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Foreword

Since 1958, a period of twenty years, digital electronics has
become one of the most rapidly growing industries in the world. In that
year, most of the digital applications were found in computers, and
probably less than 1200 machines were completed during the year. Today,
one manufacturer, of several, builds more than 1000 calculators every hour
of the working day. To emphasize further the advances accomplished in
such a short period of time, some of these new calculators have more
computational capability than the 1958 computers. Quite a digital
evolution!

Now, calculators and computers represent only one of the many
uses of digital electronics. Old familiar analog circuits in consumer
products such as radios and televisions have been replaced with circuits
using digital techniques. New electronic products for new markets such as
microwave ovens, sewing machines, TV games, are springing up each
year. In fact, digital circuits are even replacing mechanical parts like
gears and pinions — as in the modern digital electronic watches.

This rapid growth has come about because of the almost ideal
match between the digital electronic requirements and the capabilities of
the integrated circuit. Digital circuits give “off>-“on” answers,
permitting the use of components with wide tolerance which are easier to
make. Because they are handling only information, they can operate with
very low power. As a result, they can be very small physically and many
thousands of digital functions can be built on a single integrated circuit
chip at very low cost.

It is also the very low cost which has been responsible for the
rapid growth in digital functions. A digital circuit that makes a decision —
called a “gate” — which cost several dollars in 1958 can be obtained as a
part of an integrated circuit today for less than a tenth of a cent. A
reduction of more than a thousand to one! These decreases in circuit costs
are continuing, helping digital electronic systems of the future to cost
even less — and to find even wider uses.

The technical and economic forces which caused this rapid
growth of digital techniques will open up new applications areas for
electronics. We are truly on the threshold of an era where digital
electronies will have a pervasive presence.

Jack Kilby
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Preface

If you have a junior-high-school background in electricity, plus a
curiosity about how things work and a general awareness of electronics in
use all around you, this book is for you. It’s for you whether you are a PhD
who hasn’t studied digital electronics yet or an eighth-grader who wants
to build his own digital computer.

This book won’t show you how to build that computer. It will do
something more important. It will give you understanding—
understanding of the electronic circuitry in many types of digital
electronics, from the basic idea of a transistor circuit saying “yes” or “no,”
to entire digital systems made up of thousands of such circuits. This
understanding will serve you well whether you have your hands into real
hardware or simply wish to be in touch with the most revolutionary
technology of our time.

This book is different from many others, in that it’s a
self-teaching course. That means it builds your understanding step by
step. You shouldn’t skip around in the book or try to pick out individual
things to learn. Read one chapter at a time, beginning with Chapter 1.
Quizzes are provided at the end of each chapter to review main points
learned in the chapter.

Try to master each chapter before you go to the next. This is to
make sure you have a solid background for learning more advanced things
later on. Each chapter will move you rapidly to a new level of
understanding.

A glossary for all special words and an index are provided to aid
in the understanding and use of the material.

We who have prepared this book hope that, as you go through it,
you will feel some of the excitement that comes from learning about the
marvelous things that digital circuitry can do—and the even more
marvelous things that are yet to come from this fascinating new creation.

UNDERSTANDING DIGITAL ELECTRONICS






1 LET’s LOOK AT A SYSTEM

Let’s Look
at a System

Stop! Think a minute! Haven’t you been curious about those electronie
games that you play on a television screen? Have you ever wondered how
an electronic digital watch works, or a hand-held calculator? How about
the computerized control systems used in automobiles, or that computer
used at your bank, or the office, or in a small business, or for credit cards?

All of these systems are digital electronic systems. “Digital
electronics” means the kind of electrical cireuitry found in such systems.

This kind of circuitry is very different in design from that found
in older, more common electronic systems such as radio and television
receivers, high-fidelity sound recording and playback systems, and electric
guitars. These systems use another style of electrical circuit design called
linear or “analog” electronies.

What's special about digital electronics?

Digital and analog systems are similar in that they both use
electricity, electronic devices such as transistors and diodes, and various
other electronic parts. You can’t always tell by looking inside a system
whether it’s digital or analog. The difference is in the way the systems
use electricity — the things they make electricity do. This different way
of dealing with electricity gives digital systems the ability to do almost
unbelievably complicated things for you, without being very big or costing
a lot of money.

It’s timely and important to learn about digital electronies
because these sophisticated, compact, and economical systems are getting
even more so as time goes on. They are cropping up in more and more
places — both as replacements for analog systems and as entirely new
ideas that were never possible before.

And so to keep up with progress, it's not enough to know about
microphones, loudspeakers, transformers, potentiometers, amplifiers,
oscillators, mixers, tuners, detectors, filters, waveforms, impedance
matching, feedback, frequency response, and other terms common to
analog electronics. The wave of the future is with dagrtal electronics,
including terms such as gates, flip-flops, counters, registers, decoders,
binary numbers, TTL, MOS, and microprocessors.
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LET’'s LOOK AT A SYSTEM 1

In this book, we're going to survey the field of digital electronics,
from a light switch in your house (yes, it’s a digital device!) to a large
digital computer. We'll learn the features common to digital systems, and
how digital electronics works in a wide variety of applications. We'll see
why digital methods are revolutionizing the field of electronics. And more
than that, we’ll learn what to expect in the future from this amazing
technology.

Furthermore, we're going to do all this without getting you
bogged down in the fine details of circuit design. Because one of the most
marvellous things about digital electronies is that you can have a deep,
sophisticated understanding of it without knowing very much about
electricity!

Even if you already know enough about both electricity and
digital applications to tinker around a little bit with digital circuits —
chances are you'll find in this book a deeper, richer understanding of the
subject plus its implications for the present and the future.

How will this book help you?

What's a familiar digital system?

Right away, we’re going to find out just what a digital system
is, and start learning how digital systems work. Let’s begin with the
digital system you’re probably most familiar with personally — a small
electronic calculator, such as the Texas Instruments caleulator shown in
Figure 1-1.1f you’ve got a hand-held calculator or a small desk-top model,
stop reading and get it now. If you don’t have one, perhaps you can borrow
one — or you may want to buy one. It may help your learning and
appreciation of this subject a great deal.

Okay, now look at the caleulator, and think for a moment about
how small and inexpensive it is, considering the amazing things you know
it can do. Just a few short years ago, an electronic caleulator that could
add, subtract, multiply, and divide was as big as a large electric
typewriter and cost maybe five hundred dollars. And this illustrates what
we sald earlier about digital systems getting more sophisticated, smaller,
and lower in cost as time goes on.

Figure 1-1. A digital system in your hand!
A handheld calculator is a good example for beginning our study of digrtal
electronics (Texas Instruments Model 1025.)
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1 LET'S LOOK AT A SYSTEM .

Now let’s consider what this calculator can do. Turn it on. Press
the “3” key, noting what happens. The result may not seem very
impressive at first — just a matter of a number “3” appearing in the
display, right?

What goes on inside a calculator?

But ask yourself what made this “3” appear. Look closely at the
lighted number itself. If your calculator is like most, the “3” consists of
five small lighted segments, out of seven segments that can be lighted.
When all seven segments are lighted, you get an “8”. The segments in
your display may be tiny red bars, rows of even smaller red dots, larger
green bars, or dark bars not illuminated. These are all different ways
to make the same basic pattern of seven segments.

Now consider what made the particular five segments turn on
to form the “3”. Apparently, pressing the “3” key sent some information
somewhere inside the calculator — some information saying, “Remember
number 3.7 And somewhere inside, something is remembering *3”. And
somehow this remembered 3" is making five particular segments of the
display light up.

Now go through the steps for adding five to the three and
getting the total. The particular keys you press at which times depends
on just what kind of calculator you have. Most likely, you press the “plus”
key, then the “5” key, and finally the “equals” key. Note what happens
as you go through the necessary steps to get the total of five and three.

First, the “3” was replaced by a *'5,” right? So where did the
“3” go? Apparently, it was still being remembered somehow without being
displayed. And the “5” was lighted up in the same way the “3” was earlier.
If you pressed “plus” before the “5,” then something inside had to
remember you wanted to add the next number. If you pressed “equals”
after the “5,” this apparently caused the two numbers to be added,
because now an “8” is being displayed. But what inside the calculator
figured out this answer? And what happened to the 5 and the 37 Where
are they now?

Obviously, there are some pretty complicated things going on
inside this machine, even when we simply add two numbers less than
ten. When we have answered the questions as to how these numbers were
transmitted from the keyboard, how they were added, how they were
stored, and how they were formed on the display, we will have answered
the questions of what a digital system is, and how it works. So let’s get
started.

UNDERSTANDING DIGITAL ELECTRONICS 1-3
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How can we simplify a calculator for study?

Let’s limit our discussion at this point to a very simple imaginary
caleulator — one that will only add, subtract, multiply, and divide. Its
display will handle numbers with only eight digits (numerals). It won’t
work exactly the same way as the caleulator in your hand, so you can
put yours down. But keep it handy for reference.

Furthermore, let’s say that the electronic circuitry in our example
calculator is the simplest possible to handle these limited tasks. But the
general way the circuitry works is very much like the operation of most
real calculators that will do more sophisticated things.

First, let’s consider the main parts of the machine, as shown
schematically in Figure 1-2. (A “schematic” drawing of a circuit is one
using simple symbols for the various parts and the interconnecting
wires.) The large block at the bottom represents an integrated circuit
— words we'll abbreviate to “IC.” The 22 arrows pointing in and out of
the IC represent wires, and the arrowheads indicate the direction electric
current flows.

Segment Lines "'a” through "h" ~_

NINE

CHARACTER

POSITIONS

IN DISPLAY

prrow h el ool o)l oo
indicate U=l |20\ VIS B2 ) L | V2L | | IZL | 121 | | 120,
directi -—
eII::(;:i'((:)iTy = ScAN

“halaanelaleaE
REEEEEEELED

1 2 3 4 5 6 7 8 9a
p Scan Lines are energized one at a time, over & over [y
_Keyboard Segment .
inputs e
tell whether INTEGRATED ol dl—=
—=IN either key CIRCUIT control o
is “‘on’’ for dlSpIay digit
the scan hne belngv f
being energized. g
energized. Power Supply h
+7 0 -7

volts volts volts

Figure 1-2. Schematic diagram of connections among IC chip, keyboard,
and display in the simple example calculator
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What’s an integrated circuit?

Integrated circuits are the main reason digital systems are becoming
more and more sophisticated, compact, and economical. They are a method
of mass-producing complicated electronic circuits containing thousands of
transistors, diodes, resistors, capacitors and the interconnecting wires in
an unbelievably tiny form.

Figure 1-8 shows a Texas Instruments calculator integrated
circuit. It’s a little package about an inch and a half long, half an inch
wide, and an eighth of an inch thick (38 by 13 by 3 mm), with metal strips
(pins) for electrical terminals. These strips are connected on the inside to
a little “chip” of semiconductor material called silicon. The chip, which is
about a quarter of an inch square (6mm) and not much thicker than the
pages of this book, is shown in the enlarged photograph of Figure 1-3. As
you can see, there are so many transistors interconnected with other
components on this chip, packed so close together, that you can’t tell
them apart. Many small calculators have all their electronic circuitry
packed into just one integrated circuit (not counting the batteries,
keyboard, and display).

That’s a brief look at ICs. We'll explain them further in a later
chapter. But for now, let’s move on with our discussion of the calculator.

What are the calculator parts outside the IC?

Looking back at Figure 1-2, we see 18 little blocks representing
the calculator keys. Under each key is a schematic symbol representing
a switch. One pole (terminal or connection) of each switch is connected
to a horizontal “keyboard input” wire labeled N or P. The other pole is
connected to a vertical “‘scan line” wire (numbered 1 through 9). Pressing
a key closes (turns on) a switch for a moment. This allows electric current
to flow from one of the vertical scan lines to one of the horizontal
keyboard-input lines

Notice that a custom in schematic diagramsis to use a little black
dot to show when two wires are connected. If two lines representing wires
cross without a dot, they’re not connected. Many of these “wires” would
actually be little metal strips on a printed-wiring card. Real wires (or
strips) are not always laid out so straight and neat as they appear in
a schematic diagram.

Above the keys are nine somewhat larger blocks called “character
positions.” These blocks form the display, where numbers as long as eight
digits can be shown, in addition to a minus sign and various symbols
for errors. We'll get to these in a moment. But first, let’s talk about how
the keys transmit numbers and commands to the IC chip.
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MICROPROGRAM
; MEMORY

,‘,«_r'

g

/\ Chip (enlarged above)

sealed in |C package

Figure 1-3. Photograph of a typical real calculator chip made by Texas
Instruments Incorporated, showing some of the subsystems described for
a sympler calculator in Figure 1-6

How do numbers get inside the calculator?

Frgure 1-4 shows a close-up view of part of the keyboard for
discussion purposes. At all times, the IC supplies power to one of the nine
vertical “scan lines” at a time, over and over, 1 through 9, thousands of
times each second. When the IC is ready for the next keystroke, it looks
for a signal coming in on the two “keyboard input” lines, labeled “N”’
and “P.” When you pressed the “3” key, the corresponding switch stayed
closed long enough for all the scan lines to be energized several times

1-6 UNDERSTANDING DI1GITAL ELECTRONICS



1 LET’S LOOK AT A SYSTEM .
|

in arow — no matter how quickly you released the key. (Compared to
digital circuitry, the fastest mechanical switch is as slow as molasses in
January!) And so pulses began arriving at the “N” input line whenever
scan line 3 was supplied power in pulses. These pulses coming at these
particular times told the IC that the “3" key was pressed.

Similarly, when the “plus” key was pressed later on, pulses began
coming in on the “P” line whenever scan line number 3 was energized.
And pressing the “5” key caused pulses on input “N” when scan line 5
was energized.

Pressing a key 3 5
transmits
pulses from a
scan line
10 a keyboard
input line. —-t
: - N
\
\
o—e
P

L1l L1

3 4 5 6 7 8 9
P} SCANLINES
IC
™\__KEYBOARD
N INPUTS CHIP

Figure 1-4. Concept of pulses from many keys coming into only two input
terminals on the IC chip (from Figure 1-2)

How are numbers shown in the display?

