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PREFACE

It is the purpose of this book to present the basic principles of electro-
magnetic-field theory with approximately equal emphasis on the various
branches that find application in such divers areas as electronics, power,
radiation, and propagation. Although the field point of view is stressed,
the close interrelation of field and circuit theory is also pointed out, as, for
example, in the development of field equations from circuit theory and
by the very useful concept of the curvilinear square volume or field cell.

The first seven chapters are written for an introductory field-theory
course in physics or electrical engineering at about the third- or fourth-
year college level. The subjects covered include static electric and
magnetic fields, steady currents, and changing electric and magnetic
fields. The last seven chapters form a continuation and are written for a
somewhat more advanced field-theory course at about senior or first-
year-graduate level. These chapters treat plane waves in dielectric and
conducting media, transmission lines, wave guides, antennas, and
boundary-value problems. Each set of seven chapters includes enough
material for a course of about one semester.

The material in the book has been used in courses in electrical engi-
neering at the Ohio State University for several years. The first seven
chapters are covered in a course given in the last part of the junior year,
while the last seven chapters are treated in a course given in the first part
of the first year of the graduate program.

As a prerequisite for the introductory field course the student should
have completed a first course in general physics and mathematics through
the differential and integral calculus. A course in vector analysis is
desirable either beforehand or concurrently, but is not a necessity since
most of the vector concepts are developed as they are needed.

The rationalized mksc system of units is used. This system is rapidly
coming into almost universal use and has many practical advantages.
Throughout the book the dimensional equality of equations is stressed
as a necessary condition for correctness. In this connection the dimen-
sional relations are frequently expressed in the appropriate mksc units.
A complete table of units is given in the Appendix.

A feature of the book is the large number of worked examples. These
examples are stated in problem form, and many of them serve not only to
apply the theory but also to develop it further. Complete problem sets
are to be found at the end of each chapter. Many important results not
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vi PREFACE

given in the text are stated as exercises in these problem sets. Answers
are also included for many of the odd-numbered problems.

The presentation of magnetic fields is based on the actual physical
situation rather than on fictitious magnetic charges. Furthermore,
particular attention is given to the fact that it is the flux density B that
occurs in the force relations involving the magnetic field.

Space vectors are always indicated by boldface symbols. Complex
quantities, or phasors, are sometimes indicated by a dot (') over the
symbol where it is desired to indicate explicitly that a quantity is com-
plex. However, for simplicity of notation the dot is usually omitted
where it is obvious that the quantity is complex.

An aim throughout the book has been to approach a new subject
gradually. For example, wherever possible, simple special cases are
considered first, and then with these as background the general case is
developed.

Although great care has been exercised, some errors in the text or
figures will inevitably occur. Anyone finding them would do the author
a great service to write him about them so that they can be corrected in
subsequent printings.

In conclusion the author wishes to express his appreciation to many of
his associates and students for numerous helpful suggestions and also for
confirming the answers to many of the problems.

JouN D. Kraus

CorumBus, Oxio
October, 1952
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CHAPTER 1

THE STATIC ELECTRIC FIELD. PART 1

1-1. Dimensions and Units. Lord Kelvin is reported to have said:
““When you can measure what you are speaking about and express it in
numbers you know something about it; but when you cannot measure
it, when you cannot express it in numbers your knowledge is of a meagre
and unsatisfactory kind; it may be the beginning of knowledge but you
have scarcely progressed in your thoughts to the stage of science whatever
the matter may be.” To this it might be added that before we can meas-
ure something we must define its dimensions and provide some stand-
ard, or reference, unit in terms of which the quantity can be expressed
numerically.

A dimension defines some physical characteristic. For example, length,
mass, time, velocity, and force are dimensions.! The dimensions of
length, mass, time, and electric charge will be considered as the funda-
mental dimensions since other dimensions can be defined in terms of these
four. This choice is arbitrary but convenient. Let the letters L, M, T,
and Q represent the dimensions of length, mass, time, and electric charge,
respectively. Other dimensions are then secondary dimensions. For
example, area is a secondary dimension which may be expressed in terms
of the fundamental dimension of length squared (L?). As other examples,
the fundamental dimensions of velocity are L/T and of force are ML/T2

A unitis a standard, or reference, by which a dimension can be expressed
numerically. Thus, the meter is a unit in terms of which the dimension
of length can be expressed, and the kilogram is a unit in terms of which
the dimension of mass can be expressed. For example, the length
dimension of steel rod might be 2 meters and its mass dimension 5 kg.

' 1-2. Fundamental and Secondary Units. The units for the funda-
‘mental dimensions are called the fundamental units. In the meter-kilo-
gram-second, or Giorgi, system of units (abbreviated mks) the meter,
kilogram, and second are the fundamental units. Taking the coulomb
as the fourth fundamental unit, the complete system of fundamental
units is the meter-kilogram-second-coulomb system (mksc system).
The definitions of these four fundamental units are:

! The term quantity is often used synonymously with dimension.
1
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Meter: Length between two marks on the international prototype meter,
a platinum-iridium bar. (39.37 in. = 1 meter.)

Kilogram: Mass of international prototype kilogram, a platinum-
iridium mass. (2.2 1b ~1 kg.)

Second: 1/86,400 part of a mean solar day.

Coulomb: 1 international ampere-second, where 1 international ampere
is the current that, flowing steadily through a solution of silver nitrate,
will deposit silver at the rate of 1.11800 X 10~ kg per sec.

The units for dimensions other than mass, length, time, and charge are
called secondary, or derived, units and are based on the above funda-
mental units.

In this book the rationalized mksc system of units is used. The
rationalized system has the advantage that the factor 4r does not appear
in Maxwell’s equations although it does appear in certain other relations.
A complete table of units in this system is given in the Appendix. In
the table there is an alphabetical listing of dimensions or quantities
under each of the following headings: Fundamental, Mechanical, Elec-
trical, and Magnetic. For each quantity the symbol, description, mkse
unit, equivalent units, and fundamental dimensions are listed.

It is suggested that as each new quantity and unit is discussed the
student refer to the table and, in particular, become familiar with the
fundamental dimensions for the quantity.

X 1-3. Dimensional Analysis. It is a necessary condition for correctness
that every equation be balanced dimensionally. For example, consider
the hypothetical formula

M
T = DA (1-1)
where M = mass
L = length
D = density (mass per unit volume)
A = area

The dimensional symbols for the left side of (1-1) are M /L, the same as
those used. The dimensional symbols for the right side are

M M
ol =T
Therefore, both sides of this equation have the dimensions of mass per
length, and the equation is balanced dimensionally. This is not a guar-
antee that the equation is correct, that is, it is not a sufficient condition
for correctness. It is, however, a necessary condition for correctness,
and it is frequently helpful to analyze equations in this way to determine
whether or not they are dimensionally balanced.
Such dimensional analysis is also useful for determining what the
dimensions of a quantity are. For example, to find the dimensions of
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force, we make use of Newton’s second law that
Force = mass X acceleration

Now acceleration has the dimensions of length per time squared so that
the dimensions of force are

Mass X length

Time?

or in dimensional symbols
ML
T
X 1-4. Electric Charge. The fourth fundamental dimension, or quan-
tity, in the mksc system is electric charge. Whereas mass is only of one
type (positive mass), electric charge is of two kinds, positive and negative.
The natural elemental unit of negative electric charge is that possessed
by an electron and is equal to —1.6 X 10~!? coulomb. The designation
of the electron charge as negative is entirely arbitrary and is the result
of definition.

A neutral, or normal, atom consists of one or more orbital electrons
(negatively charged) and a much heavier nucleus of equal positive charge.
The total, or net, charge of the normal atom is zero. If one or more
orbital electrons is removed, the atom is ionized. A singly ionized atom
(one electron removed) has a net charge of +1.6 X 107!? coulomb. A
doubly ionized atom (two electrons removed) has a net charge of +3.2 X
10—% coulomb, ete. While negative charge is associated with electrons,
positive charge may be associated with atoms having a deficiency of
electrons. Thus, an object with an excess of electrons possesses a nega-
tive charge and an object with a deficiency of electrons a positive charge.

1-6. The Force between Point Charges and Coulomb’s Law. A
group of charged particles, that is, atoms or electrons, occupies a finite!
volume. Even a single electron has a finite size. However, it is often
convenient to regard a small, concentrated region of charged particles
as a point charge. This assumption leads to no appreciable error provided
the size of the volume occupied by the charged particles is small compared
with the other distances involved.

The basic experiment of electrostatics was first performed by Coulomb
about 1785, using small charged bodies which may be regarded as point®
charges. The results of this experiment are given by Coulomb’s law,
which states that the force F between two point charges @, and Q; is
proportional to the product of the charges and inversely proportional
to the square of the distance r between them. That is,

Force =

F=k Q‘—?z newtons (1-2)
r

! By “finite” is meant ‘“not infinitesimal.”
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where k = a constant of proportionality. Because of the inverse-square
effect of distance this law is said to be an inverse-square law. The force
is in the direction of the line connecting the charges. As suggested in
Fig. 1-1a the force is outward (repulsive force) if the two charges are of
the same sign, but as suggested in Fig. 1-1b the force is inward (attrac-
tive force) if the two charges are of oppo-

+ 4+ a, F . .
o —’5"—’ (a) site sign.
! z In the mksc system the constant of pro-
) portionality is given by
< e 0 !

%:3:’ k=1

Q r

F1e. 1-1. Two point charges of where ¢ = permittivity! of the medium in
same sign (a) and of opposite which the charges are situated. By di-
sign (b). mensional analysis of (1-1) we find that
€ has the dimensions of capacitancet per length, or in dimensional symbols
T2Q?/ML3®. The mkse unit for permittivity is the farad per meter. The
permittivity of vacuum is designated e, and has a value of

8.85 X 1012 ~ 3_(13_1- 10—° farads/meter

The permittivity of air is substantially the same as for vacuum.

Force is a vector, that is, it has both magnitude and direction. In this
book boldface letters designate vectors. Thus, the vector force is indi-
cated by F and its scalar magnitude by the lightface italic quantity F,
that is, F = |[F|. Rewriting (1-2) as a vector equation and also sub-
stituting the value of k, we have

Q-
F=a_ = (1-3)
where F = force (newtons})
a, = unit vector (see Fig. 1-1) pointing in direction of line joining
the charges (thus, F = a,F)
Q. = charge 1 (coulombs)
Q: = charge 2 (coulombs)

e = permittivity of medium (farads/meter)
r = distance between point charges (meters)

1 Also called the dielectric constant. For a further discussion of permittivity see
Sec. 2-2. The term capacitivity is also used for permittivity.

t For a discussion of capacitance see Sec. 2-7. The significance of ¢ should become
clearer after reading the portion of Sec. 2-26 on the field cell capacitor.

$ One newton equals the force required to accelerate 1 kg 1 meter per sec per sec.

1 newton = 10® dynes = weight of 0.102 kg
= weight of 0.224 1b avoirdupois
= weight of 3.6 oz avoirdupois
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This is the complete vector expression for Coulomb’s law as expressed in
the rationalized mksc system. To demonstrate the application of this
law let us consider the following problem.

Example. A negative point charge of 10~¢ coulomb is situated in air at the origin
of a rectangular coordinate system. A second negative point charge of 10—!is situated
on the positive z axis at a distance of 50 cm from the origin. What is the force on the
second charge?

Solution. By Coulomb’s law the force
o (S109(1079

4x X 0.5* X 107%/36x
= +i3.6 newtons

F

That is, there is a force of 3.6 newtons (0.8 1b) in the positive z direction on the second
charge.

% 1-6. Electric Field Intensity. Consider a positive electric point
charge Q, situated at the origin of a polar coordinate system. If another
positive point charge @, is brought into the vicinity of @, it is acted
upon by a force. This force is directed radially outward and becomes
greater as Q: approaches @;. It is
said that Q, is surrounded by a field,

that is, a region in which forces . 1 .
may act. The nature of this field X P
is indicated by the vector diagram of
Fig. 1-2, the length of the vector \ / t
being proportional to the force at the . Q,
point. - - — 6 —_— = >
Dividing (1-3) by @ puts the equa- !
tion in the dimensional form of force / \
per charge, that is, S \
F _ force 4 | b
Q. charge )
which has the dimensional symbols . - o, p. charge Q; with vectors
ML indicating magnitude and direction of
WQ associated electric field.

Now if Q. is a positive test charge, the resulting force per unit charge is
defined as the electric field intensity* E. Thus, from (1-3)

F Q1
E = -Q_z = &, m (1-4)
where Q; = positive test charge. The mksc unit of electric field intensity
is the newton per coulomb. As will appear after the discussion of electric
potential (Sec. 1-8), an equivalent unit for the electric field intensity is
the volt per meter.
! Also called the electric field strength.
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According to (1-4) the point charge Q, is surrounded by an electric
field of intensity E which is proportional to @, and is inversely propor-
tional to r2.  The electric field intensity E is a vector having the same
direction as the force F but differs in numerical magnitude and in
dimensions.

It is not implied by (1-4) that the positive test charge has a value of
1 coulomb. It may have any convenient value since the ratio of the
force (newtons) to the test charge (coulombs) is independent of the size
of the charge provided the test charge does not disturb the field being
measured. Now 1 coulomb represents a much larger charge than is
ordinarily encountered in static problems. TFor example, we note by
Coulomb’s law that the repulsive force of two positive charges of 1
coulomb separated by 1 meter is 9 X 10° newtons (or 1 million tons).
This is an enormous force, and it follows that if we attempted to use a
test charge of 1 coulomb we should tend to disturb the charges whose
field we seek to measure. Therefore, it is necessary to use small test
charges; in fact, the test charge should be sufficiently small that it
does not appreciably disturb the charge configuration whose field is to
be measured.

If the test charge is made small enough, it may be regarded as of
infinitesimal size so that the ultimate value of the electric field intensity
at a point becomes the force AF on a positive test charge AQ divided
by the charge with the limit taken as the charge approaches zero. That
is,

E = lim 2F (1-5)

Actually the smallest available test charge is an electron. Since this is
a finite charge, it follows that E cannot be measured with unlimited
accuracy. Although this is of importance in atomic problems, it need
not concern us in the large-scale, or macroscopic, problems treated in
this book. In practice, E would be measured with a small but finite
test charge, and if this charge is small enough, E would differ inappreci-
ably from that measured with an infinitesimal or vanishingly small test
charge as implied in (1-5).

A sample calculation of electric field intensity is given in the following
problem.

Example. A negative point charge 1078 coulomb is situated in air at the origin of
a rectangular coordinate system. What is the electric field intensity at a point on the
positive z axis 3 meters from the origin?

Solution. By (1-4) the ficld intensity is given by

. 10-*
4x X 3* X 107%/36x
= —jl0 newtons/coulomb

Em=
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That is, the electric field intensity is 10 newtons per coulomb (or 10 volts per meter)
and is in the negative z direction.

Y 1-7. The Electric Field of Several Point Charges and the Principle of
Superposition of Fields. Since the electric field of a point charge is a
linear function of the value of the charge, it follows that the fields of
more than one point charge are linearly superposable by vector addition.
As a generalization, this fact may be stated as the principle of superposi-
tion applied to electric fields as follows:

The total or resultant field al a point is +Q,
the vector sum of the individual component
fields at the point. P
Thus, referring to Fig. 1-3, the field in-
tensity of the point charge Q, at the point
P is E, and of the point charge Q. is E,. E.
The total field at P due to both point +Q,
charges is the vector sum of E, and E,, or  pyq.

E,

b~
]

1-3. Vector addition of

E as indicated in the figure.
A further illustration is given in the fol-
lowing example.

fields due to two equal point
charges of the same sign to give
resultant or total field E.

Example. A positive point charge of 10~ coulomb is situated in air at the origin
(z =0,y = 0), and a negative point charge of —2 X 107 coulomb is situated on the
y axis 1 meter from the origin (x = 0, y = 1) as shown in Fig. 1-4. Find the total

¥

» ——=2x10"" coulomb

-

1 meter

— 2 meters >
i P E, =
+107 coulomb
Fra. 1-4. Vector addition of fields due to two unequal point charges of opposite sign

to give resultant or total ficld E.

electric field intensity at the point I’ on the z axis 2 meters from the origin (z = 2,

y =0).
Solution.

from (1-4),

The vector value of the electric field E, due to the charge at (0, 0) is,

=1 1070
4x X 22 X 10?/36x
= {2.25 newtons/coulomb

E,



8 ELECTROMAGNETICS [Cuar. 1

The magnitude of the field E; due to the charge at (0,1) is

- -2 X 10—*
4r X 2.247 X 10-°/36x
= —3.58 newtons/coulomb

Es

The vector value of E, is given by
E;, = —i3.58 cos a 4+ j3.58 8in «

q 2 . 1
= —i3.58 m‘ + ]3.58 2—22

= —i3.2 + j1.6 newtons/coulomb
where i is a unit vector in the z direction and j a unit vector in the y direction. The
total vector field E may be obtained by graphical vector addition of E, and E; or
analytically as follows:
E = i(2.25 — 3.2) + jl.6

and in both rectangular and polar forms

E = —i0.95 + j1.6 = 1.86/120.7° newtons/coulomb

X 1-8. The Electric Scalar Potential. It has been shown that an
electric charge produces an electric field and that a test charge brought
into this field is acted on by a force. Let us now consider the work or
energy required to move the test charge from one point to another in the
electric field.

A point charge produces a nonuniform field since its magnitude varies
inversely as the distance squared. However, if we confine our atten-
tion to a small portion of the field at a great distance from the charge, the

field is substantially uniform. Con-

T' £ sider two points, z; and z,, situated in
. e - <o Such a uniform electric field E parallel

z oz Path z2 to the z direction. Let a positive test
—_— charge at 22 be moved in the negative x

F1a. 1-5. Linear path in uniform  girection to z, asin Fig. 1-5. The field
electric field. exerts a force on the charge so that it
requires work to move the charge against the force. The amount of work
per unit charge is equal to the force per unit charge (or field intensity E)
times the distance through which the charge is moved. Thus,

E(x; — z1) = work per unit charge (joules/coulomb)  (1-6)
The dimensions of (1-6) are

Force work
Charge X length = charge

or
MLL ML?

T Q~ T
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In mksec units the relation is

Newtons _joules }
Coulomb < meters = coulomb 1-7)

The dimensions of work per charge are those of potential. In our
example (Fig. 1-5), the work or energy per unit charge required to trans-
port the test charge from z; to z, is called the difference in electric poten-
tial! of the points z; and z;. The point z, has the higher potential since
it requires work to reach it from point z;. Thus, moving from z. to z,
(opposite to E), we experience a rise in potential. The unit of electric
potential V in the mkse system is the volt and is equal to 1 joule per
coulomb. Hence, electric potential is expressible either in joules per
coulomb or in volts. The relation of (1-7) can then be extended to

Newtons joules

601110—mb X meters = = volts

coulomb
Dividing by meters, we obtain

Newtons _ volts

Coulomb — meter electric field intensity

Thus, the electric field intensity E is expressible in either newtons per
coulomb or in volts per meter. With E expressed in volts per meter the
dimensional form of (1-6) becomes

Volts
Meter

X meters = volts (1-8)

Example. Let the uniform electric field in Fig. 1-5 have an intensity E of 10 volts/
meter. If the distance za — z, i8 10 em what is the potential difference of the two
points?

Solution. From (1-6) the electric potential is given by

V =10 X 0.1 = 1 volt

That is, the potential of z; is 1 volt higher than the potential of z,.

Consider next the case of a nonuniform field such as exists in the
vicinity of the positive point charge Q (Fig. 1-6). The electric field E
is radial and is inversely proportional to the square of the distance »
from the charge Q. The energy per coulomb required to move a positive
test charge from 7 to r, along a radial path equals the potential differ-

! Potential, in general, is a measure of energy per some kind of unit quantity. For
example, the difference in gravitational potential at sea level and 100 meters above
sea level is equal to the work required to raise a 1-kg mass from sea level to a height
of 100 meters against the earth’s gravitational field. Potential is a scalar quantity,
that is, it has magnitude but no direction.
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ence or rise V3, between the points. This is given by
Va= ["av = — ["Edr  volts (1-9)
T2 ra

The negative sign takes into account the fact that the motion from r; to
r1 is opposite to the direction of the field. Substituting the value of £
from (1-4) yields

7
E/ Vo=V, - Vo= — Y 4127,5
/ iy / dr 1)
- — —— 010 ga—a—s B ra 47“ _1'_7'—2
n Path 1 (1-10)
\ where V; = potential at point r,
\ V. = potential at point r,
\ The potential difference or rise in
Fi1g. 1-6. Lincar path in nonuniform (1-10) is positive since work must be
electric field. expended to move the test charge from

ry to r, against the field. However,
if the motion is from 7, to r,, the field does work on the charge and there
is a fall in potential (negative potential difference).
If the point r, (Fig. 1-6) is removed to infinity, we can consider that it
is at zero potential. Thus, (1-10) becomes

V, = 4127‘1 volts (1-11)
This potential is called the absolute potential of the point r, due to the
charge Q. It is inversely proportional to the distance from @ to the
point r; and is, by definition, the work per coulomb required to bring a
positive test charge from infinity to the point r,. For the sake of brevity
the potential at a point will hereafter be understood, unless otherwise
specified, to mean the absolute potential of the point.

X 1-9. The Electric Scalar Potential as a Line Integral of the Electric
Field. In Sec. 1-8 the test charge is moved via the shortest path between
two points. Actually, the path followed is immaterial since the potential
difference is determined solely by the difference in potential of the two
end points of the path. Thus, referring to Fig. 1-6, the potential at the
point r, with respect to the potential at r, is said to be single-valued,
that is, it can have only one value regardless of the path taken from r,
to r1. In Sec. 1-8 the test charge is moved parallel to the electric field
E. When the path of the test charge is not parallel to E but at an angle
0, as in Fig. 1-7, the potential difference V,; between the points z: and r,
is equal to the path length (x; — z,) multiplied by the component of E
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parallel to it. Thus,
Vz; = (xz - x;)E cos 8 (1-12)

It is assumed here that E is uniform.

If the test charge is moved perpendicular to the direction of the field
(6 = 90°), no work is performed and hence this path is said to be an
equipotential line. It is an important prop-

E
erty of fields that equipotential and field lines ig
are orthogonal. o —

Let us consider next the casec where the % 2
path of the test charge is curved. Then the
potential difference between the end points
of the path is given by the product of the infinitesimal element of path
length dI and the component of E parallel to it, integrated over the length
of the path. Referring to the path in the uniform field E in Fig. 1-8, the

infinitesimal potential rise dV be-
—_— tween the ends of the path element
a dl is given by

dV = —FE cos 8dl (1-13)
where 6§ = angle between the path

F1e. 1-7. Linear path in uni-
form electric field at angle 6.

Yeu
[ T ——

0 dz : z element and the field (0 < 0 < 90°).
) / A potential rise (positive potential
b difference dV) requires that the
E component of the motion parallel to

—_— E be opposed to the field. Hence

Fig. 1-8. Curved path in a uniform elec-

tric field. the negative sign in (1-13). By in-

tegrating (1-13) between the limits
a and b, we obtain the potential rise V, between the points a and b.
Thus,

V..,,=Lde=Vb—Vu=—L°Ec()sodz (1-14)
The integral involving dl in (1-14) is called a line integral. Hence the

potential rise between a and b equals the line integral of E along the
curved path between a and b.

Example 1. In Fig. 1-8 let E be everywhere in the =4z direction and equal to
10 volts/meter (a uniform field). Let z, = | meter. Find V.
Solution. From (1-14)

b 0
Va = — L Ecos 6dl = —L Edr = Ex, = 410 volts
1

As a variation of the above example, suppose that the path is from
btoa Then Vi, = —10 volts. As a third variation, let the direction
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of E be reversed (negative x direction) but the path be fromatod. Then,

V= — /;b(—E)cosodl= /:de= —10 volts

Finally, let us consider the situation where the path of the test charge
is curved and also where the electric field is nonuniform. For instance,
let the nonuniform field be produced by a point charge +@ as in Fig. 1-9.
The field intensity due to a point charge is given by (14). Substituting
this in (1-14) and also putting dr = cos 8 dl, where dr is an infinitesimal
element of radial distance,

V,b = - ‘Iﬂ"é [-o '?2 = I; b a volts (1-15)

Putting b = r; and @ = r, makes this result identical with (1-10) where
the path is along a radial line.

Example 2. Let the positive charge @, Fig. 1-9, be equal to 2.23 X 10~ coulomb.
Alsoleta = 40cm and b = 10em. The medium is air. Find the absolute potential
Va at a, the absolute potential V, at b, and the poten-
tial rise V.

Equipotentials Solution:

Ve=-21_ 5volts
41’606

Q1
Vb m E 20 VOltS

V.b = Vb — Va = 15 volts

In the above example the potential at any
point 10 cm from @ has an absolute potential
of 20 volts. Therefore, a circle of 10 cm
radius around @ is a 20-volt equipotential con-
tour (see Fig. 1-9). In three dimensions a
sphere of 10 ¢m radius around Q is a 20-volt equipotential surface. Like-
wise, a sphere of 40 cm radius around @ is a 5-volt equipotential surface.
It follows that the equipotential surfaces around a point charge are con-
centric spheres.

The work to move a test charge along an equipotential contour or
surface is zero (§ = 90°). The maximum amount of work per unit dis-
tance is performed by moving normal to an equipotential surface. This
coincides with the direction of the field.

The work to transport a test charge around any closed path in a static
field is zero since the path starts and ends at the same point. Thus, the
upper and lower limits of the integrals in (1-14) become the same, and
the result is zero. Suppose the path starts and ends at a (Fig. 1-9).

F1a. 1-9. Curved path in a
nonuniform electric field.
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Then!

[fav = — ["Ecosodl - —~f Ecosodl = 0volts  (1-16)

A property of the static electric field is, then, that the line integral of this
field around a closed path is zero. 1t follows that the potential difference
between any two points is independent of the path, as was mentioned at
the beginning of this section.

X 1-10. Scalar, or Dot, Product. In vector analysis the scalar, or dot,
product of two vectors is a scalar and is equal to the product of the
vector magnitudes times the cosine of the angle 8 between the vectors.

Referring to Fig. 1-10, the dot product of A and B is
B

A-B = ABcos? (1-17)
where A = vector
’ A A = |A| = scalar magnitude of A
Fia. 1-10. Vectors B = vector

B = |B| = scalar magnitude of B
6 = angle between A and B

If A-B = 0, the two vectors are perpendicular, provided, of course,
that neither is zero.

Introducing the vector notation of the dot product into (1-14), we
obtain

at anglc 6.

V.b=Lde=—LbEcosodl=—LbE-dl (1-18)

where E = electric field intensity (vector)
E = |E| = scalar magnitude of E
dl = infinitesimal element of path length (vector)
dl = |dl| = scalar magnitude of dl
In vector notation the line integral (1-16) around a closed path is

written
FSEcospdl = FE-dl =0 (1-19)

% 1-11. Relation of Electric Field Lines and Equipotential Contours.
A field line indicates the direction of the force on a positive test charge
introduced into the field. If the test charge were released, it would
move in the direction of the field line.

In a uniform field the field lines are parallel as in Fig. 1-11. A single
field line gives no information as to the intensity of the field. It indi-
cates only the direction. However, by measuring the work per coulomb
required to move a positive test charge along a field line the potential
differences along the line can be determined. The larger the potential
difference between two points a unit distance apart, the stronger the field.

1 The symbol # indicates a line integral around a closed path.
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In a uniform field the potential difference per unit length is constant so
that the equipotential lines (which are orthogonal to the field lines) are
equally spaced. In the example of Fig. 1-11, the electric field intensity is
2 volts per cm so that the equipotential contours at 1-volt intervals are
parallel lines spaced § cm apart. One of the lines is arbitrarily taken as

S N T A
[ I o
:!I-+—};!;'!!
N T N T N N
T Il l‘li T
A N N N R
11 [ & 1 N
| I
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Cor e
L . L S N
0 1 2 3 4 5 6 7 8 9 10volts
L 1 1 t 1 1
0 1 2 3 4 5cm

F1a. 1-11. Field lines (solid) and equipotential lines (dashed) of a uniform electric
field.

7 Scale of distance
1 1

]
0 1 2 3cm
Fia. 1-12. Field lines (solid) and equipotential lines (dashed) of a nonuniform electric

L

field.
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having a zero potential so that the potentials shown are relative to this
line.

Consider now the case of a nonuniform field such as exists in the
vicinity of the positive point charge @ in Fig. 1-12. If a positive test
charge were released in this field, it would move radially away from Q,
so that the field lines are radial. The field intensity varies inversely as
the square of the distance as given by (1-4). In Fig. 1-12 this is sug-
gested by the fact that the field lines become more widely separated as
the distance from @ increases. The absolute potential is inversely pro-
portional to the distance from Q as given by (1-11). If Q = 10~ cou-
lomb, the equipotential contours for 20, 10, 3, and 3 volts are then as
shown by the concentric circles in Fig. 1-12.

It is to be noted (Figs. 1-11 and 1-12) that a potential rise is always in
the opposite direction to E.

X 1-12. Charge Density and Continuous Distributions of Charge. The
electric charge density p is equal to the total charge  in a volume v
divided by the volume. Thus,

= (1-20)

O

The value of p in (1-20) is an average charge density.

Electric charge density has the dimensions of charge per unit volume,
or in dimensional symbols Q/L3. In the mksc system the unit of charge
density is the coulomb per cubic meler.

By assuming that electric charge may be continuously distributed
throughout a region we can also define the value of the charge density
p at a point P as the charge AQ in a small volume element Av divided
by the volume, with the limit of this ratio taken as the volume shrinks
to zero around the point P. In symbols,

p = lim 3¢ (1-21)

This gives the value of p at a point and hence defines p as a point function.
It will be convenient to use this definition of p, but it is to be noted
that it is based on the assumption that the electric charge is continuously
distributed. Actually electric charge is not continuously distributed but
is associated with discrete particles (electrons or atoms) separated by
finite atomic distances. Nevertheless, the assumption of a continuous
. charge distribution leads to no appreciable error provided the region con-
tains many atoms or electrons and the distances involved are large com-
pared with atomic dimensions. The assumption of continuous charge
distribution can be applied to the large-scale, or macroscopic, problems
treated in this book but would not be applicable to problems on atomic
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structure, where the noncontinuous nature of the charge distribution
must be taken into account.

The charge density p, discussed above, is sometimes called a volume
charge density to distinguish it from surface charge density and linear
charge density. The surface charge density ps gives the charge per unit
area (coulombs per square meter) at a point in a continuous surface dis-
tribution of charge. The linear charge density p, gives the charge per
unit length (coulombs per meter) at a point on a continuous line dis-
tribution of charge. Both ps and p, are point functions which can be
defined as in (1-21), with a surface or line element substituted for the
volume element.

1-13. Electric Potential of Charge Distributions and the Principle
of Superposition of Potential. Since the electric scalar potential due to
a single point charge is a linear function of the value of its charge, it
follows that the potentials of more than one point charge are linearly
superposable by scalar (algebraic) addition. As a generalization, this
fact may be stated as the principle of superposition applied to electric
potential! as follows:

The total electric polential at a point is the algebraic sum of the individual
componenl potentials al the point.

Thus, if only the three point charges @i, @:, and Q; are present in
Fig. 1-13, the total electric potential (work per unit charge) at the point P

is given by
y, =1 (Q_x 4+ @ 93) (1-22)

4xe \ 7, Ty T3

where r; = distance from @, to P
r; = distance from @, to P
rs = distance from Q; to P
This may also be expressed with a summation sign. Thus,
n=3
1 Qn
V, = me . (1-23)
n=1
If the charge is not concentrated at a point but is distributed along a
line as in Fig. 1-13, the potential at P due to this linear charge distribu-
tion is
_ 1 PL
Vo = dre / ; dl (1-24)
where p,, = linear charge density (coulombs/meter)
dl = element of length of line (meters)
The integration is carried out over the entire line of charge.

1 Although “‘electric scalar potential’’ is implied, the word ‘“‘scalar’ will usually be
omitted for brevity.
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When the charge is distributed over a surface as in Fig. 1-13, the
potential at P caused by this surface charge distribution is

ps
v, = ire / / ds volts (1-25)

where p, = surface charge density (coulombs/meter?)
ds = element of surface (meters?)
The integration is carried out over the entire surface of charge.

dl Linear charge

distnbution
Q
2 Q
Point charges v
1, N

Q

r s

T
s r
Surface charge
distribution Volume

charge
d.f/ distribution

Fie. 1-13. Electric potential at P is the algebraic sum of the potentials due to the
point, line, surface, and volume distributions of charge.

For a volume charge distribution as in Ifig. 1-13

= dme / / / dy volts (1-26)

where p = (volume) charge density (coulombs/meter?)
dv = element of volume (meters?)
The integration is taken throughout the volume containing charge.

If the point charges, the line charge distribution, the surface charge
distribution, and the volume charge distribution of Fig. 1-13 are all pres-
ent simultaneously, the total electric potential at the point P due to all
of these distributions is by the superposition principle the algebraic sum
of the individual component potentials. Thus,

V=Vp+VL+V:+V’
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n=3
V=4Ln( %"+/%fdz+//$ds+///’r—’du) (1-27)
n=1

If all of the charge distributions are considered to occupy finite vol-
umes instead of being idealized to points, lines, and surfaces, then (1-27)
reduces to (1-26).

or

Example. Asshownin Fig. 1-14 a square 1 meter on a side in air has a point charge
@, = +10711 coulomb at the upper left corner, a point charge Q; = —10-!! coulomb
I at the lower left corner, and a line distribution of charge

1 meter of uniform density

Q

-

pr = +1071! eoulomb/meter
dy
along the right edge. Find the potential at the point
P at the center of the square.
Solution. The potential at P due to the point charges is

_ 1 (107t on
4reo \0.707  0.707

1 meter
o
-
3

Pr.
Vs

) = —0.115 volt

Q,

The potential at P caused by the line distribution of
F1a. 1-14. Lineand point  charge is

charges for example illus- . y=0.5 -y
trating superposition of Ve = — / —————dy = + 0.158 volt
electric potential. 4"“'”_ Lo V05 + 47

The total potential at P is then
V=V,4+ V.= +40.043 volt

The principle of superposition stated for the special cases of potential
in this section and for fields in Sec. 1-7 can be applied, in general, to
any quantity which is linearly related to its cause. The electric fields
or potentials at a point are linear functions of the charge producing them
and hence are superposable (by vector addition for fields and scalar addi-
tion for potential).

1-14. Gradient. The potential rise between two points along an
electric field line is a measure of the gradient of the potential in the same
way that the elevation rise between two points on a slope is a measure of
the gradient of the slope. More specifically the gradient of the potential
at a point is defined as the potential rise AV across an element of length
Al along a field line divided by Al, with the limit of this ratio taken as
Al approaches zero. In symbols

Gradient of V = lim 2 (1-28)
al—0 al
By definition this is also the ratio of the infinitesimal potential rise dV
to the infinitesimal length dl. Thus,
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. av . AV .
Gradient of V = T Br—n.oﬁ (1-29)

The gradient of V expressed as dV/dl is said to be in differential or
infinitesimal notation.

If the element of length dl is at an angle 8 with respect to the electric
field E, we have from (1-13) that

= —FE cos 8 (1-30)
If ¢ = 0, dl is along a field line and the ratio d1"/dl is a maximum. Thus,
from (1-29) and (1-30) we have, when 8 = 0, that

av

Gradient of 1" = T —E (1-31)

Hence, the gradient of the potential (or maximum rise in potential with
distance) is equal in magnitude to the electric field intensity and has a
direction opposite to the electric field. Since the gradient has both mag-
nitude and direction, it is a vector equal to —E. Thus,

grad V = —E (1-32)

where ‘‘grad” stands for the gradient of V. As will be shown in the
next section, (1-32) can also be written with the operator del, or nabla
(v), a8

vV = —E - (1-33)

The significance of the negative sign in (1-32) and (1-33) is that to
experience a rise in potential a positive test charge must be moved
opposile to the electric field direction.

Example. Let the potential along a field line vary with z as shown in Fig. 1-15a.
The potential rises uniformly with distance from a to b, is constant from b to ¢,
decreases uniformly from ¢ to d (but at a more rapid rate than the increase from a to b),
and is zero from dto e. Find the gradient of V" and the electric field intensity E from
atoe.

Solution. From (1-29)

dv

grad V = a4z

Therefore,

From a to b: grad V = +3% = 41.25 volts/meter
Frombtoe: grad V =0
Fromctod: grad V = —&% = —5 volts/meter

0

Fromdtoe: grad V =

The variation of grad V with zisillustrated in Fig. 1-15b. From (1-31),E = —grad V.
Thus, the variation of the field is as shown in Fig. 1-15¢.
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The analogy between electric potential ¥V and elevation and between
grad V and the gradient of the slope may also be illustrated with the
aid of Fig. 1-15. Thus, if the ordinate in Fig. 1-15a were elevation in
meters instead of V in volts, the ordinate in Fig. 1-15b would become the
gradient of the slope in meters elevation per meter of horizontal distance.
From a to b the gradient is positive (uphill), while from ¢ to d the gradient
is negative (downhill).

10v.
(a)

(=]

Electric potential V
(5]
<

O ——

d e
L 1 'l 1 Al

lIO l|2 14 cm

or a8
N -
&
-

+5
v/m

—————-0} o} ———

T rr1r

(b)

Trrrig

-5
w/m

+5
v/m

.

Grad V
=)
e

LERELALERE

)
it

0

Electric field E
o

T I‘r[l
o
o
&
L]

=5
vm

F1g. 1-15. Gradient of V' and electric field E for an assumed variation of the electric
potential V.

X 1-16. Gradient in Rectangular Coordinates. In this section a relation
for gradient will be developed in rectangular coordinates. To do this,
consider the electric potential distribution of Fig. 1-16. The work per
coulomb to bring a positive test charge to the point P (at origin of
coordinates) is 104 volts. This is the absolute potential V at P. The
potential elsewhere is a function of both z and y, and its variation is
indicated by the equipotential contours. The field is uniform. Thus,
the contours are straight, parallel, and equally spaced. There is no
variation with respect to z (normal to page). At P the electric field is
as indicated by the vector E, perpendicular to the equipotential line.

Consider now the change in potential along an infinitesimal element of
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VLA )

V=105 v=101

e
N

F1a. 1-16. Potential distribution with clectric field E at a point P.

path length in the x direction (y = constant). Then

av

~ e = Ecosa =E, (1-34)

where @ = angle between E and the z axis
E. = component of E in z direction
Likewise, for an infinitesimal element of path length in the y direction,

_av

o = Ecosg8 = (1-35)

where 8 = angle between E and the y axis
E, = component of E in y direction
The relation of (1-34) is a scalar equation. It may also be expressed
as a vector equation. Thus,

v,
—l—é)—x iE, (1-36)

where i = unit vector in z direction. Likewise (1-35) may he written

—igy, = I (1-37)
where j = unit vector in y direction.

By the principle of superposition the total field E at the point P is the
vector sum of the component fields at the point. Hence,

. . 1 14
E=‘E‘+’E"=_(ax+’a—g> (1-38)

Comparing (1-38) with (1-32), it follows that

14

3y = grad V (1-39)

‘ax+’
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Thus, the gradient in this rectangular two-dimensional case is equal to
the z and y derivatives of the potential added vectorially.

Example 1. Suppose that in Fig. 1-16 the potential decreases by 2 volts/meter in
the z direction and by 1 volt /meter in the y direction. Find the electric field E.
Solution:

grad V = —i2 — j1 volts /meter
and

E= —gradV =i2 +jl = 2.24[22‘ volts /meter

Therefore, E has a magnitude of 2.24 volts and is directed at an angle of 27° with
respect to the positive z axis (« = 27°).

The two-dimensional case discussed above can readily be extended to
three dimensions. Thus, as shown in Fig. 1-17 there are field components
o at the origin in the three coordinate

directions as follows

kE, ik, = iE cos a = —i%v

3 xr
iE, = jEeosg = —j 2V § (140

"\( ay

E 5 . 1%

K kE, = kE cosy = —k 9z
" & j iBy v By the principle of superposition the

total field E at the origin is the vector
sum of the component fields, or

i, 1% av
/ E=—<lax+ + k ) (1-41)
F1a. 1-17. Components of electric where the relation in the parentheses is
S ) e i T e the complete expression in rectangular
coordinates for the gradient of V.t It is often convenient to consider

that this expression is the product of V and an operator del (V). Thus,
in rectangular coordinates

R,
V—16—I+J@+k

2 (142)
The operator Vv is a quasi vector. It is meaningless until applied.
Taking the product of V and V yields the gradient of 7. That is,

VV—l%Z-{- —-—-+—k~-——E (1-43)
or we can write

t The two-dimensional example of Fig. 1-16 is a special case of (1-41) where

17
e
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The eleciric potential is a scalar function. Taking its gradient results
in a veclor that indicates the magnitude and direction of the maximum
rate of change of the potential with distance. This vector is equal and
opposite to the electric field E. In general, taking the gradient of a
scalar function yields a vector that indicates the magnitude and direc-
tion of the maximum rate of change with distance of the scalar function.

Equation (1-44) is expressed in a concise vector notation that implies
no particular coordinate system. In rectangular coordinates it has the
form of (1-43).

A further illustration of gradient is provided by the followingexample.

Example 2. Consider a nonuniform field with a potential distribution given by

10
Veoty
where V is in volts and z and y are in centimeters. There is no variation of V with
respect to z. Hence the distribution is two-dimensional. The potential variation is
illustrated by the equipotential contours in Fig. 1-18. Find (a) the expression for the
gradient of the potential; (b) the value of the gradient at the point (2, 1) em; (¢)
the electric field intensity at this point.

Solution. a. Since the potential distribution is 1 y
independent of z, 3V /9z = 0 and

14

14

~

T
1
) Point (2,1)
~10 ,>K'E
BN 77 T N
1 2 3 4 z

. . .. F16. 1-18. Potential distribu-
¢. The elcctric field has the opposite direction. (em At monbo o 7

e and electric ficld E at a point
E= —-VV = —1.79/206° = 1.79/26° volts/cm P.

N W S

20 . .
= —(}7_;?)‘,(11'*']11)

—

b. At the point (2, 1)

v = —18(2 + j1) = 1.79/206° volts/cm

X 1-16. Electric Flux. A point charge is surrounded by an electric
field as discussed in Sec. 1-6. Thus, an isolated, positive point charge Q
has a radial field as indicated by the lines radiating from Q in Fig. 1-19.
These lines indicate the direction of the electric field, that is, the direc-
tion of the force on a positive test charge.

The electric field intensity E at the radius r from Q (see Fig. 1-19) is,
by (1-4),

_ Q
E =a, e (1-45)
where a, = unit vector in radial direction. Multiplying (1-45) by ¢, we
obtain

a, 4"&2 = ¢E (1-46)
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The dimensions of (1-46) are

Charge

Ao — surface charge density

Hence, the product ¢E has the dimensions of surface charge density. (Q/L?).
The product ¢E may be designated by the symbol D, called the electric
fluzx density. Thus

D =¢E coulombs/meter? (1-47)

where D = electric flux density (coulombs/
meter?)

permittivity of medium (farads/
meter)

electric field intensity (volts/
meter)

According to (147) the flux density and
field intensity are vectors with the same
direction. This is true for all isotropic
media, that is, media whose properties do
not depend on direction.

Fia. 1-19. Electric field lines Now the integral of the normal compo-
originating on a charge Q. nent of a vector over a surface is defined as
the flur of the vector over that surface. Let us apply this definition
to D by integrating it over a surface S at a constant radius r from the
point charge Q (Fig. 1-20). D everywhere

€

E

ﬁ\ on the surface S is a constant and is normal
e 7 )) D to S; so the flux of D over S is simply S
times the magnitude of D. That is,

F1e. 1-20. Electric flux over
surface S due to a point Flux (of D over S) = SD (1-48a)

charge Q is equal to SD. . . . .
Since D has the dimensions of charge density

(Q/L?), the flux of D has the dimensions of charge density times area or
the dimensions of charge (Q).! Thus, the dimensional form of (1-48a) is

charge

Charge = area
area

1 As a nonclectrical example, consider the case of the frictionless flow of water
through a pipe of uniform cross section. Let the velocity of the water in the pipe be
the same everywhere and equal to v. A cross section through the pipe has an area 4
and is normal to v. Hence the flux of the velocity vector over the cross-sectional area is
the integral of v over the surface or in this case simply the product of A andv. Thus

Flux (of v over A) = Av

which is equal to the total flow of water through the pipe in cubic meters per second if
A is in square meters and v in meters per second.
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The flux of D over a surface is called the electric flux, designated by y.
Thus
¢ = flux (of D over S) = SD (1-48b)

Electric flux has the dimensions of charge. The mkse unit is the coulomb.
The electric flux per unit area is the electric flux density designated by D.
Thus, from (1-48b)

D = g = flux density (1-49)

Electric flux density has the dimensions of charge per area. The mksc
unit is the coulomb per square meter.

Substituting E from (1-45) into (1-47), we obtain the flux density D
for a point charge Q. That is,

D = ¢E = a,% - a,4—f72 (1-50)
Hence the flux density depends on the charge and the radius but is
independent of the permittivity of the medium.

Since 4#7? equals the area of a sphere of radius r, it follows from (1-50)
that the magnitude of D at the radius r is identical with the surface
charge density which would occur if the charge Q were distributed uni-
formly over a sphere of radius r instead of concentrated at the center.!
This is illustrated by Fig. 1-21. From this example it is evident that

+Q distributed
over sphere

O T — > G
+Q D D

(a) (b)
F1a. 1-21. Flux density D at radius r is the same for the charge @ concentrated at a
point as in (a) or distributed uniformly over a sphere as in (b).

the term ‘“apparent surface charge density”’ might be appropriate for D
since it represents the surface charge density which would be present if
Q were redistributed. However, the term “flux density’’ is used.

/X 1-17. Flux Lines. Referring to Fig. 1-19, the lines in this diagram
may now be given another interpretation. Thus, each line may be
imagined as emanating from a certain amount of positive charge and
ending on an equal amount of negative charge. In the figure the lines

1 The surface charge density p, = Q/4xr? = D.

-
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all emanate from a positive point charge and end on an equal negative

charge situated on a sphere at infinity. The number of lines passing

through a normal surface (Fig. 1-22) then indicates the flux density D,

and the individual lines are flux lines, each associated with a certain

fraction of the charge Q. The number of flux lines used is arbitrary,
but it is always proportional to the charge Q.

/ Example. A point charge has a value @ = 41071° cou-
/{/ lomb. Arbitrarily taking 10?° flux lines per coulomb of
/ charge, find the number of lines per square meter at a dis-
/ tance of 10 meters. Find also the flux density D at this
distance.
Solution:
Total no. of lines = 1071 X 102° = 10
Fia. 1-22. Number 1010
of flux lines per unit Lines/meter? at 10 meters = — = 7.95 X 10¢
4rr?
area normal to the

ﬁeld‘equals the flux D = 7.95 % 108 X charge/line = 7.95 X 10¢ X 102
density. = 7.95 X 107! coulomb/meter?

or, directly from (1-50),

D= é)ﬁ = %:To, = 7.95 X 107! coulomb/meter?

X 1-18. Flux Tubes. It should be noted that the field intensity at a
constant radius from a point charge as in Fig. 1-19 is the same between
the lines (point a) as it is on a line (point b). The field intensity E and
the flux density D are continuous functions of position around the point
charge, and both are constant for a fixed radius. Thus, if no flux lines
pass through a certain area in a diagram, this does not necessarily imply
that the flux density there is zero. It may be that some lines would
pass through the area if a larger number of flux lines had been assumed.
This difficulty can be avoided by a simple extension of the concept of
the flux line to the flux tube.

A flur tube is defined as an imaginary tube with walls that are every-
where parallel to D and with a constant electric flux over any cross sec-
tion. The requirement that the flux over any cross section be a constant
actually is a necessary consequence of the fact that D is parallel to the
sides of the tube and, therefore, that the flux over the side walls is zero.
Using a flux-tube representation, we have the flux tubes of Fig. 1-23b
instead of the flux lines of Fig. 1-23a. Each tube in Fig. 1-23b has the
same total flux as represented by each line in Fig. 1-23a. The cross sec-
tion of a tube may be of any convenient shape. However, tubes of tri-
angular, square, or hexagonal cross section have the advantage that their
walls can be made to coincide, and hence all of space can be filled with
tubes of the same kind.
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9
-1

Flux lines

(a)
Fi6. 1-23. Flux lines (a) and flux tubes (b).

In Fig. 1-24 a single flux tube of square cross section is shown which
originates on a certain fraction of the charge +Q and ends on an equal
fraction of the charge —Q. The magnitude of the flux density D varies
along the tube, but the integral of the normal component of D over any
cross section of the tube is constant. In Fig. 1-24 the flux density D is
indicated at three points along the tube. Where the magnitude of D is
large, the cross-sectional area is small, and where D is small, the area is
large, the integral of D over each cross-sectional area being a constant.

All of space can be divided up into D
tubes of equal flux originating on the
positive charge of Fig. 1-24 and ending
on the negative. The tubes never
cross. The number of tubes into +Q -Q
which space is divided is arbitrary. Fic. 1-24. Flux tube extending from a
As a matter of convenience the num- Positive charge Q to an cqual negative
ber is sometimes taken as 47 so that charge.
near each charge a single tube subtends a solid angle of 1 rad2. Near a
charge the field is not appreciably affected by the remote charge, and
hence near a charge each tube is like a pyramid. The number of tubes
might, on the other hand, be taken as 100. Or the number could be
41,253 so that near each charge a single tube subtends a solid angle of 1
square degree.

1-19. Electric Flux over a Closed Surface. Gauss's Law. Consider
an infinitesimal surface element ds as in Fig. 1-25a. The infinitesimal
amount of electric flux dy over this surface element is, by an extension
of (1-48b),

D

dy = Dcosads =D-nds coulombs (1-51a;

1 In two dimensions a circle subtends an angle of 2x rad or 360° with respect to a
point inside; so | rad = 360°/2x = 57.3°. In three dimensions, a sphcre subtends,
with respect to a point inside, a solid angle of 4x square radians (steradians) or
4x(57.3)? = 41,253 square degrees,
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where D = flux density at the surface element (coulombs/meter?)
a = angle between D and normal to surface element (dimension-
less)

n = unit vector normal to the surface element (dimensionless)
ds = area of surface element (meters?)
o . This notation may be shortened if we
write
a
n - (unit normal} (a) ds = nds
where ds (see Fig. 1-25b) is considered
to be a vector having a direction nor-
D mal to the surface and a magnitude
a equal to ds. Introducing this nota-
ds (normal to surface ) tion into (1-51a), we have
Infinitesimal surface (0) dy =D -ds (1-51b)

of area ds
Fig. 1-25. Relation of vectors to in-
finitesimal surface element.

Referring now to Fig. 1-26, let a
positive point charge ) be situated at
the center of an imaginary sphere of
radius 7. The infinitesimal amount of electric flux dy over the surface ele-
ment ds is as given by (1-51b). Integrating this over the sphere of radius

z
F16. 1-26. Point charge Q at origin of spherical coordinate system.

r then gives the total flux over the sphere, or
v = [fD.ds (1-52)

Since D everywhere on the sphere is normal to ds, cos « = 1, and there-
fore, in this case,
D.ds = Dds (1-53)
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where D = |D| = scalar magnitude of the vector D
ds = |ds| = scalar magnitude of the vector ds
Introducing (1-53) into (1-52) and also the magnitude of D from (1-50)

yields
y- // HOMS (1-54)
4xr?

= (rdf)(rd¢ sin 8) = r?sin 0 do d¢ (1-55)

From Fig. 1-26

The surface area divided by the square of its radius yields the solid angle
subtended by the surface area in square radians (steradians). Thus, the
solid angle dQ subtended by the spherical element of surface area ds is

gf =dQ = sin 0ded¢ (1-56)

Substituting (1-56) in (1-54), we obtain!

& ff - [ [

—gl—cos()]'[) d¢——><2><21r—Q (1-57)

Thus, the total electric flux over the sphere (obtained by integrating the
normal component of the flux density D over the sphere) is equal to the
charge @ enclosed by the sphere. We could have obtained the result in
this case more simply by multiplying D = Q/4xr? by the area of the
sphere (4xr?). However, the above development serves to illustrate a
more general procedure which can also be applied to cases where D is not
constant as a function of angle.

The result in the above example is a statement of Gauss’s law for a
special case. A general statement of Gauss’s law for electric fields is:

The surface integral of the normal component of the electric flux density D
over any closed surface equals the charge enclosed.t

Thus, in symbols

JfD cos 8ds = [fD-ds = Q (1-58a)

where () is the total or net charge enclosed. This charge may also be
expressed as the volume integral of the charge density p so that (1-58a)

! The first integral with limits 0 and 2r is associated with the second differential
d¢ and the second integral with the first differential.

t This statement of Gauss’s law applies specifically to the rationalized mksc system.
In general, Gauss’s law states that the surface integral of the normal component of the
electric flux density over a closed surface is proportional to the charge enclosed (or
equal to the charge times a constant, this constant being unity in the rationalized
mksc system).
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becomes

[ID-ds = [[fpdv = Q (1-58b)

where the surface integration is carried out over a closed surface and the
volume integration throughout the region enclosed. An alternative nota-
tion for (1-58b) is

$,D-ds=¢ pdvo =Q (1-59)
where ¢ indicates a double, or surface, integral over a closed surface and

¢' indicates a triple, or volume, integral throughout the region enclosed.

From (1-47) Gauss’s law may also be expressed as
e ¢ E-ds=@Q coulombs (1-60)

where E = electric field intensity (volts/meter)
¢ = permittivity of medium (farads/meter)

Gauss’s law is the basic theorem of electrostatics. It is a necessary
consequence of the inverse-square law (Coulomb’s law). Thus, if D for a
point charge did not vary as 1/r2 the total flux over a surface enclosing
it would not equal the charge (see Sec. 2-36).

If a volume contains no charge, the electric flux over the surface of the
volume is always zero, even though the volume may be in an electric
field. In such a case, the inward flux equals the outward flux (net flux
zero) ; in other words, the number of flux tubes entering equals the number
leaving.

To illustrate the utility of Gauss's law, several situations will be
analyzed with its aid in the next sections.

