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PREFACE

It has for some time been a conviction of the author and his assoeiates
that, no matter how facile an engineer may be in the manipulation of
electronie circuits, his effectiveness is distinctly limited unless he has a
satisfactory understanding of the operating principles of the electronie
circuit elements that he uses. The ability to grasp readily the reasons
for the behavior of new devices as they appear is especially important.
The relative ease with which electronic devices can be made to order to
accomplish specific purposes is an added reason for placing initial em-
phasis in electronics instruction on internal operating prineiples. These
considerations have been the basis for the method of instruction in
electronics at the University of Michigan ever since courses in the sub-
ject were introduced about eight years ago.

In the preparation of this book, which is an outgrowth of the author’s
teaching experience, an attempt has been made to maintain a proper
balance between two underlying objectives:

(1) To give the reader a realistic and quantitatively usable concep-
tion of the principles that govern the internal behavior of electronic
devices (this is the primary objective); and

(2) To familiarize the reader with methods of circuit analysis cus-
tomarily employed in connection with the most common engineering
applications of electronic devices.

Accordingly, the chief emphasis in this book is placed on internal
operating principles. A large part of the text is devoted to a study
of the effects of the use of various geometries and materials in elec-
tronic devices, and a relatively small part to circuit studies.

The point of view is that of an engineer: Principles of importance in
engineering work are selected for study; illustrations of these principles
are drawn from engineering practice; and physical concepts are so
treated as to permit ready determinations of magnitudes. Familiarity
with relative magnitudes is of course essential to a satisfactory engi-
neering understanding of any scientifiec subject-matter.

Reasoning from purely physical concepts has been used rather than
mathematical formulation, wherever the latter could be avoided with-
out loss of definiteness. However, a large part of the subject-matter
requires mathematical analysis for the establishment of proper quanti-
tative concepts, and wherever that is true, mathematical methods have

been used freely.
il



iv PREFACE

It is perhaps unfortunate that one of the most difficult subjects .
treated falls'naturally very early in the text, in Chapter II. However,
in his work with undergraduates the author has tried teaching triode
electrostatic field analysis later in the course, and has also tried a
qualitative treatment, involving a statement of the general results with
little attention to the mathematical formulation. Such methods have
not proved satisfactory. The conclusions reached by means of field
analyses are rather striking, and class enthusiasm is dampened if denied
satisfaction of the curiosity that naturally arises as to how these con-
clusions are arrived at.

This book has been especially designed for use in full-year courses for
undergraduate or graduate students; however, the content is so ar-
ranged that it is readily adaptable, with certain omissions, for one-
semester courses. It is hoped that the book will also find a place as a
reference work for engineers in industry.

The author wishes to acknowledge gratefully the encouragement and
active assistance rendered during the entire period of development of
the electronies work by Professors A. D. Moore, 8. 8. Attwood, and L. N.
Holland, all of the Electrical Engineering Department of the University
of Michigan; also to express appreciation of the care and thoughtfulness
with which portions of the manuscript were reviewed and ably criti-
cized by Professor Attwood, and by Professor Samue! Goudsmit of the
Physics Department of the University of Michigan. The author is
indebted to all other members of the staff of the Electrical Engineering
Department, and to many of those in the Physics |Department, espe-
cially to Professor O. 8. Duffendack, for ever-ready advice and counsel;
also to Messrs. Ralph Bodine and John Lopus for the thoughtful and
careful draftmanship exercised during the preparation of the original
drawings for the figures.

W. G. Dow
March 20, 1937
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FUNDAMENTALS OF
ENGINEERING ELECTRONICS

PART 1
ELECTRONS

INTRODUCTION
HIGH-VACUUM THERMIONIC TRIODES

1. A Triode in a Simple Amplifier;Circuit. The first part of this book
is devoted to a study of the properties and uses of high-vacuum thermi-
onie grid-controlled electron tubes. The simplest of these, called iriodes,
each contain three electrodes: grid, anode or plafe, and cathode or
Silament.

Fig. 1 is a diagram of a simple circuit which employs a triode like that
of Fig. 2 for amplifying the variations of more or less irregularly alter-

Plate Corrent I,
R —

w———— Plate or Anode '
Amplifier output

, Grid R voltage is the
The excitation, L “Saiternating part of the
or alternating voltage across this

voltage to be foad resistance
amplified, is Filament or Cathode ¥
intraduced here|
+
Eg = m— Plate
- Battery

o
ias
¢ 4 Battery

Fre. 1. Triode conneetions in an arplifier circuit.

nating voltages. A voltage whose alternating variations are to be
amplified, called the input or ezcitation voltage, is introdueed in series
with the grid bias battery. The potential difference between grid and
cathode therefore consists of a steady (direct-current) voltage plus an

alternating one. The plate circuit carries (1) a steady current, corre-
1
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sponding to zero excitation voltage, plus (2) an alternating current that
follows the pattern of the excitation voltage, because of the electro-

Fio. 2. Western Eleetric type 101.F

triode.

static control over electron passage
exerted by the grid. The voltage
drop in the load resistance By has cor-
responding direct-current and alter-
nating-current parts. The latter is
the useful output voliage of the ampli-
fier; it has the same pattern as the
excitation voltage, but on an enlarged
scale.

The voltage gain of the amplifier is
the ratio of the output voltage, that
is, the alternating part of the voltage
across the load resistance, to the
excitation voltage. Numerical prob-
lems relative to circuits like that of
Fig. 1 are solved by the use of tube
characteristic curves, of the general
type illustrated in Fig. 3, and with
the aid of imaginary alternating-
eurrent equivalent circuits that are
representative of tube properties.

T TR
3(?-;3[%/;‘? ::‘\7 12 % 12 Gf ) “?M}«"
flef sl < g
ariyynaRR Mnve sy
i aravvim M M TATATATATATAT
AV A ARSI r.
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AN R AP
28724 20 16 12 8 4 0 T4 7B L—:ﬁ% S0 180700
Grid Volts, Eg Plate Volts, Ep

(a) Mutual characteristics

(b) Plate characteristics

Fic.3. Average characteristic curves for a triode (Western Electric type 101-F).,

2. Electrostatic Control of Plate Current by Grid and Plate Voltages.
The region inside the glass envelope of a tube of the type illustrated in
Fig. 2 is made as nearly perfect a vacuum as is commercially feasible.
The cathode (filament) surface is made of some substance that is a
thermionic emitter, that is, releases electrons when at a red or white
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heat. An auxiliary filament circuit, not shown in Fig. 1, is used to main-
tain the required filament temperature. The number of electrons
released per second is not important as long as there are enough of them,
because the actual current flow is electrostatically controlled by the
values of plate and grid potentials, not in general by filament tem-
perature. The filament must be hot enough to provide the maximum
number of electrons likely to be demanded per second by the elec-
trostatic control under normal conditions, yet not so hot as to destroy
the filament or the electron-emitting properties of the filament surface.
In general the normal filament temperature sets an upper limit to the
tube current.

Attention will first be directed to conditions within a triode that has
parallel plane cathode and plate surfaces, as illustrated in the top por-
tions of Figs. 4¢ and 4b. The solid lines in the voltage diagrams in Fig. 4
describe typical point-to-point variations in potential (the potential
distributions) within such a triode when the cathode is cold, se that no
electrons are emitted and the tube interior is entirely free from space
charge. Of course no current flows under such conditions. The dotted
lines in Figs. 4a and 4b similarly describe potential distributions after the
cathode is heated, so that electrons are emitted, and negative space
charge does therefore exist in the interior. Under such conditions cur-
rent does flow, because of the movement of the electrons that constitute
the space charge.

Thus the solid lines in the four diagrams of Fig. 4 all represent space-
charge-free potential distributions that correspond to four different
values of grid voltage. The upper solid line in each diagram describes
the space-charge-free potential variation along a path midway between
adjacent grid wires; the lower solid line, that along a path through the
center of a grid wire.

The general “ topography ”’ of space-charge-free potential variation
in the tube interior can be simulated by a sheet of rubber in tension.
The rubber must initially be tightly stretched between the edges of two
supports in such a way as to give its surface an inclination, the support
at one end being higher than that at the other, just as the plate potential
is higher than that of the cathode. Then a miniature inverted picket
fence is lowered, in a vertical plane intermediate between and parallel to
the supports, until the ends of the pickets depress regularly spaced
points of the sheet to a level slightly below that of the lower support
(* cathode ”’). The level reached by the ends of the pickets corre-
sponds to grid potential.

The upper solid line of any one of the diagrams of Fig. 4 represents
the profile of such a stretched sheet, in a plane placed perpendicular to
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the supports and midway between adjacent pickets. Each lower line
represents similarly a profile for a plane similarly located except that
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F1c. 4. Potential distribution diagrams for a parallel-plane triode
at various grid voltages.

it passes through a picket. In order to make the analogy satisfactory
the rubber must be stretched tightly enough so that after lowering
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the pickets the portions of the sheet near the supports are flat inclined
surfaces free from wrinkles. This flatness corresponds to the fact that
the space-charge-free electric field in a triode is practically uniform
near the cathode and plate surfaces, although of greater strength near
the plate than near the cathode.

A slant in the potential line adjacent to the cathode indicates the
exigtence there of a potential gradient. In the study of electric fields
potential gradient is found to be identical with the negative of electrie
field intensity, and with the negative of the flux density if the dielectric
constant is unity, as it is within a vacuum tube. The slope of the
potential line just off the cathode must therefore be a direct measure
of the number of flux lines that terminate on each square centimeter
of cathode area, and so of the electric charge density on the cathode.

The slope of the potential line near the cathode is dependent on grid
potential, in the manner indicated by the contrasts between the various
diagrams in Fig. 4. Therefore the magnitude of the negative charge on the
cathode changes whenever the grid polential is changed, that is, whenever
the picket fence is raised or lowered.

As soon as the cathode is heated the escape of electrons moves the
negative surface charge into the region near to but outside the cathode,
where it becomes space charge. The surface charge before electron
release is represented in Figs. 4a and 4b by the sharp turns of the solid
potential lines at cathode surfaces. The space charge after release
similarly corresponds to the gradual bends in the dotted potential
lines. The total amount of turn, and so the total charge, is about the
same whether on the surface {solid lines) or just outside of it (dotted
lines). Therefore the lotal amount of space charge after electron release is
proportional to the steepness of the space-charge-free off-cathode gradient,
and is for that reason dependent on grid potential.

The flow of space charge constitutes the plate current; the less the
space charge, the smaller the current. Therefore the lowering of the
grid potential from its value in Fig. 4a to a more negative one in Fig. 4b
results in a decrease in plate current. Thus, by controlling the elec-
trostatic field in the tube, the grid voltage controls the magnitude of the
plate current. However, the dependence of current on space-charge-
free gradient, and so on grid potential, is more than linear, because a
decrease in this gradient (1) calls for a smaller space charge, also (2)
makes the space charge flow more slowly.

If the grid potential is low enough to make the off-cathode gradient
zero, as in Fig. 4¢, or negative, as in Fig. 4d, no plate current flows after
electron release. The zero off-cathode gradient condition, Fig. 4e,
corresponds to ‘‘ cut-off,” that is, to the termination at the zero-plate-
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current axis of a mutual characteristic curve of the type illustrated in
Fig. 3a.

3. Organization of Text Material. The first two chapters of the
book prepare the reader for and present an analysis of the electrostatic
field within a triode before any electrons are released. The primary
purpose of this analysis is to establish the nature of the dependence
of the space-charge-free off-cathode gradient on plate and grid voltages,
especially the latter. The dependence of tube current after electron
release on the off-cathode gradient before release is established in later
chapters. The results of the two studies are subsequently combined
to show why the current-voltage relationship must be of the general
type illustrated in Fig. 3.

Studies of the principles that govern eleectron movements in the
presence of electric and magnetic fields, of space-charge flow in four-
and five-electrode tubes, and of the principles underlying thermionic
emission, are introduced at appropriate points. The last three chapters
of Part I are devoted to a study of high-vacuum thermionic tube appli-
cations, chiefly in amplifier circuits.

Part II is devoted to a study of the types of electronic behavior that
involve interactions between electrons, atoms, and electromagnetic
radiation. This requires an introductory study of the mechanisms of
ionization and light radiation; photoelectric and gaseous-discharge
theory and applications are treated in the later chapters.



CHAPTER 1
POTENTIAL DISTRIBUTION DIAGRAMS

4. Units and Conversions. The fundamental relationships used in
the analysis of electric fields within electronic devices are most easily
developed and expressed in the electrostatic system of units1™ (stat-
volts, statamperes, statcoulombs), and those used in the analysis of
magnetic fields in magnetic units4 V¥ (abvolts, abamperes, abcoulombs),
yet it is important to be able to express results in practieal units (volts,
amperes, coulombs). The important conversion relations4 XIV gre:

1 volt = 108 abvolts = wky statvolt (1)
1 ampere = 0.1 abampere = 3 X 10° statamperes (2)
1 coulomb == 0.1 abcoulomb = 3 X 10° statcoulombs 3)

For the equations in the text it is designated at the extreme right of
the page whether the electrical units are in the electrostatic system
(esu), the magnetic system (emu) or the practical system (p). Equa-
tions not so designated are valid for all three systems.

A convenient and easily checked method of making conversions be-
tween systems of units can be illustrated by application to a space-charge-
limited-current equation that is derived in a later section. The con-
version steps are as follows:

(1) Write the equation in its known form:

V2 e B}
T=%Vne (4 es)
Here J = current density, ¢ = electronic charge, E = potential.
(2) Rewrite it, substituting empty brackets for the symbols which are to be con-
verted, labeling the units of each bracket by subseripts:

[ ]=*/§[ L 5o

Or o/ ms?

(3) Insert in each empty bracket the symbol for the type of unit into which
conversion is to be made, together with the proper multiplier. It is important to
recognize that a symbol is a substitute for the nwmber that measures, in proper
units, a definite physical condition. When converting statvolts into volts, one should
place inside the bracket the symbol for volts multiplied by xis, for that is the
number by which one must multiply the number 600, which measures for example

t For letter and number references, see Bibliography.
7
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the peak of an a-c 424-volt wave in volts, to secure 2, its measure in statvolts. In
the present example this is done as follows:

Val e, L 8
2[6 X 3 ;10;%;[1‘7 X 53”’1;» (6p)

[Ja X 3 X 109] -
sa

{4) Simplify the expression after removing the brackets:
\/“ & Lo i oo
Jo m s2 (3005 (3 X 100}
or
T 81r V5 k

Ja (7p)

6. Electric Intensity and Potential; Force on an Electron. The field
relationship between electric intensity and potential4 underlies the entire
study of electronic devices. The simplest mathematical expressions of
its two important aspects are

dE
F=— N (8 esu)
and
2
Ez—Elz—f F ds {9 esu)
1

The first form describes mathematically the fact that electric intensity F
is the negative space derivative of electric potential E. The second
form indicates that, conversely, the difference of potential between two
points in the field is the negative line integral of the intensity along a
path (any path) between the two points.

In Equations (8) and (9), F is the electric field intensity in dynes per
statcoulomb, exactly the same as the statvolts per centimeter; X is the
electric potential in statvolts, and ds is incremental distance in centi-
meters, measured parallel to the direction of the electric force. If the
line integral is taken over a path that is not everywhere parallel to the
direction of the electric flux, ds represents only the component, in the
direction of the field, of each increment of the path.

The electric intensity is a vector; in rectangular coordinates its com~

ponents are
3E aE JdE

Fx-——a Fy—’—a—y Fz—‘-g : (106811)
The application of Equations (8) and (9) to the field intermediate
between two parallel metal plates (no grid), as for example those of an
air condenser, is illustrated graphically in Fig. 5a. Potential is measured
vertically, distance horizontally. Therefore the potential gradient,
which is the slope of the potential line, is numerically equal to the
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electric intensity, though of opposite sign.  Since the force on an electron
or ion of charge ¢ in the intermediate region is ¢F dynes, the slope of
the potential line is proportional to the foree on, and the acceleration
experienced by, such a particle.

Diagrams similar to Fig. 5a are peculiarly helpful because the foree
relationships suggested by them correspond roughly to everyday
experience. The potential line of Fig. 5a may be likened to the side of
2 hill (Fig. 5b), the top level of the hill corresponding to the potential
of the more positive plate, the bottom level to that of the more negative
plate. It is apparent that the force tending to roll a ball down the hill

Negative
Plate

Potential Grqaaent=:TE

Top Level

Potential, Volts

tevel
AN

"
x

Scm, |

Fic. 5a. Potential distribution be- Fia. 5b. Force tending to roll a ball
tween two parallel metal surfaces. down a hill is dependent on the gradient.

is dependent on its slope, which is merely another name for the gradient
or space derivative of the elevation. Similarly the force on an electron
is dependent on the slope of the potential line.

It is common practice to make positive potentials correspond to
upper levels in potential diagrams, and negative potentials to lower
levels. Unfortunately, this practice makes electrons, the more mobile
of the charged particles dealt with, have the property of rolling uphiil
rather than down.

The force on an electron is proportional to the slope of the potential
line, that is, to the tangent of the angle it makes with the horizontal,
while in the gravitational analogy the force on the ball is proportional
to the sine of the angle between hillside and horizontal. For this reason
the .analogy is satisfactory only as long as comparison is confined to
gently sloping hillsides for which the sine and the tangent are nearly
alike.

6. Poisson’s and the Laplace Equations; Potential Distribution
Diagrams in One and Two Dimensions. The utility of diagrams which,
like Fig. 5a, describe pofential disiribuiion, is not limited to simple
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geometries. No matter what the nature of the potential variation,
such diagrams picture usefully the proportionality between potential
gradient and the force tending to accelerate an electron or ion. If
three space coordinates, r, y, and 2, are necessary to describe the con-
figuration of an electric field, the force tending to accelerate an electron
in any one of the three reference directions is proportional to the negative
space derivative of the potential in that direction. For that reason
potential sections or profiles, similar to the elevation profiles that
surveyors use in mapping highway or railroad rights-of-way, are very
useful.

In many electric circuit elements, for example, in inductances, capaci-
tances, electric machines, wires, incandescent lamps, and the like, it is
generally satisfactory to assume that electric charge exists only on the
surfaces of the conductors. Surface charge can be satisfactorily measured
in surface density units, that is, in coulombs or statcoulombs per square
centimeter of conductor surface. In electronic apparatus electric charge
is frequently distributed throughout a volume, and must be measured in
units of volume density or space-charge density, by stating the number
of coulombs or stateoulombs per cubie centimeter.

If the volume charge results from the presence of electrons, the space-
charge density is negative; if from the presence of positively charged
ions, the space-charge density is positive. If both kinds of charged
particles are present, the space-charge density corresponds to the
algebraic sum of their opposite effects. It is often negligibly small
in regions having very high concentrations of both kinds of par-
ticles.

The general partial differential equation relating potential |E, rec-
tangular space coordinates z, y, and z, and space-charge density p, the
last in stateoulombs per cubic centimeter, is B4

2 2 2
?3_;;} %—5—%% = —4gp (11 esu)
This expression is universally known in electrical work as Poisson’s
equalion. Many engineering problems deal primarily with fields in
which there is no space charge; in such cases the following more simple
expression applies:
PE_OE_ O _

art U 3y 82 0 (12 esu)

Equation (12) is known as the Laplace equation. B9 It applies in any
interelectrode region from which space charge is absent, and in which the
dielectric constant is everywhere uniform. The general problem of
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electrostatic field analysis is that of finding solutions of Equation (12)
which satisfy boundary conditions imposed by electrode geometry and
potentials. For most simple and many complicated geometries special
methods are used which accomplish this purpose without mention of the
underlying equation,® but in all cases the correct solutions will be found
to satisfy it.

The electric field in the region between the parallel plates of Fig. 5a is
said to be one-dimensional, The plates are considered to be of infinite
extent. It is obvious that the potential has a constant value at all
points in any intermediate plane parallel to the two plates, that is,
the equipotentials are all perfectly flat surfaces perpendicular to the x
coordinate direetion. Evidently explorations confined to travel in the
y and z directions will discover no change in potential, so that the last
two terms of the left-hand sides of Equations (11) and {12) drop out;
Poisson’s and the Laplace equations in one dimension are simply

PE _

= —4rp (13 esu)
and
2
idd?‘? = ) (14 esu)

These expressions represent mathematically the fact that potential
varies only with changes in the one coordinate dimension z, hence the
use of the term * one-dimensional.” ‘

1t has been pointed out in connection with Fig. 5a that the slope of the
space-potential line is the potential gradient, dE/dx. The expression
d*E/da? is merely a simplified way of writing

d {d

(%)
which is of course the space rate of change of the slope, and is called the
JHexion of the potential curve. Equation (14) therefore requires that the
potential distribution curve for a one-dimensional field in a region free
from space charge must be a straight line, for only a line that is straight
has zero flexion. If in any region the space-potential line is in fact
curved, either space charge is present, or the field is not one-dimensional,
or both.

The plate and cathode surfaces of Fig. 4 are considered infinite in
extent and the grid wires infinitely long. Hence an exploration con-
fined to travel along a line parallel to a grid wire will discover no varia-
tion in potential. Only the z and y gradients dE/9z and dE/dy have
values, so the fields in Fig. 4 are said to be two-dimensional. Poisson’s
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and the Laplace equations in rectangular coordinates for a two-dimen-
sional field are:

6—135 + .@—2 = —41rp (15 GSU)
and
*E  E
a—-ﬁb‘ﬁ 6—y2 =0 (]6 BSU)

It is fortunately true that a great many electric fields whose con-
figuration is important in engineering work are two-dimensional, for a
variety of mathematical methods of no great difficulty are available for
the determination of the properties of fields that satisfy Equation (16).
The electric fields around transmission lines, within the sheaths of
power and communication cables, around conductors in the armature
slots of electrical machines, and in the interiors of many electronic de-
vices are essentially of this nature. The equipotentials in such regions
have flexion in one plane only. They may be called cylinders or cylin-
drieal surfaces, although only in certain special cases are they circular
cylinders.

The second z-derivative of the potential, 62E /922 may in general have
a value, so the potential profiles in the z direction have flexion, either
(4) in a one-dimensional field due to the presence of space charge, as
along the dotted lines near the cathodes of Figs. 4a and 4b, or (B)
in a two- or three-dimensional field with or without space charge, as
along the curved parts of the solid lines in the same figures. In cases
of the (4) type

(4) (fl—z—g = —4rp (17 esu)

In cases of the (B) type, without space charge

K *FE . .
(B) i (two-dimensional) (18 esu)
or
2 2
(B) i—g = (8 E 9 E) (three-dimensional) (19 esu)

Near plate and near cathode of a parallel-plane triode (Fig. 4) the
electric field is essentially uniform. The statement that the field is uni-
form is merely another way of saying that it is one-dimensional. Corre-
spondingly, before the entrance of electronic space charge the space-
potential line near the cathode is straight, as described by the solid
lines. The dotied line in Fig. 4a is curved near the cathode because



SURFACE AND SPACE-CHARGE DENSITY 13

it deseribes the potential distribution after electrons are permitted to
enter and establish a strong negative space charge just outside the
cathode.

In the neighborhood of the grid, Fig. 4, all the solid (space-charge-
free condition) lines are curved. Their curvature indicates that in that
region the field is not one-dimensional. And of course it cannot be, for
the potential varies along & path from one grid wire over an inter-
mediate hill to the next wire. The potential of each grid wire is nega-~
tive, that of points midway between grid wires positive, relative to the
cathode.

Equation (18) is interesting in that it indicates that if, in a space-
charge-free two-dimensional field, the flexion of the z profile is posi-
tive (convex downward) that of the y profile must be negative (con-
vex upward). This is suggestive of the “topography’ of a saddle.
Models of potential topography corresponding to the various diagrams
in Fig. 4 would contain many saddle-like portions.

7. Surface and Space-Charge Density in Potential Diagrams. Fig.
ba can be used to explain how the presence of surface-charge density
is represented in potential profile diagrams. The electric field of Fig.
5a terminates in surface charges at the two plates; at each surface the
abrupt change in the potential gradient, that is, in the slope of the
potential lineg, is a direct measure of the surface-charge density.

The lines of electric flux between the plates terminate at the metal
surfaces. But flux lines terminate only on electric charges; mathe-
matically, 47 flux lines end on each statcoulomb of charge. Hence the
charge density on the terminal surface must be proportional to the flux
density, so to the electric field intensity and the potential gradient that
exist just cutside the surface. Mathematically, at the negative plate,

dE

F = 4470, or, i —4re (20 esu)

Here o stands for surface-charge density in statcoulombs per square
centimeter, and the dielectric constant is unity.

A little confusion in sign results from an attempt to apply Equation
(20) at the positive plate. It can be adapted to express correctly in a
single equation the relation between field properties and surface charges
at both plates by using the change in field intensity and gradient ex-
perienced in passing through the surface from left to right, that is,
in the direction of an increase in x, as follows:

AF = -447x0; or, A(C-jg) = —4re (21 esu)
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At the left-hand plate, the gradient increases from zero inside to a posi-
tive value outside, so that its change is positive; the surface charge is in
fact negative as called for by Equation (21). At the right-hand plate,
the gradient changes from a positive value outside to zero inside,
hence the change in crossing the surface in the plus z direction is
negative; the surface charge is in fact positive as demanded by the
equation.

The preceding discussion may be summarized by the statement that
the change in polential gradient in passing through a surface 1s a direct
measure of the charge density on the surface. 'This statement apparently
calls for a layer of surface charge along the boundary between two sub- .
stances having different dielectric constants. In a detailed study of the
properties of dielectricsBY it is found that the existence of dielectric
constants greater than unity is due to electric polarization of the
medium. This polarization results in the appearance at the bound-
aries of dielectrics of * bound ” surface charges of exactly the kind
called for above.

Any solid sphere may be thought of as made up of a very large num-
ber of hollow spherical shells, any solid cylinder as composed of many
hollow cylindrical shells, and any rectangular block as composed of a

Thin fayer of stack of thin sheets. Similarly the space charge in
s";:g:':;ge a one-dimensional [field may be thought of as con-

sisting of many very thin layers of space charge; the
space-charge density in successive layers may or may
not be the same. If the layers are thin enough they
resemble surface charges, so that the reasoning asso-
ciated with Equation (21) may be adapted to give a
graphical picture of the meaning of Equation (17).
Fig. 6 illustrates the nature of the potential change
to be expected in passing through one such thin layer.
If the charge content of the layer is deseribed as o
Fic 6. Change in gtatecoulombs per square centimeter of area, Equation
potential gradient (91) can be applied to relate the change in potential
in passing througha ., ient in passing through the layer to the charge

thin layer of space
e}mge,y pas content, as follows:

dE dE —

(‘dz)l“d(a; . a(EEY = (4B _ (AB) _ _4ps (22 esu)
L dx dr /)y \dz/x

signify the slopes of

the potential line. Byt the charge content of this thin layer can also be
described by stating the value of the space-charge density p within it,
in statcoulombs per cubic centimeter. In order to use this description
the symbol ¢ must be replaced by p Az, which is of course the charge
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within one square centimeter of area of the layer whose thickness is
now specified as Az. With this change, Equation {(22) becomes

(D)= 2(@D),= e mew

If now the thickness of the layer of charge is made to approach zero as a
limit, the potential change A(dE/dz) and the thickness Az are written
d(dE/dz) and dz, and Equation (17) results.

Equation (20) may be thought of as the special case of Equation (17)
that arises when space-charge density increases to infinity and the
volume it occupies vanishes, their product remaining constant at the
value of 0.

8. Potential { Diagrams for One-Dimensional Fields in Regions
Containing Space Charge. Fig. 7 illustrates a shape that the space-
potential or potential distri-
bution eurve in the one-
dimensional region between

Uniform Space oy
Charge Oenps?g

NN

two parallel plates may have %’%=-4ﬂp
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contains uniform space-charge % ;

density. For reasons stated E] e

later the situation so repre- = g%
sented can never persist for : /
more than a minute fractionof  _J %

a second, but it is neverthe- ~—¢2F ————————— F~

X e

Fic. 7. Typical potential distribution in a
one-~dimensional region containing uniform
space charge density.

less serviceable for illustrative
purposes. Two successive in-
tegrations of Equation (17),
using a constant value for p
and taking the origin at the negative plate, show that the potential
line in Fig. 7 must be a parabola (second degree equation) of the general
form

E = —2xpax? + Cixz + C» (24 esu)
But when =0, E=0 and %E—C’z
so that C;:=0 and C;= (@)
4% Jimq
But ((—i;) = —47oy, 50 that
T [e=0
E = —2xpx? — 4dxox (25 esu)

where ¢, is the surface-charge density at the more negative plate.
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The conver-downward flexion of the potential line in Fig. 7 corre-
sponds 0 a negafive space charge, such as would result from a uniform
concentration of electrons. A positive space charge would result in a
parabola convex upward. The sharp bend at the left-hand end can also
be described as convex downward; correspondingly the surface charge
o1 is negative. At the right-hand surface there is a sharp convex-
upward bend, indicating a positive surface charge.

If interelectrode space charge is due to electrons, they must move
in response to the force exerted on them by the electric field whose
form they help to determine. For that reason a uniform electron con-
centration can exist only for an extremely short time or under highly arti-
Jicial expertmental conditions.

No matter whether space-charge density is uniform or not, the
flexion of the potential line is at every point, for one-dimensional geom-
etry, proportional to the negative of the space-charge density, and the

When p 15 Positive
Curves are Convex
Upward

N

= &
- o
A &
¢ 4 When p is Negative
2 = Curves are Convex
V ® y Downward
z

p= Space Charge
% Density

Distance —>
Positive lon Trap

Fi1a. 8. Potential distributions for various values of uriform space charge
density, parallel plane electrodes.

abrupt change of slope at a surface is a direct measure of the surface-
charge density.

Fig. 8 illustrates a wvariety of uniform space-charge-density con-
ditions, all having the same overall potential difference between the
plates, but with varying amounts and kinds of space charge. Of
particular interest are the two curves, one convex downward, the other
convex upward, in which the potential line is horizontal at one of the
surfaces. Such horizontal entrance indicates zero surface charge at
that point, the total space charge then being equal to the surface charge
on the other electrode.

Of interest too is the uppermost curve, corresponding to a rather
large positive space-charge density. If a single electron were set free
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in such a field, it would be accelerated toward the highest point of this
curve, the vertex of the parabola. An electron introduced into any part
of the region whose potential is higher than that of the more positive
plate could not escape to either plate. Because of its inertia, such an
electron would oscillate near the vertex, like a ball at the bottom of a
parabolic trough. Of course a sufficient number of electrons so placed
would tend to neutralize the positive space charge and reduce the
height of the vertex.

9. Spherical and Cylindrical Coordinates. Occasionally the follow-
ing general forms taken by Poisson’s equation when referred to spherical
and cylindrical coordinate systems are useful:

Spherical coordinates, as in Fig. 9:

19/,8 1 9f. .9
Fé;(rg)+r’sin666(S1ne£>

1 &E

m §¢—2 = —dgp (26 CSU)
Cylindrical coordinates, as in Fig. 10:
19/ oF 1 &#F &K
? 5(7“5;) ;é 5&5? + FZE = '—4750 (27 ESU)

An important special type of eleetric field is that in which field
properties depend solely on the radial distance from an axis. Since

1)
.
>7 : T
\
T
L _yans a f y axis
AN | N
N . AN
AN
¢
Fic. 9. Spherical coordi- Fra. 10. Cylindrical co-
nates of the point 7. ordinates of the point 7.

o Polar axis (2}
2 axis

‘.'e-l‘l,g

potential and space charge in this type of field do not vary from point
to point around the axis of symmetry or with position along the axis,
the cylindrical-coordinate form of Poisson’s equation reduces to:

1d/d
;3;(7";)= —4rp (28 esu)
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It is sometimes useful for graphical purposes to convert Equation (28)

into the form
2

——(dilogEr)i = —2pr = —2p/cogr {29 esu)
where p’ = 2wpr, representing the space-charge density integrated around
the axis. If a potential E that depends on radius only is plotted against
log r the resulting curve is a straight line wherever space charge is
absent; it is convex downward in regions of negative space charge and
convex upward in regions of positive space charge.

The flexion of such a semi-logarithmic curve is proportional to the
moment of the space-charge density integrated around the axis, not
just to space-charge density, so that flexion of given magnitude near
to the inner cylinder corresponds to a very much greater space-charge
density than does the same flexion at a point near the surface of the outer
cylinder. Similarly the slope or first derivative of such a semi-logarith-
mic curve is the moment of the electric field, for

dE dE

m=?a= —rF (308811)

These relations recall the familiar engineering fact that moments of
quantities are significant in any mathematical analysis of force actions
in mechanical parts that have cylindrical symmetry.

PROBLEMS
Cuarrer 1

1. The potential difference between the infinite parallel plates of Fig. 8 is 3
statvolts, and the spacing between the plates 1.5 cm. A uniform space charge
density that is sufficient to make the potential gradient just outside the negative plate
zero exisig in the intermediate region.

{a) Find the magnitude of the uniform space charge density, in stateoulombs per
cubic centimeter.

() Find the corresponding electron concentration (number of electrons per cubic
centimeter). See Table XVII for the value of an electron’s charge.

(¢} Find the potential gradient, in statvolts per centimeter, just outside the posi-
tive plate,

(d) Find the surface charge density on the positive plate, in stateoulombs per
gquare centimeter.

(e) Find the space charge, in statcoulombs, within a volume that extends from
one plate to the other, and has a cross-sectional area of 1 sq cm.

(f) What acceleration, in centimeters per second per second, is experienced by an
electron when at a point midway between the two plates? (See Table XVII for
yalues of electronic charge and mass.)

2. Suppose that the potential between the plates of Fig. 8 is as described by the
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lowest potential distribution line there shown, What is the direction of the force
on an electron one-quarter of the way from the negative toward the positive plate?
On one three-quarters of the way? What is happening to the space-charge density
at the vertex of the potential line?

3. Suppose that the potential distribution between the pair of infinite parallel
plates spaced 1.5 cm apart, as in Problem 1, is described by the relation E = 2.25z}
(esu). Find the new values of the quantities asked for in parts (d) and (&) of Prob-
lem 1; also evaluate the quantity p VE at 2 = 0, at z = 0.75, and at z = 1.5.

4. Suppose that at a point midway between grid-wire centers in Fig. 4a the
space-charge-free value of the flexion, d*E/dz?, of the z-profile potential distribution
curve is 20 statvolts per centimeter per centimeter. According to Poiszon’s equation
the introduction of flowing negative space charge (electrons) makes the algebraic
sum of the z-profile’and y-profile flexions become more positive. If the total change
due to the introduetion of space charge is equally divided between the two flexions,
what is the value of each at the apecified point when p has the value —0.1 statcou~
lomb per sq em?

b. The radii of two concentric eylinders are respectively 0.04 and 0.60 em. The
potential of the inner cylinder is zero, and that of the outer is +1.2 statvolts.

(e) Find ., the charge on the inner eylinder, in statcoulombs per centimeter of
axial length.

() Find the surface charge densities on the two electrodes.

(¢} Find the potential gradient just outside the inner eylinder and that just inside
the outer one. .|

(d) Plot & curve of E vs. r (similar to Fig. 33b).



CHAPTER 11
THE ELECTROSTATIC FIELD OF A TRIODE

10. Conformal Transformations. The analysis of apparently com-
plicated two-dimensional electric and magnetie fields is often facilitated
by conformal transformation® 24 YY of the actual coordinate system to an
equivalent one which makes the proporties of the field easily determin-
able by comparison with familiar geometries. Such treatment greatly
simplifies the study of the electric field within a triode in the absence of
- space charge; the effect of space charge can be introduced subsequently.
The subject-matter of this section is the conformal transformation of
coordinates as applied to any electric or magnetic field problem; later
sections make the triode application.

If  and y are the coordinates of the original field, and z’ and '
those of the equivalent field, the useful type of transformation is
such that the underlying two-dimensional differential equation

»*E | K

W ‘@2‘ = () (31 esu)

transforms into the similar one

SE 3FE

e + oy = 0 (32 esu)
That is, the Laplace equation must be satisfied in both the actual and
equivalent, systems. All transformations that can be deseribed by an
equation of the following general type satisfy this requirement, and are
called conformal transformations:

z + gy = f(@' + jy’) (33)

Here j is the complex-number operator, that is, j = Vv —1, and
f@" + 7¥") may be any function at all of (z’ + jy’). It might, for
example, be convenient in a particular case to use the transformation

z+jy = (' + 3yt (34)
It is not difficult to prove that any transformation of the type indicated
by Equation (33) makes the potential K satisfy the Laplace equation
in both gystems if it does in either of them, 8% ¥Y The proof will not

be given here, however, because the immediate concern is with the use

of the conformal-transformation method of field analysis.
20
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The quantity z + jy in Equations (33} and (34) describes a vector
whose horizontal and vertical components in the original coordinate
system are xz, y, while z” 4+ jy’ describes similarly a vector with z’, 3/,
horizontal and vertical components in the transformed system. Every
possible vector in the original coordinate system has its counterpart in
the equivalent system.