So that’s how information gets into the IC from the keyboard. Now let’s
talk about how numbers are illuminated in the display. Looking at Figure
1-2 again, each of the nine character blocks is a position for one
“character,” meaning a numeral digit, minus sign, or error symbol —
perhaps including a decimal point to the right. Each of the nine positions
is connected to one of the vertical scan lines, and also to eight “segment
lines” labelled “a” through “h.” Each segment line is connected to all
nine character positions and to the IC.

Now look at the detailed view of one of the character positions,
shown in Figure 1-5. There are seven little light-emitting diodes or
“LEDs"” forming a figure-8 pattern, and an eighth LED off to the right
for a decimal point. (*LED” is pronounced by saying the letters: “L-E-D.”)
The LEDs are labeled “a” through “h,” to match the segment-line
designations. These devices are made of a special kind of semiconductor
material that gives off light when electric current is passed through them
in the right direction.
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Each LED has two electrical terminals. One terminal on each
LED is connected to the scan line coming up to that character position
from below (bolder lines), and the other terminal is connected to one of
the eight segment lines (lighter lines). To illuminate one LED segment,
both its scan line and its segment line must be turned on by the IC, so
that current can be supplied by the scan line and returned to the IC by
the segment line. (When a scan line is “on,” it supplies electricity. But
when a segment line is “'on,” it accepts electricity or “sinks” electric
current.)

As a result of this arrangement, each character position can be
illuminated only when that particular scan line is supplying electricity.
And the character (the number or symbol, ete.) that appears at that
position is defined by which segment lines are turned on to allow current
to flow. The IC is able to change the combination of active segment lines
every time it energizes another scan line.

A segment lights when both

it . S Scan Lines determine which
/ its connections are ‘on’". character position is “on”.

Segment lines define character
in that position.
& —a
b SEGMENT
c LINES TO
d OTHER
e CHARACTER
f POSITIONS
9
h
To other character positions
SCAN |} e SEGMENT
e bh4 444 Hes
T T T 1 11 Broad arrows
1234567829 hgfedchba indicate.
SCAN GENERATOR = SEGMENT DECODER el ffr\:i;r:;w”es
together, showing
INTEGRATED CIRCUIT | DISPLAY REGISTER flow of information

Figure 1-5. Schematic diagram showing details of connections to erght
light-emitting diode segments at far left character position n calculator
display shown in Figure 1-2. Arrowheads show direction electricity flows.

1-8 UNDERSTANDING DIGITAL ELECTRONICS



L}
1 LET'S LOOK AT A SYSTEM I I

For example, when scan line 9 and segment lines a, b, ¢, d, g,
and h are “on,” a 3" followed by a decimal point appears in the far
right position. (Verify this by noting which LEDs in Figure 1-5 have these
labels and then look again at Figure 1-2.) Then as scan line 9 goes off
and scan line 1 comes on in the regular scan-line sequence, the “3” and
decimal point blink off. And the character intended for the far left-hand
position blinks on — if any is called for. The blinking is so fast that even
though each character position is “on” only one-ninth of the time, your
eye sees only a steady display.

As you can tell, the IC is working like a demon, even when it’s
not calculating but merely showing you a number in the display. A
thousand times every second, it has to be prepared to switch on a different
pattern of segment lines, while watching for pulses on the keyboard input
lines. This switching may seem fast to you, but it’s actually slow eompared
to many other digital systems that we will discuss in due time.

Because it’s capable of scanning with such rapid action, the IC
can handle 18 switches and 72 LEDs with only 19 connections. A separate
connection for each switch and LED would cost much more (as we will
see in a later chapter when we discuss how ICs are made). It would thus
cause the calculator to cost much more.

What’s inside the integrated circuit?

So that’s how information gets into and out of the
integrated-circuit chip. (Remember, we called it a “chip” because it’s only
about % inch on a side and paper-thin.) To know the rest of the story,
we've got to look inside this IC.

Figure 1-6 is a simplified diagram showing the main electronic
subsystems in the chip simply as blocks. (A “subsystem” is just a smaller
system inside a larger one.) The broad arrows represent pathways for
information between subsystems. Each of these pathways is really several
wires running together to carry simultaneous electric signals. To
appreciate how greatly simplified this diagram is, look closely at Figure
1-8 again. The long, narrow, light-colored strips are thin ribbons of metal
acting as wires in the pathways we're speaking of.

Also shown in Figure 1-6 above are blocks representing the
keyboard and display. Let’s follow the action as we add 3 and 5.

UNDERSTANDING DIGITAL ELECTRONICS
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1 LET’s LOOK AT A SYSTEM

How are the subsystems controlled?

The first thing to understand is that all the subsystems are
directly linked to the “controller” subsystem by a network of electrical
conductors that are not fully shown in #igure 1-6. The job of the controller
is to tell each subsystem when to act, and what to do. And the controller,
in turn, acts merely as an interpreter of instructions that it draws one
at a time from a place where they were stored when the chip was made
— a place called the “microprogram memory.”

ADDRESS REGISTER

>

MICROPROGRAM

CONTROLLER MEMORY

< <

INSTRUCTION REGISTER

Figure 1-7. The controller stores the desired instruction address in the
address register. The microprogram memory subsystem responds by storing
the instruction in the instruction register.

As indicated in Figure 1-7, each instruction is permanently stored
at a particular location in the microprogram memory. Each storage
location and the instruction inside is identified by a number called its
“address” — like your house number or apartment number. The controller
gets each instruction it needs by putting the correct address number in
a temporary storage unit called the “address register.” In response, the
microprogram memory unit automatically goes to that address, finds the
instruction, and immediately delivers a copy of it into another temporary
storage unit called the “instruction register,” for use by the controller.
(As you can tell, a “register” is a storage unit used to hold information
for a short while until the information is needed.)
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Each instruction that the controller looks up this way governs
its actions for a period of time called one “instruction cycle.” An
instruction cycle corresponds to the time during which one scan line is
energized — about 100 microseconds (100 millionths of a second). At the end
of each instruction cycle, the controller draws (Fetches) another instruction
for the next cycle — stepping along one instruction at a time every cycle.
If the current instruction doesn’t tell the controller how to decide which
instruction to use next, the controller automatically picks the one at the
next address in sequence in the microprogram memory.

Time signais to all other subsystems

AA A A A AL A dhA SECOND
\ | High Voltage

- M T Vol
#3 v Low Voltage
2
Phase| Phase Phase &1
i 2 3

1 b2 ®3 TIMING RELATION OF
CLOCK GENERATOR PULSES IN EACH NETWORK

Figure 1-8. The clock generator produces sequential pulses in three
networks going to all other subsystems, to synchronize their operations.

How are operations synchronized?

Obviously, timing is a very important aspect of the calculator’s
work. The operation of all subsystems is “synchronized” (kept in step) by
timing pulses in three different wiring networks depicted in Figure 1-8.
These pulses, called “clock signals,” are supplied to all parts of the IC from
a main timing subsystem called the “clock generator.” The three
networks, and the pulses each one carries, are called “phase one, phase
two, and phase three.” The three pulses occur one after the other in a
regular cadence, like an orchestra director calling out musical measures in
waltz time: “One-two-three, one-two-three.” Certain parts of the system
will not go into action until they receive these phased timing signals.

What happens before we begin a problem?

With this background information, let’s proceed now to add 3 and
5. When we first turn on the calculator, the controller automatically draws
(Fetches) instruction number “zero,” through the steps we discussed with
respect to Figure 1-7. This instruction tells the controller to clear out all
information in the “register” subsystem as shown in Figure 1-9. These
registers, as we said earlier, are temporary storage places for numbers
and other information. This “clearing” step wipes out any random,
meaningless information that may pop up in these registers when the
system is first turned on. It’s all done in one instruction cycle, by means of
a control signal to all registers. (Remember, an instruction cycle takes
only 100 microseconds—a tenth of a thousandth of a second!)

1-12 UNDERSTANDING DIGITAL ELECTRONICS
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FLAG REGISTER CONTROLLER

DISPLAY REGISTER

OPERAND REGISTER

;

ACCUMULATOR REGISTER

Figure 1-9. When the calculator is turned on, the controller sends a
control signal to clear unwanted tnformation from these storage registers.

In the next instruction cycle, automatically stepping to the next
instruction in the microprogram memory (number 1), the controller is told
(all in digital code, of course): “Check for signals from the keyboard. If
you don’t see any signal, follow the same instruction again. But if you do
see a signal, go on to the next instruction.” And so until a keyboard input
signal arrives, the controller doggedly sticks to this “keyboard-checking”
instruction for cycle after cycle, in time with the beats of the clock signals.
The controller is in what we call the “idle routine.” All step-by-step
sequences of instructions that it follows in doing various tasks end in this
routine.

Meantime, while the controller is busy doing this, the “scan
generator” subsystem (shown back in Frgures 1-5 and 1-6) is humming
along all by itself, paying no attention to the controller. It’s busy counting
clock signals, and turning on one scan line after another (as we have
already discussed) at the beginning of each 100-microsecond instruction
cycle.

And over to the right in Figure 1-5, the “segment decoder”
subsystem is doing its own thing, too. Its job is to keep the display
illuminated with the number digits that are presently stored in the
“display register” subsystem, by turning on the appropriate segment lines
to receive current at the right times. (The display register is a temporary
storage place for an 8-digit number, complete with decimal point and
minus sign, if any.) Every time a new scan line comes on, the decoder looks
at the next digit position in the display register, and figures out which
segment lines to turn on to show this digit in its position in the display. It
automatically leaves out any zeroes at the beginning of any stored
number, except that it does show you one zero and a decimal point if the
register has no number in it—that is, if the register is empty. So that’s
what it’s showing now as we begin to add 3 and 5.

UNDERSTANDING DIGITAL ELECTRONICS 1-13



LET's LOOK AT A SYSTEM 1

So—we press the “3” key. (See Figure 1-10). Nothing happens
until the scan generator turns on scan line number 3. Then a signal is
transmitted in keyboard input line N to the “keyboard encoder”
subsystem. Knowing which scan line is on, the encoder generates a
number “3”—not in the way you would write it on paper but in a special
code so that it can be electronically transmitted to the display register and
stored there. Recall that we talked earlier about “remembering a 3”—well,
the display register is what does that.

What happens when we press the “‘3”’ key?

KEYBOARD

v
\
Keyboard SCAN LINE # 3 [
Input L SCAN GENERATOR
Line "N" v
“NUMBER READY' SIGNAL o
KEYBOARD
ONTROLLER
ENCODER &
FLAG REGISTER
Number 3"’
Transmitted—* “STORE"' SIGNAL
In Code
Register Automatically
L lolOIOTOLO|0I0|3]‘/’puts"S”mfarrightend

DISPLAY REGISTER

Figure 1-10. Parts from Figure 1-6 that are in are involved in entering
“8” from keyboard

The encoder also sends a signal to the controller, telling it that a
number key has been pressed. The encoder doesn’t say whick number key,
because the controller doesn’t really need to know.

It’s not too important right now—but in order to make sure that a
key has really been pressed and that the encoder wasn’t just picking up
some unwanted signal (called “noise”), the controller fetches and obeys
some instructions that make it check several times to make sure that a key
was pressed.

Finding the “8” signal still there, (remember, the switch is slow
compared to this digital system!) the controller next has to decide what to
do with it. Still following the steps of the programmed routines, it looks
for any notes it has previously stored in the “flag register” subsystem
shown in Figure 1-10—notes with regard to what kind of problem it’s
doing, and what steps in the problem have already been completed. The
flag register is provided for just this purpose—it stores incidental notes, as
the program steps are executed, that the controller will need in the future
as it completes all of the steps of the problem.
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No notes are found in the flag register, so the controller writes a
note in the flag register to remind itself that the first key of a new
problem has been pressed. Then it tells the display register to accept the
“3” it’s been staring at for so long. Since this register has a separate place
for each of eight digits, it automatically puts the “38” in the far right-hand
storage position. (Remember—both the *3” and the note in the flag
register are in the special code that can be handled electronically.) The
segment decoder immediately pounces on the code for “3,” and begins
energizing the necessary segments at the right times to show us a “3” in
the display.

Why do simple things appear to get complicated?

Bingo! Finally, after dozens of instruction cycles, as the controller
methodically obeyed instructions and decided which instruction to follow
next, our “3” has been entered. Now the controller happily goes back to its
idle routine. After making sure all keys are released, so it won’t enter
another “3,” it begins watching for the next keystroke. All of this has
taken only about a thousandth of a second.

You're beginning to see now just how many different things
must be done in a digital system to accomplish a fairly simple task and
that they can be done very rapidly. As we go on through the book, you'll
find that this is really the secret of success for digital electronics. Every
job and every number is broken down into very small steps and bits, so
that it can be handled by very simple electronic circuits. We can put so
many thousands of these simple circuits onto one integrated circuit chip
that, working together, they can handle jobs and numbers as complicated
as we need.

What happens on pressing the ““5”” and “‘plus’ keys?

Let’s move on rather quickly now through the rest of the addition
problem, referring to Figure 1-11 (which shows several more subsystems
isolated from Figure 1-6).

When we press “plus,” the encoder tells the controller about it,
and the controller in turn checks and verifies that a key was pressed as
before. Recognizing that it has received an addition command rather than
another digit signal, the controller then checks the flag register for any
mathematical operations keyed in earlier that must be performed before
the addition. Finding none, and because of the addition command, the
controller makes the “routing subsystem” copy the “3” that’s in the
display register into the “operand register.” In other words, it transfers
the “3” to the operand register—which will now remember it. The operand
register is identical to the display register and the accumulator
register—which we will come to in a moment. All three registers are for
storing an eight-digit number with decimal point and minus sign, if any.
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Pressing the “5” key, in turn, triggers the same routine the “3”
key caused. The display register is cleared and the “5” is stored, and a note
is stored in the flag register to the effect that a new number has been
entered. Now we have the copied “3” in the operand register and the new
“5” in the display register (Figure 1-11).

