacturing centers by friendly Italians instructed to do so over these OWI stations.

It has been officially admitted that the 50kw WABC transmitter did what the British Navy had tried in vain to do for three years. When the Allies struck at the Italian mainland, the North African radio staff, working at white heat, shifted the frequency of this powerful transmitter to 500 kilocycles, the International distress band, and persuaded almost the entire Italian fleet to put to sea for Allied ports. NEW STAR

Time was when entertainers On the air

Were feted guests at parties Everywhere,

But now the guest who steals The party-show,

is the fellow who can fix The radio!

-Mary B. Ward

Pi.

11

8.0

pi

29

m

AL

B

ef

н

hi

Televisors Organize

Television Broadcasters Association was organized in Chicago Jan. 18. Allan B. Du Mont, chairman of the organization committee, stated that interests repre-sented in the new association expected immediate aggressive action to obtain for television allocations of radio channels in keeping with the possibilities of television. In addition to Du Mont other members of the organizational committee are: F. J. Bingley, (Philco); Robert L. Gibson. (General Electric); O. B. Hanson, (NBC); C. W. Mason, (Earle C. Anthony, Inc.); E. A. Hayes, (Hughes Tool Co.); Worthington (CBS); Paul Raibourn, Miner. (Television Productions, Inc.), and Lewis Allen Weiss, (Don Lee Network).

Army-Navy E Awards

- The H. M. Harper Company, 2620 W. Fletcher St., Chicago, Ill. (third award)
- Orange Screen Company, Maplewood, N. J. (star added)
- Radiomarine Corp. of America, 75 Varick St., New York., N. Y. (second star added)
- J. P. Seeburg Corp., 1500 Dayton St., Chicago, Ill. (star added)

Floyd W. Bell, president, and Earl W. Hosler, vice-president of Bell Sound System, Inc., Columbus, O., receiving "E" pennant from Col. H. R. Yenger

ELECTRONIC INDUSTRIES . February, 1944

To Meet Your Specifications

PERFORMANCE is the real measure of success in winning the war, just as it will be in the post-war world. New and better ideas-production economies -speed-all depend upon inherent skill and high precision For many years our flexible organization has taken pride in doing a good job for purchasers of small motors. And we can help in creating and designing, when such service is needed. Please make a note of Alliance and get in touch with us.

ALLIANCE DYNAMOTORS

Built with greatest precision and "know how" for low ripple-high efficiency low drain and a minimum of commutation transients. High production retains to the highest degree all the 'criticals" which are so important in airborne power sources.

ALLIANCE D.C. MOTORS

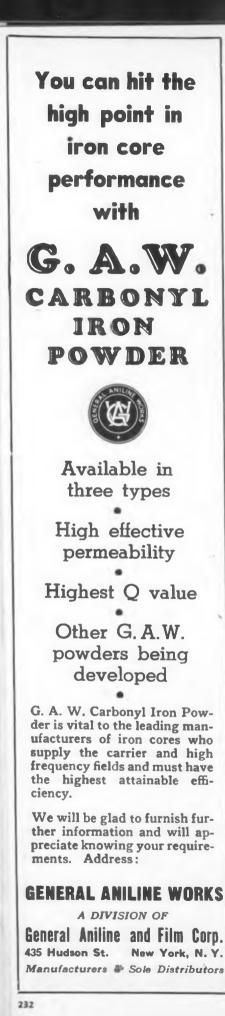
Incorporate precision tolerances troughout. Light weight-high efficiency - compactness - continuous duty. An achievement in small size for continuous duty and in power-to-weight ratio. Careful attention has been given tes distribution of losses as well al their reduction to a minimum.

> **Remember** Alliance! -YOUR ALLY IN WAR AS IN PEACE

ARE YOU IN A HURRY FOR A GOOD

EST INSTRUMENT?

Use This Industrial Emergency Service On


Radio and Supplies

Maintaining a complete stock of Test Instruments has been one of the toughest jobs we've had. The demand has far exceeded the supply. Yet our Industrial Emergency Departments have procured them as if by magic ... saving many a victory-vital job from prolonged delays. Saving time and trouble getting vital Radio and Electronic Supplies is a highly specialized business with us. Whether you need one or one hundred different items, you'll get ALL of them from this ONE big reliable source, faster than you ever thought possible considering wartime scarcities. Your nearest Emergency Service Distributor listed below is specially prepared to lend you every possible aid. Send along your orders or ask for big Reference Book & Buyer's Guide on company letterhead, please!

WRITE OR PHONE YOUR NEAREST DISTRIBUTOR

TERMINAL RADIO CORP. 85 Cortlandt St., Phone Worth 2-4416 NEW YORK 7 WALKER-JIMIESON, INC. 311 S. Western Ave., Phone Canal 2525 CHICAGO 12 **RADIO SPECIALTIES CO.** 20th & Figueroa, Phone Prospect 7271 LOS ANGELES 7

NATIONAL INDUSTRIAL EMERGENCY SERVICE

ANALY CONTRACTOR CONTOR CONTRACTOR CONTOR CONTOR CONTRACTOR CONTOR CONTOR CONTOR CONTORA

INCREASE PRODUCTION

(Continued from page 112)

to have an adequate supply of electronic - radio equipment for training purposes as well as for the use by combat troops. Because equipments, now in use, require complete familiarity with their operating technics, it is imperative for troops to have sufficient training before going into battle so they can use the equipment efficiently—almost as second nature — during the tremendous strains and stresses of actual combat.

General Harrison stated that the indicated 1944 demands will be approximately 30 per cent greater than during 1943. The needs next year of getting the equipment to the theaters of war must be carried on with sustained emphasis in production. The manufacturing of electronic equipment is generally across-the-board embracing all types of military communications apparatus.

the wire communications In manufacturing field, General Harrison stated that there is a huge demand for drop wire and cable and field telephones, particularly for shipment to the United Na-tions under the lend-lease program. Thus there can not be any let-up of a substantial nature for this industry. (An illustration of the importance of telephone equipment in the lend-lease program was reported Dec. 28 by Foreign Economic Administrator Leo T. Crowley who stated that in the shipment of goods to Russia up to the end of last October there was included 225,000 field telephones and 750,000 miles of field telephone wire.)

General Harrison declared that the Signal Corps was trying to press ahead as speedily as possible with the task of renegotiation of completed contracts, but he brought out that this renegotiation activity necessarily has to take a place behind the imperative job of producing equipment for the combat forces. The Signal Corps is now completing renegotiating processes in regard to 1942 contracts

PRODUCT DEVELOPMENT IN POSTWAR

(Continued from page 89)

group. Unless there is a reasonable certainty that these will draw favorable answers, there could be no use going further. For example, "tooling cost"—s uppose \$20,000 were necessary for an item with a \$1 selling price and a 20,-000 annual volume. It would be foolish to even waste paper or one minute's time getting to that par-

ticular point. If that is the tooling charge and no alternate method in sight, the product then and there is out.

This illustration may seem exaggerated, but time after time individuals and companies have spent weeks on a product before finding such a glaring flaw. The trained mind will recognize a defect of this nature immediately, but he migh overlook an objection just as serous but of a less obvious nature.

Once these key questions have been pulled out and given a superficial examination to see that the product looks well enough to investigate fully, the remaining questions should be arranged in a convenient order, such as importance, department, individual or class. Each particular question should be then studied in conjunction with the organization chart to see who would be best qualified to state the facts or give an opinion on that subject.

Less tangible factors

For example, there will be some things that will require a machine adaptability answer, others the cost of an item of machinery. Other less tangible factors will require personal discussion with engineers, supervisors or department heads Still others will require reference to textbooks, or trade publications. It may be necessary in certain cases to travel to another company to delve into their experience along similar lines.

Any question should be considered in its relation to the whole before going to extraordinary expense in tracking it down. Generally speaking, if the questions are framed properly, the great majority will require only a few minutes for obtaining complete answers. Again it should be stressed that only by directing the question at a source that normally should know.---rather than haphazardly asking around-can a clear, intelligent and unconfused pattern result. The same is true of a question calling for an opinion. The answer to each question

The answer to each question should be written or summarized on the sheet or card on which that question appears. The source of the answer—name, title or job, if verbal; page, text and author, if written—should be put right down at the same time with any pertinent comments that seem necessary.

Cross checking

It is not necessary to verify all facts or to substantiate all opinions. Those that are of vital importance or anyone that shows signs of being weak, poorly considered or hasty should be subjected to a routine double check.

The care with which this is to be done naturally varies with the type

This electronic tube making unit fills the needs of schools, colleges, experimental and research laboratories for a compact machine complete in itself and capable of performing all operations required in the construction of incandescent lamps, radio tubes, electronic tubes and similar devices.

WRITE FOR CATALOG No. 43-8

CHAS. EISLER EISLER ENGINEERING CO. EWARK.3 N.J. 778-SO. 13th ST. Near AVON AVE

14

CRYSTALS BY

Thousands of vital transmitting installations rely on the accuracy and dependability of Hipower Precision Crystal units. With recently enlarged facilities, Hipower is maintaining greatly increased production for all important services. When essential demand begins to return to normal, Hipower will be glad to help with your crystal needs.

HIPOWER CRYSTAL COMPANY Sales Division - 205 W. Wacker Drive, Chicago Factory – 2035 Charleston St., Chicago, Illinois

ELECTRONIC INDUSTRIES . February, 1944

your post-war production F plans have reached the stage where you can anticipate your needs for screw products of definite types and sizes (or if you will let us help you in determining your post-war needs) you

PART

POST WAR

Δ

can protect yourself against delays in delivery by placing your requirements with us now for preferred handling when the restrictions on civilian production have been removed or relaxed. No priority is required.

Such orders are being accepted and held in file subject to current prices when definite delivery date can be set.

By ordering now you will be assured of prompt deliveries while others are still in the "blueprint" stage.

For your own protection-make "STRONGHOLD" a part of your post-war planning NOW!

A new STRONGHOLD catalog is in production. Is your name on our mailing list?

MANUFACTURERS SCREW PRODUCTS 268 WEST HUBBARD STREET CHICAGO 10, ILLINOIS

mmm

Saving TIME, MONEY, MATERIAL in soldering

The operator is soldering bottoms on tin cans – at the rate of two every ten seconds – with Lepel Induction Heating.

- And doing a better job because the solder penetrates throughout the seam and accurate temperature control minimizes discoloration.

Lepel Induction Heating quickly and neatly performs the most intricate soldering and brazing operations on ferrous and non-ferrous metals, using soldering or brazing alloys of any melting point.

