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PREFACE 

Direct-current circuit considerations are reflected in most as­
pects of electronic equipment design and maintenance procedure. 
For this reason, it is essential that those concerned with electronics 
possess a working knowledge of the essential relationships relating 
to d-c circuit analysis. Such knowledge and techniques are necessary 
and useful throughout the fields of communications and industrial 
electronics. 

The intent of this book is to provide the fundamental concepts 
of direct-current analysis. The mathematical treatment employed 
has been kept simple, but the analyses are sufficiently extensive to 
permit the interested technician or student to develop a full com­
prehension of the pertinent theory. To insure this aim, an adequate 
amount of information is given relating to electrical laws in such 
form as to permit ready use; detailed descriptions of a relatively 
small number of selected major topics are presented, rather than 
treating a larger body of less important material; the topics, once 
given, are related to practical situations and equipment; drill is 
given in selected problems, so as to afford the reader additional 
profitable information and an opportunity to apply the principles 
he has learned; and, step by step diagrams provide clear cut con­
cepts of the methodology involved in problem solution. 

Specific attention is given to basic concepts (including a re­
view of electrostatics) ; charge, electric current and potential dif­
ference; resistance and conductance; Ohm's law; resistance factors; 

V 
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res1st1v1ty; conductivity; wire gages; simple d-c circuit analysis, in­
cluding series, parallel and series-parallel arrangements; meters; 
power and power dissipation; combination d-c circuits; Kirchhoff's 
laws; superposition; Thevenin's theorem; and the Wheatstone 
bridge. Thus, a foundation is provided upon which more advanced 
concepts can be built. 

Grateful acknowledgment is made to the staff of the New York 
Institute of Technology for its assistance in the preparation of the 
manuscript of this book. 

April 1958 A.S. 
New York, N. Y. 
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Chapter 1 

BASIC CONCEPTS 

1. Characteristics of the Electron Theory of Matter 

Early classical physics divided all earthly phenomena into two 
groups: matter and energ;y. Today, it is understood that this 
classification is highly artificial and that matter and energy are 
different manifestations of the same thing. 

The fundamental building block of all matter is the atom. 
Various combinations of atoms make up molecules, a second build­
ing block in some kinds of matter. Some kinds of molecules con­
sist of just a single atom - as for example in the rare gases like 
helium, argon, neon, and krypton. Other gases, like oxygen and 
hydrogen, are diatomic molecules, that is, the molecule consists of 
two atoms of the gas. The water molecule is triatomic, and con­
sists of two atoms of hydrogei:i and one atom of oxygen. On the 
other hand, the structure of many solids, especially metals, does 
not involve the molecule as a building block. Instead the atoms 
of the metal are organized in groups called crystals. 

Attempts to fabricate a physical picture of even a simple atom 
date back to the times of the ancient philosophers. Through the 
centuries, observed data gathered by physicists has finally brought 
into being an atomic concept that is probably very close to the 
truth. In the simplest sense, atoms are structures thought to be 
composed of three kinds of primary particles of electricity, elec­
trons, protons, and neutrons, which are arranged within the atom 
in a definite manner. 
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Protons and neutrons make up the core or nucleus of the atom. 
Revolving around the nucleus at very high speeds, and divided 
among one or more orbits are as many electrons as there are pro­
tons in the nucleus. The numbers and arrangement of the particles 
differ in the different kinds of atoms and it is this that accounts 

ALUMINUM ATOM 

13 PROTONS, 14 NEUTRONS 
3 RINGS 2-8-3 

(FOR 13 ORBITAL ELECTRONS) 

COPPER ATOM 

29 PROTONS, 35 NEUTRONS 
4 RINGS 2-8-18-1 

(FOR 29 ORBITAL ELECTRONS) 

Fig. 1. The atomic Structures of aluminum and copper. 

for the differences in chemical and physical behavior that charac­
terize the various elements. Each of the 102 chemical elements 
has its own kind of atom. 

The atomic particles differ from each other in several ways. 
The electron (which is the fundamental particle of negative elec­
tricity or the fundamental negative charge) is the least massive 
of the three, having a relative mass of only about 1/1840 of either 
the proton or the neutron, specifically 9.106 X 10-28 gram. This 
small mass enables electrical forces to move electrons much more 
easily than the other particles. The minuteness of the amount of 
electricity corresponding to the fundamental negative charge (the 
electron) requires that a great number of electrons be moved (or 
act together) in order to obtain measureable electrical effects. 

The proton is 1840 times more massive than the electron. 
Whereas the electrons are found in orbits that lie outside the 
nucleus of the atom, protons are always found within the nucleus 
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itself. The proton is considered to be the fundamental particle 
of positive electricity - i.e., the fundamental positive charge. The 
neutron has substantially the same mass as the proton but it has 
no electrical charge - i.e., it is electrically neutral. It is assumed 
to be made up of equal amounts of positive and negative elec­
tricity and forms a part of the nucleus of the atom. 

There are additional particles on the modern physicist's list, 
which do not, at the present time, hold any interest for those pri­
marily concerned with communications and hence will not be dis­
cussed here. 

Every electron is like every other electron, every proton is like 
every other proton, and every neutron is like every other neutron. 
The distinguishing characteristics of the different elements are the 
arrangement and number of their protons, neutrons, and planetary 
electrons. Figure l shows the structure of an aluminum atom con­
trasted to that of a copper atom. Because they are not acted upon 
by electrical forces and are not involved in electrical phenomena, 
we will not have to discuss the neutron after this point. 

2. Electrostatic Principles 

The atoms of most substances are stable structures. The elec­
trons are held in position in their orbits by two physical forces 
attributable to electrical effects. The force of attraction between 
electrons and protons (unlike charges) offsets the centrifugal force 
on the whirling electrons, and the force of repulsion between the 
electrons (like charges) serves to hold the electrons in their posi­
tions in the orbits. This behavior of particles within the atom is 
duplicated by large-scale electrical behavior and may be general­
ized by the statement: "Unlike charges attract each other, whereas 
like charges repel each other." 

The concept of attraction and repulsion between charges is an 
important one that serves as a basis of reference and explanation 
throughout the study of electricity and electronics. Coulomb de­
fined the relationship of forces between two electric charges as: 

F = -9.!S! 
kd2 (1) 

The formula indicates that the force F between two charges is 
directly proportional to the product of their magnitudes (q1 and 
q2, respectively) and inversely proportional to the square of the 
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distance between them. (The word "charge" is used both to ex­
press a single fundamental quantity of electricity like an electron 
or an accumulation of such fundamental units on a "charged 
body".) In Equation 1, F represents the force in dynes, 1 q1 and q2 

the strength of the respective charges in electrostatic units (esu), 
d the distance between charges in centimeters, and k, called the 
dielectric constant, is a proportionality constant that depends on 
the medium in which the charges are located (k = 1 in a vacuum) . 

Example 1, Two negative charges of 15 and 6 electrostatic units, respectively, 
are placed 3 centimeters apart in air (k = I) . What force of repulsion exists? 

Solution. 
q .q. (15) (6) 90 

F = -- = ---- = - = JO dynes 
kd2 I X (3) 2 9 

An electrically neutral object possesses an equal number of 
electrons and protons. In general, all atoms are neutral electrically, 
because the number of protons is the same as the number of elec­
trons. In metals, however, the outermost electrons may leave their 
orbits, causing a momentary imbalance. Such electrons are called 
free electrons and drift from atom to atom. 

Should an atom lose or gain one or more electrons, it becomes 
an ion. If the atom gains electrons, it has a preponderance of 
negative charge and becomes a negative ion; if it loses electrons, 
it has a preponderance of positive charge and is a positive ion. 

3. Electrostatic Charging 

An electrically neutral rod of hard rubber may be given a 
negative charge by rubbing it briskly with fur; an electrically neu­
tral glass rod may be given a positive charge by wiping it with 
dry silk. In the first case, electrons pass from the fur to the rod 
making the rod negatively charged (since it now has an excess of 
electrons) and leaving the fur positively charged (since it has lost 
electrons and now has excess protons). In the second case, elec­
trons are rubbed off the glass rod onto the surface of the silk 
leaving the rod with an excess of protons and, therefore, positively 
charged. 

Let us consider two metal spheres, mounted on short pieces of 
Bakelite attached to bases as in Fig. 2. They are assumed to be 
electrically neutral at the start. If a negatively charged rod is 

lA force of one dyne is approximately equal to a weight of one milligram. 
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touched to one of the spheres, some of the excess electrons on the 
rod will flow onto the surface of the ball, giving it a negative 
charge. Assume that a second rod, positively charged, is now used 
to transfer a positive charge to the second sphere. (What has 
actually occurred in this action 1s the transfer of electrons from 

/ 

ELECTRONS FLOW 
FROM THE ROD 

' TO THE SPHERE 

" ' ' ' ' ' ' \~ 
' 

METAL SPHERES ON 
NON-CONDUCTING STANDS 

Fig. 2. Electrostatic charging. 

the neutral sphere to the positive rod, partially neutralizing the 
charge on the rod, leaving the ball with a shor:tage of electrons and 
a net positive charge.) We now have two spheres, one of which 
is negatively charged, while the other is positively charged. The 
spheres appear to be identical in all respects, except for the in­
visible and different charges upon them. 

4. Conductors and Insulators 

If the two spheres in the charged state are connected to each 
other by a metallic wire, the excess electrons on the negatively 
charged ball will flow through the wire to the other sphere, as a 
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result of the attraction between unlike charges. It is known, how­
ever, that the individual electrons on the negatively charged body 
do not physically pass to the positively charged body. The phe­
nomenon of electrical neutralization is explained by the fact that 
the wire contains a large number of free electrons, which are 
drawn to the positively charged ball by the force of attraction be­
tween unlike charges. At the same time, electrons pass into the 
wire from the negatively charged ball, the number of free elec­
trons in the wire remaining constant. The actual net drift of the 
electrons is relatively slow, but charge is transferred instantane­
ously. A flow of charge between bodies having different static 
charges is one form of electric current. A current of this kind 
passes so briefly (only until neutralization occurs) that its men­
tion at this point primarily serves as a transition from the pre­
ceeding discussion of electrostatics to that of electrodynamics - the 
study of charge in motion - that is the basics of circuit analysis. 

Some substances (conductors), particularly those classified as 
metals, permit electron flow to occur easily. Others, notably sub­
stances like Bakelite, glass, and wax, resist the flow of electrons to 
such an extent as virtually to prevent it from occurring at all. It 
is believed that conductors are naturally endowed with a large 
quantity of free electrons, which produce a flow of current when 
acted upon by electrical forces. Nonconductors (insulators) have 
very few free electrons. One of the best electrical conductors, silver, 
is estimated to have 1.68 X 1024 free electrons per cubic inch .as 
contrasted to hard rubber, with some three free electrons for the 
same volume under normal conditions. Even between different 
metallic conductors, there are variations in the ease with which 
an electric current is passed. 

5. Charge, Eledrlc Current, and Potential Difference 

The Coulomb. In our discussion of the electron theory of 
matter, we mentioned that the fundamental particle of negative 
charge was that carried by the electron. This charge is an extremely 
small quantity of electricity - its precise magnitude was only de­
termined in the course of the present century - and larger units 
of charge have been established for convenience in computation. 
For example, the electrostatic unit of charge (esu) was chosen to 
make the force between two equal charges one centimeter apart 
exactly I dyne. Even this unit (which represents approximately 
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2 X 109 electronic charges) is small for practical purposes, and 
the practical unit of charge, the coulomb is 3 X 109 (three billion) 
times as large. 

The Ampere. As developed earlier in our discussion of elec­
trostatics, an electric current consists of a transfer of charge. It is 
measured in terms of the quantity of charge that passes a point 
in a conductor in a given time. A practical unit is based on the 
coulomb as the quantity of charge and the second as the unit of 
time. This unit is called the ampere, and represents a rate of flow 
of charge of l coulomb per second. 

Potential Difference - the volt. Force is required to separate 
unlike charges or to bring like charges together. If the separation 
between unlike charges is to be increased, work must be done. 
The amount of this work is given by the product of the force 
exerted on the charge to move it and the distance that it has been 
moved. (This concept is analogous to the work done in lifting a 
weight from the ground.) This work can be recovered in the pro­
cess of allowing the charge to return to its original position, in 
the same manner as work can be done by allowing a suspended 
weight to fall back to earth. In the case of the weight, the work 
required to lift it to a height equals the work recoverable in 
dropping it from the same height, or the potential energy of the 
suspended weight. Similarly, the work that is done in moving a 
charge is equal to the work recoverable in allowing the charge to 
return to its original (reference) position, or its potential. 

Electrical potential is measured in terms of the work required 
to move a unit charge. The unit of charge is the coulomb and 
that of work, the joule. (1 joule is about ¾ foot-pound.) The 
practical unit of electrical potential, the volt, represents an expen­
diture (or production) of energy of one joule per coulomb of 
charge transferred. It is this energy that is dissipated in the pro­
cess of passing charge through a resistance. Furthermore, it is not 
possible to cause an electric current to flow between two points 
unless they are at different electrical levels or potentials. The flow 
of current between the metal spheres mentioned earlier ceases as 
soon as the electrical levels of the spheres become the same, that 
is when the charges are neutralized. (The reader will find that 
Fig. 3 will clarify the preceeding discussion.) 