A graphieal illustration of the nature of a conformal transformation
appears in Fig. 11. The left-hand diagram in this figure represents, not
at all an electrie field, but simply a sheet of graph paper that is ruled
rectangularly in the ordinary way, coordinates being = and y relative
to’a central origin O. Now let the sheet of paper be cut along the heavy
horizontal line from the origin to the extreme left,!and progressively
opened up along the cut by a systematic bending of the coordinate
lines, of the nature indicated by Figs. 11b and 1lc. Fach of the
coordinate lines beecomes a curve, as illustrated by those for z = @
andz = b,

Any such systematic warping of the original regular pattern is the
equivalent of a transformation of coordinates. The particular kinds of
warping that lead to Figs. 11b and llc correspond to conformal trans-
formations. It is characteristic of the conformal treatment that 90°
intersections of the original coordinate lines remain 90° intersections after
transformation, with the exception of unique points (*‘ singular points )
such as the origin in Fig. 11a. Initially square blocks become ¢ cur-
vilinear squares "’ of the type used in freehand mapping of electrie and
magnetic fields.AVLC  The smaller the square block considered, the
more nearly it retains the original shape.

The point T in Fig. 11a has the coordinates £ = ¢ and ¥ = b. The
point T’ to which 7T transforms in Fig. 11 can also be identified as that
for which z = a and y = b, or it can be described in the new coordinates
as the point for which ' = a’ and ¥’ = b’. The point T is the terminus
of the vector a + jb, horizontal and vertical components being o and b;
the point 7" is similarly the terminus of the veetor ¢’ + jb’, with hori-
zontal and vertical components ¢’ and b’ in the new system. The rela-
tion between Figs. 115 and 11a is expressed by Equation (34); as applied
to the particular points T and T it requires that the two vectors be so
related that

a+jb = (a’ +jb')? (35)

An identieal relation exists between any two eorrespondmg points or
vectors; that is the meaning of Equation (34).
Figs. 11a and 11¢ are related by the equation

x4 gy = (" +5y"’) (36)
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The mathematical equations of the families of curved lines on Fig. 1

le,

into which the original straight coordinate lines are transformed, can

be obtained by expanding Equation (36) into the form

T +jy . x!!g _— ylfz + gxlfy!l (37)
A s X, B
I T AN
B O T A R A
-

Xm=3
....._...-...i._ - —|— . —

X ",

e o
xHy=(x +iy 1} i = +iyn?
(@) G) ()
Fia. 11. Conformal transformation of a rectangular sheet marked with
rectangular coordinates.
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Fre. 12. Conformal transformation of a rectangular sheet marked with
polar coordinates.

Real and imaginary parts can then be separately equated, as in any

expression involving imaginary quantities, so that the equations

z=2a'"—y" (38)
y = 2z''y" (39)
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describe the positions taken on the z’’, ¥”’ coordinates by the original
z, y lines.

It is often desirable to describe conformal transformations in polar
coordinates. The vector terminating at any point such as 7T, Fig. 1la
and Fig. 124, is equally well described by the expressions z + jy and
rei®, r being the radius vector and ¢ the angle with the z axis, that is

r o= \/xz_*_yz

¢ = arc cos§ = are sin% (40}
I =T C08 ¢

y = rsin ¢

Similarly the vector terminating at T’ in the transformed diagram can
be described as r'e, related to 2’ + jy’ in exactly the way that re/®
is to x -+ jy. It is sometimes helpful to recall that the product of two
polar veetors ¢/ and ref® is the vector rge/®+%), Figs. 12q, b, ¢
represent a sheet of graph paper ruled with polar coordinates and given
exactly the treatment illustrated in Fig. 11, that is,

reit = (r'ei#’)} (41)

refé = (r'fef¢”)? 42)
Figs. 11 and 12 merely contrast two different ways of marking a flexible
sheet; the cutting and warping is exactly the same in the two illustrations.
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th)
Fia. 18. Conformal transformation of an electrostatic field map,
originally eylindrical.

The original z, ¥, graph may have drawn on it the equipotential and
flux-line pattern of a two-dimensional electrostatic field. Such a
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pattern must, in the absence of space charge, satisfy Equation (31) in
the interelectrode region, and possess at the electrode surfaces whatever
potentials the problem requires. If the transformation is a conformal
one, the transformed equipotentials and flux lines will satisfy Equation
(32), and will fit the warped locations of the original boundaries.

Figs. 13a and b illustrate the transformation of the flux pattern
between concentric circular cylinders on the z, y, graph into that between
corresponding oval<sectioned cylinders at the same potential difference
on the 2/, y’, set. If, as in this figure, the warping of the coordinate-set
on which the field is mapped corresponds to a conformal transformation,
the total charge on each electrode, the potentials between them, all
capacitances, including any mutual capacitance coefficients, total energy
storage, and all other overall properties of the electric field carry over
without change from one representation to the other. The potential
gradients, surface-charge densities, energy storages per unit volume, and
other detail quantities are very greatly modified. Either field can be
completely understood, however, either as to detail or overall properties,
from analysis of the other.

11. Conformal Transformation of a Parallel-Plane Triode.! 2345670
Fig. 14 represents the three electrodes of a parallel-plane triode, drawn
on the z, y, r, ¢ graph, which will sometimes be called the “ W ?”
plane in accordance with common usage. Grid-wire radius is R centi-
meters, and the grid center plane is @ centimeters from the cathode,
b centimeters from the plate. Fig. 15 represents a restricted portion
of the same set of electrodes transferred to an z’, y’, r’, ¢, coordinate set,
located on the “Z ” plane. The conformal transformation used is!

2rnz + 2mngy = log (=’ + jy’) (43)
The z, y, origin is taken at the center of a grid wire; = is the number of
intervals between grid wires in each centimeter, 1/n the center distance
between grid wires. The mathematical transfer of a given point on the
W plane to its proper Z-plane location is best aceomplished, for this
particular transformation, by mixing the rectangular and polar notations,

thus: 2rnx + 2rngy = log (r’ef‘i’")

= log v’ + j¢' (44)
Separation of the real and imaginary parts in Equation (44) shows that
rl = (45)
¢’ = 2mny (46)
For example, the W-plane origin transfers to the point
=& =1 (47)

¢ =2 X0 =0 (48)
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2xn is chosen as the multiplier for x and y in order to make ¢’ = =
when y = in, thus limiting the Z-plane representation to a portion of
the W plane that extends half-way from the origin to each adjacent
grid-wire center. The cathode surface becomes, on the Z plane, a small
circle of radius s, = ¢ ¥, and the plate becomes a very large circle of
radius s, = e+,

The grid wire becomes a figure that is essentially eircular if its actual
W-plane diameter is not more than about one-sixth of the center-
distance between grid wires.! The Z-plane grid-wire figure crosses the
horizontal axis (¢’ = 0) at extreme inner and outer points; the radii
to the crossing points are:

Innermost: s = & (49)
Outermost: s = et (50)

The radius of the transformed grid-wire figure, for those cases in which
it can be considered circular, is:

B’ = 31(s2 — 81) = (&8 — ¢?™E) = ginh 2en R {61)

The distance between its center and the cathode center is:
8 = 3(8 + 81) = §(e¥E 4 ¢ ¥F) = cosh 2anR (52)

The dashed circle on Fig. 14 is the outline of a grid wire for which
2nR = %. Such a grid wire would be too large to be treated as a circle
in the transformed position, as indicated by the corresponding dotted
Z-plane figure.

The quantity 2nR will sometimes be called the screening fraciion, as it
describes the extent to which the grid plane is blockaded by grid wires.

12, Placement of Charges to Satisfy Triode Boundary Conditions.
The analysis of the space-charge-free electric field within a triode like
that diagrammed in Fig. 14 will be developed in terms of the Z-plane
coordinates of Fig. 15, and subsequently expressed in terms of the real
coordinate dimensions. At normal operating voltages the plate potential
of a triode is much higher, and the grid potential a little lower, than
that of the cathode, so there must be negative charges on the cathode
and grid and a positive charge on the plate.

Of course the actual charges within the tube reside on the surfaces of
the electrodes (space charge is absent). However, if a set of line charges
are imagined to be located at appropriate points in Fig. 15, the Z-plane
cathode, grid, and plate cireles, which describe electrode surfaces, can
be identified with equipotentials of the field due to these line charges.
Equations can then be written for the potentials everywhere in terms
of the charges; the resulting expressions can be used to describe the
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differences between the potentials of the various electrodes, and also to
describe the potential distribution in the regions between the electrodes.
The magnitudes of the charges may be selected to satisfy any given set
of interelectrode potential differences.

éid Wires

Radius R

Anode or Plate\

N\

Im
T

Fic. 14. Parallel plane triode. z and y are coordinates of any point 7 relative
to origin at grid-wire center. n-grid wires!per cm. Points A, B, C, D on this
“W “-plane representation transform to points A’, B/, C?, D' on the “Z ”-plane,
‘representation, Fig. 15.

In any electrostatic field 4» flux lines attach to each statcoulomb of
charge. Symmetry requires all the flux lines around an infinite line
charge like that of Fig. 16 to be radial; therefore 4xr flux lines must
radiate from each centimeter length of a line charge of r statcoulombs
per centimeter length. A cylinder having, like that in Fig. 16, radius
r and length one centimeter, has a circumferential area of 27r square
centimeters. This circumferential area is penetrated by 4xr flux lines;
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therefore the flux density at radius r is 4wr/20r = 2¢7/r. If, as in all
probiems here dealt with, the dielectric constant is unity, the electric
field strength F is the same as the flux density, so that

Fo== (53 esu)

Aniode or Plate Circle
of Radius sp

Kernel \\
Transformed \

Grid Wi
" Ratius R \‘

)

Sy
of Radius s¢ |«Sg
\ /

2Nnbk
gn - 2‘2 fina N _//4\ Grl’d’f‘égreROuﬁine
s;-cosh 27inR 2R =2

R'=sinh 27'nR

Line Charges as Follows:
T, at Cathade Center
+T at Kernel

~Tp at Grid Center

Fic. 15. Transformed or *“ Z-plane”’ representation of Section ABCD of the
triode of Fig. 14.

Electrostatic potential is the negative line integral of intensity, so that
the potential difference between two points at radii 7, and r; in the field
of this line charge is expressed as follows:

&—&=—“%& (54 esu)
or

&—m=—%@? (55 esu)
1
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Equation (55) is a very general expression that will be used repeatedly
in the following discussions of potential distributions.

The dimensions of all ordinary tubes are such that the Z-plane cathode
circle (more properly cylinder) is very small, so that it is an equipotential,

AT T flux lines must emerge
through circumferential surface,
of area 2 v square cm.,

H
Line Charge
T statcoutormbs
per cm. length

Tem -

F1c. 18, One-centimeter eylinder around
aline charge. D = electrie flux density,
F = electric field intensity, %k = di-
electric constant.

regardless of the effect of grid and
plate charges, if a negative line
charge —r, statcoulombs per cen-
timeter of length is located along
its axis. This line charge may
then be imaged in the grid cylinder
in order to keep the latter an equi-
potential. To this end there must
be located at the kernel of the
Z-plane grid circle a line charge
+7., equal and opposite to that
at cathode center. The position
of the kernel is determined by the
general image relation, applicable

either in imaging a point in a
sphere4 12 or 3 line in a ¢ylinder, that the product of the distances from
the inside and outside charge locations to the center of the sphere or
cylinder is equal to the square of the latter’s radius. The proof of the
correctness of this relation in the case of a line charge and a cylinder
is as follows:

Q
2 i ‘
R
L) - - A /-ﬂx ’9 -

T-’r fmage ag% TR
H Kernel I(_
| 7
I sg %

Fic. 17. Image of a line charge —r in a cylinder.

The circle of Fig. 17 represents a cylindrical surface of radius R’
It is to be demonstrated that it is an equipotential surface of the electric
field produced by two line charges, —r and -7, that are parallel to and
in a plane with the cylinder axis, provided that s,s" = R’2, in accordance
with the image relation stated above. @ is any point on the cylinder,
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A a point in the plane of the charges. The potential difference between
€ and A owing to —r7 is

Ey— Eq = =2 (~1) log——E—R—, (56 esu)
Sg —
Owing to -+ at the kernel, it is:
Eo— E4 = =2 (+7) logflé,—"i—? (57 esu)

The cylinder is to be an equipotential. Therefore the total difference
of potential between @ and A, which is the algebraic sum of Equations
{56) and (57), must vanish, This requirement is satisfied only if

L. (58)

s; ~ R R —¢

Equation (58) ean also be written

VR? + s} —2R's; cos B _ VR + &7 — 2R's cos B

8g — B B - (59)

The solution of Equation (59) for &' is straightforward, but a little
tedious; the result is

§ =>—, or, &s,=R"? (60)

The correctness of this solution ean be quickly shown by substituting
R/s, for s, then factoring R’/s, from right-hand numerator and
denominator; an identity results.

In the present application to Fig. 15, the charge outside the grid
cylinder, — 7, statcoulombs per centimeter of length of axis, lies along
the cathode center, distant s, from the axis of the grid cylinder. The
radius of the grid cylinder is R’. If s; is used to symbolize the distance
from the cathode to the kernel or image-charge location,

3(8g — &) = R” (61)
which may also be written
Sg? — R’2
S = (62)
S
In the present application
8¢ — R’® = cosh? 2rnR — sinh?2mR = 1 (63)
8o that
1
S == (64)

Sg
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With just the two line charges — 7, and -7, present the electric field near

cathode and grid is as illustrated in Fig.

Transformed
7/ /Gnd Wire

Cathode Kernel

Fra. 18. Z-plane triode flux pattern with
equal and opposite charges on cathode and
grid; none on plate. The plate cirele is

remote with center at cathode.

18. The cathode charge is nega-
tive, as under normal conditions;
but the plate hasas yet no charge
and the grid a positive charge.
By locating a third line charge
— 7, along the grid-cylinder axis
these disagreements with nor-
mality can be corrected with-
out disturbing the equipotential
nature of the grid figure. The
quantity — 7, usually has a nega-~
tive numerical ‘value, and +7,
a positive one. However, when
the grid voltage is below the
cut-off value, as in Fig. 4d, — 1,
has a positive numerical value;
similarly -7, may have a nega-~
tive value if the plate is at a
lower potential than the grid.
Tube dimensions are usually
such that the Z-plane plate cir-
cle is very remote from the grid

circle, so much so that both grid and cathode figures, so also all three line
charges, are for all practical purpose at the axis of the plate cylinder.

T

Cathode, Radius l

S¢

Transformed
Grid Wire

Grid Center
Ve

.—Tc

'

S

\7. w

Fra. 19. Detail of placement of Z-plane charges in Fig. 15. Plate circle remote
with center at cathode. ’

Hence the electric field in the neighborhood of the plate may be treated
as though due to the net grid-and-cathode charge —7, located along
the plate cylinder axis. Such a field terminates in a charge 47, stat-
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coulombs per centimeter of cylinder.length distributed uniformly over
the interior of the plate cylinder,” and makes the latter an equipotential
surface.

The array of three line charges, —r, -+, and —7,, detailed in
Fig. 19, makes all the Z-plane electrode boundaries equipotentials for
any and all values of —7, and +7,; that is, the geometrical boundary
conditions are satisfied. The plate-to-cathode and grid-to-cathode
voltages can be given any desired values by proper choices of values
for —r, and +7,, in this way satisfying the potential boundary condi-
tions. The charges on the electrodes, in statcoulombs per centimeter
length of the Z-plane figure, are as follows:

Cathode —r,
Plate +74 (65 esu)
Grid 47, — 7

Since the grid has ordinarily a negative charge, it is to be expected
that r, will usually be numerically greater than r,.

13. Equations for Space-Charge-Free Potential Distribution. The
point 7 in Figs. 15 and 19 might be located anywhere in the region
between the electrodes. It has coordinates * and ¢’. Equation (55)
can be used to express, first, the potential difference between T and the
cathode due to the cathode-center charge, second, that due to the
image charge, third, that due to the grid-center charge. Any point on
the cathode surface may be used in setting up these three potential
expressions, but it is necessary to use the same point for all of them,
as is done in the following equations:

Due to —7, at the origin:

Er — E, = ~2(—1) logg (66 esu)

Due to -+, at grid kernel:

V't 4+ 5 — 2r's, cos ¢’

Er ~ E;= =2(+ 7.) log o — s (67 esu)
Due to — 7, at grid center:
2 2 o / ?
Er — E, = —2(—7p) logvr_ t s = 2’ cos é (68 esu)

8y — 8

The correct value of Er — E,, that due to all three charges, is the alge-
braic sum of these three expressions.

It is chiefly interesting to know the nature of the potential variation
(a) along a line through the center of a grid wire, and (b) along a line
midway between grid wires. The former is obtained by letting ¥ = 0,
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that is, ¢’ = 0; it corresponds to the potential variation along a line
extending horizontally to the right from the Z-plane origin. For the
latter y = §n, that is, ¢’ = =; it corresponds to the potential variation
along a line horizontally to the left from the Z-plane origin. In one
case cos ¢’ = +1, in the other cos ¢’ = —1, so that in both cases
the radicals are the square roots of perfect squares, being respectively
the sum and difference of the distances involved. Using ¢’ = 0,
cos d’/ = 1’
Due to all charges:

I_Sk‘%

Er — E, = 2(—1.} log ‘; — + 27, log‘-g—:——zil (69 esu)-
{3 ¢4 c

|

2=06cm,

b=04 cm.

n=2.22 grid wires /cm.
R=0.01876 cm,
Ep=127.8

Eg= -7.84
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Fie. 20. Mathematically-determined potential distribution in a parallel-plane triode,
showing relations between space-charge-free off-cathode gradient and tube di-
mensions. Compare with Fig. 4.

The upper solid curve describes the potential distribution along a path be-
tween grid wires, the lower curves, that along a path through grid-wire centers.

Absolute values of ' — s and r’ — s, must be used because only the
magnitudes of the respective Z-plane distances are involved in the
potential derivation; similarly the radicals in Equations (66, 67, 68)
are all considered positive.

Equation (69) can be considerably simplified by making use of the
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fact that s;, which is much smaller than s, and s, can be omitted from
both denominators, and by using the relation s, = 1/s,. The simplified
expression for potential variation along a path midway between grid
wires is

By — B, = 2(—7.)log (s.8,) )1

Lt 2(+1) log
g

?,J
— 1l (70 esu)
Sg

For a path midway between grid wires ¢’ = r, cos ¢’ = —1, so that
the two negative signs become positive, giving

Er — E, = 2(—1.) log (s:3,)

1 | 4 2(4rp) log |7
'8 Tp) 10 S_g

+ 1| (71 esu)

Equations (70) and (71) permit caleulation of the space-charge-free
potential for any value of x along the respective paths from cathode to
plate, provided —r, and -+, are known. Fig. 20 contains a typical
pair of potential distribution curves ealculated in this way.

Points desecribing the potential distribution along paths between
those for ¥ = 0 and ¥ = in can be determined by adding Equations
(66), (67), and (68), then using properly selected values of ¢’ in calcu-~
lating Ey — E,. Curves through points so located lie between the
two extreme curves shown in Fig. 20.

14, Charge Magnitudes. Suppose that the plate-to-cathode and
grid-to-cathode potential differences are specified, and it is required to
find the magnitudes of the charges —7, and + 7,. The path through
the grid wire intersects the grid surface at two points; for the one
nearest the origin r* = 5, — R’, and for the more remote oner’ = s, + R’.
Substitution of either value into Equation (70) gives the equation for
grid-to-cathode potential. Using the near point

— s R —1

— R’
st ]+2(+m log| £~

(72'esu)

E E, = 2(~r.)log (3638)

(

S

The second term in Equation (72) reduces to 27, log (R'/s;). In the
first term

2 — 1 = cosh?27nR — 1 = sinh? 2rnR = R” (73)

so that s2 — s;R’ — 1 = R’'(R’ — s;). The whole expression for grid-
to-cathode potential thus reduces to

I
E, — E, = 2(—7,)log s&.R" 4+ 2 (+71,) Iog%i— (74 esu)
(4

A similar expression for plate-to-cathode potential results if s, is sub-
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stituted for r* in Equation (70), and it is recognized that s,/s, > 1;
the form taken is

E, — E, = 2(—7,) log 83, + 2(414) log:—” (75 esu)
£

If the electrode geometry and voltages are given, Equations (74) and
(75) can be solved simultaneously for the charges ~r, and +r,
which can then be used in Equations (70) and (71).

In solving for the charges it is convenient to make use of four potential
coefficients, Ay, As, B, and B,, defined in such a way that Equations
(74) and (75) can be written as follows:

E, — E, = Ai(—7;) + B:i(+7p) (76 esu)

E,— B, = Ay{(—1.) + By(F7p) (77 esu)
Evidently ,
Ay = 2 log s, R’ By =2 log}—:v

! (78)
Az = 2 log .8, B, =2 logz—:

Ai, As, B: are normally negative; B, is normally positive (primarily
because of the limitation of 2nR to values less than $).

16. Space-Charge-Free Off-Cathode Field Intensity. For reasons
suggested in the introduction, and explained in detail in a later chapter,
the normal tube current when space charge is flowing is primarily de-~
pendent on, though not proportional te, the value Fy of the electric
field strength that exists just off the eathode surface in the absence of
space charge, that is, in the space-charge-free condition. Since the space-
charge-free potential gradient dE/drx is normally positive at the off-
cathode location, Fy is normally negative. The sequence of potential
distribution diagrams discussed in the introduction, Figs. 4a, 45, 4¢, 4d,
illustrates the effect on F, of progressively reducing the grid voltage,
the plate voltage remaining constant.

In Figure 4a the off-cathode gradient (—F,) is large, favoring the
passage of a relatively large plate current as soon as the cathode is
heated enough to convert the surface charge on the plate into space
charge outside of it. In Figure 4b (—F;) is small, favoring a small
plate current. If, as in Figure 44, the off-cathode gradient is negative,
of course no electrons can leave the cathode, no matter how hot it may
be, for the electric field promptly pushes back any that may start to
emerge. _

Fach of the mutual characteristic curves of Figure 3a is the result of
a series of observations taken at successively more negative grid po-
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tentials, the plate voltage remaining constant. As the grid potential
is decreased the plate current becomes less and less, finally vanishing
at the point called “ cut-off.” Figure 4c illustrates the potential dis-
tribution at cut-off; Fis just zero, and there is no charge on the cathode.
If potentials are such as to make the off-cathode gradient even slightly
positive, there will be current flow when the cathode is heated; if such
as to make the off-cathode gradient negative, there will be none. Cut-
off marks the division point between current and no-current condi-
tions.

16. Dependence of F, on an Equivalent Voltage. The mathematical
statement of the dependence of Fy on tube geometry and potentials is
arrived at by recognizing that it is proportional to —r,, and that —r,
can be expressed in terms of an equivalent voltage which is a composite of
grid-to-cathode and plate-to-cathode potentials.

Let o, symbolize the space-charge-free surface charge density on the
cathode, in statcoulombs per square centimeter. Then

[ n(-Tc) (79)

This relation grows out of the fact that each centimeter of axial length of
the Z-plane figure corresponds to one centimeter length, perpendicular
to the paper, of the actual parallel-plane triode, Fig. 14. Since there are
n such sections per centimeter of height of the actual structure, the actual
surface charge density must be n times the cathode charge per section,
as stated by Equation (79).

As stated in the discussion preceding Equation (53), invariably 4r
electric flux lines attach to each statcoulomb of charge, so that 4ws,
flux lines must terminate on each square centimeter of cathode area.
Since the dielectric constant is unity, the electric field intensity just off
the cathode surface must have the same value as the flux density there,

that is
’ Fy = 4xe, = 4mn(—1,) (80 esu)

In order to facilitate expressing Fy in terms of an equivalent voltage,
as in Equation (82) on the next page, the solution for —r, obtained
from Equations (76) and (77) can be written as follows:

E
E 4
—r, = — (=B:/B)) i (= B:/By) (81 esu)
‘ A _Q_# ‘
' (—B/B)

Here E, and E, stand for grid-to-cathode and plate-to-cathode
polential differences, which were written as E;, — E, and E, — E, in
earlier equations, for example, in Equations (76) and (77).
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The following is the most useful form of the equivalent voltage equation
for Fy, in form similar to Equation (81):

Byt B
—tt,
d
Here E, + %’ is the equivalent voltage; the quantity g, called the

—F, = (82)

amplification factor of the triode, desecribes the relative effectiveness of
grid and plate potentials in the determination of Fy and so of plate
current. u is related to the potential coefficients as follows:

B,

k=g (83)

x is always positive, and is ordinarily greater than unity, that is, the
closeness of the grid to the cathode usually more than offsets the fact
that it is a grid rather than a solid plate. See also Equation (97).

The quantity d, is of course a distance in centimeters, as Fy is always
measured either in volts or statvolts per centimeter. d; will be referred
to as the spacing of an equivalent space-charge-free diode, for it is the
distance that must exist between two parallel metal plates (no grid
present) in order that the space-charge-free potential gradient between
thern shall be —F, when their potential difference is the equivalent vol-
tage. 'This is illustrated in Fig. 20. Comparison of Equation (82) with
{80) and (81) combined shows that

di= = (4 + 2 (34)

Thus both z and d; are properties of the potential coefficients, therefore
dependent on tube geometry only, and not at all dependent on electrode
potentials. The coefficients 4, and A; in Equation (84) always have
negative numerical values. See also Equation (98).

-+ 17. Electrostatic Coefficients; Cathode Charge Always Proportional
to an Equivalent Voltage. The significance of Equations (76) and
(77) and of the solutions obtained from them for —r, and +r, can be
somewhat clarified by a brief study of potential and capacitance co-
efficients,™ B9 B% If three conductors are insulated from but near to
one another, the placing of a charge on any one of them results in
changes in the potentials of all three, the magnitude of the potential
change on each being proportional to the amount of eharge placed on
the one. This same idea is expressed by saying that the potential of
each conduetor is a linear function of (not proportional to} each of the
three charges. The mathematical expression of such behavior in
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terms of the cathode, grid, and plate of a triode as a whole, not just the
transformed section, is

E, = Q::Pw + Qgpgc + QpPpc
Eg == Qcpcg + Qgpxz + QI'PM (85)
Eﬁ = Qcpcp‘"‘}‘ Qng? + QPPM

E., E, and E, are the respective absolute potentials of cathode, grid,
and plate. @), is the entire cathode charge, and @, and @, are similarly
the entire plate and grid charges. The P’s are potential coefficients of
a more general type than the 4’s and B’s of earlier sections, but like
them have values dependent only on interelectrode geometry. There
are in reality only six P’s, for invariably:

Py = Py; Pp= Poy; Pgy = Py (86)

In any real electronic device the algebraic sum of the three charges is
zero, and interest centers around differences of potential rather than
absolute potentials. By subtracting the first equation from the other
two, and eliminating ¢, by the substitution

Q=-Q+@) 7)

a pair of equations of the following type is obtained:
Eg - Es = Qcal + Q:)bl (88)
E? — B, = Qca& + Qpb2 (89)

(Compare these with Equations (76} and (77) which apply to the
transformed section only.) The a's and b’s, which are potential co-
efficients similar to the earlier A’s and B’s, are various additive and
subtractive combinations of the P’s. Equations (88) and (89) can be
solved for the @’s, thus

(B, — E)by —(Ep — Ec)by

Qc = albg -_ 1‘1261 (90)
(Eg - Ec)“% — (Ep — Ec)al
Q‘b B ab; — azby (91)
These expressions have the general form
Qc = (Eg - Ec)Cgc + (E# - Ec)ctc (92)
Q= (By — E)Cyp + (Ep — E)Cpyp (93)

The (s are called capacitance coefficients, and are of course dependent

entirely upon internal tube geometry.
Equation (92) is very useful in that it shows that the charge on the
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cathode is always a linear function of each of the two tube potentials
that are commonly measured. It can be rewritten as follows:

E, - E,
0. - ¢.| & - By + BB (94)
£ Pc
So it appears that the cathode charge must be in general proportional to

the equivalent voltage:
(B, — B) + Fp= Ee)

(95)

Since €, is almost invariably larger than C,,;, this equivalent voltage
is the grid-to-cathode voltage plus a definite fraction of the plate-to-
cathode voltage. The magnitude of the fraction is entirely dependent
on tube geometry and is, therefore, the same for all combinations of
plate and grid potentials.

The reasoning just outlined is a generalization of that presented in the
preceding analysis of a single transformation section. Equations
(76) and (77) are in fact the exact counterparts of Equations (88) and
(89). Consequently the solution for -7, can be put into a form
similar to Equation (94). Abbreviating E, — E, and E, — E. to E,
and E,,

— == C’gc[Eg -+ “C’&] (96 esu)
gc/ C pe
The primes on the C’s indicate that they are capacitance coeflicients for a
single transformation section only. Thus Equation (82) can be multi-
plied through by 4wn to make it resemble Equation (96); then after
rearranging 1t is apparent that

p=Cl/Clp 97)
;1
Cp = Tond, (98 esu)

1/7n is the area of one centimeter depth of plate, for the grid section before
transformation, and €’y just the capacitance of the corresponding area
of the equivalent space-charge-free diode.

The C’s of an entire tube are of course closely related to those for
individual sections. There are n transformation sections per square
centimeter of cathode and plate area, so that if there are S square
centimeters of area, it might be expected that C, and C, would be
simply SnC’y and SnC’,. Actually the capacitances between lead-in
wires and electrode-supporting structures make the true values of C,,
and Cp exceed this expectation. The values of €, and C, are im-
portant in radio-frequency tube applications 5 F. G, H. 1

The true overall capacitance coefficients can be measured without
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great difficulty. If, for example, one terminal of an alternating voltage
supply is connected to the plate, the other to the grid and cathode
(which must be cold), an alternating-current ammeter in the cathode
lead wire measures the rate of change of .. For this arrangement
E, — E, is zero, so that Equation (92) reduces to

Q. = (E, — E)Cy

Cp. can therefore be calculated if E, — E, and the 'cathode current are
measured. The procedure just described is not the most convenient
and practical method of measuring the overall capacitance coefficients,
but it illustrates their nature, and deseription of it illustrates the possi-
bility of direct measurement.

All of the C’s for which both subseripts are the same, such as C,, in
Equation (93), have positive numerical values. For if the grid and
cathode are tied together, so that E, — E, is zero, a positive value of
the plate charge @, must correspond to a positive value of E, — E..
All the capacitance coefficients having unlike subscripts, such as C,,
and C,,, are negative. For if the plate and cathode are tied together,
making E, — E. zero, and a positive charge is located on the plate,
all the flux lines whose plus ends attach to the plate must have their
minus ends on the grid, making the latter negative in potential with re-
spect to both plate and cathode. Thus if E, — E,is zero and @, positive,
E, — E, must be negative, so that C,, must be negative. Similar reason-
ing can be applied to all of the C’s whose two subscripts are unlike.

18. Amplication Factor x in Terms of Dimensions. The amplification
factor p of a triode is the most important tube constant. Equation (83)
relates u to interelectrode geometry by way of the potential coefficients,
and Equation (97) relates it to the capacitance coefficients for a single
transformation-section. By using the values of the B’s from Equations
(78) in (83), the direct dependence on Z-plane quantities is found to be

Bo= o (99)

This equation for g can be derived more directly! by making use of
the fact, mentioned in Section 15, that Fy is zero at cut-off; then,

according to Equation (82), the equivalent voltage E, + %—’ must

vanish, that is, at cut-off, u = — _gy (100)
4
Since F, is zero at cut-off, the cathode charge must also be zero at

cut-off; and it is possible to express E, and E, in terms of Z-plane
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dimensions by assuming equal and opposite charges on grid and plate,
none on the cathode. To maintain the equipotential nature of the
Z-plane grid figure, the grid charge must be located along the grid-wire

- ')

Cathode H 1T~
e

Grid Wire

Fia. 21.  Z-plane representation of the electric field map, in the neighborhood of
grid and eathods, for a triode at cut-off. No charge on cathode (see Fig. 4e).

center. The resulting Z-plane field is illustrated in Fig. 21; it is essen-
tially the field around a line charge on the transformed grid wire. With
—71, stateoulombs per centimeter along the grid center [compare
Equations (66-67-68)]

E, = +2r, loglsi (101 esu)
and ¢
E, = +2r, 1og§2 (102 esu)
so that at cut-off )
B log ? logi—"
no= - =2 — g’ =5 + £ (103)
£y log Lk log e
8 R

Equation (103) is identical with Equation (99).
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Dependence of x on actual triode dimensions is obtained by inserting
into Equation (99) the proper expressions for R’ and the various s’s,
from Section 11. Noting that log ¢ = 2xnb, there resulis® 17,

_ 2mnb — log cosh 2xnR
log coth 2an R

(104)

If 2xnR is very small, sinh 27nR is indistinguishable from 2rnR, and
cosh 2xn R approaches unity; log cosh 2xnR vanishes. Hence if the
screening fraction 2nR is very small, the expression for u simplifies

ta the following:

2anb (105)

log 5——5

For many commercial devices Equation (104) is appreciably more
accurate than Equation (105).

These various expressions for u deseribe & dependence only on geom-
etry of the grid and plate structure, and not at all on the location of the
cathode. The reason for the lack of dependence of x on cathode position
in these expressions is that the whole analysis is based on the assumption
that the Z-plane cathode circle is very small. u is the same, regardless
of distance from grid to cathode, as long as that distance is large enough
to make s, < s,

The potential line passing through grid-wire center merges with that
midway between grid wires as plate and cathode are approached, and,
as illustrated in Fig. 20, the joint potential line is straight for scme
distance out from both plane electrodes. Since F = —dE/dz, and
dE/dz is uniform over all parts of a straight line, the electric field F
and the flux density are practically uniform for a considerable distance
out from both plate and cathode. This is illustrated in the typical space-
charge-free field map of Fig. 22.

As long as there is a region between grid and cathode in which the
electric field approaches uniformity, Equation (99) for u is valid regard-
less of the form as well as the location of the cathode. Fig. 23 is a field
map for a triode in which the cathode is a set of filament wires parallel
to the grid wires. The value of g for this electrode arrangement, or for
a stmilar one with the filament wires parallel instead of perpendicular
to the plane of the paper, is exactly the same as it would be if the
cathode were a plane surface at some such location as the equipotentials
A4,

18, Spacing of Equivalent Space-Charge-Free Diode. It was pointed
out in the discussion following Equation (82) that the quantity d;
appearing there is the spacing, between paralle] plane electrodes, that
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would be necessary without a grid to enable the equivalent voltage
E, + % to produece the actual off-cathode space-charge-free gradient
—Fs  This is illustrated by the dotted “ equivalent diode plate” in

Grid Plane —.,,l

~(Cathode Platey

N

L7 0 e e D,

T

il

Ll

T 7
9 8
% g

Fic. 22. Typical space-charge-free electrie field map for a parallel-plane
triode, normal voltages.
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P

Fig. 20. A line having the slope —F, reaches the potential E, + E,
I

at just the distance d; from the cathode; this distance is the same for
any set of values of plate and grid voltages.
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The equivalent space-charge-free diode spacing is expressed in terms
of Z-plane dimensions by substituting values from Equations (78) for
the 4’s of Equation (84). The result is:

1 1
dy = log ﬁ’ R 2 nu s,sg (106)
l I Plane of l
¢ Grid Plane H F'\'ﬁ{:’:sm Grid Plane |
 Plate ! A }/ A \4 Plate~
% ‘ ! hH T
? ﬂ
Z
|
?
=1
=] L [ '

A A
Fi1a. 23. Electric field map for a triode with filament wires parallel to grid wires,
showing the intermediate equipotential planes A4°.

An alternate form of this can be obtained by eliminating B’. From the
expression for g, Equation (99),

log B =.log s, — llogs—” (107)
u 8¢
Equation (106) for d, can be written as follows:

1 , 1
d; —2—;_—n(—log 8 — IogR + = log )

865

and the value of log R’ from Equation (107) inserted. The following
expresgion for d; results:

&=t [log 1 L ?—] (108)
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The complete expression for Fy with this new denominator is as follows:

Eg—{—%’

! +-— log 7

29rn 2rnp S8

—Fy =

(109)

An interesting expression for d; in terms of actual triode dimensions is
obtainable by using in Equation (108) proper values of the various
§'s, as follows:

d1=a+a+b bt 2 log cosh 2xnR
i 2rnp
or
_ la+b p+2 + 2
d, = a[l + 2 4 2Zrnpa ]og cosh 2an] (110)

In many cases the term containing log cosh 2xnR is small relative to the
other two; a good first approximation, obtained by neglecting it, is*

dy = a[l +Llat b] (111)

a

The grid-cathode spacing a is evidently the most important single con-
stituent of this expression for d;, for b is usually less than a, and u is
rarely less and often much greater than 4. 8o the actual value of Fy,
being inversely proportional to d;, is very greatly dependent on the grid-
cathode spacing a.