“‘NUMBER READY'' SIGNAL

KEYBOARD “PLUS KEY'* SIGNAL
ENCODER "EQUALS KEY'"' SIGNAL CONTROLLER
First "'3"",
then 5" FLAG REGISTER }‘-’
gotodisplay — 5" is left in
register display register \ ™ “'Addition” reminder stored here
DISPLAY ! -
REGISTER [ OJOIOIOIOIOIOISI = 3" s
3 |
\je— | copied
s 7 into
OPERAND L 7
[ e
reaoren | [o]o[o]efo[o]o]s] - e
ROUTING
SUBSYSTEM
ACCUMULATOR I | I I I I I l I4_>
e ojojo|lojojofo}oO

Figure 1-11. Steps in entering "8 plus 57 from keyboard
What happens when we press the ‘‘equals’ key?

Finally, when we press the “equals” key, the encoder tells the
controller. The controller in turn checks and verifies the signal, recognizes
that it has received an “equals” (or “end-of-problem”) command, and
checks the flag register to find out which operation it has to perform.

The addition note recovered from the flag register leads the
controller to a next instruction that begins a programmed sequence of
instructions—a “routine”—in this case, an “add” routine. (See Figure 1-12.)
Instruction-cycle by instruction-cycle, the controller makes the routing
subsystem transfer a copy of the electronically coded “5” from the display
register, and simultaneously transfers a copy of the “3” from the operand
register. Both numbers go to the “adder-subtracter” subsystem to be

added. After addition, *'8"" is copied into
display register and 5" is lost
| DISPLAY REGISTER |5 pmmpl-oozzo==== >
ADDER-

SUBTRACTER

Y S
] —=c—szzz=os

l OPERAND REGISTER ]3

l!\CCUMULATOR REGISTERI 8 l—>::::::::::_

ROUTING
SUBSYSTEM

Figure 1-12. Routing of numbers during addition process
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The adder-subtracter is a unit that handles all the arithmetic in
the caleulator. All it can do (and as we will see later, all it needs to do even
to multiply and divide) is just what its name says—add and subtract.

The exact details of electronically adding numbers will be covered
later in the book. But suffice it to say now that in one instruction cycle,
the “5” and the “3” are added and the electronically coded sum of “8” is
put into the accumulator register. Further instruction cycles figure out
the proper decimal point and sign (plus or minus) for the sum, and then
transfer it to the display register. There, the display sequence
illuminates the “8” in the caleulator display. And all these things
triggered by the “equals” key happened within the IC seemingly faster
than you could push the keys!

You didn’t really know it, but the “5” that was in the display
register was cleared out and lost, and by now the controller is back to the
“idle routine,” waiting for the next keystroke. At last then, the sum of “8”
is in the display; and although the “5” is lost, the “3” is still remembered
(stored) in the operand register in case we need it for further arithmetic
operations.

How are decimal points handled?

We didn’t mention it, but there was another routine that the
controller had to do to make sure that we added our numbers correctly. It
had to check the position of the decimal points in the numbers that were
added and make sure the adder-subtracter had the decimal points “lined
up” properly for addition.

We'll study this matter of handling decimal points further at a
later time. But for now, as we see in Figure 1-13, let’s just say that there is
an electronically coded digit in a special position in each register where a
number is stored, that tells where the decimal point is in the number. In
Figure 1-13, for all numbers, the “0” for the decimal-point digit means the
decimal points go at the far right of the stored numbers.

DECIMAL
POINT
OicITs NUMBER DIGITS
|
o e
0 0|o|o|o|o|o|o]|s| DoAY
0 oo o ofo|ofo|3]| OFERAND
ACC
0 olo|lojojolo|o|s| A"

Figure 1-13. Decimal points in the number registers are handled by a
separate digit.
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So there you have a general picture of how the calculator goes
about its business. You've seen all the major parts of the system, and how
they work together. We've come a long way in understanding many of the
things a typical digital system does.

Or course, we have not covered all the possible
complications—such as entering decimal points and minus signs. And we
haven’t covered subtraction, multiplication, and division. But the fact is
that all these matters are handled by the very same subsystems we have
already watched in operation. They’re managed by appropriate steps,
done one at a time, in accordance with programmed sequences of
instructions.

We’ll understand more about these operations when we get
further into the book. But for now, let’s move on to finding out just how
numbers are represented in a digital system such as this. We have seen
where the “3” and the “5” go inside the calculator IC chip, and we
mentioned that the numbers were coded so they could be handled
electronically—but just what do they look like inside the IC?

To be specific, let’s zero in on the connection between the keyboard
encoder and the display register, back in Figure 1-11. We know the encoder
generates an electronic code that represents numbers from zero up to
nine, corresponding to number keys. In Figure 1-11, we see a broad arrow
leading from the encoder to the display register, indicating a pathway for
numbers. So what is this pathway like, and how does it work?

The answer — and the reason for it—goes back to our earlier
discovery that the secret of success for digital electronics is that every job
and every number is broken down into small, simple steps and bits. This is
so that the tasks and information can be handled by very simple electronic
circuits of the sort that can easily be put together in great quantities in
integrated circuits.

How can electricity transmit numbers?

SWITCHING
CIRCUITS WIRES LAMPS
POWER l l l
[ suppLY ll
—0 OFF
POWER
L suppLY N
— ‘LO ~
—ON
Symbol for connection to “‘ground,” ~
a network of wires allover ______

the system, usually considered -
to be at zero volts.

Figure 1-14. How to think of switching circuits as electrically controlled
switches operating lamps
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What is the simplest kind of electric circiut?

Now the simplest sort of electronic circuit is one that just
switches electricity on and off in a wire, as you turn a lamp on and off
with a switch. (See Figure 1-14.) We'll be studying such cireuits in the
next chapter, and we will find that they use transistors rather than the
mechanical switches depicted in Frigure 1-14. But for now, we'll just say
that switching circuits are never part-way on. The wires they control are
always clearly in one state or the other—on or off, high voltage or low,
large current or small, and so forth.

POWER . Spark symbols POWER

SUPPLY indicate switches SUPPLY
are electrically

CONTROL k .~ controlied ~ .ku
SIGNALS > e i

— —

TRANSMITTING RECEIVING
CIRCUIT CIRCUIT
Figure 1-15. Switching circuits can receive switching stgnals as well as
transmit them.

Now, as indicated in Figure 1-15, the kind of switching circuits
we're talking about are controlled by one or more input signals, which are
themselves either on or off. This means they can receive signals from other
switching cireuits. And this is how numbers and information are sent
from place to place in our calculator, and every digital system—by
switching-circuits turning one another on and off.

What information can a switch send?

Now wait a minute, you may say. What kind of information can
you send by turning a switch on and off? How can anything this simple
handle the complicated kind of information involved in digital systems?

Well—-it’s true that a switch can’t say much. But it can say
something. For a specific example, look at Figure 1-16. Two numbers, A
and B, are being “compared” by the adder-subtracter to see whether or
not A is greater than B (a job which the adder-subtracter handles simply
by subtraction). By switching one wire on or off, the adder-subtracter can
tell the controller the answer. “On” means, “Yes, A is greater.” And “oft”
means, “No, A is not greater.”

One wire carries '‘comparison signal'":

ON =YES, A IS GREATER THAN B
OFF = NO, A IS NOT GREATER THAN B.

A
NUMBERS /
ADDER-
To BE SUBTRACTER L CONTROLLER
COMPARED
B ﬁ

Figure 1-16. Example of how much information one wire can carry by
being switched on or off.
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This is an example of the basic unit of tnformation in all digital
systems—the very simplest possible statement that can be made. It’s just a
specification of one out of two alternatives—a matter of yes or no. We call
this amount of information one “bit.” One reason this is a good name is
that a bit represents the smallest possible piece of information. What we
have discovered, then, is that at any one moment, a switch can transmit
one bit of information.

But how can a switch sending one bit help us with the problem
we're attacking about how to transmit numbers? What number can you
send with one bit of information? We could let “off” represent “one,” and
let “on” represent “two”—but what good would that do is?

The answer is that to transmit larger numbers than one or two,
we simply use more than one wire. This will give us a lot of different
combinations or patterns of “on” and “off,” and we can let each
combination represent a different number, according to some sort of code.

Figure 1-17 shows specifically how numbers are transmitted in
our example calculator. The “transmitting unit” above and the “receiving
unit” below represent the encoder and the the display register back in
Figure 1-11. Furthermore, these same units represent any two subsystems
that transmit and receive numbers. They all work the same way in this
particular calculator.

TRANSMITTING UNIT

OFF ON OFF ON

Switching Circuits can be

i | Path:
operated in any combination Signal Pa

Four Wires Assigned
Numerical Values
Lamps Represent Switching
Circuits Receiving Signals

Number Received:
 4+1=5

LET SymMBOLS
| 1 AND O MEAN
“ON" AND “OFF"

[
0 1

RECEIVING UNIT

Figure 1-17. One way to transmit numbers by switching several wires on

and off
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What’s an example of a code used for numbers?

As you can see in Figure 1-17, the example number code we're
using consists of letting each wire represent a number: 8, 4, 2, and 1. The
number transmitted is just the sum of the numbers represented by the
wires that are switched on. At the particular moment illustrated in the
figure, the “4” wire and the “1” wire are on, so the number being
transmitted is five. (We're pretending the receiving unit has little lamps
to show us which lines are “on.”)

Below the lamps, you see a string of four symbols: 0101. These
symbols, zero and one, provide a handy way that’s used throughout the
field of digital technology, to indicate whether a wire is on or off. We're
going to let zero mean “off,” and let one mean “on.” So in this particular
code scheme, 0101 always means “five.” We read it as “zero-one-zero-one.’
It’s not “'a hundred and one.”

As for the rest of the combinations used to represent the
numerals zero through nine, they’re shown in Figure 1-18. You may
recognize this code scheme as consisting of binary numbers. It’s the most
common code scheme used in digital systems. There are others, but we'll
defer further discussion of code schemes to a more appropriate time.

3

8421 Value or "weight' of each wire
0000 = 04+0+0+0 = @
0001 = 0+0+4+0+1 =1
0010 = 0+0+4+2+0 = 2
0 = oFf 00t1 = 0+0+2+1 = 3
1 = on 0100 = 0+4+0+0 = 4
010t = 0+4+0+1 = 5
\0110 = 04+44+24+0 = 6
0111 = 0+4+2+1 =7
Binary Numbers: 1000 = 84+40+0+0 = 8
O0and 1 are 8 i1 = 9

Binary Digits 1001 = Br0-U = DECIMAL
or “'Bits"” = 1 t — Diaits

Figure 1-18. The "binary number” code used in transmitting numbers in
the example calculator. Interpret as shown by adding weighted value of
each "17.

How do “binary numbers’ show us what ‘“digital”’ means?

This business about “binary numbers” in Figure 1-18 will show us
where we get the word “digital,” as in “digital systems.” Let’s start by
considering how our everyday “Arabic” number system works.
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In writing an Arabic number, we use ten different symbols: 0, 1,
2,3,4,5,6,7,8,and 9. These symbols are called numerals, or digits. A digit
is a position in a number telling how many ones, how many tens, how
many hundreds, and so forth. This system is also called the “decimal”
system, and the numerals are called the “decimal digits.” Decimal means
something related to the number ten.

Now “binary” means something related to the number two, or
something with two parts. In writing a number using the binary system,
we only use two symbols, 0 and 1. These numerals are the binary digits.
Each position for a digit in a binary number stands for twice what the
next position to the right stands for. So that’s what binary numbers are.

And by the way, the first and last letters of “binary digit” are
where we get the word “bit.” (Remember, a bit is the basic unit of
information in all digital systems—the smallest possible piece of
information.) A bit is a binary digit—a Cora 1.

And so a digital system is one that uses digits for all the
information it handles. Even information that has nothing to do with
numbers is reduced to the form of numbers using special codes, and the
codes are made out of digits.

You can see that this definition does not limit digital systems to
those that use binary numbers. For example, old-fashioned mechanical
adding machines are digital systems that use decimal digits. They
represent each position in a number by a gear or bar with ten teeth, so
that it can be set at any one of ten different positions.

To represent numbers purely in decimal form by using electricity,
you would need a different voltage level for each of the ten digits.
Switching circuits that can handle ten different voltage levels are pretty
expensive, however. So all modern digital electronic systems use binary
digits (zeros and ones), as represented by very simple electronic circuits
switching on and off. Consequently, whenever we say “digital system”
nowadays, we take it for granted that we’re speaking of binary digital
systems.

What are the four principal functions in digital systems?

Let’s press ahead now with one more detail of our initial
understanding of digital electronics. Remember we said early in the
chapter that to begin our understanding of a digital system by studying a
caleulator, we have to learn four things: How numbers are transmitted as
inputs from the keyboard, how they are stored, how they are added, and
how they are formed on the display as an output.

We're already covered the questions of transmission, addition,
and display. (We haven’t yet seen ezactly how the adder-subtracter
manages to add, but we’ve gotten a good overview of how the system goes
about making the addition take place, and that’s good enough for now.) So
the remaining feature to cover now is storage.
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If you look back at the entire calculator system shown in Figure
1-6, you'll recognize several different subsystems that we’ve talked about
which store numbers and other information. The three number registers
store numbers, the flag register stores miscellaneous notes, the address
register stores numerical instruction addresses, and the instruction
register stores instructions. Well, how can switching circuits store
information?

Spark Symbols Indicate POWER —
Electrical Control Influence‘ SUFIPLY
SWITCHING B
ContrRoL —|—FZ— o
SIGNAL OuTPUT
. WIRE v
< -
LATCHING N
CONTROL ————— |2,
SIGNAL “LATCH”
CIRCUIT —L

Figure 1-19. Functional concept of a stmple switching circuit that stores
or remembers information

How can a switching circuit store information?

We'll see in detail in later chapters how storage-type switching
circuits work. For now, however, let’s be content with a general mental
picture of what’s going on in a storage-type (or memory-type) switching
circuit.

Figure 1-19 represents a type of circuit called a “latch.” It has
this name because the output can literally be latched, or fastened, in one
state or the other—on or off. We've indicated this by showing an actual
mechanical latch or hook, engaging either of two notches (labelled “on”
and “off”) in a pivoting mechanical switch element. Thus, the switch can
be latched either in the “on” position, so that electricity flows from the
power supply to the lamp—or in the “off” position.

