An easy-reading guide that will make you master of
the most elusive quantity in the field of electronic l!



By Rufus P. Turner

TAB BOOKS

Blue Ridge Summit, Pa. 17214




FIRST EDITION
FIRST PRINTING—APRIL 1976
Copyright €,1976 by TAB BOOKS
Printed in the United States
of America
Reproduction or publication of the content in any manner, without express
permission of the publisher. is prohibited. No liability is assumed with
respect to the use of the information herein.
Hardbound Edition: International Standard Book No.0-8306-6829-2

Paperbound Edition: International Standard Book No. 0-8306-5829-7

Library of Congress Card Number: 75-41733

Cover photo courtesy of Electronic Technician/Dealer.

Preface

Impedance is an important property of all AC circuits and of
many electrical devices. This property is encountered and
must be dealt with wherever a signal or power is handled or
processed; and the technician who has a good understanding
of impedance is at home among many of the complexities of
electronics.

From a largely practical point of view, this book surveys
the subject of impedance—its nature, how it is calculated, and
how it is measured. And because this is a practical book, every
effort has been put forth to keep such theroetical discussion as
is necessary in such form as to be understandable to the
average technician. No mathematical background beyond the
leading facts of algebra, trigonoinetry, and vectors is
required, and examples are used generously to reinforce the
discussion.

The purpose of the book is to impart a good working
knowledge of the subject and also to provide a ready reference
for the technician or student when he needs a quick refresher
on some aspects of impedance. Obviously, there is much that
we have been unable to include, but this book should brace the
reader for a subsequent study of more advanced texts.

Rufus P. Turner
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/" Ac Fundamentals

This chapter reviews briefly those selected fundamentals of
alternating-current electricity that are essential to the
understanding of impedance. This is done with the single aim
of aiding the reader; hence, the chapter should serve as an
introduction to the subject or as a refresher, whichever is
needed. The presentation moves from a simple description of
alternating current and voltage to a description of alternating
currents in reactances—reactance being the logical bridge to
impedance.

1.1 NATURE OF ALTERNATING CURRENT

Whereas a direct current (DC) is unidirectional—even
when sometimes it rises and falls periodically (pulsating
DC)—an alternating current (AC) periodically changes its
direction. An alternating current starts at zero, increases to a
maximum positive value, decreases through zero to a
maximum negative value, and returns to zero. This single,
complete set of changes is termed a cycle. The cycle is
repeated for as long as current flows.

A plot of instantaneous values of current against time
shows how the current varies in a particular AC cycle; the
shape of this cycle (the waveshape or waveform) depends
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Fig_. 1-1, Representative ac waveforms. The period is the duration from
pointa to pointb in any of these waveshapes.

upon how the current is generated or processed. Common
examples are shown in Fig. 1-1. Here Fig. 1-1(a) shows a sine
wave; in this cycle, the changes are gradual. In Fig. 1-1(b),
however, the current rises abruptly to maximum positive,
holds for an interval, drops abruptly through zero and reaches
maximum negative, holds for an interval, and finélly rises
abruptly to zero (this is a square wave). The rectangular wave
in Fig. 1-1(c) is similar to the square wave, except that the
rectangular wave holds at positive maximum and negative
maximum for shorter intervals than the square wave. The
sawtooth wave in Fig. 1-1(d) is characterized by a slow,
usually linear increase from zero to maximum positive and a
similar change from maximum negative back to zero, but with
an abrupt intermediate change from maximum positive to
maximum negative. By contrast, the triangular wave in Fig.
1-1(e) has a similar angular climb from zero to positive
maximum and from negative maximum to zero, but an
angular, rather than abrupt, change from positive maximum
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to negative maximum. Each of these waveshapes has specific
applications in electronics.

There can be, and very often are, AC cycles having shapes
other than those shown in Fig. 1-1. The cycles shown in this
illustration are symmetrical; that is, the positive half-cycle is
of the same size and shape as the negative half-cycle. But
waveshapes that are asymmetrical—either vertically or
horizontally, or both—are sometimes encountered. These
latter waveshapes are said to be complez. While Fig. 1-1 shows
only cycles that go first to positive maximum and then to
negative maximum, the opposite state—going first to negative
maximum—also exists.

Alternating voltage and current are associated in the same
sense that direct current and voltage are associated.
Accordingly, alternating current may be thought of in terms of
being produced by Ac voltage, and the flow of alternating
current through a resistor is seen to set up an AC voltage drop
across that resistor. The alternating voltage cycle resembles
the alternating current cycle, and vice versa; because of
distortion, though, the two might not always be ezact replicas.

1.2 FREQUENCY

The term frequency (f) denotes the number of complete
cycles occurring in one second—the number of cycles per
second, or hertz; thus, hertz is the basic unit of frequency.

The hertz is not always a practically manageable unit;
many of the frequencies regularly employed in electronics are
extremely high by comparison. In microwave practice,
frequencies often are in excess of 10 billion hertz. Larger units
than the hertz therefore are required for practical use; these
are kilohertz (kHz), megahertz (MHz), and gigahertz (GHz).
The prefixes kilo, mega, and giga stand for thousand, million,
and billion. Table 1-1 lists common frequency units, and Table
1-2 shows how to convert from one unit to another.

Example 1.1. The frequency of Citizens Band channel 9 is
27.065 MHz. What does this correspond to in kilohertz?

From Table 1-2, 1 MHz = 10°Hz, or 10°kHz. So.

f = 27.065 X 1000 = 27065 kHz.

13




Table 1-1. Common Frequency Units.

lcps = 1Hz
1kHz = 1000 Hz
1 MHz = 1,000,000 Hz
1 GHz = 1.000.000,000 Hz

Frequency is an important quantity in impedance
calculations and measurements, since impedance is a
frequency-dependent property.

1.3 PERIOD

The term period (t) denotes the total time it takes for a
voltage or current to complete one full cycle. This is the
distance from a to b in any of the cycles of Fig. 1-1. Obviously,
the higher the frequency, the more cycles occurring in one
second, and the shorter the period of each cycle. Period has a
simple relationship to frequency:

t=1/f (1-1)

where ¢ isin seconds and f is in hertz.
Example 1-2. Calculate the period of a 2 kHz signal.

From Eq. 1-1, 2kHz = 2000 Hz. From Eq. 1-1,
t = 1/2000 = 0.0005 second.

Equation 1-1 and the example give time in seconds. In
practice, however, one second is often a long interval and
subdivisions of this unit must be used: milliseconds
(thousandths of a second, abbreviated ms or msec),
microseconds (millionths of a second, abbreviated us or
usec), and nanoseconds ( billionths of a second, abbreviated ns
or nsec). Table 1-3 gives the periods of some common
frequencies often employed in impedance measurements.

Table 1-2. Frequency Conversion Factors.

Hz = 10°kHz = 10~*MHz = 10 °GHz

kHz = 10°Hz = 10*MHz = 10°GHz
MHz = 10°Hz = 10°kHz = 10"3GHz
GHz = 10°Hz = 10°kHz = 10*MHz

14

These periods are given in the time units used most often with
the frequencies noted.

1.4 SINE WAVE

The earliest source of useful amounts of AC power was a
rotating machine—a generator in which a coil rotating in the
uniform field between the two poles of a magnet has a voltage
induced across it. Simplified for purposes of explanation. the
coil could consist of a single loop of wire. Across such a coil
turning in an imaginary circle. the induced voltage increases
from zero to maximum positive and returns to zero as one side
of the coil moves past one pole; then the voltage “increases”
from zero to maximum negative and returns to zero as the
same side of the coil moves past the opposite pole. Thus, in 360
degrees of coil rotation (one complete revolution). the voltage
describes the AC cycle: zero, positive maximum. zero.
negative maximum, zero. This pattern is illustrated in Fig. 1-1.

At any instant. the corresponding voltage is proportional
to the sine of the angle through which the coil has turned, and
this is responsible for the characteristic waveshape (Fig. 1-1)
resulting from this action and for the term sine wave. This, of

Table 1-3. Values of Period for Common Frequencies.

f t
20 Hz 50 ms
30 Hz 33.3ms
40 Hz 25ms
50 Hz 20 ms
60 Hz 16.7 ms
100 Hz 10 ms
120 Hz | 8.3ms
400 Hz : 25ms |
500 Hz 2.0 ms |
1000 Hz . 0.1 ms
2500 Hz 400 ps
10 kHz 100 ps
20kHz . 50 us
100 kHz 10 us
1 MHz 1.0 us

ETN
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course, is the curve of the sine function in trigonometry. The
sine wave has great utility in electronics. Other waves—a few
examples of which appear in Fig. 1-1 —are called
nonsinusoidal. To find the instantaneous voltage (e) at any
angle () in the rotation of the coil, it is necessary only to
multiply the maximum value the voltage will attain (E,,,,) by
the sine of that angle: '

e=E,,siné (1-2)

where e and E,,, are in the same units (V, mV, uV).
Example 1-3. The maximum voltage (positive or negative)
.reached by a certain sine wave is 6.3V. Calculate the
instantaneous voltage at 60 degrees.

The sine of 60 degrees is 0.866025. From Eq. 1-2,

e = 6.3(0.866025)
= 5.45V

Figure 1-2 shows a single sine-wave cycle with voltage
plotted against the angle of rotation in both degrees and
radians. If, as in this sketch, a maximum value of 1V is
assumed, the voltage at the instant when the angle is 45
degrees (/4 radians) is 0.707V, since sin 45 degrees = 0.707,
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and the instantaneous voltage (from Eq. 1-2) 1is |
1 % 0.707 = 0.707V. Note that the instantaneous voltage is
again 0.707V at 135 degrees, since sin 135 degrees = 0.707.

Generators still produce most of our electrical energy, but
they are seldom found in electronic equipment. A high-grade
oscillator employing transistors or tubes also generates a sine
wave and has no moving parts. Nevertheless, the angles
(which originally denoted positions of the moving coil in a
machine) apply to the oscillator signal as well, and must be
used in many AC calculations. In modern practice, however, it
is often more convenient to plot the AC cycle on a horizontal
time axis (as when the signal is presented on an oscilloscope
screen) and to convert the time units to corresponding angles.
In this connection, Fig. 1-3 shows a single cycle of a 1000 Hz
sine wave. Note that the period here is one millisecond (refer
to Sec. 1.3) and that the instantaneous voltage at several
intermediate instants is noted: 0.125, 0.25, 0.375, 0.5, 0.625, 0.75,
0.875, and 1 ms. At any instant ¢, the angle 6 may be calculated
in terms of frequency and time:

9=2nft (1-3)

where @ is in radians, f in hertz, and ¢ in seconds.
Example 14. Calculate the angle in degrees at the 0.125 ms
point in the 1000 Hz cycle shown in Fig. 1-3.

Here, 0.125 ms = 0.000125s. From Eq. 1-3,

6 = 2(3.1416)1000(0.000125)
= 6.2832(0.125)
= (.7854 radian
45= degrees.*
Example 1-5. Calculate the angle
in degrees at the 0.75 ms point in the 1000 Hz cycle shown in
Fig. 1-3.
Here, 0.75 ms = 0.00075s. From Eq. 1-3,
6 = 2(3.1416)1000(0.00075)
= 6.2832(0.75)
= 4.7122rad
= 270 degrees.