The lack of dependence of p on a indicates that the relative effective-
ness of E, and E, in influencing the value of Fy is quite independent of
cathode placement.

20. Parallel Plane Grid and Plate Structure with Filamentary Cath-
ode. Many commercial tubes have plate and grid structures similar
to those of the parallel-plane triodes that have been analyzed, but have
cathodes consisting of filament wires or ribbons which make an angle
of nearly 90° with the grid wires, and lie between two parallel grid planes.
This type of construction is illustrated in Figs. 2 and 24. Since g i
not dependent either on the local geometry or placement of the cathode,

the equivalent voltage E, + By for such devices is calculated from actual

dimensions exactly as for a pamllel—pla.ne triode. However, the re-
lation between the off-cathode gradient and the equivalent voltage is

*R. W. King’s expression? for the quantity here called d; corresponds to the
following form of Equation (111):

d =§Ib+a<ﬂ +1)]
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very greatly dependent on the placement and local geometry of the
cathode. For example, it is apparent that Fy, must be considerably
greater for the arrangement of parts shown in Fig. 23 than in Fig. 22,
although u is the same.

The electric field analysis that leads to a determination of the de-
pendence of Fy on the equivalent voltage in tubes having a grid-like
array of filament wires, as in Fig. 24, can be
satisfactorily carried out by using an z, y trans-
formation for the grid and plate region and an
z, 2z transformation for the cathode region.
The results of these separate treatments must
then be merged.

Merging can be satifactorily accomplished
by an adaptation of the three-dimensional
Laplace relation, Equation (12}, to a set of
two-dimensional z, ¥ boundaries at grid and
plate, and of two-dimensional y, z boundaries
at cathode wires. The transformed representa-
tion of the two boundary structures is essential
to this method, but the Z-plane point of view
must be abandoned early in the merging process.

In estimating the merits of these various
analyses it should be borne in mind that the
chief utility of all of this field analysis lies in the
improved understanding it gives of internal
field relations, rather than in direct aids to
the design of specific apparatus.

21. Conformal Transformation of a Cylin- Fic. 24. Triode with grid-
drical Triode. Triodes in which the cathode like filament construe-

. . tion.

and plate are concentric cylinders are often used.

While it is difficult to analyze mathematically the electric field that re-
sults from such an arrangement if the grid wires are helically wound, it
is easy to do so if the grid wires are straight and parallel to the axis,
being spaced at equal intervals around a cylindrical surface concentric
with cathode and plate. Common sense suggests, and the suggestion
has been verified by experiment,™# that these two kinds of grids have
identical effects on the electric field at the cathode, providing the screen-
ing fraction, size of grid wire, and spacings relative to the other electrodes
are identical.

Figure 25 represents a cross-section, normal to the axis, of a cylindrical
triode in which the grid wires are parallel to the axis. 7, r,, and r, are
the radii of cathode, grid, and plate respectively, and R of the grid wires.




46 THE ELECTROSTATIC FIELD OF A TRIODE

There are n grid wires per centimeter of grid-cirele circumference, so
that the total number of grid wires is 2rrn. The screening fraction is
2nR as before; it is the fraction of the grid cylinder that is blockaded
by grid wires. The field must
be conformally transformed
into that of Fig. 15 in such a
way that the entire circum-
ference of the Z-plane grid
circle corresponds, as before,
to a section of the grid
arrangement on the actual or
W plane that includes just
one grid wire, located at the
middle of the section trans-
formed. The total angle of
centimeter of gra  bhe actual grid circle is of
grid wires is circle circumference  coyrse 27 radians, and it con-
L radians . . 4
nrg tains 2mnr, grid wires, so that

Fre. 25. Cylindrical triode with grid wires the angle corresponding to
parallel to axis. Region ABCD transforms to gnq grid-wire section is 1/nr
A'B'C'D’ of Fig. 15. &

Grid wires

radians. This is the value
that the W-plane angle ¢ must have when the Z-plane angle ¢’ is 2x
radians; so that in general:

1

2mnry

$ ¢ (112)

The most satisfactory transformation equation is!

r+gy\_ 1 Py
log( " ) = S, log (=’ + jy") (113)
Equation (113) can also be written
log (L &%) = 1 log r’e¢’ (114)
Ty 2mnr,
This expands into
log” + jo = ——logr’ + % (115
o8 T, 3 = Dnr, OB 2rnr, )

Equation (115) is in proper form to provide the desired relation between
the angles, as specified by Equation (112). The r, factor that appears
in the denominator of the left-hand side logarithms of Equations (113),
(114), and (115) is introduced for convenience; it makes the grid-
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cylinder radius the unit of measurement for the true tube dimensions,
and leads to the equation
log ' = 2xnr, log; (116)

£
for radius conversion between the two figures.
The meanings given by this transformation to the Z-plane dimensions
of Fig. 15 are as follows:

Cathode radius: log s, = 2wnr, 1og;° (117)
4

Plate radius: log sp = 2anr, log;—” (118)
g

Inner and outer extremes of the transformed grid wire oecur at &
and s;, where
log & = 2mnr, log (1 — }@) (119)

&

log s; = 2wnry log (I + ?) (120)
4

In all ordinary cases R <7, so that }}E < 1.
g

A general series expansion for log (1 + 2), where z is any variable, is as
follows ;7 16 Kol

log (1 +2) =z— 32+ 132~ 1 (121)
If z < 1 this reduces simply to
log(14+2)=2=2 (122)
By the use of Equation (122}, Equations (119) and (120) simplify to:
log 8 = ~2mR, or, & = & (123)
log s = +2anR, or, s = Pk (124)

These are the same as Equations (49) and (50), so that, for the usual
cases in which R/r, < 1

8, = cosh 2mnR (125)
R’ = sinh 2znR (126)

just as in the parallel-plane triode transformation.

These various relations permit adaptation to a cylindrical triode of
the potential distribution equations, the solutions for cathode and plate
charges, and the expressions for amplification factor and equivalent
diode spacing that have been derived for parallel plane electrodes.
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Figure 26 illustrates the potential variation along paths through and
between grid wires of such a cylindrical triode.

There are 2wnr, grid wires altogether, and each grid-wire section has
a eathode charge —r, so that the true cathode charge, r. statcoulombs
per centimeter of tube axis, has the value

e = 2mnr(—1.) (127)

and is negative if —r, is negative, as is usually the case. As in the
case of a parallel-plane triode, the current flow when the cathode is

"N P
560 7 r,=1.368
/ r.=0.0526
| rg=0.859
480 ~ R=0.01875
A 12 grid wires
equally spaced, and
f Tele parallel to cathode
wire
400 P €p=550 volts
/ £g= —39.3 volts
1
r
p
320 /- 4 Plate Surface of
® Equivalent Diode
L i 2
20-k%438 a £
8 )
Y E 3 4
LA 2 77,
519 w 5 7
1e0- F5 % 5 A
O r /] oA A
1 7 //\
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Fi1a. 26. Space-charge-free potential distribution in cylindrical triode like that
of Fig. 25.

heated is dependent primarily on the off-cathode space-charge-free
gradient, which will be called —F, as heretofore. In the near neighbor-
hood of the cathode the true field is like that due to a line charge of
strength .. In accordance with Equation (53) the field strength just
off the cathode surface must be

F, = 2770 (128 esu)
or

Fy = 4wn:7§ (—=7e) (129 esu)
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The value of — 7, is in no way changed from that given by Equation
(81), which can be written
5 1 B
—, = 5 (130 esu)
2 log s,R' + ;log 8:8g

u has exactly the same significance as heretofore; that is,

loglzi’
b= . (131)

S,
log 77

The denominator of Equation (130) can be rearranged in just the way d;
was in Equations (106-108), giving for —7, the expression

B+ 2
—_, = 2" - (132 esu)
2log sesg + = log = 52
m Sp

Using Equation (129),
E + 2
M

L (log—l- +llog 8p )

2anr, 88 B 887

Fo= — (133)

Equation (133) should be compared with Equation (109). It is evident
that the equivalent voliage to which Fy is proportional is of the same
form as in a parallel plane triode, but that the denominator in the ex-
pression for F, is changed.

22. Amplification Factor and Spacing of Equivalent Diode for a
Cylindrical Tricde. If the transforming relations of the preceding sec-
tion are entered in Equation (131), the following expressions for the
amplification factor of a cylindrical triode are obtained ;%5178

2rnr, log? — log cosh 2mnR
£

k= log coth 2an R

(134)

or, for very small values of 2nR,

2xnrg log%
p=—" (135)

log 2an R
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The equivalent space-charge-free cylindrical diode has the same cath-
ode and cathode charge as the true cylindric&l triode, It must have

a plate radius r; such that a voltage E, + B between its two electrodes

produces the value of cathode charge (and of — F,) that exists in the true
triode with grid and plate at E, and E, volts. Therefore in the equiva-~
lent diode, of plate radius ry, eathode radius r,,

E, + %‘ = —27c log;‘ {136 esu)

where 7 is, a8 in the preceding section, the charge per centimeter length
of true cathode, Equation (136) can be written

b4 B
27 = — ——r—’u (137 esu)
log ;}
Using this in Equation (128),
B+ 2
g
—Fy = —% (138)
r, log ;—1

for the equivalent space-charge-free diode, having plate radius r.
If the transforming relations are infroduced into Equation (133), it
appears that for the real triode

Eg+—

— Fy=
(1 + )log cosh 27mR:l

(139)

[IOg + Lig g

s 21mr

From a comparison of Equations (138) and (139) it is seen that r; must
be such that

10g;I = log;-‘ ) i]og (1 + )log cosh 2rnR  (140)

1, 2wnrg

In many cases the term containing log cosh 2xnR may be neglected
without introducing appreciable error, then, approximately,

log;'3 = log;‘L -+~1 =< (141)
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This approximate specification of the ratio /7, of plate radius to cathode
radius in the space-charge-free equivalent diode should be compared
with Equation (111). ;

23. Limitations to the Validity of Triode Geometrical Relations. The
derivations of potential distribution equations, charge densities, and
tube properties that have been given in the preceding sections have all
been based on the assumption that the array of three charges, —r, at
cathode center, -7, at grid kernel, and —r, at grid center, make the
Z-plane cathode, grid, and plate figures true equipotentials. Actually
it makes them only approximate equipotentials; the closer the approxi-
mation the more satisfactory are the results of the method.

Ordinarily the approximation is close enough so that uncertainties due
to entirely unrelated circumstances are of greater consequence than
those inherent in the method itself. End effects at top and bottom of
the electrode structure may distort the field, also, there is an element of
uncertainty in the relation, derived later in Chapter V, between Fy and the
tube current ; parallel-plane grid and plate structures usually extend along
both sides of the cathode, and must therefore bend around at each end of
the cathode, with consequent complication of the field properties. Also,
most tubes with parallel-plane grid and plate arrangements have fila-
mentary cathodes which are more nearly cylindrical than infinite-plane
surfaces, and must be treated by a concentric geometry method in any
close-up analysis of current flow; yet farther out toward the grid the
geometry is not concentric.

Although these various incidental aspects of electrode arrangement
and use are almost certain to introduce more serious discrepancies with
calculated predictions than arise from failure of the Z-plane line charge
system to match the true equipotentials perfectly, it is nevertheless use-
ful to review the limitations inherent in the analytical method itself,
in order to avoid absurdities in application. It is convenient to state
these inherent limitations as follows:

(1) The Z-plane grid figure of Fig. 15 is treated in the analysis as though perfectly
circular; actually it is very nearly circular as long as the screening fraction 2n R, which
satisfies the relation

onR = grid prf:’]ect,ed area
total grid-plane ares

(142)

does not exceed 3. Fair results are probably obtainable as long as 2nR does not
execeed %.

(2) The snalysis assumes that the plate circle is remote from the grid location,
that is, 85 is presumed to be much greater than s;. As s is rarely much greater
than unity (when 2nRE = } it iz only about 1.3), the requirement that sp > s; is
not greatly different from & requirement that sp>»> 1. Sometimes the plate is close
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enough to the grid to make this assumption untenable; it may still be possible to
use the general method by more extensive imaging.

(3) The analysis assumes that the cathode is far enough from the grid so that the
Z-plane cathode eircle is not much more than a point, on 2 scale that represents the
grid circle and its location satisfactorily. The reguirement that s & s; is not
greatly different from a requirement that s <€ 1, since s; is never much more than
unity. Again more elaborate imaging may be helpful if in a particular case this
assumption is untenable.

Praetically all ordinary commercial triodes whose geometry is such
as to permit any attempt to apply the simple analysis as here presented
have dimensions such as {o make the results reasonably satisfactory.
Even when the potential lines as plotted do not show as near ideal
behavior at the boundaries as might be desired, the average results,
relating to the amplification factor and average value of the space-
charge-free cathode gradient, may still be satisfactory.

24. Mapping the Fields. Potential variations in electrostatic
devices can, like the topography of a hilly country, be studied either by
means of profiles or of contours. The space-potential lines of Figs. 4,
20, and 26 represent, the simplest type of profile treatment, in which only
the two extreme potential profiles are shown. Such potential distribu-
tion diagrams are, in electronic work, ordinarily more useful and more
easily prepared than are field maps of flux lines and equipotentials,
which correspond to topographical contour maps.

It is nevertheless interesting and occasionally useful to know how
to map the space-charge-free fields. In some cases field maps are
obtainable only, or most easily, by the freehand field sketching method
that has been found valuable in electrical design problems.4 ¢ With
irregular boundaries, such as that of the transformed grid when the
screening fraction is more than about }, such procedure may be a neces-
sary preliminary to a knowledge of the potential variation. On the
other hand, the best method of obtaining some field maps is a graphical
transfer of values from a mathematically determined potential distri-
bution diagram; Fig. 22 was prepared in this way. Triode field
maps have also been obtained by various experimental methods.® 7

Whenever the Z-plane field can be satisfactorily mapped, either by
field sketching or by mathematical means, the actual field can easily
be obtained, for graphical transformation of the field intersections from
the Z-plane to the W-plane is very easily accomplished. Figs. 18 and 21
illustrate two situations in which the Z-plane field is of a familiar type.
Fig. 21 shows the shapes of the equipotentials and flux lines at cut-off,
that is, with zero charge on the cathode. Except in the immediate
neighborhood of the cathode circle it is a family of conecentric circles
intersected by a family of radial lines. Fig. 18 represents the field when
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the plate charge is zero. The equipotentials and flux lines in Fig. 18 are
families of nonconcentric circles except in the neighborhood of the
plate.4% The field maps in Figs. 18 and 21 are interchanged if —z is
used in place of z, and vice versa, in the original transformation, for then
the plate becomes a small cirele around the origin and the cathode a
remote outer circle.

PROBLEMS
Caarrer 1T

1. A “grid " of parallel wires, each 1 cm in diameter, is supported 10 meters
above the ground; the wires are 2 meters apart.

(a) Sketch and dimension the corresponding Z-plane figure, treating the ground
as the ecathode of Fig. 14; there is of course no ** plate "’ and no plate charge.

{(b) Sketch and dimension similarly the Z-plane figure obtained by treating the
ground as the plate of Fig, 14; there is in this ease no “ eathode,” and no eathode
charge.

(¢) The wires are 30,000 volts above ground potential. Find the charge on each,
first in statcoulombs per centimeter length, then in coulombs per eentimeter length,

{d) Find the potential difference between ground and a point midway between
any two adjacent grid wires, using the Z-plane figure sketched in (a).

(e) Repeat, using the Z-plane figure sketched in (b).

2. A certain Z-plane representation consists of (1) a plate, for which sp = 200,
(2) a grid wire for which 5; = 1.071, B’ = 0.389, (3) a very small cathode circle with
its center at ¢’ = x, r’ = 1.002 (approximately 1.00), and having a radius R"” =
0.0628. Note that this cathode s not located at the Z-plane origin. In fact, there is
no electrode at the Z-plane origin.
£ (a) Sketch the corresponding W-plane figure, and indicate on the sketch the di-
mensions of and between the various electrodes. Use n = 10 grid wires per cm.

(b) A point T lies, in the W-plane diagram, midway between the plate and the
plane of the grid wires and, also, one-quarter of the distance from one grid wire to
the next. State the values of z and y for this point, also the values of 7’ and ¢, and
show clearly its location on a Z-plane sketch.

(¢) In this Z-plane figure the cathode circle is small enough so that three line
charges, —r. inside the cathode, and +-7;, —7; inside the grid, can be used to estab-
lish the boundary equipotentials in the usual way. Show that the radius s from the
Z-plane origin to the grid kernel is now 1 instead of the usual value 1/s,.

{d) Derive expressions for the potential differences between plate and cathode and
between grid and cathode in terms of 7., 75, and the Z-plane dimensions. Uses; = 1,
not 1/sg.

(e) Derive an expression for the amplification factor y, following the general
method outlined in Section 18.

(f) If Ep = 500 volts, and Eg = —40 volts, what is the space-charge-free off-
cathode gradient?

3. A parallel plane triode like that illustrated in Fig. 14 has the following dimen-
sions:

g =0l16em 2nR = 0.12
b =008 cm n =10

Plate-to-cathode potential difference Ejp is 250 volts. Select a grid-to~cathode
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potential difference &y from among the following values: —17.5, —35, —~52.5, —70.
Then, using the selected value,

(a) Determine the values of —r; and 75, a8 used in Sections 12-18.’

(b) Using the results obtained in (a) ealculate points for and plot curves of space~
charge-free potential distribution similar to those in Figs. 4 and 20. It is suggested
that the following values of x be used: —0.16, —0.12, —0.08, —0.04, —0.02, +0.02,
+0.04, 4-0.08.

(c) Caleulate u from the dimensions, and find what value of the equivalent voltage
corresponds to the Ej and E; being used.

(d) Determine the value of di, the space-charge-free equivalent diede spacing, by a
graphical construction similar to that indicated in Fig. 20, and check by numerical
caleulation, following Beetion 19.

(¢) Find the value of —F,, the space-charge-free off-cathode gradient; also find
the surface charge densities on both cathode and plate.

(f) What is the grid voltage at cut-off, if B, = 250?

4. (a) For a triode like that of Figs. 14 and 15, write an *, ¢’ equation for the
potential relative to the cathode at any point between the electrodes, that is, for any
pair of values of v and ¢’ (see SBection 13). Show how your equation reduces to
Equations (70) and (71) for specific values of ¢'.

() Convert the general equation obtained in (@) to an z, y equation for the poten-
tial distribution eurve corresponding to ¥ = }n, and plot such 2 curve, using the di-
mensions and voltages of Problem 3.

(c) Convert the general equation obtained in (g) into an z, y equation for the
potential distribution in the plane of the grid wires, thatis,z = 0. FPlot such a curve,
using the dimensions and voltages of Problem 3.

6. (2) Using the principles outlined in Section 21, determine values of 7., re, and
rp for a cylindrieal triode (like that of Fig. 25) that corresponds to the parallel-plane
triode of Problem 3. There are to be 18 equslly spaced parallel-to-the-axis grid
wires. The screening fraction, true grid-wire radius, and values of s and g, are to be
the same as in Problem 3.

(b) Draw, for this cylindrical triode, the potential distribution eurves that corre-
spond to those prepared in Problem 3, using the values of plate and grid voltages
employed there. To do this, it is only necessary to ealeulate values of true radius r
that correspond to the values of z suggested in (3), Problem 3. The voltage values
will be the same as those used before, because the Z-plane figure is the same for the
cylindrieal triode as for the parallel-plane triode.

(¢) Determine the amplification factor, the value of n, the charge per centimeter
length of true cathode, the charge per square centimeter of plate surface, and —F,,
the space-charge-free ofi-cathode potential gradient, for this cylindrical triode.

6. (a) A cylindrical triode ia similar to that of Problem 5, except that the grid
consists of rings, concentric with the cathode, and having the same radius as the
grid-wire eylinder of Problem 5. The total length of all grid wires per centimeter of
axial length of tube strueture is the same as in Problem 5. Find the value of n,
grid wires per centimeter, and compare with that in Problem 5. If the grid-wire
radius is the same as before, what is the screening fraction, and how does it compare
with the former value?

(b) If the grid is a helix with a pitch of 1/n, instead of rings, and the grid wire the
same size as before, by what per cent are the total length of grid wire and sereening
fraction increased over their values in {a)?

7. A eylindrical triode consists of a cathode of eircular cross-section, radius 0.008
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em. The plate radius is 0.20 ¢m. The sereening fraction of the grid is §, and the
radius to the grid eylinder is 0.08 em. There are 20 grid wires per cm,
. {a) Make a sketch of the transformed (Z-plane) figure, marking on it numerical
values for s, sp, 8, B'.

{b) Determine the amplification factor.

(¢) Determine the radius r; to the plate of the equivalent spacecharge-free diode.

8. Caleulate x and d; for the geometry of Fig. 20, and check against the con-
struction shown in that figure.

8. Caleculate x and r for the geometry of Fig. 26, and check against the con-
struction used in that figure.

10, The cathode of a Genersl Electric FP-110 triode consists of a W-shaped fila-
ment located in a plane midway between two parallel-plane electrodes. One of these
plane electrodes is the plate, while the other performs the functions of the grid of a
triode of the usual type. Thus Fig. 14 is a fairly satisfactory representation of the
true geometry of the FP-110 tube, except that the left plate is a  plane-surfaced
grid ” rather than a cathode, and », R, are respectively the spacing and the filament
radius of the grid-like eathode.

Suppose that in a tube of this general type the plate and plane-surfaced grid are
0.2 em apart, and the grid-like cathode iz located midway between them. Radius
of cathode wires is .004 em and there are 3 cathode wires per centimeter.

(a) Cathode and plane-surfaced grid are at a common potential, plate 80 volts
positive relative to them. Sketch carefully the space-charge-free potential dis-
tribution curve for a path, from the plane-surfaced grid to the plate, passing through
a cathode wire, also for a similar path passing midway between eathode wires. No
mathematics should be used, but the principles illustrated in the development and
discussions of Figs. 4, 20, 22, and 26 should be borne in mind.

(b) Repeat with plate 80 volts above cathode potential and plane-surfaced grid
150 volts below cathode potential.

{¢) State whether or not plate current is to be expected in either the (a) or (b)
condition, or in both, explaining the reasons for your statements by reference to
the diagrams.

(d) Plate at +80 volis relative to cathode. Estimate the approximate potential
of the plane-surfaced grid at cut-off, explaining your caleulations by reference to a
diagram similar to those asked for in {a) and (b).

11. Sketch and dimension the Z-plane figure for the tube of Problem 10. Derive
a mathematical expression for the amplification factor of such a tube, using the
general method outlined in Section 18, but modifying it to correspond to the changed
electrode functions, Calculate the amplification factor for the tube of Problem 10.
What dimensions are of chief importance in determining the value of u?

12. For a cylindrical triode, what value of the ratio ry/ry will make g a maximum,
if 74, rp, n and R remain fixed as rg i8 varied?



CHAPTER III
ELECTRON BALLISTICS*

26. Acceleration Due to an Electric Field. Under certain conditions
electrons may escape from the confinement of metal boundaries. If
electric or magnetic fields exist in the region into which they escape, and
if there is a vacuum sufficiently high so that collisions with gas particles
are extremely rare, these fields will control the subsequent move-
ments of the electrons. This chapter analyzes various types of elec-
tronic motion that take place when the number of electrons escaping is
so small that their charges and movements have either negligible or
very small effects on the electric and magnetic fields.

Imagine a few electrons to be released from the more negative of two
parallel electrodes, such as those of Fig. 5a, between which there is a con-~
siderable difference of potential. Each electron experiences a force f
whose magnitude in dynes is the produet of the charge it carries (—e)
by the electric field intensity F, thus

dE
J= —eF = e i {143 esu)
or in practical electrical units:
= —eF10F = +e %‘g 107 (144 p)

The practical unit of F is the volt per centimeter. The numerical
values of the charge on an electron, and of the electron’s mass m,,
are ag follows X 7%

e = 4.767 X 1071 stateoulomb per electron {145 esu)
e = 1,590 X 10~% coulomb per electron (146 p)
¢ = 1,590 X 10~%® abcoulomb per electron (147 emu)

9.038 X 107% gram, or approximately 9.00 X 102 gram (148)

il

Me

"The ratio m,/m, of the mass of a gas particle or ion to the mass of an
electron is determined by multiplying the particle’s atomie or molecular
weight by 1824, which is the ratio of the mass of a particle of unit atomie
weight to the mass of an electron. Mathematically, the mass ratio is

me/m. = 1824 X atomic weight (149)

* The title used for this chapter was suggested by Dr. G. 8. Timoshenko.
56
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No particles having unit atomic weight exist, the nearest to it being a
hydrogen atom, with an atomic weight of 1.008, mass ratio 1847.

Just as a ball on a hillside is accelerated toward the bottom of the hill
at a rate dependent upon its mass and the slope (i.e., elevation gradient)
of the hill, so such an electron is accelerated toward the region of high
potential with a rate of change of velocity, dv/dt, that is dependent on its
mass and the potential gradient in which it lies; that is,

dv eF [ em
a- " m (secQ) (150 esu)

Equation (150) is a rearrangement of the force equation
= —¢eF = +m,§—; (dynes) (151 esu)

If the electrie field is uniform, the acceleration is constant. This cor-
responds to a ball rolling down a hill of constant slope; the time to travel
a given distance, and the average and final velocities, may be calculated
by the familiar laws governing uniformly accelerated motion. Behavior
in a nonuniform field may be treated by integration, as in the case of a
ball on a curved slope.

26. Velocity and Potential; the Electron Volt. The kinetic energy
aequired by a ball on a hill is independent of local variations in the slope
of the hill, being related rather to the total vertical distance traveled,
that is, to the decrease in potential energy. A ‘“falling” electron is,
like such a ball, continually converting potential energy of position into
kinetic energy, and the gain of one kind of energy must equal the loss
of the other.

Electric potential difference between two points is by definition the
work expended in moving a unit charge from one point to the other, hence
the change in ergs of potential energy corresponding to the movement
of an electron through a field is the produet of the potential difference E
through which 1t moves, in statvolts, by the electron’s charge e, in
statcoulombs. Equating this to the kinetic energy gained

Ee = 3ma? (ergs) (152 esu)

Both sides of this equation are in ergs. To make a quick conversion into
practical units it is only necessary to recall that the product of volts by
coulombs gives energy, but in watt seconds, not ergs. A watt second is
107, ergs; therefore, in practical electrical units:

Eel0? = tma?® (ergs) (153 p)

Equations (152) and (153) express mathematically the extremely
useful general principle that an electron which has ‘“fallen” through a
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certain potential difference E has perfectly definite values of kinetie
energy and velocity, regardless of the manner of variation of potential
between the starting and end points, or of the direction of the
velocity.

The energy possessed by an electron that has passed through a po-
tential difference of one volt is a convenient un#t of energy, called the
electron volt, sometimes abbreviated to ‘“‘volt.”” The use of this unit has
been extended to very many circumstances in which the energy meas-
ured is not at all the result of movement of a charged particie in an
electric field. For example, the average kinetic energy of thermal
motion possessed by molecules of air at 40° Centigrade is conveniently
specified as 0.0675 volt. This means that their average kinetic energy
is the same as that which would be gained by an electron or ion during
acceleration through a potential difference of 0.0675 volt. It does not
mean at all that an electron or an electric field has any part in creating
an air molecule’s energies. The electron volt is an extremely convenient
unit for measuring all kinds of energies of electronic magnitude.

If the energy in “wvolts’ of an electron s known, its velocity in centi-
meters per second can be calculated by solving Equation (153) for the

velocity, giving
7
= \/gErilo =503 -10VE (154 p)

Anyone engaged in electronic work or study is greatly helped by having
permanently available in a not too remote corner of his mind the deriva-
tion and form of Equation (154), if for no other reason than that of
having familiarity with the order of magnitude of electronic veloe-
ities.

It is frequently desirable to be able to determine quickly the velocity
of an atom or molecule whose energy in electron volts is known., The
initial form of Equation (154) indicates that the velocity is inversely
proportional to the square root of the mass, so that for these heavier
particles:

o 98 10 VE
Vg /me

Here m, is the mass, and m,/m, the mass ratio, of the particle con-
cerned; see Equation 149,

27. Directed Energies; Velocity Measurable in Square Root Volts.
The direction as well as the magnitude of the velocity possessed by an
electron is of importance. Suppose, for example, that an “electron gun”
{devices so described are used in cathode-ray apparatus) is employed
to shoot a beam of electrons at an angle into the uniform field between

(155 p)
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the plates of Fig. 27. Each entering electron initially possesses an
z-directed velocity component u, and a y-directed component v. The
former remains constant, the latter is modified by uniform downward
aceeleration due to the electrie field. The trajectory is parabolic, as in
the exactly analogous case of a ball thrown upward at an angle against
the force of gravity.

Only the y-directed velocity is effective in aiding the electrons to
reach the upper plate. For Negative Plate s
example, if E, is 200 volts, T

the beam can reach the upper
plate only if initially » 2 5.93 -
107 X V200, that is, the ini-
tial vertical velocity must
exceed V200 = 14.14 square
root volts. The horizontal
velocity may be anything at
all without affecting the ver-
tical travel., If the initial vertical energy is exactly 200 electron volts the
vertex of the parabola oceurs at the upper electrode, and the contact
there is a grazing one.

The two initial velocity components may conveniently be described
as VE, and V'E, square root volts. The total velocity is Vu? 4+ »?
or, in square root volts

total velocity = VVE, + VE, = VE, + E, (156)

If for example V'E, is V400 = 20 and V'E, is V300 = 17.32, the total
initial velocity in centimeters per second is 5.93 - 107 X V400 + 300 =
593 - 107 X V700, The initial angle with the horizontal is arc tan
v'38% = arc tan 0.866. The electron gun is said to be delivering
“ seven-hundred-volt electrons”’ and the electron beam is called a
“ seven-hundred-volt beam.”” The gun must contain provisions for
accelerating electrons through a potential difference of 700 volts.

The time required to reach the upper plate depends entirely upon the
initial upward velocity, and can be obtained by integration after writing
Equation (154) in the form

dt
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~5%-10 v " (157 p)
Here V' E, is a variable that describes the vertically upward velocity
at any point after release from the muszzle of the gun. In this example
E, is a linear function of y, because the field is uniform; if the initial
value of E,is 300, the vertical velocity at any ordinate y is + V300 — yP
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square root volts, and the time of flight to the top plate is

f=— Lt (UT__dy (158 p)
5.93 X 10"J _¢ V300 — yF

This integral is easily evaluated. The distance traveled in the z direc-
tion meanwhile is of course ut, where 4 = 5.93 - 107 VE,.

28. Electron Deflection in Passing Through Grids. Fig. 28a illus-
trates the space-charge-free potential distribution in a triode with plate

and cathode at a common
% potential, and the grid posi-
tive. Fig. 28b is a cross-
section showing electrode
arrangement. The general
¥ : nature of the potential dis-
¢ay tribution in the neighborhood
of the grid is not materially
altered by the passage of the
small electron current that is
presumed to exist owing to
thermionic emission at the
cathode. Most of the elec-
trons that leave the cathode
cannot reach the plate, for as
indicated by the trajectories
shown in Fig. 28b, each one
experiences as it passes the
grid a slight sideways deflec-
tion which converts part of
the energy of horizontally
directed motion that it has
received from the field into
vertically directed motion,
It must miss the plate by
just the amount of energy so
converted.

For example, imagine an
electron at T, traveling along
the trajectory drawn through
that point. Since it started from the cathode with zero initial velocity,
it must of course possess at 7' just Er electron volts of kinetic energy,
which is enough, if properly directed, to get it to the plate. But E,
electron volts of this is associated with vertical motion. The electron
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Fra. 28. Deflection of electrons in passing
through a grid.
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possesses, at T', Er — E, electron volts of horizontally directed motion,
but the plate is Er volts away, so that the electron must fail to reach the
plate by just E, volts.

One of the trajectories shown is the straight-line path of electrons that
pass exactly between grid wires, so experiencing no deflection; only
these can reach the plate. All others follow parabolic trajectories
whose vertex is slightly to the left of the plate. They are unable sub-
sequently to return to the cathode for the same reason that prevents
them from reaching the plate. They must oscillate back and forth,
like a ball rolling down one side and up the other of a trough, until
finally they happen to strike the grid and pass on into the grid circuit.
The period of oscillation can be calculated by proper use of Equation
(158).

A situation very similar to this exists near zero plate voltage in screen-
grid tubes and pentodes. The slopes of plate characteristic curves for
such tubes (see Chapter VI) as they rise from zero with increasing but
still small plate voltages, are dependent partly on the degree of disper-
sion experienced by the electrons in traversing the grid region, for each
increment of plate voltage makes it easier for deflected electrons to reach
the plate.

If the plate voltage is considerably positive, all electrons may be
expected to reach and enter it, but it is still true as before that any
vertical veloeity component acquired by an electron in passing the grid
does not subsequently change in value. If the plate is at a much higher
potential than the grid, the vertical veloeity acquired may become almost
completely masked by the large increase in horizontal velocity, but is not
destroyed. If the plate potential is just enough below that of the grid
to make the charge on the plate and the field outside of the plate zero,
the direction of flight will not change after leaving the grid region.
Manipulation of grid and plate voltages permits focusing the electrons
into narrow bands at various distances from grid toward plate.

In studying electron flow in cylindrically arranged triodes these
concepts must be somewhat modified. For example, a tangential
component of motion is in general similar to y-directed motion in Fig. 28,
but tangential motion ean, if it persists, bring electrons to a cylindrical
plate. However, in most real devices proportions are such as to make the
general overall behavior somewhat similar to that described for parallel-
plane geometry.

29. Force on an Electron Moving in a Magnetic Field. A moving
electron is a form of eleetric current, and, like a conductor carrying a
current, experiences in a magnetic field a force normal to the field and
to the direction of movement of charge. The force f on an electron
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having velocity ¢ in a field of magnetic flux density B normal to the ve-
locity is
f = Bev (dynes) (159 emu)

Note that e is in abcoulombs. Equation (159) ig very closely related
to the familiar expression

J = BiL (dynes) (160 emu)

which deseribes the forece on a conductor L centimeters long carrying 4
abamperes at right angles to the magnetic field. For if the conduetor
contains, in each centimeter of length, N electrons that are free to travel,
and if their average velocity is v, Equation (159) requires that the force
on the L centimeters of eonductor length shall be

S=Bewv-NL = B-Nev-L (181 emu)

This is identical with Equation (160), for Nev is the current 7. The
identification of Nev with current is analogous to obtaining the air flow
in a duct in pounds per second by multiplying the number of cubic feet
of duet volume per foot of its length by the pounds of air per cubic foot
and the velocity in feet per second.

In practical units Equation (159) is

Bey.
f= 10 (162 p)
In electrostatic units it is
f= —B—c‘i” (163 esu)

where ¢ is the ratio of the numerical values of the electronic charge in the
Magnetic two systems of units, and is numerically the

6 6 0 oS o o same as the velocity of light in centimeters per
6 o o OOOQesecond,t'hati.s,c=3><101°. '
6 00 flooo o The direction of the magnetic force on an
2 electron is obtained by the same method that
© O magneticlforce® O © 4o yis0d for determining the direction of the
@ 00 g @ © © © foree on a conductor in a magnetic field, bearing
© 0 0 Lo © 0 9 inmind that an upward-moving electron corre-
© ¢ 0 0/© © © 9 gpondstoadownward-flowing current. Asillus-
©c o0 06 0 © @ o trated in Fig. 29, an upward motion of the

F16. 29. Direction of mag- electrons in a magnetic field whose flux lines
. netic force on a moving gre pointed toward the reader results in a force
electron. toward the left.
30. Path Circular or Helical in a Uniform Magnetic Field; Super-
position of Magnetic Motions. The force on and acceleration of an
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electron in a magnetic field are at every instant at right angles to the
existing velocity, therefore the total velocity remains constant. If the
magnetic field is uniform the acceleration normal to the velocity is of
constant magnitude. The simultaneous existence of constant linear
electron velocity and uniform electron acceleration at right angles to the
direction of motion requires travel in a circular path, in entire agreement
with experimental electronic observations.

If the original velocity is not normal to the direction of the field, the
velocity component parallel to the field is not affected either in direction of
magnitude, while the velocity component normal to the field continually
changes direction, remaining constant in magnitude. The resulting path
is a helix combining uniform eircular motion with translation parallel
to the axis of rotation.

Equations for the circular motion are derived by equating centripetal
force to the magnetic force. If r is the radius of the circle

ma*?

