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PREFACE 

RF Circuit Design is written for those who desire a practical approach to the 
design of rf amplifiers, impedance matching networks, and filters. It is totally 
user oriented. If you are an individual who has little rf circuit design experience, 
you can use this book as a catalog of circuits, using component values designed 
for your application. On the other hand, if you are interested in the theory behind 
the rf circuitry being designed, you can use the more detailed information that 
is provided for in-depth study. 

An expert in the rf circuit design field will find this book to be an excellent 
reference manual, containing most of the commonly used circuit-design formulas 
that are needed. However, an electrical engineering student will find this book to 
be a valuable bridge between classroom studies and the real world. And, finally, 
if you are an experimenter or ham, who is interested in designing your own 
equipment, RF Circuit Design will provide numerous examples to guide you 
every step of the way. 

Chapter 1 begins with some basics about components and how they behave 
at rf frequencies; how capacitors become inductors, inductors become capacitors, 
and wires become inductors, capacitors, and resistors. Toroids are introduced and 
toroidal inductor design is covered in detail. 

Chapter 2 presents a review of resonant circuits and their properties including 
a discussion of Q, passband ripple, bandwidth, and coupling. You learn how to 
design single and multiresonator circuits, at the loaded Q you desire. An under¬ 
standing of resonant circuits naturally leads to filters and their design. So, Chapter 
3 presents complete design procedures for multiple-pole Butterworth, Chebysbev, 
and Bessel filters including low-pass, high-pass, bandpass, and bandstop designs. 
Within minutes after reading Chapter 3, you will be able to design multiple¬ 
pole filters to meet your specifications. Filter design was never easier. 
Next, Chapter 4 covers impedance matching of both real and complex im-

pendances. This is done both numerically and with the aid of the Smith Chart. 
Mathematics are kept to a bare minimum. Both high-Q and low-Q matching 
networks are covered in depth. 

Transistor behavior at rf frequencies is discussed in Chapter 5. Input im¬ 
pedance, output impedance, feedback capacitance, and their variation over fre¬ 
quency are outlined. Transistor data sheets are explained in detail, and Y and S 
parameters are introduced. 

Chapter 6 details complete cookbook design procedures for rf small-signal 
amplifiers, using both Y and S parameters. Transistor biasing, stability, impedance 
matching, and neutralization techniques are covered in detail, complete with 
practical examples. Constant-gain circles and stability circles, as plotted on a 
Smith Chart, are introduced while rf amplifier design procedures for minimum 
noise figure are also explained. 



The subject of Chapter 7 is rf power amplifiers. This chapter describes the 
differences between small- and large-signal amplifiers, and provides step-by-step 
procedures for designing the latter. Design sections that discuss coaxial-feedline 
impedance matching and broadband transformers are included. 

Appendix A is a math tutorial on complex number manipulation with emphasis 
on their relationship to complex impedances. This appendix is recommended 
reading for those who are not familiar with complex number arithmetic. Then, 
Appendix B presents a systems approach to low-noise design by examining the 
Noise Figure parameter and its relationship to circuit design and total systems 
design. Finally, in Appendix C, a bibliography of technical papers and books 
related to rf circuit design is given so that you, the reader, can further increase 
your understanding of rf design procedures. 

Chris Bowick 
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COMPONENTS 

Components, those bits and pieces which make up 
a radio frequency (rf) circuit, seem at times to be 
taken for granted. A capacitor is, after all, a capacitor 
—isn’t it? A 1-megohm resistor presents an impedance 
of at least 1 megohm—doesn’t it? The reactance of an 
inductor always increases with frequency, right? Well, 
as we shall see later in this discussion, things aren’t 
always as they seem. Capacitors at certain frequencies 
may not be capacitors at all, but may look inductive, 
while inductors may look like capacitors, and resistors 
may tend to be a little of both. 

In this chapter, we will discuss the properties of re¬ 
sistors, capacitors, and inductors at radio frequencies 
as they relate to circuit design. But, first, let’s take a 
look at the most simple component of any system and 
examine its problems at radio frequencies. 

WIRE 

Wire in an rf circuit can take many forms. Wire¬ 
wound resistors, inductors, and axial- and radial-leaded 
capacitors all use a wire of some size and length either 
in their leads, or in the actual body of the component, 
or both. Wire is also used in many interconnect appli¬ 
cations in the lower rf spectrum. The behavior of a 
wire in the rf spectrum depends to a large extent on 
the wire’s diameter and length. Table 1-1 lists, in the 
American Wire Gauge (AWG) system, each gauge 
of wire, its corresponding diameter, and other charac¬ 
teristics of interest to the rf circuit designer. In the 
AWG system, the diameter of a wire will roughly 
double every six wire gauges. Thus, if the last six 

EXAMPLE 1-1 
Given that the diameter of AWG 50 wire is 1.0 mil 

(0.001 inch), what is the diameter of AWG 14 wire? 

Solution 

AWG 50 = 1 mil 
AWG 44 = 2 X 1 mil = 2 mils 
AWG 38 = 2 X 2 mils = 4 mils 
AWG 32 = 2 X 4 mils = 8 mils 
AWG 26 = 2 X 8 mils = 16 mils 
AWG 20 — 2 X 16 mils = 32 mils 
AWG 14 = 2 X 32 mils = 64 mils ( 0.064 inch ) 

gauges and their corresponding diameters are mem¬ 
orized from the chart, all other wire diameters can be 
determined without the aid of a chart (Example 1-1). 

Skin Effect 
A conductor, at low frequencies, utilizes its entire 

cross-sectional area as a transport medium for charge 
carriers. As the frequency is increased, an increased 
magnetic field at the center of the conductor presents 
an impedance to the charge carriers, thus decreasing 
the current density at the center of the conductor and 
increasing the current density around its perimeter. 
This increased current density near the edge of the 
conductor is known as skin effect. It occurs in all con¬ 
ductors including resistor leads, capacitor leads, and 
inductor leads. 

The depth into the conductor at which the charge¬ 
carrier current density falls to 1/e, or 37% of its value 
along the surface, is known as the skin depth and is 
a function of the frequency and the permeability and 
conductivity of the medium. Thus, different con¬ 
ductors, such as silver, aluminum, and copper, all have 
different skin depths. 

The net result of skin effect is an effective decrease 
in the cross-sectional area of the conductor and, there¬ 
fore, a net increase in the ac resistance of the wire as 
shown in Fig. 1-1. For copper, the skin depth is ap¬ 
proximately 0.85 cm at 60 Hz and 0.007 cm at 1 MHz. 
Or, to state it another way: 63% of the rf current flow¬ 
ing in a copper wire will flow within a distance of 0.007 
cm of the outer edge of the wire. 

Straight-Wire Inductors 
In the medium surrounding any current-carrying 

conductor, there exists a magnetic field. If the current 
in the conductor is an alternating current, this mag¬ 
netic field is alternately expanding and contracting 
and, thus, producing a voltage on the wire which op¬ 
poses any change in current flow. This opposition to 
change is called self-inductance and we call anything 
that possesses this quality an inductor. Straight-wire 
inductance might seem trivial, but as will be seen later 
in the chapter, the higher we go in frequency, the 
more important it becomes. 

The inductance of a straight wire depends on both 
its length and its diameter, and is found by: 

9 
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L = 0.002/^2.3 log - O.75) ] /zH (Eq. 1-1) 

where, 
L = the inductance in /¿H, 
I = the length of the wire in cm, 
d = the diameter of the wire in cm. 

This is shown in calculations of Example 1-2. 

EXAMPLE 1-2 
Find the inductance of 5 centimeters of No. 22 copper 

wire. 

Solution 

From Table 1-1, the diameter of No. 22 copper wire is 
25.3 mils. Since 1 mil equals 2.54 X 10~3 cm, this equals 
0.0643 cm. Substituting into Equation 1-1 gives 

L = (0.002)(5) [2.31og (^-0.75)] 

= 57 nanohenries 

The concept of inductance is important because 
any and all conductors at radio frequencies ( including 
hookup wire, capacitor leads, etc. ) tend to exhibit the 
property of inductance. Inductors will be discussed 
in greater detail later in this chapter. 

RESISTORS 

Resistance is the property of a material that de¬ 
termines the rate at which electrical energy is con¬ 
verted into heat energy for a given electric current. By 
definition: 

1 volt across 1 ohm = 1 coulomb per second 
= 1 ampere 

The thermal dissipation in this circumstance is 1 watt. 

P = EI 
= 1 volt X 1 ampere 
= 1 watt 

Fig. 1-2. Resistor equivalent circuit. 

Resistors are used everywhere in circuits, as tran¬ 
sistor bias networks, pads, and signal combiners. How¬ 
ever, very rarely is there any thought given to how a 
resistor actually behaves once we depart from the 
world of direct current (de). In some instances, such 
as in transistor biasing networks, the resistor will still 
perform its de circuit function, but it may also disrupt 
the circuit’s rf operating point. 

Resistor Equivalent Circuit 
The equivalent circuit of a resistor at radio frequen¬ 

cies is shown in Fig. 1-2. R is the resistor value itself, 
L is the lead inductance, and C is a combination of 
parasitic capacitances which varies from resistor to 
resistor depending on the resistor’s structure. Carbon-
composition resistors are notoriously poor high-fre¬ 
quency performers. A carbon-composition resistor con¬ 
sists of densely packed dielectric particulates or 
carbon granules. Between each pair of carbon granules 
is a very small parasitic capacitor. These parasitics, in 
aggregate, are not insignificant, however, and are the 
major component of the device’s equivalent circuit. 
Wirewound resistors have problems at radio fre¬ 

quencies too. As may be expected, these resistors tend 
to exhibit widely varying impedances over various 
frequencies. This is particularly true of the low re¬ 
sistance values in the frequency range of 10 MHz to 
200 MHz. The inductor L, shown in the equivalent cir¬ 
cuit of Fig. 1-2, is much larger for a wirewound resistor 
than for a carbon-composition resistor. Its value can 
be calculated using the single-layer air-core inductance 
approximation formula. This formula is discussed later 
in this chapter. Because wirewound resistors look like 
inductors, their impedances will first increase as the 
frequency increases. At some frequency (Fr), however, 
the inductance ( L ) will resonate with the shunt capaci-

Fig. 1-3. Impedance characteristic of a wirewound resistor. 
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Fig. 1-4. Frequency characteristics of metal-film vs. 
carbon-composition resistors. (Adapted from Handbook 

of Components for Electronics, McGraw-Hill). 

tance ( C ), producing an impedance peak. Any further 
increase in frequency will cause the resistor’s im¬ 
pedance to decrease as shown in Fig. 1-3. 

A metal-film resistor seems to exhibit the best char¬ 
acteristics over frequency. Its equivalent circuit is 
the same as the carbon-composition and wirewound 
resistor, but the values of the individual parasitic 
elements in the equivalent circuit decrease. 

The impedance of a metal-film resistor tends to de¬ 
crease with frequency above about 10 MHz, as shown 
in Fig. 1-4. This is due to the shunt capacitance in the 
equivalent circuit. At very high frequencies, and with 
low-value resistors (under 50 ohms), lead inductance 
and skin effect may become noticeable. The lead in¬ 

ductance produces a resonance peak, as shown for the 
5-ohm resistance in Fig. 1-4, and skin effect decreases 
the slope of the curve as it falls off with frequency. 

Many manufacturers will supply data on resistor be¬ 
havior at radio frequencies but it can often be mislead¬ 
ing. Once you understand the mechanisms involved 
in resistor behavior, however, it will not matter in what 
form the data is supplied. Example 1-3 illustrates that 
fact. 

The recent trend in resistor technology has been to 
eliminate or greatly reduce the stray reactances as¬ 
sociated with resistors. This has led to the development 
of thin-film chip resistors, such as those shown in Fig. 
1-6. They are typically produced on alumina or beryl¬ 
lia substrates and offer very little parasitic reactance 
at frequencies from de to 2 GHz. 

Fig. 1-6. Thin-film chip resistors. (Courtesy Piconics, Inc.) 

EXAMPLE 1-3 
In Fig. 1-2, the lead lengths on the metal-film resistor 

are 1.27 cm (0.5 inch), and are made up of No. 14 wire. 
The total stray shunt capacitance (C) is 0.3 pF. If the 
resistor value is 10,000 ohms, what is its equivalent rf im¬ 
pedance at 200 MHz? 

Solution 

From Table 1-1, the diameter of No. 14 AWG wire is 
64.1 mils (0.1628 cm). Therefore, using Equation 1-1: 

L = 0.002( 1.27) [2.3 log - O.75) ] 

= 8.7 nanohenries 
This presents an equivalent reactance at 200 MHz of: 

XL = wL 

= 2rr(200 x 10«) (8.7 X 10-») 
= 10.93 ohms 

The capacitor (C) presents an equivalent reactance of: 

A <oC 
1 

“ 2rr(200 X 10« ) (0.3 X 10-12) 
= 2653 ohms 

The combined equivalent circuit for this resistor, at 200 
MHz, is shown in Fig. 1-5. From this sketch, we can see 
that, in this case, the lead inductance is insignificant when 
compared with the 10K series resistance and it may be 

¡10.93 0 ¡10.93 Í1 

-¡2563 Í! 

Fig. 1-5. Equivalent circuit values for Example 1-3. 

neglected. The parasitic capacitance, on the other hand, 
cannot be neglected. What we now have, in effect, is a 
2563-ohm reactance in parallel with a 10,000-ohm re¬ 
sistance. The magnitude of the combined impedance is: 

z RX, 

VR2 + X«2 
(10K)(2563) 

~ ^(lOK^H- (2563)2 

= 1890.5 ohms 
Thus, our 10K resistor looks like 1890 ohms at 200 MHz. 
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CAPACITORS 

Capacitors are used extensively in rf applications, 
such as bypassing, interstage coupling, and in resonant 
circuits and filters. It is important to remember, how¬ 
ever, that not all capacitors lend themselves equally 
well to each of the above mentioned applications. The 
primary task of the rf circuit designer, with regard to 
capacitors, is to choose the best capacitor for his par¬ 
ticular application. Cost effectiveness is usually a 
major factor in the selection process and, thus, many 
trade-offs occur. In this section, well take a look at 
the capacitor’s equivalent circuit and we will examine 
a few of the various types of capacitors used at radio 
frequencies to see which are best suited for certain ap¬ 
plications. But first, a little review. 

Parallel-Plate Capacitor 
A capacitor is any device which consists of two 

conducting surfaces separated by an insulating ma¬ 
terial or dielectric. The dielectric is usually ceramic, 
air, paper, mica, plastic, film, glass, or oil. The capaci¬ 
tance of a capacitor is that property which permits the 
storage of a charge when a potential difference exists 
between the conductors. Capacitance is measured in 
units of farads. A 1-farad capacitor’s potential is raised 
by 1 volt when it receives a charge of 1 coulomb. 

c-2 
V 

where, 
C = capacitance in farads, 
Q = charge in coulombs, 
V = voltage in volts. 

However, the farad is much too impractical to work 
with, so smaller units were devised. 

1 microfarad = 1 /xF = 1 X 10-8 farad 
1 picofarad =1 pF = 1 X IO-12 farad 

As stated previously, a capacitor in its fundamental 
form consists of two metal plates separated by a di¬ 
electric material of some sort. If we know the area 
( A ) of each metal plate, the distance ( d ) between the 
plate (in inches), and the permittivity (e) of the di¬ 
electric material in farads/meter (f/m), the capaci¬ 
tance of a parallel-plate capacitor can be found by: 

_ 0.2249eA . r , C — -—j- picofarads ( Eq. 1-2 ) 
Q€o 

where, 
eu = free-space permittivity = 8.854 X 10-12 f/m. 
In Equation 1-2, the area (A) must be large with re¬ 

spect to the distance (d). The ratio of € to eu is known 
as the dielectric constant (k) of the material. The di¬ 
electric constant is a number which provides a com¬ 
parison of the given dielectric with air (see Fig. 1-7). 
The ratio of e/e„ for air is, of course, 1. If the dielectric 
constant of a material is greater than 1, its use in a 
capacitor as a dielectric will permit a greater amount 

Dielectric K 
Air 1 
Polystrene 2.5 
Paper 4 
Mica 5 
Ceramic (low K) 10 
Ceramic (high K) 100-10,000 

Fig. 1-7. Dielectric constants of some common materials. 

of capacitance for the same dielectric thickness as air. 
Thus, if a material’s dielectric constant is 3, it will pro¬ 
duce a capacitor having three times the capacitance of 
one that has air as its dielectric. For a given value of 
capacitance, then, higher dielectric-constant materials 
will produce physically smaller capacitors. But, be¬ 
cause the dielectric plays such a major role in determin¬ 
ing the capacitance of a capacitor, it follows that the 
influence of a dielectric on capacitor operation, over 
frequency and temperature, is often important. 

Real-World Capacitors 
The usage of a capacitor is primarily dependent 

upon the characteristics of its dielectric. The dielec¬ 
tric’s characteristics also determine the voltage levels 
and the temperature extremes at which the device 
may be used. Thus, any losses or imperfections in the 
dielectric have an enormous effect on circuit operation. 

The equivalent circuit of a capacitor is shown in 
Fig. 1-8, where C equals the capacitance, Rs is the 
heat-dissipation loss expressed either as a power factor 
( PF ) or as a dissipation factor ( DF ), Rp is the insula¬ 
tion resistance, and L is the inductance of the leads 
and plates. Some definitions are needed now. 
Power Factor—In a perfect capacitor, the alternating 

current will lead the applied voltage by 90°. This 
phase angle (</>) will be smaller in a real capacitor 
due to the total series resistance (R„ + Rp) that is 
shown in the equivalent circuit. Thus, 

PF = Cos </> 

The power factor is a function of temperature, fre¬ 
quency, and the dielectric material. 

Insulation Resistance—This is a measure of the 
amount of de current that flows through the dielectric 
of a capacitor with a voltage applied. No material is 
a perfect insulator; thus, some leakage current must 
flow. This current path is represented by Rp in the 
equivalent circuit and, typically, it has a value of 
100,000 megohms or more. 

Effective Series Resistance—Abbreviated ESR, this 
resistance is the combined equivalent of R9 and Rp, 
and is the ac resistance of a capacitor. 

-K-

Fig. 1-8. Capacitor equivalent circuit. 
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ESR = -^ (1 X 108) 

where, 
co = 2ttÍ 

Dissipation Factor—The DF is the ratio of ac re¬ 
sistance to the reactance of a capacitor and is given 
by the formula: 

DF = X 100% 
Äc

Ç—The Q of a circuit is the reciprocal of DF and 
is defined as the quality factor of a capacitor. 

Q = — = - Xc
v DF ESR 

Thus, the larger the Q, the better the capacitor. 

Fig. 1-9. Impedance characteristic vs. frequency. 

The effect of these imperfections in the capacitor 
can be seen in the graph of Fig. 1-9. Here, the im¬ 
pedance characteristic of an ideal capacitor is plotted 
against that of a real-world capacitor. As shown, as the 
frequency of operation increases, the lead inductance 
becomes important. Finally, at Fr, the inductance 
becomes series resonant with the capacitor. Then, 
above Fr, the capacitor acts like an inductor. In gen¬ 
eral, larger-value capacitors tend to exhibit more 
internal inductance than smaller-value capacitors. 
Therefore, depending upon its internal structure, a 
0.1-/Æ capacitor may not be as good as a 300-pF 
capacitor in a bypass application at 250 MHz. In other 
words, the classic formula for capacitive reactance, 

Xc = might seem to indicate that larger-value 

capacitors have less reactance than smaller-value 
capacitors at a given frequency. At rf frequencies, how¬ 
ever, the opposite may be true. At certain higher fre¬ 
quencies, a O.ljzF capacitor might present a higher im¬ 
pedance to the signal than would a 330-pF capacitor. 
This is something that must be considered when 
designing circuits at frequencies above 100 MHz. 
Ideally, each component that is to be used in any vhf, 

Fig. 1-10. Hewlett-Packard 8505A Network Analyzer. 

or higher frequency, design should be examined on a 
network analyzer similar to the one shown in Fig. 
1-10. This will allow the designer to know exactly what 
he is working with before it goes into the circuit. 

Capacitor Types 
There are many different dielectric materials used in 

the fabrication of capacitors, such as paper, plastic, 
ceramic, mica, polystyrene, polycarbonate, teflon, oil, 
glass, and air. Each material has its advantages and 
disadvantages. The rf designer is left with a myriad of 
capacitor types that he could use in any particular ap¬ 
plication and the ultimate decision to use a particular 
capacitor is often based on convenience rather than 
good sound judgement. In many applications, this ap¬ 
proach simply cannot be tolerated. This is especially 
true in manufacturing environments where more than 
just one unit is to be built and where they must oper¬ 
ate reliably over varying temperature extremes. It is 
often said in the engineering world that anyone can 
design something and make it work once, but it takes 
a good designer to develop a unit that can be produced 
in quantity and still operate as it should in different 
temperature environments. 
Ceramic Capacitors—Ceramic dielectric capacitors 

vary widely in both dielectric constant (K = 5 to 
10,000) and temperature characteristics. A good rule 
of thumb to use is: “The higher the K, the worse is its 
temperature characteristic.” This is shown quite clearly 
in Fig. 1-11. 
As illustrated, low-K ceramic capacitors tend to have 

linear temperature characteristics. These capacitors 
are generally manufactured using both magnesium 
titanate, which has a positive temperature coefficient 
(TC), and calcium titanate which has a negative TC. 
By combining the two materials in varying proportions, 
a range of controlled temperature coefficients can be 
generated. These capacitors are sometimes called tem¬ 
perature compensating capacitors, or NPO (negative 
positive zero) ceramics. They can have TCs that range 
anywhere from +150 to —4700 ppm/°C (parts-per-
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Temperature, °C 

Fig. 1-11. Temperature characteristics for ceramic 
dielectric capacitors. 

million-per-degree-Celsius ) with tolerances as small as 
±15 ppm/°C. Because of their excellent temperature 
stability, NPO ceramics are well suited for oscillator, 
resonant circuit, or filter applications. 

Moderately stable ceramic capacitors (Fig. 1-11) 
typically vary ±15% of their rated capacitance over 
their temperature range. This variation is typically 
nonlinear, however, and care should be taken in their 
use in resonant circuits or filters where stability is im¬ 
portant. These ceramics are generally used in switching 
circuits. Their main advantage is that they are gener¬ 
ally smaller than the NPO ceramic capacitors and, of 
course, cost less. 

High-K ceramic capacitors are typically termed 
general-purpose capacitors. Their temperature char¬ 
acteristics are very poor and their capacitance may 
vary as much as 80% over various temperature ranges 
(Fig. 1-11). They are commonly used only in bypass 
applications at radio frequencies. 

There are ceramic capacitors available on the market 
which are specifically intended for rf applications. 
These capacitors are typically high-Q (low ESR) de¬ 
vices with flat ribbon leads or with no leads at all. 
The lead material is usually solid silver or silver plated 
and, thus, contains very low resistive losses. At vhf 
frequencies and above, these capacitors exhibit very 
low lead inductance due to the flat ribbon leads. These 
devices are, of course, more expensive and require spe¬ 
cial printed-circuit board areas for mounting. The 
capacitors that have no leads are called chip capaci¬ 
tors. These capacitors are typically used above 500 
MHz where lead inductance cannot be tolerated. Chip 
capacitors and flat ribbon capacitors are shown in 
Fig. 1-12. 

Fig. 1-12. Chip and ribbon capacitors. 

Mica Capacitors—Mica capacitors typically have 
a dielectric constant of about 6, which indicates that 
for a particular capacitance value, mica capacitors are 
typically large. Their low K, however, also produces an 
extremely good temperature characteristic. Thus, mica 
capacitors are used extensively in resonant circuits and 
in filters where pc board area is of no concern. 

Silvered mica capacitors are even more stable. Ordi¬ 
nary mica capacitors have plates of foil pressed against 
the mica dielectric. In silvered micas, the silver plates 
are applied by a process called vacuum evaporation 
which is a much more exacting process. This produces 
an even better stability with very tight and reproduc¬ 
ible tolerances of typically +20 ppm/°C over a range 
-60 °C to +89 °C. 

The problem with micas, however, is that they are 
becoming increasingly less cost effective than ceramic 
types. Therefore, if you have an application in which 
a mica capacitor would seem to work well, chances 
are you can find a less expensive NPO ceramic capaci¬ 
tor that will work just as well. 

Metalized-Film Capacitors—“Metalized-film” is a 

Fig. 1-13. A simple microwave air-core inductor. 
( Courtesy Piconics, Inc. ) 
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broad category of capacitor encompassing most of the 
other capacitors listed previously and which we have 
not yet discussed. This includes teflon, polystyrene, 
polycarbonate, and paper dielectrics. 

Metalized-film capacitors are used in a number of 
applications, including filtering, bypassing, and coup¬ 
ling. Most of the polycarbonate, polystyrene, and teflon 
styles are available in very tight (±2%) capacitance 
tolerances over their entire temperature range. Poly¬ 
styrene, however, typically cannot be used over +85 
°C as it is very temperature sensitive above this point. 
Most of the capacitors in this category are typically 
larger than the equivalent-value ceramic types and 
are used in applications where space is not a con¬ 
straint. 

INDUCTORS 

An inductor is nothing more than a wire wound or 
coiled in such a manner as to increase the magnetic 
flux linkage between the turns of the coil (see Fig. 
1-13). This increased flux linkage increases the wire’s 
self-inductance (or just plain inductance) beyond 
that which it would otherwise have been. Inductors 
are used extensively in rf design in resonant circuits, 
filters, phase shift and delay networks, and as rf chokes 
used to prevent, or at least reduce, the flow of rf en¬ 
ergy along a certain path. 

Real-World Inductors 
As we have discovered in previous sections of this 

chapter, there is no “perfect” component, and inductors 
are certainly no exception. As a matter of fact, of the 
components we have discussed, the inductor is prob¬ 
ably the component most prone to very drastic changes 
over frequency. 

Fig. 1-14 shows what an inductor really looks like 

Fig. 1-14. Distributed capacitance and series resistance 
in an inductor. 

at rf frequencies. As previously discussed, whenever 
we bring two conductors into close proximity but 
separated by a dielectric, and place a voltage differen¬ 
tial between the two, we form a capacitor. Thus, if 
any wire resistance at all exists, a voltage drop (even 
though very minute ) will occur between the windings, 
and small capacitors will be formed. This effect is 
shown in Fig. 1-14 and is called distributed capaci¬ 
tance (Cd). Then, in Fig. 1-15, the capacitance (Cd) 
is an aggregate of the individual parasitic distributed 
capacitances of the coil shown in Fig. 1-14. 

Fig. 1-15. Inductor equivalent circuit. 

Fig. 1-16. Impedance characteristic vs. frequency for a 
practical and an ideal inductor. 

The effect of Cd upon the reactance of an inductor 
is shown in Fig. 1-16. Initially, at lower frequencies, 
the inductor’s reactance parallels that of an ideal in¬ 
ductor. Soon, however, its reactance departs from the 
ideal curve and increases at a much faster rate until 
it reaches a peak at the inductor’s parallel resonant 
frequency (Fr). Above Fr, the inductor’s reactance 
begins to decrease with frequency and, thus, the in¬ 
ductor begins to look like a capacitor. Theoretically, 
the resonance peak would occur at infinite reactance 
(see Example 1-4). However, due to the series re¬ 
sistance of the coil, some finite impedance is seen at 
resonance. 

Recent advances in inductor technology have led to 
the development of microminiature fixed-chip induc¬ 
tors. One type is shown in Fig. 1-17. These inductors 
feature a ceramic substrate with gold-plated solder¬ 
able wrap-around bottom connections. They come in 
values from 0.01 /zH to 1.0 mH, with typical Qs that 
range from 40 to 60 at 200 MHz. 

It was mentioned earlier that the series resistance 
of a coil is the mechanism that keeps the impedance 
of the coil finite at resonance. Another effect it has is 
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Fig. 1-17. Microminiature chip inductor. 
( Courtesy Piconics, Inc. ) 

EXAMPLE 1-4 
To show that the impedance of a lossless inductor at 

resonance is infinite, we can write the following: 

7-_ 
Xi. + Xc 

(Eq. 1-3) 

where, 
Z = the impedance of the parallel circuit, 
Xl — the inductive reactance (jwL), 

Xe = the capacitive reactance • 

Therefore, 

(Eq. 1-4) 

Multiplying numerator and denominator by j&>C, we get: 

7 _ j<uL 
“(jwDdioO + l 

jo>L 
- jWLC + 1 

From algebra, j2 = — 1; then, rearranging: 

(Eq. 1-5) 

7 _ 
1 - w2LC 

(Eq. 1-6) 

If the term <o2LC, in Equation 1-6, should ever become 
equal to 1, then the denominator will be equal to zero and 
impedance Z will become infinite. The frequency at which 
<u2LC becomes equal to I is: 

o)2LC = 1 

lc = 4 

CO 

2itÆC=y 

1 
2;t/LC =f (Eq. 1-7) 

which is the familiar equation for the resonant frequency 
of a tuned circuit. 

to broaden the resonance peak of the impedance curve 
of the coil. This characteristic of resonant circuits is 
an important one and will be discussed in detail in 
Chapter 3. 

The ratio of an inductor’s reactance to its series re¬ 
sistance is often used as a measure of the quality of 
the inductor. The larger the ratio, the better is the 
inductor. This quality factor is referred to as the Ç 
of the inductor. 

If the inductor were wound with a perfect conductor, 
its Q would be infinite and we would have a lossless 
inductor. Of course, there is no perfect conductor and, 
thus, an inductor always has some finite Q. 

At low frequencies, the Q of an inductor is very 
good because the only resistance in the windings is 
the de resistance of the wire—which is very small. 
But as the frequency increases, skin effect and winding 
capacitance begin to degrade the quality of the in¬ 
ductor. This is shown in the graph of Fig. 1-18. At 
low frequencies, Q will increase directly with fre¬ 
quency because its reactance is increasing and skin 
effect has not yet become noticeable. Soon, however, 
skin effect does become a factor. The Q still rises, but 
at a lesser rate, and we get a gradually decreasing slope 
in the curve. The flat portion of the curve in Fig. 1-18 
occurs as the series resistance and the reactance are 
changing at the same rate. Above this point, the shunt 
capacitance and skin effect of the windings combine 
to decrease the Q of the inductor to zero at its resonant 
frequency. 

Some methods of increasing the Q of an inductor and 
extending its useful frequency range are: 

1. Use a larger diameter wire. This decreases the ac 
and de resistance of the windings. 

2. Spread the windings apart. Air has a lower dielectric 
constant than most insulators. Thus, an air gap be¬ 
tween the windings decreases the interwinding 
capacitance. 

3. Increase the permeability of the flux linkage path. 
This is most often done by winding the inductor 
around a magnetic-core material, such as iron or 

Frequency 

Fig. 1-18. The Q variation of an inductor vs. frequency. 
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ferrite. A coil made in this manner will also con¬ 
sist of fewer turns for a given inductance. This will 
be discussed in a later section of this chapter. 

Single-Layer Air-Core Inductor Design 
Every rf circuit designer needs to know how to 

design inductors. It may be tedious at times, but it’s 
well worth the effort. The formula that is generally 
used to design single-layer air-core inductors is given 
in Equation 1-8 and diagrammed in Fig. 1-19. 

T _ 0.394 r2N2 _ 1
L 9r+10Z (Eq. 1-8) 

where, 
r = the coil radius in cm, 
I — the coil length in cm, 
L = the inductance in microhenries. 

However, coil length I must be greater than 0.67r. 
This formula is accurate to within one percent. See 
Example 1-5. 

Keep in mind that even though optimum Q is at¬ 
tained when the length of the coil (Î) is equal to its 
diameter (2r), this is sometimes not practical and, in 
many cases, the length is much greater than the di-

, ooooooooom 
r 

_ J- C/L

Fig. 1-19. Single-layer air-core inductor requirements. 

EXAMPLE 1-5 
Design a 100 nH (0.1 /xH) air-core inductor on a Cl¬ 

inch ( 0.635 cm ) coil form. 

Solution 

For optimum Q, the length of the coil should be equal 
to its diameter. Thus, I = 0.635 cm, r = 0.317 cm, and 
L = 0.1 mH. 

Using Equation 1-8 and solving for N gives: 

N= 
V 0.394r 

where we have taken I = 2r, for optimum Q. 
Substituting and solving: 

/ 29(0.1) 
- V (0.394) (0.317) 
= 4.8 turns 

Thus, we need 4.8 turns of wire within a length of 0.635 
cm. A look at Table 1-1 reveals that the largest diameter 
enamel-coated wire that will allow 4.8 turns in a length of 
0.635 cm is No. 18 AWG wire which has a diameter of 
42.4 mils (0.107 cm). 

Table 1-1. AWG Wire Chart 

Wire 
Size 

(AWG) 

Dia 
in 

Mils” 
(Bare) 

Dia 
in 

Mils 
(Coated) 

Ohms/ 
1000 ft. 

Area 
Circular 

Mils 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 

289.3 
257.6 
229.4 
204.3 
181.9 
162.0 
144.3 
128.5 
114.4 
101.9 
90.7 
80.8 
72.0 
64.1 
57.1 
50.8 
45.3 
40.3 
35.9 
32.0 
28.5 
25.3 
22.6 
20.1 
17.9 
15.9 
14.2 
12.6 
11.3 
10.0 
8.9 
8.0 
7.1 
6.3 
5.6 
5.0 
4.5 
4.0 
3.5 
3.1 
2.8 
2.5 
2.2 
2.0 
1.76 
1.57 
1.40 
1.24 
1.11 
.99 

131.6 
116.3 
104.2 
93.5 
83.3 
74.1 
66.7 
59.5 
52.9 
47.2 
42.4 
37.9 
34.0 
30.2 
27.0 
24.2 
21.6 
19.3 
17.2 
15.4 
13.8 
12.3 
11.0 
9.9 
8.8 
7.9 
7.0 
6.3 
5.7 
5.1 
4.5 
4.0 
3.5 
3.1 
2.8 
2.5 
2.3 
1.9 
1.7 
1.6 
1.4 
1.3 
1.1 

0.124 
0.156 
0.197 
0.249 
0.313 
0.395 
0.498 
0.628 
0.793 
0.999 
1.26 
1.59 
2.00 
2.52 
3.18 
4.02 
5.05 
6.39 
8.05 

10.1 
12.8 
16.2 
20.3 
25.7 
32.4 
41.0 
51.4 
65.3 
81.2 
104.0 
131 
162 
206 
261 
331 
415 
512 
648 
847 
1080 
1320 
1660 
2140 
2590 
3350 
4210 
5290 
6750 
8420 
10600 

83690 
66360 
52620 
41740 
33090 
26240 
20820 
16510 
13090 
10380 
8230 
6530 
5180 
4110 
3260 
2580 
2050 
1620 
1290 
1020 
812 
640 
511 
404 
320 
253 
202 
159 
123 
100 
79.2 
64.0 
50.4 
39.7 
31.4 
25.0 
20.2 
16.0 
12.2 
9.61 
7.84 
6.25 
4.84 
4.00 
3.10 
2.46 
1.96 
1.54 
1.23 
0.98 

° 1 mil = 2.54 X IO-3 cm 

ameter. In Example 1-5, we calculated the need for 
4.8 turns of wire in a length of 0.635 cm and decided 
that No. 18 AWG wire would fit. The only problem 
with this approach is that when the design is finished, 
we end up with a very tightly wound coil. This in¬ 
creases the distributed capacitance between the turns 
and, thus, lowers the useful frequency range of the 
inductor by lowering its resonant frequency. We could 
take either one of the following compromise solutions 
to this dilemma: 
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1. Use the next smallest AWG wire size to wind the 
inductor while keeping the length (I) the same. 
This approach will allow a small air gap between 
windings and, thus, decrease the interwinding ca¬ 
pacitance. It also, however, increases the resistance 
of the windings by decreasing the diameter of the 
conductor and, thus, it lowers the Q. 

2. Extend the length of the inductor (while retaining 
the use of No. 18 AWG wire) just enough to leave 
a small air gap between the windings. This method 
will produce the same effect as Method No. 1. It 
reduces the Q somewhat but it decreases the inter¬ 
winding capacitance considerably. 

Magnetic-Core Materials 
In many rf applications, where large values of in¬ 

ductance are needed in small areas, air-core inductors 
cannot be used because of their size. One method of 
decreasing the size of a coil while maintaining a given 
inductance is to decrease the number of turns while at 
the same time increasing its magnetic flux density. The 
flux density can be increased hy decreasing the “re¬ 
luctance” or magnetic resistance path that links the 
windings of the inductor. We do this by adding a 
magnetic-core material, such as iron or ferrite, to the 
inductor. The permeability (/x) of this material is 
much greater than that of air and, thus, the magnetic 
flux isn’t as “reluctant” to flow between the windings. 
The net result of adding a high permeability core to 
an inductor is the gaining of the capability to wind 
a given inductance with fewer turns than what would 
be required for an air-core inductor. Thus, several 
advantages can be realized. 
1. Smaller size—due to the fewer number of turns 

needed for a given inductance. 
2. Increased Q—fewer turns means less wire resistance. 
3. Variability—obtained by moving the magnetic core 

in and out of the windings. 
There are some major problems that are introduced 

by the use of magnetic cores, however, and care must 
be taken to ensure that the core that is chosen is the 
right one for the job. Some of the problems are: 

1. Each core tends to introduce its own losses. Thus, 
adding a magnetic core to an air-core inductor could 
possibly decrease the Q of the inductor, depending 
on the material used and the frequency of- operation. 

2. The permeability of all magnetic cores changes with 
frequency and usually decreases to a very small 
value at the upper end of their operating range. It 
eventually approaches the permeability of air and 
becomes “invisible” to the circuit. 

3. The higher the permeability of the core, the more 
sensitive it is to temperature variation. Thus, over 
wide temperature ranges, the inductance of the 
coil may vary appreciably. 

4. The permeability of the magnetic core changes 
with applied signal level. If too large an excitation 
is applied, saturation of the core will result. 

These problems can be overcome if care is taken, in 
the design process, to choose cores wisely. Manufac¬ 
turers now supply excellent literature on available 
sizes and types of cores, complete with their important 
characteristics. 

TOROIDS 

A toroid, very simply, is a ring or doughnut-shaped 
magnetic material that is widely used to wind rf in¬ 
ductors and transformers. Toroids are usually made of 
iron or ferrite. They come in various shapes and sizes 
( Fig. 1-20 ) with widely varying characteristics. When 
used as cores for inductors, they can typically yield 
very high Qs. They are self-shielding, compact, and 
best of all, easy to use. 

The Q of a toroidal inductor is typically high be¬ 
cause the toroid can be made with an extremely high 
permeability. As was discussed in an earlier section, 
high permeability cores allow the designer to con¬ 
struct an inductor with a given inductance ( for exam¬ 
ple, 35 /xH) with fewer turns than is possible with an 
air-core design. Fig. 1-21 indicates the potential sav¬ 
ings obtained in number of turns of wire when coil 
design is changed from air-core to toroidal-core in¬ 
ductors. The air-core inductor, if wound for optimum 

Fig. 1-20. Toroidal cores come in various shapes and sizes. 

90 turns 
Winch coil form 

(A) Toroid inductor. ( B ) Air-core inductor. 

Fig. 1-21. Turns comparison between inductors for the 
same inductance. 
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Q, would take 90 turns of a very small wire ( in order 
to fit all turns within a %-inch length) to reach 35 
jaH; however, the toroidal inductor would only need 8 
turns to reach the design goal. Obviously, this is an ex¬ 
treme case but it serves a useful purpose and illustrates 
the point. The toroidal core does require fewer turns 
for a given inductance than does an air-core design. 
Thus, there is less ac resistance and the Q can be 
increased dramatically. 

(B) Toroidal inductor. 

Fig. 1-22. Shielding effect of a toroidal inductor. 

The self-shielding properties of a toroid become 
evident when Fig. 1-22 is examined. In a typical air¬ 
core inductor, the magnetic-flux lines linking the turns 
of the inductor take the shape shown in Fig. 1-22A. 
The sketch clearly indicates that the air surrounding 
the inductor is definitely part of the magnetic-flux path. 
Thus, this inductor tends to radiate the rf signals flow¬ 
ing within. A toroid, on the other hand (Fig. 1-22B), 
completely contains the magnetic flux within the ma¬ 
terial itself; thus, no radiation occurs. In actual prac¬ 
tice, of course, some radiation will occur but it is min¬ 
imized. This characteristic of toroids eliminates the 
need for bulky shields surrounding the inductor. The 
shields not only tend to reduce available space, but 
they also reduce the Q of the inductor that they are 
shielding. 

Core Characteristics 
Earlier, we discussed, in general terms, the relative 

advantages and disadvantages of using magnetic cores. 
The following discussion of typical toroidal-core char¬ 
acteristics will aid you in specifying the core that you 
need for your particular application. 

Fig. 1-23 is a typical magnetization curve for a 
magnetic core. The curve simply indicates the mag¬ 
netic-flux density ( B ) that occurs in the inductor with 
a specific magnetic-field intensity ( H ) applied. As the 
magnetic-field intensity is increased from zero (by in¬ 

Fig. 1-23. Magnetization curve for a typical core. 

creasing the applied signal voltage), the magnetic-
flux density that links the turns of the inductor in¬ 
creases quite linearly. The ratio of the magnetic-flux 
density to the magnetic-field intensity is called the 
permeability of the material. This has already been 
mentioned on numerous occasions. 

M = B/H (Webers/ampere-turn) (Eq. 1-9) 

Thus, the permeability of a material is simply a mea¬ 
sure of how well it transforms an electrical excitation 
into a magnetic flux. The better it is at this transforma¬ 
tion, the higher is its permeability. 

As mentioned previously, initially the magnetiza¬ 
tion curve is linear. It is during this linear portion of 
the curve that permeability is usually specified and, 
thus, it is sometimes called initial permeability 
in various core literature. As the electrical excitation 
increases, however, a point is reached at which the 
magnetic-flux intensity does not continue to increase 
at the same rate as the excitation and the slope of the 
curve begins to decrease. Any further increase in ex¬ 
citation may cause saturation to occur. Haat is the ex¬ 
citation point above which no further increase in 
magnetic-flux density occurs (Bsat ) The incremental 
permeability above this point is the same as air. Typi¬ 
cally, in rf circuit applications, we keep the excitation 
small enough to maintain linear operation. 
Bsat varies substantially from core to core, depend¬ 

ing upon the size and shape of the material. Thus, it 
is necessary to read and understand the manufacturer’s 
literature that describes the particular core you are 
using. Once Baat is known for the core, it is a very 
simple matter to determine whether or not its use in 
a particular circuit application will cause it to saturate. 
The in-circuit operational flux density (Bop ) of the 
core is given by the formula: 

Bop_ (4.44)fNAe (Eq. 1-10) 
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where, 
Bop = the magnetic-flux density in gauss, 
E = the maximum rms voltage across the inductor 

in volts, 
f = the frequency in hertz, 
N = the number of turns, 
A,. = the effective cross-sectional area of the core 

in cm2. 

Thus, if the calculated Bop for a particular application 
is less than the published specification for BBat, then 
the core will not saturate and its operation will be 
somewhat linear. 

Another characteristic of magnetic cores that is 
very important to understand is that of internal loss. 
It has previously been mentioned that the careless 
addition of a magnetic core to an air-core inductor 
could possibly reduce the Q of the inductor. This con¬ 
cept might seem contrary to what we have studied 
so far, so let’s examine it a bit more closely. 

The equivalent circuit of an air-core inductor (Fig. 
1-15) is reproduced in Fig. 1-24A for your convenience. 
The Q of this inductor is 

Q = ^ (Eq. 1-11) 

where, 
XL = wL, 
R8 = the resistance of the windings. 

If we add a magnetic core to the inductor, the 
equivalent circuit becomes like that shown in Fig. 
1-24B. We have added resistance Rp to represent the 
losses which take place in the core itself. These losses 
are in the form of hysteresis. Hysteresis is the power 
lost in the core due to the realignment of the magnetic 
particles within the material with changes in excita¬ 
tion, and the eddy currents that flow in the core due 
to the voltages induced within. These two types of 
internal loss, which are inherent to some degree in 
every magnetic core and are thus unavoidable, com¬ 
bine to reduce the efficiency of the inductor and, thus, 
increase its loss. But what about the new Q for the 
magnetic-core inductor? This question isn’t as easily 
answered. Remember, when a magnetic core is in¬ 
serted into an existing inductor, the value of the in¬ 
ductance is increased. Therefore, at any given fre¬ 
quency, its reactance increases proportionally. The 
question that must be answered then, in order to de-

( A ) Air core. ( B ) Magnetic core. 

Fig. 1-24. Equivalent circuits for air-core and 
magnetic-core inductors. 

termine the new Q of the inductor, is: By what factors 
did the inductance and loss increase? Obviously, if 
by adding a toroidal core, the inductance were in¬ 
creased by a factor of two and its total loss was also 
increased by a factor of two, the Q would remain 
unchanged. If, however, the total coil loss were in¬ 
creased to four times its previous value while only 
doubling the inductance, the Q of the inductor would 
be reduced by a factor of two. 

Now, as if all of this isn’t confusing enough, we 
must also keep in mind that the additional loss intro¬ 
duced by the core is not constant, but varies (usually 
increases) with frequency. Therefore, the designer 
must have a complete set of manufacturer’s data 
sheets for every core he is working with. 

Toroid manufacturers typically publish data sheets 
which contain all the information needed to design 
inductors and transformers with a particular core. 
(Some typical specification and data sheets are given 
in Figs. 1-25 and 1-26.) In most cases, however, each 
manufacturer presents the information in a unique 
manner and care must be taken in order to extract 
the information that is needed without error, and in 
a form that can be used in the ensuing design process. 
This is not always as simple as it sounds. Later in this 
chapter, we will use the data presented in Figs. 1-25 
and 1-26 to design a couple of toroidal inductors so 
that we may see some of those differences. Table 1-2 
lists some of the commonly used terms along with 
their symbols and units. 

Powdered Iron Vs. Ferrite 
In general, there are no hard and fast rules govern¬ 

ing the use of ferrite cores versus powdered-iron cores 
in rf circuit-design applications. In many instances, 
given the same permeability and type, either core 
could be used without much change in performance of 
the actual circuit. There are, however, special appli¬ 
cations in which one core might out-perform another, 
and it is those applications which we will address here. 

Powdered-iron cores, for instance, can typically 
handle more rf power without saturation or damage 
than the same size ferrite core. For example, ferrite, 
if driven with a large amount of rf power, tends to 
retain its magnetism permanently. This ruins the core 
by changing its permeability permanently. Powdered 
iron, on the other hand, if overdriven will eventually 
return to its initial permeability (/z¡). Thus, in any 
application where high rf power levels are involved, 
iron cores might seem to be the best choice. 

In general, powdered-iron cores tend to yield higher-
Q inductors, at higher frequencies, than an equivalent 
size ferrite core. This is due to the inherent core char¬ 
acteristics of powdered iron which produce much 
less internal loss than ferrite cores. This characteristic 
of powdered iron makes it very useful in narrow-band 
or tuned-circuit applications. Table 1-3 lists a few of 
the common powdered-iron core materials along with 
their typical applications. 
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HãH Indiana l|rj|[Hf I BROAD BAND-RATED FERRAMIC COMPONENTS 

■ Values measured at 100 KHz, T = 25°C. 

■ Temperature Coefficient (TC) = 0 to +0.75% /°C max., 
-40 to +70°C. 

■ Disaccommodation (D) = 3.0% max., 
10-100 min., 25°C. 

7400 Series Toroids 
Nom. jUj 2500 

■ Hysteresis Core Constant (tty measured at 20 KHz to 

30 gauss (3 milli Tesla). 

■ For mm dimensions and core constants, see page30. 

MECHANICAL SPECIFICATIONS 

PART NUMBER 

TOL UNITS i BBR 7401 BBR 7402 BBR 7403 BBR 7404 

/ \ 1 
1 

di 

d2 

h 

0.135 

0.065 

0.055 

0.155 

0.088 

0.051 

0.230 

0.120 

0.060 

0.100 

0.050 

0.050 

»0.005 

»0 005 

»0 005 

in. 

in. 

in. 

ELECTRICAL SPECIFICATIONS 

PART NUMBER 

TOL UNITS BBR 7401 BBR 7402 BBR 7403 BBR 7404 

Al 

Xp/N2

Rp/N 2 

Q 

Von» 

Hi 
i 

510 

0 320 

10.4 

54 

7.9 

1,480 

365 

0.229 

75 

54 

7.1 

1,400 

495 

0.310 

10.0 

54 

13.6 

0,920 

440 

0.276 

8.9 

54 

5.1 

2,150 

120% 

i20% 

min. 

min. 

max. 

max. 

nH/turn2 

ohm/turn2

ohm/turn2

mv 

VSA 2 H'^2

Fig. 1-25. Data sheet for ferrite toroidal cores ( Courtesy Indiana General) 
Cont. on next page 
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seh Indiana general BROAD BAND-RATED FERRAMIC COMPONENTS 

7401 • 7402 • 7403 • 7404 Toroids 
Norn, n, 2500 

Shunt Reactance and Resistance per Turn Squared versus Frequency (sine wave) 

BBR-7401 BBR-7402 

BBR-7404 

FREQUENCY Ht 

Fig. 1-25—cont. Data sheet for ferrite toroidal cores. (Courtesy Indiana General) 
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IRON-POWDER TOROIDAL CORES 

Core size 

PHYSICAL DIMENSIONS 
Outer Inner . , Cross Mean 
Diam. Diam. e'9 Sect. Length 
(in) (in) (in) Area (cmf (cm) 

T-225A - -
T-225 - -
T-200 - -
T-184 - -
T-157 - -
T-130 - -
T-106 - -
T- 94 - -
T- 80 - -
T- 68 - -
T- 50 - -
T- 44 - -
T- 37 - -
T- 30 - -
T- 25 - -
T- 20 - -
T- 16 - -
T- 12 - -

2.250 1.400 1.000 2.742 14.56 
2.250 1.400 .550 1.508 14.56 
2.000 1.250 . 550 1.330 12.97 
1.840 .960 .710 2.040 11.12 
1.570 .950 .570 1.140 10.05 
1.300 .780 .437 .930 8.29 
1.060 . 560 . 437 .706 6.47 
.942 . 560 . 312 . 385 6.00 
.795 .495 .250 .242 5.15 
.690 . 370 .190 .196 4.24 
.500 .303 .190 .121 3.20 
.440 . 229 .159 .107 2.67 
.375 .204 .128 .070 2.32 
.307 .150 .128 . 065 1.83 
.255 .120 . 096 . 042 1.50 
.200 .088 .070 ,034 1.15 
.160 . 078 . 060 . 016 0.75 
.120 . 062 . 050 . 010 0.74 

IRON - POWDER MATERIAL vs. FREQUENCY RANGE 

Higher Q will be obtained in the upper portion of a materials frequency range when 
smaller cores are used. Likewise, in the lower portion of a materials frequency range, 
higher Q can be achieved when using the larger cores. 

MATERIAL 

MHz. -► .05 .1 .5 1. 3. 5. 10. 30. 50. 100 200 300 

* 3 (gray) 

k . o ij ( rea a wn / 

* 1 (blue) 

* 2 ( red ) 

6 (yellow ) 

10 (black ) 

12 ( grn & wh ) 

0 (tan) 

Fig. 1-26. Data sheet for powdered-iron toroidal cores. (Courtesy Amidon Associates) 
Cont. on next page 
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IRON-POWDER TOROIDAL CORES 
FOR RESONANT CIRCUITS 

MATERIAL 0 permeability 1 50 MHz to 300 MHz Tan 

Core number Outer diam. Inner diam. Height Al value 
( in. ) ( in. ) ( in. ) uh / 100 t 

T-130-0 1.300 .780 .437 15.0 
T-106-0 1.060 . 560 . 437 19.2 
T- 94-0 . 942 . 560 . 312 10.6 
T- 80-0 .795 .495 .250 8.5 
T- 68-0 .690 .370 .190 7.5 
T- 50-0 .500 .303 .190 6.4 
T- 44-0 .440 .229 .159 6.5 
T- 37-0 .375 .205 .128 4.9 
T- 30-0 .307 .151 .128 6.0 
T- 25-0 .255 .120 .096 4.5 
T- 20-0 . 200 . 088 . 067 3.5 
T- 16-0 .160 .078 .060 3.0 
T- 12-0 .125 .062 .050 3.0 

MATERIAL # 12 permeability 3 20 MHz to 200 MHz Green & White 

Core number Outer diam. Inner diam 
( in. ) 

Height 
( in. ) 

Al value 
uh / 100 t 

T-80-12 .795 .495 . 250 22 
T-68-12 .690 .370 .190 21 
T-50-12 . 500 . 300 .190 18 
T-44-12 .440 .229 .159 18 
T-37-12 . 375 .205 .128 15 
T-30-12 .307 .151 .128 16 
T-25-12 . 255 .120 . 096 12 
T-20-12 . 200 . 088 . 067 10 
T-16-12 .160 .078 .060 8 
T-12-12 .125 . 062 . 050 7 

Key to part numbers for : 
IRON POWDER TOROIDAL CORES 

200 2 

Toroid Outer diameter Material 

Number of turns 

Al values J 5% 

1 00 
desired inductance ( uh ) 

A|_ value ( uh per 100 turns ) 

Fig. 1-26—cont. Data sheet for powdered-iron toroidal cores. (Courtesy Amidon Associates) 

Cont. on next page 
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IRON-POWDER TOROIDAL CORES 
FOR RESONANT CIRCUITS 

MATERIAL # 10 permeability 6 10 MHz to 100 MHz Black 

Core number Outer diam. Inner diam. Height value 

<in -) ('n.) (in.) uh/100t 

T-94-10 . 942 . 560 . 312 58 
T-80-10 .795 . 495 .250 32 
T-68-10 .690 .370 .190 32 
T-50-10 .500 .303 .190 31 
T-44-10 .440 .229 .159 33 
T-37-10 .375 .205 .128 25 
T-30-10 .307 .151 .128 25 
T-25-10 .255 .120 .096 19 
T-20-10 .200 .088 .067 16 
T-16-10 .160 . 078 . 060 13 
T-12-10 .125 .062 .050 12 

Core 
Size 

T-12 

T-16 

T-20 

T-25 

T-30 

T-37 

T-44 

T-50 

T-68 

T-80 

T-94 

T-106 

T-130 

T-157 

T-184 

T-200 

T-225 

NUMBER OF TURNS vs. WIRE SIZE and CORE SIZE 
Approximate number of turns of wire - single layer wound - single insulation 

wire size 
40 38 36 34 32 30 28 26 24 22 20 18 16 14 12 10 

47 37 29 21 15 11 8 5 4 2 1 1 1 0 0 0 

63 49 38 29 21 16 11 8 5 3 3 1 1 1 0 0 

72 56 43 33 25 18 14 9 6 5 4 3 1 1 1 q 
101 79 62 48 37 28 21 15 11 7 5 4 3 1 1 1 

129 101 79 62 48 37 28 21 15 11 7 5 4 3 1 1 

177 140 110 87 67 53 41 31 23 17 12 9 7 5 3 ] 

199 157 124 97 76 60 46 35 27 20 15 10 7 6 5 3 

265 210 166 131 103 81 63 49 37 28 21 16 11 8 6 5 

325 257 205 162 127 101 79 61 47 36 28 21 15 11 9 7 

438 347 276 219 172 137 108 84 66 51 39 30 23 17 12 8 

496 393 313 248 195 156 123 96 75 58 45 35 27 20 14 10 

496 393 313 248 195 156 123 96 75 58 45 35 27 20 14 10 

693 550 439 348 275 220 173 137 107 83 66 51 40 30 23 17 

846 672 536 426 336 270 213 168 132 104 82 64 50 38 29 22 

846 672 536 426 336 270 213 168 132 104 82 64 50 38 29 22 

1115 886 707 562 445 357 282 223 176 139 109 86 68 53 41 31 

1250 993 793 631 499 400 317 250 198 156 123 98 77 60 46 36 

Cont. on next page 
Fig. 1-26—cont. Data sheet for powdered-iron toroidal cores. (Courtesy Amidon Associates) 
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_ 400

Q —CURVES 
i 

180 20 MHz to 200 MHz 
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Fig. 1-26—cont. Data sheet for powdered-iron toroidal cores. (Courtesy Amidon Associates) 

Cont. on next page 
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IRON-POWDER TOROIDAL CORES 

TEMPERATURE COEFFICIENT CURVES 

AMIDON Associates • 12033 OTSEGO STREET • NORTH HOLLYWOOD, CALIF. 91607 

Fig. 1-26—cont. Data sheet for powdered-iron toroidal cores. (Courtesy Amidon Associates) 
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Table 1-2. Toroidal Core Symbols and Definitions 

Symbol Description Units 

A< Available cross-sectional area. 
The area (perpendicular to the 
direction of the wire) for wind¬ 
ing turns on a particular core. 

cm2

A. Effective area of core. The 
cross-sectional area that an 
equivalent gapless core would 
have. 

cm2

Al Inductive index. This relates the 
inductance to the number of 
turns for a particular core. 

nH/tum2

B..t Saturation flux density of the 
core. 

gauss 

Bop Operating flux density of the 
core. This is with an applied 
voltage. 

gauss 

l. Effective length of the flux path. cm 

Ml Initial permeability. This is the 
effective permeability of the core 
at low excitation in the linear 
region. 

numeric 

Table 1-3. Powdered-Iron Materials 

Material Application/Classification 

Carbonyl C A medium-Q powdered-iron material at 
150 kHz. A high-cost material for am 
tuning applications and low-frequency if 
transformers. 