*Degrees = radians X 57.295. Radians = degrees X 0.0174533.
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Fig. 1-3: A single-cycle 1000 Hz sine wave with the time axis plotted and
several instantaneous voltages noted.

Observe that the instantaneous voltages in Fig. 1-3 are
identical with those in Fig. 1-2: e at 0.125 ms and 0.375 ms
(corresponding to 45 and 135 degrees, respectively) is
+0.707V, and at 0.625 and 0.875 ms (corresponding to 135 and
315 degrees, respectively) is —0.707V. This shows that Eq. 1-2
may be rewritten to give voltage in terms of time:

e = E\y,sin 27 ft (1-4)

where e and E,,, are in the same units (V, mV, uV), f is in
hertz, and ¢ in seconds.

Thus, from Eq. 1-4, the instantaneous voltage at 0.75 ms is
equal to E,,, sin [2(3.1416)1000(0.00075)] = E ,,,sin 4.7124
rad = E,,sin 270 degrees = —1(1) = —1V. The instanta-
neous voltage may be found in this way for any instant in a
cycle of any frequency. From this discussion, it should be clear
that the expression 27t equals the angle in radians.

The quantity 2#f in Eq. 14 is often encountered in
engineering formulas and is frequently abbreviated by the
lowercase Greek omega (w). This changes Eq. 1-4 to:

e = E,,,sin ot (1-5)

18

1.5 ANGULAR VELOCITY

The symbol w, which appears first in Eq. 1-5 and is equal to
97f, is the symbol for angular velocity. This symbol appears in
a great many AC formulas.

To grasp the physical significance of angular velocity in
this sense, we must return to the mechanical AC generator. In
this machine, the conductor rotates through an angle of 27
radians during each revolution, since there are 27 radians in a
circle, and the angular velocity of the rotating shaft is thus the
product of 27 radians times the number of revolutions per
second. The equivalent electrical quantity is the product of 27
radians and the AC frequency (cycles per second, or hertz,
replacing revolutions per second, since one electrical cycle is
equivalent to one mechanical revolution). As in the
mechanical example, this is also expressed in radians per
second. Thus, for 400 Hz: w = 2wf = 2(3.1416)400 = 2513
radians per second.

Table 14 lists values of @ for 23 common frequencies
between 20 Hz and 1 MHz.

1.6 AC COMPONENTS AND VALUES

In its 360-degree (27 radians) excursion, the AC cycle
passes through a number of voltage or current values. Which
of these is significant depends upon the nature of the
application or calculation involved. The four terms which
describe the AC component are mazimum value, instantaneous
value, average value, and RMS value.

Maximum Value

‘This is the highest positive or negative value reached in
the cycle. It is also called peak value. It is the value to which a
peak-responding electronic  voltmeter (such as the
rectifier/amplifier type) responds, and it is also the value
which determines the no-load output of voltage doublers,
triplers, and quadruplers. Many electronic circuits are
adjusted on the basis of the maximum value of the ACsignal.

Instantaneous Value

This is the value at any selected instant during the cycle.
Instantaneous voltage or current is sometimes labeled to show

19




Table 1-4. Values of Angular Velocity 7 for 23 Common Frequencies.

/ w
20 Hz 125.7
30 Hz 188.5
40 Hz ! 251.3
o0 Hz ' 314.1
60 Hz 377
100 Hz 628.3
J 120 Hz 1 754
150 Hz ‘ 942.5
200 Hz » 1256
300 Hz ] 1885
400 Hz : 2513
500 Hz 3142
1000 Hz 6283
1500 Hz 9425
2000 Hz ' 12,566
5000 Hz 31.416
10kHz 62.832
20kHz 125,664
50 kHz 314,159
100 kHz 628,318
200 kHz 1,256,637
500 kHz 3,141,592
1 MHz 6,283,185

its exact point along the horizontal axis, thus: e, e_ ,, i, etc.
Forasinewave,e = E,, sin6, andi = I,,,,sin 0.

Average Value

This is the simple average (arithmetic mean) of all the
instantaneous values in one cycle, disregarding sign.
E = 0637 Eyax, and I, = 0.637 Iyax. The larger the
number of instantaneous values that enter into the calculation,
the more exact the calculation will be. However, without
calculus, a phenomenal number of instantaneous values must
be used to obtain the number 0.637. The average value is the
voltage to which amplifier/rectifier-type electronic voltmeters
respond. It is also the value of voltage delivered by an
unfiltered full-wave rectifier.
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RMS Value
This is the root mean square value. It is also called the

effective value, since it is equivalent to the same-numbered DC
value in the heating effect it creates in a resistance. One rms
ampere produces the same average heating effect that one DC

ampere does:
Equs = 0.707 E yax, and Igys = 0.707 Iysy

The rms value, as its name implies, is equal to the square
root of the mean of the squares of all the instantaneous values
in one cycle, disregarding sign. To calculate the rms value:
square each instantaneous value, but do not include the
maximum value; total these squares; take the average
(arithmetic mean) of this total; extract the square root of this
average. Without calculus, a phenomenal number of
instantaneous values must be used to obtain the number 0.707,
which we are free to use without first deriving it.

The rms value is the one in which most AC voltmeters and
ammeters read, whether or not they actually respond to this
value. The widely used rectifier-type meter, for example, is
average-responsive, but its scale reads in the more useful rms
units.

Conversions

Table 1-5 gives multipliers for converting maximum,
average, and rms values. The use of these conversion factors
is straightforward. To convert 12.6V... to average volts,
multiply by 1.11:

12.6 X 1.11 = 13.99V ¢

Table 1-5. Voltage and Current Conversions and RMS Values.

E, e = 0.637 E yax = 0.901 E gy
Epys = 0.707 Epyax = 111 E ¢
Epyax = 1414 Egys = 157 E o
I
I
I

ave = 0.637 Iiax = 0.901 Iy
aws = 0.707 Ly 111 T
MAX — 1.414 IRMS = 157 IAVG

21




The numbers given in this table and earlier in this section
apply to sine-wave voltages and currents only. The
relationships are quite different with other waveforms. For
instance. in a square wave. Epy=E,;=Ey\ In a
positive-going  sawtooth wave. E,.=05E,,,. and
Eyus = 0.577 Ey,. This points up the error possible when
instruments calibrated with a sine wave are used to check
nonsinusoidal current or voltage. The readings of a
nonpeak-reading electronic voltmeter equipped with an rms
scale can be considerably in error if used to measure
square-wave voltage. for example. Likewise, when a
sinusoidal quantity under measurement contains harmonics,
the error in measurement could equal that of the harmonic
percentage. (Sine waves are not multiples of any frequency;
presence of harmonics indicates that the wave is not actually
sinusoidal—distortion is thus present.)

1.7 DISTORTION AND HARMONICS

In an ideal sine wave, the instantaneous voltage at any
point is proportional to the sine of the corresponding angle, and
the smooth curve of Fig. 1-1(a) resuits. Such perfection is
unattainable in practice; some variation, however minute,
occurs in signals from even the most refined sources. A signal
that departs from the ideal is termed distorted.

A byproduct of distortion, which is at once also the nature
of the distortion, is the presence of harmonics. These are extra
frequencies which are exact multiples, even or odd, of the
main frequency which is called the fundamental frequency (f).
The fundamental frequency is regarded as the first harmonic,
and the others are identified as h, (2 times f), h;, (3 times f),
etc. to show whether they are the second harmonic, third
harmonic, etc. In most instances distortion is considered a
defect, since it wastes energy, creates discord (as in an audio
amplifier), and causes errors in impedance measurements. In
a few instances, it serves a useful purpose—as in harmonic
generators, generators of nonsinusoidal waveforms, and most
electronic musical instruments.

Harmonic distortion is evaluated in terms of the relative
strengths of harmonic and fundamental components. When a

22

wave analyzer is used to measure these components it is tuned
successively to the fundamental frequency and to each of the
harmonic frequencies, and the voltage amplitude of each of
these components is read from the indicating meter. From this
data, the strength of each harmonic may be expressed as a.
percentage of the strength of the fundamental. Thus, the
second harmonic content would be equal to f/h,, expressed as a
percentage. The total harmonic distortion (the combined
distortion due to all harmonics present) would be:

D% = 100Vh, + hy + h] + ..hy (1-6)

‘The 100 in the equation converts the resulting figure to &

percentage. When a distortion meter is used, the combined
voltage E, due to the fundamental frequency and its
harmonics is first measured. Then the fundamental frequency
is removed by means of a high-@ filter, and the remaining
voltage (E,), which is due to harmonics alone, is measured.
The total distortion then is calculated:

D% = (100E ) /E+ (1-7)

Professional distortion meters indicate the distortion
percentage directly on a meter scale and require no
calculations.

It is often not enough to know which harmonics are present
in a distorted alternating current or voltage and what their
amplitudes are; the phase angles between the fundamental
and individual harmonics also must be known (for phase, see
Sec: 1.8). In this connection, an exhaustive study of a distorted
wave requires a Fourier analysis, which involves the use of
higher mathematics and sophisticated modern instruments.
For most practical purposes, however, distortion
measurements made with a wave analyzer, simple distortion
meter, or oscilloscope (employing the schedule method*) will
suffice.

*Many electronic engineering handbooks and textbooks give detailed
instruetions for use of this method.
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Fig. 1-4. Basic phase relationships of voitages and currents: (a) in phase

(b) leading phase, (c) lagging phase.

. It can be shown mathematically, and also by the practical
mixing of signals, that any nonsinusoidal wave is the
combination of a certain number of sine waves of various
frequencies (harmonics) and amplitudes. Thus, a square wave
is the combination of a fundamental sine-wave frequency and
numerous odd-numbered harmonics, a sawtooth wave is the
combination of a fundamental sine-wave frequency and
numerous even- and odd-numbered harmonics, etc. The more
harmonics present, the more closely the complex wave
approximates its ideal shape. The frequency of the complex
wave itself is the same as the fundamental frequency.
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1.8 PHASE

The alternations of two separate currents or voltages fall
into one of three categories: they may be in step with each
other; those of one may be ahead of those of the other; or those
of one may be behind those of the other. This condition of being
in or out of step is termed phase relationship. The three
situations just cited—in phase, leading phase, and lagging
phase—are illustrated in Fig. 1-4, which shows the relationship
of two voltages that are in phase and out of phase. These
figures serve to illustrate the general conditions; there are, of
course, almost limitless combinations of out-of-phase
quantities.

In Fig. 1-4(a), voltages E, and E, reach all of their values
at the same instants and so are in phase. Their phase
difference thus is zero degrees. In Fig. 1-4(b), E,reaches each
of its values 90 degrees before E, does. In this case, E, is said
to lead E,, and their phase difference is 90 degrees. In Fig.
14(c), E, reaches each of its values 90 degrees after E, does.
In this case, E, is said to lag E,, and again their phase
difference is 90 degrees. While a phase difference of 90 degrees
is shown in Fig. 1-4(b) and (c), the angle can be anywhere
between less than one degree to 360 degrees. (At exactly 360
degrees, of course, the in-phase condition of Fig. 1-4(a) is
reestablished.) Here, we have followed the common practice
of indicating phase in degrees, but it can be expressed also in
radians and in seconds (time).

