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laws of logarithms 

a1 = N loga N = x N = antilog„ x 

log,, a" = ö 

log,, (M • N) = logn M + logn N 

log„ = log,, M - log» N 

log,, M" = n log,, M 

,, log,, M 
log MXn — -a« n

colog,, N = log„ — 

lo9‘a= i¿0 

log,, w 
logh/V = log„N-log6a = -j^-y 

laws of exponents 



simple boolean relationships 

a • a = a 

a + a = a 

a ■ b = b • a a + 0 = a 

a + b = b + a a + 1 = 1 

(a • b) • c = a • (b • c) a • 0 =0 

(a + b) + c = a + (b + c) a • 1 =1 

(ä) = a 

a + ã = 1 

a • ã = 0 

a(b + b) — a 

a + (b ■ b) = a 

(a • b) = ã + b 

(a + b) = a • b 

a(b + c) - ab + ac 

a + be = (a + b)(a + c) 

a + ab = a + b 

a(a + b) = a 

a + ab - a 
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preface 

This is the third edition of the textbook originally entitled “Mathematics 
for Electricians and Radiomen" by the late Nelson M. Cooke. The text of 
this third edition was well settled, and the decisions as to the deletions 
from and additions to the second edition were all resolved prior to the 
unexpected and untimely death of Mr. Cooke. This edition is his monu¬ 
ment, and we hope that its usefulness to the electronics technicians and 
technologists of this age will be equal to the value of the previous editions. 

This book is designed to be used by students in the field of electronics 
both in schools and in private study. It should be used in conjunction 
with theoretical and practical studies in electronics. The various chapters 
which represent applications of the mathematical developments will fit var¬ 
ious courses of study and may be stressed, omitted, repeated, or adjusted 
to accommodate the requirements of the course being followed by indi¬ 
viduals or classes. 

At the insistence of teachers and students alike, the two-color style of 
the second edition is retained. The second color is used for emphasis and 
to call attention to important equations and rules, or to highlight a par¬ 
ticular portion of a figure. It is impossible, however, to print everything in 
color or in italics. The student must read every line, consciously and con¬ 
scientiously, following the development of the arguments and only then 
noting the special eye catching color rules and reminders. 
As a result of extensive correspondence with teachers and students 

using the first and second editions of the book, and on the basis of a 
nationwide survey conducted by the publisher, the consensus indicates it 
desirable to delete from the third edition the chapters on arithmetic review 
in order to make room for more pressing subjects, such as determinants, 
number systems, and Boolean algebra. We assume that a reasonable 
background of high school mathematics is part of the preparation of most 
students reaching the level of this book and that such background will be 
brought to this study by most students interested in electronics. For stu¬ 
dents who have been away from formal schooling for some years, the 
publishers have retained the deleted arithmetic chapters, with some enlarge¬ 
ment, and have published them in an inexpensive form under the title 
“Arithmetic Review for Electronics." 

V 
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vi 

To achieve a greater concentration on low-power electronics circuitry, 
some sections dealing with electric distribution circuits, motors, and gen¬ 
erators have been deleted from this edition, since electronics technicians 
who find it necessary to deal with these special ‘‘power” subjects will be 
able to quickly pick them up from power-oriented textbooks. 

The material is offered in "block” form: algebra, trigonometry, loga¬ 
rithms, and computer mathematics, but teachers will find that the studies 
in one main subject may be interrupted to fit suitably in another, or the 
topics may be interleaved, so that, after the initial chapters, studies in 
algebra and trigonometry may proceed together. Everything possible has 
been done to promote individual flexibility. Some sections dealing with 
practical applications may be delayed until the appropriate theory or labo¬ 
ratory work has been covered. 
The great majority of the problems are new, and wherever possible, 

those dealing with applications have been updated to reflect recent devel¬ 
opments in the field. Answers for odd-numbered problems are given in 
the back of the book, and answer booklets are available separately for 
teachers. (This matter has been the subject of considerable discussion and 
correspondence. The number of teachers wishing only half the answers 
slightly edges out those who wish to have all answers published, and we 
have bowed .to the majority.) Whenever possible, answers have been 
expressed to an accuracy of three significant figures, generally attainable 
with a ten-inch slide rule. 

The original chapter dealing with simultaneous equations has been 
enlarged to two chapters (16 and 17) to give a more complete coverage of 
straight-line graphs. Chapter 18, Determinants, presents a valuable tool 
for the systematic solution of simultaneous equations and also prepares 
the student for further studies in matrix presentation. 

Chapter 27, Trigonometric Identities, is new, and it should help to lead 
the students into some fascinating relationships which, fortunately, are 
extremely useful in electronics studies. 

Chapters 36 and 37, Number Systems and Boolean Algebra, respectively, 
are essential studies for technicians, and should give a useful introduction 
to the subjects. 

Graphical Analysis, Chapter 38, is also new. It is hoped that it will pro¬ 
vide for an increase in the student's understanding of graphical methods 
of presentation and analysis of information. 

At the time of his death, Mr. Cooke was giving special attention to the 
often-neglected subject of consistent abbreviations. Until recently, there 
has not been any effective leadership by the industry in this field, and it 
is hoped that some of the uses offered here will be acceptable to students, 
teachers, and the industry, in general. One of the most significant changes 
in the third edition of BASIC MATHEMATICS FOR ELECTRONICS is the gen¬ 
eral adoption of the “USA Standards for Letter Symbols for Quantities Used 
in Electrical Science and Electrical Engineering,” prepared jointly by the In¬ 
stitute of Electrical and Electronics Engineers and the American Standards 
Association, and published in 1968 by the American Society of Mechanical 
Engineers (USAS Y10.5). For example, the switch from italic type to Roman 
type for both the operator j and subscript letters used for abbreviations. In 
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addition to these changes, we have introduced the use of. . .r for radians to 
match . . .° for degrees. We lean to the use of phasor in preference to the 
older vector as being more descriptive of electronics circuitry applications. 

In many of the chapters, complete derivations are omitted in order to 
give students scope to develop the given expressions by themselves. For 
convenience, these opportunities are repeated as problems at the ends of 
the respective chapters. 

Many people have shared in the effort to make this a useful and valuable 
text: teachers, resident and home study students, and practicing engineers 
and technicians. All of them have our gratitude and the satisfaction of 
knowing that they have contributed to the improvement of the original 
text. Students at the British Columbia Vocational School-Burnaby helped 
to polish the wording of the problems and to check the accuracy of the an¬ 
swers. The helpful comments of a McGraw-Hill author, Russell Heiserman, 
also were greatly appreciated. Last, but not least, the reviser is indebted 
to the wives. Mrs. Cooke provided sympathetic and understanding encour¬ 
agement, and Mrs. Adams guarded the study door against two small sons. 

In addition, many friends and colleagues have advised and encouraged 
me in this revision. Special thanks must be given to Fred Bailey, British 
Columbia Vocational School-Burnaby, and to Reg Ridsdale, Head of the 
Department of Electricity and Electronics, British Columbia Institute of 
Technology. 

As usual, comments and criticisms are always welcome. The reviser has 
always been critical of textbook errors, but he has learned how difficult it 
is to avoid them. It is requested that comments be addressed to him in 
care of the publisher. 

HERBERT F. R ADAMS 

vi i 
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In the legions of textbooks on the subject of mathematics, all the basic prin¬ 
ciples contained here have been expounded in admirable fashion. However, 
students of electricity, radio, and electronics have need for a course in 
mathematics that is directly concerned with application to electric and elec¬ 
tronic circuits. This book is intended to provide those students with a sound 
mathematical background as well as further their understanding of basic 
circuitry. 

1 • 1 MATHEMATICS—A LANGUAGE 

The study of mathematics may be likened to the study of a language. In fact, 
mathematics is a language, the language of number and size. Just as the 
rules of grammar must be studied in order to master English, so must certain 
concepts, definitions, rules, terms, and words be learned in the pursuit of 
mathematical knowledge. These form the vocabulary or structure of the 
language. The more a language is studied and used, the greater becomes 
the vocabulary; the more mathematics is studied and applied, the greater 
its usefulness becomes. 

There is one marked difference, however, between the study of a language 
and the study of mathematics. A language is based on words, phrases, ex¬ 
pressions, and usages that have been brought together through the ages in 
more or less haphazard fashion according to the customs of the times. Math¬ 
ematics is built upon the firm foundation of sound logic and orderly reason¬ 
ing and progresses smoothly, step by step, from the simplest numerical 
processes to the most complicated and advanced applications, each step 
along the way resting squarely upon those which have been taken before. 
This makes mathematics the fascinating subject that it is. 

1 • 2 MATHEMATICS—A TOOL 

As the builder works with his square and compasses, so the engineer em¬ 
ploys mathematics. A thorough grounding in this subject is essential to 

1 



INTRODUCTION 

proficiency in any of the numerous branches of engineering. In no other 
branch is this more apparent than in the study of electrical and electronic 
subjects, for most of our basic ideas of electrical phenomena are based upon 
mathematical reasoning and stated in mathematical terms. This is a fortu¬ 
nate circumstance, for it enables us to build a structure of electrical knowl¬ 
edge with precision, assembling and expressing the components in clear and 
concise mathematical terms and arranging the whole in logical order. With¬ 
out mathematical assistance, the technician must content himself with the 
long and painful process of accumulating bits of information, details of ex¬ 
perience, etc., and he may never achieve a thorough understanding of the 
field in which he lives and works. 

1 -3 MATHEMATICS—A TEACHER 

In addition to laying a foundation for technical knowledge and assisting in 
the practical application of knowledge already possessed, mathematics 
offers unlimited advantages in respect to mental training. The solution of a 
problem, no matter how simple, demands logical thinking for it to be possible 
to state the facts of the problem in mathematical terms and then proceed 
with the solution. Continued study in this orderly manner will increase your 
mental capacity and enable you to solve more difficult problems, understand 
more complicated engineering principles, and cope more successfully with 
the everyday problems of life. 

1 -4 METHODS OF STUDY 

Before beginning detailed study of this text, you should carefully analyze it, 
in its entirety, in order to form a mental outline of its content, scope, and 
arrangement. You should make another preliminary survey of each individual 
chapter before attempting detailed study of the subject matter. After the 
detailed study, you should work problems until all principles are fixed firmly 
in your mind before proceeding to new material. 

In working problems, the same general procedure is recommended. First, 
analyze a problem in order to determine the best method of solution. Then 
state the problem in mathematical terms by utilizing the principles that are 
applicable. If you make but little progress, it is probable you have not com¬ 
pletely mastered the principles explained in the text, and a review is in order. 

The authors are firm believers in the use of a workbook, preferably in the 
form of a loose-leaf notebook, which contains all the problems you have 
worked, together with the numerous notes made while studying the text. 
Such a book is an invaluable aid for purposes of review. The habit of jotting 
down notes during reading or studying should be cultivated. Such notes in 
your own words will provide a better understanding of a concept. 

2 



1 • 5 RATE OF PROGRESS 

SECTION 
1 • 3 
TO 

SECTION 
1 • 8 

Home study students should guard against too rapid progress. There is a 
tendency, especially in studying a chapter whose contents are familiar or 
easy to comprehend, to hurry on to the next chapter. Hasty reading may 
cause the loss of the meaning that a particular section or paragraph is in¬ 
tended to convey. Proficiency in mathematics depends upon thorough 
understanding of each step as it is encountered so that it can be used to 
master the one which follows. 

1 -6 IMPORTANCE OF PROBLEMS 

Full advantage should be taken of the many problems distributed throughout 
the text. There is no approach to a full and complete understanding of any 
branch of mathematics other than the solution of numerous problems. Appli¬ 
cation of what has been learned from the text to practical problems in which 
you are primarily interested will not only help with the subject matter of the 
problem but also serve the purpose of fixing in mind the mathematical prin¬ 
ciples involved. 

In general, the arrangement of problems is such that the most difficult 
appear at the end of each group. It is apparent that the working of the simpler 
problems first will tend to make the more difficult ones easier to solve. The 
home-study student is, therefore, urged to work all problems in the order 
given. At times, this may appear to be useless, and you may have the desire 
to proceed to more interesting things, but time spent in working problems 
will amply repay you in giving you a depth of understanding to be obtained 
in no other manner. This does not mean that progress should cease if a 
particular problem appears to be impossible to solve. Return to such prob¬ 
lems when your mind is fresh, or mark them for solution during a review 
period. 

1 ■ 7 ILLUSTRATIVE EXAMPLES 

Each of the illustrative examples in this book is intended to make clear some 
important principle or method of solution. The subject matter of these ex¬ 
amples will be more thoroughly assimilated if, after careful analysis of the 
problem set forth, you make an independent solution and compare the 
method and results with the illustrative example. 

1 ■ 8 REVIEW 

Too much stress cannot be placed upon the necessity for frequent and 
thorough review. Points that have been missed in the original study of the 
text will often stand out clearly upon careful review. A review of each chapter 
before proceeding with the next is recommended. 

3 
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1 • 9 SECTION REFERENCES 

Throughout this book you will be referred to earlier sections for review or to 
bring to attention similar material pertaining to the subject under discussion. 
For the purpose of ready reference and convenience, the headings of right¬ 
hand pages contain two sets of numbers: the top set denotes the first text or 
problem section on the left hand page, and the bottom set denotes the last 
text or problem section on the right hand page. Thus, wherever you open 
the book, these numbers show the section (or sections) covered on the pages 
in view. For example, Sec. 4 • 10 is easily found on page 37 by leafing through 
the book while noting the inclusive numbers. 

1-10 ABBREVIATIONS 

Every profession, every technology has its own jargon—the particular words 
and phrases which describe the phenomena with which it deals. Electronics 
is particularly noteworthy in this respect, with inductance, capacitance, 
resistance, impedance, and frequency leading a host of others. Each phe¬ 
nomenon must be measured and described in understandable units so that 
other workers in the field will be able to understand exactly what is involved. 
After establishing such a vocabulary and list of units, the next logical de¬ 
velopment is a system of abbreviations—shorthand symbols which everyone 
will recognize as standing for the units and dimensions of the technology. 
For many years there was no single agreed-upon list of electronics abbrevia¬ 
tions, and most of us had to be able to recognize several variations as ac¬ 
ceptable abbreviations of the same term. For instance, A, a, amp, Amp, 
amps, and Amps were all used to represent amperes, depending upon the 
teacher, the author, and the publisher involved. 

Even today, the exhaustive list of standard abbreviations recommended 
by the Institute of Electrical and Electronics Engineers is not wholly accept¬ 
able to all branches of the industry, and local variations and established 
forms continue to be used. Some publishers are still reluctant to use the 
single-letter abbreviations for fear of introducing ambiguities. Some of us 
were reluctant to adopt Hertz (Hz) in place of cycles per second (c/s or 
c/sec or cps), not so much that we did not honor Hertz as that the name 
does not make obvious the “per time” relationship involved in frequency. 
However, the name is now being used widely, and Hz is used in this edition 
as a reflection of what you may expect when you step out of school and into 
industry. 

One drawback to all this is that although we have, at the publisher’s re¬ 
quest, attempted to be uniform in the matter of abbreviations, you will never¬ 
theless meet, and must be able to deal with, several variations for many years 
to come. However, in an attempt to keep before you the dimensional aspect 
of units, we have used rev/min rather than rpm, Q/1000 ft rather than S2/M, 
and so on. You should study the tables of symbols and abbreviations carefully 
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and repeatedly so that you achieve an early and complete mastery of ab¬ 
breviations. It has been our aim to supply the full name the first time the 
term is used, follow it immediately with the abbreviation in parentheses, and 
then use the abbreviation at every opportunity thereafter. 

1-11 SIGNIFICANT FIGURES 

The resistors, capacitors, and other devices used in electronic circuitry are 
often manufactured to convenient tolerances: 5%, 10%, and 20% being the 
most common. Accordingly, it is meaningless to calculate a resistance value 
to many decimal places, or to many “significant figures,” when the circuit is 
to be constructed with a standard off the-shelf resistor made to, say, ±10% 
accuracy. (Obviously a shunt to be made by hand may well be accurate to 
|%, and then this argument would not apply.) 

A ten-inch slide rule can be relied upon to give a satisfactory answer 
(three significant figures) to most of the problems at the level of study in 
this text. Answers computed by logarithms or by long multiplication or divi¬ 
sion will disagree with slide rule answers and with each other if they are 
taken to enough decimal places. 

There are occasions, of course, when three significant figures may not be 
sufficient: accountants and auditors will want your financial calculations to 
be correct to the nearest cent, even when thousands of dollars are involved; 
the FCC will not be satisfied with a carrier frequency correct to only three 
significant figures; logarithms and trigonometric functions are given to four 
places, or five, or ten, and the answers achieved will reflect the accuracy of 
the tables used; angles greater than 90° must be converted into equivalents 
less than 90° for purposes of calculations, and should not be rounded off 
prior to conversion All the answers in this text reflect these notions, and you 
are accordingly encouraged to start using a good slide rule early in your 
career. (See Chap. 6 before purchasing a slide rule.) 

SECTION 
i ■ 9 
TO 

SECTION 

1-11 
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In general, arithmetic consists of the operations of addition, subtraction, 
multiplication, and division of a type of numbers represented by the digits 
0, 1, 2, 3,..., 9. By using the above operations or combinations of them, we 
are able to solve many problems. However, a knowledge of mathematics 
limited to arithmetic is inadequate and a severe handicap to anyone in¬ 
terested in acquiring an understanding of electric circuits. Proficiency in 
performing even the most simple operations of algebra enables you to solve 
problems and determine relations that would be impossible with arithmetic 
alone. 

2 ■ 1 THE GENERAL NUMBER 

Algebra may be thought of as a continuation of arithmetic in which letters 
and symbols are used to represent definite quantities whose actual values 
may or may not be known. For example, in electrical and radio texts, it is 
customary to represent currents by the letters I or i; voltages by E, e, V, 
or r; resistances by R or r; etc. The base of a triangle is often represented 
by b, and the altitude may be specified as a. Such letters or symbols used for 
representing quantities in a general way are known as general numbers or 
literal numbers. 

The importance of the general-number idea cannot be overemphasized. 
Although it is possible to express the various laws and facts concerning 
electricity in English, they are more concisely and compactly expressed in 
mathematical form in terms of general numbers. As an example, Ohm’s law 
states, in part, that the current in a certain part of a circuit is proportional to 
the potential difference (voltage) across that part of the circuit and inversely 
proportional to the resistance of that part. This same statement, in mathe¬ 
matical terms, says 
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where I represents the current, E is the potential difference, and R is the 
resistance. Such an expression is known as a formula. 

Although expressing various laws and relationships of science as formulas 
gives us a more compact form of notation, that is not the real value of the 
formula. As you attain proficiency in algebra, the value of general formulas 
will become more apparent. Our studies of algebra will consist mainly in 
learning how to add, subtract, multiply, divide, and solve general algebraic 
expressions, or formulas, in order to attain a better understanding of the 

fundamentals of electricity and related fields. 

2 • 2 SIGNS OF OPERATION 

In algebra the signs of operation +, —, x, and + have the same meanings 
as in arithmetic. The sign x is generally omitted between literal numbers. 
For example, I x R is written 1R and means that I is to be multiplied by R. 
Similarly, 2irfL means 2 times n times f times L. Sometimes the symbol • is 
used to denote multiplication. Thus I x R. !• R. and IR all mean I times R. 

2 -3 THE ORDER OF SIGNS OF OPERATION 

In performing a series of different operations, we will follow convention and 
perform the multiplications first, next the divisions, and then the additions 
and subtractions. Thus, 

16 — 4 + 8 + 4x5 — 3 = 4 + 8 + 20 — 3 = 29 

2-4 ALGEBRAIC EXPRESSIONS 

An algebraic expression is one that expresses or represents a number by 
the signs and symbols of algebra. A numerical algebraic expression is one 
consisting entirely of signs and numerals. A literal algebraic expression is 
one containing general numbers or letters. An example of a numerical alge¬ 
braic expression is 8 - (6 + 2), and PR is a literal algebraic expression. 

2 • 5 THE PRODUCT 

As in arithmetic, a product is the result obtained by multiplying two or more 
numbers. Thus, 12 is the product of 6 x 2. 

2 • 6 THE FACTOR 

If two or more numbers are multiplied together, each of them or the product 
of any combination of them is called a factor of the product. For example, in 
the product 2xy, 2, x, y, 2x, 2y, and xy are all factors of 2xy. 

SECTION 
2 . 1 
TO 

SECTION 
2 • 6 
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2 • 7 COEFFICIENTS 

Any factor of a product is known as the coefficient of the product of the re¬ 
maining factors. In the foregoing example. 2 is the coefficient of xy, x is the 
coefficient of 2y, y is the coefficient of 2x, etc. It is common practice to speak 
of the numerical part of an expression as the coefficient or as the numerical 
coefficient. If an expression contains no numerical coefficient, 1 is under¬ 
stood to be the numerical coefficient. Thus, labe is the same as abc. 

2-8 PRIMES AND SUBSCRIPTS 

When, for example, two resistances are being compared in a formula or it is 
desirable to make a distinction between them, the resistances may be repre¬ 
sented by Ri and R2 or Ra and ß6. The small numbers or letters written at 
the right of and below the R's are called subscripts. They are generally used 
to denote different values of the same units. 
Rx and R2 are read “R sub one” and “R sub two” or simply “R one” and 

"R two.” 
Care must be used in distinguishing between subscripts and exponents. 

Thus E2 is an indicated operation that means E-E, whereas E2 is used to 
distinguish one quantity from another of the same kind. 

Primes and seconds, instead of subscripts, are often used to denote 
quantities. Thus one current might be denoted by I' and another by I". The 
first is read “/prime” and the latter is read “I second.” I' resembles Z1 (Zto 
the first power), but in general this causes little confusion. 

2 • 9 EVALUATION 

To evaluate an algebraic expression is to find its numerical value. In Sec. 
2 • 1, it was stated that in algebra certain signs and symbols are used to 
represent definite quantities. Also, in Sec. 2-4, an algebraic expression 
was defined as one that represents a number by the signs and symbols of 
algebra. We can find the numerical, or definite, value of an algebraic expres¬ 
sion only when we know the values of the letters in the expression. 

example 1 Find the value of 2ir if i = 5 and r = 11. 
solution 2ir = 2 x 5 x 11 = 110 

example 2 Evaluate the expression 23 E — 3ir if E = 10, i = 3, and r — 22. 
solution 23E - 3ir = 23 x 10 - 3 x 3 x 22 = 230 - 198 = 32 

example 3 Find the value of ~ — 31 if E = 230, R = 5, and 1=8. 
R 

solution ~ - 31 = - 3 x 8 = 46 - 24 = 22 
R O 
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PROBLEMS 2•1 

note The accuracy of answers to numerical computations is, in general, 
that obtained with a ten-inch slide rule. 
1 (a) What does the expression (25)(Ä) mean? 

(6) What is the meaning of 6 • r? 
(c) What does 0.25/ mean? 

2 What is the value of-
(a) 5/ when i = 7 amperes (A)? 
(6) 4Z when Z = 16 ohms (£2)? 
(c) 16 V when V = 110 volts (V)? 

3 One electrolytic capacitor costs $2.75. 
(a) What will one gross of capacitors cost? 
(6) What will n capacitors cost? 

4 One dozen resistors cost a total of $2.04. 
(a) What is the cost of each resistor? 
(6) What is the cost of p resistors? 

5 The current in a certain circuit is 25/ A. What is the current if it is re¬ 
duced to one-half its original value? 

6 There are three resistances, of which the second is twice the first and 
one-sixth the third. If /? represents the first resistance, what expres¬ 
sions describe the other two? 

7 There are four capacitances, of which the second is two-thirds the 
first, the third is six times the second, and the fourth is twelve times 
the third. If C represents the first capacitance, in picofarads (pF), what 
expressions describe the other three? 

8 If P = 3, X = 5, and = 12, evaluate: 

(a) P+4 W 4 + X P 

9 Write the expression which will represent each of the following: 
(a) A resistance of R £2 greater than 16 £2. 
(6) A voltage of 220 V more than e V. 
(c) A current of / A less than i A. 

10 A circuit has a resistance of 125 £2. Express a resistance which is R £2 
less than six times this resistance. 

11 An inductance Lt exceeds another inductance L2 by 125 millihenries 
(mH). Express the inductance L2 in terms of Lt. 

12 When two capacitors and C2 are connected in series, the resultant 
capacitance Cs of the combination is expressed by the formula 

SECTION 
2 - 7 
TO 

PROBLEMS 
2 • 1 
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What is the resultant capacitance if: 
(a) 5 pF is connected in series with 15 pF? 
(b) 150 pF is connected in series with 475 pF? 

13 The current in any part of a circuit is given by I = , in which 7 is the 
n 

current in amperes through that part, E is the electromotive force 
(EMF) in volts across that part, and R is the resistance in ohms of that 
part. What will be the current through a circuit with: 
(a) An EMF of 220 V and a resistance of 5Í2? 
(6) An EMF of 50 V and a resistance of 200 2? 

14 The time interval between the transmission of a radar pulse and the 
O D 

reception of its echo off a target is t = — seconds (sec), where t is the 
c 

time interval in seconds, R is the range in miles (mi), and c is the speed 
of light, at which radio waves travel, [c = 186,000 miles per second 
(mi/sec)]. What is the time between the transmission of a pulse and the 
reception of its echo from a target at a distance (range) of 125 mi? 

2 D 
15 The relation t = —— in Prob. 14 is applicable to the transmission of 

c 
sound in air and in water. Owing to slower speeds of propagation, R is 
usually expressed in feet (ft) and c is expressed in feet per second 
(ft/sec). (In air c s 1100 ft/sec, and in salt water c s 4800 ft/sec. 
The sign s means “is approximately equal to.”) 
(a) What is the time between the transmission of a short pulse of sound 

through air and the reception of its echo at a distance of 3000 ft? 
(6) What time will elapse if the sound pulse is transmitted under sea¬ 

water at the same distance? 
16 The relationship between the wavelength A of a wave, the frequency / 

in hertz (Hz, or cycles per second), and the speed c at which the wave is 
propagated is A = y. If A is expressed in meters (m), then c must be ex¬ 

pressed in meters per second (m/sec); that is, A and c must be ex¬ 
pressed in the same units of length, such as feet and feet per second, 
respectively. 
(a) What is the wavelength in miles of a radio wave having a frequency 

of 980 kilohertz (kHz) (980 kHz = 980,000 Hz)? 
(b) What is the wavelength in meters of a radio wave having a fre¬ 

quency of 121.5megahertz(MHz)(121.5MHz = 121,500,000 Hz; 
c = 300,000,000 m/sec)? 

17 The distance between a dipole antenna and its reflector is usually one¬ 
fifth of a wavelength. What will be this spacing for a signal at 205 MHz 
(a) in feet and (6) in inches? 

2-10 EXPONENTS 

To express ”x is to be taken as a factor four times,” we could write xxxx, but 
the general agreement is to write x 1 instead. 
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TO 

PROBLEMS 
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An exponent, or power, is a number written at the right of and above a 
second number to indicate how many times the second number is to be 
taken as a factor. The number to be multiplied by itself is called the base. 

Thus, I2 is read “I square” or “I second power” and means that I is to be 
taken twice as a factor; e3 is read “e cube” or “e third power” and means 
that e is to be taken as a factor three times. Likewise, 5' is read ”5 fourth 
power” and means that 5 is to be taken as a factor four times; thus, 

54 = 5 x 5 x 5 x 5 = 625 

When no exponent, or power, is indicated, the exponent is understood to 
be 1. Thus, x is the same as x'. 

2-11 THE RADICAL SIGN 

The radical sign y/ has the same meaning in algebra as in arithmetic; \/e 
means the square root of e, ^x means the cube root of x, ^Tmeans the 
fourth root of i, etc. The small number in the angle of a radical sign, like the 
4 in is known as the index of the root. 

2-12 TERMS 

A term is an expression containing literal and/or numerical parts which are 
not separated by plus or minus signs. Terms may be parts of larger expres¬ 
sions in which the terms are separated by plus or minus signs. 3E2. IR, and 
— 2e are all terms of the expression 3E2 + IR — 2e. 

Although the value of a term depends upon the values of the literal factors 
of the term, it is customary to refer to a term whose sign is plus as a positive 
term. Likewise, we refer to a term whose sign is minus as a negative term. 

Terms having the same literal parts are called like terms or similar terms. 
2a2bx, —a2bx, 18a2bx, and —4a26x are like terms. 

Terms that are not alike in their literal parts are called unlike terms or 
dissimilar terms. 5xy, 6ac, 8PR, and EI are unlike terms. 

An algebraic expression consisting of but one term is known as a 
monomial. 

Kpolynomial, or multinomial, is an algebraic expression consisting of two 
or more terms. 

A binomial is a polynomial of two terms, e + ir, a — 2b, and 2x2y + xyz2 

are binomials. 
A trinomial is a polynomial of three terms. 2a + 3b — c, IR + 3e — E2, 

and 8ab3c + 3d + 2xy are trinomials. 

PROBLEMS 2 - 2 

1 If a — 3, b = 6, and c = 2, evaluate the following: 
(a) 2abc (6) 5a2b + 3c 
(c) a2b2c2 (d) 12ac2 — 2b2

(e) y/Ãã2̂  (,f) Sy/^c2 + 3a2

1 1 



ALGEBRA 
GENERAL 
NUMBERS 

2 If E = 110, I = 6, and R = 25, evaluate the following: 

(a) SEI 

(c) PR + -^ 

(e) 36E-IR 
PR 

- 3R-

(6) EPR 

25PR1 _ /100E-
6IR y/ R 

3 State which of the following are monomials, binomials, and trinomials: 

(a) -f 

(c) 2vfL 

(e) 0 + e 4- 90° 

W / + + í 

(0 lbrp

(6) PR 

(d) a + jb 

(/) E, - Er

(A) a2 + 2ab + 62

1 1 1 
Rt + R2 + R3

4 In Probs. 1, 2, and 3, state which expressions are polynomials. 
5 Write the following statements in algebraic symbols: 

(a) I is equal to E divided by R. 
(b) E is equal to / times R. 
(c) P is equal to R times the square of I. 
(d) Ri is equal to the sum of R2 and R3. 
(e) K is equal to M divided by the square root of the product of Li 

and L2. 
(f) Rv is equal to the product of Ri and R¿ divided by their sum. 
(g) The meter multiplier N is equal to the meter resistance Rm divided 

by the shunt resistance Rs all plus 1. 
6 The approximate inductance of a single-layer air-core coil, such as 

used in the tuning circuits of radio receivers, can be calculated by the 
formula 

L = 9r +10/ microhenrys (gH) 

where L = inductance, 
r — radius of winding, inches (in.) 
n — number of turns of wire in winding 
I = length of coil, in. 

What is the inductance of a coil that is 1 in. in diameter and 3 in. long 
and has 150 turns of wire? 

7 The winding in Prob. 6 is removed from the coil form, and smaller wire 
is substituted, so that, in the same length of coil, the number of turns 
is tripled. What is the inductance? 

8 The power in any part of an electric circuit is given by the formula 

P = PR watts (W) 
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where P = power, W 
I = current, A 
R — resistance, 12 

Find the power expended when: 
(a) The current is 0.25 A and the resistance is 10,000 12. 
(6) The current is 30 A and the resistance is 0.5 12. 

9 In Prob. 8, if the resistance is kept constant, what happens to the power 
if the current is (a) doubled, (6) tripled, (c) halved? 

10 The power in any part of an electric circuit is also given by the formula 

w 

where P = power expended, W 
E — electromotive force, V 
R — resistance, 12 

What happens to the power if: 
(a) The voltage is doubled and the resistance is unchanged? 
(b) The voltage is halved and the resistance is unchanged? 
(c) The resistance is doubled and the voltage is unchanged? 
(d) The resistance is halved and the voltage is unchanged? 
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algebra • additionand subtraction 

chapter 

The problems of arithmetic deal with positive numbers only. A positive 
number may be defined as any number greater than zero. Accepting this 
definition, we know that when such numbers are added, multiplied, and 
divided, the results are always positive. Such is the case in subtraction if a 
number is subtracted from a larger one. However, if we attempt to subtract 
a number from a smaller one, arithmetic furnishes us with neither a rule for 
carrying out this operation nor a meaning for the result. 

3 • 1 NEGATIVE NUMBERS 

Limiting our knowledge of mathematics to positive numbers would place us 
under a severe handicap, for there are many instances when it becomes 
necessary to deal with numbers that are called negative. Often, a negative 
number is defined as a number less than zero. Numerous examples of the 
uses of negative numbers could be cited. For example, zero degrees on the 
Celsius (centigrade) thermometer has been chosen as the temperature of 
melting ice—commonly referred to as freezing temperature. Now, everyone 
knows that in some climates it gets much colder than “freezing.” Such 
temperatures are referred to as so many “degrees below zero.” How shall 
we state, in the language of mathematics, a temperature of “10 degrees 
below zero”? Ten degrees above zero would be written 10°. Because 0° is 
the reference point, it is logical to assume that 10° below zero would be 
written as —10°, which, for our purposes, makes it a negative number. 

Therefore, we see that a definition making a negative number less than 
zero is not completely correct. A negative number is some quantity away 
from a reference point in one direction (the defined negative direction), 
whereas the same positive quantity is simply the same quantity in the oppo¬ 
site direction (the defined positive direction). 

Negative numbers are prefixed with the minus sign. Thus, negative 2 is 
written — 2, negative 3ac is written — 3ac, etc. If no sign precedes it, a num¬ 
ber is assumed to be positive. 
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3 • 2 PRACTICAL NEED FOR NEGATIVE NUMBERS 

The need for negative numbers often arises in the consideration of voltages 
or currents in electric and electronic circuits. It is common practice to select 
the ground, or earth, as a point of zero potential. This does not mean, how¬ 
ever, that there can be no potentials below ground, or zero, potential. Con¬ 
sider the case of the three wire feeders connected as shown in Fig. 3 • 1. 

The generators G, which maintain a voltage of 115 V each, are connected 
in series so that their voltages add to give a voltage of 230 V across points A 
and B, and the neutral wire is grounded at C. Since C is at ground, or zero, 
potential, point A is 115 V positive with respect to C and point B is 115 V 
negative with respect to C. Therefore, the voltage at A with respect to 
ground, or zero, potential could be denoted as 115 V and the voltage at B 
with respect to ground could be denoted as —115 V. 

Similar conditions exist in vacuum-tube circuits, as illustrated by the 
schematicxircuit diagram of a type 6C5 vacuum tube in Fig. 3 • 2. The plate 
current indicated by the arrow flows through the cathode resistor R and 
creates a difference of potential of 8 V across R, so that point A is +8 V 
with respect to ground. Since the grid G is connected directly to ground, the 
grid is —8 V with respect to the cathode K. 

3 • 3 THE MATHEMATICAL NEED FOR NEGATIVE NUMBERS 

From a purely mathematical viewpoint the need for negative numbers can 
be seen from the following succession of subtractions in which we subtract 
successively larger numbers from 5: 

SECTION 
3 ■ 1 
TO 

SECTION 
3 ■ 3 

Fig. 3 • 1 Two 115-V Generators 
Connected in Series with Neutral 
Wire Grounded 

Fig. 3 • 2 The Grid G is Negative 
with Respect to Cathode K 

5 5 5 5 5 5 5 
0 1 2 3 4 5 6 

ÏÏ 4 3 2 1 0 -1 

5 5 
7 8 

-2 -3 

The above subtractions result in the remainders becoming less until zero 
is reached. When the remainder becomes less than zero, the fact is indicated 
by placing the negative sign before the remainder. This is one reason for 
defining a negative number as a number less than zero. Mathematically, the 
definition is correct if we consider only the signs that precede the numbers. 

You must not lose sight of the fact, however, that as far as magnitude, or 
Size, Is concerned, a negative number may represent a larger absolute value 
than some positive number. The positive and negative signs simply denote 
reference from zero. For example, if some point in an electric circuit is 1000 V 
negative with respect to ground, you can say so by writing —1000 V. But if 
you make good contact with your body between that point and ground, your 
chances of being electrocuted are just as good as if that point were positive 
1000 V with respect to ground—and you wrote it + 1000 V! In this case, how 
much is far more important than a matter of sign preceding the number. 
Similarly, —1000 V is greater than +500 V, but of different polarity. 
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— $10,000 is greater than +$6000, except that it is owed, rather than 
owned. 

3 -4 THE ABSOLUTE VALUE OF A NUMBER 

The numerical, or absolute, value of a number is the value of the number 
without regard to sign. Thus, the absolute values of numbers such as — 1, 
+ 4, —6, and +3 are 1, 4, 6, and 3, respectively. Note that different num¬ 
bers, such as —9 and +9, may have the same absolute value. To specify 
the absolute value of a number, such as Z, we write |Z|. This is often referred 
to as “the modulus of Z," or simply, “mod Z.” 

3 -5 ADDITION OF POSITIVE AND NEGATIVE NUMBERS 

Positive and negative numbers can be represented graphically as in Fig. 3 • 3. 

Fig. 3 • 3 Graphical .—. .—.— u —,1——,,— 
Representation of Numbers from 
-10 to +10 

Fig. 3 • 4 Graphical Addition of 3 
and 4 to Obtain 7 

Fig. 3 • 5 Illustrating the Addition 
of —2 and — 3. The Result is —5 

Fig. 3 • 6 Adding — 3 and — 2 is 
the Same as Adding —2 and — 3; 
Each Result is —5 

-10 -9 -8 -7 -6 -5 —4 -3 -2 -1 ¿ +1 + 2 +3 +4 +5 +6 +7 +8 +9 +10 

Positive numbers are shown as being directed toward the right of zero, which 
is the reference point, whereas negative numbers are directed toward the 
left. 

Such a scale of numbers can be used to illustrate both addition and sub¬ 
traction as performed in arithmetic. Thus, in adding 3 to 4, we can begin at 
3 and count 4 units to the right to obtain the sum 7. Or, because these are 
positive numbers directed toward the right, we could draw them to scale, 
place them end to end, and measure their total length to obtain a length of 
7 units in the positive direction. This is illustrated in Fig. 3 • 4. 

1-1-1-1-1-1-1-1-1-1—I-1-F—H-1 1-h-H-1-1-1 
-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 ¿ +1 +2 +3 +4 +5 +6 +7 +8 +9 +10 

In like manner, —2 and —3 can be added to obtain —5 as shown in Fig. 
3 • 5. 

1-1-1-1-1-1—4-1-H—1 1-1-+-1-1-+-1-t 1-1-1 
— 10 -9 -8 -7 -6 -5 -4 -3 -2 -1 ' +1 +2 +3 +4 +5 +6 +7 +8 +9 +10 

Note that adding —3 and —2 is the same as adding —2 and —3 as in the 
foregoing example. The sum —5 is obtained, as shown in Fig. 3 • 6. 

1 1-f-1-1-H—1-H—1-1--1-1-1-1 1-1-1-1 1-1 
-10 -9-8 -7 -6 -5 -4 -3 -2 -1 ¿ +1 +2 +3 +4 +5 +6 +7 +8 +9 +10 
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Suppose we want to add +6 and —10. We could accomplish this on the 
scale by first counting 6 units to the right and from that point counting 10 
units to the left. In so doing, we would end up at —4, which is the sum of 
4-6 and —10. Similarly, we could have started by first counting 10 units to 
the left, from zero, and from that point counting 6 units to the right for the 
+ 6. Again we would have arrived at —4. 

Adding +6 and —10 can be accomplished graphically as in Fig. 3 • 7. The 
+ 6 is drawn to scale, and then the tail of the —10 is joined with the head of 
+ 6. The head of the —10 is then on —4. As would be expected, the same 
result is obtained by first drawing in the —10 and then the +6. 

-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 
I-1-1-1 1-1-1-1-1-f 

H-

+ 1 + 2 +3 +4 +5 +6 + 7 +8 +9 +10 
—I 1 1 1 1—4-1 1 1 1 
-1 

Fig. 3 • 7 Graphical Addition of 
+ 6 and —10 

The following examples can be checked graphically in order to verify their 
correctness: 

+ 8 +9 +6 -5 -7 -17 
+ 4 -3 -9 -f-2 4-9 -14 

4-12 4-6 -3 -3 4-2 -31 

Consideration of the above examples enables us to establish the following 
rule: 

Rule 
1 To add two or more numbers with like signs, find the sum of their ab¬ 

solute values and prefix this sum with the common sign. 
2 To add a positive number to a negative number, find the difference of 

their absolute values and prefix to the result the sign of the number that has 
the greater absolute value. 

When three or more algebraic numbers that differ in signs are to be added, 
find the sum of the positive numbers and then the sum of the negative num¬ 
bers. Add these sums algebraically, and use Rule 2 to obtain the total alge¬ 
braic sum. 

The algebraic sum of two or more numbers is the result obtained by add¬ 
ing them according to the preceding rules. Hereafter, the word “add” will 
mean “find the algebraic sum.” 

PROBLEMS 3 • 1 

Add: 

1 28 2 
43 

36 3 -82 4 -18 
-18 36 -47 
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5 124 6 165 7 -286 8 0.0007 
-0.0052 -572 -795 -96 

9 175.03 10 -97.63 11 7j 12 -6{ 
5.74 

-26.32 
-2.75 
36.28 

3 
1 
5 

3 • 6 THE SUBTRACTION OF POSITIVE AND NEGATIVE NUMBERS 

We may think of subtraction as the process of determining what number 
must be added to a given number in order to produce another given number. 
Thus, when we subtract 5 from 9 and get 4, we have found that 4 must be 
added to 5 in order to obtain 9. From this it is seen that subtraction is the 
inverse of addition. 

example 1 ( + 5) — ( + 2) = ? 
solution In this example the question is asked, “What number added to 

+ 2 will give +5?” Using the scale of Fig. 3 • 8, start at +2 and 

I* 4« H I« -H f- H*—1^1« 1—1 »I »I »I >1 >1—1 »I >1 >1 >1 
-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 ¿ +1 +2 +3 +4 +5 +6 +7 +8 +9 +10 

Fig. 3 • 8 Scale for Graphical 
Subtraction of Positive and 
Negative Numbers 

count to the right (positive direction), until you reach +5. This 
requires three units. Therefore, the difference is +3, or 
( + 5)-( + 2)= +3. 

example 2 ( + 5) — ( — 2) = ? 
solution In this example the question is asked, “What number added to 

— 2 will give +5?” Using the scale, start at —2 and count the 
number of units to +5. This requires seven units, and because 
it was necessary to count in the positive direction, the difference 
is +7, or( + 5) - ( — 2) = +7. 

example 3 ( —5) — ( + 2) = ? 
solution In this example the question is, “What number added to +2 will 

give —5?” Again using the scale, we start at +2 and count the 
number of units to — 5. This requires seven units, but because it 
was necessary to count in the negative direction, the difference 
is _7, or (-5) - ( + 2) = -7. 
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example 4 ( — 5) — ( — 2) = ? 
solution Here the question is, “What number added to —2 will give —5?” 
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Using the scale, we start at -2 and count the number of units 
to — 5. This requires three units in the negative direction. Hence, 
(-5)-(-2)= -3. 

Summing up Examples 1 to 4, we have the following subtractions: 

+ 5 +5 
+ 2 -2 

+ 3 + 7 

-5 -5 
+ 2 -2 

-7 

A study of the foregoing subtractions illustrates the following principles: 

1 Subtracting a positive number is equivalent to adding a negative 
number of the same absolute value. 

2 Subtracting a negative number is equivalent to adding a positive 
number of the same absolute value. 

These principles can be used for the purpose of establishing the following 
rule: 

Rule To subtract one number from another, change the sign of the subtra¬ 
hend and add algebraically. 

As in arithmetic, the number to be subtracted is called the subtrahend. 
The number from which the subtrahend is subtracted is called the minuend. 
The result is called the remainder or difference. 

Minuend = —642 
Subtrahend = 403 
Remainder = —1045 

PROBLEMS 3 • 2 

Subtract the second line from the first: 

1 87 2 25 
26 -96 

5 596 6 0.00925 
-398 0.07254 

9 -12^ 10 -1 

-2| 1 

3 -362 4 -125 
-575 252 
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11 How many degrees must the temperature rise to change from (a) +6° 
to +73°, (6) -12° to +14°, and (c) -273° to -114°? 

12 How many degrees must the temperature fall to change from 
(a) +212° to +32°, (6) +55° to-16°, and (c) -6° to -42°? 

19 



ALGEBRA 
ADDITION 
AND 
SUBTRACTION 

13 What amount of money is required to change an account from a debit 
of $124.50 to a credit of $240.30? 

14 A certain point in a circuit is 570 V negative with respect to ground. 
Another point in the same circuit is 115 V positive with respect to 
ground. What is the potential difference between the two points? 

15 In Fig. 3 • 2 what is the potential difference between the plate Fand the 
cathode K? 

3 -7 ADDITION AND SUBTRACTION OF LIKE TERMS 

In arithmetic, it is never possible to add unlike quantities. For example, we 
should not add inches and gallons and expect to obtain a sensible answer. 
Neither should we attempt to add volts and amperes, kilocycles and micro¬ 
farads, ohms and watts, etc. So it goes on through algebra—we can never 
add quantities unless they are expressed in the same units. 

The addition of two like terms such as 6EI + 12EI — 18EI can be 
checked by substituting numbers for the literal factors. Thus, if E = 1 and 
I - 2, 

6EI = 6x1x2= 6x2=12 
\2EI = 12 X 1 X 2 = 12 X 2 = 24 

18E7 = 18 X 1 X 2 = 18 X 2 = 36 

From the foregoing, it is apparent that like terms may be added or sub¬ 
tracted by adding or subtracting their coefficients. 

The addition or subtraction of unlike terms cannot be carried out but can 
only be indicated, because the unlike literal factors may stand for entirely 
different quantities. 

example 5 Addition of like terms: 

-3Fr -167Ä 13jIX 
8Pr 14/7? -20jIX 
5i-r -3IR -32jIX 

-5IR — 39jIX 

example 6 Subtraction of like terms: 

- 8e, 6iZ -28L-Ä 
3e, — 13iZ -29 Lm 

-lie, 19iZ L^R 

example 7 Addition of unlike terms: 

3e — 3r 
— 3IX 4 F 
4E -167?,_ 

3e - 31X + ^E 4F - 3r - 167?, 
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3EI 
101-R 

-461V_ 

3EI + 101-R - 46 W 

SECTION 
3 • 7 
TO 

PROBLEMS 
3 • 3 

3 -8 ADDITION AND SUBTRACTION OF POLYNOMIALS 

Polynomials are added or subtracted by arranging like terms in the same 
column and then combining terms in each column, as with monomials. 

example 8 Addition of polynomials: 

— 3ab + 6cd + x2y 6E + 3RI — 8IZ 
14ab - 5x2y RI - 2IZ 
ab — 3cd —IE + 3IZ 

12ab + 3cd - ^x-y -E + 4RI -7IZ 

example 9 Subtraction of polynomials: 

3mn + 16pg — xy2
— Omn + 7xy2

12mn + 16pq — 8xy2

HR + 4x 
157? - 18Z 

-4Z? + 4x + 18Z 

PROBLEMS 3 • 3 

Add: 
1 2i, 6i, — 5t, 8i 
2 5i2r, lOPr, —26i2r, 3i2r 
3 27ZZ, 165ZZ, -64ZZ, -32IZ, 16IZ 
4 65IR, 8.71R, IR, -16.6IR, 15.2IR 
5 3i + 167, — 8i - 127 
6 8jX, 26jX, — 30jX, 187?, -5jX, 127? 
7 2577? + 3E, -4IR - 2E, -18IR + 12£ 
8 12 2, 2w, -16a-, 4 Í? 
9 25<> + 416», 366» - 82<>, -53<> + 5119 

10 5L, ^R, -27L, -5Z, 38L, 7R - 2Z 

11 6i2r + 8W - 6ei + 32u’ 
— 3i2r + 3W + 8ei + 18«’ 
24i2r — IV — 5ei — w 

12 25IX - 167Z + 377? 
147Z + 2IX - IR 
8IR + 47X - 37Z 

13 1.65e7 + 3.07W- 1.467Zr 
0.0251V- 1.1 leZ - 0.85Z-’r 
3.06Z-r + 0.92eZ + 0.725 W 
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14 2.15e/ + 1.64— — 3.82t2r, 0.57 — + 1.94Pr 
r r 

15 ^ft, — 3-nZ, ^ft, ^Z 
16 To MIR + 3IZ add -X5IR - MZ. 
17 From 25<> + 36 subtract 15<> — 76. 
18 From 17.2u>L + 5Xc — 13.2Z subtract 4.5uL — 3.2Xr + 5.6Z. 

19 From the sum of 26.2^- + 14.6EZ — 3PR and &.2PR — 3.8EI + 
n 

19.6^-subtract 27.2EI - 2.6PR - 1.8^-. 
n n 

20 Subtract 9.5XC + from the sum of -8.7XC + and 
wC toC 

-4.6Xc-^#. 

21 Take 1.25IR + 0.6MX-2.81IZ from -0.06IR+0.23IX+1.09IZ. 
22 How much more than 5Eg — 2iR is 3Eg + 6iR? 
23 What must be added to 3^ + 2.8X to obtain 9.64< — 4.3X? 
24 What must be subtracted from 16.2y — 3.3a + 2.8ß to obtain 8.1a + 

1.7y - 2.6ß? 

3 • 9 SIGNS OF GROUPING 

Often it is necessary to express or group together quantities that are to be 
affected by the same operation. Also, it is desirable to be able to represent 
that two or more terms are to be considered as one quantity. 

In order to meet the above requirements, signs of grouping have been 
adopted. These signs are the parentheses ( ), the brackets [ ], the braces 
{ }, and the vinculum_ The first three are placed around the terms 
to be grouped, as (E - IR), [a + 36], and {x2 + 4y). All have the same 
meaning: that the enclosed terms are to be considered as one quantity. 

Thus, 16 — (12 — 5) means that the quantity (12 — 5) is to be subtracted 
from 16. That is, 5 is to be subtracted from 12, and then the remainder 7 
is to be subtracted from 16 to give a final remainder of 9. In like manner, 
E — (IR + e) means that the sum of (IR + e) is to be subtracted from E. 

Carefully note that the sign preceding a sign of grouping, as the minus 
sign between E and (IR + e) above, is a sign of operation and does not 
denote that (IR + e) is a negative quantity. 

The vinculum is used mainly with radical signs and fractions, as 

77245 and 
X — y 

In the latter case the vinculum denotes the division of a + b by x — y, in 
addition to grouping the terms in the numerator and denominator. When 
studying later chapters, you will avoid many mistakes by remembering that 
the vinculum is a sign of grouping. 

22 



In working problems involving signs of grouping, the operations within 
the signs of grouping should be performed first. 

PROBLEMS 
3 ■ 3 
TO 

SECTION 
3 ■ 9 

example 10 a + (b + c) = ? 
solution This means, “What result will be obtained when the sum of 

b + c is added to a?” Because both b and c are denoted as 
positive, it follows that we can write 

a + (b + c) = a + b + c 

because it makes no difference in which order we add. 

example 11 a + (b — c) — ? 
solution This means, "What result will be obtained when the difference 

of b — c is added to a?” Again, because it makes no difference 
in which order we add, we can write 

a + (6 — c) — a + b — c 

example 12 a — (b + c) — ? 
solution Here the sum of b + c is to be subtracted from a. This is the 

same as if we first subtract b from a and from this remainder 
subtract c. Therefore, 

a — (b + c) — a — b — c 

or, because this is subtraction, we could change the signs and 
add algebraically, remembering that b and c are denoted as 
positive, as shown below: 

a 
b + c 

a — b — c 

example 13 a — ( — b — c) = ? 
solution This means that the quantity —b — c is to be subtracted from 

a. Performing this subtraction, we obtain 

a 
— h — c 

a + b + c 

Therefore, 

a — ( — b — c) = a + b + c 

A study of Examples 10 to 13 enables us to state the following: 

Rules 
1 Parentheses or other signs of grouping preceded by a plus sign can 

be removed without any other change. 
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2 To remove parentheses or other signs of grouping preceded by a 
minus sign, change the sign of every term within the sign of grouping. 

Although not apparent in the examples, another rule can be added as 
follows: 

3 If parentheses or other signs of grouping occur one within another, 
remove the inner grouping first. 

examples (x 4- y) 4- (2x — 3y) = x 4- y 4- 2x — 3y = 3x — 2y 
3a — (26 4- c) — a = 3a — 2b — c — a — 2a — 2b — c 

lOx - ( —3x - 4y) + 2y = lOx 4- 3x 4- 4y 4- 2y = 13x 4- 6y 
x - [2x + 3y — (3x — y) — 4x] = x — [2x + 3y - 3x + y - 4x] 

= x - 2x - 3j 4- 3x - y 4- 4x 
= 6x - 4 v 

PROBLEMS 3 • 4 

Simplify by removing the signs of grouping and combining the similar terms: 

1 (x - 3y - 4) - (x 4- 4y - 7) 
2 (5Ä 4- 30) - (-4Ä 4- 5Ö 4- 6) 
3 (47? + 5Z 4- 6X) - (9X - 67? 4- 5Z - 3) 
4 67-’7? 4- [- 5EI 4- (-P7? - 3EI) - 7EI] 4- 5 

4- 3£7) I 

6 XL - {3L - [27? - (XL 4- 57,)]} 
7 5a- {a 40-[y4a4/ï-(a4 ß + y) - 3a] — 3/3} 
8 — {— 6 — [<£ 4- w — 2<> — (w 4- <J>) — <£] — 20 — 3co} 
9 4a — [—5a — ( — 66 4- 3c) — (8a — 46 — 3c)] 

10 5.47?-2.6Z-1.57X-77?-[4.6Z-(3Xc-5.77X)-4.327? + 27] 

5 _ 67^7? + 3^ 
K 

8^-- [-67*7? -

3 • 10 INSERTING SIGNS OF GROUPING 

To enclose terms within signs of grouping preceded by a plus sign, rewrite 
the terms without changing their signs. 

example 14 a + b — c + d= a + (b — c + d) 

To enclose terms within signs of grouping preceded by a minus sign, 
rewrite the terms and change the signs of the terms enclosed. 

example 15 a + b — c+d=a+b— (c — d) 

No difficulty need be encountered when inserting signs of grouping be¬ 
cause, by removing the signs of grouping from the result, the original expres¬ 
sion should be obtained. 
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example 16 x - 3y + z = x - (3y - z) = x - 3y + z 

PROBLEMS 3 • 5 

1 Enclose the last three terms of each of the following expressions in 
parentheses preceded by a plus sign: 
(a) 3X + Xc-Xl + Z 
(b) a + 6ß — 3<¡> + X 
(c) 5W + 6PR - 3EI + 7PZ 

(d)^-- 3PR + 7PZ - 4EI ri 

(e) 8X + 3/i — 70 — 3<^ + 6a 
2 Enclose the last three terms of each of the following expressions in 

parentheses preceded by a minus sign: 

(a) 3EI + 5PR - 6W + 4-^-
n 

(b) 5a + 3b — 6c + 4d + 5e 
(c) 8a' + 13^> — 3Ä + ¿Jr 
(d) 4.6° - 30 + 3.8' - 0.52</> 

(e) + W + PZ - 6EI 
n 

3 Write the amount by which N is less than (X2 + Ä2). 
4 The sum of two currents is 526 milliamperes (mA). The larger of the 

two currents is i mA. What is the smaller? 
5 The difference between two voltages is 16.8 V. The smaller voltage is 
e V. What is the greater? 

6 Write the amount by which XL exceeds —-—. 
2.mC 

7 What is the larger part of Z if y/r2 + x2 is the smaller part? 
8 Write the amount by which E is greater than e — IR. 

9 Write the amount by which P exceeds PR -p 

10 The difference between two numbers is 19.6. If the larger number is ß, 
what is the smaller? 

11 Write the smaller part of Xc if —i— is the larger part. 
¿~fC\ 

12 The difference between two numbers is X2 and the larger of the two is 
Z2. Write the relationship which describes R2, which is the smaller of 
the two. 
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algebra • multiplication and division 

chapter 

Multiplication is often defined as the process of repeated addition. Thus, 
2x3 may be thought of as adding 2 three times, or 2 4- 2 + 2 = 6. 

Considering multiplication as a shortened form of addition is not satis¬ 
factory, however, when the multiplier is a fraction. For example, it would not 
be sensible to say that 5 x 7 was adding 5 two-sevenths of a time. This prob¬ 
lem could be rewritten as | x 5, which would be the same as adding | five 
times. But this is only a temporary help, for if two fractions are to be multi¬ 
plied together, as | x 5, the original definition of multiplication will not apply. 
However, the definition has been extended to include such cases, and the 
product of 5 X 7 is taken to mean 5 multiplied by 2 and this product divided 

5x2 
by 7; that is, by 5 x | is meant —-—. Also, 

3 ,, 5 3 x 5 _ 15 
4 X 6 “ 4 x 6 24 

4 • 1 MULTIPLICATION OF POSITIVE AND NEGATIVE NUMBERS 

Because we are now dealing with both positive and negative numbers, it 
becomes necessary to determine what sign the product will have when com¬ 
binations of these numbers are multiplied. 

When only two numbers are to be multiplied, there can be but four pos¬ 
sible combinations of signs, as follows: 

[1] ( + 2)x(+3) = ? 
[2] (-2)x(+3) = ? 
[3] ( + 2)x(-3) = ? 
[4] ( —2) x (—3) = ? 

Combination [1] means that +2 is to be added three times: 
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or 
( + 2) + ( + 2) + ( + 2) = +6 

( + 2) x ( + 3) = +6 



In the same manner, combination [2] means that —2 is to be added three 
times: 

SECTION 
4 .1 
TO 

PROBLEMS 
4 • 1 

(-2) +(-2) +(-2) = -6 
or (—2) x (+3) = -6 

Combination [3] means that +2 is to be subtracted three times: 

—( + 2) — ( + 2) — ( + 2) = -6 
or ( + 2)x(-3)=-6 

Note that this is the same as subtracting 6 once, —6 being thus obtained. 
Combination [4] means that —2 is to be subtracted three times: 

-(-2)-(-2)-(-2)= +6 
or ( —2) x (—3) = +6 

This may be considered to be the same as subtracting —6 once, and 
because subtracting —6 once is the same as adding +6, we obtain +6 as 
above. 

From the foregoing we have these rules: 

Rules 

1 The product of two numbers having like signs is positive. 
2 The product of two numbers having unlike signs is negative. 
3 If more than two factors are multiplied, Rules 1 and 2 are to be used 

successively. 
4 The product of an even number of negative factors is positive. The 

product of an odd number of negative factors is negative. 

These rules can be summarized in general terms as follows: 

Rule 1 ( + aX + 6) = + ab 
Rule 1 (—a)( — b) = + ab 

Rule 2 ( + aX —W = —ab 
Rule 2 ( — a)( + b') — —ab 
Rule 3 ( — aX + bX — c) = + abc 
Rule 4 (-oX-W-cX -d)= + abed 
Rule 4 (—a)(— b)( — c) = —abc 

PROBLEMS 4 1 

Find the products of the following factors: 
1 3, 4 
2 6, -5 
3 -9.1, -1.5 
4 -1.7, 6.5, -7.3 
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Fig. 4 ■ 1 Representation of the 
Multiplication 2x3 = 6 

Fig. 4 ■ 2 Representation of the 
Multiplication —2x3= —6 

7 -0.025, -0.0005. -2.5, -0.03 
8 3000, -0.06, 250, - 0.002 
9 — e, — i, t 
10 q, —r, —s, t 
11 2-nf, Li, ¿2 
12 X2

13 1111 
2 ’ it ' f ' Cp

a ' b ' c ’ d 

15 ^1,-1, M

4 • 2 GRAPHICAL REPRESENTATION 

Our system of representing numbers is a graphical one, as previously illus¬ 
trated in Fig. 3 • 3. It might be well at this time to consider certain facts re¬ 
garding multiplication. 

When a number is multiplied by any other number except 1, we can think 
of the operation as having changed the absolute value of the multiplicand. 
Thus, 3 in. X 4 becomes 12 in., 6 A x 3 becomes 18 A, etc. Such multiplica¬ 
tions could be represented graphically by simply extending the multiplicand 
the proper amount, as shown in Fig. 4 • 1. 

0 

2 

-6 -5 -4 -3 -2 -1 +1 +2 +3 +4 +5 +6 
-r 1 r 1 r 1 r 1 r 1 r 1 r - h-H—H—H—n—r— r J i J ■ i r i r i r | r 

2x3=6 

The multiplication of a negative number by a positive number is shown in 
Fig. 4 • 2. 

0 

-6 -5 —4 -3 -2 -1 +1 +2 +3 +4 +5 +6 
--1. |. I< |. I« |.-H-*4-H—H-H-H--

-2 

-2x3=-6 
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From these examples, it is evident that a positive multiplier simply 
changes the absolute value, or magnitude, of the number being multiplied. 



What happens if the multiplier is negative? As an example, consider 
2 X ( — 3) = —6. How will this be represented graphically? 

Now, 2 X ( — 3) = —6 is the same as 

2x( + 3)x( 1) = —6 

Therefore, let us first multiply 2 x 3 to obtain +6 and represent it as shown 
in Fig. 4 • 1. We must multiply by — 1 to complete the problem and in so doing 
should obtain —6, but —6 must be represented as a number six units in 
length and directed toward the left, as illustrated in Fig. 4- 2. We therefore 
agree that multiplication by — 1 causes counterclockwise rotation of a num¬ 
ber in a direction that will be exactly opposite from its original direction. This 
is illustrated in Fig. 4 • 3. 

+ 6 

+ 1 +2 +3 +4 +5 +6 
1-1-1-1-1-1-!-1-i-1-1 H-

0 Number to be multiplied by — 1 

Number after multiplication by -1 0 

If both multiplicand and multiplier are negative, as 

( —2) x ( —3) = +6 

the representation is as illustrated in Fig. 4 • 4. Again, 

( —2) x ( —3) = +6 

-6 
y A \ 

-6 -5 -4 -3 -2 -1 
-H-1-1-1-1-1-1-1-1-1-1-1-

Number to be multiplied by -1 

0 

+ 6 
! ° > 
+ 1 +2 +3 +4 +5 +6 

-- M -

\ / Number after multiplication by-1 
\ 0 / has been rotated 180° 

is the same as 

(—2) X ( + 3) x (—1) = +6 

PROBLEMS 
4 • 1 
TO 

SECTION 
4 ■ 2 

Fig. 4 • 3 Multiplication by — 1 
Rotates Multiplicand 
Counterclockwise through 180° 

Fig. 4 • 4 Illustration of —6 
Rotated Counterclockwise through 
180° to Become +6 Due to 
Multiplication by —1 
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The product has an absolute value of 6, and at the same time there has been 
rotation to +6 because of multiplication by —1. 

The foregoing representations are also applicable to division, since the 
law of signs is the same as in multiplication. 

The important thing to bear in mind is that multiplication or division by 
— 1 causes counterclockwise rotation of a number to a direction exactly 
opposite the original direction. The number —1, when used as a multiplier 
or divisor, should be considered as an operator for the purpose of rotation. 
It is important that you clearly understand this concept, for you will en¬ 
counter it later on. 

4-3 LAW OF EXPONENTS IN MULTIPLICATION 

As explained in Sec. 2 • 10, an exponent indicates how many times a number 
is to be taken as a factor. Thus x4 = x • x • x • x, a3 = a • a - a, etc. 

Because x4 — x-x-x-x 
and x3 — x■x -x 
then x4'x3 = x-x-x-x-x-x-x = x7
or x4 • x3 = x443 = X7

Thus, we have the rule: 

Rule To find the product of two or more powers having the same base, add 
the exponents. 

examples a3 • a2 = a342 = a5
x4 • x4 — x444 — Xs 
62-63-65 = 62+3+5 = 6 10

a2 • b3 • b3 • a3 = a2+5 • b343 = a7̂  
C • — ^1+3 —— £»4 

32 • 34 - 32+4 = 36 

ea . _ ga+ii 

From the foregoing examples, it is seen that the law of exponents can be 
expressed in the well-known general form 

am • a" — am4n

where a 0 and m and n are literal numbers and may represent any number 
of factors. 

4-4 MULTIPLICATION OF MONOMIALS 

Rules 
1 Find the product of the numerical coefficients and give it the proper 

sign, plus or minus, according to the rules for multiplication (Sec. 4 • 1). 
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2 Multiply this numerical product by the product of the literal factors. 
Use the law of exponents as applicable. 

example 1 Multiply 3a2b by 4ab3. 
solution (3a^)(4a6>) = + (3 • 4) • ■ V3

= 12aW 

example 2 Multiply -6x3>2 by 3x>2. 
solution ( - 6x‘>2X3x>2) = -(6 • 3) • x3+1 •y2+2 

= -18x4y» 

example3 Multiply — 5e2x‘.y by — 3e2x2p. 
solution ( —= +(5 • 3)e2+2 -p*x4+2

— \5e'px^y 

PROBLEMS 4 ■ 2 

Multiply: 

1 X3 • X2
4 —A-A2*—03
7 (4xX5m3)(-3x2m) 

10 (13íkX-26“+«) 
13 {-3d2b3cd2\-2abc2d') 
14 
15 (^Xz.XiMX-277) 
16 (14d-VcrfX- ^ab2de) 
17 (0.5e2¿X3¿2rX -0.05e0(w) 
18 
19 (a3)2
20 {3p^' 

2 -d'-b^ 3 e'^-e3-—^ 
5 (2m2X3m2) 6 (6«X-3/*!) 
8 ( —5ji)2 9 (amn)(bm>‘) 

11 (2p)3 12 ( — 5 A2)3

4 • 5 MULTIPLICATION OF POLYNOMIALS BY MONOMIALS 

Another method of graphically representing the product of two numbers is 
as shown in Fig. 4 • 5. The product 5 x 6 = 30 is shown as a rectangle whose 
sides are 5 and 6 units in length; therefore, the rectangle contains 30 square 
units. 

Similarly, the product of 5(6 + 9) can be represented as illustrated in 
Fig. 4-6. 

Fig. 4 • 5 Graphical 
Representation of the Multiplication 
5 x 6 = 30 

Fig. 4 • 6 Graphical 
Representation of the Multiplication 
5(6 + 9) = 75 
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Thus, 5(6 + 9) 
= 5 X 15 
= 75 

Also, 5(6 + 9) 
- (5 X 6) + (5 X 9) 
= 30 + 45 
= 75 

In like manner the product a(c + d) = ac + ad can be illustrated as in 
Fig. 4-7. 

Fig. 4 • 7 Illustration of the 
Product a(c + d) = ac + ad 

c d 

ac ad ad 

From the foregoing, you can show that 

3(4 + 2) = 3 X 4 + 3 X 2 = 12 + 6 = 18 
4(5 + 3 + 4) = 4 x 5 + 4 x 3 + 4 x 4 

= 20 + 12 + 16 = 48 
x{y + z) = xy + xz 

p(q + r + s) = pq + pr + ps 

Note that, in all cases, each term of the polynomial (the terms enclosed 
in parentheses) is multiplied by the monomial. From these examples, we 
develop the following rule: 

Rule To multiply a polynomial by a monomial, multiply each term of the 
polynomial by the monomial and write in succession the resulting terms 
with their proper signs. 

example 4 3x(3x2̂  — 4xy2 + 6y3) = ? 
solution Multiplicand = 3x2y — ^xy2 + 6/* 

Multiplier = 3x 
Product = 9x3y — 12x2y2 + 18xy 

example 5 — 2ac(—10a3 + 4a26 — 5ab2c + 76c2) = ? 
solution Multiplicand = — 10a3 + 4a26 — 5ab2c + 7bc2

Multiplier = — 2ac_ 
Product = 20a4c — 8a36c + 10a262c2 — 14a6c3

example 6 Simplify 5(2e — 3) — 3(e + 4). 
solution First multiply 5(2e — 3) and 3(e + 4), and then subtract the 

second result from the first, thus: 

5(2e - 3) - 3(e + 4) = (10e - 15) - (3e + 12) 
= 10e - 15 - 3e - 12 
= 7e - 27 
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PROBLEMS 4 3 

Multiply: 

1 
3 
5 
7 
8 
9 

10 
11 
12 

3a + 56 by 6 2 2a 4- 3 by 3a 
2Äi + 4Ä2 by 27-’ 4 5.8a-y6by62
Ä2 + 26 — 3/x by 4.7</> 6 2a3 — 3a2 4- 4a by — 5a 
4a3/? + 3a2/?2 — 5a/?3 by 0.5aß 
202̂  — 5ad2 — 4a/? + 3 by 3a<^ 
— 5a2ri — 2ari2 + 6rj3 by —3ar2 

3œ2Li2 - 5iü2M + 7w2¿22 by -2uLiL2 

jPR - ipR2 - jiZ by jilZ 
8ab 4- 4a62 + 4 by —jab2

13 Ç f by 12/P 4 Z O 
14 5n2k2 4- 3t]k — 2/a/2 by — 30 u 
15 0.025E3Z2 + 0.05 EZ< - 1.67Z5 by 6.287Z 

Simplify: 

16 3ars( —4ar2 + 2rs — 6as2) 17 3(6<> — 56) — 3(<> + 26) 
18 - jß) + + jß) 19 6(62 + <» - <>(6 + <^2) 
20 3Z(272 - i2) - Z(6P - 5i2) 
21 0.5^677 4- 5r)o) — m¿2) — 3t7(0.7w — yn + 2w3) 
22 jyß^y2ß - 2yß2 - lOy3 + 5ß3) 

24 56(262 + 36<> - 6</>2) - 3(663 - 262<> - 76</>2) 

25 0.25/i^ - 4- 1.5(0.0577? - 0.37577?2) 
\ 5 10 5 / 

26 1àm(6à2m - 5Äg2 4- 12Ä - 4f0 
27 46(362 4- 26<> - 3</>2) - 26(662 4- 46ó - 6<>2) 

yÄ _ y26 \ 
5 12/ 

28 

30 0.57-’(27?1 4- 3R2 - 5R3) - 0.8P(-0.5R! - 2R2 - 0.25Ä.,) 

SECTION 
4 ■ 5 
TO 

SECTION 
4 ■ 6 

4- 6 MULTIPLICATION OF A POLYNOMIAL BY A POLYNOMIAL 

It is apparent that 

(3 4- 4X6 - 3) = 7 X 3 = 21 

The above multiplication can also be accomplished in the following 
manner: 
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(3+ 4)(6 - 3) = 3(6 - 3) + 4(6 - 3) 
_ (18 - 9) + (24 - 12) 
= 9 + 12 
= 21 

Similarly, 

(2a — 3b)(a + 5b) = 2a(a + 5b) — 3b(a + 5b) 
= (2a2 + 10a6) — (3ab + 1562) 
= 2a2 + lOab — 3ab — 1562
= 2a2 + 7ab - 1562

From the foregoing, we have the following: 

Rule To multiply polynomials, multiply every term of the multiplicand by 
each term of the multiplier and add the partial products. 

example 7 Multiply 2i - 3 by i + 2. 
solution Multiplicand — 2i — 3 

Multiplier = i + 2 
i times (2/ — 3) = 2i2 — 3i 
2 times (2i — 3) =_4; — 6 
Adding, product = 2i2 + i — 6 

example 8 
solution 

Multiply a2 — 3ab + 2b2 by 2a2 — 362. 
Multiplicand = a2 — 3ab + 2b2
Multiplier = 2a2 — 3b2_ 
2a2 times (a2 — 3ab+2b2) = 2ai — 6a3b + 4a2b2

— 3b2 times (a2 —3a6 + 262) =_— 3a2b2 + 9ab3 — 6b' 
Adding, Product = 2a4 — 6a'b+ a2b2 + 9ab3 — 6b3

Products obtained by multiplication can be tested by substituting any 
convenient numerical values for the literal numbers. It is not good practice 
to substitute the numbers 1 and 2. If there are exponents, then the use of 1 
will not be a proof of correct work, for 1 to any power is still 1. Similarly, if 
addition should be involved, the use of 2 could give an incorrect indication, 
because 2 + 2 = 4, and 2x2 = 4. 

example 9 Multiply a2 — ̂ ab — b2 by 
6 = 4. 

a + b, and test by letting a = 3 and 

solution a2 — 4a6 — b2 =9 — 48—16= —55 
a + b =3+4 =_7 
a3 — 4a26 — ab2 —385 

a26 — 4a 62 — b3
a3 — 3a2b — 5ab2 — b3 = 27 - 108 - 240 - 64 = -385 

34 



PROBLEMS 4 ■ 4 

SECTION 
4 ■ 6 
TO 

SECTION 
4.7 

Multiply 

1 a + 1 by a + 1 
3 a — 1 by a — 1 
5 ß + 3 by ß - 3 
7 p + 3 by p+5 
9 r— llbyr+3 

2 a + 1 by a — 1 
4 ß + 2 by ß + 2 
6 ß - 3 by ß - 3 
8 Xc - 6 by Xc - 4 

10 j + 2 by; - 2 

or other signs of grouping are often used to indicate a 
ir + e multiplied by 2ir — 3e. + e)(2ir — 3e) means 

note Parentheses 
product. Thus, (ir 
Perform the indicated multiplications: 

11 (m + 4Xm + 2) 
13 (a + 7/?X3a - 60) 
15 (20 + X)(30 - 5X) 
17 (3m + 2n)(2m — 3n) 
19 (R - 3Z)(5R - 2Z) 
21 (2a2 + 5a - lX3a + 1) 
23 (R + rX2Ä2 - ̂ Rr + 2r2) 
25 (a + b)(a - b)(a - b) 
27 (0 - 4>W + ^3 - <f>) 
29 (a2 + 2ab + b2)(a + b) 
31 (x + y? 
33 (M - M2

12 (4C + L)(3C + L) 
14 (ax + bx)(cx + dx) 
16 (17 EI — 2T-R)(2EI - 61-R) 
18 (1.5< + 0.5<>X2^ + 1.75.» 
20 (im - iq^m + ^q) 
22 (302 - 40 - 7X0 + 3) 
24 (x + y\x + y)(x + y) 
26 (p - q\p - q)(p - q) 
28 (IR + P^PR2 - 2IRP + P2) 
30 (x + l)2
32 (x-yy 
34 (20<> + ^ + 1)2 

35 (2a + 2wY 
36 (3a + 7Xa - 5) + (2a - 3X4a - 1) 
37 2(3I-R + 1)(4PP - 5) - 4(2/7? - 2\PR + 3) 
38 4(30 - 2<> + XX20 + 2<> - X) - 6(0 + 2<> + X)(20 - <> - 2X) 
39 3a(2a + b - l)2 - 2a(a + 2b + I)2
40 302(5w - X + 0)2 - 02(w + 7X - 20)2

4 • 7 DIVISION 

The division of algebraic expressions requires the development of certain 
rules and new methods in connection with operations involving exponents. 
However, if you have mastered the processes of the preceding sections, 
algebraic division will be an easy subject. 

For the purpose of review the following definitions are given: 
1 The dividend is a number, or quantity, that is to be divided. 
2 The divisor is a number by which a number, or quantity, is to be 

divided. 
3 The quotient is the result obtained by division. That is, 

Dividend 
Divisor 

= quotient 
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4 8 DIVISION OF POSITIVE AND NEGATIVE NUMBERS 

Because division is the inverse of multiplication, the methods of the latter 
will serve as an aid in developing methods for division. For example, 

because 6 x 4 = 24 
then 24 + 6 = 4 
and 24 + 4 = 6 

These relations can be used in applying the rules for multiplication to 
division. 

All the possible cases can be represented as follows: 

Because division is the inverse of multiplication, we apply the rules for 
multiplication of positive and negative numbers and obtain the following: 

( + 24) + ( + 6) = ? 
(—24) + ( + 6) = ? 
(+24) +(-6) = ? 
(-24) +(-6) = ? 

( + 24) + ( + 6) = +4 
( —24) + ( + 6) = -4 
( + 24) +(-6)= -4 
(-24) +(-6)= +4 

because (+4) x ( + 6) = +24 
because (—4) x ( + 6) = —24 
because ( — 4) x ( — 6) = +24 
because ( + 4) x ( — 6) = —24 

Therefore, we have the following: 

Rule To divide positive and negative numbers, 
1 If dividend and divisor have like signs, the quotient is positive. 
2 If dividend and divisor have unlike signs, the quotient is negative. 

PROBLEMS 4 • 5 

Divide the first number by the second in Probs. 1 to 10: 

1 25, 5 2 -16,4 3 -30,-6 
4 -6.4,-800 5 -f.i 6 &Ä 
7 2-nfC,—1 8 R. E — e 9 E x 10\ Lr

10 uL, Q 

Supply the missing divisors: 

11 ^^ = 4 12 ^-=-2 13 

4 • 9 THE LAW OF EXPONENTS IN DIVISION 

By previous definition of an exponent (Sec. 2 • 10), 
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and 
X6 = X • X • X • X • X ■ X 
X3 — X • X • X 

Then, t6 x3 - *1 - X ¿/x-X-X _ 3 
X ~ x3~ ~ 

This result is obtained by canceling common factors in numerator and de¬ 
nominator. The above could be expressed as 

X« 4- X3 = ^ = X6"3 = X3X3
In like manner, 

= 0’-3 = a4 
a3

From the foregoing, it is seen that the law of exponents can be expressed 
in the general form 

am 4- a" = — = am~" 
a" 

where a 0 and m and n are general numbers. 

SECTION 
4 8 
TO 

SECTION 
4 11 

4-10 THE ZERO EXPONENT 

Any number, except zero, divided by itself results in a quotient of 1. Thus, 

Also, -4 = 1 
a3

Therefore, = a3-3 = a° = 1 
a3

Then, in the general form, = am~n

If m = n 
then m — n — 0 

77 TH 
and — = am~n = a0 = 1 

a" 

The foregoing leads to the definition that 

Any base, except zero, affected by zero exponent is equal to 1. 

Thus, a°, Xo, y°, 3°, 4°, etc., all equal 1. 

4-11 THE NEGATIVE EXPONENT 

If the law of exponents in division is to apply to all cases, it must apply when n 
is greater than m. Thus, 
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a2 _ ft ■ 0 _ _1_ 
ó5 à • ft • a • a • a a3

or = a2-5 = a'3
a5

Therefore, a-3 = 
a3

Also, a-n = — 
a" 

This leads to the definition that 

Any base affected by a negative exponent is the same as 1 divided by that 
same base but affected by a positive exponent of the same absolute value as 
the negative exponent. 

examples x-4 = — 

2“2 — — _ A 
- 22 - 4 

3-3 _ 1 _ 1 
~ 33 ~ 27 

43 _ 4x4x4 _ 1 _ 1 _ 4-2
45 4 x4x 4 X4 x 4 4x4 “ 42 ~ 

or = 43’5 = 4-245 

It follows, from the consideration of negative exponents, that 

Any factor of an algebraic term may be transferred from numerator to de¬ 
nominator, or vice versa, by changing the sign of the exponent of the factor. 

i m o„2^3 3a2 3 3x3example 10 4a2x3 = —- = —-—- = —-
x 3 a 2x 3 a~2

4-12 DIVISION OF ONE MONOMIAL BY ANOTHER 

Rule To divide one monomial by another, 
1 Find the quotient of the absolute values of the numerical coefficients 

and affix the proper sign according to the rules for division of positive and 
negative numbers (Sec. 4 • 8). 

2 Determine the literal coefficients with their proper exponents, and 
write them after the numerical coefficient found in 1 above. 

example 11 Divide — 12a3x4y by 4a2x2y. 

. — 12a3x4y _ , 
solution —. „ 9— = — 3ax2

4a2x2y 
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example 12 Divide — 7d2b4c by — 14a62c3. Express the quotient with posi¬ 
tive exponents. 

solution ~ 7a2fr*c _ ab^_ 
— lAab2̂  2c2

example 13 Divide 15a 2b2c3d~4 by 5a2bc~'d '2. Express the quotient 
with positive exponents. 

solution ISa^b2̂ -4 _ _ 3 be4
— 5a2bc~1d~2 a4cP 

SECTION 
4 ■ 12 

TO 
SECTION 

4 . 13 

Division can be checked by substituting convenient numerical values for 
the literal factors or by multiplying the divisor by the quotient, the product of 
which should result in the dividend. 

PROBLEMS 4 6 

Divide: 

1 
3 
5 
7 
9 

11 

14 

17 

20x4y3 by 5x2y2
ISfl4̂ 5 by -903<X-2 
lOSX^Z5 by -SIX^Z3 

— 33t)sä4tt 10 by — 1 1i)2Ä7t9 
—^m^n^p2 into — 7im3n7p3

2 — 32x8y‘z6 by — 8x4vz5
4 by-24«2L«M2
6 - 103a1269cI4cT by lOa^bWd4
8 13A*A3e5 into — 39Ä8A4e5
10 -jx^y^z8 into -Hx.3?1̂  

lS^oPe3
— 2c8<Z2e3

35i4rp3w3
— 0.7 ir'p'u'3

_13^0_^2_ 
-52</>- 4̂ 2S22

3303<¡>2a 
S^a2

— 9a 3b4c4d2
— 27a 2b~3c2d 2

18 ■Lx'y'a 3JLB_t._ — 
|x -2yi„-i 

108A^6Q2
-27ÄVQ2

16 -21ra2r4a6
— 63r2s~2t~3u2

360a4̂ 3y~7 
O.OO4a20-2y-5

-0.00025674/?3/ 
0.0167 2R'Z3

4 -13 DIVISION OF A POLYNOMIAL BY A MONOMIAL 

Because 2x8= 16 
then V = 8 

Also, because 3(a + 4) = 3a + 12 

., 3a + 12 . then ---= a + 4 

Similarly, because 3R2R + 3r) = 6/7? + 9Ir 

.. 5IR + 9Ir öd , o then -^7- = 2R + 3r 

From the foregoing we have the following: 
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Rule To divide a polynomial by a monomial, 
1 Divide each term of the dividend by the divisor. 
2 Unite the results with the proper signs obtained by the division. 

example 14 Divide 8a2b3c — 12a362c2 + 4a2b2c by 4a2b2c. 

solution 8a2b3c 12a3b2c2 + 4a2b2c 
4a2b2c 

= 2b - 3ac + 1 

example 15 Divide —27x3y2zs + 3x4y2z4 — 9x4y^z5 by — Sx^z4. 

solution -27x3y2z3 + 3xyz4 - gx^z5
— 3x3y2z4

— 9z — X + 3xyz 

PROBLEMS 4 ■ 7 

Divide: 

1 8x + lOy by 2 2 120 - 6<> by 3 
3 108a2 — 81/?2 by 9 4 16<>6 — 8<>4 + 24ç>2 by 4<>2
5 24Ä] + 48«2 - 32Ä ;1 by 8 6 Xc* - 12Xr4 - 18XC2 by 3XC
7 0.025p4w2 + 50/i2w4 by 5gir3
8 8.1a3ß2y + 7.2a2ßy3 - 3.6aßy by 0.09a2ß2y2
9 |m2 into — ^m3 — 

10 -¿PR into & 4R2 - iPR + & 2R ' + |Z-4B~2

n  102xyz + 170x2yz2 - 85x3yz3 - Slx^z 
17 xyz 

12 R2(J + i) + r2(I + 0 by I + i 
13 8(0 + tf2 - 16(0 + «)4 + 12(0 + <i>)6 by 4(0 + <>) 
14 Ä(a2 + ß2)2 - rr(a2 + ß2)2 by -(a2 + ß2)2
15 8-n{EI + P)4 - 32^(EI + P)2 + 96<EZ + P) by \8^EI + P)2

6P(R + r\R -r) + 10I\R + r)2(R - r)2 - 12F(R + r)4(R - r)4
-2I(R + r)(R - r) 

aß + 7x/f + i> - aß + 2X3 + i>!
18 -TH-
19 ^3M0jL̂ X0rl^)jLJ2<X0jL«)2(0^)2̂ -^4^^ 

4^(0 + <i>)2

20 54g2(Ä + /?iXr+r1) + 36g4(Ä + fi1)2(r+r1)2-108g6(Ä + Ä1)3(r+r1)3
9E(R + Ât)(r + n) 

4- 14 DIVISION OF ONE POLYNOMIAL BY ANOTHER 

Rule To divide one polynomial by another, 
1 Arrange the dividend and divisor in ascending or descending powers 

of some common literal factor. 
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2 Divide the first term of the dividend by the first term of the divisor, 
and write the result as the first term of the quotient. 

3 Multiply the entire divisor by the first term of the quotient, write the 
product under the proper terms of the dividend, and subtract it from the 
dividend. 

4 Consider the remainder a new dividend, and repeat 1, 2, and 3 until 
there is no remainder or until there is a remainder that cannot be divided by 
the divisor. 

example 16 Divide x2 4- 5x 4- 6 by x 4- 2. 
solution Write the divisor and dividend in the usual positions for long 

division and eliminate the terms of the dividend, one by one: 

X + 3_ 
X + 2)x2 + 5x + 6 

X2 + 2x 

3x 4- 6 
3x + 6 

X, the first term of the divisor, divides into x2, the first term of 
the dividend, x times. Therefore, x is written as the first term of 
the quotient. The product of the first term of the quotient and 
the divisor x2 + 2x is then written under like terms in the divi¬ 
dend and subtracted. The first term of the remainder then 
serves as a new dividend, and the process of division is con¬ 
tinued. 
This result can be checked by multiplying the divisor by the 
quotient. 

Divisor = x 4-2 
Quotient = x 4- 3_ 

x2 4- 2x 
3x 4- 6 

Dividend = x2 4- 5x 4- 6 

example 17 Divide a2b2 + a4 + b4 by —ab + b2 + a2. 
solution First arrange the dividend and divisor according to step 1 of 

the rule. Because there are no a3b or ab3 terms, allowance is 
made by supplying 0 terms. Thus, 

a2 + ab + b2_ 
a2 — ab 4- b2)a4 4- 0 4- a2b2 4- 0 4- 64

a4 — a3b 4- a2b2

a3b 
a3b — a2b2 4- ab3

a2b2 — ab3 4- b4 
a2b2 — ab3 4- b4
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example 18 Divide 4 + x4 + 3x2 by x2 - 2. 
solution X2 + 5 

X2 - 2)x4 + 3x2 + 4 
X4 - 2x2

5x2 + 4 
5x2 - 10 

14 = remainder 

This result is written 

X2 + 5 + 14 
X2 - 2 

which is as it would be written in an arithmetical division that 
did not divide out evenly. 

PROBLEMS 4 ■ 8 

Divide: 

Il X2 + 2x + 1 by X + 1 
3 02 + 70 + 12 by 0 + 4 
5 6E2 - 22E + 12 by 3E - 2 
7 3Ä3 + 9Ä2 -7R - ^RZ - \2Z 

2 9p2 + 9p — 40 by 3p — 5 
4 12w2 + 29ic + 14 by 4w + 7 
6 6<i>2 - 13</>0 + 602 by 2<> - 30 

- 21 by R + 3 
8 ^>3 + 3^>2<j + 3^>w2 + w3 by <f> + oo 
9 K3 + 6Æ2 + 7K - 8 by K - 1 
10 12Ä2 - 36<>2 - 1 1À<Í> by 4X - 9</> 
11 E2 — e2 by E — e 
12 E3 - e3 by E - e 
13 E4 — e4 by E — e 
14 E3 + PR3 by E + IR 
15 E* — PR4 by E2 - PR2
16 05 + £* by 0 + <J> 
17 X« - Y* by X + Y 
18 %6 + pi by X2 + Y2
19 03 + 302<> + 30<i>2 + <f>3 by 0 + <J> 
20 - L24 by Li + L2
21 6R23 - R22 - 14ä2 + 3 by 3Ä22 + 4Ä2 - 1 
22 1 + 2m4 + 4m2 — m3 + 7m by 3 + m2 — m 
23 30E4 + 3 - 82E2 - 5E + 1 IE3 by 3E2 - 4 + 2E 
24 |03 - 0</>2 - 27<i>3 by - 3<> 

25 6Ä2 - |Ä - 1 by 2Ä - I 

26 n3 - I«2 - by n - I 
27 36x2 + |y2 + j - ̂ xy - 6x + |y by 6x - |y - | 

28 ^K3 - ^K2 + by IK - 1 

29 jL? - Li - § into ^¿i4 - jLP - + |Li + 

30 RJ + 
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chapter 

5 

In the preceding chapters, considerable time has been spent in the study of 
the fundamental operations of algebra. These fundamentals will be of little 
value unless they can be put to practical use in the solution of problems. This 
is accomplished by use of the equation, the most valuable tool in mathe¬ 
matics. 

5 • 1 DEFINITIONS 

An equation is a mathematical statement that two numbers, or quantities, 
are equal. The equality sign ( = ) is used to separate the two equal quantities. 
The terms to the left of the equality sign are known as the left member of the 
equation, and the terms to the right are known as the right member of the 
equation. For example, in the equation 

3E + 4 = 2E + 6 

3E + 4 is the left member and is equal to 2E + 6, which is the right member. 
An identical equation, or identity, is an equation whose members are 

equal for all values of the literal numbers contained in the equation. The 
equation 

4/(r + R) = Mr + MR 

is an identity because if I = 2, r = 3. and R = 1. then 

4/(r + Ä) = 4-2(3 + 1) = 32 

Also, 

Mr + MR = 4 • 2 ■ 3 + 4 ■ 2 • 1 = 24 + 8 = 32 

Any other values of /, r, and R substituted in the equation will produce equal 
numerical results in the two members of the equation. 

An equation is said to be satisfied if, when numerical values are substi¬ 
tuted for the literal numbers, the equation becomes an identity. Thus, the 
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equation 

ir - iR — 3r — SR 

is satisfied by i = 3, because when we substitute this value in the equation, 
we obtain 

3r - 3R = 3r - 3R 

which is an identity. 
A conditional equation is one consisting of one or more literal numbers 

that is not satisfied by all values of the literal numbers. Thus, the equation 

e + 3 = 7 

is not satisfied by any value of e except e = 4. 
To solve an equation is to find the value or values of the unknown number 

that will satisfy the equation. This value is called the root of the equation. 
Thus, if 

i + 6 = 14 

the equation becomes an identity only when i is 8, and therefore 8 is the root 
of the equation. 

5-2 AXIOMS 

An axiom is a truth, or fact, that is self-evident and needs no formal proof. 
The various methods of solving equations are derived from the following 
axioms: 

1 If equal numbers are added to equal numbers, the sums are equal. 

example 1 If x = x, 
then x + 2 = x + 2 
because, if x = 4, 4 + 2 = 4 + 2 
or 6 = 6 

Therefore, the same number can be added to both members of an equa¬ 
tion without destroying the equality. 

2 If equal numbers are subtracted from equal numbers, the remainders 
are equal. 

example 2 If x = x, 
then x - 2 = x - 2 
because, if x = 4, 4 — 2=4 — 2 
or 2 = 2 
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Therefore, the same number can be subtracted from both members of an 
equation without destroying the equality. 

3 If equal numbers are multiplied by equal numbers, their products are 
equal. 

example 3 If x = x, 
then 3x = 3x 
because, if x = 4, 3 • 4 = 3 • 4 
or 12=12 

Therefore, both members of an equation can be multiplied by the same 
number without destroying the equality. 

4 If equal numbers are divided by equal numbers, their quotients are 
equal. 

example 4 if x = x, 

then 4 = A 
2 2 

because, if x = 4, 4- = 4-
2 2 

or 2 = 2 

Therefore, both members of an equation can be divided by the same num¬ 
ber without destroying the equality. 

5 Numbers that are equal to the same number or equal numbers are 
equal to each other. 

example 5 If a = x and b = x, 
then a = b 
because, if x = 4, a = 4 and b = 4 

Therefore, an equal quantity can be substituted for any term of an equa¬ 
tion without destroying the equality. 

6 Like powers of equal numbers are equal. 

example 6 If x = x, 
then x3 = x3
because, if x = 4, 43 = 43 

or 64 = 64 

Therefore, both members of an equation can be raised to the same power 
without destroying the equality. 
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7 Like roots of equal numbers are equal. 

example 7 If x - x, 
then 
because, if x = 4, 
or 

\fx = y/x 

2 = 2 

Therefore, like roots of both members of an equation can be extracted 
without destroying the equality. 

5 • 3 NOTATION 

In order to shorten the explanations of the solutions of various equations, 
we shall employ the letters A, S, M, and D for “add,” “subtract,” "multiply,” 
and “divide,” respectively. Thus, 

A: 6 will mean “add 6 to both members of the equation.” 
S: — 6x will mean “subtract — 6x from both members of the equation.” 
M: —3a will mean “multiply both members of the equation by —3a.” 
D: 2 will mean “divide both members of the equation by 2.” 

5 -4 THE SOLUTION OF EQUATIONS 

A considerable amount of time and drill must be spent in order to become 
proficient in the solution of equations. It is in this branch of mathematics 
that you will find you must be familiar with the more elementary parts of 
algebra. 

Some of the methods used in the solutions are very easy—so easy, in 
fact, that there is a tendency to employ them mechanically. This is all very 
well, but no one should let himself become so mechanical that he forgets 
the reason for performing certain operations. 

We shall begin the solution of equations with very easy cases and attempt 
to build up general methods of procedure for all equations as we proceed to 
the more difficult problems. 

If you are studying equations for the first time, you are urged to study the 
following examples carefully until you thoroughly understand the methods 
and the reasons behind them. 

example 8 Find the value of x if x — 3 = 2. 
solution In this equation, it is seen by inspection that x must be equal 

to 5. However, to make the solution by the methods of algebra, 
proceed as follows: 

Given x — 3 = 2 
A: 3, x = 2 + 3 (Axiom 1) 
Collecting terms, x = 5 
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examples Solve for e if e + 4 = 12. 
solution 

Given 
S: 4, 
Collecting terms. 

e + 4 = 12 
e = 12 - 4 
e = 8 

(Axiom 2) 

example 10 Solve for i if 3r + 5 = 20. 
solution 

Given 
S: 5, 
Collecting terms, 
D: 3, 

3z + 5 = 20 
3z = 20-5 
3i = 15 
i = 5 

(Axiom 2) 

(Axiom 4) 

example 11 Solve for r if 40/- — 10 = 15r + 90. 
solution 

Given 
S: 15r, 
A: 10, 
Collecting terms, 
D: 25, 

40r - 10 = 15r + 90 
4Ur - 10 - 15r = 90 

40r - 15r = 90+10 
25r = 100 
r = 4 

(Axiom 2) 
(Axiom 1) 

(Axiom 4) 

SECTION 
5 • 3 
TO 

SECTION 
5 • 5 

From the foregoing examples, it will be noted that adding or subtracting 
a term from both members of an equation is equivalent to transposing that 
number from one member to the other and changing its sign. This fact leads 
to the following rule: 

Rule A term can be transposed from one member of an equation to the 
other provided that its sign is changed. 

By transposing all terms containing the unknown to the left member and 
all others to the right member, by collecting terms and dividing both mem¬ 
bers by the numerical coefficient of the unknown, the equation has been 
solved for the value of the unknown. 

5 ■ 5 CANCELING TERMS IN AN EQUATION 

example 12 Solve for x if x + y = z + y. 
solution 

Given x + y = z + y 
S: y, x = z (Axiom 2) 

The term y in both members of the given equation does not appear in the 
next equation as the result of subtraction. The result is the same as if the 
term were dropped from both members. This fact leads to the following rule: 
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Rule If the same term preceded by the same sign occurs in both members 
of an equation, it can be canceled. 

5 -6 CHANGING SIGNS IN AN EQUATION 

example 13 Solve for x if 8 - x = 3. 
solution 

Given 8 — x = 3 
S: 8, —x = 3 — 8 (Axiom 2) 
M: — 1, x - - 3 + 8 (Axiom 3) 
Collecting terms, x = 5 

Note that multiplication by —1 has the effect of changing the signs of all 
terms. This gives the following rule: 

Rule The signs of all the terms of an equation can be changed without 
destroying the equality. 

Although the foregoing rules involving mechanical methods are valuable, 
you should not lose sight of the fact that they are all derived from funda¬ 
mentals, or axioms, as outlined in Sec. 5 • 2. 

5 • 7 CHECKING THE SOLUTION 

If there is any doubt that the value of the unknown is correct, the solution 
can be checked by substituting the value of the unknown in the original 
equation. If the two members reduce to an identity, the value of the unknown 
is correct. 

example 14 Solve and test 3i + 14 + 2i — i + 26. 
solution 

Given 3i + 14 + 2i = r + 26 
Transposing, 3i + 2i — i = 26 — 14 
Collecting terms, 4¿ = 12 
D: 4. i = 3 
Test by substituting i = 3 in given equation, 

check (3 • 3) + 14 + (2 • 3) = 3 + 26 
9 + 14+ 6 = 3 +26 

29 = 29 

PROBLEMS 5 • 1 

Solve for the unknown in the following equations: 
1 3x - 6 = 6 
3 k - 10 = 5 + 4£ 
5 6p + 3 — 2p = 27 

2 40 — 1 = 30 + 3 
4 I - 91 = — 61 — 2 
6 16 — 9p = 5/i— 12 
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7 1177 - 22 = 477 + 13 8 5M + 2 = 3 + 4M 
9 21 — 15ZZ? = — 8ZZ? — 7 10 27Q + 22 = 30 + 17Q 

11 8« - 5(4« + 3) = -3 - 4(2a - 7) 
12 3(A - 2) - 10(Ä - 6) = 5 
13 4 + 3(E - 7) = 16 + 2(5E + 1) 
14 4(Æ - 5) - 3{K - 2) = 2(K - 1) 
15 0 = 18 - 4Q + 27 + 9Q - 3 + 16Q 
16 25Z?, - 19 - [3 - (4Z?! - 15)] - 3Ri + (6Ri + 21) = 0 
17 19 - 5Z(4Z + 1) = 40 - 10Z(2Z - 1) 
18 (</> + 5)(^> - 4) + 4«2 = (5<> + 3)(<i> - 4) + 2^ - 4) + 64 
19 6(0 - 1X0 - 2) - 4(0 + 2X0 + 1) = 2(0 + 1X0 - 1) - 24 
20 18 - 3Z(2Z+1) - [3 - 2(Z+2\Z- 3)] = 18 — 6Z-4(Z- 5XZ+ 2) 

5 -8 FORMING AND SOLVING EQUATIONS 

As previously stated, we are continually trying to express certain laws and 
relations in the language of mathematics. 

examples 
WORDS 

The sum of the voltages E and e 
The difference between resistances R 

and Äi 
The excess of current Zi over current Z2
The number of inches in /"ft 
The number of cents In d dollars 
The voltage E is equal to the product of 

the current Z and the resistance R 

ALGEBRAIC SYMBOLS 

E + e 

R — Ri 
Ii — Z2 
12/ 
lOOrf 

E = IR 

The solution of most problems consists in writing an equation that con¬ 
nects various observed data with known facts. This, then, is nothing more 
than translating from ordinary English, or words, into the symbolic language 
of mathematics. In relatively simple problems the translation can be made 
directly, almost word by word, into algebraic symbols. 

example 15 Five times a certain voltage diminished by 3, 
5 X E - 3 

gives the same result as the voltage increased by 125. 
= E + 125 

That is, 5E - 3 = E + 125 
or E = 32 V 

example 16 What number increased by 42 is equal to 110? 

x + 42 = 110? 
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check 

That is, X + 42 = 110 
or X = 68 
68 + 42 = 110 

It is almost impossible to lay down a set of rules for the solution of general 
problems, for they could not be made applicable to all cases. However, no 
rules will be needed if you thoroughly understand what is to be translated 
into the language of mathematics from the wording or facts of the problem 
at hand. The following outline will serve as a guide: 

1 Read the problem carefully so that you understand every fact in it and 
recognize the relationships between the facts. 

2 Determine what is to be found (the unknown quantity), and denote it 
by some letter. If there are two unknowns, try to represent one of them in 
terms of the other. If there are more than two unknowns, try to represent all 
but one of them in terms of that one. 

3 Find two expressions which, according to the facts of the problem, 
represent the same quantity, and set them equal to each other. You can 
then solve the resulting equation for the unknown. 

PROBLEMS 5 • 2 

1 The sum of two voltages is E V. One voltage is 75 V. What is the other? 
2 The difference between two resistances is 10.5 2. One resistance is 

R SI. What is the other? 
3 How great a distance d will you travel in t hours (hr) at r miles per hour 

(mi/hr)? 
4 What is the fraction /whose numerator n is 3 less than its denominator? 
5 An electric timer has a guarantee of y years. We have been using it for 
t years. For how many years longer will the guarantee apply? 

6 An oscilloscope is guaranteed for q years, and it has been in service for 
m months. How much longer is it covered by the guarantee? 

7 At what speed must a missile be traveling to cover Z miles in t minutes 
(min)? 

8 From what number must 8 be subtracted in order that the remainder 
may be 27? 

9 If a certain voltage is doubled and the result is diminished by 15, the 
remainder is 205 V. What is the voltage? 

10 The volume of a parts container is v cubic inches (in.3). Express the 
height h in inches if the width is w in. and the length is I in. 

11 Write algebraically that the current is equal to the voltage divided by 
the resistance. 

12 Write algebraically that the power dissipated by a resistor is equal to 
the square of the current multiplied by the resistance. 

13 A stock room is twice as long as it is wide, and its perimeter is 72 ft. 
Find its length and width. 
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14 A multimeter and oscilloscope together cost $574. The oscilloscope 
costs $356 more than the meter. Find the cost of (a) the oscilloscope 
and (ò) the multimeter. 

15 Find the three sides of a triangle whose perimeter is 23.5 ft if one 
side is 6.5 ft shorter than the second side, and one-half the third 
side. 

16 The sum of the three angles in any triangle is 180°. The smallest angle 
in a given triangle is one-half the second angle and 52° smaller than 
the largest angle. How many degrees does each angle contain? 

17 Write algebraically that the square on the hypotenuse A of a right tri¬ 
angle is equal to the sum of the squares on the other two sides, which 
are identified as a and b. 

18 The sum of two consecutive numbers is 31. What are the numbers? 
19 The sum of three consecutive numbers is 192. What are the numbers? 
20 Write algebraically that the product of the impressed EMF E and the 

resultant current I in a circuit is equivalent to the square of the EMF 
divided by R, the resistance in the circuit. 

PROBLEMS 
5 • 2 
TO 

SECTION 
5 • 9 

5 • 9 LITERAL EQUATIONS—FORMULAS 

A formula is a rule, or law, generally pertaining to some scientific relation¬ 
ship expressed as an equation by means of letters, symbols, and constant 
terms. 

example 17 The area A of a rectangle is equal to the product of its base b 
and its altitude h. This statement written as a formula is 

A - bh 

example 18 The power P expended in an electric circuit is equal to its cur¬ 
rent I squared times the resistance R of the circuit. Stated as 
a formula 

P = PR 

The ability to handle formulas is of the utmost importance. The usual for¬ 
mula is expressed in terms of other quantities, and it is often desirable to 
solve for any quantity contained in a formula. This is readily accomplished 
by using the knowledge gained in solving equations. 

example 19 The voltage E across a part of a circuit is given by the current I 
through that part of the circuit times the resistance R of that 
part. That is, 

E = IR 

Suppose E and I are given but it is desired to find R. 
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Given E = IR 

D: Z, j = R (Axiom 4) 

or Ä = T 

Similarly, if we wanted to solve for I, 

Given E — IR 

D: R, = I (Axiom 4) 

example 20 Solve for I if e = E — IR. 
solution 

Given e = E — IR 
Transposing, IR = E — e 

D: R, 1 = (Axiom 4) 
n 

example 21 Solve for C if Xc = _ • 
solution 

C - 1
{c - 2^fC 

1 = o Àv (Axiom 4) 

C = * (Axiom 3) 

It will be noted from the foregoing examples that if the numerator of a 
member of an equation contains but one term, any factor of that term may 
be transferred to the denominator of the other member as a factor. In like 
manner if the denominator of a member of an equation contains but one 
term, any factor of that term may be transferred to the numerator of the 
other member as a factor. These mechanical transformations simply make 
use of Axioms 3 and 4, and you should not lose sight of the real reasons 
behind them. 

Given 

D: Xc, 

M: C. 

PROBLEMS 5 • 3 

Given: 

1 Q = CV 

2 1 = f 

Solve for: 

C and V 

E and Z 
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R- = Z2 — X23 

4 

5 

R¿ = R\ — Ri — R;i 6 

7 

C = 2^r 8 

9 

10 

11 

S = 2^rh 12 

13 

14 

15 

16 

17 

18 F 
Hi 

H = 4 A 

T = ph + 2A 

EJS = Eplp 

R = 

L 2^f 

r _ Rm 
K 

U icL 

R  = ^ 

N _ EsNp 
Ep 

C — *_ 
“ 2TrfXc

Lv 

19 R = 

20 p — p 

21 t = 
ce 

22 h = ^ 
2g 

23 Vo = 2V- Vt

24 n = ^-
¿77 

25 A = 

26 g = 
occ 

27 

Z2 and X2

P and Z2

R, K, and m 

Ri, Ri, and R.i 

X and V 

r and w 

L, Q, and w 

XL and f 

Xc and f 

r and h 

</> and A 

Np, Es, and Ep

E, L, and v 

h and A 

Es

F, H. and i 

I, E, and e 

gtn 

8 and w 

g and V2

Vand Vi 

r3

l, w, and A 

Zi, F, R, and r 

SECTION 
5 ■ 9 
TO 

PROBLEMS 
5 • 3 

53 



EQUATIONS 

4 77- n-m 

29 Rl = £b ~ Ebf eb, and i 
I 

30 t = F) T and F 

31 R = 4 I, p, and cP 
a-

32 PF = ~ R and X 
A 

__ „ 0.0884ÆA(n - 1) . . 
33 C - -H-- 4 and n 

a 

34 M=k^L1L2 k 

35 zr = ~b C, and R 

36 E eI T 
2kTK

37 u = ß 
ya 

P P 
38 P™ 

r  no r  ni 

39 « 

40 Eb = Vb + Vpt
w 

41 V2 = (1 - ^LC2)V3 C2

A h + 2b , 42 4a = ——- b 
V 

43 Q = Ivp 4- Inn In

44 G„ = G + gm
1 + n 

5 “U1 " C(R} + RJ 

note When solving numerical problems which involve the solution of for¬ 
mulas, always solve the formula algebraically for the wanted factor before 
substituting the numerical values. This procedure permits you to check 
your work more easily, because the letters retain their identity through the 
various algebraic procedures, whereas once numbers are added, multiplied, 
etc., their identity is lost, and your audit becomes more difficult. 

P2 
46 The power P in any part of an electric circuit is given by P — W, in 

n 
which E is the EMF applied to that part of the circuit and R is the re-
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sistance of that part. What is the resistance of a circuit in which 1.21 W 
is expended at an EMF of 110 V? 

47 The voltage drop E across any part of a circuit can be computed by the 
formula E = IZV, where I is the current in amperes through that part 
of the circuit and Z is the impedance in ohms of that part. What is the 
impedance of a circuit in which a voltage drop of 460 V is produced by 
a current flow of 0.115 A? 

48 To find the frequency/of an alternator in hertz (Hz), that is, cycles per 
second, the number of pairs of poles P is multiplied by the speed of the 
armature S in revolutions per second (rev/sec), f = PS. A tachometer 
connected to the rotor of a 60-cycle alternator reads 3600 revolutions 
per minute (rev/min). How many poles has the alternator? 

49 For radio waves, the relationship between frequency / in megahertz 
984 (MHz) and wavelength Ä in feet is expressed by the formula / = —r— . 
À 

What is the wavelength of a radio wave at 60 MHz? 
50 The length of a broadband dipole Lm  used for television reception can 

be computed by the formula Lm = P2P- in., where / is the frequency 

in megahertz. The folded dipole in Fig. 5 • 1 is 31.4 in. For what fre¬ 
quency was it constructed? 

PROBLEMS 
5 • 3 
TO 

SECTION 
5 • 10 

Fig. 5 • 1 Folded Dipole of 
Prob. 50 

5 • 10 RATIO AND PROPORTION 

Because proportions are special forms of equations, it is expedient to look 
now at the twin subjects ratio and proportion. 
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A ratio is a comparison of two things expressed in one of two ways: first, 
the “old-fashioned” method, a-.b, pronounced “a is to b"; and second, as 

found in newer books, . If the ratio of x to y is 1 to 4, or 4-, then x is one-
b 4 

quarter of y. Alternatively, y is four times as great as x. 

example 22 Write the ratio of 25 cents («) to $3.00. 
solution 25« to $3.00 may be written simply as 25«: $3.00, but this 

does not tell us much. It is more helpful to convert both quan¬ 
tities to the same units: 

25« 25« 1 
$3.00 ~ 300« “ 12 

Note that the two parts being compared are given the same units, in this 
case cents, so that when the simplification is performed, not only the num¬ 
bers but also the units are canceled. Thus a true ratio is a “pure,” or dimen¬ 
sionless, number. Notice also that a ratio may be an integer; that is, a frac¬ 
tion whose denominator is 1. 

PROBLEMS 5 • 4 

Write as a fraction the ratio of: 

1 3 in. to 12 in. 2 12 square feet (ft2) to 18 ft2
3 15,000 Q to 12,000 ß 4 $5.00 to 25« 
5 Write two different sets of numbers in the ratio 2:3. 
6 Write two different sets of numbers in the ratio 0.125:1. 
7 A recipe for ceramic insulators calls for 8 parts of type A clay to 24 parts 

of type B. What is the ratio of type A to type B? 
8 In Prob. 7, what is the ratio of the weight of type A to the weight of the 

total mixture? 
9 The mechanical advantage (MA) of any machine is the ratio of load 

moved to effort applied. What is the MA of a system in which 24 pounds 
(lb) of effort just starts motion of a 768-lb load? 

10 In a certain alloy, 55% of the material is copper and 22% is zinc. What 
is the ratio of zinc to copper? 

Just as ratios compare two things, so proportions are equalities of pairs 
of ratios. 

When we draw a map to scale, the proportions on the map should equal 
those on the ground. If the scale is 1 in. to 10 mi, then a trip which is 3 in. on 

the map must be 30 mi on the ground. The proportion here is 4-4^ = 42 ^4 
3 in. 30 mi 

and, since the units cancel, our true proportion is an equality of two pure 

numbers. We could also write this proportion as , 4 'n‘ = ~ 'n' ■ Note that 
10 mi 30 mi 

it is essential that the units on one side of the proportion be equal to those 
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on the other side. This provides one good way of checking your work. If you 
perform a wrong operation such as multiplying instead of dividing, you will 
find that your units will reveal an error. The solution may read "inches/mile = 
inch miles” and such an unbalance of units is a sure indication that you have 
made an error. 

The usual purpose of proportions is to solve one part when the other three 
parts are known. 

IO /-
example 23 Given the proportion — — solve for a. 

a 5 
solution Obeying the usual rules of equations, 

18 X 5 = 6 X a 
a — 15 

In the older form of writing ratios and proportions, ~ would be 
b d 

written a:b: :c:d, and pronounced “a is to b as c is to d." The elements on 
the outsides of the proportion were called the “extremes,” and those in the 
middle the “means." Based on these definitions, you can prove the old law 
of proportions: 

Rule In a proportion, the product of the means equals the product of the 
extremes. 

PROBLEMS 5•5 

Find the missing term in each of the following proportions: 

i ¿ _ ? 2 3 - ? 3 ? 40
8 16 7 56 15 3' 

4 80 _ 60 5 X _ 60 6 5 _ 0.2 
? 12 90 “ 360 i “ 36 

7 6 _ 9 _ 0.6 0.4 0.007 Q 
IR 12 1.2 d 0.200 - 0.04 

10 là = Z 
Z 4 

5-11 VARIATION AND PROPORTIONALITY 

Often, in the study of electronics, you will hear such expressions as “the 
current is proportional to the voltage and inversely proportional to the resist¬ 
ance" and "the force is jointly proportional to the charges and inversely 
proportional to the square of the distance between them." 

Sometimes an equivalent expression is used: "the current varies directly 
as the voltage,” etc. 

Two forms may be used to express mathematically the words “the current 
varies as the voltage." The first uses the symbol of proportionality: I x E. 
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The second substitutes for the symbol or the equivalent k, where k is the 
“konstant” of proportionality: I = kE. Other symbols such as b. c, n, etç., 
also are used as constants. 

Similarly, the expression “the current is inversely proportional to the 

resistance” may be written Icc^,orl = k^,or simply, I = 
n n n 

"Jointly proportional” means "proportional to the product,” so that "the 
force is jointly proportional to the masses” may be written Fee 7nim2 or 
F = km\m2. 

Often, past experience, tables, measurements, as well as calculations, 
may reveal the value of the constant of propörtionality. For example, we know 
that the circumference of a circle is proportional to its radius. We may write 
this C a R, or C = kR. However, from previous knowledge, we can replace 
the general constant k by the known constant of proportionality 2tt, and we 
can write C = 2vR. 

example 24 If a varies directly as p and if a = 8 when p = 4, what will be 
the value of a when p = 7? 

solution a ce p = kp. We know that 8 = M, from which k — 2. Sub¬ 
stitute this value of k into the second condition: a — k x 7 = 
2 X 7 = 14. 

PROBLEMS 5 • 6 

Write the following expressions in "proportionality” form and in "equation” 
form: 

1 The distance D varies directly as the rate R. 
2 The cost C varies directly as the weight W. 
3 The capacitance C varies directly as the area A. 
4 The reactance XL varies jointly with the frequency f and the induct¬ 

ance L. 
5 The capacitive reactance Xc varies inversely as the capacitance C. 
6 The resistance varies directly as the length I and inversely as the cross-

sectional area A. 
7 The period Tot vibration of a reed is directly proportional to the square 

root of the length I. 
8 The volume of a sphere V is proportional to the cube of its radius r. 
9 The volume of a gas V varies inversely as the pressure P. 

10 The ratio of the similar areas Ax and A2 is proportional to the square of 
the ratio of corresponding lengths /x and l2. 

11 The illumination L of an object varies inversely as the square of the 
distance d from the source of light. 

12 If the current I varies directly as the voltage E and if 1 = 0.5 A when 
E = 30 V, what will be the value of / when E = 75 V? 

13 In a certain varistor the current is proportional to the square of the 
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voltage. If I = 0.006 A when E = 110 V, what voltage will produce a 
current of 1.5 A? 

14 The resistance R of a wire varies directly as the wire length I and in¬ 
versely as the square of the wire diameter d. If R = 1.02 12 when 
I = 1000 ft and d = 0.102 in., what will be the resistance of a 500-ft 
length of wire 0.057 in. in diameter? 

15 The load that a beam of given depth can carry safely is directly pro¬ 
portional to its width and inversely proportional to its length. If a beam 
25 ft long and 2 in. wide can support 25,000 lb, what load could be 
supported by a beam of identical thickness 60 ft long and 3 in. wide? 
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If you have not yet learned to operate a slide rule, now is a good time to begin. 
The methods explained in this chapter will not only allow you to make ac¬ 
curate computations with cumbersome numbers but will be of considerable 
assistance in obtaining correct answers from your slide rule calculations. 

The slide rule is an instrument, or tool, designed for the purpose of saving 
time and labor in calculating. Every technical man should be proficient in the 
operation of some type of slide rule. The solution of every practical problem, 
when a concrete answer is desired, eventually reduces to an arithmetical 
computation. Valuable time is wasted in performing a series of multiplica¬ 
tions, divisions, square roots, etc., with a pencil and paper when there is 
available an instrument that will do the work satisfactorily in a fraction of the 
time and with a fairly high degree of accuracy. Very few people enjoy per¬ 
forming numerical computations simply for the joy of "figuring.” The prac¬ 
tical man wants concrete answers; therefore, he should use whatever tools 
or devices are available to assist him in arriving at those answers with a 
minimum expenditure of time and effort. 

6 • 1 TYPES OF SLIDE RULE 

A complete description of various slide rules or of a particular type of rule is 
not within the scope of this book. Briefly, the slide rule is a mechanical equiv¬ 
alent of a table of logarithms. In the modern sense the slide rule is a mechan¬ 
ical analog computer consisting of a number of scales so graduated and 
arranged that multiplication, division, raising to powers, extracting roots, 
and many other operations can be performed with facility. 

Types of slide rule range from inexpensive beginner's slide rules to those 
comparable to calculating machines. Most of them are designed for use in 
general mathematical operations; some are designed especially for use in 
specific professions or trades. 

No attempt is made here to advise you as to just what type of rule is best 
suited to your use. If you are attending a technical school, your instructors 
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are qualified to advise as to the type of rule they believe best. If you are pro¬ 
fessionally employed, your technical associates will be able to assist in your 
selection of a rule. 

Among the many types developed, the Cooke Radio Slide Rule (Fig. 6 • 1) 
has met with moderate success. This rule employs a minimum number of 
scales but at the same time allows almost as wide a mathematical scope as 
may be desired. The scales have been designed and arranged for the express 
purpose of completing the more common electronics and electrical problems 
in a simple and straightforward manner. 

Fig. 6 • 1 Front and Back Views 
of Cooke Radio Slide Rule 
(Courtesy of Keuffel and Esser 
Company) 

Instruction books are furnished with all slide rules; thus, the beginner 
needs no instructor but merely a reasonable amount of practice in order to 
become proficient in using the rule. 

It is therefore strongly recommended that, if you do not have a slide rule, 
you acquire one and learn to use it while studying this text. You will save 
many hours that otherwise would be devoted to figuring with a pencil and 
can be well spent in the study of mathematics or other essential subjects, to 
say nothing of lightening otherwise tedious computations. 

6 • 2 ACCURACY OF SLIDE RULES 

From an electronics or electrical viewpoint, except possibly where extremely 
accurate measurements are needed, the accuracy of a slide rule leaves 
nothing to be desired. Its accuracy is nearly proportional to the length of 
scales used. The scales of a ten-inch rule give results accurate to within 
1 part in 1000, or one-tenth of 1%. 

When practical electronic or electric circuits are taken into consideration, 
slide rule computations are more accurate than the circuit components in¬ 
volved. For example, the tolerances of resistors, inductors, and capacitors 
used in the usual radio and television receivers do well to average ±10%. 
Also, the average switchboard meter is seldom correct to within 3% through¬ 
out its calibration. Suppose we go into a store to buy a 10% tolerance, 
10,000-fi resistor and ask the salesman to check the resistance on his ohm¬ 
meter. If the resistance measures anywhere between 9000 and 11,000 Í2, 
which is within the ±10% tolerance, we should be satisfied. However, if his 
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ohmmeter has an accuracy within ±2%, he is to be congratulated on having 
a good meter. Because, in all probability, he does not know just how accurate 
the meter is, we leave the store hoping we have a resistor somewhere near 
the correct value. Actually, such a resistor would be entirely satisfactory for 
ordinary requirements, as we shall see later. 

Other circuit components, except those used in the laboratory, vary in 
much the same manner, and when temperature, humidity, and other varia¬ 
tions are taken into consideration, the results obtained with the slide rule 
more than meet all practical needs. 

From the foregoing, it might appear that mathematical accuracy in the 
calculation of electric circuits is unnecessary. Far from it—the laws of elec¬ 
tricity follow concise mathematical concepts, and we can construct circuit 
components and measuring equipment that are very precise. However, 
mainly for economic reasons, it is neither practical nor necessary to main¬ 
tain such a high degree of accuracy in average circuits. 

The important point is that we must first know how accurate our available 
circuit components and measuring equipment are and then depend upon 
this accuracy to a reasonable extent. Some students thoughtlessly make 
computations of quantities that have been found by measurements, instru¬ 
ment readings, etc., and carry the operations to several unnecessary decimal 
places. Moreover, this computation consumes a considerable amount of 
time; and worse still, the results often give a false impression of accuracy. In 
this connection, it is safe to assume that the constants of any electronic or 
electric circuit components or the calibration of meters, excluding precision 
measuring equipments, are generally not correct beyond three significant 
figures. 

6-3 SIGNIFICANT FIGURES 

In mathematics, a number is generally considered as being exact. For exam¬ 
ple, 220 would mean 220.0000, etc., for as many added zeros as desired. 
However, a meter reading, for example, is always an approximation. We 
might read 220 V on a certain switchboard type of voltmeter, but a precision 
instrument might show that voltage to be 220.3 V, and a series of precise 
measurements might show the voltage to be 220.36 V. It should be noted 
that the position of the decimal point does not determine the accuracy of a 
number. For example, 115 V, 0.115 kV, and 115,000 mV are of identical 
value and equally accurate. 

Any number representing a measurement, or the amount of some quan¬ 
tity, expresses the accuracy of the measurement. The figures required are 
known as significant figures. 

The significant figures of any number are the figures 1, 2, 3. 4.9, 
in addition to such ciphers, or zeros, as may occur between them or as may 
have been retained in properly rounding them off. 
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examples 0.00236 is correct to three significant figures. 
3.14159 is correct to six significant figures. 
980,000.0 is correct to seven significant figures. 
24. is correct to two significant figures. 
24.0 is correct to three significant figures. 
0.02500 is correct to four significant figures. 

PROBLEMS 6 • 1 

To how many significant figures have the following numbers been expressed? 

1 2.71828 2 0.00000314 
4 23.0055 5 1.00 
7 0.00001 8 6 28 
10 2726.375 

3 300,000 
6 1 
9 0.00002538 

6-4 ROUNDED NUMBERS 

A number is rounded off by dropping one or more figures at its right. If the 
last figure dropped is 6 or more, we increase the last figure retained by 1. 
Thus 3867 would be rounded off to 3870, 3900, or 4000. If the last figure 
dropped is 4 or less, we leave the last figure retained as it is. Thus 5134 
would be rounded off to 5130, 5100. or 5000. If the last figure dropped is 5, 
add 1 if it will make the last figure retained even; otherwise do not. Thus, 
55.70 = 55.8, but 67.60 = 67.6. 

6 • 5 DECIMALS 

Two important considerations arise in making computations involving 
decimals: 

1 A slide rule gives only the significant figures of the result of a mathe¬ 
matical operation. For example, suppose that we have performed some 
operation on the slide rule and read as the result the significant figures 432. 
Now the slide rule does not indicate whether this answer is 0.0432, 0.432, 
4.32, 4,320, 43,200, etc. Therefore, it becomes necessary for the slide rule 
operator to fix the decimal point; that is, the operator must first determine 
the approximate answer in order that he may use the more accurate figures 
taken from the slide rule scales. 

2 Unfortunately, electrical engineers and particularly electronics engi¬ 
neers are required to handle cumbersome numbers ranging from extremely 
small fractions of electrical units to very large numbers, as represented by 
radio frequencies. The fact that these wide limits of numbers are encoun¬ 
tered in the same problem does not simplify matters. This situation is be¬ 
coming more complicated owing to the trend to the higher radio frequencies 
with attendant smaller fractions of units represented by circuit components. 

For these reasons, in using a slide rule, the decimal point cannot be fixed 
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"by inspection” except in the simpler problems. Accordingly, many begin¬ 
ners interested in using the slide rule for solving electronics and electrical 
problems have become discouraged by the difficulty of placing the decimal 
points due to the above-mentioned wide range of numbers encountered in 
the average problem. 

The problem of properly placing the decimal point and thus reducing un¬ 
necessary work presents little difficulty to the man who has a working knowl¬ 
edge of the powers of 10. 

6 • 6 POWERS OF 10 

The powers of 10 are sometimes termed the “engineer’s shorthand.” A 
thorough knowledge of the powers of 10 and the ability to apply the theory 
of exponents will greatly assist in determining an approximation. If a slide 
rule is used with the powers of 10, the average problem reduces to the usual 
slide rule operations plus simple mental arithmetic. If a slide rule is not used 
for computation, the powers of 10 enable one to work all problems by using 
convenient whole numbers. Either offers a convenient method for obtaining 
a final answer with the decimal point in its proper place. 

Some of the multiples of 10 may be represented as shown in Table 6-1. 

power 
Table 6 • 1 number of 10 expressed in english 

0.000001 — IO“6 = ten to the negative sixth power 
0.00001 — 10 5 = ten to the negative fifth power 
0.0001 — 10 * = ten to the negative fourth power 
0.001 — 10 3 = ten to the negative third power 
0.01 = 10 2 = ten to the negative second power 
0.1 — 10 1 = ten to the negative first power 
1 = 10° — ten to the zero power 

10 = 10' = ten to the first power 
100 — 102 = ten to the second power 

1000 = 103 = ten to the third power 
10,000 = 10 1 = ten to the fourth power 

100,000 — 105 = ten to the fifth power 
1.000,000 = 106 = ten to the sixth power 

From the table it is seen that any decimal may be written as a whole number 
times some negative power of 10. This may be expressed by the following: 
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Rule express a decimal as a whole number times a power of 10, move 
the decimal point to the right and count the number of places to the original 
point. The number of places counted is the proper negative power of 10. 



examples 0.00687 = 6.87 x 10 3
0.0000482 = 4.82 x IO 5 

0.346 = 34.6 x IO 2

0.08643 = 86.43 x IO*3

SECTION 
6 6 
TO 

SECTION 
6 7 

Also, it is seen that any large number can be expressed as some smaller 
number times the proper power of 10. This can be expressed by the following 
rule: 

Rule To express a large number as a smaller number times a power of 10, 
move the decimal point to the left and count the number of places to the 
original decimal point. The number of places counted will give the proper 
positive power of 10. 

examples 435 = 4.35 x 102
964,000 = 96.4 x 103
6835.2 = 6.8352 x 103
5723 = 5.723 x 103

PROBLEMS 6 ■ 2 

Express the following numbers to three significant figures and write them as 
numbers between 1 and 10 times the proper power of 10: 

1 643,000 2 13.6 3 6534 
4 0.0963 5 0.000000009435 6 8,743.000 
7 0.367 8 59,235 9 250 x 10 3
10 0.000086 x 10« 
11 0.000399 x 10* 
12 0.0003995 x 10* 
13 259 x 10-« 
14 0.0314159 
15 276,492.53624 
16 1,254,325 x 10 12

17 0.00000010752 
18 0.00000814573 x 10 12

19 3,000,725 
20 0.00005555 x 10 3

6-7 MULTIPLICATION WITH POWERS OF 10 

In Sec. 4 • 3 the law of exponents in multiplication was expressed in the 
general form 

am • an — am+n (where a 0) 

This law is directly applicable to the powers of 10. 
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example 1 Multiply 1000 by 100,000. 
solution 1000 = 103 and 100,000 = 105

then 1000 x 100.000 = 103 x 105 = 103+5 = 10s

example 2 Multiply 0.000001 by 0.001. 
solution 0.000001 = IO“6 and 0.001 = IO-3

then 

0.000001 xO.OOl = 10-6x10 3= 10 «+<-3»= io-6-3= 10 » 

example 3 Multiply 23,000 by 7000. 
solution 23,000 = 2.3 x 104 and 7000 = 7 x 103

then 23,000 x 7000 = 2.3 x 104 x 7 x 103
= 2.3 X 7 x 10’ 
= 16.1 x 10’, or 161,000,000 

example 4 Multiply 0.000037 by 600. 
solution 0.000037 x 600 = 3.7 x IO-5 x 6 x 102

= 3.7 x 6 x 10 3
= 22.2 x IO 3, or 0.0222 

example 5 Multiply 72,000 x 0.000025 x 4600. 
solution 72,000 x 0.000025 x 4600 

= 7.2 x 104 X 2.5 x IO 5 X 4.6 X 103
= 7.2 x 2.5 x 4.6 x 102
= 82.8 x 102, or 8280 

You will find that by expressing all numbers as numbers between 1 and 
10 times the proper power of 10, the determination of the proper place for 
the decimal point will become a matter of inspection. 

PROBLEMS 6•3 

Multiply the following. Although all factors are not expressed to three sig¬ 
nificant figures, express answers to three significant figures as numbers 
between 1 and 10 times the proper power of 10. 

1 10,000 x 0.01 x 0.0001 2 0.00001 x 105 x 100 
3 0.0004 x 980 
4 0.00025 x 16 x 10 4 x 20 x 105
5 0.0000084 x 0.005 x 0.00017 
6 35,000,000 x 680 x 10'9 x 5.5 x IO-5
7 9.34 x 10 12 x 628.000 x 0.000053 x IO-3
8 500 x IO"6 x 782 x io4 x 0.000037 x 10 8
9 5,960.000 x 0.000888 x 604 x 10"» 
10 2.846 x 103 x 0.009438 x 10« x 0.6848 x 104
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The alternating-current inductive reactance of a circuit or an inductor is 
given by 
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X,, = 2rfL 

where XL = inductive reactance, 2 
f = frequency of alternating current, Hz 
L — inductance of circuit, or inductor, henrys (H) 

Compute the inductive reactance when: 

11 /= 60 Hz, L = 0.015 H 
12 /= 1000 Hz, L = 0.015 H 
13 f = 1,000,000 Hz, L = 0.015 H 
14 f= 60 Hz, L = 1.5 H 
15 10,000 Hz, ¿ = 0.0000035 H 

6 • 8 DIVISION WITH POWERS OF 10 

The law of exponents in division (Secs. 4 • 9 to 4 • 11) can be summed up in 
the following general form: 

am— = a'"-’ 
an

example 6 

or 

example 7 

or 

example 8 

or 

It is apparent that powers of 10 which are factors that have the same ex¬ 
ponents in numerator and denominator can be canceled. Also, you will note 
that powers of 10 which are factors can be transferred at will from denomi¬ 
nator to numerator, or vice versa, if the sign of the exponent is changed 
when the transfer is made (Sec. 4 • 11). 

(where a 0) 

10-’ 

72,000 _ 72 x IO 1
8 X 10“ 0.0008 

10"“ = 13 X 10" = 13 X 1 = 13 

= 13 

72,000 72 X 10’ 
0.0008 ’ 8 X 10“ 

72 
- X iœ“ = 9 X 10’ 

o 

169 
13 X

72 = X 103 x ¡o» = 9 x 107 
O 

10-3=102

192. = 105 x 10“ = 
103 A 1U

169 x 10" 
13 x 105

169 x TO5

6-9 APPROXIMATIONS 

Multiplying 37 by 26 is very close to multiplying 40 by 25. The approximation 
1000 is “within the order” of the actual product, 962. Usually, approxima-
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tions which are within reason may be arrived at, and they serve as a guide 
to what the actual answer should be. 

Such approximations should be made quickly before making slide rule or 
other exact calculations. The ‘‘order’’ of the calculated answer should be of 
the “order” of the approximation. If you expect an answer of the order of 
1000 and you actually come up with 940 or 1050, the answer is probably 
correct. If, however, you arrive at an answer of 9.62, you should suspect 
that you have lost a factor of 102 somewhere, and you should check out your 
calculations. Although approximations will not guarantee the correctness of 
the calculated answer, they will reveal possible errors. 

6 -10 COMBINED MULTIPLICATION AND DIVISION 

Combined multiplication and division is most conveniently accomplished by 
alternately multiplying and dividing until the problem is completed. 

example 9 Simplify 

0.000644 X 96,000 x 3300 
161,000 x 0.00000120 

solution First convert all numbers in the problem to numbers between 1 
and 10 times their proper power of 10, thus: 

6.44 X 10 4 X 9.6 X 104 X 3.3 x 103 6.44 x 9.6 x 3.3 X 104
1.61 X 105 X 1.2 X IO"« - 1.61 x 1.2 

The problem as now written consists of multiplication and division of simple 
numbers. The answer approximates to 

6 x 10 X 3 x 104 _ QQ IQ., 
2x1 “ 

If the remainder of the problem is computed by slide rule, then the answer 
1056 from the slide rule can easily be adjusted to read 105.6 x 104, or 
1.056 x 106. If the problem is solved without the aid of a slide rule, there 
are no small decimals and no cumbersome large numbers to handle. 

Instead of first finding the product of the numerator and dividing it by 
the product of the denominator, it is best to divide and multiply alternately. 
Thus, we divide 6.44 by 1.61 to obtain 4. Then we multiply this 4 by 9.6 to 
obtain 38.4. We then divide 38.4 by 1.2, which results in a quotient of 32. 
Finally, we multiply 32 by 3.3, which results in a product of 105.6. Because 
we still have a factor of 104, the answer is 105.6 x 104. If we desire to ex¬ 
press the answer in powers of 10, we would write it 1.056 x 106, but written 
out, without the power of 10, it would be 1,056,000. 

The method of alternately dividing and multiplying offers the slide rule 
operator the advantage of working the problem straight through without the 
necessity of jotting down the product of the factors of the numerator before 
proceeding to find the product of the denominator factors. 
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In radio and electrical problems, many formulas are used that involve re¬ 
ciprocals, such as 

X - 1
C ~ 2irfC 

f = 1 

The reciprocal of a number is 1 divided by that number. Such problems 
present no difficulty if the powers of 10 are used properly. 

example 10 Simplify---
p y 40,000 X 0.00025 x 125 x 10’6 

solution First convert all numbers in the denominator to numbers be¬ 
tween 1 and 10 times their proper power of 10. thus: 

_1__ 104
4 x 104 x 2.5 x IO -4 x 1.25 x 10 4 4 x 2.5 x 1.25 

Multiplying the factors of the denominator results in 

104
12.5 

Instead of writing out the numerator as 10,000 and then divid¬ 
ing by 12 5, we could write the numerator as two factors in 
order better to divide mentally. That is, we can write the prob¬ 
lem as 

102 x 102 ioO 
-—-or-
12.5 12.5 

X 102 = 8 x 102 

This method is of particular advantage to the slide rule operator because of 
the ease of estimating the final result. 

If the final result is a decimal, rewriting the numerator into two factors 
allows fixing the decimal point with the least effort. 

example 11 Simplify---
P y 625 x 104 x 2000 x 64,000 

solution First convert all numbers in the denominator to numbers be¬ 
tween 1 and 10 times their proper power of 10, thus: 

_1__ IO 13

6.25 x 10« x 2 x 103 x 6.4 x 104 6.25 x 2 x 6.4 

Multiplying the factors in the denominator results in 
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10 » 
80 

Instead of writing out the numerator as 0.0000000000001 
and dividing it by 80, we write the numerator as two factors in 
order better to divide mentally: 

If the value of the denominator product were over 100 and less than 1000, 
we would break up the numerator so that one of the factors would be 103 or 
1000, and so on. This method will always result in a final quotient of a num¬ 
ber between 1 and 10 times the proper power of 10. 

PROBLEMS 6 ■ 4 

Perform the indicated operations. Round off the figures in the results, if 
necessary, and express answers to three significant figures as a number 
between 1 and 10 times the proper power of 10: 

0.00025 
500 0.000125 X 80,000 

420 X 0.036 
0.0090 

0.6043 
5763 

0.256 X 338 X IO“» 
865,000 6.28 X 452.000 x 0.000155 

2804 x 74.23 
0.0009006 x 0.008040 

8 _1000_ 
248,000 x 5630 x 10 3 x 0.0000903 x 102

9 _1 X 106_ 
6.28 x 103 x 2500 x 103 x 0.25 x 10’« 

10 ---
6.28 x 400 x 10« x 50 x IO12 

150 x 216 x 178 
4.77 x 102 x 1.23 x 6.03 x 104

- 65.3 x IO 6 x 504 x 10« x 12,700 
312 x 10« x 0.007 x 6.82 

The alternating-current capacitive reactance of a circuit, or capacitor is given 
by the formula 

where Xc = capacitive reactance, ß 
f = frequency of the alternating current, Hz 
C = capacitance of the circuit, or capacitor, farads (F) 
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Compute the capacitive reactances when 

13 f = 60 Hz, C = 0.000004 F 
14 f = 28,000.000 Hz, C = 0.000000000025 F 
15 f = 225,000.000.000.000 Hz, C = 0.000000000563 F 

6- 12 THE POWER OF A POWER 

It becomes necessary, in order to work a variety of problems utilizing the 
powers of 10, to consider a few new definitions concerning the laws of ex¬ 
ponents before we study them in algebra. This, however, should present no 
difficulty. 

In finding the power of a power the exponents are multiplied- That is, in 
general, 

(am)" = amn (where a 0) 

example 12 1003 = 100 x 100 x 100 = 1,000,000 = 10« 
or 1003 = 102 x 102 x 102 = 106
then 1003 = (102)3 = 102x3 = 10« 

Numbers can be factored when raised to a power in order to reduce the 
labor in obtaining the correct number of significant figures, or properly fixing 
the decimal point. 

example 13 19.0003 = (1.9 x 104)3
= 1.93 x 104x3 = 6.859 x 10 12

example 14 0.00000752 = (7.5 x IO“«)2 7.52 x 10« <s»x2
= 56.25 x IO’ 12 = 5.625 x 10 11

In Example 13, 19,000 was factored into 1.9 x 104 in order to allow an 
easy mental check. Because 1.9 is nearly 2 and 23 = 8, it is apparent that 
the result of cubing 1.9 must be 6.859, not 0.6859 or 68.59. 

In Example 14. the 0.0000075 was factored for the same reason. We 
know that 72 = 49; therefore the result of squaring 7.5 must be 56.25, not 
0.5625 or 5.625. 

6-13 THE POWER OF A PRODUCT 

The power of a product is the same as the product of the powers of the fac¬ 
tors. That is, in general, 

(a6c)m = amhmcm

example 15 (10r> x 103)3 = 105x3 x IO3*3
= 10 15 x 10» = 1024

or (IO5 x 103)3 = (10s)3 = 10sx3 = 1024
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6 • 14 THE POWER OF A FRACTION 

The power of a fraction equals the power of the numerator divided by the 
power of the denominator. That is, 

example 16 / IQs V _ IO5*2 _ lQio 
\10’/ 103X2 1Q6 

The above can be solved by first clearing the exponents inside 
the parentheses and then raising to the required power. Thus, 

= (105-3)2 _ (1Q2)2 _ 1Q4 

6 15 THE ROOT OF A POWER 

The root of a power in exponents is given by 

= am+n (where a/0) 

example 17 \/25 x 10» = \/25 x \/ÏÔ» = 5 X 108+2 = 5 x IO4

example 18 ^125 x 10« = <T^5 x \!<I0« = 5 x IO6*3 = 5 x 102 

In the general case when m is evenly divisible by n, the process of extract¬ 
ing roots is comparatively simple. When m is not evenly divisible by n, the 
result obtained by extracting the root is a fractional power. 

example 19 \/10 f> = IO5*2 = 10^, or 102-5

Such fractional exponents are encountered in various phases of engineer¬ 
ing mathematics and are conveniently solved by the use of logarithms. How¬ 
ever, in using the powers of 10, the fractional exponent is cumbersome for 
obtaining a final answer. It becomes necessary, therefore, to devise some 
means of extracting a root whereby an integer can be obtained as an expo¬ 
nent in the final result. The means found is to express the number, the root 
of which is desired, as some number times a power of 10 that is evenly 
divisible by the index of the required root. As an example, suppose it is de¬ 
sired to extract the square root of 400,000. Though it is true that 

\/400,000 = \/4 x 105 = V4 x \W' = 2 x IO2 5

we have a fractional exponent that is not readily reduced to actual figures. 
However, if we express the number differently, we obtain an integer as an 
exponent. Thus, 

\/400,000 = V40 X 104 = \/40 x x/IÕ4 = 6.32 x 102
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It will be noted that there are a number of ways of expressing the above 
square root, such as 

x '400.000 = \/0.4 X 106

or 

x/4000 X 102

or 

V0.004 X 108

All are equally correct, but you should try to write the problem in a form that 
will allow a rough mental approximation in order that the decimal may be 
properly placed with respect to the significant figures. 

PROBLEMS 6■5 

Perform the indicated operations. When answers do not come out in round 
numbers, express them to three significant figures. 

1 (103)4 2 (IO 4)3 3 (102 X IO3)4

4 (4 X IO“4)2 5 (5 X 103)4 6 (3 X IO-2)3

7 (2 X IO4 X 8 X IO-3)2

8 ( 32 X IO3 V 
\ 8 X IO4 / 

9 \/0.0625 X 0.0004 

10 \/0.00036 X 0.009 

11 V36 X 102 X 25 X IO-2

12 ^27 X IO"3 X 8 X 1012

13 - 1 -6.28\/250 X IO’3 X IO 9

14 Z63 X 106 X 460 X 10-*2\2
\ 5.1 X IO"« ) 

The resonant frequency of a circuit is given by the formula 

f = - - Hz 
2tt^LÜ 

where f = resonant frequency, Hz 
L — inductance of circuit, H 
C = capacitance of circuit, F 

Compute the resonant frequencies when: 

15 L = 0.000045 H, C = 0.000000000250 F 
16 L = 0.000018 H, C = 100 x 10“‘2 F 
17 L = 8 x IO’6 H, C = 56.3 x 10 12 F 
18 L = 0.00023 H, C = 0.0000000005 F 
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19 L = 70.4 X 10-6 H, C = 250 x 10’« F 
20 L = 40 H, C = 7 x IO’« f 

6 • 16 ADDITION AND SUBTRACTION WITH POWERS OF 10 

Sometimes it becomes necessary, when making calculations, to perform 
additions and subtractions with powers of 10. These present no difficulties 
if you remember that you are dealing with the addition and subtraction of 
terms as described in Sec. 3 • 7. For example, you would not write 
3x2 + 5x3 = 8x5, because 3x2 and 5x3 are unlike quantities. Similarly, you 
would not write 3-x 102 + 5 x 103 — 8 x 105, because 3 x 102 and 
5 x 103 are also unlike quantities. 

The foregoing addition of 3 x 102 + 5 x 103 can be performed by either 
of two methods. You can convert the numbers so that no powers of 10 are in¬ 
volved and write 300 + 5000 — 5300. Also, you can rewrite the terms to be 
added so that like powers of 10 are added, such as 3 x 102 + 50 x 102 — 
53 x 102, or 0.3 x 103 + 5 x 103 = 5.3 x 103. This is the same as adding 
like terms. 

example 20 Add 8.3 x 104 and 3.6 x 102. 
solution 8.3 x 104 = 83,000 = 830 x 102

3.6 x 102 = 360 = 3.6 x 102

83,360 = 833.6 x 102 = 8.336 x 104

PROBLEMS 6 6 

Perform the indicated operations. Express all answers (a) in ordinary form 
and (ò) to three significant figures as numbers between 1 and 10 times the 
proper power of 10. 

1 3 x 103 + 1 x 102 2 25 x IO6 + 3 4 x 103 
3 1.73 x IO 32 + 2.46 x 10'2 4 2 x 103 + 4 x IO-1
5 6.28 x IO6 - 159 x 10~3
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units and dimensions 

chapter 

As previously stated, the solution of every practical problem, when a con¬ 
crete answer is desired, eventually reduces to an arithmetical computation; 
that is, the answer reduces to some number. In order for this answer, or 
number, to have a concrete meaning, it must be expressed in some unit. For 
example, if you were told that the resistance of a circuit is 16, the informa¬ 
tion would have no meaning unless you knew to what unit the 16 referred. 

From the foregoing it is apparent that the expression for the magnitude 
of any physical quantity must consist of two parts. The first part, which is a 
number, specifies “how much”; the second part specifies the unit of meas¬ 
urement, or “what,” as, for example, in 16 2, 20 A, or 100 ft, the Í2, A, or ft. 

It is necessary, therefore, before beginning the study of circuits, to define 
a few of the more common electrical and dimensional units used in electrical 
and electronics engineering. 

7 • 1 SYSTEMS OF MEASUREMENT 

Over the years the systems by which we have made measurements have 
changed considerably. We do not often now deal with grains of corn or the 
length of a man's forearm. Occasionally the civil engineer surveying an an¬ 
tenna site will talk about "chains” when we would say “hundreds of feet,” 
but we in electronics are primarily concerned with three specific fields of 
measurement: distance-mass, time, and charge. The electrical quantities 
are fundamentally related to these, as you will discover if you study "higher” 
mathematics. 

Generally speaking, there are two main systems of measuring some 
quantities, whereas the units of other quantities are the same in both sys¬ 
tems. One of these systems is the so-called English system, which is widely 
used by engineers in English-speaking countries. The other is the inter¬ 
national metric MKS (meter-kilogram-second) system, which is used by more 
people than the English system and is becoming more widely used, even in 
the English-speaking parts of the world. It should be noted that in both the 
English and the MKS systems the unit of time is the second. 
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7 • 2 THE ENGLISH SYSTEM 

In the English system the standard unit of length is the yard (yd) which is a 
length of 3 ft. In this system most distances are expressed in feet and mass 
is measured in pounds. Some of the relations between units are 

12 inches (in.) = 1 foot (ft) 
3 feet (ft) = 1 yard (yd) 

5280 feet (ft) = 1 statute mile (mi) 
16 ounces (oz) = 1 pound (lb) 

2000 pounds (lb) = 1 ton 

7 ■ 3 THE MKS SYSTEM 

The meter-kilogram-second system is often referred to as the metric system. 
In this system the standard unit of length is the meter, which was originally 
intended to be one-millionth of the distance from the Equator to the North 
Pole measured along a meridian. The meter is abbreviated m. In the metric 
system mass is measured in kilograms, which is abbreviated kg. Some of the 
more common relationships between the metric units are 

1 millimeter (mm) = meter = 10-3 m 
1 centimeter (cm) = meter = 10-2 m 
1 kilometer (km) = 1000 meters = 103 m 

1 gram (g) = kilogram (kg) = IO“3 kg 

7 -4 RELATIONS BETWEEN THE SYSTEMS 

Since the metric system is based on a decimal plan and the English system 
is not, there is no one numerical factor or constant which can be used for the 
conversion of one system to the other. Although Table 6 in the Appendix 
contains some conversion factors, a few approximate equivalents are given 
for your convenience: 

1 inch (in.) = 2.540 centimeters (cm) 
1 foot (ft) = 0.3048 meter (m) 

1 meter (m) = 39.37 inches (in.) 
1 mile (mi) — 1.609 kilometer (km) 

1 kilometer (km) = 0.6214 mile (mi) 
1 kilogram (kg) = 2.205 pounds (lb) 

1 pound (lb) = 0.4536 kilogram (kg) 

If you are unfamiliar with the metric system, try to visualize these relation¬ 
ships for future convenience. What is the weight in kilograms of a loaf of 
bread in your community? What is the distance in kilometers from your home 
to your work? What is your height in centimeters? 

The units of time (seconds) and of electricity are identical in the two sys¬ 
tems, and we will now deal with them in more detail. 
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7 • 5 ELECTRICAL UNITS 

The volt is the practical unit of electromotive force (EMF), or electric poten¬ 
tial. Generally speaking, it is the potential difference which will cause a cur¬ 
rent of one ampere to flow through a resistance of one ohm. The symbols 
for voltage are E, e, V, and v, and the abbreviation for volts is V. 

The ampere is the practical unit of electric current. It is that amount of 
current which will flow through a resistance of one ohm when a potential of 
one volt is applied across the resistance. The symbol for current is I, and 
the abbreviation for amperes is A. 

The ohm is the practical unit of resistance. It is that amount of resistance 
which will permit a current of one ampere to flow when a potential of one volt 
is applied across the resistance. The symbol for resistance is R, and the ab¬ 
breviation for ohms is Q. 

The mho is the practical unit of conductance. It is the reciprocal of resist¬ 
ance, and its symbol is G. The relationship between ohms and mhos is 
given by 

G = mhos 

If resistance is thought of as representing the difficulty with which an 
electric current is forced to flow through a circuit, conductivity may be 
thought of as the ease with which a current will pass through the same cir¬ 
cuit. Note that the word "mho” is "ohm” spelled backward. 

The watt is the unit of electric power. The symbol for power is P, and the 
abbreviation for watts is W. In direct-current circuits the power in watts is 
the product of the voltage and the current, or 

P — EI \N 

The watthour is the unit of electric energy, and its abbreviation is Whr. It 
is the amount of energy delivered by a power of one watt over a period of 
one hour. 

The henry is the unit of inductance. A circuit, or inductor, is said to have 
a self-inductance of one henry when a counterelectromotive force of one 
volt is generated within it by a rate of change of current of one ampere per 
second. The symbol for inductance is L, and the abbreviation for henry is H. 

The farad is the unit of capacitance. A circuit, or capacitor, is said to have 
a capacitance of one farad when a change of one volt per second across it 
produces a current of one ampere. The symbol for capacitance is C, and the 
abbreviation for farad is F. 

7-6 FREQUENCY 

A current which reverses itself at intervals is called an alternating current. 
When this current rises from zero value to maximum value and returns to 
zero and then increases to maximum value in the opposite direction and 
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again returns to zero, it is said to have completed one cycle. The number of 
times this cycle is repeated in one second is known as the frequency of the 
alternating current. Thus, the average house current is 60 cycles per second 
(cps). The frequency of radio waves may be as high as several hundred 
million cycles per second. Note that frequency involves our other main unit, 
time, by measuring the number of events per second. In both the English 
and MKS systems, 

60 seconds (sec) = 1 minute (min) 
60 minutes (min) = 1 hour (hr) 

24 hours (hr) = 1 day (da) 

The International Electrotechnical Commission (IEC), the International 
Organization for Standardization (ISO), and the Conférence Générale des 
Poids et Mesures (GGPM) have adopted the name hertz (Hz) as the unit of 
frequency. 

1 hertz = 1 cycle per second 

7 • 7 RANGES OF UNITS 

As stated in Sec. 6 • 5, the fields of communication and electrical engineer¬ 
ing embrace extremely wide ranges in values of the foregoing units. For ex¬ 
ample, at the input of a radio receiver, we deal in millionths of a volt, whereas 
the output circuit of a transmitter may develop hundreds of thousands of 
volts. An electric clock might consume a fraction of a watt, whereas the 
powerhouse furnishing this power probably has a capability of millions of 
watts. 

Furthermore, two of these units, the henry and the farad, are very large 
units, especially the latter. The average radio receiver employs inductances 
ranging from a few millionths of a henry, as represented by tuning induct¬ 
ance, to several henrys for power filters. The farad is so large that even the 
largest capacitors are rated in millionths of a farad. Smaller capacitors used 
in radio circuits are often rated in terms of so many millionths of one¬ 
millionth of a farad. 

The use of some power of 10 is very convenient in converting to larger 
multiples or smaller fractions of the basic units, called practical units. 

7-8 DECIMAL MULTIPLIERS 

Some of the more common multiplier and their unit names are explained 
below, and all of them are shown in Table 7 • 1. 

milliunits The milliunit is one-thousandth of a unit. Thus, it takes 1000 
millivolts to equal 1 volt, 500 milliamperes to equal 0.5 ampere, etc. This 
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Table 7 • 1 
Decimal Multipliers 

power abbrevia-
number of 10 expressed in english prefix tion 

0.000000000000000001 = 10 lf! = ten to the negative eighteenth power = atto a 
0.000000000000001 — 10 15 = ten to the negative fifteenth power = femto f 

0.000000000001 = 10 12 = ten to the negative twelfth power = pico p 
0.000000001 = 10~9 = ten to the negative ninth power = nano n 

0.000001 = 10 6 = ten to the negative sixth power — micro g 
0.001 = 10 3 = ten to the negative third power = milli m 

1 = 10" = ten to the zero power — unit 
1000 = 103 = ten to the third power = kilo k 

1,000,000 = 10® = ten to the sixth power = mega M 
1,000,000,000 = 10" = ten to the ninth power = giga G 

1,000.000.000.000 = IO 12 = ten to the twelfth power = fera T 

unit is commonly used with volts, amperes, henrys, and watts. It is abbrevi¬ 
ated m. Thus, 10 mH = 10 millihenrys.* Mathematically, milli = 10’3. 
1 mW = IO"3 W. 

microunits The microunit is one millionth of a unit. That is, it takes 
1,000,000 microamperes to make 1 ampere, 2,000,000 microfarads to 
equal to 2 farads, etc. This unit, abbreviated g (greek letter mu), is commonly 
used with volts, amperes, ohms, mhos, henrys, and farads. Thus, 5 = 
5 microfarads. Mathematically, micro = 10”6. 1 usee = 10-6 sec. 

picounits The picounit, also called the micromicrounit, is one-millionth of 
one-millionth of a unit. That is, 1 farad is equivalent to 1,000,000,000,000, 
or 10 12, picofarads. This unit is seldom used for anything other than farads. 
It is represented by p. Thus, 250 pF = 250 picofarads. Mathematically, 
pico — 10-12. Several texts and capacitor manufacturers still use the micro¬ 
microunit, abbreviated gg. Thus, 2 ggF = 2 micromicrofarads = 2 pF. 

kilounits The kilounit is one thousand basic units. Thus, 1 kilovolt is 
equivalent to 1000 volts. This unit is commonly used with cycles, volts, 
amperes, ohms, watts, and volt-amperes. It is abbreviated k Thus, 35 kW 
means 35 kilowatts; 2000 hertz (cycles per second) = 2 kilocycles per sec¬ 
ond = 2 kilohertz. Mathematically, kilo — 103. 

megaunits The megaunit is one million basic units. Thus, 1 megohm is 
equal to 1,000,000 ohms. This unit is used mainly with ohms and hertz. It 
is abbreviated M. Thus, 3 MHz = 3 megahertz. Mathematically, mega = 106. 

* See Table 3 in the Appendix for abbreviations. 
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7 -9 DECIMAL CONVERSION FACTORS 

Often it becomes necessary to convert microamperes to milliamperes, giga¬ 
hertz to kilohertz, megawatts to watts, and so on. The more common con¬ 
versions in simplified form are listed in Table 7 • 2. 

