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This volume of A History of Engineering and
Science in the Bell System tells the AT&T Bell Lab-
oratories story of those areas of scientific research
having a direct bearing on communications. It
covers a period from 1925, when Bell Laboratories
was incorporated as a separate R&D member of
the Bell System, to about 1980, when solid-state
science and computer-based systems placed us on
the threshold of a new era of useful and inex-
pensive communications services.

Central to this growth and to today’s com-
munications are a number of discoveries by Bell
Laboratories people. C. E. Shannon’s information
theory established a benchmark by which all types
of communications systems can be evaluated.
H.S. Black’s principle of negative feedback is em-
bodied in communications equipment ranging
from simple pocket radios to the largest transcon-
tinental and international voice and data lines.
K. Thompson’s and D. M. Ritchie’s UNIX* system
is rapidly becoming an industry standard for com-
puter operating systems of great power and
versatility.

Among the many other topics included in this
book are H. Fletcher’s and J. L. Flanagan’s research
on speech and hearing, R. Kompfner's and J. R.
Pierce’s work on traveling wave tubes, the creation
of heterojunction lasers and diodes coupled to
nearly lossless glass fibers that make lightwave
communications possible, and the research story
of the Echo and Telstar satellites.

The disciplines covered are mathematics,
acoustics, picture communications, vacuum-tube
electronics, radio and microwave research, wave-
guides, lightwave communications, switching,

(continued on back flap)

Front cover: Symbolic of the trend to digital technology are
“eye diagrams” as captured in an oscilloscope photo of
incoming digital pulses. Clear “eyes” indicate minimum
distortion after transmission—here shown as an eight-
level signal transmitted over a digital radio circuit.

* Trademark of AT&T Bell Laboratories.
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computer science, digital communications, be-
havioral science, and economics.

Along with its companion volume, Physical Sci-
ences, this book highlights the research activities
of a period of profound change in communica-
tions, from the time when an intercity telephone
call was an adventure to the routine, worldwide
transmission of huge volumes of telephone con-
versations, pictures, and data in digital form.

Communications Sciences, like the other volumes
in the series, was written by members of the tech-
nical staff of AT&T Bell Laboratories, all of whom
were active in the work they describe and many
of whom are world leaders in their fields. The
editor is Dr. Sidney Millman, who also edited the
Physical Sciences volume. Before his retirement,
Dr. Millman played a prominent role in Bell Lab-
oratories research activities, first in vacuum-tube
electronics and later as an administrator of Bell
Labs physics research programs.

Back cover: At the 1939 World's Fair in New York, a
skilled human operator produced synthetic speech by
actuating a manual keyboard to control electronic sound
sources. In the 1980s, advances in understanding permit
a computer to make the complex transformations and
controls necessary to convert a printed message into
intelligible synthetic speech.
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Overview—
Research in Communications

This is the second of two volumes on the history of research at Bell
Laboratories* from 1925 to about 1980. The first, subtitled Physical Sciences
and published in 1983, recorded the important achievements of Bell Labs
scientists in physics and in materials research. The present volume describes
research in communications.

Designing and building a telecommunications network for the nation
has been a task of almost overwhelming complexity. It has occupied many
thousands of engineers and scientists at Bell Laboratories, as well as their
associates at AT&T, Western Electric, and the various operating telephone
companies. By contrast, the number of people involved in communications
studies and experiments in the research organization of Bell Laboratories
has been very small. Nonetheless, the work chronicled in this volume
testifies to the profound impact of these researchers on the course of
communications history. Included are a number of brilliant individual
achievements, such as the conception of information theory by C. E. Shan-
non, as well as a number of extended efforts embroidered by a succession
of researchers, such as the evolution of pulse-code-modulation transmission.

Communications research in the Bell System predated the formation
of Bell Laboratories in 1925. By that time, many of the mathematical
foundations for communications had already been firmly laid. Mathematical
techniques had been applied successfully to the study of the stability of
vacuum-tube amplifiers, the understanding of sidebands in amplitude-
modulated carrier waves, the investigation of the properties of the ionos-
phere for radio communication, and to other communications studies.
Acoustics research was also well under way at that time. Theories had
been advanced on the nature of hearing, and mathematical relationships
had been derived linking electromechanical and electroacoustical systems.
These and other research contributions from this early period are described
in Chapter 10 of the first volume of this series, called The Early Years
(1875-1925).

The present volume is divided into 12 chapters, each representing a
particular broad topic within communications sciences. Some of the chapters
describe research areas, such as vacuum-tube electronics and waveguides,
that are no longer active. Other chapters deal with areas that are as active

* As of January 1, 1984, Bell Laboratories adopted the designation AT&T Bell Laboratories
in order to clearly show its relationship with AT&T.
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today as they have been in previous decades, and represent enduring
commitments to research in the constituent branches of communications.
Such areas include mathematics, acoustics, visual communications, switch-
ing, and computer science.

The first chapter covers mathematical research, work that predated the
formal founding of Bell Laboratories. One of the early problems that con-
cerned mathematicians was the study of the properties of modulation. The
existence of lower-frequency and higher-frequency sidebands when a voice
band is impressed on a carrier frequency by amplitude modulation had
been established before 1925. The case of frequency modulation was more
complicated, particularly because of its interrelation with noise. Studies
by H. Nyquist, with the aim of finding the maximum signaling rate that
could be used over a telegraph channel of a given bandwidth, led him to
derive the version of the sampling theorem for which he is famous—that
reconstruction of a band-limited signal requires sampling at a rate at least
twice the highest frequency component of the signal.

The need to maximize the number of channels that can be used in a
carrier transmission system brought about fundamental investigations of
networks and filters, and of oscillators with frequency stability of one part
in a billion. This led W. P. Mason to the study of crystal vibrations and
the theory of fabrication and control of crystal oscillators. Sophisticated
network synthesis methods were developed by S. Darlington. The stability
and feedback problems encountered in multistage amplifiers for very long-
distance transmission with many such repeating amplifiers were solved
by H. S. Black with his invention of the negative feedback amplifier and
by H. W. Bode with his fundamental mathematical techniques.

The noise problems encountered in multiplexed-carrier telephony, when
wideband amplifiers with inherent nonlinearities serve many channels,
were solved first by fundamental understanding of Johnson noise, present
in any electrical resistor, and by S. O. Rice’s classical analysis of the prop-
erties of noise in transmissions signals.

The most celebrated result of communications mathematics research
came in 1948 with C. E. Shannon’s formulation of information theory.
Shannon related the information content of a message to the probability
of its occurrence. Building on this conceptual foundation, Shannon derived
his famous equation for the capacity of a band-limited communication
channel—the capacity in bits per second being equal to the bandwidth
times the logarithm (base two) of the signal-to-noise ratio plus one. Shan-
non’s work began an active field of research for mathematicians and en-
gineers around the world; it had a profound impact on the philosophy of
communications. Shannon’s capacity equation represents both a goal and
an unreachable barrier, and it still motivates engineers more than three
decades after its derivation.
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One field of communications systems research stimulated by Shannon'’s
work was error-correcting coding. The first error-detecting and -correcting
codes were credited to R. W. Hamming. A mathematical framework for
the analysis and synthesis of codes was laid by D. Slepian in his conception
of linear codes. Later, error-correcting codes were made more practical by
the invention by E. R. Berlekamp of an efficient decoding algorithm for
the most important known class of codes.

Mathematical research was also conducted in statistics. This proved
important in guiding experimental programs on quality control in the Bell
System. When modern computers became available in the 1950s, the sta-
tistical methods became especially useful in the analysis of large masses
of data, such as the measurement of high-energy protons gathered by
instruments in the Telstar satellite.

Although most of the research in computer science is described in Chap-
ter 9 of this volume, some important work in the theory of computational
complexity appears in the initial chapter devoted to mathematics. Numerous
contributions to the development of a branch of mathematics treating the
study of inherently intractable problems—NP-complete problems—were
made by the mathematical research group, particularly by M. R. Garey
and D. S. Johnson.

Acoustics research has long been a strength of Bell Laboratories. The
early work on speech and hearing was led by H. Fletcher. The well-known
Fletcher-Munson curves summarized the measurements of subjective
loudness as a function of frequency for various magnitudes of loudness
level. This relationship formed the basis for frequency equalization in
high-fidelity sound systems, and later in stereophonic sound. Studies in
speech analysis led to the development of a speech analyzer, called the
vocoder, with the subsequent development of the sound spectrograph,
which gave a graphic representation of speech spectra in a form that
exhibited temporal as well as spectral properties of speech components.
Following that, H. Dudley developed the electrical speech synthesizer,
named the voder, which was operated from a keyboard to produce rea-
sonably intelligible artificial speech. The voder used a bandwidth of 300
hertz, thus giving a bandwidth reduction of ten compared to ordinary
speech transmission. Electrical transmission-line analog models of the vocal
tract and the inner ear were also developed to give a more quantitative
understanding of the mechanisms of speech and hearing.

Acoustics research after 1950 was strongly influenced by the increasing
availability of solid-state digital computers and the development of tech-
niques for simulating and studying physical systems by numerical methods.
The use of analog-to-digital converters facilitated the study of many prob-
lems in acoustics, such as reverberation and stereophonic sound, bandwidth
reduction, and the design of digital equivalents of classical wave filters.
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Computer simulation became an attractive means for rapidly implementing
and testing new ideas in speech transmission. Using that method, J. L.
Flanagan invented in 1965 the phase vocoder for achieving moderate
bandwidth conservation with good quality transmission, and, in 1967, the
linear predictive coding (LPC) algorithm was invented by a group of re-
searchers in his department. The LPC algorithm has since provided an
efficient means for low bit rate coding and synthesis of speech in both
transmission and computer systems. Digital simulation also greatly facil-
itated acoustic studies in underwater sound, room acoustics, musical
acoustics, human-machine communication, and automatic speech recog-
nition.

Picture communication has been another long-standing interest in re-
search at Bell Laboratories. There was a small effort in the field even
before the formation of Bell Laboratories itself, and, in 1927, H. E. Ives
demonstrated a television system that stimulated research throughout the
industry. Successful experiments on television transmission over coaxial
cables and other lines were performed. M. W. Baldwin’s research on the
perceived sharpness of images as a function of several factors helped to
establish scanning standards and criteria for transmission of color images.
These research results were also very useful in the various stages of de-
velopment of the PICTUREPHONE* visual telephone service.

The large bandwidth required for high-fidelity television transmission
stimulated research effort on bandwidth compression systems. In the mid-
1940s, the interest in pulse-code modulation (PCM) led to C. C. Cutler’s
invention of differential PCM, which provided a relatively simple and
powerful way of coding pictures with fewer bits per picture element. The
next significant steps in picture coding occurred with the selective replen-
ishment and conditional replenishment coding algorithms, in which only
portions of television frames with significant change from previous frames
need be transmitted. In the 1970s, A. N. Netravali introduced the motion
compensation algorithm, which provided even more bandwidth compres-
sion by estimating the movement of shaded areas in the picture and trans-
mitting only the differences from these anticipated values. It was then
possible to transmit conference-quality video using as little as 375 kilobits
per second.

Fundamental investigations of the interaction of electron streams in
vacuum tubes with electromagnetic waves started in the mid-1930s. Such
explorations became increasingly important for meeting the needs of elec-
tronic amplifiers at higher and higher frequencies. The time of flight of
the electrons between the vacuum-tube electrodes, space charge, and ve-
locity distribution of the electrons and its effect on noise had to be taken

* Registered service mark of AT&T.
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into account. J. R. Pierce’s research on electron guns and the reflex klystron
was an outgrowth of such a fundamental approach. During the war years,
the work of J. B. Fisk and his group it advancing the understanding of
the operation of the magnetron, and the design and development of mag-
netrons, stood out as important contributions to the radar program centered
at the Massachusetts Institute of Technology. The magnetron activities
decreased after the war, and the researchers in the vacuum-tube electronics
department concentrated on the traveling wave tube of R. Kompfner and
J. R. Pierce for the amplification of microwaves. The invention by S. Millman
of the spatial harmonic traveling wave amplifier and his contribution to
the understanding of backward-wave amplification opened the way for
millimeter-wave amplifiers and voltage-tunable oscillators. Interest in re-
search on vacuum-tube electronics decreased rapidly in the late 1950s
with the development of solid-state amplifiers for millimeter waves.

Radio research at Bell Laboratories, centered at Holmdel, New Jersey,
was motivated by the need to provide communications systems over long
distances and with increasingly greater capacity. This naturally led to the
exploration of the potentials of higher and higher frequencies where large
bandwidths were expected to come more easily. Research interests con-
centrated on antennas and related receiver noise and on propagation studies,
ranging from the shortwave region of the electromagnetic spectrum to
microwaves and the visible region. The antenna studies led to the design
of the rhombic antenna for shortwaves and to the horn antenna for mi-
crowaves, as well as to heterodyne techniques for detection of radio-
frequency radiation. Propagation studies led to better understanding of
the effect of various ionized layers in the atmosphere on radio transmission
at different frequencies; they determined the effect of rain and fog on
propagation of different portions of the electromagnetic spectrum and
helped in the design of appropriate diversity techniques to overcome fading
at shortwaves.

An outgrowth of these fundamental studies was the experimental TDX
microwave relay system of the mid-1940s for the 4-gigahertz (GHz) fre-
quency region. This prototype system was the forerunner of the popular
TD microwave system, which was to evolve into a nationwide radio network
system. The TDX system connected New York and Boston with a pair of
10-megahertz wideband channels. It went into service on an experimental
basis in 1947. The first commercial TD system was installed in 1950; by
1983, 72 percent of the long-haul facilities of the Bell System were provided
by microwave radio-relay systems.

Bell Laboratories researchers were also pioneers in satellite communi-
cations. The first satellite transmission experiment, Project Echo, occurred
as a result of a suggestion by J. R. Pierce and R. Kompfner to the National
Aeronautics and Space Administration. The Echo balloon was placed in
orbit on August 12, 1960, and the first message relayed from space was
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a recorded statement by President Eisenhower, which was transmitted
from the Jet Propulsion Laboratories to Bell Laboratories. This experiment
was followed in 1962 by an experimental active satellite system, Telstar,
which was a large project involving scientists and engineers from research
and development organizations of Bell Laboratories. The world’s first
transatlantic television transmission was carried on Telstar. It was an exciting
time at Bell Labs as a new era in communications was begun.

In mobile communications, propagation studies at microwave frequencies
were conducted in the early 1950s. A more intensive research program,
starting in the early 1960s, led to the development of the highly successful
cellular mobile radio system. Techniques were devised for dynamic channel
assignment and efficient use of allotted frequency bands to take care of
short-term statistical fluctuations in communication demands.

Waveguide research began in 1931 with experiments by G. C. South-
worth, who was then in the research department of the AT&T Company.
At that time there was skepticism about whether electromagnetic waves
could pass through hollow metal tubes and dielectric rods, and whether

E _there was any practical use for them even if they could. Southworth’s
initial experiments showed promise, and he transferred to Bell Laboratories
to continue his investigations. Collaborations with J. R. Carson and
S. A. Schelkunoff laid an experimental and mathematical foundation
for modes of propagation in guided media. One of their findings was that
certain modes could have unusually low losses, with the attenuation of a
circular waveguide approaching zero in some circumstances as the fre-
quency was increased. This high-frequency characteristic was particularly
attractive to researchers interested in very large bandwidths at frequencies
unfavorable for propagation in the open atmosphere. For the more com-
monly used waveguide (i.e., rectangular), where only one electromagnetic
mode could propagate, the contributions by Bell Labs scientists and en-
gineers were used principally in components for radar and microwave
radio-relay systems.

The potential of circular waveguide for large bandwidth fascinated re-
searchers. For exploiting the intriguing properties of this medium, a con-
siderable research effortgrew. It was necessary to find a way of propagating
only a single desirable mode in a waveguide configuration capable of
propagating more than a hundred modes. Eventually, researchers suc-
cessfully demonstrated the engineering and commercial feasibility of this
ultrabroadband system for long-distance transmission. By this time light-
wave transmission via optical fibers appeared to be a more promising
alternative, and the work on circular systems was terminated. A study of
history offers some perspective on the pathways of research; not every
project ends in changing the face of the world. As this volume attests,
however, Bell Laboratories can point with pride to the large number that
have done just that.
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The history of lightwave communications is of more recent vintage than
any other chapter in this volume. Early studies in the 1940s and 1950s
considered optical transmission, but it was not until the proposal by
A. L. Schawlow and C. H. Townes for an optical maser in 1958 that interest
built in this field. The potential increase in frequency by a factor of 10,000
over microwave sources was enormously exciting. Even before the excellent
propagation properties of glass fibers were realized, Bell Labs scientists
began to explore the uses of glass lenses and gas lenses for guided optical
transmission. Work in this area was given a tremendous boost by the
fabrication of low-loss glass fibers by R. D. Maurer at the Corning Glass
Company.

