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Preface 

It is my hope that this book will fill a 
special need in our industry that 
have observed over the past 25 years. 
In some ways it may be easier to 
explain to the reader what the book 
is not, rather than what it is. 

This book is not written as a 
college text. It is not written as a 
complete treatise of all mathematical 
formulas ever designed by engineers 
to calculate directional formulas. Nor 
is the book an effort to impress the 
reader with all my knowledge of the 
subject. 

This book is intended to equip the 
station engineer with the basic 
knowledge required to design his 
own pattern. The book also will 
provide the reader a basic math 
review as well as some of the 
shortcuts employed by engineers. 
The book begins with simple, basic 
antennas and goes from there to 
progressively more sophisticated 
systems. 

It is hoped that this book will serve 
as a reference work to those in the 
field and become a standard of 
review, covering all normal types of 
directionals as well as normal 
methods of computation. 

The reader will note there is 
greater emphasis on two -element 
and three -element designs. The 
majority of directional antennas in 
use today are one of these types. It 
is believed that each reader will find 
a pattern like his own to study, or 
one very similar. Please keep in mind 
that for comparative convenience 
most patterns in this book are 
designed to beam northward. The 
reader needs to merely rotate the 
page of the book to see his own 
pattern along its major axis. 

I must express my grateful thanks 
to Pat for help in typing these notes, 
formulas and tables. 

The Author 
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Introduction to the design 
of directional antennas 

Basic design considerations 

Any single vertical tower will radiate an equal 
amount of signal in all directions. For all practical 
purposes assume this to be a perfect circular pattern. 
With the addition of a second vertical tower, inserted 
into the field radiated by the first tower, the pattern 
of this first tower will no longer be circular. In other 
words, the non -directional pattern has been de- 
stroyed! Depending upon the electrical height, 
physical spacing, and current induced in this second 
antenna, the original circular pattern may be offset, 
elongated, or even approximate a figure -eight pattern 
shape. 

Sometimes a station ends up with an unwanted 
directional pattern, when it had hoped for a circular 
one. This occurs when a non -directional antenna is 

erected too close to a reflecting object, such as a 
water tank, a hi -line tower, a metal smoke stack, or a 
structure capable of re- radiating a broadcast signal. 
When this second object is "unwanted," a station has 
no practical control over its effects, nor can it use the 
object to achieve any particular desired pattern. 
Obviously, the best type (and from FCC's viewpoint, 
the only kind they will license) is one where each 
element of the directional system is controlled. 

The earliest known directional antenna licensed by 
the FCC was in about 1935 to stations WSUN, St. 
Petersburg, Florida; and WTMJ, Milwaukee, Wis- 
consin. Prior to this time all AM stations were 
considered non -directional, or at least no deliberate 
efforts had been made to generate anything other 
than a circular pattern. Some early stations, 
particularly those employing "flat top" antennas, 
noted a directional effect to their coverage. In some 
cases this was due to the metal supporting towers. 
However, in the case of WSUN and WTMJ, each 
station erected two towers and purposely restricted its 
nighttime pattern in the direction of the other. 

These early efforts were successful, and the next 
few years saw a rapid increase in the use of DAs, 
both nighttime and daytime. According to recent 
FCC station lists, there are at least 1,502 stations 
utilizing DAs in the United States today. 
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Design factors 

Three factors can determine the radiation pattern of 
any basic daytime pattern. These are electrical 
spacing between the towers, the amplitude of the 
tower currents in each element; and the phase angle 
in degrees between the currents in each element. 
Once an antenna system has been constructed, the 
electrical spacing is, of course, fixed. Thus the only 
variables a station has at that point are currents, and 
phase angles. By manipulating these parameters, the 
design engineer can achieve almost any pattern, in 
addition to the one he desires. 

For the purpose of design, it is assumed that each 
tower, plus its associated ground system, acts as an 
individual antenna system and radiates its own signal 
equally in all directions. This is an important fact to 
remember. Each and every antenna in any directional 
antenna system is assumed to radiate a perfect circle. 

How is it possible to achieve any specific pattern, if 
all a station ever gets from any tower is a perfectly 
radiated circle? The trick really comes in knowing 
how to combine these circles, both as to relative size 
and as to time -phase relationships. In examples 
where equal height of towers are used, the relative 
size of these circles is directly proportionate to the 
ratio between the individual base currents. Hence, if 
a station has twice the base current in one tower than 
in the other, the radius of the individual circles will 
be on a ratio of two to one. 

Special considerations 

The ground system of each tower should be equal, 
from a design standpoint. If they are not, this could 
result in some non -circular radiation from any given 
tower. For example, if one tower has fewer ground 
radials in a given direction, than other towers in the . 
system, the radiation from that tower in that 
direction may be impaired due to increased ground 
losses on that side of the tower. 

Another consideration is the antenna ground 
system that has individual ground wires of one tower 
overlapping those from an adjacent tower. If the 



tower spacing is such that the radials overlap, each 
ground wire must be terminated where it meets 
another and the ends bonded together. The reason 
for bonding is to eliminate any high resistance joints 
that can cause power losses in the ground return 
path. Bonding also eliminates the possibility of 
corroded joints which could cause cross modulation 
or harmonic signals. 

Two -tower DAs 

Figure 1 shows the simplest and most common type 
of directional antenna: the two -tower pattern. As a 
beginning point, let's say these two towers are of 
equal height, and each has a full and complete 
ground system. For the first "basic" approach, 
assume each tower has an equal amount of current 
flowing in it, and that each tower receives its RF 
energy at the same identical instant. That is zero time 
phase difference. 

Figure 2 shows what will happen under these 

The background 
two -tower is WTIC -AM. 
Other antennas and 
towers are for 
WWUH -FM, WEDH -TV, 
WTIC -FM, and WFSB -TV. 

conditions as only the physical spacing, or distance, 
between the respective towers is changed. The pattern 
to the upper left is for one -quarter wavelength 
spacing. The next is for three -eighths, the next for 
one -half; and the pattern at the bottom is for one full 
wavelength spacing. By varying only the spacing, and 
holding currents and phase angles constant, the 
station ends up with several widely varying patterns. 

Now let's use the approach of holding the spacing 
fixed, at one -quarter wavelength, holding the indi- 
vidual tower currents equal, but this time varying the 
phase angle relationship. Figure 3 shows how this 
parameter can produce widely varying shapes. The 
last parameter is shown in Figure 4, as it is varied. In 
this last case the spacing was held constant at 
one -quarter wavelength; the phase angle was held 
constant at 135 °; and the current ratio was then 
varied. The effects of equal currents in both towers, 
and where the currents are 2:3 and 2:1 are shown. 

In these examples, each of the three basic design 
parameters are varied separately to show how each 
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can, in and of itself, create directional patterns. In 
proceeding to the design of a particular pattern 
shape, the design engineer may choose to use one, 

two, or all three of these basic factors in combination. 
Chapter 2 will go into detail on how this is 

accomplished. But first let's complete a basic 
understanding of the fundamentals of directional 
antenna patterns. 

Other factors 

The first and most obvious of these other design 
factors is, of course, the amount of power to be fed to 
this directional antenna pattern. While this isn't one 

of the "big- three" factors, it is an important 
consideration in any pattern design. In some cases, as 

a design engineer proceeds with a particular 
allocation study, where the use of a directional 
antenna is necessary, he finds that higher power can 
be used. In other cases he may discover that it will 

take one or two additional towers, to permit the 
power he is seeking. In this type of situation the 
design engineer is faced with an economic decision. 
More later on this point. 

The second of these other factors is one of tower 
orientation. Obviously, a station can point, or aim, a 

given pattern in any direction it chooses. In other 
words, it can use the same basic pattern and point it 

north, or south, or east, or any other direction it may 
want. 

The term "Tower Line" is often used in connection 
with pattern orientation. The Tower Line is the 
bearing or direction the row of towers points to. Some 

types of patterns have more than one tower line, i.e., 
a parallelogram or dog -leg configuration. 

A third factor to consider is electrical tower height. 
While it is customary to construct most directionals 
with elements one -quarter wavelength in height, many 
may use either taller or shorter electrical height 
towers. The taller a tower is, the more efficient a 
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Figure 1 

Tower M1 

VERTICAL PLAN VIEW 

Tower #2 

radiator it will be, up to a height of five- eighths of a 
wavelength. 