In order for a continuous current to flow, a difference of po­
tential, or electromotive force, must be maintained. This is the 
function of batteries and generators - they raise quantities of 
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,-------5 COULOMBS OF + CHARGE 

HIGH 
ELECTRICAL 
LEVEL(+) 

6 VOLTS 

\ ZERO OR 
GROUND 
LEVEL 

~---- 5 COULOMBS OF + CHARGE 

WORK DONE IN RAISING 
CHARGE=6X 5=30 JOULES 
CORRESPONDING TO A PO-
TENTIAL DIFrERENCE OF 
30/5 OR 6 JOULES/COUL-
OMB 

HIGH 
ELECTRICAL 
LEVEL(+) 

6 VOLTS 

\ ZERO OR 
GROUND 
LEVEL 

WORK RECOVERED IN DROP­
Pl NG CHARGE=6X5=30 JOU· 
LES, CORRESPONDING TO THE 
SAME POTENTIAL DlffER­
ENCE or 30/5 OR 6 JOULES/ 
COULOMB 

Fig~ 3. Voltoge as work done or recovered per unit charge transferred. 

charge to higher electrical levels from which they can pass to lower 
ones, doing work in the process. This imparting of energy to 
charges is accomplished at the expense of mechanical energy in 
generators and of chemical energy in batteries. 

6. Resistance and Conductance 

As previously discussed, some materials are good conductors, 
others are poor conductors, and still others conduct hardly at all. 
When a substance conducts electricity well it is said to have low 
resistance; when it conducts poorly, its resistance is high. Again, 
we need a unit of measure for the amount of resistance. 

We shall take as our basic unit of resistance the ohm. The 
ohm is a resistance across which there is a potential difference of 
1 volt when the current in it is 1 ampere. The ohm may also be 
defined as the opposition offered to the flow of electricity by 1000 
feet of No. 10 copper wire at 68° Fahrenheit (normal room tem­
perature) . Thus, 2500 feet of the same wire at room temperature 
have a resistance of 2.5 ohms. It is possible, on the other hand, 
to make a 10,000,000 ohm special resistor ½-inch in length. The 
resistor, of course, would not be made of copper wire, but probably 
of a mixture of carbon and clay, or other high resistance material. 
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The term "conductance" is sometimes used in discussions of 
circuitry. Conductance (G) is the reciprocal of resistance or 

G = 1/R 

A wire having a high resistance has a low conductance, and 
wire of low resistance is one of high conductance. The unit of 
conductance is the mho (ohm spelled backwards). 

Example 2. What is the conductance of a wire having a resistance of 50 ohms? 

Solution. G = I /R G = 1/50 = 0.02 mho 

7. Ohm's Law 

George Simon Ohm discovered in the course of experiments 
that the current passing in a metallic circuit was always directly 
proportional to the applied potential (voltage) and inversely pro­
portional to the circuit resistance. This law of electrical behavior 
is fundamental to circuit analysis and is the basis of most simple 
circuit problems. Stated in mathematical terms 

1 (current) ~ E (po~ential) 
R (resistance) 

Ohm converted this proportionality into an equation by properly 
choosing the unit of resistance (which we did in the last section 
in terms of a physical measurement) . He chose the magnitude of 
the resistance unit (the ohm) so that the following equation could 
be set up: 

I (current in amperes) = E (potential in volts) (2) 
R (resistance in ohms) 

This equation is used in two other forms, both of which are trans­
positions of it: 

and 
E=IXR 

R = E/1 

(3) 

(4) 

Example 3. The potential applied across the filament of a certain transmitting 
tube is 10 volts. If the resistance of the filament is 5 ohms, what must be 
the current through the filament? 

Solution. The unknown is the current. Hence the use of Equation 2 is called 
for. Substituting: 

I = IO /5 = 2 amperes 
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Example 4. A pilot lamp uses 0.05 ampere at 6 volts. What is the "hot" re­
sistance of the filament? (When the filament is cold its resistance is lower.) 

Solution. The unknown is the resistance. This calls for Equation 4. 

R = E/1 = 6/0.05 = 120 ohms 

Example s. What voltage is required to force a current of 0.15 ampere through 
a vacuum tube filament having a resistance of 165 ohms? 

Solution. Because voltage is unknown, we can best use Equation 3. 

E = 0.15 X 165 = 24.75 volts 

Example 6. If the voltage applied to a circuit is doubled and the resistance 
of the circuit is increased to three times its former value, what will be the 
final current value? 

Solution. From Equation 2, the original current, l 1 = E/R. To find the new 
current, 12, E is doubled and R is tripled: 

2E E 
l 2 = -- = 2/3 - = 2/3 l1 

3R R 

The final current is 2/3 the original value. 

Ohm's Law Applied to Conductance. Earlier we defined con­
ductance as the reciprocal of resistance using the equation G = 
1/R. Substituting for R its equivalent given by equation 4: 

G=-l =-l-=_!_ 
R E/1 E 

(5) 

This equation tells us that conductance is the ratio of the current 
in a conductor to the voltage that produces it. This ratio often 
is of use in solving problems that require the answer in terms of 
conductance, as in example 7. 

Example 7. What is the conductance of a circuit if 6 amperes flow when a 
potential of 12 volts is applied to the circuit? 

Solution. Use Equation 5. 

G = 1/E = 6/12 = 0.5 mho 

Note that the potential must be in volts and the current in amperes for 
the conductance to be in mhos. 

8. Review Questions 

(1) Differentiate between a molecule and an atom. 
(2) Explain the modern theory of atomic structure. 
(3) Define the terms: free electrons, conductor, and insulator. 
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(4) What is the Law of Electric Charges? Coulomb's Law? 
(5) Two negative charges of 10 and 30 esu are separated in air by 0.5 centi­

meter. What force, in dynes, exists between the two? Do they attract or 
repel each other? 

(6) What other terms are synonomous with difference of potential? 
(7) What is the practical unit of potential difference? 
(8) Define the conductance of a substance and give the mathematical expres­

sion of it. 
(9) State Ohm's Law in words. List the three mathematical forms of Ohm's 

Law. 
(10) How much current will pass through a resistance of 180 ohms when a 

potential of 220 volts is applied across it? 



Chapter 2 

RESISTANCE FACTORS 

9. Factors Affecting Resistance 

Because resistance and resistors play an essential role in com­
munications equipment (a resistor may be inserted into an elec­
trical circuit for many reasons including control of current flow, 
to produce differences of potential, etc.), it is necessary to know 
just what governs the amount of resistance to be expected in 
specific cases. Even the resistance of a nominally good conductor 
often becomes a factor in the correct operation of certain equip­
ment. Resistance is a function of the material of which the com­
ponent (or conductor) is made, its length, its cross-section area, 
and its temperature. 

The Length of a Conductor. Resistance is directly propor­
tional to conductor length. If one foot of a conductor of given 
cross-sectional area offers a certain degree of opposition to electric 
current, two feet of the same conductor will offer twice as much 
opposition. (See Fig. 4.) In terms of the electron theory, charge 
is transferred at a finite speed and any particle of charge passes 
a finite length of a conductor in a given time. During such a 
period the flow of charge is opposed by a certain resistance. Should 
the length of the conductor be doubled, the charge would be in 
motion twice as long and would be opposed twice as much. 

Cross-section Area of a Conductor. If we take a conductor 
whose cross-section area is I square centimeter, and another piece 

12 
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of the same material and the same length whose cross-section area 
is 2 square centimeters, we will find that the smaller conductor 
has twice the resistance of the larger one. This may be explained 
in terms of the free electrons available for conduction: the volume 
of the larger conductor is twice as great and there are twice as 

Fig. 4. The resistance of a 
conductor varies inversely with (A) 

its cross-sect,onal area. 

(B) 

--, 
3R 

(RESISTANCE 
OF A BLOCK 3 

TIMES AS LONG) 

--l 
R/3 

(RESISTANCE 
OF A BLOCK 3 

TIMES THE CROSS· 

7ALAREA) 

many free electrons available in any unit length. In general, 
resistance is inversely proportional to the cross-section area, and 
since the cross-sectional area of a conductor is directly propor­
tional to the square of its diameter, the resistance of a conductor 
is inversely proportional to the square of its diameter. (See Fig. 4.) 

Thus, if the diameter of a conductor of given length is doubled, 
the resistance will be reduced to one-quarter of the previous value; 
if the diameter is reduced to one third, the resistance will be 
increased nine times. 
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The Circular Mil. The circular mil was selected because elec­
trical conducting wires are usually round and possess compara­
tively small diameters that can easily be expressed in mils. A cir­
cular mil (c.m.) is merely the cross-sectional area of a round wire 
with a diameter of 0.001 inch. Because it is a circular area unit 
of measure, it is necessary only to square the number of mils given 
in the diameter to find the number of circular mils in a circle of 
that diameter. Thus, a conductor with a 1-mil diameter would 
have a 1-c.m. cross-section area; a 3-mil diameter, a 9-c.m. area; 

T 
I MIL 

1----..... 
i.l---lMIL---t 

AREA • I MIL X I MIL 
• I MIL2 

½MIL 
RADIUS 

_J_ 

1 

AREA • 17'(½ MIL) 2 • f MIL 2 

• 0.7854 MIL 2 

Fig. 5. Comparison of square and circular mils. 

and a 40-mil diameter, a 1600-c.m. area. A round conductor of 
1000 mils (I inch) in diameter has a cross-section area of 1,000,000 
c.m., which is equivalent to 0.7854 square inch. Conversely, one 
square inch is equivalent to l,000,000/0.7854 or 1,273,200 c.m. This 
conversion factor permits calculation of the equivalent circular 
mils for a square or rectangular cross section of conductor. In 
square measure, then, 

Area of a circular mil = 0. 7854 area of a square mil (6) 
The area of a square whose sides are I mil long would be a 

square mil. Figure 5 shows the relationship between the area 
represented by a circular mil and that by a square mil. As may 
be seen from the diagram, the square mil is a bit larger than the 
circular mil. The proportionality factor is given in Equation 6, 
and may be derived by comparing the areas of the two. The area 
of the square mil is I mil X I mil or I mil2. That of the circular 
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mil is :n:r2 or 3.1416 X (½ mil) 2 = (3.1416/4) mil2 = 0.7854 
mil2. The ratio of circular to square mil is thus 0.7854 to I as 
given above. 

Material of the Conductor. The fact that different materials 
offer differing degrees of opposition to electric current was dis­
cussed in general terms in Chap. I. The degree of opposition de­
pends upon the atomic structure of a material, because the atomic 
structure determines the number of free electrons available for 
conduction. For example, an alloy called nichrome drawn into 
a piece of wire offers. much more resistance to the flow of an elec­
tric current than a piece of copper wire of equivalent dimensions. 

The Effect of Temperature. Electrical conductivity in most 
materials is strongly affected by changes in temperature. Metallic 
conductors, for the most part, have positive temperature coefficients 
of resistance, i.e., the resistance rises as the temperature rises; some 
nonmetals, like carbon, have negative coefficients. For copper, the 
metal most used in conductors, the temperature coefficient is posi­
tive. Certain alloys, such as manganin, show virtually no change 
in resistance with changing temperatures. They are excellent for 
use as instrument shunts or multipliers. 

1 O. Resistivity 

It is often desirable to know the resistances of electrical ma­
terials in terms of unit dimensions of. length and cross-sectional 
area, because this information permits calculations and comparisons 
between the materials. The resistivity (Q) of a given material is 
numerically equal to the resistance of a wire (or bus) of the ma­
terial of unit length and cross-section area. The resistance per cir­
cular mil-foot, representing the resistance of a wire with a diameter 
of I mil (0.001 inch = 1 mil) and a length of I foot, is a commonly 
used unit for Q· Resistivities of a number of conductors are given 
in Table I. 

A useful equation for calculation of resistance from resistivity 
is 

(7) 

where R is the resistance of the wire in ohms, Q is the resistivity 
in ohm-c.m./ft, L is the length of the wire in feet, and A its cross­
sectional area in c.m. 
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TABLE 1 

RESISTIVITIES OF COMMON ELEMENTS AND ALLOYS 
AT 20°C (68°F) 

Resistivity 
Elements (ohm-c.m./ft) 

Silver.............................. 9.9 
Copper, annealed . . . ... . . 10.37 
Copper, hard drawn . . . . 10. 7 
Gold, pure . . .. . . . . .. . . . . . .. . .. 14. 
Aluminum .................... 17. 
Tungsten . . . . . . . . . . . . . . . . . . . . . . 33. 
Zinc ................................ 36. 
Nickel ............................ 47. 
Iron, cast . .. . . . . . . .. . . .. . . . . . . . 54. 
Lead .............................. 132. 

Resistivity 
Alloys (ohm-c.m./ft) 

Brass .............................. 42. 
German Silver . . . . . . . . . . . . . . I 99. 
Manganin .................... 265. 
Cons tan tan . . . . .. . . . ... . . . . . . 302. 
Excello . . . . . . . . . . . . . . . . . . . . . . . . . . 550. 
Nichrome ...................... 675. 
Phosphor Bronze ........ 57. 

Example a. What is the resistance of an annealed copper wire 200 feet long 
and 4 mils in diameter, at 20°C? What is the resistance of an annealed 
copper wire of the same length with a 40-mil diameter? 