Bell Laboratories research on sources for optical emission resulted in
the invention of the injection semiconductor heterostructure laser by I.
Hayashi and M. B. Panish and a light-emitting diode especially tailored
for optical fiber application by C. A. Burrus. These sources were used with
optical fibers in both single-mode and multimode applications. Techniques
for splicing and connecting fibers had to be invented, as well as a family
of components for lightwave systems, including photodetectors, filters,
amplifiers, and regenerators. The field of integrated optics was originated,
and research began on miniature forms of the modulators, switches, filters,
and directional couplers required in optical systems.

Although lightwave transmission is still a small percent of the long-
haul telecommunications network, it is clear as this volume goes to press
that the future belongs to optics. Major optical links have been installed
on both coasts of the nation, and plans for a nationwide optical system
are well underway. Optical fibers are prevalent in metropolitan area trans-
mission systems and on subscriber loop carrier systems. Research is ex-
tremely active in optics, and major discoveries seem to occur monthly.
Thus the present history ends abruptly in midstream with this publication.
Clearly, a more complete history of lightwave communications is yet
to come.

The impact of research activities on the field of switching is probably
not as profound as in transmission. Nonetheless, a series of experimental
telephone switching systems was constructed in the research area, par-
ticularly during the late 1940s and the 1950s, which influenced future
generations of commercial switches. The advantages to be derived from
the application of electronic techniques to switching systems were explored
in the electronically controlled automatic switching system using vacuum
tubes and high-speed relays. The most famous research system, the ex-
perimental solid-state exchange (ESSEX) system, was constructed in 1959
by W. A. Malthaner, H. E. Vaughan, and associates. ESSEX used PCM to
implement time-division switching. Articles about the ESSEX system are
among the most quoted in switching literature. Eventually the technology
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begun in ESSEX resulted in the first commercial time-division switch, the
4ESS* switch, which began service in 1976.

The fascinating evolution of PCM as a transmission philosophy is the
principal component of the chapter on digital communication. It is not so
well known that PCM was the essence of a 1926 patent by P. M. Rainey
of the Western Electric Company. The credit for the invention of PCM is
generally given to the 1942 patent of A. H. Reeves of the International
Telephone and Telegraph Company. Bell Labs early involvement with
PCM centered about wartime projects, which provided a need for what
was then an expensive methodology. After World War 11, Bell Labs re-
searchers built up a theoretical foundation for PCM. Much of this work
was credited to W. R. Bennett, while its antecedents were laid in a famous
telegraph paper by H. Nyquist in 1928.

In the period from 1944 to 1948 several experimental PCM systems
were constructed in research. Speech signals were sent from Murray Hill,
New Jersey to New York City using a 4-GHz radio link carrying 96 PCM
channels. The technology had been demonstrated, and a theory had been
elucidated, but, for some years afterwards, the researchers were in the
position of having a solution without a needful problem. Eventually, it
was realized that an ideal application for PCM was in providing multiple
channels on a wire pair, and the development of the T-1 carrier system
was begun. Today such systems are the main intracity links, and digital
communication is the basis of the information age. Even in a book of
history, it is hard to realize that at one time the world was all analog, and
no one could find a use for PCM!

Though Bell Laboratories is naturally associated with communications
technology, the contributions to computer science are preeminent. The
greatest contribution that Bell Labs made to computer technology was, of
course, the invention of the junction transistor. But that story was more
properly placed in the companion Physical Sciences volume of this series.
A pioneering analog computer, designed by Bell Labs scientists for the
control of antiaircraft guns during World War II, used precision wire-
wound potentiometers and vacuum-tube amplifiers to perform standard
arithmetic operations. The first binary-relay calculator was designed in
1937 by G. R. Stibitz. Standard telephone relays were used in the Stibitz
calculator for binary-to-decimal conversion and for memory. The need for
calculating complex numbers was met by using two computers, one for
the real parts of the complex numbers, the other for their imaginary parts.
Relay computers were also used for applications during World War Il and
for telephone accounting.

* Trademark of AT&T Technologies, Inc.




Overview—Research in Communications xxi

The rapid increase in the use of computers in the 1950s by Bell Labs
scientists and engineers brought about the need for acquiring large com-
mercial computers. It also became necessary to get involved in critical
examination of available software for optimal use of these computers. Not
surprisingly, Bell Labs computer scientists began developing new pro-
gramming languages suitable for their applications, such as the higher-
level languages called L1 and L2. Disenchantment with the time-sharing
environment then current led K. Thompson and D. M. Ritchie to invent
an entirely new computer operating system and a language more adaptable
to the needs of the great majority of Bell Labs personnel: the UNIx* system
and the C language. By the 1980s, UNix systems had become ubiquitous
throughout the computing world on thousands of machines from dozens
of manufacturers ranging in size from mainframes to microcomputers.

Behavioral science research began in Bell Laboratories in 1956; eventually
it grew into a sizeable departmental effort that attracted outstanding psy-
chologists interested in carrying out research of relevance to Bell System
needs. Some of the first achievements were in the area of programmed
instruction and in the basic mechanisms of learning. A notable achievement
occurred in the early 1960s with R. N. Shepard’s development of multi-
dimensional scaling, which was originally motivated by Shepard’s desire
to understand better how people perceive various qualities, or ““subjective
dimensions,” of the world around them. Today the techniques Shepard
and his associates originated are standard approaches in the field of psy-
chology. Other noteworthy contributions from the behavioral science group
include the invention by B. Julesz of the random-dot stereogram and the
studies of memory by S. Sternberg and his coworkers.

The final chapter in this volume describes the history and role of eco-
nomics research at Bell Laboratories. The economics research effort was
motivated initially by the need to support increasing regulatory activities
at both federal and state levels. New theories were developed for the
natural monopoly and for the multiproduct firm. Extensive empirical studies
were also conducted on both the cost of and demand for Bell System
products and services. Financial theories were extended to include the
estimation of risk and return in the financial market, equilibria conditions
when supply and demand are unequal and may result in unemployment,
and the economics of innovation in a regulated industry.

From this wealth of achievements it is not difficult to choose highlights,
although any such list must be a personal one. For the systems work, one
might choose the evolution of PCM or the development of the long-haul
microwave radio-relay system as singular accomplishments of worldwide
importance. The origin of satellite communications, through the Echo and

* Trademark of AT&T Bell Laboratories.
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Telstar experiments, and the first electronic switching experiment, ESSEX,
are also achievements of the first magnitude that are detailed in this volume.

In the category of individual contributions of lasting influence, in addition
to C. E. Shannon’s brilliant insight in creating information theory, one
might begin with the telegraph theory of H. Nyquist, or the discovery of
negative feedback by H. S. Black, or G. R. Stibitz’s implementation of the
first binary computer. The acoustics field was foreshadowed by H. Fletcher’s
fundamental investigations on speech and hearing and by H. Dudley’s
vocoder, while microwave communications has long been in debt to the
traveling wave tube work of R. Kompfner and ]. R. Pierce. In the more
modern era of computer science, the creation of the UNIx operating system
and the C language by K. Thompson and D. M. Ritchie gains more in
influence with the perspective of each passing day. These are some of the
great ideas which have shaped the philosophy and technology of com-
munications detailed in this volume.

R. W. Lucky

Executive Director—Research
Communications Sciences Division
AT&T Bell Laboratories

July, 1984




| Chapter 1

Mathematical Foundations
of Communications

The Bell System was a pioneer in industrial mathematics even before its
mathematics center was created in 1922. That center, comprising initially a
consulting group working on problems posed by engineers and scientists, brought
mathematicians together for the first time in an industrial setting. Eventually
it established its own research programs, initiating studies in many areas of
telecommunications. Starting with the limited mathematical tools of early te-
lephony, Bell System mathematicians dealt with basic problems in transmission
and in switching and forged new tools for dealing with them. New methods
developed around applications of probability and statistics. As new techniques
were invented, new fields of study opened up. As modern telecommunications
evolved, merging with the technology of digital computation and supported
by advances in a broad range of sciences, mathematicians continued to play
an important role in the solution of new problems.

I. BACKGROUND

1.1 Early Industrial Ma?hematics—'l'he Mathematics Department at
Bell Labs

Industrial mathematics can trace its origins to the earliest days of in-
dustrial research. In 1878, Thomas Edison needed mathematical assistance
and hired F. R. Upton.! In 1897, the Bell System also employed one math-
ematician, G. A. Campbell, and, over the next few decades, built up a
staff that included a large share of all the mathematicians employed in
industry at that time.

Early industrial mathematicians were hired primarily as consultants for
individual engineering groups. Then, in May 1922, the Engineering De-
partment at Western Electric created a small, separate mathematics section

Principal authors: E. N. Gilbert, C. L. Mallows, B. McMillan, and A. D. Wyner.
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to serve the many engineering sections that could not afford full-time
mathematicians of their own. This mathematics section initially consisted
of one mathematician, T. C. Fry, with a small staffto assist in computations.
[Fig. 1-1] In 1925, Fry’s section became part of the newly formed Bell
Laboratories.

Possibly because the separate mathematics department was an inno-
vation, the organization’s function was described in the first issue of the
Bell Laboratories Record:

Our Mathematical Research Department is therefore primarily a consulting
organization, its chief function being to furnish expert advice regarding the
mathematical phases of the investigations carried on in the laboratories. As
part of the research organization, it is available to other branches of the
company as well, and a considerable portion of its activities is devoted to the
mathematical phases of development problems such as filter design, circuit
theory, and the apportionment of apparatus in automatic telephone instal-
lations.?

Fig. 1-1. T. C. Fry (right) watches as J. Smith, one of the five assistants comprising the
Mathematics Consulting Department in 1925, uses the Coradi Datagraph, an elaborate analog
mechanism for evaluating an integral numerically. The small department that Fry created
in 1922 and directed through 1943 evolved into the Mathematics and Statistics Research
Center of the early 1980s, with 55 mathematicians.
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In 1925, there were Bell System mathematicians in departments other
than Fry’s, notably Campbell, J. R. Carson, H. Nyquist, E. C. Molina,
O.]. Zobel, L. A. MacColl, and R. M. Foster. Soon thereafter Fry began
to enroll other mathematicians, including some from other areas of the
Bell System.

In the 1930s, another important innovation occurred—Fry’s department
was no longer exclusively a consulting organization. The change resulted
from a change in the department’s funding. Although part of its funds
came from departments receiving mathematical consulting services, the
mathematics department also acquired direct control of a fund of its own.
Its purpose was explained by Fry in his 1934 annual work authorization.

The purpose of this case [fund] is to provide for a certain class of mathematical
activities which are of considerable value in the aggregate, but which indi-
vidually involve such small sums of money or are so definitely exploratory
in character that it is inconvenient to handle them as separate cases. It is
proposed to develop more powerful and more economical mathematical meth-
ods for the study of communications problems and to furnish mathematical
advice and consultation.

Fry used the adjective "exploratory” to describe mathematical research
that was not dictated or guided by an engineering department. Many such
explorations had been performed earlier—Campbell’s wave filter resulted
from one—but this 1934 document finally gave them official recognition.
As more exploratory effortssucceeded, the mathematics department became
less a consulting group and more an autonomous research unit. At no
time, however, were a majority of the mathematicians at Bell Labs members
of the mathematics department. Fry’s department evolved to become the
Mathematics and Statistics Research Center, with about 55 mathematicians
in the early 1980s.

1.2 Mathematicians and Engineering

Mathematicians in the past suffered from an image of impracticality. A
typical unverified story had two of Edison’s mathematicians working all
night without success to calculate the volume of a light bulb, only to watch
the next morning as Edison himself solved the problem by measuring the
volume of water needed to fill it.?

As their training prepared them to use sophisticated mathematics them-
selves and provided a common language for discussions with mathematical
consultants, later generations of engineers gained more confidence in
mathematics as a practical tool. But this training had evolved because of
the successes of engineering mathematics at earlier times, when mathe-
maticians and engineers received different training and spoke different
technical languages. These differences(well illustrated by the early history
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of Campbell’s wave filter, as discussed in section 3.1) posed formidable
barriers to communication.

Academic credentials are not necessarily good criteria for success in
industrial mathematics because some of the best mathematics has been
done by people not trained as specialists in mathematics. Molina, to cite
a notable example, had only a high school diploma. He became a self-
taught expert in probability theory and, after a brilliant Bell System career,
a professor of mathematics.

In 1941, Fry tried to identify mathematicians entirely by the way they
think:

The typical mathematician feels great confidence in a conclusion reached by
careful reasoning. He is not convinced to the same degree by experimental
evidence. . . . Confronted by a carefully thought-out theory which predicts
a certain result, and a carefully performed experiment which fails to produce
it, the typical mathematician asks first, “What is wrong with the experiment?”
and the typical engineer, “What is wrong with the argument?” . . .
A second characteristic . . . is his highly critical attitude toward the details
of a demonstration. For the mathematician, an argument is either perfect in
every detail or else it is wrong. He calls this “rigorous thinking.” . . . The
typical engineer calls it “‘hair-splitting.” . . .
The mathematician also tends to idealize any situation with which he is con-
fronted. His gases are “ideal,” his conductors “perfect,” his surfaces “’smooth.”
He calls this “‘getting down to essentials.” . . . The engineer or physicist is
likely to dub it . . . “ignoring the facts.”
A fourth and closely related characteristic is the desire for generality. Confronted
with the problem of solving the simple equation x*—1 =0, he solves x" — 1
= 0. He calls this “conserving energy.” . . . The engineer calls it “wasting
Y time.”

Fry’s definition still agrees well with usage at Bell Laboratories and will
serve for the purposes of this chapter.

1.3 Early Mathematics

Before discussing specific examples of Bell System mathematics, it may

= help to survey briefly the mathematical tools of early telephony. A typical
switching problem might concern the blocking that occurs when all wires

between two central offices are in use and no more conversations can be

established between them. An analysis of the problem would require the

theory of probability. The mathematical theory as presented by Laplace

(1812) was usually adequate, but the limiting formula of Poisson (1837)

was also frequently required. Fry reviewed these telephone applications

of probability in a textbook, published in 1928.°> The modern theory of

queues® is a direct descendant of early work done on telephone switching.

[ ommmm
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Most other mathematical problems concerned transmission of signals.
The problems were usually reduced to finding the effect of sending a
sinusoidal signal through a circuit. One could think of speech as being
decomposed into a sum of sinusoids, and could deduce the effect of a
linear circuit on speech from its effect on the sinusoidal components. This
decomposition was implicit even in Bell’s early work on harmonic teleg-
raphy. Sinusoidal speech components resembled the waves that appeared
in ac power engineering and were analyzed by the same means, that is,
by linear algebraic equations involving complex numbers. The use of com-
plex numbers stemmed from Lord Rayleigh’s early studies of mechanical
vibrations.” By 1911, Campbell was able to include sophisticated circuit
theorems in his definitive paper on complex methods in telephony.®

Complex equations describing transmission of a sinusoid were extended
immediately for more general signals or transients. This extension was
accomplished by O. Heaviside’s operational calculus, in which each fre-
quency term iw was replaced by a mysterious operator p. Although
T. J. I'A. Bromwich in England and later J. R. Carson at AT&T managed
to give rigorous proofs of Heaviside’s theorems, operational calculus has
been supplanted by equivalent techniques using Fourier or Laplace
transforms.’

By modern standards, early research was handicapped by the absence
of large-scale computing equipment. Mechanical analog integrating devices
existed. There were also some digital desk calculators, which were at best
the equal of a modern four-function pocket calculator. Some mathematical
interest in computing for its own sake is evidenced by a mechanism patented
by Fry.'° Later, the first large electrical digital computer was designed in
Fry’s department, but that story belongs to another chapter. (See Chapter
9 of this volume.)

II. MODULATION

2.1 Amplitude Modulation

The idea of modulating the amplitude of an electromagnetic wave in
accordance with a speech signal originated with Alexander Graham Bell.
He transmitted speech over a beam of light using his photophone, which
he patented in 1880. Radio waves, however, offered more promise since
they are absorbed less in the atmosphere than light waves. By 1915, many
experimenters had produced speech-modulated radio signals. At AT&T,
experiments were being conducted on transatlantic radiotelephony and
on multiplexed-carrier telephony, or wired wireless as it was often called.!

Most radio experts, including J. S. Stone of AT&T and J. A. Fleming,
thought of an amplitude-modulated (AM) signal as a kind of pure sinusoid,
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ELECTRICAL POWER

| | | | | |
VOICE BAND LOWER SIDEBAND | UPPER SIDEBAND

[

FREQUENCY

Fig. 1-2. When the voiceband of frequencies (left) is used to amplitude-modulate a carrier
frequency (C), the double sideband frequency spectrum shown (right) is produced, since
each sinusoudal speech component frequency, f,, generates two additional components in
the transmitted signal, C — f, and C + f,,.

occupying only a single frequency in the radio spectrum.'? That view made
multiplexing seem very attractive; it suggested that multiplexed speech
channels could be given carriers differing only slightly in frequency without
causing interference. Actually, carrier frequencies must not be too close
because modulation spreads radio signals over a band of frequencies. For
each sinusoidal component of the speech wave, the modulated radio wave
contains two sideband components, one above the carrier frequency and
one below it. [Fig. 1-2] The earliest known record of this discovery is a
notebook entry made in 1914 by C. R. Englund of Western Electric. En-
glund’s conclusion follows directly from a simple trigonometric identity.
Nevertheless, looking back from 1956, the radio pioneer A. A. Oswald
wrote, “For more than a decade thereafter the physical reality of sidebands
continued to be argued vigorously in some quarters; it was alleged that
sidebands were merely a mathematical fiction.”"?