Figure 6, from Section 73.18 of the Rules, shows 
this relationship. For example, a tower of 0.25 
wavelength has for 1 kW of power an efficiency of 196 

MV /M. But for this same power, a 0.50 wavelength 
tower has 237 MV /M. This is an increase of 41 

MV /M over a quarter wavelength tower, yet the 
power is the same. A 0.625 wavelength tower's 
efficiency becomes 274 MV /M.)This is almost a 50 

percent increase in radiated signal, which in power 
ratio, corresponds to more than a doubling of the 
transmitter power. If a station desired the maximum 
efficiency from any given pattern, at any given power, 
it would use a 5/8 wavelength tower. However, 
economics may rule out this choice. 

In the design of nighttime antenna patterns, note 
the signal energy radiated at elevation angles above 
the horizon. This is shown in the reproduction of 
FCC Figure 5. It shows that for different electrical 
tower heights, different vertical patterns exist. Keep 
in mind that these are the vertical patterns of single 
towers, not directional antennas! If several single 
towers are combined, as would be the case in a 
directional antenna, the vertical pattern of the 
combination might be quite different. This vertical 
effect is referred to as the "Vertical Form Factor" of 
a tower. 

It should suffice to point out that by using 
different heights for the elements in a nighttime 
directional pattern, you can place vertical angle nulls 
at the elevation angle most suited to providing 
skywave protection to any given co- channel station. 

Important definitions 

A common expression is "Radiation Resistance." 
This is the value computed at the point of current 
measurement. In most cases this is at the input of the 
tower. This can sometimes be referred to as "Base 

HORIZONTAL PLAN VIEW 
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TABLE 1 

VERTICAL RADIATION CHARACTERISTICS 

TOWER HEIGHT = 90 180° 225° 

VERTICAL 
ANGLE = 0° 1.0000 1.0000 1.0000 

10° .9781 .9418 .9011 
20° .9143 .7855 .6450 
30° .8165 .5774 .3291 
40° .6946 .3696 .0529 
50° .5591 .20.38 -.1248 
60° .4178 .0873 -.1924 
70° .2766 .0261 -.1733 
80° .1377 .0033 -.0993 
90° .0000 .0000 .0000 

SPACING 90° 

SPACING 1350 

SPACING ° 180° 

Ss 3(D 

Figure 2 El E2 and Phase Angle 0 

NULLS AT 135° 

NULLS AT 160° 

Figure 3 

Figure 4 
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Radiation Resistance," also commonly used is the 
expression "Loop Radiation Resistance." This is 
defined as the resistance at the point of maximum 
current in the tower. Theoretically, this occurs at a 
distance one -quarter wavelength below the top of the 
tower. To compute the power in a tower, multiply the 
square of the RF current in amps at this radiation 
resistance point, times the resistance in ohms. 

Another term is "Radiation Measurement Stan- 
dards." In the comparison of antennas, the signal is 
referred to in millivolts per meter (MV /M) at a 
distance of one mile. In fact, this standard of 
comparing signals at one mile distance is used so 
commonly that most engineers don't even say "at one 
mile " -it is just automatically understood. Thus 
Radiation Measurement means the signal strength in 
MV /M at one mile. The measurement of radiation 
efficiency expressed in millivolts per meter per amp 
will be referred to. For every tower there is some 
finite value of radiated signal at one mile in MV /M 
that will exist when one amp of current flows in that 
tower at its Radiation Resistance Point. For example, 
a common reference is the one -quarter wave tower 
with 1 kW of power. This is generally recognized as a 
standard. A quarter wave tower will radiate, at 1 kW 
of power, a signal of 196 MV /M at one mile. Also, 
knowing that such a tower has a theoretical radiation 

resistance of 36.6 ohms, the following formula can be 
applied: 

196 MV/M 

E/ =\./ 1000 watts = 37.4 MV /M /Amp. 

36.6 

This is simple Ohm's Law, where 

I 
Power 

Resistance 

In this case each amp of current flowing in this 
tower will generate a signal of 37.4 MV /M. With a 
base current of 2.0 amps, the signal would be 74.8 
MV /M. Thus the field intensity radiated at one mile 
is "directly proportional" to the amount of current 
flowing in the antenna. This is an important 
consideration to keep in mind. 

You often hear about "Antenna Resonance." In 
practice, the design engineer defines this as the 
condition which occurs when the Radiation Re- 
sistance is . pure resistance. This resonance occurs 
between 0.22 and 0.23 wavelength. For towers of 
lower heights, the reactance is capacitive. For towers 
taller than resonance, the reactance is inductive. 

EFFECTIVE FIELD FOR 
ALL HEIGHTS -100 MV /M 

VERTICAL RADIATION PATTERNS 
FOR 

DIFFERENT HEIGHTS OF VERTICAL WIRE ANTENNAS 

(SINUSOIDAL CURRENT DISTRIBUTION) 

F.C.C.- MAY 4, 1938 

o00 .497 r,dm 
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Basic concepts 
of directional antennas 

Need for directionals 

At this point it might be interesting to look at some 
of the reasons or necessities for installing directional 
antennas. By far the most common reason is the need 
for a new station to protect a station already on a 
channel. Designing a DA to obviously interfere with a 
fellow broadcaster is not considered "playing the 
game." In other words, all new stations must afford 
protection to existing stations. 

A second common reason for the use of directional 
antennas is to protect other stations when seeking 
power increases. These would be cases where a 
straight non -directional power increase would overlap 
some other station. 

A third reason, not as common as those above, 
would be to prevent useless radiation over areas 
where no people live. A classic example would be a 
non -directional station located on the sea coast. 

Basic pattern concepts 

Figure 1 shows the typical pattern with its ground 
system. This is identical to that in Chapter 1 and is 
redrawn to show the comparison of this to our 
mathematical approach. Hoping we could do it all 
without math? Sorry. I'll try to keep it simple and 
explain every term and step, giving examples by using 
actual stations' patterns. 

Figure 2 represents the vector approach to this 
same two -tower directional pattern. Picture the view 
looking down from an airplane at 1000 feet over the 
top of the array. The tower signs represent the top 
view of the towers. Now take an engineer and place 
him on the ground at a distance of a mile away, at 
some angle (0) off the tower line. This engineer uses 
his field intensity meter to measure the "total signal" 
so that he can tell the amount of radiation at his 
particular bearing. If the engineer walked a circle 
around the pattern, taking readings of signal intensity 
at every 5° point, his readings could be plotted and 
the complete shape of the directional pattern seen. 

In design, with the use of simple mathematics, the 
signal the engineer would measure could be predicted 
had he stood one mile away in any given direction. 
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It was said the engineer would measure the "total 
signal." Each tower radiates its own signal. In the 
example, two individual signals will arrive at the 
point where the engineer is standing. His field meter 
is not able to differentiate between the separate 
individual signals. He reads the combined signals. 
Hence the reading on his F.I. meter represents the 
"total" signal. With three towers, the total signal 
would be the vector sum of these signals, and so 
forth. 

Oh -oh, what is this vectorial sum business? This is 
just a mathematical way of saying the two signals add 
in a relationship defined by the design of the pattern. 

Point "P" in Figure 2 represents the spot where the 
engineer is standing with his field meter. Towers one 
and two are marked by appropriate numbers. The 
letter "S" represents the electrical spacing between 
the two towers, normally expressed in degrees. These 
two towers lie along the same tower -line, referred to 
as TL. 

The signal from tower one to our engineer observer 
follows the arrow from the tower, which in relation to 
the tower -line is an angle of 0. The same angle is 
assumed to exist from tower two. The signal from 
tower two should not be the same angle since this can 
occur only if the two vectors are parallel. However, in 
theoretical design assume the path to each tower 
from the observer is parallel, even though in reality it 
is not. 

This is a difficult concept to accept. The design 
engineer assumes them to be parallel lines when he is 
standing at a distance greater than ten times the 
tower spacing. The reason for this is that mathemati- 
cally the sine and the tangent of angles less than 6° 
are equal. 

