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PREFACE 

Boolean algebra is the algebra of /ogie, an abstract mathematical 
structure appearing in three different forms—a switching algebra, a 
propositional calculus, and an algebra of sets. Heady fare for a 
beginner, yet, contrary to what many might think, you do not need 
a mathematical background to understand and use Boolean algebra. 
All you need is an orderly and inquiring mind. Boolean algebra is 
the basis for all switching engineering, from which comes modern 
electronic computers, automated process control, and telephone sys-
tems. 
ABC's of Boolean Algebra explains the principles of symbolic 

logic, logical statements, and electronic circuits used for logical 
functions. 

With simple block diagrams you are shown the relationship 
between language and switches, the principles of logical design, and 
examples of the application of these principles. You are shown how 
to write logical expressions, how to expand and simplify them, and 
how to use relays and switches in simple practical circuits. 
The book shows block diagrams of AND, OR, NAND, and NOR 

circuits, their symbols, and how to convert algebraic expressions 
into practical switching circuits. The concept of numbering systems 
is discussed to explain how logical circuit blocks can be combined 
and used to make calculations. 

For simple examples of switching circuits you will progress 
through circuits increasing in complexity until finally the logical func-
tions of entire stages are discussed. 

This book is for the engineer who desires to understand and design 
circuits performing logical functions, the electronics technician who 
is yet a neophyte in the logic of digital computers, the 'student, and 
the interested layman. For these people the content forms a base not 
only for more advanced study, but also for a deeper understanding of 
the complex mechanisms that do much of the work in today's world. 

June, 1963 

ALLAN LYTEL 
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Chapter 1 

Basic Logical Concepts 
One of the most ironical aspects of mathematics is that some-

times many years elapse between the construction of a mathemati-
cal system and its application in engineering or science. For ex-
ample, complex numbers, sometimes called imaginary numbers, 
were used in a mathematical sense for many years before their ap-
plication to alternating-current circuit theory. 

Another example is mathematical or symbolic logic. This was a 
fully developed and independent field of mathematics long before 
its application to modern switching circuits and computers. Ap-
parently the famous German mathematician Gottfried Wilhelm von 
Leibniz (1646-1716) was the first person to formulate a system of 
mathematical logic. Other basic contributions to mathematical logic 
were made by Augustus DeMorgan (1806-1871) and George Boole 
(1815-1864). Indeed, one entire field is now called Boolean alge-
bra after Boole, whose major contribution was a monumental publi-
cation entitled An Investigation of the Laws of Thought on Which 
Are Founded the Mathematical Theories of Logic and Probabilities. 
When this was published in 1854, it was considered an abstract 
mathematical novelty. It was first recognized as a fundamental con-
tribution to the field of mathematics by Whitehead and Russell in 
their famous Principia Mathematica ( 1910-1913 ) . Another famous 
work on this topic of logic is the classic Mathematical Logic, writ-
ten in 1928 by Hilbert and Ackermann. 

Originally symbolic logic was designed as a technique of se-
mantics and construction in the use of language; it was designed to 
provide an analytical and logical method of presenting ideas. For 
this reason symbolic logic has long been taught in colleges and 
universities as a language technique. The milestone in mathemati-
cal logic, indeed the turning point between the use of logic as an 

7 



abstract system and the beginning of its use in modem electronics, was 
in 1938. Then Dr. Claude E. Shannon, who was later to join the 
Bell Telephone Laboratories, published a paper entitled A Symbolic 
Analysis of Relay and Switching Circuits. This paper, which first 
appeared in the A1EE 'Transactions (Vol. 57, 1938), was an ab-
stract of Dr. Shannon's thesis presented at MIT for the degree of 
Master of Science. Comprising only ten pages, this paper is the tap 
root from which has come much of the modern work in symbolic 
logic. Symbolic analysis supplies the basis for the logcial design used 
in modern digital computers, switching systems, and industrial con-
trol systems. 

Although much can be said about symbolic logic and its uses, it is 
possible to make a brief and yet meaningful introduction to this 
field in terms of its use in control systems. Suppose that there are 
two switches connected in series to a source of electrical energy. 
such as a battery. Label these two switches A and B. This may 
be called an AND circuit since it is quite obvious that there will be 
current flow only if A and B are both closed. This seems to be a 
very trivial point, yet it is the very basis of symbolic logic as used 
in electronic switching circuits. In logical arrangements an output 
from the circuit is desired only if A is true (switch A closed), and 
B is true (switch B closed). It is not enough that either switch 
alone be closed; it is important that they both be closed at the same 
time. 

Another possibility to consider again uses two switches, but here 
the switches are connected in parallel, and each is in series with 
a source of energy. This can be called an OR circuit because there 
will be current flow if A is closed or if B is closed. Thus, if it is 
desired to have an output if either input is present, a parallel 
arrangement, known as an OR circuit is used. 

Although AND and OR circuits are obvious and quite simple, 
amazingly complex systems can be built with them. Obviously we 
could have any number of switches in series, such as A and B and C 
and D and E. In this case there will be an output only if all the 
switches are closed. In the other case, if the switches are all con-
nected in parallel, there will be a circuit output if any one of A or B 
or C or D or E is closed. 

Although this is quite simple and basic, almost immediately trou-
ble appears. Consider the OR circuit, for example; in the English 

s language there are two meanings for the word or. We have a non-
exclusive or; by this we mean it is possible that either A is true or 
B is true or that they are both true. As an example, it is possible 
to say "You are going to wear a hat or a coat." Now though it is 
quite clear from this sentence that you can wear a hat or you can 
wear a coat, it is also quite possible that you can wear both. How-
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ever, it is also possible to say "I am going to New York or I am 
going to Chicago." Here is a very different meaning. I can go to 
New York or I can go to Chicago, but quite obviously I cannot go 
to both, at least not at the same time. The second meaning of the 
word or then, is the exclusive one, meaning either statement A or 
statement B is true but not both statements are true. 

SYMBOLIC LOGIC 

Symbolic logic is often considered to be identical with Boolean 
algebra. We can see why this is called an algebra by comparing the 
laws of Boolean algebra to those of common algebra. In order to do 
this, there are three terms that must be defined. The first is the 
logical connective; in logically arranged constructions certain state-
ments are related by these connectives. For example, one such con-
nective is and; it is possible to say "The book is green, and it has 
two hundred pages." The first statement is "The book is green" and 
the second statement is "it has two hundred pages;" the connective 
"and" ties the two statements together. Another logical connective 
is or; we say, for example, that it will either rain or snow. Again, 
there are two possible states, one is rain, the other is snow, and 
they are connected by the word or. 

Just as in ordinary algebra, we use symbols in the vocabulary of 
Boolean algebra. It is possible, for example, for A to represent the 
statement that the book is green and B to represent the statement 
that the book has two hundred pages, so that we can write in this 
case A and B, which means the book is green, and it has two 
hundred pages. 
The third definition, that of a truth value, is more difficult to 

formulate. Various types of logical statements and propositions writ-
ten in symbolic form can be tested for their truth value or corre-
spondence to reality. As an example it is sufficient to say here that a 
truth value of 1 means that the statement is true and a truth value 
of 0 means that the statement is false. 

With these very rudimentary definitions it is possible to compare 
algebra and symbolic logic (Table 1-1). Algebra has certain sym-
bols which can be used to represent variables that are either de-
pendent or independent, with numerical values that range over the 
entire number system from plus infinity to minus infinity. The num-
bers that are used in algebra can be of various types such as real, 
imaginary, complex, rational, irrational, integral, fractional, and 
many others. Letter symbols are used in symbolic logic to represent 
dependent and independent variables just as in algebra; but these 
variables are statement variables and represent complete phrases of 
a sentence. Their purpose is to reduce a statement from its content, 
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Table 1-1. Comparison of Algebra and Symbolic Logic. 

Fundamental operations of Algebra. Fundamental operations of symbolic 
Addition (+) logic. 

Conjunction (symbol o) 

a + b = c abc 
1 1 2 
1 2 3 
2 2 4 
5 4 9 

etc. in infinite variety. 

Subtraction (—) 

a — b = c ab c 
2 1 1 
3 1 2 
1 3 —2 
9 4 5 

etc. in infinite variety. 

a • b = c 
a and b = c 
c is true only 
when 'a' and 'b' are 
both true 
simultaneously. 
True = 1, 
False = 0 
no other possibilities exist. 

abc 
0 0 0 
0 1 0 
1 0 0 
1 1 1 

disjunction (symbol +) 

b = c 
a or b = c 
c is true whenever 
either 'a' or 'b' are 
true. 
T = 1, 
F = 

negation 
a = 
'a' is true if 'b' is 
false; 'a' is false 
if 'b is true; 'a' 
is the negation of 'b' 

a 
0 1 
1 0 

l a b c  
1 000 
0 1 1  
1 0 1  
1 1 1 

expressed in words, to its form, expressed in symbols. Once a chain 
of reasoning is reduced to its purely formal outline, the validity of 
any conclusion may be determined by the truth or falsity of the com-
ponent statements and the truth or falsity of the connectives between 
the statements. Since a statement variable can have only one of two 
values, true or false, and since any statement connectives can only 
be either true or false, they may be considered binary, or two-valued. 
The system considered in its entirely can be regarded as a binary 
system. Thus it is possible to represent these variables as a series 
of pairs; for example, one pair is 1 and 0, another pair is true and 
false, another pair is pulse and no pulse, another pair is plus volt-
age and minus voltage. In every case we are dealing with binary 
numbers in which the variable can assume one of two possible 
values. 

FUNDAMENTAL OPERATIONS 

Referring again to Table 1-1, if A is 0 and B is 0, then C is O. 
If A is 0 and B is 1, C is still O. If A is 1 and B is 0, C remains 0, 
but if A is 1 and B is I. then C is equal to I. Thus for conjunction 
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A AND B equals C is true if and only A and B are simultaneously 
true. This is written as A • B = C. 

Disjunction, which has the symbol +, is the equivalent of the 
word or, so that we can say A or B equals C. As shown in the truth 
table, C is 1 (C is true) if A is 1 (true) or if B is 1 (true) or if 
both A and B are 1 (true). 
The third fundamental operation is negation; very simply, it is 

stated that A is true if B is false, A is false if B is true. Therefore 
A is the negation of B as shown in the truth table. 

There are other types of logical operations which are useful to the 
logician. But these may always be derived from the three above. 
These three are easily utilized by electronics; consequently, digital 
logic for switching circuits is generally concerned only with the op-
erations of conjunction, disjunction, and negation. 

The Binary Variable 

The binary variable assumes two and only two values. It corre-
sponds directly to the "bit" of information theory. The term bit 
means the binary digit. The two values of a binary variable are 
commonly represented as true, false; one, zero; plus voltage, minus 
voltage; pulse, absence of pulse; open relay contact, closed relay 
contacts; etc. A finite number of binary variables when taken to-
gether must yield a finite number of possible combinations. Thus if 
a variable is represented by the position of a toggle switch, two 
switches (representing two variables) can result in only four pos-
sible combinations, as shown in Table 1-2. Three switches would 

Table 1-2. Combination of Two Binary Variables. 

A B 

1 1 1, ON 
0 1 0 = OFF 
1 0 
0 0 

give eight possible combinations, four would give sixteen. The num-
ber of possible combinations can be seen to be 2,''' where N is the 
number of switches or binary variables. 

Consider the three binary variables represented by the three 
switches, A, B, and C. There are eight possible configurations of 
ON and OFF that could be set up on A, B, and C. These are shown 
in Table 1-3. Some arbitrary action could be predicated solely on 
the occurrence of any one of the eight possible combinations of A, 
B, and C. The predicated action could also be based on the occur-
rence of more than one combination; that is, it could be initiated 
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Table 1-3. Combination of Three Binary Variables. 

Combination A B C 

1 0 0 0 

2 0 0 1 

3 0 1 0 

4 0 1 1 

5 1 0 0 

6 1 0 1 

7 1 1 0 

8 1 1 1 

by either combination 1 or combination 5; or by any of combi-
nations 3 or 4 or 7; or any combination except 8; etc. These com-
binations of combinations represent functions. There are a finite 
number of possible functions of N variables. The reader should 
satisfy himself that in general the number of combinations is 2s 
where N is the number of variables, and that the number of func-
tions is 22s. 

There could be any of eight occurrences in a scheme where each 
unique action corresponds to a single combination as 010, 110, or 
001. Note that there are N variables, hence 2N combinations. Since: 

N = 3 
then 2s = 8 

Also, the number of possible functions or combinations of com-
binations is given by: 

N = 22N 

where N is the number of possible functions. 
For N = 3, we have: 

N = 2' 
N = 256 possible functions 

LOGICAL CONNECTIVES APPLICATIONS 

The rules of binary arithmetic provide for a complete system of 
numbers that may be used for counting and computation. There are 
several advantages to this two-valued system, as compared to sys-
tems having other numbering bases. The rules are direct and simple; 
for example, there are no tables for multiplication. For use in com-
puters, binary numbers have the advantage of requiring only two 
states of the counters (vacuum tubes or transistors). The 1 and 0 
of the binary system may be used to represent the ON and OFF 
states, respectively. 
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The manipulation of numbers can be treated by the use of logical 
connectives; i.e., OR or AND. As mentioned earlier, in the terms 
of logic, or has two meanings. If A is one event and B is another 
event, then A or B can mean either one event A, or, if not A, then 
the event B. But this is not the only meaning of the word or. If 
event A occurs, and at the same time event B occurs, this satisfies 
the condition either A or B. Hence the two meanings: either A or 
B but not both, and either A or B or both. Thus if A and B are both 
statements, we can form several compound statements. 
A AND B = C 
We say that C is true if (and only if) A is true and B is true. 

C is false if A is false, if B is false, or if both are false. 
A OR B = C 

We say that C is true if A is true or if B is true or (in this case) if 
both are true. Note that for the OR connective only one statement 
must be true; for the AND connective all statements must be true. 

Since nearly all storage devices and circuit techniques that are 
used for digital systems are binary in nature, the simplicity of arith-
metic operations in the binary system provides theoretical advantages 
and circuit simplifications that surpass those of other numbering 
systems. The two-state nature of binary switching devices permits 
the use of conventional logic; the names of the states are purely 
arbitrary; for the present discussion the two states will be denoted "1" 
and "0". State 1 is defined as the transmission of information, and 
state 0 as the absence of transmission. Thus a conventional switch 
with a pair of normally open and a pair of normally closed contacts, 

called A and A respectively, would be described by: 

A = 1 A = 0 when operated, 
and by: 

A =_ 0 A = 1 when not operated. 

Negation (A) has been introduced in these expressions to define 
a not on condition (symbolized by the use of the bar). If two 
switches are such that one is in the transmitting state while the 
other is not transmitting, each device is said to be the negation of 
the other. A permanently closed circuit is, therefore, the negation 
of a permanently open circuit: 

-1- = 0 and Ô = 1 
Since a double negation is equivalent to an assertion, it follows 

that: 

A=A 

Table 1-4 shows the basic Boolean relations; these will be ex-
amined later and are given here for reference. 
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Table 1-4. Basic Logic Rules. 

1 + 0 = 1 

1 + 1 = 1 
1 • 1 = 1 
1 • 0 = 0 
0 • 0 = 0 

DeMORGAN'S THEOREM 
(X • y) = i; 
X +Y =i•"7-

ABSORPTION PROPERTY 

X • (X + Y) = 
X+X•Y = X 

X + 0=X 
X + 1 = 1 

X • 0 = 0 

X • 1 = X 

X + = 1 

X + X -= X 
X • X = X 

X • «5( -= 0 

USEFUL IDENTITIES 
X + i( • Y = as Y 
X • (X + Y) = X • Y 

(X + Y) • (X + Z) • (X + 
(X + 4E21 z) 

X•Y+5(•Z-1-Y•Z=X•Y-1--)i•Z 

The algebraic notation for the operations is: AND is repre-
sented by the dot; i.e., A AND B is written A • B; OR is represented 
by the plus; i.e., A OR B is written A+ B; NOT is represented by the 

bar; i.e., NOT A is written A. 
The axioms of Boolean algebra are similar to those of conven-

tional algebra: 

X+Y= Y+Xj 
X • Y — y • )0 Commutative Laws 

X + (Y + Z) = (X + Y) + Z 
X • (Y • Z) = Z • ()( • y) ÇAssociative Laws 
X • (Y + 5) = (X • Y) + (X • Z) j 

s X +LY • Z = (X + Y) • (X + Z) Distributive Laws 

The relationship between the. OR and the AND may be seen 
from the equation known as DeMorgan's Theorem. This theorem 
states basically: (the negative of the sum of two classes is equal 
to the product of their negatives, and the negative of their product 
equals the sum of their negatives. In other words,) to negate an ex-
pression such as (A + B), negate each variable and change each 
AND to OR, each OR to AND. 

Thus: if we take (A +B) and negate it, we get (A + B). This 

equals A • 

Also: A • B negated may be written as: (A • B) = (A + 

ELECTRONIC CIRCUITS 

Electronic circuits may be readily designed to meet the Boolean 
input and output conditions. The three basic blocks are AND, OR, 
and NOT, as in Fig. 1-1. In these circuits the state of transmission 
of information (I state) is defined by a particular voltage level and 
the state of nontransmission (0 state) as a second level. Typically, 
a ground condition represents the 1 state, and a negative voltage 
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represents the O state. AND or OR circuits often are diode gates; 

their application requires the use of emitter-followers or other buf-

fering devices to provide the necessary driving impedances. 

A • B A+ B 

Fig. 1-1. Basic building blocks. 

A useful feature of logic circuits is variation by inversion. As 

DeMorgan's law implies, inversion, or negation, is also applied to 

operations. As a result, the negative, or inverse, of AND is equiva-

lent to OR. Therefore the circuit that produces an AND for the 

logic convention specified before will produce an OR for inverse 

logic. A common variation is the use of NOT AND and NOT OR 

(NAND and NOR) circuit. These variations provide a powerful 

design tool. 
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Chapter 2 

Language and Electronic 
Switches 

Symbolic logic may be defined as the manipulation by means of 
symbols of various statements, where a statement is a written or a 
verbal assertion. An assertion is considered as a simple statement 
of declaration such as, "I will take a walk," or "I will read a book," 
or "I will go outside." It is also possible to combine two or more as-
sertions in a sentence such as, "I will read a book if the library is 
open," or "I will go outside if it is not raining," or "I will go to 
sleep if it is after twelve o'clock." The differences here between 
the simple declaration and the complex declaration are simply this: 
a simple assertion is a simple statement although combinations of 
two or more simple statements form a compound statement. Note 
that simple statements tied together by connectives make compound 
statements. This section of the book is concerned with such state-
ments, both simple and compound, as well as their logical order, 
sequence use, and meaning. These statements are given values such 
as true or false; the symbolism will be T for true and F for false. 