2.1.1 Single-Sideband Transmission

In 1915, H. D. Arnold demonstrated experimentally that an ordinary
radio receiver could reproduce the voice signal even after the lower sideband
was removed from the radio signal by filtering. At the same time, Carson
reached the same conclusion analytically. He realized further that the
carrier, too, could be removed if an oscillator were built into the receiver

, to generate the missing carrier locally. Carson filed a patent showing how
to produce a single-sideband wave and receive it by homodyne detection.'*
Using only one sideband reduced the radio bandwidth by a factor of two
and saved the power formerly wasted in the carrier.'® (Fig. 1-3]

Filtering was the most obvious way to remove the carrier. Carson’s
patent, however, contained a more clever and effective device, a balanced

IR st
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(b)

Fig. 1-3. Single-sideband circuits for transmitter (a) and receiver (b) as adapted from J. R.
Carson’s patent. To conserve power and bandwidth, the balanced modulator mixes speech
(2) and carrier (1) signals in a way that cancels the carrier and one set of sidebands. A local
oscillator (3) in the receiver (b) supplies the carrier frequency that was not transmitted.

modulator in which carrier components canceled out by symmetry. R. V.
L. Hartley contributed still another way to generate and receive single-
sideband transmission by using a phasing modulator.'® It employed two
balanced modulators and networks to shift the phases of the carrier and
all voice components by 90 degrees. Signals from these two modulators
were combined to cancel one set of sidebands. Single-sideband transmission
was adopted in the earliest multiplexed-carrier telephone system of 1918."7
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For more than half a century it has remained the most commonly used
method of transmitting speech over a narrow band.

2.2 Frequency Modulation

The hope of reducing bandwidth still further prompted suggestions for
several frequency-modulation (FM) systems. These resembled modern FM
systems, but the frequency deviations were to be much smaller, on the
assumption that the bandwidth would then be small. However, in 1922,
Carson showed that frequency modulation produces sidebands, not only
at the frequencies obtained with amplitude modulation, but also at fre-
quencies even farther from the carrier.'® Strictly, FM requires infinite band-
width. Around 1939, Carson gave a rough rule of thumb for estimating
the bandwidth needed for the most important sidebands. According to
Carson’s rule as described by S. O. Rice,' this bandwidth is 2(fn + AF),
where f,, is the highest frequency present in the modulating speech and
AF is the peak frequency deviation.

Although Carson’s 1922 paper correctly criticized FM as a way of re-
ducing bandwidth, it unfortunately convinced many engineers and Carson,
too, that FM had little promise. In 1936, when E. H. Armstrong of Columbia
University developed a wideband FM system with great immunity to
noise, it came as a surprise.2%*!

Shortly after Armstrong’s development, R. Bown produced a simple
phasor diagram that seemed to show that noise has only a slight effect
on the zeros of an FM wave. These zeros, which survive the action of the
FM limiter circuit, are the main features used in FM detection. Bown
showed his diagram to Fry and asked for a more exact analysis. The result
was a theoretical paper, published by Carson and Fry in 1937, which
supported Armstrong’s contention that the signal-to-noise ratio in the
output of an FM receiver increases as the frequency deviation, and con-
sequently the bandwidth, of the FM signal increases.??

The first studies of noise in FM reception were adequate as long as the
received noise was weak enough to be considered a small perturbation.
These studies could not explain a curious threshold effect that was observed
experimentally. When the input noise power exceeded a certain threshold,
the output signal suddenly disappeared into the noise. In 1963, Rice de-
veloped a new kind of FM noise analysis that was more appropriate for
noise levels near the threshold.? According to Rice, the main part of the
output noise occurred in isolated short clicks. The receiver, designed to
follow the phase of the incoming signal, would emit a click each time
noise made it slip out of phase by 360 degrees.

In 1962, D. Slepian showed that this threshold effect, as exhibited by
FM, is indeed a universal property of modulation schemes that are effective
in reducing noise.?* His paper is set within the framework of C. E. Shannon’s
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general theory of communication in the presence of noise, as discussed
in section VIII of this chapter.

2.3 Nyquist’s Fundamental Transmission Formula

Telegraphy is a form of amplitude modulation in which the amplitude
is restricted to two values (corresponding to key on and key off). Con-
sequently, telegraphy generates sidebands. They occupy wider bandwidths
for faster signaling rates. In the mid-1920s, H. Nyquist studied telegraph
signaling with the aim of finding the maximum signaling rate that could
be used over a telegraph channel of given bandwidth.?>?¢ He adopted a
generalized model of a telegraph system that has come to be called a pulse
transmission system. A typical transmitted signal could be any function
s(t) of the form:

y s(t) = 2 af (t — kT) . 1)

i

Here f(t) represented a basic pulse shape, a, was the amplitude of the k'
pulse, and T was the time between pulses. Ordinary dc telegraphy fit this
description if the basic pulse shape f(t) was a rectangular pulse lasting T
seconds and 4, equaled 0 or 1, according to whether the key was up or
down for the duration of the k™ pulse. However, Nyquist would allow
f(t) to have other shapes; indeed, his problem was to design f(t) so that T
could be as small as possible. Only pulses that occupied the band from
0 to W cycles per second, hertz (Hz), were allowed. Because of that re-
striction, arbitrarily narrow pulses could not be achieved. With a given
pulse f(t), T could be reduced only to the point that successive pulses
overlapped and caused serious intersymbol interference.

Nyquist concluded that the pulse rate 1/T could not be increased beyond
2W pulses per second, a rate now called the Nyquist rate. Moreover, the
Nyquist rate could be achieved by using a pulse with the shape f(t)
= (sin 27 Wt)/(2xWt). With this pulse, errors from intersymbol interference
could be avoided completely by using a new system of detection based
on measuring samples of the received waveform s(t) at the discrete times
t = k/(2W). These conclusions contradicted a prevailing opinion that an
ideal telegraph wave should approximate a sinusoid of frequency somewhat
less than W. Since 1900, that idea had led to proposals for sine-wave
telegraph systems.?” Nyquist was able to show that they had no special
merit. They were included in his theory by taking f(t) to be a half cycle
of a sine wave.

Nyquist’s analysis applied to an ideal channel, producing infinite at-
tenuation at all frequencies outside a band of width W. It was presumed
also to apply approximately to real channels, producing merely large finite
attenuation outside a nominal band of width W. However, using the ideal
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channel as a model for real channels introduces some subtle difficulties.
These were reviewed in a 1976 paper by D. Slepian.?® L. A. MacColl seems
to have been the first to suspect trouble. In 1936, he invented a signaling
system that, in principle, sent pulses over a real channel much faster than
the Nyquist rate without errors from intersymbol interference.?** MacColl’s
system would work as long as the pulse f(t) had even a tiny amount of
energy at frequencies out of the band. The system was not practical because
very slight interference from other channels or from noise would render
detection impossible. Thus, although Nyquist’s rate remained useful as a
working guide, there was some doubt about its logical basis.

Shannon helped to clarify the problem. In 1949, he studied signals s(t)
that were strictly band limited, that is, with zero energy outside a band
0 to W Hz.>! Shannon considered arbitrary signals s(t), not just pulse trains
of the special form described by equation (1). Nevertheless, he found that
s(t) satisfied an identity:

_ sin 2xW(t — k/(2W))
S0 = Z s/ = e — k/awy)

)

which is equation (1) with f(t) equal to (sin 2xWt/(2xWt), a, equal to
s(k/(2W)), and T equal to 1/(2W). Even an analog signal, such as band-
limited speech, is expressed by equation (2) as a sum of pulses, but with
pulse amplitudes that may be distributed continuously, instead of discretely
as in telegraphy. The Nyquist rate 2W appears in equation (2) as the rate
at which sample values s(k/(2W)) must be measured in order to determine
s(t). Equation (2) already existed in the mathematical literature and was
known as the sampling theorem, a formula for interpolating a function
from sample values.*? Of course, the connection with signal transmission
was not apparent in that context.

The sampling theorem has the defect that no physical signal has all its
energy confined to a finite band of frequencies. For example, any signal
s(t) that turns on at some time ¢, and vanishes at all earlier times is sure
to have energy distributed to arbitrarily high frequencies. MacColl’s sig-
naling system showed that one can reach radically different conclusions
depending on whether signals are assumed to be exactly or only approx-
imately band limited. H. J. Landau, H. O. Pollak {Fig. 1-4], and Slepian
in 1961 tried to find a precise meaning for the Nyquist rate, even for
approximately band-limited functions. They considered signals s(f) that
had all but a prescribed small fraction of their energy contained within a
frequency band W-Hz wide and also had all but a fraction of their energy
contained within a time interval 7-seconds long. Very roughly, the con-
clusion was that for large 7, these signals can be specified by 2Wr inde-
pendent parameters.>* That number is just the number of Nyquist samples
in a 7-second interval, although the appropriate parameters are no longer
the samples s(k/(2W)).
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Fig. 1-4. H. O. Pollak, who served as director of the Mathematics and Statistics
Center at Bell Labs for over 20 years. He is a mathematical analyst with a variety
of contributions to probability and signal theory.

In 1967, Landau returned to the sampling theorem for functions strictly
limited to frequencies in a band of width W. He showed that in order for
such functions to be reconstructable from their samples so that small errors
in the samples produce only small errors in the reconstruction, the sampling
instants must be distributed with a rate at least 2W per unit time. This
work formed the basis for understanding the fundamental limits in analog-
to-digital conversion.>*%

III. NETWORKS

A wave filter is an electrical circuit designed to pass signals of desired
frequencies and reject others. Its use dates from around 1915 and the
beginnings of frequency-multiplexed telephony, in which a single radio
channel carries many simultaneous amplitude-modulated speech signals.
To receive one multiplexed speech signal, a wave filter is used to pass one
set of sidebands and reject those of the other speakers, in somewhat the
same way that a radio receiver tunes in a single radio station. Because
telephone wave filters are often complicated as well as very useful, much
of the research on electrical networks has been concerned with wave filters.
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The early history of the wave filter illustrates the communications gap,
mentioned in section 1.2, that once existed between engineers and math-

ematicians. G. A. Campbell invented the wave filter before 1910, but 1
its patent was delayed several years because Campbell’s mathematics did
not convince his patent attorney that the idea was novel, useful, or even -

correct. The attorney, T. D. Lockwood, was general patent attorney of
AT&T and a well-known inventor, author, and lecturer on engineering.36
Even ]. J. Carty, chief engineer of AT&T, who agreed that the wave filter
would work, wrote (in a letter to Lockwood) in 1913 that the patent
application "’should be dropped on account of its slender novelty and
doubtful patentability.” Two years later the need for wave filters in mul-
tiplexing became apparent and two patents were filed.*’** They were
granted in 1917 and were indispensable for the development of long-
distance telephony. The problem of making wave-filter theory under-
standable was solved with some help from ]. Mills, an engineer with a
flair for writing. Mills, who later became the first director of publications
at Bell Laboratories, managed to assimilate Campbell’s mathematics and
rewrite it into a memorandum that was more understandable to the other
engineers who were developing the multiplex system.

3.1 Electrical and Mechanical Filters

In the 19th century, Lord Kelvin and Lord Rayleigh both noted an
electromechanical analogy, that is, a correspondence between the equations
for mechanical vibrations and those for electrical oscillations.®*° When
electrical theory was in its infancy, the electromechanical analogy was
used to reinterpret well-known mechanical results as statements about
electrical networks. By the 1920s, however, electrical theory had long
outgrown its dependence on mechanics. It contained many new ideas that
had originated in a purely electrical setting. The electromechanical analogy
could now be used in reverse to make mechanical applications of new
electrical theory. The electrical device that found the most mechanical
applications was Campbell’s wave filter.

The mechanical phonograph contained a speech transmission channel
between the vibrating needle and the horn radiator. As early as 1915,
H. D. Arnold recognized that phonographs resembled telephone trans-
mission circuits and suggested that electrical theory might be applied, using
the electromechanical analogy, to improve the mechanical phonograph.
This task was later undertaken by J. P. Maxfield and H. C. Harrison and
completed by 1926.*! Using an electrical filter as the model for the me-
chanical pickup design, they obtained a response that was constant within
a few dB from 120 to 4000 Hz, a radical improvement over existing phon-
ographs. [Fig. 1-5] Their design was licensed to the Victor Talking Machine
Company and manufactured under the name Orthophonic Victrola.
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Fig. 1-5. Electrical circuit equivalents of acoustical components of a phonograph and ex-
ponentially tapered horn. Since mechanical and electrical oscillations satisfy similar differential
equations, telephone engineers could analyze mechanical problems in terms of equivalent
electrical circuits.

The good bass response of the Orthophonic Victrola resulted from using
a long, exponentially tapered horn, which was cleverly folded to fit inside
a cabinet of reasonable size. {Fig. 1-6] P. B. Flanders solved the mathematical
problems of horn design, including estimation of the effect of folds in
the horn.

An electrical record-cutting head was designed as part of the same
phonograph study. Again, an electrical wave filter served as a model for
designing the moving parts of the record cutter. While working on pho-
nograph problems, E. L. Norton discovered his well-known theorem that
shows that an electrical network with internal sources can be replaced by
an equivalent current generator. A record groove driving a phonograph
pickup was analogous to a current generator.

In 1924, R. L. Wegel and C. E. Lane constructed a theory of hearing
using a tapered electrical transmission line as a model of the cochlea in
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Fig. 1-6. A long, exponentially tapered horn, in-
tricately folded into a cabinet of reasonable size.
This hormn was a feature of the 120- to 4000-Hz
Orthophonic Victrola phonograph.

the human ear. In 1950, following their model, L. C. Peterson and B. P.
Bogert built a 175-section electrical filter as an artificial cochlea for use in
hearing studies.*? [Fig. 1-7]

Wave filters became linked with mechanical vibrations in an entirely
different way in 1926, following L. Espenschied’s suggestion of using pi-
ezoelectric crystals as filter components.**** Piezoelectric crystals vibrate
mechanically in response to electrical signals. As electrical elements, pi-
ezoelectric crystals are resonant circuits with extremely small damping.
Because of their small damping, crystals can be used to build bandpass
filters with unusually sharp cutoff characteristics. After 1930, an important
part of filter research was directed toward incorporating crystals and other
electromechanical elements into filter structures. W. P. Mason [Fig. 1-8]
and his associates pioneered in the application of specially cut quartz
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Fig. 1-7. One section of a multisection electrical wave filter connected
in tandem, representing the electrical equivalent of the cochlea in
the human ear.

crystals for wave filters with highly selective frequency responses and for
oscillators with frequency stability of 1 part in 10°.4*¢ One mathematical
problem involved studying crystal vibrations to obtain ways of controlling
a crystal’s electrical properties through control of its physical and geo-
metrical parameters. Another problem arose because routine filter design

Fig. 1-8. W. P. Mason, who invented special-cut quartz
crystals for wave filters and frequency standards. He also
conducted fundamental investigations of losses in organic

crystals.



16 Engineering and Science in the Bell System

would not ordinarily lead to element values suitable for crystals; new filter
structures were found that were more appropriate.

3.2 Network Synthesis

The earliest network theorems described the action of a given network
in mathematical terms; that is, they were results about network analysis.
Doing the reverse, finding some network that acts in accordance with a
given mathematical description, is called network synthesis. The wave filter
was useful for certain synthesis problems because there was a large selection
of standard filters that produced delay, resonance peaks, or attenuation
bands. These filters could be connected in tandem to synthesize more
complicated behavior. In 1924, R. M. Foster considered a much more
general kind of synthesis and proved what is now called Foster’s reactance
theorem.*” In this theorem, the mathematical description prescribes a re-
actance as a desired function of frequency, X(w). The theorem gives a
condition for determining whether it is possible to construct a two-terminal
network, entirely from lossless inductors and capacitors, with the given
X(w) as its reactance. The condition requires X(w) to be a rational function—
that is, a quotient of two polynomials—satisfying further restrictions on
its zeros and poles. If the condition is satisfied, a partial fraction expansion
of X(w) leads to a network realization containing several parallel-tuned
circuits connected in series. Alternatively, Foster expanded the susceptance
—1/ X(w) to obtain series-tuned circuits connected in parallel. Related work
had appeared earlier in publications of Campbell and O. J. Zobel.**** In
1929, T. C. Fry found another method of synthesizing the reactance func-
tion. He expanded X(w) into a continued fraction to obtain a ladder
network.*

Later research generalized Foster’s theorem in two directions. First, other
kinds of elements, such as resistors and transformers, were allowed in
addition to inductors and capacitors. Second, networks with several pairs
of accessible terminals were considered; Foster’s reactance function was
then generalized to an impedance matrix. A network synthesis method
then became a general-purpose procedure to design a network, using only
the allowed elements and having a prescribed impedance function or matrix.
Important methods of network synthesis were devised by S. Darlington
[Fig. 1-9] and B. McMillan at Bell Labs, and by many others elsewhere.*!
Most synthesis methods make free use of the ideal transformer, a fictitious
element that is only roughly approximated by a real transformer with
closely coupled windings. R. Bott and R. J. Duffin, at the Carnegie Institute
of Technology, succeeded in avoiding ideal transformers, but only for two-
terminal networks.*?