1-20. Single Shell of Charge. Referring to Fig. 1-27a, suppose that a
positive charge @ is uniformly distributed over an imaginary spherical
shell of radius r;. It is assumed that the medium everywhere is air
(¢ = e0). Applying Gauss’s law by integrating D over a spherical surface
(radius r; — dr) just inside the shell of charge, we have

eﬁE.ds =0 (1-61)

since the charge enclosed is zero. It follows that E inside the shell is
zero. Applying Gauss’s law to a spherical shell (radius 7, + dr) just out-
side the shell of charge, we have, neglecting infinitesimals,

e ¢ E-ds = ¢Etrr? = Q (1-62)

or

Q

dmweori?

(1-63)




Sec. 1-20) THE STATIC ELECTRIC FIELD. PART 1 31

(a)

(b)

(e

(d)

F1e. 1-27. Uniformly charged spherical shell with graphs showing variation of clectric
field intensity E, electric potential V, and surface charge density p, as a function of
radial distance r.

This value of field intensity is identical with that at a radius r, from a
point charge Q. We can therefore conclude that the field outside the
shell of charge is the same as if the charge Q were concentrated at the
center. Summarizing, the field everywhere due to a spherical shell of
charge is

E = Oinside (r < ry) (1-64)
_ Q . .
E=a, Trea? outside (r > ry) (1-65)

The variation of E as a function of r is illustrated by Fig. 1-275.1
The absolute potential at a radius r outside the shell is given by

V=-— /:E-dr (1-66)
Introducing the value of E from (1-65),

r
y-_Q [fdar_ Q (1-67)
41I'60 % rt 41'507'

1 Note that a point charge at the origin gives an infinite E as r — 0 but a surface
charge of finite area at a radius r, gives a finite E as r — r;. This is because the
volume charge density p of a point charge is infinite, whereas the surface charge
density p, of the shell of charge is finite. In the present case p, = Q/4xr,%
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At the shell where r = r, we have

_ @

- 4‘!'607'1 (1~68)
Since E inside the shell is zero, it requires no work to move a test charge
inside and therefore the potential is constant, being equal to the value at
the shell. Summarizing, the electric potential everywhere due to a
spherical shell of charge of radius r, is

Q. .

V = Grears inside (r < ry) (1-69)
- Q -

V = Irert outside (r > ry) (1-70)

The variation of V as a function of r is illustrated by Fig. 1-27¢c. The
variation of the surface charge density p. is shown by Fig. 1-27d. The
surface density is zero everywhere except at r = ry, where it has the value
Q/4xr,? as indicated by the vertical line, or spike.

It is to be noted that the potential is continuous, both (1-69) and (1-70)
being equal af the shell (r = r;). However, the electric field is discon-
tinuous, jumping abruptly from zero just inside the shell to a value
Q/4reor:1? just outside the shell. This results from the assumption that
the shell of charge has zero thickness. If a shell of finite thickness is
assumed, the field is also continuous (see Prob. 1-15). As the shell thick-
ness is decreased, the change in E becomes very rapid, ultimately becom-
ing an abrupt change as the shell thickness approaches zero.

1-21. Two Concentric Spherical Shells of Charge. Let two imaginary
concentric spherical shells have radii r, and r, with a charge @, uniformly
distributed over the shell of radius r, and a charge @: uniformly dis-
tributed over the shell of radius rs, as suggested in Fig. 1-28a. It is
assumed that the medium everywhere is air. Applying Gauss’s law in
a similar manner to that used for the single shell, it may be shown that
the electric field intensity everywhere is given by

E = 0 inside both shells (r < ry) (1-71)
E = a, @ between shells (r; < r < 7y) (1-72)
41607’2
E=a @1 @ iide both shells (r > r5) (1-73)
41607”

The variation of E as a function of the radius r is shown by Fig. 1-28b.
The potential everywhere is

y=1 (%, .@) for r <y (1-74)

4meo \ T2 T

1 Q. Q
V—Z;:o -7;+7) forr, r<r (1'75)
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dre; . forr > 7y (1-76)

The variation of V as a function of r is illustrated by Fig. 1-28¢ and of the
surface charge density p, by Fig. 1-28d. It is again to be noted that V is
continuous, since (1-74) equals (1-75) when r = r, and (1-75) equals
(1-76) when r = 75. The verification of the above results (1-71) through
(1-76) is left to the reader as an exercise (see Prob. 1-22).

Shells of charge

(a)
T
E /E‘% ;
E=0 L . - (b)
V-l VT
v \\V-af;—:f,i
" r (c)
4_'0‘-43:{
# l/Pc' ‘3:: (d)
r, T, r

F1g, 1-28. Uniformly charged concentric spherical shells with graphs showing varia-
tion of electric field E, potential V, and surface charge density p, as a function of
radial distance r. It is assumed that the total charge on each sphere is the same
(@1 = Q) and that ry = 2r,,

1-22. n Shells and Volume Distributions of Charge. Proceedinga step
further, let us consider the situation for a large number n of imaginary
concentric spherical shells as suggested in Fig. 1-29, The charge on each
shell is uniformly distributed, so that it is not a function of angle, but the
charge on each shell may be any function of the radius. It follows from
Gauss’s law that between two shells, suy between shells 2 and 3 (r < r
< ry), the electric field is independent of the charge on all spheres of
radius 73 or larger and depends only on the charges on shells 1 and 2.
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Furthermore, the electric field between shells 2 and 3 is the same as if the
charges on shells 1 and 2 were concentrated at the center.

It is but a small additional step to consider an infinite number of
imaginary concentric shells with uniformly distributed charge, each of
slightly different radius. The charge on each shell may be any function
of the radius. If the spacing between shells is made as small as we please,
a volume charge distribution is obtained which is some function of r but

is independent of angle (latitude

and longitude). At a radiusr, the
<7 sz':lal,sggf electric field intensity then depends
only on the charge at radii for which
r < r, and is independent of the
charge at radii for which r > r,.

Thus, for any spherical volume
distribution of charge (which is a
function only of r) the electric field
intensity E everywhere is given by

E=a O forr >R (1-77)

" drreor?

F1G. 1-29. n concentric shells of charge. E = a, O forr <R (1-78)
dmweor?

where B = radius of spherical volume distribution of charge
@z = total charge in the spherical volume of radius R
Q; = charge within a radius r (r < R)

For the case where the charge is uniformly distributed throughout the
sphere so that the volume charge density p is constant,! the electric field
intensity outside the sphere (r > R, Fig. 1-30a) is the same as given by
(1-77). To find the field intensity inside the sphere (r < R), we use
(1-78) where for Q, we have

r\?
Q= Qs (E) (1-79)
Thus
_ Qrr
E = a, 4*1'.’6;)1? fOl' r S R (1-80)

The variation of p as a function of r is shown in Fig. 1-30d, and the

variation of E as a function of r is illustrated by the solid curve in Fig.

1-30b. It is to be noted that if Qx were concentrated at the center of

the sphere the field at radii less than R would follow the dashed curve to

an infinite E, while if Q& were all uniformly distributed over an imaginary
! In this case

P =R
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shell of radius R the field at radii less than R would be zero, as indicated
by the dash-dot curve. The variation of E for the uniform volume dis-
tribution of charge (solid curve) lies between these extremes.

(a)
\
\
\ o
E I ATGR?
| (b)
i
. R r
N\,
X Q
=t *—V= R
aTe R
4 (¢)
1
R r
P73 :Rm
£ B (d)
R r

F1G. 1-30. Solid sphere of charge with graphs showing variation of electric field E,
potential V, and volume charge density p as a function of radial distance r.

The absolute potential at any radius r is given by integrating the work

per unit charge required to bring a positive test charge from infinity to
the radius r. Hence, integrating (1-77), we obtain

- = forr > R (1-81)
41!‘607'

Inside the sphere (r < R) the potential is equal to that at the sphere,

as given by (1-81) where r = R, plus the additional work required to

move the test charge from R to a radius r inside. This extra work is

given by integrating the negative of (1-80) from R to r. Thus,

v @ _ Qe /',d,
AR 4meR®

QR QR 2 2!
= 2t - 1-82
4reoR + 8mreoR3 (R ) {1-82)
The variation of V as a function of r is presented by the solid curve in
Fig. 1-30c. It is to be noted that if Qr were concentrated at the center



36 ELECTROMAGNETICS [CHar. 1

the potential at radii less than R would follow the dashed curve to an
infinite V, while if @z were all uniformly distributed over an imaginary
shell of radius R the potential at radii less than R would be a constant,
as shown by the dash-dot curve. The variation of V for the uniform
volume distribution of charge (solid curve) lies between these extremes.

1-23. Conductors and Induced Charges. A conductor can conduct, or
convey, electric charge. In static situations a conductor may be defined
as a medium in which the electric field is always zero. It follows that
all parts of a conductor must be at the same potential. Metals such as
copper, brass, aluminum, and silver are examples of conductors.

When a metallic conductor is brought into an electric field, different
parts of the conductor would assume different potentials were it not for
the fact that electrons flow in the conductor until a surface charge dis-
tribution is built up that reduces the total field in the conductor to zero.!
This surface charge distribution is said to consist of ¢nduced charges.
The field in which the conductor is placed may be called the applied
field E,, while the field produced by the surface charge distribution may
be called the induced field E;. The sum of the applied and induced fields
yields a total field in the conductor equal to zero. Although the total
field inside the conductor is zero after the static situation has been
reached, the total field is not zero while the induced charges are in

motion, that is, while currents are

+Q flowing.

S To summarize, under static condi-
tions the electric field in a conductor
is zero, and its potential is a con-
stant. Charge may reside on the
surface of the conductor, and, in
general, the surface charge density
need not be constant.

1-24. Conducting Shell. An ini-
e Induced charges  tially uncharged conducting shell of
Fid, 131, Conducting shelll of wall inner radius a and outer radius b
thickness b — a with point charge Q at (wall thickness b — a) is shown in
center. cross section in Fig. 1-31. Let a point

charge +@Q be placed at the center of
the shell. This might be done by introducing the charge through a hole
in the shell which is plugged after the charge is inside.? The point charge
has a radial electric field. Let this be called the applied field E,. For

1 The electrons in the outermost shell of the atoms of a conductor are so loosely held
that they migrate readily from atom to atom under the influence of an electric field.

2 This is an idealized version of an experiment first performed by Faraday, using
an ice pail.




Sec. 1-24] THE STATIC ELECTRIC FIELD. PART 1 37

the total field E in the conducting wall to be zero requires an induced
field E; inside the wall such that

E.+E =E=0 (1-83)
or
E.‘ = —Ea (1—84)

The induced field E; is produced by a distribution of induced negative
charges on the inner shell wall and induced positive charges on the outer
shell wall as suggested in Fig. 1-31. Let us apply Gauss’s law to this
situation to determine quantitatively the magnitude of these induced
charges.

Suppose that an imaginary sphere
designated S, with a radius a — dr is
situated just inside the inner wall of
the shell as in Fig. 1-32. By Gauss’s
law the surface integral of the normal
component of D over this sphere must
equal +@Q. That is,

¢s. D-ds = +Q  (1-85)

Applying Gauss’s law to the sphere S,
of radius @ + dr just inside the con- F16. 1-32. Conducting shell of wall
ductor, we have, since the total field E thickness b —a with surfaces of

in the conductor is zero, integration.
¢S’D-ds =e¢s’E-ds =0 (1-86)

Thus, the total charge inside the sphere S, must be zero. It follows that
a charge —@ is situated on the inner surface of the shell wall. Since the
shell was originally uncharged, this negative charge Q, produced by a
migration of electrons to the inner surface, must leave a deficiency of
electrons or positive charge () on the outer surface of the shell. It is
assumed that the surface charges reside in an infinitesimally thin layer.

Applying Gauss’s law to the sphere S; of radius b 4 dr just outside
the outer surface of the shell, we then have

¢& D-.ds = +Q (1-87)

To summarize, the charge +Q at the center of the shell induces an
exactly equal but negative charge (—@Q) on the inner surface of the shell,
and this in turn results in an equal positive charge (4 @) distributed over
the outer surface of the shell. The flux tubes originating on 4@ at the
center end on the equal negative charge on the inside of the shell. There
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is no total field and no flux in the shell wall. Outside the shell the flux
tubes continue from the charge +@ on the outer surface as though no
shell were present. The variation of the component fields E, (applied)
and E; (induced) as a function of r is illustrated by Fig. 1-33b. The
variation of the total field E is shown in Fig. 1-33¢c. For r < a and
r>b, E =E, whilefora <r<b E,+E;=E =0.

Conducting shell

/"-"'\
s |

Component
fields
Total c
field (©) E (9)
E
_— . ———
r r
Potential (d) | 4 (h)
V S ———
r
i @ (3)
ge | i I S
density r r
.8 ‘

F1a. 1-33. Conducting shell of wall thickness b — a with graphs showing variation of
applied field E,, induced field E;, total field E, potential V, surface charge density p,
with charge Q at center (b, ¢, d, and ¢) and with charge only on outside of shell (f, g,
h, and 7).

If a conducting wire is connected from the inner surface of the shell to
the charge +Q at the center, electrons will flow and reduce the charge
at the center and on the inner surface to zero. However, the charge +Q
remains on the outer surface of the shell. This results in an applied field
only external to the shell (r > b) and of the same value as before. There
is no induced field whatsoever. Thus, the total field is identical with the
applied field, as shown by Figs. 1-33f and ¢, and is zero for r < b. This
final result might have been achieved more simply in the first place by
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applying the charge +Q to the outside of the originally uncharged con-
ducting sphere.

The variation of V and p, as a function of r when the charge +Q is
at the center of the sphere is indicated in Figs. 1-33d and e, while the
variation when the charge is only on the outside of the shell is shown by
Figs. 1-33h and +.

1-25. Conducting Box and Plates. Instead of the spherical conducting
enclosure discussed in the previous section, let us consider an initially
uncharged conducting enclosure of the shape shown by the cross section
of Fig. 1-34a. This enclosure consists of two large flat parallel con-

End plate\
¢ 1 —Large flat plates
- .+/
— .
Ea l" Ea + Eu
> K| T }4
_"T | f ___Axis
— = = ¢-
: E
24 i +
E ‘:A' - —»l.‘ e2)
] E=0 P
=] *
i .
{ Ell a"! r- Nﬂ! }’ :
corr!ponent ! : E :
fields - [ ! (b)
— T 1 '
| s
I + E‘. 1
| [
| 1
i o
iel |
E X ' '
H i o
1 |
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Pot(‘a/ptial iy t
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[ 1)
_ . 1
; : (]
4 .
Surface P! | I
charge i t (e)
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F16. 1-34. Cross section through rectangular metal box with large flat sides in uniform
applied field E.. Graphs show variation of applied field E,, induced field E;, total
field E, potential V, and surface charge density p, as a function of distance along axis
through center of box.
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ducting plates of thickness @ with conducting plates along all four edges
s0 a8 to make a complete enclosure, or box. Let this box be placed in a
uniform applied field E,. This field induces negative charges on the left
side of the left plate and positive charges on the right side of the right

Large flat plates

E, E,
_—— _Axis
(a)
| v !
| |
Component E, T X
fields : i : i (b)
| |E; | 15
] |
T
ie
b (c)
Potential
v (d)
Surface
charge (e)
density
Ps

F1a. 1-35. Cross section through two large flat metal plates in uniform applied field
E.. Graphs show variation of applied field E,, induced field E;, total field E, poten-
tial V, and surface charge density p, as a function of distance along axis through center
of plates.

plate, producing an induced field E; opposite to E,. ~Since no charge is
enclosed by a surface just inside the walls of the box, it follows from
Gauss’s law that the total field E inside the box is zero and hence that
E, = —E,. Ingeneral, the field inside of any hollow conducting enclosure
is always zero under static conditions provided no charge is present inside
the shell.
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The variation of the applied field E, and induced field E; along the axis
{normal to the center of the large flat sides of the box) is illustrated by
Fig. 1-34b and of the total field E by Fig. 1-34c. The variation of the
potential V and surface charge density is presented in Figs. 1-34d and e.

Let us consider next two large flat parallel conducting plates as in
Fig. 1-35a. The two plates are initially uncharged and are not connected.
Let the plates be introduced into a uniform applied field E,. This field
induces negative charges on the left side and positive charges on the right
side of each plate so that the variation of the induced field E; along the
axis is as shown in Fig. 1-35b and the variation of the total field as in
Fig. 1-35¢. The potential and surface-charge-density variations are
presented in Figs. 1-35d and e.

If now a wire is connected between the plates, the electrons on the
inside surface of the right plate can flow to the left plate, reducing the
charge on the inside surfaces to zero. The induced field now extends
from the right side of the right plate to the left side of the left plate, and
the total field between the plates vanishes like inside a conducting

1
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F1a. 1-36. Cross section through two large flat metal plates with applied potential
difference V,. Graphs show variation of total field E, potential V, and surface
charge density p, a8 a function of distance along axis through center of plates.
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enclosure.! If the wire is disconnected again after the flow of charge has
ceased, the total field inside remains equal to zero, unless the applied
field is removed, in which case the induced field remains. However,
when the external field is removed, the charges migrate from the outer to
the inner surfaces of the plates so that the induced field extends only
between the inner surfaces of the plates.

Let us consider finally two large flat parallel
conducting plates, initially uncharged, and placed
in a field-free region. If the plates are charged,
as shown in Fig. 1-36a, by a battery, charges

e—dl appear on the inner surfaces of the plates and an
electric field is applied between the plates.? If
the plates are large compared with their spacing,

— the field outside is negligibly small. The total
field variation along the axis would then be as
indicated in Fig. 1-36b, the potential variation

1 “~volume  as in Fig. 1-36¢, and the surface charge density

element 45 in Fig. 1-36d.
1-26. Boundary Relations at a Conducting
Surface. Referring to Fig. 1-37, let a thin imag-

(e iy o inary volume element be constructed at the sur-

FiG. 1-37. Conductor-air face of a conductor. The medium outside the

boundary with cross sec-  conductor may, for example, be air. The volume
tion through small vol-  glament is half in the conductor and half in air.
ume clement half in the vy oy ) me element has an area A parallel to
conductor and half in air.

the conductor surface but has an infinitesimal
thickness dl normal to the surface. According to Gauss’s law the normal
component of the flux density D over the volume element must equal the
total charge Q enclosed. Thus, if p,is the surface-charge density, we have

Area A

95.1) cds = Q = p.A (1-88)

Now D in the conductor is zero, and so the integral reduces to the normal
component D, of the flux density in air multiplied by the area A. Hence

D.A = p,A
or
Dn = pPs (1‘89)

This important boundary relation states that the normal component of
the flux density D at a conducting surface equals the surface-charge

1 This i8 not strictly true because of fringing of the field around the edges, but pro-
vided the plates are sufficiently large the field at the center will be substantially zero.
?Ilere E = E,, and E; = 0.
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density. Both D, and p, have the dimensions of charge per area and are

expressed in coulombs per square meter.
If a thin conducting sheet is introduced
normal to an electric field, surface charges
are induced on the sheet so that the origi-
nal field external to the sheet is undis-
turbed. The value of the induced surface
charge density p, is, by (1-89), equal to the
flux density D at the sheet. Hence, one
can interpret the flux density D at a point
as equal to the charge density p, which
would appear on a thin conducting sheet
introduced normal to D at the point.
Referring, for example, to the thin con-
ducting sheet normal to the field in Fig.
1-38, the relation of D and p, is as follows:

On left side: D =
On right side: D =

—np,

-+np,

where n = unit vector normal to the sur-
face. Thus D is normally inward on the
left side and normally outward on the
right.
charge density p..

PROBLEMS

l«— Thin sheet
-+
-+
-|+
-+
D -+ D
-+
- :_\ Surface charge
density o,
-+

F16. 1-38. Thin conducting sheet
placed normal to field has an
induced surface charge density
ps equal to the flux density P of
the field at the sheet. The surface
charge densities on the two sides
of the sheet are equal in magni-
tude but opposite in sign.

The magnitude of the flux density on each side is equal to the

1-1. What are (a) the dimensional description, (b) the dimensional formulasin terms
of the symbols M, L, T, and Q, (c) the mksc units for each of the following:

dl
a where [ = length

{ = time
f(force) dl
a
dx

Ans.: Work; il

T joules.

Ans.: Ratio; dimensionless.

1-2. Give the same information as requested in Prob. 1-1 for each of the following:

/pdv;p.; V;eE;[D'dS
v N

[E'dl;\b;VV;—l—
4re

; E

1-3. Find the force F on a positive point charge of 10~1° coulomb at a distance of
10 cm in air from a positive point charge of 10~ coulomb.
Ans.: 9 X 10-7 newton = 0.09 dyne (repulsive).
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1-4. A positive point charge of 107! coulomb is located in air at z = 0, y = 0.1
meter and another such charge at z = 0, y = —0.1 meter. Find the magnitude and
direction of the force F on a positive point charge of 107% coulomb at z = 0.2
meter, y = 0.

X 1-6. Find the electric field strength E and the absolute potential V at a distance of
10 ¢m in air from a positive point charge of 10~2 coulomb.

Ans.: E = 9 X 103 volts/meter; V = 900 volts.

% 1-6. Repeat Prob. 1-4 for the case where the positive charge atz = 0,y = —0.1
meter is replaced by an equal but negative charge.

X 1-T. A positive point charge of 1071° coulomb is located in airat z = 0, y = 0.1
meter and another such chargeat z = 0,y = —0.1 meter. What are the magnitude
and direction of the electric field intensity E, and what is the absolute potential V, at
z = 0.2 meter, y = 07

1-8. Repeat Prob. 1-7 for the case where the positive charge at z = 0,y = —0.1
meter is replaced by an equal but negative charge.

% 1-9. A potential distribution is given by V = 5z + 2. What is the expression for
the gradient of V? What is its vector value (magnitude and direction) at the point
(0, 0 and at (10, 0), thatis, (z =0,y = 0) and (z = 10,y = 0)?

% 1-10. A potential distribution is given by V = 2y},  What is the expression for the
electric field intensity E? What is its vector value (magnitude and direction) at the
points (0, 0), (4, 0), and (0, 4)?

x 1-11. A potential distribution is given by V = 5y* 4 10z. What is the expression
for the electric field intensity E? What is its vector value (magnitude and direction)
at the points (0, 0), (10, 0), (0, 2), and (10, 2)?

1-12. A potential distribution is given by V = 10/(z + y* + z3). What is the
expression for the electric field intensity E? What is its vector value at the points
0, 0, 2) and (5, 3, 2)?

1-18. A spherical conducting shell 20 em in diameter has a positive charge of 1010
coulomb. Calculate and plot the absolute potential V (ordinate) as a function of the
distance from the center of the sphere (abscissa) to a distance of 1 meter. Do the
same for the magnitude of the electric field intensity E.

1-14. A positive charge of 10-1° coulomb is uniformly distributed throughout a
spherical volume 30 cm in diameter. Calculate and plot the variation of the electric
field intensity E and the absolute potential V as a function of the radius r from the
center of the sphere to a distance of 1 meter.

1-16. An electric charge @ is distributed with uniform volume density between two
imaginary spherical shells of radius a (inner shell) and b (outer shell). Find the
expressions for E and V everywhere (0 < r < »). Plot the variation of E and V as
a function of the radial distance r for 0 < r < 5b.

1-16. Positive electric charge of density 10~¢ coulomb/meter? is distributed uni-
formly over a volume located between two concentric imaginary shells with diameters
of 10 and 20 em. What are the magnitude and direction of D at a distance of 50 cm
from the center of the shells?

1-17. Calculate and plot the variation of E and V as a function of the radius r from
the center to a distance of 1 meter from the shells of Prob. 1-16.

1-18. A spherical volume of radius R has a volume charge density given by p = kr,
where r = radial distance and k = constant. Find the expressions for E and V
everywhere (0 < r < »). Plot the variation of E, V, and p as a function of r for
0 <r <5R.

1-19. Repeat Prob. 1-18 for the case where p = k/r2.

1-20. A spherical volume of r = 1 meter has a uniform charge density p = 1 cou-
lomb/meters, What is V at r = 50 cm? Ans.: V = 11/24¢ volts.
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1-21. Find the field strength E if V = Q/4xer by taking the gradient of V" in rec-
tangular coordinates (r = +/z* + y? + 27 and also by taking the gradient in spherical
coordinates. (See expression for VYV in spherical coordinates in Appendix.)

1-22. Verify Eqs. (1-71) to (1-76) inclusive.

1-28. At the surface of the earth the gravitational field G (force per unit mass) has
a value of 9.8 newtons/kg. The field is normal to the earth’s surface. A gravita-
tional vector W analogous to D in the electric case (¢E = D) is obtained by multiply-
ing the gravitational field G by the universal gravitational constant v. The value of
v is 1.2 X 10® kg-sec?/metert. Thus yG = W. The direction of W is normal to the
earth’s surface. The dimensions of W are

MT'L _M
T TTD

These are expressed in mksc units as kilograms per square meter. Thus W has the
dimensions of mass surface density and in this example has a value equal to the mass
per unit area which would result if the mass of the earth were distributed uniformly
in a thin spherical shell of the same diameter as the earth. The magnitude of W in
our example is W = G = 1.2 X 10° X 9.8 = 1.17 X 10 kg/meter?. Assume that
the earth is spherical with a radius R = 6.36 X 10® meters. Apply Gauss’s law to
this gravitational problem to show that the mass of the earth is 5.98 X 10 kg.

1-24. An imaginary cubical volume element is oriented with its sides parallel to a
uniform field E in a charge-free region. Prove that the net flux over the volume is
zero,

1-26. Point charges in air are located as follows: +5 X 10-% coulomb at (0, 0)
meters; +4 X 10-% coulomb at (3, 0) meters; —6 X 10-% coulomb at (0, 4) meters.
(a) Find V, E, and D at (3, 4). (b) What is the total electric flux over a sphere of
5-meter radius with center at (0, 0)?

1-26. Four positive point charges are situated at (0, 0), (0, 1) (1, 1), and (1, 0)
meters, that is, at the corners of a square | meter on a side. (a) Find E and V at
(3, §) (at center of the square). (b) Find E and V at 3, 3).
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2-1. The Electric Dipole and Electric Dipole Moment. When two
point charges +Q and —(Q are superposed, the resultant field is zero.
However, when the charges are separated by a small distance [, there is a
finite resultant field. This combination of two point charges of opposite
sign separated by a small distance is called an electric dipole, and the
product Q! is called the electric dipole moment. By regarding the separa-
tion between the charges as a vector 1, pointing from the negative to the
positive charge! as in Fig. 2-1, the dipole moment can be expressed as a

vector Q1 with the magnitude Q! and the
P direction of 1.

ol
| -~ Referring to Fig. 2-1, the potential of
dipole :
[ the positive charge at a point P is
+Q _ @
Vx - -iTET; (2-1)
1 The potential of the negative charge at
Pis
- —Q ¢
-QI Ve = 4rery ()
[ The total potential V at I’ is then
|
Fii. 2-1. Electric dipole. V=114V, = Q (1 ! (2-3)
41I'6 T T

If the point P is at a large distance compared with the separation I, so
that the radial lines 7, 7, and r; arc cssentially parallel, we have very
nearly that

r,=r—§lcoso (24)
and
ra =1+ §l cos 6 (2-5)

1 The vector 1 may be regarded as a unit vector a; pointing in the direction from
the negative to the positive charge multiplied by the magnitude of the separation [.
Thus, 1 = aJd. The symbol p is often used to designate the electric dipole moment.
Thus, p = QL.

46
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where 7 = distance from center of dipole to the point P

6 = angle between axis of dipole and r
Substituting (2-4) and (2-5) into (2-3), we obtain for the potential V at
a distance r from an electric dipole the expression

Ql cos 6
4rer?

where it is assumed that r is much greater than ! (r >> l) so that terms in
2 can be neglected compared with those in r2.  V is in volts if Q is in
coulombs, ! and r in meters, and ¢ in farads per meter.

According to (2-6) the potential of a dipole varies as the inverse square
of the distance, whereas according to (2-1) the potential of a single point
charge varies as the inverse distance. The potential of the dipole is also
a function of the angle 8. At a fixed radius the potential is a maximum on
the axis of the dipole (8§ = 0) and
is zero normal to the axis (8 = 90°).
This could have been anticipated
since, when 6 = 90°, the point P is
exactly equidistant from the two
charges so that their effects cancel.

To find the electric field intensity
E at the point P, we take the nega-

V= (2-6)

-Qe tive gradient of the potential given
by (2-6), obtaining!
I E= —a a_.V — a 1 g
Fra. 2-2. Component fields and total - " or °r 36
field E at a distance r from an electric QI cos 6 Ql sin 6
dipole. T A e + a drer? (2-7)

where a, = unit vector in r direction (see Fig. 2-2)
ap = unit vector in 6 direction
l = separation of dipole charges @
According to (2-7) the electric field has two components as shown in Fig.
2-2, one in the r direction (¥£,) and one in the 8 direction (Es). Thus

E = a,E, + a,E, (2-8)
or
_ Qlcos 8
E, =~ 2rer? (2-9)
and
_ Qlsin 6
Ey = Trer? (2-10)

1See Appendix for gradient in spherical coordinates. Equation (2-7) can also be
expressed with the dot-product notation as follows:
E Q

= s 201 — a0 D)
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The field components of a dipole vary as the inverse cube of the distance,
whereas the field of a point charge varies as the inverse square of the
distance.

In (2-9) and (2-10) the restriction applies that r 3> [ since this condi-
tion is implicit in the potential expression (2-6) used in obtaining the field.

2-2. Dielectrics and Permittivity. A conductor is a substance in which
the outer electrons of an atom are easily detached and migrate readily
from atom to atom under the influence of an electric field. A dielectric,
on the other hand, is a substance in which the electrons are so well bound
or held near their equilibrium positions that they cannot be detached by
the application of ordinary electric fields. Hence, an electric field pro-
duces no migration of charge in a dielectric, and, in general, this property
makes dielectrics act as good insulators. Paraffin, glass, and mica are
examples of dielectrics.

An important characteristic of a dielectric is its permittivity' . Since
the permittivity of a dielectric is always greater than the permittivity of
vacuum, it is often convenient to use the relative permittivity ¢, of the
dielectric, that is, the ratio of its permittivity to that of vacuum. Thus

&=~ (2-11)
€
where ¢, = relative permittivity of dielectric
e = permittivity of dielectric
¢ = permittivity of vacuum
As mentioned earlier,

10-°
€« = 8.85 X 1072 T farads/meter

Whereas ¢ or ¢ is expressed in farads per meter, the relative permittivity
¢, 18 a dimensionless ratio.

The relative permittivity is the value ordinarily given in tables. The
relative permittivity of a few media is given in Table 2-1, with media
arranged in order of increasing permittivity. The values are for static
(or low-frequency) fields and, except for vacuum or air, are approximate.

2-3. Polarization. Although there i8 no migration of charge when a
dielectric is placed in an electric field, there does occur a slight displace-
ment of the electrons with respect to their nuclei so that individual atoms
behave as very small, or atomic, dipoles.?  'When these atomic dipoles are

1 The term dielectric constant is also used synonymously with permittivity. How-
ever, the permittivity is not always a constant as might be inferred from the term
“dielectric constant’’ but may depend on the temperature and, as discussed later, on
the frequency. The term capacitivity is also used for permittivity.

* The dipoles may also be of molecular size. In a liquid the molecules are free to
turn when a field is applied, and this may result in a relatively large permittivity.
Water is an example.
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TABLE 2-1
PERMITTIVITIES OF DIELECTRIC MEDIA
Relative
Medium permittivity e,
VacUUM . .o e 1 (by definition)
Air (atmospheric pressure)............. .. ... .. o ... 1.0006
Paraffin......... .. . ... . . . 2.1
Polystyrene........ ... ... . . . ... i, 2.7
Amber. ... ... e 3
Rubber... ... .. . o 3
Sulfur.... ... . 4
Quartz. ... 5
Bakelite...... ... ... ... .. 5
Leadglass....... ... ... .. ... ... ... .. 6
Mica. . ... 6
Marble. ... ... .. . 8
Flintglass. ........ ... ... ... .. ... . .. . 10
Ammonia (liquid)...... ... ... ... ... 22
Glycerin. ... ... ... ... . .. 50
Water (distilled). . ........... ... ... ... ... .......... 81
Rutile (Ti02). ... .. ... 89-173t
Barium titanate (BaTiOy). ... ... ... ... .. .. ... ....... 1,200%
Barium strontium titanate (2BaTiO,: 1SrTiOy). .. ... ... .. 10,0001

t Crystals, in general, are nonisotropic, that is, their properties vary with direction.
Rutile is an example of such a nonisotropic crystalline substance. Its relative permit-
tivity depends on the direction of the applied electric field with relation to the crystal
axes, being 89 when the field is perpendicular to a certain crystal axis and 173 when
the field is parallel to this axis. For an aggregation of randomly oriented rutile
crystals ¢, = 114. All crystals, except those of the cubic system, are nonisotropic to
clectric fields, that is, their properties vary with direction. Thus, the permittivity of
many other crystalline substances may vary with direction. l{owever, in many cases
the difference is slight. For example, a quartz crystal has a relative permittivity of
4.7 in one direction and 5.1 at right angles. The average value is 4.9. The nearest
integer is 5 and this is the value given in the table.

1 The permittivity of these titanates is highly temperature-sensitive. The above
values are for 25°C. See, for example, E. Wainer, Iligh Titania Dielectrics, Trans.
Electrochem. Soc., 89, 1946.

present, the dielectric is said to be polarized or in a state of polarization.
When the field is removed and the atoms return to their normal, or
unpolarized, state, the dipoles disappear.}

Consider the dielectric slab of permittivity e in Fig. 2-3 situated in
vacuum. Let a uniform field E, be applied normal to the slab. This
polarizes the dielectric, that is, induces atomic dipoles throughout the
slab. In the interior the positive and negative charges of adjacent dipoles
annul each other’s effects. The net result of the polarization is to produce

1 When polarization in a dielectric persists in the absence of an applied electric field,
the substance is permanently polarized and is called an eleciref. A strained piezoelec-
tric crystal is an example of an electret.
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a layer of negative charge on one surface of the slab and a layer of positive
charge on the other as suggested in Fig. 2-3.

The effect of the atomic dipoles can be described by the polarization P
or dipole moment per unit volume.
Thus,

fe—— ] —— ]

P =

<

=9 (2-12)

Area A v

-Q v +Q where p = Q1 = net dipole moment in

volume ». For example, consider the
—E Atomic  rectangular volume of surface A and
P-@O—@5—€ " dipoles  thickness | (v = Al) in Fig. 2-3. For

- PRIo—0@E —

E, E, this volume
~—E; P = eu_Q (2-13)
—a, Al A
Vacuum Dielectric Vacuum where Q = charge on area A of one face
) € 6 of volume». But /A is charge per area.

Hence P has the dimensions both of
Fia. 2-3. Dielectric slab in uniform dipole moment per volume and charge
field. per area (QL/L® = Q/L?). The charge
per area equals the surface charge density p., of polarization charge
appearing on the slab face. Thus
P = % = pup (2-14)

The value of P in (2-12) is an average for the volume ». To define the
meaning of P at a point, it is convenient to assume that a dielectric in an
electric field has a continuous distribution of infinitesimal dipoles, that is,
a continuous polarization, whereas the dipoles actually are discrete polar-
ized atoms. Nevertheless, the assumption of a continuous distribution
leads to no appreciable error provided that we restrict our attention to
volumes containing many atoms or dipoles, that is, to macroscopic
regions.! Assuming now a continuously polarized dielectric, the value of
P at a point can be defined as the net dipole moment p of a small volume
Av divided by the volume, with the limit taken as Av shrinks to zero
around the point. Thus,

= lim 2 .
P= Al;glo A (2-15)

In a dielectric the flux density D is related to the polarization P by the
equation
D=¢E+ P (2-16)

1 The reasoning here is similar to that in connection with continuous distributions of
charge (Sec. 1-12).
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where ¢, = permittivity of vacuum
E = field in dielectric
From (2-16) we have

D= (eo + g) E (2-17)
Comparing (2-17) with the relation given in (1-47) that
D = ¢E (2-18)
it follows that!
€= ¢ + g (2-19)

where e = permittivity of diclectric. In isotropic media P and E are in
the same direction so that their quotient is a scalar, and hence € is a
scalar. In nonisotropic media, such as crystals, P and E are, in general,
not in the same direction so that e is no longer a scalar but becomes a
nine-component quantity called a tensor.? If E is applied parallel to
certain crystal axes, P and E may be in the same direction and for this
direction e is also a scalar quantity.? Thus, it appears that (2-16) is a
general relation, while (2-18) is a more concise expression, which, how-
ever, has a simple significance only for isotropic media or certain special
cases in nonisotropic media.

The flux density D, which is normal to the slab face (Fig. 2-3), is the
same in the vacuum as in the dielectric.* Hence (2-16) can be expressed

EoEo = EoE + P

or
P

«(Ey — E) (2-20)

where Eo = field in vacuum (applied field)

E = field in dielectric (resultant field)
According to (2-20) the polarization P equals the difference of the applied
and resultant fields multiplied by e. This difference is due to the
induced field E; opposing E, which is produced by the polarization charge
on the slab surfaces. Thus,

E, — E = —E; or E = Ey+ E; (2-21)
and
P = —¢kE; (2-22)

1 The ratio P/E may be written as xe, where x is called the electric susceptibility
(dimensionless). Thus, from (2-19) e = €,(1 + x).
% A vector is expressable by three components.
3 See footnote for rutile in Table 2-1.
¢ This is demonstrated in Sec. 2-4 on Boundary Relations.
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But from (2-14) P also has the same value as the polarization charge
surface density p.p; so
= —ek: = psp (2-23)

In a conductor the induced field equals the applied field so that the
resultant field is zero. On the other hand, in a dielectric the induced
field E; is always less than the applied field E, so that the resultant field
E is not zero. This may be illustrated by expressing (2-19) as

E — P _ P/’E()

€ — € e — 1

(2-24)

If the relative permittivity of the dielectric is large, E may be small, but
not zero. For E to be zero would require an infinite ¢,. However, no
dielectrics of infinite ¢, are known.

Although the polarization P is based on the actual polarization phe-
nomenon, it is usually simpler and more convenient in most practical
problems with isotropic dielectrics to ignore the mechanism of the
phenomenon and employ only the permittivity e to describe the character-
istics of the dielectric. In this case, ¢ i8 determined experimentally from
a slab of the dielectric, and it is not necessary to consider the polarization.
If we wish to calculate ¢, however, we must consider the polarization. An
example of such a calculation is given in Sec. 2-6 on Artificial Dielectrics.

2-4. Boundary Relations. In a single medium the electric field is
continuous. That is, the field, if not constant, changes only by an
infinitesimal amount in an infinitesimal distance. lowever, at the
boundary between two different media the electric field may change
abruptly both in magnitude and direction. It is of great importance in
many problems to know the relations of the fields at such boundaries.
These boundary relations are discussed in this section.

|-—A:: ——|
Medium 1

AVT E, 6 O
—
_L Ep Medium 2
€ O

Fra. 2-4. The tangential electric field is continuous across a boundary.

It is convenient to analyze the boundary problem in two parts, con-
sidering first the relation between the fields tangent to the boundary and
second the fields normal to the boundary.

Taking up first the relation of the fields tangent to the boundary, let
two dielectric media of permittivities ¢, and e; be separated by a plane
boundary as in Fig. 2-4. It is assumed that both media are perfect
insulators, that is, the conductivities! ¢, and o3 of the two media are zero.

t For discussion of conductivity see Sec. 3-7.
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Consider a rectangular path, half in each medium, of length Az parallel
to the boundary and of length Ay normal to the boundary. Let the
average electric field intensity tangent to the boundary in medium 1 be
E. and the average field intensity tangent to the boundary in medium 2
be Ei. The work per unit charge required to transport a positive test
charge around this closed path is the line integral of E around the path
(LE - dl). By making the path length Ay approach zero, the work along
the segments of the path normal to the boundary is zero even though a
finite electric field may exist normal to the boundary. The line integral
of E around the rectangle in the direction of the arrows is then

Eu Axr — En Ax = 0 (2-25)
or
Eu = E;z (2-26)

According to (2-26) the tangential components of the electric field are the
same on both stdes of a boundary between two dielectrics. In other words,
the tangential electric field is continuous across such a boundary.

If medium 2 is a conductor (o2 # 0), the field E;2 in medium 2 must be
zero under static conditions and hence (2-25) reduces to

Eyn=0 (2-27)

According to (2-27) the tangential electric field at a dielectric-conductor
boundary s zero.!

Turning our attention next to the fields normal to the boundary, con-
sider two dielectric media of permittivities ¢, and e, separated by the
z-y plane as shown in Fig. 2-5. It is assumed that both media are perfect
insulators (¢; = ¢2 = 0). Suppose that an imaginary box is constructed,
half in each medium, of area Ar Ay and height Az. Let D, be the average
flux density normal to the top of the box in medium 1 and D.., the average
flux density normal to the bottom of the box in medium 2. D, is an
outward normal (positive), while D,; is an inward normal (negative).
By Gauss’s law the electric flux or surface integral of the normal com-
ponent of D over a closed surface equals the charge enclosed. By making
the height of the box Az approach zero the contribution of the sides to the

! This assumes that no currents are flowing. 1f currents are present, then E in the
conductor is not zero, unless the conductivity is infinite, and (2-26) applies rather than
(2-27). In Chap. 7 the relations of (2-26) and (2-27) are extended to include time-
changing fields, and it is shown that the relation K, = E;; of (2-26) holds with static
or changing fields for the boundary between any two media of permittivities, perme-
abilities, and conductivities 1, u1, o1 and es, ps, 2. Furthermore, for changing fields
the relation E,; = 0 of (2-27) is restricted to the case where the conductivity of
medium 2 is infinite (02 = »), This follows from the fact that a time-changing
electric field in a conductor is zero only if the conductivity is infinite.
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Medium 1

Medium 2
D, & o

Fig. 2-5. The normal component of the flux density is continuous across a charge-
free boundary.

surface integral is zero. The total flux over the box is then due entirely

to flux over the top and bottom surfaces. If the average surface charge
density on the boundary is p,, we have on applying Gauss’s law

D Ax Ay — D,y Ax Ay = p, Ax Ay
or
D.y — D = p, (2-28)

According to (2-28) the normal component of the flux density changes at a
charged boundary between two dielectrics by an amount equal to the surface
charge density. This is usually zero at a dielectric-dielectric boundary
unless charge has been placed there by mechanical means, as by rubbing.

If the boundary is free from charge, p, = 0 and (2-28) reduces to

D., = D, (2—29)

According to (2-29) the normal component of the flux density is continuous
across the charge-free boundary between two dielecirics.
If medium 2 is a conductor, D,; = 0 and (2-28) reduces to

Dul = Ps (2—30)

According to (2-30) the normal component of the flux densily at a dielectric-
conductor boundary is equal to the surface charge density on the conductor.

It is important to note that p, in these relations refers to actual electric
charge separated by finite distances from equal quantities of opposite
charge and nof to surface charge p., due to polarization. The polarization
surface charge is produced by atomic dipoles having equal and opposite
charges separated by what is assumed to be an infinitesimal distance.
It is not permissible to separate the positive and negative charges of such

1 At a conductor-conductor boundary with currents present E is not zero in either
medium unless the conductivity is infinite so that (2-28) applies rather than (2-30).
In Chap. 7 it is pointed out that the relation D,; — D,; = p, of (2-28) and D,;, = D,

of (2-29) hold with static or time-changing fields for any two media of permittivities,
permeabilities, and conductivities e, u1, 01 and €, p2, 2.
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a dipole by a surface of integration, and hence the volume must always
contain an integral (whole) number of dipoles and, therefore, zero net
charge. Only when the positive and negative charges are separated by a
macroscopic distance (as on the opposite surfaces of a conducting sheet)
can we separate them by a surface of integration. This emphasizes a
fundamental difference between the polarization, or so-called ‘‘bound,”
charge on a dielectric surface and the true charge on a conductor surface.

To illustrate the application of these boundary relations, two examples

will be considered.

Normal
Example 1. Boundary between two dielec- !

trics. Let two isotropic dielectric media 1 |
and 2 be separated by a charge-free plane I
boundary as in Fig. 2-6. Let the permittiv-
ities be ¢; and ¢z, and let the conductivities

Medium 1

a1 = o3 = 0. Referring to Fig. 2-6 the prob- a G
lem is to find the relation between the angles
a; and az of a static field line or flux tube Boundary
which traverses the boundary. For exam-
ple, given ay, to find a.. =
Solution. Let | Medium 2
D; = magnitude of D in medium 1 Field fine | & o

D; = magnitude of D in medium 2

E, = magnitude of E in medium 1

E, = magnitude of E in medium 2
In an isotropic medium, D and E have the
same direction. According to the boundary

relations,
Dpy = Dy and
Referring to Fig. 2-6
D,, = D, cos a, and
while
E( = E,8in o and

EorD I
F1c. 2-6. Boundary hetween two
dielectric media showing change in
direction of field line.

En = Eu (2—31)
Dy = I)z COB a3 (2'32)
E; = E;s8in a (2-33)

Substituting (2-32) and (2-33) into (2-31) and dividing the resulting equations yields

Dycosay _ Dy cos ay
E,sina; E,sin a;z (2-34)
But D; = ,E,, and D; = e:K,, so that (2-34) becomes
I - 0 G - O (2-35)
tan aq €2 €r2€p €r2

where ¢,; = relative permittivity of medium 1
¢r2 = relative permittivity of medium 2

¢ = permittivity of vacuum

Suppose, for example, that medium 1 is air (¢n = 1), while medium 2 is a slab of

sulfur (e2 = 4).

in Fig. 2-6 is a conductor. Find a1.

Then when a; = 30°, the angle a; in medium 2 is 66.6°.
Example 2. Boundary between a conductor and a dielectric.

Supposc that inedium 2
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Solution. Since medium 2 is a conductor, D; = E; = 0 under static eonditions.
According to the boundary relations,

Dnl = ps or Enl - ?
1

and
E‘l = 0
Therefore

a; = tan~! 2“—: =tan!'0 =0
It follows that a static electric field line or flux tube at a dielectric-con-
ductor boundary is always perpendicular to the conductor surface (when
no currents are present). This fact is of fundamental importance in field
mapping (see Sec. 2-27).

X 2-b. Table of Boundary Relations. Table 2-2 summarizes the bound-
ary relations for static fields developed in the preceding section.

TABLE 2-2
BOUNDARY RELATIONS FOR STATIC ELECTRIC FIELDSt

Field I

Boundary relation Condition
component |

Tangential E., = Ex (1) | Any two media
Tangential Ey=0 (2) | Medium 1 is a dielectric

| Medium 2 is a conductor
. I — . |
Normal Dy — Daz = p, (3) | Any two media with charge at boundary
Normal | D, = D,, (4) { Any two media with no charge at boundary

| (1B = e2Fq2)
Normal D. = p.  (5) | Medium 1 is a dielectrie
(@1En1 = p4) Medium 2 is a conductor with surface charge

t Relations (1), (3), and (4) apply in the presence of currents and also for time-
varying fields (Chap. 7). The other relations, (2) and (5), also apply for time-chang-
ing situations provided o2 = .

2-6. Artificial Dielectrics. Certain of the properties of a dielectric
material may be simulated with artificial dielectrics. These were devel-
oped as a material for lenses for focusing short-wavelength radio waves.!
Whereas the true dielectric consists of atomic or molecular particles of
microscopic size, the artificial dielectric consists of discrete metal particles
of macroscopic size. For example, the artificial dielectric may consist of

t'W. E. Kock, Metallic Delay Lens, Bell System Tech. J., 37, 58-82, January, 1948.

See also discussion by J. D. Kraus, “Antennas,” McGraw-Hill Book Company, Inec.,
New York, 1950, p. 390.
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a large number of metal spheres, as in Fig. 2-7, arranged in a three-
dimensional or lattice structure which simulates the arrangement of the
atoms of a true dielectric but on a much larger scale.!

The permittivity of an artificial dielectric made of metal spheres will
now be calculated. This calculation is approximate but provides a good
illustration of the significance of polarization Metal
and its application in a practical problem. spheres
Let a uniform electric field E be applied, as
in Fig. 2-7, to a slab of artificial dielectric LY.
consisting of many metal spheres. The field |
E induces charges on the individual spheres "E
as suggested in Fig. 2-8a. Thus, the
spheres become analogous to the polarized
atoms of a true dielectric, and each sphere Fia. 2-7. Slab of artificial di-
may be represented by an equivalent dipole electric consisting of metal
of charge ¢ and length I as in Fig. 2-8b. spheres in lattice arrangement.
The polarization P of the artificial dielectric is by (2-12) equal to the net
dipole moment per unit volume, or

P = Ngl (2-36)

where N = number of spheres per unit volume (meters—?)
= dipole moment of individual sphere (coulomb-meters)
From (2-19) the permittivity is

given by
P
T = (@ c-otgy @230
Introducing the value of P from (2-36)

into (2-37),

emeot o Mo

(b) The last step in (2-38) follows from
the fact that 1 and E are in the same
Axis of direction, and hence their ratio (as
E -¢ | ¢ dpoe vectors) equals that of their scalar
Fie. 2-8. Individual sphere of arti- magnitudes (I and E).
ﬁt::ial dielectric (a) and equivalent According to (2-38) the permittiv-
dipele (b). ity of the artificial dielectric can be
determined if the number of spheres per unit volume and the dipole
moment of one sphere per unit applied field are known. Proceeding now

]

LIf the spheres are hollow (or if metal discs or strips are used), the artificial dielec-
tric slab can be made much lighter in weight than the corresponding slab of true
dielectric. This is a principal advantage of the artificial dielectric material.
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to find the dipole moment of one sphere, it is assumed that each sphere is
in a uniform field. This neglects the interaction of spheres, but this is
negligible provided the sphere radius is small compared with the spacing
between spheres.

From (1-14) the potential V, at a point in a uniform field is given by

Vo= — /;' E cos §dr = —Er cos § (2-39)

where r = radial distance from origin (taken at center of dipole)
6 = angle between field direction or axis of dipole and radial line
(see Fig. 2-8b)
According to (2-39), Vo = 0 at all points in a plane through the origin and
normal to E. Equation (2-39) gives the potential at a point in a uniform
field. Assuming that r > [, the potential V4 of a dipole in air is, from
(2-6),

Vv, = gl cos 6 (2-40)

4mreor?
The total potential V is, by superposition, the sum of (2-39) and (2-40), or
V=V+ Vs

= —FErcosf + ql cos §

601'2

(2-11)

The metal sphere has only induced charges on its surface (equal amounts
of positive and negative charge) so that its potential is zero. Thus, for
r = a, (2-41) reduces to

_ _p ql cos @ 5) 0
0 Ea cos 8 + Trea? (2-42)

Solving (2-42) for ql/E, we have

l 3
E = dwea (2-43)
Introducing (2-43) into (2-38), we obtain
e = ¢ + dreeNa® (2-14)
or
& =1 + 4rNa? (2-15)

where ¢ = permittivity of artificial dielectric

¢, = relative permittivity of artificial dielectric

N = number of spheres/unit volume

a = radius of sphere
Both the unit volume and the radius are expressed in the same unit of
length.
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Since the volume v of the sphere is 4ra®/3, (2-45) can also be written as
¢ =14 3N (2-46)

where N = number of spheres/unit volume
v = volume of sphere (in same units as unit volume)

Thus, the permittivity of the artificial dielectric depends on both the
number of spheres per unit volume and the size of the spheres.

2-T7. Capacitors and Capacitance. A capacitor® is an electrical device
consisting of two conductors separated by an insulating or dielectric
medium.

By definition the capacitance of a capacitor is the ratio of the charge on
one of its conductors to the potential difference between them. Thus,
the capacitance C of a capacitor is

Q_
V= c (247)
where @ = charge on one conductor
V = potential difference of conductors
Dimensionally (2-47) is
Charge charge charge?

Potential _ energy/charge  energy capacitance

or in dimensional symbols
Q2 Q2T2
MLYT: ~ ML?
The mkse unit of capacitance is the farad. Thus, 1 coulomb per volt
equals 1 farad, or

Coulombs

VoIt = farads

In other words, a capacitor that can store 1 coulomb of charge with a
potential difference of 1 volt has a capacitance of 1 farad. A capacitor of
1 farad capacitance is much larger than is ordinarily used in practice so
that the units

Microfarad = 10~ farad
and

Micromicrofarad = 1072 farad

are commonly employed.

2-8. Capacitance of Isolated Sphere. A very simple capacitor of
theoretical interest consists of a single isolated conducting sphere. The
sphere may be solid or hollow. Let the radius of the sphere be 7;. Since

! Also called a condenser,
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a capacitor must have two conductors, the second conductor in this case
can be regarded as a sphere of infinite radius and zero potential. Let a
charge Q be placed on the sphere of radius r;. From (1-11) the potential
of the sphere (work per unit charge to bring a positive test charge from
infinity to the sphere) is given by

V= Q (2-48)

4xer,

where ¢ = permittivity of medium filling all of space surrounding sphere.

Since V in (2-48) represents the potential or voltage difference between
the infinite sphere and the isolated sphere of radius r,, the capacitance of
the isolated sphere is obtained by substituting (2-48) for V in (2-47), which
yields

C = ‘;Q/. = 4xer, (2-19)
The capacitance C of the isolated sphere is in farads if r; is in meters and
¢ in farads per meter.

2-9. Capacitor of Two Concentric Spherical Shells. Consider now a
capacitor consisting of two spherical conducting shells of radius r, and
rs arranged concentrically as in Fig. 2-9. This capacitor is similar to the

isolated sphere of Sec. 2-8 but with the
radius of the outer conductor reduced from
infinity to rs.

Assume that a charge () is placed on the

of opposite sign on the inner surface of the
outer shell (radius r;). The electric field
extends radially between the two shells and is
of the same intensity as the field at the same
radius from a point charge . Thus, from

F16. 2-9. Capacitor consisting  (]-4) the radial component E, of the field is
of two concentric spherical

shells.

outer surface of the inner shell (radius r,).
‘ There will then be induced an equal charge

__Q
E. = 4dwer? (=)
where 7, < r < r;. The potential difference V2 between the shells is
then the same as the work per unit charge required to bring a positive
test charge from a radius 7, to a radius r, in the field of an isolated point
charge Q. The result is identical with that of (1-10) and is given by

___Q_ ndr_Q 1_1 _QT:—Tl
Va = dxe J,, 72 dme\rn  r:)  dme 1y sl

The capacitance C of the spherical shell capacitor is the ratio of the
charge @ to the voltage difference V3, or
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_Q _ 7172
C = V. = 4xe

21 o — T

@2-52)

Thus, the capacitance of the spherical shell capacitor is proportional to
the product of the shell radii and inversely proportional to the difference
of the radii.