Table 7 • 2 multiply by to obtain 
Conversion Factors „ 

Picounits 10 '■ Microunits 
Picounits 10-9 Milliunits 
Picounits 10 12 Units 
Microunits 106 Picounits 
Microunits 10-3 Milliunits 
Microunits 10-6 Units 
Milliunits 109 Picounits 
Milliunits 103 Microunits 
Milliunits IO-3 Units 
Units 10 12 Picounits 
Units 10B Microunits 
Units 103 Milliunits 
Units IO-3 Kilounits 
Units 10-6 Megaunits 
Kilounits 103 Units 
Kilounits 10-3 Megaunits 
Megaunits 10» Units 
Megaunits 103 Kilounits 

example 1 Convert 8 ¿iF to farads. 
solution 8 ¿iF = 8 X 10 ° F 

example 2 Convert 250 mA to amperes. 
solution 250 mA = 250 x 10~3 A = 2.50 x 10-1 A 

or = 0.250 A 

example 3 Convert 1500 W to kilowatts. 
solution 1500 W = 1500 x 10 3 kW 

or = 1.5 kW 

example 4 Convert 200,000 Í2 to megohms. 
solution 200.000 SI = 200,000 x 10» MSI = 0.2 MSI 

example 5 Convert 2500 kHz to megahertz. 
solution 2500 kHz = 2500 x IO“3 MHz = 2.500 MHz 

example 6 Convert 0.000450 mho to micromhos. 
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solution 0.000450 mho = 0.000450 x 106 pmhos 
or = 450 pmhos 

example 7 Convert 5 psec to seconds. 
solution 5 psec — 5 x 10'1 sec 
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PROBLEMS 7 • 1 

Express answers to three significant figures as numbers between 1 and 10 
times the proper power of 10: 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 

4300 V = (a) 
6.85 A = (a) 
1.35 V =(a) 
125 mA = (a) 
3300 2 = (a) 
50 pF = (a) 
2000 pF = (a) 
16.5 mH = (a) 
347 W = (a) 
25.3 sec = (a) 
1320 kHz = (a) 
47 ki2 = (a) 
400 mW = (a) 
220 pH = (a) 
15 kHz = (a) 
8 psec = (a) 
0.055 A = (a) 
325 kV = (a) 
2.7 MSI = (a) 
3.7 kWhr = (a) 
3350 mH = (a) 
506 MHz = (a) 
0.00050 pF — (a) 
1500 msec = (a) 
2.5 mho = (a) 
5000 pmho = (a) 
2350 pA = (o) 
0.15 kV = (a) 
150 MW = (a) 
980,000 Hz = (a) 

_mV =(ft) 
_mA = (ft) 
_ kV = (ft) 

- MÄ = (6) 
_ k2 = (ft) 

- F = (ft) 
- F = (ft) 
-H = (ft) 
_ kW = (ft) 
_msec = (ft) 
_MHz = (ft) 
_2 = (ft) 
_W = (ft) 
_mH = (ft) 
_MHz = (ft) 
_msec = (ft) 
-pA = (ft) 
-V = (ft) 
-2 = (ft) 
_Whr = (ft) 

-mH = W 
_ kHz = (ft) 

pF =(ft) 
_psec = (ft) 
_pmho = (ft) 
_mho = (ft) 
_ mA =(ft) 
-V = (6) 
_W = (ft) 
_kHz = (ft) 

_pV = (c) _ kV 
-pA 
_pV = (c) _mV 
_A 
_M2 = (c) _mhos 

-pF 
—mF 
-pH 
_mW = (c)__pW 
__psec 
_Hz 
_M2 = (c) _mhos 
_ kW 
__H 
_Hz 
_sec = (c) _nsec 
_mA 
_MV 
_k2 
_mWhr 
_H 
_Hz 
_ F 
_sec = (c) _nsec 
_2 
_2 
_ A 
_mV 
_ kW 
__MHz 

7-10 INTERSYSTEM CONVERSIONS 

In the early sections of this chapter we briefly reviewed the two systems with 
which we most often deal, and we listed some common conversion factors. 
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Some books of tables give hundreds of such interrelationships, and you will 
meet them as you continue your studies. 

You must realize that, without the units, your calculations are incomplete. 
When measurements are added, subtracted, multiplied, or divided, then the 
units pertaining to those measurements must also take part in the 
calculations. 

example 8 Add 6 V and 12 V. 
solution 6V + 12 V = 18V 

example 9 Add 9 ft and 3 in. 
solution (a) Very often it is sufficient to give this sum as simply “9 ft 

3 in." A carpenter making a stock room would fully understand 
what was meant by this composite dimension: "Measure 9 ft 
and then 3 in. more." 
(ò) If, however, it is desired that the answer contain only one 
unit, then the 9 ft can be converted to 108 in., and the 3 in. 
added: 

9 ft = 108 in. 
+ 3 in. 

Ill in. 

(c) Similarly, the 3 in. can be converted to ft and added to 
the 9 ft: 

9 ft 
3 in. = ^ft = 0.25 ft 

9.25 ft, or 9| ft 

example 10 What is the speed of an object that traverses 30 m in 2 sec? 
solution Speed is given in units of distance per unit of time. In this case, 

the speed is 

30 m = 15 (usually written m/sec*) 
2 sec sec 

example 11 What is the area of a room 12 m long and 18 m wide? 
solution Areas are given in square measure: 

(12 m)(18 m) = 216 square meters (m2) 

example 12 32 + 69 = 92 
230 V - 115 V = 115 V 

* m/sec (a shilling fraction) has exactly the same meaning as-Hl- (a built-up frac¬ 
sec 

tion); the only difference is in the manner of printing. 
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example 13 2 ft x 4 ft = 2 x 4 x ft x ft = 8 ft2, or 8 sq ft 
3 ft X 5 ft X 2 ft = 3 X 5 X 2 X ft X ft X ft = 30 ft3 

6m X 10m = 6 X 10 X meters x meters 
= 60 meters2 = 60 sq meters = 60 m2

18 sq ft 18 ft2 c 

^3 ft “ = TfF = 6 ft

When a ratio between identical units is expressed, such as ^0 , the units 

cancel and the result of the division is only a number with no dimension. 

example 14 - É2JÍ - 5 
12 ft 12X 

When quantities having different units are multiplied or divided, the 
result must express the operation. 

example 15 4 ft x 5 lb = 4 x 5 x ft x lb = 20 ft-lb 

example 16 -3° ft _ 30 = 3 JL. = 3 ft/sec 
10 sec 10 sec sec 

example 17 45 fl _ 45 fl 3 g 3 ft
15 ft 15 ft ft z

In Example 16 above, note that ft/sec is read as ‘‘feet per second,” and 
in Example 17, fl/ft is read as ‘‘ohms per foot.” “Per” means divided by. 

Thus some of the equivalent lengths stated in Sec. 7 • 4 can be expressed 
as follows: 

There are 2.540 cm/in. 
There is 0.3048 m/ft. 
There are 1.609 km/mi. 
There are 39.37 in./m. 
There is 0.6214 mi/km. 

Utilizing relations in forms such that units are treated mathematically as 
literal factors facilitates conversions and assures that results will be ob¬ 
tained with correct units. 

example 18 Convert 3 in. to centimeters. 

solution 3 in. x 2.54^- = 3 x 2.54 • irf. • = 7.62 cm 
in. r y\<. 

example 19 How many meters are there in 236 ft? 

solution 236 ft x 0.3048-^ = 236 x 0.3048- Jf = 71.93 m 
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example 20 A certain resistance wire has a resistance of 3 Ü/ft. What is the 
resistance of 6 ft of this wire? 

solution 3^-x6ft = 3x6 ,7p'X= 18 S2 
it JI 

example 21 Convert 1500 kHz to hertz. 

solution There are 103 Hz per kilohertz, that is, 103 Then 
K n Z 

1500 kHz = 1500 — X 103 ^le-
sec kc 

= 1500 X lO3^.^-
sec kc 

= 1.5 X 10G cycles/sec = 1.5 x 106 Hz 

example 22 The wavelength À of a radio wave in meters, the frequency /of 
the wave in hertz, and the velocity of propagation c in meters 
per second are related to one another by the formula 

x = 7 
. 3 x 10« or A = —- m 

Derive a formula for wavelength expressed in feet. 
solution Since there are 3.28 ft/m, this factor must be applied to ex¬ 

press A in feet. Thus, 

. 3 X 10« o 9R ft 
A =-;- m X 3.28 — 

f m 
3 x 3.28 x 10« „ ft 9.84 x 10« , 

f m" f 

3 x 10« example 23 By using the forr ula A = —— m, derive a formula for 

wavelength in meters when the frequency is expressed in 
megahertz. 

solution In the above formula f is expressed in hertz and it is desired to 
express the frequency in megahertz. Since MHz = Hz x 106, 
this is substituted for/in the formula. Thus, 

. 3 x 10« 3 x 10“ 300 m

PROBLEMS 7 ■ 2 

1 9 ft = (a) _in = (ft) _cm = (c) _mm 
2 3500 mm = (a) _km = (ft) -ft = (c) -yd 
3 2.05 m = (a) _in. = (ft) _cm = (c) -yd 
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4 15,840 ft = (a) _km = (6) _mi = (c) _cm 
5 5064 yd = (a) _mi = (6) _m = (c) _km 
6 An automobile is traveling at a rate of 90 mi/hr. What is its speed in 

feet per second? 
7 The radius of No. 14 wire is 32 thousandths of an inch. What is its diam¬ 

eter in millimeters? 
8 Radio waves are often referred to by wavelength instead of frequency. 

The wavelength of waves at a frequency of 3000 MHz is 10 cm. What 
is that wavelength in inches? 

9 A power transmission line 120 mi long was found to have a total in¬ 
ductance of 0.4488 H. What is the inductance per mile? 

10 The capacitance of a power line was measured at 4.98 x 10 3 jiF/km. 
What is the capacitance per mile? 

11 A transmission line 250 ft long was found to have an attenuation loss of 
0.15 decibels (dB). What is the attenuation in decibels per hundred 
feet? 

12 A twisted pair transmission line 200 m long has a loss of 42 dB. What 
is the loss in decibels per foot? 

13 The measured high-frequency resistance of a 6-ft length of No. 10 
copper wire is 0.588 Í2 at 100 MHz. What is the resistance in ohms per 
centimeter at the same frequency? 

14 The speed of free electrons in random motion is approximately 
100,000 m/sec. What is this speed in miles per hour? 

15 The speed of electrons “drifting" in an electric current flow is about 
0.2 cm/sec. What is this speed in inches per minute? 

7-11 PRACTICAL CONSIDERATIONS 

In Secs. 6 • 5 and 7 • 7 and in several instances through the use of examples 
and problems, attempts have been made to emphasize the fact that ex¬ 
tremely wide ranges in values of units are encountered in electrical and 
electronics computations. This has been done in order to impress you with 
the necessity of exercising care in making computations if you are to obtain 
accurate results. For example, in computing inductive reactances, the fre¬ 
quency may be in megahertz and the inductance in microhenrys. In radar 
and other applications we are concerned with the velocity of propagation of 
radio waves (186,000 mi/sec) and with time intervals in microseconds. This 
is equally true in television reception, particularly as it relates to the produc¬ 
tion of duplicate images, usually called ghosts. As an example, Fig. 7 • 1 
illustrates how a television receiver can receive a picture signal from a trans¬ 
mitting station by different paths. The direct wave is received from the trans¬ 
mitter along one path, while the other signal arrives at the receiving antenna 
via a path 1 mi longer than the direct path as a result of being reflected. Be¬ 
cause the velocity of radio waves is 186,000 mi/sec, the reflected signal 
arrives at the receiver 1/186,000 sec, or about 5.4 gsec, later than the 
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Fig. 7 • 1 Antenna Receiving 
Picture Signal via Two Paths 

Fig. 7 • 2 Television Ghost 
(Courtesy of Radio Corporation of 
America) 

signal received via the dire t path between transmitter and receiver. Since 
the electron scanning be .n scans one horizontal line in approximately 
55 usee. on a picture 10 in. wide the beam will scan about 1 in. in 5.5 gsec. 
Therefore, the reflected signal arriving 5.4 gsec late will produce a second 
picture 1 in. to the right in the direction of scanning as shown in Fig. 7 • 2. 
This duplicate image produced by the reflected wave is called a ghost. 

7-12 SIGNIFICANT FIGURES 

The subjects of accuracy and significant figures were discussed in Secs. 6 • 2 
and 6 • 3. Now that we have some idea of the various units used in electrical 
and radio problems, two questions arise: 

1 To how many significant figures should an answer be expressed? 
2 How can we definitely show that an answer is correct to just so many 

significant figures? 
The answer to the first question is comparatively easy. No answer can be 

more accurate than the figures, or data, used in the problem. As stated in 
Sec. 6 • 2, it is safe to assume that the values of the average circuit compo¬ 
nents and calibrations of meters that we use in our everyday work are not 
known beyond three significant figures. Therefore, in the future we will 
round off long answers and express them to three significant figures. The 
exception will be when it is necessary to carry figures out in order to demon¬ 
strate some fact or law, carefully. 

The second question brings up some interesting points. As an example, 
suppose we have a resistance of 500,000 Q and we want to write this value 
so that it will be apparent to anyone that the figure 500,000 is correct to 
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500 X 10 1
50.0 X 104 H 
5.00 X 105 SI, etc. 

Any one of these expressions definitely shows that the resistance is correct 
to three significant figures. Similarly, suppose we had measured the capaci¬ 
tance of a capacitor to be 3500 pF. How can we specify that the figure 3500 
is correct to three significant figures? Again we can do so by writing 

350 X 10 pF 
35.0 X 102 pF 
3.50 X IO3 pF. etc. 

As in the preceding example, there are definitely three figures in the first 
factor that show the degree of accuracy. 

7-13 CALCULATIONS WITH UNITS 

In Sec. 7 • 10 we emphasized the necessity of keeping track of the units 
involved when performing calculations. The necessity becomes even more 
apparent when decimal multipliers of basic units are involved, or when you 
are unsure how to proceed with a solution involving units of different meas¬ 
urements such as decibels and feet, ohms and feet, and hours and miles. 

As long as your calculations are made in basic units, which are directly 
related, you will have no difficulty. For example, you know that 

Ohms _ -
amperes 

_ . volts and ohms -
milliamperes 

The milliamperes must be converted to amperes in order to keep the basic 
relationship in units. Therefore, 

Of course, you could make up your own formulas for special cases and 
write, for example, 

Ohms = —-
milliamperes x 10 3

Ohms = volts x 10 :! 

milliamperes 

but the task would be endless. Some frequently used formulas are derived 
for convenience, and you will derive some of them in Problems 7 • 3. How¬ 
ever, when performing calculations you will never go wrong if you first con¬ 
vert to basic units. 

example 24 The voltage across a circuit is 250 V, and the current is 5 mA. 
What is the resistance of the circuit? 
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solution Since ohms — —, ¡t is necessary to convert the current 
amperes 

of 5 mA into amperes before calculating: 

R = 4- = c 25° , = 50 X 103 ß = 50 kß 
I 5 X 10-3

example 25 A current of 150 gA flows through a resistance of 30 kß. What 
is the voltage across the resistance? 

solution Since the current is in microunits and the resistance is in kilo¬ 
units, both must be converted into basic units (amperes and 
ohms) before calculating: 

volts = amperes x ohms 
or E = I x Ä 

= (150 x 10-«)(30 x 103) = 4.5 V 

You will encounter cases in which you may be unsure how to proceed, 
particularly when you deal with units of differing measurements such as 
ß/ft, /xF/mi, ft/sec, lb/ft2, and dB/100 ft. Keeping track of your units and 
handling them as literal numbers will ensure a correct numerical answer 
expressed in the proper units. 

example 26 How long will it take to travel 225 mi at an average speed of 
45 mi/hr? 

solution Here we have miles and miles per hour and we know the answer 
must be expressed in hours. Also, we know that 

Distance = speed x time 

or Time = distance 
speed 

That is hr = — = mb-^ = hr 
mi mt 
hr 

Knowing that the answer will be expressed in the proper unit, 
we can complete the calculation: 

Time = m ' = javr- = 5 hr 
ÆC- mi 45 mi 

hr 

example 27 A 5000-ft roll of No. 10 copper wire is measured and is found 
to have a resistance of 5.10 ß. What is the resistance of 100 ft 
of this wire? 

solution The resistance must be expressed in ohms. Since the measure¬ 

ment was 5.10 ,.*1 , , 
5000 ft 

88 



5.10 » 
5000 ft 

1.02 X 10 3 11 

Then the resistance of 100 ft of this wire is 

1.02 X 10-3 jl x 100# = 0.102 2 

This could be written as 0.102 2/100 ft 
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In the problems which follow, you will be asked to make conversions to 
accommodate readings in units which do not exactly fit the formulas relating 
the dimensions, as in Example 24, in which 5 mA had to be converted into 
amperes before proceeding. You will also be asked to convert the basic or 
classic formulas to adjust for units other than the basic ones. When both of 
these conversions are asked for in a single problem, follow this rule: 

Rule Adjust the units in which the measurements were made so that they 
will agree with the units for which the formula was developed. Then convert 
to other units as required. 

PROBLEMS 7 • 3 

1 The capacitive reactance of a circuit, or a capacitor, is given by the 
formula 

where = capacitive reactance, 2 
f = frequency. Hz 
C — capacitance of circuit, or capacitor. F 

Show that Xc = 159 * 103 2 

when f = frequency, MHz 
C = capacitance, pF 

2 Referring to Prob. 1, what is the capacitive reactance of a capacitor of 
0.00050 gF at a frequency of 4000 MHz? 

3 The inductive reactance of a circuit, or an inductor, is given by the 
formula 

XL = 2^fL 2 

where XL = inductive reactance, 2 
f = frequency, Hz 
L = inductance of circuit, or inductor, H 

Derive a formula for XL 

when f — frequency, MHz 
L — inductance, gH 
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4 Referring to Prob. 3, an amplifier coil has an inductance of 27 jiH. What 
is its inductive reactance at 6 MHz? 

5 The resonant frequency of any circuit is given by the formula 

where f = frequency, Hz 
L — inductance of circuit, H 
C = capacitance of circuit, F 

Derive a formula expressing / in megahertz 
when L = inductance, gH 

C = capacitance, pF 
6 Referring to Prob. 5, what is the resonant frequency of a circuit with 

an inductance of 0.25 gH and a capacitance of 16 pF? 
7 In copper conductors used in transmission lines, the depth of penetra¬ 

tion of high-frequency currents is given by the formula 

0 = ^ cm 
Vf 

where/ — frequency, Hz. 
Derive a formula for current penetration depth in inches when / is the 
frequency in megahertz. 

8 Referring to Prob. 7, to what depth in inches will a current of 3750 MHz 
penetrate a copper conductor? 

9 The high-frequency resistance of a round copper wire or of round 
copper tubing is given by the formula 

Äac = 83.2 X IO » a/cm 
d 

where RM. = high-frequency resistance, Q/cm 
/ = frequency, Hz 
d — outside diameter of conductor, cm 

Derive a formula for R^ in ohms per foot when / is given in megahertz 
and d is given in inches. 

10 Referring to Prob. 9, No. 36 wire has a diameter of 0.005 in. What is 
the resistance per foot of the wire at a frequency of 85 MHz? 

3 X 10411 Use the formula in Example 22 to show that X =-y—-cm when/is 

in megahertz. 
12 Use the formula in Example 22 to derive a formula for wavelength (X) in 

inches when /is in megahertz. 
13 The midfrequency of television channel 4 is 69 MHz. Using the formula 

derived in Prob. 12, what is the length of one wavelength in inches? 
14 The great majority of television receiving antennas consist of various 

combinations of dipoles. A dipole antenna is one that is approximately 
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one-half wavelength long (0.5Ä), as illustrated in Fig. 7 • 3. The 
actual length is slightly less than a half wave owing to ‘‘end effect” 
caused by the capacitance of the antenna, and it has been determined 
that dipoles used for television reception should be approximately 6% 
shorter than one-half wavelength. Use the formula derived in Prob. 12 
to derive a formula for the length of a dipole antenna in inches when 
the frequency is in megahertz. 

15 The midfrequency of television channel 13 is 213 MHz. Using the 
formula derived in Prob. 14, what length would you make a receiving 
antenna for this channel? 

16 If a wire approximately one-half wavelength long is placed behind a 
dipole antenna, the wire acts as a reflector and increases the directivity 
of the antenna. This results in the reception of stronger signals when 
the dipole and the reflector are pointed at the transmitting station as 
illustrated in Fig. 7 ■ 4. For best results, the reflector should be 5% 
longer than the dipole. Referring to the formula for the length of a 
dipole derived in Prob. 14, derive a formula for the length of a reflector 
in inches when fis in megahertz. 

17 The distance between a dipole and its reflector should be approximately 
one-fifth of one wavelength (0.2X) as shown in Fig. 7 • 4. Referring to 
previously derived formulas, compute the following dimensions for the 
midfrequency of television channel 10, which is 195 MHz: (a) length 
of dipole, (6) length of reflector, and (c) spacing between dipole and 
reflector. 

18 The directivity of a dipole-reflector combination, as shown in Fig. 7 ■ 4, 
can be increased by the addition of a conductor in front of the dipole 

3 Dipole Antenna 
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Fig. 7 • 4 Dipole Antenna with 
Reflector 

as illustrated in Fig. 7 • 5. This wire or tube, which is known as a direc¬ 
tor, is usually placed one-tenth wavelength (0.1Ä) from the dipole, and 
it should be about 5% shorter than the dipole. Derive a formula for the 
length of a director in feet when /is in megahertz. 

19 Referring to Fig. 7 • 5, compute the following dimensions for the mid¬ 
frequency of television channel 10, which is 195 MHz: (a) length of 

Fig. 7 • 5 Dipole Antenna with 
Reflector and Director 
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dipole, (6) length of reflector, (c) length of director, (rf) spacing between 
dipole and reflector, and (e) spacing between dipole and director. 

20 Ohm's law may be stated in the form E = IR, where E is measured in 
volts, I in amperes, and R in ohms. What voltage will appear across a 
resistor measuring 680 MS? when a current of 0.250 uA flows through 
it? 
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Ohm’s law for the electric circuit is the foundation of electric circuit analysis 
and is therefore of fundamental importance. The various relations of Ohm's 
law are easily learned and readily applied to practical circuits. A thorough 
knowledge of these relations and their applications is essential for under¬ 
standing electric circuits. 

This chapter is concerned with the study of Ohm’s law in de series circuits 
as applied to parts of a circuit. For this reason, the internal resistance of a 
source of voltage, such as a generator or a battery, and the resistance of the 
wires connecting the parts of a circuit are not discussed in this chapter. 

8- 1 THE ELECTRIC CIRCUIT 

An electric circuit consists of a source of voltage connected by conductors to 
the apparatus that is to use the electric energy. 

An electric current will flow between two points in a conductor when a 
difference of potential exists across those points. The most generally ac¬ 
cepted concept of an electric current is that it consists of a motion, or flow, 
of electrons from the negative toward a more positive point in a circuit. The 
force that causes the motion of electrons is called an electromotive force, a 
potential difference, or a voltage, and the opposition to the motion is called 
resistance. 

The basic theories of electrical phenomena and the methods of producing 
currents are not within the scope of this book. You will find them adequately 
treated in the great majority of textbooks on the subject. 

8 ■ 2 OHM S LAW 

Ohm's law for the electric circuit, reduced to plain terms, states the relation 
that exists among voltage, current, and resistance. One way of stating this 
relation is as follows: The voltage across any part of a circuit is proportional 
to the product of the current through that part of the circuit and the re-
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sistance of that part of the circuit. Stated as a formula the foregoing is 
expressed as 

E = IR V [1] 

where E = voltage, or potential difference, V 
/ = current, A 
R = resistance, Í2 

If any two factors are known, the third can be found by solving Eq. [1]. 

Thus, 

i=4 A [2i n 
and 

R = ^ Ü [3] 

8- 3 METHODS OF SOLUTION 

The general outline for working problems given in Sec. 5 ■ 8 is applicable to 
the solution of circuit problems. In addition, a neat, simplified diagram of the 
circuit should be drawn for each problem. The diagram should be labeled 
with all the known values of the circuit such as voltage, current, and resist¬ 
ances. In this manner the circuit and problem can be visualized and under¬ 
stood. Solving a problem by making purely mechanical substitutions in the 
proper formulas is not conducive to gaining a complete understanding of any 
problem. 

example 1 How much current will flow through a resistance of 150 Í2 if the 
applied voltage across the resistance is 117 V? 

solution 1 he circuit is represented in Figs. 8 ■ 1 and 8 • 2. 

Fig. 8 • 1 Sketch of the Circuit 
of Example 1 Showing How the 
Parts Are Connected to Form the 
Circuit 
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Fig. 8 • 2 Schematic Circuit 
Diagram of Example 1 

Given E = 117 V R = 150 Q 
I = ? 

example 2 A voltmeter connected across a resistance reads 22 V, and an 
ammeter connected in series with the resistance reads 2.60 A. 
What is the value of the resistance? 

solution The circuit is represented in Fig. 8 • 3. 
Given E = 220 V I = 2.60 A 

R = ? 

example 3 A current of 1.40 A flows through a resistance of 450 SI. What 
should the reading be of a voltmeter when it is connected across 
the resistance? 

solution The diagram of the circuit is shown in Fig. 8 • 4. 
Given /=1.40A R = 450 S2 

E = ? 
E = IR = 1.40 X 450 = 630 V 

example 4 A measurement shows a potential difference of 63.0 fiV across a 
resistance of 300 SI. How much current is flowing through the 
resistance? 

solution The circuit is represented in Fig. 8 • 5. 
Given E = 63.0 = 6.3 x 10"» V Ä = 300 SI 

I = ? 

E _ 6.3 x IO-® _ 6 3 x 10-7 _ 
l~~R~ 300 - 3.00 A

or /= 0.21 

example 5 A current of 8.60 mA flows through a resistance of 500 S2. What 
voltage exists across the resistance? 

solution The circuit is represented in Fig. 8 • 6. 
Given / = 8.60 mA = 8.60 x 10 ~3 A Ä = 500 S2 

E = ? 
E = IR = 8.60 x IO’3 x 500 = 8.60 x IO’3 x 5 x 102

= 8.60 x 5 x 10-1 _ 4 30 v 

Fig. 8 • 5 Circuit of Example 4 

96 

Carefully note, as illustrated in Examples 4 and 5, that the equations express¬ 
ing Ohm’s law are in units, that is, volts, amperes, and ohms. 



PROBLEMS 8■1 

1 How much current will flow through a resistance of 50.0 Í2 if a potential 
of 220 V is applied across it? 

2 A certain soldering iron draws 1.35 A from a 120 V line. What is the 
resistance of the heating unit of the soldering iron? 

3 What current will flow when an EMF of 440 V is impressed across a 
71.0-12 resistor? 

4 A milliammeter connected in series with a 10-kl2 resistor reads 8.0 mA. 
What is the voltage across the resistor? 

5 A microvoltmeter connected across a 500-12 resistor reads 40 uV. What 
current is flowing through the resistor? 

6 What voltage is required to cause a current flow of 6.2 mA through a 
resistance of 7.1 k!2? 

7 A certain milliammeter, with a scale of 0 to 1.0 mA, has a resistance of 
32 12. If this milliammeter is connected directly across a 120 V line, how 
much current will flow through the meter? What conclusion do you 
draw? 

8 The current flowing through a 3.3-kl2 resistor is 4.3 mA. What should 
a voltmeter read when it is connected across the resistor? 

9 The cold resistance of a carbon filament lamp is 210 S2, and the hot 
resistance is 189 ñ. What is the current flow (a) the instant the lamp is 
switched across a 120 V line and (6) when constant operating tempera¬ 
ture is reached? 

10 A type SN954 half-wave rectifier tube filament draws a current of 
450 mA at its rated voltage of 6.3 V. What is the resistance of the fila¬ 
ment when the tube is in operation? 

I - 8.60 mA 

500 it 
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Fig. 8 • 6 Circuit of Example 5 

8 ■ 4 POWER 

In specifying the rating of electrical equipment, it is customary to state not 
only the voltage at which the equipment was designed to operate but also the 
rate at which the equipment produces or consumes electric energy. 

The rate of producing or consuming energy is called power, and electric 
energy is measured in watts or kilowatts. Thus, your study lamp may be 
rated 100 W at 117 V; a generator may be rated 2000 kW at 440 V: etc. 

Electric motors are generally rated in terms of the mechanical horsepower 
they will develop. The conversion from electric energy to equivalent mechan¬ 
ical energy is given by the relation 

746 W — 1 horsepower (hp) 

8 • 5 THE WATT 

Energy is expended at a rate of one wattsecond (Wsec) every second when 
one volt causes a current of one ampere to flow. In this case, we say that the 
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power represented when one volt causes one ampere to flow is one watt. This 
relation is expressed as 

P = EI W [4] 

This is a useful equation when the voltage and current are known. 
Because, by Ohm’s law, E = IR, this value of E can be substituted in 

Eq. [4], Thus, 

P = (IR)I 
or P = PR W [5] 

This is a useful equation when the current and resistance are known. 
By substituting the value of I of Eq. [2] in Eq. [4], 

or W [6] 
K 

This is a useful equation when the voltage and resistance are known. 
watthours—kilowatthours The consumer of electric energy pays for the 
amount of energy used by his electrical equipment. This is measured by 
instruments known as watthour or kilowatthour meters. These meters 
record the amount of energy taken by the consumer. 

Electric energy is sold at so much per kilowatthour (kWhr). One watthour 
of energy is consumed when one watt of power continues in action for one 
hour. Similarly, 1 kWhr is consumed when the power is 1000 W and the 
action continues for 1 hr or when a 100-W rate persists for 10 hr, etc. Thus, 
the amount of energy consumed is the product of the power and the time. 

8 • 6 LOSSES 

The study of the various forms in which energy may occur and the transfor¬ 
mation of one kind of energy into another has led to the important principle 
known as the principle of the conservation of energy. Briefly, this states that 
energy can never be created or destroyed. It can be transformed from one 
form to another, but the total amount remains unchanged. Thus, an electric 
motor converts electric energy into mechanical energy, the incandescent 
lamp changes electric energy into heat energy, the loudspeaker converts 
electric energy into sound energy, the generator converts mechanical energy 
into electric energy, etc. In each instance the transformation from one type 
of energy to another is not accomplished with 100% efficiency because some 
energy is converted into heat and does no useful work as far as that particu¬ 
lar conversion is concerned. 

Resistance in a circuit may serve a number of useful purposes, but unless 
it has been specifically designed for heating or dissipation purposes, the 
energy transformed in the resistance generally serves no useful purpose. 
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Because all electrical equipment contains resistance, some heat always de¬ 
velops when current flows. Unless the equipment is to be used for produc¬ 
ing heat, the heat due to the resistance of the equipment represents wasted 
energy. No electrical equipment or other machine is capable of converting 
energy received into useful work without some loss. 

The power that is furnished a machine is called its input, and the power 
received from a machine is called its output. The efficiency of a machine is 
equal to the ratio of the output to the input. That is, 

output Efficiency — ———— 
input 

[7] 

It is evident that the efficiency, as given in Eq. [7], is always a decimal, 
that is, a number less than 1. Naturally, in Eq. [7], the output and input must 
be expressed in the same units. Hence, if the output is expressed in kilowatts, 
then the input must be expressed in kilowatts; if the output is expressed in 
horsepower, then the input must be expressed in horsepower; etc. 

example 6 A voltage of 110 V across a resistor causes a current of 5 A to 
flow through the resistor. How much power is expended in the 
resistor? 

solution 1 The circuit is represented in Fig. 8 • 7. 
Given E = 110 V I =5 A 

P = ? 
Using Eq. [4], P = EI = 110 x 5 = 550 W 

solution 2 Find the value of the resistance and use it to solve for P. Thus, 
using Eq. [3], 

Ä = A = 212 = 22 Q 
/ 5 

Using Eq. [5], P = PR = 52 X 22 = 5 x 5 x 22 = 550 W 
solution 3 Using Eq. [6], 

P = ^ = ^ = noxiio = 55OW
R 22 22 

Fig. 8 ■ 7 Circuit of Example 6 

Solving a problem by two methods serves as an excellent check on the 
results, for there is little chance of making the same error twice, as happens 
too often when the same method of solution is repeated. 

example 7 A current of 2.5 A flows through a resistance of 40 Í2. 
(a) How much power is expended in the resistor? 
(b) What is the potential difference across the resistor? 

solution 1 The circuit is represented in Fig. 8 • 8. 

Given 7 = 2.5 A R = 40 2 
P = ? E = ? Fig. 8 • 8 Circuit of Example 7 
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(a) P = PR = 2.52 X 40 = 2.5 x 2.5 x 40 = 250 W 
(6) E = IR = 2.5 x 40 = 100 V 

solution 2 (a) Find E, as above, and use it to solve for P. I hus, 

P = g2 = 100-’ = 100 X 100 = 250 w
R 40 40 

or P - EI =. 100 x 2.5 _ 250 W 

Fig. 8 • 9 Circuit of Example 8 

example 8 A voltage of 1.732 V is applied across a 50042 resistor. 
(a) How much power is expended in the resistor? 
(6) How much current flows through the resistor? 

solution A diagram of the circuit is shown in Fig. 8 • 9. 

Given E = 1.732 V R = 500 £2 
P = ? I = ? 

f . p _ El _ 1.7322 _ 1.7322
v ’ R 500 5 x 102

= I- 7!-2- X 10-2 = 0.006 W 
5 

or P = 6 mW 

(ò)

= 0.346 x IO“2 A 

or I = 3.46 mA 

Check the foregoing solution for power by using an alternative 
method. 

example 9 (a) What is the hot resistance of a 100 W 110 V lamp? 
(6) How much current does the lamp take? 
(c) At 4« /kWhr, how much does it cost to operate this lamp for 

24 hr? 
solution 1 The circuit is represented in Fig. 8 • 10. 

Given P=100W E=110V 

(a) Because the power and voltage are known and the resistance 
is unknown, an equation that contains these three must be used. 
Thus, 

hence. K = E - = 121 2 

I = ^ = = 0.909 A 
R 121 

(c) If the lamp is lighted for 24 hr, it will consume 
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100 X 24 = 2400 Whr = 2.40 kWhr 

At 4«/kWhr the cost would be 

2.4 X 4 = 9.6« 

solution 2 The current may be found first by making use of the relation 

P= El 

which results in I — ~ = 4^4 — 0.909 A 
E 110 

The resistance can now be determined by 

The solution can be checked by 

P = PR = 0.9092 X 121 = 100 W 

which is the power rating of the lamp as given in the example. 
The cost is computed as before. 

example 10 A motor delivering 6.50 mechanical horsepower is drawing 
26.5 A from a 220 V line. 
(a) How much electric power is the motor taking from the line? 
(6) What is the efficiency of the motor? 
(c) If power costs 3« /kWhr, how much does it cost to run the 
motor for 8 hr? 

E- 220V 
solution A diagram of the circuit is shown in Fig. 8-11. 

Given E = 220 V I = 26.5 A 

and mechanical horsepower 

P = 6.5 hp = 6.5 X 746 = 4850 W = 4.85 kW 

Fig. 8-11 Circuit of Example 10 The power taken by the motor is 

P = EI = 220 X 26.5 = 5830 W 
= 5.83 kW 

(6) Efficiency = = 0832 = 83-2% input 5.83 

(c) Because the motor consumes 5.83 kW, in 8 hr it would take 

5.83 X 8 = 46.6 kWhr 

At 3</kWhr, the cost would be 

46.6 X 0.03 = $1.40 

note The cost was computed in two steps for the purpose of 
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illustrating the solution. When you have become familiar with 
the method, the cost should be computed in one step. Thus, 

Cost = 5.83 X 8 X 0.03 = $1.40 

From the foregoing examples, it will be noted that computations involving 
power consist mainly in the applications of Ohm’s law. Little trouble will be 
encountered if each problem is given careful thought and the systematic 
procedure previously outlined is followed in finding the solution. 

PROBLEMS 8 ■ 2 

1 7.5 hp = (a)_W = (6)_ kW 
2 29.84 kW = (a) _W = (6) _hp 
3 What current is drawn by a 100-W soldering iron that is connected to a 

120-V line? 
4 How much power is expended in a 12O S2 resistor through which a cur¬ 

rent of 15 A flows? 
5 What is the electric horsepower of a generator which delivers a current 

of 50.9 A at 220 V? 
6 A voltmeter connected across a 2.2-kñ resistor reads 120 V. How much 

power is being expended in the resistor? 
7 A diesel engine is rated at 1500 hp. What is its electrical rating in 

kilowatts? 
8 An ammeter is connected in the circuit of a 440-V motor. When the 

motor is running, the ammeter reads 2.27 A. How much power is being 
absorbed from the line? 

9 The resistance of a certain ammeter is 0.012 fi. Determine the power 
expended in the meter when it reads 3 A. 

10 The resistance of a certain voltmeter is 300 kS2. Determine the power 
expended in the voltmeter when it is connected across a 220-V line. 

11 A type 6F6 vacuum tube, used in the output stage of a radio receiver, 
has a cathode-biasing resistor of 470 2. A voltmeter connected across 
this resistor reads 16.5 V. 
(a) How much power must the resistor be able to radiate continuously 

while in operation? 
(6) What is the current flow through the resistor? 

12 A type 6C5 vacuum tube is operating with a cathode-biasing resistor 
of 1 kS2 through which flows a current of 8 mA. 
(a) How much power is being expended in the resistor? 
(6) What is the voltage across the resistor? 

13 An EMF of 90 jW is applied across a 390-Q resistor. 
(a) How much power is expended in the resistor? 
(6) How much current will flow through the resistor? 

14 A 1-kQ resistor in the emitter circuit of a 2N1414 transistor produces a 
voltage drop of 6 V between collector and emitter. 
(a) What is the emitter current? 
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(b) What is the power loss in this bias resistor? 
15 A radar antenna motor is delivering 10 hp. A kilowattmeter that meas¬ 

ures the power taken by the motor reads 8.24 kW. 
(a) What is the efficiency of the motor? 
(b) At 2.5«/kWhr, how much would it cost to run the motor continu¬ 

ously for 5 days? 
16 A 440-V 10-hp forced-draft fan motor has an efficiency of 80%. 

(a) How many kilowatts does it consume? 
(6) How much current does it draw from the line? 
(c) At 2.5«/kWhr, how much would it cost to run this motor continu¬ 

ously for 1 week? 
17 A generator which is 80% efficient delivers 50 A at 220 V. What must 

be the output of the diesel engine which drives the generator? 
18 23.9 kW is required to operate a 25-hp forced-draft fan motor. 

(a) What is its efficiency? 
(b) How much power is lost in the motor? 

19 A generator delivers 80 A at 220 V with an efficiency of 88%. How much 
power is lost in the generator? 

20 A 230-V 7|-hp motor, which has an efficiency of 85%, is driving a radio 
transmitter 2-kV generator which has an efficiency of 80%. The motor 
is running fully loaded. 
(a) How much power does the motor take from the line? 
(6) How much current does the motor draw? 
(c) How much power will the generator deliver? 
(</) How much current will the generator deliver? 
(e) What is the overall efficiency; that is, what is the efficiency from 

motor input to generator output? 

8-8 RESISTANCES IN SERIES 

So far, our studies of the electric circuit have taken into consideration but 
one electric component in the circuit, excluding the source of voltage. This 
is all very well for the purpose of becoming familiar with simple Ohm’s law 
for power relations. However, practical circuits consist of more than one 
piece of equipment as far as circuit computations are concerned. 

In a series circuit the various components comprising the circuit are so 
connected that the current, starting from the voltage source, must flow 
through each circuit component, in turn, before returning to the other side 
of the source. 

There are three important facts concerning series circuits that must be 
borne in mind in order to understand thoroughly the action of such circuits 
and to facilitate their solution. 
In a series circuit: 

1 The total voltage is equal to the sum of the voltages across the differ¬ 
ent parts of the circuit. 
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2 The current in any part of the circuit is the same. 
3 The total resistance of the circuit is equal to the sum of the resistances 

of the different parts. 
Point 1 is practically self-evident. If the sum of all the potential differences 

(voltage drops) around the circuit were not equal to the applied voltage, 
there would be some voltage left over which would cause an increase in 
current. This increase in current would continue until it caused enough volt¬ 
age drop across some resistance just to balance the applied voltage. Hence, 

Et = £] + E. + E3 + • ■ • [8] 

Point 2 is evident, for the circuit components are so connected that the 
current must flow through each part in turn and there are no other paths 
back to the source. 

To some, point 3 might not be self-evident. However, because it is agreed 
that the current I in Figs. 8-12 and 8 ■ 13 flows through all resistors, Eq. [8] 
can be used to demonstrate the truth of point 3. Thus, by dividing each 
member of Eq. [8] by I, we have 

Et _ E\ + E? 4- E3 , 
I - I +

or A = A + ^ + Æl + ... 
I I I + I 

and by substituting R for , we have 

Ri = Rt + R.. + R3 + • - - [9] 

Fig. 8 • 12 Three Resistors 
Connected in Series with a 
Voltmeter Connected across Each 
Resistor. The Sum of the Voltages 
across the Resistors is Equal to the 
Battery Voltage 
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Fig. 8 ■ 13 Schematic Diagram 
of the Circuit Represented 
in Fig. 8-12 

note E, and R, are used to denote “total voltage” and “total resistance," 
respectively. 

example 11 Three resistors Rt = 30 12, R2 = 160 SI, and R3 = 40 12 are 
connected in series across a generator. A voltmeter connected 
across R2 reads 80 V. What is the voltage of the generator? 

solution Figure 8 • 14 is a diagram of the circuit. 

Fig. 8 ■ 14 Circuit of Example 11 

80 
160 

= 0.5 A 

Rt = Rt + R2 F R3 = 30 + 160 + 40 = 230 12 
E, = IR, = 0.5 X 230 = 115 V 

example 12 A 30042 relay must be operated from a 120-V line. How much 
resistance must be added in series with the relay coil to limit 
the current through it to 250 mA? 

solution 1 The circuit is represented in Fig. 8 • 15. For a current of 
250 mA to flow in a 120 V circuit, the total resistance must be 

R, - -%- = = 480 12 
I 0.250 

Because the relay coil has a resistance of 30012, the resistance 
to be added is 

R,= R, - Rc = 480 - 300 = 180 12 
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Fig. 8-15 Circuit of Example 12 

solution 2 For 0.250 A to flow through the relay coil, the voltage across 
the coil must be 

E,. = 1RC = 0.250 X 300 = 75 V 

Ex= E - Ec = 120 - 75 = 45 V 

Then the value of resistance to be added is 

Because the line voltage is 120 V, the voltage across the added 
resistance must be 

Rt - = 180 SI 
I 0.250 

example 13 Three resistors Ri — 20 SI, R2 — 50 S2, and R3 = 30 S2 are 
connected in series across a generator. The current through 
the circuit is 2.5 A. 
(a) What is the generator voltage? 
(6) What is the voltage across each resistor? 
(c) How much power is expended in each resistor? 
(d) What is the total power expended? 

solution The circuit is represented in Fig. 8 • 16. 
(a) Rt = Ri + R. + R3 = 20 + 50 + 30 

= 100 SI 
E = IRt = 2.5 X 100 = 250 V 

Fig. 8 • 16 Circuit of Example 13 7 >2.5 A 

Ei - ? E2 - ? E3 - ? 

«Í-20S2 «2 = 500 «3 = 300 

Pi - ? P2 - ? P3-I 
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w 

check 

(c) Power in 

check 
Power in Ä2. 

check 
Power in R3, 

check 

(d) Total power, 

check 

or 

Ei = IR, = 2.5 X 20 = 50 V 
E2 = IR2 = 2.5 x 50 = 125 V 
E3 = IR3 = 2.5 X 30 = 75 V 

E = Ei + E¿ + E3
= 50 + 125 + 75 = 250 V 

Pi = EJ = 50 X 2.5 = 125 W 

Pi = PRi = 2.52 X 20 = 125 W 
P2 = E2I = 125 X 2.5 = 312.5 W 

P2 = PR2 = 2.52 X 50 = 312.5 W 
P3 = E3I = 75 X 2.5 = 187.5 W 

P3 = PR3 = 2.52 x 30 = 187.5 W 

Pi = Pi + Pi + P3 
= 125 + 312.5 + 187.5 = 625 W 

Pi = PRt = 2.52 X 100 = 625 W 

«“f-=^= 625W

SECTION 
8 • 8 
TO 

PROBLEMS 
8 ■ 3 

PROBLEMS 8 ■ 3 

1 Three resistors, Ri = 330 ß, R2 = 680 ß, and R3 = 570 ß, are con¬ 
nected in series across 110 V. 
(a) How much current flows in the circuit? 
(6) What is the voltage drop across R2? 
(c) How much power Is expended in Ri? 

2 Three resistors, Rt = 2.2 kß, R> = 5.7 kß, and R3 — 1.5 kß, are 
connected in series across 450 V. 
(a) How much current flows through the circuit? 
(6) What is the voltage drop across each resistor? 

3 A 115-V soldering iron which is rated at 100 W is to be used on a 220-V 
line. 
(a) How much resistance must be connected in series with the iron to 

limit the current to rated value? 
(6) If a standard resistor of 150 ß is used in place of this calculated 

value, what minimum power rating must be specified for this 
resistor? 

(c) If the standard resistor of (6) is used, what actual power will be 
delivered to the soldering iron? 

4 Four identical 100-W lamps are connected in series across a 440-V 
line. The hot resistance of each lamp is 121 ß. 
(a) What is the current through the lamps? 
(6) What is the voltage drop across each lamp? 
(c) What is the power dissipated by each lamp? 
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5 Three identical lamps are connected in series across a 440 V line. If the 
current through the lamps is 820 mA, what is the hot resistance of 
each lamp? 

6 Three resistors, Äi, Ä2, and Ä3, are connected in series across a 470 V 
power supply. A voltmeter connected across R\ reads 76 V. When 
connected across R2, the voltmeter reads 51 V. Ä3 is 150 k2. 
(a) What is the current flowing through the circuit? 
(6) What is the value of Rd 
(c) What is the value of Ä2? 
(d) What is the wattage dissipated by each resistor? 

7 Three resistors of 12, 18, and 47 SI are connected in series across a 
12-V source. If the current through the circuit is 153 mA, what is the 
resistance of the connecting wires and connections? 

8 A certain broadcast tuner has been designed to use one each of the 
following tubes: 12BE6, 12BA6, 12AT6, and 35W4. The first three 
tubes require 12.6 V each for heaters (filaments), and the 35W4 re¬ 
quires 35 V. Since all the heaters are designed for 150 mA, they can 
be operated in series. What value of series resistance Rs is required 
for operation from a 115-V line? 

9 Three resistors, Äi = 1.2 2, R2, and R3, are connected in series across 
a 125-V generator, which delivers a current of 27.8 A. The voltage drop 
across R3 is 50 V. 
(a) What is the value of Ä3? 
(h) What'is the value of Rd 
(c) How much power is expended in the circuit? 

10 Four resistors. R} = 820 2, R> = 270 2, R3 =1.5 k2, and R¡ = 390 2, 
are connected in series across a generator. The voltage appearing 
across Ä3 is 504 V. 
(a) What is the generator voltage? 
(6) What is the power being dissipated by each resistor? 

8- 9 BIAS RESISTORS—TUBES 

The great majority of vacuum-tube applications require that the control 
grid G of the tube be maintained at a negative potential with respect to the 
cathode K. There are several methods of accomplishing this, and they largely 
depend upon the use of the tube and the circuit with which it is used. How¬ 
ever, the most common source of bias voltage is a resistance Äk inserted in 
the cathode circuit, where the cathode current R must flow through it. The 
voltage drop across this resistance is employed as a bias voltage as illus¬ 
trated in Fig. 8 • 20, which illustrates schematically a type 6C5 triode operat¬ 
ing with a bias voltage of Ec = —8 V. Since the plate supply voltage main¬ 
tains the plate P positive with respect to the cathode K. electrons flow from 
cathode to plate, and these constitute the plate current R. 

As far as the de circuit, and therefore the bias voltage is concerned, Fig. 
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8 • 20 can be reduced to the equivalent series circuit of Fig. 8-21 wherein 
the signal voltage source Es has been eliminated and the equivalent plate 
resistance Rp has been substituted for the cathode to plate electron circuit. 
For the purpose of illustration, the plate load resistance Rb has been elim¬ 
inated from this particular example, but this elimination is not possible in 
all applications, as will be shown later. In this circuit the tube is operating 
with a plate supply voltage of Ebb = 258 V, a plate voltage with respect to 
cathode of Ep = 250 V, and a grid bias voltage with respect to cathode of 
Ee = -8 V. 

Starting at the negative source of the plate supply voltage Ebb, the plate 
current ZP of 8 mA flows through the 1 -kS2 cathode-biasing resistor Ru, which 

PROBLEMS 
8 - 3 
TO 

SECTION 
8 • 9 

Fig. 8-17 Evolution of Vacuum 
Tubes: (a) T9 Octal Base, (b) Glass 
Miniature, (c) Glass Subminiature, 
and (d) Ceramic Microminiature 
(Shown Approximately 
Three-Fourths of Actual Size) 
(Courtesy of General Electric 
Company) 

MU 
Fig. 8-18 Cutaway of Type 
GL-5751 Vacuum Tube. Shown 
Approximately 2j Times Actual 
Size (Courtesy of General Electric 
Company) 

Fig. 8-19 Basic Physical 
Construction of Type 6BY4 Vacuum 
Tube Illustrated in Fig. 8 ■ 17d 
(Courtesy of General Electric 
Company) 
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Fig. 8 ■ 20 Grid G is Biased -8 V 
with Respect to Cathode K 

Plate supply 
voltage E bh

Fig, 8 ■ 21 Equivalent Circuit 
of Fig. 8 • 20 

Fig. 8 • 22 Circuit of Example 14 

results in a voltage of 8 V across this resistor. The polarity is such that the 
cathode is 8 V positive with respect to the negative source of plate voltage, 
ground potential, and the grid, since all are connected together. This is the 
same as saying that the grid is 8 V negative with respect to the cathode. The 
remaining 250 V exists between plate P and cathode K. with the plate 250 V 
positive with respect to cathode. 

example 14 The type 6A3 triode power amplifier tube, when operating as 
a class A amplifier, has a plate current of 60 mA when the plate 
voltage is 250 V and the grid bias E, is —45 V. 
(a) What value of cathode biasing resistor Rk is necessary? 
(6) How much power is consumed in the biasing resistor? 
(c) Disregarding plate load resistance Rb what is the value of 

the plate voltage supply Ebb? 
(d) How much power Pb is taken from the plate voltage supply? 

solution The circuit is shown schematically in Fig. 8 • 22. 

(n. R 45 - 45 = 45 x i (a) Rk - 0 060 6 x 10_2 6 X 

(6) Pk = I^Rk = (6 x IO 2)2 X 750 = 2.7 W 

E2 452
check P = ^ = ^= 2™ 

(c) Ebb = Eb + E,. = 250 + 45 = 295 V 

(d) Pb = EbbIb = 17.7 W 

Fig. 8 • 23 Circuit of Example 15 

example 15 If the tube of Example 14 is to work into a de load resistance of 
Rh = 2.5 kñ, what plate supply voltage Ebb will be required? 

solution The circuit is illustrated in Fig. 8 • 23. The voltage across the 
load resistance RL is 

El = IbRL = 0.060 x 2500 = 150 V 

In order to maintain the original tube operating voltages, the 
supply voltage must be increased by 150 V. That is, 

Ebb = 295 + 150 = 445 V 
or Ebb = Eb + E,. + EL = 250 + 45 + 150 = 445 V 
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example 16 The type 6SK7 pentode has the following characteristics: Plate 
voltage Eb = 250 V, grid bias Ec — — 3 V, plate current 
Ih — 9.2 mA, screen voltage E^ = 100 V, screen current 
1^ = 2.4 mA. Disregarding the plate load resistance R\„ 
(a) What value of cathode biasing resistor is necessary? 
(6) What value of series screen grid resistor Äsg is needed if 

the screen grid voltage is to be supplied from the positive 
side of the plate voltage supply? 

solution The circuit is illustrated in Fig. 8 • 24. The control grid, which is 
nearest the cathode, is to be 3 V negative with respect to 
cathode. The suppressor grid, which is nearest the plate, is 
connected directly to the cathode to suppress secondary emis¬ 
sion. The screen grid, which is between control grid and sup¬ 
pressor grid, is to be operated at 100 V positive with respect to 
the cathode. 

SECTION 
8 ■ 9 
TO 

SECTION 
8 • 10 

Fig. 8 • 24 Circuit of Example 16 

fa) Since the plate current Iv and the screen current /SE both 
flow through the cathode, the cathode current from the supply 
is 

h = Is + = 9.2 + 2.4 = 11.6 mA 

then Rk E,. 3 30 
Ik “ 11.6 X IO-’ - i i ß 

102 _ 259 Q 

(6) The series screen grid dropping resistor must reduce the 
plate voltage of 250 to 100 V on the screen. Therefore, the 
voltage drop across this resistor must be 

E = E„ - Esg = 250 - 100 = 150 V 

*he" 

8- 10 BIAS RESISTORS—Transistors 

Proper operation of a transistor circuit requires that the emitter-base junc¬ 
tion of the transistor be forward-biased and that the collector-base junction 
be reverse-biased, as shown in Fig. 8 ■ 25. 

Fig. 8 • 25 NPN Transistor Biased 
for Proper Operation. The N-Type 
Emitter is Forward-Biased for Low 
Effective Resistance, and the 
N-Type Collector is Reverse-Biased 
for High Effective Resistance. 
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Spacer 
Gold wire 

E 

Wafer 

Gold contact 

(a) 

(b) 

Collector contacts 

2V-type base region P+ substrate 

Gold collector contact 

(c) 

ICWiNISigiBlNlKMiNNWili & X MCKC vX^XVI»X\X\XXX\\XV 

P+ annular band 
terminates channel 

Evaporated gold 
base contact 

Thermocompression 
bonded contacts 

Induced 
type channel 

Metallic 
contacts 

P-type 
collector 

Collector-base junction 
protected by surface 

passivation 

-Mask 
Substrate 

Evaporated 
aluminum emitter 

(P-type) 

Gold film 
(d) 

I yimpurtiy profile 
Diffused N region 

Cross-evaporation process for 
III, stripe deposition 

P+ emitter 

regi0" SiO 

Fig. 8 • 26 Evolution of 
Transistors (Courtesy of Lothar 
Stern, “Fundamentals of 
Integrated Circuits," Hayden Book 
Co.. Inc., 1968) 
(a) Diffused Base Mesa 
(b) Epitaxial Mesa 
(c) Annular 
(d) Basic Integrated 

Sometimes the use of two different batteries is avoided by utilizing bias 
resistors, as in tube circuits. In addition, resistor values are chosen to limit 
current flows to acceptable levels. Figure 8 • 27 shows a simple circuit in 
which transistor Qi is supplied by a single battery PB. The resistor in the 
base circuit ÄB is chosen to regulate the base-emitter current ZB, and the 
output signal is taken across the load resistor as the collector current Zc 
flows through it. 

example 17 In Fig. 8 • 27, assuming that the voltage drop across the emitter¬ 
base junction is negligible, what must be the value of PB if the 
base current must be limited to 80 pA? PB = 6 V. 
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solution «B = -f— 
*B 

6 
80 X IO'8

= 75 kQ 

When two batteries are used, as in Fig. 8 • 28, an analysis based upon 
constant emitter current bias reveals that 

/c — aIE + /co 
/b — (1 — o)/e — /co 

where /co = the very small leakage current in the collector circuit at room 
temperature 

« = the current amplification factor under certain circuit arrange¬ 
ments; its value is usually slightly less than 1 

example 18 In Fig. 8 • 28, the applied EMF Ee = 12 V and the specifications 
for transistor indicate that the emitter current /E should be 
limited to 10 mA. What value of resistor ÄE should be chosen? 

solution p Ee 
«e = 

XE

12 
10 X IO“3

= 1.2 k<> 

example 19 For the circuit of Fig. 8 • 28, Ee — 12 V, /E = 8 mA, a = 0.95, 
and /co = 50 gA. Find (a) RK, (b) Ic and (c) /B. 

solution (a) RE = = 1.5 kS2 
ZE 0.008 

(6) /c = o/E + /co = (0.95X0.008) + 0.000050 
= 7.65 mA 

(c) /B = (1 - 0.95X0.008) - 0.000050 
= 350 pA 

SECTION 
8-10 
TO 

Fig. 8 • 27 Simple Single Battery 
Transistor Biasing Circuit for PNP 
Transistor Qj 

Fig. 8 • 28 PNP Transistor Q t 

Biased by Means of Two Batteries, 
E,, and Ec

PROBLEMS 8 ■ 4 

1 The type 6A5G triode power amplifier, when operating as a class A 
amplifier with a plate voltage of 300 V, draws 11 mA of plate current 
when the grid bias is —10.5 V. 
(a) What is the value of the cathode bias resistor? 
(6) Disregarding plate load resistance, what is the plate supply voltage? 

2 The type 6AF5G triode, when operating as a class A amplifier with a 
plate voltage of 180 V, draws 7 mA of plate current when the grid bias 
is -18 V. 
(a) What is the value of the cathode bias resistor? 
(6) How much power is expended in the bias resistor? 
(c) Disregarding plate load resistance, what is the plate supply voltage? 

3 The type 12E5GT triode, when operating as a class A amplifier with a 
plate voltage of 250 V, draws 50 mA of plate current when the grid bias 
is —10.5 V. The plate load resistance is 1 kQ. 
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(a) What is the value of the cathode bias resistor? 
(6) How much power is expended in the bias resistor? 
(c) What is the plate supply voltage? 
(d) How much power is taken from the plate supply? 

4 The type 14V7 high-frequency pentode, when operating as a class A 
amplifier with a plate voltage of 300 V and a screen voltage of 150 V, 
draws 9.6 mA of plate current and 3.9 mA of screen current when the 
grid bias is —2 V. 
(a) What is the value of the cathode bias resistor? 
(6) What is the value of the screen dropping resistor? 

5 The type 6M7G pentode, when operating as a class A amplifier with a 
plate voltage of 250 V and a screen voltage of 125 V draws 10.5 mA of 
plate current and 2.8 mA of screen current when the grid bias is 
-2.5 V. 
(a) What is the value of the cathode bias resistor? 
(6) How much power is expended in the bias resistor? 
(c) What is the value of the screen dropping resistor? 
(d) How much power is expended in the screen dropping resistor? 
(e) Disregarding load resistance, what is the plate supply voltage? 
(/) How much power is taken from the plate supply? 

6 In Fig. 8 • 27, assuming that the voltage drop across the emitter-base 
junction is negligible, what must be the value of Äb if the base current 
must be limited to 90 /iA? EK = 6 V. 

7 It is desired to operate a transistor in grounded-base connection (Fig. 
8 • 28) with a fixed bias of 6 V. The maximum current in the base circuit 
is 100 gA. 
(a) What is the value of the resistor which will provide this voltage? 
(6) What is the power which this resistor must radiate? 

8 In the circuit of Fig. 8 • 28. EMF Ee = 6 V, and the emitter current /E 
should be limited to 8 mA. What value of resistor ÄE should be chosen? 

9 In the circuit of Fig. 8 • 28, what value should ÄE be if Ee = 30 V and IE 
must be kept to 12 mA or less? 

10 In the circuit of Fig. 8 • 28, Ee = 12 V and Ec = 15 V. /E = 10 mA, 
a = 0.98, and /Co = 75 uA. Find (a) ÄE (6) Zc. and (c) ZB-
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chapter 

resistance • wire sizes 

The effects of resistance in series circuits were discussed in the preceding 
chapter. However, in order to prevent confusion while the more simple rela¬ 
tions of Ohm’s law were being discussed, the nature of resistance and the 
resistance of wires used for connecting sources of voltage with their respec¬ 
tive loads were not mentioned. 

In the consideration of practical circuits two important features must be 
taken into account: the resistance of the wires between the source of power 
and the electronic equipment that is to be furnished with power and the 
current-carrying capacity of these wires for a given temperature rise. 

9 • 1 RESISTANCE 

There is a wide variation in the ease (conductance) of current flow through 
different materials. No material is a perfect conductor, and the amount of 
opposition (resistance) to current flow within it is governed by the specific 
resistance of the material, its length, cross-sectional area, and temperature. 
Thus, for the same material and cross-sectional area, a long conductor will 
have a greater resistance than a shorter one. That is, the resistance of a con¬ 
ductor of uniform cross-sectional area is directly proportional to its length. 
This is conveniently expressed as 

where Ä, and R? are the resistances of conductors with lengths L, and L2, 
respectively. 

example 1 The resistance of No. 8 copper wire is 0.641 12/1000 ft. What is 
the resistance of 1 mi of the wire? 

solution Given Ä, = 0.641 12, Lt = 1000 ft. and L2 = 1 mi = 5280 ft. 
R2 — ? Solving Eq. [1] for R>. we have 

„ _ R,L2 12 ft _ 0.641 X 5280 12 ft _ o

"2 - t; ft" - woo— if = 338 “ 
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For the same material and length, one conductor will have more resistance 
than another with a larger cross-sectional area. That is, the resistance of a 
conductor is inversely proportional to its cross sectional area. Expressed as 
an equation, 

where Äi and Ä2 are the resistances of conductors with cross-sectional 
areas A} and A2, respectively. 

Because most wires are drawn round, Eq. [2] can be rearranged into a 
more convenient form. For example, let Ax and A2 represent the cross-
sectional areas of two equal lengths of round wires with diameters d, and d2, 
respectively. Because the area A of a circle of a diameter d is given by 

A -
A " 4 

then 

. ndf2 . a vd-d A = -J- and A2 = — 

Substituting in Eq. [2] 

■ndf2
Ry _ ~4~ 
R2 ^df2

4 

or 

Hence, the resistance of a round conductor varies inversely as the square 
of its diameter. 

example 2 A rectangular conductor with a cross-sectional area of 0.01 
square inches (in.2) has a resistance of 0.075 12. What would be 
its resistance if its cross-sectional area were 0.02 in.2? 

solution Given Ä, = 0.075 12, Ä, = 0.01 in.2, andA2 = 0.02 in.2. R, = ? 
Solving Eq. [2] for R2, 

n   7?iA1 12 in.2   0.075 x 0.01 12 jm-  q Q375 q 
2 - A2 in.2 ~ 0.02 in'.2

example 3 A round conductor with a diameter of 0.25 in. has a resistance 
of 8 12. What would be its resistance if its diameter were 0.5 in.? 

solution Given dx = 0.25 in., Rx = 8 12, and d2 = 0.5 in. R> = ? Solving 
Eq. [3] for R2, 

R. _ ^1! Qin-2 _ 8 X 0.252 12 >.2 = 2 „ 
2 d22 in.2 0.52 jir.2

116 



Hence, if the diameter is doubled, the cross-sectional area is increased 
four times and the resistance is reduced to one-quarter of its original value. 

PROBLEMS 9•1 

1 Number 14 copper wire has a resistance of 2.58 12/1000 ft. 
(a) What is the resistance of 1 mi of this wire? 
(6) What is the resistance of 40 ft of this wire? 

2 Number 30 copper wire has a resistance of 105 12/1000 ft. 
(a) What is the resistance of 600 ft of this wire? 
(6) What is the resistance of 3700 ft? 

3 Using the information of Prob. 2, what is the resistance of a coil that 
has a mean diameter of 1.38 in. and is wound with 6280 turns of No. 30 
copper wire? 

4 The resistance of a 1-mi run of No. 10 copper wire telephone line is 
measured and found to be 5.39 12. 
(a) What is the resistance per 1000 ft? 
(6) What is the resistance of 3500 ft of No. 10 copper wire? 
(c) What is the resistance of 60 ft? 

5 The telephone line of Prob. 4 is replaced with No. 8 wire, which has a 
resistance of 0.641 12/1000 ft. What is the resistance of the 1-mi run? 

6 A length of square conductor that is 0.25 in. on a side has a resistance 
of 0.0756 12. What will be the resistance of a similar length of 0.075-in. 
square conductor? 

7 One thousand feet of No. 6 wire, which has a diameter of 0.162 in., has 
a resistance of 0.403 12. What is the resistance of 1000 ft of No. 2 wire 
whose diameter is 0.258 in.? 

8 The resistance of 10 yd of a specially drawn wire is found to be 32.112. 
A coil wound with identical wire has a measured resistance of 702 12. 
What is the length of wire in the coil? 

9 It is desired to wind a milliammeter shunt having a resistance of 4.6212, 
and No. 40 enameled copper wire, with a resistance of 1070 12/1000 ft, 
is available. What length of wire is required? 

10 It is desired to wind a microammeter shunt having a resistance of 
0.280 12, and No. 36 enameled copper wire, with a resistance of 
423 12/1000 ft. is available. What length of wire is required? 

9 • 2 THE CIRCULAR MIL 

In the measurement of wire cross section, it is convenient to use a small unit 
of measurement because the diameter of a wire is usually only a small frac¬ 
tion of an inch. Accordingly, the diameter of a wire is expressed in terms of a 
unit called the mil, which is 1/1000 in. That is, there are 1000 mils in an 
inch. This is easily remembered because the mil is simply a milli-inch (Sec. 
7 • 6). For example, it is evident that using 64 mils as the diameter of No. 14 
wire is more convenient than using 0.064 in. 

SECTION 
9 • 1 
TO 

SECTION 
9 2 
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Fig. 9 • 1 Comparison of the 
Circular Mil and the Square Mil: 
(a) Circular Mil, (b) Square 
Mil, (c) Circular and Square Mils 
Compared 
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The cross sectional areas of round conductors are measured in terms of 
the circular mil. The circular mil, abbreviated cir mil, is the area of a circle 
whose diameter Is 1 mil. Note that the circular mil is a unit of area in its own 
right; i.e., the circular mil is a convenient measure of cross sectional area for 
wires just as the nautical mile is a convenient measure of distance for sailors, 
even though it is not the same length as a land mile. Except for purposes of 
comparison, it is seldom necessary to convert wire cross sections into any 
other units. The relative sizes of the circular mil and the square mil are 
illustrated in Fig. 9 • 1. 

The areas of circles vary as the squares of their diameters. For example, a 
circle whose diameter is 2 in. has four times the area of a circle having a 
diameter of 1 in. Similarly, the area of a circle whose diameter is 0.003 in. 
(3 mils) has nine times the area of a circle having a diameter of 0.001 in. 
(1 mil). Because, by definition, the circular mil is the area of a circle with a 
diameter of 1 mil, it is evident that a circle whose diameter is 3 mils must 
have an area of 9 cir mils. Hence the area of a circle can be expressed in cir¬ 
cular mils by squaring the diameter, provided, however, that the diameter is 
expressed in mils. Conversely, if the area of a circle is expressed in circular 
mils, the diameter in mils can be found by extracting the square root of the 

area. 

example 4 Number 10 wire has a diameter of 0.102 in. What is its circular¬ 
mil area? 

solution Given d = 0.102 in. = 102 mils. 
Area — diameter2 = 1022 = 10.400 cir mils 

example 5 Number 14 wire has a cross-sectional area of 4110 cir mils. 
What is the diameter? 

solution Given A = 4110 cir mils. 

Diameter = ^/cir-mil area = = 64 mils 

Because the area of a circle is 

or 
A = 0.7854<W square units 

it follows that 

The number of sq mils = the number of cir mils x 0.7854 [4] 

From Eq. [4], 

The number of cir mils = the number of [5] 
0.7854 

Equations [4] and [5] are useful relations in determining the equivalence of 
round and rectangular conductors. 



example 6 A bus bar is 1 in. wide and | in. thick. What is its circular mil 
area? 

solution Given Width = 1 in. = 1000 mils 
Thickness = 0.25 in. = 250 mils 

Area - width x thickness = 1000 x 250 
= 250.000 sq mils 

„ .. 250,000 oionnn Cir mils = „ , = 318,000 
0.7854 

PROBLEMS 9 • 2 

1 What is the circular mil area of a wire 0.0640 in. in diameter? 
2 What is the circular mil area of a wire 0.00350 in. in diameter? 
3 What is the circular mil area of a wire 15.9 mils in diameter? 
4 What is the cross-sectional area in mils2 of the wire in Prob. 3? 
5 What is the cross-sectional area in inches2 of the wire in Prob. 3? 
6 What is the diameter in mils of a wire whose area is 106,000 cir mils? 
7 What is the diameter in inches of a wire whose area is 250,000 cir mils? 
8 A rectangular bus bar has to replace a cable whose area is 318,000 

cir mils. 
(a) What is its cross-sectional area in inches2? 
(6) If square bus is used, what will be its dimension on a side? 

9 A rectangular bus bar has a cross-sectional area of 0.0157 in.2. What 
is the diameter of an equivalent round wire? 

10 A cable whose area is 637,000 cir mils is to be replaced by a rectangular 
bus. What will be the cross-sectional area in square inches of the bus? 

9- 3 THF CIRCUI AR MIL-FOOT 

For the purpose of computing the resistance of wires of various areas and 
lengths and for comparing the resistances of wires made of different mate¬ 
rials, it is apparent that some standardized unit of wire size is needed. 
Hence, the circular mil foot has been taken as the unit conductor. A con¬ 
ductor having 1 circular mil cross-sectional area and a length of 1 foot is 
called a circular-mil-foot, or a mil-foot, of conductor. Such a conductor is 
represented in Fig. 9 • 2. 

Since the resistance of a conductor is proportional to its length and in 
versely proportional to its cross-sectional area, the resistance of any wire 
can be expressed by the equation 

[6] 
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Fig. 9 • 2 Representation of 
1 cir-mil-ft of Conductor 
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where R = resistance of wire, 12 
p = resistance, ß/cir-mil-ft* of material composing wire 
I = length of wire, ft 
d = diameter of wire, mils 

The factor p (Greek letter rho) in Eq. [6] is called the specific resistance or 
resistivity of the material. Thus, the specific resistance of a wire is the resist¬ 
ance of 1 mil-foot of that wire. The specific resistances of a few of the mate¬ 
rials used for conductors are listed in Table 9-1. 

Table 9-1 2 
Specific Resistances at 20°C (68°F) material cir-mil-ft 

12 
material cir-mil-ft 

Aluminum 17.0 
Copper (drawn) 10.4 
German silver 200 to 290 
Gold 14.7 
Iron (cast) 448 to 588 
Lead 132 

Mercury 565 
Nichrome 600 to 660 
Nickel 47 
Phosphor-bronze 23.7 
Silver 9.75 
Steel 95 to 308 

example 7 What is the resistance at 20°C of a copper wire 250 ft long and 
5.6 mils in diameter? 

solution Given I = 250 ft, d = 5.6 mils, and, from Table 9-1, 
p — 10.4 12. R = ? Substituting in Eq. [6], 

R = 10 * * 250 = 82.9 12 
5.62

example 8 The resistance of a conductor 1000 ft long and 32 mils in diam¬ 
eter is found to be 12 12 at 20°C. What is the specific resistance 
of the wire? 

solution Given I = 1000 ft, d = 32 mils, and Ä = 12 12. p = ? Solving 
Eq. [6] for p, 

12 y 322
Substituting the known values p = —_ = 12.3 12/mil-ft 
6 H 1000 

example 9 A roll of copper wire is found to have a resistance of 2.54 12 at 
20°C. The diameter of the wire is 64 mils. How long is the wire? 

solution Given R = 2.54 12, d = 64 mils, and p = 10.4. I = ? Solving 
Eq. [6] for /, 

* Analysis will show that the units of p must be 12-cir mils/ft. However, common 
usage in North America is as shown above. 
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z= Rd2
P 

9 64 V 642 
Substituting the known values I = - = 1000 ft 

PROBLEMS 9 • 3 

note In the following problems, consider that all the wire temperatures are 
20°C. 
1 What is the resistance of a copper wire 250 ft long and 14.2 mils in 

diameter? 
2 With reference to Prob. 1, what is the resistance of an otherwise identi¬ 

cal wire of aluminum? 
3 With reference to Prob. 1, what is the resistance of an otherwise identi¬ 

cal wire of phosphor-bronze? 
4 What is the resistance of 700 ft of copper wire with a diameter of 

0.010 in.? 
5 A special alloy wire 30 ft long and 0.0031 in. in diameter has a resist¬ 

ance of 78 ÍT What is the specific resistance of the alloy? 
6 A nichrome wire that has a resistance of 625 2/cir-mil-ft, has a diam¬ 

eter of 0.0201 in. and a length of 3.23 ft. What is its resistance? 
7 How many miles of copper wire 0.128 in. in diameter will it take to 

make 5.00 fi of resistance? 
8 What is the resistance of the wire in Prob. 7 in ohms per 1000 ft? 
9 A coil of copper wire has a resistance of 2.38 2. If the diameter of the 

wire is 0.0810 in., find the length of the wire. 
10 What is the resistance of 2 mi of the wire in Prob. 9? 

9 -4 TEMPERATURE EFFECTS 

In the preceding section the specific resistance of certain materials was 
given at a temperature of 20°C. The reason for stating the temperature is 
that the resistance of all pure metals increases with a rise in temperature. 
The results of experiments show that over ordinary temperature ranges this 
variation in resistance is directly proportional to the temperature. Hence, 
for each degree rise in temperature above some reference value, each ohm 
of resistance is increased by a constant amount a, called the temperature 
coefficient of resistance. The relation between temperature and resistance 
can be expressed by the equation 

Ri = Ä„(l + at) fi [7] 

where Rt = resistance at a temperature of ¿°C* 
Ro = resistance at 0°C 
a = temperature coefficient of resistance at 0°C 

The temperature coefficient for copper is 0.00427. That is, if a copper 

* °C stands for degrees Celsius, or centigrade. 
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wire has a resistance of 1 2 at 0°C, it will have a resistance of 1 + 0.00427 = 
1.00427 2 at 1°C. The value of the temperature coefficient for copper is 
essentially the same as that for most of the unalloyed metals, such as gold, 
silver, aluminum, and lead. 

A more convenient relation is derived by assuming that the proportionality 
between resistance and temperature extends linearly to the point where 
copper has a resistance of 0 12 at a temperature of — 234.5°C. This results 
in the ratio 

«2 _ 234,5 + t2
Ri 234.5 + ti 

[8] 

where Rt = resistance of copper in ohms at a temperature of ii°C 
R2 = resistance of copper in ohms at a temperature of t2°C 

example 10 The resistance of a coil of copper wire is 34 12 at 15°C. What is 
its resistance at 70°C? 

solution Given Ri = 34 12, t, = 15°C, and t2 = 70°C. R2 = ? Solving 
Eq. [8] for R2, 

o 234.5 + t2 u 
= 234.5 + 6 

Substituting the known values, 

R _ 234.5 + 70 
“ 234.5 + 15 

X 34 = 41.5 12 

The specifications for electric machines generally include a provision 
that the temperature of the coils, etc., when the machines are operating 
under a specified load for a specified time, must not rise more than a certain 
number of degrees. Temperature rise can be computed by measuring the 
resistance of the coils at room temperature and again at the end of the test. 

example 11 The field coils of a shunt motor have a resistance of 90 12 at 
20°C. After the motor was run for 3 hr, the resistance of the 
field coils was 146 12. What was the temperature of the coils? 

solution Given R} = 90 12, = 20°C, R2 = 146 12. t2 = ? Solving 
Eq. [8] for t2, 

t2 = 234 p + 6 R2 - 234.5 
Al 

Substituting the known values, 

i2 = 234.5^+ 20 x 146 _ 234 5

= 413 - 234.5 = 178.5° 
The actual temperature rise is t2—tt = 178.5° — 20° = 158.5° 
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1 The resistance of a coil of copper wire at 40°C is 5.38 2. What will its 
resistance be at 0°C? 

2 If the resistance of a copper coil is 3.07 2 at 0°C, what will it be at 
20 "C? 

3 The de resistance of an inductor is 19.5 2 at 80°C. What will be the 
resistance when the inductor is operated at an ambient temperature 
of 20°C? 

4 The resistance of the primary winding of a transformer was 2.95 2 at 
20°C. After operating for 3 hr, the resistance increased to 3.28 2. What 
was the final operating temperature? 

5 The specifications for a high-power transformer included a provision 
that it was to operate continuously under full load with the winding 
temperature not to exceed 55°C. The resistance of the primary coil 
was measured before the transformer was put on test, at 22°C, and 
found to be 52.7 2. After a day’s test at rated load, the resistance was 
again measured, and it was found to be 60.0 2. Did the transformer 
meet the specifications? 
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9 • 5 WIRE MEASURE 

Wire sizes are designated by numbers in a system known as the American 
wire gage (formerly Brown and Sharpe gage). These numbers, ranging from 
0000, the largest size, to 40, the smallest size, are based on a constant ratio 
between successive gage numbers. The wire sizes and other pertinent data 
are listed in Table 5 in the Appendix. 

Inspection of the wire table will reveal that the progression formed by the 
wire diameters serves as an aid in remembering relative wire sizes and the 
respective resistances. For example, No. 10 wire is a convenient reference 
because it is nearly in. in diameter and has a cross-sectional area of ap¬ 
proximately 10,000 cir mils. Moreover, its resistance is very nearly 1 2/1000 
ft. As the wire sizes become smaller, every third gage number results in one-
half the area and, therefore, double the resistance. Hence, No. 13 wire (three 
numbers from No. 10) has an area of about 5000 cir mils and a resistance of 
approximately 2 2/1000 ft. Similarly, by using additional approximations, 
No. 16 has an area of 2500 cir mils and a resistance of 4 2/1000 ft, No. 19 
has an area of 1250 cir mils and a resistance of 8 2/1000 ft, etc. Conversely, 
as the wire sizes become larger, every third gage number results in twice the 
circular-mil area and half the resistance. For example, No. 7 has an approxi¬ 
mate area of 20,000 cir mils and a resistance of nearly 0.5 2/1000 ft. 

9-6 FACTORS GOVERNING WIRE SIZE IN PRACTICE 

From an electrical viewpoint, three factors govern the selection of the size of 
wire to be used for transmitting current: 
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1 The safe current-carrying capacity of the wire 
2 The power lost in the wire 
3 The allowable voltage variation, or the voltage drop, in the wire 
It must be remembered that the length of wire, for the purpose of com¬ 

puting wire resistance and its effects, is always twice the distance from the 
source of power to the load (outgoing and return leads). 

example 12 A motor receives its power through No. 4 wire from a generator 
located at a distance of 1000 ft. The voltage across the motor 
is 220 V, and the current taken by the motor is 19.8 A. What is 
the terminal voltage of the generator? 

solution The circuit is represented in Fig. 9 • 3. Note that it consists of a 

Fig. 9 • 3 Generator G Supplying 
Power to Motor M at a Distance of 
1000 ft 

Fig. 9 ■ 4 Simplified Form of 
Circuit Shown in Fig. 9 • 3 

Fig. 9 • 5 Equivalent Circuit of 
Circuits Shown in Figs. 9 • 3 and 
9-4 

simple series circuit which can be simplified to that of Fig. 9 • 4. 
The resistance of the 1000 ft of No. 4 wire from the generator 
to the motor is represented by Äo; reference to Table 5 shows 
it to be 0.253 2. Similarly, the resistance from the motor back 
to the generator, which is represented by R, is also 0.253 fi. 
The voltage drop in each wire is 

E = IRO = IRr = 19.8 X 0.253 = 5.01 V 

Since the applied voltage must equal the sum of all the voltage 
drops around the circuit (Sec. 8 • 8), the terminal voltage of the 
generator is 

Ek = 220 + 5.01 + 5.01 = 230.02 or 230 V 

Since the resistance out R„ is equal to the return resistance Rr, 
the foregoing solution is simplified by taking twice the actual 
wire distance for the length of wire that comprises the resist¬ 
ance of the feeders. Therefore, the length of No. 4 wire between 
generator and motor is 2000 ft, which results in a line resist 
anee RL of 

2 X 0.253 = 0.506 Í2 

The circuit can be further simplified as shown in Fig. 9 • 5. 
Thus, the generator terminal voltage is 

Eg = 220 + IRi. = 220 + (19.8 x 0.506) = 230 V 
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The power lost in the line is 

Pi. = r-RL = 19.8- X 0.506 = 198 W 

The power taken by the motor is 

Pm = E^I = 220 x 19.8 = 4356 W = 4.356 kW 

The power delivered by the generator is 

Pa = Pl + Pm = 198 + 4356 = 4554 W 
•_ , . power delivered to load Efficiency of transmission = —-——-—-

power delivered by generator 

= = 0.956 = 95.6% [9] 4554 

The efficiency of transmission is obtainable in terms of the 
generator terminal voltage Eo and the voltage across the load 
E^. Because 

Power delivered to load = E¡J 

and 

Power delivered by generator = EcJ 

substituting in Eq. [9] gives us 

EI E 
Efficiency of transmission = [10] 

and substituting the voltages in Eq. [10] gives us 

Efficiency of transmission - — 0 956 = 95.6% 

PROBLEMS 9 5 

note All wires in the following problems are of copper with characteristics 
as listed in Table 5. 

1 (a) What is the resistance of 2500 ft of No. 00 wire? 
(6) What is its weight? 

2 (a) What is the resistance of 1800 ft of No. 8 wire? 
(6) What is its weight? 

3 (a) What is the length of a 250-lb coil of No. 12 wire? 
(b) What is its resistance? 

4 (a) What is the length of a 200 lb coil of No. 16 wire? 
(6) What is its resistance? 

5 A telephone cable consisting of several pairs of No. 19 wire connects 
two cities 25.6 mi apart. If a pair is short-circuited at one end, what 
will be the resistance of the loop thus formed? 

6 A relay is to be wound with 1500 turns of No. 22 wire. The average 
diameter of a turn is 1.80 in. 
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(a) What will be the resistance? 
(b) What will be the weight of the coil? 

7 Fifteen kilowatts of power is to be transmitted 500 ft from a generator 
that maintains a constant terminal voltage of 240 V. If not over 5% 
line drop is allowed, what size wire must be used? 

8 A generator with a constant brush potential of 230 V is feeding a motor 
175 ft away. The feeders are No. 6 wire, and the motor current is 
27.7 A. 
(a) What would a voltmeter read if connected across the motor 

brushes? 
(6) What is the efficiency of transmission? 

9 A motor requiring 34 A at 230 V is located 365 ft from a generator that 
maintains a constant terminal voltage of 240 V. 
(a) What size wire must be used between generator and motor in 

order to supply the motor with rated current and voltage? 
(6) What will be the efficiency of transmission? 

10 A 25-hp 230-V motor is to be installed 350 ft from a generator that 
maintains a constant potential of 240 V. 
(a) If the motor is 84% efficient, what size wire should be used between 

motor and generator? 
(b) If the wire specified in (a) is used, what will be the motor voltage 

under rated load condition? 
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chapter 

special products nd factoring 

In the study of arithmetic, it is necessary to memorize the multiplication 
tables as an aid to rapid computation. Similarly, in the study of algebra, 
certain forms of expressions occur so frequently that it is essential to be 
able to multiply, divide, or factor them by inspection. 

10-1 FACTORING 

To factor an algebraic expression means to find two or more expressions 
that when multiplied will result in the original expression. 

example 1 2 x 3 x 4 - 24, Thus. 2, 4. and 3 are some of the factors of 24. 

example 2 b(x + y) — bx + by. b and (x + y) are the factors of bx + by. 

example 3 (x + 4)(x - 3) = x2 + x - 12. The quantities (x + 4) and 
(x — 3) are the factors of x2 + x — 12. 

10 2 PRIME NUMBERS 

A number that has no factor other than itself and unity is known as a prime 
number. Thus, 3, 5, 13, x, and (a + b) are prime numbers. 

10-3 SQUARE OF A MONOMIAL 

At this point you should review the law of exponents for multiplication in 
Sec. 4 • 3. 

example 4 (2a62)2 = (2ab2\2ab2) = 4o-64

example 5 ( —3x2y3)2 = ( — 3x2y*)( — Sx2̂ 3) = 9x4>® 

By application of the rules for the multiplication of numbers having like 
signs and the law of exponents, we have the following rule: 

127 



SPECIAL 
PRODUCTS 
AND 
FACTORING 

Rule To square a monomial, square the numerical coefficient, multiply this 
product by the literal factors of the monomial, and multiply the exponent of 
each letter by 2. 

10 -4 CUBE OF A MONOMIAL 

example 6 (3a*by = (3a26)(3a-’Z>)(3a-’6) = 27a6b' 

example 7 ( — 2xv3)3 = ( — 2xy3)( — 2xy3X — 2xv3) = — 8x3v9

Note that the cube of a positive number is always positive and that the 
cube of a negative number is always negative. Again, by application of the 
rules for the multiplication of positive and negative numbers and the law of 
exponents, we have the following rule: 

Rule To cube a monomial, cube the numerical coefficient, multiply this 
product by the literal factors of the monomial, multiply the exponent of each 
letter by 3, and affix the same sign as the monomial. 

PROBLEMS 10 ■ 1 

Find the values of the following indicated powers: 

1 (xj)2

5 (_477<»2 

9 2<Xt)2 

2 (oxy 

6 (302^3)2 

10 (-3?Z 
14 (¿W2

£p3
18 -(2irfLy 

3 (ePZy 4 

7 (-2/Ä)3 8 (34 V 

11 -(^r 12

« “ Œ 
19 -(|ttä3)2 20 

10'5 SQUARE ROOT OF A MONOMIAL 

The square root of an expression is one of its equal factors. 

example 8 \/3 is a number such that 

\/3 = 3 
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Because ( + 2)( + 2) = +4 
and (_2X-2)=+4 

it is apparent that 4 has two square roots, +2 and —2. Similarly, 16 has two 
square roots, +4 and —4. 

In general, every number has two square roots equal in magnitude, one 
positive and one negative. The positive root is known as the principal root; 
if no sign precedes the radical, the positive root is understood. Thus, in 
practical numerical computations, the following is understood: 

\/4 = +2 

and 

- \/4 = — 2 

In dealing with literal numbers, the values of the various factors often are 
unknown. Therefore, when we extract a square root, we affix the double 
sign ± to denote “plus or minus.” 

example 10 Since a4 • a4 = a8 and ( —a4X —a4) = a8, 

then \/a8 = ±a4

example 11 Since x2/^2/ = x\y® and (-x^X-t2/1) = x^y6, 

then y/x4̂  = ±x2y3

From the foregoing examples, we formulate the following: 

Rule To extract the square root of a monomial, extract the square root of 
the numerical coefficient, divide the exponents of the letters by 2, and affix 
the ± sign. 

example 12 \/4a'62 = ±2a2h 

example 13 y/fx^z4= ±|xyiz2

note A perfect monomial square is one that is positive and has a 
perfect square numerical coefficient and has only even numbers as 
exponents. 

SECTION 
io • 4 

TO 
SECTION 

10 • 6 

10 -6 CUBE ROOT OF A MONOMIAL 

The cube root of a monomial is one of its three equal factors. 

Because 

then 

Similarly, 

and 

( + 2X + 2X + 2) = 8 

y/8 = 2 

(-2X-2X-2)= -8 

'^8'= -2 
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From this it is evident that the cube root of a monomial has the same sign 
as the monomial itself. 

Because x2y* • x2̂ • x2/* = x6̂ 9

then -^x6̂ 9 = x2j3

The above results can be stated as follows: 

Rule To extract the cube root of a monomial, extract the cube root of the 
numerical coefficient, divide the exponents of the letters by 3, and affix the 
same sign as the monomial. 

example 14 {/ßx^z 12 — 2x2yz^ 

example 15 27a3&9c6 = — 3ab'c2

note A perfect cube monomial has a positive or negative perfect cube 
numerical coefficient and exponents that are exactly divisible by 3. 

PROBLEMS 10 • 2 

Find the value of the following: 

1 2 

5 6 VlOOm2«’2

9 ^/27x« 10 ^-6403

13 V 169"14«^6

14 ÿ32ÀV° 
15 

16 v^ix^z« 

/256w2r2x4 
y 289z6<¡>4

18 

19 

20 

21 

22 

23 

64a'b-c1' 

/ 625r6s4F~ 
V 16x6z10

/ — 8t3X,.3

y 27Z«XC12
/-64a3ü;« 
Z 125x«z 12

/196/i2n4p6 
y 121a2b4c2

/ 25u2P 
y 256a8&2x2

3 

7 

11 

\/972

V25A4fi« 

^27 

4 \/62

8 5\/64ÿ> 

12 X 102
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10 -7 POLYNOMIALS WITH A COMMON MONOMIAL FACTOR 

Type: a(b + c + d) = ab + ac + ad 

Rule To factor polynomials whose terms contain a common monomial 
factor: 

1 Determine by inspection the greatest common factor of its terms. 
2 Divide the polynomial by this factor. 
3 Write the quotient in parentheses preceded by the monomial factor. 

example 16 Factor 3x2 — 9xy2. 
solution The common monomial factor of both terms is 3x. 

.'. 3x2 - 9x?2 _ 3x(x _ 3v2) 

example 17 Factor 2a — 6a2b + 4ax — Way3. 
solution Each term contains the factor 2a. 

2a — 6a2b + 4ax — Way3 = 2a(l — 3ab + 2x — 5.x3) 

example 18 Factor 14xzyz3 — 7xy2z2 + 35xz5. 
solution Each term contains the factor 7xz2. 

.14x2xz3 — 7xy2z2 + 35xz5 — 7xz2{2xyz — y2 + 5z3) 

PROBLEMS 10 • 3 

Factor: 

1 

3 

5 

7 

9 
11 
12 
13 

14 

2a + 6 

30 + 0« + 40ü> 4 

20ir — Wiz 6 

a2y2 . a3y ay3 _ 
9 + 3 12 

2a3b2c + 8a2bc' + 12a2b2c2 10 
36a 4̂ 3u2 — 72a2ß2ur‘ + ISOa-’^u’2
5403Ä2<> + 8102A<#>3 - 1O80ÀV 

+  ^4 _ 

^X, 3X^ - ^X, 2X,^ + ^XL2X^ 

^ab3 — ^a2b2 + ja3b 

48030 - 14402<f>2 + 108ft/>3

4a’4Xt4 - 12wX£ + 28u2XL2

\PR2Z2 - ^IRZ2 + ^PRZ 

15 720^02^3^ + 10807)26R<xj2 + 600q^O3̂ 2 - 480q0<^u: 

10 -8 SQUARE OF A BINOMIAL 

Type: (a + b)2 = a2 + 2ab + b2
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The multiplication 

a + h 
a + b 

a2 4- ab 
+ ab + b2

a2 + 2ab 4- b2

results in the formula 

(a 4- ft)2 — a2 + 2ab 4- ft2

which can be expressed by the following rule: 

Rule To square the sum of two terms, square the first term, add twice the 
product of the two terms, and add the square of the second term. 

example 19 Square 2b 4- ^cd. 
solution (2b 4- 4«/)2 = (2ft)2 4- 2(2bMcd) 4- (4crf)2

— 4ft2 4- 16bcd 4- 16c2cP 

Fig. 10-1 Graphical Illustration 
of (x 4- y)2 = X2 4- 2xy 4- y2

example 20 Let x and y be represented by lengths. Then 

(x 4- y)2 = X2 4- 2xy 4- y2

can be illustrated graphically as shown in Fig. 10-1. 

The multiplication 

a — b 
a — b 

a2 — ab 
— ab 4- b2

a2 — 2ab 4- ft2

results in the formula 

(a — b)2 = a2 — 2ab 4- ft2

which can be expressed as follows: 

Rule To square the difference of two terms, square the first term, subtract 
twice the product of the two terms, and add the square of the second term. 

example 21 
solution 

Square 3a2 — 5xy. 
(3a2 — 5xv)2 = (3a2)2 — 2(3a2X5xy) 4- (5xy)2 

= 9a4 — 30a2xy 4- 25x2y2

example 22 Let x and y be represented by lengths. Then 
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(x — y)2 = x2 — 2xy + y2

can be illustrated graphically as shown in Fig. 10 • 2. x2 is the 
large square. The figure shows that the two rectangles taken 
from x2 leave (x — y)2. Since an amount y2 is a part of one xy 
that has been subtracted from x2 and is outside x2, we must 
add it. Hence, we obtain 

(x — y)2 = x2 — 2xy + ,y2

Mentally, practice squaring sums and differences of binomials by follow¬ 
ing the foregoing rules. Proficiency in these and later methods will greatly 
reduce the labor in performing multiplications. 

Fig. 10-2 Graphical Illustration 
of (x — y)2 = x2 — 2xy + y2

PROBLEMS 10 ■ 4 

Mentally, square the following: 

1 0 + 3 2 
5 a + 16 6 
9 F-f 10 
13 9n - 3r2 14 
17 Gv2 - 2F 18 
21 G-nR2 - 2rrr2 22 
25 |X2 - 1Z2 26 

Expand: 

a + G 

P-4 
2a - 3ß 
m2 + 6 
20 + 2 
2rrfL, - Z 
^> :,À + ja2

3 
7 

11 
15 
19 
23 
27 

m - R 4 I - 5 
3X - R 8 2r + 3R 
50 + 4q 12 2A - 5m 
1 + X,2 16 202 - 13<> 
30 - 3 20 30 + 5 
1.50-’— 0.5a 24 1Ä1+ 1Ä2 

6<>2o> — ¿À2

28 (a + 5)2

32 (M-à)2

36 (f +1T 
40 (2<i> + ^2)2
41 

29 (x + j)2
33 (1 + e2}2

37 M 

30 (a + |)2
34 (X^ + l)2

38 (3 + 2ab)2

31 (1 - E) 2
35 (L2-iPy2

39 (Ri 

Develop a graphical illustration of (x + y)(x — y). 

10 -9 SQUARE ROOT OF A TRINOMIAL 

In the preceding section, it was shown that 

(a + b)2 — a2 + 2ab + b2

and 

(a — b)2 = a2 — 2ab + b2

From these and other binomials that have been squared, it is evident that a 
trinomial is a perfect square if 

1 Two terms are squares of monomials and positive. 
2 The other term is twice the product of these monomials and has 

affixed either a plus or a minus sign. 
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example 23 x2 + 2xv + y is a perfect trinomial square because x2 and v2 
are the squares of the monomials x and y, respectively, and 
2xy is twice the product of the monomials. Therefore, 

X2 + 2xy + y2 = (x + y)2

example 24 4a2 — 12ab + 9b2 is a perfect trinomial square because 4a2 

and 9b2 are the squares of 2a and 3b, respectively, and the 
other term is — 2(2a)(36). Therefore, 

4a2 - 12ab + 9b2 = (2a - 36)2

Rule To extract the square root of a perfect trinomial square, extract the 
square roots of the two perfect square monomials and connect them with 
the sign of the remaining term. 

example 25 Supply the missing term in x4 + ? + 16 so that the three terms 
will form a perfect trinomial square. 

solution The missing term is twice the product of the monomials whose 
squares result in the two known terms; that is, 2(x2)(4) = 8x2. 
Hence, 

x4 + 8x2 + 16 = (x2 + 4)2

example 26 Supply the missing term in 25a2 + 30ab + ? so that the three 
terms will form a perfect trinomial square. 

solution The square root of the first term is 5a. The missing term is the 
square of some number N such that 2(5a)(N) = 30ab. Then by 
multiplying, we obtain lOaN = 30ab, or N = 3b. Therefore, 

25a2 + 30ab + 9b2 — (5a + 3b)2

PROBLEMS 10 ■ 5 

Supply the missing terms so that the three terms form perfect trinomial 
squares: 

1 e2 + ? + 9 

4 F2 - ? + f2

7 49w2 + ? + ir2

10 f2 — 2rs + ? 

2 /•-’ + ? + 4 

5 25x2 - ? + y2

8 100L,2 + ? + 16 AT2

3 X2 — ? -i- 4 

6 25XC2 - ? + 4 

9 4m2 + ? + 9p2

11 E2 + 2EI + ? 

12 ? - 90xy + 25v2

14 Z2 + 12XZ + ? 

16 TS7!4 - bt20 + ?
P,2 1 

18 + ?

13 ? + 80pq + IOOq2

15 ? + I*,2

17
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Extract the square roots of the following: 

19 M2 + 2M + 1 
21 16gi2 + 8qtq2 + Qi2
23 9«^ + 54«2̂ y + 81y2
25 ^ 2R' + ^R- + I 

__ 10<>X 25^ , 4Ä2
21 36 49 

20 a2 - ïOab + 2562
22 E2 + \2EI + 36Z2
24 64w2A2 + 16u’ÀÍ22 + 
26 9Ä,2 + ^r2 - Y 

28 4ZTW- 4Z« M' 
27 + 81 + 9 

10 -10 PRIME FACTORS OF AN EXPRESSION 

SECTION 
10 • 10 

TO 
SECTION 
10-11 

In factoring a number, all its prime factors should be obtained. After an 
expression is factored once, it may be possible to factor it again. 

example 27 Find the prime factors of 12i2r + \2ilr + SPr. 
solution 12i2r + 12ilr + 3Pr = 3r(4;2 + 4il + Z2) 

= 3r(2i + I\2i + Z) = 3r(2i + Z)2

PROBLEMS 10 6 

Find the prime factors of the following: 

1 3ac + 6bc 2 \5qrx + 35rtx 
3 2Ä02 + 40X<> + 2<>2X 4 5E-T- - 10EIi2R + 5Pi2R2

5 24a“ + 120a3̂  + löOa2̂ 2 6 + 4^ c2- + 

, 20/õün2 40/oW1<J2 , 20fo»22 a 3XL2 , 3KMXL , 3K2M2

' u w 1 w 4Xc 4Xc 16Xc 

Q 5rÄ2 5f2rX , 5pr ]0 200Ff2 4802yx 288Fx2
y 167 2e e C C C 

10-11 PRODUCT OF THE SUM AND DIFFERENCE OF TWO NUMBERS 

Type: (a + b)(a — b) = a2 — b2

The multiplication of the sum and difference of two general numbers, such as 

a + b 
a — h 

a2 4- ah 
— ab — b2

a2 — b2

results in the formula 

(a + b)(a — b) — a2 — b2

which can be expressed by the following: 

Rule The product of the sum and difference of two numbers is equal to the 
difference of their squares. 
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example 28 (3x + 4y)(3x - 4y) = 9x2 - 16y2

example 29 (bab2 + 7cM)(6a62 - Ic'd) = 36a264 - 49c>'cP 

PROBLEMS 10'7 

Multiply by inspection: 

1 (0 + 2)(0 - 2) 
3 (I + D(I-i) 

5 (3Q - 2L)(3Q + 2L) 
7 ( 1EI + P^EI - P) 

a (2E2 3PR\(2& 
X R P f\ R 

2 (0 - 4X0 + 4) 
4 (Z + ZXZ-Z) 
6 (2,7«! + 2^Ä2)(2^Ä! - 2w«2) 

8 d«2 - FXi«2 + F) 

LO Æ + 3«V-^_3a) 
\20 * 20 A 20 20/ 

10 • 12 FACTORING THE DIFFERENCE OF TWO SQUARES 

Rule To factor the difference of two squares, extract the square root of the 
two squares, add the roots for one factor, and subtract the second root from 
the first for the other factor. 

example 30 x2 — y2 = (x + y)(x — y) 

example 31 9a2c4 — 36cf'‘ = (3ac2 + 6t/3)(3ac2 — 6c/3) 

PROBLEMS 10 ■ 8 

Factor: 

1 

4 

7 

10 

11 

12 
13 

a2 - b2 2 lx2 - I?2

4P - 9r2 5 

1 - 225w2 8 

1_VI 
Xd2 Q2

9c2 — a2 + 2ab — b2

i - 02

1_i_ 
Ex2 e2

3 402 - 1602
c a2 4y2

6

9 8102^2 - 1 

Solution: 9c2 — a2 + 2ab — b2 = 9c2 — (a2 _ 2ab + b2) 

(ff2 + 46»<> + 402) - w2

= [3c + (a - 6)][3c - (a - 6)] 
= (3c + a — b)(3c — a + b) 

36m2 _ 81p2g2 _|_ 9a2ö2 _ 3Qabm 

14 1A 72 1^2 i 14« 49 16/2 _ E2 4- — - — 

15 lOOac/ - 144/2 + 25a2 + 100c2/2

10 -13 PRODUCT OF TWO BINOMIALS HAVING A COMMON TERM 

Type: (x + a)(x + 6) = x2 + (a + b)x + ab 

136 



The multiplication 

x + a 
x + b 

X2 -I- ax 
+ bx + ab 

x2 + ax + bx + ab 

when factored, results in x2 + Ça + b)x + ab. 
This type of formula can be expressed as follows: 

SECTION 
10 ■ 12 

TO 
PROBLEMS 

10 • 9 

Rule To obtain the product of two binomials having a common term, square 
the common term, multiply the common term by the algebraic sum of the 
second terms of the binomials, find the product of the second terms, and 
add the results. 

example 32 Find the product of x - 7 and x + 5. 
solution (x - 7)(x + 5) = x2 + (-7 + 5)x + (-7X + 5) 

= x2 - 2x - 35 

example 33 Çir + 3X«r - 6) = i2r2 + ( + 3 - 6)<r + ( + 3X-6) 
= fir2 - 3ir - 18 

Although the preceding examples have been written out in order to illus¬ 
trate the method, the actual multiplication should be performed mentally. 
In Example 33, write the fir2 term first. Then glance at the +3 and —6, note 
that their sum is —3 and their product is —18, and write down the complete 
product. 

PROBLEMS 10-9 

Mentally, multiply the following: 

1 (0 + 4X# + 3) 2 
4 «> _ 3)«> - 2) 5 
7 (36* - 2X30 +1) 8 
10 QP + 2X|P+6) 11 
13 ÇIR + ^JR - |) 14 

(Q + 1XQ + 2) 
ÇB + 6X0 + 3) 
(4x + 2X4x - 4) 
Ça - IX« - j) 

Ç2f+ 12X2/- I) 

17 ( 3/) 
18 Çvt - + |) 

19 (a^2 + XXaÆ2 + j) 

3 (Ä + IX« - 2) 
6 Ç2r + 3X2r + 2) 
9 ÇI - 3XZ-4) 

12 (A + 6XA-I) 

15 (« + fX« + |) 
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10'14 FACTORING TRINOMIALS OF THE FORM a2 + ba + c 

A trinomial of the form a2 + ba + c can be factored if it is the product of 
two binomials having a common term. 

Rule To factor a trinomial of the form a2 + ha + c, find two numbers 
whose sum is h and whose product is c. Add each of them to the square root 
of the first term for the factors. 

example 34 Factor a2 + 7a + 12. 
solution If this expression will factor, it will take the form 

a2 + 7a + 12 = (a + )(a + ) 

where the two blanks represent numbers whose product is 12 
and whose sum is 7. The factors of 12 are 

1 X 12 
2x6 
3x4 

The first two pairs will not do because the sum of neither pair 
is 7. The third pair gives the correct sum. 

.'. a2 + 7a + 12 = (a + 3)(a + 4) 

example 35 Factor x2 — 15x + 36. 
solution Since the 36 is positive, its factors must bear the same sign; 

also, since —15 is negative, it follows that both factors must be 
negative. The factors of 36 are 

1 X 36 
2 x 18 
3 x 12 
4x9 
6x6 

Inspection of these factors shows that 3 and 12 are the required 
numbers. 

.'. x2 - 15x + 36 = (x - 3)(x - 12) 

example 36 Factor e2 — e — 56. 
solution Since we have —56. the two factors must have unlike signs. 

The sum of the factors must equal — 1; therefore, the negative 
factor of —56 must have the greater absolute value. The fac¬ 
tors of 56 are 

1 X 56 
2 X 28 
4 X 14 
7x8 
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Since the factors 7 and 8 differ in value by 1, we have 

e2 — e — 56 = (e + 7)(e — 8) 

PROBLEMS 10 • 10 

Factor: 

1 a2 + 3o + 2 2 
4 a2 — 9<i + 14 5 
7 02 + 100 + 24 8 

10 a2t2 - 13«t + 36 11 
13 7T2 + ^ _ 56 14 
16 04 - 402<> - 12<f»2 17 

19 20

02 + 80 + 15 
ß2 + 2ß - 24 
w2 - 14w + 24 
Z' + 8Z2 - 20 
PR2 + 4EIR + 3E2

e2-16 +1 
e'P + 2e2i2P - 3P2

3 R2 + 8R + 12 
6 R2 - 6R - 72 
9 t2 + 9t - 22 
12 f2 — \7f — 8G 
15 u2 — uf — 6/2
18 

SECTION 
10 • 14 

TO 
SECTION 

10 • 15 

10 -15 PRODUCT OF ANY TWO BINOMIALS 

Type: {ax + b){cx + d) 

Up to the present, if it was desired to multiply 5x — 2 by 3x + 6, we multi¬ 
plied in the following manner: 

5x — 2 
3x + 6 

15x2 — 6x 
+ 30x - 12 

15x2 + 24x - 12 

Note that 15x2 is the product of the first terms of the binomials and the 
last term is the product of the last terms of the binomials. Also, the middle 
term is the sum of the products obtained by multiplying the first term of each 
binomial by the second term of the other binomial. 

The preceding example can be written in the following manner: 

5x - 2 
\ 7 

/ \ 
3x + 6 

15x2 + 24x - 12 

The middle term ( + 24x) is the sum of cross products (5x)( + 6) and 
(3x)( —2), which is obtained by multiplying the first term of each binomial 
by the second term of the other. 

The usual method of obtaining this product is indicated by the following 
solution: 

(5x - Ox + 6) = 15x2 + 24x - 12 
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Rule For finding the product of any two binomials, 
1 The first term of the product is the product of the first terms of the 

binomials. 
2 The second term is the algebraic sum of the product of the two outer 

terms and the product of the two inner terms. 
3 The third term is the product of the last terms of the binomials. 

example 37 Find the product of (4c + 7/X2e — 3/). 
solution The only difficulty encountered in obtaining such products 

mentally is that of finding the second term. 

(4eX —3/) = -12e/ 
(7y)(2e) = Uej 
( —12e/) + (14e/) = + 2ej 

(4e + 7/X2e - 3/) = 8e2 + 2ej - 21/2

example 38 Find the product (7r2 + 8Z)(8r2 - 9Z). 
solution 1 The first term of the product is (7r2)(8r2) = 56/-*. 

2 Since (7r2)(-9Z) = -63^2 and (8Z)(8r2) = 64r2Z, the 
second term is ( —63r2Z) + (64r2Z) = + f-Z. 
3 The third term is (8Z)(-9Z) = — 7222. 

A (7r2 + 8Z)(8r2 - 9Z) = 56r» + r^Z - 72Z2

By repeated drills you should acquire skill enough that you can readily 
obtain such products mentally. This type of product is frequently encoun¬ 
tered in algebra, and the ability to multiply rapidly will save you much time. 

PROBLEMS 10-11 

Multiply: 

1 (X + 2)(x - 5) 
3 (3õ + 1X2<> + 3) 
5 (3/- 2X4/+ 2) 
7 (2w + 5X3u- - 1) 
9 + 8Xj« - 4) 

11 (2Z + /ÄX3Z + 5ZÄ) 
13 (3X - 20)(5X + 2) 
15 (150-2X0-5) 
17 (5-3^X7-2^) 
19 (3a + 5ß\2a + 7ß) 
21 (2a - 7t\2a - 5t) 
23 (w + 0.7/X« - 0.2/) 

25 (f + - 16A)\ o / 

2 JR - V)JR + 3) 
4 (2Ä + 6)(3Ä + 5) 
6 (7X + 5)(2X - 3) 
8 (70 + 3X30 + 7) 

10 (t- 6)(l- 12) 
12 (I - 18XZ + 6) 
14 (12M- 3X3AÍ- 12) 
16 (5 + 4pX4 - 5p) 
18 (3<> + 4)(5<> + 3) 
20 (3x + 7X4x - 5) 
22 (a + 0.5Xo - 0.3) 
24 (JR - 0.9)(/Ä + 1) 

26 (“ - iX9i - i) 
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27 + 28

29 (0.2p - 0.7ç)(0.8p - 0.3ç) 30 4-

10-16 FACTORING TRINOMIALS OF THE TYPE ax + bx + c 

The method of factoring trinomials of the type ax- + bx + c is best illus¬ 
trated by examples. 

PROBLEMS 
10-11 

TO 
SECTION 

10 • 16 

example 39 Factor 3a2 4- 5a 4- 2. 
solution It is apparent that the two factors are binomials and the product 

of the end terms must be 3a2 and 2. Therefore, the binomials 
to choose from are 

(3a + IXa + 2) 
and (3a + 2)(a + 1) 

However, the first factors when multiplied result in a product 
of 7a for the middle term. The second pair of factors when 
multiplied give a middle term of 5a. Therefore, 

3a2 + 5a + 2 — (3a 4- 2)(a + 1) 

example 40 
solution 

Factor 6e2 + 7e + 2. 
Again, the end terms of the binomial factors must be so chosen 
that their products result in 6e2 and 2. Both the last terms of 
the factors are of like signs, for the last term of the trinomial is 
positive. Also, both last terms of the factors must be positive, 
for the second term of the trinomial is positive One of the 
several methods of arranging the work is as shown below. The 
tentative factors are arranged as if for multiplication: 

TRIAL FACTORS PRODUCTS 

(6c + l)(e + 2) = 6e2 + 13e + 2 Wrong 
(6e 4- 2)(e +1) = 6e2 4- 8e 4- 2 Wrong 
(3e + l)(2e + 2) = 6e2 + 8e +2 Wrong 
(3e + 2)(2e + 1) = 6e2 + 7e 4-2 Right 

It is seen that any combination of the trial factors when multi¬ 
plied results in the correct first and last term. 

6e2 4- 7e 4- 2 = (3e 4- 2)(2e 4- 1) 

note This may seem to be a long process, but with practice, most of 
the factor trials can be tested mentally. 

example 41 Factor 12i2 — 17i 4- 6. 
solution The third term of this trinomial is 4-6; therefore, its factors 
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must have like signs. Since the second term is negative, the 
cross products must be negative. Then it follows that both 
factors of 6 must be negative. Some of the combinations are 
as follows: 

TRIAL FACTORS PRODUCTS 

(2/ - 3X6/ - 2) = 12/2 _ 22/ + 6 Wrong 
(2/ - 2X6/ - 3) = 12/2 _ 18 / + 6 wrong 
(3/ - 3X4/ - 2) = 12/2 _ 18( + 6 Wrong 
(3/ - 2X4/ - 3) = 12/2 _ 17{- + g Right 

.'. 12/2 _ 17/ + 6 = (3/ - 2X4/ - 3) 

example 42 Factor 8r2 _ 14r - 15. 
solution The factors of —15 must have unlike signs. The signs of these 

factors must be arranged so that the cross product of greater 
absolute value is minus, because the middle term of the tri¬ 
nomial is negative. 

TRIAL FACTORS PRODUCTS 

(8r + 3Xr - 5) = 8r2 - 37r - 15 Wrong 
(4r + 5X2r - 3) = 8r2 - 2r - 15 Wrong 
(4r + 3X2r - 5) = 8r2 _ 14r - 15 Right 

Factor 6R- - 7R - 20. 
Many students prefer the following method to the trial-and-

example 43 
note 

error method of the foregoing examples. 
solution Multiply and divide the entire expression by the coefficient of 

R2. The result is 

36Z?2 _ 427? - 120 
6 

Take the square root of the first term, which is 6R, and let that 
be some other letter such as x. Then, if 

67? = X 

by substituting the value of 67? in the above expression, we 
obtain 

x2 - 7x - 120 
6 

This results in an expression with a numerator easy to factor. 
Thus, 

x2 - 7x - 120 _ (x + 8X-T - 15) 
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Substituting 6« for x in the last expression, we obtain 

(6Ä + 8)(6« - 15) 
6 

Factoring the numerator, 

2(3« + 4)3(2« - 5) 
6 

Canceling, 6Ä2 - 7« - 20 = (3« + 4)(2Ä - 5) 
note The denominator will always cancel out. 

SECTION 
10.16 

TO 
PROBLEMS 

10 • 12 

example 44 Factor 4P2 - 8EI - 21/2. 
solution Multiplying and dividing by the coefficient of E2, 

16£2 - 32EI - 84/2
4 

Let the square root of the first term 4« = x. 

x2 - 8Ix - 84r (x + 6I\x - 14/) 
4 - 4 

(4P + 6/)(4£ - 14/) 
4 

2(2« + 3I)2(2E - 7/) 
4 

- 8EI - 21/2 _ (2E + 3IX2E - 71) 

Then 

Substituting for x, 

Factoring, 

Canceling, 4«2

PROBLEMS 10 • 12 

Factor: 

1 W2 - 3<j - 10 
3 8m- — 2m — 15 
5 6x2+llx-10 
7 9<>2 + 18<> + 8 
9 2a2 — aß — 21ß2

11 40m2 + 2m - 21 
13 80/2 + 14/U, _ 6h,2 

15 24)8* - 30ß2y + 9y2
17 27 Pm2 + 15lmw - 2w2
19 6^2 _ 24S22
21 15x2 _ 71x - 2 A2

23 486*2 + 50 + | 

25 0.1802-2 

2 602 + 70 + 2 
4 3/2 - 14/ + 8 
6 3a2 _ 10« + 7 
8 187^2 + 31L1 + 6 
10 IO« 2 _ 17PW + 3W2

12 20A2 - 22X<¡> + 6<>2 
14 18q2 + 57^r + 35r2
16 42v222 + liwyz — 20w2
18 2n2 - 18t2
20 24m4 — 43m2p + 18p2

24 10Z2 _ 32 _1_ 
2 20 
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10-17 SUMMARY 

In this chapter, various cases of products and factoring have been treated 
separately in the different sections. Frequently, however, it becomes nec¬ 
essary to apply the principles underlying two or more cases to a single prob¬ 
lem. It is very important, therefore, that you recognize the standard form for 
various types of algebraic expressions in order that you can apply the method 
of solution as needed. These forms are summarized in Table 10 • 1. 

Table 10-1 general type factors section 

ab + ac + ad a(b + c + d) 10-7 
a2 + 2ab + b2 Ça + b)2 10 • 8 
a2 — 2ab + b2 (a — b)2 10-8 
a2 - b2 (a + b)(a - b) 10-12 
a2 + (b + c)a + be (a + 6)(a + c) 10-13 
acx2 + (be + ad)x + bd (ax + b)(cx + d) 10-15 

Problems 10 • 13 are included as a review of the entire chapter. If you can 
work all of them, you thoroughly understand the contents of this chapter. If 
not, a review of the doubtful parts is suggested, for a good working knowl¬ 
edge of special products and factoring makes it possible to do the following: 

1 Multiply, divide, and factor very quickly in your head (mentally). 
2 Find the solutions to problems which can be solved by (quick mental) 

factoring. 

PROBLEMS 10 ■ 13 

Find the value of the following: 

1 (-4u-¿)2 2 (-3Ä2<#>M3 3 
\ p2q3r / 

4 -y/64a2x*y2z<> 5 / 6

7 _ / 125Pm6 g /6257*2^ 2 9 _ 21603^6 
/ 27x^z3 y/ 64E21V6 V 

10 125a .7^4 
(7 a2x3z2

Factor: 

11 IR2 — Ir2 12 PRX + PR2 + PR3

13 + 2^ 14 4.8wL] — 0.24a-L2 + 1-2wL3
8r, 8r2 8r3

15 ^xk-^xl-^xm 16 ̂ 2¡L - 6gmRp + 
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Mentally, find the products: 

17 (R + 12)2 18 (20 - 3<f>2)2 19 (12P + j)2 
20 (0.5wAf - 0.3wL)2 21 (¡^ - 3À)2 22 (0.4Xr + 0.8X¿)2

Supply the missing term so that the three terms form a trinomial square: 

23 r2 + ? + 9 24 9a2 - ? + 4/i2 25 ? + 28Qr + 4r2

26 64Z« - 32Z3 + ? 27 g2 + + ? 28 ? + jL2M + 

Extract the square roots of the following: 

m2 + 10m + 25 29 30 02 + 140<> + 49<>2

31 32 

33 34 + 9X2
25 5 

Factor: 

76802a - 19206a + 1262a 39 40 
EI EI EI 

35 
37 

36 
38 

24(7? + 42Z7? 
3ir2 4- 18(7 + 27/ 

F2 _ . £1 
3 9 

6pq — 21pr 
IGiPDr2 + 487r2CDr + 36itC2D 
12P2 1447W , 4321V2

4P2 12EX 

16«2 + 80aß + 100^2 

62 A2

36 - "6" + T 

Find the products: 

41 (a + 2^)(a - 2ß) 
43 (Z - 12)(Z + 12) 

45 Z24E 9PV24E 
\ III )\ IR 

2P} 

42 (2IR - 3EK2IR + 3 E) 
44 (80 + 7^X80 - 7<>) 

46 (0.8A ■+■ 0 3Í2X0.8À - O.3S2) 

Factor: 

47 Q2 - 1 48 25 - fo2 49 4a2L2 1 
lew2??2

50 ±a2ß4_±X2 51 0.002562 - 0.36/12 52 0.01Xt2 - 0.81XC2

Find the quotients: 

53 (Ä2 - 4) - (À + 2) 54 
55 (¿a2 - ^2) (ja - iß) 56 

57 ^2 - ^Pr2) + «e + lir) 58 

(4£2 _ 9C2) (2L + 3C) 

(0.2502 - 0.0462) - (0.50 - 0.2S) 

L2 + 2LM + M2 - 25 
L + M + 5 

Find the products: 

59 (k + 2)(k - 4) 
61 (0.2Xc - 3)(Xc + 0.5) 
63 {A - jXA + 1) 
65 (8fi + 6^m)(3g - 2^m) 

60 (3-QX4-2Q) 
62 (0.1Z + 0.6ÄX0.3Z - Ä) 
64 (5Ä + 12X1X - 1) 
66 (2vfL + Xf )(2^L - 3XC) 

SECTION 
10 - 17 

TO 
PROBLEMS 

10 • 13 
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67 (2R - r)(0.3Ä + 0.2r) 

69 f4* + f ) 

68 (0.5« + 8/?)(0.2a 4- 0.4/?) 

70 (^. _ 
\ 3 t / \ 2 t / 

Factor (remove any common factors first): 

71 6z2 +11Z + 3 72 12/12-2Z1-4 
73 A2 — 8X 4- 15 74 e2 _ 0.2e - 0.03 

75 X2 - 2.6x+ 1.2 76 A2 -

77 12Ä2 4- 8ÄX - 15X2
79 2E2 4- 0.1E/Ä - 0.15PÄ2

81 ^ + ^Z^z 

83 16t72 - 2^-5/2

85 3x2 - 12 

3E2 18Ee 54e2
87 *2?-t~ + ~t 
__ a2c 145a6c b2c 

~2d ~ 144f/ + ~2d 

78 3a2ß2y2 4- «ßyü - IOS?2
80 P - 0.3/ç - 0.4q2
on 9 2a 1 
82 o' + -r + jï 

84 502<j — 5<>2üj 

86 288PX -

oo x2y , xy2
88 9Z 6Z + 16Z 
_0 2ERP \898ERxR2 2ER22

31 13501 + 31 
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algebraic fractions 

chapter 

Algebraic fractions play an important role in mathematics, especially in 
equations for electric and electronic circuits. 

At this time, if you feel you have not thoroughly mastered arithmetical 
fractions, you are urged to review them. A good foundation in arithmetical 
fractions is essential, for every rule and operation pertaining to them is 
applicable to algebraic fractions. It is a fact that anyone who really knows 
arithmetical fractions rarely has trouble with algebraic fractions. 

11-1 THE DEGREE OF A MONOMIAL 

The degree of a monomial is determined by the number of literal factors it 
has. 

Thus, 6a62 is a monomial of the third degree because ab2 = a-b-b; 
3mn is a monomial of the second degree. From these examples, it is seen 
that the degree of a monomial is the sum of the exponents of the literal fac¬ 
tors (letters). 

In such an expression as 5X2Y2Z, we speak of the whole term as being of 
the fifth degree, X and Y as being of the second degree, and Z as being of 
the first degree. 

The above definition for the degree of a monomial does not apply to letters 
in a denominator. 

11-2 THE DEGREE OF A POLYNOMIAL 

The degree of a polynomial is taken as the degree of its term of highest 
degree. Thus, 3ab2 — ^cd — d is a polynomial of the third degree and 
6x2y + 5xv2 +y4 is a polynomial of the fourth degree. 

11-3 HIGHEST COMMON FACTOR 

A factor of each of two or more expressions is a common factor of those 
expressions. For example, 2 is a common factor of 4 and 6; a2 is a common 
factor of a3, (a2 — a2b), and (a2x2 — a2y). 
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The product of all the factors common to two or more numbers, or expres¬ 
sions, is called their highest common factor. That is, the highest common 
factor is the expression of highest degree that will divide each of them with¬ 
out a remainder. It is commonly abbreviated HCF. 

example 1 Find the HCF of 

6a2fr3(c + l)(c + 3)2 and 30a3b\c - 2)(c + 3) 

solution 6 is the greatest integer that will divide both expressions. 
The highest power of a that will divide both is a2. 
The highest power of b that will divide both is b2. 
The highest power of (c + 3) that will divide both is (c + 3). 
(c + 1) and (c — 2) will not divide both expressions. 

6a2b2{c + 3) = HCF 
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Rule To determine the HCF: 
1 Determine all the prime factors of each expression. 
2 Take the common factors of all the expressions and give to each the 

lowest exponent it has in any of the expressions. 
3 The HCF is the product of all the common factors as obtained in 

step 2. 

example 2 Find the HCF of 

50a263c(x + ^(x — >)4 and 75a2bc\x + y)2(x — y) 

solution 50a2b'c{x + y)3(x — .y)4 = 2 • 5 • 5a2&c(x + j)3(x — .y)4
75a26c2(x + y)2(x — y) = 3 • 5 • 5a2bc2(x + y)2{x — y) 
.’. HCF — 52a2bc{x + >)2(x — y) = 25a2bc(x + y)2(x — y) 

example 3 Find the HCF of 

e2 + er e2 + 2er + r2 and e2 — r2

solution e2 + er = e(e + r) 
e2 + 2er + r2 = (e + r)2

e2 — r2 = (e + r)(e — r) 
.'. HCF = e + r 

PROBLEMS 11-1 

Find the HCF of: 

1 24, 40 
3 4020. 120<X 3600-u' 
5 0.5a362c, 0.25a2ò2c2, OA^bc3
7 39Z2Ä, 195PÄ2, 367/? 
9 X, 2 - X^, XL2 + X^c 

11 E2 - 2E + 1, E2 - 1, 3E2 - 3E 

2 50. 125, 625 
4 16A2u'. 48À-0, 36A2<> 
6 39x‘y2z3, 78x3y>z3, 156x2̂ z3
8 18«02y3, 162a2/?3y, 220aJß3y2

10 m2 + 2mn + n2, m2 — n2
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12 12w + 40, 9ir2 + 6ir0 + 02, 9vr2 — 02
13 LXL2 + 2^LJJ2M + M2, 5^/7^ + 5M 
14 9FR2-24EIR+16E2, 3I2R2-10EIR + 8E2, 15PR2-17EIR-4E2

15 10P + 25^+ 15 ^-,307+ 45 4.40/-’ +40 ^-30^ 
A K~ R RR2

11-4 MULTIPLE 

A number is a multiple of any one of its factors. For example, some of the 
multiples of 4 are 8, 16, 20, and 24. Similarly, some of the multiples of 
a + b are 3(a + b), a2 + 2ab + b2, and a2 — b2. A common multiple of two 
or more numbers is a multiple of each of them. Thus, 45 is a common multi¬ 
ple of 1, 3, 5, 9, and 15. 

11-5 LOWEST COMMON MULTIPLE 

The smallest number that will contain each one of a set of factors is called 
their lowest common multiple. Thus, 48, 60, and 72 are all common multi¬ 
ples of 4 and 6, but the lowest common multiple of 4 and 6 is 12. 

The lowest common multiple is abbreviated LCM. 

example 4 Find the LCM of 6x2>, 9xy2z, and 30x3y3. 
solution 6x2y = 2 • 3 • x2y 

9xy2z = 32 • xy2z 
SOx3̂  = 2 • 3 • 5 • x3y3 

Because the LCM must contain each of the expressions, it must 
have 2, 32, and 5 as factors. Also, it must contain ttie literal 
factors of highest degree, or x''y3z. 

. '. LCM = 2 • 32 • 5 • x3ylz = 90x'iyiz 

Rule To determine the LCM of two or more expressions, determine all the 
prime factors of each expression. Find the product of all the different prime 
factors, taking each factor the greatest number of times it occurs in any one 
expression. 

example 5 Find the LCM of 

3a3 + 6a2b + 3ab2
6a* — 12a3b + 6a2 b2
9a'b — 9 ab' 

solution 3a3 + 6a26 + 3ab2 = 3a(a + b)2
6a4 — 12a3b + 6a2¿>2 = 2 • 3 • a2(a — b)2

9a3b — 9ab' = 32 • ab(a + b)(a — b) 
LCM = 2 • 32 • a2b{a + hy^a - b)2

— 18a2 b(a + 6)2(a — b)2
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PROBLEMS 11-2 

Find the LCM of the following: 

1 12, 70, 210 
3 40. 72, 180 
5 6^<¡>3X2u, 02<f>2Xifiu 
7 5m3n2p2, 20m2np, ^5mnp4
9 t — 3, t2 — 5t + 6 

2 22, 154, 231 
4 a3b2c, a^bc3
6 2a*ß2, lOa^Y3, 15a3ß3y 
8 P, 3IR, 17PR2
10 X2 - 1IX + 30, X2 - 9X + 20 

11 g2 + 3^, g2 + 5g, g2 + 8g + 15 
12 6 + 4>/, 3 - 2^, 9 — 121// 4- 4>/2
13 602 + 70-3, 4402 + 880 + 33, 6Ô02 + 110 - 11 
14 4XL2+12XtXc + 8Xc2, 2Xi2+10XtXc+12Xc2, X^+AXlXc+SXc2

15 8Q2-38^ + 35^,Q2-^,2Q2-9^ + 7^ 

11-6 DEFINITIONS 

A fraction is an indicated division. Thus, we indicate 4 divided by 5 as | (read 

four-fifths). Similarly, X divided by Y is written (read X divided by Y or 

X over Y). 
The quantity above the horizontal line is called the numerator and that 

below the line is called the denominator of the fraction. The numerator and 
denominator are often called the terms of the fraction. 

11-7 OPERATIONS ON NUMERATOR AND DENOMINATOR 

As in arithmetic, when fractions are to be simplified or affected by one of the 
four fundamental operations, we find it necessary to make frequent use of 
the following important principles: 

1 The numerator and the denominator of a fraction can be multiplied by 
the same number or expression, except zero, without changing the value of 
the fraction. 

2 The numerator and the denominator can be divided by the same num¬ 
ber or expression, except zero, without changing the value of the fraction. 

,, 22x362 
example 6 y = yyy = 9 = 3 

Alert 6 6-3 2 6 
AIS0' 9 = 9T3 = 3 = 9 

. _ X X • a ax X example 7 — =-= — = — y y • a ay y 

Also, ox + a _ Ä (where a / 0) 
ay a y 
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No new principles are involved in performing these operations, for multi¬ 
plying or dividing both numerator and denominator by the same number, 
except zero, is equivalent to multiplying or dividing the fraction by 1 in any 
form convenient for our use, such as 

2 4 10 
2 ’ 4 ’ 10 ' 

or 

It will be noted that, in the foregoing principles, multiplication and division 
of numerator and denominator by zero are excluded. When any expression 
is multiplied by zero, the product is zero. For example, 6x0 = 0. There¬ 
fore, if we multiplied both numerator and denominator of some fraction by 
zero, the result would be meaningless. Thus, 

5^ 5x0 
6 6x0 

because 5x0 _ £ 
6x0 0 

Division by zero is meaningless. Some people say that any number divided 
by zero results in a quotient of infinity, denoted by oo. If we accept this, we 
immediately impose a severe restriction on operations with even simple 
equations. For example, let us assume for the moment that any number 
divided by zero does result in infinity. Then if 

4 
0 

by following Axiom 3, we should be able to multiply both sides of this equation 
by 0. If so, we obtain 

4 = oo • 0 

which we know is not sensible. Obviously, there is a fallacy here; therefore, 
we shall simply say at this time that division by zero is not a permissible 
operation. 

PROBLEMS 
11-2 

TO 
SECTION 

11.8 

11-8 EQUIVALENT FRACTIONS 

Examples 6 and 7 show that when a numerator and a denominator are multi¬ 
plied or divided by the same number, except zero, we change the form of the 
given fraction but not its value. Therefore, two fractions having the same 
value but not the same form are called equivalent fractions. 

PROBLEMS 11-3 

Supply the missing terms: 

1 2 =

7 42 16 144 

4 = ? 5 3ab = ? 
7ó 35</>w 25c 75cd 

3 1 
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6 _^ =_1— 7 1^1 =_?_ 
a + 3 (a + 3Xa - 2) t - 3 t2 - At + 3 

« 7 + e - ■ 9 ¿ + a - ?
0-1 02-1 a - 3ß 6a — 18/1 

io —- =-1-
2x + y 2x2 4- 5xy + 2y2

11 Change the fraction ~ into an equivalent fraction whose denominator 
is 64. 

12 Change the fraction into an equivalent fraction whose denominator 
is 150. 

13 Change the fraction into an equivalent fraction whose denominator 

is R2 - RX2. 

14 Change the fraction + | into an equivalent fraction whose denomi-

nator is L2 — 4. 

15 Change the fraction ■ —— into an equivalent fraction whose denomi-
ÄC 4- 1 

nator is 2E2C2 — EC — 3. 

11-9 REDUCTION OF FRACTIONS TO THEIR LOWEST TERMS 

If the numerator and denominator of a fraction have no common factor other 
2 3 than 1, the fraction is said to be in its lowest terms. Thus, the fractions 4-,-^-, 
3 5 

—, and - + are in their lowest terms, for the numerator and denominator 
y X - y 
of each fraction have no common factor except 1. 

The fractions -4 and are not in their lowest terms, for 4- can be re-
6 9x2 6 

2 
duced to y if both numerator and denominator are divided by 2. Similarly, 

3x 
9x2 

can be reduced to by dividing both numerator and denominator by 

3x. 

Rule To reduce a fraction to its lowest terms, factor the numerator and 
denominator into prime factors and cancel the factors common to both. 

Cancel'ation as used in the rule really means that we actually divide both 
terms of the fraction by the common factors. Then, to reduce a fraction to 
its lowest terms, it is only necessary to divide both numerator and denomi¬ 
nator by the highest common factor, which leaves an equivalent fraction. 

27 
example 8 Reduce to lowest terms. 
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solution = -, = V 1 Uo ¿ • Z • p • p • p 4 

SECTION 
11-9 

TO 
PROBLEMS 

11.4 

example 9 

solution 

24r2vz3
Reduce „ to lowest terms. 

42x2yz2

24x2yz3 _ /. 2 • 2 • x2.yz3 ^z 
/-^^-x^z2 “ 7 

Actually, the solution to Example 9 need not have been written out, for 
it can be seen by inspection that the HCF of both terms of the fraction is 
ôx^z2, which we divide into both terms to obtain the equivalent fraction 
4z 
7 ' 
Also, in reducing fractions, we may resort to direct cancellation as in 

arithmetic. 

example 10 
^*2 — V“ 

Reduce ——=4- to lowest terms. X3 - y» 
solution - y2 _ (x + j'Xx—-y) _ X + y 

X3 - y3 (x—y)(x2 + xy + y2) x2 + xy + y2

example 11 Reduce to lowest terms 

r2 - R2
r2 + 3rR + 2R2

solution 
r2 - R2

r2 + 3rR + 2R2
(z^-R^r-R) _ r-R 
(r + 2R)(-^^R) ~ r + 2R 

PROBLEMS 11-4 

Reduce to lowest terms: 

1 36 2 72 o 12 
48 729 156 

4 15 5 a3b2 6 
240 a^b3 12ö<>3

7 125PÄ 326>A*m02 q x2
25IR2 ÖOfPXfujr' x3 + xy2

7.5p + 0,5ç j j a2 + 2ab + b2 - 4r? 
2.5pq a2 — b2 m2 — n2

2x2 + 5xv + 3v2
6x + 9y 

a2 + 3aß - Wß2
2a2 + llaß + 5ß2

nW - ^X2u2
3tt2u — 8ttXu — 3Ä2O! 
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11-10 SIGNS OF FRACTIONS 

As stated in Sec. 11-6, a fraction is an indicated division or an indicated 
quotient. Heretofore, all our fractions have been positive, but now we must 
take into account three signs in working with an algebraic fraction: the sign of 
the numerator, the sign of the denominator, and the sign preceding the frac¬ 
tion, By the law of signs in division, we have 

+ +12 = -12 = _+12 = _^12 = 2

+ + 6 + -6 -6 +6 

or, in general, 

+ a _ -a _ _ +a _ _ -a 
+ +b~ -b~ — b +b 

Careful study of the above examples will show the truths of the following 
important principles: 

1 The sign before either term of a fraction can be changed if the sign 
before the fraction is changed. 

2 If the signs of both terms are changed, the sign before the fraction 
must not be changed. 

That is, we can change any two of the three signs of a fraction without 
changing the value of the fraction. 

It must be remembered that, when a term of a fraction is a polynomial, 
changing the sign of the term involves changing the sign of each term of the 
polynomial. 

Changing the signs of both numerator and denominator, as mentioned in 
the second principle above, can be explained by considering both terms as 
multiplied or divided by -1, which, as previously explained, does not change 
the value of the fraction. 

Multiplying (or dividing) a quantity by — 1 twice does not change the value 
of the quantity. Hence, multiplying each of the two factors of a product by 
— 1 does not change the value of the product. Thus, 

(a _ 4X« - 8) = (—a + 4)(-a + 8) = (4 - aX8 - a) 

Also, 

(a - bXc - d)(e - f) = (b - a\d - cXe - f) 

The validity of these illustrations should be checked by multiplication. 

example 12 Change - — to three equivalent fractions having different 
b 

signs. 

solution _ — = 
b b —b —b 
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example 13 Change a ~ b to three equivalent fractions having different 
c — a 

signs. 
a — b _ —a + b _ —a + b a — b 

solution c — d ~ —c + d ~ e-d “ -c + d 

example 14 Change a ~ b to a fraction whose denominator is d — c. 
c — d 

solution a ~ b = ~a + b = 
c — d —c + d d — c 

PROBLEMS 11-5 

Express as fractions with positive numerators: 

, -a -IR _ —2-nfL 
X Er-e XL-XC

A y/L\Lz c a — v — w 
<¿L R¡ — R> a — ß 

Express as fractions with positive denominators: 

-j IR o _ 
-E - e —{Rp + Rl) 

q nR2 10 _ 9 + <j> 
-(A'-Az) -2X2 

Reduce to lowest terms: 

Il a ~ b 12 T — i 
6- a -W-P) 

13 0 ~ * 14 x2 -2xy + ^ 
<í>2 - 02 y2 - 2yx + X2

15 772 — 877 + 16 4s2/2 + 3str — v2
20 — w — tt2 2s2t2 + stv — v2

11-11 COMMON ERRORS IN WORKING WITH FRACTIONS 

It has been demonstrated that a fraction may be reduced to lower terms by 
dividing both numerator and denominator by the same number (Sec. 11 -9). 
Mistakes are often made by canceling parts of numerator and denominator 
that are not factors. For example, 

5 + 27 
7 + 2 - 9 

Here is a case in which both terms of the fraction are polynomials and the 
terms, even if alike, can never be canceled. Thus, 

5 +/ 5 
7 + 2 7 
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because canceling terms has changed the value of the fraction. Similarly, it 

would be incorrect to cancel the x’s in the fraction ~ , for the x’s are 
6o — X 

not factors. At the same time, it is incorrect to cancel the 6’s because, al¬ 
though they are factors of terms in the fraction, they are not factors of the 
complete numerator and denominator. Therefore, it is apparent that 

_ * cannot be reduced to lower terms, for neither term (numerator or 

denominator) can be factored. 

It is permissible to cancel x’s in the fraction-§x_ because each term 
ax + 5x 

of the denominator contains the common factor x. The denominator may be 

factored to give —■-—, the result being that x is a factor in both terms of 
x(a + 5) 

the fraction. Note, however, that the single x in the numerator cancels 
“both” x’s in the denominator. 

Thus, we cannot remove, or cancel, like terms from the numerator and 
denominator of a fraction. Only like factors can be removed, or canceled. 

Another important fact to be remembered is that adding the same number 
to or subtracting the same number from both numerator and denominator 
changes the value of the fraction. That is, 

4 3 + 2 because the latter equals -4 
4 4 + 2 6 

Likewise, 

3 3 — 2 1 — 7^ ——2 because the latter equals -+ 

Similarly, squaring or extracting the same root of numerator and denomi¬ 
nator results in a different value. For example, 

3 3-
4 42

Likewise, 

16 yiF 
25 x/25 

Q 
because the latter equals 

16 

4 
because the latter equals — 

Students sometimes thoughtlessly make the error of writing 0 (zero) as the 
result of the cancellation of all factors. For example, 

4x-v(a + b) 
4x2y(a + 6) 

1, not 0 

Another serious, although common, mistake is forgetting that the fraction 

bar, or vinculum, is a sign of grouping, so that ———- really means 



or 

-d -yY 

and it does not reduce to 

SECTION 
11 ■ 12 

TO 
SECTION 
11-13 

Note that the vinculum is a sign of grouping and, when a minus sign precedes 
a fraction having a polynomial numerator, all the signs of the numerator 
must be changed in order to complete the process of subtraction. 

Thus, — ——— simplifies to — — 1. 
X X 

11-12 CHANGING MIXED EXPRESSIONS TO FRACTIONS 

In arithmetic, an expression such as 3| is called a mixed number; 3| means 

3 + Similarly, in algebra, an expression such as x + — is called a mixed 

expression. Because 

3 3 13 3 3 3 

then, 

rJ_y- x >y _ xz <y_ xz + y 
z z z 

_ 3x2 4x 3 
1 1 x2 - 1 

_ 3x2(x2 - 1) 4x(x2 - 1) 3 
X2 - 1 X2 - 1 + x2 - 1 

_ 3x> - 3x2 - 4x3 + 4x + 3 
x2 - 1 

Z 1 z 

Also, 

3x2 4x + .3 ?
x2 — 1 

11-13 REDUCTION OF A FRACTION TO A MIXED EXPRESSION 

As would be expected, reducing a fraction to a mixed expression is the re¬ 
verse of changing a mixed expression to a fraction. That is, a fraction can be 
changed to a mixed expression by dividing the numerator by the denominator 
and adding to the quotient thus obtained the remainder, which is written as 
a fraction. 

example 15 Change ^x3 + 16x2 — 8x - 3 t0 a mixecj expression. 

solution Divide each term of the numerator by the denominator. 

Thus, I-2*3 + 16f - 8x - 3 = 3x2 + 4x _ 2 _ 3 
4x 4x 
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example 16 Change a~ + 
a — 

solution By division, 

a2 + 1 

to a mixed expression. 

a - 2 
a + 2 

a2 — 2a 
2a + 1 
2a - 4 

5 

■_^. = a + 2+ 5 
a — 2 a — 2 

PROBLEMS 116 

Change the following mixed expressions to fractions: 

1 2^- 2 5-4 3 a + — 
8 16 c 

4 R- 5 4 — — 6 —-— 
I F Q Q2

7 4 + —?— 8 0 + 4~ 9 Ä - 1 - 4 17+1 2 77 I 

io 5 + 5*~ 3° 11 4 “4^“ 2 12 4 ---4 x2 — 2x X2 2x c c2

13 i i _Z_ id a + b a — b 15 1 4À + 1 
1J 1 + R R2 14 4 8 lb 1 9Ä2 - 1 

x-1 x2-l i, 45 14 0+1 „ 12Q-2 
16 2x 3x2 17 02 1 0 0-1 18 2 Q2 — 1 

19 2a2 - 1 --— 20 1 -50mi7 - 30i72-
a2 - 3 (5w - 3t7)(3w + 5,7) 

Reduce the following fractions to mixed expressions: 

y, 83 22 231 
16 32 

x2 + y2 32a2 - 16a + 4 
X2 - 4a 

«c R3 + 6Ä2 + 7Ä — 8 X2 + 5x + 6 
R- 1 x-1 

E4 — e4 — 1 og 6<>5 - <>4 + 4<>3 — 5<>2 — <#> + 20 
E + e 2<f>2 — <f> + 3 

OQ 2x3 + 2x2 + X + 2 on 2a3 + aß2
X2 + 1 150 a + ß 

11 • 14 REDUCTION TO THE LOWEST COMMON DENOMINATOR 
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The lowest common denominator (LCD) of two or more fractions is the lowest 
common multiple of their denominators. 



PROBLEMS 
11-6 

TO 
SECTION 
11-14 

example 17 Reduce | and | to their LCD. 
solution The LCM of 3 and 5 is 15. To change the denominator of j to 15, 

we must multiply the 3 by 5 (15 3). So that the value of the 
fraction will not be changed, we must also multiply the numer¬ 
ator by 5. Hence, 

3 3 5 15 

For the second fraction, we must multiply the denominator by 
3 in order to obtain a new denominator of 15 (15 + 5). Again 
we must also multiply the numerator by 3 to maintain the 
original value of the fraction. Hence, 

3.-3. y 2-JL 
5 5 3 15 

example 18 Reduce and to their LCD. 
3x2̂  4x^2

solution The LCM of the two denominators is 12x2y2. This is the LCD. 
For the first fraction the LCD is divided by the denominator. 

That is, 

12x2y2 + 3x2y = 4v 

Multiplying both numerator and denominator by 4.v, we have 

4a2b 4a2b 4v 16a2by 
3x2y “ 3x2y ' 4y - 12x2y2

For the second fraction we follow the same procedure. 

12x-y - 4x>2 = 3x 

Multiplying both numerator and denominator by 3x, we have 

ëcd2 _ ëcd2 3x _ 18ct/jx 
4xv2 - 4x>2 ' 3x ~ 12x2>2

Rule To reduce fractions to their LCD: 
1 Factor each denominator into its prime factors and find the LCM of 

the denominators. This is the LCD. 
2 For each fraction, divide the LCD by the denominator and multiply 

both numerator and denominator by the quotient thus obtained. 

Oy 4V
example 19 Reduce ——-—- and —--—5-7 to their LCD. 

X2 — y2 X2 — xy — 2y2

solution „3* = -r 
X2 - y2 (x + y\x - y} 

4y __4y_ 
x2 - xy - 2y2 ~ (x + j'Xx - 2y) 
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The LCM of the two denominators, and therefore the LCD, is 
(x + y\x - y\x - 2y\ 

For the first fraction, the LCD divided by the denominator is 
(x + y)(x - y)(x - 2y) -¡-(x + y)(x - y) = x - 2y. 

. _3x___3x(x — 2 v)_ 
’ ’ (x + jXx - y) “ (x 4 >’X* - >Xx - 2>) 

For the second fraction, the LCD divided by the denominator 
•s (x 4- y\x - y\x - 2y) (x + y\x - 2y) = x - y. 

■ - y) 
■ ■ (x 4- y)(x - 2y) (x 4- jX* - 2y\x - y) 

To check the solution, the fractions having the LCD can be 
changed into the original fractions by cancellation. 

PROBLEMS 11-7 

Convert the following sets of fractions to equivalent sets having their LCD: 

2 J__5_ 
4 ’ 16 ’ 12 

1 1 -L 
ir ’ w ’ œ 

1 1 
a — b ' a + b 

34» 2 2 
1 — 4>2 ’ 4» 4- 1 1—4> 

R 4- 2Z 
R2 + 4RZ 4- 3Z2

3 
2'7'5 16 ’ 8 ’ 32 

1 1 4 5 6 

7 8 9 

10 11 12 
y 

a 13 
c 4- d ' c — d ' 

1 5 14 
- M2

15 

R + Z 16 
4Ä2 4- 12RZ 4- 8Z- ’ 

e 
r 

2M 4- 2 ’ 3M - 3 ’ 1 

7T2 — 4>2 — 4>2

d — c 

3M - 1 

4» — rr 4» + 77 

- b 

4Ä2 + 20ÄZ 4- 24Z2

£ _X 
4» ' A) 

Æ,— 
¿1 ¿2 

3 

1 , —, ei 
ir 

2x 4- y 
' x-y 

a b 

M 
4 

rr4> 7r<¡> — 7T2

R 4- 3Z 

11-15 ADDITION AND SUBTRACTION OF FRACTIONS 

The sum of two or more fractions having the same denominator is obtained 
by adding the numerators and writing the result over the common denomi¬ 
nator. 

example20 | 4-1 = ^4^ = 8 

example 21 3e e 5e _ 3e 4- e 4- 5e 
R + r + R + r^R + r~ R + r 

9c 
R 4- r 
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11 ■ 15 

To subtract two fractions having the same denominator, subtract the 
numerator of the subtrahend from the numerator of the minuend and write 
the result over their common denominator. 

. „ 4 3 4 - 3 1 example 22 y - y = —g— = y 

example 23 —— — = a ~ 
X X X 

a b — c a — b + c example 24-=-—— 
XX X 

Note that the vinculum is a sign of grouping and that .when a minus sign 
precedes a fraction having a polynomial numerator, all the signs in the 
numerator must be changed in order to complete the process of subtraction. 

We thus have the following rules: 

Ru*e To add or subtract fractions having unlike denominators: 
1 Reduce them to equivalent fractions having their LCD. 
2 Combine the numerators of these equivalent fractions, in paren¬ 

theses, give each the sign of the fraction. This is the numerator of the result. 
3 The denominator of the result is the LCD. 
4 Simplify the numerator by removing parentheses and combining 

terms. 
5 Reduce the fraction to the lowest terms. 

example 25 Simplify a- - 5 - 2° 5
IM 1 n 1 

a — 5 _ 2a - 5 _ 8(a - 5) _ 3(2a- - 5) 
6x 16x — 48.r 48.r 

8(a - 5) - 3(2a - 5) 
48x 

8a — 40 — 6a + 15 
48x 

2a - 25 
48x 

check Let a = 6, X = 1. 
a — 5 _ 1 
6x “ 6 

1 _ JL 
6 16 

Also, 2a ~ 25 -
48 

2a - 5 = 7 
16 16 

8-21 _J3 
48 48 

12 - 25 13 
48 48 

Solution is correct. 

161 



ALGEBRAIC 
FRACTIONS 

example 26 Simplify x2

solution 

_ x3 + x2y - x2y - xy2 + xy2 + y3 - 2y3

PROBLEMS 11-8 

Perform the following indicated additions and subtractions: 

2 3 

6 4 5 
3 16 8 

3p P b a 8 9 7 
Ô 

5 12 10 11 

13 14 
7 3 

3 15 16 

a — b a 18 17 
c — d d — 

30 - 1 8 19 20 
36 - 3 1 - Ö2

3 21 22 
1—7 

35 - 2t7223 24 
2L - 2M 772 — 1177-42 

25 

26 

27 

a2 — b228 a + b — 
a — b 

d2 4- 3a? 4- 9 54 a? — 3 29 

2 
I 

3 
R 

a 

1 
3 2 

r2

7IR , 2IR 3IR 

c 
z 

1 , 1 

12 _ 2 
2 5 7 

2XC 4- 3Xb 2Xc - 3Xl
E - 1 E 4- 1 

<j2 — 3w 4-9 u3 4- 27 a? 4- 3 

3 _ 7 
4 16 

7 5 3 
32 8 16 

E2 - 9E 4- 20 E2 - 11E 4- 30 

_ (x 4- v)x2 _ (x 4- y)xy (x 4- y)y2 _ 2^ 

a2 — 9 a2

11Ä, - 2 
3Ä12 - 3 

2L - 4M 

5p 
30«? 

4 
PR 

5 
12 

a 4 4 a — 1 

4 <7 

10 

P 

5 
e+ 2 

b 

.2 ^y3

46^ 
62 - ^>2

3Xl

3« 
<^A 

26 4- 2 

2 
P + 71 

21 
14 — 77 

5a _ a 7a_ 
4 5 3 

8X¿2 
4Xp2 _ 9xl2 

2£ + 6X 
aA a^> 

2 
— 5a 4- 6 

5R1 + 1 
2Ä!2 - 2 

3M2 - 3LM 
L2 - 2LM 4- M2 

6 + <t> _ 
6 - ç> 

2XC

6 - <f> 
6 4- <i> 

ro
 

-
 
+
 I 

U)
 -

I 

a — ß ' a + ß 

5 2 

-
 
1
 N>
 

1
 
1
 

O’
 +

 cn
 

162 



PROBLEMS 
11-8 

TO 
SECTION 
11.16 

_ 9 4- 3t7__9 4- 2tt_ 9 4- 17_ 
492 + 12977 + 8t72 92 4- 4977 + 3i72 492 4- 209ir + 24ir2

11-16 MULTIPLICATION OF FRACTIONS 

The methods of multiplication of fractions in algebra are identical with those 
in arithmetic. 

The product of two or more fractions is the product of their numerators 
divided by the product of their denominators. 

example 27 2^3__6_ 
3 5 “ 15 

. a X ax example 28 =

When a factor occurs one or more times in any numerator and in any de¬ 
nominator of the product of two or more fractions, it can be canceled the 
same number of times from both. This process results in the product of the 
given fractions in lower terms. 

i on r yi i*- i 6x2y . 2162c example 29 Multiply by 24^2 ' 

solution 6x2y _ 2162c _ 36cx 
76 24xy2 4y 

example 30 Simplify 2a2 — ab — b2 

a2 4- 2ab + b2
a2 — b2 

4a2 + 4ab F b2 ’ 

solution 2a2 — ab — b2 . a2 — b2
a2 + 2ab + b2 4a2 4- 4ab 4- b2

(2a 4- b)(a - b) 
(a 4- b)(a 4- 6) 

(a - b\a - b) 
(a 4- b\2a 4- 6) 

(a 4- b)(a - b) 
(2a + b\2a 4- 6) 

a2 — 2ab 4- b2 
2a2 4- 3ab 4- b2

It is very important that you understand clearly what we are allowed to 
cancel in the numerators and the denominators. The whole of an expression 

is always canceled, never one term. For example, in the expression -it 
a — 5 

o 
is not permissible to cancel the a's and obtain . It must be remembered 

— 5 
that the denominator a — 5 denotes one quantity. Because of the paren¬ 

theses, we would not cancel the a's if the expression were written , . 
(a - 5) 

However, the parentheses are not needed; for the vinculum, which is also a 
sign of grouping, serves the same purpose. We will consider this again in the 
next chapter. 
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11-17 DIVISION OF FRACTIONS 

As with multiplication, the methods of division of fractions in algebra are 
identical with those of arithmetic. Therefore, to divide by a fraction, invert 
the divisor fraction and proceed as in the multiplication of fractions. 

example 31 — — Â = A. A = JA 
2 3 2 2 4 

example 32 + = = ÈL 
xy xy2 xy a2b a 

example 33 £ L + AU £ ££±A 
y \ c / y c 

— x . c _ ex _ ex 
y ac + b y(ac + b) acy + by 

Students often ask why we must invert the divisor and multiply by the 

dividend in dividing fractions. As an example, suppose we have The 
b y 

dividend is U and the divisor is — . Now 
b y 

Quotient x divisor = dividend 

Therefore, the quotient must be a number such that, when multiplied by —, 

it will give £ as a product. Then, 
b 

\ b x / y b 

ci y 
Hence, the quotient is y , which is the dividend multiplied by the inverted 

divisor. 

PROBLEMS 11-9 

Simplify: 

, 4x3 15y* 
5_v 3x2

_ 4O0<£2o? 1O03<J«j2
210Vu>2 2!6<¡>2u 

4 A_1A 
9 ' 18 

8

io UA 2^r 
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11 

13 

15 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

uL ft jo Zm2 + 4m\/ m2 \ 
R ' \ m /\m3 + 4m2 / 

4 X2 - y2 402 - 1 20 -1 
X - y X2 4- 2xy + y2 63 - 160 0 -4 

25x2 — y2 . 5x — y . - P — 4t2 _ 2i 
9x2z — 4z 3xz — 2z li + 2i2 I — 2i 

Ä2 — 2Xn + n2 4X + 4/i <f>3 — <>2
4Ä — 4p. ^>3 — 3^>2 4- 2<;> </>À2 — ^>p2

F2 + 2F + 1 . P2 — Z2 F2P - 10FP + 25P 
P' - PZ2 5F' + 10F2 + 5F' F2 - 110F + 525 

02 - 20 -3 50<>6 + 25<J>6 48<>2 -
—6<i>2 ’ - 80 + Oÿ - 8 ’ 50V I- 1O0^>3 - 75<#>3

R2 — r2 R(R - f) R2 — 3Rr + 2r2
1a + Rr ' (Ä - r)2 : Rr - 2r2

a2 — 6a + 8 , 7a4 + 7a3 , a2 — a — 2 
a2 a2 — lia + 28 2a2 — 14a 

16FÄ2 - 9 PR2 - 3 F R - 28 8PR2 - 62F R + 42 
^PR + J) ’ 2PR2 - 32 8FR - 32 

h _ 4_8 W 3c4 — 6c3 V 2c2 + 8c \ 
\ c c2 A 2c2 — 2c — 4 A 3c3 + 6c2 — 24c / 

V _ m2 \l m2 - n2 \f m + n \ 
\ m '\m2 + mn l\ m2 + mn / 

_ P 4 + 9<>3 + 14<2 1 
\ 02 — <¡> — 20 )\ 5ô — 5 / \ <^2 — 3çS — 10 / 

/P + I-6 \lp + 4/ + _127_\ + ÍP-I-2 ] 
\P-9P/\ 1-3/ \P-6I+9l 

(uL + R uL — R \f 4_\ 
\ 2 4 )\9u2L2 + 6uLR + R2) 

/45 14 , W 303 + 60a \/ 02 + 130 + 36 W 1 ) 
\ 02 0 A 02 + 180 + 81 /\ 02 + 90 + 20 /\30 + 3/ 

/ 6m2 — 2m \/ 2 10 12V ̂m + 1 _ 1V m3

\ — 9m2 + + 2l\m2 m )\9m2 — 1 /\4w2 + 2m. 