Carbonyl E The most widely used of all powdered-
iron materials. Offers high-Q and me¬ 
dium permeability in the 1 MHz to 30 
MHz frequency range. A medium-cost 
material for use in if transformers, an¬ 
tenna coils, and general-purpose designs. 

Carbonyl J A high-Q powdered-iron material at 40 
to 100 MHz, with a medium permeabil¬ 
ity. A high-cost material for fm and tv 
applications. 

Carbonyl SF Similar to carbonyl E, but with a better 
Q up through 50 MHz. Costs more than 
carbonyl E. 

Carbonyl TH A powdered-iron material with a higher 
Q than carbonyl E up to 30 MHz, but 
less than carbonyl SF. Higher cost than 
carbonyl E. 

Carbonyl W The highest cost powdered-iron mate¬ 
rial. Offers a high Q to 100 MHz, with 
medium permeability. 

Carbonyl HP Excellent stability and a good Q for 
lower frequency operation—to 50 kHz. 
A powdered-iron material. 

Carbonyl GS6 For commercial broadcast frequencies. 
Offers good stability and a high Q. 

IRN-8 A synthetic oxide hydrogen-reduced 
material with a good Q from 50 to 150 
MHz. Medium priced for use in fm and 
tv applications. 

At very low frequencies, or in broad-band circuits 
which span the spectrum from vlf up through vhf, 
ferrite seems to be the general choice. This is true 
because, for a given core size, ferrite cores have a 
much higher permeability. The higher permeability is 
needed at the low end of the frequency range where, 
for a given inductance, fewer windings would be 
needed with the ferrite core. This brings up another 
point. Since ferrite cores, in general, have a higher 
permeability than the same size powdered-iron core, 
a coil of a given inductance can usually be wound on 
a much smaller ferrite core and with fewer turns. 
Thus, we can save circuit board area. 

TOROIDAL INDUCTOR DESIGN 

For a toroidal inductor operating on the linear 
(nonsaturating) portion of its magnetization curve, 
its inductance is given by the following formula: 

L=Q^Mfxio-; (Eqll2)
tp 

where, 
L = the inductance in microhenries, 
N = the number of turns, 
fit = initial permeability, 
Ac = the cross-sectional area of the core in cm2, 
Ze = the effective length of the core in cm. 

In order to make calculations easier, most manu¬ 
facturers have combined fit, A,., I,., and other constants 
for a given core into a single quantity called the in¬ 
ductance index, AL. The inductance index relates the 
inductance to the number of turns for a particular core. 
This simplification reduces Equation 1-12 to: 

L = N2Al nanohenries ( Eq. 1-13) 

where, 
L = the inductance in nanohenries, 
N = the number of turns, 
At. = the inductance index in nanohenries/turn2

Thus, the number of turns to be wound on a given core 
for a specific inductance is given by: 

N = Æ (Eq. 1-14) 
V Al 

This is shown in Example 1-5. 
The Q of the inductor cannot be calculated with 

the information given in Fig. 1-25. If w’e look at the 
Xp/N2, Rp/N2 vs. Frequency curves given for the 
BBR-7403, however, we can make a calculated guess. 
At low frequencies ( 100 kHz), the Q of the coil would 
be approximately 54, where, 

= <Eq.l-ie> 
^p/ 

_RP 

Xp 

As the frequency increases, resistance Rp decreases 
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EXAMPLE 1-6 
Using the data given in Fig. 1-25, design a toroidal in¬ 

ductor with an inductance of 50 /zH. What is the largest 
AWG wire that we could possibly use while still maintain¬ 
ing a single-layer winding? What is the inductor’s Q at 
100 MHz? 

Solution 

There are numerous possibilities in this particular design 
since no constraints were placed on us. Fig. 1-25 is a data 
sheet for the Indiana General 7400 Series of ferrite toroidal 
cores. This type of core would normally be used in broad¬ 
band or low-Q transformer applications rather than in 
narrow-band tuned circuits. This exercise will reveal why. 

The mechanical specifications for this series of cores in¬ 
dicate a fairly typical size for toroids used in small-signal 
rf circuit design. The largest core for this series is just 
under a quarter of an inch in diameter. Since no size con¬ 
straints were placed on us in the problem statement, we 
will use the BBR-7403 which has an outside diameter of 
0.0230 inch. This will allow us to use a larger diameter wire 
to wind the inductor. 

The published value for Al for the given core is 495 
nH/turn2. Using Equation 1-14, the number of turns re¬ 
quired for this core is: 

750,000 nH 
“ V495 nH/tum2 

= 10 turns 

Note that the inductance of 50 /zH was replaced with its 
equivalent of 50,000 nH. The next step is to determine the 
largest diameter wire that can be used to wind the trans¬ 
former while still maintaining a single-layer winding. In 
some cases, the data supplied by the manufacturer will 
include this type of winding information. Thus, in those 
cases, the designer need only look in a table to determine 
the maximum wire size that can be used. In our case, this 
information was not given, so a simple calculation must be 
made. Fig. 1-27 illustrates the geometry of the problem. 
It is obvious from the diagram that the inner radius ( n ) of 

Fig. 1-27. Toroid coil winding geometry. 

the toroid is the limiting factor in determining the maxi¬ 
mum number of turns for a given wire diameter. The exact 
maximum diameter wire for a given number of turns can 
be found by: 

where, 
d = the diameter of the wire in inches, 
n = the inner radius of the core in inches, 
N = the number of turns. 

For this example, we obtain the value of r» from Fig. 1-25 
(d3 = 0.120 inch). 

d- 10+ w 
= 28.69 X 10~3 inches 
= 28.69 mils 

As a practical rule of thumb, however, taking into ac¬ 
count the insulation thickness variation among manufac¬ 
turers, it is best to add a "fudge factor” and take 90% 
of the calculated value, or 25.82 mils. Thus, the largest 
diameter wire used would be the next size below 25.82 
mils, which is AWG No. 22 wire. 

EXAMPLE 1-7 
Using the information provided in the data sheet of Fig. 

1-26, design a high-Q (Q > 80), 300 nH, toroidal inductor 
for use at 100 MHz. Due to pc board space available, the 
toroid may not be any larger than 0.3 inch in diameter. 

Solution 

Fig. 1-26 is an excerpt from an Amidon Associates iron-
powder toroidal-core data sheet. The recommended oper¬ 
ating frequencies for various materials are shown in the 
Iron-Powder Material vs. Frequency Range graph. Either 
material No. 12 or material No. 10 seems to be well suited 
for operation at 100 MHz. Elsewhere on the data sheet, ma¬ 
terial No. 12 is listed as IRN-8. (IRN-8 is described in 
Table 1-3.) Material No. 10 is not described, so choose 
material No. 12. 

Then, under a heading of Iron-Powder Toroidal Cores, 
the data sheet lists the physical dimensions of the toroids 
along with the value of At for each. Note, however, that 
this particular company chooses to specify At in /zH/100 
turns rather than /zH/100 turns2. The conversion factor 
between their value of Al and Al in nH/tum2 is to divide 
their value of Al by 10. Thus, the T-80-12 core with an Al 
of 22 /zH/100 turns is equal to 2.2 nH/turn2. 

Next, the data sheet lists a set of Q-curves for the cores 
listed in the preceding charts. Note that all of the curves 
shown indicate Qs that are greater than 80 at 100 MHz. 

Choose the largest core available that will fit in the 
allotted pc board area. The core you should have chosen 
is the number T-25-12, with an outer diameter of 0.255 
inch. 

Al = 12 aH/100 t 
= 1.2 nH/tum2

Therefore, using Equation 1-14, the number of turns re¬ 
quired is 

Finally, the chart of Number of Turns vs. Wire Size and 
Core Size on the data sheet clearly indicates that, for a 
T-25 size core, the largest size wire we can use to wind 
this particular toroid is No. 28 AWG wire. 
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while reactance Xp increases. At about 3 MHz, Xp 

equals Rp and the Q becomes unity. The Q then falls 
below unity until about 100 MHz where resistance Rp 

begins to increase dramatically and causes the Q to 
again pass through unity. Thus, due to losses in the 
core itself, the Q of the coil at 100 MHz is probably 
very close to 1. Since the Q is so low, this coil would 
not be a very good choice for use in a narrow-band 
tuned circuit. See Example 1-7. 

PRACTICAL WINDING HINTS 

Fig. 1-28 depicts the correct method for winding 
a toroid. Using the technique of Fig. 1-28A, the inter¬ 
winding capacitance is minimized, a good portion of 
the available winding area is utilized, and the resonant 
frequency of the inductor is increased, thus extending 
the useful frequency range of the device. Note that 
by using the methods shown in Figs. 1-28B and 1-28C, 
both lead capacitance and interwinding capacitance 
will affect the toroid. 

( B ) Incorrect. 

(C) Incorrect. 

Fig. 1-28. Practical winding hints. 



RESONANT CIRCUITS 

In this chapter, we will explore the parallel resonant 
circuit and its characteristics at radio frequencies. We 
will examine the concept of loaded-Q and how it re¬ 
lates to source and load impedances. We will also see 
the effects of component losses and how they affect 
circuit operation. Finally, we will investigate some 
methods of coupling resonant circuits to increase their 
selectivity. 

SOME DEFINITIONS 

The resonant circuit is certainly nothing new in rf 
circuitry. It is used in practically every transmitter, 
receiver, or piece of test equipment in existence, to 
selectively pass a certain frequency or group of fre¬ 
quencies from a source to a load while attenuating all 
other frequencies outside of this passband. The perfect 
resonant-circuit passband would appear as shown in 
Fig. 2-1. Here we have a perfect rectangular-shaped 
passband with infinite attenuation above and below 
the frequency band of interest, while allowing the 
desired signal to pass undisturbed. The realization of 
this filter is, of course, impossible due to the physical 
characteristics of the components that make up a 
filter. As we learned in Chapter 1, there is no perfect 
component and, thus, there can be no perfect filter. If 
we understand the mechanics of resonant circuits, 
however, we can certainly tailor an imperfect circuit 
to suit our needs just perfectly. 

Fig. 2-2 is a diagram of what a practical filter re-

Passband 

Frequency 

sponse might resemble. Appropriate definitions are 
presented below: 

1. Bandwidth—The bandwidth of any resonant circuit 
is most commonly defined as being the difference 
between the upper and lower frequency ( f2 — fi ) 
of the circuit at which its amplitude response is 3 
dB below the passband response. It is often called 
the half-power bandwidth. 

2. Q—The ratio of the center frequency of the res¬ 
onant circuit to its bandwidth is defined as the 
circuit Q. 

Q = ̂ 4fi (Eq. 2-1) 

This Q should not be confused with component Q 
which was defined in Chapter 1. Component Q 
does have an effect on circuit Q, but the reverse is 
not true. Circuit Q is a measure of the selectivity 
of a resonant circuit. The higher its Q, the narrower 
its bandwidth, the higher is the selectivity of a 
resonant circuit. 

3. Shape Factor—The shape factor of a resonant cir¬ 
cuit is typically defined as being the ratio of the 
60-dB bandwidth to the 3-dB bandwidth of the 
resonant circuit. Thus, if the 60-dB bandwidth 
(f< —fs) were 3 MHz and the 3-dB bandwidth 
(fz —fi) were 1.5 MHz, then the shape factor 
would be: 

oc,_ 3 MHz 
1.5 MHz 

= 2 

Fig. 2-1. The perfect filter response. 

31 

Fig. 2-2. A practical filter response. 
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Fig. 2-3. An impossible shape factor. 

Shape factor is simply a degree of measure of the 
steepness of the skirts. The smaller the number, the 
steeper are the response skirts. Notice that our per¬ 
fect filter in Fig. 2-1 has a shape factor of 1, which 
is the ultimate. The passband for a filter with a 
shape factor smaller than 1 would have to look 
similar to the one shown in Fig. 2-3. Obviously, this 
is a physical impossibility. 

4. Ultimate Attenuation—Ultimate attenuation, as the 
name implies, is the final minimum attenuation that 
the resonant circuit presents outside of the specified 
passband. A perfect resonant circuit would pro¬ 
vide infinite attenuation outside of its passband. 
However, due to component imperfections, infinite 
attenuation is infinitely impossible to get. Keep in 
mind also, that if the circuit presents response peaks 
outside of the passband, as shown in Fig. 2-2, then 
this, of course, detracts from the ultimate attenua¬ 
tion specification of that resonant circuit. 

5. Insertion Loss—Whenever a component or group 
of components is inserted between a generator and 
its load, some of the signal from the generator is 
absorbed in those components due to their inherent 
resistive losses. Thus, not as much of the transmitted 
signal is transferred to the load as when the load 
is connected directly to the generator. (I am as¬ 
suming here that no impedance matching function 
is being performed.) The attenuation that results 
is called insertion loss and it is a very important 
characteristic of resonant circuits. It is usually ex¬ 
pressed in decibels (dB). 

6. Ripple—Ripple is a measure of the flatness of the 
passband of a resonant circuit and it is also ex¬ 
pressed in decibels. Physically, it is measured in the 
response characteristics as the difference between 
the maximum attenuation in the passhand and the 
minimum attenuation in the passband. In Chapter 
3, we will actually design filters for a specific pass¬ 
band ripple. 

RESONANCE (LOSSLESS COMPONENTS) 

In Chapter 1, the concept of resonance was briefly 
mentioned when we studied the parasitics associated 
with individual component elements. We will now ex¬ 
amine the subject of resonance in detail. We will 

determine what causes resonance to occur and how 
we can use it to our best advantage. 

The voltage division rule (illustrated in Fig. 2-4) 
states that whenever a shunt element of impedance 
Z,, is placed across the output of a generator with an 
internal resistance Rs, the maximum output voltage 
available from this circuit is 

7 
Vout = w-$— (Vln) (Eq. 2-2) 

r<R i Zp 

Thus, Vout will always be less than V)n. If Zp is a fre¬ 
quency-dependent impedance, such as a capacitive or 
inductive reactance, then Vout will also be frequency 
dependent and the ratio of V„„t to Vtn, which is the 
gain (or, in this case, loss) of the circuit, will also be 
frequency dependent. Let’s take, for example, a 25-pF 
capacitor as the shunt element (Fig. 2-5A) and plot the 
function of Vo„t/Vln in dB versus frequency, where we 
have: 

where, 

= the loss in dB, 
»In 
Rs = the source resistance, 
Xc = the reactance of the capacitor. 

out 
To High 

Impedance 

Load 

V - Zp 

°“' Rs + Zp 
<Vin > 

Fig. 2-4. Voltage division rule. 

Vout 

To High 

Impedance 

Load 

Xc - 3 25 pF 

( B ) Response curve. 

Fig. 2-5. Frequency response of a simple 
RC low-pass filter. 
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and, where, 

X = 1 
Xc joC • 

The plot of this equation is shown in the graph of 
Fig. 2-5B Notice that the loss of this circuit increases 
as the frequency increases; thus, we have formed a 
simple Icnc-pass filter. Notice, also, that the attenuation 
slope eventually settles down to the rate of 6 dB 
for every octave (doubling) increase in frequency. 
This is due to the single reactive element in the circuit. 
As we will see later, this attenuation slope will in¬ 
crease an additional 6 dB for each significant reactive 
element that we insert into the circuit. 

If we now delete the capacitor from the circuit and 
insert a 0.05-/iH inductor in its place, we obtain the 
circuit of Fig. 2-6A and the plot of Fig. 2-6B, where 
we are plotting: 

= 20 los” KTxT ‘E* 24 ’ 

where, 

= the loss in dB, 
»In 
Rs = the source resistance, 
XL = the reactance of the coil. 

and, where, 
XL = jwL. 

Here, we have formed a simple high-pass filter with a 
final attenuation slope of 6 dB per octave. 
Thus, through simple calculations involving the 

basic voltage division formula (Equation 2-2), we 
were able to plot the frequency response of two sep¬ 
arate and opposite reactive components. But what 
happens if we place both the inductor and capacitor 

out 
_To High 

Impedance 
Load 

0.05 /xH 

( A ) Simple circuit. 
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^TOTAL 

Fig. 2-7 Resonant circuit with two reactive components. 

Fig. 2-8. Frequency response of an LC resonant circuit. 

across the generator simultaneously? Actually, this 
case is no more difficult to analyze than the previous 
two circuits. In fact, at any frequency, we can simply 
apply the basic voltage division rule as before. The 
only difference here is that we now have two reactive 
components to deal with instead of one and these com¬ 
ponents are in parallel ( Fig. 2-7 ). If we make the cal¬ 
culation for all frequencies of interest, we will obtain 
the plot shown in Fig. 2-8. The mathematics behind 
this calculation are as follows : 

(V,n) 
n, -f- Atotal 

where, 
v _ XcXl 
XtoU1 “ Xc + XL • 

and, where, 

Xc jœC ’ 
Xl = jwL. 

Therefore, we have: 

tot al J 

j^c +iwL

L 
C 

¿ + iwL

(Eq. 2-5) 

( B ) Response curve. 

Fig. 2-6. Simple high-pass filter. 
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Multiply the numerator and the denominator by jwC. 
( Remember that j2 = — 1. ) 

y 
1+ (^(jotC) 

jwL 
“ 1 - w2LC 

Thus, substituting and transposing in Equation 2-5, 
we have: 

jœL 
Vout _ 1 - <ü2LC 

Multiplying the numerator and the denominator 
through by 1 — w2LC yields: 

Vout _ _ j^L_ 
Vin (R» — <Ü2RbLC) + jœL 

Thus, the loss at any frequency may be calculated from 
the above equation or, if needed, in dB. 

^ = 201og10 
’In 

jwL 
R, — <w2RgLC + j<oL 

where | | represents the magnitude of the quantity 
within the brackets. 

Notice, in Fig. 2-8, that as we near the resonant fre¬ 
quency of the tuned circuit, the slope of the resonance 
curve increases to 12 dB/octave. This is due to the 
fact that we now have two significant reactances 
present and each one is changing at the rate of 6 dB/ 
octave and sloping in opposite directions. As we move 
away from resonance in either direction, however, the 
curve again settles to a 6-dB/octave slope because, 
again, only one reactance becomes significant. The 
other reactance presents a very high impedance to the 
circuit at these frequencies and the circuit behaves as 
if the reactance were no longer there. 

LOADED Q 

The Q of a resonant circuit was defined earlier to be 
equal to the ratio of the center frequency of the cir¬ 
cuit to its 3-dB bandwidth (Equation 2-1). This “cir¬ 
cuit Q,” as it was called, is often given the label 
loaded Ç because it describes the passband character¬ 
istics of the resonant circuit under actual in-circuit or 
loaded conditions. The loaded Q of a resonant circuit 
is dependent upon three main factors. (These are il¬ 
lustrated in Fig. 2-9.) 

1. The source resistance (Ra). 
2. The load resistance (RL). 
3. The component Q as defined in Chapter 1. 

Effect of R„ and Rl on the Loaded Q 
Let’s discuss briefly the role that source and load 

impedances play in determining the loaded Q of a 
resonant circuit. This role is probably best illustrated 

Fig. 2-9. Circuit for loaded-Q calculations. 

through an example. In Fig. 2-8, we plotted a resonance 
curve for a circuit consisting of a 50-ohm source, a 
0.05-/zH lossless inductor, and a 25-pF lossless capaci¬ 
tor. The loaded Q of this circuit, as defined by Equa¬ 
tion 2-1 and determined from the graph, is approxi¬ 
mately 1.1. Obviously, this is not a very narrow-band 
or high-Q design. But now, let’s replace the 50-ohm 
source with a 1000-ohm source and again plot our 
results using the equation derived in Fig. 2-7 ( Equa¬ 
tion 2-5). This new plot is shown in Fig. 2-10. (The 
resonance curve for the 50-ohm source circuit is shown 
with dashed lines for comparison purposes.) Notice 
that the Q, or selectivity of the resonant circuit, has 
been increased dramatically to about 22. Thus, by rais¬ 
ing the source impedance, we have increased the Q of 
our resonant circuit. 

Neither of these plots addresses the effect of a load 
impedance on the resonance curve. If an external load 
of some sort were attached to the resonant circuit, 
as shown in Fig. 2-11A, the effect would be to broaden 
or “de-Q” the response curve to a degree that depends 
on the value of the load resistance. The equivalent 
circuit, for resonance calculations, is shown in Fig. 
2-11B. The resonant circuit sees an equivalent resis¬ 
tance of Rs in parallel with RL as its true load. This 
total external resistance is, by definition, smaller in 
value than either R„ or RL, and the loaded Q must de¬ 
crease. If we put this observation in equation form, it 
becomes ( assuming lossless components ) : 

Fig. 2-10. The effect of Rs and Ri. on loaded Q. 
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(A) Resonant circuit with an external load. 

( B ) Equivalent circuit for Q calculations. 

Fig. 2-11. The equivalent parallel impedance across a 
resonant circuit. 

p 
Q = V (Eq. 2-6) 

where, 
R,, = the equivalent parallel resistance of R„ and RL, 
Xp = either the inductive or capacitive reactance. 

( They are equal at resonance. ) 

Equation 2-6 illustrates that a decrease in Rp will 
decrease the Q of the resonant circuit and an increase 
in Rp will increase the circuit Q, and it also illustrates 
another very important point. The same effect can be 
obtained by keeping Rp constant and varying Xp. Thus, 
for a given source and load impedance, the optimum 
Q of a resonant circuit is obtained when the inductor 
is a small value and the capacitor is a large value. 
Therefore, in either case, Xp is decreased. This effect is 
shown using the circuits in Fig. 2-12 and the character¬ 
istics curves in Fig. 2-13. 

The circuit designer, therefore, has two approaches 
he can follow in designing a resonant circuit with a 
particular Q (Example 2-1). 

1. He can select an optimum value of source and load 
impedance. 

2. He can select component values of L and C which 
optimize Q. 

Often there is no real choice in the matter because, 
in many instances, the source and load are defined and 
we have no control over them. When this occurs, Xp

( A ) Large inductor, 
small capacitor. 

(B) Small inductor, 
large capacitor. 

Fig. 2-12. Effect of Q vs. XP at 142.35 MHz. 

Fig. 2-13. Plot of loaded-Q curves for circuits in Fig. 2-12. 

is automatically defined for a given Q and we usually 
end up with component values that are impractical at 
best Later in this chapter, we will study some methods 
of eliminating this problem. 

EXAMPLE 2-1 
Design a resonant circuit to operate between a source 

resistance of 150 ohms and a load resistance of 1000 ohms. 
The loaded Q must be equal to 20 at the resonant frequency 
of 50 MHz. Assume lossless components and no impedance 
matching. 

Solution 

The effective parallel resistance across the resonant cir¬ 
cuit is 150 ohms in parallel with 1000 ohms, or 

R,. = 130 ohms 

Thus, using Equation 2-6: 

V _ Bp 
Ap - Q 

_ 130 
- 20 
= 6.5 ohms 

and, 

Xp^L^-L 
<oC 

Therefore, L = 20.7 nH, and C = 489.7 pF. 

The Effect of Component Q on Loaded Q 
Thus far in this chapter, we have assumed that the 

components used in the resonant circuits are lossless 
and, thus, produce no degradation in loaded Q. In 
reality, however, such is not the case and the individual 
component Q’s must be taken into account. In a lossless 
resonant circuit, the impedance seen across the cir¬ 
cuit’s terminals at resonance is infinite. In a practical 
circuit, however, due to component losses, there exists 
some finite equivalent parallel resistance. This is il¬ 
lustrated in Fig. 2-14. The resistance (Rp) and its 
associated shunt reactance (Xp) can be found from 
the following transformation equations: 

Rp= (Q2 + 1)R, (Eq. 2-7) 

where, 
Rp = the equivalent parallel resistance, 
R„ = the series resistance of the component. 
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Fig. 2-14. A series-to-parallel transformation. 

(Eq. 2-8) Y = —’ 

" Qp 

Q = Qs which equals Qp which equals the Q of the 
component. 

and, 

If the Q of the component is greater than 10, then, 

RP-Q2RS (Eq. 2-9) 

and, 
XP~X. (Eq. 2-10) 

These transformations are valid at only one frequency 
because they involve the component reactance which is 
frequency dependent ( Example 2-2 ). 

Example 2-2 vividly illustrates the potential drastic 
effects that can occur if poor-quality (low Q) com¬ 
ponents are used in highly selective resonant circuit 
designs. The net result of this action is that we effec¬ 
tively place a low-value shunt resistor directly across 
the circuit. As was shown earlier, any low-value resis¬ 
tance that shunts a resonant circuit drastically reduces 
its loaded Q and, thus, increases its bandwidth. 

In most cases, we only need to involve the Q of the 
inductor in loaded-Q calculations. The Q of most 
capacitors is quite high over their useful frequency 
range, and the equivalent shunt resistance they pre¬ 
sent to the circuit is also quite high and can usually 
be neglected. Care must be taken, however, to ensure 
that this is indeed the case. 

INSERTION LOSS 

Insertion loss (defined earlier in this chapter) is 
another direct effect of component Q. If inductors and 
capacitors were perfect and contained no internal re¬ 
sistive losses, then insertion loss for LC resonant cir¬ 
cuits and filters would not exist. This is, of course, not 
the case and, as it turns out, insertion loss is a very 
critical parameter in the specification of any resonant 
circuit. 

Fig. 2-16 illustrates the effect of inserting a resonant 
circuit between a source and its load. In Fig. 2-16A, 
the source is connected directly to the load. Using the 
voltage division rule, we find that: 

50 nH 

55.1 nH 108.7 n 

ion 

( A ) Series circuit. 

Fig. 2-15. Example of a series-to-parallel transformation. 

Solution 

( B ) Equivalent 
parallel circuit. 

EXAMPLE 2-2 
Given a 50-nanohenry coil as shown in Fig. 2-15A, com¬ 

pute its Q at 100 MHz. Then, transform the series circuit 
of Fig. 2-15A into the equivalent parallel inductance and 
resistance circuit of Fig. 2-15B. 

= 3.14 

Then, since the Q is less than 10, use Equation 2-7 to find 
R,.. 

Rp = (Q2 + 1)R, 

= [(3.14)2+1] 10 
= 108.7 ohms 

Next, we find XP using Equation 2-8: 

Y _ Bp 
Qp 

108.7 
” 3.14 
= 34.62 

Thus, the parallel inductance becomes: 

Lp =— w 
34.62 

“ 2ir(100 X 10«) 
= 55.1 nH 

These values are shown in the equivalent circuit of Fig. 
2-15B. 

The Q of this coil at 100 MHz is, from Chapter 1, 

2tt( 100 X 10«)(50 X 10~B) 
- 10 

Fig. 2-16B shows that a resonant circuit has been 
placed between the source and the load. Then, Fig. 
2-16C illustrates the equivalent circuit at resonance. 
Notice that the use of an inductor with a Q of 10 at 
the resonant frequency creates an effective shunt re¬ 
sistance of 4500 ohms at resonance. This resistance, 
combined with RL, produces an 0.9-dB voltage loss at 
V, when compared to the equivalent point in the cir¬ 
cuit of Fig. 2-16A. 

An insertion loss of 0.9 dB doesn’t sound like much, 
but it can add up very quickly if we cascade several 
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(A) Source connected directly to the load. 

25 pF. 
Q = co 

(B) Insertion of a resonant circuit. 

Rs 
-oVj = 0.45 Vin 

(0.9 dB loss 
compared to 

1000 ÍI circuit A) 

( C ) Equivalent circuit at resonance. 

Fig. 2-16. The effect of component Q on insertion loss. 

resonant circuits. We will see some very good examples 
of this later in Chapter 3. For now, examine the prob¬ 
lem given in Example 2-3. 

IMPEDANCE TRANSFORMATION 

As we have seen in earlier sections of this chapter, 
low values of source and load impedance tend to load 
a given resonant circuit down and, thus, tend to de¬ 
crease its loaded Q and increase its bandwidth. This 
makes it very difficult to design a simple LC high-Q 
resonant circuit for use between two very low values of 
source and load resistance. In fact, even if we were 
able to come up with a design on paper, it most likely 
would be impossible to build due to the extremely 
small (or negative) inductor values that would be 
required. 

One method of getting around this potential design 
problem is to make use of one of the impedance trans¬ 
forming circuits shown in Fig. 2-18. These handy cir¬ 
cuits fool the resonant circuit into seeing a source or 
load resistance that is much larger than what is ac¬ 
tually present. For example, an impedance transformer 
could present an impedance (Rs') of 500 ohms to the 
resonant circuit, when in reality there is an impedance 
(Rs) of 50 ohms. Consequently, by utilizing these 
transformers, both the Q of the resonant tank and its 
selectivity can be increased. In many cases, these meth¬ 
ods can make a previously unworkable problem work¬ 
able again, complete with realistic values for the coils 
and capacitors involved. 

The design equations for each of the transformers 

are presented in the following equations and are useful 
for designs that need loaded Q’s that are greater than 
10 (Example 2-4). For the tapped-C transformer (Fig. 
2-18A), we use the formula: 

/ c,\2 

R9' = RB l + ^-l (Eq. 2-13) 
\ '-•2/ 

The equivalent capacitance (CT) that will resonate 
with the inductor is equal to Ci in series with C2, or: 

C’ = <^ (Eq.2-i4) 

For the tapped-L network of Fig. 2-18B, we use the 
following formula: 

/ n  \ 2 

R,' = R.(-) (Eq. 2-15) 
\ni / 

As an exercise, you might want to rework Example 
2-4 without the aid of an impedance transformer. You 
will find that the inductor value which results is much 
more difficult to obtain and control physically because 
it is so small. 

COUPLING OF RESONANT CIRCUITS 

In many applications where steep passband skirts 
and small shape factors are needed, a single resonant 
circuit might not be sufficient. In situations such as 
this, individual resonant circuits are often coupled to¬ 
gether to produce more attenuation at certain fre¬ 
quencies than would normally be available with a 
single resonator. The coupling mechanism that is used 
is generally chosen specifically for each application as 
each type of coupling has its own peculiar character¬ 
istics that must be dealt with. The most common forms 
of coupling are: capacitive, inductive, transformer 
(mutual), and active (transistor). 

Capacitive Coupling 
Capacitive coupling is probably the most frequently 

used method of linking two or more resonant circuits. 
This is true mainly due to the simplicity of the ar¬ 
rangement but another reason is that it is relatively 
inexpensive. Fig. 2-19 indicates the circuit arrange¬ 
ment for a two-resonator capacitively coupled filter. 

The value of the capacitor that is used to couple 
each resonator cannot be just chosen at random, as 
Fig. 2-20 indicates. If capacitor C12 of Fig. 2-19 is too 
large, too much coupling occurs and the frequency re¬ 
sponse broadens drastically with two response peaks 
in the filter’s passband. If capacitor C 12 is too small, 
not enough signal energy is passed from one resonant 
circuit to the other and the insertion loss can increase 
to an unacceptable level. The compromise solution to 
these two extremes is the point of critical coupling, 
where we obtain a reasonable bandwidth and the low¬ 
est possible insertion loss and, consequently, a maxi¬ 
mum transfer of signal power. There are instances in 
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EXAMPLE 2-3 
Design a simple parallel resonant circuit to provide a 

3-dB bandwidth of 10 MHz at a center frequency of 100 
MHz. The source and load impedances are each 1000 ohms. 
Assume the capacitor to be lossless. The Q of the inductor 
( that is available to us ) is 85. What is the insertion loss of 
the network? 

Solution 

From Equation 2-1, the required loaded Q of the reso¬ 
nant circuit is: 

0=^ 
_ 100 MHz 
- 10 MHz 

= 10 
To find the inductor and capacitor values needed to com¬ 
plete the design, it is necessary that we know the equivalent 
shunt resistance and reactance of the components at reso¬ 
nance. Thus, from Equation 2-8: 

y _Bp 
Äp “Qp 

where, 
Xp = the reactance of the inductor and capacitor at reso¬ 

nance, 
Rp = the equivalent shunt resistance of the inductor, 
Qp = the Q of the inductor. 

Thus, 
Rp=(85)Xp (Eq. 2-11) 

The loaded Q of the resonant circuit is equal to: 

where, 
Rtot.i = the shunt resistance, which equals RP || R. || Rl. 

Therefore, we have: 
Rp(500) 

10= Rp±^ (Eq. 2-12) Xp 

We now have two equations and two unknowns (Xp, RP). 
If we substitute Equation 2-11 into Equation 2-12 and 
solve for XP, we get: 

Xp = 44.1 ohms 

Plugging this value back into Equation 2-11 gives: 

Rp = 3.75K 

Thus, our component values must be 

L = — = 70 nH 
CD 

C = -^ = 36 pF 
<oXp 

Fig. 2-17. Resonant circuit design for Example 2-3. 

The final circuit is shown in Fig. 2-17. 
The insertion-loss calculation, at center frequency, is now 

very straightforward and can be found by applying the 
voltage division rule as follows. Resistance Rp in parallel 
with resistance Ri, is equal to 789.5 ohms. The voltage at 
Vl is, therefore, 

VL- 789.5-. . 
L- 789.5+ 1000 k ' 

= .44 V. 

The voltage at Vl, without the resonant circuit in place, is 
equal to 0.5 V, due to the 1000-ohm load. Thus, we have: 

0.44 V. 
Insertion Loss = 20 log,» ¿ g y " 

= 1.1 dB 

(A) Tapped-C circuit. 

(C) Equivalent circuit. (D) Final circuit. 

Fig. 2-18. Two methods used to perform an 
impedance transformation. 

cannot provide. But these applications are generally 
left to the multiple resonator filter. The multiple res¬ 
onator filter is covered in Chapter 3. In this section, 
we will only concern ourselves with critical coupling 
as it pertains to resonant circuit design. 

The loaded Q of a critically coupled two-resonator 
circuit is approximately equal to 0.707 times the loaded 
Q of one of its resonators. Therefore, the 3-dB band¬ 
width of a two-resonator circuit is actually wider than 
that of one of its resonators. This might seem contrary 
to what we have studied so far, but remember, the 

which overcoupling or undercoupling might serve a 
useful purpose in a design, such as in tailoring a spe¬ 
cific frequency response that a critically coupled filter Fig. 2-19. Capacitive coupling. 
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EXAMPLE 2-4 
Design a resonant circuit with a loaded Q of 20 at a cen¬ 

ter frequency of 100 MHz that will operate between a 
source resistance of 50 ohms and a load resistance of 2000 
ohms. Use the tapped-C approach and assume that induc¬ 
tor Q is 100 at 100 MHz. 

Solution 

We will use the tapped-C transformer to step the source 
resistance up to 2000 ohms to match the load resistance for 
optimum power transfer. (Impedance matching will be 
covered in detail in Chapter 4. ) Thus, 

R/ = 2000 ohms 

and from Equation 2-13, we have: 

or, 
0 = 5.30, (Eq. 2-16) 

Proceeding as we did in Example 2-3, we know that for the 
inductor: 

n 
Q„ = 100 

Ar 
Therefore, 

Rp=100XP (Eq. 2-17) 

We also know that the loaded Q of the resonant circuit is 
equal to: 

Rlotal 
V — V 

where, 
R,the total equivalent shunt resistance, 

= R.' Il Rp II Rl 
= 1000 H Rp 

and, where we have taken R.' and Rl to each be 2000 
ohms, in parallel. Hence, the loaded Q is 

_ lOOORp 
Q - ( 1000 + Rp)Xp (Eq. 2-18) 

Substituting Equation 2-17 (and the value of the desired 
loaded Q) into Equation 2-18, and solving for Xp, yields: 

Xp = 40 ohms 

And, substituting this result back into Equation 2-17 gives 

Rp = 4000 ohms 

and, 

L = X> 
<u 

= 63.6 nH 

Cr=^-ÆpCt) 
= 39.78 pF 

We now know what the total capacitance must be to res¬ 
onate with the inductor. We also know from Equation 2-16 
that Ci is 5.3 times larger than O. Thus, if we substitute 
Equation 2-16 into Equation 2-14, and solve the equations 
simultaneously, we get: 

C. = 47.3 pF 
O = 250.6 pF 

The final circuit is shown in Fig. 2-18D. 

Fig. 2-20. The effects of various values of capacitive 
coupling on passband response. 

main purpose of the two-resonator passively coupled 
filter is not to provide a narrower 3-dB bandwidth, 
but to increase the steepness of the stopband skirts 
and, thus, to reach an ultimate attenuation much faster 
than a single resonator could. This characteristic is 
shown in Fig. 2-21. Notice that the shape factor has 
decreased for the two-resonator design. Perhaps one 
way to get an intuitive feel for how this occurs is to 
consider that each resonator is itself a load for the 
other resonator, and each decreases the loaded Q of 
the other. But as we move away from the passband 
and into the stopband, the response tends to fall much 

more quickly due to the combined response of each 
resonator. 

The value of the capacitor used to couple two identi¬ 
cal resonant circuits is given by 

C 
(Eq. 2-19) 

where, 
Ci2 = the coupling capacitance. 
C = the resonant circuit capacitance, 
Q = the loaded Q of a single resonator. 
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(A) Below resonance. (B) Above resonance. 

Fig. 2-22. Equivalent circuit of capacitively coupled 
resonant circuits. 

One other important characteristic of a capacitively 
coupled resonant circuit can be seen if we take another 
look at Fig. 2-20. Notice that even for the critically 
coupled case, the response curve is not symmetric 
around the center frequency but is skewed somewhat. 
The lower frequency portion of the response plum¬ 
mets down at the rate of 18 dB per octave while the up¬ 
per slope decreases at only 6 dB per octave. This can 
be explained if we take a look at the equivalent circuit 
both above and below resonance. Below resonance, 
we have the circuit of Fig. 2-22A. The reactance of the 
two resonant-circuit capacitors (Fig. 2-19) has in¬ 
creased, and the reactance of the two inductors has 
decreased to the point that only the inductor is seen 
as a shunt element and the capacitors can be ignored. 
This leaves three reactive components and each con¬ 
tributes 6 dB per octave to the response. 

On the high side of resonance, the equivalent cir¬ 
cuit approaches the configuration of Fig. 2-22B. Here 
the inductive reactance has increased above the ca¬ 
pacitive reactance to the point where the inductive 
reactance can be ignored as a shunt element. We now 
have an arrangement of three capacitors that effectively 
looks like a single shunt capacitor and yields a slope 
of 6 dB per octave. 

Inductive Coupling 
Two types of inductively coupled resonant circuits 

are shown in Fig. 2-23. One type (Fig. 2-23A) uses 

( A ) Series inductor. 

( A ) Inductive coupling. 

(B) Transformer coupling. 

Fig. 2-24. The effects of various values of inductive 
coupling on passband response. 

a series inductor or coil to transfer energy from the first 
resonator to the next, and the other type (Fig. 2-23B) 
uses transformer coupling for the same purpose. In 
either case, the frequency response curves will resem¬ 
ble those of Fig. 2-24 depending on the amount of 
coupling. If we compare Fig. 2-24A with Fig. 2-20, 
we see that the two are actually mirror images of 
each other. The response of the inductively coupled 
resonator is skewed toward the higher end of the 
frequency spectrum, while the capacitively coupled re¬ 
sponse is skewed toward the low frequency side. An 
examination of the equivalent circuit reveals why. 
Fig. 2-25A indicates that below resonance, the capaci-

( A ) Below resonance. 

(B) Transformer. 

Fig. 2-23. Inductive coupling. 

( B ) Above resonance. 

Fig. 2-25. Equivalent circuit of inductively coupled 
resonant circuits. 
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tors drop out of the equivalent circuit very quickly 
because their reactance becomes much greater than 
the shunt inductive reactance. This leaves an arrange¬ 
ment of three inductors which can be thought of as a 
single tapped inductor and which produces a 6-dB 
per octave rolloff. Above resonance, the shunt inductors 
can be ignored for the same reasons, and you have the 
circuit of Fig. 2-25B. We now have three effective ele¬ 
ments in the equivalent circuit with each contributing 
6 dB per octave to the response for a combined 
slope of 18 dB per octave. 

The mirror-image characteristic of inductively and 
capacitively coupled resonant circuits is a very useful 
concept. This is especially true in applications that 
require symmetrical response curves. For example, 
suppose that a capacitively coupled design exhibited 
too much skew for your application. One very simple 
way to correct the problem would be to add a “top-L” 
coupled section to the existing network. The top-L 
coupling would attempt to skew the response in the 
opposite direction and would, therefore, tend to coun¬ 
teract any skew caused by the capacitive coupling. 
The net result is a more symmetric response shape. 

The value of the inductor used to couple two identi¬ 
cal resonant circuits can be found by 

L12 = QL (Eq. 2-20) 

where, 
Lu = the inductance of the coupling inductor, 
Q = the loaded Q of a single resonator, 
L = the resonant circuit inductance. 

A little manipulation of Equations 2-19 and 2-20 
will reveal a very interesting point. The reactance of 
C|2 calculated with Equation 2-19 will equal the 
reactance of Lia calculated with Equation 2-20 for the 
same operating Q and resonant frequency. The de¬ 
signer now has the option of changing any “top-C” 
coupled resonator to a top-L design simply by re¬ 
placing the coupling capacitor with an inductor of 
equal reactance at the resonant frequency. When this 
is done, the degree of coupling, Q, and resonant fre¬ 
quency of the design will remain unchanged while the 
slope of the stopband skirts will flip-flop from one 
side to the other. For obvious reasons, top-L coupled 
designs work best in applications where the primary 
objective is a certain ultimate attenuation that must 
be met above the passband. Likewise, top-C designs 
are best for meeting ultimate attenuation specifications 
below the passband. 

Transformer coupling does not lend itself well to 
an exact design procedure because there are so many 
factors which influence the degree of coupling. The 
geometry of the coils, the spacing between them, the 
core materials used, and the shielding, all have a pro¬ 
nounced effect on the degree of coupling attained in 
any design. 

Probably the best way to design your own trans¬ 
former is to use the old trial-and-error method. But do 

it in an orderly fashion and be consistent. It’s a very 
sad day when one forgets how he got from point A 
to point B, especially if point B is an improvement in 
the design. Remember: 

1. Decreasing the spacing between the primary and 
secondary increases the coupling. 

2. Increasing the permeability of the magnetic path 
increases the coupling. 

3. Shielding a transformer decreases its loaded Q and 
has the effect of increasing the coupling. 

Begin the design by setting the loaded Q of each 
resonator to about twice what will be needed in the 
actual design. Then, slowly decrease the spacing be¬ 
tween the primary and secondary until the response 
broadens to the loaded Q that is actually needed. If 
that response can’t be met, try changing the geometry 
of the windings or the permeability of the magnetic 
path. Then, vary the spacing again. Use this as an 
iterative process to zero-in on the response that is 
needed. Granted, this is not an exact process, but it 
works and, if documented, can be reproduced. 

There are literally thousands of commercially avail¬ 
able transformers on the market that just might suit 
your needs perfectly. So before the trial-and-error 
method is put into practice, try a little research—it just 
might save a lot of time and money. 

Active Coupling 
It is possible to achieve very narrow 3-dB band¬ 

widths in cascaded resonant circuits through the use 
of active coupling. Active coupling, for this purpose, 
is defined as being either a transistor or vacuum tube 
which, at least theoretically, allows signal flow in only 
one direction (Fig. 2-26). If each of the tuned circuits 
is the same and if each has the same loaded Q, the 
total loaded Q of the cascaded circuit is approximately 
equal to 

Qtotai = y/21/“ — 1 ( Eq. 2*21 ) 

where, 
Qtot»i = the total Q of the cascaded circuit, 
Q = the Q of each individual resonant circuit, 
n = the number of resonant circuits. 

The first step in any design procedure must be to 

B + 

Fig. 2-26. Active coupling. 
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relate the required Qtotai of the network back to the 
individual loaded Q of each resonator. This is done by 
rearranging Equation 2-21 to solve for Q. As an ex¬ 
ample, with n = 4 resonators, and given that Qtotai of 
the cascaded circuit must be 50, Equation 2-21 tells 
us that the Q of the individual resonator need only be 
about 22—a fairly simple and realizable design task. 

Active coupling is obviously more expensive than 
passive coupling due to the added cost of each active 
device. But, in some applications, there is no real 

trade-off involved because passive coupling just might 
not yield the required loaded Q. Example 2-5 illustrates 
some of the factors you must deal with. 

This chapter was meant to provide an insight into 
how resonant circuits actually perform their function 
as well as to provide you with the capability for de¬ 
signing one to operate at a certain value of loaded Q. 
In Chapter 3, we will carry our study one step further 
to include low-pass, high-pass, and bandpass filters 
of various shapes and sizes. 

EXAMPLE 2-5 
Design a top-L coupled two-resonator tuned circuit to 

meet the following requirements: 

1. Center frequency = 75 MHz 
2. 3-dB bandwidth = 3.75 MHz 
3. Source resistance = 100 ohms 
4. Load resistance = 1000 ohms 

Assume that inductors are available that have an unloaded 
Q of 85 at the frequency of interest. Finally, use a tapped-C 
transformer to present an effective source resistance (R/) 
of 1000 ohms to the filter. 

Solution 

The solution to this design problem is not a very difficult 
one, but it does involve quite a few separate and distinct 
calculations which might tend to make you lose sight of our 
goal. For this reason, we will walk through the solution in 
a very orderly fashion with a complete explanation of each 
calculation. 

Fig. 2-27. Circuit for Example 2-5. 

The circuit we are designing is shown in Fig. 2-27. Let’s 
begin with a few definitions. 

Qtot.i = the loaded Q of the entire circuit 
Qp = the Q of the inductor 
Qb = the loaded Q of each resonator 

From our discussion on coupling and its effects on band¬ 
width, we know that 

- 0.707 

and, 

Q","i = ÏÏ 

75 MHz 
~ 3.75 MHz 

= 20 

SO, 

o 20 
~ 0.707 

= 28.3 

Thus, to provide a total loaded Q of 20, it is necessary that 
the loaded Q of each resonator be 28.3. For the inductor, 

O — — 
Vp - Xp 

= 85 

or, 
Rp = 85 Xp (Eq. 2-22) 

The loaded Q of each resonant circuit is 

„ _ RtoLl 
Qr - Xp 

(Eq. 2-23) 

equivalent shunt resistance for each 
and 

where, 
Rtot.i = the total 

resonator 
= R.'||Rp 
= Rl||Rp 

since both circuits are identical. Remember, we have al¬ 
ready taken into account the loading effect that each reso¬ 
nant circuit has on the other through the factor 0.707, 
which was used at the beginning of the example. Now, we 
have: 

P _ R-'Rp 
'°"" “ R.' + Rp 

Substituting into Equation 2-23: 

o_R/Rp 
MR - (R.' + Rp)XP

and, 
y _ R. Rp 
p~ (r.’ + Rp)Qb 

lOOORp 
- (1000+ Rp)28.3 (Eq. 2-24) 

We can now substitute Equation 2-22 into Equation 2-24 
and solve for XP. 

(1000)(85Xp) 
p_ (1000 + 85Xp)28.3 
= 23.57 ohms 

and, 
Rp = 85 Xp 

= 2003 ohms 

To find the component values 

Li = L¡ = — 

= 50 nH 

Continued on next page 



Resonant Circuits 43 

EXAMPLE 2-5—cont 

and, 

c -_L 
WA, 

= 90 pF 

Now all that remains is to design the tapped-C trans¬ 
former and the coupling inductor. From Equation 2-12: 

and, 
0 = 2.160 (Eq. 2-25) 

We know that the total capacitance that must be used to 
resonate with the inductor is 90 pF and 

C—' = C^; (Eq. 2-26) 

Substituting Equation 2-25 into Equation 2-26 and taking 
Ctot.i to be 90 pF yields: 

Qn „ 2.160s2
90 pF =3460 

and, 
G> = 132 pF 
G = 285 pF 

To solve for the coupling inductance from Equation 2-20: 

Lis = QbL 
= (28.3)(50nH) 
= 1.415 aiH 

The design is now complete. Notice that the tapped-C trans¬ 
former is actually serving a dual purpose. It provides a de 
block between the source and load in addition to its trans¬ 
formation properties. 



FILTER DESIGN 

Filters occur so frequently in the instrumentation 
and communications industries that no book covering 
the field of rf circuit design could be complete without 
at least one chapter devoted to the subject. Indeed, 
entire books have been written on the art of filter de¬ 
sign alone, so this single chapter cannot possibly cover 
all aspects of all types of filters. But it will familiarize 
you with the characteristics of four of the most com¬ 
monly used filters and will enable you to design very 
quickly and easily a filter that will meet, or exceed, 
most of the common filter requirements that you will 
encounter. 
We will cover Butterworth, Chebyshev, and Bes¬ 

sel filters in all of their common configurations: low-
pass, high-pass, bandpass, and bandstop. We will 
learn how to take advantage of the attenuation char¬ 
acteristics unique to each type of filter. Finally, we 
will learn how to design some very powerful filters 
in as little as 5 minutes by merely looking through a 
catalog to choose a design to suit your needs. 

BACKGROUND 

In Chapter 2, the concept of resonance was ex¬ 
plored and we determined the effects that component 
value changes had on resonant circuit operation. You 
should now be somewhat familiar with the methods 
that are used in analyzing passive resonant circuits 
to find quantities, such as loaded Q, insertion loss, and 
bandwidth. You should also be capable of designing 
one- or two-resonator circuits for any loaded Q desired 
( or, at least, determine why you cannot ). Quite a few 
of the filter applications that you will encounter, how¬ 
ever, cannot be satisfied with the simple bandpass 
arrangement given in Chapter 2. There are occasions 
when, instead of passing a certain band of frequencies 
while rejecting frequencies above and below (band¬ 
pass ), we would like to attenuate a small band of fre¬ 
quencies while passing all others. This type of filter 
is called, appropriately enough, a bandstop filter. Still 
other requirements call for a low-pass or high-pass 
response. The characteristic curves for these responses 
are shown in Fig. 3-1. The low-pass filter will allow 
all signals below a certain cutoff frequency to pass 
while attenuating all others. A high-pass filter’s re¬ 
sponse is the mirror-image of the low-pass response 

and attenuates all signals below a certain cutoff fre¬ 
quency while allowing those above cutoff to pass. 
These types of response simply cannot be handled 
very well with the two-resonator bandpass designs of 
Chapter 2. 

In this chapter, we will use the low-pass filter as 
our workhorse, as all other responses will be derived 
from it. So let’s take a quick look at a simple low-pass 
filter and examine its characteristics. Fig. 3-2 is an 
example of a very simple two-pole, or second-order 
low-pass filter. The order of a filter is determined by 
the slope of the attenuation curve it presents in the 
stopband. A second-order filter is one whose rolloff is 
a function of the frequency squared, or 12 dB per 
octave. A third-order filter causes a rolloff that is pro¬ 
portional to frequency cubed, or 18 dB per octave. 
Thus, the order of a filter can be equated with the 
number of significant reactive elements that it pre¬ 
sents to the source as the signal deviates from the 
passband. 

The circuit of Fig. 3-2 can be analyzed in much the 
same manner as was done in Chapter 2. For instance, 
an examination of the effects of loaded Q on the re¬ 
sponse would yield the family of curves shown in Fig. 
3-3. Surprisingly, even this circuit configuration can 
cause a peak in the response. This is due to the fact 
that at some frequency, the inductor and capacitor will 
become resonant and, thus, peak the response if the 
loaded Q is high enough. The resonant frequency can 
be determined from 

For low values of loaded Q, however, no response peak 
will be noticed. 

The loaded Q of this filter is dependent upon the 
individual Q’s of the series leg and the shunt leg 
where, assuming perfect components, 

Q.=^ (Eq. 3-2) 

and, 

Q2 = £ (Eq. 3-3) 
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and the total Q is: 

(EqM)

If the total Q of the circuit is greater than about 0.5, 
then for optimum transfer of power from the source 
to the load, Qi should equal Q2. In this case, at the 

(A) Low-pass. 

(B) High-pass. 

(C) Bandstop. 

Fig. 3-1. Typical filter response curves. 

Fig. 3-2. A simple low-pass filter. 

peak frequency, the response will approach 0-dB in¬ 
sertion loss. If the total Q of the network is less than 
about 0.5, there will be no peak in the response and, 
for optimum transfer of power, R„ should equal RL. 
The peaking of the filter’s response is commonly called 
ripple (defined in Chapter 2) and can vary consider-

Fig 3-3. Typical two-pole filter response curves. 

Fig. 3-5. Typical response of a three-element 
low-pass filter. 

Fig. 3-6. Curves showing frequency response vs. loaded Q 
for three-element low-pass filters. 
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ably from one filter design to the next depending on 
the application. As shown, the two-element filter ex¬ 
hibits only one response peak at the edge of the pass¬ 
band. 

It can be shown that the number of peaks within the 
passband is directly related to the number of ele¬ 
ments in the filter by: 

Number of Peaks = N — 1 

where, 
N = the number of elements. 

