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Foreword

Since 1958, a period of twenty years, digital electronics has
become one of the most rapidly growing industries in the world. In that
year, most of the digital applications were found in computers, and
probably less than 1200 machines were completed during the year. Today,
one manufacturer, of several, builds more than 1000 calculators every hour
of the working day. To emphasize further the advances accomplished in
such a short period of time, some of these new calculators have more
computational capability than the 1958 computers. Quite a digital
evolution!

Now, calculators and computers represent only one of the many
uses of digital electronics. Old familiar analog circuits in consumer
products such as radios and televisions have been replaced with circuits
using digital techniques. New electronic products for new markets such as
microwave ovens, sewing machines, TV games, are springing up each
year. In fact, digital circuits are even replacing mechanical parts like
gears and pinions - as in the modern digital electronic watches.

This rapid growth has come about because of the almost ideal
match between the digital electronic requirements and the capabilities of
the integrated circuit. Digital circuits give "off" -"on" answers,
permitting the use of components with wide tolerance which are easier to
make. Because they are handling only information, they can operate with
very low power. As a result, they can be very small physically and many
thousands of digital functions can be built on a single integrated circuit
chip at very low cost.

It is also the very low cost which has been responsible for the
rapid growth in digital functions. A digital circuit that makes a decision -
called a "gate" - which cost several dollars in 1958 can be obtained as a
part of an integrated circuit today for less than a tenth of a cent. A
reduction of more than a thousand to one! These decreases in circuit costs
are continuing, helping digital electronic systems of the future to cost
even less - and to find even wider uses.

The technical and economic forces which caused this rapid
growth of digital techniques will open up new applications areas for
electronics. We are truly on the threshold of an era where digital
electronics will have a pervasive presence.

Jack Kilby
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Preface

If you have a junior -high-school background in electricity, plus a
curiosity about how things work and a general awareness of electronics in

use all around you, this book is for you. It's for you whether you are a PhD
who hasn't studied digital electronics yet or an eighth -grader who wants
to build his own digital computer.

This book won't show you how to build that computer. It will do
something more important. It will give you understanding-
understanding of the electronic circuitry in many types of digital
electronics, from the basic idea of a transistor circuit saying "yes" or "no,"
to entire digital systems made up of thousands of such circuits. This
understanding will serve you well whether you have your hands into real
hardware or simply wish to be in touch with the most revolutionary
technology of our time.

This book is different from many others, in that it's a
self -teaching course. That means it builds your understanding step by
step. You shouldn't skip around in the book or try to pick out individual
things to learn. Read one chapter at a time, beginning with Chapter 1.
Quizzes are provided at the end of each chapter to review main points
learned in the chapter.

Try to master each chapter before you go to the next. This is to
make sure you have a solid background for learning more advanced things
later on. Each chapter will move you rapidly to a new level of
understanding.

A glossary for all special words and an index are provided to aid
in the understanding and use of the material.

We who have prepared this book hope that, as you go through it,
you will feel some of the excitement that comes from learning about the
marvelous things that digital circuitry can do-and the even more
marvelous things that are yet to come from this fascinating new creation.

UNDERSTANDING DIGITAL ELECTRONICS V





_

1
LET'S LOOK AT A SYSTEM

Let's Look
at a System

Stop! Think a minute! Haven't you been curious about those electronic
games that you play on a television screen? Have you ever wondered how
an electronic digital watch works, or a hand-held calculator? How about
the computerized control systems used in automobiles, or that computer
used at your bank, or the office, or in a small business, or for credit cards?

All of these systems are digital electronic systems. "Digital
electronics" means the kind of electrical circuitry found in such systems.

This kind of circuitry is very different in design from that found
in older, more common electronic systems such as radio and television
receivers, high-fidelity sound recording and playback systems, and electric
guitars. These systems use another style of electrical circuit design called
linear or "analog" electronics.

What's special about digital electronics?
Digital and analog systems are similar in that they both use

electricity, electronic devices such as transistors and diodes, and various
other electronic parts. You can't always tell by looking inside a system
whether it's digital or analog. The difference is in the way the systems
use electricity - the things they make electricity do. This different way
of dealing with electricity gives digital systems the ability to do almost
unbelievably complicated things for you, without being very big or costing

a lot of money.
It's timely and important to learn about digital electronics

because these sophisticated, compact, and economical systems are getting
even more so as time goes on. They are cropping up in more and more
places - both as replacements for analog systems and as entirely new
ideas that were never possible before.

And so to keep up with progress, it's not enough to know about
microphones, loudspeakers, transformers, potentiometers, amplifiers,
oscillators, mixers, tuners, detectors, filters, waveforms, impedance
matching, feedback, frequency response, and other terms common to
analog electronics. The wave of the future is with digital electronics,
including terms such as gates, flip-flops, counters, registers, decoders,
binary numbers, TTL, MOS, and microprocessors.
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1
How will this book help you?

In this book, we're going to survey the field of digital electronics,
from a light switch in your house (yes, it's a digital device!) to a large
digital computer. We'll learn the features common to digital systems, and
how digital electronics works in a wide variety of applications. We'll see
why digital methods are revolutionizing the field of electronics. And more
than that, we'll learn what to expect in the future from this amazing
technology.

Furthermore, we're going to do all this without getting you
bogged down in the fine details of circuit design. Because one of the most
marvellous things about digital electronics is that you can have a deep,
sophisticated understanding of it without knowing very much about
electricity!

Even if you already know enough about both electricity and
digital applications to tinker around a little bit with digital circuits-
chances are you'll find in this book a deeper, richer understanding of the
subject plus its implications for the present and the future.

What's a familiar digital system?

Right away, we're going to find out just what a digital system
is, and start learning how digital systems work. Let's begin with the
digital system you're probably most familiar with personally -a small
electronic calculator, such as the Texas Instruments calculator shown in
Figure 1-1.If you've got a hand-held calculator or a small desk -top model,
stop reading and get it now. If you don't have one, perhaps you can borrow
one - or you may want to buy one. It may help your learning and
appreciation of this subject a great deal.

Okay, now look at the calculator, and think for a moment about
how small and inexpensive it is, considering the amazing things you know
it can do. Just a few short years ago, an electronic calculator that could
add, subtract, multiply, and divide was as big as a large electric
typewriter and cost maybe five hundred dollars. And this illustrates what
we said earlier about digital systems getting more sophisticated, smaller,
and lower in cost as time goes on.

Figure 1-1. A digital system in your hand!
A handheld calculator is a good example for beginning our study of digital
electronics (Texas Instruments Model 1025.)
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LET'S LOOK AT A SYSTEM

Now let's consider what this calculator can do. Turn it on. Press
the "3" key, noting what happens. The result may not seem very
impressive at first - just a matter of a number "3" appearing in the
display, right?

What goes on inside a calculator?
But ask yourself what made this "3" appear. Look closely at the

lighted number itself. If your calculator is like most, the "3" consists of
five small lighted segments, out of seven segments that can be lighted.
When all seven segments are lighted, you get an "8". The segments in
your display may be tiny red bars, rows of even smaller red dots, larger
green bars, or dark bars not illuminated. These are all different ways
to make the same basic pattern of seven segments.

Now consider what made the particular five segments turn on
to form the "3". Apparently, pressing the "3" key sent some information
somewhere inside the calculator - some information saying, "Remember
number 3." And somewhere inside, something is remembering "3". And
somehow this remembered "3" is making five particular segments of the
display light up.

Now go through the steps for adding five to the three and
getting the total. The particular keys you press at which times depends
on just what kind of calculator you have. Most likely, you press the "plus"
key, then the "5" key, and finally the "equals" key. Note what happens
as you go through the necessary steps to get the total of five and three.

First, the "3" was replaced by a "5," right? So where did the
"3" go? Apparently, it was still being remembered somehow without being
displayed. And the "5" was lighted up in the same way the "3" was earlier.
If you pressed "plus" before the "5," then something inside had to
remember you wanted to add the next number. If you pressed "equals"
after the "5," this apparently caused the two numbers to be added,
because now an "8" is being displayed. But what inside the calculator
figured out this answer? And what happened to the 5 andthe 3? Where
are they now?

Obviously, there are some pretty complicated things going on
inside this machine, even when we simply add two numbers less than
ten. When we have answered the questions as to how these numbers were
transmitted from the keyboard, how they were added, how they were
stored, and how they were formed on the display, we will have answered
the questions of what a digital system is, and how it works. So let's get
started.
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1
How can we simplify a calculator for study?

Let's limit our discussion at this point to a very simple imaginary
calculator - one that will only add, subtract, multiply, and divide. Its
display will handle numbers with only eight digits (numerals). It won't
work exactly the same way as the calculator in your hand, so you can
put yours down. But keep it handy for reference.

Furthermore, let's say that the electronic circuitry in our example
calculator is the simplest possible to handle these limited tasks. But the
general way the circuitry works is very much like the operation of most
real calculators that will do more sophisticated things.

First, let's consider the main parts of the machine, as shown
schematically in Figure 1-2. (A "schematic" drawing of a circuit is one
using simple symbols for the various parts and the interconnecting
wires.) The large block at the bottom represents an integrated circuit
- words we'll abbreviate to "IC." The 22 arrows pointing in and out of
the IC represent wires, and the arrowheads indicate the direction electric
current flows.

Segment Lines "a" through "h' ti
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Figure 1-2. Schematic diagram of connections among IC chip, keyboard,
and display in the simple example calculator
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What's an integrated circuit?
Integrated circuits are the main reason digital systems are becoming
more and more sophisticated, compact, and economical. They are a method
of mass-producing complicated electronic circuits containing thousands of
transistors, diodes, resistors, capacitors and the interconnecting wires in
an unbelievably tiny form.

Figure 1-3 shows a Texas Instruments calculator integrated
circuit. It's a little package about an inch and a half long, half an inch
wide, and an eighth of an inch thick (38 by 13 by 3 mm), with metal strips
(pins) for electrical terminals. These strips are connected on the inside to
a little "chip" of semiconductor material called silicon. The chip, which is
about a quarter of an inch square (6mm) and not much thicker than the
pages of this book, is shown in the enlarged photograph of Figure 1-3. As
you can see, there are so many transistors interconnected with other
components on this chip, packed so close together, that you can't tell
them apart. Many small calculators have all their electronic circuitry
packed into just one integrated circuit (not counting the batteries,
keyboard, and display).

That's a brief look at ICs. We'll explain them further in a later
chapter. But for now, let's move on with our discussion of the calculator.

What are the calculator parts outside the IC?

Looking back at Figure 1-2, we see 18 little blocks representing
the calculator keys. Under each key is a schematic symbol representing
a switch. One pole (terminal or connection) of each switch is connected
to a horizontal "keyboard input" wire labeled N or P. The other pole is
connected to a vertical "scan line" wire (numbered 1 through 9). Pressing
a key closes (turns on) a switch for a moment. This allows electric current
to flow from one of the vertical scan lines to one of the horizontal
keyboard -input lines

Notice that a custom in schematic diagrams is to use a little black
dot to show when two wires are connected. If two lines representing wires
cross without a dot, they're not connected. Many of these "wires" would
actually be little metal strips on a printed -wiring card. Real wires (or
strips) are not always laid out so straight and neat as they appear in
a schematic diagram.

Above the keys are nine somewhat larger blocks called "character
positions." These blocks form the display, where numbers as long as eight
digits can be shown, in addition to a minus sign and various symbols
for errors. We'll get to these in a moment. But first, let's talk about how
the keys transmit numbers and commands to the IC chip.
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Figure 1-3. Photograph of a typical real calculator chip made by Texas
Instruments Incorporated, showing some of the subsystems described for
a simpler calculator in Figure 1-6

How do numbers get inside the calculator?

Figure 1-4 shows a close-up view of part of the keyboard for
discussion purposes. At all times, the IC supplies power to one of the nine
vertical "scan lines" at a time, over and over, 1 through 9, thousands of
times each second. When the IC is ready for the next keystroke, it looks
for a signal coming in on the two "keyboard input" lines, labeled "N"
and "P." When you pressed the "3" key, the corresponding switch stayed
closed long enough for all the scan lines to be energized several times
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I I
in a row - no matter how quickly you released the key. (Compared to
digital circuitry, the fastest mechanical switch is as slow as molasses in
January!) And so pulses began arriving at the "N" input line whenever
scan line 3 was supplied power in pulses. These pulses coming at these
particular times told the IC that the "3" key was pressed.

Similarly, when the "plus" key was pressed later on, pulses began
coming in on the "P" line whenever scan line number 3 was energized.
And pressing the "5" key caused pulses on input "N" when scan line 5
was energized.

Pressing a key
transmits
pulses from a
scan line
to a keyboard
input line.

3 5

1 2 3 4 5 6 7 8

SCAN LINES

N
\ KEYBOARD CHIP

IC

INPUTS

Figure 1-4. Concept of pulses from many keys coming into only two input
terminals on the IC chip (from Figure 1-2)

How are numbers shown in the display?

So that's how information gets into the IC from the keyboard. Now let's
talk about how numbers are illuminated in the display. Looking at Figure
1-2 again, each of the nine character blocks is a position for one
"character," meaning a numeral digit, minus sign, or error symbol -
perhaps including a decimal point to the right. Each of the nine positions
is connected to one of the vertical scan lines, and also to eight "segment
lines" labelled "a" through "h." Each segment line is connected to all
nine character positions and to the IC.

Now look at the detailed view of one of the character positions,
shown in Figure 1-5. There are seven little light -emitting diodes or
"LEDs" forming a figure -8 pattern, and an eighth LED off to the right
for a decimal point. ("LED" is pronounced by saying the letters: "L -E -D.")
The LEDs are labeled "a" through "h," to match the segment -line
designations. These devices are made of a special kind of semiconductor
material that gives off light when electric current is passed through them
in the right direction.
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1
Each LED has two electrical terminals. One terminal on each

LED is connected to the scan line coming up to that character position
from below (bolder lines), and the other terminal is connected to one of
the eight segment lines (lighter lines). To illuminate one LED segment,
both its scan line and its segment line must be turned on by the IC, so
that current can be supplied by the scan line and returned to the IC by
the segment line. (When a scan line is "on," it supplies electricity. But
when a segment line is "on," it accepts electricity or "sinks" electric
current.)

As a result of this arrangement, each character position can be
illuminated only when that particular scan line is supplying electricity.
And the character (the number or symbol, etc.) that appears at that
position is defined by which segment lines are turned on to allow current
to flow. The IC is able to change the combination of active segment lines
every time it energizes another .scan line.

A segment lights when both
/ its connections are "on".

PI
a

g

d

b

C

Scan Lines determine which
character position is "on".

Segment lines define character
in that position.

SCAN

LINES

To other character positions

-Mitt t
2 3 4 5 6 7 8 9

SCAN GENERATOR

h g f e dcba
SEGMENT DECODER

INTEGRATED CIRCUIT DISPLAY REGISTER

b SEGMENT
C LINES TO
d OTHER
e CHARACTER

POSITIONS

SEGMENT

LINES

Broad arrows
indicate
several wires
running
together, showing
flow of information

Figure 1-5. Schematic diagram showing details of connections to eight
light -emitting diode segments at far left character position in calculator
display shown in Figure 1-2. Arrowheads show direction electricity flows.
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For example, when scan line 9 and segment lines a, b, c, d, g,
and h are "on," a "3" followed by a decimal point appears in the far
right position. (Verify this by noting which LEDs in Figure 1-5 have these
labels and then look again at Figure 1-2.) Then as scan line 9 goes off
and scan line 1 comes on in the regular scan -line sequence, the "3" and
decimal point blink off. And the character intended for the far left-hand
position blinks on - if any is called for. The blinking is so fast that even
though each character position is "on" only one -ninth of the time, your
eye sees only a steady display.

As you can tell, the IC is working like a demon, even when it's
not calculating but merely showing you a number in the display. A
thousand times every second, it has to be prepared to switch on a different
pattern of segment lines, while watching for pulses on the keyboard input
lines. This switching may seem fast to you, but it's actually slow compared
to many other digital systems that we will discuss in due time.

Because it's capable of scanning with such rapid action, the IC
can handle 18 switches and 72 LEDs with only 19 connections. A separate
connection for each switch and LED would cost much more (as we will
see in a later chapter when we discuss how ICs are made). It would thus
cause the calculator to cost much more.

What's inside the integrated circuit?
So that's how information gets into and out of the

integrated -circuit chip. (Remember, we called it a "chip" because it's only
about 1/4 inch on a side and paper -thin.) To know the rest of the story,
we've got to look inside this IC.

Figure 1-6 is a simplified diagram showing the main electronic
subsystems in the chip simply as blocks. (A "subsystem" is just a smaller
system inside a larger one.) The broad arrows represent pathways for
information between subsystems. Each of these pathways is really several
wires running together to carry simultaneous electric signals. To
appreciate how greatly simplified this diagram is, look closely at Figure
1-3 again. The long, narrow, light-colored strips are thin ribbons of metal
acting as wires in the pathways we're speaking of.

Also shown in Figure 1-6 above are blocks representing the
keyboard and display. Let's follow the action as we add 3 and 5.

UNDERSTANDING DIGITAL ELECTRONICS 1-9
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How are the subsystems controlled?

The first thing to understand is that all the subsystems are
directly linked to the "controller" subsystem by a network of electrical
conductors that are not fully shown in Figure 1-6. The job of the controller
is to tell each subsystem when to act, and what to do. And the controller,
in turn, acts merely as an interpreter of instructions that it draws one
at a time from a place where they were stored when the chip was made
-a place called the "microprogram memory."

ADDRESS REGISTER

CONTROLLER

INSTRUCT ON REGISTER

MICROPROGRAM
MEMORY

Figure 1-7. The controller stores the desired instruction address in the
address register. The microprogram memory subsystem responds by storing
the instruction in the instruction register.

As indicated in Figure 1-7, each instruction is permanently stored
at a particular location in the microprogram memory. Each storage
location and the instruction inside is identified by a number called its
"address" - like your house number or apartment number. The controller
gets each instruction it needs by putting the correct address number in
a temporary storage unit called the "address register." In response, the
microprogram memory unit automatically goes to that address, finds the
instruction, and immediately delivers a copy of it into another temporary
storage unit called the "instruction register," for use by the controller.
(As you can tell, a "register" is a storage unit used to hold information
for a short while until the information is needed.)

UNDERSTANDING DIGITAL ELECTRONICS
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1
Each instruction that the controller looks up this way governs

its actions for a period of time called one "instruction cycle." An
instruction cycle corresponds to the time during which one scan line is
energized - about 100 microseconds (100 millionths of a second). At the end
of each instruction cycle, the controller draws (Fetches) another instruction
for the next cycle - stepping along one instruction at a time every cycle.
If the current instruction doesn't tell the controller how to decide which
instruction to use next, the controller automatically picks the one at the
next address in sequence in the microprogram memory.

Time signals to all other subsystems

A A AAAA A A

Phase
1

Phase
2

Phase
3

4,2

0.0001
SECOND

High Voltage

Low Voltage

01 02 03 TIMING RELATION OF
CLOCK GENERATOR PULSES IN EACH NETWORK

Figure 1-8. The clock generator produces sequential pulses in three
networks going to all other subsystems, to synchronize their operations.

How are operations synchronized?

Obviously, timing is a very important aspect of the calculator's
work. The operation of all subsystems is "synchronized" (kept in step) by
timing pulses in three different wiring networks depicted in Figure 1-8.
These pulses, called "clock signals," are supplied to all parts of the IC from
a main timing subsystem called the "clock generator." The three
networks, and the pulses each one carries, are called "phase one, phase
two, and phase three." The three pulses occur one after the other in a
regular cadence, like an orchestra director calling out musical measures in
waltz time: "One -two -three, one -two -three." Certain parts of the system
will not go into action until they receive these phased timing signals.

What happens before we begin a problem?

With this background information, let's proceed now to add 3 and
5. When we first turn on the calculator, the controller automatically draws
(Fetches) instruction number "zero," through the steps we discussed with
respect to Figure 1-7. This instruction tells the controller to clear out all
information in the "register" subsystem as shown in Figure 1-9. These
registers, as we said earlier, are temporary storage places for numbers
and other information. This "clearing" step wipes out any random,
meaningless information that may pop up in these registers when the
system is first turned on. It's all done in one instruction cycle, by means of
a control signal to all registers. (Remember, an instruction cycle takes
only 100 microseconds-a tenth of a thousandth of a second!)
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FLAG REGISTER CONTROLLER

DISPLAY REGISTER

OPERAND REGISTER

ACCUMULATOR REGISTER

Figure 1-9. When the calculator is turned on, the controller sends a
control signal to clear unwanted information from these storage registers.

In the next instruction cycle, automatically stepping to the next
instruction in the microprogram memory (number 1), the controller is told
(all in digital code, of course): "Check for signals from the keyboard. If
you don't see any signal, follow the same instruction again. But if you do
see a signal, go on to the next instruction." And so until a keyboard input
signal arrives, the controller doggedly sticks to this "keyboard -checking"
instruction for cycle after cycle, in time with the beats of the clock signals.
The controller is in what we call the "idle routine." All step-by-step
sequences of instructions that it follows in doing various tasks end in this
routine.

Meantime, while the controller is busy doing this, the "scan
generator" subsystem (shown back in Figures 1-5 and 1-6) is humming
along all by itself, paying no attention to the controller. It's busy counting
clock signals, and turning on one scan line after another (as we have
already discussed) at the beginning of each 100 -microsecond instruction
cycle.

And over to the right in Figure 1-5, the "segment decoder"
subsystem is doing its own thing, too. Its job is to keep the display
illuminated with the number digits that are presently stored in the
"display register" subsystem, by turning on the appropriate segment lines
to receive current at the right times. (The display register is a temporary
storage place for an 8 -digit number, complete with decimal point and
minus sign, if any.) Every time a new scan line comes on, the decoder looks
at the next digit position in the display register, and figures out which
segment lines to turn on to show this digit in its position in the display. It
automatically leaves out any zeroes at the beginning of any stored
number, except that it does show you one zero and a decimal point if the
register has no number in it-that is, if the register is empty. So that's
what it's showing now as we begin to add 3 and 5.
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What happens when we press the "3" key?

So-we press the "3" key. (See Figure 1-10). Nothing happens
until the scan generator turns on scan line number 3. Then a signal is
transmitted in keyboard input line N to the "keyboard encoder"
subsystem. Knowing which scan line is on, the encoder generates a
number "3"-not in the way you would write it on paper but in a special
code so that it can be electronically transmitted to the display register and
stored there. Recall that we talked earlier about "remembering a 3"-well,
the display register is what does that.

Keyboard
Input
Line "N"

KEYBOARD

SCAN LINE #3

V

KEYBOARD
ENCODER

"NUMBER READY" SIGNAL

SCAN GENERATOR

A

Number "3"
Transmitted-'
In Code

FLAG REGISTER -1

''STORE'' SIGNAL

CONTROLLER

0 0 0 0 0 0 0 3

DISPLAY REGISTER

Register Automatically
---- puts "3" in far right end

Figure 1-10. Parts from Figure 1-6 that are in are involved in entering
"3" from keyboard

The encoder also sends a signal to the controller, telling it that a
number key has been pressed. The encoder doesn't say which number key,
because the controller doesn't really need to know.

It's not too important right now-but in order to make sure that a
key has really been pressed and that the encoder wasn't just picking up
some unwanted signal (called "noise"), the controller fetches and obeys
some instructions that make it check several times to make sure that a key
was pressed.

Finding the "3" signal still there, (remember, the switch is slow
compared to this digital system!) the controller next has to decide what to
do with it. Still following the steps of the programmed routines, it looks
for any notes it has previously stored in the "flag register" subsystem
shown in Figure 1-10-notes with regard to what kind of problem it's
doing, and what steps in the problem have already been completed. The
flag register is provided for just this purpose-it stores incidental notes, as
the program steps are executed, that the controller will need in the future
as it completes all of the steps of the problem.
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No notes are found in the flag register, so the controller writes a
note in the flag register to remind itself that the first key of a new
problem has been pressed. Then it tells the display register to accept the
"3" it's been staring at for so long. Since this register has a separate place
for each of eight digits, it automatically puts the "3" in the far right-hand
storage position. (Remember-both the "3" and the note in the flag
register are in the special code that can be handled electronically.) The
segment decoder immediately pounces on the code for "3," and begins
energizing the necessary segments at the right times to show us a "3" in
the display.

Why do simple things appear to get complicated?

Bingo! Finally, after dozens of instruction cycles, as the controller
methodically obeyed instructions and decided which instruction to follow
next, our "3" has been entered. Now the controller happily goes back to its
idle routine. After making sure all keys are released, so it won't enter
another "3," it begins watching for the next keystroke. All of this has
taken only about a thousandth of a second.

You're beginning to see now just how many different things
must be done in a digital system to accomplish a fairly simple task and
that they can be done very rapidly. As we go on through the book, you'll
find that this is really the secret of success for digital electronics. Every
job and every number is broken down into very small steps and bits, so
that it can be handled by very simple electronic circuits. We can put so
many thousands of these simple circuits onto one integrated circuit chip
that, working together, they can handle jobs and numbers as complicated
as we need.

What happens on pressing the "5" and "plus" keys?

Let's move on rather quickly now through the rest of the addition
problem, referring to Figure 1-11 (which shows several more subsystems
isolated from Figure 1-6).

When we press "plus," the encoder tells the controller about it,
and the controller in turn checks and verifies that a key was pressed as
before. Recognizing that it has received an addition command rather than
another digit signal, the controller then checks the flag register for any
mathematical operations keyed in earlier that must be performed before
the addition. Finding none, and because of the addition command, the
controller makes the "routing subsystem" copy the "3" that's in the
display register into the "operand register." In other words, it transfers
the "3" to the operand register-which will now remember it. The operand
register is identical to the display register and the accumulator
register-which we will come to in a moment. All three registers are for
storing an eight -digit number with decimal point and minus sign, if any.
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Pressing the "5" key, in turn, triggers the same routine the "3"

key caused. The display register is cleared and the "5" is stored, and a note
is stored in the flag register to the effect that a new number has been
entered. Now we have the copied "3" in the operand register and the new
"5" in the display register (Figure 1-11).

First "3",
then "5"
go to display
register

DISPLAY
REGISTER

OPERAND
REGISTER

KEYBOARD
ENCODER

"NUMBER READY" SIGNAL

"PLUS KEY" SIGNAL

"EQUALS KEY" SIGNAL

ACCUMULATOR
REGISTER

FLAG REGISTER

CONTROLLER

"5" is left in
display register "Addition" reminder stored here

0 0 0 0 0 0 0 5

0 0 0 0 0 0 0 3

0 0 0 0 0 0 0

I

ti

0

ROUTING
SUBSYSTEM

"3" is
copied
into
operand
register

Figure 1-11. Steps in entering "3 plus 5" from keyboard
What happens when we press the "equals" key?

Finally, when we press the "equals" key, the encoder tells the
controller. The controller in turn checks and verifies the signal, recognizes
that it has received an "equals" (or "end -of -problem") command, and
checks the flag register to find out which operation it has to perform.

The addition note recovered from the flag register leads the
controller to a next instruction that begins a programmed sequence of
instructions-a "routine"-in this case, an "add" routine. (See Figure 1-12.)
Instruction -cycle by instruction -cycle, the controller makes the routing
subsystem transfer a copy of the electronically coded "5" from the display
register, and simultaneously transfers a copy of the "3" from the operand
register. Both numbers go to the "adder-subtracter" subsystem to be
added. After addition, "8" is copied into

display register and "5" is lost

DISPLAY REGISTER
ADDER-

SUBTRACTER
.11.OPERAND REGISTER

ACCUMULATOR REGISTER

ROUTING
SUBSYSTEM

Figure 1-12. Routing of numbers during addition process

1-16 UNDERSTANDING DIGITAL ELECTRONICS



LET'S LOOK AT A SYSTEM

The adder-subtracter is a unit that handles all the arithmetic in
the calculator. All it can do (and as we will see later, all it needs to do even
to multiply and divide) is just what its name says-add and subtract.

The exact details of electronically adding numbers will be covered
later in the book. But suffice it to say now that in one instruction cycle,
the "5" and the "3" are added and the electronically coded sum of "8" is
put into the accumulator register. Further instruction cycles figure out
the proper decimal point and sign (plus or minus) for the sum, and then
transfer it to the display register. There, the display sequence
illuminates the "8" in the calculator display. And all these things
triggered by the "equals" key happened within the IC seemingly faster
than you could push the keys!

You didn't really know it, but the "5" that was in the display
register was cleared out and lost, and by now the controller is back to the
"idle routine," waiting for the next keystroke. At last then, the sum of "8"
is in the display; and although the "5" is lost, the "3" is still remembered
(stored) in the operand register in case we need it for further arithmetic
operations.

How are decimal points handled?

We didn't mention it, but there was another routine that the
controller had to do to make sure that we added our numbers correctly. It
had to check the position of the decimal points in the numbers that were
added and make sure the adder-subtracter had the decimal points "lined
up" properly for addition.

We'll study this matter of handling decimal points further at a
later time. But for now, as we see in Figure 1-13, let's just say that there is
an electronically coded digit in a special position in each register where a
number is stored, that tells where the decimal point is in the number. In
Figure 1-13, for all numbers, the "0" for the decimal -point digit means the
decimal points go at the far right of the stored numbers.

DECIMAL
POINT

DIGITS NUMBER DIGITS

DISPLAY
0 0 0 0 0 0 0 0 8 REGISTER

OPERAND
REGISTER0 0 0 0 0 0 0 0 3

ACCUMULATOR
REGISTER0 0 0 0 0 0 0 0 8

Figure 1-13. Decimal points in the number registers are handled by a
separate digit.
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How can electricity transmit numbers?

So there you have a general picture of how the calculator goes
about its business. You've seen all the major parts of the system, and how
they work together. We've come a long way in understanding many of the
things a typical digital system does.

Or course, we have not covered all the possible
complications-such as entering decimal points and minus signs. And we
haven't covered subtraction, multiplication, and division. But the fact is
that all these matters are handled by the very same subsystems we have
already watched in operation. They're managed by appropriate steps,
done one at a time, in accordance with programmed sequences of
instructions.

We'll understand more about these operations when we get
further into the book. But for now, let's move on to finding out just how
numbers are represented in a digital system such as this. We have seen
where the "3" and the "5" go inside the calculator IC chip, and we
mentioned that the numbers were coded so they could be handled
electronically-but just what do they look like inside the IC?

To be specific, let's zero in on the connection between the keyboard
encoder and the display register, back in Figure 1-11. We know the encoder
generates an electronic code that represents numbers from zero up to
nine, corresponding to number keys. In Figure 1-11, we see a broad arrow
leading from the encoder to the display register, indicating a pathway for
numbers. So what is this pathway like, and how does it work?

The answer - and the reason for it-goes back to our earlier
discovery that the secret of success for digital electronics is that every job
and every number is broken down into small, simple steps and bits. This is
so that the tasks and information can be handled by very simple electronic
circuits of the sort that can easily be put together in great quantities in
integrated circuits.

POWER
SUPPLY

POWER
I SUPPLY

SWITCHING
CIRCUITS WIRES LAMPS

Symbol for connection to "ground,
a network of wires all over
the system, usually considered
to be at zero volts.

OFF

Figure 1-14. How to think of switching circuits as electrically controlled
switches operating lamps
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What is the simplest kind of electric circiut?

Now the simplest sort of electronic circuit is one that just
switches electricity on and off in a wire, as you turn a lamp on and off
with a switch. (See Figure 1-14.) We'll be studying such circuits in the
next chapter, and we will find that they use transistors rather than the
mechanical switches depicted in Figure 1-14. But for now, we'll just say
that switching circuits are never part -way on. The wires they control are
always clearly in one state or the other-on or off, high voltage or low,
large current or small, and so forth.

POWER . Spark symbols POWER
SUPPLY indicate switches

are electrically
controlled

SUPPLY

CONTROL

SIGNALS

TRANSMITT NG RECEIVING
CIRCUIT CIRCUIT

Figure 1-15. Switching circuits can receive switching signals as well as
transmit them.

Now, as indicated in Figure 1-15, the kind of switching circuits
we're talking about are controlled by one or more input signals, which are
themselves either on or off. This means they can receive signals from other
switching circuits. And this is how numbers and information are sent
from place to place in our calculator, and every digital system-by
switching -circuits turning one another on and off.

What information can a switch send?

Now wait a minute, you may say. What kind of information can
you send by turning a switch on and off? How can anything this simple
handle the complicated kind of information involved in digital systems?

Well-it's true that a switch can't say much. But it can say
something. For a specific example, look at Figure 1-16. Two numbers, A
and B, are being "compared" by the adder-subtracter to see whether or
not A is greater than B (a job which the adder-subtracter handles simply
by subtraction). By switching one wire on or off, the adder-subtracter can
tell the controller the answer. "On" means, "Yes, A is greater." And "off"
means, "No, A is not greater."

A
NUMBERS

To BE

COMPARED

B

ADDER-
SUBTRACTER

One wire carries "comparison signal":

ON = YES, A IS GREATER THAN B.
OFF= NO, A IS NOT GREATER THAN B.

CONTROLLER

Figure 1-16. Example of how much information one wire can carry by
being switched on or off
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This is an example of the basic unit of information in all digital

systems-the very simplest possible statement that can be made. It's just a
specification of one out of two alternatives-a matter of yes or no. We call
this amount of information one "bit." One reason this is a good name is
that a bit represents the smallest possible piece of information. What we
have discovered, then, is that at any one moment, a switch can transmit
one bit of information.

But how can a switch sending one bit help us with the problem
we're attacking about how to transmit numbers? What number can you
send with one bit of information? We could let "off" represent "one," and
let "on" represent "two"-but what good would that do is?

The answer is that to transmit larger numbers than one or two,
we simply use more than one wire. This will give us a lot of different
combinations or patterns of "on" and "off," and we can let each
combination represent a different number, according to some sort of code.

Figure 1-17 shows specifically how numbers are transmitted in
our example calculator. The "transmitting unit" above and the "receiving
unit" below represent the encoder and the the display register back in
Figure 1-11. Furthermore, these same units represent any two subsystems
that transmit and receive numbers. They all work the same way in this
particular calculator.

TRANSMITTING UNIT

OFF ON OFF ON

Switching Circuits can be
operated in any combination

Lamps Represent Switching
Circuits Receiving Signals

0 1 0 1

RECEIVING UNIT

Signal Path:
Four Wires Assigned
Numerical Values

Number Received:
4 + 1 = 5

LET SYMBOLS
1 AND 0 MEAN
''ON'' AND ''OFF"

Figure 1-17. One way to transmit numbers by switching several wires on
and off
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What's an example of a code used for numbers?

As you can see in Figure 1-17, the example number code we're
using consists of letting each wire represent a number: 8, 4, 2, and 1. The
number transmitted is just the sum of the numbers represented by the
wires that are switched on. At the particular moment illustrated in the
figure, the "4" wire and the "1" wire are on, so the number being
transmitted is five. (We're pretending the receiving unit has little lamps
to show us which lines are "on.")

Below the lamps, you see a string of four symbols: 0101. These
symbols, zero and one, provide a handy way that's used throughout the
field of digital technology, to indicate whether a wire is on or off. We're
going to let zero mean "off," and let one mean 'on." So in this particular
code scheme, 0101 always means "five." We read it as "zero -one -zero -one."
It's not "a hundred and one."

As for the rest of the combinations used to represent the
numerals zero through nine, they're shown in Figure 1-18. You may
recognize this code scheme as consisting of binary numbers. It's the most
common code scheme used in digital systems. There are others, but we'll
defer further discussion of code schemes to a more appropriate time.

8 4 2 1 Value "weight" of each wireor

0000 0+ 0+ 0+ 0 = 0

0001 0 + 0 + 0 + 1 1

0010 0 + 0 + 2 + 0 = 2

0 =OFF 0011 = 0 + 0 + 2 + 1 3

1 =ON 0100 0 + 4 + 0 + 0 4

0110
0 + 4 + 0 + 1
0 + 4 + 2 + 0

5

6

0111 0 + 4 + 2 + 1 = 7

Binary Numbers: 1000 8 + 0 + 0 + 0 8
0 and 1 are 1001Binary Digits
or "Bits"

8 + 0 + 0 + 1 9 DECIMAL

DIGITS

Figure 1-18. The 'binary number" code used in transmitting numbers in
the example calculator. Interpret as shown by adding weighted value of
each "1".

How do "binary numbers" show us what "digital" means?

This business about "binary numbers" in Figure 1-18 will show us
where we get the word "digital," as in "digital systems." Let's start by
considering how our everyday "Arabic" number system works.
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In writing an Arabic number, we use ten different symbols: 0, 1,
2, 3, 4, 5, 6, 7, 8, and 9. These symbols are called numerals, or digits. A digit
is a position in a number telling how many ones, how many tens, how
many hundreds, and so forth. This system is also called the "decimal"
system, and the numerals are called the "decimal digits." Decimal means
something related to the number ten.

Now "binary" means something related to the number two, or
something with two parts. In writing a number using the binary system,
we only use two symbols, 0 and 1. These numerals are the binary digits.
Each position for a digit in a binary number stands for twice what the
next position to the right stands for. So that's what binary numbers are.

And by the way, the first and last letters of "binary digit" are
where we get the word "bit." (Remember, a bit is the basic unit of
information in all digital systems-the smallest possible piece of
information.) A bit is a binary digit-a 0 or a 1.

And so a digital system is one that uses digits for all the
information it handles. Even information that has nothing to do with
numbers is reduced to the form of numbers using special codes, and the
codes are made out of digits.

You can see that this definition does not limit digital systems to
those that use binary numbers. For example, old-fashioned mechanical
adding machines are digital systems that use decimal digits. They
represent each position in a number by a gear or bar with ten teeth, so
that it can be set at any one of ten different positions.

To represent numbers purely in decimal form by using electricity,
you would need a different voltage level for each of the ten digits.
Switching circuits that can handle ten different voltage levels are pretty
expensive, however. So all modern digital electronic systems use binary
digits (zeros and ones), as represented by very simple electronic circuits
switching on and off. Consequently, whenever we say "digital system"
nowadays, we take it for granted that we're speaking of binary digital
systems.

What are the four principal functions in digital systems?
Let's press ahead now with one more detail of our initial

understanding of digital electronics. Remember we said early in the
chapter that to begin our understanding of a digital system by studying a
calculator, we have to learn four things: How numbers are transmitted as
inputs from the keyboard, how they are stored, how they are added, and
how they are formed on the display as an output.

We're already covered the questions'of transmission, addition,
and display. (We haven't yet seen exactly how the adder-subtracter
manages to add, but we've gotten a good overview of how the system goes
about making the addition take place, and that's good enough for now.) So
the remaining feature to cover now is storage.
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If you look back at the entire calculator system shown in Figure
1-6, you'll recognize several different subsystems that we've talked about
which store numbers and other information. The three number registers
store numbers, the flag register stores miscellaneous notes, the address
register stores numerical instruction addresses, and the instruction
register stores instructions. Well, how can switching circuits store
information?

Spark Symbols Indicate
Electrical Control Influence

SWITCHING

CONTROL

SIGNAL

LATCHING

CONTROL

SIGNAL

POWER -
SUPPLY

Figure 1-19. Functional concept of a simple switching circuit that stores
or remembers information

How can a switching circuit store information?

We'll see in detail in later chapters how storage -type switching
circuits work. For now, however, let's be content with a general mental
picture of what's going on in a storage -type (or memory -type) switching
circuit.

Figure 1-19 represents a type of circuit called a "latch." It has
this name because the output can literally be latched, or fastened, in one
state or the other-on or off. We've indicated this by showing an actual
mechanical latch or hook, engaging either of two notches (labelled "on"
and "off") in a pivoting mechanical switch element. Thus, the switch can
be latched either in the "on" position, so that electricity flows from the
power supply to the lamp-or in the "off" position.

This picture is patterned after the switching circuits we studied
back in Figure 1-15. Actual electronic latches, of course, use transistors
rather than mechanical parts-but the results are much the same.

Let's consider what this circuit will do with the latch lever
retracted, the dotted line position in Figure 1-19. As before, we're using
little spark symbols to indicate the control function. The switch element is
turned off or on by the incoming "switching control signal." With the
latch retracted, it will change each time the control signal changes. Now if
the latch lever is engaged, the switch is restricted from changing and will
remain in the latched position until the latch is retracted again. The latch
lever is either engaged or retracted by the incoming "latching control"
signal being switched on or off. This is being done by a switching unit
feeding the "latch control signal" wire.
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Thus, to remember whether the switching control signal was on or

off at a certain moment-to store this one bit of information-we simply
latch this circuit in that state at that moment. And the switch stays there,
no matter how the switching control signal may change afterward, until
we release the latch again. Then as soon as the switching control signal
changes the switch, the stored information is lost or "forgotten," as the
output now represents new information to be latched.

Now if we represent this circuit as a digital electronic circuit that
is receiving one of the wires from the transmitting unit of Figure 1-17,
then putting four of these circuits together provides a storage unit of four
bits that can represent numbers from zero through nine as we showed in
Figure 1-18. We need only add a latch control signal line to the receiving
unit to make this so.

Such a receiving unit with four stages then would be a
register-which, of course, we have talked about a great deal in our
calculator system description. It would store four bits and hold them
temporarily until we want to change them.

How does a calculator represent all digital systems?

That's the end of our initial overview of digital systems, in the
form of an example calculator. Before we move on to the next chapter,
let's pause and think about how the ideas we've seen can be generalized
from the example calculator to digital systems at large.

The most important generality, as indicated earlier, is that all
modern digital electronic systems operate like the calculator by reducing
information and tasks to very simple terms-to a matter of on or off, yes
or no, 1 or 0. To handle information and tasks of any complexity whatever
requires employing large quantities of such simple statements and tasks,
doing it rapidly using code schemes by which many simple pieces of
information can represent a more complex bundle of information. You'll
see this pattern in every digital electronic system.

How does electricity suit digital system requirements?
Now we haven't made a point of it yet, but the fact is that you

can build a perfectly functional digital system without using electricity at
all. Nothing in our definition of digital systems says anything about
electricity-just about breaking information into little pieces, about using
numerical digits, and so on. One example we've already cited of a
non -electrical system-even a non -binary one-is a mechanical calculator.
Another example, a more up-to-date one, is certain binary digital systems
employing devices that switch liquids or gases flowing in little tubes. We
call these "fluidic" systems.

But the reason that electricity has been employed for digital
systems so successfully is that electrical switching circuits-which are
relatively simple and inexpensive compared to some other electrical
circuits-can be used to handle the very simple information and tasks
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involved in binary digital systems. These circuits are the fastest, most
convenient method we know for such purposes.

Why do integrated circuits fit in so well?

The first digital electric systems used electromechanical relays
that actually contained little mechanical switches of the sort we have been
imagining in switching circuits. Later digital electric systems used
vacuum tubes instead. Soon the transistor came along as a replacement,
and then semiconductor integrated circuits.

And here again we seem to have a marriage made in heaven. As
we will see more clearly later on in the book, integrated circuits are
naturally adapted to reducing simple switching circuits to microscopically
small size, and packing countless thousands of them into an unbelievably
small space, lowering the cost per circuit significantly.

This capability throws ICs right into the arms of digital
systems-which as we have seen involve many simple tasks and pieces of
information. Integrated semiconductor electronics is the best way we
have found yet to implement digital systems-and it's getting better all
the time as integrated circuit technology improves so that more and more
circuitry is put on one piece of silicon material.
What do all systems do?

From here, we can move on to one more, even grander
generalization drawn from our calculator example, illustrated in Figure
1-20. This generalization is made up of two ideas. First, the only things
that any system does, or can do, are to manipulate information and do
work (or both). That is, all that's going on in any system is the handling of
various forms of information, perhaps associated with the doing of work.

EXTERNAL FORMS

OF INFORMATION

SENSE
(INPUT)

(CONVERT)
(DETECT)

DIGITAL SYSTEMS

are those that use
digital forms of

Information internally

DECIDE
11411110. (PROCESS)

r

L I STORE
(MEMORY)

L_

mme411110-

EXTERNAL FORMS

OF INFORMATION

AND/OR WORK

ACT
(OUTPUT)

(CONVERT)

Figure 1-20. The universal system organization. All systems manipulate
information and/or do work using the same three or four stages.
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How are all systems organized?

And second, all systems are organized in the same fashion. They
do their jobs in the same general steps or stages. First, they sense (or
detect, or accept) information in various forms from the outside world,
and convert it to forms of information that can be handled in the system.
Then they make decisions based on this input information-meaning they
process or manipulate the information. In doing so, they may store or
remember some of the information for a time, or process it as a result of
other information stored permanently. And finally, they take the
resultant new information and act on the outside world with it-by
converting it into external forms of information again, and perhaps by
exerting some controlled form of work or energy. Think of any system you
like, and this universal organizational concept can be construed to apply to
it.

For example, our calculator's keyboard and encoder sense
information and convert it into an internal form. Various subsystems
decide and store. And the segment decoder and display system convert the
resulting internal information into the desired action of showing you
numbers in the display. This "digital electronic" system, of course, is
handling the information in digital form.

How does this distinguish digital systems from others?

The significance of this universal system concept is that it
shows us that digital systems are those that manipulate information in
digital form, which we have seen means in the form of digits-little
separate pieces of information. There's only one other general method
for handling information, and it's called "analog." In Chapter 5, we'll
study the differences between these two kinds of information, and the
two kinds of system that result.

And now we really have come a long way! We've moved from a
general understanding of a hand-held calculator, through an
introduction to concepts of digital systems, to a grasp of the unifying
concepts of all systems. This will provide a background of understanding
as we proceed to dig into digital systems and see how they do the things
we've been discussing.

Take a break
As you come to the end of each chapter, it will be a good idea for

you to stop and take a breather. And before moving on to the next
chapter, go back and study any of the parts that weren't clear to you at
first. This is because a lot of the ideas covered in each chapter are
necessary for your comprehension of material in later chapters. The
glossary, and the quiz that follows each chapter, will help you review.
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Quiz for Chapter 1
1. How does the calculator

circuitry know which key
caused a signal in a keyboard
input line?
a. There's a different input

line for each key.
b. There's a different scan

line for each key.
C. By noting which scan line

is on when the signal is
received.

d. B and C above.

2. Why do the numerals in the
display flicker (although
faster than you can see)?
a. They use alternating

current.
b. They're off while the

controller re -checks the
inputs to verify a signal
was received.

c. The segment outputs can
transmit only one numeral
at a time.

d. The display register only
stores one digit at a time.

3. How is the controller able to
do so many different things
at different times?
a. It contains a special,

different circuit for each
job it has to control.

b. It really doesn't control the
other subsystems - they
pretty much act
independently and
automatically.

c. It just repeats the same
process for each job it has
to do.

d. It's told what to do by
instructions fetched from
the microprogram memory.

4. How are operations in all
sybsystems kept in step
together?
a. Each sybsystem has a little

"clock" unit.
b. By control signals from the

controller.
c. By signals in the scan

lines.
d. By timing pulses in three

networks called phases.

5. When the "equals" key is
pressed, how does the
controller know which
arithmetic operation to
perform?
a. It checks a note it made

about this in the flag
register.

b. The current microprogram
instruction contains this
information.

c. There's a place in each
number register for minus
signs, plus signs,
multiplication signs, and so
forth.

d. It has already performed
the necessary operation
and is just waiting to
display the result.

6. All the arithmetic in the
calculator is handled by a unit
that can only:
a. Add
b. Subtract
c. Compare two numbers
d. A and B above
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7. The switching circuit
controlling a wire in a binary
digital system:
a. Is either "on" or "off."
b. Is often "part -way" on or

off.
c. Can be controlled by other

Switching circuits.
d. A and C above.

8. A binary switching circuit can
indicate a choice between how
many alternatives (in one
wire at one moment)?
a. One
b. Two
c. Ten
d. Depends on the circuit

design.

9. What is a "bit" in a digital
system?
a. A binary digit (1 or 0).
b. The basic unit of

information.
c. The smallest possible piece

of information.
d. All of the above.

10. Where do we get the name
"digital" electronics?
a. You key in numbers with

your fingers (digits).
b. All digital systems use

binary digits (bits).
c. All digital systems use

some sort of numberical
digits (decimal, binary,
etc.)

d. All digital systems have
digital number displays as
in the calculator.

11. Which binary number
represents "seven?"
a. 1111111
b. 7
c. 0777
d. 0111

12. Which of the following
manipulate information and
possibly do work?
a. All systems.
b. Only digital systems.
c. Only binary digital

systems.
d. Only electronic binary

digital systems.

13. Which do all systems have in
common?
a. Sensing external

information.
b. Making decisions and

possibly storing
information.

c. Acting to produce external
information and possibly
work.

d. All of the above.

14. Digital systems are those
which:
a. Sense, decide, store, and

act.
b. Manipulate information

and do work.
c. Handle information in

digital form internally.
d. Deal with digital

information in the external
world.

(Answers in back of the book)
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How Digital Circuits
Make Decisions

As we begin a new stage in our learning process, let's remind
ourselves of what we have covered already, and why we did so.

First, we gained a general familiarity with the operation of a
simple hand-held calculator. Of all digital systems, the calculator is
perhaps the most familiar and intriguing, so it provided a good way to get
us into this subject.

And indeed we already are into the subject with both feet. Based
on our study of the calculator, we have grasped the basic organizing
principles that are common to all electronic digital systems. Some of these
principles apply also to all digital systems, whether electronic or not. And
some even encompass anything that we can call a "system" - even if it's
not a digital system.

And this is where we're going to pick up the subject now - with
the universal system organization that we learned in Chapter 1, as we
applied it to the hand-held calculator. This will lead us into our topic for
this chapter.

How does the universal organization apply to the calculator?

Figure 2-1 shows how the various parts and subsystems of the
calculator are categorized according to which of the "universal functions"
they mainly perform - based on whether their primary job is to sense, to
decide, to store, or to act. (There's actually a certain amount of
decision -making involved in all four stages - but decisions are the main
job only in the "decide" section.)

EXTERNAL INFORMATION

VIA FINGER MOTIONS

INTERNAL INFORMATION

IN NECESSARY UNIFORM EXTERNAL INFORMATION

DIGITAL ELECTRICAL FORM AS PATTERNS OF LIGHT

DECIDE ACT

Controller,
Adder-Subtracter

Routing Subsystem,
Clock Generator,
Scan Generator

Number Registers,
Flag Register,

Address Register,
Instruction Register,

Microprogram Memory

Decoder
and

display

STORE

Figure 2-1. Subsystems of calculator system from Figure 1-6, rearranged
to illustrate universal system organization
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Chances are you pretty well understand how the switches in the

keyboard sense external information from your fingertips, and how the
light -emitting diode display acts to produce new external information in
the form of patterns of light. And our initial picture of how switching
circuits can store information is probably fairly satisfying to you for the
time being. But you probably have some pretty big question marks in
your head with regard to the decide function. How in the world can
electrical circuits actually make decisions? Can it be that electric circuits
have some form of intelligence?

Well, of course, they don't. But this is indeed a natural question.
And it's such a crucial question for digital systems that we're going to
devote this entire chapter to it.

What's the simplest example of decisions in the calculator?

Looking back at Figure 2-1, then, let's pick a very simple
decision -making unit as an example to study, to help us grasp the main
idea of how digital circuits make decisions. Surprisingly enough, the
simplest example is not in the "decide" stage (We'll postpone studying
these more complicated subsystems until later). Instead, the simplest
decisions are made in the keyboard encoder, over in the "sense" stage.
Figure 2-2 reminds us of what the encoder's job is, and why this
decision -making unit is classified in the "sense" stage rather than in the
"decide" stage.

EXTERNAL

INFORMATION IN

FINGER MOTIONS

"SENSE" STAGE

SCAN LINES FROM

SCAN GENERATOR

BINARY NUMBERS

TO DISPLAY
REGISTER

SIGNALS TO TELL
CONTROLLER WHEN

A NUMBER KEY IS
Keyboard PRESSED AND WHICH

Input Lines OPERATION KEY
IS PRESSED

Figure 2-2. The "sense" stage of the calculator not only detects finger
motions but also converts the resulting signals to forms suitable for other
subsystems.

The "sense" stage, depicted in Figure 2-2, not only senses or
detects external information by means of the switches in the keyboard -
but it also converts this information into a form that's convenient for the
other subsystems (which we have seen is the electronic "binary code") by
means of the encoder. This conversion process involves decisions, as we
will soon see - decisions that are very well suited for introducing us to
how they are performed.
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What steps are involved in encoding numbers?
First, let's narrow the scope of our study of the encoder. It will be

sufficient for us to find out only how the encoder generates the number
signals to the display register, shown as a broad arrow emphasized by a
circle in Figure 2-2. We will take it for granted that the signals to the
controller, shown further below, are produced in much the same fashion.
(These signals tell the controller when a number key is pressed - without
saying which one - and when each of the "operation" keys is pressed, such
as plus, equals, and so forth.) So let's inquire into the decisions involved in
encoding keystrokes into binary code.

SCAN LINES

KEYBOARD

INPUT

LINES

N

P

11 T11511 'III
SECTION 1: Which number key
has been pressed?

0 1 2 3 4 5 6 7 8 9

SECTION 2: What's the right
code for this number?

1

2

4

8

PART OF
ENCODER
SUBSYSTEM

A "number line" is turned on
when corresponding key is pressed.

BINARY

NUMBERS

TO DISPLAY
REGISTER

Figure 2-3. The encoder uses two steps in converting keyboard signals into
numbers.

The encoder generates numbers in two steps, and each step will
illustrate a different kind of basic decision -making circuit for us. These
steps are illustrated in Figure 2-3 as two sections of the encoder.

In the first section, some circuits of one kind decide which
number key has been pressed, according to which of the keyboard -input
lines and scan lines are "on." The answer is transmitted by turning on one
of ten "number lines" leading down to the second section. Down there,
some circuits of the other kind decide which of the four wires leading to
the display register to turn on, to transmit the number according to the
binary code we learned back in Figure 1-18.
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What does an AND gate do?

Let's look into the first section shown in Figure 2-3, and consider
the switching circuit that decides when to turn on the "number one" wire
leading down to the second section. Figure 2-4 shows what this particular
circuit has to do, and where it gets its input information. Let's consider
this job carefully, because it's one of the most basic decisions in digital
electronics.

"1" key
is pressed

lk
0-0

Switching circuit
must turn output
wire on when
input N and scan
line 1 are on.

N

SCAN LINES

3 4 5 6 7 8

r-
P

Bold lines are those "on"
when "1" key is pressed
and scan line "1" is on.

"AND"
GATE SECTION #1

FROM FIGURE 2-3

10 13 151III
"NUMBER LINES- TO SECTION # 2

Figure 2-4. The job of the type of switching circuit found in Section 1 of the
encoder shows what an AND gate does.

We want this circuit to turn on the "number one" wire whenever
the "one" key is pressed on the keyboard. Remember now - pressing the
"one" key causes keyboard input line N to be "on" when scan line 1 is "on."
No other keys (such as the other three shown in Figure 2-4) will make both
these inputs be on at the same time. Therefore, our "number one" switching
circuit must turn on whenever both input N and scan line 1 are "on."

This circuit may be considered a "coincidence detector," because
it responds only when it discovers both input signals "on" at the same
time. (Two things happening at the same time are called "concident.")
The circuit can also be considered to be like a gate in a fence, because an
"on" signal in either input causes the output to be in the same state as
the other input. This makes it seem as though a "gate has been opened
up" for signals in the other input to "pass through." But an "off" signal
in one input "shuts the gate" against signals in the other input, causing
the output to remain "off." This idea is where we get the name for the
circuit. It's called a "gate." And since there are other circuits also called
gates (which we will see in a moment), this kind is called the AND gate,
with the "and" spelled in capital letters.
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How does an AND gate work?
Before we see how all the rest of the ten "number wires" are

turned on by AND gates, let's look at the idea of how AND gates work,
shown in Figure 2-5.