+ 2 + i V P-/2.. W2 - 1^ -2 ) 
\f2 f )\f2 -5f-6/\ f2 - 1 / 

SECTION 
11.17 

TO 
SECTION 

11 ■ 18 

11-18 COMPLEX FRACTIONS 

A complex fraction is one with one or more fractions in its numerator, de¬ 
nominator, or both. The name is an unfortunate one. There is nothing com¬ 
plex or intricate about such compounded fractions, as we shall see. 

Rule To simplify a complex fraction, reduce both numerator and denomi¬ 
nator to simple fractions; then perform the indicated division. 
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3 R 
example 34 Simplify —-

solution 

1 1 5+3 8 
3 + 5 _ 15 _ 15 _ 8 _5_ _ 8 
4 _ ± ’ 20 - 1 19 ~ 15 19 57 
5 5 5 

example 35 Simplify-a t 1

solution 

1 5(g + 1) - 1 
a + 1 o+l 
2 - 3(a + 1) + 2 

a + 1 a + 1 

5a + 4 
a + 1 
3a + 5 
a + 1 

5a + 4 
a + 1 

5a + 4 
3a + 5 

a + 1 
3a + 5 

note It is evident that if the same factor occurs in both numerators of 
a complex fraction, the factors can be canceled. Also, if a fac¬ 
tor occurs in both denominators, it can be canceled. Thus, 
(a + 1) could have been canceled in Example 35 after the nu¬ 
merators and denominators were reduced from mixed expres¬ 
sions to simple fractions. 

a + a + b 

example 36 Simplify —-a - b 
g _ a — o 
b a + b 

a a + b a(g — 6) + b(a + 6) a2 — ab + ab + b2 
b a — b b(a — b) _ b(a — b) 
a a — b a(a + b) — b(a — b) a2 + ab — ab + b2 
b a + b b(a + b) b(a + b) 

a2 + b2
bÇa — b) _ a + b 
a2 + b2 a — b 
b(a + b) 

PROBLEMS 11-10 

Simplify: 

2 + 1 
i-3 
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5 6 4 

8 

8 9 7 E 

I 1 

11 12 10 
1 Ä w 

I — w A2 + w2

ft ft 
ft - <¡> 13 14 15 ft 1 

16 

SECTION 
11.18 

TO 
PROBLEMS 

11 . 10 

f- 8

¿i 

« + —h-
«4 

cn . 2À 
50 + 52 
2A 
50 + 5* 

0 + 1 
_2 
0-1 

<i> 

Q 

J- + ^_ 
blL] blL2 

0 + 2 
0 

0 + 2 0—2 

4-1 e2

A + 77 
A2 + 772

L, 
Q-—L 

Q + 1 

a — b 
a + b 

1 _ a — b 
a + b 

2Ee 
, 0 15 bl + ¿- bl 

1 
1 

"• 
£ 1

00 

t 
-1

^ 

I + i 1 I - i 
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fractional eguations^^^ 

chapter 

An equation containing a fraction in which the unknown occurs in a denomi¬ 
nator is called a fractional equation. Equations of this type are encountered 
in many problems involving electric and radio circuits. Simple fractional 
equations, wherein the unknown appeared only as a factor, were studied in 
earlier chapters. 

12-1 FRACTIONAL COEFFICIENTS 

A number of problems lead to equations containing fractional coefficients. 
This type of equation is included in this chapter because the methods of solu¬ 
tion apply also to fractional equations. 

example 1 and + = 5 
Z o c. Ö 

are equations having fractional coefficients. 

example 2 — — 3 = fp- and x — 2 _ 4 
x 4x x 5 

are fractional equations. 

You are familiar with the methods of solving simple equations that do not 
contain fractions. An equation involving fractions can be changed to an equa¬ 
tion containing no fractions by canceling the denominators and then solved 
as heretofore. To accomplish this we have the following rule: 

Rule To solve an equation containing fractions: 
1 First clear the equation of fractions by multiplying every term by the 

LCD of the whole equation. (This will permit canceling all denominators.) 
2 Solve the resulting equation. 

example 3 Given — 13 = Solve forx. 
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SECTION 
12 • 1 

solution Given ~ - 13 = 
lo 

M: 36. the LCD, - 36 • 13 = 
12 lo 

3 2 

Canceling, - 36 • 13 = 
Jo 

Simplifying, 15x — 468 = 2x 
Collecting terms, 13x = 468 
D: 13, X = 36 

check Substitute 36 for x in the original equation: 

5 • 36 io _ 36 
12 18 

Clearing fractions, 15 — 13 = 2 
2 = 2 

example 4 Given e- ~ 4 = . Solve for e. 
9 10 

solution Given = JL 
9 10 

M: 90, the LCD, 90(e ~ 4) = 
9 10 

10 9 
„ .. 90(e - 4) 9Ge Canceling, —= — 

Simplifying, 10(e — 4) = 9e 
or 10e — 40 = 9e 
Collecting terms. 10e - 9e = 40 
or e = 40 

check Substitute 40 for e in the original equation: 

40-4 _ 40 
9 10 

Clearing fractions, 4 = 4 

Note that when the fractions were cleared and the equation written in 
simplified form in the above solution, the resulting equation was 

10(e - 4) = 9e 

which is equivalent to multiplying each member by the denominator of the 
other member and expressing the resulting equation with no denominators. 
This is called cross multiplication. You will see the justification of this if each 
member is expressed as a fraction having the LCD. Although the method is 
convenient, it must be remembered that cross multiplication is permissible 
only when each term of a member of an equation has the same denominator. 
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PROBLEMS 12 • 1 

Solve the following equations: 

i ft _ _ g 
2 4 

3 + i = + i 
C 4lC q 11 5 u _ — =2w - — 

_ 6 + 3<> 12 — 2<> _ 6<£ 37 
~4 + 15 “ "T “ 6Õ 

_ X X . 

2 3=6 +4

4 I-L = 2L_^ 
4 5 16 

F F— 3_3 + 3F 
6 + 18 “ 12 

note If a fraction is negative, the sign of each term of the numerator must 
be changed after removing the denominator. (See Sec. 11 • 10.) Remember 
that the vinculum is a sign of grouping. 

9 3 _ 1 + Ä = 2X - 3 
2 3 

10 47 + 3 7 - 5 7
5 10 3 

11 = 0 
2 3 

12 X - 3+4x + - 5x ~4 = 0 
5 + 6 15 

13 -1(30 - 10) - 1(50 - 6) = 1(70 + 16) 
1O o Z 

note -1(30 - 11) = - O 1 L 
16 16 

14 l(z + 1) - l(z + 2) = l(z + 1) 
O 4 O 

12-2 EQUATIONS CONTAINING DECIMALS 

An equation containing decimals is readily solved by first clearing the equa¬ 
tion of the decimals. This is accomplished by multiplying both members by 
a power of 10 that corresponds to the largest number of decimal places 
appearing in any term. 

example 5 Solve 0.75 — 0.7a = 0.26. 
solution Given 0.75 - 0.7a = 0.26 

M: 100, 75 - 70a = 26 
Collecting terms, 70a = 49 
D: 70, a = 0.7 

check Substitute 0.7 for a in the original equation: 
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12 • 1 

TO 
SECTION 

12 . 3 

0.75 - 0.7 -0.7 = 0.26 
0.75 - 0.49 = 0.26 

0.26 = 0.26 

If decimals occur in any denominator, multiply both numerator and de¬ 
nominator of the fraction by a power of 10 that will reduce the decimals to 
integers. 

example 6 Solve = 1083.5. 

solution Given = 10835

Multiplying numerator and denominator of each fraction by 100, 

500m — 133 _ 100m _ 1033 5 
2 5 “ 

The equation is then solved and checked by the usual methods. 

problems 12 ■ 2 

Solve the following equations: 

1 0.4Q = 16 2 0.05e = 0.20 
3 0.80=1.6 + 0.46» 4 0.125x - 0.02 = 0.035x + 0.025 
5 0.3r + 4 = 0.7r — 8 6 <> + 2.6 - 0.2<> = 1.4 + 0.3<> 
7 16.5 - 1.5(2Ä - 0.5) - 15.6 + 2.1(Ä + 0.3) = 0.03 
8 0.2 - 0.5(E - 2) - E = 18.7 + 0.8(E + 4) 

9 

10 

11 

12 

13 

14 

0.56 0.26 - 0.5 _ 0.36 + 0.3 
6 30 ’ 15 

0.5(0 - 5) _ 0.3(0 + 5) 0.2(30 - 2) 
3.75 “ 7.5 5 

1.3a - 1.5 _ 0.4a + 0.3 
30 5 

0.8fi - 0.1 o.2n - 0.5 0.6r¡ + 1.5 
3 5 + 15 

— 2 _ 70 = 
0.05 0.08 

0.2(u - 1) 0.3(1 - w) 29 _ 0
0.5(w + 5) 0.7(<c + 5) 140 

15 (0.7a - 0.7)(0.2 + a) = (1 - 1.4a)(0.1 - 0.5a) 

12 -3 FRACTIONAL EQUATIONS 

Fractional equations are solved in the same manner as equations containing 
fractional coefficients (Sec. 12 • 1). That is, every term of the equation must 
be multiplied by the LCD. 
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i _ c I T + 2 2x2 + 3 1 example 7 Solve — -—— = —-

M: 6x2, the LCD, 6x2<x + 2) _ 6x2(2x2 + 3) _ 6x¿ 
2x 

3x 
+ 2) _ éx^x2 + 3) _ jSx2Canceling, 

Rewriting, 
Simplifying, 
Collecting terms, 
or 

2x(x + 2) - (2x2 + 3) = 3x 
2x2 + 4x - 2x2 - 3 = 3x 

4x — 3x = 3 
X — 3 

check Substituting 3 for x in the original equation, 

3 + 2 18 + 3 1 
9 54 - 6 

30 
54 

That is, 
54 54 

example 8 Solve 

8a + 2 2a — 1 3a + 2 
a - 2 - 3a - 6 + 5a - 10 

Factoring denominators, 

8a+ 2 2a-1 3a+ 2 s s

a - 2 3(a - 2) + 5(a - 2) 

M: 15(a - 2), the LCD, 

15(a - 2)(8a + 2) 15(a - 2\2a - 1) 
a - 2 3(a - 2) 

+ + i5(a _ 2X5) = 15(a - 2X15) 
5(a - 2) 

Canceling, 

5 
15(a—2)(8a + 2) J^(a^2)(2a - 1) 

^(.0^2) 

+ + 2) + 15(a - 2X5) = 15(a - 2)(15) 
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TO 
PROBLEMS 

12-3 

Rewriting, 

15(8a + 2) - 5(2a - 1) + 3(3a + 2) + 15(a - 2)(5) 

= 15(a - 2)(15) 

Simplifying, 

120a + 30 - 10a + 5 + 9a + 6 + 75a - 150 
= 225a - 450 

Collecting terms, 

120a - 10a + 9a + 75a - 225a 

= -30 - 5 - 6 + 150 - 450 
-31a = -341 

a = 11 

Check the solution by the usual method. 

PROBLEMS 12 • 3 

Solve the following equations: 
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" X — 1 1 — X X - 1 1 - X “ 

14 i + 4 
5 + R R + 2 R + 5 

i r 27 — a , 15 -; - + a — 1 + a 
a + 1 

16 5 + _16Ä_ 5 — R + 2 o 
5 — R 25-Ä2 + 5 + Ä 

17 to + 3 _ 5 — a _ 2u2 — 2 
u — 8 w + 1 u2 — 7 co — 8 

18 2^ + 7 _ + 7 _ 3<j> — 5 _ q 
6<> — 4 9<>2 — 4 9ó + 6 

j g 9a + 17_ 2a + 1 2a — 1 
a2 _ 2a - 48 2a - 16 2a + 12 
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20 a — 1 _ 6 _ a2 — a — 42 
a + 2 a + 3 a2 + 5a + 6 

21 A can do a piece of work in 8 hr, and B can do it in 6 hr; how long will it 
take them to do it together? 

Solution: Let n = number of hours it will take them to do it together. 

Now A does of the job in 1 hr; therefore, he will do in n hr. Also, 
8 8 

B does — of the job in 1 hr; therefore, he will do in a hr. Then they 
6 6 

will do in n hr. 

o 
The entire job will be completed in a hr, which we may represent by— or 

o 

~ of itself, which is 1. 
6 

M: 24. the LCD, 3a + 4a = 24 
7a = 24 
a = 3| hr 

22 A technician can install a television transmission line in 5 hr, and his 
helper can do it in 8 hr. In how many hours should they be able to do it 
if they work together? 

23 A water tank can be filled in 1 hr and 10 min if one pipe is used. If a 
different pipe is used, it takes 1 hr and 45 min to fill the tank. How long 
will it take to fill the tank if both pipes are used? 

24 A can do a piece of work in a days, and B can do it in b days. Derive a 
general formula for the number of days it would take both together to 
do the work. 

Solution: Let x = number of days it will take both together. 

Now A will do — of the job in x days. Also, B will do 4- of the job in x days. 
a b 

Then 

M: ab, 
Factoring, 

D: (a + b). 

a b 

bx + ax — ab 
x(a + b) — ab 

a + b 

Alternate Solution: Let x = number of days it will take both together. 

Then — = part that both together can do in 1 day; — = part that A 
x a 

alone can do in 1 day; and -J- = part that B alone can do in 1 day. 
b 
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PROBLEMS 
12 • 3 

Now, 

M: abx, 
Factoring, 

D: (a + b), 

abx 

bx + ax = ab 
x(b + a) = ab 

X = ab
a + b 

25 A can do a piece of work in a days, B in b days, and C in c days. Derive 
a general formula for the number of days it would take them to do it 
together. 

26 A tank can be filled by one of two pipes in 3 hr and by the other of the 
two in 5 hr. It can be emptied by the drain pipe in 6 hr. If all three pipes 
are open, how long will it take to fill the tank? 

27 Three circuits are connected to a storage battery. Circuit 1 completely 
discharges the battery in 20 hr, circuit 2 in 15 hr, and circuit 3 in 12 hr. 
All circuits are connected to the battery in parallel. In how many hours 
will the battery be discharged? 

28 A tank can be filled by one of two pipes in x hr and by the other of the 
two in y hr; it can be emptied by a drain pipe in z hr. Derive a general 
formula for the number of hours required to fill the tank with all pipes 
open. 

29 A bottle contains 1 gallon (gal) of a mixture of equal parts of acid and 
water. How much water must be added to make a mixture that will be 
one tenth acid? 

Solution: Let n = number of quarts of water to be added; then 
4 qt = amount of original mixture 

and 2 qt — amount of acid 
Hence, n + 4 = amount of new one tenth acid mixture 

N0W 1 _ amount of acid 
10 — total mixture 

or n = 16 qt of water to be added 

30 How much metal containing 25% copper must be added to 10 lb of pure 
copper to obtain a mixture having 50% copper? 

Solution: Let x = desired amount of metal containing 25% copper; 
then 

0.25x = amount of copper in this metal 
10 + 0.25x = amount of copper in mixture 

x + 10 = total weight of mixture 
0.5(x + 10) = amount of copper in mixture 
0.5(x + 10) = 10 + 0.25x 

x = 20 lb 175 



FRACTIONAL 
EQUATIONS 

31 How much 10% nickel alloy must be added to 10 lb of 30% nickel alloy 
to form a 12% nickel alloy? 

32 A full radiator contains 6 gal of a 30% mixture of antifreeze. How much 
antifreeze is required to obtain a 45% mixture? 

Solution: The radiator now contains 6 gal of 30% antifreeze =1.8 gal 
We want it to contain 6 gal of 45% antifreeze = 2.7 gal. But to get the 
mixture we want, we must drain off some quantity of 30% mixture and 
replace it with 100% antifreeze. Let the volume replaced bex gal: 

1.8 - 0.3x + x = 2.7 
x = If gal 

33 A diesel engine driving a 100-kW generator for an isolated communica¬ 
tions center has a 26-gal cooling system which, during the summer, 
contains a 20% antifreeze solution. At $3.50 per gal, what is the total 
cost of increasing the cold-weather protection by making the coolant 
55% antifreeze? 

34 A fighter plane traveling at 600 mi/hr leaves its base at 9:00 a.m. to 
overtake a bomber which departed from the same base at 7:00 a.m. and 
is traveling at 350 mi/hr. How much time is required for the fighter to 
overtake the bomber? 

35 The sum of two numbers is 625. When the larger is divided by the 
smaller, the quotient is 24. Find the numbers. 

36 The numerator of a fraction is 54 greater than the denominator. When 
9 is subtracted from each term, the quotient is 4. What is the value of 
the fraction? 

37 The sum of three consecutive numbers is 4|. Find the numbers. 
38 A certain number, plus 23, is divided by the same number plus 12. The 

quotient is What is the number? 
39 The perimeter of a stock room is 60 ft. The room is 4 times as long as it 

is wide. What are its dimensions? 
40 A screened room is two-thirds as wide as it is long. If it had been 5 ft 

wider and 5 ft shorter, its area would have been 25 square ft greater. 
What are its dimensions? 

12 -4 LITERAL EQUATIONS 

Equations in which some or all of the numbers are replaced by letters are 
called literal equations; they were studied in Chap. 5. Having attained more 
knowledge of algebra, such as factoring and fractions, we are now ready to 
proceed with the solution of more difficult literal equations, or formulas. No 
new methods are involved in the actual solutions—we are prepared to solve 
a more complicated equation simply because we have available more tools 
with which to work. Again, we point out that the ability to solve formulas is of 
utmost importance. 
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example 9 

solution 

example 10 

solution 

example 11 

solution 

note 

check 

p 
Given I = ———, solve for r. 

R + r 

M: (R I- r), RR + r) = E 
Removing parentheses, IR + Ir = E 
S: IR, Ir = E - IR 

D: I, E- IR 

Given S = —-2-, solve for L. 
A — 1 

Given - a = S 
n — 1 

M: (Ä - 1), RL - a = S(R - 1) 
A: a, RL = S(R — 1) 4- a 

D- Ä L — — 1) + Q 
R 

Given —2__ — — so|ve for x 
x — b x + b 

Given —2— -
x — b x + b 

M: (x* - b2), the LCD, 

Canceling, 

Rewriting, 
Removing parentheses, 
Collecting terms, 
or 
M: -1, 
D: a. 

(x2 - b^a _ (x2 - b2)2a 
x — b x + b 

x + b x — b 
{xi^^)a = (xi-HF)2a 

(x 4- b)a = (x — b)2a 
ax + ab = 2ax — 2ab 

ax — 2ax = — 2ab — ab 
ax = — 3ab 
ax — 3ab 
x = 3b 

The last two steps can be combined into one step by 
dividing —ax = -3ab by —a to obtain x = 3b. 

Substitute 3b for x in the given equation: 

Simplifying, 

a _ 2a 
3b - b - 3b + b 

a _ 2a_ 
2b - 46 

or a _ _a_ 
2b - 2b 

PROBLEMS 
12 • 3 

TO 
SECTION 

12.4 
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1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

PROBLEMS 12 ■ 4 

Solve for: Given: 

FRACTIONAL 
EQUATIONS 
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Vo =
7o 

ßm 

c, 

_ m-na 
a + b 

_ a — b 
a + b 

_ 2Gl + gp - 2G2 

M g2 - gl
Ro 

1 - nß 

g = —-

œ2CiC2R3 = 
/Il -F /12 

E Z}Z2 4" ^2^3 "I" ^3^1 
T“ T3

„ _ RaR 
° “ (g + 1)Ä + Ra

V ARy 
Vi (A + 1)R, + Ry 

B _ TT^DEft, 
c \Í2D + F 

E^, e 

Ri^ woi 

V2,L 

Vj, s, R 

Ri, t 

Vx, V2

r, R 

^m» 

Ri 

G2, Gl, gp 

ß 

a, b 

a, b 

Ip, In 

Zi, z2, z3

R, Ra. M 

R„ Ry, A 

D, F 



Given: 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

PROBLEMS 
12 ■ 4 

7 2_ Y Y D Ap As — /I 
7 _ (p 4~ 1 )^i/? + Rg(Ri 4~ R) 
1 " Ra + R 

2C2R3 = V? - CxrA^- - 1 
\ 413 

F = 1C + 32 
□ 

_ nF,. - PRp
P 

fimN 
g(Rn + r) 

GRya 
gmRpx — G 
Z\ + Z2 — R 
ZK1 - k) + z2
_K_ 
(fi — ff) — (fo — f¿) 

n2 — ni _ —hv 
«i kT 

C R3

ct + c2 1 J_ 
Rl Ä2 

Solve for: 

Xp, R 

Ra, R 

va, R. 

Ri, R2, Ci 

C 

P,^ 

R, R» 

fin, Ci, C2

Rh, r 

G, gm

R, Z), k 

fi.K 

F2, f 

L, N 

a, S 

ni 

Xi, Rp 

Tn, X, Ts

Cv, Co

C2, Rj 
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Given: 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

FRACTIONAL 
EQUATIONS 
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Solve for: 

M = 
in 

a 

Z 2

Mt = 

ao

= -a2

A ri = 

ER. 
h = 

R = 

r3

aF 

FC at = 
(Û! - B)(S22 - B) + c2

Pl _ g) 
2p - 2CN(pi 4- pt) 

S2 _ 
TV2

irdo \d\ — do

Pi + Pp 

Gg 

Z(I -
a 

T 1 m 

V . — — °u' Cf

Ä1P» + P1P2 + Ä2P1 

/1 V Z1R2 . P2 . 
Z2a a 

I' j. P ± 

tan2 K„ > 
Ep2 > 

/ 1 -d. 

X rv + rb

= 2wÀ2(—21— +  * 
\yt + Yf/\2/1 + 1 

V - Vo _ Rt / ¿1 + it 
v0 - Pl \ ti 

^3thvi2Tm _ 
ü)21^tl/12 

_ (Xp - Xs)Zabi 
z.^ + Xs2

G{p2ß2 — 1) 
Gßi^tßt — 1) — Ma 

x = x + x 
Pp Pl p2

1 

+ ± + -2i 
G + CfK

T 

Eb - Et 

M 

^0» 

Pl 

Vo. ¿1 

zai>2, Xp 

G, ßl

Pbi Ggp 

h. It 

ep2

X, Pi 

ER„, R\ 

Rt. Z, a 

Ri, Es

H, r3, r4

Fs.F2

G 

T, h 

Pt 

Qi 

Pp, Pi, Rt 



60 

61 

62 

63 

64 

65 

66 

67 

68 

69 

70 

71 

72 

Given: Solve for: 

PROBLEMS 
12 • 4 

HS = 

d = b + 

X' 

M -
1 

k 

4 77 

1 

c 

’ +
2b 

E^_ 
E 

RiRi “ 
R\ + Ri 

M_ 

#3 

■^(p + <41) 
(G2Xp) = 

Ci + C2P

_ p-Ri + Ra_ 
+ Äa 4 (Äs -I- Ä,)(l + ÿ 

R“s',. „Il . 1 . 1 \ 

MH = _ 4 irr2_ 

L, R 

Ri, Ra, M 

L, Rx 

tr, k 

C, Re

b 

C2

Ra, Rs, M 

E, R» 

Ra. Ri, Il 

Ru, Rk 

Ra 

a, TT 
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FRACTIONAL 
EQUATIONS 

Given: Solve for: 

77 

n-a 
73 -2—È -1=4 77, ß 

„ ” ß 

74 The force F between two magnetic poles of strength Si and S2 at a 
separation of d cm is 

„ SiS2 . 
F = dynes 

When the poles are separated by a distance of 60 cm, a force of 1.5 
dynes exists between them. S2 = 90 units. What is the value of S(? 

75 The force acting to close the air gap of a simple electromagnetic relay 
is 

F = newtons (N) 
2g 

What will be the value of A, the cross-sectional area of the gap, in 
square meters, which will permit a flux density B of 64 x 103 webers 
per square meter (Wb/m2) to exert a force F of 96 N? (g, the perme¬ 
ability of air, is 4t7 x 10-7 MKS units.) 

76 When two impedances Zi and Z2 are connected in parallel, the result¬ 
ant joint impedance Zv is 

7 _ ^1^2 

P “ Zi + Z2

Solve for Z2
77 Using the formula given in Prob. 76, what is the value of Z2 when 

Zp = 3 Q and Z\ — W 
N F 78 = Ep = 100, Es = 20, Np = 400. 

What is the value of Na? 

79 21 = v1 = 16.2 V, V2 = 34 V, Ri = 47.7 Q. 
K2 4*2 

What is R2? 
80 Corresponding temperature readings in Fahrenheit degrees (°F) can 

be obtained from a Celsius thermometer by the use of the formula 
Q 

F = =- C + 32, where C is the temperature in Celsius degrees. When 
5 

the temperature is 77°F, what is the Celsius temperature? 
81 Use the formula given in Prob. 80 to find the temperature at which the 

Fahrenheit and Celsius temperatures are equal, that is, at which 
F = C. 

82 Lt = Lo + L„at. If Lt = 15, a — 8.33 x 10 -2 , and t — 6, what is 
the value of Eo? 
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83 

84 

85 

86 

87 

88 

89 

90 

91 

92 

93 

94 

PROBLEMS 
12.4 

Ät = Ä0(l + 0.0042t) ß. What is the resistance Äo at 0°C if, at a 
temperature t = 59.5°C, the resistance R{ = 40 ß? 

i r-P = • The energy P stored in a circuit is 1250 joules (j). If the cur¬ 

rent I = 2.5 A, find the value of the coefficient of self-induction L 
When two capacitors Ci and C2 are connected in series, the resultant 
total capacitance can be computed by means of the equation 

C. Ct + c2

If C, = 2 pF and C2 = 6 pF. what is the value of Ci? 

The joint conductance^ - mhos of three resistances connected in par-R» 
allel is expressed by 

J_ = _L + J_ + J_ 
ÄP Ri R, R3

Solve for R„. 

A lens formula is What is the value of p when q = 80 f P P 
and f = 50? 
Use the lens equation given in Prob. 87 to find the image distance q 
when the focal length f = 10 cm and the object distance p = 40 cm. 

P = s-- (a) How is the value of P changed when E is doubled? 
n 

(6) How is the value of P changed when R is doubled? 
A source of EMF consists of n cells in parallel, and each cell has an 
EMF of E \/ and an internal resistance of r ß. The current that flows 
through a load of R ß is given by the relation 

E 

R + -
n 

A 

Solve for r and R. 
Use the formula stated in Prob. 90 to find the value of R when 
E = 2.1 V, r = 0.6 ß, I = 2 A, and n = 4 cells. 
Use the formula stated in Prob. 90 to find n in terms of I and E when 
R = 32 ß and r = 0.1 ß. 
A source of EMF consists of n cells in series, and each cell has an EMF 
of E V and an internal resistance of r ß. The current flowing through a 
load of R ß is given by the relation 

Solve for R and n. 
Use the formula stated in Prob. 93 to find the number of identical cells 

"E A

R + nr 
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95 

96 

97 

98 

99 

100 

101 

102 

103 

104 

105 

FRACTIONAL 
EQUATIONS 

fi = 50, ep = 50 V, m = —250, and R^ = 50 k2? 

184 

of internal resistance r = 0.6 2 each, if they provide an EMF ot 
E = 2.1 V each, when they drive a current Z = 2 A through a load 
R = 4.5 2. 
When a signal voltage es is impressed on the grid of a vacuum tube 
which has an amplification factor of ft, the resulting plate current iv 
flowing in the output circuit, which consists of the plate resistance rp 

in series with the load circuit rb, is 

rv + O, A 

Solve for fi and r„. 
Use the formula stated in Prob. 95 to find the value of rb if 
ip = 500 mA, fi = 5 X 105, eg = 20 V, and rv = 10 k2. 

IR i E Does -—i— = I + E? Explain your answer. 

If Z =--— 
Ri + R2 + R3

does R:i = —-=--7? Explain your Ri + R2 + Z 
answer. 
S = V„t + ^gt2. What is the value of the initial velocity Vo in terms of 
S, g, and t? 
Using the formula stated in Prob. 99, what is the acceleration due to 
gravity g if the initial velocity Vo = 10 ft/sec, S = 1710 ft, and 
t — 10 sec? 

If F. = —(Vi - V„), what is the initial velocity Vo if the final velocity 
g 

Vi = 10 ft/sec when the throwing force F, = 155.3 lb, W = 100 lb, 
and g = 32.2 ft/sec? 

If 

a — b 

a-r a __a — b 
b „ , X 

what is the value of x when b = 4.62 and a = 3? 
The incremental plate resistance Rh of a vacuum tube is equal to the 
quotient obtained by dividing the plate voltage swing by the plate 
current swing. That is, 

n Emax Emin 
Eb — j J 

¿max ¿min 

Solve for £max and Zmin . 
Use the formula stated in Prob. 103 to find the value of Emin when 
Ri, = 250 2, Emax = 475 V, Zmaj[ — 500 mA, and Zmin = 300 mA. 

Zp = . What is the value of Ev when Zp = 50 mA, 
Zip 



PROBLEMS 
12 - 4 

106 E = L t . What is the change in current when a voltage 

E = 1 kV is induced in an inductance L = 5 H in time t = 0.5 sec? 

107 I = C ——-—- . What is the change of voltage which will produce a 

current flow of I = 0.05 A during the discharge of a 15gF capacitor 
in 0.0294 sec? 

p p, 
108 Ra — -=-¿—2—5-. Three resistances Ri - ?, R> - 3 S2, and 

ni + «2 + R3 
R3 = 2.14 Q are connected in delta to produce an equivalent Y-circuit 
branch R„ = 0.6 Q. Find Rv

109 In transistor parameters, ß = , Solve for n in terms of ß. 
1 — a 

110 Using the formula stated in Prob. 109, what is a when ß = 284.7? 
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chapter 

ohm's law • parallel circuits 

Most of the systems employed for the distribution of electric energy consist 
of parallel circuits; that is, a source of emf is connected to a pair of conduc¬ 
tors, known as feeders, and various types of load are connected across the 
feeders. A simple distribution circuit consisting of a motor and a bank of 
five lamps is represented schematically in Fig. 13 • 1 and pictorially in Fig. 

Fig. 13-1 Schematic Diagram 
of a Generator G Connected to a 
Motor M in Parallel with a Bank 
of Five Lamps L 

13 • 2. The motor and the lamps are said to be in parallel, and it is evident 
that the current supplied by the generator divides between the motor and the 
lamps. 

In this chapter you will analyze parallel circuits and solve parallel circuit 
problems. The solution of a parallel circuit generally consists in reducing the 
entire circuit to a single equivalent resistance that could replace the original 
circuit without any change in the supply voltage or current. 

13-1 TWO RESISTANCES IN PARALLEL 

The schematic diagram of Fig. 13 • 3 and the accompanying circuit shown in 
Fig. 13 • 4 represent two resistors Ä] and Rz connected in parallel across a 
source of voltage E. An examination of the circuit arrangement brings out 
two important facts: 

1 The same voltage exists across the two resistors. 
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SECTION 
13 • 1 

To generator Fig. 13-2 Illustration of Circuit 
Shown Schematically in Fig. 13-1 

2 The total current I, delivered by the generator enters the paralleled 
resistors at junction a, divides between the resistors, and leaves the parallel 
circuit at junction b. Thus, the sum of the currents It and I2, which flow 
through Rx and R>, respectively, is equal to the total current /t. 

By making use of these facts and applying Ohm’s law, it is easy to derive 
equations that show how paralleled resistances combine. From 1 above, 

where Rv is the joint resistance of Rx and R2, or the equivalent resistance of 
the parallel combination. From 2 above, 

Fig. 13-3 Resistors R, And R2 
Connected in Parallel across 
Generator G, Which Maintains a 
Potential of E V 
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Fig. 13-4 Illustration of 
Schematic Circuit Shown in 
Fig. 13-3 

Substituting in Eq. [1] the value of the currents, 

E _ E E 
R, Rt + R2

Equation [2] states that the total conductance (Sec. 7 • 2) of the circuit is 
equal to the sum of the parallel conductances of Ri and R2; that is, 

Gt = Gi + G2 [3] 

It is evident, therefore, that, when resistances are connected in parallel, 
each additional resistance represents another path (conductance) through 
which current will flow. Hence, increasing the number of resistances in 
parallel increases the total conductance of the circuit and thus decreases 
the equivalent resistance of the circuit. 

example 1 What is the joint resistance of the circuit of Fig. 13 • 3 if Äi = 6 S2 
and R2 = 12 2? 

solution 1 Given R} = 6 SI and R2 = 12 SI. Rv — ? 
Substituting the known values in Eq. [2], 
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4- = 1 + À = 0.1667 + 0.0833 nv b IZ 

or 4- = 0.250 
Tip 

Solving for Äp, Äp = - * = 4.0 12 
U.^ÖU 

solution 2 A more convenient formula for the joint resistance of two parallel 
resistances is obtained by solving Eq. [2] for Äp. Thus, 

p _ R i R2 

v~ Rx + R2
[4] 

Hence, the joint resistance of two resistances in parallel is equal 
to their product divided by their sum. 

Substituting the values of Rx and R2 in Eq. [4], 

R. 
6 X 12 72 
6 + 12 “ 18 

= 4.0 12 

Thus, the paralleled resistors Rx and R2 are equivalent to a single resistance 
of 4.0 12. Note that the joint resistance is less than either of the resistances in 
parallel. 

example 2 (a) What is the joint resistance of the circuit of Fig. 13.3 if 
Rx = 21 12 and R2 — 15 12? (b) If the generator supplies 12 V 
across points a and b, what is the generator (line) current? 

solution 1 

(a) „ _ RxR2 

p~ Rx + R2
21 X 15 
21 + 15 

= 8.75 12 

solution 2 Since 12 V exists across both resistors, the current through each 
can be found and added to obtain the total current. Thus, 

Current through Rx, 

Current through R2, 

Total current, 

Hence, 

'■=<=f= 0571 A
72 = == 08 A

I, = A + I2 = 0.571 + 0.8 = 1.371 A 

From the foregoing, it is evident that Rx and R2 could be replaced by a 
single resistor of 8.75 12, connected between a and b, and the generator 
would be working under the same load conditions. Also, it is apparent that 
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when a current enters a junction of resistors connected in parallel, the cur¬ 
rent divides between the branches in inverse proportion to their resistances: 
that is, the greatest current flows through the least resistance. 

example 3 In the circuit of Fig. 13 -3, R¡ — 25 12, E — 220 V, and 
E = 14.3 A. What is the resistance of Ä2? 

solution 1 Current through Äj, A = = 8.8 A 

Since E — E + 12 
the current through R2 is I> — E — E = 14.3 — 8.8 = 5.5 A 

Then R2 = ^ = = 40 12 
12 

solution 2 ÄP = A = J^.= 15.4 12 

Solving Eq. [2] or [4] for R2, 

R R\Rt 25 X 15.4 40 n

2 Ri - Äp 25 - 15.4 

PROBLEMS 13-1 

1 Two 330-12 resistors are connected in parallel. What is the equivalent 
resistance? 

2 Two resistors, one of 150012 and the other of 470012, are connected in 
parallel. What is the equivalent resistance of the combination? 

3 What is the joint resistance of 68 k!2 in parallel with 82 k!2? 
4 What is the equivalent resistance of 27 k!2 in parallel with 1.5 k!2? 
5 What is the equivalent resistance of: 

(a) Two 100-12 resistors in parallel? 
(b) Two 680-kl2 resistors in parallel? 
(c) Two 3.9-kl2 resistors in parallel? 

6 State a general formula for the total resistance Rp of two equal resist¬ 
ances of R 12 connected in parallel. 

7 In the circuit of Fig. 13 • 3, how much generator voltage would be re¬ 
quired to deliver a total current of 3.63 A through a parallel combination 
of Ri = 220 12 and R2 = 270 12? 

8 How much power would be absorbed by the 270-12 resistor of Prob. 7? 
9 In the circuit of Fig. 13 • 3, E = 20.3 mA, E = 220 V, and Ri = 12 k!2. 

What is the resistance of R2? 
10 How much power is dissipated by Ri of Prob. 9? 
11 How much total power is drawn from the generator of Prob. 9? 
12 In the circuit of Fig. 13 • 3, Ri = 18 k!2 and the current through R> is 

14.71 mA. A total current E = 70.27 mA flows through the parallel 
combination. What is the resistance of Ä2? 

13 How much power is expended in R2 of Prob. 12? 
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14 How much power is drawn from the generator of Prob. 12? 
15 What is the generated voltage of Prob. 12? 

13 -2 THREE OR MORE RESISTANCES IN PARALLEL 

The procedure for deriving a general equation for the joint resistance of 
three or more resistances in parallel is the same as that of the preceding 
section. For example, Fig. 13 • 5 represents three resistors Ru R2, and R3

Fig. 13-5 Resistors R, 
R3 Connected in Parallel 

connected in parallel across a source of voltage E. The total line current I, 
splits at junction a into currents A, I2, and /3, which flow through Äx, R2, 
and R3, respectively. Then 

7 - E
I2 ~rï 

E 
Rx 

r _E_ J 
3 Ä3 ' - Rv

where Äp is the joint resistance of the parallel combination. 

Since = Ii + I2 + I3 

by substituting, ~ ~ + -A- + ~ 
Zip Al A 2 A3 

F). T 1 _ 1 , 1 , 1 
R„~ Rx + R2 + R3 [5] 

From Eq. [5], it is evident that the total conductance of the circuit is equal to 
the sum of the paralleled conductances of Ri, R2, and R3; that is, 

Gp — Gj + G2 + G3

In like manner, it can be demonstrated that the joint resistance Rp of any 
number of resistances connected in parallel is 

JL = J_ +J_ +JL +J_ +J_ + ... 
R, Rx R2 + R, R. R, 

Or, in terms of conductances, 

Gp = Gx + G3 + G3 + Gx + Gs + • ■ • 

example 4 What is the joint resistance of the circuit of Fig. 13 • 5 if Ri = 5 Œ, 
R2 = 10 fi, and R3 = 12.5 Q? 

PROBLEMS 
13 • 1 

TO 
SECTION 

13 . 2 

R2, And 
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solution Substituting the known values in Eq. [5], 

RP 5 TÎ +-¿s ’ ° 2 + ° 1 + 0 08

or 4- = 038rip 
Solving for Rp. Rp = —1— = 2.63 12 

U.oo 

If Eq. [5] is solved for Rp, the result is 

R R'R-R.i 
” RXR> + RtR3 + R2R3

[6] 

It is seen that Eq. [6] is somewhat cumbersome for computing the joint re¬ 
sistance of three resistances connected in parallel. However, you should 
recognize such expressions for three or more resistances in parallel, for you 
will encounter them in the analysis of networks. 

Finding the joint resistance of any number of resistors in parallel is facili¬ 
tated by arbitrarily assuming a voltage to exist across the parallel combina¬ 
tion. The currents through the individual branches that would flow if the 
assumed voltage were actually impressed are added to obtain the total line 
current. The assumed voltage divided by this total current results in the joint 
resistance of the combination. 

The assumed voltage should always be a power of 10 in order that the 
slide rule operator can make full use of the reciprocal scales. In order to avoid 
decimal quantities, that is, currents of less than 1 A, the assumed voltage 
should be numerically greater than the highest resistance of any parallel 
branch. 

example 5 Three resistances R^ = 10 12, R2 = 15 12, and R3 = 45 12 are 
connected in parallel. Find their joint resistance. 

solution Assume Ea — 100 V to exist across the combination. 

Current through Rlt It = ~ = 10 A 
A| 10 

Current through R2, I2 = ~ = 6.67 A 

Current through R3, I, = ~ = 44 = 2.22 A 
Rn 4 b 

Total current, Zt = 18.89 A 
• . . . . n Ea 100 KOO Joint resistance, Rp = -y2- = - = 5.3 12 

/t io.8y 

PROBLEMS 13 • 2 

1 What is the equivalent resistance of 10 12, 15 12, and 3012 connected in 
parallel? 
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2 What is the joint resistance of 150 2, 470 2, and 470 2 connected in 
parallel? 

3 Three resistors of 12 2. 330 2, and 8.2 2 are connected in parallel. 
What is the joint resistance? 

4 Three resistors of 10 2, 100 2, and 1000 2 are connected in parallel. 
Find the joint resistance of the combination. 

5 What is the equivalent resistance of 22 2, 15 2, 33 2, and 47 2 con¬ 
nected in parallel? 

6 Four resistors of 8.2 2, 1.5 2, 2.7 2, and 3.3 2 are connected in par¬ 
allel. What is the equivalent resistance of the combination? 

7 What is the joint resistance of 
(a) Three 6.3-k2 resistors in parallel? 
(6) Four 68-k2 resistors in parallel? 

8 What is the joint resistance of: 
(a) Three 100-k2 resistors connected in parallel? 
(6) Four 100-k2 resistors connected in parallel? 
(c) Five 100-k2 resistors connected in parallel? 

9 State a general formula for the resistance ßp of n equal resistances of 
R 2 connected in parallel. 

10 In the circuit of Fig. 13 • 5, the total current /, = 18.03 A, Rx = 100 2, 
R2 = 150 2, and E = 475 V. What is the resistance of RJ 

11 If the values of Prob. 10 are used, what is the power delivered to the 
150-2 resistor? 

12 What would be the resistance in Prob. 10 if the 150-2 resistor were 
shorted out? 

13 In the circuit of Fig. 13 • 5, Rx = 12 2, R2 = 18 2, I3 = 4.545 A. and 
E = 100 V. Find (a) the value of R , to two significant figures and (6) the 
total power delivered to the circuit. 

14 In the circuit of Fig. 13 ■ 5. R2 = 510 2, R3 = 270 2, /, = 4.38 A. and 
Ix = 1.52 A. Find the value of Rx to two significant figures. 

15 In the circuit of Fig. 13 • 5, Rx = R2 = 5 k2, and R.x is disconnected. 
I, = 0.40 A. What must be the value of R:i connected into the circuit to 
result in a total current of 0.50 A? 

16 A 10-k2 100-W resistor, a 15-k2 50-W resistor, and a 100-k2 10-W 
resistor are connected in parallel. 
(a) What is the maximum voltage which may be applied without ex¬ 

ceeding the rating of any resistor? 
(6) What is the total current drawn by the combination when the volt¬ 

age of part (a) is applied? 

PROBLEMS 
13 ■ 2 

TO 
SECTION 

13 • 3 

13-3 COMPOUND CIRCUITS 

The solution of circuits containing combinations of series and parallel 
branches generally consists in reducing the parallel branches to equivalent 
series circuits and combining these with the series branches. No set rules 
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can be formulated for the solution of all types of such circuits, but from the 
examples that follow you will be able to build up your own methods of attack. 

Fig. 13 • 6 Series-Parallel Circuit 
of Example 6 

Fig. 13-7 Circuit Of Example 7 
Consisting of One Resistance in 
Series with Two Parallel Branches 

example 6 Find the total resistance of the circuit represented in Fig. 13 ■ 6. 
solution Note that the parallel branch of Fig. 13 • 6 is the circuit of Exam¬ 

ple 1. Since the equivalent series resistance of the parallel 
branch is 

R1R3 
R2 + Ri 

the circuit reduces to two resistances in series, the total resist¬ 
ance of which is 

Rt = Ri + - = 5 + 
R> + R3

6 X 12 
6+12 

= 9.0 2 

example 7 Find the total resistance of the circuit represented in Fig. 13 • 7. 

solution This circuit is similar to that shown in Fig. 13 • 6, but with an ad¬ 
ditional parallel branch. By utilizing the expression for the joint 
resistance of two resistances in parallel, the entire circuit re¬ 
duces to three resistances in series, the total resistance of which 
is 

R< = Ri + R’R3 . R^Rs 
R2 + R3 Rt + R¡ 

= 10 + 8x4 
8 + 4 

15 X 20 _ 21 2
15 + 20 

example 8 Find the total resistance between points a and b in Fig. 13 • 8. 
solution Since R2 and ÄL are in series, they must be added before being 

Fig. 13-8 Circuit of Example 8 fi2=50U ßL=150il 

«¡ = 50 52 

°—WWv—1 a 

n3=2oon 
AAA/W 
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combined with ß3. Again, by utilizing the expression for the joint 
resistance of two resistances in parallel, the entire circuit re¬ 
duces to two resistances in series. Thus, the total resistance is 

R< = Ri + RÁR¿ + RÜ 
R3 + («2 + 

= 50 + 200(50 + 150) 
200 + 50 + 150 

Note that the circuit of Fig. 13 • 8 is identical with that of Fig. 13 • 9. The 
latter is the customary method for representing T networks, often en¬ 
countered in communication circuits, where R}, is the load or receiving 
resistance. 

example 9 Find the resistance between points a and b in Fig. 13 • 10. 
solution In many instances a circuit diagram that appears to be compli¬ 

cated can be better understood and analyzed by redrawing it in a 
more simplified form. For example, Fig. 13-11 represents the 
circuit of Fig. 13 • 10. 
First find the equivalent series resistance of the parallel group 
formed by R2, R3, and Rt and add this resistance to R>„ which 
will result in the resistance RC(i between points c and d. Now 
combine Rcd with R-„ which is in parallel, to give an equivalent 
series resistance R?/ between points e and f. The circuit is now 
reduced to an equivalence of R\, Re¡, and Ri in series, which are 
added to obtain the total resistance Rab between points a and b. 
The joint resistance of R2, R3, and Rd is 1.67 12, which, when 
added to Rn, results in a resistance Rrli — 6.67 12 between c and 
d. The equivalent series resistance Rel between points e and f, 
formed by Rcd and R-, in parallel, is 4.0 12. Therefore, the resist¬ 
ance Rab between points a and b is 

Rab = Rl + Ref + Rf = 19 12 

PROBLEMS 13-3 

1 In the circuit of Fig. 13 • 12, Ri = 510 12, R2 = 300 12, R3 = 470 12, 
and Eq — 230 V What is the total current I, of the circuit? 

2 In Prob. 1, how much power is expended in Rd 
3 In Prob. 1, if Ri is short-circuited, how much power is expended in 

Rd 
4 In Prob. 1, what will be the total current 7j if R2 is open-circuited? 
5 In the circuit of Fig. 13 • 12, Rt = O'" k!2, R > = 15 k!2, and I, = 3.26 mA 

and the voltage across R3 is 27.9 V. Find («) Eg, (b) R3, (c) Ri, (d) I>, 
M h-

6 In Prob. 5, how much current will the generator supply if R3 is short-
circuited? 

SECTION 
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Fig. 13-9 Circuit of Example 8 
Illustrated In T-network Form 

«¡=512 Ä5=10i2 

«4=312 ñ6=512 ä7=1O12 

Fig. 13 • 10 Circuit of 
Example 9. 

Fig. 13-11 
Example 9. 

Simplified Circuit of 
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Fig. 13-12 Ri Connected in 
Series with R2 And R3 in Parallel 

E--

Fig. 13-13 Circuit of Prob. 12. 

7 In the circuit of Fig. 13 • 12, R, = 5.562 kSl, Ri = 3.9 kS2, E^= 1000 V, 
and I2 = 135.4 mA. Find (a) voltage across Rn (6) voltage across R2, 
(c) resistance of R2 to two significant figures, (d) resistance of R:i to two 
significant figures, (e) total current I,, (f) current through R3, (g) total 
power expended in the circuit. 

8 In Prob. 7, if Ri is short-circuited, (a) how much power will be expended 
in R2 and (h) how much current will flow through R.J 

9 In the circuit of Fig. 13-9, Ri, R¿, and R2 are all 2OO-Í2 resistors and 
Rx. = 470 Fl. What is the effective resistance between points a and b? 

10 In the circuit of Fig. 13 • 9, Rt = R2 = R3 — 300 Ü, and Ri. = 600 Q. 
What is the resistance between points a and bl 

11 In the circuit of Fig. 13 • 9, Ri = R2 — Ri. = 300 Í2 and R3 = 600 Í2. 
What is the resistance between points a and b? 

12 In the circuit of Fig. 13 • 13, Ri = R2 = Ri = Rs = 10 S2 and 
R3 = Äl= 600 fi. If a voltage of 30 V exists across Rt„ what is the 
total current I,? 

13 In the circuit of Fig. 13 • 14, the generator voltage E,, = 3500 V, 
R4=1.5 kfi, R2 = 6.8 kfi, 72 = 52.9 mA, R3=2.7 kfi, and 7t = 273 mA. 

Fig. 13 ■ 14 Series-Parallel 
Circuit of Prob. 13 

Find to two significant figures, (a) resistance of Ri, (6) resistance of Rs, 
and (c) power expended in R3. 

14 In the circuit represented in Fig. 13 • 15, find the total current Ix. 
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3 52 Fig. 13-15 Circuit of Prob. 14 

15 If, in Fig. 13 • 15, points a and b are short-circuited, find the total power 
expended. 

16 What is the total current I, in the circuit shown in Fig. 13 • 16? 

Fig. 13-16 Circuit of Prob. 16 

17 In the circuit of Prob. 16, what is the current flow through the 5-Í2 
resistor? 

18 What would be the power expended in the circuit of Fig. 13 • 16 if points 
a and b were short-circuited? 
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Chapters 8 and 13 dealt with the study of Ohm's law as applied to series and 
parallel circuits, and in Chap. 9 consideration was given to the effects of re¬ 
sistance in current-carrying conductors. The principles and methods learned 
therein are applied in the present chapter to circuits relating to de instru¬ 
ments used for servicing electrical, radio, and other electronic equipment. 

14- 1 DIRECT-CURRENT INSTRUMENTS-BASIC METER MOVEMENT 

The most common measuring instruments used with electric and electronic 
circuits are the voltmeter and the ammeter. As the names imply, a voltmeter 
is an instrument used to measure voltage and an ammeter is a current-meas-
uring instrument. 

The great majority of meters used with direct currents employ the 
D’Arsonval movement illustrated in Fig. 14- 1. This movement utilizes a 
coil of wire mounted on jeweled bearings between the pole pieces of a per¬ 
manent magnet. When direct current flows through the coil, a magnetic field 

Fig. 14-1 D’Arsonval Meter 
Movement (Courtesy of Weston 
Electrical Instrument Corporation) 
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is set up around the coil, thereby producing a force which, in conjunction with 
the magnetic field of the permanent magnet, causes the coil to rotate from 
the no current position. Since the arc of rotation is proportional to the 
amount of current passing through the coil, a pointer can be attached to the 
coil and the deflection ôf the pointer over a calibrated scale can be used to 
indicate values of current. 

The sensitivity of a current indicating meter is the amount of current nec 
essary to cause full-scale deflection of the pointer. For example, an instru¬ 
ment of wide usage is the 0-1 milliammeter illustrated in Fig. 14 • 2. This 
meter has a sensitivity of 1 mA because, when a current of 1 mA flows 
through the meter, the pointer indicates full-scale deflection. This particular 
meter has an internal resistance of 55 2. Other meter movements have dif¬ 
ferent sensitivities with various values of internal resistance. 

14- 2 MULTIRANGE CURRENT METERS 

Instead of utilizing a number of meters to make various current measure¬ 
ments, it is common practice to select a meter movement with sufficient 
sensitivity and, with the aid of one or more shunts, extend the range of the 
meter and therefore its usefulness. A shunt, in this application, is a resistor 
that is shunted (connected in parallel) across the meter coil as shown in Fig. 
14-3. 

A meter such as illustrated in Fig. 14 • 2, with a resistance of 55 2, is con¬ 
nected to measure the circuit current of Fig. 14 • 4. In this condition the 
switch S is open and the meter indicates a full-scale deflection of 1 mA. In 
Fig. 14 • 5 the switch S is closed, thereby shunting the 55-2 resistor Äs across 
the meter. Since the meter resistance and shunt resistance are equal, the 
circuit current /t divides equally between them and the meter reads 0.5 mA. 

In Fig. 14 • 4, with the switch open, the meter would indicate actual values 
of current. In Fig. 14 • 5, with the switch closed, circuit current would be ob¬ 
tained by multiplying the meter readings by a factor of 2 or by re-marking the 
scale as shown in Fig. 14 • 6. 

example 1 A 0-1 milliammeter has an internal resistance of 70 2. Design 
a circuit that will allow this meter to be used as a multirange 
meter having the ranges 0-1, 0-10, and 0-100 mA and 0-1 A. 

solution The circuit is shown in Fig. 14 • 7. The switch S is used for range 
selection by switching in the proper shunt resistor. In its present 
position no shunt resistor is used and therefore the meter is con¬ 
nected to measure within its basic range of 0-1 mA. 
At full-scale deflection the voltage across the meter will be 

Em = I,Rm = 0.001 X 70 = 7 X 10 - V 

Since whatever shunt resistor is in use will be in parallel with 
the resistance of the meter Rm, the same voltage will appear 

SECTION 
14 .1 

TO 
SECTION 

14.2 

Fig. 14-2 0-1 Milliammeter 
(Courtesy of Triplett Electrical 
Instrument Company) 

Fig. 14-3 Total Current I, 
Consists of Current /s, Which 
Flows through Shunt Resistor Rs, 
and the Meter Current l„„ Which 
Flows through the Coil of the 
Meter. That Is, lt = ls + lm. 

Fig. 14 ■ 4 Total Current I, Flows 
through The Milliammeter, Which 
Indicates a Full-Scale Deflection 
of 1 mA. 
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Rm-552 

o -—Im 
Rs-552 

-A/WW—u 

-LS, 
Circuit 
under 
test 

Fig. 14-5 Total Current I, 
Divides Equally between Meter 
Resistance Rm and Shunt 
Resistance Rs. 
I, — lm + ls = 1 mA and 
/s = /m = 0.5 mA. 

Fig. 14-6 Multi range Meter 
Scale 

Test jacks 

Fig. 14-7 Circuit for Extending 
Range of 0-1 Milliammeter. Test 
Leads from Jacks Are Connected 
in Series with Circuit in Which 
Current Is to Be Measured. 

across the shunt resistance. That is, 

= Es = 7 X 10-2 V 

When the 0- to 10-mA range is used, the switch S will connect 
Äsio in parallel with the meter and therefore its internal resist¬ 
ance Rm. For full-scale deflection 1 mA must flow through the 
meter coil, which leaves 9 mA to flow through RM). For this con¬ 
dition the value of Rsl0 must be 

R E ° Rs to = -j-
7 X 10~2
9 X IO"3

7.78 2 

Similarly, when the 0- to 100-mA range is placed in operation by 
switching to shunt resistor 7?sioo, full-scale deflection 1 mA still 
must flow through the meter coil, leaving 99 mA to flow through 
Äsioo- Then, 

R _ Es 7 X 10 - 2 
ßsl0° - X - 99 X 10-3 = ° 707 2

Likewise, when the 0- to 1-A (0- to 1000-mA) range is used, 
999 mA must flow through the shunt resistor for full-scale 
deflection. 

E 7 v 10-2 

It will be noted that only basic Ohm’s law was used in Example 1. This was 
done to emphasize the usefulness of the law. Also, special seldom-used 
formulas are difficult to remember and handbooks for ready reference are 
not always available on the job. Actually, you can find the Tesistance of a 
meter shunt by using your knowledge of current distribution in parallel cir¬ 
cuits. For the 0- to 10-mA range of Example 1, the 70-2 meter movement 
must carry 1 mA and the shunt resistor must carry 9 mA. Since the shunt 
carries nine times the meter current, the shunt resistance must be one-ninth 
the resistance of the meter, or { x 70 = 7.78 Q. 

Similarly, for the range of 0 to 100 mA, the meter movement still must 
carry 1 mA, leaving 99 mA to flow through the shunt. Therefore, the resist¬ 
ance of the shunt will be one ninety-ninth of the resistance of the meter move¬ 
ment, or X 70 = 0.707 fi. 

Now that the principles of meter shunts are understood, it is left as an 
exercise for you to show that 

where Äs = shunt resistance, 2 
Rm = meter resistance, 
N = ratio obtained by dividing new full-scale reading by basic full-

scale reading, both readings in same units 
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The ratio N is known as the multiplying power of the shunt resistor, that 
is, the factor by which the basic meter scale is multiplied when the shunt 
resistor Äs is connected in parallel with the meter resistance Rm. From 

Eq. [1]. 

N = ^+ 1 
ils 

example 2 By what factor must the scale readings be multiplied when a 
resistance of 100 S2 is connected across a meter movement of 
400 S2? 

solution 2V = + 1 = ^92 +  1 = 5 
1UU 

14-3 SHUNTING METHODS 

Although mechanical details are not shown in Fig. 14 ■ 7, it is necessary to 
use a shorting switch in this type of circuit to avoid damage to the meter 
movement. When switching from one shunt to another, the new shunt must 
be connected before contact with the shunt in use is broken. If this is not 
done, the entire circuit current will flow through the meter movement while 
the switch is moving from one contact to another. 

By another method of switching, illustrated in Fig. 14- 8, shunts are 
connected into the circuit by the two-pole rotary switch which makes con¬ 
nections between two sets of contacts. With this arrangement, the meter 
movement is protected by an open circuit when switching from one shunt to 
another. 

Still another method of employing shunts is shown in Fig. 14 • 9. This is 
known as the Ayrton, or universal, shunt. In addition to other advantages, it 
provides a safe and convenient method of switching from one range to an¬ 
other. The total shunt resistance, which is permanently connected across the 
meter, generally has the same resistance as the meter movement. The value 
of the resistance for each range shunt can be computed by dividing the total 
circuit resistance R„.r + Rm by the multiplying power N. For example, the 
0-500 microammeter movement has a resistance Rm of 500 2 and the total 
shunt resistance Ra-f connected across the meter is 500 2. When the switch 
is on the 0- to 1-mA position, the multiplying power N is 2. 

For the 0- to 10-mA range, N would be 20 because 10 mA is 20 times the 
original full scale of 0.5 mA. Therefore, the required shunt for this range is 

p _ Ra-t + _ 500 + 500 _ ™ q 
a-e - ‘ Ñ “ 2Õ -

Since the entire shunt resistance is 500 SI 

Ri = R„.f - R„.t = 500 - 50 = 450 SI 

Fig. 14-8 Method of Switching 
Shunts 

6 

e 

Test 
jacks 

Rm~ d 
500« ‘ 

7t3=4.5« 

0-100 mA 

«! = 450« 
0-1 mA 

Ri = 0.4 « 

0-1A 

fi2=45 « 
0-10 mA I 

«5=0.1 « 
0-5A 

0-500 < 

c

Fig. 14-9 Multicurrent Test 
Meter Using Universal Shunt 
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When the switch is connected to the 0- to 100-mA range, N becomes 200 
and and R, in series (Rd-f) form the shunt. That is. 

p Ra-f ~F Rm 500 + 500 Q 
=-Ñ-=-2ÕÕ-= 5 ° 

note Ra-d = when R„., = Rm

Since 

Ri = 450 fi and R„.d = 5 fi 

then 

R- = Ra-f - («i + Ra-d) = 500 - (450 + 5) = 45 2 

The values of the remaining shunts are computed in the same manner. 

Fig. 14 • 10 Multicurrent Meter 
Circuit of Prob. 6. 

Fig. 14-11 Basic Circuit of 
Milliammeter Used to Indicate 
Voltage. 

PROBLEMS 14 • 1 

1 A 0-1 milliammeter has an internal resistance of 53 2. What shunt 
resistance is required to extend the meter range to 0-50 mA? 

2 A meter movement with a sensitivity of 100 gA has an internal resist¬ 
ance of 1250 Í2. How much shunt resistance is required to result in a 
0- to 10-mA range? 

3 The meter in Prob. 1 is being used as a multicurrent instrument. The 
shunt for the 0- to 50-mA range is burned out, but a spool of No. 30 
enamel-covered copper wire is on hand. How much of this wire is 
needed to wind a substitute shunt? 

4 A 0-1 milliammeter has an internal resistance of 46 2. If this meter is 
shunted with a O.939-Í2 resistor, by what must the meter readings be 
multiplied to obtain the correct values of current? 

5 It is desired to use the milliammeter illustrated in Fig. 14 • 2 as a multi¬ 
current meter. What values of shunts are required for the following 
ranges: (a) 0-10 mA. (6) 0-100 mA, (c) 0-1 A, (d) 0-10 A? 

6 In the circuit of Fig. 14 • 10, the total shunt resistance is equal to the 
resistance of the meter movement. Find the values of Rit R2, R3, R^, 
and R3. 

7 A 0-1 milliammeter is available. Design an Ayrton shunt to permit it to 
be used for the following ranges: (a) 0-10 mA, (6)0-100 mA, (c)0-l A, 
(d) 0-10 A. The meter resistance is 1500 ST 

14-4 VOLTMETERS 

In Fig. 14 ■ 11, a voltage of 1 V is impressed across a circuit consisting of a 
0-1 milliammeter in series with a variable resistor. The resistor is so adjusted 
that the circuit is limited to 1 mA: therefore, the meter indicates a full-scale 
deflection, or a reading of 1 mA. If the resistor is unchanged and the voltage 
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is reduced to 0.5 V, then the circuit current will be reduced to one-half its 
original value and the meter will read 0.5 mA. Even though the meter de¬ 
flection is the result of current flow, actually the meter can be used as a 
0-1 voltmeter, indicating 1 V in the first instance and 0.5 V when the voltage 
is reduced. 

Similarly, if the resistor is adjusted to a higher safe value so that the ap¬ 
plication of 150 V causes full-scale deflection, the instrument can be used 
as a 0-150 voltmeter. In that case voltage values will be obtained by multiply¬ 
ing the basic scale readings by a factor of 150 or by substituting a new scale 
as shown in Fig. 14 • 12. 

example 3 It is desired to use the milliammeter of Fig. 14 • 2 as a 0-10 
voltmeter. What resistance Rmp must be connected in series with 
the instrument to accomplish this? 

solution The additional series resistance is called a multiplier resistance, 
and its value must be such that, when it is added to the resist¬ 
ance of the meter movement, the total resistance will limit the 
current through the instrument to 1 mA when 10 V is applied. 
The circuit is shown in Fig. 14 • 13. Ämp is the multiplier resist¬ 
ance, and T?,,, = 55 Í2 is the resistance of the meter movement. 

If 10 V is to be applied across the two series resistances as shown in Fig. 
14 • 13, in order to limit the current to 1 mA, 0.055 V must appear across the 
meter because 

Em = IRm = 10-3 X 55 = 0.055 V 

7 he remaining voltage, which is 10 — 0.055 = 9.945 V, must appear across 
Rmp. Accordingly, 

Fig. 14-12 Panel Voltmeter 
(Courtesy of Weston Electrical 
Instrument Corporation) 

Fig. 14-13 Voltmeter Circuit of 
Example 3 

E 9 945 
Änip = ^ = = 9945 2 

If a 10,00041 resistor is used as a multiplier, with 10 V applied to the jacks, 
and if an observer could discern the difference, the voltage reading would be 
in error by only 0.05 V (What percent error does this represent?). 

example 4 A 0-50 microammeter, with a resistance of 1140 SI, is to be 
used as a 0-100 voltmeter. What value of multiplier resistance 
is needed? 

solution For full-scale deflection the voltage across the meter must be 
limited to 

Em = IRm = 50 x IO-6 X 1140 = 0.057 V 

The remaining voltage across the multiplier is 
100 - 0.057 = 99.943 V, which results in 
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P _ Emp 99.943 
mp I 50 X IO’6 “ 

1,998,860 fi 

E=120V 
-O o-

Ä = 60ki2 Â = 60kii 
I— 

Fig. 14-14 The Current through 
the Resistors Is 1 mA, And the 
Voltage Across Each Resistor Is 
60 V. 

Fig. 14-15 A30.000Í1 
Voltmeter Connected across R2. 
Total Circuit Current Is Now 
1.5 mA, and the Voltage Across 
R2 Is 30 V. 

Test jacks 

Fig. 14-16 A 0-50 
Microammeter Used with 
Multipliers for Multirange 
Voltmeter. 

Naturally, a 2-Mfi resistor would be used. 

14 • 5 VOLTMETER SENSITIVITY 

The sensitivity of a voltmeter is expressed in the number of ohms in the 
multiplier for each volt of range. For example, the voltmeter of Example 3 
has a range of 10 V and a multiplier of 10,000 fi, resulting in a sensitivity of 
1000 fi/V. The voltmeter of Example 4 has a sensitivity of 20,000 fi/V. 

14- 6 VOLTMETER LOADING EFFECTS 

The sensitivity of a voltmeter is a good indication of its accuracy. This is 
particularly true when the voltages in the low-current circuits often encoun¬ 
tered in electronic equipment are measured. For example, a 0-150 voltmeter 
with a sensitivity of 200 fi/V would give excellent service, say as a power 
switchboard meter, at an economical cost. However, it would not be satis¬ 
factory for some other applications. In Fig. 14 • 14, two 60-kfi resistors are 
connected in series across 120 V. In this condition, 60 V will appear across 
each resistor. If the voltmeter is connected across R2 as shown in Fig. 14 • 15, 
the joint resistance Rp of R2 and Rmp becomes 

Ä„ = = 20,000 fi R'2 + «nip 
The total resistance of the circuit is now 

R, = Ri + Rp = 60,000 + 20,000 = 80,000 fi = 80 kfi 

This results in a circuit current of 

Therefore, the voltage existing across R2 due to the shunting effect of the 
voltmeter is 

Ep = I,RP = 1.5 X 10-3 x 20,000 = 30 V 

It is left as an exercise for you to show that if the voltmeter of Example 4 
is used to measure the voltage across R2, the reading will be 59.1 V. 

14-7 MULTIRANGE VOLTMETERS 

Using a single multiplier provides only one voltmeter range. Similar to the 
usage of current-measuring instruments, it has become practice to increase 
the usefulness of an instrument by selecting a meter movement of sufficient 
sensitivity and, with the use of several multipliers, use the instrument as a 
multirange voltmeter. Such an arrangement is shown in Fig. 14 • 16. 
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Owing to the fact that a change in the resistance of a circuit will cause a 
change in the current in that circuit, a current-measuring instrument can be 
calibrated to indicate values of resistance required for a given change in 
current. Such a calibrated instrument is called an ohmmeter. 

In the schematic diagram of Fig. 14 • 17, the 0-1 milliammeter of Fig. 
14 • 2 is connected in series with a 1.5-V battery and a resistance of 1445 2. 
Since the total resistance of the circuit is 1500 ß, if the test jacks are short-
circuited, the meter will read full scale. If the short circuit is removed and a 
resistance R, of 1500 ß is connected across the jacks, the meter will indicate 
half-scale deflection because now the total circuit resistance is 3000 ß. 
Therefore, at full-scale deflection the meter scale could be marked 0 ß of 
external circuit resistance, and at half scale it could be marked 1500 ß. 
Similarly, other values of known resistance could be used to calibrate the 
scale throughout its range. Also, unknown resistances can be used to cali¬ 
brate the scale by making use of the relation 

R, = R, 11 - O [2] 

where R, = unknown resistance, ß 
R, = circuit resistance when test jacks are short-circuited, ß 
It = current when test jacks are short-circuited, A 
I2 = current when Rr is connected in circuit, A 

Use your knowledge of Ohm’s law and Axiom 5 (Sec. 5 • 2) to derive Eq. [2]. 
As a provision for compensating for battery aging and maintaining calibra¬ 

tion, variable resistors controlled from the instrument panel are connected 
in ohmmeter circuits by either of two methods as illustrated in Figs. 14 • 18 
and 14 • 19. In either case the test leads are short circuited and the resistor 
control is adjusted until the meter reads full scale, or 0 ß. An example of 
such a control is the “ß adj" on the instrument shown in Fig. 14 • 20. 

Since zero resistance between the test jacks results in maximum current 
and larger values of resistance result in less current, certain types of ohm¬ 
meter scales are marked with numbers increasing from right to left as illus¬ 
trated on the ohms scale in Fig. 14 ■ 20. 

In practice, the use of the ordinary ohmmeter should be limited from about 
one-tenth of to ten times the center-scale resistances reading because of the 
small deflection changes at the ends of the scale. For this reason multirange 
ohmmeters are employed for changing midscale values, and the ranges 
generally are designed to multiply the basic scale by some power of 10. 

SECTION 
14.5 

TO 
SECTION 

14.9 

Fig. 14-17 A 0-1 Milliammeter 
Used in Ohmmeter Circuit. 

Fig. 14-18 Ohmmeter Circuit 
with Variable Shunt Resistance. 

Fig. 14-19 Ohmmeter Circuit 
with Variable Series Resistance. 

14-9 MULTIMETERS 

For the purposes of convenience and economy, meters combining the func¬ 
tions and desired ranges of ammeters, voltmeters, and ohmmeters are in-
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Fig. 14-20 Multimeter. See The 
Arrangement Of Shunts And 
Multipliers On The Selector 
Switch. (Courtesy of Triplett 
Electrical Instrument Company.) 

■o £=75Vo-

Fig. 14 • 21 Circuit of Probs. 1 
and 2. 

Fig. 14 • 22 Multi range 
Voltmeter Circuit of Prob. 3. 

corporated into one instrument called a multimeter, one type of which is 
illustrated in Fig. 14 • 20. If the test leads are plugged into the proper pin 
jacks and the rotary switch is switched to the proper function and range, the 
instrument can be utilized for several functions. 

PROBLEMS 14 • 2 

1 In the circuit of Fig. 14 • 21: (a) What voltages are across R¡ andR2? 
(b) A 0-100 voltmeter with a sensitivity of 1000 Q/V is connected 
across R¡. What is the reading of the voltmeter? 

2 In the circuit of Fig. 14 • 21: 
(a) A 0-100 voltmeter with a sensitivity of 20,000 2/V is connected 

across R\. What is the voltmeter reading? 
(b) What will the voltmeter read if connected across points A and B? 
(c) When the voltmeter is connected across points A and B, what 

current flows through R¿? 
3 What are the values of the multiplier resistors Ri, R2, R3, and Ri in 

Fig. 14 • 22? 

4 Refer to Eq. (1). Did you show that R, = Í2? 

5 Refer to the end of Sec. 14 • 6. Did you show that the voltmeter reading 
will be 59.1 V? 

6 Refer to Eq. (2). Did you show that R, = R, JazlJa ? 
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chapter 

voltage dividers and wheatstone^^^" bridge circuits 

In this chapter consideration is given to voltage divider circuits. Computa¬ 
tions involving voltages and currents in these circuits are simply applica¬ 
tions of Ohm's law to series and parallel circuits. 

The source of power for radio and television receivers, amplifiers, and 
similar electronic equipment generally consists of a filtered direct voltage 
which has been obtained from a rectified alternating voltage. For reasons of 
economy and design considerations, rectifier power supplies are usually so 
designed that only the highest voltage desired is available at the output. In 
most applications, however, other voltages are needed. For example, power 
tubes sometimes require higher voltages than voltage amplifier tubes re¬ 
quire. Screen grids may require yet other voltages. Also, bias voltages are 
often required. These voltages can be made available from single sources of 
voltage by the use oí voltage dividers. 

15-1 VOLTAGE DIVIDERS 

That several values of voltage can exist around a circuit was first demon¬ 
strated in Sec. 8 • 8 and Figs. 8 • 12 and 8 • 13. A similar situation exists 
when tapped resistors, or resistors in series, are connected across the output 
of a power supply as illustrated in Fig. 15 • 1. This represents a simple volt¬ 
age divider. 

Since the resistors are of equal value, one-third of the 300-V output volt¬ 
age will appear across each resistor. Therefore, since terminal D is at zero or 
ground potential, terminal C will be +100 V with respect to D, terminal B 
will be +200 V, and terminal A will be +300 V. 

In addition to serving as a voltage divider, the total resistance connected 
across the output of a power supply generally serves as a load resistor and 
as a bleeder. The latter serves to “bleed off’’ the charge of the filter capaci¬ 
tors after the rectifier is turned off. As a compromise between output voltage 
regulation and efficiency of operation, the total value of the voltage divider 
resistance is so designed that the bleeder current will be about 10% of the 

Fig. 15-1 Voltage Divider 
Consisting of Three 25 kil 
Resistors Connected Across 300 V 
Power Supply 
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CIRCUITS full-load current. The bleeder current in Fig. 15 • 1 with no loads connected 

to the various voltage divider terminals is 

E _ 300 
Ri + R3 4* Rs 75,000 

= 4.00 mA 

The grounded point of a voltage divider is generally used as the reference 
point for circuit voltages supplied by the voltage divider. In Fig. 15-1, this is 
at grounded terminal D. 

If the power supply output voltage is grounded at no other point, the 
voltage divider can be grounded at an intermediate point so as to obtain both 
positive and negative voltages. For example, if the voltage divider resistors 
of Fig. 15 • 1 are grounded as shown in Fig. 15 • 2, the voltage relations 

Fig. 15-2 Voltage Divider 
Grounded At C 

Filter choke 

change. Terminal D is now —100 V with respect to ground, B is +100 V, 
and A is +200 V. 

15-2 VOLTAGE DIVIDERS WITH LOADS 

The voltage dividers of Figs. 15-1 and 15-2 have no loads connected to 
them; only the bleeder current of 4 mA flows through the voltage divider 
resistors. When loads are connected to the various terminals, the resulting 
additional currents must be taken into consideration because they affect the 
operating voltages. For example, assume a load of R4 = 50,000 Q connected 
between terminals C and D of Fig. 15-1. Under these conditions, the resist¬ 
ance between terminals C and D is 

Rcd = 
RaRa 25,000 X 50,000 
R3 + R4 ~ 25,000 + 50,000 

= 16,700 Í2 = 16.7 kil 

The total resistance between terminals A and D is 

Rad — Ri 4" Rz 4~ Rcd — 66,700 U 

resulting in a total current of 

/, = = 4.50 mA 
RaD 
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The voltage across terminals B and D is 

EBd = I,RBd = 188 V (instead of 200 V) 

and across terminals C and D it is 

Ecd = I,Reo = 75 V (instead of 100 V) 

The circuit is shown in Fig. 15-3. 
Show that, if an additional load of Ä5 = 50 kit is connected across termi¬ 

nals B and D, the terminal voltages would be as illustrated in Fig. 15 • 4. 

example 1 Design a voltage divider circuit for a 250-V power supply. The 
connected loads are 60 mA at 250 V and 40 mA at 150 V. Allow a 
10% bleeder current. 

solution The circuit is shown in Fig. 15-5. The total load current is 
100 mA; therefore, bleeder current is 10 mA, which flows 
through R>. Since the voltage across R> is 150 V, 

300 V 

-o4=+300V 

-°B= + 187V 

—°C=+75 V 

«4=50kSi 

—°D 

Fig. 15-3 Load of 50 ki2 
Connected across Terminals C 
and D 

R. = 15° = 15,000 ñ = 15 kil 
10 X 10-3 

Fig. 15-4 Loads R4=R5 =50 ki2 
Connected to Voltage Divider 
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Fig. 15-6 Voltage Divider of 
Example 2 

Fig. 15 • 7 Complete Circuit of 
Example 2 

The current flowing through Äi is 40 + 10 = 50 mA, and the 
voltage across Äj is 250 — 150 = 100 V. Then 

100 
50 X IO"3

= 2000 SI 

example 2 What are the values of the voltage divider resistors in Fig. 15-6 
if the bleeder current is 10% of the total load current? 

solution The total load current ZL is 

ZL = 50 + 40 + 30 = 120 mA 

The bleeder current is 

ZB = 0.1 X 120 = 12 mA 

The complete circuit is shown in Fig. 15-7. The voltage across 

Z?3 is 150 V, and only the bleeder current of 12 mA flows through 
this resistor. Therefore, 

B’ = i2^“ 12-5kS
The 30 mA load current of the 150 V load terminal combines 
with the bleeder current of 12 mA for a total of 42 mA through 
Z?2, across which is 100 V. Therefore, 

R‘ - 42^ - 238 “ 

Similarly, 82 mA flows through Ält across which is 50 V. Then 

note Resistors Ri = 610 12, R¿ = 2380 £2, and R3 = 12,500 £2 are 
not readily available commercially. Try substituting standard 
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example 3 

solution 

preferred values of Ri = 560 Q, R> — 2.4 kS2, and R3 = 12 k'2 
for the computed values, and determine how this would affect 
the loads. 

Find the values of the voltage divider resistors of Fig. 15 • 8. The 
— 50-V bias terminal draws no current, and the bleeder current 
is 10% of the total load current. 
The total load current IL is 

IL = 70 + 50 + 20 = 140 mA 

The bleeder current is 

ZB = 0.1/L - 0.1 X 140 = 14 mA 

The complete circuit is illustrated in Fig. 15-9. There isa voltage 
of 50 V across R^, and the total current of 154 mA flows through 
this resistor. Therefore 

In like manner, 

Since R3 carries only the bleeder current and the voltage across 
this resistor is 150 V, 

«2 = = 2 94 kß34 X 10~3

Äi = T^T^TH-T = 325 Q 154 X 10~3

R3 =-—-=10.7 kS2 
3 14 X IO*3

Fig. 15-8 Voltage Divider of 
Example 3 

154 mA-» 

Fig. 15-9 Complete Circuit of 
Example 3 
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. 50 
84 X 10 3

- 595 S2 

note As a problem, substitute the commercially available preferred 
values of R{ = 620 Í2, R. = 3 k«, R3 = 11 k2, and Rt = 300 12 
for the computed values, and determine how the loads would be 
affected. 

PROBLEMS 15-1 

1 The vertical attenuator of an oscilloscope is illustrated in Fig. 15 • 10. 

Fig. 15-10 Circuit of Prob. 1 

27 kO Ä-75kQ 68 k« 

Fig. 15-11 Circuit of Prob. 2 

+ 400V, 100 mA 

«1? 

[ + 320V, 40 mA 

Power R2 S 
supply S 

T + 260 V, 20 mA 

-

Fig. 15-12 Circuit of Probs. 4 
and 5 

With an input voltage of 60 V, what voltages appear between the switch 
positions and the input to the vertical amplifier? 
note No current flows from the circuit. 

2 The horizontal hold control of a television receiver is shown in Fig. 
15 • 11. What range of control voltage is available from the potentiom¬ 
eter to the horizontal hold control? 
note The horizontal hold draws no current from the circuit. 

3 What is the power dissipated by each of the resistors and the potentiom¬ 
eter of Prob. 2? 

4 Determine the values of the voltage divider resistors of Fig. 15 • 12 if 
a total of 180 mA is drawn from the power supply. 

5 What is the total power expended in the voltage divider of Prob. 4, and 
what power is dissipated by each of the resistors? 

6 What are the values of the voltage divider resistors of Fig. 15- 13 if the 
bleeder current is 10% of the total load current? 

7 What is the power dissipated by each of the resistors in Prob. 6? 
8 What is the total power delivered by the voltage source in Prob. 6? 
9 What are the values of the voltage divider resistors of Fig. 15 • 14 if the 

bleeder current is 10 mA? 
10 What wattage ratings should be used for the resistors in Prob. 9? 
11 What is the total power delivered by the voltage source of Prob. 9? 
12 If the biasing resistor of of Fig. 15- 14 became open-circuited, what 

would be the voltage between terminals A and B? 
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13 Referring to Sec. 15 • 2, did you show that Fig. 15 • 4 is the result when 
Fig. 15 • 3 is changed by the addition of a 50-kfi load? 

14 Referring to Example 2, did you try substituting standard 5% preferred 
values into the voltage divider of Fig. 15-7? 

15 Referring to Example 3, did you try substituting standard 5% preferred 
values into the voltage divider of Fig. 15-9? 

15-3 WHEATSTONE BRIDGE CIRCUITS 

The accuracy of resistance measurements by the voltmeter ammeter method 
is limited, mainly because of errors in the meters and the difficulty of reading 
the meters precisely. Probably the most widely used device for precise resist¬ 
ance measurement is the Wheatstone bridge, the circuit diagram of which is 
shown in Fig. 15 • 15. 

Resistors Äi, R2, and Ä3 are known values, and Rt is the resistance to be 
measured. In most bridges, Ry and R2 are adjustable in ratios of 1:1, 10:1, 
100:1, etc., and Ä3 is adjustable in small steps. In measuring a resistance, 
Ä3 is adjusted until the galvanometer reads zero, and in this condition the 
bridge is said to be “balanced.” Since the galvanometer reads zero, it is 
evident that the points B and D are exactly at the same potential ; that is, the 
voltage drop from A to B is the same as from A to D Expressed as an 
equation, 

Ead = Eab 
or hRi = I2R2 [1] 

Similarly, the voltage drop across R, must be equal to that across Re hence, 

hR, = I2R3 [2] 

Dividing Eq. [2] by Eq. [1], 

BRZ _ I2R3
Mi I2R2

■ R^ ni 
Rx~ R2 1 J

Equation [3] is the fundamental equation of the Wheatstone bridge, and 
by solving it for the only unknown Rr the value of the resistance under meas¬ 
urement can be computed. 

example 4 In the circuit of Fig. 15- 15, Rx = 10 fi, R2 = 100 2, and 
R3 = 13.9 SL If the bridge is balanced, what is the value of the 
unknown resistance? 

solution Solving Eq. [3] for Rr, RT = ß' R3 
R, 

Substituting the known values, Rr = — = 1.39 2 

+ 460V, 45 mA 
+ o-•-o 

«if 
5 + 350V, 63 mA _ 

< + 225 V, 42 mA 

-o-b-o — 

Fig. 15-13 Circuit of Probs. 
6, 7, and 8 

+ 370V, 40 mA 
+ o-•-O 

5 +190V, 30 mA 
k---o 

«2? 

5 + 100 V, 20 mA 
1---o 

«3? 

5 4 
F— —f--°0V 

5 -50 V, 7=0 B 
— O-k---0 

Fig. 15-14 Circuit of Probs. 9, 
10, and 11 

_A 

«2 «i 

£ \—CD—/ 

¿^7 «3 

_ 

c 

Fig. 15 • 15 Schematic Diagram 
of Wheatstone Bridge 
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Fig-

Locating the point at which a telephone cable or a long control line is 
grounded is simplified by the use of two circuits that are modifications of the 
Wheatstone bridge. These are the Murray loop and the Varley loop. 

Figure 15 • 16 represents the method of locating the grounded point in a 
cable by using a Murray loop. A spare ungrounded cable is connected to the 
grounded cable at a convenient location beyond the grounded point G. This 

15 • 16 Murray Loop 

forms a loop of length L, one part of which is the distance x from the point of 
measurement to the grounded point G. The other part of the loop is then 
L — x. These two parts of the loop form a bridge with Äi and R>, which are 
adjusted until the galvanometer shows no deflection. Because this results in 

a balanced bridge circuit, 

R -¿ _ x 
Ri ~ L — x 

[4] 

Solving for x, 

= R—*L 
Ri + R2

[5] 

example 5 A Murray loop is connected as in Fig. 15 • 16 to locate a ground in 
a cable between two cities 40 mi apart. The lines forming the loop 
are identical. With the bridge balanced, Ri = 645 2 and 
R-, = 476 2. How far is the grounded point from the test end? 

solution Substituting the known values in Eq. [5], 

x = 476 
645 + 476 

X 80 = 33.97 mi 

If the two cables forming the loop are not the same size, the relations of 
Eq. [5] can be used to compute the resistance R, of the grounded cable from 
the point of measurement to the grounded point. Then if R^ is the resist¬ 

ance of the entire loop, 

R, r2 r
Ri + R> L

[6] 

214 

example 6 A Murray loop is connected as in Fig. 15- 16. The grounded 
cable is No. 19 wire, and wire of a different size is used to com-



píete the loop. The resistance of the entire loop is 126 2, and 
when the bridge is balanced, R, = 342 2 and R2 = 217 2. How 
far is the ground from the test end? 

solution Substituting the known values in Eq. [6], 

Rr = --X 126 = 48.9 2 
' 342 + 217 

Since No. 19 wire has a resistance of 8.21 2/1000 ft, 48.9 2 
represents 5960 ft of wire between the test end and the 
grounded point. 

PROBLEMS 15-2 

1 In the Wheatstone bridge of Fig. 15 • 15, Rx = 0.001 2, R, — 1 2, 
Rj = 52.4 2. What is the value of the unknown resistance? 

2 In the Wheatstone bridge of Fig. 15 • 15, the ratio of R2.Rí is 100:1. 
R\ is 6.28 2. What is the unknown resistor? 

3 In the Wheatstone bridge, the ratio of Rt:R2 is 1000:1, and R, is 
believed to be 22.6 2. At what setting of R3 may a balance be 
expected? 

4 A ground exists on one conductor of a lead-covered No. 19 pair. A Mur¬ 
ray loop is used to locate the fault by connecting the pair together at the 
far end (Fig. 15 • 16). When the bridge circuit is balanced, Ri = 33.3 2 
and R2 = 21.7 2. If the cable is 6500 ft long, how far from the test end 
is the cable grounded? 

5 Several No. 8 wires run between two cities located 35 mi apart. One wire 
becomes grounded, and a Murray loop is used in one city to locate the 
fault by connecting two of the wires in the other city. When the bridge is 
balanced, Rj = 716 2 and R2 = 273 2. How tar from the test end is 
the wire grounded? 

6 A No. 6 wire, which is known to be grounded, is made into a loop by 
connecting a wire of different size at its far end. The resistance of the 
loop thus formed is 5.62 2. When a Murray loop is connected and bal¬ 
anced, the value of Ri is 16.8 2 and that of R2 is 36.2 2. How far from 
the test end does the ground exist? 

7 As a research project, discover the details of the Varley loop and de¬ 
velop its equation, which is similar to that for the Murray loop. 

SECTION 
15 • 3 
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A graph is a pictorial representation of the relationship between two or more 
quantities. Everyone is familiar with various types of graphs or graphic 
charts. They are used extensively in magazines, newspapers, annual reports, 
and trade journals published for engineers, manufacturers, and others con¬ 
cerned with relative values. It is difficult to conceive how engineers could 
dispense with them. 

We have already used simple graphic representations in Chap. 3, and 
here we will develop a few of the uses of straight-line graphs. In later chap¬ 
ters we will use graphs in working out the solutions of problems and in quickly 
presenting information in varied forms. 

The notions presented here are fundamental to the use of all graph forms, 
and we are paving the way for some important and interesting topics which 
will follow in later chapters. 

16 -1 LOCATING POINTS ON A GRAPH 

The accurate location of points is vital, and the manner of marking points 
can help or seriously hinder in arriving at a correct solution to a problem. One 
of the most common methods of locating a point is by using a large dot 
(Fig. 16 • 1). But this is the poorest form of location, and Fig. 16 • 1 illustrates 
why: with a large dot, do you draw the line through the center, through the 
top, or through the bottom? Can you be sure where the center is? The possi¬ 
bility of introducing errors is great, and you should study the variations of 
error illustrated in the various parts of Fig. 16 • 1. 

A more acceptable way to mark a point is to use an x, with the intersec¬ 
tion marking the spot, or else a circled dot, Q, with the tiny point marking 
the spot and the circle attracting your attention to it. These correct methods 
are illustrated in Fig. 16 • 2, and they should be used in all your graph-draw¬ 
ing practice. 

A second important item to watch always is the placing of the points. If 
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Fig. 16-1 Illustration of Errors 
Introduced by the Use of Large 
Dots to Locate Points. 
(a) Instead of a Single Fine Line, 
a Broad Range of Possibilities Is 
Presented. 
(b) Shall We Join the Outside 
Edges of the Dots? 
(c) Should We Join from Top to 
Top (or Bottom to Bottom)? 
(d) Should We Just Pick a Line 
That Somehow Touches Both Dots 
Somewhere? 

Fig. 16-2 Illustration of the 
Correct Method of Locating 
Points: After the Line Is Drawn, 
the Small Point Locations Are Still 
Indicated, But Only a Single Line 
Can Be Drawn between the 
Points. 

there is a choice, the points should be far apart, so that the line joining them 
spans the most important area of the graph. Thus, any error in locating the 
points themselves is minimized. If the points are located close together and 
an error is made in locating either one point or both points, then other use¬ 
ful locations “outside” the points plotted will be subject to greater error. 
This fault is illustrated in Fig. 16 • 3, in which the two circled dots have been 
plotted slightly off their desired locations. The line joining them comes some 
distance away from the x points, which should lie on the line. In Fig. 16 • 4, 
the two circled dots are again plotted slightly off their desired locations, but, 
since they are widely separated, the amount of error of intermediate points 
is less. 
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Fig. 16-3 Illustration of the 
Error Introduced When Points Are 
Plotted Close Together. If the 
Points Are Slightly Incorrect, Then 
Useful Points "Outside" the 
Plotted Area Are Even Further Off. 
And the Error Is Enlarged. 

Fig. 16-4 Illustration of the 
Reduction in Error When 
Incorrectly Plotted Points Are Far 
Apart, So That the Line Joining 
Them Spans the Working Area of 
the Graph. The Error in Locating 
Each Circled Dot Is the Same As 
the Error in Fig. 16-3, But the 
X Locations Are Closer to the 
Incorrect Line Which Joins the 
Plotted Points. 

16-2 SOLVING PROBLEMS BY MEANS OF GRAPHS 

In many instances, there arise problems involving relationships that, though 
readily solved by usual arithmetical or algebraic methods, are more clearly 
understood when solved graphically. It is also true that there are many prob¬ 
lems which can be solved graphically with less labor than is required for the 
purely mathematical solutions. The following illustrative examples will show 
how some problems can be worked graphically. 

example 1 Steamship A sails from New York at 6 a.m., steaming at an aver¬ 
age speed of 10 knots. (A knot is a measure of speed and is one 
nautical mile per hour.) The same day, at 9 a.m., steamship B 
sails from New York, steering the same course as A but steaming 
at 15 knots, (a) How long will it take B to overtake A? (b) What 
will be the distance from New York at that time? 

solution Choose convenient scales on graph paper, and plot the distance 
in nautical miles covered by each vessel against the time in 
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hours, as shown in Fig. 16- 5. This is conveniently accomplished 
by making a table like Table 16 • 1. 

distance distance Table 16-1 
covered covered 

time, by A, by B, 
o’clock mi mi 

6 A.M. 0 0 
8 20 0 
10 40 15 
12 60 45 
2 p.m. 80 75 
4 100 110 

It will be noted that the graphs of the two distances intersect at 
90 mi, or at 3 p.m. This means the two ships will be 90 mi from 
New York at 3 p.m. Because they are both steering the same 
course, B will overtake A at this time and distance. 
The graphic solution furnishes us with other information. For 
example, by measuring the vertical distance between the graphs, 
we can determine how far apart the ships will be at any time. 
Thus, at 11 A.M. the ships will be 20 mi apart, at 1 p.m. they will 
be 10 mi apart, etc. 

example 2 Ship A is 200 mi at sea, and ship B is in port. At 8 a.m., A starts 
toward the port, making a speed of 20 knots. At the same time, 
B leaves port at a speed of 30 knots to intercept A. After traveling 
2 hr, B is delayed for 1 hr and 40 min at the lightship. B then 
continues on its course to intercept A. (a) At what time will the 
two ships meet? (6) How far will they be from port at that time? 

solution Figure 16 • 6 is a graph showing the conditions of the problem. 
The graph is constructed as in Example 1. A table of distances 
against time is made up, a convenient scale is chosen, and the 
points are plotted and joined with a straight line. 

The intersection of the graphs shows that the ships will meet 
100 mi from port at 1 p.m. Why is there a horizontal portion in the 
graph of B's distance from port? If A and B continue their speeds 
and courses, at what time will A reach port? At what time will B 
arrive at A’s 10 a.m. position? What will be the distance between 
the ships at that time? 

PROBLEMS 16-1 

1 A circuit consists of a 1042 resistor Rc connected across a variable EMF 
Ev. Plot the current I through the resistor against the voltage E across 

Fig. 16-5 Graph of Example 1 

Fig. 16'6 Graph of Example 2 

219 



GRAPHS 

220 

the resistor as Ev is varied in 10-V steps from 0 to 100 V. What conclu¬ 
sion do you draw from this graph? 

2 A circuit consists of a 5O-S2 resistor Rx, connected across the variable 
EMF E, of Prob. 1. On the same graph sheet as your solution to Prob. 1, 
plot the current I through Rx, against the voltage E as Ex is varied be¬ 
tween 0 and 100 V. What conclusion do you draw from the pair of graphs? 

3 The distance s covered by a moving object is equal to the product of its 
velocity v and the time ? during which the object is moving; that is, s = vt. 
Plot the distance in miles traveled by an automobile averaging 35 mi/hr 
against time for every hour from 9 a.m. to 6 p.m. What conclusions do 
you draw from the graph? 

4 A variable resistor Rv is connected across a generator which maintains a 
constant voltage E,. of 120 V. Plot the current / through the resistor as its 
resistance is varied in 5-Í2 steps between 5 and 50 0. What conclusions 
do you draw from this graph? 

Solve these problems graphically: 

5 Train A leaves a city at 8 a.m. traveling at the rate of 50 mi/hr. Two hours 
later train B leaves the same city, on the same track, traveling at the 
rate of 75 mi/hr. 
(a) At what time does train B overtake A? 
(b) How far from the starting point will the trains be at the time of 

part (a)? 
(c) How far apart will the trains be 2 hr after B starts? 

6 Two men start toward each other from points 90 mi apart, the first travel¬ 
ing at 60 mi/hr and the second at 40 mi/hr. 
(a) How long will it be before they meet? 
(&) How far will each have traveled when they meet? 
(c) How far apart will they be after 30 min of travel? 

7 A owns a motor that consumes 10 kWhr per day, and B owns a motor 
that consumes 30 kWhr per day. Beginning on the first day of a 30-day 
month, A lets his motor run continuously. B’s motor runs for 1 day, is 
idle for 4 days, then runs for 2 days, is idle for 6 days, and then runs 
continuously for the rest of the month. On what days of the month will 
A’s and B's power bills be the same? 

8 The owner of a radio store decides to pay his salesmen according to 
either of two plans. The first plan provides for a fixed salary of $25 per 
week plus a commission of $3 for each radio sold. According to the sec¬ 
ond plan, a salesman may take a straight commission of $4 for each radio 
set sold. Determine at which point the second plan becomes more attrac¬ 
tive for an energetic salesman. 

16-3 COORDINATE NOTATION 

Let us suppose you are standing on a street corner and a stranger asks you 
to direct him to some prominent building. You tell him to go four blocks east 



and five blocks north. By these directions, you have automatically made the 
street intersection a point of reference, or origin, from which distances are 
measured. From this point you could count distances to any point in the city, 
using the blocks as a unit of distance and pairs of directions (east, north, 
west, or south) for locating the various points. 

To draw a graph, we had to use two lines of reference, or axes. These cor¬ 
respond to the streets meeting at right angles. Also, in fixing a point on a 
graph, it was necessary to locate that point by pairs of numbers. For example, 
when we plot distance against time, we need one number to represent the 
time and another number to represent the distance covered in that time. 

So far, only positive numbers have been used for graphs. To restrict 
graphs to positive values would impose just as severe a handicap as if we 
were to restrict algebra to positive numbers. Accordingly, a system must be 
established for plotting pairs of numbers, either or both of which may be 
positive or negative. In such a system, a sheet of squared paper is divided 
into four sections, or quadrants, by drawing two intersecting axes at right 
angles to each other. The point O, at the intersection of the axes, is called the 
origin. The horizontal axis is generally known as the x axis and the vertical 
axis is called the y axis. 

There is nothing new about measuring distances along the x axis; it is 
the basic system described in Sec. 3 • 5 and shown in Fig. 3 • 3. That is, we 
agree to regard distances along the x axis to the right of the origin as positive 
and those to the left as negative. Also, we consider distances along the y axis 
as positive if above the origin and negative if below the origin. In effect, we 
have simply added to our method of graphical representation as originally 
outlined in Fig. 3 • 3. 

With this system of representation, which is called a system of rectangular 
coordinates, we are able to locate any pair of numbers regardless of the 
signs. Because this system was developed by the French mathematician 
René des Cartes, you will often hear it referred to as the system of Cartesian 
coordinates. 

example 3 Referring to Fig. 16-7, 
Point A is in the first quadrant. Its x value is +3, and its y value 
is +4. 
Point B is in the second quadrant. Its x value is —4, and its y 
value is +5. 
Point Cis in the third quadrant. Itsx value is —5, and its value 
is -2. 
Point D is in the fourth quadrant. Its x value is +5, and itsj 
value is —3. 

Thus, every point on the surface of the paper corresponds to a pair of 
coordinate numbers that completely describe the point. 

The two signed numbers that locate a point are called the coordinates of 

PROBLEMS 
16 • 1 

TO 

Fig. 16-7 System of 
Rectangular Coordinates 
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that point. The x value is called the abscissa of the point, and the y value is 
called the ordinate of the point. 

In describing a point in terms of its coordinates, the abscissa is always 
stated first. Thus, to locate the point A in Fig. 16 • 7, we write A = (3,4), 
meaning that, to locate the point A, we count three divisions to the right of 
the origin along the x axis and up four divisions along the y axis. In like man¬ 
ner, we completely describe the point B by writing B = ( — 4,5). Also, 

C = ( —5,—2) and D = (5,-3) 

PROBLEMS 16-2 

1 On a map, which lines correspond to the x axis, latitude or longitude? 
2 Plot the following points: (2,3), (—6, — 1), (3,-7), (0,-6), (0,0). ( — 8.0). 
3 Plot the following points: (—1.5,10), ( — 6.5, —7.5), (3.6, —4). (0,2.5), 

(6.5,8.5), (3.5,0). 
4 Using Fig. 16 • 8, give the coordinates of the points A, B, C, D, E, F, G, 

I, J, K, L, M, and N. 

5 Plot the following points: A = ( — 1,— 2), B = (5, —2), C = (5,4), 
D — (—1,4). Connect these points in succession. What kind of figure is 
ABCD? Draw the diagonals DB and CA. What are the coordinates of the 
point of intersection of the diagonals? 

16-4 GRAPHS OF LINEAR EQUATIONS 

A relation between a pair of numbers, not necessarily connected with phys¬ 
ical quantities such as those in foregoing exercises, can be expressed by a 
graph. 

Consider the following problem: The sum of two numbers is equal to 5. 
What are the numbers? Immediately it is evident there is more than one pair 
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of numbers that will fulfill the requirements of the problem. For example, if 
only positive numbers are considered, we have, by addition, 

0 1 

£ A 
5 5 

2 3 

2 £ 
5 5 

4 5 
1 0 

5 ? 

Similarly, if negative numbers are included, we can write 

-1 -2 -3 — 4 -5 - 6 
+ 6 +7 +8 +9 +10 +11 

5 5 5 5 5 5 

and so on, indefinitely. 
Also, if fractions or decimals are considered, we have 

1.5 -3.75 
3.5 +8.75 

5 5 

-1.63 
+ 6.63 

5 

- 8.36 
+ 13.36 

5 

and so on, indefinitely. 
It follows that there are an infinite number of pairs of numbers whose sum 

is 5. 
Let X represent any possible value of one of these numbers, and let y rep¬ 

resent the corresponding value of the second number. Then 

X + y - 5 

For any value assigned to x, we can solve for the corresponding value of 
y. Thus, if x = 1, y = 4. Also, if x — 2, y - 3. Likewise, if x = -4, y = 9, 
because, by substituting —4 for x in the equation, we obtain 

— 4 + y = 5 
or y = 9 

In this manner, there may be obtained an unlimited number of values forx 
and y that satisfy the equations, some of which are listed below: 

If x = -6 
Then y = 11 

Coordinates of A 

-4-2 02 
9 7 5 3 
H C D E 

4 6 8 10 
1 -i _3 —5 

F G H I 

With the tabulated pairs of numbers as coordinates, the points are plotted 
and connected in succession as shown in Fig. 16 • 9. The line drawn through 
these points is called the graph of the equation x + y = 5. 

Regardless of what pairs of numbers (coordinates) are chosen from the 
graph, it will be found that each pair satisfies the equation. For example, 
the point P has coordinates (15, —10); that is, x = 15 and y = —10. 
These numbers satisfy the equation because 15 — 10 = 5. Likewise, the 
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Fig. 16-9 Graph of The 
Equation x + y = 5 

I I I I I I -141-|- 44- 4 

point P] has coordinates ( — 9,14) that also satisfy the equation because 
— 9 4- 14 = 5. The point P3 has coordinates (3,7). This point is not on the 
line, nor do its coordinates satisfy the equation, for 3 + 7 5. The straight 
line, or graph, can be extended in either direction, always passing through 
points whose coordinates satisfy the conditions of the equation. This is as 
would be expected, for there are a infinite number of pairs of numbers called 
solutions that, when added, are equal to 5. 

PROBLEMS 16-3 

1 Graph the equation x — y = 8 by tabulating and plotting five pairs of 
values for x and y that satisfy the equation. Can a straight line be drawn 
through these points? Plot the point (4,4). Is it on the graph of the equa¬ 
tion? Do the coordinates of this point satisfy the equation? From the 
graph, whenx = 0, what is the value of^? When^ = 0, what is the value 
of x? Do these pairs of values satisfy the equation? 

2 Graph the equation 2x + 3y = 6 by tabulating and plotting at least five 
pairs of values for x and y that satisfy the equation. Can a straight line 
be drawn through these points? Plot the point (- 15,12). Is this point on 
the graph of the equation? Do the coordinates satisfy the equation? Plot 
the point (10,-5). Is this point on the graph of the equation? Do the co¬ 
ordinates satisfy the equation? From the graph, when x = 0, what is the 
value of y? When y = 0, what is the value of x? Do these pairs of values 
satisfy the equation? 
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16-5 VARIABLES 

When two variables, such as x and y, are so related that a change in x causes 
a change in y, then y is said to be a function of x. By assigning values to x and 



then solving for the value of y, we make x the independent variable and y the 
dependent variable. 

The above definitions are applicable to all types of equations and physical 
relations. For example, in Fig. 16 • 5, distance is plotted against time. The 
distance covered by a body moving at a constant velocity is given by 

s = vt 
where s = distance 

V = velocity 
t = time 

In this equation and therefore in the resulting graph, the distance is the de¬ 
pendent variable because it depends upon the amount of time. The time is 
the independent variable, and the velocity is a constant. 

ip 
Similarly, in 1 of Problems 16 • 1, the formula I = is used to obtain 

values for plotting the graph. Here the resistance R is the constant, the volt¬ 
age E is the independent variable, and the current I is the dependent 
variable. 

p 
In 4 of Problems 16 • 1, the same formula I = is used to obtain coordi-

fl 
nates for the graph. Here the voltage Eisa constant, the resistance R is the 
independent variable, and the current I is the dependent variable. 

From these and other examples, it is evident, as will be shown in Sec. 
16 • 6, that the graph of an equation having variables of the first degree is a 
straight line. This fact does not apply to variables in the denominator of a 

E fraction as in the case above where Ä is a variable. However, I = ~ is not an 
n 

equation of the first degree as far as R is concerned because, by the law of 
exponents, / = ER '. 

It is general practice to plot the independent variable along the horizontal, 
or x axis, and the dependent variable along the vertical, or y axis. 

In plotting the graph of an equation, it is convenient to solve the equation 
for the dependent variable first. Values are then assigned to the independent 
variable in order to find the corresponding values of the dependent variable. 

If an equation or formula contains more than two variables, after choosing 
the dependent variable, we must decide which one is to be the independent 
variable for each separate investigation, or graphing. For example, consider 
the formula 

XL = 2^fL 

where XL = inductive reactance of an inductor, SI 
f = frequency, Hz 
L = inductance, H 

2rr = 6.28 . . . 

PROBLEMS 
16 ■ 3 

TO 
SECTION 

16 ■ 5 

In this case, we can vary either the frequency/or the inductance L in order 
to determine the effect upon the inductive reactance XL, but we must not 
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vary both at the same time. Either/must be fixed at some constant value and 
L varied, or L must be fixed. A little thought will show the difficulty of plotting, 
on a plane, the variations of XL if/and L are varied simultaneously. 

16-6 THE GRAPH-EQUATION RELATIONSHIPS 

Each of the equations that have been plotted isof the^rsir/e^reeiSec. 11 • 1) 
and contains two unknowns. From their graphs the following important facts 
are obtained: 

1 The graph of an equation of the first degree is a straight line. 
2 The coordinates of every point on the graph satisfy the conditions of 

the equation. 
3 The coordinates of every point not on the graph do not satisfy the con¬ 

ditions of the equation. 

Because the graph of every equation of the first degree results in a 
straight line, as stated under 1 above, first-degree equations are called linear 
equations. Also, because such equations have an infinite number of solu¬ 
tions, they are called indeterminate equations. 

As X changes in value in such an equation, the value of y also changes. 
Hence, x and y are called variables. 

Now consider Fig. 16 • 9, the graph of x + y = 5. This equation may be 
written in the form y = —x + 5, where y is called the dependent variable, 
because its value depends upon the value of x, and x is called the independ¬ 
ent variable, because we may assign to it any value we choose. 

Notice in the graph first of all that the y intercept, the point where the curve 
cuts the y axis, is at the point x = 0, y = 5, and this value is revealed in the 
equation y = — x + 5 because, at the y axis, x = 0 and y then equals 5. 

Second, note the slope of the line. For every step in the x direction (posi¬ 
tive to the right), there is a downward (negative) step in the.y direction. By 
definition, the slope of a line is the ratio of the change in the y values be¬ 
tween two points to the corresponding change in x values between the same 
two points: 

Slope = 
Ax 

where the symbol A (Greek letter delta) means “the change in.” 
Figure 16 • 9 has been redrawn in Fig. 16 • 10 to show the changes inx 

and y between two arbitrarily selected points B and H. The slope of the graph 
equals 

Sy _ -12 
Ax “ +12 “ 

Now see in the equation y — —x + 5 that the slope, — 1, is indicated in the 
coefficient of x. 
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Fig. 16-10 Figure 16-9 

Redrawn to Show m = — 
Ax 

Therefore, when we write the original equation x + y — 5 in standard 
form y — — x + 5, the slope of the line is the coefficient of the x term and 
the y intercept is the constant term. 

The general form of equation for a straight line is 

y = mx + b 

where = dependent variable 
x = independent variable 
m — slope of the curve (straight line) 
b = value of the y intercept 

16-7 METHODS OF PLOTTING 

To graph a linear equation of two variables, 
1 Convert the equation to the form y = mx + b to indicate quickly the 

values of the slope m and the y intercept b. 
2 Choose a suitable value for x, substitute it into the standard form 

equation, and solve for the corresponding value of y. This results in one solu¬ 
tion, or one set of coordinates. 

3 Choose another value for x, and again solve for y. This second x value 
should be reasonably well spaced from the first (see Figs. 16-3 and 16 • 4). 

4 Plot the two points whose coordinates were calculated in steps 2 and 
3. Connect them with a fine straight line. 
5 Check the resulting graph by solving for and plotting a third point. This 

third point must lie on the same straight line or its extension. 
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example 4 
solution 

Graph the equation 2x — 5y = 10. 
1 Rewrite the equation in the standard form: y = — 2. 
2 Always plot first the value of y when x — 0. This value is 
immediately obtained from the “ — 2" of the equation, which 
shows the y intercept. This inspection results in a point, which 
we shall call A, whose coordinates are (0,-2). 
3 Now choose some value of x. Any value will serve, but one 
which cancels the denominator of the fractional coefficient will 
be the best choice. Let x = 5 and, by solving the equation, obtain 
y — 0. This gives the second point, B, at (5,0). (Sometimes it 
may be more convenient to choose, as the second point, the 
value of y = 0 and solve for x.) 
4 Choose another value of x in order to solve for the third 
(check) point. Letx= — 10. Then v = —6, and this gives point C 
at (-10,16). 
5 Draw the line of the equation by joining the three points. The 
points and the finished graph are shown in Fig. 16 • 11. 

Fig. 16-11 Graph of the 
Equation 2x — 5y = 10 

When x was set equal to zero, the resulting point A had coordinates that 
located the point where the graph crossed the y axis. This point is called the 
y intercept. Likewise, when y was set equal to zero, the resulting point B had 
coordinates that located the point where the graph crossed the x axis. This 
point is called the x intercept. Not only are these easy methods of locating two 
points with which to graph the equation but also these two points give us 
the exact location of the intercepts. The intercepts are important, as will be 
shown later. 
The x intercept is often referred to as the root or zero of the equation. 
An alternative method of plotting straight-line graphs is to use the infor¬ 

mation obtained from the standard formjy = mx + b. If we locate the.v inter-
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cept b immediately and then step over and up (or down) in accordance with 
the slope m, we can locate additional points. If, for example, y = 2x + 9, 
then the y intercept is at +9 and the slope is +2:1. 

Follow the development of the graph in Fig. 16- 12. First plot the y inter¬ 

cept, + 9. Then step one unit in the positive x direction and two units in the 
2 — 2 positive y direction and plot the first point. Next, since + — = —-, again 

starting at the y intercept, step one unit in the negative x direction and two 
units in the negative y direction and plot the second point. If these two points 
are too close together to be reliable, space them better by moving greater 

distances in the x and y directions while keeping the ratio equal to 

2 : 1 (=m). Finally, join the two points so located with a straight line which 
passes through the third, or test, point, the y intercept. 

PROBLEMS 16-4 

SECTION 
16 ■ 7 

TO 
PROBLEMS 

16 • 4 

Fig. 16-12 Alternative Method 
of Plotting a Straight Line: First, 
Locate y Intercept, Given by the 
Constant in the Standard Form 
Equation. Then Step Off Ax And 

Ay So That = m, or Slope, 

Also Given in the Standard Form of 
The Equation, First in the + x Direc¬ 
tion And Then in the —x Direction. 

Graph the following equations and determine the x and y intercepts: 

1 5x + 4v = 12 2 2x - y = 8 
3 x — 3^ = 3 4 2x + y - 9 
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5 Plot the following equations on the same sheet of graph paper (same 
axes), and carefully study the results: (a)x—y — — 8; (6) x - y — —5; 
(c) X - y = 0; (d) x - y = 4; (e) x - y = 8. 
Are the graphs parallel? Note that all left members of the given equa¬ 
tions are identical. Solve each of these equations for y and write them in 
a column, thus: 

(a) y = x + 8 
(b) y = x + 5 
(c) y - x + 0 
(d) y = x - 4 
(e) y = x - 8 

In each equation, does the last term of the right member represent the 
y intercept? 
When the equations are solved for y, as above, each coefficient of x is 
+1. All the graphs slant to the right because the coefficient of each x is 
positive. Each time an x increases one unit, note that the correspond¬ 
ing y increases one unit. That is because the coefficient of x in each 
equation is 1. 

6 Plot the following equations on the same sheet of graph paper (same 
axes), and carefully study the results. 
(a) 4x - 2y = -30, (b) 4x - 2y = -16. (c) 4x - 2y = 0, 
(d) 4x - 2y = 12, (e) 4x - 2y = 30, (/) 8x - 4v = 60 
Are all the graphs parallel? Again note that all left members are identi¬ 
cal. Does the graph of Eq. (/) fall on that of Eq. (e)? Note that (e) and (/) 
are identical equations. Why? 
Solve each of these equations, except (f), for y and write them in a 
column, thus: 

(a) y = 2x + 15 
(6) y = 2x + 8 
(c) y = 2x + 0 
(</) y = 2x - 6 
(e) y = 2x — 15 

In each equation, does the last term of the right member represent the 
y intercept? When linear equations are written in this form, this last 
term is known as the constant term. 
Are all the coefficients of the x’s positive? That is why all the graphs 
slant upward to the right. Lines slanting in this manner are said to have 
positive slopes. 
Each time an x increases or decreases one unit, note that y respectively 
increases or decreases two units. That is because the coefficient of 
each x is 2. If a graph has a positive slope, an increase or decrease in x 
always results in a corresponding increase or decrease in y. In these 
equations, each line has a slope of +2, the coefficient of each x. 
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7 Plot the following equations on the same set of axes: (a) x + 2y = 18, 
(b) x + 2y = 10, (c) x + 2y = 0, (d) x + 2y = — 14, 
(e) x + 2y = -22, (/) 3x + 6y = -66. 
Are all the graphs parallel? How should you have known they would be 
parallel without plotting them? 
Does the graph of (/) fall on that of (e)? How should you have known 
(e) and (/) would plot the same graph without actually plotting them? 
Solve each equation for y as in Probs. 5 and 6. Does the constant term 
denote the y intercept in each case? Is the coefficient of each x equal to 
—j? The minus sign means that each graph has a negative slope; that 
is, the lines slant downward to the right. Thus, when x increases, y de¬ 
creases, and vice versa. The | slope means that, when x varies one 
unit, y is changed { unit. Therefore, the variations of x and y are com¬ 
pletely described by saying the slope is — 

8 Plot the following equations on the same set of axes: (a) x — 4y = 0, 
(6) x — 2y - 0, (c) x — y = 0, (d) 2x — y = 0, {e) 4x — y = 0, 
(/) 4x + > = 0, (g) 2x + y = 0, (A) x + y = 0, (i) x + 2y = 0, 
(j) x + 4y = 0. Solve the equations for y, as before, and carefully 
analyze your results. 

16-8 EQUATIONS DERIVED FROM GRAPHS 

Often we obtain a set of readings relating two variables and want to know 
whether there is any definite relationship between the variables. This in¬ 
vestigation makes use of both the graph showing the relationship and our 
understanding of the standard form of a straight-line equation 

y = mx + b 

1 Plot the observed values carefully on a graph. If a straight-line rela¬ 
tionship is indicated, draw it. 

2 Sometimes one or more points appear to be off the trend. There may 
or may not be errors in these readings. For the present, we will assume that 
they are errors. 

3 If the trend is a straight line, but some points are off, try to draw the 
line so that there is an equal number of floating points above and below the 
line. (Use a transparent straight edge.) 

4 The straight-line result must now obey the law y = mx + b. 

example 5 Given the following set of readings, draw the graph and deter¬ 
mine the law relating the variables: 

-2 2 4 

-7 5 11 

6 

17 

PROBLEMS 
16-4 
TO 

SECTION 
16 ■ 8 
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solution First, plot the points as they have been given, and try them with 
a straightedge for a straight-line relationship. Since, in this case, 
Fig. 16 • 13, a straight line is indicated, draw the line joining the 
points. 

Fig. 16-13 Graph of Example 5 

The y intercept is seen to be —1. This gives the value of b in the 
standard form. Then, to determine the slope m, choose any two 
convenient points, reasonably spaced, say (2,5) and (6,17). 
The difference between the points in the y direction is 
17 - 5 = 12. 
The difference between the points in the x direction is 
6-2 = 4. 

—, ., i Sy 17 — 5 +12 ~ 
Then the slope m = =-j- = +3 

Ax 6-2 +4 

and the relationship is 

y = 3x — 1 

example 6 Given the readings relating P and V, determine the law relating 
them: 

p 
- 4 - 2 2 6

10 

V 17 11 -5 -22 -38 

solution Plot the points and test for a straight-line relationship. Because 
some of the points are not quite on the line, draw the straight 
line which will balance the floating points, (Fig. 16 • 14). Now the 
V intercept is seen to be +2, and the equation relating P and V 
will be of the form V = mP + 2. To evaluate the slope m, choose 
any two convenient points on the line, and arrive at m: 
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Fig. 16-14 

AV _ -38 -(-22) _ -16 _ _ 4
AP 10-6 ” +4 

and the relationship is seen to be 

V = — 4P + 2 

Referring to Examples 5 and 6, see how m may be found algebraically by 
realizing that A> = ^2 — >T. the difference of the values of y when going 
from point 1 to point 2, and Ax = x2 — Xi, the difference of the values of x 
going from point 1 to point 2. Then 

_ Ay _ y2 ~ 3,1 
Ax x2 — Xi 

Always call your starting point 1 and your finishing point 2. That 
will yield the correct sign as well as the correct value of the slope. 

PROBLEMS 16-5 

1 What is the y = mx + b form equation for the graph of Fig. 16 • 11? 
2 A series of readings shows values of y for predetermined values of x: 

« 5
10 15 20 25 30 

y 100 200 300 400 500 600 

SECTION 
16 • 8 

TO 
PROBLEMS 

16.5 

Graph of Example 6 
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Plot values of y against values of x and determine the values of the con¬ 
stants m and h which connect x and v in the form y = mx + b. 

3 A laboratory experiment relates x and y as follows: 

X 10 20 30 40 50 60 

y 2.35 3.5 4.6 5.75 6.9 8.0 

What is the equation, in the form y — ax + 0, which relates x and yl 
4 The following is a series of readings relating s and t: 

t 50 125 210 250 360 435 

s 0.36 0.30 0.23 0.20 0.11 0.05 

Plot sagainst ¿and, assuming s and t are connected by a law of the form 
s = u + qt, find u and q. 

5 The following is a set of laboratory readings relating R and T: 

T 30 75 150 210 270 300 360 390 425 450 

R 0.38 0.35 0.31 0.26 0.22 0.195 0.16 0.13 0.12 0.10 

Plot the graph of R versus T and determine the formula which relates 
them. 

6 A comparison of Celsius (C) and Fahrenheit (F) temperatures is given in 
the following table: 

°C 0 10 38 60 100 

°F 32 50 100 140 212 

Plot °F against °C. 
(a) Determine from the graph the relationship between the two tem¬ 

perature scales in the form, F = 0C + <J>. 
(6) From the graph, what is the Fahrenheit equivalent of 25°C? 
(c) From the graph, what is the Celsius equivalent of 165°F? 

7 The readings of current flow I through a certain resistor as the emf E is 
changed are given in the following table: 

E 10 20 30 40 50 60 70 80 90 100 V 

I 0.2125 0.4255 0.638 0.851 1.062 1.278 1.49 1.702 1.915 2.125 A 

. . „ .. . , . . .. .. change in voltage , 
(a) From the graph, what is the ratio ——-^-r? 

change in current 

... * • xu x change in current , (b) What is the ratio ——5—.- -? 
change in voltage 
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(c) From Ohm's law, what is the resistance of the resistor? 
(d) What conclusions do you draw from your answers to questions 

(a), (6), and (c)? 
8 The following is a series of readings of the avalanche breakdown of a 

Zener diode: 

E -14 2 -14.4 -14.6 -14.7 -14.8 -14.9 -15 -15.1 -15.2 -15.3 -15.4 -15.5 V 

I 0 0 0 -10 -18.9 -28.2 -37.4 -46.8 -56 -65.2 -74.6 -83.9 mA 

Plot the graph of I versus E and determine: 

(a) What is after the voltage goes more negative than 14.6 V. 

(6) What the ratio is for voltages less negative than 14.6 V. 
9 When the control grid of a 6SN7GTB tube is biased at —6 V, the read¬ 

ings of plate current in milliamperes for selected plate voltages are 

E„ 125 143 165 185 200 215 232 244 253 263 275 V 

Ip 1 2 - 4 
6 8

10 12 14 16 18 20 mA 

Plot Zp against E^. 
(a) Over what range of voltages may the plate resistance of the tube 

be considered to be constant? 
(6) What is your interpretation of other parts of the tube characteristic 

curve? 
\p 

(c) What is ——, that is, what is the change in plate voltage with re-
■i/p 

spect to the change in plate current when the grid voltage E,. is con¬ 
stant, over the straight-line portion of the graph? 

(cl) What does your electronic tube manual show as the value of Äp 

for the 6SN7GTB tube? 
10 The readings of current versus applied voltage for a tunnel diode are as 

follows: 

I I I I I I I 
V, 0.002 0.008 0.011 0.016 0.02 0.023 0.027 0.03 0.04 0.07 0.095 0.105 0.115 _L2_J-
A 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.9 0.8 0.7 

0.125 0.135 0.145 0.160 0.20 0.32 0.39 0.42 0.43 0.45 0.46 0.47 0.48 V 

0.6 0.5 0.4 0.3 0.2 0.1 0.2 0.3 0.4 0.5 0.7 0.8 0.9 mA 

(a) Draw the graph of E versus Vj. 
(b) Note specifically the range of voltages which makes the tunnel 

diode act like a negative resistance. 
(c) Note the ranges of voltages which make the tunnel diode act like 

a positive resistance. 
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^simultaneous equations 

chapter 

Many times in electronics we find several circuit conditions applying at the 
same time and therefore requiring interlocking solutions. Accordingly, the 
study of simultaneous equations and their most common methods of solu¬ 
tion is a vital one for electronics technicians. 

The subject of simultaneous equations also provides us with an excellent 
application of the linear graphs discussed in Chap. 16. This chapter leans 
heavily on the notions presented there, although, once the meaning of simul¬ 
taneous solutions is understood, we can quickly move on to various alge¬ 
braic methods of solution. 

17-1 GRAPHICAL SOLUTION OF SIMULTANEOUS LINEAR EQUATIONS 

The graphs of the equations 

x + 2y = 12 
and 3x — y = 1 

are shown in Fig. 17-1. The point of intersection of the lines has the coordi¬ 
nates (2,5); that is, the x value is 2, and the y value is 5. Now this point is on 
both of the graphs; it follows, therefore, that the x and ^values should satisfy 
both equations. Substituting 2 for x and 5 for_y in each equation results in the 
identities 

2 + 10 = 12 
and 6-5=1 

From this it is observed that, if the graphs of two linear equations intersect, 
they have one common set of values for the variables, or one common solu¬ 
tion. These are called simultaneous linear equations. 

Because two straight lines can intersect in only one point, there can be 
only one common set of values or one common solution that satisfies both 
equations. 

Two equations, each with two variables, are called inconsistent equations 
when their plotted lines are parallel to each other. Because parallel lines do 
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not intersect, there is no common solution for two or more inconsistent 
equations. 

Considerable care must be used in graphing equations, for a deviation in 
the graph of either equation will cause the intersection to be in the wrong 
place and hence will lead to an incorrect solution. 

PROBLEMS 17-1 

Solve the following pairs of equations graphically, and check your solutions 
by substituting them into each of the original equations: 

1 x + 4^ = 14 

x — 4 v = — 2 

4 X + 2y - 26 
4x - y = 32 

7 7a + 3/3 = -23 
5/1 + 4a = -23 

10 2Z2 + 6Zj = 7 
4Z, - 3Zj = 9 

2 6x - j = 15 

2x + 5y = 21 

5 9E + 27 = 34 

6E + 57 = -14 

8 8F - f = 0 
3/ + 4F = 14 

3 X + y = 8 
X - y - 2 

6 / - 8m = 0 
I + m = 45 

9 37] + 7i = 50 
57] - 2i = 15 

17-2 SOLUTION OF SIMULTANEOUS LINEAR EQUATIONS BY ADDITION 

AND SUBTRACTION 

It has been shown in preceding sections that an unlimited number of pairs of 
values of variables satisfy one linear equation. Also, it can be determined 
graphically whether there is one pair of values, or solution, that will satisfy 
two given linear equations. The solution of two simultaneous linear equations 
can also be found by algebraic methods, as illustrated in the following 
examples: 
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example 1 Solve the equations x + y = 6 and x — y = 2. 
solution Given x 4- y — 6 (a) 

x - y = 2 (6) 
Add (a) and (b), 2x = 8 (c) 
D: 2 in (c), x = 4 
Substitute this value of x in (a), 4 + y = 6 
Collect terms, y = 2 
The common solution for (a) and (b) is 

x = 4 y - 2 

check Substitute in (a), 4 + 2 = 6 
Substitute in (b), 4-2 = 2 

In Example 1 the coefficients of y in Eqs. (a) and (6) are the same ex¬ 
cept for sign. That being so, y can be eliminated by adding these equations, 
and the resulting sum is an equation in one unknown. This method of solution 
is called elimination by addition. 

Because the coefficients of x are the same in Eqs. (a) and (6) of Example 1, 
x could have been eliminated by subtracting either equation from the other, 
and an equation containing only y as a variable would have been the result. 
This method of solution is called elimination by subtraction. The remaining 
variable x would have been solved for in the usual manner by substituting the 
value of y in either equation. 

example 2 Solve the equations 3x — 4y = 13 and 5x + 6y = 9. 
solution Given 3x — 4y = 13 (a) 

5x + 6y = 9 (b) 
M: 3 in (a), 9x — 12y = 39 (c) 
M: 2 in (6), lOx + 12y = 18 (d) 
Add (c) and (d) 19x = 57 (e) 
D: 19 in (e), x = 3 (/) 
Substitute this value of x in (a), 9 — 4y = 13 (#) 
Collect terms, — 4v = 4 (A) 
D: — 4 in (A), y = -1 
The common solution for (a) and (b) is 
x = 3 y = -1 

check Substitute in (a), 9 + 4=13 
Substitute in (6), 15 — 6 = 9 

In Example 2 the coefficients of x and y in Eqs. (a) and (6) are not the same. 
The coefficients of y were made the same absolute value in Eqs. (c) and (d) 
in order to eliminate y by the method of addition. 

example 3 Solve the equations 4a — 3b = 27 and 7a — 2b = 31. 
solution Given 4a — 3b = 27 (a) 

7a — 2b = 31 (6) 
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M: 7 in (a) 28a - 216 = 189 (c) 
M: 4 in (6), 28a - 8b = 124 (d) 
Subtract (d) from (c), —136 = 65 (e) 
D: -13 in (e), 6 = -5 (f) 
Substitute this value of 6 in (a), 4a + 15 = 27 (g) 
Collect terms, 4a = 12 (6) 
D: 4 in (6), a = 3 (Ü 
The common solution for (a) and (6) is 
a = 3 6 = —5 

SECTION 
17.2 
TO 

PROBLEMS 
17.2 

check Substitute the values of the variables (a) and (6) as usual. 

In Example 3 the coefficients of a and 6 in Eqs. (a) and (6) are not the 
same. The coefficients of a were made the same absolute value in Eqs. (c) 
and (d) in order to eliminate a by the method of subtraction. 

Rule To solve two simultaneous linear equations having two variables by 
the method of elimination by addition or subtraction: 

1 If necessary, multiply each equation by a number that will make the 
coefficients of one of the variables of equal absolute value. 

2 If these coefficients of equal absolute value have like signs, subtract 
one equation from the other; if they have unlike signs, add the equations. 

3 Solve the resulting equation. 
4 Substitute the value of the variable found in step 3 in one of the origi¬ 

nal equations, and then solve this resulting equation for the remaining 
variable. 

5 Check the solution by substituting in both the original equations. 

PROBLEMS 17 • 2 

Solve for the unknowns by the method of addition and subtraction: 

1 2a + 6 = 9 
4a — b — 6 

3 5Z + 2Ä — 16 
3Z - R = 3 

5 Ä, - 3R2 - -8 
3R1 + Ä2 = 6 

7 s + t = 0 
3s + It = 8 

9 5M + L = 11 
3M + 2L = 8 

11 3/1 - 4/2 = 17 
A + 3/2 = - 3 

2 E - 4/ = 9 
2E - 2/ = 6 

4 4E + 3/ = -1 
5E + / = 7 

6 50 + 4<> = 12 
0 - 2<> = 8 

8 2a - ß = 3 
4/1 + 3a = 10 

10 4p — 3q = 5 
9/7 — 8q = 0 

12 3Zi + Z2 = 14 
Zx + 2Z2 = 13 
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13 E + 3e = 11 
4E + 7e = 29 

15 3Ä - - 19 = 0 
2Ä — w = 9 

17 0.3E + 0.2e = -0.9 
0.5E = -1.9 - 0.3e 

19 0.03/- 0.54 = -0.02/ 
21 - i = I 

21 Solve the problems of Problems 
subtraction, and confirm the ansv 

14 I + 3/ = 25 
4/ + I = 31 

16 5« + 1 = -3^ 
7ß + 3a - 15 = 0 

18 0.9Xl + 0.04Xr = 9.4 
0.05XL + 2.5 = 0.3Xc

20 0.4L + 1.6 = 0.9X 
0.7X + 0.2 = 0.6L 

17-1 by the method of addition and 
^ers obtained by the graphical method. 

17-3 SOLUTION BY SUBSTITUTION 

Another common method of solution is called elimination by substitution. 

example 4 Solve the equations 16x — 3y = 10 and 8x + 5y = 18. 
solution Given 

Solve (a) for x in terms of y, 

Substitute this value of x in 

(6). 

M: 16 in (d), 
Expand (e), 
Collect terms in (/), 
D: 104 in (g), 
Substitute value of y in (a), 
Collect terms in (i), 
D: 16 in (J), 

check Usual method. 

16x — 3y = 10 (a) 
8x + 5y = 18 (ò) 

10 + 3y i x =-(c) 
16 

S) 10^ 3̂ ) + 5j = 18 (d) 

8(10 + 3y) + 80y = 288 (e) 
80 + 24v + 80y = 288 (/) 

104v = 208 (g) 
y = 2 W 

16x — 6 = 10 (i) 
16x = 16 (/) 
x = 1 (A) 

Not only is the method of substitution a very useful one; it also serves to 
emphasize that the values of the variables are the same in both equations. 

The method of solving by substitution can be stated as follows: 

Rule To solve by substitution: 
1 Solve one of the equations for one of the variables in terms of the other 

variable. 
2 Substitute the resultant value of the variable, found in step 1, in the 

remaining equation. 
3 Solve the equation obtained in step 2 for the second variable. 
4 In the simplest of the original equations, substitute the value of the 
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variable found in step 3 and solve the resulting equation for the remaining 
unknown variable. 
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PROBLEMS 17 ■ 3 

Solve by the method of substitution: 

1 2E - I = 4 2 
2E + 3/= 12 

3 4/ = -2 - 2i 4 
3/ + 12 = 2i 

5 5a - 8/i = 0 6 
8a — 13/1 = — 1 

7 3 + 4E = 15e 8 
2 — 9e = — 2E 

9 40 - 164 = 10« 10 
30 - 2« = 68 

11 3/+5f= -9 12 
17-4/= -3F 

13 16 — 2y = 36 14 
8 - 52 = —4y 

15 5 + e = 2« 16 
3e + 4« = 20 

17 0.60 + 1.7« = 3.5 18 
1.40 - 3.9 = 0.3« 

19 1.2a -20=1 20 
1.4a - 1.56 = 1.5 

21 Solve Probs. 1 to 20 graphica 
algebraically. 

a + 2b = 6 
3a - 10 = 2b 

it — 8w = 0 
77 + w = 45 

5/, + 7/2 = 74 
5/2 - 77, = 0 

3Xl + 20 = 8XC
3XC - 44 = -8X,. 

3À, + 11 = 4ä2
3Ä2 = 9 + 2À, 

18 - 61, = 8I2
51, + 4/2 - 22 = 0 

277 — 8 = w 
2(4 + 377 = 5 

4ÁL - 9XC = -16 
7XC + 2 = 6Xl

0.61 -I- 0.8/ = 2.6 
7.0 - 0.5/ = —0.3i 

0.6E + 0.2M = 2040 
0.5L + 0.3M = 1860 

y, and confirm the answers obtained 

17-4 SOLUTION BY COMPARISON 

In this method, we solve for the value of the same variable in each equation 
in terms of the other variable and place these values equal to each other. The 
result is an equation having only one unknown. 

example 5 Solve the equations x — 4y = 14 and 4x + y = 5. 
solution Given x - ^y = 14 (a) 

4x 4- y = 5 (6) 
Solve (a) for x in terms of y, x = 14 + 4y (c) 

Solve (6) for x in terms of y, x = $ ~ ? (d) 
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Equate values of x in (c) and (d), 14 + 4;y = ——— (e) 

M: 4 in (e), 
Collect terms in (/) 
D: 17 in (g), 
Substitute the value of y in (a), 
Collect terms, 

check Usual method. 

56 + = 5 — (/) 
17y=—51 (g) 
>= -3 

x + 12 = 14 
x = 2 

PROBLEMS 17 ■ 4 

Solve by the method of comparison: 

1 37 + 2r = 5 
I + i = 2 

3 Ä + 2tt = -2 
15À - 106 = 4ir 

5 4x + 2y = 20 
1 + 2y = 3x 

7 2a - 5ß - 7 = 0 
7a - 2ß - 40 = 0 

9 0.7p - 0.6g = 6.3 
0.9p - 1.3 = —0.2g 

2 3Z - 2R = 7 
Z + 2R = 5 

4 4E + 3e = 15 
2E + lie = 36 

6 5Li + 24 = 6L2 

SL? - 22 = 4L, 

8 2M - 24Q = 0 
3M - 20Q = 16 

10 2.87 - 2.7i = 19.9 
6 + 5f = 2.17 

11 Solve Probs. 1 to 10 graphically and by the other algebraic methods. 

17-5 FRACTIONAL FORM 

Simultaneous linear equations having fractions with numerical denominators 
are readily solved by first clearing the fractions from the equations and then 
solving by any method considered most convenient. 

example 6 Solve the equations i 

solution Given 

M: 12, the LCD, in (a), 
M: 4, the LCD, in (6), 

v 7 , x y 1 
3 12 2 4 4 

x y 7 
4" + ÏÏ “ l2 

x _ 2 _ 
2 4 - 4 

3x + 4y = 7 
2x - y = 1 

(a) 

The resulting equations contain no fractions. Inspection of them 
shows that solution by addition is most convenient. The solu¬ 
tion is 

x = 1 y = 1 
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Solve the following sets of equations: 

1 2 

3 2E -4 

13E = 1 
33 99 

5 6 

XL _ _ J. 7 

1 
5 

1 
2 

1 
2 

= 3 — 
13 

o 

8<? _ ?
13 

3<> _ g 
35 ” 

f-‘=-
7+“= 2

4 8 2 “ 12 8 

A_ /< 
3 5 

3/4 2B 
34 17 

6« 
13 

£ 
7 

1 + 1= -J-
3 5 15 

7i Z _ 1 
30 10 2 

15e 
26 

8e 

8 Zi + 2Z2 Z2 - 5 _ Zi + Z2 + 1 
24 4 “ 36 

Zt - 2 _ 5 + Z2 2Z2 +6 
12 ” 3 6 

X - 3 5À 5-6» 1 + À 
3 + 6 “ 6 4 

A + 2 1 
-S““ 0 - 4 

10 4Z - i X - 2i - 121 
15 8 5 

3 
16 
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17-6 FRACTIONAL EQUATIONS 

When variables occur in denominators, it is generally easier to solve without 
clearing the equations of fractions. 

5 
example 7 Solve the equations y 

solution Given 

1-1= -1 (Ô) 
X y 
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M: 2 in (a), 

M: 5 in (6), 

Subtract (rf) from (c), 

Substitute J for y in (b), 

Collect terms, 

check Usual method. 

10 _ 12 = _i 
* y 

10_15 = _ 5
x y 

— =4 
y 

y = 4 

— - 4 = -1 
X 

— = 3 

(c) 

PROBLEMS 17-6 

Solve the following sets of equations: 

1 R + Z “ 12 

X _ 1 1 
Ä Z 12 

3 _2_3 ... 7 
XL Xc 55 

1 1 _ 27 1 
XL + Xc~ 55 XL

4 4 _ 11 
<> 0 20 

7 G - 5 _ Y+ 3 

18 _ 27 
Y- 1 G - 12 

19 _ 3 = 2 
15 M Li 

2 2 3 _ 13 
Ei E2 6 

5 _ 2 _ 1 
9 P 4 

7 _ 5 
2a - 39 2b - 5 

8 À + ! = w

10 t + t = 3« 
— + — - l 15 
2^ + 4Ä “ 35

17-7 LITERAL EQUATIONS IN TWO UNKNOWNS 

The solution of literal simultaneous equations involves no new methods of 
solution. In general, it will be found that the addition or subtraction method 
will suffice for most cases. 



example 8 Solve the equations ax + by = c and nix + ny = d. 

solution Given 

First eliminate x. 
M: m in (a), 
M: a in (b), 
Subtract (d) from (c), 
Factor (e), 

D: {bm — an) in (/). 

ax + by - c (a) 
mx + ny — d {b) 

amx + bmy — cm {c) 
amx H- any — ad {d) 
bmy — any = cm — ad (e) 
y{bm — an) cm — ad (f) 

v _ cm — ad 
bm — an 

Now go back to (a) and 
M: n in (a), 
M: b in {b), 
Subtract {h) from (g), 
Factor (i), 

D: {an — bm) in (j), 

{b), and eliminate y. 
anx + bny — cn 
bmx + bny = bd 
anx — bmx = cn — bd 
x{an — bm) = cn — bd 

x _ cn — bd 
an — bm 

_ bd — cn 
bm — an 

(/?) 
w 

(i) 
U) 

PROBLEMS 
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example 9 Solve the equations 

— + — = — and — + — = — 
x y xy x y xy 

solution Given 
y *y 

(ft) 
x y xy 

First eliminate^, although it makes no difference which variable 
is eliminated first. 

M: xy, the LCD, in (a), ay + bx = 1 (c) 
M: xj, the LCD, in (b), cy + dx = 1 (d) 
M: c in (c), acy + bcx = c (e) 
M: a in (d), acy + adx = a (f) 

Subtract {f) from (e), bcx — adx — c — a {g) 
Factor (g), x{bc — ad) = c — a {h) 

be — ad 

Now go back to (a) and {b) to eliminate x, and find 

be — ad 
245 



SIMULTANEOUS 
EQUATIONS 

PROBLEMS 17-7 

Given: 

1 4a- ß = P 
ß + 2a = Q 

2 3tt + 2Ä - X 
2^ — X = y 

3 E + IR = a 
3E + 7IR = b 

4 4Li +3L2 = C 
3Lt -2L2 = C 

5 63 + 5<> = a 
3« - 40 = ß 

6 5r + 3R = Zi 
3r + 7R = Z2

7 0.04Xc + 0.3Xl = 
0.02Xc + 0.3X,, = Z2

8 ^ + ^ = RT
4 3 

Rl Ry _ p 
T - -4 - R ' 

3 2 = 1 
Ri R2 Ri 

10 ^Zi-Z2-) = Zi-Z2-Xc

|z1-z2 = o 
0 

Solve for: 

a and ß 

77 and À 

E and IR 

Li and L2

3 and ó 

R and r 

Xc and XL

Rl and Rv

Ri and R2

Zi and Z2

17-8 EQUATIONS CONTAINING THREE UNKNOWNS 

In the preceding examples and problems, two equations were necessary to 
solve for two unknown variables. For problems involving three variables, 
three equations are necessary. The same methods of solution apply. 

example 10 Solve the equations 2x + 3y + 5z = 0 (a) 
6x — 2y — 3z = 3 (b) 
8x - 5v - 6z = 1 (c) 

solution Choose a variable to be eliminated. Let it be x. 
M: 3 in (a), 6x + 9y + 15z = 0 (d) 

6x - 2y - 3z = 3 (6) 
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check 

Subtract (6) from (d), 
M: 4 in (a), 

Subtract (c) from (/), 
This gives Eqs. (e) and (#) in 
we obtain y - 3, z = — 2. 

11? + 18z = —3 (e) 
8x+12?+20z = 0 (7) 

8x — 5y — 6z = 1 (c) 
17?+26z=—1 (g) 

variables y and z. Solving them, 

Substitute these values into (a), 2x + 9— 10 = 0 (h) 
Collect terms, 2x = 1 (i) 
D: 2 in (i), x = | 
Substitute the values of the variables in the equations. 

SECTION 
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PROBLEMS 17-8 

Solve: 

1 e + 3« + 4w = 14 
6 + 2^> + w = 7 

2B + <> + 2tt = 2 

3 + 2Ä, + Ä3 = 9 
7?2 4- Ä3 + 2Ri = 16 
2ä3 + R\ + R> = 3 

5 J-_ X _ X = □_ 
Rl Rp Ri 120 

1 _1_L - 4X 
Rl Rp Ri 120 

_1_1_L - -31 
Rp Ri Rl 120 

7 O.lr - 0.1Ä + 0.6Rt = 4.1 
2r + 3Ä + &Rl = 70 
J-r + -LR — J-R, — 1 
40' ’ 20“ — 2 

9 s - t = 8 
2v - 6 = s - 2 
3c — 12 = 3t 

2 XL - Xc + R = 2 
Xc + R + XL = 6 
XL - R + Xc = 0 

4 a — 2b + c — 3 
a + b + 2c = 1 
2a — b + c = 2 

1 1-1=1 
b a c 

1-11=1 
cab 

8 Ei — E2 — E3 = a 
E3 - Ei -E2 = ß 
Ei — Es — Ei = y 

10 a + 5 = c 
lb = 3c - 1 
2b — a = c — 9 

17 9 METHODS OF SOI UTION OF PROBLEMS 

In working a problem involving more than one unknown, it is convenient to 
solve it by setting up a system of simultaneous equations according to the 
statements of the problem. 

example 11 When a certain number is increased by one-third of another 
number, the result is 23. When the second number is increased 
by one-half of the first number, the result is 29. What are the 
numbers? 
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solution Let x = first number, y = second number. 

Then x + = 23 (a) 

Also, y + ^x = 29 (6) 

Solving the equations, we obtain x = 16, y = 21. 
check When 16, the first number, is increased by one-third of 21, 

we have 

16 + 7 = 23 

When 21, the second number, is increased by one-half of 16, 
we have 

21 + 8 = 29 

example 12 Two airplanes start from Omaha at the same time. The plane 
traveling west has a speed 80 mi/hr faster than that of the 
plane traveling east, and at the end of 4 hr they are 1600 mi 
apart. What is the speed of each plane? 

solution Let x = rate of plane flying west and y = rate of plane flying 
east. 
Then x — y = 80 (a) 
Since Rate x time = distance 
then 4x = distance traveled by plane flying west 
and 4y = distance traveled by plane flying east 
Hence, 4x + 4y = 1600 (6) 

Solving Eqs. (a) and (6), we obtain 

x = 240 mi/hr 
y = 160 mi/hr 

check Substitute these values into the statements of the example. 

Often it is possible to derive a formula from known data and thereby elimi¬ 
nate terms which are not desired or cannot be used conveniently in some 
investigation. 

example 13 The effective voltage E of an alternating voltage is equal to 
0.707 times its maximum value Emax. That is, 

E = 0.707Emax [1] 

Also, the average value E^ is equal to 0.637 times the maxi¬ 
mum value. That is, 

Eav = 0.637£max [2] 
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It is desired to express the effective value E in terms of the 
average value E^. 

solution must be eliminated. 

Solving Eq. [1] for Emax, Emax = 

Solving Eq. [2] for Emax, Emax = 
U.oo/ 

By Axiom 5, E _ Eav 

0.707 “ 0.637 

PROBLEMS 
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17 • 9 

Solving for E, E = l.HEav [3] 

Equation [3] shows that the effective value of an alternating voltage is 1.11 
times the average value of the voltage. 

example 14 You know that in a de circuit P = EI and also that P = PR. 
Derive a formula for E in terms of I and R. 

solution is evident that P must be eliminated. Because both equations 
are equal to P, we can equate them (Axiom 5) and obtain 

EI = PR 

0:1, E = IR [4] 

example 15 The quantity of electricity Q, in coulombs, in a capacitor is 
equal to the product of the capacitance C and the applied 
voltage E. That is, 

Q CE [5] 

The total voltage across capacitors Ca and Cb connected in 
series is E = E„ + Eb. Find C in terms of Ca and Cb. 

solution Solve for E, Ea, and Eb. Thus 

and 

Then, since 

By substitution 

D: Q. 

M: CCaCb, the LCD 

Transposing, 

E = Ea + Eb

Q_ 
cb
i 1 1 

cacb = ccb + cc(
CCa + CCb = C„Cb

F -

Eb = ^ 

249 



SIMULTANEOUS 
EQUATIONS 

0: (Ca + C/,) f_ CaC„ 
c - c^c. 

This is the formula for the resultant capacitance C of two capacitors Ca and 
Ch connected in series. 

PROBLEMS 17 • 9 

1 The sum of two currents is Zt A, and their difference is Id A. What are 
the currents? 

2 Find two numbers whose sum is 19 and whose difference is 5. 
3 If 1 is added to each term of a fraction, the value of the fraction be¬ 

comes 0.75, and if 1 is subtracted from each term, the value of the frac¬ 
tion becomes 0.5. What is the fraction? 

4 In a right triangle, the acute angles are complementary (that is, they 
add up to 90°). What are the angles if their difference is 40’? 

5 The difference between the two acute angles of a right angle is a° . Find 
the angles. 

6 The sum of the three angles of any triangle is 180°. Find the three 
angles of a particular triangle if the smallest angle is one-third the 
middle angle and the largest is 5° larger than the middle one. 

7 A TV repairman goes to his parts dealer for an assortment of common 
resistors and capacitors. The salesman replies: “We have two such 
assortments: 20 resistors and 8 capacitors for $3.60, or 60 resistors 
and 40 capacitors for $14.00. Both assortments come under the same 
discount schedule.” 

I II take the larger selection,” says the serviceman, “if you’ll figure 
out the price of one resistor and one capacitor.” 
Help the salesman. 

8 A takes 2 hr longer than B to walk 24 mi, but if he were to double his 
pace, he would take 2 hr less than B. Find their rates of walking. 

9 In 3 hr, L drives 15 mi farther than Q does in 2 hr. In 6 hr, Q drives 
130 mi more than L does in 4 hr. Find their average rates of driving. 

10 V = gt and s = ^gt2. Solve for v in terms of s and t. 

Ü C — y and • Solve for W in terms of C and Q. 

12 I = and P = PR. If P = 2.7 kW and E = 180 V, find the current I 

and the resistance R. 

13 v = u + at and s = + v)t. Find the distance s in terms of initial 
velocity u and acceleration a and time t. 

14 Use the information of Problem 13 to show that v2 = u2 + 2as. 

15 M = rp = an^^m = Solve for g in terms of gm and r„. 

16 R = 2DLfL and Q = . Solve for DL in terms of tt and Q. 
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17 

18 

19 

20 

21 

22 

23 

24 

25 

26 
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PROBLEMS 
17.9 

R — uLQ, Q = —, and o>2 = ——. Solve for R in terms of L, C, and r. 
r LC 

F F 
I = and Ii = ¿ . Solve for R in terms of R\, I, and It. R R + R\ 

Q = It coulombs (C), and I = A. Solve for Q in terms of C and E. 

Given P = EI W, I = A. and H = 0.241-Rt calories (cal). Solve for 
R 

H in terms of P and t. 
Use the data of Prob. 20 to find the number of calories H produced 
when E = 30 V over a time t = 10 sec if the heater resistance 
R = 300 a 

Given I„Ra = IbRb, Ia - —, and Ib = show that 
Qb Cb t t 

RaCa = RbCb. 

Ip = and Ep = IPR. Solve for R in terms of Rp, g, Ep, and Eg. 
R + Rp 

Use the data of Prob. 23 to find Ep when /i = 50, EK = 5 V, 
Ip — 12.5 mA, and Rp = 10 k2. 
Given E = I^R + Rr), E = /„(Æ + R..Y and E = IR. Show that 

Rt = Ra X 

Given three star delta transformation equations: 

o _ R1R3 
a ~ Ri + R2 + R, 

K — R1R2 
6 " Ri + R2 + R.i 

H — R2R3 
r - Rx + R2 + Rs 

Solve for Ri, R2, and R:i in terms of R„, Rb, and Rc. 
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In Chap. 17 we learned four methods of solving simultaneous equations of 
the second order, and we used some of those methods to solve equation sets 
of the third order. Indeed, some of the methods we learned are limited to 
solving simultaneous equations of the second order, while others may be 
used to solve third-, fourth-, fifth-, or even higher-order systems. 

However, after about the third order, the method of repeated addition and 
subtraction, with its attendant multiplication, becomes tedious. In this chap¬ 
ter we shall investigate a "mechanical” method of solving simultaneous 
equations. This method, known as the method of determinants, is usually 
not introduced until students are well along in advanced mathematics, so we 
are not going to study all the fascinating developments which the whole 
subject of determinants may involve. (That would take a separate book of its 
own.) Instead, we are going to see how determinants may be put to work for 
us in order to simplify our solutions to simultaneous equations. 

1 8 • 1 SECOND-ORDER DETERMINANTS 

In Sec. 17 • 2, we learned how to solve pairs of simultaneous equations by 
the method of addition and subtraction. Let us apply this method to a pair of 
general equations: 

aiX -I- b^y — Ci [1] 
a2x + 0^-02 

where ai, a2, bi, b2, Ci, and c2 represent any numbers, positive or negative, 
integers or fractions, or zero. Let us solve these general equations for x: 

axx + biy = Ci (a) 
a2x + b¿y = c2 (b) 

M: b2 in (a), aib2x + bibiy = &2C1 (c) 
M: bi in (6), a2bix + bib^ = bic2 (c?) 

Subtract (d) from (c), 

{aib2 — a2bi)x = b2Ci — bic2 {e) 



SECTION 
18 ■ 1 

Solve for x, 

It is left as an exercise for you to prove similarly that 

y = a^~ a^ [3] 
atb2 — a2bi 

Observe that we have kept the literal factors in alphabetical order for con¬ 
venience in checking. 
Note several interesting facts about these two solutions: 

1 Their denominators are identical, and they contain only the 
coefficients of x and y. 

2 The numerator for the solution of y contains no y coefficients. 
3 The numerator for the solution of x contains no x coefficients. 
For a few minutes, let us consider just the denominator: ai¿>2 — a2bt. We 

are going to define a new, alternative method of writing this expression: 

ai 6] 
aib2 — a>bt = 

I a2 b2 \ 

This arrangement is called the determinant of the denominator. It is a me¬ 
chanical statement made up of two horizontal rows and two vertical columns 
of two elements each, and it is a second-order determinant. Whenever this 
form appears, it is understood to mean aib2 — a26j. To obtain this evaluation 
of the determinant, we perform diagonal multiplication, first of all downward 
to the right to obtain 

a¡ bi 1 (this is, by 
a2 b2 1 definition, 

aib2 positive multiplication) 

and, second, we multiply upward to the right to obtain 

(this is, by 
definition, 
negative multiplication) 

Rule 

1 The diagonal multiplication in determinants derives its sign from the 
direction of the multiplication, and not primarily from any algebraic signs of 
the elements being multiplied. 

2 After the individual steps of multiplication, with the appropriate sign 
of the multiplication affixed, the products are added algebraically to form the 
evaluation of the determinants. 
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-3 2 
example 1 Evaluate the determinant 

5 1 

solution Perform the signed diagonal multiplication: 

+(-3X1) - (5X2) = -3 -10= -13 

PROBLEMS 18 

Evaluate the 

1 4 1 

2 1 

4 -1 

3 

7 9 

15 -

10 -0.0€ 

0.05 

13 b a 

X 

■ 1 

following determinants: 

2 

4 5 

12

4 8 

-6 

i 0.02 11 

i -1.6 

14 

1 

3 -1 

3 

3 

-3 ■ 

— 4 

a b 

a b 

a x 

b y 

oo 
c
m
 
-
 
°
?
 
_
 

3 

6 

9 

12 

15 

2 -8 

3 5 

3 -2 

1 2 

0.8 0.Í 

0.5 0.1 

a b 

x y 

b y I 

a x 

> 

16 y x 

b a 

18-2 SOLUTION OF EQUATIONS 

Consider Eqs [2] and [3], the solutions for x and y in the general equations 

[1]: 

62Ci — b\C2 
axb2 — a2b\ 

axc2 - a2Ci 
axb2 — a2bx

or, in determinant form: 

&2 C2 I 

I ¿>1 Cl I 

«1 6i I 

a2 b2

[4] 

254 



ai Ci 

02_ 

ai 61 

a2 b2

[5] 

PROBLEMS 
18 • 1 
TO 

SECTION 
18 • 2 

Let us see how the determinant form may be developed directly from the 
original equations without performing the intervening additions and subtrac¬ 
tions. Given the original equations: 

a¡x + brf = ci 
O2X + 6¿y = C2

First, produce the determinant of the denominator by setting, in order, 
the coefficients of the unknowns: 

ai bi 

a2 b2

Second, using the denominator determinant as a base, develop the deter¬ 
minant of the numerator of the solution for x by replacing the column of 
X coefficients by the corresponding column of constants (the right hand sides 
of the equations). Then complete the new determinant by putting in the 
column of the y coefficients in its original position: 

ci 6i 

c2 62

Confirm that this determinant is identical in value with 

62 c2

61 Ci 

given as Eq. [4], but easier to develop automatically. 
Third, still using the denominator determinant as a starting place, develop 

the determinant of the numerator of y by replacing the column of y coeffi¬ 
cients by the column of constants and leaving the column of x coefficients in 
its original position: 

ai ci 

a2 c2

Last, put these three determinants together to form the full solution 
statements: 

Cl 61 

a2 b2
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öl Ci 

Q2 gg 
ai 6; 

a2 b2

L5] 

Rule To solve two simultaneous equations having two variables by the 
method of determinants: 

1 Form the denominator determinant by using the coefficients of the 
unknowns in their correct rows and columns. 

2 Form the x numerator determinant by replacing the column of x co¬ 
efficients in the denominator determinant by the column of constants. 

3 Form the y numerator determinant by replacing the column of y co¬ 
efficients in the denominator by the column of constants. 

4 Combine the three determinants so formed to produce the pair of 
solution equations. 

example 2 Solve the simultaneous equations 

3p + 2q = 8 
5p + q - 11 

3 2 
solution The denominator determinant is 

5 1 

Using this determinant as a base, the determinant for the numer-
1 8 

ator of p must be | and the determinant for the numer¬ 

ator of q must be c , J . Thus, 
I oil1

8 2 I I 3 8 

P=-“ * and g= 5 11 
3 2 z 3 2 

5 1 ¡51 

When evaluating these determinants, always evaluate the de¬ 
nominator first. (The reason will be explained soon.) The value 
of the denominator is +(3)(1) — (5)(2) = — 7. The numerator 
of p has the value + (8)( 1 ) - (11)(2) = — 14. 

The numerator of q has the value + (3)(11) — (5)(8) = — 7, and 
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18-3 CONSISTENCY OF EQUATIONS 

In solving systems of second-order simultaneous equations, there are three 
main possibilities: 

1 The equations may represent straight lines which intersect. These are 
said to be independent equations. They are in no way related to each other 
except that the unknowns have similar symbols, A,b,x,0, etc., and one pair 
of values constitutes the whole solution. 

