

The Z-80 Microcomputer
Handbook

by

William Barden, Jr.

Howard W. Sams & Co., inc.

4300 WEST 62ND ST. INDIANAPOLIS, INDIANA 46268 USA

Copyright © 1978 by Howard W. Sams & Co., Inc.,
Indianapolis, Indiana 46268

FIRST EDITION
THIRD PRINTING-1979

All rights reserved. Reproduction or use, without
express permission, of editorial or pictorial content,

in any manner, is prohibited. No patent liability is
assumed with respect to the use of the information
contained herein. While every precaution has been
taken in the preparation of this book, the publisher
assumes no responsibility for errors or omissions.
Neither is any liability assumed for damages resulting
from the use of the information contained herein.

International Standard Book Number: 0-672-21500-4
Library of Congress Catalog Card Number: 77-93166

Printed in the United States of America.

Preface

Microprocessors have evolved from units that handled data in
4-bit slices with rudimentary instruction sets into devices that rival,
or surpass, minicomputers in architecture and software instruction
repertoire. The Zilog Model Z-80 represents a microprocessor that is
extremely sophisticated from both a hardware implementation and
software implementation viewpoint. The Z-80 microprocessor is
truly a computer on a chip that requires only a few external compo-
nents—a 5-volt power supply, a simple oscillator, and read-only
memory—to construct a complete computer system. The instruction
set of the Z-80 includes that of the Intel 8080A as a subset, making
the Z-80 an ideal software replacement for the 8080A; the Z-80 has
many new instructions and addressing modes to supplement the
8080A instructions. A search of a string of characters, for example,
can be implemented with one instruction after initialization, the one
search instruction replacing four equivalent instructions in other
microprocessors.

In addition to the Z-80 microprocessor itself, Zilog has imple-
mented other devices to supplement the power of the Z-80. A PIO
provides parallel I/O with two 8-bit ports, software configured 1/0,
vectored-interrupt capability, and automatic priority interrupt en-
coding. A CTC, or Counter-Timer-Circuit, provides programmable
counting and timing functions for real-time events. Other major
devices are also available. Zilog and other manufacturers have de-
veloped microcomputer systems based on this family of Z-80 devices,
and the systems have played their role in narrowing the gap between
“minicomputer systems” and “microcomputer systems,” a division
that becomes less and less distinct from month to month.

The purpose of this book is threefold, to acquaint the reader with
the hardware of the Z-80, to discuss the almost overwhelming (in
number of instructions) software aspects of the Z-80, and to describe
microcomputer systems built around the Z-80.

Section I discusses Z-80 hardware. The architecture, interface sig-
nals, and timing are discussed in the first two chapters. Addressing
modes and instructions are covered in the next two chapters; both
addressing and instruction repertoire are fairly easily grouped and
explained, although they may appear confusing at first glance. The
effect of arithmetic operations and other operations on CPU flags is
presented in Chapter 6. The powerful interrupt sequences of the
Z-80 are discussed in the next chapter. Chapter 8 describes interfac-
ing examples of I/O and memory devices.

Section II describes Z-80 software. A representative Z-80 assembler
program is introduced in the first chapter of the section. An assem-
bler is almost a necessity with a microprocessor having such a large
instruction set, but machine language aspects are also covered.
Chapters 10 through 15 present the common programming opera-
tions of moving data, arithmetic operations, shifting and bit opera-
tions, list and table procedures, subroutine use, and I/O functions in
relation to instruction set groups. Many examples of each kind of
operation are provided. The last chapter of the section details some
commonly used subroutines written in Z-80 assembly language.

The third section discusses microcomputers built around the Z-80.
Chapter 17 covers Zilog products including the microcomputer
board products in the Z-80 family and development systems. Four
other Z-80 microcomputer manufacturers are described in the last
chapter. Technical Design Labs, Inc., Cromemco, Inc., The Digital
Group, Inc., and Radio Shack. The hardware and software aspects
of all five manufacturers are presented.

The Z-80 will prove attractive to many users, not only as a succes-
sor to the 8080A, but as a powerful computer in its own right.

The Z-80 will soon have a successor, in this dynamic microcom-
puter development environment, but for the time being it represents
microcomputer “state-of-the-art.” The author hopes that the reader
will derive a great deal of benefit from the book and that the Z-80
will solve a few hardware and software implementation problems.

Much credit for this book goes to my wife, Janet, who has solved
my major software implementation problems—manuscript prepara-
tion.

WiLLiAM BARDEN, JR.

To Bill and Norma and
the Little Green Onions.

Contents

SECTION I-Z.80 Hardware
CHAPTER 1

INTRODUCTION +« « .«11

CHAPTER 2

Z-80 ARCHITECTURE . . 15
General-Purpose Reglsters—Flag Regtsters—Specml—Purpose Regls-
ters—Microcomputer Component Parts

CHAPTER 3

INTERFACE SIGNALS AND TIMING. . . . 26
Address and Data Bus—Bus Control Slgnals—Memory Slgnals—In-
put/Output Signals—Other CPU Signals—Interrupt-Related Signals
—CPU Electrical Specifications—CPU Timing—M1 Cycle—Memory
Data Read and Write Cycles—I/O Read and Write Cycles—

Bus Request/Acknowledge Cycle—Interrupt Request/Acknowledge
Cycle—Nonmaskable Interrupt Request Cycle—Exit From Halt In-
struction—Memory or I/O Wait States

CHAPTER 4

ADDRESSING MODES . 41
Implied Addressmg—lmmedxate Addressmg—Extended [mmedlate
Addressing—Register Addressing—Register Indirect Addressing—Ex-
tended Addressing—Modified Page Zero Addressing—Relative Ad-
dressing—Indexed Addressing—Bit Addressing

CHAPTER 5

INsTRUCTION SET . . . 55
8-Bit Load Croup—lG-th Load Group—Exchange Block Transfer,
and Search Group—8-Bit Arithmetic and Logical Group—General-
Purpose Arithmetic and CPU Control Group—16-Bit Arithmetic
Group—Rotate and Shift Group—Bit Set, Reset, and Test Group—
Jump Group—Input and Output Group

CHAPTER 6

FLAGS AND ARITHMETIC OPERATIONS 9
Z Flag-Sign Flag—Carry Flag—Panty/Overﬂow Flag

CHAPTER 7

INTERRUPT SEQUENCE . . . 104
Z-80 Interrupt Inputs—NMI Intermpt—Maskable Interrupt Mode 0
—Maskable Interrupt Mode 1—Maskable Interrupt Mode 2

CHAPTER 8

INTERFACING MEMORY AND I/O DEvVICES TO THE Z-80 . . 116
Minimum Z-80 System—Interfacing ROM and RAM—Dynamnc
Memory Interfacing—Z-80 PIO Interfacing—PIO Mode 0—PIO
Meode 1-PIO Mode 2—PIO Mode 3—PIO Interrupts—PIO Initial
Conditions—Z-80 PIO Configuration