Now that the terms are defined, let's see what 
happens to the two signals. Tower one is the 
reference tower. So its signal is arbitrarily taken as 
the basis for comparing the signal relationships of all 
the other towers in any directional antenna pattern. 

If the engineer is standing at point "P," then the 
sum total signal he observes is the resulting addition 
of the two individual tower vectors. If the two towers 
have equal currents, then the only thing which can 
affect the vector sum at point "P" is the phase 



Tower 01 

Figure 1 

VERTICAL PLAN VIEW 

Tower /2 

POINT "P" o 

TOWER #1 TOWER #2 TOWER LINE TLI 

HORIZONTALPLAN VIEW 

0° 

Figure 2 

Figure 3 
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Figure 4 
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relationship between the two signals. Two factors 
control this relationship. One factor is the phase 
angle between the currents induced into each tower. 
This is the angle you might measure on a station 
antenna monitor. 

The other factor is the "space phase," due to the 
difference in the length of the paths from each tower 
to point "P." For example, if point "P" were at right 
angles to the tower -line (TL) the path lengths would 
be equal. If this same point "P" were along the 
tower -line, the "space phase" would be equal to 
electrical spacing (in degrees) between the two towers. 
The "space phase" will vary between zero and S. The 
rate at which it varies can be expressed by this simple 
formula of Equation 1. 

Space Phase = S cos 0 

The variation is the cosine of the angle (0) off the 
tower -line. Since 0 equals zero along the TL, and the 

o cosine equals 1.00, "space phase" equals "S." Also, 
when 0=90 °, the cosine of the "space phase" equals 
0, or the condition of equal path lengths. Thus our 
formula works. 

This "space phase" relationship is shown in Figure 
3. Point "X" is at the corner of a right triangle 

45o 
formed by the tower spacing and "S cos 0." 

Obviously the distance from tower two is greater 
than the distance from tower one by the length 
between point "X" and tower two. As shown, this 
length can be calculated by Equation 1. Predict the 
space phase for any given bearing to point "P" by 

o 
multiplying the term S by the cosine of the bearing 

90 angle, as measured from the tower -line. 
Computations for directional patterns having two 

towers need be calculated over just one -half of the 
circle. This is because any two -tower pattern is 
symmetrical about its tower -line. For example, the 
"total signal" at 110° off the TL was to be the same 

135 as that at 250 °; i.e., each side of the TL is the same 
as its corresponding angle. In other words, the 
right -hand side mirrors the left -hand side. 

Let's put the terms together and see the result. 
There is the combination of two signals or two vectors 

180o 
at point "P." The reference tower is always assumed 
to be a vector of 1.0 units in length lying at an angle 
of 0 °. This is vector one in Figure 6. The vector from 
tower two is the same length as tower one, because 
equal currents were assumed. Tower two's angle of 
relationship to that of tower one's vector is affected 
by the two phases discussed above. These two factors 
are added as follows: 

(3 = LP + (S cos 0) 

The first term is the Greek letter "phsi" and 
stands for the phase angle between individual 
currents, or the value occurring on a station's 
antenna monitor. This is a constant value for any 
given pattern. The last part of Equation 2 is the 



space phase from Equation 1. The Greek letter ((3) 

"beta" represents the combined angle, at any given 
bearing, and expresses the angle between tower one 
and tower two vectors at point "P." 

For example, when (3 =0 °, our resultant total signal 
is the sum of the two vectors, I1, I2 = 2 I units. If, 
however, (3 =180 °, the vectorial sum will be 0 units. 
Thus the angle of (ì really controls the vectorial sum, 
which controls the pattern shape. If 4Y =90° and 
S =90° is assumed, the following vector sums shown 
in Figure 5, at 0 °, 45 °, 90 °, 135° and 180° would be 
found off the tower -line. 

In the early days of designing directionals, many 
engineers simply plotted the vector sums at 10° 
intervals and thereby determined their overall pattern 
shape. It is usually a bit more professional to 
compute these vector sums at 5° intervals, except in 
cases where a smaller angular change is important. In 
Table 1, the tabulation used to compute these vector 
sums is shown. The operation shown at the top of 
each column in Table 1 is performed, and each 
column in turn is modified, or processed by the next 
adjacent one. Column "J" represents the vectorial 
sums expressed in units. These are plotted on 
Figure 6. 

Computing power 

In order to relate the unit vector pattern to some 
specific size, the power of the designed station as well 
as the RMS efficiency of the pattern must be known. 
For any given pattern shape there will be an RMS 
efficiency for 1 kW, for 500 watts, or even for 50 kW. 
The relationship bewteen these RMSs varies ac- 
cording to good old "Ohm's Law." Using the RMS at 
1 kW as a standard, hence by simple Ohm's Law the 
RMS at any other power is the square root of that 
power divided by 1 kW, times the RMS at 1 kW. 
This is shown in Equation 3. 

RMS(X Power) = RMS(1 kW) x 
V 1 kW 

X kW 

How does one know what the RMS efficiency is for 
a given pattern? This is calculated by a formula 
known as the Bessel Function Method. For now let's 
pass over this step and see how to apply the RMS 
efficiency to the unit vector pattern computed in 
Table 1. 

In the example, assume the RMS efficiency was 
calculated to be 196 MV /M for 1 kW and it is 
planned to operate at 1 kW. By definition, the RMS 
of any pattern represents the radius (in MV /M) of a 
circle which will contain the same total area as the 
area which is encompassed by our pattern. Thus the 
area of the pattern is nR2. 

In order to convert the pattern shape to this area, a 
conversion factor is needed. This is commonly 
referred to as "K." K is the constant by which each 

rt. = 0° 

(4- Ise 

Figure 6 

vector sum is multiplied to arrive at the final pattern 
expressed in MV /M. This is determined from 
Equation 4. 

K= 
RMS efficiency 

RMS unit vectors 

No. of bearings calculated 

For the RMS efficiency in the example I assumed 
196 MV /M. The number of bearings calculated 
means the number computed, normally 36. The RMS 
of the unit vectors is found by taking each of the 
individual vector sums, shown on Table 1, column 
"J" for each of the 36 bearings; squaring that value; 
adding up the total, dividing by 36 and then taking 
the square root. In fact, RMS stands for the root -of- 
the- mean -of- the -squares. 

Table 2 shows how the unit vectors of Table 1, 

column "J" have been taken, squared, added; and, 
how I determined "K" by Equation 4 and applied 
that factor to arrive at the final pattern. This is 
plotted on Figure 7. 

Nulls and lobes 

If the currents in the two towers are not precisely 
equal, their individual vectors will not perfectly cancel 
at some bearing and cannot produce a pattern null 
having zero MV /M. In design, the engineer will 
often use unequal currents in order to "fill in" a 
given null, thus giving a more stable pattern, and one 
that is easier to adjust, since I have yet to find 
anybody who can tune to a null of zero MV /M. 
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TABLE 1 

CALCULATING UNIT VECTORS 

E = f(0) [F1 /0° + F2 /4P + S cos 0 cos 0] 

SUBSTITUTING = 1.0[1.0A+ 1.0/90° + 90° cos 0 1.0] 

A 

B 

A 

O 

B 

90 cos A 

C 

90 +B 

D 

cos C 

E 

1+D 

D-J 
F 

E2 

C 

G 

sin C 

H 

G2 

I 

F+H 

J° 

00 90.0 180.0 -1.000 0.000 0.000000 0.000 0.00000 0.00000 0.000 
10° 88.6 178.6 -.999 .001 .000001 .024 .00059 .00059 .024 
20° 84.5 174.5 -.995 .005 .000025 .096 .00920 .00920 .096 
30° 77.9 167.9 -.978 .022 .000480 .209 .04390 .04440 .211 

40° 68.9 158.9 -.933 .067 .004500 .359 .12900 .13400 .366 
50° 57.8 147.8 -.846 .154 .023700 .533 .28400 .30800 .555 
60° 45.0 135.0 -.707 .293 .085800 .707 .50000 .58500 .765 
70° 30.8 120.8 -.512 .488 .238000 .858 .73700 .97600 .988 
80° 15.6 105.6 -.269 .731 .534000 .963 .92800 1.46200 1.209 

90° 0.0 90.0 0.000 1.000 1.000000 1.000 1.00000 2.00000 1.414 
100° -15.6 74.4 .269 1.269 1.610000 .963 .92800 2.53800 1.593 

110° -30.8 59.2 .512 1.512 2.286000 .858 .73700 3.02300 1.738 

120° -45.0 45.0 .707 1.707 2.914000 .707 .50000 3.41400 1.848 
130° -57.8 32.2 .846 1.846 3.408000 .533 .28400 3.69200 1.921 
140° -68.9 21.1 .933 1.933 3.736000 .359 .12900 3.86500 1.986 
150° -77.9 12.1 .978 1.978 3.912000 .209 .04390 3.95600 1.989 
160° -84.5 5.5 .995 1.995 3.980000 .096 .00920 3.98900 1.997 
170° -88.6 1.4 .999 1.999 3.998000 .024 .00059 3.99800 1.999 
180° -90.0 0.0 1.000 2.000 4.000000 0.000 0.00000 4.00000 2.000 

'REPRESENTS LENGTH OF UNIT VECTORS 

Figure 7 
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TABLE 2 

CONVERTING UNIT VECTORS TO F.I. 