Consider as an example the assertion "I will go outside." In the 
context of this chapter, if you go out after making such a state-
ment, the statement is true. If you do not go out after making such 
a statement, the statement is false. To make the manipulation more 
direct and less cumbersome we will use letters such as A, B, C or 
D to stand for individual simple statements. Thus these letters are 
variables, and in the context of this chapter the variables can assume 
only one of two values; they can be either true or false. 

In order to use statements in their compound form it is neces-
sary to provide links or connectives. A list of these connectives is 
given in Table 2-1. 
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Table 2-1. Symbols of the Propositional Logic. 

SYMBOL NAME MEANS 

A Conjunction A and B 

V Disjunction (inclusive) Either A or B 
or both 

v Disjunction (exclusive) Either A or B 
but not both 

I Noncon¡unction Not both A and B 
_ 

Negation Not A 

-- Equivalence A if, and only if B ..,— 
(biconditional) 

The first thing to remember about logical connectives is that the 
truth value of any connective is defined by the truth values of the 
propositions it connects. For example, the truth value of and may be 
defined by the truth table of the conjunctive proposition A•B as 
shown in Table 2-2. In the first case, if A is true and B is true, the 
compound statement A AND B must be true. However, if, as in the 
second step, A is true and B is false, the conjunction of A AND B 
must necessarily be false. In the third example, if A is false and B 
is true their conjunction in this case must also be false. In the fourth 

Table 2-2. Truth Table of AAB. 

a b aAb 

1 T T T 

2 T F F 

3 F r F 

4 F F F 

case, where A is false and B is false, the conjunction of A AND B 
must also be false. In summary, when we have two simple state-
ments connected by the conjunction, the compound statement A 
AND B is true if, and only if, A is true and B is true. There are no 
other possibilities; the table exhausts all the possible truth values of 
the propositions. 

The second connective is the OR, which is the disjunction of A 
and B. If we have two simple statements A and B, the compound 
statement A OR B is true when either of the two individual simple 
statements is true. For example, if A is true, then A OR B is true; if 
B is true, then A OR B is true. However, if A is false and B is false, 
then the compound statement A OR B must necessarily be false. 
There is a problem with the case shown in Table 2-3 where A is 
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Table 2-3. Truth Table of AVB. 

aVb 

1 T T T 

2 T F r 
3 F T T 

4 F F F 

true and B is true. The question is simply this: does the statement 
A OR B mean either A OR B, or does it mean either A OR B or both? 
If we consider that it means the latter, then A OR B is true if A is 
true and if B is true. In technical terms this truth table reflects the 
inclusive disjunction of A and B. 

In order to differentiate between the two possible meanings of the 
word OR, it is necessary to define the exclusive disjunction of A 
and B as meaning either A or B but not both. A truth table for this 
is shown in Table 2-4. By definition the only two cases that are true 

Table 2-4. Truth Table of AB. 

a aVb 

1 

2 

3 

4 

T r F 

T F T 

F r T 

F F F 

are the second and third shown in the truth table; in case 2, A is 
true and B is false; in case 3, A is false and B is true. Both of these 
compound statements are then true. In the fourth case, if both A 
and B are false, the compound statement is false. In the first case, by 
definition, if both are true, the compound statement is false since the 
exclusive disjunction of A and B is necessarily false if both are true. 

Another basic connective is negation, which means simply that 
NOT A is the negation of A, and NOT B is the negation of B. This 
means of course that if A is true, the negation of A is false. If A 
is false, the negation of A is true. Although the fundamental idea 
of negation seems simple it is very significant for compound state-
ments. For example, Table 2-5 shows the statement A OR NOT B. 
In the truth table shown there are again four possible cases. Con-
sider the first, where A is true and B is true. Since B is true its 
negation is false, and the statement becomes the equivalent of a 
compound statement that is true OR false; hence the statement is 
true. In the second case, when A is true and B is false, the negation 
of B is of course true; hence the statement becomes a compound 
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Table 2-5. Truth Table of AV — B. 

Consider a V—b (a or not b) 

o b a V—b 

T T T V F is T 

2 T F T V T is T 

3 F T F V T is T 

4 F F F V F is F 

statement that is true OR true, which of course is true. In the third 
case, A is false and B is true; the negation of B is then false so 
that this compound statement is false. In the last case, A is false 
and B is false; the negation of B is then true so that the compound 
statement is false OR true, which is true. This is an example of 
the inclusive disjunction of A OR NOT B. 
A more complex compound statement (Table 2-6) is NOT [(A 

AND B) OR (A AND NOT B)]. For statements like this in the prep-
aration of the truth table, it is a simplification to have several tabu-
lar entries. For example, the first two columns represent all possible 
cases for A and for B. The third column represents the truth value 
of A AND B; the fifth column represents the truth value of the sec-
ond parenthetical expression which is (A AND NOT B). (The fourth 
column is included merely to enable the reader to derive the fifth 
and sixth columns.) The sixth column represents the entire state-
ment (except for the initial negation) which is [(A AND B) OR (A 

Table 2-6. Truth Table of Compound Statement. 

[(aAb) V (aA I))) 

not ((a and b) or (a and not b)) = C 
not (a and b) and not (a and not b) = C 

(not a or not b) or (not a or b) = C 

a b (a A b) (a V b) (a A —13) (aAb) V (0A— b) C 

1 2 3 4 5 6 

T T T T F T F 

2 T F F T T T F 

3 F T F T F F T 

4 F F F F F F T 
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AND NOT B)]. The last column, written as C for convenience, rep-
resents the entire compound statement. It gives the truth value of 
the entire statement. 

Consider the first case where A is true and B is true. Here obvi-
ously A AND B is a true statement, though A AND NOT B is a false 
statement. Hence, the disjunction in the sixth column, which is the 
disjunction of a true statement and a false statement, is true. The 
entire compound statement in brackets is negated, hence C is false. 
In the same manner with the second example, where A is true and 
B is false, it follows that A AND B is false, though A AND NOT B is 
true, so that [(A AND B) OR (A AND NOT B)] is true, but again the 
entire statement is negated; hence, C is false. In the third case, where 
A is false and B is true, A AND B is false, and it follows that (A 
AND NOT B) is false, so that [(A AND B) OR (A AND NOT B)] is 
also false; the final negation makes the entire statement true. In the 
last case, where A is false and B is false, (A AND B) is false; (A 
AND NOT B) is false; [(A AND B) OR (A AND NOT B)] is false, and 
the negation makes statement C true. 

Truth tables of this type require careful thought. Another ex-
ample is shown in Table 2-7, which NOT [(A OR B) AND (NOT A 

Table 2-7. Truth Table of C , NOT [ (A OR B) AND 
(NOT A AND B)]. 

—[(avb) A (— aAb)1 

(a V b) a b (— a A b) [ (a V b) A (— a A b) ) C 

1 T T T F F T 

2 T F T F F T 

3 F T T T r F 

4 F F F F F T 

AND B)] is represented by C. In the first line, where A is true and 
B is true, it follows that A OR B is true, and (NOT A AND B) is false; 
thus [(A OR B) AND (NOT A AND B)] is false, so that the negation 
makes statement C true. In the second case, where A is true and B is 
false, A OR B is true, though (NOT A AND B) is false, so that the state-
ment [(A OR B) AND (NOT A AND B)] is false; hence C is true. 
In the third case, where A is false and B is true, (A OR B) is true; 
(NOT A AND B) is true, and [(A OR B) AND (NOT A AND B)] is 
true. Therefore C is false. In the fourth case, where A is false and B 
is false, (A OR B) is false, (NoT A AND B) is false. Therefore [(A 
OR B) AND (NOT A AND B)] is false, and so C is true. 

There are two additional connectives (Table 2-8) which are re-
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Table 2-8. Conditional Connectives. 

CONDITIONAL BICONDITIONAL 

m 

if A then B A if, and only if, B 

quired. The first of these is the conditional "IF A THEN B,' while 
the second is the biconditional A IF, AND ONLY IF, B. As shown in 
the first case (conditional connective) in Table 2-9, A is true, and 
B is true. From this it follows that IF A THEN B must be true. We 
can also see that in the second case where A is true and B is false, 
the expression is false for the statement IF A THEN B. The reason 
why the first case is true and the second false lies in the definition 
of implication. 

Table 2-9. Truth Table of A D B. 

A z B, if A then B 

A B A m B 

1 T T T 

2 T F F 

3 F T T 

4 F F T 

However, there is a problem where A is false and B is true as in 
case 3, or if both are false as in case 4. In case 2 the statement is 
false, since a true proposition cannot imply a false one. In cases 3 
and 4, the statement is true, since a false proposition implies any 
proposition, true or false. 

Remember, the truth value of the connective is completely de-
termined by the truth values of the propositions it connects. Indeed, 
it is only in the truth table that a definition for implication is found. 
There is no necessary relationship between the logical proposition 
A • B and the real world, although our intuition may tell us other-
wise. The realization of this fact is an essential step in the under-
standing of symbolic logic. 

The biconditional connective is shown in the truth table in Table 
2-10. This is "A if, and only if, B." By definition this compound 
statement is true only under the circumstances of case 1 or 4, where 
A and B have the same truth value. In case 1, A is true and B is 
true; in case 4, A is false and B is false. In both these cases the com-
pound statement is true. When A and B differ as in cases 2 and 3, 
the compound statement is false. In 2, where A is true and B is false, 
the biconditional statement is false. In 3, where A is false and B is 
true, the biconditional statement is false. 
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Table 2-10. Truth Table of A.7--'13. 

A .=.' B 

A if, and only if, B 

A B A -, B 

1 

2 

3 

4 

T T T 

T F F 

F T F 

F F r 

ELECTRONIC SWITCHES 

A truth table is a list of all possible values for the independent 
variables in a logical proposition. These values can also be shown in 
terms of their electronic implementation. For example, consider Fig. 
2-1; a simple OR arrangement. Again we define 1 as representing 

A=0 

B=0 

A=0 
8 = I 

A=1 

B= I 

A= I 
8=0 

o 
S--

_ 0 

0 

C=A+B 

A B C 
0 0 0 

0 I I 

I I I 

I 0 I 

Fig 2-1. OR circuit using switches. 

a closed switch, 0 as an open switch, and OR as the logical connec-
tive in the proposition A + B. In its circuit implementation we can 
consider this proposition as representing two switches in parallel. The 
circuit illustrations and the accompanying truth table indicate all the 
possible combinations for this logical proposition as well as its elec-
tronic analogy. 

If both switches are open, which is represented in the truth table 
for A equals 0 and B equals 0, then there will be no current flow in 
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the circuit. This is represented by the case in which C equals 0 in 
the truth table. If A is open and B is closed, then there will be cur-
rent flow in the circuit; this is represented by the second case in the 
truth table, where A equals 0, B equals 1, and C equals 1. The third 
circuit, since A is closed and B is open, this will result in current 
flow, so once again C equals 1. In the fourth case, where A is closed 
(A=1) and B is closed (B=1), current will flow, and C is equal 
to I. Thus we can see that current will flow (C=1) when switch 
A is closed (A=1) OR switch B is closed OR when both switches 
are closed (A -I- B=1 ). 

A B 

A= 0 -----e",, •-.'o— B = 0 C= A • B 

A= l GO O- B=I 

A = 1  o o ce."0 B = 0 

A=0  .•',—   8 = 1 
Fig. 2-2. AND circuit using switches. 

A B C 
0 0 
I 
0 

I I 
I 0 
0 I 

0 
0 

Fig. 2-2 shows the AND circuit. In terms of electronics this can be 
two switches in series. Once again these two switches are A and B, 
and the logical statement is "C is equal to A AND B" (C=A • B). 
Again there are four simple circuits and a truth table. As in the 
previous example, A=0 represents an open switch A, and A=1 a 
closed switch. When switch A is open (A=0) and switch B is open 
(B=0), no current will flow and C, an open circuit, equals O. When 
switch A and switch B are closed (A=1 and B=1), current will 
flow, and C=1. However, when either of the switches is open (either 
A=0 or B=0), the circuit is not complete, and C=0. Therefore we 
can see that in this electronic analog of A • B, both A and B must 
be closed (A=1, B=1) to obtain a complete circuit (C=1). 

CIRCUITS AND EQUATIONS 

We shall now consider a relationship among three different forms 
of logic. These are the logical equation, the Venn diagram, and the 
electronic circuit. Fig. 2-3, for example, shows a logical equation 
where C is a function of both A and B. 

The first equation is C = A. In the Venn diagram the darker area 
represents A. Implementation of this circuit is a simple straight wire 
since everything that happens to A also happens to C. The second 

equation is C = À (C is equal to NOT A). In the Venn diagram 
everything but the area within the circle A is darkened to represent 
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LOGICAL 
EQUATION 

C = f(A,B) 

VENN 
DIAGRAM 

C = f(A,B) 

ELECTRONIC 
CIRCUIT 

C=f (A, B) 

C = A 
A C 
o o 

C = A 

C=B B C 
o o 

C=I 

Fig. 2-3. Three different forms of logic. 

NOT A. The electronic implementation of "C equals NOT A" requires 
an inverter so that A will always be the negation of C. In terms of 
the binary variables, if A is 1, NOT A is 0, hence C is O. If A is 0, 
NOT A is 1, so that C is 1. The third equation, C = B, is similar to 
C = A, while the fourth, C = B (C is equal to NOT B), is similar 

to the equation C = A. 
Fig. 2-4 shows a group of equations using the logical connective 

AND. The first one is C = A • B (C is equal to A AND B). In the 
Venn diagram the area which is in common to both A and B is 
the darkened area in which the two circles A and B overlap. This is 
the only area in the universe C which is common to both A and B. 
The electronic circuit for this condition would be the very simple 
AND gate in which the two input A AND B must both be present 
simultaneously in order to get an output at C. 

The second logical equation is C = A • TII (C is equal to A AND 
NOT B). Note in the Venn diagram that the entire circle A is in-
cluded except that portion of A which overlaps the circle B. The 
logical block diagram or electronic implementation is the same AND 
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LOGICAL 
EQUATION 

C= f(A,B) 

VENN 
DIAGRAM 

C=f(A,B) 

ELECTRONIC 
CIRCUIT 

C=f(A,B) 

C = A • B 
A a_i 

C= A • à 
A  

 ) 

o 
C 

C =i • B 
B° ) C 

C 

I= inverter 
Fig. 2-4. Three forms of logic using AND. 

gate as above except that B is inverted. The inputs to the AND gate 
are A AND B, but since B is inverted the output C is equal to A 
AND NOT B. 

The third equation is C =_ A • B (C is equal to NOT A AND B). 
Note in the Venn diagram the area described in the equation is the 
circle B less that part of B which overlaps the circle A. In the elec-
tronic implementation or block diagram, A is inverted to produce 
the input NOT A, and B is applied directly to the AND gate to de-
velop NOT A AND B. 

In the fourth case, the Venn diagram shows that universe C is 
the entire rectangle except for the circles including the areas A and 
B, and the area in which they overlap. This circuit is implemented 
electronically by inverting A and inverting B and putting both of 

them through the gate to produce NOT A AND NOT B (A • 
In a similar manner, various types of OR circuits are shown in Fig. 

2-5. The implementation for this logical equation is through various 
forms of the OR gate. In the first case C = A + B (C is equal to A 
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LOGICAL 
EQUATION 

C=f(A,B) 

VENN 
DIAGRAM 

C= f(A,B) 

ELECTRONIC 
CIRCUIT 

C= f(A,B) 

C=A+B 
)  

C=À+B 

C= A+6 

C =À +—B 

B'  

Fig. 2-5. Three forms of logic using OR. 

OR B), the Venn diagram for this shows quite clearly that this is the 

same as the inverse of C = A • ià (C is equal to NOT A AND NOT B). 
The electronic block diagram for this is a simple OR circuit with A 
and B as the inputs. 
The second logical equation is C = À + B (C is equal to NOT 

A OR B). As shown in the Venn diagram this is the inverse of 
C = A • i3 (C is equal to A AND NOT B). Implementation is ob-
tained by inverting A input. 
To obtain C = A + (C is equal to A OR NOT B) we invert 

the B input. As shown in the Venn diagram this is the inverse of 
C = A • B (C is equal to NOT A AND B). 

The last logical equation shows C = À + I (C is equal to NOT 
A OR NOT B). This can be obtained electronically by inverting both 
A and B inputs into the OR gate. This is the inverse of C = A • B 
(C is equal to A AND B). 

Fig. 2-6 shows some other possible logical arrangements. The 
first equation is [(A AND NOT B) OR (NOT A AND B)]. As shown in 
the Venn diagram this includes the areas of circle A and circle B 

26 



LOGICAL 
EQUATION 

C =1(A,B) 

VENN 
DIAGRAM 
C = f(A,B) 

ELECTRONIC 
CIRCUIT 

C=1(A,B) 

C= (A•i)+ 

(À•13) 

C=(A•B)-1-

(i•il) 

A• à 

C = 0 

c =1 _Eel 11--0 C 

Fig. 2-6. Three forms of logic using connectives. 

but not the area which is common to both. This is implemented in 

the block diagram by having one AND circuit to produce A AND B 

(A AND NOT B), another AND circuit to produce À • B (NoT A AND 
B), and an OR gate to produce the final results of [(A AND NOT B) 
OR (NOT A AND B)]. 

The second equation is [(C is equal to A AND B) OR (NoT A 
AND NOT B)]. In the Venn diagram this includes the universe C 
less the area A and less the area B but including the area which is 
in common to both. This is implemented electronically by using two 
AND gates, the first produces A AND B, the second produces NOT A 
AND NOT B, while these are both used as input into an OR gate whose 
output is [(A AND B) OR (NOT A AND NOT B)]. 
The third case is C = 0 (C is equal to 0) which means that the 

universe is empty, or the universe C has no occupants. The last case 
is C = 1 (C is equal to 1) shows that the universe contains all pos-
sible occupants. 
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Chapter 3 

Logical Circuits 
Ordinary switches provide a simple implementation for basic 

logical circuits. 

RULES OF LOGICAL DESIGN 

In order to apply the logical concepts to circuits, some symbolism 
is necessary. This symbolism is as follows: 

Relay and 
Symbol Logic Contact Meaning 

1 True Closed The statement is true, 
the circuit is closed. 

O False Open The statement is false, 
the circuit is open. 

• Series A and B A is in series with B. 
Parallel A or B A is in parallel with B. 