Network synthesis methods were typically applied to equalizers or to
networks for miscellaneous uses, such as the 90-degree phase-shifting
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Fig. 1-9. 8. Darlington, who pioneered in the appli-
cation of mathematical techniques to network synthesis.

networks used in single sideband. Also, new kinds of wave filters could
be synthesized as individual large networks instead of tandem chains of
small networks. Like Foster’s reactance theorem, the later synthesis theo-
rems always imposed conditions on the desired network function. If these
conditions were not satisfied, no solution (that is, no network) would exist.
There was always one condition—the network function must be a rational
function. Networks were often needed, however, to have network functions
that were not rational. In these instances, the irrational function had to
be approximated by a rational one. For example, suppose one wanted a
network to compensate for losses in a cable. Cable attenuation in decibels
varies in proportion to the square root of the frequency. A perfect com-
pensator for such a cable would insert gain, in decibels, proportional to
the square root of the frequency. That gain is unrealizable. However, over
any finite frequency band of interest, the desired gain can be approximated
by a realizable gain. Then an approximating network can be synthesized.

Some of the classical mathematical literature about approximating func-
tions by polynomials was applicable to the network problem of approx-
imating by realizable rational functions. For example, the Tchebycheff
polynomials are particularly convenient for network approximation prob-
lems. They were studied in that connection by Darlington.*?
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One novel approximation method used a mathematical analogy between
the gain function of a network and the two-dimensional potential function
produced by point charges located at the network’s poles and zeros in the
complex w plane. H. W. Bode used this idea in the late 1930s to design
phase-compensating networks. The same analogy was used independently
by W. Cauer in Germany.** This potential analog method could immediately
suggest good approximations for some networks, such as delay networks,
just from physical intuition about electrostatics. More complicated network
functions, such as the cable attenuation compensator function mentioned
previously, could be approximated using an extended theory that Darlington
developed in 1951.%°

3.3 Digital Filters

Because linear equations describe how resistors, capacitors, and inductors
behave, a filter constructed from these elements performs a linear operation
on an input signal S(t) to produce an output signal r(t). In general, this
linear operation can be expressed as a kind of weighted average

rt) = J;w S(t — 7) k(r)dr .

The weight function k(t), which characterizes the filter in question, is called
the filter’s impulse response because the output signal is just k(t) when
the input signal is a sharp impulse.

Instead of synthesizing a network to have a prescribed frequency re-
sponse, one can equally well formulate the network synthesis problem in
terms of finding a network with a desired impulse response k(f). One
solution approximates the integral for r(t) by a sum

nt) = h 2 S(t — nh)a,

where 4, = k(nh). This sum may be realized by using a delay line, with
taps at delays 0, h, 2h, ..., nh to produce the delayed signal terms
S(t — nh) that appear in the sum. Those delayed signals are then attenuated
by amounts ha, and superimposed to create r(t). A filter, using a delay
line in this way, is called a transversal filter, an idea patented in 1935 by
N. Wiener and Y. W. Lee of the Massachusetts Institute of Technology (MIT).*

These filters came into widespread use only after improvements in vac-
uum tube and transistor amplifiers made transversal filters convenient to
build. One of their attractive features is the ease with which the coefficients
a, can be changed to control the filter characteristics. As early as 1950,
C. E. Shannon had observed the possibility of dynamically varying the
coefficients 4, in the transversal filter to improve performance of the filter
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during its operation, and experimental adaptive transversal filters were con-
structed to perform simple filtering tasks. At about that time, following a
suggestion of Fry, Shannon and McMillan analyzed an adaptive filter that
would equalize a transmission line on the basis of the receipt of a single,
standardized signal pulse. An experimental equalizer was built and tested.
Other versions of this idea have appeared in quite different contexts.

The maturing of solid-state technology and the high-speed digital com-
puting that it supports brought the transversal filter into prominence because
it permits the filtering function to be performed arithmetically. The input
and output signals are now considered to be discrete sequences of sample
values S(nh) and r(nh), while the filter action is merely described by a
linear recurrence equation relating these samples. In this way, a computer
can act as a digital filter.

If the output sample r(nh) depends on earlier outputs r(mh) as well as
inputs S(mh), there is the possibility that this feedback can cause instability
(see section IV). Also, any digital filtering operation uses computations
that are subject to round-off error. More serious errors may be caused by
overload, when some quantity exceeds the range of significant ﬁgures
allowed to the computation. : '

It was discovered experimentally that digital filters sometimes developed
catastrophic round-off and overload errors, even when designed to represent
systems that were stable when idealized to purely analog devices (i.e.,
with arithmetic of infinite precision). I. W. Sandberg,*” D. Mitra, J. E. Mazo,
and A. N. Willson showed that this'undersirable behavior could be avoided
by designing the arithmetic devices to behave suitably under overload.

The coefficients of a digital filter can often be regarded simply as pa-
rameters in a computer program. As such, they can be varied by some
additional computation using other data (such as the amount of noise
measured in the filter output, or some other measured departure of the
filtered output from a previous specified condition). Examples of such
adaptive filters were analyzed by M. M. Sondhi and Mitra®**° in a series
of papers. By 1981, adaptive digital filters for telephone application—e.g.,
echo cancellers—had become standard items of commerce.

3.4 Graphs

A graph is a diagram consisting of some vertices and some lines drawn
between certain pairs of vertices. The circuit diagram of an electrical network
becomes a graph if each resistor, inductor, and capacitor is simply replaced
by a line. Indeed, for this reason, G. Kirchhoff, who first gave the laws
commonly used to analyze resistance networks, also proved many fun-
damental theorems about graphs.*°

Campbell encountered a graph-theoretical problem in his work on anti-
sidetone telephone subscriber sets (see Chapter 3, section 3.1 of the first




20 Engineering and Science in the Bell System

volume of this series, subtitled The Early Years (1875-1925)). He patented
a number of anti-sidetone circuits®’ and with Foster published a complete
set of such circuits in 1920.°? To include every possibility, Campbell and
Foster had to prepare a catalog of all possible circuit configurations con-
taining the elements of the subscriber’s set—that is, the receiver, transmitter,
incoming line, various transformer windings, and a side-tone balancing
resistor. The circuit diagram for each configuration could be simplified to
a graph by showing each two-terminal element simply as a line. Then a
basic part of Campbell and Foster’s problem was to count and catalog
graphs.

Foster continued cataloging graphs according to special properties of
interest in circuit theory. In a paper published in 1932, he arranged the
graphs according to rank and nullity (the numbers of equations needed
to analyze a circuit in terms of voltages or currents). [Fig. 1-10] Another
interesting kind of graph, constructed entirely by combining elements in
series or parallel, was studied by J. Riordan [Fig. 1-11] and Shannon in
1942 and by Foster in 1952.¢¢° Riordan’s book on combinatorial analysis
includes a large number of other graph enumerations.®®

Graphs are used in the solution of many different telecommunications
problems. These problems usually require something other than a catalog.
Instead of representing simple two-terminal elements, the lines of a graph
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Fig. 1-10. One of Foster’s tables of graphs. The graphs are arranged according to rank and
nullity—i.e., the number of equations required to analyze a network of electrical circuits in
terms of voltages or currents. [Foster, Trans. Amer. Inst. Elect. Eng. 51 (1932): 315.]
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Fig. 1-11. ). Riordan, an expert in combinatorial analysis—a
subject that includes techniques for counting configurations that
arise in telephone probability problems. Riordan authored widely
used books on combinatorial analysis and queueing theory.

may stand for trunks connecting different telephone offices. In 1959,
E. F. Moore viewed this graph of trunks as a kind of road map or maze
and gave algorithms for finding a shortest path between two given points
of a maze.”’

Graphs also enter into billing problems. A customer who leases private
lines to interconnect stations in several cities is charged for these lines on
a per-mile basis. However, this charge is not figured from the actual lines
physically supplied. Instead, the tariff for this service requires the telephone
company to draw a kind of road map using minimal total length to in-
terconnect the cities. This graph (called the minimal tree for the given
cities) becomes the basis for billing. In 1957, R. C. Prim found minimal
trees by a simple algorithm that is especially convenient for machine com-
putation.®® Earlier algorithms were given by O. Borivka in Czechoslovakia
and J. B. Kruskal at Bell Labs.**”° [Fig. 1-12]

The minimal tree has the curious property that adding an extra city can
sometimes produce a shorter minimal tree. For instance, the minimal tree
for four cities at the corners of a unit square has length 3.0; if a fifth city
is added at the center of the square, the length of the minimal tree for
the five cities is only 2.828. The ability to reduce tree lengths further by
adding vertices is useful in designing routing or wiring layouts of various
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Fig. 1-12. ““Minimal tree” for interconnecting 48 state capitals, using lines of the minimum
total length, as required by tariff regulations. J. B. Kruskal and R. C. Prim developed efficient
algorithms for finding minimal trees.

kinds. Methods of constructing a minimal length tree when extra vertices
are allowed were obtained by Z. A. Melzak in Canada and by E. N. Gilbert,
Pollak, and F. K. Hwang at Bell Labs.”' However, these constructions can
be very complicated because of the large number of interconnection patterns
that are possible with extra vertices.

IV. FEEDBACK

Feedback is any form of coupling from the output of a power amplifying
device back to its input. Shortly after telephony began, feedback was used
to produce test tones. A telephone set with its receiver acoustically coupled
to its transmitter produces a hum or howl. [Fig. 1-13] The humming occurs,
in part, because the telephone transmitter is an amplifier; it produces a
large amount of electrical power for a small amount of acoustical power
in the mouthpiece. D. E. Hughes described the humming telephone in
1883. H. Fletcher at Bell Labs explained it mathematically in 1926.7%”

4.1 Feedback Amplifier

Soon after its invention, the vacuum tube was used not only as an
amplifier, but also as a generator of electrical oscillations. In fact, high-
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Fig. 1-13. A laboratory signal generator used in early telephony. This
electromechanical feedback arrangement produces telephone howl or
hum because the transmitter amplifies. [Adapted from Wright and Puch-
stein, Telephone Communication (1925): 402.]

Fig.1-14. H.S. Black, who invented the negative-feedback amplifier, which greatly reduced
distortion of signals in transmission applications.
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gain vacuum tube circuits often oscillated unintentionally because of un-
wanted feedback paths caused by stray capacitive or inductive coupling.
Feedback in telephone amplifiers was a nuisance until 1927, when H. S.
Black [Fig. 1-14] discovered that deliberate feedback, with proper phase,
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Fig. 1-15. Circuit diagram (a) and gain curves (b) adapted from H. S. Black’s patent
on the negative-feedback vacuum-tube amplifier. Part of the output signal is returned
to the input through resistors 1 and 2. Decreasing their resistance increases the feedback
and improves the frequency response from that shown in curve 3 to the flat curve 4.
Further increases in feedback produce curves 5 and 6 that peak at a high frequency;
with still further increases in feedback the amplifier becomes unstable.
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could flatten the frequency response and reduce the effects of nonlinear
distortion.” In presenting Black with the American Institute of Electrical
Engineers 1957 Lamme medal, the then president of Bell Laboratories
M. J. Kelly said of Black’s discovery, “It easily ranks coordinate with
de Forest’s invention of the audion as one of the two inventions of broadest
scope and significance in electronics and communications of the past 50
years.” [Fig. 1-15]

4.1.1 Nyquist’s Diagram and Cauchy’s Theorem

Early feedback amplifiers required careful design if they were to remain
stable. Until the early 1930s, however, stability was not well understood.
In a fundamental paper published in 1932, H. Nyquist produced an analysis
of stability.”>”¢ He showed that the net gain of a stable feedback amplifier
is p/(1 —uB), where u is the voltage gain of the amplifier and 8 is the
network gain of the feedback. [Fig. 1-16] Stability is determined by the
denominator 1 — uf, which is a function of frequency. Here “frequency”
is a complex number; complex frequencies are associated with oscillations
that either grow or decay exponentially with time. If all the roots of
1 — uB = 0 are at complex frequencies of decaying oscillations, the amplifier
is stable. Otherwise, it is unstable. To avoid the problem of actually com-
puting these complex roots, Nyquist devised a graphical test based on
what came to be called the Nyquist diagram, which is a plot, in the complex
plane, of the path followed by u8 as the frequency w varies from —co to
+oo. In Nyquist’s test, instability or stability is determined merely by
observing whether the path encloses the point 1. This test answers the
stability question entirely from the behavior of uf at real frequencies,
without solving for roots of ug = 1. [Fig. 1-17]

Before the advent of the Nyquist diagram, H. J. Van der Bijl had analyzed
some simple vacuum-tube oscillator circuits and determined how much
tube gain they required.”” Much earlier, E. J. Routh in England gave a
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Fig. 1-16. A basic form of feedback am-
plifier. The gain of this feedback arrangement
is pey/E = u/(1 + uB), where p is the amplifier
gain and 8 is the network gain.
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Fig. 1-17. Nyquist's amplifier. (a) An adaptation of one of H. Nyquist's patent diagrams
of a feedback amplifier. (b) The amplifier’s related diagram. The diagram is a plot, in the
complex plane, of the path traced out by the complex loop gain ug as the frequency is varied.
The path encircles the point 1, showing that the amplifier is unstable. The amplifier is unusual
because it becomes stable if the vacuum tube is replaced by one of higher gain.

stability analysis for mechanical systems and also studied complex roots.””

Routh mentioned a diagram like Nyquist’s, but only briefly. He used it as
a step toward deriving an algebraic test for stability.

For amplifier designers, Nyquist’s diagram has a particular advantage
over algebraic tests. The amplifier gain enters the Nyquist diagram as a
simple scale factor. Thus, a single Nyquist diagram suffices to display the
stability behavior of a feedback amplifier for all values of the gain.

For example, it is possible to design an unstable feedback amplifier
having the property that if the tube gain, g, is increased enough, the curve
of uB becomes magnified until it no longer encircles 1. With enough gain,
u, the amplifier stabilizes. Such an amplifier was considered so paradoxical
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that, in 1934, E. Peterson, ]. G. Kreer, and L. A. Ware built one just to
demonstrate that it really worked as predicted.®

One of the earliest and most basic theorems in the theory of functions
of a complex variable is Baron A. L. Cauchy’s "principle of the argument,”
which provides a way of counting zeros and poles of an analytic function.
The Nyquist diagram can be derived directly from Cauchy’s principle.
Routh was familiar with Cauchy’s principle but Nyquist, who was not a
mathematician by training, essentially rediscovered it. *

In 1937, T. C. Fry used Cauchy’s principle of the argument again to
invent the isograph, a mechanical analog computer that found zeros of
polynomials. One such instrument was built by R. L. Dietzold.?#? [Fig.
1-18] It plotted curves, like Nyquist diagrams, from which the number of
zeros contained within given circles in the complex plane could be deduced.

Fig. 1-18. The isograph, an invention of T. C. Fry, built in 1937 to locate complex roots
of polynomials. At the top of the machine a pen plotted a curve, like a Nyquist diagram,
from which one could deduce the number of zeros contained within a given circle in the
complex plane.
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In practice, this was rather awkward and the isograph became obsolete
after G. R. Stibitz invented a general-purpose relay computer (see Chapter
9 of this volume).

4.2 Applications of the Feedback Amplifier

The feedback amplifier was used in network synthesis. As the gain
formula g = u /(1 — uB) shows, a desired gain function g could be obtained
by synthesizing a feedback network with suitable 38 instead of synthesizing
g directly. For example, if u is large, g is approximately equal to —1/8.
Then one way to equalize a circuit with transfer function F was to use a
feedback amplifier, designing the feedback path to have 8 = F. With simple
capacitive feedback networks, feedback amplifiers became devices to per-
form integration and differentiation, and they were used in electronic analog
computers. In addition, they could simulate inductors or circuits containing
inductors, an important usage after transistors and integrated circuits made
amplifiers more compact and less expensive than inductors.

In some applications, feedback was obtained mechanically, by having
the amplifier drive a motor and taking the feedback voltage from a po-
tentiometer on the motor shaft. These electromechanical feedback amplifiers
were useful because simple electrical networks could be inserted into the
feedback loop to obtain desired mechanical behavior.® [Fig. 1-19] Elec-

lles

MOTOR

x

TO-X—e0 2

a —ky—(}Pﬁ3 ™
x-ky >
&tk
b’ b

AMPLIFIER

s

Fig. 1-19. Servomechanism producing an electrome-
chanical feedback for controlling the angle y of a motor
shaft from an input voltage signal x. The potentiometer
produces a feedback signal ky, and the amplifier drives
the motor to make x — ky = 0. [MacColl, Fundamental
Theory of Servomechanisms (1945): 6.}
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tromechanical gun directors, designed on feedback principles, were a major
contribution of Bell Labs to the World War II effort. (See Chapter 3 of
another volume of this series, subtitled National Service in War and Peace
(1925-1975).)