Thus, the three-element low-pass filter of Fig. 3-4 
should exhibit two response peaks as shown in Fig. 
3-5. This is true only if the loaded Q is greater than 
one. Typical response curves for various values of 
loaded Q for the circuit given in Fig. 3-4 are shown 
in Fig. 3-6. For all odd-order networks, the response 
at de and at the upper edge of the passband ap¬ 
proaches 0 dB with dips in the response between the 
two frequencies. All even-order networks will pro¬ 
duce an insertion loss at de equal to the amount of 
passband ripple in dB. Keep in mind, however, that 
either of these two networks, if designed for low values 
of loaded Q, can be made to exhibit little or no pass¬ 
band ripple. But, as you can see from Figs. 3-3 and 
3-6, the elimination of passband ripple can be made 
only at the expense of bandwidth. The smaller the 
ripple that is allowed, the wider the bandwidth be¬ 
comes and, therefore, selectivity suffers. Optimum 
flatness in the passband occurs when the loaded Q 
of the three-element circuit is equal to one ( 1 ). Any 
value of loaded Q that is less than one will cause the 
response to roll off noticeably even at very low 
frequencies, within the defined passband. Thus, not 
only is the selectivity poorer but the passband inser¬ 
tion loss is too. In an application where there is not 
much signal to begin with, an even further decrease 
in signal strength could be disastrous. 

Now that we have taken a quick look at two repre¬ 
sentative low-pass filters and their associated responses, 
let’s discuss filters in general: 

1. High-Q filters tend to exhibit a far greater initial 
slope toward the stopband than their low-Q coun¬ 
terparts with the same number of elements. Thus, 
at any frequency in the stopband, the attenuation 
will be greater for a high-Q filter than for one with 
a lower Q. The penalty for this improvement is 
the increase in passband ripple that must occur 
as a result. 

2. Low-Q filters tend to have the flattest passband 
response but their initial attenuation slope at the 
band edge is small. Thus, the penalty for the re¬ 
duced passband ripple is a decrease in the initial 
stopband attenuation. 

3. As with the resonant circuits discussed in Chapter 
2, the source and load resistors loading a filter will 
have a profound effect on the Q of the filter and, 
therefore, on the passband ripple and shape factor 

of the filter. If a filter is inserted between two re¬ 
sistance values for which it was not designed, the 
performance will suffer to an extent, depending 
upon the degree of error in the terminating im¬ 
pedance values. 

4. The final attenuation slope of the response is de¬ 
pendent upon the order of the network. The order 
of the network is equal to the number of reactive 
elements in the low-pass filter. Thus, a second-order 
network (2 elements) falls off at a final attenuation 
slope of 12 dB per octave, a third-order network (3 
elements) at the rate of 18 dB per octave, and so 
on, with the addition of 6 dB per octave per ele¬ 
ment. 

MODERN FILTER DESIGN 

Modern filter design has evolved through the years 
from a subject known only to specialists in the field 
(because of the advanced mathematics involved) to 
a practical well-organized catalog of ready-to-use cir¬ 
cuits available to anyone with a knowledge of eighth 
grade level math. In fact, an average individual with 
absolutely no prior practical filter design experience 
should be able to sit down, read this chapter, and 
within 30 minutes be able to design a practical high-
pass, low-pass, bandpass, or bandstop filter to his 
specifications. It sounds simple and it is—once a few 
basic rules are memorized. 

The approach we will take in all of the designs in 
this chapter will be to make use of the myriad of 
normalized low-pass prototypes that are now avail¬ 
able to the designer. The actual design procedure is, 
therefore, nothing more than determining your re¬ 
quirements and, then, finding a filter in a catalog 
which satisfies these requirements. Each normalized 
element value is then scaled to the frequency and im¬ 
pedance you desire and, then, transformed to the type 
of response (bandpass, high-pass, bandstop) that you 
wish. With practice, the procedure becomes very sim¬ 
ple and soon you will be defining and designing filters. 
The concept of normalization may at first seem 

foreign to the person who is a newcomer to the field 
of filter design, and the idea of transforming a low-pass 
filter into one that will give one of the other three 
types of responses might seem absurd. The best advice 
I can give (to anyone not familiar with these prac¬ 
tices and who might feel a bit skeptical at this point) 
is to press on. The only way to truly realize the 
beauty and simplicity of this approach is to try a 
few actual designs. Once you try a few, you will be 
hooked, and any other approach to filter design will 
suddenly seem tedious and unnecessarily complicated. 

NORMALIZATION AND THE 
LOW-PASS PROTOTYPE 

In order to offer a catalog of useful filter circuits to 
the electronic filter designer, it became necessary to 
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standardize the presentation of the material. Obvi¬ 
ously, in practice, it would be extremely difficult to 
compare the performance and evaluate the usefulness 
of two filter networks if they were operating under 
two totally different sets of circumstances. Similarly, 
the presentation of any comparative design informa¬ 
tion for filters, if not standardized, would be totally 
useless. This concept of standardization or normaliza¬ 
tion, then, is merely a tool used by filter experts to 
present all filter design and performance information 
in a manner useful to circuit designers. Normalization 
assures the designer of the capability of comparing 
the performance of any two filter types when given 
the same operating conditions. 

All of the catalogued filters in this chapter are low-
pass filters normalized for a cutoff frequency of one 
radian per second (0.159 Hz) and for source and load 
resistors of one ohm. A characteristic response of such 
a filter is shown in Fig. 3-7. The circuit used to gen¬ 
erate this response is called the low-pass prototype. 

Fig. 3-7. Normalized low-pass response. 

Obviously, the design of a filter with such a low 
cutoff frequency would require component values 
much larger than those we are accustomed to working 
with; capacitor values would be in farads rather than 
microfarads and picofarads, and the inductor values 
would be in henries rather than in microhenries and 
nanohenries. But once we choose a suitable low-pass 
prototype from the catalog, we can change the im¬ 
pedance level and cutoff frequency of the filter to any 
value we wish through a simple process called scaling. 
The net result of this process is a practical filter design 
with realizable component values. 

FILTER TYPES 

Many of the filters used today bear the names of the 
men who developed them. In this section, we will take 
a look at three such filters and examine their attenua¬ 
tion characteristics. Their relative merits will be dis¬ 
cussed and their low-pass prototypes presented. The 
three filter types discussed will include the Butter¬ 
worth, Chebyshev, and Bessel responses. 

The Butterworth Response 
The Butterworth filter is a medium-Q filter that is 

used in designs which require the amplitude response 

of the filter to be as flat as possible. The Butterworth 
response is the flattest passband response available 
and contains no ripple. The typical response of such 
a filter might look like that of Fig. 3-8. 

Since the Butterworth response is only a medium-Q 
filter, its initial attenuation steepness is not as good 
as some filters but it is better than others. This char¬ 
acteristic often causes the Butterworth response to be 
called a middle-of-the-road design. 

The attenuation of a Butterworth filter is given by 

AdB = 10 log[ 1 + ( Eq. 3-5 ) 

where, 
M = the frequency at which the attenuation is de¬ 

sired, 
we = the cutoff frequency ( <o3 dB ) of the filter, 
n = the number of elements in the filter. 

If Equation 3-5 is evaluated at various frequencies 
for various numbers of elements, a family of curves 
is generated which will give a very good graphical 
representation of the attenuation provided by any 
order of filter at any frequency. This information is 
illustrated in Fig. 3-9. Thus, from Fig. 3-9, a 5-element 
( fifth order ) Butterworth filter will provide an attenu¬ 
ation of approximately 30 dB at a frequency equal to 

Fig. 3-8. The Butterworth response. 

Fig. 3-9. Attenuation characteristics for 
Butterworth filters. 
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twice the cutoff frequency of the filter. Notice here 
that the frequency axis is normalized to w/w(. and the 
graph begins at the cutoff ( —3 dB ) point. This graph 
is extremely useful as it provides you with a method 
of determining, at a glance, the order of a filter needed 
to meet a given attenuation specification. A brief 
example should illustrate this point (Example 3-1). 

EXAMPLE 3-1 
How many elements are required to design a Butter¬ 

worth filter with a cutoff frequency of 50 MHz, if the filter 
must provide at least 50 dB of attenuation at 150 MHz? 

Solution 

The first step in the solution is to find the ratio of 
= f/f.. 

f 150 MHz 
L — 50 MHz 
= 3 

Thus, at 3 times the cutoff frequency, the response must be 
down by at least 50 dB. Referring to Fig. 3-9, it is seen very 
quickly that a minimum of 6 elements is required to meet 
this design goal. At an f/fc of 3, a 6-element design would 
provide approximately 57 dB of attenuation, while a 5-ele-
ment design would provide only about 47 dB, which is not 
quite good enough. 

The element values for a normalized Butterworth 
low-pass filter operating between equal 1-ohm termi¬ 
nations (source and load) can be found by 

Ak = 2 sin (2k j ... n ( Eq. 3-6 ) 
zn 

where, 
n is the number of elements, 
Ak is the k-th reactance in the ladder and may be 

either an inductor or capacitor. 

The term (2k —l)ir/2n is in radians. We can use 
Equation 3-6 to generate our first entry into the cata¬ 
log of low-pass prototypes shown in Table 3-1. The 
placement of each component of the filter is shown 
immediately above and below the table. 

The rules for interpreting Butterworth tables are 
simple. The schematic shown above the table is used 
whenever the ratio Rs/Rl is calculated as the design 
criteria. The table is read from the top down. Alter¬ 
nately, when Rl/Rs is calculated, the schematic below 
the table is used. Then, the element designators in the 
table are read from the bottom up. Thus, a four-ele¬ 
ment low-pass prototype could appear as shown in 
Fig. 3-10. Note here that the element values not given 
in Table 3-1 are simply left out of the prototype ladder 
network. The 1-ohm load resistor is then placed di¬ 
rectly across the output of the filter. 

Remember that the cutoff frequency of each filter is 
1 radian per second, or 0.159 Hz. Each capacitor value 
given is in farads, and each inductor value is in hen¬ 

ries. The network will later be scaled to the impedance 
and frequency that is desired through a simple multi¬ 
plication and division process. The component values 
will then appear much more realistic. 

Occasionally, we have the need to design a filter that 
will operate between two unequal terminations as 
shown in Fig. 3-11. In this case, the circuit is normal-

Table 3-1. Butterworth Equal Termination Low-Pass 
Prototype Element Values (Rs = RL) 

C. 

n L2 C3 Li C3 Lb Ci 
2 1.414 1.414 
3 1.000 2.000 1.000 
4 0.765 1.848 1.848 0.765 
5 0.618 1.618 2.000 1.618 0.618 
6 0.518 1.414 1.932 1.932 1.414 0.518 
7 0.445 1.247 1.802 2.000 1.802 1.247 0.445 

4
 o 

U
 « 

>-J 

Ü
 N 
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4
 

e 

Fig. 3-11. Unequal terminations. 

Fig. 3-12. Normalized unequal terminations. 
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ized for a load resistance of 1 ohm, while taking what 
we get for the source resistance. Dividing both the 
load and source resistor by 10 will yield a load re¬ 
sistance of 1 ohm and a source resistance of 5 ohms 
as shown in Fig. 3-12. We can use the normalized 
terminating resistors to help us find a low-pass proto¬ 
type circuit. 

Table 3-2 is a list of Butterworth low-pass proto¬ 
type values for various ratios of source to load im¬ 
pedance (Rs/Rl). The schematic shown above the 
table is used when Rs/Rl is calculated, and the ele¬ 
ment values are read down from the top of the table. 

Table 3-2A. Butterworth Low-Pass 
Prototype Element Values 

Rs 

® Ci = : c3 = : Ri< 

n Rs/Rl Ci L»2 C3 ^4 

2 1.111 1.035 1.835 
1.250 0.849 2.121 
1.429 0.697 2.439 
1.667 0.566 2.828 
2.000 0.448 3.346 
2.500 0.342 4.095 
3.333 0.245 5.313 
5.000 0.156 7.707 
10.000 0.074 14.814 
oo 1.414 0.707 

3 0.900 0.808 1.633 1.599 
0.800 0.844 1.384 1.926 
0.700 0.915 1.165 2.277 
0.600 1.023 0.965 2.702 
0.500 1.181 0.779 3.261 
0.400 1.425 0.604 4.064 
0.300 1.838 0.440 5.363 
0.200 2.669 0.284 7.910 
0.100 5.167 0.138 15.455 
oo 1.500 1.333 0.500 

4 1.111 0.466 1.592 1.744 J.469 
1.250 0.388 1.695 1.511 1.811 
1.429 0.325 1.862 1.291 2.175 
1.667 0.269 2.103 1.082 2.613 
2.000 0.218 2.452 0.883 3.187 
2.500 0.169 2.986 0.691 4.009 
3.333 0.124 3.883 0.507 5.338 
5.000 0.080 5.684 0.331 7.940 
10.000 0.039 11.094 0.162 15.642 
oo 1.531 1.577 1.082 0.383 

n Rl/^8 ^2 ^3 C4

Rs

C 2 :: c4: 

Alternately, when Rl/Rs is calculated, the schematic 
below the table is used while reading up from the 
bottom of the table to get the element values (Ex¬ 
ample 3-2 ). 

EXAMPLE 3-2 
Find the low-pass prototype value for an n = 4 Butter¬ 

worth filter with unequal terminations: Rs = 50 ohms, Rl 
= 100 ohms. 

Solution 

Normalizing the two terminations for Rl = 1 ohm will 
yield a value of Rs = 0.5. Reading down from the top of 
Table 3-2, for an n = 4 low-pass prototype value, we see 
that there is no Rs/Rl = 0.5 ratio listed. Our second choice, 
then, is to take the value of Rl/Rs = 2, and read up from 
the bottom of the table while using the schematic below 
the table as the form for the low-pass prototype values. 
This approach results in the low-pass prototype circuit of 
Fig. 3-13. 

Fig. 3-13. Low-pass prototype circuit for Example 3-2. 

Obviously, all possible ratios of source to load re¬ 
sistance could not possibly fit on a chart of this size. 
This, of course, leaves the potential problem of not 
being able to find the ratio that you need for a par¬ 
ticular design task. The solution to this dilemma is 
to simply choose a ratio which most closely matches 
the ratio you need to complete the design. For ratios 
of 100:1 or so, the best results are obtained if you 
assume this value to be so high for practical purposes 
as to be infinite. Since, in these instances, you are 
only approximating the ratio of source to load resis¬ 
tance, the filter derived will only approximate the re¬ 
sponse that was originally intended. This is usually 
not too much of a problem. 

The Chebyshev Response 
The Chebyshev filter is a high-Q filter that is used 

when: (1) a steeper initial descent into the stopband 
is required, and (2) the passband response is no 
longer required to be flat. With this type of require¬ 
ment, ripple can be allowed in the passband. As more 
ripple is introduced, the initial slope at the beginning 
of the stopband is increased and produces a more 
rectangular attenuation curve when compared to the 
rounded Butterworth response. This comparison is 
made in Fig. 3-14. Both curves are for n = 3 filters. 
The Chebyshev response shown has 3 dB of passband 
ripple and produces a 10 dB improvement in stopband 
attenuation over the Butterworth filter. 



50 RF Circuit Design 

Table 3-2B. Butterworth Low-Pass Prototype Element Values 

Rs L2

: C3: 

U 

: C5: 

U 

: C7: : rl: 

n Ra/RL Ci L2 C3 Lj C 5 C7

5 0.900 0.442 
0.800 0.470 
0.700 0.517 
0.600 0.586 
0.500 0.686 
0.400 0.838 
0.300 1.094 
0.200 1.608 
0.100 3.512 
oo 1.545 

6 1.111 0.289 
1.250 0.245 
1.429 0.207 
1.667 0.173 
2.000 0.141 
2.500 0.111 
3.333 0.082 
5.000 0.054 
10.000 0.026 
oo 1.553 

7 0.900 0.299 
0.800 0.322 
0.700 0.357 
0.600 0.408 
0.500 0.480 
0.400 0.590 
0.300 0.775 
0.200 1.145 
0.100 2.257 
oo 1.558 

1.027 1.910 1.756 1.389 
0.866 2.061 1.544 1.738 
0.731 2.285 1.333 2.108 
0.609 2.600 1.126 2.552 
0.496 3.051 0.924 3.133 
0.388 3.736 0.727 3.965 
0.285 4.884 0.537 5.307 
0.186 7.185 0.352 7.935 
0.091 14.095 0.173 15.710 
1.694 1.382 0.894 0.309 

1.040 1.322 2.054 1.744 1.335 
1.116 1.126 2.239 1.550 1.688 
1.236 0.957 2.499 1.346 2.062 
1.407 0.801 2.858 1.143 2.509 
1.653 0.654 3.369 0.942 3.094 
2.028 0.514 4.141 0.745 3.931 
2.656 0.379 5.433 0.552 5.280 
3.917 0.248 8.020 0.363 7.922 
7.705 0.122 15.786 0.179 15.738 
1.759 1.553 1.202 0.758 0.259 
0.711 1.404 1.489 2.125 1.727 1.296 
0.606 1.517 1.278 2.334 1.546 1.652 
0.515 1.688 1.091 2.618 1.350 2.028 
0.432 1.928 0.917 3.005 1.150 2.477 
0.354 2.273 0.751 3.553 0.951 3.064 
0.278 2.795 0.592 4.380 0.754 3.904 
0.206 3.671 0.437 5.761 0.560 5.258 
0.135 5.427 0.287 8.526 0.369 7.908 
0.067 10.700 0.142 16.822 0.182 15.748 
1.799 1.659 1.397 1.055 0.656 0.223 

n Rl/Rs C2 ^3 L 5 Ca L7

Rs 

Í) c2: 

L? 

The attenuation of a Chebyshev filter can be found 
by making a few simple but tiresome calculations, and 
can be expressed as: 

AdB = 10log [1 + *2Cn2(^)'] (Eq. 3-7) 

where, 

Cn2 ( — ) is the Chebyshev polynomial to the order 
\tuc/ 

n evaluated at ( — \<oc/ 

The Chebyshev polynomials for the first seven orders 

are given in Table 3-3. The parameter e is given by: 

e = ( Eq. 3-8) 

where, 
RdB is the passband ripple in decibels. 

Note that ( — r is not the same as ( — ). The quan-
\wc/ 

can be found by defining another parameter: 

B = — cosh -1 n (Eq. 3-9) 
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Fig. 3-14 Comparison of three-element Chebyshev 
and Butterworth responses. 

Table 3-3. Chebyshev Polynomials to the Order n 

where, 
n = the order of the filter, 
e = the parameter defined in Equation 3-8, 
cosh -1 = the inverse hyperbolic cosine of the quan¬ 

tity in parentheses. 

Finally, we have: 

= [ — 1 cosh B 
\Wc/ 

(Eq. 3-10) 

where, 

= fhe ratio of the frequency of interest to the 

cutoff frequency, 
cosh = the hyperbolic cosine. 
If your calculator does not have hyperbolic and in¬ 

verse hyperbolic functions, they can be manually de¬ 
termined from the following relations: 

cosh X = 0.5(ex + e-1 ) 
and 

cosh -1x = ln(x ± Vx2 — 1) 

The preceding equations yield families of attenua¬ 
tion curves, each classified according to the amount of 

ripple allowed in the passband. Several of these fami¬ 
lies of curves are shown in Figs. 3-15 through 3-18, and 
include 0.01-dB, 0.1-dB, 0.5-dB, and 1.0-dB ripple. 
Each curve begins at a>/wc = 1, which is the normal¬ 
ized cutoff, or 3-dB frequency. The passband ripple is, 
therefore, not shown. 

If other families of attenuation curves are needed 
with different values of passband ripple, the preceding 
Chebyshev equations can be used to derive them. The 
problem in Example 3-3 illustrates this. 

Obviously, performing the calculations of Example 
3-3 for various values of w/ü>c, ripple, and filter order 
is a very time-consuming chore unless a programmable 
calculator or computer is available to do most of the 
work for you. 

The low-pass prototype element values correspond¬ 
ing to the Chebyshev responses of Figs. 3-15 through 
3-18 are given in Tables 3-4 through 3-7. Note that the 
Chebyshev prototype values could not be separated 
into two distinct sets of tables covering the equal and 

Frequency Ratio (F/fc) 

Fig. 3-15. Attenuation characteristics for a Chebyshev 
filter with 0.01 -dB ripple. 

Fig. 3-16. Attenuation characteristics for a Chebyshev 
filter with 0.1-dB ripple. 
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Fig. 3-17. Attenuation characteristics for a Chebyshev 
filter with 0.5-dB ripple. 

unequal termination cases, as was done for the But¬ 
terworth prototypes. This is because the even order 
( n = 2, 4, 6,... ) Chebyshev filters cannot have equal 
terminations. The source and load must always be 
different for proper operation as shown in the tables. 

EXAMPLE 3-3 
Find the attenuation of a 4-element, 2.5-dB ripple, low-

pass Chebyshev filter at w/we = 2.5. 

Solution 

First evaluate the parameter: 

e = V 102 8/10 _ i 

= 0.882 

Next, find B. 

B =y4 [ cosh-1 (¿)] 

= 0.1279 

Then, (<u/<ur)' is: 

(ú>/ú>c)' = 2.5 cosh .1279 
= 2.5204 

Finally, we evaluate the fourth order (n = 4) Chebyshev 
polynomial at = 2.52. 

c.(—)=8 (—y - 8 y+1 
XWcJ \<»'J \<»'J 

= 8( 2.5204 )4 - 8(2.5204)2 +  i 

= 273.05 

We can now evaluate the final equation. 

Abb = 10 log«, [ 1 + ^C»2̂ ) ] 

= 10log» [1 + (0.882)2(273.05)2] 

= 47.63 dB 

Thus, at an a>/a>c of 2.5, you can expect 47.63 dB of atten¬ 
uation for this filter. 

Fig. 3-18. Attenuation characteristics for a Chebyshev 
filter with 1-dB ripple. 

The rules used for interpreting the Butterworth ta¬ 
bles apply here also. The schematic shown above the 
table is used, and the element designators are read 
down from the top, when the ratio Rs/Rr. is calculated 
as a design criteria. Alternately, with Rj,/Rs calcula¬ 
tions, use the schematic given below the table and read 
the element designators upwards from the bottom of 
the table. Example 3-4 is a practice problem for use 
in understanding the procedure. 

EXAMPLE 3-4 
Find the low-pass prototype values for an n = 5, 0.1-dB 

ripple, Chebyshev filter if the source resistance you are de¬ 
signing for is 50 ohms and the load resistance is 250 ohms. 

Solution 

Normalization of the source and load resistors yields an 
Rs/Rl = 0.2. A look at Table 3-5, for a 0.1-dB rippie 
filter with an n = 5 and an Rs/Rl = 0.2, yields the circuit 
values shown in Fig. 3-19. 

It should be mentioned here that equations could 
have been presented in this section for deriving the 
element values for the Chebyshev low-pass prototypes. 
The equations are extremely long and tedious, how¬ 
ever, and there would be little to be gained from their 
presentation. 
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Table 3-4A. Chebyshev Low-Pass Element Values 
for 0.01-dB Ripple 

Rs 
I-NA/V 

(g) c,: 

1—II— 

1_11_
11., 

n RS/RL Cj E, C3
2 1.101 1.347 1.483 

1.111 1.247 1.595 
1.250 0.943 1.997 
1.429 0.759 2.344 
1.667 0.609 2.750 
2.000 0.479 3.277 
2.500 0.363 4.033 
3.333 0.259 5.255 
5.000 0.164 7.650 
10.000 0.078 14.749 
co 1.412 0.742 

3 1.000 1.181 1.821 1.181 
0.900 1.092 1.660 1.480 
0.800 1.097 1.443 1.806 
0.700 1.160 1.228 2.165 
0.600 1.274 1.024 2.598 
0.500 1.452 0.829 3.164 
0.400 1.734 0.645 3.974 
0.300 2.216 0.470 5.280 
0.200 3.193 0.305 7.834 
0.100 6.141 0.148 15.390 
co 1.501 1.433 0.591 

4 1.100 0.950 1.938 1.761 1.046 
1.111 0.854 1.946 1.744 1.165 
1.250 0.618 2.075 1.542 1.617 
1.429 0.495 2.279 1.334 2.008 
1.667 0.398 2.571 1.128 2.461 
2.000 0.316 2.994 0.926 3.045 
2.500 0.242 3.641 0.729 3.875 
3.333 0.174 4.727 0.538 5.209 
5.000 0.112 6.910 0.352 7.813 
10.000 0.054 13.469 0.173 15.510 
co 1.529 1.694 1.312 0.523 

H ^l/^3 ^2 ^3 ^4 

Rs 

i C2: : q: : 1 
The Bessel Filter 

The initial stopband attenuation of the Bessel filter 
is very poor and can be approximated by: 

(Eq. 3-11) 

This expression, however, is not very accurate above 
an w/w,. that is equal to about 2. For values of &>/wc 

greater than 2, a straight-line approximation of 6 dB 

per octave per element can be made. This yields the 
family of curves shown in Fig. 3-20. 

But why would anyone deliberately design a filter 
with very poor initial stopband attenuation character¬ 
istics? The Bessel filter was originally optimized to 
obtain a maximally flat group delay or linear phase 
characteristic in the filter’s passband. Thus, selectivity 
or stopband attenuation is not a primary concern when 
dealing with the Bessel filter. In high- and medium-Q 
filters, such as the Chebyshev and Butterworth filters, 
the phase response is extremely nonlinear over the 
filter’s passband. This phase nonlinearity results in 
distortion of wideband signals due to the widely 
varying time delays associated with the different 
spectral components of the signal. Bessel filters, on 
the other hand, with their maximally flat (constant) 
group delay are able to pass wideband signals with a 
minimum of distortion, while still providing some 
selectivity. 

The low-pass prototype element values for the Bes¬ 
sel filter are given in Table 3-8. Table 3-8 tabulates 
the prototype element values for various ratios of 
source to load resistance. 

FREQUENCY AND IMPEDANCE SCALING 

Once you specify the filter, choose the appropriate 
attenuation response, and write down the low-pass 
prototype values, the next step is to transform the 
prototype circuit into a usable filter. Remember, the 
cutoff frequency of the prototype circuit is 0.159 Hz 
( w = 1 rad/sec), and it operates between a source and 
load resistance that are normalized so that Rl = 1 ohm. 

Fig. 3-20. Attenuation characteristics of Bessel filters. 
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Table 3-4B. Chebyshev Low-Pass Element Values for 0.01-dB Ripple 

1 

Rs I* 

) c,: : C3: : Cs: : C7: : rl: 

n fls/Rt Cj L2 C3 L4 C5 Lg Ci 

5 1.000 0.977 
0.900 0.880 
0.800 0.877 
0.700 0.926 
0.600 1.019 
0.500 1.166 
0.400 1.398 
0.300 1.797 
0.200 2.604 
0.100 5.041 
oo 1.547 

6 1.101 0.851 
1.111 0.760 
1.250 0.545 
1.429 0.436 
1.667 0.351 
2.000 0.279 
2.500 0.214 
3.333 0.155 
5.000 0.100 
10.000 0.048 
oo 1.551 

7 1.000 0.913 
0.900 0.816 
0.800 0.811 
0.700 0.857 
0.600 0.943 
0.500 1.080 
0.400 1.297 
0.300 1.669 
0.200 2.242 
0.100 4.701 
oo 1.559 

1.685 2.037 1.685 0.977 
1.456 2.174 1.641 1.274 
1.235 2.379 1.499 1.607 
1.040 2.658 1.323 1.977 
0.863 3.041 1.135 2.424 
0.699 3.584 0.942 3.009 
0.544 4.403 0.749 3.845 
0.398 5.772 0.557 5.193 
0.259 8.514 0.368 7.826 
0.127 16.741 0.182 15.613 
1.795 1.645 1.237 0.488 
1.796 1.841 2.027 1.631 0.937 
1.782 1.775 2.094 1.638 1.053 
1.864 1.489 2.403 1.507 1.504 
2.038 1.266 2.735 1.332 1.899 
2.298 1.061 3.167 1.145 2.357 
2.678 0.867 3.768 0.954 2.948 
3.261 0.682 4.667 0.761 3.790 
4.245 0.503 6.163 0.568 5.143 
6.223 0.330 9.151 0.376 7.785 
12.171 0.162 18.105 0.187 15.595 
1.847 1.790 1.598 1.190 0.469 
1.595 2.002 1.870 2.002 1.595 0.913 
1.362 2.089 1.722 2.202 1.581 1.206 
1.150 2.262 1.525 2.465 1.464 1.538 
0.967 2.516 1.323 2.802 1.307 1.910 
0.803 2.872 1.124 3.250 1.131 2.359 
0.650 3.382 0.928 3.875 0.947 2.948 
0.507 4.156 0.735 4.812 0.758 3.790 
0.372 5.454 0.546 6.370 0.568 5.148 
0.242 8.057 0.360 9.484 0.378 7.802 
0.119 15.872 0.178 18.818 0.188 15.652 
1.867 1.866 1.765 1.563 1.161 0.456 

n R^/R^ L} C2 L3 C4 Lj C6 L7

Rs 1-, Ls 1-7 

The transformation is affected through the following 
formulas: 

p_ Cn
“ 27TfcR 

and 

T — RLn 
- 2H-

where, 
C — the final capacitor value, 

(Eq. 3-12) 

(Eq. 3-13) 

L = the final inductor value, 
Cn = a low-pass prototype element value, 
L„ = a low-pass prototype element value, 
R = the final load resistor value, 
fc = the final cutoff frequency. 

The normalized low-pass prototype source resistor 
must also be transformed to its final value by multi¬ 
plying it by the final value of the load resistor (Ex¬ 
ample 3-5). Thus, the ratio of the two always remains 
the same. 
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Table 3-5A. Chebyshev Low Pass Prototype Element 
Values for 0.1-dB Ripple 

Rs 

: C3: : Rtl 

n Rg/R^ C 1 L2 C3 ^4 

2 1.355 1.209 1.638 
1.429 0.977 1.982 
1.667 0.733 2.489 
2.000 0.560 3.054 
2.500 0.417 3.827 
3.333 0.293 5.050 
5.000 0.184 7.426 
10.000 0.087 14.433 
oo 1.391 0.819 

3 1.000 1.433 1.594 1.433 
0.900 1.426 1.494 1.622 
0.800 1.451 1.356 1.871 
0.700 1.521 1.193 2.190 
0.600 1.648 1.017 2.603 
0.500 1.853 0.838 3.159 
0.400 2.186 0.660 3.968 
0.300 2.763 0.486 5.279 
0.200 3.942 0.317 7.850 
0.100 7.512 0.155 15.466 
oo 1.513 1.510 0.716 

4 1.355 0.992 2.148 1.585 1.341 
1.429 0.779 2.348 1.429 1.700 
1.667 0.576 2.730 1.185 2.243 
2.000 0.440 3.227 0.967 2.856 
2.500 0.329 3.961 0.760 3.698 
3.333 0.233 5.178 0.560 5.030 
5.000 0.148 7.607 0.367 7.614 
10.000 0.070 14.887 0.180 15.230 
oo 1.511 1.768 1.455 0.673 

n RL/RS Lr Cn C4 

Rs

1 
<N 
O
 : q: 

4 

The process for designing a low-pass filter is a very 
simple one which involves the following procedure: 

1. Define the response you need by specifying the re¬ 
quired attenuation characteristics at selected fre¬ 
quencies. 

2. Normalize the frequencies of interest by dividing 
them by the cutoff frequency of the filter. This step 
forces your data to be in the same form as that of 
the attenuation curves of this chapter, where the 
3-dB point on the curve is: 

£-=i 

EXAMPLE 3-5 
Scale the low-pass prototype values of Fig. 3-19 (Exam¬ 

ple 3-4) to a cutoff frequency of 50 MHz and a load resis¬ 
tance of 250 ohms. 

Solution 

Use Equations 3-12 and 3-13 to scale each component 
as follows: 

r 3.546 
1- 2tX50x 10«) (250) 
= 45 pF 

9.127 
G, = 2rr(50 X 10«)(250) 

= 116pF 
„ 7.889 

2rr(50 X 10«)(250) 
= 100 pF 
_ (250X0.295) 

2w(50 X 10«) 
= 235 nH 

_ (250)(0.366) 
2w(50 X 10«) 

= 291 nH 

The source resistance is scaled by multiplying its normal¬ 
ized value by the final value of the load resistor. 

R.m».» = 0.2(250) 

= 50 ohms 

The final circuit appears in Fig. 3-21. 

Fig. 3-21. Low-pass filter circuit for Example 3-5. 

3. Determine the maximum amount of ripple that you 
can allow in the passband. Remember, the greater 
the amount of ripple allowed, the more selective the 
filter is. Higher values of ripple may allow you to 
eliminate a few components. 

4. Match the normalized attenuation characteristics 
(Steps 1 and 2) with the attenuation curves pro¬ 
vided in this chapter. Allow yourself a small “fudge¬ 
factor” for good measure. This step reveals the mini¬ 
mum number of circuit elements that you can get 
away with—given a certain filter type. 

5. Find the low-pass prototype values in the tables. 

6. Scale all elements to the frequency and impedance 
of the final design. 

Example 3-6 diagrams the process of designing a low-
pass filter using the preceding steps. 
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Table 3-5B. Chebyshev Low-Pass Prototype Element Values for 0.1-dB Ripple 

Rs

) C»: : c3: : Cs: : Q: : rl: 

n Rs/Rl Cj L2 c3 L4 c5 La C7

5 1.000 1.301 
0.900 1.285 
0.800 1.300 
0.700 1.358 
0.600 1.470 
0.500 1.654 
0.400 1.954 
0.300 2.477 
0.200 3.546 
0.100 6.787 
oo 1.561 

6 1.355 0.942 
1.429 0.735 
1.667 0.542 
2.000 0.414 
2.500 0.310 
3.33.3 0.220 
5.000 0.139 
10.000 0.067 
□o 1.534 

7 1.000 1.262 
0.900 1.242 
0.800 1.255 
0.700 1.310 
0.600 1.417 
0.500 1.595 
0.400 1.885 
0.300 2.392 
0.200 3.428 
0.100 6.570 
oo 1.575 

1.556 2.241 1.556 1.301 
1.433 2.380 1.488 1.488 
1.282 2.582 1.382 1.738 
1.117 2.868 1.244 2.062 
0.947 3.269 1.085 2.484 
0.778 3.845 0.913 3.055 
0.612 4.720 0.733 3.886 
0.451 6.196 0.550 5.237 
0.295 9.127 0.366 7.889 
0.115 17.957 0.182 15.745 
1.807 1.766 1.417 0.651 
2.080 1.659 2.247 1.534 1.277 
2.249 1.454 2.544 1.405 1.629 
2.600 1.183 3.064 1.185 2.174 
3.068 0.958 3.712 0.979 2.794 
3.765 0.749 4.651 0.778 3.645 
4.927 0.551 6.195 0.580 4.996 
7.250 0.361 9.261 0.384 7.618 
14.220 0.178 18.427 0.190 15.350 
1.884 1.831 1.749 1.394 0.638 
1.520 2.239 1.680 2.239 1.520 1.262 
1.395 2.361 1.578 2.397 1.459 1.447 
1.245 2.548 1.443 2.624 1.362 1.697 
1.083 2.819 1.283 2.942 1.233 2.021 
0.917 3.205 1.209 3.384 1.081 2.444 
0.753 3.764 0.928 4.015 0.914 3.018 
0.593 4.618 0.742 4.970 0.738 3.855 
0.437 6.054 0.556 6.569 0.557 5.217 
0.286 8.937 0.369 9.770 0.372 7.890 
0.141 17.603 0.184 19.376 0.186 15.813 
1.858 1.921 1.827 1.734 1.379 0.631 

n Rl/Rs Lj 

U
 CO 

u
 ctl l7

RS 

C2: 

l3

: Q = 

¡5 

q 

HIGH-PASS FILTER DESIGN 

Once you have learned the mechanics of low-pass 
filter design, high-pass design becomes a snap. You can 
use all of the attenuation response curves presented, 
thus far, for the low-pass filters by simply inverting 
the f/fc axis. For instance, a 5-element, 0.1-dB-ripple 
Chebyshev low-pass filter will produce an attenuation 
of about 60 dB at an f/fc of 3 (Fig. 3-16). If you were 
working instead with a high-pass filter of the same 
size and type, you could still use Fig. 3-16 to tell you 

that at an f/f,. of 1/3 (or, fc/f = 3) a 5-element, 0.1-
dB-ripple Chebyshev high-pass filter will also produce 
an attenuation of 60 dB. This is obviously more con¬ 
venient than having to refer to more than one set of 
curves. 

After finding the response which satisfies all of the 
requirements, the next step is to simply refer to the 
tables of low-pass prototype values and copy down 
the prototype values that are called for. High-pass val¬ 
ues for the elements are then obtained directly from 
the low-pass prototype values as follows (refer to 
Fig. 3-24): 
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I EXAMPLE 3-6 
Design a low-pass filter to meet the following specifica¬ 

tions: 
f. = 35 MHz, 
Response greater than 60 dB down at 105 MHz, 
Maximally flat passband—no ripple, 
R, = 50 ohms, 
Rl = 500 ohms. 

Solution 

The need for a maximally flat passband automatically in¬ 
dicates that the design must be a Butterworth response. 
The first step in the design process is to normalize every¬ 
thing. Thus, 

R, _ 50 
Rl 500 

= 0.1 
Next, normalize the frequencies of interest so that they may 
be found in the graph of Fig. 3-9. Thus, we have: 

f«odB _ 105 MHz 
fain ~ 35 MHz 

= 3 

We next look at Fig. 3-9 and find a response that is down 
at least 60 dB at a frequency ratio of f/fc = 3. Fig. 3-9 in¬ 
dicates that it will take a minimum of 7 elements to provide 
the attenuation specified. Referring to the catalog of Butter¬ 
worth low-pass prototype values given in Table 3-2 yields 
the prototype circuit of Fig. 3-22. 

Fig. 3-22. Low-pass prototype circuit for Example 3-6. 

We then scale these values using Equations 3-12 and 
3-13. The first two values are worked out for you. 

C 2.257 
2ir(35 x 108)500 

= 21 pF 
_ (500) (0.067) 

■~2n(35 X 10«) 
= 152 nH 

Similarly, 
C» = 97 pF, 
Q> = 153 pF, 
C, = 143 pF, 
L. = 323 nH, 
L« = 414 nH, 
R. = 50 ohms 
Rl = 500 ohms. 

The final circuit is shown in Fig. 3-23. 

Fig. 3-23. Low-pass filter circuit for Example 3-6. 

Table 3-6A. Chebyshev Low-Pass Prototype Element 
Values for 0.5-dB Ripple 

Rs 

: C3: : rls 

J
 w
 

u
 «
 

-J 

u
 

ca 

«
 

e
 

2 1.984 0.983 1.950 
2.000 0.909 2.103 
2.500 0.564 3.165 
3.333 0.375 4.411 
5.000 0.228 6.700 
10.000 0.105 13.322 
00 1.307 0.975 

3 1.000 1.864 1.280 1.834 
0.900 1.918 1.209 2.026 
0.800 1.997 1.120 2.237 
0.700 2.114 1.015 2.517 
0.500 2.557 0.759 3.436 
0.400 2.985 0.615 4.242 
0.300 3.729 0.463 5.576 
0.200 5.254 0.309 8.225 
0.100 9.890 0.153 16.118 
00 1.572 1.518 0.932 

4 1.984 0.920 2.586 1.304 1.826 
2.000 0.845 2.720 1.238 1.985 
2.500 0.516 3.766 0.869 3.121 
3.333 0.344 5.120 0.621 4.480 
5.000 0.210 7.708 0.400 6.987 
10.000 0.098 15.352 0.194 14.262 
« 1.436 1.889 1.521 0.913 

h Rl/Rr Li C2 C4 

Rs t

(y C2 : 

1 

: C4: 

Simply replace each filter element with an 
element of the opposite type and with a re¬ 
ciprocal value. Thus, Li of Fig. 3-24B is equal 
to l/Cj of Fig. 3-24A. Likewise, C2 = 1/L2 

and L3 = I/C3. 

Stated another way, if the low-pass prototype indi¬ 
cates a capacitor of 1.181 farads, then, use an inductor 
with a value of 1/1.181 = 0.847 henry, instead, for a 
high-pass design. However, the source and load re¬ 
sistors should not be altered. 

The transformation process results in an attenuation 
characteristic for the high-pass filter that is an exact 
mirror image of the low-pass attenuation characteris¬ 
tic. The ripple, if there is any, remains the same and 
the magnitude of the slope of the stopband ( or pass-
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Table 3-6B. Chebyshev Low-Pass Prototype Element Values for 0.5-dB Ripple 

Rs 1-2 

: C3 : 

U 

: Q: 

k 
pwi— 

: c7=: rl: 

n Ra/RL C] L2 C3 l4 >5 Le C, 

5 1.000 1.807 
0.900 1.854 
0.800 1.926 
0.700 2.035 
0.600 2.200 
0.500 2.457 
0.400 2.870 
0.300 3.588 
0.200 5.064 
0.100 9.556 
oo 1.630 

6 1.984 0.905 
2.000 0.830 
2.500 0.506 
3.333 0.337 
5.000 0.206 
10.000 0.096 

7 1.000 1.790 
0.900 1.835 
0.800 1.905 
0.700 2.011 
0.600 2.174 
0.500 2.428 
0.400 2.835 
0.300 3.546 
0.200 5.007 
0.100 9.456 
oo 1.646 

1.303 2.691 1.303 1.807 
1.222 2.849 1.238 1.970 
1.126 3.060 1.157 2.185 
1.015 3.353 1.058 2.470 
0.890 3.765 0.942 2.861 
0.754 4.367 0.810 3.414 
0.609 5.296 0.664 4.245 
0.459 6.871 0.508 5.625 
0.306 10.054 0.343 8.367 
0.153 19.647 0.173 16.574 
1.740 1.922 1.514 0.903 

2.577 1.368 2.713 1.299 1.796 
2.704 1.291 2.872 1.237 1.956 
3.722 0.890 4.109 0.881 3.103 
5.055 0.632 5.699 0.635 4.481 
7.615 0.406 8.732 0.412 7.031 
15.186 0.197 17.681 0.202 14.433 
1.296 2.718 1.385 2.718 1.296 1.790 
1.215 2.869 1.308 2.883 1.234 1.953 
1.118 3.076 1.215 3.107 1.155 2.168 
1.007 3.364 1.105 3.416 1.058 2.455 
0.882 3.772 0.979 3.852 0.944 2.848 
0.747 4.370 0.838 2.289 0.814 3.405 
0.604 5.295 0.685 5.470 0.669 4.243 
0.455 6.867 0.522 7.134 0.513 5.635 
0.303 10.049 0.352 10.496 0.348 8.404 
0.151 19.649 0.178 20.631 0.176 16.665 
1.777 2.031 1.789 1.924 1.503 0.895 

n RL/Ra C2 ¿3 ^4 Lò Cg L7

Rs

J) c2: : Q: 

1-5 k 

band) skirts remains the same. Example 3-7 illustrates 
the design of high-pass filters. 

A closer look at the filter designed in Example 3-7 
reveals that it is symmetric. Indeed, all filters given 
for the equal termination class are symmetric. The 
equal termination class of filter thus yields a circuit 
that is easier to design (fewer calculations) and, in 
most cases, cheaper to build for a high-volume product, 
due to the number of equal valued components. 

THE DUAL NETWORK 

Thus far, we have been referring to the group of 
low-pass prototype element value tables presented 
and. then, we choose the schematic that is located 

either above or below the tables for the form of the 
filter that we are designing, depending on the value 
of Rj./Rs. Either form of the filter will produce exactly 
the same attenuation, phase, and group-delay charac¬ 
teristics, and each form is called the dual of the other. 

Any filter network in a ladder arrangement, such as 
the ones presented in this chapter, can be changed 
into its dual form by application of the following rules: 

1. Change all inductors to capacitors, and vice-versa, 
without changing element values. Thus, 3 henries 
becomes 3 farads. 

2. Change all resistances into conductances, and vice-
versa, with the value unchanged. Thus, 3 ohms be¬ 
comes 3 mhos, or % ohm. 
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( B ) Equivalent high-pass prototype circuit. 

Fig. 3-24. Low-pass to high-pass filter transformation. 

3. Change all shunt branches to series branches, and 
vice-versa. 

4. Change all elements in series with each other into 
elements that are in parallel with each other. 

5. Change all voltage sources into current sources, and 
vice-versa. 

Fig. 3-26 shows a ladder network and its dual repre¬ 
sentation. 

Dual networks are convenient, in the case of equal 
terminations, if you desire to change the topology of 
the filter without changing the response. It is most 
often used, as shown in Example 3-7, to eliminate an 
unnecessary inductor which might have crept into the 
design through some other transformation process. 
Inductors are typically more lower-Q devices than 
capacitors and, therefore, exhibit higher losses. These 
losses tend to cause insertion loss, in addition to gen¬ 
erally degrading the overall performance of the filter. 
The number of inductors in any network should, 
therefore, be reduced whenever possible. 

A little experimentation with dual networks having 
unequal terminations will reveal that you can quickly 
get yourself into trouble if you are not careful. This 
is especially true if the load and source resistance 
are a design criteria and cannot be changed to suit 
the needs of your filter. Remember, when the dual of a 
network with unequal terminations is taken, then, the 
terminations must, by definition, change value as 
shown in Fig. 3-26. 

BANDPASS FILTER DESIGN 

The low-pass prototype circuits and response curves 
given in this chapter can also be used in the design 
of bandpass filters. This is done through a simple 

Table 3-7A. Chebyshev Low-Pass Prototype Element 
Values for 1.0-dB Ripple 

: 
Rs 

-VV\-

) C1 = 

l2

: C,: 

l4

: Rl* 

n Rÿ/RL Ci L2 C3 L. 
2 3.000 

4.000 
8.000 
oo 

3 1.000 
0.500 
0.333 
0.250 
0.125 
co 

4 3.000 
4.000 
8.000 
co 

0.572 3.132 
0.365 4.600 
0.157 9.658 
1.213 1.109 
2.216 1.088 2.216 
4.431 0.817 2.216 
6.647 0.726 2.216 
8.862 0.680 2.216 
17.725 0.612 2.216 
1.652 1.460 1.108 
0.653 4.411 0.814 2.535 
0.452 7.083 0.612 2.848 
0.209 17.164 0.428 3.281 
1.350 2.010 1.488 1.106 

n Rl/Rs ^2 ^3 c. 

Rs 

% C2: : c4: : * 
transformation process similar to what was done in the 
high-pass case. 

The most difficult task awaiting the designer of a 
bandpass filter, if the design is to be derived from the 
low-pass prototype, is in specifying the bandpass at¬ 
tenuation characteristics in terms of the low-pass re¬ 
sponse curves. A method for doing this is shown by 
the curves in Fig. 3-27. As you can see, when a low-
pass design is transformed into a bandpass design, 
the attenuation bandwidth ratios remain the same. 
This means that a low-pass filter with a 3-dB cutoff 
frequency, or a bandwidth of 2 kHz, would transform 
into a bandpass filter with a 3-dB bandwidth of 2 
kHz. If the response of the low-pass network were 
down 30 dB at a frequency or bandwidth of 4 kHz 
( f/fc = 2), then the response of the bandpass network 
would be down 30 dB at a bandwidth of 4 kHz. Thus, 
the normalized f/fc axis of the low-pass attenuation 
curves becomes a ratio of bandwidths rather than fre¬ 
quencies, such that: 

BWC - fc (Eq. 3-14) 
where, 

BW = the bandwidth at the required value of at¬ 
tenuation, 

BWC = the 3-dB bandwidth of the bandpass filter. 
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Table 3-7B. Chebyshev Low-Pass Prototype Element Values for 1.0-dB Ripple 

Rs 
k 

J) Q: : C3: : Q: : Q: : rl: 

n Rs/R¡ Cj l2 c3 L4 ^5 C7

5 1.000 2.207 
0.500 4.414 
0.333 6.622 
0.250 8.829 
0.125 17.657 
oo 1.721 

6 3.000 0.679 
4.000 0.481 
8.000 0.227 
oo 1.378 

7 1.000 2.204 
0.500 4.408 
0.333 6.612 
0.250 8.815 
0.125 17.631 
oo 1.741 

1.128 3.103 1.128 2.207 
0.565 4.653 1.128 2.207 
0.376 6.205 1.128 2.207 
0.282 7.756 1.128 2.207 
0.141 13.961 1.128 2.207 
1.645 2.061 1.493 1.103 
3.873 0.771 4.711 0.969 2.406 
5.644 0.476 7.351 0.849 2.582 
12.310 0.198 16.740 0.726 2.800 
2.097 1.690 2.074 1.494 1.102 

1.131 3.147 1.194 3.147 1.131 2.204 
0.566 6.293 0.895 3.147 1.131 2.204 
0.377 9.441 0.796 3.147 1.131 2.204 
0.283 12.588 0.747 3.147 1.131 2.204 
0.141 25.175 0.671 3.147 1.131 2.204 
1.677 2.155 1.703 2.079 1.494 1.102 

n Rl/Rs Ej D
 

to o
 

4- Eg C6 L7

Often a bandpass response is not specified, as in 
Example 3-8. Instead, the requirements are often 
given as attenuation values at specified frequencies 
as shown by the curve in Fig. 3-28. In this case, you 
must transform the stated requirements into informa¬ 
tion that takes the form of Equation 3-14. As an ex¬ 
ample, consider Fig. 3-28. How do we convert the 
data that is given into the bandwidth ratios we need? 
Before we can answer that, we have to find fa. Use 
the following method. 

The frequency response of a bandpass filter exhibits 
geometric symmetry. That is, it is only symmetric when 
plotted on a logarithmic scale. The center frequency 
of a geometrically symmetric filter is given by the 
formula: 

f. = x/fJb (Eq. 3-15) 

where f, and fb are any two frequencies (one above 
and one below the passband) having equal attenua¬ 
tion. Therefore, the center frequency of the response 
curve shown in Fig. 3-28 must be 

fo = V(45)(75) MHz 
= 58.1 MHz 

We can use Equation 3-15 again to find f3. 

58.1 = X/M125) 

or, 
fa = 27 MHz 

Now that f3 is known, the data of Fig. 3-28 can be 
put into the form of Equation 3-14. 

BW4oob = 125 MHz - 27 MHz 
BW3dB 75 MHz-45 MHz 

= 3.27 

To find a low-pass prototype curve that will satisfy 
these requirements, simply refer to any of the pertinent 
graphs presented in this chapter and find a response 
which will provide 40 dB of attenuation at an f/fc of 
3.27. (A fourth-order or better Butterworth filter will 
do quite nicely.) 

The actual transformation from the low-pass to the 
bandpass configuration is accomplished by resonating 
each low-pass element with an element of the opposite 
type and of the same value. All shunt elements of the 
low-pass prototype circuit become parallel-resonant 
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EXAMPLE 3-7 
Design an LC high-pass filter with an fc of 60 MHz and 

a minimum attenuation of 40 dB at 30 MHz. The source 
and load resistance are equal at 300 ohms. Assume that a 
0.5-dB passband ripple is tolerable. 

Solution 

First, normalize the attenuation requirements so that the 
low-pass attenuation curves may be used. 

f _ 30 MHz 
f. 60 MHz 

= 0.5 
Inverting, we get: 

Now, select a normalized low-pass filter that offers at least 
40-dB attenuation at a ratio of fc/f = 2. Reference to Fig. 
3.17 (attenuation response of 0.5-dB-ripple Chebyshev fil¬ 
ters ) indicates that a normalized n = 5 Chebyshev will pro¬ 
vide the needed attenuation. Table 3-6 contains the ele¬ 
ment values for the corresponding network. The normalized 
low-pass prototype circuit is shown in Fig. 3-25A. Note that 
the schematic below Table 3-6B was chosen as the low-pass 
prototype circuit rather than the schematic above the table. 
The reason for doing this will become obvious after the next 
step. Keep in mind, however, that the ratio of Rs/Rl is the 
same as the ratio of Rl/Rs, and is unity. Therefore, it does 
not matter which form is used for the prototype circuit. 

Next, transform the low-pass circuit to a high-pass net¬ 
work by replacing each inductor with a capacitor, and vice-
versa, using reciprocal element values as shown in Fig. 
3-25B. Note here that had we begun with the low-pass pro¬ 
totype circuit shown above Table 3-6B, this transformation 
would have yielded a filter containing three inductors rather 
than the two shown in Fig. 3-25B. The object in any of 
these filter designs is to reduce the number of inductors in 
the final design. More on this later. 

The final step in the design process is to scale the net¬ 
work in both impedance and frequency using Equations 
3-12 and 3-13. The first two calculations are done for you. 

1 
„ 1.807 

2rr(60x 10«)(300) 
= 4.9 pF 

( A ) Normalized low-pass filter circuit. 

1 1/1.807 1/2.691 1/1.807 

( B ) High-pass transformation. 

( C ) Frequency and impedance-scaled filter circuit. 

Fig. 3-25. High-pass filter design for Example 3-7. 

. _ 3w(i») 
U- 2tt(60 X 10«) 

= 611nH 

The remaining values are: 

G, = 3.3 pF 
Cs = 4.9 pF 
L« = 611nH 

The final filter circuit is given in Fig. 3-25C. 

EXAMPLE 3-8 
Find the Butterworth low-pass prototype circuit which, 

when transformed, would satisfy the following bandpass 
filter requirements: 

BW,™ = 2 MHz 

BW(odH — 6 MHz 

Solution 

Note that we are not concerned with the center frequency 
of the bandpass response just yet. We are only concerned 
with the relationship between the above requirements and 

the low-pass response curves. Using Equation 3-14, we 
have: 

BW _ f _ BW«,dB 
BW. “ L ~ BW3dB 

_ 6 MHz 
“ 2 MHz 

= 3 

Therefore, turn to the Butterworth response curves shown 
in Fig. 3-9 and find a prototype value that will provide 40 
dB of attenuation at an f/fe = 3. The curves indicate a 5-
element Butterworth filter will provide the needed attenu¬ 
ation. 
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(A) A representative ladder network. 

(B) Its dual form. 
Fig. 3-26. Duality. 

(A) Low-pass prototype response. 

( B ) Bandpass response. 
Fig. 3-27. Low-pass to bandpass 

transformation bandwidths. 

Table 3-8A. Bessel Low-Pass Prototype Element Values 

Rs 

® C,: : C,: : RlI 

n RS/RL Cj L2 C3 

2 1.000 0.576 2.148 
1.111 0.508 2.310 
1.250 0.443 2.510 
1.429 0.380 2.764 
1.667 0.319 3.099 
2.000 0.260 3.565 
2.500 0.203 4.258 
3.333 0.149 5.405 
5.000 0.097 7.688 
10.000 0.047 14.510 
00 1.362 0.454 

3 1.000 0.337 0.971 2.203 
0.900 0.371 0.865 2.375 
0.800 0.412 0.761 2.587 
0.700 0.466 0.658 2.858 
0.600 0.537 0.558 3.216 
0.500 0.635 0.459 3.714 
0.400 0.783 0.362 4.457 
0.300 1.028 0.267 5.689 
0.200 1.518 0.175 8.140 
0.100 2.983 0.086 15.470 
00 1.463 0.843 0.293 

4 1.000 0.233 0.673 1.082 2.240 
1.111 0.209 0.742 0.967 2.414 
1.250 0.184 0.829 0.853 2.630 
1.429 0.160 0.941 0.741 2.907 
1.667 0.136 1.089 0.630 3.273 
2.000 0.112 1.295 0.520 3.782 
2.500 0.089 1.604 0.412 4.543 
3.333 0.066 2.117 0.306 5.805 
5.000 0.043 3.142 0.201 8.319 
10.000 0.021 6.209 0.099 15.837 
ao 1.501 0.978 0.613 0.211 

n Rl/Rs Lj C2 Lg C4

Rs 

Il 
r 

1
 
<
N
 

u
 

I 

: q: 
'I 

Fig. 3-29. Low-pass to bandpass circuit transformation. 

circuits, and all series elements become series-resonant 
circuits. This process is illustrated in Fig. 3-30. 

