ANNUAL INDEX OF ARTICLES—1963 The annual index of ELECTRONIC INDUSTRIES has been arranged by subjects for easy reference to related topics. The first figure indicates the month in which the article appeared; the second indicates the page number. | BOOKS | | Photoconductor Devices in Control Circuits | ()) () | |---|---------|--|-----------| | Aerospace Facts and Figures | 2-80 | Dr. Frank E. Jaumot, Jr. & Roger W. Beck | 0-D10 | | Anatomy of Automation Amber & Amber | 1-70 | Progress in Telemetering and Pulsing Devices | 6 1:14 | | A Primer of ALGOL 60 Programming . E. W. Kijkstra | 1 74 | George Merker & John J. Piret
Reducing Ripple In Regulated Supplies | 0-1-14 | | Digital Processes for Sampled Data Systems | | V. R. Cunningham | 12-63 | | Alfred J. Monroe | 2-80 | Resistors for Precise Temperature Measurement | 10 10 | | Electric Circuit Analogies for Elastic Structures | 2 4412 | George P. McKnight | 7-97 | | Richard H. MacNeal | 2-80 | Selecting an AC Power SourceO. G. Leichliter | 8-192 | | Introduction to Automatic Control Systems |) ענו | Smoothing-Predicting Sampled Data. David B. Borkum | 9-81 | | Robert N. Clark | 2-80 | Synthesis of an Active Chebyshev Filter, Walter Morton | 3-112 | | Introduction to Electronic Data Processing Equipment
Robert V. Cakbord | 1.70 | Testing Without Direct Electrical Connections | | | Introduction to Electronics Walter H. Evans | 1-70 | David M. Goodman | 6-Eti | | Servicing Transistorized Two-Way Radio | 1-/1/ | Test Set Detects All Dialing Troubles Fred Lee | 5-202 | | Patrick M. Craney | 2-80 | The Future of Integrated Circuits Dr. Daniel E. Noble | 6-C2 | | Tatties at Clarky | | The Future of Semiconductor Devices | | | CIRCUITS | | Dr. A. M. Glover | 6-06 | | | | The Node Method of Circuit Analysis Robert L. Gottier | 3-102 | | A Logical Approach to Logic Circuits James J. Klinikowski | | Thermistors for Temperature Stabilization of Transistor | 4 100 | | James J. Klinikowski | 5-110 | Circuits (Chater Michael L. Chater | 4-107 | | A Look at Coded Disks and Encoders | | The Status of MicroelectronicsE. Q. Carr | 0-C18 | | C. Farrell Winder | 6-F2 | Transistor AC Regulator for X-ray Tube Current | 5-121 | | Antenuas Have Built-in Circuits John R. Copeland & | | Dr. Abraham Taylor & Keith H. Sueker | 3-121 | | | 5-115 | | | | A Simple Electronic Analog Multiplier | 2.210 | CIRCUIT WISE | | | | 3-219 | A Simple Hi-Fi Output Circuit | 7-96 | | A Simple Vacuum Tube Mini-Ohmmeter | 2 176 | Diode "And" Gate | 7-86 | | | 5-126 | DTL Power Converter | 5-120 | | | 4-216 | High Voltage Recycling | | | A transistor Ampliner with AGC Edgar C. Smith | 1-200 | Improved Neon Trigger Circuit | 5-109 | | Automatic Frequency Selected Circuitry | 2 111 | Indicator | 1-113 | | | 2-114 | Monostable Multivibrator | | | | 2-101 | Pulse Emitter Follower | 4-101 | | Ceramics: A New Dimension in Circuitry | 1715 | Transistor "And" Circuits | 9-88 | | Donald G. Sturges | 1-1112 | | | | Characteristics of Unipolar Field-Effect Transistors | 3-00 | SYSTEMS | | | Arthur D. Evans
Choosing a Voltage Reference John M. Fluke & | .1-177 | | | | Robert W. Hammond | 9_120 | A Communications System for "Apollo" | 10 100 | | Circuit Realizability Criteria Lohn W. Lanatra | 4 104 | Don R. Holcomb | 10-108 | | Circuit Realizability Criteria John W. Lapatra
