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PREFACE

It is the purpose of this book to present the basic theory of antennas with
emphasis on their engineering applications. An effort has been made to
give a unified treatment of antennas from the electromagnetic theory point
of view while keeping in mind the aspects of engineering importance.

The principles given are basic and are applied to antennas for all fre-
quencies. The first four chapters deal with the fundamental theory of
point sources and of the antenna as an aperture. These are followed by
three chapters on linear, loop, and helical antennas in that order. The
theories of the biconical antenna and of the cylindrical antenna are then
discussed. The self and mutual impedance of antennas and the theory of
arrays of linear antennas are taken up in the next chapters, and these are
followed by chapters on reflector-type antennas, slot, horn, complementary,
lens, long wire antennas, and many other types. The final chapter describes
methods and techniques of antenna measurements and includes a discussion
of wave polarization. The Appendix has a number of useful tables for
reference.

Antennas form the dominant theme of the book, and other subjects are
placed in a subordinate position. For example, transmission lines are not
considered per se but are discussed in connection with impedance measure-
ments and matching arrangements for antennas.

The book is an outgrowth of lectures given in recent years by the author
in a course on antennas at The Ohio State University. The material is
suitable for use at about senior or first-year graduate level and is more than
sufficient in amount for a one-semester course, allowing considerable lati-
tude as to the subjects treated. Problem sets are given at the end of each
chapter. As preparation for the course on antennas, it is desirable that
the student have a knowledge of elementary electromagnetic theory, trans-
mission lines and wave guides, and vector analysis.

‘‘Antennas’ has been written to serve not only as a textbook but also, it
is hoped, as a reference book for the practicing engineer and scientist. Asan
aid to those seeking additional information on a particular subject, the
book is well documented with footnote references. Some of the material in
the book is published here for the first time. This refers particularly to
portions of the treatments on point sources and on helical antennas.

v




vi PREFACE

An aim throughout the book has been to approach a new subject grad-
ually. For example, wherever possible, simple special cases are considered
first, and then with these as background the general case is developed.

The rationalized mks system of units is employed. This system, which
is rapidly coming into almost universal use, has many practical advantages.
A very complete table of units in this system is included in the Appendix.

Although great care has been exercised, some errors in the text or figures
will inevitably occur. Anyone finding them would do me a great service
to call them to my attention so that they ean be corrected in subsequent
printings.

I wish to express my appreciation to many of my associates and students
for helpful suggestions. In particular I greatly appreciate the comments
and criticisms of Professor John N. Cooper, of the Department of Physics,
and of Professors Victor H. Rumsey and Sidney Bertram, of the Depart-
ment of Electrical Engineering, at The Ohio State University.

JouN D. Kraus
CorLumsus, OHIO
August, 1950
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CHAPTER 1

INTRODUCTION

1-1. Definitions. A radio antenna' may be defined as the structure
associated with the region of transition between a guided wave and a free-
space wave, Or vice versa.

In connection with this definition it is also useful to consider what is
meant by transmission line and by resonator. A {ransmission line is a
device for transmitting or guiding radio-frequency energy from one point
to another. Usually it is desirable to transmit the energy with a minimum
of attenuation, heat and radiation losses being as small as possible. This
means that while the energy is being conveyed from one point to another
it is confined within the transmission line or to the vicinity of the line.
Thus, the wave transmitted along the line is one-dimensional in that it
does not spread out into space but follows along the line. From this
general point of view the term transmission line includes not only coaxial
and two-wire transmission lines but also hollow pipes, or wave guides.

A generator connected to an infinite, lossless transmission line produces
a uniform traveling wave along the line. If the line is short-circuited, a
standing wave appears because of interference between the incident and
reflected waves. A standing wave has associated with it local concentra-
tions of energy. If the reflected wave is equal to the incident wave, we
have a pure standing wave. The energy concentrations in such a wave
oscillate from entirely electric to entirely magnetic energy and back twice
per cycle. Such energy behavior is characteristic of a resonant circuit, or
resonator. Although the term resonator, in its most general sense, may
be applied to any device with standing waves, the term is usually reserved
for devices with stored energy concentrations that are large compared
with the inflow or outflow of energy.? When there are no internal con-

1In its zoological sense, an antenna is the feeler, or organ of touch, of an insect.
According to usage in the United States the plural of “insect antenna’ is ‘‘antennae,”
but the plural of “‘radio antenna” is ‘““antennas.” However, the usage in England makes
no distinction, the plural of both ‘insect antenna” and ‘“radio antenna’ being
‘“antennae.”

* The ratio of the energy stored to that lost per cycle is proportional to the Q, or
sharpness of resonance of the resonator.

1
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ductors, as in a short-circuited section of wave guide, the device is called
a cavity resonalor.
Ag illustrations of these definitions, consider Fig. 1-1. A generator or

-
R.F
Generator ~ o
(~]7 — — — — -
A Transmission line B
Traveling wave Tronsiﬁon\ ~a
l T region or -
ontenno
Resonotor
Standing wave Fre:;::oce

F16. 1-1. The antenna is a region of transition between a wave guided by a trans-
mission line and a free-space wave.

transmitter is connected to a two-wire transmission line AB. Assuming
that the line is properly matched, it carries a single outward-traveling
wave and behaves as a pure transmission line. At A there is a short-
circuited section of line connected in parallel. This line has a standing
wave and acts as a resonator or resonant line. Beyond B the transmission
line spreads out gradually until the separation between conductors is many
wavelengths. In this region the wave guided by the transmission line is
radiated into a free-space wave. This region of the line acts as an antenna.

Let the transmission line now be connected to a dipole antenna as in
Fig. 1-2. The dipole acts as an antenna
because it launches a free-space wave.

(DiDO'Q .
Coneratar ontenna  However, it may also be regarded as a
o section of terminated transmission line
e eeionllne (see Sec. 1-2). In addition, it exhibits

many of the characteristics of a reso-

nator, since energy reflected from the

Fio. 1-2. Dipole antenna. ends of the dipole gives rise to a stand-

ing wave on the antenna. Thus, a

single device, in this case the dipole, exhibits simultaneously properties
characteristic of an antenna, a transmission line, and a resonator.

The energy radiated by antennas oscillates at radio frequencies. The
associated free-space waves range in wavelength from thousands of meters
at the long-wave extreme to fractions of a centimeter at the short-wave
extreme. The relation of radio waves to lengths in general is illustrated
by the length chart of Fig. 1-3. Short radio waves and long infrared
waves overlap into a twilight zone that may be regarded as belonging to
both.
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1-2. The Antenna as a Terminated Transmission Line.! According to
this analogy the space around an antenna may be separated into two
regions: one next to the antenna known as the “antenna region’ and one
outside known as the ‘“outer region.” The boundary between the two
regions is a sphere whose center is at the middle of the antenna and whose
surface passes across the ends of the antenna. The relation of this
“boundary sphere” to a symmetrical, biconical }-wavelength antenna is
shown in Fig. 14.

Polar oxis
or
oxis of cones

s N out
// \\ lr‘e;iron
/ Antenno \\
/ region \
Eauatorial | __ e
plone \ ’
\ /
\ /
E lines /
Boundory
sphere
Biconicol

antenna

F1a. 1-4. Schelkunofi’s biconical antenna with boundary sphere.

The wave caused by a very brief voltage pulse applied to the terminals
travels outward with the electric field, or E lines, forming concentric
circles as shown in Fig. 14. The magnetic field, or H lines, are normal
to the E lines and are concentric with the axis of the cones. The field has
no radial component. It is strictly transverse (TEM).” It is said that
these fields belong to the principal, or zero-order, mode.

After a time ¢ = L/c¢, where L equals the length of one cone and ¢ equals
the velocity of light, the pulse field reaches the boundary sphere. At the
end of the cones there is an abrupt discontinuity, while at the equator
there is none. Hence, there is a large reflection at the end of the cones,
and little energy is radiated in this direction. On the other hand, at the

18. A. Schelkunoff, “Electromagnetic Waves,” D. Van Nostrand Company, Inc.,
New York, 1943, Chap. 11.
*TEM = Transverse Electro Magnetic.
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equator the energy continues into the outer region without reflection, and
radiation is a maximum in this direction.

The energy flow around a 4-wavelength cylindrical dipole antenna is
similar. This is indicated by the arrows in Fig. 1-5a. Most of the energy

Holf-wove cyhndricol
/ dipole antenno

I
| R

toriol /
<—Equ<°—° -—— |— — T — — —— — —

plone ' Antenno N H l\Boundory sphere

\ region tronsporent

S /
Outer Ny s
region S l_ =

w—— Boundory sphere
opoque
(a)

(b)
Fia. 1-5. Energy flow near a dipole antenna (a) and radiation field pattern (b).

guided from the terminals close to the antenna is reflected at the ends as
though the boundary sphere were opaque. Energy traveling out in the
equatorial plane, however, continues on into the outer region as though
the boundary sphere were transparent. This explanation accounts in a
qualitative way for the field pattern of the }-wavelength dipole shown in
Fig. 1-5b.

The E lines of principal-mode fields must end on conductors and, hence,
cannot exist in free space. The waves which can exist and propagate in
free space are higher mode forms in which the E lines form closed loops.
The principal-mode wave is called a zero-order wave, and higher order
waves are of order 1 and greater. The configuration of the E lines of a
first-order wave in the outer region is illustrated in Fig. 1-6. This wave has
been radiated from a short dipole antenna. The wave started on the
antenna as a principal-mode wave, has passed through the boundary
sphere, and has been transformed.' The field has a radial component

!Some first-order mode is also present inside the antenna boundary sphere as a re-
flected wave.. This and higher order modes may exist both inside and outside of the
boundary sphere in such a way that there is continuity of the fields at the boundary
sphere.
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which is largest near the polar axis. At the equatorial plane the radial
component is zero, and the E lines at this plane travel through the boundary
sphere without change. Since the radial components of the field attenuate
more rapidly than the transverse components, the radial field becomes
negligible in comparison with the transverse field at a large distance from
the antenna. Although the field at a large distance from the antenna is
of a higher order type, the measurable components are only of the trans-
verse type. To suggest the fact that the radial field components are weak
and become negligible at large distances, the E lines in the polar region
in Fig. 1-6 are dashed.

Polor
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Fia. 1-6. Field configuration near dipole antenna,

The distinetion between the fields at a large distance and those nearer
to the antenna may be emphasized by subdividing the outer region into
two regions, the one near the antenna called the ‘“near field,” or Fresnel
region, and the one at a large distance called the ‘“far field,”” or Fraunhofer
region. The boundary between the two may be arbitrarily taken to be
at a radius B = 2L*/\ as shown in Fig. 1-7. In the Fraunhofer region the
measurable field components are transverse, and the shape of the field
pattern is independent of the radius at which it is taken, while in the
Fresnel region the radial field may be appreciable and the shape of the field
pattern is, in general, a function of the radius.

Returning now to a further consideration of the biconical antenna, this
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type is particularly convenient in the transmission-line analogy because
it has a constant characteristic impedance Z, given by

Z,=120In cotzi (1-1)*

where y = one-half of the cone angle (see Fig. 14)

To

infinity
Boundory sphere
of ontenno region For field
or
Fraunhofer
region

Neor field
o’ .
Fresnel region

Antenno
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Fresnel- Frounhofer
boundory sphere

F1a. 1-7. Antenna region, Fresnel region, and Fraunhofer region.
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F1a. 1-8. Biconical antenna with boundary sphere (a) and as a terminated trans-
mission line (b) and (c).

According to Schelkunoff’s theory the boundary sphere (Fig. 1-8a) may
be replaced by an equivalent load impedance Z, connected between the
ends of the cones by zero impedance leads as suggested in the schematic

* This relation is derived in Chap. 8.
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at (b). The effect of the end caps is here neglected. The equivalent
transmission-line circuit is shown in Fig. 1-8c. If Z, can be determined,
the input impedance Z; may be obtained by ordinary transmission-line
relations for a line of characteristic impedance Z, and length L terminated
in an impedance Z,. Thus, the antenna has been replaced by an equivalent
transmission line, the antenna acting as a matching section, or trans-
former, between the terminals and space. Based on this analogy, the
general definition of an antenna in Sec. 1-1 may be specialized to the
following: An antenna is a transformer (or matching section) between a
two-terminal input and space or, in the receiving case, is a transformer
between space and the terminals.

The reflected wave in the antenna region gives rise to standing waves
and energy storage in this region. It is as though the boundary sphere
forms a spherical shell resonator that reflects effectively in polar zones
but not at all in the equatorial zone. In a 4-wavelength dipole antenna
the energy is stored at one instant of time in the electric field mainly near
the ends of the antenna, while 1 cycle later the energy is stored in the
magnetic field mainly near the center of the antenna, or maximum current
region. If the biconical antenna is made very thin, the reflection at the
ends is increased and the stored energy in the antenna region is relatively
large. However, the reflection at the ends of a biconical antenna of wide
cone angle is less so that the stored energy is smaller. Thus, this antenna
is less frequency-sensitive' than the thin one and is better suited for wide-
band applications. It also follows that a thick eylindrical dipole is less
frequency-sensitive than a thin dipole.