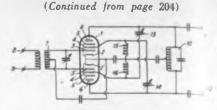
The same compact unit, manually or automatically operated, can also be used for hardening, stress relieving or annealing without expensive conversion.

Send samples of your work with specifications for complete engineering data and recommendations. Ask for catalog.

LEPEL HIGH FREQUENCY LABORATORIES, INC. 39 West 60th Street, New York 23, N.Y.

of product under scrutiny. If it is one that may possibly have a profound influence on the company's operation, no stone should be left unturned. On the other hand, if it is merely some accessory product, the direct examination of all factors should suffice.

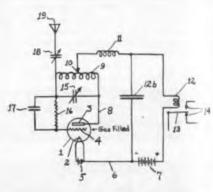
Cross checking can be done in a number of ways. In most cases, alternative answers obtained from other persons in the organization will prove quite satisfactory. On certain doubtful points, it will be necessary to go outside of the company. An instance would be the case where the speed with which a certain operation could be performed doesn't look right. It becomes desirable, therefore, to find out how that operation is being done elsewhere. On occasion, a cross check of this type has shown a two or three to one difference existing. The development of such a situation as a fact does not necessarily mean that one company is deficient-good reason may existbut it does mean that the information might be decidedly misleading if the situation were not laid on the table as a part of the data presented.


Preparing conclusions

When a sufficient number of answers to the "internal factor" questions have been obtained, it is necessary to see that our file on the subject is in such condition that it is of maximum use in preparing conclusions. More studies of products, operations and the like, have been made to an end result of merely having on hand an accumulation of confusion. But setting up a "mechanical" system of arrangement, this can be avoided.

The whole theory of a check list, single questions (fact and opinion separated) and a central control point, will tend to channel the data. The questions should be grouped into proper sections and arranged, not alphabetically, geographically or departmentally, but rather by the relation—or if you will, by pigeon-holes, card indexes or file folders—that they bear to the whole "internal factor" picture. Until such an arrangement is completed, the compiling of data cannot be said to have been more than merely "interesting."

By properly selecting the data desired, going to the right persons and places to find the answers, cross checking these where indicated, and then segregating the material into a usable arrangement, it is possible adequately to find out how the various internal factors for a new product affect its possibilities. The next step is to relate this assembly of information in such a way that it is understandable. A forthcoming article will deal with the manner of its presentation in report form.


NEW PATENTS

cies the inductive feedback considerably exceeds the capacitive feedback. By connecting the screen grid of one time through an adjustable condenser to the plate of the other tube, the inductive feedback may be compensated for. A Van der Ziel and M. J. O. Strutt, Alm Property Custodian, (F) May 9, 191, (I) Nov. 30, 1943, No. 2,335,820.

BF Remote Control Relay

A gas-filled tube 1 is used to effect remote control of a relay by radio signals; the relay may control a model airplane. The voltage of battery 7 is adjusted to a value above the brandown potential of the gas filling. When a carrier radio signal is tuned into the

antenna circuit, the anode current flowing through coll 12 will decrease to a considerable degree; it may become ten per cent of the current before the reception of the carrier wave. This difference in current is made to actuate the armature 13 of the control relay. R. H. Packard, Raytheon Production Corp., (F) Aug. 1, 1940, (I) Nov. 2, 1943, No. 2,333,119.

MISCELLANEOUS

Electron Microscope

In electron microscopes, electrons slowed down during their passage through the object, or of lower velocity when emitted. To minproduce blurring of the image. imize this effect, a braking electrode is provided in proximity to the image-re-producing surface for preventing slowly moving electrons from reaching the sur-face. Due to the fact that the braking electrode is close to the image-reproduc ing surface, its shadow does not obscure image an objectionable degree to Various embodiments are shown. Thick objects may be investigated with the improved apparatus. H. Boersch, General Electric Co., (F) Aug. 23, 1940, (I) Nov. 30, 1943. No. 2,335,637. General

Protecting Transmitters

A heat-responsive element (for instance the plate resistance of an electron tubthe cathode of which is heated or a resistor having negative temperature coefficient), is connected in parallel with the energizing winding of the transmitter

ELECTRONIC INDUSTRIES . February, 1944

ela lons' com anti ing maa gult Co-No

Inc

ar dir pa'l ar rec' mot it a and Bal

No

Co T to Tw que fra orsi colsim tra the orsi orsi phi

> an tio the cal a ore Tr E. Co

ca

234

kei ng relay. Should the switch which closs the relay winding circuit be closed longer than is desirable, the element becores warm, its resistance is lowered, and the current through the relay winding diminishes to such an extent as to must the relay open the transmitter circuit. P. D. Andrews, General Electric Co. (F) May 9, 1942, (I) Nov. 16, 1943, No 2,334,530.

Induction Compass

Two cooperating induction compasses are used which are polarized in different directions, whereby two cardioidic voltage, patterns, differing in phase by 180 deg., are obtained. The voltage difference is recufied, amplified and used to control a motor which rotates the compass so that it always indicates correctly. H. V. Alexaniersson, and A. S. Dahlstedt, Aga-Batic Aktiebolag, (F) Jan. 12, 1942, (I) Nov. 16, 1943, No. 2,334,469.

Color Television System

Three picture signal sets, corresponding to three different colors, are transmitted. Two color signals are transmitted as frequency or phase modulation, alternate frames being scanned with different colors so that the odd lines represent one color and the even lines the other color; simultaneously, the third color signal is transmitted as amplitude modulation of the some carrier. Alternatively, two colors may be transmitted as amplitude modulation and one color as frequency or phase modulation. At the receiver, the carrier is demodulated as to amplitude and frequency or phase; one demodulation is applied to one cathode ray tube, the odd lines of the other to a second cathode ray tube and the even lines to a third cathode ray tube. The three colored pictures are optically superimposed. Transmitter and receiver are described. E. F. W. Alexanderson, General Electric Co., (F) May 27, 1941, (I) Nov. 9, 1943, No. 2,333,969.

Permeability-Tuned Circuit

It is intended to obtain a uniform radio frequency response and high overall selectivity over a complete tuning range of a resonant circuit tuned by moving a magnetic core into and out of two colls. Serially-connected colls 1 and 2 are concentrically arranged, coll 2 within coll 1, but spaced from one another so that their inductances are varied uniformly and concurrently but at different rates when core 3 is moved along their common axis. The mutual coupling coefficient between the two colls is also changed. As core 3 is brought into the field of coils 1 and 2, the inductance of coil 2 is

changed by a greater proportion than that of coil 1 because of its closer proxlimity to core 3. With the proper choice of the diameters of coils 1 and 2, the change in the impedance of the plate circit can be varied in such a manner as to produce a constant voltage across the grid of the succeeding tube 6. Plate of tube 5 and grid of tube 6 may be connected at other points of the resonant circuit than shown. R. De Cola, Belmont Radio Corp., (JF) Dec. 13, 1940, (I) Nov. 16, 1943, No. 3,334,670.

ELECTRONIC INDUSTRIES . February, 1944

An Important Message to

Technical Men

The war has carried the manufacturing age to a new peak! Production demands have created technical problems the like of which the world has never seen before! The services of engineers are at a premium. Especially the services of one particular class—executive engineers engineers with business training; engineers who can "run the show."

In these critical times, the nation needs engineers of executive ability now, today -not five, or ten years from now! The shortage of such men is acute-even more acute than that of skilled production workers. And company heads, aware of this situation, are offering high rewards to engineers who have the necessary training in industrial management.

Golden Opportunity for Engineers

In this new era, the engineer with vision and foresight has a golden opportunity. He will realize that out of today's tremendous production battles will emerge technical men who not only will play a major role in winning the war, but who also will be firmly entrenched in keyexecutive positions when peacecomes.

However, before the engineer can take over executive responsibilities, he must acquire knowledge of the other divisions of business—of marketing, accounting and finance. He has of necessity a vast amount of technical training and experience. But in order to grasp the opportunities that present themselves today to assume leadership on the production front—he must *also* have an understanding of practical business principles and methods.

The Alexander Hamilton Institute's intensive executive training can give you this essential business training to supplement your technical skill.

FREE help for engineers Ever since the war began, there has been an unusually heavy demand on the part of our tunte's special guide on "How to Prepare an Engineering Report". Extra copies of this practical, helpful 72-page Guide are now available and, for a limited time only, will be sent free to all technical men who use the coupon at the right.

134,000 men on the operating side of business have enrolled for this training. More than 37,500 are technical menengineers, chemists, metallurgists-many of whom are today heads of our huge war industries.

This training appeals to engineers because it gives them access to the thinking and experience of the country's great business minds. It is especially valuable to such men because it is basic, not specialized—broad in scope, providing a thorough groundwork in the fundamentals underlying *all* business. It covers the principles that every top executive must understand. It applies to all types of industrial organizations, because all types of organizations are based on these same fundamentals.

Business and Industrial Leaders Contribute

The Institute's training plan has the endorsement of leading industrialists and business men. And it is only because these high-ranking executives recognize its value and give their cooperation that such a plan is possible. Among those who contribute to the Course are such men as Frederick W. Pickard, Vice President and Director, E. I. DuPont de Nemours & Co.; Thomas J. Watson, President, International Business Machines Corp.; James D. Mooney, President, General Motors Overseas Corp.; Clifton Slusser, Vice President, Goodyear Tire and Rubber Co. and Colby M. Chester, Chairman of the Board, General Foods Corp.

Send for "FORGING AHEAD IN BUSINESS"

The facts about the Institute's plan and what it can do for you are printed in the 64-page book, "Forging Ahead in Business". This book in its own right is well worth your reading. It might almost be called a handbook of business training. It is a book you will be glad to have in your library, and it will be sent to you without cost. Simply fill in and mail the attached coupon today.

Alexander Hamilton Institute Dept. 53, 73 West 23rd Street, New York, N.Y. In Canada, 54 Wellington St.. West, Toronto, Ont. Please mail me a copy of the 64-page book-"FORGING AHEAD IN BUSINESS" and also a copy of "HOW TO PREPARE AN ENGINEER-ING REPORT," both without cost.

Name					ŝ	.,	 			•	÷		•		÷			
Business Address	• •		•	 	*		 		-									
	•••	• •		.,				•	•			•		•		•		
Position				 			 .,			÷		•			•		*	÷
Home Address				 				-										

JETT APPOINTED

(Continued from page 124)

tions of Governmental and military radio-frequency requirements as Chairman of the Interdepartment Radio Advisory Committee, the agency which recommends government frequency allocations to the President, when he was Chairman of that committee during 1939-41. He also has been an important governmental expert in aviation radio operations and frequency planning activities.