Constructing Broadhand R-F Switches | 4 104 | A Digital Wire Guidance System | 0.160 | | W. Bruce Warren, Jr. | 2-97 | M. F. Borkowski, et al | 9-169 | | Control System CompensationJ. S. Jackson 1 | | A New Digital Telemetering System | 1 100 | | Data Processing System Advances | 1 100 | H. H. Georgens & L. I. Duthie | 1-123 | | Dr. Robert R. Johnson | 6-K3 | Antennas Have Built-In Circuits. John R. Copeland & | E 115 | | Designer's Guide to: Lamps, Indicator Lights, Illumi- | ()-16.7 | William J. Robertson | 5-115 | | nated Switches Lonis S. Gomolak + | 1,141 | Automatic Frequency Selected Circuitry | 2.114 | | Designing Active Tuned FiltersHerbert D. DePew | 7-158 | Charles E. Brady & Burton Leary | 2-114 | | | 2-104 | Automatic Tracking Antenna Systems | 10.01 | | Designing Wide Pulse-Width Modulators | _ 107 | Lavergne E. Williams | 10-92 | | | 3-109 | High-Speed Digital Communication Networks | 1-90 | | Designing with Optoelectronic Components | | Progress in Telemetering and Pulsing Devices | | | Richard K. McDonald | 5-102 | | | | Encapsulating to Military Specifications | | George Merker & John J. Piret | 0-1-14 | | Frederick L. Koved | 7-92 | Project Apollo's Command and Control | 7-58 | | Function Generation with Active Nonlinear Elements. | | Reliability Trends in Space Electronics | 7-20 | | Nick D. Diamantides | 4-102 | Dr. Donal B. Duncan | 6-1-3 | | Improving the Accuracy of R-F Voltage Measurements | | Test Set Detects All Dialing Troubles Fred Lee | | | Raymond E. Lafferty | 7-87 | Time Decoding for Satellite Tracking Systems | 3-202 | | | 4-112 | Alan Demmerle, et al | 10-18. | | Mathematical Models for Engineers | | Self-Verification-Needs and MethodsJ. Colien, et al | 2-92 | | Dr. Raymond S. Berkowitz | 0-30 | Simple, Economical Laser Demodulation | 2-10 | | Microelectronics: In Search of the Ideal Circuit | | H. G. McGlees & G. W. Saeger | 5-102 | | Robert C. Sprague | 6-B10 | 11. G. McGlees & G. W. Saeger | 7-10/ | | New Flip-Flop Design Improves Efficiency | | COMPONENTS CHASSIS ELEMENTS | | | Paul L. Conant, Sr. | 3-107 | COMPONENTS—CHASSIS ELEMENTS | | | New Standards for Rotary SwitchesIrving Carol | 6-1-8 | A Look at Modern DiplexersThomas J. Vaughan | 4-94 | | On the Properties of Negative Immittance | | A Speedy Method of Computing Dielectric Properties | | | Dr. Keats A. Pullen, Jr. | 9-87 | Peter H. Gum & B. Alva Schoomer, Jr. | 9-9(| | Operational Systems A Current Computer Trend | | A Survey of High Power Microwave Filters | | | Robert E. Clement | 6-K7 | V. G. Price & W. A. Edson | 11-10d | | | | | | ## **ANNUAL INDEX (Continued)** | ANNUAL INDEX (Continued) | Can We Solve Our Manpower Problem? | 1-1
3-1
8-1 | |--|---|-------------------| | | Over-Regulation: A Genuine Problem Emmet G, Cameron | 8-19 | | Connectors—and Terminations Smedley B. Ruth 4 For X-Y Plotting Saturable Reactor Sweep Supply | Recruiters Tell Your Future | 9.1 | | Malvin L. Shar 1-
Function Generation with Active Nonlinear Elements | Unionism or Professionalism? | 4-1 | | Nick D. Diamantides 4-
How To Specify Magnetostrictive Filters | What About "Obsolete" Engineers? | 5-1 | | | -57 | | | Duane D. Rodger 6 | G6 #65 Inductive and Capacitive Reactance. David P. Cost | 1-131 | | | -76 #66 Parallel-Resistance Nomograph Louis J. Streidnig
#67 Decibel Nomograph Harold Y. Wong | 3-105 | | New Standards for Rotary Switches Irving Carol 6-
Photoconductor Devices in Control Circuits | #68 Useful Mathematical Approximations | 9-89