1-3. Shape-impedance Considerations.” It is possible in many cases to
deduce the qualitative impedance behavior of an antenna from its shape.
This may be illustrated with the aid of Fig. 1-9. At (a) a coaxial trans-
mission line is flared out with the ratio of the conductor diameters D/d
maintained constant. Thus, the characteristic impedance of the line is
constant. If the taper is gradual and D is large where the line ends, this
device radiates with little or no reflection on the line over a frequency range
extending from some lower or cutoff frequency to an indefinitely high
frequency. This is the ultimate in band width. By bending the outer
conductor into a ground plane as at (b) with the inner conductor formed as
shown, the band width is nearly as wide as for the type at (a).® Modifying

1 Q is smaller. .

? Chap. 1 by Andrew Alford, “Very High Frequency Techniques,” by Radio Research
Laboratory Staff, McGraw-Hill Book Company, Inc., New York, 1947.

3 The wide-band characteristics of an antenna of the general appearance of (b) have
been discussed by N. E. Lindenblad, Antennas and Transmission Lines at the Empire
State Television Station, Communications, 21, 10-14, 24-26, April, 1941.
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this antenna to the conical type at (c) or cylindrical type at (d) further
reduces the band width. The band width is still narrower for the thin
stub antenna at (¢) which represents an extreme to which the modification
may be carried. If the type at (a) is regarded as the basic form, the thin
type at (e) is the most degenerate form.

As we depart more from the basic type, the discontinuity in the line
becomes more abrupt at what eventually becomes the junction of the
ground plane and transmission line. This discontinuity is caused by the
change in the ratio D/d and results in some energy being reflected back

“ /{/4,,' .
V o
R S

(h)

’
’

/ \(j) —\ (k) \ (1)
> | |
(i) —A (m) _ﬂ (n) 7 (0)

Fi1g. 1-9. Derivation of thin wire antennaa from basic broad-band types.

into the line. The discontinuity and reflection at the end of the antenna
also increase for thinner antennas. At some frequency the two reflections
may compensate, but the band width of compensation is narrow. An-
tennas with large and abrupt discontinuities have large reflections and
act as reflectionless transformers or matching-sections only over narrow
frequency bands where the reflections cancel. Antennas with discon-
tinuities that are small and gradual have small reflections and are, in
general, relatively reflectionless transformers over wide frequency bands.

The antenna types at (f), (g), and (h), in Fig. 1-9 are similar to those
shown above them except that the ground plane is modified into a sleeve.
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In a similar way to that discussed for the coaxial types, the thin wire
V antenna at (I) and the thin dipole at (o) may be derived by successive
steps from a balanced two-wire transmission line with a constant char-
acteristic impedance that is gradually flared out as suggested at (z). The
types tend to be of progressively narrower band width as we proceed from
left to right in the figure.



CHAPTER 2

POINT SOURCES

2-1. Introduction. Let us consider an antenna contained within a
volume of radius b as in Fig. 2-1a. Confining our attention only to the
far field of the antenna, we may make observations of the fields along an
observation circle of large radius R. At this distance the measurable
fields are entirely transverse, and the power flow, or Poynting vector, is
entirely radial. It is convenient in many analyses to assume that the
fields of the antenna are everywhere of this type. In fact, we may assume,
by extrapolating inward along the radii of the circle, that the waves

Observation
circle

a a
(a) (b)

F1a. 2-1. Antenna and observation circle.

originate at a fictitious volumeless emitter, or point source, at the center
O of the observation circle. The actual field variation near the antenna,
or “near field,” is ignored, and we describe the source of the waves only
in terms of the ‘“far field” it produces. Provided that our observations
are made at a sufficient distance, any antenna, regardless of its size or
complexity, can be represented in this way by a single point source.
Instead of making field measurements around the observation circle with
the antenna fixed, the equivalent effect may be obtained by making the
measurements at a fixed point @ on the circle and rotating the antenna
1
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around the center 0. This is usually the more convenient procedure if
the antenna is small.

In Fig. 2-1a the center O of the antenna coincides with the center of
the observation circle. If the center of the antenna is displaced from
O, even to the extent that O lies outside the antenna as in Fig. 2-1b, the
distance d between the two centers has a negligible effect on the field
pattern at the observation circle provided R > d, R >> b, and R > A,

Paint source
at arigin —>

Element of
areo ds

(b)

Fia. 2-2. Spherical coordinates for a point source of radiation in free space.

However, the phase patterns' will generally differ depending on d. If
d = 0, the phase shift around the observation circle is usually a minimum.
As d is increased, the observed phase shift becomes larger.

A complete description of the far field of a source requires a knowledge
of the electric field as a function of both space and time. For many
purposes, however, such a complete knowledge is not necessary. It may

1 Phase variation around the observation circle.
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be sufficient to specify merely the variation with angle of the power
density’ from the antenna. In this case the vector nature of the field is
disregarded, and the radiation is treated as a scalar quantity. This is
done in Sec. 2-2. The vector nature of the field is recognized in the dis-
cussion on the magnitude of the field components in Sec. 2-16. A com-
plete description of an elliptically polarized field, for example, requires
that the variation of the field components be known as a function of time.
This may be conveniently accomplished by specifying one or two phase
angles. Although the cases considered as examples in this chapter are
hypothetical, they could be approximated by actual antennas.

2-2. Power Patterns. Let a transmitting antenna in free space be repre-
sented by a point-source radiator located at the origin of the coordinates
in Fig. 2-2. The radiated energy streams from the source in radial lines.
The time rate of energy flow per unit area is the Poynting vector, or power
density. The Poynting vector of a point source has only a radial com-
ponent P, with no components in either the 6 or the ¢ directions (P, =
P, = 0). Thus, the magnitude of the Poynting vector, or power density,
is equal to the radial component (| P| = P,).

A source that radiates energy uniformly in all directions is an tsotropic
source. For such a source the radial component P, of the Poynting vector
is independent of 6 and ¢. A graph of P, at a constant radius as a func-
tion of either 6 or ¢ is a Poynting-vector, or power-density, pattern
but is usually called a power pattern. Referring to Fig. 2-2a, consider P,

6=0

7

9 or

(a) (%)
Fia. 2-3. (a) Rectangular power pattern of isotropic source. (b) Polar power pattern
of isotropic source.

as a function of 6 in the y-z plane (¢ = +£90°). The power pattern for
the isotropic source is a straight line on a rectangular graph as shown in
Fig. 2-3a or a circle on a polar graph as shown in Fig. 2-3b. In the polar
graph the magnitude of the Poynting vector P, is proportional to the
length of the radius vector. The three-dimensional power pattern for an
isotropic source is a sphere of which the circle of Fig. 2-3b is a cross section.

1 Power per unit area.
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Although the isotropic source is convenient in theory, it is not a physi-
cally realizable type. Even the simplest antennas have directional prop-
erties, that is, they radiate more energy in some directions than in others.
In contrast to the isotropic source, they might be called anisotropic sources.
As an example, the power pattern of such a source is shown in Fig. 24a.

=0 =0
\ 1
52 i —PL
o Prem
(a) ()
=0 =0
L 1
Un™] )
;fi? ; Un
(¢) (d)

F1a. 2-4. Power pattern (a), relative power pattern (), radiation-intensity pattern (c),
and relative radiation-intensity pattern (d) for the same directional or anisotropic source.
All patterns have the same shape. The relative power and radiation-intensity patterns
(b and d) also have the same magnitude and, hence, are identical.

If P, is expressed in watts per square meter, the graph is an absolute
power pattern. On the other hand, if P, is expressed in terms of its value
in some reference direction, the graph is a relative power paltern. 1t is
customary to take the reference direction as that in which P, is a maxi-
mum. Thus, the radius vector for a relative power pattern is P,/P,,,
where P,, is the maximum value of P,. The maximum value of the
relative power pattern is unity as shown in Fig. 2-4b. A pattern with a
maximum of unity is also called a normalized pattern.

2-3. A Power Theorem' and its Application to an Isotropic Source. If
the Poynting vector is known at all points on a sphere of radius r from a

1 This theorem is a special case of a more general relation for the complex power flow
through any closed surface as given by

W =3 [[(EXH*-ds (2-1)
where W' is the total complex power flow and E and H* are complex vectors representing
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point source in a lossless medium, the total power radiated by the source is
the integral over the surface of the sphere of the radial component P, of the
average Poynling vector. Thus,

W=ffp-ds=fp,ds (23)

where W = power radiated, watts

P, = radial component of average Poynting vector, watts per
square meter
ds = infinitesimal element of area of sphere (see Fig. 2-2b)
= 7* sin 6 dO d¢
For an isotropic source P, is independent of § and ¢. Thus (2-3) becomes
w=P [ 24)
The integral is equal to the area of the sphere so that
W = PAx’ (2-5)
or
w
P r - 4 "2 (2-6)

Equation (2-6) states that the magnitude of the Poynting vector varies
inversely as the square of the distance from a point-source radiator. This
is a statement of the well-known inverse-square law for the variation of
power per unit area as a function of the distance from a point source.
P, is in watts per square meter if W is in watts and r in meters.

2-4. Radiation Intensity. Multiplying the power density P, by the
square of the radius r at which it is measured, we obtain the power per unit
solid angle or radiation intensity U. Thus,

r?P, = U = radiation intensity (2-7)

Whereas the power density P, is expressed in watts per square meter, the
radiation intensity U is expressed in watts per unit solid angle (watts per
square radian or steradian).’ The radiation intensity is indepcndent of the
radius. {

the electric and magnetic fields, H* being the complex conjugate of H. The avérage
Poynting vector is
P = } Re (E X H*) (2-2)

Now the power flow in the far field is cntirely real; hence, taking the real part of (2-1)
and substituting (2-2), we obtain the special case of (2-3).

! Dimensionally, U is simply power since radians are dimensionless. Numerically,
U is equal to P, at unit radius.
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Substituting (2-7) into (2-3), the power theorem assumes the form

W = ff U sin 6 46 dg = ff U da 2-8)

where d2 = sin 0 d6 dp = element of solid angle

Thus, the power theorem may be restated as follows. The lotal power
radiated is given by the integral of the radiation intensity U over a solid
angle of 4w. A pattern of U as a function of angle is a radiation-intensity
pattern as shown by Fig. 2-4c. The maximum radiation intensity U, is
in the direction § = 0. A relative radiation-intensity pattern is given
by U/U. and has a maximum value of unity as shown by Fig. 2-4d.
Relative power and radiation-intensity patterns are identical. Hence,
for brevity both will often be referred to as power patterns.

Applying (2-8) to an isotropic source gives

W = 4xU, (2-9a)

where U, = power per square radian
Equation (2-9a) may also be expressed as’

W = 41,253 U3 (2-9b)

where Uy = power per square degree

Equations (2-9a) and (2-9b) also apply for a nonisotropic source provided
that U, is the average power per square radian and Uj the average power
per square degree.

2-6. Source with Hemisphere Power Pattern. As further illustrations of
the power theorems, let us apply (2-8) to a number of sources with different
types of assumed power patterns. Consider, for example, a source with a
power or radiation-intensity pattern which is a hemisphere. That is, the
power per unit solid angle, or radiation intensity, U equals a constant
U.. in the upper hemisphere (0 < § < 7/2and 0 < ¢ < 27) and is zero
in the lower hemisphere. This is illustrated by the three-dimensional or
space power pattern of Fig. 2-5a and the two-dimensional power pattern of
Fig. 2-5b. Then the total power radiated is the radiation intensity inte-
grated over a hemisphere, or

W=fodsz=f°"fom U.sin 6d6dé = 2xU.  (2-10)

Assuming that the total power W radiated by the hemispheric source is
the same as the total power radiated by an isotropic source taken as a
reference, (2-10) and (2-9a) can be equated, yielding,

2xU,, = 4xU, (2-11)

14x square radians (steradians) = 4x X 57.3?square degrees = 41,253 square degrees.
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or

U _ 2 = directivity (2-12)
0

The ratio of U,, to U, in (2-12) is called the directivity of the hemispheric
source. The directivity of a source is equal to the ratio of its maximum
radiation intensity to its average radiation intensity. Or the directivity
of a source may be stated as the ratio of its maximum radiation intensity
to the radiation intensity of an isotropic source radiating the same total
power.! By (2-12), the directivity of the hemispheric source is 2. That
is to say, the power per unit solid angle U, in one hemisphere from the
hemispheric source is twice the power per unit solid angle U, from an
isotropic source radiating the same total power. This we would expect,
since a power W radiated uniformly over one hemisphere will give twice
the power per unit solid angle as when radiated uniformly over both

970 Hemispheric
8
U- /\
Isotropic
(b) (c)

F1g. 2-6. Hemispheric power patterns, (@) and (b), and comparison with isotropic
pattern (c).

hemispheres. The power patterns of a hemispheric source and an isotropic
source are compared in Fig. 2-5¢ for the same power radiated by both.

2-6. Source With Unidirectional Cosine Power Pattern. Let us con-
sider next a source with a cosine radiation-intensity pattern, that is,

U=U,cos¥6 (2-13)

where U,, = maximum radiation intensity

The radiation intensity U has a value only in the upper hemisphere

(0 £ 60 < x/2and 0 £ ¢ < 2x) and is zero in the lower hemisphere. The

radiation intensity is a maximum at § = 0. The pattern is shown in
1 One can also compare the power W’ radiated by the source to the power W’ that

must be radiated by an isotropic source to give the same radiation intensity. Then

Uy = Uw, and the directivity is given by D = W’ /W’. For instance in the above case
(8ec. 2-5), W’ = 4xUsand W’ = 2xUn. For Uq = U, the directivity D = W*/W’ = 2,
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Fig. 2-6. The space pattern is a figure of revolution of this circle around
the polar axis.

