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PREFACE 

Arrangements of the resistor, capacitor, and inductor are found 
in various series, parallel, or series-parallel combinations in elec
tronic circuits, depending upon the specific application desired. The 
relationships of these three components, as they are affected by a-c 
voltages of varying frequencies, are of particular interest when the 
capacitive and inductive reactances become equal, yielding a res
onant circuit. 

In the first chapter, we review the essential theory related to 
resonance. Detailed discussions then treat the theory of series res
onant circuits, delineating the computations relating to resonant 
frequency, the voltage relationships, and the role of the figure of 
merit (Q) in these circuits. Similar analyses are made, first for the 
elements comprising parallel resonant circuits and then of the 
parallel resonant circuits themselves. Further analyses cover res
onant circuits with distributed constants through an explanation 
of tuned lines. The rest of the theoretical material treats resonant 
coupled circuits, including the coupling coefficient, reflected im
pedance, and the effects of coupling upon resonance. A few basic 
applications are described. These are typical of the general uses of 
the circuits and are sufficient to give an understanding of general 
circuit arrangements. 

Grateful acknowledgement is made to the staff of New York 
Technical Institute for its assistance in the preparation of this 
manuscript. 

New York, N. Y. 
January 1957 

A.S. 
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Chapter 1 

INTRODUCTION TO RESONANCE 

1. Review of Theory Related to Resonance 

The reader who selects a work on resonant circuits for study is 
assumed to be familiar with the behavior of various components 
in a-c circuits. The brief, but comprehensive summary of a-c theory 
relevant to resonance included in this chapter should help him to 
refresh his memory sufficiently to allow complete understanding of 
what follows. In the equations in this review the currents and 
voltages, may be instantaneous, peak, or rms provided that all 
values within the equation are expressed in the same terms. 

2. Resistance in a-c circuits 

There is no essential difference between the behavior of a 
resistor in either a d-c or an a-c circuit. The pertinent equations 
and characteristics for either circuit are: 

Ohm's Law: l=E/R E=IR R=E/1 

Series Connections: Rt = R1 + R2 + .... Rn 

Parallel Connection: I/Rt = l/R1 + l/R2 + .... l/R11 

where I is in amperes, E in volts, and R in ohms. 



2 RESONANT CIRCUITS 

Effect on phase: Resistors do not affect the phase relationships 
between current and voltage a-c circuits in any 
way. (See Fig. 1.) 

Power dissipation (see Fig. 2) : P = 12R = El = E2 /R 

3. Capacitance in a-c circuits 

The opposition of a capacitor to the flow of ac is termed capaci
tive reactance; the magnitude of the capacitive reactance of any 
capacitor depends upon its capacitance, C, and the frequency, £, 
of the ac. 

Series connection: I/Ct = l/C1 + l/C2 + .... l/C0 

Parallel connection: Ct = C1 + C2 + .... C0 

Capacitive reactance: Xe = l/271"fC 

Ohm's law: I= E/Xc E = IXe Xe= E/1 

where Xe is in ohms, f in cps, C in Farads, I in amperes, and 
E in volts. 

Effect on phase: The current flowing in a purely capacitive circuit 
always leads the applied voltage by 90 degrees. 
(See Fig. 3.) 

Power dissipation: A purely capacitive circuit does not dissipate 
any power. (See Fig. 4.) If the circuit contains 
both capacitance and resistance, the phase 
angle will be less than 90 degrees and the 
power dissipation is: 

P = El cos</> 

where </> is the phase angle determined by 

cot</>= 271"fRC 

Charge on capacitor: Q = CE 

Energy of capacitor: W =·= ½ CE2 

where Q is the charge in coulombs and W is the energy in watt
seconds 
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Fig. 1. Current and voltage In a resistive drcult. 
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Fig. 3. Current and voltage in a capacitive circuit. 
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4 RESONANT CIRCUITS 

4. Inductance in a-c circuits 

The opposition of an inductor to the flow of ac is called in
ductive reactance; its magnitude is a function of the a-c frequency 
and the inductance. 

Series connection (no coupling): Lt = L 1 + L2 + .... l/Ln 

Parallel connection (no coupling) : 
I/Lt = l/L1 + l/L2 + .... 1/Ln 

Inductive reactance: XL= 21rfL 

Ohm's law: I = E/XL E = IXr. Xr, = E/I 

where XL is in ohms, f in cps, L in henrys, I in amperes, and E 
in volts. 

Effect on phase: The current flowing in a purely inductive a-c 
circuit lags behind the applied voltage by 90 
degrees. (See Fig. 5.) 

Power dissipation: A purely inductive circuit dissipates no power. 
(See Fig. 6.) If the circuit contains both in

ductance and resistance, the phase angle will be 
less than 90 degrees and the power dissipation is 

P = EI cos cf, 

where cf, is the phase angle determined by Cot cf, 21rfL/R 

5. Meaning of Resonance 

Figure 7 shows a capacitor C, a coil L, and a resistor R con
nected in series with an a-c voltage source of variable frequency. 
In one range of frequencies X<' may be considerably larger than 
Xi,; in some higher frequency range Xr, may become much greater 
than Xr. (The resistance R remains the same for all frequencies.) 
At some frequency between these two ranges, an interchange of 
predominance occurs, and at one point the reactances of the capaci
tor and the inductor become equal. The voltage drops across them 
are then equal and 180 degrees out of phase. (This angle is the sum 
of the 90 degree lead of the capacitor and the 90 degree of the 
inductor.) Under these conditions, the reactances effectively cancel 
each other completely, and the current flow is determined only by 
the resistance of the circuit. At the frequency that establishes these 
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Fig. 4. Power In a capacitive drcult. 
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Fig. 5. Current and voltage in an inductive circuit. 
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Fig. 6. Power in an Inductive drcuit. 



6 RESONANT CIRCUITS 

conditions - i.e. the resonant frequency - the current reaches its 
highest possible value (assuming a constant source voltage), a con
dition termed series resonance. Thus, a series circuit is said to be 
resonant when the inductive reactance equals the capacitive reac
tance. 

A capacitor and inductor may also be connected in parallel 
across the output of an a-c generator to form a parallel resonant 

E '\, 

L 

C 
Fig. 7. Series circuit con• 
taining resistance, capaci

tance, and inductance. 

circuit in which the conditions for resonance are somewhat modi
fied. Both series and parallel resonance are discussed in detail in 
subsequent chapters. 

6. Review Questions 

(I) What is the relationship between current and voltage waves in purely 
resistive circuits? 

(2) What is the only a-c circuit component that can dissipate power? 
(3) What is the voltage-current phase relationship in a purely capacitive 

circuit? in a purely inductive circuit? 
(4) State the equation for determining capacitive reactance; inductive re• 

actance. 
(5) From the a-c power equation, what must be the value of the phase angle 

cf, for maximum power dissipation to occur? 
(6) Referring to Fig. 4, explain how this diagram shows that the power 

dissipated in a capacitive circuit is zero. Repeat for Fig. 6, for inductive circuits. 
(7) In what way does the power curve of Fig. 2 differ from those of Fig. 4 

and Fig. 6 and what is the implication of this difference. 
(8) Calculate the inductive reactaoce of a IO-henry choke coil when used in 

connection with 60-cps power lines. 
(9) Calculate the capacitance of the capacitor that would resonate at 60 cp1 

with the inductor of Question 8. 
(10) What is the total reactance of a coil and capacitor combination con• 

uected in series across a generator if the reactance of each is 137 ohms? 



Chapter 2 

SERIES RESONANT CIRCUITS 

7. Indications of Series Resonance 

Before prm·eeding in our study of series resonant circuits, let 
us find out how to determine whether a particular circuit is reso• 
nant. The fit-st requirement is that the capacitive reactance equal 
the inductive reactance. A series cirrnit c:annot be resonant if these 
two values are not equal. 

It might be well to mention at this point that the resonant 
condition can be obtained by varying the value of the inductance, 
the capacitance, or the applied frequency. When the circuits are 
in resonance, the impedance of the circuit is at a minimum and is 
equal to the circuit resistance. The current flowing in the circuit 
is at its highest possible point and is in phase with the applied volt
age. In addition, the circuit acts as a purely resistive circuit. The 
voltage across the inductance is equal to the voltage across the 
capacitance, and is relatively high. In fact it may exceed the supply 
voltage. Although numerically equal, these emf's have opposite 
polarity and the resultant voltage is zero. 

If there is any possibility that the circuit will operate at or 
close to resonance, the voltage ratings of the coils and capacitors 
must be carefully selected to insure that the components can with
stand a voltage in excess of the supply voltage. This is particularly 
true if the circuit resistance is low compared to the circuit reactance. 

7 
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8. Calculation of Resonant Frequency 

Although coil-capacitor combinations may be designed to res
onate at any frequency, resonant circuits find their widest applica
tion in the radio frequency range. The reactive effects associated 
with even small capacitances may impose severe limitations on the 
usefulness of these circuits, if the frequency is relatively high. One 
way of overcoming these effects is to add inductive reactance to the 
circuit if the effects of capacitive reactance are to be cancelled, and 
vice versa. A specific reactance may be detrimental to the per-

~ 
L 5MH EL 

J 

5001.JJJF 

Fig. 8. Typical .. ,1e1 circuit 
containing R, C and L 

formance of a circuit when it produces an undesirable voltage drop 
at a particular frequency. In this case, the insertion of a reactive 
component of the opposite kind gives rise to a neutralizing voltage 
drop 180 degrees out of phase with the unwanted one. This rem
edy is effective at one frequency only, since there is only one reso
nant point for a given pair of reactances. 

The series resonant circuit is in a state of resol)ance when the 
inductive reactance and the capacitive reactance are exactly equal. 
Since this is true, 

1 
2..-£.,L = --

2..-f0C 
solving for f0 , the resonant frequency, we have 

1 
fo = 2..-..,/LC 

Let us apply this to the circuit shown in Fig. 8. First, since we 
are looking for the resonant frequency, the resistance of the circuit 
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is of no consequence at this time. Solution for the resonant fre
quency of this circuit(C = 500wJ = 500 X 10·12 farads, L = 5 mh 
= 5 X 10·8 h. ), then, is 

l l 
fo = ---,==- = -::-:--::--;:;:;:=;::===:::;::::;::=======:::::::::== 

2,,.-v[c 6.28\!5 3< 10·8 X 500 X 10·12 

I I = --::-::-::---===::::;::;;:::;= 
6.28\!250 X 10·1' 6.28 X 15.8 X 10·7 

= 99_
224 

IX lO-' = 100.7 X 103 = 100.7 kc. 

Now that we know 100.7 kilocycles is the resonant frequency 
of the circuit, let us investigate the other characteristics. It would 
be useful to know the total impedance, the line current, the volt
age across each unit, and the circuit phase angle. For the purpose 
of the problem, we will assume that the applied voltage is 100 
volts. The total impedance of the circuit is given by the equation 
zT = yR2 + x2. 