The new Commissioner was to make his first address since assuming that post on Jan. 29 before the New York meeting of the Institute of Radio Engineers. Commissioner Jett has been a leading member of the IRE for many years and is a Fellow of the Institute. While he was still Chief Engineer, Commissioner Jett presented a most interesting and constructive exposition of the frequency allocations problems and postwar radio and communications needs before the Senate Interstate Commerce Committee while it was considering the White-Wheeler Bill.

He has had his fingers on the pulse of the role of radio and communications in war for the past four years from 1940, the period of national defense preparedness. to the present time. He was the main cog of the Defense Communications Board, since its establishment in 1940, and of its successor, the Board of War Communications as Chairman of the two Boards' coordinating committees which directed the work of the sixteen industry and technical advisory committees of the BWC.

Commissioner Jett has been called upon to serve the United States in the capacity of a communications-delegate and expert at seven major international conferences. He was named by President Roosevelt as a delegate of the United States at the Cairo International Telecommunications Conference in 1938 during which he played a leading role in that conference's formulation of the prewar allocation of ultra-high frequencies. He also represented the United States at the Inter-American Radio Conference at Havana and the North American Regional Radio Conference there in 1937. The same year he represented the FCC at the Alaskan Radio Conference at Juneau. In 1933 he was a member of the American delegation to the North and Central American Radio Conference in Mexico City.

Commissioner Jett has served continuously in the Navy and in Federal Government service, the Radio Commission and the FCC, since he was 18 years old. He is particularly proud of his Navy career and radio experience from

1914-16 and during World War I and for the nine years after that war before he retired from the Navy and joined the Radio Commission as a Senior Radio Engineer.

During 1914-16 he participal ed, while serving at the Arlington Radio station of the Navy in many significant pioneering ventures in radio - the testing of one-way radio telephone service, which was conducted by Bell System's engineers in cooperation with the Navy, for the first time; the first vacuum tube receiver work; the first are continuous wave transmitter testing; and the first remote control system operation. From 1919-22 he directed all trans-Atlantic radio communication traffic for the Navy Department, utilizing the transmitters at Arlington, Annapolis, Washington Navy Yard, Tuckerton, N. J. New Brunswick, N. J. and Sayville, N. Y., and the receiving station at Otter Cliffs, Me. During his Navy service he spent a number of years as Radio Officer of battleships and of the Fleet Base Force at sea.

Television Society Clinics

American Television Society plans the establishment of additional services to members, including a series of clinics for various phases of television activities. Clinic meetings will be held at frequent intervals. Included among subjects to be covered are: programming, engineering, advertising, education, motion picture and theater television, industrial relations and television receiver sales.

Celebrate Edison's Birthday

The Edison Pioneers, early associates of Thomas A. Edison in his experimental and inventive work, will celebrate his birthday anniversary Feb. 11 with a luncheon at the Hotel Astor, New York. The Pioneers will come from the New Jersey area around Menlo Park, in a special electric train, thus typifying another of Mr. Edison's many inventions At the luncheon, Mr. Edison's discovery of the Edison Effect and its wide results in laying the foundations for the present great electronic development, will be discussed by Dr. Orestes H. Caldwell, editor of Electronic Industries. Dr. Caldwell is chairman of the 1944 committee for the general celebration of Edison's birthday.

Ceramic Insulation

A new type of ceramic insulating material, styled Centradite, has been developed by Centralab Division of Globe-Union, Inc., 900 East Keefe Ave., Milwaukee, Wis. The product is described and complete application specifications are included in a new bulletin, 720-A, just issued.

Immediately Available 916 certain hard-to-get radio and electronic parts and equipment, urgently needed by war-working industrials, radio service men and others.

Large inventory maintained for your emergency requirements. As distributors of more than 10,000 different items we can handle complete orders, however large. No need to split. Our trained expediters select, check and ship, the day your order is received. Tubes and P.A. equipment. Receiving and transmitting tubes, photo cells and special-purpose tubes. Some types now Government-restricted, but we can handle your orders with utmost efficiency. Sound systems, microphones, paging systems, inter-communicating systems - standard and specially-designed units for every application, on rated orders only. Books: latest authoritative texts on radio AII and electronics. No priorities required.

108 SIXTH AVE, DEPT. D-2, NEW YORK 13, N.Y. BOSTON, MASS. . NEWARK, N. J.

WE ALSO MANUFACTURE

WE ALSO MANUFACTURE public address and sound equipment. Háve done it for ten years - pioneering several new audio developments. We have made equipment for the U.S. Army Signal Corps and many large Industrials, this past year. We can make pre-amplifiers, power sup-ples, rectifier units, cord soit - anything insolving chassis wiring, assembling, sol-dering. Known to all manufacturers - to many since 1921-we can request and get proferential treatment. Competent engi-merring at M. No labor shorings in this arms. Let us quest.

TO THE REPORT OF THE PARTY OF T

Klingenschmitt New **President Radio Club**

Frederick Α. Klingenschmitt (Amy, Aceves and King) is the new president of Radio Club of America. Other officers, newly elected, are: vice-president O. James Morelock (Weston); corresponding secretary Milton B. Sleeper; recording secretary John H. Bose (Dr. Edwin H. Armstrong); treasurer (reelected) Joseph J. Stantley.

Edison Medal to Bush

Dr. Vannevar Bush, has been awarded the 1943 Edison medal by the American Institute of Electrical Engineers. Dr. Bush is president of the Carnegie Institue of Washington and director of the office of scientific research of the office of emergency management. The award was presented for his contribution to the advancement of electrical engineering, particularly through the development of new applications of mathematics to electrical problems.

Television Personnel

Organization of Panel No. 6 of the Radio Technical Planning Board, which has to do with television and is headed by D. B. Smith (Philco) has been completed. The personnel includes:

- B. Smith, Chairman, Philco Corp. J. Kaar, Vice Chairman, General Electric Co.
- Dr
- . G. Town, Secretary, Stromberg-Carlson Co. L. Beers (M), RCA Victor G.
- B. Bingley (M), Philco Corp.
 R. Cummings (M), Farnsworth Tel. & Tel.
 B. DuMont (M), DuMont
 B. Hanson (M), NBC Β.
- 0
- R.
- C
- D. Reid (M), Crosley Corp. Serrell (M), CBS A. Priest (M), General Electric Co. H. Manson (M), Stromberg-Carlson R.
- E. Brown (M), Zenith Radio Corp. G. Fink (M), McGraw-Hill
- H.
- G. Fink (M), McGraw-Hill R. Lubcke (M), Don Lee A. MacDonald (M), Hazeltine Labo-W. ratories
- T. B. Grenier (M), Metropolitan Television C. E. Noble (M), Westinghouse Electric Mfg. Co.

- J. Brand (M), Raytheon Howard Gates (O), Warwick Mfg. Co. N. P. Case (O), Hamilton Radio Corp. J. A. Ouimet (O), Canadian Broadcasting
- J. A. Corp. Norman Snyder (O), Ansley Radio Corp.

(M) Member; (O) Observer

Precision Expands

The Precision Paper Tube Co., 2035 West Charleston St., Chicago, has considerably enlarged its production capacity. The company now has four times the area devoted to the manufacture of dielectric coil bases and spirally wound tubes of kraft, fish paper, trans-parent cellulose and combinations, and precision bobbins.

Electron Microscopists See Portable Instrument

R.

ti

vie

Co

st.

to

tr

W

fic

in

P)

pl

W

ot

D

C

d

12

V

h

fe

t.

The Electron Microscope Society. which is an associate society of the American Institute of Physics, held its first meeting Jan. 14 and 15 at Columbia University, New York. where members listened to a long series of addresses covering various phases of work that is being done with the instrument. President of the society is R. Bowling Barnes American Cyanamid Co., Stamford, Conn., other officers being: vicepresident Albert F. Prebus, Ohio State University; secretary-treasurer M. C. Banca, Magnolia, N. J.; directors are Dr. V. K. Zworykin, RCA Laboratories and O. F. Duffendack, University of Michigan. Several of the addresses had to do with late developments in the design of the electron microscope; most were devoted to examinations of the character of research work made possible by the instrument.

One particularly interesting new development was shown, the experimental model of a completely portable "suitcase" electron microscope. The elements of this electron microscope were assembled in two portable units of suitcase size. It was described by Igor Bensen, development engineer of the General Electrical Co.'s electronic laboratory. The experimental model of this electrostatically focused microscope has a range of 300-1000 diameters While it is not a production model. it seems to be the forerunner of a small, compact, and easily operated electron microscope for use by doctors and research men. The microscope, its controls, diffusion pump and power unit weighs 78 lbs. and the associated evacuation backing pump, also of suitcase size, weighs 55 lbs. It is expected that this weight can be reduced still further when certain lightweight alloys are substituted for other heavy metals

Revised Standards List

The American Standards Association, 29 W. 39th St., New York, N. Y., has published its new list of standards. More than 600 standards are listed, of which 64 have been approved or revised since the last list was printed (April, 1943). The standards cover specifications for materials, methods of tests, dimensions, definitions of technical terms, procedures, etc. One im-portant phase of the work built up during the 25 years that the ASA has been in existence, is in the field of safety engineering. The new list includes 95 safety stand-American Standards are ards. constantly revised to keep up with the advances in industrial meth-This list represents the ods. cumulative work of the past 25 years in practically every field of engineering.

New Allied Factory

To expand manufacturing facilities for relays, electrical control devices and fiber lock-nuts, the Allied Control Co. of New York has started construction of a new facto y in the industrial clearing district of Chicago. This new plant will add 55,000 sq. ft. of working floor space to existing manufacturing facilities in New York and Plantsville, Conn. The new Chicago plant is expected to be completed within ninety days and in full operation shortly thereafter.

D. Gross Heads **Cyclograph Sales**

s

k

S

David Gross has been appointed sales director of the materials-test division of Allen B. Du Mont Laboratories, Inc., Passaic, N. J. This division handles the Du Mont Cyclograph for non-destructive testing the metallurgical properties of ferrous and non-ferrous metals. Gross has been identified with Du Mont for several years past, specializing in television equipment sales until the outbreak of the war. It is planned to make the instrument available under a license agreement for a minimum period of six Nice Work, Ike months. Representatives throughout the country will have their own service depots to provide service.