SECTION I1-Z.80 Software

CHAPTER 9

Z-80 ASSEMBLER . . 133
Machine Language—The Assembly Process-—Assembly Fonnat—
Symbolic Representation—Representation of Number Bases—Ex-
pression Evaluation—Pseudo-Operations—Assembly

CHAPTER 10

MovinGe DATA—LoADp, BLock TRANSFER,

AND Excuance Groups . . . 145
8-Bit Moves—8-Bit Moves Usmg HL—8-Blt Moves Usmg Index Reg-
isters—8-Bit Moves Using the A Register and Extended Addressing—
8-Bit Moves Using the A Register and BC or DE Register Indirect—
16-Bit Moves—Immediate Loads of 16 Bits—16-Bit Transfers to and
From Memory—16-Bit Data Transfers to the Stack—16-Bit Stack Op-
erations—Block Transfer Instructions—Exchange Group

CHAPTER 11

ARITHMETIC AND LocricaL OPERATIONS—8- AND 16-Brr

ARITHMETIC GROUP, DECIMAL ARITHMETIC . . 161
8-Bit Arithmetic Operations—8-Bit Logical Operanons—&Blt Com-
pares—8-Bit Increment and Decrement—16-Bit Arithmetic Opera-
tions—General-Purpose Arithmetic Instructions—Decimal Arithme-
tic Operations

CHAPTER 12

SHIFTING AND BIT MANIPULATION—ROTATE AND SHIFT,

Brr SET, RESET, AND TEST GROUPS . . 174
Logical Shifts—Multiplication and Dlvxswn by Shnftmg—Robate-
Type Shifts—Arithmetic Shifts—The 4-Bit BCD Shifts—Bit Set, Re-
set, and Test Group—Software Multiplication and Division

CHAPTER 13

List AND TABLE OPERATIONS—SEARCH GrourP 192
Data Strings—Table Operations—List Operations

CHAPTER 14

SuBROUTINE OPERATION—JUMP, CALL, AND RETURN GrOUPs . . 208
Jump Instruction—Subroutine Use—Reentrancy

CHAPTER 15

I/O AnND INTERRUPT OPERATIONS—I/O AND

CPU ControL Groups . . . 219
A Register 1/0 Instructions—I/! O Instructlons Usmg C Reglster—l/ (o)
Block Transfer Instructions—Software 1/0. Drivers—DMA Actions—
Interrupt Operations

CHAPTER 16

Z-80 PROGRAMMING—COMMONLY USED SUBROUTINES . . . 232
Comparison Subroutine—Timing Loop—Multiply and Divide Sub-
routines—Multiple-Precision Arithmetic Routines—ASCII to Base X
Conversions—Base X to ASCII Conversions—Fill Data Routine—
String Comparison—Table Search Routine

SECTION III-Z.80 Microcomputers

CHAPTER 17

Znog, Inc. . . 247
Z-80 MCB™ Mlcrocomputer Board—MCB Memory—MCB I/O
Ports—MCB Parallel I/0—-MCB Serial I/O—MCB Interrupts—MCB
Configurations—MCB Monitor—Z-80 Development System—Z-80
Development System Hardware—Z-80 Development System Soft-
ware—Other Zilog Products

CHAPTER 18

OTHER Z-80 MICROCOMPUTER SYSTEMS . .

Technical Design Labs, Inc.—TDL ZPUM Board-—TDL ZIGTM
Board—TDL System Monitor Board—TDL Xitan™ Microcomputer—
TDL Software—Cromemco, Inc.—Cromemco CPU Card—Cromemco
Memory—Other Cromemco Boards—Cromemco Z-1 and Z-2 Micro-
computer Systems—Cromemco Software—The Digital Group, Inc.—
Digital Group Z-80 CPU Board—Digital Group Memory Boards—
Digital Group 1/0 Interfaces and Devices—Digital Group Systems—
Digital Group Software—Radio Shack—Radio Shack Hardware—
Radio Shack Software

APPENDIX A

Z-80 ELECTRICAL SPECIFICATIONS

APPENDIX B

8080 AND Z-80 INsTRUCTIONS COMPARED

APPENDIX C

Z-80 INSTRUCTIONS

APPENDIX D

BINARY AND HEXADECIMAL REPRESENTATION

APPENDIX E
ASCII CHARACTER CODE .

APPENDIX F

Z-80 MICROCOMPUTER MANUFACTURERS

. 275

. 282

. 283

. 295

. 298

. 301

SECTION I

Z-80 Hardware

CHAPTER 1

Introduction

In 1971, Intel Corporation introduced the first microcomputer on
a chip, the Intel 4004. Although the 4004 was truly not a self-con-
tained computer on a single Large-Scale-Integration (LSI) chip, it
contained a great deal of logic associated with computer central
processing unit implementation. One LSI chip replaced hundreds of
circuits that were to be found in conventional minicomputers at the
time. Although the 46-instruction repertoire was not large, it was
adequate for control applications which required decision making
that could not easily be implemented in programmable-logic arrays
and in which extensive mathematical processing was not required.
The 4004 handled data 4 bits at a time and could perform 100,000
additions of two 4-bit operands per second.

The next generation of microprocessors from Intel retained the
PMOS (P-channel metal-oxide semiconductor) fabrication tech-
niques of the 4004, but offered an 8-bit wide data bus and a larger
instruction repertoire of 48 instructions. Designated the 8008, the
microprocessor had a faster instruction cycle time than the 4004 as
data for both instruction execution and decoding and for operands
could be handled in 8-bit slices. In addition, the 8008 could address
16,384 memory locations of 8 bits each, contained seven 8-bit regis-
ters, had memory stack capability, and had a single-level interrupt
capability. The 8008 could perform approximately 80,000 additions
of two 8-bit operands per second. The instruction set of the 8008 was
not compatible with the 4004.

The 8008 and 4004 had achieved widespread usage through the
electronics industry in a very short time after their introduction,
primarily because there was little else available in the way of micro-
processors. To achieve compatibility with the 8008 insofar as instruc-

11

tion repertoire, the Intel 8080, introduced in late 1973, included
the instruction set of the 8008 and supplemented it with 30 more
instructions. Users of the 8008 could now change to a faster, more
versatile microprocessor while not discarding 8008 software pro-
grams, since all 8008 software would presumably execute on the
8080. The 8080 was an NMOS (N-channel metal-oxide semiconduc-
tor) microprocessor that allowed faster clock rates. Additions of two
8-bit operands could now be carried out at rates of 500,000 per sec-
ond. In addition, all other instruction times were much shorter than
the 8008 as the 8080 was built around a 40-pin chip, requiring the
CPU to do much less time sharing of the data bus between data
transfers and instruction implementation.