First, let us find the inductive reactance, Xt, and the capacitive 
reactance Xo. 

XL= 2wfL = 6.28 X 100.7 X IOS X5 X 10·3 = 3162 ohms 

I I 
Xo = 2 ..- f C = 6.28 X 100.7 X 108 X 500 X 10·12 = 3162 ohms 

The fact that X,. and Xe emerge as equal quantities is of course, 
a check on the previous calculation in which the resonant fre
quency was derived. The net reactance of the circuit is zero and 
the total impedance 

Z = yR2 + X 2 = R = 1250 ohms. 

You will observe that the total impedance is equal to the resistance 
of the circuit. We may now proceed to find the line current and 
the voltage drop across each unit in the following manner: 

I ET 100 80 ·11· 
T = ~ = 1250 = m1 1amperes. 

Ea = IR = 80 X 10·3 X 1250 = 100 volts 

EL = IXr, = 80 X 10·3 X 3162 = 253 volts 

Ee = IX<. = 80 X 10·3 X 3162 = 253 volts 
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Although EL and E,. are numerically equal, they are 180 degrees 
out of phase and effectively cancel each other. A voltmeter con
nected across the series circuit comprising the inductance and the 
capacitance would read zero. Note that these voltages across the 
reactive components in the circuit are higher than the line voltage. 
As stated earlier, this can happen in a series R-L-C circuit if it is 
operated at or close to resonance, and if the circuit resistance is low 
compared to inductive and capacitive reactances. 

The circuit phase angle (i.e., the angle between the voltage 
and current vectors), is zero because the arrangement acts as if 
only resistance were present, the reactive voltage drops having can-

EL 

Ee 

ER 

90°LEAD 90° ANGLE 

ET Ee 
BETWEEN 

EL Ee AND I 

90°LAG 
ET 

90° ANGLE 
BETWEEN 
EL AND I 

Fig. 9. Vector diagram (left) and vectorial addition of voltage (right) for the 
circuit of Fig. 8. 

celled each other. To see how this appears vectorially, refer to Fig. 
9 in which current is used as the reference vector. The line voltage 
is in phase with the line current; the circuit is operating at unity 
power factor, and the phase angle is zero, just as if the circuit were 
purely resistive. 

9. Voltage Relationship in Series Resonant Circuits 

Referring to the circuit of Fig. IOA, let us consider the voltage 
relationship in a series-resonant circuit. If an a-c source of a fre
quency below resonance is connected to the circuit, it will be found 
that the greatest opposition to current flow is caused by the reac
tance of capacitor C, because capacitive reactance increases as the 
frequency of the applied voltage decreases. 

If a source voltage with a frequency above resonance is applied to 
the circuit under consideration, the greatest opposition to the flow 
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of current is set up by the inductance L, because inductive reactance 
increases as the frequency of the applied voltage is increased. An
other way of stating this is to say that, at frequencies below reson
ance, the net reactance in a series resonant circuit is capacitive and, 
at frequencies above resonance, the net reactance in a series res
onant circuit is inductive. 

As we have seen, at some frequency between these two ex
tremes, the inductive reactance will be exactly the same as the ca-

L 

C 

(A) 

1-z 
l&J 
a: 
a: 
::::> 
0 

Fo 
FREQUENCY 

Fo s RESONANCE FREQUENCY 

(Bl 

Fig. 10, (A) Typical series resonant circuit. (B) Graph showing relationship 
between current and frequency 

pacitive reactance, and the circuit will be in a state of resonance. 
At this point, the voltage drops across the inductive and capac
itive reactances are equal, and since they are opposite in phase, 
they cancel each other. As a result, the only effective opposition to 
current flow in the circuit is the resistance. 

The current flowing in the circuit of Fig. I OA may be measured 
by means of meter A. If the frequency of the source voltage is in
creased gradually from below resonance to above resonance, the cur
rent in the circuit will rapidly increase until it reaches its maximum 
possible value at the resonant frequency of the circuit. It then de
creases as the frequency continues to rise, as shown in Fig. I OB. 

Since the current flow in the circuit is determined by im
pedance, the impedance of the circuit under consideration is at 
its lowest or minimum value when the current it at its highest 
value. Another way of phrasing this is to say that the circuit con
tains the smallest impedance of which it is capable at the resonant 
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frequency, and that the impedance rapidly increases on either side 
of resonance. Figure 11 shows the impedance curve for a typical 
series-resonant circuit. 

The voltage drop across each element of a series circuit is given 
by a-c forms of Ohm's Law as follows: 

Ea= IR E,. = IXi. Ee= IXe 

At any given frequency, the reactances Xi. and Xe are fixed by 
the physical nature of the inductor and the capacitor, respectively, 
and by the frequency of the ac. These reactances are not individu
ally modified by connecting them in series with each other to form a 

Ill 
u z 
<I 
Q 
Ill 
IL 
:I! 

FEREQUENCY 

Fo •RESONANCE FREQUENCY 

Fig. 11. Impedance curve of 
a .. rln-tuned drcult. 

resonant circuit if the frequency is unchanged; furthermore, the 
current in a series circuit is everywhere the same for any given set of 
conditions. Hence, the voltage developed across either the induc
tance or capacitance considered separately attains its highest value 
when the circuit current is greatest, or when the total impedance is 
least. This situation occurs at resonance when the net reactance is 
zero and the circuit impedance becomes equal to the resistance. 
Considering either the inductive or capacitive component, what we 
really have is a condition in which a high current - obtainable by 
making the resistance, R, of the circuit small - Bows through a 
large reactance, thus yielding a very large voltage (IR) drop. 

Although the high voltages across the individual reactances 
are equal and opposite in polarity at resonance (and thus tend to 
cancel each other from the viewpoint of the net circuit voltage), 
either of them may be used to operate other circuits. 

If the value of either the inductance or the capacitance is 
changed, the resonant frequency of the circuit is changed. An in
crease of either capacitance or inductance, or both, will cause the 
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resonant frequency of the circuit to become lower. Conversely, de
creasing the values of capacitance or inductance or both will cause 
the resonant frequency of the circuit to increase. Thus we may 
make either the capacitance or the inductance variable. The circuit 
can then be resonated to any frequency over a range determined 
by the value of the fixed reactance and the maximum and mini
mum values of the variable reactance. 

In practical applications, either reactance may be varied to 
tune the circuit. For example, in most broadcast-band receivers, 
tuning is done by varying the amount of capacitance in the circuit. 
In many television and f-m tuners tuning is accomplished by in
ductance variation. 

In summary, we might say that when a circuit operates below 
its resonant frequency the capacitive reactance is greater than the in
ductive reactance, and the circuit acts as an R-C circuit. When the 
circuit operates above its resonant frequency, the inductive reac
tance exceeds the capacitive reactance, and the circuit acts as an 
R-L circuit. 

10. Q of Resonant Circuits 

Our discussions thus far have ignored the inherent resistance 
that is present, often to a large degree, in practical coils and to a 
much lesser extent in capacitors. The resistance of a conductor is 
not always the same for an alternating current as it is for direct 
current. A high-frequency alternating current flowing through a 
conductor causes internal effects that tend to force the current to 
flow mostly in the outer parts of the conductor, a phenomenon 
known as "skin effect." Skin effect decreases the effective cross-sec
tional area of the conductor, with an accompanying increase in 
resistance. 

In low-frequency circuits, skin effect is often negligible. At 
radio-frequencies, however, it is so much greater that virtually all 
the current flow is confined within a depth of a few thousandths 
of an inch under the surface of the conductor. Radio-frequency 
resistance consequently may be many times the direct current re
sistance and continues to increase as the frequency rises. In the 
r-f ranges, a conductor of thin tubing may present the same resis
tance to current flow as a solid conductor of the same diameter. 

At the higher frequencies, the relationship between the induc
tive reactance and the overall resistance of a given coil changes in 
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a way dependent upon the manner in which the a-c resistance in
creases. The ratio of the reactance of a coil to its overall resistance 
is called the figure of merit or Q of the coil and is mathematically 
defined as: 

Sinte bolh X,. and R are expressed in ohms, Q is a simple 
ratio and has no units. 
EXAMPLE: Find the Q of a coil of 0.2 mh at 2 me., if the effective 
resistance at that frequency is IO ohms. 

Q 
_ 2.,,.fL _ 6.28 X 2 X 106 X 0.2 X 10-a 
- R - IO 

2.51\~ 103 = 251.2 

Since both the reactance of a coil and its a-c resistance due to 
skin effect increase with rising frequency, it might seem that Q 
must be constant for all frequencies. This is not true, however, 
because these two facLors do not change at the same rate. Q re
mains constant over a relatively small range of frequencies. Below 
this range, however, Q decreases because XL drops faster than R. 
Above this range, Q again decreases because the a-c resistance rises 
faster than X, .. 

Effect of varying frequency near resonan~:e. If we draw a curve 
of the current flowing in the circuit of Fig. IOA, assuming that the 
voltage is constant and the frequency varies from a low to a high 
value, the curve would resemble one of those in the chart of Fig. 12. 
The shape of the resonance curve at frequencies of applied voltage 
near resonance is principally determined by the Q of the coil. In 
Fig. 12, different values of R (from IO ohms to 100 ohms) are 
assumed, instead of the value of 1250 ohms shown in Fig. I OA. X1, 

at the resonant frequency, is 1000 ohms. This gives the circuit a 
minimum Q of IO, with R = 100. You will note that at frequencies 
at least plus or minus 15 percent away from resonance, the current 
is substantially unaffected by further frequency changes. 

If the reactance of either the inductance or the capacitance is 
of the same order of magnitude as the circuit resistance (Q is low, 
near 1) the current decreases rather slowly from resonance in either 
direction. Such a circuit is said to be "broad." On the other hand, 
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if the values of reactance are large compared to the circuit resis
ance (Q is high) the current decreases rapidly as the frequency 
moves away from resonance. Such a circuit is said to be "sharp." 
A sharp circuit responds a great deal more readily to signals of the 
resonant frequency than to signals of frequencies on either side of 
resonance. A broad circuit responds almost equally well to a band 
of frequencies around the resonant frequency. Both types of reso-

Fig. 12. Effect of R (and Q) 
on resonance. 
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nance curves are of great value. The sharp circuit provides great 
selectivity, which is the ability to respond strongly, in terms of cur
rent amplitude, at one desired frequency and to discriminate against 
others. The broad circuit may be used when it is necessary to obtain 
about the same circuit response over a band of frequencies rather 
than at a single frequency. 

We should emphasize at this point, that while most resonant 
circuits in schematic diagrams show only inductance and capaci
tance, resistance is always present. 