ET = K [Eunit] MV/M 

A B' C D 

Eunit B2 KB 
0° 0.000 0.00000 0.0 MV/M 

10° .024 .00059 3.3 
20° .096 .00920 13.1 
30° .211 .04440 29.1 
40° .366 .13400 50.6 
50° .555 .30800 78.7 
60° .765 .58500 106.0 
70° .988 .97600 139.9 
80° 1.209 1.46200 167.5 
90° 1.414 2.00000 196.0 

100° 1.593 2.53800 220.8 
110° 1.738 3.02300 241.0 
120° 1.848 3.41400 256.1 
130° 1.921 3.69200 266.3 
140° 1.966 3.86500 272.5 
150° 1.989 3.95600 275.7 
160° 1.997 3.98900 276.9 
170° 1.999 3.99800 277.1 
180° 2.000 4.00000 277.2 

38.056 

'COLUMN J 

FROM TABLE 1 

38.056 (19 BEARINGS) K 196 MV /M /KW 
x 2 

76.112 (38 BEARINGS) 

- 0.0 ( -FIRST BEARING) 
- 4.0 ( -LAST BEARING) 

72.112 (36 BEARING) 

\,/ 36 

72.112 

K = 138.6 MV/M/KW 

The example used a phase angle (41) which gave 
just one pattern null. If instead of 4' =90 °, 4' =116° 
was used, the resulting pattern of Figure 8 would be 
obtained. This example produced two nulls, with a 
minor lobe in between. Thus it is the phase angle 4' 
which is important in producing the number of nulls, 
as well as their placement angle along the tower -line. 
The current ratio, as noted, will affect the depth of 
the nulls and will also affect the amplitude of any 
minor lobes. As the nulls fill in, the lobes will grow. 

Different bearings 

Note that math angles are not the same as bearing 
angles. Mathematical convention established that 
math angles are measured counter -clockwise from the 
X -axis (east). Navigational convention has established 
that bearings be noted clockwise, beginning at true 
north. This would correspond to a math angle of 
+900. Not only does each system have a different 
reference point, but the angles are measured in 
opposite directions. Conversion from one system to 
the other is therefore obvious. 

Sd6 
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Design 
of two -tower systems 

This chapter deals with the most common type of 
directional: the two -tower pattern. The concepts 
developed in Chapter 2 will be expanded, with 
examples of the more common pattern shapes and at 
least one example of each of the standard methods of 
calculation. 

Two -tower addition formula 

There are two basic ways to calculate the two -tower 
radiation pattern. These are referred to as the 
addition method and the multiplication method. 
Equation 1 is the addition form: 

E=Kf(0)(E1+E24+S cos O cos O) 

As explained in Chapter 2, these terms represent 
the tower vectors (E1" and E2), the phase angle 
relationship between the two towers (41), and physical 
spacing in degrees (S). This formula can be rewritten 
as shown in Equation 2, by separating the sine and 
cosine terms: 

E = Kf (0) [(E1 + E2 cos (4) + S cos e cos O))2 

+ (E2 sine (41 + S cos O cos 0))2]2n 

Using this formula, you can compute the results 
shown in Table 1. In this example the horizontal 
plate pattern has been calculated, thus F(0) and cos 
O) can be assumed to be 1.0 and 0° respectively. The 
constant "K" was computed, as shown in Equation 4 
of Chapter 2. In this example is a simple cardioid 
pattern. 

Two -tower multiplication formula 

Here's how to develop the same pattern with the 
multiplication method, using the formula in Equation 
3: 

E=Kf(0) 

16 

1 +M2 
+ cos (4) +S cos 0 cos O) 

2M 

In this formula, all terms are the same as in the 
addition formula except for term "M." This 
represents the ratio of tower two's vector divided by 
tower one's vector: 

E2f2(0) 

E1f1(0) 

Table 2 contains the data used to compute the 
pattern. Note that the final column in Table 1 is 
identical with the last column in Table 2, except it is 
141% larger. Figure 1 represents the polar graph of 
this pattern. 

At this point you may say that's all great, but 
where did Equation 3 come from? Also, why are 
there no sine terms? The reason for this last point is 
that in this formula the equation has been written 
around the mid -point between the two towers. In 
such a step, the sine terms from each tower will have 
opposite polarity, hence will cancel each other at each 
and every bearing calculated. 

I will outline the method used to develop Equation 
3. Let the expression 0Y +S cos 0 cos O) be 
represented by the term "X." We can then let E1 = 
1.0 and rewrite it in Equation 4 as: 

E = Kf (0)V (1.0 +E2 cos "x")2 + (E2 sine "X ")2 

Multiplying out we get: 

E = Kf (0) \I 1.0+2E2 cos "X " +Ei 
cos 2 "X " +Ei sine 2 "X" 

Since sine2+cos2 = 1.0 (from simple trig) we can 
substitute: 

E = Kf (0)\/ 1.0 +2E2 cos "X " +Ei 

By substituting for X and dividing out the 2E2 term 
we get: 



TABLE 
CALCULATING UNIT 

E= f(0)(F1L0 ° +F2 

SUBSTITUTING = 1.0 (1.0/1 

A BC D E 

1 

VECTORS 

/4' +S cos 0 cos 0) 
EUNIT 

WHERE 

A 

TABLE 
MULTIPLICATION 

M2 

2 
FORMULA 

+ cos (4' + S cos 0))1 

4' = 90 °, and M = 1.0 

D E F 

+ 1.0 /90° + 90° cos 0 1.0) 
= (1 M 

S = 90 °, 

B C 

A 

B 

C 

D-41 

F C I H I J 

0 90 cos A 90+B cos C 1+D E1/2 

0 
10 
20 
30 
40 
50 
60 
70 
80 
90 

100 
110 
120 
130 
140 
150 
160 
170 
180 

90.0 
88.6 
84.5 
77.9 
68.9 
57.8 
45.0 
30.8 
15.6 
0.0 

-15.6 
-30.8 
-45.0 
-57.8 
-68.9 
-77.9 
-84.5 
-88.6 
-90.0 

180.0 
178.8 
174.5 
167.9 
158.9 
147.8 
135.0 
120.8 
105.6 
90.0 
74.4 
59.2 
45.0 
32.2 
21.1 
12.1 

5.5 
1.4 
0.0 

-1.0000 
-.9997 
-.9950 
-.9780 
-.9330 
-.8460 
-.7070 
-.5120 
-.2690 
.0000 
.2690 
.5120 
.7070 
.8460 
.9330 
.9780 
.9950 
.9990 

1.0000 

.0000 

.0003 

.0046 

.0220 

.0670 

.1540 

.2930 

.4880 
.7310 

1.0000 
1.2690 
1.5120 
1.7070 
1.8460 
1.9330 
1.9780 
1.9950 
1.9990 
2.0000 

.000 MV/M 
.017 
.068 
.148 
.259 
.392 
.541 
.698 
.855 

1.000 
1.126 
1.229 
1.306 
1.359 
1.390 
1.406 
1.412 
1.413 
1.414 

0 90 cos A 90+B cosC 1+D E2 Sin C G2 F+H 

0° 90.0 180.0 -1.000 0.000 .000000 
10° 88.6 178.8 -.999 .001 .000001 
20° 84.5 174.5 -.995 .005 .000025 
30° 77.9 167.9 -.978 .022 .000480 
40° 68.9 158.9 -.933 .067 .004500 
50° 57.8 147.8 -.846 .154 .02.700 
60° 45.0 135.0 -.0.707 .293 .085800 
70° 30.8 120.8 -.512 .488 .23EÁ00 