Before any circuit analysis can be made, some of the more funda-
mental relations should be established. A set of contacts is denoted 
by a letter such as A, B, or C. In some cases, to express an un-
known, the letters may be X, Y, or Z. If 0 means open, and 1 means 
closed, the following relations apply: 

O + O = 0 An open in parallel with an open is open. 
O + 1 = 1 An open in parallel with a closed is closed. 
1 + 1 = 1 A closed in parallel with a closed is closed. 

And in the same manner for series: 

0 • 0 = 0 An open in series with an open is open. 
0 • 1 = 0 An open in series with a closed is open. 
1 • 1 = 1 A closed in series with a closed is closed. 
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Since contacts are either open or closed, only two symbols are 
necessary to denote the states of the contacts. We use 1 for closed 
contacts and 0 for open contacts. Suppose two contacts are in 
series, as in Fig. 3-1, where X denotes the state of the first and Y 
the state of the second. The possible combinations are: 

Fig. 3-1. X AND Y network. 
-----0 X 0 0 y 0____ 

X Y Network 
X • Y 

O 0 0 
O 1 0 
1 0 0 
1 1 1 

Contacts in parallel are shown in Fig. 3-2. The possible combina-
tions in this arrangement are: 

Fig. 3-2. X OR Y network. 
 0X0  

 cO(o  

X Y Network 
X + Y 

O 0 0 
O 1 1 
1 0 1 
1 1 1 

To prove 1 + X = 1, we set X = 0, getting 1 + 0 = 1; 
setting X :--- -- 1, we have 1 + 1 = I. Since these equations are 
valid, the rule is proved. As in Fig. 3-3: 

o 

x 

x 

 i  
  X   

Fig. 3-3. Implementation of 0+ X and X+ X with switches. 

0 + X = X 

X + X = X 
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In addition to these rules, a representation of normally closed 
contacts as well as those normally open is required. If X denotes 

the normally open contacts of a relay, then Y.( will denote normally 
closed contacts. We may substitute 0 is a value of X, and 1 as a value 
of X. From this, as in Fig. 3-4: 

o 
 er° 

For DeMorgan's laws, 

Fig. 3-4. Implementation of binary variable. 

f =. 0 

(X + Y) = X • Y, 

there are two values for each of the two variables, and there are 
four possible combinations of them. If X .-.=. 1, Y = 0, then 

(X + Y) = (1 + 0) = —1 = 0 

and 

K• ir = 1 • 0 = 0 • 1 = 0 

Y    X Y 

Z 

X • (Y+Z) = X•Y +X•Z 
Fig. 3-5. Implementation of distributive law—first case. 

Hence, for X = 1 and Y -= 0, we have (X • Y) = X + Y. The 
three remaining cases are proved just as easily. 

The two distributive laws are represented in Figs. 3-5 and 3-6. 
They are: 
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X + (Y•Z ) = (X+Y) • (X+ Z) 

Fig. 3-6. Implementation of distributive law—second case. 

X 

Z 



X•(Y + Z) =X•Y + X•Z 
X + (Y • Z) = (X + Y) • (X + Z) 

We also need the associative and commutative laws: 

X+Y=Y+X 
X•Y=Y•X 
X + (Y + Z) = (X + Y) + Z 
X • (Y • Z) = (X • Y) • Z 

Fig. 3-7. Implementation of X•IX-1-11. 

X 
—0 X 

Y 

X•(X+Y)= X 

Consider Fig. 3-7, where the circuit is represented by X • (X + 
Y). If X is closed (X = 1), the circuit is closed; if X is open 
(X = 0), the circuit is open. Both of these statements are also 
true for either value of Y. A truth table is: 

X Y Network 
X • (X + Y) 

1 0 1 
0 1 0 
1 1 1 
0 0 

Thus, only if X = 1 is the network closed, and X • (X + Y) 
X. This may be extended to the network 

X • (X + Y + Z) • (X + Y) • (Y + Z) 

  X 

X   Y 

X•(X+Y+Z)•(X+Y)•(Z+Y) 

(A) Original circuit. 

   yi  

Y 

(8) Simplified circuit. 

X • ( Y + Z ) 

Fig. 3-8. Implementation of commutative principles. 

 o 
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as in Fig. 3-8A. Since X • (X + Y + Z) reduces to X, and X • 
(X + Y) reduces to X, then 

X • (X + Y + Z) • (X + Y) • (Y + Z) 

becomes X • (Y + Z) as shown in Fig. 3-8B. 

X 

X+Y•(X+Z)•(Y+W)•Z = X+(X•Y+Y•Z)*(Y•Z+W•Z) 

Fig. 3-9. Application of principles to circuits. 

The utility of even these few relationships may be seen in Fig. 
3-9, where the relay circuit is drawn and is expressed by 

X + Y • (X + Z) • (Y + W) • Z 

Then the circuit may be evaluated for a given set of conditions. If 
W = 0, X _= 0, Y = 1, and Z .=_ 1, these values may be substituted 
directly in the expression 

X + Y • (X + Z) • (Y + W) • Z 

However, we may rewrite this expression as 

X + (X • Y + Y • Z) • (Y • Z + W • Z) 

Substituting in this expression the given values, we have: 

0 + (0 • 1 + 1 • 1) • (1 • 1 + 0 • 1)= 
0 + (0 + 1) • (1 + ()).= 
0 + (1) • (1) = 0+1 = 1 

Thus, with these conditions there is a complete path, i.e., the ex-
pression represents a closed circuit. A summary of these relation-
ships is given below: 

1 = closed 
0 = open 
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• = series = AND 
± = parallel = OR 

1 + 1 = 1 X+Y=Y+X 
1 + 0 = 0 + 1 = 1 X•Y=Y•X 

0 + 0 = 0 
0 • 0 = 0 

1 • 0 = 0 • 1 = 0 
1 • 1 = 1 

X + (Y + Z) = (X + Y) + Z 
X • (Y • Z) = (X • Y) • Z 

X•(X+Z) + X•Y+X•Z 
X + Y • Z + (X + Y) • (X + Z) 



X + 5-C = 1 
X • Y.( = 0 

0 + X = X 

X— = X 

X y 

cs‘o o> I L I 
o o. 

o  y Y 1 o 
(A) Switch circuit. 

(B) Block diagram. 

Fig. 3-10. Circuit synthesis. 

EXAMPLES OF CIRCUIT DESIGN 

As an example of a circuit synthesis, in Fig. 3-10A there are two 
switches, X and Y, arranged so that they control load L in such a 
manner as to turn the load either on or off. The load is the light; 
it is controlled by two wall switches. There are only four possibilities: 

Case L X Y 

a. 1 1 1 
b. 0 1 0 
C. 0 0 1 
d. 1 0 0 

Since there is an output (light) for case b and for case c, as well 
as no output for case a and case d, it is possible to write: 

L = X • Y 

L = X • Y 

The first equation says, in effect, that the load is energized when 
NOT X (X open) is in the circuit with Y. Since a parallel connec-
tion is impossible, the switches must be in series, so L = X • Y. 

Thus, if L = X • Y, or if L = X • Y, the load is energized. Since 
the load is energized in case of either expression, the combination 
of both can only be an OR circuit. 
Thus we have: 
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L = X•Y+X•Y. 

Switches X and Y each have two positions, and there are two pos-

sible paths for L to be connected; X • Y is one, and the other is 

X • Observe that if • is used, or if X • Y, the load is not 
connected. Fig. 3-10B is an equivalent block diagram of the switch 
circuit. 

Making the simplification of circuits is easy. Fig. 3-11A shows a 
circuit for which the expression is: 

—0 X 0--0 Y 0—To 

(A) Complex circuit. 

(B) Simplified circuit. o X 0—o y o—o To---

Fly. 3-11. Circuit simplification. 

X • Y • (X+Z) • (Y + X • Z + W) • T 

But this can be rewritten as 

X • (X+Z) • Y • (Y + X • Z + W) • T 

And since X • (X + Z) = X, and Y • (Y + X • Z + W) = Y, 
the equivalent expression is X • Y • T, for which the circuit is 
shown in Fig. 3-11B. 
Compare the equivalent circuits in Figs. 3-11A and B. It is 

clear that X, Y, or T individually can break, or open, the cir-
cuit. But it is necessary that all three be closed for the circuit to 
be complete. Neither Z nor W have any effect on the circuit, since 
they are not in B. This is true for any series contacts. But notice 
that Z and W are in parallel with other switches. For example, the 
Z • X portion of the circuit is in parallel with the Y switch. Since, 
in another part of the circuit, X is in series and is not in parallel 
with other switches, X must be closed (X=1) for a complete circuit. 
And if X = 0, the value of Z does not affect the complete path; 
whether it is closed (Z = 1) or open (Z = 0), there is current 
flow through X = 1 in parallel. 

This analysis provides a circuit equivalence that appears unusual 
at first. Fig. 3-12 illustrates three circuits and their equivalents. The 
state of X determines the state of the circuit in Fig. 3-12A, since 
X + X • Y = X. The expression for the circuit in Fig. 3-12B is: 

(X+Y)•(X+Z) = X•k+X•Z-1- 5-C•Y +Y•Z 
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o X 0- 0 Yo 

oio— oZo 

— E7:0-07D— 

(A) Circuit equals X. 

x 0—ro 0 0 0-0 x 0-0 Y o  

yo 1 o Zo  =   o—o Z 

(B) Circuit equals X • Y -1-T.• z -F Y • Z. 

X 0-0 Y 0-0 Z 

y 0-0 z   
(c) Circuit equalsX•Y -l- i•Z-I-Y•Z. 

Fig. 3-12. Examples of equivalent logical circuits. 

O 
But X • X = al' thus the expression reduces to: 

X•Y-I-X•Z+Y•Z 

From Fig. 3-12C, we see that: 

X•Y+X•Z = X•Y+X• Z 

Multiple-Contact Switching 

Relay switching is similar to computer switching. Industrial con-
trols have used switching relays for years, but the development of 
digital computers led to a deeper analysis of relay switching. The 
circuits discussed here are all used in industrial control, but they 
are closely related to those in computer switching. Even now relay 
contacts are usually drawn for switching circuits. 

Fig. 3-13 shows a simple group of circuits, but from these many 
others may be devised. A and B are in series; both must be closed 
to complete the circuit, but each can open the circuit. In computer 
logic this is an AND circuit; current flows only if A and B are both 

Rg. 3-13. Simple switch circuits. 
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closed. In machine controls A could be the main power switch and 
B the operator's foot-switch. When the contacts C and D are in 
parallel as shown, closing either C or D (this is an OR circuit) per-
mits current flow. Here both may be closed, and the circuit still 
works; but one alone is not enough to open the complete circuit. 
Both must be open. 

1 IX Yi 2 1 cr) X yl 2  
_ren 

(A) Completed circuit-7 • Y. (B) Open circuit-7 • Y. 

10,1X YL2 1 Ix YL.,02 
p ri c'ep `7T 

(C) Completed circuit—X • Y. (D) Open circuit—X • Y. 

Fig. 3-14. A relay AND circuit. 

In Fig. 3-14 there are two relays shown. In Fig. 3-14A, 1 and 2 
complete the circuit. Fig. 3-14B shows 1 breaking the circuit. Note 
that 1 can turn the complete circuit either on or off (Fig. 3-14A 
or B). Fig. 3-14C shows the next "on" position, and Fig. 3-14D 
shows the other "off" position. This is also given below where U 
means up, and D means down. 

X Y Circuit 

(A) D D closed 
(B) UD open 
(C) U U closed 
(D) D U open 

From this it is clear that both switches must be in the same position 
for a complete circuit. If up is used for X and Y and down for X 

and Y, the circuit is closed for Fig. 3-14A which is X • Y and closed 

for X • Y, but open for 5 (- • Y and X • Y. 
It is only a slight extension to the Christmas tree relay circuit in 

Fig. 3-15. Here there are eight inputs; they are controlled so that 
one (and only one) at a time is available at the output. Three re-
lays (A, B. and C) control the seven sets of relay contacts; the out-
put is switched by energizing the proper combination of relays. 

If, as illustrated, all relays are open, and each contact is in the 
upper position, the input is at D. RY-C is a relay that moves each C 
contact down when it is energized. If RY-C is energized, and if 
RY-A and RY-B are open, the only input is at E. For any given 
input there is a unique combination of the positions of the relays. 
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r= ENERGIZED 

Hg. 3-15. A "Christmas tree" relay circuit. 

, 

IN 

For input M, all three relays must be energized. For input K, only 
relays RY-A and RY-C are energized. In Fig. 3-15 there are three 
relays for eight inputs. The relationship between the number of re-
lays and the number of inputs is: 

No. of Relays Inputs Possible 

1 2 
2 4 
3 8 
4 16 
5 32 
6 64 
7 128 
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CASES CD E F A B 
C 1 1 ON ON 
b 2 1 OFF ON 
a 3 1 OFF OFF 

1 2 OFF OFF 
1 3 OFF ON 

2 2 ON ON 
h 2 3 OFF OFF 

d 3 2 OFF ON 
e 3 3 ON ON 

Fig. 3-1 6. Relay switching circuit. 

From this table the formula is 2N = C, where N is the number of 
relays, and C is the number of inputs. One use of this type of switch-
ing occurs when a number of readings are presented on a single re-
mote indicator, and the reading that is available depends on how the 
control relays are energized. 

Adding positions to each relay increases the possibilities for more 
complex switching. In Fig. 3-16 there are two sets of ganged step-
ping-relay contacts, C-D and E-F. The power source is represented 
by G, and the two loads are A and B. Here the problem is to con-
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trol the loads by both relays so that load B, loads A and B, or 
neither load is connected to the source. There are nine possibilities, 
as shown below the circuit. These are listed as cases a, b, c, d, e, f, 
g, h, and k. A list of the steps of the system's operation follows. 

1. Starting with case a, both A and B are not energized; they are 
open. Using only relay CD, (EF is fixed at 1), first B is closed 
(b) then both A and B are closed (c). Note that this is by the 
rotation of CD from 3 to 2 to 1. 

2. Starting with case a, both A and B are open. With CD now 
fixed in position 3, rotation of EF only will go through ex-
actly the same sequence (1, 2, 3), so that the three choices are 
both A and B, B alone, or neither. 

Table 3-1. Possible Circuit Combinations Shown in Fig. 3-16. 

CD EF A 

1 
a 
b 
c 

3 
I 2 I 
1 

1 
1 
1 

0 
0 
1 

0 
1 
1 

2 
a 
d 
e 

3 
3 
3 

1 
1 2 i 
3 

0 
0 
1 

0 
1  
1 

3 
C 
f 
g 

1 
1 
1 

£1 
2 3 i 

1 
0 
0 

1 
0 
1 

4 
h 
k 
b 

2 
2 
2 

3 

2 l I 
1 

0 
1 
0 

.. 

0 
1  
1 

5 
f 
k 
d 

1 
1 21 
3 

2 
2 
2 

0 
1 
0 

0 
1  
1 

6 
g 
h 
e 

1 
I 32 1 

3 
3 
3 

0 
0 
1 

1 
0  
1 

Note: 0 = open 
1 = closed 

I/ indicates rotation as 1, 2, 3 or 3, 2, 1 
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3. Starting with f, both A and B are open. CD is fixed at 1. EF 
changes to c, which is both A and B closed, or g, which is B 
closed and A open. 

4, 5, and 6 in Table 3-1 show the other possibilities. In 4, CD is 
fixed; in 5 and 6, EF is fixed. 

Sequence switching with simple relays is indicated in Fig. 3-17. 
There is a DC power source, a push-button P, and four relays A, 
B, C, and D. Here it is required that the operating sequence shall 
be as listed: 

(A) No relays energized. 

1 

(C) Relays A and B energized. 

Fig. 3-17. Seq 
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d2 

(B) Relay A energized. 

(D) Relays A, 8, and C energized. 

(E) Relays A, 11, C, and D energized. 

NOTE: 

± NO JUNCTION 
T JUNCTION 

d2 

witching with simple relays. 

d2 

d2 



Steps Relays On 

1 none 
2 A 
3 A, B 
4 A, B, C 
5 A, B, C, D 

The operating sequence is as follows: 

1. P is open, no relay energized. (Fig. 3-17A) 
2. P is closed. A is energized, closing al, and completes a path 

B, but B is shorted out and does not energize (Fig. 3-17B). 
3. P is opened. The short across B is removed; A and B are both 

energized, and they are in series; bl is in the upper position 
(Fig. 3-17C). 

4. P is closed. C is energized through d 1 lower and bl upper. 
Both A and B are also energized (Fig. 3-17D). Also cl is 
closed, but D is shorted out by the path that energized C. 

5. P is opened. The short across D is removed, C and D remain 
in series and are both energized, d 1 is in the upper position. 
A, B, and C are also energized (Fig. 3-17E). When D is 
energized, however, it also opens d2 which restores the circuit 
to the original condition. 

We can record the results as follows: 

Step Element 

P A BCD 
1 00000 
2 1 1 0 0 0 
3 0 1 1 0 0 
4 1 1 1 1 0 
5 0 1 1 1 1 

where 0 represents an open element, and 1 represents a closed ele-
ment. 

41 



Chapter 4 

Circuit Block Diagrams 
Electronic circuit blocks employ the various logical connectives; 

the basic connectives are AND and OR. 

INPUT 

AB 

OUTPUT 

F 

L L L 
L H H 
HL H 
H H H 
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INPUT 
AB 

OUTPUT 
F 

L L L 
(A) L H L 
AND 

HL L 
3 H H H 

(A) AND circuits. 

(B) OR circuits. 

Fig. 4-1. Basic logic circuits. 

L - LOW 
H • HIGH 



BASIC LOGIC FUNCTION 

Consider two neon lamps; each lamp fires (conducts) when the 
voltage across it is high enough. Where H is high or more positive, 
and L is low or less positive, the AND (Fig. 4-1A) output will be 
high if, and only if, both inputs are high. Under these conditions 
neither tube will fire, so the output will also be high as shown. 

The OR circuit (Fig. 4-1B) also has two lamps. If either point 1 
or point 2 is high, the lamp with the high input will fire, producing 
a high output; thus, this is an OR function. Note the output is high 
if 1 is high, or 2 is high, or if both are high. Gas tubes such as these 
are seldom used, but they do demonstrate the principle. 

Logical symbols, regardless of the type of circuit, and regardless 
of whether transistors, diodes, or gas tubes are used, reflect the logi-
cal meaning of the circuit. These are shown in Fig. 4-2; Fig. 4-2A 

A 

 ) B 

A  

) 
B 

(A) AND. 

(B) OR. 