To complete the design, the transformed filter is 
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Table 3-8B, Bessel Low-Pass Prototype Element Values 

f 
Rs 

C,: 

Lz 

: C3: : C5: 

U 

T C?:T Rl 1 
3 Ä
 

z Ä
 

Q
 

L2 C3 L4 c 5 ^0 C-¡ 

5 1.000 0.174 
0.900 0.193 
0.800 0.215 
0.700 0.245 
0.600 0.284 
0.500 0.338 
0.400 0.419 
0.300 0.555 
0.200 0.825 
0.100 1.635 
x 1.513 

6 1.000 0.137 
1.111 0.122 
1.250 0.108 
1.429 0.094 
1.667 0.080 
2.000 0.067 
2.500 0.053 
3.333 0.040 
5.000 0.026 
10.000 0.013 
x 1.512 

7 1.000 0.111 
0.900 0.122 
0.800 0.137 
0.700 0.156 
0.600 0.182 
0.500 0.217 
0.400 0.270 
0.300 0.358 
0.200 0.534 
0.100 1.061 
oc 1.509 

0.507 0.804 1.111 2.258 
0.454 0.889 0.995 2.433 
0.402 0.996 0.879 2.650 
0.349 1.132 0.764 2.927 
0.298 1.314 0.651 3.295 
0.247 1.567 0.538 3.808 
0.196 1.946 0.427 4.573 
0.146 2.577 0.317 5.843 
0.096 3.835 0.210 8.375 
0.048 7.604 0.104 15.949 
1.023 0.753 0.473 0.162 
0.400 0.639 0.854 1.113 2.265 
0.443 0.573 0.946 0.996 2.439 
0.496 0.508 1.060 0.881 2.655 
0.564 0.442 1.207 0.767 2.933 
0.655 0.378 1.402 0.653 3.300 
0.782 0.313 1.675 0.541 3.812 
0.973 0.249 2.084 0.429 4.577 
1.289 0.186 2.763 0.319 5.847 
1.289 0.123 4.120 0.211 8.378 
3.815 0.061 8.186 0.105 15.951 
1.033 0.813 0.607 0.379 0.129 
0.326 0.525 0.702 0.869 1.105 2.266 
0.292 0.582 0.630 0.963 0.990 2.440 
0.259 6.652 0 559 1.080 0.875 2.656 
0.226 0.743 0.487 1.231 0.762 2.932 
0.193 0.863 0416 1.431 0.649 3.298 
0.160 1.032 0.346 1.711 0.537 3.809 
0.127 1.285 0.276 2.130 0.427 4.572 
0.095 1.705 0.206 2.828 0.318 5.838 
0.063 2.545 0.137 4.221 0.210 8.362 
0.031 5.062 0.068 8.397 0.104 15.917 
1.029 0.835 0.675 0.503 0.311 0.105 

n C2 L3 C4 L 5 

■ 

Rs

J) c2: 

U “7 

q 

Fig. 3-30. Typical band-rejection filter curves. 

then frequency- and impedance-scaled using the fol¬ 
lowing formulas. For the parallel-resonant branches, 

p._ cn
2ttRB 
RB 

2rrVLn

and, for the series-resonant branches, 

C- B 
27rf02CnR 

(Eq. 3-16) 

(Eq. 3-17) 

(Eq. 3-18) 
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L = S <E 3̂'19 ) 

where, in ail cases, 
R = the final load impedance, 
B = the 3-dB bandwidth of the final design, 
fo = the geometric center frequency of the final de¬ 

sign, 
Ln = the normalized inductor bandpass element 

values, 
C„ = the normalized capacitor bandpass element 

values. 

Example 3-9 furnishes one final example of the pro¬ 
cedure for designing a bandpass filter. 

SUMMARY OF THE BANDPASS 
FILTER DESIGN PROCEDURE 

1. Transform the bandpass requirements into an 
equivalent low-pass requirement using Equation 
3-14. 

2. Refer to the low-pass attenuation curves provided in 
order to find a response that meets the requirements 
of Step 1. 

3. Find the corresponding low-pass prototype and 
write it down. 

4. Transform the low-pass network into a bandpass 
configuration. 

5. Scale the bandpass configuration in both impedance 
and frequency using Equations 3-16 through 3-19. 

BAND-REJECTION FILTER DESIGN 

Band-rejection filters are very similar in design ap¬ 
proach to the bandpass filter of the last section. Only, 
in this case, we want to reject a certain group of fre¬ 
quencies as shown by the curves in Fig. 3-30. 

The band-reject filter lends itself well to the low-
pass prototype design approach using the same proce¬ 
dures as were used for the bandpass design. First, 
define the bandstop requirements in terms of the low-
pass attenuation curves. This is done by using the 
inverse of Equation 3-14. Thus, referring to Fig. 3-30, 
we have: 

BWC _ f4 - fi 
BW f3 - f2

This sets the attenuation characteristic that is needed 
and allows you to read directly off the low-pass at¬ 
tenuation curves by substituting BWC/BW for fc/ f on 
the normalized frequency axis. Once the number of 
elements that are required in the low-pass prototype 
circuit is determined, the low-pass network is trans¬ 
formed into a band-reject configuration as follows: 

Each shunt element in the low-pass prototype 
circuit is replaced by a shunt series-resonant 
circuit, and each series-element is replaced by 
a series parallel-resonant circuit. 

Passband Ripple = 1 dB 
R, = 50 ohms 
Rt. — 100 ohms 

f. = 75 MHz 
BW,„b = 7 MHz 
BW,.« = 35 MHz 

EXAMPLE 3-9 
Design a bandpass filter with the following requirements: 

Solution 

Using Equation 3-14: 

BW-ax _ 35 
BWadS - 7 

= 5 

Substitute this value for f/fe in the low-pass attenuation 
curves for the 1-dB-ripple Chebyshev response shown in 
Fig. 3-18. This reveals that a 3-element filter will provide 
about 50 dB of attenuation at an f/E — 5, which is more 
than adequate. The corresponding element values for this 
filter can be found in Table 3-7 for an Rs/Rl = 0.5 and an 
n = 3. This yields the low-pass prototype circuit of Fig. 
3-32A which is transformed into the bandpass prototype 
circuit of Fig. 3-32B. Finally, using Equations 3-16 through 
3-19, we obtain the final circuit that is shown in Fig. 3-32C. 
The calculations follow. Using Equations 3-16 and 3-17: 

r 4.431 
1 “27r(100)(7 X 10«) 

= 1007 pF 

(100)(7 X 10«) 
“ 2rr(75 X 10« )2( 4.431) 

= 4.47 nil 

Using Equations 3-18 and 3-19: 

__7 X 10«_ 
2ir(75 X 10« >2(0.817)100 

= 2.4 pF 
(100) (0.817) 
2rr(7 X 10«) 

= 1.86 gH 

Similarly, 
C3 = 504 pF 

L, = 8.93 nH 

This is shown in Fig. 3-31. Note that both elements in 
each of the resonant circuits have the same normalized 
value. 

Once the prototype circuit has been transformed into 
its band-reject configuration, it is then scaled in im¬ 
pedance and frequency using the following formulas. 
For all series-resonant circuits : 

Fig. 3-31. Low-pass to band-reject transformation. 
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(C) Final circuit with frequency and impedance scaled. 

Fig. 3-32. Bandpass filter design for Example 3-9. 

Fig. 3-33. The effect of finite-Q elements 
on filter response. 

p _ Cn 
~ 2ttRB 

r _ RB 
b ” Z^L,. 

For all parallel-resonant circuits: 

(Eq. 3-20) 

(Eq. 3-21) 

C 2irfo!RC„ (Eq. 3-22) 

L = S <E13-23 ) 
where, in all cases. 
B = the 3-dB bandwidth, 
R = the final load resistance, 
fo = the geometric center frequency, 
Cn = the normalized capacitor band-reject element 

value, 
L„ = the normalized inductor band-reject element 

value. 

THE EFFECTS OF FINITE Q 

Thus far in this chapter, we have assumed the in¬ 
ductors and capacitors used in the designs to be 
lossless. Indeed, all of the response curves presented 
in this chapter are based on that assumption. But we 
know from our previous study of Chapters 1 and 2 
that even though capacitors can be approximated as 
having infinite Q, inductors cannot, and the effects 
of the finite-Q inductor must be taken into account 
in any filter design. 

The use of finite element Q in a design intended for 
lossless elements causes the following unwanted effects 
(refer to Fig. 3-33): 

1. Insertion loss of the filter is increased whereas the 
final stopband attenuation does not change. The 
relative attenuation between the two is decreased. 

2. At frequencies in the vicinity of cutoff (fr), the 
response becomes more rounded and usually results 
in an attenuation greater than the 3 dB that was 
originally intended. 

3. Ripple that was designed into the passband will be 
reduced. If the element Q is sufficiently low, ripple 
will be totally eliminated. 

4. For band-reject filters, the attenuation in the stop¬ 
band becomes finite. This, coupled with an increase 
in passhand insertion loss, decreases the relative 
attenuation significantly. 

Regardless of the gloomy predictions outlined 
above, however, it is possible to design filters, using 
the approach outlined in this chapter, that very closely 
resemble the ideal response of each network. The key 
is to use the highest-Q inductors available for the 
given task. Table 3-9 outlines the recommended mini¬ 
mum element-Q requirements for the filters presented 
in this chapter. Keep in mind, however, that anytime 
a low-Q component is used, the actual attenuation 
response of the network strays from the ideal response 
to a degree depending upon the element Q. It is, 
therefore, highly recommended that you make it a 
habit to use only the highest-Q components available. 

Table 3-9. Filter Element-Q Requirements 

Filter Type 
Minimum Element Q 

Required 
Bessel 
Butterworth 
0.01 -dB Chebyshev 
0.1-dB Chebyshev 
0.5-dB Chebyshev 
1-dB Chebyshev 

3 
15 
24 
39 
57 
75 

The insertion loss of the filters presented in this 
chapter can be calculated in the same manner as was 
used in Chapter 2. Simply replace each reactive ele¬ 
ment with resistor values corresponding to the Q 
of the element and, then, exercise the voltage division 
rule from source to load. 



IMPEDANCE MATCHING 

Impedance matching is often necessary in the de¬ 
sign of rf circuitry to provide the maximum possible 
transfer of power .between a source and its load. Prob¬ 
ably the most vivid example of the need of such a 
transfer of power occurs in the front end of any sensi¬ 
tive receiver. Obviously, any unnecessary loss in a 
circuit that is already carrying extremely small signal 
levels simply cannot be tolerated. Therefore, in most 
instances, extreme care is taken during the initial de¬ 
sign of such a front end to make sure that each device 
in the chain is matched to its load. 

In this chapter, then, we will study several methods 
of matching a given source to a given load. This will 
be done both numerically and with the aid of the 
Smith Chart and, in both cases, exact step-by-step pro¬ 
cedures will be presented making any calculations as 
painless as possible. 

BACKGROUND 

There is a well-known theorem which states that, 
for de circuits, maximum power will be transferred 

from a source to its load if the load resistance equals 
the source resistance. A simple proof of this theorem 
is given by the calculations and the sketches shown 
in Fig. 4-1. In the calculation, for convenience, the 
source is normalized for a resistance of one ohm and 
a source voltage of one volt. 
In dealing with ac or time-varying waveforms, 

however, that same theorem states that the maximum 
transfer of power, from a source to its load, occurs 
when the load impedance (ZL) is equal to the com¬ 
plex conjugate of the source impedance. Complex 
conjugate simply refers to a complex impedance hav¬ 
ing the same real part with an opposite reactance. 
Thus, if the source impedance were Zs = R +)X, then 
its complex conjugate would be Z„ = R —jX. 

If you followed the mathematics associated with 
Fig. 4-1, then it should be obvious why maximum 
transfer of power does occur when the load impedance 
is the complex conjugate of the source. This is shown 
schematically in Fig. 4-2. The source (Z„), with a 
series reactive component of +jX (an inductor), is 
driving its complex conjugate load impedance con-

(B) Graph. 

Fig. 4-1. The power theorem. 

Proof that Pout MAX occurs when RL = 
Rs, in the circuit of Fig. 4-1A, is given by the 
formula: 

v' = b^K<v-> 
Set VB = 1 and Rs = 1, for convenience. 
Therefore, 

Then, the power into RL is: 

1 Rl 

/ Rl y 
_ \ 1 + Rl / 
" Rl 

Rl 

"(1 + Rl) 2

If you plot Pi versus RL, as in the preceding 
equation, the result is shown by the curve of 
the graph in Fig. 4-1B. 

66 
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sisting of a —jX reactance (capacitor) in series with 
Rl- The +jX component of the source and the —jX 
component of the load are in series and, thus, cancel 
each other, leaving only Rs and RL, which are equal 
by definition. Since Rs and RL are equal, maximum 
power transfer will occur. So when we speak of a 
source driving its complex conjugate, we are simply 
referring to a condition in which any source reactance 
is resonated with an equal and opposite load reactance; 
thus, leaving only equal resistor values for the source 
and the load terminations. 

The primary objective in any impedance matching 
scheme, then, is to force a load impedance to “look 
like” the complex conjugate of the source impedance 
so that maximum power may be transferred to the load. 
This is shown in Fig. 4-3 where a load impedance of 
2 —j6 ohms is transformed by the impedance matching 
network to a value of 5 +jlO ohms. Therefore, the 
source “sees” a load impedance of 5 +jlO ohms, which 
just happens to be its complex conjugate. It should be 
noted here that because we are dealing with reac¬ 
tances, which are frequency dependent, the perfect 
impedance match can occur only at one frequency. 
That is the frequency at which the +jX component 
exactly equals the —jX component and, thus, cancel¬ 
lation or resonance occurs. At all other frequencies 
removed from the matching center frequency, the im¬ 
pedance match becomes progressively worse and 
eventually nonexistent. This can be a problem in broad¬ 
band circuits where we would ideally like to provide 
a perfect match everywhere within the broad passband. 
There are methods, however, of increasing the band¬ 
width of the match and a few of these methods will be 
presented later in this chapter. 

There are an infinite number of possible networks 
which could be used to perform the impedance match¬ 
ing function of Fig. 4-3. Something as simple as a 2-
element LC network or as elaborate as a 7-element 
filter, depending on the application, would work 
equally well. The remainder of this chapter is devoted 
to providing you with an insight into a few of those 
infinite possibilities. After studying this chapter, you 
should be able to match almost any two complex loads 
with a minimum of effort. 

THE L NETWORK 

Probably the simplest and most widely used match¬ 
ing circuit is the L network shown in Fig. 4-4. This cir¬ 
cuit receives its name because of the component 
orientation which resembles the shape of an L. As 
shown in the sketches, there are four possible ar¬ 
rangements of the two L and C components. Two of 
the arrangements (Figs. 4-4A and 4-4B) are in a 
low-pass configuration while the other two (Figs. 
4-4C and 4-4D) are in a high-pass configuration. Both 
of these circuits should be recognized from Chapter 3. 

Before we introduce equations which can be used to 
design the matching networks of Fig. 4-4, let’s first 

Fig. 4-2. Source impedance driving its complex conjugate 
and the resulting equivalent circuit. 

Impedance 
Matching 
Network 

— jlO 

5 + jlO 

Fig. 4-3. Impedance transformation. 

( C ) High-pass. ( D ) High-pass. 

Fig. 4-4. The L network. 

Fig. 4-5. Simple impedance-match network between a 
100-ohm source and a 1000-ohm load. 

analyze an existing matching network so that we can 
understand exactly how the impedance match occurs. 
Once this analysis is made, a little of the “black magic” 
surrounding impedance matching should subside. 



68 RF Circuit Design 

>1000 Í2 

Fig. 4-6. Impedance looking into the parallel 
combination of Rl and Xc. 

Fig. 4-7. Equivalent circuit of Fig. 4-6. 

Fig. 4-8. Completing the match. 

Fig. 4-5 shows a simple L network impedance¬ 
matching circuit between a 100-ohm source and a 
1000-ohm load. Without the impedance-matching net¬ 
work installed, and with the 100-ohm source driving 
the 1000-ohm load directly, about 4.8 dB of the 
available power from the source would be lost. Thus, 
roughly one-third of the signal available from the 
source is gone before we even get started. The im¬ 
pedance-matching network eliminates this loss and 
allows for maximum power transfer to the load. This 
is done by forcing the 100-ohm source to see 100 ohms 
when it looks into the impedance-matching network. 
But how? 

If you analyze Fig. 4-5, the simplicity of how the 
match occurs will amaze you. Take a look at Fig. 
4-6. The first step in the analysis is to determine what 
the load impedance actually looks like when the 
—j333-ohm capacitor is placed across the 1000-ohm 
load resistor. This is easily calculated by: 

XcRl 

xc + rl 

—j333(1000) 
—j333 + 1000 

= 315 /-71.58 o 

= 100 —j300 ohms 

Thus, the parallel combination of the —j333-ohm ca¬ 

pacitor and the 1000-ohm resistor looks like an im¬ 
pedance of 100 —j300 ohms. This is a series combina¬ 
tion of a 100-ohm resistor and a —j300-ohm capacitor 
as shown in Fig. 4-7. Indeed, if you hooked a signal 
generator up to circuits that are similar to Figs. 4-6 
and 4-7, you would not be able to tell the difference 
between the two as they would exhibit the same char¬ 
acteristics (except at de, obviously). 

Now that we have an apparent series 100 —j300-ohm 
impedance for a load, all we must do to complete the 
impedance match to the 100-ohm source is to add an 
equal and opposite (+j300 ohm) reactance in series 
with the network of Fig. 4-7. The addition of the 
+j300-ohm inductor causes cancellation of the — j300-
ohm capacitor leaving only an apparent 100-ohm load 
resistor. This is shown in Fig. 4-8. Keep in mind here 
that the actual network topology of Fig. 4-5 has not 
changed. All we have done is to analyze small portions 
of the network so that we can understand the function 
of each component. 

To summarize then, the function of the shunt com¬ 
ponent of the impedance-matching network is to 
transform a larger impedance down to a smaller value 
with a real part equal to the real part of the other 
terminating impedance (in our case, the 100-ohm 
source). The series impedance-matching element then 
resonates with or cancels any reactive component 
present, thus leaving the source driving an apparently 
equal load for optimum power transfer. So you see, 
the impedance match isn’t “black magic” at all but 
can be completely explained every step of the way. 

Now, back to the design of the impedance-matching 
networks of Fig. 4-4. These circuits can be very easily 
designed using the following equations : 

Q. = Qp = y^-l (Eq. 4-1) 

Q. = ^ (Eq. 4-2) 

Qp = ^ (Eq. 4-3) 
ap 

where, as shown in Fig. 4-9: 
Q„ = the Q of the series leg, 
Qp = the O of the shunt leg, 
Rp = the snunt resistance, 
Xp = the shunt reactance, 
R„ = the series resistance, 
X„ = the series reactance. 

The quantities Xp and Xs may be either capacitive or 
inductive reactance but each must be of the opposite 
type. Once Xp is chosen as a capacitor, for example, 
Xs must be an inductor, and vice-versa. Example 4-1 
illustrates the procedure. 

DEALING WITH COMPLEX LOADS 

The design of Example 4-1 was used for the simple 
case of matching two real impedances (pure resis-
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Fig. 4-9. Summary of the L-network design. 

Solution 

:;4.8pF >iooon 

Fig. 4-10. Final circuit for Example 4-1. 

100 « 477 nH 

EXAMPLE 4-1 
Design a circuit to match a 100-ohm source to a 1000-

ohm load at 100 MHz. Assume that a de voltage must also 
be transferred from the source to the load. 

The need for a de path between the source and load dic¬ 
tates the need for an inductor in the series leg, as shown in 
Fig. 4-4A. From Equation 4-1, we have: 

= 79 
= 3 

From Equation 4-2, we get: 

X. = Q.R. 

= (3)(100) 
= 300 ohms ( inductive ) 

Then, from Equation 4-3, 

Y _ Rp 
Xp ~o; 
_ 1000 
“ 3 

= 333 ohms ( capacitive ) 

Thus, the component values at 100 MHz are: 

L= — 

300 
“ 2rr( 100 X 10») 
= 477 nH 

C — i 
wXp 

__1_ 
“ 2tt(100 X 10«) (333) 
= 4.8 pF 

This yields the circuit shown in Fig. 4-10. Notice that what 
you have done is to design the circuit that was previously 
given in Fig. 4-5 and, then, analyzed. 

tances). It is very rare when such an occurrence ac¬ 
tually exists in the real world. Transistor input and 
output impedances are almost always complex; that 
is they contain both resistive and reactive components 
(R —jX) Transmission lines, mixers, antennas, and 
most other sources and loads are no different in that 
respect. Most will always have some reactive com¬ 
ponent which must be dealt with. It is, therefore, 
necessary to know how to handle these stray reactances 
and, in some instances, to actually put them to work 
for you. 

There are two basic approaches in handling complex 
impedances: 

1. Absorption—To actually absorb any stray reactances 
into the impedance-matching network itself. This 
can be done through prudent placement of each 
matching element such that element capacitors are 
placed in parallel with stray capacitances, and ele¬ 
ment inductors are placed in series with any stray 
inductances. The stray component values are then 
subtracted from the calculated element values leav¬ 
ing new element values (C', L'), which are smaller 
than the calculated element values. 

2. Resonance—To resonate any stray reactance with an 
equal and opposite reactance at the frequency of 
interest. Once this is done the matching network 
design can proceed as shown for two pure resis¬ 
tances in Example 4-1. 

Of course, it is possible to use both of the approaches 
outlined above at the same time. In fact, the majority 
of impedance-matching designs probably do utilize 
a little of both. Let’s take a look at two simple examples 
to help clarify matters. 

Notice that nowhere in Example 4-2 was a conjugate 
match even mentioned. However, you can rest assured 
that if you perform the simple analysis outlined in the 
previous section of this chapter, the impedance looking 
into the matching network, as seen by the source, will 
be 100 — jl26 ohms, which is indeed the complex con¬ 
jugate of 100 +jl26 ohms. 

Obviously, if the stray element values are larger 
than the calculated element values, absorption cannot 
take place. If, for instance, the stray capacitance of 
Fig. 4-11 were 20 pF, we could not have added a 
shunt element capacitor to give us the total needed 
shunt capacitance of 4.8 pF. In a situation such as 
this, when absorption is not possible, the concept of 
resonance coupled with absorption will often do the 
trick. 

Examples 4-2 and 4-3 detail some very important 
concepts in the design of impedance-matching net¬ 
works. With a little planning and preparation, the de¬ 
sign of simple impedance-matching networks between 
complex loads becomes a simple number-crunching 
task using elementary algebra. Any stray reactances 
present in the source and load can usually be absorbed 
in the matching network (Example 4-2), or they can 
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EXAMPLE 4-2 
Use the absorption approach to match the source and 

load shown in Fig. 4-11 (at 100 MHz). 

Fig. 4-11. Complex source and load circuit 
for Example 4-2. 

Solution 

The first step in the design process is to totally ignore the 
reactances and simply match the 100-ohm real part of the 
source to the 1000-ohm real part of the load (at 100 MHz). 
Keep in mind that you would like to use a matching net¬ 
work that will place element inductances in series with 
stray inductance and element capacitances in parallel with 
stray capacitances. Thus, conveniently, the network circuit 
shown in Fig. 4-4A is again chosen for the design and, 
again, Example 4-1 is used to provide the details of the 
procedure. Thus, the calculated values for the network, if 
we ignore stray reactances, are shown in the circuit of Fig. 
4-10. But, since the stray reactances really do exist, the de¬ 
sign is not yet finished as we must now somehow absorb 
the stray reactances into the matching network. This is done 
as follows. At the load end, we need 4.8 pF of capacitance 
for the matching network. We already have a stray 2 pF 
available at the load so why not use it. Thus, if we use a 
2.8-pF element capacitor, the total shunt capacitance be¬ 
comes 4.8 pF, the design value. Similarly, at the source, the 
matching network calls for a series 477-nH inductor. We 
already have a 4-jl26-ohm, or 200-nH, inductor available 
in the source. Thus, if we use an actual element inductance 
of 477 nH — 200 nH = 277 nH, then the total series in¬ 
ductance will be 477 nH—which is the calculated design 
value. The final design circuit is shown in Fig. 4-12. 

Fig. 4-12. Final design circuit for Example 4-2. 

be resonated with an equal and opposite reactance, 
which is then absorbed into the network (Example 
4-3). 

THREE-ELEMENT MATCHING 

Equation 4-1 reveals a potential disadvantage of the 
2-element L networks described in the previous sec¬ 
tions. It is a fact that once R8 and Rp, or the source and 
load impedance, are determined, the Q of the network 
is defined. In other words, with the L network, the 

designer does not have a choice of circuit Q and 
simply must take what he gets. This is, of course, 
usually the case because the source and load imped¬ 
ance are typically given in any design and, thus, Rp 

and Rs cannot be changed. 
The lack of circuit-Q versatility in a matching net¬ 

work can be a hindrance, however, especially if a 
narrow bandwidth is required. The 3-element network 
overcomes this disadvantage and can be used for 
narrow-band high-Q applications. Furthermore, the 
designer can select any practical circuit Q that he 
wishes as long as it is greater than that Q which is 
possible with the L-matching network alone. In other 
words, the circuit Q established with an L-matching 
network is the minimum circuit Q available in the 3-
element matching arrangement. 
The 3-element network (shown in Fig. 4-17) is 

called a Pi network because it closely resembles the 
Greek letter tt. Its companion network (shown in 
Fig. 4-18) is called a T network for equally obvious 
reasons. 

The Pi Network 
The Pi network can best be described as two “back-

to-back” L networks that are both configured to match 
the load and the source to an invisible or “virtual” re¬ 
sistance located at the junction between the two 
networks. This is illustrated in Fig. 4-19. The signifi¬ 
cance of the negative signs for —X8t and —X^ is sym¬ 
bolic. They are used merely to indicate that the X8 

values are the opposite type of reactance from Xpi 
and XP2, respectively. Thus, if Xpi is a capacitor, X8] 

must be an inductor, and vice-versa. Similarly, if 
XP2 is an inductor, Xb2 must be a capacitor, and vice-
versa. They do not indicate negative reactances (ca¬ 
pacitors ). 

The design of each section of the Pi network pro¬ 
ceeds exactly as was done for the L networks in the 
previous sections. The virtual resistance (R) must be 
smaller than either Rs or RL because it is connected to 
the series arm of each L section but, otherwise, it can 
be any value you wish. Most of the time, however, R 
is defined by the desired loaded Q of the circuit that 
you specify at the beginning of the design process. For 
our purposes, the loaded Q of this network will be de¬ 
fined as: 

^-1 (Eq. 4-4) 

where, 
Rh = the largest terminating impedance of Rs or RL, 
R = the virtual resistance. 

Although this is not entirely accurate, it is a widely 
accepted Q-determining formula for this circuit, and 
is certainly close enough for most practical work. Ex¬ 
ample 4-4 illustrates the procedure. 

Any of the networks in Fig. 4-21 will perform the 
impedance match between the 100-ohm source and the 
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EXAMPLE 4-3 
Design an impedance matching network that will block 

the flow of de from the source to the load in Fig. 4-13. The 
frequency of operation is 75 MHz. Try the resonant ap¬ 
proach. 

Fig. 4-13. Complex load circuit for Example 4-3. 

Solution 

The need to block the flow of de from the source to the 
load dictates the use of the matching network of Fig. 4-4C. 
But, first, let’s get rid of the stray 40-pF capacitor by reso¬ 
nating it with a shunt inductor at 75 MHz. 

L = ^-
QrCatrv 

1 
- [2rr(75 X 10»)P(40 X 10-12) 
= 112.6 nH 

Fig. 4-14. Resonating the stray load capacitance. 

This leaves us with the circuit shown in Fig. 4-14. Now that 
we have eliminated the stray capacitance, we can proceed 
with matching the network between the 50-ohm load and 
the apparent 600-ohm load. Thus, 

X. = Q.R. 
= (3.32)(50) 
= 166 ohms 

. _Rp 
’-q; 

600 
- 3.32 
= 181 ohms 

Therefore, the element values are: 

C-— a>X. 

1 
~2rr(75 X 10«)(166) 
= 12.78 pF 

L = ^ w 

181 
~ 2ir(75 X 10«) 
= 384 nH 

Matching Network 

Fig. 4-15. The circuit of Fig. 4-14 after 
impedance matching. 

These values, then, yield the circuit of Fig. 4-15. But notice 
that this circuit can be further simplified by simply replac¬ 
ing the two shunt inductors with a single inductor. There¬ 
fore, 

T LiL, 
”” - L + L, 

(384) (112.6) 
- 384 + 112.6 
= 87 nH 

The final circuit design appears in Fig. 4-16. 

Matching Network 

Fig. 4-16. Final design circuit for Example 4-3. 

Fig. 4-17. The three-element Pi network. Fig. 4-18. The three-element T network. 
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Fig. 4-19. The Pi network shown as two 
back-to-back L networks. 

1000-ohm load. The one that you choose for each par¬ 
ticular application will depend on any number of 
factors including: 

1. The elimination of stray reactances. 
2. The need for harmonic filtering. 
3. The need to pass or block de voltage. 

The T network 
The design of the 3-element T network is exactly 

the same as for the Pi network except that with the T, 
you match the load and the source, through two L-type 
networks, to a virtual resistance which is larger than 
either the load or source resistance. This means that 
the two L-type networks will then have their shunt 
legs connected together as shown in Fig. 4-22. 
The T network is often used to match two low¬ 

valued impedances when a high-Q arrangement is 
needed. The loaded Q of the T network is determined 
by the L section that has the highest Q. By definition, 
the L section with the highest Q will occur on the 
end which has the smallest terminating resistor. Re¬ 
member, too, that each terminating resistor is in the 
series leg of each network. Therefore, the formula 
for determining the loaded Q of the T network is: 

Q = - 1 (Eq. 4-5) 
V n 8mall 

where, 
R = the virtual resistance, 
Rsmaii = the smallest terminating resistance. 

This formula is exactly the same as the Q formula that 
was previously given for the Pi-type networks. How¬ 
ever, since we have reversed or “flip-flopped” the L 
sections to produce the T network, we must also make 
sure that we redefine the Q formula to account for 
the new resistor placement, in relation to those L 
networks. In other words, Equations 4-4 and 4-5 are 
only special applications of the general formula that 
is given in Equation 4-1 (and repeated here for con¬ 
venience ). 

Q=y^-i (Eq. 4-1) 

where, 
Rp = the resistance in the shunt branch of the L 

network, 
R„ = the resistance in the series branch of the L 

network. 

So, try not to get confused with the different definitions 
of circuit Q. They are all the same. 

Each L network is calculated in exactly the same 
manner as was given in the previous examples and, as 
we shall soon see, we will also end up with four pos¬ 
sible configurations for the T network ( Example 4-5 ). 

LOW-Q OR WIDEBAND 
MATCHING NETWORKS 

Thus far in this chapter we have studied: (1) the 
L network, which has a circuit Q that is automatically 
defined when the source and load impedances are set, 
and (2) the Pi and T networks, which allow us to 
select a circuit Q independent of the source and load 
impedances as long as the Ç chosen is larger than that 
which is available with the L network. This seems to 
indicate, and rightfully so, that the Pi and T networks 
are great for narrow-band matching networks. But 
what if an impedance match is required over a fairly 
broad range of frequencies. How do we handle that? 
The answer is to simply use two L sections in still 
another configuration as shown in Fig. 4-25. Notice 
here that the virtual resistor is in the shunt leg of 
one L section and in the series leg of the other L 
section. We, therefore, have two series-connected L 
sections rather than the back-to-back configuration 
of the Pi and T networks. In this new configuration, 
the value of the virtual resistor (R) must be larger 
than the smallest termination impedance and, also, 
smaller than the largest termination impedance. Of 
course, any virtual resistance that satisfies these criteria 
may be chosen. The net result is a range of loaded-Q 
values that is less than the range of Q values obtain¬ 
able from either a single L section, or the Pi and T 
networks previously described. 
The maximum bandwidth (minimum Q) available 

from this network is obtained when the virtual resistor 
(R) is made equal to the geometric mean of the two 
impedances being matched. 

R = x/RsRl ( Eq. 4-6 ) 

The loaded Q of the network, for our purposes, is 
defined as: 

Q= 4^- 1= /^-l' (Eq. 4-7) 
V ^smaller V 

where, 
R = the virtual resistance, 
Rsmaiier = the smallest terminating resistance, 
Riarger = the largest terminating resistance. 

If even wider bandwidths are needed, more L net¬ 
works may be cascaded with virtual resistances be¬ 
tween each network. Optimum bandwidths in these 
cases are obtained if the ratios of each of the two 
succeeding resistances are equal: 

^smaller n2 Hn
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EXAMPLE 4-4 
Using Fig. 4-19 as a reference, design four different Pi 

networks to match a 100-ohm source to a 1000-ohm load. 
Each network must have a loaded Q of 15. 

Solution 

From Equation 4-4, we can find the virtual resistance we 
will be matching. 

_ 1000 
“ 226 
= 4.42 ohms 

To find XP2 we have: 

_ Rl 
“ Q 

1000 
- 15 
= 66.7 ohms 

Similarly, to find X.2: 

X., = QR..„.. 

= 15(R) 
= (15)(4.42) 
= 66.3 ohms 

This completes the design of the L section on the load side 
of the network. Note that R.,ri«» in the above equation was 
substituted for the virtual resistor R, which by definition is 
in the series arm of the L section. 

The Q for the other L network is now defined by the 
ratio of R. to R, as per Equation 4-1, where: 

= 4.6 

Notice here that the source resistor is now considered to be 
in the shunt leg of the L network. Therefore, R. is defined 
as Rp, and 

_ 100 
“ 4.6 
= 21.7 ohms 

Similarly, 

X„ = Q,R..,i.. 

= QiR 
= (4.6) (4.46) 
= 20.51 ohms 

The actual network design is now complete and is shown in 
Fig. 4-20. Remember that the virtual resistor (R) is not 
really in the circuit and, therefore, is not shown. Reactances 
—X.i and —X.Ü are now in series and can simply be added 
together to form a single component. 

So far in the design, we have dealt only with reactances 
and have not yet computed actual component values. This 

20.5 66.3 

Fig. 4-20. Calculated reactances for Example 4-4. 

is because of the need to maintain a general design ap¬ 
proach so that four final networks can be generated quickly 
as per the problem statement. 

Notice that XPi, Xt), Xp2, and X.2 can all be either ca¬ 
pacitive or inductive reactances. The only constraint is that 
Xpi and X.i are of opposite types, and Xp2 and X.2 are of 
opposite types. This yields the four networks of Fig. 4-21 
(the source and load have been omitted). Each component 
in Fig. 4-21 is shown as a reactance (in ohms). Therefore, 
to perform the transformation from the dual-L to the Pi net¬ 
work, the two series components are merely added if they 
are alike, and subtracted if the reactances are of opposite 
type. The final step, of course, is to change each reactance 
into a component value of capacitance and inductance at 
the frequency of operation. 

_ nnw_ 
87.4 « 

221.7« 2 2 66.7« 
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If 

20.5« 
. ( 

11 r 
46.4 fl 

21.7 « (66.7 0 - * 21.7« « (66.7 0 

(D) 
Fig. 4-21. The transformation from 

double-L to Pi networks. 
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Fig. 4-22. The T network shown as two 
back-to-back L networks. 

where, 
Rsmaiier = the smallest terminating resistance, 
Riarger = the largest terminating resistance, 
Ri, R2,... Rn = virtual resistors. 

This is shown in Fig. 4-26. 
The design procedure for these wideband matching 

networks is precisely the same as was given for the 
previous examples. To design for a specific low Q, 
simply solve Equation 4-7 for R to find the virtual 

EXAMPLE 4-5 
Using Fig. 4-22 as a reference, design four different net¬ 

works to match a 10-ohm source to a 50-ohm load. Each 
network is to have a loaded Q of 10. 

Solution 

Using Equation 4-5, we can find the virtual resistance 
we need for the match. 

R = R.m.n(Q2 + 1) 
= 10(101) 
= 1010 ohms 

From Equation 4-2: 

X„ = QR. 
= 10(10) 
= 100 ohms 

From Equation 4-3: 

v -5-XP.-Q 

_ 1010 
- 10 
= 101 ohms 

Now, for the L network on the load end, the Q is defined 
by the virtual resistor and the load resistor. Thus, 

Q — / — — 1 
u VRl 1

- / I01° 
50 1

= 4.4 

Therefore, 

X --5-Xps _ Q , 

1010 
- 4.4 
= 230 ohms 

X.P = Q2Rl 

= (4.4)(50) 
= 220 ohms 

The network is now complete and is shown in Fig. 4-23 
without the virtual resistor. 

The two shunt reactances of Fig. 4-23 can again be com¬ 
bined to form a single element by simply substituting a 
value that is equal to the combined equivalent parallel re¬ 
actance of the two. 

The four possible T-type networks that can be used for 
matching the 10-ohm source to the 50-ohm load are shown 
in Fig. 4-24. 

220 

Fig. 4-23. The calculated reactances of Example 4-5. 

100 220 100 220 

__rwu_jwtl mmnn rmw 

(A) 

(D) 
Fig. 4-24. The transformation of circuits from 

double-L to T-type networks. 
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( B ) Rin series leg. 

Fig. 4-25. Two series-connected L networks for 
lower Q applications. 

Fig. 4-26. Expanded version of Fig. 4-25 for 
even wider bandwidths. 

resistance needed. Or, to design for an optimally wide 
bandwidth, solve Equation 4-6 for R. Once R is known, 
the design is straightforward. 

THE SMITH CHART 

Probably one of the most useful graphical tools 
available to the rf circuit designer today is the Smith 
Chart shown in Fig. 4-27. The chart was originally 
conceived back in the Thirties by a Bell Laboratories 
engineer named Phillip Smith, who wanted an easier 
method of solving the tedious repetitive equations that 
often appear in rf theory. His solution, appropriately 
named the Smith Chart, is still widely in use. 

At first glance, a Smith Chart appears to be quite 
complex. Indeed, why would anyone of sound mind 
even care to look at such a chart? The answer is really 
quite simple; once the Smith Chart and its uses are 
understood, the rf circuit designer’s job becomes much 
less tedious and time consuming. Very lengthy complex 
equations can be solved graphically on the chart in 
seconds, thus lessening the possibility of errors creep¬ 
ing into the calculations. 

Smith Chart Construction 
The mathematics behind the construction of a 

Smith Chart are given here for those that are inter¬ 
ested. It is important to note, however, that you do not 
need to know or understand the mathematics surround¬ 
ing the actual construction of a chart as long as you 

understand what the chart represents and how it can 
be used to your advantage. Indeed, there are so many 
uses for the chart that an entire volume has been writ¬ 
ten on the subject. In this chapter, we will concentrate 
mainly on the Smith Chart as an impedance matching 
tool and other uses will be covered in later chapters. 
The mathematics follow. 

The reflection coefficient of a load impedance when 
given a source impedance can be found by the formula: 

Z8 — ZL / c* i \ 
p = 4+zZ (s,epl)

In normalized form, this equation becomes: 

<step2 > 

where Zo is a complex impedance of the form R +jX. 
The polar form of the reflection coefficient can also 

be represented in rectangular coordinates: 

P = P +jq 
Substituting into Step 2, we have: 

P +iq = R +jX + 1 (Step 3) 

If we solve for the real and imaginary parts of 
p +jq, we get: 

R2 — 1 + X2 ., 
P (R + l)2 + X2 (Step 4) 

and, 

2x 
q = (R + 1)2 + X2 ( Step 5 )

Solve Step 5 for X: 

Y _/p(R + l)2-R2 + lV /c, -, X - -J ( Step 6 ) 

Then, substitute Step 6 into Step 5 to obtain: 

/ R \2 / 1 \2

(p-R + ï) ^(rTi) <Step7 ) 
Step 7 is the equation for a family of circles whose 

centers are at: 

R 
P R+ 1 
q = 0 

and whose radii are equal to: 

1 
R + l 

These are the constant resistance circles, some of which 
are shown in Fig. 4-28A. 

Similarly, we can eliminate R from Steps 4 and 5 
to obtain: 

/ 1\2 /1\2
(p- l)2 + (q- = (Step8) 
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Fig. 4-27. The Smith Chart. ( Courtesy Analog Instruments Co. ) 
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( A ) Constant resistance circles. 

(B) Constant reactance circles. 

Fig. 4-28. Smith Chart construction. 

which represents a family of circles with centers at 

P = 1, V =V7, and radii of These circles are shown A A 
plotted on the p, jq axis in Fig. 4-28B. 

As the preceding mathematics indicate, the Smith 
Chart is basically a combination of a family of circles 
and a family of arc of circles—the centers and radii of 
which can be calculated using the equations given 
(Steps 1 through 8). Fig. 4-28 shows the chart broken 
down into these two families. The circles of Fig. 4-28A 
are known as constant resistance circles. Each point on 
a constant resistance circle has the same resistance as 
any other point on the circle. The arcs of circles shown 

in Fig. 4-28B are known as constant reactance circles, 
as each point on a circle has the same reactance as 
any other point on that circle. These circles are cen¬ 
tered off of the chart and, therefore, only a small 
portion of each is contained within the boundary of 
the chart. All arcs above the centerline of the chart 
represent +jX, or inductive reactances, and all arcs 
below the centerline represent —jX, or capacitive re¬ 
actances. The centerline must, therefore, represent an 
axis where X = 0 and is, therefore, called the real axis. 

Notice in Fig. 4-28A that the “constant resistance = 
0” circle defines the outer boundary of the chart. As 
the resistive component increases, the radius of each 
circle decreases and the center of each circle moves 
toward the right on the chart. Then, at infinite re¬ 
sistance, you end up with an infinitely small circle that 
is located at the extreme right-hand side of the chart. 
A similar thing happens for the constant reactance 
circles shown in Fig. 4-28B. As the magnitude of the 
reactive component increases ( — jX or +jX), the radius 
of each circle decreases, and the center of each circle 
moves closer and closer to the extreme right side of the 
chart. Infinite resistance and infinite reactance are thus 
represented by the same point on the chart. 

Since the outer boundary of the chart is defined as 
the “R = 0“ circle, with higher values of R being con¬ 
tained within the chart, it follows then that any point 
outside of the chart must contain a negative resistance. 
The concept of negative resistance is useful in the 
study of oscillators and it is mentioned here only to 
state that the concept does exist, and if needed, the 
Smith Chart can be expanded to deal with it. 

When the two charts of Fig. 4-28 are incorporated 
into a single version, the Smith Chart of Fig. 4-29 is 
born If we add a few peripheral scales to aid us in 
other rf design tasks, such as determining standing 
wave ratio (SWR), reflection coefficient, and trans¬ 
mission loss along a transmission line, the basic chart 
of Fig. 4-27 is completed. 

Plotting Impedance Values 
Any point on the Smith Chart represents a series 

combination of resistance and reactance of the form 
Z = R + jX. Thus, to locate the impedance Z = 1 + jl, 
you would find the R = 1 constant resistance circle and 
follow it until it crossed the X = 1 constant reactance 
circle. The junction of these two circles would then 
represent the needed impedance value. This particular 
point, shown in Fig. 4-30, is located in the upper half 
of the chart because X is a positive reactance or an 
inductor. On the other hand, the point 1 — jl is located 
in the lower half of the chart because, in this instance, 
X is a negative quantity and represents a capacitor. 
Thus, the junction of the R = 1 constant resistance cir¬ 
cle and the X = —1 constant reactance circle defines 
that point. 

In general, then, to find any series impedance of the 
form R ± jX on a Smith Chart, you simply find the 
junction of the R = constant and X = constant circles. 
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Fig. 4-29. The basic Smith Chart. 
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Fig. 4-30. Plotting impedances on the chart. 
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DWG. NO 

SMITH CHART FORM 82-BSPR (9-66) KAY ELECT R IC COMPANY, PINE BROOK. N J.. ©1966 PRINTED IN USA 

IMPEDANCE OR ADMITTANCE COORDINATES 

Fig. 4-31. More impedances are plotted on the chart. 
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In many cases, the actual circles will not be present 
on the chart and you will have to interpolate between 
two that are shown. Thus, plotting impedances and, 
therefore, any manipulation of those impedances must 
be considered an inexact procedure which is subject 
to “pilot error.” Most of the time, however, the error 
introduced by subjective judgements on the part of 
the user, in plotting impedances on the chart, is so 
small as to be negligible for practical work. Fig. 4-31 
shows a few more impedances plotted on the chart. 

Notice that all of the impedance values plotted in 
Fig. 4-31 are very small numbers. Indeed, if you try 
to plot an impedance of Z = 100 4- jl50 ohms, you will 
not be able to do it accurately because the R = 100 
and X = 150 ohm circles would be ( if they were 
drawn) on the extreme right edge of the chart—very 
close to infinity. In order to facilitate the plotting of 
larger impedances, normalization must be used. That 
is, each impedance to be plotted is divided by a con¬ 
venient number that will place the new normalized 
impedance near the center of the chart where in¬ 
creased accuracy in plotting is obtained. Thus, for 
the preceding example, where Z = 100 + jl50 ohms, it 
would be convenient to divide Z by 100, which yields 
the value Z = 1 + jl.5. This is very easily found on the 
chart. Once a chart is normalized in this manner, all 
impedances plotted on that chart must be divided by 
the same number in the normalization process. Other¬ 
wise, you will be left with a bunch of impedances with 
which nothing can be done. 

Impedance Manipulation on the Chart 
Fig. 4-32 graphically indicates what happens when 

a series capacitive reactance of — jl.O ohm is added to 
an impedance of Z = 0.5 + j0.7 ohm. Mathematically, 
the result is 

Z = 0.5 + j0.7 - jl.O 
= 0.5 — j0.3 ohm 

which represents a series RC quantity. Graphically, 
what we have done is move downward along the R = 
0.5-ohm constant resistance circle for a distance of 
X = —jl.O ohm. This is the plotted impedance point 
of Z = 0.5 — j0.3 ohm, as shown. In a similar manner, 
as shown in Fig. 4-33, adding a series inductance to a 
plotted impedance value simply causes a move upward 
along a constant resistance circle to the new impedance 
value. This type of construction is very important in 
the design of impedance-matching networks using the 
Smith Chart and must be understood. In general then, 
the addition of a series capacitor to an impedance 
moves that impedance downward (counterclockwise) 
along a constant resistance circle for a distance that is 
equal to the reactance of the capacitor. The addition 
of any series inductor to a plotted impedance moves 
that impedance upward (clockwise) along a constant 
resistance circle for a distance that is equal to the 
reactance of the inductor. 

Conversion of Impedance to Admittance 
The Smith Chart, although described thus far as 

a family of impedance coordinates, can easily be used 
to convert any impedance (Z) to an admittance (Y), 
and vice-versa. In mathematical terms, an admittance 
is simply the inverse of an impedance, or 

Y = | (Eq. 4-9) 

where, the admittance (Y) contains both a real and 
an imaginary part, similar to the impedance (Z). Thus, 

Y = G ± jB (Eq. 4-10) 
where, 
G = the conductance in mhos, 
B = the susceptance in mhos. 

The circuit representation is shown in Fig. 4-34. No¬ 
tice that the susceptance is positive for a capacitor 
and negative for an inductor, whereas, for reactance, 
the opposite is true. 

To find the inverse of a series impedance of the 
form Z = R + jX mathematically, you would simply 
use Equation 4-9 and perform the resulting calcula¬ 
tion. But, how can you use the Smith Chart to perform 
the calculation for you without the need for a calcu¬ 
lator? The easiest way of describing the use of the 
chart in performing this function is to first work a prob¬ 
lem out mathematically and, then, plot the results on 
the chart to see how the two functions are related. 
Take, for example, the series impedance Z = 1 -I- jl. 
The inverse of Z is: 

1 
1.414 /45° 

= 0.7071 / —45° 
= 0.5 — j0.5 mho 

If we plot the points 1 + jl and 0.5 — j0.5 on the Smith 
Chart, we can easily see the graphical relationship 
between the two. This construction is shown in Fig. 
4-35. Notice that the two points are located at exactly 
the same distance (d) from the center of the chart 
but in opposite directions (180°) from each other. 
Indeed, the same relationship holds true for any im¬ 
pedance and its inverse. Therefore, without the aid of 
a calculator, you can find the reciprocal of an im¬ 
pedance or an admittance by simply plotting the 
point on the chart, measuring the distance (d) from 
the center of the chart to that point, and, then, plot¬ 
ting the measured result the same distance from the 
center but in the opposite direction (180°) from the 
original point. This is a very simple construction tech¬ 
nique that can be done in seconds. 
Another approach that we could take to achieve 

the same result involves the manipulation of the 
actual chart rather than the performing of a construe-
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DWG. NO 

DATE 
SMITH CHART FORM 82-BSPR19-66) KAY ELECTRIC COMPANY. PINE BROOK, N J., 0'966 PRINTED IN USA 

IMPEDANCE OR ADMITTANCE COORDINATES 

Fig. 4-32. Addition of a series capacitor. 
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name title “-— 

SMI~H CHART FORM 82-BSPRO-66) KAY ELECTRIC COMPANY, PINE BROOK N -. ßiRSS PRINTED IN USA 

IMPEDANCE OR ADMITTANCE COORDINATES 

ORIGIN 

A MCGA-CMART 

Fig. 4-33. Addition of a series inductor. 



84 RF Circuit Design 

Fig. 4-34. Circuit representation for admittance. 

tion on the chart. For instance, rather than locating a 
point 180° away from our original starting point, why 
not just rotate the chart itself 180° while fixing the 
starting point in space? The result is the same, and it 
can be read directly off of the rotated chart without 
performing a single construction. This is shown in Fig. 
4-36 (Smith Chart Form ZY-01-N)’ where the rotated 
chart is shown in black. Notice that the impedance 
plotted (solid lines on the red coordinates) is located 
at Z = 1 + jl ohms, and the reciprocal of that (the 
admittance) is shown by dotted lines on the black 
coordinates as Y = 0.5 — j0.5. Keep in mind that be¬ 
cause we have rotated the chart 180° to obtain the ad¬ 
mittance coordinates, the upper half of the admittance 
chart represents negative susceptance (—jB) which is 
inductive, while the lower half of the admittance chart 
represents a positive susceptance (+jB) which is 
capacitive. Therefore, nothing has been lost in the ro¬ 
tation process. 

The chart shown in Fig. 4-36, containing the super¬ 
imposed impedance and admittance coordinates, is 
an extremely useful version of the Smith Chart and is 
the one that we will use throughout the remainder of 
the book. But first, let’s take a closer look at the admit¬ 
tance coordinates alone. 

Admittance Manipulation on the Chart 
Just as the impedance coordinates of Figs. 4-32 and 

4-33 were used to obtain a visual indication of what 
occurs when a series reactance is added to an im¬ 
pedance, the admittance coordinates provide a visual 
indication of what occurs when a shunt element is 
added to an admittance. The addition of a shunt ca¬ 
pacitor is shown in Fig. 4-37. Here we begin with an 
admittance of Y = 0.2 — j0.5 mho and add a shunt 
capacitor with a susceptance ( reciprocal of reactance ) 
of +j0.8 mho. Mathematically, we know that parallel 
susceptances are simply added together to find the 
equivalent susceptance. When this is done, the result 
becomes : 

Y = 0.2 - j0.5 + j0.8 
= 0.2 + j0.3 mho 

If this point is plotted on the admittance chart, we 
quickly recognize that all we have done is to move 
along a constant conductance circle (G) downward 
(clockwise) a distance of jB = 0.8 mho. In other words, 

• Smith Chart Form ZY-01-N is a copyright of Analog Instruments Com¬ 
pany, P.O. Box 808, New Providence, NJ 07974. It and other Smith Chart 
accessories are available from the company. 

the real part of the admittance has not changed, only 
the imaginary part has. Similarly, as Fig. 4-38 indicates, 
adding a shunt inductor to an admittance moves the 
point along a constant conductance circle upward 
(counterclockwise) a distance ( — jB) equal to the 
value of its susceptance. 

If we again superimpose the impedance and admit¬ 
tance coordinates and combine Figs. 4-32, 4-33, 4-37, 
and 4-38 for the general case, we obtain the useful 
chart shown in Fig. 4-39. This chart graphically illus¬ 
trates the direction of travel, along the impedance 
and admittance coordinates, which results when the 
particular type of component that is indicated is added 
to an existing impedance or admittance. A simple ex¬ 
ample should illustrate the point (Example 4-6). 

IMPEDANCE MATCHING 
ON THE SMITH CHART 

Because of the ease with which series and shunt 
components can be added in ladder-type arrangements 
on the Smith Chart, while easily keeping track of the 
impedance as seen at the input terminals of the struc¬ 
ture, the chart seems to be an excellent candidate for 
an impedance-matching tool. The idea here is simple. 
Given a load impedance and given the impedance that 
the source would like to see, simply plot the load im¬ 
pedance and, then, begin adding series and shunt 
elements on the chart until the desired impedance is 
achieved—just as was done in Example 4-6. 

Two-Element Matching 
Two-element matching networks are mathematically 

very easy to design using the formulas provided in 
earlier sections of this chapter. For the purpose of il¬ 
lustration, however, let’s begin our study of a Smith 
Chart impedance-matching procedure with the simple 
network given in Example 4-7. 

To make life much easier for you as a Smith Chart 
user, the following equations may be used. For a 
series-C component: 

C = -4m (Eq. 4-11) toXN 

For a series-L component: 

L = — (Eq. 4-12) 
CÜ 

For a shunt-C component: 

C = 4i (Eq. 4-13) 
coN 

For a shunt-L component: 

L = A (Eq. 4*14) 

where, 
co = 2rrf, 
X = the reactance as read from the chart, 
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Fig. 4-35. Impedance-admittance conversion on the Smith Chart. 
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NAME TITLE DWG. NO. 

SMITH CHART FORM IY-OVN ANALOG INSTRUMENTS COMPANY, NEW PROVIDENCE, N.J. 07974 
DATE 

NORMALIZED IMPEDANCE AND ADMITTANCE COORDINATES 

Fig. 4-36. Superimposed admittance coordinates. 
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Fig. 4-37. Addition of a shunt capacitor. 



Fig. 4-38. Addition of a shunt inductor. 

R
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Fig. 4-39. Summary of component addition on a Smith Chart. 
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B = the susceptance as read from the chart, 
N = the number used to normalize the original im¬ 

pedances that are to be matched. 

If you use the preceding equations, you will never 
have to worry about changing susceptances into re¬ 
actances before unnormalizing the impedances. The 
equations take care of both operations. The only thing 
you have to do is read the value of susceptance (for 
shunt components) or reactance (for series compo¬ 
nents) directly off of the chart, plug this value into 
the equation used, and wait for your actual component 
values to pop out. 

Three-Element Matching 
In earlier sections of this chapter, you learned that 

the only real difference between two-element and 
three-element matching is that with three-element 
matching, you are able to choose the loaded Q for the 
network. That was easy enough to do in a mathe¬ 
matical-design approach due to the virtual resistance 
concept. But how can circuit Q be represented on a 
Smith Chart? 