80° 15.6 105.6 -.289 .731 .534000 
90° 0.0 90.0 0.000 1.000 1.000000 

100° -15.6 74.4 .269 1.269 1.610000 
110° -30.8 59.2 .512 1.512 2.286000 

120° -45.0 45.0 .707 1.707 2.914000 

130° -57.8 32.2 .846 1.846 3.406000 

140° -68.9 21.1 .933 1.933 3.736000 

150° -77.9 12.1 .978 1.978 3.912000 

160° -84.5 5.5 .995 1.995 3.98000 

170° -88.6 1.4 .999 1.999 3.996000 

180° -90.0 0.0 1.000 2.000 4.000000 

*REPRESENTS LENGTH OF UNIT VECTORS 

0.000 
.024 
.096 
.209 
.359 
.533 
.707 
.858 
.983 

1.000 
.963 
.858 
.707 
.533 
.359 
.209 
.096 
.024 

0.000 

0.00000 
.00059 
.00920 
.04390 
.12900 
.28400 
.50000 
.73700 
.92800 

1.00000 
.92800 
.73700 
.50000 
.28400 
.12900 
.04390 
.00920 
.00059 

0.00000 

0.00000 
.00059 
.00920 
.04440 
.13400 
.30800 
.58500 
.97600 

1.46200 
2.00000 
2.53800 
3.02300 
3.41400 
3.69200 
3.86500 
3.95600 
3.98900 
3.99800 
4.00000 

0.000 
.024 
.096 
.211 
.386 
.555 
.765 
.988 

1.209 
1.414 
1.593 
1.738 
1.848 
1.921 
1.966 
2.989 
1.997 
1.999 
2.000 

E = Kf (0) 2 1.0 +E3 
+ cos (4' +S cos 0 cos 0) 

2E2 

The 2E2 term outside the radical is a constant (for 
any given design), so it can be included in the K 

term. Thus Equation 4A can be written as: 

E = Kf (0) 
z 

1 +Ez + cos (4' +S cos 0 cos O) 
2E2 

Equation 3 is the most practical, the least time 
consuming, and results in the least chance for error. 
This is without a doubt the most widely used method 
among engineers. Equation 3 is identical to Equation 
4A, except it is more common to substitute M for E2. 

I have tabulated in Table 3 the full and complete 
calculation via the multiplication method of a cardiod 
type two -tower pattern. The pattern of Table 3 is 

graphically displayed in Figure 4. 

Rarely used method 

There is another method rarely used in calculating 
two -tower patterns, shown in Equation 5 mostly for 
its historic value, and not as a common or generally 
accepted method of developing patterns. This is 

referred to as the "half -angle formula." It can only 
be used when the fields of each tower are equal. For 
this the reference point is assumed to be half -way 
between the two towers. 

E = Kf (0) [cps (2 +2 cos 0 cos 0)] 

This formula is derived from Equation 3 by using the 
old trig fact that, 

cos 2 = 1+cos A 

2 

All formulas really represent different trig relation- 
ships. 
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As an example of this method, Table 4 lists the 
math used to compute a pattern like that used by 
WKAM, as well as many others. A graphical plot is 
shown in Figure 5. 

Two -towers by computers 

Most consultants now resort to the aid of a corn - 
puter in calculating directional patterns. It will be 
helpful to understand how the computer calculates a 
basic two- tower, or multi- tower, pattern.1 In essence 
this is done by the addition method, similar to 
Equation 1. One tower is written as the reference 
tower (El L0 °). Then each of the other towers is 
"added" to the reference tower, one at a time, 
regardless of the number of other towers. The 
computer program developed by Don Markley and 
the author was written to accommodate up to 12 
towers. In Equation 6, each of the other towers is 
added in by: 

Reference tower + En 4tn + Sn cos O cos (0 -d) 

1. Jones, R.A. and Markley, D.L.: Antennas By Computer, Broadcast 
Engineering, March 1967. 

The only new term is the Greek letter 6. This is to 
account for the fact that not all the towers may lie in 
a straight line. For each tower, other than the 
reference tower, this represents the angle between 
true north and the reference tower. Figure 2 shows 
how this angle is determined. For every other tower, 
beyond this reading, this d would be a different 
value. The one exception would occur when all towers 
are on a straight line. In such a case would be a 
constant angle. 

Phase angle determination 

At this point it would be helpful to show how to 
calculate the correct value of phase angle (4t) to 
produce a null at any desired bearing. Once the angle 
of the tower line of a given two -tower pattern is 
established, and the spacing between the towers is 
set, the next step is to compute the phase angle. 
Figure 3 shows the relationship between the tower 
line, the spacing and the phase angle needed to 
produce a null at any desired angle. Keep in mind 
that when a null occurs in a two -tower pattern it 
means that the vectors from each tower are 180° out 
of phase and result in a cancelling of the total signal 
at that angle. 

Knowing this fact, we can write the formula to be 
used as: 

Figure 1 
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±180° = 4' +S cos 13 (Equation 7) or, 

4' _ ±1.0 = 180° ±S cos (3 (Equation 8) 

It is recognized that the cosine of 180° is always 

-1.0. This 41 can be either a negative or a positive 
value. The angle (3 represents the azimuth angle from 

the line of the towers to the desired null bearing. 
With a little experience you will easily learn whether 
this phase angle (4/) is negative or a positive. 
Generally speaking, if the null angle is between zero 
and ninety degrees it is positive. A negative sign is 

used when the null falls between W4° and 180 °. 

Null fill 

In summary, there are two basic ways to compute 
two -tower patterns. These are called the addition 
form and the multiplication form. In each case there 
is one term which is constant for each individual 
bearing. This is the term (4' +S cos 0 cos O). In fact, 

once you have calculated this term, the only other 
variables are the individual fields radiated by each of 
the two towers. 

If we then say in the two -tower pattern that the 
null bearings are set, we can vary the "depth" of this 
null by varying the field ratios. When the individual 
fields are equal, the nulls will be "pulled in" to a 

TABLE 3 

CARDIOID PATTERN 

Formula: 
E = Kf(0) 1 + M2 .+ cos (4J + S cos O cos 0T/2 

L 2M 

4' = -90 °, - Assumptions: f(0) = 1.0, M = 1.0, 

S= 90 °,0 =0° 

A B C D E 

0 90 cos A B-90 cos C 1 +D 

0 90 A 0.0° 1.000 2.000 

10 88.6 -1.4 .999 1.999 

20 84.6 -5.4 .996 1.996 

30 77.9 -12.1 .978 1.978 

40 68.9 -21.1 .933 1.933 

50 57.9 -32.1 .847 1.847 

80 45.0 -45.0 .707 1.707 

70 30.8 -59.2 .512 1.512 

80 15.6 -74.4 .269 1.269 

90 0.0 -90.0 0.0 1.000 

100 -15.6 -105.6 -.269 .731 

110 -30.8 -120.8 -.572 .428 
120 -45.0 -135.0 -.707 .293 
130 -57.9 -147.9 -.847 .153 

140 -68.9 -158.9 -.933 .067 

150 -77.9 -167.9 -.978 .022 

160 -84.8 -174.6 -.996 .004 

170 -88.8 -178.6 -.999 .003 

180 -90.0 -180.0 -1.000 .000 

18.942 

F 0 

,r-e KF 
1.414 254.9 M V / M 

1.414 254.8 
1.412 254.6 
1.406 253.5 
1.390 250.6 
1.359 245.0 
1.306 235.5 
1.229 221.6 
1.126 203.0 
1.000 180.3 

.855 154.1 

.654 117.9 

.541 97.5 

.391 70.5 

.259 46.7 

.148 26.7 

.063 11.4 

.017 3.0 
.000 0.0 

theoretical zero signal. As the ratio between E1 and E2 

goes up, this null fills in more and more. By the time 
this ratio gets down to 100 /1 you will have, for all 

practical pu4poses, a non -directional antenna. 