Regardless of the details of circuit design (which we will study
in due time); all AND gates fit the mental picture presented in Figure 2-5.
They all act as though they consisted of electrically -controlled switches
connected "in series" as shown, with each switch turned on by an "on"
signal in a particular input wire. ("In series" means with the same current
passing through both switches.) In this particular example, when "on"
signals in both input N and scan line 1 turn on both switches at the same
time, electricity flows from the power supply to the output line. This gives
us the output signals we want for each of the possible combinations of
input signals, as summarized in the "function table" in the figure. It's as
simple as that.

Output is on
when scan line 1

AND
keyboard input line N

are both "on"

FUNCTION TABLE

SCAN 1 N OUTPUT

OFF OFF OFF

OFF ON OFF

ON OFF OFF

ON ON ON

SCAN Line 1

Customary symbol for "ground" - an electrical
connection shared by all circuits in the system
and usually considered to be at zero volts

INPUTS

KEYBOARD INPUT LINE N ti

*TO BE PRECISE IN DEFINING POSITIVE
AND NEGATIVE LOGIC, ASSUME "ON"
MEANS HIGHER, MORE POSITIVE VOLTAGE,
AND "OFF" MEANS LOWER, MORE
NEGATIVE VOLTAGE.

OUTPUT

POWER SUPPLIED IN "NUMBER LINE- TELLS
SECTION # 2 WHEN "1- KEY IS PRESSED

Figure 2-5. General idea of how the AND gate in preceding figure works

Do you realize what you have just learned? Consider for a
moment what a heavy idea has been revealed to you: ELECTRICALLY
CONTROLLED SWITCHES CAN MAKE DECISIONS! We have wormed
our way down to the very foundations of our calculator - and indeed, the
foundations of all digital electronics. And down at the bottom, we have
uncovered one of the building-blocks that all digital systems are made of.
Connected together in the right patterns, large numbers of these AND
gates - along with a few other very similar kinds of circuits - are what
make every digital system work.
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Again, we recognize the pattern we will see again and again in

this field: The decisions that a system is required to make can be broken up
and subdivided into very simple decisions, which can be handled by very
simple electric circuits (or better still, electronic circuits).

What's the customary symbol for the AND gate?

Now in finishing up our explanation of how the first section of
our number encoder works, we will need to show several AND gates in a
small space. To avoid having to label each little box as an AND gate, we
will use the customary symbol for AND gates, shown in Figure 2-6. Note
that the output and all inputs are shown, but the power -supply connection
is left off to keep the drawing simple.

Two OR MORE INPUTS

A B C

0
ONE OUTPUT

TRUTH TABLE

FOR 3 -INPUT
"AND" GATE

A B C [ 0

o o 0 0
o o 1 0
o 1 0 0
o 0
1 0 0 0

1 0 1 0
1 1 0 0
1 1 1 1

"AND" GATE

Output is "yes" (1) only when
all inputs are 1.

Output is "no" (0) when any
one or more inputs are 0.

TRUTH TABLE

FOR CIRCUIT IN
FIGURE 2-4, USING
POSITIVE LOGIC

SCAN 1 N OUTPUT
0 0 0

o 1 0
1 0 0
1 1 1

Figure 2-6. Customary symbol and precise definition of AND gate. In the
encoder, "ON" (higher voltage) means "yes" or 1, and "off" (lower voltage)
means "no" or 0, which is called "positive logic."

We're taking this opportunity to point out something new here in
Figure 2-6: three inputs are shown on this gate (labelled A, B, and C),
rather than two. This is to show you that an AND gate can have more than
two inputs.

Another thing new in Figure 2-6 is that we're showing the
definition of an AND gate more precisely than before. An AND gate is
actually defined in terms of the logical meaning of the inputs and outputs,
in terms of the two basic bits of information a wire can carry, rather than
in terms of the electricity itself. As we learned in Chapter 1, we call these
bits 1 ("yes," or "true") and 0, ("no," or "false").

So to be precise, then, an AND gate is any circuit with two or
more inputs and one output, whose output is 1 only when all the inputs are
1. The output is 0 when any one or more inputs are 0. The larger table in
Figure 2-6 shows what this means in the case of a 3 -input AND gate. It's a
list of all the possible input combinations and the resulting output for each
combination. It's called the "truth table" for a 3 -input AND gate.
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How does our AND circuit qualify as an AND gate?

To prove that our AND circuit of Figure 2-4 is really an AND
gate according to the precise definition, we must first decide what "on"
and "off" mean in this particular application. In the scan -line input,
"on" means yes, electricity is being supplied only to the switches
connected to scan line 1. Similarly, "on" in keyboard input N means yes,
electricity is coming from one of the switches connected to this line. And
electricity in the output means yes, the particular switch connected to
both the input lines is turned on. The customary name for this situation
(when "on" means 1 and "off" means 0) is "positive logic." (Actually,
positive logic says that a higher, more positive voltage means 1 and that a
lower, more negative voltage means 0. So to be accurate, let's just assume
that our circuits are at a "higher" voltage when they're "on.") Anyway,
using positive logic, we can write the truth table for the circuit of Figure
2-4. We just copy the function table from Table 2-5, writing 1 for "on"
and 0 for "off." This truth table is shown at the far right in Figure 2-6.
If we examine it, we find it's the truth table for a 2 -input AND gate. So
in this application, where we're using positive logic, our circuit qualifies
officially as an AND gate.

What would this AND circuit be using negative logic?
On the other hand, suppose the circuit in Figure 2-5 were used

in some other application, where "on" ("high" voltage) meant "no" (0) and
where "off" ("low" voltage) meant "yes" (1). The customary name for that
situation is "negative logic." Then the truth table would be different.
The output would be 0 only when both inputs are 0. So the circuit in that
application would not be an AND gate. If you wanted a circuit to perform
the AND function using negative logic, you'd have to build it another way.

And so, to be precise in our name for the circuit in Figure 2-5, we
have to call it a positive AND gate. A negative AND gate would be different.

What does all this have to do with our explanation of the customary
symbol for the AND gate in Figure 2-6? It means that whenever you use
it to refer to a real electrical circuit, you have to say whether you're using
positive or negative logic. That, way, you say whether the symbol represents
a positive AND gate or a negative AND gate. IN THIS BOOK, ALL
SYMBOLIC DIAGRAMS USE POSITIVE LOGIC, unless we specifically
say we're using negative logic.
How is the entire "first section" of the encoder designed?

Now that we have a convenient symbol for an AND gate, let's
look at a diagram of the entire first section of the encoder, shown in
Figure 2-7 (using positive logic as before). There's a separate two -input
AND gate for each "number line" running down to section two of the
encoder. The inputs to each gate are simply the keyboard input line and
the scan line that the particular key -switch is connected to, as shown back
in Figure 1-2.
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What you see in front of you in Figure 2-7 is actually a miniature

digital system. And you actually have learned how it works! From here on,
the design of any digital system is just a matter, essentially, of hooking
up the right kind of gates in the right way.
Lines shown bold are "on"

1 2 3
when "0" key is pressed
and scan line 1 is "on"

0 1 2 3

"NUMBER LINES" TO SECTION # 2 OF ENCODER

Figure 2-7. How AND gates are arranged to decide which number key
is pressed. (For key connections, see Figure 1-2.)
How can OR gates finish the decoder's job?

And speaking of the right kind of gates, there's another kind -
just as important as the AND gate - that will let us design the second
section of the encoder. You'll remember from Figure 2-3 that the second
section decides which of the four output wires to turn on to make a
number for the display register. Well, this decision is made by several "OR
gates." The entire deign for encoding numbers - with both section 1 and
section 2 lumped together - is shown in Figure 2-8.
KEYBOARD 1 2 3 4 5 6 7 8 9'-SCAN
INPUT LINES
LINES

P

D 1

8 2
,±) 0

4
1`) L6 0

LINES SHOWN BOLD ARE "ON"
WHEN "5" KEY IS PRESSED

AND SCAN LINE 5 IS "ON".

L 1_. 1_ L I_ 1_ L -D

2 3 4 5 6 7 8 9

PART OF KEYBOARD ENCODER SUBSYSTEM

"NUMBER READY" SIGNAL
TO CONTROLLER THAT
A NUMBER KEY IS PRESSED

NUMBER "5"
TO DISPLAY
REGISTER

"OR" GATES

Figure 2-8. Complete design for encoding numbers, illustrating use of
AND gates and OR gates
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You can recognize the ten AND gates at the top of Figure 2-8,
just as they appeared in the preceding figure. The additional OR gates are
shown along the right edge of the subsystem. This spearhead shape is the
customary symbol for an OR gate. (Since we're assuming positive logic as
usual, the symbol means a positive OR gate.)

As to just what an OR gate does - you can get a clue by following
the bold lines in Figure 2-8. These are the lines that are "on" (1) when the
"five" key is pressed and 0101 is being encoded, which is "five" in the
binary code listed back in Figure 1-18. (Remember -0101 means 4 plus 1
in the electronic code that we have decided to use to transmit numbers
electrically.)

You already understand how one of the AND gates turns on the
vertical "number 5" line inside the encoder. Now notice that this line is
connected to two OR gates. It provides one input for the OR gate that
turns on the "1" output line, and also one input for the OR gate that turns
on the "4" output line. These are the gates we want to be "on" (1) to
transmit a binary 5, right? Notice that when any digit key is pressed, a
certain AND gate transmits a 1 to the OR gates that need to be turned on
to make up the code for that number (4 and 1 for 5 ... 4 and 2 and 1 for 7,
and so forth). So can you see now what an OR gate does?

"OR" GATE

THE OUTPUT IS "l'' WHEN ANY ONE OR
MORE INPUTS ARE "1". OUTPUT IS

CY' ONLY WHEN ALL INPUTS ARE ..0".

Two OR MORE
INPUTS

TRUTH TABLE

3 -INPUT "OR" GATE

A B C Q

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 1

1 0 0 1

1 0 1 1

1 1 0 1

1 1 1 1

Figure 2-9. Customary symbol and precise definition of OR gate

What does an OR gate do?

As shown in Figure 2-9, an OR gate's job is to transmit a 1 when
any one or more of its inputs are 1. The output is 0 only when all inputs are
0. This action is summarized in the truth table shown in Figure 2-9 for a
3 -input OR gate.

This decision has the name OR because a 1 in this input OR that
input OR the other input will give a 1 at the output. And it's called a
"gate" because when you have one with only two inputs, and you hold one
input at 0, the output is the same as the other input. Thus, you can "open"
an OR gate (like a gate in a fence) by holding one input at 0, as you
"open" an AND gate by holding one input at 1.
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To follow an OR gate's action more closely, refer back to Figure

2-8, and look at the OR gate that turns on the "8" output. This OR gate's
output is 1 when either the "number 8" line OR the "number 9" line is 1.
And of course the reason we use these two number lines as inputs here is
that eight and nine are the only numbers in our binary electronic code
that have 1 in the "eights" place.

So that's what an OR gate does, and that's how number keys are
encoded. However, if you've been studying Figure 2-8 closely, there's a
feature that may be puzzling you. The "zero" number line does not connect
to any of the four OR gates that generate binary numbers, but instead
ties into another OR gate higher up. Why is this?

What do we want the "zero" key to do?

Well - we don't want the "zero" key to cause a 1 in any of the
binary output lines. To transmit a "zero", these four outputs must be 0000,
right?

But what we do need the "zero" number line for is to participate
in alerting the controller whenever one of the ten number keys is pressed,
so the controller can go through the appropriate routines (discussed in
Chapter 1) and tell the display register to store the number. Remember,
we said that the controller doesn't need to know exactly which number key
is pressed. As you can see in Figure 2-8, this "number ready" signal to the
controller is generated by the uppermost OR gate. This output is 1
whenever either the "zero" number line is 1 (indicating the "zero" key is
pressed) OR input line N is 1 (indicating one of the other number keys is
pressed).

So there you have the design of our number -encoder network -
the most important part of the keyboard encoder. The only other function
of the complete subsystem is to recognize when one of the nine
"operation" keys (plus, minus, equals, etc.) is pressed, and to tell the
controller which one. This is done in much the same fashion as we have
seen for numbers.

This network in Figure 2-8 may not look very significant by
comparison with the complexity of the entire calculator, or some other
digital systems. But it illustrates not only the two most important gate
functions, but also the principle of one of the most basic types of
subsystems - one that handles codes. (We'll explore this principle in more
depth in Chapter 3, with respect to the segment decoder subsystem.) You'll
learn then that this general pattern of gates is repeated again and again
in many different types of subsystems: a row of AND gates followed by a
row of OR gates. Take a good look at it, because it's going to be with you
for a long time.
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How does an OR gate work?

As for the gates that the encoder has taught you about - you've
already got a good mental picture of how to think of a circuit that acts as
an AND gate in terms of positive logic ("high" voltage =1, "low"
voltage = 0). Figure 2-5 showed us that all you need, essentially, is an
electrically -controlled switch for each input (whether two, three, or
more), with the switches arranged in series.

Figure 2-10 provides a similar mental picture of a circuit that's an
OR gate when it's used with positive logic. Here again, we have an
electrically -controlled switch for each input (as many inputs as you need,
though only two are shown, labeled A and B.) But the switches are
connected "in parallel" as we see here, rather than in series as in Figure
2-5. So the output would be "on" either when input A is "on" OR when
input B is "on" (or when both are on, of course). You may imagine a lamp
on the output to indicate when the output is "on."

A

L.

Output is on when
input A OR input B

is on.

Lamp would indicate r. -
when O is "on",

B
FUNCTION TABLE

A B 0

OFF OFF OFF

OFF ON ON

ON OFF ON

ON ON ON

*As IN FIGURE 2-5, ASSUME
"ON- = HIGHER, MORE POSITIVE VOLTAGE, &
"OFF' = LOWER, MORE NEGATIVE VOLTAGE.

TRUTH TABLE
USING POSITIVE LOGIC

A B 0

0 0 0

0 1 1

1 0 1

1 1 1

Figure 2-10. Mental picture of the operation of a positive OR gate

The function table for this circuit is shown at top right. (The
function table for any digital circuit shows the electrical state of the
output for every possible combination of input states.) If we let "on" mean
1 and let "off" mean 0, the function table turns into the truth table on the
right. As you can see, this is the truth table for a 2 -input OR gate.
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Do real gates work like this?

Now that you understand what AND gates and OR gates do and
how they can team up to handle complicated decisions, let's move on to the
subject of how real gates work - how transistors are hooked together to act
as gates. As it turns out, transistors can't simply be inserted into the place
of the switches in Figures 2-5 and 2-10, so let's see just how they are used.
In doing so, we will be chipping into the bedrock under the foundation of
digital electronics that we spoke of earlier. This bedrock is the
semiconductor material of which transistors are made - which in these
days is the silicon integrated -circuit chip.

Later on, we will see that gate circuits can use any of a number of
different kinds of transistors. But we're going to limit ourselves right now
to just one kind of transistor - the one that acts most nearly like the
electrically -controlled switches we have been envisioning. (It's also the
type used in most calculators.) This is the MOS transistor. "MOS" is
pronounced by just saying the letters, like M -O -S. In a moment, we'll see
where this name comes from.

What are the parts of an MOS transistor?

Figure 2-11 shows the general idea of the internal construction of
the particular kind of MOS transistor that we're going to study. (The
name of this kind is not important right now, but for your information,
this is an "n -channel enhancement -mode MOS transistor.") What you see
in Figure 2-11 is a highly simplified and magnified picture of an area in
an integrated circuit no bigger than a flyspeck. Down below is a pictorial
reminder that this transistor roughly fits the idea of an
electrically -controlled switch that we have been imagining in our gate
circuits.

(N -channel
enhancement -mode
MOS transistor)

SILICON OXIDE INSULATION

+10
VOLTS

Electricity is
blocked by N -P
junction

+10
VOLTS

(t -e- + 1 0 VOLTS

"Ground" symbol
was explained
in Figure 2-5.

No electricity
--- flows to output

(zero volts)

Control connection
at zero volts

OUTPUT
(ZERO VOLTS)

Figure 2-11. Simplified internal structure of an MOS transistor in the
"or state, and mental picture of the transistor as an
electrically -controlled switch
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We won't go into semiconductor theory right now. All we'll say is
that the main part of the transistor is a bar of silicon consisting of two
different types: n -type and p -type. (Slight traces of certain other
materials were added to the original pure silicon to make it either n -type
or p -type - each type reacting differently to electricity.) Both ends of the
bar are n -type silicon, and in the middle it's p -type.

On top of the silicon bar, there's a layer of silicon oxide. This is a
substance much like glass. It acts as electrical insulation, so no electricity
can pass through this layer. And above the oxide layer is a metal plate.

Now the two n -type areas are the main electrical terminals of our
"switch". Electricity at ten volts is being supplied to the left terminal,
trying to get through to the output terminal on the right. But at the left
edge of the p -type region, the electricity is blocked by the most basic law
of semiconductor action: electricity (positive electric charge, to be more
specific) cannot flow across the border, or "junction", from n -type material
to p -type. (This has to do with the n -type material having a more positive
voltage in it than the p -type.) So the transistor is now in the "off" state.

Spark symbols
represent electric
field from
positive charge
on plate

+ 10
VOLTS

10 -volt control
signal packs
positive charge
into plate

Effect of electric field
creates temporary + 10
N -type channel VOLTS

+ 10
VOLTS

+ 10
VOLTS

M ETAL
XIDE

S EM !CONDUCTOR

NEARLY
+ 10

VOLTS

Figure 2-12. Transistor of preceding figure in "on" state

Now the metal plate acts as the control terminal of the "switch".
As the schematic diagram indicates above in Figure 2-11, the plate is
being held at zero volts by a two-way switch. Let's see how this switch
applies a control signal to turn the transistor on.

How do you turn an MOS transistor on?
Figure 2-12 shows what happens when we flip the controlling

switch up above to ten volts. The voltage pressure packs positive electric
charge into the metal plate. Here, the charge finds itself at a "dead
end" because it cannot pass through the oxide insulation.
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However, the positive charge creates an electric field, which does

exert itself right through the oxide, as a magnet exerts a field through a
sheet of paper to a nail on the other side. This field is suggested by the
little spark symbols. (There are no actual sparks involved - just an electric
field.)

The effect of this electric field on the p -type region is one of the
many remarkable things about semiconductors. As if by magic, the upper
part of the p -type gap seems to turn into n -type as long as the positive
charge is maintained on the plate above. Thus, a temporary n -type channel
is formed between the two n -type terminals, allowing current to flow, and
in effect turning on the transistor. This fact is suggested by the "switch"
drawing below.

How do you turn an MOS transistor off?

Now to turn the transistor off again, it's important to note that
we have to flip the control switch back to zero volts again. This is because
we have to provide a path for positive charge to drain out of the metal
plate. If we simply turned the control switch off, cutting the plate off from
any electrical contact, the positive charge would simply remain on the
plate until it somehow leaked out. So the transistor wouldn't turn off for a
while. This is an important fact for the design of gate circuits.

Before we move on to gate design, though, notice that Figure
2-12 shows us where we get the name "MOS" that we promised to explain.
It stands for "metal -oxide -semiconductor". This refers to the "sandwich"
construction of the three materials of MOS transistors - the metal plate,
the oxide layer between, and the semiconductor silicon below.

CONTROL TERMINAL

Controlled current
(positive charge)
flows out main terminal
on same side
as control terminal.

\ MAIN TERMINALS

Figure 2-13. Customary schematic symbol for n -channel
enhancement -mode MOS transistor

One thing we'll need in showing gate circuits is a symbol for our
transistor. Figure 2-13 shows the customary schematic symbol for the
particular kind of MOS transistor we're using.
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How does the transistor fit into a switching circuit?

To illustrate the idea of using our MOS transistor in a digital
gate, we're first going to take up another switching circuit called the
"inverter". (It's sometimes called the "NOT gate" - although it can't gate
anything like the AND and OR gates can.) This is a building-block that's
just as basic as the AND gate and the OR gate, although we didn't have
an opportunity to show it in action in the encoder example.

+ 1 0 VOLTS

+10
VOLTS

7

J

+ 10 VOLTS

+10
VOLTS

"Load" transistors Bold arrows
are always "on" denote flow

1 0 VOLTSbut cannot pass + of positive
much current 0 charge

ZERO

VOLTS j "OFF"

L

ZERO VOLTS

Arrowheads indicate
information flow,
regardless of
current direction\

ZERO VOLTS

Charge to
ZERO = turn receiving
VOLTS transistor off

+ 1 0 VOLTS

+ 1 0 VOLTS

Charge to turn
receiving
transistor on

ZERO

VOLTS

Figure 2-14. Schematic diagrams and "switch" picture of two MOS
"inverter" circuits

Figure 2-14 shows two MOS inverters in the two upper boxes,
with the output of the first (left) providing the input for the second. The
two boxes below give you a mental picture of what these inverters
do, in terms of electrically -controlled switches. When an inverter
input is at ten volts as shown on the left below, the output is connected to
a "ground" terminal at zero volts. (The meaning of "ground" was
explained back in Figure 2-5, although we didn't mention it in the text.)
And when an inverter input is at zero volts as shown on the right, the
output is connected to the "power supply" terminal above at ten volts.
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These mental pictures below show us two things about the inverter.

First, its purpose is to change, or "invert", the incoming signal to the
opposite state. In our MOS circuitry, "on" (1) is ten volts or thereabouts,
and "off" (0) is zero volts or something close to it. The inverter's output is
always the "inverse" (the opposite) of the input. In simpler terms, we
might say that the output is "flipped over" from the input.

The second point illustrated in the lower part of Figure 2-14 is
that an MOS switching circuit must not only be able to supply electricity
through its output for the "on" state, but it must also be able to drain
electricity back into the output for the "off" state. This is so the output can
turn off an MOS transistor in the receiving circuit, as we have already
learned in studying how an MOS transistor is turned off. This
requirement of "two-way" output current applies not only to the inverter
circuits in Figure 2-14, but to all MOS gates, which as we will see are
constructed very much alike. In fact, it applies to all electronic digital
circuits. Current must be able to move both ways in all signal wires.

Incidentally, even though electricity sometimes flows into an
output of digital circuits, the thing that always flows out of an output is
information. The small arrowheads on the signal lines in the diagram
below in Figure 2-14 represent information, not current.

How does an "inverter" circuit work?
Referring now to the schematic inverter circuits above in Figure

2-14, we can see how a 10 -volt input signal turns on the lower transistor,
connecting the output to the zero -volt ground as we desire. As for the
upper transistor in each inverter (called the "load" transistor) - it is a
very specially -made transistor with a comparatively long and narrow
channel between the two n -type terminals. It is always kept "on" by
having its control terminal connected to the 10 -volt power supply. But it
can't supply very much current - it chokes back most of the current like
the electrical devices we call "resistors".

When the lower or "input" transistor is "off", the load transistor
can supply enough current through the output to charge up the control
plate of a receiving transistor in another circuit rapidly enough (very little
current is required). But when the input transistor is "on", the small
current supplied by the load transistor is not enough to interfere with the
drainage of charge from the receiving transistor.

INVERTER

ONE INPUT

WHEN INPUT IS 1, OUTPUT IS 0.
WHEN INPUT IS 0, OUTPUT IS 1.

ONE OUTPUT

TRUTH TABLE

INPUT OUTPUT

0

0

Figure 2-15. Customary symbol and precise definition for the inverter
or NOT gate
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Figure 2-15 shows the customary symbol used in diagrams for the
inverter or NOT gate. Regardless of the internal circuitry, the output is
always in the inverse (opposite) state from the input, as summarized by
the truth table in Figure 2-15. (Obviously, this is so whether we're using
positive or negative logic with a particular circuit.) Presently, we will be
needing this symbol in a diagram of an MOS version of our keyboard
encoder.

What other gates can we build with MOS transistors?

Of course, our keyboard encoder (like the initial designs of most
digital subsystems) needs AND gates and OR gates. However, it turns out
that these gates are not so convenient to build out of MOS transistors as
two other kinds of gate circuits. These other two are just as useful - in
fact, more useful in many applications.

FUNCTION TABLE
H =HIGH VOLTAGE
L=LOW VOLTAGE

A

L

L

H

H

B

L

H

L

H

O

H

H

H

L

+ 10 VOLTS

Current when
both input
transistors

\ are "off".

OUTPUT
0

Using
Positive Logic:

AND

TRUTH TABLE

A B O

0 0

0

0

0

NOT

Q

INPUTS

Current when
both input
transistors
are "on". A

B

EFFECTIVE FUNCTION

NAND

GROUND=
SINGLE CUSTOMARY SYMBOL

ZERO VOLTS

Figure 2-16. MOS two -input positive NAND gate (left) and symbols for
NAND function

Figure 2-16 shows one of these other gate circuits. The schematic
diagram at the left shows that this circuit consists essentially of an
inverter (as in Figure 2-14) with not one but two input transistors in
series. The bold arrow shows how the output is connected to ground only
when both input transistors are "on". (Obviously, we could include more
than two input transistors here if we need more than two inputs.) So the
output can only be in the low -voltage state when all the input transistors
are "on" - that is, when all the inputs are in the high -voltage state.
Otherwise, if any one or more inputs are in the low -voltage state, the
output is high -voltage.
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Why do we use "H" and'"L" in function tables?

The action of this gate is shown in the function table left of the
circuit in Figure 2-16, using "H" for the high voltage or more positive state
(ten volts, we said earlier) and "L" for the low -voltage, more negative state
(zero volts, or ground). These symbols are typical of function tables for all
"real" electronic digital circuits (not just MOS circuits). We can't use "on"
and "off" because the outputs are always on, in a sense - being connected
either to the ground or to the power supply. What distinguishes one
electrical state from the other is really the voltage in a wire. So "high" (H)
and "low" (L) mean the same thing in real digital circuits as "on" and
"off" did in the imaginary "electrically -controlled -switch" circuits that we
have found so useful as a learning device.

What is a "NAND" gate?

Anyway - if we use positive logic and replace each "H" in the
function table with a 1 and replace each "L" with a 0, we get the truth
table shown at the right in Figure 2-16. This particular digital function is
called "NAND" because the output is just the inverse of that for an AND
gate. NAND stands for "NOT -AND". This truth table can be represented
symbolically by an AND gate followed by an inverter as shown in the
figure. The single customary symbol is a combination of the two symbols
- it's an AND symbol with a little circle at the output to signify the AND
function is inverted. Since the "real" circuit at the left performs the NAND
function when using positive logic, it's a positive NAND gate.

FUNCTION TABLE

A B 0

L L H

L H L

H L L

H H L

+ 1 0 VOLTS

OUTPUT

A
INPUT
Ole

INPUT

Using
Positive Logic:

OR11)

TRUTH TABLE

A B 0

0 0

0 0

0 0

0

NOT

o

EF FECTIVE FUNCTIONFUNCTION

SINGLE CUSTOMARY SYMBOL

Figure 2-17. MOS two -input positive NOR gate circuit (left) and symbols
for NOR function
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What is a "NOR" gate?

Figure 2-17 shows the other MOS gate that we referred to earlier,
which is a positive NOR gate. The NOR function is described in the truth
table on the right - the output is 1 only when all inputs are 0. Thus, the
output is the inverse of the OR function. So a NOR gate acts as an OR
gate followed by an inverter as shown below the truth table. The name
"NOR" stands for "NOT -OR". As you can see, the customary symbol for a
NOR gate is an OR symbol with an "inversion" circle at the output point.

It's easy to see how the circuit on the left acts as a positive NOR
gate. Applying a "high" (1) signal to either input transistor will make it
connect the output to ground. This produces a "low" (0) output signal. But
if neither input transistor is on, the small continuous current through the
load transistor provides a "high" (1) output signal. As with positive
NAND gates, we can build positive NOR gates with as many input
transistors as we want.

How can we use MOS gates in the encoder?

Finally now, we're ready to see how our keyboard encoder could
be built using real MOS gates. Figure 2-18 shows one way to do it
(assuming positive logic, as usual).

What we've done here is to replace all the gates in our original
design (Figure 2-8) with positive NAND gates. We've also added an inverter,
which you can see. But the arrangement and connections of the wires are
the same as before. Believe it or not, this new design provides correct
signals in the five output lines!

You can prove this to yourself - at least in the case of the "5" key
being pressed - by following all the bold lines, which are "on" (1).
Remember -a NAND gate produces a 0 only when all inputs are 1.
Otherwise, it produces a 1. Notice that the only number line that's 0 is
number 5. This is because this is the only NAND gate with 1 at both
inputs. The only two NAND gates that take an input signal from the
number 5 line are those for the "1" output wire and the "4" output wire.
Therefore these two are the only gates in the group of four that are
receiving a 0 signal. Since the inputs to these two gates are not all "ones"
like the other two gates, their outputs are 1.

Look up at the NAND gate producing the "number ready" signal.
The inverter turns the 1 in input N into a 0 going into the NAND gate.
Since both inputs to this gate are not 1, the output is 1.

This, then, is one way to build the encoder with the kind of gates
that are available in the MOS family of integrated circuits, using positive
NAND gates and an inverter. However, this circuit looks pretty
confusing, because we can't follow the action as easily as we could with
AND gates and OR gates. So let's see how to make better sense out of it.
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How do you make sense out of a "NAND" gate arrangement?

Let's narrow our scope down to making sense out of the three
NAND gates that act together to produce the signal in the "8" output wire
in Figure 2-18. That's the very bottom NAND gate and the two above that
receive scan lines number 8 and 9. These three NAND gates are shown by
themselves in Figure 2-19.

KEYBOARD
INPUT LINES

1N 

SCAN LINES

_L 1_ I_ I_ I L1 I
VVVVVVoic)

Lines shown bold
are "on"
(higher voltage)
when "5" key
is pressed and
scan line 5 is "on".

0 1 2 3 4 5 6 7 8

INTERNAL "NUMBER LINES"

''NUMBER READY''
SIGNAL TO

CONTROLLER

NUMBER "5" TO
DISPLAY REGISTER

Figure 2-18. How to build the decoder from Figure 2-8 by using positive
NAND gates and an inverter, as in a real MOS integrated circuit chip

As shown in Figure 2-19, the first step in understanding what's
really going on here is to imagine that each positive NAND gate is a
positive AND gate and an inverter. Then imagine a box around the lower
imaginary AND gate and all three inverters. Notice that inside this box,
we've got negative logic! This is because a low voltage in a number line
means yes, this key is pressed. And a low voltage in the AND gate output
means yes, key 8 OR key 9 is pressed.

Now consider the positive AND gate in the box, and ask what it
does in the case of negative logic. We know both its inputs must be high
to make the output high. In terms of negative logic, that means both
inputs must be 0 to make the output 0, since H = 0 and L =1. If any input
is 1, the output is 1. That should sound familiar to you. It's the function
of an OR gate. We have discovered that A POSITIVE "AND" GATE IS
ALSO A NEGATIVE "OR" GATE!
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KEYBOARD

INPUT

N

1._

H=Yes

L=Yes

SCAN LINES

8 9

L=No

"BOLD LINES INDICATE
VOLTAGE STATE

Imagine inverters
separate from "AND" gates

Imagine box around
"AND" gate with
inverters, and negative
logic used inside.

Positive "AND" gate
is negative "OR" gate.

L=Yes

Entire box acts
as positive "OR" gate.

H=Yes

''8" OUTPUT
WIRE

Figure 2-19. Imagining NAND gates feeding a NAND gate as AND gates
feeding an OR gate

In other words, the two electrically -controlled switches in series
back in Figure 2-5 will be an OR gate if you write 1 for "off" and 0 for
"on" in the function table. You can also prove to yourself that a positive
OR gate (with switches in parallel) is a negative AND gate. Similarly, a
positive NAND gate is a negative NOR gate, and vice versa.

But let's get back to the imaginary box in Figure 2-19. In our
mind, we can replace this entire box - AND gate, inverters and all - with
a positive OR gate. That is, a positive AND gate with inverters on all
inputs and the output, when taken all together, make a positive OR gate.

Having gone through these mental conversions, you can see what
two positive NAND gates feeding a third really do. They act as two
positive AND gates feeding a positive OR gate. Or putting the same fact
another way -a positive NAND gate with inverted inputs acts as an OR
gate.

(You can also prove to yourself that three negative NAND gates
arranged as in Figure 2-19 act as two negative AND gates followed by a
negative OR gate. And this means that the same thing holds for both kinds
of NOR gates. They act as OR gates followed by AND gates.)

Looking back at Figure 2-18, you should understand that there's
no negative logic anywhere in the diagram. The NAND gates here are all
positive NAND gates. We've just imagined negative logic being used, to
help us understand that NAND gates with inverted input signals act as
OR gates. This helped us to follow the "logic" of the NAND network.
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What have we learned about digital decisions?

Your head may be spinning, but you've got to admit that you see
now what we mean when we say that digital circuits can make decisions.
The designer of the system just picks apart the complex decisions that
must be made until he gets down to decisions simple enough to be made
by gates. He has five kinds of gates to choose from, basically (AND, OR,
NOT, NAND, NOR). But the limitations of the particular type of
integrated circuit he's working with may cut down the designer's options.
Usually, as in our last example, he must make do with NAND, NOR, and
NOT gates. But the designer can substitute the correct combination and
go ahead with little problem.

In later chapters, we will become more and more familiar with
the marvelously adaptable little circuits called gates. We'll become aware
of ways to analyze system requirements so as to pick the most
efficient combination of available gates. We'll learn about the different
"families" of integrated circuits, each based on a particular type of design
for gates, and about the particular applications best for each circuit
family. And we'll learn how numerous digital building-blocks, subsystems,
and complete systems work, based on our understanding of their
foundations in those simplest building-blocks of all - digital gates. So you
can see that our comprehension of these circuits will carry us far in
learning about digital electronics.
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Quiz for Chapter 2
1. Which of the following

"universal stages" of a system
may contain circuits that
make decisions?
a. The "sense" and "act"

stages.
b. The "decide" stage.
c. The "store" stage.
d. All of the above.

2. Which of the following may be
called a "coincidence
detector?"
a. AND gate.
b. OR gate.
c. Both of the above.
d. None of the above.

3. Which of the following can act
as a "gate in a fence" for
information coming through
one input, under the control of
the other input?
a. A 2 -input AND gate.
b. A 2 -input OR gate.
c. Both of the above.
d. None of the above.

4. Which is the best way to
imagine the internal
operation of a positive AND
gate?
a. Switches connected in

series.
b. Switches connected in

parallel.
c. MOS transistors connected

in series.
d. MOS transistors connected

in parallel.

5. How many inputs can an
AND gate or an OR gate
have?
a. One.
b. Two.
c. Three.
d. Two or more.

6. The precise, official
definitions of the AND, OR,
and NOT functions are in
terms of:
a. On and off, or high and

low voltage.
b. 1 (yes) and 0 (no).
c. Either of the above.
d. None of the above.

7. What do we call a table that
shows the logical state (1 or 0)
of a digital circuit's output for
every possible combination of
logical states in the inputs?
a. Truth table.
b. Function table.
c. Either of the above.
d. Both of the above.

8. What do we call a table that
shows the electrical state of a
digital circuit's output for
every possible combination of
electrical states in the inputs?
a. Truth table.
b. Function table.
c. Either of the above.
d. Both of the above.
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9. To decide which gate function
an electric circuit with a
certain function table
performs, you must first
decide:
a. Whether you're using

positive or negative
electricity.

b. Whether you're using
positive or negative logic.

c. Whether the "higher,"
more positive voltage
means 1 or 0.

d. B and C above.

10. How many different truth
tables can be made from one
function table?
a. One.
b. Two.
c. Three.
d. Any number.

11. An OR gate's output is 1
when:
a. All inputs are 1.
b. All inputs are 0.
c. Only one input is 1.
d. One or more inputs are 1.

12. An AND gate's output is 1
only when:
a. All inputs are 1.
b. All inputs are 0.
c. Only one input is 1.
d. One or more inputs are 1.

13. A positive OR gate's output is
"high" when:
a. All inputs are "high."
b. All inputs are "low."
c. Only one input is "high."
d. One or more inputs are

"high."

(Answers in back of the book)

14. A positive AND gate's output
is "high" only when:
a. All inputs are "high."
b. All inputs are "low."
c. Only one input is "high."
d. One or more inputs are

"high."

15. Which is the best way to
imagine the internal
operation of a positive OR
gate?
a. Switches connected in

series.
b. Switches connected in

parallel.
c. MOS transistors in series.
d. MOS transistors in parallel.

16. The most basic law of
semiconductor action is that
voltage pressure cannot easily
force positive electric charge
to flow across the border from:
a. An n -region to a p -region.
b. A p -region to an n -region.
c. An MOS transistor's metal

"control plate."
d. Any of the above.

17. What distinguishes one
electrical state from the other
in all "real" electronic digital
circuits, including MOS
circuits?
a. Current moving or stopped.
b. Outputs "on" or "off."
c. Voltage "high" or "low."
d. Any of the above.

18. A positive AND gate is also a
negative:
a. AND gate.
b. NAND gate.
c. NOR gate.
d. OR gate.
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Building -Blocks
That Make Decisions

In Chapter 2, we became familiar with the basic building-blocks
that make up all digital electronic systems, which are simple little circuits
called "gates" (Figure 3-1). We noted that designing a digital system is
basically a matter of putting together large numbers of gates in the right
way. As it turns out, this is a lot like assembling a tinkertoy project from a
few kinds of parts. And so, to proceed with finding out how digital systems
work, we've got to look into the ways these gates are put together to do
various jobs.

NOT (INVERTER)

AND OR

NAND NOR

Figure 3-1. Symbols for the simple decisions that all digital decisions are
reduced to. Circuits performing these decisions are called "Gates."

Fortunately for our study of the ways gates are put together,
most digital systems are made up of just a few different kinds of "building
blocks" that are themselves made of gates. So in this chapter and the next,
we will become familar with about seven different kinds of these building-
blocks made of gates. There are many different varieties of each building-
block, but we will learn the basic principles by looking at a typical example
of each one. Furthermore, there are other kinds of building-blocks than the
ones we'll study. But the ones we'll pick out will resemble the others to a
great extent.

How are digital building-blocks classified?
We're going to organize our study of digital building-blocks into

two parts. First, in this chapter, we'll look at some units that don't have
any memory in them. They just make decisions, based on the inputs they
happen to be receiving at the moment. (See Figure 3-2.) These non -
memory units are called "combinational" circuits, because for every
combination of bits in the various input wires, there's a definite,
prearranged combination in the output wires to be decided upon. The
output combination is the same every time a particular input combination
shows up.
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On the other hand, the building-blocks that do contain memory

circuits can store information derived from previous combinations of
inputs. So the combination of output bits depends not just on the input
signals at the moment, but also on previous combinations of bits. These
"memory -containing" building-blocks are called "sequential" circuits. This
is because the outputs depend on a sequence, or chain of inputs at different
times. We'll cover sequential building-blocks in Chapter 4.

VARIOUS
INPUT
WIRES

For every COMBINATION of input bits ... the unit
decides on a certain COMBINATION of output bits

A

B "COMBINATIONAL"
DIGITAL

C BUILDING

D
BLOCK

(HAS NO MEMORY)

VARIOUS
OUTPUT
WIRES

Figure 3-2. Definition of a "combinational" digital building block

0

1

0

How will we approach an understanding of combinational circuits?

In learning about combinational building-blocks, we could simply
look at three or four different gate networks, note what they do, and trace
how the gates operate together. But we need to do more than that. We
need to start developing your ability to analyze combinational networks, so
you can look at a network in the future and follow its action by yourself.
You may even want to begin designing networks on your own. After all,
the parts you'll need are available from most electronic supply companies.
And as we said earlier, the parts go together like tinkertoys, provided you
stick with the same "family" of circuits. (Some very common families
you'll see when we study integrated circuits later are called TTL and
MOS.)

With this in mind, then, we'll spend quite a bit of time with the
first combinational building-block. We'll look at it from the viewpoint of a
designer. This exercise will carry us far in understanding digital systems
in general, because combinational analysis is the real heart and core of
digital electronics.
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What are "code -converter" building-blocks?

The first class of decision -making building blocks we'll take up is a
type that could be called "code converters." This group includes the part of
the keyboard encoder that we studied in Chapter 2 (Figure 2-8). It also
includes the main part of the segment decoder subsystem in the calculator
of Chapter l(Figure 1-5). A code -conversion building-block simply takes in
digital information in one type of code, and puts out the same information
in another type of code. For example, in the keyboard encoder (Figure 2-8),
the incoming code for "5" is 10000010000 in lines N and P and the scan
lines. And the output code for "5" is 0101 in lines that signify 8, 4, 2, and 1.

Code converters are a good place to start because the gate
arrangements in them are a simple, logical kind you'll find in nearly every
other type of combinational building-block. After learning to analyze a
code -conversion unit, you'll find it much easier to analyze other networks.

What is a "BCD -to -7 -segment decoder"?

Let's narrow our sights now on just one kind of code converter, a
"BCD -to -7 -segment decoder." This unit would form the main working part
of the segment decoder shown back in Figure 1-5. Figure 3-3 shows what
its job is.

BINARY-CODED DECIMAL

OR "BCD" NUMBERS

ONES
1

TWOS
0

FOURS
0

EIGHTS

EXAMPLE:
"9" CODED
IN BINARY

(1001)

Y
BCD TO d

X 7 -SEGMENT
DECODER e

W

"0" at an output
means low voltage,
allowing current
to flow in through
segment

POSITIVE
CURRENT SUPPLY
TO ALL SEGMENTS

a

0

1 (SEGMENT
g

OFF)

EXAMPLE:

"9" IN 7 -SEGMENT
CODE (0000100)

d

t
EXAMPLE:

SEGMENTS

a, b, c, d, f, g,
ARE "ON,"
FORMING "9"
CHARACTER

Figure 3-3. Block diagram of a BCD -to -7 -segment decoder, showing what
its job is. (The "1" and "0" meanings are assigned using positive logic.)
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This combinational unit takes in decimal digits coded in binary

form as we've seen before. The code is summarized in Figure 1-18, and it's
called the "binary-coded decimal" or "BCD" code. Notice we've labeled the
four inputs W, X, Y, and Z. In Figure 3-3, the number 9 is being received.

The seven outputs, labeled a through g, turn on a 7 -segment
display to show the number being received. Each output is connected to a
segment labeled with the same letter. The other terminal of each segment
is connected to a source of current (such as a scan line in the calculator). To
turn a segment on, the decoder transmits a zero in that output. This allows
current to flow through the segment and into the output. This action is as
we described it in Chapter 1, but we're leaving out the decimal point this
time to keep it simple. In the figure, "9" is being transmitted in 7 -segment
code as 0000100, which turns on all segments except "e." (Note that in
relating "logical" 1 and 0 to this electrical circuitry, we're using positive
logic. High voltage means 1 and low voltage means 0.)

Now we've said a number of times that any information-
processing job can be handled by gates put together the right way. But
how in the world would a designer begin to decide how to make a gate
network to handle this -particular job (or any other, for that matter)?
How do you begin designing a combinational network?

Well, do you remember the truth tables we examined for each
gate back in Chapter 2? (Figures 2-6, 9, 15, 16, and 17). The starting point
for designing any combinational building-block is to make out a truth
table for it. The table must show all the possible input combinations, and
the output combination that results from each one. Figure 3-4 shows the
truth table for our BCD -to -7 -segment decoder.

For your reference, the shape of each numeral character is shown
to the left of each horizontal row of the truth table, and a chart of
segment labels is provided above. For example, notice in the top row that
the numeral 0 is received as 0000 in lines W, X, Y, and Z. And the output
code for this numeral is 0000001, which turns on all segments except "g."

Notice that the bottom six input combinations represent the
binary numbers ten through fifteen. These combinations have no meaning
in BCD code. We will assume that none of them will ever be received by
our decoder. However, it will help us later on if we include these
"never -received" combinations in the truthtable. We write the letter "X"
for all the outputs in these cases, to signify "don't care," or "irrelevant."
How does a truth table help design a network?

Okay, how will this truth table help us design our network? Well,
any number of gate networks could be designed to obey a given truth
table. A designer would want the best of all the possible networks,
considering what kind of gates he has available to work with. He will
probably want the network with the fewest gates and the most economical
gates. This also implies he wants to use gates with the fewest number of
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0 0 1 1 0 0 0 0 1 1 0

0 1 0 0 1 0 0 1 1 0 0

0 1 0 1 0 1 0 0 1 0 0
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1 1 0 1 x x x x x x x

1 1 1 0 x x x x x x x

1 1 1 155 x x x x x

POSITIONS IN
(8 4 2 1)

BINARY NUMBERS

Figure 3-4. The first step in designing or understanding a combinational
circuit is to make out a "truth table."

inputs, because each input increases the size and cost of a gate circuit as
well as the number of wires that have to be run.

However, for the moment, let's concentrate on designing just one
particular network that's very straightforward and easy to understand
from a logical point of view. Later on, we'll get around to simpler, more
economical networks. So the question is, how will the truth table help us
design this "straightforward" network?

Well, to start with, you design a separate network for each output
wire, based on the logic in the truth table-meaning the reasoning that's
implied by the ones and zeroes. For example, let's take output "a." In the
column under output "a" in the truth table, we have a 1 for input
combination 0001 and another 1 for input combination 0100. Now what's
the logic in this fact, that will lead us to a gate network for output "a"?
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How do you pick the "logic" out of a truth table?

Here's the logic behind output "a": "a" is 1 when we receive
combination 0001 OR combination 0100. Furthermore, we have
combination 0001 when W is NOT 1, AND X is NOT 1, AND Y is NOT 1,
AND Z is 1. And we have combination 0100 when W is NOT 1, AND X is
1, AND Y is NOT 1, AND Z is NOT 1.

The words "OR, AND, and NOT" in these logical statements tell
us how to connect an OR gate, some AND gates, and some inverters, to
make our network for producing output "a." (We'll see how to recognize
this network from the statements in a moment.) We can make similar
logical statements for each of the other outputs from this building-block,
or from any combinational network. Statements like these can be drawn
from any truth table-statements in terms of the three basic "logical
operations" of AND, OR, and NOT. And for each logical statement like
this, there's a network of gates that will produce the desired output from
the given inputs. It may not be the simplest, or most economical network-
but it will work. So the next step in our design process, after writing the
truth table, is to understand the truth table in terms of this kind of
statement.

However, logical statements like this are very cumbersome to
write in plain language, and this plain language doesn't make it very easy
to see how the gates are to be connected. So digital designers use a very
handy "shorthand" writing for logical statements, which makes the
relation between the statements and a gate network very easy to see.
This shorthand is such a common, everyday thing in the field of digital
electronics that our learning would be incomplete if we left it out.

What's the "shorthand" for writing logical statements?
This logical shorthand was developed by an Englishman named

George Boole (rhymes with "pool") long before digital electronics were
ever invented, and it's called "Boolean algebra." Its purpose was to
provide a neat, simple way to write complicated combinations of "logical
statements," which are defined as statements that can be either true or
false. "Logic" is a very ancient branch of philosophy that's concerned with
the study of logical statements-with proving whether one statement is
true if certain other related statements are true or false.

Boolean algebra provided a ready-made way for digital designers
to handle the "logical" (true -false) statements that are involved in every
binary digital system. (After all, we have learned that 1 means true, and 0
means false.) Because of this involvement with logic, you'll often see
digital gates called "logic gates." And a network of gates is sometimes
called a "logic network," or a "Boolean network."
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_*-

What are the principles of "Boolean algebra"?

Anyway, Figure 3-5 summarizes the basic elements of Boolean
algebra, as it's related to digital electronics. The idea is that we use the
letter label of a wire to represent the logical statement carried by the wire.
And we use a multiplication sign to represent the AND operation, an
addition sign to represent the OR operation, and a bar over the letter to
represent the NOT (inversion) function. These three operations are the
only ones used in Boolean algebra.

For example, as shown in Figure 3-5, suppose we have an AND
gate with inputs A and B and output X. The way the signal at X is related
to those at A and B is expressed by this logical statement: "X is 1 if A is 1
AND B is 1." Using Boolean algebra, this statement would be written
simply as X = A  B, which you would read, "X equals A AND B." (You
could just as well write X = AB, which is another way of writing the AND

function.)

SCHEMATIC SYMBOL SPOKEN LOGICAL STATEMENT
(For each letter, read

"X is one," "A is one," etc.)

BOOLEAN
EQUATION

A
X IF A AND B

X

X

=

=

A  B

AB
X

B

C
Y IF CORD Y = C + DY

D

Z IF NOTE Z = eE ---- Z

Figure 3-5. Summary of Boolean algebra, showing how the three basic
logical operations are spoken and written

Similarly, if Y is the OR function of C and D, you would write
Y = C + D. And if Z is the inverse of E, you would write Z = E.

This little bit of Boolean algebra is enough to help us out a lot in
designing our decoder. So let's get back to that job, by looking atFigure 3-6.
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How can Boolean algebra show us a gate network?

For your reference, in the upper left area of Figure 3-6 is
reproduced the part of the truth table that tells us how to design our gate
network for output "a." To the right of this little truth table is the Boolean
equation for "a," which is just a "shorthand" version of the long and
cumbersome statements we made earlier: a = W-X-YZ + W-X.Y.Z. And
down below is the gate network derived from this equation. The inverters
produce the NOT functions we need of W, X, Y, and Z. The AND gates
produce the two AND functions, which we are labeling P, and P and the
OR gate produces the OR functions, which we can write as P, + P4. It's as
simple as that.

W X Y Z a BOOLEAN EQUATIONS FOR OUTPUT "a"

0 0 0 1 1 a=WR  ?Z
a = Pi + P4

0 1 0 0 1 + W X Y 2

WR?z= Pi

= PI + P4

Wi X  ?7=P4

Figure 3-6. Example of using Boolean equations to design a "sum -of -
products" gate network for output "a" from the decoder -driver, based on part
of truth table of Figure 3-4

Incidentally, P, and P. stand for "product 1" and "product 4."
The AND function of several signals is called a "product" because it looks
like a multiplication product when written in Boolean algebra. The signal
we're calling P, tells when the input combination for the number 1 is
received. Similarly, the OR function of several signals is called a "sum"
because it looks like an addition sum when written in Boolean algebra. And
so, since output ais produced as an OR function of several AND functions,
we say it's produced as a sum -of -products . Any network consisting of
AND gates feeding OR gates is called a "sum -of -products" network.

If you like, you can write a sum -of -products equation for the rest
of the seven outputs of our decoder. But to save time for now, let's go right
to the complete network for the entire building-block, shown in Figure 3-7.
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W (8)

INPUTS

I IT L_ _L_

Liu
11

OUTPUTS

a

Db

-

Po P1 Po P3 P. Ps Ps P7 P9

OR GATES AND BUFFER ARE DESIGNED AS "DRIVERS"

TO HANDLE LARGE INCOMING CURRENT IN "0" STATE.

Figure 3-7. "Sum -of -products" design for BCD -to -7 -segment decoder -driver,
taken directly from truth table of Figure 3-4

How does the entire decoder network operate?

In Figure 3-7, notice that we have an AND gate for each of the
nine input combinations that we want to produce 1 in any output. Notice
that we don't have an AND gate for input combination "8." If you'll look
back at the truth table (Figure 3-4), you'll see that there are no "1"
outputs for input combination P8. Therefore none of the Boolean output
expressions include Ps, and we don't need an AND gate here.

Inputs to the AND gates come from either the "true" inputs W, X,
Y, and Z, or from the "complement" inputs W, X, Y, and Z, which are
produced by four inverters at the upper left in Figure 3-7. The output from
each AND gate is labeled below with the "product" symbol for the AND
function the gate produces. In Boolean form, Po = W.X.Y.Z, P, = W.X.Y.Z,
and so forth. Since the OR gate for output "a" is fed from lines P, and P41
"a" is the signal we discussed earlier: W-Y.Y.Z + W.X.Y4. Similarly, all the
other output functions are taken directly from the truth table.
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3
Now output function "c" is just P2, so this output could

conceivably be connected directly to product line P2. But to avoid
burdening the AND gate for P2 with the heavy current from the display,
we provide the "buffer" shown at output "c." A buffer acts as two inverters
in series, to repeat and strengthen a digital signal. In this particular
building-block, the buffer and OR gates are all specially made to handle the
large segment current when they're in the 0 state. They're called "segment
drivers." Actually, the proper name for the entire building-block would be
"BCD -to -7 -segment decoder- driver."

How would you make a real decoder?

A real decoder would in most cases differ from this design in two
respects. First, it would substitute (for the AND and OR gates) whatever
kinds of gates were most economical in the particular integrated -circuit
family being used. For example, as shown in Figure 3-8, the decoder in the
Texas Instruments TTL circuit SN74143 substitutes NAND gates as we
learned to do in Figure 2-18. And second, as shown in Figure 3-8, the real
decoder would leave off the W inputs to the AND gates for P, through P,,

Z
(1)

Y (2)

X (4)

W (8)

*Asterisks indicate
Inputs left off
because the
"don't care"
combinations
are never received.

*Reducing inputs
to "AND" gates
causes the "DON'T
CARE" products
Pia through Pis to
be included.

PO P, 111+ P3+ P + P + P6+ P7+ P9+ P11+
PIO P11 PI2 P 3 P14 P15 P13+ P15

Y
x

w
w

Figure 3-8. Simplified version of BCD -to -7 -segment decoder -driver in
Texas Instruments Integrated Circuit SN74143

3-10 UNDERSTANDING DIGITAL ELECTRONICS



3
BUILDING-BLOCKS THAT MAKE DECISIONS

and the X and Y inputs to the AND gate for P9. These inputs would only
serve to distinguish between these six input combinations and the six
"never received" combinations at the bottom of the truth table (which we
can call P10 through P,5). So by taking note of the "don't care" conditions
when we make up a truth table, we can often simplify our designs.

(Incidentally, the manufacturers of integrated circuits sell or
give away catalogs and data sheets that show the logical design of many
digital ICs. You're learning to understand these designs, so you may want
to obtain some of these publications to advance your comprehension of
digital electronics.)

So that finishes our introduction to the "code -converter" class of
combinational building-blocks. All units in this category work more or less
like this one-including the part of the keyboard encoder we studied in
Chapter 2.

But more than just learning about one type of building-block,
you've become acquainted with the use of a truth table and Boolean
algebra in analyzing any combinational network. This understanding will

serve you well as we proceed through our study of digital systems.

How do "data routing" units resemble decoders?
The second class of combinational building-blocks we'll take up

could be called "data routing units." Networks in this group actually route
data (meaning information being processed) from various sources to
various destinations. First, Figure 3-9 shows a network called a "data
selector," which as you can see looks a lot like our decoder in Figure 3-7,
only simpler. As suggested by the "switch" drawing to the right, this unit
acts as a sort of "switchboard" with four input wires (A, B, C, D) and one
output wire (E). The network allows you to connect any one of the inputs
to the output, for the purpose of transmitting digital information. An
input is selected by means of the two "input selection control" wires, W and X.

INPUT SELECTION

CONTROLS

x

INPUT SELECTED
W X AND CONNECTED

TO OUTPUT:

0 0 A

0 1 B (ILLUSTRATED)

1 0 C

1 1 D

-°'-iriliENEd
lir"Mlinnn II ll

CI IP

IP..----

vv
OUTPUT

The one AND Gate that
has "1" in both "control"
inputs is "open" to
passage of data from
data input.

"DATA INPUTS" TO BE CONNECTED TO OUTPUT

A B C D
Bold lines

r<carry

if example "1"

w
x

AB CD

E

Figure 3-9. A "data selector" recognizes control combinations the way a
decoder does, enabling data to pass from the selected data input.
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For example, the bold lines in Figure 3-9 show how the input

combination 01 in W and X select input B. AND gate "B" is the onlyone
with "1" in both of its "control" inputs. As we noted in Chapter 2, this
gate's output will now "follow" input B as it carries ones and zeroes, one
after the other. And since all other AND gate outputs are "0," the OR gate
output E follows this one. So input B is literally "gated through" to the
output.

For a four -input data selector like this one, we need two selection -

control inputs, because this gives us four different combinations of control
inputs. Three control inputs would let us handle eight data inputs (each
with its own AND gate feeding the OR gate), four could handle 16, etc.

How would a data selector be used?

On the other hand, you often see two -input data selectors-and
they need just one control line. Figure 3-10 shows an example as it might
apply to our example calculator system. As shown below in this figure, we
want to be able to route four -bit numbers (A and B) either "straight
through" from the display and operand registers to inputs X and Y of the
adder-subtracter, or to make the numbers "cross over" to the opposite
inputs-A to Y and B to X. This will let us either subtract B from A, or
subtract A from B.