2-10. Parallel-plate Capacitor. The capacitors described in the above
sections are not commonly used, whereas the parallel-plate capacitor such
as shown in Fig. 2-10 is a very common type. This capacitor consists of
two parallel flat plates of area A sepa-
rated by a distance . The capacitor I,-
can be charged or discharged by wires
connected as indicated.

Suppose that a potential V applied
to the capacitor plates results in a
charge +Q on one plate and —Q on
the other. Assuming that the charge is uniformly distributed (edge
effects! neglected), the surface charge density p, is uniform and is given by

F1a. 2-10. Parallel-plate capacitor.

o= (2:53)

where A = area of plates. The flux density D between the plates is
equal to p,. Thus
|4

Q = Ap. = AD = AeE = AeT (2-54)

where E = field strength between plates

¢ = permittivity of medium between plates
The capacitance C of the parallel-plate capacitor equals Q/V. Intro-
ducing the value of Q@ from (2-34), we have

C = f%— (2-55)
where ¢ = permittivity of medium between capacitor plates (farads
meter)
A = area of plates (meters?)
l = separation of plates (meters)
Introducing the relative permittivity ¢ and the value of €, we obtain
for the capacitance of the parallel-plate capacitor

C = 8.85 X 10~ Af-’ el
or (2-56)
C = 8'8‘;"46' micromicrofarads (uuf)

! The edge effects decrease in importance as the size of the plates is increased com-
pared with the spacing.
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where ¢, is the relative permittivity of the medium between the plates.
As mentioned above, this formula neglects the electric field fringing the
edge of the capacitor so that C by (2-56) is slightly less than the actual
capacitance.

Example. A parallel-plate capacitor consists of two square metal plates 50 cm on
a side and separated by 1 em. A slab of sulfur (¢, = 4) 6 mm thick is placed on the
lower plate as indicated in Fig. 2-11a. This leaves an air gap 4 mm thick between the

4
e Air 1 c,

;i s ==,
6 mm

(a) ()
Fic. 2-11. Parallel-plate capacitor with sulfur slab and air gap (a) and equivalent
series capacitor (b).

sulfur slab and the upper plate. Find the capacitance of the capacitor. Neglect
fringing of the field at the edges of the capacitor.

Solution. Imagine that a thin metal foil is placed on the upper surface of the sulfur
slab. The foil is not connected to either plate. Since the foil is normal to E, and
assuming that it is of negligible thickness, the field in the capacitor is undisturbed.
The capacitor may now be regarded as two capacitors in series, an air capacitor of
4 mm plate spacing and capacitance C,, and a sulfur-filled capacitor of 6 mm plate
spacing and capacitance C,, as suggested in Fig. 2-11b. The capacitance of the air
capacitor is, from (2-56),

_8854¢ _ 8.85 X 0.52 X 1

Ca 7 = 0.004 = 553 puf
The capacitance of the sulfur-filled capacitor is
2
C. = 8.85 X 0.5 X 4 = 1,475 puf

0.006

The total capacitance of two capacitors in parallel is the sum of the individual capaci-
tances. However, the total capacitance of two capacitors in series, as here, is the
reciprocal of the sum of the reciprocals of the individual capacitances. Thus, the
total capacitance C is given by

L
Ca

+

Qb=

1
C,
or

CoCs 553 X 1,475

C=C.xC 53+ 1475

= 402 ppf

2-11. Action of Dielectric in a Capacitor. In the above relations
for the capacitance of capacitors it is to be noted that the capacitance is
proportional to the permittivity e. For example, if the capacitance of a
parallel-plate capacitor with air as the dielectric medium is 1 uf then
filling the space between the plates with paraffin (¢, = 2.1) raises the
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capacitance to 2.1 uf. That is, with the paraffin dielectric the capacitor
plates can store 2.1 times as much charge for a given applied potential.
The reason for this increase in the charge storage capacity is to be found
in the polarization of the paraffin,

- Plates -
RN Parafﬁ\\
. - ) b

e b 5
+Q -Q +Q| - - |-Q
. i Nt
A P TS = M S A
+ . " BT |
Air F' R

. ——Air—J

Ps

4 .
b
€
’ A T
Pe
I or
Pep
(a) (hy
Fi1g. 2-12. The variation of the flux density D, electric field intensity E, polarization
P, potential V, and surface charge density p, along the axis between the plates of an
air capacitor is shown at (a). The variation after a paraffin slab has been introduced
is illustrated at (b).

Referring to Fig. 2-12a, let the medium between the plates be air.
Let a potential or voltage difference V be applied to the plates, as with a
battery, resulting in charges +@Q and —Q on the plates. The battery is
then disconnected. The resulting variation of the flux density D, field
intensity E, polarization P, potential V, and surface charge density p, as a
function of distance along the capacitor axis (normal to the center of the
plates) is presented by the graphs in Fig. 2-12a. Since the permittivity
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of air is nearly unity, the polarization is substantially zero. The surface
charge density is due to true charge on the capacitor plates and is indi-
cated by vertical lines in the graph.

Consider now the situation when a slab of paraffin (¢, = 2.1) is intro-
duced between the capacitor plates as in Fig. 2-12b. It is assumed that
the slab is substantially as thick as the spacing between the plates.
However, for clarity the air gaps between the plates and the paraffin slab
are exaggerated in Fig. 2-12b. Since the battery was disconnected
before the paraffin was introduced, the charge on the plates is the same as
previously. Therefore, the flux density D is the same as before and is
constant between the plates. However, the total field intensity E in
the dielectric is reduced to 0.475 of its value in the air capacitor
(E = D/eoe, = 0.475D/¢y). The polarization P has a value in the
paraffin such that P + «E = D or

P= D(l —l)=o.525D

€r

Since E in the paraffin is reduced, the potential difference of the plates
is also reduced as indicated in Fig. 2-12. With the paraffin dielectric
there is not only the true surface charge of density p, on the capacitor
plates but also the polarization charge of density p,, on the surface of the
paraffin. It is to be noted that D = p,, while P = p,,. The polarization
charge does not affect D, but it does reduce E in the dielectric by partially
neutralizing the effect of the true surface charge on the plates. As a
result the potential difference of the plates is only 1/2.1 = 0.475 of its
value for the air capacitor (the effect of the air gap in the paraffin capaci-
tor being neglected). Therefore, if the battery with potential V that was
originally applied to the air capacitor is now connected to the paraffin
capacitor, the true charge stored on the plates can be increased to 2.1
times its original value. Accordingly, the capacitance (charge per unit
potential) is 2.1 its value with air. The field E in the paraffin capacitor
is now equal to its value in the air capacitor, but the flux density D is 2.1
times as much.

2-12. Dielectric Strength. The field intensity E in a dielectric cannot
be increased indefinitely. If a certain value is exceeded, sparking occurs
and the dielectric is said to break down.! The maximum field intensity
that a dielectric can sustain without breakdown is called its dielectric
strength.

! As E is gradually increased, sparking occurs in air almost immediately when a
critical value of field is excceded if the field is uniform (E everywhere parallel), but a
glowing, or corona, discharge may occur first if the field is nonuniform (diverging)
with spark-over following as E is increased further. For a detailed discussion see, for

example, F. W. Peek, Jr., “Dielectric Phenomena in High Voltage Engineering,”
3d ed., McGraw-Hill Book Company, Inc., New York, 1929.
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In the design of capacitors it is important to know the maximum
potential difference that can be applied before breakdown occurs. For a
given plate spacing this breakdown is proportional to the dielectric
strength of the medium between the plates. The radius of curvature of
the edge of the capacitor plate is another factor, since this curvature
largely determines the maximum field intensity that occurs for a given
potential difference (see Sec. 2-28).

Many capacitors have air as the dielectric. These types have the
advantage that if breakdown occurs the capacitor is not permanently
damaged. For applications requiring large capacitance or small physical
size or both, other dielectrics are employed. The dielectric strength of a
number of common dielectric materials is listed in Table 2-3. The
dielectric strengths are for a uniform field. The materials are arranged
in order of increasing strength.

TABLE 2-3
Material Dielectric strength, volts/meter
Air (atmospheric pressure).......... 3 X 10¢
Oil (mineral). ..................... 15 X 10¢
Paper (impregnated)............... 15 X 10¢
Polystyrene....................... 20 X 10¢
Rubber (hard)..................... 21 X 10¢
Bakelite. ......................... 25 X 10¢
Glass (plate). ..................... 30 X 108
Paraffin........................... 30 X 10¢
Quartz (fused)..................... 30 X 10¢
Mica. ... ... 200 X 10¢

2-13. Energy in a Capacitor. It requires work to charge a capacitor.
Hence energy is stored by a charged capacitor.

To determine the magnitude of this energy, consider a capacitor of
capacitance C charged to a potential difference V between the two con-
ductors. Then from (2-47)

g=CV (2-57)

where ¢ = charge on each conductor. Now potential is work per
charge. In terms of infinitesimals it is the infinitesimal work dW per
infinitesimal charge dg. That is,

V=—- (2-58)
Introducing the value of V from (2-58) in (2-57), we have
aw = —g,dq (2-59)

If the charging process starts from a zero charge and continues until a
final charge Q is delivered, the total work 1 is the integral of (2-59), or
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1 (¢ 1Q?

This is the energy stored in the capacitor. By (2-17) this relation can be
variously expressed as

19l
W=55=5CV=

Qv (2-61)

DN —
N —
DN —

where W = energy (joules)
C = capacitance (farads)
V = potential difference (volts)
Q = charge on one conductor (coulombs)

2-14. Energy Density in a Static Electric Field. Consider the parallel-
plate capacitor of capacitance C shown in Fig. 2-13. When it is charged
to a potential difference V between
the plates, the energy stored is

S N— A_m A_ W = 3CV? = 3QV (2-62)
]} 1!-: O The question may now be asked:
+ + = = + + In what part of the capacitor is

the energy stored? The answer
is: The energy is stored in the
Fic. 2-13. Energy is stored in the electric electric field befween the plates.
field between the capacitor plates. To demonstrate this, let usproceed

as follows: Consider the small cu-
bical volume Av(=Al®) between the plates as indicated in Fig. 2-13. This
volume is shown to a larger scale in Fig. 2-14. The length of each side
is Al, and the top and bottom faces (of area Al?) are parallel to the capac-
itor plates (normal to the field E). If
thin sheets of metal foil are placed coin-
cident with the top and bottom faces of
the volume, the field will be undisturbed

' sheets
provided the sheets are sufficiently thin.
The volume Av now constitutes a small
capacitor of capacitance
. €Al .
AC = A € Al (2-63) Fia. 2-14. Small cubical volume

of capacitance eAl.

The potential difference AV of the thin sheets is given by
AV = E Al (2-64)
Now the energy AW stored in the volume Av is, from (2-61),
AW = FAC AV? (2-65)
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Substituting (2-63) for AC and (2-64) for AV in (2-65), we have
AW = }eE? Av (2-66)

Dividing (2-66) by Av and taking the limit of the ratio AW/ Av as Av
approaches zero, we obtain the energy per volume, or energy denstty, w at
the point around which Av shrinks to zero. Thus!

o AW1
Now the total energy W stored by the capacitor of Fig. 2-13 will be
given by the integral of the energy density w over the entire region in

which the electric field E has a value.
W= lwdv=1}[’eE2dv (2-68)

where the integration is taken throughout the region between the plates.
For simplicity it is assumed that the field is uniform between the plates
and that there is no fringing of the field at the edges of the capacitor.
Thus, evaluating (2-68),

W = eE2Al = §DA El = 3QV joules (2-69)

where A = area of one capacitor plate (meters?)

l = spacing between capacitor plates (meters)
This result, obtained by integrating the energy density throughout the
volume between the plates of the capacitor, is identical with the relation
given by (2-61).

2-156. Fields of Simple Charge Configurations. In many problems it
is desirable to know the distribution of the electric field and the associated
potential. For example, if the field intensity exceeds the breakdown
value for the dielectric medium, sparking, or corona, can occur. From a
knowledge of the field distribution, the charge surface density on con-
ductors bounding the field and the capacitance between them can also be
determined.

In Secs. 2-16 to 2-25 the field and potential distributions for a number
of simple geometric forms are discussed. The field and potential dis-
tributions around point charges, charged spheres, line charges, and
charged cylinders are considered first. The field and potential distribu-
tions of these configurations can be expressed by relatively simple equa-
tions. The extension of these relations by the method of images to
situations involving large conducting sheets or ground planes is then
considered. Finally, in Sec. 2-26, the field and potential distributions for
some conductor configurations, which are not easily treated mathe-

! For the more general case of a nonisotropic medium in which D and E may not be

in the same direction,
w=13D-E (2-67b)
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matically, are found by a simple graphical method known as field
mapping.

2-16. Fields of Point Charges and Conducting Spheres. The fields of
point charges and conducting spheres have already been discussed, but
the relations will be summarized in this section.

The electric field of an tsolated point charge is everywhere radial and
is given in volts per meter by

Q
" et e

where (Q is the charge in coulombs and r is the distance from the charge in

meters.
v L

1
n T —
£ K (a)
kg r—
Equipotentials
n
®

Fia. 2-15. Variation of electric field E and potential V for an isolated charged con-
ducting sphere of radius r,.
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The absolute electric potential V of an isolated point charge is given
in volts by

V= Q (2-71)

T dxer

The electric field of an isolated conducting sphere (hollow or solid) of
radius r;, with a total charge @ is everywhere radial and is also given by
(2-70) for all values of r larger than r,. For values of r less than r,
(inside sphere) E = 0.

The electric potential V of such an isolated conducting sphere is given
by (2-71) for all values of r larger than r,. For values of r less than r,
(inside sphere) the potential is constant and has the same value as the
potential of the sphere.

Field and potential distributions may be presented in various ways.
For example, a graph of the variation of the magnitude of the electric
field E and of the electric potential V along a reference line may give the
desired information. This is illustrated by the curves for E and V in
Fig. 2-15a for the field and potential along a radial line extending from
the center of a charged conducting sphere of radius ;. Or the field and
potential distribution may be indicated by a contour map, or graph, asin
Fig. 2-15b. In this map the radial lines indicate the direction of the
electric field, while the circular contours are equipotential lines. In this
diagram the potential difference between contours is a constant.

2-17. Field of Two Equal Point Charges of Opposite Sign (Electric
Dipole). The electric field at a point P due to two point charges +Q
and —@ is equal to the vector sum of the fields at P due to each of the
charges alone. This is illustrated in Fig. 2-16. The potential V at P
is equal to the algebraic sum of the potentials at P due to each charge
alone. The field can also be obtained from the gradient of the potential
(E = —vYV) if the potential distribution is known.

A map of the field lines (solid) and equipotential contours (dashed) is
shown in Fig. 2-16 for the case of point charges +Q and —( separated
by 12.7 ecm. The equipotential contours are given in volts for
Q = 1.4 X 107! coulomb. The charge configuration in Fig. 2-16 con-
stitutes an electric dipole with a charge separation of 12.7 cm. The
expressions for E and V of an electric dipole given by (2-7) and (2-6)
would not apply to the map shown in Fig. 2-16 since these are restricted
to distances that are large compared with the charge separation.

2-18. Field of Two Equal Point Charges of Same Sign. In contrast to
the configuration in Sec. 2-17 let us consider the situation of two positive
point charges of equal magnitude as in Fig. 2-17. A map of the field
lines (solid) and equipotential contours (dashed) is shown for a charge
separation of 12.7 cm. The equipotential contours are given in volts for
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Centimeters

F1G, 2-16. Electric field and potential variation around an electric dipole consisting
of a positive and negative charge of 1.4 X 1071° coulomb separated by 12.7 cm
(5in.). The solid lines are field lines, and the dashed lines are equipotential contours,
with their potential level indicated in volts.

Q =14 X 107" coulomb. The only difference between the charge
configuration of Fig. 2-17 and that in Fig. 2-16 is that the lower charge is
positive.

At distances from the charges that are large compared with their
separation the equipotentials become circles, while the field lines become
radials as though the field were caused by a charge of +2Q situated at P
midway between the charges. At large distances this point appears to be
the center of charge, or ““center of gravity,” of the charge configuration.
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Near each charge the effect of the other charge is small, and the equi-
potentials are circles like around an isolated point charge. For inter-
mediate distances the equipotentials have the shapes shown in Fig.
2-17. Of particular interest is the figure-eight-shaped equipotential

A Y

~
3 4
1 1

Centimeters

F1e. 2-17. Electric ficld and potential variation around two cqual positive charges
of 1.4 X 107! coulomb separated by 12.7 em (5 in.). The solid lines are field lines,
and the dashed lines are equipotential contours, with their potential level indicated
in volts.
(V = 39.5 volts) that crosses itself at the point P. At the point P the
gradient of V is zero, and hence E = 0. A point such as this is called a
singular point.

2-19. Field of a Number of Point Charges and Conducting Spheres.
The electric field E at a point P due to a number of point charges is equal to
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the vector sum of the fields at P due to each of the charges alone. The
potential V at P is equal to the algebraic sum of the potentials at P due
to each charge alone.

The electric field E at a point P due to a number of charged conducting
spheres is approximately equal to the vector sum of the fields at P due to
each sphere alone, while the potential V at P is approximately equal to
the algebraic sum of the potentials at P due to each sphere alone. It is
assumed that the spheres are small compared with their separation so
that the charge distribution on each sphere is substantially uniform.

2-20. Field of a Finite Line of Charge. Consider now the field pro-
duced by a thin line of electric charge. Let a positive charge @ be dis-
tributed uniformly as an infinitesimally thin line of length 2a with center

z-axis

+a

r-axis

*——Line of charge

Fia. 2-18. Thin line of charge of length 2a.

at the origin as in Fig. 2-18. The linear charge density p. (charge per
unit length) is then

_Q .
pPL = 2 (2'72)

where py, is in coulombs per meter when @ is in coulombs and a is in meters.
At the point P on the r axis, the infinitesimal electric field dE due to an

infinitesimal length of wire dz is the same as from a point charge of mag-

nitude pr dz. Thus,

pLdz

4xel?

dE = a (2-73)
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where | = 4/r? 4 22

a; = unit vector in direction of !
The z axis in Fig. 2-18 is an axis of symmetry so that the field will have
only z and r components. These are

dE, = dE cos § = dEg (2-74)
and
dE, = dE sin 0 = dE§ (2-75)

The resultant or total r component E, of the field at a point on the r axis
is obtained by integrating (2-74) over the entire line of charge. That is,

E = pur +a _d_z _ pur +a dz
T dme [, B dme [_ A/(r + 22)8

and

Er = ‘—M—— (2-76)

2mer \/72 + a?

By symmetry the resultant z component E, of the field at a point on the
r axis is zero. Hence the total field E at points along the r axis is radial
and is given by

) pLa
Bl = b = VT e @-77)
This relation gives the field as a function of r at points on the r axis for a
Jinite line of charge of length 2a and uniform charge density p,. For the
potential V at any point see Prob. 2-28.

2-21. Field of an Infinite Line of Charge. Consider that the line
of charge in Fig. 2-18 extends to infinity in both positive and negative
z directions. By dividing the numerator and denominator of (2-77) by a
and letting a become infinite, the electric field intensity due to an infinite
line of positive charge is found to be

|E| = E, = 2~ (2-78)

" 2ner

The potential difference V3 between two points at radial distances r,
and r, from the infinite line of charge is then the work per unit charge
required to transport a positive test charge from r; to 7;. Assume that
ry > 1. This potential difference is given by the line integral of E, from
ry to ry, the potential at r, being higher than at r; if the line of charge is
positive. Thus

V:1=—/ E,dr=£i ﬂ

. 27e f,, T
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or!

Vo = Qpﬁ In r]n = Q"—:e ln:—: (2-79)

2-22. Infinite Cylinder of Charge. If the charge is distributed uni-
formly along a cylinder of radius r, instead of concentrated along an
infinitesimally thin line, the field external to the cylinder is given by
(2-78) for r > r;. Inside of the cylinder, E = 0.

The potential difference between the cylinder and points outside the
cylinder is given by (2-79), where r; > r, and p, is the charge per unit
length of the cylinder. Inside of the cylinder the potential is the same
as the potential at the surface (r = ry).

2-23. Infinite Coaxial Transmission Line. A coaxial transmission
line consists of two conductors arranged coaxially as shown by the cross
section of Fig. 2-19a. This is a common type of transmission line, and
much can be learned concerning its properties from a consideration of its

Outer
%8 conductor

47 Inner
4 conductor

(a)

Fia. 2-19. Coaxial transmission line.

behavior under static conditions. Let a fixed potential difference be
applied between the inner and outer conductors of an infinitely long
coaxial line so that the charge Q per unit length ! of one line is p,. The
field is confined to the space between the two conductors. The field
lines are radial and the equipotential lines are concentric circles as
indicated in Fig. 2-195. The magnitude of the field at a radius r is given
by (2-78), where a < r < b and where p, is the charge per unit length
on the inner conductor. The potential difference V between the conduc-
tors is, from (2-79),

V=p"1nb

2me  a (Z:D)

! The abbreviation In indicates the natural logarithm (to base ¢). The abbreviation
log indicates the common logarithm (to base 10). That is,

Inz = log,z = 2.3logioz =23 logz
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Now capacitance is given by the ratio of charge to potential. Thus

Q
C =23
])1v1dmg by length l, we have
¢ Q/l
=

The ratio Q/I equals the linear charge density p; (coulombs per meter).
Hence, the capacitance per unit length, C'/l, of the coaxial line is

C _pL _ 2me

I~V ™ In@b/a) farads/meter (2-81)
where ¢ = permittivity of medium between conductors. With ¢in farads
per meter, C is also in farads per meter. The radii a and b are expressed
in the same units of length.

Since ¢ = €, where ¢ = 8.85 X 10-'% farad /meter, (2-81) can be

expressed more conveniently as

C 55.0€, 24.2¢,

I = In(b/a) ~ log (b/a)  “Hf/meter (2-82)

where ¢, = relative permittivity of medium between conductors
wuf = micromicrofarads
b = inside radius of outer conductor
a = radius of inner conductor (in same units as b)
In = natural logarithm
log = logarithm to base 10
2-24. Two Infinite Lines of Charge. Let two infinite parallel lines
of charge be separated by a distance 2s as in Fig. 2-20. Assume that the
linear charge density of the two lines is equal but of opposite sign. The
resultant electric field E at a point P, distant r, from the negative line
and r; from the positive line, is then the vector sum of the field of each
line taken alone.
Let the origin of the coordinates in Fig. 2-20 be the reference for
potential. Then the potential difference between > and the origin pro-
duced by the positively charged line is

V,=2m?d (2-83)

2me 1,

and the potential due to the negatively charged line is

PL 8
LA IS 4
V_ e In 1‘1 (2-84)
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v

/

[F—

Equipotential
F1a. 2-20. Two infinite lines of charge separated by a distance 2s.

The total potential difference ¥ between P and the origin is the algebraic
sum of (2-83) and (2-84), or )
_ _ PL 1 ¥
V = V++V_—2nln - (2-85)
If V in (2-85) is a constant, (2-85) is the equation of an equipotential
line. The form of the equipotential line will be more apparent if (2-85) is
transformed in the following manner: From (2-85)

o 2reV (2-86)
s ] PL :
and
ﬁ = @27eV/oL (2_87)
T2

Since 27V /p. is a constant for any equipotential line, the right side of
(2-87) is a constant K. Thus

ewevion — K and ry = Kra (2-88)

The coordinates of the point P in Fig. 2-20 are (x, y) so that

rn=1(6+1+y (2-89)
and
ra=(6 — )+ y* (2-90)

Substituting (2-89) and (2-90) in (2-88), squaring, and rearranging yields

-2
z? — 2278%—-1-—: + s? + y2 =0 (2-91)
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Adding s?(K? 4 1)?/(K? — 1)* to both sides of (2-91) to complete the
square on the left side, we have

_K2+1V , , ( 2Ks \? .
This is the equation of a circle having the form {
(@ =R+ @ - D=1 (2-93)

where z and y are the coordinates of a point on the circle, h and ! are the
coordinates of the center of the circle, and r is the radius of the circle.
Comparing (2-92) and (2-93), it follows that the equipotential curve pass-
ing through the point (z, y) is a circle of radius

2Ks
r=gr—7 (2-94)
with its center on the z axis at a distance from the origin
K*+1
h=s T\ﬁ (2-95)

An equipotential line of radius r with center at (h, 0) is shown in
Fig. 2-20. As K increases, corresponding to larger equipotentials, r
approaches zero and k approaches s so that the equipotentials are smaller
circles with their centers more nearly at the line of charge. This is
illustrated by the additional equipotential circles in Fig. 2-21.

The potential is zero along the y axis. Potentials to the right of the y
axis are positive and to the left are negative.

Field lines are also shown in Fig. 2-21. These are everywhere orthog-
onal to the potential circles and also are circles with their centers on the
y axis.

2-26. Infinite Two-wire Transmission Line. The discussion of two
infinite lines of charge in the previous section is easily extended to the
case of an infinite line consisting of two parallel cylindrical conductors or
wires. This is a type of transmission line commonly used in practice,
and much can be learned concerning its properties from a consideration of
its behavior under static conditions. Let a fixed potential difference be
applied between the conductors so that the charge per unit length of each
conductor is p;.

The surface of the wire is an equipotential surface, and therefore an
equipotential circle in Fig. 2-21 will coincide with the wire surface.
Thus, the heavy circles of radius r and center-to-center spacing 2k can
represent the two wires. The field and potential distributions external
to the wire surfaces are the same as if the field were produced by two
infinitesimally thin lines of charge with a spacing of 2s. The field inside




78 ELECTROMAGNETICS [CHuap. 2

V=0
F1e. 2-21. Field and equipotential lines around two infinite parallel lines of eharge
or around an infinite two-conductor transmission line.

the wires is, of course, zero and the potential the same as on the surface.
The charge is not uniformly distributed on the wire surface but has higher
density on the adjacent sides of the conductors.

The potential difference V. between one of the conductors and a point
midway between them is, from (2-85) and (2-88),

Vo=2L-InK (2-96)

2re
The value of K can be expressed in terms of the radius r and half the
center-to-center spacing h by eliminating s from (2-94) and (2-95) and
solving for K, obtaining

S : —I (2-97)

The potential difference V.. between the two conductors is then

Vs = ®21n (’-‘ TN 1) (2-98)

e r r?

To find the capacitance per unit length, C/l, of the two-conductor line,
we take the ratio of the charge per unit length on one conductor to the
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difference of potential between the conductors. That is,

C_ pr_ e farads/meter (2-99)
L Ve ho (Y
m 5= 3() -1
or
? Ll uuf /meter (2-100)

h h\*
o5 =) -]
where ¢, = relative permittivity of the medium surrounding the con-
ductors (dimensionless)
h = half center-to-center spacing
r = conductor radius (same units as h)

2-26. Infinite Single-wire Transmission Line. Method of Images.
A single-wire transmission line with ground return is another form of line
sometimes used. Let the conductor radius be r and the height of the
center of the conductor above ground be h. Assume that the conductor
has a positive charge p, per unit length and that the ground is at zero
potential.

The field and potential distribution of this type of line is readily found
by the method of images. Thus, if the ground is removed and an identical
conductor with charge —p, per unit length placed as far below ground
level as the other conductor is above, the situation is the same as for a
two-conductor line (Fig. 2-21). The conductor which replaces the
ground is called the ¢mage of the upper conductor. The field and
potential distribution for the single conductor line is then as illustrated by
Fig. 2-22.

The difference in potential between the single conductor and the
ground is as given by (2-96) or by one-half of (2-98). The capacitance
per unit length, /I, is twice the value given by (2-99), or

% = 275- S farads/meter (2-101)
1 L + ll ’—l ' —1
MrEANG
or
g = 2oty - upf /meter (2-102)

SN

The surface charge density p, on the conducting ground plane is not
uniform. It is a maximum directly below the wire and is zero at an
infinite distance. The variation of p, as a function of distance along the
ground plane is given in Prob. 2-34.
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F16. 2-22. Infinite single conductor above ground with electrical image.

2-27. Graphical Mapping of Static Electric Fields. Field Cells.
Not all conductor configurations can be treated mathematically as readily
as those in the preceding sections. Although it is theoretically possible
to find the potential distribution for any configuration of conductors by
means of Laplace’s equation, as will be discussed later, such an approach
may be impractical and other methods must be used. In two-
dimensional problems! a very effective graphical method, known as field
mapping,? is applicable.

In graphical field mapping the following fundamental properties of
static electric fields are useful:

1. Field and potential lines intersect at right angles.
2. The surface of a conductor is an equipotential surface.

! By a two-dimensional problem is meant one in which the conductor configuration
can be shown by a single cross section, all cross sections parallel to it being the same.
A uniform coaxial transmission line is an example of a two-dimensional configuration.
Thus, the cross section of Fig. 2-19 is representative of any cross section of the line.

1 A. D. Moore, “Fundamentals of Electrical Design,” McGraw-Hill Book Com-
pany, Inc., New York, 1927.
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The field meets a conducting surface normally.

In a uniform field, the potential varies linearly with distance.

A flux tube is parallel to the field,! and the electric flux is constant
over any cross section of a flux tube.

6. A tube of flux originates on a positive charge and ends on an equal
negative charge.

51 5> 89

Graphical field mapping will be introduced with the aid of an example.
Consider two charged sheet conductors 1 and 2 as shown in cross section
in Fig. 2-23. The sheets extend infinitely far to the left and right and
also normally to the page. This is a two-dimensional problem, all cross

s Conductor 1

A 40 volts
30 volts
a \\ - -
\ Y\ _ ‘e Tentative field and
% vy p equipotential lines
v R 20 volts
'//
\Flux tube
10 volts
0 volts

\Conductor 2
Fia. 2-23. Cross section of two sheet conductors with partially eompleted field map.

sections parallel to the page being the same. Therefore, the field and
potential distribution everywhere between the sheets will be known if it
can be found for a two-dimensional cross section such as shown in Fig.
2-23. Let the potential difference between the conductors be 40 volts,
with the upper conductor positive and the lower conductor at zero
potential. To the left of a and to the right of b the field is uniform so
that equipotential surfaces 10 volts apart are equally spaced as indi-
cated, the conductor surfaces being equipotentials at 0 and 40 volts.
Between a and b the conductor spacing changes, and the equipotentials
may be drawn tentatively as shown by the dashed lines.

The next step in the mapping procedure is to draw field lines from con-
ductor 1 to conductor 2 in the uniform field region to the left of a with
the spacing equal to that between the equipotentials. In this way the
region is divided into squares. Each square is the end surface of a
rectangular volume, or cell, of depth d into the page. A stack, or series,

1t The side walls of a flux tube are field lines.
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of squares bounded by the same field lines represents the side wall of a
rectangular flux tube extending between the positive charge on one con-
ductor to the negative charge on the other. The field map is next
extended to the right by drawing field lines as nearly normal to the equi-
polentials as posstble, with the field lines spaced so that the areas formed
are as nearly square as possible. After one or two revisions of the
tentative equipotentials between a and b and also of the field lines, it

b /Conductor 1 g

Field cell ]
24 ¢ Equipotential [
surfaces
Field
ines _—
S
n
Flux tube with _—
4 celis in series

T3
\Conductor 2 g
Flux tube Remainder
with 4 cells Flux tube
in series with 914
cells in series

Fia. 2-24. Cross section of two sheet conductors with completed field map. A three-
dimensional view of a field cell is also given.

should be possible to remap the region to the right of a so that field and
equipotential lines are everywhere orthogonal and the areas between the
lines are all squares or curvilinear squares.® The completed field map is
shown in Fig. 2-24. The remainder tube at the right of the map is
explained in the example on p. 86.

By a curvilinear square is meant an area that tends to yield true squares as
1t 18 subdivided into smaller and smaller areas by successive halving of the
equipotential interval and the flux per tube. A partially subdivided
curvilinear square is illustrated in Fig. 2-25.

A field map, such as shown in Fig. 2-24, divides the field into many
squares each of which represents a side of a field cell. These field cells
have a depth d (into the page) as suggested by the three-dimensional view

! A more accurate technique of field mapping involving circling of the squares is
described in the Appendix.
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of the typical field cell in Fig. 2-24. The cell has a length [ (parallel to
the field) and a width b. The side walls of a field cell are the walls of a
flux tube (parallel to the field), while the top and bottom coincide with
equipotential surfaces. As curvilinear cells are subdivided into smaller
cells, their end areas tend to become true squares. The subdivided cells

Equipotential
lines

Fia. 2-25. Partially subdivided curvilinear square.

are always of depth d (into the page) the same as the larger cells. Thus,
a field cell, or simply a cell, may be defined as a curvilinear square volume.
If thin sheets of metal foil are applied to the equipotential surfaces of a
field cell, we have a field cell capacitor. The capacitance C of a parallel-
plate capacitor is from (2-55)
eAd

c=% (2-103)

where ¢ = permittivity of medium
A = area of plates
I = spacing of plates
Applying this relation to a field cell capacitor with a square end (b = ),
we have for the capacitance C, of the field cell

cbd _

Co = ] ed (2-104)
Dividing by d, we obtain the capacitance per unit depth of a field cell as
%’ = ¢ (2-105)

where ¢ = permittivity of medium (farads/meter).
Thus, the significance of the value of ¢ is that it is the capacitance per
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unit depth of a field cell capacitor. For example, a field cell capacitor of
unit depth in a medium of air (or vacuum) has a capacitance of 8.85 uuf.
Such a capacitor is illustrated in Fig. 2-26.!

Any field cell can be subdivided into smaller square-ended cells with as
many cells in parallel asin series. Hence the capacitancet per unit depth
of any field cell, large or small, exactly square or curvilinear is equal to e.

In a field map, such asin Fig. 2-24,
most of the area is divided into *“reg-
ular’’ cells with four in series for each
flux tube. These cells all have the
same potential difference across them
(10 volts). Hence these cells may be
Conducting defined as cells of the same kind. The

sheets  remaining area of the map consists of

a fractional, or remainder, flux tube.

This tube is also divided into cells.

These cells are of two kinds, both dif-

ferent from those in the rest of the

map. One kind of cell in the remain-
Fia. 2-26. Air-filled field-cell capaci. 46T flux tube has about 4.3 volts
tor of unit depth having a capacitance 8cross it and the other kind about 1
of 8.85 uuf. Volume between plates volt across it. There are nine 4.3-
is! X! X 1 meter. volt cells and four 1-volt cells.

Any field cell has the same capacitance per unit depth. Many addi-
tional properties are common to field cells of the same kind. These cells of
the same kind have the same potential difference across them. In uni-
form fields the areas of the ends of those cells are the same, but in non-
uniform fields the areas will not be the same.

Since the capacitance per unit depth of any cell of the same kind is the
same, it follows that the electric flux through any cell of the same kind is
the same (Q/d = VC/d). Thus, the 10-volt cellsin Fig. 2-24 have a flux of
10e coulombs per unit depth, while the 4.3- and 1-volt cells have 4.3 and
¢ coulombs per unit depth, respectively.

Now the average flux density D at the equipotential surface of a field
cell is given by

t——l

_9_ Ps coulombs/meter? (2-106)

bd

1 The capacitance of an isolated capacitor such as shown in Fig. 2-26 is somewhat
greater than 8.85 uuf because of fringing of the field. However, a field cell represents
only a portion of a more extensive field, and its sides are parallel to the field (no
fringing).

t It is understood that this capacitance is that which would be obtained if the field
cell is made into a field cell capacitor by placing thin sheets of metal foil coincident with
its equipotential surfaces (if no conductor is already present).
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where Q = total charge on foil at equipotential surface of field cell (also
equal to total flux ¢ through cell) (coulombs)
b = width of cell (meters)
d = depth of cell (meters)
p. = average surface charge density on foil at equipotential surface
(coulombs/meter?)
Hence, the average flux density is inversely proportional to the field cell
or flux tube width. Also the average surface charge density p, at a con-
ducting surface is inversely proportional to the width of the field cell or
flux tube at the surface. For example, the spacing of conductors 1 and 2
to the right of b in Fig. 2-24 is four times that to the left of a; so in the
uniform field region to the left of a the surface charge density p, is four
times the value of p, in the uniform field region to the right of b. The
surface charge density is even smaller than to the right of b in the region
of concave conductor curvature near b and somewhat larger than to the
left of a in the region of convex conductor curvature near a.

Since E = D/e, the field intensity is also inversely proportional to the
cell width, or length (E = V/l). Furthermore, the energy W(=1QV)
stored in any cell of the same kind is the same. It follows that the
average energy density w is inversely proportional to the area of the end
of the cell (= bl for a square-ended cell). For example, the energy
density in the uniform field region to the left of a in Fig. 2-24 is 16 times
the energy density in the uniform field region to the right of b.

To summarize, the properties of an accurate electric field map' are as
Sollows:

1. The capacitance of any field cell is the same.

2. The capacitance C, per unit depth of any field cell is equal to the
permittivity e of the medium.

3. The potential difference across any field cell of the same kind is the

same.

The flux ¢ through any field cell of the same kind is the same.

The flux ¥ over any cross section of a flux tube is the same.

6. The average flux density D in any cell of the same kind is inversely
proportional to the width of the cell or flux tube.

7. The average charge density p, at the conducting boundary of any
cell of the same kind is inversely proportional to the width of the
cell or flux tube at the surface.

8. The average field intensity E in any cell of the same kind is
inversely proportional to the cell width.

9. The energy stored in any cell of the same kind is the same.

10. The average energy density w in any cell of the same kind is

B 6=

! In a single medium of uniform permittivity.
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inversely proportional to the area of the end of the cell. (Thisis
the area that appears in the field map.)

In order to test the accuracy of a field map, and hence the accuracy
with which the above properties hold for a particular map, the curvilinear
squares of the map can be further subdivided by halving the equipotential
interval and halving the flux per tube as in Fig. 2-25. If the smaller
regions so produced tend to become more nearly true squares, the field is
accurately mapped. However, if the regions tend to become rectangles,
the map is inaccurate and another attempt should be made. Often it is
preferable to erase and begin again than to attempt to revise an inaccurate
map. In field mapping an eraser is as important as a pencil.

Field and equipotential lines should intersect orthogonally. It is
especially important that this rule be observed at all stages of making a
field map. If this is done it is possible to determine what modifications
are necessary to make all areas squares or curvilinear squares. However,
if the intersections are not right angles, it may be very difficult to deter-
mine how to proceed in correcting the map. Additional details on field
mapping techniques are given in the Appendix.

To illustrate the utility of graphical field mapping in solving a practical
problem, consider the following example.

Example. Referring to Fig. 2-24, let the conductor separation at ffhe | cm and at
gg be 4 cm, and let the conductors have a depth (into the page) of 20 em. If the con-
ductors end at ff and gg and if fringing of the field is neglected, find the capacitance
C of the resulting capacitor. The medium in the capacitor is air.

Solution. The method of solution will be to evaluate the series-parallel com-
bination of capacitors formed by the individual cells.

Each cell has a capacitance

Co = ¢ed = 8.85 X 0.2 = 1.77 puf
The capacitance between the ends of each flux tube with 4 cells in series is then

1

-

L = 0.442ppf
4
The capacitance between the ends of the remainder flux tube with 9.25 cells in series is

1.77
9.25

There are fifteen 4-cell tubes and one remainder (9.25-cell) tube. Hence the total
capacitance C between ff and gg is the sum of the capacitances of all the flux tubes, or

C = 15 X 0.442 + 0.191 = 6.82 upuf

= 0.191 uuf

The above calculation is somewhat simplified if each cell is arbitrarily assigned a
capacitance of unity. On this basis the total capacitance in arbitrary units is given by

15

1 .
1 + 925 = 3.86 units
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and the total actual capacitance C is the product of this result and the actual capaci-
tance of a cell, or
C = 3.86 X (8.85 X 0.2) = 6.82 upuf

Yet another method of calculation is to use the relation that the total capacitance C
is given by

Co (2-106a)

where N = number of cells (or flux tubes) in parallel

n = number of cells in series

C, = capacitance of one cell
and where all cells are of the same kind. Thus in the above example, counting in
terms of the 10-volt cells, we have

¢ =155 x 885 X 0.2 = 6.82 uut

Note that if the capacitance had been desired of a capacitor with con-
ductors coinciding with the equipotentials m and n (Fig. 2-24) and of
20 cm depth, the cells in series would be reduced to two and the capaci-
tance doubled. In this way the capacitance of any conductor configura-
tion conforming to the equipotential surfaces of a field map can be easily
calculated.

2-28. 90° and 270° Corners. As a further illustration of field mapping
consider a long trough of two conducting sheets intersecting so as to form
a 90° corner as shown in cross section in Fig. 2-27a. The flux tubes
(solid lines) and equipotential surfaces (dashed lines) are shown in the

Quadrisector y L] Quadrisector

\(foudnsedov L—Bisector /L—Qludnsectov
R |

. L ¥
AL AL L XA
ALTF X7\
el aox

a b
F16. 2-27. Field maps in the vicinity of a 90° corner (a) and a 270° corner (b).

vicinity of the corner of the trough as produced by a region of positive
charge at a large distance above. The opposite situation of a long prism,
or 270° corner, is illustrated in cross section by Fig. 2-27b. If the corners
are perfectly sharp, the flux density and field in the corner of Fig. 2-27a
will be zero, while at the apex in Fig. 2-27b they will be infinite. The
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large field or high-potential gradient near a sharp point will result in an
electrical discharge to the point rather than to nearby conducting regions
when the field is increased above the dielectric strength of the medium.
This is the principle of the lightning rod.! Conversely, in a corner as in
Fig. 2-27a the field is weak, and it is said that the region near the corner is
shielded, at least partially, from the field above.

In mapping near corners, as in Fig. 2-27q, one can take advantage of the
symmetry by drawing, as the first field line, the bisector of the corner.
The field is symmetrical around this line so that it is necessary to con-
struct a field map for only one octant, the other octant being a mirror
image of the first in the bisector line. The lines that bisect the octants
(or quadrisect the corner) are also lines of symmetry but with the differ-
ence that the equipotentials in one-half of the octant are mirrored as
field lines in the other halt, and vice versa. It is helpful to construct
these quadrisectors temporarily while drawing the map in order to ensure
symmetry. Quadrisectors are shown in both Figs. 2-27a and b (see also
Appendix, Sec. A-2).

It is to be noted that in approaching the corners along the bisector lines
E approaches zero in Fig. 2-27a, while E approaches infinity in Fig. 2-27b,
it being assumed that both corners are perfectly sharp.

2-29. Divergence of the Flux Density D. In Sec. 1-19 Gauss’s law is
applied to surfaces enclosing finite volumes, and it is shown that the
normal component of the flux density D integrated over a closed surface
equals the electric charge enclosed. By an extension of this relation to
surfaces enclosing infinitesimal volumes, we are led to a useful relation
called divergence.

Let Av be a small but finite volume. Assuming a uniform charge
density throughout the volume, the charge AQ enclosed is the product of
the volume charge density p and the volume Av. By Gauss’s law the
charge enclosed is also equal to the integral of the normal component D,
of the flux density over the surface of the volume Av. Thus,

¢_ Dads = AQ = p Av (2-107)
and

¢ D, ds
'Av =p (2-108)

If the charge density is not uniform throughout Ay, we may take the limit
of (2-108) as Av shrinks to zero, obtaining the charge density p at the
point around which Av collapses. The limit of (2-108) as Av approaches

1 If the corner is rounded, E is reduced. In general, to increase the breakdown

voltage of high-voltage electrical equipment, the conductors are made with rounded
edges of relatively large radius of curvature. Sharp edges are assiduously avoided.

—— e ———————
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zero is called the divergence of D, written div D or V- D. Hence

D, ds

lim ** = div D = p coulombs/meter? (2-109)
Av—0 Av

Whereas the integral of the normal component of D over a finite volume
yields the charge enclosed, the divergence of D gives the charge density at a
point. If the charge is zero at a point, it follows that the charge density is
zero and also that the divergence of D is zero at that point. It is impor-
tant to note that the divergence of D is a scalar point function.

Let us now discuss divergence in a more formal way, developing it as
a differential expression. A small volume Az Ay Az = Av is placed in an
electric field with flux density D, having components D., D,, and D,
in the three coordinate directions as shown in Fig. 2-28. The total flux

z
D, ,

/D;'f' 3z Az
/_DZ Az

-D D, ab,
] y D, — | Dyt 5t ay
D+ aD:AI / D, Y
Ax
Ay

T
I16. 2-28. Construction used to develop differential expression for divergence of D.

density D is related to its components by
D =iD: + jiD, + kD, (2-110)

The normal outward component of D at the back face is — D. since the
field is directed inward. If the field changes between the back and front
faces, the normal component of D at the front face can, by Taylor’s
theorem, be represented by an infinite series,

aD Az | 92D, Ax* | %D, Ax?

Dt oy Tt o ot T g gt 777 (Z-111)

When Az is very small, the square and higher-order terms may be neg-
lected, so that at the front face we have for the normal component of D

(2-112)
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In like manner the normal component of D at the left side face is — D, and
at the right side face is

aD,
D, + oy Ay (2-113)
Similarly at the bottom face it is — 1, and at the top face is
oD,
D+ bz (2-114)
Now the outward flux of D over the back face is
—D, Ay Az (2-115)
and over the front face is
(1), + a;-i : Ax) Ay Az (2-116)

Adding up the outward flux of D over the entire volume, we obtain for the
total flux

Ay = (—D, + D, + 66122 Ax) Ay Az

aD,
oy Ay) Az Az

+ (_l)u + Dy +

whicl, eimplifies to

_(éD. , 8D, , aD.
Ay = ('6x +»ay— -+ '-az>AxAyAz (2-118)
From Gauss’s law we know that the total electric flux over the surface of
the volumue (or integral of the normal component of D over the surface of
the volume) is equal to the charge enclosed. The charge enclosed is also
equal to the integral of the charge density p over the volume. Therefore

. _(aD. oD, oD . _
A¢—¢!Dnds—(ax + 62>Av—¢vpdv (2-119)

Dividing by Av and taking the limit as Av approaches zero, we obtain the
divergence of D. Thus,

D, ds
. fﬁ ~ds 3D, oD, . aD. _
m =%t T =" (2-120)
and

divD = aD. + aD, + aD,

oz oy | ez P (2-121)
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The center member of (2-121) is a differential relation for the divergence
of D expressed in rectangular coordinates. The divergence of D can also
be written as the scalar, or dot, product of the operator Vv and D. That
is,

divD =Vv.D (2-122)

This may be more readily seen by expanding (2-122) into the expressions
for Vv as given in (1-42) and for D as given by (2-110). Then

ax
e — N —

. 0 . 9 2 . q
v.D = (n +i, +k )-(11), +iD, + kD) (2-123)
Y 0z — T —
v D

Performing the multiplication indicated in (2-123), nine dot-product
terms are obtained as follows:

aD,

dy
aD.,
9z

. 8D . . aD, .eD. . .8D, . .
V'D—l°lax +]°lay + k-i a9z +1i Jéx-—+—1-]

.oD, , . . aD. . . aD,
+k°Jaz+l°kax+J°kay/+k-k (2-124)
The dot product of a unit vector on itself is unity since the angle between

the vectors is zero. Hence
i-i=4dicos0° =1

On the other hand, the dot product of vector with another vector at
right angles is zero since the angle between the vectors is 90°. Thus

i-j=1cos90° =0

Accordingly, six of the nine dot products in (2-124) vanish, but the three
involvingi-i,j-j, and k - k do not, and the product indicated by (2-123)
becomes

_éDb, 4D, , 9D .
v.D = ox + 3y + oz (2-125)

The dot product of the operator V with a vector function is the diver-
gence of the vector. The quantity ¥ - may be considered as a divergence
operator. Thus the divergence operator applied to a vector function
yields a scalar function. For example, V - D (divergence of D) is given
in rectangular coordinates by the right side of (2-125) and is a scalar,
being equal to the charge density p.

If D is known everywhere, then taking the divergence of D enables us
to find the sources (positive charge regions) and sinks (negative charge
regions) responsible for the electric flux and, hence, for D. The sources
or sinks of D are in those regions where div D is not zero
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X 2-30. Maxwell’s Divergence Equation. The relation of (2-120) or
(2-121) that
v.-D=p (2-126)

was developed by an application of Gauss’s law to an infinitesimal
volume. It is the fundamental differential relation for static electric
fields. This relation is one of a set of four differential relations known as
Maxwell’s equations. The other three equations are developed in later
chapters.

In a region free from charge p = 0, and

v-D=0 (2-127)
2-31. Example of Divergence. As a simple nonelectrical example of

divergence consider that a long hollow cylinder is filled with air under
pressure. If the cover over one end of the cylinder is removed quickly,

Yy

L /
- — —_—

- — e 4

- —n —i

F16. 2-29. The velocity v of air rushing from a tube has divergence (a and b). When
air flows with uniform velocity through a tube open at both ends as at (c), the diver-
gence of v is zero.

the air rushes out. It is apparent that the velocity of the air will be
greatest near the open end of the cylinder as suggested by the arrows
representing the velocity vector vin Fig. 2-29a. Suppose that the flow of
air is free from turbulence so that v has only an z component. Let us
assume that the velocity v in the cylinder is independent of y but is
directly proportional to x as indicated by the following relation,

lv| =v. = Kz (2-128)

where K is a constant of proportionality. The question, what is the
divergence of v in the cylinder, can be answered by applying the diver-
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gence operator to (2-128). This gives

av:
V-v—-a—x-—K (2-129)
Hence, the divergence of v is equal to the constant K.

A velocity field may be represented graphically by lines showing the
direction of v with the density of the lines indicating the magnitude of v.
The velocity field in the cylinder, when represented in this way, is
illustrated in Fig. 2-295. We note that v lines originate (that is, have
their source) throughout the cylinder, the number increasing with z.
This indicates that v increases as a function of z. This situation is
concisely expressed by div v = K. That is, the divergence of v has a
constant value K throughout the cylinder, and this tells us that [assum-
ing (2-128) to be correct] the source of the velocity field provided by the
expanding air is uniformly distributed throughout the cylinder.

If, on the other hand, both ends of the cylinder were open and air
passed through with the same velocity everywhere, v, equals a constant
and the divergence of v is zero in the cylinder. In this case, the source of
the velocity field must be somewhere external to the cylinder and the
velocity field diagram would be as shown in Fig. 2-29c¢.

If more lines enter a small volume! than leave it or more leave it than
enter, the field has divergence. If the same number enter as leave the
volume, the field has zero divergence.
x2-32. Divergence Theorem. From Gauss’s law (1-59) we have

¢.D .ds = 95 p dv (2-130)

where D is integrated over the surface s and p is integrated throughout
the volume » enclosed by s.
From (2-126) let us introduce V - D for p in (2-130), obtaining

D.ds=¢p V-Dav (2-131)
Pioedn=h

The relation stated in (2-131) is the divergence theorem as applied to the
flux density D, or Gauss’s theorem (as distinguished from Gauss’s law).
This relation holds not only for D as in (2-131) but also for any vector
function. In words, the divergence theorem states that the integral of the
normal component of a veclor function over a closed surface s equals the
inlegral of the divergence of that vector throughout the volume v enclosed by
the surface s.

"2-33. Divergence of D and P in a Capacitor. As further illustrations
of the significance of divergence let us consider the charged parallel-plate
capacitor of Fig. 2-30. A slab of paraffin fills the space between the

t In the limit an infinitesimal volume.
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plates except for the small air gaps. True charge of surface density p, is
present on the surface of the plates. Polarization charge of surface
density p,, is present on the surface of the paraffin.

Capacitor plates

Air gaps
¥ T g Sa——— |

-~ Paraffin. "

.

s
)

1
1
|
V-D=p |'| i
|
|
[}

-V-P=p,

F1a. 2-30. Cross section through parallel-plate capacitor with paraffin slab showing
the variation of the flux density D, charge density p, electric field E, polarization P,
and polarization charge density p, along the axis between the plates., The thickness
Az of the charge layers is greatly exaggerated.

According to (3) of Table 2-2 the relation of D at a boundary is given by
Dy — Do = p, (2-132)

where (in this case) D, = flux density in air gap
D,, = flux density in conducting plate = 0
ps. = true surface charge density
Suppose that the surface charge is distributed uniformly throughout a
thin layer of thickness Az as suggested in Fig. 2-30. Then the total
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change AD, in flux density from one side of the layer to the other is given
by

D,y — D,, = AD, = AD, (2-133)
But when Az is small,
aD, = %P= 5, (2-134)
T dz
Therefore, (2-132) becomes
. (2-135)

where p = volume charge density in the charge layer.
Since D has only an  component, dD./dx = div D. Thus,

dD.
dz

Hence the change of D with distance (in the charge layer) equals the
divergence of D and also the volume charge density. It follows that if
the charge layer is infinitesimally thin (Az — 0), then V - D and p approach
infinity. However, it is more reasonable to consider that the charge
layer is of small but finite thickness so that although V - D and p may
be large, they are not infinite. The variation of D and Vv - D along the
z axis of the capacitor is shown graphically in Fig. 2-30.

At the paraffin surface D is constant, but both E and P change. From
(2-16)

=Vv.D=p (2-136)

P=D — &E (2-137)

Now the change in polarization P is equal to the surface charge density
pep due to polarization. Thus

Puy — Py = — Pap (2"138)

where P,; = polarization in paraffin
P, = polarization in air gap ~0
psp = polarization surface charge density
Assume that the polarization surface charge is uniformly distributed
throughout a thin layer of thickness Az at the paraffin surface as sug-
gested in Fig. 2-30. Then the total change AP, in polarization from one
side of the layer to the other is given by

Pnl_Pn2=APn=APz (2'139)
But when Az is small,
dP.

o P _ (2-141)
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where p, = volume density of polarization charge in the layer at the
paraffin surface (coulombs/meter?). Polarization charge differs from
true charge (p) in that it cannot be isolated, whereas true charge can.
In this sense it is a fictitious charge. Since P has only an £ component
which is a function only of z, dP./dx = div P. Thus,

dpP,
dx

Hence the change of P with distance (in the charge layer) equals the
divergence of P and also the volume density p, of polarization charge.
The assumption of a polarization charge layer that is of small but finite
thickness results in a value of V. P that may be large but not infinite.

The divergence of D yields the sources of the D field (true charge),
while the divergence of P yields the sources of the polarization field.