This picture is patterned after the switching circuits we studied
back in Figure 1-15. Actual electronic latches, of course, use transistors
rather than mechanical parts—but the results are much the same.

Let’s consider what this circuit will do with the latch lever
retracted, the dotted line position in Figure 1-19. As before, we're using
little spark symbols to indicate the control function. The switch element is
turned off or on by the incoming “switching control signal.” With the
latch retracted, it will change each time the control signal changes. Now if
the latch lever is engaged, the switch is restricted from changing and will
remain in the latched position until the latch is retracted again. The latch
lever is either engaged or retracted by the incoming “latching control”
signal being switched on or off. This is being done by a switching unit
feeding the “latch control signal” wire.
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Thus, to remember whether the switching control signal was on or
off at a certain moment—to store this one bit of information—we simply
latch this circuit in that state at that moment. And the switch stays there,
no matter how the switching control signal may change afterward, until
we release the latch again. Then as soon as the switching control signal
changes the switch, the stored information is lost or “forgotten,” as the
output now represents new information to be latched.

Now if we represent this circuit as a digital electronic circuit that
is receiving one of the wires from the transmitting unit of Figure 1-17,
then putting four of these circuits together provides a storage unit of four
bits that can represent numbers from zero through nine as we showed in
Figure 1-18. We need only add a latch control signal line to the receiving
unit to make this so.

Such a receiving unit with four stages then would be a
register—which, of course, we have talked about a great deal in our
calculator system description. It would store four bits and hold them
temporarily until we want to change them.

How does a calculator represent all digital systems?

That's the end of our initial overview of digital systems, in the
form of an example calculator. Before we move on to the next chapter,
let’s pause and think about how the ideas we've seen can be generalized
from the example calculator to digital systems at large.

The most important generality, as indicated earlier, is that all
modern digital electronic systems operate like the calculator by reducing
information and tasks to very simple terms—to a matter of on or off, yes
or no, 1 or 0. To handle information and tasks of any complexity whatever
requires employing large quantities of such simple statements and tasks,
doing it rapidly using code schemes by which many simple pieces of
information can represent a more complex bundle of information. You'll
see this pattern in every digital electronic system.

How does electricity suit digital system requirements?

Now we haven’t made a point of it yet, but the fact is that you
can build a perfectly functional digital system without using electricity at
all. Nothing in our definition of digital systems says anything about
electricity—just about breaking information into little pieces, about using
numerical digits, and so on. One example we’ve already cited of a
non-electrical system—even a non-binary one—is a mechanical calculator.
Another example, a more up-to-date one, is certain binary digital systems
employing devices that switch liquids or gases flowing in little tubes. We
call these “fluidic” systems.

But the reason that electricity has been employed for digital
systems so successfully is that electrical switching circuits—which are
relatively simple and inexpensive compared to some other electrical
circuits—can be used to handle the very simple information and tasks

1-24 UNDERSTANDING DI1GITAL ELECTRONICS



1 LET’s LOOK AT A SYSTEM

involved in binary digital systems. These circuits are the fastest, most
convenient method we know for such purposes.

Why do integrated circuits fit in so well?

The first digital electric systems used electromechanical relays
that actually contained little mechanical switches of the sort we have been
imagining in switching circuits. Later digital electric systems used
vacuum tubes instead. Soon the transistor came along as a replacement,
and then semiconductor integrated circuits.

And here again we seem to have a marriage made in heaven. As
we will see more clearly later on in the book, integrated circuits are
naturally adapted to reducing simple switching circuits to microscopically
small size, and packing countless thousands of them into an unbelievably
small space, lowering the cost per circuit significantly.

This capability throws ICs right into the arms of digital
systems—which as we have seen involve many simple tasks and pieces of
information. Integrated semiconductor electronies is the best way we
have found yet to implement digital systems—and it’s getting better all
the time as integrated circuit technology improves so that more and more

- circuitry is put on one piece of silicon material.
What do all systems do?

From here, we can move on to one more, even grander
generalization drawn from our calculator example, illustrated in Figure
1-20. This generalization is made up of two ideas. First, the only things
that any system does, or can do, are to manipulate information and do
work (or both). That is, all that’s going on in any system is the handling of
various forms of information, perhaps associated with the doing of work.

DIGITAL SYSTEMS

EXTERNAL FORMS EXTERNAL FORMS
OF INFORMATION are those that use OF INFORMATION
digital forms of AND/OR WORK
information internally
SENSE DECIDE i ACT
mliy-|  (INPUT) sl  (PROCESS) |sliip-{ (OUTPUT) i
(CONVERT) ’ ’ (CONVERT) .
(DETECT) I'> -y
] ]
R ]
(I T
] : ] 1
STORE |
L 1 (MEMORY) I"l
{

I
| I |

Figure 1-20. The universal system organization. All systems manipulate
nformation and/or do work using the same three or four stages.
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How are all systems organized?

And second, all systems are organized in the same fashion. They
do their jobs in the same general steps or stages. First, they sense (or
detect, or accept) information in various forms from the outside world,
and convert it to forms of information that can be handled in the system.
Then they make decisions based on this input information—meaning they
process or manipulate the information. In doing so, they may store or
remember some of the information for a time, or process it as a result of
other information stored permanently. And finally, they take the
resultant new information and act on the outside world with it—by
converting it into external forms of information again, and perhaps by
exerting some controlled form of work or energy. Think of any system you
like, and this universal organizational concept can be construed to apply to
it.

For example, our calculator’s keyboard and encoder sense
information and convert it into an internal form. Various subsystems
decide and store. And the segment decoder and display system convert the
resulting internal information into the desired action of showing you
numbers in the display. This “digital electronic” system, of course, is
handling the information in digital form.

How does this distinguish digital systems from others?

The significance of this universal system concept is that it
shows us that digital systems are those that manipulate information in
digital form, which we have seen means in the form of digits—little
separate pieces of information. There’s only one other general method
for handling information, and it’s called “analog.” In Chapter 5, we'll
study the differences between these two kinds of information, and the
two kinds of system that result.

And now we really have come a long way! We've moved from a
general understanding of a hand-held calculator, through an
introduction to concepts of digital systems, to a grasp of the unifying
concepts of all systems. This will provide a background of understanding
as we proceed to dig into digital systems and see how they do the things
we've been discussing.

Take a break

As you come to the end of each chapter, it will be a good idea for
you to stop and take a breather. And before moving on to the next
chapter, go back and study any of the parts that weren’t clear to you at
first. This is because a lot of the ideas covered in each chapter are
necessary for your comprehension of material in later chapters. The
glossary, and the quiz that follows each chapter, will help you review.
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1 LET’S LOOK AT A SYSTEM

Quiz for Chapter 1

1.

How does the calculator
circuitry know which key
caused a signal in a keyboard
input line?

a. There’s a different input
line for each key.

b. There’s a different scan
line for each key.

c. By noting which scan line
is on when the signal is
received.

d. B and C above.

. Why do the numerals in the

display flicker (although

faster than you can see)?

a. They use alternating
current.

b. They’re off while the
controller re-checks the
inputs to verify a signal
was received.

c. The segment outputs can
transmit only one numeral
at a time.

d. The display register only
stores one digit at a time.

How is the controller able to
do so many different things
at different times?

a. It contains a special,
different circuit for each
job it has to control.

b. It really doesn’t control the
other subsystems — they
pretty much act
independently and
automatically.

c. It just repeats the same
process for each job it has
to do.

d. It’s told what to do by
instructions fetched from
the microprogram memory.

. How are operations in all

sybsystems kept in step

together?

a. Each sybsystem has a little
“clock” unit.

b. By control signals from the
controller.

c. By signals in the scan
lines.

d. By timing pulses in three
networks called phases.

. When the “equals” key is

pressed, how does the

controller know which

arithmetic operation to
perform?

a. It checks a note it made
about this in the flag
register.

b. The current microprogram
instruction contains this
information.

c. There’s a place in each
number register for minus
signs, plus signs,
multiplication signs, and so
forth.

d. It has already performed
the necessary operation
and is just waiting to
display the result.

. All the arithmetic in the

calculator is handled by a unit
that can only:

a. Add

b. Subtract

c. Compare two numbers

d. A and B above

UNDERSTANDING DIGITAL ELECTRONICS
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LET’s LOOK AT A SYSTEM 1

The switching circuit

controlling a wire in a binary

digital system:

a. Is either “on” or “off.”

b. Is often “part-way” on or
off.

c. Can be controlled by other
Switching circuits.

d. A and C above.

A binary switching circuit can

indicate a choice between how

many alternatives (in one

wire at one moment)?

a. One

b. Two

¢. Ten

d. Depends on the circuit
design.

What is a “bit” in a digital

system?

a. A binary digit (1 or 0).

b. The basic unit of
information.

c. The smallest possible piece
of information.

d. All of the above.

Where do we get the name

“digital” electronics?

a. You key in numbers with
your fingers (digits).

b. All digital systems use
binary digits (bits).

c. All digital systems use
some sort of numberical
digits (decimal, binary,
etc.)

d. All digital systems have
digital number displays as
in the calculator.

11.

12.

13.

14.

Which binary number
represents “seven?”
a. 1111111

b. 7

c. 0777

d. 0111

Which of the following

manipulate information and

possibly do work?

a. All systems.

b. Only digital systems.

¢. Only binary digital
systems.

d. Only electronic binary
digital systems.

Which do all systems have in

common?

a. Sensing external
information.

b. Making decisions and
possibly storing
information.

¢. Acting to produce external
information and possibly
work.

d. All of the above.

Digital systems are those

which:

a. Sense, decide, store, and
act.

b. Manipulate information
and do work.

¢. Handle information in
digital form internally.

d. Deal with digital
information in the external
world.

(Answers in back of the book)
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How Digital Circuits
Make Decisions

As we begin a new stage in our learning process, let’s remind
ourselves of what we have covered already, and why we did so.

First, we gained a general familiarity with the operation of a
simple hand-held calculator. Of all digital systems, the calculator is
perhaps the most familiar and intriguing, so it provided a good way to get
us into this subject.

And indeed we already are into the subject with both feet. Based
on our study of the calculator, we have grasped the basic organizing
principles that are common to all electronic digital systems. Some of these
principles apply also to all digital systems, whether electronic or not. And
some even encompass anything that we can call a “system” — even if it’s
not a digital system.

And this is where we're going to pick up the subject now — with
the universal system organization that we learned in Chapter 1, as we
applied it to the hand-held calculator. This will lead us into our topic for
this chapter.

How does the universal organization apply to the calculator?

Figure 2-1 shows how the various parts and subsystems of the
caleulator are categorized according to which of the “universal functions”
they mainly perform — based on whether their primary job is to sense, to
decide, to store, or to act. (There’s actually a certain amount of
decision-making involved in all four stages — but decisions are the main
job only in the “decide” section.)

INTERNAL INFORMATION

EXTERNAL INFORMATION IN NECESSARY UNIFORM EXTERNAL INFORMATICN
vIA FINGER MOTIONS DiGITAL ELECTRICAL FORM AS PATTERNS OF LIGHT
/ SENSE DECIDE \ ACT
Controlter,
Keyboard Adder-Subtracter Decoder
and Routing Subsystem, and
encoder Clock Generator, display
Scan Generator

Number Registers,
Flag Register,
Address Register,
Instruction Register,
Microprogram Memory

STORE

Figure 2-1. Subsystems of caleulator system from Figure 1-6, rearranged
to illustrate universal system organization
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Chances are you pretty well understand how the switches in the
keyboard sense external information from your fingertips, and how the
light-emitting diode display acts to produce new external information in
the form of patterns of light. And our initial picture of how switching
circuits can store information is probably fairly satisfying to you for the
time being. But you probably have some pretty big question marks in
your head with regard to the decide function. How in the world can
electrical circuits actually make decisions? Can it be that electric circuits
have some form of intelligence?

Well, of course, they don’t. But this is indeed a natural question.
And it’s such a crucial question for digital systems that we’re going to
devote this entire chapter to it.

What’s the simplest example of decisidns in the calculator?

Looking back at Figure 2-1, then, let’s pick a very simple
decision-making unit as an example to study, to help us grasp the main
idea of how digital circuits make decisions. Surprisingly enough, the
simplest example is not in the “decide” stage (We’ll postpone studying
these more complicated subsystems until later). Instead, the simplest
decisions are made in the keyboard encoder, over in the “sense” stage.
Figure 2-2reminds us of what the encoder’s job is, and why this
decision-making unit is classified in the “sense” stage rather than in the

“decide” stage.

SCAN LINES FROM
SCAN GENERATOR

- ~

- ~N
- BINARY NUMBERS
EXTERNAL / 70 DispLAY /
INFORMATION IN f REGISTER /
FINGER MOTIONS # N i
KEYBOARD | ™~ ——ew—- -
ENCODER
N SIGNALS TO TELL
KEYBOARD = CONTROLLER WHEN
A NUMBER KEY Is
Keyboard PRESSED AND WHICH
Input Lines OPERATION KEY
Is PRESSED

“SENSE” STAGE

Figure 2-2. The "sense” stage of the calculator not only detects finger
motions but also converts the resulting signals to forms suitable for other
subsystems.

The “sense” stage, depicted in Figure 2-2, not only senses or
detects external information by means of the switches in the keyboard —
but it also converts this information into a form that’s convenient for the
other subsystems (which we have seen is the electronic “binary code”) by
means of the encoder. This conversion process involves decisions, as we
will soon see — decisions that are very well suited for introducing us to
how they are performed.
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What steps are involved in encoding numbers?

First, let’s narrow the scope of our study of the encoder. It will be
sufficient for us to find out only how the encoder generates the number
signals to the display register, shown as a broad arrow emphasized by a
circle in Figure 2-2. We will take it for granted that the signals to the
controller, shown further below, are produced in much the same fashion.
(These signals tell the controller when a number key is pressed — without
saying which one — and when each of the “operation” keys is pressed, such
as plus, equals, and so forth.) So let's inquire into the decisions involved in
encoding keystrokes into binary code.