4.3 Gain-Phase Integral

A feedback amplifier ordinarily has large gain around the feedback loop
in the frequency band of interest. (Otherwise, it would behave essentially
as an ordinary amplifier.) Outside this band, the designer would like to
make || fall off sharply in order to arrive quickly at the part of the
Nyquist diagram where |u8| < 1 and the danger of encircling 1 is past.
Unfortunately, there is a fundamental limitation on how sharply |uf| can
diminish. If the loop gain |u8| drops abruptly, the phase of u8 must change
so much that the uf curve encircles 1 before reaching values |pf| < 1.
Typically, the frequencies requiring close attention (that is, where |u8| > 1)
extend above the frequencies of actual interest by a large factor. The
mathematical connection between the gain and phase of u was discovered
by H. W. Bode {Fig. 1-20], who followed Fry as head of the Mathematics
Department in 1944.

Fig. 1-20. H. W. Bode, who pioneered in
mathematical studies of feedback and stability
in amplifiers.
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Bode derived an integral that gives the phase angle of a certain realizable
network having the prescribed gain |u8| as a function of frequency.®
Actually, many network functions u8 can have the same gain. Indeed,
given any one of these functions, another can be obtained by multiplying
it by a network function with constant gain (representing an all-pass net-
work of the sort commonly used for phase equalizing). The particular
network function u8 obtained by using Bode’s gain-phase integral had
also been discovered earlier by Y. W. Lee, at MIT, who had characterized
it in terms of its zeros in the complex frequency plane.** However, Bode
recognized that this particular network function was the one with the
smallest phase. If Bode’s minimum phase function had too large a phase
shift, other network functions with the given [u8| would be even worse
and there would be no satisfactory amplifier design. Developed originally
in the study of feedback, Bode’s gain-phase inequalities have important
implications for the design of amplifiers more generally and for transducers,
such as loudspeakers, that must deliver power efficiently to a reactive load
over a wide band of frequencies. [Fig. 1-21]
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Fig. 1-21. Attenuation and phase-shift characteristics for a low-pass network filter, as
derived from H. W. Bode’s gain-phase integral, expressing the minimum phase function
in terms of the given attenuation function. The example shown is for a filter having zero
attenuation below 4000 Hz and an attenuation that increases at 12 dB per octave above
4000 Hz. Understanding the connection between attenuation and phase was a crucial help
to designers of stable feedback amplifiers. [Bode, Network Analysis and Feedback Amplifier
Design (1945): 316.]
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4.4 Stability of General Systems

Directed specifically at the problem of designing stable feedback am-
plifiers, the work on stability by Nyquist, Bode, and others stood in its
time somewhat outside of a considerable body of literature on stability
that had been developing since the mid-19th century. The work of Routh,
cited in section 4.1.1, is only one example of early work; physicists and
astronomers had long been concerned with the stability of general
dynamic systems and mathematicians with the stability or boundedness
of solutions of systems of differential equations. A generally linear theory
associated with feedback in electrical circuits burgeoned during the period
after 1945, stimulated at least in part by the exposure during World War
II of many workers to the kinds of feedback problems treated by Nyquist
and Bode, and to the work of these pioneers. Generalizations were made
to feedback systems with many inputs and outputs, with some nods toward
circuits having time-varying or mildly nonlinear elements. With few ex-
ceptions, however, the users of linear theory, when faced with the presence
of a nonlinear element, were forced either to fall back on the classical
technique of analyzing the stability of the system only under small per-
turbations, or else to treat the nonlinearity itself as a small perturbation.
In a seminal sequence of papers beginning in 1963, I. W. Sandberg®® at
Bell Labs set forth a full analysis, not limited to small perturbations, of
the stability of feedback systems containing nonlinear elements of a pre-
cisely specified kind.

Sandberg’s results can be described briefly by thinking of them as an
extension of the work of Nyquist and Bode. To do so simplifies discussion
but omits some significant mathematical innovations concerning function-
space formulation and study of the equations of a very general class of
feedback systems. His main results include tool theorems of two types:
small-gain theorems and passivity theorems, from which a variety of sta-
bility criteria have been obtained. With regard to specific applications, one
extension relative to the work of Nyquist and Bode is of a kind common
to much work in the field—an extension to systems with many inputs
and outputs; scalars are replaced by vectors and scalar operators by matrix
operators. More basic is Sandberg’s way of dealing with nonlinear elements.
He allows a time-varying distortion in the amplifying path, one that takes
an input signal f(t) and distorts it into g(t) = Y[ f(t), t], where Y(-,-) is a
function of two variables that is bounded by two linear functions via the

inequalities

f@®)
The numbers 4 and b here can be thought of as specifying two different
linear amplifiers.
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In their simplest form (and assuming now that a > 0), Sandberg’s results
extend Nyquist’s criterion. The latter requires that the trace of ug, for real
frequencies, not encircle the point +1 in the complex plane. Sandberg’s
elegant circle criterion requires that the trace of u8, where now uf is the
loop gain of the linear, nondistorting part of the amplifier, not encircle or
meet a certain region of the complex plane. That region is itself a circle
having size and location specified by two numbers a and b above. This
"forbidden”’ circle is centered on the real axis, and its two extreme points
on that axis correspond to Nyquist’s criterion applied to the two limiting
amplifiers described by a and b.

V. TRANSMISSION LINES

5.1 Wire Pairs and Coaxial Cable

The original transmission lines of electrical communication were pairs
of wires or single wires with ground return. Because they were used only
at telegraph or voice frequencies (i.e., for signals having wavelengths on
the line that, typically, were much longer than the cross-sectional dimen-
sions of the line itself), they could be studied by static methods. The theory
of lumped-element electrical networks is also a static theory in the sense
that it is correct only in the limit of low frequencies. It ignores high-
frequency effects, in particular radiation. High-frequency electrical problems
must be formulated in terms of partial differential equations for the electric
and magnetic field components. These equations, developed by Maxwell,
contain a displacement current term that does not enter into the simpler
static theory.

In 1855, Lord Kelvin explained the severe wave distortion on submarine
telegraph cables by taking account of distributed capacitance between the
conductors.’” G. Kirchhoff (1857), O. Heaviside (1876), and H. Poincaré
(1893) included the effect of self-inductance of the wires.®® By observing
that the inductance somewhat offset the bad effects of the capacitance,
they set the stage for the invention of inductive loading by M. I. Pupin
of Columbia University®® and independently by G. A. Campbell.” (For a
discussion of the patent award to Pupin, who filed two weeks prior to
Campbell, see Chapter 4, section 4.1.3 of an earlier volume of this series,
subtitled The Early Years (1875-1925).)

All these authors regarded a transmission line as a limit of a recurrent
lumped-element network, with each section representing a piece of the
line of length A. By going to the limit of many short pieces (A — 0),
equations governing the propagation of voltage and current along the line
were obtained. {Fig. 1-22] The older literature derived the telegrapher’s
equation in that way; it was equivalent to what later came to be called
the transmission-line equations.
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Fig. 1-22.  Electrical filter representation of part of a continuous transmission line. The
line of length ! is approximated by many (n) electrical filter sections connected in tandem,
each section representing a small piece of line of length A(=I/n). R, L, G, and C are the
series resistance, series inductance, shunt conductance, and shunt capacitance, respec-
tively, per unit length of the line. (Johnson, Transmission Circuits for Telephonic Com-
munication (1924): 144.]

An example of a static transmission line analysis was the generalization
of the transmission line equations to systems of many wires. In a many-
wire problem, one pair of wires might be a telephone line and the other
wires might be power lines or other telephone lines producing hum or
crosstalk in the first line by capacitative and inductive coupling. The mul-
tiwire form of the transmission line equations was obtained in 1927 by
J. R. Carson and R. S. Hoyt.*

5.1.1 Transmission Line Losses—Skin Effect

The inadequacy of static methods became evident in connection with
transmission line losses. Although the resistance per mile might be precisely
measured using a dc ohmmeter, the transmission line equations with that
measured resistance might give inaccurate results even at voice frequencies.
The difficulty lies in the way electric current flows through a resistive wire.
At high frequencies, the current becomes concentrated near the surface
of the wire (skin effect), thus reducing the effective cross-sectional area of
the conductor and causing more power loss than at low frequencies.

In 1921, Carson and J. J. Gilbert gave a skin-effect analysis to treat
losses in a submarine telephone cable.’? The cable used the ocean as a
ground-return path. Instead of spreading uniformly over the ocean, the
return current was concentrated near the cable by skin effect. A large part
of the return current flowed in the resistive iron-armor wires that were
wound around the cable for mechanical strength. The practical conclusion
was that cable attenuation and distortion could be greatly reduced by
adding a thin copper sheath, just under the armor wires, to carry the
return current. In effect, Carson and Gilbert were advocating use of a
coaxial cable.

In the early 1930s, a carrier telephony system was developed, using
coaxial cable to obtain a wide bandwidth, small attenuation, and good
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shielding between circuits. S. A. Schelkunoff and T. M. Odarenko gave
the quantitative analysis of these benefits.”>** While crosstalk effects in
the old balanced-pair cables increased with frequency, they decreased in
coaxial cable.
In 1951, A. M. Clogston proposed a scheme for alleviating the skin-
: effect problem in a transmission line by the use of a conductor composed
of many insulated thin conducting strips, running parallel to the direction
of current flow.>® For lamina thickness small in comparison with the theo-
retical skin depth of the metal used, the electromagnetic wave can penetrate
a distance great enough to include a thickness of conducting material many
L skin depths deep. S. P. Morgan extended the calculations to include the
case of the coaxial conductor.’®*” The calculations were confirmed exper-
imentally, but the cable structure and precision required for such a trans-
b mission turned out to be too expensive and too difficult to fabricate to
play a role in Bell System transmission systems.
During the 1920s, Carson applied Maxwell’s equations to study losses
in such transmission lines as wire pairs, overhead or underground wires
| with ground return, and some multiple-wire combinations.’® These struc-
tures all propagated what was called a principal wave. In the special case
of perfectly conducting wires and perfectly lossless dielectrics, a principal "‘N
wave could be derived from Maxwell’s equations by looking for a solution
with no electric- or magnetic-field components in the direction of prop-
agation. The problem then simplified to a static problem. Apart from per-
turbing effects of losses in conductors and dielectrics, a principal wave
behaved very much like the waves in the old transmission line theory.

5.2 Waveguides

=& M.

In the late 19th century, J. J. Thomson and Lord Rayleigh showed
mathematically that electromagnetic waves can propagate inside a hollow
conducting tube.’*!%° These waves were not widely known, and Carson 1
seems to have rediscovered them independently in a memorandum of
1924. Around 1932, G. C. Southworth at AT&T built hollow tubes, or
waveguides, and produced these waves experimentally.

e At that time, the shortwave spectrum was already becoming crowded.
Southworth foresaw the coming of microwave communication, in which
the waveguide could serve as a new kind of transmission line. In reply
to the memorandum in which Southworth first described his ideas and
experiments, however, one of the leading mathematicians of the company
4 wrote an evaluation that stated, “I have arrived therefore at the tentative
conclusion that Southworth’s proposed system of transmission is not prac-
ticable.””'°! Fortunately, the unnamed mathematician, whose opinion was
highly regarded by Southworth’s supervision, discovered an error in his

Ty
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analysis and issued a retraction. Thereafter, Southworth received math-
ematical support, both from Carson and S. P. Mead at AT&T and from
Schelkunoff at Bell Labs.

Unlike the earlier wire and coaxial transmission lines, the waveguide
had no principal wave that propagated at low frequencies. It was more
like a high-pass filter, propagating only at frequencies above some cutoff
frequency.

One of the first mathematical problems connected with waveguides
was the study of modes. These are field configurations that can propagate
without changing shape. Each mode has its own cutoff frequency, prop-
agation speed, and attenuation. The mathematical analysis of waveguide
modes proceeded independently at AT&T and Bell Labs, each producing
internal memoranda in 1933. This work formed the basis for Carson’s,
Mead’s, and Schelkunoff’s joint paper of 1936, a mathematical companion
to Southworth’s experimental paper.'’? By then, waveguide research had
also been carried on at MIT by W. L. Barrow and L. J. Chu.'%*1%

In later papers, Schelkunoff found that certain field parameters, for a
given mode, behaved mathematically like such things as the voltages,
currents, and impedances of earlier transmission lines.’?>!% Most engi-
neering waveguide calculations could then be made using well-understood
formulas related to the old telegrapher’s equation. These calculations were
more important than ever because even a few inches of waveguide could
be long in terms of wavelength; pieces of waveguide had replaced inductors
and capacitors as resonators and as impedance-matching devices.

Waveguide calculations were further simplified in 1939 when P. H.
Smith published his chart, a nomogram based on the traditional trans-
mission-line formulas for calculating impedances.””'® In his autobiog-
raphy, Southworth stated, “Few pieces of apparatus have proven more
useful to the practical engineer than the Smith diagram.””’®

5.2.1 The TE, Waveguide

Most modes have high attenuations near the cutoff frequency and also
at high frequencies. One exceptional mode, TEy,, having concentric circular
electric field lines, has attenuation decreasing steadily to zero at high fre-
quencies, a fact that makes this mode especially suited for low-loss trans-
mission. However, L. Brillouin in France suggested that the TE;; mode
might be unstable, changing to a mode with high attenuation if the wave-
guide were deformed even slightly from a perfectly circular shape.'’® To
answer this objection, Schelkunoff analyzed a deformed circular guide and
showed that a small deformation did not increase the attenuation signif-
icantly until very large frequencies were attained.’’ By studying elliptical
waveguides, Chu obtained a similar result.? The TE,,; mode is a difficult
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one to work with experimentally, but the millimeter-wavelength research
effort at Bell Labs solved this problem and established the technical fea-
sibility of the predicted low attenuation of this mode for a practical carrier
telephony system (see Chapter 6 of this volume).

VL. ANTENNAS AND ELECTROMAGNETIC RADIATION

The earliest triumph of electromagnetic theory was its success in ex-
plaining light as a form of electromagnetic radiation. The same theory
applied to radio waves, but there were new problems of analyzing the
production of radiation by currents in antennas.

In Germany, the fundamental problem of radiation from a dipole antenna
near an imperfectly conducting earth was analyzed both by A. Sommerfeld
(1909) and by H. Weyl (1919), but with conflicting results.'’>!'* Som-
merfeld’s answer contained a surface wave term that was absent in Weyl's.
For 18 years, these two theories remained in conflict. Both were so com-
plicated that errors were not easily detected. In 1937, C. R. Burrows at
Bell Labs performed experiments to decide between the two theories. When
he compared his experimental results against elaborate series expansions
that W. H. Wise and S. O. Rice had made from the Sommerfeld and Weyl
formulas, Burrows’s data confirmed Weyl’s theory.'”* Soon afterward
K. F. Niessen in Germany and Rice at Bell Labs discovered that Sommerfeld
had chosen the wrong sign when taking a square root.'®

Because H. Hertz performed his original experiments at ultrahigh fre-
quencies, he found it relatively easy to produce directive antennas using
reflectors. At the long wavelengths first used in wireless communication,
however, antennas could not easily be built large enough to have much
directivity. After the discovery of long-distance shortwave propagation,
interest revived in directive antennas, many wavelengths across, as a way
of concentrating radiated power in the direction of the receiving station.
For a discussion of antenna research at short waves and of microwave
frequencies, see Chapter 5, sections 1.3 and IV in this volume.

One early form of directive antenna was the wave antenna, an invention
of H. H. Beverage at RCA.'"” The wave antenna was a wire, many wave-
lengths long, arranged as a transmission line with ground return. As a
receiving antenna, it extracted power from the incident wave in the same
way that one transmission line received crosstalk from another. Carson’s
papers on wire transmission lines were motivated in part by the wave
antenna and included formulas useful in wave-antenna design.!'®'"?

Another interest of Carson’s was a reciprocity theorem that Lord Rayleigh
had given for acoustic waves. Carson generalized this theorem to a form
applicable to antennas. A useful consequence of this generalized theorem
is that an antenna has the same directivity pattern for receiving as for
transmitting.'2%1%!
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6.1 Antenna Arrays

The idea of combining several small antennas into one directive structure
was a natural extension of the diffraction grating in optics.’?? Antennas
composed of two elements were described as early as 1899.'2* G. A. Camp-
bell studied more complicated antenna arrays in 1919. They contained
larger numbers of elements, regularly spaced in a line, circle, or rectangle.'?
Campbell’s table of array patterns was extended by R. M. Foster in 1926
and by Southworth in 1930.'25126

In these arrays, all elements were excited with currents of the same
magnitude; the phase of the excitation varied linearly across the array.
Arrays of that kind could produce a pattern with a single, narrow lobe,
such as might be used in transatlantic shortwave radiotelephony. In World
War 11, there were radar applications for more complicated patterns, such
as the cosecant squared pattern that produced constant radar response
from a ground target at any range. By allowing currents of unequal mag-
nitude and general phases, S. A. Schelkunoff developed techniques of
pattern synthesis by which one could find the currents to produce a pre-
scribed pattern.'?”'?® For arrays of radiators evenly spaced along a line,
Schelkunoff observed that a simple transformation of variables converted
the expression for the pattern function into a polynomial. Given a desired
pattern, one could then use standard mathematical methods to approximate
it by a polynomial, the coefficients of which became the required currents.
By using Tchebycheff polynomials for the pattern functions, C. L. Dolph
designed linear arrays having maximum gain for a prescribed side-lobe
level.'” Similarly, in the case of radiation from a two-dimensional aperture
illuminated by a horn reflector, or lens, Schelkunoff expressed the pattern
as a Fourier integral that could be inverted to obtain the required field in
the aperture.