As you have seen before, in earlier chapters, the Q 
of a series-impedance circuit is simply equal to the 
ratio of its reactance to its resistance. Thus, any point 
on a Smith Chart has a Q associated with it. Alter¬ 
nately, if you were to specify a certain Q, you could 
find an infinite number of points on the chart that 
could satisfy that Q requirement. For example, the 
following impedances located on a Smith Chart have 
a Q of 5: 

R + jX = 1 ± j5 

= 0.5 ± j2.5 
= 0.2 ± jl 
= 0.1 ± ¡0.5 

= 0.05 ± j0.25 

These values are plotted in Fig. 4-45 and form the 
arcs shown. Thus, any impedance located on these 
arcs must have a Q of 5. Similar arcs for other values 
of Q can be drawn with the arc of infinite Q being 
located along the perimeter of the chart and the Q = 0 
arc (actually a straight line) lying along the pure 
resistance line located at the center of the chart. 

The design of high-Q three-element matching net¬ 
works on a Smith Chart is approached in much the 
same manner as in the mathematical methods pre¬ 
sented earlier in this chapter. Namely, one branch of 
the network will determine the loaded Q of the cir¬ 
cuit, and it is this branch that will set the character¬ 
istics of the rest of the circuit. 
The procedure for designing a three-element im¬ 

pedance-matching network for a specified Q is sum¬ 
marized as follows: 

1. Plot the constant-Q arcs for the specified Q. 

2. Plot the load impedance and the complex conjugate 
of the source impedance. 

3. Determine the end of the network that will be 
used to establish the loaded Q of the design. For 
T networks, the end with the smaller terminating 
resistance determines the Q. For Pi networks, the 
end with the larger terminating resistor sets the Q. 

4. For T networks: 

R8 > Rl 

EXAMPLE 4-6 
What is the impedance looking into the network shown 

in Fig. 4-40? Note that the task has been simplified due to 
the fact that shunt susceptances are shown rather than shunt 
reactances. 

jX = 0.9 _)X _ J 4 ¡X - 1 
rwnnn y . rnTWL 

+¡B-1.1" R_1 ? 

z X 
Fig. 4-40. Circuit for Example 4-6. 

Solution 

This problem is very easily handled on a Smith Chart and 
not a single calculation needs to be performed. The solution 
is shown in Fig. 4-42. It is accomplished as follows. 

First, break the circuit down into individual branches as 
shown in Fig. 4-41. Plot the impedance of the series RL 
branch where Z = 1 + jl ohm. This is point A in Fig. 4-42. 
Next, following the rules diagrammed in Fig. 4-39, begin 
adding each component back into the circuit—one at a time. 
Thus, the following constructions (Fig. 4-42) should be 
noted: 

C 

¡X = 0.9 
jwtl 

E D 

Fig. 4-41. Circuit is broken down into individual 
branch elements. 

Arc AB = shunt L = —¡B = 0.3 mho 
Arc BC = series C = —¡X =1.4 ohms 
Arc CD = shunt C = +jB = 1.1 mhos 
Arc DE = series L = +jX = 0.9 ohm 

The impedance at point E (Fig. 4-42) can then be read 
directly off of the chart as Z = 0.2 -f- j0.5 ohm. 

Continued on next page 
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EXAMPLE 4-6—Cont. 

NORMALIZED IMPEDANCE AND ADMITTANCE COORDINATES 

NAME TITLE DWG. NO. 

SMITH CHART FORM Z Y-01-N ANALOG INSTRUMENTS COMPANY. NEW PROVIDENCE. N.J. 07974 DATE 

Fig. 4-42. Smith Chart solution for Example 4-6. 
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Move from the load along a constant-R circle ( series 
element) and intersect the Q curve. The length of 
this move determines your first element. Then, pro¬ 
ceed from this point to ZM° (ZB° = Z„ conjugate) in 
two moves—first with a shunt and, then, with a se¬ 
ries element. 

R8 < Rl 

Find the intersection (I) of the Q curve and the 
source impedance’s R = constant circle, and plot 
that point. Move from the load impedance to point 
I with two elements—first, a series element and, 
then, a shunt element. Move from point I to Z8* 
along the R = constant circle with another series 
element. 

5. For Pi networks: 

Rs > Rl 
Find the intersection (I) of the Q curve and the 
source impedance’s G = constant circle, and plot 
that point. Move from the load impedance to point 

I with two elements—first, a shunt element and, then, 
a series element. Move from point I to Z8° along the 
G = constant circle with another shunt element. 

Rs < Rl 

Move from the load along a constant G circle ( shunt 
element) and intersect the Q curve. The length of 
this move determines your first element. Then, pro¬ 
ceed from this point to Z8° in two moves—first, with 
a series element and, then, with a shunt element. 

The above procedures might seem complicated to the 
neophyte but remember that we are only forcing the 
constant-resistance or constant-conductance arc, lo¬ 
cated between the Q-determining termination and the 
specified-Q curve, to be one of our matching elements. 
An example may help to clarify matters ( Example 4-8 ). 

Multielement Matching 
In multielement matching networks where there is 

no Q constraint, the Smith Chart becomes a veritable 

EXAMPLE 4-7 
Design a two-element impedance-matching network on a 

Smith Chart so as to match a 25 — j!5-ohm source to a 
100 — j25-ohm load at 60 MHz. The matching network 
must also act as a low-pass filter between the source and 
the load. 

Solution 

Since the source is a complex impedance, it wants to 
"see” a load impedance that is equal to its complex conju¬ 
gate ( as discussed in earlier sections of this chapter ). Thus, 
the task before us is to force the 100 — j25-ohm load to 
look like an impedance of 25 4- j 15 ohms. 

Obviously, the source and load impedances are both too 
large to plot on the chart, so normalization is necessary. 
Let’s choose a convenient number ( N = 50 ) and divide all 
impedances by this number. The results are 0.5 -f- j0.3 ohm 
for the impedance the source would like to see and 2 — j0.5 
ohms for the actual load impedance. These two values are 
easily plotted on the Smith Chart, as shown in Fig. 4-44, 
where, at point A, Zl is the normalized load impedance 
and, at point C, Z.° is the normalized complex conjugate of 
the source impedance. 

The requirement that the matching network also be a 
low-pass filter forces us to use some form of series-L, 
shunt-C arrangement. The only way we can get from the 
impedance at point A to the impedance at point C and still 
fulfill this requirement is along the path shown in Fig. 4-44. 
Thus, following the rules of Fig. 4-39, the arc AB of Fig. 
4-44 is a shunt capacitor with a value of 4-jB = 0.73 mho. 
The arc BC is a series inductor with a value of +jX = 1.2 
ohms. 

The shunt capacitor as read from the Smith Chart is a 
susceptance and can be changed into an equivalent reac¬ 
tance by simply taking the reciprocal. 

1 
j0.73 mho 

= — jl.37 ohms 

To complete the network, we must now unnormalize all 
impedance values by multiplying them by the number 
N = 50—the value originally used in the normalization pro¬ 
cess. Therefore: 

Xl = 60 ohms 
Xc = 68.5 ohms 

The component values are: 

T _Xl 1j — 
co 

“ 2rr(60 X 10«) 
= 159 nH 

“ 2w(60x 10«)(68.5) 
= 38.7 pF 

The final circuit is shown in Fig. 4-43. 

Fig. 4-43. Final circuit for Example 4-7. 

Continued on next page 
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EXAMPLE 4-7—Cont. 

TITLE DWG. NO. 

SMITH CHART FORM ZY-01-N ANALOG INSTRUMENTS COMPANY, NEW PROVIDENCE, N.J. 07974 

NORMALIZED IMPEDANCE AND ADMITTANCE COORDINATES 

Fig. 4-44. Solution to Example 4-7. 
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NAME TITLE DWG. NO. 

SMITH CHART FORM ZY-01-N ANALOG INSTRUMENTS COMPANY, NEW PROVIDENCE, N.J. 07974 
DATE 

NORMALIZED IMPEDANCE AND ADMITTANCE COORDINATES 

Fig. 4-45. Lines of constant Q. 
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NAME TITLE DWG. NO. 

SMITH CHART FORM ZY-OMi ANALOG INSTRUMENTS COMPANY, NEW PROVIDENCE, N.J. 07974 DATE 

NORMALIZED IMPEDANCE AND ADMITTANCE COORDINATES 

Fig. 4-46. Smith Chart solution for Example 4-8. 
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EXAMPLE 4-8 
Design a T network to match a Z = 15 + jl5-ohni source 

to a 225-ohm load at 30 MHz with a loaded Q of 5. 

Solution 

Following the procedures previously outlined, draw the 
arcs for Q = 5 first and, then, plot the load impedance 
and the complex conjugate of the source impedance. Obvi¬ 
ously, normalization is necessary as the impedances are too 
large to be located on the chart. Divide by a convenient 
value (choose N = 75) for normalization. Therefore: 

Z.° = 0.2 — j0.2 ohm 

Zt = 3 ohms 

The construction details for the design are shown in Fig. 
4-46. 

The design statement specifies a T network. Thus, the 
source termination will determine the network Q because 
Rs < Rl. 

Following the procedure for Rs < Ri. (Step 4, above), 
first plot point I, which is the intersection of the Q = 5 
curve and the R = constant circuit that passes through Z,°. 
Then, move from the load impedance to point I with two 
elements. 

Element 1 = arc AB = series L = j2.5 ohms 
Element 2 = arc BI — shunt C = jl.15 mhos 

Then, move from point I to Z.° along the R = constant 
circle. 

Element 3 = arc IC = series L = j0.8 ohm 

Use Equations 4-11 through 4-14 to find the actual element 
values. 

Element 1 = series L: 

(2,5)75 
~ 2ir(30 X 10«) 

= 995 nil 

Element 2 = shunt C: 

r _ 1.15 
-  2rr(3O X 10«)75 
= 81 pF 

Element 3 = series L: 

_ (0.8)75 
-  2rr(30 X 10«) 

= 318 nH 

The final network is shown in Fig. 4-47. 
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treasure trove containing an infinite number of possible 
solutions. To get from point A to point B on a Smith 
Chart, there is, of course, an optimum solution. How¬ 
ever, the optimum solution is not the only solution. The 
two-element network gets you from point A to point 
B with the least number of components and the three-
element network can provide a specified Q by follow¬ 
ing a different route. If you do not care about Q, 
however, there are 3-, 4-, 5-, 10-, and 20-element (and 
more) impedance-matching networks that are easily 
designed on a Smith Chart by simply following the 
constant-conductance and constant-resistance circles 
until you eventually arrive at point B, which, in our 
case, is usually the complex conjugate of the source 
impedance. Fig. 4-48 illustrates this point. In the 
lower right-hand corner of the chart is point A. In 
the upper left-hand corner is point B. Three of the 
infinite number of possible solutions that can be used 
to get from point A to point B, by adding series and 
shunt inductances and capacitances, are shown. Solu¬ 

tion 1 starts with a series-L configuration and takes 9 
elements to get to point B. Solution 2 starts with a 
shunt-L procedure and takes 8 elements, while Solu¬ 
tion 3 starts with a shunt-C arrangement and takes 5 
elements. The element reactances and susceptances 
can be read directly from the chart, and Equations 
4-11 through 4-14 can be used to calculate the actual 
component values within minutes. 

SUMMARY 

Impedance matching is not a form of “black magic” 
but is a step-by-step well-understood process that is 
used to help transfer maximum power from a source 
to its load. The impedance-matching networks can be 
designed either mathematically or graphically with 
the aid of a Smith Chart. Simpler networks of two and 
three elements are usually handled best mathemati¬ 
cally, while networks of four or more elements are very 
easily handled using the Smith Chart. 
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Fig. 4-48. Multielement matching. 



THE TRANSISTOR 

AT RADIO FREQUENCIES 

In Chapter 1, we discussed resistors, capacitors, and 
inductors, and their behavior at radio frequencies. We 
found that when working at higher frequencies, we 
could no longer think of a capacitor as just a capacitor, 
or an inductor as a perfect inductor. In fact, each of 
these components can be represented by an equivalent 
circuit that indicates just how imperfect that com¬ 
ponent really is. 

In this chapter, we will find that the transistor, too. 
is an imperfect device whose characteristics also vary 
with frequency. Therefore, the equivalent circuit for 
a typical transistor is introduced and analyzed. Then, 
with the aid of the equivalent circuit, the input, out¬ 
put, feedback, and gain characteristics are described. 
We will then examine Y and S parameters and take a 
look at how manufacturers typically present the tran¬ 
sistor’s characteristics on their data sheets. 

THE TRANSISTOR EQUIVALENT CIRCUIT 

Just as resistors, capacitors, and inductors can be 
modeled by an equivalent circuit at radio frequencies, 
transistor behavior can also be best described by such 
a circuit as shown in Fig. 5-1. This is a common-emit¬ 
ter configuration of the equivalent circuit known as 
the hybrid-77 model. At first glance, the hybrid-rr 
model looks to be quite formidable for analysis pur¬ 
poses. After defining each component of the model, 
however, some simplifying assumptions will be made 
to aid in the analysis process. 

rhh'—Base spreading resistance. This is an inevitable 
resistance that occurs at the junction between the 
base terminal or contact and the semiconductor 

Fig. 5-1. Transistor equivalent circuit— 
common-emitter configuration. 

material that composes the base. Its value is usu¬ 
ally in the tens of ohms. Smaller transistors tend 
to exhibit larger values of rbb'. 

rb'e—Input resistance. The resistance that occurs at the 
base-emitter junction of a forward-biased tran¬ 
sistor. Typical values range around 1000 ohms. 

rb'c—Feedback resistance. This is a very large ( « 5 
megohm) resistance appearing from the base to 
the collector of the transistor. 

r^—Output resistance. As the name implies, this is 
simply the resistance seen looking back into the 
collector of the transistor. A value for a typical 
transistor would be about 100K. 

C„—Emitter diffusion capacitance. This capacitance is 
really the sum of the emitter diffusion capacitance 
and the emitter junction capacitance, both of 
which are associated with the physics of the semi¬ 
conductor junction itself and which is beyond the 
scope of this book. It does exist, however, and 
since the junction capacitance is so small, Ce is 
usually called diffusion capacitance with a typical 
value of 100 pF. 

C,.—Feedback capacitance. This component is formed 
at the reverse-biased collector-to-base junction of 
the transistor. As the frequency of operation for 
the transistor increases, Cc can begin to have a 
very pronounced effect on transistor operation. A 
typical value for this component might be 3 pF. 

Also shown in Fig. 5-1 is a current source of value 
ßIB'. Beta (ß) is, of course, the small-signal ac cur¬ 
rent gain of the transistor while In' is the current 
through rb'e. The current source can be thought of as 
simply an indication of current flow in the collector 
that is dependent upon the current that flows in the 
base of the transistor. Therefore, the collector current 
is equal to the base current times the ß of the tran¬ 
sistor, or Ic = /3In'. 

Keep in mind that Fig. 5-1 depicts only those in¬ 
herent parasitic elements that are internal to the 
semiconductor material itself. Somehow, however, a 
connection has to be made from the semiconductor 
material to the transistor leads. This is done with a 
minute piece of wire called a bonding wire, which, 
at high frequencies, adds a bit of inductance to the 
equivalent circuit. The transistor leads themselves 
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tend to exhibit additional series inductance and the 
equivalent circuit begins to resemble that of Fig. 5-2, 
where LB, LE, and Lc are the base, emitter, and col¬ 
lector lead and bonding inductance, respectively. 

It certainly should be obvious now that the equiva¬ 
lent circuit for a typical transistor is not trivial, but 
contains numerous components, all of which will 
affect the device’s operation at high frequency to a 
certain degree. If some simplifying assumptions are 
made, however, we should be able to use the equiva¬ 
lent circuit to determine how the transistor behaves 
at radio frequencies. 

Input Impedance 
One of the first simplifications that can be made to 

the circuit of Fig. 5-2 is to eliminate rb'c. Five meg¬ 
ohms is, after all, a rather large resistance and, for our 
purposes, looks like an open circuit. The next step is to 
use a principle called the Miller effect to transpose Cc 

from its series base-to-collector connection to a posi¬ 
tion that is in parallel with C„ with a new value of 
(Cc)(l — ̂3Rl). where RL is the load resistance. This 
capacitance is then combined with Ce to form a new 
total capacitance, CT. These changes are shown in 
Fig. 5-3. 

The input impedance variation over frequency for 
a transistor is very easily found by analyzing the circuit 
of Fig. 5-4. Here we have included only the elements 
of the equivalent circuit that have an effect on the tran¬ 
sistor’s input impedance. Notice that the primary con¬ 
tributors are rb',. and CT—neither of which the designer 
has any control over. The quantity rbb', on the other 
hand, is a very small resistance while LB and LE can 
vary in size depending on circuit layout. If you are 
very careful, LB and LE can be limited practically to 
the bonding inductance that was mentioned previously. 
If this is the case, these elements will have practically 
no effect on input impedance until well above very 
high frequencies (vhf). 

If we begin our analysis at de, the circuit of Fig. 
5-4 reduces to rbb- in series with rb'e and the input im¬ 
pedance is a pure resistance and is at its maximum 
value. As the frequency of operation increases, how¬ 
ever, CT begins to play an increasingly important role. 
Its shunting effect (around rbc ) tends to reduce the 
impedance considerably, until at high frequencies, it 

effectively eliminates rb'e from the circuit. When this 
occurs, rbb', LB, and LE become the major contributors 
to the transistor’s input impedance. 

The impedance looking into the terminals of Fig. 
5-4 can be described as follows: 

, . T , , jœCr v be ' , . TZln — jo)Lb -I- rbb' + —j-1- ]wLe

+ rh'r

= jo>(LB + Le) + rbb' + 

= ja>Lr + rbb-+ 1 + .^,eCT

This equation is plotted on the Smith Chart shown in 
Fig. 5-5 with the following values inserted into the 
equation. 

Lt = 20 nH rb'e = 1000 ohms 
rbb' = 50 ohms CT = 100 pF 

Notice that the chart is normalized for convenience. 
The actual input impedance of the hypothetical tran¬ 
sistor is 1050 ohms at de and 50 ohms at 112 MHz. 
Therefore, to find the actual impedance of this tran¬ 
sistor at any frequency, simply multiply the value 
found on the chart by 100. 

The impedance is presented on the Smith Chart for 
two reasons. First, and most obvious, is for practice 
and, second, because of the ease with which both 
impedance and admittance can be read from the chart 
at a glance. Most manufacturers, as you will see, use 
admittance parameters rather than impedance param¬ 
eters to describe transistor characteristics on their 
data sheets. This can sometimes be confusing to the 

Fig. 5-3. An equivalent circuit using the Miller effect. 

Fig. 5-2. An equivalent circuit including lead inductance. Fig. 5-4. Equivalent input impedance. 
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Fig. 5-5. Input impedance vs. frequency. 
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designer who is not used to working with admittances. 
However, you will soon be handling both impedance 
and admittance information equally well. 

Output Impedance 
The output impedance of a transistor typically de¬ 

creases with frequency. Let’s go back to the original 
circuit of Fig. 5-1 to see why. We can manipulate 
Fig. 5-1 in much the same manner as was done in the 
last section, and can arrive at a convenient circuit that 
will be useful for an output impedance analysis. Look¬ 
ing into the collector terminal, the first component 
quantity that we see is rce, which has a typical value of 
100K. This resistance is very large in comparison to the 
other components in the network and can usually be 
ignored. The same thing can be said for rb'c. This leaves 
us with the circuit of Fig. 5-6. 

Fig. 5-6. Equivalent output impedance. 

The first inclination in an analysis of this circuit 
would be to assume that Cc and Ce are the determining 
factors in any output impedance calculation and that 
they alone cause the output impedance to decrease 
with frequency. Although Cc and Ce do have an effect 
on the output impedance of the device, there is another 
mechanism that is not so obvious that also has quite 
an effect. This can best be understood if we assume 
that the transistor is in operation and that some of the 
collector signal is being fed back to the base through 
Cc. When this occurs, some of the signal voltage being 
fed back appears across rb'e causing current to flow in 
the resistor. This current flow in the base region is 
amplified by the ß of the transistor, thus increasing 
the collector current. The increase in collector cur¬ 
rent appears as a decrease in collector impedance. 
Therefore, even though Cc and Ce act to reduce the 
output impedance level of the transistor through a de¬ 
crease in their capacitive reactances, there is also a 
hidden element which tends to further decrease the 
impedance level beyond that which you would ordi¬ 
narily expect to find by just looking at the equivalent 
circuit. Any changes in an external source resistance 
(Rs) will also change ZoUf Increasing Rs decreases 
Zout because more of the signal current being fed back 
is forced through rb'e. 

Feedback Characteristics 
The feedback components of the transistor equiva¬ 

lent circuit that is shown in Fig. 5-1 are rb'c and Cc. 
Of the two, Cc is the most important since it is the 
element whose value changes with frequency. The 

quantity rb'„ on the other hand, is very large and con¬ 
stant and contributes very little to the feedback char¬ 
acteristics of the device. 

As the frequency of operation for a transistor in¬ 
creases, Cc becomes more and more important to the 
circuit designer because, of course, its reactance is 
decreasing. Thus, more and more of the collector sig¬ 
nal is fed back to the base. At low frequencies, the 
feedback is usually not much of a problem because Cc, 
coupled with other stray capacitances located in and 
around the circuit or circuit-board area, is usually not 
enough to cause instability. At high frequencies, how¬ 
ever, stray reactances coupled with Cc could act to 
produce a 180° phase shift from collector to base in 
the fed-back signal. This 180° phase shift, when added 
to the 180° phase shift that is produced in the normal 
signal inversion from base-to-collector during ampli¬ 
fication, could turn an amplifier into an oscillator very 
quickly. 

Another problem associated with the internal feed¬ 
back of the transistor is the fact that the collector 
circuitry is not truly isolated from the base circuitry. 
Thus, any change in the load resistance of the col¬ 
lector circuitry directly affects the input impedance 
of the transistor. Or, similarly, any change in the source 
resistance in the base circuitry directly affects the out¬ 
put impedance of the transistor. This malady is espe¬ 
cially important to consider when you are trying to 
perform an impedance match on both the input and 
the output of the transistor simultaneously. If, for 
example, you first match the transistor’s input im¬ 
pedance to the source and then match the load to the 
transistor’s output impedance, the output matching 
network will cause the transistor’s input impedance 
to change from its original value. Therefore, the input 
matching network is no longer valid and must be re¬ 
designed. Once you redesign the input matching net¬ 
work, however, this impedance change will reflect 
through to the collector causing an output impedance 
change which invalidates the output matching net¬ 
work. Therefore, if you totally ignore the feedback 
components in the transistor’s equivalent circuit when 
designing impedance matching networks, you will not 
obtain a perfect match for the transistor. Nevertheless, 
if Ce is small, the match at both the input and the 
output might be tolerable in many cases. 

It should be pointed out that there is a method for 
performing a simultaneous conjugate match on a tran¬ 
sistor while taking into account the effects of Cc. This 
method is covered in detail in Chapter 6. 

Gain 
The gain that we are normally interested in for rf 

transistors is the power gain of the device, rather 
than just the voltage or current gain. It is power gain 
that is important because of the myriad of impedance 
levels which abound in rf circuitry. When an im¬ 
pedance level changes in a circuit, voltage and current 
gains alone no longer mean anything. Even a passive 
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Fig. 5-7. Typical power gain vs. frequency curve. 

device can produce a voltage or current gain but it 
cannot produce both simultaneously. That is what 
transistors are for—to produce real gain. 

The power gain of a transistor typically resembles 
a curve similar to that shown in Fig. 5-7. This curve 
is not at all surprising if you again consider the 
equivalent transistor circuit of Fig. 5-3. Notice that 
what we have, in effect, is an RC low-pass filter with 
a gain which must fall off ( neglecting lead inductance ) 
at the rate of 6 dB per octave. The maximum frequency 
at which the transistor provides a power gain is labeled 
as fmax in the diagram. The gain curve passes through 
fmax at 0 dB (Gain = 1), and at the rate of 6 dB per 
octave. 

Gain is usually classified as either unilateralized, 
neutralized, or unneutralized. Unilateralized power 
gain is defined as the gain available from the transistor 
when the effects of both feedback components (rb-c 
and Cc) are negated. Remember that rb'c and Cc are 
providing negative feedback internal to the transistor 
and, thus, decrease the gain of the device. Eliminating 
the negative feedback increases the gain of the tran¬ 
sistor. Neutralized power gain is that gain which oc¬ 
curs when only the feedback capacitance (Cc) is ne¬ 
gated or neutralized. Unneutralized gain, on the other 
hand, occurs when neither feedback component is 
compensated for. Of the three, the unilateralized am¬ 
plifier produces the most gain and the unneutralized 
amplifier produces the least. The difference in power 
gains between the unilateralized case and the neu¬ 
tralized case is usually so small as to be negligible. 
Thus, neutralization is usually sufficient. 

Neutralization is accomplished by providing ex¬ 
ternal feedback from the collector to the base of the 
transistor at just the right amplitude and phase to 
exactly cancel the internal negative feedback. Further 
details on this are provided in Chapter 6. 

Y PARAMETERS 

In Chapter 4, admittance was introduced, with the 
help of the Smith Chart, as the reciprocal of imped¬ 
ance. It is expressed in the form of Y = G ± jB, where 
G is conductance or the reciprocal of resistance and B 
is susceptance or the reciprocal of reactance. Both G 
and jB are taken to be parallel components as opposed 

to the series representation (Z = R±jX) for im¬ 
pedance. 

The admittance parameters of a transistor are simply 
a tool to aid in the unambiguous presentation of the 
characteristics of the device at a certain frequency 
and bias point. Or, put another way, they are a method 
of indicating to a potential user what the transistor 
“looks like” to something connected to its terminals 
under certain conditions. Admittance parameters can 
be used to design impedance-matching networks for 
the transistor, to determine its maximum available 
gain, and to determine its stability—or lack thereof. 
In short, they present a model of the transistor to the 
designer so that he may best utilize the device in his 
particular application. 

The Transistor as a Two-Port Network 
The transistor is obviously a three-terminal device 

consisting of an emitter, base, and collector. In most 
applications, however, one of the terminals is com¬ 
mon to both the input and the output network as 
shown in Fig. 5-8. In the common-emitter configura¬ 
tion of Fig. 5-8A, for instance, the emitter is grounded 
and is thus common to both the input and the output 
network. So, rather than describe the device as a three-
terminal network, it is convenient to describe the tran¬ 
sistor in a black-box fashion by calling it a two-port 
network. One port is described as the input port and 
the other as the output port. This is shown in Fig. 5-8. 
Once the two-port realization is made, the transistor 
can be completely characterized by observing its be¬ 
havior at the two ports. 

Two-Port Y Parameters 
Two-port admittance parameters can be used to 

completely characterize the behavior of a transistor 
at a certain frequency and bias point, and are con-

( A ) Common emitter. 

( B ) Common base. 

(C) Common collector. 

Fig. 5-8. The three-terminal transistor as 
a two-port network. 



The Transistor At Radio Frequencies 103 

Fig. 5-9. The transistor as a two-port “black box.” 

sidered to be independent of applied signal level as 
long as linear operation is maintained. The black-box 
configuration used to create the Y-parameter charac¬ 
terization is shown in Fig. 5-9. 

The short-circuit Y parameters for the two-port con¬ 
figuration of Fig. 5-9 are given by: 

I
l
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I
 
I
I
 

II 
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V2 = 0 (Eq. 5-1) 

V, = 0 (Eq. 5-2) 

V2 = 0 (Eq. 5-3) 

Vj=0 (Eq. 5-4) 

where, 
yi = the short-circuit input admittance, 
yr = the short-circuit reverse-transfer admittance, 
yf = the short-circuit forward-transfer admittance, 
yo = the short-circuit output admittance. 

The short circuit that is used to make Vt and V2 

equal to zero is not a de short circuit, but a short circuit 
presented at the signal or test frequency. This is usu¬ 
ally accomplished hy placing a large capacitor across 
the terminal which requires a short. An examination 
of Equation 5-1, for instance, reveals that in order to 
measure yf in a laboratory, you would first have to 
connect a large capacitor across the output terminals 
of the device. This will set V2 equal to zero. Then, a 
known signal voltage (Vf) is injected into the input 
port and a measurement of I, is made. The ratio of 
Ii to Vf, with their appropriate phase relationships 
accounted for, is the short-circuit input admittance of 
the device, which is usually a complex number in the 
form of G ± jB. Similarly, to measure yf, simply leave 
the short circuit in place, inject signal voltage Vf, and 
measure I2. The complex ratio of I2 to Vf is the short-
circuit transfer admittance. Similar methods are used 
to measure yo and yr. 

The short circuit is used in the measurement of Y 
parameters because of the definition of the two-port 
model. Referring to Fig. 5-9, it is obvious that the cur¬ 
rent If is dependent upon the voltage (Vf) at the 
input terminals of the device. But, what might not be 
so obvious is the fact that If is also dependent upon 
V2. This is due to the internal feedback (Rb'c and Ce) 
of the transistor and it must be accounted for. Stated 
mathematically: 

Ii = yiVf + yrV2 (Eq. 5-5) 

which simply states that I¡ is dependent upon the 

input admittance, the reverse-transfer (feedback) ad¬ 
mittance, Vf, and V2. Notice, however, that if we force 
V2 equal to zero, E is totally dependent upon Vf and 
the input admittance of the device. Or stated another 
way, the input admittance can be found by injecting 
Vf and measuring If. A similar argument can be made 
for yr if Vf is forced equal to zero in Equation 5-5. 
The equation for the output port is 

E> = yfVi + y0V2 ( Eq. 5-6 ) 

Equations 5-3 and 5-4 can be derived from Equation 
5-6 by alternately setting Vf and V2 equal to zero. 

Transistor admittance parameter variations with 
frequency are often published by manufacturers to aid 
the designer in his design efforts. They are extremely 
useful, but often very difficult to measure, especially 
at high frequency. The difficulty arises at high fre¬ 
quencies mainly due to the fact that a good short 
circuit is difficult to obtain. As we learned in Chapter 
1, a capacitor at high frequencies is not a short circuit 
at all, but presents some reactance at the operating 
frequency. Obviously, if any reactance creeps into the 
“short circuit,” the voltage at the port in question is 
no longer zero and our measurement is no longer valid. 
The higher the impedance at the “shorted” port, the 
worse our measurement error becomes. There are, of 
course, other methods besides capacitors for producing 
short circuits at the test frequency. But they are gen¬ 
erally cumbersome, tedious, and time-consuming, and, 
as such, leave a lot to be desired. Because of the prob¬ 
lems associated with finding a true short circuit at high 
frequencies, the trend in recent years has been to 
characterize higher frequency transistors in terms of 
their scattering or S parameters. 

S PARAMETERS 

Scattering, or S, parameters are another extremely 
useful design aid that most manufacturers supply for 
their higher frequency transistors. S parameters are 
becoming more and more widely used because they are 
much easier to measure and work with than Y param¬ 
eters. They are easy to understand, convenient, and 
provide a wealth of information at a glance. 
While Y parameters utilize input and output volt¬ 

ages and currents to characterize the operation of the 
two-port network, S parameters use normalized inci¬ 
dent and reflected traveling waves at each network 
port. Furthermore, with S parameters, there is no 
need to present a short circuit to the two-port device. 
Instead, the network is always terminated in the 
characteristic impedance of the measuring system. In 
the majority of measuring systems, this impedance is 
50 ohms ( purely resistive ). The 50-ohm termination re¬ 
quirement is much easier to control than the short-
circuit Y-parameter requirement, thus facilitating mea¬ 
surement. In addition, the 50-ohm source and load 
seen by the two-port network generally forces the 
device under test, if active, to be stable and not oscil-



104 RF Circuit Design 

late. This was not always true in a short-circuit mea¬ 
suring system where an active device often does not 
want to see a short circuit applied to one of its ports. 
Often such a termination would cause an active device, 
such as a transistor, to become unstable, thus making 
measurements impossible. S parameters, therefore, 
are usually much easier for the manufacturer to mea¬ 
sure and, because they are also conceptually easy to 
understand, are widely used in the design of transistor 
amplifiers and oscillators. 

Transmission Line Background 
In order to understand the concept of S parameters, 

it is necessary to first have a working knowledge of 
some very simplified transmission line theory. The 
mathematics have been extensively discussed in the 
many references cited at the end of the book (Ap¬ 
pendix C) and will not be covered here. Instead, you 
should try to gain an intuitive feel for the incident 
and reflected traveling waves in a transmission line 
system. 

As shown in Fig. 5-10, voltage, current, or power 
emanating from a source impedance (Zs) and de¬ 
livered to a load (Zl) can be considered to be in the 
form of incident and reflected waves traveling in op¬ 
posite directions along a transmission line of char¬ 
acteristic impedance (Zo). If the load impedance 
(Zr.) is exactly equal to Zo, the incident wave is to¬ 
tally absorbed in the load and there is no reflected 
wave. If, on the other hand, ZL differs from Zo, some 
of the incident wave is not absorbed in the load but is 
reflected back toward the source. If the source im¬ 
pedance Zs were equal to Zo, the reflected wave from 
the load would be absorbed in the source and no 
further reflections would occur. Of course, for a Zs 

not equal to Zo, a portion of the reflected wave from the 
load is re-reflected from the source back toward the 
load and the entire process repeats itself perpetually 
(for a lossless transmission line). The degree of mis¬ 
match between Z„ and ZL, or Z8, determines the amount 
of the incident wave that is reflected. The ratio of the 
reflected wave to the incident wave is known as the 
reflection coefficient and is simply a measure of the 
quality of the match between the transmission line 
and the terminating impedances. The reflection coeffi¬ 
cient is a complex quantity expressed as a magnitude 
and an angle in polar form. 

T = reflection coefficient 

_ Vreflected 

V incident 

= p¿¿_ (Eq. 5-7) 

As the match between the characteristic impedance 
of the transmission line and the terminating imped¬ 
ances improves, the reflected wave becomes smaller. 
Therefore, using Equation 5-7, the reflection coeffi¬ 
cient decreases. When a perfect match exists, there 
is no reflected wave and the reflection coefficient is 

Fig. 5-10. Incident and reflected waves on 
a transmission line. 

zero. If the load impedance, on the other hand, is an 
open or short circuit, none of the incident power can 
be absorbed in the load and all of it must be reflected 
back toward the source. In this case, the reflection 
coefficient is equal to 1, or a perfect mismatch. Thus, 
the normal range of values for the magnitude of the 
reflection coefficient is between zero and one. The 
reason normal is stressed is that in order for the re¬ 
flection coefficient to be greater than one, the magni¬ 
tude of the reflected wave from a load impedance 
must be greater than the magnitude of the incident 
wave to that load. In order for that to occur, it fol¬ 
lows that the load in question must be a source of 
power. This concept is useful in the design of oscil¬ 
lators, but reflection coefficients that are greater than 
unity, in the input networks of amplifiers, are very bad 
news. 

As we learned in Chapter 4, reflection coefficient 
can be expressed in terms of the impedances under 
consideration. For example, the reflection coefficient 
at the load of the circuit shown in Fig. 5-10 can be 
expressed as : 

F = (Eq. 5-8) 
¿L “T ¿o 

Notice that if ZL is set equal to Zo in Equation 5-8, 
the reflection coefficient becomes zero. Conversely, 
setting Zr, equal to zero (a short circuit), the magni¬ 
tude of the reflection coefficient goes to unity. Thus, 
Equation 5-8 holds true for the concepts we have dis¬ 
cussed thus far. 

Often Equation 5-8 is normalized to the character¬ 
istic impedance of the transmission line. Thus, dividing 
the numerator and denominator of Equation 5-8 by Z„, 
we have: 

(Eq-5-9)
where, 
Zn is the normalized load impedance. 

Equation 5-9 is the same equation that was used in 
Chapter 4 to develop the Smith Chart. In fact, you 
will find that reflection coefficients may be plotted 
directly on the Smith Chart, and the corresponding 
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load impedance read off of the chart immediately— 
without the need for any calculation using Equations 
5-8 or 5-9. The converse is also true. Given a specific 
characteristic impedance of a transmission line and 
a load impedance, the reflection coefficient can be 
read directly from the chart. No calculation is neces¬ 
sary. Example 5-1 illustrates this fact. 

The construction performed in Example 5-1 should 
take less than 30 seconds once you become familiar 
with the chart. Obviously, an alternate solution would 
have been to use Equation 5-8 or 5-9 and perform the 
computation mathematically. Without the aid of a 
good scientific calculator to perform the complex num¬ 
ber manipulation, however, the numerical computation 
becomes both tedious and time consuming. That is the 
reason Mr. Smith developed the chart in the first 
place—to perform the transformation between im¬ 
pedance and reflection coefficient, and vice-versa, 
without the need for complex number manipulation. 

To find the impedance that gives a certain value of 
reflection coefficient in a normalized system, you would 
simply perform the reverse of the construction given 
in Example 5-1. These procedures are outlined as 
follows: 

1. Draw a line from the center of the chart to the 
angle of the given reflection coefficient. The nor¬ 
malized impedance is located somewhere along 
that line. 

2. From the voltage-reflection coefficient scale lo¬ 
cated at the bottom of the chart, transfer the value 
for distance (d), corresponding to the magnitude 
of the reflection coefficient, to the line drawn in 
Step 1. Plot this point for a distance (d) from the 
center of the chart along the line drawn in Step 1. 

3. The normalized impedance at the point plotted in 
Step 2 is then read directly from the chart just as 
any other impedance would be read. 

S Parameters and the Two-Port Network 
Let us now insert a two-port network between the 

source and the load in the circuit of Fig. 5-10. This 
yields the circuit of Fig. 5-13. The following may be 
said for any traveling wave that originates at the 
source: 

1. A portion of the wave originating from the source 
and incident upon the two-port device ( ai ) will be 
reflected (bi) and another portion will be trans¬ 
mitted through the two-port device. 

2. A fraction of the transmitted signal is then reflected 
from the load and becomes incident upon the out¬ 
put of the two-port device ( a2 ). 

3. A portion of the signal (a2) is then reflected from 
the output port back toward the load (b2), while 
a fraction is transmitted through the two-port de¬ 
vice back to the source. 

It is obvious from the above discussion that any travel¬ 
ing wave present in the circuit of Fig. 5-13 is made up 

of two components. For instance, the total traveling¬ 
wave component flowing from the output of the two-
port device to the load is actually made up of that 
portion of a2 which is reflected from the output of the 
two-port device, plus that portion of ai that is trans¬ 
mitted through the two-port device. Similarly, the 
total traveling wave flowing from the input of the 
two-port device back toward the source is made up of 
that portion of ai that is reflected from the input port 
plus that fraction of a2 that is transmitted through the 
two-port device. 

If we set these observations in equation form, just 
as was done for the Y parameters, we get the following: 

bi — Suai 4- Si2a2 
b2 — S21ai 4- S 22a2

(Eq. 5-10) 
(Eq. 5-11) 

EXAMPLE 5-1 
What is the load reflection coefficient for the circuit 

shown in Fig. 5-11? 

Fig. 5-11. Transmission line circuit for Example 5-1. 

Solution 

The first step is to normalize the load impedance so that 
you may plot it on a Smith Chart as was done in Chapter 4. 
In this case, however, since we are dealing with transmis¬ 
sion lines, you must normalize the chart to the characteristic 
impedance of the line rather than just some convenient 
number. 

„ 100 + j75 
Zl= 5Õ-

= 2 +jl.5 

Plot this point on the chart as shown in Fig. 5-12. Draw a 
line from the center of the chart through the point 2 4- jl.5 
and extend this line to the outside edge of the chart ( which 
is calibrated in degrees). Note that for clarity, all extra¬ 
neous scales normally shown around the periphery of the 
chart have been eliminated. The reflection coefficient can 
now be read directly from the chart. The distance from the 
center of the chart to the point Z = 2 4- jl.5 is equal to the 
magnitude of the reflection coefficient. To find its numerical 
value, simply transfer this distance (d) to the voltage-re¬ 
flection coefficient scale located at the bottom of the Smith 
Chart. This yields a value of 0.54 for the magnitude. To 
find the angle in degrees, simply read the angle at the in¬ 
tersection of the previously constructed line and the outside 
edge of the chart. This angle is approximately 29.7°. Thus, 
the load-reflection coefficient for a load impedance of 100 
4-j75 ohms in a 50-ohm system is: 

0.54 /29.7 ° 

Continued on next page 
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Fig. 5-13. Incident and reflected waves 
for a two-port device. 

where, 
Su = the input reflection coefficient, 
Sia = the reverse transmission coefficient, 
S21 = the forward transmission coefficient, 
S22 = the output reflection coefficient. 

Notice, in Equation 5-10, that if we set a2 equal to 
zero, then, 

sn=^| a2 = 0 
ai I 

(Eq. 5-12) 

which is a reflected wave divided by an incident wave 
and, therefore, by definition, is equal to the input re¬ 
flection coefficient studied previously. Thus, Sn can 
be plotted on a Smith Chart and the input impedance 
of the two-port device can be found immediately. 

Similarly, using Equation 5-11, 

ai = o S22 = ^ a2
(Eq. 5-13) 

This is also a reflection coefficient and can be plotted 
on a Smith Chart. Thus, the output impedance of the 
two-port device can also be found immediately. 

The other two S parameters are found as follows: 

S21 
b2 
ai 

S b, 

a2 = 0 

ai = 0 

(Eq. 5-14) 

(Eq. 5-15) 

Notice that Equations 5-12 through 5-15 all require 
that ai or a2 be set equal to zero in order to measure 
the individual S parameters. This is easily done by 
forcing ZH and ZL to be equal to the characteristic im¬ 
pedance of the measuring system. Therefore, any wave 
that is incident upon ZH or ZL is totally absorbed and 
none is reflected back toward the two-port device. For 
example, let’s consider the measurement of the input 
reflection coefficient, Sn. Ideally, we would like to 
provide an input signal to the two-port device and 
measure only that fraction of the input signal that is 
reflected back toward the source. In a practical situa¬ 
tion, however, some of the incident signal is trans¬ 
mitted through the two-port device, reflected (a2) 
from load impedance, and, then, reverse transmitted 
through the two-port device back to the source. The 
measured reflected signal is then an aggregate con¬ 

sisting of that portion of ai, which is reflected, and 
that portion of a2, which is transmitted. Obviously, this 
is not what we need. If ZL is set equal to Zo, however, 
then there is no reflection from the load and the mea¬ 
sured reflected signal from the input port, divided by 
the signal incident upon that port, is truly the input 
reflection coefficient, Sn. Similar arguments can be 
made for the other S parameters to be measured. 
Therefore, to measure the S parameters of a two-port 
network, the network is always terminated ( source and 
load) in the characteristic impedance of the measur¬ 
ing system; thus, eliminating all reflections from the 
terminations. 

The significance of S2i and S12, as shown in Equa¬ 
tions 5-14 and 5-15, is that they are simply the forward 
and reverse gain (or loss) of the two-port network, 
respectively, when the two-port device is terminated in 
the characteristic impedance of the measuring system. 
These are more meaningful than the equivalent Y 
parameters yf and yr, which were previously studied. 
Parameter yf, for instance, is a forward transadmit¬ 
tance and yr is a reverse transadmittance, neither of 
which can be intuitively related to an insertion gain 
or loss for the two-port network. 

S parameters, like Y parameters, are simply a con¬ 
venient method of presenting the characteristics of 
a device to a potential user. Often, a manufacturer 
will publish both sets of parameters, along with their 
variation over frequency, to give the designer the 
flexibility of working with the parameters with which 
he feels more comfortable. There will come a time, 
however, when you will be given only one set of 
parameters and, as things usually go, it will be the 
wrong set. If you ever run into this problem, simply 
refer to the following conversion formulas: 

! c _ (i~yi)(i + yo) +yryt 
" (l + yOd + yJ-y^ 

o ç —_ZÊXï_ 
” (l + yt )(l + yo)_ yryf

a c —_~2y<_ 
°’ 521 (l + yi )(l + y.)-yryf
4 c _ (i + yi)(i-yo) +ytyr

22 (l + yi )(l + y0)- yryf

e , _ ( 1 + S22 ) ( 1 — Si 1 ) + S12S211 
°- y‘ (1 + S„)(1 + S22)-s 12s21 z„ 

6 yr =_Z2̂ _x± 
°- yr (i + su)(i + s22 )-s I2s2i z„ 
7 v =_ -2S21_ 2 
'• y' (l + S„)(l + S22)-s 12s21 z„ 
o _ ( 1 + Sn ) ( 1 — S22 ) + S12S21 i 

y° (1 + S22 )(1 + S 11)-s 12s21 zo

Notice that if you are converting from Y to S parame¬ 
ters, as in the first four formulas, each individual Y 
parameter must first be multiplied by Z„ before being 
substituted into the equations. 
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NPN SILICON RF HIGH FREQUENCY TRANSISTOR 

. . designed primarily for use in high-gain, low-noise amplifier, oscil¬ 
lator, and mixer applications. Can also be used in UHF converter 
applications. 

• High Current-Gain — Bandwidth Product — 
fj = 1.4 GHz (Typ) @ lc » 10 mAdc 

• Low Collector-Base Time Constant -
rb’Cc = 14ps (Max) @ lg = 2.0 mAdc 

• Characterized with Scattering Parameters 

• Low Noise Figure — 
NF = 4.5 dB (Max) @ f = 200 MHz 

‘MAXIMUM RATINGS 

Rating Symbol Value Unit 

Collector-Emitter Voltage 
Applicable 1.0 to 20 mAdc 

VCEO 12 Vdc 

Collector-Base Voltage Vee 20 Vdc 

Emitter-Base Voltage VEB 2.5 Vdc 

Collector Current •c 50 mAdc 

Total Device Dissipation @ ■ 25°C 
Derate above 25°C 

Po 200 
1.14 

mW 
mW/°C 

Total Device Dissipation @ Tq - 25°C 
Derate above 25°C 

Po 300 
1.71 

mW 
mW/°C 

Storage Temperature Range Tstg -65 to *200 °C 

Indicates JEDEC Registered Data. 

4.5 dB 0 200 MHz 

HIGH FREQUENCY 
TRANSISTOR 
NPN SILICON 

DIM 
MILLIMETERS INCHES 
MIN MAX MIN MAX 

A 531 5^4 0209 04» 
> 452 495 0 178 0 195 
c 432 533 0 170 0.210 
0 0.41 053 0316 0.021 
E — 076 — 0.030 
F 0.41 0.48 0016 0.019 
6 254 BSC 0 100 BSC 
H 031 1.17 0536 0346 
J 0.71 122 0.028 0.046 
K 12.70 — 0.500 — 
L 635 — 0250 — 
X 45« bsc 45’BSC 
» 1-27 BSC 0-050 BSC 
F - UI - I 0.0W 

ALL JEDEC dimanaiom and notas apply 

CASE 2003 
TO 72 

Fig. 5-14. Data sheet. ( Courtesy Motorola Semiconductor Products Inc. ). 

Cont. on next page 
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2N5179 

*ELECTRICAL CHARACTERISTICS (Ta = 25°C unless otherwise notec) 

Characteristic Symbol Min Max Unit 

OFF CHARACTERISTICS 

Collector-Emitter Sustaining Voltage 

(l C - 3.0 mAdc, l B - 0) 
VCEOisusI 

12 — 
Vdc 

Collector-Base Breakdown Voltage 
(lC • 0.001 mAdc. Ig “ 0) 

BVcbo 
20 -

Vdc 

Emitter-Base Breakdown Voltage 
(If ■ 0 01 mAdc, lc ■ 0) 

BVebo 
2.5 -

Vdc 

Collector Cutoff Current 
(VCB - 15 Vdc, Ie “ 0) 
(Vcb - >5 Vdc. Ie • 0. Ta - 150°C) 

ICBO 
0.02 
1.0 

MAdc 

ON CHARACTERISTICS 

DC Current Gain 
(lC - 3.0 mAdc. VCE - 10 Vdc) 

hFE 
25 250 

-

Collector-Emitter Saturation Voltage 
dC “10 mAdc, l B “ 1.0 mAdc) 

Vce isati 
- 0.4 

Vdc 

Base-Emitter Saturation Voltage 
(IC ■ 10 mAdc, l B = 1.0 mAdc) 

v8Elsat) 
- 1.0 

Vdc 

DYNAMIC CHARACTERISTICS 

Current-Gain - Bandwidth Product (T) 
(lc * 5.0 mAdc, VCE ■ 6.0 Vdc, f » 100 MHz) 

«T 
900 2000 

MHz 

Collector-Base Capacitance 
(VCB • 10 Vdc, lE “ 0,1- 0.1 to 1.0 MHz) 

Ccö 
- 1.0 

pF 

Small-Signal Current Gain 
(lc ■ 2.0 mAdc, VCE * 6.0 Vdc. f - 1 0 kHz) 

hfe 
25 300 

-

Collector-Base Time Constant 
(IE - 2.0 mAdc. VCB - 6.0 Vdc, f - 31.9 MHz) 

rb Cc 
3.0 14 

ps 

Noise Figure (See Figure 1) 
(Ie ■ 1.5 mAdc, Vce * 6.0 Vdc, Rg ■ 50 ohms, f - 200 MHz) 

NF 
4.5 

cB 

FUNCTIONAL TEST 

Common-Emitter Amplifier Power Gain (See Figure 1) 
(VCE ’ 6.0 Vdc, lc - 5 0 mAdc, f - 200 MHz) 

°P« 
15 — 

dB 

Power Output (See Figure 2) 
(Vcb ’ 10 v<fc. ’E “ 12 mAdc, f^500 MHz) 

Pout 
20 -

mW 

( 
indicates JEDEC Registered Values. 
^fy is definad es the frequency at which |hfe| extrapolates to unity. 

MOTOROLA Semiconductor Products Inc. 

Fig. 5-14.—Cont. Data sheet. (Courtesy Motorola Semiconductor Products Inc.). 
Cont. on next page 



110 RF Circuit Design 

2N5179 

FIGURE 1 - 200 MHz AMPLIFIER POWER GAIN 
AND NOISE FIGURE CIRCUIT 

FIGURE 2 - 500 MHz OSCILLATOR CIRCUIT 

L1 1 3/4 Twm. »1« AWG. 0 5" L. 05 Gamete. 
L2 2 Turnt. *16 AWG. 0 5“ L. 0 5 Gamete. 
13 2 Tu.nt. *13 AWG. 0.25" L. 0 5" Gamete. (Position 1/4" from 12) 

1 General Radio Type 874 LA Adtustable line or equivalent 
1 General Radio Type 874 WN3 Short circuit termination or equivalent 

Note 2 RFC ■ 0 2 pH Ohmite »2 460 or equivalent 

Note 3 lead Number 4 (caw) floating 
LI 2 turnt »16 AWG tore. 3/8 inch 00.1 1/4 inch long 

FIGURE 3 - NOISE FIGURE 
versus FREQUENCY 

f. FREQUENCY (MHz) 

Semiconductor Products Inc. 

Fig. 5-14.—Cont. Data sheet. (Courtesy Motorola Semiconductor Products Inc.). 

Cont. on next page 
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2N5179 

Fig. 5-14.—Cont. Data sheet. (Courtesy Motorola Semiconductor Products Inc.). 

Cont. on next page 
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2N5179 

FIGURE I2-S22. OUTPUT REFLECTION COEFFICIENT FIGURE 11- Sn . INPUT REFLECTION COEFFICIENT 

Fig. 5-14.—Cont. Data sheet ( Courtesy Motorola Semiconductor Products Inc.). 

Cont. on next page 
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Fig. 5-14.—Cont. Data sheet. ( Courtesy Motorola Semiconductor Products Inc.). 
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Xc - l/B 
= 133 n 
= 6 pF 

(A) Input circuit. 

X l/B 
555.5 Í1 
1.4 pF 

( B ) Output circuit. 

Fig. 5-15. Equivalent circuit for a 2N5179 (at 200 MHz). 

UNDERSTANDING RF 
TRANSISTOR DATA SHEETS 

The rf transistor data sheet is only a bit more com¬ 
plex than that of its low-frequency counterpart. In 
addition to all of the low-frequency information nor¬ 
mally provided on a transistor data sheet, the transis¬ 
tor’s rf characteristics, in the form of Y parameters and 
S parameters and other related information, are in¬ 
cluded as well. It is assumed that you are already 
familiar with the low-frequency portion of the data 
sheet. Therefore, we will concern ourselves only with 
that information that is typically added specifically 
for rf transistors. 

Fig. 5-14 is a data sheet for the Motorola 2N5179 
npn silicon rf high-frequency transistor. This particular 
transistor was chosen simply because the data sheet 
provides both Y and S parameters and is, therefore, 
very good for instructional use. 

One of the first things you might notice about this 
particular transistor is that it has four leads! The extra 
lead is not connected internally to the device itself, 
but is connected to the case which just happens to be 
a metal can. In normal circuit operation, the extra pin 
is grounded, thus providing a shield around the de¬ 
vice to help reduce unwanted stray fields. 

The first page of the data sheet is fairly straightfor¬ 
ward and provides the never-exceed ratings for the 
transistor. This is a common practice even for low-
frequency transistors and is nothing new. Notice that 
this manufacturer does list those applications in 
which he feels the transistor might be useful. This 
particular device was designed for high-gain, low-
noise amplifier, oscillator, and mixer applications. 
On page 2 of the data sheet, under the heading 

Dynamic Characteristics, several parameters of inter¬ 
est to the rf designer are listed. 

fT—This is called the transition frequency, or more 
commonly, the gain bandwidth product of the de¬ 
vice. fT is the theoretical frequency at which the 
common-emitter current gain (hfe ) of the transistor 
is unity or 0 dB. 

Very rarely is fT used in the rf amplifier-design pro¬ 
cess except to verify how close you might be to the 
transistor’s upper frequency limit. Keep in mind that 
fT is only an indication of the frequency at which the 
current gain of the device drops to 0 dB. Power gain 
may still be possible depending upon the available 
voltage gain from the device at the frequency in ques¬ 
tion. Usually fT is not measured directly for very high-
frequency transistors, but is usually extrapolated from 
data taken at lower frequencies. The accuracy of the 
measurement is, therefore, somewhat questionable 
and, as one manufacturer has stated, fT is provided 
on the data sheets simply for historical reasons. 

Ceb—This is the collector-to-base capacitance of the 
transistor as measured at 1 MHz with a collector-
to-base voltage of 10 volts and the emitter open-
circuited. 

The smaller this capacitance is, the better off you 
will be, if you are using the transistor in an amplifier 
configuration. This capacitance can be equated to Cc 

in the transistor equivalent circuit of Fig. 5-1 at the 
beginning of this chapter. 

hfe—This is the common-emitter current gain or beta 
of the transistor at the specified low frequency of 
1 kHz. 

For an rf circuit design, hfe will not do you much 
good either. The de beta of the transistor ( hFE ), how¬ 
ever, will provide you with needed information in 
controlling the de collector or bias current. This param¬ 
eter is listed under the On Characteristics heading for 
the device ( on the second page ). 

rb Cc—The collector-to-base time constant for the tran¬ 
sistor is another measure of its feedback char¬ 
acteristics. 

The smaller this number is, the better off you will 
be. This is another bit of information that is often 
ignored. 
NF—The noise figure of the transistor is simply a mea¬ 

sure of how much noise the transistor adds 
to the signal during the amplification process ( see 
Appendix B). Notice that for these data sheets, 
a maximum noise figure of 4.5 dB was measured 
for the device under a very rigid set of conditions. 