The source of the resistance depends upon the frequency, the 
type of circuit elements used, and the width of frequency pass 
band desired. We are interested here primarily in circuits of rela
tively high Q (from 50 to 500), employed in radio-frequency 
equipment. In such applications, it is the resistance of the wire in 
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the coil that constitutes the major part of the circuit resistance, 
except at high radio frequencies. In the very high frequency (vhf) 
range (30-300 me) and higher, the resistance component in the 
capacitor often becomes appreciable, especially if the dielectric is 
not made of low-loss material like steatite or polystyrene. 

It should be noted that the resistance between the plates (leak
age resistance) of a capacitor is not analogous to the resistance of 
the wire in the coil. The leakage resistance of a capacitor is a 
parallel (or shunt) resistance, while that in the coil is a series re
sistance. Leakage resistance of a good capacitor is very high; re
sistance of a good coil is very low. To combine the resistances of 
the coil and capacitor in a series circuit, an equivalent series re
sistance of the capacitor is often used. As the leakage resistance of 
a capacitor increases, equivalent series resistance decreases. Equiv
alent series resistance is related to leakage (parallel) resistance as 
follows: 

(Xc)2 
r=~ 

where r is the equivalent series resistance, R, the parallel resistance, 
and Xe the capacitive reactance of the capacitor. This relationship 
is true if the frequency is high enough to make Xe large compared 
to R. Note that series resistance is inversely proportional to parallel 
resistance, as stated above. 
EXAMPLE: A 100-µµf capacitor, used at I me, has a leakage resistance 
of 10,000 ohms. What is the equivalent series resistance? 

I I 
r = IO<' (6.28 X 106 X I0-10) 2 = IO• (6.28 X 10·4) 2 

I 1 
=~~~ = -- = 254 ohms 
39.4 X 10·4 .00394 

When maximum sharpness (selectivity) is desired, the aim of 
the designer is to reduce the inherent resistance of the components 
to the lowest possible values, thereby raising the Q of the circuit. 

The effect of Q on the sharpness of resonance in a circuit is 
shown in Fig. 13. In the curves illustrated, the frequency change 
is shown in percentage above and below resonance. Q's of 10, 20, 
50, and 100 are shown because these values cover much of the 
range used in radio work. In this graph current at resonance is 
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assumed to be the same in all cases. The lower the Q, the more 
slowly the current decreases as the frequency moves away from res
onance. 

At frequencies above 30 me, energy losses in the capacitor be
come an important consideration. These losses may be compared 
to the energy loss that would resul,t if a resistor were introduced in 
the circuit. As stated earlier, the· Q of a coil tends to decrease at 
higher frequencies and the apparent increase in circuit resistance 
caused by capacitor losses has the effect of further reducing Q. 
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Fig. 13. Effect of Q on resonance characteristic. 

It is important to specify the Q of the circuit components at the 
resonant frequency so that the resonance curve of the circuit will 
provide either the selectivity or the bandwidth required by the cir
cuit application. 

Let us consider how to determine the voltage rise across a re
active element. When a voltage of the resonant frequency is ap
plied to a series circuit, the potential that appears across either the 
inductor or the capacitor is considerably higher than the applied 
voltage. The current in the circ.uit is determined by the actual re
sistance of the inductance-capacitance combination in the circuit 
and may have a relatively high value. However, the same current 
flows through the high reactances of the inductance and capacitance 
and causes large voltage drops. The ratio of the reactive voltage to 
the applied voltage is equal to the ratio of the reactance to the re-
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sistance. This ratio is the Q of the circuit. Hence, the voltage acr05s 
either the capacitor or the inductor is equal to Q times the applied 
voltage. 

11. Review Questions 

(I) What are the indications of series resonance? 
(2) How may the resonant frequency of an L-C circuit be varied? 
(3) Explain the calculation of resonant frequency in a series-resonant circuit. 
(4) What is the effect of an applied voltage of lower-than-resonance-frequency 

on a series R-L·C circuit? 
(5) What is the effect of an applied voltage of higher-than-resonance-frequen• 

cy on a series R-L-C circuit? 
(6) How may the resistance of a series R·L-C circuit affect the bandwidth of 

the circuit? 
(7) How may the circuit resistance of an R-L·C circuit affect the selectivity 

of the circuit? 
(8) What is the most important consideration in designing highly selective 

circuits? 
(9) Explain the effect of Q on the selectivity of the series-resonant circuit. 

(10) How may the voltage rise across the reactances in a series circuit be de
termined? 



Chapter 3 

ELEMENTS OF PARALLEL RESONANT CIRCUITS 

12. Parallel Resistive-Inductive Circuits 

Before discussing parallel circuits at resonance, we will con• 
sider the effect of current flow on the elements of parallel circuits, 
starting with a parallel circuit containing resistance and inductance. 

When a resistance and an inductance are connected in parallel, 
the line current (IT) consists of two components. The first is Ia, the 
current through the resistance, which is in phase with the line 
voltage. The second is It, the current through the inductance, which 
lags the line voltage by 90 degrees. 

Referring to Fig. 14, we will analyze the circuit and determine 
the line current, the circuit phase angle, the total circuit impedance, 
the power dissipated by the circuit, and the equivalent series circuit. 

First, we may determine the value of the inductive reactance 
of the coil: 

X,. = 21rfL = 6.28 X 60 X 0.5 = 189 ohms. 

The current in the inductor is found by Ohm's law: 

120 
189 0.635 amperes (lagging by 90 degrees) . 

19 
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The current in the resistor, 

E 
Ia=~ 

LINE 
VOLTAGE 

E 

120V 
60N 

120 = 
100 

1.20 amperes (in phase). 

LI NE CURRENT-

l 

R 
100.n 

Fig. 14, R-L parallel circuit. 

The total current thus is: 

IT = t + i. (The dots indicate that vector addition must be used) 

The trigonometric system for adding two vector quantities when 
the vectors are at right angles gives us the expression 
IT = -../ (Ia) 2 + (IL) 2. Hence, 

Ir = -../ ( 1.20) 2 + (0.635) 2 = 1.36 amperes. 

E 

Fig. 15- Vector diagram for 
the circuit of Fig. 14. 

The circuit phase angle is found in the following manner. 

IL 0.635 d 
cf, = arc tan T. = arc tan 1.

20 
= - 27.9 egrees. 

The total circuit impedance, Z, may be found by Ohm's law: 

E 120 
Z = -- = -- = 88.2 ohms IT 1.36 

Figure 15 shows the vector diagram of this circuit. 
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A pure inductance does not dissipate electric power, therefore 
any power loss taking place in a circuit of this kind must be due 
to the resistive element alone. Hence, 

P = Ela = 120 X 1.20 = 144 watts. 

A series circuit would produce the same effect if it had an 
impedance of 88.2 ohms and the impedance triangle had a circuit 

77.9A 

R 

L 0.109H 

( B) 

(A) 

/ 
/ 

,, 
/ 

/ 

Fig. 16. Equivalent circuit and impedance triangle for the circuit of Fig. U. 

phase angle of 27 .9 degrees. The equivalent series circuit is shown, 
with its impedance triangle, in Fig. 16. The values of the circuit 
elements are ascertained thus: 

R = Z~os cf,= 88.2 X 0.884 = 77.9 ohms 

XL = Z-r5in cf,== 88.2 X 0.468 = 41.3 ohms 

L _ XL = 41.3 
- 27rf 6.28 X 60 

0.109 henrys 

This circuit is relatively straightforward because the phases of 
the two branch currents differ by 90 degrees. If either branch con
tained more than one type of circuit element, the current in that 
branch would have a phase angle of less than 90 degrees. This 
makes the solution more laborious, although the basic reasoning 
remains the same. 

13. Resistive-Capacitive Circuits 

The procedure for solving R-C parallel circuits is similar to 
the method discussed above for the R-L circuit. The only change 
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is that now the current leads the line voltage by some angle less 
than 90 degrees. Assuming a supply voltage of 40 volts rms at 2000 
kc for the circuit of Fig. 17, we will find the line current, the circuit 
phase angle, the power dissipated, the total circuit impedance, and 
the equivalent series circuit. 

First, we will determine the capacitive reactances of capacitors 
Cl and C2 and the currents, 11 and 13 in the capacitive branches. 

1 1 
Xci = 2wfCl = 6.28 X 2 X 106 X 350 X 10·12 = 227 ohms. 

x 1 -
1 

- 795 ohms. 
c2 = 2wfC2 - 6.28 X 2 X 106 X 100 X 10·12 -

40 = 
227 

= 0. I 76 amperes rms. 

E 40 
13 = Xc

2 
= 

795 
= 0.0503 amperes rms. 

These currents lead the applied voltage by 90 degrees. The cur
rent in the resistive branch (which is in phase with the applied 
voltage) is found in a similar manner: 

E 
l2 = ~ 

40 = 
500 

= 0.08 amperes rms. 

To find the total circuit current, we must add the three branch 
currents vectorially as shown in Fig. 17. The line current, IT, is 
the hypotenuse of a right triangle one leg of which represents the 
resistive branch current, 12, while the other leg represents the sum 
of the capacitive branch currents, 11 and 13• Therefore 

IT = -,j (12) 2 + (11 + 13) 2 = -,j (0.08) 2 + (0.226) 1 

= 0.239 amperes rms. 
We may also see from the vector diagram that the tangent of the 
circuit phase angle, cf,, is the ratio of the capacitive to the resistive 
component of the line current, or 

0.226 
cf, = arc tan 

0
_
08 

= 70.5 degrees. 

From this we may say that the line current leads the line voltage 
by 70.5 degrees. (Previously we considered line current and voltage 
to be in phase. However, this is not the case for parallel circuits 
containing reactive branches when the applied a-c is not at the 
resonant frequency.) Since no power is dissipated in the capacitors, 
we can determine the power consumption of the circuit from 
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P = El2 = 40 X 0.08 = 3.20 watts. 
Finally, the total impedance of the circuit, Z, is found by 

E 40 
Z = ----i;- = 0.239 = 167 ohms. 

An equivalent series circuit would have a total impedance of 167 
ohms and cf,, the angle between the resistive and capacitive vectors, 
would be 70.5 degrees. Therefore, 

E 
40V '\, 

2O00KC 

j 

Req = 167 cos cf, = 167 X .334 = 55.8 ohms. 
X"" = 167 sin cf,= 167 X .943 = 157.5 ohms 

~ 
I 

13 I 
I 

Cl R CZ I 
35O1,11.1F 50O.n IOOIIIIF Ir/ 

ti, t 12 h3 
I 

I 
11 /', 

I S 

Iz 

Fig. 17. R-C parallel circuit and vector diagram. 

I 
I 

_____ .., 
E 

Since the reactance is capacitive, the value of a single capacitor pro
viding the proper reactance may be found. 

1 1 
Ceq = 2,r£Xeci = 6.28 X 2 X 106 X 157.5 = 506 µ.µ.f. 

Parallel resistance-capacitance circuits are used extensively in 
communication applications. Quite often such a circuit is used in 
series with the cathode of a vacuum tube to provide bias. Many 
other bypassing activities are most efficiently performed by these 
circuits. 