10-87 | | Plastic Dielectrics in Capacitors Troy L. Pestel 6-L
Plastic Dielectrics in Capacitors | 021 | | | Refractory Metals in Electronic Components | Alphabetical Listing of Manufactures, | 6-1.3 | | Resistors for Precise Temperature Measurement | Look Before You Leap With R&D By-Products | 5-70 | | | Dr. Raymond S. Berkowitz | 9.39 | | Roland Lawrence 4 | National Security and its Technological Requirements
Gen. Bernard F. Schriever | 6-B6 | | Synthesis of an Active Chebyshev Filter Walter Morton 3-1
The Outlook for Adhesives in Electronics | Oceanography & Anti-Submarine Warfare | 11-78
3-38 | | Transient Response of Ceramic Filters | Predictions for the Future of the Electronic Industry | 6-B2 | | Franz 1. Sauerland 1-1 | Product Finding Index Storage to Picoseconds—A Survey of the Art | 6-1.42 | | A Logical Approach to Logic Circuits | C. N. Winningstad | 0-116 | | All-Magnetic Content Addressed Memory | Robert L. Brickley | (1-) 71 | | Robert R. Lussier & Robert P. Schneider 3. A Look at Coded Disks and Encoders | 192 INSTRUMENTS, MEASUREMENTS, TEST METHODS | | | C. Farrell Winder 6- | F2 An Evaluation of Environmental Testing John D. Losse
A Simple Vacuum Tube Mini Ohmmeter | | | A Sweedy Method of Computing Dielectric Properties | A Tester for Wiring Shorts | 4 21/1 | | Automatic Frequency Selected Circuitry | Choosing a Voltage Reference John M. Fluke & Robert W. Hammond | | | Data Processing System Advances | K3 Electronic Measurement StandardsIvan G. Easton
For X-V Plotting Saturable Reactor Sweep Supply | to EII | | Deciding About Programmed Instruction | Malvin L. Shar
How to Calculate Hard Tube Modulator Fall Time | 1-111 | | Designing Adaptive Digital Networks G. S. Glinski 2-
High-Reliability Computers Using Duplex Redundancy | Improved Checkout for IR Detectors, Gall R. Bradshaw | 10-82 | | High-Speed Digital Communication Networks | A. Scott Hamilton | 0.73 | | Operational Systems - A Current Computer Trend | Raymond E. Lafferty New Technics In R-F Room Construction | | | | -81 E. A. Lindgren Obtaining High and Ultrahigh Vacuum | | | Computers | Random-Motion Testing of Electronic Components | | | The Artificial Neurons—For Machines That Learn | Resistors for Freeise Temperature Measurement | | | For Computers & Automation Sensing & Control | Storage to Picoseconds—A Survey of the Art. | | | | C. N. Winningstad Survey of Vacuum Technology Wilfrid G. Matheson Test Set Detects All Dialing Troubles Fred Lee Well Regulated Battery-Solar Cell Charging | 10-44 | | CONVENTIONS | Irwin Stein, et al | 10-88 | | Expect Record Attendance at First I.E.E.E. Convention 3 | MATERIALS | | | 1963 International Solid State Circuits Conference 2- | 198 An Improved Insulation for Space Use | | | National Electronic Conference | Dr. Vincent L. Lanza & Dr. E. C. Stivers
Encapsulating to Military Specifications | | | WESCON Features Heavy Technical Program 8 | Frederick L. Koved
Chemicals in the Electronic Industry. James W. Swaine
Heat-Shrinkable Polymers Reduce Insulation Problems | 6-633 | | EDITORIALS | Silicone Dielectrics Improve Connectors | 6-G6 | | American Industries are Our Challenge | 0-1 Roland Lawrence | 4-99 | | The Charles In Com. Adhers in the Charles of | | | 1.117 | |---|----------------|---|---------| | The Outlook for Adhesives in Electronics | 6-G10 | Integrated Circuit Design Techniques. John R. Hulme