To find the total power radiated by the cosine source, we apply (2-8)
and integrate only over the upper hemisphere. Thus

2T /2
W = f f U, cos 8sin 6d8dp = =U,, (2-14)
0 0

If the power radiated by the unidirectional cosine source is the same as
for an isotropic source, then (2-14) and (2-9a) may be set equal, yielding

U, = 4xU,
or
Directivity = U—" =4 (2-15)
0

Thus, the maximum radiation intensity U, of the unidirectional cosine
source (in the direction 6 = 0) is four times the radiation intensity U,

8=0
8=0 Palor
Polor oxis
oxis
1 4
T3
Cosine
T2
|
Half-pawer

poinis
z _— Isotropic
|

Fra. 2-6. Unidirectional cosine power Fia. 2-7. Power patterns of unidirec-

pattern. tional cosine source compared with iso-
tropic source for same power radiated by
both.

from an isotropic source radiating the same total power. The power
patterns for the two sources are compared in Fig. 2-7 for the same total
power radiated by each.

2-7. Source with Bidirectional Cosine Power Pattern. Let us assume
that the source has a cosine pattern as in the preceding example but that
the radiation intensity has a value in both hemispheres, instead of only in
the upper one. The pattern is then as indicated by Fig. 2-8. It follows
that W is twice its value for the unidirectional cosine power pattern, and
hence the directivity is 2 instead of 4.

2-8. Source with Sine (Doughnut) Power Pattern. Consider next a
source having a radiation-intensity pattern given by



Sec. 29] POINT SOURCES 19
U=U,siné (2-16)

The pattern is shown in Fig. 2-9. The space pattern is a figure of revolu-
tion of this pattern around the polar axis and has the form of a doughnut.
Applying (2-8), the total power radiated is

2r E 4
W = U,..f f sin® 0 d6 dp = r°U., 2-17)
0 (1]

If the power radiated by this source is the same as for an isotropic source
taken as reference, we have

U, = 4xU, (2-18)
and
Directivity = 0= = % = 1.97 (2-19)
Uo x
8=0
Polor
onis
F1e. 2-8. Bidirectional cosine power pat- F1a. 2-9. Sine power pattern.
tern.

2-9. Source with Sine-squared (Doughnut) Power Pattern. Next con-
sider a source with a sine squared radiation-intensity or power pattern.
The radiation-intensity pattern is given by

U=U,sin’ 8 (2-20)
The power pattern is shown in Fig. 2-10. This type of pattern is of con-
siderable interest because it is the pattern produced by a short dipole

coincident with the polar axis in Fig. 2-10. Applying (2-8), the total power
radiated is

_ 2 L4 . s —§
W= U,Afo fo sin® 0.0 d = 5 xU. 2-21)
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If I is the same as for the isotropic source,

%WU,,. = 41!'Uo
and
o U._3_
Directivity = A 1.5 (2-22)

=0

F1c. 2-10. Sine squared power pattern.  Fig. 2-11. Unidirectional cosine squared
power pattern.

2-10. Source with Unidirectional Cosine Squared Power Pattern. Let
us consider next the case of a source with a unidirectional cosine squared
radiation-intensity pattern as given by

U= U, cos* 8 (2-23)

with the radiation intensity having a value only in the upper hemisphere.
The pattern is shown in Fig. 2-11. The three-dimensional or space pattern
is a figure of revolution of this pattern around the polar axis and has the
form of a prolate spheroid (football shape). The total power radiated is

2r r/2
W = U,/ f cos? osinodod¢=§w, (2-24)
0 0

If W is the same as radiated by an isotropic source,

ixU,, = 42U,
and
o e U
Directivity = U= 6 (2-25)
0

Thus, the maximum power per unit solid angle (at § = 0) from the source
with the cosine squared power pattern is six times the power per unit
solid angle from an isotropic source radiating the same power.
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2-11. Source with Unidirectional Cosine"” Power Pattern. A more gen-
eral case for a unidirectional radiation-intensity pattern which is sym-
metrical around the polar axis is given by

U=U.,cos" 8 (2-26)

where n is any real number. In Fig. 2-12, relative radiation-intensity or

FiG. 2-12. Unidirectional cos™ § power patterns for various values of n.

power patterns plotted to the same maximum value are shown for the
cases where n = 0, 4, 1, 2, 3, and 4. The case for n = 0 is the same as
the source with the hemispheric power pattern discussed in Sec. 2-5. The
cases forn = 1 and n = 2 were treated in Secs. 2-6 and 2-10. When n = },

r4

e Polar

2+ oxis
Ziof-
2 all
2 6f A
£6 />
[=3

4 F Y

2 1 1 1 i L ¢

(o] [ 2 3 4 5 6
n

F1g. 2-13. Directivity vs. n for unidirec- Fig. 2-14. Unidirectional source radiat-
tional sources with cos® 6 power patterns.  ing maximum power in the direction 8 =
90°, ¢ = 90°, or y axis.

3, and 4, the directivity is 3, 8, and 10, respectively.” These calculations
are left to the reader as an exercise. A graph of the directivity of a uni-
directional source as a function of n is presented in Fig. 2-13.

1 It may be shown that the directivity of sources with power patterns of the type given
by (2-26) can be reduced to the simple expression, directivity = 2(n 4 1). The proof is
left to the reader as an exercise.
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2-12. Source with Unidirectional Power Pattern That Is Not Sym-
metrical. All the patterns considered thus far have been symmetrical
around the polar axis. That is, the space pattern could be constructed as
a figure of revolution about the polar axis. Let us now consider a more
general case in which the pattern is unidirectional but is unsymmetrical
around its major axis. In discussing this type of pattern it will be con-
venient to shift the direction of the major axis or direction of maximum
radiation from the polar axis (§ = 0) to a direction in the equatorial plane
as shown in Fig. 2-14 (8 = 90°, ¢ = 90°). The 8 = 90° plane coincides
with the z-y plane and the ¢ = 90° plane with the y-z plane. A rather
general expression for the radiation intensity with its maximum at § = 90°
and ¢ = 90° is then given by

U=U,sin" 8sin™ ¢ 2-27)

where n = any real number

m = any real number
and the radiation intensity U has a value only in the right-hand hemisphere
(Fig. 2-14) (0 £ 0 £ x;0 £ ¢ £ 7). When m = n, (2-27) becomes the
equation for a symmetrical power pattern of the same form as considered
in Sec. 11. When m and n are not the same (2-27) represents the general
case in which the pattern has different shapes in the § = 90° and ¢ = 90°
planes. The total power radiated in this general case is

W= U. f f sin™' 8 sin” ¢ d6 dé (2-28)
0 0

2-13. General Case of Source with Power Pattern of Any Shape. In the
preceding sections the radiation-intensity or power patterns are all repre-
sented by sine or cosine functions of angle. Some actual antenna patterns
can be so represented. For example, the power pattern of a short dipole
has a sine squared power pattern as discussed in Sec. 2-9. In general the
radiation intensity may be any function of 8 and ¢ as given by

U = U.f@,4¢) (2-29)

where U, = a constant
To find the total power radiated, U is substituted into (2-8), that is,

W= [[ U. 6, )sin 00 do (2-30)

If this expression cannot be integrated analytically, ¥ may be obtained by
a graphical integration (see Prob. 2-5), or approximately by selecting
n and m in (2-28) to give a sine-function power pattern which approximates
the actual pattern.
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The mathematical expression for the power pattern may be unknown,
but the pattern may be measurable. In measuring patterns which have a
maximum in the y direction, it is customary to take two patterns, one as
a function of ¢ in the § = 90° plane and the other as a function of 6 in
the ¢ = 90° plane. From these patterns the space pattern may be esti-
mated and W calculated by graphical integration, or values of n and m
in (2-28) may be selected to give integrable sine functions which approxi-
mate the measured patterns. By assuming that the same power is radiated
by an isotropic source, the directivity may be obtained as in the preceding
sections. Another very simple but approximate method for obtaining the
directivity is discussed on page 25.

2-14. Directivity. The concept of directivity, treated above in some
special cases, may be extended to several more general expressions which
will now be developed.

In Seec. 2-5 directivity was defined as the ratio of U, to U, where U,
is the maximum radiation intensity or watts per square radian from the
source under consideration and U, is the radiation intensity from an
isotropic source radiating the same power (or U, is the average radiation
intensity from the source under consideration). Thus,

U, _ maximum radiation intensity

D (2-31)

U average radiation intensity
where D = directivity
Multiplying numerator and denominator of (2-31) by 4« gives
D= 4rU, _ 4xU, _ 4= (maximum radiation intensity) (2-32)

T 4xU, W total power radiated

Let us now develop a more general expression for the directivity. Let
the radiation-intensity pattern be expressed as in (2-29) by

U= U.f(,9) (&5
and its maximum value by
Un = U, f(8, ¢)max (2-39)
where U, = a constant
For the special case where
S0, ®)uax =1 (2-35)

then U, = U, and (2-33) can be written
U="U.Jf@,¢) (2-36)
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The average radiation intensity is

_ W _ JI U.f(6,¢) dQ
Uo = ar ir (237)

where W = total power radiated
dQ = sin 6 df d¢ = element of solid angle
The directivity D is then given by

D= % — _Qa .1(0! ¢2nux — ir 1(0- ¢2mux_ (2-38)
Uo [JU.f(6,¢)d2 [f f(6,4)dQ

ix
Equation (2-38) can be reexpressed as
4r 4
D= —rpFn——=— 2-
[ j6.¢de~ B @59
J(8, ®)mex
where B is defined as the beam area. It is given by'
f(6, ¢) dQ
B p— H LD
56, Bane (2-40)
From (2-31) and (2-39)
_Un_ 4
D=y=3F (2-41)
and
Since U, = W/4r,
W =U.B (243)

where W = total power radiated

Therefore, the beam area B 18 the solid angle through which all the power
radiated would stream if the power per unit solid angle equaled the maximum
value U, over the beam area.

1Note that f(8, ¢)/f(8, )., i8 the relative (normalized) total power pattern. Thus,

(2-40) may also be written
f(6,¢) .
£ ff TOT I

The integration may be done analytically or graphically, or it may be done approxi-
mately by (2-44). Graphical integration procedures for a special case are discussed in
Prob. 2-5. If the total far-field pattern is given it should be noted that the relative total
power pattern in (2-40) is equal to the square of the relative total field pattern [see
Eq. (2-58¢)].
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From (2-42)

B = 41(ron square radians = 41,253 % square degrees  (2-43a)

Consider the unidirectional power pattern shown in Fig. 2-15. The
pattern is a figure of revolution around the y axis. The included angle ¢’
of the corresponding beam area is also shown. If the power per unit solid
angle over the beam area were equal to the maximum value U,, of the
directional source, the power through the beam area would equal that
radiated by the source.

From this it is only a step to a very simple 2
approximate method of calculating the direc- Polar
tivity for a single lobed pattern, based on an oxe
estimate of the beam area from the half-power
beam widths of the patterns in two planes at g
right angles. Thus, suppose that 6, is the beam Y
width between half-power points in one plane
and ¢, is the width in a plane at right angles.
Then, approximately

Frc. 2-15. Unidirectional

B >~ 6, (2-44) power pattern in cross sec-
g . . tion with included angle 6’ of
Substituting (2-44) in (241) gives the beam area. The space
Ax patterns are figures of revolu-
D= _0_05— (2-45)  tion around the y axis.
1¥1

where 6, and ¢, are the half-power beam widths expressed in radians.
Equation (2-45) may also be expressed as

D= 41,253

P (2-46)

where 60 and ¢! are the half-power beam widths in degrees.’

1For the special case of a doughnut-type pattern (as in Secs. 2-8 and 2-9) Eq. (2-45)
reduces to D = 4x/2x6, = 2/6;, or D = 114.6/6,°. A somewhat better approximation
for doughnut patterns is given by D = 1/[sin (6,/2)]. When 6, is small the two approxi-
mations are equivalent,

For the special case of a bidirectional pattern with two identical lobes, as in Fig. 2-8,
it is to be noted that the directivity is half that obtained on the basis of a single lobe.

If (2-45) or (2-46) is applied to a unidirectional beam type of pattern with minor
lobes, these lobes are neglected and the calculated directivity is usually too high. To
improve the accuracy, (2-46) may be multiplied by a correction factor. The value
of this factor (usually between 0.6 and 1.0) depends in each case on the characteristics
of the pattern but may be relatively constant for patterns of a certain class of antennas.
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As an illustration let us find the directivity of the source of Sec. 2-6
by this method. This source has a unidirectional cosine power pattern
given by U = U, cos 0 and an exact value of directivity of 4. The half-
power beam widths are 120°. Thus

_ 41,253 _ 41,253
D= ol = 130F " 2.87

This approximate value is about 35 per cent in error.

As another illustration, consider a source with a unidirectional power
pattern given by U = U, cos’ 8 which has an exact directivity of 8. The
half-power beam widths are 75.2°, and

41,253
(GE2x

which is about 10 per cent in error.

2-16. Gain. The definition of directivity in the preceding section is
based entirely on the shape of the radiated power pattern. The power
input and antenna efficiency are not involved. A quantity called gain
will now be introduced which does involve the antenna efficiency. The
gain' G of an antenna is defined as

D = =173

maximum radiation intensity
maximum radiation intensity from a
reference antenna with same power input

G = (247)

Any type of antenna may be taken as the reference. Often the reference
is a linear }-wavelength antenna. Gain includes the effect of losses both
in the antenna under consideration (subject antenna) and in the reference
antenna.