14. Resistance, Inductance, and Capacitance in Parallel 

In the foregoing paragraphs we have discussed circuits con
taining resistance and capacitance, and circuits containing resist
ance and inductance. Let us now consider a parallel circuit contain
ing resistance, capacitance, and inductance. Note that the circuit 
of Fig. 18 has a measuring instrument connected in series with each 
branch and one instrument in series with all three branches. These 
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ammeters show the total current and the current in each individual 
branch. 

In any one branch the current would be unchanged if the 
other two branches were disconnected, as long as the applied volt
age did not change. Hence, the total current (I) is the vector sum 
of the currents through all three branches. The currents through 
the various branches is as shown in Fig. 19, which shows the 

-1 

e: "' 
Fig. 18. R-1.-C parallel 

drcult. 

applied voltage shape, the current through each component, the 
current through the inductance and capacitance in parallel, and 
the total current in the circuit. 

For the purposes of this explanation we are assuming that the 
inductive reactance is smaller than the capacitive reactance, and 
that the capacitive reactance is smaller than the resistance of the 
circuit. The current through the capacitance leads the applied volt• 
age by 90 degrees, and the current through the inductance lags the 
applied voltage by 90 degrees, so that these currents are 180 degrees 
out of phase. The net reactive current in the circuit is found by 
subtracting the current in the inductance from that in the capac
itance and the total circuit current is found by adding the net 
reactive current and the resistive current vectorially. Note that 
the net reactive current is smaller than either of the currents in 
the reactive branches. 

The total current (I) lags the applied voltage by an angle 
less than 90 degrees. The sum of the three branch currents is larger 
than the current in the resistance alone. 

The impedance, looking into the circuit from the voltage 
source, is equal to the applied voltage divided by the line current, 
I. In the case we are discussing, the line current is greater than the 
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current flowing through resistance R. Since this is so, the imped
ance of the circuit must be less than the value of the resistance of 

Fig. 19. Amplitude and phase relations in the circuit af Fig. 18. 

R. (How much less depends on the reactive currenL) If the in
ductive reactance and the capacitive reactance are nearly equal, this 
reactive current will be very small since the reactive current is the 
difference between the values of the two currents flowing through 
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the reactances. In such a case the impedance of the circuit will be 
nearly the same as the value of the resistance R alone. On the other 
hand, if the difference between the the reactances is great, the re
active current will be large and the total current also will be con
siderably larger than the value of the current flowing through the 
resistance R. In such a case, the value of the circuit impedance will 
be lower than the value of R alone. 

15. Series-Parallel Circuits 

A series-parallel circuit, as applied to resonance, is simply a 
parallel circuit with both resistance and reactance in one or both 
branches. Although most cases of parallel resonance are concerned 
only with reactive branches, one of the branches sometimes con-
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Fig. 20. Resonant conditions in a low-Q parallel drcult. 

tains a resistance. This is more often true in the inductive branch 
circuit when the coil has a low Q. A typical illustration is a trans
mitter tank circuit, where a low Q is often necessary because of 
the load coupled to the coil. Instructions for tuning these circuits 
often advise tuning just off the minimum current point. This 
means that after final tuning adjustment the line current will not 
be at a minimum. The reason for this is that when a branch of a 
parallel circuit contains both resistance and reactance (instead of 
pure reactance), different characteristics of resonance occur at dif
ferent frequencies, as explained below. 
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In a series-parallel circuit, resonance may be considered to 
occur at any one of three different frequencies as follows: (1) 
when the inductive reactance equals the capacitive reactance, (2) 
when the line current is at its minimum value, and (3) when the 
circuit acts as a pure resistance. As previously explained, the first 
condition is the requirement for series resonance, regardless of the 
resistance of the coil. In parallel circuits, the last condition is most 
commonly used as an indication of resonance. However, when the 

Fig. 21. Typical parallel 
resonant circuit. I\, E 

L 

C 

R 

Q of the coil is fairly high, the resistance in the inductive branch 
is negligible compared with the reactance, and all three conditions 
occur at the same frequency. Since this is normally the case, we 
usually consider resonance for the parallel circuit to be the point 
at which inductive and capacitive reactance balance each other. 
However, the important point is that, if an appreciable resistance 
is introduced into either reactive branch of a parallel circuit, the 
circuit will be thrown out of resonance and must be retuned. Such 
a circuit with its vector diagram is shown in Fig. 20. Note that the 
vector at (a) shows the current at the frequency at which inductive 
and capacitive reactances are equal, (b) minimum line current, 
and (c) the current at the frequency at which the circuit acts as 
if it were purely resistive. 

16. Effects of Frequency 

Figure 21 shows a parallel-resonant circuit. The resistance (R) 
does not appear in physically separate form in the circuit, but 
rather, indicates the resistance present in the circuit due to the 
circuit elements. Since the coil and the capacitor are both con
nected across the line of the variable frequency source, there are 
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two paths through which the current may flow: through the coil 
and through the capacitor. If the frequency of the applied voltage 
is below resonance, most of the current will flow in the inductance, 
since the reactance of the coil is small for low frequency alternating 
currents, and the reactance of the capacitor is high for low fre
quency currents. If the frequency of the applied voltage is above 
resonance, the greatest current flow is in the capacitive branch, be
cause capacitive reactance is small at high frequencies and the re
actance of the inductance is high at high frequencies. 

17. Parallel Resonance 

As previously explained, there are three separate conditions 
that apply at or near parallel resonance. The frequencies at which 
these conditions occur are different if resistance is appreciable, 
but the same if resistance is negligible. The three conditions are: 

(1) Inductive reactance equals capacitive reactance. 
(2) The line current is at a minimum (i.e., impedance is max

imum). 
(3) Total circuit impedance is resistive and power factor = 1. 

Condition (3) is defined as parallel resonance. Condition (2) 
is sometimes called antiresonance to distinguish it from the series 
resonant condition. As in the case of series circuits, the resonant 
frequency of a parallel circuit may be changed by varying the value 
of either the capacitance or the inductance in the circuit. However, 
unlike series circuits, the resonance point may also be changed by 
varying the resistance of one of the branches. 

As the frequency of the applied voltage is increased above the 
resonant value of the circuit (condition 3) the reactance of the 
inductive branch increases in proportion, and the current through 
the inductance decreases. At the same time, the capacitive reactance 
decreases, developing a proportionate increase in the current in the 
capacitive branch. Since the reactances are no longer equal, the 
total current increases and leads the applied voltage. This increase 
in current means that the total impedance has decreased. 

In other words, a parallel resonant circuit offers a maximum 
impedance at the resonant frequency, and less impedance to other 
frequencies, depending upon how far these other frequencies are 
from the resonant frequency. This is the characteristic of the 
parallel resonant circuit that we exploit most in communications 
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circuitry. Examples of this are the tuning circuit in a broadcast or 
communications receiver, and the "tank" circuit in a transmitter. 

18. Review Questions 

(I) Draw a typical R-L circuit. 
(2) Explain the operation of the circuit you have just sketched. 
(3) Explain how the phase angle of an R-C circuit may be determined. 
(4) Give a typical use for parallel R-C circuits. 
(5) Explain how the resonant frequency of a parallel R-L-C circuit may be 

determined. 
(6) Explain the conditions possible at and near resonance in a low-Q parallel 

circuit that has a resistance in one of the branches. 
(7) What is the effect of frequency variation on the action of a parallel res

onant circuit? 
(8) An inductance of 20 µh with a Q of 100 is connected in parallel with a 

capacitor of 30 µµf. Compute f
0

, the resonant frequency. 
(9) List the conditions in a pure L-C circuit at resonance, giving indi· 

vidual reactances, current, and impedance. 



Chapter 4 

PARALLEL RESONANT CIRCUITS 

19. Minimum line Current 

Consider again a parallel circuit having a low Q. When the 
Q is below IO, resonance in a circuit such as the one shown in Fig. 
20 is not easily defined. We usually consider series resonance to be 
the point at which inductive reactance and capacitive reactance are 
equal. However, in this circuit, there is a set of values for the in
ductive and capacitive reactance that will make the parallel im
pedance a pure resistance (unity power factor). This is normally 
defined as parallel resonance. However, with these values the im
pedance of the circuit will not have its maximum value. 

There is a further set of values for the inductive and capacitive 
reactances that will cause the parallel impedance of the circuit to 
be at a maximum when the circuit is resonant. However, under 
these conditions the circuit does not present a pure resistance. 
Either condition could be called resonance, so for low Q circuits 
a distinction must be made between maximum-impedance and 
resistive-impedance parallel resonance. The difference between the 
two points becomes quite appreciable at a Q of 5 or lower. 

Referring again to Fig. 20, consider what happens as the ap
plied frequency is decreased. The inductive reactance of the coil 
and the impedance of the coil decrease in proportion to the change 
in applied frequency. This causes the current in the inductance to 
rise. We will assume that the phase angle of this inductive current 

30 



PARALLEL RESONANT CIRCUITS 31 

will remain constant. This assumption is justified for a small fre
quency change, assuming that the effective resistance of the coil is 
reduced when the inductive reactance is reduced. 

As the current through the inductance increases, the reactance 
of the capacitor also increases, thereby decreasing the current in 
the capacitive branch. Both of these effects together cause the cir
cuit phase angle to decrease toward zero. Meanwhile, the resultant 
line current also decreases. If the frequency is reduced further, the 
phase angle will continue to decrease, but the line current will be
gin to increase. The vector for minimum line current is shown in 

Fig. 20 (B~ 

20. Equal Reactance and Unity Power Factor Cases 

At some frequency, the inductive reactance of a parallel reso
nant circuit equals the capacitive reactance. Since this condition is 
similar to the one discussed for series circuits, we know the fre
quency at which this condition occurs is 

f = I 
0 2.,,.-v"[c 

However, due to the resistance in the inductive branch, the im
pedance of the inductive branch will be greater than the reactance 
of the capacitor. Therefore, the current through the inductance 
will be smaller than the current in the capacitance. This current 
will, of course, be lagging, but to a lesser extent than if the branch 
contained only a pure inductance and no resistance. (For example, 
when Q is 1, R is equal to X, and IL lags 45 degrees instead of 
90 degrees.) 

Naturally, under these conditions the opposing components 
are not balanced, and the line current leads the applied voltage. 
The circuit does not act as a purely resistive circuit, nor is the line 
current at its minimum possible value. Condition (a) of the vector 
diagram in Fig. 20 illustrates this. You will note that this is not a 
resonant circuit, yet it satisfies the requirement that inductive and 
capacitive reactances be equal. 