- = Bey (184 emu)
or
m, v
T=—% (165 emu)
or, using Equation (163)
me v
r=-""% (166 esu)

Equation (154) permits expression of the radius in terms of the
electron’s kinetic energy, E, electron volts; thus

910~ X 595-10" VE, VE,
1.501 - 10-% B — 337 p (167 p)

For example, 400-volt electrons, in a field of 100 lines per square centi-
meter, pursue a circular path of 0.6 cm radius; the radius is 6 em for
40,000-volt electrons. This example illustrates the very great sensitivity
of an electron’s motion to even weak magnetic fields. The radius of the
path for heavier particles having the same energy is larger in proportion
to the square root of the mass ratio; this faet is frequently made use of
in the determination of the masses of particles of atomic magnitude.

Angular velocity w (radians per second) in the circular path is v/7;
on substituting this in Equation (165) it appears that

Be

my,

= 1.750 X 10’ (168 emu)

o =
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Thus the angular velocity depends only on the field strength, and not
at all on the linear veloecity. The time for completing one cireuit around
the circular path is obtainable from the angular velocity; it is:

—6
t= zzm‘ % = 0'3575; 10 (second) (169 emu)
In a field of 100 lines per sq em, this period is about sy of a micro-
second. The period for heavier particles is of course longer in proportion
to the mass ratio.

Magnitudes for a helical path can be caleulated by splitting the total
velocity » into two components, one normal to the magnetic field (vy),
one parallel to it (vg), the latter remaining constant. The angle, 6,
constant in a uniform field, between the directions of total velocity and
field is related to the radius of the helix as follows:

= == —g—sin ] (170 emu)
The angular velocity is the same as in a circular path, for it is wholly
independent of the electron’s energy. Hence Equation (169) gives the
time for one circuit around the helix for all values of 6. The pitch of the
helix is the product of the cyclic time by the velocity component parallel
to the direction of the field, and is therefore quite independent of the
velocity normal to the field. It is given by

= 27;m‘ % = 212"‘ %cos 8 (17Vemu)
Equations (170} and (171) can be expressed in terms of the electronic
energy by the aid of Equations (152) or (154).

An attempt to analyze helical motion by splitting the magnetic field
into components perpendicular and parallel to the initial velocity leads
to results which are not correct. Radius of curvature and distance
traveled parallel to the axis of the helix are directly proportional to the
respective components of the initial velocity. The eircular and transla-
tional motions calculated from the velocity components can therefore
be superposed on one another to determine the true helical path as long
as the motion remains within the extent of the uniform field. However,
radius of curvature is an inverse, not linear function of the magnetic
field strength, and travel along the helix not dependent on field strength
at all. Hence superposition of motions determined by resolving the
field into components is not permissible.

31. Opposing Electric and Magnetic Fields; Moving Magnetic
Fields. Fig. 30 illustrates a region which contains a uniform electrie
field and a uniform magnetie field, the two being at right angles to one
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another. The magnetic flux lines are directed toward the reader, that
is, in the +z direction. If an electron beam is shot upward from below,
the magnetic field tends to deflect it toward the left, the magnetic foree
on each electron being given by Equations (159) or {163). The electric
field exerts an oppositely directed foree, its magnitude being given by
Equation (143).

If these two forees are equal, the electrons of the beam are not deflected,
and travel vertically upward with constant

F E o Volts i

velocity, just as though neither field were 7 lem.
present. The conditions for no deflection @ o oloe o @
are obtained by equating the two force ex- Ao o ole o ol
pressions, with the following result: o © 0,0 B O
By = F¢ (172 esu) T 1o o alo 0 ©
where ¢ is as before 3 X 109, In practical v }Z © e goeo +
units © o 5000
k4
o o &o o o
By = F108 (173 p) e o ale o ot/
In the above illustration the electrons Ao o olo © © /:
have been thought of as moving upward 6 © ole o o
with constant velocity, and the magnetic é
field as standing still. It is reasonable to Eleton Gun £2
expect that the important matter is the —

relative velocity between the two, and such Fre. 30. Straight-line electron
a point of view does in fact lead to a correct  motion with balanced uniform
prediction of the motion. If the magnetic clectric and magnetic fields.
field is made to move downward with a velocity v, related to B and F
according to Equations (172) and (173), an electron released into the
field with zero velocity must stand still; the stationary electric and
moving magnetic fields eompletely neutralize one another.

It is more in acecord with the usual presentation of electromagnetic
theory to say that the motion of the magnetic field  generates” an electric
Jield that is equal and opposite to that already existing, that is, of value

Fg = — Bol0-® (174 p)

and that the electron stands still because the net electric field is zero.
Since the electron’s velocity is zero the magnetic field exerts no foree;
the effect of the motion of the magnetic field itself has been taken ac-
count of in terms of a ‘‘ generated electric ficld.” The * generated volt-
age” Eg, over the entire region between the plates, their separation
being I centimeters, is of course Fgl, that is

E; = — Blyl0—8 (175 p)
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The form of Equation (175) is familiar from the study of electric
machinery.

Thus the relative motion between magnetic field and electron that is
needed to avoid movement in response to the applied electric field is
exactly that needed to generate a voltage numerically equal to E in a
wire stretched from one electrode to the other. The internal electric
field produced by the moving magnetic field is the exact analogue of the
“generated voltage,” sometimes called ““back voltage” or “ counter
electromotive force,” in a direct current motor. The electron’s motion
is zero when the generated field is equal to the applied field, for exactly
the same reason that the armature current in a motor is zero when the
generated voltage is equal to the applied voltage. The voltage that
appears between the ends of a wire stretched from one electrode to the
other has the same polarity as the plates for the identical reason that the
generated voltage of a motor produces the same polarity at machine
terminals as that due to the applied voltage.

Analysis of the effect of a moving magnetic field in terms of the
electric field that it generates has the distinct merit of avoiding the con-
fusion that grows out of attempts to visualize or create experimental
arrangements in which magnetic fields “ move.” Spinning the poles
from which flux lines emerge does not necessarily spin the magnetic
field. Whatever kind of motion is set up must, to have any effect on
electrons, be of a type that would generate a voltage by magnetie flux-
cutting in a conduetor located in the region being considered.

32. Cycloidal and Trochoidal Motion in the Presence of Uniform
Electric and Magnetic Fields. Only under the very special conditions
described by Equations (172) or (173) is the force on an electron zero
when, as between the plates of Fig. 30, it is subject to the joint action
of uniform electrie and magnetic fields. In general the initial velocity
is not such as to make the opposing electric and magnetic forees equal
and opposite, and the electron pursues some sort of curved path. The
type of motion in any particular case can be predicted by recognizing
that it must be a composite of (a) the motion necessary to counteract
magnetically the electric force and (b) circular or helical motion as produced
by the magnetic field alone.

Suppose the magnetic feld of Fig. 30 to be moving vertically downward
with just the velocity necessary to generate a “ back ” field equal and
opposite to the applied field; the velocity must be related to F and B in
aceordance with Equations (172) and (173). If now an electron is
introduced with some initial veloecity it must pursue a cireular path, for
the motion of the magnetic field just destroys the effect of the applied
electric field; only the normal effect of velocity in a magnetic field
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remains. The relative motion between the eleciron and the magunetic
field is now a composite of circular and translational {ypes.

A case of particular interest is that in which the circular motion has
the same velocity as the translational, both having the balanced-force
value

v = ‘%} {176 esu)
also written
p = —glﬂs (177 p)

The radius of the circular motion is obtained by using this in Equation
(166); it is

~me F_ oF
ro= P _‘—8—2 = w'—“B (178 CSU)
or, in practical units,
r = 5.68—3’2 (179 p)

The angular velocity w produced by the magnetic field is independent
of the electron’s linear velocity. The value of w, converted into electro-

static units from Equation (168), is given by

w=-2B=1750 X 10'B (180 esu)
me

;
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F1a. 31. Cyeloidal path of an electron in uniform electric and magnetic
fields; zero initial velocity.

Now suppose that an observer rides with the magnetic field. Not
being conscious of his own downward motion, he thinks the electron is
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moving upward. To him it appears to have cireular motion super-
posed on straight-line upward travel of equal velocity, with resultant
cycloidal motion of the type illustrated in Fig. 31. The cusps at points
A indicate periodic recurrence of zero relative velocity, owing to the two
relative~velocity components being momentarily equal and opposite.

In physical problems only relative motion has real significance.
Therefore the electron’s movement, relative to the observer and to the
magnetic field must be the same whether they are moving or stationary.
Thus the eyeloid in Fig. 31 also illustrates the path pursued by an
electron released with zero initial veloeity into a sfationary combined
field. The point of release is the first of the periodically recurring
points 4.

Such a path as is illustrated in Fig. 31 would be traced by a point on
the rim of a wheel, of radius given by Equation (179), rolling along the
plane surface (cathode) from which the electron is initially released.
The center of the wheel translates at just the veloeity, given by Equa-
tions (176) and (177), necessary to counteract magnetically the electrie
force due to the applied field.*

If the electron’s initial velocity is not zero, its path is that traced by
the end of a spoke that either extends beyond or fails to reach the rim
of the wheel, which must have the same radius and roll at the same speed
as before. See Fig. 32. There are several distinet steps in the prediction
of the type of motion that must resulf from specified values of field
strength and initial velocity, as follows:

(1) The translational velocity, radius to rim of the rolling wheel, and angular
velocity are all independent of the electron’s initial velocity,”so are determined,
exactly as in the simpler zero-initial velocity case, from Equations (176) to (180).

(2) As illustrated for the start-off point A, Fig. 32, the initial magnitude and
direction of the circular velocity component must be such that vector combination
of it with the translational velocity gives the initial velocity whose direction and
magnitude are specified in the statement of the problem.

* Ag pointed out at the end of the previous section, the true motion of an electron
in a uniform magnetic field can be predicted by splitting the initial electron velocity
into components, determining the motion for each component, then superposing the
motions. When an electrie field is also present, an electron’s motion in g plane per-
pendicular to the magnetic field should be thought of as consisting of two com-
ponents, chosen so that one of them has the balanced-force direction and value
specified by Equations (176) and (177). If the initial velocity is in fact zero, the
second or remainder component is equal but opposite to the balanced-foree component.

Three forces must then be econsidered: (1) that due to the balanced-force velocity
compouent, (2) that due to the electric field, (3) that due to the remainder velocity
component. Forces (1) and (2), being equal and opposite, neutralize one another
so that the balanced-force component. of motion continues unchanged. Force (3)
results in a eireular component of motion, of radius and angular velocity as in Section
30. Superposition therefore predicts translational eombined with circular motion.
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(3) The length L of the spoke that traces the path is determined from the general
relation w = v/ L, where « is known from (1) and v is the cireular velocity, whose
magnitude remains constant at the initial value found as described in (2). The
initial position of the tracing spoke is of course perpendicular to the initial eircular-
velocity vector.

(4) The far end of the initial position of the spoke identifies the position of the
line of motion of the rolling wheel’s center. Since the radius to the rim is known,
the track can be located and the path graphically or mathematically constructed.
The periodicity of the motion is in all cases given by Equation (169).

i . .
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Fia. 32. Trochoidal path of an electron in uniform electric and
magnetic fields, initial velocity not zero.

The most interesting property of the simple cycloidal motion of Fig. 31
is that for any given electrode spacing there is a particular value of
magnetic field strength that makes the electrons just graze a plate
surface located parallel to the cathode. The value of this magnetic
field can be obtained by observing that the kinetic energy at the outer
extreme, D in Fig. 31, is all due to vertical velocity of twice the transla-
tional value, for at this point the circular and translational motions are
equal in direetion as well as magnitude. The electric field strength
can be expressed as E,/s, where s is the spacing between the plates,
and E, the plate potential. The resulting relation between voltage,
spacing, and field strength necessary to produce grazing contact at the
plate surface is:

_VE, [emg
s e

B {181 esu)

If the magnetic field is weaker than this, all eleetrons originating at the
cathode enter the plate; if stronger than this, no electrons enter the
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plate. In actual operation this behavior may be somewhat modified
by the presence of space charge, which has been neglected in this deriva-
tion, but the modification is slight and the general principles unchanged.

All of the relations that have been derived in this section ean be
obtained without having recourse to the * relative velocity " imagery
by solving the following pair of differential equations of the electron’s
motion:

AL
&y Be de (182 esu)

M=t T g

Here t is time, and z and y horizontal and vertical coordinates, all
measured from the instant and point of electron release or ejection.
The second derivatives represent accelerations and the first derivatives
velocities. For the zero initial velocity case, Fig. 381, dz/dt and dy/dt
are both zero when { is zero, so that the solution is very nicely handled
by the operational caleulus. The results of the solution are

z = % (1 —"cos wt)
{183 esu)
Fe .
y=7 (wt — sin wt)

where w is as defined by Equation (180).

These same equations for the electron’s motion can be written directly
from the knowledge that the path is a cycloid. Determination of
equations for the more complicated path of Fig. 32 is much more easily
accomplished by superposition of the translational and rotational
travel than by solution of the differential equations of motion,

33. Motion Between Concentric Cylinders with Magnetic Field
Parallel to Axis. Cylindrical electrode arrangements similar to that
shown in Fig. 33a, with a magnetic field parallel to the axis, cathode and
anode small and large cylinders respectively, have been used as ultra-
high-frequency magnetron oscillators.® 01121514 The oscillating proper-
ties are incidental to an electron behavior somewhat similar to that
between parallel plates with uniform field, as described in the pre-
ceding section.

If as is usually true the cathode radius is small relative to that of the
plate, an electron released at the cathode with negligible initial velocity
pursues a path that is approximately circular, and returns ultimately to
the cathode surface, as shown in the figure. The reason for this is that
except in the immediate neighborhood of the cathode the linear velocity
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is nearly constant. Fig. 33b illustrates the variation of potential in such
a region (no space charge) and Fig. 33¢ the corresponding variation
in an electron’s total velocity, There is a very rapid growth of velocity
in the near neighborhood of the cathode; but after the electron emerges
from that region its velocity, therefore also the radius of curvature of its
path, changes very little.

Concentric electrodes with magnetic field
(not shown) paraliel to axis.

? Potential distribution diagram.

|

(¢ Veloeity diagram.

Fis. 33.  Circular path of an electron in radial electrie field and axial magnetic field.

The important property of such a device is the relation between mag-
netic field strength, anode potential, and tube geometry that is neces-
sary to cause the path just to graze the anode. The velocity at the
grazing point is of course that corresponding to plate potential, and the
radius r, of the plate is twice the radius of the grazing path. The radius
of the grazing path is that due to movement at a velocity V' E, square
root volts in a magnetic field of strength B. The desired overall inter-
relation, obtained directly by the use of Equation (167) is

_ 53371 VE,
= 255

B (184 p)
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This is an approximate relation that is valid only when the plate radius is
considerably larger than the cathode radius. It is eorreet within about
one per cent when the outer radius is ten times the inner.

In actual devices there is considerable space charge near the cathode;
more elaborate theory predicts, and the prediction is confirmed by ex-
periment, that the resulting change in potential distribution in the
neighborhood of the cathode does not appreciably alter the validity of
Equation (184).

It has been stated that Equation (184) can be applied only in case
the plate radius rp is considerably greater than the cathode radius r.
It is desirable to show how to determine how much greater r, should be
than r, in order to keep the error small. Just as between parallel
plates, there are two differential equations of electronic motion; they
relate angular and radial motion respectively to the field forces. Since
at the grazing point the only kinetic energy is that due to angular
motion, only the angular-motion equation is needed to obtain an exact
expression for the critical magnetic field.

The electric field can produce only radial acceleration; the angular
acceleration must be the result of a torque produced by the action of the
magnetic field on a radial component of velocity, »,. This torque is
r - Be,; it can also be written Ber dr/df, which is the same as § Be dr2/dl.
Force is usually equated to mass times acceleration; it can also, and with
considerably greater generality, be equated to rate of change of momen-
tum. The two relations are identical as long as the mass is constant.
Torque can similarly be equated to rate of change of angular momen-
tum. Angular momentum is in this case the product of angular velocity
d¢/dt by moment of inertia ms2. The following equation *!* between
the torque and the time derivative of angular momentum

d do 1B dr®

Mt = er

a7 7 (185 esu)

can be integrated with respect to time by canceling a pair of time dif-
ferentials and adding a constant of integration, thus

d¢ , Ber?

@i

mgr? + k (186 esu)
The electron is assumed to start from rest at the cathode surface, so that
r = 1. when d¢/df = 0, which makes £ = — Ber.?/2c. Using this ex-
pression for k and rearranging,

2
. ‘g(1 - ’;—2-) (187)
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Here o has the meaning assigned to it in Equation (180), and is not
angular velocity referred to the polar axis.

Translational kinetic energy is 3ma®  Rotational kinetic energy can
be similarly expressed by substituting moment of inertia for mass,
angular velocity dg/dt for velocity. At the grazing point all the kinetic
energy is due to rotational motion, and is that due to plate potential, so
that

1 | @ 72
eEy = 3(mgry?) s\l = (188 esu)
Ty
which solves, for B, involved in the factor w, into

8m,c? 1 vVE,

B =
e ( . fﬁ) Tp (189 esu)
T2
or, in practical units
B =29 3.37 V2E,,
1T (190p)
rp? ">

When r, is ten times ., the simpler expression, Equation (184),is cor-
rect to within one per cent.

Hull and Langmuir®® have developed complete mathematical
solutions for the electronic path when, as in the above discussions, space
charge is neglected; also when space charge due to uniform electron emis-
sion from the cathode is considered. Their work shows that for either
analysis Equation (184) gives a satisfactory approximation to the eriti-
cal value of the magnetic field, if the ratio r,/r. is reasonably large.
This is true beecause the important modifications introduced by space
charge occur near the cathode, where the electron concentration is high,
whereas the value of the eritical magnetic field depends chiefly on the
electron veloeity at points remote from the cathode, which is dependent
almost solely on the plate potent.ial; see Fig, 33c.

2

It is interesting to note that the ter —~g % in Equation (187) plays
the same part in this concentric geometry that the balanced-force ve-
locity does in the analysis of an electron’s motion in uniform combined
fields between parallel plates. It describes the angular velocity that
the magnetic field must have at each radius r to> generate a “ back
field "’ equal to the existing eleetric field at that radius. This angular
velocity is exactly «/2 at the cathode surface, and becomes rapidly
smaller as the radius increases. Spinning the uniform magnetic field
as a whole can compensate for the electric force only af some one radius.
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The greater complexity of the electronic motion in concentrie than in
parallel-plane geometry ariges principally from this fact.

With B, E,, and r, related as in Equation (184), an oscillatory current
may be generated in an external resonant circuit, the period of oscillation
being the same as that required for an electron to traverse the nearly
circular path illustrated in Fig. 33a. If the path were exactly circular,
and traversed at uniform velocity, the period of oscillation would be
determinable from Equation (169). However, the true path is similar
to a cardioid, and is slightly longer than a cireular path. Furthermore,
at initial emergence from the cathode, and again just before return to it,
the electron’s velocity is distinctly less than that elsewhere (see Fig. 33¢).
The actual cyclic time is greater than as given by Equation (169).
Experiments have shown that the period may be expected to be about
23 per cent in excess of that predicted by Equation (169).

An often-used empirical equation between B and the wave length X of
the electromagnetic radiation from a magnetron oscillator is as follows:

A\B = 13,000 (190.1)

Either of at least two mechanisms may conceivably account for the
generation of oscillatory currents in an external resonant magnetron
plate circuit, as follows:

(1) If the plate voltage rises a little above the critical value, B and
r, being unchanged, electron flow into the plate and through the plate
cireuit causes a voltage drop in the resonant circuit element, with
resulting decrease in plate voltage below the eritical value. Electrons
emerging from the cathode immediately thereafter experience a weakened
electrie field, consequently fail to reach the plate, so that current flow
stops. The plate voltage therefore rises again; electrons subsequently
emerging from the cathode do reach the plate, and so on. The fransit
time required for electron travel from cathode to plate is a half period of
the eyclic behavior.

(2) Of course electrons start out imitially from all points on the
cathode; the electrons traversing many nearly circular paths like that
in Fig. 33a constitute an electric current flowing clockwise around the
inside of the plate (electron flow is counterclockwise). This circular
sheet of current will set up a magnetic * reaction ”* field which opposes
the applied magnetic field. Electrons starting from the cathode after
B is weakened by the presence of the reaction field pursue paths of en-
larged radius and so reach the plate. The current-sheet strength is
consequently cut to half or less of its former value, and the reaction field
is correspondingly reduced; the total field is therefore strengthened.
Electrons subsequently leaving the cathode pursue a small-radius path,
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and fail to reach the plate. The eyele is then repeated, the transit time
being a half period of the cyclic behavior.

In a “split-anode magnetron ” the anode consists of two semi-
cylinders, one on each side of the axis, connected through a resonant
circuit. Split-anode magnetrons are more commonly used than any
other type of short-wave magnetron oscillator.

34. Mass: a Property Due to Electric and Magnetic Fields. The
electric field between the plates of a condenser represents storage of
energy; so also does the electrie field due to its own charge that surrounds
an electron. Likewise the magnetic field that surrounds a moving
electron represents energy storage, in a form similar to that around an
inductance earrying a current.

According to modern physical theory mass is a manifestation of
energy; 855 the nature of the interdependence is indicated by the
equation

My = — (191)

which relates the electron’s mass m, to the energy storage W, (ergs)
in its electric field. ¢ is as usual the ratio between the esu and emu
values of the electrical units, also the veloeity of light.

If the charge on an electron is assumed to be distributed uniformly
over a hollow sphere of radius a

charge X potential 1 e &

This permits an estimate of an electron’s dimensions. Combining
Equations (191) and (192), and using m, = 9 X 1073, the radius is
found to be

a=141 X 107 % ¢cm (193)

It is very unlikely that the charge on an electron is distributed uni-
formly around a spherical shell, so that ¢?/2a cannot be more than a first
approximation to the true expression relating dimensions to energy
storage. These calculations merely indicate that an electron’s radius
should be in the neighborhood of 1 or 2 X 1072 e¢m. Field calculations
show that 99 per cent of the electric energy storage must lie within
2 X 10~ em of the electron’s center, because of the very great field
concentration.

356. “Rest Mass” of an Electron; Increase of Mass at Large
Velocities, The energy stored in a moving electron’s magnetic field
also contributes to its mass.® In general then the total mass m of an
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electron is

We , W
m= -5 + rh (194)

where W,, is the magnetic energy storage. At standstill there is no
magnetic field, so that W, is zero; only W,/¢® remains. Hence m,,
which was identified with W,/¢? in the preceding paragraph, is called the
“ rest mass ”’ of an electron.

In case an electron’s velocity approaches that of light, as happens
in some engineering devices, the contribution of the magnetic term
W,./c is not negligible. Determination of mass at these high velocities
starts with the observation that in all cases W, is the stored-up form of
the kinetic energy Fe acquired by the electron in traversing the potential
difference E of an accelerating field. That is,

W, Ee
iy (195 esu)
The electron’s mass can therefore be expressed as
m =m, + f—f (196 esu)
Since the rest mass m, is a constant,
dm d[Ee 1d
a‘ = Ei(?) = @ d-i (EG) (197 esu)

But the rate of change of energy d (Ee)/dt is power, and the power input
to the electron is the accelerating force times the velocity, so that

f-ld? ='§ (198 esu)

When acting on a particle of changing mass, foree is rate of change of
momentum, therefore

dm _ v d(mv) _v (@
G e @ on dm=-d C) (199)

If the indicated differentiation is carried out, the resulting expression
separated according to the variables m and v/c, and integrated using an
integration constant log 4, there results

logm = Iog—l—
2
v (200)
¢
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or
Me

7 o» (201)
-3

m =

for when v = 0, m = m, = A. Thus the electron’s mass approaches
an infinite value as its velocity approaches that of light.

36. “Transverse Mass” and * Longitudinal Mass.” Equation (201)
permits calculation of the mass and momentum of an electron of known
velocity. If an electron that has already acquired a high velocity is
introduced into an electric field, its acceleration is obtained from an
equation between the field force and the rate of change of momentum.
Mathematically:

= 2 (mor) (202)

where »7 is the velocity in the direction of the force. The electron’s
mass m is dependent on its total velocity ». It is convenient to treat
two distinct conditions: (1) the electric field perpendicular to the
direction of the eleetron’s imitial motion, and (2) the electric field in
the direction of the initial motion.

ity =¥v? L dy e
T Resultant Velocity =Yv +dvi=v (a) Transverse
; Added acceleration,
Yelocity, dvp dv

Original Velocity, v —" f= ™3
Electric Field
RS- Resultant Velocity =v +dy, . :
. elocity f {b) Longitudinal
. 7 ) acceleration,
Qriginal Velocity, v Added = d(my)
Velocity dv- dt
Electric Field

Fic. 34. Transverse and longitudinal aceeleration of a high-velocity eleetron.

In the first case the added velocity, being a differential increment
normal to the original, does not change the total velocity, for the vector
resulting from the addition of a very small velocity at right angles to a
very large one has the same length as the large one (see Fig. 34a).
Hence the mass remains constant at the value given by Equation (201),
and Equation (202) becomes

f=\7;"__7_zdz (203)
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This has the general form: force = mass times acceleration, and gives
rise to the name and symbol  transverse mass,” m,, of value:

my = _——1}2 (204)
Vi—-=
c

which must be used in determining a high-speed electron’s acceleration
in a direction normal to its existing motion. m, is 10 per cent greater
than m, when v = 1.26 X 10 em per second, 42 per cent of the veloeity
of light. In the next section m; is expressed in terms of the electron’s
energy in electron volts.

In the second case the change in velocity adds its full value to the
existing velocity, for the very small vector is added as an extension to a
very large one (see Fig. 34b); dvp becomes simply dv, and since m is
now affected by the change in total velocity, the time derivative of the
momentum contains dv/df in one term, dm/dt in the other. The force
expression simplifies to

me__do

J= (1—__'2-:—),.! & (205)

which gives rise to the concept * longitudinal mass,” my, of value

m,

o2

which can be used in calculating instantaneous acceleration along the
line of existing motion.

37. Relation of Velocity and Mass to Accelerating Potential. The
longitudinal mass is usually of academic interest only. Calculations
of the nature suggested by the name are accomplished by setting up an
expression similar to Equation (152) but more general in application.
The familiar expression » = ds/dt, in which ds stands for a differential
increment of distance, can be rearranged to read dt = ds/v, and this
value for dt substituted into Equation (205). Both sides can then be
integrated, the left side (in the form eFds) with respect to distance, the
right side with respect to velocity; there is no constant of integration
if the electron is considered to be initially at rest. The result is%
1
\/ v? (207 esu)

1=z

Ee =m,?
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For velocities small enough so that;~)<< 1 a binomial expansion reduces

Equation (207) to Equation (152).
Equation (207) can be rearranged into the form

‘/1._22____1__
¢ Ee (208 esu)

L et
or, in practical units
I
¢t 14+ E E (209 p)
510,000

If this expression is solved for » it gives the veloeity as a function of
the accelerating potential, as follows:

- - E \* (210 p)
vee (1 T 510 000)

which reduces to Equation (154) if E < 510,000 volts.

Equation (209) also permits expression of the “{ransverse mass,”
which must be used in estimating response to magnetic or transverse
electric fields, in terms of the accelerating potential, in the following
form:

/1 0 510,000 (211 p)
CZ

Equation (211) indicates that the per cent increase in mass is directly
proportional to the accelerating voltage. For example, an electron
that has been accelerated through a potential difference of 51,000 volis
has a mass 10 per cent greater than its rest mass, and experiences in a
erosswise electric field a transverse acceleration that is 91 per cent of
the value to be expected on the basis of rest mass. If the accelerating
potential is 510,000 volts, the mass increase is 100 per cent, and the
transverse acceleration is halved. These relations have been demon-
strated experimentally.

38. Motions in Irregularly Curved Fields. The motion of an electron
in a curved field is complicated by the carry-over into each new part
of the field of the directed inertia gained earlier. The general differential
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equations for motion in an electrostatic field, in rectangular coordinates,
are:

L
di*~  m, oz
d*y ¢ oF
& T m oy (212 esu)
dz _ _ ¢ 3B
a2 m, oz
Of course
oF oF 8E
”—E—F‘, '—a—y'—Fy, —79;— F,

where F,, F,, F, are the components of electric field strength in the

x, y, and z directions.
The motion of an electron in a curved magnetic field is subject to

another set of differential equations, as applied to the coordinate system
illustrated in Fig. 35, as follows:

d2x=£[3;£lg——3 dz]

ar  m dt Ydt
dy e dz dx
e E[Bxa — B, ZE] (213 emu)
o _e[pdr_ pdy
dr -m[B’ @ B dtJ

where B,, B,, B, are the components of magnetic flux density in the
z, y, and z directions. Treatises on partial differential equations and on
theoretical mechanies contain methods for the mathematical solution
of these equations for special cases. In combined fields, add Equations

Y
By{ ] ]
< fx=-Byevy
b2 - . L gz
fy= + B evy-Byevy V2= ¢

d? dy . 9z
M”a!i =g [Bzdt'ay at

Fic. 35. Components of force on an electron in a curved magnetic feld.

(212) in proper sequence to Equations {213), after converting the latter

to electrostatic units by dividing the right-hand members by c.
Simplification is sometimes possible by conversion into cylindrical

or polar coordinates. It is always important, as in all field problems,
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to consider symmetries and to take advantage of the known behavior
in certain types of localized regions,

If the shape of the field, either electric or magnetic, has been obtained
by flux mapping or other graphical means, so that its mathematical
expression is not known, or if the mathematical solution for electron
motions is hopelessly difficult, step-by-step graphical methods may
lead to a sufficiently accurate knowledge of the path. Such processes
are facilitated by recalling that, no matter where an electron may cross
a given equipotential, the magnitude of its velocity at crossing is fixed
by Equation (152) or an equivalent. And of course passage through a
magnetic field neither adds to nor subtracts from the magnitude of an
eleetron’s velocity; it affects only the direction.

In combined nonuniform fields the motion within any given local
region is (a) motion at right angles to the electric field with just the
velocity necessary to counteract magnetically the electric force at that
point, vectorially added to (b) circular or helical motion of angular
velocity dependent entirely on the magnetic field, and with radius and
initial direction such that when vectorially added to (@) it gives the
actual velocity at entrance to the local region. This is illustrated by
initial-condition vectors in Figs. 31 and 32.

PROBLEMS
Cuarrer 111

1. Tt is stated in Section 26 that the average kinetic energy of thermal motion
possessed by molecules of air at 40° C is 0.0675 electron volt. Only # of this
average energy is due to translational motion, the remainder being due to rotation and
vibration of the dumbbeli-like molecules that air consists of. What is the velocity,
in centimeters per second, of a nitrogen molecule that possesses the average trans-
lational energy? (Note that this is not the same as the average velocity ; see Chapter
X.) The atomic weight of nitrogen is given in Table V.

2. Suppose that, in Fig. 27, s = 2.5, and E; = 50 volts. Assume that both
plates are infinite in extent. State where, with what velocity componentsiand after
what time interval, the electrons first strike one or the other of the electrodes if the
gun shoots 100-velt electrons at angles with the horizontal of (a) 30°, (b) 45°, (¢) 60°,
{d) 90°.

8. Suppose that an electron starts with zero initial velocity from a point on the
cathode of Fig. 14 almost opposite a grid-wire center, so experiences considerable
y-directed acceleration before reaching the plane of the grid. Assume that it crosses
the plane of the grid at a point that is 64 volts above cathode potential, that its
y-directed component of velocity at the point of crossing is 40 X 107 cm per see,
and that it experiences po y-directed acceleration after crossing the plane of the grid.
Plate potential is 300 volts above cathode potential, and the plate is 0.4 cm beyond
the grid plane.

(a) State the electron’s z-directed velocity component at the grid-plane crossing
point.
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(b) What will be the electron’s y-directed velocity when it reaches the plate?

() What will be its z-directed velocity when it reaches the plate?

{d) How long after crossing the grid plane will it reach the plate?

{¢) How far will it move in the y direction meanwhile?

{f) How much energy, in electron volts, will it deliver to the plate on arrival there?

4. An electron crosses the grid plane with the same velocity components as in
Problem 3, and experiences no y-directed acceleration thereafter; but the plate is
now only 10 volts above cathode potential.

(a) How close to the plate will the electron get before turning back?

(b) To what potential must the plate be raised in order to permit this electron to
reach it?

6. The magnetic field strength inside a hollow cylindrieal current-carrying coil is
100 flux lines per square centimeter. An electron gun protrudes through the coil in
just the way one protrudes through the lower plate in Fig, 27.

(a) If the gun is perpendicular to and aimed directly at the axis, what must be the
energy of the electrons in the beam in order to make them emerge through a hole
in the coil just 90° around its circumference from the gun’s location?

(b) At what angle with the axis must the gun be inclined, and with what energy
must the electrons leave it, in order to make them emerge through the hole if it is
still 90° around the coil’s circumference but shifted 5 cm axially from the gun’s
location?

6. In a cyclotron a strong magnetic field makes fons pursue successive semicirenlar
paths of increasing radii, so that the overall effect is that of spiral motion. After
each semicirele of path the ions pass through a very short portion of arc within which
there is a tangential accelerating electric field, so that during each new semieirele of
path the ion’s energy is greater than during the last one. The electric field must be
periodically reversed in order to encourage rotation of the same kind at the beginning
and end of each semicircle. Suppose that heavy hydrogen ions (atomic weight 2)
are used, and that the magnetic field strength is 16,000 flux lines per sq ecm. What
must be the ftequency of the electric power supply for the accelerating field? 1If
each passage through the accelerating field increases the ionic energy by 25,000
electron volts, how much time will elapse between introduction of an ion at the
center of the spiral and its emergence at the rim as a 5,000,000-volt ion? What will
be the radius of the last semicircle before such emergence? What would the radius
be if argon ions were used?

7. Suppose that, in Fig. 30, F = 1,500 volte per em and B = 100 flux lines per
sq cm. What must be the energy, in electron volts, of the electrons that emerge
from the gun in order to:

(a) Make them pursue the straight-line path indicated in Fig. 307

(b) Make them pursue a cycloidal path like that illustrated in Fig. 317

(¢) How far to one side of the gun’s axis would the cusps of the cycloid He? (The
gun delivers electrons at a point in the path corresponding to D, Fig, 31.)

8. Electric and magnetic fields and an eleetron gun are located as in the previous
problem, and F and B bave the values specified there. The electrons pursue a
trochoidal path (Fig. 32) with tracing-spoke radius as long as the distance from the
gun to the plane of the eusps in the previous problem.

(a) What must be the kinetic energy, in electron volts, of the electrons as they
emerge from the gun?

(b) Find the velocity of the electrons when at the extreme left point of this trochoi-
dal path.
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(¢} At what angle, and with what energy, would such electrons strike a plane
parallel to the gun’s axis, and to the left of it a distance equal to the radius of the
tracing spoke?

(d) Same as (¢), except that the plane is only half as far to the left of the gun.

9. (a) What is the transverse mass of an electron when traveling with half the
speed of light?

() Through how large a potential must it “fall”’ to acquire this velocity?

{c) What will be the arc radius and time for one complete rotation in the ecircular
path pursued by such an electron when it enters a magnetic field of 1,000 flux lines
persqem?

10. Show that Equation (190.1) ealls for a cyclic period of eleetron motion approxi-
mately 23 per cent greater than that obtained from Equation (169), using the fact
that the product of A by frequency must equal the velocity of light, 3 X 10% cm per
BeC,



CHAPTER 1V
CATHODE RAYS

39. Cathode Ray: a Name for a Beam of Electrons. A small jet or
beam of electrons in a vacuum, which may be ejected from an “‘ electron
gun "' ig often called a cathode ray because it initially emerges from the
more negative electrode or cathode of the high-vacuum apparatus in
which it originates, and possesses many properties similar to those of a
ray of light. Just as a light beam can be reflected, refracted, and focused
by a system of lenses and mirrors, so an electron beam can be reflected,
refracted, and foeused by a system of electric and magnetic fields.
The branch of science called Eleclron Oplics® %% deals in detail
with the laws of behavior of these electron beams.

Cathode rays are used in laboratories for measuring very rapidly
changing voltages and currents, in television apparatus as part of
phenomenally high-speed switching devices, in hospitals for the pro-
duction of X-rays, and in general for a variety of experimental services.
It is impossible to predict the extent of future applications. The
major quantitative aspects of the behavior of cathode-ray devices
can be satisfactorily analyzed by studying the trajectory of individual
electrons according to the principles developed in Chapter III. The
effects of the space charge produced by the electrons themselves, that is,
the mutual repulsions of the electrons in the beam, make focusing
arrangements necessary.