It will be convenient in some of the following discussion to assume that
the reference antenna is an isotropic source of 100 per cent efficiency.
The gain so defined for the subject antenna is called the gain with respect
to an isotropic source and is designated G,. Thus,

maximum radiation intensity from subject antenna
radiation intensity from (lossless) isotropic
source with same power input

G, = (2-48)

Let the maximum radiation intensity from the subject antenna be UY.
Let this be related to the value of the maximum radiation intensity U,

1 The gain G as here defined is sometimes called power gain. This quantity is equal
to the square of the gain in field intensity G;. Thus, if E, is the maximum electric field
intensity from the antenna at a large distance R and E, is the maximum electric field
intensity from the reference antenna with the same power input at the same distance R,
then the power gain G is given by G = (E,/E.)* = G
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for a 100 per cent efficient subject antenna by a radiation efficiency factor k.
Thus,

U, = kU, (2-49)

where0 £ k <1

Therefore, (2-48) may be written

_ UL _ kU,
U, Us

where U, is the radiation intensity from a lossless isotropic source with

the same power input. If W is the power input, U, = W/4x. But the
ratio U./U, is by (2-31) the directivity D so that (2-50) becomes

Gy = kD (2-51)

G,

(2-50)

Thus, the gain of an antenna over a lossless isotropic source equals the
directivity if the antenna is 100 per cent efficient (k = 1) but is less than
the directivity if any losses are present in the antenna (k < 1).

The directivity D and gain G, imply the maximum values for an antenna.
The directivity or gain in a direction for which the radiation intensity U
is not a maximum may be designated by specifying the angle ¢ at which
it is measured or, in general, by the symbol D(6, ¢) or Go(6, ¢). That is,

U

D(6, ¢) = U D (2-52a)

and

Go(0, ) = 7 Go (2-52b)

where U = radiation intensity in the direction (8, ¢)
U,. = maximum radiation intensity
Both directivity and gain may be expressed as a decibel ratio by taking
10 times the logarithm to the base 10. That is,

Db directivity = 10 log,e D (2-53a)
Db gain = 10 log,, G . (2-33b)

Since the power gatn G is equal to the square of the gain in field intensity
G,, we also have

Db gain = 20 logm Gf (2-530)

Thus, db gatn is the same, whether based on power gain or gain in field
intensity.

2-16. Field Patterns. The discussion in the preceding sections of this

chapter has been based on considerations of power. This has afforded a
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simplicity of analysis, since the power flow from a point source has only a
radial component which can be considered as a scalar quantity. To
describe the field of a point source more completely, let us consider the
electric field intensity,' or E vector of the field, which is usually called
simply the electric field, or E.

Since the Poynting vector around a point source is everywhere radial,
it follows that the electric field is entirely transverse, having only E, and
E, components. The relation of the radial component P, of the Poynting

vector and the electric field compo-
Z| polar nents is illustrated by the spherical
a3 coordinate diagram of Fig. 2-16.
The conditions characterizing the
far field are then:

1. Poynting vector radial (P,
component only)

2. Electric field transverse (E,
and E, components only)

The Poynting vector and the elec-
tric field at a point of the far field are
related in the same manner as they
Fiac. 2-16. Reclation of the Poynting vec- are in a plane wave, since, if r is
tor and the electric ficld components of the  sufficiently large, a small section of
far ficld. the spherical wave front may be con-

sidered as a plane.

The relation between the average Poynting vector and the electric field
at a point of the far field is

1E
P.=27 (2-54)

where Z, = intrinsic impedance of free space* and

E = \/E; + E; (2-55)
where E = total electric field intensity
Yy = amplitude of § component
E, = amplitude of ¢ component
The field may be elliptically, linearly, or circularly polarized.

! We could equally well use the magnetic field intensity, or H vector. However, in
the far field the magnitude of the magnetic field is related to the electric field by the
intrinsic impedance Z of the medium (H = E/Z). The two fields at each point are in
time phase and in space quadrature. Since the magnetic ficld can be obtained from the
electric, we shall, for simplicity, consider only the electric field patterns.

* Z, is a pure resistance (= 377 ohms),
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A pattern showing the variation of the electric field intensity at a
constant radius r as a function of angle (9, ¢) is called a field pattern. In
presenting information concerning the far field of an antenna, it is cus-
tomary to give the field patterns for the two components, E, and E,, of
the electric field since the total electric field E can be obtained from the
components by (2-55), but the components cannot be obtained from a
knowledge of only E.

When the field intensity is expressed in volts per meter, it is an absolute
field pattern." On the other hand, if the field intensity is expressed in
units relative to its value in some reference direction, it is a relative field
pattern. The reference direction is usually taken in the direction of
maximum field intensity. The relative pattern of the E, component is
then given by

B,

E,. (2-56)
and the relative pattern of the E, component is given by
L, (2-57)

E,.

where E,,, = maximum value of E,
E,,. = maximum value of E,

The magnitudes of both the electric field components, E, and E,, of the
far field vary inversely as the distance from the source. Ilowever, they
may be different functions, F, and F,, of the angular coordinates, 6§ and
¢. Thus, in general,

E, rl F\(6, ¢) (2-58a)

E, = }Fa(o, ) (2-58b)

Since P,,, = E./2Z, where E,, is the maximum value of E, it follows on
dividing this into (2-54) that the relative total power pattern is equal to the
square of the relative total field pattern. Thus,

. U E\
F == (&) (2-58)

Example 1. Consider first the case of an antenna whose far field has only an
E, component in the equatorial plane, the E, component being zero in this plane-

1 The magnitude depends on the radius, varying inverscly as the distance, (F « 1/r).
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Suppose that the relative equatorial-plane pattern of the E, component (that is, E,
a8 a function of ¢ for § = 90°) is given by

L _ cos ¢ (2-59a)

This pattern is illustrated by Fig. 2-17a.' The length of the radius vector in the
diagram is proportional to E,. A pattern of this form could be produced by a short
dipole coincident with the y axis.

1 i
Holf-power
707 points
/\’ 5
Y Y
X X
e (a) o A (b)

F1G. 2-17. Relative E, pattern of Example 1 at (a) with relative power pattern at (b).

The relative power pattern in the equatorial plane is equal to the square of the
relative field pattern. Thus

p_U_ Ep_)’
P UL" (E,.. (2-59b)
and substituting (2-59a) into (2-590) we have
), cos’ ¢

Prm

This pattern is illustrated in Fig. 2-17b.
Example 2. Consider next the case of an antenna with a far field that has only
an E, component in the equatorial plane, the E, component being zero in this plane.

! Another method of presenting the variation of field with respect to ¢ and ¢ is by con-
tours of constant absolute or relative field intensity on a spherical surface, or the
contours may be mapped on a flat projection of the spherical surface.

A graph showing contours of constant field intensity is commonly used to show the
coverage of broadcasting stations in a horizontal plane. Here the contours are functions
of one angle ¢ and of distance r.
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Assume that the relative equatorial-plane pattern of the E, component (that is, E,
a8 a function of ¢ for § = 90°) for this antenna is given by

EE.'._. = gin ¢ (2-60)

This pattern is illustrated by Fig. 2-18a and could be produced by a small loop
antenna, the axis of the loop coincident with the z axis.

¢-° =
X (a) ¢x° (%)

Fia. 2-18. Relative E, pattern of Example 2 at (a) with relative power pattern at (b).

The relative power pattern in the equatorial plane is

P,'.. = gin’ ¢
This pattern is shown by Fig. 2-18b.

Ezample 3. Let us consider finally an antenna whose far field has both E,
and E, components in the equatorial plane (6 = 90°). Suppose that this antenna is
a composite of the two antennas we have just considered in Examples 1 and 2 and
that equal power is radiated by each antenna. It then follows that at a radius r
from the composite antenna, E,,, = E,,.. The individual patterns for the E, and E,
components as given by (2-60) and (2-59a) may then be shown to the same scale by
one diagram as in Fig. 2-19a. The relative pattern of the total field E is

£
E.

which is a circle as indicated by the dashed line in Fig. 2-19a.

For this antenna, we may speak of two types of power patterns. One type shows
the power variation for one component of the electric field. Thus, the power in the
E, component of the field is as shown by Fig. 2-18b and the power in the E, compo-
nent by Fig. 2-17b. The second type of power pattern shows the variation of the
total power. This is proportional to the square of the total electric field intensity.
Accordingly, the relative total power pattern for the composite antenna is

- ()
— =] =1
P'. »
The relative pattern in the equatorial plane for the total power is, therefore, a circle
of radius unity as illustrated bv Fig. 2-19b.

= Vi’ ¢ + cos’ ¢ = 1
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We note in Fig. 2-19a that at¢ = 45° the magnitudes of the two field components,
E, and E,, are equal. Depending on the time phase between E, and E,, the field in
this direction could be plane, elliptically or circularly polarized. To determine the
type of polarization requires that the phase angle between E, and E, be known.
This is discussed in the next section.

Es

| / |
/
/
/
7 \
4

=45°

(@) P (b) P

Fi1a. 2-19. (a) Relative patterns of E, and E, components of the electric field and the
total field E for antenna of Example 3. (b) Relative total power pattern.

2-17. Phase Patterns. Assuming that the field varies harmonically
with time and that the frequency is known, the far field in all directions
from a source may be completely specified by a knowledge of the following
four quantities:'

1. Amplitude of the polar component E, of the electric field as a function
of r, 6, and ¢

2. Amplitude of the azimuthal component E, of the electric field as a
function of r, 6, and ¢

3. Phase lag 6 of E, behind E, as a function of 6 and ¢

4. Phase lag 5 of a field component behind its value at a reference point
as a function of r, 6, and ¢

Since we regard the field of a point source as a far field everywhere, the
above four quantities can be considered as those required for a complete
knowledge of the field of a point source.

! In general, for the near or far field, six quantities are required. These are E,, E,,
8, and 5 each as a function of r, 6, ¢ and in addition the amplitude of the radial compo-
nent of the electric field E, and its phase lag behind E, both as a function of r, 6, .
Since E, = 0 in the far field, only four quantities are needed to describe completely the
field in the Fraunhofer region.
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If the amplitudes of the field components are known at a particular
radius, from a point source in free space, their amplitude at all distances
is known from the inverse-distance law. Thus, it is usually sufficient to
specify E, and E, as a function only of 6 and ¢ as, for example, by a set
of field patterns.

As shown in the preceding sections, the amplitudes of the field com-
ponents give us directly or indirectly a knowledge of the peak and effective
values of the total field and Poynting vector. However, if both field
components have a value, the polarization is indeterminate without a
knowledge of the phase angle 5§ between the field components. Focusing
our attention on one field component, the phase angle » with respect to
the phase at some reference point is a function of the radius and may also
be a function of 8 and ¢. A knowledge of 7 as a function of 8 and ¢ is
essential when the fields of two or more point sources are to be added.

We now proceed to a discussion of the phase angles, é and 7, and of
phase patterns for showing their variation. Let us consider three examples.

Example 1. Consider first a point source that radiates uniformly in the equa-
torial plane and has only an E, component of the electric field. Then at a distance r
from the source, the instantaneous field E,; in the equatorial plane is

E, = -@ sin (wt — fr) (2-61)
where E, = rms value of ¢ component of electric field intensity at unit radius from
the source
w = 2xf
B = 2x/\

The relation given by (2-61) is the equation for the field of a spherical wave
traveling radially outward from the source. The equation gives the tnstantaneous
value of the field as a function of time and distance. The amplitude or peak value
of the field is \/EE"/r The amplitude is independent of space angle (6 and ¢)
but varies inversely with the distance . The variation of the instantaneous field
with distance for this example is illustrated by the upper graph in Fig. 2-20 in which
the amplitude is taken as unity at a distance r. When r = 0, the variation of the
instantaneous field varies as sin wf. It is often convenient to take this variation as a
reference for the phase, designating it as the phase of the generator or source. The
fact that the amplitude at r = 0 is infinite need not detract from using the phase at
r = 0 as a reference. The phase at a distance r is then retarded behind that at the
source by the angle 8r. A phase retardation or lag of E, with respect to a reference
point will, in general, be designated as . In the present case the reference point is
the source;' hence

n= fr= 2%7 radians . (2-62)

4 If the phase is reterred vo some point at a distance r; from the source, then (2-61)
becomes E,; = (\/2E./r) sin (wt — Bd), where d = r — r,.




34 ANTENNAS [CHar. 2

Thus, the phase lag n increases linearly with the distance r from the source. This
is illustrated by the chart of phase lag vs. distance in Fig. 2-20.

The phase lag 7 in this example is assumed to be independent of ¢. To demon-
strate experimentally that n depends on r but is independent of ¢, the arrangement
shown at the lower left in Fig. 2-20 could be used. The outputs of two probes or
small antennas are combined in a receiver. With both probes at or very near the
same point, the receiver output is reduced to a minimum by adjusting the length
of one of the probe cables. The voltages from the probes at the receiver are then in

Minima or
constant phase
contours

+| 0~
Instantoneous
ampiitude

N

Point
source

\<t\

Receiver

Output
indicator

Fig. 2-20. Illustration for Example 1. Phase of E, of point source radiating uni-
formly in ¢ plane is a function of r but is independent of ¢. Phase lag n increases
linearly with distance r.

phase opposition. With one probe fixed in position, the other is then moved in such
a way as to maintain a minimum output. The locus of points for minimum output
constitutes a contour of constant phase. For the point source under consideration,
each contour is a circle of constant radius with a separation of 1 wavelength between
contours. The radius of the contours is then given by r, - nA, where r| is the radius
to the reference probe, and = is any integer.