If the resistor in the inductive branch of the circuit in Fig. 20 
were decreased (Q made higher) the angle of the lag of the cur
rent flowing in the inductive branch would increase. Examine the 
vector diagram in Fig. 20 again. It is clear that, as the current lag 
through the inductance approaches 90 degrees, the three capacitive 
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current lines fall into coincidence. Certainly, if the Q of the coil 
were as high as 20 (the lag of IL = 87 degrees), it would be very 
difficult to distinguish between the three separate currents. 

21. Current Relationship in a Parallel Resonant Circuit 

The total current flowing in the circuit of Fig. 18 may be 
measured by meter A. If the frequency of the applied voltage is 
varied from a low value through the resonant frequency to a high 
value, the current rapidly decreases from its maximum value at 

!z ... 
a: a: 
:::, .., 

Fo 
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Fig. 22. Line current varia
tion with frequency in a 

parallel resonant circuit. 

the low frequency to its mm1mum value at the resonant fre
quency, and will then rise again at higher frequencies. The graph 
of Fig. 22 shows this current variation. 

As previously mentioned, the line current is the sum of the 
currents flowing in the inductive and capacitive circuit branches. 
The graph of Fig. 23 shows the magnitudes of currents, assum
ing zero resistance. Values of currents are shown as positive, re
gardless of polarity. (This gives a clearer idea of how the readings 
on an a-c meter would vary) . Because no circuit has absolutely zero 
resistance, the two branch currents can never cancel each other 
completely. The lower the resistance of the circuit, the lower the 
value of the line current at resonance. Although the line current 
may be of a very small magnitude, the current flowing through the 
inductance and capacitance may be very large. This latter current 
is referred to as circulating current, because it circulates around the 
L-C loop. 

Since the total current, or line current, is minimum when 
the circuit is at resonance, the total impedance of the circuit 
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at this time is at its maximum value. The impedance diminishes 
rapidly as the frequency is varied in either direction from resonance. 

If a fixed frequency signal is applied to the circuit of Fig. 18, 
variation of capacitor C results in a variation of the line cur
rent (ammeter reading) as the circuit impedance changes. Mini• 
mum line current indicates that a maximum circulating current is 

t 
1-z 
"' 0: 
a: 
:::, 
(,) 

FREQUENCY-

Fig. 23. Magnitude of current flow in the branches of a parallel resonant 
circuit. (R=O) 

flowing in the parallel tuned circuit. A parallel resonant circuit 
is quite often tuned in this manner, by watching for a dip in the 
line current ammeter reading. 

22. Selectivity and Bandwidth 

The selectivity of a parallel resonant circuit depends upon the 
amount and distribution of resistance in the circuit. For instance, 
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if the circuit has a larger resistance in one of the reactive branches 
than in the other, the selectivity of the circuit will be impaired. 
For this reason, resistance may be deliberately introduced in a 
parallel resonant circuit to provide a more nearly symmetrical, but 
reduced resonance response. Normally, the resistance inherent in 
the circuit provides all the resistance necessary to provide these char
acteristics; in fact, it is sometimes difficult to design a circuit hav
ing a low enough resistance (hence a high enough selectivity) for 
its intended use. 

23. Review Questions 

(1) Why is parallel resonance in a low Q circuit not easily defined? 
(2) What is the parallel resonance formula for minimum line current in a 

low Q circuit? 
(!I) What determines the value of the line current in a parallel circuit? 
(4) Why cannot the two branch currents in a parallel circuit cancel each 

other completely? 
(5) How does high Q affect a parallel circuit? 
(6) What happens to the impedance of a parallel circuit when tuned to 

resonance? 
/7) How may the resonant frequency of a parallel circuit be varied? 
(8) What determine- the selectivity and bandwidth of a parallel resonant 

circuit? 
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RESONANT CIRCUITS WITH DISTRIBUTED CONSTANTS 

24. General lnfdnnation 

A resonant arrangement, particularly one in which Q is high, 
is recognized by input impedance considerations, equality of in
ductive and capacitive reactance, high tank currents, or any other 
of the identifying characteristics discussed in the previous chapters. 
Up to this point, requirements for resonance have been discussed 
from the standpoint of lumped constants; that is, real coils and 
capacitors, physically recognizable as such. 

Resonance may also be obtained by using distributed constants; 
in circuits of this nature, either the wound coil or the standard 
capacitor, or both, may be absent. The L-C components are repre
sented by parallel rods or wires, specially fabricated devices like 
butterfly tuners, the metallic parts of certain transmitting tubes, 
etc. In this chapter we shall be concerned only with the use of 
tuned lines as distributed L-C constants. 

25. Distinction Between Tuned and Untuned Lines 

A tuned (or resonant) line may be defined as an essentially 
lossless pair of wires whose input impedance varies with frequency 
in a fashion that closely resembles that of a lumped-constant cir
cuit. During operation, a resonant line contains standing waves 
(or stationary waves) in which voltage loops (maxima) and volt-

35 
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age nodes (minima) are found at rather well defined, evenly 
spaced points along the line. 

If an alternating voltage is impressed across the input termin
als of a two-wire line of infinite length, a current will flow from 
the generator into the line even though the latter is open-circuited 
all along its length. The presence of the current is due to the capaci
tance between the wires while the magnitude of the current is 
determined by the distributed inductance, resistance, capacitance, 
and leakage between the wires. Treating the line as a lumped· 
constant circuit for comparison purposes enables us to state that: 

E1 
Zo =-,-

where E1 is the input voltage, I is the current flowing from the 
generator into the line, and Z0 (measured in ohms when E1 is in 
volts and I in amperes) is called the characteristic impedance of 
the line. 

An infinitely long line can have no reflections of voltage or 
current from its remote end, a condition that is implicit in the 
very concept of infinity. If the line is cut to finite length and term
inated in an impedance equal to its characteristic impedance, there 
will again be no reflections. Since the output end of the finite line 
"looks into" an impedance that is the exact equivalent of the in
finite length just cut off, the line behaves in exactly the same man
ner as it did when it was of infinite length. A line of this kind is 
called nonresonant or untuned. 

A resonant line, on the other hand, is a two-wire system of 
finite length not terminated in its characteristic impedance. Since 
such a terminating impedance does not simulate an infinite line, 
much of the energy that arrives at the remote end is not absorbed; 
instead, it is reflected hack along the line toward the generator 
resulting in voltage and current loops and nodes. 

26. Wavelength vs. Length of Tuned Lines 

Basing our reasoning on the universal power equation P = 
12R, complete reflection of the energy reaching the remote end of 
a two-wire line is possible if: (a) the terminating impedance is 
infinitely great - i.e. an open circuit - since no current and hence 
no power can appear in such an impedance; (b) if the terminating 
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impedance is zero - i.e. a short circuit - for, under these conditions, 
R is zero, P must be zero, and there is again no absorption of 
energy in the load; or (c) if the terminating impedance is either 

Fig. 24. Open-circ:uited lines. 

VOLTAGE 
DISTRIBUTION 

(A) 

CURRENT 
DISTRIBUTION 

5). 
4 (B) 

pure inductance or pure capacitance, in which case R is again 
zero. Since tuned lines used for reception and transmission systems 
almost always use either a short-circuited or open-circuited term
ination, we shall confine our discussion to these two cases. 
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Consider first, an open-circuited two wire line 5/4 of a wave
length long1 across which any alternating voltage is impressed. Due 
to 100 percent reflection of the energy and the accompanying in
terference (re-inforcement and cancellation) along the line, voltage 
and current nodes and loops will appear at specific points. As
suming a lossless line, the voltage at the open end must be the same 
as that of the generator peak, since the voltage drop across an in
finite impedance is always equal to the generator voltage. The loops 
and nodes thus take up positions as shown in Fig. 24A; volt
meters connected at various points as illustrated would read maxi
mum, minimum, or intermediate values depending upon their 
position. It should be emphasized that the curves of Fig. 24A are 
not portrayals of waves; they are graphs of instrument-read voltage 
variations along the line due to standing waves. 

In contrast with the voltage distribution, the current loops and 
nodes are displaced by 90 degrees. The reason for this is eveident if 
it is remembered that the current at the termination must be zero 
since it is an open circuit at this point. The current distribution is 
illustrated in Fig. 24B. From this, it is logical to conclude that the 
impedance of the line is minimum where the current is maximum 
(points A, C, and E in Fig. 24B) and that the impedance is maxi
mum where the current is minimum (points B, D, and F in Fig. 
24B). 

The question of whether the generator end or the remote end 
of the line determines the voltage and current distribution is now 
answerable. Clearly, the distribution is a function of the conditions 
at the remote end, since it here that current-voltage maxima and 
minima are established. It is therefore conventional to measure line 
lengths from the remote end.2 

Now consider a short-circuited two-wire line, again 5/4 A. in 
length. At the short-circuited termination, the voltage must be 
zero because there can be no voltage drop across zero resistance, 

t The physical length of a 5/4>. line is based, of course, upon the frequency 
of the alternating voltage impressed at the generator end. For example, if the 
frequency of the a-c is 100 me.,>. = 3 meters (wavelength = 3 X l08 meters/ 
frequency in cps) and a 5/4 >. line would then be 3.75 meters in length. 

2 Although the open-circuited line in Fig. 24, shorts out the generator, it is 
simple to bypass this difficulty by assuming a small resistive gienerator im
pedance in series with the generator. In this case, the open-circuited line still 
looks like a short circuit at the source and the corresponding maximum current 
flows through the generator impedance to produce a voltage drop which is equal 
to the generator voltage. 
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and the current must he maximum. On this basis, the distribution 
is as shown in Fig. 25. 

27. Line Resonance 

Open lines. 1£ a generator is connected across a two-wire open 
line at a distance ,\/4 from the remote end (on the line labelled ,\ 
in Fig. 24) and if the rest of the line is removed, the generator will 
then look into the quarter-wave section and see, at the point of 
connection: (a) maximum current and (b) minimum impedance. 
As far as the generator is concerned, it is then looking into a series 
resonant circuit, because these current-impedance conditions togeth
er with the resonant rise of voltage from the quarter-wave point 
toward the remote end are typical of the behavior of series resonant 
arrangements. Again, if the generator is now moved to the ,\/2 
point (3,\/4 line in Figure 24) it sees minimum current and maxi
mum impedance; this is the equivalent of connecting the generator 
to a parallel resonant circuit. Thus, a quarter-wave open line may 
be used to replace a lumped-constant series resonant circuit and a 
half-wave open line may be used in place of a lumped-constant 
parallel resonant circuit. 

Shorted lines. Since the voltage-current distribution is displaced 
90 degrees in the case of short-circuited lines as compared with open 
lines (Fig. 25) , connecting the generator at one-quarter wave
length from the shorted end is the same thing as presenting it with 
a parallel resonant circuit; at one-half wavelength the generator 
sees a series resonant circuit. Thus, a quarter-wave shorted line may 
replace a lumped-constant parallel resonant circuit, whereas, a 
half-wave shorted line is equivalent to a lumped-constant series 
resonant circuit. 