Control Input:

0 = Straight Through
1 = Cross Over

Al

DISPLAY A2
REGISTER A4

A8

OPERAND
REGISTER

B1

B2

B4

B8

A2

2 -INPUT DATA SELECTOR
FOR "TWOS" POSITION
IN 4 -BIT NUMBER

B2

True and complement
controls are shared

.-
B2

A

B

C = 0

A2

To other 6
data selectors

STRAIGHT

THROUGH

Is -

CONCEPT
X OF

RESULTS:

Y

1

X1

X2

X4

X8

ADDER-
SUBTRACTER

Y1

Y2

Y4

Y8

EIGHT 2 -INPUT
DATA SELECTORS

Figure 3-10. Eight 2 -input data selectors can select each 4 -bit
adder-subtracter input from either of two registers.
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To do this, we use a two -input data selector on each of the eight
input wires to the adder-subtracter. (That's eight data selectors in all-but
only two are shown.) We need only one control input, labelled "C". A "0"
sends the numbers straight through, and "1" makes them cross over. So as
you can see, this concept of data selection can be very versatile.

(Bold Lines DATA INPUT

Carry Example "1")

z

OUTPUT SELECTED
Y Z AND CONNECTED

TO INPUT

0 0 G

0 1 H

1 0 J (ILLUSTRATED)

1 1 K

F

ENABLED

G H J K
OUTPUTS To BE CONNECTED To INPUT G H J K

Figure 3-11. A "demultiplexer" also resembles a decoder. The selected
AND gate is enabled to pass data from the data input. Other gates
transmit only "O."

How do you "demultiplex" an input to one of several outputs?
Figure 3-11 shows a very similar kind of "data -routing" building-

block called a "demultiplexer." This one has the opposite job from the data
selector-it routes data from one input (labelled F) to any one of several
outputs (G, H, J, and K). As you can see, the selection process works the
same way as for the data selector.

What kind of building-block adds numbers?
Let's look at one more combinational building-block now-a four -

bit binary adder. This unit's job is illustrated in Figure 3-12 . It takes two
four -bit binary numbers A and B, and produces a five -bit binary sum of A
plus B. (Not the Boolean "OR" function this time, but an arithmetic sum.)

Each 4 -bit input . . . so we need five output
wires, to handle sums

/ as high as thirty.
Al
A2
A4 51

number can run from
zero to fifteen . A

A8 4 -BIT S2

BINARY S4 S -A PLUS B
B1

ADDER S8

B2 S16

B B4

B8

Figure 3-12. A 4 -bit binary adder adds two 4 -bit binary numbers A and
B, and produces a 5 -bit binary sum S.
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As you can tell from the label "S16," this fifth output wire has a value of 16,
compared to values of 8, 4, 2, and 1 for the other four. Each input number
can run from zero (0000) to fifteen (1111). So the sum can run from zero
(00000) to thirty (11110). If the "sum" output had only four wires like the
inputs, it could only go up to fifteen.

Now we could design this combinational block by using the same
approach as with the decoder-by designing the sum -of -products version
right from the truth table and trying to simplify it. But the sum -of -
products network would need 256 eight -input ANDgates to handle all the
possible input combinations in eight wires (that's two to the eighth power-
two multiplied by itself seven times). And the output OR gates would have
to handle as many as 128 inputs (which isn't practical-we'd have to handle
each output OR function in two or more "stages," say, with sixteen 8 -input
OR gates feeding a seventeenth). So we have to back off, scratch our heads,
and find another way.

What's a simple approach to a binary adder design?

The answer comes from considering the "logic" (the reasoning) of
adding binary numbers, as illustrated in Figure 3-13 . Here, we see 44 and
58 added to get the sum of 102, both in the customary decimal way and in
the binary way. (And by the way, we're talking about "pure" binary
numbers here, not binary-coded decimal numbers. That's why "44" is
101100, and not 0100 0100. Later on, we'll see how to use pure -binary
adders to add binary-coded decimal numbers.)

ADDITION OF
DECIMAL NUMBERS

ADDITION OF
BINARY NUMBERS

Same
Digits Example
Carried Numbers
To
Next

F F F
1

FIF
0

F
0

1
0

1

Place

+
(0)

(0)

4
5 8

(0)

+(o)
1

1

0

1

1

1

1

0
0

1

0
0

1 0 2 1 1 0 0 1 1 0
_1 _1 1 Li _1J

-4-1100 10 1 64 32 16 8 4 2 1

"PLACES"
in

Numbers

Figure 3-13. Binary numbers are added using same steps as in adding
decimal numbers.
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Binary numbers are added by the same process you've always
used to add decimal numbers. You just line up the two numbers, so that the
"ones" place in one number is over the "ones" place in the other, and so on.
Then you start at the right end (the "least significant" end, where the
smallest "place" is), and you add one pair of digits at a time . When you get
a two -digit result from one of these steps, you "carry" the extra "one" to
the next step to the left, and add it in with these two digits.

Aha! Is a light coming on in your head? To add our two 4 -bit
numbers, all we need is four one -bit adders, right? That way, we can handle
this nasty combinational job in four simpler stages ! (Remember, the magic
words for digital systems are, "Break up the big jobs into little jobs!")

How can we use one -bit adders to add multi -bit numbers?

Figure 3-14 shows how we do this. We use four identical little
building-blocks called "1 -bit full adders." Each one adds two bits called A
and B, plus a third bit carried in from adding less -significant digits. Each
1 -bit adder produces a 1 -bit "sum" output S, and a carry signal to the next
more significant digit of addition. Obviously, we can chain together as
many of these little adders as we might want to, to handle input numbers
with as many bits as we like.

However, for the 4 -bit adder of Figure 3-12 , we only need the
four 1 -bit adders shown in Figure 3-14-we don't have any "preceding" or
"following" stages of addition. So we just supply a continuous "0" to the
"carry -in" input N to the least -significant adder. (If we wanted to, we
could make this particular 1 -bit adder on the right a "half -adder," which
wouldn't have a "carry -in" input.) The layout in Figure 3-14 is typical of
many "real" 4 -bit adders, including the Texas Instruments SN74LS83.
You'll find this IC in The TTL Data Book, sold by Texas Instruments.

A8 A4

B8

A2

B4 B2

FOUR BITS OF
"A"Al

B1

NUMBER

FOUR BITS
OF NUMBER "B"

CARRY CARRY CARRY
"CARRY IN"
FROM PRECEDING

"CARRY V STAGES, IF
B N B N N B NOUT" al-- DESIRED (USE ''0''

TO OTHER IN THIS CASE)
STAGES,

IF DESIRED
(NONE IN
THIS CASE) FOUR 1 -BIT

"FULL ADDERS"

S16 S8 S4 S2 S1 ---- FIVE -BIT SUM

Figure 3-14. Concept of using four 1 -bit binary full adders to add two
4 -bit numbers, including "carry in" and "carry out" connections to handle
larger numbers if desired
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How does a one -bit full adder work?

Figure 3-15 shows the truth table for a 1 -bit full adder-including
all eight possible combinations of inputs A, B, and N, and the desired
combinations in outputs C and S. The network shown in this figure is just
about as simple a design as you can get, if you're working only with AND
gates, OR gates, and inverters. (The Texas Instruments SN74LS83 we
mentioned modifies this a little bit by substituting other kinds of gates-in
particular, an "AND -OR -invert" circuit that's very economical in the TTL
family, which we will see in the chapter on integrated circuits.)

The network drawing in Figure 3-15 is covered with road -signs
like a highway, to help you find your way through it if you like. For
reference, each input combination in the truth table is identified by a
number from zero through seven, corresponding to the binary number
formed by the combination. The AND function of an input combination is
designated by a "P" with the same number subscripted, so that
P, = A-BN and P, = ABN, for instance.

N 
(INCOMING
CARRY)

(BIT FROM
ONE NUMBER)

A v.
(BIT FROM

10
r -co

I Do
OTHER NUMBER)

"AND" Gates
"RECOGNIZE"-
input combinations
shown*

0

1

2

3

4

5

6

TRUTH TABLE

INPUTS OUTPUT

A NCSCB

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

tReference numbers
Input combinations*

3,7 5 7 6,7 4

P,+P

P,

P,

C
(CARRY OUT TO

NEXT 1 -BIT
ADDER)

+ P,

P, =71/4-13N P, = ABN

+ P, + P, P,

(ONE BIT OF
THE SUM)

Figure 3-15. Truth table and possible network for a 1 -bit full adder as in
preceding figure
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What have we learned about combinational building-blocks?

That just about covers the main, basic combinational building-
blocks you're likely to run into in digital systems: various kinds of code -
conversion units, data -routing units, and adders. There are endless
varieties and combinations of these types of networks, but the concepts by
which they all work are pretty much as we have seen in this chapter.

The important, unifying thread that runs through all these
"decision -making" building-blocks is this: for every combination of signals
at the inputs to a unit, there's a certain, prearranged combination of
signals at the outputs. Furthermore, these input and output combinations
can be summarized neatly in a truth table. Boolean algebra provides a
convenient "shorthand" method of writing the logic (the reasoning) that
shows how to produce each output signal. This method uses symbols for
statements and for the three basic logic operations.

We've noted that the gate network derived directly from a truth
table is not necessarily the most economical. The network can possibly be
simplified by taking advantages of any "don't care" conditions in the truth
table. Different gates can be substituted according to principles we
glimpsed in Chapter 2, to make best use of gates available in the particular
integrated -circuit family being used. Also, as we saw in the adder, a
combinational job can be handled in several steps if necessary to simplify
the network.

So as we said at the beginning of the chapter, we've done
considerably more than just look over some building-blocks. We've
deepened our comprehension of the principles of digital electronics by
looking at things from the designer's viewpoint. All this background
understanding will serve you well as we continue our study of digital
building-blocks in the next chapter with sequential networks, and as we
proceed later on to a comprehension of how entire systems are put
together from building-blocks.
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1. Which kind of building-block

can store information?
a. Combinational
b. Sequential
c. Neither
d. Both

2. Where do we get the name,
"combinational?"
a. Such building-blocks are

combinations of gates.
b. They combine several

inputs to create outputs.
c. For every combination of

input signals, there's just
one combination of output
signals.

d. A and C above.

3. What information is shown in
a truth table?
a. Whether the unit tells the

truth or not.
b. Output combination for all

input combinations.
c. Just the outputs that are

"true" or "1."
d. None of the above.

4. What does an "x" mean in
outputs in a truth table?
a. The output is neither "1"

nor "0."
b. We don't care what this

output is.
c. The letter "x" is formed in

the display.
d. A and B above.

5. What does "sum -of -products"
mean in Boolean algebra?
a. The OR function of several

AND functions.
b. The AND function of

several OR functions.

(Answers in back of the book)

c. The OR function of several
OR functions.

d. The AND function of
several AND functions.

6. How does a "real"
building-block design usually
differ from the
sum -of -products design?
a. There are usually fewer

gates and fewer inputs to
gates.

b. Other kinds of gates may
be substituted for AND
gates and OR gates.

c. It's usually more
economical.

d. All of the above.

7. What is the largest number of
data inputs a data selector can
have if it has two control
inputs?
a. Two
b. Four
c. Eight
d. Any number.

8. In a demultiplexer or data
selector, the AND gate that's
open for passage of data from
one input is the one whose
inputs are:
a. Connected to the "true"

input lines.
b. Connected to the

"complement" input lines.
c. All "1."
d. All "0."

9. Which building-block studied
best illustrates the principle
of dividing big processing jobs
into a sequence of little ones?
a. The decoder
b. The data selector
c. The demultiplexer
d. The 4 -bit adder
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Building -Blocks
with Memory

In Chapter 3, we found out about "combinational" building blocks.
These are digital units whose outputs depend only on the inputs being
received at the present moment. For every combination of input signals,
there's a certain prearranged combination of output signals.

And now we're going to move on and study the other category of
building-block, the "sequential" type. These units can store information
inside them. So the outputs do not depend only on the present inputs, but
also on input signals received in the past - that is, on a sequence of inputs.
As we will see, this "memory"capability calls for a set of additional rules
and thus adds complexity to the building-block and the system, in terms
of both design and operation.

In a later chapter, we will be looking at subsystems called "mass
memories" that store relatively large quantities of information. But right
now, we're talking about smaller units that are regarded as building-
blocks. When we study mass memories later on, we will see that there are
several different techniques used for storing digital information. But in
this chapter, we'll limit ourselves to storage elements of just one very
important type. These are circuits called "flip-flops," which are made of
relatively simple assemblies of gates. Though gates are combinational
units, they can be hooked up in a way that actually stores information. So
let's take flip-flops as our starting point.

What's a simple example of a "flip-flop?"
To unravel the mystery of how a sequential circuit can be made of

combinational units (gates), let's begin with a very simple type of flip-flop.
Let's go back to the "latch" we looked at in general terms back in Chapter
1 (Figure 1-19), and see how such a circuit can be made from gates.

To distinguish this circuit from a smaller one inside it that's also
called a "latch," let's call the larger circuit a "gated latch." One way to
make it out of gates is shown in Figure 4-1.

Externally, this circuit is a direct copy of the latch in Figure 1-19.
It passes signals from the "data input" D straight through to the "true
output" Q whenever the "gating input" G is 1. (The "complement output"
Q, pronounced "Q -bar," is the complement or opposite of Q, and is produced
as part of the internal operation of the circuit.) When G is changed to 0,
the output is "latched," or held, in its present state, regardless of changes
in D, until G goes back to 1. Thus, one bit of data is stored while G is 0.
("Data" means information being processed, as opposed to control
information.)
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Incidentally, you should note that in most kinds of flip-flops, a
signal that causes storage to occur at a given time (such as the gating
signal G) is called the "clock" signal. This is because such a signal tells the
time at which data is to be stored and released. Clock signals synchronize
the changing of data in various parts of the system - meaning make it
happen at the same time. However, "gating" is a clearer word in this case.

DATA
INPUT

L

GATING NETWORK

D

ID R

"SET"

GATING INPUT
0 = LATCH

G 1 = UNLATCH

PRIMITIVE

FLIP-FLOP
(R -S LATCH) "TRUE" OUTPUT

0

I "COMPLEMENT"
OUTPUT

Figure 4-1. A type of flip-flop we can call a gated latch. It contains a
basic, primitive kind of fiip-flop called an R -S latch.

How does the gated latch work?

The two AND gates and inverter in the outlined box at the left in
Figure 4-1 are called the "gating network." This network serves to pass
signal D and its complement D through to lines R and S whenever G is 1.
So whenever the circuit is "unlatched" like this, R and S are complements
of each other. But when G changes to 0, the gating network makes both R
and S go to 0. That is, whichever one was at "1" changes to 0. And the
network holds R and S at 0 while G is 0. (You can easily verify this
operation of the gating network for yourself.)

Now looking over to the right, the two NOR gates in the outlined
box are actually a basic kind of flip-flop called an "R -S latch." This is the
sequential part of the gated latch, and the part where the bit of data is
actually stored. We won't trace through its operation. (You can do that for
yourself, keeping in mind that the output of a NOR gate is 0 whenever at
least one input is 1.) We'll just point out that what makes it sequential is
the way the output of each NOR gate is "fed back" to one input of the
other NOR gate. We say that the gates are "cross -coupled."

As a result of this cross -coupling, the true output Q is the same as
S so long as R and S are complements of each other. This makes Q the same
as D when G is 1. But changing R or S to 0 (whichever one is 1) does not
affect the outputs. (This happens when G changes to 0.) The changing
signal (.R or S) has no effect on the NOR gate it feeds because the other
input to this NOR gate is 1, fed back from an output. Thus, cross -coupling
makes the NOR gates keep each other in the same state when one input (R
or S) changes to 0 while the other remains at 0. This stores a bit of
information in spite of the change.
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Where do the names used in this circuit come from?

The name "R -S" for the NOR -gate latch comes from the
customary names for its two inputs, which are "reset" and "set." A
momentary 1 in the S line while R is 0 will "set" the true output to 1. And a
momentary 1 in the R line while S is 0 will "reset" the true output to 0.

The name "gated" latch for the entire circuit comes from the fact
that additional gating is provided on the inputs to the R -S latch. This
gating is sometimes called a "steering network," because it seems to
"steer" the R -S latch along the way it's supposed to go, in response to the
D and G inputs.

And finally, the general name "flip-flop" for this type of circuit
(both the entire gated latch and the R -S latch alone) is a beautiful way to
describe the way such a circuit "flips" to one state and "flops" back again.
In this respect, a flip-flop acts somewhat like a toggle switch on the wall for
a lamp. It will stay in one position until something comes along and "flips"
it. (Thus, a light switch is a digital memory device!)

How are flip-flops used in a "parallel register"?
A little later, we'll get to know several other kinds of flip-flops.

They all serve to hold and release one bit of information in response to
various kinds of input signals. But first, let's see how the gated latch from
Figure 4-1 could be used in a very important type of sequential building-
block called a "parallel register." Any flip-flop could be used in this general
fashion, but we'll illustrate the idea with the gated latch.

Figure 4-2 shows a digital system (a digital voltmeter) using
twenty gated latches grouped as a parallel register. The latches could be
bought in groups of four as the Texas Instruments "TTL" integrated
circuit SN7475, called a "four -bit latch." If this IC is used with positive
logic, its four gated latches are identical to the one in Figure 4-1.

Repeated gating
signal to all latches

VOLTAGE

INPUT

VOLTAGE
MEASUREMENT

CIRCUITS
WITH

5 -DIGIT BCD
OUTPUT

-

20 -BIT
"PARALLEL REGISTER"
MADE OF FIVE
4 -BIT GATED LATCHES

NM MIir41
BCD

N SIGNALS

4 -BIT D, -0
GATED LATCH
SN7475

D, -. Q,

©U©©©1
BCD -TO -7 SEGMENT
DECODER -DRIVERS

7 -SEGMENT

SIGNALS

7 -SEGMENT
DISPLAY

Figure 4-2. Five 4 -bit gated latches used to hold changing output of digital
voltmeter momentarily.(Circuits for decimal point and plus or minus
signs are not shown.)
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A parallel register consists of a group of flip-flops with a common

gating (or "clock") signal. It's used to store information transmitted and
received all together, rather than one bit at a time. A group of bits
transmitted and received at the same time like this is called "parallel
data."

How might a digital voltmeter use a parallel register?

In the highly simplified digital voltmeter system shown in Figure
4-2, the parallel data consists of voltage readings in digital form. This data
is transmitted from the measuring circuitry at the left in the form of five
decimal digits, each coded as four binary bits. (As we know, this method is
called "binary-coded decimal," or BCD.) Further toward the right, each
decimal digit is decoded into 7 -segment code by five BCD -to -7 -segment
decoder -drivers of the type we studied in Chapter 3. These units drive the
five -digit 7 -segment display.

However, the measured voltage may be changing while it's being
read. During some measurements, the last two or three digits to the right
are likely to be just a blur of changing numbers. So we have the latches
ahead of the decoder -drivers, to hold the display constant for a moment
every few seconds, so we can read it. The latching is controlled by a
regularly repeated gating signal to all the latches. During the intervals
when the latches are "unlatched," we can see how fast the voltage is
changing, by watching the changing digits.

a. b.
PARALLEL REGISTER

PARALLEL DATA
IN .. AND OUT Outputs can change

independently
of each other.

Time

SHIFT REGISTER

SERIAL DATA IN

POSSIBLE

1

PARALLEL

DATA OUT

CLOCK
SIGNAL

SERIAL CLOCK

DATA
OUT

Each parallel
output follows
one clock pulse
behind preceding
output.

Time

Figure 4-3. Difference between parallel register and shift register. Each
little box represents some sort of flip-flop. Waveforms show parallel outputs
"high" or "low" as various data inputs are received and clock is pulsed
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How do parallel registers differ from "shift registers"?

This, then, is the idea of how several gated latches (or any other
kind of flip-flop) can be used as a parallel register. Parallel bits are gated
in and out of all the flip-flops synchronously (at the same time), as shown in
Figure 4-3a. (Note that in Figure 4-3, we're now using the more general
term "clock" signal for what we've been calling the "gating" signal in the
case of the gated latch.)

Now the only other way to transmit groups of bits is in the same
wire one at a time. We call this "serial" transfer, as opposed to parallel
transfer. Storing a row of bits coming along one at a time requires another
type of register called a "shift register," shown in Figure 4-3b. A shift
register consists of several flip-flops in a row, with the "true" output of
each flip-flop feeding the input of another. Every time the clock signal goes
to 1 and back to 0, all the stored bits shift from one flip-flop to the next, like
buckets being handed from one man to the next in a "bucket -brigade" line.
Shift registers are another very important type of digital building-block.
In a later chapter, we'll see how they can be used in the three "number
registers" in our example calculator from Chapter 1. But for now, let's look
at a simpler example illustrating a typical use of shift registers.

What's a typical application of a shift register?

Note in Figure 4-3 that while a shift register is holding a group of
bits that were received serially, the data can be read out in parallel
fashion from all flip-flops at the same time (a selected moment when the
register is not making a shift). So one obvious use of a shift register is to
convert data from serial to parallel form.

To illustrate how a shift register can make such a conversion, let's
make up a simple example, as shown in Figure 4-4. Here, we're supposing
that because of space limitations on a calculator IC chip, we only have one
conductor between the keyboard encoder and the display register. The two
four -bit shift registers shown would let us transmit four -bit digits from
the encoder to the display register in series, one bit at a time.

KEYBOARD
ENCODER

PARALLEL

4°- DATA
V

SHIFT REGISTER

Serial transmission
required because
only one line
available

COMMON
CLOCK

SHIFT REGISTER

v

DISPLAY REGISTER

Figure 4-4. Possible use of shift registers to convert data from parallel
to serial and from serial to parallel forms
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First, the four bits of a decimal digit are loaded in parallel into
the left-hand shift register. (We'll see how this is done a little later.) Then
the two shift registers are shifted four steps by a common clock signal, so
that the four stored bits shift out of the left-hand register and into the one
on the right. There, the bits are read out in parallel again to the display
register. So you can see how this shift register on the right converts data
from serial form to parallel form.

How is this system synchronized?

Notice in Figure 4-4 how important it is for the parts on the left
to be synchronized with the parts on the right, to be sure the registers
shift in step together, and to get the parallel data into and out of the shift
registers on the right schedule. The simplest way to synchronize
everything is by a "common" clock or timing signal (one supplied in
common to all units), as shown in Figure 4-4.

You'll see this element of timing again and again in digital
systems. This example reminds us again why the "storage control" signal
to a flip-flop is called a "clock" signal.

While we're thinking about timing, there's an important fact to
consider. In shift registers and other similar situations, data must be
transferred from one flip-flop to another, with both flip-flops triggered by
the same clock signal. Shifting bits can be a tricky business when all the
flip-flop outputs change at exactly the same time. It requires flip-flops that
store their input signal before they change their output signal.

How can a flip-flop store before changing?

The most common way to make a flip-flop that can do this is to
build two little flip-flops into one bigger one. A "two-step" flip-flop like this
is called a "master -slave" type. Figure 4-5 shows one kind of master -slave
flip-flop.

True

DATA
INPUTS

CK
(CLOCK)

PRESET (NORMALLY 0)

CLEAR (NORMALLY 0)

SLAVE OUTPUTS

Figure 4-5. How an "R -S master -slave" flip-flop can be made from two
"clocked R -S" flip-flops
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This kind is called an "R -S master -slave flip-flop." It's made of
two identical units that we are calling "clocked R -S flip-flops" (shown
outlined), one called the master and one called the slave. Each clocked R -S
flip-flop is simply a gated latch as in Figure 4-1, but with two data inputs
rather than one input and an inverter. The "preset" and "clear" inputs are
additional features that we'll come to in a moment.

Note that the clock signal CK to the slave unit is the inverse of
the main clock signal CK, which is supplied to the master. This gives us the
"store -before -changing" action we want. Let's suppose that inputs S and R
are connected to the Q and Q outputs of another identical flip-flop
controlled by the same clock signal. When the main clock changes from 0 to
1, the slave holds one bit while the master accepts a new bit. Then when
the main clock goes to 0 again, the master holds the new bit while the slave
releases the old one and begins transmitting the new information straight
through from the master.

Thus, when this flip-flop is used with others in a shift register, all
the flip-flops "get ready to shift" when the main clock goes to 1, which we
call the "leading" edge of the clock pulse. And the flip-flops complete the
shift at the "trailing" edge of the clock pulse, when CK goes back to 0
again.

So that's how the "master -slave" idea allows bits to be shifted
from one flip-flop to another by the same clock pulse going to all flip-
flops. We can string together as many flip-flops of this kind as we need in
the form of a shift register.

What do the "preset" and "clear" inputs do?
Now what about the "extra features" in Figure 4-5 that we

passed over earlier - the preset and clear inputs? These two inputs are
normally kept at 0 and have no effect on the operation of the flip-flop.
Putting a momentary "1" pulse into the "preset" input while the clock is 0
(between clock pulses) will store a 1 in the flip-flop. Similarly, a short "1"
pulse at the "clear" input between clock pulses will store a 0.

Not all flip-flops have these features. They can be particularly
handy in a register, where some systems need to "clear out" all old data
and leave only zeroes stored, or to "preset" the register to all ones. (Back in
Figure 1-9, we saw that our calculator has to be able to clear its registers.)
In such a case, the same preset and clear signals would go to all the flip-
flops in the register.

How can you load parallel data using "preset" and "clear"?
Another way in which the preset and clear inputs can be useful is

in putting parallel data into a shift register. We saw a typical need for a
parallel -entry shift register in Figure 4-4. There, the keyboard encoder
puts four parallel bits at once into a shift register. Then the bits are
shifted serially through the single line.
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Figure 4-6 shows one way to use the preset and clear inputs for
parallel data entry. (This method is used in the Texas Instruments
SN74165 shift register.) Here we see two stages of a shift register made of
R -S master -slave flip-flops as in Figure 4-5. Each flip-flop is shown as a
customary symbol. (As indicated in Figure 4-7, the peculiar circle and
triangle symbols at the clock input of each flip-flop are to indicate that the
outputs of the flip-flop change when the clock goes from 1 to 0.)

BOLD LINES
INDICATE "1

OPTIONAL
SERIAL
DATA
INPUT

CLOCK
INPUT

LOAD

CONTROL

INPUT

"Loading" gates
on preset and
clear inputs
are "open"

OPTIONAL PARALLEL INPUTS

P = 1 Po -= 0

R -S

Master -Slave .

14#4v
Flip -Flop 1as in \1/4
Preceding
Figure PRESET

S S

lir CKIEAtil
CLEAR

"Clock
override"
gate holding
CK at 0.

LOAD

CONTROL

TRUE

DATA

COMPLEMENT

INTERNAL

CLOCK

LOAD
CONTROL

To
Other
Stages
of Shift
Register

Figure 4-6. A way to load parallel data into a shift register by using
preset and clear inputs on the flip-flops (similar to Texas Instruments
SN741 6 5)

Looking again at Figure 4-6, note that when the "load -control"
input is 0, the circuit functions as a plain shift register, receiving data
serially. But when the load -control input is 1 as shown in Figure 4-6,
parallel data is entered from the inputs above. The load -control signal
makes the "clock -override" gate hold the internal clock signals at 0 (which
is required for presetting and clearing these particular flip-flops). It also
"opens" the "loading" gates to the parallel data. A "1" at a parallel input
such as we see at P. will operate the "preset" input of a particular flip-
flop. And a "0" such as at P will be inverted to 1 (as shown for P) and
operate the "clear" input. As soon as the load -control input is returned to 0
again, normal shifting may begin once more.

There are other ways to load parallel data into a shift register.
But this particular method should give you an idea of the kinds of extra
features that can be added to the basic shift register. By providing
appropriate control signals and gating, you can even make a "bidirectional"
shift register that will shift either forward or backward.
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What are some other kinds of flip-flops?

R -S flip-flops are relatively simple, economical units that work
just fine in many applications - especially plain shift registers. However,
they have a peculiar quirk that's illustrated in the truth table shown in
Figure 4-7. Note that a truth table for a clocked flip-flop like this one shows
the input states before a clock pulse, and the "true" output after the next
clock pulse. (For example, the first line in the table says that if S and R are
both 0 to begin with, then after the next clock pulse, Q will stay the same
as it was before.)

Triangle means "dynamic input"
(circuit responds only to a change).

Circle means input is "active" when "0"
(here, a change to "0" from "1")

TRUTH TABLE

S,, Ro Q

0 0 o.

o 1 0

1 0 1

1 1 ?

Subscript 0
means before
clock pulse.

Subscript 1
means after
clock pulse.

"?" means
"don't know."

Figure 4-7. Customary symbol for a typical clocked R -S flip-flop, and
truth table for all types of clocked R -S flip-flops

The peculiar quirk we're talking about is that when S and R are
both 1, then after a clock pulse, the output could be either 1 or 0. There's no
telling what it will be. So you never let a clock pulse occur while S and R are
both 1.

Other kinds of flip-flops don't have this problem. There are three
other types commonly used, so let's take a quick look at them.

"D" flip-flops
Figure 4-8 shows the truth table for all "D" flip-flops. (D stands

for data or delay. )The true output after a clock pulse is held in the state
maintained at the input, D, during the clock pulse. Note that the outputs
change only at the moment the clock goes from 1 to 0. (Changes at D have
no effect while the clock is 1, as in the gated latch of Figure 4-1.) There are
any number of ways to make a D -type flip-flop. On the left in Figure 4-8,
you can see how to make one out of an R -S master -slave flip-flop and an
inverter. Preset and clear inputs could be provided, but are not shown here.

TRUTH TABLE
Do o,

0 0

Subscript 0
means before
clock pulse.

Subscript 1
means after
clock pulse.

Figure 4-8. An R -S master -slave flip-flop wired to act as a 'D"flip flop,
and truth table for all D flip-flops
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"T" flip-flops
A "T" or "toggle" flip-flop is one that has no data inputs at all. Its

outputs simply change state at every clock pulse (either when the clock
goes to 1 or when it goes to 0, depending on the design of the particular
flip-flop. We say that the flip-flop "toggles" at every clock pulse. Figure 4-9
shows how to make a T flip-flop by feeding back the outputs of an R -S
master -slave flip-flop to the inputs (Q to R, and Q to S).

This particular T flip-flop toggles when the clock input (now
labeled "T") goes from 1 to. 0, as indicated by the little circle at the clock
input. On the right in Figure 4-9, you'll see one way to make a truth table
for a T flip-flop that toggles on a 1 -to -0 transition like this one.

0 C K

0

TRUTH TABLE

To T, Q,

0 0 0,

0 Qo

0 Qo

1 I Qo

Subscript 0 means before
T changes. Subscript 1
means after T changes.

Figure 4-9. An R -S master -slave flip-flop wired to act as a "toggle" or
"T" flip-flop, and truth table for any T flip-flop toggled by 1 -to -0
transition

"J -K" flip-flops
Figure 4-10 shows one way to make a "J -K" flip-flop out of an R -S

master -slave flip-flop like the one in Figure 4-5. (Preset and clear inputs
are not shown.) The feedback pattern here is like that in Figure 4-9, except
that extra inputs are provided to the AND gates in the front end of the
flip-flop. The "true" input is called J, and the "complement" input is called
K. (Some people say these letters come from the names of two men who
developed this idea.)

As shown in the truth table in Figure 4-10 for all J -K flip-flops,
this building-block performs exactly like a clocked R -S flip-flop (Figure 4-
7), except when clocked while both J and K are 1. In that case, the outputs
simply toggle to the opposite states, like a T flip-flop. Thus, the feedback
prevents the troublesome "uncertain" condition from occurring. J -K flip-
flops are very versatile, popular units, which we will shortly see in some
circuit applications. If a particular application calls for J or K to be the
AND function of several signals, these signals can simply be brought in as
extra inputs to the AND gates in the front end of the flip-flop. These
multiple J and K inputs are called J1, J. K,, K2, and so forth.
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DATA
INPUTS

OUTPUTS

CK

Several J and K inputs may be provided on input gates
Preset and clear may be provided as in Figure 4-5.

R -S MASTER -SLAVE
FLIP-FLOP AS IN
FIGURE 4 - 5.

TRUTH TABLE

Jo Ko

0 0 00

0 0

0

00

Figure 4-10. A U -K" flip-flop is wired to avoid the "uncertain" state
of the R -S flip-flop, while keeping the usefulness of more than one data
input

There are a number of variations on the four basic types of flip-
flops (R -S, D, T, and J -K). Most of the variations pertain to clocking - that
is, to exactly what happens when the clock goes from 0 to 1, when it's at 1,
when it goes from 1 to 0, and when it's at 0. These variations don't need to
be of any concern to us in this book. You can look into them further by
yourself when the need arises.

How do you make an "asynchronous binary counter"?

Now that you're familiar with the various basic kinds of flip-flops
and how they're used in parallel and shift registers, let's move on to one
more important kind of sequential building block, the "counter." There are
many different kinds of counters. But all of them can be considered to be a
special kind of register with one input and usually with a parallel output
from each flip-flop. The network counts pulses arriving at the input, and
stores the total count in the flip-flops. If parallel outputs are provided, they
show the stored total in a numerical code. The code is usually in the form of
binary numbers.
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Figure 4-11 shows how to use four T flip-flops to make a "4 -bit

binary counter" (similar to the Texas Instruments SN7493A). Every time
the input signal goes from 1 to 0, the counter registers the next higher
binary 4 -bit number. The next count after 15 (1111) is zero (0000). The
counter can be cleared to zero by means of a common "clear" input.

The way the counter works is by having the "true" output Q of
each flip-flop (except the last one on the left) connected to the "toggle"
input of the next flip-flop to the left. Every time one of these outputs goes
from 1 to 0, the next flip-flop to the left toggles to the opposite state, as you
can see in the signal diagrams below each output and the input. This action
makes the outputs actually count upwards in binary code. As you can
imagine, a 5 -bit counter would count from 0 to 31, a 6 -bit counter from 0 to
63, and so on.

T

CLEAR

CLEAR

T

CLEAR

T

CLEAR CLEAR

D

PARALLEL

OUTPUTS

BINARY

COUNT
REGISTERED

INPUT

1 0

o 0 1

1

-
o 0 1 0

r
I 2

0 0 0 1 1

0 0 0 0 0

1 1 1 1 15

1 1 1 0 14

Figure 4-11. An asynchronous binary 4 -bit counter made of "T"
flip-flops, showing input and output signals during part of counting
sequence (similar to Texas Instruments SN7493A)

Why is this counter called "asynchronous"?
The counter in Figure 4-11 is called an "asynchronous" type. This

is because the output changes are not "synchronized," meaning the outputs
don't change at exactly the same time. For example, when the count
changes from 15 to 0 (see the signal diagrams in Figure 4-11 ), it takes a
certain small amount of time for each flip-flop to go to 0. So the changes
"ripple through" the counter from right to left. (For this reason, an
asynchronous counter is often called a "ripple counter.") During the time
these changes are rippling through, the output count is not correct.
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One application in which the rippling causes no problems is when
the only output used is the last one on the left - output D in the case of a 4 -
bit counter. This output provides pulses with a frequency only one -
sixteenth as fast as the input pulses. "Frequency division" is a useful
operation in many digital systems. The counter in Figure 4-11, would be
called a "divide -by -16" counter, or a "modulo -16" counter. (We'll come back
to this word "modulo" in a moment.)

How can you make a "synchronous" counter?

On the other hand, many applications require that the outputs of
a counter change at exactly the same time (or at least, as nearly exactly as
digital circuitry can make them do so). Such a counter is called
"synchronous." Figure 4-12 shows one way to make a synchronous binary
4 -bit counter, using four J -K flip-flops. This sequential building-block
shows how versatile and useful a J -K flip-flop can be.

B

J, J, K,

B

CONSTANT
1

CK CK

V

D C

(8) (4)

CK

B

(2)

-it INPUT

J

O
CK

COUNT REGISTERED ... 14 15 0 ...

J, = K, = A 0 1 0

B 1 1 0

J, = K, = AB 0 1 0

C 1 1 0

J,=K,=ABC 0 1 0

D 1 1 0

PARALLEL

A OUTPUTS

(1)

Figure 4-12. Synchronous binary 4 -bit counter, showing sample of table
to help follow operation (bold signals cause change at next clock pulse)
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The input carrying pulses to be counted goes to the clock input of
all four flip-flops, which guarantees they all change at the same time. The
particular state each flip-flop goes to after each clock pulse is determined
by the way the J and K inputs are connected. We say that the input
connections "steer" each flip-flop to the correct next state. Note that the J
and K inputs of each flip-flop are tied together. As we saw in the J -K truth
table in Figure 4-10, when both inputs are 0, the flip-flop remains in its
present state. But when both inputs are 1, it toggles at the next clock pulse.
(You may want to trace the operation through each count, referring to the
J -K truth table. A table like the one shown partially in Figure 4-12 will be
helpful.)

Notice the similarity between the steering circuitry and that of
the decoder -type networks we've seen in Chapter 3. Steering a flip-flop to
the correct next state is simply a matter of decoding (recognizing) the
state immediately before you want the flip-flop to change.

How can you make a counter count to other numbers?
Not all counters count only 16 states - or 4, or 8, or 32, or some

other "power of two." For example, Figure 4-13 shows one way to make a
synchronous counter that counts from zero to nine and back to zero, using
binary code. It's called a "decade" counter, or a "BCD" counter.
A

B

C

Jo

A

JP K,

A

B

C

17)

CONSTANT
1

0

D

(8)

0

i
C

(4)

...0 INPUT

V

B A -.--- PARALLEL
(2) (1) OUTPUTS

COUNT REGISTERED 8 9

A 0 1 0

J.= K. = A  5 0 0 0

B 0 0 0

Jc = K, = A  B 0 0 0
C 0 0 0

Jr,=ABC 0 0 0

Ko = A 0 1 0
D 1 1 0

Figure 4-13. Synchronous decade (BCD) counter, showing sample of table
to help follow operation (bold signals cause change at next clock pulse)
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As you can see, this counter looks much like the synchronous 4 -bit
binary counter in the preceding figure. However, the "steering" circuitry is
different. It sends the counter back to zero on the count after "nine." We
say that the counter's "modulus" has been shortened from 16 to 10. The
modulus of a counter is the number of different states it counts through. A
counter with ten states like this one in Figure 4-13 is called a "modulo -10"
counter. By using enough flip-flops and designing the proper steering
circuitry, you can make a counter with any modulus you need for a
particular application. (Once again, Figure 4-13 includes part of a table you
may want to make out to help you trace the operation of this counter
through each count.)

How does a digital watch or clock use counters?

Perhaps the most familiar application of counters to most people
is in a digital watch or clock. Figure 4-14 shows how counters could be used
in a watch or portable clock system that displays hours, minutes, and
seconds in a 12 -hour cycle.

1 -Hour
Pulses

MODULO
12

COUNTER

HOURS

50 -Microsecond
Pulses

ACCURATE
20 -kHz

OSCILLATOR

MODULO
60

COUNTER

MINUTES

1 -Minute
Pulses

MODULO
20,000

COUNTER

MODULO
60

COUNTER

SECONDS

1 -Second
Pulses

BINARY -TO -
7 -SEGMENT
DECODER -

DRIVERS

7 -SEGMENT
DISPLAYS

Figure 4-14. How counters are used in a digital watch or clock
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An oscillator circuit using a special vibrating crystal produces
sharply square pulses at a very accurate frequency of 20 kilohertz (20,000
cycles per second). A counter with a modulus of 20,000 counts these pulses
and puts out a pulse every second. A series of three more counters counts
seconds, minutes, and hours by operating with the appropriate modulus in
each counter. The parallel binary output from each of these counters is
decoded in order to drive a 7 -segment display for each digit of the hours,
minutes, and seconds. Incidentally, none of these counters needs to be
synchronous, since the rippling of states in a counter would occur much
faster than your eye could see in the display. And the accuracy of
frequency division is not affected by rippling.

Are there any other digital building-blocks?
As there are many different kinds of registers, there are also any

number of variations on the basic counter principles we've seen. For
example, some counters can be preset to a particular state, like parallel
data being entered into a shift register. And counters sometimes have
decoders built into their parallel outputs. But we've seen enough to give us
a general idea of what counters do and how they work.

And in fact, the same goes for all digital building-blocks. The
sequential and combinational units we've seen in this chapter and the
preceding one are representative of nearly all digital building-blocks you'll
ever run across.

We've come a long way from the simplest building-blocks - the
gates. We've seen how the combinational requirements of a particular
building-block can be analyzed to decide how to connect a network of
gates. We've seen how gates can be arranged in such a way as to store
information, and how we have to take into account the sequence of events
in time in using building-blocks with memory. We've become familiar with
the main types of building-blocks that are used to make a digital system.
Along the way, we've looked at a number of applications of various
building-blocks in digital systems. We will build upon some of this
understanding in a later chapter on mass memory units. Still later, we will
see how the building-blocks with which we've become familiar are put
together to form complete systems.
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Quiz for Chapter 4
1. What is the purpose of clock

signals in sequential
building-blocks?
a. To tell how much time has

elapsed since the system was
turned on.

b. To synchronize the changing
of data in various parts of a
system.

c. To carry serial data signals.
d. All of the above.

2. What keeps the outputs of an
R -S latch from changing when
one input changes to 0 while the
other remains at 0?
a. The outputs are fed back to

these two input wires, keeping
them from changing.

b. The NOR gates are special
sequential gates that store
information inside them.

c. The output from each NOR
gate is fed back to another
input on the other gate.

d. B and C above.

3. When output Q from an R -S
latch is 0, and both inputs R and
S are 0, then a momentary "1"
pulse at S will:
a. Flip Q from 0 to 1.
b. Flip Q from 0 to 1 and back

to O.
c. Flip Q from 0 to 1.
d. Flip Q from 0 to 1 and back

to O.

4. A group of bits transmitted and
received at the same time is
called:
a. A clock signal.
b. Parallel data.
c. Serial data.
d. B and C above.

5. Which kind of register can
convert data from serial to
parallel form, or parallel to
serial?
a. Parallel register.
b. Shift register.
c. Synchronous counter.
d. Asynchronous counter.

6. A parallel register is used for:
a. Temporarily holding parallel

data.
b. Temporarily holding serial

data.
c. Shifting parallel data.
d. Shifting serial data.

7. Do all flip-flops in a register
receive the same clock signal?
a. Yes.
b. No.
c. Only in the case of parallel

registers.
d. Only in the case of shift

registers.

8. What is the purpose of the
"master -slave" feature in a
flip-flop?
a. To let it change its output

before accepting a new input.
b. To make it simpler and more

economical.
c. To let it accept a new data

input before changing its
output.

d. B and C above.
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9. A momentary signal at the
"preset" input of a flip-flop
will:
a. Preset the true output to 0.
b. Preset the true output to 1.
c. Clock in new data from the

data inputs.
d. Any of the above.

10. The peculiar quirk that R -S
flip-flops have is that when one
is clocked while both R and S are
1:

a. The outputs don't change.
b. The outputs toggle to the

opposite state.
c. The true output is cleared to

0.

d. You can't tell what the
outputs will be.

11. Which kind of flip-flop has only
one data input?
a. "R -S"
b. "D"
c. "T"
d. "J -K"

12. Which kind of flip-flop changes
its outputs to the opposite state
at every input pulse?
a. "R -S"
b. "D"
c. "T"
d. "J -K"

13. A J -K flip-flop behaves like an
R -S flip-flop except that when
clocked while J and K are both
1:

a. The outputs are uncertain.
b. The outputs do not change.
c. The outputs both go to "1."
d. The outputs toggle to the

opposite states.

14. An asynchronous binary
counter:
a. Is made of T flip-flops.
b. Changes its outputs in

"ripple" fashion.
c. Is useful as a frequency

divider.
d. All of the above.

15. A counter can be made
synchronous, or its modulus can
be shortened, or both, by:
a. Providing decoded outputs.
b. "Steering" the clock inputs to

the desired states.
c. "Steering" each flip-flop to

the correct next state by
decoding the state before.

d. All of the above.

(Answers in back of the book)
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WHY DIGITAL?

Now that you have in your mind the main outlines of the
comprehensive picture we're painting of digital electronics, this is a good
time for us to pause for a while and evaluate the nature of the digital
approach to building a system. In speaking of the only other general way
to build a system (in Chapter 1), we used the words "analog" and "linear."
So first, we have to explore these ideas and their meanings. This new
understanding will enable us to see more clearly why the digital approach
is used in certain situations-and perhaps more important, why it's not
used in other situations.

What is analog information?

All we have noted so far about the analog (or linear) method was
with regard to our discussion of the universal system organization back in
Figure 1-20. Figure 5-1 shows this organization again as it applies to
analog systems. We've shown that digital systems manipulate
information in digital form. That is, the information is made up of
separate parts, or bits. We added that another way to represent
information is by a method called analog.

This method of handling (manipulating or transmitting)
information is what makes analog systems different from digital systems.
"Linear" is a name sometimes used for the general type of electronic
circuitry used to handle analog information. So let's see what's meant by
analog information.

SENSE

/ INFORMATION IN

ANALOG FORM

>

r

DECIDE

STORE

> ACT

Figure 5-1. Analog systems are those which handle information encoded
in analog form, using circuits sometimes called linear" circuits.

>
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To put it briefly, in an electrical analog system, we use some

controllable property of electricity, such as current or voltage, as an
"analog" to represent the information we're handling. (Think of the word
"analogy.") That is, the electricity is closely and carefully controlled so as
to be a more or less exact copy or representation or model of the
information. Figure 5-2 shows an example.

Analog Information in Wire:
1 Milliampere = Empty
5 Milliamperes = V2 Full

9 Milliamperes = Full

or anything in between

VARIABLE

RESISTOR

CONTROLLED

BY FLOAT

Large
Resistance
= Empty

10 -

OUTPUT

(Position
of pointer
or milliamps
in circuit)

0

10 20
INPUT (GALLONS (LITRES) OR LEVEL)

ISWITCH OPERATED
BY CAR IGNITION KEY

Small
Resistance
= Full

"Ground" symbol
means current
returns to
battery

S
PERMANENT
MAGNET )

CURRENT METER

Circuitry
is called
"linear" because
graph of output
versus input is a
smooth line (no jumps).

Figure 5-2. Concept of current -analog information in a possible
automobile fuel gage system

-/-

How can an electric fuel gage use analog information?
Figure 5-2 shows a system that could possibly be used to indicate

the fuel level in an automobile gasoline tank in an analog fashion. The
float on a swinging arm in the tank adjusts a "variable resistor" according
to the gasoline level. (Think of a lever turning the volume -control knob on
a radio.) This varies the current in a wire running to the instrument panel.
For example, is shown in the figure, 1 milliampere of current might mean
"empty," 9 milliamperes might mean "full," and each current in between
would represent a certain tank level. At the instrument panel, the pointer
needle in a current meter indicates level as it moves between the two
extremes of measured current.

Note that the current is not switched on and off as in a digital
system. Instead, current flows at all times and is varied over a certain
range. Thus, the pointer in the meter duplicates the movement of the float
over its full range, more or less accurately. What's important to notice is
that current has carried information from one place to another in an
analog fashion, by being varied over a range.
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In what way is this analog circuit "linear"?
This "smoothly varying" feature of analog systems is illustrated

in the graph in Figure 5-2, which also shows us where we get the name
"linear" for circuits that handle analog information. This graph shows
generally how the circuit output (pointer position or milliamps) changes
when the input (gallons-litres-or level) changes. Since the current is varied
rather than being switched, the graph is a smooth line, with no sudden
jumps. That's why we call the circuit "linear."

Unfortunately, the word "linear" can have different meanings in
different circumstances. Sometimes it's used to mean that a graph is not
only smooth but perfectly straight. Although you need to be acquainted
with this word, we will not be using it very much in this book, but will
mainly refer to "analog" circuitry.

How do the parts of this system work?

In case you're not familiar with the parts of the system in Figure
5-2, we ought to say a few words about how they work. The variable
resistor would typically be a curved piece of carbon touched by a moveable
contact. Sliding this contact along the carbon shortens or lengthens the
path travelled by the electricity through the carbon. Another resistor,
shown further left, holds the current down to the range the meter can
handle. The "ground" symbols at the battery and meter indicate that
these two points are connected through a "common" path, such as the
frame of the car, which is considered to be at zero volts. (As you probably
already know, a complete circuit must be provided before current will
flow.) A switch turns off the current when the ignition key is off.

The current meter acts as a little electric motor whose rotor is
kept from turning very far by a spring. The greater the current, the
stronger the magnetic field produced in the little rotating coil, and the
more strongly the north and south poles of the coil and the permanent
magnet interact with each other. (Remember, "unlike" poles attract and
"like" poles repel each other.) As the coil turns against the force of the
spring, it moves the pointer to indicate current through the coil.

What has the fuel gage illustrated?

This, then, is an example of how one controllable property of
electricity-namely, current-can be used as an "analog" (a direct
representation) of the information we want to transmit. It's a very
simple, idea, actually. It's the natural way anyone would think of to
handle information by means of electricity.

This example may have led you to realize that many of the
common everyday electrical systems you can think of use some form of
analog information, either throughout the system or in part of it. To learn
more, let's look at a couple more analog systems you may be familiar with.
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How does a telephone use analog information?

Although a telephone system may seem pretty far removed from
the current -analog fuel -gage system, it works essentially the same way,
only much faster. Figure 5-3 shows the idea of a simplified telephone
system, consisting of one mouthpiece and one earpiece. Current flows
through the complete circuit, from the direct -current power supply,
through the mouthpiece and earpiece, and back to the power supply
through the ground connections. As in the fuel -gage system, the amount
of current is determined by the resistance in the circuit.

The microphone element in the mouthpiece is a capsule full of
powdered carbon that acts as a variable resistor. It allows more current to
pass when it is squeezed by air pressure. When we speak, we vary the air
pressure in front of our mouths. Fluctuations in air pressure occurring
from about 20 times a second (a "frequency" of 20 "hertz") to about 10,000
times a second (a frequency of 10 "kilohertz") are what our ears hear as
sound.

So the microphone element creates rapidly surging waves of
electricity in its output wire, as an analog representation of waves of
varying air pressure-that is, sound waves. (The current increases and
decreases very quickly, over and over again, due to the varying
resistance.) At the earpiece, this current passes through the coil of a fixed
electromagnet, creating surges of magnetic force that match the surges of
current. The magnetic force, in turn, attracts a springy metal diaphragm
in proportion to the current waves. Finally, the diaphragm, by rapidly
pushing and pulling the air, reconstructs a more or less accurate copy of
the original sound waves, which have been transmitted in analog form by
surges of electricity. Our ears detect the varying air pressure and hear the
sound. Simple, isn't it?

6 -VOLT
POWER SUPPLY

MOUTHPIECE

Fluctuating pressure
of sound waves
varies resistance
of microphone element

HIGHER
CURRENT

LOWER

CURRENT

Each surge of
electricity through
electromagnet
pulls diaphragm,
regenerating a
sound wave.

Surging waves of
electricity in wire
are analog representation
of air pressure (sound waves).

EARPIECE

Figure 5-3. Telephone system uses analog information much like fuel gage
in preceding figure.
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What's the difference between current and voltage analog?

In most of the other examples of analog systems that we'll study,
we'll be speaking of controlling the voltage of electricity rather than the
current. Thus, we will be using voltage analog rather than current analog.
These two methods are so similar in concept that the difference need not
concern us here. Current is simply the amount or volume of electricity
flowing, while voltage is the pressure of electricity-the force that moves
the current.
How do radio systems use "amplitude modulation"?

Although current and voltage are the basic workhorses in the
analog world, these methods are often used in some very special ways
known by different names-ways that make the analog method even more
useful. Let's look at a familiar example. This will be an AM radio
transmitter such as those used in citizens -band radios, "ham" radios, and
regular radio broadcasts. "AM" stands for "amplitude modulation," which
is one of the more advanced forms of analog information.

Figure 5-4 shows how this technique lets us transmit sound
waves (whose frequencies are relatively low, from 20 to 10,000 waves per
second) by using radio waves of a much higher frequency (say, 1
megahertz-a million waves per second). The transmitter simply

(that is, varies) the "amplitude" (the height or strength) of
the radio waves in a pattern matching sound waves. That's what
amplitude modulation means. (To "modulate" something means to vary or
change it to fit a certain pattern. We could call current analog "current
modulation.")

Microphone converts
air pressure waves
to voltage waves

"GAIN
CONTROL

Voltage waves
copy sound waves (20 to
10,000 waves per second)

\RADIO FREQUENCY
' WAVES (1 MILLION

WAVES PER SECOND)

Each electric wave in antenna
generates a radio wave.

"Modulato "
amplifier
modulates (varies)
amplitude of
radio -frequency

waves

\Amplitude of
electric waves
in antenna
matches sound
waves

Figure 5-4. Simplified concept of amplitude -modulation (AM) radio
transmitter
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To perform this trick, as shown in Figure 5-4, the system uses an

"oscillator" to generate 1 -megahertz electrical waves of constant
amplitude. (The voltage is just going up and down smoothly a million
times a second, the same amount each time.) A special "amplifier" circuit
called a "modulator" then amplifies these waves. That is, it multiplies its
input voltage by a certain factor, producing taller and stronger waves at
its output. (The triangle you see is the customary symbol used for an
amplifier when you're not concerned with what's inside.)

Now the "gain" of the amplifier-the factor it multiplies the
input by-is controlled by the voltage signal from a microphone. This
signal is a voltage analog of the sound waves striking the microphone. The
voltage waves, in effect, rapidly "turn the volume control knob" on the
amplifier up and down, thus modulating the amplitude of the 1 -megahertz
output waves as we desire.

On reaching the antenna, each electric wave generates a radio
wave. The radio waves, in turn, are of the same frequency and amplitude
(relative to one another) as the amplitude -modulated electric waves.
Thus, by modulating the amplitude of radio waves, we can transmit sound
in an analog fashion.

We won't go into how a radio receiver works. It's enough for us to
say that it responds only to radio waves of the frequency it is tuned to,
and that it recovers the original sound -wave pattern by following just the
peaks of the 1 -megahertz waves.

How does "FM" radio transmit information?

Another variation of the analog technique, similar to amplitude
modulation, is frequency modulation of both electrical waves and radio
waves. This method is the basis for FM (frequency -modulation) radio
communications, including broadcast FM and television sound.

HIGHER HIGHER
LOWER LOWER LOWER LOWERVOLTAGE FREQUENCY

VOLTAGE VOLTAGE FREQUENCY FREQUENCY

Input signal t
from microphone /

it."-CONTROL
FREQUENCY` %

OSCILLATOR JUV1AAIV
FREQUENCY -MODULATED

(FM) OUTPUT TO
TRANSMITTING ANTENNA

Figure 5-5. The frequency of waves can be modulated to carry analog
information by controlling the frequency of an oscillator.
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As indicated in Figure 5-5, frequency -modulated electric waves
are produced by controlling the frequency at which an oscillator varies its
output voltage. If these waves are sent to an antenna, they produce
corresponding FM radio waves. FM signals are less subject to interference
by noise, because noise mainly affects the signal amplitude and thus does
not bother the frequency signals. However, FM waves are more
troublesome to generate and receive.

EXTERNAL

INFORMATION

(fuel level,
sound waves)

SENSE
(VARIABLE
RESISTOR,

MOUTHPIECE,
MICROPHONE)

INTERNAL

ANALOG INFORMATION

(current, voltage, waves)

DECIDE

STORE

EXTERNAL

INFORMATION

(meter reading,
sound waves,
radio waves)

ACT

(METER,
EARPIECE,
ANTENNA)

Figure 5-6. Having covered analog "sensing" and "acting," we need to
consider analog storage and decisions.

Which "universal system functions" have been illustrated?
As a reminder of what we've learned so far about analog systems,

and to see where to go from here, let's consider how the systems we've
studied fit the universal system organization, as shown in Figure 5-6.

The variable resistor, mouthpiece, and microphone sense external
information and convert it into analog form by varying current or
voltage. And the meter, earpiece, and antenna act to convert varying
electricity into meter indications, sound waves, and radio waves. So we
pretty well understand these two stages of analog systems.