E. N. Gilbert and S. P. Morgan'* considered antennas made up of
many discrete radiators disposed arbitrarily in space. They proved general
theorems concerning the pattern of radiation from such arrays, directing
particular attention to the departures from a desired pattern caused by
errors in realizing the design. Errors could be caused by failure of the
exciting currents in the radiating elements to match, in phase and amplitude,
the currents specified by the design or by departures of the antenna elements
from the physical positions specified by the design. One result put into
concrete and quantitative terms some of the folklore about so-called hy-
perdirective antennas—antennas that focused a narrow beam of radiation
from an aperture or array having small dimensions. It was shown that
hyperdirectivity could be realized only by the imposition of extremely
precise control over the position and excitations of the radiators.

The purpose of a directive receiving antenna is to reject signals from
sources that are separated in angular position from the source of a desired
signal. Generally one thinks of the unwanted signal or signals as originating,
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like the desired one, from point sources. There are situations, however,
in which it is reasonable to consider that the unwanted signals are simply
background noise originating from a diffuse cloud of sources, each source
radiating at minute power and incoherently from all others. D. Slepian
considered the design of an antenna of finite aperture to optimize reception
from a desired source in the presence of such spatially distributed back-
ground. The problem turns out to be similar to that of detecting a sinusoidal
signal in noise, using a sample of data of finite duration. (See section 7.5.)

VII. NOISE

7.1 Crosstalk

The most troublesome noises on early telephone circuits were hum
and crosstalk induced by nearby power and telephone lines. In 1879,
Alexander Graham Bell invented the twisted-pair cable to reduce this
interference.'*1*2 ], A. Barrett invented more elaborate wire-transposition
schemes in 1888.1** (See Chapter 4, section 2.2 of the first volume of this
series, subtitled The Early Years (1875-1925).)

When many twisted pairs are grouped together into a single cable,
crosstalk can be further reduced by cutting the cable into sections spliced
together according to rules that prevent any two pairs from lying close

/ together too often. H. P. Lawther, Jr., of Southwestern Bell Telephone
Co., first devised splicing rules in 1935; J. Riordan extended them in
1943.134135 These rules are mathematically interesting as applications of
the theory of numbers.

In multiplexed-carrier telephony, crosstalk arises in another way. A
telephone repeater is a wide-band amplifier serving many channels at
once. If this amplifier is not perfectly linear, it can produce spurious tones
by beating or heterodyne action. If frequencies f, and f, are present at the
input to the repeater, the output can contain frequencies 2f,, f; + fo
2f, — f,, and others. In this way, speech signals on two different telephone
channels interact to produce interference on a third. To help control this
interference, B. D. Holbrook and J. T. Dixon developed a load rating theory
in 1931.'*¢ Their theory was probabilistic. It took into account random
fluctuations in the number of busy channels and the wide variability in
loudness of speech. In that way, the theory determined a limit on the
traffic level. Below this limit, the amplifier operated in its linear range most
of the time.

The amplitudes of the various crosstalk tones that result from nonlinear
distortion depend in a complicated way on the amplitudes of the input
tones and on the kind of nonlinearity. In 1940, W. R. Bennett developed
a technique for finding this dependence and applied it, in 1947, to nonlinear
characteristics that occur in repeater amplifiers.’>”!*
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7.2 Impulse Noise

Impulse noise is a mathematical model for noise as a sum of many
impulses or transients, all of the same shape F(t), but with random am-
plitudes A; and arrival times Tj

x(t)= 2 AFt—Ty.
K

Vacuum-tube noise, or shot noise, fits the impulse-noise model with the
impulses corresponding to the arrival of electrons at the plate of the tube
and the shape of each impulse being the output response that an electron
produces in the plate circuit.

In 1909, N. R. Campbell in England used the impulse-noise model to
study fluctuations of current in a photoelectric cell and proved the Campbell
Theorems of noise theory.’”® One of these theorems expresses the power
in the noise in terms of the integral of the impulse shape.

In 1925, J. R. Carson used impulse noise as a model for atmospheric
noise, or static, in a radio receiver.’**'*! By an extension of Campbell’s
theorems, Carson showed that impulse noise has a power spectrum pro-
portional to the square of the magnitude of the Fourier transform of the
shape of the impulse. Carson used this result to evaluate the effectiveness
of filters in reducing noise on radiotelephone channels. He concluded that
simple filters achieved about as much reduction as could be obtained. In
1938, W. Shockley and J. R. Pierce developed a theory for noise in electron
multipliers.’*? (See Chapter 4, section IV in this volume.)

7.3 Johnson Noise

In 1918, W. Schottky in Germany first analyzed the shot effect in vac-
uum tubes by an impulse-noise model.’** In his paper, he suggested a
second kind of noise, thermal noise, that would result from random thermal
motions of the electrons in a resistor. Schottky concluded that thermal
noise in vacuum-tube circuits would be impossible to observe, being masked
by the much stronger shot noise. To reach this conclusion, Schottky had
to evaluate a complicated integral, as in Campbell’s theorem, for the power
in the shot noise. In 1920, J. B. Johnson [Fig. 1-23] tried to check Schottky’s
integration, but after much labor, obtained a smaller shot-noise power.
When he showed the integral to L. A. MacColl, MacColl agreed with
Johnson’s answer. In fact, MacColl used the method of residues to evaluate
the integral at sight, a performance that Johnson still remembered as im-
pressive 50 years later.'** By 1928, Johnson actually observed and measured
thermal noise in carefully controlled experiments.'*® To provide a theoretical
foundation for Johnson’s interpretation of the experimental results, H.
Nyquist gave a mathematical analysis of thermal noise, combining trans-
mission line theory with the equipartition theorem of statistical me-
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Fig. 1-23. ]. B. Johnson, who discovered that resistors made of diverse materials
are always a source of white noise.

chanics.!*¢ A resistor of R ohms at absolute temperature T is a wide-band
noise-voltage source. The noise voltage V that the resistor generates in
any frequency band of width Af has a mean-squared value V* = 4kTRAf,
where k is the Boltzmann constant of thermodynarmcs, 1.37 X 1072 joules
per degree Kelvin.

Thermal noise is often called Johnson noise. It becomes important in
weak-signal communication systems such as satellite systems, where the
expense of eliminating other noise sources is justifiable. Then Nyquist’s
formula for V? sets an irreducible minimum on the noise power that must
be tolerated.

7.4 Gaussian Noise

The mathematical properties of impulse noise simplify greatly in a lim-
iting case in which the rate of arrival of impulses becomes infinite. For-
tunately, this limit is often approached in practice, as in the shot effect
with many electrons arriving per second. The limiting noise is called
Gaussian noise because noise samples have a Gaussian probability dis-
tribution.
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In 1906, Albert Einstein derived a Gaussian limiting distribution in his
study of Brownian motion.’*” As a model of Brownian motion, Einstein
used the random walk, which may be regarded as a kind of impulse-noise
motion in which the impulse F(t) is a unit step:

Fty=1fort=0
=0fort <0.

Electrical noise problems require impulses F(t) of many other shapes.
Nyquist, in an unpublished memorandum in 1932, also obtained a Gaussian
limit with a different F(f), making an interesting connection between impulse
noise and another representation of noise as a sum of a large number of
sinusoids with random amplitudes and phases. This latter model of noise
dates back to Lord Rayleigh, who had suggested it for blackbody radia-
tion.'* In early studies, noise might be modeled as a sum of either in-
dependent impulses or independent sinusoids, but the connection between
the two models was not clear. Nyquist showed that the sinusoidal com-
ponents of impulse noise became independent in the limit of Gaus-
sian noise.

In 1944 and 1945, S. O. Rice [Fig. 1-24] published a monumental study
of noise,**'*" generally regarded to be the single most useful source of
information about Gaussian noise. Rice derived the Gaussian limiting form
of impulse noise and the limiting independence of the sinusoidal com-
ponents for a general impulse shape. He developed many of the properties
of Gaussian noise that have engineering applications. For example, Rice
derived the probability distribution for the noise energy received during
a given time interval, a result that can be used to predict the rate at which
a threshold detector will produce false alarms. Other topics in Rice’s paper
relate to the zeros, maxima, minima, and envelope of Gaussian noise and
to the effect of putting Gaussian noise through a nonlinear device.

One of Rice’s results was a formula for the mean number of zeros per
second of Gaussian noise.'*! For some spectra, the mean number of zeros
per second is infinite, a surprising result indicative of the very jittery
appearance of such noises.

Curiously, Rice’s original interest was not electrical noise in the usual
sense. He started with a transmission problem in which reflections from
irregularities, such as mismatched repeaters and loading coils, caused in-
terference and even instability of repeater amplifiers. This was an old
probabilistic problem. In 1912, J. Mills had treated the reflecting irregularities
as randomly distributed along the line and obtained formulas used in
engineering the transcontinental telephone line of 1913 through 1914. G.
Crisson extended this work in 1925."°? Rice’s repeater problem turned out
to involve the envelope of a Gaussian noise. As Rice’s 1944 paper showed,
narrow-band Gaussian noise can be represented as a sinusoid with slowly
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Fig. 1-24. S. O. Rice, who pioneered in fundamental
mathematical analysis of noise in electrical circuits.

varying random envelope and phase. Rice solved his repeater problem by
finding the probability distribution function for the envelope. Actually,
the same kind of narrow-band noise appears at the output of selective
circuits in radio receivers. In a later paper, Rice added this noise to a pure
sinusoid, representing a radio signal, to derive results about the effects of
noise in AM and FM detection.'**

Rice’s several alternative representations of Gaussian noise have found
wide application in engineering problems. E. L. Kaplan, in a basic paper,
used the narrow-band envelope form to model the effects of fading or
glinting in radar signals and to derive several optimal procedures for ex-
tracting data from such signals.'**

From a time preceding Einstein’s paper, properties of the path of the
random walk, or of Brownian motion, have been studied for their physical
or mathematical interest. Rice’s paper represents a comprehensive attack
on problems of engineering interest, many of them new.’** Further con-
tributions to this line of study were made by D. Slepian, by M. Kac of
Rockefeller University, by L. A. Shepp, and by Shepp and Slepian during
the period from 1959 through 1977.
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7.5 Prediction, Estimation, and Detection

During World War II, an unusual noise problem arose in connection
with antiaircraft fire control. Targets performed haphazard evasive ma-
neuvers to confuse gun directors. Thus, a target coordinate x(t) had some
resemblance to a random noise signal. To allow for the time a that an
antiaircraft missile would take to reach the target, a prediction of the future
target coordinate x(t + a) was needed. The prediction had to be based on
observations of the target up to the present time ¢ only, and even these
observations contained inaccuracies or noise. N. Wiener at MIT and A.
Kolmogoroff in the USSR independently found the way to estimate the
future coordinate x(t + a) with least mean-squared error, assuming that
the appropriate spectrum for random target coordinates was known,%¢157
The best estimator had to be obtained by solving an integral equation.
Formidable mathematical difficulties, which earned Wiener’s original yel-
low-cover publication the nickname “yellow peril,” were neatly side-
stepped in a later treatment by R. B. Blackman, H. W. Bode, and C. E.
Shannon.!*®!*® Engineers preferred this treatment because it used only
familiar ideas about filters and impulse noise. The solution of the integral
equation was, in effect, found with the help of Bode’s loss-phase integral.

The work on antiaircraft gunnery illustrates the propensity toward
idealization that T. C. Fry cited as one characteristic of mathematicians
(see section 1.2 of this chapter). The mathematical problem differed from
the real problem in at least two major respects. First, observations of the
target were not available for all past times, but only for the rather short
interval from the start of target tracking to the time the gun fired. Second,
instead of a minimum mean-squared error prediction, what was really
needed was an estimate of where to point the gun to maximize the prob-
ability of hitting the target. Indeed, large errors contribute most to the
mean-squared error, but misses by an inch or a mile are no different in
figuring the hit probability. Nevertheless, the solution of the idealized
problem provided insight that could not have been obtained by trying to
solve the difficult real problem directly.

In fact, the integral equation solved by Wiener, for the idealized model
in which the whole past history of x(f) is known, is a limiting case of the
kind of integral equation solved by Slepian in his analysis of the antenna
problem mentioned at the end of section 6.1 above. Slepian’s solution of
the latter equation then solved the prediction problem addressed by Wiener,
Kolmogoroff, and Blackman-Bode-Shannon for cases of engineering interest
in which only a finite segment of past data is available. Slepian and T. T.
Kadota solved several related equations that appear in detection theory
when only a finite segment of data is available.!*°

Prediction is just one special member of a class of problems that seek
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a good estimate of some quantity Q(¢) that depends linearly on the signal
x(#). For instance, Q() might be the output of a filter with input x(¢). Or,
since only a noisy version of x(t) is observable, Q(t) might be the true
value of x(t) (with the noise removed). Although x(t) may be observed
throughout an entire interval of past times, it is often convenient to base
the estimate of Q(t) on only a finite number of these observations. The
estimation problem then simplifies to one that can be handled by standard
methods of multivariate statistics. During World War II, multivariate meth-
ods solved many estimation problems of radar and fire control, at least to
engineering satisfaction. Sometimes the (finite) number of observations
could be made to approach infinity to obtain, in the limit, a formal solution
to the original continuous-time problem. The mathematical difficulties in
making such a passage rigorous are formidable. It was not until about
1950 that a mathematical foundation, which was broad enough to provide
convenient and rigorously justifiable solutions to many estimation problems
of importance to engineers, had been laid.'®!

Multivariate estimation problems are solved by computing probabilities
as integrals over certain volumes in the finite-dimensional space that has
the observed signal samples as coordinates. In continuous-time estimation
problems, these probabilities become integrals over a function space of
infinite dimension. Finding an appropriate notion of volume or measure
in function space thus becomes a central problem in estimation theory.
Wiener had already introduced an infinite-dimensional measure (Wiener
measure) in his study of Brownian motion.

A definitive paper of Shepp established Wiener measure as the proper
underlying volume in function space for dealing with problems involving
Gaussian noise.'®? This paper provides complete formulas for calculating
the density in function space of one Gaussian probability measure with
respect to another, or with respect to Wiener measure. These formulas
help to provide an interpretation of estimation problem solutions as ap-
plications of the method of maximum likelihood, a familiar technique in
multivariate statistics. The paper also establishes a large class of equivalent
representations for the random-walk (or Wiener) process in terms of count-
ably many independent, identically distributed, random variables; it extends
many prior results, including those of Rice.

Detection problems differ from estimation problems only in requiring
that the signal information be used to decide between a small number of
alternatives. For example, in a radar application the alternatives might be
target present and no target. A telegraph application might require the
decision between a mark and a space. Again, if only a finite number of
signal samples is to be used in making the decision, the detection problem
becomes a standard one in multivariate statistics, the problem of hypothesis
testing. Beginning around 1945, many examples of detection problems
were attacked by multivariate methods. More recently, Kadota has used
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the results given in the above-mentioned paper by Shepp to solve a number
of problems in detection and estimation directly by function-space
methods.!®

7.6 Stochastic Control

A typical problem of stochastic control is encountered in missile guidance.
Using noisy data describing the motion of a randomly maneuvering target,
one must control the motors that try to steer a missile along a collision
course. Although prediction or estimation is involved in this control, there
is also an element of feedback; steering done at a given time will affect
subsequent missile headings and hence subsequent steering.

One may state the central problem in stochastic control as that of devising
a rule or strategy for converting information about such factors as present
and past target position, rate, and heading into steering orders that will
minimize some cost—average miss distance being one example of a cost.
Using the random walk as a model for the target motion, V. E. Benes
formulated this kind of problem in a general setting.'®* His formulation
included an explicit description of the information available at each time
t, upon which to take control actions. Under weak assumptions about the
controllability of the system being controlled, and with the assumption
that sufficient information is available to the controller, he showed that
for each cost function of a wide class, an optimal (cost minimizing) control
strategy exists. No ad hoc restrictions were placed on the admissible control
strategies. Exploiting this generality, Benes later validated a conjecture
widely held about a large class of stochastic control problems—essentially,
that a steering strategy using only the two rudder positions, hard left and
hard right, minimizes final miss distance.'®® In these papers and in other
papers applying the same results and methods, Benes$ set forth general
techniques for stochastic control problems in which the target motion is
derived from the random walk.'*® Benes, L. A. Shepp, and H. S. Witsen-
hausen gave an explicit solution to the problem of tracking a jinking target
under a constraint on the total amount of control effort expended (e.g., a
limit to the total amount of energy consumed by induced drag when the
rudder is hard over).'” Applications ranging from vehicle steering to in-
vestment strategies were described.