The same thinking is applicable to multiples of quarter-wave
length and half-wavelength lines as is apparent from Figs. 24 and 25. 

28. Reactance of Lines Longer and Shorter than Quarter-Waves. 

From the foregoing it is clear that line sections that are multi
ples of quarter-waves behave as either series or parallel resonant 
circuits depending upon actual length and termination. This brings 
up the question of the behavior of longer or shorter lines for both 
open-and shorted-circuited terminations. 
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The solution of this problem involves rather complex vector 
diagrams and will not be discussed here. The results of these 
analyses are important, however, particularly as applied to resonant-

0 

0 

Fig. 25. Short-circuited lines. 

VOLTAGE 
DISTRIBUTION 

(A) 

CURRENT 
DISTRIBUTION 

~,_ (B) 

line tuners found in some television receivers and radar sets, and 
tuned-line oscillator tank circuits used at very high frequencies. 

Section Less than One-Quarter Wavelength, Open Termina
iion: An open two-wire line between O and .V4 presents itself to the 
generator as a pure capac1t1ve reactance. The magnitude of the 
reactance in all cases depends primarily upon the characteristic 
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impedance of the line and secondarily upon whether the line is 
closer to O or ,\/4 in length. 

Section Less than One-Quarter Wavelength, Shorted Termin
ation: When the termination is a short-circuit, such a section be
haves as a pure inductive reactance. 

Section More than One-Quarter Wavelength but Less than 
One-Half Wavelength, Open Termination. This arrangement pre
sents a pure inductive reactance to the generator. 

Section More than One-Quarter Wavelength but Less than 
One-Half Wavelength, Shorted Termination. Such a section pre
sents a pure capacitive reactance to the generator. 

29. Summary Table of Tuned line Characteristics 

The chart given below is intended to assist the reader in de
termining the effect of a given line at a glance. 

TABLE l 

Equivalent Impedance 

Length 

Less than ,\/4 

Exactly ,\/4 

From ,\/4 to ,\/2 

Exactly ,\/2 

Open Circuit 
Termination 

Capacitor 

Series resonant 
circuit 

Inductor 

Parallel resonant 
circuit 

30. Application to Tuned-Line Oscillators 

Short Circuit 
Termination 

Inductor 

Parallel resonant 
circuit 

Capacitor 

Series resonant 
circuit 

As mentioned before, distributed constant resonant circuits 
consisting of tuned lines are used in both reception and transmis
sion equipment, in radar, and in industrial applications. Funda
mentally, all of these uses involve similar principles, so that only 
one will be discussed, the tuned-line oscillator, chosen because of 
its simplicity and straight-forwardness. 
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The oscillator circuit whose schematic is shown in Fig. 26, is a 
tuned-plate, tuned-grid type with resonant lines replacing the 
lumped L-C components usually found in low frequency oscillators. 

Let us assume (for the moment) that the interelectrode capaci
tances of the tubes are very small. To tune the grid circuit to the 
desired frequency, the resonant lines between the two grids should 
each be exactly one-quarter wavelength, terminatd in a short circuit. 
As shown in Table l, such lines appear as the parallel resonant 

GRID LINE 

PLATE LINE 

SHORTING 

BAR A t--'11~'--+-.Jv'V\,--+--+--, a+ 

LESS LESS ____ T!N _____ _,__ _______ Ttt_AN-
4 4 

Fig. 26. A push-pull tuned-plate tuned-grid oscillator using tuned llnes. 

circuits required for tuning. But our original assumption cannot 
he correct, since, for a tuned-plate tune-grid oscillator to operate, 
feedback must occur from output to input via the grid-to-plate 
capacitance of the tube. Since the grid-to-plate capacitance is in 
parallel with the lines, we can establish resonance at the same 
desired frequency by making the lines just inductive enough to tune 
the grid-to-plate capacitance to that frequency. As Table I shows, 
this requires that the lines he slightly shorter than one-quarter 
wavelength; thus, the desired frequency is obtained by sliding the 
shorting bar (A in Fig. 26) a little closer to the grids. 

The normal tuned-plate tuned-grid oscillator plate circuit must 
be tuned to a somewhat lower frequency than that of the oscillation 
frequency. This means that the plate lines must be inductive. Again 
this is accomplished by sliding the plate circuit shorting bar (B 
in Fig. 26) closer to the plates than one-quarter wavelength to 
permit the plate-cathode capacitance to become a part of the tuned 
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circuit. Frequencies of several hundred megacycles are easily 
realized with this oscillator when it is used in conjunction with 
high frequency tubes. 

31. Review Questions 

(I) How does a tuned line differ from other types of resonant circuits? 
(2) Define characteristic impedance. 
(3) What is the difference between a resonant and a nonresonant line? 
(4) What are standing waves? 
(5) How do standing waves arise? 
(6) What factors determine voltage and current distribution in a tuned line? 
(7) Give an application in which a tuned line would be preferable to a 

lumped-constant resonator. 
(8) Why is a tuned line preferable in the application given in Question 7? 
(9) How does the interelectrode capacitance in the tube of a high-frequency 

tuned-plate tuned-grid oscillator affect the tuning of its resonant lines? 
(10) How is the required change in Question 9 accomplished? 



Chapter 6 

RESONANT COUPLED CIRCUITS 

32. Importance of Coupled Circuits 

The behavior of a resonant circuit may be seriously changed 
when it is coupled to another circuit that absorbs energy from it. 
The method of coupling, the extent to which power is withdrawn, 
and the method whereby the absorbed energy is dissipated all 
contribute to the moification of performance that may be expected. 

Multistage equipment in which coupling between resonant 
circuits is encountered may be found in many diversified applica
tions. Television and radio receivers, radar apparatus, transmitters, 
and industrial control circuits depend upon resonant coupling for 
many of their functions. In this chapter we shall be concerned only 
with the ways in which inductive coupling affects the performance 
of L-C arrangements at or near the resonant frequency. 

33. Mutual Inductance 

Basically, mutual inductance is an electrical property associ
ated with a pair of coils placed so that the magnetic flux from one 
links with the turns of the other. (See Fig. 27.) It may be rigorously 
defined as a condition in which a variation of current magnitude 
or direction in one coil induces a voltage across the turns of the 
second coil. 

44 
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Mutual inductance, M, like self inductance, L, is measured 
in henrys and is defined by the equation: 

M E. 
= 2'1rflp 

where M is the mutual inductance in henrys, E. the voltage induced 
in the secondary in volts, f the frequency of the primary current 
in cps, and 11, the intensity of the primary current in amperes. (It 

Fig. 27. An inductively 
coupled circuit. 

PRIMARY 

Ip 

SECONDARY - __ -, 

D u»>!~ 
I ____ __. 

'-_,-J 
M 

is customary to refer to the winding in which the initial current 
flows as the primary winding and the coil in which the induced 
voltage appears as the secondary winding.) 
EXAMPLE: Assume that two coils are so placed that a primary cur
rent of 0.5 amperes at 60 cycles per second causes 50 volts to appear 
across the secondary winding. The mutual inductance between the 
two coils is thus: 

M 
50 

6.28 X 60 X 0.5 
.27 henrys 

From a qualitative point of view, it is evident that the amount 
of mutual inductance between two coils may be changed in several 
ways: (a) by changing the distance between windings; (b) by 
changing the axial angle of one coil with respect to the other; and 
(c) by changing the manner in which coupling is accomplished, 
i.e., by placing the coils end to end, one above the other, winding 
one coil between the separate turns of the other, using tubing for 
one coil and winding the other inside the hollow tube, etc. The 
relationships that govern the mutual inductance of these arrange
ments are complicated and will not be discussed here, but they do 
lead to the question of what constitutes "close" and "loose" coup
ling - an important question indeed. 
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34. Coupling Coefficient 

When every flux line from a primary coil carrying an alter• 
nating current links with the turns of the secondary, the mutual 
inductance is maximum and is called unity coupling. For this 
theoretical condition, the mutual inductance Mmax may be ex
pressed by the equation: 

Mmax = V LpLs 

where Lp is the primary inductance and L. the secondary induc
tance, both in henrys. 

In practical circuits, unity coupling is impossible to obtain; 
the degree to which coupling is actually accomplished is, therefore, 
defined as the ratio between the true mutual inductance and the 
theoretical maximum, or: 

k= M 
V LpLa 

where M is the actual mutual inductance between two coils and k 
is the coefficient of coupling. 
EXAMPLE: A certain 60 cycle isolation transformer used for medium 
power applications has equal primary and secondary inductances 
of IO henrys. If the mutual inductance between windings is 9.4 
henrys, what is the coefficient of coupling? 

k 9.4 = 91.04 = .94 (or 94%) 
V IO X 10 

In this case, the coupling is close to "unity" - a condition that is 
quite often encountered in power transformer design. In air core 
coils, however, such as those found in radio-frequency devices, 
coupling of k = .5 is considered very close while loose coupling 
is represented by figures like .008 or .01. 

35. Reflected Impedance 

The coupled circuit of Fig. 27 has a closed secondary winding; 
that is, the primary voltage EP causes a current Ip to flow in the 
primary coil which then induces a voltage E. across the secondary 
winding. I. is the current that flows in the secondary coil as a 
result of E •. Mutual inductance is a two-way affair and works just 
as well from secondary back to primary as the other way around. 
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Hence, the secondary current I. is responsible for the induction of 
a new voltage Ep1 in the primary coil - a voltage which generally 
has a component that opposes the primary current flow. This 
counter-emf then causes the primary current to behave as though a 
new impedance is present in the coil. The phrase reflected im
pedance is a convenient way to express the effect of the secondary 
current upon the primary circuit and refers to the hypothetical 
physical impedance which would cause the same effect as the 
counter-emf just described. The value of reflected impedance may 
be found from the equation: 

z. (211'fM) 2 

z. 
in which Z, is reflected impedance, M is mutual inductance, and 
z. is the total secondary impedance, considered to be made up of 
resistance Rs and reactance Xs. 

This equation may thus (by employing the notation of com
plex numbers) be re-written: 

z. (211'fM) 2 

Rs + jXR 

In general terms this equation yields the result: 

Z, = R, - jX, 

where R, is the reflected resistance and X, is the reflected reactance 
due to the secondary current. The significant portion of this equa
tion is the change from + j to - j that occurs as a result of the divi
sion. The change shows that the phase angle of the current in the 
secondary coil has an important effect upon the nature of the re
flected impedance. In a normal untuned coupled circuit such as a 
transformer, the secondary impedance is highly inductive ( + j) 
and, as shown in the equation, it is reflected as a capacitive reac
tance back into the primary. When the coupled circuits are reson
ant, however, the secondary impedance may be capacitive in na
ture while the circuit is working off-frequency; in this event, a 
similar reversal of sign occurs (i.e. from -j to + j) and the reflec
ted impedance appears inductive. In general, the reflected im
pedance is capacitive when the secondary impedance is inductive 
and inductive when the secondary impedance is predominantly 
capacitive. This is an important concept in the analysis of coupled 
resonant circuits as will be shown shortly. 
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EXAMPLE: (See Fig. 28.) A mutual inductance of .02 henrys exists 
between a pair of coupled coils; the impedance of the secondary 
coil is 30 ohms and the frequency is 400 cps. What is the impedance 
reflected into the primary winding? 