40. The Cathode-Ray Oscillograph. Probably the best-known
device employing an electron beam is the cathode-ray oseillograph,*
used for measuring electrical quantities; Fig. 36a illustrates a simple
but typical geometrical arrangement. The cathode ray originates at
the cathode, passes through an accelerating field between cathode and
anode, through a hole in the anode, between one or two pairs of “ de-
flecting plates,” and finally terminates on a sensitized surface, which
is either fluorescent material or a photographic film, according to whether
visual observation or direct photographic recording of the beam’s
trace is desired.

The voltage to be measured is connected to a pair of deflecting
plates, so that as the beam passes between them the electrons experi-

* See reference books L, M, N, O, and reference articles 16 to 56, inclusive, in the

bibliography.
84
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ence a transverse acceleration. The resulting bend in the trajectory
makes them strike the sereen at one side or the other of the zero position,
the distance from the zero being proportional to the potential difference
between the deflection plates. If instead of a pair of deflecting plates,
a current-carrying coil is used, so placed that its magnetic field produces
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Fic. 36. Electrostatic deflection of the beam of a cathode-ray oscillograph.

a bend in the beam’s path, the deflection from the zero position measures
the current in the coil. The time axis necessary for any oscillographie
record is obtained by a movement of the beam at right angles to that
due to the deflecting plates or magnetic field. This time-axis or
“ sweep ' motion may be produced either electrically, by a second set of
deflecting plates, or magnetically.

41, Voltage Sensitivity. Electrostatically produced deflection of the
beam of a cathode-ray oscillograph is proportional to the voltage to be
measured, inversely proportional to the accelerating voltage, and de-
pendent on the geometrical arrangement of the parts.® 3 Figure 36b is
a detail of the electron’s path in the immediate vicinity of defleeting
plates of length a, spacing b, in centimeters. The actual form of the
field at the two extremities of the plates is as shown in Fig. 36¢, but a
sufficiently accurate analysis of the response of the beam can be ob-
tained by assuming a uniform field up to the ends of the plates and
zero field beyond.

The electrons enter the deflecting field with a velocity that depends
upon the accelerating voltage according to Equations (154) or (210).
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While in the deflecting field each electron has: (1) constant velocity
in the original direction, and (2) uniformly accelerated motion in the
direction of the field force, that is, at right angles to the original direc-
tion. The resulting path between the plates is parabolie, like that of a
ball which is subjected to a horizontal velocity plus uniform gravitational
acceleration, by being thrown outward from the top of a tower.

The vertex of the parabola is at O, the entrance to the transverse
field. The vertical component v, of the velocity remains constant,
the transverse component v, increasingly uniformly with time. The
path continues to be parabolic to the point, of emergence from between
the plates. There the deflecting field ends and », becomes constant at
a value which will be called v;, and the trajectory straightens out into
a direct line at an angle ¢ with the original direction. The deflection
of the beam’s terminus on the screen from the zero location depends
on the angle ¢ and the distance D from the center of the plates to the
screen. For a truly parabolic path the tangent to the trajectory
at the point of emergence @ passes through P, the midpoint of the field.

One component of the ultimate straight-line motion is »,, the other
is v3, the transverse velocity acquired while passing between the plates.
The deflection 2 on the screen is dependent on these velocity components
by way of the angle ¢, as follows:

x=Dtan¢=DZ—“ (214)

If the accelerating voltage is small, the deflection for a given transverse
field is correspondingly large, for each electron then moves very slowly
through the deflecting field, and is exposed for a long time (a/v,) to the
transverse acceleration dv,/dt. The dependence of v; on time of exposure
is expressed mathematically by the equation

_ 4 dv
Vg = % di (215)
Using Equation (143) for relating the transverse acceleration to the
field, recognizing that the strength of the electric field between the
plates is E;/b, and using Equation (152) to express the incoming ve-
locity in terms of the accelerating or anode voltage E,, Equation (214)

becomes
a E d

% E,
E; is of course the voltage that has been applied to the plates in order

to be measured. If E, is large enough so that the electron’s mass is
appreciably more than the rest mass, the incoming velocity and the

z=D (216)
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mass factor in the acceleration should be expressed as in Equations (210)
and (211), giving: .
a By (B, + 510,000)
b K, (E, + 1,020,000)

This reduces to Equation (216) if E,< 510,000 volts.

42. Magnetic Sensitivity. Magnetically produced deflection in a
cathode-ray oscillograph varies in direct proportion to the strength of
the field, inversely as the square root of the accelerating voltage, and is
dependent on geometrical proportions.® % Figure 37 is a detail of the
bend in the electron beam as
it passes through a magnetic

z=D

(217)
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to the path at O and @ are per-

pendicular respectively to the zero and deflected beam directions, Hence
the total angle of are traversed between these radii is the same as the
deflection angle . The deflection is usually small enough so that the
point P obtained by backward projection of the out-going beam line
may be identified with the midpoint of the field from which D is
mesasured; it is also small enough so that the angle ¢ is indistinguishable
from tan ¢ and from a/r, where a is the length of the magnetic field in
centimeters. As with the electric field

x= Dtan¢ (218)

Since tan¢ = ¢ = a/r, the deflection can be immediately evaluated
by using Equation (167} for the radius, as follows:

¢=D%=p_ 2% _ (219 p)
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43. Measuring-Circuit Relations. The deflecting plates of a cathode-
ray oscillograph have a finite electrostatic capacitance, of value, in
statfarads

8
C = i (statfarads) (220 esu)
or, in practical units
C = §3S;r7) {micro-mierofarads) (221 p)

8 being the area of one of the plates and b their distance apart, in centi-
meter units. Although this capacitance is rarely more than a very
few micro-microfarads, it may, if the frequency is very high or tran-
sients very abrupt, have an appreciable effect on the circuit whose be-
havior is being measured.

In some cases the distributed inductance and capacitance of the
deflection plate leads, combined with the terminal impedance of the
plates, form an oscillating system whose effects mask the voltage
variations being investigated. Proper lead-wire analysis treats the
ineoming wires as a transmission line, which the impulses to be recorded
traverse, as traveling waves, with a finite velocity of propagation.
These waves are subject to forward or reversed reflection at the ter-
minals, depending on the nature of the terminal impedances.’ %

In general, troublesome lead-in-circuit oscillations are not to be ex-
pected unless the duration of the transient to be measured is less than
one cyele of the natural frequency of the lead-in system. Damping
resistors, of magnitude dependent on transmission constants, placed at
the source end of the lead-in transmission system, are sometimes helpful
in stabilizing the response to very abrupt transients, and in eliminating
lead-wire circuit oscillations initiated by pick-up from auxiliary circuits.

In making magnetic-deflection measurements of currents, it is often
important to use deflecting coils with inductances small relative to
that of the circuit whose current is to be measured. The cathode-ray
deflection is proportional to the extent of the coils along the line of
beam travel, but not to their width, so that by using long rectangular
coils, no wider than needed to make the field as wide as the transverse
motion of the beam requires, the total flux, and with it the inductance,
may be kept small. Also, two small coils placed close in on either side
of the beam can produce the same deflection as two larger ones farther
out, and with very much less inductance. For given coil shape, indue-
tance is proportional to linear dimension. Bureau of Standards Hand-
book 74 is helpful in calculating inductances and field strengths of
coils, and electrostatic and magnetic properties of lead-in systems.”
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44. Photographic and Visual Sensitivity; Penetration of High-
Velocity Electrons. The blackening of a photographic film by an
electron beam varies in proportion to the concentration of electrons in
the beam, as the square of the accelerating voltage, and inversely as the
rate of travel of the trace on the film % Photographic response to
the electrons continues as long after they enter the sensitive layer as
they are in motion, and the depth of penetration varies as the fourth
power of the velocity on arrival at the surface. An approximate mathe-
matical statement® is:

vt— vt = 5.05sd10% (222)

where v, is the veloeity on arrival at the surface, v, that after pene-
trating to the depth s, and d the density of the photographic emulsion.

If the electron energies are expressed in electron volts, by the aid of
Equation (154), this takes the form

E? — E? = 4.04s5d10" (223 p)

where E, and E; are the kinetic energies in electron volts that corre-
spond to the velocities », and ». The extreme penetration is reached
when the energies of the electrons vanish; the maximum depth of
penetration is therefore

Ez2

= 1.04d10% (224 p)

s
It is not unreasonable to suppose that the density of the gelatin that
forms the base of a photographic emulsion is approximately unity.
In that case the photographic penetration of 100-volt electrons is about
2.5 %X 107 em, or about the thickness of one or two layers of molecules,
while 1,000-volt electrons may be expected to penetrate through about
one hundred such layers.
Sometimes the evacuated chamber is arranged so that the beam strikes
a thin metal foil (“ Lenard ') window through which electrons can
pass outward but no air pass inward, and registration is made on a photo-
graphic film just outside the window. Wood gives values of the
quantity 5.05d X 10# and corresponding densities for a few substances,
as follows?:

MATERIAL 5.058d X 10 Densrry
Alr. oo 0.02 X 10%2 0.004
Aluminum........... 7.32 X 10% 1.45
Gold................ 25.4 X 10% 5.08
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Using Wood’s figure for aluminum in Equations (223) and (224), it
appears that, although 60,000-volt electrons would be stopped com-
pletely by an aluminum window 0.006 em thick, a window three-
fourths of that thickness would permit them to emerge as 30,000-volt
electrons, capable of traveling a few millimeters in air before losing their
entire energy.

Visual observation of the beam’s irace on a metal or glass screen
is made possible by a chemical coating on the screen; the following sub-
stances are among those that may be used:

Zine silicate (“ willemite”) (Zny 8iO,) . green trace

Caleium sulphide (CaS) . . . . {nearly white when strong,

Calcium tungstate (CaW0Oy) . . . blue

An electron beam of moderate concentration and a few hundred volts
energy, too weak to register successfully on a photographic film, may
make a visible trace on a fluorescent screen. The light produced may
be so faint that it can be photographed only if the frace is eyeclically
repeated many times a second, permitting a time exposure.

Cathode-ray apparatus is available with screens so sensitive that the
trace made by a beam of a few thousand volts energy in crossing a six-
inch screen in 10 to 20 microseconds is intense enough to be photo-
graphed with an ordinary camera.®® Photographic registration
directly on film with a 60,000-volt beam can under favorable conditions
record a similar single trace produced in a few hundredths of a micro-
second.

45. Production and Focusing of the Beam. The cathode from which
the electrons emerge may be a heated filament similar to those used in
thermionic vacuum tubes, or it may be the unheated negative terminal
. of a glow discharge at a very low gas pressure. The first-mentioned
arrangement provides a beam with high electron concentration, and
with good visual and photographic sensitivities at moderate accelerating
potentials, but requiring special focusing provisions in order to secure
a fine trace. A cold-cathode beam operates with a high accelerating
voltage, usually more than 40,000 volts, so has rather limited voltage
sensitivity. It has satisfactory photographic sensitivity, and is kept
focused easily beecause of its low electron concentration.

Flexible control of the intensity of a beam from a thermionic filament
may be obtained by the use of a grid between filament and anode, the
mechanism of confrol being the same as that of the plate current in a
triode. The life of a filament of the oxide-coated type used for this
service is rapidly shortened by continuous use of an intense beam, yet
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not seriously affected by occasional very brief intensification, by means
of grid control, to permit photographing the fluorescent trace.

Proper focusing of the beam to produce a brilliant, narrow trace on
the screen requires that the radially outward acceleration of the electrons
due to their own space charge be either negligible or compensated for
by a reverse acceleration of correct magnitude. In cold-cathode in-
struments satisfactory focusing can be obtained by using a tiny pin-
hole to select a fine pencil of rays, providing a vacuum is maintained in
which dispersion by collision with gas particles is negligible. The elec-
tron concentration in such beams is small enough so that only a very
moderate enlargement of the ray occurs after passing through the pinhole.

The highly concentrated beam from a hot filament is less easily
focused than that from a cold-cathode .
source. The radial variation of potential fross Section . I
caused by the space charge of a cylindrical
electron beam of uniform concentration, in
the absence of any external field, is illus-
trated in Fig. 38, The potential gradients
are such as to spray the electron stream.
In the absence of any special provision for

slo%g Represents
ispersin,
Gsrsglente

Volts

. i Radius from
focusing there should result a moderately Cemer of Beam

increasing divergence of electron paths, 8s Fig. 38, Potential variation
illustrated in Fig. 39a, the space-charge within and near an electron
density and resultant outward acceleration  beam, due to the beam’s own

becoring less as the spread increases. space charge.

Such a beam may be electrostatically focused3 4 4.4 by a con-
verging field which gives the outer electrons a radially inward com-
ponent of velocity. The left half of Fig. 39b illustrates the shape of a
converging field between a focusing cylinder and, above and beyond,
a cylindrical anode. The right half shows the response to this field of
an otherwise divergent electron beam. Several radial cross sections of
the space-charge-free potential in this region are shown in Fig. 39¢;
they indicate the presence of a pronounced central high-potential
“ channel 7’ just above the focusing cylinder. The steepness of the
slopes of the sides of the channel in the lower-potential sections measures
the potential gradient that produces radially inward electron accelera-
tion. The lower boundary of the shaded region underneath the lowest
potential curve illustrates the nature of the 1-1 potential variation when
the electron beam is present. The downward shift from the top to the
bottom boundary of the shaded region is the result of the space charge
of the beam. A similar shift, not shown in the figure, oceurs in the
other sections.
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The helical nature of the electron’s path in a magnetic field is used in
producing magnetic focusing® % of the beam. The left half of Fig.
40q illustrates the nature of a magnetic focusing field, the right half the
response to this field of an otherwise divergent beam. As the electrons
emerge from a hole in the anode, already with somewhat divergent
velocities, they enter a magnetic field that is substantially parallel to the
axis of the tube. Each electron whose radially outward velocity is
appreciable pursues a helical path which in one complete revolution
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Fia. 39. Electrostatic focusing of a eathode-ray oscillograph beam.

brings it back to a point on the axis. Eleetrons having large initial
outward velocities have large diameter paths, but sinee the time for
completing a turn around the helix is dependent only upon the field
strength and not at all on velocity, all return to the axis after the same
length of time. Since all have the same axial velocity, they arrive at a
common focus. If the magnetic field is of sufficient extent there may be
more than one focus. Satisfactory results have been obtained with
instruments in which the deflection plates are placed near the first focus,
the sereen at the second.

Beam concentration may be obtained or aided by gas jfocus-
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ing.24.92.4.44 The mechanism of gas focusing is not completely
understood, but it can probably be at least partly attributed to electron
and ion activity somewhat as follows:

If there is an appreciable amount of gas present, yet not enough to
cause serious scattering of the electrons, some of the atoms lying in the
path are ionized, each atom so affected introducing one positive ion and
one clectron. The electrons thus pro-
duced travel radially outward very
rapidly, but the ions are so heavy that
they remain practically stationary within
the beam. The ions tend to make the
beam’s space charge positive rather than
negative, while the electrons give rise
to a negative charge on and near the indiviad View of ries
tube walls. If ionization occurs rapidly N
enough the beam becomes positively ~ \ o
charged, therefore at a higher potential -~y lorscent Sereen
than the tube walls. A converging
field then exists, with definite focusing
action.

The rate of ionization and consequent
strength of the focusing action is de-
pendent on the nature and concentra-
tion of the gas, the concentration of |
electrons within the beam, and the ! { ] {
accelerating voltage. The electron con- } N | |
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centration may be adjusted by filament-

temperature or grid control until the |/
focus is satisfactory; with too weak or / ;é‘;g‘i:, g Divereing ROCS
too intense a beam the electrons do not /' e fo If

converge at the screen. Some devices —~ Sf}e“/e""","ﬂ Cathode

which depend primarily on electrostatic .~ / I: {a)
focusing contain an inert gas at a very
low pressure to contribute to the sharp-
ness of focus.

46. Time-Axis Motion. The need for a satisfactory time axis on a
screen or photographic record makes it desirable for the beam to move
with constant velocity at right angles to the deflection produced by the
voltage or current to be measured. This motion can be produced by a
second pair of deflecting plates, called sweep plates. If this time-axis
or sweep motion takes place at a uniform velocity, the record has a
Uinear time scale, which is helpful in interpreting the significance of

Fra. 40. Magnetic focusing of a
eathode-ray oscillograph beam.
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voltage and current variations. For photographic registrations of a
single transient the beam need only sweep across the exposed film once,
but for the observation of recurring phenomena the motion must be
repeated periodically at a controlled frequency.

A saw-tooth sweep-plate voltage, illustrated in Fig. 41, is necessary to
produce satisfactory time-axis motion for observing cyclic phenomena.
Ideally the rising front of the wave should be a straight line of eontrol-
lable slope. The drop to zero should begin at a definite voltage that is
independent of the rate of rise, and should oecur with extreme rapidity
in order to make the trace of the beam on the return movement faint
enough to avoid confusing the forward image.

A controlled rate of growth of the front of the saw tooth may be ob-
tained by using the voltage of a condenser that is being charged from a
high-potential direct-current source through a resistance. The full
course of such a charging operation is indicated by the dotted line of
Fig. 41. At some point on this dotted line, which must be low enough so
that departure from a straight line is not appreciable, the condenser is

Exponential Voltage Rise

tCondenser being charged
through a Resistance)

m
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Fra. 41. Saw-tooth voltage wave form suitable for producing time-axis
(“sweep ') movement of a cathode-ray oscillograph beam.

abruptly discharged by means of a suitably adjusted spark gap or elec-
tronic device, Immediately after discharge the process begins again.
If R and C are the resistance in chms and capacitance in farads that are
in series in such a sweep ecircuit, and e, and Ep the instantaneous and
ultimate values of condenser voltage, which is applied to the sweep
plates, the circuit equation for the dotted line of Fig. 41 ig

o = B‘B(l — e‘ﬁ%) (225 p)

time ¢ being measured from the beginning of the rise. This makes the
initial rate of rise of each saw tooth have the value

d@c - _E_;_{I
()™ 78 @25 )
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in volts per second or per microsecond, depending on whether the fme
constant RC is expressed in seconds or microseconds. The sweep fre-
quency is this rate divided by the crest voltage of each tooth.

A great variety of sweep circuits, some wholly different from that just
described, have been devised to suit special conditions. For some pur-
poses a magnetic sweep circuit, that employs the straight-line portion of
a sine wave of alternating current as it rises through zero, gives satis-
factory results and is easily provided.

47. Cathode Rays as Current Carriers; Television. A cathode ray
carries an electric current, flowing within the tube in whatever direction
the internal electric and magnetic fields may order; these fields are
subject to the control of the operator. The current earried by a eathode-
ray oscillograph beam may be extremely small, or it may be as much as
fifty microamperes; the choice of magnitudes is based entirely upon
convenience and effectiveness in producing a visual or photographic
image. For other requirements it may be inereased. FEven fifty
microamperes is ample to operate many sensitive electronic devices, so
that the beam has all the potentialities of an extremely fast and flexible
switching device, depending on current-receiving arrangements within
the tube.

Up to the present time the only important application of the current-
carrying property of cathode rays has been in television scanning opera-
tions,®? For this service the fluorescent screen is replaced by what is
actually an almost infinite array of tiny condensers, having one, the
outer, plate in common, the other plate of each consisting of a localized
bit of photoelectrically sensitive material. Under influence of field
controls the beam scans this surface line by line as a draftsman cross-
hatches a section; the screen must be completely scanned from top to
bottom many times a second.

Lenses like those in a camera foeus an image of the action to be tele-
vised on the photoelectrically sensitive surface. Between successive
visits of the eleetron scanning beam each localized part of the surface
acquires, photoelectrically, a charge proportional to the loeal light in-
tensity and to the time since the last visit. At the beam’s passage, each
tiny condenser is discharged through the beam and an external circuit
connected to the metal backing plate common to all the tiny condensers,

The current in this external circuit thus varies rapidly, corresponding
to the changing light intensity at points successively scanned. This
variation is broadcast over an extremely high-frequency carrier wave
and made to control the beam intensity in a cathode-ray television
receiver. The receiver’s beam scans a fluorescent sereen in synchronism
with the scanning by the transmitter’s beam of the action image. There
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is thus produced on the receiving screen a light image that follows faith-
fully the local brightnesses and darknesses of the action image,

PROBLEMS

Cuarvrer IV

1. If, in Fig. 365, ¢ = 10 ¢cm, b = 2 em, and the electron beam consists of 60,000~
volt electrons, how large a value of Eg would make the electron beam just hit the
upper end of one of the deflecting plates?

2. If,in Fig, 37, a = 4 em, and ¢ = 10°, how far above the center line of the mag-
netic field does the intersection point P lie? Demonstrate that in Fig. 36b the vertex
P of the angle ¢ lies half-way between the ends of the plates.

8. If in a given cathode-ray oscillograph a deflecting voltage Ej and a magnetic
flux density B produce equal deflections when the accelerating potential is 3,000
volts, what will be the ratio of the deflections produced by the same Ez and B when
the aceelerating voltage is 2,000 volts, but the geometry unchanged?

4. Write an equation for a potential distribution curve, of the type shown in
Fig. 88, for a 1,000-volt electron beam 2 mm in diameter, carrying a current of 20
microamperes. Assume uniform electron concentration within the beam. Also
write an equation for the radial force on the electrons in terms of the radius.

B. If Fig. 40 represents a 1,000-volt beam, what magnetic focusing field strengthis
necessary to bring the electrons to 2 focus at a distance of 10 em from the anode?
If a given electron reaches a maximum of 0.5 em radial distance from the axis at the
point of greatest beam divergence, at what angle with the axis did that electron
leave the anode? Neglect effects of the radial electric field due to the beam’s own
space charge.



CHAPTER V
SPACE-CHARGE FLOW

48. Equilibrium between Energy, Flow, and Poisson’s Equations.
Poisson’s equation requires that in a region containing space charge the
electric field must vary from point to point, and cannot therefore be
everywhere zero. It must in fact have some value almost everywhere.
The particles that make up the space charge experience a foree due to
this field, and, if they are free to move, their motion constitutes an
electric current. Any region that contains space charge due to unat-
tached particles must therefore also contain an electric current, and there
is a definite interdependence between current density, space-charge
density, and potential distribution.

Suppose that electrodes like those of Fig. 5 are maintained at constant
potential difference by an external power source; then imagine the
region between them to contain a large number of electrons that originate
at the surface of the cathode and are driven to the anode by the electric
field. In such a one-dimensional region the simple form of Poisson’s
equation describes the local relation between potential and space charge

as

d*E
= e (227 esu)
The energy equation:
Ee = imp? (228 esu)
also written -
2E
p = \/ m,e (229 esu)

deseribes an electron’s velocity at any point for which the potential is
E; this velocity evidently increases during flight.

The equation of flow
J = pv (230)

relates current density J of space-charge flow (statamperes per square
centimeter), to space-charge density and velocity. There is an analogous
equality between air flow rate and the product of air density by velocity.
The equation of flow signifies that for fived current flow the space-charge
density must vary inversely as the velocity, the comparison usually being

made from point to point along the path of flow.
97
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Imagine the electron flow to be initiated by opening an electron gate
at the cathode; there must exist at first a current transienf; the current
initially inecreases with time, but at a decreasing rate. Eventually
stability is reached, the current and space-charge densities no longer
changing.

Since space-charge density no longer changes as time passes, electrons
must be leaving any selected volume element, traveling toward the right,
at just the same rate that others are entering from the left; hence there
can be nowhere any change from point to point in current density. In
this equilibrium state the current density J is the same for all values of z,
for much the same reason that the current must be the same in all
parts of a closed electric cireuit.

But v is not the same for all values of z, and, according to Equation
(230), p must vary inversely with ». Henece in the equilibrium state the
equation of flow requires a lower space-charge density in the high-
velocity region near the anode than in low-velocity, low-potential regions.

The statement of the equation of flow for transient conditions is

1 dF
J = pv+ o {231 esu)

where J is now total current density, not merely current density due to
space-charge flow. The first term, called the conduction current den-
sity, represents the movement of space charge, while the second, ealled
the displacement current density,4%BXVIl represents changes in flux
density that grow out of redistribution of charge density between the
plates. In a one-dimensional region the J of Equation {231) must be
the same for all values of z, for both transient and equilibrium conditions.
Under equilibrium conditions, however, the displacement current
vanishes, making the conduetion current alone invariant with z.*

49. Zero Gradient at the Cathode: a Condition for Maximum Space
Charge Consistent with Steady Current Flow. If the cathode is a very
plentiful source of electron supply, the intermediate space charge grows
very rapidly (Fig. 420) after an imaginary “ electron gate ” is first
opened at the cathode. In the presence of the resulting negative space
charge the potential line between the electrodes must be convex down-
ward, and the greater the density of space charge, the greater the flexion
must be.

* See papers and references given by Llewellyn ! for analysis of vacuum tube
operation with frequencies high enough so that the transit time of the electrons
between cathode and plate is an important fraction of the cyclic period of the cireuit
frequency. Under these conditions the equilibrium condition is never reached, and
the displacement term in Equation (231) becomes important.
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It is possible to imagine enough space charge existing between the
plates to force the potential line to dip below the cathode potential, as
injFig. 42¢, so producing a negative potential gradient just outside the
cathode surface. But even a slight dip of this nature shuts off the
emergence of electrons from the cathode, for the cathode surface merely
releases electrons. It *does not to any appreciable extent eject them,
and any electron released into a negative gradient experiences a force
which pushes it back into the cathode. So space charge large enough in
amount to produce an appreciable negative dip outside the cathode is
not consistent with steady current flow between the plates. (This
statement will require modification; see Section 97.)

7
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Fre. 42, Zero gradient at the cathode on equilibrium requirement for steady space-
charge flow with plentiful electron supply at the cathode.

Thus if the cathode ean supply electrong at a practically unlimited rate,
the space-charge density and flexion of the potential line must grow until
the potential gradient at the eathode vanishes (Fig. 42b). They cannot
grow beyond that point, because any further increase of space charge
shuts off electron emergence from the cathode altogether. Zero gra-
dient at the cathode is therefore the condition normally reached if the
eathode supplies electrons plentifully, and corresponds to the maximum
space charge consistent with steady current flow.

Since current flow in such a region is due to the movement of space
charge, this condition for maximum space charge is also the condition
for maximum steady current flow between the electrodes at a given
potential difference. No matter how profuse the electron supply at the
cathode may be, the energy, flow, and Poisson relations in combination
establish, for given geometry and electrode polentials, a definite upper limit
to the steady current that can be carried by space-charge movement.

50, Space-Charge-Limited Current Proportional to the Three~
Halves Power of the Voltage. The maximum current which, according
to the counsiderations of the preceding section, can be carried by space-
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charge movement between a pair of electrodes is commonly called the
space-charge-limited current. The current in most thermionic vacuum
tubes is normally space-charge-limited, the filaments being capable
when hot enough of supplying many more electrons then actually flow.
The magnitude of the space-charge-limited current that actually does
flow in an individual tube is controlled by electrode geometry and
potentials, not by filament temperature.

Under these usual conditions, typified by Fig. 42b, there is no surface
charge on the cathode, while the positive surface charge on the anode is
just equal to the total negative space charge. All the negative charge
lies between the plates. Now Poisson’s equation indicates a general
proportionality between potential and space charge if the integration
constants are zero, as they are when, as here, the potential and potential
gradient are zero at zero distance from the cathode. So it is to be
expected, and is in fact true, that the total space charge under equilibrium
conditions 1s proportional to the total voltage, for given geometry.

The shape of the potential line for the equilibrium space-charge-
limited state is the same for any overall voltage, the potential at a given
distance from the cathode being a definite percentage of the total volt-
age, regardless of what the total may be. Electron velocity is propor-
tional to the square root of the potential, hence for a large overall vollage,
the velocity of space-charge movement af a given location must be large,
but in proportion to the square root of the total voltage.

The space-charge content being proportional to the first power of the
voltage, and the velocity of its movement to the square root of the
voltage, the current, being the product of space-charge density and
velocity, should and does vary as the three-halves power of the voltage.
This reasoning is equally applicable to the current between concentric
cylinders, and, in fact, to that in any geometrical arrangement in a high
vacuum in which the electric flux lines and stream-lines of current flow
are coincident and straight. It is nearly true for many geometries that
seem only very roughly to approximate this requirement.

The proportionality factor depends on both the general form and
detail dimensions of the geometry; it is not the same for concentric
cylinders as for parallel plates.

61. Space-Charge-Limited Volt-Ampere Relation, Parallel Plane
Electrodes. Poisson’s, the energy, and the flow equations in combina-
tion give for one-dimensional geometry the differential relation

a*E 1

m,
i 47J % vV (232 esu)

The negative sign of Poisson’s equation has disappeared by virtue of
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p and therefore J being negative. The direction of motion of electrons
is positive, that is, for each electron & becomes progressively larger, but
this corresponds to a current flow in the opposite direction, for the
carriers are negative.

This equation is solved by using a mathematical trick that is em-
ployed in handling many other differential equations that are encoun-
tered in space-charge-flow problems. Both sides of the equation are
multiplied by dE/dz; then it is recognized that, on the left

dE d*E 1 d [dE\?
and that on the right
1 dE __dVE
ﬁ —d; == 2—62}}_ (234 GSU)
so that the first integration results in
dE\? m,
(é—i) = 1627 \/ pe VE (235 esu)

The second integration is straightforward after taking the square roots
of both sides. The integration constant for the first integration, and
the lower limit for the second, are zero because both potential and
potential gradient are zero when z = 0. The second integration has
the upper limit x = s, the spacing of the plates.

The final result when solved for J gives the following expression
for space-charge-limited current density between parallel plane elec-

trodes: 5% %% 7
V2 :
J= Y2,/ Bt (236 esu)

97 Me &

In practical units, and for either electrons or ions,

2331 X 10-° E,}

J =200 XV
x/mgf/ Me s*

(237 p)

E, is the voltage between the plates, m, the mass of an ion, The
inclusion of the mass-ratio factor in Equation (237) makes it applicable
to space-charge-limited currents made up of moving ions. For electrons
the mass ratio is of course unity.

No matter how many electrons a cathode may be able to supply,
geometry and potential do not permit the current to exceed the value
given by Equations (236) and (237). Of course, it may have a less value,
if the electron supply from the cathode is restricted.

The second integration can equally well be made between z = 0 and
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x = z, in order to desceribe F at any point between fixed plates. Making
this change, and solving the corresponding equivalent of Equation (236)
for E in terms of J and z, there results the potential distribution equation

2 i B
E = 3(3"2’;“‘_’ ) ot (238 esu)

Fig. 42b has been drawn in aceordance with this equation.

Fig. 42a illustrates the type of curve that is obtained from a solution
of Equation (232) in case J is limited, by low cathode temperature, to
some value less than the space-charge-limited current. In that case the
first integration constant is not zero, for there is a potential gradient
just outside the cathode, and a surface charge on it.

b2. Space-Charge-Limited Current in a Parallel-Plane Triode.*
The possibility of grid control of the space-charge-limited current in a
triode arises out of the fact that such current is dependent in a definite,
caleulable way on the potential gradient that would exist at the eathode
if no electrons were present in the interelectrode space, that is, on the
space-charge-free ofi-cathode gradient —F,. In a parallel-plane triode
like that of Fig. 42 the space-charge-free gradient is of course

—Fy, = E, (239)

8

By the use of this relation Equation (236) can be changed into the form

V2 \/? (=Fo)t
J = W E \/; (240 esu)
or
(—Fo)t
J=M
e (241 esu)
The meaning of M is obvious. In practical units Equation (241) becomes
(—Fo)?
J =2331 X 10—~
X Vs (242 p)

F, must itself be negative in order to permit any electron emergence.

In order to apply the relation described by these equations to a
parallel-plane triode, —F, must be determinable, and a value to be
used for the spacing s selected. The proper value to use for —F, is of

* The analysis here presented of the manner of dependence of plate current on
triode geometry and potentials is very different from the one given by R. W. King®
at a much earlier stage in the development of electronic science. However, the
theoretical formulas on which Kusunose’s work® in 1929 was based are close approxi-
mations to those derived here.
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course that existing between the cathode and imaginary equivalent diode
of Fig. 20, its value being

B, +Z2
[

—Fy = -

(243)

where d; is determinable from the reasoning presented in Section 19.
The correct value for s must certainly be less than the distance d,, for the
uniform gradient corresponding to F, does not exist that far out in the
actual triode; at about the grid location the potential line bends sharply
upward, under the usual condition of positive plate and negative grid.
53. Magnitude of the Spacing-Factor s, Parallel-Plane Triode. A
study of Fig. 43 is helpful in arriving at an understanding of the under-
lying meaning of the spacing-factor s. In this figure three different
plate spacings, s, 8., 83, are compared at a common value of Fy, there
being no grid. The three potential distribution curves are similar to

. ,, /
S2 ‘i //
///; 5 > - /// %
/ Potential Distributions : » /
7 %
> 5 W"Fal o . /
3 i

Distance WVar= Va5

Fra. 43. Effect on space-charge-limited current of varying the spacing between two
parallel plane electrodes, keeping space-charge-free gradient constant.

one another, as shown in the figure, but intersect the F; line at dif-
ferent points. The current densities vary inversely as the square roots
of the spacings, in accordance with Equations (240, 241, 242). Evi-
dently the value of J is completely determined when (1) F is stated,
and (2) the distance is specified at which intersection occurs between
the Fyline and a $-power potential distribution curve [see Equation (238)].

This must be true in a parallel-plane triode as well as between cathode
and lone plate, for regardless of what happens farther out, the actual
potential line near the cathode, where the field is one-dimensional, must
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be a part of some one g-power curve that is aimed toward some definite
point of intersection with the #; line. The local situation must be
of this same general type whether the electron acceleration is due to the
effect of a lone plate or of a plate and grid acting jointly.

The accurate mathematical determination of the proper 4-power
curve and of the manner in which 1t merges into a similar but
much steeper curve beyond the grid is a little difficult, but a close

graphical estimate is usu-
T Trp——— L4 ally possible. The solid
Yetween znl? i ;3;‘23. } /’/l b<?twefzn-gr1fi potential dlfs-
tribution line shown in
Fig. 44 is the result of
such a graphical estimate,

161~ charge-limited current flowing

Dotted lines show space-
// charge-free conditions

I

|

1

12 '

7k G/ 11 ,

5 < ! as applied to space-charge-
T / \\ 1 { free econditions identical
Y » . v with those of Fig. 20. The
S ] 7‘ ' Y { process of locating it may
Z il i be illustrated by reference
b T 1 ! to Fig. 45. The first step
Gradient ™ “,;o 'I is the placement of a
o w-i i family of $-power curves,
' |,"“‘ like those of Fig. 43, with
5T 02 03 0405 06fy) os their common origin at
Centimeters from Cathode zero volts on the cathode

Fic. 44. Space-charge-flow potential distribution surface. It is then neces-

i Hel-pl iode.
in & parallel-plane triode sary to seleet the one

4-power curve that provides the best all-round mateh with conditions
at and beyond the grid, and to estimate the nature of the departure,
near to and beyond the grid, from the initial $-power form.

All the deviations of the true potential curve from the dotted space-
charge-free potential line are of course due to the presence of space
charge, which is related to potential according to the two-dimensional
Poisson equation:

ax_i + a—y‘«' = --4qrp (244 esu)

The upper dotted line in Fig. 45 describes the variation of E with z along
a path between grid wires when p is zero, that is, when 82E/8z? =
—3*E/oy®. The introduction of & small amount of space charge makes
3*E/8x* more positive, and 8°E/3y* less negative, than without space
charge. Therefore to fit space charge-flow conditions properly a po-
tential curve must have at each value of z a flexion greater than that of
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the space-charge-free line, about in proportion to the local negative space-
charge density.

Of course space-charge density decreases rapidly as potential and
velocity grow (J = pv). Space charge density must be much less in the
neighborhood of the grid than near the cathode, and must become
smaller still as the electrons speed toward the plate. A low 4-power
curve, like No. 3 in Fig. 45, must, near to or just beyond the grid, bend
upward considerably more sharply than the dotted curve in order to
reach the plate at the cor-
rect potential. The corre- FE
sponding increase of its Dlotted “m!s demib}e
flexion over that of the {1 space-charge-fres
dotted curve indicates a potential varation
much more pronounced
negative space charge than
can exist except close to T
the cathode; the choice is §
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evidently wrong. A high
4-power curve like No. 1
must either bend down-
ward, or cross the dotted
space-charge-free line be-
fore the grid region is
reached, in order to reach 0 03— i — o5 el o7
the plate at the correct " Cenfimeters from Cathode
potential. A downward Fie. 45. Trial and error method of selecting true
bend along the path be- space-charge-flow .potential distribution curve in
a parallel plane triode.
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too high 7|
0.2 | | “ 2
This No. 3 curve too low &
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tween grid wires makes its
flexion negative, so less than that of the dotted line, calling for a positive
space-charge density, which is absurd. The other alternative, crossing,
only masks the same kind of absurdity, for once across, it must bend
considerably less sharply than the dotted line in order to reach the plate
at the correct potential, and such a less flexion also calls for positive
space-charge density.