Solution. 
L 10.4 2080 

(a) R = Q A = 42 X 200 = 16 = IJO ohms 

L 10.4 X 200 2080 
(b) R = Q - = ---- = -- = 1.30 ohms 

A 402 1600 

11. Temperature Coefficients of Resistance 

Communications equipment, especially field equipment, may 
be subjected to variations in temperature, hence a knowledge of 
how to compute the effect of temperature on the resistance elements 
is useful. The resistance of a conductor varies directly with its 
temperature coefficient, defined as the amount that the resistance 
increases (or decreases) with each degree rise in temperature for 
each ohm of resistance at the reference temperature. Normally, the 
changes due to temperature variation are slight and may be ne­
glected in most practical applications. For accurate computation 
however, Equation 8 can he used: 

(8) 

where Rr is the resistance at the final temperature, tr, R1 is the 
resistance at the initial temperature, ti, and Tc is the temperature 
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TABLE OF TEMPERATURE COEFFICIEN'rS OF 
RESISTANCE OF VARIOUS MATERIALS AT 20°C 

Temperature 
Coefficient 

Material per ° C Material 

Temperature 
Coefficient 

per° C 

Advance Metal 
(copper, nickel) 0.000018 

Aluminum . . . . . . . . . . .. . . 0.00388 
Bismuth . . . . . . . . . . . . . . . . . . 0.00435 
Brass (annealed) .. 0.002 
Carbon . . . . . . . . . . . . . . . . . . . -0.0003 
Cons tan tan 

(copper, nickel) 0.000018 
Copper (drawn) .. 0.004 
Excello ...... 0.00016 
German Silver (copper, 

nickel, zinc) . . . . 0.00038 
Gold . . . . . . . . . . . . . . . . . . . . 0.0034 
Iron, cast . . . . . . .. 0.006 

Lead ..... 
Manganin (copper, 

manganese, nickel) . 
Mercury ....................... . 
Nichrome 

(chromium, nickel) 
Nickel ......... . 
Phosphor Bronze 
Silver 
Steel, hard 
Steel, soft . 
Tungsten ...... .. .... ..... . 
Zinc .............. .. ... ..... ....... . 

0.0038 

0.000006 
0.00089 

0.0004 
0.0062 
0.004 
0.00377 
0.0016 
0.005 
0.0046 
0.0037 

coefficient for the material. Typical values of the temperature co­
efficient of resistance are given in Table 2. 

Example 9. A carbon resistor (T • = -0.0003) of 300,000 ohms at room tem­
perature (20°C) is heated to 50°C. What is its resistance? 

Solution. R, = R, + R, X T • (t, - t.) = 300,000 + 300,000 X (-0.003) (50-20) 

= 300,000 + (-2700) = 297,300 ohms 

12. Conductivity 

Conductivity is defined as the reciprocal of resistivity, and its 
use is sometimes convenient for comparison of various conducting 
materials In practice, conductivities are measured with reference 
to a standard, the resistivity of 1 cubic centimeter of annealed 
copper at 20°C, which is arbitrarily defined as JOO-percent con­
ductivity. (The standard has resistivity value of 1.724 10-6 ohm-c.m.) 
Utilizing this constant, the percent conductivity of other materials 
can be computed. 
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Example 10. Compute the percent conductivity of aluminum. 

Solution. The resistivity of aluminum (from Table 1) is 17, and that of 
copper, 10.37. The relative conductance of aluminum is the reciprocal of 
the aluminum-copper resistivity ratio, or: 

resistivity of copper 
relative conductance of aluminum = --------­

resistivity of aluminum 

10.37 = -- = 0.61 or 61% 
17 

13. American Wire Gage (AWG) 

American wire sizes are designated by number in the American 
Wire Gage system (formerly Brown and Sharpe Gage). These 
numbers range from the largest sizes, 0000, 000, 00, 0, and I, to 
40, the smallest size, based on a constant ratio between diameters 
of successive gage numbers. The larger the number, the smaller 
the diameter of the wire and the smaller its cross-section area. The 
different sizes are selected so that progressively larger cross-section 
areas differ by the ratio of the square mil to the circular mil, a 
factor of roughly 1.27. The choice of factor is such that the cross­
section area and, therefore, the resistance, either halves or doubles 
(approximately) for every three gage numbers, depending upon 
the direction of the change. The ratio of any cross-section area 
or resistance to that of a gage number differing by IO is either 
ten to one or one to ten (approximately), again depending upon 
the direction of the change. 

For purposes of rough calculation, a number IO wire has these 
properties: (a) a resistance of about one ohm for each 1000 feet; 
(b) a diameter of about 1/10 of an inch or 100 mils; and (c) a 

cross-section area of about 10,000 circular mils. (Bearing in mind 
that the resistance is halved or doubled in three gage numbers, it 
can be seen from these figures that a number 7 wire would then 
have a resistance of ½ ohm for each 1000 feet and cross-section 
area of 20,000 circular mils; number 13 wire, a resistance of 2 ohms 
per 1000 feet and a cross-section area of 5000 circular mils; number 
16, a resistance of 4 ohms per 1000 feet and a cross-section area of 
2500 circular mils.) 

Example 11. Compute the resistance of a 500-foot length of number 18 copper 
wire. 
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Solution. Number 19 wire would have a resistance of 2 x 2 X 2 or 8 ohms per 
1000 feet since it differs by 9 gage numbers from IO. The resistance of num­
ber 18 wire is then 

8 = 6.3 ohms per 1000 ft 
l.27 

6.3 
or -- = 3.15 ohms for 500 ft 

2 

Example 12, Determine the cross-section area in circular mils, the diameter, 
and the resistance per 1000 feet of number 8 copper wire. 

Solution. The area in circular mils of number IO wire is 10,000 c.m. (approx.) 
(a) The circular mil area of number 7 wire is 20,000 c.m. (approx.) and 
the circular mil area of number 8 wire is 20,000/l.27 = 15,800 c.m. (approx.) 
(b) The diameter of No. 8 wire = yl5,800 = 126 mils (approx.) (c) The 

resistance of No. 7 is 0.5 ohm per 1000 feet. The resistance of 1000 feet No. 
8 = 0.5 X l.27 = 0.635 ohms (approx.). 

14. Review Questions 

(1) Name three factors affecting the resistance of a conductor. 
(2) The resistance of a conductor is 50 ohms. What change in resistance will 

take place if its diameter is doubled? 
(3) Express the area of a circular mil in terms of a square mil. 
(4) Name three alloys whose resistance is hardly affected by changing tempera­

tures. 
(5) A 100-foot piece of annealled copper wire has a 5-mil diameter. :Find its 

resistance at 20°C. 
(6) The same copper wire is heated to 50°C. Determine the value of the new 

resistance. 
(7) What is the relationship between resistance and conductivity? 
(8) What is the conductivity of the wire in Question 5? 
(9) Name three properties of No. 10 copper wire. 

(IO) What is the resistance of 2000 feet of No. 19 copper wire? 



Chapter 3 

SIMPLE D-C CIRCUIT ANALYSIS 

15. Series Connection of Resistors 

A complete circuit consists of a source of voltage, conductors, 
and one or more loads connected so that the current leaves the 
negative terminal of the source, flows through the load, and returns 

RESISTOR 
(LOAD) 

RI 

7 I 
L __J L 
I"'"~'"'· 

-----CONDUCTORS 

BATTERY 

'--------11111---------' 
- + - + 

R2 

7 
J 

Fig. 6. A complete circuit. Fig. 7. A simple series circuit. 

to the positive terminal of the source. For these simple exercises 
we shall use a dry cell or other "battery" as the source (strictly 
speaking, a battery is two or more cells). The load in an electrical 
circuit is understood to mean the device or devices that utilize 

20 
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the electric current and are worked or operated by the current; 
Fig. 6 shows a complete circuit. 

The Series Circuit. A simple series circuit consists of two 
or more loads connected end to end as shown in Fig. 7. Note that 
this is a complete circuit and the current flow starts from the nega­
tive terminal of the source, passes through the load, and returns 
to the positive terminal. Because no current is diverted at any 
point, the current in a series circuit must be everywhere the same, 
and RI and R2 may be considered the equivalent of a single re­
sistor having a resistance equal to the sum of RI and R2. We 
can thus state in general, that the total resistance of a series circuit 
equals the sum of the individual resistors or 

Rtotal = RI + R2 + R3 + etc. 

Example 13. Draw a simple diagram showing the method of connecting three 
resistors of equal value so that the total resistance will be three times the 
resistance of one unit. 

RI R2 R3 

RI • R2 • R3 
RroTAL • RI+ R2 + R3 11 3RI 

Fig. 8. Circuit for Example 13. 

Solution. If you connect three resistors of equal value in series, as in Fig. 8, 
the total resistance will be the sum of the three, or three times the resistance 
of one unit. 

Fall of Potential. Suppose that we have three resistors con­
nected in series, as shown in Fig. 9. In practical problems of this 
kind we assume, for simplicity, that the conductors have no resist­
ance. Assume further that the resistors are of equal value and that 
the potential difference provided by the battery is exactly 9 volts. 
A voltmeter connected across points A and F, therefore, would read 
9 volts, as would a voltmeter connected from point B to point E, 
because the conductors are assumed to have no resistance. Just as 
water moving through a pipe loses pressure the further it goes, 
electricity loses potential when passing through a resistor. The 
amount of potential lost (the fall of potential or voltage drop) 
depends upon both the resistance and the strength of the current. 
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Considering Fig. 9, the current is the same in each resistor, 
because this is a series circuit. All the resistors have the same 
value, hence voltage drop should be the same in each resistor. The 
total potential across the set of three is 9 volts, hence the voltage 
drop from B to C must be 3 volts, from C to D, 3 volts, and from 
D to E, 3 volts. 

Note the signs at the ends of the resistors. Point B is just as 
negative as the negative end of the battery. Due to the voltage 

B C D E 

+ + 

I 7 
L _j 

9 VOLTS 

_11 + 
A F 

Fig. 9. Illustration of fall of potential. 

drop from B to C, point C is a little more positive than point B. 
But, because there is a fall of potential from C to D, point C is 
a bit more negative than point D. This accounts for the fact that 
the same point, point C, can have both a minus and a plus sign. 
In other words, point C is more positive than point B, but more 
negative than point B. 

We may state three rules that emerge from these considerations: 
I. When electrons flow through a resistor, the end into which 

they flow becomes more negative than the end from which they 
emerge. 

2. In a series circuit, the sum of the voltage drops across the 
individual resistors is equal to the total voltage applied by the 
source. 
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3. The voltage drop across any individual resistor may be 
found by applying Ohm's Law, Equation 2: E = IR, where E is 
the voltage drop, I is the resistor current, and R is the resistance. 

Sample problems will help clarify these points. 

Example 14. What is the sum of all the voltage drops around a simple direct­
current series circuit, including the source? 

Solution. Note the phrase "including the source." Viewed in this manner, the 
sum of all the voltage drops is zero. Here is the reason: Referring to Fig. 9, 
from B to C there is a drop of 3 volts, C to D a second drop of 3 volts, and 
from D to E another drop of 3 volts, making a total drop of 9 volts from 
B to E. But, going through the battery there is a rise of 9 volts that makes 
up for the 9-volt drop from B to E. Thus the total drop is zero. 

Example 15: Three resistors, 5 ohms, 5 ohms, and IO ohms, respectively, are 
connected in series with a 100-volt source. What is the voltage drop across 
the IO-ohm resistor? 

-----111111------
IOOV 

Fig. 10. Circuit for Example 1.5. 

Solution. This problem may be solved in three steps. (Refer to Fig. 10.) 
I. The three series resistors have a total resistance of 20 ohms. 
2. The current flowing in the circuit is 

I = E/R = 100/20 = 5 amperes 

3. The voltage drop across the IO-ohm resistor is 

E = IR = 5 X 10 = 50 volts 
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,--5V--7 
I I 

FILAMENT 

I•¼ AMP 

,---?---7 
I I 

SERIES 
RESISTOR 

-----------tlli-----------' 
6 VOLTS 

Fig. 11. Circuit for Example 16. 

Example 16, If a vacuum tube having a filament rated at ¼ ampere and 5 
volts is to be operated from a 6-volt battery, what is the value of the neces­
sary series resistor? 

Solution. Figure II shows the known factors clearly: 5 volts required across 
the filament, a 6-volt battery, and a current of ¼ ampere. What value of 
the series resistor will drop the voltage l volt (from 6 to 5) at a current 
of ¼ ampere? R = E/1 = 1/0 .25 = 4 ohms 

Example 17. If two voltmeters are connected in series across a load, how 
would you be able to determine the total drop across the two instruments? 

VOLTMETERS 

------------1111, ......... _____ __. 
30V 

Fig. 12. Circuit for Example 17. 
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Solution. Figure 12 shows the circuit. For purposes of this problem, voltmeters 
may be considered to act just like ordinary resistors. The total voltage drop 
across the two meters in series is, therefore, equal to the sum of the drops 
across each of them. Because a voltmeter reading gives the drop across the 
meter, the sum of the readings gives the total voltage drop. 

Example 18. A circuit is passing a current of 3 amperes. The internal resist­
ance of the source is 2 ohms. The total external resistance is 50 ohms. 
What is the terminal voltage of the source? 

Solution. All sources of current have a certain amount of internal resistance 
which must be considered as being in series with the external load. In this 
problem, the total circuit resistance is thus 52 ohms (2 plus 50) . However, 
the terminal voltage of the source is responsible for the current of 3 amperes 
through the 50-ohm load, and is therefore equal to the voltage that appears 
across the load. The load is 50 ohms; applying Ohm's Law: 

E = IR = 3 X 50 = 150 volts 

Example 19. Two resistors are connected in series. The current through them 
is 3 amperes. RI has a value of 50 ohms, R2 has a voltage drop of 50 volts 
across its terminals. What is the total impressed emf? 