But what about the "decide" and "storage" functions in analog
systems?

How do analog circuits usually store information?
Let's consider storage first. Analog signals can be stored for a

very short, fixed length of time by delaying the signal. This method
involves sending the signal on a "detour" through a special path in which
the signal travels much more slowly than it would through a wire. (In a
wire, changes in signal level travel at nearly the speed of light.) Thus, the
analog information is stored for the period of time the information is
travelling in the slow path. These slow paths are called "delay lines." A
delay line can store only a small amount of information at a time, and for
only a fraction of a second.
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To store analog information for a period as long as several

minutes, a system usually stores electric charge at a certain voltage level,
using a device called a capacitor. For an example of how this works,
imagine an automatic gas -analyzer system in a chemical plant, shown in
Figure 5-7.

Sample of
gas mixture
to be
analyzed

GAS
ANALYZER

Takes 15 minutes
to analyze

each sample

Percentage
amount of each
gas component
reported as
voltages, one
at a time over
15 minutes

"3 -channel analog storage
buffer" stores each
voltage as it appears,
so computer can read
all three at once.

COMPONENT

#1

COMPONENT

#2

COMPONENT
#3

COMPUTER
INTERFACE

UNIT

DIGITAL

PERCENTAGE

AMOUNTS TO

COMPUTER

Figure 5-7. Example of a need for storing analog information for several
minutes

How does a capacitor store analog information?

The gas analyzer analyzes a sample of a gas mixture every 15
minutes, and reports the amounts of three different gases that are
components (parts) of the mixture. The percentage amount of each
component appears as a voltage -analog signal at the analyzer output for
just a few seconds. The three voltage signals are produced one at a time
over an interval of 15 minutes for each complete analysis. We need a
"three -channel analog storage buffer" unit to store these three voltage
signals from each analysis. This is so that after the final voltage appears,
all three can be transmitted (sent) quickly to a computer for recording,
through a computer -interface unit.

Figure 5-8 shows one of the three voltage -storing channels. As
soon as a new voltage is ready for storage, the analyzer energizes the
electromagnet in a "relay" for a short time. The magnetic field attracts a
metal arm and closes the relay switch contacts, connecting the voltage
output to the capacitor for a few seconds. As a result, current flows
between the analyzer output and the capacitor, causing electric charge
to be stored by the capacitor to the voltage input.
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As indicated in Figure 5-8, capacitors consist essentially of two
closely -spaced metal plates with a thin layer of insulation to prevent
current from flowing between them. They serve many different functions
in electrical circuits, but this one acts as a storage reservoir for electric
charge. (Imagine a tank storing compressed air at a certain pressure.) The
more charge we pack into the capacitor, as indicated by the little "plus"
signs, the higher the voltage that we store. After the capacitor is charged
up to the voltage level of the input wire, the relay contacts are opened,
disconnecting the capacitor. So we actually store the input voltage until the
relay is turned on again to store a new input voltage.

ANALYZER
OUTPUT

VOLTAGE TO

BE STORED

Momentary
"store" signal
from analyzer
energizes relay
to connect
capacitor for
a few seconds.

RELAY

After input
is switched off,
capacitor stores

\voltage by holding
electric charge

Amplifier with high -
resistance input copies
stored voltage

/without letting charge
leak out very fast.

COPY OF
STORED VOLTAGE

TO COMPUTER

INTERFACE UNIT

Figure 5-8. Concept of each channel in the analog storage buffer in
preceding figure, illustrating capacitor storage of voltage information for
a few minutes

The important job of "reading" the stored voltage without
changing it too much, and sending a close copy to the computer -interface
unit, is handled by a special amplifier circuit. (Like all amplifiers, it's
shown as a triangle.) This amplifier has a very high resistance in its input.
Therefore, it causes only a very small current to be drained from the
capacitor as the amplifier "senses" and copies the capacitor voltage.

Unfortunately, even this small current will drain charge from the
capacitor and lower the voltage. Over the storage period of 15 minutes, the
amplifier output voltage will decay gradually from the correct
value-perhaps as much as five percent. The decay of voltage stored in a
capacitor can be a serious source of error in some applications where
accuracy is important. But as we said earlier, this is just about the only
practical way to store analog information any longer than a fraction of a
second. Obviously, storage is one of the big problems you run into in using
analog methods.
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How do analog circuits make decisions?

As for the "decide" function in analog systems, we can take care
of this matter rather quickly. The fact is that we have already seen analog
decisions being made in our examples, without taking note of it. Let's look
back at some of the example figures.

In Figure 5-2, the float and variable resistor in the fuel -gage
determine what current to transmit in response to a certain fuel level.
This process can be considered a sort of decision. The meter, in turn,
decides what level to indicate for a certain current. Similar decisions are
made by the microphone element and the earpiece in the telephone system
in Figure 5-3.

In the AM radio transmitter in Figure 5-4, the
modulator -amplifier actually performs a voltage multiplication decision.
At each and every moment of time, it multiplies the input voltage by a
factor controlled by the "gain" signal provided by the microphone. When
you stop and think about it, multiplication is a pretty respectable decision
for anyone or anything to make!

Of course, you can see what we're driving at. Whenever
electricity is modified in some fashion in an analog circuit, information is
being processed. Existing information is being employed to create new
information, or new forms of information. This is the action we have been
calling "deciding," to emphasize its importance with regard to
information.

It's important for you to note that this analog deciding process is
not made up of separate steps as in a digital system, but is a continuous
process. When electronic devices such as transistors are involved (as in
amplifiers), the devices do not switch on and off. Instead, they vary the
flow of current in between the "on" and "off" states, in a smooth fashion
we called "linear" early in this chapter.

When a transistor is operated in this "in-between" range, it acts
as an electrically -controlled variable resistor. When used this way in an
electric circuit, a transistor is an amplifying element. A small change in
the control signal varies the effective resistance of the transistor,
producing a larger or "amplified" change in output current. Transistor
amplifiers of various kinds are the main building-blocks in electronic
analog systems.

What are the advantages of digital methods?

Finally, we've covered enough details of analog methods to begin
making some direct comparisons between digital and analog, so we can
see why digital techniques are used in certain situations. First, we'll
consider the relative advantages of digital methods, then later come
around to the limitations. For your reference, the points we'll cover are
listed in Figure 5-9.

5-10 UNDERSTANDING DIGITAL ELECTRONICS



5
WHY DIGITAL?

ADVANTAGES OF DIGITAL

1. Systems can be easier to design.
2. Information can be more precise.
3. Storage is no problem.
4. Information is sometimes processed faster.
5. Circuits can be fully integrated.

LIMITATIONS OF DIGITAL

1. The real world is mainly analog.
2. Analog processing can be simpler.
3. Information can usually be transmitted

faster in analog form.

Figure 5-9. Summary of advantages and limitations of digital methods
as compared to analog methods

1. Digital systems can be easier to design
As we have already noted, in analyzing and designing digital

systems, our only direct concern with electricity is whether it's "on" or
"off." We don't have to worry about exactly what voltage or current is in a
wire. All we care about is that it's not "in between" the two permitted
states. Consequently, the circuits we work with-switching circuits-can be
much simpler than analog circuits, and the devices in the circuits don't
have to fit such close specifications.

Furthermore, as you have begun to see, digital systems are all
built up out of a small handful of basic building-block circuits-gates and
flip-flops-and larger building-blocks made from them (decoders, counters,
etc.) Within a given system or subsystem, all the gates and flip-flops are
usually members of the same "family" of digital circuits, such as TTL,
MOS, and others. As we will see in the next chapter, this means the
circuits resemble one another closely. Consequently, the building-blocks
are all perfectly compatible with one another, provided the designer
observes a few simple rules. He can, in effect, put together a digital
system like assembling tinkertoys.

2. Digital information can be more precise
Figuratively speaking, every analog system has to grab hold of

electricity, wrestle and grapple with it, and bend and twist it to make it
match the information that must be transmitted. The result is never a
perfect analog copy. There's always some error, which is expensive and
troublesome to reduce.
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Such inaccuracies are permissible in some applications but would

be out of the question in others. For example, when you multiply two
times two with an analog multiplier (analog computers do it all the time,
using an amplifier as we have discussed with regard to the AM
transmitter), you aren't likely to get exactly four. (See Figure 5-10.) You
may instead get 3.976, or 4.028, depending on how accurate (and how
expensive) the amplifier is. Consequently, people don't use analog
methods for handling extremely precise information.

CALIBRATED
POTENTIOMETERS,

EACH

TRANSMITTING

0

ANALOG
MULTIPLIER

2.0000000
x

2.0000000

CALIBRATED
VOLTAGE METER

4.0000000

8 -DIGIT
CALCULATOR

POSSIBLY
3.976

Figure 5-10. Comparing analog and digital multiplication illustrates that
digital techniques can be more precise.

On the other hand, digital methods can handle numbers as long
and as precise as you need. Our example hand-held calculator from
Chapter 1 handles decimal numbers with eight digits, so we can multiply
2.0000000 times 2.0000000 and get 4.0000000 without any trouble at all. Big
computers routinely handle decimal numbers that are much longer, and
consequently can be carried to more "decimal places" of precision. Such
precision can be handled with much less cost than with analog methods
because the same simple digital circuits are used-just more of them, for
more bits.

3. Digital storage is no problem
The capacitor -storage method we have studied (Figure 5-8) is just

about the best practical way to store electrical analog information. You've
seen that it's not a perfectly accurate way-because there's no way to
prevent a slight trickle of charge from escaping the capacitor.
5-12 UNDERSTANDING DIGITAL ELECTRONICS



5
WHY DIGITAL?

On the other hand, as we have seen in Chapter 4, we can make a
switching circuit "latch onto" a piece of digital information and hold it
with perfect accuracy for as long as we need. And we can store numbers as
long and as precise as we like by simply using as many storage circuits as
we need.

If an analog system needs long-term, accurate storage, it has to
convert the analog information into digital form, and use digital storage
techniques.

4. Sometimes digital methods are faster

When we consider the speed with which circuits handle
information, we sometimes run into problems with analog methods. Once
again, the trouble is that analog circuits have to manhandle the electricity
and whip it into shape. This can take time to do, especially when for some
reason we have to use large capacitors (as in analog storage) or another
class of electric components called "inductors." An inductor is any device
that makes the electricity interact with a magnetic field. Any device with
a coil of wire is an inductor, such as the fuel meter in Figure 5-2 or the
telephone earpiece in Figure 5-3.

For example, it may take the better part of a second of time to
flow enough charge into an analog storage capacitor (as in Figure 5-8) to
make its voltage close enough to that of the voltage source. By
comparison, we can easily make a flip-flop that will store an input signal
in a few nanoseconds (billionths of a second).

5. Digital circuits can be fully integrated

By far the most important advantage of digital methods is that
digital information-processing circuitry can be entirely fabricated in
integrated -circuit chips, such as the impressively complex calculator chip
we saw back in Figure 1-3.

The first four advantages we listed (simple design, accuracy,
storage, sometimes speed) were in effect for many years before
integrated circuits came along. Those advantages propelled digital
techniques into applications in digital computers and a few nooks and
crannies in predominantly analog systems (such as for storage, as we have
mentioned, and for switching analog signals as in telephone dialing and
routing).

But when integrated circuits came along, the tremendous
advantages they brought (which we will analyze in the next chapter) were
applied mainly to digital circuits. And as integrated circuits have been
progressively improved, they have carried digital methods into a much
wider variety of applications than before.
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The reason analog circuitry has not been integrated nearly so

fully as digital circuitry goes back again to the fact that analog circuits
have to force electricity to match outside information. To do this, analog
circuits typically need to use several kinds of devices that just can't be
made out of the silicon of an IC chip-at least, not very economically. Such
devices include inductors (coils and transformers), high -capacitance
capacitors, and high -precision resistors. A great deal of progress has been
made in designing analog circuitry that doesn't need such
"non -integrable" devices. But the integration has not been on the grand
scale that's much more economically feasible for digital circuits.

To keep the picture in balance, we should point out some
important types of "linear" circuits that have been very successful in
integrated form. There are only very few analog systems or subsystems
that don't contain a number of linear integrated circuits.

By far the most common type of linear IC is the "operational
amplifier," or "op -amp." An op -amp is a general-purpose building-block
to which you can add a few resistors and capacitors, to make nearly any
kind of amplifier you want-as long as the frequencies are below about 1
megahertz. And if you want output signals greater than about 10 volts
and 0.1 amp, you can add discrete transistors to the output section.
Op -amps are "differential" amplifiers-meaning that they amplify the
difference between the voltages at two different inputs. The output
voltage is around 100,000 times this difference, which for practical
purposes is assumed to be an infinite amount. This "gain factor" is
reduced to the desired value by feeding back part of the output signal to
the "inverting" (subtracting) input.

Another general-purpose building-block type of linear IC is
"video amplifiers," or "wide -band" amplifiers. They can be used at
frequencies up to around 100 megahertz-although not down to zero hertz
(direct current) like op -amps. Their gain is controlled by a voltage signal
rather than by the feedback arrangement.

Although power dissipation is a definite limitation in integrated
circuits, there are some integrated "power" amplifiers that can put out as
much as 5 watts of power. This is enough to drive a small loudspeaker. You
can make a respectable little phonograph amplifier with just one of these
ICs, plus six or eight discrete resistors and capacitors.

In summary, linear IC amplifiers are very widely used as basic
building-blocks or "cores" of various specialized linear circuits. They
provide the bulk of the circuitry, and the designer only has to add a few
external components to make the circuit perform as he wishes.
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What are the limitations of digital methods?

From considering the big advantages of digital methods over
analog, you may wonder why they haven't taken over the entire field of
electronics. But the fact is that digital techniques have some inherent
limitations that keep such methods out of certain applications. Let's
consider what some of these disadvantages are. They're listed along with
the advantages, back in Figure 5-9.

1. The real world is mainly analog
First and possibly most important, the information that goes into

and out of most systems is analog in nature (or "linear," if you prefer).
Stop for a moment and think about the information we're talking about.
From examples in this chapter, there are fuel levels, meter readings,
sound waves, and radio waves. All of this is analog information, in that it
varies anywhere within a range rather than being limited to definite
states like digital information.

The same applies to almost any kind of "natural" information
you can think of-temperatures, pressures, weights, intensities, positions,
speeds, time, and so forth. You may be accustomed to expressing such
information in digital form. For example, you may say that you weigh 112
pounds, or maybe 165.3799 pounds if you wanted to be more accurate. But
in doing so, you're only giving a digital approximation for an inherently
analog quantity.

If a digital system is to deal with "real -world" information,
taking in and putting out analog information, it has to convert the input
information to digital form before working on it, and then convert the
digital results back to analog again. Many digital systems do just that.
For example (Figure 5-11), a "computerized" autopilot on an airplane
takes in analog information on compass heading and how the airplane is
tilted, and puts out analog information controlling the rudder and ailerons
and elevators to keep the plane flying straight and level. All these inputs
have to be converted to and from digital form.

However, converting information between analog and digital
forms can be cumbersome and expensive. Furthermore, the conversion
process always introduces inaccuracies and takes a certain amount of
time. (Time can be a critical factor in some systems.) Furthermore, it may
allow too much random, unwanted information we call "noise" to leak into
the system. In the case of the autopilot, the advantages of digital
processing are so desirable that we're willing to pay the price for the
analog conversions. But in a moment, we'll look at another system where
it's obviously better to stick with analog processing.

On the other hand, digital processing is a shoo-in for situations
where both the inputs and the outputs are digital information. The prime
example, of course, is systems that handle numbers (which are digital of
their very essence), such as calculators and computers.
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However, the same would go for systems handling letters or any

other sort of symbols, because such things are also inherently digital.
After all, our alphabet can be considered a sort of number system-one
with 26 numerals rather than ten or two! Likewise, digital outputs are
involved in any system that sequences events in time, such as the
controller for a washing machine. (They used to have a motor -driven
analog "clock" that flipped switches in sequence. But the newer ones are a
hundred percent digital electronic.)

AILERON

*Small boxes represent
analog -to -digital and
digital -to -analog converters

(Electrohydraulic
systems that
move ailerons and
elevators and rudder
are not shown.)

ELEVATOR

RUDDER

Figure 5-11. Main parts of digital autopilot system, illustrating that
many digital systems have to deal with analog inputs and outputs

2. Analog processing can be simpler
Okay, suppose we're designing a system that handles analog

inputs and outputs as we just discussed. How do we decide whether to
process the information by analog or digital methods? In many cases, the
answer may be obvious, because we may find that analog processing is
much simpler and more economical!
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Let's look at an example-the phonograph amplifier depicted in
Figure 5-12. We've got weak analog signals carrying sound information
from the needle and cartridge (which are sensing the information from
the surface of the plastic record where it is stored). The system's main task
is simply to multiply the height of these electric waves by a factor
depending on the loudness we desire, producing proportionately taller
copies of the same waves to drive the loudspeaker.

As we have already discussed, multiplication can be handled with
pretty fair accuracy by an analog amplifier circuit as shown in Figure
5-12. We can make a rather crude but workable amplifier using just one
transistor, with a few resistors and maybe a capacitor or two. Or as we've
mentioned, an IC power amplifier could be used here, very economically.

NEEDLE &
CARTRIDGE

RECORD DISK

MANUAL

CONTROLS

Main task is just
to multiply input signal
by desired factor.

LOUDSPEAKER

Figure 5-12. Amplification of analog signals (as in a phonograph) is an
example of a job more economically performed by analog circuitry

Even a very high-fidelity amplifier would be simpler than a
digital system to do the same job, as pictured in Figure 5-13. This system
would check the input voltage regularly every 100 microseconds or so,
convert the voltage to a digital number in several wires, multiply the
number by a digital volume -control factor (probably from a keyboard as
shown, to avoid having to convert an analog signal from a variable
resistor), and finally convert the resulting digital product back into an
analog output voltage. A new output voltage would appear every 100
microseconds, giving a fair approximation of the taller waves we desire.
(Actually, the loudspeaker wouldn't follow the stairstep voltages but
would respond to current through it, which would get smoothed out
somewhat by magnetic effects in the speaker coil.) The "digital -to -analog
converter" alone would be considerably more complicated and expensive
than a single analog power amplifier.
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So Figure 5-13 shows why you don't see a lot of digital

phonograph amplifiers. The same goes for radio receivers and many other
fully analog systems. They involve information-processing jobs of a sort
that can be handled more economically by analog methods.

VARYING VOLTAGE

TRANSMITTING

SOUND WAVES

Digital multiplication
factor from keyboard
controls volume.

A new number
is transmitted and
multiplied every
100 microseconds,
approximating
analog signal.

MOO
DOD
DOD

11111111

NEEDLE AND

CARTRIDGE

ANALOG TO
DIGITAL

CONVERTER

SERIES OF
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LARGER NUMBERS

DIGITAL
MULTIPLIER

NUMBERS CARRIED

IN SEVERAL WIRES

Numbers converted
back to voltages.
Loudspeaker responds
to "smooth average"
current waves shown.

c\f
DIGITAL

TO ANALOG
CONVERTER

Figure 5-13. Possible system to "amplify" phonograph signal digitally,
illustrating why analog method (preceding figure) is simpler

3. Analog systems can transmit information faster
There's one more limitation of digital methods, one that crops up

in digital communications systems. And that's the fact that when you've
got a particular transmission system (counting amplifiers, antennas,
wires, or whatever), you can actually transmit information faster in the
form of analog signals than with digital signals. (You can transmit more
information per second.) This limitation only comes into play when you're
pushing the capabilities of the transmission system to the utmost, when
you're trying to cram as much information as possible through it in the
shortest time possible.
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To begin seeing why analog transmission is faster, look at the

example in Figure 5-14. Here, we're transmitting voltage -analog
television (video) signals from a remote surveillance camera to a monitor.
For the sake of simplicity, we're assuming that the information -handling
capabilities of the system are limited only by the wire between the units.
Let's say that the wire can't carry variations in voltage occurring any
more often than five million analog waves (or digital pulses) per second.
That is, the frequency limitation of the system is five "megahertz."
Furthermore, because the wire is long and not perfectly shielded from
outside interference, the voltage signals may be inaccurate by as much as
1/128 of the full range of voltage.

Any transmission system is limited in these same two ways. A
communications engineer would say we have a "bandwidth" of five
megahertz, and a "signal-to-noise ratio" of about 42 "decibels" (which is
an equivalent indication of accuracy). Our wire is just barely capable of
carrying a decent television picture in both these respects.

REMOTE TV
SURVEILLANCE

CAMERA

Video signal varies at frequencies
as fast as 5 megahertz

Suppose transmission
line can't handle
frequencies higher
than 5 megahertz,
but can handle signal
variations as small
as 1 /128 of full range,
which is needed for
good TV picture.

TV MONITOR

Figure 5-14. Example of analog transmission system operating
satisfactorily at utmost limits of frequency and accuracy capability

Now since we're talking about speed of information
transmission, let's consider just how much information per second is being
carried by our 5 -megahertz, 42 -decibel line. The answer will be in terms of
bits per second, because as we noted back in Chapter 1, the "bit" is the
basic unit of information. But how can this be, since bits are digital units,
and we're talking about an analog signal?

UNDERSTANDING DIGITAL ELECTRONICS 5-19



WHY DIGITAL?

5
Well, we have to figure out how many bits per second would be

required, if we were to transmit the very same information in the most
efficient digital code, which is binary numbers. To do this, we have to
imagine a system as shown in Figure 5-15.

Here, the analog signal from the TV camera goes to a unit we're
calling an "analog -to -digital converter with serial output." Without
looking inside this unit, we'll just say that it measures the input voltage
ten million times each second, and converts it into a seven -bit binary
number. These bits are fed through the transmission line in series, as
digital pulses with a frequency of 70 megahertz. At the other end of the
line, a "digital -to -analog converter with serial input" puts out a
continuous analog voltage signal to the TV monitor. This voltage is
proportional to the seven -bit binary number that the converter last
received. The broken line below the transmission line in the figure is to
remind us that if we actually built a system like this, we couldn't depend
on the two converters to stay synchronized with each other in handling the
serial groups. We would need some sort of common clock pulses supplied to
both systems, as we learned in studying Figure 4-4.

Example voltage -analog
video signal, shown varying
at maximum frequency of
5 million peaks per second

C-

"PEAK"
(117)

"VALLEY
(14)

At least two 7 -bit
binary numbers are
needed to carry information
from one analog wave (one peak)
& one valley) with accuracy of
one part in 128. Transmitted
serially, this requires bit
frequency of 70 megahertz.

ANALOG -TO 00011101110101 DIGITAL -TO

TV TV-DIGITAL -ANALOG

CAMERA CONVERTER CONVERTER MONITOR
WITH SERIAL

OUTPUT

TRANSMISSION LINE WITH SERIAL

INPUT 0 0

Extra line required for
clock pulses to synchronize
sending and receiving
serial binary numbers

J

Figure 5-15. Simplified idea of converting a 5 -megahertz analog video
signal to and from serial binary form with accuracy of one part in 128.
This shows why 70 -megahertz bit frequency would be needed.
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The main point here is that it would require digital signals at 70
million bits per second to reproduce the same signals with the same
accuracy as for the 5 megahertz analog signal. The waveform shown above
the transmission line in Figure 5-15 illustrates why this is so-why we need
ten million 7 -bit numbers per second to carry the information from a
5 -megahertz analog signal with accuracy of one part out of 128. Ten
million numbers per second will give us a good chance of measuring not
only the "peak" of each 5 -megahertz voltage wave, but also the "valley"
next to it. We need to have both measurements in order to reconstruct the
signal at the receiving end. And seven bits per number gives us a
range from zero (0000000) to 127 (1111111). So each measurement is
accurate to within 1/128 of the voltage range, which is the accuracy we
said was involved in the original analog signal. Therefore, a 7 -bit number
every 10 millionth of a second results in our 70 -megabit -per -second data
rate.

Now the original transmission line, because of its frequency
limitation, could handle onlyfive million digital pulses per second. It could
not handle the equivalent 70 -megahertz digital signal. The signal would
lose its amplitude as it passed through the cable and could not be
recognized at the other end. Therefore, the information would be lost.
With a 5 megahertz bandwidth, the highest frequency information that
could be digitized and transmitted is 0.357 megahertz or 14 times slower
than the analog signal capability.

Our explanation of why digital transmission is slower was highly
simplified. But the general principles you've seen apply to any "channel"
that can carry either digital or analog information. This includes
telephone wires, radio broadcasts, and microwave radio beams to and from
satellites and space vehicles. As we said earlier, this speed or "bandwidth"
problem of digital transmission only comes into the picture when we're
pushing a transmission system to its limits. But in those cases, it can
knock digital methods right out of consideration, as it did in the case of
our television system.

However, there is an advantage of digital transmission hidden in
this situation. Suppose you've got a very "noisy" transmission "medium"
(think of a single wire, as we have been doing), but no limit on the
bandwidth (frequency). You can send analog signals as accurate and
noise free as you like if you put them in digital form. To transmit digital
pulses accurately, you only need enough accuracy (freedom from noise) to
tell a "1" from a "0" at the receiving end. This shows you how the digital
advantage of precision that we discussed earlier (Number 2 in Figure 5-9)
applies to the field of communicatif ns.
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Why do some systems use both digital and analog parts?

In this chapter, beside showing you the alternative to digital
methods, we have surveyed quite a range of different kinds of electronic
systems. So now you can see why we have digital computers and
calculators-and other sorts of digital systems-but not digital
phonographs and radios and what -not. The reasons are based on a handful
of advantages and limitations of digital methods by comparison with
analog methods.

But more than that, you have seen that many kinds of systems
use both digital and analog techniques in various parts of the systems.
Indeed, the most important issue that must be settled early in the design
of most systems is which parts will use digital methods and which parts
will use analog. In some cases the answer may be so obvious as to be a
foregone conclusion. But in many cases the answer may depend on careful
economic analysis of the trade-offs.

However-as time goes on, the economic benefits of integrated
circuits are being applied more and more strongly to digital circuitry. So
the balance in the choice between digital and analog is shifting further
and further toward the digital side. As you proceed through this book, you
will come to appreciate more fully the marvelous things that can be done
with the simple little switching circuits with which we are becoming
familiar.
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Quiz for Chapter 5
1. How are analog systems

different from digital
systems?
a. They handle information in

analog form.
b. They vary electricity

continuously with respect
to time and frequency
rather than switching it.

c. They don't use transistors.
d. A and B above.

2. At any one instant in time,
the current through the
earpiece of a telephone
represents:
a. Milliamps of current.
b. A complete sound wave.
c. Air pressure making up

part of a sound wave.
d. Digital information.

3. What is the proper word for
the height or strength of a
wave?
a. Frequency.
b. Modulation.
c. Analog.
d. Amplitude.

4. Which mathematical
operation is performed by a
"modulator" amplifier?
a. Addition.
b. Subtraction.
c. Multiplication.
d. Division

5. In an AM or FM system, the
waves that are modulated are
called the "carrier" waves, as
opposed to the "information"
waves that modulate the
carrier. Would you say the
carrier frequency must always

be higher than the
information frequency?
a. Yes.
b. Yes, sometimes.
c. No, never.
d. It doesn't matter.

6. Why does frequency
modulation represent an
analog transmission method
rather than digital?
a. The voltage varies

smoothly over a wide range
rather than being switched.

b. The carrier frequency
varies smoothly over a wide
range rather than jumping
suddenly between two
definite frequencies.

c. Both of the above.
d. None of the above.

7. Why is a capacitor nqt a
perfect way to store an analog
voltage level?
a. It will only store definite

levels of voltage.
b. It's really a digital device,

since it's switched on and
off.

c. It only delays information
rather than storing it.

d. Reading out the voltage
changes it.

8. Why do we say that a
transistor is an amplifying
device when it is being used as
an electrically -controlled
variable resistor?
a. Because it's varying the

output rather than
switching it.
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b. Because it's varying
current in response to a
voltage control signal.

C. Because the circuit it's used
in is called an amplifier.

d. Because a small change in
the control signal can
produce a larger,
"amplified" change in the
output current.

9. Why are digital circuits
simpler and easier to design
with than analog circuits?
a. They are always made in

the form of integrated
circuits.

b. There are more different
kinds of circuits to choose
from in the digital area.

c. They are all within the
same "family," using the
same basic style for the
gates.

d. The circuits don't have to
control the electricity
precisely over a wide
range.

10. Why aren't analog methods
used for handling extremely
precise information?
a. Precise information always

involves numbers, which
are inherently digital.

b. Analog information never
needs to be very precise.

c. There are limits to how
closely an analog signal can
reproduce the information.

d. A and B above.

11. How would an analog system
store information for a long
time with no change?
a. By storing voltages in

capacitors.
b. By using delay lines.
c. By converting the

information to digital form
and using digital storage
techniques.

d. Any of the above.

12. How fast can a digital gate be
made to respond to an input
signal?
a. A few billionths of a

second.
b. A few nanoseconds.
c. About a second.
d. A and B above.

13. What results from the fact
that inductors,
high -capacitance capacitors,
and high -precision resistors
cannot be economically made
in integrated circuits?
a. Analog circuits are not as

extensively integrated as
digital circuits.

b. Digital circuits are not as
extensively integrated as
analog circuits.

c. Analog circuits have to
force electricity to match
outside information.

d. Digital circuits have to
force electricity to match
outside information.

(Answers in back of the book)
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Digital
Integrated Circuits

From the beginning of this book, we've said a number of times
that the main reason digital electronics has become so widespread is the
fact that digital circuits can be completely integrated. We've mentioned a
few examples of the fantastic results of using integrated -circuit
construction for digital electronics. We've talked about thousands of
transistors and other devices mass-produced in a chip a quarter of an inch
square, at low cost. We've spoken of gates no bigger than a flyspeck, and
so on.

But although you saw a photograph of an IC chip in Chapter 1
and learned how an MOS transistor works in an IC in Chapter 2, we
haven't yet looked into how integrated circuits are manufactured. This is
a very important subject for our understanding of digital electronics, and
not just because it's a very interesting story. The way integrated circuits
are fabricated has a lot to do with the differences between the various
"families" of digital integrated circuits. In fact, we've reached a point in
our learning where we can't go much further without seeing how
integrated circuits are made.

So let's find out about what's inside an integrated circuit and how
it's put there. This will show us how a calculator held in our hands can
contain enough circuitry to fill a closet if each transistor were separate, or
an entire room if the circuits used vacuum tubes. Although we can't cover
this subject in any great depth, still we can give you a general idea how
it's done. Then later on, we'll get around to comparing the various families
of digital integrated circuits.

How is an IC chip made as part of a "slice"?

As indicated in Figure 6-1b, a hundred or more integrated -circuit
chips are made together as sections of a round disk of nearly pure,
crystalline silicon called a "slice." Each slice is about three inches in
diameter and about 10 mils thick* (10 thousandths of an inch - about the
thickness of five to ten sheets of paper). We won't go into how the slices
are originally prepared (Figure 6-1a) or how the processed slices are cut up
into separate IC chips and mounted into packages (Figure 6-1c and 6-1d).

*about 1/4 millimetre
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What's important for us is how thousands of tiny n -type and

p -type regions are created on one side of a silicon slice (Figure 6-1b) to
make semiconductor devices such as the MOS transistor we saw in Figure
2-11, and how these devices are connected together to form circuits. (Look
again at Figure 2-11. Remember, the p -regions and n -regions have
different electrical properties, due to small amounts of other substances
added to the silicon in these areas. We didn't say so before, but adding
these other substances is called "doping" the silicon. And the substances
used are called "dopants.")

a. Slices 10 mils thick (0.01 inch)
cut from silicon crystal cylinder,
then ground flat and smooth

b. Repeated pattern
of chips made on
each slice.

TYPICALLY

0.25 INCH -ill
(6 mm)

c. Individual
chips cut apart

CO
d. Each chip

packaged separately

Figure 6-1. Steps in making an integrated circuit

Figure 6-2 pretty well summarizes the most important steps in
creating these little regions in a slice. (The specific details here are for an
n -channel MOS integrated circuit as in Figure 2-11.) To begin with, the
slices are p -type silicon, because of a particular dopant substance
(typically boron) added to the silicon before it crystallized from a hot
liquid. The slices are ground flat and polished to a mirror finish. Then, as
shown in Figure 6-2a, the slices are heated in an oven containing oxygen
and steam, causing a very thin layer of silicon oxide to form over the
whole surface of the slice where the circuitry is to be created. The oxide
film is about 0.04 to 0.08 mil thick. (Remember, a mil is a thousandth of an
inch. We are dividing that into 100 smaller parts and speaking of only four
to eight of those parts. This is about 1 to 2 micrometres.)

Then, as shown in Figure 6-2b, a thin film of light-sensitive liquid
plastic called "photoresist" is applied to the surface of each slice. The liquid
is then dried to form a solid film.

Next (Figure 6-2c), the coated slice is exposed to ultraviolet light,
except in thousands of tiny spots and strips where n -regions are to be
formed. To do this, the light is passed through a glass microfilm plate that
covers the slice, called a "photomask." The photomask contains a
photographically reduced pattern of very accurately -placed opaque (dark)
areas to shade the desired parts of the slice from the light. Where the light
strikes, it quickly causes the photoresist to become very strong and tough.
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Then, as shown in Figure 6-2d, the soft, unhardened areas of
photoresist are washed away with a solvent, like rinsing spots of jam from
a breakfast plate. (The hardened areas are left like dried egg yolk on your
plate.) Afterwards, the slice is dipped in an acid bath that etches
(dissolves) through the oxide film where it's unprotected by the hardened
plastic. The acid is a type that doesn't bother the plastic or the silicon, but
it eats away the oxide film. A typical hole through the oxide might be
about one mil or 25 micrometres across. (The vertical scale in the
drawings is stretched about ten times taller than the horizontal scale.)

0.04 Liquid "photoresist" plastic
MIL applied & dried

THICK

(1 µm)

PHOTO -

MASK

Oxide film
grown on silicon

a
ULTRAVIOLET LIGHT

MINIM

111111. 2111111111

Light toughens
plastic film except
where opaque spots
block light.

Plastic removed &
phosphorus diffused in

e

Contact hole made & aluminum
deposited over entire slice

g

(2µm)

b
Soft plastic spot
washed away & hole
dissolved in oxide

d
New oxide grown
over hole

Aluminum removed
except where desired

h

Figure 6-2. Steps in creating one of many tiny n -regions at the surface of a
p -type silicon slice, for an MOS integrated circuit. Pictures are cross -sections,
stretched about ten times taller to show very thin features more clearly
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Next (Figure 6-2e), the hardened plastic is removed by a stronger

solvent than before. Then the slice is placed in a very hot oven (around
2,000 degrees Fahrenheit, 1,200°C), where it's exposed to a gas
containing a substance (typically phosphorus) used as a dopant to make
the silicon n -type. The phosphorus diffuses (soaks) into the silicon under
each hole through the oxide, changing the silicon from p -type to n -type.
The oxide blocks diffusion to all other areas. When the phosphorus has
diffused to a depth of about 0.08 mil or 2 micrometres (for n -channel
transistors), the slice is removed from the oven and the diffusion stops.

The creation of the n -regions is completed as shown in Figure
6-2f by an oxidation process as before, covering the bare silicon spots with
a fresh layer of electrically insulating oxide.

As we will see later (Figure 6-7), some integrated circuits such as
the TTL family require more than one of these cycles of diffusion through
different holes in the oxide film, creating layers of n and p -regions.
Finally, one last set of holes is made through the oxide as before, for
electrical contacts. The slice is coated with a thin film of aluminum over
the oxide, reaching down through the holes to contact the silicon (Figure
6-2g). Then photoresist and acid are used one more time to leave the
desired pattern of metal strips for electrical conductors (Figure 6-2h).
These conductors form the circuit "wires" that we've talked about.
There, in a nutshell, is how hundreds of integrated circuit chips are
processed together by the same steps as part of the same slice.

How do patterns of p and n -regions make a circuit?

The question remains as to how p -regions and n -regions in an IC
chip can form an electronic circuit. For an example, Figure 6-3 answers
this question with respect to the n -channel MOS inverter circuit we
studied back in Figure 2-14. The upper part of Figure 6-3 shows how the
inverter would look (greatly simplified and magnified about 500 times) if
it were somehow cut away and lifted out of the surface of the IC chip. This
way, we can see all the parts below the surface of the chip.

You should be aware that this drawing represents a region in an
IC chip only about six mils long (150µ,m). That's just a little bit more than the
diameter of an average human hair, which is about 4 mils. The tiny
specks representing grains in the metal strips would be about the size of a
typical bacterium or germ. You could fit six or eight of these inverters
into the period at the end of this sentence. So this is truly a
microscopically small circuit!

For your reference, below in Figure 6-3 is a slightly rearranged
and more complete version of the schematic diagram from Figure 2-14,
laid out exactly as the circuit above is made. As is customary in schematic
diagrams for integrated circuits, the circles are left off the transistor
symbols. The bold lines represent parts of the circuit made of metal on the
surface of the chip. The rest of the circuit is either n -type or p -type silicon,
as labeled on the schematic diagram.
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ABOUT 0.006 INCH

OUTPUT

OF MOS TRANSISTORS

"'CONTROL PLATES

50µm)

MialgeffirAPM6S11'X+ 10 ARE CALLED -GATES"

VOLTS

mmisgw"tEulimul"27"11W-iv`Substrate" at -5

+ 10 VOLTS

METAL

METAL

N

GROUND
(0 VOLTS)

INPUT

METAL METAL

METAL

OXIDE

LAYER

SILICON

0 VOLTS

INPUT

Metal covering bottom surface of chip (not shown above) at -5 volts

Figure 6-3. Simplified structure of an n -channel MOS inverter in an
integrated circuit, and schematic diagram re -drawn from Figure 2-14

Where are the MOS transistors in this structure?

If you compare the drawing above in Figure 6-3 with the MOS
transistor we studied back in Figures 2-11 and 2-12, you can recognize the
load transistor on the left, formed by two n -regions with a long, narrow
p -region between them. (It's long from left to right, and narrow in the
other direction.) Over the oxide above the transistor is what we called the
"control plate" in Chapter 2. The customary name for such a control plate
in any MOS transistor is "gate." (We didn't mention this name earlier, to
avoid confusion with gate circuits.) The gate extends off to the left as a
conductor strip for the 10 -volt power supply. It's also connected through a
hole in the oxide layer to the n -region at the extreme left. (Though the
drawing doesn't show it, the oxide over the p regions under the gates is
only about a tenth as thick as the oxide elsewhere.)
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The input transistor to the right has a channel area between its

two n -type terminals that's shorter from left to right and wider in the
other direction. Its gate is connected to the input strip, and its right-hand
n -type terminal is connected to a "ground" strip at zero volts, through a
hole in the oxide. Its left n -type terminal (in the center of the drawing) is
the same n -region as the right terminal of the load transistor. The output
strip is connected to this n -region.

What keeps the electric current in the right places?

As you can see, the entire slice and all the chips cut from it
consists of a single large p -region (called the "substrate," meaning
"under -layer"), with thousands of little n -regions all over the surface.
Electric current is carried only in the n -regions and metal, and very little
current ever gets into the p -type substrate. This is because, as we noted in
Chapter 2, current (positive charge) cannot easily flow across the junction
from an n -region to a p -region, even when the voltage is trying to force it
that way.

Current can't pass the other way either (into the n -regions),
because the substrate is not at a high enough voltage to force the current
this way. In fact, in this particular kind of n -channel MOS integrated
circuit, the substrate is kept at about negative five volts, by means of a
connection to the back surface of the chip (shown in the schematic
diagram below in Figure 6-3). This voltage is one way to prevent a certain
troublesome interaction between the p -region and the oxide layer that
tends to keep n -channel transistors turned on all the time.

So there you have the general idea of how an actual circuit can be
formed in an IC chip. The circuit works as though each device (transistors
and others we will see later) were in separate packages connected by
wires.

What are the advantages and limitations of integration?

Some of the reasons for making a circuit in integrated form
(rather than wiring separate devices together) are obvious. You get a lot
more circuitry in a much smaller package, and the cost is drastically
reduced due to mass -production in large volumes. Other advantages are
not so obvious.

For one thing, the miniature circuitry typically requires less
power to process a given amount of information. Beside saving on
power -supply costs, a system doesn't require so much cooling. (After all,
the power used comes out in the form of heat.) Even more important,
integrated circuits are much more reliable, because the circuitry is
contained in a small, tight bundle, so there are no wires to flop around and
break loose.
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What an integrated circuit cannot do, however, is handle a great
deal of voltage or current. The p -n junctions can't hold back more than a
few dozen volts at most (usually much less). And currents greater than a
few dozen milliamps (thousandths of an ampere) generate more heat than
can be conducted out of the tiny spaces involved, causing temperatures to
rise beyond permissible limits. Furthermore, as we learned in Chapter 5,
certain electric or electronic devices such as transformers cannot be made
in an IC chip.

For these reasons, ICs are mainly used for low -power
information-processing, using circuit designs that don't require many of
the "impossible" devices. Where these devices are required, and where
high voltage or current are needed (such as for outputs from a system),
separate or "discrete" devices are wired into the system, or complete
circuits made of such devices.

On what basis are digital IC families compared?

Now that you've got the general picture of how amazingly tiny
p -regions and n -regions are created and interconnected to form circuits at
the surface of an IC chip, we can proceed to compare the most popular
families of digital integrated circuits. These families differ mainly in the
types of transistors they use, and consequently in the circuit configuration
of the logic gates. These differences give each family certain advantages
and limitations in terms of performance and economy. So before we look
at some specific families, let's get familiar with the performance
characteristics by which a circuit family is evaluated, and what makes
one family more economical than another. (See Figure 6-4 for a
summary.)

1. FAST SWITCHING SPEED
(short propagation delay, in nanoseconds)

2. LOW POWER DISSIPATION (in milliwatts)

3. LOW SPEED -POWER PRODUCT
(in milliwatt-nanoseconds, called picojoules)

4. WIDE NOISE MARGIN (in volts)

5. HIGH FAN -OUT
(number of inputs an output can drive)

6. HIGH DENSITY
(few square mil or square micrometres
per average gate)

7. Low COST

Figure 6-4. Things you want in a digital integrated circuit family
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1. Switching Speed

The "speed" at which a gate switches (changes its output from
"high" to "low" or vice versa) is measured in terms of "propagation
delay." This is the time the gate takes, after an input is quickly changed
from one state to the other, to make a resulting change at the output.
Propagation delays are usually expressed in nanoseconds (billionths of a
second), or sometimes in microseconds (millionths of a second). In most
applications, we want propagation delays of gates to be as short as
possible, so we can cram digital signals through at a high frequency (bits
per second) and process a great deal of information in a short time.

2. Power Dissipation

All operating electrical circuits generate heat in proportion to
both the currents and voltages involved. We refer to this process as the
"dissipation" (meaning waste and scattering) of electrical energy or
power. The speed of heat generation by a gate circuit is usually expressed
in milliwatts (thousandths of a watt), similar to the wattage rating of an
electric heater.

We want the power dissipation of any integrated circuit to be as
small as possible, but not just to conserve electrical power. The heat has to
be removed, usually by air flowing around or through the system, or else
the IC chips in their packages would get too hot to operate properly. So
usually the main trouble with power dissipation is that it can prevent
putting a lot of circuitry in a small space. This is because the more closely
you crowd the circuits together on a chip, the more difficult it is for the
heat to get out of the silicon to the air, so the circuits may become too hot
to work properly.

3. Speed -Power Product

Due to the nature of transistor switching circuits, usually the
shorter a gate's propagation delay, the more power it dissipates. To see how
well a particular gate circuit achieves both short propagation delay and
low power dissipation, we look at its "speed -power product." This is just
the propagation delay multiplied by the power dissipation. It is usually
expressed in units of nanoseconds times milliwatts, a combination called
"picojoules." ("Pico" is an abbreviation for 10-12, meaning 0.000000000001,
and "joule" is a certain amount of energy.)
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4. Noise Margin

The noise margin of a gate or any other digital building-block
tells how securely it transmits and receives information without errors, in
spite of "noise." Noise in this case means unwanted, "stray" voltage
signals picked up by the various wires connected to the circuit. The main
design feature that's important here is the difference between the voltage
transmitted for each "logic state" and the voltage required at an input to
be accepted correctly as one of the logic states. If the transmitted high
and low voltages are 1 volt higher and lower than would be barely
necessary to be correctly recognized, the noise margin is 1 volt. This is
because it would take a noise signal greater than 1 volt to cause an error
in such a system. Obviously, we want a system to have as wide a noise
margin as possible.

5. Fan -out

The fan -out of a certain gate in a network is the number of
inputs to other gates that its output is connected to. You want gates with a
high fan -out capability - gates that can drive a lot of other gates. This is
another way of saying that you want gates that can supply (or accept) lots
of current at their outputs but don't require much current at their inputs
(either momentary current to change states or continuous current to
maintain a state). Loading an output with too many inputs reduces the
noise margin and speed of the gates involved.

6. Density o Circuitry

You want gates that occupy a small area on the IC chip, so you
can pack lots of gates on each chip and thus make the circuitry very dense
(or "complex"). The area a gate occupies on the average is measured in
square mils (thousandths of an inch) or in square micrometres. The
density of an IC depends not only on the factors we've mentioned before
(the size of the transistors and other devices, how many are required
per gate, and the number of inputs to each gate), but also on the power
dissipation. This is because devices that dissipate a lot of heat can't
be too small or too close together or they would get too hot.

7. Manufacturing Cost
The cost to make a standard, mass-produced IC chip depends

mainly on its size and the number of processing steps required to produce the
circuitry on the chip. Each processing step (especially each photomasking
cycle) costs a certain amount, of course. But more than that, each step
tends to introduce a certain number of defects on each slice, due mostly to
foreign particles and scratches on the photomask. A single speck of dust
on a photomask casts a shadow on the photoresist perhaps as big as a
transistor, possibly making an entire chip worthless.
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Obviously, the bigger a chip is, the fewer you can make in one

slice for the same cost. But worse than that, the greater is the chance of at
least one defect occurring to spoil any given chip. So the bigger the chips
are, the more chips you have to scrap, and the more the remaining good
ones cost. This cost factor sets an upper limit to how big you can make a
chip in the effort to get more gates in the same package.

What are the main families of digital integrated circuits?

Finally now, we've learned enough about digital integrated
circuits to understand the differences between the most important of the
many different families of digital ICs. Keeping in mind the fabrication
methods and desirable characteristics we've studied, let's take a brief look
at the main "logic" families. ("Logic" is a shorter name than "digital
integrated circuit." You'll remember this use of the word "logic" from
Chapter 4).

1. P -Channel MOS Logic

There are about a dozen different varieties of integrated circuits
that use MOS transistors of various sorts, including more than one way to
make n -channel circuits such as those we've studied since Chapter 2. Some
n -channel circuits provide the best propagation delay and density of all
MOS ICs (about 20 nanoseconds and 9 square mils or 5,800 square
micrometres per gate).

To give you an idea of the variety among MOS ICs, let's look
at a very similar (and somewhat more economical) type of MOS circuit
called "p -channel." Figure 6-5 shows a p -channel MOS 4 -input negative
NOR gate. An entire p -channel MOS integrated circuit consists of
circuits much like this.

As you can see on the left in Figure 6-5, the positions of n -type
and p -type silicon are simply the opposite from an n -channel circuit such as
in Figure 6-3. (Being a 4 -input gate, this circuit has four input
transistors in parallel as we saw in Figure 2-17 for a 2 -input gate.) We
have an n -type substrate with p -type diffusions into it. P -channel
enhancement -mode MOS transistors work just like the n -channel type,
except that they are turned on by a negative ("minus") voltage signal to
the gate metal.

Furthermore, the load transistor must be connected to a more
negative voltage supply than the input transistors (minus 5 volts in this
case). And finally, we need a separate voltage supply for the load -
transistor gate (minus 17 volts). This is because the minus five volts that
we're using for the main power supply isn't enough to keep this transistor
turned on properly. (Plus or minus five volts is a standard voltage, so that
two or more circuit families can be used together easily.)

6-10 UNDERSTANDING DIGITAL ELECTRONICS



6
DIGITAL INTEGRATED CIRCUITS

As you can see from the schematic diagram and partial function
table on the right and below in Figure 6-5, all inputs must be "high" (about
0 volts) to produce a "low" output (about minus five volts), by turning off all
four input transistors. Thus, this circuit is a positive NAND gate. Most
p -channel logic designs are prepared on the basis of negative logic, so this
circuit is usually regarded as a negative NOR gate. (Incidentally, note that
the little arrowhead in the p -channel transistor symbol points the opposite
direction from the one in the n -channel symbol. This is how you tell the
difference in a circuit diagram.)

INPUT
-5 VOLTS

TRANSISTORS

4 6 MILS
(120p.m)

1

P

0 VOLTS

-17 VOLTS

N -TYPE

SUB-
STRATE

LOAD

TRANSISTOR

OUTPUT

Contact through
hole in oxide

2.3 MILs
(60µm)

Note: Surface
of chip is shown
as if oxide layer
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Figure 6-5. A p -channel 4 -input positive NAND or negative NOR gate:
layout on IC chip and schematic diagram
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The performance qualities of a p -channel circuit, like those of any

integrated circuit, depend on many factors apart from the general design
principles. Such factors include the size and shape of the transistors, the
voltages used, and how heavily the silicon is doped. Typically, however, the
gate of Figure 6-5 would have a propagation delay of 40 nanoseconds, a
power dissipation of 0.8 milliwatt, a speed -power product of 32 picojoules,
and a noise margin of 0.5 volt when used with a fan -out of ten.

As far as circuit density is concerned, this gate (being about 4.6
mils by 2.3 mils) occupies about 10.6 square mils. (That's about 116 by
58 micrometres and 6,800 square micrometres.) If we were able to pack
an entire quarter -inch -square (6mm) chip with these gates, we could get
nearly six thousand of them on it. That's pretty complex, in anybody's
language! Of course, in a real integrated circuit, a considerable amount
of extra space (perhaps 30 to 40 percent) is taken up by connections
between gates, and by the "bonding pads" around the edge of the chip
where external wires are connected.

As for processing cost, p -channel MOS logic is just about the most
economical that's available. As we've seen, it only requires one diffusion
step. Because of its high complexity and good economy, this logic family is
widely used for complex chips in calculators, where the highest speeds and
the lowest power dissipation are not required.

2. Complementary MOS (CMOS) Logic

One way to obtain very low power dissipation (desirable for
watches and very compact calculators) is to use "complementary" MOS or
"CMOS" circuitry. As shown in Figure 6-6 for a two -input positive NOR
gate, each input controls both a p -channel and an n -channel transistor.
(The two types of transistor are called "complements" of each other.) So
an input signal turns one transistor on and the other off. Virtually no
current flows except when an output switches from one state to another.
This is what keeps the power dissipation very low. It turns out that this
circuit design can also provide very high noise margins. This makes CMOS
circuits particularly useful in automobiles, where there's lots of electrical
"noise."

The cross-section drawing (below in Figure 6-6) is more accurate
than our earlier chip drawings, in that it shows that the oxide under MOS
gates is always much thinner than elsewhere. Where the oxide is thick, a
metal strip does not act as a gate.

CMOS circuits require considerably more processing than
p -channel or n -channel types by themselves, including some tricky
techniques we don't need to mention. Worse still, a four -input gate takes
up about 50 square mils (32,000 square micrometres) - five times as much
area as a p -channel gate. Thus, we pay more for CMOS circuits than
for n -channel or p -channel.
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+ 12 VOLTS

Bold lines indicate
metal parts

INPUTS

B

I

I

I 0-

P

SUBSTRATE

'`
N

OUTPUT
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"high" output, to
charge receiving gate

P

N

P

OUTPUT

N -TYPE SUBSTRATE

B

Q

Momentary current
for "low" output,
to drain charge
from receiving gate

Figure 6-6. Complementary MOS 2 -input positive NOR gate, showing
simplified cross-section of a p -channel and an n -channel transistor

3. Transistor -Transistor Logic (TTL)
The propagation delay of MOS gates is limited by the fact that

turning MOS transistors on and off requires moving a considerable
amount of charge in and out of the metal gates, through some fairly high
resistances. This is a relatively slow process. To attain shorter propagation
delays, we have to use logic circuits made from "bipolar" transistors
rather than MOS transistors. By far the most commonly used, best
all-around logic family for a wide variety of general applications is a large
family of bipolar integrated circuits called "transistor -transistor logic," or
TTL. Figure 6-7 summarizes the idea of a TTL gate and shows what a
bipolar transistor is.
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The type of bipolar transistor used here is called an "n-p -n"

transistor, shown structurally and schematically at the lower right in
Figure 6-7. (The only other kind of bipolar transistor is called "p -n -p,"
which we will come to later.) In this structural picture, an n -p -n transistor
looks somewhat like an n -channel MOS transistor. However, it's best for
the n -type "emitter" region to be an "n + (n -plus)" region, meaning it's
"doped" with an extra -large amount of the "dopant" material (typically
phosphorus) that makes silicon be n -type. The n -type "collector" region
needs much lighter doping, except for another n+ region next to the
metal contact where good conduction is required. The p -region is called the
"base." Unlike an MOS transistor, a metal and oxide sandwich plays no part
in the operation of a bipolar transistor.

BASE

CONNECTION

N -TYPE

EPITAXIAL

LAYER

INPUTS

Bold lines
are metal

N -P -N TRANSISTOR

+ 5 VOLTS

Base voltage ,'
over 0.7 /
volts turns
output I
transistor I

"on."* \I
N

/

P

OUTPUT

N

... 0 VOLTS

OUTPUT

P -TYPE

ISOLATION

DIFFUSION

EMITTER

BASE

CONTROLLING

CURRENT*

COLLECTOR

N -TYPE

EPITAXIAL

LAYER

LARGE
CONTROLLED

CURRENT

*Base current does not begin
to flow until base is about
0.7 volts higher than emitter.

Figure 6-7. Basic TTL positive NAND gate, showing simplified cutaway
view of one transistor and a resistor in an IC chip
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As shown at the transistor symbol at the lower right in Figure
6-7, an n -p -n transistor is turned on by making the base voltage at least
0.7 volt higher than the emitter voltage, and then supplying a small
current to the base region. This allows a much greater current to flow
through from collector to emitter, in proportion to the base current. Thus,
the transistor acts as a current -controlled switch (or variable resistor, if
it's not turned all the way on or off.) The main advantage of bipolar over
MOS transistors, as far as we're concerned, is that they can be made to
switch on and off much more rapidly. They can also carry much more
current than an MOS transistor of the same size, and they have much
lower resistance when switched "on."

There are several varieties of TTL circuits, but the one basic
feature they all have in common is the two -transistor arrangement shown
at the lower left of Figure 6-7, which is a positive NAND gate. These
two n -p -n transistors give the family its name: transistor -transistor logic.
As you can see, one transistor has a separate emitter region for each input.
This means two separate n -regions in contact with the same p -type base
region. We'll see how this circuit works in a moment.

First, however, notice the physical structure of a typical
transistor and resistor in a TTL chip, shown above in Figure 6-7. To
make a TTL slice, we start with a p -type substrate, and use photomasking
and diffusion to create some very heavily -doped n -plus regions. These n+
regions (only one is shown) will wind up being buried beneath the collector
region of each n -p -n transistor, providing low -resistance paths to help
these regions conduct electricity better. Then the oxide is removed and a
layer of lightly -doped n -type silicon crystal is grown over the surface of
the entire slice, from a hot gas containing silicon and phosphorus. This
process, and the layer, are called "epitaxial."

Then three more diffusions are made. First, a very deep
p -diffusion is made all the way down to the p -type substrate, at all places
where there will not be any devices for the circuit. This is to isolate
(insulate) a separate n -region for each device. It provides a sort of
"pocket," using the fact that current can't pass from n to p. Next, a
shallower p -diffusion is made into spots in each n -region, for transistor
bases, resistors, and the "p" parts of "p -n diodes" (devices not shown
here).

Finally, another heavy n+ diffusion is made into spots in the
base regions to provide emitters, and in the collector regions to provide
good electrical contact points. Afterwards, the desired pattern of metal
interconnections is produced.