The variation of E, P, and — V . P along the z axis of the capacitor is
illustrated graphically in Fig. 2-30.

It may be shown (see Prob. 2-66) that the potential V, due to a
polarization distribution is given by

1 v-P

4reo r

=V.P=—p, (2-142)

V= — dv (2-143)

Thus, when both true charge and polarization are present and the dis-
tribution of both are fixed, the total potential Vy is

Ve I /Edv . v'Pdv

T Ime ), r Y T fme ), 7
_ 1 p—V-P
-—4760 v#dv (2-144)

where p = true charge volume density (coulombs/meter?)
P = polarization (coulombs/meter?)
€ = permittivity of vacuum (8.85 X 10~!2 farad/meter)
r = distance from volume element containing charge or polariza-
tion to point at which V is to be calculated (meters)
The volume integration is taken over all regions containing charge or
polarization.
The field intensity E is then

E=—-VVy (2-145)

Whereas (1-26) applies to a single homogeneous dielectric medium of
permittivity ¢, (2-144) is more general since it can be applied also to
space with several different dielectric media, that is, a nonhomogeneous
medium. For the case of a single homogeneous medium, (1-26) and
(2-144) are equivalent.
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X 2-34. The Laplacian Operator and Poisson’s and Laplace’s Equations.
As an extension of the divergence operator we are led to the Laplacian
operator. Equation (2-126) states that

v.-D=p (2-146)
Now D = ¢E, and also E = —VV. Thus,
D=—eVV (2-147)

Substituting D in (2-147) into (2-146), we have
' vV.-VV = —g (2-148)
This is Potsson’s equation. The double operator (divergence of the

gradient) is also written as V2 (del squared) and is called the Laplacian
operator. ‘Thus Poisson’s equation can be written

vy = —’-: (2-149)"
If p = 0, (2-149) reduces to
v =0 ' (2-150)
‘ |
which is known as Laplace’s equation.
In rectangular coordinates
. 0 . 0 (5]
V—lﬁ-*—]@-*—ké:‘_ (2-151)
Therefore, in rectangular coordinates
(5] ;] (5]
2 = . ' = 1 C— 1 —_ —_—
vy =v.vV) (lax+]ay+kaz)
) A1 4 v o 1
. <1 oz +be + k az) (2-152)
Carrying out the dot product gives
v | eV | W
2y = 97 = r g 5
A\ 444 928 + 3y + 322 (2-153)

or the Laplacian operator alone in rectangular coordinates is given by

a? a? a?
B0 = g 4L &
v + dyr = o9z%

= o (2-154)

X 2-3b. Isolated Conducting Sphere. As mentioned earlier, the static

potential distribution for any conductor configuration can be determined

if a solution to Laplace’s equation can be found which also satisfies the
1 Equation (1-26) is a solution to this equation.
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boundary conditions. For many conductor configurations it may be
impractical to use this method. However, it is a basic method of
approach of great importance in static problems. As an illustration, a
very simple application of Laplace’s equation

r will be considered in this section.

Consider an isolated metal sphere of radius
ry with a uniformiy distributed charge Q asin
Fig. 2-31. The sphere is situated in an un-
bounded dielectric medium of permittivity e.
This problem has been discussed previously
but will be reconsidered here with the aid of
Laplace’s equation. The problem is to find a
solution of Laplace’s equation, V2V = 0, for
the space outside the sphere which gives a
potential distribution satisfying the boundary conditions. These bound-
ary conditions are that the potential V is constant over the sphere and is
zero at infinity.

Since the conductor has spherical symmetry, it will be advantageous to
expand V2V in spherical coordinates (see Appendix). Thus

Frc. 2-31. Isolated conduct-
ing sphere of radius r.

19 (., 0V 1 o (. .oV 1 e
2y = 2 9 (227 g ar - v L
Al (’ ar) t 5in 0 36 (s"’ o ao) t Fenigger (27159)

where the spherical coordinates r, 8, ¢ are as, for example, in Fig. 1-26.
By virtue of the symmetry of the sphere, the potential V is independent
of angle (8 and ¢) and is a function only of r. Hence (2-155) reduces to

1 df,dV\ _dV | 24V _
sz—ﬁ(_ﬁ'(r$>—a—Ti+;—(i7—0 (2-156)

This is an ordinary second-order differential equation. It is the most
general way of expressing the potential variation with respect to the
radius . However, to determine the particular distribution of our
problem, we need to obtain a solution of the differential equation. In
this case we may proceed as follows: Since V2V = 0, it follows that

d (v
dr dr
in (2-156) must be zero, or that
r2— =C, (2-157)

where C; = a constant. Then

dV = Clr'2 dr
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Integrating,

V=0 / r2dr = — % + C, (2-158)
where C; = another constant. Both C, and C; must be determined from
the boundary conditions. Since ¥V = 0 at infinity, C; = 0 and (2-158)
therefore reduces to

v--% (2-159)
By comparison with (1-11) the constant must have the value
c,- Y (2-160)
4mre
so that the solution for V becomes
_Q
T dmer (2-161)

where r > r,.

It is to be noted that this is a three-dimensional problem so that the
graphical approach of Sec. 2-27 is not applicable.

Further illustrations of Laplace’s equation are given in Probs. 2-61 and
2-67. Problem 2-61 illustrates the principles involved in applying
Laplace’s equation with a minimum of mathematics and is recommended
as an exercise for the reader.

2-36. Dependence of Gauss’s Law on the Inverse-square Law.
Gauss’s law as in (1-59) or (2-130) states that the surface integral of the
normal component of the flux density D over a closed surface equals the
charge enclosed. If the enclosed charge is zero, the surface integral is
zero. This conclusion depends on the fact that D varies inversely as the
square of the distance from a point charge (Coulomb’s law).

F1a. 2-32. The integral of the normal component of D over the surface of the volume
Av is zero because D varies inversely as the square of the distance r from the charge Q.

As an illustration consider a small volume Av in the field of a point
charge Q asin Fig. 2-32. By Gauss’s law the flux of D over the surface of
the volume equals the charge enclosed. This we should expect to be zero
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since all of the charge is at Q and none is in the volume. However, let
us carry through the calculation to verify this result.

The flux over the surface of the volume will be given entirely by the
flux over the two curved surfaces AS; and AS;. The flux over the four
flat faces of the volume is zero since D is parallel to them, and hence has
no normal component.

The area of the surface AS, at a distance r; is given by

AS, = r,28in 6 A8 A¢ (2-162)
and the area of AS, at a distance r; by
AS; = ro?sin 8§ AG A (2-163)
The total flux Ay over the surface of the volume is
Ay = —Day AS; + D2 AS, (2-164)

where D,, = magnitude of normal component of D at r,

D,; = same at r;
Substituting (2-162) and (2-163) into (2-164) yields

AY = (—Dari? + Dyaors?) sin 8 A A (2-165)
From (1-50) D = Q/4wr? so that

_ @
D,, = Irrp? (2-166)
Q
D, = e (2-167)

Substituting (2-166) and (2-167) into (2-165) gives

1 1 Q .
I 2 2} = L
Ay ( 2 r?+ it T2 ) 1, 8in 0A8 AP (2-168)
The expression in the parentheses of (2-168) is zero, so that Ay = 0 as
anticipated. However, if, instead of (1-50),

Q
D=t (2-169)
where n is not equal to 2, then Ay would not be zero.

This result is also readily deduced from the fact that the surfaces AS,
and AS; subtend the same solid angle. The flux over the two cross-
sectional areas is equal in magnitude but opposite in sign only if D varies
as 1/r%,

Since the net electric flux over any volume not enclosing electric
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charge is zero, it follows that the divergence of D is zero in all space free
from charge.

Gravitational forces vary inversely as the square of the distance
between masses, and Gauss’s law also applies to these fields (see Prob.
1-23).

PROBLEMS

2-1. If two point charges +@ and —Q are attached to the ends of an axis 10 cm
long, what is the dipole moment of the combination? @ = 107!° coulomb.

Ans.: 1071 coulomb-meter.

2-2. Repeat Prob. 2-1 for the case where the axisis 1 cm long and @ = 10~% coulomb.

2.3. Confirm Eq. (2-7).

2-4. Four equal charges of magnitude @ and of sign indicated are arranged in air as
shown in Fig. 2-33, forming a quadripole (double dipole). Show that at a large dis-
tance r (that is, » 3> [ and r 3> s) the potential due to this quadripole is

V- Qls sin 6 cos @

2‘!’(07"

where r = radial distance and # = angle from axis to radial line (see Fig. 2-33).

Axis

-Q -s——@+Q

F16. 2-33. Quadripole or double dipole for I’rob. 2-4.

2-6. A dipole in a uniform field experiences no translational force. However, it
does experience a torque tending to align the dipole axis with the field. Show that
for a dipole of moment gl in a uniform field E this torque is ¢lE sin 6, where 8 is the
angle between the dipole axis and the field.

2-6. Show that P = D(1 — 1/¢).

2-7. A flat slab of dielectric (¢, = 5) is placed normal to a uniform field with a flux
density D = | coulomb/meter?. If the slab occupies a volume of 0.1 meter? and is
uniformly polarized, what are (a) polarization in the slab; (b) total dipole moment of
slab? Ans.: (a) P = 0.8 coulomb/meter?; (b) moment = 0.08 coulomb-meter.

2-8. A flat slab of sulfur (¢ = 4) is placed normal to a uniform field. If the
polarization charge surface density p., on the slab surfaces is 0.5 coulomb /meter?,
what are:
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Polarization in the slab
Flux density in the slab
Flux density outside of slab (in air)
Field intensity in slab
. Field intensity outside slab (in air)
2-9. Two cavities are cut in a dielectric medium (e, = 5) of large extent. Cavity 1
(see Fig. 2-34) is a thin disc-shaped cavity with flat faces perpendicular to the direction

S S ////
4 ///L‘“" //

e

F1a. 2-34. Disc-shaped and needle-shaped cavities in dielectric for Prob. 2-9.

e PR

®

of D in the dielectric. Cavity 2 is a long needle-shaped cavity with its axis parallel to
D. The cavities are filled with air. Given that D = 10~% coulomb/meter?. What is
the magnitude of the electric field intensity E (a) at the center of cavity 1; (b) at the
center of cavity 2?

2-10. The electric field E in air above a block of paraffin (¢, = 2.1) is at an angle of
45° with respect to the plane surface of the block. Find the angle between E and the
surface in the paraffin.

2-11. An isolated positive point charge has a value of 1071° eoulomb. What is the
magnitude of E and D at a distance of 20 cm when the charge is located (a) in air; (b)
in a large tank of glyeerin (¢, = 50)?

Ans.: (a) E = 22.5 volts/meter, D = 2 X 1071° coulomb/meter?;
(b) E = 0.45 volt/meter, D = 2 X 1071° coulomb/meter?.

2-12. What is the force on a positive point charge of 10~ coulomb at a distance of
30 em from a positive point charge of 1071 coulomb when both charges are located
(a) in air; (b) in glyeerin (¢, = 50)?

2-18. What is the relative permittivity of an artificial dielectric consisting of a
uniform cubical lattice with metal spheres 2 ¢m in diameter spaced uniformly 5 em
between centers in the z-, y~, and z-coordinate directions?

2-14. Show that the maximum possible permittivity of an artificial dielectric of
metal spheres arranged in a uniform eubieal lattice is 2.57. It is assumed that there
is no interaction between spheres and that they are almost touching. The space
between the spheres is air (or vacuum).

2-16. A capacitor of two large horizontal parallel plates has an internal separation
d between plates. A dielectric slab of relative permittivity ¢ and thickness a is
placed on the lower plate of the capacitor. Neglect edge effects. If the potential
difference between the capacitor plates is V, show that the electric field intensity E,
in the dielectric is

v

El=¢vd_a(¢r—l_)
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and that the electric field intensity E,in the air space between the top of the dielectric
slab and the upper capacitor plate is

&V
Bo=ebi = =D

2-16. In Prob. 2-15 let the slab he of sulfur (¢, = 4), V = 10 volts, and d = 10 cm.
Plot a graph of the potential as a function of the distance between plates fora = 0, 1,
5,9, and 10 cm. Take the potential of the lower plate as zero.

2-17. What is the capacitance of a capacitor consisting of two parallel metal plates
30 by 30 cm separated by 5 mm in air? Neglect fringing of the field.

2-18. What is the energy stored by the capacitor of Prob. 2-17 if the capacitor is
charged to a potential difference of 500 volts? What is the energy density?

2-19. What is the capacitance of the capacitor of Prob. 2-17 if a sheet of flint glass
(e, = 10) is introduced between the plates under the following conditions:

a. Glass sheet 1 mm thick (remaining 4 mm between plates is air)

b. Glass sheet 2.5 mm thick

¢. Glass sheet 4 mm thick

d. Glass sheet 5 mm thick (glass entirely fills space between plates)

2-20. With flint glass (e, = 10) completely filling the space between the plates of
the capacitor of Prob. 2-17 what is the energy stored if the capacitor is charged to a
potential difference of 500 volts? What is the energy density?

2-21. What is the capacitance of the capacitor of Prob. 2-17 if a pressed sheet of
powered rutile (take ¢ = 114) is introduced between the plates under the following
conditions:

a. Sheet 1 mm thick (remaining 4 mm between plates is air)

b. Sheet 2.5 mm thick

¢. Sheet 4 mm thick

d. Sheet 5 mm thick

2-22. Develop the relation for the capacitance of a parallel-plate capacitor from
(2-52) by considering an area A of the double spherical-shell capacitor for the case
where r, i8 very large and r; — r, = [ is small by comparison.

2-23. What is the maximum potential to which an isolated metal sphere can be
charged if the sphere is 20 ¢cm in diameter and situated in air? Take the dielectric
strength of air as 3 X 10¢ volts/meter.

2-24. What is the voltage between the plates of a parallel-plate air capacitor if it is
first charged to 100 volts, the potential source disconnected, and the plates then
separated to twice their original spacing? What is the energy stored in the two cases?

2-26. A capacitor of two infinite parallel conducting plates spaced 10 cm apart is
half filled with a dielectric medium (¢ = 10). The remaining space is air filled.
The potential difference between the plates is 100 volts. What is the magnitude of:

a. Din air

b. D in the dielectric

¢. Ein air

d. E in the dielectric

2-26. Develop Eq. (2-78) by applying Gauss’s law to a cylindrical volume of length
! and radius r concentric with the uniform line of charge.

2-27. A charge of 10719 coulomb is distributed uniformly along a thin line 1 meter
long. The line is coincident with the y axis and its center is at the origin. Calculate
and plot the variation of the potential V along the z axis from the origin to a distance
of 2 meters.
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2-28. A thin line of charge of length 2a is coincident with the y axis with its center
at the origin. The charge is uniformly distributed along the line and has a value of
p1 coulombs/meter. Show that the potential V at any point (z, y) is given by

=ﬂ1n[vx’+(y—a)’—(u—a)]
Vit + (y +a) - (v +a)

4xe

where e i8 the permittivity of the medium.

2-29. What is the capacitance per kilometer of length of an air-filled coaxial line
with an inner conductor diameter of 3 mm and an outer conductor with an inside
diameter of 1 cm?

2-80. What is the capacitance of the coaxial line of Prob. 2-29 if the inner conductor
is covered with rubber insulation (¢, = 3) to a diameter of 7 mm and the remainder of
the space (to a diameter of 1 ¢jn) filled with a dielectric of permittivity ¢ = 67

2-31. What is the energy stored per meter of length of the coaxial line of Prob. 2-29
if 500 volts is applied to the line? What is the energy stored under these conditions
for the line of Prob. 2-30?

2-32. What is the capacitance per kilometer of length of a two-wire line of No. 8
gauge (B. & S.) wire (3.26 mm diameter) with a center-to-center spacing of the wires
equal to 4+ meter? The wires are sufficiently high above ground that its effect may
be neglected.

2-83. What is the capacitance per kilometer of length of a single-wire line of No. 8
gauge (B. & 8.) wire spaced an average distance of 10 meters above the ground?

2-34. Show that the surface charge density p, on a flat conducting ground plane due
to an infinitely long positively charged thin wire parallel to the ground plane and at a
height s above it, as in Fig. 2-22, is

- —pL8
P = @ + 8

where py, is the charge per unit length along the wire and z is the distance along the
plane, perpendicular to the wire direction and measured from the point on the plane
nearest to the wire.

2-85. Draw a graph of the variation of p, given in Prob. 2-34 as a function of z for
distance of 10s.

2-36. Show that the surface charge density p, on a flat conducting ground plane due
to a positive point charge Q at a distance s from the plane is

- —Qs
(o 2x(z? + 3%t

where z is the distance along the plane measured from the point on the plane nearest
to the charge.

2-87. Draw a graph of the variation of p, given in Prob. 2-36 as a function of z for a
distance of 10s.

2-38. The outer conductor ot a coaxial line has an inner radius b and the inner con-
ductor an outer radius a. If a voltage V is applied to the line, find the expression for
the maximum field intensity E in the line. At what radius is E a maximum?

2-39. A high-voltage conductor is brought through a grounded metal panel by
means of the double concentric capacitor bushing shown in Fig. 2-35. The space
hetween the concentric metal sleeves is a dielectric (¢, = 3) with a working dielectric
strength of 100 kv/cm. Neglect fringing. Also neglect the thickness of the sleeves.
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Metal panel
High voltage
conductor cm
—ﬂ 3cm
/ = 1/ - ~2 cm

Fia. 2-35. Capacitor bushing for Prob. 2-39.

(a) What must be the length L of the outer sleeve in order to equalize the voltage
across each dielectric space? (b) What is the maximum working voltage of the
bushing?

2-40. If the inner sleeve (15 cm long) of Prob. 2-39 were removed, what would be
the maximum working voltage of the bushing?

2-41. If the number of concentric sleeves in the bushing of Prob. 2-39 were increased
in number 8o that the spacing between sleeves becomes smaller, what is the ultimate
working voltage of such a bushing? Neglect the thickness of the sleeves, and assume
that the sleeve lengths are adjusted so that the voltage across each dielectric space is
the same. '

2-42. Map the field of a coaxial line consisting of a circular inner conductor of
diameter d symmetrically located inside of an outer cenductor of square cross section
with an inner side dimension of 3d. Note that because of symmetry only one octant
(45° sector) needs to be mapped.

2-43. What is the capacitance per meter of length of the line of Prob. 2-42?

2-44. Map the field between two infinite parallel conductors of square cross section
with adjacent sides separated by a distance equal to one side of the square.

2-456. What is the capacitance per meter of length of the two-conductor line of
Prob. 2-447

2-46. In Sec. 2-14 the energy-density relation w = §¢E? is developed from the
expression AW = § AC AV2. Develop the same energy-density relation from the
expression AW = % AQ AV by expressing AQ in terms of D.

2-47. A grid of parallel metal rods is introduced between the plates of a large
parallel-plate air capacitor as shown in the cross section in Fig. 2-36. Map the field
in the capacitor with rods and without rods. By what factor is the capacitance

Rods

\‘- Plates

I 13
F———
F1g. 2-36. Capacitor with metal rods for Prob. 2-47.
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increased by the rods? What is the effective permittivity of the space (with rods)
between the capacitor plates?

2-48. A coaxial transmission line eonsists of an inner conductor of diameter d and
a symmetrically situated outer conductor having the cross section of an equilateral
triangle with a side length of 2.5d. Map the field in the line, and find the ratio of the
surface charge density at the center point of a side of the outer conductor to the sur-
face charge density at a point midway from the center to a corner.

2-49. What is the capacitance per meter for the line of Prob. 2-48 if it is filled with
polystyrene?

2-60. A long, thick ribbonlike metal electrode is situated 1 em from a large con-
ducting ground plane as indicated in the cross section in Fig. 2-37. If 1,000 volts is

Electrode
[ / |
) e S—
1lcm radius
\Ground plate

Fi1G. 2-37. EFlectrode near ground plane for ’rob. 2-50.

applied between the electrode and ground plane, what is the maximum field intensity
occurring at the electrode?

2-61. Map the field and equipotential lines for two point charges +Q and +3Q
separated by 10 em. Let @ = 10~° coulomb.

2-62. Map the field and equipotential lines for two point charges +Q and —§Q
separated by 10 cm. Let @ = 101° coulomb.

2-63. Map the field and equipotential lines of four equal charges of magnitude
Q = 1071° coulomb situated at the corners of a square 10 ¢em on a side. The charges
at two diagonal corners are positive and at the other two diagonal corners are negative.

2-64. Construct a three-dimensional clay or plaster model of the potential distribu-
tion of the two equal positive charges of Fig. 2-17. Make the elevation dimension of
the model correspond to the potential V. Since the potential at the charges is infinite,
it is necessary to limit the maximum elevation at some arbitrary level such as 100 volts.

2-66. What is the divergence of the following vector functions:

A =10 + j cos ar + kO; B =icosar + jO + kO

Ang. V+*A =0;v-B = —gasin az.
2-66. A two-dimensional scalar distribution is expressed by the function

U=1/@+y"

(a) What is the gradient of this function? (b) What is the divergence of the gradient
of this function?

2-67. What is the Laplacian of the scalar function f = a + bx??

2-68. What is the divergence of:

a. A = i2z + j3y? + k2

b. A = i42% + j2r + k3y?

c. A =12r 4+ j4z® + k3y?

d. A =i2r + j3y* + k2zx

2-69. What is the divergence of the gravitational field at a point just below the
surface of the ocean and at a point just above?
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2-60. A parallel plate capacitor has a plate area of 1 meter? and a plate separation
of 1 em. The plates are maintained at a potential difference of 100 volts. Neglect
fringing. Calculate the capacitance C, flux density D, field intensity E, polarization
P, and surface charge density p, for the case where the dielectric medium between the
plates is (a) air (take ¢, = 1); (b) paraffin (e, = 2.1); (c) rutile (take ¢ = 114).

2-61. A large parallel-plate capacitor has its plates normal to the z axis. Plate |
with a potential V' = 0 is at the origin. DPlate 2 with a potential V = V,isatz = z,.
Express Laplace’s equation in rectangular coordinates, and solve it for this problem
by the same procedure as used in Sec. 2-35, obtaining as the solution for the potential
distribution, V = (Vi/z))z.

2-62. Make a ficld map for the case of an infinitely long positively charged cylin-
drical conductor of radius r and charge p. per unit length. The conductor is parallel
to an infinite ground plane. The center of the conductor is at a height k above the
plane.

2-63. Compare the relative charge density on the ground plane as obtained from
the field map of Prob. 2-62 with that calculated, using the relation given in Prob. 2-34.

2-64. Why can a solution by means of ficld mapping be obtained for the con-
figuration of Prob. 2-34 but not for the configuration of Prob. 2-36?

2-65. Show that ¥ *P = (¢, — 1)eo ¥ - E.

2-66. Given that the potential 1", due to polarization is related to the polarization

P by
1 P-a,
Vy = - I‘l’—to/ 'T’— dv
show that this can be reexpressed as
1 v-P
Vs = —4150/; r a2y

2-87. Derive the expression for the electric field intensity everywhere due to a
uniform spherical distribution of charge of density p and radius a by applying Poisson’s
equation or its equivalent div D = p both inside and outside the sphere. One con-
stant is evaluated by matching solutions at the boundary of the sphere, and the other
constant is evaluated by noting that D is zero at the center of the sphere.

2-68. A parallel-plate capacitor has a plate separation d. The capacitance with
air only between the plates is C. When a slab of thickness ¢ and relative permittivity
¢ i8 placed on one of the plates, the capacitance is C’. Show that

c _ &d
C t+ed-—0

Draw a graph of C’/C vs. ¢ as based on this relation. Diseuss the effect of the air gap
(d — t) on the capacitance.




CHAPTER 3

THE STEADY ELECTRIC CURRENT

3-1. Introduction. Electric charge in motion constitutes an eleciric
current. In metallic conductors the charge is carried by electrons. One
electron has a negative charge of 1.6 X 10~!? coulomb. In liquid con-
ductors (electrolytes) the charge is carried by ions, both positive and
negative.

In this chapter the important relations governing the behavior of
steady electric currents in conductors are discussed. By ‘“‘steady’ cur-
rent is meant one that is constant with time.! The fields associated with
steady currents are also constant with time and, hence, are static fields.
In Chaps. 1 and 2 the discussion is almost entirely concerned with static
fields having all associated charges stationary, that is, with no currents
present. In this chapter the fields are also static, but steady direct cur-
rents may be present.

3-2. Conductors and Insulators. In some metals, like silver and
copper, there is but one electron in the outermost occupied shell of the
atom. This electron is so loosely held that it migrates easily from atom
to atom when an electric field is applied. As mentioned previously
(Secs. 1-23 and 2-2) materials that permit such motion of electrons are
called conductors. Silver and copper are examples of good conductors,
their resistance to such electronic motion being relatively slight. Not all
good conductors have only one electron in the outermost occupied shell.
Some have two, and a few, such as aluminum, three. However, in all
conductors these electrons are loosely bound and can migrate readily
from atom to atom. Such electrons are often called true charges.

In other substances, however, the electrons may be so firmly held near
their normal position that they cannot be liberated by the application of
ordinary fields.? These materials are called dielectrics or insulators.
Although a field applied to an insulator may produce no migration of
charge, it can produce a polarization of the insulator, or dielectric (Sec.
2-3), that is, a displacement of the electrons with respect to their equi-

! Specifically, a steady direct current is meant. This should not be confused with a
“steady-state’’ current, which may imply a time-changing current that repeats itself
periodically.

t However, they may be torn off by mechanical means such as rubbing.
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librium positions. The charges of an insulator are often called bound or
polarization charges in contrast to the free, or true, charges of a con-
ducting material.

Certain other materials with properties intermediate between con-
ductors and insulators are called semiconductors. Under some condi-
tions such a substance may act like an insulator but with the application
of heat or sufficient field may become a fair conductor.

3-3. The Electric Current. When an isolated conducting object is
introduced into an electric field, charges migrate (currents flow) until a
surface charge distribution has been built up that reduces the total field
in the conductor to zero. This was discussed in Sec. 1-23. If, however,
the conducting object is not isolated and the applied field is maintained,
current will continue to flow in the conductor.

For example, consider an infinitely long conductor, such as a metal wire,
in a uniform field E as in Fig. 3-1. The field E in the conductor is not

Wire
/ ~—— Electron
L —1 & -5
d
14

Fi1c. 3-1. Infinite conductor in uniform field.

zero if current is flowing. Rather, E is the same inside and outside of
the conductor. This follows from the boundary relation (1) of Table 2-2
that the tangential component of the electric field is continuous across a
boundary. The field causes the electrons in the conductor to migrate
parallel to the field. Since the electrons are negatively charged, they
move in a sense opposite to the field direction. If there are n electrons
per meter of length of the conductor and their average velocity is v meters
per sec, then the total charge per second passing a fixed point on the
wire is
nqy

where ¢ = charge of each electron. The electric current [ in the wire is
then defined as
I = —ng 3-1)

The electric current is, by definition, taken to be in the opposite direction
to the electron motion. Hence the negative sign in (3-1). Electric cur-
rent has the dimensions of charge per time, or in dimensional symbols
Q/T. The mksc unit of current is the ampere. Thus,

9011101nl)§
Second

= amperes
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That is, charge flowing by a fixed point at the rate of 1 coulomb per sec
constitutes a current of 1 amp.

3-4. Resistance and Ohm’s Law. Referring to Fig. 3-1, it is found
that at a constant temperature the potential difference V over a length d
of the conductor is proportional to the current /. The constant of pro-
portionality between V and [ is called the resistance R of the length d of
conductor. Thus

V =1IR (3-2)
or
R = % (3-3)
or
vV
I = B 3-4)

These relations are expressions of Ohm’s law. In words, Ohm’s law states
that the potential difference or voltage V between the ends of a conductor is
equal to the product of its resistance R and the current I.

Resistance has the dimensions

Potential
Current
or in dimensional symbols
Resistance = ME T - ML?
QT2 Q  TQ?

The mksc unit of resistance is the ohm. Thus

volts
ampere

Ohms =

That is, the resistance of a conductor is 1 ohm if a current of 1 amp flows
when a potential difference of 1 volt is applied between the ends of the
conductor.

3-6. Power Relations and Joule’s Law. Referring again to Fig. 3-1,
the potential difference or voltage V across the length d of the conductor
is equal to the work per unit charge required to move a charge through
the distance d. Multiplying by the current I (charge per unit time)
yields the work per unit time or power P. Thus,

Work charge _ work
Charge ©° time  time

= power

or
P=VI (3-5)

This.is the power dissipated in the length d of the conductor. The mkse
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unit of power is the watt. Hence,
Watts = volts X amperes

or in dimensional symbols
ML2Q ML

Watts = Q—T2 7, = Ta
Introducing the value of V from Ohm’s law (3-2) into (3-5) yields
P =IR (3-6)

According to (3-6) the work or energy dissipated per unit time in the con-
ductor is given by the product of its resistance R and the square of the
current /. This energy appears as heat in the conductor.
The energy W dissipated in the conductor in a time 7 is then
W = PT = I?’RT 3-7
where W = energy (joules)
P = power (watts)
I = current (amp)
R = resistance (ohms)
T = time (sec)
This relation is known as Joule’s law. It is assumed in (3-7) that P is
constant over the time 7. If it is not constant, IR is integrated over the
time interval T
3-6. The Electric Circuit. The discussion in the preceding sections
concerns an infinitely long conductor along which a field E is applied
(Fig. 3-1). Consider now a cylindrical conductor of finite length d as in
Fig. 3-2a. The conductor is in the uniform field E between two large
conducting blocks of negligible resistance maintained at a constant
potential difference V by a battery. If the ends of the conductor were
separated from the blocks by small insulating gaps, current would flow in
the conductor only while a surface charge distribution was being built up
that neutralizes the applied field. llowever, with the conductor connected
to the blocks as in Fig. 3-2a a neutralizing surface charge cannot be built
up, and the total field in the conductor is equal to the applied field.

This field is given by
|4
E = i (3-8)
As long as this field is maintained in the conductor, current flows that has

a value
_V _Ed
"R R

If the end blocks are removed and the battery connected as in Fig.
3-2b, the field is no longer uniform over the entire cylindrical conductor

I (3-9)
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but becomes nonuniform near the ends of the conductor. As a result the
resistance R’ between the terminals of the conductor is greater than the
resistance R of the conductor when situated in the uniform field between
the end blocks. This effect is discussed in more detail in Sec. 3-16. The
current I’ in the conductor connected as in Fig. 3-2b is then

r=4 (3-10)

Assuming that the resistance of the wires connecting the battery to
the cylindrical conductor is negligible compared with R’, the potential

=
L /’" Jf
-,,(L L (R «—
i
A V)
1l
|
Cylindrical
conductor
fe———d——] R a1
R e —VVVVVA—/

o V— ———f

1l —il+
i v
() (c

F1a. 3-2. Cylindrical conductor of length d hetween end blocks (a), modified arrange-
ment (b) and schematic diagram (c).

difference V is equal to the voltage appearing across the terminals of the
battery. " The arrangement of I'ig. 3-2b may then be represented by the
schematic diagram of Fig. 3-2¢c.

This is a diagram of a closed electric circuit of the most elementary form.
It consists of a resistor of resistance R and a battery of voltage V. Itisto
be noted that in the circuit representation no information is given
explicitly concerning the field or its distribution, the circuit being
described only in terms of the lumped quantities of resistance and voltage.
It is, of course, true that the potential between two points is equal to the
line integral of the field, but only the result of the integration is given and
not the field distribution itself.

3-7. Resistivity and Conductivity. The resistance of a conductor
depends not only on the type of material of which the conductor is made
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but also on its shape and size. To facilitate comparisons between differ-
ent types of substances, it is convenient to define a quantity which is
characteristic only of the substance. The resistivity S is such a quantity.
The resistivity of a material is numerically equal to the resistance of a
homogeneous unit cube of the material with a uniform current distribu-
tion. The current distribution is uniform if the field is uniform. This
condition may be produced by clamping the cube between two heavy
blocks of negligible resistance as
in Fig. 3-3, with contact made
; 4 over the entiresurface of both end
! A "—" {{ faces. Witha current/ through

Unit cube

= f -

(7 =g - the cube, the resistivity S of the
/ A AL material is given by S = V/I,
/ I—| ¢ where V is the potential between

P e 'y the blocks.

/ Y A, ” In mkse units, this measure-
# I8 .
> : v £ I
hr e P
== ’;5 / "'%.‘ 'r d
19 l

F1G. 3-3. Unit cube between end blocks. F1a. 3-4. Block of conducting material.

ment is in ohms for a cube of material 1 meter on a side. If two cubes
are placed in series between the blocks, the resistance measured is 28,
while if two cubes are placed in parallel, the resistance is §S. It follows
that the resistance R of a rectangular block of length ! and cross section
a, as in Fig. 34, is

Al

R = (3-11)

where S = resistivity of block material.
Dimensionally (3-11) has the form

resistivity X length
area

Resistance =

from which we have

resistance X area

Resistivity = Tyl

= resistance X length

Thus, resistivity has the dimensions of resistance times length and in
mksc units is expressed in ohm-meters. For the special case of a unit
cube (that is, a cubical block 1 meter on a side) the resistivity is numeri-
cally equal to the resistance.
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The resistivity is a function of the temperature. In metallic con-
ductors it varies nearly linearly with absolute temperature. Over a
considerable temperature range from a reference or base temperature T’y
the resistivity S is given approximately by

S = So[l + a(T — To)] (3-12)

where 7' = temperature of material (°C)
To = reference temperature (usually 20°C)
Sy = resistivity at temperature 7'y (ohm-meters)
a = temperature coefficient of resistivity (numerical units/°C)

Example. For copper the resistivity S, at 20°C is 1.77 X 1078 ohm-meter, and the
corresponding coefficient « = 0.0038 reciprocal degree. Find the resistivity at 30°C.
Solution. The resistivity S at a temperature 7' is

S = 1.77 X 10781 4 0.0038(T — 20)] ohm-meters
At a temperature of 30°C,
S = 1.77 X 10781 4 0.0038(10)] = 1.84 X 10~ ohm-meter
This is an increase of nearly 4 per cent over the resistivity at 20°C.

The reciprocal of resistance R is conductance G. That is, G = 1/R.
Since resistance is expressed in ohms, conductance is expressed in recip-
rocal ohms. A reciprocal ohm is called a mho (ohm spelled backward) so
that conductance is given in mhos.

The reciprocal of resistivity S is conductivily . That is, ¢ = 1/8.
Although the resistivity is convenient in certain applications, it is often
more convenient to deal with its reciprocal, the conductivity, as, for
example, where parallel circuits are involved. Since resistivity is
expressed in ohm-meters, the conductivity is expressed in mhos per meter.

The resistance £ of a rectangular block, as in Fig. 3-4, of material of
conductivity o is

L N (3-13)
aa
or the conductance G of the block is
¢G=5=% mhos (3-14)

For the special case of a unit cube, the conductance is numerically equal to
the conductivity.! Conversely, the conductivity of a material is numeri-
cally equal to the conductance of a homogeneous unit cube of the material
with a uniform current distribution.

! Note that the unit cube is a special case of the square-sided block or cell (h = I).
For such a cell, or block, of unit depth (d = 1 meter) the resistance R of the block is

numerically equal to the resistivity S of the material, while the conductance G of the
block is numerically equal to the conductivity o of the material (see Sec. 3-16).
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From (3-12) the conductivity of a metallic conductor as a function of
the temperature is

To

14 T = To) (3-15)

ag

where ¢o = conductivity at the temperature 7'y (mhos/meter)
a = same coefficient as in (3-12)
T = temperature (°C)
T, = reference temperature (°C)
3-8. Table of Conductivities. The conductivities a9 of some common
materials are listed in Table 3-1 for a temperature of 20°C. By way of

TABLE 3-1
TABLE OF CONDUCTIVITIES

Conduetivity,
Substanee Type mhos/meter
Quartz, fused................ | Insulator 10717 approx
Ceresin wax................. Insulator 10~ approx
Sulfur....................... Insulator | 1075 approx
Mica...........c.ovvunin.. Insulator 10718 approx
Paraffin....... .. ... . ... .. Insulator 10715 approx
Rubber, hard................ | Insulator 10~15 approx
Glass. ... ................... Insulator 1012 approx
Bakelite..................... Insulator | 107? approx
Distilled water............... Insulator 104 approx
Seawater................... Conductor 4 approx
Tellurium................... Conductor | 5 X 102 approx
Carbon..................... Conductor | 3 X 10% approx
Graphite.................... Conductor | 105 approx
Castiron.................... Conductor |  10% approx
Mereury.............oo... .. Conductor 108
Nichrome................... Conductor | 108
Constantan.................. Conductor | 2 X 108
Silicon steel ... ....... ... .. .. Conductor 2 X 10¢
Germansilver................ | Conductor 3 X 108
Lead....................... | Conductor 5 X 10¢
Tin........ ... .. ...... .| Conductor 9 X 10¢
Phosphor bronze.......... ..| Conductor 107
Brass.................... . .. | Conductor 1.1 X 107
Zinc...... ... .o | Conductor 1.7 X 107
Tungsten.................... Conductor 1.8 X 107
Duralumin . . . o { Conductor 3 X 107
Aluminum, hard-drawn.... . .. | Conductor 3.5 X 107
Gold............... ... ...... Conductor | 4.1 X 107
Copper...................... Conductor 5.7 X 107
6.1 X 107

Silver....................... Conductor |
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contrast, both insulators and conductors are listed.! The materials are
arranged in order of increasing conductivity.

3-9. Current Density and Ohm’s Law at a Point. If the current is
distributed uniformly throughout the cross section of a wire, then the
current densily J is uniform and is given by the total current I divided by
the cross-sectional area of the wire. That is,

I .
J = a (3-16)
Current density has the dimensions of current per area and in mksc units
is expressed in amperes per square meter.

If the current is not uniformly distributed, (3-16) gives the average
current density. However, it is often of interest to consider thecurrent
density at a point. This is defined as the current AI through a small area
As divided by As, with the limit of this ratio taken as As approaches zero.

Hence, the current density at a point is

g e given by
/ e Al 3-17)

= lim —
/ ! J ae—0 AS
J . ]
Es @a — It is assumed that the surface Asis nor-
/ %;;, : ’ / mal to the current direction. By this defi-
e g nition the current density J is a vector
10. 3-5. Block of conducting ;¢ £,10tion having a magnitude equal
material with small imaginary . R
cell enclosing the point P. to the current density at the point and the
direction of the current at the point.
Consider now a block of conducting material as indicated in Fig. 3-5.
Let a small imaginary rectangular cell of length ! and cross section a be
constructed around a point P in the interior of the block with a normal to
J as indicated. Then on applying Ohm’s law (3-2) to this cell we have

V =1IR (3-18)

where V = potential difference between ends of cell. But V" = El and
I = Ja;so

-

El = JaR (3-19)
Solving for J, we have
§ = ‘
J = pE (3-20)

1 The large difference in conductivity between the insulators and conductors listed
makes the distinction between the two on the basis of the conductivity alone relatively
easy. The division in the table is made arbitrarily between 10~¢ mho per meter for
distilled water and 4 mhos per meter for sea water. This is for the case of a constant
current or field. In the a-¢ or high-frequency situation, however, the conductivity
alone is usually not sufficient, and it is often more useful to make a distinction as to
whether a material behaves like a conductor or a dielectric, basing this arbitrarily
on the ratio ¢/we, where w = 2x X (frequency). This is done in Chap, 11.
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By making the cell enclosing P as small as we wish, this relation may be
made to apply at the point P, and we may write

J= oiL (3-21)
Equation (3-21) is [Ohm’s law at a point pnd relates the current density
J at a point to the total field E at the point and the conductivity ¢ of
the material. It is to be noted that J and E have the same direction
(medium assumed to be isotropic).

3-10. Kirchhoff’'s Voltage Law and the Difference between Potential
and EMF. Consider the simple electric circuit shown by the schematic
diagram in Fig. 3-6. The circuit consists of a resistor R,
and the battery. The current is I at all points in the
circuit. At any point in the conducting material of the
circuit we have from Ohm’s law at a point (3-21) that

F1a. 3-6. Series g =E (3-22)
circuit of bat-

tery and exter- ywhere E = total field at the point.

nal resistance. In general the total field E may be due not only to static
charges but also to other causes such as the chemical action in a battery.
To indicate this explicitly, we may write

E =E. + E. (3-23)

where E, = static electric field due to charges; the subseript ¢ is to indi-
cate explicitly that the field is due to charges

electric field generated by other causes as by a battery; the
subsceript e is to indicate explicitly that it is an emf-producing
field (see below)

Whereas E. is derivable as the gradient of a scalar potential due to
charges (E. = —VV), this is not the case for E,. Substituting (3-23)
in (3-22), writing J = I/a, where a is the cross-sectional area of the con-
ductor, and noting the value of ¢ from (3-13),

E.

J_ 11_3 = E,. + E, (3-24)
T l

where R/l = resistance/unit length (ohms/meter). Equation (3-24)
applies at any point in the circuit. Integrating (3-24) around the com-
plete circuit,

¢Ec-m+¢E.-d1=1¢§dz (3-25)

From (1-19) the first term is zero, that is, the line integral of a lamellar
field due to charges is zero around a closed circuit. However, the second
term (in 3-25), involving the line integral of E, around the circuit, is not
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zero but is equal to a voltage called the total electromotive force, or emf,
Ur of the circuit.! The field E, is produced, in the present example, by
chemical action in the battery. If it were absent, no current would flow
since an electric field E, due to charges is not able to maintain a steady
current. The right-hand side of (3-25) equals the total IR drop around
the circuit. Hence (3-25) becomes

Vr = ]RT (3-26)

where Ky = total resistance of cireuit (=R, if internal resistance of
battery is zero).
In general, for a closed circuit containing many resistors and sources of

emf,
2U=123 (3-27)

This is Kirchhoff’s voltage law. In words it states that the algebraic sum
of the emfs around a closed circuit equals the algebraic sum of the ohmic or
IR drops around the circuit.? As a corollary, Kirchhoff’s voltage law
states that the algebraic sum of all the emfs and /R drops around a closed
circuit is zero. Kirchhoff’s voltage law applies not only to an isolated
electric circuit as in Fig. 3-6 but to any single mesh (closed path) of a
network.

To distinguish emf from the scalar potential V, the symbol U (script V)
is used for emf. Both V and U are expressed in volts so that either may
be referred to as a voltage if one does not wish to make a distinction
between potential and emf.

It is to be noted that the scalar potential V is equal to the line integral
of the static field E,, while the emf U equals the line integral of E.. Thus,
between two points a and b,?

m=m—m=—ﬁmm (3-28q)
and
b
m=m—m=ﬂmm (3-28b)

In (3-28a) V. is independent of the path of integration between a and b,
but Vg, in (3-28b), is not.

t Emf is also called electromotance.

2 In time-varying situations, where the circuit dimensions are small compared with
the wavelength, Kirchhofif’s law is modified to: The algebraic sum of the instantaneous
emfs around a closed circuit equals the algebraic sum of the instantaneous ohmic drops
around the circuit.

3 An open-circuited battery (no current flowing) has a terminal potential difference
V equal to its emf V. The potential V is as given by (3-28a). As explained in the
examples that follow, E, and E, have opposite directions in the battery. Therefore,
in order that Vg, = Uas for an open-circuited battery, (3-28b) has no negative sign.
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For closed paths
FE..dl =0 (3-28¢)
and
SE..dl = Uy (3-28d)

where Ur = total emf around the circuit.

Referring again to (3-23) and (3-25), it is to be noted further that since
£ E.-dl = 0 the line integral of the total field E around a closed circuit
equals the line integral of E, around the same closed circuit. This, in
turn, equals the total emf of the circuit. That is,

SE.-dl = §E..dl = Uy (3-29)
The difference between potential and emf is explained further in the
following examples illustrating applications of Kirchhoff’s voltage law.

Example 1. Let the circuit of Fig. 3-6 be redrawn as in Fig. 3-7Ta. The battery
has an internal resistance R,, and it will be convenient, in this example, to assume
that the field E, in the battery is uniform between the terminals (c and d). The point

I /o'-oo
/A R, R, (a)
_._,,+!' MM,Q/*- ! —}._%H
e £ b ¢,E.ld
] 3 ] i A
L_zo_.i ll'v=
Potential | | | ' Y ®)
14 Vas | - i i
b ’ /!
a b c d

Fie. 3-7. Series circuit of battery and external resistance (a) with graph showing
variation of potential around circuit (b).

b (or ¢) is taken arbitrarily to be at zero potential. The resistor has a uniform resist-
ance Ito, and the wires connecting the resistor and the battery are assumed to have
infinite conductivity (¢ = »). Ilence, in the wire, E. = 0. The field E. has a value
only in the battery, being zero elsewhere. Let the problem be to find the variation
of the potential V around the circuit.

Solution. By Kirchhoff's voltage law the sum of the emfs around the circuit equals
the sum of the /1t drops. Thus

O = IRy + IR, (3-30)
or
)
I'=fre+r @-31)

In the resistor E, = 0, but E. has a value (as discussed in connection with Fig. 3-2)
Applying Ohm's law (3-21) in the resistor (between a and b), we have

E=3-1%

oo [o

(3-32)

where 0, = conductivity of resistor material (assumed uniform)
I, = distance from a to b
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Integrating (3-32) from a to b yields

/bEc-dl=I?-°/bdl (3-33)
a 1] a
or

Ve = —1IRq (3-34)

where V4 = potential difference between a and b. Since point a is connected to d
and b to ¢ with infinitely conducting wires, V.4 = —Vg, where V.4 is the potential
difference appearing across the terminals of the battery. Therefore, from (3-34) and
(3-30) we have

V="Va+ IR (3-35)
or

Vea =0 — IR, (3-36)

According to (3-36) the potential difference appearing between the terminals of the
battery is equal to the emf U of the battery minus the drop /R, due to the internal
resistance of the battery. Assuming that E. is uniform in the battery, the variation
of the potential V around the circuit is as indicated in Fig. 3-7b.

To recapitulate, there is a static electric field E. in the resistor such as is discussed
in connection with Fig. 3-2. Integrating E. across the resistor yields the potential
difference V. Likewise in the battery there is a static field E. due to the charges on
the electrodes. Assuming that E. is uniform inside the battery, we have on integrat-

ing E; between c and d

/o'goo d

/ E.°dl = Ecll = Vcd (3-37)
R,=0 ’ [Rx (a) ¢
J d 4= There is also the field E, in the battery,
E.=0 everywhere ¢ E, which has the opposite direction to E..
v Assuming that E, is uniform, we have
on integrating E, from ¢ to d the emf V.
v (b) That is,

= d

V=0 /;E.°dl=E.l1='U (3-38)

F16. 3-8. Circuit of battery and no ex- . )
ternal resistance (battery short-circuited) Introducing (3-37) and (3-38) into (3-36),
(@), and graph indicating that potential ~we find that

is constant (equal to zero) around ecir- R,
cuit (b). E,=E . +1 N (3-39)

According to (3-39) E. is larger in magnitude than E. by an amount IR,/l;. That
is, the field E, is enough larger than E. so that it can move a positive charge against E.
while at the same time overcoming the internal resistance of the battery. In over-
coming E. the battery does work on the charge and hence delivers energy into the
circuit. In the resistor (R,) the charge moves with E. and gives up energy which
appears as heat in the resistor.

Example 2. Let the external resistor Ro of Fig. 3-7a be removed and the battery
short-circuited as in Fig. 3-8a. Find the variation of the potential ¥V around the
circuit. It is again assumed that E. in the battery is uniform and constant.

Solution. According to Kirchhoff’s voltage law we have

V=IR (3-40)

where I’ = current flowing in battery
R, = internal resistance of battery
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This current is larger than the current [ with R, connected. Since the terminals ¢
and d of the battery are at the same potential, the field E. in the battery is zero. Also,
since there is no external resistor, E. is zero everywhere. However, E, in the battery
is the same as before, and integrating it from c to d (or all the way around the circuit)
yields the emf V. Since E. = 0 everywhere, the potential V is constant (equal to
zero) around the entire circuit as suggested by Fig. 3-8b. There is an emf in this
circuit, but ¥V = 0 everywhere.

It is instructive to compare the electrical circuits of the above examples
with the analogous hydraulic systems. Thus, a hydraulic system analo-
gous to the circuit of Example 1 (Fig. 3-7) is shown in Fig. 3-9a. Between

'fTrough (upper level)

i e
Ji

., & :
b \Trough (lower level) €

Trough—

F1e. 3-9. Hydraulic analogue for electric circuit of Fig. 3-7 is shown at (a), and hy-
draulic analogue for electric circuit of Fig. 3-8 is shown at (b).

b and c there is an open horizontal trough at what may be called a lower
level, corresponding to the ground potential in Fig. 3-7. Between ¢ and
d there is a pump which raises the water or other liquid against the gravi-
tational field in the same manner as the battery in Fig. 3-7 raises positive
charge against the static electric field E.. Thus, the water in the upper
trough has a higher potential energy than the water in the lower trough
in the same way as the charge in the wire between d and a in the electric
circuit of Fig. 3-7 is at a higher potential than the charge in the wire from
btoc. From d to a the water moves in a horizontal frictionless trough at
an upper level corresponding to the perfectly conducting wire between
these points in Fig. 3-7. From a to b the water falls through a pipe to
the lower level and in so doing gives up the energy it acquired in being
pumped to the upper level. The pipe offers resistance to the flow of
water, and the energy given up by the water appears as heat. This
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energy is analogous to that appearing as heat in the resistor of Fig. 3-7
owing to charge falling in potential from a to b. In this analogy the
pump does work, raising the water against the gravitational field in the
same manner as the chemical action in the battery does work per unit
charge (against the electrostatic field E. and internal resistance ;) equal
to the emf of the battery.

A hydraulic analogue to the circuit of Example 2 (Fig. 3-8) is shown in
Fig. 3-9b. Here the entire circuit is at the same level. The trough is
assumed to be frictionless, so that the water has the same potential
energy at all points of the system in the same manner that V = 0 in Fig.
3-8. The pump does work equal to that required to move the water
from ¢ to d against the friction of the pipe in the same manner as the
battery in Fig. 3-8 does work per unit charge (agamst the internal resist-
ance) equal to the emf of the battery.

In a single-cell battery with two electrodes the field E, is largely con-
fined to a thin layer at the surface between the electrode and the electro-
lyte and is zero in the electrolyte between the two electrodes. Thus, the
potential variation assumed in the preceding examples is not representa-
tive of an actual two-clectrode cell although it could be approached if
each battery consists of a large number of cells of small emf connected in
series between ¢ and d in Figs. 3-7 and 3-8.

A picture somewhat closer to the actual situation in a two-electrode cell
is portrayed in Fig. 3-10. Three conditions are shown. At (a) the
battery is open-circuited (/ = 0). At (b) the battery is connected across
a large resistance (I small). At (c) the battery is short-circuited (/ a
maximum).! In each section of Fig. 3-10 the cell is shown in the upper
part of the figure with the potential variation across the cell directly
below it. For clarity the layers where E, is not zero are shown with
appreciable thickness, and for convenience the emf at both layers is
taken to be of the same magnitude and sign. It is further assumed that
the electrolyte and also the layers containing E, have a uniform resistivity.
Since, the layers containing E, are thin, the /R drop is considered, for
convenience, to be confined to the electrolyte region (see Figs. 3-10a and
b).

It is to be noted that if the elements of a closed circuit containing emfs
are separate from those containing resistance, the relation of (1-19)

SE-.dl =0 (3-41)

gives the same result as Kirchhoff’s voltage law. Thus, according to
(3-41) the sum of the potential rises and potential drops around a closed
circuit is zero. This version of Kirchhoff’s voltage law is often con-
venient, but it is not always applicable. For instance, it is not applicable

! The emf of the cell is considered to be a constant and independent of the current.
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where E, = 0 (as in Example 2) unless the sources of the emfs and the
resistances are separated by assuming an equivalent circuit. For
example, a source of emf U with internal resistance o may, by Thévenin’s
theorem, bhe considered equivalent to two elements in series, one of emf U
and zero internal resistance and the other of resistance K, and zero emf,

_+%+

)

1

I max.

1}\,‘

-

- # SR
IR drop IR drop
Open-circuited Large resistance —
cell across cell Cell short circuited
(a) () (¢)

F16. 3-10. Two electrode cell showing regions where emf-producing field E. and field
E. due to charges are present under three conditions of cell operation. In the lower
half of the figure the idealized potential variation is shown as a function of position
along the cell axis for the three conditions.

Example 3. Consider the closed circuit, or mesh, shown in Fig. 3-11, which is a
part of a more complex network, as suggested. Apply Kirchhoff’s voltage law to
this mesh.

Solution. Let us assume that the current in the circuit flows clockwise, the currents
in each leg being as indicated. The direction assumed is arbitrary. For example, if
I, actually flows opposite to the direction shown, it will be found to be negative. A
priori the actual direction is not known so that one must be assumed. Starting at the
point a, let us proceed toward b. Thus, traversing R, in the same direction as the
current, we experience a potential drop equal to —/;R,. In crossing the battery we
encounter a potential rise equal to the emf U;. In this case the battery is assumed to
have zero internal resistance, or else its resistance is combined in R,. Applying
Kirchhoff’s voltage law in this way around the entire closed circuit, we obtain

—LR 4+ U, — IRy — LRy — V3 = 0 (3-12)
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or
UV — Vs = LR, + [1R: + 1R, (3-43)

If Uy, Vs, Ry, R, and R, are known, we need two more independent equations to find
the three currents Iy, I:, and I;. That is, we need to know more about the adjoining
circuits in order to find these currents.

T

Fic. 3-11. Closed circuit, or mesh.

As a variation of the above problem, suppose that we have an isolated series circuit
consisting of the circuit around the closed path abca in Fig. 3-11 with all adjoining
circuits disconnected. Then

L=1=1 (3-44)
Hence, if U1, Vs, R1, Rs, and R, are known, we can find the current from the relation

Uy — Vs

"TRAR R )

If U1 > Vs, the current flows clockwise as assumed. However, if Vs > Uy, the cur-
rent is negative, that is, it flows counterclockwise.

3-11. Tubes of Current. In Chap. 1 we discussed tubes of flux. Let
us now consider an analogous concept, namely, that of tubes of current.
A tapered section of a long conductor is shown in Fig. 3-12a. Let all the
space in the conductor be filled with current tubes. Each tube is every-

Current tube

Conductor

- - o’ X i
e 7 Vil
& Lo
- ——- / . ’1

F16. 3-12a. Tapered section of a long conductor showing current tube.