A AND B (AB) 

A OR B (A+B) 

A-0 A 

Fig. 4-2 Logical symbols. 

is A AND B, Fig. 4-2B is A OR B; Fig. 4-2C is the inverter produc-

ing A from A. These may be combined for other logical functions 
as shown in Fig. 4-3 where the negation of the OR is NOT (A OR B) 

A 
B ) 

(A • B) 

A • B A 
B  )  

(C) Inversion. 

(A) NOT AND. (B) NOT OR. 

Fig. 4-3. Negation of logical functions. 

A+B 

and the negated AND produces A • B. Two of the most significant 
logical functions are the NAND (NOT AND) and NOR (NOT OR). 

Consider the three-input NOT AND shown in Fig. 4-4A; the output 
is low only if all inputs are high. Actually there are two ORS; Fig. 4-
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A 
B 
C > F 

(A) AND—negated. 

INPUT 

ABC 

LLL 
LLH 
LHL 
L H H 
HLL 
HLH 
HHL 
HHH 

INPUT 

A C ) ABC 
) F B  ILL 

LLH 
LHL 
LHH 
HLL 
HLH 
HHL 
H HH 

(B) Inclusive OR—negated. 

INPUT 

A 8 

F L L 
L H 

A 
B 

HL 
H H 

(C) Exclusive OR—negated. 

Flg. 4-4. Logical negation. 

OUTPUT 

F  

H 
H 
H 
H 
H 
H 
H 
L 

OUTPUT 

F 

H 
L 
L 
L 
L 
L 
L 
L 

OUTPUT 

F 

H 
L 
L 
H 

4B shows the inclusive OR (negated), where the output is low if any 
one of the inputs is high. Fig. 4-4C  shows the exclusive oR, where 
the output is low ,0 onlyene inputs high.  if -aione 

Fig. 4-5 shows eight combinations relating the AND and OR func-

tions. In Fig. 4-5A. for example, A • B = X is the same as À A- B 

= X, which is an expression of DeMorgan's theorem. 

OTHER LOGICAL BLOCKS 

Other circuit blocks are available for building logical systems; 
some of these are described in this section. 

The flip-flop shown in Fig. 4-6A is a device that stores a single 
bit of information. It has three possible inputs, set (S), reset (C), 
and trigger (T), and two possible outputs, 1 and O. Reset is some-
times called clear. 
The two outputs are normally of opposite polarity. A 1 is stored 

in the flip-flop when the 1 output level is active, and the 0 output 
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1  
T 
FF (OR) 

Ill 
SIC 

FF 
0 

(A) Flip-flops. 

I 

(OR) 

[ 
Ill 

SS SS 

RG(4) )( 
10 010 0 

in !Ill 

(B) Binary register. 

Fig. 4-6. Logical blocks. 

level is inactive. A 0 is stored in the flip-flop when this condition is 
reversed. The flip-flop assumes the 1 state when an active signal ap-
pears at the S input, regardless of the original state. It assumes the 
0 state when an active signal appears at the "C" input, regardless 
of the original state. It reverses its state when an active signal ap-
pears at the T input. There are several possible variations to normal 
flip-flop operations, depending on the response of the device when 
active inputs are simultaneously applied. The S input is near the 1 
output; the C input is near the 0 output. 

The binary register symbol (Fig. 4-6B) represents a group of flip-
flops used in parallel to constitute a single register (such as would 
be used to store four bits of a character). It is necessary to indicate 
the number of bits or individual flip-flops in the register. Examples 
show four S inputs grouped on one multiple input line, and four pairs 

RI GHT 
SHIFT 
INPUT 

SERIAL 
INPUT 
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PARALLEL INPUT 

PARALLEL OUTPUT 

LEFT RIGHT 
SHIFT SHIFT 
INPUT INPUT 

SERIAL SER IAL 
OUTPUT (OR) INPUT 

PARALLEL INPUT 

PARALLEL OUTPUT 

Fig. 4-7. Shift register symbol. 

LEFT 
SHIFT 
INPUT 

SERIAL 
OUTPUT 



of 1 and 0 grouped output lines. In some applications, individual 
input and output lines are shown as in the right hand figure. 

The shift-register symbol (Fig. 4-7) represents a binary register 
with provision for displacing or shifting the content of the register 
one stage at a time; it is shifted to the right or left by means of the 
shift input. The words "right shift input" are usually placed at a left 
corner of the symbol to indicate a shift from left to right. If the shift 
is from right to left, the words "left shift input" are placed at a right 
corner of the symbol. 

SS 

-15 u SECL 

ONE OUTPUT 

(OR) 

SS 

SEC 1-C-I 

TWO OUTPUT 

Fig. 4-8. Single-shot symbol. 

Fig. 4-8 shows the symbol representing single-shot (SS) functions. 
Output signal shape, amplitude, duration, and polarity are deter-
mined by the circuit characteristics of the SS, (not by the input 
signal) and may be shown inside or outside the symbol. The quiescent 
state of the SS is either zero or one. When actuated, it changes to 
the opposite state and remains in that state for a specified time de-
pendent on the design of the device. 

ST 

J. SECL 
(OR) 

ST 

.5uSEC 
O 

Fig. 4-9. Schmitt trigger symbol. 

TWO OUTPUT 

Fig. 4-9 represents the Schmitt Trigger (ST) function. This de-
vice is actuated when the input signal exceeds a threshold voltage. 
Output signal amplitude and polarity are determined by the circuit 
characteristics of the ST (not by the input signal). Stylized wave-
forms may be shown (inside or outside the symbol), indicating 
amplitude, polarity, threshold voltage and duration. The quiescent 

Jii>1 

Fig. 4-10. Amplifier symbols. 

47 



state of the ST is either 0 or 1. When actuated, it changes to the 
opposite state and remains in that state as long as the input exceeds 
the threshold value. 

Fig. 4-10 shows a linear or nonlinear current or voltage amplifier. 
This amplifier may have one or more stages and can produce either 
gain or inversion. Level changers and inverters, pulse amplifiers, 
emitter followers, cathode followers, relay and lamp drivers, and 
shift register drivers are devices represented by this symbol. 

1.5MS 

(OR) 

Fig. 4-11. Time delay symbol. 

A time delay is shown in Fig. 4-11. The duration of the delay 
is included with the symbol. If the delay device is tapped, the delay 
time with respect to the input is included adjacent to the tap output. 
Twin vertical lines indicate the input side. 

LOGICAL LEVELS 

The AND and OR functions are duals: a single arrangement of cir-
cuits may perform both the AND function and the OR function. This 
functional quality is employed in numerous single-device and multi-
device systems. We may consider the AND function as an element 
whose output is active when all its inputs are active. Any nonactive 
AND input produces a nonactive output. The OR function is con-
sidered an element whose output is active when any one or more 
inputs are active. When all OR inputs are nonactive, the circuit pro-
duces a nonactive output. 
To identify the activity of a device selected to implement the logic, 

the state condition of active inputs and the resultant active outputs 
are identified by active state signal indicators (small circles) at the 
inputs or outputs of logic functions (AND OR). These graphic repre-
sentations as well as the English notations illustrate the relationship of 
specific functions. A small circle at the inputs indicates that the rel-
atively low (L) input signal activates the function. Conversely, the 
absence of a small circle indicates that the relatively high (H) in-
put signal activates the function. A small circle at the symbol out-
put side indicates that the output of the activated function is relatively 
low. Absence of a small circle at the symbol output indicates that 
the output of the activated function is relatively high. 
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Table 4-1. Activity States for Output F (A, Bl . 

(Electrical Truth) 
Device Activity States 

Table A 

Input Output 

A 

+2volts 

▪ 2volts 

—3volts 

—3volts 

▪ 2volts 
—3volts 

▪ 2volts 

—3volts 

2volte 

—3volts 

—3volts 

—3volts 

Activity Combinations 
Table C 

AND Function Activity States 
Table B 

Input Output 

A 

o 
o 

o 

o 

o 
o 
o 

OR Function Activity States 
Table D 

Input Output Input Output 

A e 
H 
H 

H 

H 

H o 

The presence of an indicated active output does not necessarily 
provide a useful input to other elements. It may prevent the oper-
ation of some elements and enable others. Conversely, the absence 
of an output may provide a useful input to some elements in the 
logical net and prevent the operations of other elements. 

Activating inputs, or an activated output of a function, may be: 

1. Logical 1 in either the high state (H) or the low state (L). 
2. A logical 0 either high or low. 
.3. A mixture of both 1 or 0 either high or low. 

Consider a device whose active output (F) is a function of two 
signals (A, B). The output and both input levels are capable of as-
suming only the arbitrarily chosen values, +2 volts (H) and — 3 
volts (L). The circuit behaves according to Device Activity State 
Table A of Table 4-1. Substitution of the abbreviation H for the 
+ 2 volt levels and L for the — 3 volt levels results in Activity Com-
binations Table C (Table 4-1). 
When the +2 volt level is considered the activating level and is 

assigned the logic value 1, and the — 3 volt level is considered the 
inactive level and is given the logic value 0, then substitution of 
these logic state values for the Table A active voltage levels results in 
AND Function Activity States (Internal) Table B (Table 4-1). The 
device is now said to perform the AND function. Consider the same 
device behaving according to Table A. Substitution of the abbrevia-
tion H for the + 2 volt levels and L for the — 3 volt levels in De-
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vice Activity States Table A results in Activity Combinations Table 
C (Table 4-1). When the — 3 volt level is the activating level and 
assigned the logic value 1 and the +2 volt level is considered the 
inactive level and has the logic value 0, then substitution of these 
logic state values for Table A active voltage levels results in OR 
Function Activity States (Internal) Table D (Table 4-1). The de-
vice is now said to perform the OR function. 

Consider a different device whose active output (F) is a function 
of two signals (B, C). The output and both input levels are capable 
of assuming only the arbitrarily chosen values + 2 volts (H) and — 3 
volts (L). The circuit behaves according to Device Activity States 
Table A of Table 4-2. 

Table 4-2. Activity States for Output = F ( B, C). 

) F 
CB—I 

(Electrical Truth) 
Device Activity States 

Table A 
Input Output 

B C F 
—3volts —3volts +2volts 
—3volts +2volts —3volts 
4- 2volts —3volts —3volts 
+2volts +2volts —3volts 

AND Function Activ'ty States 
Table C 

Input Output 
B c F 
1 1 1 
1 o o 
o i o 
o o o 

F 

Activity Combinations 
Table B 

Input Output 
B C F 
L L H 
L H L 
H L L 
H H L 

OR Function Activity States 
Table D 

Input Output 
B c F 
0 0 0 
0 1 1 
1 0 1 
1 1 1 

Substitution of mnemonic abbreviation H for +2 volt levels and 
L for — 3 volt levels in Device Activity States Table A results in 
Activity Combinations Table B (Table 4-2). 

Inputs (B, C) — 3 volt levels are the activating input levels and are 
assigned the logic value 1; the + 2 volt output level (F) is considered 
the activated output and is also assigned the logic value 1; inactive 
input levels +2 volt and the inactive — 3 volt output level are 
assigned the logic value O. Substitution of these logic state assign-
ments for Table A circuit voltage levels results in AND Function Ac-
tivity States Table C. The device is now said to perform the AND 
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s 

t 

t 

logic function defined by Table C and the AND inverting operation 
defined by Table A and combinations Table B. The device is sym-
bolized by combining the AND function symbol with input level in-
dicators (less positive than F). 

Substitution of abbreviations H for + 2 volt levels and L for —3 
volt levels results in Activity Combinations Table B where H is high 
and L is low. Inputs (B, C) + 2 volt levels are considered the ac-
tivating input levels and are assigned the logic value 1, and the — 3 
volt output level (F) is considered the activated output and is also 
assigned the logic value 1; inactive input level —3 volt and the in-
active +2 volt output level are assigned to the logic value O. Sub-
stitution of these logic state assignments for Table A circuit voltage 
levels results in OR Function Activity States Table D (Table 4-2). 
The device is now said to perform the OR logic function as in Table 
D and the OR inverting input operation as defined by Table A and 
combinations Table B. The device is symbolized by combining the OR 
function symbol with an output level indicator (less positive than 
B, C). 

Electrical state English notations are added to signal line inputs 
and outputs for identification when that line is either logical 1 or 0 
in a logic network of operations. For example, if line P (H) is placed 
at the input to logic elements, notation (H) indicates that line P 
signal is high, that is, a logical 1, when it exists. If upon inspection, 
line input P (H) is low, then it is in the logical 0 state. This non-
active logical 0 low state output can activate a device input in the 
logic network. Table 4-3 illustrates this concept. 
As in Fig. 4-12 a given line signal P (H) can be active or in-

active depending on the point under discussion. When P (H) is 

B(H) 
P(H) 

T(L) 

Table 4-3. Electrical State Notations. 

Activity Device States 
State + 2 volts —3 volts 

P (H) 1 0 
B (H) 1 0 
T (L) 0 1 

X (L) X = (B + PXL) 

B (H) or P (H) or both 8 (H) and P (H) 

Y = (P • T) (H) 

Y(H) P (L) and T (L) = P and T (H) 

Fig. 4-12. logical network. 
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high, as noted, it is in the logical 1 state and will produce output X 
but will inhibit output Y. Conversely, when P does not exist as a 
high, it is in the logical 0 state for the o R function and produces AND 
output Y if line T is low. 
A given signal must be considered and, when necessary, notated 

in terms of three independently variable parameters for every point 
in the logic network. These parameters are: 

1. Logical State; presence ( 1) or absence (0). 
2. Electrical State; high or low. 
3. Activity State; Signal Line condition, noted by graphic repre-

sentation (presence or absence of small circles) or English 
notations (line named high or low). 

LOGICAL OPERATIONS 

Involved operations are possible with these blocks; a simplifica-
tion of operations is possible. The following block diagram ar-
rangements may be rearranged by the use of the logical relation-

D 
Fig. 4-13. AND and OR combination. 

A+À•B=A+B 

ships. These rearrangements are not obvious from the original. In 
each case, the more simple and direct equation will serve the same 
function as the original from which it is derived. 

A 
B 

A 
C 

B 
C 
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_ 
B• 

Fig. 4-14. Logical operation circuit. 

A B+A•C+ B•C = 

(A•C+B-C) 



To show that A + A • B is the same as A + B, as in Fig. 4-13: 

A+ À•B = A • (B + 713) + • B, since B + T13 = 1 
= A•B+A•713+Â•B 
= A•B+A•B+À•B-1- -À•B 
= A • (B + B) + B • (A + A) 
= A + B 

Another example is illustrated in Fig. 4-14. We want to show: 

A•B+A•C 

+ B • é = AC + BE 
Now,A•B+A•C 

+ B • C = A•B(C+é) +A•C+B•C 
= A•B•C+A•B•C+ 

A•C+B• -é-
= A • C • (B + 1) + B • E • (A + 1) 
= A•C+B•é 

The Boolean expression A•B + C = D 
may be expressed symbolically as follows: 

A   
BP  
C   

AG )  
) OR) ID 

(A) A • B C = D. 

The Boolean expression A•B•C + D•E + F•G = H 
may be expressed symbolically as follows: 

AG 

El  

FI  

GI  

AG )  00—tH 

AG ) 

(B)A•B•C-i-D•E-i-F•G=H. 

Fig. 4-15. Logical circuit arrangements. 
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AG 

AG )— 

AG 

AG ) 

A•(B+C)+D•E+F.G.F1•1=K 

 ) OR) 

Fig. 4-16. Circuit implementing complex expression. 

Combinations of AND gates and OR gates are shown in Fig. 4-15, 
Fig. 4-15A is A • B + C= D; Fig. 4-15B is A•B•C+D•E 
+ F • G H. 

Fig. 4-16 shows A • (B + C) + D•E + F•G•H•I = K. 
This requires three two-legged AND gates and one four-legged AND 
gate and one four-legged OR gate. 

As another example, the relationship (A + B) + (A • C + B) 
can be reduced by Boolean algebra. This expression can be simpli-
fied to: 

(A + B) + (A • C + B) = (A + A • C) + (B + B) 
= (A + A • C) + B 
= A + B 

Therefore, a simple oR gate can be used. 
Diagrams can be developed directly from expressions as (NOT X OR 

Y) AND (X OR NOT Y). To draw the block diagram for (k.- + Y) • 

(X + Y), each expression is first set up. The two expressions are 
then combined as shown in Fig. 4-17. We may also change relation-
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Fig. 4-17. How diagrams are developed from expressions. 



A 

 DÀ-d-FÈ 

A  
ABC B  

C j  

Fig. 4-18. Implementation of De Morgan's Theorems. 

(A-U-U) 

ships from AND to OR. The change from AND to OR (and from OR to 

AND), from (A • B • C) to A + + as in Fig. 4-18, may be 
made by the use of DeMorgan's Theorems. 

NOR/NAND LOGIC 

For implementing binary algebra, two logic assignments, NOR and 
NAND, are possible. In one system, NOR, a logical 1 is represented 
by the presence of a voltage and a logical 0 is represented by no 
voltage. The NAND system results if the assignments are reversed. 

Binary 0 Binary 1 

NOR Low voltage High voltage 
NAND High voltage Low voltage 

A gate can be used as either a NOR or NAND gate, depending upon 
the logic system selected. The transfer functions of the gates are: 

NOR A, B, . . X A ... X or A + B + + X 

NAND A, B, X -À Y( or AB ... X 

Fig. 4-19 shows the duals F = (A + B) • (C + D) and G = 
A • B + C • D. 

Consider using the two equations shown below: 

F = (A+B)•(C+D) = A•C+B•C+ 
A•D+B•D 

G = A•B+C•D -= (A +C)•(B+C)• 
(A + D) • (B + D) 

As in Fig. 4-20 it can be seen that the two logic systems are duals 
with the NOR logic favoring maxterm type equations and the NAND 
logic favoring minterm type equations. Employing a particular 
equation with its favored type of logic ordinarily results in the best 
system with respect to economy and speed. It is sometimes possible 
to reduce the number of gates connected in series, hence increasing 
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Fig. 4-19. NOR/NAND logical circuits. 

F = ( A+ B).(C+D) 

o  
Bo  
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56 

(A+B) 

(C+D) 

(A.é) g•rik(C.D) 

 )(E•5) (À•11)+(C.D)=M+B).(C+D) 

(À41) 

(C-FUI) (À4-31).(E-1-II 

A•B+C•D 

(A.B) 

(C-D) (A.B)+(C-D) 



F4A+B).(C+ D)= A•C+B•C+A•D +B•D 

A 

C 

B 
C 

NAND: 

A 

D 

B 
D 

A 

C 

Fr- A•B + C•D= (A + C)•(B + C)• (A + D) • (B + D) 

B 
C 

NOR: 

A 

D 

B 
D 

F 

G 

Fig. 4-20. NOR/NAND duality. 
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F -(A13)•(FO) 
=(AB)+(CO) 

F r-(A+ B) -1-(C+D) 
=(A + En • (c+D) 

Fig. 4-21. Combinations of NAND and NOR logic. 

speed at the expense of using extra networks. In the previous ex-
ample, the two equations may be transformed to achieve this pur-
pose. Any equation may be readily reduced to its simplest tninterm 
form, but it is often difficult to expand an equation that is in min-
term form into a maxterm type equation that is reduced to the 
optimum form for implementation. For this reason, NAND logic is 
usually preferred. 