Z 
_ (6.28 X 400 X .02) 2 

r - 30 

Z 
_ (50.24) 2 _ 2524.0 

r -
30 

- 30 = 84.l ohms 

36. Effect of Coupling upon Resonance 

Change of resonance curves with coupling. Suppose a circuit 
such as that shown in Fig. 29 is arranged to permit variation of 
coupling between Li, and L,. at various frequencies. Starting with 

'-v--" 
M•.02 HENRIES 

Fig. 28. Circuit for illustra
tive example. 

very loose coupling between the coils (k = .001 to .005), the fre
quency of the generator is varied above and below the resonant 
frequency Fr· As shown in the diagram, the two resonant circuits 
are identical in every respect, the Q of each being greater than 100. 
The loose coupling condition yields a response curve such as (I) 
in Figure 30 having these characteristics: (a) reduced secondary 
current as contrasted with the other curves due to inadequate flux 
linkage between primary and secondary, (b) relatively peaked top 
at resonance, a desirable condition for sharp tuning, (c) steeply 
sloped sides at frequencies near Fr on each side of resonance. This 
last attribute makes for good selectivity or rejection of closely ad
jacent frequencies when the circuit is used for receiver tuning. 

As the coils L1, and L,. are moved closer together to increase 
the coupling from k = .003 to k = .0067, the secondary current 
increases as a result of the improved flux linkage, the curve (2 in 
Fig. 30) broadens somewhat and at the same time takes on more 
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gently sloped sides. If the coupling is increased beyond this point, 
the curve (3 in Fig. 30) begins to develop double peaks which 
spread farther apart (curve 4) as the circuits go from slight over
coupling to increased overcoupling. The coupling coefficient for 
the condition which provides maximum response with a single 
peak - that is, curve 2 - is called the critical coupling coefficient. 

Rp Cp 

G 
T 

G E Lp Ls Rs 

M 

Lp•Ls 
Cp•Cs 
Rp•Rs 
Qp•Os >100 

Fig. 29. Coupling of identical series resonant drcuits. 

The amount of mutual inductance necessary to arrive at critical 
coupling depends upon the Q's of the two resonant circuits as will 
be demonstrated later. 

Response below resonant frequency. An understanding of the 
cause of the variation of the resonance curves requires application 
of the facts discussed in Par. 35. When the generator frequency is 
below resonance, the inductive reactances in the circuits are no 
longer equal to the capacitive reactances, the latter being the larger 
in magnitude. That is, a series L-C circuit below its resonant fre
quency behaves as a predominantly capacitive circuit. Considering 
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only the secondary L-C combination for the moment, its capacitive 
reactance is reflected back into the primary winding as an inductive 
reactance; it will be recalled that this effect is due to the sign 
change of the j operator as described in Par. 35. Since the primary 
circuit is also intrinsically capacitive below resonance, there must 

lILzl 
SECONOARY 
CURRENT 

BELOW 
RESONANCE 

Fr 

ABOVE 
RESONANCE 

1.- LOOSE COUPLING (K•.0051 
2.- CRITICAL COUPLING (K•.00671 
5.- SLIGHT OVEIICOUPUNG (K• .Oil 
4.- INCREASED OVERCOUPUNG (k•.05 

Fig. 30. Resonance curves for various coefflcienh of coupling. 

be some frequency at which enough inductive reactance is reflected 
back into this circuit to cancel the residual capacitive reactance 
and re-establish a resonant condition in the primary circuit alone. 
Thus, at some frequency below resonance with a given degree of 
overcoupling, the primary resonates by itself and produces an off
resonance peak (C and D in Fig. 30) . 

Response above resonant frequency. Similar reasoning may be 
applied to this condition. Both L-C circuits are essentially inductive 
for all frequencies above resonance, hence the secondary reflects a 
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capacitive reactance back into the primary. At some frequency 
higher than Fr• then, the effective inductive reactance of die prim
ary is neutralized by the reflected capacitive reactance producing 
the off-resonance peaks C, C~ D, and D' in Figure 30. 

Response at resonance - With both circuits fed the resonant 
frequency F., reactance completely vanishes leaving only resistances 
RI and R2. Since there is no reactance in the secondary, only re
sistance appears as reflected impedance, adding to the resistance 
already present in the primary. This does not change the resonant 
frequency of either circuit so that resonance is theoretically present 
at F,. It should be noted, however, that the magnitude of the re
sponse at F, for the overcoupled curve (D'') is substantially less 
than that of the two off-frequency peaks (D and D'). This is 
easily explained as follows: for the over-coupled condition, M (in 
the equation Z, = (27rfM) 2 /Z.) is so large that the resistance 
coupled back into the primary is appreciably larger than the re
flected resistances for the off-frequency cases. This increased re
flected resistance reduces the primary current and hence the sec
ondary current at F,. 

37. Conditions for Critical Coupling 

If the coupling between two resonant circuits is adjusted for 
critical coupling it is found that the reflected impedance is a pure 
resistance having the same value as the primary resistance. This 
establishes a condition of matched impedances in which Rp is effec• 
tively matched to R. through the medium of reflected resistance; 
thus, this is also the condition in which maximum power is trans• 
£erred from the primary to the secondary - a fact that accounts 
for the high peak at B in curve 2 to Fig. 30. For critical coupling, 
the equation Z, = (27rfM) 2 ;z. may be rewritten as 

or 

(a) 

(27rfM) 2 

R. 

Note that Rs rather than Zs is used in this equation because the 
circuits are in resonance and the only impedances present are 
resistive in nature. 
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We are interested in deriving the value of the coefficient of 
critical coupling (call this kcc) in terms of other common quanti
ties. To do this, let us write several other equations as follows: 

(b) Qp 
21rfLP (Q of the primary, by the 

RP standard definition of Q) 

(c) Q,. = 21r£L,. (Q of the secondary, by the 
R. standard definition of Q) 

(d) k 
M definition of k obtained in 

V LpL. Paragraph 34.) 

Solving equations (b) and (c) for RP and R., respectively, we have: 

(e) 

(f) 

These values of R1, and R. are now substituted in equation (a): 

(g) 

Simplifying: 

(h) 

(i) 

21rfM= 

V Lp L. 
21rfM = 21rf---:;::::;;:==~ v Qp Q.. 

M 
V Lp L. 

v Qp Q.. 

Converting equation (d) to 

(j) 

Substituting equation (j) into equation (i) yields 

(k) 

Which simplifies to 

(l) 
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Thus, equation (l) demonstrates that the coefficient of critical 
coupling is an inverse function of the square root of the product 
of the primary and secondary Q's. Thus, in circuits of high Q the 
coefficient of coupling may be smaller (and the coupling looser) 
to realize critical coupling. 

The value of kee as shown in Fig. 30 was obtained from equa
tion (l) by assuming that both Q1, and Qs were equal to 150. Then: 

I 
y 150 X 150 

38. Review Questions 

1 
150 

.0067 

(1) State three ways in which the coefficient of coupling between two given 
coils may be alterd. 

(2) If the inductance of the primary winding of a certain transformer is 
2 henrys and its secondary inductance is 50 henrys, what is the value of M for 
unity coupling? 

(8) What is the coefficient of coupling in the transformer of Question 8 
if M is actually 9 henrys. 

(4) Explain briefly why reflected impedance is inductive when the second
ary circuit is predominantly capacitive. 

(5) Define coefficient of coupling in terms of actual mutual inductance and 
unity coupling. 

(6) Explain clearly what is meant by critical coupling between resonant 
circuits. 

(7) In terms of the discussion in the preceding chapter, why are over
coupled resonant circuits often used to provide wide bandpass tuning ar
rangements? 

(9) State one advantage of loose coupling; state one disadvantage. Discuss 
these advantages and disadvantages in relation to a tuned circuit in the inter
mediate frequency stage of a superheterodyne receiver. 

(9) Explain why critical coupling may be obtained in high Q circuits with 
less flux linkage between primary and secondary than in low Q circuits. 
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APPLICATIONS 

39. Series and Parallel Feed 

Figure 31 shows three separate arrangements for a tuned-plate 
oscillator. Circuits (A) and (B) use series feed, and circuit (C) uses 
parallel feed. In circuits (A) and (B) , note that the oscillator, 
tuned circuit, and B+ supply are connected in series. The direct 
current flows through the inductance to reach the tube. This circuit 
works because the impedance of the d-c supply is bypassed by C2, 
whose reactance is so law at radio frequencies that it does not im
pede the flow of r-f currents. Likewise, the d-c resistance of the coil 
is so low that it does not impede the flow of plate de. In these ap
plications, the tuned circuits are used to determine and select the 
oscillation frequency for the circuit. 

Figure 31 (C) shows a parallel-feed (or shunt-feed) oscillator 
circuit. This circuit is usually preferred in receivers because the 
tuning capacitor may be directly grounded without any need for 
additional blocking capacitors. Tight coil coupling is important in 
all these circuits, since it helps maintain frequency stability when 
the supply voltage fluctuates. L, is made as small as possible to 
reduce the mutual inductance, and to keep its resonant frequency 
well above the tuning range. This means that stray capacitances 
across the feedback winding must be kept to a minimum. This 
circuit is not satisfactory above about 50 me. Figure 32 shows 
how a resonant circuit may be used to provide boosting in an 
amplifier. The circuit in (A) provides boosting in the vicinity 

54 
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of the resonant frequency, with maximum boost at the resonant 
frequency. For this type of application, the resonant frequency is 
often between 50 and 120 cps, although higher or lower frequencies 
may be used. Note that the inductor (LI) has to carry the greater 
part of the plate current for VI. In all circuits of this type, it is 

B+ 
B+ 

RI 
B+ 

( C) 

Fig. 31. Typical tuned-plate oscillators. 

advisable to select a high L/C ratio in order to give the highest 
gain with a fixed amount of boosting. 

An alternative arrangement that has the advantage of avoiding 
direct current flow through the winding of the inductance is shown 
in circuit (B) . In this application, the tuned circuit is in the grid 
circuit of V2. As a result, it is possible to use a higher value of L 
(because d-c saturation is avoided), and to shunt the tuned circuit 
with a variable resistor. 