Sec. 3-12] THE STEADY ELECTRIC CURRENT 125

where parallel to the current direction and hence, from the relation
J = ¢E of (3-21), is also parallel to the electric field. Since no current
passes through the wall of a current tube, the total current I, through
any cross section of a tube is a constant. Thus

I, = / / J - ds = constant (346)

where J = current density (amp/meter?)
a = cross section of tube (over which J is integrated) (meters?)
If J is constant over the cross section and normal to it, then

Iy = Ja (3-47)
or referring to the current tube of rectangular cross section in Fig. 3-12a,
Iy = Jbd (3-48)

where b = thickness of tube (meters)
d = depth or width of tube (meters)
If all of the conductor is divided up into current tubes, each with the
same current [, then the total current / through the conductor is

I =1Im ‘ (3-49)
where n = number of current tubes.

Surfaces normal to the direction of the current (or field) are equi-
potential surfaces. The potential difference V between two equipoten-
tial surfaces separated by a distance lis by Ohm’s law equal to the current
I, in a current tube and the resistance R of a section of tube of length I.
Thus,

V = IR (3-50a)

If the current density is uniform (field uniform), the resistance R is, from
(3-13), given by

R = 4, ohms (3-50b)
oa

where [ = length of tube section (meters)
o = conductivity of conducting medium (mhos/meter)
a = cross-sectional area of tube (meters?)

3-12. Kirchhoff’s Current Law. Whereas flux tubes in a static electric
field begin and end on electric charge and hence are discontinuous, the
tubes of a steady current form closed circuits on themselves and hence
are continuous. To describe this continuous nature of steady currents,
it is said that the current is solenoidal. That is, it has no sources or
sinks (ending places) as do the flux tubes, which start and end on electric
charges in a static electric field. Asa consequence as much current must
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flow into a volume as leaves it. Thus, in general, the integral of the
normal component of the current density J over a closed surface s must
equal zero, or

¢BJ .ds =0 (3-51)

This relation is for steady currents and
applies toany volume. Forexample, the
volume may be entirely inside of a con-
ducting medium, or it may be only par-
tially filled with conductors. The con-
ductors may form a network inside the
volume, or they may meet at a point.
As an illustration of this latter case, the
surface S in Fig. 3-12b encloses a volume
that contains five conductors meeting at a junction point P. Taking
the current flowing away from the junction as positive and the current
flowing toward the junction as negative, we have from (3-51) that

11_12—13+14—15=0 (3-52)
In other words, the algebraic sum of the currents at a junction is zero. This

is Kirchhofi’s current law, which may be expressed in general by the
relation

Fic. 3-12b. Junction point of sev-
eral conductors.

ZI=0 (3-53)

3-13. Divergence of J and Continuity Relations for Current. Consider
the small volume element Av shown in Fig. 3-13 located inside of a con-
ducting medium. The current density J is a vector having the direction

/Jz Az

—iv—o—va J: Jy+ -%J:- Ay
s vy A ¥
e
by

£
F1a. 3-13. Construction used to develop differential expression for divergence of J.

of the current flow. In general, it has three rectangular components that
vary with position as indicated in Fig. 3-13.! The product of the current
! The development here is formally the same as in Sec. 2-29.
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density and the area of a face of the volume element yields the current
passing through the face. Current flowing out of the volume is taken as
positive and current flowing in as negative. The integral of the normal
component of J over the surface of the volume is equal to the sum of the
outward currents for the six faces of the volume element, or

fovie- (2

z aJ!I
+ 5t

aJ, B .
62) Ar Ay Az =0 (3-543

Now Az Ay Az = Av. Dividing by Av and taking the limit as Av
approaches zero, we obtain the divergence of J at the point around whice.
Av collapses. Thus

$-ds L _ A,

lim 9z

Avr—0 Av

aJ,  aJ
—y + 9z (3-55)
or

vV.J=0 (3-56)

This is a point relation. It applies, for example, to any point in a con-
ductor where current is flowing. It states that steady currents have no
sources or sinks. Any vector function whose divergence is zero, as in
(3-56), is said to be solenoidal.

Let us digress briefly to consider the situation if the current is not
steady as assumed above. Then (3-51) does not necessarily hold, and the
difference between the total current flowing out of and into a volume must
equal the rate of change of electric charge inside the volume. Specifically,
a net flow of current ouf of the volume (positive current flow) must equal
the negative rate of change of charge with time (rate of decrease of charge).

Now the total charge in the volume Av of Fig. 3-13
LU is p Av, where p is the average charge density.
Therefore

Q@ |- 1—L— ¢ J-ds =

o - _" Av (3-57)

Dividing by Av and taking the limit as Av ap-

FrG. 3-14. Construction g
proaches zero, we obtain

for the continuity rela-

tion between current ap
and charge. v.] =

(3-58)
This is the general continuity relation between current density J and the
charge density p at a point. For steady currents as much charge enters
a volume as leaves it so that dp/d¢t = 0 and (3-38) reduces to (3-56).
Consider now the situation shown in Fig. 3-14 where a wire carrying a
current / terminates inside a small volume Av. Applying (3-57) to this
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situation, the integral of J over the volume yields the net current entering
or leaving the volume. Assuming that / is entering the volume, we have

£J-ds=—1 (3-59)
Now p Av equals the total charge Q inside the volume. Hence
dp _dQ
Substituting (3-59) and (3-60) in (3-57) yields
_dQ
I= i (3-61)

This is the continuity relation between the current and charge in a wire.
3-14. Current and Field at a Conductor-Insulator Boundary. The
relation between the current density J and the electric field intensity E in

a conductor is, from (3-21),
J = oE (3-62)

where ¢ = conductivity. Thus, when current flows in a conductor,
there must be a finite electric field present in the conductor (unless the
conductivity is infinite!).

Consider now the situation at a conductor-insulator boundary as in
Fig. 3-15. Assuming that the conductivity of the insulator is zero,

Insulator

727777,

Fic. 3-15. Insulator-conductor boundary.

J = 0in the insulator. At the boundary, current in the conductor must
flow tangentially to the boundary surface. Thus, on the conductor side

of the boundary we have

E; = J;‘ (3-63)

where E; = component of electric field tangential to boundary = |E|
J: = component of current density tangential to boundary = |J|
¢ = conductivity of conducting medium
By the continuity of the tangential electric field at a boundary, the
tangential field on the insulator side of the boundary is also E..
When current flows, a conductor of finite conductivity is not an equi-
potential body as it is in the static case with no currents present. For

tIf o is infinite, an infinitesimal field can produce a finite current density.
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example, the potential varies along a current-carrying wire with uniform
current density as suggested in Fig. 3-16. The arrows indicate the field
and current directions, while the transverse lines are equipotentials.
Since E is uniform, the potential difference V of two points separated by
a distance ! along the wire is El. This potential difference is also equal
to the /R drop, that is, V = IR, where [ is the current in the wire and
R is the resistance of a length ! of the wire. The field is the same both

! Wire

/A ERN AN WA A
C { { { £ s O
NN N NN

Equipotentials
Fia. 3-16. Section of long wire.

inside and outside the wire and is entirely tangential (and parallel to
the axis of the wire).

If superimposed on this situation there is a static electric charge dis-
tribution at the boundary surface due to the proximity of other con-
ductors at a different potential, a component of the electric field E,
normal to the conductor-insulator boundary may be present on the
insulator side of the boundary. The total field in the insulator is then

Quter
conductor

g
Inner
conductor |

F1e. 3-17. Longitudinal cross section of coaxial transmission line. Equipotentials
are shown by the dashed lines. The arrows indicate the direction of the normal and
tangential field components, E, and E;, and the current density J.

the vector sum of the normal component E, and the tangential com-
ponent E;. In the conductor, E, = 0, and the field is entirely tangential
to the boundary. For instance, consider the longitudinal cross section
shown in Fig. 3-17 through a part of a long coaxial cable. Current flows
to the right in the inner conductor and returns through the outer con-
ductor. The field in the conductor is entirely tangential (and parallel
to the axis of the cable) and is indicated by E,. Since the conductivity
of the conductor is large, this field is relatively weak as suggested by the
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short arrows for E, In the insulating space between the inner and
outer conductors there may exist a relatively strong field due to the
voltage applied at the end of the cable. This field is a static electric
field (such as shown in Chap. 2 by Fig. 2-19). It originates on positive
E charges on the inner conductor and
ends on negative charges on the inside
surface of the outer conductor. It is
entirely normal to the surfaces and
is indicated by E,. It is relatively
strong as suggested by the long arrows
for E,. At a point P at the surface
of the inner conductor (Fig. 3-17) the
total field E is then the sum of the two
; components E, and E; added vectori-
F1c. 3-18. Total field E at insula‘tor- ally as in Fig. 3-18. If the conduc-
f::::::it:; P }t)::ng:&i ! cr::lved tmm tivity of the metal in the cable is high,

£ ponents. E, may be so small that E is substan-
tially normal to the surface and equal to E,. Ilowever, the size of E, has
been exaggerated in Fig. 3-18 in order to show the slant of the total field
more clearly. The shape of the total field lines across the entire insulating
space between the inner and outer conductors is suggested in Fig. 3-19

Insulator

( Outer

Equi- {
potentials conductor
Inner
conductor

'

Field lines

F1c. 3-19. Longitudinal cross section of coaxial transmission line showing equipoten-
tials (dashed) and total field lines (solid).

with the slant of the field at the conductors greatly exaggerated. Equi-
potential surfaces are indicated by the dashed lines.

Two extreme cases of conditions at a conductor-insulator boundary
have been described in the above examples. In one the total field on
both sides of the boundary is entirely tangential (Figs. 3-15 and 3-16).



SEc. 3-15] THIEE STEADY ELECTRIC CURRENT 131

In the other the total field on the conductor side is entirely tangential,
while the total field on the insulator side is substantially normal to the
boundary (Figs. 3-17 to 3-19 inclusive). The electric field at a conductor-
insulator boundary will always be of a type similar to or somewhere
between these extremes.

3-16. Current and Field at a Conductor-Conductor Boundary. Con-
sider the conductor-conductor boundary shown in Fig. 3-20 between two
media of constants o1, €, and o2, 2. In general, the direction of the cur-
rent changes in flowing from one medium to the other.!

Current or
field line

Medium 1

a6
/Boundary

Medium 2

o €

Fic. 3-20. Boundary between two different conducting media showing change in
direction of current or field line.

For steady currents we have the boundary relation

J,.l = J,.z (3-64)
where J,, = component of current density normal to boundary in
medium 1
Ja2 = component of current density normal to boundary in
medium 2
From relation (1) of Table 2-2 we also have
En = E;z (3-65)

where E,; = component of field tangent to the boundary in medium 1
E,; = component of field tangent to the boundary in medium 2
From (3-65) it follows that

do o de (3-66)

! Note that if oy = g3 = 0,then J, = J: = 0 and the problem reduces to that con-
sidered in connection with Fig. 2-6.
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where J;; = component of current density tangent to boundary in

medium 1
Ji2 = component of current density tangent to boundary in
medium 2
Dividing (3-66) by (3-64),
Jll Jl2
—— S == 3-67
oJn 032 (3-67)
or
taner _ o (3-68)

tan a: o2

where a, and a; are as shown in Fig. 3-20.
According to (3) of Table 2-2 we also have the relation that

elEﬂl - EzErﬂ = Ps (3'69)

where p, = surface charge density at boundary. This may be reexpressed
as
€ Jur _ € Ju Ps (3-70)

[+ 8] g2

and since J,; = J,2, we have
pe = Jm (‘—‘ -2 (3-71)

According to (3-71) there will, in general, be a surface charge present on
the boundary between two conductors across which current is flowing.
If the currents are steady, the density of this charge is a constant. If
both media are solid metallic conductors, €, >~ ¢ >~ €3 so that (3-71)
reduces to
P = €0 n1 (l - i) (3-72)
(8] a2
3-16. Current Mapping and the Resistance of Simple Geometries.
Conductor Cells. If the current density is uniform throughout a con-
ductor, its resistance is easily calculated from its dimensions and con-
ductivity. For example, consider the homogeneous rectangular bar of
conductivity ¢ shown in Fig. 3-21. It has a length I’ = 100 c¢m, a thick-
ness or width b’ = 40 cm, and a width or depth d = 40 cm. If the end
faces of the bar are clamped against heavy high-conductivity blocks, as
in Fig. 3-3, the field and current density throughout the bar will be uni-
form. From (3-13) the resistance R of the bar is given by

U 1

R = d"ﬁ)‘, = 6.160’ ohms (3'73)

where 0 = conductivity of bar (mhos/meter).
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o /

F1e. 3-21. Conductor divided into current tubes. Vertical lines are equipotentials.

amping blocks:

fe— | —>

—
J

S\

(a) ®)
Fi1a. 3-22. Cell of unit depth and of conductanee equal numerically to the eonduectivity
o of the material. This cell also has a resistance equal numerically to the resistivity S
of the material. Method of clamping cell between large high-conductivity blocks to
measure conductance or resistance is shown at (b).

The resistance of the bar can also be calculated by dividing the side of
the bar into square areas each representing the end surface of a conductor
cell. The sides of the cells are equipotentials. The top and bottom
surfaces of the cell are parallel to the current direction. The resistance
Ro of such a cell is given by

! 18
Bo=%"ad d

where S = resistivity of the bar material. Hence the product of Ro and
the depth d equals the resistivity S of the bar material, or

Rd = 8 (3-74b)

For example, the resistance of a conductor cell of unit (1 meter) depth as
in Fig. 3-22a is numerically equal to the value of the resistivity of the bar

(3-74a)
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material. Figure 3-22b shows the method of clamping the cell to measure
its resistance.

Taking the reciprocal of (3-74b) yields

Goos (3-74¢)
That is, the conductance per unit depth of a conductor cell is equal to the
conductivity of the medium. For instance, the conductance in mhos of a
cell of unit depth, as in Fig. 3-22a, is equal numerically to the value of the
conductivity ¢ of the medium. The above relations apply to conductor
cells of any end area provided that this area is a true or a curvilinear
square.

Returning to the bar of Fig. 3-21, let each cell be arbitrarily assigned a
conductance of 1 mho. On this basis the total conductance of the bar
equals

Number of cells (or current tubes) in parallel
Number of cells in series

or
4

10

From (3-74¢) the eonductance per unit depth of a conductor cell is ¢ so
that the actual conductance G, of a cell of bar material is given by

Go = do = 0.4¢ mhos (3-75a)
The actual value of the total conductance of a bar is then
G = v50.40 = 0.160 mhos (3-75b)
The actual value of the total resistance is the reciprocal of (3-75b), or

R = g1 = 6255  ohms (3-73¢)
The method of calculating the resistance or conductance of the bar by
means of evaluating the series-parallel combination of conductor cells is
more general than the method used in arriving at (3-73) since it can be
applied not only to uniform current distributions (as here) but also to the
more general situation where the current distribution is nonuniform.
In a nonuniform distribution the sides of many or all of the conductor
cells will be curvilinear squares. Their area and arrangement may be
determined by graphical current-mapping techniques that are like the
field mapping procedures discussed in Sec. 2-27 (see also Sec. 5-20 and the
Appendix).
Graphical current-mapping techniques can be applied to any two-
dimensional problem, that is, to a conductor whose shape can be described
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by a single cross section with all other cross sections parallel to this one
being identical to it. Current mapping is actually electric field mapping
in a conducting medium since the current and the field have the same
direction in isotropic media (J = oE).

The following fundamental properties are useful in current mapping:

1. Current lines and equipotentials intersect at right angles.

2. Current flows tangentially to an insulating boundary.

3. The total current through any cross section of a continuous current
tube is a constant. '

4. In a uniform current distribution the potential varies linearly with
distance.

5. Current tubes are continuous.

With these properties in mind a conductor cross section is divided into
current tubes and then by equipotentials into conductor cells with sides
that are squares or curvilinear squares, using the same trial-and-error
method described in Sec. 2-27 in connection with field mapping in an
insulating medium. The tubes and equipotentials are revised until all
of the cells become curvilinear squares. By curvilinear square is meant
an area that tends to yield true squares as it is subdivided into smaller
and smaller areas by successive halving of the equipotential interval and
the current per tube.

All cells with the same current through them may be defined as con-
ductor cells of the same kind. It follows from Ohm’s law that the potential
drop across all cells of the same kind is the same.

In caleulating the conductance of a conductor with a nonuniform cur-
rent distribution a current map is first made, as discussed above. The
conductance ¢ is then given by

@ = 8
n

Go (3-76)
where N = number of cells (or current tubes) in parallel
n = number of cells in series (equals number of cells per tube)
G, = conductance of each cell (= do)

The accuracy of the conductance (or its reciprocal, the resistance) depends
primarily on the accuracy with which the curvilinear squares are mapped.

In conclusion the properties of an accurate current map! may be stated
as follows:

1. The conductance Gy of any conductor cell is the same.
2. The conductance per unit depth of any conductor cell is equal to
the conductivity ¢ of the medium.
3. The resistance R, of any conductor cell is the same.
1 In a single medium of uniform conductivity.
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4, The resistance-depth product for any conductor cell is equal to the
resistivity S of the medium.

5. The current I through all conductor cells of the same kind is the
same.

6. The current through any cross section of a conductor tube is the
same.

7. The potential drop across all conductor cells of the same kind is the
same and is equal to the IR, drop across the cell, where [ is the
current through the cell and R, is the resistance of the cell.

8. The average current density J in any cell of the same kind is
inversely proportional to the thickness or width of the cell (or
current tube).

9. The average field intensity E in any cell of the same kind is
inversely proportional to the thickness or width of the cell (or cur-
rent tube).!

10. The power dissipated as heat in all conductor cells of the same kind
is the same (= I2R,).

11. The average power density (watts per cubic meter) in all cells of the
same kind is inversely proportional to the area of the end of the
cell. (This is the area that appears in the map.)

Example. A homogeneous rectangular bar of conductivity ¢ has the dimensions
shown in Fig. 3-23a. This bar is identical with the one of Fig. 3-21 except that two
cuts have been made across the full width of the bar, as indicated. Find the resistance
of the bar when its ends are clamped between high-conductivity blocks as in Fig. 3-3.

Solution. A longitudinal cross section of the bar is drawn to scale and a current
map made with the result shown in Fig. 3-23b.2 A portion of one quadrant has been
further subdivided to test the accuracy of the curvilinear squares. From (3-74a) or
(3-75a) the resistanee R, of one conductor cell is

1
R = n ohms

There are 13 cells in series in a tube, and there are 4 tubes in parallel. Hence, from
(3-76) the resistance R of the bar is

R=—"" =, =818 ohms 3-77)

Thus, comparing this result with (3-75¢) for the uniform bar, the slots in the bar pro-
duce an increase of 30 per cent in its resistance.

11t is also to be noted that the conductance (or the resistance) of any cell is the
same for current flow in either direction across the cell. Furtherinore, the conductance
of any cell of unit depth is the same as the conductance of a unit cube since a cube is
merely a special case of a cell.

2 Although the entire cross section of the bar has been mapped, the symmetry is
such that a map of only one quadrant would have sufficed.
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Curvilinear
/ cell

r-.

Current
tubes
Equipotentials (b)

Fig. 3-23. Conducting bar with noteh (a) and current map (b). Resistance of bar
cquals ratio of cells in series to cells in parallel multiplied by the resistance of each cell.

3-17. Laplace’s Equation for Conducting Media. According to (3-56)
we have the relation for steady currents that

v-J=0 (3-78)
From (3-21)
J =0E (3-79)
80 that (3-78) becomes
cV-E=0 (3-80)
But from (1-33)
E=-VV (3-81)
Introducing this value of E in (3-80) yields
oV-(VV) =0 (3-82)
or
vV =0 (3-83)

This is Laplace’s equation. It was derived previously in Sec. 2-34 for
static electric fields, and since it also applies here, it follows that problems
involving distributions of steady currents in conducting media can be
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handled in the same way as problems involving static field distributions
in insulating media. If we have a conductor with an unknown current
distribution and if a solution to Laplace’s equation can be found that also
satisfies the boundary conditions, we can obtain the potential and current
distribution in the conductor. If this is not possible, we can nevertheless
find the approximate potential and current distribution in two-dimen-
sional problems by graphical current mapping as discussed in Sec. 3-16.
From a knowledge of the current distribution, the resistance, the maxi-
mum current density, and other items of practical importance can be
determined for a given conductor configuration.

In conducting media, current tubes and the conductivity ¢ are analo-
gous to the flux tubes and permittivity e in insulating media. Thus in
conducting media we have

J =dF amp/meter? (3-84)
while in insulating media we have

D = ¢E coulombs/meter? (3-85)

It is also to be noted that in a conducting medium the conductance per unit
depth of a conductor cell equals the conductivity of the medium, or

Go

7=° mhos/meter (3-86)

where d = depth of cell (see Fig. 3-21), while in an insulating medium the
capacitance per unit depth of a dielectric field cell equals the permittivity
¢ of the medium, or

% =G farads/meter (3-87)

In the case of a static electric field in a dielectric medium of permittivity
¢ there are no currents, but there is a flux density D = ¢E. In the case of
a static electric field in a conducting medium of conductivity o there is
current of density J = ¢E. Since both fields obey Laplace’s equation, a
solution in the conductor situation is also a solution for the analogous
dielectric situation, and vice versa. For example, if the medium between
conductors 1 and 2 in Fig. 2-24 is a conductor of conductivity o, the con-
ductance per unit depth between ff and gg is given by

¢ 15.43

d 4

o = 3.86c mhos/meter

It is assumed that plates I and 2 are perfect conductors, A further dis-
cussion of fields that obey Laplace’s equation is given in Chap. 14.
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PROBLEMS

8-1. What is the power lost in heat in a No. 10 B. & S. gauge copper wire (2.59 mm
diameter) 100 meters long if 20 volts is applied between the ends? Assume that
the wire temperature is 20°C. Ans.: 1,205 watts.

8-2. What will the power loss for the wire of Prob. 3-1 be if the wire temperature is
40°C?

8-3. What is the energy lost in heat in the wire of rob. 3-1in 1 hr?

Ans.: 4.34 X 108 joules.

8-4. What is the resistance between metal electrodes 1 meter square located at
each end of a tank with nonconducting walls 1 meter square in cross section and
10 meters long when filled with a conducting liquid having a conductivity of 10 mhos/
meter?

3-5. What is the current density in the tank of Prob. 3-4 if 10 volts is applied
between the electrodes at the ends of the tank?

3-6. What is the current density in a No. 10 B. & S. gauge copper wire (2.59 mm
diameter) carrying a constant current of 10 amp at a temperature of 20°C?

8-7. a. A resistance R, and three batteries are connected in series as shown in
Fig. 3-24. For the first battery the emf U; = 1.5 volts and the electrolyte or internal
resistance R, = 1 ohin, for the second battery the emf U, = 2 voults and the internal

V=15 =2 %=3
L 1l 1 |

a Ry b ! | '|—||—|| c
== R, R, R,

Fic. 3-24. Series circuit for Prob. 3-7.

resistance R; = 0, and for the third battery the emf U; = 3 volts and the internal
resistance R; = 1 ohm. The first two batteries have single cells, while the third
has three cells in series, each cell of 1 volt emf and 4 ohm internal resistance. Assume
that half the total emf of a cell occurs at each electrode, and assume that all con-
nections between cells have negligible resistance. Draw a graph such as in Fig.
3-7, showing the variation of potential with position between points a and ¢ when
Ry, = 4.5 ohms and also when By = 0. Take V = 0 at the point b.

b. Referring to the circuit of Fig. 3-24, let the emfs be as indieated, and let
R, = 1.5 ohms, R, = 2 ohms, and R; = 3 ohms. Draw a graph of the variation of
potential with position when Ry = 6.5 ohms and also when Ry = 0.

3-8. What is the current magnitude in the series circuit of Fig. 3-25a? What is the
current direction (clockwise or counterclockwise)? The batteries have negligible
internal resistance.

‘v-lo. volts 1 ohm V=5 volts 3 ohms

=1} =

2
ohms

1 ohm
AV

A4

F16. 3-25a. Series circuit for Probs. 3-8 and 3-9.
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8-9. What are the current magnitude and direction in the series circuit of Fig. 3-25a
if each battery has an internal resistance of 2 ohms?

8-10. Four wires meet at a common junction point. The current in wires ! and 2
is 5 amp each and flowing away from the junction, while the current in wire 3 is 6 amp
flowing toward the junction. What are the current magnitude and direction in the

fourth wire?

L 10 ohms s
_— -
I, I,

20 ohms

Is

F1a. 3-25b. Circuit for Prob. 3-11.

V=2 volts | ohm I

= \
22 ohms

>

5 ohms

v——

I

- P=

V=2 volts 3ohms | + 6 volts
i

#16. 3-26. Two mesh circuit for Prob.
3-12.

S-11. f Iy =1, =1 =1I;=1amp in
the circuit of Fig. 3-25b, what are the
magnitude and direction of 7;?

8-12. What are the magnitude and di-
rection of the current I in the circuit of
Fig. 3-267 The batteries have negligible
internal resistance.

8-13. A l-cm-square copper conductor
has a right-angle bend. What is the
resistance of a section of the conductor in-
cluding the bend that is 5 cm long each
way from the bend, measuring from the
outside corner? The temperature of the
conductor is 20°C.

3-14. What length of straight copper conductor has the same resistance as the

right-angle section of Prob. 3-13?

L—Scm—-‘<—8cm—+—8cm—>|

Fia. 3-27. Notched block for Probs. 3-15, 3-16, and 3-17.
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3-18. How much greater is the resistance of the block of Fig. 3-27 as compared with
a uniform rectangular block without the notches? The resistance to be determined
i8 that between the left and right ends of the block. It is assumed that the block is
clamped between two large high-conductivity blocks. Ans.: 2.6 times,

8-18. If the conductivity of the material used for the block of Fig. 3-27 is 10 mhos/
meter, what is the resistance of the block?

8-17. How much greater would the resistance of the block of Fig. 3-27 be as com-
pared with a uniform rectangular block if the height of the center section is reduced
from 2 to 1 cm so that the distances from the center section to the top and bottom
of the block are increased to 4.5 cm?

| 10cm ,i
Fig. 3-28. Bar with hole for Prob. 3-18.

»
o
3

3-18. A rectangular nichrome bar 10 cm long by 4 em high by 4 cm wide has a
hole 3 ¢cm in diameter located symmetrically as shown in Fig. 3-28. Find the resist-
ance of the bar at 20°C.

8-19. A bar and strip are connected as shown in Fig. 3-29a. The bar has finite
eonductivity, while the strip conductivity is assumed to be infinite. If the end of the

20’0/,, I"l’+
R 4z 7 mm
N st A B
T2 Tl J1mm g B <4 i
< g s
1 mm Strip ',"'»\/‘\Block
Block position
equivalent to strip
(a) (b)

Fra. 3-29. Bar and strip for Probs. 3-19 and 3-20.

bar is clamped against a large, infinitely conducting block as in Fig. 3-29b instead of
connected to the strip as in Fig. 3-29a, determine by what length [ the bar would
need to be lengthened in order that its resistance be the same as when connected to
the strip? Ans.: About 7 mm longer.
8-20. Why is the resistance of the bar of Fig. 3-29 larger when it is connected to the
strip than when contact is made with the block?
8-21. Deduce the relation v - J = 0 by applying the divergence theorem to

¢.J-ds =0.

3-22. Show that the definition of current given by Eq. (3-1) leads to the con-
tinuity relation I = dQ/d!l, where ) = positive charge.
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8-23. Demonstrate that the source of the emf energizing the coaxial line of Fig. 3-19
is at the left end by showing that if the source were at the right end the field lines
would be bowed in the opposite direction.

8-24. Show that, at a conductor-conductor boundary, a1/02 = Ens/Ea = Ju/J .

8-26. A wire 2 mm in diameter has a resistance of 1 ohm per 100 meters. A cur-
rent of 20 amp is flowing in the wire. What is the field intensity in the wire?

8-26. If there is a static surface charge on the current-carrying wire of Prob. 3-25
with a uniform density of 5 X 10~!? coulomb/meter?, what are the magnitude and
direction of the field intensity just outside of the surface of the wire? The medium
outside of the wire is air.

8-27. The current direction at the boundary surface hetween two media makes an
angle of 45° with respect to the surface in medium 1; what is the angle between the
current direction and the surface in medium 2? The constants for the media are as
follows:

Medium 1: ¢, = 10? mhos/meter

€] = l
Medium 2: o¢; = 1 mho/meter
€2 = 2

8-28. If the total current density J in medium 1 is 10 ainp/meter?, what is the sur-
face charge density at the boundary in Prob. 3-27?

8-29. Two long, parallel, zinc-plated iron pipe lines have a spacing of 4 meters
between centers. The pipes are half buried in the ground as indicated in Fig. 3-30.

The diameter of the pipes is 50 em. The conductivity of the ground (sandy soil) is
10-* mhos/meter. Without drawing a field map, find the resistance between the two
pipes per meter of length. Hint: Note the analogy between this situation and the
static electric field between two parallel cylindrical conductors.

N

M

45°

n &

M 'dN'

Fi1G. 3-31. Conducting sector for Prob. 3-30.

8-30. A conducting 45° sector of thickness d has inner and outer radii r, and rs as
shown in Fig. 3-31. If the conductivity is ¢ mhos/meter, show that the resistance B
between the curved edges MM’ and NN’ is given by

R = A In"? ohms
I’dd r

Hint: Set up a 45° sector of infinitesimal radial thickness dr.




CHAPTER 4

THE STATIC MAGNETIC FIELD OF
STEADY ELECTRIC CURRENTS

X 4-1. Introduction. A static electric charge has an electric field, as
discussed in Chaps. 1 and 2. An electric current, on the other hand,
possesses a magnetic field. For instance, a wire carrying a current / has
a magnetic field surrounding it, as suggested in Fig. 4-1a. If this field is

Vb Magnetic
Wire field lines Compass
needles
(a) (6)
F16. 4-1. (a) Magnetic field around wire carrying F1e. 4-2. Right-hand rule
a current. (b) Cross section perpendicular to the relating direction of field or
wire. The current is flowing out of the page. flux line (fingers) to diree-

tion of current I (thumb).

explored with a compass, the needle always orients itself normal to a
radial line originating at the center of the wire. If one moves in the
direction of the needle, it is found that the magnetic field forms closed
circular loops around the wire.

The direction of the magnetic field is taken to be the direction indicated
as ‘“‘north’”’ by the compass needle, as in Fig. 4-1b. The relation of the
magnetic field direction to the current direction can be easily remembered
by means of the right-hand rule. With the thumb pointing in the direc-
tion of the current, as in Fig. 4-2, the fingers of the right hand encircling

143
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the wire point in the direction of the magnetic field or lines of magnetic
flux. 0

4-2. The Force between Current-carrying Wires. A current-carrying
wire produces a magnetic field. If a second current-carrying wire is
brought into the vicinity of the first, each wire is surrounded by two mag-
netic fields, its own and that due to the other wire. The result is that a
force acts on the wires.

(b)

Field lines

F1a. 4-3. (a) Magnetic field or flux lines around two wires carrying currents in the
same direction. (b) Resulting field around wire 2 with increased magnetic flux density
at the right of the wire causing a force F to the left.

This may be illustrated with the aid of Fig. 4-3a. Consider two wires
1 and 2 normal to the page with currents flowing out of the page (indi-
cated by dot or head of an arrow in the wire). The magnetic fields of the
two wires are then as shown. In order to simplify the figure, only a few of
the field lines produced by wire 2 are shown.
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At the right of wire 2 the two magnetic fields are in the same direction
and add to give a stronger field, while at the left of wire 2 the fields are
opposed and result in a weaker field. If the field lines are considered to
represent magnetic flux lines, it may be said that the magnetic flux
density is greater to the right of wire 2 than to the left. This is illus-
trated in Fig. 4-3b, where the magnetic flux density, designated by the
symbol B, is seen to be greater at the right of wire 2 because the lines are
more closely bunched. There results a force F on wire 2 to the left as
though the magnetic flux lines reacted on it like stretched rubber bands.

If the current in wire 2 is reversed, the direction of the force F is to
the right. This is illustrated in Fig. 4-4, where the current direction in
wire 2 is into the page (indicated by an X or tail of an arrow in the wire).
Hence, wires carrying currents in the same direcltion are allracted, while
wires carrying currents in opposile directions are repelled.

It is to be noted that the force F is perpendicular to the current
direction.

7
/“\//(1 \¢ B

Wires // dF (inward)
GS/ \é T NCurrent
1 2 element
Fig. 4-4. Wires carry- F1a. 4-5. The force on a current
ing currents in oppo- element is normal to the plane
site directions. containing the element and B.

)( 4-3. Force on a Current Element. Referring to Fig. 4-5, the quanti-
tative relation for the magnitude of the force on a current element in a
magnetic field is
dF = IBdlsin ¢ (4-1)

where dFF = infinitesimal force on element dl (newtons)

I = current in element (amp)

B = magnetic flux density (newtons/amp-meter) (See Sec. 4-4)

dl = length of element (meters)

¢ = angle between direction of current and magnetic field

(dimensionless)

The direction of the force dF is normal to the plane containing the element
and B. The magnitude of the force, as given by (4-1), is proportional to
the current, to the length of the element, and to the magnetic flux density
B. The quantity B may be regarded as a measure of the strength of the
magnetic field. The force is also proportional to sin ¢ so that it is a
maximum when the element is normal to B.
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It is to be noted that (4-1) applies to a current element. To find the
force on an actual circuit, it is necessary to integrate (4-1) over the length
of the current-carrying conductor, which for a steady current must form
a closed loop or circuit.

X 4-4. The Force per Current Element, or Magnetic Flux Density B.
A conductor of length dl with a current I possesses a current moment
given by I dl. That is,

I dl = current X length = current moment

The dimensional relation for current moment is QL/T.

In electrostatics the electric field intensity E is defined as the force per
unit charge. In magnetic situations the magnetic flux density B is
defined as the force per current moment. Thus,
North pole~ B if ¢ = 90° we have, from (4-1),

Np—s F dF force

/i = Idl ~ current moment (4-2)

The unit for B is the newton per ampere-meter
or, as will be shown later, the weber per square
. meter.

Manger;%t;;ed Electric charge, positive and negative, can

be separated. The poles of a magnet, how-

I ever, cannot be separated (see Chap. 5).

Il  South pole Although as a consequence an isolated mag-

/ netic pole is not physically realizable, its effect

may be approximated by confining our atten-

tion to the region close to one pole of a very

long, magnetized needle. Thus, as suggested

in Fig. 4-6, the north pole of a long, magnetized needle, when introduced

in a magnetic field, will be acted on by a force F. This force is propor-
tional to B and to the strength of the pole, or

Fia. 4-6. Long magnetized
needle in magnetic field.

F = BQ.. newtons (4-3)

where Q,, = pole strength. The pole strength Q,, has the dimensions of
current moment (see Chap. 5) and is expressed in ampere-meters.
Dividing by Qu,

F _ force

S Q. pole (4-4)
where B = force per pole (newtons/amp-meter)
F = force (newtons)
Q.. = pole strength (amp-meters)
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Thus, B can be regarded either as the force per unit current moment or as
the force per unit pole. The relation of (4-1) is analogous to that in
Sec. 1-6 for the electric field intensity E or force per unit charge. That is,
F force
2 =0 T (4-5)

where E = field intensity (newtons/coulomb)

F = force (newtons)

Q = electric charge (coulombs)

Because of the analogy between (4-1) and (4-3), B might appropriately
be called the magnetic field intensity. However, it is customary to call it
the magnetic flux density.!

4-5. The Flux Density Produced by a Current Distribution. Mag-
netic fields are produced by electric currents (or their equivalent). The
basic relation for the magnetic flux density at a point P as produced by a

current-carrying element (see Fig. 4-7) is

I dlsin 8
dB = k=—=3° (4-6)

where dB = infinitesimal flux density at
point P
k = constant of proportionality

I = current in element
Fic. 4-7. The flux density at I’ dl = length of element
due to a current clement is 6 = angle between current direc-

iven by the Biot-Savart rela- . .
%ion ( 4_;')_ tion and radius vector to P

r = distance from element to P
The quantity k is a constant of proportionality given by

= 2
ir

where u = permeability of the medium. By dimensional analysis of
(4-6) we find that u has the dimensions of flux per current divided by
length. It will be shown in Sec. 4-15 that inductance has the dimensions
of flux per current. Therefore permeability has the dimensions of
inductance divided by length. The mksc unit for permeability is the
henry per meter.t The permeability of vacuum is designated uo, and
has a value of
4w X 1077 henry/meter

1 It is also sometimes called the magnetic induction. For a detailed discussion of
magnetic units see, for example, Erik ITallén, Some Units in the Giorgi System and the
C.G.8. System, T'rans. Roy. Inst. Techn. (Stockholm), No. 6, 1947.

t Recall that permittivity € has the dimensions of capacitance per length and is
expressed in farads per meter.



148 ELECTROMAGNETICS [CHap. 4

The permeability of air and also of most nonferrous materials is nearly the
same as for vacuum.

It is assumed in (4-6) that the medium has a uniform permeability.
In effect this restricts us to nonferrous media, for which u is nearly equal
to uo (see Table 5-1).

Introducing the value for k in (4-6), we obtain

Biot-Savayt law Wl disin 0 |

dB = —F——— 4-7)
P 4xr?
Equation (4-7) is often referred to as the Biot-
Savart law. The direction of dB is everywhere
normal to the element of length dl, as suggested
in Fig. 4-7. Infact, dB forms circular loops con-
centric with dl, as suggested in Fig. 4-1a.

In case we wish to know B at a point P, as in
Fig. 4-8, due to a current I in a long, straight or
curved conductor contained in the plane of the
page, we assume that the conductor is made up of
elements or segments of infinitesimal length dl con-
nected in series. The total flux density B at the
point P is then the sum of the contributions from
all these elements, and is expressed by the integral
of (4-7). Thus

F1c. 4-8. Construction
for calculating flux den-
sity B at a point P due
to a current / in a long ul Sin, 0

conductor. B =22
4r r?

dl (4-8)

where B = flux density at P (newtons/amp-meter)

p = permeability of medium (henrys/meter)
I = current in conductor (amp)
dl = length of current element (meters)

r = distance from element to P (meters)
6 = angle measured clockwise from the positive direction of cur-
rent along dl to direction of radius vector r extending from dl
to P
The integration is carried out over the length of the conductor.

Both (4-8) and (4-1) constitute the basic magnetic field relations as
stated in a simplified scalar form. These relations are restated in more
general forms in later sections.

X 4-6. Magnetic Flux y,.. The magnetic flux density B or force per
pole is also a measure of the density, or number, of magnetic flux lines
passing per unit area through a surface normal to the lines. Hence the
total flux or number of lines through a given area is equal to the product
of the area and the component of B normal to it. Thus, referring to
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Fig. 4-9, we have
V¥m = BA cos a 4-9)

where ¥ = magnetic flux through area A!
B = magnitude of the magnetic flux density B
a = angle between a normal to the area A and the dirertion of B
It is assumed in (4-9) that B is uniform over the area A.
Dimensionally we have

Magnetic flux density X area = magnetic flux
or
~ Force % area — force X length _ mechanical moment
Current X length current current
Thus, magnetic flux has the dimensions of mechanical moment per cur-

rent. The dimensional symbols for magnetic flux (y..) are ML2/QT.

Magnetic
flux lines

-
P i Jig- 2N

T A R

Fia. 4-9. Flux lines and area A.

The mkse unit for magnetic flux is the weber. Hence

Newtons , _ hewton-meters
X meters? = -

— . = webers
Ampere-meter ampere

For the flux density B we have

. flux webers
Flux density = —— or 2
area meter

Thus, the magnetic flux density B can be expressed in webers per square
meter as well as in newtons per ampere meter.

Instead of flux lines it is frequently more convenient to imagine that
there are tubes of magnetic flux, in the same way that tubes of electric
flux are often more convenient than lines of electric flux (see Sec. 1-18).
A tube of magnetic flux is defined as an imaginary tube having walls every-
where parallel to B and with a constant total magnetic flux y,, over any
cross section. The requirement that the flux over any cross section of a
tube be a constant is a necessary consequence of the fact that B is parallel
to the sides of the tube so that the flux over the side walls is zero.

! The subscript m is used to distinguish magnetic flux () from electric flux (¢).
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If B is not uniform over an area, the simple product (4-9) must be
replaced by a surface integral so that, in general, we have

¥m = [[ Bcosads (4-10)

where ds = infinitesimal element of surface area
B = magnitude of B
a = angle between normal to ds and the direction of B
The integration is carried out over the surface through which we wish to
know the total flux ..
Equation (4-10) can also be written as a scalar or dot product. Thus,

¥n = [[B.ds (4-11)

where ¢, = magnetic flux (webers)
B = magnetic flux density (webers/meter? or newtons/amp-
meter)
ds = a vector with direction normal to the surface element ds and
a magnitude equal to the area of ds (meters?)

4-7. Magnetic Flux over a Closed Surface. The flux tubes of a static
electric field originate and end on electric charges. On the other hand,
tubes of magnetic flux are continuous, that is, they have no sources or
sinks. This is a fundamental difference between static electric and mag-
netic fields. To describe this continuous nature of magnetic flux tubes,
it is said that the flux density B is solenoidal. Since it is continuous, as
many magnetic flux tubes must enter a volume as leave it. Hence, when
(4-11) is carried out over a closed surface, the result must be zero, or

¢.B .ds =0 (4-12)!

This relation may be regarded as Gauss’s law applied to magnetic fields
{compare with (1-59) for electric fields].

It follows, in the same manner as shown for J in Sec. 3-13, that the
divergence of B equals zero. That is,

V-B=0 (4-13)

Both (4-12) and (4-13) are expressions of the continuous nature of B,
(4-12) being the relation for a finite volume and (4-13) the relation at a
point.

4-8. The Flux Density Produced by an Infinite Linear Conductor.
The flux density B at a distance R from a thin linear conductor of infinite
length with a constant current I can be readily obtained by an applica-
tion of (4-8). This case is one of considerable interest since the flux
density at a distance R from a long, straight wire is nearly the same as
for an infinitely long conductor provided that R is small compared with

1 The symbol ¢ indicates an integral over a closed surface.
8
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the length of the wire. It is assumed that the conductor diameter is
sufficiently small compared with R so that it can be neglected.

The geometry is shown in Fig. 4-10. With the current I as indicated,
B at the right of the wire is into the page. This is according to the right-
hand rule. Since dlsin 9 = rdf and R = rsin 6, (4-8) in this case
becomes

B=t ["1gg_ Bl /tsinod() (4-14)
4 o T irR 0

where the integration is between the angles § = 0and 8 = =, that is, over
the entire length of an infinite wire. Integrating (4-14), we have

_ ul |7 _ nl
T 4xR [0 cos 0] 4rR 2 =)
or
- H -
B = 3R (4-16)

where B = flux density (webers/meter? or newtons/amp-meter)

p = permeability of medium (henrys/meter)

I = current in conductor (amp)

R = radial distance (meters)
Equation (4-16) gives the flux density at a radius R from an infinite (or
very long) linear conductor carrying a current /. It is assumed that the
conductor is in a medium of uniform permeability u.

I i
B (inward)
l
= -— —
6=0 a 7
R
1 ¥4 I
¥~ Infinite linear
conductor 1 2

! i i
! i i
F16. 4-10. Construction for finding flux F1e. 4-11. Force between
density B ncar a long, straight wire. two long parallel conductors.

4-9. The Force between Two Linear Parallel Conductors. Consider a
length of two very long parallel linear conductors separated by a distance
R as in Fig. 4-11. The conductors are situated in air and are in a region
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free from fields. Assume now that conductor 1 carries a current I and
conductor 2 a current I’ in the opposite direction. The flux lines due to
conductor 1 are into the page at conductor 2. Applying the reasoning of
Sec. 4-2 (see Fig. 4-1), it follows that there is a force to the right on con-
ductor 2 and a force to the left on conductor 1. That is, the conductors
are repelled. If the currents were in the same direction, the forces would
be reversed and the conductors would be attracted.

Let us now calculate the magnitude F of the force on a length [ of con-
ductor 2. From (4-1) we have

F=r3ﬁw=rm (4-17)

where I’ = current in conductor 2

B = flux density at conductor 2 produced by current [ in con-
ductor 1
Introducing the value of B from_ (4-16) gives
_ ﬂoI r
F = o l (4-18)
where F = force on length [ of conductor 2 (newtons)
I = current in conductor 1 (amp)
I’ = current in conductor 2 (amp)
R = separation of conductors (meters)

uo = permeability of air = 4r X 107 henry/meter
Since (4-18) is symmetrical in I and I’, the force on a length I of con-
ductor 1 is of the same magnitude as the force F on conductor 2.
Dividing (4-18) by ! yields the force per unit length on either conductor

as
F uoll’

1 2xR (4-19)
If I’ = I, and introducing the value for u,, (4-18) becomes
2
F=2X 10‘7% (4-20)

Example. Two long parallel wires separated by 2 em in air carry currents of 100
amp. Find the force F on 1 meter length of a conductor.
Solution. Evaluating (4-20) for these conditions,

F = 0.1 newton =~ § oz avoirdupois

4-10. The Flux Density Produced by a Current Loop. As another
application of the flux density relations of Sec. 4-5, let us derive an expres-
sion for the flux density produced by a single current loop. As a simpli-
fication the problem will be restricted to finding B at points on the loop




SEC. 4-10] MAGNETIC FIELD OF A STEADY CURRENT 153

axis. Let the loop be in the z-y plane with its center at the origin, as in
Fig. 4-12, so that the z axis coincides with the loop axis. The loop has a
radius R and current / and is situated in air.

At the point P on the loop axis the infinitesimal flux density dB pro-
duced by an infinitesimal element of length dl of the loop is, from (4-7),

_ ul dlsin 6
B =212 (4-21)

where 8 = angle between d! and radius vector of length r. It is assumed
that the loop is in a medium of uniform permeability u. The direction of
dB is normal to the radius vector of length r, that is, at an angle ¢ with
respect to the loop or z axis.

Loop axis — z dB,
A
B}
P/ 90°

nN
<

di’ £ \}/

Loop with
current I

5
=0
Fi6. 4-12. Construction for finding flux density B on axis of current loop.

The component dB, in the direction of the z axis is given by

dB, = dB cos £ = dBi: (4-22)

From Fig. 4-12 we note that

6 = 90°

dl = Rd¢

r=+R?+2*
Introducing these values into (4-21) and substituting this value for dB
in (4-22), we have

(AT (4-23)

dB. = 4x(R? + 231
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The total flux density B, in the z direction is then the integral of (4-23)
around the entire loop.

The element dl also produces a component of flux density dB, normal
to the axis to the loop. Integrating this component for all elements
around the loop yields zero because of symmetry. This may be seen by
noting that the normal component dB, of any element of length dl is
canceled by the normal component of the diametrically opposed element
dl'. Hence, B, equals the total flux density B at the point P as given by

o ulR? o ulR?
B =8 = e o [, 1% = sRT T oy (4-24)

The point P is at an axial distance z from the center of the loop. At
the center of the loop, z = 0, and

ul

B=§Tc

(4-25)
where B = flux density at center of loop (webers/meter?)

p = permeability of medium (henrys/meter)

I = current in loop (amp)

R = radius of loop (meters)

4-11. The Vector, or Cross Product. A linear current-carrying con-

ductor placed in a uniform magnetic field experiences a force ¥ on a
length [ of conductor that is given, from (4-1), by

F = IBsin ¢ L 'dl = IBlsin ¢ (4-26)

where F' = force (newtons)
I = current in conductor (amp)
B = flux density of field (webers/meter?)
l = length of conductor (meters)
¢ = angle between I and B
Equation (4-26) is a scalar equation and relates only the magnitudes of
the quantities involved. The force F is perpendicular to both I and B.
For example, let the conductor be normal to a uniform magnetic field of
flux density B as in Fig. 4-13a. If the current in the conductor is flowing
out of the page, it produces flux lines, as indicated, so that the flux
density is increased below the wire and weakened above. The resulting
force is therefore upward, as suggested in Fig. 4-13b.
Relating the directions to the coordinate axes as in Fig. 4-14a, we have
F in the positive z direction when I is in the positive z direction and B in
the positive y direction. If the direction of I is not perpendicular to the
direction of B but is as shown in Fig. 4-14b, the force F is still in the posi-
tive z direction with a magnitude given by (4-26), where ¢ equals the
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el o~ O\ TE
(e ) |
N, /
\___/

(a)

_v
Conductor
\\:g//——

(b)

I1a. 4-13. loree F on eurrent-earrying eonduetor in uniform magnetic field.

z (a)

Fia. 4-14. Relation between current direction, field direction, and foree.

angle measured from the positive direction of I to the positive direction of
B (counterclockwise in Fig. 4-14b). With ¢ measured in this way, the
force F is in the positive z direction if sin ¢ is positive.

Although with this convention concerning directions (4-26) is definite
and unambiguous, a more concise and elegant method of expressing the
relation is by means of the vector, or cross product.

The cross product of two vectors is defined as a third vector whose magnitude
i3 equal to the product of the vector magnitudes and the sine of the angle
between them. The direction of the third vector is perpendicular to the plane
of the two vectors and in such a sense that the three veclors form a right-handed
set.
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For example, the cross product of A into B means that the resulting
vector C is in the direction that a right-handed screw! would advance if
rotated in the same direction as when A is turned toward B. The cross
product of A into B is written

AxB=C (4-27)

If A is in the positive x direction and B in the positive y direction, then C
is in the positive z direction as in Fig. 4-15. These three vectors form a
right-handed set. (No physical significance is here attached to A, B,
and C.)

w{!
-

z
Fic. +-15. Ax B = C. Fic. 4-16. Illustration for
Example 1.

Example 1. Vector A has a magnitude of 2 units and is in the positive r direction,
while vector B has a magnitude of 3 units and is in the positive y direction as shown in
Fig. 4-16. That is,

A=i2
and
B =3

where i and j are unit vectors in the z and y directions, respectively. What is the
resultant vector C equal to the cross product A x B?
Solution. The magnitude of C is given by

C = ABsin ¢ = (2)(3) 8in 90° = 6

The angle ¢ from A to B is, in this example, equal to 90°.

The direction of C is at right angles to the plane containing i and j or in the z
direction. Furthermore, a rotation from i into j would cause a right-handed screw
to advance in the positive z direction. The direction of C is therefore in the
positive z direction, and this is indicated by the unit vector k. Accordingly, the cross
product of A and B is

AXxB = (id) x (jB) = kAB sin 6§ = k68in 90° = k6 =C

! A right-handed screw advances in the direction of the thumb of Fig. 4-2 when the
screw is turned in the direction of the fingers.
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If A is not perpendicular to B, the angle ¢ is not 90° and sin ¢ is less
than unity (Fig. 4-17). In general, the cross product of A into B is
therefore given by

AxB =nABsin¢ =C (4-28)

where n is a unit vector normal to the
plane containing A and B and ¢ is the
angle between A and B. The magnitude
of Cisgiven by ABsin ¢ and isrepresented
by the area of the rectangle in Fig. 4-17.

In writing the scalar, or dot, product of
two vectors (Sec. 1-10) the order is imma-
terial. Thus,

F1a. 4-17. Example of cross prod- A-B=B-A

uct (A x B) where A and B are
not normal to each other. The dot product is said to obey the com-

mutative law since the order of the oper-

ation can be reversed without affecting the result.
On the other hand, the cross product does not obey the commutative

law since
AxB=—-BxA
Therefore, if
AxB=C
then
BxA=-C

Example 2. Work out the relations for the cross products of the unit vectors i, j,
and k of the rectangular coordinate system.

2

Fra. 4-18. Examples of cross products of unit vectors.
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Solution. The vector products are as follows:

ixi=(1)(1)sin0° =0

ixj=k(1) (1)s8in 90° = k (see Fig. 4-18a)
ixk = —j

jxi= —k (see I'ig. 4-18b)

ixj
ixk
kxi
kxj= ~—i
kxk =0

X 4-12. Magnetic Field Relations in Vector Notation. Making use of the
vector product, (4-1) may now be expressed® (see Fig. 4-19) in a more
general form as

(4-29)

-

[ I I |
[=]

e

dF = I(dl x B) (4-30)

where dF = vector indicating magnitude and direction of force on ele-
ment of conductor (newtons)

I = scalar magnitude of current in conductor (amp)

dl = vector whose magnitude (|dl|) equals the length dl of the
conductor element and whose direction is in the positive
direction of the current (meters)

B = vector indicating magnitude and direction of the flux density
(webers/meter?)

x
FiG. 4-19. dF = I(dl x B). F16. 4-20. Relation for finding B at a point P due
to a current / in a conductor of any shape.

Equation (4-30) combines in one expression the relations between both
the magnitudes and the directions of the quantities involved, whereas
(4-1) related only the magnitudes.
! For a volume distribution of current we have
dF = (J x B) dv (4-31)

where dF is the force on the volume element dv at which the current density is J.
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For a linear conductor of length 1 in a uniform field B, (4-30) becomes
F=1I(1xB) (4-32)

Equation (4-8) gives the magnitude of the flux density at a point as
produced by a current / in a straight or curved conductor contained in a
single plane. A more general relation applying to a conducting wire of
any shape, as in Fig. 4-20, can be stated with the aid of the vector product
as follows,

B = Z_fr / BXR (4-33)

where B = flux density at P (webers/meter?)
p = permeability of medium (henrys/meter)
I = current in conductor (amp)
a; = unit vector pointing in the positive direction of the current
at element dl of conductor (dimensionless)
a, = unit vector pointing from element dl to point P (dimension-
less)
r = distance from dl to P (meters)
dl = infinitesimal element of length of conductor! (meters)
The integration in (4-33) is carried out over the length of conductor under
consideration.
If the current is distributed throughout a volume, the flux density B is

given by
B=£ / / / J X8 dy (4-34)

where J is the current density in a volume element dv at a distance r.

Equations (4-30) and (4-33) are the basic magnetic ficld relations. If
B is eliminated between these equations, an equation can be obtained
that expresses the force between two current elements (see Prob. 4-16).

4-13. Torque on a Loop. Magnetic Moment. When a current loop is
placed parallel to a magnetic field, forces act on the loop that tend to
rotate it. The tangential force times the radial distance at which it acts
is called the forque, or mechanical moment, on the loop. Torque (or
mechanical moment) has the dimensions of force X distance and is
expressed in newton-meters.