The 8080 supplemented the hardware features of the 8008. In
place of 16,384 (16K) memory addresses, the 8080 could address
65,536 (64K). Rather than a limited 7-level memory stack, the 8080
offered a memory stack in external memory itself instead of the CPU.
A binary-coded decimal or bed capability was built into the arith-
metic and logic unit in the CPU; additions of two bed operands
could now be implemented. Expanded addressing modes to permit
direct addressing of external memory was offered. Although the 78
instructions of the 8080 still seemed strange to many programmers,
the instruction set decidedly had moved away from one for pri-
marily control applications to one that was more general purpose in
nature.

In 1976, Intel brought out several variations on the 8080. The
Intel 8085 included a serial input/output capability on the micro-
processor chip itself. In addition, the 8085 had a requirement of
only a single-phase clock (the 8008 and 8080 were two-phase clocks)
and a single 5-volt power supply (the 8008 and 8080 required two
and three voltages, respectively). As the number of supporting
packages had grown impressively (such chips as a programmable
peripheral interface, interrupt controller, and crt controller) Intel
provided very powerful computing capability at faster and faster
speeds (770,000 8-bit adds per second), while still retaining com-
patability with existing software written for the 8008 and 8080.

Although the 8085 was an improvement over the 8080 in many
features, the instruction set remained very similar to the 8080. Only
two new instructions were added, one to read serial and interrupt
data, and one to write serial and interrupt data. Many of the inherent
inadequacies of the 8008 and 8080 remained.

The Zilog, Inc. Z-80 microprocessor chip has provided another
level of sophistication for the widely used 8008/8080 base. Bearing
in mind that the super computer of today is the surplus bargain of
tomorrow, the Z-80 has supplemented the instruction set and capa-
bilities of the 8080 in the same fashion as the 8080 increased the

12

capabilities of the 8008. In addition, Zilog has produced a family
of support chips that supplement the Z-80. The Z-80 is software
compatible with the 8080, allowing existing 8008 and 8080 software
to be executed on the Z-80. While the limitations of the 8008 and
8080 instructions and architecture must of necessity be retained in
the Z-80, the Z-80 offers new instructions, new addressing modes,
and new hardware features that provide more capability and versa-
tility than ever before.

Z-80
8008/8080

A REGISTER| FLAGS A FLAGS'

B c 8 c'

D 3 D' £

H L H' U

Fig. 1-1. Register comparison 8008,
8080, and Z-80.

INTERRUPT | MEMORY |
VECTOR | | REFRESH R

INDEX REGISTER 1X
17 Z-80

STACK POINTER SP

PROGRAM COUNTER PC

Jowan

In addition to providing the eight 8-bit CPU registers of the 8080,
the Z-80 duplicates the eight registers to offer sixteen registers. Two
index registers offer indexing capability not provided in the 8080.
An interrupt-vector register and memory-refresh register provide
special interrupt functions and dynamic memory-refresh capability.
Fig. 1-1 shows the basic register arrangement of the 8008, 8080, and
Z-80.

UNUSED
%
25 POSSIBLE
80 Z-80 INSTRUCTION
INSTRUCTIONS TYPES (ONE
BYTE OP-CODE)
280 30 8080
INSTRUCTIONS
8080
48 8008
8008 INSTRUCTIONS J
L

Fig. 1-2. Instruction comparison 8008, 8080, and Z-80.

13

The 78 instructions of the 8080 are provided in the Z-80, but the
total number of instructions comes to 158. Many of these are logical
extensions of 8080 instructions, but many are extremely powerful
and a complete departure from the 8080. Fig. 1-2 shows the relative
differences between the 8008, 8080, and Z-80.

All Input/Output and interrupt capability of the 8080 is retained
in the Z-80. I/O is expanded, however, to operate from any CPU
register and to operate in “block” fashion, that is, to facilitate transfer
of many bytes at a time over a programmed (non-DMA) I/O chan-
nel. Interrupts include the standard external interrupt capability of
the 8080, but supplement this with a separate “nonmaskable” inter-
rupt similar to the Motorola MC6800 and MOS Technology MCS
6502. Other interrupt capability allows for interrupt vectoring any-
where in memory, rather than just to eight locations in page 0, and
for up to 128 levels of interrupts, rather than eight.

The Z-80 Microcomputer Handbook is divided into three sections.
Section I covers the hardware aspects of the Z-80. Architecture, in-
terface signals and timing, addressing modes, instruction set, flags,
interrupt sequences, interface of memory and I/O devices, and DMA
operation are discussed. When applicable, differences between the
8080 and Z-80 are discussed. Section II discusses Z-80 software,
grouped in similar manner to Zilog Z-80 documentation. Section II
also provides programming examples of Z-80 code. Many times, a
short section of a program will greatly clarify the somewhat pedantic
descriptions of individual instructions. Section III discusses five
microcomputer manufacturers that have built microcomputers
around the Z-80 microprocessor chip. Appendix A provides complete
electrical specifications for the Z-80. Appendix B cross-references
8080 instructions to the Z-80 instruction set and Appendix C provides
a short description of each Z-80 instruction. Appendix D reviews
binary and hexadecimal representation while Appendix E lists
ASCII character codes. The last appendix, Appendix F, lists Z-80
Microcomputer manufacturers.

14

CHAPTER 2

Z-80 Architecture

The architecture of the Z-80 is shown in Fig. 2-1. Thirteen CPU
and system control signals are sent to or generated in the instruction
decode and CPU control portion of the microprocessor. The data bus
is eight bits wide and is the path for all data transferred between
external memory and input/output devices and CPU registers. The
address bus is sixteen bits wide. Normally the address bus would
specify an external memory address of 0 to 65535 (0 to 64K — 1)
since the Z-80 has a full complement of input/output instructions
and no “memory-mapped” input/output would be required. (In
memory-mapped input/output, a portion of the memory addresses
must be dedicated to addresses of input/output devices).

The main path for data within the CPU is an internal data bus
which connects the CPU registers, arithmetic and logical unit, data
bus control, and instruction register. The arithmetic and logical unit
performs addition, subtraction, logical functions of ANDing, ORing,
and exclusive ORing, and shifting operations between two 8-bit
operands. In addition, binary-coded decimal (bed) operations may
be performed under control of a Decimal Adjust Accumulator in-
struction.

GENERAL-PURPOSE REGISTERS

The Z-80 registers consist of fourteen general-purpose 8-bit regis-
ters designated A, B, C, D, E, H, and L and A’, B/, C’, D/, E’, H’,
and L’. Only one set of seven registers and the corresponding flag
register F or F’ can be active at any given time. A special Z-80 in-
struction selects A and F or A’ and F’, while a second instruction
selects B, C, D, E, H, L, or B’, C", D’, E, H’, or L". The possible com-

15

2-80 MICROPROCESSOR
INTERNAL
DATA BUS
DATA 8817
A B8US DATA
CONTROL BUS
CPU
| —{ REGISTERS
ADDRESS 16-81T
BUS
INSTRUCTION CONTROL QBgRESS
REG ISTER
SYSTEM
STEM
CONTROL CONTROL INTERNAL
SIGNALS SIGNALS —* CONTROL i
:
)
H

A _|FLAGS| A' |AAGS'
8 C B’ c'
D E D! £
H L H' L

| R

X
Y
SP
PC

Fig. 2-1. Z-80 Microprocessor architecture.

binations of A and F and the remaining six general-purpose registers
are shown in Fig. 2-2.