Low Volume Manufacturing in Underdeveloped | 4-112 | | MARKETS | | Countries | 4-232 | | | 4 57 | | | | Connectors—and Terminations——Smedley B. Ruth
Disarmament: What Would It Mean to the Electronic | 4-57 | PROFESSIONAL OPPORTUNITIES | | | Industry? | 4-42
1-101 | An Engineer's Guide to Job Hunting | 2.722 | | Electronics Growth Brings Trouble for Labor | 1-101 | John J. Traynor, Jr. Becoming A Professional Engineer R. G. Strank | 3-233 | | Sidney Feldman | 10-57 | Helping Employees Pays OffDr. Mario F. Contorti | | | Government Contract Awards | 6-H8 | How Do Engineers Keep Up-to-Date? | 5-74 | | Industry Opens up New Areas of U.S Sidney Feldman | 7-47 | Job Seekers' Motivations: Recognition, Challenge, etc. | | | Look Before You Leap- with R&D By-Products | 5 70 | Eugene Raudsepp | 7-100 | | Joseph K. Slapp
Low Volume Manufacturing in Underdeveloped | 5-70 | Technical Writing: Superstition and Fact | | | Countries Gerald D. Jones | 4-232 | Roger M. D'Aprix | 10-194 | | Countries Gerald D. Jones Making Use of Sales Engineers 1. J. Chamberlain | 11-49 | The Other Side of the Engineer Shortage! | 11 10/. | | Management Overhaul Key to Ampex Recovery | 4 9, | W. A. Douglas
What the Engineer Should Know About Pert | [1-130 | | Microwaves—A Market in TransitionS. Feldman | 4-86
11-58 | Harry G. Benis | 5-217 | | 1963 Military Electronic Procurement Directory | 6-H2 | Who is the 'Unemployable' Engineer | | | National Security and its Technological Requirements | | | | | Gen. Bernard F. Schriever | n-Bn | | | | New Shift in Purchasing to Affect Industry C. W. Irven | 11-69 | RELIABILITY | | | Now That the Wall Street Waltz is Over—What Sidney Feldman | 5-58 | An Evaluation of En-ironmental Testing. John D. Losse | 7.70 | | Over-Regulation: A Genuine Problem | | Controlling Stress Increases Reliability | | | Emmet G. Cameron | 8-19 | Robert E. Hovda & Dr. William J. West | | | Predictions for the Future of the Electronic Industry | . 10.3 | Control System Compensation S. Jackson | 11-188 | | Adm. Charles F. Horne
The Future of Integrated Circuits. Dr. Daniel E. Noble | 6-B2
6-C2 | Encapsulating to Military Specifications Frederick L. Koved | 7-92 | | The butture of Semiconductor Devices | 0-62 | High Reliability Computers Using Duplex Redundancy | 1-72 | | Dr. A. M. Glover | 6-C6 | R. W. Lowrie | 8-116 | | The Outlook for Adhesives in Electronics | | Improvements Increase Ceramic Capacitors Reliability | | | The Outlook for Thermoelectric Devices | 6-G10 | New Plin-Flop Design Improves Efficiency | 9-76 | | Robert L. Brickley | 6-106 | Paul L. Conaut, Sr. | 3-107 | | The Role of R&D in Future Profits | 1-227 | Plastic Dielectrics in CapacitorsTroy L. Pestel | b-D21 | | Time Will Sell Marketing Industrial Control | | Random Motion Testing of Electronic Components
Roland J. Ostrander & Richard H. Tuft | 7-83 | | Computers S Feldman | 12-32
5-C13 | Reliability Trends in Space Electronics | | | Trends in Semiconductor Research. Dr. John Bardeen
U.S. Needs Electronic Capability for Space | 0-1.12 | Dr. Donal B. Duncan | 0-1-3 | | Elmer T. Ebersol | 9-28 | Thermistors for Temperature Stabilization of Transistor | | | | | Circuits | 4-109 | | MICROWAVE | | | | | A Look at Modern Diplexers, 22. Thomas J. Vaughan | 4.94 | SEMICONDUCTORS | | | A Speedy Method of Computing Dielectric Properties | | All-Magnetic Content Addressed Memory | | | Peter H. Gum & B. Alva Schoomer, Jr.