Obviously, this TTL process is a complicated and expensive one,
with many opportunities for at least one fatal defect to occur in any chip
on the slice. Even so, TTL is remarkably economical, with very good
performance. This is what makes it the most popular single logic family.
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Figure 6-8 summarizes the way a basic TTL two -input positive

NAND gate works, showing (by means of arrows) where the
current flows in two different typical situations. In essence, the
multiemitter transistor performs the positive -AND function, and the
"output" transistor inverts the result and adds power.

4.5V

0.2V
Current while
output transistor
is turning off

ONE OR MORE INPUTS "Low"

5V

"OFF

0

"V" stands
for volts.
Numbers are
typical voltages.

FUNCTION TABLE

IN

L

L

IN

L

H

OUT

H

H

H L H

H H L

ALL INPUTS "HIGH"

Figure 6-8. Current paths (arrows) in basic TTL gate, showing
how positive NAND function is performed

5V

As indicated for the gate on the left, any one input signal lower
than about 0.6 volts (here, 0.2 volts) withdraws current and thus prevents
the output transistor from turning on, so that output current at about 4.5
volts is supplied through the resistor. When the voltage at all inputs is
higher than about 0.8 volts as shown for the gate on the right, current
supplied to the base of the multiemitter transistor turns the output
transistor on, so that the output draws in current at about 0.2 volts.

This particular style of TTL gate in Figure 6-8 is intended only
for use inside an integrated circuit. Figure 6-9 shows one way in which
several such gates can be used inside an IC for maximum complexity and
density. Several positive NAND gates share the same resistor connected
to their outputs, giving us the effect of several AND gates feeding a NOR
gate. Each "partial" gate is called an "expander gate."
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Below in Figure 6-9 is shown a typical layout for a four -input
NAND expander gate. (The expanders in the schematic drawing above
have only two inputs, to keep the drawing simple.) Note that the long,
narrow resistor takes up nearly half the area of the entire expander gate,
which is about 20 square mils in all. Obviously, resistors are a problem in
efforts to design densely -packed, complex circuitry.

28
M LS

(71

ifftl)

TO

OTHER

EXPANDER

GATES

INPUTS
TO EMITTERS

+ 5 VOLTS

COMMON

OUTPUT

RESISTOR

POSITIVE LOGIC:

1

C

N/

EQUIVALENT TO:

(Oxide and
N + regions
not shown)

COLLECTOR

OUTPUT

EMITTER

OUTPUT

Figure 6-9. Most compact form of TTL logic: positive NAND "expander"
gates with common output resistor (2 -input versions above, 4 -input chip
layout below)
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Figure 6-10 shows a more advanced variety of TTL-type NAND

gate, in a sub -family called "54/74 low -power Schottky TTL," This is a
very popular form of TTL originated by Texas Instruments. The circuitry
in the outlined area is the "TTL" part, although the multiemitter transistor
is replaced by special "Schottky diodes" to reduce input current for the
"high" level.

EQUIVALENT TO
BASIC Tn.

EXPLANDER GATE

INPUTS

Diodes prevent
reflection of
incoming voltage
waves from
external connections

CONNECTED TO SUBSTRATE

+ 5 VOLTS

Other circuitry
improves noise
margin and
fan -out for
external connections.

OUTPUT

Unusual n -p -n symbol
indicates internal
"Schottky" modification
to prevent
saturation and allow
faster turn-off.

0 VOLTS

Figure 6-10. Taos Instruments SN74LSO1 2 -input positive NAND gate,
illustrating "low -power Schottky -diode -clamped" circuitry

The other additional components improve noise margin and
fan -out, and those at the inputs prevent steep voltage waves from being
reflected back from the inputs. As a result, this gate can be connected to
external inputs and outputs. Best of all, however, the transistors whose
symbols include square "hooks" have a special internal modification called
"Schottky diode clamping" that makes them much quicker to turn off. This
provision gives low -power Schottky gates a propagation delay of only
about 10 nanoseconds. The power dissipation is only about 2 milliwatts per
gate, for a speed -power product of 20 picojoules.

Other circuit varieties in the TTL family achieve either faster
speed (3 nanoseconds) or lower power dissipation (1 milliwatt), at the
expense of a considerably higher speed -power product. There are varieties
of TTL to suit a very wide range of performance requirements where
faster speeds are needed than MOS circuits can give. This is another fact
that makes the TTL family so popular.
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4. Emitter -Coupled Logic

The only logic family that can provide shorter propagation delays
than the fastest Schottky TTL is "emitter -coupled logic," or ECL. Figure
6-11 shows a typical ECL 2 -input positive NOR gate. The transistors and
resistors are constructed much like those we saw for TTL in Figure 6-7.
This type of circuit makes the transistors switch very fast by never letting
them turn "all the way on" (a condition called "saturatjon"). The
transistors just switch current from one path to another, giving us a
propagation delay (for some ECL circuits) of less than one nanosecond.

If you like, you can read further explanations in Figure 6-11.
The important fact to note is that ECL circuits draw lots of current,
producing a power dissipation well over 40 milliwatts per gate. This heat
prevents ECL from being used in large, complex chips, but the high speed
makes it useful in many large computers.

"High" signal
at either input
diverts constant
current to
left path
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-EMITTER COUPLING

0 VOLTS

"REFERENCE

VOLTAGE "
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Base current is
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current
from either
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-5.2 VOLT
POWER SUPPLY

OUTPUT

FUNCTION TABLE

A

L

H

L

B

L

H

L

H

O

H

L

L

L

"H" more positive than -0.8 volts
"L" more negative than -1.6 volts

Figure 6-11. Typical 2 -input positive NOR gate of "emitter -coupled logic"
(ECL) type
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5. Integrated Injection Logic (11)

The search for a gate circuit requiring the least possible area
(and the necessary low power dissipation to go along with it) has led IC
designers to a gate with essentially only one transistor per gate. This is
"integrated injection logic." It's called ILL (I -squared L), as if the initials
IIL were an algebra formula. Figure 6-12 shows a simplified cross-section
of an PI, positive NAND gate, with a schematic interpretation.

+5 VOLTS

Same p -n -p
emitter can
inject other
n -p -n gates
(not shown)

+ 5 VOLTS
To p -n -p
EMITTER

P

Constant current injected
into n -p -n base by p -n -p
transistor action.

n -p -n EMITTER

n -p -n

COLLECTOR
OUTPUTS

EPITAXIAL

LAYER

INPUTS

SUBSTRATE AT 0 VOLTS

INPUTS
To n -p -n

BASE

OUTPUTS

Bold lines
are metal

:UBSTRATE (0 VOLTS

Figure 6-12. Simplified structure of an PL positive NAND gate, with
schematic interpretation
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On the right in both drawings in Figure 6-12 is an n -p -n
transistor that is the gate. It's similar to the n -p -n transistor in Figure
6-7, but simpler, and upside-down. The epitaxial n -layer over the entire
n + substrate acts as the emitter. (It's also the emitter for all other n -p -n
transistors on the chip, so no isolation diffusion like that in Figure 6-7 is
needed.) One n + diffusion for multiple collector regions is made into
desired spots in the p -type diffused base area. Although this structure
looks like a multiple -emitter transistor, it's used as a multiple -collector
device, and it works in such fashion well enough for this application.

Over to the left is another diffused p -region that runs a long way
through the chip (perpendicular to the paper), past several different n -p -n
transistors. This p -region, together with the base region of each n -p -n
transistor and the n -region in between, act as a multiple -collector p -n -p
transistor. A p -n -p transistor works just like an n -p -n transistor, with
everything in reverse. It's turned on by current being withdrawn from the
base, and the larger controlled current flows from emitter to collector.

Because of the way its base is always at the zero volts of the
substrate, this p -n -p transistor supplies a constant current into the base of
each n -p -n transistor. This "injection" of current into the n -p -n bases is
where we get the name, "integrated injection logic." But how in the world
can a single n -p -n transistor with constant base current and multiple
collectors act as a positive NAND gate?

Figure 6-13 answers this question. In the schematic diagram
here, we see two of these special n -p -n transistors, each one being supplied
with base current by a collector of the p -n -p transistor above. Two inputs
are connected to the base of each n -p -n device. (We could have more inputs
if we wanted.) As indicated by the peculiar two -output NAND symbols
(shaded areas), each n -p -n collector acts as a separate output. One
limitation of this family is that each output can be connected to only one
input of a receiving gate. Notice that an output accepts current to
transmit a "low" signal, but turns off to transmit a "high" signal.

The circuit in Figure 6-13, which is called an "S -R latch" (S -bar,
R -bar), provides an example of how FL gates transmit to one another. The
gate on the left shows what happens when all inputs are "high" (not
withdrawing current). All the continuous current injected by the p -n -p
transistor above flows into the n -p -n base, turning the transistor on. Thus,
both outputs are connected to ground (0 volts) for a "low" signal.

The gate on the right shows what happens when at least one
input is "low" (connected to ground). All the injected base current is
diverted out the "low" input (or inputs, if more than one is "low"). So the
transistor is not turned on, and the outputs are effectively "high."

Figure 6-13 also shows how this S -R latch might be laid out in an
IC chip. Only about 15 square mils (9,700 square micrometres) are
required for these two gates and their interconnections. Obviously, PI,
gives us very high packing density.
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An PL gate designed for a 20 -nanosecond propagation delay will
dissipate only about 0.05 milliwatt, giving us a speed -power product of
only one picojoule. So these tiny gates can be packed as closely as we like,
without worrying about overheating. They are ideal for watches, which
must operate for months on a single small battery. Furthermore, PL
techniques are being rapidly improved, so we are likely to see this family
come on very strong in the next few years.

What have we learned about digital integrated circuits?
Once again, we've come a long way in one chapter. We've seen

the types of processing steps that can mass-produce circuits too small to
be seen without a microscope. We've looked under the surface of IC chips
and seen how the components work together to function as logic gates -
the building-blocks of which all information-processing circuitry is
composed.

This understanding enabled us to survey two MOS logic families
and three bipolar families that represent most of the digital integrated
circuits manufactured. We've seen that MOS circuits, due to their compact
gates and simple processing, provide large, complex, and inexpensive
chips. Complementary MOS gives very low power dissipation, at the
expense of reduced density and economy. TTL is the most popular
all-around type of circuit, with a good balance of all the desirable
characteristics. ECL provides the fastest possible gates, at the expense of
high power dissipation, which also prevents making large, complex chips.
Finally, PL is an up-and-coming type of circuit that manages by ingenious
design to give us a gate consisting essentially of only one transistor, with
unbelievably low power dissipation.

Armed with this understanding, we can proceed now to study
methods by which digital systems store large quantities of information.
Then we can move on to how the parts of entire systems work together.
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Quiz for Chapter 6
1. The dense, accurate pattern

of tiny dark spots on a
transparent photomask is
prepared by what method?
a. Photographic reduction

from a larger version, as
with microfilm.

b. Drawing actual size by
hand, with tiny ink -pens.

c. Drawing a bigger version
on a plastic sheet and
shrinking it in an oven.

d. None of the above.

2. A speck of dust on a
photomask for an n -diffusion
can spoil an entire:
a. Slice, by causing one

defect.
b. Chip, by causing an

n -diffused spot.
c. Chip, by preventing a

spot from being diffused.
d. Photomask.

3. Current is kept flowing in the
right places in the silicon by:
a. Silicon oxide insulation

between transistors.
b. The photoresist layer.
c. The fact that voltage

cannot easily force
positive charge from an
n -region to a p -region.

d. All of the above.

4. Generally speaking, the size
of a chip and the number of
processing steps required
determine:
a. Noise margin.
b. Fan -out.
c. Cost.
d. All of the above.

5. P -channel MOS circuitry
provides:
a. Very short propagation

delays.
b. Large, complex chips.
c. Low-cost processing.
d. B and C above.

6. Complementary MOS
circuitry is especially strong
in the area of:
a. Dense, complex circuitry.
b. Low-cost processing.
c. Low power dissipation.
d. Very short propagation

delays.

7. Which family is the most
commonly used, best
all-around choice for a wide
variety of general
applications?
a. P -channel MOS.
b. Complementary MOS.
c. Transistor -transistor

logic.
d. Emitter -coupled logic.

8. Which family provides the
shortest propagation delays?
a. P -channel MOS.
b. Complementary MOS.
c. Transistor -transistor

logic.
d. Emitter -coupled logic.

9. What advantages does
integrated injection logic
offer?
a. Short propagation delays.
b. Density and complexity.
c. Very low power

dissipation.
d. B and C above.

(Answers in back of the book)
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Mass Storage
in Digital Systems

We began our study of digital electronics with a complete
system-the calculator in Chapter 1. Since then, we've narrowed our scope
down to individual parts found in most digital systems-gates, flip-flops,
and building-blocks of various kinds. In due time, we're going to put all
our accumulated understanding of the parts together and consider entire
systems again. But before we do so, there's another kind of part that we
need to take a look at, which is "mass storage units" in digital systems. So
that will be our subject for this chapter.

What is a "mass storage unit"?
Another name sometimes used for "mass storage unit" is "mass

memory," or sometimes just "memory." We're talking about a sort of
"reference file" where relatively large quantities of information are
stored, perhaps for a relatively long time. This general definition sets
mass storage units apart from building-blocks that store information, such
as those we studied in Chapter 4. You wouldn't call a single flip-flop or a
counter a "mass storage unit." And a single register would not be
considered a mass storage unit unless it could hold a large number of bits,
as we will see later.

The difference between mass storage unit and other units that store
information will become more clear to you as we go along. However, it
may be helpful at this point to look at some examples in our calculator
system, shown in Figure 7-1.

Obviously, the microprogram memory subsystem is a mass
storage unit. As you will remember from Chapter 1, this unit contains
many instructions, stored there when the IC chip was made, that the
controller refers to at each step in the calculator's operation.

Any one of the six registers shown in Figure 7-1 would not be a
mass storage unit by itself. However, in a typical calculator, the three
"number" registers (and perhaps even the flag register) would be made as
parts of a single storage unit that would qualify as a mass storage unit. It
would be a fairly large reference file for information to be put into and
taken out of as necessary, and where information could be left for as long
a period as desired. These examples from the calculator should give you a
general idea of what we're talking about when we say "mass" storage unit
or memory.

UNDERSTANDING DIGITAL ELECTRONICS 7-1



MASS STORAGE IN DIGITAL SYSTEMS

7
What's important about mass storage?

The reason mass storage is important enough for us to devote a
whole chapter to it is that it involves two subjects that we will refer to
again and again in connection with digital systems: cost and speed.

First of all, mass storage units contribute a large part of the cost
of most digital systems (as well as a large part of the physical size). To
appreciate this fact, take another look at the photograph of the calculator
chip in Figure 1-3. Notice that the microprogram memory and the number
and flag registers take up nearly half the area of the entire chip. We know
that means half the cost, as well.

Furthermore, the speed with which a system works (how much
data it can process in a given time) may be determined by how fast
information can be moved in and out of mass memory units. So the mass
memory units may to a great extent determine not only the cost of a
digital system but also its usefulness.

For these reasons, a great deal of the progress in squeezing more
and more of the parts of a system into one (or just a few) integrated
circuits has resulted from advances in the design of integrated -circuit
mass -storage units (memories). Being able to store more bits in smaller
areas in an IC chip has made possible one -chip calculators, smaller
computers, and many other systems at a much reduced cost. So this is
obviously an aspect of digital electronics that we need to look into further.
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Figure 7-1. Examples of mass storage units (asterisked areas) in the
calculator system for Figure 1-6
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How are mass storage units classified?

Through the years, many different techniques have been tried for
storing bits of information in digital systems. Out of all these methods,
the ones presently used for mass memories can be classified in several
categories, as summarized across the top of Figure 7-2. So far, we've only
studied the first method listed -flip-flops. We'll concentrate mostly on the
methods that show the most promise for the future, which are those using
integrated semiconductor storage elements.

Notice in Figure 7-2 that storage -unit types are also classified
according to "access method." For now, we'll say that access method
means the order or sequence in which stored information is retrieved
(located and read out) from a memory unit. In a serial -access memory, the
stored information is available for reading only in a certain order, usually
the same order in which the information was put in. On the other hand,
information can be taken out of storage locations in a random-access
memory in any order "at random."

The difference between these two access methods will become
more clear to you as we look at some examples. The importance of the
difference is due to the fact that random -access -type memories are
generally much faster at getting information in and out, as we will see.

STORAGE
METHOD

USING INTEGRATED SEMICONDUCTOR
STORAGE ELEMENTS

USING TINY PERMANENT
MAGNETIC FIELDS

USING
PUNCHED

HOLES

ACCESS
METHOD

FLIP-FLOPS
(BIPOLAR &

STATIC MOS)

CHARGE
STORAGE

(MOS ONLY)
,
PERMANENT

CONNECTIONSC

FIXED
MEDIUM

MOVING
MEDIUM

SERIAL
ACCESS

STATIC

SHIFT

REGISTERS

DYNAMIC

SHIFT

REGISTERS

DISKS

&
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TAPE

PUNCHED

PAPER

TAPE

PUNCHED

CARDS

RANDOM
ACCESS

STATIC
RAMS

DYNAMIC
RAMS

READ -

ONLY
MEMORIES

(ROMS)

CORES . .
Figure 7-2. Classification of mass memory types according to access
method and storage method

How can shift registers provide "serial -access" mass memory?
Since shift registers are the only type of mass memory unit in

Figure 7-2 that we're already familiar with, let's begin our study with
them. First, let's see how shift registers are typically made into mass
memory units, and then look at an application in a system.
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You may want to refer back to Chapter 4 (Figure 4-3b) to remind

yourself of what a shift register is. It's a string of one -bit storage units
with a common clock. (In Chapter 4, the one -bit storage units were
flip-flops. We'll see another kind a little later.) At each clock pulse, the
stored bits shift one step along the string.

Now when a shift register is used for mass storage, it is usually
provided with a data selector and a "recirculation path," as shown in
Figure 7-3. The bits in the register are continually shifted to the right by
regular clock pulses, without ever pausing. When the "loading control"
input is at "0," each bit that's shifted out the right end of the register is
shifted right back into the left end. Thus, the output shows us every bit in
the register, one at a time, over and over again, like a Ferris wheel going
around. Recirculating shift registers can be made in any length. Some
(like the Texas Instruments TMS 3133) are over a thousand bits long.

Data is loaded into this recirculating memory through the "serial
data input," by switching the loading -control input to "1." A new bit is
stored every time the clock is pulsed.

It's obvious why this is called a "serial -access" memory. It's
because the stored bits appear at the output in series. You can't access
(get to) a stored bit immediately to read it or change it, unless it happens
to be at the output at the moment. You have to keep count of the clock
pulses to know where the bit is, and wait for the bit to appear at the
output at a certain time.

CLOCK

V

Register can be any length

(Bits shift one
step to right r-
at every pulse) ROUTING

CIRCUITRY
SERIAL

DATA OUT
Data recirculates
when control is "0"

SERIAL

DATA IN

Gil

A LOADING CONTROL:
0 = RECIRCULATE

1 = LOAD

Figure 7-3. How a shift register can be used as a mass memory unit by
recirculating data
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What's a typical use for a serial -access memory?

Serial -access memory units such as recirculating shift registers
can be very efficient as mass memories in applications where the data
naturally needs to go in or out (or both) in serial form. A good example is
the three number registers in the calculator system of Figure 7-1.
(Remember, each register by itself would hardly be a mass memory. But
all three together serve as the calculator's mass data memory.)

Figure 7-4 shows why serial access can be useful in these
registers. It comes in handy when the two numbers in the display register
and the operand register are being added or subtracted. The binary-coded
decimal digits of each number go to the adder-subtracter one at a time in
the order in which they're stored. First, the two "least -significant digits"
(those on the far right) are added or subtracted, then the next digits to the
left, and so on.

In the next chapter, we'll see just how the four bits of each BCD
digit are added or subtracted. (It's somewhat more complicated than
adding pure binary numbers, which we learned about in Chapter 3.) For
now, we'll just point out that as soon as two digits are sent to the
adder-subtracter, the adder-subtracter produces the appropriate "sum" or
"difference" digit. These resulting digits must be loaded into the
accumulator register in the same sequential order (least -significant digit
first).

MOST LEAST Only one pair of 4 -bit
SIGNIFICANT SIGNIFICANT decimal digits can be

DIGIT DIGIT added or subtracted

DISPLAY REGISTER + at the same time.

0 0 0 0 0 0 7 6

4 -BIT
BCD

ADDER-
SUBTRACTER

OPERAND REGISTER N
4 -BIT

"SUM"
DIGIT

0 0 0 0 0 0 5 8

ACCUMULATOR REGISTER
FLIP-FLOP

0 0 0 0 0 0 00

'Carry" (or "borrow") bit is
stored to put in with next
pair of decimal digits.

SEQUENTIAL
STEPS IN 3 2 1

ADDITION: (1) (1) (0) CARRY FROM FLIP-FLOP

0 7 6 FROM DISPLAY REGISTER

+0 5 8 FROM OPERAND REGISTER

1 3 4 +- TO ACCUMULATOR REGISTER

Figure 7-4. Simplified, general picture of part of calculator system,
showing why digits need to move in and out of number registers serially,
with the 'least significant" digit first
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As each pair of digits is added-say, the 6 and 8 shown in Figure

7-4-the adder-subtracter also produces a "carry" bit (which for 6 and 8
would be "1," along with a sum bit of 4). The carry bit is stored in a
flip-flop and added in with the next most significant pair of digits (in this
case, the 7 and 5). Similarly, a "borrow" bit is stored in the flip-flop during
subtraction.

Now our so-called mass memory in Figure 7-4 doesn't have to be
designed with serial access. In fact, there are many calculators that do not
have a serial -access mass data memory (because they're a type of
"microcomputer" programmed as calculators). But the point of this
example is that it would be very convenient for the registers in Figure 7-4
to have serial access. So let's see how recirculating shift registers could be
used in this "naturally serial" application

How can a calculator use recirculating shift registers?

As indicated in Figure 7-5, we would use four recirculating shift
registers for each number register-one for each bit (8, 4, 2, 1) in the
binary-coded decimal digits. All twelve shift registers are clocked in step
together, so that the bits for all three least -significant digits show up at
the outputs (and the inputs too, of course) at the same time.

When the least -significant digits appear at the outputs, the
controller tells the adder-subtracter to begin adding (or subtracting). And
the controller tells the routing subsystem to route the adder-subtracter's
output digits to the accumulator -register input as shown in Figure 7-5.
The rest is automatic. All the controller has to do is sit back and watch the
digits march out of the two upper registers in time with the clock pulses,
and watch each resulting "sum" or "difference" digit roll right into the
correct spot in the accumulator register at each clock pulse.

Right after all eight digits in our simplified calculator's numbers
have been added or subtracted, the controller tells the routing subsystem
to switch the accumulator register back to "recirculate." And we've got the
new number (the sum or difference) rolling around in the accumulator
register, in step with the two original numbers in the other registers.

This example shows how handy a serial -access memory unit can
be. It can save the controller a lot of trouble (time and program steps)
when the data naturally needs to move serially, as in this example. It
works just fine so long as the controller can somehow be synchronized
with the memory unit, so the controller can start and stop processing with
the correct digits. In our future discussions of the example calculator, we
will assume that it uses recirculating shift registers as we have just seen
in Figure 7-5. (To be perfectly accurate, a calculator would more likely
use another type of mass memory called a "sequentially accessed
dynamic memory," similar to "dynamic RAMS" we'll see later. However,
such a memory behaves exactly like the recirculating shift registers that
we have just discussed.)
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Figure 7-5. Possible use of shift registers for "serial access" mass data
memory in calculator from Figure 1-6. Paths in "routing" subsystem are
those for an operation being performed by the adder-subtracter.

What's another "naturally serial" storage application?

Before we leave the subject of how recirculating shift registers
are used, we should take note of a particularly common application. This is
in television -type display units used with computers-units called
cathode -ray -tube (CRT) terminals. The rows of characters (letters and
numbers) displayed on the screen are typically stored in recirculating shift
registers in the terminals, using a seven -bit code for each character. The
registers recirculate in step with the "flying spot" of light that paints the
TV picture, one horizontal line at a time.

The details are more complicated than we would care to go into.
We should merely note that while the picture is being held constant for
the viewer to look at, the flying spot repeats the same sequential pattern
of brightness and darkness as it sweeps across the screen, line by line. So
this is another "naturally serial" storage application that recirculating
shift registers fit right into.
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How are mass -memory shift registers different from others?

Shift registers used as mass memories are just like those used as
sequential building-blocks, except that they generally store a much
greater number of bits. (In the case of a CRT terminal, 7,000 bits would be
needed to store 25 rows of 40 characters each, with seven bits to identify
each character.) Consequently, it's more important that the storage
element for each bit occupy the smallest possible area on the IC chip. We
can't afford any space for extra frills such as parallel inputs or outputs, or
shifting backward as well as forward. (This is the reason we have to use
recirculation for access.)

To reduce the area in which each bit is stored, many
mass -memory shift registers use a storage method we haven't talked
about yet. So far, the only way we've seen to store a bit in an integrated
circuit is in aflip-flop. As we learned in Figure 4-1, this involves two gates
cross -coupled to keep each other in their present states. The other way is
listed in Figure 7-2 as "charge storage." It's used not only in mass
memories but also in many sequential building-blocks, in the place of
flip-flops. This method involves storing each bit as an electric charge, in a
type of MOS circuit called a " "dynamic storage" circuit.

As there are many types of flip-flops, there are also many types
of dynamic storage circuits-all of them occupying less chip area than
flip-flops. As an example of a dynamic storage circuit, let's see how a
typical dynamic shift register works.

How does a typical dynamic shift register work?

Figure 7-6 sheows the idea of one of the most common types of
dynamic shift register. It consists of a chain of dynamic storage circuits
for one bit, like the one in the rectangle. Such a circuit serves the
same purpose as a master -slave flip-flop (Figure 4-5). Thus, it could also be
used in sequential building-blocks such as registers and counters.

As indicated in the clock timing diagram below, the two MOS
"gating" transistors in the storage circuit are alternately turned on and
then off by the clock signals 41 and 42 ("o" is the Greek letter "phi,"
standing for "phase.") When each gating transistor is turned on and off,
the voltage signal coming from the inverter to the left charges a capacitor
on the input lead to the inverter on the right. In this respect, the circuit
works like the analog storage circuit back in Figure 5-8. The capacitor
holds the voltage level after the gating transistor is turned off. If this
*voltage is at the "high" level, the inverter to the right transmits a "low"
signal, and vice versa.
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There's no way to prevent a stored charge from leaking. But so
long as the voltage is still recognizable as definitely a "high" or "low"
signal, the inverter transmits a strong copy of it (in inverted form) to the
next charge -storage unit. There, the inverted signal is locked in by the
next clock pulse and strongly inverted back to its original form. Thus, each
bit is stored as a regularly renewed charge being passed from circuit to
circuit in the shift register.

The main disadvantage of dynamic shift registers is that they
must not be left standing still. They must typically be clocked faster than
about 100 hertz (100 full clock cycles per second-a 01 pulse and a 02 pulse.)
Otherwise, the stored voltages will decay too far to be recognized correctly
by the inverters. But of course, that's no problem in a recirculating
memory, which is kept moving all the time anyway-usually much faster
than that.

The need for frequent renewal of charge levels is what gives us
the name "dynamic" for this type of storage circuit. "Dynamic" implies
energy in motion. On the other hand, "static" means "stationary." A
flip-flop is called a static storage unit because it can hold a bit in one place
for any length of time.

02
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TRANSISTOR

FOR EACH

CHARGE -STORAGE
UNIT

-44- CLOCK -11'. -
PHASES\ ''MASTER"

Dynamic storage circuit
for one bit, made of
two charge -storage units
in master -slave arrangement.

CLOCK
TIMING

DIAGRAM:
02

1

"SLAVE"

- '. I

Charge is stored in these
parts of circuit, as if
in capacitors.

01

STORAGE TIME

FOR ONE BIT

0 VOLTS

12 VOLTS

Ir 0 VOLTS

I -12 VOLTS

Negative pulses turn
transistors "on".

lig TIME

Figure 7-6. Simplified idea of a typical MOS dynamic shift register
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How do dynamic shift registers compare with static shift registers?

If you'll compare the master -slave dynamic storage circuit in
Figure 7-6 with the more complicated master -slave flip-flop in Figure 4-5,
you'll see why dynamic storage units occupy less area on a chip. As we
noted earlier, this is why dynamic shift registers cost less per bit of
storage capacity than static shift registers.

Dynamic shift registers have another advantage, in that they can
be clocked faster than MOS static shift registers (perhaps 5 megahertz
compared to 2.5 megahertz. Remember, a megahertz is a million times per
second). When even faster shifting is required, we've got to use bipolar
circuitry (flip-flops), at a much greater cost per bit.

Later in the chapter, we'll see another kind of dynamic storage
unit. But for now, let's look back at Figure 7-2 for a moment. We've
covered the two types of serial -access memories that use integrated
semiconductor storage elements (static and dynamic shift registers). So
let's move on to learn about mass memories with random access. We'll
begin with the category of "read-only memories" or ROMs. (ROM rhymes
with "Tom.") Here again, we're on fairly familiar territory, since the
microprogram memory in our calculator (Figure 7-1) would be a ROM. So
let's use the example of the microprogram memory as a jumping-off point
into random-access memories.

How does the microprogram ROM illustrate random access?

First, let's recall from Chapter 1 what the microprogram memory
does, as shown in Figure 7-7. To begin with, the controller puts an
"address" number in the address register. In response, the memory unit
locates an instruction (stored when the chip was made) in a place
identified by that address within the memory. A copy of the instruction is
put in the instruction register for the controller to use. Note that any
instruction can be "read" at any time, in any order. So this is a
random-access rather than a serial -access memory, but one that can only
be read, not written into. You can't change the data stored at any memory
location. - 8 -BIT ADDRESS REGISTER

CONTROLLER

MICROPROGRAM
MEMORY

UNIT
(READ-ONLY MEMORY)

256 16 -BIT INSTRUCTIONS

-.I-- 1 6 -B I T INSTRUCTION REGISTER

Figure 7-7. Summary of the job of a microprogram memory unit in a
typical calculator
7-10 UNDERSTANDING DIGITAL ELECTRONICS



7
MASS STORAGE IN DIGITAL SYSTEMS

Both the addresses and the instructions are in binary form,
consisting of ones and zeros. A typical calculator might have 256
instructions, each consisting of 16 bits, for a total of 4,096 stored bits. To
count addresses from zero (00000000) to 255 (11111111), each address must
be eight bits long.

To begin understanding how such a memory works, let's first see
the general way in which the storage units are arranged in all
random-access memories-both the "read-only" types and others we'll
come to later.

How are storage units arranged for random access?

Figure 7-8 shows the general idea of how one -bit storage units
(or "cells") of any sort would typically be arranged so that stored
information can be read out at random. (The same arrangement works for
writing too, as we'll see later.) For the sake of simple explanation, this
memory stores only 16 bits, as eight "words" of two bits each. A "word" is
a group of bits that are stored together in a random-access memory, and
also processed together when possible. (For example, each 16 -bit
instruction stored by the microprogram memory in Figure 7-7 is a word.)

ROW
DECODER

ACTIVATES
ONE

"ROW -LINE"

Two bits of address
control row decoder.

Other bit controls
column selector.

0

ADDRESS

REGISTER

COLUMN
SELECTOR ,' /

Each little square
represents a storage

1 cell for one bit.

Each dotted rectangle
is a storage place with
a certain address, for
one 2 -bit word.

Each storage unit transmits
its bit when its row -line
is activated.

All bits on selected
11- row are transmitted

in column -lines.

Data selector selects
v". two column -lines for

a two-bit word output.

WORD OUTPUT

if REGISTER

Figure 7-8. A simple random-access memory storing eight 2 -bit words,
showing typical rectangular pattern and method of 'accessing" by row and
column lines
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The one -bit storage cells in Figure 7-8 are arranged on the chip in

a square pattern of four horizontal "rows" and four vertical "columns."
Each cell is connected to one of four horizontal "row -lines" and one of four
vertical "column -lines." The two cells for a given word are on the same
row line. (By comparison, the calculator ROM would have 64 rows, each
storing four 16 -bit words.)

Addressing eight words requires three -bit address numbers,
running from zero to seven. (In Figure 7-8, we're addressing word number
five -101). Two of the address bits go to a "row decoder," causing it to
activate one of the four row -lines (in the figure, it's row number two, or
binary 10). This makes all four cells in that row transmit their bits in their
column lines. Of these four bits, two (one word) are selected by the
"column selector." This is a data selector controlled by the remaining bit
of the address (1, in the example). Thus, the addressed word (10) is placed
in the "word output register."

Nearly all random -access -type memories use one variation or
another of this basic idea of a rectangular "array" (arrangement) of
one -bit storage units. It allows the storage units to be packed closely
together, without an excessive amount of interconnecting wires.

With this understanding of random-access memories in general,
let's look in more detail at a read-only memory. This will be a particular
kind of ROM-one that's made in a p -channel MOS integrated circuit, such
as a calculator chip.

How does an MOS read-only memory work?

Figure 7-9 shows four bit -storage cells at the lower left corner of
a ROM array of any size. Each cell (shaded blocks) is simply one MOS
transistor-or rather, it is if a "1" is stored. If a "0" is stored, the cell is an
incomplete transistor, without a gate, so it can never be turned on.

The row decoder transmits a "low" voltage (negative 5 volts) in
the selected row line. This turns on all transistors storing "1" on that row,
connecting a column line through each MOS transistor to a "ground line"
at zero volts. Thus, a "1" is transmitted in a column line to the column
selector as zero volts. Otherwise, if a column has an incomplete transistor
on this row (meaning 0), the column is kept at negative five volts by a
"load" transistor down below. (This should sound familiar to you. Each
column -line with its transistors, neighboring ground line, and load
transistor acts as a many -input negative NOR gate as in Figure 6-5.)
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Figure 7-9. Schematic diagram and simplified drawing of the permanent
bit -storage cells in a p -channel MOS read-only memory

Further below in Figure 7-9, you'll see how this array of cells is
built with very high density (low cost per bit!) in an IC chip. Each row line
is simply a long metal strip over the oxide layer. Each column line and
ground line is a long p -region running crossways under all the row lines.
Where a transistor is desiz ed (for permanently storing a "1"), the oxide is
made very thin under the metal where it crosses over the silicon between a
column line and a ground line. Where the oxide is thicker, the electric field
from the metal is too far from the silicon to "turn on" a channel as we
discussed with regard to Figure 2-12 for n -channel transistors.
(Remember, we mentioned thin oxide for the first time in discussing
Figure 6-6.)
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Beside its high density, the most useful feature of this ROM

construction is that the "thin -oxide" areas are created in only one step of
photomasking and etching of oxide. (Remember, we discussed
photomasking back at Figure 6-2, although not this particular step.) So it's
relatively easy for the factory to "program" a customer's specified
information into a ROM integrated circuit. The ROM then becomes a
special product supplied to that customer, typically in rather large
quantities for assembly into a system built for sale by the customer.
Similarly, a general-purpose calculator chip can be programmed for
special functions required by a particular calculator model.

Are there any other kinds of read-only memories?

MOS ROMs with cells similar to those in Figure 7-9 are the most
commonly -used read-only memories. However, for faster access (getting a
word out quicker), there are ROMs that use bipolar rather than MOS
transistors-but we pay for the'higher speed with much lower packing
density and therefore higher cost. Furthermore, there are certain MOS
ROMs that can be programmed by the user after they're made, called
"programmable ROMs," or "PROMs." However, this "do-it-yourself"
programming requires connecting the IC to a special electronic system
designed for this purpose. And finally, there are some kinds of PROMs
that can be erased and reprogrammed with new data. These are called
"eraseable" PROMs, or "EPROMs." The erasing is done in a special
system that exposes the chip to ultraviolet light. Although PROMs and
EPROMs can be very useful in certain applications, their bit density is
lower than that of plain ROMs, and they cost quite a bit more per bit of
storage capacity.

While we're considering variations on the ROM idea, you should
be aware that the high -density arrangement of gate strips and diffused
strips in Figure 7-9 is often used in building-blocks such as decoders and
encoders. As you've seen, this is basically a way to make a close -packed
row of negative NOR gates (positive NAND gates). Because of the ease of
"programming" the MOS gate connections as we've seen, a ROM used as a
logic network is called a "programmable logic array," or "PLA"
(pronounced letter by letter as "P -L -A"). PLAs are one feature of MOS
integrated circuits that gives us very high -density, economical IC chips.

How are random-access memories different from ROMs?

Although ROMs are accessed in a random fashion as we've seen,
they're not called "random-access memories." That name is reserved for
memories that can be written into as well as read from. The name is
abbreviated to "RAM," pronounced like the word for a male sheep. Later
on, we'll consider how RAMs are used in electronic systems. But for now,
let's find out how RAMs are made and how they work.
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As we learned earlier in the case of shift registers, there are also
two general types of RAM: dynamic RAMS that store bits in the form of
electric charges, and static RAMs that store bits in flip-flops. Let's look
first at dynamic RAMs.

How do dynamic RAMs work?

Dynamic RAMs fit the general pattern for all random -access -
type memories that we discussed in Figure 7-8. (Remember, we said you'd
see those general features in all memories with random access.) Electric
charges are put into the cells through the column lines and read out
through the same lines, using appropriate switching circuitry in the
"column selector" section. As in all dynamic storage units, the stored
charges decay in a fraction of a second, so they have to be "refreshed"
often by one method or another.

Figure 7-10 shows the general idea of one of many types of
dynamic RAM. Due to the exceedingly tiny size of each storage cell, this
one integrated circuit (perhaps 0.16 inch or four millimetres square) can
store 16,384 bits in 128 rows and 128 columns.
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DECODER

One row -line at a i
time is activated. -T
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Figure 7-10. General idea of a 16,384 -bit dynamic RAM that uses
one -transistor n -channel storage cells
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Each cell consists of one n -channel MOS transistor and a tiny

capacitor-which as we noted earlier is a device that stores electric charge
at a certain voltage. Each capacitor is simply a small area of metal over
the oxide. When a row -line is activated (with a higher voltage), all the
n -channel transistors on that row are turned on, connecting their
capacitors to their column lines. By way of the column lines, the capacitors
are charged when "writing," and the charges are detected when
"reading."

We won't go further into electrical details. Suffice it to say that
words from the "data input" in Figure 7-10 are written into the capacitors
as electric charges by voltage signals through the column lines, and read
out the the "data output" through the same column lines. The "read-write
control" input tells the subsystem whether to read or write. Such a
memory can be designed to handle words of any length (from one to 128
bits in this example), so we're not specifying word length in the figure.

Every time a row -line is activated, the charges in all cells on that
row are refreshed automatically by a "spare" dynamic storage unit shown
at the lower end of each column line. The stored bits are shifted from the
cells on the row being accessed, into the spare storage units, and right
back into the cells again, with renewed strength. This process resembles
the shifting of bits in the dynamic shift register in Figure 7-6. Any
reading or writing that needs to be done takes place at the same time, for
selected columns. (As we've noted before, the reason the stored charges
need to be refreshed is to prevent the stored data from being lost due to
leakage that changes the voltages.)

To make sure all cells are refreshed often enough, the system
controller (not shown) typically stops its work for about 50 microseconds
(millionths of a second) every two milliseconds (thousandths of a second).
During this time, the controller addresses one word on each of the 128
rows. This triggers the automatic refreshing process that we spoke of in
the preceding paragraph, for each row addressed.

To summarize the features of dynamic RAMs, they use very small
cells-as small as one transistor and one capacitor, as we've seen. This
gives us very high packing density, and therefore low cost per bit of
storage. However, to get this advantage, we have had to add the
additional refresh circuits and program the system's controller to do a
"refresh" cycle several hundred times a second.

How do static random-access memories work?

If we can't live with the complication of the refresh cycles, we
have to use a RAM of the static variety. Static RAMs use aflip-flop for
each storage cell, in the row -and -column arrangement that we've become
familiar with. The flip-flops can be made either of bipolar or MOS
transistors. As you might expect, MOS gives us higher density (lower cost
per bit) but lower access speed.
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As with any kind of RAM, the challenge in designing a static
RAM is to make a storage cell that occupies a small area and requires very
few electrical connections. Let's look at just one of many different kinds of
static RAM cells, called a "diode -coupled" bipolar cell. This will give us an
idea of just how simple a flip-flop can be.

The general idea of a bipolar RAM with diode -coupled cells is
shown in Figure 7-11. Like certain other RAMs, this one has two
column -connections to each cell, called "bit -lines." As indicated in the logic
diagram of one cell (Figure 7-11a), each bit -line is connected to the output of
one inverter and across to the input of another inverter. (The two "diodes"
act as one-way valves, as explained further in Figure 7-11c. Thus, they
prevent all the cells in one column from interacting with each other.)

The row -line connection to each cell provides a ground connection
for both inverters. (A positive power -supply voltage is also provided to
each inverter, as shown.) As you can see in Figure 7-11b, this is a pretty
simple, compact circuit. It contains just two transistors, two resistors, and
the two diodes.

Row
LINES

ROW
DECODER

TWO "BIT -LINES"
FOR EACH COLUMN

.17
OTHER Rows

WORD

ADDRESS

1/41

READ/WRITE CONTROL-.
DATA IN I

OTHER COLUMNS

I I. I

C.

DATA OUT

COLUMN SELECTOR
PLUS READ & WRITE CIRCUITRY

Current easily flows
"forward" when anode
has more positive voltage, SEMICONDUCTOR

but current is blocked in CONSTRUCTION

"reverse" direction when
cathode is more positive.

DIODE

(SEE BELOW)

POSITIVE

+ POWER
SUPPLY

Row -line connection
provides ground terminal
for both inverters.
A low voltage selects
one cell in each column.

a. Logic diagram of one cell.

b. Schematic diagram of cell.

ANODE CATHODE

SYMBOL

P N

FORWARD"

c. P -N junction diode.

Figure 7-11. General idea of a bipolar (static) RAM using a
"diode -coupled" flip-flop for each cell
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We won't go into the electrical details of how these cells operate.

What's important for you to notice is that the two inverters are
cross -coupled like the R -S latch we studied in Chapter 4. This is what
makes the circuit a flip-flop. Each inverter keeps the other in its present
state, until a strong current coming in from one bit -line or the other
upsets the balance and flips the circuit to the other state. This is how
information is written into the cells, by way of the column lines. Similarly,
a flip-flop is "read" via the column lines by the fact that the inverter
which is in the "low" state draws current from the bit -line that's
connected to its output.

A flip-flop can only be "flipped" or "read" when its row -line
connection is low in voltage, so that's how one cell in each column is
selected. The correct column, of course, is selected by the decoder circuits
of the column selector, which are similar to the decoders we have learned
about previously. Reading and writing are controlled for the total memory
by the "read/write control" signal shown in Figure 7-11.

How does a magnetic -core memory work?

If you'll look back at Figure 7-2, you'll see one more category of
"random-access" memory that we haven't covered yet, which is magnetic
cores. Formerly, cores were one of the most widely used kind of
random-access memory. Nowadays, however, due to decreasing costs for
semiconductor memories that we've studied, cores are mainly used only
where "non-volatile" storage is required. This means that the stored data
doesn't "evaporate" (disappear) when the power is turned off. All the
semiconductor -type memories (except ROMs, PROMs, and EPROMs) are
volatile-they need constant electrical power to hold data in their flip-flops
and capacitors. Since magnetic -core memories are still widely used for this
reason, let's see how they work.

Figure 7-12 shows the general idea of a typical core memory unit
called a "plane." You'll recognize the rows and columns that are typical of
all random-access memories. Each storage cell is called a "core." It's a
little ring made of an iron compound called "ferrite," about a hundredth to
a tenth of an inch (0.2 to 2 mm) in diameter. Thousands of cores are strung
very close together on straight wires as you see in Figure 7-12.

A bit is stored in a core by magnetizing it in a direction pointing
either clockwise or counterclockwise around the ring. The field can be
flipped in one direction or the other by current stronger than a certain
amount called the "saturation current" S, flowing in one direction or the
other through the hole. Half the saturation current is supplied to a
selected core in its "X drive line," and half in the "Y drive line," so that no
other cores on these lines are affected.
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A core is "read" by attempting to flip its field to the "0"
direction. If the core was already in the "1" position, its magnetic field
will "flip over." The changing magnetic field generates an electric pulse in
the "sense wire" passing through all cores in the plane. Then the core has
to be restored to its original "1" position, to keep the stored data the same.
This involves temporarily storing the bit that was just read in a flip-flop,
and routing it back to the core -drive circuitry, which immediately writes
the bit back into the same core.

Since only one core at a time can be accessed in a plane, each
bit of a word is stored in a different plane.

The reason core memory units are non-volatile is that it doesn't
take any power to keep the cores magnetized. In some systems, it's very
important for stored data to survive a power failure, without having to
provide an emergency power supply. Because of this capability, cores will
probably continue to be used in certain systems, even though they cost
more and take up more space per bit than semiconductor memories.

One core is selected by pulse of
1/2 saturation current in ''X" & "Y" lines.

"Row" OR "X"
DRIVE

LINES

ADDRESS

READ/WRITE

DATA IN

+ 1/2 S

"COLUMN"
OR "Y"
DRIVE "'-
LINES

DECODING AND
"CORE -DRIVE" CIRCUITRY

"Sense" wire loop picks up
pulse from flipping a core.

SENSE

AMPLIFIER

FLIP-FLOP

S Output feedback
to restore sensed
core to original state.

DATA
OUT

--11111-110-

Figure 7-12. In a typical core memory unit, thousands of cores are strung
on wires in a rectangular pattern like this, called a "plane"
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How do "peripheral" memory units work?

Speaking of cost per bit, this brings us around to the remaining
four memory types at the far right end of Figure 7-2. These are methods
that provide huge amounts of storage capacity needed in certain systems,
at a very low cost per bit. But their access times are so slow that they're not
used in the main part of a digital system. Instead, they're hooked up as
separate units for the main system to use when necessary. They're called
"peripheral" storage units, meaning "around the outside."

Figure 7-13 shows, in a highly simplified form, how these four
"peripheral" memory types are similar to each other. They all store bits in
rows and columns on a thin piece of material which moves past stationary
devices that read the bits (and perhaps write new bits). So these methods
all use serial access as we saw earlier for shift registers.

PUNCHED
CARD

IIIII I

Rows of Punched Holes

. . . .
PAPER
TAPE ; .

MAGNETIC
TAPE

MAGNETIC
DISK

OR DRUM

.
.

IIiMMIIMMEMIC i i  i 
Invisible magnetized
spots in rows called "tracks"

0
0
0
0
O
0

0
O
O
O

a

Light sensor over
each row of holes
to detect holes

Magnetic pickup
& recording head
on each "track"

Figure 7-13. Highly simplified pictures of bits stored in serial -access form
in several "peripheral" storage methods

Punched cards and paper tape
There are several different kinds of punched cards and paper

tape for digital systems, but they all store bits by punching or not
punching holes in certain positions. The positions are arranged in rows
and columns. One column at a time is punched as the card or tape moves
through a punching device. And one column at a time is read as the card or
tape passes through a reading device, usually by a light sensor mounted
over each row of holes as light is supplied from the other side.
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One column of bits is sometimes referred to as a "byte" (maybe
because it's a bunch of bits that's "bitten off" together). "Byte" usually
refers to several bits grouped together for convenience in transmitting
and receiving them. Usually, it takes several bytes to make a word. As we
have seen, a word is a group of bits that are stored together in a RAM,
such as a binary number.

Since cards and paper tape are slow and comparatively difficult
to handle, and since the stored data can't be changed, these methods are
used mainly for getting information into and out of a system. A stack of
punched cards or a reel of punched tape is read into another memory in
the system, and then put back on the shelf. Occasionally, however, you'll
see a loop of paper tape being used as a recirculating read-only memory.

Magnetic tape, disks, and drums

As you can see in Figure 7-13, magnetic tape, disks, and drums
contain bits stored as rows andcolumns of tiny, invisible, magnetized
spots. The spots are created in a thin film of iron oxide on the surface of
plastic tape or a spinning disk of aluminum or a rotating aluminum drum.
(A drum is a hollow cylinder. It's not shown in Figure 7-13 because it's so
similar to a disk.) The writing and reading of bits is done in the same way
sounds are recorded and played back with a tape recorder, by using a tiny
electromagnet called a "head" that the surface passes under. The
magnetized spots serve exactly the same purpose as holes in a card or
paper tape, with the added advantage that the data can be erased and
re -written.

Magnetic tape is mostly used as a rapid way to get information
into and out of a system. But it's more versatile than paper tape and
cards, because it stores much more information per square inch, it can be
written and read much faster, and because it can be rapidly moved both
backward and forward in the machine. Though it's written and read in
serial fashion, you can start and stop at any point in the reel. However, it
will typically take a minute or so to get to the starting point.

Magnetic disks and drums perform exactly the same function as
recirculating shift registers, although much longer in bit capacity on each
"track," and considerably slower. Each track is a circular row of bits, so
each bit in the track passes the head once in each revolution. (Disks turn at
about 1,500 revolutions per minute, and drums at up to 6,000 rpm.) Disks
and drums store less information than a reel of tape, but you can get to
the spot you want much quicker. These units are used as a sort of
high -capacity backup or "warehouse" for information in a system.
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How do cost and access time determine memory applications?

All through the chapter, we've said that the cost per bit and the
speed of a particular memory unit determine how it's used in a system.
Now we've learned enough that we can get more specific in our comparisons.

Figure 7-14 shows, in the form of a graphic chart, the general
range of cost per bit and "access time" for several types of mass memory.
(We're leaving out cards and paper tape because they're mainly
input-output methods. You can ignore "charge -coupled devices and
magnetic bubbles" until the last chapter.) "Access time" means the
average time it takes for a bit or word to be written or read at random in
a memory unit. (In a serial-access.unit, this is half the time to go from one
end of the stored data to the other.) Note that each chart division is a
certain multiple of the neighboring divisions, so we're looking at
"logarithmic" scales.
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PER 0,015
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0.0001 O

0.0000015

Up to 8,000 bits per chip

Up to 16,000 bits per chip
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More than
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MOS
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Figure 7-14. Rough comparison of cost, speed, and capacity of several types
of mass memory as of middle to late nineteen seventies
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Also written in on the chart are typical capacities of various
units, in terms of bits. Generally speaking, the lower the cost per bit, the
more capacity you can afford in a given unit; so these two aspects are
closely related. The main point to notice is the very wide range among the
memory types in cost, speed, and capacity.

To give you an idea of what these numbers mean in terms of how
various memory types are used, let's consider a typical computer, shown in
general block -diagram form in Figure 7-15. For the time being, you can
assume that this system works much like the calculator we've been
discussing all along. (Our adder-subtracter is a sort of arithmetic and logic
unit or ALU. Our number and flag registers are a sort of main memory.)

INPUT

f=>

OUTPUT

MAGNETIC
TAPE
UNIT

Slow access
low cost/bit
high volume
(more than
100 million
bits) MAGNETIC

DISK
UNIT

PERIPHERAL UNITS

Medium access
time, cost/bit,
& volume (50
million bits)

''MAIN FRAME"

Quick access
high cost/bit
low volume
(1,000,000 bits)

V

MAIN
MEMORY

(POSSIBLY
MOS RAMS)

CONTROLLER
WITH

MICROPROGRAM MEMORY

ARITHMETIC AND
LOGIC UNIT

(ALU)

ROM

Quickest access
highest cost/bit
lowest volume

BIPOLAR RAM (1000 bits)

SCRATCH PAD

Figure 7-15. Block diagram of a typical computer, showing different kinds
of mass memory units (shaded areas)
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The point is that many systems mix and match several different

kinds of memory, depending on the speed needed and the capacity that can
be afforded. For the very quickest possible access in this computer, we can
afford a little bit of bipolar RAM capacity as a sort of "scratch pad" in the
CPU. For a large amount of storage that we couldn't possibly afford to
put in the main memory, we use a disk unit. When we need to use data
from the disk, we move a big batch of it into the main memory, where we
can get at it much faster. And to handle an even larger amount of data
moving in and out of the system, we use magnetic tape. Thus, one of the
main concerns in designing a system is to make the best use of several
different kinds of mass storage unit, to achieve the desired performance
at the lowest cost.

Where do we go from here?

Since improvements in the cost and speed (and capacity) of mass
memories is so important for the progress of digital electronics, we'll
return to this subject in the last chapter, when we look at the direction of
future developments.

Now that we've surveyed the entire range of information storage
in digital systems, from sequential building-blocks through mass memory
units, we've completed our study of the various parts of which a system is
made. So in the next chapter, we'll begin concentrating on how the parts
are put together to make systems.
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Quiz for Chapter 7
1. A shift register can be made

into a recirculating mass
memory unit by:
a. Routing data to an

adder-subtracter.
b. Making the register a

thousand bits long.
c. Providing a data selector to

load or recirculate.
d. Using dynamic storage

units.

2. A serial -access memory unit is
especially useful in
applications where:
a. Data consists of numbers.
b. Short access time is

required.
c. Each stored word is

processed differently.
d. Data naturally needs to

flow in or out (or both) in
serial form.

3. In a dynamic shift register,
what prevents data from
being lost due to leakage of
charge?
a. Preventing all leakage

with good insulation.
b. Renewing the charge with

constant current.
c. At every shift, the strength

of the charge representing
a bit is refreshed by the
inverters.

d. Each bit is shifted all the
way to the output of the
register before it has time
to lose all its strength.

4. What is the principal
advantage of dynamic shift
registers over static shift
registers?
a. They lose their data if

shifted too slowly.
b. They can be shifted faster

than any other kind of shift
register.

c. They provide more bits in
smaller area.

d. A and B above.

5. Addressing one or more RAM
cells for access requires:
a. Selecting a row line, using

part of the address.
b. Selecting one or more

column lines, using part of
the address.

c. Both of the above.
d. None of the above.

6. In an MOS read-only memory,
each column -line with its
transistors, neighboring
ground line, and load
transistor acts as:
a. A dynamic storage cell.
b. A static storage cell.
c. A shift register.
d. A logic gate.

7. In an MOS read-only memory,
why doesn't the electric field
from a metal row -line turn on
"channels" between all the
column -lines and ground lines
it crosses over?
a. The oxide is too thick

except where transistors
are desired.

b. The oxide is too thin except
where transistors are
desired.
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c. No charge is stored on the
row -line.

d. The column -lines and
ground -lines are too far
apart.

8. "Random-access memory" or
"RAM" usually refers to:
a. All memory types with

random access.
b. Only those

random -access -type
memories that can be
written into as well as read
from.

c. Only memories with
dynamic cells.

d. Only memories with static
cells.

9. What is the main
disadvantage of dynamic
RAMs?
a. They can't be written into.
b. They are addressed

serially.
c. You have to read the data

out before it decays due to
charge leakage.

d. Normal operation must
include refreshing charges.

10. What feature of a static RAM
cell makes it a flip-flop?
a. Its storage of charge.
b. Accessing it by row and

column.
c. Two inverting gates

cross -coupled as a latch.
d. The use of current for

"writing" and "reading."

11. What is the principal
advantage of magnetic cores
over semiconductor RAM
cells?
a. They are much smaller and

more compact.
b. They are much more

economical.
c. A bit doesn't have to be

re -written after reading.
d. Stored information

remains when the power is
turned off.

12. Why are cards, tape, and disks
considered to be serial -access
rather than random-access
units?
a. To get to a desired part of

the stored information,
you've got to pass by other
parts.

b. They don't use
semiconductor circuits.

c. They don't store data in
rows and columns.

d. Their access time is longer.

13. How are magnetic disks and
drums like recirculating shift
registers?
a. They have about the same

range of capacity in
number of bits.

b. Their access times are
about the same.

c. Their storage is
non-volatile.

d. Stored data is available for
reading over and over
again, in the same order.

(Answers in back of the book)
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1G
How Digital
Systems Function

Before we go on, let's take time for a brief review. Figure 8-1
illustrates the high points of what we've learned about digital electronics:
Digital systems process information by putting it into the form of many
little pieces called "bits." These bits are processed by simple circuits called
"gates" and stored in several different ways-particularly in "flip-flops"
made essentially of gates. Gates and storage units can be put together in
any number of different ways to handle nearly any kind of information-
processing job. But there are certain general patterns that have been
found useful as "building-blocks" to do certain jobs needed in a very wide
variety of systems. We have learned to recognize several typical kinds of
building-blocks.