The advantage in two blocks of general-purpose registers is that
a programmer may rapidly switch from one block to another. In the
simplest case, this provides more register storage in the CPU. Reg-
ister storage in the CPU is to be preferred over storage in memory
as data can be accessed by a program much more rapidly from CPU
registers than from external memory. In a more sophisticated use of
the block switching capability, the unused set of registers may be
used to hold the environment after receiving an interrupt. This con-
cept will be discussed in a later chapter in this section.

Just as in the 8080, the general-purpose registers are somewhat
specialized in function. Eight bits of data may be moved between
memory and any of the seven registers or from one register to the
next. Arithmetic and logical operations, however, such as adding
two operands or exclusive ORing two operands can only be done
using the A register (or A’) and another register or memory location.

18

A F NON PRIME
B [NON PRIME
D E
H L
A F NON PRIME
B' c' PRIME
D! E'
H' L
Fig. 2-2. Register block combinations.
A F' PRIME
B [NON PRIME
D E
H L
A’ F' PRIME
8' c' PRIME
D' E'
H' L'

The result of the operation always goes into the A register. In gen-
eral, then, the currently selected A register is the main register for
performing arithmetic and logical operations as shown.in Fig. 2-3.

The remaining six registers are grouped into register pairs B,C;
D,E; and H,L. For many operations in the 8008, 8080, and Z-80 the
data within the three register pairs represents a memory address.
The H,L registers, for example, originally specified a High memory
address of eight more significant bits and a Low memory address of
eight less significant bits as shown in Fig. 2-4. The same is true of
the B,C and D,E registers. In the 8080, the capability also was pro-
vided to allow the B,C and D,E to specify a memory address, giving
three register pairs that could hold a memory address pointer to
data in memory. In general, the three register pairs will hold mem-
ory addresses as shown in Fig. 2-4, although a second use for them
is to allow double-precision arithmetic.

8-8IT

ARITHMETIC OR
LOGICAL RESULT

OPERAND 1 OPERAND 2
fe———————MEMORY OPERAND
AORAY B (OR B89 c(C" OTHER GEN-
00" | £€" ERAL PURPOSE
HEHY [LwY REG ISTERS

Fig. 2-3. Arithmetic and logical operations.

17

16-BIT MEMORY ADDRESS
OR DOUBLE-PRECISION VALUE

REGISTER PAIR [BE) [cic]
A
',;ff'm PAIR ™ DID) T EIE)]
REGISTER PAIR
HL | HH | LiLY]
8HIGH-ORDER BITS 8 LOW-ORDER BITS

Fig. 2-4. Register pairs.

Double-precision arithmetic involves adding, subtracting, incre-
menting (adding one), or decrementing (subtracting one) a 16-bit
value. Most arithmetic and logical operations in the Z-80 are oriented
towards 8-bit operations, but the Z-80 allows limited operations be-
tween the register pairs and the stack pointer and index registers IX
and IY. The general philosophy for this probably evolved from the
requirement to manipulate memory address pointers in some con-
venient fashion, since all external memory addresses are 16-bit ad-
dresses and two 8-bit operations would have to be performed if 16-
bit arithmetic were not implemented. Fig. 2-5 shows the use of the
register pairs in double-precision operations.

16-8 1T RESULT

ALU
ADD, SUBTRACT,
INCREMENT, DECREMENT

t '
OPERAND 1 OPERAND 2

Fig. 2-5. Register pair double-
precision operation.

B, C REGISTER PAIR
D, E REGISTER PAIR
H,L REGISTER PAIR

SP

IX

1Y

FLAG REGISTER

The flag register is selected along with the A register. At any given
time A and F or A’ and F’ are selected. Although the flag register is
a register of eight bits as are the other seven CPU registers, it is more
a collection of eight bits conveniently grouped into one register than
a general-purpose register. The bits within the flag register specify
various CPU conditions that have occurred after an arithmetic, logi-
cal, or other CPU operation. For example, it is convenient to know
if the result of the addition of two operands resulted in a zero result,

18

a positive (zero or greater) result, or a negative result. A zero flag
and a sign flag in the flag register may be tested by the program after
the add to determine the nature of the result. Other flags are the
carry flag (C), the carry from the high order bit of the accumulator,
the parity/overflow flag (P/V), specifying a parity or overflow con-
dition, the half carry flag (H), which is essentially a bed carry or
borrow from the low order bed digit, and the subtract flag (N), set
for bed subtract operations. The flag register format is shown in Fig.
2-6. The interaction of CPU operations and the flags is discussed in

BIT BIT

T 6 5 4 3 2 1 0

AC s |z x| w/|xlew|n]ec

- ' [[CARRY FLAG

SUBTRACT FLAG
DUAL PURPOSE PARITY/
OVERFLOW FLAG
INDETERM INATE
BCD HALF CARRY FLAG

- INDETERM INATE
“ZERO FLAG
-SIGN RLAG
Fig. 2-6. Flag register format.

detail in a later chapter in this section. Throughout this book the
term flags, flag register, and condition codes will be used inter-
changeably.

SPECIAL-PURPOSE REGISTERS

The remaining CPU registers that are available to the programmer
are the I, R, IX, IY, SP, and PC registers. Two of these registers are
exactly the same as they are in the 8080, the SP, or Stack Pointer, and
PC, or Program Counter. The PC register is a 16-bit register that
holds the location of the current instruction being fetched from mem-
ory. Instructions in the Z-80 are one, two, three, or four bytes long.
If a sequence of eight instructions is being executed, as shown in
Fig. 2-7, the PC will hold the indicated values. Note that the PC
always points to the start of the next instruction, and that the CPU
will automatically increment the PC by one, two, three, or four
depending on the length of the instruction being executed. The PC
is available to the programmer only in the sense that it may be
loaded or stored. No arithmetic or logical operations on the PC are
permitted.