While two voltages are shown in each example in Fig. 1-4,
phase relationships also exist between two currents, a voltage
and a current, or a current and a voltage. Also, in Fig. 1-4, E,
and E, are shown of different amplitude, but in practice the
two components may be of the same amplitude or in opposite
ratio to that shown here. It is important also to note that when
harmonic frequencies are present in a wave, these
components often are in different phase with each other and
with the fundamental frequency.

The term phase shift refers to the change in phase
relationship resulting from the flow of alternating current
through certain devices or circuits. For example, at the input
terminals of a certain “black box,” current is in phase with

25
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Fig. 1-5. Three-phase voltage. Three equal-amplitude voltages are spaced.

120° apart.

voltage in an applied signal; but in the load connected to the
output terminals, the current lags the voltage by 60 degrees.
Thus, the black box has introduced a lagging phase shift.
Current passing through a pure inductance lags applied
voltage by 90 degrees, whereas current flowing into and out of
a pure capacitance leads applied voltage by 90 degrees. In a
common-cathode vacuum-tube circuit, common-emitter
transistor stage, or common-source FET stage, the output
signal voltage is 180 degrees out of phase with the input signal
voltage. But in a cathode follower, emitter follower, or source
follower. the output signal voltage is in phase with the input
signal voltage.

Today. most AC energy is transmitted efficiently via
three-phase systems, although much of it is converted to
single-phase by service transformers located near the point of
use. Where actual three-phase energy is available for use in
electronic systems, it is valued for its uniform (nonpulsating)
power. increased efficiency over single-phase energy in the
operation of electrical machinery such as motors, and the ease
with which it is filtered. The output of a three-phase generator
consists of three equal-amplitude voltages spaced 120 degrees
apart (see Fig. 1-5); thus, voltage E | starts at 0 degrees, E, at
120 degrees, and E, at 240 degrees). It is conventional to speak
of each voltage as a phase (symbolized ¢). In a balanced
three-phase system, the total power is equal to 3 times the
power (EI cos @) in either one of the phases, which because of
the phase differences is equal to:

P, =1732E[cos 9 (1-8)
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1.9 VECTOR REPRESENTATION OF AC COMPONENTS

It is often convenient to think of an alternating current or
voltage in terms of a rotating vector. This concept is
illustrated by the diagram in Fig. 1-6.

Here, the length of vector 0A is equal or proportional to the
maximum voltage or current value, E 4 or I,x. This vector
rotates counterclockwise from 0 to 360 degrees at the rate of
2arf radians per second. The vertical distance (AB) from the
head of the vector to the horizontal axis is equal or
proportional to the instantaneous voltage or current. As the
vector rotates, AB increases positively from zero at 0 degrees
to positive maximum at 90 degrees; then, as the vector rotates
from 90 degrees to 180 degrees, AB decreases positively,
returning to zero at 180 degrees. As the vector rotates from 180
degrees to 270 degrees, AB increases negatively from zero at
180 degrees to negative maximum at 270 degrees; then, as the
vector rotates from 270 degrees to 360 degrees, AB decreases
negatively from maximum at 270 degrees to zero at 360
degrees. One cycle thus has been completed and the events are
ready to repeat themselves.

90°

2ND QUADRANT ’ 1ST QUADRANT

\ A
J i
o : 00,'360,0
180 . : .
3RD QUADRANT\ 4TH QUADRANT
\

270°

Fig. 1-6. Vector representation of accomponents.
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E4(10V)

Fig. 1-7. Vector diagram of out-of-phase components.

The vector AB is proportional to the sine of the angle 6.
Indeed, when the diagram is based on a unit circle, AB = sin 6.
It follows that in the latter case, 6B = cos 6. Thus, when 0A is
drawn equal to E 4 or I,y the instantaneous voltage or
current AB = 0Asin 6. This, of course, is just another way of
writing: e =E 4 sin 0, or i = I, sin 0 (see Eq. 1-2).
Component AB is zero at 0, 180, and 360 degrees; maximum
positive at 90 degrees; and maximum negative at 270 degrees.
Therefore: sin 0° =sin 180° = sin 360° = 0; sin 90° sin
270° = 1. Thus, the periodically varying length of AB traces out
the sine of the angle from 0 to 360 degrees and accurately
describes the sine wave of Fig. 1-1(a). The following general
statement describes these relationships: The instantaneous
current or voltage equals the product of a rotating vector
times the sine of the angle through which the vector has
rotated. At any positive position of the vector, E 4 sin 6 or
Iux sin 6 is the vertical component (y component) of the
vector, and E,,x cos 6 or I, cos 6§ is the horizontal (x
component) of the vector.

The use of vector diagrams to rep sent alternating
currents and voltages is a convenient method for showing both
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magnitude and phase of these components. One could. of
course. plot the waveforms to scale. but the vector diagram
saves time and labor. Figure 1-7 is a vector diagram of three
out-of-phase voltages. Here. E, is 5V at 40 degrees. E, 7.5V at
65 degrees. and E, 10V at 125 degrees. The vectors are drawn
to scale to indicate the magnitude of these components. The
same sort of diagram would be employed with three currents.

Each of these voltage vectors has a horizontal (x)
component and a vertical (y) component. Also, there is a total
x component (Eqqy ) and and total y component (Egrar v)
which can be determined from the data presented by the
diagram. Then, there is the single voltage (E,) generated by
the three out-of-phase components (E , E,, and E ;) whichis the
resultant of Eqgra. x and Eqora. v- Finally, there is the phase
angle ¢ of Ey. The following schedule shows how these various
voltages and the phase angle of E are calculated.

E = 5cos40° = 5(0.77604) = 3.88V

E, = 7.5¢0s 65° = 7.5(0.42262) = 3.17V

E; = 10co0s 125° = 10(—0.57358) = —5.73V

EqoraL x = 3.88 + 3.17 — 5.73 = 1.32V

E, = 5sin40° = 5(0.64279) = 3.21V

E,y = 7.5sin65° = 7.5(0.90631) = 6.79V

E,, = 10sin125° = 10(0.81915) = 8.19V

EqoaL y = 3:21 + 6.79 + 8.19 = 18.19V

¢ = arctan18.19/1.32 = arctan13.78 = 85.85°
Ey = Eqoras y/Sin 0 = 18.19/sin 85.85° =
18.19/0.99738 = 18.14V
1.10 ACIN RESISTANCE
A pure resistance (R) introduces no phase shift.

Consequently, when as AC voltage is applied to a pure
resistance, the resulting current flow through the resistance is
in phase with the voltage. Figure 1-8(a) illustrates this action.
Similarly, when an alternating current flows through a
resistance, the resulting voltage drop across the resistance is

in phase with the current. :
Pure resistance consumes power but is not

frequency-dependent in its action. There is nothing in a pure
resistance that causes it to change, with frequency, the
amount of opposition it offers to current flow. This is not true
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of reactance (X), which 1s a rrequency-dependent opposition to
current flow. Unlike resistance, pure reactance consumes no
power. The kinds of reactance are described in Sec. 1.11, 1.12,
and 1.13.

In a pure resistance, current is directly proportional to
voltage and is inversely proportional to resistance, as shown
by Ohm’s law:

I=E/R,E=IR,R=E/I (1-9)

where I is in amperes, E in volts, and R in ohms.

Although Ohm’s law in this form is commonly associated with
pc, it applies to Ac as well, so long as the resistance is
considered pure. (Ohm’s law for AC circuits is often written
with Z replacing the R; thus: I = E/Z,E = 1Z,andZ = E/1.)

1.11 AC IN INDUCTIVE REACTANCE

When a voltage is applied to a pure inductance (L),
current cannot flow immediately because it is opposed by a
voltage of opposite polarity—the counter emf generated by the
moving magnetic field of the inductor. The current reaches its
maximum value some time after the voltage has been applied.
Voltage applied to an inductance therefore leads current, as
shown in Fig. 1-8(b), and it leads by 90 degrees in a pure
inductance. (If unavoidable resistance is present, the phase
angle is proportionately less than 90 degrees. The opposition
thus offered by an inductance is termed inductive reactance
(X)).

For a given value of inductance, the strength of the
counter emf is proportional to the rate of change of the applied
voltage. Therefore, the higher the frequency, the higher the
counter emf and the higher the reactance. The effective value
of the induced counter emf is E = 2nfLI. Therefore, the
formula for inductive reactance is:

X, = oL = 27fL (1-10)

where X, isinohms, f inhertz, and L in henrys.

Example 1-6. A 15-henry (15H) inductor is operated in a 400
Hz circuit. Neglecting any inherent resistance, calculate the
reactance at that frequency.
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From Eq. 1-10,

X, = 2m(400)15
= 37,6990
= 3.7699K

A pure inductance consumes no power, since power stored
in the expanding magnetic field during one quarter-cycle of AC
is returned to the circuit by the collapsing magnetic field
during the following quarter-cycle. In a pure inductive
reactance, current is directly proportional to voltage and
inversely proportional to reactance, as shown by Ohm’s law:

I=E/X,E=1IX,X, =E/I (1-11)

where I is in amperes, E in volts, and X, in ohms.
The sign of inductive reactance is positive.

Example 1-7. A 60 Hz sinusoidal current of 10 mA rms
flows through a 2.5 mH inductor. Assuming that this is a pure
inductance, calculate the voltage drop in millivolts across the
inductor.

Here, 10 mA = 0.01A, and 2.5 mH = 0.0025H. From Eq.
1-10,

X, = 2(3.1416)60(0.0025)
= 0.942Q

FromEq. 1-11, AndE = IX,

= 0.01(0.942)
= 0.00942V
=942mV

1.12 ACIN CAPACITIVE REACTANCE

When a voltage is applied to a pure capacitance (C), as to
an ideal lossless capacitor, a current flows into the capacitor,
decreasing in value until the capacitor becomes fully charged,
whereupon the flow stops. The voltage across the capacitor
thus is zero when the current is maximum, and vice versa.
Current flowing into a capacitor is proportional to the rate of
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change of voltage; for an AC voltage, this rate of chapge is
maximum when the cycle is passing through zero, and is zero
when the cycle is maximum. Voltage across a .pure
capacitance therefore lags current. From the other point of
view, current leads voltage—see Fig. 1-8(;). The current leads
by 90 degrees. If unavoidable resistance is present, the phgse
angle is proportionately less than 90 degrees. The opposition
thus offered by a capacitance is termed capacitive r'eactance
(Xo. For a given capacitance and voltage, thg higher thef
frequency, the lower the reactance. The effective value o
capacitor current I = 2wfCE. Therefore, the formula for
capacitive reactance is:

X. = 1/wC = 1/(2wfC) (1-12)

where X_is inohms, f inhertz, and C in farads. ‘
Example 1-8. A 0.0025 uF capacitor is operated in a 1 MHz
ircui i i hat frequency.
circuit. Calculate its reactance in ohms at t
Here, 0.0025 uF = 2.5 X 10°F and 1 MHz = 10° Hz. From

Eq.1-12,

1

X =2 x 3.1416 X 10° X (2.5 X 107
= 1/0.01571
= 63.70

A pure capacitance consumes no powexi‘, since. power
stored in the electrostatic field of the capac1t9r during one
quarter-cycle, when the capacitor is charging, is returned to
the circuit during the following quarter-cycle, yvhen the
capacitor is discharging. Alternating current fl'ows in and out
of a capacitor, not through it. In a pure capacitve rgactance,
current is directly proportional to voltage and inversely
proportional to reactance, as shown by Ohm’s law:

1=E/X..E=1X;.Xc=E/I (1-13)

where I is in amperes, E in volts, and X ;in ohm§. )
The sign of capacitive reactance , incidentally, is negative.
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Example 1-9. A sinusoidal 1000 Hz signal of 5V is
applied to a 50 pF* capacitor. Neglecting any inherent
resistance, calculate the current in milliamperes that flows in
and out of this capacitor.