NULL BEARING DESIRED 

Figure 3 

TABLE 4 

THREE LEAF CLOVER 

Equation: E = Kf(0) [cos (2 + cos e cos 01 

Assume *.ions: 4' = 23.8°, S = 203.8 °, 

f(0)= 1.0,0 =0° 

A B C D E F 

0 ' 
S oos A 
2 

W +B 
2 

cos C D2 KD 

0 101.9 113.8 .4035 .1628 127.8 

10 '' 100.3 112.2 .3778 .1427 119.6 

20 95.7 107.6 .3023 .0914 95.7 

30 88.2 100.1 .1754 .0307 55.5 

40 ° 
78.0 89.9 0.0000 0.0000 0.0 

50 65.5 77.4 .2181 .0476 69.0 

60 50.9 62.8 .4570 .2089 144.7 

70 34.8 46.7 .6858 .4703 217.2 

80 17.7 29.6 .8695 .7560 275.4 

90 0.0 11.9 .9785 .9575 309.9 

100 -17.7 -5.8 .9949 .9898 315.1 

110 -34.8 -22.9 .9212 .8486 291.7 

120 -50.9 -39.0 .7771 .6039 248.1 

130 -65.5 -53.6 .5934 .3521 187.9 

140 -78.0 -86.1 .4051 .1641 128.3 

150 -88.2 -76.3 .2368 .0561 74.9 

160 -95.7 -83.8 .1079 .0117 34.2 

170 -100.3 -88.4 .0279 .0007 8.8 

180 -101.9 -78.1 -.9000 0.0000 0.0 

5.8949 

2 

K = 180 = 180.3 x 
K = 180 = 316.7MV/M 

/ 35.884 -2.000 1 - .1628 

J 36.0 35.884 
y36 11.6270 

37.884 

x 2 

11.7898 
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Well- formed nulls 

At this point it should be pointed out that the nulls 
we have been talking about are those that you will 
find at a great distance over conductive flat earth. In 
other words, as you walk in closer and closer into a 
null, it will not hold. This is true for short distances, 
generally those less than 10 times the greatest 
element spacing. Near the directional array, predicted 
nulls cannot be deep, and may not seem like nulls at 
all. This is due to what I call the "parallax effect." 

In some arrays the "inductive field" also will 
destroy the null in close to the towers. This generally 
occurs within five times the tower height. To use 
common FCC language, the null is considered not to 
be "well- formed." 

Several factors actually affect the true signal you 
would observe on your field intensity meter as you 
walk closer and closer to the array. These are the 
angular displacement from parallel of each of the 
towers' signals. As we have noted in previous 
comments, the designer always assumed that all 
signals from all towers arrive parallel, and when you 
are standing at an observation point that is more 
than 10 times the greatest element spacing, they are. 
But here, close to the towers, they are not. 

If you were to walk directly into the middle of a 
two -tower pattern, you would find that instead of 
being parallel, the two signals would be arriving from 
exactly opposite directions (1800). 

A second factor is the difference in path lengths. 
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Previously, we had talked about the fact that the 
difference in path lengths was calculated by S cos 0. 
This can no longer be true because with non -parallel 
signals the angle 0 to the observor is not the same. 

The third factor you must apply as a correction 
factor is to account for the fact that the loop antenna 
on the observer's field intensity meter will dis- 
criminate. 

At this point you might question how or why the 
field meter's loop antenna will not read all signals 
equally, from all towers. This is because the nature of 
a loop antenna is to peak in the plane of the loop 
and reject along the axis of the loop. It is normally 
assumed that this discrimination varies as a function 
of the cosine of the angle between the plane of the 
loop and the angle of the respective incoming signals. 

As a close to this consideration of two -tower 
patterns, The most common pattern shapes will be 
shown. These are the super cardioid with null fill, 
and the figure eight pattern. Tablee is the calcula- 
tion for the super cardioid by use of the multiplica- 
tion method. Table'is the mathematical solution for 
a figure eight, again based upon the multiplication 
method. Figures 6 and 7, respectively, show the 
graphical plot of each of these designs. 

It is physically impossible to give an example of 
every single kind of two -tower in use. It is therefore 
hoped that the reader will either see his type of 
pattern, or a representative of it, in the examples 
used. 
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TABLE 5 

FIGURE EIGHT DESIGN 

Formula: 2 

E K") L1 2M + cos (4' + S cos 0 cos 0)]ln 

Assumptions: f(0) = 1.0, M = 1.0, 

S= 180 °,0 = 1.0 

A B C D E 

4' = 

F 

0 °, 

G 

0 S cos A 111+ B cos C 1 + D 1/ff K.F 

0 180.0 180.0 -1.0000 0.0000 0.0000 0.0 MV/M 
10 177.2 177.2 .0012 .0346 7.5 

20 169.2 169.2 -.9823 .0177 .1330 28.7 

30 155.8 155.8 -.9121 .0879 .2960 63.8 

40 137.8 137.8 -.7408 .2592 .5090 109.8 

50 115.8 115.8 -.4352 .5648 .7510 161.9 

60 90.0 90.0 0.0000 1.0000 1.0000 215.7 

70 61.4 61.4 .4787 1.4787 1.2160 262.3 

80 31.2 31.2 .8554 1.8554 1.3620 293.8 

90 0.0 0.0 1.0000 2.0000 1.4140 . 304.9 

100 -31.2 -31.2 .8554 1.8554 1.3620 293.8 

110 -61.4 -61.4 .4787 1.4787 1.2160 262.3 

120 -90.0 -90.0 0.0000 1.0000 1.0000 215.7 

130 -115.8 -115.8 -.4352 .5648 .7510 161.9 

140 -137.8 -137.8 -.7408 .2592 .5090 109.8 

150 -155.8 -155.8 -.9121 .0879 .2960 63.8 

160 -169.2 -169.2 -.9823 .0177 .1330 28.7 

170 -177.2 -177.2 .0012 .0346 7.5 

180 -180.0 -180.0 -1.0000 0.0000 0.0000 0.0 

12.5298 

25.0596 
K=180MV/M = 215.7 

J25.0596 
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TABLE 6 

SUPER- CARDIOD- FILLED NULL 

Formula: 1 M2 in 
E = KM ' 2M 

+ cos (4' + S cos O cos 0)] 

Assumptions: t(0) = 1.0, M = 0.5, 

S=90,0=0° 
A B C D E 

4' = -116.4, 

F G 

0 S cos B- ly cos C D+1.250 rff KF 
0 90.) -26.4 .8957 2.145 1.465 258.6 MV/M 

10 88.3 -27.8 .8846 2.134 1.461 257.9 

20 84.5 -31.8 .8499 2.099 1.449 255.7 

30 77.j -38.5 .7826 2.033 1.426 251.7 

40 68.9 -47.5 .6756 1.925 1.387 244.8 

50 57.3 -58.5 .5225 1.772 1.331 234.9 

60 45.0 -71.4 .3189 1.568 1.253 221.1 

70 30.8 -85.6 .0767 1.326 1.152 203.3 

80 15.3 -100.8 -.1874 1.063 1.031 181.9 

90 0.3 -116.4 -.4446 .805 .897 158.3 

100 -15.3 -132.0 -.6691 .581 .762 134.5 

110 -30.8 -147.2 -.8406 .409 .639 112.8 

120 -45.0 -161.4 -.9477 .302 .549 96.9 

130 -57.'3 -174.3 -.9950 .255 .505 89.1 

140 -68.3 -185.3 -.9957 .254 .504 88.9 

150 -77.3 -194.3 -.9690 .281 .530 93.5 

160 -84.3 -201.0 -.9336 .316 .563 99.4 

170 -88.5 -205.0 9063 .344 .586 103.4 

180 -90.3 -206.4 -.8957 .354 .595 105.0 

19.966 

K = 
180 

J37.433 
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Design 
of three -tower systems 

This chapter will consider both the basic three -tower 
pattern shapes as well as the basic methods of 
computation, with useful examples. 