RI 
50..n. R2 

I 
I I 
L_E • 50V-_j 

._ ______ +-< IMPRESSED 
EMF= ? 

Fig. 13. Circuit for Example 18. 

A I 3 AMP 

Solution. The known facts are shown in Fig. 13. This is again a problem that 
must be solved in three steps. 
I. The total impressed emf must be equal to the sum of all the voltage 
drops around the series circuit. One of these drops is already given - 50 
volts across R2. 
2. Find the voltage drop across RI: El = IR = 3 X 50 = 150 volts 

3. E, 0 ,.1 = El + E2 = 150 + 50 = 200 volts 
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Example 20. A relay coil has a resistance of 500 ohms and is designed to oper­
ate on 0.125 ampere. If the relay is to operate from a ll0-volt source, what 
value of series resistance is needed? 

Solutlon. Find first the total resistance necessary to hold the current down to 
0.125 ampere at ll0 volts: 

R = E/1 = ll0/0.125 = 880 ohms 

This is the total resistance needed. However, the relay coil has a resistance of 
500 ohms, hence the additional resistance required is 880 - 500 = 380 ohms. 

16. Parallel Connection of Resistors 

A parallel circuit is one in which the current may take two 
or more different paths from the source through the load (s). 

Figure 14 shows a simple parallel circuit in which the current 
divides at point A to flow in two parts on its way through RI and 
R2, rejoins at point B, and then returns to the positive terminal 

l 
-4 _j 

...._ ____ ..... - 1, ....... ____ _ 

fig. 1-4. A simple parallel 
circuit. 

of the battery. The figure indicates another method of defining 
a parallel circuit as one in which one terminal of each element 
connects to a common point, forming one terminal of the network, 
and the other terminal of these elements connects to a second 
common point that forms the second terminal of the system. 

Joint or Total Resistances. With RI and R2 in Fig. 14 pro­
viding two paths through which the current may flow, the current 
finds less difficulty in returning to the source than if only one of 
the resistors were present. This means that a parallel circuit must 
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have less resistance than that presented by either one of its com­
ponent resistors alone. There are three simple rules for finding 
the joint or total resistance of a parallel circuit: 

1. For two equal resistors in parallel, the joint resistance is 
half the resistance of either component. For example, the joint 
resistance of two 100-ohm resistors in parallel is 50 ohms. 

2. For two unequal resistors in parallel, the total resistance 
may be found from the simple equation: 

RI X R2 
Rtotal = RI + R2 (10) 

Thus, the joint resistance of a 2-ohm and an 8-ohm resistor in 
parallel is: 

2 X 8 16 
Rtota1 = 2 + 8 = IO = 1.6 ohms 

Note again that the joint resistance is smaller than the smallest 
component. 

3. If there are more than two resistors in parallel, the joint 
resistance must be found from the equation: 

1/Rtotai = 1/Rl + l/R2 + l/R3 + etc. (11) 

Examples of the use of Equation 11 will be found among the 
sample problems. 

The Voltage Drop Across a Parallel Circuit. Again referring 
to Fig. 14, it is evident that points A and B connected directly 
across the battery must have a potential difference between them 
equal to that of the source. Rl and R2 are also connected to the 
same points, hence the voltage drop across each of them and across 
the combination must be equal to the emf of the source. This 
leads to the rule: The voltage drop across each branch of a paral­
lel circuit is the same. 

Current in the Branches of a Parallel Circuit. The current, 
which splits into two parts at point A, must add up to the original 
value at point B. This is true even with 5 or 10 resistors in parallel. 
Thus the rule: The total current fiowing in and out of the source 
must be equal to the sum of the currents in the branches. 

Of course, the individual current flowing in any one branch 
is determined by the voltage across that branch and the resistance 
of the branch. A simple example will help clarify these points. 
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Example 21. Two resistors, one of 2 ohms and the other of 8 ohms, are con­
nected in parallel. Find their joint resistance, the voltage drop across each 
resistor, and the current in each resistor. Also find the total circuit current 
if the resistors are connected across a 16-volt source. 

Solution. The joint resistance may be found by applying Equation 10. 

2 X 8 16 
R,otal = 2+8 = 10 = 1.6 ohms 

The voltage drop across each resistor is 16 volts by the rule given earlier. 
The total current is found by applying Ohm's Law to the joint resistance: 

IT = E/R = 16/1.6 = JO amperes 

The current in the 2-ohm resistor: 

I = E/R = 16/2 = 8 amperes 

Likewise, the current in the 8-ohm resistor: 

I = E/R = 16/8 = 2 amperes 

Note that the individual currents add up to the total current, which is in 
accordance with the rule previously given. 

Example 22: If resistors of 5, 3, and 15 ohms are connected in parallel, what 
is the total resistance? 

Solution. Use Equation I 1. 

1/R = 1/5 + 1/3 + 1/15 

Converting each fraction to one having 15 as the denominator: 

1/R = 3/15 + 5/15 + 1/15 

Adding the fractions: 

1/R = 9/15 

Inverting both sides: 

R = 15/9 = 1.67 ohms 

Utilizing what has been said of the characteristics of a parallel 
circuit, another method may be used to calculate the total resist­
ance of a group of resistors connected in parallel. This alternate 
method begins by assuming a voltage impressed across the terminals 
of the resistor group. Any value that is convenient for easy calcu­
lations will do. In order, the currents in each branch of the re­
sistors are computed. The sums obtained are added to give the 
total current. Using Ohm's Law, 

E assumed 
Rtotal = 

!total 
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This method may be illustrated by using the values of Example 22 
and solving by the alternate method. 

Altemate Solution. Assume a voltage of 15 volts. (It is emphasized that this 
election is arbitrary.) 

IRS ohms = 

IR8 ohms = 

Iain: ohms = 

E assumed 

5 ohms 

15 = 5 = 3 amperes 

E assumed 15 
= -

3 
= 5 amperes 

3 ohms 

E assumed 15 
-

15 
= l ampere 

15 ohms 

IT = 3 + 5 + l = 9 amperes 

E assumed 15 
RT = ----- = - = 1.67 ohms 

IT 9 

(This method is particularly useful when the resistance values 
are awkward.) 

Example 23. Draw a simple schematic diagram showing the method of con­
necting three resistors of equal value so that the total resistance will be 
one-third of one unit. 

Fig. 15. Circuit for Example 
23. 

Solution. The joint resistance of any number of equal resistors in parallel may 
be determined by dividing the resistance of one of the components by the 
number of resistors in the circuit. Thus, for this problem, the correct 
hookup (Fig. 15) is a simple parallel one. 

Example 24. If two voltmeters are connected in parallel, how may the total 
voltage drop across both instruments be determined? 

Solution. Because the drop across parallel branches is equal for each branch, 
each of two parallel voltmeters will read the voltage across both instruments. 
Both meters should therefore have exactly the same reading (if they are 
accurate). 

Example 25. If two ammeters are connected in parallel, how may the total 
current through the two meters be determined? 
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Solution. The ammeters make up the branches of a parallel circuit, so that 
the total current must be equal to the sum of the two individual meter 
readings. Simply add the readings of the two meters. 

17. Serles-Parallel Combinations 

Definition. A circuit is said to be series-parallel, when it con­
tains at least one series and one parallel circuit inter-connected 
as part of the same network. Figure 16 shows a typical series-

I 
L 

--------------111-----------
Fig. 16. A series-parallel circuit. 

parallel circuit. RI and R2 form the branches of a parallel cir­
cuit. R3 and R4 are in series with each other and with the parallel 
combination. 

Handling Series-Parallel Problems. Solving problems of this 
nature requires separate handling of the series portions and the 
parallel portions, as far as possible. Each problem must be viewed 
as a whole and then broken down into component parts before 
attempting the solution. Some examples will help to get you started. 

Example 26. Draw a simple schematic diagram showing the method of con-
necting three resistors of equal value so that the total resistance will be 
two-thirds of one unit. 

Solution. The correct drawing appears in Fig. 17. Before referring to the 
solution, try to solve this problem by trying various connections and finding 
the total resistance of each of them. It cannot be a simple series circuit 
because here the resistance would be three times the value of one unit; it 
cannot be a simple parallel connection because this would have a total resist­
ance of one-third the value of one unit. Hence, it must be a series-parallel 
combination because the required resistance falls between the largest value 
(series) and the smallest value (parallel) of total resistance. 
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BRANCH I: R+R• 2R 

BRANCH I S2: RTQTAL • ~~~~ • ¾R 

Fig. 17. Circuit for Example 26. 

Example 27, Draw a simple schematic diagram showing the method of con­
necting three resistors of equal value so that the total resistance will be 
l½ times the resistance of one unit. 

Solution, See Fig. 18. 

Fig. 18. Circuit for Example 
27. 

R 

R 

RroTAL • .B.. + R• 3R • ll/2R 
2 2 

Example 28, Two resistors of 18 and 15 ohms are connected in parallel; a 
36-ohm resistor is connected in series with this combination and a 22-ohm re­
sistor is connected in parallel with this entire combination. If the total 
current flowing through the combination is 5 amperes, what is the current 
flow in the 15-ohm resistor? 

18 OHMS 

15 OHMS 

22 OHMS 

I• 5 AMPS 

Fig. 19. Circuit for Example 28. 

Solution, In slightly more complex problems of this sort, it is almost mandatory 
that the circuit diagram (Fig. 19) be drawn and studied before a solution 
is attempted. 
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l. Find the joint resistance of the entire upper branch: 

RI X R2 15 X 18 
R = ---- = --- = 8.18 ohms 

RI + R2 15 + 18 

To this add 36 ohms, obtaining 44.18 ohms. 
2. Find the total resistance of the two big branches considered together. 

44.18 X 22 
R = ---- = 14.69 ohms 

44.18 + 22 

3. Knowing that the total current is 5 amperes, and the total resistance 
14.69 ohms, we can find the impressed voltage across the entire combination. 

E = IR = 5 X 14.69 = 73.4 volts 

4. Now that the total voltage is known, we can find the current flowing in 
the upper branch only: 

I = E/R = 73.4/44.18 = 1.66 amperes 

5. This current is divided between the 18-ohm and the 15-ohm resistance. 
To find the current in the 15-ohm resistance only, first find the voltage 
drop from A to B in Fig. 19: 

E.rn = IR = 1.66 X 8.18 = 13.58 volts 

6. Finally, the current in the 15-ohm resistor 

I = E/R = 13.58/15 = 0.905 ampere 

18. Rheostats and Voltage Dividers 

The Difference Between Rheostats and Voltage Dividers. A 
rheostat is a simple variable series resistor. It is symbolized by 
the characteristic zigzag line with an arrow through it. A voltage 
divider may be either a variable resistor or a group of fixed re­
sistors connected across a source of potential and tapped to provide 
lower voltages than the source. Figure 20 clarifies this distinction. 

VOLTAGE DIVIDER 

Fig. 20. Rheostat and voltage divider. 
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The Operation of the Voltage Divider. A rheostat, because 
it is a simple series resistor, is handled in the same manner as a 
series resistor in problems and computations. A voltage divider, 
however, must be treated in a somewhat different manner. 

Example 29. Suppose that a voltage divider is set up as shown in Fig. 21. It 
consists of three fixed resistors connected across a 90-volt source. The load 
to be operated may be connected across A and D, A and B, B and C, and 
C and D. Assuming that the load draws a negligible current, what voltages 
are available? 

Fig. 21. Circuit for 
Example 29. 

..-----·-E1------+i+---- E2----~---- E3-----.. 
I I I I 

Al 10 OHMS 1
8 20.oHMS :c so OHMS ! 

0 

' 
, 

90 VOLTS 

Solytlon. Consider first the voltage between A and B, El. The resistance be• 
tween these points is IO ohms, which is 1/9 of the total resistance. Hence, 
the voltage drop from A to B is 1/9 of the impressed voltage, or IO volts. 
Using the same reasoning, E2 must be 20 volts and E3, 60 volts. Thus, a 
single voltage source may be used to provide a choice of four different 
voltages: 90 volts, 60 volts, 20 volts, and JO volts. 

Uses of Voltage Dividers. Voltage dividers are found in many 
circuits in radio and television receivers and transmitters. Some of 
the more important applications are volume and tone controls, 
power supply networks, and electrode supply networks for vacuum 
tubes. 

19. Meters for Measuring Voltage, Current, and Resistance 

General Construction. Meters used for measurement of volt­
age, current, and resistance almost always utilize magnetic prin­
ciples in their operation. The D'Arsonval type of movement con­
sists of a moving coil wound with fine wire suspended between a 
pair of permanent magnets. The indicating needle is secured to 
the coil, so that it swings across the dial face when current flowing 
through the coil causes it to rotate on its pivots. The movement 
is designed to make the number of degrees of rotation proportional 
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TABLE 3 

Current Basic unit is the ampere (amp or A) 
Milliampere (ma) ..... 1/1000 ampere .......... . 
Microampere ~µa) . .l/1,000,000 ampere ..... . 

Voltage Basic unit is the volt (v) 
Millivolt (mv) ........... .1/1000 volt ..... . 
Microvolt (µv) ............ 1/1,000,000 volt .. 
Kilovolt (kv) .............. 1000 volts 
Megavolt (Mv) .......... 1,000,000 volts 

Resistance Basic unit is the ohm (Q) 
Kilohm (KQ) ............ 1000 ohms 
Megohm (MQ) ......... .1,000,000 ohms 

General Prefixes 
Micro-micro (µµ) ..... .One trillionth ..... . 
Micro (µ) .... One millionth .... . 
Milli (m) ....... . .One thousandth 
Kilo (k) ..... . ....... One thousand .. . 
Mega (M) .... . .. One million ................ . 