N———+]

pP—

SECTION 1: Which number key
has been pressed?

SCAN LINES
> —
KEYBOARD 7 -
INPUT 1 2 3 4 5 6 7 8 9
LINES [ l ‘l l l l l l PART OF
ENCODER
SUBSYSTEM

— A''numberiine’ is turned on
when corresponding key is pressed.

2 3 4 5 6 7 8 9

BINARY
SECTION 2: What's theright 2 [~ NU“l‘DBERS
code for this number? To DispLay
i REGISTER

Figure 2-3. The encoder uses two steps in converting keyboard signals into
numbers.

The encoder generates numbers in two steps, and each step will
illustrate a different kind of basic decision-making circuit for us. These
steps are illustrated in Figure 2-8 as two sections of the encoder.

In the first section, some circuits of one kind decide which
number key has been pressed, according to which of the keyboard-input
lines and scan lines are “on.” The answer is transmitted by turning on one
of ten “number lines” leading down to the second section. Down there,
some circuits of the other kind decide which of the four wires leading to
the display register to turn on, to transmit the number according to the
binary code we learned back in Figure 1-18.
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What does an AND gate do?

Let’s look into the first section shown in Figure 2-3, and consider
the switching circuit that decides when to turn on the “number one” wire
leading down to the second section. Figure 2-j shows what this particular
circuit has to do, and where it gets its input information. Let’s consider
this job carefully, because it’s one of the most basic decisions in digital
electronics,

SCAN LINES
1 2 3 4 5 6 7 8 9
“17 key
is pressed
Switching circuit
must turn output
wire on when
input N and scan y
line 1 are on. ~—
il e
N “AND”
GATE SECTION #1
3/0_0 Tf—‘ FROM FIGURE 2-3
P Y
Bold lines are those “"on'' ——* l {V ) l l j l ) J ‘
when "1 k
e ey is pressed 0 1 2 3 4 5 6 7 8 9

andscanline "'1"" 1s on.

“NUMBER LINES'' TO SECTION # 2

Figure 2-4. The job of the tyjoe of switching circuit found in Section I of the
encoder shows what an AND gate does.

We want this circuit to turn on the “number one” wire whenever
the “one” key is pressed on the keyboard. Remember now — pressing the
“one” key causes keyboard input line N to be “on” when scan line 1is “on.”
No other keys (such as the other three shown in Figure 2-4) will make botk
these inputs be on at the same time. Therefore, our “number one” switching
circuit must turn on whenever both input N and scan line 1 are “on.”

This circuit may be considered a “coincidence detector,” because
it responds only when it discovers both input signals “on” at the same
time. (Two things happening at the same time are called “concident.”)

The circuit can also be considered to be like a gate in o fence, because an
“on” signal in either input causes the output to be in the same state as
the other input. This makes it seem as though a “gate has been opened
up” for signals in the other input to “pass through.” But an “off” signal
in one input “shuts the gate” against signals in the other input, causing
the output to remain “off.” This idea is where we get the name for the
circuit. It’s called a “gate.” And since there are other circuits also called
gates (which we will see in a moment), this kind is called the AND gate,
with the "and” spelled in capital letters.
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How does an AND gate work?

Before we see how all the rest of the ten “number wires” are
turned on by AND gates, let’s look at the idea of how AND gates work,
shown in Figure 2-5.

Regardless of the details of circuit design (which we will study
in due time), all AND gates fit the mental picture presented in Figure 2-5.
They all act as though they consisted of electrically-controlled switches
connected “in series” as shown, with each switch turned on by an “on”
signal in a particular input wire. (“In series” means with the same current
passing through both switches.) In this particular example, when “on”
signals in both input N and scan line 1 turn on both switches at the same
time, electricity flows from the power supply to the output line. This gives
us the output signals we want for each of the possible combinations of
input signals, as summarized in the “function table” in the figure. It’s as

simple as that.
Customary symbol for “'ground™ — an electrical

Output is on Scan Line 1 connection shared by all circuits in the system
when scan line 1 and usually considered to be at zero volts
AND \

keyboard input line N POWER

are both ““on” SUPPLY __L_

FUNCTION TABLE * Py
SCAN 1 N ouTPUT

OFF OFF OFF

OFF ON OFF >

> | AL
ON OFF OFF
ON ON ON INPUTS
KEYBOARD INPUT LINE N~

*TO BE PRECISE IN DEFINING POSITIVE
AND NEGATIVE LOGIC, ASSUME “ON"

MEANS HIGHER, MORE POSITIVE VOLTAGE, OUTPUT
AND "OFF" MEANS LOWER, MORE
NEGATIVE VOLTAGE. POWER SUPPLIED IN ““NUMBER LINE'" TELLS

SECTION #r 2 WHEN *'1" KEY Is PRESSED

Figure 2-5. General idea of how the AND gate in preceding figure works

Do you realize what you have just learned? Consider for a
moment what a heavy idea has been revealed to you: ELECTRICALLY
CONTROLLED SWITCHES CAN MAKE DECISIONS! We have wormed
our way down to the very foundations of our calculator — and indeed, the
foundations of all digital electronics. And down at the bottom, we have
uncovered one of the building-blocks that all digital systems are made of.
Connected together in the right patterns, large numbers of these AND
gates — along with a few other very similar kinds of circuits — are what
make every digital system work.
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Again, we recognize the pattern we will see again and again in
this field: The decisions that a system is required to make can be broken wp
and subdivided into very simple decisions, which can be handled by very
simple electric circutts (or better still, electronic circuits).

What’s the customary symbol for the AND gate ?

Now in finishing up our explanation of how the first section of
our number encoder works, we will need to show several AND gatesin a
small space. To avoid having to label each little box as an AND gate, we
will use the customary symbol for AND gates, shown in Figure 2-6. Note
that the output and all inputs are shown, but the power-supply connection
is left off to keep the drawing simple.

“AND” GATE
TWO OR MORE INPUTS

Output is “yes’ (1) only when

A B C TRUTH TABLE all inputs are 1.
FOR 3-INPUT Output s "'no" (0) when any
“AND" GATE one or more inputs are 0.
A B C Q TRUTH TABLE
0 0 0 0 FOR CIRCUIT IN
0 0 1 0 FIGURE 2-4, USING
0 1 0 0 POSITIVE LOGIC
0 1 1 0 SCAN 1 N OUTPUT
1 0 0 0 0 0 0
Q 1 0 1 0 0 1 0
o 1 1 0 0 1 0 0
ONEe QuTPUT 1 y p ] 7 7 7

Figure 2-6. Customary symbol and precise definition of AND gate. In the
encoder, "ON” (higher voltage) means “yes” or 1, and “off”’ (lower voltage)
means “no” or 0, which is called “positive logic.”

We're taking this opportunity to point out something new here in
Figure 2-6: three inputs are shown on this gate (labelled A, B, and C),
rather than two. This is to show you that an AND gate can have more than
two inputs.

Another thing new in Figure 2-6 is that we're showing the
definition of an AND gate more precisely than before. An AND gate is
actually defined in terms of the logical meaning of the inputs and outputs,
in terms of the two basic bits of information a wire can ecarry, rather than
in terms of the electricity itself. As we learned in Chapter 1, we call these
bits 1 (“yes,” or “true”) and 0, (“no,” or “false”).

So to be precise, then, an AND gate is any circuit with two or
more inputs and one output, whose output is 1 only when all the inputs are
1. The output is 0 when any one or more inputs are 0. The larger table in
Figure 2-6 shows what this means in the case of a 3-input AND gate. It’s a
list of all the possible input combinations and the resulting output for each
combination. It’s called the “truth table” for a 3-input AND gate.
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How does our AND circuit qualify as an AND gate?

To prove that our AND circuit of Figure 2-4 is really an AND
gate according to the precise definition, we must first decide what “on”
and “off” mean in this particular application. In the scan-line input,
“on” means yes, electricity is being supplied only to the switches
connected to scan line 1. Similarly, “on” in keyboard input N means yes,
electricity is coming from one of the switches connected to this line. And
electricity in the output means yes, the particular switch connected to
both the input lines is turned on. The customary name for this situation
(when “on” means 1 and “off” means 0) is “positive logic.” (Actually,
positive logic says that a higher, more positive voltage means 1 and that a
lower, more negative voltage means 0. So to be accurate, let’s just assume
that our circuits are at a “higher” voltage when they’re “on.”) Anyway,
using positive logic, we can write the truth table for the circuit of Figure
2-4. We just copy the function table from Table 2-5, writing 1 for “on”
and 0 for “off.” This truth table is shown at the far right in Figure 2-6.

If we examine it, we find it’s the truth table for a 2-input AND gate. So
in this application, where we’re using positive logic, our circuit qualifies
officially as an AND gate.

What would this AND circuit be using negative logic?

On the other hand, suppose the circuit in Figure 2-5 were used
in some other application, where “on” (“high” voltage) meant “no” (0) and
where “off” (“low” voltage) meant “yes” (1). The customary name for that
situation is “negative logic.” Then the truth table would be different.
The output would be 0 only when both inputs are 0. So the circuit in that
application would not be an AND gate. If you wanted a circuit to perform
the AND funetion using negative logic, you'd have to build it another way.
And so0, to be precise in our name for the circuit in Figure 2-5, we
have to call it a positive AND gate. A negative AND gate would be different.
What does all this have to do with our explanation of the customary
symbol for the AND gate in Figure 2-6¢ It means that whenever you use
it to refer to a real electrical circuit, you have to say whether you’re using
positive or negative logic. That way, you say whether the symbol represents
a positive AND gate or a negative AND gate. IN THIS BOOK, ALL
SYMBOLIC DIAGRAMS USE POSITIVE LOGIC, unless we specifically
say we're using negative logic.
How is the entire “first section” of the encoder designed?

Now that we have a convenient symbol for an AND gate, let’s
look at a diagram of the entire first section of the encoder, shown in
Figure 2-7(using positive logic as before). There’s a separate two-input
AND gate for each “number line” running down to section two of the
encoder. The inputs to each gate are simply the keyboard input line and
the scan line that the particular key-switch is connected to, as shown back
in Figure 1-2.
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What you see in front of you in Figure 2-7is actually a miniature
digital system. And you actually have learned how it works! From here on,
the design of any digital system is just a matter, essentially, of hooking
up the right kind of gates in the right way.

Lines shown bold are “on" 1 2 3 4 5 6 7 8 9
when 0" key 1s pressed
and scan line 1 is ""on’". Y l
N
P~

RN

0 1 2 3 4 5 6 7 8 9
“'NUMBER LINES" TO SECTION # 2 OF ENCODER
Figure 2-7. How AND gates are arranged to decide which number key
18 pressed. (For key connections, see Figure 1-2.)

How can OR gates finish the decoder’s job?

And speaking of the right kind of gates, there’s another kind —
just as important as the AND gate — that will let us design the second
section of the encoder. You'll remember from Figure 2-3 that the second
section decides which of the four output wires to turn on to make a
number for the display register. Well, this decision is made by several “OR
gates.” The entire design for encoding numbers — with both section 1 and
section 2 lumped together — is shown in Figure 2-8.

LINES SHOWN BOLD ARE 'ON"'

:‘EYBOARD 1t 2 3 4 5 6 7 8 9-SCAN yuen 5 KeY IS PRESSED
NPUT
LINES CON'
LS AND SCAN LINE 515 ""ON"".
N —
P ““NUMBER READY'' SIGNAL
J J J J J J J TO CONTROLLER THAT
A NUMBER KEY IS PRESSED
[a)]
& 1
B = 1
- —
€3 Di_. 0 NUMBER 5"
3& a TO DiSPLAY
€ w D__.. 1 REGISTER
: =Tt o

-

0

1. 2 3 4 5 6 7 8 9 \‘
PART OF KEYBOARD ENCODER SUBSYSTEM . “OR” GATES

Figure 2-8. Complete design for encoding numbers, illustrating use of
AND gates and OR gates
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You can recognize the ten AND gates at the top of Figure 2-8,
just as they appeared in the preceding figure. The additional OR gates are
shown along the right edge of the subsystem. This spearhead shape is the
customary symbol for an OR gate. (Since we're assuming positive logic as
usual, the symbol means a positive OR gate.)

As to just what an OR gate does — you can get a clue by following
the bold lines in Figure 2-8. These are the lines that are “on” (1) when the
“five” key is pressed and 0101 is being encoded, which is “five” in the
binary code listed back in Figure 1-18. (Remember—0101 means 4 plus 1
in the electronic code that we have decided to use to transmit numbers
electrically.)

You already understand how one of the AND gates turns on the
vertical “number 5” line inside the encoder. Now notice that this line is
connected to two OR gates. It provides one input for the OR gate that
turns on the “1” output line, and also one input for the OR gate that turns
on the "4” output line. These are the gates we want to be “on” (1) to
transmit a binary 5, right? Notice that when any digit key is pressed, a
certain AND gate transmits a 1 to the OR gates that need to be turned on
to make up the code for that number (4 and 1 for5...4 and 2 and 1for 7,
and so forth). So can you see now what an OR gate does?

“OR” GATE
TRUTH TABLE

THE QUTPUT IS 1" WHEN ANY ONE OR 3-INPUT "OR” GATE

MORE INPUTS ARE "*1"". OUTPUT IS
“'0'" ONLY WHEN ALL INPUTS ARE "'0"". A B c Q
0 0 0 0
0 0 1 1
A 0 1 0 1
0 1 1 1
TwooR MORE g Q 1 0 0 ]

INPUTS

ONE OUTPUT LI SO !
C 1 1 0 1
1 1 1 1

Figure 2-9. Customary symbol and precise definition of OR gate

What does an OR gate do?

As shown in Figure 2-9, an OR gate’s job is to transmit a 1 when
any one or more of its inputs are 1. The output is 0 only when all inputs are
0. This action is summarized in the truth table shown in Figure 2-9 for a
3-input OR gate.