2 The equations may represent superimposed lines. These are said to 
be dependent equations. They are related to each other, and every solution 
of the one is also a solution of the other. There is an endless number 
of solutions. 

3 The equations may represent parallel lines. These are said to be in¬ 
consistent equations. They differ only in theconstant terms (the y intercepts), 
and there is no solution for one equation which satisfies the other. 

The values of the denominator and the numerators quickly show us into 
which classification any system of simultaneous equations falls: 

1 To be independent, the denominators may not equal zero. 
2 To be dependent, the denominator is zero and the numerators equal 

zero. 
3 To be inconsistent, the denominator is zero and at least one of the 

numerators does not equal zero. 
This is why we evaluate the denominator first. If it is zero, there is no single 

set of values which will constitute the entire solution, and, in electronics 
problems, there is no use investigating further. 

SECTION 
18 ■ 2 
TO 

SECTION 
18.4 

PROBLEMS 18 • 2 

Solve these systems of simultaneous equations by using determinants: 

1 4a - 3b = 10 
3a + 6 = 14 

3 2Ö + ri = 22 
36» - 5tt = 20 

5 /+ 4i = -5 
21 + i = 4 

7 + 3r¿ = 3 
6rp — 9rL = 0 

9 0.5«, + 0.2Ä2 = 315 
0.6«, - 54 = 0.03«2

2 4x+j=15 
2x + = 15 

4 R, + 3R2 = 23 
«i - 3Ä2 = 5 

6 3E + 2Eg = 1 
E, + E = —2 

8 4XC + 3Xl = 2.9 
30Xl = 17 - 8XC

10 Zt = 9300 - Z2
192 + O.O6Z2 = 0.04Z, 

18-4 THIRD ORDER DETERMINANTS 

When solving sets of three simultaneous equations, naturally, we arrive at 
third-order determinants consisting of three columns and three rows of three 
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DETERMINANTS 

elements each, such as 

3 1 2 

2 6 5 

4 8 1 

ai Cl 

<Z2 ¿2 C2 ' 

0.1 b3 C3

Now, when we multiply on the diagonal, we find a slight complication. Multi¬ 
plying the main diagonal is simple: 

= + (3)(6)(1) = +18 

but the next diagonal gets complicated: 

and also the next: 

And you can see that the negative diagonals will be just as complicated. So we 
devise a method of notation which gets around this complication and en¬ 
ables us to perform straight-line multiplication. First, we set down the deter¬ 
minant in its usual form, with three columns and three rows. Then, to the 
right of this determinant, we repeat the first two columns. This process 
straightens out the diagonals 
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SECTION 
18 -4 

and we obtain, with a complete program of diagonal multiplication, the value 
of the determinant = —100. 

example 3 Evaluate the determinant 

2—1 4 

1 6 5 

7 -3 -2 

solution Rewrite the determinant and repeat the first two columns out¬ 
side to the right: 

2-1 4 2 

16 5 1 

7-3-27 

-1 

6 

-3 

Then perform the diagonal multiplication, signed, as for second-
order determinants and obtain 

-24 - 35 - 12 - 168 + 30 - 2 = -211. 

example 4 Solve the third-order set of simultaneous equations: 

a + 2b + c — 7 
2a + b + 2c — 2 
a + 3b + 4c = 14 

solution First, write and evaluate the denominator determinant: 

12 112 

2 12 2 1 = -9 

13 4 13 

Second, develop the determinant for the numerator of a, replac¬ 
ing the column of a coefficients by the column of constants, and 
evaluate it: 

7 2 1 7 2 

2 12 2 1 

14 3 4 14 3 

18 

Third, combine the denominator and numerator to evaluate a: 

You should immediately prove that b = 4 and c = 1. 
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PROBLEMS 18 ■ 3 

Evaluate these third-order determinants; 

1 

3 

5 

1 1 1 

2 -1 -1 

3 2-5 

2 3 ; 

5 -2

4 -8 

4 6 

-10 -3 

2 12 

Î2 

0 

11 

-2 

8 

4 

0 

2 

4 

6 

1 3 1 

5 40 6 

-2 -25 -3 

-3-2 3 1 

0-7 2 

0 7-4 

3 8 

12 20 1 

-16 -12 -

3.2 i 

6.5 

7.8 

Solve these simultaneous equations by using determinants: 

7 X + y + z = 15 
2x — y - z = 0 
3x + 2y - 5z = 14 

9 2a + 3ß + 2y = 32 
5a — y = 2ß 
4« - 8ß = 3y - 41 

11 4E + 6e + 8(ZÄ) = 6 
4(ZÄ) - lOE - 3e = -5 
12e - 20(ZÄ) + 12E = 5 

8 Äj 4- R2 + R^ = 3 
5Ä, - 2R> + 6Ä :i = 40 

-2Ä, + 3R2 - 3ä3 = -25 

10 3r + 5p — 2q = — 3 
p + q = 4r 
3p — 7q +2r = — 42 

12 12Z1 + 20Z2 + 10Z3 = 16.5 
8Z2 - 6Z3 + 3Z1 = 3.2 
20Z3 - 16Z1 - 12Z2 = -7.8 

18-5 MINORS 

The method of diagonal multiplication works perfectly for both second- and 
third-order determinants. Unfortunately, it will not work for higher-order 
systems. Thus, if we are required to evaluate by determinants a fourth- or 
fifth-order set of equations such as might arise from the solution of a com¬ 
plicated circuit (see Chap. 22), we must work out another useful system. 
Since we can do this without difficulty, we will not try to prove the statement 
above. (Even many “higher mathematics” texts say simply: Do not use 
diagonal multiplication for fourth-order determinants or higher.) 

This is how minors come about: Let us evaluate the general third-order 
determinant: 
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PROBLEMS 
18 .3 
TO 

SECTION 
18 • 5 

«1 bi Ci di bi 

a2 b> c2 a2 b2

I a3 b3 c3 a3 63 

= a\b2c3 + a3bic2 + a2b3Ci — a3b2Ci — aib3c2 — a2bic3 [6] 

Consider the terms which involve the value ai. These may be collected to 
yield a¡(b2c3 — b3c2), which in turn could be written 

di 

b2

b3

c2

c3

where the new second-order determinant is called the minor of the ele¬ 
ment a¡. 

We can develop this minor from the original third-order determinant by 
selecting the element at, crossing out the other elements of the row and 
column which contain ai, and writing the minor with the elements remaining: 

(dj) bi Ci 
a2 b2 c2
a3 b3 c3

yields 

¿2 c2

b3 c3

Rule To find the minor of any element in a determinant, select the element, 
cross out the row and column containing that element, and write the lower-
order determinant which contains all the other elements that remain. 

Thus, in the third-order determinant of Eq. [6], the minor of the element b3 is 

dj Ci 

«2 c2

example 5 Evaluate the minor of 2 in the determinant 

1 4 0 

3 1 5 

5 6 2 

solution Striking out the elements in the row and column containing the 
2 yields 
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1 4 
= 4-1 - 12 = -11 

3 1 

PROBLEMS 18 ■ 4 

Write and evaluate the minors of the Indicated elements: 

8* 

1 -1 

-2 2 

-13 -3 -1 

hint The minor of any element of a fourth order determinant will be a 
third-order determinant which may itself be evaluated by the diagonal 
method or by second-step cofactors, which are discussed in the following 
section. 

18-6 COFACTORS 

A simple step converts the minor into a cofactor. When evaluating a complete 
determinant by the method of cofactors, we first find the minors of all the 
elements in any given row or column. Then we convert these minors into 
cofactors by assigning them algebraic signs according to this simple rule: 

262 

Ru|e Each element of a determinant, regardless of its actual algebraic 
value, has a cofactor sign according to its place in the determinant. The 
signs are found by a checkerboard arrangement: 



PROBLEMS 
18 • 4 

TO 
SECTION 

18 • 6 

The only thing to remember is to always start the upper left hand corner 
(the element in row 1 and column 1) with a + sign. All the rest follows auto¬ 
matically, regardless of the number of elements in the determinant. 

example 6 Evaluate the following determinant by means of cofactors: 

1 4 0 

-3 1 5 

5 6—2 

solution Choose any convenient row or column, and, one after the other, 
set down the individual elements of that row or column, together 
with their minors: 

4 
-3 

5 

5 

-2 

I 1 
1 

5 

0 

— 2 

1 0 

5 

Then assign the cofactor signs according to the checkerboard 
plan: 

-3 5 

5 -2 

1 
i! 
I5

o 

-2 
_6 

1 0 

-3 5 

Evaluate each minor, multiply its value by the element of which 
it is the minor, and add algebraically according to the cofactor 
signs and the actual algebraic sign of the multiplications: 

—4(6 - 25) + 1( —2 - 0) - 6(5 - 0) = 76 - 2 - 30 = 44 

You should immediately evaluate the same third-order deter¬ 
minant by the cofactors of the elements of each other row and 
column in turn. The answer must always be 44. 

example 7 Solve this set of simultaneous equations by means of cofactors: 

2p + 10<7 + 5r = 9 
— 3p + 9g + 4r = — 3 
7p — 6g- r = 17 

solution Using the information now at hand, we may immediately set up 
the determinant form of solution: 
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P = 

q = 

9 10 5 

— 3 9 4 

17 -6 -1 
2 10 5 

-3 9 4 

7-6-1 

2 9 5 

-3 -3 4 

7 17-1 
2 10 5 

-3 9 4 

7 -6 -1 

2 10 9 

-3 9 -3 

7 -6 17 
2 10 5 

-3 9 4 

7-6-1 

Always evaluate the denominator first. To solve by means of 
cofactors, we choose any row or column in the denominator 
determinant, evaluate their minors, and multiply by the ele¬ 
ments, adding algebraically and using the checkerboard signs. 

2 10 5 

-3 9 4 

¡7—6—1 

= -(-3) 
10 

-6 

5 2 
+ (9), 

-1 7 

5 I2
- (4) 

-1 7 

10 

-6 

= 3(—10 + 30) + 9( —2 - 35) - 4(- 12 - 70) 
= 60 - 333 + 328 = 55 

Since the denominator is not zero, we should evaluate the nu¬ 
merators, in turn, of p, q, and r. 
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Numerator of 

9 

P = -3 

17 

10 

9 

-6 

5
4 

-1 

= +(17) 
10 

9 

= +110 

Therefore, p = —— = 2. You should now prove that q = — 1 
. - 55 and r = 3. 

SECTION 
18 • 6 

TO 
SECTION 

18 • 7 

18 -7 USEFUL PROPERTIES OF DETERMINANTS 

The evaluation of determinants by the methods of diagonal multiplication or 
cofactors will yield the correct answers if you keep close watch on your arith¬ 
metic and the algebraic signs of positive and negative diagonals or of the 
checkerboard cofactor signs. There are, however, a few very useful prop¬ 
erties of determinants which will simplify the process of evaluation. These 
properties are described briefly below, and it is left to you to perform the 
diagonal multiplication or cofactor evaluation methods to confirm them 
immediately when you meet them. 

1 When all the elements of any row (or column) are zero, the value of 
the determinant is zero: 

«i 0 

02 62 0=0 

a3 63 0 

example 8 Evaluate the determinant: 

2 4-3 

0 0 0 

— 4 6 1 

solution 

2 4 —3 2 4 
0 0.0.0 0 

Each diagonal multiplication introduces a factor of zero. There¬ 
fore, each diagonal product is zero, and the value of the deter¬ 
minant is zero. 
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2 When all the elements to the right (or left) of the principal diagonal are 
zero, the value of the determinant is the product of the elements of the prin¬ 
cipal diagonal: 

a1 0 0 

a2 b2 0 

Ö3 ^3 C3 

= a\b2c3

(It is left to you to prove that this is also true for fourth-order determinants.) 

example 9 Evaluate the determinant: 

3 8 5 

0-2 7 

0 0-5 

solution 

3 8.5.38 
0 -2.7. 0^-2 
0 0-5 0 0 

All the diagonal multiplications except the first, through the 
principal diagonal, are zero. Therefore the value of the deter¬ 
minant is (3)( —2)( —5) = 30. 

3 Interchanging all the rows and columns gives the identical result, 
both absolute value and algebraic sign: 

aj a2 03 

b\ b2 bz 

Cl c2 C3 

Oi bi Ci 

a2 b2 c2

CI3 bz C3 

4 Interchanging two rows (or columns) gives the same absolute value 
but the opposite algebraic sign: 

Cl 61 Oi 

c2 b2 a2

C3 bz az 

ai bi Ci 

a2 b2 c2

az bz c3

5 When the corresponding elements of any two rows (or columns) are 
identical or proportional, the value of the determinant is zero: 

ai kai Ci 

a2 ka2 c2 = 0 

az kaz c3

{k may — 1) 
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example 10 Evaluate the determinant: 

3 5 6 

2—1 4 

7 4 14 

solution 

3 5 6 
2 -14 
7^ 4 ' 14 

3 5 
2 -1 
7^4 

Diagonal multiplication yields are zero value. Observation of 
the first and third columns shows that col 3 = 2 x col 1. 

6 A common factor of any row (or column) may be factored out as a 
common factor of the whole determinant: 

&1 

a2 b2

a3 b3

kcx

kc2

kc3

at 

a3

b\ Ci 

b2 c2

b3 C3 

example 11 Evaluate the determinant 

solution 

3 6 2 

-2 8 5 

40 30 -70 

3 6 2 

-2 8 5 

40 30 -70 

= 10 

3 6 2 

-2 8 5 

4 3-7 

3 6 

-2 8 

4 3 

= 10( —253) = -2530 

7 When the elements of any row (or column) are increased by a constant 
times the corresponding elements of any other row (or column), the value of 
the determinant is unchanged, (k may equal 1, -1, or any other positive or 
negative integer or fraction): 

at b3

a2 b2

a3 b3

kai + ci 

ka2 + c2

ka3 + c3

at bt Ci 

a2 b2 c2

a3 b3 c3
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example 12 Evaluate the determinant 

2 8 3 

3 7—6 

-1 2 1 

solution If the spaces filled by the elements 8, 3, and —6 can be con¬ 
verted to zeros, the evaluation of the determinant will be the 
product of the elements of the principal axis. Or if any two 
spaces in any row or column can be adjusted to zero, the evalu¬ 
ation becomes a single element times its cofactor. 
Using the principle introduced above, let us attempt to elimi¬ 
nate the element 3. We will multiply each element of the third 
row by -3 and add the result to the corresponding elements 
of the first row: 

2 8 3 

3 7-6 

-1 2 1 

2 + ( —3X—1) 8 +(-3X2) 3 + (-3X1) 

= 3 7-6 

-1 2 1 

5 2 0 

= 3 7-6 

-1 2 1 

Then, to eliminate the —6, we will multiply the third row by 6 
and add the results to the second row: 

5 2 0 

3 7-6 

-1 2 1 

5 2 0 

= 3+(6X-l) 7+ (6X2) -6 + (6XD 

-1 2 1 

5 2 0 

= -3 19 0 

-1 2 1 
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This determinant may be evaluated by the product of the ele¬ 
ment 1 and its cofactor: 

5 

-3 

-1 

2 

19 

2 

0 

0 

1 

= +1 
5 

-3 

2 

19 

= 95 + 6 = 101 

SECTION 
18 • 7 

TO 
PROBLEMS 

18 - 5 

You should test this solution by the diagonal multiplication of 
the original determinant. Alternatively, the simplification may 
continue by removal of the element 2 in the first row. If we 
add to the first row the product of — (second row), 

5 + (-ÄX-3) 2 + (-^X19) 0 +(-^X0) 

-3 19 0 

-1 2 1 

5Ä ° 0 

= -3 19 0 

-1 2 1 

Evaluation by the principal diagonal yields 

(5&)(19)(1) = 101 

With practice, the addition of a fraction in the form — — au will reveal itself 

as a valuable tool. 
8 When the elements of any row (or column) may be written as sums, 

the determinant may be written as the sum of two determinants with the 
rows (or columns) of the sum elements in their corresponding places: 

ai 6i pi + Qi 

a2 62 P2 + 92 

di 63 P3 + 93 

O1 

a2

a3

bi pi 

b2 P2 

b3 P3 

«1 61 9i 

b2 q2

63 93 

Now apply these fundamental properties of determinants in the solution of 
the following problems and in problems like them in later chapters. 

PROBLEMS 18 • 5 

Evaluate the following determinants by means of the cofactors of the in¬ 
dicated rows or columns: 

1 5 41 6 

2 1 -2 

-4 8 3 

Row 1 
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2 2 1-1 

4-3-1 

3-2 2 

3 5 2 3 

4 -3 12 

O 5-8 

Col 2 

Row 3 

4 

5 

6 

7 

-26 3 

84 2 — 

16 -7 

3 0 21.7 

2 3 15.3 

0 -2 1.9 

2 4 

-8 -16 -

0 16 

3 2-3 

2-3 2 

5 4 0 

0 8-5 

2 

10 

4 

10 

13 

2 

2 

-1 

3 

1 

Col 1 

Col 3 

Row 2 

Col 2 

hint The cofactors of elements in a fourth order determinant will them¬ 
selves be third-order determinants which may be evaluated by diagonals or 
by cofactors. 

8 2 16 12 -10 -2 

5 223-9 

11 0 0 5 4 

5 0 2 15 4 

0 —4 10 -8 0 

Row 3 
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PROBLEMS 
18 • 5 

9 5Z4 + 2Z2 + 6Z3 = 41 

2h + 3Z2 - 2Z3 = 1 
-4Z, - Z2 + 3Z3 = 8 

10 20 + $ - X = 3 
30 - 2« + 2X = 8 
40 _ 3<í> - X = -13 

11 3a + 2ß+ 3y = 5 
— 2a - 3ß + 12y = 4 
6a + 5/? — 8y = 0 

12 2Z1 + 3Z2 + 2Z3 = -26 
-8A + 2I> - 10Z3 = 84 
-3A - 7Z2 + 4Z3 = 16 

13 3R, + 4Z?3 = 21.7 
2Ri + 3R2 - 5R3 = 15.3 
7Ä3 - 2R> = 1.9 

14 2x + 4> + 10z = 10 

— 8x - 16j + 5z = -13 
16> - 20z = 2 

15 3e + 2t; — 3k + 2X = 6 
2e — 3t; + 2k — X = —2 
5e + 4i) + 3X = 25 
8i) — 5k + X = 5 

16 2Z1 + 16Z2 + 12Z3 - 10Z4 - 2Z5 = 100 
5Zi + 2Z2 + 2Z3 + 3Z4 - 9Z5 = 0 
llZi + 5Z4 + 4Z5 = 100 
5Z4 + 2Z3 + 15Z4 + 4Zä = 100 
-4Z2 + 10Z3 - 8Z4 = 0 
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In order to avoid confusion in previous discussions of electric circuits, all 
sources of electromotive force have been considered to be sources of con¬ 
stant potential, and nothing has been said of their internal resistances. At the 
same time, no mention has been made of the actual sources of the EMF. In 
this chapter we will consider both of these factors. First of all, electrical de¬ 
vices which produce electric energy, as well as those which consume energy, 
have a certain amount of internal resistance which materially affects their 
operation. The application of Ohm’s law to the internal resistance of batteries 
is the feature topic of this chapter. And despite the prevalence of utility power 
supply, batteries are still useful, indeed necessary, sources of portable 
power. For this reason, the electronics technician should be aware of the 
problems which arise in the use of batteries. 

19-1 ELECTROMOTIVE FORCE 

Fig. 19-1 High-Resistance 
Voltmeter Used for Measuring 
Electromotive Force of Cell 

A battery is a device which converts chemical energy into electric energy. 
Essentially, it consists of a cell, or several cells connected in series or parallel, 
conveniently packaged. The EMF of the battery is the total voltage developed 
by the chemical action. However, this total voltage is not all available for do¬ 
ing useful work in an external circuit, because some of it is needed to over¬ 
come the internal resistance of the battery itself. The voltage which is sup¬ 
plied to the external circuit is known as the terminal voltage; that is, 

Terminal voltage = EMF — internal voltage drop 

19-2 BATTERIES 

The word battery is taken to mean two or more cells connected to each other, 
although a single cell is often referred to as a battery. 

Figure 19 • 1 represents a circuit by which the voltage existing across the 
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cell can be read with the resistance connected across the battery or with the 
resistance disconnected from the circuit. 

The EMF of a cell is the total amount of voltage developed by the cell. For 
all practical purposes the EMF of a cell can be read with a high-resistance 
voltmeter connected across the cell when it is not supplying current to any 
other circuit, as is the case with the switch S, Fig. 19 • 1, open. 

When a cell supplies current to an external circuit, as with the switch in 
Fig. 19 • 1 closed, it will be found that the voltmeter no longer reads the 
open-circuit voltage (EMF) of the cell. The reason for this is that part of the 
EMF is used in forcing current through the resistance of the cell and the re¬ 
mainder is used in forcing current through the external circuit. Expressed as 
an equation, 

E = Ex + Ir [1] 

where E is the EMF of the cell or group of cells and Ex is the voltage meas¬ 
ured across the terminals while forcing a current I through the internal 
resistance r. Since / also flows through the external circuit of resistance R, 
Eq. [1] can be written 

E = IR + Ir 

or 

E=ER + r) [2] 

SECTION 
19 • 1 

TO 
SECTION 

19-2 

example 1 a cell whose internal resistance is 0.15 SI delivers 0.50 A to a 
resistance of 2.85 SI. What is the EMF of the cell? 

solution Given r = 0.15 S2, Ä = 2.85 SI, and I = 0.50 A. 
From Eq. [2], E = 0.50(2.85 + 0.15) = 1.5 V 

example 2 Figure 19 • 2 represents a cell with an EMF of 1.2 V and an in¬ 
ternal resistance r of 0.2 SI connected to a resistance R of 5.8 Si. 
How much current flows in the circuit? 

solution Solving Eq. [2] for the current, 

Note the significance of Eq. [3], It says that the current which flows in a cir¬ 
cuit is proportional to the EMF of the circuit and inversely proportional to the 
total resistance of the circuit. This is Ohm’s law for the complete circuit. 

example 3 A cell with an EMF of 1.6 V delivers a current of 2 A to a circuit of 
0.62 Si. What is the internal resistance of the cell? 
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solution Solving Eq. [2] for the internal resistance, 

= [4] 

_ 1.6-2 x 0.62 _ Q iß 2 
2 

Therefore, the significance of Eq. [4] is that a voltage equal to E — IR is 
sending the current I through the internal resistance r. 

Since Eq. [4] can be rearranged to 

and 

Eq. [4] can be written 

r - R, - R 
or R, = R + r [5] 

Equation [5] states simply that the resistance of the entire circuit is equal to 
the resistance of the external circuit plus the internal resistance of the source 
of the EMF. 

PROBLEMS 19 1 

1 A battery taken off the shelf gives a voltmeter reading of 9 V. When con¬ 
nected across a 24-S2 circuit, it drives a current of 360 mA. What is the 
internal resistance of the battery? 

2 A 24-cell battery measures 38.4 V on open circuit. If the total internal 
resistance is 7.2 2, how much current will flow through a 430-S2 circuit? 

3 A 6-V battery drives a current of 1 A through a 5.6-Í2 load. What is the 
internal resistance of the battery? 

4 With the circuit of Prob. 3, how much power is absorbed by the internal 
resistance of the battery? 

5 With the circuit of Prob. 3, (a) how much power is delivered to the load 
and (b) what is the efficiency of the circuit? 

19-3 CELLS IN SERIES 

If n identical cells are connected in series, the EMF of the combination will be 
n times the EMF of each cell. Similarly, the total internal resistance of the 
circuit will be n times the internal resistance of each cell. By modifying Eq. 
[2], the expression for the current through an external resistance of R is 

274 



nE 
R + nr [6] 

example 4 Six cells, each with an EMF of 2.1 V and an internal resistance of 
0.1 2, are connected in series, and a resistance of 3.6 2 is con¬ 
nected across the combination, (a) How much current flows in 
the circuit? (6) What is the terminal voltage of the group? 

solution Figure 19 • 3 is a diagram of the circuit. The resistance nr repre¬ 
sents the total internal resistance of all cells in series. 

(a) I = D nE = — = 3.0 A 
R + nr 3.6 4- 6 X 0.1 

(6) The terminal voltage of the group is equal to the total EMF 
minus the voltage drop across the internal resistance. From 

Eq. [1], 

E, = nE - Inr = 6 x 2.1 - 3 x 6 x 0.1 = 10.8 V 

Since the terminal voltage exists across the external circuit, a 
more simple relation is 

E, = IR = 3 x 3.6 = 10.8 V 

PROBLEMS 
19 • 1 

TO 
SECTION 

19 ■ 4 

Fig. 19 • 3 Circuit of Example 4 

19-4 CELLS IN PARALLEL 

If n identical cells are connected in parallel, the EMF of the group will be the 
same as the EMF of one cell and the internal resistance of the group will be 
equal to the internal resistance of one cell divided by the number of cells in 

parallel, that is, to —. By modifying Eq. [2], the expression for the current 

through an external resistance of R 2 is 

1 = E

R + 
n 

[7] 

example 5 Three cells, each with an EMF of 1.4 V and an internal resistance 
of 0.15 2, are connected in parallel, and a resistance of 1.35 2 is 
connected across the group, (a) How much current flows in the 
circuit? (6) What is the terminal voltage of the group? 

solution Figure 19 • 4 is a diagram of the circuit. The resistance — repre-
n 

sents the internal resistance of the group. 

(a) 
E 

R + -n 

1,4 

1.35 + 
1.0 A 

(6) E, = IR = 1.0 x 1 35 = 1.35 V Fig. 19-4 Circuit of Example 5 
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PROBLEMS 19 • 2 

1 The EMF of a cell is 1.5 V; the internal resistance of the cell is 0.15 12. 
When current is supplied to a load, the voltage drop across the internal 
resistance is 0.2 V. 
(a) What is the terminal voltage? 
(6) What is the current flow? 
(c) What is the connected load? 

2 A cell whose EMF is 1.4 V is supplying 1.5 A to a 0.73342 circuit. 
(a) What is the internal resistance of the cell? 
(6) How much power is lost in the cell? 

3 A cell of EMF 1.6 V develops a terminal voltage of 1.48 V when deliver¬ 
ing 250 mA to an external circuit. 
(a) What is the internal resistance of the cell? 
(ft) How much power is expended in the cell? 
(c) What is the resistance of the external circuit? 
(d) How much power is absorbed by the load circuit? 
(e) What is the efficiency of the power transfer? 

4 A high-resistance voltmeter reads 2 V when connected across the ter¬ 
minals of an open-circuit cell. What will the meter read when a 5-A cur¬ 
rent is delivered to a 0.2242 load if the internal resistance of the cell is 
0.18 12? 

5 Using the data and results of Prob. 4, how much current would flow if 
the cell itself were short-circuited? 

6 A cell with an EMF of 2 V and an internal resistance of 0.112 is connected 
to a load consisting of a variable resistor. 
(a) Plot the power delivered to the load as the load resistance is varied 

in 0.0142 steps from 0.05 to 0.15 12. What conclusion do you draw 
from this graph? 

(ft) Plot the efficiency of power transfer over the same resistance 
range. What conclusion do you draw? 

7 Six identical cells, each of EMF 1.5 V and internal resistance 0.112, are 
connected in series across a load resistor, and they deliver a circuit 
current of 1.0 A. 
(a) What is the resistance of the load? 
(ft) How much power is absorbed by the battery? 
(c) How much current would flow if the battery were short-circuited? 

8 If the cells in Prob. 7 are connected in parallel, how much power will be 
delivered to the load? 

9 Ten cells of EMF 1.5 V and internal resistance 0.612 each are connected 
in series across a load of 33 12. 
(a) How much current will flow in the circuit? 
(ft) What will be the terminal voltage of the battery? 
(c) How much power will be delivered to the load? 

10 If the cells of Prob. 9 are connected in parallel across the same load, 
how much current will flow? 
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19 • 2 

11 Twelve identical cells are hooked up so that four groups of three cells 
each in series are connected in parallel as shown in Fig. 19 • 5. The 
EMF of each cell is 1.6 V, and each cell has an internal resistance of 
0.2 ß. If the load R is 0.85 ß and the measured current flow through R 
is 4 8 A: 
(a) What is the terminal voltage of the battery? 
(6) What is the EMF of each cell? 
(c) How much power is expended in each cell? 

12 The cells of Prob. 11 are so arranged that there are two cells per-series 
groups (six groups in parallel). 
(a) How much power is dissipated in R? 
(b) How much current flows through each cell? 

13 Each cell of a six cell storage battery has an EMF of 2.0 V and an internal 
resistance of 0.01 ß. The battery is to be charged from a 14 V line. 
(a) How much resistance must be connected in series with the battery 

to limit the charging current to 15 A? 
(6) What current would flow if the battery were disconnected from the 

charging circuit and short-circuited? 
14 Sixteen storage batteries of three cells each are to be charged in series 

from a 115-V line. Each cell has an EMF of 2.1 V and an internal resist¬ 
ance of 0.02 2. 

15 

(a) How much resistance must be connected in series with the battery 
to limit the charging current to 10 A? 

(6) How much power is dissipated in the entire circuit? 
(c) How much power is dissipated in the series charging resistance? 
(c/) What current would flow if the batteries were disconnected from 

the charging circuit and short-circuited? 
Six identical cells connected in series deliver 4 A to a circuit of 2.7 fl 
When two of the same cells are connected in parallel, they deliver 5 A to 
an external resistance of 0.375 fl. What are the EMF and internal resist¬ 
ance of each cell? 

Solution: 

For the series connection, 
and 

Substituting in Eq. [2], 
For the parallel connection, 

and 

Substituting in Eq. [2], 

or 

Let E — EMF of each cell 
r = internal resistance of each cell 
I = current in external circuit 
R = resistance of external circuit 
6E = EMF of six cells in series 
6r = internal resistance of six cells 

in series 
6E = 4(2.7 +6r) = 10.8 + 24r (a) 
E — EMF of cells in parallel 
r _ internal resistance of two cells 
2 in parallel 

E = 5(o.375 + 

2E = 3.75 + 5r (6) 

Fig. 19’5 Circuit of Prob. 11 
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Solve Eqs. (a) and (6) simultaneously to obtain 
E = 2.0 V 

and r = 0.05 il 

16 Ten identical cells connected in series send a current of 3 A through 
a I ß circuit. When three of these cells are connected in parallel, they 
send a current of 6 A through an external resistance of 0.1 il. What are 
the EMF and internal resistance of each cell? 

17 Five cells connected in series send a current of 5 A through a resistance 
of 0.4 2. When four of these cells are connected in parallel, they send 
1 A through 1.35 ß. What are the EMF and internal resistance of each 

cell? 
18 Twelve cells in series, each with an EMF of 2.0 V, send a certain current 

through a 2.4 Q circuit. The same current flows through a 0.24-ß circuit 
when five of these cells are connected in parallel. What is the value of 
the current and what is the internal resistance of each cell? 

19 A cell with an internal resistance of 0.035 ß sends a current of 3 A 
through an external circuit. Another cell, with the same EMF but with 
an internal resistance of 0.385 ß, sends a current of 2 A through the 
external circuit when substituted for the first cell. What is the EMF of 
the cells and what is the resistance of the external circuit? 

20 A cell sends a current of 20 A through an external circuit of 0.04 ß. 
When the resistance of the external circuit is increased to 3.96 ß, the 
current is 0.4 A. What is the EMF and what is the internal resistance of 
the cell? 
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exponents and radicals 

In earlier chapters, examples and problems have been limited to those con¬ 
taining exponents and roots that consisted of integers. In this chapter the 
study of exponents and radicals is extended to include new operations that 
will enable you to solve electrical formulas and equations of a type hitherto 
omitted. In addition, new ideas that will be of fundamental importance in 
your study of alternating currents are introduced. 

20 • 1 FUNDAMENTAL LAWS OF EXPONENTS 

As previously explained, if n is a positive integer, a" means that a is to be 
taken as a factor n times. Thus, a' is defined as being a shortened form of 
notation for the product a • a • a • a. The number a is called the base, and the 
number n is called the exponent. 

For the purpose of review, the fundamental laws for the use of positive-
integer exponents are listed below: 

am • a" = am+" (Sec. 4 • 3) [1] 
am -i- an — a"1" (when n < m) (Sec. 4 • 9) [2] 

1 
an~m

(when n >'m) 

(a"')" — amn
(ab)m = ambm

(Sec. 6 • 10) 
(Sec. 6-11) 

[3] 
[4] 

(6^0) [5] 

20 • 2 ZERO EXPONENT 

If a" is to obey the law of exponents for multiplication as stated under [1] of 
the preceding article, then 

a"1 • a" = am+n = am
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Also, if a0 is to obey the law of exponents for division, then 

nm « 4L_ = a“'0 = a"' 
a0

Therefore, the zero power of any number, except zero, is defined as being 
equal to 1, for 1 is the only number that, when used to multiply another 
number, does not change the value of the multiplicand. 

20 • 3 NEGATIVE EXPONENTS 

If a~n is to obey the multiplication law, then 

— = an~n = a0 — 1 
a" 

In Sec. 4-11, it was shown that a factor can be transferred from one term of 
a fraction to the other if the sign of its exponent is changed, that is, from 
numerator to denominator, or vice versa. 

PROBLEMS 20 • 1 

Making use of the five fundamental laws of exponents, write the results of 

the indicated operations: 

1 a4 ■ a3
5 p"pr
9 x8 -e- x5
13 0-+0 4-
17 (xy)3

2 w2 • ir5
6 X2* • X5* 
10 a5-3 -?• a2-7
14 -r-
18 (ZÄ2i)3

21 (-x'y"zp)4 22 (-a^P)3

25 

29 

26 

30 

m 2

Express with all positive exponents: 

31 PR' 32 x~3y~2

35 ^~3\~ 2r 36 ^R2Y2i

39 3PR~2
12Pr~3

a3
2(43y) 2

3 
7 

11 
15 
19 

23 

27 

X2 • X 
b-P 
X3* X2 

(P)3 

(a-)4 

(ir 

4 
8 

12 
16 
20 

24 

28 

B3 • B~ 
ml+* • m1-* 
e^+z e3

(P)5

33 y-^z3'' 34 lôLr 2̂ “2

37 38 
C~' \ ¿4 t 

20 • 4 FRACTIONAL EXPONENTS 

The meaning of a base affected by a fractional exponent is established by 
methods similar to those employed in determining meanings for zero or 
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SECTION 
20 ■ 3 

TO 
SECTION 

20 ■ 5 

negative exponents. If we assume that Eq. [1] of Sec. 20 • 1 holds for frac¬ 
tional exponents, we should obtain, for example, 

a* • a* = a^+^ = a1 = a 

Also, 

a^ • a^ • a^ - a*+*+* = a1 = a 

That is, a- is one of two equal factors of a, and a^ is one of three equal factors 
of a. Therefore, a* is the square root of a, and a^ is the cube root of a. Hence, 

a- = \/a and a^ = 
Likewise, a^ • a^ • a* = a*+*+* = — a2
Hence, (a*)3 = a2
or a* = -^a2

In a fractional exponent, the denominator denotes the root and the numera¬ 
tor denotes the power of the base. 

In general, a" = tfã™ 

example 1 a ' = ^a3

example 2 (-8)* = ^8 = -2 

PROBLEMS 20 ■ 2 

Find the value of: 

1 16* 2 (-27)* 
5 ( ö^a^'c' 2̂  6 (Li'Ldÿ 

9 (27^ 1o /r>^ 
\ w12 / \ 16E1 / 

Express with radical signs: 

11 9* 12 8a* 13 

15 0’^ 16 Xy 

Express with fractional exponents: 

17 18 ^/r2

21 ÿë2̂  22 a-^82

25 2^ ;/16p 26 5a2^-32a^ 

3 16* 4 -(-32)* 
7 {RR2̂  8 (0^)* 

(8a)* 14 6* 

19 20 

23 (Æ2̂ 2 24 4¿V¿¡3 

20-5 RADICAND 

The meaning of the radical sign was explained in Sec. 2-11. The number 
under the radical sign is called the radicand. 
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20-6 SIMPLIFICATION OF RADICALS 

The form in which a radical expression is written can be changed without 
altering the numerical value of the expression. Such a change is desirable 
for many reasons. For example, addition of several fractions containing 
different radicals in the denominators would be more difficult than addition 
with the radicals removed from the denominators. Similarly, it will be shown 

later that 

1 = y/3 
\/3 3 

It is apparent that the value to several decimal places could be computed 
more easily from the second fraction than from the first. 

Because we are chiefly concerned with radicals involving a square root, 

only that type will be considered. 

20 • 7 REMOVING A FACTOR FROM THE RADICAND 

Since, in general, y/ab = a/Õ- \/b. the following is evident: 

Rule A radicand can be separated into two factors one of which is the 
greatest perfect square it contains. The square root of this factor can then 
be written as the coefficient of a radical the other factor of which is the 

radicand. 

example 3 v27 = = ±3y/3 

example 4 \/8 = x'4-2 = v^- \/2 = ±2x/2 

example 5 V75 = \/25^3 = x/25 • = ±5 y/3 

example 6 \/200a5b:tc2d= y/100a4b2c2 • \'2abd = ±l0a-bc\/2abd 

PROBLEMS 20 • 3 

Simplify by removing factors from the radicand: 

1 V8 

4 \/24 

7 x/80 

10 x/27r» 

13 5\'96/-K 

16 7xV147^2z3D3 

19 2r’\/588^L4X,;-

2 x/32 

5 \/50 

8 x/28 

11 X/I2W 

14 377 \72rW 

17 3a2 7242«^ y8

20 50 f289W 

3 \T8 

6 \/20 

9 \720 

12 

15 6u.' X^3f'F'T’’ 

18 8V567Xt2Z? 
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20-8 SIMPLIFYING RADICALS CONTAINING FRACTIONS 

Since 

then 

/Ï6 = 716 
V 25 \/25 

Or, in general terms, 

A _ Vã 
y/b ~ V/B 

SECTION 
20 • 6 

TO 
SECTION 

20 ■ 8 

The above relation permits simplification of radicals containing fractions 
by removing the radical from the denominator. This process, by which the 
denominator is made a rational number, is called rationalizing the 
denominator. 

Rule To rationalize the denominator: 
1 Multiply both numerator and denominator by a number that will make 

the resulting denominator a perfect square. 

2 Simplify the resulting radical by removing factors from the radicands. 
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PROBLEMS 20 • 4 

Simplify the following: 

20 • 9 ADDITION AND SUBTRACTION OF RADICALS 

Terms that are the same except in respect to their coefficients are called 
similar terms. Likewise, similar radicals are defined as radicals that have 
the same index and the same radicand and differ only in their coefficients. 
For example, -2\/5. 3y/5. and \/5 are similar radicals. 

Similar radicals can be added or subtracted in the same way that similar 
terms are added or subtracted. 

example 11 3\/6 — 4\/6 — \/6 4- 8\/6 = 6\/6 

example 12 \^12 + \ÍTT = 2 \/3 + 3 \/3 = 5 \/3 

Note that, in the simplification of radicals, the positive root is assumed. 

If the radicands are alike, then factors removed are assumed to be posi¬ 
tive roots. If the radicands are not alike and cannot be reduced to a common 
radicand, then the radicals are dissimilar terms and addition and subtrac¬ 
tion can only be indicated. Thus the following statement can be made: 

Rule To add or subtract radicals: 
1 Reduce them to their simplest form. 
2 Combine similar radicals, and assume positive square roots of factors 
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removed from the radicands. 
3 Indicate addition or subtraction of dissimilar radicals. 

PROBLEMS 
20 • 4 

TO 
PROBLEMS 

20.6 

PROBLEMS 20 • 5 

Simplify: 

1 5\/3 —2\/3 

3 5 \/5 - V8Õ 

5 m y/3 — p \/3 + q \/3 

2 3\/5 + 2V2Õ 

4 \Æ3 - y/28 

6 a\/2 + - y\/5Õ 

10 6\/27 + 5V32 

+ 4 ! /e - V 
e - V V e + V 

20-10 MULTIPLICATION OF RADICALS 

Obtaining the product of radicals is the inverse of removing a factor, as will 
be shown in the following examples: 

example 14 3v"3-5v$ = lõv^í = 15 • 2 = 30 \/3 

example 15 4yz3ã-2yz6ã = 8y/3a • 6a — 8\/18a2 — 8\/9 • 2a2 

= 24a \/2 

example 16 Multiply 3 ^2 + 2v/3by4y/2-3\/3. 

solution 3\/2 + 2^/3 

4v2- 3\/3 

24 + 8\/6 

- 9\/6 - 18 

24 - y/6 - 18 = 6 - \/6 

PROBLEMS 20 • 6 

Perform the indicated operations: 

1 V2-V3 

4 8\/5-4\/l5 

2 V3 

5 2\/8-3\/5 

3 2yTÕ- V2 

6 y/6- \/24 
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7 72 • 74 8 7S ' V? 

10 (e + \/3)(f - 73) 11 (\/a- \/a - 7)2

13 \/(^D2

14 (275 + 372X75 + 5 72) 

15 T^' \/12a2w 

16 72(x2 - 4x + 4) • / , 
v 7 4x2 + 16x + 16 

17 (-1- 73X3-373) 

18 (4 + 2 73)(2 - 73) 

19 (36-^75^2^8) 

20 <y; - -.w- + 2758 + w 
a — ß 

9 (7-4-Z))2

12 (3 + 75)-’ 

20-11 DIVISION 

An indicated root whose value is irrational but whose radicand is rational is 
called a surd. Thus, 73, 7?, 75. 73. etc., are surds. If the indicated root 
is the square root, then the surd is called a quadratic surd. For example, 72. 
7?, 76, 7Ï5 are quadratic surds. Then, by extending the definition, such 
expressions as 3 + 72 and 73 - 6 are called binomial quadratic surds. 

It is important that you become proficient in the multiplication and division 
of binomial quadratic surds. One method of solving ac circuits, which will be 
discussed later, makes wide use of these particular operations. Multiplica¬ 
tion of such expressions was covered in the preceding section. However, a 
new method is necessary for division. 

Consider the two expressions a — \jb and a + 7^- They differ only in 
the sign between the terms. These expressions are conjugates; that is, 
a — \fb is called the conjugate of a + 7®. and a + \/ß is called the con¬ 
jugate of a — 7®- Remember this meaning of “conjugate,” for it is the same 
with reference to certain circuit characteristics. 

To divide a number by a binomial quadratic surd, rationalize the divisor 
(denominator) by multiplying both dividend (numerator) and divisor by the 

conjugate of the divisor. 

1 _ 3-72__ 3-72 
example 17 3 + ~ (3 + 72x3 - 72) 7 

1 _ 3 73 + 1 _ 373 + 1 
example 18 3^ _ x - (3^/3 _ 1X373 + 1) 26 
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example 19 3 ~ = <3 ~ ^<4 ~ V^) = 14-7y/2 = 2-^2 
4 + y^ (4 4- \/2X4 - v/2) 14 2 

note In each of the foregoing examples the resulting denominator is a 
rational number. In general, the product of two conjugate surd expressions 
is a rational number. This important fact is widely used in the solution of 
ac problems. 

PROBLEMS 20 • 7 

Perform the indicated division: 

1 10 2 3 3 3 4 
3 - \/2 3 + y/7 ’ 2^3 - 2 

r 9 fi ? * - V7 8 3 ~ 
3 — 3 \/3 x — y ¿v x + \/y 2 + \/5 

9 3 + 2 y/3 10 yÆ + y/Z j j y/2 + 3 12 50 +/35 
2 + 2 y/3 y'R - y/3 + 2 8 + jb 

hint Maintain order /35, jb, etc. and treat terms containing algebraic 
symbol j as if they were radicals. 

20-12 THE OPERATOR j 

In our studies so far. we have met with several mathematical symbols which 
actually indicate commands; + , —, x, -s-, and y/~ are all symbols which 
actually tell us to perform some specific operation. In Sec. 3 • 5, for instance, 
we saw that the minus sign is equivalent to a rotation of a quantity through 
180 . and. by definition, this rotation is in the positive, or counterclockwise, 
direction. 

Now we must meet the operator j, which also provides a rotation, not of 
180 . but of 90°. You have noticed that all the algebraic symbols used so 
far in this book are printed in italic (slanting) type. The operator j, however, 
is printed in roman (regular) type to distinguish it as an operator and to con¬ 
stantly remind the student that it is not just another algebraic symbol. The 
use of j is an extremely useful notation in the solution of electronic circuits, 
and although it is a simple, straightforward idea—just rotate through 90° in 
a counterclockwise (ccw) direction—it is essential that we understand ex¬ 
actly how to operate with it. In Fig. 20-1, the line OA, which lies on the x 
axis and is a units long, can be operated on by the operator j to become ja, a 
line of the same length as before but now rotated ccw through 90° to lie on 
the y axis. 

Note how the rotated quantity is described: first is given the symbol of the 
operator j, and then the quantity which has been operated upon, a. Thus, 
when a is “j'd", it becomes ja. This practice of placing the operator first 
draws attention to the fact that we are not dealing with some quantity j multi¬ 
plied by some other quantity a, but that the j operator is operating on the 

SECTION 
20-11 

TO 

Fig. 20 ■ 1 Representation of a 
Quantity Affected by the Operator j 
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Fig. 20 • 2 Representation of a 
Quantity Affected by the Operator 

-j 

B = j5 

H I I 1+1—I I I H 
C--7 " A~5

-j3 

Fig. 20 • 3 Comparison of 
Quantities: A = + 5, B = +j5, 
C = — 7, And D = — j3 

Fig. 20 • 4 Representation of 
Repeated Operation by j 
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quantity a. The algebraic symbol ja represents for us the geometric symbol 
of a line rotated through 90° in a counterclockwise direction. 

Any quantity operated upon by j will rotate through 90° in a counterclock¬ 
wise direction, and, similarly, any quantity operated upon by —j will rotate 
through 90° in a clockwise direction. (See Fig. 20 • 2.) 

Figure 20 • 3 relates four different quantities by way of review: A = 5, 
B = j5, C = -7, and D = -j3. 

A quantity may be j-operated more than once. If we start with a quantity 
ja, as in Fig. 20-1, and j it again, we cause it to rotate through an additional 
90° ccw, as shown in Fig. 20 • 4. 

j(ja) may be written jja, or, more simply, j2a. Similarly, j3 indicates that 
a quantity has been operated on three times in succession; that is, it has 
been rotated through 90° ccw three times in succession. Figures 20 • 5 and 
20 • 6 indicate repeated rotations resulting from repeated operations by j 
and —j. 

Note, in passing, a very interesting point about j2a: j-ing a twice in suc¬ 
cession brings it to the same point as a single operation with a minus sign. 
From this graphic illustration, you can see that 

i2 = -1 
and j = V— 1 

This added relationship, j = is an extremely interesting one, because 
so far, in the removal of factors from radicands, all the radicands have been 
positive numbers. In Sec. 20 • 13, we will use the important relationship 
j = \/—1 to factor negative radicands and to determine (or, at least repre¬ 
sent) the square roots of negative numbers. 

First, however, let us continue with the fascinating relationships exhibited 
by repeated operations with j. Since j2 = —1, then j3 must equal j(—1), or 
—j, and j 1 must equal j2j2, that is, (—1)( —1) = +1. The truth of these 
statements can be justified by the following considerations: 

\^T = -1 

That is, j • j = — 1 

.-.j2= -1 

Also, y/rj. x/ri=-1.7^T = _j 

That is, j • j • j = j3

j3 = -j 

Also, V—1 ■ V— i ' V— i ■ V— i 

= (x^i- = i 

That is, j • j • j • j = j4

J4 = 1 

Similarly, it can be shown that successive multiplication by each +j 
rotates the number 90° in a counterclockwise direction. 



If we consider successive multiplication by — j, we have 

= - i 

That is, (—jX—j) = j2

■(-j)2= -1 

Also, (-T^JX-T^IX-T^D = (-1X-\^T) = 

That is, (_jx-jx-j) = (j2X—j) = (-IX-j) = j 

• (-¡)3 = j 

To demonstrate that ( —j)4 = land 4- = — jis left as an exercise for you. 

Note the convenience of the graphic method of representation of the 
j operations, Figs. 20 ■ 5 and 20 • 6. This method is an advantageous one 
because, if we can visualize a graph or diagram when we come up against 
certain types of numbers and equations, we often have a better understand¬ 
ing of the manner in which the quantities vary or are related. 

One special note must be drawn to your attention: Long before the opera¬ 
tor j was found to have practical application in electrical and electronics 
calculations, mathematicians used the symbol i to represent V- 1- When 
electrical theory adopted the symbol i for instantaneous current flow in a 
circuit, we switched the mathematicians’ i to j for our symbol of rotation 
through 90° ccw. Sometimes in your reading you will meet i instead of j, 
but you will know what it really means: “Rotate the quantity operated upon 
by 90° in a counterclockwise direction." 

As a mathematical definition, j is sometimes referred to as the “complex 
operator,” but, as we have seen, there is nothing particularly complex 
about j. 

SECTION 
20-12 

TO 
SECTION 
20-13 

Fig. 20 • 5 Repeated Rotation of 
Numbers in Counterclockwise 
Direction 

Fig. 20 • 6 Repeated Rotation of 
Numbers in Clockwise Direction 

20 -13 INDICATED SQUARE ROOTS OF NEGATIVE NUMBERS 

So far, in the removal of factors from radicands, all the radicands have been 
positive numbers. Also, we have extracted the square roots of positive num¬ 
bers only. How shall we proceed to factor negative radicands, and what is the 
meaning of the square root of a negative number? 

According to our laws for multiplication, no number multiplied by itself 
or raised to any even power will produce a negative result. For example, what 
does \/ —25 mean when we know of no number that, when multiplied by 
itself, will produce —25? 

The indicated square root of a negative number is known as an imaginary 
number. It is probable that this name was assigned before mathematicians 
could visualize such a number and that the word “imaginary” was originally 
used to distinguish such numbers from the so-called “real numbers” pre¬ 
viously studied. In any event, calling such a number imaginary might be 
considered unfortunate, because in working with circuits such numbers be¬ 
come very real in the physical sense. If you accidently touch a large capacitor 

289 



EXPONENTS 
ANO 
RADICALS 

that is highly charged, you are likely to be killed by some of those “imagi¬ 
nary” volts. This will be discussed later. 

To avoid the difficulty of operations with the indicated square roots of 
negative numbers, or imaginary numbers, it becomes necessary to introduce 
a new type of number. That is, we agree that every imaginary number can 
be expressed as the product of a positive number and V - 1-

example 20 \z—25 = V( — 1)25 = V-1— V- 1 ’ $ 

As we saw in Sec. 20 • 12, \/TTi may be represented by the 
operator j, and we may now rewrite X/^T • 5 as j5. 

example 21 V— 16 = \/( — 1)16 = V — 1 — V~1 • 4 = j4 

example 22 x/^ = vc-dx* = 7^1 = ^=1 • x = jx 

example 23 — y/—4X2 — — x/( — 1)4X2 = — \/— 1 \4X2

= _ x/ri -2X = — ¡2X 

PROBLEMS 20 • 8 

Fig. 20 • 7 Representation of a 
Complex Number a + jb. a Lies In 
OX, b is Rotated through 90° 
Counterclockwise. The Point P 
Represents The “Sum" of a And jb. 

Express the following by using the operator j: 

16 Did you demonstrate that ( —j)4 = 1? 

17 Did you demonstrate that 4- = — j? 

20-14 COMPLEX NUMBERS 

If a "real” number is united to an "imaginary” number by a plus or a minus 
sign, the expression thus obtained is called a complex number. Thus, 
3 _ ¡4, a + jft, r 4. jx, etc., are complex numbers. At this time, we shall 
consider, not their graphical representation, but simply how to perform the 
four fundamental operations algebraically. Figure 20 • 7 shows the repre¬ 
sentation of the complex number a + jb. 
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SECTION 
20-13 

TO 
SECTION 
20-16 

Combining a real number with an imaginary number cannot be accomplished 
by the usual methods of addition and subtraction; these processes can only 
be expressed. For example, if we have the complex number 5 + j6, this is as 
far as we can simplify it at this time. We should not attempt to add 5 and j6 
arithmetically, for these two numbers are at right angles to each other, and 
such an operation would be meaningless. However, we can add and subtract 
complex numbers by treating them as ordinary binomials. 

example 24 Add 3 + j7 and 4 - j5. 

solution 3 + j7 
4 - j5 

7 + ¡2 

example 25 Subtract — 15 — j6 from — 5 + j8. ■ 

solution -5 + j8 
-15 - j6 

10 + jl4 

PROBLEMS 20 • 9 

Find the indicated sums: 

1 3 + J12 2 14 + j3 3 25 + j8 4 96 - j22 
2 + ¡8 12 + j3 16 — jlO 32 - j5 

5 47 — j3 6 32 7 20 -| j3 8 26 - j6 
125 + j8 5 + j6 - ¡5 31 

9 to 16 Subtract the lower complex number from the upper in each of the 
above problems. 

20 -16 MULTIPLICATION OF COMPLEX NUMBERS 

As in addition and subtraction, complex numbers are treated as ordinary 
binomials when multiplied. However, when writing the result, we must not 
forget that j2 = -1. 

example 26 Multiply 4 - j7 by 8 + j2. 

solution 4 — j7 

8 + ¡2 

32 - j56 
+ ¡8 - j214 

32 - j48 - j214 
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since j2 = — 1, the product is 
32 - ¡48 - (—1X14) = 32 - ¡48 + 14 

= 46 - ¡48 

example 27 Multiply 7 + ¡3 by 6 + ¡2. 

solution 7 + ¡3 
6+ ¡2 

42 + ¡18 
+ ¡14 + j26 

42 + ¡32 + j26 = 36 + ¡32 

20 17 DIVISION OF COMPLEX NUMBERS 

As in the division of binomial quadratic surds, we simplify an indicated divi¬ 
sion by rationalizing the denominator in order to obtain a “real” number as 
divisor (Sec. 20 • 11). We do this by multiplying by the conjugate in the usual 
manner. 

example 28 
10 

1 +¡2 
10(1 - ¡2) 10(1 - ¡2) 

(1 + ¡2X1 - ¡2) 1 - j24 

= 10(1 - i2) = 2(1 - ¡2) 
5 

. nn 5 + ¡6 (5 + ¡6X3 + ¡4) 15 + ¡38 + j224 
example 29 3 _ j4 - (3 _ j4x3 + j4) “ 9 - j216 

-9 + ¡38 
25 

example 30 a + j¿> 
a — ¡6 

(a + ]b\a + ¡6) 
(a - j&Xa + j¿>) 

a2 4- \2ab + j262 _ a2 + j2ab — b2 

a2 — j262 a2 + b2

problems 20 • 10 

Find the indicated products: 

1 (3X1 - j3) 
3 (8 -¡9X6+ ¡3) 

5 (0 + j<>XÖ + i'í>) 

2 (6 + ¡2X2+ ¡3) 
4 (3 -¡5X6-¡7) 

6 (Ä - jXcM + jXt) 

Find the quotients: 

7 

10 

1 
1+jl 

1 - jl 
1 + ¡1 

8 

11 

10 
1 - j3 

8 
8 + ¡8 

a 1 + i1
1 - il 

9 3 + i2
6 - ¡5 
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13 6 
6 — jx 

0 + j<fr 
0 - j</> 

R + juX 
R - ¡œX 

j3 
2 + j3 

19 —--£-
■4^ + R + i<¿L 
jcüC 

iô 1 + j— —— 18-ifk 
0-^ 1 — j — 

Wo 

20 Write in the form a + jò: 
Mo - P 

SECTION 
20-17 

TO 
SECTION 
20-18 

20-18 RADICAL EQUATIONS 

An equation in which the unknown occurs in a radicand is called an irra¬ 
tional or radical equation. To solve such an equation, arrange it in such a 
manner that the radical is the only term in one member of the equation. Then 
eliminate the radical by squaring both members of the equation. 

example 31 Given \/3x = 6; solve for x. 
solution — 6 

Squaring, 3x = 36 
D: 3, x = 12 

check Substituting 12 for x in the given equation, 

= 6 
\/36 = 6 

6 = 6 

example 32 
solution 

Given \/2x + 3 = 7; solve for x. 
\Æx + 3 = 7 

Squaring, 2x + 3 = 49 
S: 3, 2x = 46 
D: 2, x = 23 

check \/2 -23 + 3 = 7 
V35= 7 
7=7 

example 33 The time for one complete swing of a simple pendulum is given 

by 
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where t — time, sec 
L = length of pendulum 
g = force due to gravity 

Solve the equation for g and for L. 

rr 
solution Given t = 2tt / — (a) 

V A’ 

Squaring (a), t- = 

M: g in (6), gt2 = (c) 

D: t2 in (c), g = (d) 

Rewrite (c), ^ 2L = gt2 (e) 

D: 4w2 in (e). L = 

example 34 Given E = IpZp 4- \uMI6 and EZS = —jwMZp. Show that 

solution Since Zs does not appear in the final equation, it must be elimi¬ 
nated. Solving the given equations for Is, 

I* = E ~ Ifv M jwM 

Equating the right members of (a) and (6), 

E - IpZp _ - juMIp 
iœM - Zs

M: ja-M E - IpZv = 

Substituting — 1 for j2 in the right member, 

E - l^p = 

A: IpZp. E = I^p + 

Factoring the right member. 
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PROBLEMS 20 • 11 

Solve the following equations: 

1 

4 

7 

10 

11 

V^=2 

vr+ i = 4 

= 8 

2 Y7?? = 6 

5 y/Z - 5 = 20 

8 2y/0“-2 = 6 

3 \/<^ 3 = 2 \/3<¡> — 12 

Given: 

12 £ =>/s 
13 ig = p^2FF» 

14 <8 — / P^*8
in V e^f) 

15 = a 
N 

16 

17 

18 

19 

20 

21 

3 Vÿ = 3 
6 3 = 7 

9 4^?3-2 = 6 

Solve for: 

<t> 

P, 

P. 

V 

^ p-

U> 

Mr 

Qi 

h 

ATm“ 

22 At a resonant frequency of f Hz, the inductive reactance XL of a circuit 
of L H is Xi, = uL Í1 and the capacitive reactance Xc of a circuit with a 

capacitance of C F is Xc = 0. w = 2nf. At the resonant frequency, 
wC 

with both inductance and capacitance in the circuit, XL — Xc. Solve 
for the resonant frequency / in terms of it, L, and C. 

23 Use the formula for the resonant frequency derived in Prob. 22 to find 
the value of C in picofarads when f = 1.4 MHz and L = 51.7 /lH. 

24 Use the formula derived in Prob. 22 to find the value of f when 
C = 47 nF and L = 15 nH. 

SECTION 
20 • 18 

TO 
PROBLEMS 

20-11 
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25 f = —-X . Solve for Ca. 
Q LCgCb 

J ca + c„ 
26 

27 , show that 

per unit length. If the surge impedance Z„ of the line is Í2, show that 

Z — — c 

Given A = — 

In a conductor through which current I flows, the power Pm existing in 
r re 

the magnetic field about the line is '/J. where L is the inductance of 

the line per unit length. An equal power Pe exists in the electrostatic 
('P2 

field of the line, equal to — W, where C is the capacitance of the line 

u = ± — v/(ttA + 4)(ttA — 4). 
ITT 

28 Given /—--L_ — 786 and = 78.6, solve for n. 
V tit2 4t2z 2t2

29 Show that KEP- = KEp\fEp This is a convenient transformation for 
the slide rule operator. 

30 A West Coast semiconductor products manufacturer, in a design for a 
100-W, 10 MHz power amplifier, equates the actual output circuit to 
its equivalent: 

R'(]Jc7), 1 
-;— — —7 
P. i 1 

(a) Show that 

and «=c4 *+i 
(b) If ÄL = 50 S2, ÄL = 12.5 Í2, and u = 2w x 107, show that 

C7 = 552 pF and Ci = 738 pF. 
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quadratic equations^ 

chapter 

In preceding chapters the study of equations has been limited mainly to 
equations which contain the unknown quantity in the first degree. This chap¬ 
ter is concerned with equations of the second degree, which are called 
quadratic equations. 

21-1 DEFINITIONS 

In common with polynomials (Sec. 11-2), the degree of an equation is de¬ 
fined as the degree of the term of highest degree in it. Thus, if an equation 
contains the square of the unknown quantity and no higher degree, it is an 
equation of the second degree, or a quadratic equation. 
h quadratic equation that contains terms of the second degree only of the 

unknown is called a pure quadratic equation. For example. 

x2 = 25 Ä2 - 49 = 0 3x2 = 12 
ax2 + c = 0 5x2 + 2y2 = 20 

are pure quadratic equations. 
A quadratic equation that contains terms of both the first and the second 

degree of the unknown is called an affected or a complete quadratic equa¬ 
tion. Thus, X2 + 3x + 2 = 0, 3x2 + llx = —2, ax2 + bx + c = 0, etc., 
are affected, or complete, quadratic equations. 

When a quadratic equation is solved, values of the unknown that will 
satisfy the conditions of the equation are found. 

A value of the unknown that will satisfy the equation is called a solution 
or a root of the equation. 

21 .2 SOLUTION OF PURE QUADRATIC EQUATIONS 

As stated in Sec. 10 • 5, every number has two square roots that are equal in 
magnitude but opposite in sign. Hence, all quadratic equations have two 
roots. In pure quadratic equations, the absolute values of the roots are equal 
but of opposite sign. 
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example 1 Solve the equation x2 —16 = 0. 
solution Given x2 - 16 = 0 

A: 16, X2 = 16 
V (see note below), x = ±4 

check Substituting in the equation either +4 or —4 for the value of x, 
because either squared results in + 16, we have 

(±4)2 - 16 = 0 
or 16 - 16 = 0 

note Hereafter, the radical sign will mean “take the square root of both 
members of the preceding or designated equation." 

example 2 Solve the equation 5R- — 89 = 91. 
solution Given 5Ä2 - 89 = 91 

A: 89, 5Ä2 = 180 
D: 5, R- = 36 

V. « = ±6 
check 5(±6)2 - 89 = 91 

5 x 36 - 89 = 91 
180 - 89 = 91 

91 = 91 

example 3 Solve the equation 

I + 4 , I - 4 10 
I _ 4 + I + 4 “ 3 

solution Given + 1 Z? = 12 
I — 4 / + 4 3 

Clearing fractions, 

3(7 + 4X7 + 4) + 3(7 - 4X7 - 4) = 10(7 - 4)(7 + 4) 

Expanding, 

3T2 + 24/ + 48 + 372 - 247 + 48 = 1072 - 160 

Collecting terms, — 4T2 = — 256 
D: -4, P = 64 

V, 7 = ±8 
check By the usual method. 

PROBLEMS 21 • 1 

Solve the following: 

1 E- - 25 = 0 2 s2 — 49 = 0 
3 i2 + 36 = 225 4 Ö2 - 0.25 = 0 
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5 5w- - 180 = 0 
7 
9 5m2 = 3| 

6 <>2 - 0.0004 = 0.0012 
8 49/2 - 144 = 0 

10 5x2 - 0.0308 = 0.0817 

11 2(m + 1) — m(m — 3) — 5m = 0 

28 R + 3 . Ä - 3 
R- — 9 ~ R — 3 + R + 3 

13 3A - 18 90 + 9A - 4A2
6 + 3A 

14 6a(4a - 3) + 3(6a - 16) = 0 

15 24 - X,. + {X,- - 1)-' _ 
2+ XĈ  

SECTION 
21 ■ 2 

TO 
SECTION 

21 • 3 

21 -3 COMPLETE QUADRATIC EQUATIONS—SOLUTION BY FACTORING 

As an example, let it be assumed that all that is known about two expressions 
X and y is that xy = 0. We know that it is impossible to find the value of either 
unless the value of the other is known. However, we do know that, if xy = 0, 
either x — 0 or y = 0, for the product of two numbers can be zero if, and 
only if, one of the numbers is zero. 

example 4 Solve the equation x(5x — 2) = 0. 
solution Here we have the product of two numbers x and (5x — 2), equal 

to zero, and in order for the equation to be satisfied one of the 
numbers must be equal to zero. Therefore, x — 0 or 5x — 2 = 0. 
Solving the latter equation, we have x = j. Hence, 

x = 0 or x = I 

check If x = 0, x(5x - 2) = 0(5• 0 - 2) = 0(-2) = 0 
If x = i x(5x - 2) = i(5 • I - 2) = K2 - 2) = 0 

It is evident that the roots of a complete quadratic may be of unequal 
absolute value and may or may not have the same signs. 

It is incorrect to say x = 0 and x = j, for x cannot be equal to both 0 
and I at the same time. This will be more apparent in the following examples. 

example 5 Solve the equation (x - 5)(x + 3) = 0. 
solution Again, we have the product of two numbers, (x — 5) and (x + 3), 

equal to zero. Hence, either 

(x - 5) = 0 or (x + 3) = 0 

.’. x = 5 or x — — 3 

check If x = 5, 

(x - 5)(x + 3) = (5 - 5X5 + 3) = 0(8) = 0 
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If X = —3, 

(x - 5)(x 4- 3) = (-3 - 5)(—3 + 3) = (-8)0 - 0 

example 6 Solve the equation x2 — x — 6 = 0. 
solution Given x2 — x — 6 = 0 

Factoring (x - 3)(x + 2) = 0 
Then, if x — 3 = 0, x = 3 

Also, if x + 2 = 0, x = — 2 
/. x = 3 or_2 

check If x = 3, 

x2 — x — 6 = 32 — 3 — 6 = 9 — 3 — 6 = 0 

Ifx = -2, 

x2 - x - 6 = (-2)2 -(-2)- 6 = 4 + 2 - 6 = 0 

example 7 Solve the equation {E - 3\E + 2) = 14. 
solution Given (E - 3){E +2) = 14. 

Expanding, E2 - E - 6 = 14 
S: 14, E2 - E - 20 = 0 
Factoring, (E _ 5XE + 4) = 0 

Then, if E — 5 = 0, E = 5 
Also, if E + 4 = 0, E = —4 

E = 5 or_4 

check If E = 5, 

(E - 3)(E + 2) = (5 - 3X5 + 2) = (2X7) = 14 

If E = -4, 

(E - 3)(E + 2) = (-4 - 3)(—4 + 2) 

= (-7X-2)= 14 

PROBLEMS 21 . 2 

Solve by factoring: 

1 a2 + 5« + 4 = 0 

3 Ä2 + 14 = 9Æ 
5 Ä2 = 2 - A 
7 E2 + 40 = 22E 

9 2Q - 13 7Q - 5 
Q - 5 5Q - 7 

11 « + 32 + ^.= 5- ^ 
a a 

2 e2 + 2e - 15 = 0 
4 x2 = 5x — 6 
6 i/<2 = 17^ — 60 
8 26 + Hi - L2 = 0 

10 1 +  k + 2=A-3 
IC K 

12 160 = 26 _ 1 
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SECTION 
21 • 3 
TO 

SECTION 
21 ■ 4 

13 1 
Z - 4 

14 2F — 6 _ , _ 2 
17 - F F —2 

—5— -I- —'-U— = 0 
2i + 2 3i + 7 4/ + 4 

21 • 4 SOLUTION BY COMPLETING THE SQUARE 

Some quadratic equations are not readily solved by factoring, but frequently 
such quadratic equations are readily solved by another method known as 
completing the square. 

In Problems 10 • 5, missing terms were supplied in order to form a perfect 
trinomial square. This is the basis for the method of completing the square. 
For example, in order to make a perfect square of the expression x2 + lOx, 
25 must be added as a term to obtain x2 + lOx + 25, which is the square of 
the quantity x + 5. 

example 8 Solve the equation x2 — lOx — 20 = 0. 
solution Inspection of the given equation shows that it cannot be fac¬ 

tored with integral numbers. Therefore, the solution will be ac¬ 
complished by the method of completing the square. 

Given 
A: 20, 

x2 - lOx - 20 = 0 
x2 - lOx = 20 

Squaring one-half the coefficient of x and adding to both 
members, 

Collecting terms, 
Factoring, 

V. 
S: 5, 
or 

x2 - lOx +- 25 = 20 + 25 
x2 — lOx + 25 = 45 

(x - 5)2 = 45 
x - 5 = ±6.71 

x = 5 ±6.71 
x = 11.71 or -1.71 

The above answers are correct to three significant figures. The 
values of x are more precisely stated by maintaining the radical 
sign in the final roots. That is, if 

V. 
or 
A: 5, 
That is, 

(x - 5)2 = 45 
x — 5 = ± \/45 
x — 5 = ±3\/5 

x = 5±3\/5 
x = 5 + 3-\/5or5-3\/5 

example 9 Solve the equation 3x2 — x — 1 — 0. 
solution Given 3x2 — x — 1 — 0 
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Collecting terms, 
Factoring, 

6 

To summarize the method, we have the following: 

A 3-1—3 

Squaring one-half the coefficient of x and adding to both 
members, 

- + à = H 
- i)2 = it 
X-1-+ 

6~-"6~ 

■ y- 1 + 

D: 3 (because the coefficient of x2 must be 1), 

X2 - |x - j = 0 

Transposing the constant term, 

°r 6 

Rule To solve by completing the square: 

1 If the cuefficient of the square of the unknown is not 1. divide both 
members of the equation by the coefficient. 

2 Transpose the constant terms (those not containing the unknown) to 
the right member. 

3 Find one-half the coefficient of the unknown of the first degree square 
the result, and add this square to both members of the equation This makes 
the left memoer a perfect trinomial square. 

4 Take the square root of both members of the equation and write the 
± sign before the square root of the right member. 

5 Solve the resulting simple equation. 

PROBLEMS 21 ■ 3 

Solve by completing the square: 

1 x2 - 8x + 12 = 0 2 a2 - 4« - 45 = 0 
3 £2 - 15£ + 54 = 0 4 Í22 + 5Q + 6 = 0 
5 t2 - 27/ = -50 6 63 - a2 = 2a 
7 02 + 2 = 30 8 e2 - 6 = e 
9 M- = 22M + 48 10 24£2 = 2E + 1 

11 3 + 0 = 02-3 12 17Z- 42 = P + 21 — 16 

13 0 = -y + 4 14 1 + ^. + || = 0 

15 16 =
R - 3 2 z + I Z + 2 
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21 • 5 STANDARD FORM 

Any quadratic equation can be written in the general form 

ax2 + 6x + c = 0 

This is called the standard form of the quadratic equation. When it is written 
in this way, a represents the coefficient of the term containing x2, b repre¬ 
sents the coefficient of the term containing x, and c represents the constant 
term. Note that all terms of the equation, when written in standard form, are 
in the left member of the equation. 

example 10 Given 2x2 + 5x — 3 = 0. In this equation, a = 2, b = 5, and 
c = -3. 

example 11 Given 7?2 — 57? — 6 = 0. In this equation, a = 1, b = —5, 
and c = —6. 

example 12 Given 9E2 — 25 = 0. In this equation, a = 9, b = 0, and 
c = -25. 

21 ■ 6 THE QUADRATIC FORMULA 

Because the standard form ax2 + bx + c = 0 represents any quadratic 
equation, it follows that the roots of ax2 + bx + c = 0 represent the roots 
of any quadratic equation. Therefore, if the standard quadratic equation can 
be solved for the unknown, the values, or roots, thereby obtained will serve 
as a formula for finding the roots of any quadratic equation. 

This formula is derived by solving the standard form by the method of 
completing the square as follows: 

Given ax2 + 6x + c = 0 

Divide by a (Rule 1): x2 + bx_ + c_ = o 
a a 

Transpose the constant term (Rule 2): 

Add the square of one-half the coefficient of x to both members (Rule 3): 

bx b 2 _ b 2  c 
a 4a2 4a2 a 

Factor the left member, and add terms in the right member: 

’ A \2 _ b2 - 4«c 
, 2a / 4a2
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Take the square root of both members: 

J \ b- - 4ÕC 
2a - 2a 

c . . . b b x/b2 - 4a Subtract ■=— x = — —— ± ——=-
2a 2a 2a 

Collect terms of the right member: 

— b ± \/b2 — 4ac 
X “ 2« 

This equation is known as the quadratic formula. 

Instead of attempting to solve a quadratic equation by factoring or by 
completing the square, we now make use of the quadratic formula. Upon 
becoming proficient in the use of the formula, you will find this method a 
convenience. 

example 13 Solve the equation 5x2 + 2x — 3 = 0. 
solution Comparing this equation with the standard form 

ax2 + bx + c = 0 

we have a = 5, b = 2, and c = — 3. Substituting in the quad¬ 
ratic formula 

— b ± \/b2 — ^ac 
X~ 2a 

— 2 ± V22 - 4-5-(-3) 
2-5 

u -2± \/64 
Hence, =--

— 2 ± 8 _ —2 + 8 -2-8 
10 “ 10 10 

:. x = I or - 1 

check Substitute the values of x in the given equation. 

note It must be remembered that the expression \'b2 — ^ac is the square 
root of the quantity {b2 — 4ac) taken as a whole. 

□ 
example 14 Solve the equation 5 = 2Ä. 

solution Clearing the fractions results in 2Ä- — 10Ä + 3 = 0. Compar¬ 
ing this equation with the standard form ax2 + bx + c = 0, we 
have a = 2, b = - 10, and c = 3. Substituting in the quadratic 
formula, 
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_ — b±\/b2 — ^ac 
X 2a 

„ _ -(-10) ± V(-10)2-4-2-3 
2-2 

Hence. K = 10
4 

Factoring the radicand, 

D 1O±2 X/I9' ri = ---

Dividing both terms of the fraction by 2, 

. R = 4.68 or 0.320 

These final answers are correct to three significant figures. 
Check the solution by the usual method. 
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21 • 7 TESTING SOLUTIONS 

Now that we can obtain solutions to quadratic equations by means of the 
quadratic formula, there will be two possible answers so long as b2 — 4ac^0. 
One of these answers we may call a: 

— b + \/b2 — ^ac 
a =--

2a 

and the other we may call ß: 

r _ —b— \/b2 — 4ac 
1 - 2a 

By suitable combinations of a and ß, we can achieve two useful relationships 
the proof of which we leave to you as an exercise: 

a + ß = ^- [1] 
a 

[2]

Whenever you obtain answers to quadratic equations by means of the for¬ 
mula (or any other means), you may quickly test them for accuracy. The sum 

of the two answers must equal ——, and the product of the two must 
a 

equal —. 
a 

example 15 Solve the equation 6x2 — 2x — 4 = 0, and test the answers. 
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solution Using the quadratic formula, x = 1 or x = — j. Applying the 
tests: 

a + ß — 1 — 

A _ -2 1 
a 6 3 

and 

_c _ -4 _ _ 2 
a 6 3 

The tests show that the solutions obtained are correct. You should make 
a habit of applying the tests to every solution to quadratic equations that 
you obtain. 

PROBLEMS 21 • 4 

Solve the following equations by using the quadratic formula, and apply the 
tests of Eqs. [1] and [2]: 

1 02 = 4 - 30 2 X2 + 7A = 18 
3 27 + 35 = P 4 a2 - 4a + 3 = 0 
5 15 - 14</ = 8V2 6 3T2 — 77 + 2 = 0 
7 5 = 6Z2 - 3Z 8 5(7? + 2) = 2R(R - 1) 

9 24 - — - -L = 0 10 -L + 3 = A _ 14 
mm- /i /r 

U 4 — 7?! 12 Q j2 2 3 j 
11 1 - Ä, 3-7?! A + 3 Ä-2 

13 7 1 7» - 2 36 7 + 2 
ß - 3 2 “ ß - 4 (7+3)2 7+3 

15 7( + 5 - 21,3 ~ 16 16 4 - E_— = - 2AA5. // + D _ 3/2 _ 4 2Æ 7E 

21 • 8 THE GRAPH OF A QUADRATIC EQUATION—THE PARABOLA 

In Chap. 16 we spent some time on the drawing of graphs, especially graphs 
of unity power (first-degree) equations, or linear graphs. Graphs of quadratic 
equations may also be drawn, and in this section we will investigate the com¬ 
mon methods of producing such graphs and also a method of predicting the 
shape of graphs just from the equation itself in the same way that we 
learned to use the standard form y = mx 4- b to predict the slope and ^inter¬ 
cept of linear graphs. 

All the quadratic equations we have studied so far in this chapter have 
contained only one unknown, but that is because we were looking at 
special cases. In the algebraic solution of quadratics, the standard form 
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ax'2 + bx + c — 0 is sufficient, because we want to know the values of x 
which will satisfy this standard form equation. However, to draw a graph re¬ 
quires two variables, an independent one x and a dependent one y, so we 
rewrite the standard equation: 

y = ax2 + bx + c 

Then, by plotting values of y for given values of x, we can draw the com¬ 
plete graph. Note that the algebraic solutions so far in this chapter have 
simply let y = 0, that is, the algebraic solutions have given us the x inter¬ 
cepts for the equation of the general form 

y — ax2 + bx + c 

example 16 Graph the equation x2 - lOx 4-16 = 0. 
solution Set the equation equal to y: 

y = x2 — lOx 4- 16 

Make a table of the values of y corresponding to assigned 
values of x: 

If x = 013456789 10 
Then x2 = 0 1 9 16 25 36 49 64 81 100 
lOx = 0 10 30 40 50 60 70 80 90 100 
x2 - lOx = 0 —9 -21 -24 -25 -24 -21 -16 -9 0 
:.y = X2 - lOx 4- 16 = 16 7 -5 -8 -9 -8 -5 0 7 16 

Plotting the corresponding values of x and y as pairs of coordi¬ 
nates and drawing a smooth curve through the points results 
in the graph shown in Fig. 21-1. 

From Fig. 21-1 it is apparent that the graph has two x intercepts at 
x = 2 and x = 8. That is, when y — 0, the graph crosses the x axis at x = 2 
and x = 8. This is to be expected, for when y = 0, the given equation 
x2— 10x4-16 = 0 can be solved algebraically to obtainx = 2 or 8. Hence, it is 
evident that the points at which the graph crosses the x axis denote the 
values of x when y = 0, which are the roots of the equation. 

Another interesting fact regarding this graph is that the curve goes 
through a minimum value. Suppose it is desired to solve for the coordinates 
of the point of minimum value. First, if the equation is changed to standard 

form, we obtain a = 1, b — —10, and c = 16. If the value of is com-
2a 

puted, the result is the x value, or abscissa, of the minimum point on the 
curve. That is, 

r - 6 - -10 _ 10 _ s 
2a ~ 2 X 1 “ 2 “ 

Fig. 21 • 1 Graph of the Equation 
y - x2 - lOx + 16 
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Substituting this value of x in the original equation, 

y = X2 — lOx +16 
y = 52 - 10 x 5 4- 16 = -9 

Fig. 21-2 Quadratic Graph May 
Open Upward or Downward 

about a Line Parallel to the y Axis 

Thus, the point (5, —9) is where the curve passes through a minimum value. 
That is, the dependent variable y is a minimum and equal to — 9 when x, the 
independent variable, is equal to 5. 

A third point of interest is that the parabola, as the graph of the quadratic 
is called, is symmetrical about its turning point, which lies midway between 
the two intercepts. Indeed, this can be seen from a revision of the quadratic 
formula: 

— b ± y/b2 — ^ac 
X “ 2a 

may appropriately be written 

_ — b , \/b2 — 4ac 
2a 2a 

from which we can see that, with the turning point at , the values of the 
2a 

x intercepts, or roots, of the graph will be offset from the x value of the turn¬ 

ing point by amounts equal to ± ~ 
2a 

Look now at some of the main possibilities concerning the appearance of 
parabolas: 

1 They may open upward or downward (Fig. 21 • 2). 
2 They may be symmetrical about they axis or about some line parallel 

to the y axis (Fig. 21 -3). 
3 They may (a) cut the x axis in two places, (b) touch the x axis (cut it in 

one place), or (c) not touch the x axis at all (Fig. 21 • 4). 
It is possible to decide many of these possibilities from the values of a 

particular quadratic equation. This general equation y = ax2 4- bx 4- c 
offers many possibilities and a restriction: 

1 a, the coefficient of the square term, may be any number, positive or 
negative, but not zero. (Why?) 

2 b, the coefficient of the unity-power term, may be any number, positive 
or negative, or zero. 

3 c, the constant term, may be any number, positive or negative, or zero. 
Now, what is the effect of these algebraic possibilities on the graph? You 

should, at this point, arm yourself with graph paper, and confirm the follow¬ 
ing statements: 

Rule The effect of a on the graph of the quadratic equation: 
The value of a in the quadratic equation governs the steepness of the 

parabola. When a is large, the parabola is very steep, approaching a needle-
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like shape. When a is small, the parabola is shallow, approaching a dished 
shape. 

Let b — c = 0 and plot the comparison graph y — x2, in which the value 
of a is 1. Then plot various graphs of y = ax2, letting a equal, in succession, 
2, 5, 10, j, and |. If these are all plotted on the same graph sheet, with dif¬ 
ferent colors or dashed lines, etc., then the effect of the value of a will be 
impressed on your mind forever. 

Rule The effect of a on the appearance of the parabola: 
The algebraic sign of a determines the opening of the parabola. + a causes 

the curve to open upward, and the turning point is the minimum value, —a 
causes the parabola to open downward, and the turning point is the maxi¬ 
mum value. 

You have already plotted a number of graphs with + a. Now plot a few 
graphs of y = —ax2, letting a = 2, 5, 10, }, and 

Pu'e The effect of c on the appearance of the parabola: 
The constant c in the quadratic equation determines the y intercept, and 

therefore the amount of vertical shift of the parabola. When c is positive, the 
curve is raised to cut the y axis above the x axis. When c is negative, the 
curve cuts the y axis below the x axis. 

Let a = 1 and b = 0 and vary the value of c in the equation y — x2 + c. 
Draw the curves when c =' + 5 and —5, and compare with the standard 
parabola y — x2. 

The effect of b on the appearance of the parabola: 
The factor b in the quadratic equation determines the rotational shift of 

the turning point of the graph. When b is positive, the turning point shifts in 
a positive (ccw) direction about its “original” position, and when b is nega¬ 
tive, the turning point shifts in a negative (cw) direction about its original 
position. 

Let a — 1, c = 0, and vary the value of b in the equation y = x2 + bx. 
Draw the curves when b — +2, +5, +10, —2, —5, and —10. Repeat these 
curves with a = — 1, and draw curves for y = —x2 — bx. 

example 17 plot the curve j = 27 - 3x - 4x2. 
solution Predict, first of all, what effect the various coefficients will have 

on the graph: 
1 The value of a is 4, so that the curve will be reasonably 
steep. 

Fig. 21-4 Quadratic Graphs May 
Cut the x Axis in Two Places, in 
One Place, or Not at All 
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2 The algebraic sign of a is minus, so that the curve will open 
downward. 
3 The constant term is +27, so that the curve cuts the y axis 
at +27, well above the x axis. Since the curve opens downward 
and the y intercept is above the x axis, the curve will 
cut the x axis in two places. That is, the special equation 
27 — 3x - 4x2 = 0 will have two definite solutions. 
4 The value of b is —3, so that the turning point will be 
shifted from the “ideal” value of x = O.j = 27 in the clockwise 
direction. The turning point will then be at a value of y greater 
than 27 and at some value of x to the left, or minus, side of the 
y axis. 
With these predictions, together with a sketch of the probable 
appearance of the curve (Fig. 21 • 5), you may assign values 
to x and calculate the corresponding values of y. 

Ifx = -4-3-2-1012 3 
Then 3x = —12 —9 —6 —3 0 3 6 9 
27 - 3x = 39 36 33 30 27 24 21 18 
x2 = 16 9 4 1 0 1 4 9 
4x2 = 64 36 16 4 0 4 16 36 
:.y= 27- 3x - 4x2 = -25 0 17 26 27 20 5 -18 

Plotting the corresponding values of x and y as pairs of coordi¬ 
nates and drawing a smooth curve through them results in the 
graph shown in Fig. 21 • 5. 

From the graph of the equation j = 27 — 3x — 4x2, Fig. 21-5, it is 
observed: 

1 The roots (solution) of the equation are denoted by the x intercepts. 
These are x = -3 and x = 2.25. They can be checked algebraically to 
obtain 

27 - 3x - 4x2 = 0 
Factoring, (3 + x)(9 — 4x) = 0 

x — —3 or 2.25 

2 The parabola opens downward because the coefficient of x2 is nega¬ 
tive (a = —4.) 

3 Because the parabola opens downward, the graph goes through a 
maximum value. The point of maximum value is found in the same manner 
as the minimum point of Example 16. That is, 

-b -(-3) 3 
X “ 2a ~ 2(-4) “ 8 
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Substituting —I for x in the original equation, 

= 27 — 3(—|) — 4(—|)2 = 27.6 

Thus, the dependent variable y is a maximum and equal to 27.6 when x, 
the independent variable, is equal to — j. 

example 18 Graph the equations 

y = x2 - 8x 4- 12 
y = x2 - 8x + 16 
y = x2 — 8x + 20 

(a) 
(b) 
(c) 

solution 1 Based on an analysis of the values of a, b, and c, predict 
the probable appearance of the curve. 
2 As before, and for each equation, make up a table of values 
of y corresponding to chosen values of x. Using these x and y 
values as pairs of coordinates, plot the graphs of the equations. 
These graphs are shown in Fig. 21 • 6. 
The coefficients of the equations are the same except for the 
values of the constant term c. 
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Fig. 21 • 6 Graphs of the 
Equations of Example 18 

From the graphs of the equations of Example 18, it is observed that: 
1 The curve of (a) intercepts the x axis at x — 2 and x = 6, and the 

roots of the equation are thus denoted as x = 2 or 6. This checks with the 
algebraic solution. 

2 The curve of (b) just touches the x axis at x = 4. Solving (6) algebrai¬ 
cally shows that the roots are equal, both roots being 4. 

3 The curve of (c) does not intersect or touch the x axis. Solving (c) 
algebraically results in the '‘Imaginary” roots x = 4 ̂ Lj2. 

4 All curves pass through minimum values at points having equal 
x values. This is as expected, for the x value of a maximum or a minimum is 

given by x = , and these values are equal in each of the given equations. 

5 Checking the y values of the minima, it is seen that they must be af¬ 
fected by the constant terms, for, as previously mentioned, the other co¬ 
efficients of the equations are the same. 

21-9 GRAPHICAL SOLUTIONS 

From the foregoing comments, it must now be obvious that quadratic equa¬ 
tions can be solved graphically by letting the equation ax2 + bx + c = 0 
take the more general form ax2 + bx + c = y or, more commonly, 
y = ax2 + bx + c. Then the two x intercepts of the graph will give the roots 
of the original equation. It is for this reason that you will often hear the solu¬ 
tions to a quadratic equation referred to as the zeros of the equation—they 
occur when y = 0. 
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PROBLEMS 21 • 5 

Select problems from Problems 21 • 1, 21 • 2, 21 • 3, and 21 • 4 and solve 
them graphically to confirm the algebraic solutions. Predict what the graphs 
will look like before plotting calculated values of x and y. 

21-10 THE DISCRIMINANT 

The quantity b2 — 4ac under the radical in the quadratic formula is called 
the discriminant of the quadratic equation. The two roots of the equation are 

_fe+ ^b2-^ -b-^b2-^ 
2a 2a 

Now, if b2 — 4ac = 0, it is apparent that the two roots are equal. Also, if 
b2 — 4ac is positive, each of the roots is a real number. But if b2 — 4ac is 
negative, the roots are imaginary. Therefore, there is a direct relationship 
between the value of the discriminant and the roots, and hence the graph, of 
a quadratic equation. 

For example, the discriminants of the equations of Example 18 in the 
preceding article are 

b2 - 4ac = (-8)2 - 4 • 1 • 12 = 16 
b2 - 4ac = (-8)2 -4-1-16 = 0 
b2 - 4ac = (-8)2 - 4 • 1 • 20 = -16 

Upon checking these values with the curves of Fig. 21-6 and also checking 
the values of the discriminants found in the preceding exercises with their 
respective curves, it is evident that the roots of a quadratic equation are: 

1 Real and unequal if and only if b2 — 4ac is positive. 
2 Real and equal if and only if b2 — 4ac = 0. 
3 Imaginary and unequal if and only if b2 — 4ac is negative. 
4 Rational if and only if b2 — 4ac is a perfect square. 

21-11 MAXIMA AND MINIMA 

As previously stated, in the general quadratic equation ax2 + bx + c = 0, 

the relation x = gives the value of the independent variable x at which 
¿a 

the dependent variable^ will be maximum or minimum. Then by substituting 
this value of x, the independent variable, in the equation, the corresponding 
value of y can be obtained. Also, it has been shown that the function will be 
maximum if a, the coefficient of x2, is negative because the curve opens 
downward. Similarly, if the coefficient of x2 is positive, the curve will pass 
through a minimum because the curve opens upward. 

This knowledge facilitates the solution oí many problems that heretofore 
would have involved considerable labor. 
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example 19 A source of EMF E, with an internal resistance r, is connected 
to a load of variable resistance R. What will be the value of R 
with respect to r when maximum power is being delivered to 
the load? 

solution The circuit can be represented as shown in Fig. 21-7. By 
Ohm’s law, the current flowing through the circuit is 

I = E 
r + R (a) Fig. 21 • 7 Circuit of Example 19 

The power delivered to the external circuit is 

P = VI = PR (6) 

where Vis the terminal voltage of the source and is 

V = E - Ir (c) 

Now the terminal voltage V will decrease as the current I in¬ 
creases. Therefore, the power P supplied to the load is a func¬ 
tion of the two variables Vand I. Substituting Eq. (c) in Eq. (b), 

P = (E - Ir)I = EI - Pr 

that is, 

P= — rP + EI (d) 

Equation (</) is a quadratic in I, where a — —r and b = E. 

Then, since, for maximum conditions, I = , 
2a 

I - ~E - E-
" 2a 2( —r) 2r 

(e) 

which is the value of the current through the circuit when 
maximum power is being delivered to the load. Substituting 
Eq. (e) in Eq. (a), 

E _ E 
2r r + R 

Solving Eq. (f) for R, 

R = r (g) 

Equation (g) shows that maximum power will be delivered to any load 
when the resistance of that load is equal to the internal resistance of the 
source of EMF. This is one of the important concepts in electronics engineer¬ 
ing. For example, we are concerned with obtaining maximum power output 
from several types of power amplifier. We obtain it when the amplifier load 
resistance matches the plate resistance of the associated vacuum tube. Also, 
maximum power is delivered to an antenna circuit when the impedance of 
the antenna is made to match that of the transmission line that feeds it. 
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Fig. 21 ■ 8 Power Delivered to 
Load Plotted against Load 
Resistance 

Fig. 21 ■ 9 Load Resistance RL 

is Varied to Obtain Power Values 
Plotted in Fig. 21 • 8 

In Fig. 21 • 8, power delivered to the load is plotted against values of the 
load resistance ÄL when a storage battery with an EMF E of 6.6 V and an 
internal resistance r = 0.075 2 is used. The circuit is as shown in Fig. 21 • 9. 

It is apparent that, when the battery or any other source of EMF is deliver¬ 
ing maximum power, half the power is lost within the battery. Under these 
conditions, therefore, the efficiency is 50%. 

PROBLEMS 21 • 6 

1 

2 

3 

4 

5 

Graph the following equations all on the same sheet with the same axes: 
(a) x2 — 6x — 16 = 0 
(c) X2 - 6x = 0 

(e) X2 — 6x + 9 - 0 
(g) X2 — 6x + 15 = 0 

(b) X2 - 6x - 7 = 0 
(d) X2 — 6x + 5 = 0 
(/■) X2 - 6x + 12 = 0 

Does changing the constant term change only the vertical positions of 
the graphs and the solutions of the equations? Do all graphs pass through 
minimum values at the same value of x? 
Solve the equations of Prob. 1 algebraically. Do these solutions check 
with the graphs of the equations? Test your solutions by means of the 
quadratic tests. 
Compute the discriminant for each equation of Prob. 1. Do you see any 
connection between the value and the graph? 
Compute the minimum value of the dependent variable y for each equa¬ 
tion of Prob. 1. Does the value check with the graph? 
What do you see from the graphs of Prob. 1 when x is equal to zero? 

21-12 SUMMARY 

Several methods are available for solving quadratic equations. All quadratic 
equations can be solved by factoring, by completing the square, by use of 
the quadratic formula, or by graphical methods. However, some of these 
methods involve unnecessary work for certain forms or types of quadratic 
equations; therefore, one tries to choose the most convenient method for a 
particular equation. For example, a pure quadratic equation is readily solved 
merely by reducing the equation to its simplest form and extracting the 
square root of both members of the equation in order to obtain the two roots, 
which are equal in absolute value but of opposite sign (Sec. 21 • 2). 

In practical problems involving complete quadratic equations the numeri¬ 
cal coefficients are such that you will seldom be able to solve the equation 
readily by factoring. Also, solution by completing the square sometimes can 
become a chore. Probably the most widely used method is solution by use of 
the quadratic formula, which, if you forget it, can be found in most hand¬ 
books and put to use whenever needed. 

Solution by graphical methods allows you to visualize the variation of 
quantities and serves to check computations. In any event, through solving 
many problems, you will develop your own methods of attack. 
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In solving problems involving quadratic equations, care must be used 
because two answers (roots) are obtained. In all cases both roots will satisfy 
the mathematics of the equation, but in some cases only one root will satisfy 
the conditions of the problem. Therefore, we reject the obviously impossible 
or the impractical answers and retain the ones that are consistent with the 
physical conditions of the problem. 

example 20 The square of a certain number plus four times the number is 

solution 
12. Find the number. 
Let 
Then 

Both roots satisfy the equation and the condition of the prob¬ 
lem; therefore, both answers are correct. 

and 
From the problem 
S: 12, 
Factoring, 
Then 

X = the number 
x2 = the square of the 

number 
4x = four times the number 

X2 + 4x = 12 
X2 + 4x - 12 = 0 
(X + 6)(x - 2) = 0 

X — —6 or 2 

example 21 Find the dimensions of a right triangle if its hypotenuse is 40 ft 
and the base exceeds the altitude by 8 ft. 

solution In any right triangle, Fig. 21 • 10, c2 = a2 + b-. 
Since 

c = 40 
and a = b — 8 
then 1600 = (b - 8)2 + 62

Are both the roots of this equation consistent with the physical 
conditions of the problem? 

example 22 A storage battery has an EMF of 6.3 V and an internal resist¬ 
ance of 0.015 Q. The battery is used to drive a dynamotor that 
requires 300 W. What current will the battery deliver to the 
dynamotor, and what will be the voltage reading across the 
battery terminals while this current is supplied? 

solution The circuit is represented in Fig. 21 • 11. 
Let P = power consumed by dynamotor = 300 W 
Eb = voltage across battery terminals when dynamotor is 

delivering 300 W 

Since 

then I = 300 
Eb

PROBLEMS 
21 • 6 

TO 
SECTION 

21 • 12 

Fig. 21-10 In Any Right Triangle, 
c2 = a2 + b2

Fig. 21-11 Circuit of Example 22 
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QUADRATIC 
EQUATIONS 

Now 
Substituting for r, 

Substituting for I, 

Multiplying, 

Clearing fractions, 

Transposing, 

Eb2 - 6. 

EB = 6.3 - ri 
EB = 6.3 - 0.015Z 

EB =6.3 - 0.015 X 
Eb

Eb = 6.3 -

Eb2 = 6.3EB — 4.5 

b + 4.5 = 0 

This equation is a quadratic in EB; hence, a — 1,6= —6.3, 
and c = 4.5. Substituting these values in the quadratic 
formula, 

_ -(-6.3) ± V(-6.3)2 - 4-1-4.5 
Eb - 2-1 

..Eb = 5.48 Vor 0.82 V 

I = 300 _ 300 _ y a 
Eb 5.48 

Why was 5.48 V chosen instead of 0.82 V in the above solution? 

PROBLEMS 21 . 7 

1 Compute the discriminant, and tell what it shows, in each of these 
equations: 
(a) x2 - 8x + 12 = 0 
(6) 9x2 - 42x + 49 = 0 
(c) 4x2 - 20x + 30 = 0 

2 Find two positive consecutive even numbers whose product is 288. 
3 Find two positive consecutive odd numbers whose product is 483. 
4 Can the sides of a right triangle ever be consecutive integers? If so, find 

the integers. 
5 Find the dimensions of a rectangular parking lot whose area is 6786 ft2 

and whose perimeter is 330 ft. 
6 Separate 156 into two parts such that one part is the square of the 

other. 
7 One number is 20 less than another, and the difference of their squares 

is 9200. What are the numbers? 
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(a) Solve for v. 
(6) If Wis doubled and r is halved, what happens to Ft 
(c) What is W if F = 12, r = 1|, and v = 16? 



9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

SECTION 
21 • 12 

TO 
PROBLEMS 

21 • 7 

Given P = . Solve for E. If k and n are doubled and P and R are 
nR 

held constant, what happens to E? 

Rt = j — - 1. Solve for . 

& 

n R(r2 + x2) „ , . , 
" = -rs-• Solve for r and x. r(Rr + Xx) 

The following relations exist in the Wien bridge: 

9 1 . ci Rb — R> 
Ä IÄ 2C1C2 C2 RaRl 

Solve for ci and c2 in terms of resistance components and w. 
Kinetic energy (KE) is equal to one-half the product of mass m in 
pounds and velocity v in feet per second squared; that is, KE = jmv2 

ft-poundals. Find the value of v when KE = 1.1 x 106 ft-poundals and 
m = 2.2 lb. 
A ball rolls down a slope and travels a distance d = 6t + jt2 ft in t sec. 
Solve for t. 
The distance s through which an object will fall in t sec is s = ^gt2 ft, 
where g = 32.2 ft/sec2. The velocity v attained after t sec is 
v = gt ft/sec. Solve for the velocity in terms of g and s. 
If an object is thrown straight upward with a velocity of v ft/sec, its 
height t sec later is given by h = vt — 16?2 ft. If a rocket were fired up¬ 
ward with a velocity of 3200 ft/sec, neglecting air resistance: 
(a) At what time would its height be 44,400 ft on the way up? 
(6) At what time would its height be 44,400 ft on the way down? 
(c) At what time would it attain its maximum height? 
(d) What maximum height would it attain? 
Attempt these solutions both graphically and algebraically. 
Use the formula for height in Prob. 16 to derive a formula for maximum 
height attained for any initial velocity v. 
In an ac series circuit containing resistance R in ohms and inductance 
L in henrys, the current I may be computed from the formula 

\/R2 + u2L2

where E is the EMF in volts applied across the circuit. Find the value of 
R to three significant figures if E = 282 V, 1=2 A, w=2-nf, /=60 Hz, 
and L = 0.264 H. 
In an ac circuit containing R 2 resistance and Xcü reactance, the 
impedance is 

Z = \/R2 + Xc2 « 

Find the value of R if Z = 130 2 and Xc = 120 2. 
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QUADRATIC 
EQUATIONS 

20 The susceptance of an ac circuit containing R Q resistance and X 
reactance is 

B = S mhos

Find the value of R to three significant figures when B = 0.008 mhos 
and X = 100 Í2. 

21 The equivalent noise resistance Ra of a pentode tube in terms of cath¬ 
ode current Ik, anode current /a. screen-grid current /sg, and mutual 
transconductance gm, is 

P 2 5 Z^? . 20ZsgZa 
gm \lj gA 

Show that the ratio of anode current to cathode current is 

^^ + -¿-7300^+10^7 

22 Did you prove that a + ß = ? 

23 Did you prove that a- ß = —1 

24 Find the two combinations of resistance of R¿ and R3 that will satisfy 
the circuit conditions of Fig. 21 • 12. 

Fig. 21-12 Circuit of Prob. 24 

25 The circuit conditions as shown in Fig. 21-13 existed when the gener¬ 
ator G was supplying current to the circuit. When the generator was 

Fig. 21-13 Circuit of Prob. 25 
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PROBLEMS 
21 • 7 

disconnected, an ohmmeter connected between points A and B read 
60 Í2. 
(a) What was the circuit current? 
(6) What was the generator voltage? 
(c) What is the value of each resistor? 

26 In the circuit of Fig. 21-14, the resistor ABC represents a potentiom¬ 
eter with a total resistance {A to C) of 25,000 S2. Rt = 5000 Ü, across 
which is 60 V. 

(a) What is the resistance from A to B? 
(I)) How much current flows from B to C? 

27 What are the meter readings in the circuit of Fig. 21 • 15? 

Fig. 21 • 14 Circuit of Prob. 26 

Fig. 21-15 Circuit of Prob. 27 

28 When two capacitors Ci and C2 are connected in series, the total capaci¬ 
tance Ct of the combination is always less than either of the two capaci¬ 
tors. That is, 

P _ C1C2 
* Ct + C2

Suppose we have a tuning capacitor that varies from 200 to 300 pF; 
that is, it has a change in capacitance of 100 pF. What value of fixed 
capacitor should be connected in series with the tuning capacitor to 
limit the total change of circuit capacitance to 50 pF? 
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An understanding of Kirchhoff's laws, plus the ability to apply them in ana¬ 
lyzing circuit conditions, will give you a better insight into the behavior of 
circuits. Furthermore, you will be able to solve circuit problems that, with 
only a knowledge of Ohm’s law, would be very difficult in some cases and 
impossible in others. 

22 • 1 DIRECTION OF CURRENT FLOW 

Fig. 22 ■ 1 Current I Flowing from 
— to + through the Connected 
Circuit 

As stated in Sec. 8-1, the most generally accepted concept of an electric 
current is that it consists of a motion of electrons from a negative toward a 
more positive point in a circuit. That is, a positively charged body is taken to 
be one that is deficient in electrons, whereas a negatively charged body car¬ 
ries an excess of electrons. When the two are joined by a conductor, electrons 
flow from the negative charge to the positive charge. Hence, if two such 
points in a circuit are maintained at a difference of potential, a continuous 
flow of electrons, or current, will take place from negative to positive. There¬ 
fore, in the consideration of Kirchhoff’s laws, current will be thought of as 
flowing from the negative terminal of a source of EMF, through the external 
circuit, and back to the positive terminal of the source. Thus, in Fig. 22-1, 
the current flows away from the negative terminal of the battery, through Ri 
and R2, and back to the positive terminal of the battery. Note that point b is 
positive with respect to point a and that point d is positive with respect to 
point c. 

22 -2 STATEMENT OF KIRCHHOFF'S LAWS 

In 1847, G. R. Kirchhoff extended Ohm's law by two important statements 
which have become known as Kirchhoff's laws. These laws can be stated as 
follows: 

1 The algebraic sum of the currents at any junction of conductors is 
zero. 
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That is, at any point in a circuit, there is as much current flowing away 
from the point as there is flowing toward it. 

2 The algebraic sum of the EMF's and voltage drops around any closed 
circuit is zero. 

That is, in any closed circuit, the applied EMF is equal to the voltage drops 
around the circuit. 

These laws are straightforward and need no proof here, for the first is 
self-evident from the study of parallel circuits, and the second was stated in 
different words in Sec. 8 • 8. When properly applied, they enable us to set up 
equations for any circuit and solve for the unknown circuit components, 
voltages, or currents as required. 

SECTION 
22 ■ 1 

TO 
SECTION 

22 • 3 

22 • 3 APPLICATION OF SECOND LAW TO SERIES CIRCUITS 

The second law is considered first because of its applications to problems 
with which you are already familiar. 

Figure 22 • 2 represents a 20-V generator connected to three series re¬ 
sistors. The validity of Kirchhoff’s second law was demonstrated in Sec. 
8 • 8: that is, in any closed circuit the applied EMF is equal to the sum of the 

Fig. 22 • 2 The Sum of the 
Voltage Drops across the 
Resistors Is Equal to the 
Applied EMF. 

voltage drops around the circuit. Thus, neglecting the internal resistance of 
the generator and the resistance of the connecting wires in Fig. 22 • 2, 

or 
Hence, 

E= /R, + IR2 + IR3
20 = 21 + 31 + 51 
I = 2 A 

[1] 

Equation [1] is satisfactory for a circuit containing one source of EMF. By 
considering the circuit from a different viewpoint, however, the voltage rela¬ 
tions around the circuit become more understandable. For example, by start¬ 
ing at any point in the circuit, such as point a, we proceed completely around 
the circuit in the direction of current flow, remembering that, when current 
passes through a resistance, there is a voltage drop that represents a loss 
and therefore is subtractive. Also, in going around the circuit, sources of EMF 
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NETWORK 
SIMPLIFICATION 

Fig. 22 • 3 Circuit of Example 1 

Fig. 22 ■ 4 Circuit of Example 1 
Illustrating Internal Resistances 
of the Batteries 

represent a gain in voltage if they tend to aid current flow and therefore are 
additive. By this method, according to the second law, the algebraic sum of 
all EMF’s and voltage drops around the circuit is zero. For example, in start¬ 
ing at point a in Fig. 22 • 2 and proceeding around the circuit in the direction 
of current flow, the first thing encountered is the positive terminal of a 
source of EMF of 20 V. Because this causes current to flow in the direction 
we are going, it is written +20. This is easily remembered, for the positive 
terminal was the first one encountered; therefore, write it plus. Next comes 
Äi, which is responsible for a drop in voltage due to the current I passing 
through it. Hence, this voltage drop is written — IRi or — 21, for is known 
to be 2 SI. R2 and Ä3 are treated in a similar manner because both represent 
voltage drops. This completes the trip around the circuit, and by equating 
the algebraic sum of the EMF and voltage drops to zero, 

20 - 21 - 31 - 51 = 0 [2] 
or I = 2 A 

Note that Eq. [2] is simply a different form of Eq. [1]. If the polarities of 
the sources of EMF are marked, they will serve as an aid in remembering 
whether to add or subtract. In going around the circuit, if the first terminal 
of a source of EMF is positive, the EMF is added; if negative, the EMF is 
subtracted. 

The point at which to start around the circuit is purely a matter of choice, 
for the algebraic sum of all voltages around the circuit is equal to zero. For 
example, starting at point b, 

— 21 - 31 - 51 + 20 = 0 
I = 2 A 

Starting at point c, 

— 51 +20-21 -31 = 0 
I = 2 A 

example 1 Find the amount of current flowing in the circuit represented 
in Fig. 22 • 3 if the internal resistance of battery Ex is 0.3 El, that 
of E2 is 0.2 fi, and that of E3 is 0.5 S2. 

solution Figure 22 • 4 is a diagram of the circuit in which the internal 
resistances are represented in color as an aid in setting up the 
circuit equation. Beginning at point a and going around the cir¬ 
cuit in the direction of current flow, 

6 _ 0.3Z — 4Z — 0.21 - 4 + 10 - 0.5Z - 2Z - 5Z = 0 
Hence, Z = 1 A 

In more complicated circuits the direction of the current is often in doubt. 
However, this need cause no confusion, for the direction of current flow can 
be assumed and the circuit equation written in the usual manner. If the cur¬ 
rent results in a negative value when the equation is solved, the negative 
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sign denotes that the assumed direction was wrong. As an example, let it be 
assumed that the current in the circuit of Fig. 22 • 4 flows in the direction 
from a to b. Then, starting at point a and going around the circuit in the 
assumed direction, 

— 5/ — 2/ — 0.51 - 10 + 4 - 0.2/ - 4/ - 0.3/ -6 = 0 
/= -1 A 

As stated above, the minus sign shows that the assumed direction of the 
current was wrong; therefore, the current flows in the direction from b to a. 

PROBLEMS 22 • 1 

1 Three resistors, Ry = 22 kß, R¿ = 39 kß, and R3 = 33kß, are con¬ 
nected in parallel across a 12-V power supply whose internal resistance 
is 1.8 kß. How much current is drawn from the source? 

2 The resistors in Prob. 1 are replaced by new values Ry = 2.2 kß, 
R¿ = 3.9 kß, and Ä3 = 3.3 kß. How much current will be drawn from 
the source? 

3 Three resistors, Ry = 68 kß, R¿ = 22 kß, and Ry = 18 kß, are con¬ 
nected in series across a signal generator whose internal resistance is 
600 ß. If 0.500 mA flows through the circuit, what is the terminal volt¬ 
age of the generator? 

4 What is the value of Ry in Fig. 22 • 5? 
5 A motor that draws 16 A at 234 V is connected to a generator through 

two No. 8 copper feeders each of which is 500 ft long. What is the gen¬ 
erator terminal voltage? 

6 A generator with a terminal voltage of 117 V is supplying 63 A to a load 
through two feeders each 1500 ft long. If the feeders are No. 0 copper, 
what is the voltage across the load? 

7 (a) How much current flows in the circuit of Fig. 22 • 6? 
(6) What is the terminal voltage of the 12-V battery? 

8 (a) How much current flows in the circuit of Fig. 22 • 7? 
(b) What is the terminal voltage of the generator? 

9 A current of 5 A flows through the circuit of Fig. 22 • 8. What is the value 
of R? 

10 How much current flows in the circuit of Fig. 22 • 9? 

0.03 0 59 0.06 0 

-l|l|i|--WM-|'|i|i|i|i|f 
6 V + 12 V 

SECTION 
22 ■ 3 

TO 
PROBLEMS 

22 - 1 

«2-50 «3-20 

/=10A 117V 

Fig. 22 • 5 Circuit of Prob. 4 

10 V 

0.60 

Fig. 22 ■ 6 Circuit of Prob. 7 

Fig. 22 • 7 Circuit of Prob. 8 
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NETWORK 
SIMPLIFICATION 

Fig. 22 • 9 Circuit of Prob. 10 

22-4 SIMPLE APPLICATIONS OF BOTH LAWS 

Although the circuits of the following examples can be solved by Ohm’s law, 
they are included here because you are familiar with such circuits. You will 
have no trouble in solving circuits that appear to be complicated if you under¬ 
stand the applications of Kirchhoff’s laws to simple circuits, for all circuits 
are combinations of the fundamental series and parallel circuits. 

example 2 a generator supplies 7 A to two resistances of 40 and 30 S2 con¬ 
nected in parallel. Neglecting the internal resistance of the gen¬ 
erator and the resistance of the connecting wires, find the gen¬ 
erator voltage and the current through each resistance. 

solution Figure 22 • 10 is a diagram of the circuit. From our knowledge of 
parallel circuits, it is evident that the line current / divides at 
junction c into the branch currents A and I2. Similarly, Ii and I> 
combine at junction / to form the line current I. Therefore, 

I = A + A 

which is the same as 

Fig. 22-10 Circuit of Example 2 I - h- I2 = 0 [3] 

These are algebraic expressions for Kirchhoff's first law and, 
when used in conjunction with the second law, facilitate solution 
of circuits. 
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example 3 

solution 

SECTION 
22 ■ 4 

If we start at the point a and go around the circuit in the direction 
of current flow, the equation for the voltages around path 
abcdefa is 

E - 40Zx = 0 

= é w 
The equation for the voltages around path abcghfa is 

E - 30Z2 = 0 

< Pl 
Substituting the known values in Eq. [3], 

E = 120 V 

Zj = 3 A and I2 = 4 A are found from Eqs. [4] and [5], 
respectively. 

Two 6-V batteries, each with an internal resistance of 0.05 
are connected in parallel to a load resistance of 9.0 2. How much 
current flows through the load resistance? 
Figure 22 • 11 is a diagram of the circuit. In the circuit, two iden¬ 
tical sources of EMF are connected in parallel to supply the line 
current I to the load resistance. Again, 

I = A + A 
or I — Ii — I2 = 0 

Starting at junction a, the equation for the voltages around path 
abcdefa is 

6 - 0.05A - 9Z = 0 

Solving for h, h = 120 - 180/ [6] 

Starting at junction a, the equation for the voltages around path 
aghdefa is 

Fig. 22-11 Circuit of Example 3 

6 - 0.05/2 - 9Z = 0 

Solving for Z2, Z2 = 120 - 180Z [7] 

As would be expected, Zi and Z2 are equal. Substituting the 
values of It and Z2 in Eq. [3], 

Z - (120 - 180Z) - (120 - 180Z) = 0 
Hence, I = 0.6648 A 

The foregoing solution assumes three unknowns Z, Zi, and Z2. 
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NETWORK 
SIMPLIFICATION 

However, in writing the equations for the voltages around any 
path, only two unknowns can be used, for I = It + Z2. Thus, 
around path abcdefa, 

6 - 0.05Z1 - 9(Zi + Z2) = 0 
Collecting terms, 9.05/j + 9Z2 = 6 [8] 

Voltages around path aghdefa, 

6 - 0.05Z2 - 9(A + Z2) = 0 
Collecting terms, 9Zi + 9.05Z2 = 6 [9] 

Since Eqs. [8] and [9] are simultaneous equations, they can be 
solved for 1^ and Z2. Hence, 

Ix = 0.3324 A 
I2 = 0.3324 A 

and Z = Zi + Z2 = 0.6648 A 

PROBLEMS 22 • 2 

Fig. 22-12 Circuit of Probs. 
5 and 6 

Fig. 22-13 Circuit of Probs. 
7 and 8 

1 A power supply supplies a total of 1.46 A to two resistors of 75 and 43 12 
connected in parallel. What is the terminal voltage of the power supply? 

2 A battery supplies 5.53 A to three resistors of 2 12, 2.7 12, and 3 12 con¬ 
nected in parallel. What is the terminal voltage of the battery? 

3 A generator with an internal resistance of 0.05 12 supplies 15.2 A to 
three resistors of 8, 4, and 10 12 connected in parallel. What is the gen¬ 
erator terminal voltage? 

4 A battery supplies 9.7 A to four resistors of 110, 50, 100, and 200 12 
connected in parallel. What is the voltage across the resistors? 

5 (a) What is the value of the current in the circuit of Fig. 22 • 12? 
(6) How much power is expended in each of the batteries? 

6 How much power would be expended in each battery in the circuit of 
Fig. 22 • 12 if the load resistance were changed from 10 to 0.5 12? 

7 (a) What is the generator current in the circuit of Fig. 22 • 13? 
(6) In what direction does the current flow? 

8 (a) What is the value of the generator current in the circuit of Fig. 22-13 
if the generator EMF voltage is decreased to 12 V? 
(6) In what direction does the current flow? 

22 • 5 FURTHER APPLICATIONS OF KIRCHHOFF'S LAWS 

In preceding examples and problems if two sources of EMF have been con¬ 
nected to the same circuit, the values of EMF and internal resistance have 
been equal. However, there are many types of circuits that contain more 
than one source of power, each with a different EMF and different internal 
resistance. 
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example 4 

solution 

Figure 22 • 14 represents two batteries connected in parallel and 
supplying current to a resistance of 2 ST One battery has an 
EMF of 6 V and an internal resistance of 0.15 2, and the other 
battery has an EMF of 5 V and an internal resistance of 0.05 2. 
Determine the current through the batteries and the current in 
the external circuit. Neglect the resistance of the connecting 
wires. 
Draw a diagram of the circuit representing the internal resist¬ 
ance of the batteries, and label the circuit with all the known 
values as shown in Fig. 22 • 15. Label the unknown currents, 
and mark the direction in which each current is assumed to flow. 
There are three currents of unknown value in the circuit, Zb Z2, 
and the current I which flows through the external circuit. How¬ 
ever, because Z = A + Z2, the unknown currents can be re¬ 
duced to two unknowns by considering a current of Zj + Z2 A 
flowing through the external circuit. 

For the path abcdefa, 
Collecting terms, 
For the path ghcdefg, 
Collecting terms, 

6 - 0.15A - 2(Zi -t- Z2) = 0 
2.15A + 2Z2 = 6 [10] 

5 - 0.05Z2 - 2(Z, + Z2) = 0 
2A + 2.05Z2 = 5 [11] 

Equations [10] and [11] are simultaneous equations that, when 
solved, result in 

h = 5.64 A 

PROBLEMS 
22 - 2 

TO 
SECTION 

22.5 

Fig. 22-14 Circuit of Example 4 

Fig. 22-15 Circuit of Example 4 
Labeled with Known Values 

and 

Z2 = -3.07 A 

The negative sign of the current Z2 denotes that this current is 
flowing in a direction opposite to that assumed. The value of the 
line current is 

Z = A + Z2 = 5.64 + (-3.07) = 2.57 A 

Try checking this solution by changing the direction of Z2 in Fig. 
22 • 15 and rewriting the voltage equations accordingly, re¬ 
membering that now, at junction f, for example, Z+Z2—Zi=0. 
This will demonstrate that it is immaterial which way the arrows 
point, for the signs preceding the current values, when found, 
determine whether or not the assumed directions are correct. As 
previously mentioned, however, it must be remembered that 
going through a resistance in a direction opposite to the current 
arrow represents a voltage (rise) which must be added, whereas 
going through a resistance in the direction of the current arrow 
represents a voltage (drop) which must be subtracted. 
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NETWORK 
SIMPLIFICATION 

Fig. 22-16 Circuit of Example 5 

example 5 Figure 22 • 16 represents a network containing three unequal 
sources of EMF. Find the current flowing in each branch. 

solution Assume a direction A, Z2, and Z3, and label them as shown in the 
circuit diagram. 
Although three unknown currents are involved, they can be re¬ 
duced to two unknowns by expressing one current in terms of the 
other two. This is accomplished by applying Kirchhoff’s first law 
to some junction such as c. By considering current flow toward 
a junction as positive and that flowing away from a junction as 
negative, 

A + Z3 - Z2 = 0 

A = A - A [12] 

Since there are now only two unknown currents Zj and Z2, 
Kirchhoff’s second law may be applied to any two different 
closed loops in the network. 

For path abcda, 4 — O.lZi + 6 — 0.2Z2 — 2Zi = 0 
Collecting terms, 2.1Z1 + 0.2Z2 — 10 [13] 

For path efcde, 

5 - 0.5(Z2 - A) - 3(Z2 - A) + 6 - 0.2Z2 = 0 
Collecting terms, 3.5Z1 — 3.7Z2 = —11 [14] 

Equations [13] and [14] are simultaneous equations that, 
when solved, result in 

Z! = 4.109 A 
and Z2 = 6.860 A 

Substituting in Eq. [12], 

A = 6.860 - 4.109 = 2.751 A 

The assumed directions of current flow are correct because all 
values are positive. 
The solution can be checked by applying Kirchhoff’s second law 
to a path not previously used. When the current values are sub¬ 
stituted in the equation for this path, an identity should result. 
Thus, for path adefcba, 

2A + 5 - 0.5(Z2 - A) - 3(Z2 - A) + 0.1A - 4 = 0 

Collecting terms, 

5.6A - 3.5A = -1 [15] 

The substitution of the numerical values of Zi and Z2 in Eq. [15] 
verifies the solution within reasonable limits of accuracy. 
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22.6 OUTLINE FOR SOLVING NETWORKS 

SECTION 
22.5 
TO 

PROBLEMS 
22 ■ 3 

In common with all other problems, the solution of a circuit or a network 
should not be started until the conditions are analyzed and it is clearly 
understood what is to be found. Then a definite procedure should be adopted 
and followed until the solution is completed. 

In order to facilitate solutions of networks by means of Kirchhoff's laws, 
the following procedure is suggested: 

1 Draw a large, neat diagram of the network, and arrange the circuits so 
that they appear in their simplest form. 

2 Letter the diagram with all the known values such as sources of EMF, 
currents, and resistances. Carefully mark the polarities of the known EMF's. 

3 Assign a symbol to each unknown quantity. 
4 Indicate with arrows the assumed direction of current flow in each 

branch of the network. The number of unknown currents can be reduced by 
assigning a direction to all but one of the unknown currents at a junction. 
Then, by Kirchhoff's first law, the remaining current can be expressed in 
terms of the others. 

5 Using Kirchhoff’s second law, set up as many equations as there are 
unknowns to be determined. So that each equation will contain some relation 
that has not been expressed in another equation, each circuit path followed 
should cover some part of the circuit not used for other paths. 

6 Solve the resulting simultaneous equations for the values of the un¬ 
known quantities. 

7 Check the values obtained by substituting them in a voltage equation 
that has been obtained by following a circuit path not previously used. 

PROBLEMS 22 • 3 

1 In the circuit of Fig. 22 • 17, (a) how much current flows through Ä3 

and (b) how much power is expended in Ä2? 
2 In the circuit of Fig. 22 • 17, Ä3 becomes short-circuited. 

(a) How much current flows through the short circuit? 
(6) How much power is supplied by generator Gi? 

3 In the circuit of Fig. 22 • 18, (a) how much current flows through R and 
(b) how much current flows through the batteries when R is open-
circuited and in what direction? 

4 In the original circuit of Fig. 22 • 18, R is shunted by a resistor of 1 2. 
(a) How much power is expended in the shunting resistor? 
(6) What is the terminal voltage of the 6-V battery? 

5 In the circuit of Fig. 22 • 19, if the internal resistance of the generator 
is neglected, (a) how much power is being supplied by the generator 
and (6) what is the voltage across R? 

6 In the circuit of Fig. 22 • 19, the generator has an internal resistance of 
0.15 2. If the connections of the generator are reversed, (a) how much 

Ä!=47S2 ä2=39O 

Fig. 22-17 Circuit of Probs. 
1 and 2 

Fig. 22-18 Circuit of Probs. 
3 and 4 

Fig. 22-19 Circuit of Probs. 
5 and 6 
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NETWORK 
SIMPLIFICATION 

Fig. 22 • 20 Circuit of Probs. 
7 and 8 

Fig. 22 ■ 21 Circuit of Prob. 9 

Fig. 22 • 22 Circuit of Probs. 
10 and 11 

power will be dissipated in R and (6) what will be the terminal voltage of 
the 10-V battery? 

7 In the circuit of Fig. 22 • 20, (a) how much power is dissipated in Rt 

and (6) what is the voltage across Ri? 
8 If Ri is short-circuited in the circuit of Fig. 22 • 20, (a) what is the volt¬ 

age across R^ and (6) how much power is dissipated in the battery? 
9 In the circuit of Fig. 22 • 21, battery A has an EMF of 114 V and an 

internal resistance of 1.5 Q. Battery B has an EMF of 108 V and an 
internal resistance of 1 ñ. Each generator has an EMF of 122 V and 
an internal resistance of 0.05 2. The resistance of each feeder is 
0.02 ST 
(a) How much current flows through battery A? 
(6) How much power is expended in battery B? 

10 In the circuit of Fig. 22 • 22, (a) how much power is expended in R5 and 
(b) how much power is expended in generator G2? 

11 If the connections of the battery are reversed in Fig. 22 • 22, (a) what is 
the voltage across R-, and (6) how much power is expended in the entire 
circuit? 

12 Figure 22 • 23 represents a bank of batteries supplying power to loads 
R„ and Rb, with Ri, R2, and R3 representing the lumped line resistance. 
Rb is disconnected, and R„ draws 50 A. Neglecting the internal resist¬ 
ance of the generator and batteries, (a) what is the voltage across R2 

and (6) how much current is flowing in the batteries and in what 
direction? 

13 Rb is connected in the circuit of Fig. 22 • 23 and draws 75 A. If R„ draws 
50 A, (a) what is the voltage across Rb and (6) how much power is 
expended in R2? 

Figs. 22 • 23 Circuit of Probs. 
12, 13, and 14 

R^O.in R2 = 0.5Sl R3 = O.2Q 

—\/\A7\—•—WV\—•—VWV—-

+ < < +

(g) 240 V S Ra > Rb 230 V 

b d 
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14 In the circuit of Fig. 22 • 23 the loads are adjusted until Ra draws 
150 A and Rb draws 25 A. How much power is lost in Ä2? 

22 ■ 7 EQUIVALENT STAR AND DELTA CIRCUITS 

example 6 Determine the currents through the branches of the network of 
Fig. 22 • 24 and find the equivalent resistance between points a 
and c. 

solution Assume directions for all the currents, and label them on the 
figure. By Kirchhoff's second law, 

Path efabce, 10 — 3Z2 — 4Z4 = 0 [16] 
Path efadce, 10 — 21, — 5Z3 = 0 [17] 
Path abda, — 3Z2 + 6Z5 + 2Zi = 0 [18] 
Path dbcd, — 6Z5 — 4Z4 + 5Z3 = 0 [19] 
Path abcda, -3Z2 - 4Z4 + 5Z3 + 21, = 0 [20] 

By Kirchhoff's first law, 

Junction a, I — I, — Z2 = 0 
Junction b, Z2 + Z5 — Z4 = 0 
Junction c, Z4 + Z3 — Z = 0 
Junction d, Z4 — Z5 — Z3 = 0 

•.Z=Z1 + Z2 [21] 
•.Z4 = Z2 + Z5 [22] 
.'.Z = Z3 + Z4 [23] 

[24] 

Substituting Z4 from Eq. [22] in Eq. [16] 

10 - 3Z2 - 4(Z2 + Z5) = 0 
or 7Z2 + 4Zn = 10 [25] 

PROBLEMS 
22 - 3 

TO 
SECTION 

22 • 7 

Fig. 22 • 24 Circuit of Example 6 

Substituting I3 from Eq. [24] in Eq. [17], 

10 - 21, - 5(Zt - Z5) = 0 
or 71, - 5Z5 = 10 [26] 

Substituting Z4 from Eq. [22] and Z3 from Eq. [24] in Eq. [19], 

-6Z5 - 4(Z2 + Z5) + 5(1, - Z5) = 0 
or 51, - 4L. - 15ZS = 0 [27] 

Solving Eqs. [25], [26], and [27] simultaneously, 

I, = 1.540 A 
Z2 = 1.339 A 
Z5 = 0.1562 A 

Substituting these values in equations not used before, 

Z3 = 1.383 A 
Z4 = 1.496 A 

By Eq. [21], I = I, + Z2 = 1.540 + 1.339 = 2.879 A 

The equivalent resistance between points a and c is 

331 



NETWORK 
SIMPLIFICATION 

Fig. 22 • 25 (a) Resistors 
Connected in Delta (b) Resistors 
Connected in Star Or Y 

E _ 10 
I “ 2.879 

= 3.47 2 

By expressing the branch currents in terms of other currents 
and labeling the circuit accordingly, this problem can be solved 
with a smaller number of equations. This is left as an exercise for 
you. 

You will note, from the solution of Example 5, that the solution by Kirch¬ 
hoff's laws of networks containing such configurations can become com¬ 
plicated. There are many cases, however, in which such networks can be 
replaced with more convenient equivalent circuits. 

The three resistors Ri, Ri, and R3 in Fig. 22 • 25a are said to be connected 
in delta (Greek letter A). Ra, Rb, and R,. in Fig. 22 • 256 are connected in 
star, or Y. 

If these two circuits are to be made equivalent, then the resistance be¬ 
tween terminals A and B, B and C, and A and C must be the same in each 
circuit. Hence, in Fig. 22 • 25a the resistance from A to B is 

P _ RÁR2 4- Rs) 
Ri + R2 + R3 

In Fig. 22 • 256 the resistance from A to B is 

R.IB — Rn + Rb 

Equating Eqs. [28] and [29], 

D , D R\Rs + R1R3 
R" + Rb = Ä. + ä2 + r; 

Similarly, 

Rb + Rc RjR¿ + R2R3 
Ri + R2 + Rs 

and 

R„ + Rc R1R3 + R2R3 
R\ + R2 + R3 

[28] 

[29] 

[30] 

[31] 

[32] 

Equations [30], [31], and [32] are simultaneous and, when solved, result in 
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RiR3 _ RiRï 
Ri + R2 + Ra ïâ. 

R1R2 R,R2

Ri + R2 + R, ïâa

and 

D _ _R2R3_ _ R2R3 
c “ Ri + Ri + Ri “ ZR, 

[33] 

[34] 

[35] 

Since S (Greek letter sigma) is used to denote “the summation of,” 

-R^ = Ri + R2 + R3

example 7 | n Fig 2 2 • 25a, Ä, = 2 2, R2 = 3 2, and R3 = 5 2. What are 

the values of the resistances in the equivalent Y circuit of 
Fig. 22 • 256? 

solution SR> = 2 4- 3 + 5 = 10 2 

Substituting in Eq. [33], R-’^= Ia

Substituting in Eq. [34], 

Substituting in Eq. [35], 

R, = = 0.6 2 

Rc 1.5 2 

example 8 Determine the equivalent resistance between points a and c in 
the circuit of Fig. 22 • 26a. 

a Fig. 22 ■ 26 

solution Convert one of the delta circuits of Fig. 22 • 26a to its equivalent 
Y circuit. Thus, for the delta abd, 

?.R\ = 3 + 6 + 2=112 

The equivalent Y resistances, which are shown in Fig. 22 • 266, 

SECTION 
22. 7 

Circuits of Example 8 

are 
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NETWORK 
SIMPLIFICATION 

R„ = = 0.545 a 

Rb = ~^-^ 1.64 2 

and 

Rr = = 109 2 

Fig. 22 • 27 Resistance 
Equivalents 

The equivalent Y circuit is connected to the remainder of the 
network as shown in Fig. 22 • 26c and is solved as an ordinary 
series parallel combination. Thus, 

Rnc — Rn + (Rc + RsXRb + Rj) 
Rc + Rs + Rb + R¡ 

0.545 + (109+ 5X1-64 + 4) 
1.09 + 5 + 1.64 + 4 

= 3.47 2 

Note that the values of Fig. 22 • 26 are the same as those of 
Fig. 22 • 24. 

The equations for converting a Y circuit to its equivalent delta circuit are 
obtained by solving Eqs. [33], [34], and [35], simultaneously. This results in 

Ä. = [36] 
KC

R2 = ^- [37] 
Ka 

Rs = [38] 
Kb 

where 

^Ry = R„Rb + R„RC + RaRc

A convenient method for remembering the A to Y and Y to A conversions 
is illustrated in Fig. 22 • 27. 

In converting from A to Y, each equivalent Y resistance is equal to the 
product of the two adjacent A resistances divided by the sum of the A resist¬ 
ances. For example, R\ and Rs are adjacent to Äa; therefore, 

R. RA 

In converting from Y to A, each equivalent A resistance is found by dividing 
^.Ry by the opposite Y resistance. For example, R¡ is opposite Rc ; therefore, 

Fig. 22 • 28 Circuit of Probs. 
7 to 12 Ri = 

Rc 
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note A comparison of the Y network of Fig. 22 • 256 with the network 
formed by Ri, R2, and Ä3 of Fig. 13 • 9 will show the common interchange¬ 
ability of the names T and Y and 77 (pi) and A (delta) in electronics circuitry. 

problems 22 - 4 

1 In the A circuit of Fig. 22 • 25a, Ä, = 12 S2, R2 = 15 fl, and Ä3 = 18 2. 
Determine the resistances of the equivalent Y circuit. 

2 In the A circuit of Fig. 22 • 25a, Ri = 120 2, R2 = 240 2, and 
R3 = 300 2. Determine the resistances of the equivalent Y circuit. 

3 In the w circuit of Fig. 22 • 25a, Ri = R2 = R3 = 500 2. Determine the 
resistances of the equivalent T circuit. 

4 In the Y circuit of Fig. 22 • 256, Ra = 8 2, Rb = 16 2, and Rc - 40 2. 
Determine the resistances of the equivalent A circuit. 

5 In the T circuit of Fig. 22 • 256, R„ = 4.7 k2, Rb — 3.3 k2, and 
Rc = 1.8 k2. Determine the resistances of the equivalent w circuit. 

6 In the T circuit of Fig. 22 • 256, Ra = Rb = Rc = 1.5 k2. Determine the 
resistances of the equivalent w circuit. 

In Probs. 7 to 17, solve the circuits by both the A to Y conversion and Kirch¬ 
hoff's laws: 

7 In the circuit of Fig. 22 • 28, Ri = 20 2, R2 = 10 2, R3 = 45 2, 
RA = 12 2, Rs = 15 2, and E = 1.5 V. What is the value of 7? 

8 How much current flows through R3 of Prob. 7? 
9 How much current is flowing through R2 oí Prob. 7? 

10 In the circuit of Fig. 22 • 28, Ä, = 25 2, R2 = 10 2, Ä3 = 15 2, 
Ri = 50 2, Ä5 — 30 2, and E = 50 V. What is the value of I? 

11 How much current is flowing through R2 of Prob. 10? 
12 In the circuit of Fig. 22 • 28, Rt = ?, R2 = 10 2, Ä3 = 15 2, Ä« = 50 2, 

Ä5 = 30 2, E = 32 V, and I = 2.39 A. What is the resistance of Rt? 
13 Determine the value of the current I in Fig. 22 • 29 if E — 100 V. 
14 How much current flows through R4 of Prob. 13? 
15 How much current flows through Rb of Prob. 13? 
16 How much current flows through the load resistance RL in Fig. 22 • 30? 
17 How much current does the signal generator G supply to the circuit of 

Fig. 22-31? 

22-8 THEVENIN AND NORTON EQUIVALENTS 

Often a knowledge of the actual components inside a power supply circuit is 
immaterial so long as we can measure the open-circuit output voltage and 
the short-circuit output current. From these easy measurements, we can 
picture a model of the circuit which will behave in exactly the same way as 
the original so far as any external connected circuit is concerned. Figure 
22 • 32 illustrates this idea. 

A voltmeter with extremely high resistance can make a reasonable meas-

SECTION 
22 ■ 7 

TO 
SECTION 

22 ■ 8 

K2-20O 
R ! - 5 0 -VWV-
,rWW K3-15« ä4-25O 

Fig. 22 • 29 Circuit of Probs. 
13, 14, and 15 

50 0 

50 0 

Fig. 22 • 30 Circuit of Prob. 16 

50 
AA/W 

4 0 

10 0 
A/Wv 

Fig. 22 • 31 Circuit of Prob. 17 
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NETWORK 
SIMPLIFICATION 

Fig. 22 ■ 32a Any Power Supply 
Will Deliver a Particular 
Open-Circuit (No Load) EMF, Eo, 
Which May Be Measured By an 
Infinite Resistance Voltmeter 

Fig. 22 • 32b Any Power Supply 
Will Deliver a Short-Circuit 
(Maximum Load) Current, Isc , 
Which May Be Measured By a 
Zero Resistance Ammeter 

Fig. 22 • 33 Thevenin's 
Equivalent of Power Supply of 
Fig. 22 • 32; That Is, a Source Of 
Constant EMF ETh In Series With 
Internal Resistance Rn

Fig. 22 ■ 34 Norton's Equivalent 
of Power Supply of Fig. 22 • 32; 
That Is, a Source Of Constant 
Current IN in Parallel with Internal 
Resistance RN

Same power supply 

urement of the open circuit EMF which the power supply generates. And an 
ammeter with very low resistance can make a reasonable measurement of 
the short-circuit current which the power supply can deliver. Two such 
models of power supplies are available to us: 

Thevenin’s theorem suggests that the power supply of Fig. 22 • 32 can be 
pictured as consisting of a simple equivalent source of constant EMF ETh in 
series with an equivalent resistance RTh. Figure 22 • 33 shows the Thevenin 
equivalent of the circuit of Fig. 22 • 32. Obviously, 

^Th = £o 

ÄTh 
E0
Tsc 

r _ ^Th 

L “ ÄTh + Ru 

[39] 

[40] 

[41] 

Norton’s theorem suggests that the power supply of Fig. 22 • 32 can be 
pictured as consisting of a simple equivalent source of constant current IN 
in parallel with an equivalent resistance Ry- Figure 22 • 34 shows the Norton 
equivalent of the circuit of Fig. 22 • 32. You can see that 

ÄN = ÄTh [42] 

/n = [43] 
“Th 

You should apply your knowledge of parallel resistances to prove Eq. [44], 
The solution to network problems may sometimes be simplified by apply¬ 

ing one or the other of these two theorems. 

example 9 Use Thevenin's theorem to solve the current flow through the 
load resistor R in Fig. 22 • 14. Et = 6 V with an internal resist¬ 
ance of 0.15 SI, E2 = 5 V with an internal resistance of 0.05 SI, 
and R - 2 SI. 

solution Redraw the figure to show R as the load to be connected and 
the rest of the circuit as a power supply (Fig. 22 • 35). 
Determine the open-circuit voltage which would appear across 
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SECTION 
22 ■ 8 

Fig. 22 • 35a Redrawn From Fig. 
22-14 for Thevenin's Solution 

Fig. 22 • 35b Redrawn From Fig. 
22-14 for Thevenin's Equivalent 
Circuit 

Fig. 22 • 35c Redrawn From Fig. 
22-14 for Norton's Equivalent 
Circuit 

the terminals ab of Fig. 22 • 35. A high-resistance voltmeter 
would measure 

■EtH = Eo = £2 + 4T2 

The circulating current Ic is found by applying Ohm's law to the 
internal circuit: 

I = 6 - 5 - 1 — 5 A 
c 0.15 + 0.05 0.20 

and 

Em = 5 + 5(0.05) = 5 + 0.25 = 5.25 V 

Determine the circuit resistance which would be seen by an 
ohmmeter connected to terminals ab with the sources of EMF 
shorted and represented by their internal resistances. Under 
such circumstances, an ohmmeter would see rx and r2 in 
parallel: 

P 0.15x0.05 
ÄTh = 0.15 + 0.05 = ° 0375 ° 

Thus, the Thevenin equivalent circuit (Fig. 22 • 356) is a con¬ 
stant source of 5.25 V in series with 0.0375 Í2. Then the current 
through the 242 “load” is 

/r = 5.25 
2.0375 

= 2.58 A 

(Compare with Example 4, Sec. 22 • 5) 

example 10 Solve the same problem by using Norton’s theorem. 
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NETWORK 
SIMPLIFICATION 

solution As before, determine the equivalent internal resistance of the 
"power supply” as seen by a connected load: 

ÄN = ÄTh = 0.0375 fi 

Then determine the current which the "power supply” would 
drive through a short circuit across terminals ab. This may be 
done by using a Thevenm open circuit approach and finding 

Fig. 22 • 36 Determination of 
In = Ise for Fig. 22 • 35 

In -
ÄTh 

5.25 
0.0375 

140 A 

from which 

ZR = X 140 = 2.58 A 
z.Uo/o 

Alternatively, determine from first principles what the short-
circuit current through ab would be. Figure 22 • 36 shows this 
approach. Using Kirchhoff’s laws, 

0.15(ZSC + Z5) + 0.05Z5 = 1 
0.015(Zsc + A) =6 

from which Zsc = 140 A 
and ZR = 2.58 A 

22- 9 OUTLINE FOR THEVENIN AND NORTON SOLUTIONS 

The following systematic procedure will simplify the utilization of these two 
circuit simplification theorems: 

1 Determine the leg of a circuit through which the current flow is to be 
determined and redraw the circuit, omitting that part. 

2 The balance of the circuit is considered a power supply whose ter¬ 
minals are eventually to deliver current to the part omitted. Often it is help¬ 
ful to letter all connecting points in the original circuit to make sure that the 
equivalent has been drawn correctly. 

3 Determine the voltage which would be indicated by a voltmeter con¬ 
nected across the open-circuit terminals of the "power supply.” This is E-rh. 

4 Short-circuit all the internal sources of EMF, leaving them represented 
by their internal resistances, and determine the resistance which would be 
indicated by an ohmmeter connected across the open-circuit terminals of the 
power supply. This is ÄTh = Ä\. 

P 

5 Determine In = -5^. or 
ÄTh 

6 Determine the value of In as the current which the power supply would 
drive through an ammeter connected across its terminals. 

7 Use Eq. [41] or [44] to determine the current flow through the re¬ 
connected “load.” 
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example 11 Determine the current Z5 through the 642 resistor of Fig. 
22 • 24. 

solution Redraw the circuit. Omit the 6-S2 bridging resistor and let the 
balance of the circuit be a power supply which will later serve 
the 6-2 load (Fig. 22 • 37). 

(a) 

Rn = 3.145 Í2 

(b) 

When terminals bd are open-circuited, the 10-V source will 
drive currents Ia and Ib through the power supply internal cir¬ 
cuitry, thereby producing voltage drops across the 4- and 542 
resistors with the polarities indicated: 

Ia = ^- = 1.43 A 

Ib = ^- = 1.43 A 

V, = 1.43 X 4 = 5.72 V 
V5 = 1.43 X 5 = 7.15 V 

A voltmeter across terminals bd will measure 

En = 7.15 - 5.72 = 1.43 V 

When the 10-V internal source is shorted, its internal resistance 
being zero, an ohmmeter across terminals bd will measure 

flTh - IäI + 4^4 = 1-715 + 1.43 = 3.145 Í2 
3+4 2+5 

Then the Thevenin equivalent to the power supply is a constant 
1.43 V in series with 3.145 Í2 

I - 1-43 
5 6 + 3.145 

= 156 mA 

(Compare Example 6, Sec. 22 • 7.) 

PROBLEMS 22 ■ 5 

1 A power supply delivers an open-circuit EMF of 120 V. An ammeter con¬ 
nected across its terminals measures a short-circuit current of 150 A. 

SECTION 
22 - 9 

TO 
PROBLEMS 

22 ■ 5 

Fig. 22 • 37a Redrawn from Fig. 
22 • 24 for Thevenin 's Solution 
of Current ls Through Resistor 
Across Points bd 

Fig. 22 • 37b Ihevenin's 
Equivalent Circuit for (a) 
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NETWORK 
SIMPLIFICATION 

(a) What is the Thevenin circuit equivalent to the power supply so far as 
any connected load is concerned? 

(b) What is the Norton equivalent to the power supply? 
2 A power supply delivers an open circuit EMF of 6 V. An ammeter con¬ 

nected across its terminals measures a short-circuit current of 220 mA. 
(a) What is the Thevenin equivalent circuit? 
(6) What is the Norton equivalent circuit? 

3 What is the Thevenin equivalent circuit of the “power supply” portion of 
the circuit of Fig. 22 • 28 for the solution of the current through Ä2 if 
Ri = 20 2, Ä2 = 10 12, R3 = 45 12, Rt = 12 12, R-, = 15 12, and 
E — 1.5 V? What is the current flow through Ä2? 

4 What is the Thevenin equivalent circuit of the power supply portion of 
the circuit of Fig. 22 • 28 for the solution of the current through R> if 
Ri = 25 12, R2 = 10 12, R3 = 15 12, R< = 50 12, R-, = 30 12, and 
E = 50 V? What is the current through Ä2? 

5 What is the Norton equivalent circuit of the power supply portion of the 
circuit of Prob. 3 for the solution of the current through Ä5? What is the 
current through RJ 

6 What is the Thevenin equivalent circuit of the power supply portion of 
the circuit of Prob. 4 for the solution of the current through RJ What is 
the current through RJ 

340 



This chapter deals with the study of angles as an introduction to the branch 
of mathematics called trigonometry. The word “trigonometry” is derived 
from two Greek words meaning “measurement" or “solution” of triangles. 

Trigonometry is both algebraic and geometric in nature. It is not con¬ 
fined to the solution of triangles but forms a basis for more advanced sub¬ 
jects in mathematics. A knowledge of the subject paves the way for a clear 
understanding of ac and related circuits. 

23 • 1 ANGLES 

In trigonometry, we are concerned primarily with the many relations that 
exist among the sides and angles of triangles. In order to understand the 
meaning and measurement of angles, it is essential that you thoroughly un¬ 
derstand these corelations. 

An angle is formed when two straight lines meet at a point. In Fig. 23 • la, 
lines OA and OX meet at the point O to form the angle AOX. Similarly, in 
Fig. 23 • 16, the angle BOX is formed by lines OB and OX meeting at the 
point O. This point is called the vertex of the angle, and the two lines are 
called the sides of the angle. The size, or magnitude, of an angle is a measure 
of the difference in directions of the sides. Thus, in Fig. 23-1, angle BOX is 
a larger angle than AOX. The lengths of the sides of an angle have no bear¬ 
ing on the size of the angle. 

In geometry it is customary to denote an angle by the symbol If this 
notation is used, “angle AOX" would be written A AOX. 

Fig. 23 ■ 1 Formation of Angles 
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ANGLES 

Right Angles Fig. 23 • 2 

An angle is also denoted by the letter at the vertex or by a supplementary 
letter placed inside the angle. Thus, angle AOX is correctly denoted by 
A AOX, AO, or A3. Also, BOX could be written A BOX, AO, or A$. 

If equal angles are formed when one straight line intersects another, the 
angles are called right angles. In Fig. 23 • 2, angles XO\ , <>, A' O\ , and a 

are all right angles. 
An acute angle is an angle that is less than a right angle. In Fig. 23 • 3a, 

¿a is an acute angle. 
An obtuse angle is an angle that is greater than a right angle. In Fig. 

23 -36, Aß is an obtuse angle. 
Two angles whose sum is one right angle are called complementary 

angles. Either one is said to be the "complement” of the other. Thus, in Fig. 
23 • 3c, angles <> and Ö are complementary angles; <> is the complement of 

3, and 3 is the complement of <>. 

Fig. 23 ■ 3 (a) Acute Angle (b) 
Obtuse Angle (c) Complementary 
Angles, (d) Supplementary Angles 

Two angles whose sum is two right angles (a straight line) are called sup¬ 
plementary angles. Either one is said to be the supplement of the other. Thus, 
in Fig. 23 • 3d, angles b and a are supplementary angles; b is the supplement 

of a, and a is the supplement of b. 

Fig. 23 ■ 4 Angle 3 In Standard 
Position 

23 • 2 GENERATION OF ANGLES 

In the study of trigonometry, it becomes necessary to extend our concept of 
angles beyond the geometric definitions stated in Sec. 23- 1. An angle 
should be thought of as being generated by a line (line segment or half ray) 
that starts in a certain initial position and rotates about a point called the 
vertex of the angle until it stops at its final position. The original position of 
the rotating line is called the initial side of the angle, and the final position 

is called the terminal side of the angle. 
An angle is said to be in standard position when its vertex is at the origin 

of a system of rectangular coordinates and its initial side extends in the posi¬ 
tive direction along the x axis. Thus, in Fig. 23 • 4. the angle 3 is in standard 
position. The vertex is at the origin, and the initial side is on the positive x 
axis. The angle has been generated by the line OP revolving, or sweeping, 

from OX to its final position. 
An angle is called a positive angle if it is generated by a line revolving 

counterclockwise. If the generating line revolves clockwise, the angle is 
called a negative angle. In Fig. 23 • 5, all angles are in standard position. 
3 is a positive angle that was generated by the line OM revolving counter¬ 
clockwise from OX. <¡> is also a positive angle whose terminal side is OP. a is 
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a negative angle that was generated by the line OQ revolving in a clockwise 
direction from the initial side OX. ß is also a negative angle whose terminal 
side is ON. 

If the terminal side of an angle that is in standard position lies in the first 
quadrant, then that angle is said to be an angle in the first quadrant, etc. 
Thus, tí in Fig. 23 • 4 and tí in Fig. 23 • 5 are in the first quadrant. Similarly, 
in Fig. 23 • 5, ß is in the second quadrant, is in the third quadrant, and a is 
in the fourth quadrant. 

23 • 3 THE SEXAGESIMAL SYSTEM 

There are several systems of angular measurement. The three most com¬ 
monly used are the right angle, the circular (or natural) system, and the 
sexagesimal system. The right angle is almost always used as a unit of angu¬ 
lar measure in plane geometry and is constantly used by builders, surveyors, 
etc. However, for the purposes of trigonometry, it is an inconvenient unit 
because of its large size. 

The unit most commonly used in trigonometry is the degree, which is one¬ 
ninetieth of a right angle. The degree is defined as the angle formed by one 
three hundred sixtieth part of a revolution of the angle-generating line. The 
degree is divided into 60 equal parts called minutes, and the minute into 60 
equal parts called seconds. The word “sexagesimal” is derived from a Latin 
word pertaining to the number 60. 

Instead of dividing the degrees into minutes and seconds, we shall divide 
them decimally for convenience. For example, instead of expressing an angle 
of 43 degrees 36 minutes as 43°36', we write 43.6°. 

The actual measurement of an angle consists in finding how many degrees 
and a decimal part of a degree there are in the angle. This can be accom¬ 
plished with a fair degree of accuracy by means of a protractor, which is an 
instrument for measuring or constructing angles. 

To measure an angle XOP, as in Fig. 23 • 6, place the center of the pro¬ 
tractor indicated by O at the vertex of the angle with, say, the line OX co¬ 
inciding with one edge of the protractor as shown in Fig. 23 • 7. The magni¬ 
tude of the angle, which is 60°, is indicated where the line OP crosses the 
graduated scale. 

To construct an angle, say 30° from a given line OX, place the center of 
the protractor on the vertex O. Pivot the protractor about this point until OX 

SECTION 
23 2 

TO 
SECTION 

23 ■ 3 

Y 

N 

P 
Y' 

Fig. 23 • 5 Generation of Angles 

P 

Fig. 23 • 6 Angle to Be Measured 

P 

Fig. 23 ■ 7 Using Protractor to 
Measure Angle XOP of Fig. 23 ■ 6 

Fig. 23 • 8 Using Protractor to 
Construct Angle 

343 



ANGLES 

Fig. 23 • 9 30° Angle Constructed 
by Protractor in Fig. 23 • 8 

Fig. 23-10 Generation of 750° 
Angle 

is on a line with the 0° mark on the scale. In this position, 30° on the scale 
now marks the terminal side OP as shown in Figs. 23 • 8 and 23 • 9. 

23 • 4 ANGLES OF ANY MAGNITUDE 

In the study of trigonometry, it will be necessary to extend our concept of 
angles in order to include angles greater than 360°, either positive or nega¬ 
tive. Thinking of an angle being generated, as explained in Sec. 23 • 2, per¬ 
mits consideration of angles of any size, for the generating line can rotate 
from its initial position in a positive or negative direction so as to produce an 
angle of any size, even greater than 360°. Figure 23 • 10 illustrates how an 
angle of +750° is generated. However, for the purpose of ordinary compu¬ 
tation, we consider such an angle to be in the same quadrant as its terminal 
side with a magnitude equal to the remainder after the largest multiple of 
360° it will contain has been subtracted from it. Thus, in Fig. 23 • 10, 
the angle is in the first quadrant and, geometrically, is equal to 

750° - 720° = 30°. 

PROBLEMS 23 • 1 

1 What is the complement of (a) 68°. (b) 23°, (c) 41°, (d) 170°, (e) 255", 

(f) -10°? 
2 What is the supplement of (a) 75°, (6) 153°, (c) 258°, (d) 270 , 

(e) 350°, (/) -150°? 
3 Construct two complementary angles each in standard position on the 

same pair of axes. 
4 Construct two supplementary angles each in standard position on the 

same pair of axes. 
5 By using a protractor, construct the following angles and place them 

in standard position on rectangular coordinates. Indicate by arrows 
the direction and amount of rotation necessary to generate these 
angles: (a) 45°, (6) 160°, (c) 220°, (d) 315°, (e) 405°, (/) -60°, 
(g) -315°, W  -300°, (0 -390°, (y) -850°. 

6 Through how many degrees does the minute hand of a clock turn in 

(a) 20 min, (b) 40 min? 
7 Through how many right angles does the minute hand of a clock turn 

from 10:30 A.M. to 5:00 p.m. of the same day? 
8 Through how many degrees per minute do (a) the second hand, (6) the 

minute hand, (c) the hour hand of a clock rotate? 
9 A motor armature has a speed of 3600 rev/min. What is the angular 

velocity (speed) in degrees per second? 
10 The shaft of the motor armature in Prob. 9 is directly connected to a 

pulley 12 in. in diameter. What is the pulley rim speed in feet per 

second? 
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23 • 5 THE CIRCULAR, OR NATURAL, SYSTEM 

The circular, or natural, system of angular measurement is sometimes called 
radian measure or vr measure. The unit of measure is the radian. [In 
this book the abbreviation for radian is "rad” when used with units 
(0.55 rad/sec); but an angle of 0.55 radian is written symbolically with a 
Roman superscript "r” (0.55r) to parallel the use of the degree symbol 
(288°).] 

A radian is an angle that, when placed with its vertex at the center of a 
circle, intercepts an arc equal in length to the radius of the circle. Thus, in 
Fig. 23 • 11, if the length of the arc AP equals the radius of the circle, then 
angle AOP is equal to one radian. Figure 23 • 12 shows a circle divided into 
radians. 

The circular system of measure is used extensively in electrical and elec¬ 
tronics formulas and is almost universally used in the higher branches of 
mathematics. 

From geometry, it is known that the circumference of a circle is given by 
the relation 

C-2^r [1] 

where r is the radius of the circle. Dividing both sides of Eq. [1] by r, we have 

7 = [2] 

Now Eq. [2] says simply that the ratio of the circumference to the radius is 
2w; that is, the length of the circumference is 2tt times longer than the radius. 
Therefore, a circle must contain 2tt radians (27rr). Also, since the circumfer¬ 
ence subtends 360°, it follows that 

2^ = 360° 
w = 180° 

or 

lr _ 1801 _ 57 2959° s 57.3° [3] 
77 L J

From Eq. [3], the following is evident: 

To reduce radians to degrees, multiply the number of radians by 57.3°. 

If absolute accuracy is desired, or a slide rule is being used, multiply by 
180° 
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23 • 4 

TO 
SECTION 

23 ■ 5 

Fig. 23-11 Angle AOP = 1 r

To reduce degrees to radians, multiply the number of degrees by 0.01745. 
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If absolute accuracy is desired, or a slide rule is being used, multiply by 

77 
180° ’ 

Several types of slide rules have gage marks at 57.3 on scales C and D de¬ 
noted by R (for radians). These marks are a convenience in converting from 
radians to degrees. Since 0.01745 is the reciprocal of 57.3, the former num¬ 
ber will be found on the reciprocal scales opposite the R gage marks. Simi¬ 
larly, if 180 on scale CF is set to 77 on DF, 0.01745 will appear on scale D 
opposite the index of scale C. In this manner the rule is set up for multiplica¬ 

tion by 0.01745. 

example 1 Reduce 1.7' to degrees. 
solution 1' = 57.3° 

Hence, 1.7' = 1.7 x 57.3 = 97.4° 

example 2 Convert 15.6° to radians. 
solution 1° = 0.01745r

Hence, 15.6° = 15.6 x 0.01745 = 0.272' 

PROBLEMS 23 • 2 

1 Express the following angles in radians, first in terms of 77 and second 
as decimals: (a) 60°, (b) 120°, (c) 165°, (d) 225°, (e) 285°, (/) 5°. 