(10-3 ampere) 
(10-6 ampere) 

(103- v) 
(10-6 v) 

(103 v) 
(106 v) 

.... (103 Q) 
(106 Q) 

. ..... (10-12) 
(10-6) 
(10-3) 

(103) 
(106) 

to the strength of the current in the coil. The sensitivity of this 
movement can be very high; a common type of meter found in 
radio repair shops will give a full-scale deflection for a coil current 
of only 0.00005 ampere. It might be added at this point that the 
normal D'Arsonval coil will burn out quickly if the current is 
higher than that for which it is designed. For this reason, a great 
deal of care must be exercised in using these instruments. 

Units and Prefixes. A thorough understanding of the opera­
tion and connections of meters must be preceded by definitions of 
the common units of measure and their subdivisions. These are 
given in Table 3. 

Voltmeters. A voltmeter is a galvanometer that has an inter­
nal series resistance, usually high in value. (A galvanometer is the 
general name for any instrument that detects the presence of elec­
tric current.) Generally, a D'Arsonval movement is used in series 
with a resistor (called a multiplier) that limits the flow of current 
through the coil to a safe value. A voltmeter is always connected 
in parallel with the points across which the potential is to be 
measured. Because of its series resistor, a voltmeter connected in 
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series with the load would cut the current in the load circuit down 
to a very small value, seriously affecting operation and giving a 
meaningless reading. Figure 22 shows the proper connection of a 
voltmeter for measuring the voltage drop across a load. 

Remember that the D'Arsonval coil swings through an arc that 
is proportional to the current through the coil. In a voltmeter the 
current through the coil is proportional to the voltage applied be-

fig. 22. Connection of a 
voltmeter. 

LOAD 

----,A 

____ _.B 

VOLTMETER 

SERIES RESISTANCE 

tween points A and B in Fig. 22, and hence the deflection of the 
coil is proportional to the voltage. 

A simple problem will show how to compute the value of a 
multiplier for use in converting a D'Arsonval galvanometer to a 
voltmeter. 

Example 30, Suppose that a meter movement is available that gives a full­
scale deflection when one milliampere flows through the coil. Suppose fur­
ther that it is desired to convert this movement to a voltmeter that will have 
a full-scale deflection when 1000 volts is applied across it. What must be 
the value of the multiplier? 

Solution. We know that the full-scale coil current is I = 0.001 ampere (con­
verting from ma) . Assume that the coil has zero resistance (this of course 
is not strictly true, however the resistance will be so small as to be insigni­
ficant) . By Ohm's Law the resistance required in series with the movement 
to permit 0.001 ampere to flow with 1000 volts applied is 

R = E/1 = 1000/0.001 = 1,000,000 ohms 

Because the meter is linear, 500 volts will give half-scale deflection, 250 volts 
will give quarter-scale, 125 volts will give eighth-scale, and so on. 
The dial may thus be calibrated in evenly spaced divisions. A I-ma full­
scale deflection meter when used as a voltmeter is said to have a sensitivity 
of 1000 ohms per volt, because 1000 ohms of series resistance is required 
for each volt that is to be measured. 
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Additional Voltmeter Problems. Let us look into some fur­
ther examples of multiplier problems. 

Example 31, If a 0-1 d-c milliammeter is to be converted into a voltmeter 
with a full-scale deflection of I 00 volts, what value of multiplier resistor 
should be connected in series with the milliammeter? (Assume that the coil 
resistance is negligible.) 

Solution. A 0-1 d-c milliammeter is a movement that gives mil-scale deflection 
when 0.001 ampere flows through the coil. The series resistor or multiplier 
may be found from 

R = E/1 = 100/0.001 = 100,000 ohms 

Example 32. What is the sensitivity, in ohms per volt, of a meter movement 
giving full-scale deflection for a coil current of 50 microamperes? 

Solution. The coil current on full-scale is 0.00005 ampere. Find the resistance 
necessary to limit the current to this value with I volt applied. 

R = E/1 = 1/0.00005 = 20,000 ohms 

Because a multiplier of 20,000 ohms must be used for each volt of applied 
potential, the meter is said to have a sensitivity of 20,000 ohms per volt. 

Ammeters and Milliammeters. These instruments measure 
current strength (I). The requirement is that they "count" the 
number of coulombs per second passing through the circuit. To 

I• I MA 

------11------
10 VOLTS 

Fig. 23. Connection of an 
unmodified 0-1 milliammeter. 

do this, they must be connected in series with the load, thus making 
it impossible to use a series resistor, which would impair the oper­
ation of the circuit. (Anything inserted in the line must have a 
very low resistance, if it is not to affect the circuit operation.) 

In a circuit in which the current never gets larger than 1 ma, 
one could use a galvanometer that gives full-scale deflection for a 
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current of 1 ma (that is, a 0-1 milliammeter). Figure 23 shows a 
0-1 milliammeter connected in a circuit in which the current is 
just 1 ma. However, if the same instrument were to be used in a 
circuit in which the current is normally about 100 ma, a modifica­
tion would be required. As we have pointed out, a series multiplier 
cannot be used. To use a 0-1 milliammeter in a 100-ma circuit, a 
low parallel resistance called a shunt is connected to the meter. 

Fig. 24. The use of a shunt 
in extending the range of a 

milliammeter. 

SHUNT=? 

I•IOOMA 
~ 

....._ ____ --1,111------.....I 
10 VOLTS 

The shunt provides a parallel path of low resistance for the circuit 
current and does not alter the circuit constants at all. Figure 24 
shows a 0-1 milliammeter with its shunt connected in a circuit 
carrying 100 ma. It is important to note here that the coil resistance 
now becomes a significant factor and must be used in the calcula­
tions that determine the size of the required shunt. 

Example 33. Assume that the 0-l milliammeter shown in Fig. 24 has a coil re· 
sistance of 20 ohms, and that it is to be used in a circuit where the maximum 
current is 100 ma. What should be the resistance of the shunt? 

Solution. We can view the problem this way: The resistance of the shunt 
must permit it to carry 99 of the 100 milliamperes flowing the circuit, 
leaving only I milliampere to flow through the coil, since this is its maxi­
mum rating. This means that the resistance of the shunt must be much 
lower than that of the coil; in fact, the shunt resistance can be only l/99 
of the coil resistance, or R. = l/99 x 20 = 0.202 ohm. 

A convenient equation for solving all types of shunt problems is: 

(12) 

where I. is the shunt current, le the coil current, Re the coil re­
sistance, and R. the shunt resistance. 
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Alternate Solutioo, Solving the same problem by means of Equation 12 yields: 

99 20 
= 

cross-multiplying 
99R0 = 20 

20 
R. = 99 = 0.202 ohm 

Ammeter problems are quite easily handled after correct analy­
sis. The following example illustrates the procedure. 

Example 34. A milliammeter with a full-scale deflection of l ma and a coil 
resistance of 25 ohms was used to measure an unknown current by shunting 
the meter with a 4-ohm resistor. It then read 0.4 ma. What was the un­
known current value? 

Solution. Find first what the current in the shunt would be if full-scale meter 
current was flowing (i.e., I ma in the meter coil) . Use Equation 12. 

I, 25 -- = --
4 

25 
I. = 4 = 6.25 ma 

But the current in the coil is only 0.4 ma; hence, the current in the shunt 
really is: 

I. = 0.4 X 6.25 = 2.5 ma 

Hence, the total current in the circuit is the sum of the coil and shunt 
currents or: 

I = 2.5 + 0.4 = 2.9 ma 

Example 35. What should be the resistance of the shunt that will permit a 
0-100 milliammeter to be used in a circuit where the maximum current is 
expected to reach I ampere? The coil resistance is 80 ohms. 

Solution. Use Equation 12. 100 ma = 0.1 ampere. Thus, the meter coil may 
carry 0.1 ampere and the shunt will have to carry 0.9 ampere for a total 
of l ampere. Hence, 

0.9 80 

0.1 R. 

0.1 
R. = 80 X -- = 8.9 ohms 

0.9 

Example 36, If two ammeters, connected in series in the same circuit read 
5 amperes each, what is the total current flowing in the circuit? 

Solution, Since the current in a series circuit is everywhere the same, the 
total current is the reading of either ammeter, or 5 amperes. 

20. Power and Power Dissipation 

The Heating Effect of Electricity. In passing through the re­
sistance of a conductor, the electric current generates heat. The 
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actual amount of heat generated each second is proportional to the 
resistance in ohms and to the square of the current in amperes. In 
its simplest form, the equation for the rate of heating produced is 

H = J2R (13) 

In this form, the heat units are express, d in joules per second 
(watts) . If it is desired to express the heat in calories per second, 
the equation becomes 

H = 0.239 J2R calories/second (14) 

The rate at which heat is produced, measured in terms of watts, 
is of great interest in electrical work. The watt is the unit of 
power used in electricity and is the power dissipated in a resistive 
circuit carrying I ampere under a potential difference of I volt. 

Electrical Power. According to the statement given above, 
the power (in watts) dissipated in any circuit is the product of 
the voltage drop (in volts) and the current (in amperes) or: 

P = EI (15) 

If, for example, the voltage drop across a resistor is IO volts 
and the resistor is carrying 0.5 ampere, the power dissipation in 
the resistor is 5 watts. 

Ohm's Law may be applied to Equation 15, and two other 
forms derived from it. Both these forms are valuable and should 
become part of the radioman's stock-in-trade. 

P = EI 

but since I = E/R, P = E X E/R, 

P = E2/R 

and, since E = IR, P = IR X I, 

p = J2R 

(16) 

(17) 

For example, the power dissipation (in watts) of a resistor 
of 20 ohms having a current of 0.25 ampere passing through it may 
be found from Equation 17. 

P = J2R = 1/16 X 20 = 1.25 watts 

Power and EnerfsY. The word "energy" as used scientifically 
is similar in meaning to the word "work." Energy is sometimes 
defined as the capacity to do work. Actually, the work done by 
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any ideal machine or device is the same as the energy used in the 
process and is measured in the same physical units. Power, on the 
other hand, is the rate of doing work or the rate at which energy 
is consumed. Thus, the power concept involves time, whereas 
energy does not. 

Electrical power has the same basic meaning as mechanical 
power, and may also be measured in horsepower. One may be 
converted to the other by the relationship: 

1 horsepower = 746 watts 

Thus, a "quarter-horse" (¼ •horsepower) electric motor uses 
energy at the rate of about 186 watts. 

Measurement of D-C Power. The power dissipated in a re­
sistor carrying de is easily measured by means of a correctly con­
nected ammeter and voltmeter as shown in Fig. 25. 

The power in watts is found by multiplying the voltmeter 
reading by the ammeter reading. A single instrument that measures 
power directly in watts is called a wattmeter. 

Power Dissipation in Resistors. An important application of 
power calculations is the determination of resistor sizes for specific 
circuits. These determinations are easily made by applying Equa­
tion 15, 16, or 17, as is evident in the solutions of the following 
problems. 

Exa.mple 37. What should be the mm1mum power dissipation rating of a 
resistor of 20,000 ohms to be connected across a potential of 500 volts? 

Solution. Apply Equation 16. 

P = E2R = 250,000/20,000 = 12.5 watts 

This is the actual power dissipation of the resistor. In practice it is neces­
sary to have a safety factor of possibly 100% to avoid overheating. Doubling 
12.5 watts gives this safety factor of 100%, therefore, a recommended power 
rating would be 25 watts. 

Example 38. What is the maximum rated current-carrying capacity of a re­
sistor marked "5,000 ohms, 200 watts"? 

Salution. Applying Equation I 7, 

P = l2R, 

I=/{ 
I= /200 = 0.2 ampere Ysooo 
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Example 39. If the value of a resistance to which a constant emf is applied 
is halved, what will be the resultant proportional power dissipation? 

Solution. Applying Equation 16, 

P1 = E2/R 

P, = E2/ (R/2) 

= 2E2/R 

P2 = 2P1 

Thus, if the resistance is halved with constant emf, the power dissipation 
will be doubled. 

Power Dissipation in Parallel and Series Resistances. As a 
general rule, it is safe to assume that the power dissipation capa­
bility of several resistors, used either in series or parallel, is the 

Fig. 25. Ammeter and volt­
meter connections for power 

measurements. 

AMMETER 

VOLTMETER P = Ex I 

....._ ______ ,111---------' 

sum of the ratings of the component resistors, provided they all 
have the same rating. For instance, two resistors rated 10 watts 
each, are capable of dissipating 20 watts when used together in 
series or parallel. Series or parallel connections are a common 
way to obtain higher power ratings, when highly-rated resistors 
are not available. 

When the resistor ratings are different, it is necessary to analyze 
the overall picture to arrive at a definite conclusion. The example 
given below illustrates the general method of handling this type 
of problem: 

Example 40. A 10,000-ohm, 100-watt resistor, a 40,000-ohm, 50-watt resistor, 
and a 5,000-ohm, IO-watt resistor, are connected in parallel. What is the 
maximum value of the total current through this combination that will not 
exceed the power rating of any of the resistors? 
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Solution. From Equation 16 we obtain: 

This relation gives the maximum voltage that can be applied across a given 
resistor of a given maximum power rating. Because the voltage drop across 
any of the parallel resistances is the same as that across the combination, 
this will give us a value for the maximum voltage that may be applied. 
Substituting the values given in the problem, we have 

1. E = ylOO x 10,000 
2. E = y50 X 40,000 
3. E = ylO X 5,000 

It is evident by inspection that the third figure gives the maximum voltage 
that can be applied across the parallel combination, because the resistor of 
lowest power rating determines the maximum safe applied voltage. Then 

E = y50,000 = 223.6 volts 

The currents in the individual resistors are, then: 
1. 223.6/10,000 amps, = 0.02236 amp = 22.36 ma 
2. 223.6/40,000 amps = 0.00559 amp = 5.59 ma 
3. 223.6/5,000 amps = 0.04472 amp = 44.72 ma 

Adding these together to get the total current, we obtain 72.67 ma. 