INFORMATION IN

THE FORM OF BITS

0 1 0 1

1 1 1 0

0 0 1 1

0 0 0 0

BUILDING

BLOCKS

GATES AND
STORAGE

UNITS

1D-

SYSTEMS AND SUBSYSTEMS

IP.

1. ?

Figure 8-1. The next logical question after seeing how building-blocks
work is, "How do entire systems and subsystems function?"
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Now we're ready to move on to the next question, which is,

"How do entire digital systems function?" That is, how do the parts of a
system work together to perform the "function" (the job or purpose) of
the system? How are digital systems designed? The same question also
applies to digital subsystems and any other major parts of systems which
have their own functions (purposes).

This is a pretty big question, because there are so many different
kinds of digital systems and subsystems. They range in size and
complexity from a simple digital voltmeter as in Figure 4-2, to computers.
(Figure 7-15 is one example, but many computers are much more
complex.) Information may flow in and out very rapidly as in the digital
television transmission system that we envisioned in Figure 5-15, or as
slowly as your fingers press the keys of a calculator. Some systems such as
the autopilot of Figure 5-11 do only one job, while others such as
computers can do many different jobs. So how can we hope to comprehend
so many different things?

How can we simplify our study of digital systems?

Since we can't hope to turn you into a digital system designer in
this chapter, the approach that we'll take is to show you three important
factors that a system designer has in mind when he puts building-blocks
together to perform a certain function. These are some of the most
important alternatives in system design-three basic decisions that must
be made during the design process.

We'll take up these three factors one at a time, in the order in
which they're easiest to understand, based on what you have already
learned. In illustrating these points, we'll see a number of examples of
combinations of various building-blocks with which we have become
familiar. And along the way, we will become much better acquainted with
the inner workings of our example calculator. Thus, we will build a general
understanding of how digital functions are performed-how digital
systems function.

How does the grouping of bits affect system design?

First, there's the general question of how many bits we work on at
one time in any stage of processing. Of course, we know that information
goes in and out of a digital system in the form of groups of bits. But inside
the system, the groups can be broken up into smaller groups processed
separately (or perhaps combined into larger groups and processed
together). This breaking up and recombining of groups of bits may take
place at several different stages in a system, depending on what the
designer decides works best.
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Loosely speaking, we're talking about the choice between parallel
and serial processing for the same function. To show the alternatives
involved, let's take a familiar example function of binary addition,
which we first discussed in Chapter 3. First, let's look at full parallel
addition-meaning that all the bits involved are added at once, without
being broken into smaller groups.

What's involved in "full parallel" binary addition?

Figure 8-2 shows what is involved when two 16 -bit numbers are
added in "full parallel" fashion. This approach would be employed in the
"arithmetic and logic unit" or ALU of a computer that uses 16 -bit words.
(ALU is pronounced by spelling A -L -U. An ALU is a sort of extra -
sophisticated adder-subtracter, as we will see in the next chapter.)
Two words to be added are routed from the random-access main memory
(not shown), placed in two parallel 16 -bit 'input registers," and then
routed to the 16 -bit adder. The resulting 16 -bit sum word goes into an
"output register," from which it is later routed to be stored in the main
memory.

LEAST

SIGNIFICANT

BIT
(LSB)

16 BITS

Two
INPUT

REGISTERS

MOST

SIGNIFICANT

BIT

(MSB) -
Two WORDS LSB
TAKEN ONE
AT A TIME
FROM RAM

16 BITS

MSB

16 -BIT
BINARY
ADDER

Result is a
SUM BITS 16 -bit word

FROM 1 -BIT which is then
ADDERS stored in RAM.

ONE

OUTPUT

REGISTER

LSB

16 BITS

MSB

OUTPUT

CARRY OF -1 -
INDICATES

OVERFLOW

Figure 8-2. A 16 -bit adder in the "arithmetic and logic unit" of a
computer, showing groups of bits (words) processed in "full parallel"
fashion. (Routing details to and from registers are not shown.)
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Now the point of this example is to show that all the bits of two

binary number can be added in just one step. The groups of bits involved-
the words, representing binary numbers-are not broken up into smaller
groups as we mentioned a little bit earlier.

In a moment, we'll see what's involved when we do break up
numbers for addition. But first, you may be curious as to how the adder in
a computer might work. In a computer's ALU, we want to add as quickly
as possible. So the ALU would probably use a very fast type of design
called a "carry -look -ahead" adder. Even though a 16 -bit carry -look -ahead
adder is too complicated for us to look at, it would work something like
the four -bit carry -look -ahead adder shown in Figure 8-3. It would be
much more complicated and would handle numbers with 16 bits rather
than four. Study the adder in Figure 8-3 to see that it does exactly
the same job as the one we saw in Figure 3-14, but it completes an
addition faster because it has special circuitry to handle carries so it
doesn't have to wait for "carry" bits to pass (ripple) between one -bit
adders.

To get back to our subject now, let's see what's involved in adding
numbers in full serial fashion.

What's involved in "full serial" binary addition?
"Full serial" addition of binary numbers means adding one bit at

a time from each of the incoming numbers, using the same one -bit full
adder for all the bits. (Refer to Chapter 3 for a refresher on one -bit
adders.) Figure 8-4 shows how this may be done in the case of adding two
16 -bit numbers.

CK

MSB LSB

SHIFT REGISTERS

1111111111111.111
MSB LSB

CK

1 -BIT FULL
ADDER

A

B

C,

E

D
CK

CK

CK

1111111111111111

-D" FLIP-FLOP

SHIFT REGISTER

Figure 8-4. Idea of how binary numbers can be added in 'full serial"
fashion, using one 1 -bit full adder
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The two incoming numbers to be added, called A and B, are first

placed in two shift registers (by way of connections not shown in Figure
8-4). The two registers are clocked in step with a third shift register that
receives the "sum" bit. The least -significant bits (LSBs) go to the adder
first, and after 16 clock pulses, the 16 -bit sum is in the output register. A
flip-flop clocked in step with the registers stores the "carry" bit from
adding each pair of bits, and passes it to the adder for adding in with the
next pair.

(Incidentally, although the adders in this chapter perform the
same function as those in Chapter 3, you'll see slightly different labels for
the inputs and outputs in Figures 8-3 and 8-4. These somewhat more
complicated labels match those you're likely to see in an integrated -circuit
catalog.)

Full -serial addition wouldn't be used in the arithmetic and logic
unit of a computer, because it's far too slow. But it comes in very handy
when we don't need high speed but do need to save cost and space on an IC
chip. A good example is the "program counter" in our example
calculator-so let's take a look.

How would a program counter use serial addition?

In any system that operates by following a series of stored
instructions (such as our calculator), the "program counter" consists of the
address register, together with circuitry to add one to the address in the
register when required. This is so that the next instruction in a series can
be called up for the next instruction cycle, enabling the controller to step
through a programmed "routine" as we discussed in Chapter 1. Figure 8-5
shows how the program counter in our calculator could use full -serial
addition for this purpose.

If you compare the program counter with the full -serial adder
in the preceding figure, you'll see that the principle is the same.
However, in the program counter, the address register serves both to
provide one input number "B" and to receive the sum. (This is an 8 -bit
shift register with parallel inputs and outputs as we discussed with
respect to Figure 4-3b and 4-6. We assume our calculator's addresses
consist of 8 bits each.) The other input number "A" is provided by the
"addend" flip-flop. This unit has a constant "0" at its data input. But
it can be preset to "1" by the controller at the beginning of each
instruction cycle. (You'll remember from Chapter 1 that an instruction
cycle is the time during which the controller uses each instruction it
calls up.)
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ADDRESS REGISTER

CONTROLLER

PARALLEL LOAD CONTROL

8 BITS

PRESET TO ADD 1

CONSTANT 0

"ADDEND'' FLIP-FLOP

CI<

D 0
CK

CK

CK

"CARRY" FLIP-FLOP

CK

MSB

8 BITS

C. A B

1 -BIT
FULL ADDER

C,,

LSB

MICROPROGRAM
MEMORY

Least -significant bit
(LSB) and most -signifi-
cant bit (MSB) are in
these positions at end
of each instruction cycle.

Figure 8-5. Possible design for a calculator's 'program counter,"
illustrating application of "full -serial" addition

The address register and both flip-flops are clocked eight times
during each instruction cycle. If nothing is to be added to the current
address (say, to repeat the current instruction), the controller does not
preset the addend flip-flop. So the constant 0 is added to each bit of the
address as it recirculates through the adder. At the end of the instruction
cycle, the address is back in the correct position for a short time, during
which the microprogram memory refers to it and fetches the instruction
at that address.

To add 1 to the address, the controller presets the addend flip-flop
to 1 at the beginning of an instruction cycle. This 1 is added to the LSB of
the address during the first clock cycle. For the remaining seven cycles,
the addend flip-flop presents the constant 0 to be added to the other seven
bits of the old address.
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BITS

ADDED

INPUTS j(

7fl
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A B C Cn.v,
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ONE OF SEVEN

NAND EXPANDER

GATES''

I

5 -VOLT

POWER SUPPLY

SUBSTRATE
/ (GROUND,
/ 0 VOLTS)

"AND" GATE
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EXPANDER -GATE
INPUTS
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-R7OF SUM

BIT

SINGLE -INPUT

CIRCUIT LIKE

EXPANDERS

AT LEFT

t
OUTPUTS

INVERSE OF

OUTGOING CARRY BIT

HIGH-SPEED -AND" GATE
WITH THREE

EXPANDER -GATE INPUTS

Figure 8-6. Schematic diagram of a 1 -bit full adder in 54/74 TTL Family
(Texas Instruments SN7480)
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How complex is a one -bit adder?

The difference between the complexity and size of a 16 -bit adder
and a 1 -bit adder may not seem very important unless you remember how
building-blocks like these are made. To make sure we don't loose sight of
the inner workings of the parts we're discussing, let's look at a schematic
diagram of a one -bit adder, shown in Figure 8-6.

This is part of the circuitry of a Texas Instrument's IC called
SN7480, taken directly from The TTL Data Book with minor
rearrangement for easier understanding. (The calculator uses MOS
circuitry instead of TTL, but the example is still meaningful.) As an
exercise, see if you can draw the logic diagram for this circuit by
inspecting Figure 8-6. (It's not fair to peek at Figure 8-7 until after you're
finished!)

In picking the gates out of this TTL circuit, you'll recognize seven
"NAND expander gates" in two groups, with each group arranged much
as we saw in Figure 6-9. Beside having a common output resistor as in
Figure 6-9, each group of NAND expanders in Figure 8-6 is followed by
circuitry shown in the two middle outlined boxes. This circuitry improves
noise margin and fan -out (the ability to drive other circuits without
making errors due to "noise.")

Each group of expander gates with the associated circuitry to the
right acts as a group of NAND gates feeding an AND gate. As we learned
back in Figure 6-9, this combination acts as a group of AND gates feeding
a NOR gate, which is called an "AND -OR -invert" combination. As for the
inverter in the outlined box at the right in Figure 8-6, note that it consists
of one single -input TTL expander circuit followed by circuitry like that in
the upper middle outlined box.

What does the logic diagram look like for the adder?

For your reference, Figure 8-7 shows the logic diagram for the
schematic in Figure 8-6 (assuming positive logic). Also shown is the truth
table, which happens to be the same whether positive or negative logic is
used. The basic part of the truth table is the same as we first saw back in
Figure 3-15. But the logic diagram in Figure 8-7 is different from the one
in Figure 3-15. This is to take maximum advantage of the simple, fast
"AND -OR -invert" combination, as explained in Figure 8-7.

The main thing you should note in Figure 8-7 is that each gate
can be recognized in the schematic diagram. Beside improving your
familiarity with TTL schematic diagrams, this example is a reminder of
how complex even a simple one -bit adder can be. So you can see why we
want to avoid full -parallel addition if we can get away with it.
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C,
B

TRUTH TABLE

HAPPENS TO BE SAME WITH
POSITIVE OR NEGATIVE LOGIC

INPUTS
FOR
REF .

OUTPUTS

A B C, C., C,+, I
0 0 0 0 1 0

0 0 1 0 1 1

0 1 0 0 1 1

0 1 1 1 0 0

1 0 0 0 1 1

1 0 1 1 0 0

1 1 0 1 0 0

1 1 1 1 0 1

To use inverted
carry bits, bold
adders use negative
logic. This requires
inverters on A & B
inputs and final
carry. Also use

output.

C4

LOGIC DIAGRAM
(POSITIVE LOGIC)

A B C

C,+,

Simple, fast "AND -OR -invert"
combination produces inverted
carry bit. To avoid further
propagation delay in rippling
of carry bits through chain
of adders, leave each carry
inverted as shown below.

A4 84

C3

A3 B3 A2 B2 Al B1

CO

A

C

B C,

1E E

A B C,

C 2 E

A

C

B

,E

C

E

A B C

E ±"

E4 E3 E2 El

Figure 8-7. Logic diagram and truth table for one -bit adder in preceding
figure, showing how several of these adders can be used together without
needing inverters for the carry bits (except at the end)

What are the choices other than full parallel or serial?

In many cases, the system designer will find it best to use a
grouping of bits in between the extremes of full -parallel and full -serial. A
good example of this is the adder-subtracter in our calculator, which we
last discussed with regard to Figure 7-5. A simplified picture is provided
in Figure 8-8. This "combination" method of grouping bits in a BCD
number is called "bit -parallel, digit -serial."
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CK

DISPLAY REGISTER

111M1110111MmEmi

......M==11111

OPERAND REGISTER

CK

Note: "CK" represents
common clock signals.

4 -BIT
BCD

ADDER

CK

.1.1111MMINENNIIME=MENU=
ACCUMULATOR REGISTER

Storage unit for
carry bit added
in with next most
significant digit

CK

Figure 8-8. Simplified picture of "bit -parallel, digit -serial" addition of
BCD numbers in the example calculator

As we have seen before, one pair of four -bit groups is added
at a time, representing a pair of decimal digits. The "carry" bit is stored
between addition steps in a flip-flop clocked in step with the shift
registers that handle the numbers. Although binary numbers can be
handled in groups like this, such an approach is particularly convenient for
binary-coded decimal numbers, which the calculator uses.

How do you add BCD numbers?

We haven't yet seen how BCD numbers are added, so let's take a
quick look at how it's done. It's just a matter of adding digits as if they
were ordinary four -bit binary numbers, and then adding six if the sum
is greater than nine.

Figure 8-9 shows an example of how this works, in the addition of
nine and eight. The result of binary addition is 10001, which is binary
seventeen. Since this is greater than nine, we add six, giving us binary
twenty-three, which is 10111. This result is treated as a carry of 1 and a
BCD sum of 0111, or seventeen in BCD form. Simple, isn't it?

16 8 4 2 1

("Sixteens Place"
Represents Carry
to Next Stage)

111
1 0 0 1 NINE

ADD: 1 0 0 0 EIGHT

1 0 0 0 1 BINARY SEVENTEEN: It's above nine,

ADD: 0 0 1 1 0 - so add six.

1 0 1 1 1 BINARY TWENTY-THREE

1 7 SAME AS BCD SEVENTEEN

Figure 8-9. Example of correcting 6 binary number over nine (a sum of
seventeen) to BCD form by adding s x
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Figure 8-10 shows how this method for BCD addition can possibly

be handled in a calculator. Inside the adder-subtracter would be two 4 -bit
binary adders as shown. A little decoder network puts out a "1" when the
sum is greater than nine, and a "0" otherwise. In the second adder, the
binary sum is added to a number consisting of "0" in the ones and eights
places, and the decoder output in the twos and fours places. So this number
is six (0110) when the decoder is recognizing a number greater than nine.
Again", it's a pretty simple idea, right?

What you've seen in these discussions of how the addition
function can be performed is examples of different ways to group bits
together for processing. The question of grouping comes up in the design
of various stages of processing in a system-not just for addition. And as
we've seen, the answer depends on careful consideration of how fast the
function must be performed and how much processing capacity can be
afforded.

So now we're ready to move on to the second of the three factors
that we said must be considered in designing a "system function."

BCD
DIGITS

TO BE

ADDED

INCOMING

CARRY

First 4 -Bit Binary
Adder produces
binary sum, not BCD

Decoder generates
"1" when sum is
greater than nine.
this makes 0110 (six)
at second adder.

BINARY SUM
III

OF BCD DIGITS

CK
FLIP-FLOP

Second 4 -bit binary
adder adds six when
sum is over nine.
otherwise, it adds zero.

BCD
SUM

Figure 8-10. How two 4 -bit binary adders with a simple decoder can
perform additions in BCD code in the adder-subtracter of a calculator.
(This time, terminal labels indicate the numerical significance of each
bit in a binary number.)
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What are "hard -wired" and "variable -programmed" control methods?

The second factor or alternative is whether to perform a given
sequence of functions by using "fixed" or "hard -wired" control on the one
hand, or "variable programming" on the other hand. A hard -wired system
(or subsystem) is one whose function or behavior is permanently fixed, so
that the way it operates and the things it does cannot be changed. The
function is "wired" into the system, by the way the "hardware" (the
transistors, gates, components, wires) is connected together. But a
"variable -programmed" system (or subsystem)follows instructions from a
memory unit in deciding what to do. So its operation can be changed by
changing the "programs" in the memory. Such programs are called
"software," because they're different from the "hardware" involved in
hard -wired systems.

The difference is not that hard -wired systems don't have
programs. Many of them do follow steps in a sequence, and these steps are
often called a "program" The difference is that the program cannot be
changed in a hard -wired system.

To give you an idea of the difference between "hard -wired"
functions and "variable -programmed" functions, let's look at an example
of each kind in our calculator.

What does the hard -wired segment decoder subsystem do?

One important and fairly complicated hard -wired function in the
calculator is that performed by the segment decoder subsystem. This
function is illustrated in Figure 8-11. First, let's see what the segment
decoder subsystem does, and then we'll see how it does this by using
hard -wired programming.

As indicated in Figure 8-11, the four output bits from the
recirculating display register are supplied to the decoder. (We discussed
recirculating registers in Figure 7-5. The routing details will be covered
later in this chapter.) To understand the function of the decoder, we must
have in mind exactly how numbers are stored in the register, as shown in
Figure 8-11.

Because of its continuous recirculation, the display register has
ten storage spots for four -bit BCD digits, which revolve around and
around like the baskets on a Ferris wheel. So we'll call these spots "digit
baskets," and give each basket a number as shown in Figure 8-11. Baskets
0 through 7 are for the actual digits of the number, not counting the sign
or decimal point. These eight digits together are called the "integer" for
the number. (An integer is a number without a decimal point.) Basket 0 is
for the least -significant digit (LSD), and basket 7 is for the
most -significant digit (MSD).

UNDERSTANDING DIGITAL ELECTRONICS 8-13



How DIGITAL SYSTEMS FUNCTION

8
Basket 8, in turn, is where we would put a "1" to store a "minus"

(negative) sign for the number. And basket 9 is for the "decimal -point
digit" or DPD. The DPD tells how many steps from the right end of the
integer the decimal point goes.

Above the display in Figure 8-11, we see the basket number for
the digit that's displayed in each of the nine character positions. (Note
that the character position at the far left is for a minus sign or symbols
indicating errors, overflow, etc.) The decimal -point LED (light -emitting
diode) for each character position is at the right of the digit. So the DPD is
the basket number for the digit that's displayed in the character position
where the decimal point goes. As an example, notice that a DPD of 3 and
an integer of 00007426 in the display register cause "7.426" to be shown in
the display.

Basket numbers where each displayed
digit is stored. Same as DPDs
representing decimal points at right side
of these character positions. DISPLAY

8 7 6 5 4 3 2 1 0

SIGN MSD LSD SEGMENT -LINE OUTPUTS

-I I I I_
I.

.71
I_ UI

S, 5, 5, S, S, 5, 5, S, S,

SCAN LINES TO CHARACTER POSITIONS

(connections are simpli ied.)

A
DISPLAY REGISTER

Recirculates once while each scan line is "on.'

1 o o 0 0 1 0 o o

1 o o 0 0 1 0 1 1

0 o o 0 0 1 1 0

0 o o 0 o o 0 0 0

Basket 9 is for
decimal -point digit
(DPD).

Basket 8 is for "1"
for minus sign.

8 7 6 5 4 3 2 1 0

MSD LSD

Baskets 0 through 7 are
for the 8 -digit decimal
"integer."

111-11.

41-111.

abcde f gh
1

2 SEGMENT
4 DECODER
8 SUBSYSTEM

ASSUME REGISTER IS
CLOCKED BY 01 CLOCK PHASE

NUMBER OF RECIRCULATING
"DIGIT BASKETS," SHOWN
WHEN BASKET 'ZERO" IS
AT REGISTER OUTPUTS

Figure 8-11. The calculator's segment decoder subsystem selects and
decodes the correct integer digit for the scan line that's currently 'on."
It also turns on the decimal point if indicated by the decimal -point digit.
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You'll remember from Figure 1-5 that one character position at a
time is illuminated when its scan line is "on." The scan lines (labelled S,
through S9) are turned on one after another, from left to right. Every time
a new scan line is turned on, the decoder subsystem must switch its eight
outputs to the pattern for the digit (and maybe decimal point) to be
displayed in this next character position.

Meantime, the display register makes one full recirculation while
each scan line is "on." This constitutes one instruction cycle, the time
during which one instruction is in effect. So during each instruction cycle,
the decoder subsystem has to pick out and store the integer digit that's to
be displayed next. It also has to look at the DPD, decide whether it's going
to turn on the decimal point for the next character position, and remember
this decision. The digit and decimal -point signals that it's currently
transmitting are the ones it stored this way during the preceding
instruction cycle.

That's a summary of most of the things the segment decoder
subsystem does. It has still other jobs to do, such as providing a minus sign
or error characters, and leaving out zeroes at the left of a number. But just
the simplified function of getting the correct digits and decimal point into
the correct character positions is enough to provide an illustration of the
idea of "hard -wired" control.

What's a possible design for the segment decoder subsystem?

Figure 8-12 shows a possible design for a subsystem to perform
this simplified function. As you can see, even a "simple" hard -wired
function can get pretty complicated. In the upper left-hand corner, you'll
see the 7 -segment decoder -driver that we studied in Chapter 3. Four -bit
latch "D" holds the digit currently being decoded and transmitted, and
four -bit latch "C" stores the digit picked out for transmitting during the
next instruction cycle. Similarly, flip-flop "F" transmits a "1" during the
instruction cycle when the decimal -point LED is illuminated. And flip-flop
"E" stores a "1" when the next instruction cycle will have the decimal
point turned on. (The "decimal -point driver" provides segment output "h"
by accepting or "sinking" current from the LED to turn it on.)

The remaining parts of the subsystem (in the large block)
provide the "control signals" (shown as bold lines) for the main working
parts that we just named. Together with timing signals (the three clock
phases), these signals are what make the right things happen at the right
times in the subsystem. The point that we're illustrating by learning
about this subsystem is that these control signals are generated in a
"hard -wired" manner, rather than as a result of stored instructions.

UNDERSTANDING DIGITAL ELECTRONICS 8-15



How DIGITAL SYSTEMS FUNCTION

8
Enough labels and comments are provided in Figure 8-12 for you

to pick your way through the action of this subsystem if you like. You will
find that the sequence of control signals is based on a series of two
counters and a clock -signal input. This is because something different has
to happen whenever a new "basket" appears at the output of the display
register, and whenever a new scan line is turned on at the beginning of an
instruction cycle. In effect, the control circuitry counts baskets and scan
lines. Then it uses a decoder and some other combinational networks to
figure out what to transmit in the four control lines at each new step in
the count. As we will see later, this general pattern of counters followed
by decoders and other combinational networks is typical of most
hard -wired systems and subsystems.

How do control signals differ from timing signals?

Figure 8-12 provides an illustration of the difference between
"control" signals and "timing" signals, with regard to the operation of
latches C and D. Like most systems of any complexity at all, our calculator
is a "synchronous" system. This means that nearly everything that takes
place is made to wait for just the right moment in time, as counted out by
the system's three-phase clock. This is to make sure that everything
happens in the proper sequence-that a new step is not begun before the
preceding step is completed. In effect, control signals say what to do, and
timing signals say precisely when to do it.

Notice in Figure 8-12 that the clock signal to each latch is the
AND function of a control signal and a timing signal. As the timing
diagram in Figure 8-12 indicates, the beginning of each control pulse is
rather indefinite-due, let's say, to rippling in the counters (which we
discussed in Chapter 4). This could be a problem at the beginning of "scan
time 8," as scan line number eight comes on, because both latches are to be
clocked during "basket zero" time, but latch D must be clocked first.

Making the clocking of the latches dependent on the clock phases
as well as the control signals takes care of this problem, making sure that
latch D gets clocked first in this "close call" situation. In effect, a control
signal says, "Clock the latch," and a timing signal comes along then and
says, "Okay, do it now!"

And that completes our example of a "hard -wired" subsystem.
We've seen different things made to happen at different time in a
prearranged sequence, based on counting clock pulses and decoding the
counts. And we've seen the partnership arrangement between control and
timing signals in a synchronous system.
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Figure 8-12. Possible design (simplified) for segment decoder subsystem
in calculator, illustrating idea of "hard -wired" control sequence
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What's an example of "variable -program" control?

And this brings us to the other alternative for controlling
sequences of operations-which we said earlier is called "variable
programming." This method will be easy to understand, because we've
already seen it in operation in the calculator. The fact is that the "master
control" over all the various sections of the calculator (which are
themselves "hard -wired"), is exerted by following instructions stored in
the microprogram memory.

Figure 8-13 shows a highly simplified, general comparison of
variable -program and sequential hard -wired control. On the right, we see
the basic concept we studied in the decoder subsystem-a counter followed
by decoder networks, possibly with other information also supplied. Note
that in some systems, the counter can be preset to a beginning state that
may be required. The step-by-step control sequence is "hard=wired" into
the circuitry of such a system.

VARIABLE -PROGRAM
CONTROL

-41
PROGRAM

COUNTER &
ADDRESS

REGISTER

INSTRUCTION

REGISTER

FIRST ADDRESS

Afro.'"*.' OF A -ROUTINE-

V

INSTRUCTIONS
STORED IN
MEMORY

CONTROLLER
(DECODER NETWORKS)

CONTROL SIGNALS

VARIOUS OTHER
INFORMATION:

FLAGS,

KEYBOARD,

ETC.

SEQUENTIAL
HARD -WIRED CONTROL

Possible to
preset counter to
first state of
a routine
r

Various other
information and
possibly control
signals from
"master"
variable -program
controller

COUNTER

MASTER TIMING

SIGNAL

_LL-

DECODER
NETWORKS

CONTROL SIGNALS

Figure 8-13. Highly simplified, general comparison of ideas of
variable -program and hard -wired control methods
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The picture on the left is just a rearranged version of some parts

from the calculator block diagram (Figures 7-1 or 1-6). The controller loads
the first address of an instruction sequence (a "routine") into the address
register. The program counter steps through the routine like the
hard -wired counter at the right, until the controller interferes by stopping
the counting or loading a new address. Each address eventually gives rise
to a certain set of control signals, as does each counter state in the
hard -wired system. The controller consists mainly of decoder and other
combinational networks similar in concept to those in the hard -wired
system. The big difference is that the control process in the programmed
system passes through the intermediate state consisting of stored
instructions. As we will see in the next chapter, this makes all the
difference in the world.

The only serious drawback of variable -program control is that
it's generally slower, due mainly to the time required to fetch instructions
from a memory. In many cases, speed requirements prevent the use of
variable -program methods.

What examples illustrate "dedicated" and "multipurpose" functions?
Now let's move on to the last of the three system -design factors

we set out to identify, which is the choice between using "dedicated"
hardware and "multipurpose" hardware for performing a certain
function. That is, do we use a special unit off to itself, dedicated to just
one job-or do we use a unit that can do this job and others as well?

Here again, we can find excellent examples of the two choices in
the calculator, with respect to the addition function. On the one hand, the
program counter (Figure 8-5) contains a dedicated adder. It's limited to a
single, very special job-that of adding one to the address register
("program counter") so as to go to the next instruction. On the other hand,
the adder-subtracter is a multipurpose unit that can perform the addition
function. It's multipurpose not only with regard to addition, subtraction,
and comparison, but also with regard to where the added numbers come
from and where the sums go. We could even make a calculator in which the
adder-subtracter is used to add one to the present address, thereby using a
multipurpose adder rather than a dedicated one.

However, that would make the programming very clumsy, clutter
up the microprogram memory with extra instructions for adding to
addresses, and greatly increase the time required for the calculator to do
anything. So as you can see, the decision between dedicated and
multipurpose depends on the circumstances.
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Ordinarily, a very simple function requiring very little hardware

is best performed in dedicated fashion. For example, the adder in the
program counter is a relatively insignificant part of the calculator chip.
But if you need a sizeable piece of hardware for the function, you'll get
more for your money if you share it with other applications in the system.
This is why we don't stick in separate units for adding, subtracting, and
comparing. With just a little bit of extra hardware and programming
(which we call "software," remember?), we can make a subsystem that will
do all three jobs, which we call the "adder-subtracter."

Can the calculator provide further examples of system design?

That completes the general picture of the three main design
factors which need to be considered in making the parts of digital systems
work together. We've covered the choices between parallel and serial
processing, between hard -wired and variable -programmed control, and
between dedicated and multipurpose functions. You probably can see
more clearly now why we've called this chapter, "How Digital Systems
Function." And you can see the sort of things that are involved in putting
together various building-blocks to perform certain "functions," or jobs.

To help fix the three design factors in your mind, and to provide
further examples, let's look deeper into the design and operation of our
example calculator. For the first time now, we're in a position to see how
the calculator works in rather fine detail, and to get more specific about a
number of points that we've only glossed over earlier in the book.

How do you subtract BCD numbers using "ones complement"?

First, let's see how the adder-subtracter could manage to subtract
binary-coded decimal numbers. Figure 8-14 shows the principle of one of
several methods that might be used. The method is called "ones -
complement" subtraction because it involves using the "ones complement"
of the subtrahend. (The "subtrahend" is the number subtracted. The
"minuend" is the number subtracted from.) To make a number into its
ones -complement, you simply invert all the bits-change ones to zeroes and
zeroes to ones. For purposes of addition, this has the effect of changing the
sign of ehe number. So we can subtract a number by adding its ones -
complement, in a certain way.

As you can see in the logic diagram of Figure 8-14, the four -bit
subtrahend digit and the incoming carry (now called "borrow") are first
inverted. The resulting bits are added to the minuend digit by a binary
adder. The resulting "intermediate sum" digit goes to a second adder.
There, it's added to 1010 (ten) if the first addition produced a carry
(borrow) of zero. If this first (or "intermediate") carry (borrow) bit was 1,
the second adder adds nothing (0000).
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Believe it or not, this weird arrangement really subtracts. It even

produces an "outgoing borrow" bit of 1 when the minuend digit is
smaller than the subtrahend digit. This borrow bit is held over in the
"carry -borrow" storage unit, like the "carry" bit during addition.

Rather than explaining why you get subtraction when you invert
and add, let's just look at an example, also shown in Figure 8-14. We're
subtracting 35 from 74. You see the various bits in the order in which they
are clocked in and out of the substractor above. At the bottom of the
figure, the details of the process are listed. There, the first and second
additions of each stage are listed one above the other. You should follow
the process through for yourself, from right to left. We have eight stages,
for the eight digit baskets in the registers. Stages three through eight are
identical. The original incoming borrow bit is 0.

Does this subtracter work in every possible case?

As it turns out, this subtracter works right only when the
minuend is not smaller than the subtrahend-that is, when the minuened
is greater than or equal to the subtrahend. To understand why, note that
after all eight pairs of example digits are shifted through the
substractors, the last "borrow" bit left in the storage unit is 0. This
signifies that in this example, the whole minuend is not smaller than the
subtrahend.

If we had instead subtracted 74 from 35, we would have gotten an
answer of 99999961, with a final borrow of 1. This final borrow would tell
us that the minuend is smaller than the subtrahend, and that we're going
to have to take some extra steps to get the right answer. So how do we do
that?

How can "comparing" numbers help get the right answer?

As indicated in Figure 8-14, the subtracter also performs the
function of a comparator, which we mentioned earlier. The "borrow" bit is
routed to the controller, telling it whether or not the minuend is smaller
than the subtrahend. This is our clue to getting the right answer when the
minuend is smaller..

If the controller finds that the final borrow is "1" after first
trying a particular subtraction, its instructions tell it to try the
subtraction again, with the two incoming numbers crossed over the other
way by the routing circuitry. This time, the final borrow will be "0," and
the result will be correct.
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How are three functions combined in the adder-subtracter?

As Figure 8-15 shows, the complete adder-subtracter subsystem
would combine the BCD addition, subtraction, and comparison functions
from Figures 8-10 and 8-14, using the same two 4 -bit binary adders. An
"add -or -subtract" control signal from the controller causes the "true -

complement" unit to either pass through the incoming digit and carry-

borrow bit for an addition operation, or invert these signals for a
subtraction operation. Similarly, the "correction decoder" generates either
the 0110 or 0000 required for BCD addition or the 1010 or 0000 required for
BCD subtraction. This, then, is how one multipurpose subsystem could
perform any of three different functions-digit-serial BCD addition,
digit -serial BCD subtraction, or comparison of digits or whole numbers-
all under variable -program control.

How does a calculator handle negative numbers?

Our discussion of subtraction may make you wonder how a
calculator handles negative numbers, meaning numbers less than zero
(numbers with a minus sign). We've said from time to time that one of the
digit positions in each number register is for storing a "1" to indicate the
number is negative (basket number eight in Figure 8-11). But when the
calculator performs an arithmetic operation-add, subtract, multiply, or
divide-how does it know what sign to put on the resulting number?

The answer is that the controller simply follows a sequence of
instructions that makes it look at the signs of the two original numbers in
the display and operand registers. Further instructions lead the controller
through some simple logic to figure out what the sign of the result should
be. In the case of adding and subtracting, this also requires seeing which
of the two numbers is larger. The controller looks at signs the same way it
compares the size of numbers, by the comparison function.

For example, as shown in Figure 8-16, to check the sign of the
number in the display register, the controller waits until the sign digits
(basket eight) are at the register outputs. Then it subtracts the
display -register sign bit from zero. (The zero is provided by the "constant
generator" subsystem.) A resulting borrow bit of 1 tells the controller that
the display -register sign is negative. (In case you're curious, the
subtraction process to generate the borrow bit is summarized in
Figure 8-16.)

The controller then makes a note of this sign in the flag
register-along with notes on the sign of the number in the operand
register and on which of the two numbers is larger. After following
instructions that lead it to figure out what the sign of the result in the
accumulator register should be, it routes a 1 or 0 from the constant
generator to the sign -digit position in the accumulator register. As you
can see, the instructions make the controller follow much the same steps
you would in working out a problem with pencil and paper.
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(Actually, a real calculator would most likely not store signs in

the three number registers, but would simply keep track of the three signs
permanently in the flag register. But for our initial understanding of
calculators, it's more comfortable to think of the signs being stored right
along with the numbers!)

How does the flag register work?

Since we've brought up the flag register again, let's see how it
might work. Figure 8-17 shows a design that would be compact and
convenient. Here, we've arranged for the flag register to consist of two
recirculating ten -bit shift registers labelled "A" and "B," like the four
that make up each of the three number registers. "The flag register" and
all three number registers are made as a single mass -memory unit
containing fourteen 10 -bit shift registers, all shifting in step together.
Thus, one little "basket" at a time is accessible by the controller as the
"digit basket" are assessed by the routing subsystem. Each basket
contains two "flag bits" that can be read or written as the basket passes
through the controller.

FLAG

REGISTER

0

>-

H

FLAG OPERATIONS

SET FLAG A TO 1
SET FLAG B TO 1

RESET FLAG A TO 0
RESET FLAG B TO 0

TOGGLE FLAG A
TOGGLE FLAG B

EXCHANGE FLAGS A & B

READ FLAG A
READ FLAG B

COMPARE FLAGS A & B

F-
. CONTROLLER

L
B

A

l
I

B

FLAG
CONTROL

UNIT

CONTROLS

OUTPUT TO T

" CONDITION LATCH

Lou_

0 RECIRCULATION INPUTS

ROUTING
SUBSYSTEM

Figure 8-17. The flag register could be two recirculating shift registers
made as part of same unit containing the three number registers.
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The reading and writing (and recirculation) of flags are handled
by a "flag control unit" in the controller subsystem, shown in Figure 8-17.
Shown above is a possible list of different "flag operations" that can be
performed on the two flag bits in one basket by appropriate signals
to the control unit.

Each of these operations would be done in response to an
instruction word from the microprogram memory. The bit resulting from
a "flag test" operation (reading or comparing flags) is stored in a one -bit
storage unit in the controller, called the "condition latch." A later
instruction would tell the controller to do one thing if the condition latch
has a "1," and another if it has a "0." You'll need to keep this in mind as
we study the subject of programming a system, in the next chapter.

How does the routing subsystem work?

We've mentioned the routing subsystem so often that we may as
well see how it works too. It mainly consists of data selectors, which might
be arranged as shown in Figure 8-18. Here, for simplicity, we're only
looking at the part of the subsystem that's associated with the display
register and one input to the adder-subtracter.

Each data selector has a number of four -bit inputs and one
four -bit output, each for a decimal digit. One four -bit input digit to each
data selector is selected for transmission to the output by control signals
from the controller. As an example, broken lines in Figure 8-18 show
paths selected by the controller (out of many possible paths) to
recirculate digits in the display register and also route them to one input
of the adder-subtracter.

A feature is included in Figure 8-18 that we haven't discussed
before - namely, a method for shifting stored digits to the right or left
among the ten baskets in each number register_Remember, we said back
in Chapter 1 that before entering a new digit from the keyboard into the
far right end of the display register, we have to shift the stored digits one
step to the left. And to "line up the decimal points" before adding or
subtracting, we may have to shift numbers to the left or right. So let's see
how this shifting is done.

How are digits shifted right or left in the registers?

This shifting is done by controlling the "shift -control" data
selector at the left in Figure 8-18, while the "load control" data selector is
set to recirculate data. During one full recirculation of the register, the
"shift -control" selector causes either one shift to the left (by selecting the
upper input), no shift at all (by selecting the middle input), or one shift to
the right (by selecting the lower input).
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The "left -shift" path simply adds one extra stage to the shift
register, thus delaying the recirculating digits one step behind their
former positions. And the "right -shift" path "short-circuits" the
recirculation path by one stage, by taking data from the next -to -the -last
stage of the display register. This advances the digits one position ahead
of the positions they had before.

There are some other details that must be attended to (such as
switching back to the normal "no -shift" path before the sign and
decimal -point digits get shifted, and resetting the two "selectable" stages
to zero before cutting them into the path). But this should give you a
general idea of how data in a recirculating shift register can be shifted
right or left among the circulating digit baskets.

Where do we go from here?

In our process of studying how digital systems are put together
to perform various functions, we have pretty well explained how nearly all
of the parts of our calculator work. However, we know that the calculator
is a "variable -programmed" system, in which sequences of instructions
taken from a memory exert a "master control" over various hard -wired
subsystems. We really haven't said very much about how stored programs
work yet, so we haven't discussed the calculator's operations that depend
on programming-such as how multiplication and division are performed,
and so forth.

These topics will be taken up in the next chapter, as we discuss
programmed digital systems. Our understanding of how the calculator
works will lead us directly to a comprehension of microprocessors and
computers, which are in many ways the most sophisticated of all digital
systems.
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Quiz for Chapter 8
1. The more bits you process at

one time, the faster the job gets
done, but:
a. The lower the accuracy.
b. The more circuitry required.
c. The more total bits you have

to process.
d. The more separate steps

required.

2. The operation of a "hard-
wired" system or sub-
system is determined by:
a. The way the hardware is put

together.
b. The way the hardware is

controlled by instructions
stored inside the unit.

c. The software in the unit.
d. All of the above.

3. Typically, the subsystems or
parts of a variable -programmed
system are themselves:
a. Variable -programmed.
b. Hard -wired, subject to

master control.
c. Completely independent of

master control.
d. All of the above.

4. What is illustrated by the
example of having the decoder
subsystem's two latches
dependent on different clock
phases for their operation?
a. "Control" signals can't

always be depended on to
say exactly when an action is
to happen.

b. The exact timing of a
controlled action can be very
important.

c. In a "synchronous" system,
most actions must wait for
the right clock signal.

d. All of the above.

5. In a typical "variable -
programmed" system, what
part provides the step-by-step
sequencing and therefore
corresponds to counters in
hard -wired systems?
a. The stored instructions.
b. The decoder networks of the

controller.
c. The instruction register.
d. The program counter.

6. What is the main advantage of
variable -program control over
hard -wired control?
a. It's typically faster.
b. It's easy to change the

program by storing a
different set of instructions.

c. The system is typically
smaller.

d. All of the above.

7. If a sizeable piece of hardware
is needed for a certain function,
you'll get more for your money
if:
a. The hardware is dedicated to

one job.
b. The hardware is shared

among several jobs as a
"multipurpose" unit.

c. Bits are processed in smaller
groups.

d. Variable -programmed
master control is used.

(Answers in back of the book)
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Programmed Digital
Systems

In the last chapter, we were introduced to the idea of
"programmed" digital systems. We learned that such systems are made
of a number of "hard -wired" subsystems, which work together under the
control of a "variable program." Thus, the "hardware" can be made to do
any of a number of different jobs, according to the design of the
"software," meaning the stored instructions that are followed one at a
time, step by step.

In this chapter, we will learn more about programmed systems-
how they work, how various kinds differ from one another, and how they
can be used in a wide variety of applications. The reason we're spending
an entire chapter on this subject is that more and more digital
systems are using variable -programming rather than being completely
hard -wired. It seems that programmed systems are the wave of the
future in digital electronics.

Why are programmed systems "the wave of the future"?

The reason why more and more digital systems are using the
variable -programmed approach is summarized in Figure 9-1. This figure
shows several stages in the evolution of digital semiconductor circuitry,
beginning in the early 1950's with circuitry made entirely of "discrete"
(separate) devices.

By the early nineteen seventies, it became possible to put the
main digital circuitry of complete systems in just one integrated circuit.
(Large systems might instead have each subsystem or major part in a
single IC.) This level of integration is commonly called "very -large-scale
integration" or "VLSI," as opposed to earlier small, medium, and
large-scale integration. These levels of complexity are explained in
Figure 9-1.

However, no two systems are exactly alike. So unless you're
going to make and sell a system in very large quantities (say, several
hundred thousand systems), it typically won't pay to cram all its main
circuitry into a single highly specialized IC. This is because it would cost
a great deal to design the IC and put it into production. Thus, integrated
circuits aren't economical unless they're mass-produced in large
numbers.
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Figure 9-1 indicates this fact for the early 1970's. On the

one hand, we see that there will be a few systems sold in large enough
quantities to use specially -designed VLSI circuits. But on the other hand,
an increasing number of systems will use standard, mass-produced ICs
(or sets of just a few ICs) of VLSI types that can be programmed to serve
a wide variety of systems. For example, the same IC could possibly be
programmed as the main circuitry of either the digital autopilot that we
saw in Figure 5-11, or of a calculator. (Different accessory units would
be used in each application, of course.)

EARLY 1950'S

EARLY 1960'S

MIDDLE 1960'S

LATE 1960'S

SPECIAL ICs MADE JUST
FOR ONE SYSTEM DESIGN

EARLY 1970'S:

"VERY LARGE-
SCALE INTEGRATION"

(More than about 1000 gates:
Complete system or
several subsystems) ICs THAT CAN BE PROGRAMMED

TO SUIT MANY DIFFERENT SYSTEMS:
"MICROPROCESSORS"

"DISCRETE"
DEVICES
(Transistors)

"SMALL-SCALE
INTEGRATION"
(Up to about 12 gates)

"MEDIUM -SCALE
INTEGRATION"
(Up to about 100 gates:
Building-blocks such as
counters, adders, etc.)

"LARGE-SCALE
INTEGRATION"
(Up to about 1000 gates:
Subsystems such as
adder-subtracter for
calculator.)

Figure 9-1. Stages in evolution of digital semiconductor circuitry, showing
that more complex ICs are also more specialized, so that fewer of each can
be sold. Sales volume makes general-purpose programmable systems more
economical than single -purpose integrated systems.
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A number of different kinds of "general-purpose program-
mable" ICs and sets of ICs are available from semiconductor
manufacturers. Many of these fall in a group called "microprocessors,"
which we will be studying later in this chapter. Because they can be used
in so many different systems, microprocessors can be manufactured in
large enough quantities for their costs to be as low as possible.

The story is much the same for systems that are too large to be
made of a single microprocessor, or even several microprocessors. Rather
than designing such a large digital system from scratch, it is usually more
economical to buy a mass-produced general-purpose programmable
system that's large enough for the job. Such larger systems are typically
called a "computer." However, as we will see, the trend in digital
electronics is to break large jobs up into parts that can be handled
instead by several smaller programmed units instead of using a single
computer. The smaller units (which may contain microprocessors) are
typically small computers called minicomputers or even smaller ones
called microcomputers.

How can one programmed system work in so many applications?

Of course, the big question that immediately comes to mind is,
"How in the world can just one set of hardware-whether it's a
microprocessor, microcomputer, minicomputer, or computer-possibly
provide the main circuitry for a wide variety of different systems?"
That's the main question which this chapter is intended to answer.

In simple terms, the answer is that the systems use the method
we have seen again and again in digital electronics. They break down the
big, complicated, specialized jobs into small, simple, unspecialized jobs. By
performing a large number of various small jobs-perhaps over and over
again on various pieces of information-they get the big jobs done.

To begin getting an idea of just how this breaking -up of large
jobs is done, let's turn once more to our example calculator, because it is
a system that can be programmed to perform a rather wide variety of
jobs. As we will see, it's quite a bit more specialized than typical
microprocessors and computers; but it does have many features in
common with such systems.

To be specific, let's see how several "big, complicated,
specialized" jobs are broken down by the calculator and performed as a
series of "small, simple, unspecialized" jobs. These small jobs are ones
that can be handled by the calculator's main processing unit (the
adder-subtracter), together with the routing and shifting processes that
the routing circuitry can handle. The calculator handles its "big" jobs in
essentially the same way as most microprocessors and computers, as we
will see later.
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The first example we'll look at is multiplication of numbers.
We'll spend quite a bit of time on this example, in learning the basic
concepts of programming. Then we'll quickly consider a couple of
additional examples.

What's an "algorithm," and what does it have to do with multiplying?

The first thing to understand about solving any numerical
problem-including multiplication-is the "algorithm" used for the
process. An algorithm is a logical plan for solving a problem by a series
of steps. It's the idea of a way to break a "big" problem into "smaller"
problems. Although we haven't used the word "algorithm" before, we
have already seen algorithms at work in the way hard -wired logic
networks add and subtract numbers. Furthermore, the methods we
learned in grammar school for adding, subtracting, multiplying, and
dividing are "algorithmic" methods.

The algorithm our example calculator uses for multiplication is
based on the ordinary algorithm for multiplying decimal numbers with
pencil and paper. Figure 9-2a shows how this algorithm works in the
example of multiplying 23.1 times 9.64. (You may remember from
elementary school that 23.1 is the "multiplier" and 9.64 is the
"multiplicand.") As you know, this customary algorithm involves
calculating three "partial products," one for each digit of the multiplier,
other than zeros. These partial products are then added to get the final
product.

a. b.
CUSTOMARY MULTIPLICATION BY

PENCIL & PAPER ADDING & SHIFTING
MULTIPLICATION

DECIMAL

POINT STEPS
NUMBERS TO LEFT INTEGERS

DECIMAL
POINT

DIGITS

MULTIPLICAND: 9.64 2 0 0 0 0 0 9 6 4 2 DISPLAY REGISTER

MULTIPLIER: X 23.1 + 1 0 0 0 0 0 2 3 1 + 1 OPERAND REGISTER

964 0 0 0 0 0 9 6 4-..--- i
TOTALS

0
SAME

0
ADD

"PARTIAL 2892
0 0

0 0

0

0

9 6

9 6

4

4

0

0 ADD TO

AS 0

{
AST 1 0

PRODUCTS" 0 0

0 0

0

9

9 6

6

4

0

0

0

i ACCUMULATOR
REGISTER

1 9 2 8
0 0 9

4

6 4 0 0
---

LEFT 0

222.684 3 0 0 2 2 2 6 8 4 3 ACCUMULATOR
REGISTER

Figure 9-2. Multiplication of 23.1 times 9.64, showing how calculator's
"add -and -shift" algorithm is similar to customary 'Pencil -and -paper"
algorithm
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To calculate the decimal -point position in the final product, we
count the steps to the decimal point from the right end of the
multiplicand and multiplier (2 and 1 in Figure 9-2a). We add these steps
together, getting a total of 3 steps from the right end for the decimal
point in the product. Thus, the answer is 222.684.

What algorithm does the calculator use for multiplication?

Figure 9-2b shows the same problem as it would be solved by the
algorithm used in the calculator. It works the same way, except that the
effect of each partial product is created by adding the multiplicand the
required number of times. For each of these multiple additions, the
multiplicand is shifted to the left the proper number of steps.

Notice in Figure 9-2b that the multiplier, multiplicand, and
product are written in the way they are stored in the number registers in
the calculator. The main part of each number is called the "integer,"
which means a number without a decimal point. For each integer, there
is a decimal -point digit, showing how many steps to the left the decimal
point goes. This is as we discussed it with respect to Figure 8-11.

To handle this problem in the calculator, we start with the
multiplicand in the display register, the multiplier in the operand
register, and an integer of zero (00000000) .in the accumulator register.
To this zero, we add the multiplicand integer (0000964) once, because the
"ones" place in the multiplier integer is 1. The sum of 00000964 goes back
into the accumulator.

Then we shift the multiplicand integer one place to the left in
the display register, making it 00009640. We add it to the accumulator
integer three times, because the "tens" place in the multiplier is 3. Each
time we add, the sum goes back into the accumulator.

We shift the multiplicand left once more, and add the resulting
00096400 into the accumulator two times, according to the 2 in the
"hundreds" place of the multiplier. That leaves our product integer of
00222684 in the accumulator register.

Finally, we add the decimal -point digits (DPDs) in the display
and operand registers (2 plus 1), and put the sum of 3 in the DPD
position in the accumulator. This completes the multiplication. We now
have our answer in the accumulator register, in the form of an integer of
00222684 and a DPD of 3. The full multiplication took six additions and
two shifts.

So that's how the calculator's multiplication algorithm works. To
dig deeper into the subject, let's look at the actual instructions that our
example calculator might follow as it performs a programmed
multiplication. That is, let's look into the program itself. This will show
us how software puts hardware through its paces. As we go through this
exercise, you will be recalling and building on just about everything you
have learned in various earlier chapters about how our example
calculator works.
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How would the multiplication algorithm be programmed?

The best way to understand the working of a program for any
system is to look at a "flow chart" of the program. Figure 9-3 is a type of
flow chart that outlines the general procedures for carrying out the
calculator multiplication algorithm we have been discussing. As you can
see, a flow chart is a sort of "road map" that shows various procedures as
blocks, with arrows indicating the paths the system may take in going
from one procedure to another. This chart is just a diagram of the
algorithm as we discussed it, except that the DPD of the product is
calculated at the beginning rather than the end, and we are including a
block for some "final details" that need to be attended to.

Figure 9-3 will be useful for reference in studying a more
detailed flow chart shown in Figure 9-4. Here, each block represents an
actual instruction stored in the microprogram memory. For the sake of
illustration, we're supposing that these instructions are stored at
addresses number 62 through 77, as you see written above the blocks in
Figure 9-4. Written in each block is a short description of what the
instruction makes the calculator do.

BEGIN

CALCULATE DPD OF PRODUCT:

Add operand DPD to display DPD
and put result in accumulator
DPD position.

ADDITION LOOP:

Add display register to
accumulator register a
number of times equal
to LSD of operand register.

SHIFTING LOOP:

Shift display integer
one step to left,
unless it's already as
far as it can go.

FINAL DETAILS

FINISH

Figure 9-3. Very general, simplified flow chart for carrying out the
algorithm of Figure 9-2b. (No provisions are included for handling overflow
or negative signs.)
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START ROUTINE
Program jumps to address # 62
from any of several instructions.
This begins basic multiplication
routine.

ADDRESS # 62

Add operand DPD to display DPD
and put result in
accumulator DPD position.

ADDRESS # 63

Compare LSD of operand
integer to O. (subtract LSD
from 0 and put borrow bit in
"condition latch" in controller.)

"ADDITION"
LOOP If

operand LSD was
greater than 0, continue

to next instruction. But if not
jump to address

# 68.
(GREATER)

ADDRESS

# 64

ADDRESS # 65

(NOT

GREATER)

Add display Integer to
accumulator integer and put
result back in accumulator.

ADDRESS # 66

Subtract 1 from operand integer
and put result back in operand
register integer position.

ADDRESS # 67

Jump to address number 63.

ADDRESS # 68

Compare MSD of display
integer to O. (subtract digit
from 0 and put borrow bit in
"condition latch" in controller.)

If

display MSD
was greater than 0,

jump to instruction # 74.
But if not, then

continue to next
instruction.

"SHIFTING" (NOT GREATER)
LOOP

ADDRESS # 70

ADDRESS
# 69

(GREATER)

Shift display integer one step
to left (for addition to accumulator).

ADDRESS # 71

Shift operand integer one step to
right (to put next most significant
digit in LSD position tor comparison).

ADDRESS # 72

Add 1 to DPD of display
register (because integer
was shifted left).

ADDRESS # 73

Jump to address number 63.

ADDRESS # 76

Reset flag bit # 6A to
zero. (This erases the
note saying a multipli-
cation was to be done.)

ADDRESS # 77

Jump to address # 196.

FINISH ROUTINE
(Address # 196 begins a
routine to "right -justify"
numbers in display and
operand registers).

 ADDRESS # 74

Move entire contents of
display register to
operand register (to
save for future use).

ADDRESS # 75

Move entire contents of
accumulator to display
register (so it can be
displayed).

I

Figure 9-4. Flow chart of a simplified microprogrammed routine based on
the general flow chart in preceding figure. (Note that number registers are
identified simply as "display, operand, and accumulator" in some places.)
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This group of instructions represents a particular type of
program called a "microprogrammed routine" (or "subroutine"). The
prefix "micro" means that this is a type of program that's stored
permanently in some sort of ROM (read only memory). (We'll come back
to this fact later.) And a "routine" (or subroutine) is a sort of "small"
program which is part of a larger one. For example, you may remember
that in Chapter 1, we spoke of the "idle" routine," the "add" routine, and
so forth. What Figure 9-4 represents is the calculator's multiplication
routine (in simplified form). Whenever the controller must do a
multiplication, it is sent to instruction number 62 to begin the routine.

What facts must be recalled to understand this routine?

In following the operation of this routine, remember that as we
first noted with respect to Figure 1-7, each instruction that the
controller draws from the microprogram memory governs what happens
during one "instruction cycle." This is the period of time (about 100
microseconds -100 millionths of a second) during which one scan line is
active, and during which the number and flag registers complete exactly
one recirculation.

Also remember that during one instruction cycle, all the digits
in two number registers can be passed to the adder-subtracter for
addition, subtraction, or comparison (Figure 7-5 will remind you of how
these parts fit together.) Also, all the digits in a register may be moved
to another register during one instruction cycle. Or the "integer" digits
in a register may be shifted one step to the left or right. Or instead, the
controller may perform one of the "flag operations" we noted in Figure
8-17, either changing or "testing" one or both of a pair of flag bits.

Furthermore, keep in mind that the adder-subtracter's
operations can be performed only on certain digits in the registers. For
example, a new decimal -point digit (DPD) can be inserted into the
accumulator register without touching the sign or integer digits. The
controller would cause this to happen by recirculating the accumulator
register until the DPD appears at the output, and then quickly switching
the right data selectors to load a digit from, say, the output of the
adder-subtracter. After this new DPD is loaded into the accumulator
register input, the register would be switched back to "recirculate." All
this takes place in one instruction cycle, and is ordered by certain bits in
the coded instruction being followed.