! Note that dl = |d1| = |a, dl|, where dl equals an infinitesimal vector element
of length pointing in the direction of the current. Thus, another way of writing
(4-33) is

wl [ dl xa,

B=E r?

(4-33a)
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Consider the rectangular loop shown in Fig. 4-21a with sides of length
[ and d situated in a magnetic field of uniform flux density B. The loop
has a steady current [ as suggested in the figure. According to (4-30) the
force of any element of the loop is

dF = I (dl x B) (4-35)

If the plane of the loop is at an angle 8 with respect to B, as indicated in
the cross-section view of Fig. 4-21b, the tangential force is

F, = |F| cos 8 =IBcos/3lel = [Blcos g (4-36)
The total torque on the loop is then
T = 2F, % = IBld cos § (4-37)

But ld equals the area A of the loop; so
T =1ABcos B (4-38)

According to (4-38) the torque is proportional to the current in the loop,
to its area, and to the flux density of the field in which the loop is situated.

Axis of”
rotation

(a) (d)

F1a. 4-21. Rectangular loop in field of uniform flux density B.

Now the product I A in (4-38) has the dimensions of current X area and
is the magnetic moment of the loop. Its dimensional symbols are QL2/T,
and it is expressed in amperes X square meters. Let us designate mag-
netic moment by the letter m. Then!

m=1IA (4-39)
and

T = mB cos 8 (4-40)
or

T = mBsin y (4-41)

where ¥ = angle between normal to plane of loop and direction of B (see
Fig. 4-21b). If the loop has N turns, the magnetic moment m = NIA.

1 Although the loop in Fig. 4-21 has a rectangular area, the relation m = I A applies
regardless of the shape of the loop area.
P
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If the magnetic moment is regarded as a vector m with direction a,
normal to the plane of the loop and with its positive sense determined by
the right-hand rule (fingers in direction of current, thumb in direction of
a,), the torque relation of (4-41) can be expressed in a more general form

using the vector product.

where T

Thus

T=mxB (4-42)

torque on loop (newton-meters)

m = a,m = a,/A = magnetic moment of loop (amp-meters?)
B = flux density of field in which loop is situated (webers/meter?)
The torque T is considered to be a vector coinciding with the axis of

rotation of the loop as given by m x B. The direc-
tion of the torque on the loop is obtained by turning

=0
+Q m into B.
y —F When v = 90°, (4-41) becomes
m = z (4-43)
Axi§ l B

Thus the magnetic moment of a loop is proportional

F -Q, to the torque, or mechanical moment, on the loop per

— B unit of magnetic flux density. Magnetic moment,
Fia. 4-22. A bar

magnet has a mag-
netic moment Qul.

then, has the dimensions not only of current X area
but also of mechanical moment per magnetic flux den-

sity. That is,

mechanical moment
magnetic flux density

Magnetic moment = = current X area

A current loop is equivalent in its effect to a short magnetized bar or
magnetic dipole. This is discussed in more detail in Chap. 5. It may
be noted here, however, that the maximum torque on a bar magnet of
pole strength Q,, and length [ (see Fig. 4-22) is

Lo QuB

T =2Q.B 5 (4-44)

Equating this to the maximum torque on a loop from (4-38), we have

14 = Q. (4-45)

The magnetic moment of a current loop is /A4, so that for a bar
magnet to be equivalent to the loop its magnetic moment @l must be
equal to /4.

4-14. The Solenoid. A helical coil, or solenoid, is often used to
produce a magnetic field. Let us calculate the flux density for such a coil.
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Let the coil consist of N turns of thin wire carrying a current /. The
coil has a length | and radius R (Fig. 4-23a). The spacing between turns
is small compared with the radius R of the coil. A cross section through
the solenoid is shown in Fig. 4-23b. If the spacing between turns is
sufficiently small or if the wire is replaced by a thin conducting strip of
width I/N, and with negligible spacing between turns as in Fig. 4-23c,
one may consider that the current in the coil produces a current sheet
with a linear current density K = NI/l amp per meter.

P

/B

~~ Axis

N turns

(a)

(b)

o 0 0 06 0 0 0 0o 0 O O

4‘ (c)

F1a. 4-23, Solenoidal coil.

To find the flux density B at the center of the solenoid, let a section of
the coil of length dz, as in Fig. 4-23¢c, be regarded as a single turn loop
with a current equal to

Kdz = NTI dz (4-46)

From (4-24) the flux density dB at the center of the solenoid due to this
loop of length dx at a distance x from the center is

_ __#NIR*
— 2l(R? + %)
The total flux density B at the center of this coil is then equal to this
expression integrated over the length of the coil. That is,

po VIR [
a 21 1/2 (R2 + xz)i

dB dx (4-47)

(1-48)
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Performing the integration,
_ uNT
Vit £ T
If the length of the solenoid is much greater than its radius (I>> R),
(4-49) reduces to

(4-49)

_ NI _
=t =

where B = flux density (webers/meter?)
u = permeability of medium (henrys/meter)
N = number of turns on solenoid (dimensionless)
I = current through solenoid (amp)

B pK (4-50)

! = length of solenoid (meters) d
K = sheet current density (amp/meter) Top
Equations (4-49) and (4-50) give the flux view B
density at the center of the solenoid. By d
changing the limits of integration in (4-48) to
0 and ! we obtain the flux density at one end !
of the coil (on the axis) as ‘ | Single
NI 7 turn
B=_£° - . ; B
2VR + I (4-51) Side %zl A
For I > R this reduces to Al B
NI 1 Axis of
which is one-half the value at the center of the \Stilf}rsr"e
coil as given by (4-50). xl
Let us now calculate the maximum torque S

tending to rotate a solenoid placed in a mag- Fio. 4-24. Solenoid in feld
netic field of uniform flux density. Thetorque of yniform flux density B.
is maximum when the solenoid axis is normal

to the direction of B asin Fig. 4-24. The axis of rotation is at the center
of the solenoid. Assuming that the solenoid is of square cross section,
the tangential force F; on a single straight segment of 1 turn is given by

F. = IBd cos 8 (4-53)

The net torque due to 2 turns, one at a distance x above the center of the
solenoid and another at an equal distance below, is then

T = 4IBrd cos 8 (4-54)

But cos 8 = d/2r; so
T = 2Id’B = 2IAB (4-55)
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where A = d? = area of solenoid. This torque is independent of the
distance of the turns from the center of the solenoid. Ilence, the total
torque on the solenoid is equal to (4-55) times N/2, where N is the
number of turns. This is the maximum torque, T... That is,

Tw=NIAB = m'B (4-56)

where m’ = NIA = magnetic moment of solenoid. The magnetic
moment of the solenoid is thus N times the magnetic moment of a single
loop of the same area A and carrying the same current /.

For a bar magnet to be equivalent to a current solenoid its magnetic
moment Q..I would need to be equal to the moment N/A for the solenoid.

4-15. Inductors and Inductance. An inductor!® is a device for storing
energy in a magnetic field. It may be regarded as the magnetic counter-
part of a capacitor, which stores energy in an electric field. As examples,
loops, coils, and solenoids are inductors.

The lines of magnetic flux produced by a current in a solenoidal coil
form closed loops as suggested in Fig. 4-25. It is said that each flux line

>

[}
i

o T

N turns

F16. 4-25. Solenoid and flux lines.

that passes through the entire solenoid as in the figure links the current
N times. If all of the flux lines link all of the turns, then the total mag-
netic flux linkage A (capital lambda) of the coil is equal to the total mag-
netic flux ym through the coil times the number of turns, or

Flux linkage = A = Ny, weber-turns (4-57)

Since the number of turns N is dimensionless, flux linkage has the same
dimensions as flux.

By definition the ¢nductance I. of an inductor is the ratio of its total
magnetic flux linkage to the current / through the inductor, or
Ny, A

=7 (4-58)

L

! An inductor is sometimes called an “induectance.” However, it is usual practice
to refer to a coil or solenoid as an inductor. This makes for uniform usage when we
speak, for example, of an inductor of 1 henry inductance, a capacitor of 1 uf capacitance,
or a resistor of 1 ohm resistance.
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This definition is satisfactory for a medium with a constant perme-
ability, such as air. As discussed in Chap. 5, however, the permeability
of ferrous media is not constant, and in this case the inductance is defined
as the ratio of the infinitesimal change in flux linkage to the infinitesimal
change in current producing it, or

dA
L = 71‘ (4'59)
In linear media both (4-58) and (4-59) lead to the same result. The
inductance as given in (4-59) is discussed further in Sec. 7-16.
Inductance has the dimensions of

Magnetic flux (linkage)
Electric current

The unit of inductance is the henry. Thus,

webers  newton-meters
Henrys = = :
ampere ampere
The dimensional symbols for inductance are ML2/Q%.

4-16. Inductance of Simple Geometries. The inductance of many
inductors can be readily calculated from their geometry. As examples,
expressions for the inductance of a long solenoid, a toroid, a coaxial line,
and a two-wire line will be derived in this section.!

In Sec. 4-14 it is shown that the flux density B at the end of a long
solenoid is less than at the center. This is caused by flux leakage near
the ends of the solenoid. However, this leakage is mostly confined to a
short distance at the ends of the solenoid (see Prob. 4-10) so that if the
solenoid is very long, one may, to a good approximation, take B constant
over the entire interior of the solenoid and equal to its value at the center
(4-50). The total flux linkage of a long solenoid is then

-~ HNUA

A= Nym = NBA = *= (4-60)
Thus, the inductance of a long solenoid (see Fig. 4-25) is
2
L oA _uNd (o)

I l

1 For the inductance of other geometrical configurations see, for example, F. E.
Terman, “Radio Engineers’ Handbook,” MeGraw-Hill Book Company, Ine., New
York, 1943, pp. 47-64; E. B. Rosa and F. W. Grover, “Formulas and Tables for the
Calculation of Mutual and Self-inductance,”’ Nall. Bur. Standards (U.S.) Bull., Jan. 1,
1912, pp. 1-237; and ‘ Radio Instruments and Measurements,” Natl. Bur. Standards
(U.8.) Circ. 74, pp. 242-296.
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inductance of solenoid (henrys)

flux linkage (weber-turns)

= current through solenoid (amp)
permeability of medium?® (henrys/meter)
number of turns on solenoid (dimensionless)
cross-sectional area of solenoid (meters?)

{ = length of solenoid (meters)

g
=
[}
b= ]
[«
o~
]

B2 o~
nu

Example. Calculate the inductance of a solenoid of 2,000 turns wound uniformly
over a length of 50 em on a cylindrical paper tube 4 ¢cm in diameter. The medium is
air.

Solution. From (4-61) the inductance of the solenoid is

4w X 1077 X 4 X 108 X x X 4 X 104

L 0.5

= 12.6 millihenrys (mh)

If a long solenoid is bent into a circle and closed on itself, a toroidal
coil, or toroid, is obtained. When the
toroid has a uniform winding of many
turns, the magnetic lines of flux are
almost entirely confined to the interior
of the winding, B being substantially
zero outside. If the ratio R/r (see Fig.
4-26) is large, one may calculate B as
though the toroid were straightened
out into a solenoid. Thus, the flux
linkages

= Ny = _ DG ol
A=Nyn=NBA = ok = 9R
Fic. 4-26. Toroid. (4-62)

The inductance of the toroid is then
= % A (4-63)

where L = inductance of toroid (henrys)
u = permeability (uniform and constant) of medium inside coil
(henrys/meter)
N = number of turns of toroid (dimensionless)
r = radius of coil (see Fig. 4-26) (meters)
R = radius of toroid (meters)
Consider next a coaxial transmission line constructed of conducting

'1t is to be noted that this relation applies only for the case where the medium
has a uniform, constant permeability as is the case for air or vacuum (for which
u = po = 4x X 1077 henry /meter).
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cylinders of radius a and b as in Fig. 4-27. The current on the inner con-
ductor is I. The return current on the outer conductor is of the same

Longitudinal section Inner Cross
conductor section

AT SIS S AATBIAIN AV AL CT aAAADA P 180T ST TIN  :

———d——]

Outer
conductor

Fig. 4-27. Coaxial transmission line.

magnitude. The flux density B at any radius r is the same as at this
radius from a long straight conductor with the same current, or

_ul
B(atr) = Sar (4-64)
The total flux linkage for a length d of line is then d times the integral

of (4-64) from the inner to the outer conductor, or

b b
- _dul dr _dul | b

A= d/; Bdr = fﬂ: . 7 = o lna (4"65)
Hence, the inductance of a length d of the coaxial line is

A pd, b
L = I = o In “ henrys (4-66)
or the inductance per unit length (L/d) for the coaxial line is given by
L & b ;
4= 2 In a henrys/meter (4-67)

where u = permeability (uniform and constant) of medium inside coaxial
line (henrys/meter)
b = inside radius of outer conductor
a = outside radius of inner conductor (in same units as b)
It is assumed that the currents are confined to the radiia and b. Thisis
effectively the case when the walls of the conductors are thin.!
Evaluating (4-67) for an air-filled line (u = p,), we have
L b

a- 0.21n = 0.46 log% microhenrys/meter (uh/meter) (4-68)

! At high frequencies the currents are effectively confined to these radii by the skin
effect so that (4-67) is also applicable at high frequencies to a solid inner conductor and
a thick outer conductor of inner radius b.
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Let us consider finally a two-wire transmission line as illustrated in
Fig. 4-28. The conductor radius is a, and the spacing between centers
is D. At any radius r from one of the conductors the flux density B
due to that conductor is given by (4-64). The total flux linkage due to

Longitudinal section Cross section
B il T e [ R @ (§)<2a
r
Conductors< ——B
- e X "“‘“I -,'_';;;_,_(.-' e SN2 @
k__ d I (inward)

Fic. 4-28. Two-wire transmission line.

both conductors for a length d of line is then d times twice the integral
of (4-64) from a to D, or

D D
A=2d/ Bdr=“1’rf’/ d—'=“’d1n§ (4-69)

T T
Hence, the inductance of a length d of the two conductor line is

A ud . D

L = T = ? lnz (4-70)
or the inductance per unit length of line (L/d) is given by
b i In b henrys/meter 4-71)
d a
where u = permeability (uniform and constant) of medium (henrys/
meter)
D = spacing between centers of conductors

a = radius of conductors (in same units as D)
It is assumed that the current is confined to a radius r. This is
effectively the case when the walls of the conductors are thin.!
Evaluating (4-71) for a medium of air (¢ = uo), we have
Ié =04 11117) = 0.92 logl?) wh/meter (4-72)
X 4-17. Ampére’s Law and H. According to (4-16) the flux density B
at a distance R from a long, straight conductor (Fig. 4-29) is given by

1
B =1 73
2R (4-73)
1 Equation (4-71) also applies to solid conductors at high frequencies. For the
case of solid conductors and steady or low-frequency currents, see for example, E. W.
Kimbark, ‘“FElectrical Transmission of Power and Signals,” John Wiley & Sons, Inc.
New York, 1949, Sec. 2-11.
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where 4 = permeability of medium

I = current in wire
If B is now integrated around a path of radius 12 enclosing the wire once,
we have

_ul _u _
¢B cdl = 2TR¢dl = pp 2wk = ul (4-74)
or
FB-dl =ul (4-75)

The relation (4-75) holds not only in the example considered but also in
all cases where the integration is over a singly closed path. It is to be
noted that the line integral of B in (4-75) has the
dimensions of force per pole multiplied by distance
or of work per pole. Hence the line integral of B
around the closed path in Fig. 4-29 yields the work B
per unit pole required to move one pole of a long /
magnetized needle around this path. I y

Equation (4-75) may be made independent of the
medium by introducing the vector H defined as !
follows: 1

H = g (4-76) Fic. 4-29. Relation of

K® flux density B to cur-
rent 1.

According to (4-76) H and B are vectors having
the same direction. This is true for all isotropic media.

The quantity H is called the magnetic field H, the vector H, or simply
H.f It has the dimensions of

Flux density _ current / / >~ __Q_
Permeability = length TL
The dimensional symbols for H are @/7TL. In mksc units H is expressed

in
Webers/meter? ~ _ amperes

‘Webers/ampere-meter meter
Introducing (4-76) into (4-75) yields
SH-d =1  Appare’s lan @)

where H = H vector (amp/meter)
dl = infinitesimal element of path length (meters)
I = current enclosed (amp)

t The term ‘““magnetic field intensity’’ has been used for H. This name, however,
is not particularly appropriate since it implies that H is analogous to the electric
field intensity E, which is not the case since in electric fields E enters in the force rela-
tions, whereas in magnetic fields it is B that enters the force expressions. The name
“magnetizing force’ is sometimes used for H.
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This relation is known as Ampére’s law. In words it states that the line
integral of H around a single closed path is equal to the current enclosed.!
In the case of a single wire the

H integration always yields the cur-
H rent [ in the wire regardless of the

path of integration provided only

that the wire is completely en-

closed by the path. As illustra-

(a) tions, integration around the two
paths at (a) and (b) in Fig. 4-30

(®
(d)
H . X~ 8 .
yields /, while integration around
1ef the paths at (¢) and (d) yields zero
Wi = since these paths do not enclose
the wire.

) (d) Example 1. The magnitude of H at

Do aradius of 1 meter from a long linear
Fia. 4-30. Line integral of H around closed st i 1 cr/ean, | Diml

paths equals current in wire when paths 5 .

. . eurrent in the wire.
enclose the wire, (a) and (), but is zero Solution. According to (4-77) the
when the paths do not enclose the wire, )
(c) and (d).

I
®
Wire

current in the wire is given by
I = FHdl = H X 2xR = 2x amp

Example 2. A solid cylindrical conductor of radius 2 has a uniform current
density. Derive expressions for H hoth inside and outside of the conductor. Plot
the variation of H as a function of radial distance from the center of the wire.

Solution. See Fig. 4-31a. Outside
the wire (r > R)

Wire

Current

I
H = 3o (4-78) out of page

(a)

Inside the wire the value of H at a
radius r is determined solely by the cur-
rent inside the radius r. Thus, inside
the wire (r < R)
ll

H = % (4-79)
where I’ = I(r/R)* = current inside
radius . Therefore, inside the wire

5
FiG. 4-31. H inside and outside of current-
(4-80) earrying wire (IXxample 2).

1
H = 2R
At the surface of the wire r = R, and (4-80) equals (4-78). A graph of the variation
of H with r is presented in Fig. 4-31b.

1 Equation (4-75) is another form of Ampére’s law and may be stated thus: The
line integral of B around a single closed path is equal to the permeability of the
medium times the eurrent enclosed.
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X 4-18. Ampére’s Law Applied to a Conducting Medium and Maxwell’s
Equation. Ampére’s law as discussed in the preceding section may be
applied to the more general situation of a path inside of a conducting
medium. Thus, suppose that the origin of the coordinates in Fig. 4-32
is situated inside a conducting medium of large extent. Let the current
density in the medium be J (amperes per square meter) in the positive
y direction as shown. According
to Ampére’s law the line integral
of H around the rectangular path
enclosing the area A (Fig. 4-32) is
equal to the current enclosed. In
this case, the current I enclosed by

2

the path is given by the integral of J
the normal component of J over the A -
surface A, or v
Path
¢H-d1 =[ J.ds =1 (481)
A

This expression is a generalization

of Ampére’s law and constitutes

one of Maxwell’s equations in 7%

integral form. The corresponding FFG. 4-32. Rcctm.lgular path in medium
. . . . 2 with current density J.

equation in differential form in-

volves the curl of H and is discussed in Sec. 4-23.

X 4-19. Magnetostatic Potential U and MMF F. According to (3-28¢)
the line integral of the static electric field E, around a closed path is zero.!
That is,

SE.-dl =0 (14-82)

Fields of this type are called lamellar and can be derived from a related
scalar potential function. Thus, E,, which is due to charges, is derivable
as the negative gradient of a scalar potential V, or

E.= —-%VV (4-83)

Between any two points along a path in the field we have
JiBea =1 -V, (4-84)

Although the static magnetic field is not lamellar, since magnetic flux
lines form closed loops, it can be treated like a lamellar field if paths of

! The symbol E. indicates explicitly a static electric field as produced by electric
charges, as distinguished from an emf-generating field E,, as, for example, in a battery.
In Chaps. 1 and 2 only E. fields were considered, and so for simplicity no subseript
was used, it being understood in those chapters that E means E..
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integration are entirely outside of current regions and do not enclose any
current. Thus, when no current 1s enclosed,

FH-dl =0 (4-85)

Under this condition, H can then be derived from a scalar magnetic
potential function (or magnetostatic potential) /. That is,!

H=-vU (4-86)

Between any two points along a path in the field we have
/XZH-dl=U1—Uz (4-87)

The scalar potential U has the dimensions of

Current

————— X distance = current
Distance

Hence, U is expressed in amperes.
Returning now to a further consideration of electric fields, we have
learned from (3-29) that if emfs exist in a path of integration,

FE-dl = (4-88)

where E = total field (volts/meter)
U = total emf around path (volts)
In a magnetic field we may write an analogous relation, based on
Ampére’s law, that when current is enclosed by a path of integration

FH-dl=1=F amp (4-89)

where the quantity F, called the magnetomotance, magnetomotive force,
or mmf, is equal to the current enclosed. If the path of integration in
(4-89) encloses a number of turns of wire each with a current I in the same
direction, (4-89) may be written

SH-dl=NI=F amp-turns (4-90)

where N = number of turns of wire enclosed (dimensionless)
I = current in each turn (amp)
The product N1 is expressed in ampere-turns, and the mmf in this case has
the same units.
The above relations for electric and magnetic fields are summarized in
Table 4-1.
1Since V+D = 0 in charge-frce regions, we obtain Laplace’s equation vV = 0.

In a magnetic field we always have v -+ B = 0; s0 if no current is enclosed, we may
write Laplace’s cquation in the magnetostatic potential as v2U = 0.
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TABLE 4-1
COMPARISON OF ELECTRIC AND MAGNETIC FIELD RELATIONS

Relation Electrostatic fields l

Closed path SE -dl =0 ' SH:dl =0. No current enclosed
| (Fig. 4-33)
Gradient of scalar | E, = —VV volts/meter H = —vU amp/meter. In current-
potential free region
Integral between | /12E¢ edl =V, — ngolts' /12H *dl = Uy — U;amp. Path
two points
I _

Closed path , SE -dl = U volts |FH-dl =1 =F amp. Path en-

Magnetostatic fields

| avoids all currents

closes currents (Fig. 4-34a)
or

FH-dl = NI = F amp-turns.
Path encloses current N times (Fig.
4-34b)

(a)

Path of
integration

Wire\. o

I ®

(b)

Path ot \Wires
integration of loop

Fre. 4-33. Path of integration en-  Fre. 4-34. (a) Path of integration enclosing

closing no current (see Table 4-1). current I. (b) Cross section through 5-turn
loop showing path linking the 5 turns (see
Table 4-1).

When the integration is restricted to current-free regions and to paths
that are not closed, the potential U and mmf F are the same. The
requirement that the path not link the current can be met by introducing
a hypothetical barrier surface in the magnetic field through which the
path is not allowed to pass. For example, imagine that a long conductor
normal to the page as in Fig. 4-35 carries a current I. Let a barrier
surface be constructed that extends from the wire an infinite distance to
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Barrier
surface

Path of integration
Fi1G. 4-35. Conductor and barrier surface.

the left as suggested in the figure. Now the integral of H from points 1
to 2 yields the current / provided 2 and 1 are separated by an infinitesimal
distance. Thus

/IZH-dl=U,—U2=F,—Fz=I amp (4-91)

The requirement of (4-85) is still satisfied since the line integral of H
around the closed path 1231 that avoids crossing the barrier is zero.
That is,

H-d=0 (4-92)

1231

Both U and F are scalar functions. The potential U is independent of
the path of integration, that is, U is a single-valued function of position.
This follows from the fact that the path of integration never completely
encloses the current and is restricted to current-free regions. If a cur-
rent-carrying wire is encircled more than once by the path of integration
(multiple linking), the result is called the mmf F. It is multiple-valued
since its magnitude depends on the number of times the path encircles
the wire. Hence F is nof, in general, independent of the path of
integration.

In Fig. 4-35 the barrier surface represents a magnetic equipotential
plane. If point 1 is taken arbitrarily as zero potential, then the potential
of point 2 on the other side of the barrier is /. Hence, we may construct
two surfaces as in Fig. 4-36, one with U = 0 and the other U = I. Other
equipotential surfaces are also drawn in Fig. 4-36 for U = /4, U = 1/2,
and U = 3I/4.f The equipotential surfaces are everywhere normal to
H and extend from the surface of the wire to infinity. They do not extend
into the interior of the wire. However, if the equipotential surfaces were
extended into the wire (shown dashed) and were everywhere normal to

t Potential is a measure of work per some quantity. The potential U is propor-
tional to the work per unit magnetic pole required to move a magnetic pole from one
point to another.
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1
U=TI

U=%1

Equi—
potentials

U=41
Fra. 4-36. Current-carrying wire showing magnetic equipotentials (radial) and field
lines (circles).

le

Je -

H‘/////////7/[(//7//‘{[*1 @

K. Solenoid N turns

I

Fia. 4-37. (a) long solenoid. (b) Solenoid bent into toroid.

H, they would meet at a point called the kernel where B and /1 are both
zero.

Example. Find the value of H in a long solenoid of length [ and of N turns, carry-
ing a current / (see Fig. 4-37a), by evaluating the mmf. The diameter of the solenoid
is small compared with .

Solution. For a long solenoid the field inside is essentially uniform and will not be
appreeiably ehanged if the solenoid is bent into a eircle and elosed ovu itself, forming a
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toroid (as in Fig. 4-37b). Then, integrating H once around a path entirely inside the
coil (at a radius R), we link all of the turns obtaining the mmf, or

FH dl = F = NI (4-93)
Let the magnitude of H inside be H;. Then (4-93) becomes
SFH-dl = H; £dl = H2xR
=Hil =NI (4-94)
or
NI

H; = T = K (4-95)

The identical result was obtained in (4-50), as may be noted by dividing (4-50) by u.

4-20. Field Cells and Permeability. In Sec. 4-16 the inductance was
calculated for a unit length of transmission line consisting of two parallel

[Equipotentials
L7, ¥ T T
! WO Metal
:I % H f ! strips (b)
Transmission i
line cell ’ LEEIEIES

F1a. 4-38. Parallel-strip transmission line (a) in perspective and (b) in cross section.
(c¢) Magnetic field cell (or transmission-line cell) with strips of width equal to spacing.
conducting wires. Let us consider now a transmission line of two flat
parallel conducting strips as in Fig. 4-38a and calculate its inductance
per unit length. The strips have a width w and a separation . Each
strip carries a current I. The transmission line is shown in cross section
in Fig. 4-38b. The field between the strips is uniform, except near the
open sides. If equipotentials are drawn in the uniform field region with
a spacing equal to the separation ! of the line, we may regard the line as
being composed of a number of field-cell transmission lines (or transmis-
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sion-line cells) arranged in parallel. Each transmission-line cell has a
square cross section as in Fig. 4-38¢.
The current in each strip of a line cell is

=21 (4-96)

8|~

where [ = current in entire line.
Thus, across one cell

Hl =T (4-97)
Now the total flux linkage per length d of line is given by
A = Bld (4-98)

The inductance of this length of line is then

A Bl
Lo=" =" = ud (4-99)
or the inductance per unit length is
L
7" =u (4-100)

For air p = py = 4r X 10 -7 henry per meter so that a field-cell
transmission line with air as the medium has an inductance per unit
length of 4r X 107 henry per meter
or 1.26 uh per meter.

Thus, the permeability u of a
medium may be interpreted as the
inductance per unit length of a trans-
mission-line cell filled with this me-
dium. Another interpretation is
given in Sec. 5-19.

Example. Using the field-cell concept,
calculate the inductance and also capaci-
tance per unit length of the coaxial trans-
mission line shown in cross section in Fig.
4-39. The line is air-filled.

| S‘:l:ﬁ?':'h LG ilnl(,iuCt,anc,e per unit  conductor Field cell
UL 5 U0 G P TN BT 287 Fi1g. 4-39. Coaxial transmission line
L _1Lo _ po divided into 9.15 field-cell lines in
I=nd — henrys/meter (4-101) parallel.

where L,/d = inductance per unit length of transmission-line cell
n = number of line cells in parallel
o = permeability of air = 4x X 10~7 henry /meter (= 1.26 zh/meter)
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Dividing the space between the coaxial conductors into curvilinear squares, we
obtain 9.15 line cells in parallel. Thus

L 1.26
E = 'm = (.138 ph/meter

As a check, we note that the radius of the outer conductor is twice the radius of the
inner so that from (4-68) we get

g = 0.46 log 2 = 0.138 uh/meter

which is the same result as obtained above. Equation (4-68) is exact for this case.
The accuracy of the cell method depends on the accuracy of construction of the
curvilinear squares. lowever, the cell method (or field-mapping method) is applica-
ble to conductor configurations that might be very difficult to handle mathematically.
For a further discussion of the mapping of magnetic fields see Sec. 5-20.
The capacitance per unit length of the coaxial line of Fig. 4-39 is given by
dg - n%" = neg farads/meter (4-102)
where Co/d = capacitance per unit length of line cell (same as capacitance per unit
length of field-cell capacitor; see Sec. 2-27)
n = number of line cells in parallel
¢ = permittivity of air = 8.85 uuf /meter

Thus
dg = 9.15 X 8.85 = 81 uuf/meter
Using the exact relation of (2-82),
C 242
7l = m = 81 uuf/meter

which is the same as obtained by the cell method.

4-21. Energy in an Inductor. Inductance L has the dimensions of
magnetic flux per current (force X distance/current?). Thus, the prod-
uct LI? has the dimensions of energy since

Force X distance
Current?

X current? = force X distance = energy

Hence we might properly expect the relation for the energy stored in an
inductor to involve the product L2, and in Sec. 7-14 it will be demon-
strated that this is the case. More specifically the magnetic energy Wn
stored by an inductor is given by

Wa = gLI? joules (4-103)

Now, from (4-58), L = A/l so that the energy stored by an inductor can
be variously expressed as

Wo=irnrr=Lar =18 oules (4-104)
=3 M=3T

DO =
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where W,, = energy stored (joules)
L = inductance of inductor (henrys)
I = current through inductor (amp)
A = flux linkages (weber-turns)

4-22. Energy Density in a Static Magnetic Field. The energy
possessed by an inductor is stored in its magnetic field. Let us find the
density of this energy as a function of the flux density B. Consider a
small unit cube of side length Al and Al
volume Ay = Al® situated in a mag-
netic field as in Fig. 4-40a. Let thin sheets
metal sheets be placed on the top and —_ / .
bottom surfaces of the cube, each with . - J )
a current A/ as indicated. Also let all Alxg
of the surrounding space be filled with —
such cubes as suggested by the cross (a)
section of Fig. 4-40b. The directions
of the current flow on the sheets are
indicated by the circles with dot (cur-
rent out of page) and circles with cross

ALz '!)'/Alf 7 Metal

(current into page). Metal =" ___ . g
Each cube can be regarded as a Sheets}\
magnetic field-cell transmission line of —_——
length (into page) of Al. Each cell has /P
an inductance purrent ” ——>B (b)
AL = p Al (4-105)
T o© o
The field H is related to the current
Al by —B
H Al = Al (4-106)

. g is. f F16. 4-40. (a) Small cubical volume
The energy stored in each cell is, from in & magnetic field. (b) Cross seo.

(4-104), tion through region filled with many
AW, = § AL Al? joules (4-107) such cubes.
Introducing the value of AL from (4-105) and Al from (4-106) into
(4-107) yields

AW, = $uH? AR = guH? Ay (4-108)
Dividing (4-108) by Av and taking the limit of the ratio AW../Av as Av
approaches zero, we obtain the energy per volume, or energy densily, wm

of the magnetic field at the point around which the cell of volume Av
shrinks to zero. Thus

wa = lim 27 = 1. (4-109)
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Since H = B/u, we have

1 1 B .
Wy = ; pll? = _ — joules/meter? (4-110)
2 2
where ww = energy density of magnetic field (joules/meter?)
p = permeability of medium (henrys/meter)
H = H field (amp/meter)
B = flux density (webers/meter?)
The total energy IV, stored by an inductor is then the integral of (4-110)
over the entire extent of its magnetic field, or

2
Path of pole W, = ! w,dv = 1 [ B dv joules
2 Ik 2/)o b

around

conductor (4-111)

B 4-23. Curl. Equation (4-75) relates theline
integral of B around a finite closed path, or loop,

Conductor to ul, where [ is the current enclosed by the
loop. The line integral of B may be regarded

M:%’L%‘::“ as the work per unit pole required to move a

pole around the closed path. For example,
the work per unit pole required to move a long
magnetized needle once around a wire, as in
Fig. 4-11, equals u/, where [ is the current in
the wire. The other pole of the needle is at a
large distance and in a field that is substanti-
ally zero.

Although relations involving finite paths are
useful in circuit theory, it is frequently desira-
ble in field theory to he able to relate quantities
i at a point in space. Curl, which is discussed in

T this section, is such a point relation and can be
i regarded as an extension of Ampére’s law so
l that it applies at a point.

Fig. 4-41. Long magnetized Consider a small plane area As in a conduct-

needle near current-carrying  jp o medium with a current Al flowing through
conductor. the area and normal toit. The meaning of the
curl of B may then be expressed as follows: T'he magnitude of the curl of B is
equal to the ratio of the work per unit magnelic polé (carried around the
boundary of the area) lo the area As as As approaches zero. Further, the curl
of B is a veclor with a direction normal to the plane of the area. Thus, the
magnitude of the curl of B is given by

fim F2° A _ g AL

= uJ 4-112
a0 A8 a0’ Bs  F ( )
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where J = current density = AI/As as As — 0
Al = current through area As
The direction of the curl of B is normal to the area As.

Equation (4-112) gives the total curl of B if J is normal to the plane of
the loop. If J is not normal to the plane of the loop, (4-112) gives only
one component of the total curl expression, which will be developed in
the following paragraphs.

Suppose that the rectangular coordinate system shown in Fig. 4-42 is
situated inside of a conducting medium of large extent. Let the current
density in the medium be J and the component of the current density in

adB
B”+ _azLA‘
—_—

4 3
IB
B,T Az ") TBI+—6—"A”
P v
ay 2

—_— v

By

r
Fia. 4-42. Construction for finding z component of eurl of B.
the z direction J,. The permeability is uniform and equal to u. The
total current AJ through the small area Ay Az (Fig. 4-42) is then

J. Ay Az = Al (4-113)

This current produces a magnetic field. Let the flux density along edge
1 of the area at the y axis be B, and the flux density along edge 4 at the
z axis be B,. If the field is not uniform, its value at edges 2 and 3 may
be expressed to a first approximation by

9B,
B, + -—ay Ay (4-114)
and
dB, ' =
B, + FS Az (4-115)

as indicated in Fig. 4-42,

Consider now the work performed per unit magnetic pole carried
around the periphery of the area. The total work is equal to the sum of
the increments of work along each of the four edges. Each increment of
work equals the force per unit pole (B) multiplied by the distance the
unit pole moves. The total work will be calculated per unit magnetic




182 ELECTROMAGNETICS [Cuar. 4

pole moved around the path in a counterclockwise direction, as shown in
Fig. 4-42. This is the positive direction around the path since a right-
handed screw rotated in this direction will advance in the positive z
direction. The work to move the unit pole along edge 1 is B, Ay and

along edge 2 is
(B, + L3 Ay) Az

The work along edge 3 is
9B, Az) Ay

—(,

the minus sign indicating that the motion is against the field. The work
along edge 4 is — B, Az. The total work equals the sum of these four
increments and this is equal to x times the total current through the area
as given by (4-113). Thus,

Az

¢B-dl=B,,Ay+BxA2

— B, Ay — % Ay Az — B, Az = pJ. Ay Az (4-116)

The terms with B, Ay and B, Az cancel, leaving only the differential
terms. Thus

$B.a1 = (aB aB”) 0165 = ol 0 (4-117)

Let us now divide by the area Ay Az and take the limit of the ratio

Work done around periphery of area
Area

as the area approaches zero. By definition this is the curl of B. In this
instance it is the x component of the curl of B, written curl, B. There-
fore, we have

lim 2= = =222 22 — ,J. = curl, B (4-118)

Each term in (4-118) has the dimensions of permeability times current
density.

Equation (4-118) would be the complete differential expression for curl
Bif the current flows only in the z direction. However, if the current also
has components flowing in the y and z directions, curl B also has com-
ponents in these directions. Let us then derive the differential expres-
sions for these components, considering next the component in the
y direction. Assume now that the coordinate system of Fig. 4-43 is set
up inside of a conducting medium of large extent as before and that the
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component of the current density in the y direction is J,. The total
current through the small area Az Az is J, Az Az. Let the components
of the magnetic flux density along the edges of the area be as indicated in
Fig. 4-43. The work accomplished per unit magnetic pole moved

2z
a8,
Bt 5 A
z/z
ae| 2
3 1 5
|
]
B,+—;—‘:1Azr

Az
Y4,

r
F1a. 4-43. Construction for finding y component of curl of B.

around the periphery of the area in the positive direction is then

¢B.d1 = B.Az+B,Ax+%AzAx
3B,
— B, Az — 9z Ax Az — B; Ax = uJ. Az Az (4-119)
This reduces to
dB. 9B, B
¢B-dl _(az = ax>AxAz = uJ, Ax Az (4-120)

Dividing by the area of the loop Az Az and taking the limit of the ratio as
the area approaches zero yields the component of the curl in the y direc-
tion. Thus

lim £B: 4

| 9B. _ 3B,
ar a0 AT Az

=curl, B = "oz Fye

In a similar way we obtain the differential expression for the com-
ponent of curl B in the z direction! as

8B, 0B. _
curl, B = o oy ud . (4-122)
Adding vectorially the three rectangular components of curl B as given by

(4-118), (4-121), and (4-122), we have

=y (4-121)

curl B =icurl, B 4 jcurl, B + k curl, B (4-123)
or
_.(3B. 8B\ , .(8B. _ 4B, 8B, _ aB,) "
curl B =i (tﬁ az) +j ( 9z a:::) + k 9z 2y (4-124)

1 The student should construct the figure and confirm the result.
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The curl of B may also be expressed in determinant form as

i j k
3 3 3 ‘
crl B=| o 5 (4-125)
'B. B, B,

In these equations, curl B is equal to u times the vector sum of the
component current densities in the three coordinate directions so that we
have

curl B = u(i/: + jJ, + kJ,) = uJ (4-126)
or
curl B = uJ (4-127)

Dividing (4-127) by u, we have
curl H = J (4-128)

Writing out the components for curl H and J,

_ L f9H. oI\ | . (oM. o, oH, oM.
c‘”lH—‘<a§ az>+’<az 6x>+k<6x '5y>

=i, +jJ, + kJ, (4-129)

It is to be noted that (4-129) yields three scalar equations obtained by
equating the components in each of the three coordinate directions.

The curl of a quantity is a point function. Therefore, according to
(4-128) the curl of H has a value only at points where the current density
J is not zero. At a point inside of a wire carrying a steady current, curl
H equals the current density J at the point, but at a point outside the
wire curl H = 0.t

The curl of H may be indicated in different ways. Three shorthand
notations for the curl of H are:

curl H
vxH
rot H

All three have identical meanings. Thus
curl H=VxH=rotH =] (4-130)

The notation rot H is often used in the European technical literature.
The form v x H involves the cross product of the operator V and the

t In the case of time-changing fields, as discussed in Chap. 7, there may be a “dis-
placement’’ current at points outside the wire, and consequently curl H need not he
zero in this situation.
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vector H. In the next section it will be demonstrated that this cross
product is equivalent to (4-129).

4-24. Vv x H. Referring to the discussion on the cross product in
Sec. 4-11, let us show that the cross product of the operator Vv into H,
written V x H, is equal to the curl of H. To do this, we write Vv and H
out in terms of their three rectangular components and take the indi-
vidual products. Thus

( +Jay+k )x(l” + i, + ki)

A h q .8 L 0H,
—1x1 ax +Jxl_8y +kxl.62

VxH

. .O0H . Lol .ol
+1><Jax”+1x1 ”+kaaz"

oH,
2

+1xk-- +jx I;'-i-kxka (4-131)

Introducing the values of the cross products for the unit vectors asgiven
in (4-29), Eq. (4-131) becomes
ol. | .oH. H 611,, all,

3% 4k & s i

v = —
xH ay oz ox dy

(4-132)

Collecting terms,

oH, oH)\ . .(oH. oIl oH, oH.
VxH = (ay az)+1(az )+k af_ay) (4-133)

This is identical with the expression for curl H in (4-129). We conclude,
therefore, that the cross product of V into H equals curl H or, more
generally, that the operator V x applied to vector function yields the curl
of that vector. The operator V x may, accordingly, be regarded as the
curl operator.

4-25. Examples of Curl. In this section four examples are given to
illustrate the significance of curl.

Example 1. A rectangular trough carries water in the z direction. A section of
the trough is shown in Fig. 4-44a, the vertical direction coinciding with the z axis.
The width of the trough is b. Find the curl of the velocity v of the water for two
assumed conditions:

a. The velocity is everywhere uniform and equal to a constant, that is,

v = iK (4-134)

where i = unit vector in positive z direction (dimensionless)

K = a constant (meters/sec)
A top view of the trough is shown in Fig. 4-44b with the positive z direction downward.
The fact that the velocity v is constant is suggested by the arrows of uniform length
and also by the graph of v, as a function of y in Fig. 4-44c.
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b. The velocity varies from zero at the edges of the trough to a maximum at the
center, the quantitative variation being given by

v = iK sin "—b” (4-135)

where K = a constant (meters/sec)

b = width of trough (meters)
The sinusoidal variation of v is suggested by the arrows in the top view of the trough
in Fig. 4-44¢ and also by the graph of v. as a function of y in Fig. 4-44f.

Vertical
or z axis

O—y Top view y
of trough

Vxv

0O y— b
Fig. 4-44. Water trough for Example 1.

Solution. a. Equation (4-134) may be reexpressed
v =iy, (4-136)

where v, = component of velocity in z direction. Thus v, = K. Now the curl of v
has two terms involving v;, namely, dv:/dz and dv./3y. Since v, is a constant, both
terms are zero and hence v x v = 0 everywhere in the trough (see Fig. 4-44d).
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b. Equation (4-135) may be reexpressed

v =iy,
Thus

v: = K sin %” (4-137)

Since v: is not a function of 2, the derivative dv,/9z = 0. However, v, is a function
of y so that

F =3 cos (4-138)
and we have for the curl of v
VXV = —a.%’ cos"—b” (4-139)

where a, = unit vector in positive z direction (k might also be used, but a, is con-
venient here to avoid confusion with the constant K). That is, at the left of the
center of the trough the curl of v is in the negative z direction (downward in Fig.
4-44a), while to the right of the center it is in the positive z direction. The variation
of the curl of v across the trough is presented graphically in Fig. 4-44g.

A physical interpretation of the curl of v in the above example may be
obtained with the aid of the curl-meter, or paddle-wheel, device! of Fig.
4-45. If this device is inserted with its shaft vertical into the trough with
the assumed sinusoidal variation for the velocity of the
water (Example 1b), it would spin clockwise when at the
left of the center of the trough (position 1 in Fig. 4-44e)
and would spin counterclockwise when at the right of the
center of the trough (position 2 in Fig. 4-44¢), correspond-
ing to negative and positive values of curl. At the center
of the trough (position 3 in Fig. 4-44¢) the curl meter would
not rotate since the forces on the paddles are balanced.
This corresponds to the curl of v being zero. The rateof g;q. 4-45.
rotation of the paddle-wheel shaft is proportional to the Paddle wheel
curl of v at the point where it isinserted. Thus, it would for measuring
rotate fastest near the edges of the trough. At any point U™
the rate of rotation is also a maximum with the shaft vertical (rather than
inclined to the vertical), indicating that V x v isin the z direction. Itis
assumed that the paddle wheel is small enough so that it does not appre-
ciably affect the flow and also that it is small enough to indicate closely the
conditions at a point.

If the curl meter with shaft vertical is inserted in water with uniform
velocity, as assumed in Ex. lg, it will not rotate (curl v equals zero).

~~Holder

Example 2. A rectangular trough of width b carries water in the z direction. The
velocity is uniform over half the trough (0 < y < b/2) and equal to v, and also uni-
form over the other half (b/2 < y < b) but equal to a smaller velocity v.. At the

! H. H. Skilling, ‘“Fundamentals of Electric Waves,” 2d ed., John Wiley & Sons,
Inc., New York, 1948, p. 24,




183 ELECTROMAGNETICS [Cuar. 4

center of the trough (y = b/2) the velocity changes abruptly from v, to vo. The
variation of the velocity as a function of y is suggested by the arrows in the top view
of the trough in Fig. 4-46a and also is indicated in the graph of Fig. 4-46b. Find the

curl of v.
o v Solution. The curl of v is zero either side of the
! center of the trough since the velocity is a constant
o] ! in these regions. However, at the center of the
Top view ! h the velocity ch f That i
of trough ! l 1 (a) troug e velocity changes from v, to v,. at 18,
! F < b
H or o Vzr=v
. v, (9!{- v, y<3 !
: N b
0 % b }‘Ol'y>-2-: Uy = Vg

If this change is perfectly abrupt, dv./dy is infinite
at the center of the trough and hence v X v is

Y Y n: infinite. It is more plausible to suppose that v
) ) () changes at a rapid but finite rate at the center of
the trough. Thus, if we assume v. to vary at a

]
. Ay constant rate over a small zone of width Ay at the
V=, H center of the trough, as indicated by the dashed
2y [~ |‘ ! line in Fig. 4-46b, we have in this zone that
(¢)
Uxv 7 Pz _ Nt (4-140)
0 y— b 9y Ay

Fi1g. 4-46. Trough with water Therefore in this zone
of two different velocities for
vz v, — Vs

Example 2. VXV = —a, a—y— = a.Ty— (4-141)
That is, in the zone of width Ay at the center of the trough the curl of v has a constant
magnitude of (v, — v2) /Ay and is zero either side. This variation is shown graphically
in Fig. 4-46¢c. The curl of v in the center zone has the direction of the positive z axis.
This may also be noted from the fact that a curl meter at the center rotates counter-
clockwise (see Fig. 4-46a) and a right-handed screw turned in this manner advances
in the positive z direction (out of the page).

Example 8. Referring to Fig. 4-47a, a cylindrical cup of radius R is rotated
around its vertical, or z, axis f rps. The cup contains water. Find the curl of the
velocity v of the water for two assumed conditions:

a. No slippage, so that the water has an angular veloeity vy that is proportional to
the radius r. Thus

v = 2nfr meters/sec (4-142)

This type of variation is suggested by the arrows in the top view of the cup in Fig.
4-47b and also is shown by the graph of Fig. 4-47c.

b. Slippage is present such that the water has an angular velocity vg that is inversely
proportional to the radius r. Thus,

ve = 2—:! meters/sec (4-143)
This type of variation is illustrated by Figs. 4-47¢ and f.

Solution. a. This problem has cylindrical symmetry, and hence it is most con-
venient to use curl as expressed in eylindrical coordinates (see Appendix; also Fig. 4-56
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Vertical or
z axis

Cup

ve (¢) ve k N

47 f~s v
Vxv (d) xv Vxv=0 (9)

r
Fi1G. 4-47. Water rotating in a cylindrical cup (I$xample 3).

with Prob. 4-30). Only two terms involve the 6 component of the vector. The first
one (dvy/9z) is zero since vy is assumed not to vary in the z direction. The second one
i8

1 3(rve)
r ar

(4-144)

where a, = unit vector in positive z dircction. Introducing the value of vy given in
(4-142), we have for the curl of v

VXV =adrf (4-145)

Hence, the curl of v is constant throughout the cup. This is indicated by the graph
in Fig. 4-47d. The magnitude of ¥ x v is 4xf, and its direction is that of the positive
z axis. A curl meter introduced in the cup (with axis normal to the water surface)
would rotate counterclockwise and at the same rate regardless of its position in the
cup.
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b. Introducing (4-143) in (4-144), we obtain

212G _ o
r

VXV =
x or

(4-146)
Hence, the curl of v is zero throughout the cup as indicated in Fig. 4-47g. A curl
meter introduced (with axis normal to the water surface) would not rotate. In
general, any vector which is an inverse function of the radius (as v in this problem)
has zero curl.

Example 4. Consider finally a current-carrying conductor of radius R as shown in
eross section in Fig. 4-48a. The current is uniformly distributed so that the current

Wire

) 1 (a)
H,

7
1 HO 27'
_— 2%R
~a I
TR oA )
H, |
[}
1
GO r=R r—>
i
]
[}
)
J (¢)
VxH
00 r=R r—

F1a. 4-48. Conducting wire (Example 4).

density J is a constant. Taking the axis of the wire in the z direction,
J=aJ =a, XN amp/meter (4-147)
~R?
where I = total current in conductor (amp). Find the curl of H both inside and
outside of the wire.

Solution. The variation of H as a function of radius was worked out for this case
in Example 2 of Sec. 4-17. The variation found for H is shown in the graph of Fig.
4-48b. Since H is entirely in the 6 direction, we have

H = a;Hy (4-148)

where Hy = I /2xr outside conductor
Hy = (I/2xR?) r inside conductor
Using the expression for curl in cylindrical coordinates (see Appendix), we have

vxH =0 outside conductor (4-149)
VxH =a, kN = J inside conductor (4-150)
~R?
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Hence, the curl of H has a value only where there is current, being a constant in the
conductor and zero outside (see Fig. 4-48c).

X4-26. Maxwell’s First Curl Equation. The relation derived from
Ampére’s law in Sec. 4-23 that

VxH = J (4"151)l

is one of Maxwell’s equations. Equation (4-151) is a differential expres-
sion and relates the field H to the current density J at a point. The
corresponding expression in integral form, as given by (4-81), relates H
around a finite closed path to the total current passing through the area
enclosed.

Thus far, we have encountered three of Maxwell’s four equations apply-
ingata point. TheyareV.D = p,V.B = 0,and (4-151). The fourth
relation, (7-60), is also an equation involving curl so that (4-151) may be
referred to as Maxwell’s first curl equation and (7-60) as the second.

X 4-27. Summary of Operations Involving V. We have discussed four
operations involving the operator V (del or nabla), namely, the gradient,
divergence, Laplacian, and curl. Although the Laplacian can be resolved
into the divergence of the gradient (V% = Vv . Vf), this operation is of
such importance as to warrant listing it separately. Let us summarize
these operations with their differential equivalents in rectangular coordi-
nates. Let f represent a scalar function and F a vector function.

Gradient

_wor 9%, .9f of -
gradf—vf—1&+1@+k& (4-152)

Gradient operates on a scalar function to yield a vector function.

Divergence

o _dF. | dF, , oF,
divF =V.F="705+ 3"+ (4-153)

Divergence operates on a vector function to yield a scalar function.

Laplacian

div (grad f) = V - (Vf) = ¥ = :;{ 5‘?;{ g;{ (4-154)

1 Equation (4-151) is a special form of the more general relation given in (7-127).
The more general equation has an additional term involving the displacement cur-
rent density. However, a displacement current is present only for time-changing
fields so that for steady fields, as considered here, (7-127) reduces to (4-151).
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The Laplacian operates on a scalar function to yield another scalar
function.!

Curl
_ _foF. R | .(oF. _ aﬁj,)
curlF—VxF—x(ay 02)+J<az or
oF, oF.
+k (-0? — ay> (4-155)

or

i j k

2 a d

F. F, F,

Curl operates on a vector function to yield another vector function.

X 4-28. A Comparison of Divergence and Curl. Whereas divergence
operates on a vector function to yield a scalar function, curl operates on a
vector function to yield a vector function. There is another important
difference. Referring to the differential relation for the divergence in
(4-153), we note that the differentiation with respect to x is on the x com-
ponent of the field, the differentiation with respect to y is on the y com-
ponent, etc. Therefore, to have divergence the field must vary in mag-
nitude along a line having the same direction as the field.?

Referring to the relation for curl in (4-155), we note, on the other hand,
that the differentiation with respect to z is on the y and z components of
the field, the differentiation with respect to y is on the z and z com-
ponents, etc. Therefore, to have curl the field must vary in magnitude
along a line normal to the direction of the field.?

This comparison is illustrated in Fig. 4-49. The field at (a) is every-
where in the y direction. It has no variation in the z or z directions but
varies in magnitude as a function of y. Therefore this field has diver-

! In rectangular coordinates it is also possitle to interpret the Laplacian of a vector
function as the vector sum of the Laplacians of the three scalar components of the
vector. Thus

VI =iV, + jVvF, + k VIF,

However, in no other coordinate system is this simple interpretation possible.

2 This is a necessary but not a sufficient condition that a vector field has divergence.
For example, the D ficld due to a point charge is radial and varies as 1/r? but has no
divergence except at the charge. If, however, the field is everywhere in the y direction,
as in Fig. 4-49a, and varies only as a function of y, then this field does have divergence.

3 This is also a necessary but not a sufficient condition that a vector field has curl.
For example, the H ficld outside of a long wire varies in magnitude as 1/r and has a
direction normal to the radius vector; yet H has no curl in this region. If, however,
the field is everywhere in the y direction, as in Fig. 4-49b, and varies only a8 a function
of z, then this field does have curl.
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gence but no curl. The field at (b) is also everywhere in the y direction.
It has no variation in the z and y directions but does vary in magnitude as
a function of z. Therefore, this field has curl but no divergence.

Let us now discuss the significance of operations involving v two times.
First consider the divergence of the curl of a vector function. That is,

v-(vxF (4-157)
where F is any vector function given in rectangular coordinates by
F =iF, + jF, + kF,

If we first take the curl of F, we obtain another vector. Next taking the
divergence of this vector, the result is identically zero. Thus

V. (VxF) =0 (4-158)

This may be proved by carrying out the operations indicated. This is
left as an exercise for the reader (see Prob. 4-28). In words (4-158)

z

x (out) y
— — — e —n
— — —
—r —_— —_— —_— —_— —_—
— — — — — e
— —_— —_— -— -— -
— — ——
—fp — ——
— —n —— -~ -—
Vector field with divergence Vector field with curl

(a) (b)

F16. 4-49. Examples of fields with divergenee and with eurl.

states that the divergence of the curl of a vector function is zero. As a
corollary we may say that if the divergence of a vector function is zero,
then it must be the curl of some other vector function.