2 Express the following angles in degrees: (a) 2', (&) 0.6'(c)^-, (</)^~, 

(e)^í, (/) 0.61087'. 
6 

3 Through how many radians does the second hand of a clock turn be¬ 
tween 6:35 A.M. and 9:20 A.M. of the same day? 

4 Through how many radians does the hour hand of a clock turn in 
40 min? 

5 Through how many radians does the minute hand of a clock turn in 

1 hr 5 min? 
6 What is the angular velocity in radians per second of (a) the second 

hand, (6) the minute hand, (c) the hour hand of a clock? 
7 The speed of a rotating switch is 400 rev/min. What is the angular 

velocity of the switch in radians per second (rad/sec)? 
8 A radar antenna rotates at 6 rev, min. What is its angular velocity in 

radians per second? 
9 A radar antenna has an angular velocity of 77 rad/sec. What is its speed 

of rotation in revolutions per minute? 
10 What is the approximate angular velocity of the earth in radians per 

minute (rad/min)? 
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23 • 6 SIMILAR TRIANGLES 

Two triangles are said to be similar when their corresponding angles are 
equal. That is, similar triangles are identical in shape but may not be the 
same size. The important characteristic of similar triangles is that a direct 
proportionality exists between corresponding sides. The three triangles of 
Fig. 23 • 13 have been so constructed that their corresponding angles are 

equal. Therefore, the three triangles are similar, and their corresponding 
sides are proportional. This leads to the proportions 

ab^^de^_gh_ bc__ef__hi^ 
AC DF GI AB ~ DE ~ GH 

As an example, if AB = 0.5 in., DE - 1 in., and GH = 1.5 in., then DFis 
twice as long as AC and GI is three times as long as AC. Similarly, W/is 
three times as long as BC, and EF is twice as long as BC. 

The properties of similar triangles are used extensively in measuring dis¬ 
tance, such as the distances across bodies of water or other obstructions 
and the heights of various objects. In addition, the relationship between simi 
lar triangles forms the very basis of trigonometry. 

Since the sum of the three angles of any triangle is 180°, it follows that if 
two angles of a triangle are equal to two angles of another triangle, the third 
angle of one must also be equal to the third angle of the other. Therefore, 
two triangles are similar if two angles of one are equal to two angles of the 
other. 

If the numerical values of the necessary parts of a triangle are known, the 
triangle can be drawn to scale with the use of compasses, protractor, and 
ruler. The completed figure can then be measured with protractor and ruler 
to obtain the numerical values of the unknown parts. This is conveniently 
accomplished on squared paper. 

note In the following problems the sides and angles of all triangles will be 
as represented in Fig. 23 • 14. That is, the angles will be represented by the 
capital letters A, B, and C and the sides opposite these angles will be the 
corresponding letters a, b, and c. 

PROBLEMS 
23 ■ 2 

TO 
SECTION 

23 • 6 

Fig. 23 • 13 Similar Triangles 

B 

Fig. 23 • 14 Triangle for Probs. 
3 to 10 
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PROBLEMS 23 ■ 3 

1 The sides of a triangular plot are 8, 12, and 16 ft. The shortest side of 
a scale triangle is 3 ft. How long are the other two sides of the smaller 

triangle? 
2 Two triangles are similar. The sides of the first are 18, 30, and 36 in. 

The longest side of the second is 20 mm. How long are the other two 
sides of the second triangle? 

Solve the following triangles by graphical methods: 

3 b = 3, A = 53.1°, C = 90° 
4 a — 15, b = 20, c — 25 
5 b = 4, A = 80“, C = 80° 
6 b = 5, c = 4.75, A = 110° 
7 a = 10, B = 100°, C = 46.2° 
8 a = 4.95, b = 7, B = 45° 
9 a = 15.4, b = 20, C = 29.3° 
10 a = 35, c = 35, A = 60° 

6 = base 

- Fig. 23-15 Right Triangle 

23 -7 THE RIGHT TRIANGLE 

If one of the angles of a triangle is a right angle, the triangle is called a right 
triangle. Then, since the sum of the angles of any triangle is 180°, a right 
triangle contains one right angle and two acute angles. Also, the sum of the 
acute angles must be 90°. This relation enables us to find one acute angle 
when the other is given. For example, in the right triangle show in Fig. 23-15, 

if 0 = 30°, then <f> = 60°. 
Since all right angles are equal, if an acute angle of one right triangle is 

equal to an acute angle of another right triangle, the two triangles are similar. 
The side of a right triangle opposite the right angle is called the hypot¬ 

enuse. Thus, in Fig. 23-15, the side c is the hypotenuse. When a right tri¬ 
angle is in standard position as in Fig. 23 • 15, the side a is called the altitude 

and the side b is called the base. 
Another very important property of a right triangle is that the square of 

the hypotenuse is equal to the sum of the squares of the other two sides. 

That is, 

c2 = a2 + b2

This relationship provides a means of computing any one of the three sides 
if two sides are given. 

example 3 A chimney is 130 ft high. What is the length of its shadow at a 
time when a vertical post 5 ft high casts a shadow that is 7 ft long? 

solution BC in Fig. 23-16 represents the post, and EF represents the 
stack. Because the rays of the sun strike both chimney and post 
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Fig. 23-16 Similar Right 
Triangles of Example 3 

at the same angle, right triangles ABC ano DEF are similar. 
Then, since 

DF _ EF 
AC BC 

by substituting, 
7 5 

or DF = 182 ft 

example 4 What is the length of a in the triangle of Fig. 23 • 17? 
solution Given c2 = a2 + b2. 

Transposing, a2 = c2 — b2 
y/, a = y/c2 — b2
Substituting, « = \/2402 — 2202 = \/9200 

.'. a = 95.9 ft 

PROBLEMS 23 • 4 

In the following right triangles, solve for the indicated elements: 

1 a = 56, b = 15, A = 75°. Find c and B. 
2 a — 24, c = 30, .4 — 53 1°. Find 6 and B. 
3 b = 78, c = 80, B = 77°. Find a and A. 
4 An instrument plane flies north at the rate of 650 knots, and a hurri¬ 

cane hunter flies east at 1100 knots. If both planes start from the same 
place at the same time, how far apart will they be in 2 hr? 

5 In Fig. 23 • 18, if AC = 18 ft, BC = 24 ft, and AE — 9 ft, find the 
length of DE. 

6 In Fig. 23 • 18, if AD = 30 in.. DB = 20 in., and BC = 40 in., what is 
the length of DE? 

7 In Fig. 23 • 18, AE = 12 ft, EC = 12 ft, and AB = 46.5 ft. What is the 
length of DE? 

8 The top of an antenna tower is 130 ft above the ground. The tower is to 
be guyed at a point 20 ft below its top to a point on the ground 60 ft 
from the base of the tower. What is the length of the guy? 

9 A transmitter antenna tower casts a shadow 800 ft long at a time when 
a yardstick held upright with one end touching the ground casts a 
shadow 5 ft long. What is the height of the tower? 

10 The tower in Prob. 9 is to be guyed from its top with a 700-ft guy wire. 
How far out from the base of the tower may the guy be anchored? 

Fig. 23-17 Right Triangle of 
Example 4 

Fig. 23-18 Similar Right 
Triangles of Probs. 5, 6, and 7 
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trigonometric functions^ 

chapter 

In the preceding chapter, it was shown that plane geometry furnishes two 
important properties of right triangles. These are 

A + B = 90° 

and 

a2 + b2 = c2

Fig. 24 ■ 1 Similar Triangles 

Fig. 24 • 2 Similar Triangles of 
Fig. 24-1, Except Triangle DEF 
Has Been Rotated 

The first relation makes it possible to find one acute angle when the other is 
known. By means of the second, any one side can be computed if the other 
two sides are known. These relations, however, furnish no methods for com¬ 
puting the magnitude of an acute angle when two sides are given. Also, using 
these relations, we cannot compute two sides of a right triangle if the other 
side and one acute angle are given. With only this amount of knowledge, we 
should be forced to resort to actual measurement by graphical methods. 

The results obtained by such methods are unsuitable for use in many 
problems, for even with the greatest care and large-scale drawings the de¬ 
gree of accuracy is definitely limited. There is, then, an evident need for cer¬ 
tain other relations in which the sides of a right triangle and the angles are 
united. Such relations form the foundation of trigonometry. 

24- 1 TRIGONOMETRIC FUNCTIONS ARE RATIOS 

In Sec. 23 • 6, we saw that triangles may be similar regardless of their respec¬ 
tive sizes. For example, in Fig. 24-1, the two triangles ABC and DEF are 
similar, and 

ÆB_DQ BQ _ EQ t

AC DF AC DF 

Even if one of the pair of similar triangles is tilted (Fig. 24 • 2), the ratios still 
hold, since the triangles themselves have not changed in any of their dimen¬ 
sions. We may, however, have to look a little harder to see that this is so. 
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Consider the 30°-60°-90° triangle developed by bisecting an equilateral 
triangle (Fig. 24 • 3). First of all, you should confirm that, if the hypotenuse 
is 2 units long, then the base AC will be 1 unit long, and the altitude CB will 
be \/3 units long. Then consider the truth of the following statement: 

In the 30°-60°-90° triangle, regardless of its size, the ratio of the base to 
the hypotenuse will always be 0.5000. 

You should draw several 30°-60°-90° triangles of different sizes and 
prove to your complete satisfaction that this statement must always be true. 

If the triangle were now rotated so that the side CB were the base and AC 
the altitude, the above statement would have to be adjusted. Therefore, we 
should rename the parts of the triangle so that there can be no possibility of 
misunderstanding a statement about it. The most convenient way to refer to 
a side of a triangle is to relate it to the angles in the triangle. For instance, 
the hypotenuse is always the longest side, it is always opposite the right 
angle, and it is always adjacent to (forms) each of the other two angles. We 
can always refer to it as simply the hypotenuse without introducing any pos¬ 
sibility of being misunderstood. 

In the 30°-60°-90° triangle with which we are dealing, the side AC is 
always the side opposite the 30° angle, and it is always the side adjacent to 
the 60° angle, regardless of the letter designation given it or the orientation 
of the triangle. 

Similarly, the side CB is always opposite the 60° angle, and it is always 
adjacent to the 30° angle, regardless of the symbols used to identify the side 
or how the triangle is tilted. These side-angle relationships are Illustrated in 
Fig. 24 • 4, and they must be memorized, because they will be used contin¬ 
uously henceforth. 

Fig. 24 • 3 Equilateral Triangle 
Divided into Two Equal 30°-60°-90° 
Right Triangles 

B -e-

b = side opposite </> 

Fig. 24 • 4 Side-Angle 
Relationships in the Standard 
Right Triangle 

For the rest of this chapter and the next, we shall be dealing only with 
right triangles. The hypotenuse is always the longest side and is opposite the 
right angle. The other two sides will be designated according to their rela¬ 
tionships to the acute angles. 

You should immediately confirm, using sketches as required, the truth of 
the following statements relating to the sides of the 30°-60°-90° triangle, 
first as they apply to the 30° angle and then as they apply to the 60° angle: 

1 In the 30'-60’-90° triangle, regardless of its size or orientation, the 
ratio of the side opposite the 30° angle to the hypotenuse will always be 
0.5000. 

2 In the 30°-60°-90° triangle, regardless of its size or orientation, the 
ratio of the side adjacent to the 30° angle to the hypotenuse will always be 
0.866. 

3 In the 30°-60°-90° triangle, regardless of its size or orientation, the 
ratio of the side opposite the 30° angle to the side adjacent to the 30° angle 
will always be 0.577. 
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4 In the 30°-60°-90° triangle, regardless of its size or orientation, the 
ratio of the side opposite the 60° angle to the hypotenuse will always be 
0.866. 

5 In the 30°-60°-90° triangle, regardless of its size or orientation, the 
ratio of the side adjacent to the 60° angle to the hypotenuse will always be 
0.5000. 

6 In the 30°-60'-90’ triangle, regardless of its size or orientation, the 
ratio of the side opposite the 60° angle to the side adjacent to the 60° angle 
will always be 1.732. 

It is left as an exercise for you to develop the three similar statements for 
the 45°-45°-90° triangle. (Why only three statements?) 

Now, student, stop and look at these statements. See what they really 
mean. Make sure that their message is plain. When you fully understand the 
import of the relationships between sides of triangles, you will have trigo¬ 
nometry in the palm of your hand forever. We do not say that all of trigonom¬ 
etry is simple. But to grasp quickly the fact that the trigonometric functions 
are merely ratios of sides of triangles is to resolve most of the difficulties 
which stand in the way of students who have never properly understood how 
simple the functions of trigonometry really are. 

The word “trigonometry” just means “measurement of triangles,” and 
one of the most useful tools in the measurement of triangles is the ratios of 
the sides. 

“In the triangle, regardless of its size or orientation” means that, so long 
as the angles made by the sides are specified, the triangle itself may be 
formed by: 

1 Three lines on a piece of paper 
2 A ladder, the ground, and the wall of a house 
3 An antenna mast, its shadow on the ground, and the line of sight from 

the end of the shadow to the top of the mast 
4 The lines of sight between two surveyors and a distant landmark 
5 A mast, a guy wire, and the ground between the foot of the mast and 

the guy anchor 
6 Any other system which uses three straight lines to form three en¬ 

closed angles 
The entire statement, “In the . . .triangle . . . will always be . . is quite 

a mouthful, far too lengthy for convenience, and it is often abbreviated. For 
instance, statement 1 above becomes 

opp 30 = 0.500 or -522- 30° = 0.500 
hyp hyp 

and all the other parts of the statement are understood to apply. Statement 
2 becomes 

30° = 0.866 
hyp 



SECTION 
24 ■ 1 

and statement No. 3 becomes 

222 30° = 0.577 
adj 

You should now write similar abbreviations for statements 4, 5, and 6 and 
check your work for the 45"-45"-90" triangle to show your own statements 
7, 8, and 9 may be written 

222 45° = 0.7071 45° = 0.7071 ^45° = 1.000 
hyp hyp adj 

example 1 A triangular piece of farm land is to be used as an “antenna 
farm.” It is in the shape of a 30°-60°-90° triangle the shortest 
side of which is 600 ft long (Fig. 24 • 5). What are the dimensions 
of the other two sides? 

solution By using the ratios which have been discovered above and draw¬ 
ing a sketch of the triangle to show the relationships between the 
sides and angles, we find that the 600-ft side must be adjacent 
to the 60° angle. Then we have 

■^0 60° = 0.500 
hyp 

from which hyp = = 1200 ft 

and -^30° = 0.577 
adj 

from which adj 30° = = 1040 ft 

Even these abbreviations are more than we require for everyday use, and 
we now introduce the proper trigonometric names for the different ratios 
{functions). 0 is the “general angle,” just as x is the “general number.” 

1 The ratio 222 o js properly called sine 0, abbreviated to sin ft. 
hyp 

2 The ratio 22Í. 0 is properly called cosine 6, abbreviated to cos 0. 
hyp 

3 The ratio 222 g ¡s properly called tangent 0, abbreviated to tan 0. 
adj 

It must be clearly understood that the names sine, cosine, and tangent 
are meaningless in themselves; you must relate them to angles of triangles. 
To say simply “cosine” means nothing. But “cos 60°” means, very specif¬ 
ically, the ratio of the side adjacent to the 60° angle of a 30° -60’ -90° triangle 
to the hypotenuse of the same triangle. 

In the general triangle, Fig. 24 • 6, it will be seen that there exist six pos¬ 
sible trigonometric functions. Three of them we have already discovered, and 
the others are reciprocals of those three. 

Fig. 24 • 5 Triangle of Example 1 

Fig. 24 ■ 6 Standard Right 
Triangle, as Used in Electronics 
Problems 
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6 - sin 8 = — —p 8 = cosecant 8 = esc 6 = — 
hyp c opp a 

8 = cos 8 = — 8 = secant 8 = sec 8 = 
hyp c ad) o 

^52 e — tan 8 = 8 = cotangent 8 = cot 0 = — 
ad) b opp a 

The cosecant, secant, and cotangent should always be thought of as the 
reciprocals of the sine, cosine, and tangent, respectively. This is shown 
easily by considering the reciprocal of sin 8: 

1 _ _1 
sin 8 a 

c 

— = esc 8 
a 

Fig. 24 ■ 7 The Values of the 
Functions Depend Only on the Size 
of the Angle 

You should confirm the other two reciprocal functions. 
These definitions should be memorized so thoroughly that you can tell 

instantly any ratio of either acute angle of a right triangle, regardless of its 
position. 

The sine, cosine, and tangent are the ratios most frequently used in prac¬ 
tical work. If they are carefully learned, the others are easily remembered 
because they are reciprocals. 

The fact that the numerical value of any one of the trigonometric functions 
(ratios) depends only upon the magnitude of the angle 8 is of fundamental 
importance. This is established from a consideration of Fig. 24 • 7. The angle 
8 is generated by the line AD revolving about the point A. From the points B, 
B', and B", perpendiculars are let fall to the initial line, or adjacent side, AX. 
These form similar triangles ABC, AB'C, and AB"C" because all are right 
triangles having a common acute angle 8 (Sec. 23 • 7). Hence, 

BC _ B’C' _ B"C" 
AB AB' AB" 

Each of these ratios defines the sine of 8. Similarly, it can be shown that 
this property is true for each of the other functions. Therefore, the size of 
the right triangle is immaterial, for only the relative lengths of the sides are 
of importance. 

Each one of the six ratios will change in value whenever the angle changes 
in magnitude. Thus, it is evident that the ratios are really functions of the 
angle under consideration. If the angle is considered to be the independent 
variable, then the six functions (ratios) and the relative lengths of the sides of 
the triangles are dependent variables. 

example 2 Calculate the functions of the angle 8 in the right triangle of 
Fig. 24 • 6 if a — 6 in. and c = 10 in. 

solution Since c2 = a2 + b2, 
then h = \/c2 — a2 = \/100 — 36 = \/64 - 8 in. 
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Applying the definitions of the six functions, 

sin 0 = ^ = f 

tan e = f = 3 

sec 0 — '1 = 1 

cos 0 = f 

COt 0 = | = | 

ÇSÇ 0 = *1 = 1 

What would be the values of the above functions if a = 6 m, 6 = 8 m, and 
c = 10 m? 

24 • 2 FUNCTIONS OF COMPLEMENTARY ANGLES 

By applying the definitions of the six functions to the angle ó in Fig. 24 ■ 8 
and noting the positions of the adjacent and opposite sides for this angle, we 
obtain 

sin ó = 
opp _ b 
hyp — c 

tan <f> = opp _ 
adj a 

sec <> — hyp _ c 
adj — a 

cos <> = adj _ » 
hyp — c 

cot <> = adj _ a 
opp — b 

esc <;> — 
hyp _c 
opp - b 

Upon comparing these with the original definitions given for the triangle 
of Fig. 24 2, we find the following relations: 

sin ó = cos 0 
tan <> = cot 0 
sec <> = esc 0 

cos <f> = sin 0 
cot $ = tan 0 
esc <> = sec 0 

Since = 90° — 0, the above relations can be written 

sin (90° - 0) = cos 0 
tan (90° — 0) = cot 0 
sec (90° — 0) = esc 0 

cos (90° — 0) = sin 0 
cot (90° - 0) = tan 0 

esc (90° — 0) = sec 0 

The above can be stated in words as follows: A function of an acute angle 
is equal to the cofunction of its complementary angle. This enables us to 
find the function of every acute angle greater than 45° if we know the 
functions of all angles less than 45°. For example, sin 56° = cos 34°, 
tan 63’ = cot 27°, cos 70° = sin 20°, etc. 

24-3 CONSTRUCTION OF AN ANGLE WHEN ONE FUNCTION IS GIVEN 

When the trigonometric function of an acute angle is given, the angle can be 
constructed geometrically by using the definition for the given function. Also, 
the magnitude of the resulting angle can be measured by the use of a 
protractor. 

SECTION 
24.1 

TO 
SECTION 

24 • 3 

a-adjacent side 

Fig. 24 • 8 Right Triangle for 
Determining Functions of Angle <¡> 
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Fig. 24 • 9 Construction of Acute 
Angle Whose Tangent is 9/10 

Fig. 24 • 10 Construction of Acute 
Angle Whose Cosine Is 3/4 

C 

Fig. 24-11 Right Triangle of 
Prob. 1 

P 

R 

Fig. 24-12 Right Triangle of 
Probs. 2 and 3 

example 3 Construct the acute angle whose tangent is 

solution Erect perpendicular lines AC and BC, preferably on cross-sec¬ 
tional paper. Measure off 10 units along AC and 9 units along 
BC. Join A and B and thus form the right triangle ABC. 
tan A = therefore, A is the required angle. Measuring/! 
with a protractor shows it to be an angle of approximately 42°. 
The construction is shown in Fig. 24 • 9. 

example 4 Find by construction the acute angle whose cosine is |. 

solution Erect perpendicular lines AC and BC. Measure off three units 
along AC. (Let three divisions of the cross-sectional paper be 
equal to one unit for greater accuracy.) With A as a center and 
with a radius of 4 units, draw an arc to intersect the perpendic¬ 
ular at B. Connect A and B. cos A = therefore A is the re¬ 
quired angle. Measuring A with a protractor shows it to be an 
angle of approximately 41.4°. The construction is shown in 
Fig. 24 • 10. 

PROBLEMS 24 • 1 

1 In Fig. 24-11, what are the values of the trigonometric functions for 
the angles 8 and in terms of ratios of the sides, a, b, and c? 

2 In Fig. 24 • 12, (a) sin a = ? (6) sin ß = ? (c) cot ß = ? (d) sec a = ? 
(e) tan a = ? 

3 In Fig. 24- 12,(a)-^ = tan?(ôÆ = sec? (c)= cos? 
C/ri rU rK 

W-g=sin?(e)^ = csc? 

4 The three sides of a right triangle are 5, 12, and 13. Let a be the acute 
angle opposite the side 5 and let ß be the other acute angle. Write the 
six functions of a and ß. 

5 In Fig. 24 • 13, if X = R, find the six functions of 8. 
6 In Fig. 24 • 13. if R = \Z, find the sine, cosine, and tangent of 8. 
7 In Fig. 24 • 13, if X = 2R. find the sine, cosine, and tangent of <>. 
8 (a) sin 8 = j, esc 8 = ?(b) sec a = 2, cos a = ? (c) cos ß = j, tan ß — 1 

(d) cos ó = sec <¡> = ? (e) tan = 12, cot <> = ? 
(/)csc a = 4, sin « = ? 

9 The three sides of a right triangle are 6, 8, and 10. Write the six func¬ 
tions of the largest acute angle. 

10 Write the other functions of an acute angle whose cosine is |. 
11 Ina right triangle, c = 5 in. and cos A = |. Construct the triangle, and 

write the functions of the angle B. 
12 State which of the following is greater if Ö 0° and is less than 90°: 

(a) sin 8 or tan 6, (b) cos 6 or cot 8, (c) sec 8 or tan 8, (d) esc 8 or cot 8. 
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24 • 4 FUNCTIONS OF ANY ANGLE 

The notion of trigonometric functions has been introduced from the point 
of view of right triangles because this allows for an easy introduction which 
most students can follow with assurance. However, the total concept applies 
to far more than just right triangles and to far more than angles between 0° 
and 90°. In Chap. 27 we shall investigate a few interesting and useful rela¬ 
tionships in non right triangles. For the moment, we will concentrate on the 
trigonometric functions of any angle. 

In Chap. 23 we found the concepts of angles were extended to include 
angles in any quadrant and both positive and negative angles. In Fig. 24 • 14 
the line r is revolving about the origin of the rectangular coordinate system in 

a counterclockwise (positive) direction. This line, which generates the angle 
fl, is known as the radius vector. The initial side of 6 is the positive x axis, and 
the terminal side is the radius vector. If a perpendicular is let fall from any 
point P along the radius vector, in any of the quadrants, a right triangle xyr 
will be formed with r as a hypotenuse of constant unit length and with x and 
y having lengths equal to the respective coordinates of P. 
We then define the trigonometric functions of 0 as follows: 

_ y ordinate „ x abscissa sin 0 = — =--- cos 0 = — =-—-
r radius r radius 

_ y ordinate . n x abscissa 
x abscissa y ordinate 

„ r radius „ r radius V - - bob U — — . 
x abscissa y ordinate 

Since the values of the six trigonometric functions are entirely independ¬ 
ent of the position of the point P along the radius vector, it follows that they 
depend only upon the position of the radius vector, or the size of the angle. 
Therefore, for every angle there is one, and only one, value of each function. 

PROBLEMS 
24 - 1 

TO 
SECTION 

24 • 4 

Fig. 24-13 Right Triangle of 
Probs. 5, 6, and 7 

Fig. 24-14 Radius Vector r 
Generating Angles 
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24 • 5 SIGNS OF THE FUNCTIONS 

The signs of the functions of angles in various quadrants are very important. 
If you remember the signs of the abscissas (x values) and the ordinates 
(y values) in the four quadrants, you will encounter no trouble. 

For angles in the first quadrant, as shown in Fig. 24 • 14o, the x and 
y values are positive. Since the length of the radius vector r is always con¬ 
sidered positive, it is evident that all functions of angles in the first quadrant 
are positive. For angles in the second quadrant, as shown in Fig. 24 • 146, 
the x values are negative and the y values are positive. Therefore, the sine 
and its reciprocal are positive and the other four functions are negative. 
Similarly, the signs of all the functions can be checked from their definitions 
as given in the preceding section. You should verify each part of Table 24 • 1. 

Table 24 ■ 1 quadrant sin 8 cos 8 tan 8 cot 8 sec 8 esc 8 

1 + + + + + +

111 + 
IV _- + 

If the proper signs for the sine and cosine are fixed in mind, the other 
signs will be remembered because of an important relation 

Z 
sin 8 _ r y 
cos B " jT T 

r 

Since 

II 

+ sin 
—cos — tan

X'-

tan 8 - — 
X 

then 
Y 

1 sin 8 . „ „ - x = tan 0 
+ sin C0SÖ

+ COS ” + tan
If the sine and cosine have like signs, the tangent is positive, and if they have 

—sin 
—cos * +tan

III 
ï 

Fig. 24-15 
in Quadrants 
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r * me tangent is negative. Because the signs of the sine, cosine, 
and tangent always agree with signs of the respective reciprocals, the co-

-tan secant, secant, and cotangent, the signs for the latter are obtainable from 
the signs of the sine and cosine as outlined above. Figure 24 • 15 will serve 

- IV as an aid in remembering the signs. 

signs of Functions problems 24 • 2 

In what quadrant or quadrants is 8 for each of the following conditions? 



SECTION 
24 ■ 5 

TO 
PROBLEMS 

24 • 2 

1 sin 0 is positive. 
3 sin 0 is negative. 
5 cos 0 is negative. 
7 tan 0 and sin 0 both positive. 
9 tan 0 negative, cos 0 positive. 

11 tan 0 = 6. 
13 Is there an angle whose cosine i 

2 cos 0 is positive. 
4 tan 0 is negative. 
6 sin 0 positive, cos 0 negative 
8 cot 0 negative, cos 0 negative. 
10 All functions of 0 are positive. 
12 cos 0 = —| 
negative and whose secant is positive? 

14 Find the value of 

(sin g — esc O) 
(cot 0 — sec 0) 

when tan 0 = 

Give the signs of the sine, cosine, and tangent of each of the following angles: 

15 32° 16 210° 17 98° 18 350° 

19 -175° 20 21 22 -72° 
3 4 

23 780° 

Find the value of the radius vector r for each of the following positions of P, 
and then find the trigonometric functions of the angle 0 (AXOPY Keep 
answers in fractional form. 

24 (-9,12) 
Solution: Draw the radius vector r from O to P = ( — 9,12) as shown 
in Fig. 24 • 16. Hence, 0 is an angle in the second quadrant with a side 
adjacent that has an x value of —9 and a side opposite that has a 
V value of 12. Then 

r = y/x2 + y2 = V(-9)2 + (12)2 = 15 

Hence, by definition, 

sin a _ y _ 12 _ 4 cos a _ X _ -9 _ _ 3 
6 " 7 “ 15 - J C°S & “ 7 “ 15 ~ 5 

. „ y 12 4 „ X -9 3 
tanö = 7 = ^9 = ~3 C0tö = y = 77 = -4 

sec ft = - = = ~ 4 esc 0 = - = 44 = 4 X —9 3 j 12 4 

25 (12,-5) 
Solution: Draw the radius vector r from Oto Pas shown in Fig. 24 • 17. 
0 is an angle in the fourth quadrant with a side adjacent that has an 
X value of 12 and a side opposite that has a y value of — 5. Then 

r = \/x2 + y2 - y/122 + (-5)2 =13 

Hence, by definition, 

Fig. 24-16 Diagram of Prob. 24 

Fig. 24-17 Diagram of Prob. 25 
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a V 5 a T 12 sin 0 = — - — ——- cos 3 = — = —-— 
r 13 r 13 

sec 9 - — - esc 3 = - - - ~ 
X 12 >5 

26 (3,4) 27 (12,5) 28 (-3,4) 29 (-4.-5) 
30 (3,3) 31 (4,-3) 32 (-8,6) 33 (-5,-3) 
34 (8,8) 

24 • 6 COMPUTATION OF THE FUNCTIONS 

In Sec. 24 ■ 1, we developed the functions of 30°, 45°, and 60° by merely 
using simple notions about right triangles. These angles are very important 
and will be used often, so that they and their trigonometric functions are 
worthy of the time you spend in this development. At the same time, their 
use will make it easy for some students to quickly relearn trigonometry a few 
years hence if their work has been such that they do not require it immedi¬ 
ately. In Chap. 25 we will extend our notions of trigonometric functions and 
develop and use the tables prepared by expert mathematicians for our use 
and convenience. 

P=(a,0) 

Fig. 24-18 3 = 0°, X = a, 
and y = 0 

24 ■ 7 FUNCTIONS OF 0° 

For an angle of 0°, the initial and terminal sides are both on OX. At any 
distance a from O, choose the point P as shown in Fig. 24 • 18. Then the 
coordinates of P are (a,0). That is, the x value is equal to a units, and the 
y value is zero. Since the radius vector r is equal to a, by definition, 

sin 0° = — = — = 0 cos 0° = i = — - 1 
r r r a 

tan 0° = — = — = 0 cot 0° = — = £=. x 
x a y 0 

sec 0° = — = — = 1 esc 0° = — - 2- = x 
x a y 0 

is meant the value of — as y approaches zero without limit. 
y 

Thus, as y gets nearer and nearer to zero, — gets larger and larger. There¬ 

fore, y is said to approach infinity as y approaches zero. However, does 

not actually re'sult in a quotient of infinity, for division by zero is meaningless. 
Determining the functions of 90°, 180°, and 270° is accomplished by the 

same method as that used for 0°. This is left as an exercise for you. 
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24 • 8 THE RANGES OF THE FUNCTIONS 

As the radius vector r starts from OX and revolves about the origin in a posi¬ 
tive (counterclockwise) direction, the angle 8 is generated and varies in 
magnitude continuously from 0° to 360° through the four quadrants. Figure 
24 ■ 19 illustrates the manner in which the sine, cosine, and tangent vary as 
the angle 8 changes in value. 

Quadrant I. As 8 increases from 0° to 90°, 

X is positive and decreases from r to 0. 
y is positive and increases from 0 to r. 

Therefore, 

sin 8 = — is positive and increases from 0 to 1. 
r 

cos 8 = — is positive and decreases from 1 to 0. 
r 

tan 8 = — is positive and increases from 0 to oo. 
X 

Quadrant II. As 8 increases from 90° to 180°, 

X is negative and increases from 0 to — r. 
y is positive and decreases from r to 0. 

Therefore. 

sin 8 = — is positive and decreases from 1 to 0. 
r 

cos 8 — — is negative and increases from 0 to — 1. 
r 

tan 8 — — is negative and decreases from — oo to 0. 
X 

Quadrant III. As 8 increases from 180° to 270°, 

X is negative and decreases from — r to 0. 
y is negative and increases from 0 to —r. 

Therefore, 

sin 8 = — is negative and increases from 0 to — 1. 
r 

cos 6 = — is negative and decreases from — 1 to 0. 
r 

tan 8 = — is positive and increases from 0 to oo. 
X 

Quadrant IV. As 8 increases from 270° to 360°, 

X is positive and increases from 0 to r. 
y is negative and decreases from — r to 0. 

SECTION 
24 • 6 

TO 
SECTION 

24.8 

Fig. 24-19 Lengths of Lines 
Showing the Ranges of Sin 8, 
Cos 8, and Tan 8 
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Therefore, 

sin 0 = 2- is negative and decreases from — 1 to 0. 
r 

cos 0 = — is positive and increases from 0 to 1. 
r 

tan 0 = — is negative and decreases from — oo to 0. 
X 

Students often become confused in comparing the variations of the func¬ 
tions, when represented as lines, with their actual numerical value. For ex¬ 
ample, in quadrant II as the angle 0 increases from 90 to 180°, we say that 
cos 8 increases from 0 to — r. Actually, the abscissa representing the cosine 
is getting longer; confusion results from not remembering that a negative 
number is always greater than zero in the defined negative direction. The 
lengths of the lines representing the functions, when compared with the 
radius vector, indicate only the magnitude of the function. The positions of 
the lines, with respect to the x or y axis, specify the signs of the functions. 

24 • 9 LINE REPRESENTATION OF THE FUNCTIONS 

By representing the functions as lengths of lines, we are able to obtain a 
mental picture of the manner in which the functions vary as the radius vector 
r revolves and generates angles. Since we are primarily concerned with 
the sine, cosine, and tangent, only these functions will be represented 
graphically. 

In Fig. 24 • 20 the radius vector r, with a length of one unit, is revolving 
about the origin and generating the angle 8. Then, in each of the four 
quadrants, 

sin 8 = — = = BC and cos 8 = = OC 
r 1 r 1 

It is evident that the sine of an angle can be represented by the ordinate 
(y value) of any point where the end of the radius vector coincides with the 
circumference of the circle. Hence, the length BC represents sin 8 in all 
quadrants, as shown in Fig. 24 • 20. Note that the ordinate gives both the 
sign and the magnitude of the sine in any quadrant. Thus, in quadrants I and 
II, sin 8 — +0.6; in quadrants III and IV, sin 8 = —0.6. That is, when the 
radius vector is above the x axis, the ordinate and therefore the sine are posi¬ 
tive. When the radius vector is below the x axis, the ordinate and therefore 
the sine are negative. 

Similarly, the cosine of an angle can be represented by the abscissa (x 
value) of any point where the end of the radius vector coincides with the 
circumference of the circle. Hence, the length OC represents cos 8 in all 
quadrants, as shown in Fig. 24 • 20. The abscissa gives both the sign and the 
magnitude of the cosine in any quadrant. Thus, in quadrants I and IV, 
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Fig. 24 • 20 Line Representation 
of Functions 

cos 8 = +0.8; in quadrants II and III, cos 6 = —0.8. That is, when the 
radius vector is to the right of the> axis, the abscissa and therefore the co¬ 
sine are positive. When the radius vector is to the left of the y axis, the ab¬ 
scissa, and therefore the cosine, are negative. 

In Fig. 24 • 20, the radius vector has been extended to intersect the tan¬ 
gent line DE which has been drawn tangent to the circle at the positive x axis. 
Since by construction, DE is perpendicular to OX, OBC and ODE are similar 
right triangles, for they have a common acute angle BOC. From the similar 
triangles, 

BC _ DE 
OC OE 

Then, in each of the four quadrants, 

From the above, it is evident that the tangent of an angle can be repre¬ 
sented by the ordinate (y value) of any point where the extended radius 
vector intersects the tangent line. The ordinate gives both the sign and the 
magnitude of the tangent in any quadrant. Thus, in quadrants I and III, 
tan 0 = +0.75; in quadrants II and IV, tan 0 = —0.75. 
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PROBLEMS 24 ■ 3 

1 What is the least value sin B may have? 
2 What is the least value cos B may have? 
3 What is the greatest value esc B may have in the first quadrant? 
4 What is the greatest value sec B may have in the fourth quadrant? 
5 Can the secant and cosecant have values between —1 and +1? 
6 What is the greatest value sin B may have in the (a) first quadrant, 

(6) second quadrant, (c) third quadrant, and (d) fourth quadrant? 
7 What is the greatest value cos B may have, in the (a) first quadrant, 

(b) second quadrant, (c) third quadrant, and (d) fourth quadrant? 
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For the purpose of making computations, it is evident that a table of trigono¬ 
metric functions would be helpful. Such a table could be made by computing 
the functions of all angles by graphical methods. However, that would be 
laborious and the resulting functions would not be accurate. 

Fortunately, mathematicians have calculated the values of the trigono¬ 
metric functions by the use of advanced mathematics and have tabulated the 
results. These tables are known as tables of natural functions to distinguish 
them from tables of the logarithms of the functions. In Table 8 of the Ap¬ 
pendix are arranged the natural functions of angles for every one-tenth of a 
degree from 0° to 90°. 

25- 1 GIVEN AN ANGLE-TO FIND THE DESIRED FUNCTION 

How to use the table of natural functions is best illustrated by examples. 

WHEN THE ANGLE IS GIVEN IN THE TABLES 

example 1 Find the sine of 36.7°. 
solution The angle 36° is in the left column of the table. The sine of 36.7° 

is read in the sin rowand in the column headed 0.7°. It is 0.5976. 

/. sin 36.7° = 0.5976 

example 2 Find the cosine of 7.9°. 
solution The angle 7° is in the left column of the table. The cosine of 7.9° 

is read in the cos row and in the column headed 0.9°. It is 
0.9905. 

.'.cos 7.9° = 0.9905 

examples Find the tangent of 79.1°. 
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solution Opposite 79° in the tan row and in the column headed 0.1°, read 
5.1929. 

. . tan 79.1° = 5.1929 

WHEN THE ANGLE IS NOT GIVEN IN THE TABLES 

example 4 Find the sine oí 26.42". 
solution Since 26.42° is between 26.4° and 26.5°, its sine value must be 

between sin 26.4° and sin 26.5°. Hence, 

sin 26.5° = 0.4462 
sin 26.4° = 0.4446 

Difference = 0.0016 

The tabular difference between these sines is 0.0016, and it is 
apparent that an increase of 0.1° from 26.4° causes the sine 
value to increase 0.0016. Therefore, an increase from 26.4° to 
26.42°, which is an increase of 0.02°, must increase the sine 
value 0.2 as much. Hence, the increase in the sine value is 
0.0016 X 0.2 = 0.00032. 

.'.sin 26.42° = 0.4446 + 0.00032 = 0.44492 

The sine of 26.42°, as written above, is another good example of how the 
retention of decimals might easily convey a false impression of accuracy. The 
tables from which the sine values were taken are correct to four significant 
figures. Therefore, any sine value found by interpolation cannot be correct 
beyond four significant figures. Thus it is correct to write 

sin 26.42° = 0.4449 

example 5 Find the cosine of 53.77°. 
solution cos 53.7° = 0.5920 

cos 53.8° = 0.5906 

Difference = 0.0014 

Since the value of the cosine decreases 0.0014 as the angle 
increases 0.1° from 53.7°, a subtraction must be made when 
interpolating. Then the decrease in the cosine value is 
0.0014 X 0.7 = 0.00098. 

cos 53.77° = 0.5920 - 0.00098 = 0.59102 
or cos 53.77° = 0.5910 

example 6 
solution 

Find the tangent of 48.13°. 
tan 48.2° = 1.1184 
tan 48.1° = 1.1145 

Difference = 0.0039 
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Since the value of the tangent increases 0.0039 as the angle in¬ 
creases 0.1° from 48.1°, the increase of 0.03° will cause the 
tangent to increase 0.0039 x 0.3 = 0.00117. 

.'. tan 48.13° = 1.1145 + 0.00117 = 1.11567 
or tan 48.13" = 1.1157 

PROBLEMS 25 ■ 1 

1 Find the sine, cosine, and tangent of (a) 18°. (b) 68°, (c) 9.3°, (d) 52.5 . 
(e) 2.6°. 

2 Find the sine, cosine, and tangent of (a) 12°, (b) 88.7°, (c) 70.2°, 
(d) 0.8°, (e) 20.1°. 

3 Find the sine, cosine, and tangent of (a) 1.9°, (b) 57.3°, (c) 38.9°, 
(d) 40.2°, (e) 75.3°. 

4 Find the sine, cosine, and tangent of (a) 7.39°, (6) 12.18°, (c) 32.65°, 
(d) 41.55°, (e) 3.17°. 

5 Find the sine, cosine, and tangent of (o) 57°34', (b) 30°49', (c) 39°03', 
(d) 1°29', (e) 88°53'. 

25 • 2 INVERSE TRIGONOMETRIC FUNCTIONS 

Frequently some form of notation is needed in order to express an angle in 
terms of one of its functions. For example, in Sec. 24 • 3 Example 3 dealt with 
an angle whose tangent was Similarly, in Example 4 of the same section, 
we considered an angle whose cosine was 

If sin 0 — x, then 0 is an angle whose sine is x. It has been agreed to ex¬ 
press such a relation by the notation 

0 = sin-1 x or e = arcsinx 

Both are read “6 is equal to the angle whose sine is x" or “the inverse sine 
of x." For example, the tangent of 37.2° is 0.7590. Stated as an inverse func¬ 
tion, this would be written 

37.2° = arctan 0.7590 

Similarly, in the case of a right triangle labeled as in Fig. 24 • 8, we should 

write 0 = arctan “-.0 = arccos —, etc. In this book, we shall not use the no-
b c 

tation “0 — sin-1 x,” for we prefer not to use an exponent when no exponent 
is intended. Although this form of notation is used in a number of texts, you 
will find that nearly all recent mathematics and engineering texts are using 
the “6 = arcsin x" form of notation. Because more advanced mathematics 
employs trigonometric functions affected by exponents, it is evident that 
confusion would eventually result from utilizing the other notation for speci¬ 
fying the inverse functions. 
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25 -3 GIVEN A FUNCTION-TO FIND THE CORRESPONDING ANGLE 

As in Sec. 25 • 1 the use of the tables is best illustrated by examples. 

WHEN THE FUNCTION IS NOT GIVEN IN THE TABLES 

example 7 Find the angle whose sine is 0.2351. 
solution Find 0.2351 in the sin row. In the degrees column opposite the 

sin row in which 0.2351 is located, read 13°. The column in 
which 0.2351 is located is the 0.6° column. Thus, 0.2351 is 
the sine of 13.6°. This could be written 

13.6° = arcsin 0.2351 

example 8 Find 0 if cos 0 = 0.0332. 
solution Since the given cosine value is a very small number, we deduce 

that the corresponding angle must be large. Here again a 
knowledge of how the functions vary is an asset because it 
saves time in looking up angles whose functions are given. 
In the degrees column opposite the cos row in which 0.0332 is 
located, read 88°; and 0.0332 is in the 0.1° column. Thus, 
0.0332 is the cosine of 88.1°. This can be written 

cos 88.1° = 0.0332 
or 88.1° = arccos 0.0332 

example9 Find 0 if 0 = arctan 1.1423. 
solution Since tan 45° = 1 and the tangent value increases as the angle 

increases, it is evident that 0 is somewhat larger than 45°. This 
knowledge enables us to begin searching for the given tangent 
value somewhere near its location. 
In the degrees column opposite the tan row in which 1.1423 is 
located, read 48°; and 1.1423 is in the 0.8° column. Thus, 
1.1423 is the tangent of 48.8°. That is, 

48.8° = arctan 1.1423 

WHEN THE FUNCTION IS GIVEN IN THE TABLES 

example 10 Find 0 if 0 = arcsin 0.4452. 
solution Examination of the table shows that 0.4452 is not given ex¬ 

actly in the sine values; therefore, we find the two consecutive 
sine values between which the given sine value lies. These are 
0.4446 and 0.4462, which are the sines of 26.4° and 26.5°, 
respectively. Tabulating, 

sin 26.5° = 0.4462 
sin 26.4° = 0.4446 

Difference = 0.0016 
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The tabular difference between these sine values is 0.0016, 
and it is apparent that an increase of 0.1° from 26.4° causes 
the sine value to increase 0.0016. Now, the given sine value 
is 0.0006 larger than the sine of the smaller angle taken from 
the table (0.4452 — 0.4446 = 0.0006). Then, since 

Increase _ 0.0006 _ 3 
Difference 0.0016 — 8 

the given sine value is three-eighths, or 0.375, of the way from 
0.4446 to 0.4462. Therefore, we assume that 0 is three-
eighths, or 0.375, of the way from 26.4° to 26.5°. Hence, 

0 - 26.4° + 0,0375° = 26.4375° 

Again it becomes necessary to round off the answer to prevent 
a false impression of accuracy. Hence, we write 

26.44° = arcsin 0.4452 

example 11 Find 0 if cos 0 = 0.3732. 
solution 0.3746 = cos 68.0° 

0.3730 = cos 68.1° 

Difference = 0.0016 for 0.1° 

Since the value of the cosine decreases 0.0016 as the angle 
increases 0.1° from 68.0°, a subtraction must be made in 
interpolating. The given cosine value is 0.0002 larger than the 
smallest value taken from the table: 

0.3732 - 0.3730 - 0.0002 

Then the given cosine value is 0.0002 -s- 0.0016 = 0.125, or 
one-eighth, of the way from 0.3730 to 0.3746. Therefore, we 
assume that 0 is one-eighth, or 0.125, of the way from 68.1° 
to 68.0°. Hence, 0 = 68.1° - 0.0125° = 68.0875", which, 
when rounded off, gives 

68.09° = arccos 0.3732 

example 12 Find 0 if 0 = arctan 0.5920. 

solution 0.5938 = tan 30.7° 
0.5914 = tan 30.6° 

Difference = 0.0024 for 0.1° 

For an increase of 0.1° the tangent increases 0.0024. The 
given tangent value is 0.0006 larger than the tangent of the 
smaller angle taken from the table 

(0.5920 - 0.5914 = 0.0006). 
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Then the given tangent value is 

0.0006 h- 0.0024 = 0.25 

or one fourth, of the way from 0.5914 to 0.5938. Therefore, 
we assume that 0 is one fourth, or 0.25, of the way from 30.6° 
to 30.7°. Hence. 

0 = 30.6° + 0.025° = 30.625° 

which, when rounded off, gives 

30.62° = arctan 0.5920 

25 • 4 ACCURACY 

The methods of interpolation illustrated here are for the use of those who 
require a greater degree of accuracy than that given by working with angles 
to the nearest tenth of a degree. In our considerations of ac circuits, we shall 
confine our accuracy to three significant figures and angles to the nearest 
tenth of a degree. This, except for isolated cases, will more than meet all 
practical requirements. Also, it reduces interpolation to an inspection of the 
values of the tabulated functions in order to determine which tenth of a 
degree to choose. 

Inside the front cover of this book is a three-place table of sines, cosines, 
and tangents for each degree from 0° to 90°. With the confidence gained 
from working with the components that form all but the most precise circuits, 
you will find that this table will serve most of your needs. 

You should study the tables at this point and satisfy yourself that, for 
angles up to about 6°, the values of sin 0 and tan 0 are within 0.55% of each 
other and, at 10°, the difference is only 1.56%. It is because of the closeness 
of the values of sin and tan that many slide rules incorporate an ST or SRT 
scale that gives as equal the sines and tangents of angles up to 5.73°. The 
percentage error in accepting the approximation is well within the tolerance 
of ordinary electronics components. 5.73° is the reasonable place to break 
the scales because it is at this point that the numerical values change from 
10 2 to IO-1 , which offers a ready relationship between the ST and the 
D scales. 

If you have a slide rule, you should take special pains to relate the S, T, 
and ST scales on your particular rule to the D, C, DI, or A and B scales, so 
that you will be able to perform with ease all the necessary operations of 
multiplying and dividing by the trigonometric functions. The use of the slide 
rule reduces the necessity of using the tables of functions except when an 
extremely high degree of accuracy is desired. Finding an angle correspond¬ 
ing to a given function or finding the function of a given angle may be ac¬ 
complished by one setting of the cursor. It is in work involving trigonometric 
functions that the use of the slide rule really begins to be rewarding in saving 
time and labor. 
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PROBLEMS 25 • 2 

1 

2 

3 

4 

5 

Find the angles having the following values as sines: (a) 0.4540, 
(6) 0.1167, (c) 0.8788, (rf) 0.6441, (e) 0.0374. 
Find the angles having the following as cosines: (a) 0.9659, (6) 0.1908, 
(c) 0.9987, (</) 0.8669, (e) 0.3432. 
Find the angles whose tangents are (a) 12.43, (.b) 0.0087, (c) 0.8421, 
(<7) 1.6512, (e) 0.4823 
Find 0 if: 
(a) 0 — arctan 1.3564 
(c) 0 = arcsin 0.2740 
(e) 0 = arcsin 0.5180 
Find 0 if 

(6) 0 = arccos 0.4863 
(d) 0 = arccos 0.0488 

(a) 0 = arccos 0.9740 
(c) 0 = arcsin 0.9627 
(e) 0 = arcsin 0.7325 

(b) 0 = arctan 0.0087 
(d) 0 = arctan 0.8910 

25 • 5 FUNCTIONS OF ANGLES GREATER THAN 90° 

You have noted that the trigonometric functions have been tabulated only 
for angles of 0° to 90°. The signs and magnitudes for angles in all quadrants 
were considered in the preceding chapter, and it is evident that a table of 
functions for all angles will be needed. Because the existing tables are for 
angles in the first quadrant, there must be methods of expressing any angle 
in terms of an angle of the first quadrant in order to make use of the table of 
functions. 

25-6 TO FIND THE FUNCTIONS OF AN ANGLE IN THE SECOND 
QUADRANT 

In Fig. 25-1, let 0 represent any angle in the second quadrant. From any 
point P on the radius vector r, draw the perpendicular y to the horizontal 
axis. The acute angle that r makes with the horizontal axis is designated by ó. 
Then, since 0 + <> = 180°, 0 and <> are supplementary angles. Hence, 

<> = 180° - 0 

Now construct the angle XOP' in the first quadrant equal to <>, make r' 
equal to r, and draw / perpendicular to OX. Since the right triangles OPC 
and OP'C are equal, x = — x' and y = y'. Then 

sin (180° - 0} = = 21 = sin <> 
r r 

cos (180° -0) = ^ = = -cos « 
r r' 

tan (180° - 0) - 2 = = -tan ó 
x — x' 

SECTION 
25 • 3 

TO 

Fig. 25-1 0 and <!> Are 
Supplementary Angles; 
0 + <f> = 180° 
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FUNCTIONS 

Fig. 25-2 0 Is in the Third 
Quadrant; <j> = 0 — 180° 

These relationships show that the function of an angle has the same ab¬ 
solute value as the same function of its supplement. That is, if two angles 
are supplementary, their sines are equal and their cosines and tangents are 
of equal magnitude but opposite in sign. 

example 13 sin 140° = sin (180° - 140°) = sin 40° = 0.6428 
cos 100° = -cos (180° - 100°) = -cos 80° = -0.1736 
tan 175° = -tan (180° - 175°) = -tan 5° = -0.0875 

25-7 TO FIND THE FUNCTION OF AN ANGLE IN THE THIRD QUADRANT 

In Fig. 25 • 2, let 0 represent any angle in the third quadrant and let <> be the 
acute angle that the radius vector r makes with the horizontal axis. Then 

<¡> = 0 - 180° 

Now construct the angle XOP' in the first quadrant equal to <>, make r' 
equal to r, and draw y and y' perpendicular to the horizontal axis. Since the 
right triangles OPC and OPC are equal, x = — x' and y = — y'. Then 

sin (Ö - 180°) = 2- = = -sin ó 
r r 

cos (0 - 180°) = — = = -cos <> 
r r 

tan (0 - 180°) - - ^4 = tan <¡> 
x —x 

These relationships show that the function of an angle in the third quad¬ 
rant has the same absolute value as the same function of the acute angle 
between the radius vector and the horizontal axis. The signs of the functions 
are the same as for any angle in the third quadrant, as discussed in 
Sec. 24 • 5. 

Fig. 25-3 0 Is in the Fourth 
Quadrant; & = 360° — 0 

example 14 sin 200° = -sin (200° - 180°) = -sin 20° = -0.3420 
cos 260° = -cos (260° - 180°)= -cos 80° = -0.1736 
tan 234° = tan (234° - 180°) = tan 54° = 1.3764 

25-8 TO FIND THE FUNCTIONS OF AN ANGLE IN THE FOURTH 

QUADRANT 

In Fig. 25 • 3, let 0 represent any angle in the fourth quadrant and let ó be 
the acute angle that the radius vector r makes with the horizontal axis. Then 

<> = 360° - 0 

Now construct the angle XOP' in the first quadrant equal to <#>, make r' 
equal to r, and draw y and y perpendicular to the horizontal axis. Since the 
right triangles OPC and OPC are equal, y = —y'. Then 
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sin (360° - 0) = 2. = —= -sin <;> 
r r 

eos (360° - 0) = ^- = 4 = eos <> r r 

tan (360° - 0) = ^- = = _tan <> 
X X 

These relationships show that the functions of an angle in the fourth quad¬ 
rant have the same absolute value as the same functions of an acute angle in 
the first quadrant equal to 360° — 3. The signs of the functions, however, 
are those for an angle in the fourth quadrant, as discussed in Sec. 24 • 5. 

example 15 sin 300° = -sin (360° - 300°) = -sin 60° = -0.8660 
cos 285° = cos (360° - 285°) = cos 75° = 0.2588 
tan 316° = -tan (360° - 316°) = -tan 44° = -0.9657 

25-9 TO FIND THE FUNCTIONS OF AN ANGLE GREATER THAN 360° 

Any angle 3 greater than 360° has the same trigonometric functions as 3 
minus an integral multiple of 360°. That is, a function of an angle larger than 
360° is found by dividing the angle by 360° and finding the required function 
of the remainder. Thus 3 in Fig. 25 • 4 is a positive angle of 955°. To find any 
function of 955°, divide 955° by 360°, which gives 2 with a remainder of 
235°. Hence, 

sin 955° = sin 235° = -sin (235° - 180°) 
= -sin 55° = -0.8192 

cos 955° = COS 235° = -cos (235° - 180°) 
= -cos 55° = -0.5736 

tan 955° = tan 235° = tan (235° - 180°) 
= tan 55° = 1.4281 

25- 10 TO FIND THE FUNCTIONS OF A NEGATIVE ANGLE 

In Fig. 25 • 5, let — 8 represent a negative angle in the fourth quadrant made 
by the radius vector r and the horizontal axis. Construct the angle 3 in the 
first quadrant equal to — 3, make r' equal tor, and draw y and / perpendicu¬ 
lar to the horizontal axis. Since the right triangles OPC and OP'C are equal, 
y = — y'. Then 

sin ( — 8) — — — = —sin 3 
r r 

cos (— 3) = — = 4 = cos 8 
r r 

tan ( —0) = — = ^4- = —tan 8 
X X 

SECTION 
25 • 6 

TO 
SECTION 

25 ■ 10 

y 

0 = 955° 

P 

Y' 

Fig. 25-4 8 — 955° 

y 

Y' 

Fig. 25-5 —6 Generated by 
Clockwise Rotation 
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These relationships are true for any values of — 0 regardless of the quad 
rant or the magnitude of the angle. 

example 16 sin ( — 65°) = —sin 65° = —0.9063 
cos (-150°) = - cos 150° = -cos (180° - 150 ) 

= -cos 30° = -0.8660 
tan (-287°) = -tan 287° = -tan (360° - 287°) 

= _(_tan 73°) = 3.2709 

Fig. 25-6 180° - 143° = 37° 

Fig. 25 • 7 245° - 180° = 65° 

Fig. 25-8 360° — 312° = 48° 

25-11 TO REDUCE THE FUNCTIONS OF ANY ANGLE TO THE FUNCTIONS 

OF AN ACUTE ANGLE 

It has been shown in the preceding sections that all angles can be reduced to 
termsof(180° — 0). (0 — 180°),(360° — 0), or 0. These results can be sum¬ 
marized as follows: 

Rule To find any function of any angle 0, take the same function of the 
acute angle formed by the terminal side (radius vector) and the horizontal 
axis and prefix the proper algebraic sign for that quadrant. 

When finding the functions of angles, you should make a sketch showing 
the approximate location of the angle. This procedure will clarify the trigono¬ 
metric relationships, and in addition, many errors will be avoided by using it. 

example 17 Find the functions of 143°. 
solution Construct the angle 143°, and mark the signs of the radius 

vector, abscissa, and ordinate, as shown in Fig. 25 • 6. (The 
radius vector is always positive.) Since 180° — 143° — 37° 
the acute angle for the functions is 37°. Hence, 

sin 143° = sin 37° = 0.6018 
cos 143° = -cos 37° = -0.7986 
tan 143° = -tan 37° = -0.7536 

example 18 Find the functions of 245°. 
solution Construct the angle 245° as shown in Fig. 25 • 7. Since 

245° — 180° = 65° the acute angle for the functions is 65°. 
Hence, 

sin 245° = -sin 65° = -0.9063 
cos 245° = -cos 65° = -0.4226 
tan 245° = tan 65° =2.1445 

example 19 Find the functions of 312°. 
solution Construct the angle 312° as shown in Fig. 25 • 8. Since 

360° — 312° — 48° the acute angle for the functions is 48°. 
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Hence, 

sin 312° = -sin 48° = -0.7431 
cos 312° = cos 48° = 0.6691 
tan 312° = -tan 48° = -1.1106 

example 20 Find the functions of 845°. 
solution 845° — 360° = 2 + 125 . Therefore, the functions of 125° 

will be identical with those of 845°. The construction is shown 
in Fig. 25 • 9. Since 180° — 125° = 55°, the acute angle for 
the functions is 55°. Hence, 

sin 845’ = sin 55° = 0.8192 
cos 845° = —cos 55° = —0.5736 
tan 845° = -tan 55° = -1.4281 

example 21 
solution 

Find the functions of —511°. 
— 511° 360° = —(1 + 151°). Therefore, the functions of 
— 151° will be identical with those of —511°. The construction 
is shown in Fig. 25 • 10. Since 180° — 151° = 29°, theacute 
angle for the functions is 29°. Hence, 

sin (-151°)= -sin 29° = -0.4848 
cos (— 151 ) = —cos 29° = —0.8746 
tan (-151°) = tan 29° = 0.5543 

SECTION 
25 ■ 10 

TO 
SECTION 
25-12 

Y' 

Fig. 25 • 9 Functions of 845° Are 
the Same as Those of 125° 

Fig. 25 • 10 Functions for —511° 
Are the Same as Those of —151 ° 

25 ■ 12 ANGLES CORRESPONDING TO INVERSE FUNCTIONS 

Now that we are able to express all angles as acute angles in order to use the 
table of functions from 0° to 90°, it has probably occurred to you that an im¬ 
portant distinction exists between the direct trigonometric functions and the 
inverse trigonometric functions. The trigonometric functions of any given 
angle have only one value, whereas a given function corresponds to an infi¬ 
nite number of angles. For example, an angle of 30° has but one sine value, 
which is 0.5000, but an angle whose sine is 0.5000 (arcsin 0.5000) may be 
taken as 30°, 150°, 390°, 480°, 510°, etc. 

To avoid confusion, it has been agreed that the values of arcsin Ö and 
arctan 9 which lie between +90° and —90°, in the first and fourth quad¬ 
rants, are to be known as the principal values of arcsin 9 and arctan 9. The 
principal value is often denoted by using a capital letter, as Arcsin 9. 
Thus, Arcsin 0.5750 = 35.1°, and Arcsin (-0.9980)= -86.4°. Also, 
Arctan 1.4826 = 56°, and Arctan (-0.0699) = -4°. 

The principal values of arccos 9 are taken as the values between 0° and 
180° and are denoted by Arccos 9. Thus, Arccos 0.1736 = 80°, and 
Arccos (-0.9816) = 169°. 
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Find the sine, cosine, and tangent of (a) 107°, (b) 160°, (c) 130.1°, 
(d) 147.5°, (e) 176.2°. 
Find the sine, cosine, and tangent of (a) 183°, (6) 235° (c) 217.8°, 
(d) 180.9°, (e) 268.1°. 
Find the sine, cosine, and tangent of (a) 280°, (6) 318°, (c) 349.9°, 
(d) 300.1°, (e) 359.5°. 
Find the sine, cosine, and tangent of (a) 461°, (6) 510°, (c) 480.5°, 
(d) 523.2°, (e) 539.3°. 
Find the sine, cosine, and tangent of (a) 905°, (6) —17.1°, (c) 940.7°, 
(d) -362.6°, (e) 1260.2°. 
Find 0 if: 
(a) 6 = Arccos 0.9690 
(c) 0 = Arccos ( — 0.4555) 
(e) 0 = Arcsin ( — 0.3778) 
Find ó if: 
(a) <> = Arctan (— 1.0761) 
(c) <> = Arcsin 0.7804 
(e) <> = Arctan ( — 2.7326) 
The illumination on a surface 

(6) 0 = Arcsin 0.5820 
(d) II = Arctan ( — 3.5105) 

(6) <¡> = Arceos ( — 0.0279) 
(d) <¡> = Arceos ( — 0.9763) 

is not perpendicular to the rays of 
light from a light source is given by the formula 

r F cos 6 
E = ~d¿- foot candles (ft-c) 

where E = illumination at a point on the surface, ft-c 
F — intensity of light output of source, lumens (Im) 
d — distance of source of light to surface 
9 = angle between incident light ray and a line perpendicular to 

the surface 

Solve for F, d, and 0. 

In the formula of Prob. 8, find the value of d if F = 900 Im, 0 = 48 , 
and E = 30 ft-c. 
A 100-W lamp has a total light output of 1700 Im. Disregarding reflec¬ 
tion, compute the illumination at a point on a surface 8 ft from the lamp 
if the plane of the surface is at an angle of 30° to the incident rays. 
In the formula of Prob. 8, at what angle of the plane of the surface to 
the incident ray will the illumination be the greatest? 
The illumination on a horizontal surface from a source of light at a given 
vertical distance from the surface is given by the formula 

Eh — cos3 0 
h-

where Eh — illumination at a point on horizontal surface, ft-c 
F = intensity of light output from source of light, Im 



PROBLEMS 
25 • 3 

h = vertical distance from horizontal surface to source of 
light, ft 

0 = angle between incident ray and vertical line, as shown in 
Fig. 25 • 11. 

note cos3 0 means (cos 0) raised to the third power. 

Solve for F, h, and 0. 

13 Use the formula of Prob. 12 to solve for Eh if F = 3260 Im, h = 12 ft, 
and & = 18°. 

14 Use the formula of Prob. 12 to solve for F if Eh = 30 ft-c, h = 14 ft, and 
0 = 50°. 

15 According to illumination experts, 100 to 150 ft-c of illumination on the 
printed page should be provided for study purposes. A 60-W, 850-lm 
lamp is suspended 6 ft above a reading table. The reflector used pro¬ 
jects 70% of the light downward. Does this produce a satisfactory 
amount of illumination on a book directly below the lamp? 

16 To produce 125 ft-c on the book in Prob. 15, what lumen rating lamp 
should be used? 

17 Snell’s law states that, when a wave of electromagnetic energy passes 
from one dielectric material to another, the ratio of the sines of the 
angles of incidence 0t and refraction 02 is inversely proportional to 
the square root of the ratio of the dielectric relative permittivities 
(Fig. 25 • 12). That is, 

Source 

Horizontal surface 

Fig. 25-11 Illumination at P 
from Source 

Material 1 Material 2 

»2 

Fig. 25-12 Diagram for Prob. 17 

sin 0i 
sin 02 

If the angle of incidence 0} = 70°, material 1 is lucite, n = 2.6. and 
material 2 is mica, e2 = 5.4, what is the angle of refraction 02? 
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One of the most important applications of trigonometry is the solution of tri¬ 
angles, both right and oblique. This chapter is concerned with the former. 
The right triangle is probably the most universally used geometric figure; 
with the aid of trigonometry, it is applied to numerous problems in measure¬ 
ment that otherwise might be impossible to solve. 

A large percentage of the problems relating to the analysis of ac circuits 
and networks involves the solution of the right triangle in one form or 
another. 

26- 1 FACTS CONCERNING RIGHT TRIANGLES 

Before we proceed with the actual solutions of right triangles, we will review 
the following useful facts regarding the properties of the right triangle: 

1 The square of the hypotenuse is equal to the sum of the squares of 
the other two sides (c2 = a2 + ft2). 

2 The acute angles are complements of each other; that is, the sum of 
the two acute angles is 90° {A + B = 90°). 

3 The hypotenuse is greater than either of the other two sides and is less 
than their sum. 

4 The greater angle is opposite the greater side, and the greater side is 
opposite the greater angle. 

These facts will often be a material aid in checking computations made by 
trigonometric methods. 

26 • 2 PROCEDURE FOR SOLUTION OF RIGHT TRIANGLES 

Every triangle has three sides and three angles, and these are called the six 
elements of the triangle. To solve a triangle is to find the values of the un¬ 
known elements. 
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A triangle can be solved by two methods: 

1 By constructing the triangle accurately from known elements with 
scale, protractor, and compasses. The unknown elements can then be meas¬ 
ured with the scale and the protractor. 

2 By computing the unknown elements from those that are known. 

The first method has been used to some extent in preceding chapters. 
However, as previously discussed, the graphical method is cumbersome and 
has a limited degree of accuracy. 

Trigonometry, combined with simple algebraic processes, furnishes a 
powerful tool for solving triangles by the second method listed above. More¬ 
over, the degree of accuracy is limited only by the number of significant fig¬ 
ures to which the elements have been measured and the number of signifi¬ 
cant figures in the table of functions used for the solution. 

As pointed out in earlier chapters, every type of problem should be ap¬ 
proached and solved in a planned and systematic manner. Only in this way 
are the habits of clear and ordered thinking developed, the principles of the 
problem understood, and the possibility of errors reduced to a minimum. 
With the foregoing in mind, we list the following suggestions for solving right 
triangles as a guide: 

1 Make an accurate drawing to scale of the triangle, and mark the known 
(given) elements. This shows the relation of the elements, helps you choose 
the functions needed, and will serve as a check for the solution. List what is 
to be found. 

2 To find an unknown element, select a formula that contains two known 
elements and the required unknown element. Substitute the known elements 
in the formula, and solve for the unknown. 

3 As a rough check on the solution, compare the results with the draw¬ 
ing. To check the values accurately, note whether they satisfy relationships 
different from those already employed for the solution of the values being 
checked. A convenient check for the sides of a right triangle is the relation 

a- = c2 — b2 = (c + 6)(c — 6) 

4 In the computations, round off the numbers representing the lengths 
of sides to three significant figures and all angles to the nearest tenth of a 
degree. This means that the values of the functions employed in computa¬ 
tions are to be used to only three significant figures. As previously stated, 
such accuracy is sufficient for ordinary practical circuit computations. 

Heretofore, the right triangles used in figures for illustrative examples 
have been lettered in the conventional manner, as shown in Figs. 24 • 4, 
24- 11, etc. At this point the notation for the various elements will be 
changed to that of Fig. 26 • 1. In no way does this change of lettering have 
any effect on the fundamental relations existing among the elements of a 
right triangle, nor are any new ideas involved in connection with the trigono-

SECTION 
26 • 1 

TO 
SECTION 

26 • 2 

Fig. 26 • 1 Lettering of 
“Standard" Right Triangle 
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metric functions. Because certain ac problems will employ this form of no¬ 
tation, this is a convenient place to introduce it in order that you may become 
accustomed to solving right triangles lettered in this manner. 

The following sections illustrate all the possible conditions encountered 
in the solution of right triangles. 

«=30.0 

Fig. 26 • 2 Construction for 
Solution of Example 1 

26 • 3 GIVEN AN ACUTE ANGLE AND A SIDE NOT THE HYPOTENUSE 

example 1 Given R = 30.0 and 0 = 25.0°. Solve for Z, X, and ó. 
solution The construction is shown in Fig. 26 • 2. 

<> = 90° - 0 = 90° - 25° = 65° 

An equation containing the two known elements and one un¬ 
known is 

Solving for X, X = R tan 0 

Substituting the values of R and tan 0, 

X = 30 X 0.466 = 14.0 
Y 

Also, since sin 0 = — 

Solving for Z, Z = ? 
sin 0 

Substituting the values of X and sin 6, 

This solution can be checked by using some relation other than 
the relations already used. Thus, substituting values in 

X2 = (Z + R^Z - R) 
results in 14.02 = (33.1 + 30.0)(33.1 - 30.0) 

196 = 63.1 X 3.10 = 196 

Since all results were rounded off to three significant figures, the 
check shows the solution to be correct for this degree of 
accuracy. 
The value of Z can be checked by employing a function not used 
in the solution. Thus, since 

R = Z cos 0 

by substituting the values, 30 = 33.1 x 0.906 
Still another check could be made by use of an inverse function 
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example 2 
solution 

example 3 
solution 

example 4 
solution 

employing two of the elements found in the solution. For 
example, 

ç> = arccos = arccos = arccos 0.423 = 65° 

SECTION 
26 • 2 

TO 
SECTION 

26 • 3 

Given X = 106 and 0 = 36.4°. Solve for Z, R, and <j. 
The construction is shown in Fig. 26 • 3. 

<#> = 90° - 0 = 90° - 36.4° = 53.6° 

An equation containing two known elements and one unknown is 

sin 0 = 

Solving for Z, Z = „ 
sin 0 

Substituting the values of X and sin 0, 

D 
Also, since cos 6 -

solving for R, R = Z cos 0 

Substituting the values of Z and cos 0, 

R = 179 X 0.805 = 144 

Check the solution by one of the methods previously explained. 

Given R = 8.35 and <> = 62.7°. Find Z, X, and 0. 
The construction is shown in Fig. 26 • 4. 

0 = 90° - </> = 90° - 62.7° = 27.3° 

When 0 is found, the methods to be used in the solution of this 
example become identical with those of Example 1. Hence, 

X = R tan 0 = 8.35 tan 27.3° = 8.35 x 0.516 = 4.31 

7 - X - 4 31 - 4-31 = o 39 
“ sin 0 sin 27.3° 0.459 

Check the solution by a method considered most convenient. 

Given X = 1290 and <? = 41.9°. Find Z, R, and 0. 
The construction is shown in Fig. 26 • 5. 

0 = 90° - </> = 90° - 41.9° = 48.1° 

Fig. 26 • 3 Triangle of Example 2 

«=8.35 

Fig. 26 • 4 Triangle of Example 3 

Fig. 26 • 5 X = 1290, <t> = 41.9° 
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When 0 is found, the methods to be used in the solution of this 
example become identical with those of Example 2. Hence, 

7 - x - 1290 - 1290 _ 1730
sin 0 sin 48.1° 0.744 

R = Z cos 0 = 1730 cos 48.1° = 1730 x 0.688 = 1160 

Check the solution by a method considered most convenient. 

With the exception of finding the unknown acute angle, which involves 
subtraction, any of the foregoing examples and the following problems can 
be solved with two movements on many slide rules. 

PROBLEMS 26 • 1 

Solve the following right triangles for the unknown elements. Check each by 
making a construction and by substituting into a formula not used in the 
solution: 

1 R = 22.0, O = 34.7° 
3 X = 424, <> = 45° 
5 R = 63.5, e = 24.9° 
7 R= 8.85 x 10\ 3 = 27.7° 
9 X = 867, 3 = 57.3° 

11 X = 124, 3 = 51.1° 
13 R = 0.105, 3 = 63.9° 

15 X = j, 0 = 82.4° 

2 X = 4.39, <> = 86.5° 
4 R = 8.10, <f> = 21° 
6 X = 1530, 3 = 73.5° 
8 Ä = 222, 0 = 26.3° 

10 R = 0.230, 0 = 77° 
12 X = 0.0929, 3 = 6.4° 
14 Ä = j,0=51.9° 

16 /? = -!=, 0=45° 

Fig. 26-6 Z = 45.3, 0 = 20.3° 

26 -4 GIVEN AN ACUTE ANGLE AND THE HYPOTENUSE 

example 5 Given Z = 45.3 and 3 = 20.3°. Find R, X, and <>. 
solution The construction is shown in Fig. 26 • 6. 

<> = 90° - 0 = 90° - 20.3° = 69.7° 

An equation containing two known elements and one unknown is 

cos 0 = ^ 

Solving for R, R = Z cos 0 

Substituting the values of Z and cos 0, 

R = 45.3 X 0.938 = 42.5 

Another convenient equation is 

sin 0 = ^ 

Solving for X, X = Z sin 0 
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Substituting the values of Z and sin 0, 

X = 45.3 X 0.347 = 15.7 

The solution can be checked by any of the usual methods. 

example 6 Given Z = 265 and = 22.4°. Find Ä, X, and 0. 
solution The construction is shown in Fig. 26 ■ 7. 

0 = 90° - $ = 90° - 22.4° = 67.6° 

When 0 is found, this triangle is solved by the methods used in 
Example 1. Hence, 

R = Z cos 0 = 265 cos 67.6° = 265 x 0.381 = 101 
X = Z sin 0 = 265 sin 67.6° = 265 x 0.924 = 245 

Check the solution by one of the several methods. 

PROBLEMS 26 • 2 

Solve the following right triangles for the unknown elements. Check each by 
construction and by substituting into an equation not used in the solution. 

1 Z = 76.2, <> = 75° 
3 Z = 47.6, 0 = 69.1° 
5 Z = 1 x IOS <> = 51.6° 
7 Z = 0.948, <> = 79.6° 
9 Z = 5.10, 0 = 52.3° 

2 Z = 464, 0 = 23.6° 
4 Z = 179, <f> = 77.7° 
6 Z = 60, 0 = 48.2° 
8 Z = 610, </. = 79.7° 

10 Z = 0.342, <>= 73.2° 

Fig. 26 • 

26.5 GIVEN THE HYPOTENUSE AND ONE OTHER SIDE 

example 7 Given Z = 38.3 and R = 23.1. Find X, B, and <>. 
solution The construction is shown in Fig. 26 • 8. 

An equation containing two known elements and one unknown is 

cos 0 = 

Substituting the values of R and Z, 

cos 0 = 114 = °-603 □ o Ö 

.'.0=52.9° Fig. 26 ■ 8 
<> = 90° - 0 = 90° - 52.9° = 37.1° 

V 
Then, since sin 0 = -% 

Solving for X, X = Z sin 0 

Substituting the values of Z and sin 0, 

SECTION 
26 ■ 3 

TO 
SECTION 

26 • 5 

R 

7 Z — 265, $ = 22.4° 

Ä=23.1 

Triangle of Example 7 

X = 38.3 x 0.798 = 30.6 
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Fig. 26 • 9 Triangle of Example 8 

example 8 Given Z = 10.7 and X = 8.10. Find R, 6, and *. 
solution The construction is shown in Fig. 26 • 9. 

An equation containing two known elements and one unknown is 

sin 0 = 

Substituting the values of X and Z, 

sin e = = 0.757 

/. B = 49.2° 
<> = 90° - 0 = 90° - 49.2° = 40.8° 

D 
Then, since cos B = 

Solving for R, R = Z cos B 

Substituting the values of Z and cos B, 

R = 10.7 X 0.653 = 6.99 

PROBLEMS 26 • 3 

Solve the following right triangles and check each graphically and algebrai 
cally as in the preceding problems: 

1 Z = 229, X = 200 
3 Z = 47.6, Ä = 17 
5 Z = 0.742, R = 0.734 
7 Z = 1 X 10', X = 6210 
9 Z = 1.08, R = 0.667 

2 Z = 2160, R = 1200 
4 Z= 3100, Ä = 3060 
6 Z = 407, X = 57.0 
8 Z= 39.7, « = 11.4 
10 Z = 0.342, R = 0.327 

26 • 6 GIVEN TWO SIDES NOT THE HYPOTENUSE 

Fig. 26-10 Triangle of 
Example 9 

example 9 Given R = 76.0 and X = 37.4. Find Z, B, and <¡>. 
solution The construction is shown in Fig. 26 • 10. 

An equation containing two known elements and one unknown is 

>"" = 4 
Substituting the values of X and R, 

tan 0 = 4^4 = 0.492 
76.0 

/. 6 = 26.2° 
<> = 90° - 0 = 90° - 26.2° = 63.8° 

Z = 84.7 can be found by one of the methods explained in the 
preceding sections. 
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PROBLEMS 26 ■ 4 

Solve the following right triangles and check as in the preceding problems: 

1 R = 35.5, X = 6.19 
3 X - 5.30, R = 4.79 
5 X = 20.3, R = 430 

7 R = 5.43, X = 48.4 

9 X = 0.290, R = 0.280 

2 R = 11.5, X = 6.94 
4 R = 76.3, X = 277 
6 X = 50.6, R = 10.3 

8 R = X = 1 
2 2 

10 X = 4.01, R = 5.25 

26 • 7 TERMS RELATING TO MISCELLANEOUS TRIGONOMETRIC 
PROBLEMS 

If an object is higher than an observer’s eye, the angle of elevation of the 
object is the angle between the horizontal and the line of sight to the object. 
This is illustrated in Fig. 26 • 11. 

If an object is lower than an observer's eye, the angle of depression of the 
object is the angle between the horizontal and the line of sight to the object. 
This is illustrated in Fig. 26 • 12. 

The horizontal distance between two points is the distance from one of 
the two points to a vertical line drawn through the other. Thus, in Fig. 26 • 13, 
the line AC is a vertical line through the point A and CB is a horizontal line 
through the point R. Then the horizontal distance from A to B is the distance 
between C and B. 

The vertical distance between two points is the distance from one of the 
two points to the horizontal line drawn through the other. Thus, the vertical 
distance from A to B, in Fig. 26 • 13, is the distance between A and C. 

Calculations of distance in the vertical plane are made by means of right 
triangles having horizontal and vertical sides. The horizontal side is usually 
called the run, and the vertical side is called the rise or fall, as the case 
may be. 

The slope or grade of a line is the rise or fall divided by the run. Thus, if a 
road rises 5 ft in a run of 100 ft, the grade of the road is 

5 - 100 = 0.05 = 5%. 

Fig. 26-12 Angle of Depression 

PROBLEMS 26 • 5 

1 What is the angle of inclination of a stairway with the floor if the steps 
have a tread of 10.5 in. and a rise of 7 in.? 

2 What angle does an A-frame rafter make with the horizontal if it has a 
rise of 12 ft in a run of 5 ft? 

3 A transmission line rises 8.68 ft in a run of 120 ft. What is the angle of 
elevation of the line with the horizontal? 

4 A radio tower casts a shadow 562 ft long, and at the same time the 
angle of elevation of the sun is 41.7°. What is the height of the tower? 

C B 

Fig. 26-13 Vertical and 
Horizontal Distances 
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Fig. 26-14 Measuring across a 
River 

Fig. 26-15 Measuring across a 
Pond or Swamp 

Fig. 26 • 16 Area of a Right 
Triangle 

5 An antenna mast 314 ft tall cast a shadow 181 ft long. What was the 
angle of elevation of the sun at the time? 

6 At a horizontal distance of 250 ft from the foot of a radio tower, the 
angle of elevation of the top is found to be 31°. How high is the tower? 

7 A telephone pole 40 ft high is to be guyed from its middle, and the guy 
is to make an angle of 45° with the ground. Allowing 2 ft extra for splic¬ 
ing, how long must the guy wire be? 

8 An extension ladder 50 ft long rests against a vertical wall with its foot 
10 ft from the wall. (Do not use Pythagoras’ theorem to solve.) 
(a) How far up the wall does the ladder reach? 
(b) What angle does the ladder make with the ground? 

9 A ladder 50 ft long can be so placed that it will reach a point on a wall 
42 ft above the ground. By tipping the ladder back without moving its 
foot, it will reach a point on another wall 32 ft above the ground. What 
is the horizontal distance between the walls? 

10 From the top of a cliff 192 ft high, the angle of depression of a boat is 
28.6°. How far out is the boat? 

11 In order to find the width BC of a river, a distance AB was laid off along 
the bank, the point B being directly opposite a tree C on the opposite 
side, as shown in Fig. 26 • 14. If the angle BAC was observed to be 
62.9° and AB was 165 ft, find the width of the river. 

12 In order to measure the distance AC across a swamp, a surveyor lays 
off a line AB such that the angle BAC = 90°, as shown in Fig. 26 • 15. 
At point B. 800 ft from A, he observes that angle ABC = 59.1°. Find 
the distance AC. 

26 8 THE AREA OF TRIANGLES 

A convenient use of trigonometry is the calculation of the area of a triangle. 
In Fig. 26 • 16, the area of the triangle ABC, from previous knowledge, is 
known to be 

A = jab 

But b = c sin $ and a = c sin 0, from which we can write 

A = jac sin ó or A = jbc sin 0 

Either of these expressions may be stated: 

The area of a triangle is one-half the product of any two sides times the sine 
of the angle between them. 

You should prove that the formula holds for the more general case of the 
triangle of Fig. 26 • 17. 

hint Draw an altitude perpendicular to the base. 
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PROBLEMS 26 • 6 

1 In the right triangle of Fig. 26 • 16, a = 50 ft and c = 130 ft. 
(a) What is the angle <>? 
(b) What is the area of the triangle by the sine formula? 
(c) What is the length of b? 
(d) What is the area by the formula A = |(base)(altitude)? 

2 In the triangle of Fig. 26 • 17, a = 3.2 in., b = 4 in., c = 3 in., <J> = 47.5°, 
and S — 52°. 
(a) What is the angle opposite side b? 
(b) What is the area of the triangle by the sine formula? 
(c) What is the length of altitude h? 
(d) What is the area by the formula A = |(base)(altitude)? 

3 In the triangle of Fig. 26 • 17, a = 4 in., c = 3.45 in., and angle 
CBA = 107°. What is the area of the triangle? 

PROBLEMS 
26.5 

TO 
PROBLEMS 

26 • 6 

Fig. 26-17 
Triangle 

Area of an Obtuse 
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and equations trigonometric identities 

chapter 

So far, our studies in trigonometry have been confined to the solution of 
right triangles, but there are times when other types of problems must be 
considered. In this chapter, we shall develop some useful relationships be¬ 
tween the trigonometric functions, and also solve oblique triangles. 

27 • 1 SIMPLE IDENTITIES 

Consider the right triangle ABC (Fig. 27 • 1). From our studies in trigonom¬ 
etry we know that: 

Fig. 27 • 1 "Standard" Right 
Triangle 

and 

The ratio of these two functions is 

[1] 

This interesting and useful relationship is the simplest of a group of trigono¬ 
metric interrelationships called identities. We shall develop a few of the sim¬ 
pler identities and then tabulate them for convenience. 

sin 0 = 

COS 0 — ~ 

X 

-5104 = 4- = 4 = tan ö cos 0 7? R 
Z 

27-2 THE PYTHAGOREAN IDENTITIES 

In the triangle of Fig. 27 • 1, we can readily see that 

X* + R- = Z-

the statement of Pythagoras’ theorem. Dividing the entire equation by Z?: 

Xz.RL-
z- z? z? 
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from which we can see that 

(sin 0)2 + (cos 0)2 = 1 

which is usually written (as in 12 of Problems 25 • 3) 

sin2 6 + cos2 0=1 [2] 

This is the first of the interrelationships known as the Pythagorean identities 
because they are derived from Pythagoras’ theorem. You should now repeat 
the process twice, dividing first by X2 and then by R2 to develop the other two 
Pythagorean identities: 

1 + cot2 6 = esc2 ft [3] 

tan2 0 + 1 = sec2 0 [4] 

These relationships will prove quite useful in the advanced study of elec¬ 
tronics because many of the mathematical descriptions of electrical and elec¬ 
tronic phenomena are described by rather complicated combinations of 
trigonometric functions, and these may be often simplified by the use of 
identities. Here we shall confine ourselves to achieving some practice in 
manipulation of identities. 

No set rule may be established about simplifying or proving identities. 
Usually, one side of the identity is manipulated until it is shown to be equal 
to the other side. Sometimes, each side is developed into the same equiva¬ 
lent in order to arrive at an obvious equality. 

SECTION 
27 ■ 1 

TO 
SECTION 

27 ■ 2 

. , tan2 0 , cot2 0 i example 1 Show that - = + „ = 1 
uCU 1/ ’/ 

solution (a) One possible method of solution uses the fundamental rela¬ 
tionships between the trigonometric functions: 

/ sin O \2 / 1 \2
tan2 0 cot2 0 _ \cos0/ \tan 0/ 
sec2 0 + esc2 6 “ / 1 \2 / 1 y 

\ cos ft / \ sin 0 / 

= sin2 0 + sin2 0 ( cos^ f ) = 1 
\ sin2 0 / 

(6) An alternative solution is to start with the Pythagorean ident¬ 
ities, which suggests itself from the square relationships in the 
problem: 

tan2 0 cot2 0 _ sec2 0—1 esc2 0—1 
sec2 0 + esc2 0 — sec2 0 esc2 0 

= 1--— + 1--— 
sec2 0 esc2 0 

= 2 — (cos2 0 + sin2 0) 

=2-1=1 
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B 

Fig. 27 • 2 Nonright Triangle 
Cannot Be Solved By Simple 
Trigonometric Relationships 

B 

Fig. 27 • 3 Redrawn from Fig. 
27 • 2 with Altitude h 
Perpendicular to Base b 
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PROBLEMS 27 • 1 

Prove that the following equations are identities; 

1 cos 0 tan 0 = sin 0 
2 (sec «i» + tan <»(sec <;> — tan ó) = 1 
3 cos2 À — sin2 Ä = 1 — 2 sin2 Ä 
4 sin4 a — cos* « = sin2 a — Cos2 a 

c 2 tan ó „ . , 5  --—£— = 2 sin 0 cos 0 
1 + tan2 <:> 

, COS2 ó , , 6 --r2— = 1 + sin ó 
1 — sin <> 

7 (1 + tan2 ß) cos2 ß = 1 
8 tan 0 + cot 0 = sec 0 esc 0 
9 (sin 0 4- cos 0)2 + (sin 0 — cos 0)2 = 2 
10 1—2 sin2 w = 2 cos2 w — 1 
11 tan2 — sin2 = tan2 ip sin2 $ 

j2 1 — 2 COS2 a _ sin2 a — COS2 a 
sin a COS a ~ sin a cos a 

13 = cos2 0 - sin2 0 
1 + tan2 0 

14 sec <> — cos <f> = xttaKiyTjTTiin^ytarr^ 
15 cot 0 cos 0 — esc 0 — sin 0 

16 sin 0 + tan 0 
cot 0 4- esc 0 

= sin 0 tan 0 

17 tan Ä + cot A = csc¿ Ä + sec; Ä 
esc A sec A 

18 (tan a — sin a)2 + (1 — cos a)2 = (1 — sec a)2

19 4-— (sec u _ tan w)2 
1 + sin w 

20 tan « 4- tan 
cot a + cot ß 

— tan a tan ß 

27 • 3 LAW OF SINES 

Consider the triangle ABC (Fig. 27 ■ 2). This is not a right triangle, and there¬ 
fore we have no relationships which we can use to solve the triangle, that is, 
to relate the various sides and angles in order to find the unknown dimen¬ 
sions in an actual numerical problem. But if we were to develop within it our 
own right triangles, we might derive some useful relationships. 

First of all, we redraw the triangle, Fig. 27 • 3, and from the vertex B we 
drop the altitude h perpendicular to the base b. This yields two right tri¬ 
angles, from which we develop the relationships: 

h — c sin a and h = a sin y 



Then, equating things equal to the same thing (Axiom 5, Sec. 5 • 2): 

c sin a — a sin y 

We rewrite this equation in the simple easy-to-remember form 

PROBLEMS 
27 • 1 

TO 
PROBLEMS 

27 • 2 

a _ C 
sin a sin y [5] 

which is also the most useful form for obtaining slide rule solutions when 
using this law of sines. You should immediately prove the more general 
statement: 

a _ b _ c 
sin a ~ sin ß ~ sin y [6] 

example 2 Given the triangle MPL, Fig. 27 • 4, find the values of m and p. 
solution First of all, solve for Ä = 180° — (80° + 30°) = 70°. Then, 

using the law of sines, 

10 _ p _ m 
sin 70° — sin 80° — sin 30° 

so that p = - 10.5 
' sin 70° Fig. 27 • 4 Triangle of Example 2 

and m = 10 = 5.32 
sin 70° 

note To be able to use the law of sines, it is necessary for us to know cer¬ 
tain specific data: two sides and the angle opposite one of them or two angles 
and the side opposite one of them. 

PROBLEMS 27 • 2 

Referring to Fig. 27 • 2, solve the following triangles: 

1 a = 8.04, a = 57°, ß = 53° 
2 a = 19, ß = 80°, y = 88° 
3 b = 16.3, a = 44°, ß = 61° 
4 c = 760, a = 68°, ß = 42° 
5 6 = 76, a = 20°, ß = 52° 
6 b = 3.26, a = 25°, ß = 41° 
7 c = 7.6, ß = 60°, y = 112" 
8 a = 600, ß = 17.6 , y = 105.9° 
9 b = 58, a = 9.2°, y = 115.3° 
10 c = 635, a = 15.5°, ß = 26° 
11 Two observers who are 1500 yd apart on a horizontal plane observe a 

radiosonde balloon in the same vertical plane as themselves and be¬ 
tween themselves. The angles of elevation are 72° and 75°. Find the 
height of the balloon. 

12 A 150-ft antenna mast stands on the edge of the roof of the studio 
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Fig. 27 • 5 Redrawn from Fig. 
27 • 2. Altitude h Divides Base b 
into Parts x and y 

Fig. 27-6 Triangle of Example 3 

392 

building. From a point on the ground at some distance from the base of 
the building, the angles of elevation of the top and bottom of the mast 
are respectively 76.5° and 54.5°. How high is the building? 

27 • 4 LAW OF COSINES 

Sometimes we are not given data suitable for solving a triangle by means of 
the law of sines. But another useful relationship can be readily developed. 
Using the triangle ABC of Fig. 27 • 2, copied as Fig. 27 • 5 and adjusted with 
an altitude h perpendicular to the base and rising to the vertex, so that the 
base is divided into parts x and y, 

h2 = c2 - x2 = a2 - y2

from which 

a2 — c2 — x2 + y2

= c2 — x2 + (b — x)2

— c2 — x2 + b2 — 2bx + x2

= b2 + c2 — 2bx 

but 

X = C COS a 

and 

a2 = b2 + c2 — 2bc cos a [7] 

See how straightforward this statement may be: “In any triangle, the square 
on any one side is equal to the sum of the squares on the other two sides 
minus twice their product times the cosine of the angle between them.” You 
should prove that this statement holds true for right triangles, to become 
Pythagoras' theorem. 

Like the law of sines, the law of cosines has a rhythm which makes it easy 
to memorize one part and simply rotate the other parts into duplicate state¬ 
ments. However, besides merely memorizing the result, you should prove 
that all parts of the full statement of the law of cosines are true: 

a2 = b2 + c2 — 2bc cos a 

b2 — a2 + c2 — 2ac cos ß [8] 

c2 = a2 + b2 — 2ab cos y [9] 

The careful use of these three equations, together with what we have learned 
about the signs of the cosine, will enable us to prepare any triangle so that 
we may complete its solution by means of the law of sines. 

example 3 Acute triangle. Solve the triangle of Fig. 27 • 6. 
solution Using the law of cosines: 



P2 = 12- + 132 - 2 X 12 X 13 X cos 58° 
= 144 + 169 - 312 cos 58° 
= 147.9 

p = 12.2 

Now, having at least two sides and the angle opposite one of 
them, we may, if we wish, complete the solution by means of the 
law of sines instead of repeating the cosine solution. Since this 
method is easier to set up on the slide rule: 

12,2 _ 12 
sin 58° sin /x 

from which g = 65° 

Similarly À = arcsin --2 = 65° 

test 58° + 56.8° + 65° = 179.8° 

PROBLEMS 
27 • 2 

TO 
SECTION 

27 • 4 

example 4 Oblique triangle. Solve the triangle of Fig. 27 • 7. 
solution Since the information given is not sufficient to use the law of 

sines, check to see if the law of cosines may be applied. Knowing 
two sides and the angle between them is sufficient: 

x2 = 52 + 152 — 2 X 5 X 15 X cos 40° 
= 135.1 

X = 11.6 

Then, using the law of sines, 

61 = arcsin ^°° =16.1° 
11.6 

and 

j _ arrcin ^0 cc i o o = arcsin- -= oo.i 
11.6 

test 40° + 16.1° 4-56.1° = 112.2° Oh. 

Fig. 27 • 7 Triangle of Example 4 

From Fig. 27 • 7, the side of length 15, being the longest side, 
must be opposite the largest angle, which we have calculated as 
56.1°. Since this must be the largest angle, since it could be 
obtuse (greater than 90°, an angle in the second quadrant), and 
since all that our calculations guarantee is that <> = arcsin 0.831, 
perhaps ó is 180° — 56.1° = 123.9°. 
Testing this possibility, 40° + 16.1° + 123.9° = 180°, we 
arrive at the correct solution. 

Be sure to test your solutions. 
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Fig. 27-8 Triangle of Example 5 

example 5 The three sides of a triangle are given, and it is required to solve 
the angles. (Note that if just three angles are given, there are an 
infinite number of solutions.) Solve the triangle Of Fig. 27 • 8. 

solution If any angle in the triangle can be obtuse, it will be angle ß. 
(Why?) We will defer solving for ß for now. Consider the angle a. 
It is related, by the law of cosines, as follows: 

12-’ = 52 + 152 - 2 X 5 X 15 X cos a 

. u- u 52 + 152 - 122
from which a — arccos — 2 x 5 X 15— = 45 1

You should confirm that 

Then ß = 180° - (45.1° + 17.2°) = 117.7° 

Alternatively, starting the solution for ß, 

152 = 52 + 122 - 2 x 5 x 12 X cos ß 

from which ß = arccos (-0.466). 

This negative cosine indicates immediately that ß must be 
an angle between 90° and 180°, and we find it to be 

180° - 62.3° = 117.7°. 

PROBLEMS 27 • 3 

Referring to Fig. 27 • 2, solve the following triangles: 

1 b = 5.2, c = 8, a = 63° 
2 a = 544, b = 805, y = 80° 
3 a = 0.17, b = 0.785, y = 132° 
4 a = 2.6, c = 8.45, ß = 48.8° 
5 a = 1600, b = 3260, y = 147.7° 
6 b = 0.0945, c = 0.0980, a = 5° 
7 a = 3. b = 5, c = 7 
8 a = 2000. b = 4000, c = 6000 
9 a = 1280. b = 3260, c = 3935 
10 a = 25, b = 30, c = 50. 
11 The diagonals of a parallelogram are 5 in. and 11 in., and they intersect 

at an angle of 38°. What are the sides of the parallelogram? 
12 Using the data of Prob. 11, but not your results, what is the area of the 

parallelogram? (After obtaining a solution, check it by means of a dif¬ 
ferent computational method.) 
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27-5 THE SUM IDENTITIES 

Often in the solution of antenna and modulation problems we come upon 
various combinations such as sin (0 + <>) and cos (0 — <>). It is often con-



venient to resolve these forms into the products of simple trigonometric 
functions. 

Consider triangle PQR, Fig. 27 ■ 9, with the altitude h dividing the angle 
RPQ into two angles, a and ß. Since the area of the whole triangle must be 
equal to the sum of the areas of the two component triangles, 

\qr sin (a + ßj = ^qh sin « + ̂ rh sin ß 

from which 

sin (a + ß) = — sin a + — sin ß 
r q 

which yields 

sin {a + ß) - sin « cos ß + cos a sin ß [10] 

Again, using the same triangle, Fig. 27 • 9, and the law of cosines, 

(m + ri)2 = q2 + r2 — 2qr cos (a + ß) 

from which 

, m q~ + r2 — m2 — n2 — 2mn cos (a + ß) = ---
2qr 

_ q2 — m2 r2 — ri2 2mn 
“ 2qr + 2qr 2qr 

_ 2h2 _ 2mn 
2qr 2qr 

h h m n 
q r q r 

which converts to 

cos (a + ß) = cos a cos ß - sin a sin ß [11] 

27 ■ 6 THE DIFFERENCE IDENTITIES 

Sometimes, instead of functions of the sum of two angles, it is necessary to 
deal with the differences of two angles: In triangle PQR, Fig. 27 • 10, the 
line q divides the vertex into two angles, ß and « — ß. As in the sum identity, 
the area of the whole triangle is equal to the sum of the parts: 

jhr sin a = ^hq sin ß + ^qr sin (a — ß) 

from which 

■ r o\ hr sin a — hq sin ß sin (a — ß) =---— 
nr 

= — sin a — — sin ß 
q r 

SECTION 
27 • 4 
TO 

SECTION 
27 • 6 

P 

R p Q 

Fig. 27 • 9 Triangle Adjusted for 
Development of the Sum Identities 

P 

P Q 

Fig. 27 • 10 Triangle Adjusted for 
Development of the Difference 
Identities 
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Trigonometric Identities and 
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which yields 

sin (a - ß) = sin a cos ß - cos a sin ß [12] 

And, as before, using the law of cosines: 

(p — m)2 = q2 + r2 - 2qr cos (a — ß) 

from which 

cos (a - ß) = 92 + r2 - P2 - m2 + 2mp 
2qr 

_ q2 - m2 r2 - p2 2mp 
2qr 2qr 2qr 

_ h_ h m p 
~ q r q ' r 

which yields 

cos (a - ß) = cos a cos ß + sin a sin ß [13] 

example 6 Simplify the expression sin (3 + 45°) + cos (0 + 45°). 
solution Using Eqs. [10] and [11] and substituting the equivalent product 

expressions: 

sin (0 + 45°) + cos (0 + 45°) 
= sin 0 cos 45° + cos 0 sin 45° + cos 0 sin 45° — sin 0 sin 45° 
= 0.7071 sin 0 + 0.7071 cos 0 + 0.7071 cos 0 — 0.7071 sin 0 
= 1.4142 cos 0 

tan 0 = -?in cot 0 = cos ° 
cos 0 sin 0 

sin2 0 + cos2 0=1 
1 + tan2 0 = sec2 3 
1 + cot2 0 = esc2 3 

a _ b _ c 
sin a “ sin ß ~ sin y 

a2 — b2 + c2 — 2bc cos a 

sin (0 + <¡>) — sin 0 cos <#> + cos 0 sin <> 
cos (0 + ó) = cos 0 cos<¡> — sin 0 sin tß 
sin (0 - <» = sin 3 cos <f> — cos 0 sin $ 
cos (0 — <>) = cos 3 cos <> + sin 0 sin $ 

PROBLEMS 27 • 4 

Using the sum and difference relationships, simplify: 

1 sin (0 + 30°) + cos (0 + 30°) 
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27 • 4 

2 sin (45° — 0) — cos (45° 4-0) 
3 sin (0 - 60°) + cos (0 + 60°) 
4 sin (0 - 30°) - cos (0 - 45°) 

Given sin 0 = I and sin <> = evaluate: 

5 cos (0 4- <» 
6 sin (0 — <>) — cos (0 — <>) 
7 Use Eq. [10] to show that sin 20 = 2 sin 0 cos 0. 
8 Use Eq. [11] to show that cos 20 = cos- 0 - sin- 0. 
9 When a VHF direction finding array is fed in modulation phase quadra¬ 

ture, the two fields about the antennas are 

Ex = K cos 0 cos pt cos ut 
E2 — K sin 0 sin pt cos ut 

Show that the total field E, = E, + E2 = K cos ut cos (pt - 0). 
10 Use Eqs. [11] and [13] to show that 

I cos (wí — pt) — I cos (ut + pt) = sin pt sin ut. 

It is based on this relationship that an amplitude-modulated carrier 
wave is shown to consist of a fundamental and two sidebands. The 
equation of the modulated carrier wave is 

e = E sin ut + mE sin ut sin pt 

where m is the depth of modulation, and your work in this problem 
shows the correctness of the substitution: 

e = E sin ut + ^mE cos (ut — pt) — ^mE cos (ut 4- pt) 

where E sin ut represents the original carrier and the other two parts 
represent the difference and sum sideband frequencies whose ampli¬ 
tudes are each one-half that of the carrier. 
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Many physical quantities can be expressed by specifying a certain number 
of units. For example, the volume of a tank may be expressed as so many 
cubic feet, the temperature of a room as a certain number of degrees, and 
the speed of a moving object as a number of linear units per unit of time such 
as miles per hour or feet per second. Such quantities are scalar quantities, 
and the numbers that represent them are called scalars. A scalar quantity is 
one that has only magnitude; that is, it is a quantity fully described by a 
number, but it does not involve any concept of direction. 

Fig. 28 • 1 Vector OA of 
Example 1 

Fig. 28 ■ 2 Vector diagram of 
Example 2 

28 • 1 VECTORS 

Many other types of physical quantities need to be expressed more definitely 
than is possible by specifying magnitude alone. For example, the velocity of 
a moving object has a direction as well as a magnitude. Also, a force due to 
a push or a pull is not completely described unless the direction as well as the 
magnitude of the force is given. In addition, electric circuit analysis is built 
up around the idea of expressing the directions and magnitudes of voltages 
and currents. Those quantities which have both magnitude and direction 
are called vector quantities, k vector quantity is conveniently represented by 
a directed straight line segment called a vector, whose length is proportional 
to the magnitude and whose head points in the direction of the vector 

quantity. 

example 1 If a vessel steams northeast at a speed of 15 knots, its speed 
can be represented by a line whose length represents 15 knots, 
to some convenient scale, as shown in Fig. 28 • 1. The direction 
of the line represents the direction in which the vessel is travel¬ 
ing. Thus the line OA is a vector that completely describes the 
velocity of the vessel. 

example 2 In Fig. 28 • 2, the vector OA represents a force of 80 lb pulling on 
a body at O in a direction of 60°. The vector OB represents a 
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force of 40 lb acting on the same body in a direction of 310° 
or -50°. 

Two vectors are equal if they have the same magnitude and direction. 
Thus, in Fig. 28 • 3, vectors A, B, and C are equal. 

28 • 2 NOTATION 

As you progress in the study of vectors, you will find that vectors and scalars 
satisfy different algebraic laws. For example, a scalar when reduced to its 
simplest terms is simply a number and as such obeys all the laws of ordinary 
algebraic operations. Since a vector involves direction, in addition to magni¬ 
tude, it does not obey the usual algebraic laws and therefore has an analysis 
peculiar to itself. 

From the foregoing, it is apparent that it is desirable to have a notation 
that indicates clearly which quantities are scalars and which are vectors. 
Several methods of notation are used, but you will find little cause for con¬ 
fusion, for most authors specify and explain their particular system of 
notation. 

A vector can be denoted by two letters, the first indicating the origin, or 
initial point, and the second indicating the head, or terminal point. This form 
of notation was used in Examples 1 and 2 of the preceding section. Some¬ 
times a small arrow is placed over these letters to emphasize that the quan¬ 

tity considered is a vector. Thus, OA could be used to represent the vector 
from O to A as in Fig. 28 • 2. In most texts, vectors are indicated by boldface 
type; thus, A denotes the vector A. Other common forms of specifying a 
vector quantity, as, for example, the vector A, are À, Á, A, and A. 

SECTION 
28 ■ 1 

TO 
SECTION 

28.3 

Fig. 28 • 3 Vectors A, B. and C 
Are Equal. 

28 • 3 ADDITION OF VECTORS 

Scalar quantities are added algebraically. Thus 

20 cents + 8 cents = 28 cents 

and 

16 insulators — 7 insulators = 9 insulators 

Since vector quantities involve direction as well as magnitude, they can¬ 
not be added algebraically unless their directions are parallel. Figure 28 ■ 4 
illustrates vectors OA and AB. Vector OA can be considered as a motion 
from O to A, and vector AB as a motion from A to B. Then the sum of the 
vectors represents the sum of the motions from O to A and from A to B, 
which is the motion from O to B. This sum is the vector OB; that is, the vector 
sum of OA and AB is OB. Therefore, the sum of two vectors is the vector 
joining the initial point of the first to the terminal point of the second if the 
initial point of the second vector is joined to the terminal point of the first 
vector as shown in Fig. 28 • 4. 

Fig. 28 • 4 Vector OB Is the 
Vector Sum of OA and AB. 
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Fig. 28 • 5 Resultant Vector OE 
Is the Vector Sum of OC and OD 

Fig. 28 • 6 Vector Diagram of 
Example 3 

Fig. 28 • 7 OE Is the Vector Sum 
of Vectors A, B, and C 

In Fig. 28 • 5, vectors OC and OD are equal to vectors OA and AB, re¬ 
spectively, of Fig. 28 • 4. In Fig. 28 • 5, however, the vectors start from the 
same origin. That their sum can be represented by the diagonal of a parallelo¬ 
gram of which the vectors are adjacent sides is evident by comparing Figs. 
28 -4 and 28 • 5. This is known as the parallelogram law for the composi¬ 
tion of forces, and it holds for the composition or addition of all vector 
quantities. 

The addition of vectors that are not at right angles to each other will be 
considered in Sec. 28 • 6. At this time, it is sufficient to know that two forces 
acting simultaneously on a point, or an object, can be replaced by a single 
force called the resultant. That is, the resultant force will produce the same 
effect on the object as the joint action of the two forces. Thus, in Fig. 28 • 4 
the vector OB is the resultant of vectors O A and AB. Similarly, in Fig. 28 • 5, 
the vector OE is the resultant of the vectors OC and OD. Note that OB = OE. 

example 3 Three forces A, B, and C are acting on point O as shown in 
Fig. 28 • 6. Force A exerts 150 lb at an angle of 60°, B exerts 
100 lb at an angle of 135°, and C exerts 150 lb at an angle of 
260°. What is the resultant force on point O? 

solution The resultant of vectors A, B, and C can be found graphically by 
two methods. 
(a) First draw the vectors to scale. Find the resultant of any two 
vectors, such as OA and OC, by constructing a parallelogram 
with OA and OC as adjacent sides. Then the resultant of OA and 
OC will be the diagonal OD of the parallelogram OADC as 
shown in Fig. 28 • 7. In effect, there are now but two forces, OB 
and OD, acting on point O. The resultant of these two forces is 
found as before by constructing a parallelogram with OB and OD 
as adjacent sides. The resultant force on point O is then the 
diagonal OE of the parallelogram OBED. By measurement with 
scale and protractor, OE is found to be 57 lb acting at an angle 
of 112°. 
(6) Draw the vectors to scale as shown in Fig. 28 • 8, joining the 
initial point of B to the terminal point of A and then joining the 
initial point of C to the terminal point of B. The vector drawn 
from the point O to the terminal point of C is the resultant force, 
and measurements show it to be the same as that found by the 
method illustrated in Fig. 28 • 7. 

A figure such as OABCO, in Fig. 28 ■ 8, is called a polygon of forces. The 
vectors can be joined in any order as long as the initial point of one vector 
joins the terminal point of another vector and the vectors are drawn with the 
proper magnitude and direction. The length and direction of the line that is 
necessary to close the polygon, that is, the line from the original initial point 
to the terminal point of the last vector drawn, constitute a vector that repre¬ 
sents the magnitude and the direction of the resultant. 
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PROBLEMS 28 • 1 

1 to 4 Find the magnitude and direction, with respect to the positive x axis, 
of the vectors shown in Figs. 28 • 9 to 28 • 12. 

28 • 4 COMPONENTS OF A VECTOR 

From what has been considered regarding combining or adding vectors, it 
follows that a vector can be resolved into components along any two specified 
directions. For example, in Fig. 28 • 4, the vectors OA and AB are compo¬ 
nents of the vector OB. If the directions of the components are so chosen 
that they are at right angles to each other, the components are called rectan¬ 
gular components. 

By placing the initial point of a vector at the origin of the x and y axes, the 
rectangular components are readily obtained either graphically or mathe¬ 
matically. 

example 4 A vector with a magnitude of 10 makes an angle of 53.1° with 
the horizontal. What are the vertical and horizontal components? 

solution The vector is illustrated in Fig. 28 ■ 13 as the directed line seg¬ 
ment OA. Its length drawn to scale represents the magnitude of 
10, and it makes an angle of 53.1° with the x axis. 
The horizontal component of OA is the horizontal distance (Sec. 
26 • 7) from O to A and is found graphically by projecting the 
vector OA upon the x axis. Thus the vector OB is the horizontal 
component of OA. 
The vertical component of OA is the vertical distance from O to 
A and is found graphically by projecting the vector OA upon the 
y axis. Similarly, the vector OC is the vertical component of OA. 
Finding the horizontal and vertical components of OA by mathe-

Fig. 28-10 Vector Diagram of 
Prob. 2 

Fig. 28-11 Vector Diagram of 
Prob. 3 

SECTION 
28 • 3 

TO 
SECTION 

28 • 4 

Y' 

Fig. 28 • 8 OC Is the Vector Sum 
of Vectors A, B, and C 

Y 

Y' 

Fig. 28 • 9 Vector Diagram of 
Prob. 1 

Y 

Fig. 28-12 Vector Diagram of 
Prob. 4 
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Fig. 28-13 Vertical and 
Horizontal Components of Vector 

matical methods is simply a problem in solving a right triangle 
as outlined in Sec. 26 • 4. Hence, 

OB = 10 cos 53.1° = 6 

and 

OC = BA 10 sin 53.1° = 8 

check 6 = arctan | = arctan 1.33 = 53.1° 
102 = 62 + 82 = 36 + 64 = 100 

The foregoing can be summarized as follows: 

Rule 
1 The horizontal component of a vector is the projection of the vector 

upon a horizontal line and equals the magnitude of the vector multiplied by 
the cosine of the angle made by the vector with the horizontal. 

2 The vertical component of a vector is the projection of the vector upon 
a vertical line and equals the magnitude of the vector multiplied by the sine 
of the angle made by the vector with the horizontal. 

example 5 An airplane is flying on a course of 40° at a speed of 250 mi/hr. 
How many miles per hour is the plane advancing in a due east¬ 
ward direction? In a direction due north? 

solution Draw the vector diagram as shown in Fig. 28 • 14. (Courses are 
measured from the north.) The vector OB, which is the hori¬ 
zontal component of OA, represents the velocity of the airplane 
in an eastward direction. The vector OC, which is the vertical 
component of OA, represents the velocity of the airplane in a 
northward direction. 
Again, the process of finding the magnitude of OB and OC re¬ 
solves into a problem in solving the right triangle OBA. Hence, 

Fig. 28-14 
Example 5 

Vector Diagram of OB = 250 cos 50° = 161 mi/hr eastward 
OC = BA - 250 sin 50° = 192 mi/hr northward 

If the vector diagram has been drawn to scale, an approximate 
check can be made by measuring the lengths of OB and OC. 
Such a check will disclose any large errors in the mathematical 
solution. 

example 6 A radius vector of unit length is rotating about a point with a 
velocity of 2irr/sec. What are its horizontal and vertical com¬ 
ponents (a) at the end of 0.15 sec, (6) at the end of 0.35 sec, 
(c) at the end of 0.75 sec? 

solution (a) At the end of 0.15 sec the rotating vector will have generated 
2tt X 0.15 = 0.942r, or 0.942 x 57.3° = 54° as shown in 
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Fig. 28- 15. The horizontal component, measured along the x 
axis, is 

X = 1 cos 54° = 0.588 

The vertical component, measured along the y axis, is 

y = 1 sin 54° = 0.809 

Check the solution by measurement or any other method con¬ 
sidered convenient. 
(b) At the end of 0.35 sec the rotating vector will have generated 
an angle of 2% x 0.35 = 2.20r, or 2.20 x 57.3° = 126° as 
shown in Fig. 28-16. The horizontal component, measured 
along the x axis, is 

x = 1 cos 126° = 1( —cos 54°) = -0.588 (Sec. 25-11) 

The vertical component, measured along the y axis, is 

y = 1 sin 126° = 1 sin 54° = 0.809 (Sec. 25-11) 

Check by some convenient method. 
(c) At the end of 0.75 sec the rotating vector will have generated 
2tt x 0.75 = 4.71r, or 4.71 x 57.3° = 270° as shown in 
Fig. 28 • 17. The horizontal component is 

x = 1 cos 270’ = 0 

The vertical component is 

y — 1 sin 270° - -1 

SECTION 
28 - 4 

TO 

Fig. 28-15 When t = 0.15 Sec, 
Angle O = 54° 

Fig. 28-16 When t = 0.35 Sec, 
Angle d = 126° 

PROBLEMS 28 ■ 2 

Find the horizontal and vertical components, denoted by x and y, respec¬ 
tively, of the following vectors. Check the mathematical solution of each by 
drawing a vector diagram to scale. 

30 at 65.5° (This is commonly written 30/65.5° ) 

2 99/22.8 0.865/87.2 4 1800/120 3 

5 0.987/295.5 185.5/252.2 46.3/180" 6 7 

8 30.8/157.3 1600/270 9 10 

11 The resultant of two forces acting at right angles is a force of 765 lb 
which makes an angle of 17.8° with one of the forces. Find the compo¬ 
nent forces. 

12 A test missile was fired at an angle of 82° from the horizontal. At a par¬ 
ticular instant its velocity was 1200 mi/hr. Find its horizontal velocity 
at that instant in feet per second. 

Fig. 28-17 When t = 0.75 Sec, 
Angle O = 270° 
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13 A jet fighter leaves its base and flies 750 mi southeast. How far east 

does it go? 
14 Resolve a force of 1070 lb into two rectangular components one of 

which is 580 lb. 
15 The resultant of two forces acting at right angles is 799 lb. One of the 

forces is 600 lb. What is the other? 

28 • 5 PHASORS 

Early in this chapter we discovered the difference between scalar quantities, 
which involve magnitude only, and vectors, which involve both magnitude 
and direction. When electrical units are shown on paper, with the length of 
the line indicating the magnitude and the direction of the line indicating the 
phase relationship, they may be thought of as vectors. However, when an 
EMF is impressed across a circuit, its polarity is not direction in the sense of 
vector definition. The paper representation as vectors serves a valuable pur¬ 
pose in our circuit calculations, but the electrical quantities are not true 
vectors. Since the angular separation of electrical units always represents 
time revealed as a phase relationship, scientists and engineers prefer to use 
the term phasors when discussing electrical “vectors." 

On paper (in a “uniplanar” representation) there is no difference between 
phasors and vectors. The operations of conversion between rectangular and 
polar forms are the same. The summation of perpendicular components is 
the same. But since our purpose is to study the mathematics of electronics 
in an electronics environment and our communication is with electronics 
and scientific people, we will use the expressions phasor and phasor sum¬ 
mation throughout the remaining chapters of this book. 

Fig. 28-18 Addition of 
Rectangular Components 

28 • 6 PHASOR SUMMATION OF RECTANGULAR COMPONENTS 

If two forces that are at right angles to each other are acting on a body, their 
resultant can be found by the usual methods of phasor summation as out¬ 
lined in Sec. 28 • 3. However, the resultant can be obtained by geometric or 
trigonometric methods, for the problem is that of solving for the hypotenuse 
of a right triangle when the other two sides are given, as outlined in 

Sec. 26 • 6. 

example 7 Two phasors are acting at a point. One with a magnitude of 6 is 
directed along the horizontal to the right of the point, and the 
other with a magnitude of 8 is directed vertically above the point. 
Find their resultant. 

solution 1 In Fig. 28 • 18 the horizontal phasor, with a magnitude of 6, is 
shown as OB. The vertical phasor, with a magnitude of 8, is 
shown as OC. The resultant of these two phasors can be ob¬ 
tained graphically by completing the parallelogram of forces 
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PROBLEMS 
28 ■ 2 

TO 
SECTION 

28 • 6 

OCAB, as outlined in Sec. 28 • 3. Thus, the magnitude of the 
resultant will be represented by the length of OA in Fig. 28 • 18. 
The angle, or direction of the resultant, can be measured with 
the protractor. 

Graphical methods have a limited degree of accuracy, as pointed out in 
earlier sections. They should be used as an approximate check for more pre¬ 
cise mathematical methods. 

solution 2 Since BA = OC in Fig. 28 • 18, then OBA isa right triangle the 
hypotenuse of which is the resultant OA. Therefore the magni¬ 
tude of the resultant is 

OA = ^OB- + /M- = + 82 = 10 

The angle, or direction of the resultant, is 

0 = arctan = arctan = arctan 1.33 = 53.1 
Ud 6 

Although the method of Solution 2 is accurate and mathematically correct, 
there are several operations involved. For example, in finding the magnitude, 
6 and 8 must be squared, these squares must be added, and then the square 
root of this sum must be extracted. This involves four operations. 

solution 3 Since OBA is a right triangle for which OB and BA are given, the 
hypotenuse (resultant) can be computed as explained in Sec. 
26 • 6. Hence, 

tan 3 = = 1.33 

.’. 3 = 53.1° 

Then OA = OB 
cos 53.1° = -A-= io 0.6 

or OA = BA 
sin 53.1° = kV = 100.8 

The method of Solution 3 is to be preferred, owing to the minimum num¬ 
ber of operations involved; in addition, this is the method used when the slide 
rule is used for solving the resultant. It is worthy of note that this solution can 
be completed with a total of three movements on many slide rules and with¬ 
out referring to a table of trigonometric functions. 

It should be noted that Example 4 of Sec. 28 • 4 involves the same quan¬ 
tities as those used in the example of this section and that Figs. 28 • 13 and 
28 • 18 are alike. In the earlier example a vector that is resolved into its rec¬ 
tangular components is given. In the example of this section, the same com¬ 
ponents are given as vectors which are added vectorially to obtain the vector 
of the first example. From this it is apparent that resolving a vector into its 
rectangular components and adding vectors that are separated by 90° are 
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inverse operations. Basically, either problem resolves itself into the solution 
of a right triangle. 

PROBLEMS 28 • 3 

Find the resultants of the following sets of phasors. 

1 64.3/0° and 415/90° 

2 10.6/0° and 2.04/90° 

3 1.23/90° and 1.47/0/ 

4 45.4/0° and 153/90° 

5 351/0/ and 94.8/90° 

6 459/0° and 405/0/ 

7 307/0/ and 124/180° 

8 5.27/180° and 6.0/90° 

9 310/270° and 185/90° 

10 323/270° and 323/0/ 

11 2.34/180° and 7.30/270° 

12 84.2/0°. 34.4 90°, and 37/90° 

13 23.5/270° , 32/90°, 26.5/0°, and 51 /180° 

14 167/270° , 252/0°, 143.8/180° , and 81.3/90° 

15 12.1/0/, 72.3/270° , 51.9 90° , 2.7 /270° , 8.6/90°, and 31.6/180° 

16 Check your calculated answers graphically. 

28 -7 PHASOR SUMMATION OF NONRECTANGULAR COMPONENTS 

Often we are called upon to resolve into a resultant a set of phasors which 
are not themselves perpendicular (Fig. 28 • 19). The best analytical method 
of arriving at a solution is to apply the methods already developed in this 
chapter. 

The first step is to find the perpendicular components of each of the 
phasors to be added and determine their magnitudes and directions. These 
are shown in Fig. 28 • 19 as hA and the components of phasor A, and hB 
and vB, the components of phasor B. 

Second, these components are added algebraically. The horizontal com¬ 
ponents are added to obtain the resultant horizontal phasor, and then the 
vertical components are added to obtain the resultant vertical phasor: 

hR = hA + hB
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and 

SECTION 
28 ■ 6 

TO 
SECTION 

28 • 7 

Fig. 28-19 Summation of 
Nonrectangular Phasors By 
Resolution into Rectangular 
Components 

Vr = Va + Vr 

taking into consideration the signs as well as the magnitudes of the 
components. 

Finally, the resultant is the phasor summation of the new perpendicular 
components: 

R — x/hi? + v# 

0R = arctan 
hK

example 8 Find the resultant of two phasors 500/36.9° and 142/135° . 

solution Sketch the two phasors in the standard position (Fig. 28 ■ 20), 
and then resolve each phasor into its perpendicular components: 

hM0 = 500 cos 36.9° = 400 
7i H2 = 142 cos 135° = - 142 cos 45° = - 100 

e5Oo = 500 sin 36.9° = 300 
llua = 142 sin 135° = 142 sin 45° = 100 

Fig. 28 • 20 Nonrectangular 
Phasor Summation of Example 8 
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Fig. 28 • 21 Perpendicular 
Components of Fig. 28 ■ 20 
Resolved into Resultant R 

Add these components algebraically to obtain the new horizontal 
and vertical resultants: 

hn = +400 — 100 zz 300 
uK = +300 + 100 = 400 (Fig. 28 • 21) 

The angle which R makes with the .r axis, is 

» = «ct.n^=53.1-

and the resultant R of the two resultant perpendicular compo¬ 
nents is 

This process of analysis of phasors into their components and 
synthesis of resultant components into a final phasor resultant 
may be applied to any number of phasors. 

PROBLEMS 28 • 4 

Find the resultants of the following sets of phasors. Check your solutions 
graphically: 

1 217/63.8° and 110/40,3° 

2 799 48.7 and 233/120.2° 

3 110,40,3° and 39.6/315° 

4 7.65/17.8° and 4,34z 137.5° 

5 10.7 32.8° , 42.0/81.2° , and 61.2/221.4° 
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In Sec. 24 • 9, it was shown that the trigonometric functions could be repre¬ 
sented by the ratios of lengths of certain lines to the unit radius vector. Also, 
in Sec. 24 ■ 8, the variation of the functions was represented by lines. 

The complete variation of the functions is more clearly illustrated and 
better understood by plotting their continuous values on rectangular 
coordinates. 

29 • 1 THE GRAPH OF THE SINE CURVE y = sin x 

The equation y = sin x can be plotted just as the graphs of algebraic equa¬ 
tions are plotted, that is, by assigning values to the angle x (the independent 
variable), computing the corresponding value of y (the dependent variable), 
plotting the points whose coordinates are thus obtained, and drawing a 
smooth curve through the points. This is the same procedure as used for 
plotting linear equations in Chap. 16 and for plotting quadratic equations in 
Chap. 21. 

The first questions that come to mind in preparing to graph this equation 
are, “What values shall be assigned to x? Shall they be in radians or 
degrees?" Either might be used, but it is more reasonable to use radians. In 
Sec. 23 • 5, it was shown that an angle measured in radians can be repre¬ 
sented by the arc intercepted by this angle on the circumference of a circle of 
unit radius. Since, as previously mentioned, the functions of an angle can be 
represented by suitable lengths of lines, it follows that if an angle is ex¬ 
pressed in radian measure, both the angle and its functions can be expressed 
in terms of a common unit of length. Therefore, we shall select a suitable unit 
of length and plot both x and y values in terms of this unit. Then to graph the 
equation y = sin x, the procedure is as follows: 

1 Assign values to x. 
2 From the slide rule or the tables, determine the corresponding values 

of y (Table 29 • 1). 
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Table 29-1 x, radians 
x, radians (unit y 

x, degrees (it measure) measure) (sin x) point 

0 0 0 0 Po = (0,0) 

30 1 0.52 0.50 Pi = (0.52,0.50) 

60 f 1.05 0.87 P2 = (1.05,0.87) 

90 f 1.57 1.00 P3 = (1.57,1.00) 

120 2.09 0.87 = (2.09,0.87) 

150 -ÿ 2.62 0.50 P5 = (2.62,0.50) 

180 77 3.14 0 Pe = (3.14,0) 

3 Take each pair of values of x and y as coordinates of a point, and plot 
the point. 

4 Draw a smooth curve through the points. 

It is not necessary to tabulate values of sin x between rr and 2rr radians 
(180 to 360°), for these values are negative but equal in magnitude to the 
sines of the angles between 0 and rr radians (0 to 180°). The curve should 
be plotted with the angle and the function having the same unit or scale; 
that is, one unit on the y axis should be the same length as that representing 
1 radian on the x axis. When the curve is so plotted, it is called a proper sine 
curve, as shown in Fig. 29-1. This wave shaped curve is called the sine curve 

or sinusoid. 
If additional values of x are chosen, both positive and negative, the curve 

continues indefinitely in both directions while repeating in value. Note that, 

as x increases from 0 to (or }w), sin x increases from 0 to 1; as x increases 

Fig. 29 • 1 Graph of the 
Equation y = sin x 

410 



from jir to rr, sin x decreases from 1 to 0; as x increases from Trióos??), 
sin increases from 0 to -1; and as x increases from |(3w) to 2w, 
sin x decreases from —1 to 0. Thus the curve repeats itself for every mul¬ 
tiple of 2t radians. 

SECTION 
29 • 1 

TO 
PROBLEMS 

29 • 1 

29 • 2 THE GRAPH OF THE COSINE CURVE y = cos x 

By following the procedure for plotting the sine curve, you can easily verify 
that the graph of y = cos x appears as shown in Fig. 29 • 2. 

Fig. 29 • 2 Graph of the 
Equation y = cos x 

Note that, as x increases from 0 to cos x decreases from 1 to 0; as x in¬ 
creases from jirto rr, cos x increases from 0 to — 1; as x increases from rr to 
^3rr), cos x decreases from — 1 to 0; and as x increases from ^3tt) to 2-n, 
cos x increases from 0 to 1. If additional values of x are chosen, both posi¬ 
tive and negative, the curve will repeat itself indefinitely in both directions. 
The cosine curve is identical in shape with the sine curve except that there is 
a difference of 90° between corresponding points on the two curves. Another 
similarity between these curves is that both curves repeat their values for 
every multiple of 2-n radians (2wr). 

29 • 3 THE GRAPH OF THE TANGENT CURVE y = tan x 

The graph of the equation y = tanx, shown in Fig. 29 • 3, has characteristics 
different from those of the sine or cosine curve. The curve slopes upward and 
to the right. At points where x is an odd multiple of jrr, the curve is discontin¬ 
uous. This is to be expected from the discussion of the tangent function in 
Sec. 24 • 8. 

The tangent curve repeats itself at intervals of it radians (yr), and is thus 
seen to be a series of separate curves, or branches, rather than a continuous 
curve. 

PROBLEMS 29 • 1 

1 Plot the equation y = sin x from —2rr to 2?rr. 
2 Plot the equation y = cos x from — 2ir to 2^. 
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Fig. 29 • 3 Graph oí the 
Equation y = tan x 

3 
4 
5 
6 

Plot the equation y = cot x from 0 to 2wr. 
Plot the equation y — sec x from 0 to 2irr. 
Plot the equation y = esc x from 0 to 27rr. 
Plot the equations y = sin2 x and y = cos2 x on the same coordinates 
and to the same scale. In computing points, remember that when a nega¬ 
tive number is squared, the result is positive. Add the respective ordi¬ 
nates of the curves for several different values of angle, and plot the 
results. What conclusion do you draw from these results? 

29-4 PERIODICITY 

From the graphs plotted in the preceding figures and from earlier considera¬ 
tions of the trigonometric functions, it is evident that each trigonometric 
function repeats itself exactly in the same order and at regular intervals. A 
function that repeats itself periodically is called a periodic function. From 
this definition, it is apparent that the trigonometric functions are periodic 
functions. 

Owing to the fact that many natural phenomena are periodic in character, 
the sine and cosine curves lend themselves ideally to graphical representa¬ 
tion and mathematical analysis of these recurrent motions. For example, the 
rise and fall of tides, motions of certain machines, the vibrations of a pendu¬ 
lum, the rhythm of our bodily life, sound waves, and water waves are all 
familiar happenings that can be represented and analyzed by the use of 
these curves. An alternating current follows these variations, as will be 
shown in Chap. 30, and it is because of this fact that you must have a good 
grounding in trigonometry. It is essential that you understand the mathe¬ 
matical expressions for various periodic functions and especially their ap¬ 
plications to ac circuits. 
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The tangent, cotangent, secant, and cosecant curves are not used to 
represent recurrent happenings, for although these curves are periodic, they 
are discontinuous for certain values of angles. 

29 • 5 ANGULAR MOTION 

The linear velocity of a point or object moving in a particular direction is the 
rate at which distance is traveled by the point or object. The unit of velocity is 
the distance traveled in unit time when the motion of the point or object is 
uniform, such as miles per hour, feet per second, or centimeters per second. 

The same concept is used to measure and define angular velocity. In 
Fig. 29 • 4 the radius vector r is turning about the origin in a counterclock¬ 
wise direction to generate the angle 0. The angular velocity of such a rotating 
line is the rate at which an angle is generated by rotation. When the rotation is 
uniform, the unit of angular velocity is the angle generated per unit of time. 
Thus, angular velocity is measured in degrees per second or radians per 
second, the latter being the more widely used. 

Angular velocity may be expressed in terms of revolutions per minute or 
revolutions per second. For example, if f is the number of revolutions per 
second of the vector of Fig. 29 • 4, then 2irfis the number of radians gener¬ 
ated per second. The angular velocity in radians per second is denoted by u 
(Greek letter omega). Thus, if the radius vector is rotating /revolutions per 
second, 

u = 2w/ rad/sec 

if the armature of a generator is rotating at 1800 rev/min. which is 30 
rev/sec, it has an angular velocity of 

w = 2w/ = 2tt X 30 = 188.4 rad /sec 

where we have introduced r as the symbol for radians. 
The total angle ß generated by a rotating line in t sec at an angular velocity 

of w/sec is 

3 = ut rad 

Thus the angle generated by the armature in 0.01 sec is 

3 = ut = 188.4 X 0.01 = 1.884 r 

or 

3 = 1.884 X 57.3° = 108° 

PROBLEMS 
29 • 1 

TO 

Fig. 29 • 4 Radius Vector r 
Generates Angle 3. 

example 1 A flywheel has a velocity of 300 rev/min. (a) What is its angular 
velocity? (6) What angle will be generated in 0.2 sec? (c) How 
much time is required for the wheel to generate 628r? 
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.X- z X r 300 rev/min E „ solution (a) f =-~-= 5 rev/sec 
oU 

Then, m = 2w/ = 2ir x 5 = 10w or 31.4 rad/sec 
(b) e = ut = 10ir X 0.2 = 2^ 

0 = 360’ 
(c) Since 0 = ut 

then t = — — = 20 sec 
w lOvr 

PROBLEMS 29 • 2 

1 What is the angular velocity, in terms of w rad/sec, of (a) the hour hand 
of a clock, (6) the minute hand of a clock, and (c) the second hand of a 
clock? 

2 Express the angular velocity of 1800 rev/min in (a) radians per second 
and (6) degrees per second. 

3 If a satellite circles the earth in 80 min, what is its average angular ve¬ 
locity in (a) degrees per minute and (6) radians per second? 

4 A revolution counter on an armature shaft recorded 900 revolutions in 
30 sec. What is the value of its angular velocity in (a) radians per min¬ 
ute and (b) degrees per minute? 

5 The radius vector r of Fig. 29 • 4 is rotating at the rate of 3600 rev/min. 
What is the value of tí in radians at the end of (a) 0.01 sec, (b) 0.001 
sec, and (c) 0.0005 sec? 

6 If the radius vector r of Fig. 29 • 4 is rotating at the rate of 1 rev/sec, 
what is the value of sin ut at the end of (a) 0.001 sec, (6) 0.1 sec, 
(c) 0.5 sec, and (d) 0.95 sec? 

29 • 6 PROJECTION OF A POINT HAVING UNIFORM CIRCULAR MOTION 

Fig. 29 • 5 Radius Vector 
Generating Sine Curve. 

In Fig. 29 • 5 the radius vector r rotates about a point in a counterclockwise 
direction with a uniform angular velocity of 1 rev/sec. Then every point on 
the radius vector, such as the end point P, rotates with uniform angular ve¬ 
locity. If the radius vector starts from 0°, at the end of sec it will have 
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rotated 30°, or 0.5236', to Pf, at the end of | sec, it will have rotated toP2 
and generated an angle of 60°, or 1.047r, etc. 

The projection of the end point of the radius vector, that is, its ordinate 
value at any time, can be plotted as a curve. This is accomplished by extend¬ 
ing the horizontal diameter of the circle to the right for use as an x axis along 
which time is to be plotted. Choose a convenient length along the x axis and 
divide it into as many intervals as there are angle values to be plotted. In 
Fig. 29 • 5, projections have been made every 30°, starting from 0°. There¬ 
fore, the x axis is divided into 12 divisions, and since one complete revolution 
takes place in 1 sec, each division on the time axis will represent sec, or 

30° rotation. 
Through the points of division on the time axis (x axis), construct vertical 

lines, and through the corresponding points (made by the end point of the 
radius vector at that particular time) draw lines parallel to the time axis. Draw 
a smooth curve through the points of intersection. Thus the resulting sine 
curve traces the ordinate of the end point of the radius vector for any time t, 
and from it we could obtain the sine value for any angle generated by the 
radius vector. 

As the vector continues to rotate, successive revolutions will generate re¬ 
peating, or periodic, curves. 

Since the y value of the curve is proportional to the sine of the generated 
angle and the length of the radius vector, we have 

y = r sin 0 

Then, since the radius vector rotates through 2-nr in 1 sec, the y value at 
any time t is 

y = r sin 2-/ 

or 
y = r sin 6.28/ 

which is the equation of the sine curve of Fig. 29 • 5. 
From the foregoing considerations, it is apparent that if a straight line of 

length r rotates about a point with a uniform angular velocity of wr per unit 
time, starting from a horizontal position when the time t — 0, the projection 
y of the end point upon a vertical straight line will have a motion that can be 
represented by the relation 

y — r sin ut [1] 

This equation is of fundamental importance in describing the motion of 
any object or quantity that varies periodically, or with simple harmonic mo¬ 
tion. Thus the value of an alternating EMF at any instant can be completely 
described in terms of such an equation, as will be shown in Chap. 30. If a 
motion can be described by this equation, that is, if the motion or variation 
can be represented by a sine curve, is said to be sinusoidal or to vary 
sinusoidally. 

SECTION 
29 ■ 5 

TO 
SECTION 

29 - 6 
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example 2 A crank 6 in. long, starting from 0°, turns in a counterclockwise 
direction at the rate of 1 revolution in 10 sec. (a) What is the 
equation for the projection of the crank handle upon a vertical 
line at any instant? That is, what is the vertical distance from the 
crankshaft at any time? (6) What is the vertical distance from the 
handle to the shaft at the end of 3 sec? (c) At the end of 8 sec? 

solution (a) The general equation for the projection of the end point on a 
vertical line is 

y = r sin ut (1) 

where r = length of rotating object 
w = angular velocity, radians/sec 
t — time at any instant, sec 

Then, since the crank makes 1 revolution, or 2rrr, in 10 sec, the 
angular velocity is 

u - or 0.628 rad/sec 
10 5 

Substituting the values of r and w in Eq. [1], 

y = 6 sin 0.628? in. 

(6) At the end of 3 sec the crank will have turned through 

0.628 X 3 = 1.88' 

which is 1.88 X 57.3° = 108°. Substituting this value for 
0.628? in Eq. [1] results in 

y = 6 sin 108° = 6 x 0.951 = 5.71 in. 

which is the vertical distance of the handle from the shaft at the 
end of 3 sec. 

(c) At the end of 8 sec the crank will have turned through 

0.628 x 8 = 5.02r

which is 5.02 x 57.3° = 288°. Substituting this value for 
0.628? in the above equation results in 

y = 6 sin 288° = 6 x (-0.951) = -5.71 in. 

which is the vertical distance of the handle from the shaft at the 
end of 8 sec. The negative sign denotes that the handle is below 
the shaft, that is, the distance is measured downward, whereas 
the distance in {b) above was taken as positive, or above the 
shaft. 

If it is desired to express the projection of the end point of the radius vector 
upon the horizontal, the relation is 
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y = r cos ut 

SECTION 
29 • 6 

TO 
SECTION 

29 • 8 

[2] 

which, when plotted, results in a cosine curve. Thus, in the foregoing ex¬ 
ample, the horizontal distance (Sec. 26 • 7) between the handle and shaft at 
the end of 8 sec will be 

y = 6 cos 288° = 6 x 0.309 = 1.85 in. 

29 ■ 7 AMPLITUDE 

The graphs of Figs. 29 • 1, 29 • 2, and 29 ■ 5 have an equal amplitude of 1, 
that is, an equal vertical displacement from the horizontal axis. The value of 
the radius vector r determines the amplitude of a general curve, and for this 
reason the factor r in the general equation 

y = r sin ut 

is called the amplitude factor. Thus the amplitude of a periodic curve is taken 
as the maximum displacement, or value, of the curve. It is apparent that, if 
the length of the radius vector which generates a sine wave is varied, the 
amplitude of the sine wave will be varied accordingly. This is illustrated in 
Fig. 29 • 6. 

y Fig. 29-6 A: y = sin 0, 
B: y = 2 sin 0, C: y = 3 sin 0 

29 • 8 FREQUENCY 

When the radius vector makes one complete revolution, regardless of its 
starting point, it has generated one complete sine wave; hence, we say the 
sine wave has gone through one complete cycle. Thus the number of cycles 
occurring in a periodic curve in a unit of time is called the frequency of the 
curve. For example, if the radius vector rotated 5 rev/sec, the curve describ¬ 
ing its motion would go through 5 cycles in 1 sec of time. The frequency/in 
hertz is obtained by dividing the angular velocity w by 360° when the latter is 
measured in degrees or by 2tt when measured in radians. That is, 
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Curves for different frequencies are shown in Fig. 29 ■ 7. 
In the equation j = r sin ^t, since mt — y, the angular velocity w is 

0.5 rad/sec. That is, at the end of 2w, or 6.28 sec, the curve has gone 
through one-half cycle, or 3.14r of angle, as shown in Fig. 29 • 7. 

Fig. 29-7 y = r sin t 
y — r sin 2t-, 
y - r sin jt-

Time in seconds 

In the equation y — r sin t, since mt = t, the angular velocity m is 
1 rad/sec. Thus at the end of 2w sec the curve has gone through one 
complete cycle, or 2%r of angle. 

Similarly, in the equations = r sin 2t, the angular velocity m is 2 rad/sec. 
Then at the end of 2w sec the curve has completed two cycles, or 4wr of 
angle. 

29 • 9 PERIOD 

The time T required for a periodic function, or curve, to complete one cycle is 
called the period. Hence, if the frequency / is given by 

it follows that 

T = = f i sec [4] 

For example, if a curve repeats itself 60 times in 1 sec, it has a frequency of 
60 Hz and a period of 

T = -L - 0.0167 sec 
60 

Similarly, in Fig. 29 • 7, the curve represented by> = r sin ji has a frequency 
of 

-ÍL = = 0.0796 Hz 
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and a period of 12.6 sec. The curve of y = r sin t has a frequency of 

= = 0.159 Hz 
2w 2

and a period of 6.28 sec. The curve of y = r sin 2t has a frequency of 
0.318 Hz and a period of 3.14 sec. 

29 ■ 10 PHASE 

In Fig. 29 • 8, two radius vectors are rotating about a point with equal angu¬ 
lar velocities of u and separated by the constant angle 8. That is, if r starts 
from the horizontal axis, then r, starts ahead of r by the angle 3 and main¬ 
tains this angular difference. 

Fig. 29-8 y = r sin ut, 
yi = r, sin (wt + 3) 

y^ = sin (ut + 30°) 

In Fig. 29 • 9, the radius vectors r and n are rotating about a point with 
u, except that now n is behind r by a constant equal angular velocities of 

When t = 0, r starts from the horizontal axis to generate the curve 
y — r sin ut. At the same time, n is ahead of r by an angle 0; hence, n gener¬ 
ates the curve = n sin (wi + 3). It will be noted that this displaces the y^ 
curve along the horizontal by an angle 3 as shown in the figure. 

The angular difference 3 between the two curves is called the phase angle, 
and since y^ is ahead of y, we say that yi leads y. Thus, in the equation 
yi = n sin (wi + 8), 3 is called the angle of lead. In Fig. 29 • 8, yx leads y by 
30°; therefore, the equation for becomes 

Fig. 29-9 y = r sin wt, 
y¡ = ri sin (ut — 3) 

SECTION 
29 - 8 

TO 
SECTION 

29 • 10 
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angle 0. The phase angle between the two curves is 6, but in this case, lags 
y. Hence the equation for the curve generated by r, is 

y\ = H sin (ui - 0) 

In Fig. 29 • 9, the angle of lag is 0 = 60°; therefore, the equation for yx 
becomes 

y¡ = n sin (wi - 60°) 

29-11 SUMMARY 

The general equation 

y = r sin (ut ± 6) [5] 

describes a periodic event, and its graph results in a periodic curve. By choos¬ 
ing the proper values for the three arbitrary constants r, w, and 0, you can 
describe or plot any periodic sequence of events because a change in any 
one of these will change the curve accordingly. Hence, 

1 If r is changed, the amplitude of the curve will be changed propor¬ 
tionally. For this reason, r is called the amplitude factor. 

2 If u is changed, the frequency, or period, of the curve will be changed. 
Thus, w is called the frequency factor. 

3 If 0 is changed, the curve is moved along the time axis with no other 
change. Thus, if 0 is made larger, the curve is displaced to the left and re¬ 
sults in a leading phase angle. If 0 is made smaller, the curve is moved to the 
right and results in a lagging phase angle. Hence the angle 0 in the general 
equation is called the phase angle or the angle of lead or lag. 

example 3 Discuss the equation y = 147 sin (3771 + 30°). 
solution Given y — 147 sin (377i + 30°). 

Comparing the given equation with the general equation, it is 
seen that r = 147, w = 377 rad/sec, and 0 = 30°. Therefore, 
the curve represented by this equation is a sine curve with an 
amplitude of 147. The angular velocity is 377 rad/sec; hence, 
the frequency is 

f= = =60 Hz 2t7 2 77 

and the period is 

T = f' = -^ = 0.0167 sec 

The curve has been displaced to the left 30°; that is, it leads the 
curve y = r sin 377i by a phase angle of 30°. Therefore, when 
t = 0, the curve begins at an angle of 30° with a value of 
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y = 147 sin (wí + 30°) = 147 sin (0o + 30°) 

= 147 X 0.5 = 73.5 

SECTION 
29 • 10 

TO 
PROBLEMS 

29 • 3 

PROBLEMS 29 • 3 

in the following equations of periodic curves, specify (a) amplitude, 
(6) angular velocity, (c) frequency, (c?) period, and (e) angle of lead or lag with 
respect to a curve of the same frequency but having no displacement angle. 

1 y = 100 sin (2w/ + 40°) 
3 i = 0.750 sin (628/ + 3°) 
5 e = Emax sin (157/— 17°) 

2 y = 157 sin (377/ - 12°) 
4 i =/maJt sin(31.4t - 20°) 
6 ir = 1, sin (IOOOct/ + 37°) max 

Plot the curves that represent the following motions: 

7 
9 

11 
13 

y = sin 2vt 
e = 141 sin 120/ 

8 y = 10 sin 10/ 
10 i = 0.5 sin (120/ + 30°) 

y = 16 sin (377/ + 10°) 
in a horizontal plane at 20 rev/sec 

i = 1.3 sin (120/ - 20°) 12 
A radar antenna 24 in. long rotates 
in a counterclockwise direction, starting from east. 

(a) Plot the curve that shows the projection of the antenna on a north¬ 
south centerline at any time. 

(6) Write the equation for the curve. 
(c) What is the distance of the end of the antenna from the east-west 

line at the end of 0.08 sec? 
(</) What is the distance of the end of the antenna from the north-south 

line at the end of 0.1 sec? 
(e) Through how many radians will the antenna turn in 0.25 sec? 

14 A radar scope scanning line rotates on the face of the oscilloscope just 
as a spoke on a wheel rotates with the wheel. If a scan line 7 in. long 
rotates in a positive direction at the rate of 12 sweeps/sec, starting 
from a position 40° below the horizontal: 
(a) Plot the curve that shows the projection of the line upon a vertical 

reference line at any time. 
(6) Write the equation of the curve. 
(c) What is the vertical projection of the line at the end of 0.0375 sec? 
(</) What is the horizontal projection of the line at the end of 0.833 sec? 
(e) Through how many radians will the line sweep in 2.5 sec? 
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Thus far we have considered direct voltages and direct currents, that is, volt¬ 
ages that do not change in polarity and currents that do not change in their 
directions of flow. 

In this chapter, you will begin the study of mathematics as applied to 
alternating currents. An alternating current is one that alternates, or 
changes its direction, periodically. 

The fact that over 90% of the electric energy produced is generated in the 
form of alternating current makes this subject very important, for the oper¬ 
ation of all radio and communication circuits is based on ac phenomena. The 
first requisite in the study of electronics engineering is a solid foundation in 
the principles of alternating currents. 

Fig. 30 • 1 Representation of 
Elementary Alternator 

30 • 1 GENERATION OF AN ALTERNATING ELECTROMOTIVE FORCE 

A coil of wire that has its ends connected to slip rings and is rotating in a 
counterclockwise direction in a uniform magnetic field is shown in Fig. 30-1. 
That an alternating EMF will be generated in the coil is apparent from a con¬ 
sideration of generated currents. For example, when the side of the coil ab 
moves from its present position away from the S pole, the EMF generated in 
it will be directed from b to a; that is, a will be positive with respect to b. At 
the same time, the side of the coil cd is moving away from the N pole, thus 
cutting magnetic lines of force with a motion opposite to that of ab. Then the 
EMF generated in «/will be directed from c to dand will add to the EMF from 
6 to a to send a current Ix through the resistance R. 

When the coil has rotated 90° from the position shown in 30 • 1, the plane 
of the coil is perpendicular to the magnetic field, and at this instant the sides 
of the coil are moving parallel to the magnetic field, thus cutting no lines of 
force. There is no EMF generated at this instant. 

As the side of the coil ab begins to move up toward the N pole, the EMF 
generated in it will now be directed from a to b. Similarly, because the side 
of the coil cd is now moving down toward the S pole, the EMF ¡n cd will be 
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directed from d to c. This reversal of the direction of generated EMF is due to 
a change of direction of motion with respect to the direction of the lines of 
force. Therefore, the flow of current I2 through R will be in the direction indi¬ 
cated by the arrow. 

When the coil rotates so that the plane of the coil is again perpendicular to 
the lines of force (270° from the position shown in Fig. 30 • 1), no EMF will 
be generated at that instant. Rotation beyond this position, however, causes 
an EMF to be generated such that current flows in the original direction It. 
Such an EMF, which periodically reverses its direction, is known as an alter¬ 
nating electromotive force, and the resulting current is known as an alter¬ 
nating current. 

In some engineering textbooks the generation of an EMF is explained as 
due to the change of magnetic flux through the rotating coil. In the final 
analysis, the results are the same. Here we are interested mainly in the be¬ 
havior of the circuits connected to sources of alternating currents. 

30 • 2 VARIATION OF AN ALTERNATING ELECTROMOTIVE FORCE 

The first questions that come to mind are, ‘‘In what manner does an alternat¬ 
ing EMF vary? How can we represent that variation graphically?" 

Figure 30 • 2 shows a cross section of the elementary alternator of 
Fig. 30-1. The circles represent either side of the rotating coil at successive 
instants during the rotation. 

When a conductor passes through a magnetic field, there must be a com¬ 
ponent of its velocity at right angles to the lines of force in order to generate 
an EMF. For example, a conductor must actually cut lines in order to develop 
an EMF the amount of which will be proportional to the number of lines cut 
and the rate of cutting. 

From studies of rotation and a consideration of Fig. 30 • 2, it is evident 
that the component of horizontal velocity of the rotating conductor is pro¬ 
portional to the sine of the angle of rotation. Because the horizontal velocity 
is perpendicular to the magnetic field, it is this component that develops an 
EMF. For example, at position 0, where the angle of rotation is zero, the con¬ 
ductor is moving parallel to the field; hence, no voltage is generated. As the 

Fig. 30 • 2 
Sine Wave 

SECTION 
30 • 1 

TO 
SECTION 

30 • 2 

Generation of Voltage 
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Emta = 100 V 

O 0=0° e = 0V 

Fig. 30-3 e = 100 sin 0° = 
0 V 

e = 86.6 V 

Fig. 30-4 e = 100 sin 60° = 
86.6 V 

Fig. 30-5 e — 500 sin 58° = 
424 V 

conductor rotates toward 90°, the component of horizontal velocity becomes 
greater, thus generating a higher voltage. Therefore, the sine curve of 
Fig. 30 • 2 is a graphical representation of the induced EMF in a conductor 
rotating in a uniform magnetic field. The voltage starts from zero, increases 
in a positive direction to a maximum value (100 V in the figure) at 90°, de¬ 
creases to zero at 180°, increases in the opposite or negative direction until 
it attains maximum negative value at 270°, and finally decreases to zero 
value again at 360°. It follows, then, that the induced EMF can be completely 
described by the relation 

e = Emax sin e V [1] 

where e = instantaneous value of EMF at any angle 0, V 
Elnax . maximum value of EMF, V 

0 — angular position of coil 

30 • 3 VECTOR REPRESENTATION 

Since the sine wave of EMF is a periodic function, a simpler method of rep¬ 
resenting the relation of the EMF induced in a coil to the angle of rotation is 
available. The rotating conductor can be replaced by a rotating radius vector 
whose length represents the magnitude of the maximum generated voltage 
Emax- Then the instantaneous value for any position of the conductor can be 
represented by the vertical component of the vector (Sec. 28 ■ 4). 

In Fig. 30 • 3, which is the vector diagram for the conductor at position Oin 
Fig. 30 • 2, the vector Emax is at 0° position and therefore has no vertical com¬ 
ponent. Thus the value of the EMF in this position is zero. Or, since 

e — Emax sin 0 

by substituting the values of Emax and 0, 

e = 100 sin 0° = 0 

In Fig. 30 • 4, which is the vector diagram for the conductor at position 2 
in Fig. 30 • 2, the coil has moved 60° from the zero position. The vector Emax 
is therefore at an angle of 60° from the reference axis, and the instantaneous 
value of the induced EMF is represented by the vertical component of Emax-
Then, since 

e = Emax sin 0 

by substituting the values of Emax and 0, 

e = 100 sin 60° = 86.6 V 

example 1 What is the instantaneous value of an alternating EMF that has 
reached 58° of its cycle? The maximum value is 500 V. 

solution Draw the vector diagram to scale as shown in Fig. 30 • 5. The 
instantaneous value is the vertical component of the vector Emax-
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Then, since 

e = Emax sin 0 

by substituting the values of Emax and B, 

e = 500 sin 58° = 424 V 

example 2 What is the instantaneous value of an alternating EMF when it 
has reached 216° of its cycle? The maximum value is 163 V. 

solution Draw the vector diagram to scale as shown in Fig. 30 • 6. The 
instantaneous value is the vertical component of the vector Emax . 
Then, since 

e — Emax sin 0 

by substituting the values of EInax and 0, 

e = 163 sin 216° = 163[ - sin (216° - 180°)] 

= 163( —sin 36°) = -95.8 V 

A vector diagram drawn to scale should be made for every ac problem. 
This gives you a better insight into the functioning of alternating currents 
and at the same time serves as a good check on the mathematical solution. 

Since the current in a circuit is proportional to the applied voltage, it fol¬ 
lows that an alternating EMF which varies periodically will produce a current 
of similar variation. Hence, the instantaneous current of a sine wave of alter¬ 
nating current is given by 

SECTION 
30 • 2 

TO 
PROBLEMS 

30 • 1 

Fig. 30-6 e = 163(—sin 36°) = 
-95.8 V 

i = /max Sin 0 A [2] 

where i = instantaneous value of current, A 
/max = maximum value of current, A 

0 = angular position of coil 

PROBLEMS 30 • 1 

1 An alternating current has a maximum value of 165 A. What are the 
instantaneous values of this current at the following points in its cycle: 
(a) 18°, (6) 67°, (c) 136°, (d) 242°, (e) 326°? 

2 The instantaneous value of an alternating EMF at 17° is 34.2 V. What 
is its maximum value? 

3 The instantaneous value of an alternating EMF at 334.4° is —190 V. 
What is its maximum value? 

4 An alternating current has a maximum value of 750 mA. What are the 
instantaneous values of the current at the following points in its cycle: 
(a) 26°, (6) 341°, (c) 210°, (d) 297°, (e) 162°? 

5 The instantaneous value of an alternating EMF is 110 V at 71°. What 
will the value be at 232°? 

6 The instantaneous value of an alternating EMF at 289° is —22 V. What 
will the value be at 142°? 
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7 The instantaneous value of an alternating current at 99.9° is 3.2 A. 
What will the value be at 199.9o? 

8 An alternating current has a maximum value of 365 mA. At what angles 
will it be 80% of its positive maximum value? 

9 At what angles are the instantaneous values of an alternating current 
equal to 50% of the maximum negative value? 

10 What is the instantaneous value of an alternating EMF 110 after its 
maximum positive value of 165 V? 

30-4 CYCLES, FREQUENCY. AND POLES 

Fig. 30 • 7 Elementary Four-Pole 
Alternator 

Each revolution of the coil in Fig. 30 • 1 results in one complete cycle which 
consists of one positive and one negative loop of the sine wave (Sec. 29 • 8). 
The number of cycles generated in 1 sec is called the frequency of the alter¬ 
nating EMF, and the period is the time required to complete one cycle. One 
half cycle is called an alternation. Thus, by a 60-Hz alternating current is 
meant that the current passes through 60 cycles per second, which results 
in a period of 0.0167 sec. Also, a 60-Hz current completes 120 alternations 
per second. 

Figure 30 • 7 represents a coil rotating in a four-pole machine. When one 
side of the coil has rotated from position 0 to position 4, it has passed under 
the influence of an N and an S pole, thus generating one complete sine wave, 
or electrical cycle. This corresponds to 2w electrical radians, or 360 electrical 
degrees, although the coil has rotated only 180 space degrees. Therefore, in 
one complete revolution the coil will generate two complete cycles, or 720 
electrical degrees, so that for every space degree there result two electrical 
time degrees. 