Example 2. Consider next the case of a point source that has only an E,
component and that radiates nonuniformly in the equatorial or ¢ plane. The
instantaneous value in the equatorial plane is
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E,, = —@ cos ¢ 8in (wt — Br) (2-63)

where E,,, = rms value of E, component at unit radius in the direction of maximum
field intensity

Let a point at unit radius and in the direction ¢ = 0 be taken as the reference for
phase. Then at this radius,

E,, = \/EE... cos ¢ sin wt (2-64)

Setting sin wt = 1, the relative field pattern of the E, component as a function of ¢
is, therefore,
E, = cos ¢ (2-65)

as illustrated in Fig. 2-21a. A pattern of this type could be obtained by a short
dipole coincident with the y axis at the origin. The phase lag n as a function of ¢

@=180°
=270° =90°
j 180°
X X
P=0 (a) P=0 (¢)
£ 360°
£ 270 (%)
;_’ 180° e
& 90°
o.

1 [l 1
o 90° 180° 270° 360° 90° 180°
¢

F1a. 2-21. Tllustration for Example 2. Field pattern is shown at (a), the phase pattern
in rectangular coordinates at (), and in polar coordinates at (c).

i8 a step function as shown in the rectangular graph of Fig. 2-21b and in the polar
graph of Fig. 2-21¢c. The variation shown is at a constant radius with the phase in
the direction¢ = O as a reference. We note that 5 has an apparent discontinuity of
180° as ¢ passes through 90° and 270° since at these angles cos ¢ changes sign while
passing through zero magnitude. The phase angle % is accordingly a continuous,
linear function of r but a discontinuous, step function of ¢. To demonstrate this
variation experimentally, the two-probe arrangement described in Example 1 may
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be used. In practice, attenuators, not shown, would be desirable in the probe leads
to equalize the probe outputs. Referring to Fig. 2-22, if both fixed and movable
probes are in the lower quadrants (1 and 4), a set of constant or equiphase circles is
obtained with a radial separation of 1 wavelength. If one probe is fixed in quadrant
1 while the upper quadrants are explored with the movable probe, a set of equiphase
circles is obtained which have a radial separation of 1 wavelength hut are displaced
radially from the set in the lower quadrants by 4 wavelength. Thus, the constant
phase contours have an apparent discontinuity at the y axis, as shown in Fig. 2-22,

Quodront 3 Quodront 2

Quodront 1

Quadrant 4

Output
X indicotor

p=0

Fi1a. 2-22. Constant phase contours for source of Example 2.

The phase of the field of any linear antenna coincident with the y axis exhibits this
discontinuity at the y axis.'

Example 3. Consider lastly a point source which radiates a field with both
E, and E, components in the equatorial plane, the instantaneous values being given
by

= —@ sin ¢ sin (wt — Br) (2-66)

and

2E, ..
E‘.~=%

cos ¢ sin (wt — Br — g) (2-67)
Referring to Fig. 2-23, a field of the form of the E, component in the equatorial
plane could be produced by a small loop at the origin oriented parallel to the y-z
plane. A field of the form of the E, component in the equatorial plane could be
produced by a short dipole at the origin coincident with the y axis. Let a point at

1T¢ is to be noted that this phase change is actually a characteristic of the method of
measurement, since by a second method no phase change may be observed between the
upper and lower hemispheres. In the second method the probe is moved from the upper
to the lower hemisphere along a circular path in the z-z plane at a constant radius from
the source. However, for a linear antenna the second method is trivial since it is
equivalent to rotating the antenna on its own axis with the probe at a fixed position.
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unit radius in the first quadrant be taken as the reference for phase. Assuming that
loop and dipole radiate equal power,

E,. = En (2-68)

Then at unit radius the relative pat-
terns asa function of¢ and t are given by ~ Quodront 3

E,; = sin ¢ sin wt (2-60) E# logs90°

E

14
Quodront 2
Eg leads 90°

and

E,, = cos ¢ sin (wt = 1—;)

Y
= —cos ¢ cos wi (2-70)
The relative field patterns in the
equatorial plane are shown in Fig. 2-23. g 4ront 4 Quodrant 1
The field components are in phase quad- \ . )
rature (8 = 7/2). Inquadrants1and3, ©¢ '¢°9 90 2 FTpEd

E, lags E, by 90°, while in quadrants 2 X
and 4, E, leads E, by 90°. The phase #=0
patterns in the equatorial plane for E, Fic. 2-23. Field patterns for souree of
and E, are shown in polar form by Fig. Example 3.
2-24andinrectangularformby Fig.2-25a.

Since E,, E,, and § are known, the polarization ellipses may be determined.

Lag angle

P =270°-

$=0°

Fig. 2-24. Phase lag as a funetion of ¢ for field eomponents of souree of Example 3.
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These polarization ellipses (see Secs. 15-10 to 15-17) for different directions in
the equatorial plane are shown in Fig. 2-25b. It is to be noted that in quadrants
1and 3, where E, lags E,, the E vector rotates counterclockwise, while in quadrants
2 and 4, where E, leads E,, the rotation is clockwise.

At four angles the polarization is circular, E rotating counterclockwise at ¢ = 45°
and 225° and rotating clockwise at = 135° and 315°. The polarization is linear at
four angles, being horizontally polarized at 0° and 180° and vertically polarized at
90° and 270°. At all other angles the polarization is elliptical.

360°F
Phose log
270° ? Es
180° |- E¢ 1Ee
90° Eo—]
o* 1 1 1 l | ! |
o 45° 90° 135° é 180° 225° 270° 325° 360"
(a)
—o001 000—2001 000—
0° 225° 45° 615° 90° 135 180° 225° H 315 3g0°
¢
(b)

F1a. 2-25. Phase patterns in rectangular coordinates for source of Example 3 at
(a) with polarization ellipses for every 22.5° interval of ¢ at (b).

2-18. General Equation for the Field of a Point Source. Both compo-
nents of the far field of a point source in free space vary inversely with
the distance. Therefore, in general, the two electric field components may
be expressed as

£ = 2= 10,0) 2-71)
and
E,.
E, = 2= 10,9 (2-72)

where E,,, = rms value of E, component at unit radius in the direction of
maximum field
E,. = rms value of E, component at unit radius in the direction of
maximum field
/i and f, are, in general, different functions of 6 and ¢ but of maxi-
mum value unity
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The instantaneous values of the field components vary harmonically
with time and are given by (2-71) and (2-72) multiplied, in general, by
different functions of the time. Thus, for the instantaneous field com-
ponents

By = ‘/2E’" 7.(6, ¢) sin (wt — 1) (273)
and
By = Y2 (0, 4y5in (ot — 1 — 9 (2-74)

where n = B(r — ) + /2(6, ¢)

6 = fl(ay $)

r = radius to field point (r, 8, ¢)

r, = radius of point to which phase is referred

f» and f, are, in general, different functions of 8 and ¢

The instantaneous value of the total electric field at a point (r, 8, ¢)

due to a point source is the vector sum of the instantaneous values of the
two components. That is,

E; = a,E“ + a‘E“ (2-75)

where a, = unit vector in 6 direction

a, = unit vector in ¢ direction
Substituting (2-73) and (2-74) into (2-75) then gives a general equation
for the electric field of a point source at any point (r, 9, ¢) as follows:

\/ 2E’,.

E, = f1(8, ¢) sin (wt — )

\/ \/2E,.

+ a, f2(8, ¢) sin (wt — 5 — &) (2-76)

In this equation the instantaneous total electric field vector E, is a function
of both space and time, thus

E. = f(r, §, ¢, t) (2'77)

The far field is entirely specified by (2-76). When f, and f, are complicated
expressions, it is often convenient to describe E; by means of graphs for
the four quantities E,, E,, n, and 3, as has been discussed. It is assumed
that the field varies harmonically with time and that the frequency is
known.
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PROBLEMS

2-1. a. Calculate the exact directivity for three unidirectional sources having the
following power patterns:

U= U,sin §sin’¢
U= U.sin 8 sin®¢
U= U,sin’ §sin*¢ .
U has a value only for 0 < ¢ < 7 and 0 < ¢ < 7 and is zero else-
where.
b. Calculate the approximate directivity from the product of the half-
power beam widths for each of the sources.
¢. Tabulate the results for comparison.

2-2. Show that the directivity for a source with a unidirectional power pattern
given by U = U,, cos” 6 can be expressed as D = 2(n+ 1). U has a value only for
0< < x/2and 0 < ¢ < 27 and is zero elsewhere.

2-3. The earth receives from the sun 2.2 gram calories/min/cm’.

a. What is the corresponding Poynting vector in watts per square meter?

b. What is the power output of the sun, assuming that it is an isotropic
source?

¢. What is the rms field intensity at the earth due to the sun’s radiation,
assuming all the sun’s energy is at a single frequency?

Note: 1 watt = 14.3 gm cal/min.
Distance earth to sun = 149 X 10° kilometers.

2-4. Prove the following theorem: If the minor lobes of a radiation pattern re-
main constant as the beam width of the main lobe approaches zero, then the direc-
tivity of the antenna approaches a constant value as the beam width of the main
lobe approaches zero.

2-5. a. Calculate by graphical integration the directivity of a source with a uni-
directional power pattern given by U = cos §. Compare this directivity
value with the exact value. U has a value only for 0 < ¢ < /2 and
0 < ¢ < 2x and is zero elsewhere.

b. Repeat for a unidirectional power pattern given by U = cos’ 6.
¢. Repeat for a unidirectional power pattern given by U = cos® 6.

Note that the directivity in each case is given by D = 2/(f¢/* U sin ¢ df). To
evaluate the integral graphically lay off 0 to w/2 (0° to 90°) as abscissa and 0 to 1
as ordinate on rectangular graph paper. The value of the integral is then the ratio
of the area a under the curve U sin 6 to the total area 4 of the rectangle (0 to /2
by O to 1), both in the same arbitrary units, multiplied by =/2. That is, [¢/2 U
sin 8 d0 = (a/A)(x/2). The evaluation of the area a may be done by square
counting or by dividing the area into vertical strips and taking the area of any strip
as the product of its base width and average ordinate.




CHAPTER 3
THE ANTENNA AS AN APERTURE

3-1. Introduction. In this chapter an antenna will be regarded as pos-
sessing an aperture or equivalent area over which it extracts energy from
a passing radio wave.'

The concept of aperture is most simply introduced by considering a
receiving antenna. Suppose that the receiving antenna is an electro-
magnetic horn immersed in the field of a plane wave as suggested in
Fig. 3-1. Let the Poynting vector, or power density, of the plane wave

Direction of propagation
of plone wovie

Fig. 3-1. Plane wave incident on electromagnetic horn of mouth aperture A,

be P watts/meter’ and the area of the mouth of the horn be A meters®.
If the horn were able to extract all the power from the wave over its entire
area A, then the total power W absorbed from the wave would be

W = PA watts (3-1)

1J. C. Slater, “Microwave Transmission,” McGraw-Hill Book Company, Inc.,
New York, 1942, p. 235.

Chap. 10 by Kraus, Clark, Barkofsky, and Stavis, “Very High Frequency Tech-
niques,” by Radio Research Laboratory staff, McGraw-Hill Book Company, Inc.,
New York, 1947, pp. 225-228.

H. T. Friis, A Note on a Simple Transmission Formula, Proc. I.R.E., 34, 254-256,
May, 1946,

41
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Thus, the electromagnetic horn may be regarded as an aperture, the
total power it extracts from a passing wave being proportional to the
aperture or area of its mouth.*

It will be convenient to distinguish between several types of apertures,
namely, effective aperture, scattering aperture, loss aperture, collecting
aperture, and physical aperture. These different types of apertures are
defined and discussed in the following sections.

In the following discussion in this chapter, it is assumed, unless other-
wise stated, that the antenna has the same polarization as the incident
wave and is oriented for maximum response.

3-2. Effective Aperture. Consider any type of collector or receiving
antenna which is situated in the field of a passing electromagnetic wave
as suggested in Fig. 3-2a. The antenna collects power from the wave and

Antenno
2 Terminating 2
T |impedance “Tncident
plone wave

F1g. 3-2. Schematic diagram of antenna terminated in impedance Z r with plane wave
incident on antenna (a) and equivalent circuit (b).

delivers it to the terminating or load impedance Z; connected to its
terminals. The Poynting vector, or power density of the wave, is P watts/
meter’. Referring to the equivalent circuit of Fig. 3-2b, the antenna
may be replaced by an equivalent or Thévenin generator having an
equivalent voltage V and internal or equivalent antenna impedance Z,.
The voltage V is induced by the passing wave and produces a current [
through the terminating impedance Zr given by

__V
I'=z.+7z. 6-2)

where I and V are rms or effective values.

* Actual electromagnetic horns have effective apertures which are smaller than the
physical area of the mouth, being usually 0.5 to 0.7 of this value.
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In general, the antenna and terminating impedances are complex, thus
Zr = Rr + jX» (3-3)

and
Z, =R, 4+ jX. (34)

The antenna resistance may be divided into two parts, a radiation resist-
ance R, and a loss resistance R, that is,

R.=R. + R, (3-5)

Let the power delivered by the antenna to the terminating impedance
be W. Then

W = I’R, (3-6)
From (3-2), (3-3), and (3-4) the current magnitude
I=— = U (3-7)

VR + Ry + B’ + X + X
Substituting (3-7) into (3-6) gives

W= ———— KzR?___.A_
(R, + R, + R+ (X4 + Xy)°

The ratio of the power W in the lerminaling impedance to the power density
of the incident wave will be defined as the effective aperture A,.