Here, 50 pF = 5 x 10~"'F'; and from Eq. 1-12:

1

X =
2(3.1416) 1000 (5 x 10 ")
= 1/3.1416 x 10~
= 3,183,091Q2
113 COMBINED REACTANCE

Both kinds of reactance—inductive and capacitive—are
often found in a single circuit. The opposition offered to the
flow of alternating current is then the combined effect of the
two reactances. When the two reactances are in series, the
combined reactance is the algebraic sum of the two:

X=X —X. (1-14)

where X, X,, and X are all in the same units (ohms, kilohms,
etc.)
But when the two reactances are in parallel,

X=(—XXJ)/NX—X) (1-15)

The dominant reactive component determines the nature
of the combined reactance. Thus, where X, = 100Q and
X.=10Q, X =100 — 10 = 90Q inductive. Similarly, where
X, = 25Q and X. = 60Q, X = 25 — 60 = —35() capacitive. At
one frequency—termed the resonant frequency (fg)—the
inductive reactance equals the capacitive reactance anc,
because of the difference in sign, the two cancel each other,
leaving no reactance in the circuit. In that case, oL = 1/C;
and, when the values of L and C are known, the equivalent
equation 27fL = 1/27fC can be rewritten to solve for f, the

*The asbbreviation pF stands for picofarads. which is the equivalent-of 107 12F
or 107 uF.
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1
resonant frequency: fe= S (1-16)

27V LC

where f is in hertz, L in henrys, and C in farads.
The inductor and capacitor are connected in series in a
series-resonant circuit; they are connected in parallel in 3
parallel-resonant circuit.

Example 1-10. Calculate the resonant frequency in
kilohertz of 350 pF and 175 uH in combination.

Here, 350 pF = 3.5 x 107F, and 175 uH = 1.75 x 10~'H.
From Eq. 1-16:

f=1/2 x 3.1416V/3.5 X 10 (175 X 107"

= 1/6.2832V6.12 X 10~*

1
~ 6.2832 X (2.475 X 1077

1
= 155 x10°°

= 645,161 Hz
= 645.16 kHz

From a rewritten form of Eq. 1-16, the capacitance
required to resonate a given inductance at a selected

frequency is:

- (1-17)

frequencyis:C =
4 4 47’L |

where C isin farads, f in hertz, and L in henrys.

Example 1-11 What value of capacitance in microfarads is
required to resonate a 10H inductor at 500 Hz?

FromEq. 1-17:

1
4 X 3.1416° x 500% x 10

39.48 x 250,000 x 10

35



1/98.700.000
1.01 x 10 *F =
0.0101 uF

Similarly. with the aid of another rewritten form of Eq. 1-16.
the inductance required to resonate a given capacitance at a
selected frequency is:

1
T ATC (1-18)

L

where L is in henrys. f in hertz. and C in farads.

Example 1-12. What value of inductance in millihenrys is
required to resonate a 10 pF capacitor at 3500 kHz?

Here. 10 pF = 10~"F and 3500 kHz = 3.5 x 10° Hz. From
Eq. 1-18:

1
4 x 3.1416° X (3.5 X 1052 x 10-!

o~
It

1
39.48(1.225 x 10%10~"

- 1
39.48(1.225 x 107

1
" 4.8363 x 10%)

=207 x 10'H —
= 0.207mH

It is important to remember that a given capacitance or
inductance offers a different amount of reactance to the
fundamental frequency and to each of the harmonics in a
complex wave. For example, at the second harmonic,
capacitive reactance is half the value at the fundamental
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frequency. and inductive reactance is twice the value at the
fundamental frequency; at the third harmonic, capacitive
reactance is one-third, and inductive reactance is three times:
etc. Consequently, when complex voltage waveform is applied
to a reactance, the resulting current can have a quite different
waveshape because of the different amounts of attenuation of
the component frequencies.

1.14 AC COMBINED WITH DC

Frequently, an alternating current is mixed with a steady
direct current, or an alternating voltage is mixed with a steady
direct voltage. This situation is found in the input and output
circuits of tube and transistor amplifiers (where the DC is a
bias current or voltage, and the AC is the signal riding on the
bias) and in the unfiltered output of rectifiers (where the AC is
the ripple).

Figure 1-9 shows two examples. In the upper trace, an AC
voltage alternates about +1V as a mean, rising to +1.5V on

=

+15
+1 (a)
+0.5
n
e
o} 0
>
Q
a

Fig. 1-9. Two examples of ac superimposed on oc. In (a) the alternating
voltage is superimposed on +1V dc; in (b) the alternating voltage is
superimposed on —1V dc.
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positive peaks and falling to +0.5V on negative peaks. In the
lower trace, an AC voltage of the same intensity alternates
about —1V as a mean, falling to —1.5V on negative peaks and
rising to —0.5V on positive peaks. In each instance, the wave is
composed of a series of instantaneous DC values obtained by
fluctuating the DC in some way (in a vacuum-tube amplifier,
for example, an ac grid voltage swings the DC plate current up
and down to produce the AC-on-DC signal).

Regardless of the instantaneous or average values of DC
involved, the AC component exhibits only the conventional aAc
values—voltage or current—indicated by its dimensions. The
rms value of each of the two waves in Fig. 1-9, for example, is

0.707(0.5) = 0.353V, and it makes no difference whether the-

mean value is +1V, as in the upper figure, or —1V, as in the
lower figure. Therefore, when the AC component is extracted
from the mixture, as through capacitor coupling or
transformer coupling, only this AC component, and none of the
DC, is available in the output. The AC may be sinusoidal or
nonsinusoidal.

It must be noted that at every point in the combined signal,
the voltage (or current) is the sum of the average DC
component (here, +1V or —1V) and the instantaneous AC
‘voltage at that point. Thus, at the AC voltage peak, the
combined voltage is higher than either the average DC or the
peak AC, and sometimes this can cause circuit breakdowns,
signal clipping, and other undesirable effects.

This combination of AC and DC’goes under several names,
such as composite voltage or composite current, fluctuating
voltage or fluctuating current, and AC superimposed on DC.

1.15 PRACTICE EXERCISES

1.1 Convert 250,500 Hz to megahertz.

1.2 Convert 10 GHz to megahertz.

1.3 Convert 3.55 MHz to kilohertz.

1.4 Convert 60 Hz to kilohertz.

1.5 Convert 8 GHz to hertz.

1.6 Calculate the period in microseconds of a 5000 kHz
standard-frequency signal.
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1.7 Calculate the period in milliseconds of the 60 Hz power-line
frequency.

1.8 Calculate the period in seconds of the 1540 kHz standard
broadcast frequency.

1.9 Calculate the period in seconds of the 50 Hz power-line
frequency.

1.10. Calculate the period in microseconds of a 1000 Hz audio
test frequency.

1.11. Calculate the period in milliseconds of the 4000 kHz

amateur frequency.

1.12. Calculate the period in microseconds of the 540 kHz
standard broadcast frequency.

1.13. Calculate the period in seconds of the 27.125 MHz
(channel 14) Citizens Band frequency.

1.14. Calculate the period in milliseconds of the 10.7 MHz FM
intermediate frequency.

1.15. Calculate the period in microseconds of the 57 MHz
center frequency of TV channel 2.

1.16. Calculate the period in seconds of a 1 GHz microwave
signal.

1.17. Calculate the period in milliseconds of a 0.3 GHz
microwave signal.

1.18. Calculate the period in microseconds of an 8 GHz
microwave signal.

1.19. Calculate the frequency in hertz corresponding to a
period of 0.01s.

1.20. Calculate the frequency in kilohertz corresponding to a
period of 0.00015s.

1.21. Calculate the frequency in megahertz corresponding to a
period of 10’s.

1.22. Calculate the frequency in gigahertz corresponding to a
period of 10~ "s.

1.23. Calculate the frequency in hertz corresponding to a
period of 8.33 ms.

1.24. Calculate the frequency in kilohertz corresponding to a
period of 0.5 ms.

1.25. Calculate the frequency in megahertz corresponding to a
period of 0.001 ms.

1.26. Calculate the frequency in gigahertz corresponding to a
period of 2 X 10 ms.
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1.27. Calculate the frequency in hertz corresponding to a
period of 1000 us,
1.28. Calculate the frequency in kilohertz corresponding to a
period of 70 us.
1.29. Calculate the frequency in megahertz corresponding to a
period of 10 us.
1.30. Calculate the frequency in gigahertz corresponding to a
period of 0.005 us.
1.31. A certain sine wave has a maximum value of 162.6V.
Calculate the instantaneous voltage at 45 degrees.
1.32. A certain sine wave has a maximum value of 3V.
Calculate the instantaneous voltage at 260 degrees.
1.33. A certain 1000 Hz sine wave has a maximum value of 10V.
Calculate the instantaneous voltage at the 0.25 ms point.
1.34. A certain 60 Hz sine wave has a maximum value of
162.6V. Calculate the instantaneous voltage at the one second
point.
1.35. A certain 1 MHz sine wave has a maximum value of 1V.
At which instants in microseconds in the first cycle will the
instantaneous voltage be —0.707V?
1.36. A certain 400 Hz sine wave has a maximum value of
8.91V. At what instant in milliseconds in the first cycle will the
instantaneous voltage be +4.455V?
1.37. A certain sine wave has a maximum value of 10V. At the
15 us point, the instantaneous voltage is 9.09V. Calculate the
frequency in hertz of this wave.
1.38. A certain 1250 Hz sine wave has an instantaneous voltage
of —5V at the 0.5 ms point in the cycle. Calculate the maximum
voltage of this cycle.
1.39. In a 2.5 MHz sine-wave cycle, at which points in
microseconds do the following voltages occur: (a) positive
maximum; (b) negative maximum? '
1.40. A certain sine-wave cycle has maximum positive voltage
at the 1.25 ms point. Calculate the frequency of this wave.
1.41. Convert 39.5 degrees to radians.
1.42. Convert 5 degrees 15 minutes to radians.
1.43. Convert 5.4 radians to degrees.
1.44. Convert 1.047 radians to degrees.
1.45. What is the angle in radians at the 10 @S point in a 12,5
kHz sine-wave cycle?
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1.46. What is the angle in radians at the 1.67 ms point in a 60 Hz

sine-wave cycle? . ‘ :
1.47. At any frequency, what is the angle in radians in the

sine-wave cycle at (a) maximum positive voltage; (b)
maximum negative voltage? .
1.48. For a 1000 Hz sine-wave cycle, express the angle in
degrees whent = 0.5 ms.
149. For a 10 MHz sine-wave cycle, express the angle in
degrees whent = 0.075 us: :
1.50. Calculate the angular velocity (w) for the following
often used frequencies: (a)40 Hz, (b)125 Hz, (c¢)800 Hz, (d)lQO
kHz, (e) 540 kHz, (f) 1380 kHz, (g) 1.875 MHz, (h) 10.7 MHz, (i)
27.085 MHz, (j) 54 MHz. | .
151. What frequency in kilohertz is required for a desired
angular velocity of 1000? )

1.52. Calculate the rms value corresponding to a maximum
voltage of 15V. . :

1.53. Calculate the rms value corresponding to a maximum
voltage of 2.37 uV. .

1.54. Calculate the average value corresponding to a
maximum voltage of 6.9V. ‘

1.55. Calculate the average value corresponding to a
maximum voltage of 10 mV.

1.56. Calculate the rms value corresponding to an average

voltage of 3.3V. .