Similarly, the integer in a register may be shifted right or left
without shifting the DPD or sign digit. The controller does this by
switching the "shift -control" selector (Figure 8-18) to one of the "shift"
positions only while the integer is passing through.
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What must be understood about selecting the next instruction?
It's particularly important to understand how the controller

decides which instruction to select for the next instruction cycle. Most of
the instructions shown in Figure 9-4 cause the program counter (Figure
8-5) to add 1 to the current address. This causes the next instruction in
line in the microprogram memory to be selected for the next instruction
cycle. This process of simply going to the next instruction is represented
in Figure 9-4 by vertical arrows from one instruction down to the next.

Then there are "unconditional jump" instructions, which are
represented in Figure 9-4 by trapezoidal (slanted) boxes. These
instructions simply provide a new address, different from that obtained
by adding 1, for the controller to put into the address register. Nothing
else happens during one of these instruction cycles. The number and flag
registers simply recirculate without being changed, while the specified
new instruction is fetched for the next instruction cycle. As you can see
in the flow chart, an unconditional jump instruction makes the controller
"jump" to another point in the routine.

Finally, there are the "conditional jump" instructions, which are
shown as diamond -shaped boxes in Figure 9-4. These instructions also
contain a new address for a "jump." But they make the controller look at
the
to jump, depending on whether a 1 or a 0 is found there.

For example, consider the conditional -jump instruction at
address number 64 (in the addition loop in Figure 9-4). What this
instruction really tells the controller is, "Jump to address number 68 if
you find 0 in the condition latch." For another example, instruction
number 69 says, "Jump to address number 74 if you find 1 in the
condition latch." If the controller doesn't find the bit it's looking for in
the condition latch, it simply causes 1 to be added to the current address
as usual. Nothing else takes place during an instruction cycle governed
by a conditional -jump instruction.

Now, where does the bit in the condition latch come from? It's
loaded in during the preceding instruction cycle, from a source that's
specified in that instruction. In the examples we just mentioned, the
preceding instructions (oval blocks in Figure 9-4) were for comparison
operations by the adder-subtracter, and the "borrow" bit from the
carry -borrow storage unit (Figure 8-15) was loaded into the condition
latch. If these instructions had been for flag test operations instead,
then the result of the flag test would have been put into the condition
latch, as we noted in Figure 8-17.

Conditional -jump instructions are this particular system's way
of making a branch point in a routine. This provides a method for
deciding what to do next, based on the results of previous operations.
Branching provides the main decision -making capability in a program.
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9,[41
How can we check the operation of the multiplication routine?

Now if you can keep all these capabilities of the calculator in
your head, you can proceed to follow the operation of the multiplication
routine in Figure 9-4. To do this, you may use the example multiplication
problem from Figure 9-2 (23.1 times 9.64).

As you go, you may refer to Figure 9-5, which is a record of what
happens in the calculator as these two numbers are multiplied. Each
horizontal line in Figure 9-5 shows first (left) the addresses of one or
more instructions in the flow -chart that are followed by the controller,
one after another. Then the rest of each line shows the decimal -point
digit and integer in each of the three number registers, as they would
appear after the instructions to the left are performed. The numbers
that change as a result of these instructions are shown in bold print in
Figure 9-5.

As we mentioned earlier in discussing the multiplication
algorithm, this routine begins with the multiplicand and multiplier
already loaded into the appropriate registers. (You'll see this on the top
line in Figure 9-5.) These numbers were put there by whatever routine
was performed before this one. There may be any number of other
routines in the microprogram memory that contain conditional or
unconditional jumps to the beginning of this multiplication routine.

What are some important details of this routine?

You'll note that the multiplication routine contains an
instruction (address 74) to preserve the multiplicand (9.64) after the
multiplication is complete. This is done by moving the multiplicand from
the display register into the operand register, before the product is
moved to the display register by the next instruction. This is in case the
multiplicand needs to be used for further calculations in a "chain" of
calculations.

Also note that the last instruction of the routine (address 77) is
an unconditional jump to another routine. This other routine (not shown)
"right -justifies" the multiplicand and product integers. That is, it checks
for any zeroes at the right of these integers, and shifts the integers to
the right until there are no zeroes there. Each time an integer is shifted
one place to the right, of course, its DPD must be reduced by 1, to keep
track of the decimal point accurately.

Another detail worth noting is that instruction 76 resets a
certain bit in the flag register in Figure 8-17 (which we're supposing is
bit number 6A-the "A" bit in the sixth position of the ten possible
positions or "baskets" for a pair of flag bits). To "reset" means change to
zero. This step erases a note saying that a multiplication was to be
performed. This is a sample of how the controller uses the flag register
to help keep track of what's being done and what needs to be done.
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Finally, you should be aware that even though the routine in
Figure 9-4 may look complicated, it's actually highly simplified for
purposes of instruction. For one thing, a complete multiplication routine
would also include instructions to check for whether the product has
become too big to be handled. If that happens, it's called an "overflow"
problem. Further processing must be stopped and an "overflow" symbol
must be illuminated in the calculator display. There are several other
possible problems that could arise that must be provided for by
appropriate additional branches. But the simplified routine we have seen
should be sufficient to introduce you to the main ideas of programming a
system.

ADDRESS
NUMBERS OF

INSTRUCTIONS

FOLLOWED,

RESULTING IN

NUMBERS TO RIGHT

DISPLAY
REGISTER

OPERAND
REGISTER

ACCUMULATOR
REGISTER

D M
P S
D D

INTEGER

D M
P S
D D

INTEGER

D M
P S
D D

INTEGER

BEGIN ROUTINE 2,00000964 1,00000231 0,00000000

62 2,00000964 1,00000231 3,00000000

63,64,65 2,00000964 1,00000231 3,00000964

66 2,00000964 1,00000230 3,00000964

67,63,64,68,69,70 2,00009640 1,00000230 3,00000964

71 2,00009640 1,00000023 3,00000964

72 3,00009640 1,00000023 3,00000964

73,63,64,65 3,00009640 1,00000023 3,00010604

66 3,00009640 1,00000022 3,00010604

67,63,64,65 3,00009640 1,00000022 3,00020244

66 3,00009640 1,00000021 3,00020244

67,63,64,65 3,00009640 1,00000021 3,00029884

66 3,00009640 1,00000020 3,00029884

67,63,64,68,69,70 3,00096400 1,00000020 3,00029884

71 3,00096400 1,00000002 3,00029884

72 4,00096400 1,00000002 3,00029884

73,63,64,65 4,00096400 1,00000002 3,00126284

66 4,00096400 1,00000001 3,00126284

67,63,64,65 4,00096400 1,00000001 3,00222684

66 4,00096400 1,00000000 3,00222684

67,63,64,68,69,70 4,00964000 1,00000000 3,00222684

71,72 5,00964000 1,00000000 3,00222684

73,63,64,68,69,70 5,09640000 1,00000000 3,00222684

71,72 6,09640000 1,00000000 3,00222684

73,63,64,68,69,70 6,96400000 1,00000000 3,00222684

71,72 7,96400000 1,00000000 3,00222684

73,63,64,68,69,74 7,96400000 7,96400000 3,00222684

75 3,00222684 7,96400000 3,00222684

76,77 3,00222684 7,96400000 3,00222684

Figure 9-5. Sequence of instructions followed in performing multiplication
from Figure 9-2, using flow chart of Figure 9-4. Bold denotes numbers
changed by each instruction or series of instructions listed to the left.
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What aspects of programming have been illustrated?

The principles illustrated in our microprogrammed
multiplication routine apply to the programming of any system that has
the capabilities of conditional and unconditional jumps or branching.
This includes microprocessors and computers.

First, you've seen the idea of a routine (or subroutine) that is
called into action by some other part of the overall program. You've also
seen the idea of a "loop," consisting of a series of instructions that is
followed over and over again until some condition is met that branches
the system out of the loop. (Our routine has an "addition" loop and a
"shifting" loop. The actual addition and shifting instructions at
addresses 65 and 70 are shown in bold type in Figure 9-4 for emphasis.)

Perhaps most important, you've had a look at the kind of fine
details that must be considered in designing a program to do a certain
job. Algorithms that look simple at first glance may turn out to require a
surprising number of instructions with all manner of branches and loops.

Of course, the reason for the fine details is that an electronic
system can't think for itself. The software designer must do all the
thinking that's required-and all in advance. Every possible situation
that could occur must be thought about and provided for by proper
instructions. There are so many things that can go wrong in even the
simplest programs that they typically don't run right the first few times
they're tried. They've got to be carefully "debugged" (made correct).

Furthermore, as you can well imagine, the program must be
efficient in terms of the time and number of instruction cycles that are
involved in following it. Our example routine (which is not intended to be
very efficient) takes seventy-nine instruction cycles just to perform the
example multiplication. (You can count the instructions in the left
column of Figure 9-5.) As we have noted before, time is the big
limitation of a programmed system's capabilities. It takes more time to
do a big job as a series of steps than all at once. The fewer the steps
required, the faster the job gets done.

And finally, a program must be efficient in terms of the
number of instructions it contains. After all, in the case of our example
calculator's microprogram memory, there is a definite limit to the
number of instructions it can hold.

These, then, are some important things that nearly all programs
have in common. You should keep them in mind as we proceed to study
other calculator routines, and later on as we look into microprocessors
and computers.
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How would the calculator handle division?

Since you've seen how our example calculator handles
multiplication, you may well be curious as to how it might perform
division. So let's take this as our second example of how programmed
systems perform complicated jobs as sequences of simpler jobs. It will be
enough for us to look at the principle of the algorithm involved, without
examining the actual microprogrammed routine.

The division algorithm works by "reversing" the add -and -shift
process used for multiplication, and by "subtracting -and -shifting"
instead. This procedure is very much like the "long division" algorithm
you probably learned in grammar school. Figure 9-6 shows this similarity
in the example division of 1,058 by 46.

As you see in Figure 9-6b, we begin with the "dividend" (1,058)
in the display register and the "divisor" (46) in the operand register.
(We're ignoring decimal points in order to simplify your learning of the
main idea.) The basic procedure is to shift the divisor to certain positions
and subtract it from the display register as many times as we can,
without getting a negative remainder. (Each subtraction is preceded by
a comparison, to make sure the remainder won't be negative.) After each
subtraction, the remainder goes right back into the display register, in
the place of the original dividend.

Meantime, in the LSD (far right end) of the accumulator
register, we keep count of the subtractions. When we've subtracted as
many times as we can, we shift the divisor one step to the right and
begin the process again.

a.
CUSTOMARY

PENCIL & PAPER
"LONG DIVISION"

23

b.
DIVISION BY

SUBTRACTING & SHIFTING

46 )3g 1058 DIVIDEND IN DISPLAY REGISTER

921
- 460
- 460

SUBTRACTIONS OF SHIFTED

DIVISOR IN OPERAND REGISTER

138 138 REMAINDER IN DISPLAY REGISTER

- 46
138 - 46 3 SUBTRACTIONS OF SHIFTED

- 46 DIVISOR IN OPERAND REGISTER

0 0 23 -0.- QUOTIENT IN

ACCUMULATOR REGISTER

Figure 9-6 Division of 1,058 by 46, showing how calculator's
"subtract -and -shift" algorithm is similar to customary
`Pencil -and -paper" algorithm
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Each time we shift and start subtracting from the remainder

again, we shift the accumulator register one place to the left, giving us a
new LSD of 0. That way, we begin counting subtractions again with
another least -significant digit. The subtracting -and shifting process is
stopped when a remainder of zero is produced, or when the accumulator
register has been filled up all the way to the left end with "counter"
digits. These digits, then, are the "quotient" we want. The decimal -point
digit for the quotient would be figured out by a process that involves
subtracting DPDs rather than adding as we did for multiplication.

Even in simplified form, a flow chart for a division routine
would be more complicated than we would want to tackle, so we will not
go into further details. What you've seen should be enough to give you
the general idea of what's involved.

How are approximations used for more complicated calculations?
You're probably aware that many calculators can, at the press of a

key, make calculations other than the "basic four" of addition,
subtraction, multiplication, and division. For example, there are the
mathematical "functions" of the square root of a number, the sine of an
angle, and many others. Calculators and other programmed systems
often perform such "higher mathematical" operations simply by the
appropriate programmed sequences of the basic four operations that we
have already learned about. These sequences involve calculating closer
and closer approximations of the desired number, until the result is as
accurate as it can be expressed by the limited number of digits used in
the system for each number.

TO FIND SQUARE ROOT OF A NUMBER:
Call the number "N."
Use 2 as an approximation of the square root. Then:

1. Divide N by approximate root.

2. Find average of result and approximate root
(add together and divide by 2).

3. If average is same as approximate root,
you're as close as you can get to the square root.

4. If not, use average as new approximate root,
and go back to Step 1.

EXAMPLE: N=9

Begin with approximation of: 2.000000000

[(9+ 2.000000000) + 2.000000000] + 2 = 3.250000000 (NOT SAME)]
[(9 + 3.250000000) + 3.250000000] + 2 = 3.009615385 (NOT SAME)]
[ (9 + 3.009615385) + 3.009615385] + 2 = 3.000015360 (NOT SAME)]
[(9+ 3.000015360) + 3.000015360] + 2 = 3.000000000 (NOT SAME)]
[(9 + 3.000000000) + 3.000000000] = 3.000000000 (SAME)

Figure 9-7. An algorithm for finding the square root of a number, which
can be programmed as a routine in a calculator or executed by the operator
of a calculator
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For example, Figure 9-7 explains an algorithm that finds the

square root of a number by a series of closer and closer approximations.
(The square root is what you would multiply by itself to get the number.)
You begin with any number as an approximation of the square root-say,
the number 2. Then you find a number that's a closer approximation of
the square root by following the four numbered steps listed in Figure
9-7. By repeating this series of four steps, you can get as close to the true
square root as the length of your calculator's numbers will allow. The
example of Figure 9-7 requires doing the steps 5 times on a calculator
that handles 10 digits.

For another example of a series -of -approximations solution of a
function, Figure 9-' shows one of several possible ways to calculate the
sine of an angle. T}_is figure will remind you of what the sine of an angle
is (namely, the length of the side of a right triangle opposite the angle,
when the hypotenuse is 1).

Rather than describing an algorithm for this method, Figure
9-8 shows a series of algebraic terms that form the approximate answer.
(A "term" is something added or subtracted.) This series is called the
"Maclaurin series" approximation for the sine of an angle. Each term
(beginning at the left with the angle, Z, in radians) is just the term to its
left multiplied twice more by Z and divided by the next two higher
integers (1,2,3,4, etc.), with the sign changed. Four terms are shown, but
the series is theoretically "infinite," meaning you can add and subtract
as many terms as you need for accuracy in approximating the sine.
Eventually, the terms get smaller and smaller.)

HYPOTENUSE

=1

SINE OF Z APPROXIMATELY EQUALS

+1

-10

0

GRAPH OF SINE Z

VERSUS Z

Angle Z is measured
in "radians." (There
are 2rr radians in
a full circle of
360 degrees.)

Z Z -Z -Z Z.Z.Z.Z.Z Z-ZZZZZZ
1 3.2-1 + 5.4.3.2.1 7-6-5.4.3.2.1

+ etc.

An algorithm can be written to calculate
the sine of an angle by using the "Maclaurin series"
for the sine function. The further you
carry the series of "terms" added or subtracted, the
more accurate the approximation of the sine desired.

TT 2rr 37r

ANGLE Z IN RADIANS

4m

("Or" is "pi," the circumference
of a circle divided by
the diameter, or approximately
3.141592653.)

Figure 9-8. An approximation for the Sine function
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Where do we stand in learning about programmed systems?

By studying methods used by a calculator for mathematical
operations beyond addition and subtraction, we have gained a general
idea of how flexible and versatile a programmed system can be. We have
seen some pretty impressive examples of the fact that just about any
mathematical operation can be performed as a programmed series of
simpler operations. We have seen how a stored program can put a system
made of our familiar building-blocks through an incredible variety of
different performances, much as a musical score makes the instruments
of an orchestra play anything from Beatles to Beethoven.

However, as we noted earlier in this chapter, our calculator is
not as versatile as the "general-purpose programmed systems" that we
called the wave of the future-namely, computers (including mini and
microcomputers) and their integrated -circuit cousins, microprocessors.
This is because the calculator's circuitry was specifically designed for a
rather basic calculator. So to complete the picture of programmed
systems, let's look into a truly general-purpose programmed system. This
will lead us into an understanding of microprocessors and computers.

What are the main features of a "general-purpose" programmed
system?

Figure 9-9 shows a very general block diagram that represents
the main circuitry of any system of the type that we're calling
"general-purpose." The details of such systems vary endlessly, but most
of them have the features shown in Figure 9-9.

This block diagram could have been arranged in any of the
number of ways. But to help you understand it, the arrangement is made
to resemble that of our calculator in Figures 1-6 or 7-1. This is possible
because the calculator is just a specialized, limited version of this kind of
system. Figure 9-9 represents the parts of a computer (or even a
microprocessor) much more closely than it represents those of our
example calculator. (Note the similarity with the computer block
diagram in Figure 7-15.)

To understand how this general system works, let's see how it
compares to the calculator system in Figure 1-6, since we're already
familiar with the calculator.
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How do the "ALU" and its registers compare to the calculator?

First, the calculator's adder-subtracter is just a simple form of
the "arithmetic and logic unit" or ALU in Figure 9-9. ("ALU" is
pronounced by spelling it, like A -L -U.) Most ALUs can do more than just
add and subtract two incoming binary numbers and compare them for
whether or not a certain one is greater than the other. They can also
perform any of several logic gating operations on bits in the two binary
numbers coming in-including the AND and OR operations. They also
perform a wider range of comparison operations, such as
"less -than -or -not" and "equals -or -not," and these comparisons can be
applied to individual bits in the two input numbers. These additional
ALU capabilities give the system much more flexibility than the
calculator.

Furthermore, the registers that the ALU gets its inputs from
and to which it routes its output number are individual parallel
registers, called "working registers," rather than shift registers as in the
calculator. (Only three working registers are shown in Figure 9-9,
labeled A, B, and C, but there are typically more than this.) The binary
numbers involved are considered to be "words," as we discussed in
Chapter 7. The length of these words ranges from 4 bits in some
microprocessors to 64 bits in some computers.

Various kinds of routing circuitry are typically associated with
ALUs (perhaps in a configuration as shown in Figure 9-9) to move the
words in various paths among the registers, the ALU, and the "main
memory." As an example, the broken lines shown inside the two
"routing circuitry" blocks indicate that words from registers A and B
are being fed to the ALU, while the resulting word from the ALU goes
into register C and then (in a later step) to the main memory.

How does the "main memory" unit compare to the calculator?

The main memory unit, in turn, is a random-access mass
memory, with a separately -addressed storage location for each word. The
controller causes words to be moved into the memory from the working
registers or the "input unit," and out of the memory to the working
registers or the "output unit." The memory address for each word
involved is provided by the controller by way of the "main address
register."

As you can see, the three recirculating number registers in our
calculator (Figure 7-5) serve the purposes of both the main memory and
the working registers in the general system (Figure 9-9). In effect, the
first and last stages of the shift registers serve as working registers,
since they communicate directly with the adder-subtracter, through the
routing circuitry. The remaining eight stages of each shift register,
then, may be considered a sort of main mass memory, which is serially
accessed by shifting rather than by random addressing.
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9
Mir

How do the "input" and "output" units compare to the calculator?

The "input unit" and the "output unit" in Figure 9-9 represent
functions that vary widely among specific programmed systems. These
blocks are included in the figure to indicate that typically some sort of
processing and control must be exerted on information moving into and
out of the system. In our calculator (Figure 1-6), the keyboard and
keyboard encoder act as an input unit, and the segment decoder and
display act as an output unit.

The pathway labelled "direct or status inputs" in Figure 9-9
indicates that typically, certain external information is supplied directly
to the controller, for it to use in deciding what to do. In the calculator
(Figure 1-6), this pathway corresponds to signals from the keyboard
encoder that tell the controller when certain keys are pressed (as we
discussed in Chapter 2). The calculator's "idle routine" causes it to look at
each of the wires from the encoder, one at a time, and load the
transmitted bit into the condition latch. After each of these
"input -checking" steps, a conditional -jump instruction branches to an
appropriate routine if the conditign latch says the key was pressed.

In some systems-especially computers-the direct inputs to the
controller are considerably more complicated than in the calculator. But
the general principle remains the same.

How does the system's programming compare to the calculator's?
Together with the random-access memory, the main feature

that sets the general system in Figure 9-9 apart from our calculator is
this: The controller is not governed only by the routines stored
permanently in the microprogram memory as in the calculator. In
addition, the controller draws instructions from a "main program"
stored in the main memory, by way of the "main instruction register" in
Figure 9-9. The main program operates on the same principles we've
seen for the microprogrammed routines, by the controller's selecting a
series of stored instructions to follow. Typically, however, one "main
instruction" makes the controller go through an entire microprogrammed
routine, before the next main instruction is selected.

Probably the best way to think of this is in terms of a
programmable calculator, which is a calculator in which the operator can
store a 'Programmed" series of keystrokes. (Some programmable
calculators even allow you to store unconditional and conditional jump
instructions.) In running a program in one of these calculators, the
stored instructions "press the keys automatically," in effect-according
to the pattern you keyed into storage earlier. Each keystroke (whether
finger -pressed or programmed) typically triggers a microprogrammed
routine or series of routines. At the end of this microprogrammed
process, then, the controller goes to the next main instruction it has
selected, rather than to an "idle" routine as we discussed in Chapter 1 for
our calculator.
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Notice in Figure 9-9 that the two registers associated with the
microprogram memory are now labelled "microaddress register," and
"microinstruction register." The purpose or use of these registers is the
same as we learned for our calculator. But the prefix "micro" is added to
distinguish them from the main address and instruction registers. So we
say that the microprogram memory stores microinstructions in locations
identified by microaddresses.

Thus, as you can see, a general-purpose programmed system
typically has two "levels" of programming, the main program and the
microprogram levels. And as we have seen, the microprogrammed
routines, in turn, exert control over subsystems and parts whose
functions are hard -wired into their circuitry. So counting this lowest
hard -wired level, we see three levels of control in all.

Each of these levels has its own general field of supervision,
somewhat like fields of government at the local, state, and national
levels, or perhaps more like the administrative, tactical, and strategic
levels of command in an army. The hard -wired level is the circuitry
itself, with its basic, unchangeable capabilities. The microprogrammed
routines control fine, petty details of the system's operation-details
such as the many instructions that must be followed to perform
multiplication and division. Since such details are handled the same way
every time (say, for every multiplication or division), the microprogram
memory is usually a read-only type as in the calculator, although it may
be a type that can be programmed by the user such as a PROM or
EPROM, so that program changes can also be made at this level.

As you can see, the microprogrammed routines make life much
easier for the person who develops the main software for a system. He
can just throw in an instruction that says something like, "Multiply
numbers from so-and-so addresses and put the answer in such -and -such
address." At this, the microprogrammed routines take over and cycle the
system through dozens or even hundreds of microinstruction cycles to
do the job specified by just one main instruction.

We could go on and on in discussing this subject of
programming. But let's stop with this introduction and move on to see
how computers and their smaller counterparts, microprocessors and
microcomputers, compare to the general picture of programmed systems
in Figure 9-9.
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How does microprocessor circuitry compare to this general picture?
There are any number of different IC chips and sets of chips on

the market that can be called "microprocessors," and these systems differ
considerably from one another. Furthermore, the name "microprocessor"
is a very loose one, without a formal definition. Some systems called
microprocessors would contain all the parts shown in Figure 9-9. And
others would include only those in the large box in Figure 9-9, which is
typically referred to as the "central processing unit" or CPU
(pronounced by spelling, like C -P -U).

Some microprocessors do not use microprogrammed routines,
while others use a microprogram memory on a chip apart from the
controller. And some microprocessors are completely microprogrammed
like our calculator, without any readily -changed main program. Finally,
the routing and interconnections of words among the main memory,
working registers, and ALU vary considerably among various
micropressors.

One of the main features that distinguishes microprocessors
from systems called "computers" is that the words are shorter. Most
microprocessors use from 4 -bit to 16 -bit words, while "computers"
(including "minicomputers") have word lengths of 16 to 64 bits. We'll see
other differences when we come to computers a little later in the chapter.

How can microprocessors be applied in a computer?
However, you should note that a computer may be made from

one or more microprocessors. One way to do this is illustrated in Figure
9-10. Here, we see the general idea of using four microprocessor IC chips
of a type called "bit -slice" to form the CPU for a "microcomputer" (a very
small computer) that uses 16 -bit words. (Only two of the four chips are
shown, to save space in the picture.) Each bit -slice chip works on four bits
of the 16 -bit words being processed.

During the addition or subtraction of 16 -bit words,
carry -borrow bits are passed from one 4 -bit ALU to another. Similarly,
when numbers must be shifted in the working registers for performing
multiplication and division, bits pass between the registers of
neighboring chips. Co-ordination of the efforts of the four chips is
handled by control signals represented at the right of Figure 9-10. This
arrangement shows you how versatile certain microprocessor chips can
be. Such microprocessors are used for highest system performance, or to
provide for instructions required for a very special system. These are
called user -defined instructions because the user can make up his own
instructions, different from those decided on by the microprocessor
manufacturer.
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How can a microprocessor be used in a calculator?

On the other hand, a single 4 -bit microprocessor chip that
contains all the parts shown back in Figure 9-9 could be
microprogrammed to provide the main circuitry for a calculator. Since it
would have provisions for a "main program" in addition to a
microprogram, the calculator could be the programmable type.

The ALU would work on one pair of 4 -bit BCD digits at a time.
These digits would be drawn one at a time from the main memory and
placed in working registers for processing by the ALU. The resulting
"sum" or "difference" digit would then be shuttled back into the main
memory. Eight cycles of this process would be required to add or subtract
an 8 -digit decimal integer. (The ALU would contain a one -bit latch like
that in our calculator's adder-subtracter, for holding a carry -borrow bit.)

The microprogramming of such an 8 -digit addition or
subtraction would be considerably more lengthy than in our example
calculator, because of additional microinstructions for moving each digit
to and from the main memory. (Our calculator handles such movement
automatically, by means of its recirculating registers.) But the
microprocessor chip after it became standardized would probably be
more economical because it would be made in larger quantities for a
much wider variety of applications.

To summarize what we've learned about microprocessors, we
can say that they are a sort of programmable building-block, for use
either singly or in groups. They can be used to make small computers or
calculators or they can be programmed to serve in many other kinds of
systems. Thus, they provide the opportunity to use a high functional
density chip for many uses and get the cost advantages of high -volume
production.

How do computers compare to the general programmed system
picture?

Finally, let's say a few words about how "computers" fit the
general picture of "general-purpose" programmed systems in Figure 9-9.
Here, the sky's the limit, because the name "computer" applies to
systems ranging from desk -top "microcomputers" to gargantuan
number-crunchers that fill an entire room. A computer may be hidden
inside a special-purpose system such as the autopilot we referred to in
Chapter 5, or it may be a general-purpose data-processing facility that is
available for running any kind of program the user needs.
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Typically, however, we can say that a computer uses words of at
least 16 bits (many use 32 bits, and some use 64 bits). Its ALU has a
wider variety of functions to select from than a microprocessor's ALU.
Some very fast, large computers have ALUs that even perform
multiplication and division in a one-step, hard -wired fashion. And
finally, most computers have a much larger main memory than
microprocessors typically use-say, at least 65,536 words (2 to the
sixteenth power), which is called a "65K -word" memory. Furthermore,
outside the "main frame" (represented in Figure 9-9), there may be all
manner of "peripheral" memory units, as we discussed with respect to
Figure 7-15. And there may be any number of peripheral "input-output"
units such as card readers and punching units, CRT terminals with
keyboards and "television" screens, and so forth. This will become more
clear to you as we discuss applications of computers in the next chapter.

However, regardless of all these complications, the main frame
of any computer works very much as we have discussed with respect to
Figure 9-9. In this respect, it is very similar to the example calculator
with which you have now become familiar. Therefore, you should have a
pretty good general idea of how a computer is put together from the
building-blocks we learned about in Chapters 3, 4, and 7, and according
to principles we discussed in Chapter 8. As a result, we have now seen the
unifying principles of all digital systems, at work in the simplest and
most complicated applications.

What's next?

And speaking of applications, that's the next main area for our
discussion. Our learning so far has been pretty heavily oriented toward
how digital systems work, without looking very hard at where they work.
Now it's time to broaden our view and see how the things we have
learned are applied in a variety of systems. That will be our main topic
for the next chapter.
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Quiz for Chapter 9
1. As integrated circuits become

more complex, how are they
prevented from becoming too
specialized for economical
high -volume production?
a. It can't be done. This is the

natural limit to the evolution
of semiconductor circuitry.

b. Certain hard -wired chips
provide the circuitry for
nearly any kind of system.

c. One chip provides a wide
selection of parts, and the
user connects the parts to
suit his application.

d. By designing circuitry that
can be programmed to suit a
wide variety of applications.

2. What does "algorithm" mean?
a. Analyzing a problem by

breaking it into parts.
b. A plan for breaking up

problem solutions into steps.
c. A group of stored

instructions.
d. A chart showing instructions

as blocks.

3. Which "hard -wired" operations
in our calculator form the basic
steps used in all calculations?
a. Add, subtract, multiply,

divide.
b. Add, subtract (or compare),

and shift.
c. AND, OR, NOT, NAND.
d. Sense, decide, store, act.

4. What happens in the example
calculator during the execution
of a "conditional jump"
instruction?
a. The controller looks at the

bit in the condition latch.

b. A new address, provided in
the current instruction, may
be put into the address
register.

c. The stored numbers and
flags are not changed.

d. All of the above.

5. Which kind of instruction
provides the main
decision -making capability in a
program?
a. Register operations (add,

subtract, compare, shift,
relocate).

b. Flag operations (read or
write).

c. Conditional jumps.
d. Unconditional jumps.

6. Any program (or
microprogram, routine, etc.)
should be efficient in terms of:
a. The number of instruction

cycles required to execute it.
b. The number of instructions

it contains.
c. How few of the system's

parts it uses.
d. A and B above.

7. What operations can typically
be performed by an arithmetic
and logic unit on incoming
numbers or bits in the
numbers?
a. Addition and subtraction.
b. Several kinds of

comparisons.
c. Several logic gating

operations.
d. Any of the above.
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8. Which parts of the example
calculator correspond to the
working registers in a general
programed system?
a. The output stages of the

number registers.
b. The input stages of the

number registers.
c. The flag register and its

control unit.
d. A and B above.

9. In a general programmed
system, what typically causes a
microprogrammed routine to
begin?
a. External inputs, such as

from a keyboard.
b. Another microprogrammed

routine.
c. It's repeated automatically.
d. An instruction in the main

program.

10. How many levels of control
operate in a general
programmed system, counting
hard -wired control of some
parts?
a. One.
b. Two.
c. Three.
d. Four.

11. Judging by the discussion of
microprocessors, which parts in
the general programmed
system in Figure 9-9 are the
minimum a set of chips should
have to be called a
microprocessor?
a. The CPU, maybe without a

microprogram memory.
b. All the parts.

c. The ALU, maybe with some
registers.

d. All but the input and output
units.

12. One of the main features that
distinguish microprocessors
from computers is:
a. Microprocessors always

have fewer of the parts
shown in Figure 9-9.

b. Computers are never fully
integrated.

c. Words are usually shorter in
microprocessors.

d. Words are usually longer in
microprocessors.

13. Microprocessors can be applied
to make:
a. Calculators.
b. Computers.
c. Many other kinds of digital

systems.
d. All of the above.

14. Figure 9-9 represents the main
frame of a computer, provided
that:
a. The main memory is

reasonably large (say, 65 k
words).

b. The words have at least 16
bits.

c. It can handle many varieties
of peripheral equipment.

d. All of the above.

(Answers in back of the book)
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DIGITAL ELECTRONICS TODAY AND IN THE FUTURE

Digital Electronics Today
and in the Future

As we noted at the beginning of Chapter 8, there are so many
different kinds of digital systems that we can't hope to comprehend
them all in just one book. That's why we have depended on just one
system (a calculator) for most of our examples in studying digital
electronics. This approach has worked very well, because the calculator
contains examples of most of the kinds of parts found in digital systems
in general, put together in ways that illustrate important design factors.

However, our understanding has now advanced to the point that
we can zoom the picture out and look at many kinds of present-day
digital systems. So the first part of this chapter will be a survey of the
applications of digital technology, as of the late nineteen -seventies.

Of course, as we have emphasized throughout this book, digital
technology is changing rapidly, mainly because more gates and more
storage capacity are being squeezed into integrated circuits.
Consequently, the applications of digital methods are growing by leaps
and bounds. And so the last part of the chapter will be a survey of trends
for the future in digital electronics.

What are the main categories of digital applications?

In Chapter 8, we simplified the picture of system functions by
studying three main design factors. Similarly, in this chapter we will
simplify the picture of system applications by defining three main
categories of applications, as listed in Figure 10-1. There are any number
of ways to categorize digital applications. In this particular breakdown,
we are grouping together systems that typically have certain design
features in common, based on similarities in the jobs the systems do.

1. GENERAL-PURPOSE DATA PROCESSING
A. Traditional "Business" Data Processing
B. Technical Computations
C. Simulation and Automatic Designing
D. Specialized Data Processing (including calculators,

entertainment systems, and personal computing)

2. AUTOMATIC CONTROL
A. Data Logging
B. Process Control
C. Sequencing of Events

3. COMMUNICATIONS CONTROL

Figure 10-1 General categories and subcategories of digital system
applications
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Although these categories are rather loose ones, this is still a

useful way to help make sense out of a bewildering variety of digital
applications.

What are "general-purpose data-processing" systems?

Taking the categories and subcategories in the order listed in
Figure 10-1, let's first consider "general-purpose data-processing"
systems. Here, we're mainly talking about certain kinds of medium to
large computers, which may be represented as in Figure 10-2.

Beside the "main frame" that all computers have (consisting of
a main random-access memory and a CPU as we noted in Figure 9-9), we
typically have one or more magnetic tape and disk units as we saw in
Figure 7-15. Furthermore, we have a terminal with a keyboard such as
the CRT type that we discussed in Chapter 7, for direct interaction
between an operator and the program being executed. And finally, there
are typically several input and output units such as a card -punching
device, a card reader, and a high-speed line printer. In this last group,
there may be some more specialized input or output units that we will
come to as we go along.

What features of computer operation do we need to be aware of?

(and the
others in Figure 10-1), keep in mind the general features of computer
operation that we've already covered. The various input devices form
data into words of the length the computer can handle, and these words
pass one at a time into certain addresses in the main random-access
memory. The CPU (following its program of stored instructions
interpreted by its controller) takes in words from certain memory
addresses for arithmetic or logical processing by its ALU. New words
that result are stored at certain addresses.

What's more important for some business applications, the CPU
can sort and rearrange words in the memory without changing them. It
does this by taking a word, looking at it or comparing it with another
word, and deciding (according to the program) on a new address in which
to put the word. Regardless of the processing details, however, the
resulting words, in a certain order, are then transferred from the
memory to one of the output units (tape, cards, printer, etc.)

One important capability of most computers that we haven't
mentioned before is variable word length. Typically, a computer whose
"regular" word length is 32 bits is also able to address and process 16 -bit
and 8 -bit words, with the word length specified in the instruction for
each operation. Obviously, the instruction must tell the ALU what kind
of word it's dealing with, so it can do the right things to the right bits
of the word.
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"BUS:"

One word at a
time passes
between main
memory and
CPU or a
peripheral unit

PERIPHERAL OR
"INPUT/OUTPUT" (I/O)
UNITS, INCLUDING
PERIPHERAL MEMORY
UNITS. All units
include "interface buffers"
to relay words to and
from the main memory.

CARD
PUNCH

LINE
PRINTER

CRT
TERMINAL

00I00

(100 MILLION (50 MILLION
BITS) BITS)

TAPE
UNIT D SK

UNIT

CARD
READER

/ ii

CONTROL

TO

VARIOUS

SIGNALS

I/O UNITS

ir

MAIN
CPUMEMORY

(65,536 CON-
32 -BIT TROLLER

WORDS:

2,097,152
ADDRESSES VARIOUSBITS)
FOR WORDS STATUS SIGNALS

IN & OUT FROM I/O UNITS

OF MEMORY

MAIN FRAME

Figure 10-2. Highly simplified block diagram of a particular type of
computer system that is useful for ''general-purpose data processing"
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The longer words are used for numbers, including sign (plus or

minus) and decimal -point information. On the other hand, eight -bit
words provide a method of representing "characters" (letters, numerals,
symbols) to be printed or displayed, together with "control characters"
that provide special signals to an output device (such as blank spaces,
carriage returns, and so forth). Figure 10-3 shows a popular code for this
purpose, called "ASCII" (American Standard Code for Information
Interchange; rhymes with "pass -key"). This code uses seven bits for each
character, leaving the eighth bit of a word free for other handy purposes,
such as a "word mark" to show that the character is the first computer
word in a group that is read together. ASCII is especially useful in the
communications field, which we will come to later.

With these general computer capabilities in mind, let's consider
each of the subcategories of general-purpose data processing as listed in
Figure 10-1.

Exa
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011
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Figure 10-3. A code used by some computers for representing characters
to be printed or displayed. consisting of seven bits ,for each character
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What's involved in "business" data processing?

"Business" data processing includes most of the present
computer applications that affect the everyday life of the average
person. It's the kind of processing used in maintaining records of great
volumes of information, and in sorting, rearranging, and printing the
information (or displaying it on a CRT screen) in useful ways. Typical
applications include a business's records for accounting and bookkeeping,
payroll, personnel data,.inventory, and so forth.

For example (Figure 10-4), your bank's daily records of
transactions and balances for your checking account might be stored as
numbers and characters in a short segment (perhaps a few inches) in a
reel of magnetic tape. The rest of the reel would consist of similar
records for other accounts, arranged in order according to account
number.

TODAY'S
CHECKS,

DEPOSIT

SLIPS, ETC. KEY

ONTO
TAPE

E>

YESTERDAY'S
"CURRENT CHECKING

ACCOUNTS." FILE
(ERASE AFTER

TODAY)

DAILY UPDATING PROCESS

COMPUTER

TODAY'S UPDATED
'CURRENT CHECKING

ACCOUNTS" FILE
(SAVE FOR TOMORROW)

"CURRENT CHECKING

ACCOUNTS" FILE
CONTAINING

TRANSACTIONS

FOR PAST MONTH

(STORE PERMANENTLY)

PERMANENT "CUSTOMER
FILE WITH NAMES &

ADDRESSES FOR EACH

ACCOUNT NUMBER.

MONTHLY PRINTING AND
START OF NEW FILE

COMPUTER

NEW "CURRENT
CHECKING ACCOUNTS"

FILE WITH CURRENT

ACCOUNT BALANCES
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Figure 10-4. Possible data-processing procedures for a bank's "current
checking accounts" file (bold tape reels), illustrating emphasis on
record -keeping rather than computation in business data-processing
applications
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Once a day, as shown in Figure 10-4 the "current checking

account" reel would be loaded onto a computer tape unit, and another tape
unit would be loaded with the tape containing the records of checks or
deposits (or both) received for these accounts for that day. The computer
would read the two tapes, enter the new transactions, figure the new
balances, and record the updated accounts on a third reel of blank tape.
Thus, a new current -checking -account reel is created every day for these
particular account numbers.

Once a month, the information carried for these accounts is
printed onto statements and mailed to customers. (Names and addresses
are looked up in a permanent "customer file" tape.) The account balances
are transferred to a fresh reel for use during the coming month, and the
"old" reel is stored for a year or so as a permanent record of daily
transactions for these accounts for that particular month. (The programs
used for both the processes described would be stored in a disk unit and
transferred to the main memory as needed.)

What's involved in "technical computations"?

The emphasis on record -keeping that we have just seen
illustrated for business applications is not found in the "technical
computations" subcategory in Figure 10-1. Here, we're talking about
either long, complicated numerical calculations or numerical calculations
on a great volume of numbers (or both).

For example, as illustrated in Figure 10-5, a scientific research
experiment typically involves hundreds of sets of measurements from
the experimental apparatus. For each set of data in many kinds of
experiments, the two coordinates of a point on a chart must be calculated
(a process called "data reduction"). Then a graph shaped according to a
theoretical formula being tested is drawn so as to be as close as possible
to as many points as possible (a process called "curve -fitting"). Finally,
the average distance of all the points from the curve is calculated to see
how well the theory matches the experimental evidence (a process called
"statistical analysis"). Obviously, this technical computation job involves
many calculations-some of which may be very complicated.

A computer used for this subcategory of general data
processing would not need provisions for efficient handling of printed
characters (provisions such as variable word length). But it would need a
large main memory, to store all the data that typically needs to be looked
at during the curve -fitting and statistical -analysis processes. And it would
need a plotter output unit among its peripheral equipment, to plot data
points and draw graphs. Furthermore, since many technical computation
jobs require literally millions of very complicated calculations, the
computer typically needs to work very fast.
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Figure 10-5. General idea of "data reduction" and "curve .fitting".for
experimental research measurements, illustrating a typical "technical
computation" problem

What's involved in "simulation and automatic designing"?
The general data-processing category could be subdivided in

many ways. But one other subcategory of particular interest is the use of
a computer to predict how something being investigated or designed
might operate (from an airplane in flight to a nation's gross national
product), based on mathematical formulas developed to describe its
operation. Formerly, analog computers were used for this purpose, using
special electronic circuits in which varying voltages "simulated" (copied)
the response of an object to a change in conditions. More and more,
however, digital computers are used for such purposes (although the
programming may be very laborious).

For example, a program may be written to calculate the slight
bending and twisting of an airplane wing according to mathematical
formulas involving the stiffness of the various parts, the weight of the
engines hanging from the wing, and the speed and direction of the
airplane's motion through the air. A "graphic display" terminal (a
specially programmed CRT terminal) may be used to actually show a
simplified drawing of the wing as it ponderously flutters and shakes.
The position of each point and line in the drawing must be individually
calculated at each interval in time. As you can imagine, a computer for
this job must work extremely fast and have a very large main memory.

Furthermore, both technical -computation and simulation
applications typically require that the computers use very long words
(say, 64 bits or even more). This is so that the numerical fractions
resulting from each calculation can be as precise as possible, to prevent
errors from creeping in due to "rounding off" or "truncating" (cutting
off) parts of each multiplication product or division quotient. Long words
also permit very large numbers and very small fractions to be handled,
as required by many computations in these two categories.
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What other systems fall in the "general data-processing" category?

Digital applications in the "general-purpose data-processing"
category have two things in common. First, they typically use computers
or programmed circuitry resembling that of computers. And second,
their inputs and outputs are essentially to and from people rather than
some other system. The remaining systems that fit these definitions are
lumped together in Figure 10-1 as a subcategory labelled "specialized
data processing."

Calculators would be classified here, as well as certain very
similar systems such as toys and teaching machines that resemble
calculators, and the self-contained, stand-alone type of cash register
that's not connected to a computer. This "catch-all" subcategory would
also include most systems designed for entertainment purposes,
although some of these (including games played on a television screen)
use simulation as we discussed for the preceding subcategory. Here also,
we could classify certain other specialized applications of computers.
Examples might include a system that provides random access to large
volumes of stored data (such as for card -catalog purposes in a library),
and in the future for handling programmed tasks around the home. We'll
say more about home applications later.
What's involved in the "automatic control" category?

Moving on to the "automatic control" category of applications,
we find a very wide variety of systems. Many of them formerly
employed specially -designed hard -wired circuitry or analog methods but
are now moving rapidly toward small computers and microprocessors
instead. This category involves systems that are directly hooked up to
external equipment or systems, for the purpose of controlling this
equipment.

Automatic control systems have some or all of the parts
represented in block -diagram form in Figure 10-6. The "system being
controlled" may be anything from a soft-drink dispensing machine to a
chemical reactor in a refinery. One or more streams of analog or digital
information (or both kinds) flow into the digital system (bold outlines in
Figure 10-6) by way of various sensing units and analog -to -digital
converters. These streams provide information on the present status of
the controlled system. Commands and reference information are provided
by a human "operator" by way of switches, pushbuttons, and so forth.

Control signals developed by the digital system operate various
"actuators" such as solenoids (electromagnets), motors, and the like, to
produce the desired action in the controlled system. (Analog control
signals require digital -to -analog converters as shown.) In addition, the
digital system typically puts out some sort of "status" information,
which may be lights, LED or CRT displays, printed reports, and so forth.
The operator may use this information to exert direct manual control of
the main system.
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What are the subcategories of control systems?

"Data logging" systems have many inputs from the controlled
system (up to hundreds of inputs), but do not exert automatic control.
Instead, information is automatically collected and stored (that's what
"logging" means) and presented to human operators, to guide their
decisions on controlling the main system.

An example fitting neatly in this subcategory is a
data -logger in an industrial plant that receives temperature signals
from many points in a process. A small computer is programmed to
"scan" all the temperature sensors (which are analog -to -digital
measuring instruments), receiving data from one at a time on a rapidly
repeated cycle. Temperatures are stored in a magnetic disk file, and are
called up on command from the plant operator for output on an LED
display. The software consists of permanently -stored microprogrammed
routines, and the data words do not need to be very long. As with most
systems containing a "dedicated" (built-in) computer, the operator is
ordinarily not even aware that he's using a computer.

"Process control" systems contain small to medium -size
computers programmed to not only scan a number of sensors but also to
compute appropriate control signals to make the main system do what
it's supposed to do. These computations follow algorithms based on
knowledge about the processing being controlled.

For example, suppose the main system is a chemical reactor
heated by steam coils. The operator puts in the desired temperature "set
point" to be maintained. On a regularly repeated cycle, the computer
determines how far off the actual temperature is. Then it calculates a
number to control the steam valve, proportional to the temperature error
(and perhaps also partly proportional to how fast the error is changing
and how long the error has existed). Converted to an analog voltage, the
output number regulates air pressure that drives an analog valve
actuator to "steer" the temperature back to the desired set -point.

A third subcategory of automatic control systems consists of
units that do not calculate any variable outputs like process controllers
but merely switch things on and off usually several things in a
prescribed sequence. Typically, one of the inputs to such a system is a
time signal of some sort (which may be produced inside the system
instead). Here, a good example is a traffic -light controller at a street
intersection. In this case, electronic "transducers" connected to antenna
loops imbedded in the pavement send pulses that tell the system (a
microprocessor, nowadays) when there are cars waiting for a green light.
(The microprocessor scans the transducers rapidly, looking for pulses.)
Using different microprogrammed routines for various times of day as
traffic patterns change, the microprocessor puts out switching signals to
operate each light.
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What's involved in "communications control"?
There's another large group of control applications that are so

different from the scheme in Figure 10-6 that they're set off to
themselves as the last category in Figure 10-1. What's controlled here is
the routing and timing of information sent from place to place, complete
with details such as converting from one digital code to another,
checking for errors in transmission, and verifying that messages were
received. Somewhat the same techniques are involved whether the
information is in digital form (say, words sent between a computer's
main frame and a teletype terminal in the same room or another city) or
analog form (such as telephone conversations).

The details of systems for communications control fall mostly in
the field of computer architecture and operation, which is outside the
scope of this book. However, to give you a general idea of the sort of
application we're talking about, Figure 10-7 shows in general terms the
use of a computer for one important type of communications -control unit
called a "peripheral and communications processor" (P&CP).

This subsystem, which contains a special type of microprocessor,
acts as a sort of "master switchboard" for all information moving in and
out of the main frame. It handles most of the petty, time-consuming
details of shuttling words to and from the peripheral devices, leaving the
CPU free for its main task of processing data inside the main frame.

What points about data communications are illustrated here?
Getting these characters to the typewriter terminal illustrates

four important points that often appear in the communication of digital
data:

First, the groups of bits are transmitted serially in a single line,
"asynchronously," meaning without a common clock signal supplied to
both ends of the line. This involves marking the beginning and end of
each group with a zero for a "start" bit and two ones for "stop" bits. (See
the example character "T" in Figure 10-7.)

Second, an extra bit called the "parity" bit is included at the end
of each data group, before the "stop" bits. This bit tells whether the data
group has an odd or even number of ones. It enables the receiving unit to
find out whether a noise pulse has caused any one of the bits of a group to

be received incorrectly.
Third, serial data is transmitted here in a telephone line, using

certain tone pitches for ones and zeroes, by means of transducers
(converters) called "MODEMS" (modulator -demodulators).
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And fourth, transmitting data back and forth between

independent systems (such as the main frame, the P&CP, and each
peripheral unit) requires the use of definite rules called "protocol." This
involves making sure everything is ready before sending one or more
characters (words, bytes, etc.), and afterwards making sure the data was
received properly.

You can see that communications control can be a very
important and complicated matter, different from the first two
application categories that we defined.

What have we learned about applications of digital electronics?

This survey of digital applications has not exactly been thorough
enough to turn you into a system designer. But it should give you a
general idea of the ways in which the basic principles you learned earlier
are put to use for a variety of purposes. Keep in mind that many systems
may fit into more than one category.

What's the general direction of progress in digital electronics?

Turning now to look at the future, we can expect the most
important changes to be continuations of trends we have already noted
in three particular areas: increasing complexity of integrated circuits in
general, new developments in high -density memories, and wider
application of programmed circuitry. The resulting expansion of digital
electronics will provide capabilities for data storage and processing,
control, and communications in areas that were only dreamed of before.
We are seeing this revolution in process now.

Let's consider each of the three areas of expected progress
(complexity, memories, and programmed circuitry), beginning with

complexity.

How can integrated circuits become more complex?

Logic gates and bit -storage cells have already become so tiny
and so closely -packed in integrated circuits that you may wonder how
integrated circuits can possibly become more complex. But the fact is
that we have a long way to go before we reach the theoretical limits of
complexity for digital circuits formed at the surface of a semiconductor
chip. Progress is mainly a matter of working the bugs out of various
advanced manufacturing techniques. These techniques are becoming

more and more sophisticated and expensive to work out and put into
production. But the resulting ICs are expected to sell in quantities that
increase fast enough to support this further development.

There are two main areas of research and development toward
greater circuit complexity. The first pertains to methods for creating
smaller diffused regions and metal patterns, and improving the
accuracy with which the various diffusion patterns and metal patterns
line up with one another on the same slice.
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To create smaller patterns, electron beams or X-rays will have to

be used in the place of ultraviolet light (as in Figure 6-2c) for hardening
the photoresist. This is because electrons and X-rays have shorter
wavelengths and thus create patterns with sharper, less fuzzy edges.

The second pertains to discovering and perfecting types of
circuits and devices that are smaller and simpler to process, and that
dissipate less heat while still switching rapidly. In this regard, there is
still room for improvment in I'L circuitry, in similar kinds of inverted
circuitry, and in the kinds and types of MOS devices and circuits.

Why are memory improvements particularly important?

A second main ingredient of future progress in digital
electronics is the development of memory units that store more bits in
smaller space at less cost per bit, while providing quick access to any part
of the stored information and transferring data in and out at high speed.
As we mentioned in Chapter 7, such improvements are particularly
important because so many bits of storage capacity are required in
typical systems. Putting it another way, storing four times as many bits
in the same space for the same cost will open up far more new
applications than a similar reduction in the size and cost of logic gates.

There are two particularly promising new memory techniques
we should take a look at. Back in Figure 7-14, we mentioned two

types of memory unit that fall midway between MOS shift registers
and magnetic drums in the chart of cost per bit versus access time. These
are new techniques called "charge -coupled devices" (CCDs) and
"magnetic bubbles." Both involve chips similar to IC chips we have seen,
and both provide serial -access recirculating storage of more bits than the
IC methods we studied in Chapter 7, at a much lower cost per bit.

How do "charge -coupled device" memories work?

Figure 10-8 describes the operating principle of CCDs. Here, we
see a cross-section through a semiconductor chip as each phase of a
three-phase clock network is activated (switched from zero to minus 12
volts). Tiny metal spots in a long row over thin oxide on a solid n -type
substrate are alternately connected to the three clock phases. When a
metal spot is pulsed to a negative voltage, it is capable of attracting
positive charge to the underside of the oxide layer beneath it, much as a
magnet can hold iron filings to the underside of a sheet of paper beneath
it. The electric field from the negatively -charged metal spot actually
creates a sort of invisible electric "bucket" that can hold positive charge.
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As each clock phase returns to zero volts, all its buckets
disappear, "dumping" their charges. But at the same time, another
bucket is formed next to each one that dumps, by the negative voltage of
the next clock phase. In this manner, a positive charge injected into the
first bucket on the left in Figure 10-8 will be dumped from bucket to
bucket along the row of metal spots as one clock phase follows another.
By providing amplifiers for injecting and detectingthese charges, and
letting the presence or absence of charge signify ones and zeroes, we
create a very simple and compact type of dynamic shift register.
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Figure 10-8. Simplified cross-section of 3 -stage charge -coupled device

(CCD) as each clock phase is activated, showing how "charge buckets" move

to stay under gates with negative charge
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How does a magnetic bubble memory work?

Magnetic bubble memories produce much the same effect,
although in a very different way. Figure 10-9 shows what a magnetic
bubble is. It's a tiny cylindrical magnetized region (about 0.2 mil or 5
micrometres in diameter) that can drift around in a thin film of certain
magnetic crystalline materials such as "yttrium -iron garnet" (YIG). The
YIG film is grown epitaxially (from a hot gas) on a slice of a
non-magnetic crystalline material called "gadolinium -gallium garnet" or
GGG. (The slice is originally cut from a larger crystal like a slice for an
IC in Figure 6-2. Later, it is cut into memory chips like IC chips.) Each
chip is sandwiched between two flat permanent magnets that provide a
field pointing the opposite way from that of the bubbles, so that the
bubbles form little "inverted" spots in the main magnetic field. (N and S
in Figure 10-9 mean north and south poles.) The bubbles are generated
by pulses of current in an aluminum conductor "hairpin loop" over an
insulating film of silicon oxide on top of the YIG layer. A bubble under
the conductor loop can be destroyed in the same way, by a pulse in the
opposite direction.

The bubbles are steered along definite paths provided by a
pattern of magnetic iron -nickel strips over the silicon oxide film, which
are not shown in Figure 10-9, but which you will see from above in the
lower part of Figure 10-10. The bubbles are pushed along under these
strips by a rotating "wobble" in the permanent magnetic field,
generated by alternating current in two sets of coils that pass around
the chip at right angles to each other.

As the main field wobbles around a circle, it makes little bar
magnets of the segments of iron -nickel strips that are most nearly
aligned with the field. Each bubble moves to seek the nearest north pole
of a segment, and so the iron -nickel paths keep the bubbles spaced
out-one bubble per segment along the path. (That's a spacing of about
0.8 mils or 22 micrometres).

The presence of a bubble stores a "one," and the absence of a
bubble where one might be stores a "zero." Each time the field wobbles
around for one revolution, all the bubbles advance one step. (As you can
see, bubbles on alternate rows travel in opposite directions.) Thus, a
bubble memory provides another type of simple, compact shift register,
whose shifting frequency is determined by the frequency at which the
"wobble" is generated.

We won't go into the ways in which bubbles can be switched to
different paths, split in two, and detected (all by electric currents in
simple aluminum conductors or iron -nickel strips like the ones in
Figures 10-9 and 10-10.). Suffice it to say that this ingenious method,
like other magnetic storage methods, has the advantage of
non-volatility-the bubbles stay where they are when the power is turned
off.
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Figure 10-9. Simplified diagram of magnetic bubbles in a thin film of
magnetic crystalline iron compound. Diameter of bubbles and thickness of
film are about 0.2 mils (5 micrometres).
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Figure 10-10. How rotating magnetic field makes magnetic bubbles travel
along under metal strip pattern, storing ones and zeroes like a shift
register
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What progress is expected in storage capacity of memory chips?