Combinations of NOR and NAND logic are shown in Fig. 4-21. Fig. 
4-22 is a summary of logic symbols. 

All basic logic symbols drawn without small inversion circles at 
the input or output are considered to operate as positive logic ele-
ments. Positive logic is designated as the most positive relative DC 
level that is equivalent to high state, true, or binary 1. Therefore, 
the most negative relative DC level is equivalent to low state, false, 
or binary O. 

COMPUTING CIRCUITS 

Computing circuitry generally requires various forms of arithmetic 
operations. These operations are usually performed with fundamen-
tal devices called either half-adders or half-subtracters, grouped in 
appropriate combinations. 
The addition of two binary numbers generates a sum bit, either 

0 or 1 depending on the addition result, and a carry bit identical to 
the carry in normal or decimal addition. A full-adder, composed of 
two half-adders, is required to accommodate a full sum and carry 
operation for each binary bit. Fig. 4-23 illustrates a circuit and the 
associated truth table for the generation of the half-addition of two 
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Fig. 4-22. Logical symbols. 
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ÀB•AB- S 

ABC 

AB 
SUM 
S 

CARRY 
C 

0 0 0 0 

0 1 1 0 

1 0 1 0 

1 1 0 1 

THUS: S • + AI 
C • AB 

Fig. 4-23. Half-adder circuit. 

binary bits. All logic functions generated are shown on the diagram 
with the algebraic reduction for the completed equations of the sum 
and carry bits. 

Fig. 4-24 shows the circuitry and truth table for the half-sub-
traction of two binary bits. The equations for the difference and 
borrow are similar to those for the sum and carry in a half-adder. 
Specifically, the sum and difference equations are identical. Only 
the carry and borrow equations differ. Thus, the major portions of 
the circuitry for the half-adder and half-subtracter are identical; the 
only difference is in the generation of the carry or borrow bits. 

The full-adder is shown in Fig. 4-25. When using the carry in-
formation to correct a serial binary sum, or when a third carry in-
put from a half-adder of the next lowest significant digit is to be 
added to the present sum, a full adder must be employed. An ex-
ample of the logic required for the full adder is shown. The full-
adder logic may be simplified by utilizing the exclusive OR logic ele-
ment as in Fig. 4-26. 
The full-subtractor is shown in Fig. 4-27. A full subtractor may 

be formed by combining two half-subtractors, an OR gate, and a 
single-unit delay. 
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17B-Ari= ÀB + AÉ= DIFF 

[rr3]- AB= BORR 

A B DIFF BORR 

0 0 0 0 

0 1 1 1 

1 0 1 0 

1 1 0 0 

DIFF -7B + e 
BORR -iB 

Fig. 4-24. Half-subtracter circuit. 

As before, the addition of binary numbers is direct and simple 
when only two digits are to be added. The OR circuit is used, since 
for a two-input OR only when both inputs are 0 does a 0 output re-
sult. If either input is a 1, the output is a 1. If both inputs are l's, 
the output is a logical 1, which represents in this case, a 10 or a 
carry 1. 

Thus, to add two two-digit numbers, there are eight possibilities 
(Table 4-4). A is the addend; B is the augend; C is the carry-in 
from the last addition; D is the sum; and E is the carry-out to the 
next addition. There are three different cases, aside from the trivial 
case of all O's. These are one 1, two l's, and three l's. 

For a single 1, there are three cases: (A + B + -é.), (-À + B 
+ E), and (A + B + C). There is always a sum and never a 

carry. For any two l's, (A + B + «), (A + it + C), and (-À 
+ B + C), there is always a carry but never a sum. When every 
digit is a 1, (A + B + C), there is a carry and a sum. When every 

digit is a 0, (À + É + E), there is neither a sum or a carry. 
The implementation may be seen in Fig. 4-28, with the AND'S and 

the OR'S as indicated. The INV block is an inverter that changes a 1 
to a 0 and a 0 to a 1. A description of the operation of the logical 
circuits shown in Fig. 4-28 follows. 
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Fig. 4-26. Full-adder logic using exclusive OR. 
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 ¿CARRY 

OR'S 2, 3, 4 each have two l's, which means three l's into 
AND 2; the 1 into INV means 0 into OR 1. But, l's through 
AND 1 and OR 5 means a sum of 1. OR'S 2, 3, 4, as with 
sum, all have l's, which means AND 2 will have a carry of 
1. 

HAG) 
EX 

T SS 
i 

 SDIFFERENCE BORROW AG ) S 
Fig. 4-27. Full subtract«. 

Two l's Any two l's through OR'S 2, 3, 4, will mean a 1 out from 
AND 2. Through iNv, a 0 will be sent to OR 1. But through 
AND 1 there will be a 0, since all three inputs to AND 1 are 
not 1; thus there will be no sum since AND 3 has but a 
single 1 through OR 5. Since AND 2 has three l's there 
will be a carry of I. 

Table 4-4. Adding Two-Digit Numbers. 

A B C D E 
Addend Augend Carry•in Sum Corrrout 

1 1 0 0 1 0 
2 0 1 0 1 0 
3 0 0 1 1 0 
4 1 1 0 0 1 
5 1 0 1 0 1 
6 0 1 1 0 1 
7 1 1 1 1 1 
8 0 0 0 0 0 
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A C I CARRY IN I 

E (CARRY-OUT) 

D (SUM) 

Fig. 4-28. Logical circuit for addition. 

One I AND 2 does not have three l's; thus through INV there is 
a 1 to OR I, which passes a 1 to AND 3. OR 5 also has a 1 
out because of a single 1 in. AND 3 thus has a sum out of 
I. AND 2 has not three l's for only two OR'S (2, 3, 4) can 
have a 1. Thus there is no carry of 1 but O. 

No l's Neither AND 1 nor OR 5 has a single 1; hence there is no 
sum of I. No l's into AND 2; hence there can be no 
CARRY of I out, but a CARRY of O. 
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Chapter 5 

The Algebra of Sets 
The logician makes a sharp distinction between the two values 

of a variable in Boolean algebra. He postulates that the range of the 
variable is a collection of elements, each of which may be tested to 
meet only one of two conditions; either the element belongs to a 
predetermined set, or it does not. The mathematical structure of the 
system of collections is called the algebra of sets. To the logician 
this structure is identical with Boolean algebra. 

ELEMENTS AND SETS 

We define a set to be any collection into a whole of separate and 
distinct objects. Thus a set is a collection of elements. The elements 
of a set will be denoted a, b, . . ., z; The sets will be denoted A, B, 
C, . . . Z. If the object a belongs to the set A, we write a E A, read 
"a is a member of A." If A and B are sets, and every element of A 
is also an element of B, we write A c B, read "A is a subset of B." 
If A c B, and there is at least one element of B that does not be-
long to A, then we say A is a proper subset of B. Equality of sets 
is defined in the obvious way; we say A=B if A c B and Bc A. 
The universal set is the set of all elements under discussion and is 
denoted by l. The empty set is the set having no members and is 
denoted by O. The complement of a set A is the set of all elements 
not in A and is denoted A'. 

Given two sets X and Y, there are various ways of combining them. 
One way is a union of sets. The union of X and Y is the set con-
taining every element of both X and Y. Hence the meaning of union 
is that of the non-exclusive OR, denoting X OR Y or both. The sym-
bol for the union of two sets X and Y is X U Y. It has the logical 
meaning of OR (Table 5-1). 
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Table 5-1. Symbols of Logic. 

OR AND NOT X, Y 
Boolean Algebra 
Propositional Logic 
Algebra of Classes 

X --1- Y X • Y i Switches 

X v Y X A Y —X Propositions 
XUY X n Y X' Sets 

The intersection of two sets X and Y is the set containing every 
element common to X and Y. In contrast to union, intersection 
means AND and represents the logical sum of X and Y. The symbol 
denoting the intersection of two sets X and Y is X (1 Y (Table 5-1). 

Consider the sets in Fig. 5-1A. The universal set (1) is the rec-
tangle C. One can show that, for the set S, S U S' = C, i.e., all ele-
ments in S or S' constitute the universe (C) under discussion. Also 
observe that S n = 0, i.e., the elements to S and S' com-
prise the empty set (that is, there are none). 
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(A) Nonintorsocting sots. 

(B) Intersecting sets. 

Fig. 5-1. Examples of sots. 



(B) 

(D) 

X n Z 

X u Y 

11111 D=' 
=X'nY' n r-XnY 

X'nY'r(XuY) 
( X nY) = X'u Y 

(A) 

(E) 

(X uY)n(YuZ) 

(F) 

Fig. 5-2. Venn diagrams. 

(C) 

Yu( Xn Z) 

YuZ 

Yu(XnZ)=(XuY)n(YuZ) 

In Fig. 5-1B there are two rectangles A and B. It is clear that 
A c C, and BCC, i.e., every element in A is in C, and every element 
in B is in C. Now consider the set A n B; all the elements of A n B 
are in the rectangle designated A n B. But for the union of A and B, 
the new set A U B is the set of all elements in A and in B, and this 
new set includes the common area of A and B. 

Diagrams that illustrate logical relations often are Venn diagrams. 
(Fig. 5-2). In Fig. 5-2A we consider two sets X and Y. The area 
of vertical shading represents the complement X' of X. Note that 
the diagram illustrates X n x' = 0, and X U X' = 1. The area 
with diagonal shading represents Y'. Note that X' n Y' is the area 
with both vertical and diagonal lines. This area is also (X U Y)'. 
Hence, we have (X U Y)' = X' n Y'. Observe that the area com-
mon to X and Y is unshaded; this represents X n Y; it is also 
represents (X' U Y')'. So: 
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X U Y = (X' U Y')' 
(xnY)' = X'UY' 

Consider Fig. 5-2B. The shaded area in this Venn diagram repre-
sents X n Z. In Fig. 5-2C we have included the set Y, and the shaded 
area is Y U (X n Z). Fig. 5-2D illustrates the set X U Z, and Fig. 
5-2E illustrates Y U Z. If we intersect the sets X U Y and Y U Z, we 
obtain a set: 

(X U Y) n (Y U Z) 

that is shown as the shaded area in Fig. 5-2F. Note that the shaded 
area in this diagram is the same as the area shaded in Fig. 5-2C. 
Hence we observe that: 

Y U (X 11Z) = (X U Y) n (Y U Z) 

and that the Venn diagram is a very useful representation of the 
union and intersection of sets. 

Very important to the concept of number is a relation known as 
similarity. We say that two sets A and B are similar if a 1 to 1 
correspondence can be established between the members of A and 
the members of B. This relation is not the same as equality, since 
two similar sets may be entirely different collections. For example, 
if we write [r,s,t,w] to denote the set A consisting of elements 
r,s,t, and w, and if [c,d,e,f] denotes a set B consisting of elements 
c,d,e, and f, then we will observe that A and B are similar (Table 
5-2). It is important to observe that two similar sets have the saine 
number of elements. 

Table 5-2. Similarity of Sets. 

A =--- tr, s, t, w] 

B = [C, d, e, fl 

Early in this chapter the concept of the empty set (0) and the 
universal set (1) was discussed. There is also a further characteriza-
tion of sets, and this defines the difference between the finite and the 
infinite set. If there is no end to the number of individual members 
in a set, this set is known as an infinite set. For example, the set of 
all even numbers is infinite. In contrast to this, if the totality of the 
members of a set can be counted, it is known as a finite set. Clearly, 
the number of members in an infinite set is always greater than the 
number of members in a finite set. It is possible to show that there 
are as many numbers as their are even numbers. For example, let 
A be the set of all whole numbers such as 1, 2, 3, 4, 5, 6, . . . 
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and B be the set of all even numbers, such as 2, 4, 6, 8, 10, 12, 
. . . We obtain the 1 to 1 correspondence simply by pairing each 
number with its double, e.g., 1 4-› 2, 2 4-› 4, 3 4-› 6, . . ., etc. Thus 
there are as many even numbers as there are whole numbers. 

OPERATIONS ON SETS 

In the algebra of sets, there are certain rules that define the 
manipulation of sets. There are seven basic identities formed by 
using only the operations of union, intersection, and negation. Those 
identities are listed for reference: 

(1) (a) on x :=- 0; 
(b) inx= x; 
(c) o' = 1 
(d) l' = 0 
(e) OUX = X 
(f) 1 U X = 1 

(2) (a) xnY = Ynx 
(b) XUY = YUX 

(3) (a) X n (Y U Z) = (X n Y) U (X n z) 
(b) X U (Y n z) = (x U Y) n (xu Z) 

(4) (a) xn(Ynz) = (xn Y) nz 
(b) X U (YU Z) = (X U Y) UZ 

(5) (a) X(1 X = X 
(b) XUX = X 
(c) X n (x U Y) = X 
(d) X U (x nY) = X 

(6) (a) X nx' = o 
(b) X U X' = 1 
(c) (X')' = X 

(7) (a) (X nY)' = x' UY' 
(b) (X U Y)' = X' n Y' 

The preceding relations could be established using the diagram 
shown in Fig. 5-3: 
where, 

Fig. 5-3. Diagram used to establish the 
rules for manipulation of sets. 
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X = [a, e, d, g] 
Y = [b, e, g, f] 
Z = [c, d, f, g] 

For example to find XUY: 

X U Y = [a, e, d, g] n [b, e, g, f] 
= [a, e, d, g, b, f] 

And to find X n Y: 

X n Y = [a, e, d, g] n [b, e, g, f] 
XflY -= [e, g] 

We can also use this technique to verify the seven relations 
previously given. 
We can also simplify expressions. For example: 

x n (x' U Y) U YU (Y n (Y U Z)) 
= (xnx') UYUY U (YnY) U (xn z) 

But by (6)a, X n x' -= 0 
by (5)b, X UX = X 
by (5)a, XnX = X 

Thus, (xnx') UYUYU (xnY) u (Y Z) becomes 
OU Y U (Y n z). 

Also, by (5)d, X U (X n Y) = X. Therefore the expression be-
comes simply Y. 

Applied to sets, De Morgan's law provides a dual relationship 
between intersection and union. This duality exists in such a way 
that all unions may be replaced by intersections; all intersections 
may be replaced by unions; all l's may be replaced by O's; all O's 
may be replaced by l's, and the result will still be an identity. Some 
simple examples are shown in Table 5-3. 

Table 5-3. Dual Relation Between Union ( U I 
and Intersection ( n ) . 

onx=o 
1 U X = 1 
1nx=x 
oux=x 

} 
1 

APPLICATIONS OF SETS 

The algebra of sets has several applications. Consider a line A 
drawn on a sheet of paper. This line is defined as the intersection of 
two planes, and the line extends as far as we wish in both directions. 
This line X may be considered to be composed of an infinite number 
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LIne X 

Fig. 5-4. Three sets defined by a point on a line. 

of points as in Fig. 5-4. If on this line X a point P is placed, there 
are three sets now defined. There is the set of points on the line to 
the right of point P. There is a set of points to the left of point P. 
There is point P, which is a set having a single member. Thus a 
single point on a line defines three sets. 

Fig. 5-5. Two lines having the same 
number of points. 

A surprising correspondence between two lines is shown in Fig. 
5-5. For any point d on line DE, there is corresponding point on 
base BC of triangle ABC. To show this, draw a straight line from 
the vertex A through point d. This line intersects BC in one and 
only one point b. And conversely, a line drawn from point b to the 
vertex A will intersect the line DE in one and only one point d. 
Hence there is a 1 to 1 correspondence between the set of points 
composing line DE and the set composing line BC. We must con-
clude, then, that DE has the same number of points as BC. 

The expression [x/x<7] is read as "the set of all numbers x such 
that x is less than 7". Because this set is infinite, it is not possible 
to enumerate all of the members; it is, however, possible to 

0 1 2 3 4 5 6 7 8 
(A) Graph of x<7. 

X<-2 X>4 

—8 —6 —4 — 2 0 2 4 6 8 
(B) Graph of [xlx >4 or xlx.< —2] 

Fig. 5-6. Graphs of sets. 
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graph such a set. Fig. 5-6A shows the graph of this expression or 
the solution set of x<7. A rounded arrowhead means the set does 
not include 7, but all numbers up to 7. 
Suppose A = [x x > 4], i.e., A is the set of all numbers x such 
that x is greater than 4. Also suppose B = [xix < —2], i.e., 
B is the set of all numbers x such that x is less than —2. Then if 
C = A U B, C = [xlx > 4 or xlx < —2], i.e., C is equal to the 
union of A and B, as in Fig. 5-6B. 
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Chapter 6 

The Algebra of 
Switching Circuits 

The algebra of switching circuits is a two-valued type of Boolean 
algebra in which the only two possible values are 0 and 1. Suppose 
that 1 represents a closed circuit that allows current flow, and 0 
represents an open circuit through which there is no current flow. A 
scheme of switching algebra can be established on this basis such 
that the algebra is applicable largely to series and parallel circuits. We 
will show that it can also be used for non-series parallel circuits. 

THE RULES OF ALGEBRA 

The basic circuits are the series circuit and the parallel circuit. 
The parallel circuit is an OR and is usually designated by switches 
in parallel. This may be written as A OR B, which is the same as 
A + B. In this algebra, the addition or + sign designates two 
switches in parallel. A series circuit, say of two switches, is con-
sidered to be an AND circuit. The two switches A and B in series 
are designated as A AND B, which is multiplication and is written 
A • B. 

These are as defined in Table 6-1. There are three basic rules for 
addition, as shown. 0 + 0 = 0 means that an open circuit in 
parallel with an open circuit is still an open circuit. 0 + 1 = 1 
means that an open circuit in parallel with a closed circuit is a 
closed circuit. The third rule of addition is that 1 + 1 = 1 and 
means that a closed circuit in parallel with a closed circuit is a 
closed circuit. In summary, the rules for addition say, considering 
a parallel circuit, there is current flow if A is closed, or B is closed, 
or if both are closed. 
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In the same way, multiplication represents a series connection. 
0 • 0 = 0 means an open circuit in series with an open is still an 
open. 0 • 1 = 0 means that an open circuit in series with a closed 
circuit is still an open circuit. 1 • 1 = 1 means that a closed circuit 
in series with a closed circuit is a closed circuit. Thus, in summary 
for multiplication, which expresses a series circuit, there is current 
flow if, and only if, all of the switches in series are closed. 
The third operation for switching algebra is negation. Clearly, the 

negation of an open circuit is a closed circuit, and the negation of a 
closed circuit is an open circuit. The superior bar represents negation, 

as I- = 0, 7(1 = 1. 