Figure 1, on page 3 of the data sheet, was used for 
the noise figure measurement with the transistor biased 
at a Vce of 6 volts, Ic = 1.5 mA, and the source resist¬ 
ance set equal to 50 ohms. This method of presenting 
the NF for a transistor, as you can well imagine, is 
practically useless. Very rarely will the circuit designer 
ever see the transistor under this exact set of operat¬ 
ing conditions. Any variation from these conditions 
changes the measured noise figure drastically. For 
this reason, the manufacturer often provides a few 
noise figure contours which present NF graphically 
under a wide variety of operating conditions. These 
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contours are shown in Figures 3, 4, and 5 of the data 
sheet. Figure 3 is a graph of noise figure versus fre¬ 
quency. The NF is measured at various frequencies 
under the same bias conditions. Notice, however, that 
this measurement was taken with a variable source 
resistance, where Rs was made equal to its optimum 
value for a minimum noise figure. The concept of an 
optimum source resistance for a minimum noise figure 
is presented in Chapter 6 of this book. Notice that the 
minimum noise figure increases as the frequency is 
increased. This is typical of rf transistors. 

Figure 4 on the data sheet is a plot of noise figure 
versus both collector current and source resistance 
for the transistor at a Vce of 6 volts and an operating 
frequency of 105 MHz. It is obvious from the diagram 
that there are an infinite number of Rs, Ic combinations 
which will provide you with a specified noise figure. 
For example, the following combinations of Rs and Ic 
will provide you with a 3.5-dB noise figure: 

Ic(mA) 
0.5 
1.0 
1.5 
2.0 
3.0 
5.0 

Rs ( ohms ) 
105 or 600 
90 or 500 
85 or 430 
82 or 390 
81 or 320 
94 or 250 

Notice that for each value of collector current there 
are two values of source resistance that will provide 
the specified noise figure. Obviously, any variation 
from the intended bias current or source resistance 
could change the noise figure drastically. 

Figure 5 is simply another set of contours measured 
at the same bias levels but at a different frequency 
(200 MHz). If you intended to use the transistor at 
300 MHz and wanted to know what bias current and 
source resistance to use for a specific noise figure, you 
would be out of luck. There are no noise contours 
provided for that frequency. 

Figure 6, on page 4 of the data sheet, is a graph of 
fr versus collector current. Optimum fT is obtained 
at the peak of the curve which occurs at approximately 
12 mA of collector current. This graph becomes more 
important at frequencies close to fT, when you are 
trying to squeeze every last bit of gain out of the de¬ 
vice that you possibly can. It will indicate the optimum 
collector current at which to operate the device. Once 
the value of collector current is defined, a sample de¬ 
vice could then be biased accordingly and its Y or S 
parameters measured so that the design could proceed. 

Figures 7, 8, 9, and 10 are a graphical presentation 
of the Y parameters versus frequency for the 2N5179. 
Measurements were plotted at Vce = 6 volts and Ic = 
1.5 mA. If you prefer a different set of bias conditions, 
you will have to measure your own Y parameters as 
no other data is provided. 

The vertical axis of each diagram is calibrated in 
millimhos (mmhos). Therefore, the input admittance 

(Figure 7) of the 2N5179 at 200 MHz is approximately 
yi = 2.5 + ¡7.5 mmhos, which can be represented by the 
circuit of Fig. 5-15A. Remember that positive suscep¬ 
tance (+jB) indicates a shunt capacitor while negative 
susceptance ( — ¡B) indicates an inductor. Similarly, 
the output admittance of the transistor at 200 MHz 
is read in Figure 8 as y0 = 0.25 H- ¡1.8 mmhos. The 
equivalent circuit for this output admittance is shown 
in Fig. 5-15B. The forward and reverse transfer ad¬ 
mittances for the transistor are given in Figures 9 
and 10, respectively, on the data sheet. 

In Chapter 6, you will learn how to apply the given 
Y parameter information from data sheets to the de¬ 
sign of rf small-signal amplifiers. 

Figures 11, 12, 13, 14, and 15 on the data sheet are 
plots of the transistor’s S parameters versus frequency 
at two different bias levels: Vce = 6.0 volts, Ic=1.5 
mA and Vce = 6.0 volts, Ic = 5.0 mA. The four plots 
shown on page 5 of the data sheet provide S-parameter 
data in polar form. The radial distance outward from 
the center of the chart is equal to the magnitude; and 
the angle is read along the perimeter of the chart. 
For example, the S parameters for the 2N5179 with a 
bias of Vce = 6 volts, Ic = 5 mA, at 100 MHz, are: 

Sn = 0.65 /309° 

S22 = 0.84 /348° 

SI2 = 0.03 / 70° 

S21 = 8.2 /123° 

Parameters S 2I and S 12 are the forward and reverse 
gain of the device in magnitude form. To find the 
gain in dB, simply take the logarithm of the number 
and multiply it by 20. 

S12(dB) = 201oglo0.03 
= -30.5 dB 

S21 (dB) = 20 logio8.2 
= 18.3 dB 

From the preceding calculations, we can deduce 
that the output port to input port isolation (S 12 ) of the 
transistor is very good at -30.5 dB. Also, the gain of the 
transistor (S 2l ), when driven with a 50-ohm source 
and terminated in a 50-ohm load (even without im¬ 
pedance matching), is better than 18 dB. Notice that 
each gain was calculated as a voltage gain. In actuality, 
voltage and power gains are identical in this instance 
because the input and the output impedance levels 
are the same ( 50 ohms ). 

Figure 15 on the last page of the data sheet is an¬ 
other plot of the input and output reflection coeffi¬ 
cients of the transistor. This time, however, a Smith 
Chart is used. As was stated previously in this chap¬ 
ter, Sn and S22 are simply reflection coefficients and 
can be plotted just like any other reflection coefficient. 
Once the information is plotted, the input and output 
impedance of the device can be read directly from the 
chart. 
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The chart shown in Figure 15 is a bit different from 
the charts we have used thus far in the book. It has 
been normalized to 50 ohms rather than the usual 1 
ohm. Thus, the center of the chart now represents 
50 ± ¡0 ohms rather than 1 ± ¡0. This type of chart 
normalization is often used when the impedances that 
the designer is working with tend to concentrate 
around a certain value—in this case, 50 ohms. 
The input impedance of the 2N5179 as read from 

the Smith Chart, at 100 MHz with a collector current 
of 5 mA and VCE = 6 volts, is: 

Zin = 48 — ¡79 ohms 

This agrees, within reading accuracy, with the polar 
plot of Su (Figure 11) under the same operating con¬ 
ditions and can be verified numerically by plugging 
Su in Equation 5-8 for F and solving for ZL. 

SUMMARY 

The transistor is no different from any other com¬ 
ponent when it comes to misbehaving at radio fre¬ 

quencies. Like other components, the transistor, too, 
has stray inductance and capacitance which tends to 
limit its high-frequency performance. Y and S param¬ 
eters were devised as a means of presenting this com¬ 
plex transistor behavior over frequency with a mini¬ 
mum of effort. Manufacturers typically present the 
Y- and S-parameter information in the form of data 
sheets, which should be considered only as a starting 
point when used in any rf design task. Manufacturers 
cannot possibly hope to provide Y- and S-parameter 
information at every conceivable bias point and in 
every possible circuit configuration. Instead, they usu¬ 
ally try to provide a set of typical operating conditions 
for the device in question. Inevitably, however, the 
day will come when the data sheet provided with a 
device is of no use to you whatsoever, and you will 
find yourself measuring your own parameters and cre¬ 
ating your own data sheets in order to complete a 
design task. 



SMALL-SIGNAL 

RF AMPLIFIER DESIGN 

The design of rf small-signal amplifiers is a step-
by-step logical procedure with an exact solution for 
each problem. There are many books available on the 
market today that offer schematics (complete with 
parts values) which are “adaptable to any of your 
circuit needs.” That is, a circuit which the author may 
have designed for a specific set of operating conditions 
is offered and it may or may not meet our needs. None¬ 
theless, the design is presented without any design 
procedure attached, and the reader is left out in the 
cold when he tries to adapt the circuit to his particular 
set of operating conditions. 

The chapter presented here, however, takes the op¬ 
posite approach. Detailed step-by-step procedures are 
followed in the design process so that you can choose 
the transistor you want and use it under any (realistic) 
operating conditions that you desire. You will no longer 
have to adapt someone else’s schematic to your needs. 
Rather you will create your own homemade rf ampli¬ 
fiers and optimize them for your personal application. 

We will begin our discussion with a very brief over¬ 
view of transistor biasing. We will discuss both the 
bipolar and the field-effect transistor (FET). As was 
shown in the last chapter, the quiescent bias point of 
a transistor has a great effect on its Y and S parameters. 
Biasing a transistor is, therefore, serious business and 
should not be taken lightly. 

Next, we’ll jump head first into the rf aspect of 
amplifiers by examining stability (tendency for oscil¬ 
lation), gain, impedance matching, and general am¬ 
plifier design, with emphasis on the use of Y and S 
parameters as a design tool. 

TRANSISTOR BIASING 

In most rf amplifier designs, unfortunately, very 
little thought is ever given to the design of bias net¬ 
works for the individual transistors involved. Often, 
the lack of interest in bias networks may be justified. 
If, for instance, the amplifier is to be operated only 
at room temperature, there would be little need to 
spend much time developing an extremely tempera¬ 
ture-stable de operating point. If, on the other hand, 
the amplifier must operate reliably and maintain 
certain specifications (gain, noise figure, etc.) over 
large temperature extremes, the de bias network must 

be carefully considered. Consider, for example, the 
2N5179 data sheet presented in the last chapter. A 
quick look at the Y- and S-parameter curves for the 
device will reveal that a change in the transistor’s 
bias point does in fact change all of its rf operating 
characteristics. It only stands to reason, then, that the 
de operating point must remain stable under your 
specified operating conditions or the rf characteristics 
may change drastically. 

It has been shown that there are two basic internal 
transistor characteristics that have a profound effect 
upon the transistor’s de operating point over tempera¬ 
ture; they are AVBe and Aß. The object of a good tem¬ 
perature-stable bias design (see Fig. 6-1) is to mini¬ 
mize the effects of these parameters. 
As the temperature increases, the base-to-emitter 

voltage ( VBE ) of a transistor decreases at the rate of 
about 2.5 mV/ °C from its nominal room-temperature 
value of 0.7 volt (for a silicon device). As VBE de¬ 
creases, more base current is allowed to flow which, 
in turn, produces more collector current and that is 
exactly what we would like to prevent. The total 
change in VBE for a given temperature change is called 
AVbe. The primary external circuit factor that the cir¬ 
cuit designer has control over, and which tends to 
minimize the effects of AVBE, is the emitter voltage 
(VE) of the transistor. This is shown in Fig. 6-1. Here, 
a decrease in VBE with temperature would cause an 
increase in emitter current and, hence, an increase in 
VE. The increase in VE is a form of negative feedback 
that tends to reverse bias the base-emitter junction 
and, therefore, decrease the collector current. A de¬ 
crease in VBE, therefore, tends to be counteracted by 
the increase in VE, and the collector current does not 
increase as much with temperature. If these obser¬ 
vations were put into equation form, we would have: 

AIc--^^k (Eq. 6-1) 
»E 

where, 
AIC = the change in collector current, 
Ic = the quiescent collector current, 
AVbe = the change in base-to-emitter voltage, 
VE = the quiescent emitter voltage. 

Thus, if VE were made equal to 20 times AVBE, the 
collector current would change only 5% over tempera-

117 
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ture due to AVBE. It is important to note that it is the 
value of the emitter voltage (VE) and not the value 
of the emitter resistor ( RE ) that is the important bias¬ 
design criteria. 

Equation 6-1 tends to imply that the higher VE is, 
the better. This would be exactly true if we had 
nothing to worry about except biasing the transistor 
for the specified operating point. Obviously, there 
are other things that must be considered in the design. 
A high emitter voltage, for instance, does tend to 
waste power and decrease the ac signal gain. A by¬ 
pass capacitor across RE at the signal frequency is 
usually used to prevent the loss in gain, but the wasted 
power may still be a problem. 

If we assume that the amplifier is to operate over 
a change in temperature of no more than ±50 °C, then 
an emitter voltage of 2.5 volts will provide a ±5% 
variation in Ic due to AVbe. In fact, you will find that 
the majority of the transistor bias networks that are 
similar to Fig. 6-1 will provide a value of VE from 
two to four volts depending upon the values of VCc 
and Vc chosen. Higher values are, of course, possible 
depending upon the degree of stability you need. 

The change in a transistor’s de current gain, or ß, 
over temperature, is also of importance to the circuit 
designer. Any variation in ß will produce a correspond¬ 
ing change in quiescent collector current and will, 
therefore, disrupt the transistor’s designed operating 
point. The ß of a silicon transistor typically increases 
with temperature at the rate of about 0.5% per °C. 
Thus, for a ±50 °C temperature variation you can 
expect the ß of the transistor and, hence, its collector 
current to vary as much as ±25%. 
Not only does ß vary with temperature, but the 

manufacturing tolerance for ß among transistors of the 
same part number is typically very poor. It is not 
uncommon, for instance, for a manufacturer to specify 
a 10 to 1 range for ß on the data sheet ( such as 50 to 
500). This, of course, makes it extremely difficult to 
design a bias network for the device in question when 
it is to be used in a production environment. Thus, a 
stable operating point with respect to ß is difficult 
to obtain from a production standpoint as well as 
from a temperature standpoint. 

The change in collector current for a corresponding 
change in ß can be approximated as: 

where, 
Ici = the collector current at ß = ßi, 
ßi = the lowest value of ß, 
ß2 = the highest value of ß, 
^ß = ß2-ß1
Rb = the parallel combination of Ri and R2 ( in Fig. 

6-1), 
Re = the emitter resistor. 

This equation indicates that once a transistor is speci¬ 
fied, the only control that the designer has over the 

1. Choose the operating point for the transistor. 

Ic = 10 mA, Vc = 10 V, Vcc = 20 V, ß = 50 

2. Assume a value for VB that considers bias stability: 

Ve = 2.5 volts 

3. Assume Ie = Ic for high-beta transistors. 
4. Knowing IK and Ve, calculate Re. 

2.5 
~ 10 X 10-3 
= 250 ohms 

5. Knowing Vcc, Vc, and Ic, calculate Rc. 

__ 20-10 
~10 X 10-3 
= 1000 ohms 

6. Knowing Ic and ß, calculate In. 

= 0.2 mA 

7. Knowing Ve and Vbe, calculate Vbb. 

Vbb = Ve + Vbe 
= 2.5 + 0.7 
= 3.2 volts 

8. Assume a value for Ibb, the larger the better (see text): 

Ibb = 1.5 mA 

9. Knowing Ibb and Vbb, calculate Rl 

R, = ^ 
Ibb 

3.2 
=  1.5 X 10-3 ohms 

= 2133 ohms 

10. Knowing Vcc, Vbb, Ibb, and Ib, calculate Ra. 

p   VCC   VBB 
Ibb + Ib 

20 - 3.2 
- 1.7 X 10-3 

= 9882 ohms 

Fig. 6-1. Bias network design 1. 
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1. Choose the operating point for the transistor. 

Ic = 10 mA. Vc = 10 V, Vco = 20 V, ß = 50 

2. Assume values for Vbb and Ibb to supply a constant cur¬ 
rent, Ib. 

Vbb = 2 volts 
Ibb = 1 mA 

3. Knowing Ic and ß, calculate Ib. 

= 0.2 mA 

4. Knowing Vbb, Vbb = 0.7 V, and IB, calculate Rb. 

D Vbb — Vbb ÜB — ---
Ib 

2-0.7 
~ 0.2 X 10-3
= 6500 ohms 

5. Knowing Vbb and Ibb, calculate Ri. 

2 
~ 1 X 10-3 

= 2000 ohms 

6. Knowing Vbb, Ibb, Ib, and Vc, calculate Rf. 

d _ Vc — Vbb 
Ibb + Ib 

10-2 
~ 1.2 X 10-3 

= 6667 ohms 

7. Knowing Vcc, Vc, Ic, Ib, and Ibb, calculate Rc. 
Vcc _ Vc 

' “ Ic + I» + Ibb 
20 - 10 

—  11.2 X 10-3 
= 893 ohms 

Fig. 6-2. Bias network design 2. 

effect of ß changes on collector current is through 
the resistance ratio RB/RE. The smaller this ratio, the 
less the collector current varies. Again, however, some 
compromise is necessary. As you decrease the ratio 
Rb/Re, you also produce the undesirable effect of 
decreasing the current gain of the amplifier. Also, as 
the ratio approaches unity, the improvement in oper-

1. Choose the operating point for the transistor (Vc, Ic). 

Ic = 10 mA, Vc = 10 V, Vcc = 20 V, ß = 50 

2. Knowing Ie and ß, calculate Ib. 

= 0.2 mA 

3. Knowing Vc, Vb = Vbb = 0.7 V, and Ib, calculate Rf. 

10 - 0.7 
~ 200 X 10- « 
= 46.5K 

4. Knowing Ib, Ic, Vcc, and Vc, calculate Rc. 

Vcc - Vc 
Rc= Ib + Ic 

20 - 10 
“ 10.2 X 10-3 
= 980 ohms 

Fig. 6-3. Bias network design 3. 

ating-point stability rapidly decreases. As a practical 
rule of thumb for stable designs, the ratio RB/RE 

should be less than 10. 
Figs. 6-1, 6-2, and 6-3 indicate three possible bias 

configurations for bipolar transistors—in order of 
decreasing bias stability. Complete step-by-step design 
instructions using a typical example are included with 
each circuit-configuration sketch. Note that the bias 
networks of Figs. 6-2 and 6-3 do not contain the 
emitter resistor ( RE ) which provides the negative feed¬ 
back needed to counteract collector-current variations 
over temperature. Instead, resistor RF is connected 
from the collector to the base of the transistor to pro¬ 
vide the negative feedback. Obviously, for these two 
designs, the designer has control over neither the 
ratio Rb/Rk nor the voltage VE of Fig. 6-1. The designs 
are, therefore, of the “pot-luck” variety as far as de 
stability is concerned. You basically take what you get. 
Surprisingly, however, RF works quite well in mini¬ 
mizing the effects of transistor-parameter variations 
over temperature. 

Figs. 6-4 and 6-5 show similar bias arrangements and 
design procedures for a field-effect transistor (FET). 
These are based on the well-known formula: 

Id = loss ( 1—(Eq. 6-3) 
\ *p / 
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1. Choose the operating point for the transistor. 

Id = 10mA, Vd = 10 V, Vcc = 20V 

2. Knowing Vcc, Vd, and Id, calculate R.i. 

10 V 
10 mA 

= 1000 ohms 

3. Determine VP and loss from the data sheet. 

V„ = —6 volts 
loss — 5 mA 

4. Knowing Id, loss, and Vp, calculate V«s. 

v“=v-(‘- Æ) 
A 0 X 10~^ 

- 6 V / 5 X 10-3 J 
= 2.48 volts 

5. Assume a value for Vs in the 2- to 3-volt range. 

Vs = 2.5 volts 

6. Knowing Vs and Id, calculate Rs. 

R _V, 
its — *7— 

Id 

2.5 
-  10 X 10-3 

= 250 ohms 

7. Knowing Vs and Vos, calculate Vo. 

Vo — Vos + Vs 
= 2.48 4- 2.5 
= 4.98 volts 

8. Assume a value for Ri based upon de input resistance 
needs. 

Ri = 220K 

9. Knowing R,, Vo, and Vcc, calculate R2. 

„ Ri(Vcc- Vo) 
R’- v; 

_ 220 X 103(20-4.98) 
~ 4.98 
= 664K 

Fig. 6-4. Bias network design 4. 

Vcc 

1. Choose an operating point for the transistor. 

Id = 10 mA, Vd = 10 V, Vcc = 20 V 

2. Knowing Vcc, Vd, and Id, calculate Rd. 

Rd = 
Vcc — Vd 

Id 

20- 10 
" 10 X 10-3 
= 1000 ohms 

3. Determine VP and loss from the transistor data sheet. 

Vp = —6 volts 
Idss — 5 mA 

4. Knowing Id, loss, and Vp, calculate Vcs. 

= 2.48 volts 

5. Knowing Io = 0, Vos = Vs, and Id, calculate Rs. 

“ Id 

2.48 
- 10 X 10-3 
= 248 ohms 

6. Since Io = 0, Ro can be chosen to be any large value of 
resistor—approximately 1 megohm. 

Fig. 6-5. Bias network design 5. 

where, 
Id = the drain current, 
loss = the drain current with VGs = 0, 
VGs = the gate-to-source voltage, 
Vp = the pinch-off voltage. 

Id is usually a value chosen by the user as part of the 
bias specifications, and IDss and Vp can be found on the 
data sheet for the transistor. Once these three values 
are known, Equation 6-3 can be used to solve for Vgs, 
and a suitable bias circuit can then be found. 

DESIGN USING Y PARAMETERS 

The rf small-signal performance of a transistor can 
be completely characterized by its two-port admit¬ 
tance parameters. Based on these parameters, equa-
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tions can be written to aid you both in finding a tran¬ 
sistor to suit your needs and in completing the design 
once the transistor is selected. 

One of the first requirements in any amplifier de¬ 
sign is to choose the transistor which is best suited 
for the job. Many rf amplifier designs are doomed from 
the beginning simply because the active device chosen 
for the job should have never been considered. Spend 
a little time shopping for the right device for your 
application. The more time you spend shopping prior 
to the start of the actual design, the less hair-pulling 
there will be later. Two of the most important con¬ 
siderations, in choosing a transistor for use in any 
amplifier design, are its stability and its maximum 
available gain (MAG). Stability, as it is used here, 
is a measure of the transistor’s tendency toward oscil¬ 
lation. MAG is a type of figure-of-merit for the tran¬ 
sistor, which indicates the maximum theoretical power 
gain you can expect to obtain from the device when it 
is conjugately matched to its source and load imped¬ 
ance. The MAG is never actually reached in practice; 
nevertheless, it is quite useful in gauging the capabili¬ 
ties of a transistor. 

Stability Calculations 
It has been said that one of the easiest methods of 

building an oscillator is to design an amplifier. Al¬ 
though experience has found this to be true, it really 
need not be the case. A bit of prior planning and basic 
apriori knowledge about the transistor that is to be 
used can go a long way toward preventing oscillations 
in any amplifier design. 

It is possible to predict the degree of stability (or 
lack thereof) of a transistor before you actually place 
the device in a circuit. This is done through a calcula¬ 
tion of the Linvill stability factor, C. 

C = 9--ï ( Eq. 6'4 ) 2g1go — Re(yryf ) 

where, 
I = the magnitude of the product in brackets, 
yr = the reverse-transfer admittance, 
yf = the forward-transfer admittance, 
gt = the input conductance, 
g„ = the output conductance, 
Re = the real part of the product in parentheses. 

When C is less than 1, the transistor is uncondition¬ 
ally stable at the bias point you have chosen. This 
means that you could choose any possible combina¬ 
tion of source and load impedance for the device, and 
the amplifier would remain stable providing that no 
external feedback paths exist which have not been 
accounted for. 

If C is greater than 1, the transistor is potentially 
unstable and will oscillate for certain values of source 
and load impedance. A C-factor greater than 1 does 
not indicate, however, that the transistor cannot be 
used as an amplifier. It merely indicates that you 

must exercise extreme care in choosing your source 
and load impedances or oscillations may occur. 

The Linvill stability factor is useful in predicting a 
potential stability problem. It does not indicate the ac¬ 
tual impedance values between which the transistor 
will go unstable. Obviously, if a transistor is chosen 
for a particular design problem, and the transistor’s 
C-factor is less than 1 (unconditionally stable), it will 
be much easier to work with than a transistor which is 
potentially unstable. Keep in mind also that if C is 
less than but very close to 1 for any transistor, then 
any change in the bias point due to temperature varia¬ 
tion could cause the transistor to become potentially 
unstable and most likely oscillate at some frequency. 
This is because Y parameters are specified at a par¬ 
ticular bias point which varies with temperature. 
This is a very important concept to remember. The 
smaller C is, the better. 
Y parameters can also be used to predict the sta¬ 

bility of an amplifier given certain values of load and 
source impedance. This is called the Stern stability 
factor and is given by 

K _ 2(gi + Gg)(g„ + Gl) 
|yryf| + Re(yryf) (Eq. 6-5) 

where, 
Gs = the source conductance, 
Gl = the load conductance. 

In this case, if K is greater than 1, the circuit will 
be stable for that value of source and load impedance. 
If K is less than 1, the circuit is potentially unstable 
and will most likely oscillate at some frequency. Note 
that the K-factor is a more definitive calculation for 
stability in that it predicts stability for a particular 
circuit. The C-factor, on the other hand, predicts a 
kind of nebulous possibility for instability without 
giving you an indication as to where the instability 
may occur. 

The Linvill stability factor is, therefore, useful in 
finding stable transistors while the Stern stability factor 
predicts possible stability problems with circuits. 

Maximum Available Gain 
The MAG of a transistor can be found by using 

the following equation; 

MAG = N2
4gigo 

(Eq. 6-6) 

MAG is a useful calculation in the initial search for a 
transistor for any particular application. It will give 
you a good indication as to whether or not the tran¬ 
sistor can provide enough gain for the task. 

The maximum available gain for a transistor occurs 
when yr = 0, and when YL and Ys are the complex con¬ 
jugates of yo and yl; respectively. The condition that 
yr must equal zero for maximum gain to occur is due 
to the fact that under normal conditions, yr acts as a 
negative feedback path internal to the transistor. With 
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yr = 0, no feedback is allowed and the gain is at a 
maximum. 

In practical situations, it is physically impossible 
to reduce yr to zero and, as a result, MAG can never 
truly be attained. It is possible, however, to very nearly 
achieve the MAG calculated in Equation 6-6 through 
a simultaneous conjugate match of the input and out¬ 
put admittance of the transistor. Thus, Equation 6-6 
remains a valid tool in the search for a suitable tran¬ 
sistor as long as you understand its limitations. For 
example, if an amplifier design calls for a minimum 
power gain of 18 dB at 200 MHz, don’t choose a 
transistor with a calculated MAG of 19 dB. Allow your¬ 
self a small margin to cover for realistic values of yr, 
component losses in the matching network, and varia¬ 
tion in the bias point over temperature. 

Simultaneous Conjugate Matching 
(Unconditionally Stable Transistors) 
Optimum power gain is obtained from a transistor 

when yi and y0 are conjugately matched to Ys and YL, 
respectively. As was discussed in Chapter 5, however, 
the reverse-transfer admittance (yr) associated with 
each transistor tends to reflect any impedance changes 
made at one port back toward the other port, causing 
a change in that port’s impedance characteristics. This 
makes it very difficult to design good matching net¬ 
works for a transistor while using only its input and 
output admittances and totally ignoring the contri¬ 
bution that yr makes to the transistor’s impedance 

characteristics. Even though YL affects the input ad¬ 
mittance of the transistor and Ys affects its output 
admittance, it is still possible to provide the transistor 
with a simultaneous conjugate match for maximum 
power transfer ( from source to load ) by using the fol¬ 
lowing design equations : 

Ga= V[2g,go-Re(yfyr)P-|yfyrP (Eq 6.7)
¿go 

Bs=-jb, + i^^ (Eq. 6-8) 
¿go 

Gl = Vt2gigo - Re(yfyr)]2 - lyprP < Eq 6.9 j 
2gi 

= (Eq. 6-10) 
gi 

Bl = -jb.* 1™^ (Eq. 6-11) 
¿gi 

where, 
Gs = the source conductance, 
Bs = the source susceptance, 
Gl = the load conductance, 
Bl = the load susceptance, 
Im = the imaginary part of the product in paren¬ 

theses. 

The above equations may look formidable but ac¬ 
tually they are not—once you have used them a few 
times. Let’s try an example of a simultaneous con¬ 
jugate match for clarification (Example 6-1). 

EXAMPLE 6-1 The MAG of this transistor is computed with Equation 

A transistor has the following Y parameters at 100 MHz, 
with Vce = 10 volts and Ic = 5 mA. I v, | 2 

mag = 9^-
yi = 8 + ¡5.7 mmhos 4gigo 
y0 = 0.4 + jl.5 mmhos _ 1 52 — ¡20 | 2
yr = 52 — ¡20 mmhos 4(8)(0.4) 
y, = 0.01 — ¡0.1 mmho =  242.5 

„ . ... .11 1 =23.8 dB Design an amplifier which will provide maximum power 
gain between a 50-ohm source and a 50-ohm load at 100 The actual gain we can achieve will be somewhat less than 
MHz. this due to yr and component losses. 

Using Equations 6-7 through 6-11, calculate the source 
and load admittances for a simultaneous conjugate match. 

Solution For the source, using Equation 6-7: 

First, calculate the Linvill stability factor using Equation -, _ V [2gig. — Re(yty.)]2 — | yty. P 
6-4. Gs - 2g„ 

1 y.y, 1 V [6.4+L47P-(5.57)2 
2g,g0 — Re(yryr) 2(.4) 

1 (52 -¡20) (0.01 - ¡0.1) 1 =6.95 mmhos 
- 2(8)(0.4) - Re [(52 - j20)(0.01 - ¡0.1)1 And> Equation 6.8;

5.57 
— 6.4 — (-1.47) B. = —jb, + 
= 0.7! g" 

— —’5 7 4-Since C is less than 1, the device is unconditionally stable * ' 2( .4) 
and we may proceed with the design. Had C been greater _ 41 mmhos 
than 1, however, we would have had to be extremely care¬ 
ful in matching the transistor to the source and load as in¬ 
stability could occur. Continued on next page 
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EXAMPLE 6-1—Cont. 

NAME TITLE DWG. NO. 

SMITH CHART FORM ZY-01-N ANALOG INSTRUMENTS COMPANY, NEW PROVIDENCE, N.J. 07974 
DATE 

NORMALIZED IMPEDANCE AND ADMITTANCE COORDINATES 

Cont. on next page 

Fig. 6-7. Output network design for Example 6-1. 
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EXAMPLE 6-1—Cont. 

Therefore, the source admittance that the transistor must 
“see” for optimum power transfer is 6.95 — ¡12.41 mmhos. 
The transistor’s actual input admittance is the conjugate of 
this number, or 6.95 -|- ¡12.41 mmhos. For the load, using 
Equation 6-10; 

„ _ Gsgo 
Gl —-

gi 
_ (6.95)(0.4) 
“ 8 
= 0.347 mmho 

And, with Equation 6-11: 

, . -5.37 
=  -1L5 + iW 
= — j 1.84 mmhos 

Thus, for optimum power transfer, the load admittance 
must be 0.347 — ¡1.84 mmhos. The actual output admit¬ 
tance of the transistor is the conjugate of the load admit¬ 
tance, or 0.347 + ¡1.84 mmhos. 

The next step is to design the input and output imped¬ 
ance-matching networks that will transform the 50-ohm 
source and load to the impedance which the transistor 
would like to see for optimum power transfer. The input 
matching design is shown on the Smith Chart of Fig. 6-6. 
This chart is normalized so that the center of the chart rep¬ 
resents 50 ohms or 20 mmhos. Thus, the point, Ys = 6.95 
— ¡12.42 mmhos, is normalized to: 

Ys = 50 ( 6.95 — ¡12.41 ) mmhos 
_ 0.34 — ¡0.62 mho 

This normalized admittance is shown plotted in Fig. 6-6. 
Note that its corresponding impedance can be read directly 
from the chart as Zs = 0.69 4- jl.2 ohms. The input match¬ 
ing network must transform the 50-ohm source impedance 
to the impedance represented by this point. As was dis¬ 
cussed in Chapter 4, there are numerous impedance-match¬ 
ing networks available to do the trick. The two-element L 
network was chosen here for simplicity and convenience. 

Arc AB = series C = —¡1.3 ohms 

Arc BC = shunt L = —¡1.1 mhos 

The output circuit is designed and plotted in Fig. 6-7. 
Because the admittance values needed in the output net¬ 
work are so small, this chart had to be normalized to 200 
ohms ( 5 mmhos ). Thus, the normalized admittance plotted 
on the chart is: 

Yl = 200 ( 0.347 — ¡1.84 ) mmhos 

= 0.069 — ¡0.368 mho 

or, 
Zl = 0.495 -f- ¡2.62 ohms 

The normalized 50-ohm load must be transformed to this 
impedance for maximum transfer of power. Again, the two-
element L network was chosen to perform the match. 

Arc AB — series C = —¡1.9 ohms 

Arc BC = shunt L = —j0.89 mho 

The input and output matching networks are shown in Fig. 
6-8. For clarity, the bias circuitry is not shown. 

Actual component values are found using Equations 4-11 
through 4-14. For the input network: 

Fig. 6-8. Circuit topology for Example 6-1. 

Ci — —V\ cuXN 
1 

- 277(100 X 10«) ( 1.3)(50) 

= 24.5 pF 

and, 

50 
- 277(100 X 10«) (1.1) 

= 72nH 

Similarly, for the output network: 

&_I_ 
^“ 277(100 X 10«)(1.9)(200) 

= 4.18 pF 

and, 
T 200 

277(100 X 10°) (0.89) 

= 358 nH 

The final circuit, including the bias network, might appear 
as shown in Fig. 6-9. The 0.1-/zF capacitors provide rf by¬ 
pass at 100 MHz. 

20 V 

Fig. 6-9. Final circuit for Example 6-1. 
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Transducer gain 
Transducer gain is defined as the output power that 

is delivered to a load by a source, divided by the maxi¬ 
mum power available from the source. This is the gain 
term most often referenced in rf amplifier design work. 
Transducer gain includes the effects of input and out¬ 
put impedance matching as well as the contribution 
that the transistor makes to the overall gain of the 
amplifier stage. Component resistive losses are ne¬ 
glected. 

Given the source admittance (Ys) and load admit¬ 
tance (Yl) as seen by the transistor, the transducer 
gain is given by: 

Gt = -- 4GsGL|yf|2- ( Eq. 6-12) 
Kyi + Ys)(y0 + Yl) — ytyr|-

EXAMPLE 6-2 
Find the gain of the circuit that was designed in Example 

6-1. Disregard any component losses. 

Solution 

The transducer gain for the amplifier is determined by 
substituting the values given in Example 6-1 into the Equa¬ 
tion 6-12: 

Gt = 
4 (6.95) (0.347) 

|(8 + ¡5.7 + 6.95 - ¡12.41 )( 0.4 + ¡1.5 + 0.347 - ¡1.84 ) 
I 52 - ¡20 I 2 

- (52- ¡20) (0.01 -¡0.1) I 2 

29943 
“ I 8.88 - ¡10.1 + 1.47 + ¡5.37 | 5 

= 231.2 
= 23.64 dB 

The transducer gain calculated in Example 6-2 is 
very close to the MAG that was calculated in Example 
6-1. Therefore, in this case, the reverse-transfer ad¬ 
mittance (yr) of the transistor has very little effect on 
the overall gain of the stage. In many instances, how¬ 
ever, yr can take an appreciable toll on gain. For this 
reason, it is best to calculate GT once the transistor’s 
load and source admittances are determined. The cal¬ 
culation will provide you with a very good estimate 
of what the actual gain of the amplifier will be. 

Designing with Potentially Unstable Transistors 
If the Linvill stability factor (C) calculated with 

Equation 6-4 is greater than 1, the transistor you have 
chosen is potentially unstable and may oscillate under 
certain conditions of source and load impedance. If 
this is the case, there are several options available 
that will enable you to use the transistor in a stable 
amplifier configuration: 

1. Select a new bias point for the transistor. 
2. Unilateralize or neutralize the transistor. 

3. Selectivity mismatch the input and output imped¬ 
ance of the transistor to reduce the gain of the stage. 

The simplest solution to a stability problem is very 
often Option 1. This is especially true if C calculates 
to be very close to, but greater than, 1. Remember, 
any change in a transistor’s operating point has a direct 
effect on its rf characteristics. Therefore, by simply 
changing the de bias point, it is possible to change 
the Y parameters of the transistor and, hence, its 
stability. Of course, if this approach is taken, it is ab¬ 
solutely critical that the bias point be temperature¬ 
stable over the range of temperatures that the device 
must operate. 

Since instability is generally caused by the feedback 
path, which consists of the reverse-transfer admittance 
(yr) of the transistor, unilateralization or neutraliza¬ 
tion will often stabilize a design. Unilateralization con¬ 
sists of providing an external feedback path (Yf ) from 
the output to the input, such that Yf = —yr. Thus, Y f 

cancels yr leaving a composite reverse-transfer admit¬ 
tance (yrc ) equal to zero. With yrc equal to zero, the 
device is unconditionally stable. This can be verified 
by substituting yrc = 0 for yr in Equation 6-4. The 
Linvill stability factor in this case becomes zero, thus, 
indicating unconditional stability. 

Often, when yr is a complex admittance consisting 
of gr ± jbr, it becomes very difficult to provide the cor¬ 
rect external reverse admittance needed to totally elim¬ 
inate the effect of yr. In such cases, neutralization is 
often used. Neutralization is similar to unilateralization 
except that only the imaginary component of yr is 
counteracted. An external feedback path is constructed 
from output to input such that Bf = —br. Thus, the 
composite reverse-transfer susceptance (brc ) is equal 
to zero. Neutralization also tends to tame wild ampli¬ 
fiers because, in most transistors, gr is negligible when 
compared to br. Thus, the elimination of br very nearly 
eliminates yr. For this reason, neutralization is gener¬ 
ally preferred over unilateralization. Two types of 
neutralizing circuits are shown in Fig. 6-10. In Fig. 
6-10A, the series inductor and capacitor can be tuned 
to provide the correct amount of negative susceptance 
(inductance) necessary to cancel a positive reverse¬ 
transfer susceptance internal to the transistor. The cir¬ 
cuit of Fig. 6-10B can be used to provide the correct 
amount of external positive susceptance necessary to 
cancel any —jb that is internal to the transistor. 

The addition of external components, in order to 
neutralize an amplifier, tends to increase the cost and 
complexity of the circuit. Also, most neutralization cir¬ 
cuits tend to neutralize the amplifier at the operating 
frequency only, and may cause problems (instability) 
at other frequencies. It is possible, however, to stabil¬ 
ize an amplifier without any form of external feed¬ 
back. Another look at the Stern stability factor (K) 
in Equation 6-5 will reveal how. 

If Gs and Gj, are made sufficiently large enough to 
force K to be greater than 1, then the amplifier will 
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(A) Fory, = +jb. ( B ) For yr — —jb. 

Fig. 6-10. Neutralization circuits. 

remain stable for those terminations. This suggests 
selectively mismatching the transistor to achieve sta¬ 
bility. Thus, the gain of the amplifier must be less 
than that which would be possible with a simultaneous 
conjugate match. The procedure for a design using un¬ 
stable devices is as follows: 

1. Choose Gs based on the optimum noise-figure in¬ 
formation in the transistor’s data sheet. Alternately, 
choose Gs based on some other criteria, such as 
convenience or input-network Q. 

2. Select a value of K that will assure you of a stable 
amplifier (K > 1 ). 

3. Substitute the above values for K and Gs into 
Equation 6-5 and solve for Gi„ 

4. Now that Gs and Gr. are known, all that remains 
is to find Bs and BL. Choose a value of Bt. equal to 
the — b„ of the transistor. The corresponding Yi„ 
which results, will then be very close to the true Yr, 
that is theoretically needed to complete the design. 

5. Next, calculate the transistor’s input admittance 
(Yin ) using the load chosen in Step 4 and the for¬ 
mula in Equation 6-13. 

= (Eq. 6-13) 
y« + Il 

where, 
Yj, = Gl — jBL (found in Steps 3 and 4). 

6. Once Yln is known, set Bs equal to the negative of 
the imaginary part of Yln, or: 

Bs = — Bln 

7. Calculate the gain of the stage using Equation 
6-12. 

From this point forward, it is only necessary to pro¬ 
vide input and output networks that will present the 
calculated Ys and YL to the transistor. Example 6-3 
illustrates the procedure. 

DESIGN USING S PARAMETERS 

As we discussed in Chapter 5, transistors can also 
be completely characterized by their scattering or S 

EXAMPLE 6-3 
A 2N5179 transistor has the following Y parameters at 

200 MHz: 

yi = 2.25 + j7.2 
y« = 0.4 4- jl.9 
yr = 40 — j20 
y, = 0.05 - j0.7 

All of the above parameters are in mmhos. Find source and 
load admittances that will assure you of a stable design. 
Find the gain of the amplifier. 

Solution 

The Linvill stability factor ( C ) for the transistor is equal 
to 2.27 as calculated using Equation 6-4. Therefore, the de¬ 
vice is potentially unstable and you must exercise extreme 
caution in choosing a source and load admittance for the 
transistor. Proceed as previously outlined in Steps 1 through 
7. 

The data sheet for the 2N5179 transistor states that the 
optimum source resistance for the best noise figure is 250 
ohms. Thus, Gs — 1/Rs = 4 mmhos. Choose a Stern stabil¬ 
ity factor of K = 3 for an adequate safety margin. 

Substitute Gs and K into Equation 6-5 and solve for Gl. 

_ 2(gi + Gs)(g, + Gl) 
—  I y,y» I + Re(y,y») 

2(2.25 + 4) (0.4 + Gl) 
31.35 + ( — 12) 

and, 
Gt. = 4.24 mmhos 

Set Bl equal to —b„ of the transistor. 

Bl = —jl.9 mmhos 

The load admittance is now defined. 

Yl = 4.24 — jl.9 mmhos 

Calculate the input admittance of the transistor using Equa¬ 
tion 6-13 and Yl. 

Ym = yi y,y, 
y. + Yl 

= 2.25 + j7.2 -
( 0.701 / -85.9" ) ( 44.72 / -26.6° ) 

0.4 + jl.9 + 4.24 - jl.9 
= 4.84 + jl.3.44 mmhos 

Set Bs equal to the negative of the imaginary part of Yt„. 

B, = —j 13.44 mmhos 

The source admittance needed for the design is now defined 
as: 

Ys = 4.84 — jl3.44 mmhos 

Now that Ys and Yl are known, you can calculate the ex¬ 
pected gain of the amplifier using Equation 6-12. 

c __4 (4.84) (4.24) | (44.72) | 2_ 
T“ I (7.08 — j6.24)(4.64) - (-12 -j28.96) |2 
_ 135,671.7 
—  2011 
= 67.61 

= 18.3 dB 

Therefore, even though the transistor is not conjugately 
matched, you can still realize a respectable amount of gain 
while maintaining a perfectly stable amplifier. Component 
values can be found by following the procedures outlined in 
Example 6-1. 
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parameters. With these parameters, it is possible to 
calculate potential instabilities (tendency toward os¬ 
cillation), maximum available gain, input and output 
impedances, and transducer gain. It is also possible 
to calculate optimum source and load impedances 
either for simultaneous conjugate matching or simply 
to help you choose specific source and load impedances 
for a specified transducer gain. 

Like Y parameters, S parameters vary with frequency 
and bias level. Therefore, you must first choose a 
transistor, select a stable operating point, and deter¬ 
mine its S parameters at that operating point (either 
by measurement or from a data sheet) before follow¬ 
ing the procedures given in the following sections. 

Stability 
The tendency of a transistor toward oscillation can 

be gauged by its S-parameter data in much the same 
manner as was done in an earlier section with Y 
parameters. The calculation can be made even before 
an amplifier is built and, thus, it serves as a useful 
tool in finding a suitable transistor for your application. 

To calculate the stability of a transistor with S 
parameters, you must first calculate the intermediate 
quantity Ds : 

D, = S11S22 — S12S21 (Eq. 6-14) 

The Rollett Stability Factor (K) is then calculated as: 

K _l + |D.|’-|S„|’-feP , EoB15) 
K -2- |S„| ■ |S„|- (Eq.6-15) 

If K is greater than 1, then the device will be un¬ 
conditionally stable for any combination of source and 
load impedance. If, on the other hand, K calculates to 
be less than 1, the device is potentially unstable and 
will most likely oscillate with certain combinations of 
source and load impedance. With K less than 1, you 
must be extremely careful in choosing source and load 
impedances for the transistor. It does not mean that 
the transistor cannot be used for your application, it 
merely indicates that the transistor will be more diffi¬ 
cult to use. 

If K calculates to be less than 1, there are several 
approaches that you can take to complete the design: 

1. Select another bias point for the transistor. 
2. Choose a different transistor. 
3. Follow the procedures outlined later in this chapter. 

Maximum Available Gain 
The maximum gain you could ever hope to achieve 

from a transistor under conjugately matched condi¬ 
tions is called the Maximum Available Gain (MAG). 
To calculate MAG, first calculate the intermediate 
quantity Bi : 

Bi = 1 + |Sn |’ - IS22I2 - |D.p ( Eq. 6-16) 

where D„ is the quantity calculated using Equation 
6-14. 

where, 
MAG is in dB, 
K is the stability factor calculated using Equation 

6-15. 

The reason Bi had to be calculated first is because 
its polarity determines which sign (±) to use before 
the radical in Equation 6-17. If Bt is negative, use the 
plus sign. If Bi is positive, use the minus sign. 

Note that K must be greater than 1 (unconditionally 
stable) or Equation 6-17 will be undefined. That is, 
for a K less than 1, the radical in the equation will pro¬ 
duce an imaginary number and the MAG calculation 
is no longer valid. Thus, MAG is undefined for unstable 
transistors. 

The MAG is then calculated: 
IC I 

MAG = 10 log + 10 log K ± \/K2 - 1 

(Eq. 6-17) 

Simultaneous Conjugate Match 
(Unconditionally Stable Transistors) 

Once a suitable stable transistor has been found, and 
its gain capabilities have been found to match your 
requirements, you can proceed with the design. 

The following design procedures will result in load 
and source reflection coefficients which will provide 
a conjugate match for the actual output and input 
impedances, respectively, of the transistor. Remember 
that the actual output impedance of a transistor is 
dependent upon the source impedance that the tran¬ 
sistor “sees.” Conversely, the actual input impedance 
of the transistor is dependent upon the load imped¬ 
ance that the transistor “sees.” This dependency is, 
of course, caused by the reverse gain of the transistor 
(S 12 ). If S12 were equal to zero, then, the load and 
source impedances would have no effect on the tran¬ 
sistor’s input and output impedances. 

To find the desired load reflection coefficient for a 
conjugate match, perform the following calculations: 

C2 = S22 -(D.Sn°) (Eq. 6-18) 

where, the asterisk indicates the complex conjugate 
of Su (same magnitude, but angle has the opposite 
sign). The quantity Ds is the intermediate quantity as 
calculated in Equation 6-14. 

Next, calculate B2. 

B2 = 1 + |S22|2 - |Sn|2 - |P.|a (Eq. 6-19) 

The magnitude of the reflection coefficient is then 
found from the equation: 

inj = ( Eq- 6-20 ) 

The sign preceding the radical is the opposite of the 
sign of B2 (which was previously calculated in Equa¬ 
tion 6-19). The angle of the load-reflection coefficient 
is simply the negative of the angle of C2 (found in 
Equation 6-18). 
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Once the desired load-reflection coefficient is found, 
it can be plotted on a Smith Chart, and the correspond¬ 
ing load impedance can be found directly. Or, if you 
prefer, you can substitute rL into Equation 5-8, and 
solve for ZL mathematically. 

With the desired load-reflection coefficient specified, 
you can now calculate the source-reflection coefficient 
that is needed to properly terminate the transistor’s 
input. 

MSn+ J'gl'X)]' (EclB-ZI) 

The asterisk again indicates that you should take the 
conjugate of the quantity in brackets ( same magnitude, 
but opposite sign for the angle). In other words, once 
you complete the calculation (within the brackets) of 
Equation 6-21, the magnitude of the result will be cor¬ 
rect, but the angle will have the wrong sign. Simply 
change the sign of the angle. 
Once rs is found, it can either be plotted on a 

Smith Chart or substituted into Equation 5-8 to find 
the corresponding source impedance. An example 
should help clarify matters (Example 6-4). 

EXAMPLE 6-4 
A transistor has the following S parameters at 200 MHz, 

with a Vck = 10 V and an Ic = 10 mA: 

S„ = 0.4 / 162° 
Ss = 0.35 / —39 ° 

S„ = 0.04 /60° 
Sn = 5.2 /63* 

The amplifier must operate between 50-ohm terminations. 
Design input and output matching networks to simulta¬ 
neously conjugate match the transistor for maximum gain. 

Solution 

First use Equations 6-14 and 6-15 to see if the transistor 
is stable at the operating frequency and bias point: 

D. = 
(0.4 / 162° 1(0.35 / -39° ) - (0.04 / 60° ) (5.2 ¿63.°) 

= 0.14 / 123 ° - 0.208 / 123 ° 
= 0.068 / -57 ° 

Use the magnitude of D, to calculate K. 

1 4-(0.068)2 — (0.4)2 — (0.35)2 
K- 2(5.2)(0.04) 

= 1.74 

Since K is greater than 1, the transistor is unconditionally 
stable and we may proceed with the design. 

Next, calculate Bi using Equation 6-16. 

B, = 1 4- (0.4)2 _ (0.35)2 _ (0.068)2 

= 1.03 

The Maximum Available Gain is then given by Equation 
6-17: 

MAG = 10 log^ +  10 log I 1.74 - V( 1.74)2- 1 | 

= 21.14 + (-5) 

= 16.1 dB 

The negative sign shown in front of the radical in the above 
equation results from Bi being positive. 

If the design specification had called out a minimum gain 
greater than 16.1 dB, a different transistor would be needed. 
We will consider 16.1 dB adequate for our purposes. 

The next step is to find the load-reflection coefficient 
needed for a conjugate match. The two intermediate quan¬ 
tities (C2 and B2) must first be found. From Equation 6-18: 

C2 = 0.35 / —39 ° - [ (0.068 / -57° ) (0.4 /-162° )] 
= 0.272 - j0.22 - [-0.021 + j0.017] 

= 0.377 /—39 ° 

and, from Equation 6-19: 

B2 = 1 + (0.35)2 - (0.4)2 _ (0.068)2 

= 0.958 

Therefore, the magnitude of the load-reflection coefficient 
can now be found using Equation 6-20. 

. . _ 0.958 - ^(0.958)2 - 4(0.377)2 
|L|_ 2(0.377) 

= 0.487 

The angle of the load-reflection coefficient is simply equal 
to the negative of the angle of C2, or 4-39°. Thus, 

T,. = 0.487 /39 ° 

Using Tt, calculate Fs using Equation 6-21. 

r, = 
rn 4 / ! «9- J. (° 04 ¿60°) (5.2 ¿33°) (0.487 ¿33,°) 1 ° 

_ (0.487 /39°)(0.35 /-39°) J 

= [0.522 /162°1* 
= 0.522 / —162 ° 

Once the desired Fs and Ft are known, all that remains 
is to surround the transistor with components that provide 
it with source and load impedances which “look like” F» 
and I"l. 
The input matching-network design is shown on the 

Smith Chart of Fig. 6-11. The object of the design is to 
force the 50-ohm source to present a reflection coefficient of 
0.522 / —162°. With Fs plotted as shown, the correspond¬ 
ing desired and normalized impedance is read directly from 
the chart as Zs = 0.32 — j0.14 ohm. Bemember, this is a 
normalized impedance because the chart has been normal¬ 
ized to 50 ohms. The actual impedance represented by Ts is 
equal to 50(0.32 — j0.14) = 16 — j7 ohms. To force the 
50-ohm source to actually appear as a 16 — j7 ohm imped¬ 
ance to the transistor, we merely add a shunt and a series 
reactive component as shown on the chart of Fig. 6-11. 
Proceeding from the source, we have: 

Arc AB = Shunt C = j 1.45 mhos 
Arc BC = Series L = j0.33 ohm 

The actual component values are found using Equations 4-
12 and 4-13. 

c _ 1.45 
- 2rr(200 x 10«)50 

= 23 pF 
(0.33)(50) 

1 - 2rr(200 X 10«) 
= 13 nH 

Continued on next page 
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EXAMPLE 6-4—Cont. 

NAME TITLE DWG. NO. 

[SMITH CHART FORM ZY-01-N ANALOG INSTRUMENTS COMPANY, NEW PROVIDENCE, N.J. 07Í74 
DATE 

NORMALIZED IMPEDANCE AND ADMITTANCE COORDINATES 

Fig. 6-11. Input network-design values for Example 6-4. 

Cont. on next page 
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EXAMPLE 6-4—Cont. 

NAME TITLE DWG. NO. 

SMITH CHART FORM ZY-01-N ANALOG INSTRUMENTS COMPANY, NEW PROVIDENCE. N.J. 07974 DATE 

NORMALIZED IMPEDANCE AND ADMITTANCE COORDINATES 

Fig. 6-12. Output network-design values for Example 6-4. 

Cont. on next page 
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EXAMPLE 6-4—Cont. 

This completes the input matching network. 
The load-reflection coefficient is plotted in Fig. 6-12 and 

represents a desired load impedance (as read from the 
chart) of Zl = 50 ( 1.6 + jl.28) ohms, or 80 + j64 ohms. 
The matching network is designed as follows. Proceeding 
from the load: 

Arc AB = Series C = —jl.3 ohms 
Arc BC = Shunt L = —)0.78 mho 

Component values are now found using Equations 4-11 
and 4-14. 

2rr(200 X 10«) ( 1.3) (50) 

= 12 pF 

i_50_ 
2n(200 X 10«) (0.78) 

= 51 nH 
The final design, excluding bias circuitry, is shown in Fig. 
6-13. 

Transducer Gain 
The transducer gain, as defined earlier in this chap¬ 

ter, is the actual gain of an amplifier stage including 
the effects of input and output matching and device 
gain. It does not include losses attributed to power 
dissipation in imperfect components. 

Transducer gain is found by 

r |s21|a(i-|r8|a)(i-|rL|2) 
' |(i - s„r8)(i - s22rL) - s I2s21rLrs|2

( Eq. 6-22 ) 

where, 
rs and rL are the source- and load-reflection coeffi¬ 

cients, respectively. 

Calculation of Gt is a useful method of checking the 
power gain of an amplifier before it is built. This is 
shown by Example 6-5. 

EXAMPLE 6-5 
Calculate the transducer gain of the amplifier that was 

designed in Example 6-4. 

Solution 

Using Equation 6-22, we have: 

r _ (5.2)2 
T_ I (1 -0.2088 )(1 -0.170) 

_ (1 - (0.522)2)(l — (0.487)2)_ 
- ( 0.04 / 60° ) ( 5.2 / 63° ) ( 0.487 / 39° ) ( 0.522 Z -162° ) 12

= 41.15 
= 16.1 dB 

Notice, again, that the transducer gain calculates to 
be very close to the MAG. If you carry the calculation 
out to several decimal places, you will find that Gt 
is still less than the MAG by a few hundredths of a 
dB. This is due to the fact that S )2 is not equal to zero 
and is, therefore, providing a slight amount of negative 
feedback internal to the transistor. 

Design for a Specified Gain 
Often, when designing amplifiers, it is required that 

a single stage provide a certain amount of gain—no 
more and no less. In a situation such as this, a simul¬ 
taneous conjugate match for the transistor would 
probably provide too much gain for the stage and 
would probably overdrive its load (or the succeeding 
stage ). Obviously, if you so desired, you could search 
through mountains of manufacturer’s literature hop¬ 
ing to find a transistor that, when conjugately matched, 
would provide exactly the amount of gain desired. This 
approach could take weeks or even months. Even if 
you did find a transistor with exactly the gain needed, 
you are now at the mercy of the manufacturer and are 
subject to any and all gain variations among transistors 
of the same type. There is a better way, however, and 
it alleviates the above problems very easily. It is 
called selective mismatching. 