This decision has the name OR because a 1 in this input OR that
input OR the other input will give a 1 at the output. And it’s called a
“gate” because when you have one with only two inputs, and you hold one
input at 0, the output is the same as the other input. Thus, you can “open”
an OR gate (like a gate in a fence) by holding one input at 0, as you
“open” an AND gate by holding one input at 1.
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To follow an OR gate’s action more closely, refer back to Figure
2-8, and look at the OR gate that turns on the “8” output. This OR gate’s
output is 1 when either the “number 8” line OR the “number 9” line is 1.
And of course the reason we use these two number lines as inputs here is
that eight and nine are the only numbers in our binary electronic code
that have 1 in the “eights” place.

So that’s what an OR gate does, and that’s how number keys are
encoded. However, if you've been studying Figure 2-8 closely, there’s a
feature that may be puzzling you. The “zero” number line does not connect
to any of the four OR gates that generate binary numbers, but instead
ties into another OR gate higher up. Why is this?

What do we want the “zero” key to do?

Well — we don’t want the “zero” key to cause a 1in any of the
binary output lines. To transmit a “zero”, these four outputs must be 0000,
right?

But what we do need the “zero” number line for is to participate
in alerting the controller whenever one of the ten number keys is pressed,
so the controller can go through the appropriate routines (discussed in
Chapter 1) and tell the display register to store the number. Remember,
we said that the controller doesn’t need to know exactly which number key
is pressed. As you can see in Figure 2-8, this “number ready” signal to the
controller is generated by the uppermost OR gate. This output is 1
whenever either the “zero” number line is 1 (indicating the “zero” key is
pressed) OR input line N is 1 (indicating one of the other number keys is
pressed).

So there you have the design of our number-encoder network —
the most important part of the keyboard encoder. The only other function
of the complete subsystem is to recognize when one of the nine
“operation” keys (plus, minus, equals, etc.) is pressed, and to tell the
controller which one. This is done in much the same fashion as we have
seen for numbers.

This network in Figure 2-8 may not look very significant by
comparison with the complexity of the entire caleulator, or some other
digital systems. But it illustrates not only the two most important gate
functions, but also the principle of one of the most basic types of
subsystems — one that handles codes. (We'll explore this principle in more
depth in Chapter 3, with respect to the segment decoder subsystem.) You’ll
learn then that this general pattern of gates is repeated again and again
in many different types of subsystems: a row of AND gates followed by a
row of OR gates. Take a good look at it, because it’s going to be with you
for a long time.
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How does an OR gate work?

As for the gates that the encoder has taught you about — you've
already got a good mental picture of how to think of a circuit that acts as
an AND gate in terms of positive logic (“high” voltage=1, “low”
voltage =0). Figure 2-5 showed us that all you need, essentially, is an
electrically-controlled switch for each input (whether two, three, or
more), with the switches arranged in series.

Figure 2-10 provides a similar mental picture of a circuit that’s an
OR gate when it’s used with positive logic. Here again, we have an
electrically-controlled switch for each input (as many inputs as you need,
though only two are shown, labeled A and B.) But the switches are
connected “in parallel” as we see here, rather than in series as in Figure
2-5. So the output would be “on” either when input A is “on” OR when
input B is “on” (or when both are on, of course). You may imagine a lamp
on the output to indicate when the output is “on.”

Qutput is on when

input A OR input B

A is on.

FUNCTION TABLE *

POWER = A B Q
SUPPLY |
'_'-l:_ OFF | OFF OFF
+ OFF | on ON
ON OFF ON
ON ON ON
ot i o e *As IN FIGURE 2-5, ASSUME
“'ON'" = HIGHER, MORE POSITIVE VOLTAGE, &
“OFF" = LOWER, MORE NEGATIVE VOLTAGE.
TRUTH TABLE
USING POSITIVE LOGIC
Q
A B Q
0 0 0
i 0 1 1
Lamp would indicate = 1 0 1
when Q1s “'on'". ] . ;

Figure 2-10. Mental picture of the operation of a positive OR gate

The function table for this circuit is shown at top right. (The
function table for any digital circuit shows the electrical state of the
output for every possible combination of input states.) If we let “on” mean
1 and let “off” mean 0, the function table turns into the truth table on the
right. As you can see, this is the truth table for a 2-input OR gate.
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Do real gates work like this?

Now that you understand what AND gates and OR gates do and
how they can team up to handle complicated decisions, let’s move on to the
subject of how real gates work — how transistors are hooked together to act
as gates. As it turns out, transistors can’t simply be inserted into the place
of the switches in Fiigures 2-5 and 2-10, so let’s see just how they are used.
In doing so, we will be chipping into the bedrock under the foundation of
digital electronics that we spoke of earlier. This bedrock is the
semiconductor material of which transistors are made — which in these
days is the silicon integrated-circuit chip.

Later on, we will see that gate circuits can use any of a number of
different kinds of transistors. But we're going to limit ourselves right now
to just one kind of transistor — the one that acts most nearly like the
electrically-controlled switches we have been envisioning. (It’s also the
type used in most calculators.) This is the MOS transistor. “MOS” is
pronounced by just saying the letters, like M-O-S. In a moment, we’ll see
where this name comes from.

What are the parts of an MOS transistor?

Figure 2-11 shows the general idea of the internal construction of
the particular kind of MOS transistor that we're going to study. (The
name of this kind is not important right now, but for your information,
this is an “n-channel enhancement-mode MOS transistor.”) What you see
in Figure 2-11 is a highly simplified and magnified picture of an area in
an integrated circuit no bigger than a flyspeck. Down below is a pictorial
reminder that this transistor roughly fits the idea of an .
electrically-controlled switch that we have been imagining in our gate

circuits. (y_ + 10 VouTs

(N-channel
enhancement-mode
MOS transistor)

“'Ground’" symbol
— <— was explamned
in Figure 2-5.

SILICON OXIDE INSULATION ;
No electricity

~—— flows to output

+10
Vours (zero voits)
Electricity is Ctomrol C(Ttnnectlon
blocked by N-P at zero volts
junction
- o ouTPUT
VoLts (ZERO VOLTS)

Figure 2-11. Simplified internal structure of an MOS transistor in the
“off”’ state, and mental picture of the transistor as an
electrically-controlled switch
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We won't go into semiconductor theory right now. All we'll say is
that the main part of the transistor is a bar of silicon consisting of two
different types: n-type and p-type. (Slight traces of certain other
materials were added to the original pure silicon to make it either n-type
or p-type — each type reacting differently to electricity.) Both ends of the
bar are n-type silicon, and in the middle it’s p-type.

On top of the silicon bar, there’s a layer of silicon oxide. Thisisa
substance much like glass. It acts as electrical insulation, so no electricity
can pass through this layer. And above the oxide layer is a metal plate.

Now the two n-type areas are the main electrical terminals of our
“switch”. Electricity at ten volts is being supplied to the left terminal,
trying to get through to the output terminal on the right. But at the left
. edge of the p-type region, the electricity is blocked by the most basic law
of semiconductor action: electricity (positive electric charge, to be more
specific) cannot flow across the border, or “junction”, from n-type material
to p-type. (This has to do with the n-type material having a more positive
voltage in it than the p-type.) So the transistor is now in the “off” state.

10-volt control -+ 10 Vours

signal packs
Spark symbotis positive charge B
represent electric into plate i / ket
field from
positive charge =
on plate M eTAL

+ 10
VoLTs

Effect of electric field
creates temporary + 10

N-type channe! ( VoLTs

+ 10 &7 + 10
VoLTs VoLTS

Figure 2-12. Transistor of preceding figure in “on” state

Now the metal plate acts as the control terminal of the “switch”.
As the schematic diagram indicates above in Figure 2-11, the plate is
being held at zero volts by a two-way switch. Let’s see how this switch
applies a control signal to turn the transistor on.

How do you turn an MOS transistor on?

Figure 2-12 shows what happens when we flip the controlling
switch up above to ten volts. The voltage pressure packs positive electric
charge into the metal plate. Here, the charge finds itself at a “dead
end” because it cannot pass through the oxide insulation.
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However, the positive charge creates an electric field, which does
exert itself right through the oxide, as a magnet exerts a field through a
sheet of paper to a nail on the other side. This field is suggested by the
little spark symbols. (There are no actual sparks involved — just an electric
field.)

The effect of this electric field on the p-type region is one of the
many remarkable things about semiconductors. As if by magic, the upper
part of the p-type gap seems to turn into n-type as long as the positive
charge is maintained on the plate above. Thus, a temporary n-type channel
is formed between the two n-type terminals, allowing current to flow, and
in effect turning on the transistor. This fact is suggested by the “switch”
drawing below.

How do you turn an MOS transistor off?

Now to turn the transistor off again, it’s important to note that
we have to flip the control switch back to zero volts again. This is because
we have to provide a path for positive charge to drain out of the metal
plate. If we simply turned the control switch off, cutting the plate off from
any electrical contact, the positive charge would simply remain on the
plate until it somehow leaked out. So the transistor wouldn’t turn off for a
while. This is an important fact for the design of gate circuits.

Before we move on to gate design, though, notice that Figure
2-12 shows us where we get the name “MOS” that we promised to explain.
It stands for “metal-oxide-semiconductor”. This refers to the “sandwich”
construction of the three materials of MOS transistors — the metal plate,
the oxide layer between, and the semiconductor silicon below.

CONTROL TERMINAL

N

Controlled current
-T- (posttive charge)

flows out main terminal
on same side

as control terminal.

\ MAIN TERMINALS /

Figure 2-13. Customary schematic symbol for n-channel
enhancement-mode MOS transistor

One thing we'll need in showing gate circuits is a symbol for our
transistor. Figure 2-13 shows the customary schematic symbol for the
particular kind of MOS transistor we’re using.
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How does the transistor fit into a switching circuit?

To illustrate the idea of using our MOS transistor in a digital
gate, we're first going to take up another switching circuit called the
“inverter”. (It's sometimes called the “NOT gate” — although it can't gate
anything like the AND and OR gates can.) This is a building-block that’s
just as basic as the AND gate and the OR gate, although we didn’t have
an opportunity to show it in action in the encoder example.

“Load" transistors Bold arrows
are always "‘on”’ denote flow
+10VOLTS bt cannot pass +10 VLTS of positive

much current charge

ZERO : + 10 VoLts
voLTs | “OFF” [
N |
I
[
|
S et PR A
ZERO VOLTS —» == ZERO VOLTS —a ==
- - Charge to turn
+10 Vots Arrowheads indicate +10VoLTs  receiving

information flow, (? transistor on
regardiess of

10 (?b current direction\ %A

VOLTS A
—|

B, < —> —>
ZERO VOLTS

‘ TChareto Q
o B Y =+ ZERO

ZERO — turn receiving = -~
VoLTs transistor off VOLTS

Figure 2-14. Schematic diagrams and “switch” picture of two MOS
“vnverter” circuits

Figure 2-14 shows two MOS inverters in the two upper boxes,
with the output of the first (left) providing the input for the second. The
two boxes below give you a mental picture of what these inverters
do, in terms of electrically-controlled switches. When an inverter
input is at ten volts as shown on the left below, the output is connected to
a “ground” terminal at zero volts. (The meaning of “ground” was
explained back in Figure 2-5, although we didn’t mention it in the text.)
And when an inverter input is at zero volts as shown on the right, the
output is connected to the “power supply” terminal above at ten volts.
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These mental pictures below show us two things about the inverter.
First, its purpose is to change, or “invert”, the incoming signal to the
opposite state. In our MOS circuitry, “on” (1) is ten volts or thereabouts,
and “off” (0) is zero volts or something close to it. The inverter’s output is
always the “inverse” (the opposite) of the input. In simpler terms, we
might say that the output is “flipped over” from the input.

The second point illustrated in the lower part of Figure 2-14 is
that an MOS switching circuit must not only be able to supply electricity
through its output for the “on” state, but it must also be able to drain
electricity back into the output for the “oft” state. This is so the output can
turn off an MOS transistor in the receiving circuit, as we have already
learned in studying how an MOS transistor is turned off. This
requirement of “two-way” output current applies not only to the inverter
cireuits in Figure 2-14, but to all MOS gates, which as we will see are
constructed very much alike. In fact, it applies to all electronic digital
ctreuits. Current must be able to move both ways in all signal wires.

Incidentally, even though electricity sometimes flows inte an
output of digital circuits, the thing that always flows out of an output is
information. The small arrowheads on the signal lines in the diagram
below in Figure 2-1 represent information, not current.

How does an ““‘inverter’ circuit work?

Referring now to the schematic inverter circuits above in Figure
2-14, we can see how a 10-volt input signal turns on the lower transistor,
connecting the output to the zero-volt ground as we desire. As for the
upper transistor in each inverter (called the “load” transistor) —itis a
very specially-made transistor with a comparatively long and narrow
channel between the two n-type terminals. It is always kept “on” by
having its control terminal connected to the 10-volt power supply. But it
can’t supply very much current — it chokes back most of the current like
the electrical devices we call “resistors’”.

When the lower or “input” transistor is “off”, the load transistor
can supply enough current through the output to charge up the control
plate of a receiving transistor in another circuit rapidly enough (very little
current is required). But when the input transistor is “on”, the small
current supplied by the load transistor is not enough to interfere with the
drainage of charge from the receiving transistor.

INVERTER WHEN INPUT I 1, OUTPUT IS O. TRUTH TABLE
WHEN INPUT IS O, OUTPUT IS 1.

INPUT |[QUTPUT
ONE INPUT

ONe OuTPUT
1 0

0 1

Figure 2-15. Customary symbol and precise definition for the inverter
or NOT gate
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Figure 2-15 shows the customary symbol used in diagrams for the
inverter or NOT gate. Regardless of the internal circuitry, the output is
always in the inverse (opposite) state from the input, as summarized by
the truth table in Figure 2-15. (Obviously, this is so whether we're using
positive or negative logic with a particular circuit.) Presently, we will be
needing this symbol in a diagram of an MOS version of our keyboard

encoder.

What other gates can we build with MOS transistors?

Of course, our keyboard encoder (like the initial designs of most
digital subsystems) needs AND gates and OR gates. However, it turns out
that these gates are not so convenient to build out of MOS transistors as
two other kinds of gate circuits. These other two are just as useful — in
fact, more useful in many applications.