SI S2 
 de 

Fig. 6-1. Duality—AND/OR. 

In order to establish a valid system of switching algebra, it is 
necessary to establish certain rules such as those already given. 
There are many possibilities of establishing the basic rules or sys-
tems by which various types or forms of switching algebra could 
be developed. For example, 0 could represent a closed circuit, and 
1 could represent an open circuit. It is also possible, since this is a 
two-valued system, to use any of two opposite values such as an 
open circuit and a closed circuit, current flow and no current flow, 
voltage and no voltage, high voltage and low voltage, positive 
voltage and negative voltage, a pulse and no pulse, or any other 
duals. For example, consider Fig. 6-1, which shows two switches 
S1 and S2 in series with a battery and a current-indicating device. 
If we were to define a 1 as meaning current flow through the meter, 

Table 6-1. Basic Identities of Switching Algebra. 

Addition Multiplication Negation 
0 + 0 = 0 0 • 0 = 0 6 = 1 
o + 1 = 1 o • 1 = o T=o 
1 + 1 = 1 1 • 1 = 1 

1 = Closed 0 = Open 
Addition is OR, switches in parallel. 

Multiplication is AND, switches in series. 

HOR (A orB).(A+B) 

_....."'0_-0,1"0— AND (A and B),(A•B) 
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then there would be a 1 only if switch 1 and switch 2 were closed at 
the same time. Clearly, under these conditions, a 0 would exist if 
either switch was open. On the other hand, if a 1 is to be considered 
as expressing no current flow through the meter, then there will 
be a 1 indicated if switch Si is open or switch S2 is open. 
In this manner the simple circuit shown may be either an AND 
circuit or an OR circuit, depending on the definitions. 

Although there are a number of possible ways of setting up a 
valid switching algebra, the one discussed in this chapter is basically 
the one that is shown in Table 6-1, and which is closely allied to 
the algebra of sets; indeed, the switching algebra is a form of 
Boolean algebra. 

There are a number of significant laws that we can use to form 
the axioms of this system. They are given below in an abbreviated 
form. 

I. Commutative Laws 
a. Addition 
b. Multiplication 

2. Associative Laws 
a. Addition 
b. Multiplication 

3. Distributive Law 
4. Identities 

a. Addition 
b. Multiplication 

5. Equality 
a. Reflexive 
b. Transitive 
c. Symmetric 

6. Idempotent Laws 
a. Addition 
b. Multiplication 

A +B=B+A 
A•B=B•A 

(A + B) + C = A + (B + C) 
(A • B) • C = A • (B • C) 
A • (B+ C)=A•B +A•C 

A + 0=0 + A = A 
1 • (A) = A • (1) = A 

A=A 
Where A = B and B = C, then A = C 
Where A = B then B = A 

A + A = A 
A • A = A 

The first law, which is not illustrated, is the law of closure; It states 
merely that addition and multiplication are always defined. 

The commutative law has two forms. In the commutative law of 
addition, the order in which two quantities are added is not signifi-
cant. Two quantities can be added regardless of the order of addi-
tion. In the same manner, the commutative law of multiplication says 
that the sequence in which two items are multiplied is not significant. 
These basic laws seem rather trivial; however, in structures of mathe-
matics such as matrix theory, it is not necessarily true that multiplica-
tion obeys the commutative law. 
The associative laws are in two forms; the associative law of 

addition says that in adding three numbers it is not significant which 
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two are added first. In the same manner with the associative laws 
of multiplication, the sequence of multiplication is not significant. 
Another way of saying this is that when a series of numbers is added 
no parentheses are needed; similarly, when a series of factors is 
multiplied, no parentheses are needed. 
The distributive law relates to both addition and multiplication. 

This law states that multiplication is distributive over addition, or the 
multiplier, which in this case is A, is distributed over both quantities 
in the parentheses, which are B and C. 
A very significant law is the one of identity. The number 0 is 

known as the identity of addition for as shown, A = 0, or 0 + 
A = A. The identity for multiplication is 1; 1 multiplied by any 
number A is equal to the number itself. 
The law of equality has essentially three different aspects. In the 

reflexive case, the law of equality merely states that A = A. In 
the transitive case, the law says, for example, if A = B and B = C, 
then A = C. The symmetric aspect of equality says only that if 
B = A, then A = B. 
The idempotent laws are very significant to this algebra. The 

idempotent law for addition, for example, says that A + A = A. 
Notice that this is significantly different from other forms of algebra. 
In the Boolean algebra used for switching, there is no significance to 
a quantity such as 2A, since A + A = A. This is the equivalent 
of saying that a switch in parallel with itself has no significance. The 
idempotent law of multiplication says that A • A = A; this only 
says that a switch in series with itself is itself. 

SWITCHING ALGEBRA AND CIRCUITS 

There are two aspects of switching algebra; one is the algebraic 
representation of a given electronic switching circuit. The second is, 

A — B r  
( A • B+C)•( --C Mil 

(B+C)•(A•B+A) 

Fig. 6-2. Switching circuits to represent algebraic expression. 
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given the algebraic expression, to form the electronic switching cir-
cuit that it represents. Both of these can be done, and the basic pur-
pose of switching algebra is to enable the circuit designer to create 
specific circuits and to reduce these circuits to a minimum of com-
plexity. For example, two circuits are shown in Fig. 6-2. One of 
these pictures a switch A in series with a switch B, and both of 
these in parallel with switch C. This entire combination is in series 
with NOT C and in series with NOT B. Hence, the algebraic expres-
sion for this is: 

(A • B + C) • (C) • (B) 

The second of these is a parallel combination of switches B and C. 
This parallel combination is in series with a second parallel com-
bination. The second parallel combination is a series of NOT A and 
B in parallel with A. Hence, the algebraic form of this is: 

(B + C) • (A • B + A) 

One of the ways that we can evaluate the value of a given 
function and its circuit is to set up a truth table such as shown in 
Table 6-2. This is shown for the AND circuit. 

Table 6-2. Truth Table for AND Circuit. 

A B A•B A•B A•B (A•B) 

I 

2 

3 

4 o o o 

Consider two switches A and B, in series. These take on the 
four separate values shown in rows 1, 2, 3, and 4. In row 1, for 
example, A is 0 and B is 0 so that the combination of A AND B is 
also O. The next combination, which is NOT A AND B, is the equiva-
lent of a series connection of 1 and 0, so that the result is also 0 
as shown in row I. The next combination is A AND NOT B, which 
has value O. The last combination, which is the negation of A AND B, 
turns out to be I. Thus it is possible, using this table, to establish the 
truth values for all AND combinations of switches A and B. 

Truth tables are used as follows. Suppose that we have a series 
circuit of A AND B. Suppose also that we wish to know whether 
this series circuit is open or closed, if the function under considera-
tion is the negation of A AND B. According to the table, this func-
tion is 1 except when both A and B are 1. In the same manner, if 
the function is A AND NOT B, the function is 1 if A is 1 and B is O. 
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Table 6-3. Truth Table for OR Circuit. 

A B A + B —A + B A + à (A + B) 

1 0 0 0 1 1 1 

2 0 1 1 1 0 0 

3 1 0 1 0 0 1 

4 1 1 1 1 0 1 

In the same manner, Table 6-3 shows the OR table. A OR B turns 
out to be 1 except when both are 0; NOT A OR B turns out to be 1 
except when A is 1 and B is 0; the negation of A OR B is 1 if A is 
0 and B is 0; A OR NOT B is 1 in all cases except when A is 0 and 
B is I. 

Table 6-4. 
All Possible Combinations of Truth Values for A and B. 

A B Así A + B (A • B) (A + B) 

0 0 1 0 1 0 

0 1 0 1 1 0 

1 0 0 1 1 0 

1 

Table 6-4 illustrates other truth tables; each column evaluates a 
function for all possible combinations of the truth values of A and B. 

CIRCUIT SIMPLIFICATION BY ALGEBRA 

The simplification of a circuit reduces a more complex form to a 
less complex form. We can always use truth tables to establish the 

 X Y 

L A — B---C 

—  X — Y— 

A  

 B  
- 

  C   
Fig. 6-3. Example of complex switching circuit. 

equivalence between the original and reduced function. Consider, for 
example, Fig. 6-3; the original circuit is represented by: 

(X•Y+A•B•C)•(X•Y+A+ii+C) 
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This expands to: 

X. Y+À•X•Y+ii• X•Y+ê•X•Y+ 

A•B•C•X•Y + A•ÂB•C+ A•B•ii•C+ 

A•B•C•ê 

which reduces to: 

X•Y(1+ -À+ri+ê+A•B•C) +0+0+0 

This, in turn, reduces to 

X • Y 

We can also simplify expressions involving other forms, consider 
this simplification: 

X • (g + Y) + Y + Y • (Y + Z) = 

X.,(.+X•Y+Y+Y+Y•Y+Y•Z 

But 

X • 5Z. = 
Y+Y = Y 
Y • Y = Y 

Thus, we have 

X•Y+Y+Y•Z 

Also, 

Y+Y • Z = Y and Y+X • Y = Y 

And the expression becomes Y. 

CIRCUIT SIMPLIFICATION BY CHARTING 

A chart is a form of truth table used for simplification. Its use 
allows a reduction of circuit complexity. 

Consider a function X of three variables, as in Fig. 6-4A, such 

thatX=À•B•ê + À•Ti•C +À•B•C + A•B• C. 
This figure is a charting of the three variables where one state is 1 
(closed), and the other state is 0 (open). The three variables are 
ordered as A, B, C, and the numbered squares are: 

1. (0, 0, 0) 
2. (0, 0, 1) 
3. (0, 1, 0) 
4. (0, 1, 1) 
5. (1, 1, 0) 
6. (1, 1, 1) 
7. (1, 0, 0) 
8. (1, 0, 1) 
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0 1 1 0 C 

A B 

0 0 

0 1 C 

1 

5 

7 8 

A B 
0 0 1 1 D 

2 4 

5 6 7 8 

10 11 

13 14 

('  

16 

(A) Three-variable chart. (B) Four variable chart. 

Fig. 6-4. Chart form of truth table. 

The shaded blocks (2, 3, 4, 6) represent the 1 condition for the 
function X. If the values are (0, 1, 0) as in square 3: 

X = 1 • 1 • 1 + 1 •0•0+ 1 • 1 •0+0• 1 
X = 1 + 0 + 0 + 0 
X = 1 

• 0 

Again, for square 6, which is (1, 1, 1): 

X =-.0• 1 •0+0•0•1 + O• 1 • 1 + 1 • 1 • 1 
X = 0 + 0 + 0 + 1 
= 1 

In similar fashion charts for five, six, seven, and even eight vari-
ables can be created. Note that a three variable chart has eight 
squares, a four variable chart has sixteen squares, and that an 
N-variable chart has 2S squares. The tabular listing of the coordi-
nate values of the variables is done in a "reflected" sequence rather 
than a straight binary sequence such that only one variable at a time 
changes state between any two adjacent coordinates. This is done to 
facilitate determination of redundant variables in the conjunctive 
terms by quick inspection. 

In the same manner, (Fig. 6-4B) a four-variable chart is shown 
where: 

X = (A • B • ê) + (À • • 

(ê• + C•D) + A•B•C•51 -

Here again the squares having a value of 1 are shown as 1, 3, 9, 
12, and 15. 

These results show which values the function is 1 and permit a di-
rect evaluation of the function without algebraic manipulation. 
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AB 

0 0 

0 1 

1 1 

0 1 C 0 1 C 0 1 C 
A B   A B 

0 0 0 0 

0 1 

1 1 

0 1 

1 1 

A • B • A • B+i3-• 

Fig. 6-5. Chart development of function X = A • • E. 

Consider Fig. 6-5, where the function charted is: 

X = A • B + it • é 

The first step is to chart A • B as shown; clearly A • B = 1 
(shaded) if, and only if, A=1 and B=1. Values for C play no part 
in this hence A • B is true if 0=0 or if C=1. We can proceed to 

the chart for • é, which is true for B=0 and C=0. These two 
charts are then combined, as in the third chart, to produce: 

X = A•B+B•ê 

Since this is the OR connective the two charts are superimposed to 
produce the final chart. 

AB 

0 0 

0 1 

1 0 

0 1 

A+B 

AB 

0 0 

0 1 

1 1 

1 0 

0 1 C 0 1 C 
A B 

0 0 

0 1 

b+c 

1 1 

1 0 

(A+B)'( B+C) 

Fig. 6-6. Chart development of function X = (A+B) • (8+C). 

Fig. 6-6 shows the chart development of the function X = (A + 

B) • di- + C). Fig. 6-7 gives several charts for simple expressions. 

Note that A • B + À • (B + C) also equals B + À • C. 
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AB 
0 0 

0 1 

1 1 

1 0 

0 1 

A • B 

AB 
0 0 

0 1 

AB 
0 0 

0 1 

1 1 

1 0 

0 1 

0 1 

ffIrmey..yeerra 

AB 
0 0 

0 1 

1 1 1 1 

1 0 1 0 

À.(B+C) B+(il•C) 
Fig. 6-7. Chart of simple expressions. 

AB 
0 0 

0 1 

1 1 

1 0 

0 1 C 

0 1 

BC 

Also, formally: 

X = A • B + (À • B + À • C) 
A•B+ À•B+ K•C 

r= B (A + A') + À • C 
B + -À • C 

Consider now the three-variable chart (Fig. 6-4A). Each square is 
written as an N-legged AND gate, where N is the number of variables. 

Square Gate 

2 -A- • 1-i • C 
3 Tit • B • C 
4 -À • B • C 
6 A • B • C 

The shaded squares indicate the values of A, B, and C for which 
the value of the function X = À • T3 •C + A•B•+ À•B•C 
+ A • B • C is 1. The unshaded squares indicate the values for A, 
B, and C for which the function X is O. Each shaded square defines 
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a configuration of a three-legged AND gate; this is given by those 
values of A, B, and C, which, formed in an AND combination, have 
a value of 1. For example, square 2 of Fig. 6-4A is shaded, and the 
values of A, B, and C that define it are A = 0, B = 0, and C = 1. 
Hence, a combination of values for an AND gate (representing square 

2) is À • à • C, since 1 • 1 • 1 = 1. Thus, square 2 represents an 

AND gate that is high for an input of À • b • C, where A is a high 
input, and à is a high input, and C is a high input. Note the gates 
represented by squares 3, 4, and 6. Forming all of the gates in an OR 
combination, we construct a circuit whose functional expression is X. 
This is because the function X has a value of 1 whenever any of 
these gates has a value of 1. 

In the four-variable case (Fig. 6-4B) the expression could be 
written as: 

iii•ii•è•i5+ A•ii•C•D+ A•B••i)- + 

A•B•C•D + A•t-i•é•D 

This is obtained by considering the squares 1, 3, 9, 12 and 15 in 
sequence, each as a four-legged AND. This is also expressed in the 
form of the original function: 

A•B• .è+ (À•B)•(ê•ii+C•D) + A•B•C•D 

as shown in Fig. 6-8A. 

The simplification of the expression is achieved by inspecting the 
chart for shaded large squares or rectangles comprised of the indi-
vidual shaded squares such that all of the individual squares are 
shaded and such that the number of individual squares comprising 
the larger shaded square or rectangle is one, two, four, or eight. 
The two outside columns of the chart are considered to be contiguous 
for purposes of this inspection. Similarly, the top and bottom rows 
of the chart are also considered to be contiguous to each other. 

There are rules for simplification that are often used. Here are sev-
eral: 

I. Four adjacent squares (a 2 X 2 rectangle or 4 X 1 rec-
tangle) form a two legged gate. 

2. Two adjacent squares form a three-legged gate. 
3. Single squares form a four-legged gate. 

With the four-variable example, in Fig. 6-4B: 

Squares Representation 

9, 12 A • B • C 

3, 15 B • C • D 

1 A • B • 'é • D 
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Hence the reduced function is: 

A•B•è+à•C•D+ 

This is shown in Fig. 6-8B. 

A  

D 

A  

) 1 > 

(A) Original circuit. 

LD 

A  

(B) Simplified circuit. 

Fig. 6-8. Simplifying circuits by reducing algebraic expression. 

For the three-variable case (Fig. 6-4A), the function is: 

K•B•ê-l-K•ii•C+ K•B•C+ A•B•C 

Squares 3 and 4 give 7%-- • B; squares 2 and 4 give A • C; squares 6 
and 4 give B • C. This reduces to: 

À-•B+À•C+B•C 
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SEQUENTIAL OR TIMED LOGIC 

Logic is not always a static relationship; in any system, logical 
output is required only during a sampling time. In a pure DC system, 
a sampling time may be any time; in a pulse, or AC, or mixed sys-
tem, sampling may be made by a clock pulse. 

So far, only DC, or combinational logic has been discussed, in 
which the output is a function of the input states as they exist dur-
ing the same sampling period that the output is utilized. However, 
in some systems, an output during a particular sampling period may 
be a function of logic that existed during some previous sampling 
period. AC systems, where the output is not dependent upon func-
tions generated in a particular sampling period, are generally classed 
as sequential systems. 

In sequential logic, time is quantized into clock pulses or clock 
times. A possible sequential expression might be: 

+ Bt.3) • (Ct-2 + Ft=4) 

This expression implies that F at time interval 5 is a function of A 
at interval 1, B at interval 3, C at interval 2, and F at interval 4. 
From this expression, it is evident that some form of memory, or 
storage, is required. In the expression above, the function F at in-
terval 4 must be stored until interval 5. A generalized memory ele-
ment, or flip-flop, can be defined as having the following inputs and 
outputs. 

Set to 1 (S) 
Reset to O (R) 

1 OUTPUT (F) 

O OUTPUT (É) 

The Set and Reset inputs are activated only one at a time, and 
only one output is active at a time. The flip-flop, or bistable multivi-
brator, remains in its previous condition until the opposite condition 
is presented to its input. 

Table 6-5. Truth Table for a Sequential Expression. 

S 

o o o o 
o o 1 1 
o i o o 
o 1 1 o 
1 o o 1 
1 o 1 1 
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In a truth table (Table 6-5) for these conditions the notation F 
signifies the previous state or time period. Consider the equation for 
F derived from this table: 

F = F • -S • R+ i' •S•R-1-F•S• k 

This reduces to: 

F = ii • (F • S + S) 

NAND/NOR circuits can be used to synthesize a circuit whose 
equation is that of a memory flip-flop. Utilizing a cross-connected 
pair of NAND circuits, a flip-flop can be produced as in Fig. 6-9. 