For example, the divergence of B is always zero everywhere. That is,

vV.-B=0 (4-159)

Therefore, B can be expressed as the curl of some other vector function.
Let us designate this other vector function by A. Then

B=VxA (4-160)
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The function A in (4-160) is called the vector potential and is discussed in
more detail in the next section.

Let us consider another operation involving V twice, namely, the curl
of the gradient of a scalar function f. That is,

vV x (Vf) (4-161)

Taking first the gradient of f and then the curl of the resulting vector
function, the result is found to be identically zero. Thus

V x (Vf) =0 (4-162)

The steps are left to the reader as an exercise (see Prob. 4-29). In words
(4-162) states that the curl of the gradient of a scalar function is zero. Asa
corollary any vector function, which is the gradient of some scalar func-
tion, has no curl.

For example, we recall from (1-33) that the static electric field due to
charges E. is derivable as the gradient of a scalar potential V. Thus

E.= —VV (4-163)
It follows, therefore, that the curl of E, is zero, or
VxE =0 (4-164)

If a vector field has no curl, it is said that the field is lamellar. Thus
the electric field E, is lamellar. The flux tubes of such fields are discon-
tinuous. They originate on positive charges (as sources) and terminate
on negative charges (as sinks). On the other hand, if a vector field hasno
divergence such as B, it is said that the field is solenoidal. Its flux tubes
are continuous, having no sources or sinks.

Finally let us consider the relation (involving V twice) of the diver-
gence of the gradient of a scalar function f. This is the Laplacian of the
scalar function. Thus

V.Vf =V (4-165)

The differential expression for the Laplacian in rectangular coordinates
is given in (4-154). In general, the Laplacian of a scalar is not zero.
For example, the Laplacian of the electric scalar potential V is

ViV = — (4-166)

L]

This is Poisson’s equation (2-149). If the charge density p is zero,
¥V = 0, which is Laplace’s equation.
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4-29. The Vector Potential. According to (4-34) the magnetic flux
density B at a point P produced by a current distribution, as in Fig. 4-50,
is given by

B - ﬁ// Txe 3 @167)

where B = flux density (webers/
meter?)
u = permeability of medium
(uniform) (henrys/meter)
J = current density at volume
element (amp/meter?)
unit vector in direction of
radius vector r (dimen-
sionless)
r = radius vector from vol-
ume element to point P
(meters)
dv = volume element (meters?)
By carrying out the integration over
the entire volume occupied by the
current-carrying conductor the total Frg. 4-50. Construction for finding
flux density B at P due to the cur- flux density B at P.
rent is obtained.
In Sec. 4-28 we noted that since the divergence of B is always zero, it
should be possible to express B as the curl of some other vector. Thus
from (4-160) we can write

a,
Volume element dv
inside conductor

Current-carrying
conductor

B=VxA (4-168)

where A is called a vector potential since it is a potential function that is
also a vector.! If we also make

V-A=0 (4-169)
A is completely defined. Taking the curl of (4-168) yields
VxVxA=VxB=uJ (4-170)

By the vector identity for the curl of the curl of a vector (see Appendix)
equation (4-170) becomes

V(V:A) — VA = uJ (4-171)
Introducing the condition of (4-169), this reduces to
VIA = —uJ (4-172)

1 The potential function V from which the electric field E, can be derived (by the
relation E;, = — VV) is a scalar quantity, and hence V is a scalar potential.
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or in terms of the three rectangular components of A and J
iviA, + jV24A, + k¥4, = —u(i/. +jJ, + kJ,) (4-173)

Equation (4-173) is the vector sum of three scalar equations. Hence,

vaz = —I‘t]z
VA, = —ul, (4-174)
VA, = —ul,

Each of these relations has the same form as Poisson’s equation (4-166)
or (2-149).! Therefore solutions to the three equations of (4-174) are

A, =ﬁr///% v (4-175)

Taking the vector sum of the components for A in (4-175) gives

A= T‘;///%dv (4-176)

According to (4-176) the vector potential A at a point due to a current
distribution is equal to the ratio J/r integrated over the volume occupied
by the current distribution, where J is the current density at each volume
element dv and r is the distance from each volume element to the point
P where A is being evaluated (see Fig. 4-50). If the current distribution
is known, A can be found. Knowing A at a point, the flux density B at
that point is then obtained by taking the curl of A as in (4-168). It is
left as an exercise for the student to show that taking the curl of A as
given in (4-176) yields B as in (4-167) (see Prob. 4-35).

From (4-168) we note that A has the dimensions of

magnetic flux _  force
distance current

Magnetic flux density X distance =

From (4-176) A also has the equivalent dimensions of

current volume

' _ bili
Py Jistance _ permea ility X current

Permeability X

Hence, the vector potential A can be expressed in webers per meter,
newtons per ampere, or henry-amperes per meter. The dimensional
symbols for A are ML/TQ.

1 It follows that (4-172) may be called Poisson’s equation for the vector potential A.
In current-free regions J = 0, and (4-172) reduces to V?A = 0, which is Laplace’s
equation for the vector potential.
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As an illustration of the utility of the vector potential A let us consider
the following example.

Example. Consider a short copper wire of length [ and a cross-sectional area a
situated in air coincident with the z axis at the origin as shown in Fig. 4-51. The

g

r 8¢ R
Line of
P(zy.z2) magnetic flux
¥
| z
\._____—_' 0
Area a r
LI
53 Y

X
Fig. 4-51. Construction for finding the vector potential A and flux density B due to a
short current-carrying wire.

current density J is in the positive z direction. Assume the hypothetical situation
that J is uniform throughout the wire and constant with respect to time. Find the
magnetic flux density B everywhere at a large distance from the wire, using the vector
potential to obtain the solution.

Solution. The vector potential A at any point I” produced by the wire is given by
(4-176), where the ratio J/r is integrated throughout the volume occupied by the wire.
Since we wish to find B only at a large distance r from the wire, it suffices to find A at
a large distance. Specifically the distance r should be large compared with the length
of the wire (r > ). Then, at any point P the distance r to different parts of the wire
can be considered constant and (4-176) written as

A=t /// T de (#-177)

Now ] is everywhere in the z direction and also is uniform. Thus J = kJ,, and

[//Jdv - k/_':;// Jodsdl =k /i’f/zldz (*-178)

where I = J,a = current in wire. Completing the integration in (4-178) and sub-
stituting this result in (4-177), we obtain

A ,k“,°” _

2 = ki, (4-179)
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where A = vector potential at distance r from wire (webers/meter)

k = unit vector in positive z direction (dimensionless)

#o = permeability of air (4x X 107 henry /meter)

I = current in wire (amp)

! = length of wire (meters)

r = distance from wire (meters)
Equation (4-179) gives the vector potential A at a large distance from the wire. It
is everywhere in the positive z direction as indicated by the unit vector k and is
inversely proportional to the distance r from the wire. It is not a function of angle
(¢ or 6 in Fig. 4-51).

Having found the vector potential A, the flux density B is obtained by taking the

curl of A. In rectangular components the curl of A is given by

_ (34 aA\ | . [94: 04, a4, aA,
VXA"(EJ az)+’(az 6z)+k(6z ?y") Co20)

Since A has only a z component, (4-180) reduces to

.04, . 0A.
VXA =i = (4-181)

Now r = v/x* + yt + z2. Therefore

94, _plll 8, 2 1)y _ Molly

oy " ax gy @ YT 4x 1 U
and

My _polld 1y oy _mllz

ar 4x Oz (@* +y* + 27 4x r? (4-183)

Introducing these relations in (4-181) and noting the geometry in Fig. 4-51, we have

_mllf Ly -z)_ woll vzt + gt
VxA 4",( iz2+iz) =y s~ (4-184)
or

B=VxA=uﬂ%%ﬂ (4-185)

where B = magnetic flux density (webers/meter?) at distance r and angle 6
8¢ = unit vector in ¢ direction (see Fig. 4-51) (dimensionless)
6 = angle between axis of wire and radius vector r (dimensionless)
o = permeability of air (= 4x X 107 henry /meter)
I = current in wire (amp)
l = length of wire (meters)
r = distance from wire to point where B is being evaluated (meters)

According to (4-185), the flux-density B produced by the wire is
everywhere in the ¢ direction. That is, the lines of magnetic flux form
closed circles concentric with the z axis. The planes of the circles are
parallel to the 2~y plane. One such line of magnetic flux at a distance »
from the origin is indicated in Fig. 4-51. According to (4-185), B is
also proportional to sin @ and inversely proportional to 2. By way of
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comparison, the vector potential A from which B is obtained is every-
where in the z direction, is inversely proportional to r, and is independent
of angle. The magnitude and direction of both B and A are illustrated in
Fig. 4-52a for points in the y-z plane at a fixed radius r. The vector
potential A is shown by dashed arrows. It is everywhere in the z direc-
tion and of constant magnitude. The flux density B is normal to the
y-z plane, being in the negative z direction at points for which y is positive
and in the positive x direction at points for which y is negative. The flux
density B is a maximum in the z-y plane and is zero at the z axis.

=

(a) (b)

FiG. 4-52. (a) Vector potential A (dashed arrows) and flux density B (solid arrows)
at a large distance in the y-z plane from a short current element. () Corresponding
polar patterns for A and B.

The variation of the magnitude of B and A is also effectively presented
as a function of 6 by a polar diagram, or pattern, as in Fig. 4-52b. Here
the radius vector from the center of the diagram to a point on the curve
is proportional to the magnitude of the quantity at that angle 8 from the
z axis. The B pattern is a figure of eight with a maximum at 8 = 90°,
while the A pattern is a circle. Both patterns are arbitrarily adjusted to
the same maximum value. It is to be noted that although the diagrams
in Fig. 4-52b are shown for the y-z plane, they also apply to any plane
through the origin that is parallel to the z axis or axis of the wire.

Although the result of (4-185) could have been written down almost
directly from (4-167), without using the vector potential explicitly, the
above example serves to illustrate the manner in which the vector poten-
tial can be applied. Employing the vector potential in the above example
is analogous to using a 10-ton steam hammer to crack a walnut. How-
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ever, on many problems of a more difficult nature the vector potential is
indispensable.

4-30. A Comparison of Static Electric and Magnetic Fields. It is
instructive to compare electric and magnetic fields and to note both their
differences and their similarities. A partial comparison is given in this
section, involving relations developed in the first four chapters for static
fields. A comparison of relations for nonstatic fields is given in Sec. 7-25.

In making a comparison it is possible to see certain analogies. For
example, we have noted in electric fields that E is involved in the force

TABLE 4-2
A COMPARISON OF STATIC ELECTRIC AND
MAGNETIC FIELD EQUATIONS

Description of equation | Electric fields Magnetic fields
Force |F = QE |dF = Idlx B
F =Q..B
Basic relations for lamellar v x E, = 0t v:B=20

and solenoidal fields

Derivation from scalar or vec- E, = —vV B=vxA
tor potential
v=21 {24 A=-‘ﬂ’-/ldn
41’!0 R 2 4z Jor
Relations for D and H D = E H = B
I
| 1
D= 2R
v-D=p vxH=]
1 H
Energy density w, = yek - l_Ii
2 u
Capacitance and inductance Q A
C== L=z
vV 1
Capacitance and inductance | C _ . L _
per unit length of a cell | d a—*

Closed path of integration SE-dl =70 ' SH:dl=F = NI
|$FE.cdl =0 | FH:dl = 0 (no current enclosed)

Derivation from scalar poten- [ E. = —~VV H = —vU (in current-free region)
tials [

t E. is the static electric field intensity (due to charges). E (without subscript)
implies that emf-producing fields (not due to charges) may also be present.
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relations, while in magnetic fields B is involved in the force relations.
Hence, B may be considered as the magnetic quantity that is analogous
to the electric field intensity E. Furthermore, in a capacitor D is
directly related to the electric charge on the plates (D = p,) and is inde-
pendent of the medium, while near a long current-carrying wire H is
directly related to the current (H = I/2rR) and is independent of the
medium. Thus, D and H may be regarded as analogous quantities.

In some other instances we may note an analogy of H to E. For
example, the line integral around a closed path of the total electric field
intensity E yields the emf (£E-dl = V), while the line integral of H
around a closed path yields the mmf (§H -dl = F). Furthermore, com-
paring the divergence relations V- D = 0 and V - B = 0 for charge-free
space, we note a mathematical similarity of B to D. If this analogy of H
to E and B to D is pursued, it is possible to achieve a formal, or mathe-
matical, symmetry between many of the electric and magnetic field equa-
tions. However, electric and magnetic fields are fundamentally different,
and the first analogy of B to E and H to D has more physical significance.
Static electric fields are due to electric charge, a scalar quantity, while
static magnetic fields are due to electric current, a vector quantity.

In Table 4-2 many of the electric and magnetic field relations developed
in the first four chapters are summarized. The analogy of B to E and
H to D will be noted in many of the equations, while the other analogy
may be observed in a few of the relations. The first column describes the
nature of the relation, the second column gives the relation for static
electric fields, and the third column gives the corresponding relation or
relations for static magnetic fields. The relations apply to static and
slowly time-varying situations. They also apply in more rapidly time-
varying situations with the exception of those relations involving the curl
or the line integral (H = — VU also does not apply in rapidly time-vary-
ing cases). See Table 7-2 for the corresponding more general relations
that apply in time-varying cases.

PROBLEMS

4-1. A linear conductor carries a current of 100 amp in the positive z direction. If
the flux density everywhere is uniform with a magnitude B = 2 webers/meter? and
has a direction parallel to the z-y plane and at an angle of 45° with respect to the
z axis, find the magnitude and direction of the force on a 2-meter length of the con-
ductor. Ans.: 282.8 newtons in the positive z direction.

4-2. A thin linear conductor situated in air has a current of 10 amp. What is the
flux density produced by a section of the conductor 1 em long at a distance of 2 meters
normal to the 1 em section?

4-3. A current of 100 amp flows in the positive z direction in a long wire coincident
with the z axis as shown in Fig. 4-53. A rigid square-frame loop of 1 turn carries a
current of 10 amp. The loop is in the y-z plane with its center at the origin (see
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& Fig. 4-53). The loop is 1 meter square. Find the
A magnitude and direction of the force on the loop.
Ans.: 8 X 10~4 newton in positive y-direction.

4-4. A thin linear conductor situated in air has a
current of 50 amp. What is H due to a section of
the conductor 2 meters long at a distance of 50 cm
normal to the center of the 2-meter section?

4-5. The flux density B is everywhere uniform and
in the positive r direction. If B = 1 weber/meter?,
find the total flux over a plane area of 2 meters? when
z the area is (a) parallel to the y-z plane; (b) parallel to
A the z-z plane; (c) parallel to the y axis and at an angle

. of 45° with respect to the z axis.
F1a. 4-53. Loop and wire for Ans.: (a) 2 webers; (b) 0; (¢) 1.414 webers.
Prob. 4-3. 4-68. Consider a square area with corners at the
origin (0, 0), and at (z), 0) (0, 1), and (z1, y1). If B normal to the area is given by

B = 3 sin (1 z) 8in (1 y) webers/meter?
z N

find the total magnetic flux over the square area.

4-7. A thin linear conductor of length ! and carrying a current [ is coincident with
the y axis. The medium surrounding the conductor is air. One end of the conductor
is at a distance y, from the origin and the other end at a distance y.. Show that the
flux density due to the conductor at a point on the z axis at a distance z, from the
origin is

_ ol Y3 ~ "
4"11[\/131’ + y3? Vit + yn’]
Note that if the center of the conductor coincides with the origin (—y; = y.) and if
z, > |, the expression reduces to B = uoll/4xz,*.

4-8. Two long thin parallel wires separated by 1 cm in air carry currents of 100 amp
in opposite directions. Find the magnitude and direction of the force on a 5-meter
length of one wire.

4-9. A uniform cylindrical coil, or solenoid, of 1,000 turns is 50 cm long and 5 ¢cm
in diameter. If the coil carries a current of 10 ma, find the flux density (a) at the cen-
ter of the coil; (b) on the axis at one end of the coil; (¢) on the axis halfway between
the center and end of the coil.

4-10. Calculate and plot a graph of B as function of position along the axis of the
solenoid of Prob. 4-9 from the center of the solenoid to a distance of 50 cm beyond
one end.

4-11. A solenoid 20 cm long and 1 ¢m in diameter has a uniform winding of 1,000
turns. If the solenoid is placed in a uniform field of 2 webers/meter? flux density and
a current of 10 amp is passed through the solenoid winding, what is the maximum
(a) force on the solenoid; (b) torque on the solenoid?

Ans.: (@) F = 0; (b) T = »/2 newton-meters.

4-12. Show that the flux density at a point P on the axis of a uniform solenoid is

given by
B=“0M(l _ 91+92)
l 4r

where ©Q; = solid angle subtended from the point P by the left end of the solenoid
(equals 2x if P is at the left end of the solenoid) and ©; = solid angle subtended
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from the point P by the right end of the solenoid (equals 2« if P is at the right end
of the solenoid). Note that at the center of a long slender solenoid @, = Q@ K 4r
80 that B = uo(NI1/l) = uK.

4-13. (a) What is the maximum torque on a square loop of 100 turns in a field of
uniform flux density B = 3 webers/meter*? The loop is 10 cm on a side and carries
a current of 6 amp. (b) What is the magnetic moment of the loop? (¢) What is the
magnetic moment of the solenoid of Prob. 4-11?

4-14. What is the maximum torque on a small coil of magnetic moment 10~4amp-
meter?situated near the center of a long air-filled solenoid of 1,000 turns/meter with a
current of 1 amp?

4-16. What is the magnetic moment of a coil of 10 turns and area of 100 cm? carry-
ing a current of 1 amp?

z
ar
3 dF
\ dll
Current
- element 1
Current
element 2
dlaf
12 v
a,xa,
i

x

F16. 4-54. Relation of current elements for Prob. 4-16.

4-16. Referring to Fig. 4-54, show that the force between the two current elements
situated in air is given by
= woladla Iyl
dF = 4xr?

a; X (az X a,) ¢))

where dF = force on element 1 due to current /; in element 2 (newtons)
uo = permesbility of air (henry/meter)

dl, and dl, = lengths of current elements 1 and 2, respectively (meters)

Iy and I; = currents in elements 1 and 2, respectively (amp)
r = distance between elements (meters)

a; = unit vector in direction of current 7, and in element 1 (dimensionless)
a: = unit vector in direction of current 7, in element 2 (dimensionless)
a, = unit vector in direction from element 2 to 1 (dimensionless)
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Show further that dF = apdF, where dF is given by

[.LoIz dlz I| dl\ sin 92 sin ‘R
dxr?

dF = |dF| =

where 8; = angle between a, and a, (see Fig. 4-54) and 6, = angle between a, and
a: X a,, and
_aix(a:xa)

ar - -
sin @, sin 6,

where ap = unit vector in direction of force dF.

It is to be noted that these equations give the force on element 1 due to the presence
of element 2, but not vice versa. That is, they are not symmetrical with respect to
elements 1 and 2. However, with two closed circuits the force, as given by an integral
of (1), is the same for both circuits. Thus, in the case of actual circuits Newton’s
third law, that to every action there is an equal (and opposite) reaction, is satisfied.

4-17. Two loops are arranged as shown in cross section in Fig. 4-55. If the separa-

tion s is large compared with the size of the

|o= 2T U Loop 2 loops, s.hox.v that the torque 7" on loop 2 due to
i dﬁ _____ loop 1 is given by

i : --—-0 o=t mm’

a9 I T

'l & 1 where m = magnetic moment of loop 1 and

FiG. 4-55. Loops for Prob. 4-17. m' = magnetic moment of loop 2.
4-18. Calculate the inductance of a uniform,

5,000-turn solenoidal coil 50 cm long and of 1 em radius. The medium is air.

4-19. Calculate the inductance of an air-filled toroidal coil of 10 cm? cross-sectional
area with a mean radius of 60 em. The toroid has a uniform winding of 10,000 turns.

4-20. Find H at the center of a circular 100-turn coil 1 meter in diameter situated in
air and carrying a current of 10 amp.

4-21. Two identical 100-turn circular coils 1 meter in diameter have their axes
coincident and are spaced 1 meter apart, forming a ‘“ Helmholtz pair.”” Both carry
10 amp in the same sense. Calculate and plot the variation of H along the axis of
the coils from the center of one coil to the center of the other. Also calculate and
plot the variation of H, along the axis of a single 100-turn coil 1 meter in diameter,
due to a current I in the coil. Let the single coil be situated halfway between the
coils of the Helmholtz pair and with its axis coincident with the axis of the pair. Also
let I have such a value that H at the center of the single coil is the same as H from
the Helmholtz pair at this point. Assume that the coils have negligible cross-
sectional area so that each may be represented by a thin single-turn loop.

4-22. A transmission line consists of two long, thin parallel conductors that carry
currents of 10 amp in opposite directions, The conductors are spaced a distance 23
apart. Draw a field map for a plane normal to the wires. Show bhoth H lines and
lines of equal magnetic potential. Indicate the value of potential for each equipoten-
tial line. Let the line joining the wires be aribitrarily taken to have zero potential.
(Compare this map with Fig. 2-21 for two parallel lines of charge spaced a distance 2s.)

4-28. Neglecting edge effects, calculate the inductance per unit length of a d-c
transmission line consisting of two parallel conducting strips 30 cm wide situated in
air. The separation everywhere between the strips is 2 em.

4-24. An air-filled coaxial d-c transmission line has an inner conductor of circular
cross section (diameter = 3 c¢m) situated symmetrically inside of an outer conductor
of square cross section (side dimension = 5 e¢m). Find the inductance per unit length
of line.
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4-26. A long, straight tubular conductor of circular cross section with an outside
diameter of 5 ecm and wall thickness of 0.5 cm carries a direet current of 100 amp.
Find H (a) just inside the wall of the tube; (b) just outside the wall of the tube; (¢)
at a point in the tube wall halfway between the inner and outer surfaces.

4-26. A toroidal air-filled coil has a uniform winding of 5,000 turns. If the coil
cross section i8 15 cm?, the mean radius 1 meter, and the current 2 amp, find (a) the
inductance of the coil; (b) the energy stored by the magnetic field of the coil; (c) the
magnetic energy density inside the coil.

4-27. A transmission line consists of two parallel conducting strips 30 em wide
situated in air with a uniform separation of 2 em. The line carries a direct current
of 100 amp. Neglecting edge effects, find the magnetic cnergy density at a point
between the strips.

4-28. Prove that v - (V x F) = 0, where F is a vector function given by

F =iF, + jF, + kF,

4-29. Prove that Vv x (Vf) = 0, where f is a scalar funetion.
4-30. Develop curl B in cylindrical coordinates by applying the procedure of
Sec. 4-23 to three sides of the volume shown in Fig. 4-56.

4-31. For steady currents J = v x H. Show that ?

v-]=0
4-32. For static fields E. = —VV. Show that
vxXxE =0

4-38. Given that B = V¥ x A, show that v-B = 0.

4-34. Derive (4-185) for the flux density due to a short
linear conductor using the vector potential and spherical
coordinates. Hint: Convert A, into its spherical com-

4 in spherical ¢ .
i(:;f::(s];xl;n then apply curl A in spherical coordinates (see F16.4-56. Volume ele-
- b

4-36. Show that the curl of vector potential A as given ment for Prob. 4-30.

in (4-176) yields the flux density B as in (4-167). Hint: Note the vector identity:

v x (fF) = (vf) xF + f(v x F)

where f is a scalar function and F a vector function.

4-36. Find the curl of the vector function A = ir?y?* + jz*.

4-37. A vector field is given by F = jz3. Find the curl of the curl of F.

Ans.: —jbz.

4-38. If H has only a z component given by H, = 3 cos 8z + 6 sin yy amp/meter,
what is the expression for the current density J? The field issteady with respect to time.

4-39. A vector field G = j (sin x)2.  Find (a) the curl of G; (b) the value of the curl
of Gatz = »/4. Ans.: (a) k sin 2z; (b) k.

4-40. A vector function F = i2x + j3zy%2. (a) Find the curl of the curl of F.
(b) Evaluate the curl of the curl of F at the point z =2,y =2,z = 2.

4-41. If the vector potential A = i5(z? + y* + 2?)~! weber/meter, what is the
relation for the flux density B?

4-42. Prove that ¥ x H = 0, where H is the field outside of a long, straight wire
carrying a current I.

4-43. A vector function F = ir + jry + krz. Find the curl of F.

4-44. What is the flux density at the eenter of a square loop of 10 turns carrying a
current of 10 amp? The loop is in air and is 2 meters on a side,

(r+Aar)Aé




CHAPTER 5

THE STATIC MAGNETIC FIELD OF
FERROMAGNETIC MATERIALS

6-1. Introduction. Magnetic fields are present around a current-
carrying conductor. They also exist around a magnetized object such as
an iron bar magnet. Although the field of the iron bar is not produced
by current circuits of the type considered in Chap. 4, we may regard cur-
rents as the cause. However, in the bar the current circuits are of
atomically small dimensions. In contrast to these microscopic circuits,
the circuits considered in Chap. 4 are of macroscopic size.

An electron revolving in its orbit around the nucleus of an atom forms
a tiny electric current loop. Since a current loop has a magnetic field
and all atoms have revolving electrons we might suppose that all sub-
stances would exhibit magnetic effects. However, such effects are very
weak in most materials. There is a group of substances, however, includ-
ing iron, nickel, and cobalt, in which magnetic effects are very strong.
These substances are called ferromagnetic materials. Both the orbital
motion and the electron spin (or rotation of the electron around its own
axis) contribute to the magnetic effect, the spin being particularly impor-
tant. This electron, or charge, motion is equivalent in its effect to an
exceedingly tiny current loop. This tiny loop is in effect a miniature
magnet or magnetic dipole with magnetic moment (Q.!) equal to the
moment (/A) of the current loop. Although the moment of each atomic
current loop is very small, the combined effect of billions of them in an
iron bar results in a strong magnetic field around the bar.

6-2. Bar Magnets and Magnetic Poles. If an iron bar magnet is
freely suspended, it will turn in the earth’s magnetic field so that one end
points north. This end is called the * north-seeking pole” of the magnet
or simply its north pole. The other end of the magnet has a pole of
opposite polarity called a south pole.!

All magnetized bodies have both a north and a south pole. They can-
not be isolated. For example, consider the long magnetized iron rod of
Fig. 5-1a. This rod has a north pole at one end and a south pole at the

11t is sometimes convenient to call a north pole a positive pole and a south pole a
negative pole.
206
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other. If the rod is cut in half, new poles appear as in Fig. 5-1b so that
there are two magnets. If each of these is cut in half, we obtain four
magnets as in Fig. 5-1¢, each with a north and a south pole. The reason
for this is that the ultimate source of the ferromagnetism is a moving
electron or atomic current circuit

which acts like a tiny magnet with N S )
a north and a south pole. There-
fore, even if the cutting process
could be continued to atomic dimen- N_SN S_S__2 (o
sions and a single iron atom iso- Fig. 5-1. New poles appear at each point
lated, it would still have a north of division of a bar maguet.

and a south pole.

The fact that magnetic poles cannot be isolated, whereas electric
charges can, is an important point of difference between electric charges
and magnetic poles.

6-3. Magnetic Materials. All materials show some magnetic effects.
With the exception of the ferromagnetic group these effects are weak.

Depending on their magnetic behavior, substances can be classified as
diamagnetic, paramagnelic, and ferromagnetic. In diamagnetic materials
the magnetization (see Sec. 5-7) is opposed to the applied field, while in
paramagnetic materials the magnetization is in the same direction as the
field. The materials in both groups, however, show only weak magnetic
effects. Materials in the ferromagnetic group, on the other hand, show
very strong magnetic effects. The magnetization is in the same direction
as the field, the same as for paramagnetic materials.! Most of this
chapter deals with the magnetic fields of the ferromagnetic materials.

A number of substances are classified in Table 5-1 according to their
magnetic behavior. Many substances show such weak magnetic effects
that they are called ‘“nonmagnetic.’”” However, vacuum is the only truly
nonmagnetic medium.

b-4. Relative Permeability. In dealing with many media, it is often
convenient to speak of the relative permeability u, defined-as

N S N S (b)

In
M= (5-1)
where g, = relative permeability (dimensionless)
p = permeability (henrys/meter)
ko = permeability of vacuum (4r X 10~7 henry/meter)
It is to be noted that the relative permeability is a dimensionless ratio.
The relative permeability of vacuum or free space is unity by definition.
The relative permeability of diamagnetic substances is slightly less than
i, while for paramagnetic substances it is slightly greater than 1. The

! Ferromagnetic materials are sometimes classed as ‘‘strongly paramagnetic.”
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relative permeability of the ferromagnetic materials is generally much
greater than 1 and in some special alloys may be as large as 1 million.

The relative permeability of diamagnetic and paramagnetic substances
is relatively constant and independent of the applied field much as the
relative permittivity of dielectric substances is independent of the applied
electric field intensity. However, the relative permeability of ferro-
magnetic materials varies over a wide range for different applied fields.
It also depends on the previous history of the specimen (see Hysteresis,
Sec. 5-13). However, the mazimum relative permeability is a relatively
definite quantity for a particular ferromagnetic material although in
different materials the maximum may occur at different values of the
applied field. This subject is considered in more detail in Sec. 5-12.

In Table 5-1, the relative permeabilities u, are listed for a number of
substances. The substances are arranged in order of increasing perme-
ability, and they are also classified as to group type. The value given
for the ferromagnetic materials is the maximum relative permeability.

TABLE 5-1

Substance Group type | Relative permeability .
Bismuth. . ... ... .. .. ... .. ..o .. Diamagnetic ‘ 0.99983
Silver......... ... ... ... ... .| Diamagnetic 0.99998
Lead........... ... ... .. .. .. ... .| Diamagnetic 0.999983
Copper.............o il Diamagnetic | 0.999991
Water........... ... ... .. .| Diamagnetic | 0.999991
Vacuum. . ... .| Nonmagnetic 1 (by definition)
Air. ..o | Paramagnetic 1.0000004
Aluminum........ ... .. ... ... .. ... .. Paramagnetic 1.00002
Palladium. . .......................... Paramagnetic | 1.0008
2-81 Permalloy powder (2 Mo, 81 Ni)t. . .| Ferromagnetic | 130
Cobalt......................... .. .| Ferromagnetic 250
Nickel......................... .. .| Ferromagnetic | 600
Ferroxcube 3 (Mn-Zn-ferrite).... ... . ...| Ferromagnetic ] 1,500
Mild Steel (0.2C)...................... Ferromagnetic 2,000
Iron (0.2 impurity)..... ... ... ... .. .. Ferromagnetic 5,000
Silicon ironf (4 Si)....... ... ...... .| Ferromagnetic 7,000
78 Permalloy (78.5 Ni).................. Ferromagnetic | 100,000
Purified iron (0.05 impurity)....... ...... Ferromagnetic | 200,000
Supermalloy (5 Mo, 79 Ni)........ .. ... Ferromagnetic 1,000,000

t Percentage composition. Remainder is iron and impurities.
1 Used in power transformers.

6-6. The Force between Bar Magnets and Coulomb’s Law. Although
a magnetic pole cannot be isolated, an equivalent effect may be obtained
with two very long, uniformly magnetized needles as in Fig. 5-2. Here
two north poles of strength Q.; and Q.. are separated by a distance r.
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If this distance is small compared with the distance to the south poles at
the other ends of the magnets, the effect of the south poles may be
neglected. Under these conditions it was found by Coulomb that the
force between the needles suspended in air is proportional to the product
of the pole strengths and inversely proportional to their separation r.
The quantitative relation is known as Coulomb’s law for magnetic poles

~Qu1 +Qn +Qn,
[(rmovmarasarrea —prr— _— e T- —_—
ja, F
Magnetized :

needles —~—

-Q,
F16. 5-2. Two long magnctized ncedles used in determining Coulomb’s law.

and in the mksc system is expressed by

Mo leQm2
F = a, Er r2 ('5'2)l
where F = force (newtons)
a, = unit vector along line joining poles
po = permeability of air (4= X 107 henry/meter)
Q.1 and Q,.2 = strength of north poles of needles (amp-meters)
r = distance between poles (meters)
As suggested in Fig. 5-2, the force is outward (repulsive) if the two poles
are of the same kind, but the force is inward (attractive) if the poles are
unlike.

'In order to achieve complete mathematical symmetry with Coulomb’s law for

electric ehanges, Coulomb’s law for magnets is sometimes written
F = a ._1__ Q:.'l}g‘"'_’
" 4‘!’}40 na

where Q%, and Q2 are fietitious magnetic charges expressed in webers. This pro-
cedure, however, leads to ineonsistencies. See Erik Hallén, Some Units in the Giorgi
System and the C.G.S. System, Trans. Roy. Inst. Techn. (Stockholm), No. 6, 1947.
See also J. A. Stratton, ‘‘Electromagnetie Theory,”” MeGraw-1lill Book Company,
Inc., New York, 1941, p. 242.
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Dividing (5-2) by Qms, we obtain the force per unit pole as

F _a#onl (5_3)

O

From (4-4) the force per unit pole is a measure of the flux density B.
Thus
_ o #0Qn
B =a, o (5-4)
where B = flux density at distance » from pole of strength Q.. (newtons/
amp-meter or webers/meter?).

Example. Find the flux density at a distance of 10 em in air from a north pole
with a strength of 1,000 amp meters. Also find the force on another north pole of
equal strength at this distance. Assume that the south poles are at a large distance.

Solution. From (5-4) the magnitude of the flux density is

40 Qm _ 4x X 1077 107

B=f =™ & o=

= 1072 newton/amp-meter

Since the pole is positive, the direction of B is radially away from the pole. Another
pole of equal strength at this point is acted on by a force of magnitude

F = Q.B = 10* X 10~* = 10 newtons
The direction of the force F is the same as for the flux density B.

6-6. Magnetic Dipoles and Magnetization. According to (4-45) a
loop of area A with current I has a magnetic moment of /A. The fields
at a large distance from this loop are identical with those of a magnetic
dipole of pole strength @. and length [ as in Fig. 5-3 provided the mag-

netic moment of the bar is equal to that of the

Magnet._ +Qn loop, that is, provided
- Area A
Qul = 14 (5-5)
Loop s Although in the case of an actual magnet the

Fra. 5-3. ;g:magnet of value of tl}e pole .strength. Q= and pole separation.l

moment|QNnadlenuiv I EmAYy; be indefinite, their product, or magnetic

alent current loop of moment Q.l, is a definite quantity and is sufficient

moment /4. to specify the fields of a magnet at a large distance
from it.

It was Ampére’s theory that the pronounced magnetic effects of an
iron bar occurred when large numbers of atomic-sized magnets associated
with the iron atoms are oriented in the same direction so that their effects
are additive. The precise nature of the tiny magnets is not important if
we confine our attention to regions containing large numbers of them.
Thus, they may be regarded as tiny magnets or as miniature current
loops. In either case, it is sufficient to describe them by their magnetic
moment, which can be expressed either as Q[ or as I 4.
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Consider the long iron rod shown in cross section in Fig. 5-1. Assume
that all of the atomic magnets are uniformly distributed throughout the
rod and are oriented in the same direction as suggested in the figure.
This state of affairs may be described as one of uniform magnetization.
The effect of the atomic magnets (or magnetic dipoles) can be con-

Axis of rod

/sﬁlmﬂlnmﬂlﬁlu"
—b— | N W 68 6 8 8 6 ) = ——
Area4/@mmmlﬂjm@m a

I

l
I
F1a. 5-4. Uniformly magnetized rod with elemental magnetic dipoles.

veniently described by a quantity called the magnelization M, which is
defined as the magnetic dipole moment per unit volume.! Thus

M=9=Q"'l

” ) (5-6)

where m = @,l = net magnetic (dipole) moment in volume .

By regarding the separation between the poles of a magnetic dipole
as a vector 1, pointing from the south or negative pole to the north pole,
as in Fig. 5-5, the dipole moment m is a vector of magnitude @.l with the
direction of 1.

If the volume » includes the entire rod of length [ and
area A, we have

Magnetic
dipole

Qnl _ Qn

M="ai=4
Hence, magnetization has the dimensions of both mag-
netic dipole moment per volume and of magnetic pole
strength per area (QL?/TL® = Q/TL). Itisexpressed in l«— Axis of
amperes per meter. j  dipole

The magnetic pole strength per unit area may be |

regarded as a pole surface density p,m. Thus, at theends Fie. 5-5. Mag-
of the long, uniformly magnetized iron rod there is a pole ~Metic dipole.
surface density equal to the magnetization M. That is,

pm = 3 = (5-7a)

(6-7)

._
N e Z | — e —

The value of M in (5-6) is an average for the volume ». To define M
at a point, it is convenient to assume that the iron rod has a continuous
distribution of infinitesimal magnetic dipoles, that is, a continuous
magnetization, whereas the dipoles actually are of discrete, finite size.
Nevertheless, the assumption of continuous magnetization leads to no

1 The magnetization M is analogous to the electric polarization P (Sec. 2-3). The
polarization P = p/v = Ql/v, where p = QI = net dipole moment in the volume ».
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appreciable error provided that we restrict our attention to volumes con-
taining many magnetic dipoles. Then, assuming continuous magnetiza-
tion, the value of M at a point can be defined as the net dipole moment m
of a small volume Ay divided by the volume with the limit taken as Ay
shrinks to zero around the point. Thus

M = lim 2 amp/meter (5-8)
Av—0 Ay
If M is known as a function of position in a nonuniformly magnetized
rod, the total magnetic moment of the rod is given by

m = /; M dv amp-meters? (5-9)

where the integration is carried out over the volume of the rod.

Example. If the long, uniformly magnetized rod of Fig. 5-4 has N’ elemental
magnetic dipoles of moment Am, find the magnetization of the bar.
Solution. From (5-6) the magnetization is

\72
M = % Am = aN’' Am

where M = magnetization (amp/meter)
N’ = N’/v = number of elemental dipoles per unit volume (meters?)
a = unit vector in direction of rod axis, pointing from the south to the north
pole (dimensionless)
In this case the magnetization M is both an average value and also the value anywhere
in the rod since the magnetization is assumed uniform.

6-7. Uniformly Magnetized Rod and Equivalent Solenoid. Instead
of regarding that the magnetization of the rod magnet of Fig. 5-4 is
caused by tiny bar magnets or magnetic dipoles, we can consider, as done
by Ampére, that it is produced by miniature current loops as in Fig. 5-6.1
That is, in place of each dipole of Fig. 5-1 there is a current loop in Fig.
5-6, their magnetic moments being equal. Thus

Qul' = 14" (5-10)
where Q.l' = magnetic moment of elemental magnetic dipole of pole
strength Q. and length '
IA' = magnetic moment of equivalent current loop of area .’
with current /

Assuming that there are n loops in a single cross section of the rod (as in
end view in Fig. 5-6), we have

nA’ = A (5-11)

where A’ = area of elemental loop
A = cross-sectional area of rod

LIt is assumed that the rod is uniformly magnetized.
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Further, let us assume that there are N such sets of loops in the length of
the rod (see side view in Fig. 5-6). Then

nN = N’ (5-12)

where n = number of loops in a cross section of rod

N = number of such sets of loops

N’ = total number of loops in rod
It follows that the magnetization 3 of the rod is given by

_m _NIA’" _NInd' NI ., )
el kNl =ED

where K’ = equivalent sheet current density on the outside surface of the
rod (amp/meter).

. q Unitormly i
Side view ﬂ‘ agnetizedirod End view

FEETTT x/aﬂ

ftittl
NERN {)
i ‘385589
L | AN FO6RE

Area A
F1a. 5-6. Uniformly magnetized rod with elemental current loops.

n loops

Referring to the end view of the rod in Fig. 5-6, it is to be noted that
there are equal and oppositely directed currents wherever loops are
adjacent so that the currents have no net effect with the exception of the
currents at the periphery of the
rod. As a result there is the @ ) ))) ) ))K)) ) ) ) ) ) )®
equivalent of a current sheet flow- 0
ing around the rod as suggested in (a)

Fig. 5-6 and also Fig. 5-7a. This

St e ()IHIH)IL)) )P

sets of current loops are shown for
clarity in Fig. 5-6 with a large (%)
spacing, the actual spacing is of Fia. 5-7. (‘,') Uniformly‘magnetized rod
atomic dimensions so that macro- 2"d (¥) equivalent solenoid.
scopically we can assume that the current sheet is continuous.

This type of a current sheet is effectively what we also have in the case
of a solenoid with many turns of fine wire, as in Fig. 5-7b. The actual
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sheet current density K for the solenoid is
K =~ amp/meter (5-14)

where N = number of turns in solenoid (dimensionless)

I = current through each turn (amp)

l = length of solenoid (meters)
The sheet current density K may be expressed either in amperes per
meter or in ampere-turns per meter.

If the solenoid of Fig. 5-7b is the same length and diameter as the rod
of Fig. 5-7a, and if K = K’, the solenoid is the magnetic equivalent of the
rod.

At the center of a long, slender solenoid the magnitude of the flux
density B is, from (4-50),

B = pu, A;I = uoK webers/meter? (5-14a)

At the center of a permanently magnetized, long, slender rod
B = uK’ webers/meter? (5-14b)

If the rod is inside the solenoid, the magnitude of B at the center of the

rod is
B = uo(K + K') webers/meter? (5-14¢)

where K’ is not, in general, the same as in (5-14b). In (5-14b) K’ is due
only to permanent magnetization, while in (5-14¢) it also includes the
induced magnetization (see Sec. 5-11).

Example. A uniformly magnetized rod 20 em long and with a circular cross-sec-
tional area of 10 cm? has a pole strength of 100 amp-meters. Find the equivalent
sheet current density K’. Also find the current [ required for a 1,000-turn solenoid of
the same size to be magnetically equivalent.

Solution. From (5-13)

K' =

= = 10% amp/meter

m A
v T 1073 X 0.2

Qnl _ 100 X 0.2
v

For the solenoid to be equivalent we put K = K’, or
NI

K = 4 = (= 108
from which
K’l  10® X 0.2
I = S 108 = 20 amp

5-8. The Magnetic Vectors B, H, and M. Equation (4-76) states
that, in general,

H = or B =uH (5-15)

® (W
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where H = H field, or vector H} (amp/meter)
B = flux density (webers/meter?)
u = permeability of medium (henrys/meter)
In nonferromagnetic media p is substantially the same as the perme-
ability of vacuum po. Hence, in nonferromagnetic media

B
H=— 5-16
Mo ( )
In ferromagnetic media u is not equal to uo, and H is defined by a
modification of (5-16) that involves the magnetization M. That is,

H=2_ M (5-17)
Mo
where M = magnetization of ferromagnetic material (amp/meter).

From (5-17)
B = uo(H + M) = uo (1 n %) H (5-18)

By comparison of (5-18) with (5-15) it follows that, in general, the perme-
ability is given by!

. (1 + %) (5-19)

In isotropic media M and H are in the same direction so that their
quotient is a scalar, and hence u is a scalar. In nonisotropic media, such
as crystals, M and H are, in general, not in the same direction, and u is
not a scalar but becomes a nine-component quantity, or tensor. Only
when H is parallel to a crystal axis of a nonisotropic medium will both
M and H be in the same direction and u a scalar. Hence, (5-17) is a
general relation, while (5-15) is a more concise expression, which, how-
ever, has a simple significance only for isotropic media or certain special
cases in nonisotropic media, that is, wherever M, H, and B are parallel.

A single iron crystal is nonisotropic, but most iron specimens consist of
an aggregate of numerous crystals oriented at random so that macro-
scopically such specimens may be treated as though they were isotropic.
In such cases (5-15) can also be applied as a strictly macroscopic, or
large-scale, relation.

Since V- B = 0, we have, on taking the divergence of (5-17),

V-H= -V-M (5-20)

t H is sometimes called the ‘“magnetizing force.”

! The ratio M/H is a dimensionless quantity and is called the magnetic susceptibil-
ity xm, thatis M/H = x,. Therefore, from (5-19) u = uo(1 + x»). The analogous
electrical quantity is the electric susceptibility. See footnote concerning Eq. (2-19),
p. 51.
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If the divergence of a vector field is not zero, the field has a source, or
place of origin. We recall from the polarized dielectric case (Sec. 2-33)
that ¥V« P = p,, which indicates that the polarization field originates on
the polarization charge (of apparent volume density p,) at the dielectric
surface. In an analogous manner, (5-20) indicates that the H field
originates where the magnetization field M ends and that the H field
ends where the M field originates. This occurs at the ends of the rod in
Fig. 5-4.}

The dimensions of (5-20) are current per area (amp/meter?) or pole
strength per volume (amp-meters/meters®). Thus, div H or div M has
the dimensions of pole volume density, and we may write

V-H= —-Vv-M = p,, (5-22)

where p,, = pole volume density (amp-metcrs/meter?).

The locations where V - H, or V - M, is not zero may be regarded as the
locations of the magnetic poles of a magnetized object. Thus the poles
of a uniformly magnetized rod, as in Fig. 5-1, are at the end faces of the
rod.?

The quantity p,., is like the polarization volume density p, in that it
cannot be isolated and, in this respect, is fictitious. By assuming that
pm oXists in a layer of small but finite thickness at the ends of a mag-
netized rod, ¥V - H or V- M may be large but not infinite.

For a uniformly magnetized rod, as in Fig. 5-4, we have, from (5-7),
that

] = 9
M| =% = pum (5-23)
where Q,, = pole strength of the rod (amp-meters)
A = area of rod (meters?)
M = magnetization of rod medium (amp/meter)

psm = pole surface density at ends of rod (amp-meters/meter?)
The magnetization M has the dimensions of current per length (amp/
meter). Equivalent dimensions are magnetic moment per volume

! Since H = —vU, we have, from (5-20),
vi = Vv-M (5-21)

This indicates that the magnetic potential U for a magnetized object is related to the
source of the magnetization.

*In ordinary magnets with flat ends the magnetization tends to be nonuniform
near the edges. Entirely uniform magnetization is possible in spherically or ellip-
tically shaped magnetic objects. However, the assumption of uniform magnetization
is a good approximation for a long homogeneous rod magnet, since the magnetization
is nearly uniform over all of the rod except near the edges at the ends of the rod. In
actual magnets with flat ends the effeetive separation between the pole centers is
slightly less than the physical length of the magnet.
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(amp-meters?/meter®) and pole surface density (amp-meters/meter?).

It follows that the pole strength of a uniformly magnetized rod is given
by

Q. = l]‘[l A = pmd (5—24)
Taking the curl of (5-18), we have
VXB=[10VXH+MOVXM (5'25)
or
VB =ypJ+pwvVxM (5-26)

Where there is no magnetization, (5-26) reduces to V x B = poJ as in
(4-127). The curl of M has the dimensions of current density (amp/
meter?) and represents the equivalent current of density J’ (amp/meter?)
flowing, for example, in a very thin layer around the cylindrical surface of
a uniformly magnetized rod. The linear current density for this sheet is
K’ (amp/meter) given by!

K' =J Az (5-27)
where Az = thickness of layer of current of average density J’. Thus
(5-26) becomes

VxB=uwJ+]J) (5-28)

where J = actual current density, as in a current-carrying wire (amp/
meter?)
J' = equivalent current density, as at the surface of a magnetized
bar (amp/meter?)
The flux density B is always the result of a current or its equivalent.
For example, the magnitude of B at the center of a long, slender iron rod
surrounded by a long solenoid is, from (5-14c),

B = u(K + K') webers/meter? (5-29)

where K = sheet current density due to solenoid current (amp/meter)
K’ = equivalent sheet current density due to magnetization of rod
(amp/meter)

In many cases we can conveniently express B directly in terms of the
currents producing it as in (5-29). In general, we can also express B in
terms of the vector potential A, which in turn is related to the currents.
Thus

B=vVxA (5-30)
If both conduction currents and magnetization are present,
ke [ TJ4T
A= ir / . dv (5-30a)

! For a current sheet of infinitesimal thickness K’ may be defined as in (5-27) with
Az — 0and J'—> ». llowever, we will agsume that Az is small but finite, with M
varying continuously over this layer.
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where J = V x H (amp/meter)
J' = v x M (amp/meter)

To illustrate further the significance of B, H, and M, three situations
will be analyzed in the following examples. These situations involve an
air-filled toroidal coil (Fig. 5-8a), a magnetized iron ring of the same shape
as the coil (Fig. 5-8b), and the iron ring with the toroidal coil wound over

Iron ring Iron ring

with winding
r
R r
G? A

‘Area

A

) (¢)

Fi16. 5-8. (a) Toroidal coil with gap. (b) Permanently magnetized iron ring with
gap. (c¢) Iron-cored toroidal coil with gap.

it (Fig. 5-8¢). In all three cases there is a narrow gap as indicated in the
drawings.

Example 1. Referring to Fig. 5-8a, a toroidal coil has a radius R and a cross-sec-
tional area A = »r?. The coil has a very narrow gap as shown in the gap detail in
Fig. 5-9a. The coil is made of many turns N of fine insulated wire with a current 1.
Draw graphs showing the variation of B, M, H, and u along the line of radius R at the
gap (center line of coil).

Solution. Neglecting the small effect of the narrow gap, B is substantially uniform
around the inside of the entirc toroid. Since I > r, its magnitude is, from (4-50),
given approximately by
_ moN1

B ="o0R

= uoK webers /meter? (5-31)

where K = magnitude of linear sheet current density (amp/meter). A graph of the
magnitude B along the center line of the coil at the gap is shown in Fig. 5-9b.
No ferromagnetic material is present so that the magnetization is negligible and
M = 0 as indicated in Fig. 5-9c. It follows that v- M = 0 and also v-H = 0.
Since M = 0, we have, from (5-17) and (5-31), that
B }loK

H=B _wK _ g N

V1
o o 2R amp/meter (5-32)

Therefore, the magnitude of H is constant and equal to the sheet current density K
of the coil winding as indicated in Fig. 5-9d.

The permeability everywhere is xo (Fig. 5-9¢). This also follows from (5-19) since
M =0.
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It is to be noted that B is continuous (no abrupt changes) and that in this case H is

also continuous since there is no ferromagnetic material present. Both B and H have
the same direction everywhere in this case.

R Toroid

Gap / winding
|
B -

7~ K

Center line -

of coil
-lr Air core
f I
HoK
B ()
0
od M=0 (¢)
K
H (d)
0
Fo
) (e)
0 - .

Frc. 5-9. Magnitudes of inagnetic quantities along the coil center line at the gap in a
toroid (see Fig. 5-8a) (Example 1).

Example 2. Consider now that the toroidal eoil of Example 1 is replaced by an
iron ring of the same size and also with a gap of the same dimensions, as suggested in
Fig. 5-8b and Fig. 5-10a. Assume that the ring has a uniforin permanent magnetiza-~
tion M that is equal in magnitude to K for the toroid in Example 1. Draw graphs
showing the variation of B, M, H, 4, and ¥ - H along the center line of the ring at the
gap.

Solution. The ring has a north pole at the left side of the gap and a south pole at
the right side. Neglecting the small effect of the narrow gap, B is substantially uni-
form around the interior of the entire ring and also across the gap. It is due entirely
to the equivalent sheet current density K’ on the surface of the ring. From (5-13),
K' = M. Thus

B = uoM = uoK’ webers /meter? (5-32a)
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where M and K’ are, according to the stated conditions, equal to K for the solenoid
in Example 1. Hence, B is the same in both examples. Its value at the gap is illus-
trated in Fig. 5-10b.
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M
g 1
\, B =
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F1e. 5-10. Variation of magnetic quantities along the center line at the gap in a
permanently magnetized iron ring (see Fig. 5-8b) (Ikxample 2).

In the ring, M = K’, but outside the ring and in the gap M/ = 0. Suppose that
the change in M from zero to K’ at the gap occurs over a short distance Az rather than
as a square step function. The graph for A/ is then as shown in Fig, 5-10c.

Outside the ring and in the gap M = 0; s0

H = ‘% = K’ amp/meter (5-33)
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Inside the ring

H = ? — M amp/meter (5-34)
0
or approximately
H=K -k =0 (5-35)

The exaet value of H is not zero! but is small and negative. The variation of H
across the gap is illustrated in Fig. 5-10d.

From (5-19) the permeability in the ring is large and negative because H is small
compared with A and is negative. In the air gap u = uo. The variation of u across
the gap is suggested in Fig. 5-10e.

According to (5-22) the divergence of H equals the negative divergence of M, and
this equals the apparent pole volume density p, in the ring on both sides of the gap.
Thus

V-H=-%v-M=,, (amp-meters /meter?) (5-36)

This is zero everywhere except at the layers of assumed thickness Az at the gap.
Assuming that M changes linearly in magnitude over this thickness and assuming also
that Az is very small compared with the cross-sectional diameter (2r) of the ring, we
have on the center line

_dM. _FK' _ .
vV-M == 2z = Pm (5-37a)
or
+K' _ .
V-I-I=-A—3:—p..l (5-37b)

where the upper sign in front of K’ applies if M decreases and H increases in proceed-
ing across Az in a positive direction (from left to right). The variation of v - H along
the center line is illustrated in Fig. 5-10f. Hence the pole volume density p,, has a
value only in the layers of assumed thickness Az at the sides of thegap. This locates
the poles of the ring magnet at the sides of the gap, and, for this reason, the iron sur-
faces of the gap are called “pole faces.”

From (5-7a)

pem = M =K' (5-38a)

where p.n is the pole surface density at the pole faces (see Fig. 5-10a). The pole sur-
face density is expressible in ampere-meters per square meter or in amperes per meter,
Assuming that p. extends over a thickness Az of the pole face, we have

&2 = pm (5-38b)
where p, = apparent pole volume density at a pole face (amp-meters/meter® or
amp/meter?).

Since K’ in this example equals K in Example 1, B and H in the gap have identical
values in both examples. In the gap, the directions of B and H are the same. In the
iron ring B is the same as in the toroid of Example 1, but H is smaller and is also in
the opposite direction. An H direction opposite to that of B is characteristic of condi-

! The above analysis is approximate since it neglects the effect of the gap. See
Sec. 5-25.
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tions inside of a permanent magnet. For similar reasons the direction of E inside of
a permanent electret! is opposed to D.

R
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Fia. 5-11. Variation of magnetic quantities along coil center line at the gap in an
iron-cored toroid (see Fig. 5-8c) (Example 3).