Although nobody can predict how fast we will see improvements
in cost and capacity of IC memory chips, Figure 10-11 summarizes what
we can expect for the near future with regard to capacity. The present
numbers of bits per chip are as we saw in Figure 7-14 (as of the middle to
late nineteen seventies). Very soon, we will see these capacities
multiplied by two or four as a result of developments now well under
way.

Many persons expect that the most dramatic changes in digital
systems will result from magnetic -bubble chips that could well hold a
million or more bits in the not -too -distant future. Along with
charge -coupled devices, these memories show promise of replacing
magnetic tape and disks for small systems. To give you a point of
reference, the entire text of this book could be stored in three or four
one -million -bit chips, using 7 -bit ASCII code (Fig. 10-3) for the
characters.

TYPE OF MEMORY PRESENT NEAR FUTURE

Static Ram 4k & 8k 16k

Dynamic Ram 16k 64k

Charge -Coupled Device 65k 128k

Magnetic Bubble 100k 256k

ROM and PROM 32k & 64k . 128k

Figure 10-11. Capacities of various types of memory chips at present (late
nineteen seventies) and in near future, with "k" indicating approximate
thousands of bits

Why will progress involve programmed circuitry?

Finally, the third area of progress for digital electronics that we
pointed out earlier is in the use of programmed control rather than fully
hard -wired circuitry. This trend (which was explained in Chapter 9 in
terms of lower cost for unspecialized ICs that can be programmed for
many applications) will become stronger as integrated circuits become
more complex and more bits are stored in smaller chip areas, all at lower
cost. The capabilities of integrated circuits will be especially extended by
the storage of more and more elaborate programs as a result of larger
and more economical memories.

One of the most remarkable results of this trend will be single
IC chips having the information-processing power that a medium-sized
computer had a few years ago. These ICs will be priced low enough to be
used nearly as freely in systems as liscrete transistors were used not too
long ago.
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We can only begin to imagine what kind of changes will result
in digital electronics. Programmable integrated circuits will perform
dedicated (built-in) functions that we're not even aware of in new
data-processing, control, and communications application's. Chances are
that each home will have at least one computer-perhaps connected to a
public data -communications system and in communication with
programmed circuitry in equipment such as intercoms, doorbells, air
conditioners, garage -door openers, washing machines, typewriters,
burglar alarms, television sets, telephones, and who knows what else?
Considering the great volume of storage that will be available, such an
integrated electronic network would go far beyond home computer tasks
we can now envision, such as bookkeeping, storing recipes, etc. The
possibilities are truly mind -boggling.

Where do you go from here?

Now that we've surveyed the various types of digital system
applications and looked at the direction of progress in this field, we can
say that we've finished the job of understanding digital electronics.

Although you may not feel confident enough to design your
own system yet, you can probably understand the general operation of
nearly any digital system you may read about. And more than that, you
can probably grasp the reasons for various features of that design. This
being so, you're not very far from creating your own systems, because
much of the other information you need is a matter of reading the
specifications of integrated circuits in manufacturer's data sheets and
catalogs.

Where you go from here is up to you. Many other books are
available for your further learning from Texas Instruments Learning
Center, others may be found in libraries as well as bookstores and
electronic supply stores. In addition, courses in this subject are available
in many schools.

However, regardless of whether you pursue this subject further
or move on to something else, you can be satisfied with having gained
insight into the technology that, more than any other in history, is
extending the mind and hands of man.
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Quiz for Chapter 10
1. What do digital applications

in the "general-purpose
data-processing" category
have in common?
a. Use of computers or similar

programmed circuitry.
b. Their inputs and outputs

are essentially to and from
people.

c. They control other systems.
d. A and B above.

2. ASCII uses seven -bit groups
to represent:
a. Characters to be printed or

displayed.
b. Special signals to an output

device.
c. Numbers in a form for

calculations.
d. A and B above.

3. A computer with several
magnetic tape units, a
high-speed line printer, and
variable word length would be
particularly useful for:
a. Traditional "business"

data-processing.
b. Technical computations.
c. Simulation and automatic

designing.
d. Specialized data

processing.

4. Computers used for technical
computations or simulation
and automatic designing
typically need to have:
a. Large main memory.
b. High processing speed.
c. Very long words.
d. All of the above.

5. In which subcategory of
Figure 10-1 would you classify
a system that controls a
coin -operated vending
machine? (Inputs from
coin -detection switches;
outputs to solenoids to
dispense change and
products)
a. Technical computations.
b. Process control.
c. Sequencing of events.
d. Specialized data

processing.

6. How does information on the
status of the system being
controlled flow into an
"automatic control system"?
a. The various streams of

information flow
simultaneously and
automatically into the
control system's memory.

b. There's a separate little
control system for each
incoming stream of
information.

c. The control system "scans"
the various inputs,
receiving data from one at
a time and deciding what
to do with it.

d. A and B above.
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7. What purpose does a "parity
bit" serve in communicating a
group of bits from one system
or subsystem to another?
a. It tells whether there is an

odd or even number of ones
in the group.

b. It provides a "word mark"
to show that the character
is the first of a group read
together.

c. It enables the receiving
unit to determine whether
one bit has been received
incorrectly, by looking for
an odd or even number of
ones in the data group.

d. A and C above.

8. How are bits transmitted
serially in a telephone line?
a. Higher voltage for 1, lower

for 0.
b. Waves of greater

amplitude for 1, less
amplitude for 0.

c. Tone of one pitch for 1,
tone of another pitch for 0.

d. Long tone for 1, short tone
for 0.

9. How can integrated circuits
become more complex (more
gates and storage cells in less
area)?
a. Creating smaller, more

precisely aligned patterns
on photoresist films, using
electron beams and X-rays
instead of light.

b. Using types of circuits and
devices that are smaller,
simpler, etc.

c. Working the bugs out of
existing manufacturing
techniques.

d. A and B above.

10. More new applications will be
opened up by improvements in
the density and cost of:
a. Logic circuitry (gates).
b. Memory units.
c. Input devices.
d. Output devices.

11. Charge -coupled devices and
magnetic bubbles provide
density and cost
improvements in:
a. Random-access memory.
b. Read-only memory.
c. Serial -access recirculating

memory.
d. All of the above.

12. Non -volatility is an important
advantage of:
a. CCDs.
b. Magnetic bubbles.
c. Magnetic tape and disks.
d. B and C above.

13. Which kind of skill would you
say will be more important in
understanding and working
with digital electronics in the
future?
a. Analyzing and designing

special electronic circuits.
b. Analyzing and designing

complete electronic
systems.

c. Selecting and designing
software for
programmable systems.

d. A and B above.

(Answers in back of the book)
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Glossary
Access Time: The average time it takes for a bit or word to be read at random in a
memory unit. In a serial -access unit, this is half the time to go from one end of the
stored data to the other.
Addend: A number added to another. (See "Augend.")
Adder: A building block capable of providing a sum and a carry, if required, when
adding two numbers electronically.
Address: A binary number designating a particular location where information
may be stored in a memory unit.
Algorithm: A plan for performing a job as a series of smaller jobs, typically
speaking of a numerical calculation. More generally, a set of procedures by which a

given result is obtained.
ALU: Arithmetic and Logic Unit. A subsystem that can perform any of a number
of arithmetic and logical operations on words sent to it, such as addition,
subtraction, comparison, and AND and OR functions of certain bits.

Amplitude: The height or strength of waves or pulses in an electric circuit or other
transmission medium such as radio.
Analog: Electric analog information is information represented by a variable
property of electricity, such as voltage, current, amplitude of waves or pulses, or
frequency of waves or pulses. Analog circuitry, also called "linear" circuitry, is
circuitry that varies certain properties of electricity continuously and smoothly over
a certain range, rather than switching suddenly between certain levels.

AND Gate: A device or circuit with two or more inputs of binary digital
information and one output, whose output is 1 only when all the inputs are 1. The
output is 0 when any one or more inputs are 0.

Array: A group of elements arranged in a pattern.

ASCII: A code representing letters, numerals, punctuation marks, and control
signals as seven -bit groups. It is used as a standard code by the U.S. for the
transmission of data. The letters are an abbreviation for United States of American
Standard Code for Information Interchange.
Asynchronous: Refers to circuitry and operations without common clock signals.

Augend: A number to which another is added. (See "Addend.")

BCD: BCD Code: See "Binary -Coded -Decimal Code." BCD Counter: See "Decade

Counter."
Binary -Coded -Decimal (BCD) Code: A binary numbering system for
representing each digit of a decimal number in groups of four bits. The binary value
of these four bit groups is from 0000 to 1001 which code the decimal digits from "0"
through "9".
Binary Number System or Code: A method of writing numbers by using two
numeral digits, 0 and 1. Each position for a bit in a binary number represents
1,2,4,8,16,32, and so forth. Examples: 1000= eight, 10101= twenty-one.

Bipolar: A bipolar transistor is an n -p -n or a p -n -p transistor, as opposed to an
MOS transistor. In a bipolar transistor, a small current through the "base" terminal
controls a proportionately larger current through the "emitter" and "collector"
terminals. A bipolar integrated circuit is one using bipolar transistors rather than
MOS transistors.
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Bit: The smallest possible piece of information. The simplest statement that can be
made. A specification of one out of two possible alternatives. Usually thought of as
a statement of yes or no. Bits are written as 1 for "yes" and 0 for "no". These
symbols are the same as those used in binary numbers, so a bit is also a binary digit.
(See "Binary Number System.")

Borrow: When a minuend digit is smaller than a subtrahend digit, 10 is added to
the minuend digit and 1 is subtracted from the next more significant minuend digit.
This procedure is called "borrowing" from the next more significant digit. The
"borrowed" amount (1 or 0) is called the "borrow bit" or simply the "borrow." (See
"Carry.")

Boolean Algebra: A simple system for writing combinations of logical statements
(statements that can be either true or false). See Figure 3-5.

Branch: A program is said to "branch" where either of two possible instructions
may be selected for execution next.

Buffer: A digital circuit with one input and one output. The output state is the same
as that of the input. Used to "strengthen" a "weak" signal.

Building Block: In the field of electronic systems design, a combination of circuits
or subsystems that can be used with other building blocks in many different
combinations without redesigning. The simplest digital building blocks are logic
gates.

Bus: Two or more conductors running in parallel used for carrying information.
(Sometimes commonly used for power distribution conductors.)

Byte: A group of adjacent bits, usually a group formed for convenience in
transmitting and receiving data (such as to and from a magnetic tape unit). Usually
it takes more than one byte to make a word.

Calculator: A machine specially designed to perform arithmetic and computations
which require numerous entries by the person operating the machine.

Capacitor: A device that stores electric charge in an electric or electronic circuit.
Carry: When the sum of two digits is equal to or greater than 10, then 10 is
subtracted from this sum, and 1 is added to the next more significant digit of the
sum. This procedure is called "carrying" to the next more significant digit. The
"carried" amount (1 or 0) is called the "carry bit" or simply the "carry." (See
"Borrow.")

CCD: Charge -coupled device. A means for very dense serial -access storage of bits
as tiny packets of electric charge moving along the surface of a semiconductor chip.

Channel: In MOS transistors: the conducting portion between the main terminals,
formed by the gate signal. In electronic systems: a path along which signals can be
sent, such as data channel.

Character: A symbol whose image is formed by a display system for
representation of information. Examples are numerals, letters, decimal point,
punctuation marks, and special symbols indicating status of an electronic system.
Examples are overflow or errors in a calculator.

Circuit: Strictly speaking, a circuit means a path for electricity from one terminal
of a power supply (imagine a battery) through wires and usually through electrical
or electronic devices, and back to the other terminal of the power supply. "Circuit" is
also used to refer to a group of electric or electronic devices connected together to
perform a certain job or function.

Clear: (See "Erase") To remove data and return all circuitry to an initial condition,
usually "0"
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Clock Input: An input terminal on a building-block typically used for receiving a
timing control -clock signal, but used in some applications for a control signal or even
data.
Clock Generator: A building block that generates clock signals.

Clock Signal: A regularly repeated signal supplied to more than one part of a
system or subsystem to make things happen at the same time.

CMOS Integrated Circuit: A digital integrated circuit whose gates use both
n -channel and p -channel MOS transistors in such a fashion that almost no current
flows when a gate is not switching from one output state to another.

Code: A set of meanings or rules assigned to groups of bits. Each combination of
bits (that is, each binary number that can be formed) has a certain meaning
following certain rules in terms of a number, a character, an instruction, etc.

Code Converter: A name for a class of combinational building blocks that receive
information in one code and transmit the same information in another code. With
respect to one particular code (say, the BCD code used for numbers in a calculator),
a building block that converts to this code is called an "encoder," and a building
block that converts from, this code is called a "decoder".

Combinational Building -Block or Network: A group of logic gates (perhapsjust
one) with no ability to store information, typically with several inputs and several
outputs. For every combination of bits at the inputs, there is a definite, prearranged
combination of bits at the outputs.
Comparator: A building-block that compares two binary numbers. There are
several kinds of comparison: telling when the numbers are equal, when one is
greater, when one is greater -than -or -equal -to the other, and so forth.

Complement: Usually means the "ones complement" of a bit, which is simply the
inverse of the bit. To "complement" a number means to subtract it from a certain
number (from one, in the case of ones complement).

Computer: A digital computer consists of at least one main frame, together with
various peripheral input, output, and memory units. Distinguished from
"minicomputer" and "microcomputer" by size and speed: longer words, larger
memory, faster operation, more ALU operations, and generally more sophistication
and flexibility.
Conductor: Something that conducts electricity from one place to another. It may
be a wire, a metal strip on a printed -wiring board, a metal strip on the surface of an
integrated -circuit chip, or a channel of semiconductor material inside an IC chip.

Controller: The parts (perhaps a subsystem) of a programmed system that select
stored instructions, interpret them, and transmit control signals to the other parts
of the system.
Core: A tiny ring of magnetic material that stores a bit as a permanent magnetic
field. A "core memory" typically contains thousands or millions of cores.

Counter: A special kind of register made up of flip-flop circuits with one input and
usually with a parallel output from each flip-flop, which counts pulses arriving at
the input and stores the total count in a certain code (usually binary numbers).

CPU: Central Processing Unit. A section of a computer (or computer-like system)
consisting of a controller, some registers, and an ALU.
CRT Terminal: Cathode -ray -tube terminal. A computer terminal with a screen
similar to that of a television receiver, together with a keyboard.
D Flip -Flop: A clocked flip-flop with one data input (called "D"), whose "true"
output changes at a clock signal to the state maintained at D during the clock signal.
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Data: Another name for information. It may imply information being transmitted
from one place to another, or information being processed as opposed to information
used for controlling the processing of the other information.

Data Selector: A combinational building-block that routes data from one of several
inputs to a single output, according to control signals. Also called "multiplexer."
Two or more such one -bit selectors operating in parallel would be called a "two-bit
data selector," etc.

Decade Counter: A modulo -ten counter, counting from zero to nine in BCD code.

Decimal Number System or Code: Also called "Arabic" numer system. A method
of writing numbers by using ten numeral digits. The "decimal digits" are 0, 1, 2, 3, 4,
5, 6, 7, 8, and 9. Each position for a digit in a decimal number stands for a place
value of 1, 10, 100, 1000, and so forth.

Decoder: See "Code Converter." Loosely speaking, "decoder" may be the name
used for a combinational building-block receiving several parallel inputs, which
"recognizes" one or more combinations of input bits and puts out a signal when
these combinations are received.

Dedicated: A dedicated system (say, a computer) is one that's limited to one
particular job by the way it's built into a larger system (say, a process controller).
Demultiplexer: A combinational building-block that routes data from one input to
one of several outputs, according to control signals.

Digit or Numeral Digit: One of the numerals or symbols used in a number system.
Digital: Symbolic of data in the form of pieces, i.e., bits or digits.

Diode: Any electronic device with two electrodes (terminals). Usually means a "p -n
junction diode," which is a rectifying device (passes current only one way)
consisting of a p region and an n region touching each other in the same
semiconductor crystal.

Dividend: A number divided by another. (See "Divisor.".)

Divisor: A number divided into another. (See "Dividend.")

Dopant, Doping: A substance added to semiconductor material to make it p -type
or n -type is called a "dopant". Adding this substance is called "doping".

Driver: A circuit that provides digital signals with enough power to "drive"
(operate) something other than a few nearby gates, such as LEDS in a display,
magnetic cores in a memory, etc.

Dynamic Storage Circuit (or "Unit"): An electric circuit that stores one bit in the
form of an electric charge in a capacitor (or in part of a circuit that acts as a
capacitor). Two such circuits may be connected together to store a bit in
master -slave style.

ECL: Emitter -coupled logic. Also, called "current -mode logic." General design
principle for a bipolar logic gate that achieves fast propagation delay by diverting
internal current from one path to another rather than switching saturated
transistors on and off. A family of integrated circuits using gates like this.

Electric: Something that uses electricity. Some electric devices and circuits and
systems are also "electronic."

Electronic: Something that uses electronic devices. Electronic devices are
"vacuum" tubes (including gas -filled electron tubes) and solid-state semiconductor
devices.

Encoder: See "Code Converter."
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Epitaxial: An "epitaxial layer" on a semiconductor slice or chip is a thin layer of
semiconductor crystal deposited on a substrate by crystal growth from a hot gas.

EPROM: Eraseable and programmable read-only memory. An IC memory chip
whose stored data can be read at random. The data can be erased and new data can
be stored, but only by a special system other than the one in which the memory is

used.
Exclusive -Or Gate: A device or circuit with two (not more) inputs of binary digital
information and one output, whose output is 1 when either input is 1 and 0 if neither
or both inputs are 1. It acts as a certain combination of other gates.

Family: A family of digital integrated circuits is a group of ICs that use the same
general design style for all gates, are processed during manufacture in much the
same way, and whose input and output signals are all "compatible" with one another
so that one can transmit to another.

Fan -Out: See Page 6-9.

Flag: A flag is a bit stored in a certain place, which the system uses as a "reminder"
of something that's been done or something that needs to be done.

Flip -Flop: A building-block having two stable states that stores one bit by means
of two gates (ordinarily NAND or NOR gates) "cross -coupled" as a latch, with the
output of each forming an input to the other. It is capable of changing from one
state to the other by the application of a control signal, but will also remain in that
state after removal of the signal. A master-slave flip-flop contains two such latches.
Most flip-flops contain additional features to make them more versatile.

Frequency: How often regular waves or pulses occur in a circuit or other
transmission medium such as radio. Frequency is measured in hertz (cycles per

second) and multiples of hertz.
Function Table: The function table for an electric or electronic binary digital
circuit shows, the output electrical state that results from each combination of
electrical states at the inputs. For binary electronic circuits, the states are either
"high" or "low", "on" or "off", "open" or "closed." In examples in this book where
voltages are not specified, "on" means high, and "off" means low.

Gate: A "logic gate" is an AND, OR, NOT, NAND, NOR or "Exclusive -OR" gate. In

an MOS transistor, the "gate" is the metal plate for holding the charge to control
the transistor.
Hardware: The actual physical parts and structure of a system, subsystem, etc., as
opposed to "software" that may control its operation.

Hard -Wired: Describes a system, subsystem or building-block which does not
contain stored instructions that control its operation. Its operation depends only on
the way it is put together, and on inputs it receives.

IC: See "Integrated Circuit,"
PL: I -squared -L, or "integrated injection logic." A certain type of logic gate that
uses essentially only one bipolar transistor. A family of integrated circuits based on
gates like this.
Inductor: Any device that makes electricity interact with a magnetic field,
typically by means of a coil of wire.
Input: An information signal coming into a system or a part of a system. Can also
mean the wire that carries this incoming information.

Instruction: A string of bits in a certain combination, stored in a "programmed"
digital system such as a calculator. Each instruction contains information in a
special code that tells the system what to do next. (See "microprogram.")
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Instruction Cycle: The period of time during which a programmed system obeys a
particular instruction.

Integer: A "whole number" not containing a fraction, decimal point, etc.

Integrated Circuit ("IC"): A small package with electrical terminals, containing a
chip of silicon. The surface of the silicon is processed to form hundreds or thousands
of transistors and other devices. These make up an electronic circuit.

Inverter: A binary digital building-block with one input and one output. The output
state is the inverse (opposite) of the input state.

J -K Flip -Flop: A clocked flip-flop with two inputs called J and K which acts as a
clocked R -S flip-flop, except that when clocked while both J and K are 1, it toggles to
the opposite state rather than an unknown state like an R -S flip-flop.

Latch: A one -bit latch is a circuit with an input and an output for digital
information, and a third input for a control signal. The control signal makes the
output either follow the input or be held in its present state. Several latches used
together with the same control signal to each (say four of them) would be a type of
register called a 4 -bit latch. Also, see "R -S" Latch" and "S -R Latch."
LED: See "Light -emitting diode."

Light -Emitting Diode (LED): A sort of semiconductor "light bulb" made of a
small piece of semiconductor material (such as gallium phosphide) that makes light
when electric current is passed through it in a particular direction, by way of two
terminals.

Linear Circuitry: See "Analog."

Logic Diagram: A diagram using symbols for gates, flip-flops, building-blocks,
etc., and showing connections between these parts.
Logic Gate: See "Gate."

LSB or LSD: Least -significant bit or digit. The bit or digit at the "right" end of a
number, with the smallest numerical value.

LSI: A level of complexity of integrated circuits, such that a complete major
subsystem containing 100 or more gates (or equivalent circuits) is fabricated in one
integrated circuit.

Magnetic Bubble: A tiny moveable magnetized region formed under certain
conditions in a thin film of magnetic garnet crystal fabricated similar to an IC. Such
bubbles provide very dense serial -access storage of bits.

Magnetic Tape, Drum, Disk: Types of serial -access mass memory that store bits
as tiny magnetized spots in moving magnetic material, used for peripheral storage
in a computer system.

Main Frame: A section of a computer consisting of a CPU and a random-access
mass memory.

Mask: See "Photomask."

Mass Memory: A memory that can store a relatively large amount of inforamtion
and hold that information "permanently" until replaced by the system.

Master -Slave: A method of connecting two flip-flops or dynamic storage units to
store one bit, so that the "master" unit receives and stores an incoming bit before
the "slave" unit releases a bit that was previously received by the master unit. This
arrangement permits bits to be transferred between flip-flops by using a common
clock signal (or a common set of clock phases).

G-6 UNDERSTANDING DIGITAL ELECTRONICS



GGLOSSARY

Memory: In a digital system, a "memory" or a "memory unit" is a part of the
system where information is stored. (See "Mass Memory.")

Microaddress: See "Microprogram."
Microcomputer: A computer in the lowest range of size and speed, generally
smaller, slower, and less sophisticated than a "minicomputer."

Microinstruction: See "Microprogram."
Microprocessor: An IC (or set of a few ICs) that can be programmed with stored
instructions to perform a wide variety of functions, consisting at least of a
controller, some registers, and some sort of ALU (that is, the basic parts of a simple
CPU).
Microprogram: Certain programmed systems are "microprogrammed," meaning
that they have two levels of programming. Each instruction in the "upper" or
"main" level typically causes execution of a routine at the lower or
"microprogrammed" level. Such a routine consists of "microinstructions" stored at
"microaddresses" in a memory unit that's typically a ROM, PROM, or EPROM.
Some systems (such as non -programmable calculators) operate only with
microprogramming.
Minicomputer: A computer in a certain range of size and speed, generally smaller,
slower, and less sophisticated than a "computer."
Minuend: A number from which another is subtracted. (See "Subtrahend.")
Modulus: The modulus of a counter is the number of states it counts through before
returning to the beginning state. Written as "modulo" when used as a prefix, as in
"modulo -12 counter."
Modulation: The controlling of a certain property of electricity so as to transmit
information in analog form.
MOS Integrated Circuit: A digital integrated circuit whose transistors are all (or
nearly all) MOS transistors. Varieties include n -channel MOS, p -channel MOS, and
CMOS integrated circuits.
MOS Transistor: A class of transistors that operate by means of an electric field
produced by a voltage on a metal plate called the "gate." The field acts through a
thin layer of oxide insulation upon a semiconductor channel, controlling its depth
and therefore controlling current through the channel.

MSB or MSD: Most -significant bit or digit. The bit or digit at the "left" end of a
number, with the largest numerical value.
Multiplicand: A number multiplied by another. "Two times three" means three
taken two times, so the multiplicand is three. (Two is the "multiplier.")

Multiplier: A number by which another is multiplied. (See "Multiplicand.")

Multiplexer: See "Data Selector."
N -Type Semiconductor Material: Semiconductor material (such as silicon)
containing a very small proportion of certain other elements (such as phosphorus),
causing any current through the material to be conducted mainly by the movement
of negative charges ("free" electrons).
NAND Gate: A binary digital building-block that acts as an AND gate followed by
an inverter.
Negative Logic: In electronic binary digital circuits, this means the decision to let
the more negative of the two voltage levels represent 1 and to let the less negative
level represent 0. In this book, negative logic is not used unless it's specifically
stated.
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Noise: Any signal that isn't supposed to be there. Electrical noise may be caused by
small, irregular sparks when a switch is opened or closed. Or it may be caused by
radio waves or by electric or magnetic fields generated by one wire and picked up by
another.

Noise Margin: See page 6-5.

NOR Gate: A binary digital building-block that acts as an OR gate followed by an
inverter.

NOT Gate: Occasionally used to mean "inverter."

Numeral or Numeral Digit: See "Digit."
OR Gate: A device or circuit with two or more inputs of binary digital information
and one output, whose output is 1 when any one or more inputs are 1. The output is 0
only when all inputs are 0.

Output: An information signal going out of a system or a part of a system. Can also
mean the wire that carries this outgoing information. (See also I/O.)

P -Type Semiconductor Material: Semiconductor material (such as silicon)
containing a very small proportion of certain other elements (such as boron),
causing any current through the material to be conducted mainly by the movement
of positive charges ("holes" among "bound" electrons).

Parallel Circuit Connection: Two or more electrical devices (such as switches or
transistors) are said to be connected "in parallel" when two terminals of each device
are connected to the same two points, so that current can pass from one point to the
other through any of the devices.

Parallel Data Transmission: Two or more bits of a group are said to be
transmitted "in parallel" when they are all transmitted at the same time (as in a
group of wires) from the same source to the same destination.

Parallel Register: Two or more flip-flops (or dynamic storage units) with a
common clock signal, used to store bits transmitted in parallel.

Peripheral: In a computer system, "peripheral" units or equipment are those
outside the main frame, including disk and tape units, printers, keyboard terminals,
etc.

Phase: The time interval for each clock "cycle" in a system may be divided into two
or more "phases" (like the phases of the moon). The phases are defined by pulses in
a separate network of wires for each phase. During a particular phase, the signal in
that clock network is in the state defined as "active" (let's say the "high" or "1"
state). The clock cycles are repeated over and over again, phase by phase. The phases
provide a method of making several things happen in the proper order during one
clock cycle.

Photomask: A transparent glass plate carrying an intricate, very precise pattern
of microscopically small opaque (dark) spots photographically reduced from a larger
pattern. The opaque spots represent areas on a semiconductor slice into which a
dopant will be diffused, or areas of metal that will be etched away.

Photoresist: A liquid that, when spread in a thin film and dried, quickly hardens
into a tough plastic substance where struck by ultraviolet light. When the
unhardened areas have been washed away, the material beneath is exposed for
etching by an acid. The hardened areas "resist" the acid.

PLA: Programmable Logic Array. An MOS read-only memory used as a network of
logic gates.

G-8 UNDERSTANDING DIGITAL ELECTRONICS



GGLOSSARY

Positive Logic: In electronic binary digital circuits, this means the decision to let
the "higher," more positive of the two voltage levels represent 1 and to let the
"lower," more negative level represent 0. Positive logic is always assumed in this
book unless "negative logic" is specifically stated.

Potentiometer: A variable resistor with three terminals, normally used for
transmitting a manually variable voltage ("potential") part -way between voltages
supplied at two main terminals of the device.

Power Dissipation: See page 6-8.
Product: In arithmetic, the result of a multiplication. In Boolean algebra, the AND
function of two or more variables.
Program: In a programmed system, any group of instructions that are
"programmed," meaning planned so that one instruction leads to another.

Program Counter: In a programmed system, the parts that provide a method for
adding 1 to the address of the current instruction. May consist of the address
register and an adder.
Programmed System: A system that operates by following a series of stored
instructions. Also called "variable -program" system, since the instructions canbe

changed.
PROM: Programmable read-only memory. An IC memory chip whose stored data
can be read at random. The data is stored permanently by the user after the chip is
manufactured, and cannot be changed afterward. Storing data in this fashion is
loosely called "programming" the memory.
Propagation Delay: See "Switching Speed," page 6-8.

Quotient: The result of a division.
RAM: Random-access memory. A memory with a number of storage locations,
where words may be "written" (stored) or "read" (recovered) in any order at
random.
Refresh: To refresh a dynamic storage unit means to restore its charge to the
desired voltage level.
Register: A certain type of temporary storage unit for digital information. (See
"Shift Register" and "Parallel Register.")
Relay or Electromechanical Relay: A mechanical switch with a moving contact
called an "armature" that is moved by a magnetic field generated by electricity in a
coil of wire.

Reset: To "reset" a stored bit means make it a "0."
ROM: Read-only memory. A memory unit containing data permanently stored
when the unit was manufactured. Usually an IC chip with each bit stored as a
permanent electrical connection of some sort, which can be read at random.

Routine or Programmed Routine: A series of instructions followed by a
programmed system in doing a particular job. Usually contained within a main
program. It may occur over and over again. The instructions are "programmed,"
meaning planned so that each instruction leads to another. A routine can even be
one instruction followed over and over again.

R -S Flip -Flop: Any of several kinds of flip-flops, in which a momentary 1 at the R
(reset) input changes the "true" output to 0, and a momentary 1 at the S (set) input
changes the "true" output to 1. Varieties include clocking and master -slavefeatures.

R -S Latch: A simple kind of R -S flip-flop. Two NOR gates cross -coupled, with the
output of each forming an input to the other.
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S -R (S -Bar, R -Bar) Latch: A simple kind of flip-flop. Two NAND gates
cross -coupled, with the output of each forming an input to the other.
Schottky Diode: A type of rectifying (one-way) diode formed simply by a metalterminal contacting a lightly -doped region in a semiconductor crystal. Its low
"forward voltage drop" and quick response to pulses make it useful in improving the
performance of TTL circuits.

Segment: In this book, "segment" means one of the seven bars in a rectangular
figure -8 pattern in a "7 -segment" character display.

Semiconductor: "Semiconductor material" is various solid substances such as
silicon, germanium, and gallium phosphide. When made in nearly pure crystal form,
these materials conduct electricity in very special, useful ways. A "semiconductor
device" (or just a "semiconductor") is a transistor or diode (or other similar things)
made using semiconductor material.

Sequential Building -Block or Network: One or more flip-flops or dynamic
storage units, typically with one or more logic gates, and typically with several
inputs and several outputs. The combination of bits at the outputs does not depend
only on the combination at the inputs at the present moment, but on past history of
a sequence of input combinations over a period of time.
Serial -Access Memory: A memory in which the stored data is accessible for
reading or writing only in a definite, fixed order rather than at random.
Serial Data Transmission: Two or more bits of a group are said to be transmitted
"in series" when one at a time is transmitted through the same wire. Such
transmission is called "serial" transmission.

Series Circuit Connection: Two or more electrical devices (such as switches or
transistors) are said to be connected "in series" when they form a chain from onepoint to another, so that the same current flows through all of them.
Set: To "set" a stored bit means make it a "1."
Shift: A movement of stored data right or left.
Shift Register: Two or more flip-flops (or dynamic storage units) with a common
clock signal, connected in series so that stored bits shift one stage during each clock
cycle.

Signal: A word used in describing the operation of electric or electronic circuits. It
means electrical voltage or current or waves carrying information, or the
information itself.

Software: The stored instructions (or "program") that control a programmed
system, as opposed to the "hardware" of which the system is physically constructed.
Speed -Power Product: See page 6-8.

State: The "logic state" of a conductor in a digital circuit means its condition as to
whether it is carrying a 1 or 0.

Static Memory: An IC memory whose storage elements consist of flip-flops rather
than dynamic storage units.

Stored Program: A set of instructions in memory determining the order of the
problem solution.

Substrate: Literally, "underlayer." The semiconductor material of a slice or chip
that lies beneath the diffused and epitaxially deposited regions.
Subroutine: A routine that is part of another routine. (See "Routine.")
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Subsystem: A smaller system inside a larger system. Each subsystem can be
thought of as a separate system with its own job to do.

Subtrahend: A number subtracted from another. (See "Minuend.")

Sum: In arithmetic, the result of an addition. In Boolean algebra, the OR function
of two or more variables.

Switching Circuit: An electric or electronic circuit whose output (or outputs) are in
definite electrical states, rather than varying over a wide range. The switching
circuits used in binary digital systems have only two possible states. These are
usually two different voltage levels.

Synchronous: Refers to two or more things made to happen in a system at the
same time, by means of a common clock signal.

System: In general, a system is a group of things that work together as a unified
whole. In electronics, a system is a group of device or circuits or subsystems that
work together to do a certain job.

T Flip -Flop: A fiipfiop with an input called "T," whose outputs "toggle" to the
opposite states on receiving a signal at T.
Terminal: A computer terminal is an input and output device operated by a person.
Input is usually by a keyboard. Output is usually by typewriter or CRT screen.

Transducer: A device that converts information from one medium (say, the
position of a control knob) to another (say, electronic digital signals).

Truth Table: The truth table for a binary digital building-block shows, for each
information output, the logic state that results from each combination of logic states
at the information inputs. The logic states are 1 (yes, true) and 0 (no, false). (See
"Function Table.")
TTL or T2L: Transistor -transistor logic. A certain style of circuit design for a logic
gate using two bipolar transistors. A broad family of integrated circuit types whose
gates employ the general principle of this basic two -transistor arrangement.

USASCII: See "ASCII."
Variable: A quantity that can assume any of a given set of values.

Volatile: A volatile memory is one that loses its stored data when the electric power
is turned off.
Word: A group of bits or string of bits handled as a unit usually stored at a certain
address in a random-access memory (RAM).

Write: To record data in a storage or data medium.

YIG: Yttrium -iron garnet. A magnetic crystalline material suitable for holding
magnetic bubbles.

UNDERSTANDING DIGITAL ELECTRONICS G-11



INDEX

Index
Addition:

bit -parallel, digit -serial, 8-10,
8-11

full parallel, 8-3-8-5
full serial, 8-5-8-9
introduction, 3-13, 3-14
(See also BCD numbers, Binary

numbers, Decimal numbers)
Adder:

carry -look -ahead, 8-5
four -bit, 3-13-3-16
one -bit, 3-15, 3-16, 8-5, 8-8-8-10

Address:
in calculator's microprogram

memory, 1-9, 7-10
in random-access memory, 1-11,

7-12
Algorithm, definition, 9-4
ALU (arithmetic and logic unit):

in computer, capabilities, 9-24
defined relative to calculator,

9-18
sixteen -bit addition, 8-3
relative to mass storage, 7-24

AM (See Analog methods: amplitude
modulation)

Amplifier:
as amplitude modulator, 5-6
as analog building-block, 5-10
in analog storage buffer, 5-9
in charge -coupled device, 10-15
differential, 5-14
gain, 5-6
integrated power, 5-14
operational, 5-14
sense amplifier in core memory,

7-19
transistors to amplify, 5-10
video (wide -band), 5-14

Amplitude, 5-5
Analog methods:

amplitude modulation (AM), 5-5
analog computers, 10-7
compared to digital, 5-10-5-22
current analog, 5-5
decisions, 5-10
definition, 5-2
frequency modulation (FM), 5-6,

5-7
in fuel -gage system, 5-2
general, 1-1, 1-24
multiplication, 5-6, 5-10, 5-12

storage, capacitor, 5-5, 5-9
storage, delay -line, 5-7
in telephone system, 5-4
voltage analog, 5-5

Analog -to -digital converter:
in control system, 10-8
in digital autopilot system, 5-15
in "digital phonograph," 5-17
in digital television

transmission, 5-20
AND gate:

in Boolean algebra, 3-7
principles, 2-4-2-7

AND -OR -invert circuit, 3-16, 8-9
Application categories for digital

systems (See Digital methods:
system application categories)

Arithmetic and logic unit (See ALU)
ASCII (American Standard Code for

Information Interchange),
10-4

Asynchronous data transmission (See
Transmission of digital
information: asynchronous)

Automatic control system, 10-8-10-1D
Automatic designing by computer, 10-7

Bandwidth, 5-19
BCD numbers:

addition, 7-5, 8-11, 8-12
definition, 3-14
subtraction, 8-20-8-23
table, 1-21

BCD -to -7 -segment decoder (or
decoder -driver):

definition, 3-3
truth table, 3-5
in voltmeter, 4-3, 4-4

Binary, definition, 1-22
Binary-coded decimal (See BCD)
Binary numbers:

addition, 3-14, 3-15
definition, 1-21

Bipolar transistors:
n -p -n, 6-14, 7-17
p -n -p, 6-21

Bit:
analog information

measurement, 5-19
definition, 1-20, 1-22

Boolean algebra, 3-6-3-8
Borrow (in subtraction), 7-6, 8-20
Branch in program, 9-9
Buffer, 3-10
"Business" data-processing, 10-5, 10-6
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Byte:
in computer system, 10-12
definition, 7-21

Calculator, imaginary example:
accumulator register, 1-15, 1-17
"add" routine, 1-16
adder-subtracter, 1-16, 7-5, 8-24
address register, 1-11, 7-10, 8-6
character positions in display,

1-7
clock generator, 1-12
clock signals, phased, 1-12, 8-16
computer, how similar to,

9-16-9-20
condition latch, 8-27, 9-9
connections to IC, 1-4
controller, 1-11
decimal points, 1-17, 8-14
definition, 1-4
display register, 1-13, 1-15
division, 9-13, 9-14
flag register, 1-14, 1-16, 8-26,

9-10
"idle" routine, 1-13, 1-15, 9-19
instruction cycle, 1-12, 9-8
instruction register, 1-11, 7-10
instructions, 1-11, 7-10
keyboard encoder, 1-14,

2-2-2-20
keyboard inputs, 1-5-1-7
microprogram memory, 1-11, 7-10
"multiplication" routine,

9-4-9-12
negative numbers, handling,

8-24
number registers: construction,

7-6, 8-26
shifting right or left, 8-27,
8-28, 9-8
sign and decimal -point digits,
8-13, 8-14

operand register, 1-15
program counter, 8-6, 8-7
routing subsystem, 1-15, 1-16,

3-12, 7-6, 8-22, 8-25, 8-27
scan generator, 1-13
scan lines, 1-5
segment decoder, 1-13, 3-3,

8-13-8-17
segment -line outputs, 1-7-1-9
sine function, 9-15
square root, 9-14

Capacitors:
analog storage, 5-8, 6-9
construction, 5-9
in dynamic RAM, 7-16
in dynamic shift register, 7-8

Carry (in addition), 3-15, 7-6
Cathode -ray -tube terminals (See CRT

terminals)
CCDs (charge -coupled devices), 7-22,

10-14, 10-15
Central processing unit (See CPU)
Character:

in calculator display, 1-7
code in computer (See ASCII)

Charge -coupled devices (See CCDs)
"Clear" input to flip-flop (See Flip-flop)
Clock signals:

definition, 4-2, 4-6
phased: in calculator, 1-12, 8-16

in charge -coupled device,
10-14
in dynamic shift register, 7-8

timing versus control signals,
8-16

(See also Transmission of digital
information: asynchronous;
synchronous)

CMOS integrated circuits, 6-12
Coincidence detector, 2-4
Code -converter building-blocks, 3-3
combinational building-blocks:

definition, 3-1
design procedures, 3-4-3-11

Communications control systems,
10-11-10-13

"Comparison" operation:
by adder-subtracter in

calculator, 1-19, 8-24
by comparators in segment

decoder subsystem in
calculator, 8-17

instruction in flow chart, 9-9
subtracting to accomplish, 8-22
types of, by ALU, 9-18

"Complement" signals, 3-9, 4-1, 8-20
Complexity of IC, 6-9, 9-1, 9-2, 10-13,

10-14
Complementary MOS ICs, 6-12
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Computer:
adder for, 8-3-8-5
definition relative to other

systems, 9-23, 9-24
general-purpose, 10-2-10-7,

10-12
as general-purpose

programmable system, 9-3
mass memory units in, 7-23
microprocessors in, 9-21
(See also ALU, Mass memory)

Conditional jump in program, 9-9
Controller in programmed system:

in calculator, introduction, 1-11,
1-12

general concept, 8-19
Core memory, 7-18, 7-19
Cost to manufacture ICs, 6-9, 6-10
Counters:

asynchronous binary, 4-11-4-13
decade or BCD or modulo -10,

4-14
in hard -wired control, 8-16-8-19
modulus, 4-15
synchronous binary, 4-13, 4-14
in watch or clock, 4-15

CPU:
in computers, 10-2, 10-11
definition, 9-21
made of microprocessors, 9-21,

9-22
Cross -coupling of logic gates, 4-2, 7-18
CRT terminals:

with computers, 9-24, 10-2, 10-7,
10-12

shift registers for, 7-7
Current meter, 5-3

Data, definition, 4-1
Data -logging systems, 10-10
Data -routing building-blocks,

3-11-3-13
Data selectors:

in calculator, 3-12, 8-27
design, 3-11, 3-12

Decimal numbers:
addition, 3-14, 3-15
definition, 1-22

Decoder:
in adder-subtracter, 8-24
in BCD adder, 8-12
in "hard -wired" control, 8-16,

8-18
(See also Calculator, imaginary

example: segment decoder)

Dedicated functions:
programmable ICs to perform,

10-20
versus multipurpose functions,

8-19
Demultiplexer, 3-13
Density of circuitry in IC, 6-9, 9-1, 9-2,

10-13, 10-14
Diffusion in IC manufacture, 6-4, 6-15
Digital methods:

advantages versus analog,
5-10-5-14

with analog inputs & outputs,
5-15

definition of "digital," 1-21
definition of "digital system,"

1-26
limitations versus analog,

5-15-5-22
"secret of success," 1-15, 1-24,

3-15
system application categories,

10-1-10-13
Digital -to -analog converters:

in control system, 10-8
in digital autopilot system, 5-15
in "digital phonograph," 5-17
in digital TV transmission, 5-20

Diodes:
p -n junction, 6-15, 7-17
Schottky, 6-18

Division, 9-13, 9-14
"Don't care" in truth table, 3-4, 3-10,

3-11
Dopants and doping, 6-2
Driver, 3-10
Dynamic input to building-block, 4-9
Dynamic storage, definition, 7-9

(See also Shift register: dynamic,
RAM: dynamic)

ECL, 6-19
Electron beams for more complex ICs,

10-14
Emitter -coupled logic (ECL), 6-19
Epitaxial layer, 6-15, 6-21
EPROM (eraseable PROM), 7-14
Exclusive -OR gate, 8-4
Expander gate, 6-16, 8-9

Fan -out, 6-9, 6-18, 8-9
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Flip-flops:
"clear" input, 4-7, 4-8
"D" type, 4-9
"J -K" type, 4-10, 4-13, 4-14
latch: gated, 4-1-4-3

R -S type, 4-2, 4-3
S -Et type, 6-21

principles, 4-1-4-11
"preset" input, 4-7, 4-8
master -slave, 4-6
R -S, clocked, 4-7, 4-9
R -S master -slave, 4-7
in static RAM, 7-16, 7-17
"T" type, 4-10, 4-12

Flow chart for programming, 9-6-9-11
Fluidic systems, 1-24
FM (See Analog methods: frequency
modulation)
Frequency, 5-4-5-6, 5-19-5-21
Function table, definition, 2-5, 2-11,
2-18

Gain of amplifier, 5-6
Games played on television screens,
10-9
Gated latch, 4-1-4-3
Gate:

logic gate (See various types,
such as AND gate)
in MOS transistor, 6-5

Graphic display terminal, 10-7
Ground in electric circuit, definition,
2-5, 5-3

Hardware, definition, 8-13
"Hard -wired" control, 8-13-8-19

I'L (See Integrated injection logic)
Inductors, 5-13, 5-14
Integrated circuits:

advantages and limitations, 6-6,
6-7

calculator, photograph, 1-6
complexity, 6-9, 9-1, 9-2, 10-13,

10-14
cost, 6-9, 6-10
definition, 1-5
for digital systems, advantages,

1-25
isolation of devices in, 6-6, 6-15,

6-21
manufacture: diffusion, 6-4, 6-15

dopants and doping, 6-2
epitaxial layer, 6-15, 6-21
photomask, 6-2, 7-14
photoresist, 6-2, 6-3
summary, 6-1-6-4

operation, 6-4-6-6
Integrated injection logic (I2L),

6-20-6-23, 10-14
Inverter:

in Boolean algebra, 3-7
principles & example, 2-15-2-17

Isolation in integrated circuits, 6-6,
6-15, 6-21

I -squared -L (See Integrated injection
logic)

Jump in program, 9-9
Junction, p -n:

in MOS transistor, 2-13
to substrate of IC, 6-6
(See also Diode: p -n junction)

Latch, switching -circuit idea, 1-23
(See also Flip-flops: latch)

Least -significant bit or digit (LSB or
LSD), 3-15, 7-5

Light -emitting diodes (LEDs), 1-7
Light switch, as digital device, 4-3
Linear circuitry, 5-1, 5-3, 5-10
Linear integrated circuits, 5-14
Logic gates (See various types, such as

AND gate)
Logical statements, definition, 3-6
Loop in program, 9-12
LSB or LSD (See Least -significant bit

or digit)

Magnetic bubbles, 7-22, 10-16-10-18
Magnetic cores, 7-18, 7-19
Magnetic disk, 7-20-7-24, 10-2, 10-12
Magnetic drum, 7-20-7-24
Magnetic tape, 7-20-7-24, 10-2, 10-5,

10-6, 10-12
Main frame of computer, 9-24, 10-2,

10-11
Mass storage (memory):

capacities in future, 10-19
classification, 7-3
comparison by cost, access time,

& capacity, 7-22, 7-23
computer example, 7-23, 7-24
definition, 7-1
peripheral, 7-20, 7-21, 9-24
random-access, 7-3, 7-10-7-19
serial -access, 7-3-7-10, 7-20,

7-21, 10-14-10-18
Master -slave flip-flop (See Flip-flops)
Memory (See Mass storage)
Microaddress, 9-20
Microcomputer, 9-3, 9-21
Microinstruction, 9-20
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Microprocessors:
as building-blocks, 9-23
in calculators, 9-23
in computer (microcomputer)

CPU, 9-21
cost advantages, 9-3
definition relative to other

systems, 9-21
Microprogram:

permanent storage, 9-8
relative to main program and

hard -wired functions, 9-19,
9-20

(See also Calculator, imaginary
example: microprogram
memory)

Minicomputer, 9-23
MODEM (modulator -demodulator),

10-11
Modulation, 5-5
Modulus of counter, 4-15
MOS (metal -oxide -semiconductor):

integrated -circuit families:
n -channel, 6-10
p -channel, 6-10-6-12, 7-12

logic gates: n -channel,
2-14-2-19, 6-4-6-6
p -channel, 6-10, 6-11, 7-12

ROM (p -channel), 7-12-7-14
transistor operation (n -channel

enhancement -type), 2-12-2-14
(See also Complementary MOS

ICs)
Most -significant bit or digit (MSB or

MSD), 7-5
MSB or MSD, 7-5
Multiplication routine in calculator,

9-4-9-12

N -type semiconductor material:
creation in manufacture,

6-2-6-4
in MOS transistor, 2-13
n -plus (n +), 6-14, 6-21

NAND gate, 2-17, 2-18
Negative logic, 2-7, 2-20, 2-21, 6-11
Noise:

in AM and FM signals, 5-7
in calculator, 1-14
margin, 6-9, 6-12, 6-18, 8-9
in transmission channel, 5-19,

5-21
NOR gate, 2-18, 2-19
NOT gate (See Inverter)
N -p -n transistor, 6-14, 7-17

Ones -complement in subtraction,
8-20-8-23

OR gate:
in Boolean algebra, 3-7
principles, 2-9-2-11

Overflow in calculator, 9-11

P -type semiconductor material:
creation in manufacture,

6-2-6-4
in MOS transistor, 2-13

Paper tape, 7-20, 7-21
Parallel circuit connection, 2-11
Parallel data, 4-4
Parallel register, definition, 4-3-4-5
Parallel versus serial processing,

8-2-8-12
Parity bit, 10-11
Peripheral:

input and output units, 9-24
memory, 7-20, 7-21, 9-24

Phased clock signals (See Clock signals:
phased)

Photomask, 6-2, 7-14
Photoresist, 6-2, 6-3
PLA (programmable logic array), 7-14
Plotter as computer output unit, 10-6
P -n -p transistor, 6-21
Positive logic, 2-7, 2-20, 2-21
Power dissipation, 6-8
"Preset" input to flip-flop, 4-7, 4-8
Printer in computer system, 10-2
Process -control system 10-10
Product (Boolean algebra), 3-8
Program counter, 8-6, 8-7, 8-19
Programmable logic array, 7-14
Programmed systems:

concept, versus hard -wired,
8-13-8-19, 9-20

cost advantages, 9-1-9-3
"general-purpose," 9-16-9-20
microprogramming, 9-19, 9-20
programming concepts,

9-4-9-16
PROM (Programmable ROM), 7-14
Propagation delay, 6-8
Protocol in communications, 10-13
Punched cards, 7-20, 7-21, 9-24, 10-2

RAM (random-access memory):
definition, 7-14
dynamic, 7-15, 7-16
static, 7-16-7-18
(See also Mass storage: random

access)
Random-access memory (See RAM)

I-5 UNDERSTANDING DIGITAL ELECTRONICS



INDEX

Read-only memory, 7-10-7-14
Register:

made of latches, 1-24, 4-3
parallel, 4-3-4-5
preliminary definition, 1-11
(See also Shift register)

Relay, electromechanical:
in analog storage buffer, 5-8
in early digital systems, 1-25

Resistor:
in integrated circuit, 6-15, 6-17
variable, 5-2-5-4

ROM (read-only memory), 7-10-7-14
Routine, 9-8, 9-12
R -S latch, 4-2, 4-3

Saturation in transistors, 6-19
Schematic diagrams, introduction, 1-5,

1-6
Schottky TTL, 6-18
"Scientific" data-processing, 10-6
"Scratch -pad" memory, 7-24
Sequencing control systems, 10-10
Sequential building-blocks:

definition, 3-2
principles, 4-1-4-6

Serial data, 4-5, 5-20
Serial versus parallel processing,

8-2-8-12
Series circuit connection, 2-5
Seven -segment display:

in calculator, 1-3, 1-7-1-8, 3-3
in voltmeter, 4-3, 4-4

Shift register:
bidirectional, 4-8
definition, 4-5
dynamic, 7-8-7-10
in mass memories, 7-8
"preset" and "clear" inputs, 4-7,

4-8
recirculating, 7-4
as serial -to -parallel converter,

4-5
Signal-to-noise ratio, 5-19
Silicon oxide, 2-13, 6-2
Simulation by computer, 10-7
Slice, 6-1-6-4
Software, definition, 8-13
Speed -power product, 6-8
S -R latch, 6-21
Static storage, definition, 7-9
Steering networks, 4-3, 4-14, 4-15
Subroutine, 9-8, 9-12
Substrate, 6-6
Subsystem, definition, 1-9
Subtraction, 8-20-8-23

Sum (Boolean algebra), 3-8
Sum of products (Boolean algebra), 3-8,

3-9
Switching circuits:

introduction, 1-19
storing information, 1-23

Switching speed of gate, 6-8
Synchronous system, definition, 8-16

(See also Transmission of digital
information: synchronous

Technical computations by computer, 10-6
Timing signals (See Clock signals)
Transistors (See Bipolar transistors,

MOS: transistor operation)
Transmission of digital information:

asynchronous, 10-11
basic concept, 1-18
parallel, 4-4
serial, 4-5, 5-20
synchronous, 5-20

"True" signals, 3-9, 4-1
Truth table, definition, 2-6, 3-4
TTL integrated circuits:

adders: four -bit, 8-4
one -bit, 3-14, 8-8-8-10

AND -OR -invert circuit, 3-16, 8-9
8-9

BCD -to -7 -segment
decoder -driver, 3-10

expander gate, 6-16, 8-9
54/74 low -power Schottky, 6-18
gate design & operation, 6-13-6-18
latch, 4 -bit gated, 4-3

Unconditional jump in program, 9-9
Universal system organization:

analog system, 5-1, 5-7
calculator application, 2-1, 2-2
explanation, 1-25, 1-26

Vacuum tubes in early digital systems,
1-25

Variable -program control (See
Programmed systems)

Volatility of memory, 7-18, 7-19
Voltmeter, digital 4-3, 4-4

Word:
handling by ALU, 8-3, 9-18
compared to byte, 7-21
definition, 7-11
length in computers and

microprocessors, 9-21, 9-24
variable length, 10-2

Word mark, 10-4

X-rays for more complex ICs, 10-14
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Answers to Quizzes

Chapters: 1 2 3 4 5 6 7 8 9 10
Questions

1 c d b b d a c b d d
2 c ac c c h d a b d
3 d c b a d c c b b a
4 d a b b c c c d d d
5 a d a b a d c d c c

6 d b d a b c d b d c

7 d a b a d c a b d d
8 b b c c d d b d c

9 d d d b d d d d d
10 c b d c c c b
11 d d b c d a c

12 a a c d a - c d
13 d d d a d d c

14 c a d d
15 b c

16 b

17 - c

18 - d
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Digital electronic systems are beginning to have a tremendous impact on everyday life. System;;.
in business and industry are already in place - cash registers, gasoline pumps, and automotivra
control systems just to name a few. Even now you are cooking in a microwave oven, playing
TV games, and sewing pre-programmed stitches. Meanwhile, the home computer may soon
be as common as your TV set. And more products like these are on the way. It's a whole new
revolution you should know about.

UNDERSTANDING DIGITAL ELECTRONICS
Brings You Basic Understanding of the Subject - Written in everyday language

With a foreword by Jack Kilby, inventor of the integrated circuit. The subject is covered as
follows:

Let's Look at a System
What happens inside a
calculator? How can a switching
circuit store information? How
can electricity transmit
numbers?

How Digital Circuits Make
Decisions
Can it be that electric circuits
have some form of intelligence?
The basics of the logic gates
AND, OR, NOT, NAND and
NOR are explained.

Building Blocks that Make
Decisions
Design a digital network from a
truth table. Learn about
combinational building blocks.
They're not that mysterious or
difficult to understand.

Building Blocks with Memory
Basics about flip-flops and the
different kinds. What are parallel
and shift registers used for?

Why is an asynchronous and
synchronous counter different?
What's a sequential building
block?

Why Digital?
Even though digital systems are
doing jobs more effectively and
at less cost, some jobs are best
done the analog way. Explore
the advantages and
disadvantages of each.

Digital integrated Circuits
Find out why digital electronics
is so widespread. What is inside
of an IC (integrated circuit) and
how it's put there.

Mass Storage in Digital
Systems
Digital systems need circuits
that remember information.
Static, dynamic, random access,
read-only, RAM, ROM are some
of the magic words.

How Digital Systems Function
Putting it all together: full parallel
and full serial addition, BCD
addition, control and timing
signals, how electronic circuits
subtract.

Programmed Digital Systems
More complete and flexible
systems - because now
common elements are being
used to solve a variety of
applications following
sequences of instructions -
programs.

Digital Electronics Today and
in the Future
A look at where and how digital
electronics is being applied
today and a glimpse at important
developments for the future.
Covers key application
categories and key new
developments.

The series of books from Radio Shack form a library written for anyone who wants to learn
easily and quickly more about today's electronic technology and the era of personal
computing, its impact on our world, and its application in our lives. Each book is written in
bright, clear, down-to-earth language and focuses on one aspect of what's new in today's
electronics. Whether you're a serious hobbyist, experimenter, or otherwise involved in
electronics technology-or just curious about what goes on inside today's consumer
electronics, appliances, calculators and the new microcomputers-there are titles you'll enjoy:

"Understanding Solid -State Electronics"
"Understanding Digital Electronics"
"Understanding Calculator Math"
"Understanding Digital Computers"
"Understanding Microprocessors"
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