Three -tower arrays are usually required when a 
two -tower design will not provide enough nulls, or 
where the protection required must be over a wider 
arc than can be achieved with a single null. There are 
two common methods of computing typical three - 
tower patterns. These are, like the two -tower patterns, 
the addition method and the multiplication method. 

Addition formula 

Like the two -tower formulas, the addition form for 
three towers consists of adding the respective tower 
vectors and employing basic trigonometry steps. In 
fact, what really has been done is that a third tower 
has been added into the two -tower pattern at the 
mid -point or reference spot. This can be represented 
as follows (Equation 1): 

E= Kf(0)(E1 +E2 /4' +S COS 0 COS 0) 
+E3 /4'- S COS 0 cos 0) 

In this formula, E1 is assumed to be the center 
tower of a three -tower in -line array. 

The most common approach says that each end 
tower is equally spaced from the center (reference) 
tower, (this is more by custom than necessity); and 
that each has the same phase angle, but opposite 
signs. Typical three -tower patterns will produce at 
least two nulls on each side of the tower line. If these 
two nulls are to be of equal depth then the 
magnitude of each end tower (E2 and E3) must be 
equal. When this occurs a special case results that 
can be computed by the following formula (Equation 
2): 

E=Kf(0)[F1+2F2/S cos O cos O+4'] 

There are similarities between this formula and the 
one in Chapter 3 for the "half angle formula." 
Except that here spacing is S instead of S /2, and the 
phasing is 4' instead of 4'/2. One special advantage to 
this formula is that the nulls can be filled equally by 
changing the phase of the center (reference) tower. 
The greater the number of degrees introduced, the 
greater will be the amount of null fill. There are no 
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sine terms because they cancel, being equal and of 
opposite signs. 

The example of Table 1 shows the step -by -step 
calculation of a typical three -tower pattern by this 
method. Figure 3 is a graphic representation of the 
vectors of the three towers in Table 1 and Figure 2. 
At Bearings A and B the reader can see that all three 
vectors add up to zero, hence these are the two null 
bearings. The size of the minor lobe is represented by 
the amount of overlap of the three vectors at C. 

By using this vector plot, it is easy to see that the 
angle or arc between the two nulls can be changed by 
increasing or decreasing the magnitude of the end 
vectors. It must be recognized that the size of the 
minor lobe will be affected by the arc between these 
nulls. The wider this arc, the larger the size of this 
lobe. The nulls can be moved forward or backward 
along the tower line by rotating the beginning point 
of the end vectors. 

Seldom used method 

In addition to the general method outlined above, 
there is a way of considering a three -tower design as 
being the sum of a non -directional tower added to a 
two -tower pattern. Figure lA shows how this 
relationship is accomplished. As with the four -tower 
addition methods, signs of ( +) and ( -) are assigned to 
each lobe. This method works only for a case of three 
towers being on the same plane (straight line). 

Table 3 is a compilation of the mathematical 
solution to this method. A polar plot is shown on 
Figure 9. 

Three -tower multiplication formulas 

This is a very interesting way of designing a 
three -tower pattern. It consists of literally taking two 
separate two -tower patterns and multiplying them so 
that the result is an equivalent three -tower pattern.1 
In using this method one must make certain 
assumptions. 

One assumption is that the spacing between the 
towers of each individual two -tower pattern is equal 
to that between adjacent towers on the final 
three -tower array. Another assumption is that the 

1. Jones, R.A.: Two-Tower Tests. Broadcast Engineering, February 1988. 



TABLE 1 

THREE -TOWER SPECIAL CASE 

E = Kf(0) (F1 + 2F2 cos /S cos 0 cos 0 + 41) 

Where 
F1 = 1.7, F2 = 1.0, 5 =90 °, 0 =0 °,and 
Y = 167.6° 

[1.7 +2.0 

A B C 

cos /90 cos 0. 1 +167.6 °] 

D E F ß 

0 90 cos A B + 167.6 2.0cos C 1.7 + D E2 EK 
0 90.0 257.6 -.429 1.270 1.613 149.3 MV/M 

10 88.6 256.2 -.477 1.222 1.495 143.6, 
20 84.5 252.1 -.615 1.085 1.178 127.5 
30 77.9 245.5 -.829 .870 .758 102.2 
40 68.9 236.5 -1.104 .596 .355 70.0 
50 57.8 225.4 -1.404 .295 .087 34.6 
60 45.0 212.6 -1.684 .015 1.7 
70 30.8 198.4 -1.897 -.198 .039 23.3 
80 15.6 183.2 -1.997 -.297 .088 34.9 
90 0.0 167.6 -1.953 -.253 .064 29.7 

100 -15.6 152.0 -1.765 -.065 .004 7.6 
110 -30.8 136.8 -1.458 .242 .058 28.4 
120 -45.0 122.6 -1.077 .622 .387 73.0 
130 -57.8 109.8 -.677 1.022 1.045 120.0 
140 -68.9 98.7 -.302 1.397 1.953 164.1 
150 -77.9 89.7 .010 1.710 2.926 200.9 
160 -84.5 83.1 .240 1.940 3.765 227.9 
170 -88.6 79.0 
180 -90.0 76.6 

.382 

.463 
2.081 
2.163 

4.333 
4.680 

244.5 
254.1 TOWER #3 s 

REFERENCE TOWER #2 
is 

0 3 L TOWER LINE K = 117.5 
4 336 E 

3 1 2 

36 

Figure 1 

THREE TOWER ADDITION METHOD 

Figure 1A 
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3200 
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310° 

reference tower line for each two -tower pattern is the 
same as the reference for the final pattern. Also, all 
towers are assumed to be of equal height. If Equation 
3 of Chapter 3 is used to represent a typical 

50° two -tower pattern, and you multiply the radical terms 
together, then (Equation 3): 

300° 
60° 

290° 
700 

P800 

800 

270° 
90o 

260° 
100° 

250° 
110° 

240° 
120° 

230° 
130° 

220° 

140° 

180 

E= Kif (0) 

K1f (0) 

11 +Mi 
+ cos (11)1 +S cos O cos 0) x 

2M1 
2 r1 +MZ 

+ cos (412 + S cos O cos 0)] 
2M2 

Actually there was an extra Kf(0) term from the 
second pattern, but since f(0) was the same for each, 
one f(0) will suffice. Also, the K term from the 
second equation combines into a new K1 term. 

Figure 4 shows how two, two -tower patterns can be 
used to produce a three -tower array. The next step is 
to show how to move from the basic design values of 
each individual pattern to arrive at the final 
three -tower value. In Figure 4 the design values are 
below each of the two -tower patterns. The end tower 
is assumed to be the reference tower, hence it is 
taken as having a value of 1.0L0 °. 

The center tower is calculated as follows (Equation 
4): 

THREE TOWER MULTIPLICATION METHOD 

PATTERN #1 PATTERN #2 FINAL PATTERN 

WHERE: 

E1=F1=1.0'0° 

E2 = F2'2 + F3 P113 

E3 = F2F3 2 3 

Figure 4 



TABLE 2 

THREE -TOWER MULTIPLICATION 

E=Kf(0)[(1 2 12+ COS (180+90 cos 0))x 

(1 
2 12 + cos ( -116.4 + 90 cos 0))11/2 

A B C D E F G: H I J K 

0 90 cos A 180+B cos C 1+ D B-116.4 cos F 1+G EH lV2 JK1 

o 90.0 270.0 .000 1.000 -26.4 .896 1.896 1.896 1.377 399.3 MV/M 
10 88.6 268.5 -.024 .976 -27.8 .885 1.885 1.839 '.356 393.2 
20 84.5 264.5 -.096 .904 -31.9 .849 1.849 1.671 1.293 375.0 

30 77.9 257.9 -.209 .791 -38.5 .783 1.783 1.410 1.188 344.5 

40 68.9 248.9 -.359 .641 -49.5 .649 1.649 1.057 -.028 298.1 

50 57.8 237.8 -.533 .467 -58.6 .521 1.521 .710 .843 244.5 

60 45.0 225.0 -.707 .293 -71.4 .319 1.319 .386 .621 180.0 

70 30.8 210.8 -.859 .141 -85.6 .077 1.077 .152 .389 112.8 

80 15.6 195.6 -.963 .037 -100.8 -.187 .813 .030 .173 50.2 

90 0.0 0.0 -1.000 .000 -116.4 -.445 .555 .000 .000 0.0 

100 -15.6 164.4 -.963 .037 -132.0 -.669 .331 .012 .111 32.2 
110 -30.8 149.2 -.859 .141 -147.2 -.841 .159 .022 .149 43.2 