Additional Computations Involving Power Dissipation. The 
computations utilizing the power formulae presented in the pre­
ceding pages are useful in many practical situations in communi­
cations. Radio technicians and engineers are often concerned, for 
example, with the power radiated by an antenna system. The 
Federal Communications Commission has specified requirements 
with respect to operation of various classes of transmitters. In some 
situations, a commercial station that operates at one power level 
during the day must reduce the level during nighttime operation. 
The steps that we have covered are useful in these computations 
as shown in the following examples. 

Example 41. The daytime transmission-line current of a IO-kilowatt trans­
mitter is 10 amperes. The transmitter is required to reduce to 2.5-kilowatt 
operation during evening hours. What is the value of transmission-line 
current during the night? 

Solution. P4., = l 4 • 12R, P••••• = 1., •• ,2R 

P4., = 10 kw, P.,,., = 2.5 kw, 14., = 10 amperes 

p••• - ~ = 
P.,,., - 2.5 

41.,,.,2 = 100 

1., •• ,2 = 25 

4 

1.,,., = 5 amperes 

1 •• ,2R 

1.,,.,2R = 
lOOR 

1., •• ,2R 
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Example 42. If the daytime input power to a certain broadcast station antenna 
having a resistance of 15 ohms is 1500 watts, what would be the nighttime 
input power if the antenna current were cut in half? 

Solution. The power formula may be used to determine the current at the 
1500-watt level. Then, one-half of this current value will be used to deter­
mine the new power. Thus, 

ff moo _/iM I= YT= y
15 

= ylOO = IO amperes 

The new power is calculated at one-half this current value, or 5 amperes. 

P = 12R = 52 x 15 = 25 X 15 = 375 watts 

Example 43. What is the antenna current when a transmitter is delivering 
l kilowatt into an antenna having a resistance of 20 ohms? 

Solution. I = "fy = ~ = y50 = 7.07 amperes 

Example 44. The d-c input to the final stage of a transmitter is exactly 
800 ma at 2500 volts. The antenna resistance is 16.4 ohms, and the antenna 
current is 9 amperes. If the plate efficiency equals output power divided 
by input power, compute the plate efficiency of the final amplifier. 

Solution. The input power is P ,. = EI = 2500 X 0.8 = 2000 watts 
The output power is Pout = 12R = 92 X 16.4 = 1328.4 watts 

l ffi 
. Pout 

P ate e c1ency = -­
P ,. 

1328.4 = --- = 0.6642 OT 66.42% 
2000 

Example 45. The ammeter at the base of a Marconi antenna has a certain 
reading. If this reading is increased 2.5 times, what is the increase in out­
put power? 

Solution. Since P = I2R, the power varies as the square of the current. Thus, 
an increase in current of 2.5 times results in a power increase to 2.52 or 
6.25 times the original power. 

Example 46. A long transmission line delivers IO kilowatts into an antenna. 
At the transmitter end, the line current is IO amperes. At the coupling 
house, the current is 9.8 amperes. Assume the losses in the coupling system 
to be negligible and the line properly to be terminated, so that the line 
resistance equals the antenna resistance. Compute the power lost in the line. 

Solution. Applying the suitable power formula: 

P 10,000 . . 
R = -- = --- = 104.12 ohms lme resistance 

12 (9.8) 2 

The power at the input to the line is: 

P,. = I2R = 102 X 104.12 = 10,412 watts 

The power lost in the line is equal to the power in minus power out. 

P,n - Pout = I0,412 - 10,000 = 412 watts 
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Example 47, The power input to a 72-ohm concentric line is I kilowatt. What 
is the current flowing in the line? 

Solution. I= fy =/SW= y13.88= 3.73 amperes 

21. Review Questions 

(1) What is meant by the terms series circuit, parallel circuit, and combina­
tion circuit? 

(2) Three resistors of 10, 5, and 7.5 ohms, respectively, are connected in series. 
What is the total resistance of the combination? 

(3) The three resistors of Question 2 are connected in series across a 45-volt 
battery. What is the voltage drop across the 5-ohm resistor? 

(4) A vacuum tube has a filament rated at 0.15 ampere and 3 volts is to be 
operated from a 6-volt battery. What is the value of series resistor that 
must be added to ensure proper operation? 

(5) Give three variations of the equation expressing power dissipation in a 
d-c circuit in terms of E, I, and/or R. 

(6) What should be the minimum power dissipation rating of a resistor of 
10,000 ohms to be connected across a potential of 250 volts? 

(7) What is the maximum rated current-carrying capacity of a resistor marked 
2000 ohms, 10 watts? 

(8) A 50-ohm resistor is connected in series with a parallel combination made 
of a 25-ohm resistor and a IO-ohm resistor. The entire combination is 
connected across a 45-volt battery. What is the power dissipation in the 
IO-ohm resistor? 

(9) A milliammeter with a full-scale deflection of I ma and a resistance of 
15 ohms was used to measure an unknown current by shunting the meter 
with a 3-ohm resistor. The meter then read 0.8 ma. What is the unknown 
current value? 

(10) Give the equation for solution of shunt problems involving meters. 
(11) A resistor of 250,000 ohms is connected in parallel with one of 500,000 

ohms. Compute the resistance of the combination. 
(12) What is the power rating of the following resistors: (a) a ½-megohm 

resistor that can carry 5 ma; (b) a 500-ohm resistor that can carry 0.2 
ampere; (c) a 25,000-ohm resistor that can carry 10 ma. 

(13) Calculate the current rating for each of the resistors given: (a) ¼-watt, 
I-megohm resistor; (b) a IO-watt, 1000-ohm resistor; (c) a ½-watt, 
250,000-ohm resistor. 

(14) Find the equivalent resistance of three resistors of 10, 44, and 28 ohms, 
respectively, connected in parallel. Assume that 12 volts is applied to the 
combination, and determine the current through each resistor, the power 
dissipated in each resistor, and the total current in the circuit. 

(15) 250 ma flow in a given circuit with an applied potential of 50 volts. What 
is the resistance of the circuit? 
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(16) Determine the voltages between each tap and the negative terminal in 
the following circuit. 

(17) Three resistors of 60,000 ohms, 15,000 ohms, and 8,000 ohms, respectively, 
arc available. A value of 20,000 ohms is desired. Diagram the method 
of connection. 

(18) A device has a coil wound with wire that will be destroyed if more than 
14 amperes are passed through it. The wire has a resistance of 0.025 ohm. 
What is the highest potential that can be placed across the coil without 
destroying it? 

(19) A microammeter reads 15 microamperes full scale and has an internal 
resistance of 140 ohms. Calculate (a) the voltage required for full-scale 
deflection and (b) the value of shunt resistance needed to make it pos· 
sible to measure 150 ma? 

25011. 
5011. 

A o----_,,., 

50011. 
600.!l. 30011. 

B 

(20) Compute the effective resistance between A and B in the diagram. If a 
potential of 120 volts were applied between A and B, what current would 
flow? 



Chapter 4 

ANALYSIS OF COMBINATION D-C CIRCUITS 

22. Circuit Charaderistics 

In our previous discussions, we have touched upon three basic 
methods of connecting a group .of electrical components. These 
were, respectively, series circuits (consisting of two or more resis­
tors connected end to end so that current must pass through one 
component to reach the beginning of the next), parallel circuits 
(consisting of two or more resistors connected side by side so that 
the current has several paths at one terminal and recombines at 
the opposite terminal), and combination circuits (consisting of 
either series-parallel circuits or parallel-series groupings, or both) . 
Because complex communications circuits are often made up of 
simple combinations, it is important to specify and summarize 
the characteristics of each of these basic types. Ohm's Law applies 
to complicated circuits as well as to simple ones, and to each part 
of a circuit as well as to the whole. The simple circuit problems 
that we have presented thus far, permit us to make the generali­
zations given in Table 4. 

Table 4 permits us to set up the procedures necessary to solve 
the more complicated combination circuits. The steps that follow 
should generally be performed in the order indicated. 

(1) Analyze the basic circuit diagram and determine the par­
allel groups (including parallel groups that contain series ele­
ments) . If necessary, redraw the circuit to indicate these groups 

46 
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TABLE 4 

SUMMARY OF CHARACTERISTICS OF D-C CIRCUITS 

Factor 

I. Applied 
Voltage 
(Unit is the 

volt.) 

2. Resistance 
(Unit is the 
ohm.) 

3. Conductance 
(Unit is the 

mho.) 

4. Current 
(Unit is the 

ampere.) 

5. Power 
(Unit is the 

watt.) 

Series 
Circuit 

Parallel 
Circuit 

The voltage drop The voltage drop 
across a series com- across a parallel 
bination eqµals the branch combination 
sum of the separate is the same across 
voltage drops. each branch. 

The resistance of The resistance of a 
a series circuit is parallel combination 
equal to the sum equals the reciprocal 
of the individual of the sum of the re­
resistances compris- ciprocals of the re­
ing the circuit. R = sistances making up 
RI + R2 + R3 . . . the parallel branches. 

The total resistance 
is less than the re­
sistance of the small­
est branch. 

R=-------

Not normally used G = GI + G2 + 
for series circuit G3 + . . . may be 
calculations. used in lieu of the 

resistance formula. 

Current in the ser- The current in a par­
ies circuit is the allel circuit equals 
same in all parts of the sum of the cur­
the circuit. rents in each branch 

of the parallel cir­
cuit. 

Total expended Same as series circuit; 
power is equal to expended power is 
the sum of the equal to the sum of 
power dissipated by the power dissipated 
the individual re- by the individual re-
sistors. sistors. 
P = Pl + P2 + P3 P = Pl + P2 + P3 

Combination 
Circuits 

Rules applying to 
series circuits apply 
to the series por­
tions and rules ap­
plying to parallel 
circuits apply to the 
parallel portions. 
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R3 

R6 

R7 

R5 

R3 R4 

R2 

R5 

R6 

R8 R7 

R4 

(A) 

(B) 

Fig. 26. Regrouping of complex combination circuit with single d-c source, for 
solution of the problem. 

clearly. (Figure 26 shows how one such section might be redrawn 
to reduce an apparently complex combination to conventional 
form.) 

(2) Calculate the resistance values for each group to obtain 
a single equivalent value of resistance. The reduction of a group 
of resistors might involve several steps. Figure 26A shows the 
group as a technician working on a communications device might 
sketch the circuit. Figure 26A shows how the circuit may be re­
drawn to reflect the arrangement of the resistors more clearly. 

(3) Once the combination circuit is clearly delineated, the 
circuit should be reduced step by step in logical order. Let us 
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RI 
240J1. 

R2 
3 .n. 

R3 + R4 
20 J1. 

RS 
s .n. 

R6 
4 2 .n. 

---------J'-.l'V'v--------• 

R2 
3 .n. 

RI 
240 .n. 

RB 
44 .Cl. 

R3 + R4 + RS 
4 .n. 

R6 
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(B) 

R2 + R3 + R4 +R5 +R6 
6 J1. 

( D) 

RI 
240,!l. 

R7 
30J1. 

R2+R3+R4+R5 
7 n 

(A) 

( C) 

R2+R3+ 
R4+R5+ 
R6+R7+ 
RB 80ft 

E R 
120V 60Sl. 

( E) ( F) 

Fig. 27. Reduction of complex combinotion circuit Fig. 26 for solution of the 
problem. 

assume that the applied voltage and the values of each resistor in 
Fig. 26 are known, and that the total line current, the voltages 
across each resistor, and the current through each resistor are to 
be determined. The required reduction steps are shown in Fig. 27. 

(4) After the appropriate equivalent values are determined, 
Ohm's Law may be applied to complete the analysis. The separa-
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tion of the combination circuits into small parts allows easy com­
putation of the current, voltage, and resistance distribution. It is 
important to remember that Ohm's Law may be applied to any part 
of a d-c circuit using the values of the voltage across that part of 
the circuit, its resistance, and the current through it. 

Example 48. The procedures are illustrated more fully by assigning values 
to the problems of Fig. 26 and checking the actual calculations. Assume 
RI = 240 ohms, R2 = 3 ohms, R3 = 15 ohms, R4 = 5 ohms, R5 = 
5 ohms, R6 = 42 ohms, R7 = 30 ohms, RS = 44 ohms; applied voltage = 
120 volts. (Simple values have been assigned to allow the steps to be fol­
lowed easily.) Find the total current drawn by the network, the current 
through R2 and the voltage drop across R2. 