Only a curve like No. 2, that lies very close to the space-charge-free line
in regions near to and beyond the grid, requires neither positive nor
excessive negative space charge to justify its shape. The increase in the
flexion of the true solid curve over that of the dotted one must become
less as the potential rises above zero, the change oceurring approximately
inversely as the square root of the potential growth.

The chosen {-power line, if mathematically prolonged according to
its initial form, must intersect the straight Fy line, ag at S in Fig. 44. The
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distance from the cathode to this intersection is the quantity s in the de-
nominator of Equations (240-241-242), so that the value of s is deter-
minable as soon as the proper $-power curve is selected.

The most important result of this discussion of the magnitude of the
spacing-factor s is the determination of the fact, illustrated by the
location of the point 8§ in Fig. 44, that s is approximately the distance
to the region of sharpest bend in the between-grid space-potential line,
so usually a little less than the cathode-to-grid spacing. s may be
expected for a given tube to be nearly but not exactly the same for various
combinations of grid and plate vollages, within the normal operating
range. The faet that s occurs to the one-half power in the expressions
for J minimizes the importance of the small changes in its value that
result from variations in tube voltages.

Knowledge of the magnitude of s is chiefly of value in comparing
current expectations for various geometries. In particular, a small
valve of ¢ results in a low plate resistance, defined in Chapter XI1. For
comparisons of the type suggested the use of the distance from cathode
to grid as an approximation to s is often justified. Thus the smaller
the cathode-to-grid spacing, the less the plate resistance.*

Of course parallel-plane triodes with actual plane-surfaced cathodes
are not used, yet this diseussion of them is of more than theoretical in-
terest, because the principles it illustrates carry over with proper modi-
fications into the consideration of cylindrical triodes, and of triodes
with filamentary cathodes and parallel-plane grid-plate structures.

54. Space-Charge-Limited Volt-Ampere Relationship, Concentric
Cylinders. For space-charge flow between concentric ecylinders the
three basic equations can, for the sake of convenience, be written in the
following forms:

2
@%;};72 = —2p’r (Poisson’sequation; see Section9) (245esu)
e = tmap? (the energy equation) (246 esu)
J' o= p'y (the equation of flow) (247)

*1f it is assumed that Equation (111) reduces to approximately di = a, (Fig. 20)
because u is ordinarily considerably greater than 1, and that the spacing-factor s is
also equal to a, the following approximate expression for J in a parallel-plane triode
is obtained:

(& + %)
J = 2331 X 104-—5,_,1— (244.1 p)

The plate resistance Rp of a triode is defined in Section 133 as 3E,/0lp (grid
voltage held constant, B and I varied). In general, any change in dimensions that
increases I relative to Ep will decrease Rp. Decreases in d; and in s are changes that
have such an effect. The'eathode-to-grid spacing is the most important part of d,,
also of s, Therefore the cathode-to-grid spacing must be small if R, is to be small.
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Here J’ is the current flow per centimeter of cylinder length, and
o’ = 2xrp, the space-charge density
per centimeter length integrated
around the axis at radius r. A
cylindrical shell of radius r, thick-
ness dr, and unit height, contains
o’ dr statecoulombs of charge, as
illustrated in Fig. 46. Solution Total Space Charge in Ring =277 p dr
of the differential equation into =
which these may be combined
leads, if the inner cylinder is the cathode, to an approximate form very
similar to Equation (236), as follows: %87

J' = 2 [@ <= 22 \/E B s e)
9r Vom, 7 9 Me Ts

or, in practical units, and for either electrons or ions,

J =9 2W_1£5 E ! (249 p)

Ring of Space
Charge Density p

Fic. 46. Relation between p’, 7, and p.

75 being the radius of the outer cylinder. These expressions are reason-
ably accurate if 7; is ten or more times the radius r, of the inner cylinder,
The exact expression is

—& %
Jt = o 2831 X 107 B0 (249.1 p)

in which #? is a known function of »;/r.. Values for #%, derived as de-
seribed in the following paragraphs, appear in Table I and Fig, 47.

The eurrent densily J., at radius », can be obtained by dividing
Equation (249.1) by 2xr., with the following result:

2.331 X 10-¢ E,}
\/mg/me rersf3?

J. = (250 p)

Equation (250) is interesting because of its similarity to Equation (237).
A ‘differential equation whose solution leads to the relations just
stated is obtained by combining Equations (245), (246}, and (247), and

is
P2E e /Me 1

2rJ

@log i = % VE (251 esu)

By making the substitution r = r.e*, which may also be expressed as
u = log r/r., and letting M = 2J" V'm,/2¢, where r. is the radius of the
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inner (cathode) cylinder, Equation (251) is converted inte

&8 Mr.e
- VE (252 esu)
If E is eliminated in favor of a new variable 8, defined by the relation
= § Mrefp? (253 esu)
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Fia. 47. Variation of 82 with r/r,, in the space-charge-limited current equations for
eylindrical geometry. See Table I, and Equations (249) to (264).

a differential equation between 8 and u is obtained, having the form

3ﬁ§§ ( )+4ﬁ +8—-1=0 (254 esu)
B can be evaluated in terms of « by assuming a power series, as follows
,8 = Co + CI’U, + Cgu2 + Ca'da + oo (255)

then evaluating the derivatives of 8 in terms of u and the C’s, entering
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them in Equation (254) and equating to zero the coefficients of each
power of u. The value of Cy is zero, because £ = 0 when u = 0. The
solution for 8, obtained by Langmuir,.6..627 jg

B=u~— 3w+ 5w — dfprf + - - - (256)

The useful form of the final solution is obtained by putting into Equa-
tion (253) the original meaning of M and solving for J'. 'The following
expression results:

22 e E,}

[ — =r

J 5 e 7. (257 esu)

Equation (257) becomes Equation (248) if 82 = 1. Values for 52 may
be found from Table I and Fig. 47. It will be noted that, for all values
of r,/r. greater than ten, 8% is within ten per cent of unity. There-
fore Equations (248), (249), and (250) are approximately true when
rs/r > 10. The following expression, similar in form to Equation (249),

is valid for all values of r./r.:

2.331 X 10°¢ B,}
Vmg/m, s

The equation for the potential distribution bhetween concentric
eylinders passing a space-charge-limited current is obtained directly
from Equation (283), and is

E = (§ M)3(rp*)} , (258 esu)

J'=2r (257.1 p)

or, in practical units

J’ 3 )
E= (217 X 2.331 X 10‘6) (rB)3 {258.1 esu)

i 5B, Space-Charge-Limited Current in a Cylindrical Triode. Accord-
ing to Equation (257.1) the general equation for space-charge-limited
electron flow between concentric cylinders, no grid, outer and inner radii
s and 7, is

2
J'= 27 X 2331 X 107020, (259 p)
Here 8% is as before a function of r,/r., having values as given in Table 1.
The space-charge-free off-cathode gradient in this geometry {{compare

Equation (138)] is
E,

—Fo =
T logzf
¢ e

(260)
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Therefore, in terms of Fo, the current per unit length of axis is

r\E
(“* F () lOg E)
3

The applieation to a cylindrical triode is made by expressing Fo in terms
of (1) an equivalent voltage, and (2) the radius r, to the plate of a space-
charge-free equivalent diode (see Section 22}, as follows,

J' = 2r X 2.331 X 10~ (261 p)

g4 B

4

—Fy = ——7“- (262)
7o log;l

Equation (262) may be substituted in Equation (261), giving

J’ =27 X 2.331 X 107 (263)

B2 is still a function of r;/r.. The radius r; in Equation (263) is analogous
to the spacing-factor s in the parallel-plane triode discussion (Seetion 53),
and r; to the distance d;. 'The true potential line, if prolonged indefi-
nitely in accordance with Equation (258.1), must intersect the space-
charge-free equivalent diode potential line at a radius r,; see Fig. 48,
Equation (263) can be rewritten to express J,, current density af the
cathode of the iriode by dividing by 2xr., with the following result:

(5]

J. = 2.331 X 10-° (264)

Equation (264) should be compared with Equation (250), and with
the expression obtained by combining Equations (242) and (243).

The sharpness of the bend in the between-grid potential line is if any-
thing accentuated by the change from parallel-plane to eylindrical
geometry, as a comparison of Figs. 20 and 26 will show. See also Fig, 48.
It is therefore reasonable to expect, as before, the correct value of 7
to be about the distance to the point of sharpest bend in the space-
charge-free potential line (compare Section 53).



CYLINDRICAL TRIODE 111

Actual estimate of the position of the true space-charge-limited po-
tential line is made by graphical selection from among a family of curves
that start from the cathode in accordance with Equation (258.1). The
principles used in making the selection are essentially the same as those
discussed in connection with Figs. 44 and 45. Detailed comparison
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Fic. 48. Space-charge-flow potential distribution in a cylindrical triode. The
solid line desecribes the potential variation along a path between grid wires when
space-charge-limited current is flowing. The dotted lines describe the space-

charge-free potential distribution.

of flexions does not have the simple significance that it had in Section
53, because Poisson’s equation for this geometry [Equation (27) with
the left-hand term in z omitted] does not contain the r-section flexion

directly.
It should be borne in mind that in the arrangement of electrodes



112 SPACE-CHARGE FLOW

usually employed the grid wires are wound around rather than being
placed parallel to the cathode wires. The radii r, and 7, may how-
ever reasonably be expected to have, as y is known to have, about the
same values whether ¢ or z is the second variable, for given grid-wire
radius and screening fraction. Equation (264), with r, chosen somewhat
smaller than r,, may therefore be expected to represent the actual
behavior reasonably closely.

If, as a first approximation, r, is used for r; in Equation (264), and
log r./r, eliminated by the use of Equation (141), the following expres-
sion is obtained:*

8
)
J’ = 2r X 2.331 X 108 £ - (264.1 p)
TP z
1Iog;r—
7811 4 - ;
“log;}

Here 2 is a function of r,/r.

56. Effect of Potential Variation along the Cathode on Space-Charge-
Limited Current. The equations of recent sections all indicate that the
space-charge-limited current density J, from a cathode, whether plane
or cylindrical, with or without a grid, should be proportional to the £
power of a voltage. In a diode, the voltage to be used is simply that

of the anode; in a triode, it is the equivalent voltage E, 4 % . These

* Equation (264.1) may be rearranged into the following form:
Ep\?
(2+2)
= (264.2)

7
1 log:—?
rorgf| 1+ = —,

T
‘“logr—g
[3

Ip = 2.331 X 10704

Here I, is total plate current, and A is plate surface area. FEquation (264.2) is in
substantial agreement with the similar relation given on page 1709 of Kusunose’s
paper,® which in complete form for a uniform-potential cylindrieal triode is, in the

present notation:
ol E 2
(5+3)
e (264.3)

]

Ag rg/r¢ is usually 10 or greater, 52 in Equation (264.2) is not greatly different from 1.

Iy = 2.331 X 1054

TP
log -*
The ratio :C is usually not large; for the geometry of Figs. 26 and 48 it is 1.17,

log ;f
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relations can be summarized in the form

J. = GEst (265)

where E, is now either the plate or an equivalent voltage, according
to the geometry used, and @ is a quantity dependent on geometry in the
manner indicated by whichever of the various earlier equations applies.
In all cases G contains the numerical factor 2.331 X 107¢ if practical
units are employed. If J. is everywhere the same, the total current 7,
to the plate is obtained by multiplying J, by the area of the cathode
surface.

All of the derivations leading to the general relation described by
Equation (265) are based on the assumption that the cathode is an
equipotential surface. In many real devices the cathode is heated by
the passage of an electric current, which causes a potential drop between
its two extremes. Since this drop may be several volts, hence compar-
able in magnitude with a triode’s equivalent voltage, it often produces
marked variations in J, along the cathode surface. This results in a
distinct modification of the volt-ampere relationship.

The nature of the effect of potential variation along the cathode
can be analyzed by assuming that Equation (265) holds for each in-
cremental length of cathode surface, but that the voliage to be used
varies from point to point.® @815 Thig assumption is satisfactorily
near to the truth as long as the spacing between electrodes is consider-
ably smaller than the extent of the cathode.

Suppose the voltage E,, plate voltage if a diode, equivalent voltage
if a triode, to be measured from the more negative end of the cathode;
also let

I = length of cathode (also of plate).
2z = distance along cathode from negative toward positive end; 2
varies from 0 to L.
w = width of cathode surface (=2ur, if eylindrical).
—F, = potential gradient along cathode due to heating current.
E; = potential drop between z = 0 and z = I due to heating current;
of course
Ef= —FJ}
8§ = area of cathode surface (=wl).
1, = total current to plate.

Now apply Equation (265) to an increment of length dz, width w,
with current dI,. In a diode, which of eourse has no grid

dl, = wG[Ey — (—Fg)tdz (266)
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If, as in a triode, there is a grid, so that E; is an equivalent voltage,
the grid and plate voltages change by equal amounts, so that

dl, = wG[E‘g +Fat W]’dz

giving
dr, = wG[Ea +F, (1 + i) z]gdz (267)

For the sake of simplicity the following analysis has in most cases been
stated for a diode. To make it applicable to a triede,

F’z(l -+ 1) and E; (1 -+ l)
& B

must replace F; and Ej respectively. This is illustrated by Equations
(266) and (267). Otherwise there is no change.

The total current is obtained by integration; two cases must be con-
sidered:

Case I. E; > E;in a diode, E, > Ef (1 + i) in a triode; the inte-

gration extends between z = 0 and z = 1, as follows for the diode

z=1
1, = wG f (By + Fu)bd
]

_gu_’g[(gb+pz)%— E,,] {267.1)
When numerator and denominator are multiplied by !, this becomes
28G
Iy =55, B — (B — Bl (268)
which can also be written
28G Ey §
b E-)]
Expansion of the quantity (% — 1)E by the binomial theorem shows
that when Ej/E; 3> 1, Equation (269) becomes
I, = SGEt (270)

as 1s to be expected. The infinite series that results from this expansion
converges rather rapidly; so much so that when E; is more than twice
E; the following expressions, employing only two terms of the series, are
very satisfactory approximations:
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For a diode
. 3 E
1, = SGE;} [1 -3 Ef] @71)
For a triode
3 NE
I, = SGE:;%[I —1 (1 + ;)Elb] (272)

Case II. E; < E; for a diode, B, < Ey (1 + %) for a triode; the in-
tegration extends only to the point along the cathode at which

B —E or E,,—E,(1 +£)

therefore Fy, become zero, for beyond there the off-cathode gradient is
negative, and no current can flow from increments exposed to a negative

gradient.
The integration yields, for the diode
238G
I, = 5E E# (273)
which can also be written
EN\g
-SGEf ( E;) (274)

The following general refationship, stated for a triode, includes Cases
Tand IT:
- —SG [E,(l + )] B : (275)
|2 (1+)

For application to a diode, use 1 in place of (1 + ;)
The function f [ ( + )} has the numerical values given in Table
11,2 which are in accord with Equation (269) when Ej > E’;(l -+ %) , and

with Equation (274) when E; < E;(l + i) The effect of contact differ-

ences of potential on I, can be aceounted for by including in the equiva-
lent voltage a term E’, defined by Equation (368), Section 102.

The two contrasting extremes are Equations (274) and (270). These
equations indicate a §-power variation when the equivalent voltage is
less than E;[1 + (1/u)], and a § power variation when the equiva-
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lent voltage is considerably larger than the filament voltage. Actual
tube characteristics ordinarily extend through both ranges, and when
plotted logarithmically are often found to follow quite accurately, and
over a considerable range, a power curve whose exponent is between
4 and §. Thus Fig. 40b shows that the Western Electric 101-F triode
average characteristics follow a 2.2-power curve rather closely.

An interesting feature of Equation (275) is the indication it gives that

plate current remains a function of the equivalent voltage E, + -%

even when potential variation along the cathode is taken into account.

b7. Capacitance between Electrodes Carrying a Space-Charge-
Limited Current. It was pointed out in Section 50 that the application
of Poisson’s law to a region containing a space-charge-limited current
indicates a direct proportionality between total space-charge content and
overall voltage. In this respect such regions behave as electrostatic
condensers, the total charge of one sign being in space-charge form, that
of the other residing, as in ordinary condensers, on the surface of the
more positive electrode.

The capacitance between two parallel plates in the presence of a
space~-charge-limited current, no grid, is the ratio of the total charge @
of each sign (most easily expressed in terms of the plate charge) to the
plate voltage. The total charge on a plate of area S square centimeters
is So, where o is surface charge density in statcoulombs per square
centimeter. 'Therefore, using Equation (20),

Q = ir (276 esn)
where F is the field strength just outside the plate. An expression for
Q in terms of geometry and fundamental constants can be obtained by
differentiating Equation (238) with respect to « to obtain F, then giving
to 2 in the resulting expression the value s, spacing between the plates.
Equation (238) can be used to express E;, the value of E when z = s
The capacitance C is then determinable as the ratio @/E;. The result is

N
=g {277 esu)
as compared with the value
8
C = Irs (278 esu)

in the absence of space charge.
A similar treatment of the region between two concentric cylinders in

the presence of space-charge-limited current, no grid, begins with



ENERGY DISSIPATION AT THE PLATE 117

differentiation of Equation (258) with respect to r in order to obtain an
expression for F. The plate-surface charge is Ir, the product of total
axial length I in centimeters by the charge r per unit length, and of course
F = 27/r, at plate radius r,. The ratio of total charge to potential
gives the capacitance as

1 d
C = 3F ar (r8%) (279 esu)

to be evaluated at r = r,. If as in most cases of interest the radius of the
plate is more than ten times that of the cathode, 82 is not greatly different
from unity and changes slowly; in that case

C = é (280 esu)
is a very close approximation to the true value of capacitance. The

corresponding space-charge-free capacitance is

1
outer radius
og| ———=—1] .
inner radius

C= (281 esu)

Numerieal calculations from these figures show that concentric-cylinder
diodes whose diameter ratio is greater than 10 all have a capacitance,
in the presence of space-charge-limited current, that is the same as for
a pair of space-charge-free cylinders whose diameter ratio is about
4.5t0 1.

All of this discussion applies directly, of course, to arrangements with
but two electrodes. The introduction of grids between parallel plates
or concentric cylinders may introduce important modifications as to
magnitudes if not as to principle.

The energy stored in the electric field can be determined by volume
integration of F?/8x; for the parallel-plane case, again without a grid,
it is ¥ QF instead of the space-charge-free value £ QF.

58. Energy Dissipation at the Plate. A space-charge-limited current
consists of electrons which fall freely from their point of origin at the
cathode to the point of entry into the plate. Each one arrives with an
amount of energy measured, in electron volts, by the potential difference
between the electrodes. Upon striking the plate this entire amount of
energy is converted into heat, just as the kinetic energy of a falling
pebble is eonverted into heat when it strikes the ground.

The total rate of energy conversion is the product of the energy brought
in per electron by the number of electrons arriving per second. The
rate of electron arrival is measured by the current I, between the
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electrodes, and the energy of each by their potential difference E,, so
that the rate of generation of heat at the surface of the plate is K1,
volts times amperes, giving watts.

The temperature of the plate must rise; as it is usually located in a
vacuum the major amount of heat dissipation from it is by radiation.
Radiant heat output from the plate increases as the fourth power of the
temperature, so that in general only a moderate rise is enough to produce
equilibrium between electrical power input and radiant heat output.
Since graphite is a better radiator of heat than most metals, plates made
of this material are sometimes used to permit operation at high eurrent
densities and high voltages. It is of course desirable with the same ob-
jective in view to arrange the geometry of the parts to permit direct
outward heat radiation from the plate to surrounding objects. Tubes
with water-cooled anodes are sometimes used in high-power radio broad-
casting circuits.

PROBLEMS

CHarTER V

1. (a) Assume that the potential distribution between two parallel plates, like
those illustrated in Fig. 42, is described by the equation E = Az?, where A is a
constant. Distance between the plates is s. Find the ratio of the quantity v at
z = %5 to that at # = %s. Is this an equilibrium potential distribution?

(b) Same as part {a), except that the potential distribution equation is £ = Br},
where B is a constant.

2. Imagine a hot plane-surfaced cathode, 4 sq em in area, whose thermionic emis-
sion cannot exceed 4.3 milliamperes per sq em at the actual operating temperature.
Parallel to this eathode, but at a distanee of 0.5 sq em, there isa “ plate ” at a poten-
tial 50 volts higher than the eathode.

(2) What is the actual current flow between the cathode and plate when the plate
potential is 50 volts above that of the cathode?

(b) When the plate potential is 100 volts higher than that of the cathode? (This
problem is intended to illustrate the contrast between space-charge limitation and
temperature limitation of plate current. In most actual tubes the current is space-
charge-limited rather than temperature-limited.)

3. A tungsten wire, 0,02 cm in diameter and 5 cm long, is to serve as the filament
(cathode) of a diode (two-electrode tube). The plate is to be a cylinder concentric
with the filament.

(a) Select the radius of the plate so that the space-charge-limited current will be 40
millinmperes per em of axis when the plate potential is 30 volts above that of the
cathode. Compare the results obtained by using Equation (249) with that obtained
by using Equation (257.1). (Use of this latter, more exact, expression requires a
trial and error selution.)

(b) How much power, in watts, must the plate radiate?

(¢) Find the potential at a point whose radius is twice that of the eathode.

(d) Find the velocity of travel of the electrons at that radius.

(e) Find the values of p, and of »’ as defined in Section 54, at that radius.
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4. Consider a cylindrical diode in which the ouler cylinder is the cathode, the inner
one the anode or “ plate.”” Radius of the anode is 0.01 em, of the cathode 0.2 cm.
Anode-to-cathode potential difference is 1,000 volts.

(@) Find the space-charge-limited current per centimeter length (J').

(b) Plot points for and draw the space-charge-free potential distribution curve.

{(¢) Plot points for and draw the space-charge-flow potential distribution eurve.

B. Combine Equations (242) and (243) into a single equation for space-charge-
limited current density in a triode. Then show that the manner of occurrence of g
in the resulting expression is consistent with the definition of u given by Equation
(490) in Chapter XII. Also show that the manner of occurrence of u in Equation
(264.2) is in accordance with Equation (450).

8. The correct values of ¢ and u, asked for in parts (d) and (¢) of Problem 3,
Chapter 11, are 0.207 centimeter and 4.86 respectively. What is the space-charge-
limited current density in the triode of that problem when Ep = 400 volts, E; =
—40 volts? Explain the nature of any uncertainties in your solution.

7. Suppose that, in the triode of Figs. 20 and 44, E; = Ep = +15 volta. Sketch
space-charge-free and space-charge-flow potential distribution lines, and ealeulate
the space-charge-limited current density flowing from the cathode. Use u = 4.05,
dy = 0.843 cm. Be careful to make use of the principles discussed in Section 53,
Explain the nature of any uncertainties in your solution.

8. Fig. 44 is drawn for the geometry and potentials used in Fig. 20. The values
of dy and u for that geometry are 0.843 cm and 4.05 respectively. Calculate the
space-charge-limited current density that corresponds to Fig. 44, assuming that S
is correctly located in that figure. How large a per cent difference in the current
prediction would result if S were assumed to lie in the plane of the grid?

9. Fig. 48 is drawn for the geometry and potentials used in Fig. 26. The values
of r and u for this geometry are 1.90 em and 4.05 respectively. Answer questions
relative to this cylindrical geometry similar to those asked in Problem 8 relative to the
parsllel-plane geometry of Figs. 44 and 286.

10. Space-charge-limited current flows between parallel plane electrodes, no grid,
as for example in position No. 1, Fig. 43. F, = 600 volts per cm, s = 0.75 cm.
How long does it take an electron to travel from cathode to plate? How long would
it take a lone electron to travel from cathode to plate in the corresponding space-
charge-free field? The method of solution is suggested by Equation (157).

11, (a) Estimate the current J’ per centimeter length of eathode for the tube
described in Problem 2, Chapter I1, when the space-charge-free off-cathode gradient
—Fy 15 100 volts per cm. Explain any uncertainties in your answer.

(b) To the tube of part (a) there is added a second plate, on the opposite side
of the grid-and-cathode plane, but at the same distance from that plane as the
first one. Estimate the value of J' if —F; = 100 volts per em. Explain any
uncertainties.

12. Cylindrical diode, 7. = 0.02 em, rp = 0.10 em; the diode is 3 em long, and the
drop Ey along the ecathode is 10 volts. Current is space-charge-limited. Find the
plate current when the plate voltage relative to the negative end of the cathode is
(2} 5 volts, (b) 10 volts, (¢) 20 volis.

13. Calculate the plate current for the tube and potentials of Figs. 48 and 26
if its length is assumed to be 5 em, and the drop Ef along its cathode 40 volts, Point
8§ is located as in Fig. 48. Plate and grid potentials as in Fig. 26, measured relative
to the negative end of the cathode. 7, = 1.90 em, u = 4.05.

14. Calculate the plate eurrent for the geometry and potentials of Figs. 44 and 20
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if the cathode is 5 cm wide and 10 em long, on the assumption that there is g voltage
drop Ef of 20 volts between one end and the other of the cathode. Plate and grid
potentials as in Fig. 20, measured relative to the negative end of the cathode.

15. Carry through the mathematical operations that lead from Equations (252)
and (253) to Equation (254).

16. Derive the differential equation, for space-charge-limited ecurrent flow
between concentric spheres, that corresponds to Equation (251) for concentric
eylinders. Then convert to an expression similar to Equation (254) by proper
choice of substitutions generally similar to but not the same as those used in deriving
Equation (254). (See reference No. 74 in Bibliography.)

17. If the electron emission from the cathode is limited by low cathode tem-
perature to some fixed femperature-limited current density Ju, the potential dis-
tribution between parallel-plane electrodes is as illustrated in Fig. 42(a). Here
dE/dz is not zero when z = 0, so that an integration constant 4 must be added on
the right-hand side of Equation (235). Derive an expression relating E and z for
the case of a temperature-limited current between parallel-plane electrodes. It will
be found convenient to use the substitution V'E = w, where u is a new variable.



CHAPTER VI
TRIODES, TETRODES, PENTODES

59. Grids Permit Electrostatic Control of Space-Charge-Limited
Triode Current. In the great majority of thermionic vacuum tubes the
electron current that flows between filament (cathode) and plate (anode)
is a space-charge-limited current; that is, its magnitude is determined
by geometry and potentials within the tube. The filament temperature
is kept high enough to supply much more current, as far as the number of
electrons available is concerned, than actually flows.

By modifying the potential applied to a grid located between cathode

and plate the equivalent voltage E, + —%’ can be changed, and so the

plate current modified, in accordance with the space-charge-limited
current analysis of Chapter V. Since the grid is usually maintained at
a potential negative relative to the cathode, electrons do not reach it;
it is not an emitter, so cannot release electrons. Carrying no current .
in either direction, its potential, and therefore the tube current, can be
controlled with the expenditure of extremely minute amounts of power
in the controlling eircuit. The control of plate current so provided is
essentially electrostatic in nature, in that it is accomplished entirely
by means of modification of the electrostatic field within the tube, the
only current demanded of the controlling circuit being the “ charging
current ' to the grid, dependent in magnitude upon interelectrode
capacitances.

60. Current-Voltage Relations in Triodes. For the reasons sum-
marized in Section 56, the total space-charge-limited current of a triode
should be expected to vary as the § power, or as the § power, of the
equivalent voltage, or according to some intermediate relationship.
The dependence should be different for a cathode heated directly by
passage of current through it than for one that is indirectly heated and
therefore at uniform potential. A tube of the latter type may be ex-
pected to follow a §-power law. The small effect of conlact differences
of potential between electrodes on the equivalent voltage is discussed in
Section 102.

It is found experimentally that plate currents of many triodes can be

satisfactorily expressed in terms of grid and plate voltages by an empiri-
121
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cal expression of the following form:
1,- B(E+2Y (282 p)

If this can be done, the current is actually — as expected — dependent
on an equivalent voltage. The amplification factor x in such empirical
equations is found to agree closely with that predicted from dimensions
of grid and plate structures by the methods of Chapter II. The actual
value of the exponent for any particular device can be found by making
use of the logarithmic form of Equation (282), as follows:

log I, = log B + n log (E’g -+ %’) (283 p)

Equation (283) has the general form
y=b+nx (284)

Here n and log B are respectively the slope and I, axis intercept of a
logarithmic graph like that illustrated in Fig. 49b.

I T veoe T 17
o 10P + ED\
14 y, 10— -1606+218 logw(Eg-{»}TI
12 b L
- / 08 |#=640
Z10 / - /
é‘ 8 h‘.'?.ﬂ.s /
£ =640 13 /
) 04 /
$ /| Q /
T 4 7
/ 0.2 /
2 L
o - [¢]
6 2 4 6 & 10 12 14 16 18 20 0 02 04 06 08 10 1.2
Eg+§—f logyy Eﬁ%&)
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curve in this figure represents any of triode. The straight line shown here
those in Fig. 3b. is a logarithmic graph of the curve

shown in Fig. 49a.

To the extent that the different plate characteristic curves, illustrated
in Figs. 3b and 50b, are parallel to one another, that is, identical except
for a horizontal displacement, the plate current is dependent on an
equivalent voltage. To the extent that they are not so identical, the
plate current is not dependent]purely on the equivalent voltage. Fig.
50b illustrates a kind of deviation from dependence on equivalent voltage
that is typical in lesser degree of most actual triodes: the high-plate-



CURRENT-VOLTAGE RELATIONS IN TRIODES 123

voltage characteristics show progressively gentler slopes, particularly
near cut-off.

To understand the reason for this, it must be remembered that the
analysis predicting dependence on an equivalent voltage presupposes
a space-charge-free potential distribution of the general type illustrated
by Figs. 20 and 26, in which the potential lines between grid wires merge
with those through grid wire centers before the cathode surface is reached.
This makes the space-charge-free ofi-cathode gradient everywhere uni-
form, and its value directly proportional to the equivalent voltage.
However, as the plate voltage rises and the grid voltage falls, there
arises a tendency for the two potential lines not to merge, but to enter
the cathode surface at different angles. Fo is then no longer uni-
form, and the degree of nonuniformity is dependent on the spread
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(a) Mutual characteristics. (b) Plate characteristics.

Fic. 50. Average triode characteristic curves, for the RCA Type 6C5 eylindrical
triode (metal envelope).

between plate and grid potentials. One result of this is that Fy for the
between-grid-wires path does not become zero until the grid potential is

substantially below the value necessary to make E; + % zero, and of

course cut-off cannot occur until the off-cathode space-charge-free gra-
dient is everywhere zero or negative.

Other variations, within the normal operating range, from the pre-
dieted form and from expected values of the exponent, result partly from
asymmetries and irregularities in interelectrode geometry and in paths
of electron travel, partly from the effects of small initial velocities which
the electrons have on leaving the cathode, and partly from other pe-
culiarities of electron-emitting surfaces. Chaffee gives an interesting
discussion of these variations.Z V1L

The analysis of electric circuits containing tubes is commonly based
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on a graphical representation of electrical tube characteristics. Figs.
50a and 50b are such graphical representations for an RCA 6C5 power-
amplifier metallic-envelope triode manufactured by the RCA Radio-
tron Company. The curves of Fig. 50b, called plate characteristics,
show the variation of plate current with plate voltage for a variety of
grid voltages; those of Fig. 50a, called mutual characteristics, show the
variation in plate current in response to grid voltage changes, plate
voltage being the parameter.

The prediction of circuit behavior is materially aided by a knowledge
of the magnitudes of certain tube “ constants ”’ that are defined partly
in terms of the slopes of these curves, and described by the names plate
resistance, transconductance, and amplification factor. These quantities
are discussed in detail in Chapter XII. In triodes the values of the
first two of these “ constants ” are, like the slopes of the characteristic
curves, dependent on I,, but their product is reasonably constant and
equal to the amplification factor u.

The lower end or cut-off point of each of the characteristic curves of
Fig. 50 is presumably associated with the condition E, = —uE, in
Equation (282). Actually the various theoretical equations do not
represent accurately the manner of decrease to the zero axis at small
current values. The average temperature energy of the electrons
emerging from the cathode is proportional to the filament temperature,
being usually between one- and three-tenths of an electron volt. For

sufficiently small values of E, + %’ the initial electron energies have

an important part in the determination of the magnitude of the cur-
rent. The effects of initial electron energies are analyzed in Sections
124 and 125, Chapter X1.

61. Grid Current. Equation (282), from the nature of its develop-
ment, describes the variations in total current from the cathode, while
the curves of Figs. 3 and 50 relate to plate current only. As long as the
grid voltage is negative, which is the normal condition for the majority
of simple tube applications, there is no grid current. For positive grid
voltages and low or negative plate voltages a substantial portion of the
total cathode current may pass to the grid. The dotted curves in the
lower left portion of Fig. 3b indicate the magnitude of the total current
from the cathode there; although in this range the total current follows
the space-charge-limited type of variation, it is divided between grid and
plate.

Fig. 51a illustrates the general form taken by potential distribution
lines for a triode when the grid voltage is positive and the plate voltage
relatively low. The grid wires occupy potential peaks, into which the
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streaming electrons “ fall,” so that most of them fail to reach the plate.
Fig. 51b is a potential section through the grid wires in a plane parallel
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Fr1e. 51. Space-charge-flow potential distribution in a triode with positive grid,

indicating manner of diversion of current from positive grid to plate, at high plate
voltages. Plate voltage is low in (a) and (b), high in (c) and (d). See also Fig. 52.

to plate and to cathode. The grid wires evidently oceupy potential
peaks in both directions, so that there is considerable grid current.
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the grid current is small, because (1) most of the electrons pass along the
high-potential channels, and (2) those that do enter the grid knock
others out, producing a secondary emission current. This corresponds
to conditions as at point C, Fig. 52.

It will be noted that certain voltage combinations in Fig. 52 make the
grid current negative. This happens when each electron that strikes
and enters the grid releases on the average more than one secondary
electron. With a field like that illustrated in Fig. 51a there can be no
secondary emission current, for secondary electrons appear in a field
that returns them at once to the grid.

62. Tetrodes or Screen-Grid Tubes. The plate of a triode serves
two funections: (a) in combination with the grid, it determines the
electric field configuration within the tube, and therefore the magnitude
of the space-charge-limited current that leaves the cathode; (b) it
receives the electrons at the end of their travel and starts them along a
return circuit to the cathode. To realize that these two funections are
quite distinet it is only necessary to recall that in case of positive grid
and low or negative plate voltages the electrons flow to the grid, yet
the two electrodes work together to control the current, just as under
more usual conditions. When a triode is used in an amplifier circoit
these two functions partly conflict with one another, for reasons pointed
out in a brief discussion of circuit behavior that appears near the end
of this section. '

The construction of the usual form of tetrode, or four-electrode tube,
known commonly as a screen-grid tube (Fig. 53), is such as to segregate
the two functions performed by a triode’s plate. In a screen-grid tube
the screen and control grid control the current, but the plate receives
the electrons, The cathode and control grid perform the same functions
as the cathode and grid in a triode.

The plate of a screen-grid tube is normally at a higher potential than the
screen. The dotted potential line in Fig. 53b terminates at about the
lower end, the solid one at about the upper end, of the normal range of
plate voltage variations. As long as the plate voltage is within this
range, the few electrons that make direct hits on the sereen wires enter
the screen and constitute the screen current. The others pass to the
plate, because the gradient beyond the screen is positive. Thus the
ratio of screen current to plate current is approximately that of pro-
jeeted area of screen wires to the area of the holes in the screen. Since
this ratio is small, most of the electrons pass to the plate. Thus the
plate to a large degree still has, as in a triode, the function of receiving
the electrons.

However, the screen potential takes over the part played by a triode’s
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plate potential in determining the magnitude of the folal space-charge-

. ) E,
limited current, so that the equivalent voltage is E, + —— The

“SC\'CEB
reason for this is that the screen shields the cathode from the plate
effectively enough so that changes in plate voltage modify only very
slightly, if at all, the space-charge-free off-cathode gradient and fotal
tube current (plate current plus screen current) dependent on it.
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whole the fotal current is seen
to be rather remarkably un-
affected by changes in plate
(b) Space-charge-free potential distribution, nor- voltage. The small rise just

mal operating voltages. .
F1a. 53.  Screen-grid tube. abo.ve zero voltage will be ex-
plained later.