NAND 

NAND 

Fig. 6-9. A flip-flop constructed from NAND circuits. 

The equations for the circuit are: 

D .-.= A • B 

but, 

B .7-= C • D 

hence 

D = A • (C • D) 

In this flip-flop consider these relations: 

1. D will be active (logic 1) if A is logic 0, if C is logic 1 and 
D was logic 1. 

2. D will be inactive (logic 0) if A is logic 1, C is logic 0, and 
D was logic O. 

3. The set condition occurs if the flip-flop was set and no re-
set occurs, or if a set occurs as a logic 0 level at the A input. 

4. The reset condition occurs if the flip-flop was reset and no 
set occurs, or if a reset occurs as a logic 0 at the C input. 

This flip-flop is the basic SR FF (Set-Reset Flip-Flop), but many 
other configurations can be derived and employed. One common 
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Fig. 6-10. A three-bit, flip-flop counter. 

alternative is the counter flip-flop. This device contains, in addition 
to, or in place of, the S and R inputs, a trigger input. The trigger 
input is an AC input requiring a pulse going from the logic 0 to the 
logic 1 state to cause activation. The trigger action causes a change 
of state of the flip-flop, regardless of the previous condition. With 
this action they are sometimes called complementary flip-flops. 
The trigger flip-flop is used in counting circuits. The binary count-

ing sequence is shown in the Table 6-6 with the equivalent decimal 

Table 6-6. Binary Counting Sequence. 

2- 2' 2° Dec. 

o 0 0 0 

0 0 1 1 

0 1 0 2 

0 1 1 3 

1 0 0 4 

1 0 1 5 

1 1 0 6 

1 1 1 7 

0 0 0 0 

values. Inspection of this table shows that a next higher order bit 
changes state when the lower bit changes from a 1 to a O. The flip-
flop counter for 3 bits is shown in Fig. 6-10. The trigger input was 

PULSES TO 
BE COUNTED 

defined to require a logic 1 activation. Interstage connection is be-
tween the T (trigger) input and the 0 output of the preceding stage. 
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The 0 output is the logic inverse of the 1 output; when the 1 out-
put is energized, the 0 output is not. Thus, a transition of the flip-
flop from the 1 to the 0 state causes the 0 output to go from the 0 to 
the 1 state; thus it meets the requirements for a trigger. 
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Chapter 7 

Numbers and Numbering 
Systems 

Switching-circuit algebra rapidly leads to an examination of the 
numbering system that is used with this algebra. The switching cir-
cuits that have been discussed can be used as the basis of logical 
design in various types of control configurations; these switching cir-
cuits can be arranged in logical systems to perform certain necessary 
switching functions. These circuits work on a go—no-go basis, which 
means that they either pass a signal, or they do not pass a signal. 
In this sense, circuits do not handle numbers as such. 

Switching circuits, however, can be designed to perform arithmetic 
functions such as addition, subtraction, multiplication or division. 
In order to do this, a numbering system must be defined. 
This is quite different from the use of the switching circuits in logical 
design. In arithmetic circuits we are concerned with the manipula-
tion of various number representations. However, such arithmetic 
calculating circuits are based upon the fundamentals of algebraic 
switching and of logical design. 

BINARY NUMBERS 

There are many possibilities for numbering systems; the one that 
is in common use in our civilization is the decimal notation based 
upon powers of ten. For example, the number 732 means seven hun-
dred thirty-two. This number also means seven times one hundred 
plus three times ten plus two times one. The same number can be 
expressed as seven times ten squared plus three times ten to the first 
power plus two times ten to the zero power (since any number to 
the zero power is one). 
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The base of our decimal system is of course ten, since, in moving 
from right to left in any number we increase by one power of ten 
for each digit that we move to the left. In a similar manner, by mov-
ing to the right we decrease by one power of ten. 

There are many possibilities for numbering systems where other 
bases can be used. One of the most convenient numbering bases is 
two. This is the binary numbering system in which any digit can have 
only one of two possible values; one of these values is 0 and the 
other is 1. In the decimal numbering system, of course, it is possible 
to have ten different indications which are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. 
The binary system corresponds well to the requirements of cir-

cuits designed by the application of Boolean algebra, since Boolean 
algebra is a two-valued system. It is possible, for example, in a truth 
table to have a proposition be true or false, and in the same way it is 
possible to give values such as 0 or 1. Usually 1 corresponds to true, 
and 0 corresponds to false. The binary number system may be used 
for calculating circuits using binary arithmetic. 

The first five powers of ten are 1, 10, 100, 1,000, and 100,000. The 
first five powers of 2 are 1, 2, 4, 8 and 16. The decimal numbers 
1, 2, 3, 4, 5 and 6 correspond to the binary number 1, 10, 11, 100, 
101 and 110. This means, for example, that the binary number 101 
is the equivalent of 4 plus 0 plus 1, which is decimal 5 (Table 7-1). 

Table 7-1. Decimal to Binary Conversion. 

Readout 
Trigger 2° 2' . . . 2s-a 2s 

Reset 0 0 0 0 
1 st 1 0 0 0 
2nd 0 1 0 0 
3rd 1 1 0 0 
4th 0 0 0 0 
5th 1 0 0 0 
6th 0 1 0 0 
7th 1 1 0 0 

N-1 1 1 1 1 
N 0 0 0 0 

(Carry) 

The binary numbering system makes it extremely convenient to 
use Boolean algebra since only one of two possible states has to be 
considered. These states are the 1 state and the 0 state. For example, 
consider a vacuum tube or a transistor as the circuit element repre-
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senting a digit. If the transistor is on, this represents a 1; if the tran-
sistor is off, this represents a 0. In the same way, if the vacuum tube 
is conducting current this could be a 1, and if the vacuum tube were 
not conducting, this would be a 0. The binary system is the most 
convenient numbering system, since the active circuit elements such 
as transistors, vacuum tubes, diodes, or various types of magnetics, 
have two positive states (either on or off); thus there is no ambiguity. 
The use of a decimal numbering system, for example, would require 
an active circuit element with ten clearly distinct states. This is not 
impossible, but it is much more difficult to achieve than circuits using 
the binary numbering system. 

BINARY ARITHMETIC 

We must study the manipulation of binary numbers before it is 
proper to examine the circuit arrangements by which the logical de-
sign manipulates the numbers. For example, consider addition, the 
fundamental arithmetic operation. The concept of addition implies 
that there are two numbers; one is called the augend, and the other 
is called the addend. When these two are added, the result is the 
sum. This is obvious in decimal arithmetic where, for example, the 
sum of 8 and 9 is 17. Note, however, even in this simple example 
there are now two digits in the sum, though there was only one digit 
in each of the two numbers that were added. 

For binary addition there are only the two digits 0 and 1. There 
are four possible cases. These are given below; 

0 + 0 = 0 
1 + 0 = 1 

0 + 1 = 1 
1 + 1 = 10 

The only one of these above that may create a problem is that 
1 + 1 = 10. Suppose, for example, that you have a decimal dial 
counter such as an automobile odometer. The number on the right 
begins at 0, and goes from 1 through 9. After you have gone more 
than 9 miles you have exceeded the range of the right hand digit, 
and the counter turns so that the rightmost digit becomes 0 and the 
left digit becomes 1. In the same manner the 1 + 1 = 10 indicates 
that you have exceeded the range of values of the rightmost digit in 
the binary system. 

Actually, all of the other arithmetic operations are defined in 
terms of the operation known as addition. For example, subtraction 
is negative addition, multiplication is just a shorthand way of adding 
a long series of numbers, and division is the inverse of multiplication. 
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CODED NUMBERING SYSTEMS 

The binary numbering system that we have discussed are known 
as pure binary systems, where each individual bit (binary digit) has 
a weighted decimal value. There is a direct conversion between this 
binary system and its equivalent decimal. For example, the binary 
numbers 001, 010 and 011 are the equivalent of the decimals 1, 2 
and 3. There are limitations to the use of pure or straight binary 
numbers, and for this reason codes are often used. 
One of these is the binary coded decimal, which is a special way 

of expressing decimal numbers in terms of binary numbers. For 
example, consider number 18 in decimal. If this decimal is expressed 
in pure binary, it is 10010. Evaluating this binary number place for 
place gives a series of weighted values that add up to the decimal 
number 18. This binary number is the equivalent of decimal 16 plus 
decimal 2, or decimal 18. 

However, in the binary coded system a different technique is used. 
If the two digits in the number 18 are evaluated separately the num-
ber 1 is evaluated and its expression in binary coding is 0001. The 
8 is evaluated separately and its coding is 1000. In this way we can 
convert individual digits such as 1 or 8 using the binary coded num-
ber system rather than converting a group of digits such as 18. This 
system is used because conversion from decimal to binary, or from 
binary to decimal, is not convenient. The conversion from binary 
coded decimal to decimal, or from decimal to binary coded decimal 
is simple, straightforward and convenient. In this way the binary 
coded decimal system allows us to use binary numbers to code any 
decimal number on a digit-by-digit basis. Each of the individual digits 
is given a binary coding. 
One of the other codes that is often used is the excess three. In 

this type of coding each binary number is represented by a method 
in which the binary number is three units greater than the decimal 
unit from which it is converted. For example, the decimal 1 appears 
as the straight-binary equivalent of the decimal 4; the decimal 3 
appears as the straight-binary equivalent of the decimal 6. The rea-
son the excess-three code is used is that it provides a simplification 
of certain types of arithmetic so that complements may be used 
directly. 

Another group of codes are the reflected cyclic codes. These codes 
have one thing in common; in going from one coded decimal digit 
to the next coded decimal digit only one of the coded digits changes 
at a time. For example, in straight, or pure, binary a decimal 2 is 
0010, and a decimal 3 is 0011. Note that there is only one digit 
changed in going from 0010 to 0011. However, in going from deci-
mal 7 to decimal 8 there is a change from 0111 to 1000, a change in 
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four digits. In the gray code, which is one type of reflected cyclic 
code, the change from decimal 7 to decimal 8 involves a change of 
only one binary digit, i.e., 0100 to 1100. The gray code is used be-
cause the change of only a single digit in going from one decimal 
value to another is convenient in analog-to-digital conversion. 

USING NUMBERS 

The preceding sections in this chapter have outlined the basic 
principles of binary numbers and the binary number system. These 
numbers, of course, may be used for calculating circuits in which 
addition, subtraction, multiplication or division is possible. This sec-
tion covers the manipulation of these numbers by counting circuits. 

The circuit element that is used for a counter is a binary flip-flop. 
This is the electrical equivalent of a toggle switch having two posi-
tions. Just as a toggle switch is either on or off, so a binary flip-flop 
has two states; these are the 1 and 0 state. Thus a binary flip-flop 
is a counter, and it counts in sequence such as 0, 1, 0, 1, etc. A 
series of flip-flops may be used for the counting in the binary num-
bering scheme. 

Binary Counters 

A straight binary counter may be assembled by using one or more 
flip-flops connected in such a manner that the binary number stored 
within these flip-flops will represent the total number of trigger pulses 
received at the input to the counter (Fig. 7-1). 

TRIGGER 
INPUT 

1 

T 20 

1 

T 21 

1 

2N-1 

0 

Fig. 7-1. Binary counter. 

,---4 

- 
1 —t 

T 2N 

0 —t 

This is a series of flip-flops, each representing a power of 2. To 
determine a readout of a flip-flop, the binary state of the 1 terminal 
(the terminal adjacent to the set side of the flip-flop) is used as the 
output for a positive logic binary state indicator; the 0 terminal may 
be used to drive a negative logic binary indicator. If a positive logic 
binary state indicator is connected to the flip-flop output, the indi-
cator presents the indications given in Table 7-2. A binary 1 is 
equivalent to the "on" condition of the element. 
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Table 7-2. Binary Counter Indications. 

BINARY DECIMAL 

0 0 0 
0 0 1 1 
0 1 0 2 
0 1 1 3 
1 0 0 4 
1 0 1 5 
1 1 0 6 
1 1 1 7 

Ring Counters 

A ring counter may be assembled by using two or more flip-flops 
connected in such a manner that all of their outputs are at the 
binary 0 state except one flip-flop. By pulsing the input the ring 
counter will sequentially change the binary state of the succeeding 
flip-flop from a binary 0 to a binary I. The flip-flop that contains 
the binary 1 indicates the count of the counter. The number of 
pulses that can be counted by N flip-flops is N pulses. 

Shift Registers 

A serial-entry shift register is similar to the ring counter with the 
exception that the output flip-flop is not connected to the input flip-
flop. The serial binary information is applied to the first flip-flop set 
and reset gates. All set-trigger and reset-trigger inputs are tied to-
gether to form the shift bus. Clock pulses are applied to the shift bus 
to cause the binary information to shift from left to right, one bit 
position for each clock pulse received. 

Preset Counters 

A preset counter may be assembled by using two or more flip-
flops connected as a straight binary counter or as a feedback counter 
(binary coded decimal, excess three, etc.). A number recognition 
gate (AND gate) is connected to the output of each individual flip-
flop in the counter. When the desired number has been reached by 
the counter, an AND gate, through an inverter, or a NAND gate, in-
hibits the input to the counter and prevents the progression of the 
counter beyond the desired number. The output from this AND gate 
may also be used to provide an output indication that the preset 
counter has reached the desired number. 
A preset counter may also be assembled by using two or more 

flip-flops connected as a backward counter. A straight binary back-
ward counter with an AND gate to recognize the number zero is 
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Fig. 7-2. Binary backward counter. 

T 

shown in Fig. 7-2. The counter is originally preset to the desired 
number. This can be accomplished by the set and reset trigger inputs 
or by the DC set and reset inputs. Incoming trigger pulses cause the 
counter to count backwards; that is, each trigger pulse subtracts one 
count from the counter. This process would continue through zero 
and repeat in an endless cycle starting with 2N-' (provided no feed-
back is used). Therefore an AND gate is used to recognize the unique 
count of zero and inhibit the input to the counter. The output from 
this AND gate can also be used to provide the external signal to in-
dicate that the preset counter has reached the desired number (re-
ceived the desired number of input pulses). 
A preset counter connected as a backward counter with zero de-

tection may be used to generate a precise time delay. The counter 
starts subtracting counts from its preset number immediately after 
a preset condition, if the trigger pulses are in a continuous pulse 
train e.g., clock pulses. This is assuming that external gates do not 
inhibit the incoming trigger pulses. 

Feedback Counters 

Feedback counters may be assembled by using two or more flip-
flops connected so as to recycle when a specific number has been 
reached. There are many different ways of providing a recycle count 
at a desired number. One method that always works to provide a 
recycle count at a desired number is to recognize N-1 counts with 
a number recognition gate (AND gate), and cause the counter to re-
set on the next incoming trigger pulse. A more sophisticated ap-
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proach is to use feedback to cause recognition at a desired count. 
Care must be exercised in using feedback if a coded binary readout 
is desired. Another method which may be employed is to use com-
binations of known counter connections to recycle at the desired 
number. In such a configuration, to maintain a binary coded readout, 
only straight binary counters may be placed in front of the feedback 
counter, and only in front of the feedback counter; that is, the straight 
binary counter may not be placed after the feedback counter. An ex-
ample of this method is shown by an N/12 counter, where an N/4 
and an N/3 counter are employed. 

CP>  

RESET>  

SG 
ST 1 

20 

RI 0 

— t ST 1 

21 

RI 
RG 

Fig. 7-3. N/3 counter and truth table. 

e 21 
RESET 0 0 

1 1 0 

2 0 1 

3 0 0 

4 1 0 

5 0 1 

6 0 0 

An N/3 counter and its truth table are shown in Fig. 7-3. This is 
a binary-coded ternary counter. The output of the counter is re-
turned to the set gate of the first flip-flop in order to inhibit this flip-
flop for every third incoming pulse. In addition, the complement of 
the counter output is returned to the reset gate of the second flip-
flop in order to permit the second flip-flop to reset every third pulse. 
An N/7 counter and its truth table are shown in Fig. 7-4. This 

counter presents an excellent example of "don't care" conditions. 
There are certain bistable states, such as the condition of the counter 
after every sixth pulse, in which only the last two flip-flops are of 
interest. Therefore, all that is necessary is to recognize the condition 
of a binary 1 in the last two flip-flops and to cause a reset to occur 
with the next trigger pulse. 

Comparators 

If it is desired to determine if two serial binary numbers are identi-
cal, an equalizer circuit, using the logic in Fig. 7-5 may be employed. 
This logic may be simplified by using an exclusive OR and an in-
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N/7 counter and truth table. 

Fig. 7-5. Equalizer circuit logic. 

verter as shown in Fig. 7-6. If it is required to compare two serial 
binary numbers to determine which number is larger, or if it is de-

EX 

A 

i 
i 

B 

i 
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0 1 
0 0 

Fig. 7-6. Simplified circuit for logic used in Fig. 7-5. 
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sired to compare an incoming serial binary number with a reference 
number in order to determine whether the incoming number is great-
er than, less than, or equal to the reference number, the logic in 
Fig. 7-7 may be used. 

A >B 

INPUT OUTPUT 

A B A>B A-B A<B 

A =B 1 1 0 1 0 
1 o 1 o 0 
0 1 0 0 1 
o o 0 1 o 

A < B 

Fig. 7-7. Comparator logic. 

Binary to Decimal Conversion 

There are many methods of converting a binary number to a deci-
mal number. Some of these methods are: 

1. The division-by-10 process, with the remainder after each 
division operation indicating the correct decimal digit, 

2. The subtraction-of-10 process, 
3. Direct matrix conversion, 
4. The use of forward-backward counters. 

However, if the binary number assumes an appreciable magnitude, 
then the equipment involved may become cumbersome, or the time 
may not be available to perform the conversion. 

In one system the decimal value of a binary number may be de-
termined by adding the powers of 2, as indicated by the binary 
weighting (2", 2', 22, etc.) of the binary number. Convenient use is 
made of the fact that when a binary number is shifted one bit 
toward the most significant digit in a binary register, it is equivalent 
to multiplying the binary number by 2. The shift register may be 
divided into groups of four flip-flops, called decades. The first dec-
ade carries a decimal weighting of one; the second a decimal 
weighting of ten; the third, a weighting of one hundred, etc. If a 
serial binary number of N bits is shifted into the register with the 
most significant digit first, the second bit will be doubled N-1 times 
and the following bits by N-2 times, N-3 times, etc. 