Selective mismatching is simply a controlled man¬ 
ageable way of decreasing gain by not matching the 
transistor to its load. This may sound like heresy to 
some, but it is a practical, logical, and well-accepted 
design procedure. There are still those who believe 
that at rf frequencies, a transistor must be matched to 
its source and load impedance. This is just not true. 
A transistor is simultaneously conjugate matched to 
its source and load only if maximum gain is desired, 
without regard for any other parameter, such as noise 
figure and bandwidth. 

One of the easiest methods of selectively mismatch¬ 
ing a transistor is through the use of a constant-gain 
circle as plotted on a Smith Chart. A constant-gain cir¬ 
cle is simply a circle, the circumference of which repre¬ 
sents a locus of points (load impedances) that will 
force the amplifier gain to a specified value. For in¬ 
stance, any of the infinite number of impedances lo¬ 
cated on the circumference of a 10-dB constant-gain 
circle would force the amplifier stage gain to 10 dB. 
Once the circle is drawn on a Smith Chart, you can see 
the load impedances that will provide a desired gain. 
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A constant-gain circle is plotted on a Smith Chart 
by performing a few calculations to determine: 

1. Where the center of the circle is located. 
2. The radius of the circle. 

This information is calculated as follows: 

1. Calculate D3 using Equation 6-14. 
2. Calculate D2. 

D2 = |S22 |» - |DS|2

3. Calculate C2. 

4. Calculate G. 

(Eq. 6-23) 

(Eq. 6-24) 

Gain desired ( absolute ) 
|S 21|2

(Eq. 6-25) 

Note that the numerator in Equation 6-25 must be 
an absolute gain and not a gain in dB. 

5. Calculate the location of the center of the circle. 

ro = ^ (Eq. 6-26) 

6. Calculate the radius of the circle. 

Pu =-lTdJg- (Eq. 6-27) 

Equation 6-26 produces a complex number in mag¬ 
nitude-angle format similar to a reflection coefficient. 
This number is plotted on the chart exactly as you 
would plot a value of reflection coefficient. 

The radius of the circle that is calculated with Equa¬ 
tion 6-27 is simply a fractional number between 0 and 
1 which represents the size of that circle in relation to 
a Smith Chart. A circle with a radius of 1 has the same 
radius as a Smith Chart, a radius of 0.5 represents half 
the radius of a Smith Chart, and so on. 

Once you choose the load-reflection coefficient and, 
hence, the load impedance that you will use, the next 
step is to determine the value of source-reflection co¬ 
efficient that is needed to complete the design without 
producing any further decrease in gain. This value of 
source-reflection coefficient is the conjugate of the 
actual input reflection coefficient of the transistor with 
the specified load and is given by Equation 6-21. Ex¬ 
ample 6-6 outlines the procedure to follow. 

Stability Circles 
When the Rollett stability factor, as calculated with 

Equation 6-15, indicates a potential instability with 
the transistor, the chances are that with some com¬ 
bination of source and load impedance, the transistor 
will oscillate. Therefore, when K calculates to be less 
than 1, it is extremely important to choose source and 
load impedances very carefully. One of the best 

EXAMPLE 6-6 
A transistor has the following S parameters at 250 MHz, 

with a Vee = 5 V and Ic = 5 mA. 

Su = 0.277 /-59o
Sa = 0.848 /—31 ° 

Su = 0.078 ¿93° 
Su = 1.92 / 64° 

Design an amplifier to provide 9 dB of gain at 250 MHz. 
The source impedance is Zs — 35 — j60 ohms and the load 
impedance is Zl = 50 — j50 ohms. The transistor is uncon¬ 
ditionally stable with K = 1.033. 

Solution 

Using Equation 6-14 and Equations 6-23 through 6-27, 
and proceeding "by the numbers,” we have: 

D. — SnSu — SuSzi 
= (0.277 /-59°) (0.848 /-31°) 

- (0.078 ¿51°) (1.92 ¿££°) 

= 0.324 / —64.8“ 

Eb= (0.848)2- (0.324)2 

= 0.614 

Q, = 0.848 /—31 ° - (0.324 /-64.8° )( 0.277 /59° ) 

= 0.768 / -33.9 ° 

r 7.94 
- (1.92)2 

= 2.15 

The center of the circle is then located at the point: 

2.15(0.768 /33.9° ) 
r°-  1 + (0.614)(2.15) 

= 0.712 /33.9° 

This point can now be plotted on the Smith Chart. 
The radius of the 9-dB gain circle is calculated as: 

Vl - 2(1.033)(0.078)(1.92)(2.15) + (0.150)2(2,15)^ 
1 + (0.614 )( 2.15 ) 

= 0.285 

The Smith Chart construction is shown in Fig. 6-14. Note 
that any load impedance located along the circumference 
of the circle will produce an amplifier gain of 9 dB if the 
input impedance of the transistor is conjugately matched. 

The actual load impedance we have to work with is 50 
— j50 ohms, as given in the problem statement. Its normal¬ 
ized value (1 — jl) is shown in Fig. 6-14 (point A). The 
transistor’s output network must transform the actual load 
impedance into a value that falls on the constant-gain circle. 
Obviously, there are numerous circuit configurations that 
will do the trick. The configuration shown was chosen for 
convenience. Proceeding from the load: 

Arc AB = Series C = —j2 ohms 
Arc BC = Shunt L = — j0.425 mho 

Again, using Equations 4-11 through 4-14, the actual com¬ 
ponent values are: 

Continued on next page 



134 RF Circuit Design 

EXAMPLE 6-6—Cont. 

NORMALIZED IMPEDANCE AND ADMITTANCE COORDINATES 

Cont. on next page 

Fig. 6-14. Output network-design values for Example 6-6. 
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EXAMPLE 6-6—Cont. 

NAME TITLE I DWG. NO. 

SMITH CHART FORM ZY-01-N ANALOG INSTRUMENTS COMPANY, NEW PROVIDENCE. N.J 07874 | D TE

NORMALIZED IMPEDANCE AND ADMITTANCE COORDINATES 

Cont. on next page 

Fig. 6-15. Input network-design values for Example 6-6. 
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EXAMPLE 6-6—Cont. 

01 ~2ir(250 X 10«)(2)(50) 

= 6.4 pF 

and, 

L1 _ —_ 
2tt(250 X 108) (0.425) 

= 75nH 

For a conjugate match at the input to the transistor with 
I'd = 0.82 / 14.2° (point C), the desired source-reflection 
coefficient must be (using Equation 6-21): 

r8 = ^0.277 / —59° + 

(0.078 / 93°) (1.92 / 64°) (0.82 / 14.2 ° H» 
1 - (0.82 /14.2°)(0.848 Z-31° ) J 

= 0.105 /160° 

This point is plotted as point D in Fig. 6-15. The actual 
normalized source impedance is plotted at point A (0.7 
— jl.2 ohms). Thus, the input network must transform the 
actual impedance at point A to the desired impedance at 
point D. For practice, this was done with a three-element 
design as shown. 

Arc AB = Shunt Ca = j0.62 mho 
Arc BC = Series La = j 1.09 ohms 
Arc CD = Shunt C3 = j2.1 mhos 

From Equations 4-11 through 4-14: 

(0.62) 
- 2ir(250 X 10«)(50) 

= 7.9 pF 

C’~2rr(250 x 10«)50 
= 27 pF 

(l,09)(50) 
2- 2rr(250 X 10«) 
= 34.7 nH 

The completed design, excluding the bias network, is shown 
in Fig. 6-16. 

methods of determining those source and load im¬ 
pedances that will cause the transistor to go unstable 
is to plot stability circles on a Smith Chart. 

A stability circle is simply a circle on a Smith Chart 
which represents the boundary between those values 
of source or load impedance that cause instability 
and those that do not. The perimeter of the circle 
thus represents the locus of points which forces K = 1. 
Either the inside or the outside of the circle may 
represent the unstable region and that determination 
must be made after the circles are drawn. 

The locations and radaii of the input and output 
stability circles are found as follows: 

1. Calculate D„ using Equation 6-14. 
2. Calculate Ci. 

Ci = Sn - DsS22° (Eq. 6-28) 

3. Calculate C2 using Equation 6-18. 
4. Calculate the center location of the input stability 

circle. 

C ° 
r,l= |Sn|2- |D„|2 (Eq. 6-29) 

5. Calculate the radius of the input stability circle. 

Hid^wl <E‘>'6-30)
6. Calculate the center location of the output stability 

circle. 

C. ° 
= |S22|2 - |D,|2 (Eq. 6-31) 

7. Calculate the radius of the output stability circle. 

P»2 = 
Si2S2i 

M 2 - |DS¡2 (Eq. 6-32) 

Once the calculations are made, the stability circles 
can be plotted directly on the Smith Chart. Note, how¬ 
ever, that if you try to plot stability circles on the 
Smith Chart for an unconditionally stable transistor, 
you may never find them. This is because for an un¬ 
conditionally stable amplifier the entire chart repre¬ 
sents a stable operating region, as shown in Fig. 6-17. 
For a potentially unstable transistor, the stability 

circles might resemble those shown in Fig. 6-18. Often, 
only a portion of the stability circle intersects the 
chart as shown. 

After the stability circles are plotted on the chart, 
the next step is to determine which side of the circle 

Fig. 6-17. Typical stability circles for an 
unconditionally stable amplifier. 
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NAME TITLE DWG. NO. 

SMITH CHART FORM ZY-01-N ANALOG INSTRUMENTS COMPANY, NEW PROVIDENCE, N.J. 07974 
DATE 

NORMALIZED IMPEDANCE AND ADMITTANCE COORDINATES 

Fig. 6-18. Typical stability circles for a potentially unstable transistor. 
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(inside or outside) represents the stable region. This 
is very easily done if Su and S22 for the transistor are 
less than 1. Since the S parameters were measured with 
a 50-ohm source and load, and since the transistor re¬ 
mained stable under these conditions (Su or S22 
would be greater than 1 for an unstable transistor), 
then the center of the normalized Smith Chart must be 
part of the stable region as described by the stability 
circles. Therefore, in this case, if one of the circles 
surrounds the center of the chart, the inside of that 
circle must represent the region of stable impedances 
for that port. If, on the other hand, the circle does not 
surround the center of the chart, then the entire area 
outside of that circle must represent the stable oper¬ 
ating region for that port. 

It is very rare that you will find a transistor that is 
unstable with a 50-ohm source and load and, if you 
do, it would probably be wise to try another device. 
Therefore, the procedure outlined above should be 

considered to be the most direct method of locating 
the stable operating regions on a Smith Chart. Exam¬ 
ple 6-7 diagrams the procedure. 

Design for Optimum Noise Figure 
The noise figure of any two-port network gives a 

measure of the amount of noise that is added to a 
signal that is transmitted through the network. For 
any practical circuit, the signal-to-noise ratio at its 
output will be worse (smaller) than that at its input. 
In most circuit-design applications, however, it is 
possible to minimize the noise contribution of each 
two-port network through a judicious choice of oper¬ 
ating point and source resistance. 

In Chapter 5, it was briefly mentioned that for each 
transistor, indeed for each two-port network, there 
exists an optimum source resistance necessary to es¬ 
tablish a minimum noise figure (see also Appendix 
B). Many manufacturers specify an optimum source 

EXAMPLE 6-7 
The S parameters for a 2N5179 transistor at 200 MHz, 

with a Vce = 6 volts and an Ie = 5 mA, are ( see the data 
sheet in Chapter 5 ) : 

Su = 0.4 /280° 

= 0.78 /345° 
Su = 0.048 ¿£5.° 
Su = 5.4 7103° 

Choose a stable load- and source-reflection coefficient that 
will provide a power gain of 12 dB at 200 MHz. 

Solution 

A calculation of Rollett’s stability factor (K) for the 
transistor indicates a potential instability with K = 0.802. 
Therefore, you must exercise extreme caution in choosing 
source and load impedances for the device or it may oscil¬ 
late. To find the stable operating regions on the Smith 
Chart, plot the input and output stability circles. Proceed¬ 
ing with Step 1, above, we have: 

D. = (0.4 /280°)(0.75 /345°) 
- (0.048 / 65°) (5.4 / 103 ° ) 

= 0.429 / -58.18° 

Ci = 0.4 /280° - (0.429 /-58.2° ) (0.78 / -345° ) 

= 0.241 /-136.6 ° 
C, = 0.78 /345° - ( 0.429 / -58.2° ) ( 0.4 / -280 ° ) 

= 0.65 / —24° 

Then, the center of the input stability circle is located at 
the point: 

0.241 /136.6° 
r" ~ (0.4)2 _ (0.429)2 

= 10 /136.6° 

The radius of the circle is calculated as: 

| (0.048 ¿65*) (5.4 ¿103°) | 
p,1- | (0.4)2 -(0.429)2 I 

= 10.78 

Similarly, for the output stability circle: 

0.65 /24° 
r“-  (0.78)2 - (0.429)2 

= 1.53 ¿24° 

I (0.048 / 65°) (5.4 / 103° ) I 
P,a- | (0.78)2 - (0.429)2 I 

= 0.610 

These circles are shown in Fig. 6-19. Note that the input 
stability circle is actually drawn as a straight line because 
the radius of the circle is so large. Since Su and S22 are both 
less than 1, we can deduce that the inside of the input sta¬ 
bility circle represents the region of stable source imped¬ 
ances while the outside of the output stability circle repre¬ 
sents the region of stable load impedances for the device. 

The 12-dB gain circle is also shown plotted in Fig. 6-19. 
It is found using Equation 6-14 and Equations 6-23 through 
6-27. Note that D, and C2 have already been calculated. 
The center location of the circle is found to be: 

r„ = 0.287 /24° 
with a radius of: 

Po = 0.724 

The only load impedances that we may not select for the 
transistor are located inside of the input stability circle. Any 
other load impedance located on the 12-dB gain circle will 
provide the needed gain as long as the input of the device 
is conjugately matched and as long as the impedance re¬ 
quired for a conjugate match falls inside of the input sta¬ 
bility circle. 

Choose Tl equal to a convenient value on the 12-dB gain 
circle. 

rL = 0.89 /70° 

Using Equation 6-21, calculate the source-reflection coeffi¬ 
cient needed for a conjugate match and plot this point on 
the Smith Chart. 

rs = 0.678 /79.4° 

Notice that Ts falls within the stable region of the input 
stability circle and, therefore, represents a stable termina¬ 
tion for the transistor. 

Continued on next page 
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EXAMPLE 6-7—Cont. 

NAME TITLE DWG. NO. 

SMITH CHART FORM ZY-01-N ANALOG INSTRUMENTS COMPANY, NEW PROVIDENCE. N J 07974 DATE 

Fig. 6-19. Stability and gain circles for the transistor in Example 6-7. 
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FEATURES 

• HIGH GAIN BANDWIDTH PRODUCT (1.5 GHz) 
• HIGH fmax (4.2 GHz © lc = 20 mA) 
• GOLD METALLIZATION 
• HIGH RELIABILITY 
• DIRECT INTERCHANGABILITY WITH THE 

FMT 1060 SERIES OF FAIRCHILD 
TRANSISTORS 

MA-42120 SERIES 

specification sheet 
npn 

silicon 
planar 

transistors 

DESCRIPTION 

This series of NPN Epitaxial Silicon Planar Transistors 
is designed for VHF/UHF service. The performance 
of thisseries is comparable to the Fairchild FMT-1060 
series. The high gain bandwidth products make the 
MA-42122 and MA-42123 useful to 1.0 GHz while 
the MA-42120 and MA-42121 have a maximum 
frequency of oscillation of 4.0 GHz. Two packages 
are offered, the TO-46 (ODS-508), for low power 
oscillator applications and the TO-72 (ODS-509) 
for small signal UHF amplifiers. 

APPLICATIONS 

VHF, UHF Low Level Oscillators 
IF and RF Amplifiers 

MA 421^0 SERIES R.F. SPECIFICATIONS 

MODEL NO. MA-42120 MA-42121 MA-42122 MA-42123 

CASE STYLE 508 508 509 509 

Test Frequency (MHz) 450 450 450 450 

Max Noise Fig. 
© l C (dB) 

— — 3.5 3.0 

Gu (max) 
Typ. (dB) 

13 13 14 14 

lC (mA) — — 1.5 1.5 

1 dB Compression 
Point (dBm) 

— — -12 -12 

Fairchild 
Equivalent 

FMT 
1060 

FMT 
1060A 

FMT 
1061 

FMT 
1061A 

MA 42120 SERIES HIGH FREQUENCY SPECIFICATIONS (25°C Ambient Temperature Unless Otherwise Noted) 

Symbol Characteristics Type Min. Typ. Max. Units Test Conditions 

f. Gain Bandwidth Product MA42121 1.3 1.5 GHz VcE ' 10V, lc - 20 mA 
MA42120 1.0 1.3 GHz f - 500 MHz 
MA42123 1.3 1.5 GHz 
MA42122 1.0 1.3 GHz 

Ga mxx Maximum Available Gain MA42121 12.8 dB Vqe = 10V. Iç = 20 mA 
MA42123 13.8 f- 1.0 GHz 

NF Noise Figure MA42123 2.3 3.0 dB VCE - 10V, lc - 1.5 mA 
MA42122 2.7 3.5 dB f • 450 MHz, R - 50 ohms 

GnP Neutralized Power Gain MA42123 17.0 dB Vce = 10V, l E = 1.5 mA 
p f = 450 MHz, R = 50 ohms 
fmax Maximum Frequency of MA42121 4.2 GHz Vce “ 10V, lc = 20 mA 

Qscillation 1 MA42120 3.8 GHz Vce ’ 10V. IC • 20 mA 

NOTE: 
1. Calculated from S-Parameters, fmax is the frequency at which the extrapolated GAmax is 0 dB. 

Cont. on next page 

Fig. 6-20. Data sheet for Microwave Associates’ MA-42120 series of transistors. (Courtesy Microwave Associates) 
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MA-42120 SERIES 

specification sheet 

FREQUENCY IGHzl 

MA42123-509 TYPICAL I^ieP VS COLLECTOR CURRENT 

Cont. on next page 

Fig. 6-20.-Cont. Data sheet for Microwave Associates’ MA-42120 series of transistors. (Courtesy Microwave Associates) 
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MA-42120 SERIES 

specification sheet 

TYPICAL OPTIMUM NOISE SOURCE IMPEDANCE 
VS COLLECTOR CURRENT 

MA-42120 SERIES TYPICAL F y VS COLLECTOR CURRENT MA-42120 SERIES POWER DISSIPATION 
VS. CASE TEMPERATURE 

Cont. on next page 
Fig. 6-20.—Cont. Data sheet for Microwave Associates’ MA-42120 series of transistors. ( Courtesy Microwave Associates) 
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MA-42120 SERIES 

specification sheet 

ELECTRICAL CHARACTERISTICS (25°C Ambient Temperature Unless Otherwise Noted) 

MA42120 MA42121 
MA42122 MA42123 

Symbol Characteristics Min Typ Max Min Typ Max Units Test Conditions 

hpE DC Current Gain 20 45 110 40 75 185 lc - 5.0 mA, Vqe “ 5.0 
Vqe (sat) Pulsed Collector Saturation 0.30 0.38 0.25 0.35 V lc « 80 mA, Iß - 8.0 mA 

Voltage* 

Vgß (sat) Pulsed Base Saturation 035 0.98 0.93 0.96 V Iq - 40 mA, Iß - 20 mA 
Voltage’ 

BVCBO Collector to Base Breakdown 30 35 30 35 V Iq ■ 10 mA, = 0 
VceO ($us ) Collector to Emitter Sustain- 14 16.5 14 16.5 V Iq « 1.0 mA, Iß " 0 

ing Voltage 

(ESO Emitter Cutoff Current 20 100 20 100 mA |q « 0, Vßß = 4.0V 
*CBO Collector Cutoff Current 0.01 50 0.01 50 nA Vqb = 10V, 1^=0 
ICBO Collector Cutoff Current 0.3 1.0 0.3 1.0 mA Vqb = 10V, Iß ■ 0 

Ta - 125° C 
Ccb Collector to Base Capacitance 1.0 1.4 1.0 1.4 pF Vqb = 10V, Iß- 0 

(MA42120, MA42121) 

Ceb Collector to Base Capacitance 035 1.0 0.85 1.0 pF Vqb ■ 10V, Ie " 0 
(MA42122, MA42123) 

Ceb Emitter to Base Capacitance 15 3.0 1.5 3.0 pF Vgß « 0.5V, Iq ■ 0 
|hfe| Magnitude of High Frequency 2.0 2.6 2.6 3.0 Vce " 10V, lc " 20 mA, 

Current Gain f - 500 MHz 

NOTE: 
1. Pulse Conditions: Length - 300 ms; duty cycle ■ 1% 

MAXIMUM RATING 
Case Temperature 25°C unless otherwise noted) 

Total Power Dissipation 508 case — 1.0 W 
509 case — .5 W 

V CBO Collector to Base Voltage 30 V 
VebO Emitter to Base Voltage 4.0 V 
VcES Collector to 

Emitter Voltage 30 V 
IC Collector Current 80 mA 

Storage Temperature —65° to +200°C 
Operating Junction Temperature +200°C 
Lead Temperature (Soldering — 

10 seconds each lead) +250°C 
Hermeticity 5 x ( 10)’8 cc/sec 

of He 

ENVIRONMENTAL RATINGS PER MIL-STD-75C 

Method Level 

Storage Temperature 1031 —65 to +200°C 
Temperature Cycle 1051 10 cycles 

-65 to +200°C 
Shock 2016 500 g's 

Vibration 2056 15g‘s 
Constant Acceleration 2006 20,000 g's 

Humidity 1021 10 days 

Cont. on next page 

Fig. 6-20.—Cont. Data sheet for Microwave Associates’ MA-42120 series of transistors. (Courtesy Microwave Associates) 
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MA-42120 SERIES 

specification sheet 
MA42120508 

TYPICAL COMMON EMITTER S PARAMETERS AT 25'C LEAD TEMPERATURE 
VCe - 10 VOLTS, Zq - ZL « 50 Í2 

FREQUENCY 
(MHi) 

COLLECTOR 
CURRENT 

(mA) 

INPUT 
REFLECTION 
COEFFICIENT 

FORWARD 
TRANSMISSION 
COEFFICIENT 

REVERSE 
TRANSMISSION 
COEFFICIENT 

OUTPUT 
REFLECTION 
COEFFICIENT 

|SiieI «11E |S21t| OSjie |SueI 0Í12E |S22C| 0S22E 

100 
15 
50 
200 

89 -44° 
69 -79° 
50 -127° 

3 8 146° 
8 6 126° 
120 107° 

05 65° 
03 55° 
02 52° 

94 -13° 
81 -18° 
67 -16° 

200 
1 5 
50 
200 

80 -72° 
60 -113’ 
50 -150° 

3 3 128’ 
6 1 107’ 
7 4 92° 

06 51’ 
04 49° 
02 62° 

86 -20° 
71 -21' 
61 -16° 

300 
15 
5 0 
200 

72 -95° 
55 -134° 
51 -161° 

2 7 112° 
4.3 95° 
50 83’ 

07 43° 
04 50° 
03 68° 

82 -25° 
68 - 23’ 
61 -18° 

400 
15 
5 0 
200 

66 -115’ 
53 -148° 
52 -169° 

22 101° 
3.4 86° 
3 8 75’ 

08 38° 
05 54° 
04 72’ 

79 29° 
,66 25° 

62 20° 

450 
1 5 
50 
200 

64 -123’ 
53 -154° 
53 -172’ 

2 1 95° 
31 81° 
3.4 71° 

07 38" 
05 58° 
04 77’ 

77 30° 
66 -27° 
63 21° 

500 
15 
50 
200 

63 -130° 
53 -159’ 
54 -175’ 

1 9 90° 
2.7 77° 
30 67’ 

07 39° 
05 62' 
05 79° 

76 32° 
66 28’ 
63 -23° 

600 
1 5 
50 
200 

61 -143° 
53 -167’ 
55 178° 

1 6 83° 
23 72’ 
25 63° 

07 40° 
06 66 
06 82° 

73 35’ 
65 31° 
63 26° 

700 
1 5 
50 
200 

61 153° 
55 -174’ 
57 174° 

1 5 76° 
2 0 65° 
22 56° 

07 46 
06 74° 
06 87° 

70 39’ 
63 34° 
62 -29° 

800 
15 
50 
200 

61 162° 
56 179’ 
59 170° 

1 3 70° 
1.8 61’ 
1 8 52° 

06 55° 
07 79’ 
08 91’ 

68 44’ 
62 38 
62 34° 

900 
1 5 
50 

20.0 

61 169° 
56 174° 
60 166’ 

1 2 66° 
1 6 57’ 
1 6 49° 

0 7 64° 
08 84° 
09 94° 

6fl 50 
62 44° 
62 41° 

1000 
15 
50 
200 

61 176’ 
.56 169° 
61 160’ 

11 60° 

1 ; 

07 77’ 
09 91’ 
10 99 

68 55 
63 50° 
63 -47° 

MA 42121 508 
TYPICAL COMMON EMITTER S PARAMETERS AT 25 C LEAD TEMPERATURE 

VcE • 10 VOLTS. ZG - Zl - 50 

FREQUENCY 
(MHi) 

COLLECTOR 
CURRENT 

(mA) 

INPUT 
REFLECTION 
COEFFICIENT 

FORWARD 
TRANSMISSION 
COEFFICIENT 

REVERSE 
TRANSMISSION 
COEFFICIENT 

OUTPUT 
REFLECTION 
COEFFICIENT 

I sud p$he I«jieI oSjie |Si2eI $$12E I$22EI OS22E 

100 
15 
50 
20 0 

92 36° 
74 -67’ 
51 -118° 

3 8 150° 
9 1 131° 
13 109° 

04 67° 
03 59° 
02 55° 

95 -13° 
82 -19° 
66 18° 

200 
15 
50 
20 0 

83 -59’ 
61 98° 
49 142’ 

3 4 133° 
67 111’ 
8 0 93° 

07 55° 
04 48° 
03 59° 

86 -21° 
69 - 24° 
59 -18° 

300 
1 5 
50 
20 0 

74 81’ 
54 -120° 
49 156° 

2 9 117e
4 9 99° 
5 5 84° 

08 47' 
05 50 
03 65° 

81 -27’ 
65 26° 
58 -19° 

400 
1 5 
50 

20 0 

67 99° 
51 136° 
50 164° 

2 5 106° 
3 9 89° 
4 2 77’ 

09 41° 
06 51° 
04 67° 

77 -31° 
62 28° 
59 -22’ 

450 
1.5 
50 
20 0 

65 106° 
50 142’ 
51 167’ 

23 100° 
35 85° 
37 73’ 

09 40° 
06 53’ 
05 71° 

75 -33° 
62 - 29° 
59 -23° 

500 
15 
50 
20 0 

62 -114’ 
50 147° 
51 -170° 

2.1 95* 
31 81’ 
33 69° 

09 40° 
06 55° 
05 74’ 

74 -35° 
62 30° 
60 - 24° 

600 
15 
50 
20 0 

59 -127’ 
49 -157’ 
53 -176° 

1 8 88° 
2.6 75° 
2.7 64° 

09 38° 
06 58° 
06 76’ 

71 -37’ 
61 -32° 
60 - 26° 

700 
1.5 
50 

20 0 

58 138' 
50 164c

55 179’ 

1 6 80° 
2 3 68° 
2.4 58° 

09 39° 
07 63’ 
06 81° 

68 -41° 
59 - 35° 
59 - 30° 

800 
1 5 
50 
20 0 

58 -147’ 
51 -170’ 
57 175’ 

1 5 74° 
20 63’ 
2 0 54° 

08 43° 
08 68c

07 84° 

65 -45° 
57 - 39° 
59 - 35° 

900 
1 5 
50 
20 0 

58 -154’ 
52 -174’ 
58 171’ 

1 3 69° 
1 8 60° 
1 8 51° 

08 47’ 
08 71’ 
08 88° 

65 -51’ 
57 -44’ 
59 -41’ 

1000 
1 5 
50 
200 

57 161° 
52 -179’ 
59 166° 

1 2 64° 
1 6 55° 
16 46° 

08 56° 
09 78° 
09 93’ 

65 56° 
59 -49° 

-46° 

Cont. on next page 

Fig. 6-20.—Cont. Data sheet for Microwave Associates’ MA-42120 series of transistors. ( Courtesy Microwave Associates) 
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MA-42120 SERIES 

specification sheet 
MA 42122 509 

TYPICAL COMMON EMITTER S PARAMETERS AT 25C LEAD TEMPERATURE 
VcE " 10 VOLTS, Zg ' Zl c 50 Í2 

FREQUENCY 
(MHz) 

COLLECTOR 
CURRENT 

fmA) 

INPUT 
REFLECTION 
COEFFICIENT 

FORWARD 
TRANSMISSION 
COEFFICIENT 

REVERSE 
TRANSMISSION 
COEFFICIENT 

OUTPUT 
REFLECTION 
COEFFICIENT 

ISheI »She I she I »She (SUEl »SUE IS22EI »S22E 

100 
1.5 
5.0 

20.0 

.87 -43° 
66 -70° 
43 -103° 

3.7 145’ 
8.1 127° 
11.2 109’ 

.03 63’ 

.02 53’ 

.02 55’ 

.96 -10’ 

.87 -12’ 
78 -12’ 

200 
1.5 
5.0 
20.0 

.76 -69° 

.52 -102° 
37 -132° 

3.2 127° 
5.7 107° 
7.0 93° 

.04 54’ 

.03 56’ 
02 66° 

89 -15’ 
79 -16’ 
.73 -13’ 

300 
1.5 
5.0 
200 

66 -94° 
.45 -126° 
.36 -149° 

2.6 110° 
4.1 94° 
4.8 83° 

05 47’ 
.03 58’ 
.03 70’ 

86 -19’ 
.77 -18’ 
.73 -15’ 

400 
1.5 
5.0 

20.0 

69 -115° 
41 -144° 
.37 162° 

2.2 99° 
3.3 84° 
3.7 75’ 

05 45° 
04 62’ 
.04 73’ 

84 -23’ 
76 -21’ 
73 -17’ 

450 
1.5 
5.0 
20.0 

.56 -124° 

.40 -151° 

.37 -167° 

2.0 93° 
2 9 79° 
33 70’ 

05 47° 
'34 66° 
04 76’ 

83 - 25’ 
.76 -22’ 
.73 -19’ 

500 
15 
5.0 

20.0 

.54 -132° 
40 -157° 
.37 -172° 

1.8 88° 
2 6 75’ 
2.9 66° 

05 49’ 
.05 69° 
05 79° 

.82 -26’ 

.75 -23’ 

.73 -21’ 

600 
1.5 
5.0 

20.0 

.61 -148° 
40 -169° 
39 179° 

1.6 80’ 
2.2 69° 
2.4 60° 

.05 53’ 

.05 74° 
06 81’ 

80 -29° 
.74 -26’ 
.73 -23’ 

700 
1.5 
5.0 

20.0 

.50 -160° 
40 -179° 
41 172° 

1.4 72’ 
2.0 62’ 
2.1 53’ 

05 63’ 
06 79’ 
06 84° NJ

 N
J 
-J
 

1
 
1
 
1
 

800 
1.5 
5.0 

20.0 

.50 -171° 

.41 173° 

.43 166° 

1.3 66’ 
1.7 57’ 
1.8 49’ 

08 72’ 
.07 83’ 
.08 87’ 

.74 -38’ 

.71 -34° 
70 - 32’ 

900 
1.5 
5.0 

20.0 

49 178° 
41 166° 
43 159° 

1.2 61° 
1.6 52’ 
1.6 45’ 

.07 80’ 
08 85’ 
.09 88° 

.74 -43* 

.70 -39’ 

.70 -37’ 

1000 
1.5 
5.0 

20.0 

48 168° 
41 167° 
44 151° 

1.1 55’ 
14 47° 
1.5 39’ 

.08 89° 

.10 90’ 

.11 93’ 

.74 -48° 

.71 -45° 
70 -42" 

MA 42123 509 
TYPICAL COMMON EMITTER S-PARAMETERS AT 25C LEAD TEMPERATURE 

VcE • 10 VOLTS, Zg - Zl - 50 n 

FREQUENCY 
(MHz) 

COLLECTOR 
CURRENT 

(mA I 

INPUT 
REFLECTION 
COEFFICIENT 

FORWARD 
TRANSMISSION 
COEFFICIENT 

REVERSE 
TRANSMISSION 
COEFFICIENT 

OUTPUT 
REFLECTION 
COEFFICIENT 

ISheI »She I SHE 1 »S21E I s,2e I »Sue I S22E I »S22E 

100 
1.5 
5.0 

20.0 

89 - 39’ 
68 -85’ 
43 -121° 

3.8 147* 
8.6 128e
10.9 104e

.04 54’ 

.03 56’ 
02 57’ 

.95 -11* 
85 -15’ 
.67 -16’ 

200 
1.5 
5.0 

20.0 

.79 -63’ 

.53 -95’ 
40 -144° 

3.3 1Í9° 
6.1 108e
6.6 89e

.05 56’ 

.04 55’ 

.03 66° 

.87 -17* 

.75 -17’ 

.61 -16’ 

300 
1.5 
5.0 

20.0 

69 -86’ 
45 -118’ 
41 -158’ 

2.7 113* 
4.4 95e

4.5 80e

06 48’ 
05 57’ 
04 70’ 

84 -21* 
.72 -20’ 
.61 -18’ 

400 
1.5 
5.0 

20.0 

.61 -105’ 

.41 -135’ 

.41 -168° 

2.3 101’ 
3.5 86e

3.5 72’ 

C7 44° 
.06 58’ 
06 72’ 

.81 -25’ 

.71 -22’ 

.61 -21’ 

450 
1.5 
5.0 

20.0 

.58 -114° 
40 -141* 
.42 -172’ 

2.2 96e

3.2 81e

3.1 67’ 

.07 45° 
05 62’ 
06 73’ 

.79 -27’ 

.70 -23* 
61 -22’ 

500 
1.5 
5.0 

20.0 

55 -121’ 
39 -148° 
.43 -176’ 

2.0 91e

2.8 77’ 
2.7 64° 

.07 45’ 
06 65° 
.07 76’ 

.79 -28’ 

.70 -24’ 

.62 -24° 

600 
1.5 
5.0 
200 

.52 -136’ 

.39 -159’ 

.45 177’ 

1.7 83e

2.4 N* 
2.3 58e

.07 46° 
06 66° 
08 77’ 

.76 -31* 
69 -27’ 
62 -27’ 

700 
1.5 
5.0 
200 

50 -148° 
39 -168° 
.47 171’ 

1.6 74’ 
2.1 64e

2.0 51° 

.07 51* 

.07 70’ 
C9 80° 

.73 - 34’ 

.67 -29’ 

.61 -31’ 

800 
1.5 
5.0 

20.0 

50 -159’ 
39 -176’ 
48 166° 

1.4 68e

1.9 59° 
1.7 47* 

.07 57* 
08 74* 
T1 83’ 

.71 -39* 

.66 -33’ 
60 -36’ 

900 
1.5 
5.0 

20.0 

49 -167° 
39 178’ 
49 160° 

1.3 63’ 
1.7 55’ 
1.5 43e

.07 64* 
09 76’ 
T2 84e

.70 -43’ 
65 -38’ 
59 -43’ 

1000 
1.5 
50 

20.0 

47 -176° 
39 171* 
50 154° 

1.2 57* 
1.5 49e

1.4 

08 74’ 
T0 81* 
T4 87’ 

airici 

Fig. 6-20.—Cont. Data sheet for Microwave Associates’ MA-42120 series of transistors. (Courtesy Microwave Associates) 
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resistance on the data sheet, such as in the case of 
the 2N5179 transistor given in Chapter 5. Others will 
specify an optimum source-reflection coefficient. Such 
is the case for the Microwave Associates’ MA-42120-
Series transistor data sheet that is shown in Fig. 6-20. 
Note the Smith Chart, on page 3 of the data sheet, 
labeled “Typical Optimum Noise Source Impedance 
vs. Collector Current.” Obviously, as shown on the 
chart, if you were planning to use the transistor at 
some frequency other than 60 MHz or 450 MHz, you 
would be out of luck as far as optimum noise-figure 
design is concerned. Typically, most data sheets are in¬ 
complete like this. There is just not enough space in a 
typical data book to provide the user with all of the 
information that he needs in order to design amplifiers 
at every possible frequency and bias point. The data 
sheet is meant only as a starting point in any design. 
Chances are you will end up making many of your 
own measurements on a device before it becomes a 
part of the design. 

On page 2 of the data sheet, you will find a set of 
curves labeled “Typical Optimum N.F. vs. Collector 
Current.” Note that for this particular device, at 450 
MHz, the optimum collector current for minimum 
noise figure is approximately 1.5 mA. This value of 
collector current should result in a noise figure of 

just above 2 dB. Again, the data is presented for only 
60 MHz and 450 MHz. 

Designing amplifiers for a minimum noise figure is 
simply a matter of determining, either experimentally 
or from the data sheet, the source resistance and the 
bias point that produce the minimum noise figure for 
the device (Example 6-8). Once determined, the ac¬ 
tual source impedance is simply forced to “look like” 
the optimum value. Of course, all stability considera¬ 
tions still apply. If the Rollett stability factor ( K ) cal¬ 
culates to be less than 1, then you must be careful 
in your choice of source- and load-reflection coeffi¬ 
cients. It is best, in this case, to draw the stability 
circles for an accurate graphical indication of where 
the unstable regions lie. 

After providing the transistor with its optimum 
source impedance, the next step is to determine the 
optimum load-reflection coefficient needed to properly 
terminate the transistor’s output. This is given by: 

where, 
Ts is the source-reflection coefficient for minimum 

noise figure. 

EXAMPLE 6-8 Therefore, we may proceed with the design. The design 
It has been determined that the optimum bias point for values of the input-matching network are shown in Fig. 

minimum noise figure for a transistor is Vee = 10 V and 6-21 Here the normalized 75-ohm source resistance is 
Ic = 5 mA. Its optimum source-reflection coefficient, as transformed to Ts using two components. 
given on the data sheet, is: Arc AB = Shunt C = ¡1.7 mhos 

Ts = 0 7 / 140° Arc BC = Series L = ¡0.86 ohm 

The S parameters for the transistor, under the given bias Using Equations 4-11 through 4-14, the component val-
conditions at 200 MHz, are: ues are calculated to be: 

Su = 0.4 7 162 ° r __L7_ 
S„„ =  0 35 z _39. ^-(50)(27r)(200 X 10«) 

Su = 0.04 /60° - 27 pF

Su = 5.2 /63° T - (°-86 )( 5°) 
. 2ir(200 X 10«) 

Design a low-noise amplifier to operate between a 75-onm 
source and a 100-ohm load at 200 MHz. What gain can you — 64 nH 
expect from the amplifier when it is built? The )oad-reflection coefficient needed to properly terminate 

the transistor is then found using Equation 6-33. 

Solution 

The Rollett stability factor (K) calculates to be 1.74 
which indicates unconditional stability (Equation 6-15). Continued on next page 
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EXAMPLE 6-8—Cont. 

DWG. NO. 

SMITH CHART FORM ZY-OI-N ANALOG INSTRUMENTS COMPANY. NEW PROVIDENCE, N.J. 07974 

NORMALIZED IMPEDANCE AND ADMITTANCE COORDINATES 

Fig. 6-21. Input network-design values for Example 6-8. 

Cont. on next page 
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EXAMPLE 6-8—Cont. 

Tn, qq° . ^.Jí>¿^u+ ! _ (04 /162° )(O.7 / 140° ) J 

= 0.427 /60.7° 

This value, along with the normalized load-resistance value, 
is plotted in Fig. 6-22. The 100-ohm load must be trans¬ 
formed into Tl. One possible method is shown in Fig. 6-22. 
Note that a single shunt inductor provides the necessary 
impedance transformation: 

Arc AB = Shunt L = — j0.48 mho 

Again using Equations 4-11 through 4-14, the inductor’s 
value is found to be: 

, 50 
^ - 2rr(200 X 10«)(0.48) 

= 83 nH 

The final design, including a typical bias network, is shown 
in Fig. 6-23. The 0.1-mF capacitors are used only as bypass 

and coupling elements. The gain of the amplifier, as cal¬ 
culated with Equation 6-22, is 13.3 dB. 

VCc 

Fig. 6-23. Final circuit for Example 6-8. 



RF POWER AMPLIFIERS 

In Chapters 5 and 6, we studied the transistor as a 
small-signal device. Y and S parameters were intro¬ 
duced as a means of facilitating amplifier design, and 
design equations were provided. When the transistor 
is used as a large-signal device, however, these equa¬ 
tions are no longer valid. In fact, both Y and S parame¬ 
ters are called small-signal parameters, and should not 
be considered in the design of rf power amplifiers. 

RF POWER TRANSISTOR 
CHARACTERISTICS 

Instead of specifying the Y and S parameters for a 
power transistor, manufacturers will typically specify 
the large-signal input impedance and the large-signal 
output impedance for the device. These parameters are 
typically measured on the device when it is operating 
as a matched amplifier at the desired de supply voltage 
and rf power output level. A matched amplifier, in this 
case, refers to a condition in which the input and out¬ 
put impedances are conjugately matched to the source 
and load, respectively. 

The Rf Power Transistor Data Sheet 
Pertinent design information for rf power transistors 

is usually presented in the form of large-signal input 
and output impedances, as shown in Fig. 7-1. Fig. 7-1 
is a data sheet for the Motorola MRF233 rf power 
transistor. This particular data sheet was chosen for 
instructional purposes because it includes both series¬ 
and shunt-impedance information. This gives the cir¬ 
cuit designer the opportunity of using an impedance 
format with which he is accustomed—without the need 
of converting from one format to the other. 

Figure 5, on page 3 of the data sheet, is a Smith 
Chart representation of the series input and output im¬ 
pedance of the transistor ( between 40 and 100 MHz ). 
The information is also tabulated on the right side of 
the chart for your convenience. Note that the imped¬ 
ance is presented in the form Z = R ± jX. Thus, at 100 
MHz, the input impedance of the transistor is found to 
be Zln = 1.7 — j2.7 ohms, while the output impedance 
is Zout = 5 — j5.6 ohms. This equivalent-series repre¬ 
sentation for the transistor is shown in Fig. 7-2. 

Figures 6, 7, 8, and 9, of the data sheet, present the 
same impedance information in parallel form. The in¬ 

put and output impedance of the transistor are pre¬ 
sented as a shunt resistance in parallel with a capacitor. 
Thus, referring to Figures 6 and 7 of the data sheet, the 
input impedance of the transistor is represented by a 
6-ohm shunt resistor in parallel with a 422-pF capaci¬ 
tor. The curves of Figures 8 and 9 indicate an equiva¬ 
lent parallel output impedance for the transistor, which 
includes an 11.3-ohm resistor in parallel with a 158-pF 
capacitor, at 100 MHz. These shunt combinations are 
shown in the equivalent circuit of Fig. 7-3. 

Note that you can perform your own transformation 
from series to shunt, and back again, by using Equa¬ 
tions 2-6 and 2-7 and, then, following the procedure of 
Example 2-2. 

Figure 2, on page 3 of the data sheet, is useful in 
helping you determine how much input signal power 
you will need to produce a given output power. Note 
that as the frequency of operation increases, the re¬ 
quired input drive level increases. An input power to 
the transistor of 1 watt will produce a 20-watt output 
signal at 50 MHz ( 13-dB Gain), while, at 90 MHz, that 
same input level will produce only 14 watts out (11.5-
dB Gain). 

Figure 3 presents the same basic information as Fig¬ 
ure 2, but in a different format. Note that the output 
power decreases as the frequency of operation in¬ 
creases when given a constant input power level. 

The remainder of the data sheet is straightforward 
and resembles that of any typical small-signal tran¬ 
sistor. 

TRANSISTOR BIASING 

The type of bias applied to an rf power transistor is 
determined by the “class” of amplification that the de¬ 
signer wishes. There are many different classes of am¬ 
plification available for the designer to choose from. 
The particular class chosen for a design will depend 
upon the application at hand. 
The primary emphasis of this chapter will be on 

class-C amplifiers. However, class-A and class-B ampli¬ 
fier bias arrangements will also be covered. 

Class-A Amplifiers and Linearity 
A class-A amplifier is defined as an amplifier that is 

biased so that the output current flows at all times. 

150 
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The RF Line 
15 W-90 MHz 

NPN SILICON RF POWER TRANSISTORS NPN SILICON 

with Series Equivalent Large-Signal Impedance 

with Parallel Equivalent Large-Signal Impedance 

SEATING 

MAXIMUM RATINGS 

14IA4M 

RF POWER 
TRANSISTOR 

...designed for 12.5 Volt, mid-band large signal amplifier appli¬ 
cations in industrial and commercial FM equipment operating in the 

40 to 100 MHz range. 

style 1 
PIN 1 EMITTER 

2 BASE 
3 EMITTER 
4 COLLECTOR 

Specified 12.5 Volt, 90 MHz Characteristics -
Output Power = 15 Watts 

Minimum Gain = 30 dB 
Efficiency = 55% 

100% Tested for Load Mismatch at all Phase Angles with 

30:1 VSWR 

Characterized 
Parameters 

Characterized 
Parameters 

Rating Symbol Value Unit 

Collector-Emitter Voltage VcEO 18 Vdc 

Collector-Base Voltage VcBO 36 Vdc 

Emitter-Base Voltage VE8O 4.0 Vdc 

Collector Current - Continuous 'c 3.5 Adc 

Total Device Dissipation @Tc ■ 25°C ID 
Derate Above 25°C 

I’D 50 
285 

Watts 
mW/°C 

Storage Temperature Range Tstg -65 to *200 °C 

Stud Torque (2) — 6.5 ln-lb 

THERMAL CHARACTERISTICS 

Characteristic Symbol Max Unit 

Thermal Resistance, Junction to Case Rsjc 3.5 °CM 

(1) These devices are designed for RF operation. The total device dissipation rating 
applies only when the devices are operated as Class C RF amplifiers. 

(2) For Repeated Assembly use 5 In. Lb. 

DIM 
MILLIMETERS INCHES 
MIN MAX MIN MAX 

A ?4Ç 9 78 o?’9 0 385 
B 8.13 8 38 0 320 0.330 
c 17.02 20 07 0 670 0.79C 
0 5 46 5.97 0.215 0 235 
E 1.7? — 0 070 — 
J 0 08 0.18 0.003 
K 1245 — 0 490 — 
L ’«Ç 178 0 055 0.070 
M 45» NOM 45 NOM 
r 1.P — 0.050 
R 7 59 7 80 0.299 0.307 
S 4.01 Q 1» 0.171 
T 2.11 JH 0 083 0.10G 
V 3-49 3.35 0 098 0.132 

Fig. 7-1. Data sheet. (Courtesy Motorola Semiconductor Products Inc.) 
Cont. on next page 
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MRF233 

ELECTRICAL CHARACTERISTICS! Te * 25°C unless otherwise noted).___ 
I Characteristic | Symbol | Min [ Typ | Max | Unit | 
OFF CHARACTERISTICS 

ON CHARACTERISTICS 

Collector-Emitter Breakdown Voltage 
(IC - 100 mAdc. Iß - 0) 

BVceo 18 --Vdc 

Collector-Emitter Breakdown Voltage 
(IC * 50 mAdc. VBE - 0) 

bvCes 36 - - Vdc 

Emitter-Base Breakdown Voltage 
dg - 5.0 mAdc, Ie ■ 0) 

BVebO 4.0 - - Vdc 

Collector Cutoff Current 
(VCb ■ 15 Vdc, lg ■ 0) 

'CBO - - 1.0 mAdc 

DYNAMIC CHARACTERISTICS 

DC Current Gain 

de - 1.0 Adc, VCg - 5 0 Vdc) 
hFE 5.0 - - -

FUNCTIONAL TESTS (F.gure 1) 

Output Capacitance 
(VCb " 12 5 Vdc, Ig - 0, f • 1.0 MHz) 

COb -100 120 pF 

Common-E mit ter Amplifier Power Gain 
(Vee - 12.5 Vdc. Pout - 15 W, f - 90 MHz) 

Gpg 10 - - dB 

Collector Efficiency 
(VCc - 12.5 Vdc. Pout - 15 W. f - 90 MHz) 

n 55 - - % 

Load Mismatch 
<VCC - 12.5 Vdc. Pout - 15 W. 
f-90 MHz. TC <25°C) 

— VSWR >30:1 Through All Phase 
Angles in a 3 Second Interval 
After Which Devices Will Meet 

Gpg Test Limits 

J 

FIGURE 1 - 90 MHz TEST CIRCUIT SCHEMATIC 

12 5 Vdc 

Outpu 

C5 

R2 
Input/Output Connectors - Typ« BNC 

C1.C3 9.0-180 pF, ARCO 463 
C2.C4 25 280 pF ARCO 464 

15 Ohm, 1/2 W, 10% Carbon 
68 Ohm, 1 Watt, 10% Carbon 

2 2 mH, 9230 200 MILLER Molded Choke 
2 Turns. #18 AWG, 3/8” I.D.. 3/8” Long 
10 Turns, #16 AWG, Wound On R2 

AA MOTOROLA Semiconductor Products Inc. 

1000 pF UNELCO 
0.01 mF ERIE Disc Ceramic 
1.0 mF, 35 Vdc TANTALUM 
2 Turns, #18 AWG, 3/8” I.D.. 1/4” Long 
0 22 mH, 9230 04 MILLER Molded Chok 

Input >■ 

Fig. 7-1.—Cont. Data sheet. (Courtesy Motorola Semiconductor Products Inc.) 
Cont. on next page 
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MRF233 

FIGURE 2 - OUTPUT POWER vwwi INPUT POWER 

FIGURE 4 - OUTPUT POWER versus SUPPLY VOLTAGE 

FIGURE 3 - OUTPUT POWER versus FREQUENCY 

FIGURE 5 - SERIES EQUIVALENT IMPEDANCE 

Fig. 7-1.—Cont. Data sheet. (Courtesy Motorola Semiconductor Products Inc.) 

Cont. on next page 
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MRF233 

Fig. 7-1.—Cont. Data sheet. ( Courtesy Motorola Semiconductor Products Inc. ) 



RF Power Amplifiers 155 

Fig. 7-2. Equivalent circuit for series input and 
output impedance at 100 MHz. 

Input o 

Fig. 7-3. Equivalent circuit for parallel input and 
output impedance at 100 MHz. 

Fig. 7-4. Transfer characteristic for a linear amplifier. 

Thus, the input signal-drive level to the amplifier is 
kept small enough to avoid driving the transistor into 
cutoff. Another way of stating this is to say that the 
conduction angle of the transistor is 360°—meaning 
that the transistor conducts for the full cycle of the in¬ 
put signal. 

The class-A amplifier is the most linear of all ampli¬ 
fier types. Linearity is simply a measure of how closely 
the output signal of the amplifier resembles the input 
signal. A linear amplifier is one in which the output sig¬ 
nal is proportional to the input signal, as shown in Fig. 
7-4. Notice that in this case, the output signal level is 
equal to twice the input signal level, and the transfer 
function from input to output is a straight line. 

No transistor is perfectly linear, however, and, there¬ 
fore, the output signal of an amplifier is never an exact 
replica of the input signal. There are always spurious 
components added to a signal in the form of harmonic 

generation or intermodulation distortion (IMD). 
These types of nonlinearities in transistors produce am¬ 
plifier transfer functions which no longer resemble 
straight lines. Instead, a curved characteristic appears, 
as shown in Fig. 7-5A. The distortion caused to an in¬ 
put signal of such an amplifier is shown at Fig. 7-5B. 
Notice the flat topping of the output signal that occurs 
due to the second-harmonic content generated by the 
amplifier. This type of distortion is called harmonic 
distortion and is expressed by the equation: 

Vout = AVln + BVln2 + CVlns +. ( Eq. 7-1 ) 

The second term of Equation 7-1 is known as the 
second harmonic or second-order distortion. The third 
term is called the third harmonic or third-order distor¬ 
tion. Of course, a perfectly linear amplifier will pro¬ 
duce no second, third, or higher order products to dis¬ 
tort the signal. 

Notice in Fig. 7-5, where the amplifier’s transfer 
function is given as Vout = 5Vin + 2Vin2, that the sec¬ 
ond-order distortion component increases as the square 
of the input signal. Thus, with increasing input-signal 
levels, the second-order component will increase much 
faster than the fundamental component in the output 
signal. Eventually, the second-order content in the out¬ 
put signal will equal the amplitude of the fundamen¬ 
tal. This effect is shown graphically in Fig. 7-6. The 
point at which the second-order and first-order content 
of the output signal are equal is called the second-

( B ) Resulting waveforms. 

Fig. 7-5. Nonlinear amplifier characteristics. 
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order intercept point. A similar graph may be drawn 
for an amplifier which exhibits a third-order distortion 
characteristic. In this case, the third-order term is 
plotted along with the fundamental gain term of the 
amplifier. In this manner, the third-order intercept may 
be determined. The second- and third-order intercept 
of an amplifier are often used as figures of merit. The 
higher the intercept point, the better the amplifier is 
at amplifying large signals. 

When two or more signals are input to an amplifier 
simultaneously, the second-, third-, and higher-order 
intermodulation components are caused by the sum 
and difference products of each of the fundamental in¬ 
put signals and their associated harmonics. For exam¬ 
ple, when two perfect sinusoidal signals, at frequencies 
fi and f2, are input to any nonlinear amplifier, the fol¬ 
lowing output components will result: 

fundamental: fi, f2
second order: 2fj, 2f2, ft + f2, ft — f2 
third order: 3fi, 3f2, 2fi ± f2, 2f2 ± fi 
+ higher order terms 

Under normal circuit operation, the second-, third-, 
and higher-order terms are usually at a much smaller 
signal level than the fundamental component and, in 
the time domain, this is seen as distortion. Note that, 
if fi and f2 are very close in frequency, the 2fi — f2 and 
2f2 — fi terms fall very close to the two fundamental 
terms. Third-order distortion products are, .therefore, 
much more difficult to eliminate through filtering once 
they are generated within an amplifier. 

The bias requirements for a class-A power amplifier 
are the same as those for the small-signal amplifiers 
presented in Chapter 6. In fact, the distinction between 
a class-A power amplifier and its small-signal counter¬ 
part is a hazy one at best. For all practical purposes, 
they are equivalent except for input and output signal 
levels. 

Class-B Power Amplifiers 
A class-B amplifier is one in which the conduction 

angle for the transistor is approximately 180°. Thus, 

the transistor conducts only half the time—either on 
the positive or negative half cycle of the input signal. 
Again, it is the de bias applied to the transistor that 
determines the class-B operation. 

Class-B amplifiers are more efficient than class-A 
amplifiers (70% vs. less than 50%). However, they are 
much less linear. Therefore, a typical class-B amplifier 
will produce quite a bit of harmonic distortion that 
must be filtered from the amplified signal. 