19

Whereas the PC contains a pointer to external memory that speci-
fies the address of the next instruction to be executed, the SP contains
a pointer to an external memory stack. The concept of a memory
stack is not unique to microprocessors, but virtually every micro-
processor does have stack capability. The external memory stack is
simply an area of memory set aside for temporary storage of CPU
registers, the flag register, and the program counter. Certain instruc-
tions cause transfer of control from the current jump or branch in-

EXTERNAL CONTENTS OF
MEMORY PC AT END OF
LOCATION * INSTRUCTION
0100 INSTRUCTION 1 (1 BYTE) 0101
0101 0103

INSTRUCTION 2 (2 BYTES)

0103 0106
INSTRUCTION 3 (3 BYTES)

0106 INSTRUCTION 4 (1 BYTE) 0107

0107 INSTRUCTION 5(1BYTE 0108 Fig. 2-7. Program counter operation.
0108 INSTRUCTION 6 (1 BYTE) 0109
0169 INSTRUCTION 7 (2 BYTES) o.ws
0108 l 010D

INSTRUCTION 8 (2 BYTES)

010D

% ALL VALUES HEXADECIMAL

struction to another instruction and cause the current contents of the
program counter (pointing to the instruction after the jump or
branch) to be automatically saved in the stack area. This saves the
location so that at some later time a retum may be made back to the
next instruction in sequence after the jump or branch.

Not only is the PC saved for certain types of jumps or branches,
but it is automatically saved for interrupts. Here, the address of the
current instruction being executed is saved in the stack as the inter-
rupt occurs and a special interrupt processing routine is entered.
This action will be discussed in detail in a later chapter in this sec-
tion. Lastly, CPU registers and the flag register may be saved and
retrieved from the stack under program control using special stack
instructions.

As data is entered or pushed into the stack area, the stack pointer
is decremented by one count. As data is retrieved from the stack or
pulled, the stack pointer is incremented by one count. A good anal-
ogy to stack operation is a poker hand that is laid down on the table
in a pile consisting of King of Hearts, Jack of Spades, and Ace of
Diamonds with the King at the bottom. When the cards are re-
trieved, the first card picked up is the last laid down, the Ace of
Diamonds, followed by Jack of Spades and King of Hearts. This type

20

of stack operation is a LIFO operation, or last in, first out. The con-
tents of the SP during a typical instruction sequence is shown in
Fig. 2-8. Note that the stack builds from higher numbered memory
to lower numbered memory as more data is stored in the stack.

The remaining registers of the Z-80 are not contained in the 8080.
The index registers IX and IY are two 16-bit registers that permit
indexed addressing in Z-80 programs. While the 8080 had indexed-
like instructions, it did not permit true indexing. When an instruction
is executed in an indexed addressing mode, one of the two index
registers is used to calculate the memory address of the operand.

MEMORY STACK
(STACK) POINTER
LOCATION CONTENTS
0100
0101
0102 0103
0103 —a4 DATAA
() PUSHDATAA
0100
0101 .
0102 —»{ DATAB 0102
0103 DATA A
Fig. 2-8. Stack Pointer (SP) operation. (2 PUSH DATA B
0100
o101
0102 DATA B 0103
0103 —e{ DATAA
(3) PULL DATA B
0100
0101 —»{ DATA C2
0102 DATA C1 0101
0103 DATAA
(4 PUSH DATA €
(TWO BYTES)

The effective address of the memory operand is obtained by adding
the contents of the index register and a 16-bit value contained in the
displacement field of the instruction employing the indexed address-
ing mode. Indexed operations of this kind are extremely powerful
for efficient programming and will be discussed in more detail later.

The Interrupt Vector Register I is an 8-bit register that can be
loaded with 8 bits of data specifying a memory address. This ad-
dress, when combined with a lower-order 8 bits of address supplied
by the interrupting device, represent a memory address whose con-
tents in turn specify the memory address of the software interrupt
handling routine for the device. Suppose that a paper-tape reader

21

interrupts the Z-80. After the Z-80 recognizes the interrupt, it signals
the paper-tape-reader controller to pass over the low order 8 bits
of the address. The paper-tape-reader controller then passes over
the 8 least significant bits of the address which are combined with
the 8 higher order bits of the I register. If the paper-tape reader
supplied 14H (A suffix of “H” will represent base 16, or hexadecimal
in all subsequent discussions) and the I register contained FFH,
then the combined address would represent FF14H. The Z-80 con-
trol logic would then go to external memory location FF14H, pick
up its contents and transfer control to the location specified, in this
case EOOOH as shown in Fig. 2-9. In general, the I register holds the
8 most significant bits of an interrupt vector table which may hold
interrupt vectors for 128 interrupting devices.

LOW ORDER 8 BITS
FROM DEVICE

irecaster ~ [afafafafa]1faf1] [oJofe]1]e]1]0]0]

—

16-81T MEMORY
MEMORY ADDRESS = FF14H
LOCATION
FF10
FF1l
FFL2
13 CONTENTS OF FF14
FF14 3 0 POINTS TO INTERRUPT
FF15 0 0 PROCESSING ROUTINE [)
it AT E000
FFI7
£005
£004
£003
802
&0l
£000 START AT INT ROUTINE —/

Fig. 2-9. | Register actions.

The I register is used in one of three interrupt modes which the
Z-80 may utilize under program control. One of the other two modes
is identical to the 8080 interrupt action, allowing up to eight vec-
tored interrupts. The last interrupt mode permits a special ninth in-
terrupt. In addition to the three external interrupt modes, a non-
maskable (always active) external interrupt permits a high-priority

22

interrupt to yet another interrupt location. All four kinds of interrupt
groupings are discussed in a later chapter in this section.

The last special-purpose register is the 7-bit Memory Refresh reg-
ister R. When external memory is made up of dynamic memories,
the R register allows automatic refreshing of this kind of semicon-
ductor memory which periodically (typically every 2 milliseconds)
needs to have every cell read or refreshed to retain its contents. The
contents of the R register are incremented by one after every in-
struction fetch and the contents are sent out along the least signifi-
cant 7 bits of the address bus while the Z-80 CPU is not accessing
memory. Every cell of external memory with a predefined configura-
tion of its address bits equal to the R register can now be refreshed
without fear of contention (simultaneous read) of the same memory
cell by the Z-80 CPU. The R register is normally not used by the

programmer.

MICROCOMPUTER COMPONENT PARTS

As in any microcomputer, the microprocessor chip itself does not
constitute the complete computer system. Fig. 2-10 shows the com-
ponent parts of a typical Z-80 system. The Z-80 microprocessor chip

ADDRESS DATA
BUS BUS

EXTERNAL
MEMORY
(RAM, ROM,
PROM,
EPROM,

Z-80 ETC.)
MICROPROCESSOR
AND ASSOCIATED

LoGIC

110 DEVICE
CONTR]OLIER je—o~ 1/0 DEVICE 1

2 Le—— 1/0 DEVICE 2
CONTROL
PANEL
LOGIC
(IF ANY)
N 110 DEVICE 3

Fig. 2-10. Z-80 Microcomputer system component parts.

along with supporting circuitry interfaces to external memory. Con-
trol signals are passed between CPU circuitry and external memory,
memory addresses are passed along the 16-bit address bus, and data
is passed along the 8-bit address bus. External memory may be any

23

combination of the many kinds of external memory available today.
RAM (random access memory) is semiconductor memory that can
be both read and written into. ROM (read only memory) is a pro-
duction-type memory that contains a program or data or both which
can be read but not altered. PROM (programmable read only
memory) may be programmed in the field with inexpensive equip-
ment, but may not be altered once programmed. EPROM (erasable
programmable read only memory) may be programmed for a read
only operation, but may be periodically erased under ultraviolet
light. Many wags have suggested another type, a WOM or write
only memory, but in most cases the former memory types are com-
monly used.