However, in shifting each of these bits from one decade (with a 
decimal value of 8) to the next decade (with a decimal value of 10) 
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there is an error of 6. To correct this error, an adjustment process 
must be made prior to each shift. The condition of each decade 
should be sensed; and, if the value of a decade is 5 or greater, a 
value of 3 must be added to that decade prior to the shift. The sim-
plest process by which 3 may be added to each decade is to use a 
complementing process as shown below. 

Binary/BCD( +3) Complement BCD/Binary ( — 3) 
5 8-4-1 8 
6 8-4-2-1 9 
7 8-4- 1 10 
8 2-1 11 
9 4-1 12 

Since there is no propagation of a carry to a higher decade by this 
method, each decade may be treated individually, and as many 
decades may be cascaded as desired without any interconnecting 
logic. One decade (4 flip-flops) is required for each decimal digit 
desired. 
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Chapter 8 

Switching Circuits 
The preceding chapter covered the numbering system used in 

most logical calculating circuits. This chapter includes switching 
circuits, and their application to calculating circuits. 

NON-SERIES PARALLEL CIRCUITS 

There are limitations to the use of Boolean algebra in the design 
and analysis of switching circuits. In general, Boolean algebra is a 
convenient tool for the analysis of series and parallel circuits. There 
are essentially no problems in representing a series or a parallel cir-
cuit by Boolean algebra expressions, or, conversely, of representing 
a Boolean algebra expression by a series or parallel or combination 
circuit. 

There are, however, major problems in treating non-series parallel 
circuits with the Boolean algebra techniques. Yet, it is possible by 
the techniques shown in this section to convert many non-series paral-
lel circuits into their Boolean algebra form. In general, however, it is 
not possible to take the Boolean algebra expression for a non-series 
parallel circuit and from this expression derive the actual non-series 
parallel electronic circuit that this represents. Only in special cases 
that are discussed later is there a satisfactory technique for trans-
lating certain complex Boolean algebra expressions into their non-
series parallel circuit equivalents. 

Consider Fig. 8-1A. This figure shows a 3-terminal network; these 
three terminals are A, B, and C. This is representative of the basic 
multi-terminal circuit that we will discuss. Considering the two 
terminals, A and B, we can obtain a function that relates the switch-
ing elements between these two terminals. In the same terms we can 
obtain a second function relating the switching circuits between A 

100 



A o— X 

— I 

--1--- X Y --1 Z 

fl r f AB 

f2 r f AC 

B-

1 

 OC 

 Y  

Z — X --0B 

f 3 r f BC 
(A) Three-terminal network. 

/4\ z Y 

A/  \ c 

(B) Wye. 

I X Y— 
Ao 

Z 

f AB =(X-Y+Z)-(i( +Y)-Z- V 

f AC =(X-Y+Z)-(+Y)-W-Z 

f AD = (X -Y+ Z)*()—( +Y)41 

B 

XA X 

/ \  
/Y Z 

AY — ZC 

(C) Delta. 

-- W — Z V-0B 

Y 

— Z —0C 

W--0D 
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(E) Variation of four-terminal network. 

Fig. 8-1. Treatment of non-series parallel circuits. 

C 
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Fig. 8-2. Star-to-mesh traniformation. 
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and C. The third function represents the switching circuits between 
terminals B and C. 
We can generalize the problem in transforming such a multi-

terminal circuit into a series-parallel circuit by considering the trans-
formation also shown in this figure. Fig. 8-1B is the wye circuit, 
again having three terminals and three switches. However, there is a 
common central point in the wye circuit where the three 2-terminal 
circuits have a common point instead of a terminal. Fig. 8-1C shows 
a delta circuit, which is a 3-terminal circuit in which the only com-
mon points of any pair of the three 2-terminal circuits are three 
terminals A, B, and C. Thus the wye circuit and delta circuits are 
equivalent. For example, in going from A to B of the wye circuit, 
we must pass through X and Y. The same thing is true in the delta 
circuit. In passing from points A to C we must pass through Y and 
Z in either the wye circuit or the delta circuit. This is the wye to 
delta transformation which is used in converting one circuit into the 
other, and is one of the bases for translating non-series parallel cir-
cuits into their series-parallel equivalents. Figs. 8-1D and E are 
other multi-terminal circuits. 
An extension of this transformation is the star-to-mesh trans-

formation, which can be used for any number of terminals. Fig. 8-2 
shows this transformation. In Fig. 8-2A there are four terminals 
shown and four switches, which are W, X, Y, and Z. Note also that 
there is a common point. In this transformation the first step is to 
redraw the two connections as shown in Fig. 8-2B, one from A to 
B and the other from B to C. Notice that the A to B connection has 
switches X and Y in series, and the B to C connection has switches 
Y and W in series. This can be seen from Fig. 8-2A. 
Two of the remaining legs are shown in Fig. 8-2C. These are the 

legs A to D and C to D. In Fig. 8-2D, the entire transformation is 
shown, including the two additional legs from B to D and from A to 
C. This same transformation can be redrawn as in Fig. 8-2E. The 
common central point has now been eliminated. It is, in general, pos-
sible to apply the star-to-mesh transformation in order to convert 
a circuit into one that may be treated by Boolean algebra. 

Consider the bridge circuit shown in Fig. 8-3. This is a 2-terminal 
non-series parallel circuit. There are four possibilities by which a 
current flow could be completed from A to B. These four possibili-
ties are shown as four functions in the figure. For example, if switch 
X and switch V were closed, there would be a complete path from 
A to B. Also, if switches Y and Z were closed, there would be a 
complete path. In the same manner a complete path would exist if 
switches X, W, and Z were closed, or if switches Y, W, and V were 
closed. Thus the complete function (AB) can be considered as four 
possible paths. 
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A 

CLOSED CASE 

f1 = X•V 

f 2 = Y. Z 
13 = X•W•Z 
f4 = Y•W•Z 

OPEN CASE 

fi =X+Y 
f2 =V+Z 
f3 =X+W+Z 
f4 =Y+W+V 

z 

= fl + f2 + f3 + f4 

fAB X•V+Y•Z+ X.W.Z+Y.W.Z 

f AB = (f1 )( f2)03)( f4 ) 

fAB =(X+Y)•(V+Z)(X+W+Z).(Y+W+V) 

Fig. 8-3. Two-terminal non-series parallel circuit. 

Another alternative is to consider the possible ways in which this 
circuit could be opened. If switches X and Y are both open, there 
is no current flow. In the same manner if switches V and Z are both 
open, there is no current flow. Two similar methods for preventing 
current flow are to open the switches X, W, and Z or to open the 
switches Y, W, and V. Thus, there are four possible ways of open-
ing the circuit. In this manner, it is possible to write a different ex-
pression for the same function. Based on this, we can take the bridge 
circuit shown in Fig. 8-4A and redraw it as any of the three circuits 
shown in Figs. 8-4B, C or D. All four of the circuits in Fig. 8-4 are 
electrically equivalent. 

SYMMETRIC FUNCTIONS 

There is a special type of Boolean function that represents the 
symmetric circuit. This is a type of non-series parallel circuit which 
often occurs and for which established methods of solution are 
known. A function is said to be symmetric if, and only if, the inter-
change of any pair of variables leaves the function unchanged. 

Consider the three-function symmetric circuit shown in Fig. 8-5. 
There are five terminals, A, B, C, D, and E. There are three func-
tions represented by both the functions and their complements. Note 
that in this figure it is possible to interchange any pair of variables 
and obtain exactly the same function. In order to have a closed cir-
cuit from A to C there are several possible paths. Each of the junc-
tions, 1, 2, 3, 4, and 5, are numbered for convenience. For ex-
ample, in going from point C to point A, we can have the three 
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Fig. 8-4. Electrically-equivalent bridge circuits. 

closed switches; X, Y, and Z'. It is also possible to go from C to A 
by means of X', Y, and Z. Another possible path is X, Y', and Z, 
Note that we cannot go through the path X', Y, Y', Y, and Z' since 

A o 2 
2 

Fig. 8-5. Circuit representing three symmetric functions. 

Y and Y' cannot both be closed at the same time. In order to go 
from C to A in this symmetric function of three variables, it is 
necessary and sufficient that only two of the switches be closed. 

105 



In tracing the path from C to A there are several possibilities. 
Consider first X and Z. Regardless of the condition of Y, there can 
be a closed path from C to A by stipulating the condition of X and 
Z. For example, if Y is closed (Y = 1), the path can be X, Y and 
Z' where, of course, Z' is closed. If, however, Y' is closed, then the 
path is necessarily X, Y', and Z. In this manner, regardless of the 
condition of switch Y, it is possible to go from C to A by defining 
the position of only the two switches X and Z. Since at the moment 
we are concerned only with the path from C to A, all of the ex-
traneous switches can be removed from the circuit. This results in the 
circuit shown in Fig. 8-6, which is extracted from Fig. 8-5. An in-

X 

A  Z   y 

Fig. 8-6. Simplified version of Fig. 8-5. 

spection of this circuit shows that it is the same as that shown in 
Fig. 8-7. 

Y 

Fig. 8-7. Fig. 8-5 presented in familiar bridge form. 

RELAY CONTROL CIRCUITS 

In the preceding discussions, a switch is considered as an idealized 
circuit element. This means a circuit in which it is possible to open 
or close a switch instantaneously. In general, most of the discussions 
in the earlier chapters have assumed a manually operated switch 
such as a toggle switch. There are certain limitations, however, of 
practical switches, and these are extremely significant. 

In basic terms an electromagnetic relay, which can be considered 
a form of switch, has a coil of wire wrapped around a pole piece. 
There is also an armature that can be attracted or repelled by a 
magnetic field. The armature is held in certain positions by a spring. 
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(A) Normally open (make). (B) Normally closed (break). 

o  

( C) Transfer (break-make). 

Fig. 8-8. Types of relay contacts. 

In Fig. 8-8, for example, there are three types of relay contacts 
shown. The contact is the portion through which the current flows, 
just as in a switch. Fig. 8-8A shows a make contact, which is nor-
mally open. This means that the spring keeps the armature posi-
tioned so that the contacts do not close during normal operation. 
When current passes through the relay coil the armature is attracted 
down, closing the open contacts. Fig. 8-8B shows a break contact, 
which is normally closed. In this type of arrangement, the spring 
keeps the armature positioned so that the two contacts provide elec-
trical continuity. When there is current flow through the electro-
magnet, the armature is pulled down, opening the contact and break-
ing the circuit, hence the name break contact. 
A combination of these two is shown in Fig. 8-8C of the figure; 

this is a transfer, or operating, contact. In normal operation the 
armature is arranged so that the upper contact is closed, and the 
lower contact is open. When current passes through the electro-
magnetic relay coil, the armature moves to open the upper contact 
and close the lower contact. Fig. 8-9 shows a typical relay. 

BREAK CONTACTS 
(NORMALLY CLOSED) 

TRANSFER 
CONTACTS 

ARMATURE 

RELAY 
COIL 

MAKE CONTACTS 
(NORMALLY OPEN) 

Fig. 8-9. Typical power relay. 

A typical relay control circuit is shown in Fig. 8-10. In operation, 
a switch at A is closed. This causes current flow from the battery 
through the relay coil (X) and pulls down both relay armatures. The 
upper armature closes the contacts marked X. The lower armature 
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X 

X 
Fig. 8-10. Typical relay control circuit. 

closes (the lower contacts) marked X and at the same time breaks 
the X' contacts of the lower set. Thus there are three individual ac-
tions that take place in the circuit when switch A is closed. 

It is possible to operate a relay on the opening of the switch, as 
well as on the closing of the switch. Consider Fig. 8-11. There are 
two parallel paths; one is through the switch, the electromagnetic 
relay coil, and ground, and the other is through the switch, resistor 
(R), battery (E), and ground. (The resistor is used to limit the cur-
rent flow while the switch is closed.) When this switch is open, cur-
rent from the battery flows through the relay coil and breaks the 
contacts X' and engages the contacts marked X, as shown in Fig. 
8-11. When the switch is closed, the relay coil is shorted out and 

S 

Fig. 8-11. Relay locking circuit. 

the relay contacts return to normal, as shown by the dotted line. 
There are a number of relay techniques that are extremely useful 

in implementing Boolean algebra. One of these is the locking type 
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of circuit shown in Fig. 8-12. Suppose the relay that is normally 
open has two control switches, one A and the other B. Ignoring 

.. switch B for the moment (consider it to be open and left open), clos-
ing switch A allows current through the relay, and the relay contacts 
close. If switch B is now closed, the relay stays in its closed position, 
regardless of whether or not A is opened. There is a complete path 
from minus to switch B, through relay contacts X, through the relay 
coil, through the current source, and back to minus. 

Fig. 8-12. Relay locking-circuit variation. 

f XI 0 B 

A 

 .1111 

Another very important relay switching consideration is the con-
tinuity or make-before-break arrangement. Here there are two sets of 
relay contacts, X and X' (Fig. 8-13). When energy is applied to the 
relay coil, the armature will first move to close the relay contacts X. 
As the armature continues to move down it will break the relay con-
tacts X'. In this way there is a transfer from one circuit to another 
through the relay. 

Fig. 8-13. Make-before-break contact 
arrangement. 

Often in relay circuits a combination of switches can be used to 
actuate the relay coil. For example, in Fig. 8-14A there are two 
possibilities; the relay can be actuated by closing switch A or by 
closing switches B and C. This is one way of arranging the circuit. 
However, there are cases in which switch A is to be used in several 
other places, and some form of isolation is needed. This isolation can 
be accomplished by using a double coil relay, as shown in Fig. 8-14B, 
with two current sources. This has the same overall operation as the 
first circuit. However, since A controls its own relay coil and B and 
C have a second separate relay coil, these two sets are isolated. 
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A 

(A) Single relay coil. 

(B) Multiple relay coils. 

Fig. 8-14. Multiple switch control of relay. 

A typical relay circuit configuration is shown in Fig. 8-15. There 
are three relay coils, A, B, and C. As shown, A is normally open, 
B is normally closed, and C is normally open. There is current flow 
through C which actuates its relay contacts if relay coil B is not 
operated and if relay coil A is operated (both conditions occurring 

Hg. 8-15. Relay arrangement to obtain A • i. 

110 



at the same time). In this way, by a very simple logical arrangement 
of A AND NOT B, we can obtain the function C. 

--, 

Y 

DI X 

Fig. 8-16. Using relays to implement algebraic expression. 

Based upon the foregoing information, we can either design a 
relay circuit from a given algebraic expression or develop the neces-
sary algebra from a given relay circuit. Consider Fig. 8-16; there are 
two signal relays, X and Y. Each of these controls a set of contacts 
that performs the work desired from the circuits. These in turn are 
controlled by relays A, B, C, and D. We will look at this from the 
standpoint of the circuitry rather than the algebra. Considering only 
the relays A and B, it is clear from the circuit that there will be no 
possibility for continuity and current flow unless A and B are in the 
same state. If the relay coils are both energized, there is current 
flow; if the relay coils are both de-energized there is current flow. 
However, if one relay coil is energized and the other is not, therç 
will be no current flow. This is one aspect of the circuit. Now look 
at relay Y. Relay Y will be operated only if C is energized, and 
A and B are in the same state. By similar reasoning, X is actuated 
only if D is energized and A and B are in the same state. This is 
the same as saying Y is true if C is true and if A and B are both 
true, or A and B are both false. It is also the same as saying that X 
is true if D is true and if A and B are both true, or A and B are 
both false. 
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proportional, symbols of, 17 
rules, basic, 14 
symbolic, 9, 10 
symbols, 88 

Logical 
blocks. 44-48 
circuits, examples of. 35 
connectives applications. 12-14 
design, rules of, 28-33 
junctions, negation of, 43 
levels. 48-52 
negation. 44 
operations, 52-55 
symbols, 59 

Negation 
connective, 18 
logical, 44 
of logical functions. 43 

Non-series narallel circuits, 100-104 
NOR/NAND logic, 55-58 

Operations, fundamental. 10-12 
binary variable, 11-12 

Preset counters, 94-95 
Propositional logic, symbols of. 17 

Reflected cyclic codes, 92 
Relay 
AND circuit, 38 
circuit, "Christmas tree." 37 
control circuits. 108-111 
switching circuit, 38 

Ring counters, 94 
Rules of 

algebra, 73-76 
logical design, 28-33 

Schmitt trigger symbol, 47 
Sequence switching, 40 
Sequential or timed logic, 85-88 
Sets 

application, 70-72 
operation on, 69-70 

Shannon, Dr. Claude E. 8 
Shift registers, 46, 94 
Single-shot symbol, 47 
Star-to-mesh transformation, 102 
Statement variables, 9 
Switch circuits, simple, 35 
Switches, electronic, 22-23 
Switching 

algebra and circuits, 76-78 
multiple-contact, 35-41 

Symbolic logic, 9-10 
Symbolism. 28 
Symbols of the propositional logic, 17 
Symmetric functions. 104-106 
Synthesis, circuit, 33 

Theorem, De Morgan's, 14 
Three-bit, flip-flop counter, 87 
Time delay symbol. 48 
Truth tables, 17, 18, 19, 20, 21, 22, 77, 78, 

80, 85 
Truth value, 9 

Variable, binary, 11-12 
Variables, statement, 9 
Venn diagrams, 87 
von Leibniz, Gottfried Wilhelm, 7 

X AND Y network, 29 
X OR Y network. 29 
X (X -I- Y), implementation of, 31 
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abc's of 
Booleam Algebra 

by ALLAN LYTEL 

The language of today's digital systems is Boolean algebra. It is 
the powerful mathematics by which digital computers reduce the 
time and labor of toilsome calculations. For anyone wishing to 
understand the logical functions of computer circuitry, a knowledge 
of Boolean algebra is essential. 

This book is divided into eight chapters, the first serving as an 
introduction to symbolic logic and containing a discussion of some 
of the logical connectives. It also provides an insight into how 
electronic circuits can be used for logical functions. In the fol-
lowing chapters a relationship is established between electronic 
switches and the language which represents these switches. The 
development of logical circuitry and some of the principles of 
logical design are explained with examples of these designs and 
a discussion of multicontact switching. 

Chapter seven covers the concept of numbering systems, showing. 
how logical circuit elements and circuit blocks are used in com-
putation. 

The final chapter covers switching circuits, treated in terms of 
simple toggle switches and relay circuits with various modifica-
tions. This section is particularly important, since elaborate auto-
mation systems, complete telephone networks, and highly sophis-
ticated digital computers have been built using relay switching 
circuits exclusively. 

ABC's of Boolean Algebra is intended for anyone who is inter-
ested in knowing the basis on which logical circuitry is founded; 
including engineers, electronic technicians, students, and experi-
menters. It will be especially useful to the nontechnical reader who, 
although he may have no intention of designing or developing 
complex machines, does want to know how it is done. 
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