Within the normal operating range of plate voltages most of the elec-
frons pass on through the screen to the plate, as explained above.
Therefore the plate current is nearly equal to the total current and, like
it, is very little affected by plate voltage variations. Fig. 55 is a set of
plate characteristic curves that correspond to the total-current curves
of Fig. 54, all being taken with the screen at 90 volts. The useful part
of this diagram is that above about 100 volts, and it will be seen that in
that region the curves have only very gentle slopes.
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The ““ voltage gain ’ of an amplifier is defined in Section 1 as the ratio
of the change in voltage I,R across the load resistor, Figs. 1 and 53¢,
to the change in grid voltage; see also Chapter XII. In both triode and
sereen-grid amplifier circuits a rise in grid voltage causes an tncrease in
the equivalent voltage, so in
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z L { E"’l“‘s voltage across R grow, so
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Type 24 screen-grid tube. equivalent voltage. The

net change in I, and in I,Rr, so the voltage gain obtainable, is

markedly restricted by the fact that E, falls whenever E; rises, and both
affect the equivalent voltage. In a screen-grid tube Eiieen rather than

E, appears in the equivalent voltage, and Eeen is always constant, for

the screen is connected directly to the battery. No such restriction to
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pedance of the load in such -
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circuits is a matter of hundreds
of thousands of ohms, and plate currents are very small. Triodes are
commonly used in power amplifier circuits, in which considerable alter-
nating-current power in the load, rather than large voltage gain, is
desirable. Load resistances in such circuits are usually a few thousands
of ohms, and plate currents much larger than in voltage amplifier circuits.
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At very high frequencies interelectrode capacitances play an important
part in amplifier circuit behavior. In particular, the results of careful
shielding of parts external to the tube, such as lead wires, coils, ete., from
one another, to avoid troublesome capacity coupling between grid and
plate circuits, may be largely nullified by the grid-plate capacitance
within a triode. The mesh of the screen of a screen-grid tube is suffi-
ciently fine to shield effectively the two circuits from one another inside
the tube; this is a very valuable feature.

63. The Various u’s for a Tetrode. It is possible to carry out an
analysis of the electrostatic field of a screen-grid tube in a manner some-
what similar to that used for a triode in Chapter II. Suppose a trans-
formation including one control-grid-wire section is made, and the
cathode charge for one section called —r, as before. Then, following
the general method of Section 17,

—Te & ‘C,gc + EsC'se + EPC'W (285 esu)
where the primed (’s are capacitance coefficients for the transformed

section only, and F;, E;, E, are the grid-to-cathode, screen-to-cathode,
and plate-to-cathode potentials. This can be rewritten

= | B, + E{-T'J-’: + Ci:-} (286)
Clsc O,pc

which is exactly analogous to Equation (96).
An expression for F, is obtained by multiplying both sides of this
equation by 4rn. The form corresponding to Equation (82) is

E,
B+ B
—Fy = —W (287 esu)
where ,
sz = f (288)
’
Mpg == C’::, (289)
1
dy = - m (290 esu)

Thus a tetrode has two geometric  u’s,” a pentode similarly three, and
80 oD,

It has been pointed out that in the usual tetrode the sereen is an
effective electrostatic shield between cathode and plate. The same idea
is expressed in the statement that C’s is very much greater than C’,
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so that u,, is ordinarily very much larger than u,. The lack of response
of current to changes in E, arises from this fact. The flatness of the
total-current curves of Fig. 54 indicates that u,, for that tube must be
very large indeed. The value of u,, is usually within the general range
of values of u for triodes.

Neither u, nor g, are commonly used in sereen-grid amplifier circuit
calculations, nor are they properly called ‘ amplification factors.”
They relate to Fy and so to the total current in the tube; circuit calcula-
tions relate to plate current only. Only in triodes is the geometric u
the same quantily that is used to describe the ' amplifying 7’ properties of an
equivalent eircuit.  In Chapter XII it will be shown that the amplification
factor may be defined entirely in terms of graphical properties of tube
characteristic curves, and when so defined is a constant dependent
entirely on tube geometry only for triodes. Thus the amplification
factors listed for tetrodes in manufacturer’s tube manuals are neither
Hsg DOY phpe.

64. Analysis of Screen-Grid Characteristics; Secondary Emission.
Although variations in plate voltage have very little effeet on the total
current through a screen-grid tube, they do affect very strikingly the
division of the current between screen and plate. Figs. 57a, b, ¢, d, ¢, f
illustrate the space-charge-free potential structure for various positions
marked A A, BB, CC, ete. on the one plate characteristic eurve of Fig. 56.
This curve corresponds to a slightly negative grid voltage, in a tube with
properties a little diff erent from that used for Figs. 54 and 55; in particu-
lar it has a directly heated cathode, with a drop of several volts along
the filament. The screen and control grid voltages are the same for all
conditions illustrated in Figs. 56 and 57, all variations in potential
structure and in eurrent being due to changes in plate voltage.

At AA the plate voltage is slightly, but very slightly negative, so
that no electrons can have energy enough to reach it; the plate current
is zero. Electrons are emerging from the cathode in considerable vol-
ume; of course many of them travel through the screen holes, for by the
time they reach the screen their velocity is such as to carry themn success-
fully through the considerable side-pulling field that draws them toward
individual screen wires. But even though most of them pass the screen,
none can ever reach the plate, for the energy each one has at any instant
is not more than that corresponding to the potential through which it
has fallen; it cannot possibly reach a lower potential than that from
which it started.

Each electron’s situation may be compared to that of a ball rolling
down the smooth sloping side of a trough with a rounded bottom; it
cannot acquire kinetic energy enough on the way down to carry it up the
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opposite slope to a point higher than that from which it started. A ball
started down one side of a trough, at the bottom of which there are
regularly spaced holes, presents a more nearly complete analogy. If
the top of the opposite side of the trough is higher than the starting
point, the ball may roll back and forth several times, first down one side,
then up and down the other, and so on, before it happens to drop into
one of the holes. Similarly at A4 most of the electrons oscillate back
and forth between the two sides of the sereen many times before finally
entering the screen wires, as all must eventually do.

At BB the plate current is rapidly rising, There are two distinct
reasons why in this portion of the curve a small increase in plate voltage
produces a large rise in plate current, as follows:

{a) There is a potential drop of several volts along the filament of this tube; when
as at BB the plate potential is near that of the midpoint of the filament, the electrons
that start from a filament section that is more positive than the plate cannot possibly
reach the plate. Each increment of plate voltage inereases the length of the filament
section that is lower in potential than the plate and so able to supply electrons that
can reach it. This effect is not present in tubes with cathodes that are true equipo-
tential surfaces.

(b) Dispersion in passing the neighborhood of the screen makes it impossible for
all electrons that start from a potential lower than that of the plate to reach it. All
such have energy enough, if properly directed, to bring them to the plate, but many
are deflected in passing between screen wires, as described in connection with Fig. 28,
to an extent that makes it impossible for them to get to a plate that is at a potential
even several volts above that of the point on the filament from which they start. This
effect is present whether the eathode is an equipotential surface or not.

Of course there are great variations in the amount of deflection that
takes place. Some electrons fail to reach the plate by one volt, not so
many by two volts, still fewer by three volts, and so on; a few may fail
by as much as ten volts. If the plate is raised to one volt above the
starting-potential, those that formerly failed to reach it by one volt or
less can arrive; with the plate up two volts it receives in addition those
formerly failing by between one and two volts, and so on. Each in-
crease in plate voltage makes it possible for a considerable number of
additional electrons to reach the plate, so increasing the plate current.

Before the plate voltage has risen far enough to permit the plate
current to approach at all closely to its maximum share of the total
current, an entirely different effect begins to distort the shape of the
curve, as at CC. Here the plate voltage has just become high enough
for some of the electrons that strike the plate to arrive with energy
sufficient to ‘‘ splash ”’ one or more electrons out of the plate surface.
As soon as the plate potential is from four to six volts higher than that of
the starting point, incoming electrons begin in this way to produce
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secondary emission from the plate. Since the ejected electrons appear in
a field which draws them toward the screen, the plate current becomes
less, the sereen current greater, by just the amount of secondary emission
current. This accounts for the pronounced dip in plate current just
beyond CC. In general the secondary emission current increases linearly
with the energy possessed by electrons that arrive at the plate, so that
the tendency is toward a straight-line decrease of plate current in this
region.

It is possible to have more secondary electrons leaving the plate than
there are primary electrons arriving, so that the net plate current may
become negative. Each incoming electron must then be releasing, on
the average, more than one secondary electron. This principle has been
used to amplify photoelectric currents.

Evidence of secondary emission disappears rather abruptly as the
plate potential approaches and rises above screen potential, as beyond
DD. Although incoming electrons at the plate continue to be increas-
ingly capable of ejecting secondary ones, the plate potential is higher
than that of the screen, so that the electric field adjacent to the plate
prevents any ejected electrons from leaving the neighborhood of the
plate. On the contrary, they promptly reenter it.

EE is about the beginning of the normal operating voltage range of the
tube used for Fig. 56; and FF is about the normal operating value of
plate voltage, that is, the plate potential may ordinarily be expected to
swing about equally above and below FF.

The plate characteristic curves of Fig. 55 are not quite horizontal,
nor are they exactly parallel to one another, in the operating range.
Since the corresponding folal-current curves are horizontal and parallel
to one another, the gradual growth in plate current in the operating
range cannot be attributed primarily to growth in the space-charge-free
off-cathode gradient. The cathode continues, even at these high
voltages, to be quite effectively sereened from the electrostatic influence
of the plate. But as the plate potential rises, it affects the detailed
potential configuration in the neighborhood of the screen in such a way
that fewer electrons are stopped there. High-potential channels
between screen wires, like those illustrated in Fig. 51, become more
pronounced, making “ direct hits 7 of the screen wires less frequent;
as the plate potential rises, a slightly smaller proportion of the total
current enters the screen wires in this way, and a slightly larger propor-
tion passes on to the plate.

Since this change is in the nature of an increase in the ratio of plate
current to total current, the actual change should be greater along the
upper plate characteristic eurves of Fig. 55 than along the lower ones;
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that is, the higher ones should have steeper slopes than the lower ones.
The figure shows that this is to some extent true.

It is rather generally true, as for the variation just described, that
each ordinate of any one of these plate eharacteristic curves is 4 definite
fraction, dependent on plate voltage, of a total current which depends
on grid and screen voltages. 'This behavior is discussed in more detail
in Section 66.

Individual screen-grid mutual characteristic eurves, obtainable either
by direct measurement or by transfer from a set of plate characteristics,
are very similar to triode mutual characteristic curves {Figs. 3a and 50a).
They lie very much closer to one another than do the iriode curves,
however, because of the small changes in current that result from plate
voltage variations in tetrodes.

66. Shielding of Screen by Oscillating Space Charge. The curves
of Fig. 54 bear out for the most part the statement that folal current is
independent of plate voltage. However, there is a small but sharp rise
in total’ current just above zero plate voltage in each curve. As ex-
plained in the following paragraphs, this is attributable to a change in
space-charge distribution in the neighborhood of the screen.

2 Dotted lines AA describe the
space-charge-flow potential distri-
bution for the negative-plate con-
dition AA4, in Figs. 54 and 57,
All electrons enter the screen after
oscillating.

Solid lines BB also describe a
space-charge-flow potential distri-
bution, but for the positive plate
condition, BB, in Figs. 54 and 57.
Nearly all electrons go to the plate.

Screen Plane

Voits —

Control Grid Plane

Plate

AT T

&&%&

Fia. 58. Space-charge shielding of screen wires.

The dotted lines in Fig. 58 describe the potential variation within the
tube when the plate is slightly negative and current is flowing. All
electrons must enter the sereen, but they do so only after considerable
oscillation back and forth through it; this corresponds to conditions as
at A4 in Figs. 54 and 57. These oscillating electrons represent a
considerable space charge in the neighborhood of the screen, so that the
dotted-line space-charge-flow variation in Fig. 58 has a very marked
convex-downward flexion immediately adjacent o the screen.
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The solid lines in the same figure similarly represent space-charge-
flow variations of potential, but for conditions as at BB, Figs. 54
and 57. The plate is now sufficiently positive so that most of the
electrons enter the plate after the first flight through the tube; there are
few if any oscillating electrons. There is very little space charge near
the screen, for the electrons are moving very rapidly as they pass it;
therefore the solid lines in Fig. 58 follow, near the screen, practically the
space-charge-free pattern.

The essential contrast between the solid and dotted lines is of the type
that would result from a reduction of screen potential, for aloweringef the
screen potential would drop the BB lines to about where the A A lines
now are, at all points except those immediately adjacent to the screen.
The sharp dotted-line flexion near the screen requires a steep gradient
there; this ‘‘ uses up ”’ a considerable part of the potential difference
between screen and cathode, so that to an observer near the cathode
the screen appears to have a lower potential in the dotted-line (negative
plate) case than in the solid-line (positive plate) case. Therefore the
total space-charge-limited current is less for the A A than for the BB
condition, Figs. 54 and 57.

The same idea may be expressed differently by saying that the negative
space charge around the screen partially neutralizes the effect that the
positive surface charge on the screen wires would otherwise produce.
For example, in the dotted-line case the screen appears to a remote
observer to have less positive lcharge, therefore less potential, than it
actually has.

At the current minimum just to the left of DD, Fig. 56, there is again
considerable sereen current, especially when the total current is large.
However, this current is due to secondary electrons which start from the
plate, at a potential only slightly less than that of the sereen. Their
energy on approaching the screen is moderate, so that only a few os-
cillations occur, and the space-charge effect is moderate. Its disap-
pearanee accounts for the slight rise in total current as the plate rises
above screen potential and thereby eliminates the secondary-emission
current to the screen.

66. Pentodes, Beam Power Tubes, and Critical Distance Tubes.
Five-electrode tubes can be designed for various purposes, but as
usually used, the term pentode is applied to devices, otherwise similar
in arrangement and principles to sereen-grid tubes, in which a fifth
electrode, sereen-like but at cathode polential, is introduced between
screen grid and plate to “ suppress 7 secondary emission.  As illustrated
in potential-diagram form in Fig. 59, the essential result of its presence
is to produce another potential valley and hill. 'This makes the gradient
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just outside the plate always such as to drive back into it any electrons
that may be ejected. This prevents any secondary electrons from leaving
the plate and eliminates entirely the dip in plate current that is charac-
teristic of the low-voltage part of a set of screen-grid characteristics.
Figs. 60a and 60b are typical pentode
mutual and plate characteristics. The
detail shapes of the curves at low plate

o

S|
% g{ } 3| voltages are, as in screen-grid tubes,
g 4 =?:'I jointly dependent on (a)]electron dis-
IR 3 \“l persion in passing through control grid
3] ;5[ | g: || and screen or screens, and on (b) the

fact that all electrons may not start
from the same potential. At higher
plate voltages the division of current
Fi6. 59. Potential diagram for a potween screen and plate depends
pentode, showing at the plate a hiefly on (¢) the sereening-fraction of
positive gradient which suppresses cnretly R g on o
secondary emission. the screen, which measures the proba-
bility of direct hits on it in the absence
of electron deviation by the field, and on (d) the effect of plate potential
variations in creating and deepening between-screen-wire channels. In
screen-grid tubes, but not in pentodes, there is an additional effect,
(e) the flow of secondary electrons from plate to screen.
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Fra. 60. Average characteristic curves, RCA Type 59 tube, pentode connection,
with screen at 250 volts.

All these influences are alike in that they act to modify the fraction of
the total current that reaches the plate, regardless of how much or little
the total may be. This fraction is thus approximately the same for a
given plate voltage regardless of the magnitude of the total current.

In summary, for both screen-grid tubes and pentodes of the usual
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type, (1) screen and control grid potentials determine the total space-
charge-limited current in just the way plate and control grid voltages
do in a triode, and since screen potential is usually held constant, the
total current is a simple function of the control grid voltage; (2) the
plate voltage specifies what per cent of this total current shall reach the
plate.

Hence all plate characteristics for a given tetrode or pentode may be
expected to be alike in shape, their ordinates being related by constant
ratios. It is interesting to recall that the plate characteristies for a given
triode are alike except for a horizontal shift.

Pentodes are often used in power amplifier circuils, as in such service
they can provide alternating currents of the desired magnitude in load
circuits, and at the same time permit a considerably higher voltage gain
than is possible with power amplifier triodes. Some fidelity of response
may be sacrificed when pentodes rather than triodes are used.

In “beam power tubes” ® and “ critical distance tubes”® potential
distributions qualitatively similar to that illustrated in Fig. 59 are
obtained without the use of fifth electrodes. The negative space charge
of the electron stream is depended on to produce the potential minimum
between screen and plate that the suppressor grid provides in a pentode.
As long as such a minimum exists, no secondary electrons pass from plate
to screen. 'The potential minimum in case of this * space-charge sup~
pression ”’ of secondary emission may not drop to zero voltage. The
requirement for the suppression of secondary emission is that at some
point between screen and plate the potential must fall below its value at
the plate.

The essential features necessary for space-charge suppression of second-
ary emission, of the type employed in beam power and critical distance
tubes, are that

(1) Between screen and plate, electron flow must take place in a8 beam of high
enough concentration so that space charge makes an appreciable contribution to the
convex-downward flexion of the potential distribution curve.

(2) The plate must be located far enough beyond the screen to permit the convex-
downward flexion to produce a minimum in the potential distribution curve between
screen and plate.

The properties and uses of tubes in which secondary emission is
suppressed by space charge are essentially similar to the properties and
uses of pentodes. However, critical distance and beam power tubes
appear t0 have some distinctly desirable features that are not possessed
by pentodes.

In order to understand the underlying principles of operation of beam
power tubes and critical distance tubes it should first be noted that the
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validity of Equation (232), Section 51, is not confined to the region
between cathode and control grid. Equation (232) is in fact a very
general differential relation that applies wherever space-charge flow takes
place along parallel straight lines (one-dimensional flow). It therefore
applies in the region between screen and plate, in tubes having essen-
tially parallel-plane geometry. The results obtained from an analysis
based on true one-dimensional space-charge flow apply approximately
to flow along only slightly diverging or converging paths.

The boundary conditions that must be used in obtaining solutions of
Equation (232) are very different for the different interelectrode regions.
The solution for the region between screen and plate, in a tube employing
space-charge suppression of secondary electrons, must satisfly the follow-
ing assumptions:

{a) The current density J is fixed and known, being established by
the potentials and locations of control grid and secreen, just as in a
screen—grid tube. More accurately, for reasons that will appear later,
the current density cannot exceed this fixed value J.

(b) Let z = 0 at the potential minimum that exists somewhere between
screen and plate, and that is responsible for the suppression of secondary
emission. Then at the sereen, x = z; (numerically negative) and at the
plate z = z, (positive). The location of the potential minimum is not
known to begin with; however, it is known that

Zp— 2 = d (250.01)

where d is the fixed spacing between screen and plate.

{c¢) Let E, be the potential, relative to the cathode, at the potential
minimum. E; is unknown to begin with, and must be evaluated to
suit the known boundary conditions.

(d) The electrons pass between screen wires at some approximately
known potential E; that is slightly lower than screen potential (see
Fig. 59). Therefore

When r=ux, E=E

(¢) The electrons are at the potential E, on arrival at the plate.
Therefore

When r=2x, E=2F =E,
{f) At the potential minimum, the potential gradient is zero, so that
When z =0, fg =0 (also E = Ey) (290.02)

In the solution of Equation (232) with these new boundary conditions,
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the first integration constant does not vanish, because E = FE; when
dE/dx = 0. Therefore instead of Equation (235) the following expres-
sion must be used:

(%)2 = 16x7\/ "™ (VE ~ VE) (290.03 esu)

Other useful forms of Equation (290.03) are

é.g = =L \/167r.] % (VE — VE) {290.04 esu)

dF Me
. - J—— \/ 16xd \/ = dx (290.05 esu)
V ‘\/[‘ ~ VB, 2e

Integration is effected by the use of the substitution VE = u, and yields
the following:

(VE ~ VE) + 3VEs (VE = VI = o\ 957 4/%2 (29006 esu)

No integration constant need be added, because r = 0 when E = E,.
Equation (290.06) can be rearranged into the following form:

#(z)

.
Vorry/3:

Here f (E/ E) is a function of E/E; that is defined as follows:

f(%) - [\/:@] (1 +2 %,—") (290.08)

f (E/Ey) has numerical values as follows:

z = {290.07 esu)

|

E/E, J(E/Es) ' E/E, | f(E/E) E/E, J(E/Ey)
1.000 0.00000 1.10 0.6271 4.0 1.414 (maximum)
1.001 0.06705 1.20 0.8340 5.0 1.409
1.002 0.09408 1.40 1.058 6.0 1.397
1.004 0.13385 1.60 1.181 8.0 1.372

1.01 0.2107 1.80 1.257 10.0 1.350

1.02 0.2958 2.00 1.307 15.0 1.306

1.04 0.4126 2.50 1.376 20.0 1.275

1.06 0.4984 3.00 1.401 100.0 1.138

1.08 0.5682 3.50 1.412 1.000
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For large values o° E/E,, f{E/E,) may be evaluated from the following
infinite series:

By, 3\/B 9B _S(EN_ A(EY_
f(ﬁ;)‘ ToVE "8 F "T6\E) T 1B\E

When z = 2, E = Ej, so that

(290.09 esu)

The negative sign of the radical is employed because at £ = x; the slope
dE/dzx is negative; see Equation (290.04),

Now let

3
a = —Bi a = ——-I-?L— (290.10 esu)

2%
o
Yt \/26 OrJ \/ oA
By comparison with Equation (236), it will be seen that a space-charge-
limited current density J of the usual type would flow between parallel

plane electrodes a; centimeters apart if at a potential difference E,, and
that @, and E, are similarly related. Using Equation (290.09)

Ty = Gof (%) (290.11)
Similarly

= —af (%) (290.12)
Using Equation (290.1)

@ f(%) +a f(—%) —d (290.13)

Equation (290.13) permits determination of K, by a trial and error
method, if d, J, E; and E; are known.

Equation (290.13) can be used to determine certain critical relations,
Let the spacing d have some fixed value, One critical condition is that
for which Ey = 0, for no electron flow can take place past a potential
minimum that dips below cathode potential. If By = 0, f(E/E) = 1.
Thus if the potential minimum just touches the zero-voltage axis,
Equation (290.13) becomes

a4 m=d (290.14)
Equation (290.14) and (290.10) permit the determination of the value
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of E; (plate potential) at which this critical condition exists, for given
values of J, By, and d. In any particular case J depends on the values
of control grid and screen potentials.

If the plate potential falls below the critical value, the current density
falls very rapidly below its previously constant value, and the screen
current rises. The potential minimum remains at zero volts, but its
location shifts toward the screen, g, increasing, because J falls off much
more rapidly than E.i, in Equations (290.10). The value of a; is no
longer determinable from Equations (290.10), because electrons are
oscillating back and forth between the screen wires, and the boundary
conditions are correspondingly more complicated than when all electrons
that pass the screen arr ve at the plate.

The analysis just given explains why, in beam power tubes and
critical distance tubes, the plate current drops off very rapidly as the
plate voltage falls below a critical value. Other very interesting relations
relative to critical distances and potentials can be obtained by further
study of the various equations given above.

67. Oscillating Space Charge. A ““ Barkhausen-Kurtz” oscillator 8 7 30
is a circuit arrangement which produces very high frequency electric
currents and radio waves by making use of electron osecillations similar
to the movements back and forth through the screen that occur with
potentials as at AA, Fig. 57. A circuit
of this type employs a triode, with the g
grid positive and the plate at a negative
or zero potential, as illustrated in Fig.
61. The eurrent is ordinarily tempera-
ture-limited. There is a particular fre-
quency of oscillation for a particular
set of dimensions and voltages, just as
the motion of a ball rolling back and Z
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forth across a trough has a definite ¢

periodicity that is dependent on the
height of its starting point and the
slopes of the sides of the trough. F Igis flb tS_pM_“»-éhﬁzg?—gr% posential
In a triode with potentials as in nbution in a {riode used as a
Fig. 61, nearly all the individual elec- Barkhsusen-Kurtz oscillator.
trons oscillate back and forth between the two sides of the grid
before entering it, even when the current to the grid is perfectly steady.
The to-and-fro nature of the movements of the individual electrons can
play a part in causing external cireuit oscillations only when there is
an appreciable periodic mass movement of space charge from one side of
the grid to the other and back again. Such an oscillating space charge
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is an alternating current with a capacitance coupling to the external
circuit through the electrodes; it may resonate to produce sustained
circuit oscillations if the circuit constants are correctly chosen.

The oscillation frequency for mass movement can be approximated
by calculating the periodicity to be expected in the movement of a single
electron. The mass movement periodically distorts the potential
structure, but reasonably correct frequency estimates can be made by
ignoring this distortion. The simplest assumption on which to base
mathematical caleulations of fthe oscillation period is that of straight-
line variation of potential between cathode and grid and between grid
and plate, as indicated by the dashed lines CG and GP in Fig. 61.

Electrons which originate at the cathode and pass between grid wires
have in general enough energy to permit them to approach closely the
plate, which is at cathode potential. The direction of motion then
reverses and each one travels back to the neighborhood of the cathode.
If the equation of the space-potential curve is known, the time necessary
to complete a cycle of motion from C to P and back again is in general
calculable from Equation (154), which expresses velocity in terms of

potential. For the relation
fli-f =1 =593X10VE (291 p)

can be written
1 dz

I=smxi0J vi (202p)

and if E can be expressed in terms of z or vice versa, integration over a
cycle gives the required time.
If the origin is taken at C, the equation of the potential line from C to
G is
x x
S_g = Eg, or, B = Eg:&‘_g (293)
Using this in the manner suggested above, the time required to travel
from C to G is

I S /gf“d_x _ _2_\/:. ]
fee = 5 o3 x 107 EJe vz 593 X 107 EQ’E =0

28,

%% 204
5.93 ¥ 107 VE, (294 p)

The time for travel from G to P is similarly obtainable, the distance
factor being s, — s, instead of s, The total time ¢ for a complete
cycle is twice the sum of #f;¢ and f{;p, and is given by the simple
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expression

4s
f= 205
5.93 X 10" VE, (295 p)

The frequency of oscillation is the reciproeal of this oscillation period;
it, is
7 N/
f= 5._93’%:39.._& (296 p)
Sp
The wave length A of the electromagnetic radiation that corresponds to
this frequency is found by dividing the veloecity of light, 3 X 10w
centimeters per second, by the frequeney. It is

X = 2023 \—;%-: {centimeters) (297 p)

[4

The times for traveling from C to G and from G to P could have been
obtained more simply in this particular case by the use of average veloe-
ities, for the assumed field is uniform and corresponds to uniformly
accelerated motion. The more general method has been used in order
to illustrate the manner of obtaining the time of travel in a more general
type of field, as for example that corresponding to a concentric arrange-
ment of electrodes.

In real apparatus there is a steady component of current due to
electron flow from cathode to grid, which is, as mentioned earlier, usually
a temperature-limited rather than a space-charge-limited current.
Entrance of this grid eurrent into the grid wires is of course preceded as
usual by individual electronic oscillations, so that the effective grid
potential is modified by space-charge shielding of the type deseribed in
Section 65. For this reason the frequency of oscillation must be ex-
pected to decrease somewhat if the direct current to the grid increases.

The analytical method presented above for determination of fre-
quency is incomplete in that it fails to account for the effects of the peri-
odic distortion of the shape of the potential diagram that is essential to
coupling into the external circuit, as described in the next section.

68. Coupling between Internal and External Oscillations. The
manner in which the internal electronic oscillations can be electro-
statically coupled into an external resonating electric circuit is Hustrated
in Figs. 62a, b, ¢. The first of these illustrates the potential diagram
when the oscillating mass of space charge is adjacent to the cathode;
it will be noticed that the gradient just outside the cathode is very
small, hence the negative surface charge on the cathode is also small.
By contrast, there is a considerable negative surface charge on the plate,
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corresponding to the steep off-plate gradient. In Fig. 62b the space-
charge mass has moved to the neighborhood of the grid; the gradient
at the cathode is greater than before, that at the plate less, so that some
negative charge must have been transferred from plate to cathode
through the external circuit. (Since the steady component of current
in these devices is normally temperature-limited, not space-charge-
limited, the gradient at the cathode need not always be near zero.)
At Fig. 62¢ the space-charge mass has moved to a region adjacent to the
plate, so that the entire plate charge has been driven away through the
outside circuit to the cathode surface.

Thus for the plate to remain at cathode potential there must be an
oscillating current flow in the external circuit between plate and cathode.
If this external cireuit consists of an inductance and capacitance in
series resonance at the proper frequency there may be a very large high-~

Grid Centet = — —-

e o — G Gridl Center e — —
— — 3y Grid Center — — —

(a) (b)
F16. 62. Coupling between osecillating space charge and external circuit.

frequency voltage across the inductance and across the capacitance,
yet no variation in plate potential.

The analysis just given indicates the manner of transfer of periodicity
from inside to outside the tube, but does not illustrate the manner of
transfer of power from the direct-current grid circuit to the alternating-
current plate-cathode circuit. Any such power transfer must be ac-
companied by a corresponding variation of plate voltage, and occurs
only when the external circuit contains resistance or its equivalent,
in addition to resonating inductance and capacity.

Suppose that the electronic space-charge mass has accumulated kinetic
energy on its way from cathode to grid and has passed through the grid;
as the plate is approached the oncoming charge attempts to drive the
negative charge away from the plate surface through the external circuit.
Since the external circuit contains some resistance, this can happen only
if the plate goes somewhat negative, so the plate is forced to drop below
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eathode potential. In order to pull the same negative charge back
through the load resistance the plate later swings positive, shortly after
the internal space charge reverses its motion. Thus there is a component,
of alternating plate voltage which is in phase with the current flow in
the external circuit. The impetus to the production of this plate-voltage
variation is given by the kinetic energy of the electron’s motions, and this
energy is in every case acquired by acceleration due to the grid potential.
Thus the grid-circuit battery is the original source of supply of the
alternating-current energy in the oscillating circuit between plate and
cathode.

PROBLEMS

Cuarrer VI

1. Plate resistance By is defined in a footnote near the end of Section 53, and again
in Section 133, Chapter X1I, Using Equation (282) and the definition of By, derive
the following expression for the plate resistance of a triode:

Ry = "—%—;‘;—E” (297.1 p)

2. Show that the manner of occurrence of u in Equation (282) is consistent with
the definition of u given by Equation (490), Chapter X1I, and is also consistent with
Equation (100) in Chapter I1.

3. Plot a curve of the various values of Ej that arc necessary to maintain Ip
constant at 8 milliamperes, as E, is varied, for the triode of Fig. 3. From the result-
ing graphb of E; vs. E; at constant plate ecurrent, determine the value of u, as defined
by Equation (490), Chapter XTI, for the triode of Fig. 3.

4. Same as Problem 3, except that Fig. 50 is to be used, and plate current assumed
constant (a¢) at 8 milliamperes, (b) at 2 milliamperes. Also determine g for Fig. 50
from each of several different cut-off points, using Equation (100), Chapter II.
Which of these various methods of determining p for & triode is the most satis-
factory? (See Section 60.)

B. Suppose that in the triode of Fig. 20 the grid voltage is made 30 and the
plate voltage +50.

(a) Sketch the space-charge-free potentisl distribution eurves for paths through
and between grid wires.

{») On the same sketch, locate as nearly as possible the space-charge-flow potential
distribution curves for the same electrode voltages.

(c) Estimate what per cent of the total current flow through the tube will be grid
current, neglecting secondary emission from the grid.

{d) Caleulate plate current and grid current, in milliamperes per sq cm.

8. Locate four points each on the mutual characteristic curves for Ep = 200 volts,
300 volts, and 400 volts, for the tube of Fig. 55. Draw the portions of the mutual
characteristic curves that are located by these points. Determine the grid-plate
transconductance sy for this tube at Ep = 300, E; = —3, using Equation (489),
Chapter X11, ag the definition of sm. Also determine sm at By = —8, Ep = 130, for
the tube of Fig. 3, that at E; = —8, Ep = 200, for the tube of Fig. 50, and that at Ey=
15, Bp = 120, for the tube of Fig. 60.
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7. Determine the values of B that correspond to those for sm asked for in the
preceding problem, then caleulate p in each case, using Equation (491}, Chapter XIL.

8. For Ep = 150 in the tube of Figs. 54 and 55, find the ratio of screen current
to total current, for E; = 0, —1.5, —3, —4.5. Repeat at Ep = 50, and at By = 400.

9. Reproduce to scale on a sheet of graph paper the plate characteristic eurve for
E; = —15, Fig. 60b. Mark also on your graph paper the intersections of all the
plate characteristic curves with the vertical line for which Ep = 200, as read from
Fig. 60b. Now construct a complete set of characteristics by using the assumption
that total current is independent of plate voltage, but that plate voltage determines
the fraction of the total current that reaches the plate, that fraction being the same
for a given plate voltage regardless of how much the total current may be. This
construction can be accomplished without knowing the total current. Compare
the set of characteristics so prepared with those of Fig. 60b.

10. By making a rough comparison between the shapes of the curves in Figs. 55
and 60b, estimate the secondary emission current due to passage of electrons from
plate to sereen when E, = 0, Ep = 50, Fig. 55. Estimate also the screen current
due to electrons striking the screen on their first flight from the cathode. What is
the ratio of the number of secondary electrons emitted to the number of electrons
causing secondary emission, according to your estimates?

11. (@) Sketch a plate characteristic curve similar to that for E; = 0, in Fig. 55,
except that it is to pass through the point Iy = —1, Ep = +50. That is, secondary
emigsion is presumed to be pronounced enough to make the plate current negative
for certain values of plate voltage, screen held at 90 volts.

(b) Sketch the plate characteristic curve for E; = —3 that corresponds to the one
for E; = O drawn in part (a). Total current is presumed to be as in Fig, 54,

12. Explain why the contrast between the potential distribution curves asked for
in parts (b} and (c) of Problem 4, Chapter V, illustrates a part, but only a part, of the
explanation for the space-charge shielding of sereen wires discussed in connection with
Figs. 58 and 54.

13. (a) Redraw Fig. 57¢ with the plate far enough away from the screen to pro-
duce space-charge suppression of secondary emission. Your potential distribution
line should represent space-charge-flow conditions.

(b) Bame as (a), except that the plate voltage should be low enough so that the
eritical condition for which Ey = 0 is reached (see Section 66).

14. Consider a parallel-plane tetrode that is similar to a screen-grid tube except
that the plate is located at a considerable distance d centimeters from the screen.
Plate current density is 6 milliamperes per sq ¢m, sereen potential 150 volts. Elec-
trons pass through between screen wires with an average kinetic energy of 140
electron volts. Plate voltage 50.

{(e) Find how large d must be in order to insure space-charge suppression of
secondary emission at this current density and this combination of plate and sereen
voltages.

" (b) What will happen if the plate voltage drops below 50 volts, plate current and d
still as in part (a).

(¢) If the plate voltage rises above 50 volts?

(4) Below what value of plate voltage will this tube be unable to pass 6 milli-
amperes per §q ¢m to the plate because of space charge limitations?

15. A certain short-wave Barkhausen-Kurtz oscillator uses a tube in which the
grid is 0.2 em from the cathode, plate 0.3 cm from the ecathode. Ep = 0, E; = 500
volts.
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(e) Find the frequency of the electron oscillation in eycles per second.

(b) The plate is moved to a location 0.4 ¢m from the cathode, and plate potential
is lowered to 500 volts below that of the cathode. Grid still 0.2 em from the eathode
and at +500 volts. Determine the frequency of electron oscillation.

(c) What happens to the frequency of electron oscillation if the direct current to
the grid increases? Why?

16. Imagine a triode in which the potential distribution is like that in Fig. 61
except that the grid is midway between cathode and plate, and the potential distri
bution curve for the path between grid wires is an inverted parabola with its vertex
at the grid plane. Potential at the vertex is 100 volts, s = 0.8 em. Find the fre-
quency of eleetron oscillation for this potential distribution, the electrons being as-
sumed to start from rest at the eathode.

17. Derive an expression in the form of Equation (287) in which ug;, up, and d;
are expressed in terms of tube dimensions, for a cylindrical screen~grid tube. Both
control and screen grid are assumed to consist of regularly spaced wires parallel to
the axis of the tube. rg, ng, R, are respectively the radius of the control grid cylinder,
the number of grid wires per centimeter, and the radius of a control grid wire, just
as in Fig. 25. 7y, ns, and By are the corresponding quantities for the screen, and
r. and rp are cathode and plate radii respectively. In order to do this, use two
transformations, one applicable in the neighborhood of the control grid and cathode,
the other in the neighborhood of screen and plate, then superpose the potential
equations for the two transformations,



CHAPTER VII
THERMIONIC CATHODES

69. Electron-Emitting Efficiency of a Cathode Surface. The cathode
surfaces of thermionic devices are made of special materials which when
heated to high temperatures release electrons (thermionic emission)
in very much the way that hot water releases water molecules (evapora-~
tion). The current in most high-vacuum apparatus is space-charge-

1000 L TN
100 \\\\
\ \
10| o \
g 10 \.\\\
]
g 001 \\\\
Eoom N\\\
g 10'4 *" \\\
£ 1% S S T~
LN
10 i s H S
, RIS
17 /| T~ niy \ N
£ 4 A r ‘L‘n\ \\
CTE ¥ 8 8 000G 080000 9000090 0 O D T Lonw
< NN @ < oons oNNeRN NSRS ES gegggsg é §22~

Power Input for Heating Cathode, Watts per 54. em. of Cathode S;‘rface

Fie. 63. Power-emission chart, coordinate warping based on Dushman’s equation
for thermionic current density. (See Section 77.)

limited, so that the basic requirement for a cathode is that it must be
able to provide by thermionic emission at least the maximum space-
charge-limited current demanded by the normal electrode potentials.