Automatic Steering of Cars

An apparatus that automatically guides a car along a reflecting stripe pointed on the ground is described in Patent No. 2,331,144 to Evan L. Sitter, McLean, Texas. The light from a lamp mounted in the center between the two front wheels of the car is reflected by the stripe onto two photocells arranged at opposite sides of the lamp. Both photocells obtain an equal amount of light as long as the stripe runs exactly below the center line of the car. Two motors are controlled by the photocell circuits, one steering the car to the left, the other steering the car to the right; if equal amounts of light impinge on the photocells, the motors run at the same speed, keeping the car on a straight course. However, if the car deviates from its desired course, one of the photocells obtains more light than the other and one motor runs faster than the other so that the car is always made to follow the reflecting stripe.

Meet "Miss Electronics," winner of the title from 23 other 100-per-cent-onthe-lob Bridgeport General Electric girls selected from among 2000 as candidates for the job. Rest of the picture involves I. J. Kaar, manager of the receiver division

for Armed Forces

PRODUCTION

DESIGN

SERVICE

AFAYETTE RADIO CORP. of W. JACKSON BLVD., CHICAGO 7, ILL., DEPT j-2 lease send me a FREE copy of the new Lafayette tadio Corporation Catalog Ne. 94. AME DDRESS	tems wi	theut	delay.	Careful S	
01 W. JACKSON BLVD., CHICAGO 7, ILL., DEPT }-2 lease send me a FREE copy of the new Lafayette tadio Corporation Catalog No. 94. IAME					
lease send me a FREE copy of the new Lafayette ladio Corporation Catalog Ne. 94. IAME					
tadio Corporation Cotalog No. 94. IAME		1CK20	H BLVD., CP	IICAGO /,	ILL., DEFI J-2;
		d me	a FREE conv.	of the new	Laforette
DDRESS	lease sen	d me i rporati	a FREE copy ion Catalog I	of the new No. 94.	Lafayette
	lease sen tadio Co	d me i rporati	a FREE copy ion Catalog I	of the new Ne. 91.	Lafaystie
	lease sen ladio Con IAME	rporati	ion Catalog I	Ne. 94.	

240

Dunlap Made Director of Advertising for RCA

Orrin E. Dunlap, Jr., who has been appointed director of advertising and publicity of the Radio Corporation of America was radio editor of The New York Times for eighteen years. His association with radio dates from 1912 when he built an amateur wireless station at Niagara Falls, N. Y. He was one of the early members of the American Radio Relay League and has been a member of the Veteran Wireless Operators' Association and Institute of Radio Engineers. In 1917 he was chief operator of the Marconi Wireless Telegraph Co. aboard the S. S. Octorora. During the First World War he served as radio operator in the U.S. Navy, graduating from the U.S. Naval Radio School at Harvard as one of the three honor men of the class. He was assigned to duty at the Naval radio station NBD, Otter Cliffs, Maine.

Mr. Dunlap was graduated from Colgate University in 1920 after which he attended the Harvard Graduate School of Business, specializing in advertising and marketing. After a year on the staff of the Hanff-Metzger Advertising Agency in 1922 he was invited by Carr V. VanAnda, managing editor of The New York Times to organize a radio section and to direct the coverage of radio news.

Mr. Dunlap's nine books on radio include two on advertising, "Advertising by Radio" and "Radio in Advertising." His other books are: "Dunlap's Radio Manual," "The Story of Radio," "Talking on the Radio," "The Outlook for Television," "Marconi: His Life and His Wireless," "The Future of Television," and "Radio's 100 Men of Science" a collective biography, recently completed for publication by Harper & Brothers in 1944.

Hytron Quadruples Production

The fact that this is an electronic war is nowhere better illustrated than at Hytron Corp. where expansion at Salem, Mass., and a new plant at Newburyport, Mass., have quadrupled production facilities. June 12, 1942, saw Hytron go completely all-out for war production-the first receiving-tube manufacturer to do so. Rather than wait for new equipment to be procured through regular government channels, Hytron converted its own machines at its own expense, saving months of time and putting hundreds of thousands of extra tubes into the hands of the armed forces. Since that time the plant size has quadrupled.

<section-header><text>

FAMOUS ALL-WOOD "MOSQUITO" of the Royal Air Force is

of tough, durable wood veneer — made to a rigid engineering specification. The physical characteristics of this veneer must be as uniform as metal. Most vital step in production is the drying where precision control of moisture content assures its stability and strong cell structure . . . guarded by electronic moisturemeters powered by Burgess batteries.

SPECIAL-PURPOSE BATTERIES have always been a specialty of Burgess engineers. Puzzling problems of size and operating characteristics dissolve in their expert hands...your problem will be welcomed.

FREE.. ENGINEERING HANDBOOK

80-page manual of basic data and characteristics of dry batteries for all electron applications. Tabbed for ready reference. Write Dept. 8 for free copy. Burgess Battery Company, Freeport, Illinoin

Pr. Caldwell to Address Joint IRE-Franklin Meeting

Dr. Orestes H. Caldwell, Editor of Ectronic Industries, is to address a joint meeting of the Philadelphia Sction of IRE and the Franklin Institute, in Philadelphia on Wednesday, February 2. Subject of the talk is "What the Electronic Future Has in Store for You." The talk will cover many of the ways in which the new art of electron control is revolutionizing warfare, science, chemistry, surgery, metallurgy, music and printing.

Electronic Autopilot Has Saved Fifty Bombers

More than fifty American bombers have returned safely to their bases on electronic automatic pilots although control cables were shot away completely, an Air Forces officer back from England reports. According to the cases on record this means that at least 500 men have been saved from what formerly meant disaster, he told officials of the Minneapolis-Honeywell Regulator Co., co-makers of the autopilot which for two years has been standard equipment on the Air Forces' four-engined bombers.

D

ie is

le

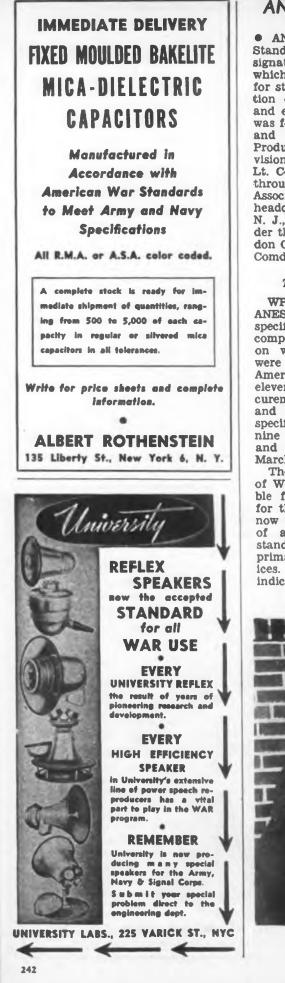
he

er

Designed primarily for high altitude precision bombing, the electronic instrument has the added advantage of remote control which permits airplanes to be flown from two or more stations, he said. With control surface motors connected by fine wires, it is approximately thirty times more difficult for gunfire and flak to put the autopilot out of commission as compared to mechanical or pneumatic systems, the returned flier added. In use for more than two years, the Minneapolis-Honeywell autopilot was unknown outside the services until recently when the Army permitted its disclosure after it was known that the enemy had learned America's precision bombing secrets.

RTPB Elects Mrs. Kinzie Its Assistant Secretary

Sponsors of the Radio Technical Planning Board have elected Mrs. Martha Kinzle assistant secretary of the board, according to an announcement by Dr. W. R. G. Baker, chairman of the board and a vicepresident of the General Electric Company. Mrs. Kinzie is secretary to Dr. Baker and resides at Bridgeport where she works in the company's electronics department. Mrs. Kinzie, with the cooperation of L. C. F. Horle, coordinator, and W. B. Cowilich, secretary of the board respectively, will be responsible for processing of the papers in connection with the work of the board.


Foote to Littelfuse

William A. Foote has been appointed sales coordinator of Littelfuse, Inc., Chicago and El Monte, Calif. His business career includes the presidency and general sales management of Wingfoote Petroleum Co., an affiliate of the Standard Oil Co. of New York and sales directorship of the Deoxolin Chemical Corp.

E. V. Sundt, President of Littelfuse, Inc., Chicago and El Monte, Calif.

ANESA TAKES MILITARY-NAVAL STANDARDS

• ANESA (Army-Navy Electronic Standardization Agency) is the designation of the new official group which hereafter will be responsible for standardization and simplification of military and naval radio and electronic devices. This work was formerly handled by the Radio and Radar Division of the War Production Board under the supervision of Assistant Director (now Lt. Col.) Sidney K. Wolf, working through the American Standards Association of New York. ANESA headquarters are at Red Bank, N. J., and are being operated under the supervision of Colonel Gordon C. Irwin for the Army, and Lt. Comdr. Paul G. Haas for the Navy.

Twenty "specs" completed

WPB and ASA will turn over to ANESA a compilation of standard specifications for 20 electronic components. Of the components on which standard specifications were drafted for WPB by the American Standards Association, eleven have been approved for procurement purposes by the Army and Navy. Drafting of standard specifications on the remaining nine is expected to be completed and turned over to ANESA by March 1.

The Radio and Radar Division of WPB, which has been responsible for the standardization study for the past year, said its work is now reaching the important stage of application of the approved standards, a function which is primarily one for the Armed Services. The Army and Navy have indicated that they will continue the study and application of standard specifications for electronic components both for the duration and as a peacetime operation through ANESA and the joint Army-Navy Board for Approving Standards, also formed recently. ANESA's location at Red Bank, N. J. is in close proximity to Fort Monmouth.

Cover 75% of components

WPB pointed out that the standards on the 20 components, when completed, will be 75 per cent, item-wise, of all components used in electronic devices. That is, they make up three-fourths of the components which reoccur frequently in radios or other electronic equipment.

The Armed Services, in deciding to take over the future work on standardization in electronics, gave credit to WPB for having initiated and carried forward this task. They also credited the accomplishment of WPB for having brought the Army and Navy together on the use of common standards for electronic equipment. These common standards have resulted in increased industrial production and more efficient functioning in the combat theaters through the interchangeability of components for replacement, maintenance and repair purposes.

Products listed

The components on which American War Standard specifications have been approved by the Army and Navy are ceramic radio

Colonel Gordon C. Irwin, and Lt. Commander Paul G. Hans, who will administer ANESA for the Army and the Navy respectively

insulating materials, steatite radio Sylvania Advances Klevit insulators, fixed mica dielectric capacitors, ceramic radio dielectric material, external meter resistors, glass bonded mica radio insulators, fixed composition resistors, elecical indicating instruments, hock-testing mechanism for electrical indicating instruments, dimensions for external radio-frequency thermocouple converters, and glass radio insulators.

of.