1.57. Calculate the rms value corresponding to an average
voltage of 0.00015V. |

1.58. Calculate the maximum value corresponding to an rms
voltage of 50V. '

1.59; Calculate the maximum value corresponding to an rms
voltage of 1 uV. ‘

1.60. Calculate the average value corresponding to an rms
voltage of 510V. '

1.61. Calculate the average value corresponding to an rms
voltage of 38 mV.

1.62. In the test of a certain oscillator performed with a wave
analyzer, the following signal voltages are observe.d:
fundamental, 1V; second harmonic, 1 mV; third harmonic,
0.25 mV; and fourth harmonic, 0.1 mV. Calculate the harmonic
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strength in percent for (a) 2nd harmonic; (b) 3rd harmonic;
(c) 4th harmonic.

1.63. From the data in exercise 1.62, calculate the total
distortion in percent.

1.64. In the test of a certain amplifier performed with a
distortion meter, the combined voltage is 2.2V and the total
harmonic voltage is 1.45 mV. Calculate the total distortion in
percent.

1.65. An audio generator is being adjusted for an acceptable
total distortion of 0.25%. If the output of the generator is set to
1V, what must be the output voltage in millivolts of the
distortion-measuring circuit for this percentage?

1.66. Calculate the counter emf in volts generated in a 30H
inductor carrying 100 mA at 120 Hz.

1.67. Calculate the counter emf in volts generated in a 2.5 mH
inductor carrying 1 mA at 1 MHz.

1.68. Calculate the 120 Hz reactance of a 15H inductor.

1.69. Calculate the 1 MHz reactance of a 100 wH inductor.

1.70. What inductance is required for 20K reactance at 1000
Hz?

1.71. At what frequency in hertz will a 20H inductor have a
reactance of 10K?

1.72. Calculate the voltage drop in volts across a 2H inductor
carrying 125 mA at 400 Hz.

1.73. Calculate the current in microamperes passed by a 1 mH
inductor when the applied voltage is 250 mV at 2 MHz.

1.74. What is the 1000 Hz reactance of an inductor that passes
0.5A for an applied voltage of 10V?

1.75. Calculate the inductance in henrys of the inductor in
exercise 1.74.

1.76. Calculate the 1 MHz reactance in ohms of a 0.002 uF
capacitor.

1.77. Calculate the 50 MHz reactance in ohms of a 25 pF
capacitor.

1.78. Calculate the 120 Hz reactance in ohms of a 16 uF
capacitor.

1.79. Calculate the 60 Hz reactance in megohms of a 25 pF
capacitor.

1.80. At what frequency will a 2 uF capacitor have a reactance
of 1000€2?
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1.81. Calculate the effective current in milliamperes through a
1 uF capacitor at 1000 Hz when the applied potential is 1V.

1.82. Calculate the voltage required to force a current of 3 mA
through a 0.01 uF capacitor at 1000 Hz.

1.83. Calculate the 400 Hz reactance of a capacitor which
passes 1 mA at 10V.

1.84. Calculate the capacitance in microfarads of the
capacitor in exercise 1.83.

1.85. Calculate the voltage drop in millivolts across a 0.025 uF
capacitor carrying 500 nA at 2000 kHz.

1.86. What capacitance in microfarads will be required to pass
0.25A relay current at 60 Hz when the applied voltage is 115V?
1.87. A 50Q inductive reactance and a 10} capacitive
reactance are connected in series. Calculate the combined
reactance.

1.88. A 50Q inductive reactance and a 10{) capacitive
reactance are connected in parallel. Calculate the combined
reactance.

1.89. (a) Calculate the combined 120 Hz reactance offered by a
20H inductor and an 8 uF capacitor in series. (b) Is the
combined reactance inductive or capacitive?

1.90. (a) Calculate the combined 1 MHz reactance offered by a
1 mH inductor and a 0.01 uF capacitor in parallel. (b) Is the
combined reactance inductive or capacitive?

1.91. Calculate the resonant frequency in kilohertz of a circuit
containing 0.02 uF and 2.5 mH.

1.92. Calculate the resonant frequency in megahertz of a
circuit containing 365 pF and 100 H.

1.93. What capacitance in microfarads is required to resonate
as5H inductor at 400 Hz?

1.94. What capacitance in picofarads is required to resonate a
2 uH inductor at 45 MHz?

1.95. What inductance in millihenrys is required to resonate a
0.05 wF capacitor to 3500 Hz?

1.96. What inductance in henrys is required to resonate a 0.25
wF capacitor to 180 Hz?

{Correct answers are to be found in Appendix D.)
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\%/Nature of Impedance

This chapter surveys impedance and examines its composition
and various aspects of its nature. The subject matter extends
that of Chapter 1 by progressing from the concept of reactance
developed at the end of that chapter. Illustrative examples are
offered to demonstrate the various methods of calculating
impedance.

2.1 IMPEDANCE DEFINED

Impedance (Z) is the opposition offered to the flow of
alternating current and is expressed in ohms (where
applicable, the multiples and submultiples of the ohm also are
used: microhms, milliohms, kilohms, megohms, etc.). In this
respect, the behavior of impedance in an AC circuit is
analogous to that of resistance in a DC circuit and is described
by Ohm’s law:

ZEEID V=F/z " B I7 (2-1)

where Z is in ohms, E is in volts, and I is in amperes.

Example 2-1. When an emf of 10V RMS is applied to a
certain two-terminal black box, a current of 0.75 mA flows.
Calculate in kilohms the internal impedance of the black box.
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Here, 0.75 mA = 0.00075A. From Eq. 2-1:

Z=E/I
= 10/0.00075
= 13,333 ohms
=13.33K

The similarity ends there, however, since impedance, unlike
resistance, is frequency dependent and exhibits phase angle.

In a very broad sense, impedance denotes any opposition
that is offered to AC. Such a definition would include resistance
and reactance, which by themselves, of course, are not strictly
impedances. It is for this reason that such terms as resistive
impedance (for resistance) and reactive impedance (for
reactance) are sometimes encountered.

2.2 COMPOSITION OF IMPEDANCE

Impedance (Z) is the combined effect of resistance (R)
and reactance (X). The resistive component is 90 degrees out
of phase with the reactive component, so R and X cannot
simply be added arithmetically to give the impedance. The
vector diagrams in Fig. 2-1 show how resistance and reactance
combine to form impedance.

Figure 2-1(a) shows resistance and inductive reactance.
Here, the impedance vector (Z) is the resultant—the vector
sum—of the resistance vector (R) and the reactance vector
(X,). The phase angle of the resulting impedance is the angle 6
between the impedance vector and the resistance vector.

Figure 2-1(b) shows resistance and capacitive reactance.
Here, the X vector is drawn in the opposite direction of the X
vector in Fig. 2-1(a) to show that the effect of capacitive
reactance is opposite to that of inductive reactance. The
impedance vector (Z2) is the resultant—the vector sum—of the
resistance vector (R) and the reactance vector (X.). The
phase angle of the resulting impedance is the angle ¢ between
the impedance vector and the resistance vector.

In Fig. 2-1(c) there is combined reactance (X) consisting.
of inductive reactance (X;) and capacitive reactance (X.).
This combined reactance X = X, — X (see Sec. 1.13, Ch. 1)
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and is represented by vector X. It is this combined reactance
that acts with the resistance to form the impedance,
represented by vector z. The phase angle of the resulting
impedance is the angle 6 between the impedance vector and
the resistance vector.

Series Circuits

It is easily seen from the three diagrams in Fig. 2-1 that
the impedance vector is the hypotenuse of a right triangle
whose sides are the resistance and reactance vectors. Since,
from geometry, the hypotenuse equals the square root of the
sum of the squares of the other two sides:

Z="VR*+ X? (2-2)

Where Z, R, and X are in ohms.
In complex algebra, this is written Z =R + jX, or
Z =R — jX. Equation 2-2 applies to circuits in which
resistance and reactance are in series.

Example 2-2. A 0.1 uF capacitor and 1000 resistor are
connected in series. Calculate the impedance in ohms (at 1000
Hz) of this combination.

Here, X for the 0.1 uF capacitor is 1591.5Q (Eq. 1-12, Ch.
1). From Eq. 2-2:

Z = V1000’ + 15915
= V(1 x 105 + (2,533 x 105
=1/3.533 x 10°
= 1879.6€)

When there is combined reactance, as in Fig.- 2-1(c), for a
series circuit the combined value X = X, — X. (Eq. 1-14, Ch.
1), and Eq. 2-2 is rewritten:

Z=VR+ (X —X,)’ (2-3)

Example 2-3. A 0.5 uF capacitor, 1H inductor, and 4700
resistor are connected in series. Calculate the impedance in
ohms (at 400 Hz) of this combination.
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Here, X, for the 1H inductor is 2513.2Q (Eq. 1-10, Ch. 1)
and X for the 0.5 uF capacitor is 795.8Q (Eq. 1-12, Ch. 1).
From Eq. 2-3:

Z = V470" + (2513.3 — 795.8)"
=1/220,900 + 1717.5°
= /220,900 + 2,949,806
= /3,170,706
= 1780.68)

Since the diagrams in Fig. 2-1 are right triangles, the
solutions from trigonometry are easily applied. Thus, the
tangent of the phase angle () of the impedance, being equal to
the opposite side divided by the adjacent side of the triangle, is
equalto X/R:

tanf = X/R = X,/R = XJR (2-4)

where X, X, and X are in ohms.
When the reactance and resistance are known, the phase angle
can be found:

6 = arctan X/R (2-5)

where 8 isin degrees, and X and R are in ohms.
Likewise, sin 8 = X/Z, and cos 8§ = R/Z. From this, § = arc
sinX/Z = arccosR/Z.

Example 24. A 10 mH inductor and 56 resistor are
connected in series. Calculate the phase angle of the
impedance at 1000 Hz.

Here, X, for the 10 mH inductor is 62.8Q2 (Eq. 1-10, Ch. 1).
From Eq. 2-5,

# = arc tan 62.8/56
= arc tan1.1214
= 48.275 degrees
= 48 degrees, 16 minutes, 30 seconds.
The total impedance of similar impedances connected in
series is similar to the total resistance of resistors connected
inseries:
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Parallel Circuits

When resistance and reactance are in parallel, the
resulting impedance is:

RX

7= ————
VR + X? (2-6)

where Z, R, and X are in ohms.

This formula is seen to resemble that for two resistances
in parallel: Rg,= (RR)/(R,+ R,). But whereas in the
resistance formula the product is divided by the sum, in the
impedance formula (because of the difference between R and
X) the product is divided by the vector sum.