Example 8. Suppose now that the iron ring of the previous example has wound
over it the toroidal coil of Example 1 with the gap in the toroid coinciding with the gap
in the ring as shown in Fig. 5-8c and also in the gap detail of Fig. 5-11a. The com-
bination constitutes an iron-cored toroid as contrasted with the air-cored toroid of
Example 1. Let the sheet current density for the toroid winding be K as in the first

! A permanent electret, or simply an electret, is a dielectric body that is permanently
polarized in the absence of an applied electric field. It is the electrical analogue of a
permanent magnet. See footnote, p. 49.




Sec. 5-8] MAGNETIC FIELD OF FERROMAGNETIC MATERIALS 223

example. Further, let the induced magnetization added to the permanent magnetiza-
tion in the ring yield a total uniform magnetization (permanent and induced) that is
equal in magnitude to 4K. Draw graphs showing the variation of B, M, H, u, and
Vv H along the center line of the ring at the gap.

Solution. In this case the total magnetization

M = K' = 4K amp/meter (5-39)

Neglecting the small effect of the narrow gap, the flux density is substantially uniform
around the inside of the ring and across the gap. From (5-14¢) and (5-39) it is given
by

B = uo(K + K’) = 5ucK webers /meter (5-40)

as illustrated in Fig. 5-11b.

In the ring M = 4K and in the gap M = 0 as shown in Fig. 5-11c. It is again
assumed that M changes linearly over a short distance Az at the pole faces.

In the gap

H=2.5k (5-41)
Ho
In the ring
n=2_n (5-42)
Bo
and so we have very nearly that
H =5K —4K = K (5-43)

The variation of H across the gap is depicted in Fig. 5-11d.
In the gap g = uo. In the ring

M K
w= o1 +4) = o (1 +7%) = 5o (5-44)

The variation of u is shown in Fig. 5-11e.

The divergence of H or pole volume density pm i8 given by the negative of the diver-
gence of M. This has a value of +4K/Az over the assumed pole thickness Az at the
pole faces. This is illustrated in Fig. 5-11f. The fact that v - H = p, at the pole
faces is also indicated in Fig. 5-11a. Elsewhere v-H = 0.

The pole surface density p.m in this example is equal to 4K.

In this example, B and H have the same direction both in the gap and in the ring.
In the ring, however, H is weaker than in the gap.

In this example, the toroid has a sheet current density of K (amp/meter), and
the ring has an equivalent sheet current density around its curved surface of

K’ = 4K (amp/meter)

Inside a wire of the toroidal coil v x H = J (amp/meter?) as suggested in Fig. 5-11a.
Elsewhere v x H = 0. At the curved surface of the ring vV x M = J’ (amp/meter?).
Elsewhere v M = 0.

In the last two examples involving ferromagnetic material it is to be
noted that the magnetization, or M, lines originate, or have their source,
on a south (negative) pole and end on, or have as a sink, a north (positive)
pole. The H lines, on the other hand, originate, as in Example 2, on a
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north pole and end on a south pole. Thus, V - H has a positive value at
a north pole, while V - M has a positive value at a south pole.

As a final example let us compare the fields around a solenoid and the
equivalent permanently magnetized rod.

Example 4. A long, uniform solenoid, as in Fig. 5-12a, is situated in air and has N/
amp-turns and a length I. A permanently magnetized iron rod, as in Fig. 5-12¢, has
South Magnetized rod North
ySolencid  UXH=J (2D / /VXM=J'/ pole
s fIB=——s=ali__ (2) s [[s B—e M—> _n]__(¢)
Ho—> ~—H T —g-H=-0-M
Az NgH=-M=—p A2 T

’“"BK/F \L (b) MU)

ol e e 1w

e
w

F1a. 5-12. Solenoid and equivalent permanently magnetized rod showing fields along
axis (Example 4).

the same dimensions as the solenoid and has a uniform magnetization M equal to
N1/l for the solenoid. Draw graphs showing the variation of B, M, and H along the
axes of the solenoid and the rod. Also sketch the configuration of the fields for the
two cases.
Solution. Since the rod and solenoid have the same dimensions and
M=K =K = I%Iv
the two are magnetically equivalent. The B fields for both are the same everywhere,
and the H fields for both are the same outside the solenoid and rod. Assuming that
the toroid is long compared with its diameter, the flux density at the center is nearly
given by
NI

B = B = mK (6-45)

At the ends of the solenoid
B = }uK (5-16)

The magnitude of B at other locations along the solenoid axis can be obtained from
(4-48) with a suitable change in limits. The variation of B along the solenoid axis is
shown graphically in Fig. 5-12b. The variation along the rod axis is the same (I'ig.
5-12f).

For the solenoid case M = 0 everywhere (Fig. 5-12¢). In the rod the magnetiza-
tion MM is assumed to be uniform as in Fig. 5-12g.

For the solenoid case H = B/uo everywhere so that H = K at the center and
H = }K at the ends. The variation of H along the solenoid axis is shown in Fig.
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5-12d. Outside the rod, H is the same as for the solenoid. Inside the rod
= (B/uo)) — M

8o that the variation is as suggested in Fig. 5-12h, It is assumed that } changes from
0 to K over a short distance Az at the ends of the rod. The direction of H in the rod
is opposite to that for B.

Inside the wires of the solenoid winding v x H = J as indicated in Fig. 5-12a.
On the cylindrical surface of the rod v x M = J’ as suggested in Fig. 5-12¢. In the
solenoid case v+ B = 0and v+ H = 0 everywhere. In therod case v +-B = 0 every-

where, but V- H = — v+ M = p,, at the end faces of the rod.
B field M field H field
M field zero
‘*—So enoid = Solenoid — > Solnoid o
/(aw Core) —m (air core) [ ——(air core)—a
T () ) (b) (e
L Rod K By
k —— S — vd
> Rod—>— s N S Rod s
= = e —_ ~ A
S ==
d e 5
(4) (e) .
H C B
P (g)

FiG. 5-13. Fields of solenoid and equivalent permanently magnetized rod. The B
fields are the same for both solenoid and rod [see (a) and (d)]. The M field is zero
everywhere except inside the rod [see (b) and (e)]. The H fields are the same outside
both solenoid and rod but are different inside [see (¢) and (f)].

The B, M, and H fields for the two cases are sketched in Fig. 5-13. It is to be
noted that inside the rod H is directed from the north pole to the south pole. Since
M and B have, in general, different directions in the rod, u loses its simple scalar
significance in this case. llere H can be obtained by vector addition, using (5-17).
As an example, H at the point P in Fig. 5-13f is obtained by the vector addition of
B/uoand —M as in Fig. 5-13g.

Magnetic poles always appear in pairs. They cannot be isolated. In
this sense, they are of an apparent, or fictitious, nature. However, they
are real in the sense that they act as the centers of force near the ends of a
magnet as in the above example.

Although the magnetization is based on the actual magnetization
phenomenon, it is often simpler and more convenient to ignore the
mechanism of the phenomenon and use the permeability ¢ to describe
the characteristics of the magnetic medium. This is particularly true
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where u can be treated as a scalar. In this case u is determined experi-
mentally from a sample of the material. However, since u is not a con-
stant for ferromagnetic materials but a function of H, and also the
previous history of the sample, the methods for dealing with ferromag-
netic materials require special consideration (see Sec. 5-11 and following
sections).

6-9. Boundary Relations. In a single medium the magnetic field
is continuous. That is, the field, if not constant, changes only by an
infinitesimal amount in an infinitesimal distance. However, at the
boundary between two different media, the magnetic field may change
abruptly both in magnitude and direction. It is important in many
problems to know the relations for magnetic fields at a boundary. These
boundary relations are discussed in this section.

It is convenient to analyze the boundary problem in two parts, con-
sidering separately the relation of fields normal to the boundary and
tangent to the boundary.

Taking up first the relation of fields normal to the boundary, consider
two media of permeabilities u; and u, separated by the z-y plane as shown
in Fig. 5-14. Suppose that an imaginary box is constructed, half in each

z

Medium 1

anl -

Ay
Pal
Az Z v
Az

t Medium 2

I B,, M2

z
Fia. 5-14. Construction for developing continuity relation for normal component of B.

medium, of area Ar Ay and height Az. Let B, be the average com-
ponent of B normal to the top of the box in medium 1 and B,, the average
component of B normal to the bottom of the box in medium 2. B,;isan
outward normal (positive), while B.; is an inward normal (negative).
By Gauss’s law for magnetic fields (4-12), the total magnetic flux over a
closed surface is zero. Expressed in other words, the integral of the out-
ward normal component of B over a closed surface is zero. By making
the height Az of the box approach zero, the contribution of the sides of the
box to the surface integral becomes zero even though there may be finite
components of B normal to the sides. Therefore the surface integral
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reduces to
B,.l Az Ay - an Ax Ay =0 Q5—47)
or
Bnl = Bn2 (5'48)
According to (5-48) the normal component of the flux density B is continuous
across the boundary belween two media.!
Turning now to the relation for magnetic fields tangent to the bound-
ary, let two media of permeabilities u1 and u. be separated by a plane
boundary as in Fig. 5-15. Consider a rectangular path, half in each

7 |~——Az

Medium 1
A

Current sheet of -
linear density K -

F1a. 5-15. Construction for developing continuity relation for tangential component
of H.

medium, of length Az parallel to the boundary and of length Ay normal
to the boundary. Let the average value of H tangent to the boundary in
medium 1 be H,; and the average value of H tangent to the boundary in
medium 2 be H;,. According to (4-77) the integral of H around a closed
path equals the current I enclosed. By making the path length Ay
approach zero, the contribution of these segments of the path becomes
zero even though a finite field may exist normal to the boundary. The
line integral then reduces to

HyAx — Hp Az = 1 amperes (5-49)
or
H,y — Hy = _AIx = K amp/meter (5-50)

where K is the linear density of any current flowing in an infinitesimally
thin sheet at the surface.?

According to (5-50) the change in the tangential component of H across a
boundary is equal in magnitude to the sheet current density K on the bound-
ary. Itisto be noted that K is normal to H, that is, the direction of the
current sheet in Fig. 5-15 is normal to the page.

1 This relation applies at the boundary of any two media for both static and time-
changing fields.

2 If J is the current density in ampcres per square meter in a thin sheet of thickness
Ay’, then K is defined by

K = J Ay’ amp/meter (5-50a)
where J — = as Ay’ — 0.
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If K = 0, then (5-50) reduces to?
Hy = I, (5-51a)

According to (5-51a) the tangential components of H are continuous across
the boundary between two media provided the boundary has no current sheet
of infinitesimal thickness.
If H,2 = 0, (5-50) becomes
Hy =K, (5-51b)

where K, = sheet current density (amp/meter) in medium 2 at boundary.
When medium 1 is air and medium 2

'.‘,8[,’:,‘32&3 "4 is a conductor, (5-51b) is approxi-
‘ mated at high frequencies because the
o ) skin effect restricts the current in the
= conductor to a very thin layer at its
R, suf‘f‘ac.e (see Chap. 10).. .

l'oillustrate the application of these
e Medium 2 boundary.conditions, let us consider

K2 the following examples.
Fglg,"ﬁe Example 1. Consider a plane boundary

between two media of permeability x, and
uzasin Fig. 5-16. Find the relation between
. X . X . the angles «; and «;. Assume that the
ng cl.mnge in_direction of magnetic media are isotropic with B and H in the
field line. same direction.

Solution. From the boundary relations,

Fiec. 5-16. Boundary between two
media of different permeability show-

B.i = Ba: and Hy = Hy (5‘52)
From Fig. 5-16,
B, = B, cos a; and B.:; = B cos as (5-53)
and
Hu = Hl sin ag and H,g = Hz sin as (5—54)

where B, = magnitude of B in medium 1
B, = magnitude of B in medium 2
H, = magnitude of H in medium 1
H, = magnitude of H in medium 2
Substituting (5-53) and (5-54) into (5-52) and dividing yields

tan a, _ B _ B
tan ay - K2 B Hr2 (Ex2D)

where u,; = relative permeability of medium 1 (dimensionless)
prz = relative permeability of medium 2 (dimensionless)

! Equations (5-50) and (5-51a) apply at the boundary of any two media (that is,
two media of any permeabilities, permittivities, and conductivities) for both static and
time-changing fields.
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Equation (5-35) gives the relation between the angles a; and a; for
B and H lines at the boundary between two media.!

Example 2. Referring to Fig. 5-17, let medium 1 be air (4, = 1) and medium 2 be
soft iron with a relative permeability of 7,000,

Air

77777 AR
7 ”,85°

v ) Sl ﬂ '7_
%/y G //// %

(a) (b)

F16. 5-17a and b. B lines at air-steel boundary.

a. If B in the iron is incident normally on the boundary (a2 = 0), find a.

b. If B in the iron is nearly tangent to the surface at an angle «» = 85°, find a:.

Solution. a. From (5-55)

tan o, = %—:; tan as = 7,(;0—0 tan a: (5-56)
When a; = 0, a; = 0, 80 that the B line in air is also normal to the boundary (see
Fig. 5-17a).

Solution. b. When a2 = 85°, we have, from (5-56), that tan o« = 0.0016 or
a; = 0.1°. Thus, the direction of B in air is almost normal to the boundary (within
1'5°) even though its direction in the iron is nearly tangent to the boundary (within 5°)
(see Fig. 5-17b). Accordingly, for many practical purposes the direction of B or H in
air or other medium of low relative per- I 9,99 0armo.S 10T
meability may be taken as normal to the
boundary of a medium having a high relative
permeability. 'This property is reminiscent
of the one for E or D at the boundary of a
conductor.

Air gap

The property that B or H in air is
substantially normal to the boundary
of a highly permeable medium has
important applications in mapping
magnetic fields. For example, this Fic. 5-17c. Field lines at air gap of d-c
property permits one to predict that ™machine.
the magnetic field lines at the air gap between the iron pole and armature
core of a simple two-pole d-c machine may be as suggested in Fig. 5-17¢.
The mapping of magnetic fields is discussed further in Sec. 5-19.

1 This relation applies only if B and H have the same direction (u a scalar). In
the absence of magnetization, as in air, B and H have the same direction. When
magnetization is present, as in a soft iron clectromagnet, B and H also tend to have
the same direction. However, this is not the situation in a permanent magnet.
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5-10. Table of Boundary Relations for Magnetic Fields. Table 5-2
summarizes the boundary relations for magnetic fields developed in Sec.
5-9.

TABLE 5-2
BOUNDARY RELATIONS FOR MAGNETIC FIELDSt
Field Boundary relation Condition
component

Normal. ... . .. Bai = Ba: (1) | Any two media

Normal..... .. priHat = praHae (2) | Any two media

Tangential. ... H, — Hi = K (3)1 | Any two media with current sheet of infini-
tesimal thickness at houndary

Tangential. .. .| Hy = H (4) | Any two media with no current sheet at
boundary

Tangential....| Hy = K, (5)1 | Hia = 0. Also medium 2 has a current sheet

| of infinitesimal thickness at boundary. H,
and K are normal to each other

t These relations apply for both static and time-varying fields (see Chap. 7).

t Note that although K and the components of H are measured parallel to the
boundary, they are normal to each other. Thus, in vector notation (5) is expressed
by K = n x H, where n = unit vector normal to the boundary.

6-11. Ferromagnetism. Magnetic effects in most substances are
weak. However, a group of substances known as ferromagnetic materials
exhibits strong magnetic effects (see Sec. 5-4). The permeability of these
materials is not a constant but is a function both of the applied field and
of the previous magnetic history of the specimen. In view of the variable
nature of the permeability of ferromagnetic materials, special considera-
tion of their properties is needed. This is given in the following sections.

In ferromagnetic substances the magnetic effects are produced by the
motion of the electrons of the individual atoms. The net effect is to
make an atom of a ferromagnetic substance act like a miniature bar
magnet. In a ferromagnetic substance such as iron these atomic mag-
nets over a region of many atoms tend to orient themselves parallel to
each other, with north poles pointing one way. This region is called a
magnetic domain and is spontaneously magnetized. The size of a
domain depends on conditions but usually contains millions of atoms.
In some substances the shape appears to be like a long, slender rod with
a transverse dimension of microscopic size but lengths of the order of a
millimeter or so. Thus, a domain acts like a small, but not atomically
small, bar magnet.
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In an unmagnetized iron crystal the domains are parallel to the direc-
tion of easy magnetization, but as many have north poles pointing one
way as the other so that the external field of the crystal is zero. In an
iron crystal there are six directions of easy magnetization. That is,
there is a positive and negative direction along each of the three mutually
perpendicular crystal axes (Fig. 5-18).
Therefore the polarity of the domains in N
an unmagnetized iron crystal may be as
suggested by the highly schematic dia-
gram of Fig. 5-19a. A single N repre-
sents a domain with a north pole pointing (a)

S N<e—S|S—»N

0N =2z
Z4—wn
w22
Z -0

out of the page and a single S a domain [S™N|N*—8] S N
with a south pole pointing out of the page. s N
If the crystal is placed in a magnetic field N s ' ¢
parallel to one of the directions of easy > 3
magnetization, the domains with polarity
opposing or perpendicular to the field

z S—>N|s—>N|S —N[S—>N

(%)

S—>N|S—>N|S—>N|S—>N

- v
S—>N|S~—>»N|S-—>N|S—>N
—————
x Applied magnetic field

Fie. 5-18. Six directions of easy F1a. 5-19. (a) Domain polarity in
magnetization in an iron crystal. an unmagnetized iron crystal.

(b) Condition after erystal is satu-

rated by a magnetic field directed

to the right.
become unstable and a few of these may rotate so that they have the same
direction as the field. With further increase of the field more domains
change over, each as an individual unit, until when all of the domains are
in the same direction, magnetic saluration is reached as suggested by Fig.
5-19b. The crystal is then magnetized to a maximum extent. If the
majority of the domains retain their directions after the applied field is
removed, the specimen is said to be permanently magnetized. Heat and
mechanical shock tend to return the crystal to the original unmagnetized
state. In fact, if the temperature is raised sufficiently high, the domains
themselves are demagnetized and the ferromagnetism disappears. This
is called the Curie point (about 770°C for iron).
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The magnetization which appears only in the presence of an applied
field may be spoken of as the induced magnetization as distinguished from
the permanent magnetization, which is present in the absence of an
applied field.

6-12. Magnetization Curves. The permeability u of & substance is
given by

B
= [ = Hour (5-56a)
where B = magnitude of flux density (webers/meter?)
H = magnitude of field H (amp/meter)
uo = permeability of vacuum (47 X 10-7 amp/meter)
u, = relative permeability of substance (dimensionless)

The permeability u or the ratio B/H is not a constant for ferromag-
netic materials. Therefore, to illustrate the relation of B to I, a graph
showing B (ordinate) as a function of H (abscissa) is used. The line or
curve showing B as a function of H on such a B-H chart is called a
magnetization curve (see Fig. 5-21a). It is to be noted that u is not the
slope of the curve, which is given by dB/dH, but is equal to the ratio
B/H.

F1c. 5-20. Rowland-ring method of obtaining magnetization curve.

To measure a magnetization curve for an iron sample, a thin, closed
ring may be cut from the sample. A uniform primary winding is placed
over the ring, forming an iron-cored toroid as in Fig. 5-20. If the
number of ampere turns in the toroid is N/, the value of H applied to
the ring is
_ NI
=7
where | = 2rR and R equals the mean radius of the ring or toroid. This
value of H applied to the ring may be called the ‘“magnetizing force.”
Hence, in general, H is sometimes called by this name. The flux density
B in the ring may be regarded as the result of the applied field H and is
measured by placing another (secondary) coil over the ring, as in Fig.

H amp-turns/meter (5-57)
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5-20, and connecting it to a fluxmeter.! For a given change in H, pro-
duced by changing the toroid current /, there is a change in magnetic
flux ¥, through the ring. Both H and B are substantially uniform in the
ring and negligible outside. Therefore the change in flux ¢, = BA,
where 4 is the cross-sectional area of the ring, and the resulting change in
the flux density B in the ring is given by

B = %’ webers/meter? (5-58)
where ¥, is measured by the fluxmeter. This ring method of measuring
magnetization curves was used by Rowland in 1873.

A typical magnetization curve for a ferromagnetic material is shown
by the solid curve in Fig. 5-21a. The specimen in this case was initially
unmagnetized, and the change was noted in B as H was increased from 0.
By way of comparison, four dashed lines are also shown in Fig. 5-21a,
corresponding to constant relative permeabilities (u,) of 1, 10, 100, and
1,000. The relative permeability at any point on the magnetization
curve is given by

B B, .. .

pr = —5 = 7.9 X 10° = (dimensionless) (5-59)

woll H
where B = ordinate of the point (webers/meter?)
Il = abscissa of the point (amp/meter)

A graph of the relative permeability u, as a function of the applied field
I, corresponding to the magnetization curve in Fig. 5-21a, is presented
in Fig. 5-21b. The maximum relative permeability, and therefore the
maxtmum permeabilily, is at the point on the magnetization curve with
the largest ratio of B to /. This is designated “max u’’; it occurs at the
point of tangency with the straight line of steepest slope that passes
through the origin and also intersects the magnetization curve (dash-dot
line in Fig. 5-21a).

The magnetization curve for air or vacuum would be given by the
dashed line for x4, = 1 (almost coincident with the / axis) in Fig. 5-21a.
The difference in the ordinate B between the magnetization curve of the
ferromagnetic sample and the ordinate at the same I/ value on the
ur = 1 line is equal to the magnetization M of the ferromagnetic material
times uo.

The magnetization curve shown in Fig. 5-21a is an initial magnetization
curve. 'That is, the material is completely demagnetized before the field
H is applied. As I is increased, the value of B rises rapidly at first and
then more slowly. At sufficiently high values of I/ the curve tends to

! The flurmeter operates on the emf indueced in the secondary when the magnetic
flux through it changes (see Sec. 7-19).
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Fia. 5-21. (a) Typical magnetization curve and (b) corresponding relation of relative
permeability to applied field H.

become flat as suggested by Fig. 5-21a. This condition is called magnetic
saturation.

The magnetization curve starting at the origin has a finite slope called
the initial permeability. Therefore the relative permeability curve in
Fig. 5-21b starts with a finite permeability for infinitesimal fields.

The initial magnetization curve may be divided into two sections, (1)
the steep section and (2) the flat section, the point P of division being on
the upper bend of the curve (Fig. 5-22). The steep section corresponds
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to the condition of easy magnetization, while the flat section corresponds
to the condition of difficult, or hard, magnetization.

B Easy | Hard magnetization
magnetization |
P
Barkhausen
steps
14 H

Fi1a. 5-22. Regions of easy and hard magnetization of initial magnetization curve.

Ordinarily a piece of iron consists not of a single crystal but of an
aggregate of small crystal fragments with axes oriented at random. The
situation in a small piece of iron may be represented schematically as in
Fig. 5-23. Here a number of crystal fragments are shown, each with a
number of magnetic domains, represented in most cases by a small square.
The boundaries between crystal fragments are indicated by the heavy
lines, and domain boundaries by the light lines which also indicate the
direction of the crystal axes. In Fig. 5-23a, not only is the piece of iron
unmagnetized, but also the individual crystal fragments are unmag-
netized. The domainsin each crystal are magnetized along the directions
of easy magnetization, that is, along the three crystal axes.! However,
the polarity of adjacent domains is opposite so that the total magnetiza-
tion of each crystal is negligible.

With the application of a magnetic field H in the direction indicated
by the arrow (Fig. 5-23) some domains with polarities opposed to or per-
pendicular to the applied field become unstable and rotate quickly to
another direction of easy magnetization in the same direction as the field,
or more nearly so. These changes take place on the steep part of the
magnetization curve. The result, after all domains have changed over,
is as suggested in Fig. 5-23b. This condition corresponds roughly to
that at the point P on the magnetization curve (Fig. 5-22).

1Iron crystallizes in the cubic system with three mutually perpendicular axes.
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A domain may contain millions of atoms, and since it flops from one
direction of easy magnetization to another in an interval measured in

Unmagnetized
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Fia. 5-23. Successive stages of magnetiza-
tion of a polycrystalline specimen with

increasing field.

thousandths of a second, the mag-
netization proceeds by stepsrather
than in a smooth, continuous
manner. These steps are called
Barkhausen steps or jumps. The
stepped characteristic can be ob-
served by sensitive measurements.
A much enlarged portion of the
magnetization curve showing the
Barkhausen steps is presented in
Fig.5-22. The Barkhausen jumps
are largest on the steep part of the
magnetization curve.

With further increase in the ap-
plied field, the direction of mag-
netization of the domains not
already parallel to the field is
rotated gradually toward the di-
rection of H. This increase in
magnetization is more difficult,
and very high fields may be re-
quired to reach saturation, where
all domains are magnetized paral-
lel to the field, as indicated in Fig.
5-23c. This accounts for the flat-
ness of the upper part of the mag-
netization curve.

This picture of the magnetiza-
tion process is an oversimplified
one, but it accounts qualitatively
for many of the important phe-
nomena. Another phenomenon,
which was not mentioned, is the
change in size of domains during
the magnetization process. Not
only do domains change in size,
but the entire specimen changes
in length during magnetization.

This effect is called magnetostriction.
65-13. Hysteresis.

If the field applied to a specimen is increased
to saturation and is then decreased, the flux density B decreases, but not

S S —
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as rapidly as it increased along the initial magnetization curve. Thus,
when Il reaches zero, there is a residual flux density, or remanence, B,
(Fig. 5-24).

In order to reduce B to zero, a negative field — I, must be applied
(Fig. 5-24). This is called the coercive force. As H isfurther increased
in the negative direction, the specimen becomes magnetized with the
opposite polarity, the magnetization at first being easy and then hard as
saturation is approached. Bringing the field to zero again leaves a

Flux density B
(webers/meter?)
{ o
Residual — Initial
flux density magnetization
curve
—H. H,
H
Coercive (amperes/meter )
force
= Bm
-B,
e =/iE e —H,, —>|

Fi1c. 5-24. llysteresis loop.

residual magnetization or flux density — B,, and to reduce B to zero, a
coercive force + H, must be applied. With further increase in field, the
specimen again becomes saturated with the original polarity.

The phenomenon which causes B to lag behind H, so that the mag-
netization curve for increasing and decreasing fields is not the same, is
called hysteresis, and the loop traced out by the magnetization curve is
called a hysteresis loop (Fig. 5-24). If the substance is carried to satura-
tion at both ends of the magnetization curve, the loop is called the
saturation, or major, hysteresis loop. The residual flux density B, on the

! By reversing the battery polarity (Fig. 5-20),
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B

Soft

W Hard

F1a. 5-25. llysteresis loops for soft and hard magnetic materials.

Fia. 5-26. (a) llysteresis loop. (b) Corresponding permeability curve.
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saturation loop is called the retentivity,! and the coercive force H, on this
loop is called the coercivity. Thus, the retentivity of a substance is the
maximum value which the residual flux density can attain and the
coercivity the maximum value which the coercive force can attain. For
a given specimen no points can be reached on the B-H diagram outside of
the saturation hysteresis loop, but any point inside can.

In “soft,” or easily magnetized, materials the hysteresis loop is thinas
suggested in Fig. 5-25, with a small area enclosed. By way of com-
parison, the hysteresis loop of a hard magnetic material is also shown,
the area enclosed in this case being greater.

B

Retentivity ——>

Normal
magnetization
curve

Saturation loop

F1a. 5-27. Normal magnetization curve with relation to hysteresis loops.

Turning our attention to the permeability u, consider the hysteresis
loop of Fig. 5-26a. The corresponding graph of u as a function of H is as
shown in Fig, 5-26b. At H = 0, it is apparent that u becomes infinite.
On the other hand, when B = 0, p = 0. Under such conditions, the
permeability u becomes meaningless. Therefore the use of u must be
confined to situations where it has significance, as, for example, to the
initial magnetization curve. It is to be noted that the term ‘“maximum
permeability’’ signifies specifically the maximum permeability for an
initial magnetization curve and not for a hysteresis loop or other type of
magnetization curve.

! The term “retentivity” is also sometimes used to mean the ratio of the residual
flux density B, to the maximum flux density B.,..
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Another type of magnetization curve for which u has a definite meaning
is the normal magnetization curve. 'This curve is the locus of the tips of a
series of hysteresis loops, obtained by cycling the field /1 over successively
smaller ranges. Thus, as shown in Fig. 5-27, the field is changed slowly
over the range + I1,, obtaining the saturation hysteresis loop. The field
is next cycled slowly several times over a range + If,, obtaining after a
few reversals a repeatable hysteresis loop of smaller size. This process is
repeated for successively smaller ranges in I{, obtaining a series of loops
of decreasing size. The curve passing through the tips of these loops is
the normal magnetization curve (Fig. 5-27). This curve is useful since it
is reproducible and is characteristic of the particular type of ferromag-
netic material. The normal magnetization curve is actually very similar
in shape to the initial magnetization curve.

6-14. Energy in a Magnet. A specimen of iron with residual mag-
netization contains energy since work has been performed in magnetizing
it. The magnetic energy w. per unit volume of a specimen brought to
saturation from an originally unmagnetized condition is given by the
integral of the initial magnetization curve expressed by

Wy = OB' Il dB joules/meter? (5-60)

The dimensional relation for (5-60) is

Q M M

TL TQ ~ LT*

where 3/ /LT? has the dimensions of energy density which is expressed in
the mksc system in joules per cubic meter. Thus, the area between the
curve and the B axis is a measure of the energy density. Thisisindicated
in Fig. 5-28a for an easily magnetized, (magnetically soft) substance
which has been carried to the point P in the magnetization process. A
magnetically hard substance takes more work to magnetize, as indicated
by the larger shaded area in Fig. 5-28b. On bringing I{ to zero some
energy is released, as indicated by the crosshatched areas in Fig. 5-28.

If H isincreased and decreased so that the magnetization of a specimen
repeatedly traces out a hysteresis loop as in Fig. 5-29a, the area enclosed
by this loop represents the energy per unit volume expended in the mag-
netization-demagnetization process in one complete cycle. In general
the specimen retains some energy in stored magnetic form at any point in
the cycle. However, in going once around the hysteresis loop and back
to this point, at which the energy will again be the same, energy propor-
tional to the area of the loop is lost. This energy is expended in stressing
the crystal fragments of the specimen and appears as heat. If no
hysteresis were present and the initial magnetization curve were retraced,
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the area of the loop would be zero (Fig. 5-29b). The magnetization-
demagnetization process could then be accomplished with no loss of
energy as heat in the specimen, assuming that eddy currents (see Sec.
7-18) are negligible.

\ (a)

(b)

Fic. 5-28. Energy density areas for (@) Fia. 5-29. Energy lost in magnetization
soft and (b) hard magnetic materials. cycle is proportional to area enclosed by
hysteresis loop.

65-16. Permanent Magnets. In many applications permanent magnets
play an important part. In dealing with permanent magnets the section
of the hysteresis loop in the second quadrant of the B-I{ diagram is of
particular interest. If the loop is a saturation or major hysteresis loop,
the section in the second quadrant is called the demagnelization curve
(Fig. 5-30a). This curve is a characteristic curve for a given magnetic
material. The intercept of the curve with the B axis is the maximum
possible residual flux density B,, or the retentivity, for the material, and
the intercept with the H axis is the maximum coercive force, or the
coercivity. It is usually desirable that permanent magnet materials
have a high retentivity, but it also is important that the coercivity be
large in order that the magnet will not be easily demagnetized.
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In Fig. 5-30b, three demagnetization curves are shown. Curve 1
represents a material having a high retentivity but low coercivity, while
curve 2 represents a material which is just the reverse, that is, it has a
low retentivity and high coercivity. Curve 3 represents a material which
is a compromise between the other two, having relatively high retentivity
and coercivity.

B
Retentivity\
P/ Saturation
hysteresis
2 ; loop
Demagnetization / /
curve % /’
/ ) (a)
%
" }\ Coercivity "
B
1
) (b)
2
H

F16. 5-30. Demagnetization eurves. (B is positive and H is negative.)

The maximum BH product, abbreviated BH..., is also a quantity of
importance for a permanent magnet. In fact, it is probably the best
single ‘“figure of merit,” or criterion, for judging the quality of a perma-
nent magnet material. Referring to Fig. 5-30b, it is apparent that
BH.... is greater for curve 3 than for either curves 1 or 2. The maximum
BH product for a substance indicates the maximum energy density (in
joules per cubic meter) in the magnet. A magnet at this point delivers a
given flux with a minimum of magnetic material.

Since the product BH has the dimensions of energy density, it is some-
times called the energy product and its maximum value the marimum
energy product. The product BH for any point P on the demagnetization
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curve is proportional to the area of the shaded rectangle, as shown in
Fig. 5-30a.

Figure 5-31 shows the demagnetization curve for Alnico 5, which is one
of the best permanent magnet materials. This is an alloy containing
iron, cobalt, nickel, aluminum, and copper. A curve showing the BH
product is also presented. The maximum BH product is about 36,000
joules per meter? and occurs at a flux density of about 1 weber per meter?
(see point P).
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F1c. 5-31. Demagnetization and BH product curves for Alnico 5.

A discussion concerning the operating point of permanent magnets is
given in Sec. 5-26.

6-16. Table of Permanent Magnetic Materials. Representative
materials for permanent magnets are given in Table 5-3. The materials
are listed in the order of increasing maximum BH product, which, inci-
dentally, is also the chronological order of their discovery. The composi-
tion of the materials is given in per cent.

TABLE 5-3
PERMANENT MAGNETIC MATERIALS
. | Retentivity, Coercivity, BH .x
e ’ webers/meter? | amp/meter | joules/meter?
Chrome steel (98 Fe, 0.9 Cr, 0.6 C, 1.0 ’ 4,000 1,600
0.4 Mn)
Oxide (57 Fe, 28 O, 15 Co) 0.2 72,000 4,800
Alnico 2 (55 Fe, 12 Co, 17 Ni, 10 Al, 0.7 44,800 13,600
6 Cu)
Platinum cobalt (77 Pt, 23 Co) 0.4 200,000 30,400
Alnico 5 (Alcomax) (51 Fe, 24 Co, 14| 1.25 44,000 36,000

Ni, 8 Al, 3 Cu) ' l

1
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6-17. Demagnetization. A bar of ferromagnetic material that has a
residual flux density tends to become demagnetized spontaneously. The
phenomenon is illustrated by Fig. 5-32, which shows a bar magnetized so
that a north pole is at the left and a

south pole at the right. The orienta- Iron keeper
tion of a single domain is indicated,
and it is evident that the external field N S

of the bar magnet opposes this domain

S

& - —) (a) (5)

Fi1G. 5-32. Demagnetization effect of bar Fia. 5-33. U-shaped magnet with
magnet field. and without keeper.

and, hence, will tend to turn it, or reverse its polarity, and thereby parti-
ally demagnetize the bar. The tendency for this demagnetization is
reduced if the magnet is in the form of a U as in Fig. 5-33a, since in this
case there is but little demagnetizing field along the side of the magnet.
The demagnetizing effect can be still further reduced by means of a soft

iron keeper placed across the poles asin Fig. 5-33b.
& The process of removing the permanent mag-

netization of a specimen so that the residual flux

density is zero under conditions of zero H field is
B, called demagnetization or deperming. Itisevident
that B can be reduced to zero by the application
of the coercive force /1, but on removing this field
~H, the residual flux density will rise to some value B,
v n  assuggested in Fig. 5-34. Although it might be
i possible to end up at B = 0 and H = 0 by in-
creasing H toslightly more than the coercive force
and then decreasing it to zero as suggested by the
dashed lines, the process requires an accurate
knowledge of B and H and the hysteresis loop.

A longer but more simply applied method is called demagnetization or
deperming by reversals. In this method, H is brought to a smaller
maximum amplitude on each reversal so that eventually the specimen is
left in a demagnetized state at zero field as suggested by Fig. 5-35.
Although such a demagnetization procedure can be completely carried
out in a matter of seconds with a small magnetic specimen such as a
watch (using a-c fields), many seconds or even minutes may be required
for each reversal for large magnetic objects because of the slow decay of
the induced eddy currents and the reluctance of the domains to

F16. 5-34. Partial hyster-
esis loop.
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change polarity. The matter of eddy currents is discussed further in
Sec. 7-18.

Fra. 5-35. Demagnetization by reversals.

6-18. The Magnetic Circuit. Reluctance and Permeance. An elec-
tric circuit forms a closed path or circuit through which the current flows.
Magnetic flux tubes are continuous and form closed paths.! Hence,
by analogy, we may consider that a single flux tube is a magnetic circuit,
although nothing is actually flowing. Or all of the flux tubes of a mag-
netic circuit, taken in parallel, may be considered as a magnetic circuit.

Consider first an electric circuit carrying a current I. By Kirchhoff’s
law the total emf in the circuit is equal to the total /R drop. Thus

Vr = IRy volts (5-61)

where Uy = total emf (volts)
Ry = total resistance (ohms)
From (5-61) the total resistance is
kY]
Ry = == (5-62)
I
Consider now a magnetic circuit. Corresponding to the resistance of
an electric circuit as given by (5-62), we may, by analogy, define a quan-
1 The continuous nature of steady currents in an electric circuit is expressed by
v - J =0, where ] = current density. The analogous magnetic relationis v+B = 0.
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tity for the magnetic circuit called the reluctance ® Thus

Ry = Er (5-63)
Ym
where ®r = total reluctance of magnetic circuit
Fr = total mmf of magnetic circuit (amp)

¥m = flux through magnetic circuit (webers)
In general, the total flux ¢ in a magnetic circuit is given by

Ym = [[B-ds webers (5-64)

where B = flux density (webers/meter?)

ds = element of surface (meters?)
The integration is carried out over the cross-sectional area of the flux tube
or tubes that constitute the circuit. If B is uniform over the entire cross

section,
Ym = BA webers (5-65)

where A = cross-sectional area of circuit (meters?).
Reluctance has the dimensions of current per magnetic flux, or in
dimensional symbols
QTQ _ @
T ML ML?

The relation Q2/ML? has the dimensions of the reciprocal of inductance.
Thus the unit for reluctance is the reciprocal henry.

The reciprocal of reluctance ® is called the permeance ®, which is
expressed in henrys. Hence, from (5-63),

1l _Vm
®r = ®s _ F. (5-66)
where ®r = total permeance of circuit (henrys).
The total mmf of a magnetic circuit is, from (4-90), equal to the line
integral of H around the complete circuit, and this in turn is equal to the
ampere-turns enclosed. Therefore, (5-63) becomes

| _Fr_$H-dl _ NI
®r  ¥m ¥m ¥m

where NI = ampere-turns.

The above discussion concerns the total reluctance of a circuit. Let us
consider next the reluctance of a portion of a magnetic circuit. In an
electric circuit, the resistance B between two points, having no emfs
between them, is given by

1/henrys (5-67)

ohms (5-68)

%4
G = op
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where V = potential difference between the points (volts)
I = current in circuit (amp)
In the analogous magnetic case, the reluctance & between two pointsin a
magnetic circuit is given by
LY

®R = 7 1/henrys (5-69)
where U = magnetic potential difference between the points (amp).
From (4-87) for U and (5-64) for ¢,, we have

/2 H-dl
R = 1o (5-70)

f/B-ds
where H is integrated between the two points (1 and 2) between which
we wish to find the magnetic potential difference U.
When the circuit has a uniform cross section of area A and the field is
uniform, (5-70) reduces to
Hl l

R = m = H l/henrys (5-71)

where ® = reluctance between points 1 and 2 (1/henrys)

| = distance between points 1 and 2 (meters)
A = cross-sectional area of magnetic circuit (meters?)
p = permeability of medium comprising the circuit (henrys/

meter)
The permeance @ between the points 1 and 2 is given by

=&

Reluctances in series are additive in the same way that resistances in
series are additive. For reluctances in parallel the reciprocal of the total
reluctance is equal to the sum of the reciprocals of the individual reluc-
tances. For reluctances in parallel it is usually more convenient to use
permeance, the total permeance being equal to the sum of the individual
permeances.

Ly henrys (5-72)

Example 1. Find the reluctance and permeance hetween the ends of the rectangu-
lar block of iron shown in Fig. 5-36a, assuming that B is uniform throughout the block
and normal to the ends. The permeability of the block is uniform and has a value
u1 = 500u0, where uo is the permeability of vacuum.

Solution. The reluctance of the block is from (5-69)

4 0.1

® =2 =500 X 4r X 10~ X 15 X 10~

= 1.06 X 10* reciprocal henrys
The permeance @ is the reciprocal of ®; so

@ = 9.4 X 107¢ henry

1
= 1.06 X 10
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F16. 5-36. Rectangular iron blocks.

Example 2. Find the total reluctance and permeance between the ends of the
series-connected rectangular iron blocks shown in Fig. 5-36b, assuming that B is
uniform throughout the blocks and normal to the ends. The permeability of each
block is uniform, the value in block 1 being u, = 5004, and in block 2, u2 = 2,0004,.

Solution. The reluctance ®, of block 1 is given in Ii'xample 1. The reluctance of
block 2 is

1 0.2

prd = 2,000 X 4x X 107 X 15 X 10~ — 0.53 X 10° reciprocal henrys
24 y

(Rz=

The total reluctance ®r cquals the sum of the individual reluctances; so
®Rr = R + R2 = (1.06 + 0.53) X 10 = 1.59 X 105 reciprocal henrys

The total permeance
1 1

®r = & = 159 X 108

= 6.3 X 107% henry
Example 3. Find the total reluctance and permecance between the ends of the
parallel-connected rectangular iron blocks shown in Fig. 5-36c, assuming that B is
uniform in each block and normal to the ends. The permeability of each block is
uniform, the value in block 1 being u; = 5004, and in block 2 being u2 = 2,000u,.
Solution. Since the blocks are in parallel, it is more convenient to calculate the
total permeance first. The permeance @, of block 1 is
_ wA _ 500 X 4x X 1077 X 20 X 107*

A — = 6.28 X 107¢ henry

®v =" 0.2

The permeanee of block 2 is

_ weds _ 2,000 X dx X 10~7 X 10 X 10~

— = -0
] 0.2 12.6 X 10-¢ henry

®

The total permeance equals the sum of the individual permeances; so

®r = @ + @ = (628 + 12.6) X 107* = 1.89 X 1075 henry
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The total reluctance is then given by

@r = L !

Pr 189 X 10-5 5.3 X 10¢ reciprocal henrys

In the above examples, it is assumed that B and x are uniform through-
out each block. It follows that H (= B/p) is also uniform and that the
end surfaces are equipotentials. For instance, if H is 1,000 amp per
meter, the magnetic potential difference between the ends of the bar in
Example 1 (I'ig. 5-36a) is U = Hl = 1,000 X 0.1 = 100 amp. The flux
density B = uH = 500u, X 1,000 = 6.28 X 10~' weber per square
meter. The total flux ¢, through the block is then equal to BA, where
A is the area of the block. Thus,

¥m = BA = 6.28 X 107! X 15 X 10~* = 9.4 X 10~* weber

In Example 2 (Fig. 5-36b) it follows from the boundary condition for
the normal component of B that the flux density is the same in both
blocks. Suppose that it is equal to 1 weber per square meter. Then in
block 1, H, = B/u; = 1/500u, = 1.59 X 10° amp per meter, and the
potential difference U, between the end faces of block 1 is given by
U, = Hil, = 1.59 X 10% X 0.1 = 159 amp. In block 2,

H, = — = -——— = 3.97 X 10? amp per meter

and the potential difference U, between the end faces of block 2 is
U: = Hyl, =397 X 102 X 0.2 = 79.4 amp

The total potential difference U across both blocks is then given by
U=U,+ U; =159 + 79.4 = 238.4 amp.

In Example 3 (Fig. 5-36¢) it follows from the boundary condition for
the tangential components of If that /1 is the same in both blocks. Sup-
pose that it is equal to 1,000 amp per meter. Then in block 1,

B, = w1 = 500u X 1,000 = 0.628 weber per square meter
and the magnetic flux in block 1 is
Ym = B1A; = 0.628 X 20 X 10~* = 1.26 X 10~? weber

In block 2, B, = u,H = 2,000p, X 1,000 = 2.52 webers per square
meter, and the flux in block 2 i8 .2 = Bsdp = 2.52 X 1072 weber. The
total flux through both blocks in parallel is then given by

VUm = V1 + ¥me = (1.26 + 2.52) X 10~ = 3.78 X 10— weber

6-19. Magnetic Field Mapping. Magnetic Field Cells. The examples
in the preceding section illustrate how the reluctance or permeance may
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be found for sections of a magnetic circuit that have a uniform cross sec-
tion and uniform field. In two-dimensional problems where the field
and cross section are nonuniform the magnetic field configuration, and
consequently the reluctance or permeance, can also be found provided
the permeability may be considered constant. Graphical field-mapping
techniques such as are employed in Secs. 2-27 and 3-16 are applicable to
such situations.

The following basic properties are useful in magnetic field mapping:

1. The field (H or B) lines and the magnetic potential (U) lines inter-
sect at right angles.

2. At the boundary between air and iron (or other high-permeability
medium) the field lines on the air side of the boundary are sub-
stantially perpendicular to the boundary surface.

3. The boundary between air and iron (or other high-permeability
medium) may be regarded as an equipotential with respect to the
air side of the boundary but not, in general, with respect to the iron
side.

4. In a uniform field the potential varies linearly with distance.

5. A magnetic flux tube is parallel to the field, and the magnetic flux
over any cross section of the tube is a constant.

6. Magnetic flux tubes are continuous.

With these properties in mind a two-dimensional magnetic field may
be divided into magnetic flux tubes and then by equipotentials into mag-

N
Ly — - II
L =1
2 - IL
‘.E_ig. i
) ! A
Equi- / B )
potentials < 4 %7
N\ #
! Walls of flux tube

F1a. 5-37. Magnetic field cell.

netic field cells with sides that are squares or curvilinear squares, using the
trial-and-error method described in Sec. 2-27 in connection with electric
field mapping.

A magnetic field cell is bounded on two sides by equipotential surfaces
and on two others by the side walls of a flux tube. For instance, the
sides of the magnetic field cell in Fig. 5-37 are the walls of a flux tube,
while the top and bottom surfaces are equipotentials. The field is
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parallel to the sides and normal to the top and bottom surfaces. The
permeance of a magnetic field cell, as measured between the equipotential
surfaces, is, from (5-72),

® = ﬂZA- = # = ud henrys (5-73)
and the permeance per unit depth is
%) =u henrys/meter (5-74)

where x = permeability of cell medium (henrys/meter). Thus, the
value of u for a medium is equal to the permeance per unit depth of a
magnetic field cell of that medium. For example, a magnetic field cell in
air has a permeance per unit depth of 4x X 10~7 henry per meter, or
1.26 uh per meter. Thus, if d in Fig. 5-37 equals 1 meter and the medium
is air, the permeance of the cell is 1.26 xh.

Any field cell can be subdivided into smaller square-ended cells with as
many cells in parallel as in series. Ience the permeance per unit depth
of any field cell, large or small, exactly square or curvilinear, is equal to u.

All cells with the same flux through them may be defined as magnelic
field cells of the same kind. It follows that the magnetic potential differ-
ence across all cells of the same kind is the same.

To illustrate some of the principles of magnetic field mapping, let us
consider three examples involving three variations of a two-dimensional
problem.

Example 1. A magnetic eireuit has an air gap of nonuniform separation as sug-
gested in Fig. 5-38a. The iron has a uniform depth d into the page of 1 meter. The

" Remainder flux:
U tube

“Magnetic'.
“.- equipotentials "

(a) (b)
F1g. 5-38. Magnetic field in air gap (Example 1).

geometry of the gap is identical with the region between ff and gg in the capaeitor of
Fig. 2-24. Find the permeance of the air gap, neglecting fringing of the field.
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Solution. It may be assumed that the iron permeability is much greater than u,
so that the field lines in the gap will be perpendieular to the air-iron boundary, and
this boundary can he treated as a magnetie equipotential. Since the geometry of the
gap is the same as that for the capacitor in Fig. 2-24, the field map in Fig. 2-24 may
also serve in the present case, noting that the field lines here are B or H lines and the
equipotentials are surfaces of equal magnetie potential U as shown in Fig. 5-38b.

With the exception of the cells in the remainder flux tube all of the field cells are of
the same kind, and the permeance of the air gap is given in terms of cells of the same
kind by

@ = % ® (5-75)

where N = number of field cells (or flux tubes) in parallel (dimensionless)

n = number of field cells in series (dimensionless)

®, = permeance of one eell (henrys)
The remainder flux tube has 9% cells in series, while the other flux tubes have 4.
Hence the remainder tube is

4
g = 0.43
of the width of a full tube, and N = 15 + 0.43 = 15.43. The total permeanee of the
gap is then
®r = @ ®o = 3.86®,

Since the depth of each eell is 1 mete;, the permeance of one cell is
®o = pod = 1.26 X 1 = 1.26 xh
and the total permeance is
®r = 3.86 X 1.26 = 4.86 uh

It is assumed in this example that there is no fringing of the field. For an actual
gap there would be fringing at the edges, and the aetual permeance of the gap
would be somewhat larger than given above.

Example 2. Let the problem of the above example be modified to that shown in
Fig. 5-39. Here the gap of the first example is replaced by iron and the iron poles by
air. The iron may be regarded as part of a magnetic eireuit of iron extending further
to the left and to the right as suggested by the dashed lines in Fig. 5-39. The iron
extends to a depth of 1 meter normal to the page, with the eross seetion at any depth
identical to that in Fig. 5-39. Assume that the iron has a uniform permeability u
whieh is mueh larger than go. Find the permeance between the surfaces indicated by
the dash-dot lines ff and gg.

Solution. The field map for this problem is the same as for Example 1 (Fig. 5-38b)
exeept that the field and equipotential lines are interechanged as shown in Fig. 5-39.
It is assumed that u is so much greater than u, that in the iron the H field at the air-
iron boundary is substantially parallel to the boundary as indieated by the map.
The total permeance between ff and gg is, from (5-75),

4
0=m00=0.259)<u)<l
= 0.259 X 1.26u, = 0.326u, rh

where u, = relative permeability of iron.
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F1a. 5-39. Iron bar of nonuniform cross section with internal field (Example 2).

Example 3. Let the problem of the preceding example be modified to that of a
two-strip transmission line having the same cross section as the gap of Example 1 and
the iron circuit of Example 2.  Asshown in Fig. 5-40 the two conducting strips extend
normal to the page with a sheet of steady current flowing outward on the upper strip

Sheet current
K amp./meter

/(out of page)
g
Conducting H,
strip
"""" / \ >~ H ) o
Air 4

T g tnes| ||

““““ ! Mo -
Conducting . T
strip

IEN R

Equipotentials ‘\ L oo oocs

Sheet current
K amp./meter
(into page)

F1G. 5-40. Cross section of strip transmission line (Example 3).

and an equal current flowing inward on the lower strip. The medium in which the
strips are located is air. Neglect edge effects. Find the inductance of a 1-meter
length of the line.

Solution. Neglecting edge effects,! the field map between the strips is identical
with that for the iron circuit in Fig. 5-39.

1 If the conducting strips are extended an infinite distance to the left and right, as
suggested by the dashed lines in Fig. 5-10, the field configuration is precisely as indi-
cated. The ficld between the strips is produced by the currents on the strips. In
Example 2 the field in the iron may be regarded as due to an equivalent current sheet
at the surfaces of the iron bar normal to the page (Fig. 5-39).



254 ELECTROMAGNETICS [CHar. 5

If each cell in the map is regarded as a strip transmission line with sheet currents
along its upper and lower surfaces, the inductance L, for a length d of 1 meter of the
single-cell line (normal to the page in Fig. 5-40) is, from (4-100), given by

Lo = pod = 1.26 gh

The total inductance Lr of a meter length of the line is then

Lr X 1.26 = 0.326 ph

.
T 15.43

At any point on either strip in Example 3 we have the boundary con-
dition that the tangential component of H is equal in magnitude to the
linear sheet current density K at the point, that is, {; = K. Since the
average I field for any cell of the same kind is inversely proportional to
the cell width, it follows that the linear current density K at the left,
where the strip spacing is small, is four times the density at the right,
where the spacing is large, the spacing ratio being 4. The variation in K
along the strips is the same as for the change density p, in the capacitor
problem of Fig. 2-24.

In conclusion the important properties of an accurate magnetic field
map in a single medium of uniform permeability may be stated as follows:

1. The permeance ®, of any magnetic field cell is the same.

2. The permeance per unit depth of any magnetic field cell is the same
and is equal to the permeability u of the medium.

3. The reluctance ®, of any magnetic field cell is the same.

4. The reluctance-depth product for any magnetic field cell is the
same and is equal to the reciprocal of the permeability u for the
medium.

5. The magnetic potential difference across any magnetic field cell of
the same kind is the same and is equal to ¥ .®Ro.

6. The magnetic flux ¥. through any magnetic field cell of the same
kind is the same.

7. The magnetic flux ¥. over any cross section of a flux tube is the
same,

8. The average flux density B in any cell of the same kind is inversely
proportional to the width of the cell or flux tube.

9. The average field H in any cell of the same kind is inversely pro-
portional to the cell width.

10. The magnetic energy stored in any cell of the same kind is the
same.

11. The average magnetic energy density in any cell of the same kind is
inversely proportional to the area of the end of the cell. (This is
the area that appears in the field map.)

6-20. Comparison of Field Maps in Electric, Magnetic, and Current
Cases. Graphical field mapping was discussed in Sec. 2-27 for electric
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fields, in Sec. 3-16 for currents in conductors, and in Sec. 5-19 and also to
some extent in Sec. 4-20 for magnetic fields. The technique is similar in
all these cases. Of particular significanceis the fact that a field map for a
certain two-dimensional geometry may be applied to numerous problems
having this geometry. An illustration of this was provided by the three
examples in Sec. 5-19, in which the field map of Fig. 2-24 for a capacitor
yielded the solution for the permeance of the volume with the field
applied both transversely and longitudinally. The map also gave the
inductance of a conducting-strip transmission line.

The same map can, in addition, supply the value of the conductance of
a conducting bar with the current flowing transversely and with the cur-
rent flowing longitudinally, The same map can also be applied to heat-
and fluid-flow problems.

To summarize, sketches are given in Fig. 5-41, showing six different
problems of the same geometry for which solutions are supplied by one
field map. The actual map is shown in Fig. 5-41a, being omitted in the
other sketches. The geometry of the problems is that of the capacitor of
Fig. 2-24, which was also used in the problems of Figs. 5-38 to 5-40.

In Fig. 5-41a the map represents the electric field in a capacitor with
the field transverse. In Fig. 5-41b the map represents the electric field
in a conducting bar with current flowing transversely, while in Fig. 5-41¢