Thus,

(3-8)

Effective aperture = %7 = A, (3-9)

If W is in watts and P in watts per square meter, then A, is in square

meters. If P is in watts per square wavelength, then A, is in square

wavelengths, which is often a convenient unit of measurement for apertures.

Substituting (3-8) into (3-9) gives the effective aperture in terms of the

incident power density, the induced voltage, and the antenna and termi-
nating impedances, that is,

_ V'R;
PR, + R, + R0’ 4+ (X4 + X0)?)
Unless otherwise specified, it is assumed that V is the induced voltage

when the antenna is oriented for maximum response and the incident
wave has the same polarization as the antenna. As shown by (3-10), the

A, (3-10
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effective aperture takes into account antenna losses, as given by E., and
any mismatch between the antenna and its terminating impedance.’

Let us now consider the special case where the terminating impedance is
the complex conjugate of the antenna impedance so that maximum power
is transferred. It will also be assumed that the antenna losses are zero
(R, = 0 and therefore R, = R,). Thus,

Xr=—X, (3-12)

and
Rr = R, (3-13)

Introducing the conditions for maximum power transfer as given by (3-12)
and (3-13) into (3-8) results in the largest possible power W’ in the termi-
nating impedance as follows:

2 2 2

The power W’ is delivered to the terminating impedance under conditions
of maximum power transfer and zero antenna losses.
The ratio of this power to the power density of the incident wave is

11t is sometimes convenient to express the induced voltage V in terms of the incident
field intensity E and an effective height h of the antenna. That is
V = hE

where V is in volts if & is in meters and E in volts per meter (or h may be in wavelengths
and E in volts per wavelength). The effective height and the effective aperture are
related as may be shown in the following way. In (3-10) P = E!/Z, where Z is the in-
trinsic impedance of the medium (Z = +/u/¢). Thus, on solving (3-10) for V we have,

v - \/ATKEJRLWP + Ko+ Xl
RyZ
so that the effective height is given by
h = [AdR. + Ry + Re? + (X4 + Xn)
RyZ

Under the conditions considered in the next paragraphs of the text for the maximum
effective aperture A,m, the expression for the effective height reduces to

AR h*Z
= emibp Am P
h=2 \/—Z or iR, (3-11)

As an example, for a thin linear }-wavelength antenna A,» = 0.13 square wavelength
and R, = 73 ohms. Now Z = 377 ohms for free space, so that for the }-wavelength
antenns. the effective height A = 0.32 wavelength.
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the mazimum effective aperture’ A,,.. That is,

’

Maximum effective aperture = E;; = A,m (3-15)

Substituting (3-14) in (3-15) yields an expression for the maximum
effective aperture in terms of the incident power density, the induced
voltage, and the antenna radiation resistance, as follows:

.
~ 4PR,

The ratio of the effective aperture to the maximum effective aperture
is called the effectiveness ratio . That is,

A, (3-16)

Alm

The effectiveness ratio may assume values between zeroand 1 (0 < a < 1).
A perfectly matched, 100 per cent efficient antenna has an effectiveness
ratio of unity.

Ordinarily the terminating impedance is not located physically at the
antenna terminals as suggested in Fig. 3-2. Rather, it is in a receiver
which is connected to the antenna by a length of transmission line. In
this case Zr is the equivalent impedance which appears across the antenna
terminals. If the transmission line is lossless, the power delivered to the
receiver is the same as that delivered to the equivalent terminating im-
pedance Z;. If the transmission line has attenuation, the power delivered
to the receiver is less than that delivered to the equivalent terminating
impedance by the amount lost in the line.

3-3. Scattering Aperture. In the preceding section we discussed the
effective area from which power is absorbed. Referring to Fig. 3-2b, the
voltage induced in the antenna produces a current through both the
antenna impedance Z, and the terminal or load impedance Z;. The
power W absorbed by the terminal inpedance is, as we have seen, the
square of this current times the real part of the load impedance. Thus,
as given in (3-6), W = I°’R;. Let us now inquire into the power appearing
in the antenna impedance Z,. The real part of this impedance R, has
two parts, the radiation resistance R, and the loss resistance R, (R, =
R, + R,). Therefore, some of the power which is received will be dissipated
as heat in the antenna as given by

W = 'R, (3-18)

1The “maximum effective aperture,” as here defined, is equivalent to the “effective
area” of an antenna based on its directivity as defined by the Institute of Radio
Engineers’ (IRE) Standards.

Effectivenessratio = o« = (dimensionless) (3-17)
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The remainder is ‘“‘dissipated” in the radiation resistance, in other words,
is reradiated from the antenna. The reradiated power is

W = I'R, (3-19)

This reradiated or scattered power is analogous to the power that is
dissipated in a generator in order that power be delivered to a load. Under
conditions of maximum power transfer, as much power is dissipated in the
generator as is delivered to the load.

The reradiated power may be related to a scatlering aperture or scattering
cross section. This aperture A, may be defined as the ratio of the re-
radiated power to the power density of the incident wave. Thus

A, = scattering aperture = _p%_ (3-20)
where
V'R
0 = [, = ; -21
Wi =Tk = R ¥R+ Ry + X, + X &
If the antenna loss resistance B, = 0, and Ry = R, and X, = — X for

maximum power transfer, then

V’

4. = iPR, (3-22)
or the scattering aperture equals the maximum effective aperture, that is,
Al = Aam (3'23)

Thus, under conditions for which maximum power is delivered to the
terminal impedance, an equal power is reradiated from the receiving
antenna.

The ratio of the scattering aperture to the effective aperture will be
called the scattering ratio 8, that is,

Soatteringiratiole ﬁ' = (e (3-24)
The scattering ratio may assume values between zero and infinity

(0< B ).

For conditions of maximum power transfer and zero antenna losses,
the scattering ratio is unity. If the terminal resistance is increased, both
the scattering aperture and the effective aperture decrease, but the scatter-
ing aperture decreases more rapidly so that the scattering ratio becomes
smaller. By increasing the terminal resistance, the ratio of the scattered
to absorbed power can be made as small as we please, although by so
doing the absorbed power is also reduced (see Fig. 3-3).
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On the other hand, it may be that we should like to make the reradiation
as large as possible. This might be the case, for example, if the antenna
is not connected to a receiver but is used as a so-called parasitic antenna
whose function is to reradiate the power received from a nearby trans-
mitting antenna. The field reradiated by the parasitic antenna interferes
with the field from the transmitting antenna so as to produce the desired
directional pattern. Depending on the phase of the current in the parasitic
antenna, it may act either as a director or as a reflector. To make the
reradiated power a maximum, the terminal impedance should be zero and

4
)4
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:
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F1g. 3-3. Variation of effective aperture A,, scattering aperture A,, and collecting
aperture A, as a function of the relative terminal resistance R;/R, of a small antenna.
It is assumed that R, = X, = Xy = 0.

the antenna should also be resonant, that is, R, = X, = X, = 0. We
also assume R, = 0. Then from (3-21) the reradiated power is

. V’
W = R (3-25)
and the maximum scattering aperture becomes
VZ
Aun - PR' (3-26)
or
A,. = 4A,. (3-27)

The maximum cross section of an antenna as a scatterer of energy is thus
four times as great as its maximum effective aperture as an absorber of
energy.

The relation between 4, and A4, as a function of the relative terminal
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resistance R;/R, is shown in Fig. 3-3. In this graph it is assumed that
R, =X,=X,=0.

The reradiated or scattered field of an absorbing antenna may be consid-
ered as interfering with the incident field so that a shadow is cast behind the
antenna as illustrated in Fig. 3-4. The shadow will not be so sharply
defined as suggested in Fig. 3-4, but a decrease in the field intensity or a
partial shadow must be present.

( ——> —_— ———

Antenna

[~

—_—
Incident ——>\
plane ﬁ “‘:’ Shadow
wave —_— >Scoﬁered
/ \ waves
Al
e ——— —
\. — — —_—

Fi1c. 3-4. Shadow cast by a receiving antenna.

3-4. Loss Aperture. If I, is not zero, some power is dissipated as heat
in the antenna. This may be related to a loss aperture A . which is given by
A, = 'R, _ VR,
r P Pl(R, + R + Ry)’ + (X4 + X1)°]
3-5. Collecting Aperture.! Three types of apertures have now been
discussed: effective, scattering, and loss. These three apertures are re-
lated to three ways in which power collected by the antenna may be con-
verted: into heat in the terminal resistance (effective aperture); into heat
in the antenna (loss aperture); or into reradiated power (scattering aper-
ture). By conservation of energy the total power collected is the sum of
these three powers. Thus, adding these three apertures together yields
what will be called the collecting aperture as given by

_ VAR, + R, + Ry) _ _
= PR TR+ B + Xa F Xp7 = AT A+ 40 (329

The variation of A, with R,/R, for the case of A, = 0is shown in Fig. 3-3.
3-6. Physical Aperture. It is often convenient to speak of a fifth type of
aperture called the physical aperture A,. This aperture is a measure of

(3-28)

A,

1Collecting aperture as here defined is different from that given in “Very High Fre-
quency Techniques,” by Radio Research Laboratory staff, McGraw-1lill Book Com-
pany, Inc., New York, 1947, p. 227. Collecting aperture as defined in that reference is
what we have here called the maximum effective aperture.
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the physical size of the antenna. The manner in which it is defined is
entirely arbitrary. For example, it may be defined as the physical cross
section (in square meters or square wavelengths) perpendicular to the
direction of propagation of the incident wave with the antenna oriented
for maximum response. This is a practical definition in the case of many
antennas. For example, the physical aperture of an electromagnetic horn
is the area of its mouth, while the physical aperture of a linear cylindrical
dipole is the cross-sectional area of the dipole. However, in the case of
a short stub antenna mounted on a very large ground plane, the simple
definition given above is of questionable significance owing to the im-
portance of the currents on the ground plane. Thus, the physical aperture
has a simple, definite meaning only for some antennas. On the other
hand, the effective aperture has a definite, simply defined value for all
antennas.

The ratio of the maximum effective aperture to the physical aperture
will be called the absorption ratio v, that is,

4, 7
The absorption ratio may assume values between zero and infinity
(0 <y <),

3-7. Maximum Effective Aperture of a Short Dipole. In this section the
maximum effective aperture of a short dipole with uniform current will
be calculated. Let the dipole have a

Absorption ratio = (dimensionless) (3-30)

length ! which is short compared z

with the wavelength (I < A). Let it

be coincident with the y axis at the | 1 |
origin as shown in Fig. 3-5, with a I Ry ﬁl
plane wave traveling in the negative rlfwwa—
z direction incident on the dipole. Direction - \Short Y

The wave is assumed to be linearly ' nctdent >
polarized with E in the y direction.
The current on the dipole is assumed
constant and in the same phase over  Fig. 3-5. Short dipole with uniform cur-
its entire length, and the terminat- rent induced by incident wave.
ing resistance R is assumed equal
to the dipole radiation resistance R,. The antenna loss resistance R, is
assumed equal to zero.

The maximum effective aperture of an antenna is given by (3-16) as

v?
= 4PR,

where the effective value of the induced voltage V is here given by the

A,. (3-31)
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product of the effective electric field intensity at the dipole and its length,’
that is,

V = El (3-32)

The radiation resistance R, of a short dipole of length ! with uniform
current will be shown later to be given by

80r°I*

Rr = X’

(3-33)

where A = wavelength
The power density, or Poynting vector, of the incident wave at the dipole
is related to the field intensity by

=7 (3-34)

where Z = intrinsic impedance of the medium
In the present case, the medium is free space so that Z = 120r ohms.
Now substituting (3-32), (3-33), and (3-34) into (3-31), we obtain for the
maximum effective aperture of a short dipole

2724 2
;22%:—%’,1—’; = 23 = 0119N (3-35)
Equation (3-35) indicates that the maximum effective aperture of a short
dipole is somewhat more than 1/10 square wavelength and is independent
of the length of the dipole provided only that it is small (I < A). The
maximum effective aperture neglects the effect of any losses, which prob-
ably would be considerable for an actual short dipole antenna. If we
assume that the terminating impedance is matched to the antenna im-
pedance but that the antenna has a loss resistance equal to its radiation
resistance, the effective aperture from (3-10) is one-half the maximum
effective aperture obtained in (3-35).

3-8. Maximum Effective Aperture of a Linear }-Wavelength Antenna.
As a further illustration, the maximum effective aperture of a linear
3-wavelength antenna will be calculated. It is assumed that the current
has a sinusoidal distribution and is in phase along the entire length of the
antenna. It is further assumed that B, = 0. Referring to Fig. 3-6a, the
current I at any point y is then

Acm =

1= I, cos 2% (3-36)

A plane wave incident on the antenna is traveling in the negative z direc-
tion. The wave is linearly polarized with E in the y direction. The

1The effective height A of the short dipole with uniform current is equal to its length I.
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equivalent circuit is shown in Fig. 3-6b. The antenna has been replaced
by an equivalent or Thévenin generator. The infinitesimal voltage dV of
this generator due to the voltage induced by the incident wave in an
infinitesimal element of length dy of the antenna is

dV = E dy cos 2 (3-37)
It is assumed that the infinitesimal induced voltage is proportional to the
current at the infinitesimal element as given by the current distribution
(3-36).

4
le ),/2 |
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WV i dl
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Fie. 3-6. Linear }-wavelength antenna in field of electromagnetic wave (a) and
equivalent circuit (b).