Example 2-5. A 20H inductor and 5K resistor are connected
in parallel. Calculate the impedance in kilohms (at 500 Hz) of
this combination.

Here, X, for the 20H inductor is 62,832Q (Eq. 1-10, Ch. 1).
From Eq. 2-6:

Z = (5000 X 62,832)/V/5000° + 62,8322
= (3.142 x 10%/V(2.5 X 107) + (3.95 X 107

= (3.142 x 10%/V3.975 x 10°
3.142 x 10°

"~ 6.305 x 10°

= 48930

= 4.893K

As with a parallel-resistance circuit with unequal resistances,
the impedance of the parallel resistance/reactance circuit is
less than either the resistance or the reactance.
For the parallel circuit, the phase angle of the impedance
is:
6 = arctanR/X (2-7)

where 6is in degrees, R inohms, and X in ohms.
Note that this formula is the reciprocal of the one for the phase
angle of the series circuit (Eq. 2-5).
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Example 2-6. In the preceding example. X, = 62.832() and
R = 5K. Calculate the phase angle of the resulting 4893¢)
impedance.

From Eq. 2-7.

6 = arc tan 5000/62.832
= arc tan 0.079577
= 4.549 degrees
= 4 degrees, 32 minutes, 56 seconds.

The equivalent impedance of similar impedances
connected in parallel is similar to the equivalent resistance of
resistors connected in parallel;

1
VZ,+ YZy+ 1JZy + .. +1/Zy)

ZI-IQ -

Full Depiction

Equations 2-1, 2-2, 2-3, and 2-6 give only the magnitude of
impedance. In many applications, this quantity is all that is
needed. A full expression of impedance, however, contains not
only the magnitude, but also the phase angle (see Eq. 2-5 and
2.7 for the angle). For example: Z/6 = 35/26 degrees 30
minutes denotes an impedance of 35€) at a phase angle of 26
degrees and 30 minutes.

When the magnitude Z and phase 6 of an impedance are
given, the resistive (R) and reactive (X) components may be
determined either graphically or through calculation. In the
graphic solution (Fig. 2-2), the impedance vector z is drawn to
scale forming the angle @ with the horizontal (resistance) axis.
Then. projections are made from the tip of the z vector to the
horizontal and vertical axes, as shown by the dotted lines. The
resistance magnitude may then be measured along the
horizontal axis, and the reactance magnitude along the
vertical axis. The solution by calculation is based on simple
right-triangle relationships from trigonometry:

R = Zcos 6, and (2-8)
X =12Zsin6 (2-9)
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Fig. 2-2. Determination of resistance and reactance from impedance and
phase angle. The resistance magnitude may be measured along the
horizontal axis and the reactance along the vertical axis.

Example 2-7. A given impedance is 1502 at 30 degrees.
Calculate the resistive and reactive components.

Here, sin 30 degrees = 0.5 and cos 30 degrees = 0.866025.
So, from Eqgs. 2-8 and 2-9,

R = 150(0.866025)
= 129.9Q

X =150(0.5)
= 758}

From Egs. 2-8 and 2-9, it is apparent that impedance may
be calculated in terms of resistance and phase angle or
reactance and phase angle: Z = R/cos 8, and Z = X/sin 6.

2.3 UNIVERSALITY OF IMPEDANCE

Impedance is found everywhere in the world of
electronics. This is because resistance and reactance tend to
occur together, one often as a stray effect. Thus, a resistor can
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exhibit inherent capacitance and inductance, a capacitor can
exhibit inherent resistance and inductance, and an inductor
can exhibit inherent resistance and capacitance. It is stray
resistance that causes losses in capacitors and inductors. In
most well built components, the stray quantity is negligible
when compared with the principal property. When the value of
the stray is significant, however, the component or device
must be handled as an impedance, not as a simple resistance
or reactance.

Some of the familiar devices in which impedance is
encountered are antennas and transmission lines; generators,
motors, relays, and transformer windings; headphones,
microphones, loudspeakers, and magnetic amplifiers;
capacitors, inductors, saturable reactors, and resistors
(inductively wound); tubes, transistors, semiconductor
diodes, and rectifiers; and control devices.

2.4 IMPEDANCE OF COMMON BASIC CIRCUITS

Figure 2-3 shows eight common circuits with the formulas
for their impedance and phase angle. These are basic
arrangements in which resistance, capacitance, and
inductance are assumed to be ideal. Several of these circuits
invite special attention and are discussed individually.

Figure 2-3(e) shows an ideal series-resonant circuit.
Depending upon the various values which inductance (L) and
capacitance (C) may assume, the circuit may be resonant
(exhibiting no reactance), nonresonant above the resonant
frequency (exhibiting inductive reactance), or nonresonant
below the resonant frequency (exhibiting capacitive
reactance). The phase angle of the inductive reactance is +90
degrees, and that of the capacitive reactance —90 degrees; for
frequencies off resonance, the angle is positive if X is larger
than X|, and is negative if X, is larger than X.. At resonance,
since at this point X, = X, angle 8 is zero. The impedance at
frequencies off resonance is equal to X, — X. and is
characterized by the dominant member of this expression. At
resonance, therefore, Z is zero—which accounts for maximum
current at resonance in series-resonant circuits.
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Figure 2-3(f) shows an ideal parallel-resonant circuit. In
this arrangement, unlike the series-resonant circuit described
in the preceding paragraph, the impedance at resonance is
infinite. This accounts for maximum voltage at resonance in
parallel-resonant circuits. The phase angle of the inductive
reactance is +90 degrees and that of the capacitive reactance
is —90 degrees; for frequencies off resonance, the angle is
positive if X is larger than X, and is negative if X, is larger
than X At resonance, since at this point X, = X, angle 6 is
zero. The impedance at frequencies off resonance is equal to
X, — Xcand is characterized by the dominant member of this
expression. At resonance, since here X, = X, the
denominator of the impedance formula in Fig. 2-3(f) is zero;
therefore, the impedance is infinite.

While Figs. 2-3(e) and 2-3(f) show ideal series-resonant
and parallel-resonant circuits, Figs. 2-3(g) and 2-3(h) show
corresponding practical circuits. That is, each of the latter
circuits contain resistance which occurs in practice in the
form of losses in the inductor and capacitor. In the
series-resonant circuit, Fig. 2-3(g), the off-resonance
impedance is the vector sum of the resistance and combined
reactance, and is capacitive below resonance and inductive
above resonance. At resonance, the combined reactance is
zero, and only the resistance is left in the circuit. Therefore, at
resonance Z = R. Current in the practical series-resonant
circuit is maximum at resonance, but is limited by resistance.
The phase angle is determined by the ratio of the combined
reactance to the resistance. This angle may have any value
between zero degrees and nearly 90 degrees, depending upon
the relative amounts of X, X, and R. At resonance, the phase
angle is zero, since here X, = X = zero, and arctan0/R = 0.

In the parallel-resonant circuit, Fig. 2-3(h), the
off-resonance impedance is equal to the reciprocal of the
vector sum of the reciprocal of the resistance and the
combined reactance, and is inductive below resonance and
capacitive above resonance. At resonance, the combined
reactance (X;—X,) is zero and only the resistance (R) is left
in the circuit. Therefore, at resonance, Z = R. The phase
angle is determined by the relative amounts of X,, X, and R,
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Fig. 2-4. Current and voltage distribution for a half-wave antenna operat-
ing at its fundamental frequency.

and may have any value between zero degrees and almost 90
degrees. At resonance this angle is zero, since here
X, =X.=0, and 6 =arc tan R(1/X — 1/X) = arc tan
R(0) = 0.

2.5 IMPEDANCE OF LINEAR DEVICES

The impedance of devices which consist essentially of one
or more straight wires, rods, or tubes (so-called linear
devices) presents a special case. Prominent among such
devices are antennas and RF transmission lines. In many
instances the impedance of these devices is resistive.

Antennas

An operative antenna is characterized by a pattern of
stationary standing waves along its length. This arrangement
of loops and nodes constitutes a distribution of current I and
voltage E along the length, as shown in Fig. 2-4 for a half-wave
antenna operating at its fundamental frequency. By cutting or
lengthening this figure, one can see what the resulting E and I
distribution would be on antennas of different lengths, say
quarter-wave and full-wave.

Note that current is maximum at the center of the wire,
rod, or tube, and is zero at the ends, while voltage is zero at the
center and maximum at the ends. At any point along the length
of the antenna, the impedance Z is equal to the ratio of voltage
to current (E/I) at that particular point. Thus, the impedance
is very high at the ends (being theoretically infinite:
Z=E/I=E/0 = =) and is very low at the center (being
theoretically zero: Z = E/I = 0/ = 0).
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A transmitting antenna is visualized as working against an
impedance—the radiation resistance—when radiating energy
into space. The value of radiation resistance (Ry) is governed
by the height of the antenna above ground. The reason for this
is the action of that part of radiated energy which is reflected
back from the surface of the earth. This reflected energy
arrives at the antenna in or out of phase with energy that is in
the antenna. Depending upon how far the reflected energy has
had to travel to reach the antenna, it either reduces or
increases the apparent resistance because of this phase effect.
Figure 2-5 shows a plot of theoretical values of radiation
resistance at the center of a half-wave antenna in free space
for various heights from zero to two wavelengths above
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Fig. 2-5. Radiation resistance of a half-wave horizontal antenna plotted for
various heights from zero to two wavelengths above ground.
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Fig. 2-6. Two-wire transmission line connected to an rF generator and a
load resistor (termination).

ground. Observe that the higher the antenna, the more closely
Ry, approaches the theoretical value of 73.2Q. At the ends of
the antenna, R, is several thousand ohms. In practical terms,
the radiation resistance is that value of resistance which
would, if it were inserted at the center of the antenna, dissipate
energy equal to that ordinarily radiated from the antenna. And
this is a legitimate concept, for radiated energy is, in effect,
energy lost from the antenna.

Transmission Lines

The purpose of a transmission line is to conduct RF energy
from one point (such asa generator) to another point (such as
a load) with virtually no radiation from the line. In one of its
simplest forms, this device consists of two parallel wires, with
the spacing between the wires small compared with one
wavelength. Figure 2-6 shows such a line connected to an RF
generator at one end and to a load resistor (R) at the other
end. Current flows in opposite directions in the two wires, so
radiation from the line is effectively canceled. The line has
distributed inductance and distributed capacitance, and from
these properties the characteristic impedance (Z, or Z.),
neglecting the resistance of the wires, can be calculated:

z,= VLJC (2-10)

where Z,is in ohms, L in henrys, and C in farads. This quantity
is termed charteristic impedance, since for a line of given
dimensions it has the same E/I value at any point along the
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line. It is also called surge impedance. If the terminating
resistance is equal to the characteristic impedance, the
resistor absorbs all of the energy and no standing waves
appear on the line.

For a two-wire line, Z, depends upon the diameter and
spacing of the wires:

Z, = 2761og,2S/d (2-11)

where Z; is the characteristic impedance in ohms, S the
center-to-center spacing of wires in inches, d the diameter of
wire in inches, and log,,the common logarithm.