A Survey of High Power Microwave Filters | 9-00 | Robert R. Lussier & Robert P. Schneider | 3.92 | | V. G. Price & W. A. Edson | 11-100 | Antennas Have Built-in Circuits | | | Antomatic Tracking Antenna Systems | | John R. Copeland & William J. Robertson | 5-115 | | Lavergne E. Williams | 10-02 | A Simple Electronic Analog Multiplier | 2 240 | | Calibration Laboratory On Wheels Robert Saul-
Coaxial Magnetrons a New Class of Tubes | 2-184 | Frederick F. Slack | 3-219 | | Roger LaPlante | 1-90 | A Transistor Amplifier with AGC Edgar C. Smith
A Variable Frequency Multivibrator Eugene H. Ogle | 2-101 | | Designing Wide Pulse-Width Modulators | | Ceramies: A New Dimension in Circuitry | | | Sanford Jacobson | 3-109 | Donald G. Sturges | 6-615 | | Generating Ultrasonics at Microwave Frequencies | 11 412 | Characteristics of Unipolar Field-Effect Transistors | | | W. Brouillette & S. Wanuga
Microwave Diodes—A Progress Report. L. Riebman | 11-93
11-86 | Arthur D. Evans | 3-90 | | Microwave Tubes: After Three Decades | 11-00 | Designing withOptoelectronic Components | E 102 | | Dr. Dean A. Watkins | 6-12 | Dio le Resistance to Nuclear Radiation | 3-11/- | | Microwaves—A Market in Transition S. Feldman | 11-58 | Alvin B. Kaufman & Richard C. Eckerman | 8-134 | | New Developments in Antennas Dr. L. Peters, Ir., et al. | 6-18 | Gallium Arsenide: What is its Status? | | | New Developments in Laser Weapons J. De Ment | | John E. Hickey, Jr. | 2-47 | | New Developments in Luneberg Lens Antennas | | Improving Semiconductor Reliability Hauw T. Go | | | R. L. Horst | 11-100 | Integrated Circuit Design Techniques John R. Hulme | 4-112 | | New Technics In R-F Room Construction
E. A. Lindgren | 12,152 | Microelectronics: In Search of the Ideal Circuit
Robert C. Sprague | 6-B10 | | Progress in Telemetering and Pulsing Devices | | Microwave Diodes—A Progress Report L. Riebman | 11-86 | | George Merker & John J. Piret | 6-F14 | On the Properties of Negative Immittance | | | Simple, Economical Laser Demodulation | 5 107 | Dr. Keats A. Pullen, Jr. | 9-87 | | H. G. McGlees & G. W. Saeger
Time Decoding for Satellite Tracking Systems | 5-107 | Photoconductor Devices in Control Circuits | 6 D10 | | Alan Denimerle, et al | 10-182 | Dr. Frank E. Jaumot, Jr. & Roger W. Beck
Simple, Economical Laser Demodulation | 0-1710 | | | | H. G. McGlees & G. W. Saeger | 5-107 | | PRODUCTION METHOD | | The Future of Integrated Circuits . Dr. Daniel E. Noble | 6-02 | | Building Reliability Into Space Instruments | | The Status of Microelectronics E. Q. Carr | 6-C18 | | Stuart C. Baker | 10-98 | The Future of Semiconductor Devices | - | | Connectors—and Terminations Smedley B. Ruth | 4-57 | Dr. A. M. Glover | 0-C0 | | Improving Semiconductor Reliability Hanw T. Go | 2-110 | (Continued on page 168) | | ## ANNUAL INDEX (Concluded) | ANNUAL INDEX (Concluded) | DC-to-Square Wave Converter 3-108
"Foolproof" Connector 10-79 | |---|--| | | Heat Shrinkable Tubing by Irradiation 2-162
Light Dependent Resistor | | | Magnetic Bearing 4-80 | | The Search for New Semiconductor Materials | Metal-Film Trimming Pot | | Dr. W. R. Runyan 6-G17 Transistor AC Regulator for X-ray Tube Current | New Cup-Core Inductor Design 12-51 | | Dr. Abraham Taylor & Keith H. Sueker 5-121 | New Trend in Variable Transformers 3-170 Pot Has Low Backlash 8-145 | | Trends in Semiconductor Research Dr. John Bardeen 6-Cl2
Where Ultrasonic Transducers Are Today | Powder Metal Cathodes 10-97 | | Dr. Erhard Sittig 6-E2 | Reliability Increased by R-F Detection 3-81