K-

he

3.

nt

ng

ık,

irt.

18

d-

18.

ed

ėv

n-

lv

p-

ng

on

Ve

ed

ik.

h-

ht

n

or

n-

in

on

in

he

its

bc

ed

ch

2-

he

lio

ļ

81

13

81

17

44

Components on which standards are expected to be completed by March 1 by WPB include fixed paper dielectric capacitors, porcelain radio insulators, fixed ceramic capacitors, dynamotors, ex-ternal ammeter shunts, variable wire-wound resistors (low temperature), tower-type wire-wound rheostats, and toggle switches.

Haines Dielectric Heating

Haines Mfg. Co., 248-274 McKibbin St., Brooklyn, has developed a new line of dielectric heating equipment designed specifically for preheating plastics. The Haines equip-ment is readily adaptable to the baking and dehydrating industries. Moderately priced, the line is within the range of the small production factories.

Belmont Enlarges Laboratory

Soon after March 1, Belmont Radio Corp., Chicago, will occupy expanded laboratory facilities. An addition to the plant, to cost around \$70,000, will house the laboratory staff.

Electronic Course at Milwaukee

Milwaukee electrical men will have an opportunity to get inside details on electronic subjects by taking advantage of a 12-meeting course now being sponsored by the Electrical League of Milwaukee. All persons attending the course will pay an attendance fee of \$2 at the first meeting, one-half of which will be refunded to those who attend at least nine of the twelve meetings.

No registration is necessary and those wishing to participate need only report at the Lodge Room, Public Service Building. The course started Monday, January 10, at 7:30 o'clock. Admission is a League membership card and the \$2 attendance fee. Meetings are to be held each Monday night, from 7:30 to 9:30, through March 27. All phases of the subject of electronic applications will be covered during the various meetings.

ELECTRONIC INDUSTRIES . February, 1944

Dr. Ben Kievit, supervisor of customer services of Sylvania Electric Products Inc., in Emporium, Pa., has been moved to the New York office as field engineer in the Equipment Sales Department for the metropolitan and New England

area. Dr. Kievit has been with the Sylvania corporation since 1930, when he joined the company as a research physicist. He became supervisor of the Tube Application Department in 1931, and in 1934 was advanced to assistant director of the department. In 1941 he was appointed assistant director of commercial engineering, and the next year became supervisor of Customer Services in Emporium. He is a senior member of the Institute of Radio Engineers, and a member of the Electronics Committee of that group. His other affiliations include fellowship in the American Association for the Advancement of Science. and membership in Sigma Xi and the American Physical Society.

Mr. Hoffman resigned recently from the Westinghouse electronic division at Bloomfield, N. J., where for the past seventeen years he had been manager of the special products division.

Hoffman to Machlett

H. J. Hoffman, who is chairman of the Electronic Section of the National Electrical Manufacturers Association, has joined Machlett Laboratories at Norwalk, Conn., as sales manager. This Norwalk plant has been developed by the Machlett organization, whose X-ray tube factory at Springdale, Conn., near Stamford, is now the largest producer of X-ray tubes in the United States. The new Norwalk plant is devoted exclusively to the manufacture of radio transmitting, industrial, and special-purpose tubes.

TOMORROW

WANTED -

Plant Superintendent

Progressive eastern manufacturer employing upwards of 500 requires the services of a plant superintendent theroughly seasoned in modern tooling and mass production methods on small electro-mechanical assemblies.

Past experience should include actual tool making, jig and fixture development and responsibility for production.

Practical knowledge of electrical apparatus and testing procedures essential.

EXCELLENT POST-WAR OPPORTUNITY SALARY HIGH

> Box E2, Room 1107 67 West 44th Street New York City-18

923 FRELINGHUYSEN AVENUE NEWARK, NEW JERSEY ☆ Bisolow 3-0234 and 0235

244

ENGINEERS ATTEND IRE-AIEE MEETING

(Continued from page 123)

Joint Army-Navy Standardization program for tubes. Lt. Martel discussed the steps taken by the Bureau of Ships and the Signal Corps to effect standardization of radio and electron tubes previously produced in many slightly varying types for the Army, the Navy, and civilian use. The suggested procedures for handling tube problems apparently outside the boundaries of the written specs were described fully, in connection with a description of the method of operation of the JAN-1 Tube Subcommittee and its duties and responsibilities. Lt. Martel emphasized the necessity for avoiding the use of special selection tubes in military equipment. Tube specs, the occasionally revised Preferred Lists, and type approvals were among the subjects discussed.

Oscillating circuits

In a paper titled "Intermittent Behavior in Oscillators," William A. Edson, Bell Telephone Laboratories, New York, discussed the fact that oscillating circuits of all sorts are subject to low-frequency disturbances. Usually the normal oscillation is interrupted at more or less regular intervals, Mr. Edson said, although the output may merely be modulated in amplitude and phase.

The operation of such circuits was studied by considering the disturbance as a self-generated lowfrequency modulation superimposed upon the desired oscillation. A considerable amount of information was secured by a study of circuits intended purposely to generate self-modulated oscillations.

The criterion which determines whether or not any particular oscillator will spontaneously generate modulation is closely analogous to Nyquist's well-known criterion for determining whether or not a feedback amplifier will spontaneously generate oscillations of any form. Stated briefly: Intermittent behavior is to be expected if at the normal oscillating frequency and voltage an assumed small modulation at some low frequency is returned amplified in magnitude and in its original phase by one full trip around the oscillating loop. Such a criterion is useful because it shows what design features are required to secure the desired performance

War-radio standardization

Commander A. B. Chamberlain, U. S. Navy Bureau of Ships, Radio Division, spoke on past, present, and future standardization of service equipment.

Mass production technics have been applied to wartime radio and electronic devices, Commander Chamberlain said, despite (1) the complexity of modern equipment the high quality of products (2) built for service use, and (3) frequent redesign in order to keep technologically ahead of the enemy The need for maximum standardization compatible with progress was felt from the first, both at the battlefronts and at home. Inventories at shore bases and afloat had to be kept down to facilitate making replacements in the field. The number of different parts and equipment made had to be reduced to a minimum in order to best utilize manpower and production facilities in the United States.

CES

Na

Tn

for

tvi

(1)

Set

tio

UL:1

ch

of

the

h

AT

vic

wh

air

me

sp

we "T

Pl

fle

ga

m

of

lir

eli

tie

tr

DI

m

to

DC

re

63

re

fa

m

m

The policy of standardization was broadly interpreted by the Navy at first. However, the attempt was made to use large production stock items instead of special parts wherever the quality of the former made this justifiable, The time required to determine the best design for each component or equipment was (and is still being) cut down by pooling knowledge between the Naval service and industry: by exhausive testing of products so as to simulate actual conditions of use, and by thorough, immediate investigation into all troubles encountered in the field, The results of this program have made it possible for the Navy to concentrate on relatively few new basic models, and quickly reject unsatisfactory designs. These basic models are modified, rather than completely redesigned, to meet the requirements of various classes of vessels and shore stations. Modifications are also made when faults develop, or new refinements become available.

Components taken singly, rather than in combination as in an equipment, have been the most logical and fruitful field for a broad standardization program between the services. The aim here has been to write suitable specifications for parts based on joint Army-Navy requirements, the facilities of industry, and the advice of other agencies concerned, such as the WPB. Some of the advantages that have accrued from this practice in certain specific cases are: improved design; reduction in the number of types required, with consequent increase in interchangeability, assurance of several sources of supply for an item; maintenance of product quality; known grading methods to assist in equipment design; common Army-Navy nomenclature; and conservation of critical materials. The coordinating group working on component standardization has been the Signal Corps Standards Agency established in early 1943, and its suc-

cessor organization, the Army-N vy Electronics Standards Agency. These groups have set up standards for many common components.

The standardization of complete equipments into joint Army-Navy types is a more limited field, since the requirements of the two services-with the notable exception of the aircraft branches-are u. ually different, and (2) interc angeable components solve most of the difficulties encountered in the field. However, close liaison his been maintained between the Army, Navy and the British with a view towards cooperative action wnenever possible, and a number of aircraft radio and electronic equipment have come out under joint sponsorship.

impedance" is inserted between two dissimilar media, it is possible to achieve an impedance match and avoid reflections at the surfaces of discontinuity. It is necessary to modify the transmission line equations for waves impinging upon plane surfaces at oblique incidence. These lead to Fresnel's equations for wave reflection and refraction.

This method of expressing wave propagation makes it possible to use all of the technics employed in the analysis of transmission lines including the use of the circular and rectangular transmission line impedance charts. The procedure is to first set up the equivalent transmission line circuit. The analysis then proceeds exactly as for the solution of transmission line problems.

Wave propagation

Dr. Arthur B. Bronwell, of Northwestern University, read the paper Transmission Line Analogies of Plane Electromagnetic Wave Reflections."

The phenomena of wave propagation along a transmission line may be expressed either in terms of the voltage and current on the line, or in terms of the resulting electric and magnetic field intensities. The fields comprise a guided transverse electromagnetic wave propagating through the dielectric material surrounding the conductors with reflections occurring at points of discontinuity. The close resemblance of the mathematical expressions for the two methods of representations suggests that the familiar transmission line equations may be used for expressing the more general case of unguided plane wave propagation. It was shown in this paper that the field equations for normal incidence plane wave reflections may be expressed by the transmission line equations. Discontinuities occurring when the wave passes from one medium to another are analogous to impedance discontinuities on transmission lines. The incident and reflected waves resulting when a plane wave impinges upon a perfect conductor at normal incidence are analogous to the short circuit transmission line. Losses in the media through which the plane wave propagates are similar to losses in the transmission line. Multiple reflections from successive surfaces of discontinuities are similar to multiple discontinuities in transmission lines.

1

S

S

f

Τ

e

ń

d

t

đ

g

-

g

it

.

It is interesting to note that the m thod of matching impedances by the use of a quarter wavelength transmission line having the proper characteristic impedance has its counterpart in field theory. If a quarter wavelength plane slab having a proper value of "intrinsic

ELECTRONIC INDUSTRIES . February, 1944

Amplidyne principles

A paper, "The Amplidyne System of Control," by Dr. E. F. W. Alexanderson, M. A. Edwards, and K. K. Bowman, all of the General Electric Co. described the methods whereby the operating and regulating technics of amplidyne control can be determined, the fundamental characteristics of the amplidyne system, and the conditions under which it can be utilized in particular applications. This system utilizes an ingenious application of the magnetic fields in a specialized type of dc generator. In the usual application in the power field, the controlling agency, which may be a variation in some function in a process which affects the final output, is used to minimize all deviations of that output from the ideal value. This is seen to be one of the functions usually handled by electronic equipment, but here is an amplifier for power control without tubes. It was at one time customary to describe electronic devices by comparison with known electrical devices.