Picturesque terms, such as target and steering as just used, correctly
suggest the historical background of problems that have been studied
under the general heading of stochastic control, but many other situations
fit a similar mathematical mold. The moves of the players of a game, the
actions taken by independent dealers in a market, the decisions made by
division managers of a dispersed commercial enterprise, and the actions
taken by one individual at successive stages of an endeavor can in each
case be thought of as control actions taken by agents who, at the time of
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acting, may have neither complete knowledge of nor complete control
over the situation being controlled. Drawing extensively upon prior work
in the theory of games, Witsenhausen proposed in 1971 a mathematical
framework within which to phrase problems of stochastic control at a
basic level of generality.'®®'¢® Within this framework he developed a tax-
onomy of control problems (or of information structures), established con-
ditions for the existence of (actionable) control strategies, and isolated some
critical unsolved problems.

VIII. INFORMATION THEORY

Probably the most spectacular development in communications math-
ematics to take place at Bell Laboratories was the formulation in the 1940s
of information theory by C. E. Shannon. Information theory is a study of
signaling systems from a very general point of view in order to derive
theorems and limitations universally applicable to all systems. Perhaps
the best succinct description of information theory is the title Shannon
chose for his fundamental paper of 1948, “A Mathematical Theory of
Communication.”'” In a 1977 monograph on information theory, R. J.
McEliece of the California Institute of Technology wrote:

With many profound scientific discoveries (for example, Einstein’s discovery in 1905
of the special theory of relativity) it is possible with the aid of hindsight to see that the
times were ripe for the breakthrough. Not so with information theory. While, of course,
Shannon was not working in a vacuum in the 1940s, his results were so breathtakingly
original that even the communication specialists of the day were at a loss to understand
their significance. Gradually, as Shannon’s theorems were digested by the mathematical/
engineering community, it became clear that he had created a brand-new science, and
others began to make first-rate contributions of their own. Slowly at first, and then
more rapidly, the subject grew, until now hundreds of research papers in information
theory are published each year.!”

As viewed from a modern perspective, Shannon’s theory can be de-
172

scribed by use of the following block diagram:

SOURCE ] ENCODER 7 CHANNEL 7 DECODER > DESTINATION
e / / / o
MESSAGE TRANSMITTED RECEIVED MESSAGE
DATA SIGNAL SIGNAL DATA

In this diagram the source output is some form of data that must be
communicated reliably through the channel to the destination. For example,
the source might be a computer and the data a binary sequence of zeros
and ones, or the source might be a voice and the data a continuous-time
waveform. The channel might be a telephone line or an optical-fiber wave-
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guide. The channel might also be a computer memory. The process shown
in the diagram could represent the storing of data into a memory and its
subsequent withdrawal.

In general, there are two limitations on the reliability with which we
can communicate the data:

1) The channel may introduce noise into the system. Here noise is
defined as anything that makes it impossible to determine the exact channel
input information by observing the channel output. A well-known example
of noise in a radio channel is static. Another example is an imperfectly
operating computer memory that occasionally changes bits.

2) There may exist a source-channel mismatch. This situation occurs
whenever the data is not in a suitable form to go directly into the channel.
Examples of mismatch are a binary data source (say a computer) and a
continuous channel (say a radio channel), or a continuous source (say
speech) and a digital channel (say a computer memory). Another example
of mismatch occurs when a binary source emits data faster than a binary
channel can transmit it.

The encoder and decoder in the diagram are processors that have the
task of combating these limitations as far as possible. Thus, the encoder
processes the data to combat the channel noise (for example, it may use
an error-correcting code on a binary channel) and to put the data in a
suitable form for transmission over the channel—i.e., overcome source-
channel mismatch (for example, it may quantize continuous data for trans-
mission over a digital channel). The decoder must undo the effects of the
encoder and the channel and deliver data to the destination, which is,
one hopes, close to the data output of the source.

To illustrate the central ideas of Shannon’s theory, several important
special cases of the system represented by the diagram will be discussed
and some conclusions will be stated that can be deduced from the theory.

8.1 Source Coding and the Information Measure

Suppose that the channel in the diagram is the so-called noiseless binary
channel that accepts R binary digits per second and transmits them perfectly.
The task of the encoder is to transform the source output into a binary
stream of R digits per second in such a way that the decoder can recover
the source symbols as accurately as possible. Suppose, for example, that
the source output is a white Gaussian random process with power P and
bandwidth W. Then the encoder is an analog-to-digital (A/D) converter
or quantizer. The theory tells us that the mean-squared quantizing error
that must inevitably arise when the source output is transmitted over our
noiseless channel with rate R must be at least P272*/% and, further, that
there exists an encoder/decoder (albeit complex) that can achieve this level
of distortion.
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For an arbitrary source and an arbitrary measure of distortion or error
between source output data and data delivered to the destination, the
theory gives a function D(R) that is the minimum achievable average
distortion D when the source data is transmitted over a noiseless binary
channel with rate R. In our example, D(R) = P272*/¥,

Another important example is that of a noiseless binary channel with
rate R with the source emitting a sequence of independent letters at say
1 letter each second. Suppose there are M letters possible. Let p; = Pr{source
output = i}, where 0 < i < M — 1. Let the distortion measure be the
average error rate—i.e., the average number of times per second the des-
tination receives a letter that is different from the corresponding source
letter. For this case the theory tells us that D(R) = 0, provided R exceeds
a quantity H called the entropy, defined by

M=-1

=zl pilogapi.

i=0
Note that, since the channel accepts R binary symbols per source letter,
the entropy is the minimum number of binary digits needed by the encoder
to represent the source output without error. Thus the entropy is a measure
of the amount of information contained in the source. To give a name to
the units in which Shannon measured information, J. W. Tukey coined
the word “bits,” a contraction of "binary digits” that quickly established
itself in engineering. The word information had been used in a technical
sense by R. V. L. Hartley in 1928.

Shannon’s theory includes two important concepts: the first is the idea
of coding, in which the source data is processed by a complex encoder in
order to represent it optimally in a binary stream of rate R; the second is
the notion of an information source as a statistical process with its infor-
mation (i.e., its entropy) defined by its probability law. In the case of a
noiseless channel with a source emitting a sequence of independent letters,
an efficient code must, like Morse code, give the shortest code words to
the most frequent letters. However, to exploit this possibility efficiently,
large blocks of letters may be involved instead of just single letters.

To treat message sources statistically was somewhat unusual in com-
munications engineering. Section VII of this chapter cites examples of
repeater load rating theory and antiaircraft fire control. Earlier examples
in cryptography were common. Philosophical objections are sometimes
raised against describing human behavior in probabilistic terms. To counter
arguments that human messages do not have random origin, Shannon’s
1948 paper included random sources that wrote random English approx-
imating real English text. A typical source, a trigram source that chooses
each letter at random from a distribution determined by the preceding
two letters, wrote “IN NO IST LAT WHEY CRATICT FROURE BIRS
GROCID PONDENOME OF DEMONSTURES OF THE REPTAGIN IS
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REGOACTIONA OF CRE,” which is at least pronounceable and contains
some real words. A book by J. R. Pierce quotes more fluent passages written
by more complicated random sources. Pierce also credits W. A. Mozart
with the idea of writing music at random (Koechel listing 294D).!”

Random English sources illustrate one of the reasons why ideal trans-
mitters and receivers are complicated and expensive. Because trigram
sources do not write very good English, one must conclude that English
contains important statistical correlations between letters more than three
letters apart. An ideal transmission system would have to use these cor-
relations in an optimal way. In 1951, Shannon gave particular attention
to the problem of transmitting written English over a noiseless binary
channel.'” He concluded that, although over 4 (binary) digits per letter
are required to transmit English letter by letter, 2.1 digits per letter suffice
to transmit entire words and about 1 digit per letter suffices for blocks
100 letters long. To make these numbers somewhat plausible, one may
note that most English text remains readable even after the vowels are
deleted. Since about half the text letters are vowels, vowel deletion provides
one fairly reliable way of speeding transmission by a factor of two.

8.2 Channel and Source Coding

Let us now consider another special case of the communication system
of the diagram above (see page 46). Here the source is taken to be a binary
source that emits digits at a rate of R per second to be transmitted over
a noisy channel and delivered to the destination essentially error free. The
gist of Shannon’s results as applied to this problem is that each channel
has a characteristic information rate C, called the capacity of the channel,
that cannot be exceeded in a reliable communication system. Given any
high standard of reliability, say an error probability of 107'? at the output
of the receiver, one can maintain this reliability and an information rate
as close to C as desired by proper design of the transmitter and receiver.
The surprising thing about this result is that the channel capacity C is not
zero. One obvious way to achieve high reliability is to repeat the messages
many times, but that also reduces the information rate. Shannon’s theorem
shows that high reliability at a fixed information rate is obtainable by
encoding the messages more cleverly. Error-correcting codes that provide
one way of accomplishing this are described in sections 8.6 and 8.7.

Determining the capacity C of a given channel is often a difficult problem.
One channel that Shannon analyzed is particularly appropriate as a model
of a radio channel. It transmits signals occupying a band W-Hz wide at
average power levels of up to S watts. During transmission, Gaussian noise
interference of power N is added to the signal. This channel has capacity

C = W logy(1 + S/N).
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This equation may be interpreted as an exchange relationship, showing
how much an increase in bandwidth W is worth in terms of increased
signal-to-noise ratio S/N.

Using the source coding procedure described in section 8.1, the source
output can be encoded into a binary stream of R binary digits per second
with a resulting distortion of D(R). Since the channel can transmit essentially
perfectly C binary digits per second, the system can deliver the source
data to the destination with a distortion D(C).

A most remarkable consequence of the Shannon theory is that a dis-
tortion D(C) is the optimal obtainable. In other words, the process of source
coding and channel coding can be decoupled with no loss in the quality
of performance.

8.3 The First Two Decades of Information Theory

Much of the early research work on Shannon’s theory was devoted to
fine-tuning Shannon'’s original results. One problem of considerable interest
(which by the early 1980s had not been completely solved) is the effect
of limiting the memory or the complexity of the encoder and decoder in
the system represented in the diagram. Rice did the first study of this
problem for the band-limited channel with Gaussian noise.'”> Shannon
and later Slepian, Wyner, and many others outside Bell Laboratories con-
tinued this line of research for many years.

Another interesting version of the system arises when an extra return,
or feedback, channel is added. Suppose one only wants to transmit in the
forward direction, using the feedback channel for repeat requests or other
error-control messages. For a wide class of channels, Shannon showed in
1956 that it is impossible to increase the capacity in the forward direc-
tion, although use of a feedback channel can dramatically reduce the com-
plexity required of the encoder/decoder to achieve a given level of per-
formance.!7¢'7

In the 1950s and 1960s, much work was done to characterize explicitly
and carefully the sources and channels for which Shannon-like coding
theorems can be established. A great deal of work was done by Wyner,
Kadota, and L. H. Brandenburg to broaden this class as much as possible.'”®

8.4 Multiple-User Theory

In the classical communication setup in the diagram describing Shannon’s
theory, there is but a single source and a single destination. In multiple-
user information theory, systems are studied in which there are more than
one source and /or channel and more than one encoder/decoder pair with
various constraints placed on collaboration between the encoders and/or
decoders. §
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The earliest work on multiple-user theory was done by Shannon in
1961 when he generalized his theorem about channel capacity to cover
the two-way channel.'”® A trade-off exists between rates R, and R, of
information transmission in the two directions. Instead of having a single
capacity C, the two-way channel has a curve defining the best achievable
pairs of rates (R, R;). Even simple applications of two-way channel theory
have surprising results. Suppose, for instance, that a noiseless telegraph
line is connected so that a buzzer sounds at each end only when both
operators have closed their signaling keys. One operator might keep his
key closed, sending no information, in order to receive information from
the other operator. The two operators might agree on a schedule in which
each spends half the time receiving, so that both achieve an information
rate that is half the capacity C of the line as a one-way channel: R, = R,
= C/2. They can achieve higher rates, however, by using another signaling
code that permits them both to signal at the same time.

Shannon’s 1961 results, though surprising, did not create much of a
stir in the information-theory community, in part because neither Shannon
nor anyone else was able to determine the family of achievable rate pairs
(Ry, Ry) exactly. It remained for three papers in the early 1970s to awaken
the research community to the potential of multiple-user theory. In the
first of these, T. M. Cover of Stanford University studied a broadcast
channel in which a single transmitter sends different information to two
or more receivers that cannot communicate with each other.’®® Cover
showed that significantly improved performance is achievable if the in-
formation is cleverly encoded by the transmitter. In 1973, D. Slepian and
J. Wolf (then of the Polytechnic Institute of Brooklyn) showed how to
separately encode a pair of correlated sources with no performance deg-
radation.’®! Also in 1973, A. Wyner and J. Ziv (a frequent visitor to Bell
Labs from the Haifa Technion) published a paper which gave a powerful
technique for proving nonexistence or converse coding theorems for mul-
tiple-user situations.’®*'® In the ten years that followed publication of
these three papers, dozens of multiple-user papers appeared in the literature;
they were authored by Wyner, Ziv, Witsenhausen, Ozarow, and many
others outside Bell Laboratories.'®

8.5 Error Control and Coding

An important part of information theory is the study of explicit coding
schemes that attempt to realize the ideal performance promised by the
Shannon theory. The simplest codes just detect errors, without trying to
correct them. An error-detecting code is a list of code words designed so
that the received signal can be recognized as erroneous if certain noise
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Fig. 1-25. The two-out-of-five code was invented for tone signaling
between telephone offices. The ten possible combinations of five basic
tones (F, A, C*, E, F*), taken two at a time, represent the ten digits 1,
2,. .. ,0.The code is error-detecting because reception of numbers of
tones different from two can only result from a transmission error. More
elaborate codes can correct errors as well as detect them.
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patterns occur during transmission. Error-detecting codes are most useful
in a two-way communication in which the receiver can ask for the erroneous
message to be repeated. More complicated codes also correct errors; that
is, the receiver can correctly interpret the message without asking for a
repeat when certain kinds of errors occur. Error-detecting codes had been
used in cable telegraphy since the 19th century, and the principle of error
correction had been recognized, although perhaps not used.'®® C. E. Shan-
non was not aware of these cable codes, but another error-detecting tele-
phone code, the 2-out-of-5 code, may have influenced him. This code is
believed to have been invented (but not published or patented) by R. E.
Hersey around 1938 for intraoffice signaling of telephone numbers.**'*’
[Fig. 1-25] It encoded each decimal digit of a telephone number into five
binary digits, of which two were ones and the other three were zeros. In
practice, the five binary digits were associated with five tones of different
pitch, a digit 1 or 0 being transmitted as a tone or no tone. If noise caused
one of the five binary digits to be received in error, the receiver could
detect the error and ask for a repeat.

Although error detection and correction were clearly important for any
theory of transmission over a noisy channel, they did not provide Shannon
with the clue that led to his coding theorem. That clue came from his
World War II work on cryptography. A cryptogram is a message encoded
by one of many possible codes. To create confusion, the code is chosen
in a way that seems to be random. It occurred to Shannon that signaling
codes could be constructed at random, too. Shannon could derive, relatively
simply, statistical properties of a rindom code, such as the expected prob-
ability of a decoding error. By this technique, he discovered the channel
capacity and its properties. However, instead of finding an explicit code
that signaled reliably at a rate close to capacity, Shannon obtained rules
for constructing a code at random. He showed that this random code has
a high probability of being fast and reliable, and therefore, some fast
reliable codes do exist. His proof, however, did not actually exhibit one.
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8.6 Algebraic Coding Theory

Shannon’s 1948 paper also reported the first development in algebraic
coding theory. This was a code R. W. Hamming had devised for controlling
errors in binary computers. Hamming had the idea of encoding messages
into blocks of binary digits that satisfied certain algebraic equations. These
equations were called parity-check equations because they checked whether
certain sets of digits contained even or odd numbers of ones (an odd
number indicating error). By using properly designed parity-check equa-
tions, Hamming could obtain codes for error detection or correction.

Error correction can be illustrated by one of Hamming’s simplest codes.
The code words are blocks (x;, x,, .. ., x7) of seven binary digits. Of the
128 possible strings, there are 16 blocks, all satisfying three simultaneous
check equations:

Xg + x5 + x¢ + x; = even,
X+ X3 * x, + x, = even,

b & +x; + x5 + X, = even.

If one digit x; is received in error, the sums in which x; appear change
from even to odd, indicating an error. Since no two different digits x;, x;
appear in exactly the same set of sums, the parities of the three sums
identify the unique erroneous digit x;. B. D. Holbrook designed switching
equipment to do the checkmg and correcting operations; he and Hamming
obtained a patent in 1951.* By using more complicated systems of parity-
check equations, many others have invented codes that can correct more
than one error per message.

It appears that powerful codes must inevitably be complicated, and
coding theory has progressed by building codes that have an ever-increasing
mathematical structure. The first main step in this direction occurred in
the 1960s, when D. Slepian used group theory to develop linear codes.'***°
In this work he also introduced the notion of a standard array, which
greatly clarified the decoding problem.