The Z-80 microprocessor and associated CPU circuitry interface
to 1/O device controllers along with external memory. I/O device
controllers perform several functions. Firstly, the I/O device con-
trollers buffer data passing between the Z-80 CPU registers or ex-
ternal memory and the I/O device. The buffering matches the high-
speed data-transfer rate of the Z-80 CPU to the relatively low-speed
rate of the I/O device. It is important for the CPU not to have to
wait until the I/O device accepts data, as the wait time may repre-
sent tens of thousands of Z-80 instructions. A Teletype Corporation
ASR-33 Teletype, for example, accepts data at the rate of 10 bytes
per second. While waiting for the Teletype to accept a byte of data,
the Z-80 microprocessor could be executing 1/10 second worth of
instructions or about 30,000 instructions. The Teletype controller
allows the Z-80 to pass a byte in several microseconds and signals
the Z-80 when the Teletype is done processing the data from the
Teletype device controller.

Another function performed by the I/O device controller is for-
matting of the data. A floppy disc transmits data as a serial bit
stream. The floppy disc controller, among other functions, converts
the serial bit stream into 8-bit parallel bytes in proper format for
transmission to the Z-80 CPU over the data bus.

A third function of the I/O device controller is that of level con-
version. Data from CPU logic is in TTL (or Transistor-Transistor
Logic) signal levels, which are nominally 0 volts and 5 volts. A Se-
lectric I/O typewriter may require 24 to 48 volts to drive the sole-
noids of the Teletypes and obviously some voltage level conversion
is required.

Other functions of the I/O device controller are timing, synchro-
nization, control-signal handshaking, and transmission of device
status. A wide range of I/O devices interface to the Z-80 through
their respective device controllers, ranging from 5 character-per-
second Teletype equipment, audio cassette equipment, analog-to-
digital converters, and 100,000 byte-per-second graphic display

24

equipment, to mention a few of the virtually dozens of devices.
Some of the more common generic types will be covered in a later
chapter of this section along with special-purpose LSI chips of the
Zilog Z-80 family which are designed to permit ease of interfacing.

The last functional block of Fig. 2-10 is that of the control panel.
Many current microcomputers have dispensed with a control panel
except for one sparsely configured with a power switch and a reset
switch. Pressing the reset switch causes a nonmaskable interrupt
which transfers control to a special monitor program in PROM or
ROM memory. The monitor program allows the user to interrogate
memory locations, change the contents of memory locations, modify
registers, load and save programs on I/O devices and other func-
tions. If a control panel is present, it performs the same functions
as the monitor program by allowing the user to manually address,
examine, and change data in CPU registers and memory. The only
advantage that a control panel would have over a monitor program
is that only the CPU, memory, and control panel are required to
execute programs. However, any viable system must have some kind
of 1/0 device and in almost all cases, the control panel is an added
complexity.

Section III discusses many of the more popular Z-80 microcom-
puter systems and will give the reader an overview of what is avail-
able in current Z-80 microcomputers insofar as system architecture
is concerned.

25

CHAPTER 3

Interface Signals and Timing

The Z-80 CPU chip is a 40-pin dual in-line package. The pinout
of the chip is illustrated in Fig. 3-1, with the pins logically grouped
according to function, rather than the actual physical representation.

ADDRESS AND DATA BUS

The address bus is represented by signals A15 through AQ, where
Al5 is the most significant bit of the address bus and A0 is the least
significant bit. A15 through A0 are active high and are a tri-state
output meaning that when the address bus is inactive, its outputs
are in a high-impedance state. The address bus lines considered to-
gether represent a 16-bit memory or device address. Since 2'® ad-
dresses can be held in 16 bits, external memory of 65536,, or 64K
may be addressed directly by the Z-80 CPU. When I/O devices
are addressed, the least significant eight lines of the address bus,
A7-A0, hold the I/O device address, which may be 0 through 255,,.
In addition to memory or I/O device addresses, the least significant
seven lines of the address bus hold the contents of the R, or Memory
Refresh Register, for certain times during execution of each in-
struction.

The data bus, signals D7 through DO, are tri-state active high
signals with D7 representing the most significant bit and DO repre-
senting the last significant bit. The data bus is bidirectional, per-
mitting data to be transferred to CPU registers from external mem-
ory or I/O devices or from CPU registers to external memory or 1/0.

BUS CONTROL SIGNALS

Associated with the address bus and data bus are two CPU bus
control signals, the input signal BUSRQ and the output (acknowl-

26

[A0 -——30 25 f+——BUSRQ | gy
Al =—31 CONTROL
A2 -——32 R 23 p—BUSAK
A3 *+—33
Al o—IY 19— MREQ
AS 35 2A—RD MEMORY
A6 -— 3% 2 p— W OPERATION
ADDRESS | A7 -——37 5~ 28—>FRF
8US A8 -——38 T,
A9 «—39 ;
Al0e—]40 20f—=-10RQ INPUT/OUTPUT
Alle—dy 1 z-80
Al2ee—— 2 MICROPROCESSOR _
Ale— 3 T 21 p—ae-M1
Ale—— 4]
| Alse—] 5 26 pe——RESET
MISCELLANEOUS
20 fe——TWATT
[00 ~—efla _
Dl <—ed15 18 —HALT
D2 -—{12
D3 «-—ad 8
DATABUSY o0 o1 7 fe— 1 | eraver
D5 @*—eq 9 _ INPUTS
D6 <=—110 16 fo——INT
| D7 =—{ D3

6po——
11 pe——1+5V

29 f@——GND

Fig. 3-1. Z-80 interface signals.

edge) signal BUSAK. Signal BUSRQ is an active low signal that is
generated by an external device to gain control of the CPU busses.
During the time the external device has control of the busses, it will
probably perform a direct-memory access (DMA) operation. DMA
permits an external device to go directly to memory and transfer
data between memory and the device. The CPU must be “locked
out” during a DMA operation to avoid the conflict of the CPU re-
questing memory service at the same time and from the same mem-
ory location as an external device. When the external device brings
down (logic 0) the BUSRQ, Bus Request signal, the CPU responds
with acknowledge signal B , Bus Acknowledge. BUSAK is an
active low output that signifies that the address bus, data bus, and
CPU output-control signals are now in the high-impedance state
and can be controlled by an external device for DMA operations.