Dr. Alexanderson referred to amplidyne operation in terms of voltage amplification, current amplification, oscillations, hunting, rate of response, etc., using the new well known methods of analyzing electronic tube circuits on this purely mechanical counterpart. Many unusual concepts were mentioned when these characteristics were analyzed in these terms, such as the attaining of capacitive effects equal to one farad or more. With the listing of this information, which corresponds to that needed by the radio engineer in using electronic tubes, the work of the application engineer who attempts to select an amplidyne for a particular job, is simplified.

Transmission line problems

Presented by J. R. Whinnery of

2460 WEST GEORGE STREET CHICAGO 18, **ILLINOIS**

FINISHED PANELS Etched or Silk screened

> **ELECTRODES** All types and sizes to meet your specs.

NAME PLATES DIALS

We effer you our enlarged and modernized facilities, backed by several decades of experience. We'd be happy to serve you now!

WANTED -

Chief Engineer

Progressive eastern manufacturer employing upwards of 500 requires the services of an experienced engineer on small electro-mechanical assemblies.

Must be thoroughly versed in the theory and practical application of AC and DC Relays, Solenoids and Switches.

Should be able to direct and coordinate engineering, design, development and model departments as well as set up standards and specifications.

Ingenuity and initiative necessary qualifications.

EXCELLENT POST-WAR OPPORTUNITY SALARY HIGH

> Box ED3, Room 1107 67 West 44th Street New York City—18

General Electric, a paper written in collaboration with H. W. Jamieson dealt with equivalent circuits for discontinuities in transmission lines.

Sudden discontinuities in transmission line systems, such as sudden changes of inner diameter, outer diameter, or both for coaxial lines, or change in height of radial lines may occur frequently in practical applications. This is true even when lines are used in power transmission or measurement applications, but particularly so when they are used as elements in resonant cavity type circuits in the centimeter wave region.

It was shown in the paper that the effect of certain of these discontinuities can be exactly represented in loss-free cases by an equivalent circuit in which a lumped "discontinuity admittance" is shunted between lines at the change of section; ordinary transmission line equations for the principal wave only are used in the transmission lines on either side of the discontinuity. If transverse dimensions between line conductors are small compared with wavelength, this discontinuity admittance is a pure capacitance, usually of the order of a few tenths of a micromicrofarad for typical discontinuities in lines of common size. Thus its effects are negligible at radio frequencies below a few hundred megacycles, but may be of primary importance in the centimeter wave region.

It was shown that approximate values of the discontinuity capacitance may be obtained for many different cases from a single curve derived for a simple step in a parallel plane transmission line. For example, rules deducted from the more accurate equations for the coaxial problem are given for approximate application of this single curve to several typical discontinuities in coaxial lines.

More complete set of curves was given for more accurate values in several of the important discontinuities. Certain curves of a frequency factor showing the effect of transverse dimensions comparable to wavelength and curves of proximity factors showing the effect of disk type terminations near the discontinuity or of two discontinuities electrically near one another were also given.

The general approach and physical reasoning followed closely that used extensively by Schelkunoff in radiation problems; the method of analysis was a method based upon series wave solutions as presented by Hahn. By means of the equivalent circuits and curves presented in the paper, calculations for these discontinuity problems which are fairly complicated boundary value problems—were thereby reduced to circuit and

transmission line calculations using well-known equations and charts

Piston attenuator

The piston attenuator, reported Harold A. Wheeler, Hazeltine Electronics Corp., in a paper on this subject, in a cylindrical shield is coupling device whose attenuation varies exponentially with distance. This principle is applicable to mesistive, capacitive or inductive coupling. The piston mutual indifetor uses coaxial or coplanar coils, the latter being preferable. Since its origin in 1929, the piston attenuator has come into wide use especially at the higher frequencies. Its calibration is determined by structural dimensions so the dial scale is calibrated in decibels by computation.

Small Radio—Yesterday and in the World of Tomorrow

By Ben Abrams, Emerson Radio & Phonograph Corp., New York, N. Y. 88 pages.

Receiver engineers and designers will be interested in this book which traces the history and commercial development of the small home receiving set since its inception in 1929 as a "midget" model. In this narrative of the "compact" receiver in its many forms, the diverse improvements from year to year are chronicled.

The meteoric popularity of the battery portable, and the battery-and-light-socket portables (the production of which jumped from 850,000 sets in 1939 to 1,570,000 in 1941), afford other examples of the public's preference for small units. This development forecasts what may prove to be one of the most momentous radio and electronic advances of the future, comments Mr. Abrams. The military 'Walkie-Talkie" is vastly improved today because of the civilian portable-radio engineering background Civilian communicating instruments of tomorrow will stem from the same origins.

A huge backlog of new-home demand, in addition to the replacement market, has been piling up since civilian-radio production ceased in 1942. Distributor and dealer stocks of radios all over the country have become virtually depleted. The breakdown and obsolescence of sets have been continuing at an accelerated rate due to shortages of repair parts and service.

All of these factors, aided by a vast accumulated purchasing

ELECTRONIC INDUSTRIES . February, 1944

power and an ever-growing interest in and use of radio, are combining to build up a waiting market for from 20,000,000 to 25,000,000 sets-with progressively higher proportionate levels of demand in years to follow.

.

d

5

a

i'e

ls.

ce

t-

se,

٥đ he

18

k

Y.

ers

ich

ial

re-

in his

ver m-

are

the

ry-

he

om

in

the its

hat

lost

onic

om-

ary

ort-

ind.

ru-

rom

de-

ace-

up tion

and

the

de-

bso-

inu-

e to

and

1944

v

Mathematics Dictionary

By Glenn James and Robert C. James, published by The Digest Press, Van Nuys, Calif., 1943, 320 pages. \$3.00.

The dictionary is designed primarily to provide a condensed source of facts and principles for men in the practical field. It con-tains "definitions of the basic words and topic phrases used in mathematics, including a complete coverage of those ordinarily used in arithmetic, elementary algebra, plane and solid high school geometry, and differential and integral calculus." The dictionary is essentially a condensation of these subjects.

Formulas for solving triangles, trigonometric reduction formulas, etc., are also included. The contents are arranged in alphabetical order. The revised second edition contains new terms and examples, definition are simplified, five place logarithm tables are substituted for four place tables, and extensive integral tables have been added. For anyone working with mathematical concepts or formulas which are not quite familiar or no longer familiar, the dictionary will be extremely useful as a reference book. Unknown, forgotten, or vaguely remembered terms can be readily checked and their exact meaning, so essential for most mathematical statements, established.

Graphical Construction for Vacuum Tube Circuits

By Albert Preisman, Director of Engineering Tests and Consulting Engineer of Capitol Radio Engineering Institute. Published by McGraw-Hill Publishing Co., 330 West 42nd St., New York City. Price \$2.75. Approximately 240 pages.

This volume deals with graphical methods of predicting the performance of vacuum tubes as circuit elements.

The first three chapters are a discussion of the non-linear circuit problem, the basic characteristics of the thermionic vacuum tube and elementary graphical constructions such as load lines, power output, distortion, etc.

The subject of reactive loads in the plate circuit of vacuum tubes is treated in considerable detail. Combinations of inductance capacitance and non-linear resistance are sing used in the examples of the method

ELECTRONIC INDUSTRIES . February, 1944

of constructing the operating path for the tube. Experimental verification in the form of oscillographs are included for each type of complex load.

Balanced amplifiers are 'treated in a separate chapter and the effects of winding resistance, selfbias, etc., are included in the graphical interpretation.

Diode detectors are analyzed in Chapter VI where the operating path for the complex impedance is given. Miscellaneous graphical constructions are given for voltage and current types of feed-back.

This book should be a valuable tool to the circuit design engineer.

Wartime Refresher in **Fundamental Mathematics**

By Eddy, Brolly, Pulliam, Upton and Thomas, all of U.S. Naval Training School, Chicago. Pub-lished by Prentice-Hall, Inc., New York City, 1943. 248 pages, \$1.40.

A four-week course in simple arithmetic, algebra, geometry, specialized algebraic factoring, ad-vanced algebra. The book is offered to the public for study one hour per day for twenty-four days, but is an outgrowth of a refresher course in mathematics at the Chicago Naval Training School. Each day's problems are followed by a cue sheet, giving hints about setting up and solving the more difficult problems, and the solutions to the problems. A review section follows each five days' work.

Short Wave Wireless Communication

By A. W. Ladner and C. R. Stoner. Fourth edition. Approximately 575 pages. Price \$6.00. Published by John Wiley & Sons, 440 4th Ave., New York, N. Y.

The three previous editions of this volume were published in England and this, the fourth, is the first American edition.

This book is a practical treatment of the general subject of short and ultra short waves. It includes essentials of propagation of high and ultra high frequency waves, characteristics, calculations and construction methods of high frequency transmission lines. aerials and aerial arrays. Vacuum tube circuits are covered under the headings of power amplifiers, oscillators and modulation circuits. The chapter devoted to electron oscillators covers the positive grid types, magnetrons, velocity modulation oscillators and deflected beam oscillators. A section devoted to com-mercial equipment deals with the problems of reception from a theoretical and practical standpoint. Commercial receivers, transmitters

and wireless telephone circuits are analyzed with block diagrams and schematics.

The last chapter of the volume is titled High Frequency Therapeutic Apparatus and includes circuits and photographs of diathermy generators and electrodes as used in England.

An appendix to this volume includes a number of propogation curves, formulas for transmission lines and essential characteristics of English high vacuum tubes useful at ultra high frequencies.

NEW BULLETINS

Electronic Controls

The fundamentals and the various applications of electronic control are interestingly described in a new 12-page bulletin (GEA-4126) issued by the General Electric Co., Schenectady. Well illustrated, the publication explains in clear simplified language the fundamental principles of electronic tubes and their operation, describes the construction of the well known thyratron tube, and lists the functions of eight of the more widely used industrial-type tubes.

The publication also describes and illustrates many practical applications of electronic control, including rectification, resistance, welding, timing, and processing operations, as well as photoelectric installations involving counting, sorting, weighing, measuring, registering, illumination and the control of cement kiln temperatures.