In any alternator the armature, or field, must move an angular distance 
equal to the angle formed by two consecutive like poles in order to complete 
one cycle. It is evident, then, that a two-pole machine must rotate at twice 
the speed of a four-pole machine to produce the same frequency. Therefore, 
to find the frequency of an alternator in cycles per second (hertz), the num¬ 
ber of pairs of poles is multiplied by the speed of the armature in revolutions 
per second. That is, 

Hz 
60 

[3] 

where f = frequency, Hz 
P = number of pairs of poles 
S — rotational speed of armature, or field, rev/min 

example 3 What is the frequency of an alternator having four poles with 
a speed of 1800 rev/min? 

solution f = 2 = 60 Hz 
60 
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30 • 5 EQUATIONS OF VOLTAGES AND CURRENTS 

Since each cycle consists of 360 electrical degrees, or electrical radians, 
the variation of an alternating EMF can be expressed in terms of time. Thus, 
a frequency of/Hz results in 2%/rad/sec, which is denoted by w (Sec. 29 • 5). 
Hence, the instantaneous EMF at any time t is given by the relation 

e = Emax sin ut V [4] 

The instantaneous current is 

i = Zmax Sin Ut A [5] 

You should review Secs. 29-6 to 29 • 10 to ensure a complete under¬ 
standing of the relations between the general equation for a periodic function 
and Eqs. [4] and [5], Thus, Emax and Zmax are the amplitude factors of their 
respective equations, and co is the frequency factor. 

example 4 Write the equation of a 60-Hz alternating voltage that has a maxi¬ 
mum value of 156 V. 

solution The angular velocity w is 2t times the frequency or 

2^ x 60 = 377 rad/sec 

Substituting 156 V for EmM and 377 for w in Eq. [4], 

e=156sin377í V 

example 5 Write the equation of an RF current of 700 kHz that has a maxi¬ 
mum value of 21.2 A. 

solution Zmax = 21.2 A and / = 700 kHz = 7 x 105 Hz. Then 

ca = 2ff/ = 2w X 7 X 105 = 4 4 x io«. 

Substituting these values in Eq. [5], 

i = 21.2 sin (4.4 x 10«)i A 

example 6 If the time t = 0 when the voltage of Example 4 is zero and in¬ 
creasing in a positive direction, what is the instantaneous value 
of the voltage at the end of 0.002 sec? 

solution Substituting 0.002 for t in the equation for the voltage, 

e = 156 sin (377 x 0.002) = 156 sin 0.754r V 

where 0.754 is the time angle in radians. Then, since lr = 57.3°, 

e = 156 sin (0.754 x 57.3°) = 156 sin 43.2° 
Hence, e = 107 V 

PROBLEMS 30 • 2 

1 An alternator with 40 poles has a speed of 1200 rev/min and develops 
a maximum EMF of 314 V. 
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(a) What is the frequency of the alternating EMF? 
(6) What is the period of the alternating EMF? 
(c) Write the equation for the instantaneous EMF at any time t. 

2 An alternator with 8 poles has a speed of 3600 rev/min, and develops 
a maximum voltage of 120 V. 
(a) What is the frequency of the alternating EMF? 
(6) Write the equation for the instantaneous value of the EMF at any 

time t. 
3 A 400 Hz generator which develops a maximum EMF of 250 V has a 

speed of 1200 rev/min. 
(a) How many poles has it? 
(6) Write the equation of the voltage. 
(c) What is the value of the voltage when the time t = 2 msec? 

4 An 800-Hz alternator generates a maximum of 163 V at 4000 rev/min. 
(a) How many poles has it? 
(6) Write the equation for the voltage. 
(c) What is the value of the EMF when time t = 500 jisec? 

5 At what speed must a 12-pole 60 Hz alternator be driven in order to 
develop its rated frequency? 

6 The equation for a certain alternating current is i = 84.6 sin 377? mA. 
What is its frequency? 

7 The equation for an alternating EMF is e = 0.05 sin (3.14 x 109)? V. 
What is the frequency of the EMF? 

8 The equation for an alternating current is 

i = (2.75 x IO’2) sin (2.7 x 10')? A. 

(a) What is the maximum instantaneous current? 
(6) What is the frequency? 

9 A 500-MHz current has a maximum instantaneous value of 30 jllA. 
Write the equation describing the current. 

10 A broadcasting station operating at 1430 kHz develops a maximum 
potential of 0.362 mV across a listener’s antenna. Write the equation 
for this EMF. 

30 • 6 AVERAGE VALUE OF CURRENT OR VOLTAGE 

Since an alternating current or voltage is of sine wave form, it follows that 
the average current or voltage of one cycle is zero owing to the reversal of 
direction each half cycle. The term average value is usually understood to 
mean the average value of one alternation without regard to positive or nega¬ 
tive values. The average value of a sine wave, such as that shown in Fig. 
30 • 2, can be computed to a fair degree of accuracy by taking the average of 
many instantaneous values between two consecutive zero points of the 
curve, the values chosen being separated by equal values of angle. Thus, the 
average value is equal to the average height of any voltage or current loop. 
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The exact average value is 2 4- tt s 0.637 times the maximum value. Thus, 
if and Em denote the average values of alternating current and voltage, 
respectively, we obtain 

Zav — — Imax = 0-637Zmax A 

and 

7?av = — Emax = 0.637E[nax V 
77 

[6] 

[7] 

example 7 The maximum value of an alternating voltage is 622 V. What is 
the average value? 

solution £av = 0.637Emax = 0.637 x 622 = 396 V 

30 • 7 EFFECTIVE VALUE OF CURRENT OR VOLTAGE 

If a direct current of I A is caused to flow through a resistance of R Q, the 
resulting energy converted into heat equals PR W. We should not expect an 
alternating current with a maximum value of 1 A to produce as much heat as 
a direct current of 1 A, for the former does not maintain a constant value. 
Thus, the above ac ampere is not as effective as the de ampere. The effective 
value of an alternating current is rated in terms of direct current; that is, an 
alternating current has an effective value of 1 A if, when it flows through a 
given resistance, it produces heat at the same rate as a de ampere would. 

The effective value of a sine wave of current can be computed to a fair 
degree of accuracy by taking equally spaced instantaneous values and ex¬ 
tracting the square root of their average, or mean, squared values. For this 
reason, the effective value is often called the root-mean-square (rms) 
value. The exact effective value of an alternating current or voltage is 
1/^/2 = 0.707 times the maximum value. Thus, if /and E denote the effec¬ 
tive values of current and voltage, respectively, we obtain 

Z = ^ s  0.707Zm„ A [8] 

and 

E = -^-a0.707Em„ V [9] 
V2 

It should be noted that all meters, unless marked to the contrary, read effec¬ 
tive values of current and voltage. 

example 8 The maximum value of an alternating voltage is 311 V. What is 
the effective value? 

solution E = 0.707Elnax = 0.707 x 311 = 220 V 
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example 9 An ac ammeter reads 15 A. What is the maximum value of the 
current? 

solution 1 Since I = 0.707Zmax

then /max = 

Substituting 15 A for I, Zmax = = 21.2 A 

solution 2 Since I = 

then /max = = 1-41/ 
Substituting for I, /max = 1.41 x 15 = 21.2 A 

Hence the maximum value of an alternating current or voltage is equal to 
1.41 times the effective value. 

PROBLEMS 30 • 3 

1 What is the average value of an alternating EMF whose maximum value 
is 77 V? 

2 What is the maximum value of an alternating current whose average 
value is 56 mA? 

3 The average value of an alternating EMF is 10.5 V. What is the maxi¬ 
mum value? 

4 The maximum value of an alternating current is 173 /lA. What is the 
average value? 

5 The maximum value of an alternating EMF is 180 V. What is the effec¬ 
tive value? 

6 An rms voltmeter indicates 117 V of alternating EMF. What is the maxi¬ 
mum value of the EMF? 

7 What is the effective value of an alternating current which has a maxi¬ 
mum value of 30 A? 

8 What is the effective value of an alternating EMF which has an average 
value of 125 V? 

9 What is the average value of an alternating current which has an effec¬ 
tive value of 258 mA? 

10 An rms ammeter indicates an alternating current reading of 33.8 A. 
What is the average value of the current? 

30 • 8 PHASE RELATIONS-PHASE ANGLES 

Nearly all ac circuits contain circuit elements, or components, that cause the 
voltage and current to pass through their corresponding zero values at dif¬ 
ferent times. The effects of such conditions are given detailed consideration 
in the next chapter. 

If an alternating voltage and the resulting alternating current of the same 
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frequency pass through corresponding zero values at the same instant, they 
are said to be in phase. 

If the current passes through a zero value before the corresponding zero 
value of the voltage, the current and voltage are out of phase and the current 
is said to lead the voltage. 

Figure 30 • 8 illustrates a phasor diagram and the corresponding sine 

waves for a current of i A leading a voltage of e V by a phase angle of 8 (Sec. 
29 • 10). Hence, if the voltage is taken as reference, the general equation of 
the voltage is 

e = Emax Sin ut V [10] 

and the current is given by 

i = Anax Sin {bit + 8) A [11] 

The instantaneous values of the voltage and current for any angle of the 
voltage are 

e=Emax sin<í> V [12] 

and 

i = Anax Sin (<> + 8) A [13] 

SECTION 
30 • 7 

TO 
SECTION 

30 • 8 

Fig. 30 • 8 Current i Leads 
Voltage e by Phase Angle 8 

example 10 In Fig. 30 • 8, the maximum values of the voltage and the cur¬ 
rent are 156 V and 113 A, respectively. The frequency is 60 Hz, 
and the current leads the voltage by 40°. (a) Write the equation 
for the voltage at any time t (6) Write the equation for the cur¬ 
rent at any time t. (c) What is the instantaneous value of the 
current when the voltage has reached 10° of its cycle? 

solution Given 

Maximum voltage = Emax = 156 V 
Maximum current = /max — 113 A 

Frequency = f = 60 Hz 
Phase angle = 8 = 40° lead 

Voltage angle = <£ = 10° 
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Draw a vector diagram as shown in Fig. 30 • 8a. (The circles are 
not necessary; they simply denote rotation of the vectors.) 
(a) Substituting given values in Eq. [10], 

e = 156 sin 2w x 60/ 
or e — 156 sin 377/ V 

(b) Substituting given values in Eq. [11], 

t = 113 sin (377/+ 40°) A 

note The quantity 377/ is in radians. 

(c) Substituting given values in Eq. [13], 

i = 113 sin (10° + 40°) 
or i = 113 sin 50° = 86.6 A 

Figure 30 • 9 illustrates a vector diagram and the corresponding sine 
waves for a current of i A lagging a voltage of e V by a phase angle of 3. There-

Fig. 30 ■ 9 Current i Lags 
Voltage e by Phase Angle 3 

fore, if the voltage is taken as reference, the general equation of the voltage 
will be as given by Eq. [10] and the current will be 

i = /max Sin (w/ -3) A [14] 

The instantaneous value of the current for any angle ó of the voltage is 

i = /max Sin (0-0) A [15] 

example 11 In Fig. 30 • 9, the maximum values of the voltage and the cur¬ 
rent are 170 V and 14.1 A, respectively. The frequency is 
800 Hz, and the current lags the voltage by 40°. (a) Write the 
equation for the voltage at any time t. (6) Write the equation for 
the current at any time t. (c) What is the instantaneous value of 
the current when the voltage has reached 10° of its cycle? 

solution Given 
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Maximum voltage — £max = 170 V 
Maximum current = 7max = 14.1 A 

Frequency = f = 800 Hz 
Phase angle = B = 40° lag 

Voltage angle = $ = 10° 

Draw a vector diagram as shown in Fig. 30 • 9a. 
(a) Substituting given values in Eq. [10], 

e = 170 sin 2w x 800i 

or e = 170 sin 5030í V 

(6) Substituting given values in Eq. [14], 

i = 14.1 sin (5030? - 40°) A 

(c) Substituting given values in Eq. [15], 

i = 14.1 sin (10° - 40°) 
or i = 14.1 sin (-30°) = -7.05 A 

example 12 In a certain ac circuit a current of 14 A lags a voltage of 220 V 
by an angle of 60°. What is the instantaneous value of the 
voltage when the current has completed 245° of its cycle? 

note Unless otherwise specified, all voltages and currents are to be 
considered effective values. 

solution Draw the vector diagram as shown in Fig. 30 • 10. 

= \®E = \/2 x 220 = 311 V 
0 = 245° + B = 245° + 60° = 305° = -55° 

Then, substituting the values of Emax and B in Eq. [12], 

e = 311 sin( —55°) = -255 V 

SECTION 
30 • 8 

TO 

Fig. 30-10 Phasor Diagram of 
Example 12 

PROBLEMS 30 • 4 

1 A 60 Hz alternator generates a maximum EMF of 165 V and delivers a 
maximum current of 6.5 A. The current leads the voltage by an angle 
of 36°. 
(a) Write the equation for the current at any time t. 
(b) What is the instantaneous value of the current when the EMF has 
completed 60° of its cycle? 

2 A 25 Hz alternator generates 6.6 kV at 700 A. The current leads the 
voltage by an angle of 22°. 
(a) Write the equation for the current at any time t. 
(b) How much of the voltage cycle will have been completed the first 

time that the instantaneous current rises to 465A? 
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3 In the alternator of Prob. 1, what will be the instantaneous value of the 
current when the voltage has completed 200° of its cycle? 

4 In the alternator of Prob. 2, what will be the instantaneous value of the 
current when the voltage has completed 350° of its cycle? 

5 A 50 Hz alternator generates 2.3 kV with a current of 200 A. The phase 
angle is 25° lagging. 
(a) Write the equation for the current at any time t. 
(b) What is the instantaneous value of the current when the voltage 

has completed 192° of its cycle? 
6 In the alternator of Prob. 5, what is the instantaneous value of the cur¬ 

rent when the voltage has completed 17° of its cycle? 
7 A 60 Hz alternator generates a maximum of 170 V and delivers a maxi¬ 

mum current of 42.4 A. If the instantaneous value of the current is 
22.5 A when the instantaneous value of the EMF is 112 V, what is the 
phase angle between the current and the EMF? 

8 In Prob. 7, what will be the instantaneous value of the EMF when the 
instantaneous value of the current is —39.3 A for the first time? 

9 A 400-Hz alternator develops 30 A at 230 V. If the instantaneous value 
of the EMF is —85.8 V when the instantaneous value of the current is 
23.5 A, what is the phase angle between current and EMF? 

10 (a) Write the equation for the current in Prob. 9. 
(6) In Prob. 9, what will be the instantaneous value of the current when 

the EMF has reached its maximum value negatively? 
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alternating currents 

Because of the phenomena that occur in them, ac circuits make a very inter¬ 
esting subject for study. Unlike circuits that carry direct currents, in ac cir¬ 
cuits the product of the voltage and current is seldom equal to the reading of 
a wattmeter connected in the circuit, the current may lag or lead the voltage, 
or the potential difference across an inductance or capacitance may be sev¬ 
eral times the supply voltage. This chapter deals with the computation of 
such effects in series circuits. 

31 • 1 DEFINITIONS 

In Chap. 9 we investigated resistance and defined it as the amount of oppo¬ 
sition to current flow within a conductor. It may be helpful to think of resist¬ 
ance as the electrical phenomenon which always tends to oppose the flow of 
electric current and which always converts some of the energy of the current 
electricity into heat energy. This heat energy is dissipated, usually by radia¬ 
tion, and is lost so far as the circuit is concerned. In some cases, of course, 
the purpose of the circuit is to provide a conversion of electric energy into 
heat energy. This heat energy is then radiated away from the circuit, and it 
represents lost energy so far as the circuit is concerned. 

In this chapter, we will also investigate relationships which are involved 
when alternating current flows under the influence of alternating EMF's be¬ 
cause when inductance and/or capacitance is involved in the circuit, we must 
abandon Ohm’s law as a specific method of computation. 

Inductance is the electrical phenomenon which always tends to oppose a 
change in electric current and which always converts some of the energy of 
current electricity into stored magnetic energy. This magnetic energy is 
stored by the inductance when the current is rising, and it is released into 
the circuit when the current is falling. It is found that the current flow through 
an inductance lags the applied EMF by 90 electrical degrees. 

Capacitance is the electrical phenomenon which always tends to oppose 
a change in voltage and which converts some of the energy of current elec¬ 
tricity into stored electrostatic energy. This electrostatic energy is stored by 
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R2 = 25í! 

7 = 4 A 

Fig. 31 • 1 Alternator Supplying 
Resistive Circuit 

7=4 A 

E = 220V 

Fig. 31-2 Phasor Diagram for 
Circuit of Fig. 31 ■ 1 

the capacitance as an electric charge on the plates of a capacitor when the 
applied EMF is rising, and it is released into the circuit when the applied EMF 
is falling. It is found that the voltage across a capacitor lags the current flow 
"through” the capacitor by 90 electrical degrees. 

It is the 90° phase angles between voltage and current in ac circuits con¬ 
taining inductance and capacitance, together with their associated resist¬ 
ances, that really bring the trigonometric functions into play. You should 
make a special effort to resolve any difficulties which may still exist in your 
ability to solve right triangles by trigonometry (Chap. 26), and you should 
also ensure that you are fully conversant with the S, T, and ST or SRT scales 
of your slide rule so that you can attack this chapter with confidence. 

31 -2 THE RESISTIVE CIRCUIT 

Figure 31 • 1 represents a 60-Hz alternator supplying 220 V to two resist¬ 
ances connected in series. 

This circuit contains resistance only; therefore, Ohm’s law applies in every 
respect. The internal resistance of the alternator and the resistance of the 
connecting wires being neglected, the current through the circuit is given 
by the familiar relation 

j _ £ _ E _ 220 _ 220 4 « 
Rt ~ Ri + R2 30 + 25 55 

Again, as with direct currents, the voltage drops, or potential differences, 
across the resistances are 

E} = IR¡ = A x 30 = 120 V 
E2 — IR2 = A x 25 = 100 V 

Applied voltage = 220 V 

In an ac circuit containing only resistance, the voltage and current are in 
phase; that is, the voltage and current pass through corresponding parts of 
their cycles at the same instant. 

From the above it follows that if 

e — fimax sin wi = 311 sin 377t V 

is the equation for the alternator voltage of Fig. 31 • 1, then the current 
through the circuit is 

i = /max sin (ut + 8) = Imax sin (wi + 0°) = 5.66 sin 377t A 

Figure 31 • 2 is the phasor diagram for the circuit of Fig. 31 • 1. It will be 
noted that the voltage phasor and the current phasor coincide. This is as 
anticipated from the equations for the voltage and current, for they differ 
only in amplitude factors; the frequency factors are equal, and the phase 
angle is 0° (Secs. 29 • 7 to 29 • 9). 
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It is evident that Ohm’s law says nothing about maximum, average, or 
effective values of current and voltage. Any of these values can be used; that 
is, maximum voltage can be used to find maximum current, average voltage 
can be used to find average current, etc. Naturally, maximum voltage is not 
used to find effective current unless the proper conversion constant is in¬ 
troduced into the equation. As previously stated, all voltage and current 
values here are to be considered as effective values unless otherwise speci¬ 
fied (Sec. 30 • 7). 

31 -3 POWER IN THE RESISTIVE CIRCUIT 

In de circuits the power is equal to the product of the voltage and the current 
(Sec. 8 • 5). This is true of ac circuits for instantaneous values of voltage and 
current. That is. the instantaneous power is 

p = ei Vk [1] 

and is measured in voltamperes or kilovoltamperes, abbreviated V-A and 
kV-A, respectively. 

When a sine wave of voltage is impressed across a resistance, the relations 
among voltage, current, and power are as shown in Fig. 31 • 3. The voltage 
existing across the resistance is in phase with the current flowing through 
it. The power delivered to the resistance at any instant is represented by the 
height of the power curve, which is the product of the instantaneous values of 
voltage and current at that instant. The shaded area under the power curve 
represents the total power delivered to the circuit during one complete cycle 
of voltage. It will be noted that the power curve is of sine-wave form and has 
a frequency twice that of the voltage. Also, the power curve lies entirely above 
the X axis; there are no negative values of power. 

The maximum height of the power curve is the product of the maximum 
values of voltage and current. Stated as an equation. 

Pmax — ^max^max [2] 

The average power delivered to a resistance load is represented by the height 
of the line ab in Fig. 31 • 3, which is half the maximum height of the power 
curve, or its average height. Then, since 

average power = P = 

by dividing both members of Eq. [2] by 2 we obtain 

j p — if i 
2* max — 2^'maxlmax

Substituting for the value of |Pmax and factoring the denominator of the 
right member, 

p _ ^maxTmax 

" V2V2 

SECTION 
31 • 1 

TO 
SECTION 

31 ■ 3 

Fig. 31 • 3 Power Curves for 
Circuit Containing Only Resistance 
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Substituting for the values in the right member (Sec. 30 • 7), 

P EI W [3] 

Fig. 31 ■ 4 Circuit of Probs. 
2 and 3 

Hence, the alternating power consumed by a resistance load is equal to the 
product of the effective values of voltage and current. As in de circuits, alter¬ 
nating power is measured in watts and kilowatts. 

example 1 What is the power expended in the resistances of Fig. 31 • 1? 
solution Voltage across Rt = Ei — 120 V 

Voltage across R< = E2 = 100 V 
Current through circuit = I = 4 A 
Power expended in R} — Pi = E J — 120 x 4 = 480 W 
Power expended in R2 = P2 = EJ = 100 x 4 = 400 W 

Total = 880 W 

Also, the total power is Pt = EI = 220 x 4 = 880 W. 

Because P = EI, the usual Ohm's law relations hold for resistances in 
ac circuits. Hence, 

P = PR W [4] 

and 

P = W [5] 
K 

Thus, the power consumed by R\ of Fig. 31 ■ 1 can be computed by using 
Eq. [4] or [5], Hence, 

Pi = PRi = 42 x 30 = 480 W 

or 

PROBLEMS 31 • 1 

1 A 400-Hz alternator supplies 88 V across a combination of three series 
resistors of 150, 67, and 22 Í2. 
(a) How much current flows in the circuit? 
(b) Write the equation for the alternator voltage at any time t. 
(c) Write the equation for the circuit current at any time t. 
(d) What is the voltage measured across the 67-2 resistor? 
(e) How much power is dissipated by the 22-12 resistor? 
(/■) What is the instantaneous value of the current when the instantane¬ 

ous EMF is 26 V? 
2 Given the circuit of Fig. 31 • 4: 

(a) Write the equation for the EMF of the alternator at any time t. 
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(6) Write the equation for the total current of the circuit. 
(c) What is the voltage across ß3? 
(d) How much power is dissipated in Ä2? 
(e) How much current flows through Rd 
(/) What is the instantaneous value of the total current when the in¬ 

stantaneous alternator EMF is 36.5 V? 
3 In the circuit of Fig. 31 • 4, what is the instantaneous value of the voltage 

across R> when the instantaneous current through R4 is 2.75 A? 
4 A 10-kHz signal generator is connected to a 6OO-S2 resistive load. A milli¬ 

wattmeter indicates that the resistor is dissipating 800 mW. What is the 
maximum instantaneous voltage developed at the generator terminals? 

5 What is the equation of the current in Prob. 4? 

SECTION 
31 • 3 

TO 
SECTION 

31 . 4 

31 -4 THE INDUCTIVE CIRCUIT 

A circuit, or an inductance coil, has the property of inductance when there is 
set up in it an EMF due to a change of current through it. Thus, a circuit has 
an inductance of 1 H when a change of current of 1 A/sec induces an EMF of 
1 V (Sec. 7 • 2). Expressed as an equation, 

E„ = L^ V [6] 

where Eav is the average voltage induced in a circuit of L H by a change of 
current of 7 A in Z sec. 

An alternating current of Zmax A makes four changes during each cycle. 
These are 

1 From zero to maximum positive value 
2 From maximum positive value to zero 
3 From zero to maximum negative value 
4 From maximum negative value to zero 
The time required for one complete cycle of alternating current is 

T = f ' sec (Sec. 29 • 9), and each of the above changes occurs in one-
quarter of the time required for the completion of each cycle. Then the time 
for each change is (4/)' 1 sec. Substituting this value of t, and lm¡a for I, in 
Eq. [6], we have 

Ea, =¿-^r = 4/¿/,nax V [7] 

Equation [7] is cumbersome if used in its present form, for it contains an 
average-voltage term and a maximum-current term. The equation can be 
expressed in terms of the relation between average and maximum values as 
given in Sec. 30 • 6: 
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Substituting in Eq. [7] for this value of Eav, we have 

— í-max = 4/Z/Zmax 
IT 

which becomes 

Kn,« = 277/Mmax [8] 

Because both voltage and current in Eq. [8] are now in terms of maximum 
values, effective values can be used. Thus, 

E = 2rfLI V [9] 

The factors 2^fL in Eqs. [8] and [9] represent a reaction due to the fre¬ 
quency of the alternating current and the amount of inductance contained 
in the circuit. Hence, the alternating voltage E required to cause a current of 
I k with a frequency of f Hz to flow through an inductance of L H is given by 
Eq. [9], That is, the voltage must overcome the reaction 2-rfL, which is called 
the inductive reactance. From Eq. [9] the inductive reactance, which is de 
noted by XL and expressed in ohms, is given by 

y = 2^fL 

or 

XL = 2-nfL = 12 [10] 

where f = frequency, Hz 
L — inductance, H 

Note the similarity of the relations between voltage and current for induc¬ 
tive reactance and resistance. Both inductive reactance and resistance offer 
an opposition to a flow of alternating current, both are expressed in ohms, 
and both are equal to the voltage divided by the current. Here the similarity 
ends; there is no inductive reactance to steady-state direct currents because 
there is no change in current, and, as explained later, inductive reactances 
consume no alternating power. 

Figure 31 • 5 represents a 60-Hz alternator delivering 220 V to a coil 
having an inductance of 0.165 H. The opposition, or inductive reactance, to 
the flow of current is 

/=3.54 A 

XL = 2-nfL = 2,7 X 60 X 0.165 = 62.2 Í2 

Although it is impossible to construct an inductance containing no resist¬ 
ance, to simplify basic considerations we shall consider the coil of Fig. 31 • 5 
as being an inductance with negligible resistance. (The effects of inductance 
and resistance acting together are discussed in Sec. 31-8) The current in 
the circuit due to the action of voltage and inductive reactance is 

Fig. 31-5 El = 220 V, 
L = 0.165 H 

220 
62.2 

= 3.54 A 
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example 2 What is the inductive reactance of an inductance of 17 mH at a 
frequency of 2500 kHz? 

solution f = 2500 kHz = 2.5 x 10« Hz 
L = 17 mH = 1.7 x IO"» h 
XL = 2irfL = 2^ X 2.5 X 10« X 1.7 x 10'5 

= 2tt x 1.7 x 2.5 x 10 = 267 Q 

examples An inductor is connected to 115 V, 60 Hz. An ammeter con¬ 
nected in series with the coil reads 0.714 A. On the assumption 
that the coil contains negligible resistance, what is its induct¬ 
ance? 

solution El = 115 V 
f = 60 Hz 
I = 0.714 A 

0717= 1612
Since XL — 2-nfL 

then XL 161 
2^f 2tt x 60 

= 0.427 H 

In a circuit containing inductance, a change of current induces an EMF of 
such polarity that it always opposes the change of current. Because an alter¬ 
nating current is constantly changing, in an inductive circuit there is always 
present a reaction that opposes this change. The net effect of this, in a purely 
inductive circuit, is to cause the current to lag the voltage by 90°. This is 
illustrated by the phasor diagram of Fig. 31 • 6, which shows the voltage of 
the circuit of Fig. 31 • 5 to be at maximum positive value when the current is 
passing through zero. 
The instantaneous voltage across the inductance is given by 

e — sin <4? V 

or 

e = 311 sin 377? V 

Since the current lags the voltage by a phase angle 6 of 90°, the equation for 
the current through the inductance is 

i = inax Sin (w? -6) A 

or 

i = 5 sin (377? - 90°) A [12] 

If the voltage has completed <¡>° of its cycle, the instantaneous current is 

i = 5 sin (<f> — 90°) A [13] 

o a
 

II 

* / 

'max 

Fig. 31-6 Current Lags Voltage 
by 90° 
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Fig. 31-7 Phasor Diagram of 
Example 4. 

example 4 What is the instantaneous value of the current in Fig. 31'5 when 
the voltage has completed 120° of its cycle? 

solution Draw a phasor diagram of the current and voltage relations as 
shown in Fig. 31 • 7. The instantaneous value of the current is 
found from Eq. [13] and is 

i=lmax sin (<> —90°)= 5 sin (120°-90°)= 5 sin 30° = 2.5 A 

PROBLEMS 31 • 2 

1 What is the reactance of a 15-mH coil at 60 Hz? 
2 What is the reactance of a 15-mH coil at 1 kHz? 
3 What is the reactance of a 15-mH coil at 1 MHz? 
4 What is the inductance of a coil that exhibits a reactance of 754 Q at a 

frequency of 400 Hz? 
5 A tuning coil in a radio transmitter has an inductance of 270 ¿iH. What 

is its reactance at a frequency of 1.5 MHz? 
6 At what frequency will a television set coil with an inductance of 3.25 /lH 

offer a reactance of 3740 Í2? 
7 Assuming negligible resistance, what would be the current flow through 

an inductance of 0.067 H at a voltage of 100 V, 800 Hz? 
8 What would be the equation of the current in Prob. 7? 
9 A current of 379 /tA at 2.5 V flows through a 5.25 jiH coil. Assuming 

negligible resistance, what is the frequency of the applied EMF? 
10 An EMF described by the equation e = 311 sin 314t V is applied to an 

inductor of 1.65 H. What is the equation of the current flow, assuming 
negligible resistance? 

11 What is the instantaneous value of the current in Prob. 10 when the 
EMF has completed 45° of its cycle? 

12 What is the instantaneous value of the applied voltage in Prob. 10 when 
the current has completed 210° of its cycle? 

13 What happens to the inductive reactance of a circuit when the induct¬ 
ance is fixed but the frequency of the applied EMF is (a) doubled, 
(6) tripled, (c) halved? 

14 What happens to the inductive reactance of a circuit when the fre¬ 
quency of the applied EMF is held constant and the inductance is 
varied? 

31 • 5 THE CAPACITIVE CIRCUIT 

A capacitance is formed between two conductors when there is an insulating 
material between them. A circuit, or a capacitor, is said to have a capacitance 
of one farad when a change of one volt per second produces a current of 
one ampere (Sec. 7 • 2). Expressed as an equation, 

Zav = A [14] 
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where I„ is the average current in amperes that is caused to flow through a 
capacitance of C F by a change of E V in t sec. 

In all probability the above definition does not clearly indicate to you how 
much electricity, or charge, a given capacitor will contain. Perhaps a more 
understandable definition is that a circuit, or a capacitor, has a capacitance 
of one farad when a difference of potential of one volt will produce on it one 
coulomb of charge. Expressed as an equation, 

Q = CE C [15] 

where Q is the charge in coulombs placed on a capacitor of C F by a differ¬ 
ence of potential of E V across the capacitor. 

It was shown in Sec. 31 • 4 that the time t required for one change of an 
alternating EMF was (4/)-1 sec. Thus, if an alternating EMF of Einax volts at a 
frequency of f Hz is impressed across a capacitor of C F, by substituting the 
above value of t, and Emax for E, in Eq. [14], 

j _ p Emax _ Afcp a 
•*av — 1 — M [16] 

Again, as in Eq. [7], the above equation contains an average term and a 
maximum term. As given in Sec. 30 • 6, 

I — — I h. hw — ‘max 77 

Substituting in Eq. [16] for this value of Iav, we have 

— /max = 4/CEmax

which becomes 

Enax — 2-nfC En,ax A [17] 

Because both voltage and current in Eq. [17] are now in terms of maxi¬ 
mum values, effective values can be used. Thus, 

I = 2irfCE A [18] 

The factors 2-rrfC represent a reaction due to the frequency of the alter¬ 
nating EMF and the amount of capacitance; hence, it is evident that the 
amount of current in a purely capacitive circuit depends upon these factors. 
As in the case of resistive circuits and inductive circuits, the opposition to the 
flow of current is obtained by dividing the voltage by the current. Then, from 

Eq- [18], 

E _ 1 
I 2^fC 

2 [19] 

The right member of Eq. [19], which represents the opposition to a flow of 
alternating current in a purely capacitive circuit, is called the capacitive 

443 



ALTERNATING 
CURRENTS 
SERIES 
CIRCUITS 

Fig. 31-8 Ec — 220 V, 
C = 14.5 p.F. 

reactance. It is denoted by Xc and expressed in ohms. Thus, 

-J- = J- « 
2tt/C uC [20] 

where f = frequency, Hz 
C = capacitance, F 

Figure 31 • 8 represents a 60 Hz alternator delivering 220 V to a capacitor 
having a capacitance of 14.5 pF. The opposition, or capacitive reactance, to 
the flow of current is 

x 1 __1_ 
c “ 2^/C 2,7 X 60 X 14.5 x 10 6

10' 
2w X 6 X 1-45 

183 S2 

Neglecting the resistance of the connecting leads and the extremely small 
losses at low frequencies in a well-constructed capacitor, the current in the 
circuit due to the action of the voltage and capacitive reactance is 

r_Ec_ 220 _ 
Xc ~ 183 -

1.20 A 

example 5 What is the capacitive reactance of a 350 pF capacitor at a fre¬ 
quency of 1200 kHz? 

solution f = 1200 kHz = 1.2 x 106 Hz 
C = 350 pF = 3.5 x 10-'” F 

X . 1 - _1_ 
c “ 2nfC 2,7 x 1.2 x 10” x 3.5 x 10" 10

example 6 A capacitor is connected across 110 V, 60 Hz. A milliammeter 
connected in series with the capacitor reads 350 mA. What is the 
capacitance of the capacitor? 

solution Ec = 110 V 
f = 60 Hz 
I = 350 mA = 0.350 A 

Xc - — = = 314 2 
c I 0.35 

since Xc = ^fC 

then C - 1 - 1__ 10~3
2irfXc ~ 2w x 60 x 314 2^ x 6 x 3.14 

= 8.44 x IO“6 F = 8.44 pF 

Because current flows in a capacitor only when the voltage across the ca¬ 
pacitor is changing, it is evident that, when an alternating voltage is im-
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pressed, current is flowing at all times because the potential difference 
across the capacitor is constantly changing. Furthermore, the greatest 
amount of current will flow when the voltage is changing most rapidly, and 
this occurs when the voltage passes through zero value. This property, in 
conjunction with the effects of the counter EMF, causes the current to lead 
the voltage by 90° in a purely capacitive circuit. This is illustrated by the 
vector diagram of Fig. 31-9, which shows the current through the circuit of 
Fig. 31 -8 to be at maximum positive value when the voltage is passing 
through zero. 

The instantaneous voltage across the capacitor is given by 

e=Emaxsinw/ V [21] 

or 

e — 311 sin 3771 V [22] 

Therefore, the equation for the current is 

i = /max sin (377/ + 0) A [23] 

or 

i = 1.70 sin (377/+ 90°) A [24] 

If the voltage has completed <¡>° of its cycle, the instantaneous current is 

i = En» sin «► + 90°) A [25] 

example 7 What is the instantaneous value of the current in Fig. 31-8 when 
the voltage has completed 35° of its cycle? 

solution Draw a phasor diagram of the current and voltage relations as 
shown in Fig. 31 • 10. The instantaneous value of the current is 
found from Eq. [25] and is 

i = Fmax Sin «> + 90°) = 1.70 sin (35° + 90°) 
= 1.70 sin 125° = 1.39 A 

SECTION 
31 • 5 

TO 

Fig. 31 • 9 Current Leads 
Voltage by 90° 

Fig. 31 • 10 Phasor Diagram for 
Example 7. 

31 • 6 CAPACITORS IN SERIES 

Figure 31-11 represents two capacitors Ct and C2 connected in series with 
a voltage E across the combination. Because the capacitors are in series, the 
same quantity of electricity must be sent into each of them. Then, if Ei and 
E2 represent the potential differences across Ci and C2, respectively, Q rep¬ 
resents the quantity of electricity in each capacitor and Ct is the capacitance 
of the combination. Hence, 

Q. 
C, 

Fig. 31 • 11 Capacitors Ci and C2
Connected in Series 

E, 
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and 

Since 

E = Ei + E2 [26] 

by substituting the values for all voltages into Eq. [26], 

Ci - Ci c2

Equation [27] resolves into 

Ct = [28] 
4- ^2 

The above illustrates the fact that capacitors in series combine like re¬ 
sistances in parallel; that is, the reciprocal of the combined capacitance of 
capacitors in series is equal to the sum of the reciprocals of the capacitances 
of the individual capacitors. 

example 8 What is the capacitance of a 671F capacitor in series with a capac¬ 
itor of 4 gF? 

solution 
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Ĉ  = ^ = 24 F̂

PROBLEMS 31 • 3 

1 What is the capacitive reactance of a 22/xF capacitor at a frequency 
of 400 Hz? 

2 What is the capacitive reactance of a 22-gF capacitor at a frequency 
of 1 kHz? 

3 What is the capacitive reactance of a 22-fiF capacitor at a frequency 
of 100 kHz? 

4 What is the reactance of a 50-pF capacitor at a frequency of 12 GHz? 
5 A filter capacitor in a radio receiver has a capacitance of 0.0016 gF. 

What is its reactance at a frequency of 720 kHz? 
6 What is the reactance of the capacitor of Prob. 5 if the frequency is in¬ 

creased to 1320 kHz? 
7 How much current will flow in a capacitor of 6.3 pF when 475 V at 1 kHz 

is impressed across the capacitor, neglecting resistance? 
8 What will be the current in the capacitor of Prob. 7 if the frequency is 

increased to 12 kHz? 
9 When a 120-V, 800-Hz EMF is impressed across a capacitor, the cur¬ 

rent flow is 2.41 A. What is the capacitance? 



10 A current of 452 mA flows through a 5 /zF capacitor when the frequency 
of the applied EMF is 60 Hz. What is the voltage? 

11 What is the equation for the current in Prob. 10? 
12 What is the instantaneous value of the current in Prob. 10 when the 

EMF has completed 230° of its cycle? 
13 What is the resulting capacitance when a 220 pF capacitor is connected 

in series with a 500-pF capacitor? 
14 Two capacitors, 20 and 200 pF, are connected in series. What is the 

resultant capacitance? 
15 If an EMF of 80 V at 15 kHz is impressed across the series circuit of 

Prob. 14, what will be the resultant current flow, neglecting resistance? 
16 What happens to the capacitive reactance of a circuit when the capaci¬ 

tance is fixed but the frequency of the applied EMF is (a) doubled, 
(6) tripled, (c) halved? 

17 What happens to the capacitive reactance of a circuit when the fre¬ 
quency of the applied EMF is held constant and the capacitance is 
varied? 

18 Neglecting the resistance of the connecting wires in Fig. 31 • 12: 

SECTION 
31 - 6 

TO 
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31 ■ 7 

Fig. 31-12 Circuit of Prob. 18 

(a) Write the equation for the EMF of the alternator. 
(6) Write the equation for the circuit current. 
(c) What is the voltage across Ci? 
(d) What is the voltage across C2? 

31 7 POWER IN CIRCUITS CONTAINING ONLY INDUCTANCE OR 

CAPACITANCE 

Figure 31 • 13 illustrates the voltage, current, and power relations when a 
sine wave of EMF is impressed across an inductor whose resistance is 
negligible. 

When the current is increasing from zero to maximum positive value, 
during the time interval from 1 to 2, power is being taken from the source 
of EMF and is being stored in the magnetic field about the coil. As the current 
through the inductor decreases from maximum positive value to zero, during 
the time from 2 to 3, the magnetic field is collapsing, thus returning its power 
to the circuit. Thus, during the intervals from 1 to 2 and from 3 to 4, the in¬ 
ductor is taking power from the source that is represented by the positive 

447 



Fig. 31 • 13 Voltage, Current, and 
Power in an Inductive Circuit 

power in the figure. During the intervals from 0 to 1 and 2 to 3, the inductor 
is returning power to the source that is represented by the negative power in 
the figure. As previously stated, the instantaneous power is equal to the 
product of the voltage and current; it is positive when the voltage and current 
are of like sign and negative when of unlike sign. Note that between points 3 
and 4, although both the voltage and the current are negative, the power is 
positive. 

When an alternating EMF is impressed across a capacitor, power is taken 
from the source and stored in the capacitor as the voltage increases from 
zero to maximum positive value. As the voltage decreases from maximum 
positive value to zero, the capacitor discharges and returns power to the 
source. As in the case of the inductor, half of the power loops are positive and 
half are negative; therefore, no power is expended in either circuit, for the 
power alternately flows to and from the source. This power is called reactive 
or apparent power and is given by the relation 

P = EI VA 

31 • 8 RESISTANCE AND INDUCTANCE IN SERIES 

It has been explained that in a circuit containing only resistance the voltage 
applied across the resistance and the current through the resistance are in 
phase and that in a circuit containing only reactance the voltage and current 
are 90° out of phase. However, circuits encountered in practice contain both 
resistance and reactance. Such a condition is shown in Fig. 31-14. where an 
alternating EMF of 100 V is impressed across a combination of 6 SI resistance 
in series with 8 SI inductive reactance. 

As with de circuits, the sum of the voltage drops around the circuit com¬ 
prising the load must equal the applied EMF. In the consideration of resist¬ 
ance and reactance, however, we are dealing with voltages that can no longer 
be added or subtracted arithmetically. That is because the voltage drop 
across the resistance is in phase with the current and the voltage drop across 
the inductive reactance is 90° ahead of the current. 
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Because the current is the same in all parts of a series circuit, we can use 
it as a reference and plot the voltage across the resistance and that across 
the inductive reactance as shown in Fig. 31 ■ 15. The resultant of these two 
voltages, which can be treated as rectangular components (Sec. 28 • 4), 
must be equal to the applied EMF. Hence, if IR and IXL are the potential 
differences across the resistance and inductive reactance, respectively, 

E = vW + W V [29] 

or 

E = y/602 + 80-’ = 100 V 

The phase angle ß between voltage and current can be found by using any 
of the trigonometric functions. For example, 

. a 1X^ 80 , 
6Õ’ 133

.-. 0 = 53.1’ 

and it is apparent from the phasor diagram that the current through the cir¬ 
cuit lags the applied voltage by this amount. 

Although the foregoing demonstrates that the phasor summation of the 
voltage across the resistance and the voltage across the reactance is equal 
to the applied EMF, no relation between applied voltage and circuit current 
has been given as yet. 

Since E = x'fJRY + flX^2

then E = -/FR2 + I2XJ 

Factoring, E = y/I-{R- + X, 2) 

Hence, E = I^R2 + XL2 V [30] 

As previously stated, the applied voltage divided by the current results in 
a quotient that represents the opposition offered to the flow of current. 
Hence, from Eq. [30], 

= ^R2 + X, 2 [31] 

SECTION 
31 • 7 

TO 
SECTION 

31 • 8 

Fig. 31-14 Series Circuit 
Containing Resistance and 
Inductance 

Ep=/H = 60 v 

Fig. 31-15 Phasor Diagram for 
Circuit of Fig. 31 • 14 
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The expression \JR2 + XL2 is called the impedance of the circuit. It is de¬ 
noted by Z and measured in ohms. Therefore 

Z = y/R2 + XL2 il [32] 

Applying Eq. [32] to the circuit of Fig. 31-14, 

Z = v'6- + 8- = 10 U 

and 

Fig. 31-16 Z Can Be Plotted as 
Phasor Sum of R and XL

Fig. 31-17 Impedance Phasor 
Diagram for Circuit of Example 9 

Z = 10A 
/ 

From Eq. [31], Eq. [32] can be written 

E = 1Z = ly/R2 + XL2

The foregoing illustrates that the factor I is common to all expressions, 
which is the same as saying that the current is the same in all parts of the 
circuit. Because this condition exists, it is permissible to plot the resistance 
and reactance as rectangular components as shown in Fig. 31 • 16; hence, 
the impedance of a series circuit is simply the phasor sum of the resistance 
and reactance. The various methods used in solving for the impedance are 
the same as those given for phasor summation of rectangular components in 
Example 4 of Sec. 28 • 4. Note that the values are identical. 

example 9 A circuit consisting of 120 ß resistance in series with an induct¬ 
ance of 0.35 H is connected across a 440-V 60 Hz alternator. 
Determine (a) the phase angle between voltage and current, 
(6) the impedance of the circuit, and (c) the current through the 
circuit. 

solution (a) Drawing and labeling the circuit is left to you. The inductive 
reactance is 

XL = 2-nfL = 2tt X 60 X 0.35 = 132 2 

Draw the phasor impedance diagram as shown in Fig. 31 • 17. 
Then, since 

% = T§= 110

.-. e = 47.7° 

Note that the phase angle denotes the position of the applied 
voltage with respect to the current, which is taken as a reference. 
Thus an inductive series circuit always has a "lagging” phase 
angle which is a positive angle when resistance, reactance, and 
impedance are plotted vectorially. 

(6) R _ 120 
cos 6 cos 47.7° 

= 178 ß 
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or 7 . X,. 
sin 0 

132 
sin 47.7° 

= 178 Í2 

(c) Z = À = ^ = 2.47 A 
Z I/o 

SECTION 
31 • 8 

TO 
SECTION 

31 ■ 9 

31 • 9 RESISTANCE AND CAPACITANCE IN SERIES 

Figure 31 • 18 represents a circuit in which an alternating EMF of 100 Vis 
applied across a combination of 6 12 resistance in series with 8 £2 capacitive 
reactance. Note the similarity between the circuits of Figs. 31 • 14 and 
31 • 18. Both have the same values of resistance and absolute values of 
reactance. However, in the circuit of Fig. 31 • 18 the voltage drop across the 

Fig. 31-18 Series Circuit 
Consisting of Resistance and 
Capacitance 

capacitive reactance is 90° behind the current. Again using the current as a 
reference, because it is the same in all parts of the circuit, the voltage across 
the resistance and the voltage across the capacitive reactance are plotted as 
shown in Fig. 31 • 19 and treated as rectangular components of the applied 
EMF. The impedance of the circuit is found in the same manner as that of 
the inductive circuit, that is, by phasor summation of the rectangular com¬ 
ponents. The phase angle is found by the same method. 

tan 8 = 4 = 1.33 
n 6 

/. 3 = -53.1° 

In the capacitive circuit the current leads the voltage, and we prefix the phase 
angle with a minus sign because of its position (Sec. 23 • 2). 

Fig. 31-19 Phasor Diagram for 
Circuit of Fig. 31-18 

example 10 A circuit consisting of 175 £2 resistance in series with a capaci¬ 
tor of 5.0 pF is connected across a source of 150 V, 120 Hz. 
Determine (a) the phase angle between voltage and current, 
(6) the impedance of the circuit, and (c) the current through 
the circuit. 

solution (a) Drawing and labeling the circuit is left to you. The capacitive 
reactance is 

451 



ALTERNATING 
CURRENTS 
SERIES 
CIRCUITS 

fi-175’2 

Fig. 31 • 20 Impedance Phasor 
Diagram for Example 10 

X 1 __1_ 
2-nfC 2tt X 120 X 5 X 10 6

_ 104
2w X 1.2 X 5 

= 265 El 

Draw the impedance diagram as shown in Fig. 31 • 20. Then, 
since 

. „ Xc 265 . 
,a"" = -R =175 = 151

:.D = —56.6' 

Thus the current is leading the voltage by 56.6°, as shown by 
the impedance phasor diagram. 

Z = 

7^ XC 

sin 6 

cos d 
175 

cos 56.6° 
= 318 fi 

265 
sin 56.6° 

= 318 Í2 

(c) I = = = 0.472 A 
ö 1 o 

PROBLEMS 31 • 4 

1 A series circuit consists of a 1.5 H inductor which has a resistance of 
35 2. It is supplied with 220 V, 60 Hz. Find 
(a) The inductive reactance 
(6) The impedance of the coil 
(c) The current flowing through the coil 
{d) The equation of the current 
(e) The voltage across the resistance of the coil 
(/) The voltage across the inductance of the coil 
(g) Why e + f does not equal 220 V. 

2 A 500 V, 8 MHz source is connected to a series circuit consisting of a 
3.3-kQ resistor and a 500-jiH inductor of negligible resistance. Find 
(a) The inductive reactance of the inductor 
(b) The impedance of the circuit 
(c) The current flowing through the circuit 
(d) The phase angle of the current 
(e) The voltage across the resistor 
(/) The voltage across the inductor. 

3 In the circuit of Prob. 2, the applied EMF is held constant while the 
frequency is decreased. 
(a) Why will this cause the current to rise? 
(6) When the current is twice that found in Prob. 2, find the impedance, 

the frequency, and the phase angle. 
4 A 25 mH choke has a measured resistance of 40 Í2 at 400 Hz. This 
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choke is connected across 48 V at 400 Hz. Find (a) the impedance of 
the choke and (6) the current flow. 

5 A 120-V 60 Hz source energizes a series circuit consisting of a 330 52 
resistor and a 22 ^F capacitor. Find: 
(a) The capacitive reactance 
(6) The impedance of the circuit 
(c) The current flow through the circuit 
(d) The voltage across the resistor 
(e) The voltage across the capacitor. 

6 If the frequency of the 120 V source in Prob. 5 is doubled, what will be 
the current flow through the circuit? 

7 What will be the impedance of the circuit of Prob. 5 if a 150/xF capacitor 
is connected in series with the original circuit? 

8 What will be the current flow in the circuit of Prob. 5 if a 6.7 k52 resistor 
is connected in series with the original circuit? 

9 A series circuit consisting of a l kS2 resistor and a 150-pF capacitor is 
connected across 600 V at 4.3 MHz. Find: 
(a) The impedance of the circuit 
(A) The current flowing through the circuit 
(c) The voltage across the resistor 
(d) The voltage across the capacitor. 

10 In the circuit of Prob. 9, a 50 pF capacitor is connected in series with 
the original capacitor. Find: 
(o) The current flow through the new circuit 
(A) The voltage across the resistor 
(c) The voltage across the 150-pF capacitor 
(d) The voltage across the 50 pF capacitor. 

31 • 10 RESISTANCE, INDUCTANCE, AND CAPACITANCE IN SERIES 

It has been shown that inductive reactance causes the current to lag the 
voltage and that capacitive reactance causes the current to lead the voltage; 
hence, these two reactions are exactly opposite in effect. Figure 31 • 21 rep¬ 
resents a series circuit consisting of resistance, inductance, and capacitance 
connected across an alternator that supplies 220 V, 60 Hz. Now 

Fig. 31 • 21 Series Circuit 
Consisting of R, L, and C 
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XL = 132 SI 

Ä=100S2 

Xc=204ß 

Fig. 31 • 22 Impedance Phasor 
Diagram for Circuit of Fig. 31 • 21 

Fig. 31 • 23 Voltage, Current, and 
Power Relations for Circuit of 
Fig. 31 ■ 21 

454 

w = 2irf = X 60 = 377 
XL = uL = 377 X 0.35 = 132 £2 

and 

V _ 1 __1__ 103 _ 204 £2 
c ~ uC 377 X 13 X IO’6 3.77 x 1.3 

Figure 31 • 22 is an impedance phasor diagram of the conditions existing 
in the circuit. Since XL and Xc are oppositely directed phasors, it is evident 
that the resultant reactance will have a magnitude equal to their algebraic 
sum and will be in the direction of the greater. Therefore, the net reactance 
of the circuit is a capacitive reactance of 72 £2 as illustrated in Fig. 31 • 22. 
Thus the entire circuit could be replaced by an equivalent series circuit con¬ 
sisting of 100 £2 resistance and 72 £2 capacitive reactance, provided that the 
frequency of the alternator remained constant. 

The impedance, current, and potential differences are found by the usual 
methods. 

tan0 = ^ = w = 072
/. 8 = -35.8° 

sin 8 sin 35.8° 

ER = IR = 1.79 x 100 = 179 V 
E,. = IXL = 1.79 x 132 = 236 V 
Ec = IXC = 1.79 x 204 = 365 V 

E _ 220 = 1 79 A
Z 123 

Note that the potential difference across the reactances is greater than 
the EMF impressed across the entire circuit. This is reasonable, for the ap¬ 
plied EMF is across the impedance of the circuit, which is a smaller value, in 
ohms, than the reactances. Because the current is common to all circuit 
components, it follows that the greatest potential difference will exist across 
the component offering the greatest opposition. 

31-11 POWER IN A SERIES CIRCUIT 

It has been shown that, in a circuit consisting of resistance only, no power is 
returned to the source of EMF. Also, it has been shown that a circuit contain¬ 
ing reactance alone consumes no power; that is, a reactance alternately 
receives and returns all power to the source. It is evident, therefore, that in 
a circuit containing both resistance and reactance there must be some power 
expended in the resistance and also some returned to the source by the 
reactance. Figure 31 • 23 represents the relation among voltage, current, 
and power in the circuit of Fig. 31 • 21. 



SECTION 
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TO 
SECTION 

31 ■ 11 

As previously stated, the instantaneous power in the circuit is equal to the 
product of the applied voltage and the current through the circuit. When the 
voltage and current are of the same sign, they are acting together and taking 
power from the source. When their signs are unlike, they are operating in 
opposite directions and power is returned to the source. The apparent 
power is 

Pa = EI VA [33] 

and the actual power taken by the circuit, which is called the true power or 
active power, is 

P = PR \N [34] 

or 

P=ErI W [35] 

where ER is the potential difference across the resistance of the circuit. 
The power factor (PF) of a circuit is the ratio of the true power to the ap¬ 

parent power. That is, 

PF = # [36] 
■* a 

Substituting the value of P from Eq. [34] and that of Pa in Eq. [33], 

PF PR IR 
EI “ E 

Then, since 

E = IZ 

PF =f 

or 

PF = [37] 
Tv 

Hence, the power factor of a series circuit can be obtained by dividing the 
resistance of a circuit by its impedance. The power factor is often expressed 
in terms of the angle of lead or lag. From preceding vector diagrams, it is 
evident that 

~ = cos 0 
/ 

:. PF — cos 0 [38] 

From Eq. [36], 

P = Px PF 
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R 

Fig. 31 • 24 Slide-Rule Solution 
of Series Circuits 

Substituting for PA, 

P = El PF 

Substituting for the PF, 

P = EI cos 8 [39] 

From the foregoing it is seen that the power expended in a circuit can be 
obtained by utilizing different relations. For example, in the circuit of 

Fig. 31 • 21, 

P = PR = 1.79- X 100 = 320 W 
P=EKI= 179 X 1.79 = 320 W 

and 

P = EI cos 8 = 220 X 1.79 X cos 35.8° = 320 W 

The power factor of a circuit can be expressed as a decimal or as a percent. 
Thus the power factor of this circuit is 

cos 8 = cos 35.8° = 0.812 

Expressed as percent, 

PF = 100 cos 35.8° = 81.2% 

31 ■ 12 A SIMPLIFIED SLIDE RULE SOLUTION 

There is a method of computing the impedance of series circuits which is 
convenient to slide rule operators; it employs the trigonometric relationships 
of a right triangle. 

Given the resistance R and the reactance X, draw these as perpendicular 
sides of a right triangle, Fig. 31-24. The impedance is found as follows: 
First, divide the reactance by the resistance, using scales C and D, so that 
the phase angle 8 may be read directly from the T scale. Second, divide the 
reactance by sin 8, using the D and S scales, and read impedance Z directly 
from the D scale. Immediately test this answer by dividing the resistance by 
cos 8, again using the D and S scales. If the two results for Z do not agree, 
recalculate 8 in the first step. If the two values of Z agree, then your solution 
is correct. When dealing with very large angles, which do not lend themselves 
to accurate reading or interpolation at the top of the S scale, carefully use the 
cosine relationship alone. 

In summary: 

8 = arctan X = R 
sin 8 cos 8 
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31 • 13 NOTATION FOR SERIES CIRCUITS 

In Sec. 3 • 5 it was shown that positive and negative "real” numbers could be 
represented graphically by plotting them along a horizontal line. The positive 



numbers were plotted to the right of zero, and the negative numbers were 
plotted to the left. This idea was expanded in Sec. 16 • 3, where the original 
horizontal line was made the x axis for a system of rectangular coordinates. 

In Sec. 20 ■ 12 the system of representation was extended to include the 
“imaginary" numbers by agreeing to plot them along the y axis, the letter j 
being used as a symbol of operation. Thus, when some number is prefixed 
with j, it means that the vector which the number represents is to be rotated 
through an angle of 90°. The rotation is positive, or in a counterclockwise 
direction, when the sign of j is positive and negative, or in a clockwise direc¬ 
tion, when the sign of j is negative. 

From the foregoing, it is evident that resistance, when plotted on an 
impedance phasor diagram, is considered as a “real” number because it is 
plotted along thex axis. In this instance the term real may well define resist¬ 
ance, for it is the only opposition to the flow of current that consumes power. 

Since reactances are displaced 90° from resistance in an impedance 
phasor diagram, it follows that inductive reactance can be prefixed with a 
plus j and capacitive reactance with a minus j. Thus, an inductive reactance 
of 75 2 would be written j75 2 and plotted on the positive y axis; a capacitive 
reactance of 86 2 would be written — j86 2 and plotted on the negative y axis. 

It has been shown that a vector can be completely described in terms of 
its rectangular components. For example, the circuit of Fig. 31 • 14 can be 
described as consisting of an impedance of 10 2 at an angle of 53.1°, which 
would be written 

Z = 10/53.1° 2 

where the angle sign is included for emphasis and the number of degrees 
denotes the angle that the vector makes with the positive x axis. This is 
known as polar form. Since this impedance is made up of 6 2 of resistance 
and 8 2 of inductive reactance, we can write 

Z = R + ]XL = 6 + j8 2 

This is known as rectangular form. 
The rectangular form is a very convenient method of notation. For exam¬ 

ple, instead of writing “A series circuit of 4 2 resistance and 3 2 capacitive 
reactance,” we can write “A series circuit of 4 — j3 2.” Figure 31 • 25 shows 
the various types of series circuits with their proper impedance phasor dia¬ 
gram and corresponding notation. 

Note that the sign of the phase angle is the same as that of j in the rectan¬ 
gular form. 4 — j3 converts to a polar form with a negative angle 5/ —36.9° . 
It must be understood that neither the rectangular form nor the polar form 
is a method for solving series circuits. These forms are simply convenient 
forms of notation that completely describe circuit conditions from both elec¬ 
trical and mathematical viewpoints. 

In converting from rectangular to polar form, the usual methods of 
solution are used. 

SECTION 
31 • 11 

TO 
SECTION 

31 • 13 
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Fig. 31 • 25 Phasor Notation for 
Series Circuits 

Circuit 
Impedance 

phasor 
z 

Rectangular form 
z 

Polar form 

fl-10n 
Z-lO + iOU z-iozirn 
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Z-0 + j79 Z-7/90° 9 

Xc-69 
A 
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-AAA-1(-

Xc—89 

fl = 6n 

A | 

Xc--j8n 

Z-6-j89 Z-10/-53,fQ 

R-79. Xc—409 

Ä-139 X£-209 

/
 
*
 

°.
 
1 
4
/
 

« 
j
 
°
 

8
 
L
A
-

Z-20— ¡209 Z-28 2/-45° 9 

example 11 Find the phasor impedance of the following series circuit: 
250 - jlOO Í2. 

solution Given Z = R — jX = 250 - jlOO 2 

tan 0 = £ = = 0.400 n 250 

e = -21.8° 

z = ^ = 
sin 3 

cos 3 cos 21.8° 

Hence, Z = 269/-21.8° 2 

Converting from rectangular form to polar form, which is simply phasor 
summation of rectangular components, can be completed with a total of 
three movements on many slide rules. 

Converting from polar form, in which the magnitude and angle are given, 
to rectangular form is simplified by making use of the trigonometric func¬ 
tions. Since 

250 

. “P = 269 2sin 21.8° 
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/? = Z cos 0 fi 
X = Z sin 0 fi 

and 

Z = Ä ± jX 

by Substitution, 

Z = Z cos 3 + jZ sin 3 

Factoring, 

Z = Z (cos 6 + j sin 0) 2 

SECTION 
31 ■ 13 

TO 
SECTION 

31 • 14 

[40] 

[41] 

[42] 

The ± sign is omitted in Eqs. [41] and [42] because, if the proper angles are 
used (positive or negative), the respective sine values will determine the 
proper sign of the reactance component. 

example 12 A series circuit has an impedance of 269 fi with a leading power 
factor of 0.928. What are the reactance and resistance of the 
circuit? 

solution Given Z = 269 fi and PF = 0.928. The power factor, when ex¬ 
pressed as a decimal, is equal to the cosine of the phase angle. 
Hence, 

if 0.928 = cos 0 
then 0 = —21.8’ 

The angle was given the minus sign because a “leading power 
factor” means the current leads the voltage. Therefore, 

Z = 269/ —21.8° fl 

Substituting these values in Eq. [41], 

Z = 269 cos 21.8’ - ¡269 sin 21.8" = 250 - ¡100 fi 

31 • 14 THE GENERAL SERIES CIRCUIT 

In a series circuit consisting of several resistances and reactances, the total 
resistance of the circuit is the sum of all the series resistances and the total 
reactance is the algebraic sum of the series reactances. That is, the total 
resistance is 

Ät — Äi + Ä2 + Ä3 + • • • 

and the reactance of the circuit is 

X = j(u’¿, + uL2 + uL3 + • • •) - j(—+ —k- + —7^ + • • • 
\ 10C1 WC2 u'Cß 
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Hence, the impedance is 

Z - Ä, ± ¡X 2 

As an alternate method, such a circuit can always be reduced to an equiv¬ 
alent series circuit by combining inductances and capacitances before com¬ 
puting reactances. Thus, the total inductance is 

Lt = Lt + L2 + L3 + • • • 

and the capacitance of the circuit is obtained from 

... 
ct Ct c2 c3

However, when voltage drops across individual reactances are desired, it is 
best to find the equivalent circuit by combining reactances. 

Fig. 31-26 Series Circuit of 
Example 13 

Fig. 31-27 Impedance Phasor 
Diagram for Circuit of Fig. 31-26 

example 13 Given the circuit of Fig. 31 • 26, which is supplied by 220 V, 
60 Hz. Find (a) the equivalent series circuit, (6) the impedance 
of the circuit, (c) current, (ri') power factor, (e) power expended 
in the circuit, (/) apparent power, (g) voltage drop across Ci, 
and (h) power expended in R2. 

solution (a) Ä, = R} 4- R, + Ä3 = 35 + 10 + 30 = 75 2 
w = 2^/ = 2w x 60 = 377 
Lt = Lt + L2 = 0.62 + 0.34 = 0.96 H 
XL = uL = 377 X 0.96 = 362 2 

Xc = 1 =_1-=-— = 88.4 2 
c' wC, 377 X 30 X 10 6 3.77 x 3 

Y _ 1 _ _1_ _ 10J _ 1 42 R O 
Xc2 “ uC2 “ 377 x 20 x IO-” - 3.77 x 2 

Xc = 88.4 + 132.6 = 221 2 
X = XL - Xc = 362 - 221 = 141 2 

The equivalent series circuit consists of a resistance of 75 2 
and an inductive reactance of 141 2. That is, 

Z = 75 + ¡141 2 

The impedance phasor diagram for the equivalent circuit is 
shown in Fig. 31 • 27. 

(6) tan O = ~ = 4^ = 1.88 

.-. e = 62° 

Hence, Z = 160/62° 2 
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(C) /= £ 222= 1.38A 
z 160 

(<7) PF = cos 0 = cos 62° = 0.470 

Expressed as a percent, 

PF = 47.0% 
(e) P = EI cos 0 = 220 x 1 38 x cos 62° = 143 W 
or P = PR = 1.38- X 75 = 143 W 

(/) Pa = EI = 220 x 1.38 = 304 VA 
(g) ECí = IXCl = 1.38 x 88.4 = 122 V 
{h) P^ = PR. = 1.382 x 10 = 19 W 

You will find it convenient to compute the value of the angular velocity 
w = 2t/ for all ac problems, for this factor is common to all reactance 
equations. 

As with all electric circuit problems, a neat diagram of the circuit should 
be made, with all known circuit components, voltages, and currents clearly 
marked. In addition, a phasor or impedance diagram should be drawn to 
scale in order to check the mathematical solution. 

PROBLEMS 31 • 5 

Given the circuit of Fig. 31-28, with values as listed in Table 31 • 1. Draw an 
impedance phasor diagram for each circuit and find (a) the impedance of 
the circuit, (6) the current flowing through the circuit, (c) the equation of the 
current, (d) the PF of the circuit, and (e) the power expended in the circuit. 

11 A choke coil, when connected across a 230 V de source, draws 1.15 A. 
When connected across 230 V, 60 Hz, the current is 665 mA. 
(a) What is the resistance of the coil? 
(6) What is its inductive reactance? 
(c) What is the inductance? 

Fig. 31 • 28 Circuit for Probs. 
1 to 10 

problems E, V f R L C Table 31-1 

1 220 60 Hz 200 SI 2H 10/iF Problems 1 to 10

2 450 1 kHz 67 2 5 mH 50 gF 
3 110 50 Hz 2 k2 5.6 H 2.2 gF 
4 850 400 HZ 500 2 2.5 H 100/iF 
5 1200 5 MHz 220 2 67 gH 20 pF 
6 1000 8 GHz 330 2 0.08 gH 0.005 pF 
7 117 60 Hz 15 2 4.5 mH 2500 gF 
8 2 10 kHz 27 2 3.5 gH 1.5 gF 
9 1760 2.5 MHz 500 2 12.5 gH 850 pF 
10 110 60 Hz 50 2 300 mH 22.0 nF 
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12 Assuming that the resistance of the coil in Prob. 11 is unchanged, how 
much power would it draw when connected across 230 V, 400 Hz? 

13 The following 60-Hz impedances are connected in series: 

Z, = 30 - j40 0 Z2 = 5 + jl2 H 
Z3 = 8 - j6 Í2 Z4 = 4 + j4 2 

(a) What is the resultant impedance of the circuit? 
(6) What value of pure reactance must be added in series to make the 

PF of the circuit 80% leading? 
14 The meters represented in Fig. 31 • 29 are connected such a short dis¬ 

tance from an inductive load that line drop from meters to load is neg¬ 
ligible. What is the equivalent series circuit of the load? 

Fig. 31 • 29 Circuit of Prob. 14 

15 A single-phase induction motor, with 440 V across its input terminals, 
delivers 10.8 mechanical horsepower at an efficiency of 90% and a PF 
of 86.6%. 
(a) What is the line current? 
(6) How much power is taken by the motor? 

16 Given any series circuit, for example, 110 V at 60 Hz applied across 
3 + j4 ST On the same set of axes and to the same scale, plot instan¬ 
taneous values of the applied EMF e, the potential difference across the 
resistance Ä, and the potential difference across the reactance X. What 
is your conclusion? 

31 • 15 SERIES RESONANCE 

It has been shown that the inductive reactance of a circuit varies directly as 
the frequency and that the capacitive reactance varies inversely as the fre¬ 
quency. That is, the inductive reactance will increase and the capacitive re¬ 
actance will decrease as the frequency is increased, and vice versa. Then, 
for any value of inductance and capacitance in a circuit, there is a frequency 
at which the inductive reactance and the capacitive reactance are equal. This 
is called the resonant frequency of the circuit. Since, in a series circuit. 

z = R + - ¿) 8 
at resonance, 
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Hence, 

Z = R 

Therefore, at the resonant frequency of a series circuit, the resistance is the 
only circuit component that limits the flow of current, for the net reactance 
of the circuit is zero. Thus the current is in phase with the applied voltage, 
which results in a circuit power factor of 100%. 

example 14 There is impressed 10 V at a frequency of 1 MHz across a cir¬ 
cuit consisting of a coil of 92.2 pH in series with a capacitance 
of 275 pF. The effective resistance of the coil at this frequency 
is 10 Í2, and both the resistance of the connecting wires and the 
capacitance are negligible, (a) What is the impedance of the 
circuit? (6) How much current flows through the circuit? 
(c) What are the voltages across the reactances? 

solution The resistance of the coil is treated as being in series with its 
inductive reactance. 

(a) w = 2tt/= 6.28 X 10« 
XL = = 6.28 X 10« X 92.2 x 10« 

= 6.28 x 92.2 = 579 S2 

Y - 1 _ _1_ 
c wC “ 6.28 x 10« x 275 x IO’ 12

Since XL = Xc 
then Z = R = 10 12 

(ô) M = Ü= 1A
(c) Ec = IXC = 1 X 579 = 579 V 

El = IXl = 1 x 579 = 579 V 

Note that the voltages across the inductance and capacitance are much 
greater than the applied voltage. 

The quality or merit of an inductance, denoted by Q, is defined as the 
ratio of its inductive reactance to its resistance at a given frequency. Thus, 

[44] 

Then, at resonance, 

Ec = El — V 
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Substituting for I, 

Ec^El = ^- V 
K 

Substituting for 

Ec = El = EQ M [45] 

Because the average radio circuit has purposely been designed for high Q 
values, it is seen that very high voltages can be developed in resonant series 

circuits. 

31-16 RESONANT FREQUENCY 

The resonant frequency of a circuit can be determined by rewriting Eq. [43], 
Thus, 

2*fL = 

.•./ =-Hz [46] 
2^^LC 

where f, L, and C are in the usual units, hertz, henrys, and farads, 
respectively. 

example 15 A series circuit consists of an inductance of 500 /xH and a ca¬ 
pacitor of 400 pF. What is the resonant frequency of the circuit? 

solution L = 500 /xH = 5 x 10 4 H 
C = 400 pF = 4 X 10 1° F 

f = _L_ =_ 1
2^ X/LC 2^5 x 10 4 x 4 x IO 11' 

= 107 = 356,000 Hz 
2t7 X/20 

or f = 356 kHz 

From Eq. [46] it is evident that the resonant frequency of a series circuit 
depends only upon the LC product. This means there are an infinite number 
of combinations of L and C that will resonate to a particular frequency. 

example 16 How much capacitance is required to obtain resonance at 
1500 kHz with an inductance of 45 /xH? 

solution f= 1500 kHz = 1.5 x 10« Hz 
L = 45 mH = 4.5 x 10-5 H
w = 2irf = 2v X 1-5 X 106 = 9.42 x 10« 

From Eq. [46], C = 1 f
{¿'nfYL u¿L 

464 



• c =_-_ 
(9.42 X IO6)2 X 4.5 X 10-5 

= 250 pF 

PROBLEMS 31 • 6 

1 100 V, 10 kHz, is impressed across a series circuit consisting of a 220-pF 
capacitor of negligible resistance and an 800-mH coil with effective 
resistance of 125 2. 
(a) How much current flows through the circuit? 
(6) How much power does the circuit absorb from the source? 
(c) What are the voltages across the capacitor and the coil? 

2 What is the Q of the coil in Prob. 1? 
3 At what frequency would the circuit of Prob. 1 be resonant? 
4 What type and value of “pure reactance” must be added to the circuit 

of Prob. 1 to make it resonant at 10 kHz? 
5 A tuning capacitor is continuously variable between 20 pF and 350 pF. 

(a) What inductance must be connected in series with it to provide a 
lowest resonant frequency of 550 kHz? 

(6) What will then be the highest resonant frequency? 
6 What is the equivalent circuit of a series circuit when operating at 

(a) resonant frequency, (6) at a frequency less than resonant frequency, 
and (c) at a frequency higher than resonant frequency? 

SECTION 
31 . 15 

TO 
PROBLEMS 

31 ■ 6 
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¿alternating currents • parallel circuits 

chapter 

Parallel circuits are the most commonly encountered circuits in use. The 
average distribution circuit has many types of loads all connected in 
parallel with each other: lighting circuits, motors, transformers for various 
uses, etc. The same is true of electronic circuits, which range from the 
most simple parallel circuits to complex networks. 

This chapter deals with the solutions of parallel circuits. These solutions 
consist in reducing a parallel circuit to an equivalent series circuit that, 
when connected to the same source of EMF as the given parallel circuit, 
would result in the same line current and phase angle; that is, the alter¬ 
nator would "see” the same load. 

32-1 RESISTANCES IN PARALLEL 

It was explained in Secs. 31 • 1 and 31 • 2 that, in an ac circuit containing 
resistance only, the voltage, current, and power relations were the same 
as in de circuits. However, in order to build a foundation from which all 
parallel circuits can be analyzed, the case of paralleled resistances must 
be considered from a phasor viewpoint. 

Figure 32 • 1 represents a 60-Hz 220-V alternator connected to three 
resistances in parallel. 

Neglecting the internal resistance of the alternator and the resistance 
of the connecting wires, the EMF of the alternator is impressed across 

Fig. 32 • 1 Alternator Connected 
to Three Resistors in Parallel 

I, =5.0 A 
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each of the three resistances. If R, I2, and A represent the currents flow¬ 
ing through Ri, R2, and Ä3, respectively, then by Ohm’s law, 

h = 2.5 A 
I2 = 0.5 A 
I3 = 2.0 A 

Since all currents are in phase, the total current flowing in the line, or 
external circuit, will be equal to the sum of the branch currents, or 5.0 A. 
The phasor diagram for the three currents is shown in Fig. 32 • 2. All cur¬ 
rents are plotted in phase with the applied EMF, which is used as a refer¬ 
ence phasor because the voltage is common to all resistances. Then, using 
rectangular phasor notation, 

A = 2.5 + jO A 
A = 0.5 + jO A 
A = 2.0 + ¡0 A 

Zt = 5.0 + jO A = 5.0/0° A 

As with all other circuits, the equivalent series impedance, which in this 
case is a pure resistance, is found by dividing the voltage across the cir¬ 
cuit by the total current. That is, 

Z = = 44 2 = 44 /Q° a 
h 5 

SECTION 
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Fig. 32 • 2 Phasor Diagram for 
the Circuit of Fig. 32 ■ 1 

32 • 2 CAPACITORS IN PARALLEL 

Figure 32 • 3 represents two capacitors Ci and C2 connected in parallel 
across a voltage E. The quantity of charge in capacitor C¡ will be 

Qi = CtE [1] 

and that in capacitor C2 will be 

Q2 = C2E [2] 

Since the total quantity in both capacitors is Qi + Q2, then 

Fig. 32 ■ 3 Capacitors Ci and C2 

Connected in Parallel 

Q, + Q2 = CVE [3] 

where Cp is the total capacitance of the combination. Adding Eqs. [1] and 
[2], 

Qi + Q? = CiE + C2E 

or 

Q1 + = (C, + C2)E 

Substituting the value of Qi + Q. from Eq. [3], 

CPE = (Ci + C2)E 
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Fig. 32-4 XL and Xc Connected 
in Parallel 

/c-j5.o A 

7,-j2.5 A 

Fig. 32 • 5 Phasor Diagram for 
the Circuit of Fig. 32 • 4 

which results in 

[4] 

From the foregoing, it is apparent that capacitors in parallel combine 
like resistances in series; that is, the capacitance of paralleled capacitors 
is equal to the sum of the individual capacitances. 

example 1 What is the capacitance of a 671F capacitor in parallel with a 
capacitor of 4 gF? 

solution Cp = 6 + 4 = 10 /lF 

32 • 3 INDUCTANCE AND CAPACITANCE IN PARALLEL 

When a purely inductive reactance and a capacitive reactance are con¬ 
nected in parallel, as shown in Fig. 32 -4, the currents flowing through 
these reactances differ in phase by 180°. 

The current flowing through the inductor is 

and that through the capacitor is 

In series circuits, the current was used as the reference phasor because 
the current is the same in all parts of the circuit. In parallel circuits there 
are different values of currents in various parts of a circuit; therefore, the 
current cannot be used as the reference phasor. 

= uCE = 4^- = 5 0 A
Ac 22 

h = V- = = 25 AXL uL 44 

Since the same voltage exists across two or more parallel branches, the 
applied voltage can be used as the reference phasor as shown in Fig. 32 • 5. 
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Note that the current IL through the inductor is plotted as lagging the 
alternator voltage by 90° and the current Ic through the capacitor is lead¬ 
ing the voltage by 90°. The total line current Zt, which is the phasor sum 
ot the branch currents, is leading the applied voltage by 90°. That is, 
using rectangular phasor notation, 

Zt = 0 - j2.5 A 
Ic = 0 + j5.0 A 

I, = 0 + j2.5 A = 2.5/90° A 

Since the line current leads the alternator voltage by 90°, the equivalent 
series circuit consists of a capacitive reactance of 

£ = = 44 n 
I, 2.5 

That is, the parallel circuit could be replaced with a 60.3-/iF capacitor 
which would result in a current of 2.5 A leading the voltage by 90°; in 
other words, the alternator would not sense the difference. 

Note the difference between reactances in series and reactances in 
parallel. In a series circuit the greatest reactance of the circuit results in 
the equivalent series circuit containing the same kind of reactance. For 
this reason, it is said that reactances, or voltages across reactances, are 
the controlling factors of series circuits. In a parallel circuit the least 
reactance of the circuit, which passes the greatest current, results in the 
equivalent series circuit containing the same kind of reactance. For this 
reason, it is said that currents are the controlling factors of parallel circuits. 

SECTION 
32 2 

TO 
SECTION 

32 • 4 

32 • 4 ASSUMED VOLTAGES 

The solutions of the great majority of parallel circuits are facilitated by 
assuming a voltage to exist across a parallel combination. The current 
through each branch, due to the assumed voltage, is then added vec-
torially to obtain the total current. The assumed voltage is then divided by 
the total current, the quotient being the joint impedance of the parallel 
branches. 

The assumed voltage should always be some power of 10 in order that you 
can make full use of the reciprocal scales and reciprocal relations on your 
slide rule. 

In order to avoid small decimal quantities the assumed voltage should 
be greater than the largest impedance of any parallel branch. 

example 2 Given the circuit of Fig. 32 • 6. What are the impedance and 
the power factor of the circuit at a frequency of 2.5 MHz? 

C] = 200 pF 

¿=20 m H 

-— 

C2-125pF 

L  l( 
Fig. 32 • 6 Circuit of Example 2 
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solution Ci and C2 are in parallel; hence, the total capacitance is 

Cp = Ci + C2 = 200 + 125 = 325 pF 

This simplifies the circuit to a capacitor C of 325 pF in parallel 
with an inductance L of 20 /rH. 

w = 2^= 2w x 2.5 X 10« = 1.57 x 107
Xl = uL= 1.57 X 107 X 2 X IO“5 = 314 S2 

Y _ 1 _ _1_ 
c ~ uC 1.57 X io7 X 325 X 10-12

Assume 1000 V across the parallel branch. Then the current 
through the capacitors is 

and the current through the inductance is 

Since Ic leads the assumed voltage by 90° and IL lags the 
assumed voltage by 90°, they are plotted with the assumed 
voltage as reference phasor as shown in Fig. 32 • 7. Then the 
total current /t that would flow because of assumed voltage 
would be the phasor summation of Ic and IL. Performing 
phasor summation: 

I, -j 1.92 A 

*\0 = 9O° 
Ic = 0 + j5.10 A 
IL = 0 - j3.18 A 

Z, = 0 + jl.92 A = 1.92/90° A 

Again, since the total current leads the voltage by 90°, the ^¿=-¡3.18 A 

equivalent series circuit consists of a capacitor whose capaci¬ 
tive reactance is 

Fig. 32 • 7 Phasor Diagram for 
Circuit of Example 2 

Since 6 = 90°, PF = cos 0 = 0 

You should solve the circuit of Fig. 32 • 6 with different values of assumed 
voltages. 
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32 • 5 RESISTANCE AND INDUCTANCE IN PARALLEL 

When a resistance and an inductive reactance are connected in parallel, as 
represented in Fig. 32 • 8, the currents that flow differ in phase by 90°. 



The current flowing through the resistance is 

T E 120 ADA 
/ä = = 60 A

and that through the inductance is 

I'- = 4" = = 8 0 A uL 15 

Since the current through the resistance is in phase with the applied 
voltage and the current through the inductance lags the applied voltage 
by 90°, /r and IL are plotted with the applied EMF as reference phasor as 
shown in Fig. 32 • 9. Then the total current At, or line current, is the 
phasor sum of /R and IL. Performing phasor summation, 

Ir = 6.0 + ¡0 A 
IL = 0 - ¡8.0 A 

A = 6.0 - ¡8.0 A 

Hence, the total current, which consists of an inphase component of 6.0 A 
and a 90° lagging component of 8.0 A, is expressed in terms of its 
rectangular components. The magnitude and phase angle are then found 
by the usual trigonometric methods. Thus, 

A = 10/-53.1° A 

The power factor of the circuit is 

PF = cos ß — cos (—53.1°) = 0.60 lagging 

The power expended in the circuit is 

P = EI cos ß = 120 X 10 X 0.60 = 720 W 

or 

P = Ir^R = 62 X 20 = 720 W 

The equivalent impedance, or total impedance, of the circuit is 

SECTION 
32 • 4 

TO 
SECTION 

32 • 5 

Fig. 32-8 R and XL in Parallel 

Fig. 32 • 9 Phasor Diagram for 
Circuit of Fig. 32 ■ 8 
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Since the entire circuit has a lagging PF of 0.60, it follows that the 
equivalent series circuit consists of a resistance and an inductive reactance 
in series, the phasor sum of which is 12 Í2 at a phase angle 6 such 
that cos 6 = 0.60. Therefore, B = 53.1°, and 

Z, = 12/53.1° Q = 12 (cos 53.1° + j sin 53.1°) = 7.2 + j9.6 S2 

From the foregoing, it is evident that the parallel circuit of Fig. 32 • 8 
could be replaced by a series circuit of 7.2 Í2 resistance and 9.6 S2 inductive 
reactance and that the alternator would be working under exactly the same 
load conditions as before. 

In order to justify such solutions, solve for the equivalent impedance of 
the circuit of Fig. 32 ■ 8 by using an assumed voltage and then using the 
actual voltage to obtain the power. 

32 • 6 RESISTANCE AND CAPACITANCE IN PARALLEL 

When resistance and capacitive reactance are connected in parallel, as 
represented in Fig. 32 • 10, the current through the resistance is in phase 

Fig. 32-10 R and Xc in Parallel 

E 

Fig. 32 ■ 11 Phasor Diagram for 
Circuit of Fig. 32-10 

with the voltage across the parallel combination, and the current through 
the capacitive reactance leads this voltage by 90°. 

The circuit of Fig. 32 • 10 is similar to that of Fig. 32 ■ 8 except that 
Fig. 32 • 10 contains a capacitive reactance of 15 S2 in place of the inductive 
reactance of 15 S2. The phasor diagram of currents is shown in Fig. 32-11, 
and it is evident that the total current is 

Zt = 6.0 + |8.0 A = 10 /53.1° A 

The power factor of the circuit is 

PF = cos B — cos 53.1° = 0.60 leading 

Similarly, the total impedance of the circuit is 12 Í2; and since the 
circuit has a leading PF of 0.60, it follows that the equivalent series circuit 
consists of resistance and capacitive reactance in series the phasor sum of 
which is 12 £2 at a phase angle B such that cos B = 0.60. Therefore, 

6 = -53.1° 
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and Z, = 12/—53.1° fl = 7.2 - ¡9.6 fl 

SECTION 
32 • 5 

TO 
SECTION 

32 • 7 

If the parallel circuit of Fig 32 • 10 were replaced by a series circuit 
of 7.2 fl resistance and 9.6 fl capacitive reactance, the alternator would be 
working under exactly the same load conditions as before. 

32 • 7 RESISTANCE, INDUCTANCE, AND CAPACITANCE IN PARALLEL 

When resistance, inductive reactance, and capacitive reactance are con¬ 
nected in parallel, as represented in Fig. 32 • 12, the line current is the 
phasor sum of the several currents. 

Fig. 32-12 L, C, and R in 
Parallel 

The currents through the branches are 

/r = = 5.5 A 

Zt = ^ = 22 A 

Ic = = 12.2 A 

Performing phasor summation of these currents as shown in Fig. 32 • 13, 

Zr = 5.5 + jO A 
Zi = 0 - ¡22 A 
Zc = 0 + ¡12.2 A 

Zt = 5.5 - ¡9.8 A = 11.2/-60.7° A 
PF = cos(-60.7°) = 0.489 lagging 

The total impedance is 

Z^ = = 19.6 fl 

Since the circuit has a lagging PF of 0.489, the equivalent series circuit 
consists of a resistance and an inductive reactance. The phasor sum of 
these must be 19.6 fl at a phase angle 3 such that cos 3 = 0.489. There¬ 
fore, 3 = 60.7° and 

= 19.6/60.7° fl = 9.59 + ¡17.1 fl 

which are the values comprising the equivalent series circuit. 

Zc= j 12.2 A 

Z¿ = 22 A 

Fig. 32-13 Phasor Diagram for 
Circuit of Fig. 32-12 
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a 

R = 2 kit 
-'WWX/-

L = 9uH b 

C-100 pF 
If 

Fig. 32 • 14 Circuit of Example 3 

example 3 Given the circuit represented in Fig. 32 • 14. Solve for the 
equivalent series circuit at a frequency of 5 MHz. 

solution f = 5 MHz = 5 x 10« Hz 
L = 9 = 9 X IO”6 H 
C = 100 pF = 10-1° F 
w = 2rrf = 2w X 5 X 10« = 3.14 x 107
XL = uL = 3.14 x 107 x 9 x IO-« = 283 2 

y _ 1 _ _1_ _ 103 _ 01 o n 
c “ uC - 3.14 X 107 X IO“ 10 - 3.14 

Assume E„ = 1000 V applied between a and b. 

Fig. 32-15 Phasor Diagram of 
Circuit of Fig. 32-14 

1000 
2000 

= 0.50 A 

1000 
283 

= 3.54 A 

1000 
318 

= 3.14 A 

The total current /t is the phasor sum of the three branch 
currents as represented in the phasor diagram of Fig. 32 • 15. 
Adding vectorially, 

IR — 0.50 + ¡0 A 
IL = 0 - ¡3.54 A 

= G +¡3.14 A 

I, = 0.50 - ¡0.40 A = 0.640/-38.7° A 
PF = cos (-38.7°) = 0.78 lagging 

The total impedance Zt, which is the impedance between 
points a and b, is 

7 y Ea 1000 ]WnoZ, = Zab = = = 1560 2 

Since the current is lagging the voltage, the equivalent series 
circuit consists of a resistance and an inductive reactance. 
The phasor sum of these is 1560 2 at a phase angle 9 such 
that cos Ö = 0.78. Therefore, 9 = 38.7° and 

Z¡ = 1560 /38.7° 2 = 1220 + ¡976 2 

That is, the equivalent series circuit is a resistance of 
R = 1220 2 and an inductive reactance of uL = 976 2. Since 

uL = 976 2 

then L = 9Z6 = 976 - = 31,1 
O> 3.14 X io7

mH 
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which results in the equivalent circuit as represented in 
Fig. 32 • 16 with the impedance phasor diagram of Fig. 32 • 17. 

PROBLEMS 32 • 1 

1 What is the resulting capacitance when a 5OO-pF capacitor is connected 
in parallel with a 220-pF capacitor? 

2 Two capacitors, 50 and 500 pF, are connected in parallel. A current of 
200 mA, 2.7 GHz, flows through the 500 pF capacitor. How much 
current flows through the 50 pF capacitor? 

3 Neglecting the resistance of the connecting wires in Fig. 31 • 12: 
(o) Write the equation for the EMF of the alternator. 
(6) Write the equation for the circuit current. 
(c) What is the voltage across Ci? 
(d) What is the capacitance of C3? 
(e) How much current flows through C2? 

4 In Fig. 32-18, R = 200 S2, L = 2 H, C = 5 gF, E = 220 V, and 
f = 60 Hz. 
(a) What is the ammeter reading? 
(&) How much power is expended in the circuit? 
(c) What is the equivalent series circuit? 
{d) What is the power factor? 
(e) What is the equation of the current flowing through the ammeter? 

5 Using the other values of Prob. 4, what must be the value of the 
inductance in the circuit in order to obtain a PF of (a) 0.8 lagging and 
(6) 1.0? 

6 In Fig. 32 • 18, Ä = 500 SI, L = 6 mH, C = 0.02 pF, E = 1 kV, and 
/ = 8 GHz. 
(a) What is the reading of the ammeter? 
(6) What parallel capacitance must be added to the circuit in order to 

achieve unity PF? 

SECTION 
32 • 7 

TO 
SECTION 

32 • 8 

a l?=1220Q L=31.1mH b

-W\AA-GSWÖ7P-
«£=976 St 

Fig. 32-16 Equivalent Series 
Circuit of Example 3 

Fig. 32 • 17 Impedance Phasor 
Diagram for Equivalent Series 
Circuit 

Fig. 32-18 Circuit for Probs. 
4 to 6 

32-8 PHASOR IMPEDANCES IN PARALLEL 

Figure 32 • 19 represents an alternator supplying 220 V across two paral¬ 
leled impedances. 

The impedance of branch a is 

Z„ = R„ + jXL = 35 + j50 = 61 /55° El 

and the current through this branch is 

Ia = -f = = 3.61 A 

Similarly, 

= Rb - jXc = 75 - j30 = 80.8/—21.8° SI 
Fig. 32-19 Impedances in 
Parallel 
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and 

Figure 32 • 20 is the phasor diagram of the branch currents Ia and Ib. 
The applied voltage E is used as reference phasor because it is common 
to both impedances, or branches. Note that the angles of the current 
phasors are opposite in sign to those of their respective impedances. That 
is, I„ lags the applied voltage, whereas Ib leads the voltage. 

The applied voltage E must be divided by the current Z, in order to ob¬ 
tain the total impedance of the circuit Zt. The total current, or line current, 
is the phasor sum of the branch currents Ia and Ib and can be found by 
graphical methods, as explained in Sec. 28 • 3. However, the phasor sum 
of two or more phasors is found readily and accurately by the addition of 
the respective rectangular components of the phasors. Hence, the resistive, 
or inphase, component of I„ is 

Z„ cos 0a = 3.61 cos (—55°) = 2.07 A 

and the reactive component is 

Ia sin 0„ = 3.61 sin ( — 55°) = —2.96 A 

Similarly, the resistive component of Ib is 

Ib cos eb = 2.72 cos 21.8° = 2.53 A 

and the reactive component is 

Ib sin 3b = 2.72 sin 21.8° = 1.01 A 

The above process of determining the rectangular components of the 
phasors is simply a matter of converting the phasors from their polar 
forms to rectangular form, as explained in Sec. 31 • 13. This conversion is 
more compactly written 

Ia = 3.61[cos (—55°) + j sin (-55°)] = 2.07 - j2.96 A 
I„ = 2.72(cos 21.8° + j sin 21.8°) = 2.53 + jl.01 A 

Zt = 4.60 - jl.95 A 

The total current I, is now expressed in terms of its rectangular compo¬ 
nents, which consist of a resistive component of 4.60 A and a lagging 
component of 1.95 A. The magnitude of Zt and the phase angle are found 
by the usual methods of phasor summation. Thus, 

Z, = 4.60 - jl.95 = 5.00 /—23° A 

As with all ac problems, phasor diagrams should be drawn in order to 
clarify the various relations and to serve as an approximate check on the 
results obtained by computations. Thus, the magnitude and direction of I, 
can be checked by graphical phasor addition by either of the methods ex¬ 

Fig. 32 • 20 Phasor Diagram for 
Circuit of Fig. 32-19 
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plained in Sec. 28 • 3. The first method is utilized in Fig. 32-21, and the 
second method in Fig. 32 • 22. 

Since the current is lagging the voltage by 23° in the external circuit, 
the equivalent series circuit must be a resistance and an inductive react¬ 
ance. Hence, 

Zt = ^ = = 44/23° ñ 
A 5 

= 44(cos 23° + j sin 23°) = 40.5 + j 17.2 ß 
PF = cos 23° = 0.920 lagging 
P = EI cos e = 220 X 5 X cos 23° = 1010 W 

or 

P = PR = 52 X 40.5 = 1010 W 

example 4 A 60-Hz alternator delivers 110 V to a load that consists of 
seventy-five 100-W lamps and a 15-hp induction motor that 
operates at 90% efficiency with a PF of 0.80 lagging. How 
much current is supplied by the alternator, and what is the PF? 

solution The current taken by the lamps, which can be considered as a 
resistive load, is 

j 75 X 100 _ _ _ 
4 = no = 682 A

The power delivered to the motor is 

Then, since 

P=(EZXPF) 

the current taken by the motor is 

, P 12,400 .... 
M (£)(PF) 110x0.80 

which consists of a resistive component and a lagging reactive 
component. The phase angle 6 is 36.9° (PF = cos 0 — 0.8). 
That is, 

1^ = 141 / —36.9° A = 141[cos( —36.9°) + j sin (-36.9°)] A 

= 113 - j84.6 A 

The circuit is represented in Fig. 32 • 23 and the phasor dia¬ 
gram of the currents in Fig. 32 • 24. 
The current Zt supplied by the alternator is the phasor sum of 
the load currents IL and IM. Hence, 

Fig. 32 • 21 I, Is the Phasor Sum 
of la and lb

4.60 £ 

2.07 2.53 

Fig. 32 • 22 Second Method for 
Determining I, Graphically 

I, =200 A 

Fig. 32 ■ 23 Circuit of Example 4 

Fig. 32 ■ 24 Phasor Diagram for 
Circuit of Example 4 
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ZL = 68.2 + jO A 
zM = - ¡84.6 A
T^T8L2~ j84.6 A = 200/-25° A 

PF = cos (-25°) = 0.906 lagging 

or PF - - 0.906 lagging 

32 ■ 9 SOLUTION OF PARALLEL CIRCUITS BY THE TOTAL CURRENT 

METHOD 

1 Draw a neat, simplified diagram of the circuit. 
2 Label, on the diagram, all the known values such as voltages, cur¬ 

rents, resistances, reactances, and impedances. 
3 Carefully study the circuit so that you understand all relations. 
4 Find the phasor impedance (polar form) of each parallel branch. 
5 If the voltage across a parallel branch is not known, assume a volt¬ 

age to be across it. 
6 Divide the voltage of step 5, either actual or assumed, by the phasor 

impedance of each parallel branch. The quotient is the phasor current 
through the branch and must be assigned an angle equal in magnitude 
but opposite in sign to the respective impedance. 

7 Resolve the currents through the parallel branches into their rec¬ 
tangular components and add them. This sum represents the rectangular 
components of the total current through the parallel combination. 

8 Find the phasor current (polar form) of the total current found in 
step 7. 

9 Divide the voltage of step 5 by the phasor current found in step 8. 
The quotient is the joint phasor impedance of the parallel combination and 
must be assigned an angle equal in magnitude but opposite in sign to the 
total current found in step 8. 

10 Resolve the joint impedance found in step 9 into an equivalent 
series circuit. 

11 The equivalent series circuit found in step 10 can be combined 
with other series resistances and reactances in order to find the total im¬ 
pedance of the circuit. 

12 Draw phasor diagrams throughout the solution. These will help 
you understand circuit conditions and will serve as a valuable check to 
computations. 

example 5 Given the circuit of Fig. 32 • 25. Solve for the equivalent series 
circuit the total current the power expended in the cir¬ 
cuit, and the power factor. 

solution Although you are familiar with the mathematical methods in¬ 
volved in this solution, all steps will be shown because every-
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Fig. 32 • 25 Circuit of Example 5 

thing learned regarding series and parallel circuits must be 
utilized. 
The numbered parts of the solution correspond to those in the 
summary above. The three parallel branches are marked (a), 
(6), and (c). These letters will be used as subscripts to repre¬ 
sent quantities involved in the respective branches. Thus, Za is 
the impedance of branch (a), A is the current through branch 
(b), etc. 

Step 4 Za = R + \Xb = 25 + jl7.5 fl 

0a = arctan = ALË. = 0.700 
Ka 25 

.-. ea = 35° 

7 XL 
“ “ sin 0a

= —= 30 5 ñ = 30.5/35° fl sin 35 0.574 L— 

Zb = R + ](XL - Xc) = 10 - ¡16 fl 

X ■ 16 
8b = arctan —~ = arctan 4— = arctan 1.6 

/ift 10 

.-. eb = -58° 

Z - Xc 16 - 16 - 15 9 0 
6 sin 8b sin 58? 0.848 ~ 

:.Zb = 18.9/-58° fl 

Zc = R - ¡Xc = 55 - j20 fl 

X 20 0c = arctan = arctan —— = arctan 0.364 
Rc 55 

/. ec = -20° 

7 - Xc - 20 - 20 — RR R O 
' sin 6C sin 20° ~ 0.342 “ 

. Zc= 58.5/-20° fl 
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Step 5 Because the actual voltage across the parallel com¬ 
bination is not known, a voltage must be assumed. Therefore, 
assume that 100 V exists across «fand e. 

Step 6 I„ = ^ = = 3.28/ —35° A 

A = = 5-30¿58: A 
Zb lo.y 

IC = ^ = ^L = 1.71/20LA 
Zf jo.j 

Step 7 Ia = Z„(cos 0„ + j sin 0„) 
= 3.28[cos (-35°) + j sin (-35°)] 
= 2.69 - ¡1.88 A 

/(, = Z,,(cos + j sin 8b) = 5.30(cos 58° + j sin 58°) 
= 2.81 - ¡4.50 A 

Ic = Zc(cos 0,. + j sin 8,.) = 1.71(cos 20° + j sin 20°) 
= 1.61 + ¡0.585 A 

The total current Zt in rectangular form is the sum of Z„, Ib, 
and Ic. 

Ia = 2.69 - ¡1.88 A 
Ib = 2.81 + ¡4.50 A 
Ic = 1.61 + ¡0.585 A 

Zt = 7.11 + ¡3.205 A 

Step 8 6de = arctan 
reactive component of I, 
resistive component of Zt

= arctan 3.20 
7.11 

= arctan 0.450 = /24.2° 

reactive component of Ide _ 3.20 
sin 8de — sin 24.2° 

= 7.80 A 

_ resistive component of Ide _ 7.11 
cos 8de — cos 24.2° 

= 7.80 A = 7.80/24,2° A 

Step 9 Zie = ^= = 12.8/—24.2° 2 
lde / .ÖU 

Step 10 Zde = Zdp(cos 8 + j sin 8) 
= 12.8[cos ( — 24.2°) + j sin ( — 24.2°)] 
= 11.7 - ¡5.26 2 

Step 11 The resistance and reactance in series with the 
parallel combination make up a series impedance Z* that is in 
series with the equivalent series impedance Zde of the paralleled 
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branches. Therefore, the phasor sum of Z* and Zde is the 
equivalent series impedance of the entire circuit. Thus, 

= 11.7 - j5.26 « 
Zs = 5 + ¡12 SI 

Z, = 16.7 + ¡6.74 SI 

0, — arctan = 0.404 
R\ 16.7 

.'. 0t = 22° 

X, _ 6.74 
sin 0t — sin 22° 

= 18.0/22° S2 

j _ E _ 110 
1 Z, 18.0 

= 6.11 A 

P= E/tcos0t = 110 X 6.11 X cos 22° = 623 W 
or P = I^R, = 6.112 x iß 7 _ 623 W 

PF = cos 0t = cos 22° = 0.927 lagging 

Figure 32 • 26 is the phasor diagram for the current relations in the 
parallel branches, and the impedance phasor diagram for the entire circuit 
is shown in Fig. 32 • 27. 

Although the solutions of such circuits involve a large number of com¬ 
putations, time and labor are saved in working all problems by careful 
planning. In addition, the student who does not use a slide rule should 
endeavor to become proficient in the use of the tables. 

Proficiency in the operation of a slide rule will enable you to solve such 
circuits in a fraction of the time required for solutions made by ordinary 
computations. 

PROBLEMS 32 • 2 

1 Impedances Za = 90 + ¡120 2 and Zb — 25 — ¡60 2 are connected 
in parallel. If an EMF of 220 V is impressed across them, determine 
(a) the equivalent series impedance of the circuit and (6) the power 
expended in the circuit. 

2 An alternator supplies 440 V across a load consisting of impedances 
Za = 47/50° SI and Zb = 90/ —33° SI in parallel. Find (o) the PF of 

the load and (6) the power expended in Zb. 
3 A 440 V induction motor with a full-load current of 65 A at a lagging 

power factor of 80% is operating off the same line as a synchronous 
motor that draws 50 A at a PF of 60% leading. 
(a) What is the total line current drawn by the combination? 
(6) How much power is drawn from the utility line? 

4 In Fig. 32 • 28, Ä = 1.6 kO, L = 3 H, and C = 22 gF. When a 50-Hz 
EMF is applied, what will be the (a) total impedance Z^, (6) equivalent 
series circuit, and (c) PF? 

SECTION 
32 • 9 

TO 
PROBLEMS 

32 • 2 

Fig. 32 • 26 Phasor Diagram for 
Currents of Example 5 

Fig. 32 • 27 Impedance Phasor 
Diagram for Circuit of Example 5 

Fig. 32 • 28 Circuit for Probs. 
4 to 9 
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5 Work Prob. 4 with a frequency of 60 Hz. 
6 Work Prob. 4 with a frequency of 400 Hz. 
7 In Fig. 32 ■ 28, R = 5 2, L = 70 gH, and C = 500 pF. At a frequency 

of 600 kHz, find (a) total impedance Zt, (6) the equivalent series 
circuit, and (c) the PF. 

8 Work Prob. 7 with a frequency of 980 kHz 
9 Work Prob. 7 with a frequency of 23.5 MHz. 
10 A 400-Hz alternator supplies 48 V to an impedance of 12.5 47.8° 2. 

(a) How much current is drawn from the alternator? 
(6) What size capacitor must be connected in parallel with the load in 

order to produce unity PF? 
(c) How much current is drawn at unity PF? 

11 A 250gF capacitor must be connected in parallel with a load ZL 
in order to obtain unity PF. This results in a current flow of 40 A 
at 4160 V from a 60 Hz supply. 
(a) What was the current drain from the supply before the capacitor 

was connected? 
(6) What was the PF of before the capacitor was connected? 
(c) What was the equivalent series impedance of ZL? 

12 A 400 Hz alternator supplies 220 V, 5.35 A to a coil. When a 2.2 gF 
capacitor is connected in parallel with the coil, the line PF becomes 
unity. 
(a) What is the effective resistance of the coil? 
(6) What is the inductance of the coil? 

13 Two radar test laboratories are supplied ac power from the same 
feeder circuit. The load of bench 1 is 25 kW at 0.80 PF lagging. The 
total load on the feeder is 112 kW at 0.68 PF lagging, (a) What is the 
load and (6) what is the PF of bench 2? 

14 A load consisting of three parallel impedances Z, = 250 + j30.7 2, 
Z2 = 500 — j61.6 2, and Z3 = 20 + j55 2 is connected across an 
alternator with an internal impedance of Za = 1.8 4- j3.2 2. If the 
generator develops 446 V, find (a) the current drawn by the load and 
(6) the power absorbed by the load. 

15 In Fig. 32 • 29, let Rt = 200 2, Rz = 100 2, R3 = 150 2, R< = 5 2, 
uLx = 39.6 2, Xc = 53.2 S2, w¿2 = 450 2, uL3 = 3 2, and E = 220 V. 
Find (a) line current Ih (b) circuit PF, (c) potential difference between 
points a and b, and (d) current through R3. 

16 In Fig. 32 • 29, let = 5 Ö, Rz = 15 2, R3 = 10 2, R, = 1.5 2, 
uLi = 22 Q, Xc = 8 2, = 31 2, uL3 = 2.1 2, and E = 100 V. 
Find (a) line current It, (b) the circuit PF, (c) the potential difference 
across capacitor, and (d) the current through Rt. 

17 In Prob. 16, if the frequency is 800 Hz, what size capacitor must be 
connected across points a and c in order to reduce the line current 
to unity PF? 

18 In Fig. 32 • 29, let = 3 Í!, Ä2 = 5 2, R3 = 12 2, R, = 4 2, 
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œLt = 4.8 ß, Xc = 4.66 uL2 = 7.5 il, and uL3 = 6 ß. If the po¬ 
tential difference across the capacitor is 26.4 V, find (a) line current 
It, (6) the alternator voltage E, (c) the circuit PF, and (d) the differ¬ 
ence of potential across points b and c. 

19 In Prob. 18, how much current will flow through R3 if points b and c 
are short-circuited? 

20 Given the circuit of Fig. 32 • 30, (a) what is the impedance of the cir¬ 
cuit and (6) how much current is taken from the alternator? (c) Would 
the removal of the 250-pF capacitor cause an appreciable change in 
the total current? 

32 • 10 PARALLEL RESONANCE 

Communication circuits and electronic networks contain resonant parallel 
circuits. Figure 32 • 31 represents a typical parallel circuit consisting of an 
inductor and capacitor in parallel. The resistance of the capacitor, which is 
very small, can be neglected, and the resistance R represents the effective 
resistance of the inductor. 

At low frequencies the inductive reactance is a low value whereas the 
capacitive reactance is high. Hence, a large current flows through the in¬ 
ductive branch and a small current flows through the capacitive branch. 
The phasor sum of these currents causes a large lagging line current 
which, in effect, results in an equivalent series circuit of low impedance 
consisting of resistance and inductive reactance. At high frequencies the 

PROBLEMS 
32 ■ 2 

TO 
SECTION 

32 ■ 10 

Fig. 32 • 29 Circuit for Probs. 
15 to 19 

Fig. 32 • 30 Circuit of Prob. 20 

Fig. 32 • 31 Parallel LC Circuit 
R Represents Effective Resistance 
of L. 
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inductive reactance is large and the capacitive reactance is small. This 
results in a large leading line current with an attendant equivalent series 
circuit of low impedance consisting of resistance and capacitive reactance. 

There is one frequency, between those mentioned above, at which the 
lagging component of current through the inductive branch is equal to the 
leading current through the capacitive branch. This condition results in a 
small line current that is in phase with the voltage across the parallel cir¬ 
cuit and therefore an impedance that is equivalent to a very high resistance. 

The resonant frequency of a parallel circuit is often a source of con¬ 
fusion to the student studying parallel resonance for the first time. The 
reason for this is that different definitions for the resonant frequency are 
encountered in various texts. Thus, the resonant frequency of a parallel 
circuit can be defined by any one of the following as: 

1 The frequency at which the parallel circuit acts as a pure resistance. 
2 The frequency at which the line current becomes minimum. 
3 The frequency at which the inductive reactance equals the capaci¬ 

tive reactance. This is the same definition as that for the resonant fre¬ 
quency of a series circuit. That is, 

or 

fr = 277^ t5]

A little consideration of these definitions will convince you that, in high-Q 
circuits, the three resonant frequencies differ by an amount so small as to 
be negligible. 

In the circuit of Fig. 32 • 31, 

I„ = = ^CE 

Also, 

/ - E
a ~ R + juL 

Rationalizing (Sec. 20 • 17), 

. E R — ]uL _ E(R — jwL) 
" " R + juL ’ R - ¡uL - R2 + W 

_ ER_: uLE 
~ R2 + (uL)2 1 Ä2 + (vL? 

In order to satisfy the first definition for resonant frequency, the line 
current must be in phase with the applied voltage; that is, the out-of-phase, 
or quadrature, component of the current through the inductive branch 



must be equal to the current through the capacitive branch. Thus, 

D: uE, 

M: [Ä2 + (<ü¿)2], 

or 

uLE 
R- + 

= uCE 

— c 
R- + (uL? -

L = [Ä2 + (uLWC 

k _ R2 = (uLy 

[6] 

Hence, 

Substituting 2^f for u, 

2*f = /-Tõ-^ y LC L¿

Thus, the resonant frequency is 

/ = 4- /tc~^ [7] ¿'n y LC L“ 

If the Q of the inductance is at all large, then uL > R, which, for all 
Do 

practical purposes, makes the term in Eq. [7] of such low value that it 

can be neglected, and Eq. [7] is thus reduced to Eq. [5]. 
Work out several examples with different circuit values, and compare the 

resonant frequencies obtained from the formulas. In this connection, it is 
left to you as an exercise to show that in a parallel-resonant circuit, as 
represented in Fig. 32-31, the line current and applied voltage will be in 
phase (unity power factor) when 

R2 = XL(XC - XL) [8] 

SECTION 
32 • 10 

TO 
SECTION 
32-11 

32-11 IMPEDANCE OF PARALLEL-RESONANT CIRCUITS 

When a parallel circuit is operating at the frequency at which the circuit 
acts as a pure resistance, the circuit has unity PF and the line current /t 

(Fig. 32 • 31) consists of the inphase component of Ia. That is, 

E1
Then, since Z, = =- SI 

A 

substituting in Eq. [9] for /b

E _ ER 
Z, R> + 
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Hence, 

y _ R2 + (wL)2 
Z'~ R 

From Eq. [6], 

R2 + (u£)2 = A 

Substituting this value in Eq. [10], 

[10] 

[11] 

example 6 In the circuit of Fig. 32 • 31, let L = 203 /rH, C — 500 pF, and 
R = 6.7 Í2. (a) What is the resonant frequency of the circuit? 
(6) What is the impedance of the circuit at resonance? 

solution 

(a) f 277V2.03 X 10 x 5 x 10 '° 

= 500 kHz 

(6) 
7 L 203 x IO’6 = 203 
* - CR - 500 x IO“ 12 x 6.7 5 x 6.7 

= 60.6 kfi 

If the value of C is unknown, Eq. [11] can be used in different form. Thus, 
by multiplying both numerator and denominator by u, 

y _ uL _ 1 icL 
uCR uC R 

Since at resonance, 

wC 

then 

Zt = [12] 
R 

Moreover, since 

«=Tr 
substituting in Eq. [12], 

Zt = uLQ Ü [13] 
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example 7 In the circuit of Fig. 32 • 31, let L = 70.4 /lH and R = 5.31 2. 
If the resonant frequency of the circuit is 1.2 MHz, determine 



SECTION 
32 11 

TO 
PROBLEMS 

32 ■ 3 

(a) the impedance of the circuit at resonance and (6) the 
capacitance of the capacitor. 

solution f = 1.2 MHz = 1.2 x 106 Hz 
w = 2kf = 2k x 1.2 x 106 = 7.54 x 106

(a) 2 
K D.ol 

(b) Since, at resonance, uL = —L and <¿L = 531 ß, 
wC 

then = 531 Q 
c*jC 

Hence, C = * = 250 pF 
531w 

What is the Q of this circuit? 

PROBLEMS 32 ■ 3 

1 An inductor of 16 /xH and a capacitor of 50 pF are connected in 
parallel as shown in Fig. 32 • 31. If the effective resistance of the coil 
is 22 2, find: 
(a) The resonant frequency of the circuit according to definition 1 

(Sec. 32 • 10) 
(b) The resonant frequency according to definition 3 
(c) The Q of the coil by using the frequency of part (b). 

2 Repeat Prob. 1 for an effective resistance of the coil of 44 ß. 
3 An inductor of 10 mH with a Q of 800 is connected in parallel with a 

200-pF capacitor. 
(a) What is the resonant frequency of the circuit? 
(b) What is the impedance of the circuit at resonance? 
(c) What is the effective resistance of the inductor? 

4 If the circuit of Prob. 3 is energized with 600 V at the resonant 
frequency, how much power will it absorb? 

5 A coil with a Q of 71.6 is connected in parallel with a capacitor, and 
this circuit resonates at 356 kHz. The impedance at resonance is 
found to be 64 kß. What is the value of the capacitor? 

6 An inductor is connected in parallel with a 254 pF capacitor, and the 
circuit is found to resonate at 999 kHz. A circuit magnification meter 
indicates that the Q of the inductor is 90. 
(a) What is the value of the inductance? 
(6) What is the effective resistance of the inductor? 
(c) What is the impedance of the circuit at resonance? 

7 If the circuit of Prob. 6 is connected to 20 V at the resonant frequency, 
how much power will it absorb? 

8 If the circuit of Prob. 6 is connected to a 20 V source at 499 kHz, 
(a) how much power will it absorb and (6) what will be the PF 
of the circuit? 
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9 If the circuit of Prob. 6 is connected to a 20 V source at 1499 kHz, what 
will be the PF? 

10 An inductor with a measured Q of 100 resonates with a capacitor at 
7.496 MHz with an impedance of 65.9 kfi. What is the value of 
the inductance? 

11 What is the capacitance of the test capacitor in Prob. 10? 
12 18.9 mA is the total current drain when a capacitor is in resonance 

with an inductor at 1.5 MHz and the parallel circuit is energized 
with a IkV source. The Q of the inductor is measured at 99.7. What 
is the value of the capacitor? 
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phasor algebra 

chapter 

33 

In the analysis of ac circuits, it is often desirable to treat voltages, currents, 
and impedances algebraically in order to deal with circuit equations in 
general terms and simplify solutions. Moreover, many ac problems are 
difficult to solve by the total current method of solution described in 
Chap. 32. 

Because alternating currents and voltages are phasor rather than scalar 
quantities, a form of phasor algebra is introduced in this chapter to 
facilitate ac circuit analysis. 

33 • 1 ADDITION AND SUBTRACTION OF PHASORS 

IN RECTANGULAR FORM 

Complex numbers were introduced in Sec. 20- 14, and it was shown in 
Sec. 31 • 13 that a phasor can be completely described in terms of its 
rectangular components by expressing it as a complex number. For ex¬ 
ample, a phasor 10 units in length and operating at an angle of 36.9° can 
be expressed in polar form by writing 10 /36.9° . The same phasor, expressed 
in terms of its rectangular components, is written as the complex number 
8 + j6. 

As stated in Sec. 20 • 15, complex numbers, or phasors in rectangular 
form, can be added or subtracted by treating them as ordinary binomials. 

example 1 Add 4.60 + j2.82 and 2 11 - j8.10. 

solution 4.60 + j2.82 
2.11 - j8.10 

6.71 - ¡5.28 

Express the sum in polar form, 

6.71 - ¡5.28 = 8.54 /-38.2° 

example 2 Subtract 3.7 + ¡4.62 from 14.6 — j8.84. 
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solution 14.6 — ¡8.84 
3.7 + ¡4.62 

10.9 - ¡13.46 

Express the result in polar form, 

10.9 - ¡13.46 = 17.3/—51° 

PROBLEMS 33 ■ 1 

Perform the indicated operations and express the answers in both rec¬ 
tangular and polar forms. Check your results by graphical methods: 

1 (8.3 - ¡11.3) + (12.4 + ¡22.6) 
2 (18.4 + ¡25) + (81.2 - ¡110) 
3 (400 + ¡298) + (700 + ¡102) 
4 (16.95 - ¡17.8) + (-11.33 - ¡22.2) 
5 (115 + ¡925) + (-557 - ¡184) 
6 (-488 - ¡603) + (172 + ¡168) 
7 (23.8 - ¡44.5) - (12.6 - ¡8.1) 
8 (8.37 - ¡3.4) - (-6.53 + ¡10.2) 
9 (1100 - ¡200) - (-1400 - ¡600) 
10 (75.3 - ¡38.7) - (137.4 + ¡47.1) 
11 (32.6 + ¡3.4) - (22.6 - ¡5.6) 
12 (-16.5 - ¡13.7) - (-16.5 + ¡86.3) 

33 ■ 2 MULTIPLICATION OF PHASORS IN RECTANGULAR FORM 

Multiplication of complex numbers was explained in Sec. 20 • 16, where it 
was shown that phasors expressed in terms of their rectangular components 
are multiplied by treating them as ordinary binomials. 

example 3 Multiply 8 + ¡5 by 10 + ¡9. 

solution 8 + ¡5 

10 + ¡9 

80 + ¡50 
+ ¡72 + j~45 

80 + ¡122 + ¡245 

Since j2 = — 1, the product is 

80 + ¡122 + (-1)45 = 80 + ¡122 - 45 = 35 + ¡122 

Expressing the product in polar form, 

35 + ¡122 = 127/74° 

example 4 Multiply 80 + ¡39 by 35 — ¡50. 
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solution 80 + ¡39 
35 — ¡50 

2800 + ¡1365 
_ ¡4000 _ ¡2195Q 

2800 - ¡2635 - ¡21950 

Since j2 = —1, the product is 

2800 - ¡2635 - (-1)1950 = 2800 - ¡2635 + 1950 
= 4750 - ¡2635 

Expressing the product in polar form, 

4750 - ¡2635 = 54307-29° 

SECTION 
33 • 1 

TO 
SECTION 

33 ■ 3 

33 • 3 DIVISION OF PHASORS IN RECTANGULAR FORM 

As explained in Sec. 20 • 17, division of complex numbers, or phasors in 
rectangular form, is accomplished by rationalizing the denominator in 
order to obtain a “real” number for a divisor. Multiplying a complex num¬ 
ber by its conjugate always results in a product that is a real number, that 
is, a number not affected by the operator j. 

example 5 Find the quotient of -A * . 
8 + )5 

solution Multiply both dividend and divisor (numerator and denomina¬ 
tor) by the conjugate of the divisor, which is 8 — ¡5. 

Thus, 

50 + ¡35 8 — ¡5 400 + ¡30 - j2175 575 + ¡30 
8 + j5 ' 8 - j5 ~ 64 - j225 “ 89 

That is, 

575 + ¡30 575 .30 c .c ._ 
-— = -xx- + J -xx- - 6.46 + jO.337 89 89 ’ 89 

Express the quotient in polar form, 

6.46 + jO.337 s 6.46/3.0° 

example 6 Simplify JL. 

solution Multiply both numerator and denominator by the conjugate of 
the denominator, which is 3 — ¡4. 

Thus, 

10 3- ¡4 _ 10(3 - ¡4) _ 30 - ¡40 _ _ 
3 + ¡4 3 — j4 9 — ¡216 ~ 25 ~ ' 
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Express the quotient in polar form, 

1.2 - j 1.6 = 2.0/-53.1 0

PROBLEMS 33 • 2 

Perform the indicated operations and express the answers in both rectan¬ 
gular and polar form: 

1 (5 + j4)(2 - ¡6) 
3 (2.5 + ¡7. 6X3.8 - jl.5) 
5 (6.8 - j4.6)(5.6 - ¡7.2) 
7 (4 - ¡2) (3 + ¡5) 
9 (20- ¡16) + (3 + ¡5) 

2 (12 + jl4X22 + ¡17) 
4 (470 - j35.0X330 + j0.621) 
6 (2.7 - j9X12 - ¡8) 
8 (7 - ¡5) + (10 - ¡14) 
10 1 (12 - ¡9) 

33-4 ADDITION AND SUBTRACTION OF POLAR PHASORS 

As explained in preceding sections, phasors expressed in polar form can 
be added or subtracted by graphical methods only if their directions are 
parallel. 

In order to add or subtract them algebraically, phasors must be ex¬ 
pressed in terms of their rectangular components. 

example 7 Add 5.40/31.5° and 8.37 /— 75.4 . 
solution Converting the phasors into their rectangular components, 

5.40/31.5° = 5.40(cos 31.5° + j sin 31.5°) = 4.60 + ¡2.82 
8.37 /—75.4° = 8.37(cos 75.4° - j sin 75.4°) = 2.11 - ¡8.10 

Adding, Sum = 6.71 — ¡5.28 

Expressing the sum in polar form, 

6.71 - ¡5.28 = 8.54/-38.2° 

Note that the phasors of this example are the same as those of 
Example 1 of Sec. 33 • 1. 

example 8 Subtract 5.92/51.3° from 17.1 /—31.2° . 
solution Converting the phasors into their rectangular components, 

17.1 / —31.2° = 17.1(cos 31.2° - j sin 31.2°)= 14.6 -¡8.86 
5.92/51.3° = 5.92(cos 51.3° + j sin 51.3°) = 3.7 + ¡4.62 

Subtracting, Result = 10.9 — ¡13.48 

Expressing the result in polar form, 

10.9 - ¡13.48 = 17.3/-51° 

Note that the phasors of this example are the same as those of 
Example 2 of Sec. 33 • 1. 
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Perform the indicated operations and express the results in both polar and 
rectangular form. Check results graphically. 

1 53-22 + 25.8/61.2° 

3 500/36.6° + 710/8.27° 

5 933/82.9° + 590/198.3° 

7 5O.6/-6I.90 - 15/ —32.7° 

9 1110/10,3° - 1510/203.4° 

11 IOOO/-53.I 0 - 1500/-53.1° 

2 31 /53.7° 4- 137/ —53.7° 

4 24.6/ —46.4° + 24.9/242.8° 

6 777/-129° + 241 /44,3° 

8 9/ —22.2° - 12.1 /57.4° 

10 85/ —27.15° - 145/18.91° 

12 10.64/ —53° - 22.35/62.5° 

33 • 5 MULTIPLICATION OF POLAR PHASORS 

In Example 3 of Sec. 33 • 2, it was shown that 

(8 + j5)(10 + j9) = 127/74° 

Now 8 + j5 = 9.44/32° 

and 10 + ¡9 = 13.45/42° 

Multiplying the magnitudes and adding the angles, 

(9.44 X 13.45)/32° + 42° = 127/74° 

which is the same product as that obtained by multiplying the phasors when 
expressed in terms of their rectangular components. 

Similarly, in Example 4 of Sec. 33 • 2, it was shown that 

(80 + j39)(35 - ¡50) = 5430/-29° 

Now 80 + ¡39 = 89.0/26° 

and 35 - ¡50 = 61.0/-55° 

Multiplying the magnitudes and adding the angles, 

(89 X 61.0)/26° + (-55°) = 5430/-29° 

which is the same product as that obtained by multiplying the phasors when 
expressed in terms of their rectangular components. 

SECTION 
33 • 3 

TO 
SECTION 

33 • 6 

From the foregoing, it is evident that the product of two polar phasors is 
found by multiplying their magnitudes and adding their angles algebraically. 

In Example 5 of Sec. 33 • 3, it was shown that 

33 • 6 DIVISION OF POLAR PHASORS 

5° + = 6.46/3.0 
8 + ]5 -
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Now 50 + ¡35 = 61.0/35° 

and 8 + ¡5 = 9.44/32° 

Dividing the magnitudes and subtracting the angle of the divisor from the 
angle of the dividend, 

61.0/35_ ÊL2. /35^ _ 32° = 6.46 /3.0" 
9.44/32° 9.44 ' ~— 

which is the same quotient as that obtained by dividing the phasors when 
expressed in terms of their rectangular components. 

Similarly, in Example 6 of Sec. 33 • 3, it was shown that 

„ M = 2.0/-53.1° 
3 + ]4 -

Since 10 is a positive number, it is plotted on the 0° axis (Sec. 3 • 5) and 
expressed as 

10/tr 

Now 

3 + ¡4 = 5/53.1° 

Dividing the magnitudes and subtracting the angle of the divisor from the 
angle of the dividend, 

= ^- /Q" - 53.1° = 2.0/ —53.1° 
D/OO.l □ 

which is the same quotient as that obtained by dividing the phasors when 
expressed in terms of their rectangular components. 

From the foregoing, it is evident that the quotient of two polar phasors is 
found by dividing their magnitudes and subtracting the angle of the divisor 
from the angle of the dividend. 

33 • 7 EXPONENTIAL FORM 

In the preceding two sections it has been demonstrated that angles are 
added when phasors are multiplied and that angles are subtracted when one 
phasor is divided by another. These operations can be further justified 
from a consideration of the sine and cosine when expanded in series form. 

By Maclaurin’s theorem, a treatment of which is beyond the scope of this 
book, cos 0 and sin 0 can be expanded into series form as follows: 

[1] 

ein fl-« 03,0^0^. sm0 _ 0 3! + 5! 7| + ••• [2] 
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The symbol n! denotes the product of 1, 2, 3, 4. n and is read 
"factorial n." Thus, 5! (factorial five) is 1 x 2 x3 x 4 x 5. Similarly, it 
can be shown that 

+ +j Öi_^_jÖL + ... r31

2! 13! 4! 1 5! 6! 1 7! + L J

where e is the base of the natural system of logarithms s 2.718. By 
collecting and factoring j terms, Eq. [3] can be written 

Note that the first term of the right member of Eq. [4] is cos 9 as given 
in Eq. [1J and that the second term in the right member of Eq. [4] 
is j sin 6. Therefore, 

ei’ — cos 0 + j sin 0 [5] 

This expression, cos 0 + j sin 9, is often referred to as cis 9, and some texts 
will actually refer to the cis function. You should bear in mind that cis 
is simply an abbreviation for cos + j sin. 

Since a phasor, such as Zf9, can be expressed in terms of its rectangular 
components by the relation 

Z/ff = Z(cos 9 + j sin 9) [6] 

it follows from Eqs. [5] and [6] that 

Z/9_ = Z& [7] 

Similarly, it can be shown that 

Z/—9 = Ze j’ [8] 

Equations [7] and [8] show that the angles of phasors can be treated 
as exponents. 

Two vectors Z\/9 and Z2̂  are multiplied by multiplying the magnitudes of 
the phasors and adding their angles algebraically. That is, 

Also, 

and 

(Z1Z0)(Z2̂ ) = ZfZ2/9 + * 

Z\¿9 _ Z, 
Z2/^ Z2

z,/-* 

example 9 Multiply Zx = 8.4/15° by Z2 = 10.5/20° . 

solution Z,Z2 = 8.4 x 10.5/15° + 20° = 88.2/35° 

example 10 Multiply Z„ = 164 /-39° by Zb — 2.2 / — 26° . 
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solution ZaZh = 164 x 2.2 /-39° + (-26°) = 361 /-650

example 11 Divide Z\ = 54.2/47° by Z, = 18 /16° . 

solution = j^l/47° - 16° = 3.01/31° 

example 12 Divide Za = 886 18° by Zb = 31.2/—50° 

solution = jÉÉ_ /18° - (-50°) = 28.4/681 
Zi, 31.2 

33 • 8 POWERS AND ROOTS OF POLAR PHASORS 

In addition to following the laws of exponents for multiplication and division, 
phasor angles can be used as any other exponents are used when powers 
or roots of phasors are desired. For example, to square a phasor, the 
magnitude is squared and the angle is multiplied by 2. Similarly, the root 
of a phasor is found by extracting the root of the magnitude and dividing 
the angle by the index of the root. 

example 13 Find the square of Z^ = 14/18 . 

solution Zf = (14/18°)2 = 142/18° x 2 = 196/36° 

example 14 Find the square root of Z„ = 625/60°. 

solution = v/625/60° = x/625 /600 4- 2 = ±25/30° 

Our treatment of this subject at this time is necessarily limited to 
the features which are of immediate use to us in our present studies. 
You will find in advanced work in mathematics that DeMoivre’s theorem 
proves that there are as many answers to a root problem as there are roots 
to be taken: the third root of a phasor has three answers, each of the 
same magnitude but at a different angle. For our immediate purposes, 
however, Examples 13 and 14 show the basic operations. 

PROBLEMS 33 • 4 

Perform the indicated operations and express the results in both polar 
and rectangular form: 

1 5/53.1° x 6.7/ —63.4° 2 21.4/52.6° x 25.5/25.6° 

3 (9.9/69.9°X8.8/82.2°) 4 (183.3/-11 ° X3.26/11°) 

5 (8.24/-34° )(9.07 /-52.6°) 6 (9.5/-71.6° )(8.26/-7.6° ) 

7 10/53.2° 4- 5/36.8° 8 92.3/-12,5° h- 81 /-64.60

9 3.86/-79.57° - 13.9/69° 10 1/0/ 4- 20/-36.8° 

66.8/13° 12 1 87/-180° 
1 4.73/24° 3.54/-180° 
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Perform the indicated operations: 

13 7144/30° 14 71024/-17° 

15 (1.7/22°)-’ 16 (0.31/-60° )-’ 

17 764/270° 18 71728/—21.9° 

19 (3/117 20 (2/-16 ° 7 

33 • 9 PARALLEL CIRCUITS 

It was shown in Sec. 13 • 2 that the reciprocal of the equivalent resistance 
Äp of several resistances in parallel is expressed by the relation 

J- = J_ + X + JL + J_ + ... 
Äp ßi Ä2 Ä.3 «4 

and that when two resistances R} and R2 are connected in parallel, the 
equivalent resistance is 

„ RiRz 
p " R, + Ri 

An analogous condition exists when two or more impedances are con¬ 
nected in parallel. By following the line of reasoning used for resistances 
in parallel, the reciprocal of the equivalent impedance of several imped¬ 
ances in parallel is found to be 

Similarly, the equivalent impedance of two impedances Zi and Zi con¬ 
nected in parallel is 

Zp z, + z. [10] ° 

Note that the impedances of Eqs. [9] and [10] are in polar form. 

example 15 Find the equivalent impedance of the circuit of Fig. 33-1. 
solution First express the given impedances in both rectangular and 

polar forms. 

Zi = 75 - j30 = 80.8/ —21.8° Í2 

Z, = 35 + j50 = 61.0/55° Í2 

As pointed out in Sec. 33 • 4, phasors in polar form cannot be 
added algebraically; they must be added in terms of their 
rectangular components. Therefore, when the given imped¬ 
ance values are substituted in Eq. [10], the impedances in the 
denominator must be in rectangular form so that the indicated 
addition can be carried out. Substituting, 

b 

Fig. 33 ■ 1 

SECTION 
33 • 7 

TO 
SECTION 

33 • 9 

Z] Z2

Circuit of Example 15 
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Fig. 33 • 

(80.8/ —21.8° )(61.0/55°) 4930/33.2° 

Z" = (75 - ¡30) + (35 + ¡50) “ 110 + ¡20 

Because the denominator is in rectangular form and the 
numerator is in polar form, the denominator must be con¬ 
verted to polar form so the indicated division can be com¬ 
pleted. Thus, performing phasor summation of the terms of 
the denominator, 

4930/33.2/ 4930 
Z" ~ 112/10.3° “ 112 -— 

= 44/22.9° 2 

Note that the circuit values of Fig. 33 • 1 are identical with 
those of Fig. 32 • 19. 

Zi Z2

Circuit of Example 16 

example 16 Find the equivalent impedance of the circuit of Fig. 33 • 2. 
solution Expressing the impedance in rectangular and polar form, 

Zj = 80 + ¡26 = 84.1 /18° $2 

Z2 = 0 - ¡100 = 100/-90° fi 

Substituting these values in Eq. [10], 

(84.1/18°)(100/ —90° ) 

Zv = (80 + ¡26) + (0 - ¡100) 

8410/—72° 
~ 80 - ¡74 

Performing the phasor summation in the denominator, 

_ 8410/—72° 
p - 109/ —42.8° 

.'. Zp = 77.2/ —29.2° 0 

The equivalent series circuit is found by the usual method of 
converting from rectangular form to polar form, namely, 

77.2/-29.2° = 77.2(cos 29.2° - j sin 29.2°) 
= 77.2 cos 29.2° - ¡77.2 sin 29.2° 
= 67.4 - ¡37.7 Í2 

33 • 10 SERIES PARALLEL CIRCUITS 

An equation for the equivalent impedance of a series-parallel circuit is 
obtained in the same manner as the equation for the equivalent resistance 
of a combination of resistances in series and parallel as outlined in 
Sec. 13 • 3. For example, in the circuit represented in Fig. 33 • 3, the total 
impedance is 
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33 ■ 5 

Zt — Zs + 
Z,Z2
+ z2 [11] 

example 17 In the circuit of Fig. 33-3, Zs = 12.4 + j25.6 2, 
Zj = 45 + jl2.9 2, and Z2 = 35 — j75 2. Determine the 
equivalent impedance of the circuit. 

solution Since Zx and Z2 must be multiplied, it is necessary to express 
them in polar form. 

Zi = 45 + jl2.9 = 46.8/16° 2 

and Z2 = 35 - j75 = 82.8/-650 2 

Substituting the values in Eq. [11], 

Z, = (12.4 + j25.6) + 
(46.8/16°X82.8/-65 °) 

(45 + ¡12.9) + (35 - j75) 
2 

The solution is completed in the usual manner and results in 

Z, = 53.2/20° 2 

From the foregoing examples, it is evident that an equation for the 
impedance of a network is expressed exactly as in direct-current problems, 
impedances in polar form being substituted for the resistances. 

PROBLEMS 33 ■ 5 

1 What is the equivalent impedance of two impedances 
Zi — 151 /4.07° 2 and Z2 = 50/53.1 2 connected in parallel? 

2 What is the equivalent impedance of two impedances 
Z,. = 148.5/42.2° Si and Zb = 145/-12.7° 2 connected in parallel? 

3 What is the equivalent impedance of two impedances 
Z] = 73.8 — j34.4 2 and Z2 = 30 + j40 2 connected in parallel? 

4 What is the equivalent impedance of two impedances 
Z„ = 276 — jl80 2 and Z6 = 117 — jl8.6 2 connected in parallel? 

5 What is the equivalent impedance of two impedances Zr = 60.5/20° 2 
and Zy = 100 + jO 2 connected in parallel? 

6 What is the equivalent impedance of two impedances Zx = 355/12° 2 
and Z2 = 0 — jlOO 2 connected in parallel? 

7 What is the equivalent impedance of two impedances Z. = 251 / —3° 2 
and Z/, = 0 + j70 2 connected in parallel? 
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Fig. 33 ■ 4 Circuit for Probs. 10, 
11, and 12 

8 The joint impedance of two parallel impedances is 53.5/ —42.4° Í2. 
One of the impedances is 168/27° 2. What is the other? 

9 What impedance must be connected in parallel with 64.9 + j45.4 Œ 
to produce 43.7 + ¡155.5 2? 

10 In Fig. 33-4, Z8 = 9.4 + ¡6.6 Í2, Zi = 78.5 - ¡35 Q, and 
Z2 = 33.6 + ¡48 2. What is the single equivalent impedance Zt? 

11 In Fig. 33-4, Z. = 111. 5/ 21° Q, Z, = 27.7 - ¡50 Í2, and 
Z2 = 150 + ¡76.2 Í2. What is Z,? 

12 In Fig. 33-4, Zs = 5 + ¡3.9 Í2, Z, = 57.2/-61 0 S2, and 
Z2 = 168 /27° Í2. What is Zt? 

13 The primary current Ip of a coupled circuit is expressed by the equation 

I_E_ a 
7p - (uM)2

Compute the value of Ip when E = 110/0° V, Zp = 12 + ¡40 Í2, 
Zs = 18 + ¡50 Q, and wM (= 2rrf x mutual inductance) = 15. 

14 The secondary current Is of a coupled circuit is expressed by the 
equation 

s “ Z„ZS + 

Compute the value of Is if a'M = 15, E = 20 V, Zp = 6 + ¡8 Í2, and 
Zs = 20 + ¡12 Q. 

33-11 EQUIVALENT Y AND A CIRCUITS 

Fig. 33 • 5 Equivalent Y and A 
Impedances 

When networks contain complex impedances, the equations for converting 
from a A network to an equivalent Y network, or vice versa, are derived by 
methods identical with those of Sec. 22 • 7. Thus, in Fig. 33 • 5, each 
equivalent Y impedance is equal to the product of the two adjacent A im¬ 
pedances divided by the summation of the A impedances, or 

„ _ Z1Z3 

and 

„ _ Z0Z3 
Zr ~^zT 

where 

AZ, = z, + z. + z3

and all impedances are expressed in polar form. 

[12] 

[13] 

[14] 
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Similarly, each equivalent A impedance is equal to the summation of 
the Y impedances divided by the opposite Y impedance. Thus, 

7 ^Zy 

7 — 
2" Za 

and 

[15] 

[16] 

[17] 

where 

—Zy — ZaZb + Z^ZC + ZaZr

and all impedances are expressed in polar form. 

example 18 In Fig. 33 -5, Z\ = 7.07 + [7.07 12, Z2 = 4 + [3 12, and 
Z3 = 6 — j8 2. What are the values of the equivalent Y circuit? 

solution Express all impedances in both rectangular and polar forms. 

Zi = 7.07 + [7.07 = 10/45° 12 
Z2 = 4 + ¡3 = 5/36.9° 12 
Z3 = 6 - ¡8 = 10/-53.1° 12 

SZâ = (7.07 + ¡7.07) + (4 + j3) + (6 - j8) = 17.2 /6.91° 12 

Substituting in Eq. [12], 

Z„ 
(10 45°X10/-53.1° ) 

17.2/6.91° 
= 5.62 - [1.51 12 

Substituting in Eq. [13], 

(10/45°X5/36.9° ) 
17.2/6.91° 

= 0.752 + [2.81 12 

Substituting in Eq. [14], 

Zc
(5/36.9° )(1 0/ —53.1° ) 

17.2/6.91° 
= 2.67 - [1.14 12 

The solution can be checked by converting the above Y net¬ 
work equivalents back to the original A by using Eqs. [15], 
[16], and [17], 

example 19 Determine the equivalent impedance between points a and c 
in Fig. 33 • 6. 

solution Convert one of the A circuits of Fig. 33 • 6 to its equivalent Y 
circuit. Thus, for the delta abd, 
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Fig. 33 • 7 Equivalent Y = (5 — [3.5) + (8 — j5) + (3 + j4) = 16.6 /—15.7° 12 
impedances for Circuit of 
Fig. 33 • 6 

Substituting in Eq. [12], 

(6.1/ —35°)(5/53.1° ) 
16.6/-157^ 

= 1.84/33.8° = 1.53 + jl.O2 2 

Substituting in Eq. [13], 

Z„ 
(6.1/ —35° )(9.44/ —32° ) 

16.6/—15.7° 
= 3.47/ —51.3° 

= 2.17 - [2.71 2 

Substituting in Eq. [14], 

Z, = = 2.84/36^ = 2.27 + [1.70 12 
16.6/ — ID./ 

The equivalent Y impedances are shown in Fig. 33 • 7. 
The equivalent Y impedances are connected to the remainder 
of the circuit as shown in Fig. 33 • 8 and solved as an ordinary 
series parallel circuit. Thus, 

„ „ (Zc + + Z^ ¿nc — ~ ~ “ ~~ Zc + ^5 + 
[(2.27 4- ¡1.70) + (1.73 + ¡1 30)][(2.17 - |2.71) + (5.83 - ¡3.29)] = 1.53 + ¡1.02 + 27 + 70) + (1 73 + jj 30) + (2 17 _ j2 71) + (5 83 _ j3 29)

= 5.45 + ¡2.0 SI 
As we saw in Sec. 22 • 7, the A network is more generally referred to in 

Fig. 33 • 8 Equivalent Y 
Impedances Connected to 
Remainder of Circuit of Fig. 33 • 6 

electronics as a w network and the Y or star network is often known as the 
T network. In the problems which follow, the two sets of expressions are 
used interchangeably. 
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PROBLEMS 33 ■ 6 

1 In the circuit of Fig. 33 -5, Zi = 20 + j30 S2, Z2 = 25 + ¡50 
Z3 = 30 — jlO S2. Find the impedances of the equivalent Y circuit. 

2 In the circuit of Fig. 33-5, Z} = 3 + j4 Q, Z2 = 12 + ¡5 
Z3 — 8 — j6 SI. Find the equivalent Y circuit values. 

3 In the circuit of Fig. 33 • 5, 

Za = 46.4/75.55° 

SI. 

TO 
PROBLEMS 

33 ■ 6 

Zb = 43.8/ —45.45° 0, 

Zc = 56.4 /—37.45° SI. 
Fig. 33 • 9 Circuit for 
Probs. 5 to 13 

Find the impedances of the equivalent w circuit. 
4 In the circuit of Fig. 33 • 5, Zo = 50.9/86.8" 2, Zb = 62.7/ -20.2° SI, 

and Zc = 44.5 /8.8° S2. Find the equivalent A circuit values. 
5 In the circuit of Fig. 33 • 9, Z4 = 78/22.6° Í2, Z2 = 80/-53.1 ° ñ, 
Z3 = 50/45° 2, Z4 = 39/ —67.4° SI, and Z3 = 100/36.9° 2. Find Zab . 

6 In Prob. 5, if E = 100/0° V, find the current flow through imped¬ 
ance Z4. 

7 In the circuit of Fig. 33 • 9, Zi = 102 + j 190 SI, Z2 = 134 — ¡33 SI, 
Z3 = 380 - ¡2 10 S2, Z4 = 30 - ¡40 fi, and Z5 = 80 - ¡60 S2. What is 
the equivalent impedance Zab1 

8 In Prob. 7, if E = 440 V, how much current flows through Z5? 
9 In Prob. 7, if E = 200 V, how much power is expended in Z4? 
10 In Prob. 7, if E — 200 V, how much current flows through Z2? 
11 In Fig. 33-9, Zi = 90 - ¡120 S2, Z2 = 115 - ¡18 S2, 

Z3 — 168 — ¡58 S2, Z4 = 50 + ¡0 S2, and Z5 = 0 + ¡25 S2. Determine 
the equivalent impedance Zab . 

12 In Prob 11. if E = 100 V. how much current flows through Z3? 
13 In Prob. 11, if E = 100 V, how much power is expended in Zi? 
14 In Fig. 33 • 10, Z, = 3 + ¡4 S2, Z> = 37/77.5° 2, Z3 = 40/-80° S2, 

Z4 = 64 - ¡50 S2, Z:, = 15 + ¡85 S2, Z6 = 40 - ¡36 S2, 
Z7 = 10/ — 53.1 ° S2, and E = 120 V. How much current flows 
through Z7? 

15 In Fig. 33-11, Z, = 254/88.6° SI, Z, = 306/86.1° S2, 
Z3 = 437/ —73.6° SI, Z4 = 177/-87° SI, Z-, = 288/87.5° SI, 
Z6 = 250/89.1° SI, and Z¿ = 680/0° S2. Determine the equivalent 
impedance Zab . 

16 In Prob. 15, if E = 475 V, how much current flows through the load 
impedance ZL? 

17 In Fig. 33 • 11, Z, = 63 + ¡5 S2, Z2 = 12 + ¡60 SI, Z3 = 20 + ¡90 S2, 
Z4 = 18 + ¡86 S2, Z5 = 8 + ¡52 SI, Z6 = 47 + ¡2 SI, ZL = 600 + ¡0 SI. 
Determine the equivalent impedance Zab . 

18 In Prob. 17, if E = 135 V, how much power is dissipated in the load 
impedance ZL? 

Fig. 33-10 Circuit for Prob. 14 

Fig. 33-11 Circuit for Probs. 1 5 
to 18 
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chapter 

34 

In problems pertaining to engineering, there often occurs the need for nu¬ 
merical computations involving multiplication, division, powers, or roots. 
Some of these problems can be solved more readily by the use of logarithms 
than by ordinary arithmetical processes. 

The credit for the invention of logarithms is chiefly due to John Napier, 
whose tables appeared in 1614. This was an extremely important event in 
the development of mathematics; for by the use of logarithms: 

1 Multiplication is reduced to addition. 
2 Division is reduced to subtraction. 
3 Raising to a power is reduced to one multiplication. 
4 Extracting a root is reduced to one division. 
In some phases of engineering, computation by logarithms is utilized to 

a great extent because of the high degree of accuracy desired and the 
amount of labor that is thereby saved. Because the slide rule is convenient 
and because slide rule results meet the ordinary demands for accuracy in 
problems relating to electronics, it is not necessary to make wide use of 
logarithms for computations in the general field. However, it is essential that 
the electrical engineer and. more particularly, the electronics engineer have 
a thorough understanding of logarithmic processes. 

34-1 DEFINITION 

The logarithm of a quantity is the exponent of the power to which a given 
number, called the base, must be raised in order to equal the quantity. 

example 1 Since 10* = 1000, then 3 = logarithm of 1000 to the base 10. 

example 2 Since 23 = 8, then 3 = logarithm of 8 to the base 2. 

example 3 Since a1 = b, then x = logarithm of b to the base a. 
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34 • 2 NOTATION 

If 

ly = N [1] 

then X is the logarithm of N to the base b. This statement is abbreviated by 
writing 

X = log,, N [2] 

It is evident that Eqs. [1] and [2] mean the same thing and are simply 
different methods of expressing the same relation among b, x, and N. Equa¬ 
tion [1] is called the exponential form, and Eq. [2] is called the logarithmic 
form. 

As an aid in remembering that a logarithm is an exponent, Eq. [1] can be 
written in the form 

(Base)1"»: = number 

The following example illustrates relations between exponential and 
logarithmic forms. 

example 4 exponential notation logarithmic notation 

2-* = 16 4 = log-j 16 
35 = 243 5 = log., 243 

25" b = 5 0.5 = log25 5 
102 = 100 2 = log,,, 100 
10< = 10,000 4 = log,„ 10,000 
ab = c b = log,, c 
c* - y X = log, y 

From the foregoing examples, it is apparent that any positive number, other 
than 1, can be selected as a base for a system of logarithms. Because 1 
raised to any power is 1, it cannot be used as a base. 

Based on the definitions in Eqs. [1] and [2], you should satisfy yourself 
with the correctness of the following statement: 

log„ ab = b 

PROBLEMS 34 • 1 

Express the following equations in logarithmic form: 

1 102 = 100 2 103 = 1000 
3 72 = 49 4 43 = 64 
5 40-5 = 2 6 e> = e 
7 a1 = a 8 10' = 10 
9 a" _ 1 10 1 = 10° 
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Express the following equations in exponential form: 

11 3 = login 1000 
13 2 = logs 25 
15 0 = log6 1 
17 4 = log., 625 
19 s = log, t 

12 5 = login 100,000 
14 3 = log4 64 
16 0 = log„ 1 
18 0.5 = log» 3 
20 2x = logs M 

Find the value of x: 

21 
23 
25 
27 
28 
29 

30 

3' = 9 
10' = 1,000,000 
4' = 2 

22 2' = 16 
24 x = log2 32 
26 logx x = 3 

Show that login 100 = login 100,000 — log io 1000. 
Show that log,, p = 1. 
What are the logarithms to the base 2 of 2, 4, 8, 16, 32, 64, 128, 

256, and 512? 
What are the logarithms to the base 3 of 3, 9, 27, 81, 243, 729, and 
2187? 

34-3 LOGARITHM OF A PRODUCT 

The logarithm of a product is equal to the sum of the logarithms of the 
factors. 

Consider the two factors M and N, and let x and y be their respective 
logarithms to the base a; then, 

x = log,, M [3] 

and 

y = log,, N [4] 

Writing Eq. [3] in exponential form, 

a' = M [5] 

Writing Eq. [4] in exponential form, 

a* = N [6] 
Then M • N = a' • a« = al+ " 

log,, {M • N) = x + y = logu M + log,, N 

example 5 2 = login 100 or 102 = 100 
4 = login 10,000 or 104 = 10,000 
Then 100 x 10,000 = 102 • 104

= 102+4 = 106
/. login (100 x 10,000) = 2 + 4 

= login 100 + login 10,000 
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The above proposition is also true for the product of more than two factors. 
Thus, by successive applications of the proof, it can be shown that 

loga {A- B-C-D) = log,, A + log,, B + log,, C + log,, D 

34-4 LOGARITHM OF A QUOTIENT 

The logarithm of the quotient of two numbers is equal to the logarithm of the 
dividend minus the logarithm of the divisor. 

As in Sec. 34 • 3, let 

X — log,, M 

and 

y = loga N 

Writing Eq. [3] in exponential form, 

a1 = M 

Writing Eq. [4] in exponential form, 

a* — N 

Dividing Eq. [5] by Eq. [6], 

a' _ M 
a" ~ N 

That is, 

N 

Writing Eq. [7] in logarithmic form, 

[3] 

[4] 

[5] 

[6] 

[7] 

[8] 

Substituting in Eq. [8] for the values of x and y, 

log,, M - loga N - log,, 

example 6 2 = log,,, 100 or 10- = 100 
4 = log lo 10,000 or 104 = 10,000 

Then 10,000 _ IO4 _ IQ4 2 _ 102 
100 102

/. logl” ^OQ 0- = 4 ~ 2 = lo8>o 10’000 - lo8*o 100
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34.5 LOGARITHM OF A POWER 

The logarithm of a power of a number equals the logarithm of the number 
multiplied by the exponent of the power. 

Again, let 

x = log,, M [3J 

Then 

M = a' [9] 

Raising both sides of Eq. [9] to the nth power, 

Mn = a"' [10] 

Writing Eq. [10] in logarithmic form, 

log,, M" = nx [11] 

Substituting in Eq. [11] for the value of x, 

loga Mn - n log„ M 

example 7 2 = logio 100 or 100 = 102
Since (102)2 = IO22 = 10* = 10,000 
then logio 10,000 = 4 

.'. login 1002 = 2 log lo 100 = 2 • 2 = 4 

34 • 6 LOGARITHM OF A ROOT 

The logarithm of a root of a number is equal to the logarithm of the number 
divided by the index of the root. 

Again, let 

X = loga M [3] 

Then 

M = a1 [9] 

Extracting the nth root of both sides of Eq. [9], 

M1" = az n [12] 

Writing Eq. [12] in logarithmic form, 

log„ M' " = [13] 

Substituting in Eq. [13] for the value of x, 

, „ log« M log,, M1 " — ——— 
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example 8 4 = logio 10,000 or 10,000 = 104

Since \/10,000 = \/10< = 10 — = 10- = 100 V y 2

then logo, v^ÕÕÕ = 12g>o_^220 = 1 = 2 

SECTION 
34 • 5 

TO 
SECTION 

34 ■ 9 

34-7 SUMMARY 

It is evident that if the logarithms of numbers are used for computations 
instead of the numbers themselves, then multiplication, division, raising to 
powers, and extracting roots are replaced by addition, subtraction, multi¬ 
plication, and division, respectively. Because you are familiar with the laws 
of exponents, especially as applied to the powers of 10, the foregoing opera¬ 
tions with logarithms involve no new ideas. The sole idea behind logarithms 
is that every positive number can be expressed as a power of some base. 
That is, 

Any positive number = (base)10® 

34 • 8 THE COMMON SYSTEM OF LOGARITHMS 

Since 10 is the base of our number systems, both integral and decimal, the 
base 10 has been chosen for a system of logarithms. This system is called 
the common system or Briggs’s system. The natural system, of which the 
base to five decimal places is 2.71828, will be discussed later. 

Hereafter, when no other base is stated, the base will be 10. For example, 
logio 625 will be written log 625, the base 10 being understood. 

34 • 9 THE NATURAL SYSTEM OF LOGARITHMS 

In the number system there exist certain special numbers whose value is 
not absolutely determined, but which are themselves extremely valuable to 
us. You are already familiar with w, which has a value of approximately . 

Another useful number is e, which has a value of approximately 2.71828. 
This unusual number turns out to be extremely valuable when used as a 
base for logarithms. Because it can be shown to be related to natural events, 
like the decay of charge on a capacitor which is discharged through a resistor 
or the decay of current when the magnetic field about an inductance col¬ 
lapses, it is called the base of the natural logarithms. Tables of natural 
logarithms, or logarithms to the base e, are to be found in many published 
books of tables. In Sec. 34 • 25 we will see how to change logarithms to the 
base 10 into logarithms to the base e or to other bases. 

The notation for logarithms to the base e is shown variously as log, or 
In (pronounced "Ion”). 
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34- 10 DEVELOPING A TABLE OF LOGARITHMS 

Table 34 • 1 illustrates the connection between the power of 10 and the loga¬ 
rithms of certain numbers. 

Table 34 • 1 exponential form logarithmic form 

104 = 10,000 log 10,000 = 4 
103 = 1,000 log 1,000 = 3 
IO3 = loo log 100 = 2 
IO4 = io log 10 = 1 
10° =1 log 1 = 0 
lO-i _ o.l log 0.1 = -1 
IO“2 = 0.01 log 0.01 - -2 
IO"3 = 0.001 log 0.001 - -3 
IO“4 = 0.0001 log 0.0001 = —4 

Inspection of Table 34 • 1 shows that only powers of 10 have integers for 
logarithms. Also, it is evident that the logarithm of any number between 10 
and 100, for example, is between 1 and 2; that is, it is 1 plus a decimal. 
Similarly, the logarithm of any number between 100 and 1000 is between 
2 and 3, and so on. Therefore, to represent all numbers, it is necessary for 
us to develop the fractional powers which represent numbers between 1 and 
10. Then, by using powers of 10 to convert any number to a number between 
1 and 10 times the appropriate power of 10 (Chap. 6), we may use our new 
fractional powers of 10 to find the logarithm of any number instead of just 
integral powers of 10. 

In Sec. 20 • 4 we saw that = \/a. Accordingly, we can see that 

100.5 _ ioi = ^10= 3.16227766 

which gives us the first intermediate step in our table of logarithms between 
1 and 10: 

log 10 3.16227766 = 0.5 

Similarly, 

10025 =  (100.5)0.5 = x/3.16227766 = 1.778279 

or 

logio 1.778279 = 0.25 

By repeating the square roots time after time, we can obtain 

logio 1.333 = 0.125 etc. 

Then, by applying the laws of exponents developed in Sec. 4 • 3 and sum¬ 
marized in Sec. 20 • 1, we can determine that 



SECTION 
34 • 10 

3.16227766 x 1.778279 = 10” 5 x 10° 25 = 10" 75 = 5.62252, 

or 

log 5.62252 = 0.75 

Repeated applications of this method gives us such additional logarithms as 

log 4.2173 = 0.625 

and 

log 2.37 = 0.375 

You should use the values now developed to prove that 10°- 75 x 10°-25 = 10, 
as a check on our method. 