Cathodes are heated electrically; it is important to use materials and
arrangements of parts that make the requisite thermionic current
available with a minimum of heating power consumption. The more
efficient eathode surfaces are somewhat fragile, having a limited life

at best, and many of them are more or less easily damaged by the
148
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presence of small amounts of gas in the tube. Hence the element of
judgment, is important in selecting the proper type of cathode for a given
service; power consumption and life requirements must be properly
balanced EIV. V. 8. T

The overall electron-emitting efficiency of a cathode is measured by
the ratio:

Thermionic amperes available
Power for heating, in watts

Both numerator and denominator may be expressed per square centi-
meter of cathode surface. Fig. 63 illustrates the variation of ther-
mionic eurrent with power input for three different types of cathode
surface, plotted on a specially warped set of coordinates which makes
all the eurves substantially straight lines. These ecurves represent
graphically the combination of two basic relationships, one between
thermionic current density and temperature, the other between tempera-
ture and power consumption. Section 79 contains a brief description of
oxide-coated and thoriated cathodes.

70. Dushman’s Equation Relating Thermionic Current Density and
Temperature. The mathematical expression of the first of the two
relations just referred to is called Dushman’s equation,® 724 derived later,
in Section 120. Dushman’s equation is expressible in three forms that
have identical meanings, as follows:

_ Ewet0?

Jo= A% (298 p)
-Ew

Jo = AT Br (299)
b

J;}. = AeT?% T (300)

in which
J&n = thermionic eurrent density in amperes per sq cm.
Aq¢ = a semi-empirical constant; its units are:

amperes per sq cm
(degrees Kelvin)?

T = temperature of the eathode in degrees Kelvin (degrees
Centigrade + 273).
k = Boltzmann’s universal gas constant; its value is 1.372 X 10
erg per degree K.
¢ = the electronic charge, in eoulombs,
Ew = an empirical constant of the emitting surface, ealled its work
Sunction, measured in electron volts, abbreviated to volts.
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E7 = the vollage equivalent of lemperature, defined by the relation

Erel? = kT (301 p)
which reduces numerically to
T
Er= 11600 (302 p)
by = the temperature equivalent of work function, thus
bo = 11600 Eyp (303 p)

The quantity A, is called semi-empirical because theoretical considera-
tions indicate that it should have the same value for all homogenecus
metal surfaces, a prediction which is reasonably well substantiated by
experiment.® Theory also correctly predicts its order of magnitude.
By a homogeneous metal surface is meant one whose behavior is not
complicated by the presence of surface layers of different composition
from that of the underlying metal.

The three forms of the exponent contained in Equations (298), (209),
and (300) illustrate general types of exponents that are encountered
repeatedly in electronie work. In the first form, Equation (298), the
numerator of the exponent, Ewel(?, describes in ergs per electron the
energy, in excess of that ordinarily possessed at.room temperature,
which a favorably situated electron inside the hot metal must have in
order to escape through the metal surface. This energy is roughly
analogous to the latent heat of evaporation, per molecule, of a liquid at
some temperature below the boiling point. For example, the equation
relating the vapor pressure of the mercury vapor inside a mercury
rectifier to the temperature of the pool of mercury in the base of the tube
(see Table XVI) has an exponential factor similar in form to that appear-
ing in Equations (298)—(300).

The work function Ew is a measure of the required energy of escape in
electron volts; its value is usually between one and six or seven volts,
varying with the material and processing of the surface. The quantity
by, defined by Equation (303), is the work funetion measured in tempera~
ture units. Tables of emission constants sometimes give values of Ey,
sometimes of bs. See Table III.

71. The Voltage Equivalent of Temperature. The electrons, while
within the metal and immediately after emerging from it, behave con-
siderably like the particles of a gas heated to cathode temperature, in
that they have randomly directed velocities of various magnitudes, the
average velocity depending on the temperature. The quantity k7
that appears in the exponent of Equation (298) is a definite amount of
energy, in ergs per gas particle or per electron, which is characteristic
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of the temperature 7' in a very fundamental way (see Chapter X).
The corresponding characteristic random velocity will be called o,
defined by the relation

imat = kT (304)

m being the mass of one particle. The voltage equivalent of tempera-
ture, Er, is here defined as the characteristic energy kT measured in
electron volls, as indicated in Equations (301) and (302). This meaning
applies equally well whether the particles are charged or neutral, the
electron volt being, it must be remembered, a unit of energy. The
extent to which the energy AT, or Er, characterizes the temperature
cannot be fully appreciated without a study of theoretical thermody-
namics,U XXXVI hyt it is possible to illustrate its importance in several
specifie ways, as follows:

{a) kT is the kinetic energy, in ergs, that is associated with the most probable
total translational velocity of any particle in an ordinary gas at temperature
TV, WL This statement means that if one were to make a record of the mag-
nitudes of the velocities, regardless of direction, of all the gas particles within a given
volume at & given instant (a “ snapshot observation throughout a volume ), more
particles would be found to have velocities at or near « than similarly at or near any
other value. It also means that if a random selection of one particle were made from
the interior of the volume and its velocity noted, the chance of the velocity’s being
at or near & would be greater than for any other velocity.

(b) The familiar ideal gas law, PV = RT, can be written

PV = NkT (305)
where
P = pressure, dynes per square eentimeter (baryes)*
V = volume, cubic centimeters
N = total number of gas particles in the volume
kT = as above, the characteristic particle-energy for temperature T

{¢) If the translational thermal motions of the particles of an ordinary gas are
segregated into z-directed, y-directed, and z-directed components, the average energy
associated with each of these three possible kinds or ¥ degrees of freedom ” of motion
is 1k T ergs, or 3 Ep electron volts. Hence the average total kinetic energy of each
gas particle in monatomic gases, such as helium, neon, argon, mereury vapor, and
sodium vapor, is 3Ey, three times the value for each of the three degrees of free-
dom.WII  Molecules of a diatomic gas are dumbbell-like and have two additional
degrees of freedom of motion, one vibrational, one rotational, so that the average
kinetic energy per particle is §E7 volts. Thus at 40° C the average air-particle

energy is 2?%6% X g = 115 electron volts.

*The barye is the pressure exerted by a force of one dyne uniformly distributed
over one square centimeter. A pressure of one millimeter of mercury is 1333 baryes,
and one barye is 0.752 micron of mereury (a mieron is a thousandth of a millimeter).
The barye is sometimes called a microbar, a bar of pressure being 10° baryes. Stand-
ard atmospheric pressure is 760 millimeters of mercury, and approximately 1,013,000
baryes, that is, 1.3 per cent more than 10° baryes.
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(d) If an observer were to record the velocities with which each gas particle that
arrives hits the wall of an enclosure for a definite area and period of time (“ time
exposure over a surface”; see Section 121), the average normal-to-the-surface
energy at impact would be found to be just kT ergs, or By volts. This is greater than
the overall average energy of normal-to-the-surface motion (}E7) because the high-
veloeity particles move faster than the low-velocity ones, therefore hit more often

and are eounted more times in a second.

{e) If the time-exposure-over-a-surface observer in (d) above were to analyze his
records of y- and z-directed impact velocities, both being paraliel to the surface,
their average energies would be just } Er each, for rapid y- or z-directed motion has
no tendency to increase the number of impacts against & ¥, z surface. Hence the
average lolal energy at impact on & surface is

Er + 1Er + Er = 2Ey (306)

All the relations described in {a), (b), (¢}, {(d), (e) above can be shown
to be true by means of the Maxwellian velocity distribution equations
given in Sections 111115,

72. Energies of Escaping Electrons. It has been experimentally
demonstrated that as electrons emerge from a hot emitting surface their
random velocity distribution is just that of the particles of a perfect gas.
The average energy of emergence, that is

Total energy brought through the surface per second
Number of electrons emerging per second

has been found to be just 2E7, and is divided between the three com-
ponent direetions in accordance with Equation (306), and for the same
types of reasons. Ordinarily only the normal-to-the-surface energies,
whose average value is just Er, are of importance.

For example, the electrons emerging from a cathode whose temperature
is 2320° K have on the average the same owtwardly-directed kinetic energy
that one of them would gain by traversing a potential of 2320/11600 = 0.2
volt. If the electric field just outside the cathode surface tends to force
them back into it, and has a magnitude of 5 volts per centimeter, any
electron possessing just the average energy travels outward, in spite
of the field, to a distance 0.2/5 = 0.04 centimeter, that is, until its
kinetic energy vanishes. Having reached that point it must fall back
into the eathode, acquiring an energy of 0.2 volt due to inwardly directed
motion by the time it reaches the surface. Whatever energy of parallel-
to-the-surface motion it has on emergence remains unchanged during
the outward flight, reversal, and reentrance.

The most important aspect of this discussion of the energies of escaping
electrons is the indication it gives that the velocities at emission are in
all ordinary devices small relative to those acquired from the electrie
fields, Cathode temperatures usually range between 1000° and 2000° K,
corresponding to energies between about 0.1 and 0.2 volt, whereas poten-
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tials inducing flight between electrodes are many volts, and often many
hundreds of volts. Initial velocities of emission are ordinarily of little
or no consequence, but circumstances sometimes arigse that give them
considerable importance. They have been entirely neglected in the
discussions of space-charge-limited currents in previous chapters.

73. Graphical Evaluation of Emission Constants. The graphical
representation of the relation between thermionic current and tempera-
ture is usually based on a logarithmie expression. For example, Dush-
man’s equation can be written:

log. Ja + 2 log (%) — log, Ao — bo (-%,) (307)

and experimental data relating temperature to thermionic current
density represented by plotting 1/7 horizontally and log Ja + 2log 1/T
vertically. This results in straight-line relationships; of the type illus-
trated in Fig. 64, for a variety of substances. The corresponding values
of work function and of the constant A, appear in Table 111

Fig. 65 is a somewhat more easily readable representation of the set
of facts that appear in Fig, 64. The straight lines that represent the
thermionic properties of individual types of surfaces are exactly the
same in the two figures, but Fig. 65 has a direct-reading coordinate
system. Its vertical coordinate lines are chosen and marked according
to convenient temperature intervals, but are located in accordance
with the uniform 1/7 scale of Fig. 64. The warped, nearly horizontal,
coordinate lines of Fig. 85 are similarly chosen and marked for conven-
ient current density intervals, but are bent downward so as to correspond
to constant values of current density in the coordinate system of the
original figure. Each one corresponds to the graph, on the coordinates
of Fig. 64, of an equation of the form

[log Ju + 2 log (%,)] = g constant + 2 log (%) (308)

where the constant is a selected value of log Ju. The tendency of the
various straight lines to focus at a common point suggests the universal
nature of the constant A, for loge 4¢ for any line is the intercept at
1/T =0, or T = o, in Fig. 64. This intercept cannot be given an
intelligible significance on the coordinate system of Fig. 65 because of
the fact that log 1/T = —oo when 1/7 = 0.

An early and still widely used alternative for Dushman’s equation is
known as Richardson’s equation 7%; its form, explained later in Section
130, is’

Nl

Ju=aTte (309)
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a and b being empirical constants. The exponent has the same general
significance as in Dushman’s equation, and b is, like by, the work function
measured in temperature units. A graph’ecal representation of Richard-
son’s equation, similar to Fig. 64, would employ along the vertical scale
the quantity log Ju -+ % log (1/7T).

Every set of experimental data so far obtained gives an equally
satisfactory straight line on either type of graph, or for that matter on
one in which the vertical scale is simply log Ju, because the effect of the
exponential factor completely overshadows that of T2 or T3, The
thermionic properties of any emitter can therefore be completely
described by a set of empirical constants corresponding to Dushman’s
equation, as in Table I11, or by a corresponding set based on Richardson’s
equation, or by a set based on any reasonable value of the exponent of
the T factor, including the zero exponent which removes the T factor
altogether.

The present-day preference for Dushman’s equation is based on
rather definite theoretical indications that it is the correct form,”
strongly supported by the convergence of the various straight lines of
Figs. 64 and 65 toward a common point whose location is closely pre-
dicted by the theory. Present-day theory predicts a value of 120.4 for
As, but experimental data favor a value of 60.

74. Cathode Power Dissipation. The second of the two relations
that contribute to the power-emission relationship deseribed by Fig. 63
is that between temperature and cathode power dissipation. 8¢ X1V, X VIl
The temperature of an electron-emitting cathode is of course that at
which equilibrium exists between rate of heat removal and electrical
heat input.

The power directly expended in causing electron emission is the
product of emission current in amperes by the work function in volts.
This amount of power describes the rate of removal of heat by the
cooling action of electron emission. The mechanism is the same as that
of cooling by evaporation; the particles that leave are high-energy ones,
so that after the departure of any one of them the average kinetic energy
of the body as a whole is less than it was before.

Although the heat input requirement necessary to make up this
“electron evaporation” heat loss is measurable with refined apparatus,
and measurements of it have been made for determining work function,
it is in most high-vacuum thermionic devices negligible by comparison
with the radiant heat loss. In an ideal emitter it would be a major part
of the total heat-power input, yet would itself be small. Most present-
day devices are far from the ideal, which can, however, be much more
closely approached in gaseous-conducting than in high-vacuum devices.
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Corresponding to the cooling action of electron departure from the
cathode there is a heating action on entrance to the plate. Each electron
delivers to the plate, when it strikes, energy corresponding to the plate
voltage plus the plate-surface work function.

In actual high-vacuum apparatus nearly all the heat is removed by
radiation, so that the relation between heat power input and temperature
is controlled almost entirely by the heat-radiating and radiant-heat-
absorbing properties of the electrodes. Convection is entirely absent,
and the rate of heat removal by conduction through the supports and
terminals, though measurable, is small relative to the power radiated.

76. Heat Transfer by Radiation; Emissivity Coeficients. The rate
of radiant heat dissipation from a cathode is the difference between
the radiation rate from the eathode to its surroundings and that from
surroundings to the cathode; the latter is usually very small. The
quantitative relation between the temperature of a radiating body and
the power radiated away from it is, for a “ gray ” surface ¥ 206, X 199, C 108

4
Pr =573 X 10y T* = 5.73y (ET‘(TD) (310 p)

in watts per square centimeter, T being temperature in degrees Kelvin.
The quantity 5.73 X 1072 is a universal radiation constant (the Stefan-
Boltzmann constant) and v is the emissivity coefficient* of the surface.
Radiation literature uses
a great variety of symbols
to deseribe this coefficient,
which has a double signifi-
cance; it is (a) the ratio of
power radiated by a given
gray surface to that radi-
ated by a perfectly black
surface at the same temper-
ature, and (b) the fraction
/ ~— of incident radiation that is
: ,, ) . | T~~e—_] absorbed by a gray surface,
0 a6t e 3xi6* axi0* sxi0* exi0* this fraction being unity for
Heat Radiation Wave Length, Centimeters
Fig. 66. Spectral distributgiton of black and gray ;, perfe(ftly black surface.
body radiation, at 1600° K. or a given temperathe a
truly black surface radiates
more heat than any other kind, and absorbs all the’radiation incident
to it. Lampblack (soot) is the blackest substance known; its emis-
sivity coefficient is about 0.98.

* The quantity here called the emissivify coefficient is called the emission coeffi-
ctent by Moore,C 1% and is called the emissivily by Richtmyer. X 19

Gray Body

)/ (Emissivity 0.3)
-~
7 \\\

Radiant Power, Watts /sq. cm.
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Heat radiation, like light and radio broadeast radiation, takes place
at a variety of wave lengths. The solid line in Fig. 66 illustrates the
distribution of the energy radiated by a perfectly black body at one par-
ticular temperature. X% This distribution curve has the same general
shape for all temperatures, but the wave length corresponding to the
erest varies inversely as the temperature.

The dotted line is the corresponding radiation distribution curve, at
the same temperature, for a gray body whose emissivity coefficient is 0.3.
Its ordinates are at every point 0.3 of the height of those for the black
body. A gray surface is one for which this fraction is the same over the
entire curve; if, for example, the dotted curve were at the left 0.1, and
at the right 0.3 of the height of the solid one, the surface whose properties
it described could not be ealled gray. The overall emissivity eoefficient
for a not-gray body has only a limited significance. It is reasonable
to assume that all vacuum-~tube electrodes have gray surfaces, but such
an assumption in regard to the enclosing glass would be open to ques-
tion.

Fig. 67 illustrates graphiecally, on logarithmic coordinates, the varia~
tion of Py with temperature for several different surfaces.V! The
fact that the various lines are not all parallel to the straight black-body
line indicates that the emissivity coefficients must vary slightly with the
temperature. The value of the emissivity coeflicient -y corresponding to
any point on these curves is the ratio of Pg-at that point to Pg for the
black-body line at the same temperature.

As applied to the study of the incidence of radiant energy on a surface,
the emissivity coefficient describes the fraction of such energy that is not
reflected; that is, (1 — v) may be called a reflectivity coefficient. The
energy that is not reflected may be absorbed within the body of
the receiving substance, or it may pass on through it to remote
regions.

In most ordinary electronic devices the distances to the heat-receiving
surfaces are large relative to the dimensions of the radiating filament.
Under such cirecumstances successive reflections between radiator and
receiver make the overall radiant-energy transfer P follow the general
law that is known to apply for concentric spheres or cylinders if the radius
of the hot inner cylinder is mouch smaller than that of the outer one.
This relation is

P = 573 X 1072 Sy (T4 — T,%) (311 p)

where S, v, T, are respectively the radiator’s area in square centimeters,
the emissivity coefficient of both radiator and receiver, and the tem-
perature of the radiator. 7', is the temperature of the receiver. This
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can usually be simplified, for T',* is ordinarily very much smaller than
T2, even when the receiving surface is at a moderately high temperature.
Ordinarily the expression

P =573 X107 8yTA 312 p)
gives a satisfactory approximation to the true radiant power dissipation
from the cathode.
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Curves for platinum and tantalum would lie for the most part between those

for tungsten and molybdenum.
For Davisson’s combined-type coated cathode,

Pr=3573 X102 (04 + 25X 10 T) T
For tungsten (Worthing and Forsythe),
log Pk = 3.680 (logoo T ~ 8.3) — "2 + 1.900

If the cathode dimensions are not small relative to distances to the
receiving surfaces, the analysis of the rate of radiant heat transfer from
the cathode requires a study of multiple reflections for the particular
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geometry involved. The approach to such problems is deseribed by
Moore.C XIV

76. Temperature Measurements; Lead Losses. Basic measure-
ments of the temperatures of hot filaments are made by means of
optical pyrometers, which compare the optical brilliance of the sur-
face to be measured with that of a standard one.

In any attempt to use Equation (312) for accurate calculations the
rather pronounced effect of “lead losses,” that is, the cooling of the
ends of the filament by conduection to the supports or lead-in wires,
must be taken into account. Within this limitation, and subject to
accurate knowledge of cathode dimensions and of the emissivity co-
efficient, Equation (312) can be used for the estimation of cathode
temperature at a given power input. The emissivity coefficients of
oxide~coated surfaces vary somewhat with the details of surface prepara-
tion, but that for thoriated tungsten is the same as for ordinary tungsten;
in general, monatomic layers on a surface do not modify the emissivity.
Numerical values of emissivity coefficients can be estimated from Fig. 67.
A very smooth surface has a definitely lower emissivity than one that is
even slightly roughened.

Temperature can be determined, if the resistance properties of the
filament are known, by measurement of the ratio of hot to cold resistance;
see Table IV. Koller SV! gives a good general discussion of methods
of temperature measurement, and of the handling of lead losses.

77. Overall Relationship between Thermionic Current Density and
Power. Since nearly all the heat supplied to the cathode of a high-
vacuum thermionic device is removed by radiation, it is permissible,
if lead losses are small, to equate electrical power input to cathode
radiation, either total or per unit area., If Ey and I; are root mean
square values of heating voltage and current, and S the total heat-
radiating surface, Pg, the radiant power dissipation per square centimeter
of radiating surface is, in watts:

Py = 2l (313 p)

This permits evaluation of Py from experimental data.

Equation (312) can be written
'21‘2 = 1.55 X 103} (}%) (314 p)
If this expression for 1/ T, is used in Equation (307), the thermionic cur-
rent density is expressible directly as a function of Pg. A convenient
form of this relationship is
log Ja + 2 1o (i)l log A% _ 18 %(i)% (315 p)
g Jh £ Pz 82_4\/17 wY Pr p



160 THERMIONIC CATHODES

Equation (315) suggests the use of experimental data in a manner
similar to that employed in connection with Figs. 64 and 65. Numerical
values of Py and Jy are available from laboratory tests, so that cor-

1 X

responding values of log Jy, + 2 log (Pl;)‘ and of (PLR)‘can be caleulated
for each individual observation. If the former are plotted vertically,
the latter horizontally, an approximately straight line can be drawn
through the points. The slant lines that appear in Fig. 63 were obtained
in exactly this way. Their slight curvatures result from small variations
in the emissivity coefficients with rise in temperature. The effect of
these changes in v on linearity is minimized by its occurrence to the }
power in the expression 18 Ey~i for the slope. The intercepts with the
infinite power axis on such a graph depend on v as well as on A,.

It is convenient here, as with Figs. 64 and 65, to have a direct-reading
graph. Fig. 63 has a direct-reading coordinate system, the vertical lines
being spread according to an inverse fourth power law, to agree with
the fact that the points must, on rectangular graph paper, be plotted
in terms of 1/Pzl. The nearly horizontal coordinate lines are bent so
that each one represents, as in Fig. 65, a constant value of thermionic cur-
rent density Jy.

The warping in Fig. 63 is based on Dushman’s equation, which was
used in building up to Equation (315). A useful kind of special graph
paper, called “ power emission paper ”’ with coordinates similar to those
of Fig. 63 but based instead on Richardson’s T% equation, has been
designed by the engineers of the Western Electrie Company® and can
be purchased from the Kueffel and Esser Company.

78. Inward-Radiating Cathodes. High emission efficiency is favored
by a small rate of heat radiation from the cathode, for this permits the
maintenance of a high cathode temperature with small energy consump-
tion. The emissivity coefficient depends on the material and smooth-
ness of the cathode; total heat radiation is dependent, not only on
emissivity, but also on the geometrical shape of the cathode.

A cathode so shaped as to have some similarity to a furnace, with
electron-emitting interior walls radiating heat toward one another, and
having the nonemitting outer surfaces heat-insulated by two or three
reflecting baffles, can be made many times more efficient than the
ordinary outward-radiating kind.5¥! The radiation from each part of
the inner surface helps to maintain the temperature of the other parts,
and very little radiation escapes to the outside.

Such heat-conserving cathodes can be used in gas-filled electronic
devices in which the space charge in the interior region is neutralized



LOW-WORK-FUNCTION SURFACES 161

by positive ions of the gas. FElectric field effects in this interior region are
much the same as those inside a metallic conductor, and the electrons
can be drawn out through an open end of the cathode enclosure. The
radiating and emitting areas are not the same for this type of cathode,
80 that power-emission charts lose some of their significance. Consider-
able time (often a matter of minutes) must be allowed, after filament
power is turned on, for them to reach temperature equilibrium before.
plate current is allowed to flow.

Electrons that are emitted start out from a surface, in general, in the
same direction as radiation. In any high-vacuum space-charge-limited-
current device the electrons must continue to travel in approximately
parallel or diverging paths toward the receiving electrode. If the
receiving electrode is placed so as to be a satisfactory target for electrons,
it is likely also to be a good target for heat radiation. Consequently
the inward-radiating heat-conserving cathode construction has not been
applied successfully to high-vacuum thermionic devices. Although
electrons can be made to run around eorners in a vacuum by suitable
combinations of electric and magnetic fields, attempts to concentrate
their emergence in a region out of the straight-line path of radiant-
energy flow introduce current-restricting space charges.

79. Low-Work-Function Surfaces. High emission efficiency is favored
by low work function, and a great deal of ingenuity, seientific thought,
and expense has been devoted to the search for materials and for process-
ing methods which will produce very low work functions, with consider-
able success. V- T.¢  Most present-day commercial electronic devices are
equipped with ozide-coated or thoriated cathodes, prepared in accordance
with the results of these investigations. The surface structure and
behavior of these special types of cathodes are described in Sections
103-107. For some purposes cathodes of pure or nearly pure refractory
metals, such as tungsten or molybdenum, are used.

Structural stability, including resistance to damage by bombardment
of ions of residual gas, and other considerations (such as evaporation of
surface material) that relate to usefu! life, must be considered along with
work function and emissivity in comparing merits of various materials
and processes. Of course the melting point must be higher than the
temperature at which appreciable emission takes place; hence the
higher the work function, the more refractory a material must be to serve
at all, regardless of efficiency. This rules out copper, nickel, aluminum,
and similar metals entirely.
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PROBLEMS
Cuarrer VII

1. Find the values of ET, the voltage equivalent of temperature as defined in
Section 70, that correspond to 0° C, to 100° C, and to 2500° K.

2. (a) Use Dushman’s equation to find what the temperature-limited current to
the plate of the diode of Problem 3, Chapter V, would be with a filament temperature
2500° K. (Use Table IIL)

(b} Above what plate voltage will the eurrent be temperature-limited, if the radius
of the plate is 30 times that of the cathode? (Use Fig. 47 or Table 1.)

(¢) Sketch approximately to scale, with scales marked, curves of plate current
against plate voltage for this tube at a filament temperature of 2500° K,

(d) Same as (¢), except at a filament temperature of 2000° K.

(e) Estimate the power, in watts, that must be supplied to this filament to main-
tain its temperature 2500° K; also, to maintain it at 2000° K.

8. The cathode of a certsin cylindrical triode (Fig. 25) is being operated at a
temperature such that the temperature-limited current density Ju is 60 milliamperes
per sq cm. The actual space-charge-limited current density J is one-third of the
temperature-limited current density. Cathode radius is 0.05 em, plate radius 0.5 em.
Axial length of tube is 4.0 cm. E)p = 130 volts, E; = —10 volts. The average total
energy of the electrons as they leave the cathode surface is 0.2 electron volt. The
work function of the cathode surface is 2.10 volts.

Find:

(a) The average outwardly directed energy of the escaping electrons,

(b} The temperature of the cathode.

{(¢) The value of A, in Dushman’s equation, for the material of the cathode surface.

(d) The power required to heat the cathode if its emissivity is 0.4. (Assume that
all the heating power input to the cathode is radiated to the plate.)

(¢) The rate (in watts) at which electron emission removes heat from the cathode,
in just the way evaporation cools a pool of water. Note that this rate is insignificant
relative to that found in (d).

(f) The power, in total watts and watts per square centimeter, that must be ra-
diated by the plate. (Note that this must include the power radiated to it by the
eathode.)

{9) The temperature reached by the plate, if its emissivity is 0.9 (g graphite plate).

4. Consider a parallel-plane triode in which the cathode material, cathode tem-
perature, ratio of Jp to Ju, and plate and grid voltages are the same as in the previous
problem. The cathode radiates only from the side toward the plate. Answer
questions similar to (d), (f), (g) of the previous problem, dealing now entirely in
watts persqem. What do the results of the calculations indicate to you?

6. A plane tungsten cathode, area ten sq em, is operating at 2500° X. One-half
cm distant from it is an anode, also plane, at a potential 200 volts positive with
respect to the cathode.

(a) Is the eurrent space-charge-limited or temperature-limited?

(b) As the plate voltage rises from zero, at what value of plate voltage does the
current first become temperature-limited?



CHAPTER VIII
WORK FUNCTIONS OF HOMOGENEOUS SURFACES

80. Jonizing Potentials of Atoms. An atom of any element consists
of a central positively charged nucleus surrounded by a cloud or “ atmos-
phere” of electrons, normally of just the right number to neutralize
the positive nuclear chargeW1.X31 These electrons place themselves
systematically in a series of “shells” located progressively farther out
from the nucleus. Each shell can accommodate no more than a definite
number of electrons, though it may contain less than the maximum,
even when a more remote shell is partially occupied. The maximum
number of electrons in each shell is 2n? for the nth shell. X ¢%

Large atomic weight is usually associated with large nuclear charge,
s0 that the electronic atmospheres extend into more remote shells for
the heavy than for the light elements. None of the elements completely
fill either the fifth or sixth shells, but some radio-active elements have
one or two seventh-shell electrons in each atom. Table V gives what is
believed to be the correct distribution of electrons among the shells for
the various elements. The afomic number is simply the nuclear charge,
in electron-charge units; henece also the normal number of electrons in
each atom’s atmosphere. Fig. 68 illustrates in a general way how the
electrons in a sodium atom’s atmosphere are distributed. There are two
in the first shell, eight in the second, and a lone one in the third. The
placement, in the figure, of the eight second-shell electrons at the corners
of a cube is merely suggestive of

a high degree of symmetry in ///T //7";
their average positions. = .....-'r_.(/ i
An atom from which one of the | | o] : cone Third.
outer-shell electrons has been re- | '} f’ | Shell Electron
moved is said to be jonized. The l /,L--ll-——-;;,&
restraining force that tends to 1 7 I~
e

prevent such removal is the elec-
trostatic attraction between the
electron about to leave and the
remainder of the atom, Such attraction exists because, as an electron
starts away, its departure leaves the atom positively charged by an
amount equal to the electron’s own negative charge. A definite mini-
mum amount of energy, usually measured in electron volts and called
163

Fic. 68. Locations of the eleven electrons
of a sodium atom’s “atmosphere.”
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the “onizing potential, must be given to an outer-shell electron to enable
it to escape in spite of the loss of kinetic energy experienced in overcom-
ing this electric restraining force. Thus the ionizing potential is a
measure of the strength of attachment of an outer-shell electron to the
atom of which it is a part.

For a given type of electron arrangement, the attachment of 2 remote-
shell outer electron is less than that of a close-in one. Thus the ionizing
potential of sodium is 5.12 volts, of rubidium 4.16 volts, and of caesium
only 3.87 volts, although in all three elements the last shell contains
one, the next-to-the-last eight, electrons.

81. Free Electrons in Metals. An electron that, like the eleventh one
of sodium, has the entire outer shell to itself, is in general much less
strongly attached to its atom than one, like a third-shell argon electron,
which has many companions in its own shell. Thus although the outer-
most electrons of both sodium and argon are in the third shell, the
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Fra. 69. Energy levels for the electron gas in a cold metal (normal state).

ionizing potential of sedium is 5.12 volts, that of argon 15.69 volts.
Good electrical conductors are made from the elements, seattered all the
way through the periodic table, in which the farthest-out shell that is
occupied contains only one, two, or—in a few elements — three electrons.

Atoms of these elements are located so close together when in solid
metallic assembly that the outer-shell electrons are no more closely
associated with one atom than with another. The electron attachment
to individual atoms is weak to begin with, and vanishes altogether when
in this very close spacing. At least one, sometimes two, in a few cases
three, electrons per atom are not bound at all to any one atom, but
are free to rove throughout the interior of the metal. They can there-
fore move very rapidly in response to electric fields that result from the
introduction of the metal into electric circuits; they are called free
electrons. TV Us

Since these roving electrons continually interchange their kinetic
energies of motion with vibrational kinetic energies of the atoms of the
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metal, the freedom of electron motion aids in the transfer of heat
energy from one point to another; hence good electrical conductors are
also good heat conductors.

82. Work Function. The free electrons possess varying amounts of
kinetic energy, which for reasons detailed in a later section range
upward from zero to a definite normal maximum, usually several elec-
tron volts. There are always more electrons with energies near the nor-
mal maximum than with lesser amounts. The highest-energy free
electrons in a metal correspond roughly to the outer-shell electrons
in a single atom, in that they are more nearly in position to escape
from the metal than are any of the others.

Although there is no attachment of consequence between the free
electrons and individual atoms in a metal, there is a strong attachment
between the free electrons and the metal as a whole. An electron
escaping from the surface of a conductor, like one on the way out from a
single atom, leaves on the parent body a positive charge, called the
image charge, which exerts an electric ¢mage force tending to prevent
departure.

A defipite minimum amount of energy, usually measured in electron
volts and called the work function, already made use of in Chapter VII,
must be given to any one of the highest-energy free electrons to enable
it to escape in spite of the loss of kinetic energy experienced in overcom-
ing the image foree. The addition to low-energy free electrons of an
amount of energy equivalent to the work function cannot release them,
for it is an electron’s total energy to which the possibility of escape is
primarily related. Work functions of metals range between 1.5 and 7
volts (see Table III) as compared with a range of 3.5 to 25 volts for the
ionizing potentials of atoms and molecules in gases and vapors.

83. Energy-Level Diagrams; Gross and Net Work Function.
As an escaping electron moves away from the metal its kinetic energy
isreduced to just the extent that its potential energy is increased; similarly
the kinetic energy of a baseball in an upward flight is decreased to the
same extent that its potential energy, measured by its height, grows
larger. The electric-force barrier offered to an electron’s remotely
similar outward flight may be represented diagrammatically in an
energy-level diagram, Fig. 69,Y% in which vertical distances describe
energies.* It is convenient {o use the eleclron volf as a unit of energy
in such diagrams, both potential energy and kinetic energy being
convertible between ergs and electron volts E by the familiar relation

Eel( = ergs (316 p)

* Herzfeld® gives an extensive bibliography of artieles relating to the origin and
uses of the energy-level concept as applied to the electrons in metals.
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The upward reverse curve in the heavy solid line in Fig. 69 repre-
sents the change in an outwardly moving electron’s potential energy
from a uniform “ bottom-level *’ value everywhere inside the metal at
the left to a uniform * zero-level 7’ value everywhere outside at the
right. Thus the poteniial energy is zero outside, negative inside. The
difference between these two extreme zero and bottom energy levels is
just the increase in potential energy, hence also the loss in kinetic energy,
experienced by an escaping electron during its outward flight. This dif-
ference describes the kinetic energy that must be imparted to a stationary
electron ingide the metal in order to permit escape, and will be called the
gross work function in this text. It is considerably larger than the
quantity heretofore called work function. Sections 92-95 contain
discussions of the factors that determine gross work funetion magnitudes.

Since the electrons in the metal are not stationary, the addition of a
considerably smaller amount of energy than the gross work funetion
may result in one’s escape. The many horizontal lines in the left, in-
terior-of-the-metal, part of Fig. 69 represent kinetic-energy levels. They
symbolize the faet that the free electrons in the metal possess a great
variety of kinetic energies ranging from none at all (for the * bottom-
level electrons ”’) up to that described by the normal maximum level.
The quantity described in the preceding section and in Chapter VII as
work function, and universally referred to in that way, is the additional
kinetic energy that must be given to an electron already in the normal
maximum level to enable it to escape. This is of course just the dif-
ference between gross work function and the kinetic energy of the
electrons in the normal maximum level.

Work function will in this text sometimes be called net work function
to emphasize the contrast with gross work function, but there need
be no ambiguity ever as to the meaning of the simple unmodified phrase
“ work function.”

The height of the normal maximum level is dependent entirely on the
concentration of free electrons within the metal, in a manner that is
fully discussed in Sections 84-91, Available evidence indicates that it
ranges from about 2 volts in some of the lighter metals to 10 or more in
some of the heavier ones. It is interesting to note that the average
kinetic energy of the “ gas” made up of the free electrons in a metal
is several volts (} of the normal maximum) even at very low tempera-
tures. 'This is in sharp contrast to the average molecular kinetic energy
in ordinary gases, which rarely exceeds % to % of a volt, even at high
temperatures. .

84. Normal (Low-Temperature) Distribution of Kinetic Energy.
It has been stated that the many horizontal lines in the left, interior-of~
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the-metal, part of Fig. 69 suggest the many different values of kinetic
energy possessed by the free electrons. The actual number of elec-
trons that have a given amount of kinetic energy is controlled, for

reasons outlined in a later section, by the following two general sets of
facts: 89.70.7LTV

(a) The values of kinetic energy possible for an electron to have differ from one
another by finite though extremely small amounts. Each permissible value can be
represented diagrammatically as a kinetic-energy level; hence the use of discrete hori-
zontal lines in the diagram.

(b) Each kinetic-energy level can accommodate only a limited number of electrons,
the number increasing approximately as the square ro