FUNCTION TABLE
H=HIGH VOLTAGE
L=LOW VOLTAGE

A|lB | a

L | L | H

L | H |l H

H| L | H

H| H| L

INPUTS

+ 10 VoLTs

Current when
both input

» transistors

\, are “off’".
S

OUTPUT

<

Current when
both input
transistors
are "‘on"’,

GROUND =
“—— ZERO VOLTS

Positive Logic:

A —]

B ——i

Using

s

TRUTH TABLE
A B Q
0 0 1
0 1 1
1 0 1
1 1 0
NOT

EFFECTIVE FUNCTION

NAND

SINGL

1

£ CUSTOMARY SYMBOL

Figure 2-16. MOS two-input positive NAND gate (left) and symbols for

NAND function

Figure 2-16 shows one of these other gate circuits. The schematic
diagram at the left shows that this circuit consists essentially of an
inverter (as in Figure 2-14) with not one but two input transistors in
series. The bold arrow shows how the output is connected to ground only
when both input transistors are “or.”. (Obviously, we could include more
than two input transistors here if we need more than two inputs.) So the
output can only be in the low-voltage state when all the input transistors
are “on” — that is, when all the inputs are in the high-voltage state.
Otherwise, if any one or more inputs are in the low-voltage state, the

output is high-voltage.
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Why do we use “H”’ and “‘L”’ in function tables?

The action of this gate is shown in the function table left of the
cireuit in Figure 2-16, using “H” for the high voltage or more positive state
(ten volts, we said earlier) and “L” for the low-voltage, more negative state
(zero volts, or ground). These symbols are typical of function tables for all
“real” electronic digital circuits (not just MOS circuits). We can’t use “on”
and “off” because the outputs are always on, in a sense — being connected
either to the ground or to the power supply. What distinguishes one
electrical state from the other is really the voltage in a wire. So “high” (H)
and "low” (L)) mean the same thing in real digital circuits as “on” and
“off” did in the imaginary “electrically-controlled-switch” circuits that we
have found so useful as a learning device.

What is a “NAND”’ gate?

Anyway — if we use positive logic and replace each “H” in the
function table with a 1 and replace each “L” with a 0, we get the truth
table shown at the right in Fgure 2-16. This particular digital function is
called “NAND” because the output is just the inverse of that for an AND
gate. NAND stands for “NOT-AND”. This truth table can be represented
symbolically by an AND gate followed by an inverter as shown in the
figure. The single customary symbol is a combination of the two symbols
— it’s an AND symbol with a little circle at the output to signify the AND
function is inverted. Since the “real” circuit at the left performs the NAND
function when using positive logic, it’s a positive NAND gate.

FUNCTION TABLE + 10 VoLTs Using TRUTH TABLE
A ) Q Positive Logic: A B Q
L L H 0 0 1
L H L 0 1 0
H L L 1 0 0
H H L 1 1 0

OR NOT

» Q
A
OutpPuT Q
B

EFFECTIVE FUNCTION

INPUT NOR

SINGLE CUSTOMARY SYMBOL

Figure 2-17. MOS two-input positive NOR gate circuat (left) and symbols
Jor NOR function
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What is a ““‘NOR”’ gate?

Figure 2-17 shows the other MOS gate that we referred to earlier,
which is a positive NOR gate. The NOR function is described in the truth
table on the right —~ the output is 1 only when all inputs are 0. Thus, the
output is the inverse of the OR function. So a NOR gate acts as an OR
gate followed by an inverter as shown below the truth table. The name
“NOR” stands for “NOT-OR”. As you can see, the customary symbol for a
NOR gate is an OR symbol with an “inversion” circle at the output point.

It’s easy to see how the circuit on the left acts as a positive NOR
gate. Applying a “high” (1) signal to either input transistor will make it
connect the output to ground. This produces a “low” (0) output signal. But
if neither input transistor is on, the small continuous current through the
load transistor provides a “high” (1) output signal. As with positive
NAND gates, we can build positive NOR gates with as many input
transistors as we want.

How can we use MOS gates in the encoder?

Finally now, we're ready to see how our keyboard encoder could
be built using real MOS gates. Figure 2-18 shows one way to do it
(assuming positive logic, as usual).

What we've done here is to replace all the gates in our original
design (Figure 2-8) with positive NAND gates. We've also added an inverter,
which you can see. But the arrangement and connections of the wires are
the same as before. Believe it or not, this new design provides correct
signals in the five output lines!

You can prove this to yourself — at least in the case of the "5” key
being pressed — by following all the bold lines, which are “on” (1).
Remember — a NAND gate produces a 0 only when all inputs are 1.
Otherwise, it produces a 1. Notice that the only number line that’s 0 is
number 5. This is because this is the only NAND gate with 1 at both
inputs. The only two NAND gates that take an input signal from the
number 5 line are those for the “1” output wire and the 4’ output wire.
Therefore these two are the only gates in the group of four that are
receiving a 0 signal. Since the inputs to these two gates are not all “ones”
like the other two gates, their outputs are 1.

Look up at the NAND gate producing the “number ready” signal.
The inverter turns the 1 in input N into a 0 going into the NAND gate.
Since both inputs to this gate are not 1, the output is 1.

This, then, is one way to build the encoder with the kind of gates
that are available in the MOS family of integrated circuits, using positive
NAND gates and an inverter. However, this circuit looks pretty
confusing, because we can’t follow the action as easily as we could with
AND gates and OR gates. So let’s see how to make better sense out of it.
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How do you make sense out of a ““NAND’’ gate arrangement?

Let’s narrow our scope down to making sense out of the three
NAND gates that act together to produce the signal in the “8” output wire
in Figure 2-18. That’s the very bottom NAND gate and the two above that
receive scan lines number 8 and 9. These three NAND gates are shown by
themselves in Figure 2-19.

SCAN LINES Lines shown bold
are “‘on"’

(higher voltage)
when ''5'" key

is pressed and
scan line 5is “'on’'.

5 6 7
"“NUMBER READY"
SIGNAL TO
CONTROLLER

KEYBOARD 1 2 3 4 8 9

INPUT LINES ’
N =

SRR
)

— 1
— 2
1 b'—> 0
| 4

NUMBER 6" TO

& L 2 2 & 2 J o 3 g DisPLAY REGISTER

INTERNAL "‘NUMBER LINES"

Figure 2-18. How to butld the decoder from Figure 2-8 by using positive
NAND gates and an inverter, as in a real MOS integrated circurt chip

As shown in Figure 2-19, the first step in understanding what’s
really going on here is to tmagine that each positive NAND gateisa
positive AND gate and an inverter. Then imagine a box around the lower
imaginary AND gate and all three inverters. Notice that inside this box,
we've got negative logic! This is because a low voltage in a number line
means yes, this key is pressed. And a low voltage in the AND gate output
means yes, key 8 OR key 9 is pressed.

Now consider the positive AND gate in the box, and ask what it
does in the case of negative logic. We know both its inputs must be high
to make the output high. In terms of negative logic, that means both
inputs must be 0 to make the output 0, since H=0and L=1. If any input
is 1, the output is 1. That should sound familiar to you. It’s the function
of an OR gate. We have discovered that A POSITIVE “AND” GATE IS
ALSO A NEGATIVE “OR” GATE!
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SCAN LINES

""BOLD LINES INDICATE
8 9

“HIGH'" VOLTAGE STATE
KEYBOARD

INPUT
N

Imagine inverters
separate from “"AND" gates

Imagine box around
“AND' gate with
inverters, and negative
logic used nside.

Positive *'AND"" gate
is negative "'OR™ gate.

1
| Entire box acts
i as positive "OR’' gate.

_______________________ ! WIRE
Figure 2-19. Imagining NAND gates feeding a« NAND gate as AND gates
feeding an OR gate

In other words, the two electrically-controlled switches in series
back in Figure 2-5 will be an OR gate if you write 1 for “off” and 0 for
“on” in the function table. You can also prove to yourself that a positive
OR gate (with switches in parallel) is a negative AND gate. Similarly, a
positive NAND gate is a negative NOR gate, and vice versa.

But let’s get back to the imaginary box in Figure 2-19. In our
mind, we can replace this entire box — AND gate, inverters and all — with
a positive OR gate. That is, a positive AND gate with inverters on all
inputs and the output, when taken all together, make a positive OR gate.

Having gone through these mental conversions, you can see what
two positive NAND gates feeding a third really do. They act as two
positive AND gates feeding a positive OR gate. Or putting the same fact
another way — a positive NAND gate with inverted inputs acts as an OR
gate.

(You can also prove to yourself that three negative NAND gates
arranged as in Figure 2-19 act as two negative AND gates followed by a
negative OR gate. And this means that the same thing holds for both kinds
of NOR gates. They act as OR gates followed by AND gates.)

Looking back at Figure 2-18, you should understand that there’s
no negative logic anywhere in the diagram. The NAND gates here are all
positive NAND gates. We've just imagined negative logic being used, to
help us understand that NAND gates with inverted input signals act as
OR gates. This helped us to follow the “logic” of the NAND network.
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What have we learned about digital decisions?

Your head may be spinning, but you've got to admit that you see
now what we mean when we say that digital circuits can make decisions.
The designer of the system just picks apart the complex decisions that
must be made until he gets down to decisions simple enough to be made
by gates. He has five kinds of gates to choose from, basically (AND, OR,
NOT, NAND, NOR). But the limitations of the particular type of
integrated circuit he’s working with may cut down the designer’s options.
Usually, as in our last example, he must make do with NAND, NOR, and
NOT gates. But the designer can substitute the correct combination and
go ahead with little problem.

In later chapters, we will become more and more familiar with
the marvelously adaptable little circuits called gates. We'll become aware
of ways to analyze system requirements so as to pick the most
efficient combination of available gates. We'll learn about the different
“families” of integrated circuits, each based on a particular type of design
for gates, and about the particular applications best for each cireuit
family. And we’ll learn how numerous digital building-blocks, subsystems,
and complete systems work, based on our understanding of their
foundations in those simplest building-blocks of all — digital gates. So you
can see that our comprehension of these circuits will carry us far in
learning about digital electronics.
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Quiz for Chapter 2

1. Which of the following 5.
“universal stages” of a system
may contain circuits that
make decisions?
a. The “sense” and “act”
stages.
b. The “decide” stage.
c. The “store” stage. 6
d. All of the above.

2. Which of the following may be
called a “coincidence
detector?”

a. AND gate.

b. OR gate.

c. Both of the above.
d. None of the above.

3. Which of the following can act 7.
as a “gate in a fence” for
information coming through
one input, under the control of
the other input?
a. A 2-input AND gate.
b. A 2-input OR gate.
c. Both of the above.
d. None of the above.

4. Which is the best way to 8.
imagine the internal
operation of a positive AND
gate?

a. Switches connected in
series.

b. Switches connected in
parallel.

c. MOS transistors connected
in series.

d. MOS transistors connected
in parallel.

How many inputs can an
AND gate or an OR gate
have?

a. One.

b. Two.

c. Three.

d. Two or more.

. The precise, official

definitions of the AND, OR,

and NOT functions are in

terms of'

a. On and off, or high and
low voltage.

b. 1 (yes) and 0 (no).

c. Either of the above.

d. None of the above.

What do we call a table that
shows the logical state (1 or 0)
of a digital circuit’s output for
every possible combination of
logical states in the inputs?

a. Truth table.

b. Function table.

c. Either of the above.

d. Both of the above.

What do we call a table that
shows the electrical state of a
digital cireuit’s output for
every possible combination of
electrical states in the inputs?
a. Truth table.

b. Function table.

c. Either of the above.

d. Both of the above.
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9.

10.

11.

12.

13.

How DicrTaL CIrcUITS MAKE DECISIONS 2

To decide which gate function
an electric circuit with a
certain function table
performs, you must first
decide:

a. Whether you're using
positive or negative
electricity.

b. Whether you're using
positive or negative logie.

c. Whether the “higher,”
more positive voltage
means 1 or 0.

d. B and C above.

How many different truth
tables can be made from one
function table?

a. One.

b. Two.

c. Three.

d. Any number.

An OR gate’s output is 1
when:

a. All inputs are 1.

b. All inputs are 0.

c. Only one input is 1.

d. One or more inputs are 1.

An AND gate’s output is 1
only when:

a. All inputs are 1.

b. All inputs are 0.

c. Only one input is 1.

d. One or more inputs are 1.

A positive OR gate’s output is

“high” when:

All inputs are “high.”

. All inputs are “low.”

Only one input is “high.”

. One or more inputs are
“high.”

cooow

(Answers in back of the book)

14.

15.

16.

17.

18.

A positive AND gate’s output

—

oo oo

s “high” only when:

Allinputs are “high.”

. All inputs are “low.”
Only one input is “high.”
. One or more inputs are
“high.”

Which is the best way to
imagine the internal
operation of a positive OR

g

a.

b.

c.
d.

ate?

Switches connected in
series.

Switches connected in
parallel.

MOS transistors in series.

MOS transistors in parallel.

The most basic law of
semiconductor action is that
voltage pressure cannot easily
force positive electric charge
to flow across the border from:

a.
b.
c.

d.

An n-region to a p-region.

A p-region to an n-region.

An MOS transistor’s metal
“control plate.”

Any of the above.

What distinguishes one
electrical state from the other

i

n all “real” electronic digital

cireuits, including MOS
circuits?

a
b
c
d

. Current moving or stopped.
. Outputs “on” or “off.”

. Voltage “high” or “low.”

. Any of the above.

A positive AND gate isalsoa
negative:

Q0o

. AND gate.

. NAND gate.

. NOR gate.

. OR gate.
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Building-Blocks
That Make Decisions

In Chapter 2, we became familiar with the basic building-blocks
that make up all digital electronic systems, which are simple little circuits
called “gates” (Figure 3-1). We noted that designing a digital system is
basically a matter of putting together large numbers of gates in the right
way. As it turns out, this is a lot like assembling a tinkertoy project from a
few kinds of parts. And so, to proceed with finding out how digital systems
work, we've got to look into the ways these gates are put together to do

various jobs.
AND ‘ : OR
NOT (INVERTER) ED——
NOR

NAND

Figure 3-1. Symbols for the simple decisions that all digital decisions are
reduced to. Circuits performing these decisions are called “Gates.”