These various values can be plotted on a graph, as in Fig. 34 • 1, and the 
more convenient logarithms can be picked off the curve, or other more 
sophisticated methods of higher mathematics may be applied to yield Table 
34 • 2 of logarithms of numbers between 1 and 10: 

Fig. 34 • 1 Graph of the 
Equation y = /og lox 

number logarithm 

1 0.00000 
2 0.3010 
3 0.4771 
4 0.6021 
5 0.6990 
6 0.7782 
7 0.8451 
8 0.9031 
9 0.9542 
10 1.0000 

Table 34 • 2 
Logarithms of Numbers 
between 1 and 10 

Since we convert every number to its equivalent number between 1 and 
10 times the appropriate power of 10, every logarithm we will ever look up 
will be a decimal fraction. Because of this universality of decimals as loga¬ 
rithms, almost every table of logarithms published omits the decimal point: 
log 2 will appear as simply 3010 instead of 0.3010. 

From the foregoing discussion it will be evident that every logarithm has 
two parts: a decimal part which we read from the table of logarithms and an 
integer which we must provide each time from our knowledge of powers 
of 10. 

example 9 Determine the logarithm of 200. 
solution First, rewrite the number in standard form: 

200 = 2.00 x 102
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Since log 2.00 = 0.3010, this number could be written 

2.00 X 102 = 100 3010 X 102 = 102-3010

This power to which 10 is raised to be equal to 200 is the log¬ 
arithm of 200. In other words, 

log 200 = 2.3010 

This logarithm is made up of two parts: the decimal part from the 
table and the integer part which we developed from the '’‘power 
of 10.” Similarly, log 2000 = 3.3010. 

In the same manner, referring to Table 34 • 1, it follows that the logarithm 
of a number between 0.1 and 0.01 will be — 2 followed by a decimal number 
from the table and the logarithm of a number between 0.001 and 0.0001 
will be -4 followed by a decimal. Note carefully that the decimal number 
taken from the table is always positive, so that the logarithm of a number 
between 0.001 and 0.0001, which we have seen will be —4 followed by a 
positive decimal, may be written as —2 followed by a negative decimal. 

The integral part of the logarithm, which we provide by ourselves, is called 
the characteristic, and it may be positive, negative, or zero. The fractional 
part, which is taken from the table, is called the mantissa, and it is always 
positive. 

34-11 THE CHARACTERISTIC 

The use of the base 10 makes it possible to simplify computation by log¬ 
arithms and to express logarithms in a compact tabulated form. For example, 
determining the characteristic becomes a matter of inspection, as is evident 
from the following: 

Rule 
1 The characteristic of a number greater than 1 is positive and is one 

less than the number of digits to the left of the decimal point. 
2 The characteristic of a positive number less than 1 is negative and is 

one more than the number of zeros immediately to the right of the decimal 
point. 

If the characteristic is negative, it is customary to write the negative sign 
above the characteristic to emphasize that the characteristic alone is nega¬ 
tive. For example, in 

log 0.000647 = 4.8109 

the 4.8109 means —4 + 0.8109. To write it —4.8109 would indicate that 
both characteristic and mantissa were negative. This would be incorrect, for 
it has been agreed that the mantissa shall always be considered positive. 
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To avoid the use of a negative characteristic, it is convenient to add 10 to 
the characteristic and subtract 10 at the right of the mantissa. Thus 
log 0.000647 = 4.8109 would be written 6.8109 — 10. 

The application of the rules for determining the characteristic becomes a 
simple matter if all numbers are expressed as a number between 1 and 10 
times the proper power of 10. 

The power of 10 in a number so expressed is always the characteristic of the 
logarithm of the number. 

The foregoing is illustrated in Table 34 • 3. 

number standard notation characteristic refer to rule Table 34 • 3 

682 6.82 X 102 2 1 
3765 3.765 x 103 3 1 
14 1.4 x 10’ 1 1 
1 1 x 10" 0 
0.00425 4.25 X 10-3 -3 or 7-10 2 
0.1 1X 10-1 -1 or 9 - 10 2 
0.000072 7.2 x 10 3 -5 or 5 - 10 2 

34-12 THE MANTISSA 

Note that all numbers whose logarithms are given below have the same 
significant figures. These logarithms were obtained by first finding log 2.207 
from a table, as will be discussed later. The remaining logarithms were then 
obtained by applying the properties of logarithms as stated in Secs. 34 • 3 
and 34 • 4. 

log 2207 = log 1000(2.207) = log 1000 + log 2.207 = 3 + 0.3438 
log 220.7 = log 100(2.207) = log 100 + log 2.207 = 2 + 0.3438 
log 22.07 = log 10(2.207) = log 10 + log 2.207 = 1 + 0.3438 
log 2.207 = log 1(2.207) = log 1 + log 2.207 = 0 + 0.3438 

log 0.2207 = log 22°7 = log 2.20/- log 10 = -1 + 0.3438 

log 0.02207 = log = log 2.207 - log 100 = -2 + 0.3438 

From the above examples, it is apparent that the mantissa is not affected 
by a shift of the decimal point. That is, the mantissa of the logarithm of a 
number depends only on the sequence of the significant figures in the num¬ 
ber. Because of this, 10 is ideally suited as a base for a system of logarithms 
to be used for computation. 
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PROBLEMS 34 • 2 

Write the characteristics of the logarithms of the following numbers: 

1 37 2 226 3 688 
5 7.27 6 72.7 7 727 
9 0.000727 10 95816 11 95.816 

13 1002 14 10.02 15 0.0001002 
17 0.004 18 2.65 x 10« 19 3.3 x 103

Find the value of each of the following expressions: 

21 log 100 + log 0.001 22 log xT00 23 

24 log x T0Õ0 - log x TOO 25 log x/0.001 

4 20.6 
8 0.727 

12 0.095816 
16 1,002,000 
20 8 x 10 12

Write the following expressions in expanded form: 

26 log 278 * 9 36 
o 1.1 

Solution: log 278 * 936-
ol. 1 

= log 278 + log 9.36 — log 81.1 

27 . 6792 x 20.9 
108 —Ï76-

29 512 x 0.36 
2w x 177 

31 /159 x 0.837 \ 
\ 82.2 / 

_R 3.66 x (4.71 x 102) 
28 l0g -3.42 x 7280-

30 log ^32,000 x 286 x 159 

__ i PQ2r 32 log 
uni 

Given log 27.36 = 1.4371, write the logarithms of the following numbers: 

33 2.736 34 2736 35 0.02736 
36 0.0002736 37 27,360 38 2736 x 10 * 
39 27.36 x 10« 40 0.002736 x 10 3 41 27.36 x IO 12

Given log 7.57 = 0.8791, find the numbers that correspond to the following 
logarithms: 

42 1.8791 43 3.8791 44 5.8791 - 10 
45 6.8791 46 9.8791 - 10 47 3.8791 - 10 
48 2.8791 49 10.8791 50 2.8791 - 10 

34-13 TABLES OF LOGARITHMS 

Because the characteristic of the logarithm of any number is obtainable by 
inspection, it is necessary to tabulate only the mantissas of the logarithms of 
numbers. Though mantissas can be computed by use of advanced mathe¬ 
matics, for convenience the mantissas of the logarithms to a number of sig¬ 
nificant figures have been computed and arranged in tables. Table 7 in the 
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Appendix is a four-place table of logarithms; that is, the mantissas therein 
have been computed and rounded off to four decimal places. 

In order for you to learn how to use tables of logarithms, Table 7 is used in 
the following sections and examples. In addition, inside the front cover of this 
book is a three-place table of mantissas. You will find that this table will serve 
most of your needs when working with logarithms related to electronic 
applications. 

34- 14 TO FIND THE LOGARITHM OF A GIVEN NUMBER 

Table 34 • 4 is a portion of Table 7 in the Appendix. 

N0123456789 Table 34 ■ 4 

40 6021 6031 6042 6053 6064 6075 6085 6096 6107 6117 
41 6128 6138 6149 6160 6170 1680 6191 6201 6212 6222 
42 6232 6243 6253 6263 6274 6284 6294 6304 6314 6325 
43 6335 6345 6355 6365 6375 6385 6395 6405 6415 6425 

Examination of the table shows that the first column has N at top and bot¬ 
tom. N is an abbreviation for “number.” The other columns are labeled 0, 1, 
2, 3, 4.9. Therefore, any number consisting of three significant figures 
has its first two figures in the N column and its third figure in another column. 
This will be illustrated in the following examples. 

When finding the logarithm of a number, always write the characteristic at 
once, before looking for the mantissa. 

example 10 
solution 

Find the log 40. 
40 = 4 X 101; therefore, the characteristic is 1. 
Since 40 has no third significant figure other than zero, the 
mantissa of 40 is found at the right of 40 in the N column, in 
the column headed 0. It is .6021. 

/. log 40 = 1.6021 

example 11 
solution 

Find log 416. 
416 = 4.16 X 102; therefore, the characteristic is 2. 
The first two digits of 416 are found in the N column and the 
third digit in the column headed 6. Then the mantissa is read 
in the row containing 41 and in the column headed 6. It 
is .6191. 

PROBLEMS 
34 ■ 2 

TO 
SECTION 

34 • 14 

Iog416 = 2.6191 
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Similarly, log 4.16 = 0.6191 
log 41.6 = 1.6191 
log 4160 = 3.6191 

log 0.00416 = 7.6191 - 10, etc. 

That is, the mantissa of any number having 416 as significant 
figures is .6191. 

example 12 Find log 4347. 
solution 4347 = 4.347 x 103; therefore, the characteristic is 3. 

Since 4347 is between 4340 and 4350, its mantissa must be 
between the mantissas of 4340 and 4350. 

Mantissa of 4350 = .6385 
Mantissa of 4340 = .6375 

Difference = .0010 

The tabular difference between these mantissas is .0010, and 
it is apparent that an increase of 10 in the number causes the 
mantissa to increase by .0010. Therefore, an increase of 7 in 
the number will increase the mantissa 0.7 as much. Hence the 
increase in the mantissa will be .0010 x 0.7 = .0007, and the 
mantissa of 4347 will be 

.6375 + .0007 = .6382 
.'.log 4347 = 3.6382 

Similarly, log 43.47 = 1.6382 
log 4.347 = 0.6382 

log 434,700 = 5.6382 
log 0.0004347 = 6.6382 - 10, etc. 

That is, the mantissa of any number having 4347 as significant 
figures is .6382. 

The foregoing process of finding the mantissa, called interpolation, is 
based on the assumption that the increase in the logarithm is proportional to 
the increase in the number. 

example 13 Find log 0.000042735. 
solution 0.000042735 = 4.2735 x 10 5; therefore, the characteristic 

is —5, or 5 — 10. 
Since 42.735 is between 42,700 and 42,800, its mantissa must 
be between the mantissas of 42,700 and 42,800. 

Mantissa of 42,800 — .6314 
Mantissa of 42,700 = .6304 

Tabular difference = .0010 
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Since an increase of 100 in the number causes the mantissa to 
increase .0010, an increase of 35 in the number will cause an 
increase in the mantissa of .0010 x 0.35 = .000350. Then 
the mantissa of 42,735 will be 

.6304 + .000350 = .630750 

This mantissa, as written above, is another example of how the retention 
of decimals might easily give a false impression of accuracy. The table from 
which the mantissa is taken is correct to four significant figures. Therefore, 
any mantissa found by interpolation from such a table cannot be correct 
beyond four significant figures. Hence, it is correct to write 

log 0.000042735 = 5.6308 - 10 

Summarizing, we have the following: 

Rule To find the logarithm of a number containing three significant figures: 
1 Determine the characteristic. 
2 Locate the first two significant figures in the column headed N. 
3 In the same row and in the column headed by the third significant 

figure, find the required mantissa. 

Rule To find the logarithm of a number containing more than three signifi¬ 
cant figures: 

1 Determine the characteristic. 
2 Find the mantissa for the first three significant figures of the number. 
3 Find the next higher mantissa, and take the tabular difference of the 

two mantissas. 
4 Add to the lesser mantissa the product of the tabular difference and 

the remaining figures of the number considered as a decimal. 

PROBLEMS 34 ■ 3 

Find the logarithms of the following numbers: 

1 7 
4 263 
7 103 

10 0.0000288 
13 0.1101 
16 989,900 
19 6.28 
22 159.1 
25 69,990 
28 0.00003 

2 700 
5 721 
8 400 
11 9264 
14 281,300 
17 3.142 x IO’« 
20 3.1416 
23 0.000471 
26 2,003,000 
29 5 x 10 12

3 70 
6 438 
9 382,000 

12 5,989,000 
15 252.66 
18 202.8 x 10^ 
21 2.7183 
24 864,000 
27 2.003 x 10« 
30 84.37 x 10 5
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34-15 TO FIND THE NUMBER CORRESPONDING TO A GIVEN 

LOGARITHM 

The number corresponding to a given logarithm is called the antilogarithm 
and is written “antilog.” For example, if log 692 = 2.8401, then the number 
corresponding to the logarithm 2.8401 is 692. That is, 

antilog 2.8401 = 692 

To find the antilog of a given logarithm, we reverse the process of finding 
the logarithm when the number is given. 

example 14 Find the number whose logarithm is 3.9101. 
solution The characteristic tells us only the position of the decimal point. 

Therefore, to find the significant figures of the number (anti¬ 
log), the mantissa must be found in Table 7 in the Appendix. 
To the left of the mantissa .9101, in column N, find the first 
two significant figures of the number, which are 81, and at the 
head of the column of the mantissa, find the third significant 
figure, which is 3. Hence, the number has the significant figures 
813. The position of the decimal point is fixed by the char¬ 
acteristic, and because the characteristic is 3, there must be 
four figures to the left of the decimal point. 
Thus, 

antilog 3.9101 = 8130 

Similarly, antilog 0.9101 = 8.13 
antilog 7.9101 - 10 = 0.00813 

antilog 6.9101 — 8,130,000, etc. 

A change in the characteristic changes only the position of the 
decimal point. 

example 15 Find the number whose logarithm is 2.3680. 
solution Examination of Table 7 shows that there the mantissa of the 

logarithm is not given exactly. 
Find the two consecutive mantissas between which the given 
mantissa lies. These are .3674 and .3692. Then, considering 
only significant figures, 

.3692 = mantissa of log 234 

.3674 = mantissa of log 233 

Tabular difference = .0018, number difference = 1 

Hence a difference of .0018 in the mantissa makes a difference 
of 1 in the number. Now the given mantissa is .0006 larger than 
the smaller one (.3680 — .3674 = .0006). Then the required 
number is 
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.0006 

.0018 
X 1 = 0.33 

larger than 233. The sequence of significant figures is 233.33 
or 233.3, for results were computed from a four-place table. 

.’. antilog 2.3680 = 233.3 
or 2.3680 = log 233.3 

example 16 Find the number whose logarithm is 6.9793 — 10. 

solution .9795 = mantissa of log 954 
.9791 = mantissa of log 953 

Tabular difference = .0004, number difference = 1 
Given mantissa = .9793 

Next lower mantissa = .9791 

Difference = .0002 

Since the difference between numbers is proportional to the 
difference of the corresponding mantissas, the fourth signifi¬ 
cant figure to be added to 953 is 

.0002 

.0004 
X 1 = 0.5 

The required significant figures are 953.5. 

.'. antilog 6.9793 - 10 = 0.0009535 
= 9.535 X 10-* 

or 6.9793 - 10 = log 9.535 x IO 4

PROBLEMS 34 ■ 4 

Find the antilogarithms of the following logarithms: 

1 0.4771 
4 2.5514 
7 2.0043 

10 6.6981 - 10 
13 9.9909 - 10 
16 5.3915 
19 0.7980 
22 2.5762 
25 4.9030 
28 5.7782 - 10 

2 2.4771 
5 2.8075 
8 2.6990 

11 3.9256 
14 5.1514 
17 5.1741 - 10 
20 0.4972 
23 6.9921 - 10 
26 6.7517 
29 8.9031 - 20 

3 1.4771 
6 2.8733 
9 5.3838 
12 6.6695 
15 2.5347 
18 9.8471 
21 0.4343 
24 5.8727 
27 3.23754 
30 6.5395 - 10 

34-16 ADDITION AND SUBTRACTION OF LOGARITHMS 

Since the mantissa of a logarithm is always positive, care must be exercised 
in adding or subtracting logarithms. 
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Adding logarithms with positive characteristics is the same as adding 
arithmetical numbers. 

example 17 Add the logarithms 2.7642 and 4.3046. 

solution 2.7642 
4.3046 

7.0688 

When adding logarithms with negative characteristics, you must bear in 
mind that the mantissas are always positive. 

example 18 Add the logarithms 4.3265 and 6.2843. 
solution The mantissas are added as positive numbers, and the char¬ 

acteristics are added algebraically: 

4.3265 
6.2843 

Sum = 2.6108 

example 19 Add the logarithms 4.3283, 3.7642, and 1.1048. 

solution 4.3283 
3.7642 
ï. 1048 

Sum = 7.1973 

In Example 19 the sum of the mantissas is 1.1973 and the 1 must be 
carried over for addition with the characteristics. Since the 1 from the man¬ 
tissa sum is positive and the characteristics are negative, the two are added 
algebraically to obtain —7. 

example 20 Subtract the logarithm 6.9860 from the logarithm 4.1073. 

solution 4.1073 
6.9860 

Remainder = 3.1213 

example 21 Subtract the logarithm 5.7856 from the logarithm 2.6725. 

solution 2.6725 
5.7856 

Remainder = 2.8869 

In Example 21, in order to subtract the mantissas, it was necessary to 
add 1 to the mantissa minuend to make it 1.6725. This 1, which had to be 
positive, was taken from the characteristic —2, the subtraction resulting in 
— 3. Therefore, when the characteristic subtrahend —5 was subtracted 
algebraically, the remainder characteristic resulted in 2. 
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Another method of handling logarithms whose characteristics are negative 
is to express them as logarithms with a positive characteristic, and write the 
proper multiple of negative 10 after the mantissa. 

example 22 Add the logarithms 4.3265 and 6.2843. 

solution 4.3265 = 6.3265 - 10 

6.3265 - 10 
6.2843 

Sum = 12.6108 - 10 = 2.6108 

Note that this is the same as Example 18. 
If —10, —20, —30, —40, etc., appear in the sum after the mantissa and 

the characteristic is greater than 9, subtract from both characteristic and 
mantissa a multiple of 10 that will make the characteristic less than 10. 

example 23 Add the logarithms 4.3283, 3.7642, and 1.1048. 

solution 6.3283 - 10 
7.7642 - 10 
9.1048 - 10 

23.1973 - 30 
Sum = 3.1973 - 10 

Note that this is the same as Example 19. 
When a larger logarithm is subtracted from a smaller, the characteristic 

of the smaller should be increased by 10 and —10 should be written after 
the mantissa to preserve equality. 

example 24 Subtract the logarithm 6.9860 from the logarithm 4.1073. 

solution 4.1073 = 14.1073 - 10 
6.9860 

Remainder = 7.1213 — 10 

Also, when a negative logarithm is subtracted from a positive logarithm, 
the characteristic of the minuend should be made positive by adding to it the 
proper multiple of 10 and writing that multiple negative after the mantissa 
in order to preserve equality. 

example 25 Subtract the logarithm 5.7856—10 from the logarithm 1.6725. 
solution Adding 10 to the characteristic, 

1.6725 = 11.6725 - 10 
5.7856 - 10 

Remainder = 5.8869 
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example 26 Subtract the logarithm 8.6754 — 20 from the logarithm 2.4625. 
solution Adding 20 to the characteristic, 

2.4625 = 22.4625 - 20 
8.6754 - 20 

Remainder = 13.7871 

PROBLEMS 34 • 5 

Add the following logarithms: 

1 2.8241 + 3.1273 2 6.2038 + 1.5369 
3 6.2328 + 4.1703 4 8.2036 - 10 + 1.9273 
5 3.4648 + 2.8088 6 9.3528 - 10 + 5.8653 - 10 

Perform the indicated subtractions: 

7 3.2587 - 0.6990 
9 2.6285 - 4.2807 

11 3.2937 - (9.4378 - 10) 

8 0.4343 - 3.5728 
10 4.3926 - 2.6102 
12 9.5386 - 10 - (9.7493 - 10) 
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34-17 MULTIPLICATION WITH LOGARITHMS 

It was shown in Sec. 34 • 3 that the logarithm of a product is equal to the 
sum of the logarithms of the factors. This property, with the aid of the tables, 
is of value in multiplication. 

example 27 Find the product of 2.79 x 684. 
solution Let p = the desired product; then 

p = 2.79 x 684 [14] 

Taking the logarithms of both members of Eq. [14], 

log p = log 2.79 + log 684 

Looking up the logarithms, tabulating them, and adding them, 

log 2.79 = 0.4456 
log 684 = 2.8351 

log p = 3.2807 

Interpolating to find the value of p, 

log 1910 = 3.2810 logp = 3.2807 
log 1900 = 3.2788 log 1900 = 3.2788 

Tabular difference = 0.0022 Difference = 0.0019 

Then the value of p is (0.0019 4- 0.0022) x 10 = 8 + larger 
than 1900. There is no need to express the result of the above 
division beyond one significant figure, for interpolation in a 
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four-place table is not correct beyond four significant figures. 
Thus, 

p = 1900 + 8 = 1908 

The above quotient to three significant figures is 8.64. Adding 
this to 1900 would have resulted in a product of 1908.64, 
whereas the product obtained by actual multiplication is 
1908.36. 

example 28 Given XL z= 2irfL. Find the value of XL when f = 10,600,000 
and L = 0.0000251. Use 2w = 6.28. 

solution XL -= 6 28 x 10,600.000 x 0.0000251 

Taking logarithms, 

log X,. = log 6.28 + log 10,600,000 + log 0.0000251 

Tabulating, 

log 6.28 = 0.7980 
log 10,600,000 = 7.0253 
log 0.0000251 = 5.3997 - 10 

log XL = 13.2230 - 10 = 3.2230 

By interpolation, 

XL = 1671 

In using logarithms, a form should be written out for all the work before 
beginning any computations. The form should provide places for all log¬ 
arithms as taken from Table 7 and for other work necessary to complete the 
problem. 

34-18 COMPUTATION WITH NEGATIVE NUMBERS 

Because a negative number has an imaginary logarithm, the logarithms of 
negative numbers cannot be used in computation. However, the numerical 
results of multiplications and divisions are the same regardless of the alge¬ 
braic signs of the factors. Therefore, to make computations involving nega¬ 
tive numbers, first determine whether the final result will be positive or 
negative. Then find the numerical value of the expression by logarithms, con¬ 
sidering all numbers as positive, and affix the proper sign to the result. 

PROBLEMS 34 • 6 

Compute by logarithms: 

1 8 x 32 
3 5 x 50 

2 47 x 5 
4 0.6 x 24 

523 



LOGARITHMS 

5 3 X 18 X 0.7 
7 (-95) X 2.6 
9 296 X 8.02 
11 37.7 x 266 
13 5.243 X (-0.1872) 
15 2.84 X 72.4 x 369 
17 (-0.00396) x 500 x 681 
19 242.6 x 471.8 x 0.00008217 

6 12x(—16) 
8 0.007 x (-22) 
10 0.425 x (-0.0036) 
12 3250 x (-2.03) 
14 3 x 6 x 47 
16 6.01 x 444 x 0.00913 
18 14.83 x (-2.222) x 0.1123 
20 (-4627) x 9126 x (-7336) 

34-19 DIVISION BY LOGARITHMS 

It was shown in Sec. 34 • 4 that the logarithm of the quotient of two numbers 
is equal to the logarithm of the dividend minus the logarithm of the divisor. 
This property allows division by the use of logarithms. 

example 29 948 Find the value of by using logarithms. 

Let q = quotient. solution 

Then 

-24.68 Find the value of by using logarithms. example 30 
682,700 

solution 

Then 

Subtracting, 
Taking antilogs, 

Taking logarithms, 
Tabulating, 

q = 948 
v 237 

By inspection the quotient will be negative. Let 
q = quotient 

log q = log 948 — log 237 
log 948 = 2.9768 
log 237 = 2.3747 

log q = 0.6021 
<7 = 4 

q — -2468 
7 682,700 

Taking logarithms, log q = log 24.68 — log 682,700 

Interpolating and tabulating, 

Subtracting, 
Taking antilogs, 

log 24.68 = 11.3923 - 10 
log 682,700 = 5.8342 

log q = 5.5581 - 10 
q = -3.615 x 10 » 

note log 24.68 = 1.3923, but 10 was added to the characteristic 
and subtracted after the mantissa in order to facilitate the sub¬ 
traction of a larger logarithm, as explained in Sec. 34 • 16. 
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PROBLEMS 34-7 

Compute by logarithms: 

! 12 , 81 ,340 
4 9 17 

4 1920 5 0,245 6 426 
-6.4 -0.00035 -1137 

7 -2325 8 0,0005179 9 3906 
4.023 -3.648 0.0008002 

10 —25.83 
-0.003142 

34-20 COLOGARITHMS 

The logarithm of the reciprocal of a number is called the cologarithm of that 
number. It is abbreviated colog. Hence, to express the cologarithm of the 
number N, we write colog N. Because, by definition, 

colog N = log ± 

then 

colog N — log 1 — log N 

Since log 1 = 0, by substituting in the above equation, 

log = 0 — log N 
N 

. '. log i = - log N 
A 

The foregoing illustrates that the cologarithm of a number equals minus 
the logarithm of the number. The minus sign affects the entire logarithm; 
that is, both characteristic and mantissa of a cologarithm are negative. How¬ 
ever, to avoid a negative mantissa in the cologarithm, we agree to subtract 
the logarithm of the number from 10.0000 — 10. Note that this is the same 
as subtracting from zero, except for the resulting sign of the mantissa. 

example 31 Find colog 40. 

solution colog 40 = log = log 1 - log 40 

Now 
or 
Also, 

Subtracting, 

log 1 — 0 
log 1 = 10.0000 - 10 

log 40 = 1.6021 

colog 40 = 8.3979 - 10 

Find colog 0.00075. example 32 
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solution log 1 = 10.0000 - 10 
log 0.00075 = 6.8751 - 10 

Subtracting, colog O.OOO75 = 3.1249 

To divide by any number is the same as multiplying by the reciprocal of 

that number. That is, 

is the same as 873 x 

or, in general, 

A- a 1 
N “ A N 

Therefore, in computing a quotient, add the cologarithm of each factor of 
the denominator to the logarithm of the numerator. 

example 33 Evaluate « - 0 00362 x 8767 • 

solution The above could be expressed as 

“ = 14 63 '0.00362'8767 

That is, log a = log 14.63 + colog 0.00362 + colog 8767 

Tabulating, log 14.63 = 1.1652 
log 0.00362 = 7.5587 - 10; hence, 

colog 0.00362 = 2.4413 
log 8767 = 3.9428; hence, colog 8767 = 6.0572 - 10 

Adding, log a = 9.6637 — 10 
Taking antilogs, a = 0.461 

example 34 Evaluate 

« = (64.28 x 0.00973) -e- (4006 x 0.05134 x 0.002085). 

solution Always make up a skeleton form before looking up the loga¬ 
rithms in the tables, thus: 

log 4006 = 
log 0.05134 = 

log 0.002085 = 

log 64.28 = 
log 0.00973 = 
colog 4006 = 

colog 0.05134 = 
colog 0.002085 = 

log« = 

« = 
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Tabulating, 

log 4006 = 3.6027 
log 0.05134 = 3.7105 - 10 

log 0.002085 = 7.3191 - 10 

log 64.28 = 1.8080 
log 0.00973 = 7.9881 - 10 
colog 4006 = 6.3973 - 10 

colog 0.05134 = 1.2895 
colog 0.002085 = 2.6809 

log = 0.1638 
.'. <> = 1.458 

PROBLEMS 34 ■ 8 

Use logarithms to compute the results of the following: 

. 2.4 X 3.5 
1.7 

3 22.1 X 1.08 
12.65 X 0.78 

5 -0.536 
734.4 X 0.00583 

7 0.000009207 . 
4.98 X 0.000000707 

9 ---
4.73 X 5222 x 0.0006807 

2 5.6 x 8.9 
4.7 x 9.3 

4 86.3 x 0.0297 
0.0379 

6 2.006 
3.142 x 0.833 

_1_ 
6.28 x 427,000,000 x 0.000050 

10 6.28 x 0.000159 x 326 
0.00368 x 436 x 0.0278 

34 ■ 21 RAISING TO A POWER BY LOGARITHMS 

It was shown in Sec. 34 • 5 that the logarithm of a power of a number is equal 
to the logarithm of the number multiplied by the exponent of the power. 

example 35 Find by logarithms the value of 123. 
solution log 123 = 3 log 12 

log 12 = 1.0792 
M: 3 3 

3.2376 = log 1728 
/. 123 = 1728 

example 36 Find by logarithms the value of 0.0563 ft . 
solution log 0.05635 — 5 log 0.0563 

log 0.0563 = 8.7505 - 10 

5 log 0.0563 = 43.7525 - 50 
= 3.7525 - 10 

antilog 3.7525 - 10 = 5.656 x 10 7
.-. 0.05633 = 5.656 x IO 7

example 37 Find by logarithms the value of 5-3 . 
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solution By the laws of exponents, 

Then log 5-3 = log 1 - log 53
= log 1 - 3 log 5 

log 5 = 0.6990 log 1 = 10.0000 - 10 
Multiplying, 3 3 log 5 = 2.0970 

3 log 5 = 2.0970 log ö"3 = 7.9030 - 10 
antilog 7.9030 — 10 = 0.008 

.-.5-3= 0.008 

34 ■ 22 EXTRACTING ROOTS BY LOGARITHMS 

It was shown in Sec. 34 ■ 6 that the logarithm of a root of a number is equal 
to the logarithm of the number divided by the index of the root. 

example 38 Find by logarithms the value of \/815. 
solution By the laws of exponents, 

\/8T5 = 815 s
Then log 815s = | log 815 

Iog815 = 2.9112 

I log 815 = 29112 = 0.9704 

antilog 0.9704 = 9.34 
^815 = 9.34 to three significant figures. 

example 39 Find by logarithms the value of ^0.00955. 
solution \'/0.00955 = 0.00955s

Then log 0.00955s = J log 0.00955 
log 0.00955 = 7.9800 - 10 

i log 0.00955 = 1.9950 - 2.5 

This result, though correct, is not in the standard form for a 
negative characteristic. This inconvenience can be obviated by 
writing the logarithm in such a manner that the negative part 
when divided results in a quotient of —10. Thus, 

log 0.00955 = 7.9800 - 10 
would be written log 0.00955 = 37.9800 — 40. 

Since it is necessary to divide the logarithm by 4 in order to ob¬ 
tain the fourth root, 30 was subtracted from the negative part 
to make it exactly divisible by 4. Therefore, to preserve equality, 
it was necessary to add 30 to the positive part. Then 
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log <0.00955 = _37-9800 - 40 = 9 4950 _ 10

antilog 9.4950 - 10 = 0.3126 
/. <0.00955 = 0.3126 

SECTION 
34 • 21 

TO 
PROBLEMS 

34 • 9 

34 • 23 FRACTIONAL EXPONENTS 

Computations involving fractional exponents are made by combining the 
operations of raising to powers and extracting roots. 

example 40 Find by logarithms the value of <0.0542< 

solution <0.05423 = 0.0542' 
Then log 0.0542" = | log 0.0542 

log 0.0542 = 8.7340 - 10 
3 log 0.0542 = 26.2020 - 30 

Adding 10 to the characteristic and subtracting 10 from the 
negative part in order to make it evenly divisible by 4, 

3 log 0.0542 = 36.2020 - 40 

I log 0.0542 = 36.2020 - 40 _ 9 0505 _ 10

antilog 9.0505 - 10 = 0.112 
<0.0542< = 0.112 

Instead of adding 10 to the characteristic, as above, it would also have 
been correct to subtract 10 from the characteristic and add 10 to the man¬ 
tissa, and thus obtain 16.2020 — 20. It is immaterial what numbers are 
added and subtracted as long as the resulting negative part of the logarithm 
will yield an integral quotient. 

PROBLEMS 34 ■ 9 

Use logarithms to compute the results of the following: 

1 12.82 

3 0.0176^ 

5 <180 

7 1237* 

9 0.862* 

11 127* 

13 30.6* 

2 82.35

4 0.463« 

6 <752 

8 0.643 s

10 <4258 

12 <T6F 

14 164* 
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/196 X 0.083 
V 12.1 

19 ^0.0000286 X \' 629 

/(-0.436) x~3O78 
Z 0.0287 

2Q / 0.000000587 V 
\ 0.00000172 / 
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34 • 24 PRECAUTIONS TO BE OBSERVED 

We have now investigated the common operations involving the use of loga¬ 
rithms in performing mathematical computations, and we have that to use 
logarithms to perform multiplications, we add logarithms; to perform divi¬ 
sion, we subtract logarithms; to raise to a power, we multiply the logarithms 
by the power; and to extract a root, we divide the logarithms by the root. 

There are times, however, when a problem introduces the use of loga¬ 
rithms, apart from the employment of logarithms in computing an arith¬ 
metical solution. Consider carefully the following examples: 

example 41 Compute, by means of logarithms, 125 x 13.6. 
solution This is a standard multiplication problem of the type which we 

successfully mastered in Problems 34 • 6. We find the loga¬ 
rithm of each number, add the logarithms, take the antiloga¬ 
rithm of the sum to determine the value: 

log 125 = 2.0968 
log 13.6 = 1.1335 

log answer = 3.2304 
Answer = antilog 3.2304 = 1.7 x 103

example 42 Compute (log 125)(log 13.6). 
solution This problem calls for us to multiply the logarithm of 125, what¬ 

ever that may be, by the logarithm of 13.6, whatever that may 
be. We can determine what these logarithms are and rewrite 
the problem: 

(log 125)(log 13.6) = (2.0969X1.1335) 

In other words, we have replaced the log expressions in the 
problems with the numbers which are the logarithms as called 
for. Then, having made this substitution, we perform the actual 
required operation, that is, multiply 2.0969 by 1.1335, to ob¬ 
tain 2.38. 

Note carefully that this problem did not introduce the addition of logarithms 
and the taking of antilogarithms in order to arrive at an answer. It may have 



PROBLEMS 
34 ■ 9 

TO 
PROBLEMS 

34 • 10 

suited our convenience to perform the necessary multiplication by means 
of logarithms, but that would introduce an additional problem. 

example 43 Compute, by means of logarithms, 

(log 125)(log 13.6) 

solution As in Example 42, first rewrite the problem: 

(log 125)(log 13.6) = (2.0969X1.1335) 

To perform this multiplication operation by means of loga¬ 
rithms, we follow the usual procedures of interpolation, addi¬ 
tion of logarithms, and subsequent antilogarithm: 

log 2.09691 = 0.3216121 
log 1.13354 = 0.0544484 

log answer = 0.3760605 
Answer = antilog 0.3760605 = 2.3771327 = 2.38 

In Example 43, because the problem called for a logarithmic performance 
of arithmetic, we performed logarithmic calculations. In Example 42, we ar¬ 
rived at the same value by other methods, despite the fact that logarithms 
appeared in the problem. 

It is essential that you be aware at all times of the difference between per¬ 
forming operations by means of logarithms and performing operations which 
somehow involve the logarithms of numbers. This difference will appear in 
several of the problems of Chap. 35, and Problems 34 • 10 are included at 
this point to give you practice in recognizing the different types of problems 
which may arise. 

PROBLEMS 34 • 10 

Evaluate the following: 

1 log 37.2 + log 9.83 

3 log 3.68 — log 5.66 

5 log 265 
log 17.6 

7

9 log 2242

2 log 16.3 - log 7.03 

4 (log 87.2)(log 15.7) 

, log 20.3 o -
log 65.2 

8 (log 224)-’ 

0 log 0.987 
log 3.5 

11 to 17 Evaluate Probs. 4 to 10 by using logarithms for all calculations. 
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34.25 CHANGE OF BASE 

In Problems 34 • 1 we found logarithms of numbers to many bases besides 
10, and it is often convenient for us to be able to find the logarithms of num¬ 
bers to certain bases other than 10 without developing a set of tables for 
other bases. An interesting development shows us how this may be achieved. 

N = a’ 115] 

which we may rewrite 

X = log,, N [16] 

Taking logarithms of both sides of Eq. [15] to the base 6: 

log,, N = log,, az [17] 
= X log,, a [18] 

Substituting Eq. [16] into Eq. [18], 

log,, N = log,, N ■ log,, a [19] 

If, then, we have a table of logarithms to the base 10 and find it necessary to 
produce the logarithm of any number to any other base b, we simply multiply 
the logarithm to the base 10 of the given number by the logarithm of 10 to 
the new base. Since 

log,, a = 1 [20] 
log,, b 

we may often more easily multiply the logarithm to the base 10 by the recip¬ 
rocal of the logarithm to the base 10 of the new base number b. 

\Ne are especially concerned with the natural system of logarithms, which 
has for its base the number e = 2.71828 . . . (Sec. 34 ■ 9). Many relation¬ 
ships in electronics and other branches of science involve logarithms to this 

base. 
Although some collections of tables include logarithms to the base e, such 

a table of natural logarithms has not been included in this book because the 
relationships developed in Eqs. [19] and [20] are sufficient to enable us to 
make the conversion. 

It is left to you as an exercise to use Eq. [20] to show that log, 10 = 2.3036, 
and therefore to justify the following relationships: 

log, N = 2.3026 login N [21] 
login N = 0.4343 log, N [22] 

example 44 log, 1000 = 2.3026 login 1000 = 2.3026 x 3 = 6.9078 
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example 45 login 100 = 0.4343 log, 100 = 0.4343 x 4.6052 = 2.0000 
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34.25 

TO 
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34 • 27 

example 46 Given x = log, 48. Solve for x. 
solution log, 48 = 2.3026 log io 48 = 2.3026 x 1.6812 

x = 3.871 

34-26 GRAPH OF y = log,,, x 

The graph of y = logio x is shown in Fig. 34 • 1. A study of this graph shows 
the following: 

1 A negative number has no real logarithm. 
2 The logarithm of a positive number less than 1 (a decimal between 0 

and 1) is negative. 
3 The logarithm of 1 is zero 
4 The logarithm of a positive number greater than 1 is positive. 
5 As the number approaches zero, its logarithm decreases without limit. 
6 As the number increases indefinitely, its logarithm increases without 

limit. 
Is the method of interpolation that treats a short distance on the logarith¬ 

mic curve as a straight line sufficiently accurate for computation? 

34 • 27 LOGARITHMIC EQUATIONS 

An equation in which there appears the logarithm of some expression involv¬ 
ing the unknown quantity is called a logarithmic equation. 

Logarithmic equations have wide application in electric circuit analysis. 
In addition, the communications engineer uses them in computations in¬ 
volving decibels and transmission line characteristics. 

example 47 Solve the equation 4 log x + 3.7960 = 4.6990 + log x. 
solution Given 4 log x + 3.7960 = 4.6990 + log x 

Transposing, 4 log x — logx = 4.6990 — 3.7960 
Collecting terms, 3 log x = 0.9030 
D:3, logx = 0.3010 
From tables or slide rule, 

x = 2 

In solving logarithmic equations, the logarithm of the unknown, as logx 
in Example 43, is considered as any other literal coefficient. That is, in gen¬ 
eral, the rules for solving ordinary algebraic equations apply to logarithmic 
equations. 

A common error made by students in solving logarithmic equations is 
confusing coefficients of logarithms with coefficients of the unknown. For 
example, 

3 log x ̂ 4 log 3x 

because the left member denotes the product of 3 times the logarithm of x, 
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whereas the right member denotes the logarithm of the quantity 3 times x, 
that is, log (3x). 

example 48 Given 500 = 276 log . Solve for d. 
O.Ob 

solution 1 Given 500 _ 276 log 
o.ob 

Then 500 = 276 (log d — log 0.05) 
D: 276, 1.81 = log d- log 0.05 
Transposing, loge? = 1.81 + log 0.05 
Substituting 8.6990 — 10 for log 0.05, 

log d — 1.81 + 8.6990 - 10 
Collecting terms, log d = 0.5090 
From tables or slide rule, d = 3.23 

solution 2 
G'Ven 500 = 276 log 

0:276. >31=^^ 

Taking antilogs of both members, 

64.6 = -4-
0.05 

Solving for d, d = 3.23 

34 ■ 28 EXPONENTIAL EQUATIONS 

An equation in which the unknown appears in an exponent is called an ex¬ 
ponential equation. In the equation 

x3 = 125 

it is necessary to find some value of x that, when cubed, will equal 125. In 
this equation the exponent is a constant. 

In the exponential equation 

5* = 125 

the situation is different. The unknown appears as an exponent, and it is 
now necessary to find to what power 5 must be raised to obtain 125. 

Some exponential equations can be solved by inspection. For example, the 
value of x in the foregoing equation is 3. In general, taking the logarithms of 
both sides of an exponential equation will result in a logarithmic equation 
that can be solved by the usual methods. 

example 49 Given 4J = 256. Solve for x. 
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solution Given 4* = 256 
Taking the logarithms of both members, 

log 4^ = log 256 
or X log 4 — log 256 

D: log 4, 

From tables or slide rule, 

log 256 
log 4 

2.408 _ 
0.602 “ 

check 4‘ = 256 

example 50 Given 5X-3 = 52. Solve for x. 
solution Given 5*~3 = 52 

Taking the logarithms of both members, 
log 5^3 = log 52 

or (x - 3) log 5 = log 52 

D: log 5, 

From tables or slide rule, 

A: 3, 

x log 52

log 5 

x — 3 = 1.716 
0.699 

_ 1,716 
0.699 

SECTION 
34 27 

TO 
PROBLEMS 

34-11 

or x — 5.46 
How would you check this solution? 

PROBLEMS 34 • 11 

Solve the following equations: 

1 x — log, 226 2 x = log, 4.38 
3 log x + 3 log x = 6 
4 log x + log 6x = 8.5 (hint log 6x = log 6 + log x) 

5 log 5x + 2 log x = 6.88 6 log ^ = 0.573 

7 log A = 2.86 8 log — = 3 
Ej 

9 log x2 - log x = 6.75 
11 4- =167 
13 2m = 0.88 
15 43r = 14 

10 x3 = 462 
12 5* = 37.3 
14 3«”3 = 14 
16 IW2 3 _ 25 

x = log6 1296 18 x = log3 2187 
If 10 log ¿2 — 10 log Lj), solve for L,. 

77 — 7 
20 If 20 log ——1— = 20 log-, solve for Z\ in terms of Za

— z„ „ Zi 
— ¿ó + ~2 

and Z2. 
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E-12 V Ä= 15 Í2 

¿"0.75 H 

Fig. 34 • 2 Circuit for 
Probs. 28 to 31 

21 lf = Tiinñ log 4 ’ solve for lo-1 1, OvJU i g 

22 If i = y- tes<‘, solve for Sc. 

-t 

23 If ic = solve for (a) E, (b) C, (c) t. 

24 If /k = AT2e T , solve for (a) A, (b) B. 
_ fir 

25 If iL = -^-(1 - e L ), solve for (a) E, (6) L, (c) t. 
R __L 

26 If ç = CE(1 — e K( ), solve for (a) E, (b) R. (c) t. 

27 If Ip + Ig = K^E + —) , solve for (a) E, (6) Ep, (c) g. 

28 In an inductive circuit, the equation for the growth of current is given by 

i = -* L ) A [23] 
K 

where i = current, A 
t = any elapsed time after switch is closed, sec 
E = constant impressed voltage, V 
L — inductance of the circuit, H 
R — circuit resistance, Ü 
e — base of natural system of logarithms 

A circuit of 0.75-H inductance and 15-2 resistance is connected 
across a 12 V battery. What is the value of the current at the end of 
0.06 sec after the circuit is closed? 
Solution: The circuit is shown in Fig. 34 • 2. 

Given i — -^-(1 — f L ) 
K 

Substituting the known values, _ 15 X 0.06 

i = 0.8(1 - e-12) 
Multiplying, i = 0.8 — 0.8t 12

or i = 0.8-94 [24] e1J

Now login e1-2 =1.2 logia e = 1.2 X 0.4343 
= 0.5212 

Taking antilogs, e1-2 = 3.32 

Substituting the value of e1-2 in Eq. [24], 

536 



PROBLEMS 
34 • 11 

i = 0.8 - = 0.559 A 
3.32 

The growth of the current in the circuit of Fig. 34 • 2 is shown graph¬ 
ically in Fig. 34 ■ 3. 

29 The inductance of the circuit in Fig. 34 • 2 is halved, and the resistance 
is thus reduced to 0.71 times its original value. If other circuit values 
remain the same, what will be the value of the current 0.08 sec after 
the switch is closed? 

30 Using the circuit values for the circuit of Fig. 34 • 2, what will be the 
value of the current (a) 0.005 sec after the switch is closed and 
(h) 0.5 sec after the switch is closed? 

31 In the circuit of Fig. 34 • 2, after the switch is closed, how long will it 
take the current to reach 50% of its maximum value? 

32 If is substituted for t in the equation 
n 

' = L > 

show that the value of the current will be 63.2% of its steady-state 
value. The numerical value of L/R in seconds is known as the time con¬ 
stant of the inductive circuit. It is useful in determining the rapidity with 
which current rises or falls in one inductive circuit in comparison with 
others. 

33 A 220-V generator shunt field has an inductance of 12 H and a resist¬ 
ance of 80 H. How long after the line voltage is applied does it take for 
the current to reach 75% of its maximum value? 

34 A relay of 1.2 H inductance and 500 U resistance is to be used for key¬ 
ing a radio transmitter. The relay is to be operated from a 110-V line, 
and 0.175 A is required to close the contacts. How many words per 
minute will the relay carry if each word is considered as five letters of 
five impulses per letter? The time of opening of the contacts is the same 
as the time required to close them. 

_ soor 

hint: 0.175 = ¿42 (1 — e 12 ). t is the time required to close 
500 

the relay. 

35 How many words per minute would the relay of Prob. 34 carry if 50 
resistance were connected in series with it? The line voltage remains at 
110 V. 

36 In a capacitive circuit the equation for the current is given by 
t 

i = ^e RC A [25] R 
where i = current, A 

0.02 0.06 0.10 0.14 0.18 0.22 
Time in seconds 

Fig. 34 • 3 Graph of Current in 
RL Circuit of Prob. 28 
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Fig. 34 ■ 4 Circuit of Probs. 36 
and 37 

Fig. 34 • 5 Graph of Current in 
RC Circuit of Prob. 37 

t _ any elapsed time after switch is closed, sec 
E = impressed voltage, V 
C = capacitance of the circuit, F 
R = circuit resistance, ß 
e = base of natural system of logarithms 

A capacitance of 500 /iF in series with 1 kß is connected across a 50 V 
generator. 

(a) What is the value of the current at the instant the switch is closed? 
hint: t = 0. 

(6) What is the value of the current 0.02 sec after the switch is closed? 
The circuit is shown in Fig. 34 • 4. 

37 In the circuit of Fig. 34 • 4, how long after the switch is closed will the 
current have decayed to 30% of its initial value if E — 110 V, 
R — 500 ß, C = 20 gF, and 

• = 0.3Æ 
R ' 

Solution: i = = ÇL3 xHO = 0 066 A
rt 500 

Substituting in Eq. [25], 

Simplifying, 
or 
D: 0.22, 

0.066 = AÃ0 f 500 X 20 X IO-« 
500 t 

0.066 = 0.22 e " ÜF 
0.066 = 0.22 r 10»' 

0.3 = e-Kx» 

By the law of exponents, 

M: eiooi 
D: 0.3, 
Taking logarithms, 
That is, 
Then 
or 

0.3 = -J— 
£100f 

0.3 e100' = 1 
£>oo' = 3.33 

log lo e100' = loglo 3.33 
100?logloE = log« 3.33 
100? X 0.4343 = 0.5224 

43.43? = 0.5224 
t — 0.012 sec 

The decay of the current in the circuit of Fig. 34 • 4 is shown graphically 
in Fig. 34-5. 

38 A 20-/lF capacitor in series with a resistance of 680 ß is connected 
across a 110 V source. 

(a) What is the initial value of the current? 

(6) How long after the switch is closed will the current have decayed 
to 36.8% of its initial value? 

(c) Is the time obtained in (6) equal to CR sec? The product of CR, in 
seconds, is the time constant of a capacitive circuit. 

39 The quantity of charge on a capacitor is given by 
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t 
q = CE^-l CR)Q [26] 

where q is the quantity of electricity in coulombs. 
(a) Calculate the charge q in coulombs on a capacitor of 50 gF in series 

with a resistance of 3.3 k£2, 0.008 sec after being connected across 
a 70-V source. 

(6) What is the voltage across the capacitor at the end of 0.02 sec? 
40 A key-click filter consisting of a 2 71F capacitor in series with a resistance 

is connected across the keying contacts of a transmitter. If the average 
time of impulse is 0.004 sec, calculate the value of the series resist¬ 
ance required in order that the capacitor can discharge 90% in this 
time. 
hint Under steady-state conditions, q = CE. Then 

t 
0.9CE = CE(1 - e RC) 

41 The emission current in amperes of a heated filament is given by 
B 

I = AT2 e T A [27] 

For a tungsten filament, A = 60 and B = 52,400. Find the current of 
such a filament at a temperature T = 2500°K. 

42 An important triode formula is 

IP + k = A [28] 

where Ip = plate current, A 
/K = grid current, A 
Ek = grid voltage, V 
Ep = plate voltage, V 

/i = amplification factor 

Calculate Ip + Zg if K = 0.0005, Eg — 6 V, Ep = 270 V, and g = 15. 
43 The diameter of No. 0000 wire is 460 mils, and that of No. 36 is 5 mils. 

There are 38 wire sizes between No. 0000 and No. 36; therefore, the 
ratio between cross-sectional areas of successive sizes is the thirty¬ 
ninth root of the ratio of the area of No. 0000 wire to that of No. 36 wire, 

or /l§0; Compute the value of this ratio. Because this ratio is nearly 
V 52

equal to we can use the approximation that the cross-sectional 
area of a wire doubles for every decrease of three sizes, as explained in 
Sec. 9 • 5. 
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We have seen that logarithms can be extremely useful in the performance of 
arithmetic operations. Multiplication, division, raising to powers, and extract¬ 
ing roots are all important applications of logarithms which will be explored 
further in this chapter. 

Similarly, proficiency in the use of logarithmic equations is an essential 
part of the electronics technician’s mathematical toolbox. The broad applica¬ 
tion of these equations to computers, power measurement, amplification, 
attenuators, and transmission lines all testify to their importance. 

In this chapter, we will see how logarithmic calculations are applied to the 
fields mentioned above and we will investigate briefly two extremely impor¬ 
tant applications of logarithms to our everyday work in electronics—the slide 
rule and preferred values. 

Fig. 35 • 1(a) Ten-inch Base 
Line for Development of Slide 
Rule, (b) Iogio 1=0. Zero 
Distance along Base Line 
Represents Iogio 1. (c) 3.01 in. 
along Base Line Represents 
Iogio 2. (d) 4.771 in. along Base 
Line Represents logu> 3. (e) Entire 
Base Line Divided Logarithmically, 
(f) Home made Slide Rule 
Divided into C and D Scales. 

35 • 1 THE SLIDE RULE 

In Sec. 6 • 1 we introduced the idea of the slide rule as a mechanical analog 
computer. That is so because the distances on the slide rule are analogous 
to the numerical values which they bear. Let us examine a simple slide rule, 
Fig. 35-1. You may wish to follow the development by making a simple card¬ 
board rule in order to guarantee your understanding of the construction and 
background knowledge of the use of the slide rule. 

Figure 35 • la shows a 10-in. line on which our slide rule will be developed. 
In (b), we label the left hand end of the line 1, since Iogio 1=0. That is, zero 
distance from the left end of the line represents the numerical value 1. 

(a) 
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In (c), we have added the 2 marker 3.01 in. from the left end of the line. 
log lo 2 = 0.30103, so we make our mark at (0.301)(10 in.) = 3.01 in. In 

part (</), we have added the 3 marker 4.771 in. from the left end of the line, 
and in (e) we have shown the completed rule, with the distances from the left 
end representing the values of the numbers marked on the scale. 

In Fig. 35 • 1/, we seethe scale cut down the dividing line and the two parts 
labeled C and D, the common names given to the two simplest scales on any 
slide rule. Nearly every other scale on almost all slide rules is related to the 
D scale. 
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35-2 MULTIPLICATION AND DIVISION ON THE SLIDE RULE 

example 1 Multiply 3 x 2 on the slide rule. 

solution To multiply 3 x 2 by means of logarithms, we add the logs of 
the numbers involved and then take the antilog of the sum. To 
perform the same multiplication on the slide rule, we add loga¬ 
rithmic distances. Starting with the index 1 on the D scale, we 
proceed a distance equal to the logarithm of 2 (Fig. 35 • 2a). 
This takes us to the point we previously identified as 2. To this 
distance we want to add a distance equivalent to log 3. This is 
easily done by setting the index of the C scale opposite D2 to 
mark the place. Then, following up the C scale a distance equiv¬ 
alent to log 3 takes us to the point on the C scale previously 

Fig. 35 • 2(a) Commencing to 
Multiply 2 and 3, Set a Distance 
on the D Scale Equivalent to the 
Logarithm of 2. (b) To the 
Logarithm of 2 Add the 
Logarithm of 3. (c) log 2 + 
log 3 = log 6. 

I ' " ''""I.I 1 I i I I I I I ' I '1'1-
D * Distance 2 3 4 56789 10 

r g loglo2 * 1__ 

(a) 

^Additional distance 

1 Ct log IO3 2 3 4 56789 10 

D 1 2 3 456789 10 

(c) 
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established as 3. Accordingly, we have gone distances from the 
D index equal to log 2 + log 3. The antilog of this sum is 6, and 
on the D scale opposite C3 we find 6—the slide rule has per¬ 
formed the operations of finding logarithms, adding them, and 
taking the antilog of the sum. 

example 2 Divide 9 by 2 on the slide rule. 
solution By logarithmic computation, we subtract log 2 from log 9 and 

take the antilog of the difference. On the slide rule, our starting 
point is 9 on the D scale, that is, a distance from the D index 
equal to log 9 (Fig. 35-3a). From this starting point we will sub¬ 
tract a distance equivalent to log 2. We do this by setting C2 op¬ 
posite D9 (Fig. 35-36), and moving down the C scale to its index, 
opposite which we read 4.5, the antilog of the difference of log 9 
and log 2. Again, the slide rule automatically takes logs, sub¬ 
tracts them, and provides the antilog (Fig. 35-3c). 

Now, of course, the great significance of Chap. 6 appears: the slide rule 
handles only the mantissas of the logarithms; you must provide the charac¬ 
teristics yourself. The simplest way to approximate an answer, and to guar¬ 
antee the accuracy of the calculation, is to use the method of powers of 10. 

..I 1 I 1 I ' I 11 rl'l'l 
D 1 _2 3 4 5 6 7 8 9 10 

Distance a log 1O9 

(a) 

(6) 

F/g. 35 • 3(a) Commencing to 
Divide 9 by 2, Set a Distance on 
the D Scale Equivalent to the 
Logarithm of 9. (b) From the 
Logarithm of 9 Subtract the 
Logarithm of 2. (c) log 9 — 
log 2 = log 4.5. 

(c) 
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35-3 OTHER SLIDE RULE CALCULATIONS 

When you buy a slide rule of reasonable quality, you should receive an in¬ 
struction booklet showing in varying detail the different operations possible 
with the particular rule. You should review these operations in the light of 
the foregoing and the notes immediately following. 

squares and square Roois By making our scale on a 5-in. line instead of a 
10-in. one, we achieve a set of A and B scales for use in squaring numbers 
and extracting square roots. Every number on the A scale represents the 
square of the opposite number on the D scale. Of course, we need two 5-in. 
A scales to cover the D scale. Then, any number on the D scale represents 
the square root of the opposite number on the A scale. Some rules you may 
meet will have the A scale divided from 1 to 10 and the divisions from 1 to 10 
repeated. Others will have their A scale divided from 1 to 10 to 100, which 
helps you remember how to find the roots of large numbers. 

example 3 Find the square root of 64. 
solution To find the root of 64, which consists of two (an even number of) 

digits, we use the “upper half” of the A scale in order to read 8 
on the D scale. If we had selected 64, without reference to a 
decimal point, on the lower half, we would have read 2.53 on the 
D scale—obviously wrong. 

Rule To read square roots of numbers, use the lower half of the A scale for 
numbers with an odd number of digits (in front of the decimal point) and the 
upper half of the A scale for numbers with an even number of digits. 

If your slide rule has a K scale, note that it has three complete cycles, 
1 to 10, 10 to 100, and 100 to 1000, to give the cube of numbers on the 
D scale between 1 and 10 or to find the cube root of K numbers on the 
D scale. 

trigonometric functions An extremely useful scale is the S (sine) scale, 
especially if you have it related to the D scale. This scale is divided according 
to the logarithms of sin 6 in the left-to-right direction. You should prove from 
your knowledge of trigonometry that reading the S scale from right to left 
will give the cosines on the D scale. Some rules have cosine angles on the 
S scale marked in red. 

Many rules make use of the approximate equality of sin 0 and tan 6 in¬ 
vestigated in Sec. 25 • 4 for angles up to approximately 5.73° by providing a 
separate ST or SRT scale for computations involving these small angles. 
Remember that the D scale is multiplied by 10 2 with the ST and 10~] with 
the S scales. 

Similar to the S scale is the T scale, which gives tangents and cotangents 
of angles from 5.73° left to right and from 45° right to left. 
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logarithms Many rules include an L (logarithm) scale, which gives the 
mantissas of numbers on the D scale. Again, as with tables, you must provide 
the characteristics. Compare for accuracy the logarithms read from your 
L scale with those in the three-place table inside the front cover. 

inverted scales With some practice, you will find the Cl (C inverted) scale 
very time saving when several steps of multiplication and division are to be 
performed. Recall that multiplying by | is equivalent to dividing by 2. A multi¬ 
plication operation with the Cl is equivalent to a C division, and vice versa. 
This scale acts like the colog of D, and the CIF has the same relationship to 
the CF and DF scales. 

folded scales Many operations in electronics calculations involve multi¬ 
plication by TT. These operations may be performed automatically by moving 
from D to DF, which is simply a D scale "folded” at rr. Thus, any number on 
DF represents -n times the opposite number on D. 

paired scales For greater ease in performing operations, several of the 
slide rule scales are duplicated. We have already discovered that C is identical 
with D. Similarly, B is identical with A, and CF is identical with DF. These 
paired scales enable us to continue a series of calculations when squaring, 
extracting roots, multiple operations, or multiplication or division by w takes 
us from one pair of scales to another. 

specialty scales Several slide rules offer a family of scales identified as 
LL or Ln. These scales are related to D, and they are the so-called log-log or 
Ion scales. They enable us to find any power or root of any number within 
the limits of the rule. They can be extremely helpful in the solution of such 
problems as 1 to 18 of Problems 34 • 11. 

Also available on some rules are the hyperbolic functions, identified as Th 
and Sh scales. These are useful in the solution of transmission line problems. 

You should always carefully check an unfamiliar slide rule by confirming 
the interrelationships of the various scales. Since it is easy to memorize some 
common relationships, such as sin 30° = 0.5, tan 60° = y^, and 
log 2 = 0.301, it is relatively simple to determine whether your S scale is 
related to D or Cl, or whether LLOO is tied to D or A. 

PROBLEMS 35 ■ 1 

Rework the problems of Chaps. 6, 26, 27, and 34 by slide rule according to 
the limitations of your particular rule. 

35 - 4 PREFERRED VALUES 

In the determination of the values of resistors, capacitors, and inductors 
which may be required in a circuit, such as those calculated in Sec. 15 • 2, 
we often find that the values available off the shelf are not identical with our 
calculated values. We may desire to have a 620-2 resistor, and the lab assist-
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ant says, “Use a 560 or a 680 S2. Either will be close enough.” How can he 
say so, unhesitatingly? How does he know? In other words, how do we arrive 
at preferred values? 

Under the prompting of the industry as a whole, the Electrical Industries 
Association has established lists of suggested figures for the guidance of 
manufacturers and technicians. Several series of values are normally listed, 
depending on the quality of service required. Most commonly used are the 
Ä6 and Ä12 series, which list the 6 and 12 values that cover all the require¬ 
ments for 20% and 10% tolerances, respectively. Becoming more and more 
called upon is the Ä24 series, which gives values for 5% tolerance. Naturally, 
the price of the more exact values is considerably higher than for the others, 
and the Ä6 and Ä12 values meet the demands of ordinary service quite 
satisfactorily. 

Each of the series is developed from a logarithmic progression based on 
an appropriate root of 10. To develop the Ä6 series we take the j, j, |, f, f, 
and I roots of 10, in order. Table 35 • 1 shows the development of the Ä6 
series of preferred values. 

Table 35 ■ 1 preferred percent 
R6 Series of Preferred Values x 10' value difference difference max % error 

0 1.000 1.0 0.5 50 ±20 
1 1.468 1.5 0.7 46 18.9 
2 2.155 2.2 1.1 50 20 
3 3.162 3.3 1.4 42.5 17.5 
4 4.642 4.7 2.1 44.6 18.3 
5 6.813 6.8 3.2 47 19.1 
6 10. 10 5.0 50 20 

15 

You should confirm, by using logarithms, that 10‘ s 4.642. Now. the 
calculated values may be rounded off to easy-to-remember two-significant-
figure numbers in order to arrive at the preferred values. Naturally, all these 
values may be multiplied by any power of 10, so that memorizing six num¬ 
bers is all that is needed to cover the entire range of 20% values. The maxi¬ 
mum error of ±20% has been arrived at by choosing desired values midway 
between the two preferred values and determining the percentage error. If 
we required a 4-kil resistor, then choosing either 3.3-k2 or 4.7-kil will 
not introduce more than a 20% error. Obviously, then, any value closer to a 
preferred value than one midway between the two must be closer than 20% 
tolerance. The advantages to manufacturers, sales agencies, and techni¬ 
cians will be obvious at once. 

When greater accuracy (less tolerance) is required, we may use the Z?12 
series for ±10% or even the Ä24 series for ±5% values. Naturally, the 5% 
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shows all the values in the 10% and 20% series plus intermediate values to 
round out the series. 

PROBLEMS 35 • 2 

1 Using successive twelfth roots of 10, by logarithms, list the preferred 
values and the maximum percentage errors for the 7Î12 series of pre¬ 
ferred values. 

2 Using successive twenty-fourth roots of 10, by logarithms, list the pre¬ 
ferred values and the maximum percentage errors for the Ä24 series of 
preferred values. 

3 The standard published values of capacitors made by a prominent manu¬ 
facturer follows the Ä10 series. Using successive tenth roots of 10, 
determine the nominal value of electrolytic capacitors available from 
this manufacturer, between 100 and 1000 pF. What will be the probable 
published tolerance? 

4 The permeability ratings of a popular line of potentiometer cores follows 
the R5 series. Using successive fifth roots of 10, develop the nominal 
values between 1 and 100 mH. What will be the probable published 
tolerance? 

5 If your slide rule has a set of Ln scales, confirm your logarithmic calcula¬ 
tions in Probs. 1 to 4. 

35 • 5 POWER RATIOS—THE DECIBEL 

The Weber-Fechner law states that “the minimum change in stimulus neces¬ 
sary to produce a perceptible change in response is proportional to the 
stimulus already existing.” With respect to our sense of hearing, this means 
that the ear considers as equal changes of sound intensity those changes 
which are in the same ratio. 

The above is more easily understood from a consideration of sound in¬ 
tensities. Any volume of sound must be changed approximately 25% before 
the ear notes a change in volume. If the volume is increased by this amount, 
in order for the ear to detect another increase in volume, the new value must 
be increased by an additional 25%. For example, the output of an amplifier 
delivering 16 W would have to be increased to a new output of 20 W in order 
for the ear to discern the increase in volume. Then, in order for the ear to 
detect an additional increase in volume, the output would have to be in¬ 
creased 25% of 20 W to a new output of 25 W. 

From the foregoing it is apparent that a change of volume, for example, 
from 10 to 20mW (a 10-mW change), would seem the same as the change 
from 100 to 200 mW (a 100-mW change) because Since these 
changes in hearing response are equally spaced on a logarithmic scale, it 
follows that the ear responds logarithmically to variations in sound intensity. 
Therefore, any unit used for expressing power gains or losses in communica¬ 
tion circuits must, in order to be practical, vary logarithmically. 
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One of the earliest of such units was the international transmission unit, 
the bel (B), so called to honor the inventor of the telephone, Alexander 
Graham Bell, 1 he definition of the bel is 

. i i P-bei = log!» 

where Pi is the initial, or reference, power and P2 is the final, or referred, 
power. 

In normal practice, the number of bels is quite small, invariably a decimal 
number, and a derived unit, the decibel is used as the practical indicator of 
power ratio. The abbreviation for decibel is dB. A difference of 1 dB between 
two sound intensities is just discernible to the ear. Since deci means one-
tenth, a decibel is one-tenth the size of a bel, and 

Number of decibels = dB = 10 log [1] 
"i 

You should refer to the second paragraph of this section and prove that the 
difference between two discernible sound intensities is actually 0.969 dB. 

example 4 A power of 10 mW is required to drive an AF amplifier. The out¬ 
put of the amplifier is 120 mW. What is the gain, expressed in 
decibels? 

solution P¡ = 10 mW, and P> — 120 mW. dB = ? 
Substituting in Eq. [1], 

dB = 10 log = 10 log 12 = 10.8 dB gain 

example 5 A network has a loss of 16 dB. What power ratio corresponds to 
this loss? 

solution Given dB =10 log [1] 
P i 

Substituting 16 for dB, 16 = 10 log 
P i 

D: 10, 1.6= log 

Taking antilogs of both members, 

39.3 = A 

Thus, a loss of 16 dB corresponds to a power ratio of 39.8:1. 

Because dB is 10 times the log of the power ratio, it is evident that power 
ratios of 10 = 10 dB, 100 = 20 dB. 1000 = 30 dB, etc. Therefore, it could 
have been determined by inspection that the 16-dB loss in the preceding 
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example represented a power ratio somewhere between 10 and 100. This is 
evident by the figure 1 of 16 dB. The second digit 6 of 16 dB is ten times the 
logarithm of 3.98; hence, 16 dB represents a power ratio of 39.8. 

A loss in decibels is customarily denoted by the minus sign. Thus, a loss of 
16 dB is written - 16 dB. 

example 6 A certain radio receiver utilizes a type 6F6 vacuum tube as a 
final audio stage that delivers 4500 mW to the loudspeaker. The 
owner is considering modifying the circuit in order to substitute 
a type 6L6 tube for the 6F6. The 6L6 tube will deliver 6500 mW 
to the speaker. Is the gain in power sufficient to warrant the 
expense of making this change? 

solution By a change to the 6L6 tube the power output is increased by a 
ratio of 1.44, nearly 1.5 times. Those not familiar with the use 
of the decibel would probably think that an increase in power of 
almost 45% would justify the change. However, when the power 
ratio is expressed in terms of decibels, it is evident that, as far as 
the ear is concerned, very little is gained. Substituting in Eq. [1], 

dB = 10 log = 10 x 0.1596 = 1.6 
4500 

Such an increase in power would hardly be worth the owner’s 
effort. 

Expressing the gain or loss of various circuits or apparatus in decibels 
obviates the necessity of computing gains or losses by multiplication and 
division. Because the decibel is a logarithmic unit, the total gain of a circuit is 
found by adding the individual decibel gains and losses of the various circuit 
components. 

example 7 A dynamic microphone with an output of —85 dB is connected 
to a preamplifier with a gain of 60 dB. The output of the pream¬ 
plifier is connected through an attenuation pad with a loss of 10 
dB to a final amplifier with a gain of 90 dB. What is the total gain? 

solution in this example, all decibel values have been taken from a com¬ 
mon reference level. Because the microphone is 85 dB 
below reference level, the preamplifier brings the level up to 
— 85 + 60 = —25 dB. The attenuation pad then reduces the 
levelto—25 — 10= —35 dB. Finally, the final amplifier causes 
a net gain of — 35 + 90 = 55 dB gain. Hence, it is apparent 
that the overall gain in any system is simply the algebraic sum of 
the decibel gains or losses of the associated circuit components. 
Thus, —85 + 60 — 10 + 90 = 55 dB gain. 
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35 ■ 6 POWER REFERENCE LEVELS 

It is essential that you remember that the decibel is not an absolute quantity, 
but represents merely a change in power relative to the power at some differ¬ 
ent time or place. It is meaningless to say that a given amplifier has an out¬ 
put of so many dB unless that output is referred to a specific power level. If 
we know what the output power is, then the ratio of the output power to that 
specific input power may be expressed in dB. 

Several reference levels (“zero-reference” or “zero-dB”) have been de¬ 
veloped within the industry. Some of these have already been dropped gen¬ 
erally; some are used in isolated communities or within individual com¬ 
panies; others are in general use throughout the entire electronics industry. 
Some of the more common levels are discussed below. 

dBm The most common reference level used in the telephone industry is 
one milliwatt. And since many radio and television programs are carried be¬ 
tween studio and transmitter by telephone systems, we should be able to 
understand the telephone transmission engineer when he talks about rela¬ 
tive powers. The rather widespread use of the expression “decibels above or 
below one milliwatt” is usually abbreviated ±dBm. Signal power in com¬ 
munications systems is almost always being amplified (multiplication) or 
attenuated (division). It is far more convenient to add or subtract dB than to 
calculate the power in milliwatts or watts by long processes of multiplication 
or division. Thus, when a telephone engineer speaks of a power level of 25 
dBm, his hearers can readily understand that, if Pi = 1 mW, P2 is 25 dB 
higher. 

example 8 What is the output power represented by a level of 25 dBm? 
solution dBm means “decibels referred to a reference power level of 

1 mW”; that is, Pi = 1 mW. Then, an amplification of 25 dB 
means: 

25=10i«S”tSw 
log P2 = 2.5 
P2 = 316.23 mW 

Because circuits do not amplify or attenuate all frequencies by the same 
amount, the industry often reserves the term dBm for an input signal of a 
single-frequency (pure) sine wave (often 400 Hz or 1 kHz). However, dBm is 
often applied to more complex waveforms because of the convenience of 
calculations. 

6 mW Several radio receiver and audio amplifier manufacturers use 
0.006 W (6 mW) as their reference, or zero-dB, level. 

example 9 How much power is represented by a gain of 23 dB if zero level 
is 6 mW? 
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check 

solution 2 

example 10 

solution 1 

Substituting 23 for dB and 6 for Px in Eq. [1], 

23 = 10 log^-
b 

D: 10, 2.3 = log 
b 

Taking antilogs of both members, 

199.5 = 
b 

/. P2 = 1197 mW 

23 = 10 log-l^ 
b 

23 = 10 log 199.5 
23 = 10 X 2.3 

2.3 = log A 
b 

or 2.3 = log P2 - log 6 
Transposing, log P2 = 2.3 + log 6 
Substituting the value of log 6, 

log P2 = 2.3 + 0.778 
log P2 = 3.078 

Taking antilogs, P2 = 1197 mW 

How much power is represented by —64 dB if zero level is 
6 mW? 

Substituting —64 for dB and 6 for Pt in Eq. [1], 

-64 = 10 log A 
6 

D: 10, - 6.4 = log 
b 

The left member of the above equation is a logarithm with a 
negative mantissa because the entire number 6.4 is negative. 
Hence, to express this logarithm with a positive mantissa the 
equation is written 

3.6 - 10 = log 4= 
6 

Taking antilogs of both members, 

3.98 X 10-7 = A 
6 

P2 = 2.39 X IO"6 mW 
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2 39 y 10 6
-64 = 10 log ¿ 2 - = 10 log 3.98 X 10 7

6 

-64 = 10(3.6 - 10) 
_64 = -64 

-6.4 = log 
6 

Then —6.4 = log P2 — log 6 
Transposing, log P2 — log 6 — 6.4 
Substituting the value of log 6, 

log P2 = 0.778 - 6.4 
= (10.78 - 10) - 6.4 

. . P2 = 2.39 X 10-6 mW

If the larger power is always placed in the numerator of the power ratio, 
the quotient will always be greater than 1; therefore, the characteristic of the 
logarithm of the ratio will always be zero or a positive value. In this manner 
the use of a negative characteristic is avoided. As an illustration, from 
Example 10, 

-6.4 = log^ 
o 

which is the same as 6.4 = log 6 — log P2

Hence, 6.4 = log 
P-2 

It is always apparent whether there is a gain or a loss in decibels; there¬ 
fore, the proper sign can be affixed after working the problem. 

VU The volume unit, abbreviated VU, is used in broadcasting, and it is 
based on the amplitude of the program frequencies throughout the system. 
The standard volume indicator (VU meter) is calibrated in decibels with zero 
level corresponding to 1 mW of power in a 600T1 line under steady-state 
conditions, usually at a frequency between 35 Hz and 10 kHz. Owing to the 
ballistic characteristics of the instrument, the scale markings are referred 
to as volume units and correspond to dBm only in the case of steady-state 
sine-wave signals. 

dBRN and dBA The signal-to-noise ratio is very important in most elec¬ 
tronic amplifiers and communications circuits. When engineers establish a 
reference noise level, then the signal power may be expressed as being so 
many dB above this arbitrary reference level. The expression “decibels 
referred to an arbitrary reference noise level’’ is abbreviated dBRN. Often 
this reference noise level is set at —90 dBm. You should confirm that this 
represents 1 pW of power. 

Then, when an original established reference noise level is adjusted to 
some new level, as it sometimes is in the telephone industry, the abbreviation 
dBA indicates “decibels referred to some adjusted reference noise level.” 

check 

solution 2 
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dBRAP A sound may be heard by “the average human ear” (whatever that 
is) if it has a sound power of 10 16 W or more. This minimum power repre¬ 
sents the threshold of hearing, and it is called reference acoustical power. 
Any noise or signal of any kind must be above this power to be heard, and it 
may then be compared to this minimum power. Thus, dBRAP means a power 
ratio in dB when = 10 16 W. Sound engineers often call the number of 
dBRAP by the name phons. 

OTHER SPECIALIZED TERMS Other reference levels, used in more specialized 
fields are: 

dBW dB referred to 1 Was zero dB reference level. 
dBk dB referred to 1 kW as reference level. 
dBV dB referred to 1 V as zero reference signal level. 

These, and many other zero reference levels, need introduce no great prob¬ 
lem to you. It is only necessary to remember that dB represents a power ratio 
which must be referred to some original or arbitrary reference level. 

35 ■ 7 CURRENT AND VOLTAGE RATIOS 

Fundamentally, the decibel is a measure of the ratio of two powers. However, 
voltage ratios and current ratios can be utilized for computing the decibel 
gain or loss provided that the input and output impedances are taken into 
account. 

In the following derivations, Pi and P2 will represent the power input and 
power output, respectively, and R\ and R2 will represent the input and output 
impedances, respectively. Then 

o #1 2 a „ E¡2
P' = ~^ and 

Since dB = 10 log -~-
P] 

substituting for Pi and P2, 

EJ 

dB = lOlog-^-

= 10 log (»% 10 log > 
\ -Cq / /12 

= 20log-§- + 10 log 41 
#2 

=20l0g^ 

[2] 

[3] 
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Similarly, 

Pi = Zr’Äi and P2 = I22R2

= 20 log 

Then, since dB = 10 log — 

by substituting for P} and P2, 

dB = 10 log^ 

= 20 logA + io log 
4 1 411 

[4] 

[5] 

If, in both the above cases, the impedances R, and R2 are equal, they will 
cancel and the following formulas will result: 

Number of dB = 20 log —? 
Pi [6] 

and 

Number of dB = 20 log — [7] 

It is evident that voltage or current ratios can be translated into decibels 
only when the impedances across which the voltages exist or into which the 
currents flow are taken into account. 

example 11 An amplifier has an input resistance of 200 Í2 and an output 
resistance of 6400 Í2. When 0.5 V is applied across the input, a 
voltage of 400 V appears across the output, (a) What is the 
power output of the amplifier? (6) What is the gain in decibels? 

solution (a) Power output = P„ = = —°°2 = 25 W 
Ro 6400 

(6) Power input = P, = = 1.25 x 10"3 W 

Power gain = 10 log - 10 log-—-
Pi S 1.25 x 10-3 

= 43 dB 

Check the solution by substituting the values of the voltages 
and resistances in Eq. [3], 

dB = 20 log Æ = 20log4?0 
V Ro 6 0.5 V 6400 

= 43 



35-8 THE MERIT. OR GAIN. OF AN ANTENNA 

The merit of an antenna, especially one designed for directive transmission 
or reception, is usually expressed in terms of antenna gain. The gain is 
generally taken as the ratio of the power that must be supplied some 
standard comparison antenna to the power that must be supplied the an¬ 
tenna under test in order to produce the same field strengths in the desired 
direction at the receiving antenna. Similarly, the gain of one antenna over 
another could be taken as the ratio of their respective radiated fields. 

The “effective radiated power” of an antenna is the product of the an¬ 
tenna power and the antenna power gain. 

example 12 One kilowatt is supplied to a rhombic antenna, which results in 
a field strength of 20 gV/m at the receiving station. In order to 
produce the same field strength at the receiving station, a 
half wave antenna, properly oriented and located near the 
rhombic, must be supplied with 16.6 kW. What is the gain of 
the rhombic? 

solution Because the same antenna is used for reception, both trans¬ 
mitting antennas deliver the same power to the receiver. Hence, 

dB = 10 log -%- = 10 log 1^- = 12.2 
"i 1 

PROBLEMS 35 • 3 

1 How many decibels correspond to a power ratio of (a) 20, (6) 25, 
(c) 62.5, (d) ï^? 

2 Referred to equal impedances, how many decibels correspond to a 
voltage ratio of (o) 42, (6) 100. (c) yÿg, (d) 

3 If 0 dB is taken as 6 mW, how much voltage across a 90-12 load does 
this represent? 

4 If 0 dB is taken as 6 mW, how much voltage across a 600-12 load does 
this represent? 

5 What is the voltage across a 600-12 line at zero dBm? 
6 What is the voltage across a 600-12 line at 10 dBm? 
7 If reference level is taken as 12.5 mW, how much voltage across a 

300-12 load does this represent? 
8 If reference level is taken as 12.5 mW, how much voltage across a 

600-12 load does this represent? How much current flows through the 
load? 

9 If 0 dB is 6 mW, compute the power in milliwatts, and the voltage across 
a 600-12 load for the following output power meter readings: (a) 3 dB. 
(6) 10 dB, (c) - 10 dB, (d) -80 dB. 

10 If 0 dB is 1 mW, compute the power in milliwatts and the voltage across 
a 600-12 load for the following output meter readings: (a) 5 dB, 
(6) 10 dB, (c) 20 dB, (d) -10 dB. 
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11 An amplifier is rated as having a 90-dB gain. What power ratio does 
this represent? 

12 The amplifier of Prob. 11 has equal input and output impedances. 
What is the ratio of the output current to the input current? 

13 An amplifier has a gain of 60 dBm. If the input power is 1 mW, what is 
the output power? 

14 If a high-selectivity tuned circuit has a very high Q, spurious signals 
which are 10% lower or higher in frequency will be attenuated at least 
50 dB. What power ratio is represented by this level? 

15 The manufacturer of a high-fidelity 100-W power amplifier claims that 
hum and noise in his amplifier is 90 dB below full power output. How 
much hum and noise power does this represent? 

16 In the amplifier of Prob. 14, what will be the dB level of noise to signal 
when the amplifier is producing 3 W of output power? 

17 A network has a loss of 80 dB. What power ratio corresponds to this 
loss? 

18 If the network in Prob. 17 has equal input and output impedances, what 
is the ratio of the output voltage to the input voltage? 

19 In single-sideband operation, the signals appearing in the unwanted set 
of sidebands should be attenuated by at least 30 dB. What is the ratio 
of output powers of the desired signal to the unwanted signal? 

20 The noise level of a certain telephone line used for wired music pro¬ 
grams is 60 dB down from the program level of 12.5 mW. How much 
noise power is represented by this level? 

21 A certain crystal microphone is rated at —80 dB. There is on hand a 
final AF amplifier rated at 60 dB. How much gain must be provided by 
a preamplifier in order to drive the final amplifier to full output if an 
attenuator pad between the microphone and preamplifier has a loss of 
20 dB? (All dB ratings are taken from the same reference.) 

22 The output of a 2OO-S2 dynamic microphone is rated at —81.5 dB from 
a reference level of 6 mW. This microphone is to be used with an ampli¬ 
fier which is to have a power output of 25 W. What gain must be pro¬ 
vided between the microphone and the amplifier output? 

23 If the amplifier of Prob. 21 has an output impedance of 2.7 kS2, what is 
the overall voltage ratio from microphone output to amplifier output? 

24 What is the equivalent power amplification in the amplifier of Prob. 23? 
25 It is desired to use the amplifier of Prob. 21 with a phonograph pickup 

which is rated at —20 dBm. To keep from overloading the amplifier, 
how much loss must be introduced between pickup and input? 

26 An amplifier has a normal output of 30 W. A selector switch is arranged 
to reduce the output in 5-dB steps. What power outputs correspond to 
reduction in output of 5, 10, 15, 20. 25, and 30 dB? 

27 An amplifier is operating at 37 dBm with a gain of 50 dB. The input 
resistance of the amplifier is 22 kS2. What is the input voltage to the 
amplifier? 
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28 A type 2N45 transistor has the following ratings when used as a 
class A power amplifier: 

Collector voltage, V —20 
Emitter current, mA 5 
Input impedance, 2 10 
Source impedance, Q 50 
Load impedance, 2 4500 
Power output, mW 45 
Power gain, dB 23 

What is the power input? 
29 An amplifier has an input impedance of 600 2 and an output impedance 

of 6000 2. The power output is 30 W when 1.9 V is applied across the 
input. 
(a) What is the voltage gain of the amplifier? 
(6) What is the power gain in decibels? 
(c) What is the power input? 

30 An amplifier has an input impedance of 500 2 and an output impedance 
of 4500 2. When 0.10 V is applied across the input, a voltage of 350 V 
appears across the output. 
(a) What is the power output of the amplifier? 
(6) What is the power gain in decibels? 
(c) What is the voltage gain of the amplifier? 

31 A dynamic microphone with an output level of -72 dB is connected to 
a speech amplifier consisting of three voltage amplifier stages. The 
first voltage amplifier stage has a voltage gain of 100, and the second 
has a voltage gain of 9. The interstage transformer between the second 
and third voltage amplifier stages has a step-up ratio of 3 : 1, and the 
third stage has a voltage gain of 8. The driver stage and modulator have 
a gain of 23 dB. If zero power level is 6 mW, what is the output power of 
the modulator? 

Microphone k 
-72 dB * 

Amplifier Amplifier l Transformer u Amplifier Modulator 
100 * 9 * 3 “ 8 * 23 dB 

32 How many decibels gain is necessary to produce a 60-gW signal in 
600-2 telephones if the received signal supplies 9 /W to the 8O-S2 line 
that feeds the receiver? 

33 In the receiver of Prob. 32, if the overall gain is increased to 96 dB, what 
received signal will produce the 60 jtW signal in the telephones? 

34 The voltage across the 600-2 telephones is adjusted to 1.73 V. When 
the AF filter is cut in, the voltage is reduced to 1.44 V. What is the “in¬ 
sertion loss" of the filter? 
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35 The input power to a 50-mi line is 10 mW, and 40 mW is delivered at 
the end of the line. What is the attenuation in decibels per mile? 

36 It is desired to raise the power level at the end of the line of Prob. 35 to 
that of the original input. What is the voltage gain of the required 
amplifier? 

37 In Prob. 35, what is the ratio of input power to output power? 
38 One of the original attenuation units was the neper, which is given by 

Number of nepers = log,-p-

Since 

Number of dB = 20 logic-p-

what is the relation between nepers and decibels for equal impedances? 

hint log, i = 2.30 log lo
h I2 

39 A television transmitting antenna has a power gain of 8.6 dB. If the 
power input to the antenna is 15 kW, what is the effective radiated 
power? 

40 Five hundred watts is supplied to a directive antenna, which results in 
a field strength of 5 gV/m at a receiving station. In order to produce the 
same field strength at the same receiving station, the standard com¬ 
parison antenna must be supplied with 8 kW. What is the decibel gain 
of the directive antenna? 

41 A rhombic transmitting antenna produces a field strength of 98 gV/m 
at a receiving test station. The standard comparison antenna delivers 
a field strength of 5 gV/m. What is the decibel gain of the rhombic 
antenna? 

42 A broadcasting station is rated at 1 kW. If the received signals vary as 
the square root of the radiated power, how much gain in decibels would 
be apparent to a nearby listener if the broadcasting station doubled its 

power? 

35 • 9 TRANSMISSION LINES 

A transmission line is a device consisting of one or more electric conductors 
and designed for the purpose of transferring electric energy from one point 
to another. The transmission line has a wide variety of uses: in one form it 
can carry electric power to a city several miles distant from the power plant; 
in another form it can be used for carrying chain broadcast programs from 
one studio to several broadcast stations; and in still another form it can carry 
RF energy from a radio transmits to an antenna or from an antenna to a 
radio receiver. 
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The most common types of transmission lines are: 
1 The two-wire open-air line as shown in Fig. 35 • 4a. This line consists 

of two parallel conductors whose spacing is carefully held constant. 
2 The concentric-conductor line, as illustrated in Fig. 35 • 46, which 

consists of tubular conductors one inside the other 
3 The four-wire open-air line as shown in Fig. 35 • 4c. In this type of line 

the diagonally opposite wires are connected to each other for effecting an 
electrical balance. 

4 The twisted-pair line, as shown in Fig. 35 • 4</, which may consist of 
lamp cord, a telephone line, or other insulated conductors. 

(<•) 

Fig. 35 • 4 Types of 
Fransmission Lines 

Any conductor has a definite amount of self-inductance, capacitance, and 
resistance per unit length. These properties account for the behavior of 
transmission lines in their various forms and uses. 

The derivations of the transmission line equations that follow can be found 
in advanced engineering texts. 

35 • 10 THE INDUCTANCE OF A LINE 

The inductance of a two-wire open-air line is given by the equation 

L = /(0.I6I + 1.48 login “ X IO“3 H [8] 

where L = inductance of line and return, H 
I = length of line, mi 
d = distance between conductor centers 
r = radius of each wire (in same units as d) 

example 13 What is the inductance of a line 90 mi long consisting of 
No. 0000 copper wires spaced 5 ft apart? 

solution Diameter of No. 0000 = 460 mils; therefore, radius = 0.230 in. 

60 = 261 
r 0.23 

log lo 261 = 2.42 

Then L = 90(0.161 + 1.48 x 2.42) x 10 3 = 0.337 H 

SECTION 
35 • 8 

TO 
SECTION 

35 • 10 
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For radio frequencies, more accurate results are obtained by the approxi¬ 
mate relation 

£ s 9.21 x IO-9 logic — H/cm 
r [9] 

where L is the inductance in henrys per centimeter and d and r have the 
same values as in Eq. [8], 

35 -11 THE CAPACITANCE OF A LINE 

The capacitance of a two-wire open-air line is 

c _ 0.0194Z 

logio — 
r 

mF [10] 

where C = capacitance of line, /zF 
I = length of line, mi 
d = distance between wire centers 
r = radius of each wire (in same units as d) 

example 14 what is the capacitance per mile of a line consisting of No. 00 
copper wires spaced 4 ft apart? 

solution Diameter of No. 00 = 365 mils; thus radius = 0.1825 in. 

¿ - 48 -
r 0.182 ~ 263

log™ 263 = 2.42 

Then C = ° 0194 = I9 4 X IO"3
2.42 2.42 

= 8.02 X 10-3 gF/mi 

For radio frequencies, more accurate results are obtained by the equation 

C ~ 1 c / 
G =-77 F/cm [111 

9.21 X IO-9 c2 log10 — J
r 

where C is the capacitance in farads per centimeter, c is the velocity of light 
(3 X 10 10 cm/sec), and d and r have the same values as in Eq. [10], 

The capacitance of submarine cables and of cables laid in metal sheaths 
is given by 

r _ 0.0388Ä7 c

C ~-d~ mF
logic 51-

d2

[12] 

where C = capacitance of line, /iF 

K = relative dielectric constant of insulation 
I = length of line, mi 
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di = inside diameter of outer conductor 
d¿ = outside diameter of inner conductor 

example 15 A No. 14 copper wire is lead-sheathed. The wire is insulated 
with I in. gutta percha (K - 4.1). What is the capacitance of 
1000 ft of this cable? 

solution ^2 — diameter of No. 14 = 0.0640 in. 
dx = 0.0640 + (2)(|) = 0.314 in. 

l08£= 108 108491 =°- 691

, 1000 
5280 

Thpn r - 0.0388Æ/ _ 0.0388 x 4.1 x 1000 
( “ 0.691 x 5280 

C?2 

= 0.0436 MF 

PROBLEMS 35 • 4 

1 What is the inductance of a 75-mi line consisting of two No. 00 wires 
spaced 39 in. between centers? 

2 What is the inductance of a 20-mi line consisting of two No. 6 copper 
wires spaced 2 ft between centers? 

3 A transmission line is 12,500 ft long and consists of two No. 0 solid 
copper wires spaced 16 in. between centers. Determine (a) the induct¬ 
ance of the line and (6) the capacitance of the line. 

4 If the spacing of the line of Prob. 3 were 3 ft between centers, what 
would be the (a) inductance and (6) capacitance? 

5 A 25-mi-long two-wire line is to be constructed of No. 0 solid copper 
wire. What must be the minimum spacing between centers to keep the 
capacitance below 0.250 mF? 

6 A 13.5-mi two-wire line consisting of No. 00 solid copper wire is spaced 
70.4 in. between wire centers. What is the capacitance of the line in 
microfarads per mile? 

7 A lead-sheathed underground cable is to be constructed with solid 
copper wire covered with 0.5 in. of rubber insulation (K = 4.3). If the 
maximum capacitance per mile must be limited to 0.31 mF. what size 
conductor should be used? 

8 A lead-sheathed cable consisting of No. 0 copper wire with 0.5 in. of 
rubber insulation (K = 4.3) is broken. A capacitance bridge measures 
0.26 mF between the conductor and the sheath. How far out is the open 
circuit? 

9 What is the capacitance per mile of the cable of Prob. 8? 
10 The cable of Prob. 7 becomes open-circuited 3 mi out. What reading 

will be given on a capacitance bridge? 
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11 The value of the current in a line at a point I mi from the source of power 
is given by 

i = Zoe-«' 

where Io is the current at the source and k is the attenuation constant. 
In a certain line, with k = 0.02 dB/mi, find the length of line where / is 
10% of the original current Io. 

12 If the attenuation of a line is 0.012 dB/mi, how far out from the power 
source will the current have decreased to 70.7% of its original value? 

13 A two-wire open-air transmission line is used to couple a receiving 
antenna to the receiver. The line is 500 ft long and consists of No. 10 
wire spaced 5| in. between centers. Using Eqs. [9] and [11], find: 
(a) Inductance per centimeter of line 
(6) Capacitance per centimeter of line 
(c) Inductance of the entire line 
(d) Capacitance of the entire line 

14 A two-wire open-air transmission line is used to couple a radio trans¬ 
mitter to an antenna. The line is 800 ft long, and it consists of No. 14 
wire spaced 5.5 in. between centers. Using Eqs. [9] and [11], find the 
(a) inductance of the line and (6) capacitance of the line. 

35- 12 CHARACTERISTIC IMPEDANCES OF RF TRANSMISSION LINES 

The most important characteristic of a transmission line is the characteristic 
impedance, denoted by Zo and expressed in ohms. This impedance is often 
called surge impedance, surge resistance, or iterative impedance. 

The value of the characteristic impedance is determined by the construc¬ 
tion of the line, that is, by the size of the conductors and their spacing. At 
radio frequencies, the characteristic impedance can be considered to be a 
resistance the value of which is given by 

^0= 0 [13] 

where L and C are the inductance and capacitance, respectively, per unit 
length of line as given in Eqs. [9] and [11]. The unit of length selected for 
L and C is immaterial as long as the same unit is used for both. 

Substituting the values of L and C for a two-wire open-air transmission 
line in Eq. [13] results in 

Z„ = 276 login il [14] 

where d is the spacing between wire centers and r is the radius of the con¬ 
ductors in the same units as d. Note that the characteristic impedance is not 
a function of the length of the line. 



example 16 A transmission line is made of No. 10 wire spaced 12 in. be¬ 
tween centers. What is the characteristic impedance of the line? 

PROBLEMS 
35 • 4 

TO 
PROBLEMS 

35 • 5 

solution cl = 12 in. Diameter of No. 10 wire = 0.102 in.; therefore, 
r — 0.051 in. 

Z„ = 276 ,08^ = 276,08^ 

= 276 log 235 = 276 x 2.37 
Z() = 654 « 

The characteristic impedance of a concentric line is given by 

Z„ = 138 log 10 -^ Í? [15] 

where ch is the inside diameter of the outer conductor and d> is the outside 
diameter of the inner conductor. 

example 17 The outer conductor of a concentric transmission line consists 
of copper tubing ¡n thick with an outside diameter of 1 in. 
The copper tubing comprising the inner conductor is in. thick 
with an outside diameter of | in. What is the characteristic im¬ 
pedance of the line? 

solution di = 1 — (2 • | in. d2 — in. 

Zo= 138log^-= 138logi =138 log 3.5 
«2 4 

= 138 x 0.544 = 75.1 V 

PROBLEMS 35 ■ 5 

1 What is the characteristic impedance of a two-line open-air transmis¬ 
sion line consisting of No. 10 wire spaced 6 in. between centers? 

2 It is desired to use No. 14 wire to provide a transmission line with a 
characteristic impedance of approximately 500 2. What logical spacing 
between centers should be used? 

3 If a 2-in. spacing is used for the line of Prob. 2, what percentage of 
error is introduced by assuming that the line does have a characteristic 
impedance of 500 Í2? 

4 It is necessary to construct a 600-Í? transmission line to couple a radio 
transmitter to its antenna, and No. 10 wire is readily available. What 
should be the spacing between wire centers? 

5 The impedance at the center of a half-wave antenna is approximately 
74 2. For maximum power transfer between transmission line and 
antenna, the impedance of the line must match that of the antenna. Is 
it physically possible to construct an open-wire line with a characteristic 
impedance as low as 74 S2? 
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6 Plot a graph of the characteristic impedance in ohms against the 

ratio for two-wire open-air transmission lines. Use values of y be¬ 

tween 1 and 150. 
7 It is desired to construct a 600-2 two-wire line at a certain radio station. 

In the stock room there are on hand a large number of 12-in. spreader 
insulators. That is, these spreaders will space the wires 12 in. What 
size wire should be ordered to obtain as nearly as possible the desired 
impedance if the 12-in. spreaders are used? 

hint d = 12 + 2r. 

8 What outside-diameter tubing should be used to construct a quarter¬ 
wave matching stub having an impedance of approximately 300 2 if 
spreaders 1.5 in. long are used? 

9 The outer conductor of a concentric transmission line is a copper pipe 
i in. thick with an outside diameter of 2| in. The inner conductor is a 
copper rod | in. in diameter. What is the characteristic impedance of 
the line? 

10 The inside diameter of the outer conductor of a coaxial line is | in. The 
surge impedance is 90 2. What is the diameter of the inner conductor? 

11 Plot a graph of the characteristic impedance in ohms against the 

ratio for concentric transmission lines. Use values of 4' between 
d2 d2

2 and 10. 
12 A particular grade of twisted-pair transmission line, which has a surge 

impedance of 72 2, has a loss of 0.064 dB/ft. For a 100-ft length ot 
line, determine (a) the total loss in decibels and (6) the efficiency ot 
transmission. 

hint % efficiency = power output x 100 
power input 

13 The twisted pair line of Prob. 12 is replaced by a coaxial cable that has 
a loss of 0.002 dB/ft. What is the new efficiency of transmission? 

14 For a two-wire transmission line, the attenuation in decibels per foot of 
wire is given by the equation 

« = 0 0157 dB/ft [16] 
logic y 

where Äf is the resistance for one foot of wire. One kilowatt of power, at 
a frequency of 16 MHz, is delivered to a 1500-ft two-wire line consisting 
of No. 8 wire spaced 12 in. between centers. If the RF resistance of 
No. 8 wire is 49 times the de resistance, (a) what is the line loss in deci¬ 
bels and (6) what is the efficiency of transmission? 

15 If the spacing of the line in Prob. 14 should be changed to 8 in. between 
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centers, (a) what will be the line loss in decibels and (6) what is the 
efficiency of transmission? 

16 For a concentric transmission line, the attenuation in decibels per foot 
of line is expressed by the relation 

a = 46^ + qO-6 dB/ft [17] 
did2 login 

wherec^ and d2 are in inches and have the same meaning as in Eq. [15] 
and /is the frequency in megahertz. A concentric line 1200 ft long con¬ 
sists of an outer conductor with an inside diameter of 1| in. and an 
inner conductor that is in. in diameter. At a frequency of 27.8 MHz, 
(a) what is the line loss in dB and (6) what is the efficiency of 
transmission? 

17 The capacitance of a vertical antenna which is shorter than one-quarter 
wavelength at its operating frequency can be computed by the equation 

pF [18] 

where Ca = capacitance of antenna, pF 
I = height of antenna, ft 
d = diameter of antenna conductor, in. 
f = operating frequency. MHz 

Determine the capacitance of a vertical antenna that is 280 ft high and 
consists of |-in. wire. The antenna is being operated on 214 kHz. 

18 The RF resistance of a copper concentric transmission line can be 
computed by 

r = f(±- + -U X 10 3 Q/ft [19] 
\«i d2/ 

where f = frequency, MHz 
<7i = inside diameter of outer conductor, in. 
d2 = outside diameter of inner conductor, in. 

What is the resistance of a concentric line 250 ft long operating at 
132 MHz if <7i = 1| in. and d2 = in.? 

19 If an antenna is matched to a coaxial transmission line, the percent 
efficiency is given by 

100/?T 
Z„ + R 

[20] 

where Zo — characteristic impedance of the concentric line 
Ri = effective resistance of the line due to attenuation, obtain¬ 

able from the line constants 

rl 
Zo

Ri = Zo{e - 1) <2 [21] 
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where r = RF resistance per foot of line as found in Eq. [19] 
I = length of line, ft 

Find the efficiency of transmission of a matched concentric trans¬ 
mission line with a characteristic impedance of 300 2. The line is 80 ft 
long, and it has an RF resistance of 0.22 fi/ft. 

20 What is the efficiency of transmission of a matched concentric trans¬ 
mission line with a characteristic impedance of 90 2 if the line is 1100 ft 
long and has an RF resistance of 0.1 Sl/ft? 
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Have you ever wondered about our numbering systems—the seldom-
discussed “philosophy" of how we count? In this chapter, we shall explore 
the background of counting systems and apply the knowledge gained to the 
electronic computing field. 

36 • 1 NUMBERS IN GENERAL 

Recall from Sec. 6 • 16 how we referred to the problem of adding 5 x 10 s to 
3 X 102: 

5 X 103 = 5000 
3 X 10-’ = 300 

5 X 103 + 3 X 10- = 5300 = 5.3 x 103

In other words, a number like 5300 may be thought of as being made up of 
two separate parts, 5 x 103 and 3 x 102. Similarly, all the numbers in our 
decimal system may be broken down into different factors multiplied by 
suitable powers of 10. For example, 5328 may be thought of as—indeed, it 
really is 

5000 or 5 x 103
300 3 X IO2

20 2 x 10' 
8 8 x 10° 

and we could write 5328 in the form 

5 x 103 + 3 x IO3 + 2 x 10' + 8 x 10" 

In fact, the very way we place the digits in their appropriate places carries 
out the sense of powers of 10. In many elementary schools, students learn 
the “place names” of the digits in a long number like this: 
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7,654, 321 
units 
tens 
hundreds 
thousands 
ten thousands 
hundred thousands 
millions 

and so on, and we would pronounce the whole number by using most of 
those place names: “seven million, six hundred fifty-four thousand, three 
hundred twenty-one.’’ 

36 ■ 2 BINARY NUMBERS 

When we talk about decimal numbers, or the decimal number system, we 
mean we are counting in units of 10. That is, our numbering system has a 
radix of 10. 

In the binary system, which is used extensively in digital computers, the 
radix is 2 and every number in the system represents an appropriate factor 
times the suitable power of 2: 

OR, IN BINARY 

0 = 0x2° = 02

1 = 1x2° =12

2 = 1 X 21 + 0 X 2« = 102
3 = 1 X 2i + 1 X 2» = 112
4 = 1 X 22 + 0 X 21 + 0 X 2" = 1002

Stop and be sure. 1002, that is, one hundred in the binary numbering system, 
means: from the position of the digits, 

1 X 2: +0 X 21 + 0 X 2° or 4 + 04-0 = 4 

If you are sure, go on. If you are not sure, go back to the introduction and 
start the chapter again. When you are sure of the notion that a power of 2 
must be connected with each digit in the binary number and the particular 
power depends upon the location of the digit in the number, go on and prove 
the following extension of the binary table: 

5= 1012 11= 10U2

6 = 1102 12 = 11002
7= Ul2 13= U012

8 = 10002 14= 11102
9 = 10012 15 = UU2

10 = 10102 16 = 100002
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example 1 Write the decimal equivalent of the number 10011001-,. 
solution Taking our cue from the position of the digits in the number and 

keeping track of the appropriate powers of 2, we convert each 
digit to its decimal equivalent, evaluating from the right: 

1X2"= l,o 
0x2'= 0 10 

0 X 2“ = O,o 
1 X 23 = 8,0 
1 X 2' = 16,o 
0 X 25 = O,o 
0x2«= O,o 
1 X 2- = 128,o 

10011001., = 153,0 

You should use the subscripts to designate the system in which you are count¬ 
ing until you are satisfied with your confidence in intersystem conversions. 

PROBLEMS 36 • 1 

Write the following binary numbers in decimal form: 

1 000101 2 001010 
3 000001 4 001011 
5 000111 6 100111 
7 101010 8 110001 
9 100011 10 111101 

Now let us consider the reverse operation: converting a decimal number into 
its binary equivalent. Again we are looking for factors (either 1 or 0) times 
suitable powers of 2. The number 153, for instance, contains 128, which is 
27. The remainder, 153 — 128 = 25, contains 16, which is 24. The next re¬ 
mainder, 25 — 16 = 9. contains 8. which is 23, and the last remainder, 
9 — 8 = 1, is 2°. However, to write the complete binary equivalent, we must 
show the factors (zero) of 26, 25, 22, and 21. 

153„, = 100110012 

Obviously, it would be a tremendous help to know the whole 2æ table, and 
students anticipating advanced studies in computer designing, program¬ 
ming. or servicing will make these conversions by memorizing the 2-r table, 
say, to 2 10 = 1024. However, a ready mechanical method of arriving at the 
same binary number, without forgetting the missing powers of 2, is to con¬ 
vert the multiplication process into one of repeated division: 
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RADIX DECIMAL NUMBER 

DIVISOR TO BE CONVERTED REMAINDER 

2 )153 1 
2 )76 0 
2 )38 0 
2 )19 1 
2 )9 1 
2 )4 0 

2 )2 >.0 
1--

Read Up 

Writing the quotient and the remainders in order “backwards,” we arrive at 
153 10 = 10011001o. 

PROBLEMS 36 ■ 2 

Convert the following decimal numbers into binary form: 

1 6 2 12 3 18 4 23 5 31 
6 88 7 97 8 126 9 177 10 361 

36 • 3 OCTAL NUMBERS 

Modern computers speak to us in binary numbers, but their internal work¬ 
ings are often in octal numbers, the computers translating their octal results 
into binary readouts. Octal numbers are based on a counting system whose 
radix is 8: 

OR 

Om = 0 X 8" = Os 
1=1X8" = Is 
2=2x8" = 2S

3=3x8" = 38

4=4x8" = 48

5=5x8" = 58

6=6x8" = 6g

7=7x8" = 7g 
8 = 1 X 81 + 0 X 8" = 108
9 = 1 X 81 + 1 X 8" = 118

10 = 1 X 8> + 2 X 8" = 12s 
11 = 1 X 8' + 3 X 8" = 13s 
12 = 1 X 8' + 4 X 8" = 14s 
13 = 1 X 8i + 5 X 8" = 15s 
14 = 1 X S’ + 6 X 8" = 16s 
15 = 1 X 8> + 7 X 8" = 17s 
64 = 1 X 82 + 0 X 81 + 0 X 8° = 100s
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Just as the binary system uses digits up to, but not including, 2, so the octal 
system uses only digits below its radix, 8. 

Write the following number in decimal form: 

2731s

As in the binary, we take our cue from the position of the digits 
in the number and introduce the appropriate powers of 8, read¬ 
ing from the right: 

1 X 8« = 1 
3x8'= 24 
7 X 82 = 448 
2 X 83 = 1024 

2731s = 1497 I()

PROBLEMS 36 ■ 3 

Convert the following octal numbers into their decimal equivalents: 

1 00002 2 00017 3 00063 4 00102 5 00077 
6 00100 7 01124 8 01035 9 06270 10 22453 

The conversion of decimal numbers to octal equivalents is achieved in the 
same fashion as in the binary, except that the divisor is the radix 8 instead 
of 2: 

example RADIX DECIMAL NUMBER 

DIVISOR TO BE CONVERTED REMAINDER 

8 )1497 1 
8 )187 3 

8 )23 7 

Read up 
1497,0 = 2731g 

PROBLEMS 36 • 4 

Convert the following decimal numbers to their octal equivalents: 

1 25 2 37 3 84 
6 477 7 823 8 1062 

4 127 5 165 
9 3928 10 5000 

36 • 4 SYSTEMS WITH ANY RADIX 

Just as we have developed binary numbers with radix 2 or octal numbers 
with radix 8, so we may develop any number system. Consider, for example, 
quinary numbers: the digits in a quinary number will consist of appropriate 
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factors times suitable powers of 5. The factors may be 0, 1, 2, 3, and 4, but 
not 5 or higher. 

225 = 2 X 5* + 2 X 5° = 12 10

PROBLEMS 36 • 5 

Write the following decimal numbers in the systems of the indicated radices: 

Number: Radix: Number: Radix: 

1 9 3 2 12 4 
3 27 5 4 256 16 
5 256 4 6 565 3 
7 1728 12 8 1728 7 
9 5280 6 10 672 5 

Write the decimal equivalents of the numbers given: 

11 2245 12 1637 13 3234 14 2013 15 003i2

16 0725« 17 0106s 18 2388., 19 51402« 20 73006« 

36 • 5 CONVERSION BETWEEN SYSTEMS 

We have already seen how to convert from any numbering system to decimal 
and from decimal to any other. Thus, if we should be required to convert a 
number with any given radix a into a system with some other radix b, we 
could do so in two steps: (1) convert the given number into its decimal equiv¬ 
alent. (2) convert the decimal equivalent into the new system. 

example 3 Convert 5134« into its binary equivalent. 
solution |n the first step convert 5134(. to 1138]0 |n the second step, 

convert 11381« to 100011100102. 

Actually, most of the conversions which concern us are between the 
binary and the octal systems. 

example 4 Convert 1772« into its binary equivalent. 
solution 1772g = lol8io = immoioj = 1,111,111,0102 

In the various numbering systems, no change of value is introduced if we 
add zeros to the left of a number, so that we may change the appearance of 
1,111,111,010-2 to 001,111,111 ,010o without introducing any value change 
but yielding a number which consists of a quantity of groups of three binary 
digits. (Binary digiTS are often referred to as bits.) By good advance planning, 
(1) the octal numbering system uses ordinary arabic numerals up to 7, and 
(2) the largest binary number consisting of three digits is 7 (= 111 2). If we 
evaluate each digit in the octal number into its three-bit binary equivalent, 
we arrive at 
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1 7 7 28

001 111 111 010-2 

Thus, 17728 = 001,lll,lll,0102. 

example 5 Convert 53178 into its binary equivalent. 
solution Replace each octal digit in turn with its binary three-bit 

equivalent: 

5317s = 101,011,001.111 2

example 6 Convert 10110011001-2 to its octal equivalent. 
solution From the right, mark off the given binary number into groups of 

three bits: 

010,110,011,001 

Replace each three-bit group with its regular decimal equivalent 
to arrive at the octal equivalent of the number: 

010,110,011,0012 = 2631s 

PROBLEMS 36 - 6 

Convert the following octal numbers to their binary equivalents: 

1 361s 2 277s 3 5328 4 465s 5 1068

6 737s 7 5266s 8 41378 9 77778 10 1000s

Convert the following binary numbers to their octal equivalent: 

11 OOOIOI2 
13 111012
15 110,111,1012 
17 IIOOIIOIO2 
19 10101010-2 

12 OIIOOI2 
14 00112
16 1001001002
18 001,001,1112 
20 IOIIIOIO2 

36 -6 BINARY ADDITION 

The addition of two quantities a 4- b, may, in binary devices, have only four 
possible values: 

0 + 0 = 0 0+1=1 1+0=1 1 + 1 = 10. 

because of the dichotomous (two-state, on-off, open-closed, flipped-flopped, 
1-0) nature of switching devices, and therefore the sum S of the addition 
a + b will be limited to the four possible answers shown above. The first 
three forms present no difficulty, and we can add binary numbers which in¬ 
volve them very easily: 
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11001 or 25 
00100 4 

11101 29 

But the addition of 1 + 1 involves us in a two-part answer: 10. The 0 part of 
this answer is the sum, and the 1 part is the carry. This is similar to ordinary 
arithmetic. When the addition of two numbers requires it, say, 9 + 5, we 
“put down 4 and carry 1.” 

example 7 Add 100110 and 110101. 
solution Set the two numbers down in traditional addition form, one above 

the other. Addition of 0 + 0, 0 + 1, and 1+0 involves nothing 
new. When adding 1 + 1, put down 0 and carry 1 over to the 
next stage of addition: 

1 
100110 38 
110101 or 53 

1011011 91 

PROBLEMS 36 • 7 

Add the following binary numbers: 

1 010001 2 100101 
101000 010101 

3 1001101 4 0110110 
0100011 0100111 

5 100111 6 101111 
010101 010111 

7 100011 8 110010 
011110 011010 

9 011010 10 100101 
011010 111011 

11 to 20 Prove each of your answers by converting the individual parts 
into their decimal equivalents. 

36 -7 SUBTRACTION OF BINARY NUMBERS 

Similarly to binary addition, binary subtraction is limited to four possibilities: 

0-0=0, 1-0=1, 1-1=0, 0-1 = 1 and carry 1 (or “borrow” 1). 
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When we are subtracting one ordinary number from another and come 
upon a step involving 5 — 8, we borrow 1 from the digit to the left of the 5, 
subtract 8 from 15, and obtain 7. Binary subtraction is no different. 

example 8 Subtract 0110 from 1011. 
solution Set the numbers in column form, the subtrahend below the 

minuend. When we must subtract 1 from 0, we borrow 1 from 
the number to the left of the 0 to make it 10. Then, 10 — 1 = 1: 

1011 11 
-0110 - 6 

0101 5 

example 9 Í000101 
-0110011 

0010010 

You should convert these two binary numbers into their equiv¬ 
alent decimal numbers and test the solution. 

PROBLEMS 36 • 8 

Perform the following binary subtractions: 

1 010011 2 011011 
-001010 -010111 

3 001101 4 110111 
-000100 -011101 

5 111000 6 110100 
-010001 -101111 

7 110110 8 100111 
-011111 -100011 

9 mm io icono 
-111010 -100101 

11 to 20 Prove each answer by converting all parts of each problem into 
their equivalent decimal forms. 

36 ■ 8 SUBTRACTION BY ADDING COMPLEMENTS 

One of the oldest rules in subtraction is "change the sign and add.” This 
policy makes binary subtraction extremely simple. Changing the sign of a 
binary number is like changing the condition of a switch. On becomes off, 
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and open becomes closed. Flipped becomes flopped, 1 becomes 0, and 0 
becomes 1. 

example 10 Subtract 01101 from 11001 by means of complementation, 
solution Rewrite the problem, changing the subtrahend to its l’s com¬ 

plement; then add: 

11001 11001 25 
— 01101 becomes +10010 that is, —13 

101011 43 

43?! Well, when the answer to such a process comes out with 
one more digit than the number of digits we had to start with, 
we transfer this extra digit as an “end-carry” and add it back in: 

11001 
10010 

101011 

01100 which is 1210 

example 11 Perform the subtraction 11101101 — 01001011 by means of 
l’s complement. 

solution Rewrite the subtrahend into its l’s complement and add. Bring 
down the extra 1, if any, and add it as an end-carry: 

11111 
11101101 

+ 10110100 

110100001 
.1 

10100010 

237 
-75 

162 

PROBLEMS 36 • 9 

Perform the following subtractions by means of complementation: 

1 110010 - 100111 2 101101 - 010010 
3 011001 - 001101 4 001101 - 000110 
5 010101 - 001001 6 101011 - 001010 
7 111101 - 110010 8 101111 - 001100 
9 110010 - 001101 10 001110 - 001001 

11 to 20 Prove each answer by converting all the parts into their decimal 
equivalents. 
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Since 1 times anything is the thing itself and 0 times anything is 0, binary 
multiplication is very easy. 

example 12 Multiply 1101 by 100. 
solution Set down the numbers as for ordinary multiplication and multi¬ 

ply in the usual way. Add the partial answer rows in binary 
form: 

1101 13 
X 100 X 4 

0000 
0000 
1101 

110100 52 

example 13 Multiply 10011 by 101. 
solution As before, multiply by long multiplication methods. There is no 

need to write a complete line of O's—just set down the right¬ 
hand 0 and shift the line for the following multiplier one step 
to the left: 

10011 
X_ 101 

10011 
100110 

1011111 

19 
X 5 

95 

PROBLEMS 36 ■ 10 

Multiply: 

1 101111 by 10 
3 100101 by 101 
5 101001 by 111 
7 100111001 by 1001 
9 101001101 by 1001 

2 110011 by 11 
4 010111 by 100 
6 110011 by 110 
8 11001110 by 1101 
10 111001111 by 1011 

11 to 20 Prove each solution to Probs. 1 to 10 by converting all parts into 
their equivalent decimal forms. 

36-10 BINARY DIVISION 

Dividing by binary numbers is as easy as multiplying. Either the divisor is 
smaller than the dividend and the quotient is 1 or the divisor is larger than 
the dividend and the quotient is 0. 
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example 14 Divide 1000001 by 101. 
solution Write the numbers as for ordinary long division. Will the three-

bit divisor go into the first three bits of the dividend or not? If it 
will, put down a 1 as the first item in the quotient, and carry on. 
If it will not, bring down the next digit in the dividend, and put 
down a 0 as the first item of the quotient: 

01101 
101)1000001 

13 
5165 

000 

1000 
101 

0110 
101 

0010 
0000 

0101 
101 

XX 

PROBLEMS 36-11 

Perform the following divisions: 

011110 by 101 
010100 by 100 
001001011 by 1111 
101000100 by 10010 
1101010011 by 10111 

2 
4 
6 
8 
10 

010101 by 111 
011011 by Oil 
110000 by 1000 
001101100 by 1001 
101111100 by 10011 

1 
3 
5 
7 
9 

11 to 20 Prove each answer by converting all parts into their decimal 
equivalents. 

In this book of basic mathematics for electronics, we will not attempt to go 
deeper into this fascinating subject of binary operations. If you become in¬ 
volved with digital devices, you will find other useful relationships in books 
which specialize in computer arithmetic. We trust that, at that time, this 
chapter will help you to relearn the subject. 
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chapter 

More and more, electronic devices are being put to work in computing ma¬ 
chines and controlling machines. First, electronic tubes superseded relays, 
and then transistors took the place of tubes. Now, newer and more exotic de¬ 
vices are being added to the list of computer and control components. 

And with these applications of electronic devices, there is a growing need 
for technologists to know at least something about the logic operations of 
computers. The subject, generally, is known as Boolean algebra in honor of 
George Boole (1815-1864), who developed the work upon which the sub¬ 
ject is now based. It is also often referred to as propositional calculus, mathe¬ 
matical logic, and truth-functional logic. 

Here we are going to explore the basic ideas of Boolean algebra to see 
how we can put logic to work for us in two ways: (1) to describe circuits 
mathematically, after they have been designed or assembled and (2) to de¬ 
sign circuits mathematically before they are assembled. We are not going to 
do any work in the philosophical field, where logic and its algebra are ex¬ 
tremely useful. Several excellent books have been written from that point of 
view, whereas there has been little introductory work from the point of view 
of switching or logic circuits. 

37 • 1 THE SYMBOLS OF LOGIC CIRCUITRY 

Different associations, different.manufacturers, different authors, and dif¬ 
ferent publishers all have their own ideas as to what symbols should be used 
in logic circuits. Table 37 ■ 1 shows the USASI Y32.14 standard symbols 
which will be used in this book. However, you must be prepared to recognize 
others in textbooks, technical journals, trade magazines, and manufacturers' 
literature. 

37 • 2 THE SYMBOLS OF MATHEMATICAL LOGIC 

Just as the symbol for resistance appearing in circuit diagrams is replaced 
in the electronics mathematics by the symbol R, so the symbols of logic cir-
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cuitry shown in Table 37 • 1 are replaced in the logic mathematics by their 
own special mathematical symbols, and these are shown in Table 37 • 2. 
Let us look further into the meanings of the circuit symbols and see what 
mathematical expressions are required. 

Table 37 • 2 
Logic Mathematical Symbols 

AND OR NOT 

Symbols used in • + 
this text juxtaposition 

Other symbols & v 
sometimes 
used 

and The and symbol means that an output signal will be produced by the 
particular device, regardless of the total amount of circuitry involved, only 
when both the a and b input signals are applied. Our mathematical counter¬ 
part must carry this meaning of and. 

or The or symbol means that an output will be produced by the device 
when either the a input or the b input signals are applied or when both are 
applied. Our mathematical replacement must give this meaning of “either... 
OR .... or both." 

N0T The not (inverter) symbol means that either (1) there will not be an 
output when the input signal is applied, or (2) there is an output when the 
input signal is not applied. Our mathematical symbol must carry the meaning 
of “not,” or “reversed." 

Now we must develop mathematical operators, sometimes referred to as 
truth functors, which will simply and effectively describe these circuit re¬ 
quirements. Table 37 • 2 shows the variety of symbols used in the literature, 
and, again, the symbol at the head of each column is the one to be used 
throughout this book. As well as the appearance of the symbols and their 
general purpose, we must take particular pains to be able to pronounce them: 

and a • b may be pronounced 
a and b 
both a and b 
the logical product of a and b 
a conjunct b 
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the conjunction of a and b 
a in series with b 
if, and only if, a as well as b 

OR a + b may be pronounced 
a or b or both 
either a or b (or both) 
the inclusive OR of « and b 
the disjunction of a and b 
the alternation of a and b 
the logical sum of a and b 
a in parallel with b 
at least one of a and b 
if, and only if, a or b or both 
true if, and only if, a or b or both 

not ã may be pronounced 
not a 
the complement of a 
the inverse of a 
the negation of a 
the rejection of a 
it is false that a 
a is not assertable 
“not a” is true 
the valence of a is false 

These pronunciations are the ones often met with in dealing with logic 
statements. Those appearing at the end of each group are the ones more 
usually found in philosophical statements, and they are included as a gen¬ 
eral-interest addition to our main study. At the same time, special symbols 
are often used for the exclusive or operator, when we want to say "either 
a OR b, but not both together.” Note that our definition of OR does not suit 
this requirement. However, we will say this in symbol form later without 
using any other special symbol. 

aggregate symbols: ( ), [ ] |n addition to the operator symbols are the sym¬ 

bols of aggregation, already met with in Sec. 3 • 9. Everything inside an ag¬ 
gregate symbol is subject to the operator symbol which may be applied to 
the aggregate: (a + b) means “when input signal a or input signal b or both 
are applied, there will be no output signal.” (Can you see that this could be 
said, “not a and not b"?) 

truth symbols: 1, 0 |n addition to the operators and aggregates, we re¬ 
quire “truth symbols” to say whether or not a signal is true or false, whether 
there is a signal or there is not a signal, whether a switch is closed or open. 
Sometimes the letters T and F are used for these designations, but more 
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frequently 1 and 0 are used. (See how these two possible states lead us into 
applications of binary arithmetic.) 

Thus, if switch ... a ... is closed, its value is 1. When switch ... c ... is 
open, its value is 0. 

example 1 Express in logical mathematical symbols the statement “It is 
raining and the wind is blowing.” 

solution First of all, select identification symbols to stand for the two 
propositions which make up the statement, say r for "it is rain¬ 
ing” and b for “the wind is blowing.” Second, since these two 
propositions are connected, we must choose the operational 
symbol which will represent and, using the • or mere juxtaposi¬ 
tion of the identification symbols. 

“It is raining and the wind is blowing” = r • b or = rb.” 

example 2 Express in logical symbols the statement “Either switch p isopen 
when switch q is closed or switch p is closed when switch q is 
open.” 

solution Select identification symbols: 

p — switch p closed 
p = switch p open 
q = switch q closed 
q = switch q open 

Then select the operational symbols to represent the conditions: 

1 The requirements of “either. . . OR . . are met by the use 

of + = OR. 
2 The requirements of “when” = “at the same time” = and 

is met with • or juxtaposition 

“Either switch p is open when switch q is closed or switch p is 
closed when switch q is open” = pq + pq. 

PROBLEMS 37 • 1 

By using s to represent "We are going to school” and I to represent “We are 
learning something new,” write in symbolic form the following statements: 

1 We are going to school, and we are learning something new. 
2 We are going to school, but we are not learning something new. 
3 Either we are going to school or we are learning something new, or both. 
4 We are not going to school, but we are learning something new. 
5 When we are going to school, then we are learning something new. 
6 We are not going to school: therefore, we are not learning anything new. 
7 Either we are not going to school or we are learning something new, or 

both. 
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8 We are neither going to school nor learning something new. 
9 We are (a) both going to school and learning something new or else 

(6) we are not going to school and we are not learning something new. 
10 Either we are going to school or we are learning something new, but not 

both. 

37 ■ 3 THE AXIOMATIC TAUTOLOGIES 

In Sec. 5 • 2 we have already learned that an axiom is a statement which is 
so self-evident that it need not be formally proved. And a tautology is nothing 
more than a statement or equation which shows two different ways of saying 
the same thing. This is a specific mathematician’s version of the dictionary 

definition. For example, sin B = B is a tautology. Sometimes it is conven-
hyp 

¡ent to use one relationship; sometimes the other. 
While philosophical logic introduces many tautologies and develops them 

with great care, the following brief introduction will serve the purposes of 
most students working in this text. Some, who go on to computer or control 
engineering, will want to study further to broaden their scope in the subject. 

T.l a • a = a 

This is the redundancy law of multiplication. It means that whenever a 
circuit design calls for a contact on relay a to be closed and later calls for 
another contact on the same relay a to be closed in series with the first, we 
really need only a single contact on relay a. 

T.2 a + a = a 

This is the redundancy law of addition. It means that when a circuit calls 
for a contact on relay a to be closed and later for another contact on the same 
relay to be closed in parallel with the first, we need only a single contact on 
relay a. 

These first two tautologies, or laws, really say, “Saying the same thing 
over and over again does not make it any more true.” 

T.3 a • b = b • a 

This is the commutative law of multiplication. In the mathematics of logic, 
as in many other systems (but not all) it does not matter what the order of 
the multiplication is or, in switching algebra, what the physical order of the 
switches in. series is. 

T.4 a + b = b + a 

This is the addition law of commutation. It does not matter whether a is in 
parallel with b or whether b is in parallel with a. 

T.5 (a • b)c = a • (b • c) 
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This is the associative law of multiplication and means, again, that the 
order of switches in series or the order of factors in multiplication does not 
matter. 

T.6 (a + b) + c = a + (b + c) 

The associative law of addition, which is applied in the same way as T.5 
and in ordinary algebra. 

T.7 ~tT=a 

This is the law of double complementation, and it means that an inverted 
inversion has the same effect as the original proposition. (A switch, which 
can only be open or closed, if changed in position twice, is back in its original 

position.) 

note Ordinary English grammar does not follow this definition because we 
do not always understand that two negatives make a positive in an ordinary 
English statement. 

T.8 a + 3 - 1 

This is the first law of complementation. Since the circuit will always give 
an output signal if one contact is normally closed and the other, in parallel, 
is normally open, a true indication will always appear. 

T.9 a • ã = 0 

This is the second law of complementation. It is impossible to achieve an 
output signal with one contact open in series with another that is closed. 

T.10 a(b + 5) = a 

This tautology says that a contact a in series with a circuit that is always 
operating (T.8) will have the same effect as if that contact were alone. 

T.ll a + (b-b) = a 

Any contact a in parallel with a permanent open circuit (T.9) will have the 
same effect as a alone. 

T.12 7T~b = S + 5 

This is the first of De Morgan’s laws of negation. Some serious thought, 
coupled with the work which will follow, will prove the truth of this and the 
next tautology. 

T.13 a + b = ã - b 

The second of De Morgan's laws of negation. 

Some additional tautologies will be found inside the back cover, and these 
will be referred to in the text below. 
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Analysis of circuits by mathematical logic may be carried out by purely alge¬ 
braic means, using the tautologies, and this method will be investigated 
shortly. But another useful method of analyzing circuits is the method of 
truth tables. These are a fairly systematic mechanical method of examining 
the possible combinations of truths (or circuit conditions) existing in a par¬ 
ticular problem. For instance, consider the circuit in Fig. 37 • 1, which may be 
described mathematically as a ■ b + c. We may set up the truth table for this 
circuit to determine which combinations of closed (1) or open (0) conditions 
of the switches will produce an output signal. 

The first step is to list the three possible contacts, a, b, and c, and the 
possibilities appearing in the formula. This step gives us the row of headings 
across the top of Table 37 • 3. Under these headings there will appear eight 
rows of data and calculations: 23, where the 2 represents the two possible 
states 1 or 0 and the 3 represents the three different switches, or contacts, 
a, b, and c. Note the mechanical method of establishing the possible com¬ 
binations: each of the contacts will be open for half of the possibilities, and 
each will be closed for half. By making the first half of the eight possibilities 
for a 1 and the second half 0, then half of a's 1 conditions will see b 1 and 
half will see b 0, and so on. 

Now, referring to the circuit, Fig. 37-1, and Table 37 • 3, check the circuit 
for each row of combinations: 

SECTION 
37 . 3 

TO 

Fig. 37 • 1 Switching Circuit for 
a ■ b + c in Table 37 ■ 3 

combination a b c a • b a - b + c Table 37 ■ 3 

1 111 
2 110 
3 10 1 
4 10 0 
5 011 
6 0 10 
7 0 0 1 
8 0 0 0 

1 
1 
0 
0 
0 
0 
0 
0 

Truth Table for ab + c 
1 
1 
1 
0 
1 
0 
1 
0 

Combination 1. When switches a, b, and c are all closed (1), there is a 
complete circuit through the series leg (ab) and a complete circuit through 
the parallel switch c. Then the two closed parallel circuits will give a true 
(1) result, and there will be an output signal. 

Combination 2. When both a and b are closed, then even with c open, there 
will be an output signal and again the last, or total circuit, column reads 1. 

Combination 3. Here a and c are closed and b is open. Hence, even when 
the series leg is an open circuit (0), the closed switch c in parallel yields an 
output signal. 

Combination 4. When a is the only closed switch, then open b prevents a 
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signal getting through the series leg and open c in parallel means that there 
will be no output signal from the circuit. The final column reads 0. 

Combination 5. In combinations 5 through 8, since a is open, the condi¬ 
tion of b has no effect, since the series leg is of necessity open. (See column 
ah.) Switch c, in parallel with this open circuit, determines that there will be 
an output signal when c is closed and no output signal when c is open. 

You must satisfy yourself that there are no other possible switch com¬ 
binations and that there will be a complete circuit, or an output signal, only 
for combinations 1,2,3, 5, and 7 and no output signal for combinations 4. 6, 
and 8. The formula for the circuit, ah + c, is sometimes said to be a tautology 
for the five closed combinations, although this is a loose use of the word. 

PROBLEMS 37 ■ 2 

Show by using truth tables, the following statements to be tautological: 

1 
3 
5 
7 
9 
10 
11 
12 

a + a = 1 2 
a(a + b) — a 4 
P + pg = p + q 6 

a + b — ã • b 8 

a(b + c) = ab + ac 
a + ab = a 
a•h = ã • 5 
a + be = (a + b\a + c) 

x + y + x + z= x+yz 
(p + q\q + r)(q + 1) = pq + qr 
(a + h)(a + c)(6 + c) — Sb + ac 
(a + c)(a + d)(b + c)(b + d) = ah +cd 

37 • 5 PROPOSITIONAL INVESTIGATIONS 

Sometimes it happens that a proposed circuit is described in Boolean algebra 
in a rather complicated manner and it is possible to use the tautologies in 
order to simplify it. 

example 3 A designer asks for a circuit which will perform the following 
switching function: 

a + h + a + c 

Can we simplify the circuit requirements before drawing modules 
from stock and putting them together as requisitioned? 

solution Choosing the appropriate tautologies (and here practice is the 
only cure), we alter the appearance of the original problem 
formula and see what might be done. (In the example, each step 
below has been identified with the number of the tautology 
applied. (See inside back cover.) 

Given a + b + a + c 
T.13 a + b may be written S ■ 5 
T.13 a + c may be written a • c 

and the formula becomes a • 5 + a • c 
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T. 14 õ(S +C) 
T. 12 ä(b^c) 
T. 13 a + bc 

Compare the original circuit, as requested, with the simplified 
version (Fig. 37 • 2a versus b). You should prepare a truth table 
for the two circuits, and prove that the two forms are tautological, 
that is, when one set of switches is true, then the other is also 
true for all possible identical combinations. Check also to satisfy 
yourself that there are no combinations other than 23. 

PROBLEMS 37 • 3 

Use truth tables to prove the following statements: 

1 ãb(a + b) = ãb 
2 (a + b)(ã + c)(b + c) = ãb + ac 
3 (ãb + a)(ã6 + c) = (a + b)(ã + c)(b + c) 
4 a(ã 4- 6)(ã + b + c) = ab 
5 abc(a + b + c) = abc(ab + bc + ac) + abc(abc + ab) 
6 qt +qt + q-t - q(qt) + qfj^t) 
7 st + vw = (s + uXs + u)(t + v)(t + w) 
8 ABC + ABC + ABC + ABC + ABC + ABC + ABC =A+B+C 
9 (a + ß)(« + y) = a + ßy 

10 (a • h + bc + ac) — ã-b + b- c + ã-c 

SECTION 
37.4 

TO 
SECTION 

37 . 6 

< a I 

Fig. 37 • 2 Equivalent 
Switching Combinations of 
Example 3 

37 ■ 6 SWITCHING NETWORKS 

While actual switches may be adjusted so that some contacts make before 
others break, or vice versa, or some close or open in a special sequence, in 
general, every individual switch is either open or closed, off or on, flipped or 
flopped. This two-state condition lends itself to binary operation (1 or 0), and 
to Boolean analysis. When a switch is closed, it provides, theoretically, per¬ 
fect permittance to a current flow, and when it is open, perfect hindrance. 
It is convenient to define Ypq as the permittance of a circuit between the 
points p and q and Zpq as the hindrance of the circuit between the same 
points. Obviously, Y^ = Zpq . 

example 4 Write the expressions for the permittance and the hindrance of 
the circuit of Fig. 37 • 3. 

solution To write the expression for the permittance of the circuit Ylm we 
agree that 

Ylm = Y,,(Y„ + Y,Yd) 

where Y„ is the permittance of switch a, and so on. We may write 
this simply as 

Fig. 37 ■ 3 Switching Circuit of 
Example 4 

Yh„ = a(b + cd) 
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Fig. 37 ■ 4 Switching Circuit for 
Prob. 1 

and we understand that the letter designation for a switch with¬ 
out an overbar indicates that the switch is closed, that is, offers 
perfect permittance. Studying the circuit, you can see that when 
contacta is closed and then either b or c and din series is closed, 
the circuit will offer permittance—there will be an output signal. 

Similarly, the hindrance of a contact, that is, an open switch, is indicated 
by the letter designation with an overbar, so that Ztm must be written: 

Zlm = a + (bXc + d) 

When contact a is open, or else when both b is open and either c or d is open, 
then there will be no output signal—or perfect hindrance. 

You should prepare a set of truth tables to show that Ylm = Z¡m. 

Fig. 37 • 5 Switching Circuit for 
Prob. 2 

Fig. 37 • 6 Switching Circuit for 
Prob. 3 

Fig. 37 • 7 Switching Circuit for 
Prob. 4 

PROBLEMS 37 ■ 4 

1 Write the expressions for (a) the hindrance and (6) the permittance of 
the circuit of Fig. 37 • 4. 

2 Write the expressions for (a) the hindrance and (h) the permittance of 
the circuit of Fig. 37 • 5. 

3 Write the expressions for (a) the hindrance and (6) the permittance of 
the circuit of Fig. 37 • 6. 

4 Write the expressions for (a) the hindrance and (6) the permittance of 
the circuit of Fig. 37 • 7. 

5 Write the expressions for (a) the hindrance and (6) the permittance of 
the circuit of Fig. 37 • 8. 

Draw circuits for the following expressions: 

6 yw = a(b + c^ad) 
7 Ylm = xyCyz + x)a 
8 y„6 = W  + y) +J]7
9 Zcd = A[BC + C(A + B)^ + B • C 
10 Ypq = A- B(C + D)B + D 

Fig. 37 ■ 8 Switching Circuit for 
Prob. 5 

Equivalent switching networks may be developed mathematically by using 
the tautologies of Boolean algebra, whereby somewhat complicated circuits 
may be reduced to circuits which will perform identical services with less 
hardware or, alternatively, to circuits which will perform identical services 
with readily available, although not simpler, hardware. 

Fig. 37 • 9 Switching Circuit of 
Example 5 

example 5 Given the switching network of Fig. 37 • 9, develop a simpler 
circuit which will provide an identical switching service. 

solution Write either the permittance or hindrance functioruof the circuit: 

yT„ - (Z + m)(m + p)(m + I) 
T.4 (Z + m)(m + pXl + m) 
T.2 (I + mXm + p) 

588 



That is, the network of Fig. 37 • 9 may be replaced by that of 
Fig. 37 • 10. You should prepare a truth table to prove that the 
two circuits are tautological. 

PROBLEMS 37 • 5 

1 By using the appropriate tautologies, develop a simpler circuit to replace 
that of Fig. 37-11. 

SECTION 
37 • 6 

TO 
SECTION 

37 . 7 

Fig. 37 • 10 Simpler Circuit 
Equivalent of Fig. 37-9 

L 
H 

K 

2 Develop a simpler circuit to replace that of Fig. 37 • 12. 
3 Develop a simpler circuit to replace that of Fig. 37 • 13. 

4 Develop a simpler circuit to replace that of Fig. 37 ■ 14. 

5 Develop a simpler circuit to replace that of Fig. 37-15. 

Fig. 37-11 Switching Circuit 
for Prob. 1 

Fig. 37 • 12 Switching Circuit 
for Prob. 2 

Fig. 37 • 13 Switching Circuit for 
Prob. 3 

Fig. 37 • 14 Switching Circuit for 
Prob. 4 

Fig. 37-15 
Prob. 5 

Switching Circuit for 

6 to 10 Check each of your solutions above by means of truth tables. 

37-7 COMPUTER GATING APPLICATIONS 

The standard computer gating symbols are shown in Table 37-1. These 
simple symbols (and the circuits for which they stand) may be combined into 
adders or half-adders or other more complex components. Let us look at a 
few of the simple tautologies as they would appear in gating configurations. 
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Fig. 37-17 Switching Circuit for 
Prob. 1 

Fig. 37 ■ 18 Switching Circuit for 

Prob. 2 

example 6 Tautology T.14 states that a(b + c) = ab + ac. The two 
circuit configurations are shown in Fig. 37 • 16. 

investigation You should check the two parts of Fig. 37 • 16 and satisfy 
yourself that the two circuits do perform the same functions. 
Then, by preparing a truth table for the two statements, you 
will see that when a(b + c) is 1, so also is ab + ac, and when 
afb + c) is 0, so also is ab + ac. Then, since the two forms 
have been proved by tracing and by truth table to be tauto¬ 
logical, the end results of using one will be identical with 
those of using the other. There may be times when availa¬ 
bility of circuit wiring boards or parts may make it more 
desirable to use one circuit rather than the other, but the 
results will be the same regardless of the circuit configura¬ 
tion chosen. 

You can see, then, that it may often be convenient to spend time exploring 
the possibilities mathematically, before even breadboarding a circuit, in 
order to reduce the total number of components or the number of different 
components required. 

PROBLEMS 37 • 6 

1 Write the output expression for the circuit of Fig. 37 • 17 and develop an 
alternate circuit. Test your answer by means of a truth table. 

2 Write the output expression for the circuit of Fig. 37 • 18 and develop an 
alternate circuit. Test your answer by means of a truth table. 

3 The half-adder circuit produces two outputs, a sum S and a carry C. The 
circuit is shown in Fig. 37 • 19. Show that the same result can be achieved 
by using three and gates, one or gate, and one inverter. 

4 The classic full adder, shown in Fig. 37 • 20, involves the two quantities 
to be added (a and b) by a digital computer, plus the carry from the pre¬ 
ceding step (Cp). The circuit requires eight and gates, two or gates, and 
nine inverters. Show that the carry portion of the output may be simpli¬ 
fied with a saving of one and gate and three inverters. 

Fig. 37 • 20 Full-adder Circuit of 
Prob. 4 

Fig. 37 • 19 Half-adder Circuit 
of Prob. 3 
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Throughout this book we have investigated several special applications of 
graphs in their various forms. In Sec. 16 • 6 we studied and used straight-
line graphs, whose equations are of the form y = mx + b. In Sec. 21 • 8 we 
investigated parabolas, or quadratic graphs, whose equations take the 
form y = ax2 + bx + c. In Chap. 29 we looked briefly at the graphs of the 
trigonometric functions, of the form y = ymM sin (ut±<f>), and in Sec. 
34 • 26 we saw the value of the logarithmic graph, whose equation was 
y = log,, x. 

In this chapter we are going to investigate a few other common graph 
forms which are often met with in electronics relationships. Also, we are 
going to look briefly at a fairly common graphical method of solving elec¬ 
tronics equations—the nomogram. 

38 • 1 GRAPHS OF POWER EQUATIONS 

even powers A comparison with Fig. 21-3 and a few minutes of reflection 
will help you realize that graphs of even powers (y = x2, y = x4, y = x6, etc.) 
will be symmetrical about the +y axis and will resemble parabolas of differ¬ 
ent steepness. Curves of such equations are shown together in Fig. 38-1. 

Vertical shifts may be introduced into these curves by the addition of con¬ 
stant terms (Fig. 38 • 2, y = x4 + c), and clockwise or counterclockwise 
shifts introduced by the addition of lower-power terms (Fig. 38 • 3, 
y — x' + 3x3). The higher the power of the first term, the less will be the 
effect of the lower-power terms. 

odd powers Consider now the graphs of odd-power equations (y = x3, 
y — x5, etc.). The general shape of such curves is shown in Fig. 38 • 4. 

note The symmetry here is that of a mirror image on the negative axes 
compared with the symmetry of the even-power curves. The steepness of the 
curves is governed by the power and by the coefficient of the highest-power 
term (Fig. 38 • 5). 
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Fig. 38 • 2 Effect of c 
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SECTION 
38 . 1 

Fig. 38 • 3 Effect of b 

Fig. 38 ■ 4 Graphs of Odd 
Powers 
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Fig. 38 ■ 5 Effect of a 

Fig. 38 ■ 6 Effect of c 
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Fig. 38 • 7 Effect of b 

Fig. 38 ■ 8 Graphs of Fractional 
Powers 
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Again, vertical shifts may be achieved by the inclusion of constant terms 
(Fig. 38 • 6), and fluctuations will be introduced by the addition of lower-
power terms (Fig. 38 • 7, which also shows the symmetry of the negative¬ 
power curves). 

You should now confirm that the graphs of all equations of the form y = x" 
will pass through the point (1,1) and that, the lower the value of a, the higher 
the curve will be between x = 0 and x = 1 (0 < x < 1). 

fractional powers | n p¡g 38 • 8 we can see the effect of fractional powers, 
where the general equation takes the form y = x" or y = ÿ/x. The curves 
y — x and y = x2 have been included to allow a more effective comparison 

of the f. actional-power curves. 

note Especially notice that: 
1 All the curves pass through the point (1,1). 
2 The lower the power (the higher the denominator), the steeper the 

curve 0 < x < 1. 
3 There is no “negative half” for the even-root curves. 
4 The odd-root curves maintain their odd-power symmetry. 

38 ■ 2 GRAPHS OF NEGATIVE-POWER EQUATIONS 

Curves of the general type y = x-0 seem to be inside-out variations of their 
positive equivalents. Notice in Fig. 38 • 9 how the even negative powers 
maintain their mirror symmetry about the y axis, while the odd negative 
powers are again symmetrical about the negative axes. The higher the 

power, the steeper the curve. 

38 -3 GRAPHS OF LOGARITHMIC EQUATIONS 

In Fig. 34- 1 we saw the graph of y = log,, x, and this curve has been redrawn 
in Fig. 38 • 10 to show the effect of a coefficient: y - b loga x. 

note Especially notice that: 
1 There is no logarithm of negative numbers. 
2 The coefficient b effectively increases the steepness of the curve. 
3 The logarithm of a very small positive number is a very, very large 

negative number. (It has been said that the logarithm of zero is minus 

infinity.) 
4 Regardless of the coefficient, the curve passes through the point (1,0). 

38 • 4 SELECTION OF SCALES 

Whenever you are required to draw graphs, whether in the classroom as an 
exercise or in the laboratory as a part of device or equipment testing, you are 
faced with the question, “What scale should I use?” 

Of course, we want to draw graphs which will best serve our purpose, and 
the most effective way to do so will be to let the working part of the graph 
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Fig. 38 • 9 Graphs of Negative 
Powers 

Fig. 38 • 10 Graphs of 
Logarithmic Equations 
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cover the greatest possible portion of the paper. When solving simultaneous 
equations, when the answers are usually in the region of the origin, the 
largest possible scale should be used in order to guarantee the greatest pos¬ 
sible accuracy of answer. When tube characteristic curves are to be drawn, 
the space must make the best presentation possible over the working voltage 
and current ranges. 

Sometimes an educated guess will help you decide what scales are best. 
Sometimes a pilot graph will help to indicate what range of readings will be 
required. Sometimes a couple of trial calculations (or readings) will establish 
the limits of the working range or the manufacturer's specifications will 
indicate the maximum permissible voltage or current, which will then set the 
limits of the scales. 

Then too, you must realize that, since graphs are mathematical tools 
subject to our decisions as to the manner of their use, the vertical and 
horizontal scales need not be the same. If a given circuit has unusually high 
resistance, then the I-E graph may see the EMF scaled in kilovolts and the 
current scaled in milliamperes. Accordingly, any convenient scale for the 
horizontal need not establish the scale for the vertical. 

Two special variations of scale will occupy our attention at the present 
time: semilogarithmic and logarithmic. 

1 semilog graphs This choice of scales plots one dimension, usually 
the vertical, on an “ordinary” scale and plots the other logarithmically. 

2 log-log graphs This choice plots both vertical and horizontal quan¬ 
tities on logarithmic bases. 

The differences between rectangular coordinates, semilog, and log-log 
graphs are clearly shown by the set of graphs, Figs. 38 • 11, 38 • 12, and 
38 • 13. These all show graphs of the general form y = ax. Figure 38-11 
plots> versus x in the (usual) rectangular coordinate system with convenient, 
(not identical) scales for the vertical and horizontal quantities. The curves 
illustrate clearly how the various straight lines issue from the origin with 
steepness proportional to the coefficient a. Now see the effect when the 

Fig. 38-11 y — ax, Linear 
Scales 
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Fig. 38-12 y = ax, y Scale 
Logarithmic 

Fig. 38-13 y = ax, log log 
Scales 
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y values are plotted logarithmically (Fig. 38 • 12). Notice the spacing of the 
y dimensions like a slide rule scale, the distances between 1 and 2, 2 and 3, 
etc., being logarithmically divided. Observe that what were straight lines now 
appear curved and that the amount of curvature will vary according to the 
horizontal scale used. The lines still appear to converge to some lower-left 
origin, but their divergence to the upper right is less pronounced than in 
Fig. 38-11. 

The same set of equations is now presented in Fig. 38 • 13 in log-log form. 
See how this scale choice has converted the intersecting straight lines of 
Fig. 38-11 into parallel straight lines, with the coefficient a determining the 
y intercept rather than the steepness of the curves. (What would alter the 
steepness of curves on log-log bases?) 

The next family of curves presented for comparison is the set Figs. 38 • 14, 
38 • 15, and 38 • 16. Here curves of the general form y — xa are plotted 
first, in Fig. 38 • 14, in the usual rectangular coordinate system, showing: 

1 How the steepness is proportional to the power a. 
2 All the curves pass through the point (1,1). 
3 The height of the curve is inversely proportional to the power a for 

0<x< 1. 

Fig. 38-14 y = xa, Linear 
Scales 
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Fig. 38-15 y = xa, y Scale 
Logarithmic 

Fig. 38-16 y = xa, log log 
Scales 
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Now, in Fig. 38- 15. see how the curves, of varying steepness, diverge 
from the point (1,1) when they values are plotted logarithmically. Then, in 
Fig. 38 ■ 16, see how the divergent curves of Fig. 38 • 14 become divergent 
straight lines emerging from the point (1,1) with their steepness propor¬ 
tional to the power a. 

In Figs. 38 • 17, 38 • 18, and 38 • 19, we see the family of curves of the 
general type y = a'. Note in Fig. 38-17 that this set of diverging curves 
emerges from the origin and that the steepness is proportional to the num¬ 
ber a. In Fig. 38 • 18, these curves become divergent straight lines with their 
slopes apparently proportional to a. In Fig. 38 • 19, the set of curves diverges 
to become almost parallel straight lines. 

PROBLEMS 38 • 1 

1 Draw the graphs of y = x2andy = x3 for values of x between 0 and 5.5. 
2 Repeat Prob. 1 on a different sheet of graph paper for 0 < x < 1.2. 
3 Draw the graphs of y = x3 and y — x3 + x2 for —1.5 < x < 1. 
4 Draw the graphs of y = x and y = x3 + x2 — 5x for —4 < x < 3. 
5 Draw the graphs of y = x2, y = x, y — x^, and y = xk 

(a) On two-cycle semilog graph paper. Plot values of y on the log scale 
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Fig. 38-18 y = a1, y Scale 
Logarithmic 

Fig. 38-19 y = a1, log log 
Scales 
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(6) On one-cycle semilog graph paper. Plot values of y on the regular 
scale and 1 < x < 10 on the log scale. 

(c) On log-log graph paper (two cycles by two cycles), for 0.1 < x < 10 
Compare these graphs with Fig. 38 • 8. 

6 Draw the graphs of y = x-1 , y — x 2, and y = x-3 : 
(a) On one-cycle semilog graph paper. Plot values of y on the log scale 

against 1 < x < 8. 
(6) On one-cycle semilog graph paper. Plot 1 < x < 10 on the log scale. 
(c) On log-log graph paper (two cycles each way) for 1 < x < 10. 
Compare these graphs with Fig. 38 • 9. 

7 Draw the graphs of y = log x and y = 3 log x: 
(a) On one-cycle semilog graph paper. Plot y on the log scale against 

1 < x < 8. 
(6) On one-cycle semilog graph paper. Plot 1 < x < 8 on the log scale. 
(c) On two-cycle log-log graph paper for 1 < x < 10. 
Compare these graphs with Fig. 38 • 10. 

8 Turn to 6 of Problems 35 • 5 and plot Zo = 276 log,» y : 

(a) On semilog graph paper. Plot y on the log scale. 

(6) On log-log paper. 

9 Turn to 11 of Problems 35 • 5 and plot Z„ — 138 log -y : 

(a) On semilog paper. Plot y- on the log scale. 

(6) On log-log paper. 
10 The average plate characteristics curve of one section of a 6SN7GTB 

tube, at rated filament voltage and grid voltage = — 6 V, shows the 
following relationships: 

Ep. V 100 125 150 175 200 225 250 275 

Ip, mA 0.2 1.0 2.5 4.8 7.8 11.6 15.4 20 

(a) Plot the IV EP curve on regular graph paper. 

(
p \-

Eg 4—, where 

Eg = - 6 V, 100 < Ep < 275 V. and g = 20. What conclusions do 
you draw? (Compare with 41 of Problems 34 • 11). 

11 The average plate characteristics curve of a 6CB6A tube when 
E, = rated value, Ec, = —1.5 V, Ec-, — 125 V, and Ec3 = 0 V shows 
the following relationships: 

Ev, V 

mA 

0 25 50 75 

0 5 8.8 8.82 

200 

8.88 

300 

9.1 

400 

9.2 
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Plot the Ip-Ep curve on regular graph paper. What type of graph, gen¬ 
erally, does this curve resemble? What conclusions do you draw from 
the curve? 

12 The input characteristics curve of a 2N525 transistor, when VCe = 1 V 
at 25°C, shows the emitter-to-base voltage and emitter current 
relationships: 

Ik. mA -0.2 -0.5 -1 -1.5 -2 -3 — 4 -5 

Vue. V -0.05 -0.12 -0.135 0.145 0.151 0.161 0.171 0.18 

Plot the Vbe-Ze curve on regular graph paper, reading VBB increasing 
negatively upward, and ZE increasing negatively to the right. What con¬ 
clusions do you draw? 

38 • 5 NOMOGRAMS 

Nomograms, sometimes referred to as “abacs,” are graphical methods of 
solving equations. More and more, these useful graphs are being put to work 
in solving electronics problems, and they appear regularly in periodicals and 
texts devoted to the electronics industry. Just as the slide rule has provided 
a reliable mechanical method of performing complicated calculations, so 
nomograms provide reliable graphical methods of solving equations, some 
of them extremely complex. 

The simplest of such nomograms is a single straight line divided on one 
side to one particular scale and on the other to some other scale which is 
somehow related to the first. For example. Fig. 38 • 20 relates Celsius to 
Fahrenheit temperature readings. On the left side, the line has been scaled 
in Celsius degrees, on the right, in Fahrenheit degrees. Rather than re¬ 
peatedly solving the equation C = |(F — 32) each time that we must 
convert Fahrenheit readings into Celsius, we simply locate the Fahrenheit 
reading on the right hand side and read the equivalent Celsius value on the 
left: 60°F = 15.6°C. 

A more common form of nomogram uses three lines scaled to relate three 
parameters, such as current, voltage, and resistance or resistance, react¬ 
ance, and impedance. For instance, Fig. 38 • 21 permits us to quickly solve 

the equation I = within the limits of the scales provided fl 

example 1 Given E = 80 v and R = 4 kß, find I. 

solution place a straightedge on the nomogram to join 80 on the EMF 
line to 4 kSl on the resistance line. Then read the current, 
I = 20 mA, where the straightedge cuts the current line. 

example 2 p¡ nc| voltage drop across a 2.1-kS2 resistor when the current 
flowing through it is 10 mA. 

Fig. 38 • 20 Nomogram for 
Converting Fahrenheit to Celsius 

°C = 1(°F - 32) 

Opposite 60° F Read 15.6° 

°C -
100 -= 

90 4 

80 4 

70 4 

60 4 

50 4 

40 4 

30 4 

20 4 

10 4 

° 4 

c 

°F 
Z. 212 
7 210 

200 

- 190 

100 

- 170 

- 160 

- 150 

- 140 

- 130 

- 120 

- 110 

- 100 

- 90 

- 80 

- 70 

- 60 

- 50 

- 40 
32 

- 30 
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Fig. 38 • 21 
Nomogram 

solution Let the straightedge join 10 on the current line to 2.1 kQ on the 
resistance line. Then read E = 21 V where the straightedge cuts 
the EMF line. 

Another popular type of nomogram relates inductance, capacitance, and 

resonant frequency for the solution of the equation f„ = -i==-. One such 
2^ XÆÜ 

set of data is shown in Fig. 38 • 22. 

example 3 Given L = 800 /lH and C = 2pF, find f„. 
solution Set the straightedge across the nomogram to join 800 gH on the 

L scale to 2 pF on the C scale. Then, where the straightedge 
crosses the F scale, read f0 3.98 MHz. 

note The advantage of using a transparent straightedge to 
simplify interpolation without marking up the graph itself. 

Another convenient nomogram, using a different type of scale, provides 
for the ready solution of the equation Z2 = R2 + X2. This is shown in 
Fig. 38 • 23. 
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example 4 Given Z = 10 Í2 and X = 5 S2, find R. 
solution Set the straightedge across the graph to join 10 on the Z scale 

to 5 on the X scale and read R = 8.66 fi. 
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C 0 

20 

1 mH 1 pF 

8 
10 

1000 pF 
800 
600 
400 
300 

200 

0.01 mF 
0.008 
0.006 
0.004 
0.003 

0.002 

— 30 
¿7 40 

7-60 
zz 80 
-- 100 MHz 

10 pF 
8 
6 
4 
3 

2 

loo mH 
80 
60 

40 
30 

20 

100 pF 
80 
60 

40 
30 

20 

1 mH 
800 
600 
400 --
300 “7 
200 4-

L 
10 mH 
8 
6 

4 
3 

2 

+ 2 
3 
4 

10 mH ¿ = 
8 it 
6 77 
4 
3 --

2 --

-- 200 

-- 300 
-- 400 

77 600 
3= 800 

1 MHz 

- - 20 kHz 

-- 30 
-z 40 
-7 60 
zb 80 
• 100 kcs 

Fig. 38 ■ 22 Resonant Frequency 
Nomogram 

f°=
Join 800 pH to 2pF and Read 
f0 = 3.98 MHz 

Fig. 38 • 23 Resistance-
reactance-impedance Nomogram 

Z2 = R2 + X2

Join Z = 10 to X = 5 and Read 
R = 8.66 
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Fig. 38 • 24 Rectangular polar 
Phasor Diagram 

Impedence approximator 
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 

R = Resistance 

Figure 38 • 24 shows a useful method of solving not only Z2 = R2 + X2 but, 

at the same time, 6 = arctan . This graph will permit us to determine not 
n 

only the impedance of a circuit consisting of resistance and reactance but 
also the phase angle of the circuit. 

example 5 G¡ven a circuit 30 + j40 Í2, find Z/8. 

solution From the origin trace a distance 3 (= 30) to the right (Ä), then 
a further 4 (= 40) up (X). Compare this action to a + ¡6 of 
Sec. 31 • 13. This point lies on the 5 (= 50) circle, giving im¬ 
mediately the value Z = 50 £2. At the same time, it lies about 
three-tenths of the way between the 50° and 60° radiant lines, 
enabling us to interpolate 0 = 53.1 °. 