Example 2-8. The diameter of No. 12 solid copper wire is
0.081 inch. Calculate the characteristic impedance of a
two-wire line consisting of two No. 12 wires spaced six inches
between centers.

From Eq. 2-11:

Z, = 27610g,,(2 X 6)/0.081
= 276 log,,12/0.081
= 276 log,,148.15
= 276(2.1707)
= 599.1Q

Note: A pair of 12-gage wires with six-inch spacing is
commonly called a 600€2 line.

A closer result (599.78Q2) is afforded by the equation
Z,= 120 arc cosh[0.5(2S/d)], where Z,, S, and d are in the
same units as in Eq. 2-11 and cosh is the hyperbolic cosine.

The impedance of an insulated line is somewhat different
from that of the open-air line just described. Thus, the
three-eighth-inch wide “‘ribbon” used with TV antennas has an
impedance of 300€2. :

Figure 2-7 shows the distribution of current and voltage on
an unterminated quarter-wave line. From this distribution, it
is evident that various impedances (Z = E/I) are available by
tapping the line at appropriate points. This is an important
convenience which will be considered later in Sec. 2-11,
Methods of Matching Impedance.

Another well known transmission line is the coazial type.
This consists essentially of two concentric conductors, one
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Fig. 2-7. Current and voltage distribution on an unterminated quarter-
wave line.

being a central wire and the other a surrounding metal pipe
(see Fig. 2-8). A coaxial line may be flexible or rigid. For an
air-insulated coaxial line (inner conductor supported by
spaced beads or washers), the characteristic impedance is:

Z, = 138log,d,/d, (2-12)

where Z, is the characteristic impedance in ohms, d, the inside
diameter of the outer conductor in inches, d, the outside
diameter of the inner conductor in inches, and log, the
common logarithm.

Example 2-9. The inner conductor of a certain
air-insulated coaxial line is No. 12 copper wire whose outside
diameter (0D) is 0.081 inch, and the inner diameter (ID) of the
outer conductor is 0.25 inch.

INNER CONDUCTOR
OUTER CONDUCTOR

GEN g S et RgTERMINATION

Fig. 2-8. Coaxial-type transmission line consisting of two concentric con-
ductors connected between a generator and a load resistor.
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Calculate the characteristic impedance.

From Eq. 2-12:

Z, = 138log,0.25/0.081
= 138 log,3.0964
= 138(0.489452)
= 67.5Q

When a coaxial line has continuous insulation between outer
and inner conductors, the Z, value obtained with Eq. 2-12 must
be multiplied by 1 /\Vk, where k is the dielectric constant of the
insulating material. Polyethylene, a common insulator in
coaxial lines, has a dielectric constant of 2.3 and requires a
multiplier of 1/V2.3 = 1/1.516 = 0.659. Common impedances
for commercial polyethylene-insulated coaxial cable are 5042,
5202, 53.5Q), 7341, and 75(}.

2.6 IMPEDANCE OF GENERATORS

All AC generators have impedance (Z;). This impedance,
however small, is often resistive and is considered to be in
series with the generator (see Fig. 2-9). Because of the
internal impedance, the terminal voltage (E gy when the
generator is delivering current to a load will be lower than the
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Fig. 2-9. Circuit illustrating impedance (Zg) of an Ac generator
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Fig. 2-10. Circuit illustrating an ac generator feeding a load impedance

(Z). Current must flow through both the generator impedance (Zg) and
the load impedance.

generator voltage owing to the voltage drop across this
impedance—E qy = E; — 1Z,.

Like a mechanical generator, an electronic oscillator
exhibits an internal impedance due to the output impedance of
the tubes, transistors, or attenuators in the oscillator circuit.
This internal impedance is generator impedance in the same
sense as in the AC machine—since the oscillator is a
nonmechanical producer of AC—but it is often called oscillator
output impedance.

In practice, one may consider a generator to be any device
or circuit that delivers a signal or power. This would include
not only oscillators, multivibrators, machines, and other
devices that form a signal, but also tubes and transistors and

even any branch of a circuit that delivers a signal to another
branch.

2.7LOAD IMPEDANCE

Every Ac load device has impedance (Z,). Examples are
loudspeakers, motors, lamps, heaters, transmitting antennas,
etc. Sometimes, this impedance is resistive only; in other
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instances. it is classic impedance—that is. a combination of
resistance and reactance.

Figure 2-10 shows a simple circuit in which an impedance
Z, loads an AC generator. In this setup. current must flow
through the generator internal impedance Z; and the load
impedance Z,. This current therefore is equal to E¢/(Z¢ + Z,)-
It accordingly produces one voltage drop (IZ;) across the
generator internal impedance and a second voltage drop (IZ,)
across the load impedance. The voltage E, across the load
impedance (E,) thus is somewhat less than the internal
voltage of the generator. and (neglecting phase angle) is equal
to E, = (EZ)/(Zs+ Z,). where E is in volts and Z is in
ohms.

2.8 INPUT AND OUTPUT IMPEDANCE

Every signal processing device or circuit, such as
amplifiers, modulators, shapers, filters, etc., exhibits input
impedance (Z,) seen by the applied signal and output
impedance (Z,;;) seen by the load device. These quantities
must be dealt with in the design and application of the device,
for the input driving-signal requirements, loading of the
input-signal source, and load-device requirements depend.
upon Z,y and Z -

Figure 2-11 illustrates the concept of a device having
simple input and output impedances. In many instances, these

Zoyr
_‘0"_-ﬂ é_av\'-\,.. O~ -
INPUT Zne OUTPUT
O — .,__:.. ________ -0 —

‘CIRCUIT OR DEVICE

Fig. 2-11. lllustration of a device having both inputand output impedance.
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Fig. 2-12. Reflected impedance in the primary of a transformer with re-
sistance R _loading the secondary.

quantities are resistive. In most cases, the input impedance
acts as a shunt component and the output impedance acts as a
series component.

Some devices, such as amplifiers and filters, which
receive and deliver signals, have both input and output
impedance. Other devices, such as oscillators and
transmitters, which are in effect generators, have only output
impedance. Still other devices, such as meters and
oscilloscopes, have only input impedance.

29 REFLECTED IMPEDANCE

When an impedance is connected across the secondary
terminals of a transformer, a reflection of that impedance
appears in the primary circuit of the transformer. This
phenomenon is illustrated by Fig. 2-12; here, a resistance R,
loads the secondary. Because of R, an apparent resistance,
called the reflected resistance, Ryg,, appears in the primary
circuit.

The value of the reflected resistance depends upon R, and
the turns ratio of the transformer:

Rice, = Ru(¥e/Ng)® (2-3)y

where N,,is the number of primary turns, and Nis the number
of secondary turns.




It is not necessary to know the actual number of primary
and secondary turns in order to use Eq. 2-13, but only the turns
ratio as given by the transformer manufacturer or determined
by user tests. Thus, a 3:1 transformer has three times as many
secondary turns as primary turns; that is, Ng/Np =3, and
Ny/Ng=0.3333.* As an example, assuming an ideal
transformer, if a 1000 resistor is connected to the secondary
of a transformer having a 5:1 turns ratio, the reflected
resistance at the primary terminals is:
Roge, = 1000(1/5)% = 1000(0.2%) = 1000(0.04) = 40Q. If the
turns ratio were 10:1, Rgg would be 10Q2. With a stepup
transformer, Rgg. is lower than R,; with a stepdown
transformer, Rggp is higher than R ; and, with a transformer
having a 1:1 turns ratio, Rpg is is equal to R,. These facts of
performance lead to the general equation:

Zogr, = Zy(Np/NQ® (2-14)

Reflected impedance is of great importance in the
technique of matching impedances by means of a transformer.

2.10 NEED TO MATCH IMPEDANCE

It is a fundamental axiom of electricity that maximum
power is delivered by a generator to a load only when the load
impedance equals the generator internal impedance. For this
purpose, any device that delivers power can be considered a
generator. The relationship is expressed:

Z, = Z (for maximum power transfer) (2-15)

Figure 2-13 illustrates this condition. In the circuit shown
in Fig. 2-13(a), a variable load resistance (R,) is connected to
a 5V generator having an internal resistance (Rg) of 54).
Figure 2-13(b) shows the performance of the circuit as R, is
varied. From this table, note that as R, is increased in 5¢}
steps, from 50 to 50(2, the total resistance (R¢ + Ry) of the
circuit increases from 30Q to 75€); and the corresponding
current, I =E/(R;+ R,), decreases from 0.167A when
R, = 50 to 0.067A when R, = 50Q). Importantly, the power
(P = I’R,) in the load increases from 0.139W when R, = 5€,

66

R RL Ar i PL
(OHMS) | (OHMS) | (OHMS) (AMP) (WATTS)
25 5 30 0.167 0.139
25 10 35 0.143 0.204
25 15 40 0.125 0.234
25 20 45 0.111 0.246
25 25 50 0.100 @:2500 gis=—="11A%
25 30 55 0.091 0.248 -
25 35 60 0.083 0.241
25 40 65 | 0077 0.237
25 45 70 0.071 0.227
25 50 75 0.067 0.224
(b) PERFORMANCE

Fig. 2-13._ Illustration of impedance matching. The circuit (a) has a variable
load resistance con_nected to a generator. The chart (b) shows the
performance of the circuit as the resistance (R,) is varied.

to 0.250W when R, = 259; then, as R, is further increased
from 25€} to 50(2, the power decreases from 0.250W at 259 to
0.224W at 50€2. The power peak thus is at 0.250W, the point at
whichR, = R; = 25Q.

2.11 METHODS OF MATCHING IMPEDANCE

For maximum power transfer, the impedance of a load
device must equal that of the generator or other source.
However, perfectly matched components are not always
obtainable in practice. The output impedance of an amplifier,
for example, may be 3500(2, and the loudspeaker which the
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amplifier must drive may have an impedance of 3.2Q). When.
generator impedance and load impedance do not match, sFeps
must be taken to create a match between them. One technique
exploits the phenomenon of reflected impedance explained in
Sec. 2-9 and described under Use of Matching Transformer.
Principal impedance-matching methods are described in the
following subsections. In some areas, such as RF impedange
matching. the representative method has been presented in

each general category.

Use of Matching Transformer

A transformer may be inserted between a source and load,
as shown in Fig. 2-14, for the purpose of matching the load
impedance to the generator impedance. This wil‘l be
‘accomplished if the transformer has the correct turns ratio. .

To understand how impedances may be matched in this
way. consider the instance in which R, is a simple resista‘mceA
It is well known from fundamentals of electricity that, in an
ideal transformer, the primary voltamperes equal the
secondary voltamperes: E.l, = Ed This means simply tha}t
in a stepup transformer, for example, the secondary voltage is

0.1A
<—95—A—> —-~->

~ 3]
e

|

|

|

I L7 :

Rz 250 | : ‘
2.5V 12,5V RL%12SQ

i 1 _
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|

|

|

|

= [ = i

Fig. 2-14. Impedance-matching transformer.
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higher than the primary voltage, but the secondary current is
proportionately lower than the primary current, and that the
opposite is true in a stepdown transformer. In Fig. 2-14,
transformer T has a 5:1 stepup turns ratio. When the 50
generator (GEN) impresses 2.5V across the primary winding,
0.5A flows through the primary, and the primary
voltamperes = E,I, = 2.5(0.5) = 1.25 VA. The 5:1 stepup
gives a secondary voltage of 12.5V, and this forces a current of
0.1A through the 125Q load resistor R,. The secondary
voltamperes is 12.5(0.1) = 1.25 VA, which is the same value as
that of the primary voltamperes. Because the transformer has
the correct turns ratio, it matches the 125Q load to the 5Q
generator.