The total induced voltage V is given by integrating (3-37) over the
length of the antenna. This may be written as
r4

v=2/ Ecos ?’;—y i (3-38)
0
Performing the integration in (3-38) we have
E\
= (3-39)

The value of the radiation resistance R, of the linear }-wavelength antenna

will be taken as 73 ohms." The terminating resistance R, is assumed

equal to R,. The power density at the antenna is as given by (3-34).

Substituting (3-39), (3-34), and R, = 73 into (3-16), we obtain, for the
maximum effective aperture of a linear §-wavelength antenna,

4 120eED _ 30

™ Ar'E'13 T 13x

! The derivation of this value is given in Chap. 5.

A = 0.13\° (3-40)
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Comparing (3-40) with (3-35), the maximum effective aperture of the
linear }-wavelength antenna is about 10 per cent greater than that of
the short dipole.

The maximum effective aperture of the i-wavelength antenna is ap-
proximately the same as an area } by } wavelength on a side, as illustrated
in Fig. 3-7a. This area is } square wavelength. An elliptically shaped

Lineor holf-wove

;_//// W
1_//////////

(a) (b)
Fia. 3-7. (a) Maximum effective aperture of linear }-wavelength antenna is approxi-
mately represented by rectangle 4 by 1 wavelength on a side. (b) Maximum effective
aperture of linear 3-wavelength antenna represented by elliptical area of 0.13 square
wavelength,

aperture of 0.13 square wavelength is shown in Fig. 3-7b. The physical
significance of these apertures is that power from the incident plane wave
is absorbed over an area of this size by the antenna and is delivered to
the terminating resistance.

A typical thin }-wavelength antenna may have a conductor diameter
of 1/400 wavelength, so that its physical aperture is only 1/800 square
wavelength. For such an antenna the maximum effective aperture of
0.13 square wavelength is about 100 times larger.

3-9. Relation of Aperture to Directivity and Gain. In Chap. 2 the con-
cept of directivity was developed for a point source of radiation or trans-
mitting antenna. By reciprocity, the shape of the radiation pattern of a
transmitting antenna is identical with its pattern when it is a receiving
antenna (see Sec. 10-2). Thus, the concept of directivity, which is based
on pattern shape, can be extended to receiving antennas, the directivity
being the same for both transmission and reception.

The .aperture of receiving antennas has been discussed in the preceding
sections. It follows that if the directivity of a receiving antenna is in-
creased, its maximum effective aperture is increased in direct proportion.
Therefore, the maximum effective apertures of two antennas, A,.., and

A, 2, are in the same proportion as the directivities of the two antennas,
D, and D,. That is,

D, _
A (3-41)
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In Chap. 2 the gain of a transmitting antenna with respect to a lossless
isotropic source was shown to be equal to the directivity times the antenna
efficiency. If the definition of gain is now extended to include both losses,
as expressed by the efficiency factor £ and the effect of impedance mis-
match, we may replace k in (2-51) by the effectiveness ratio «; then

G, = aD (342)

where G, is the gain of a transmitting or receiving antenna with respect to
a lossless isotropic antenna. The isotropic antenna is assumed to be
terminated for maximum power transfer, but the antenna under con-
sideration may or may not be. If the antenna is terminated for maximum
power transfer, « = k and (3-42) reduces to (2-51).

Let us now compare the gain of two antennas, G,, and Gy, If the
directivities of these antennas are D, and D, and their effectiveness ratios,
a, and a,, respectively, we have from (341)

Go, _ anDy _ 1A
Goz B a;D, - azA (3-43)
By (3-17) the product of the maximum effective aperture and the effective-
ness ratio is the effective aperture. Therefore, (3-43) becomes
Gol A 1
Za _ La 44
GOZ Acﬂ (3 )
where 4,, and A,, are the effective apertures of antennas 1 and 2.

3-10. Maximum Effective Aperture of an Isotropic Source. The maxi-
mum effective aperture of an isotropic source will now be derived. The
directivity of an isotropic source is unity. If antenna 1 is an isotropic
source, then, in (341), D, = 1 and

Az

D,

Equation (345) states that the maximum effective aperture of an
isotropic antenna (antenna 1) is equal to the ratio of the maximum effective
aperture to the directivity of any antenna (antenna 2). We have already
calculated the maximum effective aperture and directivity for a short dipole
antenna. These are (3/8x)\* and 3/2, respectively. Introducing these
values into (3-45) gives

A oml — (3‘45)

A = 37— = 3; = 0079 A? (3-46)

Substituting (346) in (3-45), we obtain the relation that the directivity
of any antenna is equal to its maximum effective aperture, divided by the
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maximum effective aperture of an isotropic antenna. That is, the directiv-
ity of any antenna is equal to 4x/A? times its maximum effective aperture.
Thus,

D= ‘;—" A.. (3-47)

3-11. Maximum Effective Aperture and Directivity of Isotropic, Short
Dipole, and }-Wavelength Antennas. The maximum effective aperture of
a linear }-wavelength antenna was calculated in Sec. 3-8 as 0.13 square
wavelength. The directivity of the j-wavelength antenna can now be
calculated from (3-47) as

D = 41—’_ = 1.64 (3-48)

The maximum effective aperture and directivity of isotropic, short dipole,
and }-wavelength antennas have now been calculated. The values are
summarized in Table 3-1.

TABLE 3-1
Maximum |
Antenna effective Directivity Db directivity®

aperture, A’

Isotropic................. 1 = 0.079 1 0
4r

Short dipole.............. 3 _ 0.119 1.5 1.76
87

. 1 oo 30

Linear 3-wavelength....... o = 0.13 1.64 2.14

737

* Db directivity = 10 logis D.

3-12. Friis Transmission Formula. As a further illustration of the
utility of the aperture concept, it will be applied to the derivation of a
simple free-space transmission formula which has been presented by
H. T. Friis."

Referring to Fig. 3-8, an isotropic, 100 per cent efficient’ point source
radiates a power W,. At a distance r in free space, the power density is

! A Note on a Simple Transmission Formula, Proc. I.R.E., 34, 2564-256, May, 1946.
t Power radiated equals power input.
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W,
= (3-49)

The power W, delivered to the equivalent impedance appearing across
the antenna terminals is

Wl A or
4’

W,= A.P= (3-50)

where A,, is the effective aperture of the receiving antenna. If the
source I8 not isotropic but has a directivity D,, (3-50) becomes

_% — At'Dl

W.~ 4m® (3-51)
From (347) we have

D, = % Ao (3-52)

where A,,., is the maximum effective aperture of the source or trans-
mitting antenna. The concept of aperture, originally developed for
receiving antennas, is here extended to transmitting antennas, the aperture

{sotropic / Aem
source

. L >
W, w

Receiver

F1g. 3-8. Free-space transmission circuit consisting of isotropic source and receiving
horn of maximum effective aperture A.m.

of a transmitting antenna being equal to its aperture when used as a
receiving antenna. Introducing (3-52) into (3-51) gives the Friis trans-
mission formula,’

_u_,: i AorA emié
W, = N G55
This formula may be made more general by replacing the maximum
effective aperture of the source by its effective aperture A,,. Then we
have

W, _ A
- 2

W, A

The ratio W,/W, in (3-54) may be called a power transfer ratio. It
expresses the fraction of the power input to a transmitting antenna

(3-54)

1 In the formula as given by Friis both apertures are maximum effective apertures,
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which is picked up and delivered to the terminals of a receiving antenna
at a distance r in free space. The power-transfer ratio is expressed by
(3-54) in terms of the effective apertures of the transmitting and receiving
antennas, their separation, and the wavelength. Equation (3-54) is a
far-field relation and hence will not apply if r is too small compared with
the size of the antenna. However, the error is less than a few per cent if
3

r> 2—;{— (3-55)
where d is the maximum linear dimension of either antenna. The formula
is also restricted to free-space circuits. If transmission is via a direct path
and a simple ground reflection, the power transfer ratio may lie between the
extremes of four times the value given by (3-54) and zero, depending on
whether the direct and reflected waves reinforce or cancel at the receiving
location.

PROBLEMS

3-1. What is the maximum effective aperture of a microwave antenna with a
directivity of 900?

3-2. What is the maximum power received at a distance of 0.5 kilometer over a
free-space 1,000-Mec circuit consisting of a transmitting antenna with a 25-db gain
and a receiving antenna with a 20-db gain? The gain is with respect to a loss-
less isotropic source. The transmitting antenna input is 150 watts.

3-3. What is the maximum effective aperture (approximately) for a beam an-
tenna having half-power widths of 30° and 35° in perpendicular planes intersecting
in the beam axis? Minor lobes are small and can be neglected.




CHAPTER 4
ARRAYS OF POINT SOURCES

4-1. Introduction.! In Chap. 2 an antenna was considered as a single
point source. In Chap. 3 an antenna was treated as an aperture. In
this chapter we return again to the point-source concept, however, ex-
tending it to a consideration of arrays of point sources. This approach
is of great value since the pattern of any antenna can be regarded as
produced by an array of point sources. Much of the discussion will
concern arrays of isotropic point sources which may represent many
different kinds of antennas. Arrays of nonisotropic but similar point
sources are also treated, leading to the principle of pattern multiplication.
From arrays of discrete point sources we proceed to continuous arrays of
point sources and Huygens’ principle.

4-2. Arrays of Two Isotropic Point Sources. Let us introduce the sub-
ject of arrays of point sources by considering the simplest situation,
namely, that of two isotropic point sources. As illustrations, five cases
involving two isotropic point sources will be discussed.

Case 1. Two Isotropic Point Sources of Same Amplitude and Phase. The
first case we shall analyze is that of two isotropic point sources having
equal amplitudes and oscillating in the same phase. Let the two point
sources, 1 and 2, be separated by a distance d and located symmetrically
with respect to the origin of the coordinates as shown in Fig. 4-la. The
angle ¢ is measured counterclockwise from the positive z axis. The
origin of the coordinates is taken as the reference for phase. Then at a
distant point in the direction ¢ the field from source 1 is retarded by
4d, cos ¢, while the field from source 2 is advanced by 3d, cos ¢, where
d, is the distance between the sources expressed in radians. That is,

4 = 2
A
! In calculating patterns much labor may be saved in evaluating trigonometric func-
tions by expressing the argument of the function in turns instead of in radians or degrees.
Those not already familiar with this timesaving technique may refer to the discussion
in the Appendix on ‘“Radians, degrees, and turns.” A table of trigonometric functions
of arguments expressed in turns is also included in the Appendix.

s7
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The total field at a large distance r in the direction ¢ is then
E = Ee's 4 Eu''s (4-1)

where ¢ = d, cos ¢ and the amplitude of the field components at the
distance r is given by E,.

90°
60°
Y
To distont
point
L 30
-t ‘”
1 o % _’l rd X
(a)
(c)

Eoe’j¥ (from source 2)

E,e'j'g (from source 1) (b)
Fia. 4-1. (a) Relation to coordinate system of two isotropic point sources separated
by a distance d. (b) Vector addition of the fields from two isotropic points sources of
equal amplitude and same phase located as in (a). (c) Field pattern of two isotropic

point sources of equal amplitude and same phase located as in (a) for the case where
the separation d is § wavelength,

The first term in (4-1) is the component of the field due to source 1
and the second term the component due to source 2. Equation (4-1)
may be rewritten

e+ig + e—i;
2

E = 2E, (4-2)
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which by a trigonometric identity is

E = 2E, cosg = 2F, cos (% cos ¢) (4-3)

This result may also be obtained with the aid of the vector diagram®
shown in Fig. 4-1b, from which (4-3) follows directly. We note in Fig.
4-1b that the phase of the total field £ does not change as a function of
¥. To normalize (4-3), that is, make its maximum value unity, set 2E, =
1. Suppose further that d is 4 wavelength. Then d, = ». Introducing
these conditions into (4-3) gives

E = cos (g cos ¢) (4-9)
The field pattern of E vs. ¢ as expressed by (4-4) is presented in Fig. 4-1c.
The pattern is a bidirectional figure of eight with maxima along the y
axis. The space pattern is doughnut-shaped, being a figure of revolution
of this pattern around the z axis.

The same pattern can also be obtained by loeating source 1 at the
origin of the coordinates and source 2 at a distance d along the positive
z axis as indicated in Fig. 4-2a. Taking now the field from source 1 as
reference, the field from source 2 in the direction ¢ is advanced by d,
cos ¢. Thus, the total field E at a large distance r is the vector sum of
the fields from the two sources as given by

E =E, + E,e*" (4-5)
where ¢y = d, cos ¢
The relation of these fields is indicated by the vector diagram of Fig. 4-2b.
From the vector diagram the magnitude of the total field is
E = 2F, cosg = 2E, cosugs—d’

as obtained before in (4-3). The phase of the total field E is, however,
not constant in this case but is ¥/2, as also shown by rewriting (4-5) as

2 it
E = Ey(1 + &) = 2E' %<02+Te2) = 2B} cos\ép_ 47

(4-6)

Normalizing by setting 2E, = 1, (4-7) becomes
E = ¢ cos; = cosy 2 (4-8)

In (4-8) the cosine factor gives the amplitude variation of E, and the

Tt is to be noted that the quantities represented here by vectors are not true space
vectors but merely vector representations of the time phase (i.e., phasors).
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exponential or angle factor gives the phase variation with respect to source
1 as the reference. The phase variation for the case of i-wavelength
spacing (d, = «) is shown by the dashed line in Fig. 4-2c. Here the phase
angle with respect to the phase of source 1 is given by /2 = (x/2) cos ¢.