Solution. Following the steps of Fig. 27: 
Step A: The equivalent resistance of R3 and R4 is 15 + 5 = 20 ohms. 
Step B: This resistance is in parallel with R5, so the equivalent resistance 
of R3, R4, and R5 is 

20 X 5 

20 + 5 

100 -- = 4 ohms 
25 

Step C: Combining the above with R2: 4 + 3 = 7 ohms 
Step D: Since the equivalent resistance of R2, R3, R4, and R5 is in 
parallel with R6, the equivalent resistance of the combination is: 

7 X 42 294 --- = -- = 6 ohms 
7 + 42 49 

Step E: Combining the equivalent resistance R2, R3, R4, R5, and R6 
with R7 and RS (in series with it) : 6 + 30 + 44 = 80 ohms 

Step F: The 80-ohm equivalent resistance and RI are in parallel, and 
the total equivalence resistance may now be computed as: 

80 X 240 19,200 ---- = --- = 60 ohms 
80 + 240 320 

Step G: By Ohm's Law: 

E 
l=­

R 

120 = 00 = 2 amperes 

The following additional steps are required to find the current in, and 
the voltage drop across, R2. Note that we must retrace our steps. 
Step H: E is applied to the parallel combination of RI and R2-8 

120 
1112--8 = 80 = 1.5 ampere 

Step I: The equivalent R2-6 is 6 ohms 
The voltage across this combination is: 

E,.._. = IR = 1.5 X 6 = 9.0 volts 
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Step J: 
E 9 

IR• = - = - = 0.214 ampere 
R6 42 

Step K: The voltage across the R2-5 combination must be 9 volts also. 

9 
Therefore, IR._. = 7 = 1.286 ampere 

Step L: Referring to Fig. 27B 

I,.. = 1.286 ampere 

E,.. = l.286 x 3 = 3.858 volts 

23. Algebraic Signs for Voltages and Current 

As the study of electricity proceeds from fundamental series 
and parallel circuits to those of greater complexity, involving net­
works of resistance and more than one source of emf, Ohm's Law 
must be amplified and extended. This extension was accomplished 
by two electrical laws credited to Gustav Robert Kirchhoff (1824-
1887). Before stating these laws, however, it is essential to under­
stand how algebraic signs (+ and -) are applied to emfs and 
currents. 

An algebraic sign in electricity generally indicates a direction. 
Since all directions are arbitrarily chosen relative to a conventional 
reference direction, the first step in the procedure is to establish 
the required reference. 

Reference 1: The direction of an electric current is always 
taken from the more negative to the less negative point. This is 
not a new idea; it is merely a restatement of the fact that electricity 
flows from minus to plus. 

Reference 2: When a current flows toward a given point, it 
is assigned a plus sign; when it flows away from the same point, 
it is assigned a minus sign. Thus, in Fig. 28, the current is shown 
as flowing from the negative side of the battery, through the re­
sistors of the circmt, and back to the positive side of the battery 
(Reference 1). In addition, the current approaching point A is 
assigned a plus sign while the same value of current leaving point 
A is given a minus sign (Reference 2). 

Reference 3: The voltage drop across a resistor is identified 
as negative (-) voltage because it subtracts from the total circuit 
voltage. In the example of Fig. 28, the voltage drops across the 
resistors are 20 volts and 80 volts, respectively. For the purpose 
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of tracing current around the circuit, they are identified by minus 
signs. For all other purposes, these signs may be omitted; in ap-

20 .!l. 
-20 VOLTS 

+I 0 
BO.IL 

-BO VOLTS 

-I 

..... --------11111-+ ______ _. 

100 VOLTS 

Fig. 28. Algebraic signs for 
valtages and currents . 

plying Ohm's Law, for instance, there is no need for the assign­
ment of algebraic signs. 

Reference 4: In tracing the path of a current around a cir­
cuit, each time a source of voltage that aids the current fiow is 
encountered, this source is assigned a plus sign; if the source op­
poses the current fiow, it is assigned a minus sign. Consider the 
example shown in Fig. 29. 

Any point in the circuit may be chosen as start of the path; 
using point A and proceeding around the circuit in the direction 
of the current flow, the emf's and voltage drops are as follows (the 
circuit current is designated as I) : 

Starting from A: - IR1 + E2 - IR2 - Ea + E 1 

Note that E1 and E2 are designated as positive emf's, because 
they aid the flow of current, whereas Ea is negative because it 
opposes the flow of current. 

24. Kirchhoff's First law 

Kirchhoff's first law is not really unfamiliar at this point. 
Without having made an explicit statement of it, the law has been 
implied throughout the foregoing work on parallel circuits. 

The algebraic sum of the currents at any junction of 
conductors is zero. 
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RI E2 

v-------+ .... ,1t-----------, 

R2 

l 
-

_r ___ l r= E3 

-------1,1 + -

0 
E1 

Fig. 29. Algebraic signs assigned to emf's and voltage drops. 

Stated in other words, there is as much current flowing toward 
any given point in a circuit, as there is flowing away from the 
same point. This concept is almost self-evident; no point on a 
conductor can have a charge concentration built up upon it without 
limit, nor can more electrons flow away from a point than flow 
toward it. Either of these situations would lead to impossible 
conditions. 

Using algebraic signs, an application of Kirchhoff's first law 
to a branched circuit is shown in Fig. 30. Referring to point A 
and using the convention of algebraic current signs previously 
chosen (Reference 2) , we have: 

(18) 

This is another way of stating the long familiar idea that the 
sum of the currents in the branches of a parallel circuit is equal 
to the circuit current, because Equation 18 may be re-written as 

(19) 

Exactly the same procedure may be applied to point B in 
Fig. 30 with identical results. 12 and 13 are now approaching 
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A-----~ .,_ ______ ,.B 

..__ ______ -..... 1, .... + ______ ____. 

E 

Fig. 30. Use of Kirchhoff's first law. 

point B and are hence given plus signs; 11 is now leaving point B 
and so is considered to be minus. Thus: 

+12 + 13 - 11 = 0 

reducing to the more familiar form 

12 + 13 = 11 

(20) 

which is exactly the same as Equation 19. Numerical examples 
of the application of the first law will be presented after discussing 
Kirchhoff's second law. 

25. Kirchhoff's Second law 

The student has regularly used Kirchhoff's Second Law in 
solving simple Ohm's Law problems in series circuits. Again, this 
was not apparent as a new law, because it was applied as a self­
evident axiom: the sum of the voltage drops in a series circuit is 
equal to the source voltage. Kirchhoff's second law is: 

The algebraic sum of the emfs and voltage drops 
around any closed circuit is zero. 
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In the example of Fig. 29, using the sequence starting at point 
A, Kirchhoff's second law would give us: 

(21) 

The advantage of the second law over the simple concept that 
the sum of the voltage drops in a series circuit is equal to the source 
voltage is that it permits more than one source of emf to enter 
into the problem. Consider the following problem as an application 
of Kirchhoff's second law: 

Example 49. Calculate the current flowing in the circuit of Fig. 31. The 
internal resistance of the battery E1 is 0.6 ohm, that of E2 is 0.4 ohm, and 
that of E3 is 1.0 ohm. 

4 
.n E3 = 20 VOLTS 

v---------11111, ..... + ___ _ 

+ 
10..(l .:,. E2 • 8 VOLTS 

...._ __ -t+ ,1111------""Jv-----
E 1 • 12 VOLTS SA 

fig. 31. Circuit for Example 49. 

Solution. The internal resistances behave as series components so that the 
circuit should be redrawn to show these resistances as part of the circuit, 
as shown in Fig. 32. 
Batteries E, and Ea are acting in the same direction and together produce 
an emf of 32 volts counterclockwise; source E2 has a potential of 8 volts 
clockwise. Thus, the differential emf is 24 volts counterclockwise and the 
current may therefore be assumed to flow in that direction. In more com­
plex networks, it may not be possible to predict the direction of the current 
in this easy manner. This makes no difference, however, because an incor­
rect assumption merely results in a minus answer for the current. The 
negative sign for the current indicates that the assumed direction was not 
the right one; however, the numerical answer is not affected by the improper 
choice of direction. 
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I 

__ + 11111------+"~----,l'V'----~ 
A E1 • 12V 0.6 .Q. 

I 

I 

0.4.n. 

Fig. 32. Circuit for Example 49 redrawn to include the internal resistances of 
the batteries. (They are indicated by the circled resistor symbols.) 

Starting at point A and following the current around counterclockwise, 
the application of Kirchhoff's second Jaw provides this equation: 

+12 - 0.61 - 81 - 0.41 - 8 + 20 - II - 41 - IOI = 0 

thus 

-0.61 - 81 - 0.41 - I - 41 - IOI = -12 + 8 - 20 

changing signs 

0.61 + 81 + 0.41 + I + 41 + IOI = 12 + 20 - 8 

summing up both sides: 

(24.0) I = 24 

I = 1.0 ampere 

(22) 

Most practical problems call for the use of both the first and 
second laws in their solution, as shown in the following example. 

Example so. In the circuit of Fig. 33, the internal resistances of the two 
batteries are 5 and 10 ohms, respectively, and the load resistance is 15 ohms. 
Find the current in the load resistance, and in each branch. 

Solution. Applying the first law at point A: 

Ia - 11 - l 2 = 0 (23) 

(11 and 12 leave point A, whereas Ia approaches point A.) 
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5.n. 

r, J l r, 
0 A 

r2J 1 I2 10.n. 

I3 I f r3 

15.n. 

Fig. 33. Circuit for Example 50. 

Applying the second law for the path through the upper battery and the 
load resistor starting from point A: 

10 - 51, - 151. = 0 

51, = 10 - 151, 

11 =2-!lla (24) 

Applying the second law for the path through the lower battery and the 
load resistor starting from point A: 

25 - 101. - 151, = 0 

IOI, = 25 - 1511 

I. = 2.5 - 1.513 

Substituting Equations 24 and 25 into Equation 23: 

13 - (2 - 318) - (2.5 - 1.51a) = 0 

11 - 2 + 313 - 2.5 + 1.518 = 0 

Ia + 311 + 1.513 = 2 + 2.5 

5.51, = 4.5 

I, = 4.5/5.5 = 0.818 ampere 

(25) 

To find I,, substitute the value of 18 found in Equation 26 into Equation 24: 

11 = 2 - 3 (0.818) = 2 - 2.454 = -0.454 ampere 
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Note that this value of 11 comes out as a minus quantity, which means that 
the direction assumed for 11 at the start was incorrect. Actually, 11 approaches 
point A rather than flowing away from it. This is so, because the battery 
E. produces an emf that overrides that of E,, forcing the current to flow 
backward throu~h the upper battery. This does not alter the magnitude 
of the result, however, since 11 is equal to 0.46 ampere. 
To find 12, substitute the value found for l 3 in Equation 26 into Equation 25: 

12 = 2.5 - 1.5 X 0.818 

1. = 2.5 - 1.227 

12 = 1.273 ampere 

As a check on these two values, add the results for 11 and 12 to ascertain 
whether or not the sum is equal to 13: 

-0.454 + 1.273 = 0.819 

The value of 13 found in Equation 26 was 0.818 ampere, so our result 
checks to all but the last significant figure. 

The student is strongly urged to solve the practice problems 
in Kirchhoff's Laws given at the end of this chapter. He will find 
them to be invaluable in practical work dealing with d-c resistive 
networks of any variety. 

26. Superposition 

Our last examples with Kirchhoff's Laws developed an inter­
esting phenomenon. Frequently the current through a certain 
resistance is actuated by the combined effect of two sources of 
emf. For example, in Fig. 34, no direct application of Ohm's Law 
could be used to determine the voltage across R 3, because the two 
sources involved each contribute to the resultant current through 
(and hence voltage drop across) it. 

The application of Kirchhoff's Laws to problems of this kind 
results in cumbersome equations. An alternate method of solution 
is the application of Helmholtz' principle of superposition. A 
statement of this principle is when there are two or more sources 
in a network acting simultaneously, the response at any point in 
the network is the algebraic sum of the responses produced at this 
point, if each source was considered to act separately. The word 
response here may mean the current flowing through, or the voltage 
drop across, a resistance. 

When applying this principle, all of the sources of the current 
or voltage arc considered "dead" (replaced by a short circuit), 
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R1 r-- R2 7 10.n. 10.n. 
+ 
IOV R3 40V 

10.n. 

r + 

(A) 

R1 R2 
10.n. 10.n. 

+ , 

• 
R3 IOV 
10 .Cl.. 

( 
) DEAD VOLTAGE 

SOURCE REPLACED 

' BY A SHORT 
CIRCUIT 

(B) 

Fig. 34A and B. Circuit and solution of Example 51 by use of the principle of 
superposition (Part 1 ). 

except one. 1 The circuit is solved in terms of this one remammg 
active source. Then this source is considered dead and the circuit 
is solved in terms of the effect of another source. When the effects 
of all of the sources have been computed separately, the results 
are added algebraically. 

Example 51. In Fig. 34, find the voltage drop across R3 and the current 
through it. Also determine the power dissipated in R3. 

Salutlon, Let us first consider the 40-volt source as being dead and having 
negligible internal resistance. We will, therefore, replace it with a short 
circuit and solve in the usual way for the voltage across R3. (See Fig. 34B.) 
R2 and R3 are in parallel with each other and RI is in series with the 
combination. The resistance of R2 and R3 in parallel, R,,3 = 5 ohms. 
Hence, the resistance of the circuit, R = R1 + R,,3 = 10 + 5 = 15 ohms, 
and the current I = E/R = 10/15 = 2/3 ampere t + 
The current in R3 is ½ I, therefore, the voltage drop across it due to the 
IO-volt source is ER3 = 2/3 x ½ X 10 = 3 1/3 volts t + 
(The arrows indicate the direction of electron current or the polarity of 
the voltage across R3.) 
Now consider the IO-volt source to be dead, and solve for the drop across 
R3 using the 40-volt source, as in Fig. 34C. Here RI and R3 are in parallel 

1 The internal resistances of the batteries or other sources remain in the cir­
cuit as resistors. 
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R2 • 10.!l. 
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+ 

Fig. 34C and D. Circuit and solution of Example 51 by use of the principle of 
superposition (Part 2). 

and R2 is in series with the combination. Hence, the resistance R,,a = 5 
ohms, and the total resistance R,,.,• = lO + 5 = 15 ohms. 