Observe that, although the turns ratio is 5:1, the
impedance ratio is 25:1. Thus, the impedance ratio is the
square of the turns ratio:

ZJZ, = (Ng/Np)* (2-16)

And from this relationship, the necessary turns ratio for a
required matching transformer is the square root of the
impedance ratio:

NyNp=VZ4Z, (2-17)

Example 2-10. A 2N3611 power transistor in the output
stage of a 5W audio amplifier has a collector impedance of
20Q2. What turns ratio must an output transformer have to
match this amplifier to a 3.2Q2 loudspeaker?

Here, the impedance ratio ZyZ, = 3.2/20 = 0.16. From
Eq. 217, the turns ratio NJ/N, = V/0.16 = 0.4, which indicates
a stepdown transformer with a 0.4:1 turns ratio (the secondary
has 0.4 of the turns in the primary). It should be noted,
however, that impedance matching with a transformer
involves working with the turns ratio and has nothing to do
with the individual impedance of the primary and secondary
windings.

The mention of a matching transformer usually brings to
mind an iron-core device built for audio frequency use. It
should be noted, however, that air-core transformers (tuned or
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untuned) are used in some instances for impedance matching
at radio frequencies.

Use of Linear Devices

The impedance of linear devices, such as antennas and
transmission lines, is described in Sec. 2.5, and equations for
them are given there. The input, output, and characteristic
impedances of some of these devices enable them to be
employed for impedance matching at radio frequencies.

A common example is the matching of a transmission line
to a transmitting antenna for the maximum transfer of energy
from transmitter to antenna. In this application, the
transmission line is termed a feeder. Figure 2-15(a) shows the
connection of a coaxial feeder (Z, = 72Q2) to the center of a
half-wave antenna, where the antenna impedance
approximates that of the feeder. At the transmitter end, the
low-impedance feeder is matched to the impedance of the final
amplifier by means of a small pickup coil (usually 1 to 3 turns)
coupled to the amplifier tank coil, with the turns ratio
providing the required impedance transfer. A twisted-pair
transmission line sometimes is used in place of a coaxial
feeder, but with greater losses.

Figure 2-15(b) shows how resonant open-wire feeders (the
600€2 type) are used to current-feed the center of the antenna.
The center of the half-wave antenna is a high current point,
and properly tuned quarter-wave feeders will have a high
current at their antenna end. The length of feeders longer than
a quarter-wavelength must so be chosen that a similar current
loop occurs at the end; this requires that the feeder length be
an even or odd multiple of a quarter-wavelength. Figure
2-15(c) shows how resonant open-wire feeders are used to
voltage-feed a half-wave antenna by connecting them to one
end of the antenna. Either end of the antenna is a high voltage
point, and properly tuned quarter-wave feeders will have a
high voltage point at their antenna end. As in the preceding
case, the length of feeders longer than a quarter-wavelength
must so be chosen that a similar voltage loop occurs at the
end; this requires that the feeder length be an even or odd
multiple of a quarter-wavelength.
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Fig. 2-15. Transmission line feeders used for the maximum transfer of
energy from the transmitter to the antenna: (a) a coaxial feeder is con-
nected to the center of a half-wave antenna; (b) a resonant open-line
feeder is used to current-feed the center of a half-wave antenna; (c) a reso-
nant open-line feeder is used to voltage-feed a half-wave antenna.
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A quarter-wave section of open-wire resonant
transmission line makes a convenient RF impedance-matching
transformer of the linear type. Because of the stationary
standing-wave distribution of current and voltage along the
line, tapping into the line at various points can provide a large
number of different impedances (see Fig. 2-7). Thus, a
generator and a load may be connected, respectively, to the
points corresponding to their separate impedance values, and
the two devices become matches through the corresponding
autotransformer action. Figure 2-16 shows how a quarter-wave
section short-circuited at one end is used in this manner.

The input impedance (Z,,) of a line whose length is a
quarter-wave or an odd-numbered multiple of quarter-waves
is directly proportional to the square of the characteristic
impedance of the line (Z)) and inversely proportional to the
output impedance (Zyy;):

ZIN = ZUZ/ZOUT (2-18

From this relationship, it is apparent that the characteristic
impedance a quarter-wave section must have, in order to
match a given output impedance (load) to a given input
impedance (generator), is:

Zy = VZpZoyr (2-19)

Example 2-11. Calculate the characteristic impedance
required for a quarter-wave section to be used between a lirie

GEN@ ‘ Yax LINE

Fig. 2-16. A quarter-wave section of open-line resonant transmission line
is short-circuited at one end and used as an Rrr impedance-matching
transformer.
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impedance (input) of 600} and an antenna impedance
(output) of 72Q.

From Eq. 2-19:

Z,= V600 X 72
= /43200
= 207.85Q

After finding Z, with Eq. 2-19, the required spacing of
conductors in the section can be found with a rewritten form of
Eq. 2-11:

d(antilog Z,/276)

S= 2 (2-20)

Example 2-12. With No. 12 wires (d = 0.081 inch), the
required spacing for the 207.8( is:

0.081(antilog 207.8/276)
2

0.081 antilog 0.752898
5 .

0.081(5.66106)

= 0.229 inch

Obviously, such close spacing of No. 12 wires (less than a
quarter-inch) in a quarter-wave section would be
impracticable in most instances. The remedy would be to
increase the term d by moving to large-diameter
conductors—such as metal rods or pipes. This results in the
Q-bar matching section shown in Fig. 2-18(b) and described
later.

A quarter-wave or half-wave section sometimes is used as
an autotransformer to match a nonresonant feeder to an
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antenna as a load; in this application, the section is called a
matching stub. Figure 2-17 illustrates this application, in (a) to
centerfeed the antenna, and in (b) to endfeed it. In each
instance, the stub is initially resonated by sliding the shorting
bar to the proper point along the wires.

Other linear devices are similarly employed as RF
transformers for matching nonresonant feeders to antennas.
Two of these are shown in Fig. 2-18. In 2-18(a), the ends of the
nonresonant feeder are flared out and attached to points
equidistant from the center of the half-wave antenna. This
matching section, called a delta (from its resemblance to the
Greek letter A), provides a gradually increasing impedance. At
a given operating frequency f, the delta dimensions are:

A = 118/f (2-21)

where A is in feet, and f in megahertz.

Y2A ANTENNA

\\
\ NONRESONANT

SHORTING BAR—> - FEEDERS

Yax STUB

(a) CENTER-FED

72A ANTENNA
YaA STUB—>
x NONRESONANT
SHORTING BAR —> FEEDERS
(b) END-FED

Ao |

; ) Yo ANTENNA
B
CENTER OF ANTENNAX _/__ =V

or-

60002 NONRESONANT FEEDER

(a) DELTA MATCHING SECTION

Y2 ANTENNA

2" TUBES

1
! i
J
1<—A->!
] i |NONRESONANT FEEDER
<~ B—>

(b) Q-BAR MATCHING SECTION

Fig. 2-17. Quarter-wave stubs are used to match nonresonant feeders to
half-wave antennas: (a) center-fed, (b) end-fed.
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Eig‘ 2-18.» RF impedance-matching transformers: (a) a delta mratching sec-
tion provides a gradually increasing impedance; (b} a Q-bar matching sec-
tion provides more spacing between conductors.

And:

B = 148/f (2-22)

where B is in feet and f in megahertz.

In 2-18(b), a linear transformer consisting of two parallel
lengths of half-inch-diameter aluminum tubing is connected
between the nonresonant feeder and the center of the
half-wave antenna. The large diameter of these tubes makes
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possible a more practicable, wider " spacing between
conductors in a quarter-wave matching section than when
wires are used (see Eq. 2-20 and accompanying discussion).
This arrangement is termed a Q-bar matching section. While
0.229 inch spacing is required in a 600-to-72(} matching section
employing No. 12 wires, the spacing of half-inch-diameter
Q-bars is 1.41 inches (approximately 113/32 inches) between
centers, a much more manageable dimension.

A suitable section of coaxial line also may be employed as
a matching transformer, provided the center conductor and
outer sleeve can be tapped at the correct points or that a
short-circuiting disc can be moved along the interior between
the center conductor and inside of the outer sleeve.

Use of Active Followers

A follower is usually a single-stage amplifier whose output
impedance is substantially lower than its input impedance.
The maximum theoretical voltage gain of a follower is one.
The follower is useful as a stepdown impedance transformer,
and often serves as a buffer between a voltage source
(generator) and a load device that would overload the voltage
source. There are three types: cathode follower (vacuum
tube), emitter follower (bipolar transistor), and source
follower (FET.) Figure 2-19 shows circuits of these devices. No
type of follower, operating correctly, introduces a phase shift.

Figure 2-19(a) shows the cathode follower. Here, the input
impedance equals closely the resistance of the grid-to-ground
resistor 7. This resistance is commonly 500K to several
megohms, and can be made as high as desired, consistent with
noise pickup and instability. The output impedance is:

Tare

Z. = (2-23)
our T+ Tx (B + 1)

where Z,; is the output impedance in ohms, r; the tube plate
resistance in ohms, 7, the cathode resistance in ohms, and u
the tube amplification factor.

Example 2-13. A cathode follower employs a 6C4 tube
having an amplification factor of 17, plate resistance of 7700(2,
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and using a cathode resistor of 560Q. Calculate the output
impedance.

FromEq. 2-23:

7700(560)
7700 + (560 x 18)

4,312,000
7700 + 10,080

4,312,000
17,780
= 242.54)

Zoyr =

'Figure 2-19(b) shows the emitter follower. In this circuit,
unlike that of the cathode follower, the output impedance
depends upon the source impedance Z ;:

Zg 'R g
1+ hgg (2-24)

ouT —

where h is the input impedance of the transistor in ohms, and
he is the forward-current transfer ratio of the transistor. Both
hez and h;z may be measured or taken from the transistor
manufacturer’s specifications. |
Example 2-14. A type 40400 bipolar transistor has the
following ratings: h = 600Q and h,; = 200. Calculate the

output impedance of an emitter follower employing this
transistor with a 100K generator.

From Eq. 2-24:
100,000 + 600
Zop= ———————
1+ 200
= 100,600,201
= 500.5Q

The input impedance of the emitter follower itself is equal
approximately to hy + h;gR; where R is the external
gmitter-to-ground resistor. In Fig. 2-19(b) and the preceding
illustrative example, if Rg is 390Q, a common value, then the
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Fig. 2-19. Active follower circuits: (a) cathode follower; (b) emitter

follower; (c) source follower.
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input  impedance is equal to: 600 + (200 x 390)
= 600 + 78,000 = 78,6002 = 78.6K

The source follower in Fig. 2-19(c) behaves more nearly
like the cathode follower. In the source follower circuit, the
output impedance is:

Toss”
Z gy = =5 (2-25)

(Gpsross + DTs + Toss

where g, is the forward transconductance of the transistor in
mhos, 7, the output resistance o<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>