Small Film Capacitors 11-38 | | CDACE | Solderless Wiring Technique 8-144 | | A Communications System for "Apollo" | Solid State Bulk Tantalum Capacitor . 4-226 Teflon Extrusions | | Don R. Holcomb 10-108 | Teflon Extrusions | | A New Digital Telemetering System | General | | An Improved Insulation For Space Use | Cam Generating System 7-40 | | Building Reliability Into Space Instruments | Emergency Name Plates 3-104 | | Stuart C. Baker 10-98 Controlling Stress Increases Reliability | High Frequency Lighting System 11-43
Hot Spot Cooler 12-133 | | Robert E. Hovda & Dr. William J. West 6-1-5 | No Heat Damage 7-38 | | Improved Checkout for IR Detectors | Protecting Fragile Tubes 11-43 Stain Free Drying 1-132 | | Improving Rate Tables for Gyro Testing | Stain Free Drying | | Obtaining High and Ultrahigh Vacuum | Minguine | | Dr. Lewis D. Hall 10-102 Project Apollo's Command and Control | Advanced Radar Technique | | Dr. Walter B. La Berge 7-58 Reliability Trends in Space Electronics | Giant Pulse Lasers 3-162 | | Dr. Donal B. Duncan 6-I-3 | Ku Magnetrons | | Self-Verification-Needs and Methods J. Cohen, et al 2-92
Survey of Vacuum Technology Wilfrid G. Matheson 10-44 | New Type TWT Focusing 7-42 | | Time Decoding for Satellite Tracking Systems | Plastic Laser 4-77 | | U.S. Needs Electronic Capability for Space | Pocket-Size Laser 9-85 Laser System 10-77 | | Elmer T. Ebersol 9-28 | | | Well Regulated Battery-Solar Cell Charging
Irvin Stein, et al. 10-88 | Research & Test Equipment Automatic Relay Test Set 9-102 | | | Electron Mirror Microscope | | TUBES | Fault Detector 12-46 | | Coaxial Magnetrons A New Class of Tubes Roger LaPlante 1-90 | Integrated Circuit Tester | | Designing With Pulse-Width Modulators | Low Cost Meter Relay 12-49 | | Sanford Jacobson 3-109 Designing Active Tuned Filters Herbert D. Depew 7-158 | Magnetic Field Rotates Ultrasonic Waves—New | | How toCalculate Hard Tube Modulator Fall Time | Devices Possible? | | G. E. Tallmadge 11-111
Industrial Tubes TodayD. Marshall & James B. Hall 6-C44 | Microwave Moisture Meter 11-41 | | Microwave Tubes: After Three Decades | Minuteman Program Devices Checked | | Dr. Dean A. Watkins 6-J2 Tubes—Today and TomorrowRobert E. Moe 6-C38 | New Chambers to Assist Manufacturers in Space Work 7-39 | | , | New Tricks with Strobes 9-100 Nuclear Particle Detector 8-140 | | WHAT'S NEW | Nuclear Particle Detector 8-140 Operational Amplifiers 5-95 | | Communications & Antennas | Resistance Measurement System 5-98 | | Anywhere TV System 4-201 | Test Chamber Features Both Cold Wall and Solar Simulation | | New Space Systems Center Features Earth-Orbit | Vibrationless Piston Pump 10-74 | | Simulators 7-40 Spiral Antennas 11-199 | | | Spidi Automas | Semiconductor & Thin Film Ruilding Block Flements 5-94 | | Computers | Building-Block Elements | | Automatic Lift Saves Computer Drum Surface 2-1/6 | Digital Microcircuit 5-94 | | Automatic Typesetting Computer | Four Input DCTL NOR Gate 5-96 GaAs As an Infrared Source 1-132 | | Computer Speeds Wiring | GaAs As an Infrared Source 1-132 High Fan Out Gate 5-93 | | Made—For Ultra-High Speed Low Level Logic Circuits 3-85 | Integrated One-Shot 5-94 | | Multi-Character Display Tube 8-140 Multi-Function Logic Element | "Maskless" Thin Film Production | | New Programming Concept 4-76 | Ontical Transistor 4-76 | | Servo Amplifier 5-92 Transistor "And" Circuits 9-88 | Planar Enitaxial NPN 11-41 | | 7-00 | Single Chin. R-F Amplifier 5-93 | | Components | 40-mm Single Silicon Crystals | | Circuit Testing Connectors 4-80 | Thin Films & Discrete Components | 3-108 10-79 2-162 5-95 4-80 5-207 8-198 12-51 3-170 8-145 10-97 3-81 11-38 8-144 4-226 10-74 2-84