40. 1-F Amplifiers 

Let us consider the use of resonant circuits in the design of 
intermediate-frequency amplifiers. The intermediate-frequency am-
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plifier, as used in the typical superheterodyne circuit, is a high-gain 
circuit permanently tuned to the frequency difference between the 
local oscillator and the incoming r-f signal. (All incoming signals 
are converted to signals of the same intermediate frequency by the 
converter.) Thus the tuned i-f circuits may be adjusted for max
imum amplification and selectivity. The i-f transformers used in 
these circuits consist of pairs of coupled resonant circuits. They 

VI V2 

LI 
INPUT 

B+ 

(A) 

V2 

INPUT 

B+ 

-:- B- ( B) 
Fig. 32. Bass-boosting circuits. 

are tuned either by varying the capacitance in the circuit, or 
by moving a powdered iron core in or out of the coils to change 
the inductance of the tuned circuits. Some applications of r-f 
transformers require that only the secondary be tunable. 

The diagram of the single-stage i-f amplifier using a pentode 
tube (Fig. 33) illustrates the use of the i-f transformer. Trans
former Tl, the input transformer, has its primary winding in the 
plate circuit of the mixer tube, and LI-Cl is resonated at the se
lected intermediate frequency. This winding is usually in parallel 
with the output of the mixer tube to provide shunting of any 
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signals of unwanted frequencies. The secondary circuit (L2-C2) is 
inductively coupled to the primary and is in series with the grid 
of the pentode to provide the highest possible impedance path to 
the grid, to utilize as much as possible of the i-f signal. Since the 
circuits of T2 are tuned to the same frequency as the circuits of Tl, 
and operate in the same manner, we will not discuss the operation 
of the second i-f transformer. 

41. Filters 

Filters are necessary for selecting energy at desired frequencies 
and for rejecting energy at undesired frequencies. As you know, 

Fig. 33. Single-stage 1-f amplifier. 

capacitors and inductors have qualities that make them suitable, 
either singly or in combination, for use as wide frequency range 
filters. Tuned circuits may also be employed as filters for specified 
bands of frequencies. Bandpass and hand rejection filters are of 
this type. 

The low-pass filter is designed to pass all frequencies below a 
selected frequency known as the cutoff frequency. It is also in
tended to reduce substantially all signals of frequencies above cut
off. Such a filter, together with its cutoff characteristic, is shown in 
Fig. 34. 

A filter of this type will pass direct current and low frequency 
alternating current with little opposition. For this reason, the low-
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pass filter is often used to filter, or smooth, the output of rectifiers 
of power supplies. 

The high-pass filter is designed to pass currents of all fre
quencies above cutoff frequency. Note in Fig. 35 that this type of 
filter is merely a reversal of the components in the low-pass filter. 

L 

,.:. '000' •t OU:PUT 

0-----... --0 

!i ICUT·OFF 
1111 1111 1-----, I FREQUENCY i~r I 
~o :::,> 
D.11:: PASS 
!;0 BANO 
0 -FREQUENCY 

Fig. 34. Low-pass filter. 

Since signals of all frequencies below cutoff are attenuated, this 
type of filter may, in some applications, be used to stop the flow 
of direct current, without stopping alternating currents above the 
cutoff frequency. 

When higher current selectivity is required in the filter, res
onant circuits may be used for filtering. The bandpass filter shown 

C 

0 I 
INPUT L OUTPUT 

-,REOUENCY 

Fig. 35. High-pass filter. 

I 

I 
I 

PASS -,I 
BAND 

I 

in Fig. 36 is designed to pass frequencies within a continuous band, 
which is limited by upper and lower cutoff frequencies. The series 
and parallel resonant circuits of which this filter is composed are 
all tuned to the frequency band desired. The series resonant circuit 
provides a low impedance path for the signals of desired frequen
cies, while the parallel resonant circuits provide a low impedance 
path for the signals of undesired frequencies. The parallel circuit 
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also presents a high impedance to the desired signal. These circuits 
are extensively used in communications receivers and transmitters. 

A band-reject filter is designed to attenuate signals of all fre
quencies within a preselected bandwidth and to pass signals of all 
frequencies on either side of the attenuated band. Again, all reso-
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Fig. 36. Bandpau filter. 

OUTPUT 

nant circuits are tuned to the band to be affected. The parallel 
circuits present a high impedance to the signals of undesired fre
quencies only, while the series circuits present a low impedance 
path for these signals. Signals of frequencies outside the reject 
band find a low impedance path through the parallel circuit. 
Figure 37 is a schematic of a circuit of this type. 

42. Wave Traps 

Wave traps are often used in the antenna circuits of radio 
receivers and are, in essence, a form of the band-reject filter. Figure 
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38 shows two basic wave traps. The parallel circuit (A) , con
nected as shown, is tuned to be resonant at the frequency of an 
undesired signal. The wave trap then presents a high impedance 
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Fig. 37 Band• stop filter. 

to all signals of this frequency, and allows signals of frequencies 
on either side of the resonant frequency to enter the receiver. 

The series circuit (B) connected as shown, is tuned to be res
onant at the frequency of the undesired signal, which is then by-

~ 0 1 0 

I E1N EouT E1N EouT 

0 0 
(A) ( B) 

Fig. 38. Basic wave traps. 

passed, usually to ground, without effecting the currents of other 
frequencies. Wave traps are often employed between amplifier 
stages in television receivers to eliminate unwanted signals. 

43. lecher Unes 

Lecher lines are lengths of parallel two-wire transmission line 
that are used as tuned circuit elements for obtaining wavelength 
measurements. These lines are normally between 2 and 5 wave
lengths long. A shorting bar may be moved over the length of the 
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line. When used for wavelength measurement, the line may be 
closed at the input end and coupled inductively, or open and 
coupled capacitively to the r-f source. Figure 39 shows both 
conditions. 

Lecher lines may be used to measure wavelengths by detecting 
the maxima and minima of the voltage or the current in the line. 
Current values can be measured roughly by a small loop or coil 
of wire placed close enough to the line to couple into the magnetic 
fields. An ammeter measures the current flow in the loop, reading 
maximum at the current maxima and minimum at the current 

Fig. 39, Coupling lecher 
lines to on r.f source. 
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mm1ma. The wavelength is twice the distance between two suc
cessive maxima or two successive minima. In some cases, it is more 
convenient to use an r-f voltage indicator to locate the voltage max
ima and minima. 

44. Review Questions 

(1) Draw the circuit of a tuned-plate oscillator. 
(2) Explain the operation of the circuit you have just drawn. 
(!I) Why is a parallel feed oscillator circuit preferred for use in radio receivers? 
(4) What are the characteristics of the low-pass filter? 
(5) Draw the circuit of a hand-stop filter. Explain the circuit. 
(6) Explain the use of Lecher lines. 
(7) Why may a quarter-wave line be utilized as a stand-off insulator? 
(8) What happens to a quarter-wave line used as an insulator when the signal 

frequency varies? 



Chapter 8 

SUMMARY 

45. Characteristics of R-L-C Circuits in General 

R-L-C circuits are always resonant at some frequency. Circuit 
characteristics and component behavior depend principally upon 
whether or not the circuit is used with signals of resonant frequency. 
The highlights of R-L-C circuits are outlined below, with specific 
references to the condition of resonance (use at resonance fre
quency) or non-resonance (use at other than resonance frequency) 
as the case may be. 

A. The voltage across the inductor and the voltage across the 
capacitor are 180 degrees out-of-phase (assuming no resistance). 
This phase relationship permits arithmetic subtraction of one 
from the other to obtain the resultant voltage across both compo
nents. 

B. The current through the inductor is opposite in phase to 
that in the capacitor. Again, the 180-degree phase difference makes 
it possible to find the net reactance of the reactive components by 
arithmetic subtraction. 

C. The current flowing in a series R-L-C circuit has the same 
magnitude throughout and, when used as a reference vector in a 
voltage vector diagram, is considered as a constant for the circuit. 
Thus the current vector shoul be considered as the reference line 
for the vector diagram. 

62 
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D. The voltage that appears across either of the reactive com
ponents may be considerably larger than the source voltage. Its 
magnitude depends upon (a) the proximity to resonance and 
(b) the Q of the coil. At series resonance, the potential developed 
across the coil or capacitor is the product of the source voltage and 
the Q of the coil. 

E. Theoretically there are an infinite number of possible L-C 
combinations that may be used to establish resonance at a given 
frequency. In practice, the L/C ratio is chosen on the basis of the 
characteristic response desired for the circuit; i.e., the L/C ratio 
is dictated by the selectivity, pass-band, or Q called for by design 
considerations. 

F. In a series-resonant circuit composed of R-L-C components, 
the current is maximum and the impedance is minimum; in a 
parallel-resonant circuit of the same type, the line current is min
imum, the impedance is maximum, and the circulating tank cur
rent is maximum. In either case, the only impedance that governs 
the magnitude of series current is the resistance present in the 
circuit. 

46. How Off-Resonance Operation Affects Performance 

The tabular summary given below indicates the changes that 
occur in parallel resonant circuits with operation at frequencies 
above and below resonance. 

Above Resonance Below Resonance 
Inductive reactance rises falls 
Capacitive reactance falls rises 
Circuit resistance unchanged• unchanged• 
Circuit impedance falls falls 
Line current rises rises 
Tank current falls falls 
Inductance unchanged unchanged 
Capacitance unchanged unchanged 
Circuit behavior inductive capacitive 

•Except for skin effect, which can be considerable. 

The following is a comparison of two similar parallel resonant 
circuits, one having a higher Q than the other. The terms "high" 
and "low" are used in a relative sense only. 



Selectivity 
Bandwidth 
Impedance 
Line current 

RESONANT CIRCUITS 

High Q Circuit 
high 
small 
high 
low 

Tank (circulating) current high 

47. R-L-C Applications 

Low Q Circuit 
low 

large 
low 
high 
low 

The wide application of R-L-C circuits in modern electronic 
design is somewhat misleading in the sense that it implies a multi
tude of significantly different effects. Actually, these circuits may 
be classified in relatively few groups as follows: 

A. In general, an R-L-C circuit is either a tuning arrangement 
or a filter network. The classification into which any given circuit 
falls depend principally upon its intended function and its posi
tion in the circuit. 

B. Tuning is generally defined as a process in which an R-L-C 
circuit selects signals of one particular frequency while it discards 
signals of other frequencies that may be present simultaneously. 
Filters, on the other hand, are usually used either to select or to 
reject signals of a narrow or wide band of frequencies. In this group 
are found bandpass filters, which choose signals within a band of 
frequencies while they reject signals of all other frequencies above 
and below the desired band; high-pass filters, which pass only 
high-frequency signals, while rejecting low-frequency signals; and 
low-pass filters, which reject high-frequency signals, permitting pas
sage of signals of low frequencies. 

C. Increasing the number of filter components generally re
sults in a sharpening of the filter action, but this advantage is not 
proportional to the number of additional sections. The design 
engineer must constantly contend with diminishing returns as filter 
pairs are added, so that it is uneconomical and disadvantageous to 
carry the process beyond a certain point. The filter sharpness re
quired is determined by the function of the circuit; the design of 
the circuit determines what types of network may be used. 
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