Variable Condensers

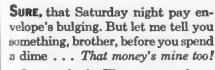
A new catalog has been issued by Barker & Williamson, 235 Fairfield Ave., Upper Darby, Pa. giving complete information on the line of B & W Type CX variable air condensers for heavy-duty requirements. Features of the condensers include electrical design symmetry, built-in neutralization with mounting of standard B & W coils in such a way that lead lengths and resulting lead inductance are reduced to a minimum and mechanical durability.

Special Purpose Capacitors

To supplement a recent bulletin on ceramic capacitors, Centralab, Division of Globe Union, Inc., 900 East Keefe Ave., Milwaukee, Wis., has just released a 4-page folder which contains condensed information on special types of capacitors now in production. Several diagrams are included.

Prefabricated Enclosures

To aid engineers in postwa planning, a new 40-page Lindsa; structure manual has just been published by Lindsay and Lindsay. 222 W. Adams St., Chicago 6. Lind say Structure is a strong light-stee prefabricated construction that car be assembled with simple wrenches It is particularly suited for cabinet and enclosures on various types of electronic equipment, as well as for machine housings refrigerator units, processing rooms, industr al buildings, truck and trailer bodies. and other structures. The manual shows how Lindsay Structure can be used in the industrial, automotive, and marine fields. It contains technical information about the structure and construction suggestions for both plain and refrigerated units.


Decal Nameplates

The Meyercord Co., 5323 W. Lake St., Chicago (44), is distributing an informative check-chart showing how to select and specify the right decalcomania nameplate for 16 different types of surfaces. Published in file folder form to hold subsequent data sheets to be distributed periodically, it also contains a check-list of 25 wartime uses for Meyercord decalcomania now used on 34 different types of combat equipment.

The chart illustrates actual decal nameplates and describes application methods, types and uses, as well as special features such as retention and shut-off fluorescent, non-specular, mar-proof and elasticized decals. Meyercord wartime research has developed or improved decalcomania to a point heretofore considered impossible, resulting in decals that are reistant to acid, petroleum products, alcohol, abrasion, extreme heat and cold, humidity and moisture that can be applied to any known commercial surface, rough or smooth.

Victory Line Parts

Lafayette Radio Corp.'s 1944 catalog, No. 94 is a veritable catchall of the latest supplies available. In its 104 profusely illustrated pages, there is information on nearly 50,000 items, including a complete line of communications and public address equipment, test materials for every purpose, cathode ray and special purpose tubes, batteries and power supply equipment, radio training kits and code apparatus, plus the usual radio components, such as condensers, transformers, volume controls, etc A greatly expanded list of new "Victory Line Parts", especially prepared for factory and as-

d đ à 1 d t

IS

LS

t,

şle

d

e n

9-

n,

y

14

é,

d

m

2

18

st

a-

se

ly

nd

a -

n.

n

S

e-S-

44

I can take it. The mess out here. And missing my wife and kid.

What I can't take is you making it tougher for me. Or my widow, if that's how it goes. And brother, it will make it tough—if you splurge one dime tonight. You're making money. More money than there's stuff to buy. Money that can sock the cost of living to kingdom come -if you blow it! So hang on, till the job's done. On to every last dime -till the squeal means a hole in the seat of your pants!

You're working . . . and I'm fighting ... for the same thing. But you could lose it for both of us-without thinking. A guy like you could start bidding me right out of the picture tonight. And my wife and kid. There not being as much as everybody'd like to buy-and you having the green stuff. But remember this, brother-everything you buy helps to send prices kiting. Up. UP. AND

UP. Till that fat pay envelope can't buy you a square meal.

SQUEEZE THAT MONEY. BROTHER

... IT'S MINE TOO !

Stop spending. For yourself. Your kids. And mine. That, brother, is sense. Not sacrifice.

Know what I'd do with that dough ... if I'd the luck to have it?

I'd buy War Bonds-and, God. would I hang on to them! (Bonds buy guns—and give you four bucks for your three!) . . . I'd pay back that insurance loan from when Mollie had the baby . . . I'd pony up for taxes cheerfully (knowing they're the cheapest way to pay for this war) ... I'd sock some in the savings bank, while I could ... I'd lift a load off my mind with more life insurance.

And I wouldn't buy a shoelace till I'd looked myself square in the eye and knew I couldn't do without.

(You get to knowin'-out herewhat you can do without.)

I wouldn't try to profit from this war-and I wouldn't ask more for anything I had to sell-seeing we're all in this together.

I've got your future in my rifle hand, brother. But you've got both of ours, in the inside of that stuffedup envelope. You and all the other guys that are lookin' at the Main Street shops tonight.

Squeeze that money, brother. It's got blood on it!

A United States war message propared by the War Advertising Council; approved by the Office of War Information; and contributed by the Magazine Publishers of America

ELECTRONIC INDUSTRIES . February, 1944

DOWN

MEET... SIGNAL CORPS SPECIFICATION

There are insulating varnishes in the DOLPH line formulated to meet rigid requisements and are especially designed for use in connection with radio transformer, choke and all other types of coils as well as radio dynamotors, invertors, generators and capacitors.

Extra

Protection

These varnishes will provide your equipment extra protection under the most adverse conditions. IF IT'S

HIGH DIELECTRIC STRENGTH GLOSSY, TOUGH FINISH HIGH ARC RESISTANCE ALKALI RESISTANCE ACID RESISTANCE WATERPROOFNESS OILPROOFNESS OF FAST CURING

that you want, why not write today for further information regarding these varnishes?

JOHN C. DOLPH COMPANY Insulating Vision Systematics 173-C Emmet St., Newark, New Jersey

250

sembly use, advance notice of 1944 radio and electronics books and an eight-page bargain section of values, as well as postal and shipping data complete the booklet. Addresses of Lafayette Radio Corp. are 901 Jackson Blvd., Chicago 7, or 265 Peachtree St., Atlanta 3.

Facts About Plastics

A new twenty-four page, nontechnical booklet covering all types of plastics, their uses, and general information on the plastics industry has just been released by The Richardson Co., Melrose Park, Ill. This illustrated book explains the host of properties which fit Insurok and other plastics to the wide range of present and postwar uses. The limitations of plastics are also covered.

The two main groupings of plastics, Thermosetting and Thermoplastic, are described and illustrated in layman's language. Special sections are devoted to the forms of plastics, laminated and molded. The manufacturing and production processes of each are well illustrated.

The book is designed primarily for the non-technical man who may be serving on his company's postwar product committee.

Connor Promoted

George C. Connor, radio field engineer with Sylvania Electric Products, Inc., has been appointed man ager of the California division of his company's equipment tube sales. Headquarters will be in the Los Angeles office, 555 S. Flower St

Glass Insulator Standard

The American Standards Association has published approval of a new American war standard for glass radio insulators (C75.8-1943), developed by a group of representatives of the radio industry in conjunction with representatives from the U.S. Army Signal Corps and the U.S. Navy Bureau of Ships This work was undertaken at the request of the WPB. This standard should be vitally important in the preparation of new manufacturing facilities for glass insulators and will facilitate their production as well as simplify their procurement. The specifications cover the per-

formance requirements, test methods, and standard dimensions for a standard series of glass insulators of the quality required by the Army and Navy. The basic specification for glass material is the American War Standard Ceramic Insulating Materials, Class L, C75.1-1943.

Sir Watson-Watt Visits With Philco

Heading a distinguished British Radio Mission to the United States. Sir Robert Watson-Watt, one of Great British's most outstanding scientists, watches s intricate manufacturing operation in a visit and tour of inspection of the Philito plants. Joseph H. Gillies (left), vice president in charge of radio production at Phileo, explains the process to Sir Robert, while Rear Admiral Julius A. Furer, U.S.N., Coordinator of Research and Development, looks on next to Mrs. Munro-Secretary to the Commission, and John H. Teeter of the National Defense Research Committee. In the background are Captain Frank Akers, U.S.N., and H. J. Kenworthy, in charge of materiel control for Phileo.

ELECTRONIC INDUSTRIES

Advertisers-Jebruary, 1944

Page

Page

& Westlake Co lox Corp. Communications NON 70 35

2

5

a

S y

n n g

174 0.8

leo nt

ier. or.

te-. .

944

Cannon Electric Development Communication Measurements Labs. 194 Connecticut Tel. & Elec. 145 Continental Electric Co. 145 Continental Electric Co. 166 Cornel-Dublier Elec. Corp. 59 Corny-Jamestown Mfg. Corp. 64 Crystal Products Co. 25 Crystal Research Labs., Inc. 204

Echophene Radie Ca. 143 Eicor, Inc. 182 Eister Engineering Co. 233 Eitel-McCullough, Inc. 48 Electric Soldering Iron Co. Inc. 241 Electronic Corp. of America 52 Electronic Laboratories, Inc. 53 Electronic Machanics, Inc. 71 Electron-Voice Mfg. Co., Inc. 10 Eria Resister Corp. 135 Ervood Co. 218 Etched Products 245

Galvin Mfg Corp. 149 Gemex Co. 202 General Aniline Works 232 General Ceramics & Steatite Corp. 5, 6, 7, 8, 75, 169 General Electric Co. 5 Div. of Auto Ordnance 193 General Instrument Corp. 47 General Corp. 49 General Corp. 49

Hallicrafters Co. 201 Hamilton Institute, Alexander 235 Hammarlund Mfg. Co., Inc. 203 Hanovia Chemical & Mfg. Co. 200 Harvey Radio Co. 228 Harvey Radio Laboratories, Inc. 66

 Harrey Radio Laboratories, Inc.
 66

 Maydon Mfg. Co.
 190

 Heintz & Kaufman, Ltd.
 40

 Hewlett-Packard Co.
 23

 Mipower Crystal Co.
 233

 Noffman Radio Corp.
 58

 Hopp Press, Inc.
 246

 Horni Signal Mfg. Corp.
 133

 Hunter Pressed Steel Co.
 3

 Mytron Corp.
 125

Page

Perm-O-Flux Corp. 158 Philes Corp. 15 Picker X-Ray Corp. 15 Pieneer Gen-E-Motor 152 Plastics Institute 12 Pressiver Metal Etching Co. 248 Press Wireless, Inc. 61 Printleid, Inc. 200

Radell Corp.