Probably the most common configuration of a class-B 
amplifier is the push-pull arrangement shown in Fig. 
7-7. In this configuration, transistor Qi conducts during 
the positive half cycles of the input signal while tran¬ 
sistor Q2 conducts during the negative half cycles. In 
this manner, the entire input signal is reproduced at 
the secondary of transformer T2. Thus, neither device 
by itself produces an amplified replica of the input sig¬ 
nal. Instead, the signal is actually split in half. Each 
half is then amplified and reassembled at the output. 

Of course, a single transistor may be used in a class-
B configuration. The only requirement is that a reso¬ 
nant circuit must be placed in the output network of 
the transistor in order to reproduce the “other” half of 
the input signal. 

There are several methods of biasing a transistor for 
class-B operation. One of the most widely used meth¬ 
ods is shown in Fig. 7-8. This method simply estab¬ 
lishes a base voltage of 0.7 volt on the transistor, using 
an external silicon diode. Often, this diode is mounted 
on the transistor itself to help prevent thermal run¬ 
away, which is often a problem with incorrectly biased 
power amplifiers. Diode CR1 is usually of the heavy-
duty variety because the value of resistor R is usually 

Fig. 7-7. Push-pull class-B amplifier. 

Fig. 7-8. Simple diode bias for class-B operation. 
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Fig. 7-9. Emitter-follower bias for class-B operation. 

Fig. 7-10. Operational amplifier bias for class-B operation. 

Fig. 7-11. Class-C self bias. 

Fig. 7-12. Circuit for class-C self bias. 

chosen so that the current through CR1 is rather high. 
This ensures that the bias to the transistor is stable. An 
alternative bias network is shown in Fig. 7-9. Here, two 
silicon diodes are used to forward bias an emitter-fol¬ 
lower, which is used as a current amplifier. The voltage 
at the emitter of Qi and, hence, at the base of Q2, is still 
0.7 volt due to the VBe drop across transistor The 
rf choke and capacitor shown in both Figs. 7-8 and 7-9 
are there only to prevent the flow of rf into the bias 
network. 

Still another bias arrangement for class-B operation 
is shown in Fig. 7-10. Here the bias voltage is made 
variable so that an optimum solution may be found for 

best IMD performance. Care must be taken in all three 
bias arrangements to ensure that the RFC is a low-Q 
choke for optimum operation. 

Class-C Power Amplifiers 
A class-C amplifier is one in which the conduction 

angle for the transistor is significantly less than 180° 
The transistor is biased such that under steady-state 
conditions no collector current flows. The transistor 
idles at cutoff. Linearity of the class-C amplifier is the 
poorest of the classes of amplifiers. Its efficiency can 
approach 85%, however, which is much better than 
either the class-B or the class-A amplifier. 

In order to bias a transistor for class-C operation, it 
is necessary to reverse bias the base-emitter junction. 
External biasing is usually not needed, however, be¬ 
cause it is possible to force the transistor to provide its 
own bias. This is shown in Fig. 7-11. If the base of the 
transistor is returned to ground through an rf choke 
(RFC), the base current flowing through the internal 
base-spreading resistance (rbb') tends to reverse bias 
the base-emitter junction. This is exactly the effect you 
would like to achieve. Of course, it is possible to pro¬ 
vide an external de voltage to reverse bias the junction, 
but why bother with the extra time and expense if the 
transistor will provide everything you need. Fig. 7-12 
shows a typical class-C amplifier bias arrangement. 

POWER AMPLIFIER DESIGN 

At the beginning of this chapter, you learned that 
the important design information for rf power transis¬ 
tors is presented in the form of large-signal impedance 
parameters. The formulas presented in Chapter 6 for 
small-signal transistor design, using Y and S parame¬ 
ters, are no longer valid. Instead, the designer must 
model with the help of the data sheet, deciding what 
the input and output impedance of the transistor looks 
like at the frequency of interest. With this information 
in hand, the designer needs only to match the input 
and output impedance of the device to the source and 
load, respectively. These two steps require only that 
the designer read the input and output impedances off 
of the data sheet, and then apply the principles of 
Chapter 4 to complete the matching network. Care 
must be taken to ensure that the information extracted 
from the data sheet is of the proper format—series or 
shunt information. 

Often, instead of supplying complete output infor¬ 
mation for a transistor in the form of a series or shunt 
resistance and capacitance output, manufacturers will 
supply output capacitance information only. This is 
because the optimum load resistance for the transistor 
is very easily calculated using a very simple formula, 
as we shall soon see. 

Optimum Collector Load Resistance 
In the absence of collector output resistance infor¬ 

mation on the data sheet, it becomes necessary for the 
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designer to make a very simple calculation to deter¬ 
mine the optimum load resistance for the transistor 
(Example 7-1). This value of load resistance is depen¬ 
dent upon the output power level required and is given 
by: 

R — ( ^cc — V„at)2 , „ _ 
Rl “ - 2P- ( Eq ’ 7-2 ) 

where, 
Vcc = the supply voltage, 
VMt = the saturation voltage of the transistor, 
P = the output power level required. 

EXAMPLE 7-1 
What value of load resistance is required to obtain 2.0 

watts of rf output from a transistor if the supply voltage is 
12 volts and the saturation voltage of the transistor is 2 
volts? 

Solution 

Using Equation 7-2, we have 

(12-2)2 
Rl - 2(2) 

= 25 ohms 

Note that Equation 7-2 provides you with a value of 
load resistance only. It does not indicate anything 
about the reactive portion of the load. On the data 
sheet, however, the manufacturer typically provides 
values of shunt output capacitance versus frequency 
for the transistor. The designer’s job is to provide a 
load for the transistor which absorbs this stray or para¬ 
sitic capacitance so that the transistor may be matched 
to its load (see Chapter 4). Example 7-2 may illustrate 
this point. 

Keep in mind that if the output resistance informa¬ 
tion had not been provided in the data sheet, it would 
have been a simple matter to calculate the required RL 
using Equation 7-2. Once this calculation is made, the 
output matching network is designed in the same man¬ 
ner as was done in Example 7-2. The 50-ohm load is 
simply transformed into the impedances that the tran¬ 
sistor would like to see for the specified power output. 

Driver Amplifiers and Interstage Matching 
Often it is required that power gain be distributed 

throughout several amplifier stages in order to produce 
a specified output power into a load. This is especially 
true in transmitter applications that require a substan¬ 
tial amount of power into an antenna. 

The typical procedure for such a design involves 
finding, first, an output transistor that will handle the 
required output power and, then, designing driver am¬ 
plifiers that will provide the necessary drive power to 
the final transistor. This type of gain distribution is 
shown in Fig. 7-17. Note that the required output¬ 
power level from the final amplifier is 15 watts. A final 

transistor was chosen which will handle the required 
output power and which will provide a gain of 10 dB. 
The required drive level to the stage is, therefore, 1.5 
watts, and is supplied by a transistor with a gain of 
15 dB. The signal source must, therefore, supply the 
driver with a signal level of 47 milliwatts, which is 
within the capabilities of most oscillators. 

Let’s examine the interstage match between Stage A 
and Stage B in a little more detail. Often, in dealing 
with power amplifiers, it is unclear whether or not a 
true impedance match occurs between the power am¬ 
plifier and its load. A true impedance match for an am¬ 
plifier would involve providing a load for the transistor 
that is the complex conjugate of its output impedance. 
In designing power amplifiers, however, we speak of 
providing a load resistance (Equation 7-2) for the 
transistor in order to extract a specified power gain 
from the stage. This is simply a matter of semantics 
and, from a circuit-design viewpoint, it doèsn’t really 
matter how you look at it. Fig. 7-18 illustrates this 
point. Suppose the transistor of Stage B has an input 
impedance as shown (Z ln = 1.7 - j2.7 ohms). Also, sup¬ 
pose that Stage A, in order to supply the required 1.5 
watts of rf drive, requires a load resistance of 25 ohms. 
The role of the impedance-matching network, then, 
is to transform the low-input impedance of Stage B up 
to the 25-ohm level required by Stage A. In addition, 
the matching network must absorb or resonate out the 
15-pF output capacitance of Stage A. 

MATCHING TO COAXIAL FEEDLINES 

The T and Pi networks studied in Chapter 4 are ex¬ 
cellent candidates for use in matching coaxial feedlines 
to power amplifiers. Often such a network will serve a 
dual purpose, especially when configured as a low-pass 
filter, in providing harmonic suppression for a trans¬ 
mitter. 

Fig. 7-19 is a diagram of a coaxial feed to an antenna 
at the antenna’s resonant frequency. Resistance R„ is 
the antenna’s radiation resistance. A quarter-wave¬ 
length vertical antenna operating against a very good 
ground plane has a radiation resistance of about 35 
ohms while a half-wave center-fed dipole has a radia¬ 
tion resistance of about 70 ohms—at its resonant fre¬ 
quency. This is simply the resistance that the coaxial 
cable sees at the antenna terminals. Above and below 
the resonant frequency of the antenna, its radiation re¬ 
sistance begins to show a reactive component. This is 
illustrated in Fig. 7-20. Above resonance (Fig. 7-20A), 
the antenna looks inductive, and below resonance 
(Fig. 7-20B), the antenna looks capacitive. 
At the transmitter end of the coaxial feedline, the 

impedance that the output transistor actually sees is 
not only a function of the antenna’s radiation resis¬ 
tance, but also a function of the length of the coaxial 
feedline. The impedance along the line varies sinusoid¬ 
ally as you move away from the antenna. Thus, at a 
distance of one half-wavelength back from the an-
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EXAMPLE 7-2 
Using the data sheet of Fig. 7-1, design a class-C power 

amplifier that will deliver 15 watts between a 50-ohm 
source and load at 100 MHz. 

Solution 

The data sheet for the MRF233 transistor provides input 
and output impedance information for the transistor in both 
series and parallel form. The designer is, therefore, left with 
a choice as to which he prefers. The input-matching design 
may proceed as in the following method. 

Fig. 7-13. Transistor input impedance for Example 7-2. 

The input impedance of the transistor appears as shown 
in the diagram of Fig. 7-13. This information was taken 
from Figure 5 of the data sheet. Note that the object of the 
input-matching network is to transform the input imped¬ 
ance of the transistor up to 50 ohms to provide an optimum 
load for the source. 

Using the techniques of Chapter 4, first resonate the 
series capacitance with an equal and opposite series induc¬ 
tance of 4-j2.7 ohms. Then, match the remaining 1.7-ohm 
resistive load to the source as follows. Using Equation 4-1 
through 4-3, for the L-network: 

(Eq. 4-1) 

Xs — RsQs 
= (1.7)(5.33) 
= 9.06 ohms 

(Eq. 4-2) 

_Rp 
p- o, 

50 
- 5.33 
= 9.38 ohms 

(Eq. 4-3) 

Fig. 7-14. Input matching network for Example 7-2. 

This matching network is shown in Fig. 7-14. Note that it 
is convenient to use a shunt-C series-L matching network 
in order to easily absorb the +j2.7-ohm inductor that was 
needed earlier. Thus, the two inductors may be combined 
into a single component in the actual design. 

Since complete output-impedance information is pro¬ 
vided for the transistor (Figure 5 of the data sheet), it is 
only necessary to match this output impedance to the 50-
ohm load. Proceeding as before, first resonate the —j5.6-ohm 
series capacitance with an inductor of equal value. Then, 
match the remaining 5-ohm resistive portion of the transis¬ 
tor output to the load as follows: 

Xs = QsRs 

= (3)(5) 
= 15 ohms 

¿ _ Rp 
’“Qr 
_ 50 
_  3 
= 16.7 ohms 

The output network is shown in Fig. 7-15. Note that it is 
again convenient to use the series-L shunt-C arrangement 
so that we may absorb the -¡-j5.6-ohm inductor used pre¬ 
viously. 

A practical circuit for this design might appear as shown 
in Fig. 7-16. 

20.6 ohms 

+ ¡5.6 +¡15 

— ¡16.7 ohms-r- 50 ohms 

Fig. 7-15. Output matching network for Example 7-2. 

Fig. 7-16. Final circuit realization for Example 7-2. 

tenna, the impedance looking into the coax would ap¬ 
pear to be equal to the antenna’s radiation resistance. 
At other distances removed from the antenna, how¬ 
ever, the coax would appear to have a much different 

input impedance depending upon the degree of mis¬ 
match between the antenna and the feedline. There¬ 
fore, it is extremely difficult to estimate the actual in¬ 
put impedance of any transmission line unless the line 
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Fig. 7-17. System drive requirements for a 
15-watt transmitter. 

Fig. 7-18. Requirement for an interstage 
impedance-matching network. 

Transmitter 

Final 

Fig. 7-19. Antenna radiation resistance at resonance. 

( A ) Above resonance. ( B ) Below resonance. 

Fig. 7-20. Radiation resistance of an antenna. 

is terminated in its characteristic impedance. That is 
to say, a 50-ohm coaxial cable will not look like 50 
ohms at its input unless there is a 50-ohm load at the 
other end of the cable. Since this is hardly ever the case 
when driving practical antenna systems, it is not very 
practical to design a matching network unless the net¬ 
work is tunable. In addition, many antenna installa¬ 
tions operate over quite a range of frequencies. Since 
the radiation resistance of the antenna varies with fre¬ 
quency, the input impedance of the coaxial cable must 
also vary, and the matching network must be able to 
compensate for these variations. 

Fig. 7-21 indicates two possible methods of provid¬ 
ing a tunable impedance-matching network for a trans¬ 
mission line. The T network of Fig. 7-21A uses both 
tapped inductors and a tunable capacitor. The Pi net¬ 
work of Fig. 7-21B uses only tunable capacitors. Note 
that, in both cases, the low-pass configuration is used 
to aid in suppressing harmonics of the transmitted sig¬ 
nal. The circuits of Fig. 7-21 are designed in the same 
manner as those shown in Chapter 4. Of course, if you 
had a requirement that the harmonics of the trans-

(A) T network. 

Coax to 
Transmitter 

Coax to 
Antenna 

( B ) Pi network. 

Fig. 7-21. Variable coaxial feedline matching networks. 

mitted signal were required to be at a certain level be¬ 
low the fundamental, say 50 dB, then the filter-design 
approach used in Chapter 3 might be the best ap¬ 
proach to take. 

AUTOMATIC SHUTDOWN CIRCUITRY 

Since power amplifiers are designed to supply a 
considerable amount of power to an antenna system, 
an impedance mismatch presented to the amplifier 
could cause very severe problems. As we learned in 
Chapter 4, an impedance mismatch between a source 
and its load causes reflection of some of the signal 
incident upon that load. This reflected signal will 
eventually make its way back to the source and, in 
high-power transmitters, can cause serious side-effects, 
such as transistor damage in the form of secondary 
breakdown. For this reason, many manufacturers of 
power amplifiers include a VSWR monitoring circuit 
in the transmitter, which monitors the standing wave 
ratio of the output circuit and, in the event that the 
VSWR becomes excessive, indicating a severe mis¬ 
match, the circuit automatically decreases the rf drive 
to the final amplifier, thereby reducing the transmit¬ 
ter’s output power. The reduction in output power 
subsequently reduces the reflected power from the 
load, thus, protecting the output transistor. A simpli¬ 
fied diagram of such a system appears in Fig. 7-22. 

Fig. 7-22. Automatic shutdown circuitry. 
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(A) 1:1 balun. 

(C) 9:1 transformer. 

Fig. 7-23. Types of broadband transformers. 

BROADBAND TRANSFORMERS 

Several types of broadband transformers, which are 
often used in power-amplifier design, are illustrated in 
Fig. 7-23. Fig. 7-23A is known as a 1:1 balun. It is 
used mainly to connect a balanced source to an un¬ 
balanced load, or vice-versa, and it provides no imped¬ 
ance-transforming function. 

Fig. 7-23B is a 4:1 transformer. That is to say, it will 
transform an impedance of 4R down to an impedance 
of R, or vice-versa. The small dot located next to each 
winding indicates polarity. A detailed look at Fig. 
7-23B will explain how the 4:1 transformation occurs. 
First, suppose that a voltage (V) has been impressed 
across the load resistor and the voltage across the 
same voltage must also be impressed across the lower 
winding of the transformer since the two are in paral¬ 
lel. The voltage on the lower winding impresses the 
same voltage (V) on the upper winding with the 
polarity indicated. This is true because each winding 
has the same number of turns. The voltage at the input 
terminals is, therefore, equal to the sum of the voltage 
across the load resistor and the voltage across the 
upper winding, or 2V. Suppose now that a current of 
1/2 is injected at the input terminals of the transformer. 
This current flowing in the top winding of the trans¬ 
former induces a current of 1/2 in the bottom winding 

in the direction shown. The current in the load resistor 
is, therefore, equal to 1/2 4-1/2 or I. Therefore, if the 
load resistor is equal to 1 ohm, the resistance seen look¬ 
ing into the input terminals of the transformer, then, 
must be: 

Resistance = 
Current 

_ 2V 
1/2 

= 4R 

A 9:1 transformer is illustrated in Fig. 7-23C. Note 
that this transformer is actually made up of two sepa¬ 
rate transformers, T1 and T2. A similar analysis may be 
made of this transformer to confirm the 9:1 transfor¬ 
mation. Voltages and currents are included in the 
diagrams to aid in the analysis process. Obviously, 
several transformers may be included in such a con¬ 
figuration to produce other transformation ratios. Fig. 
7-24, for example, includes three separate transformers 
that are used to produce a 16:1 impedance transforma¬ 
tion. 

Fig. 7-24. A 16:1 broadband transformer. 

Power Splitters 

A basic power splitter is shown in Fig. 7-25. Ideally, 
the power into the primary of the transformer is split 
evenly between amplifier No. 1 and amplifier No. 2. 
However, due to input-impedance variations between 
the two amplifiers, this is rarely the case. Instead, one 
amplifier is usually provided with a bit more drive 
power than the other. To aid in equalizing the power 
split, resistor R at the center tap of the secondary 
is often left out of the circuit. ( Once again, the small 
dots are used to indicate polarity. ) 

Power Combiners 
A typical power combiner is shown in Fig. 7-26. 

Here, the power output of each amplifier is combined 
in transformer T1 to provide an output power of 
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Fig. 7-26. A power combiner. 

Pi + P2. Power combiners are often used in power¬ 
amplifier designs where it is impractical for a single 
stage to produce the necessary output power. In this 
case, two amplifiers, operating 180° out-of-phase, will 
each provide half the needed output power to the 
power combiner. The combined output is, therefore, 
equal to the power level required. 

PRACTICAL WINDING HINTS 

Broadband transformers are often called transmis¬ 
sion-line transformers because they make use of the 
transmission-line properties of the windings. This is 
done by using bifilar- or tri/iZar-type windings rather 
than the conventional type of winding. 

A conventional transformer usually has two entirely 
separate windings. That is, one of the windings is 
usually wound onto the core first and, then, the other 
winding is wound on top of the first winding. Typically, 
the larger winding is wound first for convenience. This 
winding technique is shown in the toroidal transformer 
diagram of Fig. 7-27. Note that an impedance transfor¬ 
mation occurs between the primary and secondary 
of the transformer. The value of the transformation 
is dependent upon the turns ratio from the primary 
to the secondary. Transmission-line transformers use 
an entirely different technique for the windings, as 
shown in Fig. 7-28. First, the primary and secondary 
windings are made by twisting the wires together for 
a certain number of turns per inch (Fig. 7-28A). This 

produces a certain characteristic impedance for the 
resulting “transmission line” in much the same manner 
that a coaxial cable exhibits a certain characteristic 
impedance which is dependent upon the spacing of 
its center conductor to its outer conductor. The actual 
characteristic impedance of the twisted pair is de¬ 
pendent upon the number of turns per inch, the 
shape of the windings, and the size wire used. For 
low-impedance lines, tight twists (many turns per 

Fig. 7-27. A conventional transformer. 

DœooocœoGC 
( A ) The windings. 

( B ) Turns wound 
around a toroid. 

( C ) Circuit representation. 

Fig. 7-28. A bifilar-wound broadband transformer. 

inch) are used while high-impedance lines may not 
be twisted at all. Instead, the windings will be placed 
side-by-side around the core. For optimum operation, 
the characteristic impedance of the winding should 
be equal to : 

Zo = VRÃ (Eq. 7-3) 

where, 
Rs = the primary impedance, 
Rb = the secondary impedance. 

Typically, Zo must be found experimentally. 
The transformer of Fig. 7-28 is called a bifilar-wound 

transformer because it uses two conductors in the 
twisted-winding arrangement. A trifilar transformer 
is one that uses three conductors, and so on. 

As shown, Fig. 7-28 is simply a 1:1 broadband trans¬ 
former. If connected as shown in Fig. 7-23B, however, 
this arrangement could be used to produce a 4:1 
broadband transformer. This may be done by simply 
connecting lines 2 and 3 together and using that junc¬ 
tion as your output port. Line 4 is connected to ground 
and line 1 is then the input port. 
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Often, instead of using a twisted pair, the de¬ 
signer may instead use coaxial cable for the windings. 
The center conductor and outer conductor of the 
coax, then, take the place of each conductor in the 
twisted pair. This is done primarily because each type 
of coax has a very well-defined and consistent char¬ 
acteristic impedance and this eliminates the experi¬ 
mentation involved in defining the characteristic im¬ 
pedance of the twisted pair. Of course, the use of 
standard coaxial cable does not allow for trifilar-
wound transformers. Typically, broadband transform¬ 
ers are wound on low-Q, high-permeability, ferrite 
toroidal cores ( see Chapter 1 ). The high permeability 
is needed at the low end of the frequency spectrum 
where, for a given inductance, fewer turns would be 
needed. 

SUMMARY 

The power-amplifier design process is not as well 
defined as that of the small-signal amplifier. Thus, 
considerable experimentation may be necessary in 
order to optimize a design. Standard Y and S param¬ 
eters are not used in power-amplifier design. Instead, 
large-signal impedance parameters are typically pro¬ 
vided by the transistor manufacturers to aid in the 
design process. Following the impedance-matching 
procedures outlined in Chapter 4, the designer must 
match the source to the transistor’s input impedance, 
and transform the load impedance to a value that is 
dependent upon the required output-power level from 
the stage. The source must be capable of providing the 
required rf drive level, or the calculated rf power 
output from the stage will never be achieved. 



APPENDIX A 

VECTOR ALGEBRA 

Many of the design equations contained in earlier 
chapters require that the user be familiar with vector 
algebra. It is the intent of this appendix to provide, 
for those who are unfamiliar with this subject, a 
working knowledge of vector addition, subtraction, 
multiplication, and division. 

As illustrated in Fig. A-l, a vector may be expressed 
in either rectangular or polar form. In rectangular 
form, the vector quantity is expressed as a sum of its 
coordinate parts. Thus, the vector A shown in Fig. 
A-l can be expressed as the sum of 5 units in the x 
direction and 5 units in the y direction, or A = 5 + j5. 
That same vector may be expressed in polar notation 
as a distance (R) from the point of origin at an angle 
(0) from the x axis. If vector A were measured, its 
length would be found to be 7.07 units at an angle of 
45° from the x axis. Thus, 

A = 5 + j5 or A = 7.07 Z^° 

Similarly, vector B can be expressed in rectangular 
form as 5 — jlO or in polar form as 11.18 / —63.4 °. 
Note that negative angles are measured clockwise from 
the x axis while positive angles are measured counter¬ 
clockwise. 

Rectangular/Polar and 
Polar/Rectangular Conversion 

Rather than plotting a vector to graphically deter¬ 
mine its component parts, it is more convenient to 
perform a few simple mathematical calculations. Any 
vector expressed in rectangular form may be converted 
to polar form (Example A-l) using the following 
formulas: 

R = x/x^-Kp and 0 = arctan -
' x 

The conversion from polar to rectangular notation 
(Example A-2) can be made by using the following 
formulas: 

x = R cos 0 and y = R sin 0 

Vector Addition 
Two vector quantities may be added by performing 

two separate additions—one for the respective x com¬ 
ponents and one for the respective y components ( Ex-

EXAMPLE A-l 
The input impedance of a transistor is found to be Z 

= 25 — jlO ohms. Express this impedance in polar notation. 

Solution 

The magnitude of the resulting vector (R) is found as: 

R = Vx2 + y2
= V625 + 100 

= 26.9 

The resulting angle from the x axis is found to be: 

y 
0 = arctan -

x 
-10 

= arctan o_ ■ 

= -21.8° 

Thus, Z = 25 — jlO ohms can also be expressed as Z = 26.9 
/ —21.8° ohms. 

Fig. A-l. Vector coordinates in rectangular and polar form. 

164 
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EXAMPLE A-2 
The input impedance of a transistor is found to be Z = 

26.9 / —21.8°. Express this impedance in rectangular form. 

Solution 

First: 

x = R cos 0 
= 26.9 cos(—21.8°) 
= 26.9(0.9285) 
= 25 

and, then, 
y = R sin 0 
= 26.9 sin(-21.8°) 
= 26.9(—0.3714) 
= -10 

Thus, Z = 25 — jlO ohms. 

ample A-3). Of course, the resultant may be expressed 
in either rectangular or polar form. 

Vector Subtraction 
Vector subtraction is performed in a similar manner 

to that of addition (Example A-4). The two vector 

EXAMPLE A-3 
An impedance of Zi = 11.18 / 63.40 ° ohms is added in 

series with an impedance of Z> = 18.03 / —56.3° ohms. 
What is the resulting series impedance (Zt) expressed in 
rectangular form? 

Solution 

Before the addition can be performed, the polar quanti¬ 
ties of the problem must be transformed to rectangular no¬ 
tation. For Z,: 

X, = R, cos 0i 
= 11.18 cos( 63.4°) 
— 5 

yi = Ri sin 0i 
= 11.18 sin(63.4°) 
= 10 

Thus, 
Z, = 5 + j 10 ohms 

For Z2: 

Xa = Ra cos 02 
= 18.03 cos( -56.3° ) 
= 10 

ya = Rs sin 02 
= 18.03 sin (-56.3°) 
= -15 

Thus, Z2 = 10 — jl5 ohms. 

To perform the addition, add the respective x compo¬ 
nents and the respective y components. 

XT = Xt + Xa 
= 5+10 
= 15 

yT = yi + ys 
= 10-15 
= -5 

Thus, Zt = 15 — j5 ohms. 

EXAMPLE A-4 
Using the following values: 

Vi = 11.18 / 63.4° 
V, = 18.03 / -56.3 ° 

perform the calculation, Vt = V, — Va. 

Solution 

Both quantities must first be expressed in rectangular 
form. For Vi: 

Xi = Ri cos 0i 
= 11.18 cos(63.4°) 
= 5 

yi = Ri sin 0! 
= 11.18 sin (63.4°) 
= 10 

and, then, for Vs: 

X2 = Ra COS 02 
= 18.03 cos( -56.3° ) 
= 10 

ya = Ra sin 0a 
= 18.03 sin (-56.3°) 
= -15 

Subtracting the x and y components, we get: 

Xt = Xi — Xa 
= 5-10 
= -5 

yT = yi — y, 
= 10- (-15) 
= 25 

Therefore, Vt = —5 + j25. 

quantities must first be expressed in rectangular form, 
and their respective x and y components may then be 
subtracted. 

Vector Multiplication 
Multiplication of two vectors is accomplished by 

first converting both vectors to polar form. The magni¬ 
tudes ( R ) of the vectors are then multiplied and their 
angles are added ( Example A-5). Thus, 

Rt = R1R2 and — 0^ + 02

Vector Division 

Vector division is performed by first converting both 
vectors to polar form. The vector quotient is then 
found by dividing the magnitudes and subtracting the 
angles ( Example A-6). Use the formulas: 

R 
Rt = w- and 0t = — 02

n2

Real, Imaginary, and Magnitude Components 
Several references are made throughout the text to 

“the real part of,” “the imaginary part of,” and “the 
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EXAMPLE A-5 
For a transistor, Sa = 5.6 /60o and Su = 0.1 /30° . 

Find the product SaSu. 

Solution 

Both S parameters are already in polar form, therefore: 

Rt — R1R2 
= (5.6)(0.1) 
= 0.56 

and, 
0T — 01 -f- 02 

= 60° + 30° 
= 90° 

Thus, the product SaSu is equal to 0.56 / 90° . 

EXAMPLE A-6 
Perform the following vector division: 

where, 
V, = 40 / 60° 
V, = 5 + j5 

Solution 

Vi is already in polar form. Convert V2 to polar form. 

V, = 7.071 /45 ° 

Divide the magnitudes. 

40 
~ 7.071 
= 5.66 

Subtract the angles. 

0T = 01 — 02 

= 60° - 45° 
= 15° 

Therefore, the quotient is equal to 5.66 / 15° . 

magnitude of’ a complex vector ( Example A-7 ). These 
components are described as follows: 

When given the complex vector V, where 

V = R /0 
= X + jy 

The real part of the vector V is given as: 

Re(V) = x 

the imaginary part of the vector V is given as: 

Im(V) = jy 

and the magnitude of the vector V is, then, 
given as: 

|V| = R 

EXAMPLE A-7 
Given the complex vector V = 10 / 60 °. find Re(V), 

Im(V), and | V |. 

Solution 

First, express the vector in rectangular form. 

X = R cos 0 
= 10 cos (60° ) 

= 5 
y = R sin 0 
= 10 sin (60° ) 
= 8.66 

Therefore, V = 5 + j8.66 and 

Re(V) =5 
Im(V) =¡8.66 

I V I = 10 
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NOISE CALCULATIONS 

Noise can be defined as any undesired disturbance, 
be it man-made or natural, in any dynamic electrical 
or electronic system. It may take the form of atmo¬ 
spheric noise caused by the immense energy of the sun 
or it may be something as trivial as the thermal noise 
associated with a carbon resistor. Whatever the source, 
noise is an obstacle that man has been trying to over¬ 
come since time began. 

The purpose of this appendix is to simply pinpoint 
a few of the many sources of noise in the electronic sys¬ 
tems of today. We will examine noise in its relation¬ 
ship with amplifier design and receiver systems design. 
The emphasis of this appendix will be placed on the 
practical aspects of noise rather than on its probabilis¬ 
tic nature. 

TYPES OF NOISE 

Basically, we are concerned with two types of noise 
—thermal noise and shot noise. 

Thermal Noise 
In any conducting medium whose temperature is 

above absolute zero ( 0 Kelvin ), the random motion of 
charge carriers within the conductor produces random 
voltages and currents. These voltages and currents pro¬ 
duce noise. As the temperature of the conductor in¬ 
creases, the random motion and the velocity of the 
charge carriers increase; hence, the noise voltage in¬ 
creases. 

The open-circuit noise voltage across the terminals 
of any conductor is given by: 

V = V4kTRB (Eq. B-l) 

where, 
V = the rms noise voltage in volts, 
k = Boltzmann’s constant ( 1.38 X 10-23 j/Kelvin), 
T = the absolute temperature in Kelvin ( °C + 273), 
R = the resistance of the conductor in ohms, 
B = the bandwidth in hertz. 

Notice that the amount of noise voltage present in 
the conductor is dependent upon the system band¬ 
width. The narrower the system bandwidth, the less 
thermal noise that is introduced. Consequently, for op¬ 
timum noise performance, the bandwidth of any circuit 

EXAMPLE B-l 
What noise voltage is produced in a 10K resistor at room 

temperature (293 Kelvin) over an effective bandwidth of 
10 MHz? 

Solution 

Using Equation B-l, we find that: 

V = ^4kTRB 

= a/4( 1.38 X 10-23)(293)(10,000)(10 x 10«) 
= 40.22 microvolts 

should never be wider than that required to transmit 
the desired signal. 

Thermal noise is also known as Johnson noise and 
white noise. 

Shot Noise 
Shot noise is a type of noise that is common to the 

particle-like nature of the charge carriers. It is often 
thought that a de current flow in any semiconductor 
material is constant at every instant. In fact, however, 
since the current flow is made up of individual elec¬ 
trons and holes, it is only the time-average flow of 
these charge carriers that is seen as a constant current. 
Any fluctuation in the number of charge carriers at any 
instant produces a random current change at that in¬ 
stant. This random current change is known as noise. 

Shot noise is also often called Schottky noise and is 
found by the formula: 

V = 2qIdcB (Eq. B-2) 

where, 
In2 = the mean square noise current, 
q = the electron charge ( 1.6 X IO-18 coulombs), 
Idc = the direct current in amperes, 
B = the bandwidth in hertz. 

NOISE FIGURE 

The noise figure, or NF, of a network is a quantity 
used as a “figure-of-merit” to compare the noise in a 
network with the noise in an ideal or noiseless network. 
It is a measure of the degradation in signal-to-noise 
ratio ( SNR ) between the input and output ports of the 
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network. Noise factor ( F ) is the numerical ratio of NF, 
where NF is expressed in dB. Thus, 

NF = 101og10 F (Eq. B-3) 

and, 

F _ Input SNR 
Output SNR 

(Eq. B-4) 

Cascaded Devices 
Often, it is necessary to calculate the noise figure of 

a group of amplifiers that are connected in cascade 
(Example B-2). This is easily done if the noise figure 
of each individual amplifier in the cascade configura¬ 
tion is known. 

p -p , F2-I - F3-I F4-I 
r total — r 1 -1 O C C ’ * ’ 

(Eq. B-5) 

where, 
Fn = the noise factor of each stage, 
Gn = the numerical gain of each stage ( not in dB ). 

EXAMPLE B-2 
What is the noise figure of the three cascade-connected 

amplifiers diagrammed in Fig. B-l? 

Fig. B-l. Block diagram for Example B-2. 

Solution 

Since the gains and noise figures of each stage are given 
in dB, they must first be changed to numerical ratios. 

Fi = 2, F, = 5, Fs = 31.6 
Gi = 5, G, = 10, G. = 10 

The overall noise factor is then given by: 

F 0,5-1 31.6 — 1 
Ftotal — 2 4- 5 + (5)(10 ) 

= 3.4 

NF = 10 logic 3.4 
= 5.3 dB 

Another look at Equation B-5 will reveal a very in¬ 
teresting point. If the gain of the first stage is suffi¬ 
ciently high, the denominators of the second and suc¬ 
ceeding terms will force those terms to very small 
values leaving only Fi in the equation. Hence, the NF 
of the first stage will typically determine the NF of the 
cascade configuration (Example B-3). 

Lossy Networks 
The NF of a lossy network is equal to the loss of the 

network in dB. For example, a mixer with a conversion 

EXAMPLE B-3 
If the gain of the first stage in Example B-2 were 25 dB, 

what would be the NF of the entire cascade? 

Solution 

We know that 25 dB is a numerical ratio of 316. There¬ 
fore, using Equation B-5: 

E 2 I 5 — 1 ! 316 - 1ÍTOTAL-Z+ 316 -f- (316)(10 ) 

= 2.022 

NF = 10 logio 2.022 
= 3.06 dB 

Note that the NF of the entire cascade is approximately 
equal to the NF of the first stage. 

EXAMPLE B-4 
Find the NF of the receiver whose block diagram is 

shown in Fig. B-2. 

Solution 

For analysis purposes, the last three blocks of Fig. B-2 
may be replaced with a single block having a noise figure 
of: 

NF. = 10 dB + 7 dB 4- 4 dB 
= 21 dB 

or, 
F. = 126 

The noise factor looking into the preamplifier is, therefore, 
equal to: 

F — F 1 Fe — 1 T preamp — i p T 7; 
vpreimp 

10 
= 24- 12.5 
= 14.5 

Therefore, the NF at the preamplifier is equal to: 

NFpr.emp = 10 logio 14.5 
= 11.6 dB 

The noise figure of the entire receiver is, thus, equal to the 
sum of 11.6 dB and the noise figure of the two-pole filter. 

NF,.„ = 11.6 dB 4- 6 dB 
= 17.6 dB 

Mixer 

NFrcvr NFprearnp NFç 

Fig. B-2. Receiver block diagram for 
Examples B-3 and B-4. 
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loss of 10 dB has an NF of 10 dB. Similarly, a filter with 
an insertion loss of 5 dB has an NF of 5 dB. 

The NF of two or more cascaded lossy networks can 
be found simply by adding the losses (in dB ) of each 
network. Thus, if a mixer with a conversion loss of 
10 dB is followed by a filter with an insertion loss of 
3.5 dB, the combined noise figure of the cascaded net¬ 
work is equal to 13.5 dB (Example B-4). 

RECEIVER SYSTEMS CALCULATIONS 

The thermal noise that is added to a signal while 
passing through a system can be calculated as: 

no = kTB (Eq.B-6) 

where, 
no = the noise power in watts, 
k = Boltzmann’s constant, 
T = the temperature in Kelvins, 
B = the noise bandwidth of the system. 

Expressed as noise power in dBm, we have: 
Ltd 

IU = 101og10 ï ̂”-3 (Eq.B-7) 

If no and the NF of a receiver are known ( or can be 
calculated), the required input signal level to the re¬ 
ceiver for a given output signal-to-noise ratio can then 
be calculated (Example B-5). 

S^NF + no + S/N (Eq.B-8) 
where, 

St = the required input signal level in dBm, 
NF = the noise figure of the receiver, 
no = the thermal noise power of the receiver in dBm, 
S/N = the required output signal-to-noise ratio in 

dB. 

EXAMPLE B-5 
Using the block diagram shown in Fig. B-2, calculate the 

required input signal level for a 10-dB signal-to-noise ratio 
at the output of the if stage. The noise bandwidth (B) is 
1.25 MHz. 

Solution 

The NF of the receiver was determined in Example B-4 
to be 17.6 dB. 

Calculate n<> using Equation B-7. (Assume a room tem¬ 
perature of 293 K. ) 

,n. (1.38 X 10-23)(293)(1.25x 10«) 
n- - 10 log..-! x 10-3-

= -113 dBm 

Therefore, the required input signal level is calculated as: 

Si = NF 4- n. 4- S/N 
= 17.6 - 113 4- 10 
= —85.4 dBm 
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A C 

Absorption, 69, 70 
Ac resistance, 9, 12, 13, 19 
Active coupling, 37, 41-42 
Addition, vector, 164-165 
Admittance, 99-101, 102, 103,115 

conversion of impedance to, 81-84 
load, 126 
manipulation, 84 
source, 126 

Air core 
inductor design, single-layer, 17-18 
inductors, 18, 20 

Algebra, vector, 164-166 
Alumina substrate, 11 
Aluminum, 9 
American Wire Gauge, 9, 17 
Amplifier(s) 

and linearity, class-A, 150-156 
class-B power, 156-157 
class-C power, 157 
driver, 158 
power, 157-158 

small-signal rf, 117-149 
rf power, 150-163 

Analog Instruments Company, 84 
Area, cross-sectional, 9 
Attenuation 

characteristics, 44 
ultimate, 32 

Automatic shutdown circuitry, 160 
AWG: See American Wire Gauge 

B 

Balun, 161 
Bandpass filter design, 59-64 
Band-rejection filter design, 64-65 
Bandstop filter, 44 
Bandwidth, 31, 34, 36, 37, 42, 44, 59 
Base spreading resistance, 98 
Bell Laboratories, 75 
Beryllia substrate, 11 
Bessel 

filters, 44, 47, 53, 65 
response, 47, 53 

Beta, 98, 114, 118 
Bias 

networks, 117, 118-120 
transistor, 10 

stability, 118, 119 
Biasing, transistor, 117-120, 150-157 
Bifilar-type windings, 162 
Bipolartransistor, 117, 119 
Bonding wire, 98 
Broadband transformers, 161-162, 163 
Butterworth 

filters, 44 
response, 47-49 
tables, 48-49 

Capacitance 
collector-to-base, 114 
distributed, 15, 17 
emitter diffusion, 98 
feedback, 98 
interwinding, 16,18, 30 
parasitic, 11 

Capacitive 
coupling, 37-40 
reactance, 13 

Capacitor(s), 9, 10, 65, 81, 98 
ceramic, 13-14 
chip, 14 
flat ribbon, 14 
metalized-film, 14-15 
mica, 14 
NPO, 13-14 
parallel-plate, 12 
real-world, 12-13 
temperature compensating, 13-14 
types, 13-15 

Carbon 
composition resistors, 10, 11 
granules, 10 

Carbonyl, 28 
Cascaded devices, 168 
Ceramic capacitors, 13-14 
Charge carriers, 9 
Chebyshev 

filter, 44, 47,49-53, 56, 57, 58-60, 65 
polynomials, 50-51 
response, 47, 49-53 

Chip capacitors, 14 
Cirde(s) 

constant 
gain, 132-133 
reactance, 77 
resistance, 75, 77, 96 

family of, 75-77 
stability, 133-138 

Circuit Q, 70, 72, 90 
Class 

-A amplifiers and linearity, 150-156 
-B power amplifiers, 156-157 
-C power amplifiers, 157 
of amplification, 150 

Coaxial feedlines, matching to, 158-160 
Coil length, 17 
Collector 

load resistance, 157-158 
-to-base capacitance, 114 

Combiners, signal, 10 
Common 

-emitter 
circuit, 98 
current gain, 114 

Complex 
conjugate, 66-67, 69, 90, 92 
impedances, 69 
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Complex —cont 
loads, dealing with, 68-70 

Component(s), 9-30, 32, 84-90 
Q, 35-36 
real, imaginary, and magnitude, 165-166 

Conductance, 81, 102, 121 
Conduction angle, 155, 156, 157 
Conductors, 9 
Conjugate match, simultaneous, 101, 122, 128-129, 132 
Conjugately matched, 121 
Constant 

dielectric, 12 
gain circle, 132-133 
resistance circles, 75, 77, 96 

Conversion 
formulas, 107 
of impedance to admittance, 81-84 

Copper, 9, 10 
Core(s) 

characteristics, 19-20 
ferrite, 20-28 
magnetic, 19, 20 
powdered-iron, 20-28 

Coulomb, 10, 12 
Coupling 

active, 37, 41-42 
capacitive, 37-40 
critical, 37, 38 
inductive, 37, 40-41 
mutual, 37 
of resonant circuits, 37-43 
passive, 42 
top-L, 41, 42 
transformer, 37, 40, 41 
transistor, 37, 41 

Critical coupling, 37, 38 
Cross-sectional area, 9 
Current 

density, 9 
gain, 118 

common-emitter, 114 
Cutoff frequency, 47, 48, 53, 65 

D 

Datasheets, 20-27, 98, 108-117, 127, 145-146, 158 
rf power transistor, 150 
understanding rf transistor, 114-116 

De 
beta, 114 
current gain, 118 

Dealing with complex loads, 68-70 
Decibels, 32 
Density 

current, 9 
flux, 19-20, 28 
magnetic flux, 18 

Design 
for a specified gain, 132-133 
for optimum noise figure, 138-146 
using S parameters, 127-149 
using Y parameters, 120-127 

Designing with potentially unstable transistors, 126-127 
Dielectric 

constant, 12,14 
materials, 12, 13 
particulates, 10 

Dissipation 
factor, 12,13 
thermal, 10 

Distortion, 155 
Distributed capacitance, 15, 17 

Division, vector, 165 
Driver amplifiers, 158 
Dual network, 58-59 

E 

Effective series resistance, 12-13 
Effects of finite Q, 65 
Emitter diffusion capacitance, 98 
Equivalent circuit, transistor, 98-102 
External feedback, 102 

F 

Family of circles, 75-77 
Feedback, 102, 121-122 

capacitance, 98 
characteristics, 98, 101, 114 
resistance, 98 

Feedlines, matching to coaxial, 158-160 
Ferrite, 17, 18, 20 

cores, 20-28 
toroidal cores, 163 

FET; see field-effect transistor 
Field-effect transistor, 117, 119 
Filter 

bandstop, 44 
Bessel, 44,47, 53, 65 
Butterworth, 44, 47-49, 65 
Chebyshev, 44, 47, 49-53,56, 58-60, 65 
design, 44-65 

bandpass, 59-64 
band-rejection, 64-65 
high-pass, 56-58 

high-pass, 33, 56-58 
high-Q, 46, 49 
low-pass, 45, 55, 59 
low-Q, 46 
medium-Q, 47 
response, 31-32 
second-order, 44-46 
third-order, 44 
three-element, 45, 46 
two-pole, 44 
types, 47-53, 65 

Finite Q, effects of, 65 
Fixed-chip inductors, 15, 16 
Flat ribbon capacitors, 14 
Flux 

density, 19-20, 28 
linkage, 15, 16 

Formulas, conversion, 107 
Four-element filter, 48, 52 
Frequencies, radio, 9, 10, 14, 31, 98 
Frequency 

and impedance scaling, 53-55 
cutoff, 47, 48, 53, 65 
response, 60 
transition, 114 

G 

Gain, 101-102, 117 
bandwidth product, 114 
characteristics, 98 
current, 114 
de current, 118 
design for a specified, 132-133 
maximum available, 121-122 
power, 114, 122, 158 
transducer, 126 

Gauge, American Wire, 9,17 



174 Index 

H 

Harmonic distortion, 155, 156 
Heat energy, 10 
High-pass 

filter, 33 
design, 56-58, 59 

High-Q filters, 46, 49,53, 65 
Hybrid-rr model, 98 
Hysteresis, 20 

I 

Imaginary components, 165-166 
Impedance(s), 11, 102 

characteristics, 13, 15 
complex, 69 
large-signal, 150 
load, 75, 90-92 
manipulation, 81 
matching, 66-97, 117, 158 

on the Smith Chart, 84-90 
scaling, 53-55 
series, 81-84 
source, 31, 75, 90-92 
to admittance, conversion of, 81-84 
transformation, 37 
values, plotting, 77-81 

Incident wave, 104 
Inductance, 9, 10, 28 
Inductive 

coupling, 37, 40-41 
index, 28 

Inductor(s), 9, 13, 15-18, 65, 81, 98 
air-core, 18-19, 20 
design 

single-layer air-core, 17-18 
toroidal, 28-30 

fixed-chip, 15 
lossless, 16 
magnetic core, 20 
real-world, 15-17 
toroidal, 18-19 

Input 
characteristics, 98 
impedance, large-signal, 150 
network design, 123, 130, 135, 147 
resistance, 98, 99-101 

Insertion loss, 32, 36-37, 44, 45, 46, 65 
Insulation resistance, 12 
Intermodulation distortion, 155 
Interstage matching, 158 
Interwinding capacitance, 16, 18, 30 
IRN-8, 28 

J 
Johnson noise, 167 

K 

K; see dielectric constant 

L 

L network, 67-68, 70, 72 
Large-signal 

impedance parameters, 163 
input impedance, 150 
output impedance, 150 

Linearity, 150-156, 157 
Linvill stability factor, 121, 122, 126, 127 
Load(s) 

admittance, 126 
complex, 68-70 

Load impedance(s), 31, 37, 66-67, 68, 75, 90-92, 104-105 
Q, 44 
reflection coefficient, 128-129, 132 
resistance, 34, 66 

optimum collector, 157-158 
Loaded Q, 31, 34-36, 37, 41, 44, 90 
Lossless 

elements, 65 
inductor, 16 

Lossy networks, 168-169 
Low-pass 

filter, 33, 44, 45, 55, 59 
prototype, 46-47, 52, 53 

Low-Q 
filters, 46, 65 
matching networks, 72-75 

M 

MAG, 121-122, 126, 128,132 
see also maximum available gain 

Magnetic 
core(s), 19, 20 

inductors, 20 
materials, 18 

field,9 
flux density, 18 

Matching 
circuit, 67 
networks, 72-75 
to coaxial feedlines, 158-160 

Materials, dielectric, 12, 13 
Maximum available gain, 121-122, 128 
Medium-Q filter, 47, 53 
Metal-film resistors, 11 
Metalized-film, 14-15 
Mica capacitors, 14 
Microwave Associates, 140-146 
Miller effect, 99 
Multielement matching, 92-96, 97 
Multiplication, vector, 165 

N 

Negative positive zero; see NPO and temperature compensating 
capacitor 

Network 
dual, 58-59 
L, 67-68, 70, 72 
tapped-L, 37 

Neutralization, 126 
Neutralized power gain, 102 
Noise 

calculations, 167-169 
figure, 114-115, 167-168 

design for optimum, 138-146 
Johnson, 167 
Schottky, 167 
shot, 167 
thermal, 167, 169 
types of, 167 
white, 167 

Normalization, 81 
and the low-pass prototype, 46-47 

Normalized load impedance, 104 



Index 175 

O 

Output 
characteristics, 98 
impedance, large-signal, 150 
network design, 124, 131, 134, 148 
resistance, 98, 101, 157-158 

P 

Parallel 
-plate capacitor, 12 
resonant circuit, 31 

Parameters 
S, 98, 103-107 
two-port Y, 102-103 
Y, 98, 102-103, 107 

Parasitic 
capacitance, 11 
reactance, 11 

Passband, 31, 32, 34, 37, 44, 47, 49 
Passive coupling, 42 
Permeability, 18, 19, 28 
Pi network, 70-72, 73, 158, 160 
Plotting impedance values, 77-81 
Polar 

notation, 164 
/rectangular conversion, 164 

Polynomials, Chebyshev, 50-51 
Powdered iron, 20 

cores, 20-28 
materials, 28 

Power 
amplifier(s) 

class-B, 156-157 
class-C, 157 
design, 157-158 

rf, 150-163 
combiners, 161-162 
factor, 12 
gain, 101-102, 114, 122, 158 
splitters, 161 
transfer of, 66, 67 
transistor 

characteristics, rf, 150 
data sheet, rf, 150 

Practical winding hints, 30, 162-163 
Prototype, low-pass, 46-47, 52, 53-54 

Q 

Q, 13, 16, 18, 20, 28, 30, 31, 90-92, 94 
circuit, 70, 72 
effects of finite, 65 

R 

Radiation resistance, 158-159 
Radio frequencies, 9, 10, 14, 31 

the transistor at, 98-116 
Reactance(s), 66-67, 69, 81 

capacitive, 13 
circles, 77 
parasitic, 11 

Real 
imaginary, and magnitude components, 165-166 
-world inductors, 15-17 

Receiver systems calculations, 169 
Rectangular 

notation, 164 
/polar conversion, 164 

Reflected wave, 104 

Reflection coefficient, 75, 77, 104, 105, 107,128-129 
Resistance 

ac, 9, 12, 13, 19 
base spreading, 98 
circles, 75, 77 
effective series, 12-13 
feedback, 98 
input, 98, 99-101 
insulation, 12 
load, 66 
optimum collector load, 157-158 
output, 98,101,157-158 
radiation, 158-159 
source, 66 
virtual, 70, 72 

Resistor(s), 9, 10-11, 98 
carbon-composition, 10,11 
equivalent circuit, 10-11 
metal-film. 11 
thin-film chip, 11 
wirewound, 10-11 

Resonance, 32-34, 44, 64, 65, 67, 69 
Resonant circuits, 31-43, 64-65 

coupling of, 37-43 
parallel, 31 

Responses 
Bessel, 47, 53 
Butterworth, 47-49 
Chebyshev, 47, 49-53 
passband, 47, 49, 60 

Rf 
amplifier design, small-signal, 117-149 
circuit design, 44 
power 

amplifiers, 150-163 
transistor 

characteristics, 150 
data sheet, 150 

spectrum, 9 
transistor data sheets, understanding, 114-116 

Ripple, 32, 45, 49-51, 55 
Rollet stability factor, 128, 133, 146 

S 

S and Y parameters, 107, 115, 116, 163 
S parameters, 98, 103-107 

and the two-port network, 105-107 
design using, 127-149 

Scaling, 47 
frequency and impedance, 53-55 

Scattering parameters, 127-128; see also S parameters 
Schottky noise, 167 
Second-order 

distortion, 155-156 
filter, 44, 46 
intercept point, 155-156 

Selectively mismatching, 126, 127, 132 
Self-inductance, 9 
Series 

circuit, 68 
impedance, 81-84 

Shape factor, 31-32, 37 
Shielding a transformer, 41 
Shot noise, 167 
Shunt 

component, 68 
inductor, 84 

Shutdown circuitry, automatic, 160 
Signal 

combiners, 10 
-to-noise ratio, 167, 169 
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Silver, 9 
Simultaneous conjugate matching, 101, 122, 127, 128-129, 132 
Single-layer 

air-core inductor design, 17-18 
winding, 29 

Skin 
depth, 9, 10 
effect, 9, 11, 16 

Small-signal rf amplifier design, 117-149 
Smith Chart, 66, 75-84, 92-96, 99, 105-107, 132-133, 136-138, 

150 
construction, 75-77 
impedance matching on, 84-90 

Smith, Phillip, 75 
Source 

admittance, 126 
impedance, 31,37, 66-67, 75, 90-92 
reflection coefficient, 132, 133, 146 
resistance, 32, 33, 34, 66 

Spectrum, rf, 9 
Stability 

calculations, 121 
circles, 133-138 
factor 

Linvill, 121, 122, 126, 127 
Rollett, 128, 133, 146 
Stem, 121, 126 

Standing wave ratio ( SWR), 77, 160 
Stem stability factor, 121, 126 
Straight-wire inductors, 9-10 
Subtraction, vector, 165 
Susceptance, 81, 84, 96, 102 

T 

T network, 72, 74, 158, 160 
Tapped 

-C transformer, 37, 43 
-L network, 37 

Temperature 
characteristics, 14 
coefficient, 13 
compensating capacitors, 13-14 

Thermal 
dissipation, 10 
noise, 167, 169 

Thin-film chip resistors, 11 
Third-order 

distortion, 155-156 
filter, 44 

Three-element 
filter, 45, 46 
matching, 70-72 
network, 70 

Top-L coupling, 41, 42 
Toroidal 

cores, ferrite, 163 
inductor design, 28-30 
inductors, 18-19 

Toroids, 18-28 
Transmission 

line 
theory, 104-105 
transformers, 162 

loss, 77 
Transducer gain, 126, 132 
Transfer of power, 66, 67 
Transformer ( s) 

broadband, 161-162,163 
coupling, 37, 40,41 
impedance, 37 
shielding a, 41 

Transformer( s )—cont 
tapped-C, 37, 43 
transmission-line, 162 

Transistor(s) 
as a two-port network, 102 
at radio frequencies, 98-116 
bias networks, 10 
biasing, 117-120, 150-157 
bipolar, 117, 119 
characteristics, rf power, 150 
data sheet( s ) 

rf power, 150 
understanding, 114-116 

designing with potentially unstable, 126-127 
equivalent circuit, 98-102 
field-effect, 117,119 

Transition frequency, 114 
Traveling wave, 105 
Trifilar-type windings, 162 
Twisted-pair winding, 162-163 
Two 

-element 
filter, 46 
L networks, 70, 72 
matching, 84-90 

-pole filter, 44 
-port 

device, 105-107 
network, 138 

S parameters and, 105-107 
transistor as, 102 

Y parameters, 102-103 
Types of noise, 167 

U 

Ultimate attenuation, 32 
Unconditionally stable transistors, 122, 126, 128-129, 136 
Understanding rf transistor data sheets, 114-116 
Unilateralization, 126 
Unilateralized power gain, 102 
Unneutralized power gain, 102 
Unstable transistors, designing with potentially, 126-127 

V 

Vector 
addition, 164-165 
algebra, 164-166 
division, 165 
multiplication, 165 
subtraction, 165 

Virtual resistance, 70, 72 
VSWR, 160 

W 

White noise, 167 
Wideband matching networks, 72-75 
Winding hints, practical, 162-163 
Wire, 9-10, 29, 98 

gauges, 9 
size, 17, 18 

Wirewound resistors, 10-11 

Y 

Y and S parameters, 115, 116, 117, 163 
Y parameters, 98, 102-103, 115, 121, 128 

design using, 120-127 
two-port, 102-103 
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