MEMORY SIGNALS

_ There are four signals associated with memory operation, MREQ,
RD, WR, and RFSH. The first, MREQ, Memory Request, is a tri-
state active low signal indicating that the address bus holds a valid

27

memory address. Essentially, this is part of a chip enable signal for
external memory to inform external memory to output data for a
memory read or to input data for a memory write. The RD and WR
signals are tri-state active low outputs to external memory indicating
whether the memory operation is to be a read or write. When signal
MREQ goes low, either RD or WR will also be low during a portion
of the machine cycle When MREQ and RD are are both low, an ex-
ternal memory read will be performed. When MREQ and WR are
both low, an external memory write will be performed. Both reads
and writes utilize the address on the address bus and transfer data
along the data bus.

The RFSH signal is not associated with normal memory opera-
tion. It is used only when dynamic memories are used as external
memories. Dynamic memories periodically require a refresh to
maintain the data stored within the memory cell. This is essentially
a memory read operation with the data not being transferred from
the memory. Typical dynamic memories are set up so that a refresh
signal can be input to the memory, along with five or six address line
inputs. To refresh an entire memory, six address line inputs would
require sixty-four separate refreshes (2%) with the entire refresh
cycle lasting no longer than 2 milliseconds. When the output signal
RFSH is low and signal MREQ is also low, external dynamic memory
will use the contents of the least 51g1uﬁcant seven bits of the address
bus to implement one of the refresh cycles. RFSH is active at every
instruction fetch, and since the R register is continually being in-
cremented after each fetch, the address lines will continually reflect
a new address for the next refresh cycle. For the above example of
six address line inputs, it will take sixty-four instruction cycles to
refresh dynamic memory or approximately 256 microseconds (.256
milliseconds) at about 4 microseconds per instruction, average.

INPUT/OUTPUT SIGNALS

Signal TORQ is a tri-state, active low output signal used for Input/
Output Requests. When signal TORQ goes low, the least significant
eight bits of the_address bus, A7-A0, hold an I/O device address.
Signals RD and WR must then be used to determine whether the
I/0 operation is to be an I/O read or write. Signal TORQ is also
used in conjunction with signal M1 for interrupt responses as dis-
cussed below.

OTHER CPU SIGNALS

Signal M1 is an active low output signal that indicates the micro-
processor is in the fetch cycle of the instruction. Every instruction

28

has a fetch cycle as the first byte of the instruction, the operation
code, is fetched from memory and then decoded. In the Z-80, unlike
the 8080, several instructions have two-byte operation codes and
signal M1 will be low during each of the fetches of one byte.

The RESET signal is an active low input signal that is used as a
master CPU reset. This signal would be brought low immediately
after power up, or at _any time when the microcomputer system
was to be reset. When RESET is brought low, the following actions
occur:

1. The interrupt enable flip-flop is disabled, preventing system
interrupts except for NMI (see below).

. Register I, the Interrupt Vector Register, is set to 00H.

Register R, the Refresh Register, is set to 00H.

Interrupt mode 0 is set.

The address bus goes to a high-impedance state.

The data bus goes to a high-impedance state.

All output-control signals go to the inactive state.

NSO N

The WAIT signal is a signal associated with slow memories or
I/0 dewces As long as the WAIT signal is low, the CPU will “mark
time,” doing nothing, while the external memory or I/O device re-
sponds to a previous memory or I/O request. The WAIT signal en-
ables slow memories or (rarely) slow I/O devices to be interfaced
to the Z-80 without buffermg

The HALT signal is_an_active low output signal that goes low
during the time that a HALT instruction is being executed. A HALT
instruction in a program is typically used for one of two conditions.
Either the program has performed all of its functions and termi-
nated, or a halt has been reached and the program is waiting for an
interrupt to occur. When the CPU is in a halt state, it performs no-
operations instructions (NOP) to ensure proper memory refresh
activity.

INTERRUPT-RELATED SIGNALS

The remaining logic signals are associated with interrupt process-
ing. Signal NMI is a negative-edge triggered input that specifies a
nonmaskable interrupt is to be performed. When this signal is mo-
mentarily brought low, the CPU will recognize this interrupt at the
end of the current instruction. When the CPU recognizes the NMI
interrupt, the following actions occur:

1. The current contents of the program counter PC is saved in the
memory stack.

29

2. The CPU transfers control to memory location 0066H, that is,
instruction execution starts from location 0066H which must
contain an NMI interrupt processing program.

An NMI interrupt of this kind cannot be disabled and will always
be recognized by the CPU at the end of the current instruction cycle.
The exceptions to this are that signal BUSRQ will take precedence
over a NMI signal, and that a continuous WAIT state will prevent
the current instruction from ending and thus prevent the NMI from
being recogmzed

The main interrupt request is signal INT, an active low input
signal that is supplied by external devices to cause an interrupt. The
INT signal will be recognized by the CPU at the end of the current
instruction if the interrupt enable flip-flop IFF in the CPU has been
set by the program and if the BUSRQ signal is not active. If these
conditions are met, the CPU accepts the interrupt and acknowledges
the interrupt by sending out an IORQ during the fetch (MI) time
of the next instruction. Since IORQ never occurs during M1 for an
1/O instruction, the interrupting device recognizes the TORQ and
M1 condition as an interrupt acknowledge Further actions taken for
this interrupt are discussed later in this section.

CPU ELECTRICAL SPECIFICATIONS

The electrical specifications for the Z-80 microprocessor chip are
shown in Chart 3-1. All inputs and outputs are TTL compatible
facilitating interfacing. There is only one power-supply voltage, a 5-
volt power supply. The Z-80 microprocessor chip alone requires a
maximum current of 200 milliamps. Unlike the 8080, there is only a
single-phase clock input required, which is also at TTL levels. The
frequency of the clock for the original Z-80 was 2.5 megahertz, how-
ever, faster versions will accept a 4-megahertz clock at this time of
writing. Detailed specifications for other dynamic parameters are
provided in Appendix A.

CPU TIMING

All instruction execution in the Z-80 may be broken down into
a set of basic cycles. There are two kinds of cycles, the most basic
being a clock cycle, or T cycle. If a 4-MHz clock is being used for
the Z-80, each T cycle will be a constant length (period) of 250
nanoseconds as shown in Fig. 3-2. The T cycles are used to control
operations within a larger cycle called the machine cycle, or M
cycle. Every instruction executed within the Z-80 consists of from
one to six machine cycles (with the exception of special block-

30

Chart 3-1. Z-80 Electrical Specifications

ABSOLUTE MAXIMUM RATINGS

*Comment
Temperature Under Bias 0°Ct070°C Stresses above those listed under
Storage Temperature —65°C to +150°C “Absolute Maximum Rating” may
Voltage On Any Pin —0.3Vto +7V cause permanent damage to the
with Respect to Ground device. This is a stress rating only
Power Dissipation Lw and functional operation of the

device at these or any other con-
dition above those indicated in
the operational sections of this
specification is not implied. Expo-
sure to absolute maximum rating
conditions for extended periods
may affect device reliability.
® DC CHARACTERISTICS
Ta = 0°C to 70°C, Ve = 5V = 5% unless otherwise specified