 Radeil Corp.
 216

 Radiart Corp.
 202

 Radio Corporation of America:
 202

 RCA Tubes
 Cover 4, 13

 Radio Receptor Co., Inc.
 179

 Radio Wire Television, Inc.
 231

 Radio Wire Television, Inc.
 232

Sanborn Co. 154 "3" Cerrugated Quenched Gap Co. 57 Screenmakers 220 Sentinel Radie Corp. 207 Shaltcrass Mfg Ce. 142 Sherron Metallic Corp. 30 Sigma Instruments, Inc. 229 Signal Indicator Corp. 237 Sinke Tool & Mfg. Ce. 210 Sola Electric Co. 41 Spencer Thermostat Ce. 34 Sperti, Inc. 134 Sperague Specialties Co. 217 Standard Melding Cerp. 144 Struther-Dunn, Inc. 187

Terminal Radio Corp. 231 Thomas & Betts Co. 36 Thomas & Skinner Steel Products Co. 186 Thordarson Electric Mfg. Co. 4 Trav-Ler Karenola Radio & Television Corp. 214 Triptett Electrical Instrument Co. 181

 Walker-Jimieson, Inc.
 231

 Wallace Mfg. Co., Wm. T.. 170

 Ward Leonard Electric Co.
 16

 Waters Conley Co.
 225

 Webster Products
 37

 Western Electric
 159

 Western Electric Co.
 39, 141

 Wilcox Electric Co.
 55

 Wilcox Electric Co.
 55

 Wilcox Electric Co.
 196

 Wincharger Corp.
 196

 Wrigley Co., Wm.
 186

 Wurlitzer Co., Rudolph
 136

While every precaution is taken to insure accuracy, we cannot guarantee against the possibility of an occasional change or emission in the proparation of this index.

IN SELECTIVE SERVICE

"RELAYED-FLUX" Microdyne

The Standard by Which Others Are Judged and Valued"

EQUIPMENT for the war effort.---

- (1.) MUST perform up to highest standards.
- (2.) MUST continue to perform irrespective of climatic variations.

That is why AUDAX magnetically powered pickups are selected for war contracts. In building pickups under such contracts, we do not have to change our peacetime specifications because such MUSTS have always been a basic requirement in AUDAX Instruments.

The sharp clean-cut facsimile reproduction of MICRODYNE — regardless of climatic conditions—is a marvel to all who have put it to the only test that really counts . . . the EAR TEST.

WITH OUR COMPLIMENTS A copy of "PICKUP FACTS" is yours for the asking. It answers many questions concerning record reproduction. BUY WAR BONDS WAR BONDS WAR SONDS SOUTH AVE. SOUTH AVE. New York City "Creators of High Grade Electrical and Acoustical Apparatus since 1915."

Sorry, We Don't Like This Paper, Either! But It's a Necessity in Wartime

The paper on which this issue is printed, is used as a wartime necessity, to save paper tonnage, manpower, coal and transportation. Compared with our former glossy white printing paper. we don't like this present paper stock any better than you do.

But we hope you'll bear with it, —as we are doing,—until paper restrictions are lifted by Washington. Then we promise you one of the handsomest printing jobs in the whole industrial publishing field a return to the fine coated-stock quality format we used before the WPB cut our paper use 25 per cent.

Meanwhile, you probably ask why other magazines that come to your desk are able to use heavier, glossy paper at this time. The answer is in the current quota practice which enables publishers to discontinue or diminish unsuccessful magazines and throw their paper quotas into increased paper tonnage on particular magazines. Such increased tonnage, although running directly contrary to the wartime spirit, results in the better appearance which has aroused your curiosity. Unfortunately we had no paper quota to switch in that way.

Today, in line with patriotic requirements we have reduced our own paper tonnage per issue actually below that of our first issues in 1942,—although meanwhile the present service of our publication, has been greatly increased.—THE PUBLISHERS.

Aptitude Measurement

To prevent employment of "square pegs in round holes," a scientific measurement or rating of aptitudes and abilities before actual employment begins is made by the Formica Insulation Co., Cincinnati, and may be of interest to other large employers. Applicants are told of the policy to assign each employe — those already at work and new applicants—to the job for which he or she is best suited. Applicants are made to feel at ease and are given a preliminary brief explanation as to the meaning and the purpose of the tests.

Paper tests—marking designs and figures and questions and answers in writing—are used as a measure and gage of practical thinking ability, general intelligence, and quick observation or familiarly known as an inspection test. Then follow simple machine tests to determine abilities of the applicant to think, see and act with good coordination on a simple machine job.

Simple peg-board tests—use of a tool plate with machine screws and a pattern board—are included in the aptitude program for determining dexterity and coordination of hand-arm, hand-finger and handtool control. Another simple test which determines whether an applicant has the aptitude to perform the same job continuously over a long period without becoming unduly erratic, restless or nervous is also provided.

The machine tests are all controlled through electrically operated timers and recorders which indicate time involved and the count on errors. The tests are supervised by a trained member of the personnel department who is equipped to interpret the results and ratings. Because of the demand for manpower at Formica, the aptitude tests are now used chiefly in placement of applicants. The manpower situation at the plant has been so critical in the wartime period that it was not feasible to apply the tests to employes.

Only applicants who obtained a satisfactory percentage rating are employed. Since employes are engaged for the services they can perform, the principle of the personnel tests is that they require proof of an applicant's ability to produce on a certain job.

Philco in Communications Field, Postwar

As a result of its war experience in the manufacture of electronic devices, Philco, Inc., is reported planning to set up a communications division after the war, to make radio apparatus for airlines, steamship companies, and others.

At present, Philco's operations are at the highest rate in its history, with practically all its sales going to the armed forces. Most of the equipment which it is making is under strict censorship regulations, but the use of some of the products has been revealed directly or indirectly in news from the war fronts. Among these are electronic equipment for special use, the walkie-talkie radio, and rocket propelled ammunition for the "bazooka."

Radio Sets in U.S.

In the statistical summary appearing in our January issue, page 91, the column headed "Total Radio Sets in Use in U. S." should have been marked "Number" rather than "Value," since the figures show the number of radio sets believed to be currently in operation for the years indicated. Also for the year 1922, the number should have been "400,000" only, the additional digit being a typographical error.

ELECTRONIC INDUSTRIES . February, 1944

ANTICOLOGICAL CONTRACTOR CONTOR CONTRACTOR C

than you can see...

of a st pm a - is

rhe re is is

in as ne to a re an re to

5

ce nic ed ato

es,

ns

isles

ost

ng

he

tly

ar

he

set

he

ip-

la-

uld

th-

res belon for

uld dical • G

lore

Behind the "business end" of any weapon are carefully synchronized controls, intricate devices, and complex mechanisms. These delicate component parts are important factors contributing to over-all efficiency.

Behind each DAVEN component is a specialized engineering skill. Behind each DAVEN instrument is the collective experience of trained craftsmen. These factors, in conjunction with our unexcelled mechanical and laboratory facilities, combine to form the unseen foundation upon which we construct precise and dependable apparatus. DAVEN instruments are **preferred** for radio, sound picture, television, and industrial applications.

Have you a DAVEN catalog? In it, we list the most complete line of precision attenuators in the world, in addition to such specialized apparatus as Output Power Meters, Decade Resistance Boxes, Transmission Measuring Sets, Electronic Frequency Meters, and many other types of Electrical Laboratory Test Equipment.

THE DAVEN COMPANY 191 CENTRAL AVENUE - NEWARK 4, NEW JERSEY

Back the Invasion . . . Buy Another War Bond Today

A <u>New</u> Multiplier Phototube for VERY LOW LIGHT LEVELS... RCA-931-A

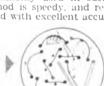
SENSITIVITY 3 TIMES THAT OF RCA-931

GINALS are amplified up to 200,000 times and more in this new RCA multiplier phototube—over three times the amplification possible with the famous RCA-931 because manufacturing techniques have been improved materially by RCA engineers.

This really amazing sensitivity is made possible by the skillful use of secondary emission as cathode electrons are impelled against 9 successive dynodes before they reach the plate. At each dynode, secondary electrons are produced to multiply the electron current enormously.

Because this high amplification is accomplished within the phototube itself, extremely low light levels will produce high outputs without the high-gain amplifier stages required with conventional phototubes,

HIGH SIGNAL-10-NOISE RATIO Because high-gain amplifier stages are unnecessary with the RCA-931-A, sources of extraneous electrical "noise" (such as grid leaks, etc.) are eliminated, and a favorable signal-to-noise ratio can be obtained for very low light levels.


HIGH SENSITIVITY The 931-A operated at 100 volts per stage has a sensitivity of 2 amperes per lumen; or over 3 times that of the superseded 931 at the same voltage per stage.

CIRCUIT SIMULCITY Where light signals are very small and high gain is needed, the 931-A provides a simpler circuit than that for a conventional phototube and its accompanying high-gain amplifier stages; also when the 931-A is used as a d-c amplifier, its zero-reading has excellent stability, and there is no problem of circuit feedback.

CCTO SPASILYITT – The 931-A — like the 931—employs the S-4 photosurface which is highly sensitive to blue light: peak sensitivity is at about 3750 A . Frequency response is flat up to a limit determined by transit-time effects, well above 10 million cycles per second. Dark current is very low. Full details are available on request (see coupon).

APPLICATIONS A typical application of the 931-A is in quantitative spectrographic analysis. The 931-A and its associated circuits are substituted for the photographic plate commonly used in such analyses. This method is speedy, and results can be observed with excellent accu-

Cross section of the 0.11-1, shoning electron paths in red.

racy. This method of spectrographic analis widely used in vitamin measurements

BUY MORE

RCA application engineers will be add to help you apply the RCA-931-A—or ot r RCA electron tubes — to the solution of your design problems. Write, outlining your problem, to Commercial Engineerie Section, RCA, 588 South Fifth Street, Harrison, N. J.

IECHNICAL DATA Nine multiplier stages. Cathode photosurface, S-4. Max. scated height, 3¹₈". Max. diam., 1-5 16". Bale, small shell submagnal 11-pin. Mounts in any position. MAXIMUM CATINGS (Absolute values)

MAXIMUM TATINGS (Absolute values) Plate volts (d-c or peak a-c), 1250, Volts between dynode No. 9 and anode, 250, Plate current, 2.5 milliamperes, Plate dissution, 0.5 watt.

CHARACTERISTICS-Valls per stage 75 100 Volts Luminous sensitivity 0.3 2.0 μ Amp./ μ Le m Current amplification 33,003 200,000 Sensitivity at

3750 Angstroms 270 1800 Amp./Watt

Order through your local RCA Tube Equipment Distributor or contact Rate Corporation of America, Harrison, N.

t-page technical data sheet giving description ratings, characteristics, typical circuit diagraperformance curves, and typical circuits for p RCA-951-A.

□ 16-page booklet entitled "RCA Phototube chock-full of valuable tube data, application no etc., for RCA phototubes.

State

Company
Address

City.