E 40 I 
I = - = - = 2 2/3 amperes 'f'+ 

R 15 

The current in R3 is again 1/2, hence the voltage drop across it due to the 
40-volt source is: 

E'Ba = 2 2/3 X ½ X lO = 13 1/3 voltsi+ 

The actual voltage drop across R3 due to both sources is given by the 
algebraic sum of the drops due to the separate sources. Arbitrarily assign­
ing a minus sign to the downward-directed values. 

3 l/3 volts - 121/3 = -JO volts 

The current in R3 is found similarly 

1/3 - 4/3 = -3/3 = - 1 ampere 

The power dissipated is 

E X I = l X 10 = JO watts 

To find the power dissipated in R3, one cannot use the principle of super­
position directly, but must determine the current and the voltage drop 
first. This is the case because voltage and current are linear functions, 
whereas power is a product (square) function. 
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27. Thevenin's Theorem 
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One of the most powerful tools available to the technician for 
the solution of complex network problems is a theorem due to 
Thevenin. This theorem can be stated in many different ways. Its 
meaning is clearest when it is broken down into several parts. 
Thevenin's theorem is generally employed to find the current flow-

E G E G 

12.n. 12.n. 

+ E• 
_ - 288 A--u,,,~-- B 

+ 
E • 

_ - 288 A B 
VOLTS 

6..Cl.. j 
VOLTS 

6.tl 

(A) F H (B) --- F H 

fig, 35A and B. Application of Thevenin's theorem (Part 1). 

ing in one branch of a complex network. Figure 35A shows such 
a network, in which it is desired to find the current flowing through 
the IO-ohm resistor (branch A-B) . 

I. The first part of Thevenin's theorem instructs us to open 
the branch in which the current flows and calculate the potential 
difference across the break. (See Fig. 35B.) 

IEF = 288/18 = 16 amperes 

Ion = 288/32 = 9 amperes 

Next find the potential of points A and B referred to the negative 
end of the source. 

EA IEF X 6 ohms = 16 X 6 = 96 volts 

E8 = Ion X 24 ohms = 9 X 24 = 216 volts 

The voltage between A and B = 216 - 96 = 120 volts 

2. The second portion of the theorem requires that the source 
of voltage be removed and replaced with a jumper having a resist-



62 D-C CIRCUIT ANALYSIS 

ance equal to the internal resistance of the source. (If the source 
is to be considered as having zero resistance, the jumper is a short 
circuit. We will take this point of view here.) Having done this, 
we are now to calculate the resistance of the network looking back 
from the break. This is shown in Fig. 35C. At first glance, this 

E G 

en. 

/ 
JUMPER A B 

D 

24.!l.. 

(C) F H 

JUMPER 

E F G H A RI F 

4.!l.. 

12.n. 6.ll.. e.n. 24.tl. 

R3 R2 
10.n. 10.n. sn. 

(D) A A C D B B (E) C D G 

Fig. 35C, D, and E. Application of Thevenin'• theorem (Part 2). 

complicated resistive network appears difficult to resolve, but with 
the aid of the identifying letters, it may be redrawn in the familiar 
form shown in Fig. 35D. It is only necessary to solve this simple 
series-parallel circuit to find the joint resistance presented to the 
break terminals C and D. Thus the joint resistance (RI) of the 
branches EA and FA is: 

I I I 3 
RI = Tf + 6 = Tf 

RI = 4 ohms 
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The joint resistance (R2) of branches GB and HB is: 

I I I 4 
R2=g+24=24 

R2 = 6 ohms 

Thus, the circuit is reduced to the equivalent arrangement of Fig. 
35E. Its resistance is: 

R = RI + R2 + R3 = IO + 4 + 6 = 20 ohms 

3. The last part of Thevenin's theorem states that the current 
in the branch may now be found by dividing the voltage across 
the break by the resistance looking into the network from the 
break. The current in the branch AB of the original circuit thus is: 

120 volts 
JAB = 20 ohms = 6 amperes 

The student may convince himself of the value of Thevenin's 
theorem by attempting to use straightforward Ohm's Law proce­
dures on the network just described. He will find that the equa­
tions involved are quite difficult and require tedious manipulation. 

28. The Wheatstone Bridge 

The arrangement of resistors and a voltage source shown in 
Fig. 35A may be reduced to a relatively simple network that has 
great usefulness in making measurement by adjusting the resistance 
values so that the voltage drop between points A and B becomes 
zero. When this modification is made, the circuit is called a balanced 
Wheatstone Bridge. As an example, assume in Fig. 35A that re­
sistor AF is changed to 36 ohms and that a sensitive galvanometer 
replaces resistor AB. These alterations are shown in Fig. 36. 

Under the conditions shown in the diagram, the galvanometer 
reads zero because the voltage between points A and B is zero; this 
is shown in the following proof. Assume that the meter switch ~ 
open thereby causing an open circuit between A and B. The net­
work is then a simple series-parallel arrangement. This permits 
us to find the current in the branches EF and GH: 

IEF = 288/48 = 6 amperes 

108 = 288/32 = 9 amperes 

(28) 

(29) 
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Find the voltage drop across AF and BH, thus giving poten­
tials at A and B, referred to the negative side of the battery: 

EAF = IEF X RAF = 6 X 36 = 216 volts 

EBu = lou X RBu = 9 X 24 = 216 volts 

Because the potentials of points A and B are the same, referred 
to the same side of the battery, the difference in potential between 

E G 

12 ..n. 8.n. 

M 

E = 288 A B -=- VOLTS 
METER 
SWITCH 

36 ..n. 24..n.. 

F H 

Fig. 36. Balanced Wheatstone Bridge. 

them is zero, and no current flows through the meter when the 
switch is closed. 

The value of the Wheatstone bridge becomes more evident 
when it is handled in more general terms. (Refer to Fig. 37.) 

The general equation for a balanced Wheatstone bridge (i.e., 
galvanometer M reads zero when its switch is closed, indicating 
zero difference in potential between terminals A and B) is easily 
derived, as follows: 

Designate the current in the R 1-R3 branch, Ii, and that in the 
R2-R, branch, 12; the voltage drop across Rl, E1 = 11R 1 ; the volt­
age drop across R2, E2 = I2R2, 
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A 

- -
B 

+ 

fig. 37. General form of the Wheatstone Bridge. 

If the potentials at A and B are equal, as required by the 
original conditions, E1 = E2 and 

l2 - R1 l 1R1 = l 2R2 or - - -
l1 R2 

In a similar manner, we obtain the voltage drops Es and E4 

across R8 and R4, respectively as: 

Es = l 1R8 

E4 = l 2R4 

But, since the potentials at A and B are equal, E3 = E4, and 
hence l 1R8 = l 2R4 or 12/11 = R3/R4• These ratios of 12/11 may 
he equated, thus: 

(30) 

This is the fundamental equation of the balanced Wheatstone 
bridge. It tells us that for a balanced bridge, the ratio of R 1 to R 2 

is equal to the ratio of R8 to R4• 

The principal application of the balanced Wheatstone bridge 
is the determination of the value of an unknown resistance. This 
can he accomplished with excellent precision, if the known re­
sistors used in the bridge are accurately rated. 
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E~ 
+ 

Fig. 38. A practical form of the Wheatstane Bridge. 

Figure 38 shows one form that a practical Wheatstone bridge 
may take. R 1 and R2 are precision resistors of 100.0 ohms and 
200.0 ohms, respectively; R 3 is a resistance of unknown value to 
be measured by the bridge; R4 is a calibrated variable resistor in 
the form of a precision decade box, or a high-precision helical 
potentiometer. 

In use, R 4 is set at about the middle of its range, R 3 is con­
nected across the terminals as shown, and the meter key is quickly 
tapped while the meter is observed. It is always advisable to start 
this process with a low-resistance shunt connected across the meter 
terminals. Otherwise, if the potential across AB should be rela­
tively high, the delicate galvanometer coil might be damaged. R 4 

is then adjusted in the direction that causes the meter deflection 
to approach zero; as the operator comes closer to this point, the 
shunt across the meter is removed, thus improving its sensitivity 
and the precision of the measurement. Finally, when the value 
of R 4 has been set so that there is no indication on the galvano­
meter, the bridge is considered balanced, and the resistance of R4 

is read off. Suppose that R4 reads 2466.3 ohms at balance. The 
resistance of R3 may then be calculated to the same precision by 
substituting all known values in Equation 30 and solving for R3 • 

100 R 3 

200 = 2466.3 

R 3 ½ X 2466.3 = 1233.2 ohms 
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(l) Four resistors, RI = 22 ohms, R2 = 18 ohms, R!I = !IO ohms, and R4 = 
12 ohms, are connected in series across a 60-volt battery. The internal 
resistance of the battery is !1.2 ohms. What is the current flow in the 
circuit? What does the value of the current drawn from the battery 
become, if a single 20-ohm resistor is connected across the battery so that 
it is in parallel with the other four resistors above? 

(2) Three resistors of 1.5 ohms each are connected in series across a battery 
whose internal resistance is 0.5 ohm. If the current through the circuit 
is one-half ampere, compute the terminal voltage of the battery. 

(!I) Four resistors, RI = 7.2 ohms, R2 = l ohm, R!I = !1.4 ohms, and a re­
sistor of unknown value, R4, are' connected in series across a 6-volt battery 
whose internal resistance is 0.4 ohm. If a current of 1.42 amperes flows 
in the circuit, what is the value of R4? 

(4) What is the value of current in the circuit shown below? 
12 VOLTS 

...-----1+1 tllli-----vv•v----, 
0.03.n. 0.04 .n. 

0.07 .n. 2.46.n. 
.____..,...+ ,1111-_--..J\.,v\,-__. 

12 VOLTS 

Circuit for Question ,4. 

20 VOLTS 

------1~~+ 

Circuit for Question 6. 

(5) Two 12-volt batteries are connected in parallel to an 18-ohm load. If 
each battery has an internal resistance of 0.5 ohm, calculate the current 
through the load. 

(6) What is the value of current through R!I in the diagram above? (Assume 
that the batteries have no internal resistance.) 

(7) In problem 6, compute the value of the current through R!I if the bat­
tery connections of the 20-volt battery are reversed. 

(8) The Wheatstone 
bridge shown here 
is balanced wheo an 
unknown resistor is 
placed at R!I. RI = 
200 ohms, R2 = 50 
ohms, and R4 = 40 
ohms. What is the 
value of R!I? 

(9) Assume the values 
of the Wheatstone 
bridge shown in 
problem 8 are 10% 

E 
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higher than indicated (thus RI = 220 ohms, etc.) . What is the value of R!I? 
(10) A microammeter, with an internal resistance of 180 ohms, reads 50 micro­

amperes at full-scale deflection. What voltage yields full-scale deflection? 
(11) Five resistors with the values shown are connected in parallel. The cur­

rent through resistor A is 1.25 amperes. Compute (a) the current in 
resistors B, C, D, and E; (b) the equivalent resistance value of the com­
bination; (c) the resistance of E. 

60..n.. 75.n. 100.n. 125 .n. 

A B C D 

6 AMPERES 

(12) .In the series-parallel circuit shown, the applied voltage is 125 volts. Cal­
culate (a) the current in each resistor; (b) the total current; (c) the 
power dissipated in each resistor; (d) the total power dissipated. 

90.Cl. 
100.n. 

200..n.. 
60..n.. 

150..n.. 30.n 

---------------E----------------
(l!I) If the values of each resistor of Question l!I were doubled and the applied 

voltage remained constant, how would each value of the answer for (a) , 
(b) , (c) , and (d) above vary? Compute the numerical values to check 
your answers. 

(14) In the circuit shown, RI has a value of 8 ohms, and R2 a value of 12 
ohms. What value must Rx have so that the power dissipated by the 
entire circuit is 880 watts? 

I 
IIOV 

I 
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(15) Using Kirchhoff's laws, determine current I across the 4.5-ohm resistor 
in the circuit shown. Compute the voltage drop from point X to point Y. 

IOV + 
0.6.n. 

X 

y 

+ av 
0.4 A 4. 5 A 

(16) If the polarity of the 8-volt battery in Question 15 is reversed, calculate 
the current through the 4.5-ohm resistor. 

(17) Utilizing Thevenin's Theorem, compute (a) the voltage across terminals 
X and Y before. R is connected into the circuit; (b) the effective resistance 
as measured between X and Y; and (c) the current through R when it 
is connected across X and Y. 

r----'~----J_..__2_V--oo X -----

4V .l_+ -~ 0.2 A 

~3.n.fL----------~---0 
I o.5.n. 

OY 

R=5A 

(18) Find the voltage, current, and power delivered by the circuit shown to 
the 750-ohm load attached to terminals X and Y. 

:! ________ 4_;o_v_I~!~:_so_o_.n._--oox 

- .. 0 y •------

750.n. 

(19) Given the same circuit conditions shown in Question 18, compute the 
voltage, current, and power delivered by the circuit if the load resistance 
is 1500 ohms. 

(20) A Wheatstone bridge is arranged as shown in Fig. 38. Assume the bridge 
to be balanced when R1 = 5,000 ohms, R, = 3,100 ohms, Ra = 50,000 
ohms. Compute the value of Ra. 
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