The second major step was the introduction, around 1959, by R. C.
Bose (at the University of North Carolina) of other algebraic techniques
that led to Bose-Chaudhuri-Hocquenghem (or BCH) codes. Although not
invented at Bell Laboratories, the subsequent widespread use of these
codes is due to the discovery of an efficient decoding procedure for them
by E. R. Berlekamp at Bell Labs.'*"?? The Berlekamp decoding algorithm
also turned out to have another, apparently unrelated, application. It can
be used to find the shortest shift register that generates a given sequence,
an important problem in cryptanalysis.’®® Another stage in the decoding
process for BCH codes involves factoring polynomials with coefficients
from a finite field. To speed up this step, Berlekamp developed a second
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algorithm, his factoring algorithm, which today is the standard method
for factoring polynomials over finite fields.'** Both algorithms, together
with digital circuitry for carrying out the encoding and decoding, are de-
scribed in his 1968 book Algebraic Coding Theory.'®®

Another major theoretical advance was F. J. MacWilliams’s discovery
in 1962 of a set of fundamental equations (now called the MacWilliams
identities) that any linear code must satisfy.'**'*” These identities were the
starting point for a considerable amount of research by MacWilliams,
C. L. Mallows, N. ]. A. Sloane, and others.

Two other decoding techniques from the 1960s should also be men-
tioned: MacWilliams’s permutation decoding,'®® and S. Y. Tong’s burst
trapping.'® Many other algebraic coding contributions developed during
the 1960s and 1970s can be found in The Theory of Error Correcting Codes
by MacWilliams and Sloan.2%

So far the codes mentioned have been block codes for a binary channel.
In a block code the message digits are divided into blocks, each block
being encoded separately. In recurrent or convolutional codes invented
by D. W. Hagelbarger, the message is converted into a stream of binary

-

Fig. 1-26. D. Slepian, E. N. Gilbert, and B. McMillan (left to right), who were, at the time
this picture was taken in 1952, working on information theory. McMillan also made important
contributions to network synthesis (see section 3.2 in this chapter). When these three Murray
Hill mathematicians began to study kites and fly them at noontime, they in effect crossed
strings with Alexander Graham Bell, who, in addition to inventing the telephone, was a
serious student of the aerodynamics of kites.
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digits. Check digits are interspersed among the message digits in a regular
pattern; each check digit is computed from a parity-check equation that
involves only nearby digits.?!

Codes for a continuous channel have also been extensively studied.
Using the sampling theory (section 2.3 of this chapter), a code that encodes
quantized messages of duration T seconds on a channel limited to band-
width W Hz can be thought of as an array of vectors in a space of 2WT
dimensions, one of which is selected for transmission each T seconds. The
transmitted vector is, as received, perturbed by the addition of a noise
vector. Idealizing the problem to one in which the noise vector has a
distribution in space that carries very little probability outside a sphere of
some given radius 7, a good code can be thought of as a packing of
nonoverlapping spheres of radius 7, all packed close to the origin (the
zero-signal) to conserve transmitting power. The relation between coding
for the channel with additive noise and the packing of spheres in a high-
dimensional space has proved a fruitful subject of study in both fields.
Systematic codes for a channel of this kind, being orderly arrays of vectors,
are natural objects to study by means of group theory or other combinatorial
methods. In turn, the study of codes as packings of spheres has enriched
these other domains of mathematics. E. N. Gilbert, Slepian, Sloane, and
others {Fig. 1-26] have contributed to this work.??

8.7 Impact of Information Theory

In the years that followed the publication of Shannon’s 1948 paper,
the number of research papers on information theory published at Bell
Laboratories and elsewhere increased rapidly. In the early 1950s, the In-
stitute of Radio Engineers (which later became the Institute of Electrical
and Electronics Engineers (IEEE)) formed a special interest group on in-
formation theory that published a quarterly journal devoted to Shannon
theory and cognate areas. At Bell Labs the impact of information theory
on many aspects of communications has been pervasive, helping scientists
and engineers to set realistic goals in their design of a variety of com-
munication systems. [

IX. LOGIC CIRCUITS AND COMPUTING

From the beginnings of telephony, switching circuits have been used
to interconnect telephone subscribers. With the development of dial sys-
tems, large, intricate switching circuits became commonplace. Nevertheless,
until 1938, switching circuit designers had to rely on their own intuitions
and cleverness because no routine, mathematical-design procedures were
available.
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9.1 Boolean Algebra

In 1938, Shannon, then a student at MIT, published a master’s thesis
in which he applied Boolean algebra to switching circuit design.’® In
another paper, in 1949, he enlarged upon the same idea.’** Boolean algebra,
invented by the British logician, George Boole, is a system for representing
logical propositions in algebraic terms.?*>2° The formulas of Boolean algebra
contain letters, representing simple propositions, joined by addition and
multiplication signs (representing the logical connectives “or” and “and”)
to produce compound propositions. Each formula can be manipulated by
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Fig. 1-27. C. E. Shannon’s technique for describing switching
circuits in algebraic terms. To design a switching circuit, one can
first express the desired switching circuit’s behavior through an
algebraic expression and then combine switches in series and
parallel in accordance with the addition and multiplication signs.
The figure shows four simple expressions and their corresponding
circuits. [Keister, Ritchie, and Washburn, The Design of Switching
Circuits (1951): 69.]
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rules, similar to those of ordinary algebra, to obtain other formulas rep-
resenting logically equivalent compound propositions.

In Shannon’s application, each letter A, B, C, . . . stands for the prop-
osition that a particular relay is turned on. The proposition that a closed
path exists between two terminals of a relay contact network can be ex-
pressed as a formula involving propositions A, B, C, . . . of the relays
controlling the network. Once a desired switching-circuit behavior is ex-
pressed in algebraic terms, the formula immediately indicates a circuit
design. [Fig. 1-27] (Each addition becomes a series connection, and each
multiplication becomes a parallel connection.) Moreover, the rules for ma-
nipulating formulas may be applied to derive other circuits with the same
behavior. Relay contact networks have lost favor to newer kinds of elec-
tronic logic circuits, but Boolean algebra remains applicable. The elementary
propositions A, B, C, . . . have merely become statements about the voltage
levels on input leads to electronic gates.

Boolean algebra was very useful in changing some aspects of circuit
design from an art to a logical process that almost anyone could learn.
Moreover, it provided an appropriate language for discussing switching,
helping to make a theory of switching possible.

9.2 Minimization

One of the first problems of switching theory was that of economy,
that is, using as little equipment as possible to perform a given switching
task. Although some Boolean functions could be manipulated algebraically
into a compact form that would require little equipment to implement,
Shannon’s 1949 paper contained a proof showing that most functions
were quite complicated. In fact, almost all Boolean functions for two-
terminal contact networks operated by n relays required about 2"/n contact
pairs, even in the most economical circuit realization. The argument was
reminiscent of random coding; it managed to prove the result without
ever exhibiting any specific function requiring that many contacts.

For values of n equal to 4 or less, M. Karnaugh represented switching
functions as geometrical diagrams from which many ways of economizing
were evident on sight.?”” The Karnaugh diagram was a truth table, or
Venn diagram, arranged in a particularly convenient way. In 1881, A.
Marquand had invented the same arrangement for solving logical puzzles,
but it was subsequently forgotten 2%82%

Although not a visual technique for economizing, the method of "’prime
implicants,” widely used by switching engineers, also deals directly with
switching functions in a tabular form. It was invented by the logician
W. V. Quine at Harvard University and later adapted by E. J. McCluskey
at Bell Labs for use on a computer.?'%?!!

In 1952, E. F. Moore made an exhaustive study of relay circuits for
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functions of up to four variables, tabulating a most economical circuit for
each function.?'? Different solutions existed, depending on whether one
wanted to economize on contacts or springs. Since there are 2%, or 65,536,
different Boolean functions of four variables, one might expect a table like
Moore’s to require superhuman effort. Fortunately, these 65,536 functions
can be classified into 402 types using certain symmetry operations, such
as permuting the variables, that do not change a function in an important
way. Slepian derived the number of types as a function of the number
of variables.?'® For five variables, there are 1,228,158 types, a number that
discouraged everyone from extending Moore’s table to one more variable.

When a most economical circuit is not required, extra equipment can
be used to protect against component failures. In 1956, Moore and Shannon
showed how redundancy could be used effectively in the design of reliable
relay circuits built from what they called “crummy” relays, that is, relays
with a random tendency to stick open or closed.”*

9.3 Automata

Boolean functions are only appropriate for describing circuits that per-
form an action determined entirely by the present state of certain relays
or input leads. By allowing a relay-contact circuit to control the magnets
of its own relays, or by using the output of an electronic logic circuit as
an input to itself, one may build automata that perform more complicated
tasks requiring memory. Even the simplest automaton, such as the flip-
flop, can have an output depending on the entire past history of the input.
A digital computer is an automaton having, like the relay (or electronic)
circuits in a telephone switching exchange, a finite number of internal
states. Its behavior, though determined wholly by its input data, can cor-
respondingly be enormously complex.

Motivated in part by problems of an engineering nature in the design
of switching systems, including the problem of minimizing the number
of internal (memory) states, design theories for finite-state automata were
developed by D. A. Huffman at MIT,*"* and by G. H. Mealy and Moore
at Bell Labs.2'?'7 All three workers devised orderly methods to determine,
from the desired performance of the switching device, the irreducible
minimum number of internal states required. Huffman and Mealy also
addressed such practical questions as sensitivities to timing and the avoid-
ance of ambiguous transient states. All three papers provide techniques
applicable, at least in principle, to the design of efficient computer programs.
Moore’s paper studies automata by means of “gedanken (thought) ex-
periments,” input sequences by which one can learn about the external
behavior of an automaton. For example one might want to decide, by a
gedanken experiment, whether a given automaton always acts in the same
way as another, simpler automaton.
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One motivation for these inquiries, and an explicit motivation for many
related studies by others, has been the analogy, both structural and be-
havioral, between the human nervous system and a finite state automa-
ton.2'821% Indeed, the logical capabilities of automata suggest so vividly
the sapient behavior of man and animals that the term artificial intelligence
arose almost spontaneously to refer to the properties of automata and to
the study of such matters. Shannon built a few small, early artificial-
intelligence machines, some from relays and parts from Erector* sets. One
machine played a board game called Hex, using a fairly strong strategy
based on ideas from electrostatic-potential theory.??°

Shannon’s most elaborate machine was Theseus, the maze solver.?!
[Fig. 1-28] It had a checkerboard array of square cells that could be made

Fig. 1-28. C. E. Shannon, who invented information theory
and pioneered in the field of artificial intelligence. He is shown
here with his maze-solving mechanical mouse, Theseus, named
for the legendary hero of antiquity who solved the labyrinth
of King Minos of Crete. The maze shown had movable par-
titions so that a large number of different mazes could readily
be built. When Shannon released him, Theseus wandered er-
ratically about the maze, learning where the partitions were.
Afterward, when released again in the maze, Theseus used
this knowledge to reach the goal by a direct route.

* Trademark of Gabriel Industries.
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into a maze by inserting metal partitions between pairs of adjacent cells.
When a lifelike imitation mouse was placed in the maze, it wandered
about erratically until it reached a goal. After that, the mouse always took
a direct route to the goal when placed in the maze; it had solved the maze
and remembered the solution. Actually, the relay logic circuits and magnetic
equipment to propel the mouse were installed underneath the maze, being
much too large to fit inside the mouse. Using modern microprocessor
technology, maze solvers with logic and propulsion to fit inside an imitation
mouse were invited to participate in a contest sponsored by the IEEE.**
D:"W. Hagelbarger built a machine that could almost be described as
a mind reader because it tended to beat human opponents in a guessing-
game variant of penny matching.’*> Most humans have slightly systematic
tendencies in their play, even when trying to play randomly. Hagelbarger’s
machine, Sequence Extrapolating Robot (SEER), remembered enough about
past moves to discover these tendencies and win more than half the time.
Shannon then built a stripped down version of the same machine with
fewer internal states than SEER. Decreasing the number of states increased
the vulnerability; the optimum strategy could beat SEER 60 to 40 compared
with 75 to 25 for the smaller machine. When the two machines were
pitted against each other in a long automated duel, speed of adaptation
won over conservation; the smaller machine won by a slight margin.
The ability to reproduce has been simulated by machines that live in
an environment of parts that they assemble into new machines like them-
selves. Moore pointed out a possible use for self-reproducing machines.
He made a feasibility study of a large self-reproducing machine, an artificial
living plant, that would extract minerals from the sea to build copies of

Fig. 1-29. The artificial living plant as a possible future development in artificial intelligence.
The plant, as suggested by E. F. Moore, is a self-reproducing machine that extracts minerals
from the ocean to obtain material from which it builds copies of itself. Eventually the plant
travels to port, where it is harvested for its minerals. [Moore, Sci. Amer. 195 (1956): 118,
119,
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itself.?* The scopies could then be harvested for their mineral content.
(Fig. 1-29]

Shannon was the first person to take the idea of a chess-playing machine
seriously enough to study carefully the strategies that a chess-playing
machine might use. Although Shannon never actually wrote a chess-playing
program, the computers of 1950 being too slow to play a good game,
many of the machine chess players that appeared subsequently have been
organized according to the general principles he gave. The Bell Labs chess-
playing computer, Belle, built by ]J. H. Condon and K. Thompson in 1980,
has won national and world computer-chess championships.??®

9.4 Computational Complexity

From the time that T. C. Fry at Western Electric had a small staff to
assist in computing (see section 1.1 earlier in this chapter), there has been
a growing interest at Bell Laboratories in computers and computation. As
digital computers became more powerful, and as those who used them
addressed increasingly complicated problems, technical issues of a highly
mathematical nature continually arose. During the late 1950s and the
1960s, researchers in mathematics and computer science began to encounter
some unusually difficult computational problems, for which even the best
methods of solution they could devise required astronomical amounts of
computer time. Many came to suspect that this was due to more than just
shortcomings in methodology or ingenuity; these problems might be in-
herently intractable, that is, impossible to solve exactly in a reasonable
amount of time. This gave rise to fundamental questions about the powers
and limitations of computers and computational processes: Do there exist
inherently intractable problems? How can such problems be recognized
when they arise? What can be done when confronted with such a problem
in practice? Answers to these questions began to emerge in the early 1970s.

9.4.1 Inherently Intractable Problems

To investigate the existence of inherently intractable problems, re-
searchers first had to settle on a meaning for this term that was more
precise than just “"too hard to solve in a practical amount of time.” The
definition that eventually gained acceptance was based on a classification
of algorithms into two types, based on the rate of growth of their com-
putation-time requirements as larger and larger problem instances are
solved. An algorithm for which this rate of growth is at most n* for some
fixed number k, where n represents the size of an instance (e.g., the number
of points to be interconnected in the minimal-tree problem of section 3.4
in this chapter), is called a polynomial time algorithm. An algorithm for
which the rate of growth is larger than n* for all k, such as a growth rate
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of 2", is called an exponential time algorithm. The distinction between
these two types of algorithms was observed to correspond quite closely
to the distinction that was sought, with polynomial time algorithms gen-
erally being usable in practice and exponential time algorithms normally
requiring far too much computation time to be practical. Hence, a problem
was deemed to be inherently intractable if there existed no way to solve
it using a polynomial time algorithm.

In 1971, a key breakthrough in the study of inherently intractable prob-
lems was made by S. A. Cook at the University of Toronto.”** He dem-
onstrated the existence of a class of computational problems, now known
as NP-complete problems (for nondeterministic polynomial time complete,
a term derived from the formal definition of the class), with the surprising
property that either all of them must be inherently intractable or else none
of them is. The class was defined to consist of the hardest problems solvable
using a certain computational model with a special ability to make good
guesses. Moreover, since this guessing ability seemed to be impossible to
achieve using an actual computing device, it was conjectured that all prob-
lems in the class were indeed intractable. Strong support for this conjecture
was obtained in 1972, when R. M. Karp at the University of California
showed that many of the problems for which earlier researchers had vainly
sought efficient algorithms were also NP-complete.??” Despite the fact that
no one was able to provide a conclusive proof of the conjecture, its validity
subsequently came to be widely accepted, and proving that a problem is
NP-complete came to be regarded as tantamount to demonstrating its
inherent intractability.

M. R. Garey and D. S. Johnson at Bell Labs were among the first to
recognize the potential practical impact of this work, and they spent much
of the remainder of the decade intensively investigating the class of NP-
complete problems. In 1976, Garey, R. L. Graham, and Johnson proved
that the minimal-length tree problem of section 3.4 in this chapter, when
additional junction points are allowed, is NP-complete, finally bringing to
an end the long quest for an efficient solution technique.?*® They also
showed that the famous traveling salesman’s problem is NP-complete;
given a collection of cities and a map from which distances can be calculated,
the salesman asks for the shortest route that visits all the given cities and
then returns to its starting point.

The work of Garey and Johnson particularly emphasized the goal of
precisely determining the boundary between intractability and efficient
solvability by successively restricting and generalizing the constraints of
various problems to find the most general versions that could be solved
efficiently and the most restricted versions that remain NP-complete. In
doing so, they illuminated what it was about particular problems that
made them difficult and what special restrictions should be looked for in
practice that might make an 