Consider how Fig. 38 • 24 could be adapted further by showing angles to 
each degree, or even half-degree, around the periphery of the chart and 
riveting a plastic strip to the origin, divided, say, into tenths along the work¬ 
ing edge. Then, the point R + jX having been selected from the rectangular 
coordinates and the edge of this strip placed at the point, mechanical inter¬ 
polation between the inch circles and between 30', or finer, rays, could 
provide a very accurate solution. 

You are urged to practice using these nomograms as often as possible, 
because familiarity with this problem solving method can save much time. 
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Useful nomograms will appear quite regularly in the magazines to which you 
will be subscribing in the years to come. 

We have not gone into the method of constructing nomograms (other than 
those of the first class), because it is a rather specialized art, and you will 
normally be called upon only to use, not construct, them. However, if you find 
it repeatedly necessary to solve a particular equation, then specialized little 
volumes which set out the methods of attack are available. 

PROBLEMS 38 • 2 

1 Construct a nomogram which will enable you readily to convert fre¬ 
quencies between 500 kHz and 500 MHz into their corresponding 
wavelengths 

2 From Fig. 38 • 20, what is the Fahrenheit equivalent of (a) 90° C, 
(6) 10° C, and (c) 25° C? 

3 What is the Celsius equivalent of (a) 67° F, (6) 165° F, and (c) 35° F? 
4 From Fig. 38-21, what will be the current flow when an EMF of 20 V is 

applied to a 6.8-k2 resistor? 
5 From Fig. 38 • 21, what resistance will limit the current flow to 9 mA 

when 16.5 V is applied? 
6 From Fig. 38 • 22, what is the resonant frequency when L — 8 mH and 

C = 20 pF? 
7 What capacitance must be combined with a 25 /iH inductor to produce 

a circuit resonant at 30 MHz? 
8 From Fig. 38 • 23, what is Z when R = 470 2 and X = 600 2? 
9 What value of X is necessary to convert a resistance of 1 k2 into an 

impedance of 1.2 k2? 
10 From Fig. 38 ■ 24, what are the impedance and phase angle of the 

circuit 60 + j36 2? 
11 What are the impedance and phase angle of the circuit 8.5 k2 — j2.9 k2? 
12 Using the appropriate formulas, confirm your answers to Probs. 2 to 

12. Are the nomogram answers sufficiently accurate in the light of our 
use of 5 and 10% electronic components? 

SECTION 
38.5 

TO 
PROBLEMS 

38 . 2 
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X or • multiplied by 
-s- or : divided by 

+ positive, plus, add, OR 
— negative, minus, subtract 
± positive or negative, plus or minus 
zp negative or positive, minus or plus 

= or : : equals 
= identity 
s is approximately equal to 

does not equal 
> is greater than 
> is much greater than 
< is less than 
< is much less than 
g greater than or equal to 
g less than or equal to 
. . therefore 
Z angle 
± perpendicular to 
|| parallel to 

|n| absolute value of n 
A increment of 
% percent 
oc is proportional to 

Table 1 
Mathematical 
Symbols 

Table 2 
term symbol term symbol ( pftpr 

Altitude a Ohm Í2 Symbols 
Area A Period (of time) T 
Base B Plate (anode) P 
Capacitance C Power P 
Cathode K Reactance X 
Collector C Resistance R, r 
Current I, i Resonant frequency fr
Diode D Rise time tr
Electromotive force E, e Speed of light c 
Emitter E Temperature t 
Frequency f Time t 
Grid G Transistor Q 
Impedance Z Tube (valve) V 
Inductance L Voltage E, e, V, v 
Length 7 Wavelength A 
Number of turns n Width w 
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Table 3 
,, , . x. term abbreviation term abbreviation 
Abbreviations 

Alternating current ac Gallon gal 
Ampere A Giga (prefix, = 1 x 10s) G 
Ampere-hour Ahr Gigacycles per second GHz 
Amplitude modulation AM Gigahertz GHz 
Antilogarithm antilog Gram g 
Audio frequency AF Henry H 
Bel 8 Hertz Hz 
British thermal unit Btu High-frequency HF 
Calorie cal Highest common factor HCF 
Candle spell Horsepower hp 
Centimeter cm Hour hr 
Centimeter-gram- CGS Hundred spell, 
second system or x 102
Circular cir Inch in. 
Circular mils cir mils Inches per second in./sec 
Clockwise cw Intermediate frequency IF 
Cologarithm colog Kilo (prefix, = 1 x 103) k 
Continuous wave CW Kilocycles per second kHz 
Cosecant esc Kilogram kg 
Cosine cos Kilohertz kHz 
Cotangent cot Kilohm kß 
Coulomb C Kilometer km 
Counterclockwise ccw Kilometers per hour km/hr 
Counter electromotive CEMF Kilovars kvar 
force Kilovolt kV 
Cubic . . ,3 Kilovoltampere kVA 
Cubic centimeter cm3 Kilowatt kW 
Cubic foot ft3 Kilowatthour kWhr 
Cubic inch in.3 Knot spell 
Cubic meter m3 Logarithm (common, log 
Cubic yard yd3 base 10) 
Cycles per second Hz Logarithm (any base) log,, 
Decibel dB Logarithm (natural base r) log,, In 
Decibels referred to a dBm Low-frequency LF 
level of one milliwatt Lowest common LCD 

Degree (interval or deg denominator 
change) Lowest common multiple LCM 
Degrees Celsius °C Lumen Im 
Degrees Fahrenheit °F Maximum max 
Degrees Kelvin "K Mega (prefix. = 1 x 106) M 
Diameter diam Megacycles per second MHz 
Direct current de Megahertz MHz 
Dozen spell Megavolt MV 
Efficiency spell Megawatt MW 
Electromotive force EMF Megohm MÍ2 
Equation Eq. Meter m 
Farad F Meter-kilogram-second MKS 
Foot, feet ft system 
Feet per minute ft/min Meters per second m/sec 
Feet per second ft/sec Mho spell 
Feet per second squared ft/sec2 Micro (prefix. m 
Figure Fig. = 1 X IO'6) 
Footcandle ft-c Microampere jiA 
Foot-pound ft-lb Microfarad pF 
Frequency spell Microhenry ^H 
Frequency modulation FM Micromho /imho 
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.. . .. . .. .. labié 3 
term abbreviation term abbreviation 

Abbreviations 

Micromicro (prefix, p Picoampere pA continued 
= 1 X 10 l2) Picofarad pF 

Micromicrofarad pF Picosecond psec 
Microsecond Msec Picowatt pW 
Microvolt nV Pound lb 
Microwatt mW Power factor PF 
Mil (= 0.001 in.) mil Problem Prob. 
Mile mi Radian . . .r

Miles per hour mi/hr Radians per second rad/sec 
Miles per minute mi/min Radio frequency RF 
Miles per second mi/sec Radius r. R 
Milli (prefix, = 1 X 10-3) m Range (distance) R 
Milliampere mA Revolutions per minute rev/min 
Millihenry mH Revolutions per second rev, sec 
Millimeter mm Root mean square rms 
Millisecond msec Secant sec 
Millivolt mV Second sec 
Milliwatt mW Sine sin 
Minimum min Square centimeter cm2

Minute min Square foot ft2

Nano (prefix, n Square inch in.2

= 1 X 10~9) Square meter m2

Nanoampere nA Square yard yd2

Nanofarad nF Tangent tan 
Nanosecond nsec Ultrahigh frequency UHF 
Nanowatt nW Var (reactive voltampere) var 
Neper Np Very high frequency VHF 
Number No. or spell Volt V 
Ohms ß Voltampere VA 
Ohms per 1000 feet 2/1000 ft Watt W 
Ounce oz Watthour Whr 
Peak-topeak p-p Wattsecond Wsec 
Pico (prefix, p Webers per square meter Wb m2

= 1 X 10 12) Yard yd 
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Table 4 lower

Greek name capital case 

Alphabet 
Alpha A a 
Beta B ß 
Gamma P y 
Delta A £ 
Epsilon E e 
Zeta Z { 
Eta H i) 
Theta e » 
lota I i 
Kappa K k 

Lambda A A 
Mu M M 
Nu N »■ 
Xi £ Í 
Omicron o o 

Pi II ” 
Rho p •>- p 
Sigma s o 
Tau T T 
Upsilon T V 
Phi <|> <> 

Chi X X 
Psi + $ 
Omega SI w 

commonly used to designate 

angles, area, coefficients 
angles, flux density, coefficients 
conductivity, specific gravity 
variation, density 
base of natural logarithms 
impedance, coefficients, coordinates 
hysteresis coefficient, efficiency 
temperature, phase angle 

dielectric constant, susceptibility 
wavelength 
micro, amplification factor, permeability 
reluctivity 

ratio of circumference to diameter = 3.1416 
resistivity 
summation 
time constant, time phase displacement 

magnetic flux, angles 

dielectric flux, phase difference 
capital, ohms; lower case, angular velocity 
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Table 5 
allowable current capacity,! A Standard 

resistance, 
Í2/1000 ft varnished Annealed 

gage diameter, area, 25°C weight, rubber cambric other Copper Wire 
number mils cir mils (77 F) lb 1000 ft insulation insulation insulations _ . . 

oooo 460.0 211.600.0 0.0500 641.0 225 270 325 American wire gage 
ooo 410.0 167,800.0 0.0630 508.0 175 210 275 (Brown and Sharpe) 
00 365.0 133,100.0 0.0795 403.0 150 180 225 
0 325.0 105,500.0 0.100 319.0 125 150 200 

1 289.0 83,690.0 0.126 253.0 100 120 150 
2 258.0 66.370.0 0.159 201.0 90 110 125 
3 229.0 52,640.0 0.201 159.0 80 95 100 
4 204.0 41,740.0 0.253 126.0 70 85 90 
5 182.0 33,100.0 0.319 100.0 55 65 80 

6 162.0 26.250.0 0.403 79.5 50 60 70 
7 144.0 20,820.0 0.508 63.0 
8 128.0 16.510.0 0.641 50.0 35 40 50 
9 114.0 13.090.0 0.808 39.6 
10 102.0 10,380.0 1.02 31.4 25 30 30 

11 91.0 8,234.0 1.28 24.9 
12 81.0 6.530.0 1.62 19.8 20 25 25 
13 72.0 5,178.0 2.04 15.7 
14 64.0 4.107.0 2.58 12.4 15 18 20 
15 57.0 3,257.0 3.25 9.86 

16 51.0 2,583.0 4.09 7.82 6 
17 45.0 2.048.0 5.16 6.20 
18 40.0 1,624.0 6.51 4.92 3 
19 36.0 1.288.0 8.21 3.90 
20 32.0 1,022.0 10.4 3.09 

21 28.5 810.0 13.1 2.45 
22 25.3 642.0 16.5 1.95 
23 22.6 509.0 20.8 1.54 
24 20.1 404.0 26.2 1.22 
25 17.9 320.0 33.0 0.970 

26 15.9 254.0 41.6 0.769 
27 14.2 202.0 52.5 0.610 
28 12.6 160.0 66.2 0.484 
29 11.3 127.0 83.4 0.384 
30 10.0 100.0 105.0 0.304 

31 8.9 79.7 133.0 0.241 
32 8.0 63.2 167.0 0.191 
33 7.1 50.1 211.0 0.152 
34 6.3 39.8 266.0 0.120 
35 5.6 31.5 335.0 0.0954 

36 5.0 25.0 423.0 0.0757 
37 4.5 19.8 533.0 0.0600 
38 4.0 15.7 673.0 0.0476 
39 3.5 12.5 848.0 0.0377 
40 3.1 9.9 1070.0 0.0299 

* Bureau of Standards Circular 31. 
t National Electrical Code. 
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Table 6 
Conversion "“’“P1* by t0 obtain

Factors* 
amperes/square centimeter 6.452 amperes square inch 
ampereturns 1.257 gilberts 
ampere turns centimeter 2.540 ampere turns inch 
ampere-turns/inch 0.4950 gilberts/centimeter 
bars 14.50 pounds/square inch 
btu 2.930 X 10 4 kilowatthours 
centimeters 0.3937 inches 
centimeters/second 0.03281 feet/second 
circular mils 5.067 x 10 G square centimeters 
circular mils 7.854 x 10 • square inches 
circular mils 0.7854 square mils 
dynes 1.020 x 10~3 grams 
dynes 2.248 x 10 « pounds 
feet 30.48 centimeters 
feet, minute 0.5080 centimeters/second 
feet/minute 0.01829 kilometers/hour 
feet minute 0.01136 miles/hour 
feet/second 0.5921 knots 
feet/second 0.6818 miles/hour 
feet/second 0.01136 miles/minute 
gauss 6.452 lines/square inch 
gilberts 0.7958 ampereturns 
gilberts/centimeter 2.021 ampereturns/inch 
grams 0.03527 ounces 
grams 2.205 x IO 3 pounds 
inches 2.540 centimeters 
inches 103 mils 
joules (international) 9.480 x 10-4 Btu 
joules (international) 107 ergs 
joules (international) 0.7378 foot pounds 
joules (international) 2.389 x IO 4 kilogram calories 
joules (international) 0.1020 kilogram meters 
joules (international) 2.778 x 10 4 watthours 
kilograms 980,665 dynes 
kilograms 2.205 pounds 
kilograms 1.102 x IO 3 tons (short) 
kilometers 0.6214 miles 
kilometers hour 54.68 feet, minute 
kilometers/hour 0.9114 feet/second 
kilowatts 56.88 Btu/minute 
kilowatts 4.427 x 104 foot pounds/minute 
kilowatts 737.8 footpounds/second 
kilowatts 1.341 horsepower 
kilowatts 14.33 kilogramcalories/minute 
kilowatthours 3,413 Btu 
kilowatthours 2.656 x 106 foot pounds 
kilowatthours 1.341 horsepowerhours 
kilowatthours 3.6 x 106 joules 

’Reprinted by permission from Ralph G Hudson. "The Engineers' Manual." 2d ed.. John 

Wiley & Sons. Inc., New York. 1939. 
+ The symbol ó represents the desity of a material expressed as a decimal fraction. 
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... . . . ... labié 6 
multiply by to obtain 

Conversion 
Factors 

kilowatthours 860 kilogramcalories 
kilowatthours 3.672 x 10* kilogram meters continued 
knots 1.689 feet, second 
lines/square centimeter 1 gauss 
lines/square inch 0.1550 gauss 
logio N 2.303 log, N or In N 
log, Nor In N 0.4343 logn, N 
lumens/square foot 1 foot candles 
megalines 106 maxwells 
megmhos/centimeter cube 0.1662 mhos-mil foot 
meters 39.37 inches 
mhos/milfoot 6.015 megmhos centimeter cube 
mhos/mil-foot 15.28 megmhos/inch cube 
miles 5280 feet 
miles 1.609 kilometers 
miles 1760 yards 
miles/hour 88 feet/minute 
miles/hour 1.467 feet/second 
mil feet 9.425 x 10~6 cubic inches 
ohms/mil foot 0.1662 microhms/centimeter cube 
ohms/mil-foot 0.06524 microhms/inch cube 
pounds 444,823 dynes 
pounds 453.6 grams 
pounds 16 ounces 
pounds (troy) 0.8229 pounds (avoirdupois) 
radians 57.30 degrees 
radians/second 0.1592 revol utions/second 
revolutions 6.283 radians 
temperature (°C) + 273 1 absolute temperature (°C) 
temperature (°C) | 17.8 1.8 temperature (°F) 
temperature (°F) + 460 1 absolute temperature (°F) 
temperature (°F) - 32 | temperature (°C) 
watts 107 ergs/second 
watts 44.27 footpounds/minute 
watthours 3.413 Btu 
watthours 0.860 kilogramcalories 
webers 10s maxwells 
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Table 7 N 0 j 2345 6789 
Common ___ 

Logarithms o 0000 3010 4771 6021 6990 7782 8451 9031 9542 

, 0000 0414 0792 1139 1461 1761 2041 2304 2553 2788 
- 3010 3222 3424 3617 3802 3979 4150 4314 4472 4624 

4771 4914 5051 5185 5315 5441 5563 5682 5798 5911 
6021 6128 6232 6335 6435 6532 6628 6721 6812 6902 

, 6990 7076 7160 7243 7324 7404 7482 7559 7634 7709 
b 

, 7782 7853 7924 7993 8062 8129 8195 8261 8325 8388 
7 8451 8513 8573 8633 8692 8751 8808 8865 8921 8976 

9031 9085 9138 9191 9243 9294 9345 9395 9445 9494 
9542 9590 9638 9685 9731 9777 9823 9868 9912 9956 

10 0000 0043 0086 0128 0170 0212 0253 0294 0334 0374 

0414 0453 0492 0531 0569 0607 0645 0682 0719 0755 
0792 0828 0864 0899 0934 0969 1004 1038 1072 1106 
1139 1173 1206 1239 1271 1303 1335 1367 1399 1430 
1461 1492 1523 1553 1584 1614 1644 1673 1703 1732 

1e 1761 1790 1818 1847 1875 1903 1931 1959 1987 2014 
lb 

2041 2068 2095 2122 2148 2175 2201 2227 2253 2279 
]7 2304 2330 2355 2380 2405 2430 2455 2480 2504 2529 

2553 2577 2601 2625 2648 2672 2695 2718 2742 2765 
2788 2810 2833 2856 2878 2900 2923 2945 2967 2989 

20 3010 3032 3054 3075 3096 3118 3139 3160 3181 3201 

3222 3243 3263 3284 3304 3324 3345 3365 3385 3404 
3424 3444 3464 3483 3502 3522 3541 3560 3579 3598 
3617 3636 3655 3674 3692 3711 3729 3747 3766 3784 

24 3802 3820 3838 3856 3874 3892 3909 3927 3945 3962 
„ 3979 3997 4014 4031 4048 4065 4082 4099 4116 4133 
Zb 

4150 4166 4183 4200 4216 4232 4249 4265 4281 4298 
4314 4330 4346 4362 4378 4393 4409 4425 4440 4456 
4472 4487 4502 4518 4533 4548 4564 4579 4594 4609 
4624 4639 4654 4669 4683 4698 4713 4728 4742 4757 

30 4771 4786 4800 4814 4829 4843 4857 4871 4886 4900 

4914 4928 4942 4955 4969 4983 4997 5011 5024 5038 
5051 5065 5079 5092 5105 5119 5132 5145 5159 5172 

33 5185 5198 5211 5224 5237 5250 5263 5276 5289 5302 
34 5315 5328 5340 5353 5366 5378 5391 5403 5416 5428 
35 5441 5453 5465 5478 5490 5502 5514 5527 5539 5551 

5563 5575 5587 5599 5611 5623 5635 5647 5658 5670 
5682 5694 5705 5717 5729 5740 5752 5763 5775 5786 
5798 5809 5821 5832 5843 5855 5866 5877 5888 5899 
5911 5922 5933 5944 5955 5966 5977 5988 5999 6010 

40 6021 6031 6042 6053 6064 6075 6085 6096 6107 6117 

4 , 6128 6138 6149 6160 6170 6180 6191 6201 6212 6222 
6232 6243 6253 6263 6274 6284 6294 6304 6314 6325 
6335 6345 6355 6365 6375 6385 6395 6405 6415 6425 

44 6435 6444 6454 6464 6474 6484 6493 6503 6513 6522 
45 6532 6542 6551 6561 6571 6580 6590 6599 6609 6618 

6628 6637 6646 6656 6665 6675 6684 6693 6702 6712 
47 6721 6730 6739 6749 6758 6767 6776 6785 6794 6803 
4g 6812 6821 6830 6839 6848 6857 6866 6875 6884 6893 
49 6902 6911 6920 6928 6937 6946 6955 6964 6972 6981 
50 6990 6998 7007 7016 7024 7033 7042 7050 7059 7067 

N 0 1 2345 6789 
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N O 2 3 4 5 6 8 9 

50 6990 6998 7007 7016 7024 7033 7042 7050 7059 7067 

51 7076 7084 7093 7101 7110 7118 7126 7135 7143 7152 
52 7160 7168 7177 7185 7193 7202 7210 7218 7226 7235 
63 7243 7251 7259 7267 7275 7284 7292 7300 7308 7316 
54 7324 7332 7340 7348 7356 7364 7372 7380 7388 7396 
55 7404 7412 7419 7427 7435 7443 7451 7459 7466 7474 

66 7482 7490 7497 7505 7513 7520 7528 7536 7543 7551 
57 7559 7566 7574 7582 7589 7597 7604 7612 7619 7627 
58 7634 7642 7649 7657 7664 7672 7679 7686 7694 7701 
59 7709 7716 7723 7731 7738 7745 7752 7760 7767 7774 
60 7782 7789 7796 7803 7810 7818 7825 7832 7839 7846 

61 7853 7860 7868 7875 7882 7889 7896 7903 7910 7917 
62 7924 7931 7938 7945 7952 7959 7966 7973 7980 7987 
63 7993 8000 8007 8014 8021 8028 8035 8041 8048 8055 
64 8062 8069 8075 8082 8089 8096 8102 8109 8116 8122 
65 8129 8136 8142 8149 8156 8162 8169 8176 8182 8189 

66 8195 8202 8209 8215 8222 8228 8235 8241 8248 8254 
67 8261 8267 8274 8280 8287 8293 8299 8306 8312 8319 
68 8325 8331 8338 8344 8351 8357 8363 8370 8376 8382 
69 8388 8395 8401 8407 8414 8420 8426 8432 8439 8445 
70 8451 8457 8463 8470 8476 8482 8488 8494 8500 8506 

71 8513 8519 8525 8531 8537 8543 8549 8555 8561 8567 
72 8573 8579 8585 8591 8597 8603 8609 8615 8621 8627 
73 8633 8639 8645 8651 8657 8663 8669 8675 8681 8686 
74 8692 8698 8704 8710 8716 8722 8727 8733 8739 8745 
75 8751 8756 8762 8768 8774 8779 8785 8791 8797 8802 

76 8808 8814 8820 8825 8831 8837 8842 8848 8854 8859 
77 8865 8871 8876 8882 8887 8893 8899 8904 8910 8915 
78 8921 8927 8932 8938 8943 8949 8954 8960 8965 8971 
79 8976 8982 8987 8993 8998 9004 9009 9015 9020 9025 
8Q 9031 9036 9042 9047 9053 9058 9063 9069 9074 9079 

gl 9085 9090 9096 9101 9106 9112 9117 9122 9128 9133 
82 9138 9143 9149 9154 9159 9165 9170 9175 9180 9186 
83 9191 9196 9201 9206 9212 9217 9222 9227 9232 9238 
34 9243 9248 9253 9258 9263 9269 9274 9279 9284 9289 
g5 9294 9299 9304 9309 9315 9320 9325 9330 9335 9340 

8g 9345 9350 9355 9360 9365 9370 9375 9380 9385 9390 
g7 9395 9400 9405 9410 9415 9420 9425 9430 9435 9440 
88 9445 9450 9455 9460 9465 9469 9474 9479 9484 9489 
g9 9494 9499 9504 9509 9513 9518 9523 9528 9533 9538 
90 9542 9547 9552 9557 9562 9566 9571 9576 9581 9586 

91 9590 9595 9600 9605 9609 9614 9619 9624 9628 9633 
92 9638 9643 964 / 9652 9657 9661 9666 9671 9675 9680 
93 9685 9689 9694 9699 9703 9708 9713 9717 9722 9727 
94 9731 9736 9741 9745 9750 9754 9759 9763 9768 9773 
95 9777 9782 9786 9791 9795 9800 9805 9809 9814 9818 

96 9823 9827 9832 9836 9841 9845 9850 9854 9859 9863 
97 9868 9872 9877 9881 9886 9890 9894 9899 9903 9908 
9g 9912 9917 9921 9926 9930 9934 9939 9943 9948 9952 
99 9956 9961 9965 9969 9974 9978 9983 9987 9991 9996 
100 0000 0004 0009 0013 0017 0022 0026 0030 0035 0039 

NO 1 2345 6789 

Table 7 
Common 
Logarithms 
continued 
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Table 8 
Natural 

Trigonometric 
Functions 

deg function 0.0" 0.1’ 0.2’ 0.3’ 0.4’ 0.5’ 0.6’ 0.7’ 0.8’ 0.9’ 

sin 0 0000 0 0017 0.0035 0.0052 0.0070 0.0087 0.0105 0.0122 0.0140 0.0157 
0 cos 1 0000 1 0000 1.0000 1.0000 1.0000 1.0000 0 9999 0.9999 0.9999 0.9999 

tan 0.0000 0.0017 0.0035 0.0052 0.0070 0.0087 0.0105 0.0122 0.0140 0.0157 

sin 0 0175 0 0192 0.0209 0.0227 0.0244 0.0262 0.0279 0.0297 0.0314 0.0332 
1 cos 0 9998 0.9998 0.9998 0.9997 0.9997 0.9997 0.9996 0.9996 0.9995 0.9995 

tan 0.0175 0.0192 0.0209 0.0227 0.0244 0.0262 0.0279 0.0297 0.0314 0.0332 

sin 0 0349 0 0366 0.0384 0.0401 0.0419 0.0436 0.0454 0.0471 0.0488 0.0506 
2 cos 09994 0.9993 0 9993 0 9992 0.9991 0 9990 0 9990 0 9989 0 9988 0.9987 

tan 0.0349 0.0367 0.0384 0.0402 0.0419 0.0437 0.0454 0.0472 0.0489 0 0507 

sin 0.0523 0.0541 0.0558 0.0576 0.0593 0.0610 0.0628 0 0645 0.0663 0 0680 
3 cos 0 9986 0.9985 0.9984 0.9983 0.9982 0.9981 0.9980 0.9979 0.9978 0.9977 

tan 0.0524 0 0542 0.0559 0.0577 0.0594 0.0612 0.0629 0.0647 0.0664 0.0682 

sin 0.0698 0.0715 0.0732 0.0750 0.0767 0.0785 0.0802 0.0819 0.0837 0.0854 
4 cos 0 9976 0 9974 0.9973 0.9972 0.9971 0.9969 0.9968 0 9966 0.9965 0.9963 

tan 0.0699 0.0717 0 0734 0.0752 0.0769 0.0787 0.0805 0.0822 0 0840 0 0857 

Sin 0.0872 0.0889 0 0906 0.0924 0.0941 0.0958 0.0976 0 0993 0.1011 0.1028 
5 cos 0 9962 0 9960 0 9959 0.9957 0.9956 0 9954 0.9952 0 9951 0 9949 0 9947 

tan 0.0875 0.0892 0.0910 0.0928 0.0945 0.0963 0.0981 0.0998 0.1016 0.1033 

sin 0.1045 0.1063 0.1080 0.1097 0.1115 0.1132 0.1149 0.1167 0.1184 0.1201 
6 cos 0.9945 0.9943 0.9942 0.9940 0.9938 0.9936 0.9934 0.9932 0.9930 0.9928 

tan 0.1051 0.1069 0.1086 0.1104 0.1122 0.1139 0.1157 0.1175 0.1192 0.1210 

sin 0.1219 0.1236 0.1253 0.1271 0.1288 0.1305 0.1323 0 1340 0.1357 0.1374 
7 cos 0.9925 0.9923 0.9921 0.9919 0.9917 0.9914 0.9912 0.9910 0.9907 0.9905 

tan 0 1228 0 1246 0.1263 0.1281 0.1299 0.1317 0.1334 0.1352 0.1370 0.1388 

sin 0.1392 0.1409 0.1426 0.1444 0.1461 0.1478 0 1495 0 1513 0.1530 0.1547 
8 cos 0 9903 0.9900 0.9898 0.9895 0.9893 0.9890 0.9888 0.9885 0.9882 0.9880 

tan 0.1405 0 1423 0.1441 0.1459 0.1477 0.1495 0.1512 0.1530 0.1548 0.1566 

sin 0.1564 0.1582 0.1599 0.1616 0.1633 0.1650 0.1668 0.1685 0.1702 0.1719 
9 cos 0.9877 0.9874 0.9871 0.9869 0.9866 0.9863 0.9860 0.9857 0.9854 0.9851 

tan 0.1584 0.1602 0.1620 0.1638 0.1655 0.1673 0.1691 0.1709 0.1727 0.1745 

sin 0.1736 0.1754 0.1771 0.1778 0.1805 0.1822 0.1840 0.1857 0 1874 0 1891 
10 cos 09848 0 9845 0.9842 0.9839 0 9836 0 9833 0 9829 0.9826 0.9823 0 9820 

tan 0.1763 0.1781 0.1799 0.1817 0.1835 0.1853 0.1871 0 1890 0.1908 0.1926 

sin 0.1908 0.1925 0.1942 0.1959 0.1977 0.1994 0.2011 0 2028 0.2045 0.2062 
11 cos 0 9816 0 9813 0 9810 0 9806 0 9803 0.9799 0.9796 0.9792 0 9789 0.9785 

tan 0.1944 0.1962 0.1980 0.1998 0.2016 0.2035 0.2053 0.2071 0.2089 0.2107 

sin 0.2079 0.2096 0.2113 0.2130 0.2147 0.2164 0.2181 0.2198 0.2215 0.2232 
12 cos 09781 0.9778 0 9774 0.9770 0 9767 0.9763 0.9759 09755 09751 0 9748 

tan 0.2126 0.2144 0.2162 0.2180 0.2199 0.2217 0.2235 0.2254 0.2272 0 2290 

sin 0.2250 0.2267 0.2284 0.2300 0.2318 0.2334 0.2351 0.2368 0.2385 0.2402 
13 cos 0.9744 0.9740 0.9736 0.9732 0.9728 0.9724 0.9720 0.9715 0.9711 0.9707 

tan 0.2309 0.2327 0.2345 0.2364 0.2382 0.2401 0.2419 0.2438 0.2456 0.2475 

sin 0.2419 0.2436 0.2453 0.2470 0.2487 0 2504 0.2521 0.2538 0 2554 0.2571 
14 cos 0.9703 0.9699 0.9694 0.9690 0.9686 0.9681 0.9677 0.9673 0.9668 0.9664 

tan 02493 0.2512 0.2530 0.2549 0.2568 0.2586 0.2605 0.2623 0.2642 0.2661 

sin 0.2588 0.2605 0.2622 0.2639 0 2656 0.2672 0 2689 0.2706 0.2723 0.2740 
15 cos 09659 0 9655 0 9650 0 9646 0 9641 0.9636 0 9632 0 9627 0 9622 0.9617 

tan 0.2679 0 2698 0.2717 0.2736 0.2754 0.2773 0.2792 0.2811 0.2830 0 2849 

sin 0 2756 0.2773 0.2790 0.2807 0.2823 0.2840 0 2857 0 2874 0 2890 0 2907 
16 cos 0.9613 0.9608 0 9603 0.9598 0.9593 0.9588 0 9583 0 9578 0.9573 0.9568 

tan 0.2867 0 2886 0.2905 0.2924 0.2943 0.2962 0.2981 0.3000 0.3019 0 3038 

sin 0 2924 0.2940 0.2957 0.2974 0.2990 0.3007 0 3024 0 3040 0 3057 0.3074 
17 cos 0 9563 0.9558 0.9553 0 9548 0.9542 0.9537 0 9532 0 9527 0.9521 0 9516 

tan 0.3057 0.3076 0.3096 0.3115 0.3134 0.3153 0.3172 0.3191 0 3211 0.3230 

sin 0 3090 0.3107 0.3123 0.3140 0.3156 0.3173 0.3190 0 3206 0.3223 0.3239 
18 cos 0 9511 0 9505 0.9500 0.9494 0.9489 0.9483 0.9478 0.9472 0.9466 0.9461 

tan 0.3249 0.3269 0.3288 0.3307 0.3327 0.3346 0.3365 0 3385 0.3404 0.3424 

sin 0 3256 0.3272 0.3289 0.3305 0.3322 0.3338 0.3355 0 3371 0 3387 0 3404 
19 cos 0 9455 0 9449 0 9444 0.9438 0.9432 0.9426 0.9421 0.9415 0.9409 0.9403 

tan 0.3443 0.3463 0.3482 0.3502 0.3522 0.3541 0 3561 0.3581 0 3600 0 3620 

sin 0 3420 0 3437 0 3453 0 3469 0.3486 0.3502 0.3518 0 3535 0.3551 0 3567 
20 cos 0 9397 0.9391 0.9385 0.9379 0.9373 0.9367 0.9361 0 9354 0 9348 0.9342 

tan 0.3640 0 3659 0.3679 0 3699 0.3719 0.3739 0.3759 0.3779 0 3799 0 3819 

deg function 0' 6' 12' 18' 24 30 36 42 48 54 
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deg function 0.0° 0.1° 0.2° 0.3° 0.4° 0.5” 0 6° 0.7° 0.8° 0.9° ' a $/e 8 
Natural 

sin 0.3584 0 3600 0 3616 0 3633 0 3649 0 3665 0 3681 0 3697 0 3714 0 3730 Triannnmafrie 
21 cos 0 9336 0 9330 0 9323 0.9317 0 9311 0.9304 0 9298 0 9291 0 9285 0 9278 ' ''gUnomeiriC 

tan 0.3839 0 3859 0 3879 0 3899 0.3919 0.3939 0 3959 0 3979 0 4000 0 4020 Functions 
sin 0 3746 0 3762 0 3778 0 3795 0.3811 0 3827 0,3843 0 3859 0.3875 0 3891 rnnimood 

22 cos 0 9272 0 9265 0 9259 0 9252 0 9245 0 9239 0 9232 0 9225 0.9219 0 9212 
tan 0 4040 0 4061 0 4081 04101 0.4122 0 4142 0 4163 0 4183 0 4204 0 4224 

sin 03907 0.3923 0.3939 0 3955 03971 0 3987 0 4003 0.4019 0 4035 04051 
23 cos 09205 0 9198 0.9191 09184 0 9178 0 9171 0 9164 0 9157 0.9150 0 9143 

tan 0.4245 0.4265 0.4286 0.4307 0.4327 0.4348 0 4369 0.4390 0.4411 04431 

sin 0 4067 0 4083 0 4099 0 4115 0.4131 0.4147 0.4163 0.4179 0 4195 0.4210 
24 cos 0.9135 0 9128 0 9121 0 9114 0.9107 0.9100 0 9092 0 9085 0.9078 0 9070 

tan 04452 0.4473 0.4494 0.4515 0.4536 0.4557 0 4578 0.4599 0.4621 0.4642 

sin 0.4226 0 4242 0.4258 0 4274 0 4289 0.4305 0.4321 0.4337 0 4352 0 4368 
25 cos 0.9063 0 9056 0.9048 0 9041 0.9033 0.9026 0 9018 0.9011 0.9003 0 8996 

tan 0.4663 0.4684 0.4706 0.4727 0.4748 0.4770 0.4791 0.4813 0.4834 0.4856 

sin 0.4384 0.4399 0.4415 0.4431 0.4446 0.4462 0.4478 0.4493 0.4509 0.4524 
26 cos 08988 0.8980 0.8973 0.8965 0.8957 0.8949 0 8942 0.8934 0.8926 0.8918 

tan 0 4877 0 4899 0.4921 0 4942 0 4964 0 4986 0 5008 0 5029 0.5051 0 5073 

sin 0.4540 0.4555 0.4571 0.4586 0.4602 0.4617 0.4633 0.4648 0.4664 0.4679 
27 cos 0.8910 0.8902 0.8894 0.8886 0.8878 0.8870 0.8862 0.8854 0.8846 0.8838 

tan 05095 0.5117 0.5139 0.5161 0.5184 0 5206 0 5228 0.5250 0.5272 0.5295 

sin 0.4695 0.4710 0.4726 0.4741 0.4756 0.4772 0.4787 0.4802 0.4818 0.4833 
28 cos 0.8829 0.8821 0.8813 0.8805 0.8796 0.8788 0.8780 0.8771 0.8763 0.8755 

tan 0.5317 0.5340 0.5362 0.5384 0.5407 0.5430 0.5452 0.5475 0.5498 0.5520 

sin 0.4848 0.4863 0.4879 0.4894 0.4909 0.4924 0.4939 0.4955 0.4970 0.4985 
29 cos 0.8746 0.8738 0.8729 0.8721 0.8712 0.8704 0.8695 0.8686 0.8678 0.8669 

tan 0.5543 0.5566 0.5589 0.5612 0.5635 0.5658 0.5681 0.5704 0.5727 0.5750 

sin 0.5000 0.5015 0.5030 0 5045 0 5060 0.5075 0 5090 0.5105 0.5120 0 5135 
30 cos 0.8660 0.8652 0.8643 0 8634 0.8625 0.8616 0.8607 0.8599 0.8590 0 8581 

tan 0.5774 0 5797 0.5820 0 5844 0.5967 0.5890 0 5914 0 5938 0 5961 0 5985 

sin 0.5150 0.5165 0.5180 0 5195 0.5210 0.5225 0.5240 0.5255 0.5270 0 5284 
31 cos 0.8572 0.8563 0.8554 0.8545 0.8536 0.8526 0.8517 0.8508 0.8499 0.8490 

tan 06009 0.6032 0.6056 0 6080 0 6104 0.6128 0 6152 0.6176 0 6200 0.6224 

sin 0 5299 0 5314 0.5320 0 5344 0 5358 0.5373 0.5388 0.5402 0.5417 0 5432 
32 cos 0 8480 0 8471 0 8462 0 8453 0 8443 0 8434 0.8425 0.8415 0.8406 0.8396 

tan 0.6249 0 6273 0.6297 0 6322 0.6346 0.6371 0 6395 0.6420 0 6445 0 6469 

Sin 0 5446 0.5461 0.5476 0.5490 0.5505 0.5519 0.5534 0.5548 0.5563 0.5577 
33 cos 0 8387 0 8377 0 8368 0 8358 0 6348 U.Õ339 0 8329 0 8320 0.8310 0 8300 

tan 0.6494 0.6519 0.6544 0 6569 0.6594 0 6619 0 6644 0.6669 0 6694 U.672O 

sin 05592 0 5606 0.5621 0 5635 0 5650 0.5664 0.5678 0.5693 0.5707 0.5721 
34 cos 0 8290 0 8281 0.8271 0 8261 0 8251 0.8241 0 8231 0 8221 0.8211 0 8202 

tan 0.6745 0 6771 0.6796 0.6822 0 6847 0.6873 0 6899 0 6924 0 6950 0.6976 

sin 0.5736 0.5750 0.5764 0.5779 0.5793 0.5807 0.5821 0.5835 0.5850 0.5864 
35 cos 0.8192 08181 0.8171 08161 08151 08141 08131 0.8121 08111 08100 

tan 0.7002 0 7028 0.7054 0.7080 0.7107 0.7133 0.7159 0.7186 0.7212 0.7239 

sin 0 5878 0.5892 0.5906 0.5920 0.5934 0.5948 0.5962 0.5976 0 5990 0.6004 
36 COS 0.8090 0.8080 0.8070 0.8059 0.8049 0.8039 0.8028 0 8018 0 8007 0 7997 

tan 0.7265 0.7292 0.7319 0.7346 0.7373 0.7400 0 7427 0.7454 0 7481 0 7508 

Sin 0.6018 0 6032 0.6046 0.6060 0.6074 0 6088 0.6101 0.6115 0.6129 0.6143 
37 cos 0 7986 0 7976 0 7965 0.7955 0.7944 0 7934 0.7923 0.7912 0 7902 0 7891 

tan 0.7536 0 7563 0.7590 0.7618 0.7646 0.7673 0 7701 0.7729 0 7757 0 7785 

sin 0 6157 0 6170 0.6184 0.6198 0.6211 0.6225 0 6239 0.6252 0 6266 0 6280 
38 SOS 0.7880 0.7869 0.7859 0.7848 0.7837 0.7826 0.7815 0.7804 0 7793 0 7782 

•an 0.7813 0 7841 0.7869 0 7898 0.7926 0.7954 0.7983 0.8012 0 8040 0.8069 

sin 0.6293 0 6307 0.6320 0.6334 0 6347 0.6361 0.6374 0.6388 0 6401 0 6414 
39 '«’S 0.7771 0.7760 0.7749 0.7738 0.7727 0.7716 0 7705 0.7694 0.7683 0.7672 

tan 0 8098 0.8127 0.8156 0.8185 0.8214 0.8243 0.8273 0 8302 0.8332 0 8361 

sin 0.6428 0.6441 0.6455 0.6468 0.6481 0.6494 0.6508 0.6521 0 6534 0 6547 
40 SOS 0.7660 0.7649 0.7638 0.7627 0.7615 0.7604 0.7593 0.7581 0.7570 0.7559 

tan 0.8391 0.8421 0.8451 0.8481 0.8511 0 8541 0.8571 0.8601 0 8632 0.8662 

sin 0 6561 0.6574 0 6587 0 6600 0 6613 0.6626 0 6639 0.6652 0.6665 0.6678 
41 cos 0.7547 0 7536 0.7524 0 7513 0.7501 0.7490 0 7478 0 7466 0 7455 0.7443 

tan 0.8693 0.8724 0.8754 0.8785 0.8816 0 8847 0 8878 0.8910 0 8941 0.8972 

deg function O' 6' 12' 18' 24' 30' 36' 42' 48’ 54' 
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Table 8 . . dee function 0.0° 0.1° 0.2° 0.3° 0.4° 0.5° 0.6° 0.7° 0.8° 0.9 
Natural -

Trionnnmetric sin 0.6691 0.6704 0.6717 0.6730 0.6743 0.6756 0.6769 0.6782 0.6794 0 6807 
° 42 cos 0.7431 0.7420 0.7408 0.7396 0.7385 0.7373 0.7361 0.7349 0.7337 0.7325 
functions tan 0.9004 0 9036 0 9067 0 9099 0.9131 0.9163 0.9195 0.9228 0.9260 0.9293 

rnntinued sin 0.6820 0 6833 0.6845 0.6858 0 6871 0 6884 0.6896 0 6909 0.6921 0 6934 
43 cos 0.7314 0 7302 0 7290 0.7278 0 7266 0.7254 0 7242 0 7230 0.7218 0 7206 

tan 0.9325 0 9358 0.9391 0 9424 0 9457 0.9490 0.9523 0.9556 0 9590 0 9623 

sin 0.6947 0 6959 0.6972 0 6984 0.6997 0.7009 0.7022 0.7034 0.7046 0.7059 
44 cos 0 7193 0.7181 0.7169 0.7157 0 7145 0.7133 0.7120 0.7108 0.7096 0 7083 

tan 0.9657 0 9691 0.9725 0.9759 0.9793 0.9827 0.9861 0.9896 0.9930 0.9965 

s'" 0.7071 0.7083 0.7096 0.7108 0.7120 0.7133 0.7145 0.7157 0.7169 0.7181 
45 cos 0 7071 0.7059 0 7046 0 7034 0 7022 0.7009 0 6997 0 6984 0.6972 0 6959 

tan 1.0000 1.0035 1.0070 1.0105 1.0141 1.0176 1.0212 1.0247 1.0283 1.0319 

si" 0.7193 0.7206 0.7218 0.7230 0.7242 0.7254 0.7266 0.7278 0.7290 0.7302 
46 cos 0 6947 0.6934 0.6921 0 6909 0.6896 0 6884 0 6871 0 6858 0.6845 0.6833 

'a" 1.0355 1 0392 1.0428 1.0464 1 0501 1.0538 1.0575 1.0612 1.0649 1.0686 

si" 0.7314 0.7325 0.7337 0.7349 0.7361 0.7373 0.7385 0.7396 0.7408 0.7420 
47 cos 0 6820 0.6807 0.6794 0.6782 0.6769 0.6756 0.6743 0.6730 0.6717 0.6704 

tan 1.0724 1.0761 1.0799 1.0837 1 0875 1.0913 1.0951 1.0990 1.1028 1 1067 

sin 0.7431 0.7443 0.7455 0.7466 0.7478 0.7490 0 7501 0 7513 0.7524 0.7536 
48 cos 0 6691 0 6678 0.6665 0.6652 0.6639 0.6626 0 6613 0 6600 0.6587 0.6574 

tan 1.1106 1 1145 1 1184 1.1224 1 1263 1 1303 1 1343 1 1383 1.1423 1 1463 

sin 0.7547 0.7559 0.7570 0.7581 0.7593 0.7604 0 7615 0.7627 0.7638 0.7649 
49 cos 0.6561 0.6547 0.6534 0.6521 0.6508 0.6494 0.6481 0.6468 0 6455 0.6441 

tan 1 1504 1 1544 1.1585 1.1626 1.1667 1.1708 1.1750 1.1792 1.1833 1.1875 

sin 0 7660 0.7672 0 7683 0.7694 0.7705 0.7716 0 7727 0.7738 0.7749 0.7760 
50 cos 0.6428 0 6414 0.6401 0.6388 0.6374 0.6361 0.6347 0 6334 0.6320 0 6307 

tan 1.1918 1.1960 1.2002 1.2045 1.2088 12131 1.2174 1 2218 1.2261 1.2305 

sin 0.7771 0 7782 0.7793 0.7804 0.7815 0.7826 0 7837 0.7848 0.7859 0.7869 
51 cos 0.6293 0 6280 0.6266 0.6252 0.6239 0.6225 0.6211 0.6198 0.6184 0.6170 

•an 1.2349 1.2393 1.2437 1.2482 1.2527 1.2572 1.2617 1.2662 1.2708 1.2753 

sin 0.7880 0.7891 0.7902 0.7912 0.7923 0.7934 0 7944 0.7955 0.7965 0.7976 
52 cos 0.6157 0 6143 0.6129 0.6115 0.6101 0.6088 0.6074 0.6060 0 6046 0 6032 

tan 1.2799 1.2846 1.2892 1.2938 1.2985 1.3032 1.3079 1.3127 1.3175 1.3222 

sin 0.7986 0.7997 0.8007 0.8018 0.8028 0.8039 0.8049 0.8059 0.8070 0.8080 
53 cos 06018 06004 0.5990 0 5976 0.5962 0.5948 0 5934 0.5920 0.5906 0 5892 

tan 1.3270 1.3319 1.3367 1 3416 1.3465 1.3514 1 3564 1.3613 1 3663 1.3713 

sin 0.8090 0.8100 0.8111 0.8121 0.8131 0.8141 0.8151 0.8161 0.8171 0.8181 
54 cos 0.5878 0 5864 0.5850 0.5835 0.5821 0.5807 0 5793 0.5779 0.5764 0.5750 

tan 1.3764 1 3814 1 3865 1.3916 1.3968 1.4019 1 4071 1 4124 1.4176 1 4229 

sin 0.8192 0.8202 0.8211 0.8221 0.8231 0.8241 0.8251 0.8261 0.8271 0.8281 
55 cos 0.5736 0.5721 0.5707 0.5693 0.5678 0.5664 0.5650 0.5635 0.5621 0.5606 

tan 1 4281 1 4335 1 4388 1 4442 1 4496 1.4550 1 4605 1.4659 1.4715 1.4770 

sin 0.8290 0.8300 0.8310 0.8320 0.8329 0.8339 0 8348 0.8358 0.8368 0.8377 
56 cos 0.5592 0.5577 0.5563 0 5548 0.5534 0.5519 0 5505 0 5490 0.5476 0 5461 

tan 1 4826 1 4882 1.4938 1.4994 1.5051 1.5108 1.5166 1.5224 1.5282 1.5340 

sin 0.8387 0.8396 0.8406 0.8415 0.8425 0.8434 0 8443 0 8453 0 8462 0 8471 
57 cos 0.5446 0.5432 0.5417 0 5402 0.5388 0.5373 0 5358 0.5344 0.5329 0.5314 

tan 1 5399 1 5458 1.5517 1 5577 1.5637 1.5697 1.5757 1.5818 1 5880 1 5941 

sin 0 8480 0 8490 0.8499 0 8508 0.8517 0.8526 0 8536 0 8545 0.8554 0 8563 
58 COS 0 5299 0 5284 0.5270 0.5255 0.5240 0.5225 0.5210 0.5195 0.5180 0 5165 

tan 1 6003 1.6066 1.6128 1.6191 1 6255 1.6319 1 6383 1.6447 1.6512 1.6577 

sin 0 8572 0 8581 0.8590 0.8599 0.8607 0.8616 0.8625 0.8634 0.8643 0.8652 
59 cos 05150 0.5135 0 5120 0.5105 0.5090 0.5075 0 5060 0 5045 0.5030 0 5015 

•an 1.6643 1.6709 1.6775 1.6842 1.6909 1.6977 1.7045 1.7113 1.7182 1.7251 

sin 0.8660 0.8669 0.8678 0.8686 0.8695 0.8704 0.8712 0.8721 0.8729 0.8738 
60 cos 0.5000 0.4985 0.4970 0.4955 0.4939 0.4924 0.4909 0.4894 0.4879 0.4863 

•an 1 7321 1 7391 1.7461 1 7532 1.7603 1.7675 1.7747 1 7820 1 7893 1.7966 

sin 0.8746 0.8755 0.8763 0.8771 0.8780 0.8788 0.8796 0.8805 0.8813 0 8821 
61 cos 0 4848 0 4833 0 4818 0 4802 0 4787 0.4772 0 4756 0 4741 0 4726 0.4710 

•an 1.8040 1 8115 1.8190 1.8265 1.8341 1 8418 1 8495 1.8572 1 8650 1.8728 

sin 0 8829 0 8838 0 8846 0.8854 0.8862 0.8870 0 8878 0.8886 0.8894 0 8902 
62 cos 0 4695 0 4679 0 4664 0.4648 0.4633 0.4617 0.4602 0 4586 0.4571 0.4555 

•an I 8807 1 8887 1 8967 1 -9047 1 9128 1 92 10 1.9292 1.9375 1 9458 1 9542 

de* function O’ 6’ 12’ 18’ 24’ 30’ 36’ 42’ 48 54’ 
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den function 0.0” 0.1” 0.2’ 0.3’ 0.4’ 0.5’ 0.6° 0.7’ 0.8’ 0.9’ Table 8 
Natural 

sjn 0.8910 0.8918 0.8926 0.8934 0.8942 0 8949 0.8957 0.8965 0.8973 0.8980 
63 cos 0.4540 0 4524 0.4509 0 4493 0 4478 0.4462 0 4446 0.4431 0 4415 0 4399 1 rigOnOmetriC 

tan 1 9626 1 9711 1.9797 1 9883 1 9970 2 0057 2.0145 2 0233 2 0323 20413 Functions 
sjn 0.8988 0 8996 0 9003 0 9011 0.9018 0 9026 0.9033 0 9041 0 9048 0 9056 

64 cos 04384 04368 0.4352 0 4337 0.4321 0 4305 0 4289 04274 0.4258 0 4242 Continued 
tan 2.0503 2.0594 2 0686 2.0778 2.0872 2.0965 2 1060 2.1155 2 1251 2.1348 

sjn 0.9063 0.9070 0.9078 0.9085 0.9092 0.9100 0 9107 0.9114 0.9121 0.9128 
65 cos 0.4226 0.4210 0.4195 0 4179 0 4163 0.4147 0.4131 0.4115 0 4099 0.4083 

tan 2.1445 2.1543 2.1642 2.1742 2.1842 2.1943 2.2045 2.2148 2.2251 2.2355 

sjn 0.9135 0 9143 0.9150 0.9157 0.9164 0.9171 0.9178 0.9184 0.9191 0.9198 
66 cos 0.4067 04051 0.4035 04019 0.4003 0.3987 03971 0.3955 0.3939 0.3923 

tan 2.2460 22566 2.2673 2.2781 2.2889 2.2998 2.3109 2.3220 2.3332 2.3445 

sin 0.9205 0.9212 0.9219 0.9225 0.9232 0.9239 0 9245 0.9252 0.9259 0.9265 
67 cos 0.3907 0.3891 0.3875 0 3859 0.3843 0.3827 0 3811 0.3795 0.3778 0.3762 

tan 2.3559 2.3673 2.3789 2 3906 2.4023 2.4142 2 4262 2 4383 2.4504 2.4627 

sjn 0.9272 0.9278 0.9285 0 9291 0.9298 0.9304 0 9311 0.9317 0.9323 0.9330 
68 cos 0.3746 0.3730 0.3714 0.3697 0 3681 0.3665 0 3649 0.3633 0.3616 0.3600 

tan 2.4751 2.4876 2.5002 2 5129 2.5257 2.5386 2.5517 2.5649 2.5782 2 5916 

sin 0.9336 0.9342 0.9348 0 9354 0 9361 0.9367 0.9373 0 9379 0.9385 0.9391 
69 . cos 0.3584 0.3567 0.3551 0.3535 0.3518 0.3502 0.3486 0.3469 0.3453 0.3437 

* tan 2.6051 2.6187 2.6325 2.6464 2.6605 2.6746 2 6889 2.7034 2.7179 2.7326 

sjn 0.9397 0 9403 0.9409 0 9415 0.9421 0.9426 0.9432 0.9438 0.9444 0.9449 
70 cos 0.3420 0.3404 0.3387 0.3371 0.3355 0.3338 0.3322 0.3305 0.3289 0.3272 

tan 2.7475 2.7625 2.7776 2.7929 2.8083 2.8239 2.8397 2.8556 2.8716 2 8878 

jn 0.9455 0.9461 0.9466 0.9472 0.9478 0.9483 0 9489 0 9494 0.9500 0.9505 
71 cos 0.3256 03239 0.3223 0.3206 0.3190 0.3173 0.3156 0.3140 0.3123 0.3107 

tan 2.9042 2.9208 2.9375 2.9544 2.9714 2.9887 3.0061 3.0237 3.0415 3.0595 

sjn 0.9511 0.9516 0.9521 0.9527 0.9532 0.9537 0 9542 0 9548 0 9553 0.9558 
72 cos 0.3090 0.3074 0.3057 0.3040 0.3024 0.3007 0.2990 0.2974 0.2957 0.2940 

tan 3.0777 30961 3.1146 3.1334 3.1524 3.1716 3.1910 3.2106 3.2305 3.2506 

$jn 0.9563 0.9568 0.9573 0.9578 0 9583 0.9588 0.9593 0.9598 0 9603 0.9608 
73 0.2924 0.2907 0.2890 0 2874 0 2857 0.2840 0 2823 0.2807 0.2790 0.2773 

tan 3.2709 3.2914 3.3122 3.3332 3.3544 3.3759 3.3977 3.4197 3.4420 3 4646 

sjn 0.9613 0 9617 0.9622 0.9627 0.9632 0.9636 0 9641 0.9646 0.9650 0 9655 
74 cos 0.2756 02740 0.2723 0.2706 0.2689 0.2672 0.2656 0.2639 0.2622 0 2605 

tan 3.4874 35105 3.5339 3.5576 3 5816 3 6059 3 6305 3.6554 3 6806 3.7062 

sjn 0.9659 0 9664 0.9668 0.9673 0.9677 0.9681 0 9686 0.9690 0 9694 0.9699 
75 cos 0 2588 Q.2571 0.2554 0.2538 0.2521 0.2504 0 2487 0 2470 0 2453 0.2436 

tan 3.7321 3 7583 3 7848 3.8118 3 8391 3.8667 3 8947 3 9232 3.9520 3 9812 

sjn 0.9703 0.9707 0.9711 0 9715 0.9720 0.9724 0.9728 0.9732 0.9736 0.9740 
76 cos 0.2419 0.2402 0.2385 0.2368 0.2351 0.2334 0.2317 0.2300 0 2284 0 2267 

tan 4.0108 4.0408 4.0713 4 1022 4 1335 4.1653 4.1976 4.2303 4.2635 4.2972 

sjn 0.9744 09748 09751 0.9755 0 9759 0.9763 0.9767 0.9770 0.9774 0.9778 
77 cos 0.2250 0.2232 0.2215 0.2198 0.2181 0.2164 0.2147 0.2130 0.2113 0.2096 

tan 4.3315 4 3662 4.4015 4 4374 4 4737 4.5107 4.5483 4 5864 4.6252 4 6646 

sin 0.9781 0.9785 0.9789 0.9792 0.9796 0.9799 0.9803 0.9806 09810 0.9813 
78 cos 0.2079 0.2062 0.2045 0.2028 0.2011 0.1994 0.1977 0.1959 0.1942 0.1925 

tan 4.7046 4.7453 4 7867 4.8288 4.8716 4.9152 4 9594 5 0045 5.0504 5.0970 

sin 0.9816 0.9820 0.9823 0.9826 0.9829 0.9833 0.9836 0.9839 0.9842 0.9845 
79 cos 0.1908 0.1891 0.1874 0.1857 0.1840 0.1822 0 1805 0 1788 0.1771 0 1754 

tan 5.1446 5.1929 5.2422 5.2924 5.3435 5.3955 5.4486 5.5026 5.5578 5.6140 

sin 0.9848 0 9851 0.9854 0.9857 0.9860 0.9863 0.9866 0 9869 0 9871 0.9874 
80 cos 0.1736 0 1719 0.1702 0.1685 0 1668 0.1650 0.1633 0 1616 0.1599 0 1582 

tan 5.6713 5 7297 5 7894 5.8502 5.9124 5.9758 6.0405 6.1066 6.1742 6 2432 

sin 0.9877 0 9880 0.9882 0.9885 0.9888 0.9890 0.9893 0 9895 0.9898 0.9900 
81 cos 0.1564 0 1547 0 1530 0.1513 0 1495 0 1478 0 1461 0 1444 0 1426 0.1409 

tan 6.3138 6 3859 6 4596 6.5350 66122 6 6912 6.7720 6 8548 6.9395 7.0264 

sin 09903 0.9905 0.9907 0.9910 09912 0.9914 0.9917 09919 0.9921 0.9923 
82 cos 0.1392 0.1374 0.1357 0.1340 0.1323 0 1305 0 1288 0.1271 0.1253 0 1236 

tan 7.1154 7 2066 7 3002 7.3962 7 4947 7 5958 7 6996 7 8062 7 9158 8 0285 

sin 0 9925 0 9928 0 9930 0.9932 0 9934 0 9936 0 9938 0 9940 0 9942 0.9943 
88 cos 0.1219 0.1201 0.1184 0.1167 0.1149 0.1132 0 1115 0 1097 0 1080 0 1063 

tan 8.1443 8 2636 8.3863 8.5126 8 6427 8 7769 8 9152 9 0579 9 2052 9 3572 

den function O' 6' 12' 18' 24’ 30’ 36' 42' 48' 54' 
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Table 8 deg function 0.0“ 0.1“ 0.2“ 0.3“ 0.4“ 0.5“ 0.6“ 0.7“ 0.8 0.9 
Natural 

Trigonometric sin 09945 0.9947 0.9949 0.9951 0.9952 0.9954 09956 0.9957 09959 09960 
r . 84 cos 0.1045 0.1028 0.1011 0.0993 0.0976 0.0958 0.0941 0.0924 0.0906 0.0889 
runctions tan 9.5144 9 6768 9 8448 10.02 10.20 10 39 10 58 10.78 10.99 11.20 
continued sin 0.9962 09963 0.9955 0.9966 0.9968 09959 09971 0.9972 0.9973 09974 

85 cos 0.0872 0.0854 0 0837 0.0819 0.0802 0 0785 0 0767 0.0750 0.0732 0 0715 
tan 1143 11 66 11.91 12 16 1243 12.71 13.00 13 30 13.62 13.95 

sin 0.9976 0.9977 0.9978 0.9979 0.9980 0.9981 0.9982 0.9983 0.9984 0.9985 
86 cos 0.0698 0.0680 0.0663 0.0645 0.0628 0.0610 0.0593 0 0576 0.0558 0.0541 

tan 1430 14.67 15.06 15.46 15.89 16.35 16.83 17.34 17.89 1846 

Sin 0.9986 0.9987 0.9988 0.9989 0.9990 0.9990 0.9991 0.9992 0.9993 0.9993 
87 cos 0 0523 0 0506 0 0488 0.0471 0 0454 0 0436 0 0419 0 0401 0 0384 0 0366 

tan 19 08 19 74 20 45 21.20 ' 22.02 22 90 23.86 24 90 26.03 27 27 

sin 0.9994 0.9995 0.9995 0.9996 0.9996 0 9997 0 9997 0 9997 0 9998 0 9998 
88 cos 0 0349 0.0332 0.0314 0.0297 0.0279 0.0262 0.0244 0.0227 0.0209 0.0192 

tan 28.64 30.14 31.82 33.69 35.80 38.19 40.92 44.07 47.74 52 08 

sin 0.9998 0.9999 0.9999 0 9999 0.9999 1 000 1 000 1.000 1 000 1 000 
89 cos 00175 0.0157 0.0140 0.0122 0.0105 0.0087 0.0070 0 0052 0 0035 0 0017 

tan 57 29 63 66 71.62 81 85 95 49 1146 143 2 191 0 286.5 573.0 

deg function 0' 6' 12' 18' 24 30' 36' 42' 48 54 
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0.000000000000000001 = 
0.000000000000001 = 

0.000000000001 = 
0.000000001 = 

0.000001 = 
0.001 = 

1 = 
1.000 = 

1,000,000 = 
1,000,000,000 = 

1.000,000,000,000 = 

10 18 = ten to the negative eighteenth power = atto a 
10 15 = ten to the negative fifteenth power = femto f 
10 12 = ten to the negative twelfth power = pico p 
10 9 = ten to the negative ninth power = nano n 
10" = ten to the negative sixth power = micro p 
IO -3 = ten to the negative third power = milli m 
10" = ten to the zero power = unit 
103 = ten to the third power = kilo k 
106 = ten to the sixth power = Mega M 
10® = ten to the ninth power = Giga G 
1012 = ten to the twelfth power = Tera T 

Table 9 
Decimal 
Multipliers 
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answers to odd-numbered problems 

note Th® accuracy of answers to numerical computations is, in general, that obtain¬ 
able with a ten-inch slide rule. 

PROBLEMS 2 . 1 

1 (a) 25 times R 
(ft) 6 times r 
(c) 0.25 times I 

3 (a) $396.00 
(b) $2.75n 

5 12.5/A 

PROBLEMS 2 . 2 

1 (a) 72 
(6) 276 
(c) 1296 
(d) 72 
(e) 36 
(/) 207 

3 (a) Monomial 
(6) Monomial 
(c) Monomial 
(d) Binomial 
(e) Trinomial 
(/) Binomial 
(g) Trinomial 
(h) Trinomial 
(0 Monomial 
(j) Trinomial 

7 IC pF. 4C pF. 48C pF 

9 (a) 16 + R Í2 
(ft) e + 220 V 
(c) / - Z A 

13 (a) 44 A 
(ft) 0.25 A 

15 (a) 5.45 sec 
(ft) 1.25 sec 

11 L2 = L, - 125 mH 17 (a) 0.960 ft 
(ft) 11.5 in. 

5

(ft) E = IR 
(c) P = RP 
(d) Ri= R2 + R3

W K _ M 
\L\L-2 

if) r . R\R¿ 
" Ri + R2

(g) N = + 1 
zls
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ANSWERS TO 
ODD-NUMBERED 
PROBLEMS 

7 1470 ¡i Note that, all other factors remaining equal, if the number of turns is 
tripled, the inductance is multiplied by a factor of nine (32). 

9 (a) Increased by a factor of 4 
(b) Increased by a factor of 9 
(c) Reduced to a value one fourth the original. 

PROBLEMS 3 • 1 

1 71 7 -1081 13 -10¿ 

3 -46 9 208.56 15 £ 

5 28 11 4 

PROBLEMS 3 • 2 

1 61 5 994 9 

3 213 7 3.84 11 

PROBLEMS 3 • 3 

1 lit 

3 1127Z 

5 47 - 5i 

7 3IR + 13« 

13 1.46e7 + 3.82 W + 0.75Pr 

15 -^ft-2^Z 

PROBLEMS 3 ■ 4 

1 3 - 7y 5 10< - i 
n 

3 10« - 3X + 3 _ 7 a + 2p 

PROBLEMS 3.5 

1 (a) 3X + (Xc — XL + Z) 
(6) a + (6/i — 3$ + X) 
(c) 5W + (672fi - 3EI + 7PZ) 

(d) + (-3PR + 7PZ - IE!) 
R 

(e) 8K + 3p + ( — 70 — 3<^ + 6a) 

3 X- + R- - N 

- 10JL 13 $364.80 

(a) 67° 15 242 V 
(b) 26° 
(c) 159° 

9 1280 -U0<> 

11 27 Pr + 10W - 3ei + 49«.’ 

17 10<> + 100 

19 47.6^- - 16.4Æ7 + 5.87-« 
R 

21 3.907Z - 1.317« - 0.417X 

23 6.64i^ — 7. 1Ä 

iEI 9 17a - 106 + 6c 

5 16.8 + eV 

7 Z - Vr2 + X2

9 P - PR 
R 

11
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PROBLEMS 4 . 1 

1 12 7 0 000000938 13 1
2^fCp

3 13.6 9 eit 

15 
5 -Hi H ^fL,L2

PROBLEMS 4.2 

1 X5 9 abmn*p 15 
4 

3 -e10 11 8p3
17 —0.075e3iiru> 

5 6m^ 13 ßa^b^^d 1
19 a6

7 -60m^x3

PROBLEMS 
2 2 
TO 

PROBLEMS 
4.4 

PROBLEMS 4 - 3 

1 18a + 30ft 

3 4PÄ! + 8/-R2

5 4.7X2<> + 9.40p - 14.1p<> 

7 2a4/?2 + 1.5a3/?3 — 2.5a2ßi

9 15a3riT2 + 6a2rt2r> — 18art3r2 

n  iT'RZ iPWZ _ WIZ2
3 6 9 

13 81'PR - 6Ii2Pr + 2IP2

PROBLEMS 4.4 

1 a2 + 2a + 1 

3 a2 - 2a + 1 

5 ß2 - 9 

7 p2 + 8p + 15 

9 r2 - 8r — 33 

11 m2 + 6m + 8 

13 3a2 + 15aß - 42ß2

15 0.157EVZ3 + 0.314Æ/Z3 - 10.5/Z« 

17 15<> - 210 

19 03 - <>3

21 0.9 rrw + 3»;w2 + 2.5>¡w2 — 6.5ww3

»o 8XE2 ax r A<?223-L 4XEe-
3 2 

25 0.125//? - 0.025//?! - 0./125//?2

27 0 

29 7s 

15 602 - 70Ä - 5A2

17 6m2 - 5mn — 6n2

19 5/?2 - \1RZ + 6Z2

21 6a3 + 17a2 + 2a - 1 

23 2Ä3 - 2R2r - 2Rr2 + 2r' 

25 a3 — a2b — ab2 + b3

27 03 - 02</> - 0<i>2 + </>3
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ANSWERS TO 
ODD NUMBERED 
PROBLEMS 

29 a3 + 3a26 + 3ab2

31 X- + 2xy + y2

33 M2 - 2MN + N2

PROBLEMS 4 ■ 5 

1 5 

3 5 

5 -I 

PROBLEMS 4 • 6 

1 4x2Y> 

3 -29<>^3

_ 4XcZ2

5 -3“ 

7 3îi4À3ir 

PROBLEMS 4 . 7 

1 4x + 5y 

3 12a2 - 9^2

5 3Ri + 6R2 - 4Ä.) 

7 °^ + 10M. 
W 

9 3m3 _ 7m _ 6 
10 5 5m 

PROBLEMS 4.8 

1 X + 1 

3 0+3 

5 2E - 6 

7 3R2 - 4Z - 7 

b3 35 8a3 + 24a2w + 24au>2 + 8m/3

37 16PÄ2 - 38PR + 14 

39 10a3 + 4a26 — 16a2 — 5ab2 — 14a6 + a 

7 — 2rfC 

9 E X 10* 
I,. 

g 3mn2p 

4 

11 -9c 

13 -4ÀV 

11 -6 

13 -225 

15 -I 

15 b'd' 
3ac 6

17 <>6 

4^>-VS2‘ 

90,000<t 2̂  

Y2

11 6 + 10X2 - 5x222 - 3x^ 

13 2(0 + <>) - 4(0 + <>)3 + 3(0 + <»•' 

(EI + P)2
2 + 

6 

EI + P 

17 —-1-- - 2l(^L - -M - 5I'(uL - -L 
, , 1 \ \ uC/ \ uC. /I blL -I 
\ uC/ 

19 3(0 - <>)2 - 6(0 + ^(0 -
9(0 - 6) 

0 + $ 

9 K2 + 7K + 14 + — 
A — 1 

11 E + e 

13 E3 + E^e + Ee2 + e3

15 E2 + PR2
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17 X* - X'Y + X3Y2 - X^Y3 + XY* - Y3

19 ff3 + 20$ + $3

21 2R2 - 3 

23 10E2 - 3E - 12 +-7-E - 45— 
3E3 + 2E - 4 

25 3R + A 

27 6x -
3 2 

3L,3 _ L, _ £ 
8 4 3 

PROBLEMS 
4 • 4 
TO 

PROBLEMS 
5 • 3 

PROBLEMS 5 . 1 

1 X = 4 

3 À = —5 

5 p = 6 

7 w = 5 

9 IR = 4 

11 a = -10 

13 E = -5 

15 Q = —2 

17 I = -1.4 

19 0=1 

PROBLEMS 5 • 2 

1 E - 75 V 

3 d = rt mi 

5 y — t yr 

7 
7 — miles per minute (mi/min) 

9 110 V 

11 / = ^_ 
R 

13 24 ft by 12 ft 

15 4, 25. 8.5, and 10.75 ft 

17 h? = a3 + b3

19 63, 64, 65 

PROBLEMS 5 • 3 

1 C=$. V=Q 
V c 

3 Z3 = R- + X3, X 3 = Z3 - R3

5 n = K = —. m = — 
m L R 

7 A = ^, v=f\ 

9 L= «£, Q = ^, u = 
u. « L 

11 xc = ^_, / = -1-
2irfC ' 27tCX, 

13 $ = HA. A=^~ 
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ANSWERS TO 
ODD-NUMBERED 
PROBLEMS 

15 

17 

E - e e = E - IR E - IR + f, 19 1 = 
R 

21 0 = ut, 

Vo Vt = 2V -23 

3A 25 
4w 

- r) , R Z, = 27 
R - r C 

Sb = Eb — iRi„ Eb = ¡Rl 29 

31 P = 

Cd 
33 A = n = 

R = 35 

37 

Q -43 47 39 
n 

49 
45 41 

PROBLEMS 5 • 4 

1 5 

7 3 

PROBLEMS 5 • 5 

5 15 10 9 Q 

7 IR = 8 

t 

3 200 

0.0884K(n - 1) ' 

/ -
P 

3 I 

d2=^ 
R 

L = CRZ„ C = -^—, 
RZr 

ß = ^ 
4 

Q = ^ 
e 

BLv 

£ = ^’ 

H- etc

Es = 

V = 
2 

E X 108
BL 

Cd + 0.0884ÆÂ 
0.0884K4 

L 
CZ, 

Rd2

I 

C2 = ^— u~L V3

= E X 10* 
Bv 

Ry = - «¿ woiC 

Eb - eb

Rl 

CZ. + Fr 

F 
F = -^ 

FR - CZ. 

F 

4000 Í2 

16.4 ft 

9 32:1 

= 0.0014 
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PROBLEMS 5 • 6 

1 Daß, D = kR 7 Ta VL, T = k^L 11 La—, L = — 
V d2 d2

3 C a A, C = kA 9 Va—, V= — 
P P 13 1.74 kV 

5 Xr0C ^' Xc = T 15 1 5,600 !b 

PROBLEMS 6 • 1 

16 36 53 71 94 

PROBLEMS 6 • 2 

1 6.43 x1o5 9 2.50 x 10 1 15 2.76 x 105

3 6.53 X 103 11 3.99 x 101 17 1.08x10-1 

5 9.44x10» 13 2.59 x 10 2 19 3.00 x 10« 

7 3.67 x 10-1 

PROBLEMS 6 • 3 

1 1.00 x 10-2 7 3.11x10" 13 9.42 x 1012 

3 3.92 x 10 > 9 3.20 x 10 15 2.20 x 10» 2 

5 7.14x10'2 11 5.65 x 10" 

PROBLEMS 6 4 

1 5.00 x 10 i 7 2.87 x 10"> 13 6 62 x 102 ß 

3 1.05 x 10 1 9 2.55 x 102 15 1.26x10» 2 

5 1.00 x 10 13 11 1.63 x 10» 

PROBLEMS 6 ■ 5 

1 IO'2 9 5 x 10-3 15 1.50 x 10« Hz 

3 102" 11 30 17 7.50 x 10« Hz 

5 6.25x10" 13 1.01 x 101 19 1.20 x 10« Hz 

7 2.56 

PROBLEMS 6 . 6 

1 (a) 3100 3 (a) 4.190,000,000,000 5 (a) 6.279.999.841 
(ft) 3.10 x IO3 (6) 4.19 x 10'2 (ft) 6.28 x 10« 

PROBLEMS 
5 . 3 
TO 

PROBLEMS 
6 . 6 
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ANSWERS TO 
ODD-NUMBERED 
PROBLEMS 

PROBLEMS 7 -1 

1 (a) 4.30 x 10« mV 
(6) 4.30 X 109 mV 
(c) 4.30 kV 

3 (a) 1.35 X IO’3 kV 
(6) 1.35 X 10» /lV 

(c) 1.35 X 103 mV 

5 (a) 3.30 kS2 
(6) 3.30 X IO’3 MSI 
(c) 3.03 X IO-4 mho 

7 (a) 2.00 X IO’9 F 
{b) 2.00 X IO’3 gF 

9 (a) 3.47 X 10~’ kW 
(6) 3.47 X 10» mW 
(c) 3.47 X 108 mW 

11 (a) 1.32 X 10» MHz 
W  1.32 X 10» Hz 

13 (a) 4.00 X 10-’ W 
(b) 4.00 X IO-4 kW 

PROBLEMS 7 • 2 

1 (a) 108 in. 
(6) 274 cm 
(c) 2.74 X 103 mm 

3 (a) 80.7 in. 
(ft) 205 cm 
(c) 2.24 yd 

5 (a) 2.88 mi 
(ft) 4.63 X 103 m 
(c) 4.63 km 

7 1.63 mm 

9 3.74 mH/mi 

15 (a) 1.50 X 10 2 MHz 
(ft) 1.50 X 104 Hz 

17 (a) 5.50 X 104 mA 
(ft) 5.50 X 10’ mA 

19 (a) 2.70 X 10« S2 
(ft) 2.70 X 103 kS2 

21 (a) 3.35 X 10« mH 
(ft) 3.35 H 

23 (a) 5.00 X 102 pF 
(ft) 5.00 X 10-’° F 

25 (a) 2.50 x 10« Mmho
(b) 4.00 x 10 ’ S2 

27 (a) 2.35 x 10" mA 
(6) 2.35 x IO-3 A 

29 (a)1.50xl08W 
(ft) 1.50 x 105 kW 

11 6 x IO’2 dB/100 ft 

13 3.22 x IO’3 ß/cm

15 4.72 in./min 

PROBLEMS 7 • 3 

3 XL = 2^fL SI 

5 f= 159 MHz 

7 g = 2 61 X 10.-2 in . 
v7 

9 Rac = 9.98 X 10 4 n/ft 
a 

13 171 in. 

15 26.1 in. 

17 (a) 28.5 in. 
(ft) 29.9 in. 
(c) 12.1 in. 

19 (a) 28.5 in. 
(ft) 29.9 in. 
(c) 27 in. 
(d) 12.1 in. 
(e) 6.05 in. 

636 



PROBLEMS 8 • 1 

1 4.40 A 

3 6.20 A 

PROBLEMS 8 • 2 

1 (a) 5.6 X 103 W 
(b) 5.6 kW 

3 0.833 A 

5 15.0 hp 

7 1119 kW 

PROBLEMS 8 • 3 

1 (a) 69.6 mA 
(6) 47.3 V 
(c) 1.60 W 

PROBLEMS 8 ■ 4 

1 (a) 954 SI 
(ft) 310.5 V 

3 («) 210 2 
(6) 525 mW 
(c) 310 5 V 
(d) 15.5 W 

PROBLEMS 9 • 1 

1 (a) 13.6 S2 
(ft) 0.103 2 

PROBLEMS 9 ■ 2 

1 4100 cir mils 

3 253 cir mils 

PROBLEMS 9 ■ 3 

1 12.9 2 

3 29.4 2 

PROBLEMS 
7 . 1 
TO 

PROBLEMS 
9 • 3 

5 0.080 fiA 9 (a) 0.571 A 
(ft) 0.635 A 

7 3.75 A 

9 0.108 W 15 (a) 90.5% 
(6) $24.72 

11 (a) 0.579 W 
(ft) 35.1 mA 17 18.4 hp 

13 (a) 20.8 X 10” /iW 19 2.4 kW 
(ft) 0.231 gA 

121 2 
100 W 
80.3 W 

3 (a) 
W 
(c) 

5 179 2 

7 1.43 2 

9 (a) 1.8 2 
(ft) 1.5 2 
(c) 3.48 kW 

5 (a) 188 2 
(ft) 33.2 mW 
(c) 44.6 k2 
(d) 350 mW 
(e) 252.5 V 
(f) 3.36 W 

7 (a) 60 k2 
(b) 600 gW 

9 2.5 k2 

3 238 2 

5 3.38 2 

7 0.159 2 

9 4.32 ft 

5 199 X 10 6 in.2

7 0.5 in. 

9 141 mils 

5 25.0 2/cir-mil ft 

7 1.49 mi 

9 1500 ft 
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ANSWERS TO 
ODD-NUMBERED 
PROBLEMS 

PROBLEMS 9 • 4 

1 4.60 Í2 3 15.8 12 5 No 

PROBLEMS 9 • 5 

1 (a) 0.199 12 3 (a) 12,626 ft 5 2220 12 9 (a) No. 6 wire 
(6) 1007.5 lb (6) 20.4 12 (6) 95.8% 

7 No. 2 wire 

PROBLEMS 10-1 

1 x2v2 U 1 17 BPA3P 
y Wf2C2 512w3

3 ^PZ3
13 125P 6 19 -^ 772 ß6 

5 16^2 
r12v18 

21 7

7 -8FR3 15 P™ 
8g3

9 2vXl2

PROBLEMS 10-2 

1 ±a 11 4 19 
4x3z5

3 ±3r 13 ±13m2np3
21 

5 ±w 15 30Vo> DX z

5/1/ 7 -4-RX203 16<7rrr2 2? J

=  n •..» 16a4ox 1 Iz3̂ !2
9 3x2 

PROBLEMS 10-3 

1 2(a 4-3) 9 2a2bc(ab 4- 4c2 4- 6&c) 

3 0(3 4-<> 4-4u) 11 36a2Pu2(.a2ß - 2<z3 + 5ß3) 

5 X0i(2r — z) 13 1 7/2(57/, . 43/2 76P) 
3648 

7 36 + 12“2 - 3'y2) 15 12Ot)02<>u(67)3<í>2 4- 9t)02w  4- 5i)20« - 40') 

PROBLEMS 10-4 

1 fl2 + 6« + 9 

3 m2 — 2mR 4- R2

5 a2 + 32a + 256 

7 9X2 - 6XR + R2

9 F2 - 2Ff + P 

11 2502 + 4O0<> 4- 16<>2

13 Sin2 - 54nr2 4-

15 1 + 2XP + XL* 
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17 36e4 - 24v2í3 + 4^ 31 { - E + E2

19 900 - 180 + 9 = 729 33 1 + 2e3 + e® 

21 36w2E4 - 2^R-r¿ + 4^ 35 IS - + £P 2

23 2.25Ö4 — 1.502a + 0.25a2 Z*2 +

9 + 3 4 
25 ±X* - ^Z2 + ^Z' 

39 R? _ iR,R2 + f>Â22
27 S^u2 - 3<j>W + ^A4

29 X2 + X + I 

PROBLEMS 10 • 5 

1 6e 9 12mp 17 fr2 23 ±(3a2̂  + 9y) 

3 4A 11 P 19 ±(M+1) 25 ±(^R2 + D 

5 lOxj 13 16p2 21 ±(4Ç1 + ç2) 27 ±(|<> + jA) 

7 14aw 15 jO$u 

PROBLEMS 10-6 

1 3c(a + 2b) 5 6a2(2a + 50)2 9 ̂-(X - 4/2)2
16e 

3 2X(6 + W -, 20/ 
/ -— u-r 

u 

PROBLEMS 10-7 

1 O2 - 4 

3 P - P 

PROBLEMS 10-8 

5 9Q2 - 4L2

7 |E-72 - P2

4E‘ _ WR2

R- P2

1 (a + bXa - b) 

3 (20 + 4<>X20 - 4<» 

5 (1 + «X}-») 

7 (1 + 15uXl - 15«) 

9 (90M + ÎXW - 1) 

13 9(ab — 2m — 3pq)(ab — 2m + 3pq) 

15 (5a + lOcZ + 12ZX5a + lOcZ - 12Z) 

PROBLEMS 10-9 

1 ffi + 70+12 

3 R2 _ R _ 2 

5 02 + 90 + 18 

7 902 - 30 - 2 

9 p -71 + 12 

H a2_5a. + ± 
4 4 

13 PR2 + ^--^ 
6 6 

15 tt2 + a + 2 

PROBLEMS 
9.4 
TO 

PROBLEMS 
10.9 
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ANSWERS TO 
ODD NUMBERED 
PROBLEMS 

17 _L__iC + 3r 
LC ^EC 

19 

PROBLEMS 10 10 

1 (a + IXa + 2) 

3 (7? i- 6)(Æ 4 2) 

5 (ß 4- 6X0 - 4) 

7 (S 4- 4X0 4- 6) 

9 (7 4-11X7-2) 

11 (Z! - 2)^ 4- 10) 

13 (w 4- 8)(w — 7) 

15 (« 4-2/)(« - 3/) 

17 (0- 1X0-1) 

19 (<>- 4- jX^2 — A) 

PROBLEMS 10-11 

1 x2 - 3x - 10 

3 6<J>2 4- 11<> 4- 3 

5 12/2 - 2; - 4 

7 6u2 4- 13w — 5 

9 + 2u - 32 
4 

11 6Z2 4- 13IRZ 4- 51-R'2

13 15X2 - 94X - 40 

15 1502 - 770 4- 10 

17 35 - 31v 4- 6w2

19 6a2 4- 31a0 + 3502

21 4a2 - 24ai 4- 35i2

23 w2 4-0.5w/-0.14/2

25 — - - 4Ä2
4 2 

29 0.16p2 - 0.62pq 4- 0.21ç2

PROBLEMS 10-12 

1 (u 4- 2)(w - 5) 

3 (2m - 3X4m 4- 5) 

5 (2x 4- 5)(3x - 2) 

7 (3<> 4- 4X3<> 4- 2) 

9 (a 4- 30)(2a - 70) 

11 (10m - 7X4m 4- 3) 

13 (8Z 4- 3mX10Z - 2w) 

15 (1202 — 9yX202 — y) 

17 (9Zm — u)(3Zm 4- 2u) 

19 6W 4- 2S2X«0 - 212) 

21 (5x 4- AX3x - 2A) 

23 (80 + ¡X60 4- 1) 

25 (0.60 4- 2X0.30 - 1) 

PROBLEMS 10-13 

1 16u2¿2

3 ai2b^c>d s 

p»qi2r< 

c 12/ß □ -
X3FX<^ 

7 _ 5Zm2 

3x^2 

9 6e$-u-

11 I(R + r)(R - r) 
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13 

15 

17 

19 

21 

23 

25 

27 

29 

31 

33 

35 

37 

39 

41 

43 

45 

47 

49 

51 

PROBLEMS 

PROBLEMS 11-1 

8 3IR 1 7 

4#<> 9 3 

15 5(27+3 4) 
K I 

0.5a2bc 5 E - 1 11 

641 

8 'n r2 r3> 

-^(7k - 31 - 9m) 

R2 + 24« + 144 

14474 + 1672 + I 

81 3 

6r 

49Q2

A2

16 

±(m + 5) 

±(4« + 10«) 

=04) 
6«(4i + 77) 

3i(r + 3)2 

12486» - <>)2

a2 — 4«2 

& - 144 

576£2 _ 4p2

PR2

(Q + 1XQ - D 

(2uL + — \(2œL -— ) 

(0.05<¿ + 0.6n)(0.05i¿ - 0.6u) 

53 A - 2 

55 & + 

57 je - lir 

59 k2 - 2k - 8 

61 0.2Xc2 - 2.9XC - 1.5 

63 A2 _ _ J_ 
15 15 

65 24M2 + 2Wm - 12^m2 

67 0.67?2 + 0.17?r — 0.2r2

69 24<>2 + 2ft> - y 

71 (3z + lX2z + 3) 

73 (A - 5XA - 3) 

75 (x - 2Xx - 0.6) 

77 (2R + 3XX67? - 5X) 

79 (2E - 0.5IR)(E + 0.377?) 

83 (2w + /)(8w - 5/) 

85 3(x + 2Xx - 2) 

87 ^(E - 6e)2

89 - 9hW a - 8ft) 144<7 

10 • 9 
TO 

PROBLEMS 
11 ■ 1 



ANSWERS TO 
ODD NUMBERED 
PROBLEMS 

PROBLEMS 11-2 

1 420 11 + 3)(m + 5) 

3 360 13 11(30 - 1X20 + 1)(26» + 3) 

5 15 (q + ̂ )(q - ^)(4Q - ̂ )(2Q -

7 180m3n2p4

9 P - 5t + 6 

PROBLEMS 11-3 

1 18 7 P - 2t + 1 13 uLR2 ~ uLX2
R3 - RX2

3 xy 9 6i + 6a 
2ECQ-3Q 13 -

5 9abd 11 H 2E2C2 - EC - 3 

PROBLEMS 11-4 

j 3 -j j j o -f- 6 j g ujÇtt + 3X) 
4 R a — b 3w + X 

9 —i— 13 x + y
j_ x2 + y2 3 

ab3

PROBLEMS 11-5 

I a 5 9 13 1 
‘ X Ri - R1 Ai - A, *” <> + 0 

3 2vfL , —IR 11-1 15 4 ~ w
Xc — XL E + e 5 + w 

PROBLEMS 11-6 

1 V n (Ä - IX« + 7) 
R2

- ac + b 

c 15 9X2 - 4A - 2
(3X + 1X3X - 1) 

5 4F ~ 5
F 17 -03 + 1302 + 310 - 45 

02(0 - 1) 
7 4^ + 6 

w + 1 19 2a4 - 7a2 - 1 
a2 — 3 

9 IR - I - E 
I 21 5^ 

j j (9 + 2xXl - X) 23 x +

X2 X2
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25 R2 + 7R + 14 + ° — 
K — 1 

27 E3 - E2e + Ee2 - e3 - —-— 
E + e 

29 2.r + 2--— 
X2 + 1 

PROBLEMS 11-7 
1 35 30 zb h + 3rr 4<* - 4% 
1 ™ <#»2 _ „2 ’ ^»2 _ „2 

O 36 21 20 
48' 4ï’ 48 ac _ a(/ be + bd be + bd — ac — ad 

0u x<) c2 - d2 ’ c2-d2' c2 - d2
5 -, -

<tM , , 2 -
15 _±_ 

7 et 1 et2r 
ir ' ir ’ ir 

$ a -F b a — b 

a2 — b2 a2 — b2

PROBLEMS 11-8 

1 H 13 23 

3_5_ 
48 15 25 -8^-

65IR 02 -□ -
48 

37., + 34 27 10 - 4E 
aS _ ßy Lx2 + 4L, - 12 “ (E - 4)(E - 5\E - 6) 

19 25g 29 12“2
9 ayz - bxz - exy 6d - + 27

xyz 

21 237 + 133

107? - 3P + 4 A/ + 7X/ - 7) 
PR 

PROBLEMS 11-9 

1 A 13 4* + *y 23 4c 
4 (X - y? 

3 - A 15
5 4 3x + 2 1 

3wi + R 
7 4xy' 17 _I_ 

<<> - 2 29 2m 

9 4
9 19 

11 —~ 21 Un2
2rfR 

PROBLEMS 
11.2 

TO 
PROBLEMS 

119 
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ANSWERS TO 
ODD NUMBERED 
PROBLEMS 

PROBLEMS 11-10 

1 -I 

2E(E - e) 

e(E + e) 

I - w 
I + w 

PROBLEMS 12-1 

1 <> = 8 7 $ = 5 13 »=-2 

3 a = 8 9 X = 3 15 m = 12|| 

5 « = ^ 11 « = -12 

PROBLEMS 12-2 

1 Q = 40 7 R = 2.5 13 X = 8 

30 = 4 9 6 = 15 a = 3 

5 r = 30 11 a = -3 

PROBLEMS 12-3 

1 / = 2 13 x = 3 27 5 hr 

3 ç = 3 15 a = 13 31 90 1b 

50 = j 17 u = 5 33 $39.81 

7 u = 2 19 a = 3 35 25, 600 

9 » = 5 23 42 min 37 1 j, 2j 

11 e» = 5 25 x = _ «*£_days 39 24 X 6 ft
ab + ac + be 

PROBLEMS 12-4 

1 V Lb\ d ,,2rc..\ 9 r eR

2aYd E - e 
, V, - V, 
L — —-- r(E_<?) 

„ 2aVoYd U^C2V3 R = -L 

Lb e
7 R, = R„(l + at) 

3 Eb = IR +e t_ R'~ R" i " ^C,C-.R t
e = Eh — IR aRo
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R - Z2(l - g) 

13 ß _ — 33 F, 
ßV„ aFi2 - 2f 

IK ~ + ^o) f _ <^12^8 
1 - Co ; 2(F2 + F.) 

_ a(l - Co) 1 
ß „ 35 a —-o 

1 + c„ H2R¡ 

c 1 - aH2R. 
= ZAE-JZ^ S= 

l(Z2 + Z3) 

% _ Z2(E — IZ.) 37 = ~ eü 

2 - KZ. + Z3) ei 

Z. _ IZ'Zi e.Z. 
b — RZi 4- Z2) n P — 

1Q R — ~ V) C ( f fX ï 
19 R' VU + l) 39 Cv = fX)

_ VRAA + 1) 
AV.-V c _ C,fc

_ V(RU + R¿ “ - fX

R„V. - RrV 
41 V - “8l m

,, v X^R + Z,^XS + Z,^R ° “s + 

Z,,^ . <^v„ 
1 m — o US — ¿ßVo

_ Z.,^xp - Xs) 

X.2 + z,^ VÍ.R. 

RAh + ¿2) + ¿¡Rt 
_ IMR. b R¿ 

»'n = - Al 0*2 

"R ' + R¿ ‘ VR. - ro(l + R2) 
R . «2(Vn - I2R) 

KR-2VU 45 M1M2 

(1 - Mi^iXl -

25 C = ^-^ M.M2 + W2-1) 

27 R = RABK - V.) 1 g Mi(M2^2 - D 

V' 47 / ̂(2/r + 1) 1 
R V.R 1 o^n + Yr) 2 

" ” BIO - V. 
j _ Qq(2¿í + 1)(yi + yp 

29 R.. = - r ' 4"ä2yi
Kg 

umN 49 X _ 

r = ^~ R" ” ' l ~ d ' 

31 R = (1 - a)Z2 + (1 - a + ka)Z. d. = X + m
X + vn’d. 

1 — a 4- ka 

PROBLEMS 
11 . 10 

TO 
PROBLEMS 

12 - 4 
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PROBLEMS 
12 ■ 4 

TO 
PROBLEMS 

13 • 3 

89 (a) Increased by a factor of 4 101 Vo = 40 ft/sec 
(6) Halved 

103 Emax — Z?b(Anax Anin) 4" Enuu 
91 R = 0.9 fl 

. . Zúnax £mii> 

93 R = ^E ~ fl ßb

105 Ev = 250 V 
n = tK cells 

E ~Ir 107 E, - E2 = 98 V 

95 g = Ä+ZM ß 

e* °1 1 4- ß 
_ 7^ ipr*> p 

'p - • 
*p 

99 V„ = 1 - igt 

PROBLEMS 13-1 

1 165 fl 7 440 V 13 14.7 W 

3 37.2 kfl 9 112 kfl 15 1 kV 

5 (a) 50 fl 11 4.47 W 
(ft) 340 kfl 
(c) 1.95 kfl 

PROBI FMS 13-2 

1 5 fl 7 (a) 2.1 kfl 11 1.5 kW 
(ft) 17 kfl 

3 4.8 0 13 (a) R, = 22 fl 
9 R _R n (ft)P, = 1.84kW 

5 6.11 fl P n 
15 10 kfl 

PROBLEMS 13-3 

1 332 mA (d) R3 = 6.7 kfl 15 730 W 
„ , „ . (e) Z, = 180 mA 
3 176 W (/) Z3 - 44.6 mA 17 2.47 A 

(g) Pi = 180 W 
5 («) Ec = 230 V 

(6) R, = 20 kfl 9 354

(c) R, = 70.6 kfl 
(d~) I2 = 1.86 mA j j 600iJ

(e) Z3 = 1.4 mA 

13 (a) 4.1 kfl 
7 (a) V1 = 702 V OkS2

WV2 = 298V 8W

(c) R2 = 2.2 kfl 
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ANSWERS TO 
ODD-NUMBERED 
PROBLEMS 

PROBLEMS 14-1 

1 1.08 £2 

3 10 ft 3| in. 

5 (a) 0-10 mA: 6.11 £2 7 Rt ^150 £2 
(ft) 0-100 mA: 0.556 2 fi2 = 15 £2 
(c) 0-1 A: 0.0.0551 £2 P3 = 1.5 £2 
(d) 0-10 A: 0.00.00551 £2 P4 = 0.167 £2 

PROBLEMS 14 2 

1 (a) 37.5 V 
(ft) 25 V 

3 R, = 9.6 k£2 
R. = 99.6 k£2 

R3 = 999.6 k£2 
Ri s 10 M£2 

PROBLEMS 15-1 

1 1 = 60 V 5 Pt = 14 W 
2 = 6 V P, = 6.4 W 
3 = 0.6 V P2 = 2.4 W 
4 = 0.06 V P3 = 5.2 W 

9 Pi = 3 k£2 
P2 = 3 k£2 
R3 = 10 k£2 
Ri = 500 £2 

3 27 k£2: 0.114 W 
68 k£2: 0.288 W 
75 k£2: 0.318 W 

7 P] = 13.2 W (use 20 W) 
R2 = 7.13 W (use 10 W) 
R3 = 3.37 W (use 5 W) 

11 42 W 

PROBLEMS 15-2 

1 0.0524 

3 0.0226 

5 19.32 mi 

, y R,L - R,R3

7 X ~ R1 + Rt

PROBLEMS 16-1 

1 Current varies directly as the applied voltage. (Graph of current is a straight line.) 

3 With velocity constant, distance varies directly as time. (Graph of distance is a 
straight line.) 

5 (a) 2 p.M. 7 Third, sixth, ninth, and fifteenth 
(6) 300 mi 
(c) 50 mi 

PROBLEMS 16-2 

1 Latitude 
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PROBLEMS 16-5 

1 y =$x -2 3 y = 0.113x + 1.2 5 R = — 0.000667T + 0.4 



PROBLEMS 
14 . 1 

TO 
PROBLEMS 

17 ■ 6 

7 (a) 0.02125:1 
(6) 47:1 
(c) 47 Í2 

9 (a) 200 V to 265 V 
(c) 6667 ñ 
(<7) Approximately 6700 Q 

PROBLEMS 17-1 

1 X = 6, 7=2 

3 x = 5, 7=3 

PROBLEMS 17-2 

1 a = 2.5, 6 = 4 

3 R = 3, Z = 2 

5 R, = 1, R2 = 3 

7 s = -2, t = 2 

PROBLEMS 17-3 

1 E = 3. 1=2 

3 I = — 2, i = 3 

5 a = 8. ß = 5 

7 E^i e=| 

PROBLEMS 17-4 

1 /=i=l 

3 A = 6, V = — 4 

PROBLEMS 17-5 

1 a = 6, 6 = 2 

3 6=11, <> = -5 

5 E = 6, 7= -10 

7 a = — 2, ß = -3 

9 L = 1. M = 2 

11 7i =3, 72 = -2 

13 E = 2, e = 3 

15 A = 4, w = — 1 

9 6 = 16, <> = -10 

11 F = -3, / = 2 

13 7 = 14. 8 = -4 

15 e = 2, ^ = 3.5 

5 X = 3, 7=4 

7 a = 6. ß = 1 

5 r = 40, i) = 5 

7 Xc = 2, XL = 3 

9 7> = 5, i’ = 5 

17 E = -11, e = 12 

19 7 = 12, i = 9 

17 6 = 3, <> = 1 

19 a = 1.5, 6 = 0.4 

9 p = 3, q= -7 

9 9=1 A=1 

PROBLEMS 17-6 

R = 3. Z = 4 

3 XL =5, Xc= 11 

5 6 = 16. <> = 5 

7 G = 60. Y = 33 

9 M=^ 
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ANSWERS TO 
ODD NUMBERED 
PROBLEMS 

PROBLEMS 17.7 

! u = £±£, ß = ^± 
6 3 

3 E = 22^JL JE - b - 3a 
4 4 

3a — 5ß 2a + 3ß 
□ U = - , Q = -

38 19 

7 20Z2 - 10Z, 
Xc = 50(Z, - Z2), 

3 

ftp*. ß RyRl 
R„ — 2Rt 2 3Ä, - ftp 

PROBLEMS 17-8 

1 0 = —2, 0 = 4. w=l 

3 R, = 9, «■> = 2, R3 = —4 

5 Rl = 3. Rv = 5, R, = 8 

7 r = 5, R = 6. Rl = 7 

9 s = 12, t = 4, c = 8 

PROBLEMS 17 9 

c 90 + a° 90 - a" 
□ -, -
2 2 

7 Resistors, 10« each, capacitors, 20« each 

9 L = 35 mi/hr, Q = 45 mi/hr 

11 W = 
2C 

13 s = ut + jat2

15 p = gmr„ 

17 R = — 
Cr 

19 Q = CE 

21 H = 7.20 cal 

PROBLEMS 18-1 

1 2 7 -114 

3 34 9 -0.02 

5 0 11 0 

13 bx — ay 

15 bx — ay 
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PROBLEMS 18-2 

1 a = 4, b = 2 5 Z=3, ¿=-2 9 «, = 150, «2=1200 

3 O = 10, w = 2 7 rp = 1, rL = i 

PROBLEMS 18-3 

1 21 

3 -245 

5 -2016 

PROBLEMS 18-4 

1 10 3 -25 

PROBLEMS 18-5 

1 297 

3 -56 

5 22.1 

7 220 

7 x = 5, y = 7. z = 3 

9 a = 3, ß = 4. y = 7 

11 E = í e = |, IR = í 

5 23 7 0 

9 A = 1, A = 3, h = 5 

11 a = — 2, ß = 4. y = 1 

13 «! = 5.5, «2 = 3.6, «3 = 1.3 

15 e = 1, T) = 2, K = 3, À = 4 

PROBLEMS 19-1 

1 1 SI 

PROBLEMS 19 2 

1 (a) 1.3 V 
W 1| A 
(c) 0.975 SI 

3 (a) 0.48 S2 
(6) 30 mW 
(c) 5.92 S2 
(d) 370 mW 
(e) 92.6% 

5 11.1 A 

7 (a) 8.4 S2 
(6) 600 mW 
(c) 15 A 

3 0.4 S2 5 (a) 5.6 W 
(6) 93.3% 

9 (a) 385 mA 
(6) 12.7 V 
(c) 4.88 W 

11 (n) 4.08 V 
(6) 1.6 V 
(c) 288 mW 

13 (a) 0.0733 S2 
(6) 200 A 

17 E = 1.4 V, r = — .2 S2 

19 E = 2.1V, « = 0.665 S2 

PROBLEMS 
17 ■ 7 

TO 
PROBLEMS 

19 • 2 
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ANSWERS TO 
ODD NUMBERED 
PROBLEMS 

PROBLEMS 20 . 1 

1 «7 15 p 27 -Xc6 37 be 
Xi3 a3

3 x3 17 xsy9
29 a«'-« 39 Jr3

5 pe’ 19 a44 4Ä2

31 
7 Ia " 21 x4,y4mz4’> R 

9 x3 23 33 
R2 r 

11 X5»“2

25 "18 35 ~ 
13 W <t>'^zr

PROBLEMS 20•2 

1 ±4 11 ^5 21 

3 ±2 13 ^or2^J 23 (aßY 

5 -Wbc4 15 25 4< 2J

7 ±1^' 17 ai 

9 9X^ 19 2^ Ei 
ws

PROBLEMS 20•3 

1 ±2^2 

3 ±3>/2 

5 ±5>/2 

7 ±4\/5 

9 ±12^/5 

11 ±2ff&,/3 

13 ±207767? 

15 ±18uf2FT2\/7FT 

PROBLEMS 20 ■ 4 

1 
3 

3 
5 

5 ±-V? 
2 

7 4^2 

9 
X 

11 
4» 

13 \/3X 

15 
7 

17 ±33aiß3y* \^2aß 

19 ±28^2%^^ 

I? R2\/vA 

Ã 

19 ±jwï5 
4 

21 
9 
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PROBLEMS 20 • 5 

1 3\/3 7 30^3 13 2 75-7^ 
5 

3 75 9 0 
15 

5 (m — p + q)V3 11 67^ 8 

PROBLEMS 20 ■ 6 

1 ±V5 9 A - D 15 ±60^/2 

3 ±475 11 2a —7 —27“2 —7a 17 6 

5 ±12\/ÏÜ 13 19 9 

7 2 

PROBLEMS 20 • 7 

1 + 75 7 x^-2x^ + y 
X2 — y 

3 4(3 - 77) 
9 3+73 

5 3(1 + 7?) 4 
2 

11 -75-373 + 272 + 6 

PROBLEMS 20•8 

1 ¡6 7 ¡PX 13 
15 

3 ¡12 9 -¡35 
is -¡ÆyZ 

5 -jZ 11 ¡A P

PROBLEMS 20 • 9 

1 5 + ¡20 5 172 + ¡5 9 1 4- ¡4 13 -78- ¡11 

3 41 - ¡2 7 20 - ¡2 119 4- ¡18 15 20 + ¡8 

PROBLEMS 20•10 

1 3 -¡9 7 1^- 11 A 
2 2 

3 75 - ¡30 
9 ¡1 13 6(6 + |X) 

5 02 _ <>2 + ¡206 36 + X2

PROBLEMS 
20 . 1 

TO 
PROBLEMS 

20 • 10 
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ANSWERS TO 
ODD NUMBERED 
PROBLEMS 

R2 + j2ffwX - w2X2 

R- + u'2X2

— <>2 + j0<> 
e- + <>2

82 + (“L - i) 

PROBLEMS 20-11 

1 X — 4 1/ — 

3 7 = 9 17 
5 Z = 625 V2 - C2

7 M=67 19 Q2 = - V 
G\n2 - I)2

9 A = 1 

21 „ 2 _ G^G ' - G^ 
11 <> = 25 “ R^GJ - GJ - Gt

,.2 23 C = 250 pF 

' 2P2PS

25 c Lb
" {2vfyLCb - 1 

PROBLEMS 21 • 1 

1 E = ±5 7 A = 13 A = ±6 

3 i=± \ 189 9 P = ±i 15 X - -t-
c 5 

5 a- = ±6 llm = ±v^ 

PROBLEMS 21 • 2 

1 a = — 1 or — 4 

3 R = 2 or 7 

5 A = 1 or -2 

7 E = 2 or 20 

9 Q = 2orll 

11 a = — 2 or — 25 

13 Z = 3 or 6 

15 t = 3 or -J 

PROBLEMS 21 • 3 

1 X = 2 or 6 

3 E = 6 or 9 

5 i = 2 or 25 

7 0 = 1 or 2 

9 .Vf = —2 or 24 

11 0 = 3 or — 2 

13 <> = 10 or -6 

15 R = 5 or 51 
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PROBLEMS 21 • 4 

1 9 = 1 or -4 

3 / = 7 or —5 

5 g = Jor-j 

7 Z = 
3 - fl 29 

12 

9 m = ior-| 

11 R, = — 5orO 

13 ß = 5 or 5| 

15 i = 2 or 

PROBLEMS 
20 ■ 10 

TO 
PROBLEMS 

22 ■ 2 

PROBLEMS 21 • 7 

1 (a) 16, roots real and unequal 
(6) 0. roots are equal 
(c) —80, roots are imaginary 

3 21 and 23 

5 78 by 87 ft 

7 220 and 240 

(6) no change in E 

—PXx ±x^PW + W(,P rjy 
2R(P - 1) 

PXr ± ry/PW + ^(P - 1) 
2R 

13 V = 1.0 X 103 ft/sec 19 R = 50 2 

15 V — \/2gs ft/sec 

Ä = -^ft 
64 

25 (a) 2 A 
(6) 120 V 
(c) «! = 10 12, R2 = 20 12, R3 = 30 12 

27 20 V and 15 A or 60 V and 5 A 

PROBLEMS 22 • 1 

1 1.03 mA 3 54 V 5 244 V 7 (a) 0.5 A 
(Ò) 11.7V 

9 2.22 12 

PROBLEMS 22•2 

1 39.9 V 3 32 V 5 (a) 1.19 A 
(b) 53.2 mW 

7 (a) 1.0 A 
(6) From a to b 
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ANSWERS TO 
ODD NUMBERED 
PROBLEMS 

PROBLEMS 22 • 3 

1 (a) 1.27 A 
(6) 14.6 W 

3 (a) 1.64 A 
(6) 2.86 A from A to b 

5 (a) 95.5 W 
(ft) 3.18 V 

PROBLEMS 22•4 

1 Ra = 4.8 S2, 

3 R„ = Rb = Rc = 

5 Ri = 16.6 kß, 

7 72.7 mA 

9 6.52 mA 

7 (a) 86.3 W 
(ft) 16 V 

9 (a) 5.19 A 
(ft) 167W 

Rc = 6 2 

11 (a) 86.9 V 
(6) 1.32 kW 

13 (a) 220 V 
(6) 313 W 

11 Zero A 

13 7=5 A 

15 3.1 A 

17 14.7 A 

Rb = 4 2, 

167 2 

R2 = 6.36 kß, R3 = 9.06 kß 

PROBLEMS 22.5 

1 (a) Constant 120-V source in series with 0.8 ß 
(ft) Constant 150-A source in parallel with 0.8 ß 

3 0.187 V in series with 18.75 ß; 72 = 6.52 mA 

5 65.6 mA in parallel with 12.6 ß; /5 = 30 mA 

PROBLEMS 23•1 

1 (a) 22°, (6) 67°, (c) 49°, (d) -80°, (e) -165°, (/) 100° 

7 26 

9 21,600°/sec 

PROBLEMS 23•2 

1 (d) —, 1.05' (e) 4.97' 7 ^-rad/sec 
3 12 3 

(ft) 2.09' (/)^, 0.0873' 9 30 rev/min 
3 36 

(e) 288r 3 330"r

(d)—, 3.93' 5 
4 6 
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PROBLEMS 23 • 3 

PROBLEMS 
22.3 

TO 
PROBLEMS 

24 • 2 

1 4.5 ft and 6 ft 7 b = 17.7, c = 13, A = 33.8° 

3 a = 4, c = 5, B = 36.9° 9 c = 10, A =49 1°, B= 101.6° 

5 a =11.4, c = 11.4, B = 20° 

PROBLEMS 23 • 4 

1 c = 58, B = 15° 

3 a = 18, A = 13° 

PROBLEMS 24.1 

1 sin 0 = — 
c 

cos 6 = — 
c 

tan 0 = — 
b 

COt 0 = — 
a 

sec 0 = — 
b 

CSC 0 = — 
a 

sin <> = — 
c 

cos = — 
c 

tan 0 = — 
a 

cot <> = — 
b 

sec <p = — 
a 

esc <> = — 

3 (a) = tan ß 
Un 

w = sec “ 

« W= cos ^ 

(d)^ =sinß 

(e) = esc a 

5 12 ft 

7 21.2 ft 

9 480 ft 

5 sin 0 = 0.707 
cos 0 = 0.707 
tan0 = 1.00 
cot 0 = 1.00 
sec 0 = 1.41 
esc 0 = 1.41 

sin <i> = 0.447 
cos <f> = 0.894 
tan $ = 0.500 

cos X = 
tan X = I 
sec x = 
CSC X = 
cot X = f 

sin B = I 
cos B = I 
tan B = I 
cot B = J 
sec B = I 
esc B = J 

PROBLEMS 24.2 

1 I or II 7 1 

3 III or IV 

5 llorlll 

9 IV 

11 I or III 

13 No 

Q sin cos tan 
15 + + +
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ANSWERS TO 
ODD NUMBERED 
PROBLEMS 

17 + - - 21 

19 - - + 23 + + 

Q sin cos tan sec esc cot 

77 5 12 5 13 13 1? 27 fà Ta T2 12 5 5 

-5V$Ï -4VÏT 5 -\/4l 4 
41 41 4 4 5 5 

qi 3 4 3 5 _5 _4 
— 5 ï ”4 4 3 3 

-3V34 -5\/34 3 - \/34 - V34 £ 
33 34 34 5 5 3 3 

PROBLEMS 24 • 3 

10 7 (a) 1 
(ft) -1 

3 oo (c) — 1 
(d) 1 

5 No 

PROBLEMS 25 • 2 

Q Sine 
1 (a) 0.3090 

(6) 0.9272 
(c) 0.1616 
(d) 0.7934 
(e) 0.0454 

3 (a) 0.0332 
(ft) 0.8415 
(c) 0.6280 
(d) 0.6455 
(e) 0.9673 

5 (a) 0.8440 
(ft) 0.5123 
(c) 0.6300 
(d) 0.0259 
(e) 0.9998 

Cosine Tangent 
0.9511 0.3249 
0.3746 2.4751 
0.9869 0.1638 
0.6088 1.3032 
0.9990 0.0454 

0.9995 0.0332 
0.5402 1.5577 
0.7782 0.8069 
0.7638 0.8451 
0.2538 3.8118 

0.5363 1.5737 
0.8588 0.5965 
0.7766 0.8112 
0.9997 0.0259 
0.0195 51.30 

PROBLEMS 25■1 

1 (a) 27° 
(ft) 6.7° 
(c) 61.5° 
(d) 40.1° 
(e) 2.14° 

3 (a) 85.4° (ft) 0.5° (c) 40.1° (d) 58.8° (e) 25.75 

5 (a) 13.1° (ft) 0.5° (c) 74.3° (d) 41.7° (e) 47.1° 
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PROBLEMS 25 ■ 3 

Q 
1 (a) 
W 
(0 
(d) 

(e) 

Sine 
0.9563 
0.3420 
0.7649 
0.5373 
0.0663 

Cosine 
-0.2924 
-0.9397 
-0.6441 
-0.8434 
— 0.9978 

Tangent 
-3.2709 
-0.3640 
-1.1875 
-0.6371 
-0.0664 

3 (a) -0.9848 0.1737 -5.6713 
(6) -0.6691 0.7431 -0.9004 
(c) -0.1754 0.9845 -0.1781 
(d) -0.8652 0.5015 -1.7251 
(e) -0.0087 1.0000 -0.0087 

5 (a) -0.0872 -0.9962 0.0875 
(b) -0.2940 0.9558 -0.3076 
(c) -0.6521 -0.7581 0.8601 
(d) -0.0454 0.9990 -0.0454 
(e) -0.0035 -1.0000 -0.0035 

7 (a) <¡> = -47.1° 9 4.48 ft 
(6) <> = 91.6° 
(c) <> = 51.3° 11 90° 
(d) <> = 167.5° 
(e) <>=-69.9° 13 19.5 ft-c 

15 No 

17 26.9° 

PROBLEMS 26 • 1 

1 Z = 26.8, X = 15.2, <> = 55.3° 

3 Z = 600, R = 424, 6 = 45° 

5 Z = 70.0, X = 29.5, <> = 65.1° 

7 Z = 1 X 10«, X = 4.65 X 105, <> = 62.3° 

9 Z = 1030, R = 557, <> = 32.7° 

11 Z = 159, R = 100, <> = 38.9° 

13 Z = 0.239, X = 0.214, <> = 26.1° 

15 Z = 0.378, R = 0.0500, <> = 7.5° 

PROBLEMS 26 • 2 

1 R = 73.6, X = 19.7, e = 15° 

3 R = 17.0. X = 44.5, <> = 20.9° 

5 R = 7.84 X 103, X = 6.21 x 103, ti = 38.4° 

PROBLEMS 
24.2 

TO 
PROBLEMS 

26 . 2 
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ANSWERS TO 
ODD-NUMBERED 
PROBLEMS 

7 R = 0.932, X = 0.171, 0=10.4° 

9 R = 3.12, X = 4.04, <> = 37.7° 

PROBLEMS 26•3 

1 0 = 60.8°, <> = 29.2°, 7? = 112 

3 0 = 69.1°, <> = 20.9°, X = 44.5 

5 0 = 8.4°, <> = 81.4°, X = 0.109 

7 0 = 38.4°, <> = 51.6°, R = 7.84 x 103

9 0 = 51.9°, <> = 38.1°, X = 0.849 

PROBLEMS 26 • 4 

1 0 = 9.9°, <> = 80.1°, Z = 36.0 7 0 = 83.6°, <> = 6.4°, Z = 48.7 

3 0 = 47.9°, <> = 42.1°, Z = 7.14 9 0 = 46°, <> = 44°, Z = 0.403 

5 0=2.7°, <> = 87.3°, Z = 431 

PROBLEMS 26 • 5 

1 33.7° 3 4.1° 5 60° 7 30.3 ft 9 65.5 ft 11 322 ft 

PROBLEMS 26 • 6 

1 (a) <> = 67.4° 3 6.6 in.2
(6) 3000 ft2-
(c) 120 ft 
(d) 3000 ft2

PROBLEMS 27.2 

1 ¿>=7.65, c = 9.01, y = 70° 7 a = 1.14, ¿>=7.1, a = 8° 

3 a = 12.9, c = 18, y = 75° 9 a = 11.3, c = 63.6, ¿3=55.5° 

5 a = 33, c = 91.7, y = 108° 11 2.53 x 103 yd 

PROBLEMS 27 • 3 

1 a = 7.3, ¿3 = 39.4°, y = 77.6° 5 c = 4691, a = 10.5°, ß = 21.8° 

3 c= 0.908, a = 8°, ¿3 = 40° 7 a = 21.8°, ¿3 = 38.2°, y = 120° 
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9 « = 17.5°, /i =50°, y =112.5° 11 7.63 in. by 3.85 in. 

PROBLEMS 
26 ■ 2 

TO 
PROBLEMS 

29 - 3 

PROBLEMS 27 ■ 4 

1 0.366 sin fl + 1.366 cos S 

PROBLEMS 28 • 1 

1 182.5 at 28.2° 

3 0.366(cos & - sin 0) 33 
65 

3 238 at 244.7° 

PROBLEMS 28 • 2 

1 X = 12.4, y = 27.3 

3 X = 0.0423, y = 0.864 

5 X = -46.3, y = 0 

7 x=—56.6, y =-177 

9 X = -28.4, y = 11.9 

11 728 1b, 234 1b 

13 530 mi 

15 528 lb 

PROBLEMS 28 • 3 

1 420/81.2° 7 183/0° 13 25.9/160.8° 

3 1.92/39.9° 9 125/270° 15 24.4/216.5° 

5 364/15.1° 11 7.65/252.2° 

PROBLEMS 28 4 

1 321/55.9° 3 120/21.1° 5 31.2/167.4° 

PROBLEMS 29 • 2 

1 (°) n, Ln rad/sec 3 (a) 4.5 deg, min 5 (a) 1.2wr
21’600 (b) 0.12^ 

1 rad/sec W rad/SeC (c) 0 06,rr
W  1800 Z 40

(c) rad/sec 

PROBLEMS 29 ■ 3 

Q (a) W  (c) (d) (e) 
1 100 2rr 1 1 40° lead 

3 0.750 628 100 0.01 3° lead 

5 EIllal 157 25 0.04 17° lag 
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ANSWERS TO 
ODD NUMBERED 
PROBLEMS 

13 (ft) y = 24 sin 40%« in. 
(c) -14.1 in. 
(d) 24 in. 
(e) 10wr

PROBLEMS 30 • 1 

1 (a) 51 A 
(6) 152 A 
(c) 115 A 
(d) -146 A 
(e) -92.3 A 

3 440 V 

5 -91.7 V 

7 -1.11 A 

9 210° and 330° 

PROBLEMS 30 • 2 

1 (a) 400 Hz 
(b) 2.5 msec 
(c) e = 314 sin 800%« V 

3 (a) 40 poles 
(6) e = 250 sin 800%« V 
(c) -238 V 

5 600 rev/min 

7 500 MHz 

9 i = (3 X 10 5) sin (1000% x IO6)« A 

PROBLEMS 30•3 

1 49 V 3 16.5 V 5 127 V 

PROBLEMS 30•4 

1 (a) i = 6.5 sin (377« + 36°) A 
(6) 6.46 A 

3 -5.39 A 

5 (a) i = 283 sin (314« - 25°) A 
(ft) 63.7 A 

PROBLEMS 31 ■ 1 

1 (a) 368 mA 
(ft) e = 124 sin 800%« V 
(c) i = 0.521 sin 800%« A 
(d) 24.7 V 
(e) 2.98 W 
(/) 109 mA 

7 21.2 A 9 232 mA 

7 9.2° lag 

9 49° lead or lag 

3 22.9 V 

5 ¡ = 51.6 sin (2 X 104%i) mA 

PROBLEMS 31 •2 

1 5.65 0 3 94.2 kO 5 2.54 k<> 7 297 mA 
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PROBLEMS 
29 ■ 3 

TO 
PROBLEMS 

32 • 1 

9 200 MHz 

11 -424 mA 

13 (a) XL is doubled. 
(b) XL is tripled. 
(c) XL is halved. 

PROBLEMS 31 • 3 

1 18.1 S2 7 18.8/»A 

3 72.3 mß 9 4 mF 

13 153 pF 

15 137 mA 

5 138 ß 11 Z = 0.639 sin (377Z + 90°) A 17 Xc varies inversely as C. 

PROBLEMS 31 • 4 

1 (a) 565 ß 
(6) 567 ß 
(c) 388 mA 
(d) Z = 549 sin (377Z - 86.5°) mA 
(e) 13.6 V 
(/) 219.6 V 

3 (6) 12.7 kß, 3.9 MHz, 75° lag 

5 (a) 121 ß 
W  351 ß 
(c) 342 mA 
(d) 113 V 
(e) 41.2 V 

9 (a) 1.03 kß 
(6) 582 mA 
(c) 582 V 
(d) 144 V 

7 358 ß 

PROBLEMS 31 • 5 

Q Z / i PF P 

1 

3 
5 
7 
9 

528/67.8° ß 
2.02 k /8.88 ß 
558/66.8° ß 
15/2,4° ß 
515/13.7° ß 

416 mA 
54.3 mA 
2.15 A 
7.79 A 
3.44 A 

i = 589 sin (377í - 67.7°) mA 
Z = 76.9 sin (314Z - 8.88°) mA 
Z = 3.04 sin [(3.14 x 10’)í - 66.8°] A 
Z = 11 sin (3771 - 2.4°) A 
i = 4.84 sin [(15.7 x lO6)« - 13.7°] A 

38.0% 
99 0% 
39.4% 
99.9% 
97.0% 

34.7 W 
5.92 W 
1.02 kW 
9.1 W 
5.88 kW 

11 (a) 200 ß 
(6) 282 ß 
(c) 0.75 H 

13 (a) 55.8/-32.6° ß 

(b) 505 mF 

15 (a) 23.5 A 
(6) 8.95 kW 

PROBLEMS 31 6 

1 (a) 4.53 mA 
(6) 2.56 mW 
(c) 328 V across the capacitor. 228 V across the coil 

3 12 kHz 

5 (a) 0.239 mH 
(b) 2.3 MHz 

PROBLEMS 32 • 1 

1 720 pF 
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ANSWERS TO 
ODD-NUMBERED 
PROBLEMS 

3 (a) e = 311 sin 377t V 
(¿>) i = 138 sin (3774 + 90°) mA 
(c) 104 V 
(d) 1.82 mF 
(e) 17.6 mA 

5 (a) 0.47 H 
(&) 1.41 H 

PROBLEMS 32•2 

1 (a) 56 — ¡50.1 Í2 
(b) 480 W 

3 (a) 82/0,7° A 

(6) 99% leading 
(c) 36.1 kW 

5 (a) 125/—87° Í2 
(6) 6.53 - jl25 2 
(c) 5.23% leading 

PROBLEMS 32 ■ 3 

1 (a) 5.623 MHz 3 
(6) 5.627 MHz 
(c) 25.7 

7 (a) 524/-89.8° 2 
(6) 1.83 — j524 2 
(c) 0.35% leading 

9 (a) 13.6/ —90° 2 
(6) 0 - ¡13.6 2 
(c) 0 

11 (a) 394/84,2° A 
(b) 10.1% lagging 
(c) 1.07 4- ¡10.5 2 

13 (a) 87 kW 
(6) 65% lagging 

15 (a) 2.75/2.7° A 
(6) 99.9% 
(c) 207 V 
(d) 436 mA 

17 8.2 nF 

19 7.77 A 

(a) 113 KHz 
(6) 5.66 M2 
(c) 8.84 2 

5 500 pF 9 0.6% leading 

7 7.08 mW 11 32.2 pF 

PROBLEMS 33•1 

1 20.7 + ¡11.3 = 23.6/28.6° 

3 1100 + ¡400 = 1170/20° 

5 —442 + ¡741 = 863/120.8° 

7 11.2 - ¡36.4 = 38.1 / —72.9° 

9 2500 + ¡400 = 2532/9.09° 

11 10 + ¡9 = 13.5/42° 

PROBLEMS 33•2 

1 34 - ¡22 = 40.5/-32.9° 7 0.0588 - ¡0.765 = 0.767/-85.6° 

3 20.9 + ¡25.13 = 32.7 /50.2° 9 -0.589 - ¡4.35 = 4.39/262.3° 

5 4.96 - ¡74.7 = 74.9/-86.2° 

PROBLEMS 33 • 3 

1 20.7 + ¡11.3 = 23.6 /28.7° 

3 1104 + ¡400 = 1174/19.9° 

5 -445 + ¡741 = 864/121° 

7 11.2 - ¡36.5 = 38.2/—72.9° 

9 2478 + ¡798 = 2.6 x 103/17.9° 

11 -300 + ¡400 = 500/126.9° 
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PROBLEMS 33 • 4 

PROBLEMS 
32 • 1 

TO 
PROBLEMS 

34.2 

1 33 - j5.99 = 33.5/-10.3° 11 13.9 _ j2.69 = 14.1/-11° 

3 — 77 + j40.8 = 87.1 /152.1° 13 ±12/15° 

5 4.43 - j74.6 = 74.7/-86.6° 15 2.89/44° 

7 1.92 + ¡0.565 = 2/16.4° 17 4/90° 

9 -0.239 - ¡0.146 = 0.278/-148.6° 19 27/33° 

PROBLEMS 33.5 

1 40.2/41.5° 12 7 68/74,2° 12 11 144/1.52° 2 

3 39.2/25° 12 9 114/188° 12 13 2.65/-73.1° A 

5 38.5/12.5° 12 

PROBLEMS 33 • 6 

1 Za = 11 / —5.2° 12, Z,, = 19.7/76.7° 12, Zr = 17.2/2° 12 

3 Z, = 74.9/39.9° 12, 

5 Zo„ = 64.0/2.3° 12 

7 Z„„ = 187/27.1° 12 

9 21.6 W 

11 Z„6 = 89/-25° 12 

PROBLEMS 34.1 

1 2 = login 100 

3 2 = log? 49 

5 0.5 = logi 2 

7 1 = log„ a 

9 0 = log„ 1 

PROBLEMS 34 . 2 

11 5 0 

3 2 7 2 

11 103 = 1000 

13 52 = 25 

15 6° = 1 

17 5« = 625 

19 r* = t 

9 4 or 6 — 10 

11 1 

96.4/47.9° 12 

13 84.9 W 

15 Zu„ = 280/58.2° 12 

17 Z„k = 81.4/67.2° 12 

21 x = 2 

23 X = 6 

25 X = 0.5 

27 5 - 3 = 2 

29 1, 2, 3, 4. 5, 6, 7, 8. 9 

13 3 

15 4 or 6 — 10 
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ANSWERS TO 
ODD NUMBERED 
PROBLEMS 

17 3 or 7 - 10 19 3 21 1 or 9 - 10 

27 log 6792 + log 20.9 - log 176 

29 I log 512 + log 0.36 - (log 2 + log ~ + log 177) 

31 3(log 159 + log 0.837 - log 82.2) 41 

33 0.4371 43 

35 2.4371 or 8.4371 - 10 45 

37 4.4371 47 

39 7.4371 49 

PROBLEMS 34 ■ 3 

1 0.8451 11 3.9668 

3 1.8451 13 9.0418 - 10 

5 2.8579 15 2.4025 

7 2.0128 17 4.4972 - 10 

9 5.5821 19 0.7980 

PROBLEMS 34 • 4 

1 3 

3 30 

5 642 

7 101 

9 2.42 X 105

11 8.425 X 103

13 9.792 X 10 1

15 3.4253 X 102

17 1.493 X IO“5

19 6.28 

PROBLEMS 34.5 

1 5.9514 

3 2.4031 

5 4.2736 

7 2.5597 

PROBLEMS 34■6 

1 2.56 X 102

3 2.5 X 102

5 3.78 X 10 

7 -2.47 X 102

23 1 25 -1.5 

n.4371 or 9.4371 - 20 

757 

7.57 X 106

7.57 X IO'7

7.57 X IO10

21 0.4343 

23 6.6370 - 10 

25 4.8450 

27 6.3017 

29 8.6990 - 20 

21 2.718 

23 9.82 X 10 4

25 7.9983 x 104

27 1728 

29 8 X 10->2

9 2.3478 

11 3.8559 

9 2.37 x 103

11 1 x 104
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13 —9.81 X 10 > 15 7.59 x 1o4 17 -1.35 x 10' 19 9.4 

PROBLEMS 
34.2 

TO 
PROBLEMS 

34-11 

PROBLEMS 34 - 7 

20 3 7 -578 4.88 X 10a9 

PROBLEMS 34 - 8 

4.94 2.42 3 7 2.62 9 5.95 10 2 X 

PROBLEMS 34 - 9 

1 164 9 9.28 X IO’4 15 1.16 

3 9.59 X 11 10» 25.3 17 4.85 IO-' X 

5 5.65 13 169 19 8.76 10 i X 

7 5.93 

PROBLEMS 34 - 10 

2.56309 5 1.95 10 17.77 X 9 4.7005 

5 -700 1 3 

3 -0.18697 

5 -1.25 X 10-1 

PROBLEMS 34-11 

1 X = 5.42 

3 x = 31.6 

5 x=115 

7 A = 1.01 X 104

9 X = 5.62 X 10« 

11 X = 3.69 

13 m = -1.84 X 10 i 

15 X = 5 X IO"' 

17 X = 4 

19 L. = 

21 /0 = 4- 10M44?

23 (a)E=ici& 

(b) C =-0.43437-
fi(log E — log i,.R) 

(c) t = 2.3026*C(log E - log ieR) 

25 (a) E =--
1 — F L

(b) L = -0.4343*7_ 
log E - log (E - iifi) 

(0 t = .2 3026L [|og E _ |og (E _ ii R)} 
K 

27 (a) E = (^±^ -
\ K f ¡i 
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ANSWERS TO 
ODD-NUMBERED 
PROBLEMS 

29 i = 1.01 A 35 265 words/min 41 296 mA 

31 34.7 msec 39 (a) 1.66 x 10 4 C 43 1.26 
(ft) 8 V 

33 208 msec 

PROBLEMS 35 • 2 

1 R12 series of preferred values: 
1.0, 1.2, 1.5, 1.8, 2.2, 2.7, 3.3, 3.9, 4.7, 5.6, 6.8, 8.2, 10. 
Maximum % error: ±11.1% 

3 .R10 series of preferred values: 
1.25, 1.6, 2.0, 2.5, 3.2, 4.0, 5.0, 6.4, 8.0, 10. 
Probable published tolerance: ±15% 

PROBLEMS 35 - 3 

1 (a) 13 dB 
(ft) 14 dB 
(c) 18 dB 
(d) -22.5 dB 

3 0.735 V 

5 775 mV 

7 1.94 V, 6.44 mA 

9 (a) 12 mW, 2.68 V 
(6) 60 mW, 6 V 
(c) 0.6 mW, 0.6 V 
(d) 6 x IO*» mW, 6 mV 

13 103 w 

15 1 x IO’7 W 

17 IO"« 

19 103

21 100 dB 

23 2.92 x 106

25 54 dB 

27 1.05 V 

29 (a) 223 
(ft) 37 dB 
(c) 6.02 mW 

31 3.92 W 

33 1.11/iV 

35 0.54 dB/mi 

37 400 

39 109 kW 

41 25.8 dB 

11 109

PROBLEMS 35 • 4 

No. 00 7 0.271 H 

273 nF/mi 9 3 

115 mi 11 
14.2 in. 5 

(a) 7.37 mH 
(ft) 23 nF 

13 (a) 19 nH/cm 
(ft) 0.0585 pF/cm 
(c) 916 mH 
(d) 892 pF 

PROBLEMS 35 • 5 

1 571 0 

3 -0.8% 

5 No 

7 No. 6 

9 17.2 ß 

13 95.5% 

15 (a) 1.35 dB 
(ft) 73.3% 

17 1.38 nF 

19 57% 
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PROBLEMS 36 • 1 

15 3 1 5 7 7 42 9 35 

PROBLEMS 
34-11 

TO 
PROBLEMS 

36 - 9 

PROBLEMS 36 • 2 

1 110 3 10010 5 11111 7 1100001 9 10110001 

PROBLEMS 36■3 

1 2 3 51 

PROBLEMS 36 - 4 

1 31 3 124 

5 63 7 596 9 3256 

5 245 7 1467 9 7530 

PROBLEMS 36 - 5 

1 1003 5 IOOOO4 9 40240« 13 59 17 70 

3 1023 7 1000 I2 11 64 15 3 19 6842 

PROBLEMS 36■6 

1 011,110,001 

3 101,011,010 

5 001,000,110 

7 101,010,110,110 

9 111,111,111,111 15 675 

11 5 17 632 

13 35 19 252 

PROBLEMS 36 • 7 

1 111,001 5 111,100 9 110,100 

3 1,110.000 7 1,000,001 

PROBLEMS 36 • 8 

1 001001 3 001001 5 100111 7 010111 9 000101 

PROBLEMS 36 • 9 

1 001011 3 001100 5 001100 7 001011 9 100101 
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ANSWERS TO 
ODD-NUMBERED 
PROBLEMS 

PROBLEMS 36-10 

1 1011110 5 100011111 9 101110110101 

3 10111001 7 101100000001 

PROBLEMS 36-11 

1 011 3 1001 5 110 7 1100 9 10100 

PROBLEMS 37 ■ 1 

1 si 3 s + I 5 si 7 s + I 9 si + s-I 

PROBLEMS 37 - 4 

1 (a) Ztu = a + 5 • c 
(ft) YIU = a(ft + c) 

3 (a) ZLM = (A+ B\A + B) 
(6) Ylm = AB + AB or (A + B)(AB) 

5 (a) Zpg = ã + b(abc + 3) + C or a + c 
(6) Ypq = ab + a(ã + 5 + c)c or ac 

PROBLEMS 38•2 

3 (a) 19.4°C 
(6) 73.9°C 
(c) 1.7°C 

5 1.83 kß 

7 1.1 pF 

d 

9 663 Í2 

11 9/-19° fi 
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Abbreviations, list of, 614 
Absolute value, 16 
Accuracy: 

of circuit components, 61 
of interpolation, 370 
of slide rules, 61 

Addition: 
of algebraic fractions, 160 
of binary numbers, 573 
of complex numbers, 291 
of like terms, 20 
of logarithms, 519 
of polynomials, 21 
of positive and negative num¬ 

bers, 16 
of powers of ten, 74 
of unlike terms, 20 
of vectors (phasors), 399, 

489, 492 
Algebraic expressions: 

defined, 7 
literal, 6 

Algebraic fractions: 
addition, 160 
conversion to LCD, 158 
division, 164 
lowest terms, 152 
multiplication, 163 
subtraction, 160 

Alphabet, Greek, 616 
Alternating current: 

average value of, 428 
defined, 77, 422 
effective value of, 429 
equation of, 427 
instantaneous value of, 425 
maximum value of, 425 

Alternating current: 
phase angle, defined, 419 
RMS value of, 429 

Alternating current circuits: 
L and C: in parallel, 468 

in series, 453 
parallel resonance, 483 
R and C: in parallel, 472 

in series, 451 
R and L: in parallel, 470 

in series, 448 
R, L, and C: in parallel, 473 

in series, 453, 459 
resistances in parallel, 466 
resistances in series, 436 
series resonance, 462 

Alternating EMF: 
average value, 428 
defined, 422 
effective value, 429 
equation of, 427 
generation of, 422 
instantaneous value, 424 
maximum value, 424 
representation, 424 
vector (phasor) representa¬ 

tion, 424 
Ampere: 

alternating current, 422 
defined, 77 

Amplitude, periodic function, 
417 

Amplitude factor, 417 
Angle: 

acute, 342 
defined, 341 
of depression, 385 

Angle: 
of elevation, 385 
negative, 342 
obtuse, 342 
phase, 419, 431 

lag, 420 
lead, 419 

positive, 342 
right, 342 

Angles: 
complementary, 342 
difference laws, 395 
generation of, 342 
measurement, 343 
notation for, 341 
Jr measure, 345 
radian measure, 345 
supplementary, 342 
sum laws, 394 

Angular motion, 413 
Angular velocity, 344, 413 
Antenna gain, 555 
Antilogarithms, 518 
Apparent power, 455 
Approximations, 67 
Area of triangle, 386 
Average value: 

of alternating current, 
428 

of alternating EMF, 428 
Axioms, 44 
Ayrton shunt, 201 

Base: 
change of, 532 
defined, 504 
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Battery, 272 
cells in parallel, 275 
cells in series, 274 

Bel, 548 
Bias resistor, 108 
Binomial, defined, 11 
Boolean algebra: 

addition, 583 
conjunction, 581 
disjunction, 581 
multiplication, 583 
tautologies, 583 

Braces, 22 
Brackets, 22 
Bridge: 

Murray loop, 214 
Wheatstone, 213 

Bridge circuits: 
A—Y transform, 500 
tt-T transform, 500 

Capacitance: 
of capacitors: in parallel, 467 

in series, 445 
defined, 435 
effects of, in ac circuits, 435 
of equal capacitors in series, 

446 
of transmission lines, 560 

Capacitive reactance, defined, 
442 

Capacitors: 
in parallel, 467 
in series, 445 

Cartesian coordinates, 221 
Cathode biasing, 108 
Cells: 

in parallel, 275 
in series, 274 

Characteristic of logarithm, 512 
Characteristic impedance 

transmission line, 562 
Circular mil, 117 
Circular mil foot, 119 
Coefficient: 

defined, 8 
temperature, 121 

Cofactor, defined, 262 
Cologarithm, defined, 525 
Common factor, 131 
Complex fractions, 165 

Complex numbers: 
addition, 291 
defined, 290 
division, 292 
multiplication, 291 
polar form, 457 
subtraction, 291 

Components of a vector 
(phasor), 401 

Compound circuits, 193, 498 
Compound fractions, 165 
Conditional equation, defined, 

44 
Conductor, resistance of, 115 
Conjugate, defined, 286 
Conversion factors, 80, 81 
Coordinate notation, 220 
Coordinates, rectangular, de¬ 

fined, 221 
Cosecant, defined, 354 
Cosine, defined, 353 
Cosine curve, graph of, 411 
Cosine law, 392 
Cotangent, defined, 354 
Cube of a monomial, 128 
Cube root: 

defined, 129 
of a monomial, 129 

Current decay in a capacitive 
circuit, 538 

Current direction of flow, 320 
Current growth in an inductive 

circuit, 536 
Current ratios, decibels, 553 
Cycle: 

alternating current, 426 
defined, 417 
periodic function, 417 

Decibel, defined, 548 
Decibels: 

current ratios, 553 
power ratios, 547 
reference levels, 550 
voltage ratios, 553 

Decimal multipliers, table of 
prefixes, 79 

Degree: 
angle, defined, 343 
of a monomial, 147 
of a polynomial, 147 

Delta circuits, Y-equivalent, 500 

Denominator: 
defined, 150 
lowest common, defined, 158 

Dependent variable, 225 
Determinants: 

cofactors, 262 
evaluation of, 253 
minors, 260 
properties of, 265 
second-order, 252 
third-order, 257 

Difference, 19 
Difference identities, 395 
Direction of current flow, 320 
Discriminant, 312 
Distance: 

horizontal, 385 
vertical, 385 

Dividend, defined, 35 
Division: 

of algebraic fractions, 164 
of binary numbers, 577 
of complex numbers, 292 
defined, 35 
with exponents, 36 
of fractions, 164 
of monomials, 38 
of polynomials, 39 
of positive and negative num¬ 

bers, 36 
of power of ten, 67 
with radicals, 286 
using logarithms, 524 
of vectors (phasors), 491 

polar form, 493 
by zero, 151 

Divisor, defined, 35 

Effective value: 
of alternating current, 429 
of alternating voltage, 429 

Efficiency, defined, 99 
Electrical units, 77 
EMF: 

alternating (see Alternating 
EMF) 

of a battery, 272 
defined, 94 
of a generator, 422 

Emitter biasing, 111 
English system, 76 
Equality sign, defined, 43 
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Equation: 
of alternating current, 427 
of alternating EMF, 427 
complex numbers, 457 
conditional, 44 
defined, 43 
derived from graph, 231 
exponential, 534 
formula, 51 
fractional, defined, 168 
identical, 43 
indeterminate, 226 
linear: defined, 226 

methods of plotting, 226 
literal, 51 
logarithmic, 533 
of periodic functions, 409 
for phase relations, 419 
quadratic: affected, 297 

complete, 297 
defined, 297 
discriminant of, 312 

pure, 297 
solution, 46, 49 

Equations: 
axioms, 44 
cancelling terms, 47 
changing signs, 48 
containing decimals, 170 
containing radicals, 293 
fractional, solution of, 

171 
with fractional coefficients, 

168 
inconsistent, defined, 236 
radical, 293 
second-degree, 297 
simple, solution of, 46 
simultaneous: fractional form, 

242 
linear, defined, 242 
literal, 51, 176, 244 
solution of: by addition and 

subtraction, 237 
by comparison, 241 
by determinants, 254 
by graphs, 236 
by substitution, 240 
three unknowns, 246 

solution of quadratic: by 
completing the square, 

301 
by factoring, 299 

Equations: 
solution of quadratic: by for¬ 

mula, 303 
by graphical means, 306, 

311 
testing solutions, 305 

trigonometric, 388 
Evaluate, 8 
Exponent: 

defined, 10, 279 
fractional, 280, 529 
negative, 37, 280 
zero, 37, 279 

Exponential equations, 534 
Exponents, fundamental laws, 

30, 279 
Expression: 

algebraic, 7 
mixed, 157 

Factor: 
amplitude, 417 
defined, 7 
highest common, 147 
prime, 135 

Factoring: 
difference of two squares, 136 
trinomials, 141 

Factors, prime, defined, 135 
Fall, 385 
Farad, defined, 77 
Formula, defined, 7, 51 
Fraction, defined, 150 
Fractional equation, defined, 

168, 243 
Fractional exponents, 280, 529 
Fractions: 

addition of, algebraic, 160 
changing to mixed expres¬ 

sions, 157 
common errors, 155 
complex, 165 
compound, 165 
division, algebraic, 164 
equivalent, 151 
multiplication, algebraic, 163 
power of, 72 
reduction: to LCD, 158 

to lowest terms, 152 
to mixed expressions, 157 

signs of, 154 

Fractions: 
subtraction, algebraic, 160 

Frequency: 
defined, 78, 417, 426 
resonant: parallel ac circuits, 

462, 483 
series ac circuits, 464 

Function: 
defined, 350 
periodic, defined, 412 

Functions, trigonometric (see 
Trigonometric functions) 

Gain of antennas, 555 
General number, defined, 6 
Grade, 385 
Graph, defined, 216 
Graphs: 

coordinate notation, 220 
of cubic equations, 591 
derivation of linear equations, 

231 
of linear equations, 222, 226 
of logarithmic equations, 533, 

596 
nomographs, 605 
plotting, 227 
of power equations, 591 
of quadratic equations, 306 
of simultaneous linear equa¬ 

tions, 236 
solving problems by, 218 

Greek alphabet, 616 

Henry, defined, 77 
Highest common factor, 147 
Horizontal distance, 385 
Hypotenuse, 348 

Identical equation, defined, 43 
Identity: 

defined, 388 
difference, 395 
Pythagorean, 388 
simple, 388 
sum, 394 

Imaginary numbers: 
defined, 289 
representation of, 289 

Impedance: 
defined, 450 
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Impedance: 
polar form, 457 
rectangular form, 457 
of resonant parallel circuits, 

485 
of resonant series circuits, 

462 
Impedances: 

in delta, 500 
in parallel, 475, 497 
in ir, 500 
in series-parallel, 498 
in T, 502 
in Y, 502 

Independent variable, 225 
Inductance: 

and capacitance in parallel, 
468 

defined, 435 
effect of, in ac circuits, 435 
of transmission line, 559 

Inductive reactance, defined, 
440 

Instantaneous value: 
alternating current, 425 
alternating EMF, 424 

Interpolation, accuracy, 370 
Inverse logarithmic functions, 

533 
Inverse trigonometric functions, 

518 

j-operator, 287 

Kilounits, 79 
Kilowatthours, defined, 98 
Kirchhoff, G. R., 320 
Kirchhoff's laws: 

bridge circuits, 331 
outline for solving networks, 

329 
parallel circuits, 326 
series circuits, 321 
statement of, 320 

Lag, 420 
Lead, 419 
Levels, reference, decibels, 550 
Like terms: 

addition, 20 

Like terms: 
defined, 20 
subtraction, 20 

Linear velocity, 413 
Literal equations, 51, 176 
Literal number, defined, 6 
Logarithm: 

defined, 504 
of a power, 508 
of a product, 506 
of a quotient, 507 
of a root, 508 

Logarithmic equations, 533 
Logarithms: 

in calculations, 522 
change of base, 532 
characteristics, 512 

rules for, 512 
common system, 509 
division by, 524 
extracting roots by, 528 
fractional exponents, 529 
mantissas of, 513 
multiplication by, 522 
natural system, 509 
notation, 505 
raising to a power by, 527 
table of, 620 
use of, with negative num¬ 

bers, 523 
use of tables, 514 

Losses, 98 
Lowest common denominator, 

defined, 158 
Lowest common multiple, 149 

Mantissas of logarithms, 513 
Mathematical symbols, 7, 613 
Maxima and minima, 312 
Maximum power, 313 
Measurement systems: 

conversions, 76 
English, 76 
metric, 76 

Megaunits, 79 
Meter: 

current: multirange, 199 
sensitivity, 199 
shunting methods, 201 

movement, 198 
volt (see Voltmeter) 

Metric system, 76 

Mho, defined, 77 
Micromicro units, 79 
Microunits, 79 
Mil: 

circular, defined, 117 
square, defined, 118 

Milfoot, defined, 119 
Milliunit, 78 
Minor, determinants, 260 
Minuend, defined, 19 
MKS system, 76 
Monomial: 

defined, 11 
degree of, 147 

Multimeters, 205 
Multinomial, defined, 11 
Multiple: 

defined, 149 
lowest common, 149 

Multiplication: 
with algebraic fractions, 163 
with binary numbers, 577 
with complex numbers, 291 
defined, 26 
exponents, 30 
with fractions, 163 
graphical representation of, 

31 
of monomials, 30 
of polynomials, 31 
of positive and negative num¬ 

bers, 26 
with powers of ten, 65 
with radicals, 285 
on slide rule, 542 
using logarithms, 522 
with vectors (phasors), 490, 

493 
Multiplication sign, defined, 7 
Murray loop, 214 

Napier, John, 504 
Negative exponent, 37, 280 
Negative number, defined, 14 
Negative power, 448 
Nomographs, 605 
Norton’s theorem, 336 
Notation: 

angles, 341 
for coordinates, 220 

Number: 
complex, defined, 290 
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Number: 
literal, defined, 6 
negative, defined, 14 
prime, defined, 127 

Numbers: 
complex: addition, 291 

division, 292 
multiplication, 291 
subtraction, 291 

general, 6 
imaginary, defined, 289 
negative: need for, 15 

square root, 289 
positive, 16 

and negative, representa¬ 
tion of, 16 

prime, 127 
real, 289 
rounded, 63 
systems: binary, 568 

octal, 570 
vector (phasor), 457 

Numerator, defined, 150 

Ohm, defined, 77 
Ohmmeter, 205 
Ohm's law: 

for compound circuit, 193 
for de parallel circuits, 186 
for de series circuits, 94 

Operator j, defined, 287 
Origin, 221 

Parallel resonance, 483 
Paralleled resistances, 186, 

191 
Parentheses, 22 
Perfect square, trinomial, 133 
Period, 418 
Periodic function, defined, 412 
Periodicity, 412 
Phase, 419 
Phase relations, equations for, 

431 
Phasors [see Vectors (phasors)] 
jr circuits, 335, 500 

T equivalents, 335, 500 
Picounits, 79 
Plotting methods, 227 
Points on graph, 216 

Polynomial: 
defined, 11 
degree of, 147 

Polynomials: 
addition, 21 
with common monomial fac¬ 

tor, 131 
division, 40 
multiplication, 31, 33 
subtraction, 21 

Positive number, defined, 16 
Positive numbers: 

addition, 16 
division, 36 
multiplication, 26 
subtraction, 18 

Positive power, 64 
Power: 

in ac circuits: average, 437 
instantaneous, 437 

in ac capacitive circuits, 447 
in ac inductive circuits, 447 
in ac resistive circuits, 437 
active, 455 
apparent, 455 
defined, 97 
maximum delivered to load, 

313 
negative, 448 
positive, 447 
ratios, decibels, 547 
true, 455 

Power factor, 455 
Powers of ten: 64 

addition with, 74 
defined, 64 
division with, 67 
multiplication with, 65 
power of a fraction, 72 
power of a power, 71 
power of a product, 71 
reciprocals, 69 
root of a power, 72 

Preferred values, 545 
Prime factors of an expression, 

135 
Prime numbers, 127 
Primes, 8 
Product: 

of any two binomials, 139 
of binomials having common 

term, 136 

Product: 
complex numbers: polar form, 

493 
rectangular form, 291 

defined, 7 
sum and difference of two 

terms, 135 
Proportion, 56 
Proportionality, 57 
Protractor, 343 
Pythagoras’ theorem, 348 
Pythagorean identities, 388 

Q, defined, 
Quadratic equations 

(see Equations) 
Quadratic formula, 303 
Quadratic surd, defined, 

286 
Quotient, defined, 35 

Radian, defined, 345 
Radical, removing factors from, 

282 
Radical sign, defined, 11 
Radicals: 

addition and subtraction of, 
284 

containing fractions, 283 
division, 286 
in equations, 293 
multiplication of, 285 
similar, 284 
simplification of, 282 

Radicand, defined, 281 
Radix, 568, 571 
Ratio, defined, 56 
Rationalizing: 

complex number, 292 
denominator containing radi¬ 

cal, 286 
Ratios: 

current, decibels, 553 
power, decibels, 547 
trigonometric, 350 
voltage, decibels, 553 

Reactance: 
capacitive, defined, 442 
inductive, defined, 440 

Real numbers, defined, 289 
Reciprocal, defined, 69 
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Rectangular coordinates, 221 
Reference levels, decibels, 550 
Remainder, defined, 19 
Resistance: 

and capacitance: in parallel, 
472 

in series, 451 
of conductor, 115 
and inductance: in parallel, 

470 
in series, 448 
and capacitance: in 

parallel, 473 
in series, 453 

internal, of battery, 273 
of resistors: in parallel, 186 

in series, 103 
specific, 120 
temperature effects, 121 

Resistances: 
in compound circuits, 193 
in A, 331 
in parallel, 186, 191, 466, 

497 
in ir, 331 
in series, 103, 436 
in T, 331 
in Y, 331 

Resistors, bias, 108, 111 
Resonance: 

parallel, 483 
series, 462 

Resonant frequency: 
parallel circuits, 483 
series circuits, 464 

Right triangle: 
defined, 348 
facts concerning, 348, 378 
procedures for solution, 348, 

378 
Rise, 385 
Root: 

cube, defined, 129 
of an equation, 297 
square, defined, 128 

Root-mean-square, 429 
Rounded numbers, 63 
Run, 385 

Scalar, defined, 398 
Secant, defined, 354 

Series resonance, 462 
Sexagesimal system, 343 
Shunt: 

Ayrton, 201 
connection methods, 201 
universal, 201 

Significant figures, 5, 62, 86 
Signs: 

of fractions, 154 
of grouping, 22 
insertion of: preceded by 

minus sign, 24 
preceded by plus sign, 24 

of operation, order of, 7 
Similar terms, 20 
Similar triangles, defined, 347 
Simultaneous equations, 236 

addition and subtraction, 237 
comparison, 241 
fractional form, 242 
graphical solution, 236 
substitution, 240 
three unknowns, 246 

Sine: 
defined, 353 
law, 390 

Sine curve, graph of, 409 
Sinusoid, defined, 415 
Slide rule: 

accuracy of, 61 
division with, 542 
multiplication with, 542 
squares and roots with, 544 
types, 60 
vector (phasor) calculations, 

456 
Slope, 385 
Specific resistance, 119 
Square: 

of a binomial, 131 
difference of two terms, 132 
of a monomial, 127 
sum of two terms, 132 

Square mil, 118 
Square root: 

defined, 128 
of a monomial, 128 
of negative numbers, 289 
of a trinomial, 133 
of a trinomial square, 134 

Star circuits (see Y circuits) 
Subscripts, 8 

Subtraction: 
of algebraic fractions, 160 
of binary numbers, 574 
of complex numbers, 291 
defined, 19 
of fractions, 160 
of like terms, 20 
of polynomials, 21 
of positive and negative num¬ 

bers, 18 
of powers of ten, 74 
of unlike terms, 20 
of vectors (phasors), 489, 492 

Subtrahend, defined, 19 
Sum identities, 394 
Surd: 

binomial quadratic, 286 
defined, 286 
division with, 286 
quadratic, 286 
rationalization, 286 

Symbols, mathematical, 611 

T circuits, ir equivalent, 331, 
500 

Tangent, defined, 353 
Tangent curve, graph of, 411 
Tautologies, 583 
Temperature effects, resistance, 

121 
Term, defined, 11 
Terms: 

like, 20 
similar, 20 
transposition of, 47 
unlike, 20 

Thevenin’s theorem, 336 
Time constant: 

capacitive circuit, 538 
inductive circuit, 536 

Total current method, 478 
Transmission line: 

capacitance, 560 
characteristic impedance, 562 
defined, 558 
inductance, 559 
surge impedance, 562 
types, 559 

Triangles: 
right, defined, 348 
similar, defined, 347 
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Trigonometric functions of 
angles: 

of any angle, 357 
of complementary angles, 

355 
computation of, 351 
defined, 353 
in first quadrant, 358 
in fourth quadrant, 358, 372 
greaterthan 90°, 357, 371 
greater than 360°, 373 
inverse, 367 
of negative angles, 373 
ranges of, 361 
representation of, 362 
in second quadrant, 358, 

371 
signs of, 358 
table of, 622 
in third quadrant, 358, 372 

Trigonometric formulas, 394 
Trigonometric identities, 388 
Trigonometric ratios, 350 
Trinomial, defined, 11 
True power, 455 
Truth tables, 585 

Universal shunt, 201 
Unlike terms, 20 

Variable: 
defined, 225 
dependent, 225 
independent, 225 

Variation, 57 
Varley loop, 214 
Vector, defined, 398 
Vector notation, 399 
Vector representation, 424 
Vectors (phasors): 

addition of, 399, 404, 489, 
492 

nonrectangular compo¬ 
nents, 406 

components of, 401 
division with, 491, 493 
exponential form, 494 
multiplication with, 490, 493 
powers of, 496 
roots of, 496 
subtraction of, 489, 492 

Velocity: 
angular, 413 
linear, 413 

Vertical distance, 385 
Vinculum, 22 
Volt, defined, 77 
Voltage dividers, 207 

with loads, 208 
Voltage ratios, decibels, 553 
Voltmeter, 202 

loading effects, 204 
multirange, 204 
sensitivity, 204 

Watt, defined, 77 
Watthour, defined, 77 
Wheatstone bridge, 213 
Wire measure, 123 
Wire table, 617 

X axis, 221 

y axis, 221 
Y circuits, equivalents, 334, 500 

Zero of an equation, 311 
Zero exponent, 37, 279 
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