Fortunately for our study of the ways gates are put together,
most digital systems are made up of just a few different kinds of “building
blocks” that are themselves made of gates. So in this chapter and the next,
we will become familar with about seven different kinds of these building-
blocks made of gates. There are many different varieties of each building-
block, but we will learn the basic principles by looking at a typical example
of each one. Furthermore, there are other kinds of building-blocks than the
ones we’ll study. But the ones we'll pick out will resemble the others to a
great extent.

How are digital building-blocks classified?

We're going to organize our study of digital building-blocks into
two parts. First, in this chapter, we'll look at some units that don’t have
any memory in them. They just make decisions, based on the inputs they
happen to be receiving at the moment. (See Figure 3-2.) These non-
memory units are called “combinational” circuits, because for every
combination of bits in the various input wires, there’s a definite,
prearranged combination in the output wires to be decided upon. The
output combination is the same every time a particular input combination
shows up.
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On the other hand, the building-blocks that do contain memory
circuits can store information derived from previous combinations of
inputs. So the combination of output bits depends not just on the input
signals at the moment, but also on previous combinations of bits. These
“memory-containing” building-blocks are ealled “sequential” circuits. This
is because the outputs depend on a sequence, or chain of inputs at different
times. We'll cover sequential building-blocks in Chapter 4.

For every COMBINATION of input bits . . . the unit
decides on a certain COMBINATION of output bits

VARIOUS VARIOUS

INPUT OutpuT
WIRES WIRES
1 -—lp A v —;» 0
0 ——— | B “COMBINATIONAL” Wb 1
DIGITAL
1 =——»1 C BUILDING X 1
BLOCK
{1 —————>» D Y b/ ¢
—» 1
(HAS NO MEMORY)

Figure 3-2. Definition of a “combinational” digital burlding block

How will we approach an understanding of combinational circuits?

In learning about combinational building-blocks, we could simply
look at three or four different gate networks, note what they do, and trace
how the gates operate together. But we need to do more than that. We
need to start developing your ability to analyze combinational networks, so
you can look at a network in the future and follow its action by yourself.
You may even want to begin designing networks on your own. After all,
the parts you'll need are available from most electronic supply companies.
And as we said earlier, the parts go together like tinkertoys, provided you
stick with the same “family” of circuits. (Some very common families
you'll see when we study integrated circuits later are called TTL and
MOS.)

With this in mind, then, we'll spend quite a bit of time with the
first combinational building-block. We’ll look at it from the viewpoint of a
designer. This exercise will carry us far in understanding digital systems
in general, because combinational analysis is the real heart and core of
digital electronics.
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What are ““code-converter” building-blocks?

The first class of decision-making building blocks we'll take up is a
type that could be called “code converters.” This group includes the part of
the keyboard encoder that we studied in Chapter 2 (Figure 2-8). It also
includes the main part of the segment decoder subsystem in the calculator
of Chapter 1 (Fiigure 1-5). A code-conversion building-block simply takes in
digital information in one type of code, and puts out the same information
in another type of code. For example, in the keyboard encoder (Figure 2-8),
the incoming code for “5” is 10000010000 in lines N and P and the scan
lines. And the output code for 5" is 0101 in lines that signify 8, 4, 2, and 1.

Code converters are a good place to start because the gate
arrangements in them are a simple, logical kind you’ll find in nearly every
other type of combinational building-block. After learning to analyze a
code-conversion unit, you'll find it much easier to analyze other networks.

What is a “BCD-to-7-segment decoder’?

Let’s narrow our sights now on just one kind of code converter, a
“BCD-to-7-segment decoder.” This unit would form the main working part
of the segment decoder shown back in Figure 1-5. Fiigure 3-3 shows what

its job is.
POSITIVE l
CURRENT SUPPLY —
0" at an output TO ALL SEGMENTS
means low voltage,
BINARY-CODED DECIMAL altowing current
OR "'BCD"' NUMBERS to flow in through
segment
5| ¢ /_
A==
ONES “Q 0
1 —] 7 i b
TWOS - cL°
0 —» v 0
FOURS BCDTO 4
0 —» x 7-SEGMENT 1 (SEGMENT
DECODER e
EIGHTS
1 2 3lw f 0 OFF)
a 0 EXAMPLE:
1 SEGMENTS
FéﬁMCPLE: EXAMPLE: a bc df g
N BINAORDYED "9 IN 7-SEGMENT éc?:M|r\C;)(?"‘9”
000100
(1001) Cope (0000100) CHARACTER

Figure 3-3. Block diagram of a BCD-to-7-segment decoder, showing what
its job is. (The "1” and 0" meanings are assigned using posttive logic.)
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This combinational unit takes in decimal digits coded in binary
form as we've seen before. The code is summarized in Figure 1-18, and it’s
called the “binary-coded decimal” or *“BCD” code. Notice we've labeled the
four inputs W, X, Y, and Z. In Figure 3-3, the number 9 is being received.

The seven outputs, labeled a through g, turn on a 7-segment
display to show the number being received. Each output is connected to a
segment labeled with the same letter. The other terminal of each segment
is connected to a source of current (such as a scan line in the calculator). To
turn a segment on, the decoder transmits a zero in that output. This allows
current to flow through the segment and into the output. This action is as
we described it in Chapter 1, but we’re leaving out the decimal point this
time to keep it simple. In the figure, “9” is being transmitted in 7-segment
code as 0000100, which turns on all segments except “e.” (Note that in
relating “logical” 1 and 0 to this electrical circuitry, we're using positive
logic. High voltage means 1 and low voltage means 0.)

Now we've said a number of times that any information-
processing job can be handled by gates put together the right way. But
how in the world would a designer begin to decide how to make a gate
network to handle this=particular job (or any other, for that matter)?

How do you begin designing a combinational network?

Well, do you remember the truth tables we examined for each
gate back in Chapter 27 (Figures 2-6, 9, 15, 16, and 17). The starting point
for designing any combinational building-block is to make out a truth
table for it. The table must show all the possible input combinations, and
the output combination that results from each one. Figure 3-4 shows the
truth table for our BCD-to-7-segment decoder.

For your reference, the shape of each numeral character is shown
to the left of each horizontal row of the truth table, and a chart of
segment labels is provided above. For example, notice in the top row that
the numeral 0 is received as 0000 in lines W, X, Y, and Z. And the output
code for this numeral is 0000001, which turns on all segments except “'g.”

Notice that the bottom six input combinations represent the
binary numbers ten through fifteen. These combinations have no meaning
in BCD code. We will assume that none of them will ever be received by
our decoder. However, it will help us later on if we include these
“never-received” combinations in the truth table. We write the letter “X”
for all the outputs in these cases, to signify “don't care,” or “irrelevant.”

How does a truth table help design a network?

Okay, how will this truth table help us design our network? Well,
any number of gate networks could be designed to obey a given truth
table. A designer would want the best of all the possible networks,
considering what kind of gates he has available to work with. He will
probably want the network with the fewest gates and the most economical
gates. This also implies he wants to use gates with the fewest number of
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“TRUTH TABLE"
i b FOR BCD-TO-7-SEGMENT DECODER
L]
9 1 = HIGH VOLTAGE
¢ I ¢ 0 = LOW VOLTAGE
e X—"DON'T CARE"
ALL POSSIBLE
MEANINGS L]N%?JST RESULTING
OF COMBINATIONS OUTPUT COMBINATIONS

COMBINATIONS

\ Wl X Y | Z a|b c d € f g
OTololololffololo]lolo]ol]+
F{ololol i1 lofol ] ] 1]
Stolol+loflofolslo]of1]o

1
JFlotof{ 1| +flojojo]of1] 1o

[
Jlo|l tfofoflifojoji|1folo
Eloft1fojiflofr]olo]t]jofo
Hlojt1jt1joffol1fo]lojojo]o
',l 0 1 1 oloyjoq 1 1 1 1
Hl+lofofjolofojolo]lof|o]o
Ol fololtillojojofofi1fofo
1 0 1 0 X X X X X X X
1 0 1 1 X X X X X X X

No
MEANING i L 010 W] = i = . % %
iN BCD 1 1 0 1 X X X X X X X
CoDE
1 1 1 0 X X x X x X X
1 1 1 1 X X X X X X X
POSITIONS IN 8 4 5 1

BINARY NUMBERS

Figure 3-4. The first step in designing or understanding a combinational
circutt is to make out a “truth table.”

inputs, because each input increases the size and cost of a gate circuit as
well as the number of wires that have to be run.

However, for the moment, let’s concentrate on designing just one
particular network that'’s very straightforward and easy to understand
from a logical point of view. Later on, we’ll get around to simpler, more
economical networks. So the question is, how will the truth table help us
design this “straightforward” network?

Well, to start with, you design a separate network for each output
wire, based on the logic in the truth table—meaning the reasoning that’s
implied by the ones and zeroes. For example, let’s take output “a.” In the
column under output “a” in the truth table, we have a 1 for input
combination 0001 and another 1 for input combination 0100. Now what’s
the logic in this fact, that will lead us to a gate network for output “a”?
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How do you pick the “logic’ out of a truth table?

Here’s the logie behind output “a’: “a” is 1 when we receive
combination 0001 OR combination 0100. Furthermore, we have
combination 0001 when W is NOT 1, AND X is NOT 1, AND Y is NOT 1,
AND Zis 1. And we have combination 0100 when W is NOT 1, AND X is
1,ANDY isNOT 1, AND Zis NOT 1.

The words “OR, AND, and NOT” in these logical statements tell
us how to connect an OR gate, some AND gates, and some inverters, to
make our network for producing output “a.” (We'll see how to recognize
this network from the statements in a moment.) We can make similar
logical statements for each of the other outputs from this building-block,
or from any combinational network. Statements like these can be drawn
from any truth table—statements in terms of the three basie “logical
operations” of AND, OR, and NOT. And for each logical statement like
this, there’s a network of gates that will produce the desired output from
the given inputs. It may not be the simplest, or most economical network—
but it will work. So the next step in our design process, after writing the
truth table, is to understand the truth table in terms of this kind of
statement.

However, logical statements like this are very cumbersome to
write in plain language, and this plain language doesn’t make it very easy
to see how the gates are to be connected. So digital designers use a very
handy “shorthand” writing for logical statements, which makes the
relation between the statements and a gate network very easy to see.
This shorthand is such a common, everyday thing in the field of digital
electronics that our learning would be incomplete if we left it out.

What's the “shorthand’ for writing logical statements?

This logical shorthand was developed by an Englishman named
George Boole (rhymes with “pool”) long before digital electronics were
ever invented, and it’s called “Boolean algebra.” Its purpose was to
provide a neat, simple way to write complicated combinations of “logical
statements,” which are defined as statements that can be either true or
false. “Logic” is a very ancient branch of philosophy that’s concerned with
the study of logical statements—with proving whether one statement is
true if certain other related statements are true or false.

Boolean algebra provided a ready-made way for digital designers
to handle the “logical” (true-false) statements that are involved in every
binary digital system. (After all, we have learned that 1 means true, and 0
means false.) Because of this involvement with logie, you'll often see
digital gates called “logic gates.” And a network of gates is sometimes
called a “logie network,” or a “Boolean network.”
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What are the principles of ‘‘Boolean algebra”?

Anyway, Figure 3-5 summarizes the basic elements of Boolean
algebra, as it’s related to digital electronics. The idea is that we use the
letter label of a wire to represent the logical statement carried by the wire.
And we use a multiplication sign to represent the AND operation, an
addition sign to represent the OR operation, and a bar over the letter to
represent the NOT (inversion) function. These three operations are the
only ones used in Boolean algebra.

For example, as shown in Figure 3-5, suppose we have an AND
gate with inputs A and B and output X. The way the signal at X is related
to those at A and B is expressed by this logical statement: “X is 1if A s 1
AND B is 1.” Using Boolean algebra, this statement would be written
simply as X = A - B, which you would read, "X equals A AND B.” (You
could just as well write X = AB, which is another way of writing the AND
function.)

SCHEMATIC SYMBOL SPOKEN LOGICAL STATEMENT BOOLEAN
(For each letter, read EQUATION
“Xisone,' “"Aisone,’ etc.)
A X = A:B
X X IF A AND B
B — | X = AB
C
Y Y IF CORD Y = C+D
D
E z Z IF NOT E z = E

Figure 3-5. Summary of Boolean algebra, showing how the three basic
logical operations are spoken and written

Similarly, if Y is the OR function of C and D, you would write
Y = C + D. And if Z is the inverse of E, you would write Z = E.

This little bit of Boolean algebra is enough to help us out a lot in
designing our decoder. So let’s get back to that job, by looking at Figure 3-6.
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How can Boolean algebra show us a gate network?

For your reference, in the upper left area of Figure 3-6 is
reproduced the part of the truth table that tells us how to design our gate
network for output “a.” To the right of this little truth table is the Boolean
equation for “a,” which is just a “shorthand” version of the long and
cumbersome statements we made earlier: a=W-X-Y-Z + W-X-Y-Z. And
down below is the gate network derived from this equation. The inverters
produce the NOT functions we need of W, X, Y, and Z. The AND gates
produce the two AND functions, which we are labeling P, and P,, and the
OR gate produces the OR functions, which we can write as P, + P,. [t’s as
simple as that.

Wix |y [ z]a BOOLEAN EQUATIONS FOR OUTPUT "a”

[ Jojo]o] 1 la = W % v 7

! & = _|la = Pi + P4
Hlol1]o o] + W ¥ z

Zl
I
<
N
[
=

N

a = Pi + Pa
wW
X
Y
z AN
W - X - Y « 7 = pPa

Figure 3-6. Example of using Boolean equations to design a “sum-of-

products” gate network for output “a” from the decoder-driver, based on part
of truth table of Figure 3-4

Incidentally, P, and P, stand for “product 1” and “product 4.”
The AND function of several signals is called a “product” because it looks
like a multiplication product when written in Boolean algebra. The signal
we're calling P, tells when the input combination for the number 1 is
received. Similarly, the OR function