Y

£.e' Y (from source 2)

o S

E, {from source 1}

(a) (b)

+90° = =
_—~Rototion around source | 7
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Fia. 4-2.
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N </ A | . 4
/Rotohon around center point of orroy,”
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(¢)
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270°

360°

(a) Two isotropic point sources with the origin of the coordinate system

coincident with one of the sources. (b) Vector addition of the fields from two isotropic
point sources of equal amplitude and same phase located as in (a). (¢) Phase of total
field as a function of ¢ for two isotropic point sources of same amplitude and phase
spaced } wavelength apart. The phase change is zero when referred to the center point
of the array but is /2 as shown by the dashed curve when referred to source 1.

The magnitude variation for this case has already been presented in
Fig. 4-1c. When the phase is referred to the point midway between the
sources (Fig. 4-1a), there is no phase change around the array as shown
by the solid line in Fig. 4-2c. Thus, an observer at a fixed distance ob-
serves no phase change when the array is rotated (with respect to ¢)
around its mid-point, but a phase change (dashed curve of Fig. 4-2¢) is
observed if the array is rotated with source 1 as the center of rotation.

Case 2. Two Isotropic Point Sources of Same Amplitude But Opposite
Phase. This case is identical with the one we have just considered except
that the two sources are in opposite phase instead of in the same phase.
Let the sources be located as in Fig. 4-la. Then the total field in the
direction ¢ at a large distance r is given by

E=Ee"} — Ee '} (4-9)
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from which

E = 2jE, sing = 2jE, sin (% cos ¢) (4-10)

Whereas in Case 1 Eq. (4-3) involves the cosine of ¢/2, (4-10) for
Case 2 involves the sine. Equation (4-10) also includes an operator j,
indicating that the phase reversal of one of the sources in Case 2 results
in a 90° phase shift of the total field as compared with the total field for

90°

60°

0. 4-3. Relative field pattern for two isotropic point sources of the same amplitude
,ut opposite phase, spaced } wavelength apart.

Case 1. This is unimportant here. Thus, putting 2jE, = 1 and con-
sidering the special case of d = )\/2, (1-10) becomes

E = sin (g cos ¢> (4-11)

The directions ¢, of maximum field are obtained by setting the argu-
ment of (4-11) equal to (2k + 1)x/2. Thus,

L3

2

where k = 0,1,2,3... Fork = 0, cos ¢, = =1 and ¢,, = 0° and 180°.
The null directions ¢, are given by

cos ¢, = =(2k + l)g (4-11a)

L3

5 CO8 g0 = hr (4-11b)

Fork = 0, ¢o = £90°
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The half-power directions are given by
g cos¢ = =(2k + l)i (4-11¢)

Fork = 0,¢ = £60°, £120°

The field pattern given by (4-11) is shown in Fig. 4-3. The pattern
is a relatively fat figure of eight with the maximum field in the same
direction as the line joining the sources (x axis). The space pattern is a
figure of revoelution of this pattern around the z axis. The two sources,
in this case, may be described as a simple type of “end-fire’” array. In
contrast to this pattern, the in-phase point sources produce a pattern
with the maximum field normal to the line joining the sources, as shown
in Fig. 4-1c. The two sources for this case may be described as a simple
“broadside” type of array.

Case 3. Two Isotropic Point Sources of the Same Amplitude and in Phase
Quadrature. Let the two point sources be located as in Fig. 4-1a. Taking
the origin of the coordinates as the reference for phase, let source 1 be
retarded by 45° and source 2 advanced by 45°. Then the total field in
the direction ¢ at a large distance r is given by

E — Eoe*"(d' uzon 2*2) + Eoe_,.(dr c2o| !’E) (4-12)
From (4-12) we obtain
T d,
E = 2E, cos (Z + 3 cos ¢) (4-13)
Letting 2E, = 1 and d = )\/2, (4-13) becomes
E = cos (ﬁ + ’5' cos ¢) (4-14)

The field pattern given by (4-14) is presented in Fig. 44. The space
pattern is a figure of revolution of this pattern around the z axis. Most
of the radiation is in the second and third quadrants. It is interesting to
note that the field in the direction ¢ = 0° is the same as in the direction
¢ = 180°. The directions ¢,, of maximum field are obtained by setting

the argument of (4-14) equal to kx, where k = 0, 1, 2, 3. ... In this way
we obtain
T T
4 + 2 cos ¢,, = kx (4-15)
For k = 0,
x x
5 c08 bn = 1 (4-16)
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and
¢ = 120° and 240° (4-17)

90°
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60°

150° 30°

180° o*
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F1a. 4-4. Relative field pattern of two isotropic point sources of same amplitude and
in phase quadrature for a spacing of 4 wavelength. The source to the right leads that
to the left by 90°.

If the spacing between the sources is reduced to ; wavelength, (4-13)

becomes

E = cos (Z + 77; cos ¢) (4-18)
The field pattern for this case is illustrated by Fig. 4-5a. It is a cardioid-
shaped, unidirectional pattern with maximum field in the negative x
direction. The space pattern is a figure of revolution of this pattern
around the z axis.

A simple method of checking the direction of maximum field is illus-
trated by Fig. 4-5b. Source 2 leads source 1 by 90° as indicated by the
vectors in the top diagram. By the time the field from source 2 has
arrived at source 1, the phase of source 1 has advanced 90° so that the
fields add in the —z direction as shown in the middle diagram. On the
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other hand, by the time the field from source 1 arrives at source 2, the
phase of source 2 has advanced 90° so that the two fields are in phase
opposition, and, therefore, the total field in the 4z direction is zero as
shown in the bottom diagram.

90*
120° 60°
150°
30°
180° 1 2 X-oxis
- . o2 X-oxis o
SR, \
(a)
-
xe—— loe— X se? 5y
? o ——— —p
y — }" (b)

Fi1a. 45. (a) Relative field pattern of two isotropic sources of same amplitude and
in phase quadrature for a spacing of 1 wavelength. Source 2 leads source 1 by 90°.
(b) Vector diagrams illustrating field reinforcement in —z direction and field cancellation
in 4z direction.

Case 4. General Case of Two Isotropic Point Sources of Equal Amplitude
and Any Phase Difference. Proceeding now to a more general situation,
let us consider the case of two isotropic point sources of equal amplitude
but of any phase difference 5. The total phase difference ¥ between the
fields from source 2 and source 1 at a distant point in the direction ¢ (see
Fig. 4-2a) is then

v =d,co8¢ + 6 (4-19)
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Taking source 1 as the reference for phase, the positive sign in (4-19)
indicates that source 2 is advanced in phase by the angle §. A minus
sign would be used to indicate a phase retardation. If, instead of re-
ferring the phase to source 1, it is referred to the center point of the array,
the phase of the field from source 1 at a distant point is given by —¢/2
and that from source 2 by +¢/2. The total field is then

E = Eo(e"; + e"';) = 2E, cos-g (4-20)

Normalizing (4-20), we have the general expression for the field pattern
of two isotropic sources of equal amplitude and arbitrary phase,

E = 0032i (4-21)

where ¢ is given by (4-19). The three cases we have discussed are ob-
viously special cases of (4-21). Thus, Cases 1, 2, and 3 are obtained
from (4-21) when § = 0°, 180°, and 90°, respectively.

Case 5. Most General Case of Two Isotropic Point Sources of Unequal
Amplitude and Any Phase Difference. A still more general situation,
involving two isotropic point sources, exists when the amplitudes are
unequal and the phase difference is arbitrary. Let the sources be situated
as in Fig. 4-6a with source 1 at the origin. Assume that the source 1

Y

(a) (b)

Fi16. 4-6. (a) Two isotropic point sources of unequal amplitude and arbitrary phase
with respect to coordinate system. (b) Vector addition of fields from unequal sources
arranged as in (a). The amplitude of source 2 is assumed to be smaller than that of
source 1 by the factor a.

has the larger amplitude and that its field at a large distance r has an
amplitude of E,. Let the field from source 2 be of amplitude aFE,
(0 £ a £1) at the distance . Then, referring to Fig. 4-6b, the magnitude
and phase angle of the total field E is given by

E=E, V(1 + acosy)’ + o*sin® ¢ /arctan l—-tsciimt_w (4-22)




66 ANTENNAS [CHar. 4

where ¢ = d, cos ¢ + & and the phase angle (£) is referred to source 1.
This is the phase angle £ shown in Fig. 4-6b.

4-3. Nonisotropic But Similar Point Sources and the Principle of Pat-
tern Multiplication. The cases considered in the preceding section all
involve isofropic point sources. These cases can readily be extended to a
more general situation in which the sources are nonisotropic but similar.

The word similar is here used to indicate that the variation with absolute
angle ¢ of both the amplitude and phase of the field is the same.' The
maximum amplitudes of the individual sources may be unequal. If,

however, they are also equal, the

Y sources are not only similar but are

Shor t idenlical.
dipoles ¢ As an example, let us reconsider
) Case 4 of Sec. 4-2 in which the
[ X sources are identical, with the modi-
d fication that both sources 1 and 2

have field patterns given by

Fia. 4-7. Two nonisotropic sources with X

respect to coordinate system. E, = Egsin ¢ (4-23)
Patterns of this type might be pro-

duced by short dipoles oriented parallel to the = axis as suggested by Fig.

4-7. Substituting (4-23) in (4-20) and normalizing by setting 2E; = 1

gives the field pattern of the array as

E = sin ¢ cos2i (4-24)
where ¢y = d, cos¢ + &

This result is the same as obtained by multiplying the pattern of the
individual source (sin ¢) by the pattern of two isotropic point sources
(cos ¥/2).

If the similar but unequal point sources of Case 5 (Sec. 4-2) each has
a pattern as given by (4-23), the total normalized pattern is

E = sin ¢ v/(1 + a cos §)’ + a’*sin® ¢ (4-25)

Here again the result is the same as that obtained by multiplying the
pattern of the individual source by the pattern of an array of isotropic
point sources.

These are examples illustrating the principle of pattern multiplication,
which may be expressed as follows: The field pattern of an array of non-
isotropic but similar point sources is the product of the pattern of the

1 The patterns not only must be of the same shape but also must be oriented in the
same direction to be called “similar.”
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individual source and the pattern of an array of isotropic point sources,
having the same locations, relative amplitudes, and phases as the non-
isotropic point sources. This principle may be applied to arrays of any
number of sources provided only that they are similar. The individual
nonisotropic source or antenna may be of finite size but can be considered
as a point source situated at the point in the antenna to which phase is
referred. This point is said to be the “phase center.”

The above discussion of pattern multiplication has been concerned only
with the field pattern or magnitude of the field. If the field of the non-
isotropic source and the array of isotropic sources vary in phase with space
angle, that is, have a phase pattern which is not a constant, the statement
of the principle of pattern multiplication may be extended to include this
more general case as follows: The total field pattern of an array of non-
isotropic but similar sources is the product of the individual source pattern
and the pattern of an array of isotropic pownt sources each located at the
phase center of the individual source and having the same relative amplitude
and phase, while the total phase pattern is the sum of the phase patterns of
the individual source and the array of isotropic point sources. The total
phase pattern is referred to the phase center of the array. In symbols,
the total field E is then

E = f(8, ¢) F(6, ¢) /f:(6, &) + Fy(8, ¢) (4-26)

Field pattern Phase pattern

where f(8, ¢) = field pattern of individual source
f.(68, ) = phase pattern of individual source
F(6, ) = field pattern of array of isotropic sources
F,(8, $) = phase pattern of array of isotropic sources
The patterns are expressed in (4-26) as a function of both polar angles
to indicate that the principle of pattern multiplication applies to space
patterns as well as to the two-dimensional cases we have been considering.
To illustrate the principle, let us apply it to two special modifications
of Case 1 (Sec. 4-2).

Example 1. Assume two identical point sources separated by a distance d, each
source having the field pattern given by (4-23) as might be obtained by two short
dipoles arranged as in Fig. 4-7. Let d = A\/2 and the phase angle § = 0. Then the
total field pattern is

E = sin ¢ cos (‘g cos 4)) (4-27)
This pattern is illustrated by Fig. 4-8c¢ as the product of the individual source
pattern (sin ) shown at (a) and the array pattern {cos [(r/2) cos¢]} asshown at ().
The pattern is sharper than it was in Case 1 (Sec. 4-2) for the isotropic sources. In
this instance, the maximum field of the individual source is in the direction¢ = 90°,
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which coincides with the direction of the maximum field for the array of two iso-
tropic sources.

(a) () (¢)

F1a. 48. Example of pattern multiplication. Two nonisotropic but identical point
sources of same amplitude and phase, spaced } wavelength apart, and arranged as in
Fig. 4-7, produce the pattern shown at (c). The individual source has the pattern
shown at (a), which, when multiplied by the pattern of an array of two isotropic point
sources (of the same amplitude and phase) as shown at (b), yields the total array
pattern of (c).

Example 2. Let us consider next the situation in whichd = A/2 and § = O asin
Example 1 but with individual source patterns given by

E, = E} cos ¢ (4-28)

This type of pattern might be produced by short dipoles oriented parallel to the
y axis as in Fig. 4-9. Here the maximum field of the individual source is in the
direction (¢ = 0) of a null from the ar-

Y ray, while the individual source has a
Shor t null in the direction (¢ = 90°) of the pat-
dipoles tern maximum of the array. By the
/\ ? principle of pattern multiplication the
I } %2 total normalized field is
X

[,