Symbol Parameter Min. | Typ. | Max. | Unit Test Condition
ViLe Clock Input Low Voltage | —0.3 045 | V
Vinc | Clock Input High Voltage | Vec™ Vee | V
Vi Input Low Voltage —0.3 038 v
Vin Input High Votlage 20 Vee v
Vou Output Low Voltage 0.4 v loo = 1.8 mA
Vor Output High Voltage 2.4 v lom == —100 A
lec Power Supply Current 200 | mA | te = 400 nsec
ILr Input Leakage Current 10| pA | Vin=010 Vce
lLon Tri-State Output Leakage 10| #A | Vour =2.410 Vee
Current in Float
lLoL Tri-State Output Leakage —10 | pA | Vour =04V
Current in Float
ILp Data Bus Leakage Current +10 | pA | 0 Vin < Vee
in Input Mode
® CAPACITANCE T, =25°C, f =1 MHz
Symbol Parameter Typ. Max. Unit Test Condition
Co Clock Capacitance 20 pF
Cin Input Capacitance 5 pF ::;::::::':: C';z:m d
Cour Output Capacitance 10 pF
[1] Clock Driver Vee

33009 l
>
N] Yec
om > ®
2-80

An external clock pull-up resistor of (330{2) will meet both the ac and dc clock re-
quirements.

31

170 5,75u5*
ONE INSTRUCTION TIME

MACHINE | MACHINE | MACH INE
CYCLE M1 T CYCLE M2 CYCLE MN

- ONE 70 SIX MACHINE CYCIIS———-I

r—MACHINE CYCLE MN—-l

wwe ML

T
CYCLE
|250 nSL_ '
3706 T CYCLES
TYPICAL

* MOST INSTRUCTIONS, 4-MHz CLOCK
Fig. 3-2, Basic instruction cycles.

related instructions), and each of the machine cycles is comprised
of three to six T cycles as shown in the figure.

There are seven basic machine cycles that can occur during Z-80
operation:

Operation code fetch cycle (M1 cycle)

Memory data read or write cycle

I/0 read and write cycles

Bus Request/Acknowledge cycle

. Interrupt Request/Acknowledge cycle

Nonmaskable Interrupt Request/Acknowledge cycle
. Exit from a HALT instruction

NS UUs 0o -

Ml CYCLE

Every instruction execution is made up of one operation code
fetch cycle, or M1 cycle. A few instructions have two bytes for the
operation code and therefore have two M1 cycles. An M1 cycle
allows the CPU to read the operation code byte from external mem-
ory, decode the operation to be performed, and implement a portion
or possibly all of the operation (for short instructions that are one
machine cycle long.) Fig. 3-3 shows the timing diagram for an INC
R instruction which will also illustrate the M1 cycle. The INC R
takes only one machine cycle to fully execute the M1 cycle. Four T
cycles are required.

As the CPU enters the M1 cycle, signal M1 falls to indicate that
this cycle is active. The contents of the program counter is gated to
the address bus in preparation for the fetch of the op code of the
next instruction. On the falling edge of T1 signals MREQ and RD

32

go low, indicating to the external memory that there is a valid
memory address on the address bus. The external memory will now
gate the contents of the specified memory location onto the data
bus somewhere before the rising edge of T3 (unless it is a slow
memory as discussed later in this chapter). On the rising edge of
T3, the operation code byte on the data bus is clocked into the CPU.
Shortly thereafter, the RD signal goes to an inactive level, along with
MREQ and M1. The remaining two T cycles of MI are used to pro-
vide a refresh time for external dynamic memories. Signal R_F'Sﬁ is
brought low and MREQ is again active to indicate to external dy-
namic memory that refresh can proceed. The data bus will now have
the contents of the R register present to provide a refresh address.

F———mc R INSTRUCTION
M1 CYCLE
n 2 3 14 T
® 4 \ \ \ \ \
no-a1s [PC Y REFRESH ADDR.)@
W | \ / [.
T\ f
7, S I A A VO S D N o
mi -] ~
\ / — T
D80-D87 {on])
RFSH \ -

—-'-—— INC R EXECUT ION —-{-——

Fig. 3-3. M1 (op code fetch) cycle.

During the last two T cycles of M1 the CPU decodes the opera-
tion code of the instruction, which is an INC R. The INC R takes
the contents of the specified general-purpose register R (A, B, C,
D, E, H, or L or their primes), increments it by one count, and puts
the result back into the register, setting the appropriate condition
codes. Since no further memory accesses have to be made and the
accesses of CPU registers can easily be made in several hundred
nanoseconds, no further machine cycles are required.

33

MEMORY DATA READ AND WRITE CYCLES

The memory read and write cycles will be illustrated with ex-
amples of the execution of two instructions. Fig. 3-4 shows the exe-
cution of an LD R, (HL) instruction which loads the contents of
the memory location pointed to by the H,L register pair into CPU
register R. The M1 cycle is identical to that previously discussed.
At the end of M1, the CPU has decoded the instruction and initiates
a memory read cycle to obtain the eight-bit operand from memory.
The address bus, MREQ, and RD signals are activated just as in
the case of the M1 cycle. The address bus holds the contents of the
H,L register pair during this time and external memory gates the
operand onto the data bus. On the falling edge of T3, the memory
operand is clocked into the CPU, loading register R.

LD R, MU INSTRUCTION
M1 CYCLE MEMORY READ CYCLE

n 1] B 4 n 12 £
o J__{__*_\;f__J__;—_’__J_
A0 - A15 _1C @onv ADDR.
MREQ] _ A
RD T o I
WR
DATA BUS (in)
p0--D?7 —J
WATT I I - S I __q._

I——INSTRUCTION mm—'——w R, (HL) EXECUTION——-I

Fig. 3-4. Read cycle.

A memory write is shown in Fig. 3-5. The instruction in this case
is an LD (HL), R which takes the contents of the specified CPU
register R and writes it into the external memory location pointed
to by the H,L register. The MREQ and_address bus outputs are
active as in the previous examples. No RD signal is output, but the
contents of the specified CPU register are gated onto the data bus
after the falling edge of T1. This data remains on the data bus and
at the falling edge of T2 the WR signal becomes active. With MREQ
and WR active, external memory writes the data on the data bus into
the specified memory location, using address bus outputs A15-A0.

34

LD (HL),R INSTRUCTION

M1 CYOLE |~ MEMORY WRITE CYCLE——
n 2 5] T4 n 7] n
® — |
A0-Al5 WEMORY ADDR,
WREQ \ /
RD
WR | Y A
DATA BUS]
DATA B (" oATRow
WATT) IO I A WO i [

Fig. 3-5. Write cycle.

I/0 READ AND WRITE CYCLES

An I/O Read or Write cycle occurs during an input or out-
put instruction. Input and output instructions generally are three
or four<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>