120 -45.0 135.0 -.707 .293 -161.4 -.948 .052 .015 .123 35.7 
130 -57.8 122.2 -.533 .467 -174.2 -.995 .005 .002 .048 13.9 

140 -68.9 111.1 -.359 .641 -185.3 -.996 .004 .002 .048 13.9 

150 -77.9 102.1 -.209 .791 -194.3 -.969 .031 .024 .156 45.2 

180 -84.5 95.5 -.096 .904 -200.9 -.934 .066 .059 .244 70.8 

170 -88.6 91.4 -.024 .976 -205.0 -.906 .094 .092 .303 87.9 
180 -90.0 90.0 .000 1.000 -206.4 -.896 .104 .104 .322 93.4 

K = 289.8 

TABLE 3 

THREE -TOWER ADDITION BY SPECIAL CASE 

Equation: E = Kf(0) [ND -F(1 + cos (43 + S cos 0 cos 01)1 1/2 

Assumptions: ND = 1.198, 43= 180 °, f(0) = 1.0, 0 = 0P 

A B C D E F G HI I 

0 S cos D Iy +B cos C 1+D F +1.198" G2 KG 

0 180.0 0.0 1.0000 2.0000 1.4140 2.612 6.822 283.9 MV/M 
10 177.2 -2.8 .9988 1.9988 1.4130 2.611 6.8'i7 283.8 
20 169.2 -10.8 .9823 1.9823 1.4080 2.606 6.791 283.3 

30 155.8 -24.2 .9121 1.9121 1.3830 2.581 6.661 280.6 

40 137.8 -42.2 .7408 1.7408 1.3190 2.517 6.335 273.6 

50 115.8 -64.2 .4352 1.4352 1.1980 2.396 5.741 260.4 

60 90.0 -90.0 0.0000 1.0000 1.0000 2.198 4.8:31 238.9 

70 61.4 -118.6 -.4787 .5213 .7220 1.920 3.6.36 208.7 

80 31.2 -148.8 -.8554 .1446 .3800 1.578 2.430 171.5 

90 0.0 -180.0 -1.0000 0.0000 0.0000 1.198 1.435 130.2 

100 -31.2 -211.2 -.8554 .1446 .3800 .868 .733 94.3 

110 -61.4 -241.4 -.4787 .5213 -.7220 .476 .226 51.7 

120 -90.0 -270.0 .0000 1.0000 -1.0000 .198 .089 21.5 

130 -115.8 -295.8 .4352 1.4352 -1.1980 .000 .000 0.0 

140 -137.8 -317.8 .7408 1.7408 -1.3190 -.121 .015 13.1 

150 -155.8 -335.8 .9121 1.9121 -1.3830 -.185 .004 20.1 

160 -169.2 -349.2 .9823 1.9823 -1.4080 -.210 .044 22.8 

170 -177.2 .357.2 .9988 1.9988 -1.4130 -.215 .046 23.4 
180 -180.0 -360.0 1.0000 2.0000 -1.4140 -.216 .047 23.5 

'Second lobe assigned ( -1 sign 52.812 

N -D magnitude x 2 

105.625 

K = 180 = 108.7 - 0.047 

/98.756 
V 36 

- 6.822 

98.756 
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No. 2=F1L1+F2L2 

and for the other end tower we use this formula 
(Equation 5): 

No. 3=F1xF2 4'1+4'2 

The terms are those shown in Figure 4. These 
two -tower design values are combined by the usual 
vector mathematics to achieve the final values. For an 
example, a two -tower pattern with nulls at 90° 

150° 160° 170° 180° 190° 2000 210° 
210° 200° 190° 180° 170° 160° 150° 

Figure 5 
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Figure 6 

and a second with nulls at 135° off the tower line has 
been chosen. The calculation is shown in Table 2, 
and results in the pattern plotted in Figure 5. 

One of the special advantages of using this 
multiplication method is that each null can be placed 
separately, and the depth of each null is independent 
of the other nulls. In the foregoing three -tower 
addition formula, there is no such design flexibility. 
For this reason almost all design engineers use the 
multiplication method. 

A special case of the three -tower multiplication 
formula occurs when the magnitudes of towers F1 and 
F2 are equal to the reference tower. In such a case 
Equation 3 can be rewritten as follows (Equation 6): 

E = Kf (0) 'J[1 +cos (4'1 + S cos e cos 0)] x 

Kf (e) \/[l +cos (412 + S cos e cos 0)] 

For this condition zero nulls will be produced in 
the final three -tower array. It will be customary to 
change the reference tower of the final pattern from 
the end to the center tower. The phase angle of the 
center tower is then changed to L° by subtracting 
out a 411 +4'2 from each term in Equations 4 and 5. 
The end results are shown in Figure 6. 

This special case can be refined even one more 
step, if the center tower of the new pattern is made 
equal to unity. Equation 6 can then be rewritten 
(Equation 7): 

E = Kf (0) [ZE + cos (4' + S cos e cos 0)] 

In this formula, E represents the field ratio of each of 
the end towers, as compared to unity for the center 
tower. All the other terms are as previously explained. 

Null filling 

Producing other than zero depth nulls in a typical 
three -tower multiplication array can be done in one 
of two ways. First, consider the case where you want 
both nulls filled an equal amount. The easiest way to 
do this is to shift the reference tower angle away from 
0° by a few degrees. The greater the shift introduced, 
the greater will be the null fill. 

If, however, you want to fill only one null or to fill 
each pair of nulls by a different amount, then the 
value of F1 or F2 in Figure 4 must be made slightly 
different than unity. As pointed out above, unity in 
E1 and E2 will produce zero depth nulls. As the 
relative magnitude of F1 or F2 decreases, the greater 
will be the "filling in" of any given null. 

Three -tower dog -leg arrays 

There is one other three -tower pattern form besides 
the usual "in- line" arrays. These, as the name 
"dog -leg" implies, are cases where the three towers 
are not in a straight line. There are no shortcut 
formulas for this type of array. You will have to use 



Fli 1 

KOEL DOG - LEG PATTERN 

FORMULA FOR ANY DOG - LEG ARRAY 

Et °K [ F2 +F3'I _SI cos o +F3'453 
+S2 cos (0 -d)] 

SUBSTITUTING FOR THE KOEL DES IGN: 

Et - K {1.0 +0.661146- 80cosii +0.601 - 140 +90 cos(¡ -2011 

Equation 1, the general addition case of a three -tower 
array. The most common need for a dog -leg type 
pattern is that used to produce a lopsided shape to a 
basic three -tower pattern. The degrees of lopsidedness 
of course depends upon the spacing of this third 
tower, the amount of energy it radiates, and its phase 
angle. The only simple way to design a pattern like 
this is by the cut and try method, although vector 
algebra is a useful tool. Figure 7 contains the data 
used to calculate the dog -leg design at KOEL. Figure 
8 is a graphical plot of same. 

A second, more dramatic, example of a dog -leg 
array is that calculated in Table 6 and graphically 
displayed in Figure 12. In this array, it can be seen 
that the towers are at right angles plus greatly 
different in spacing. 

In review, Table 4 is a calculation of a basic 
three -tower pattern using the addition method. Its 
results are plotted in the polar graph of Figure 10. A 
typical figure eight used to achieve high gain in the 
major lobe, coupled with maximum suppression is 
demonstrated in Figure 11, and calculated in Table 5. 

The basic three -6. pattern and basic step -by- 
step calculations have been shown. And, if your 
particular pattern was not one of those used, there 
was a representative one. Keep in mind that except 
when using one of the addition methods, the final 
base current ratios and final base phase angles are 
not the same as those used in the mathematical 
computations. 
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TABLE 4 

THREE -TOWER BY ADDITION 

Formula: E = Kf(®) [E1 / 
Assumptions: E1 = 1.000, E2 = 0.416, 

+ E2 / 4'2 + S cos 0 cos O + E3 413 + S cos 0 cos O] 

= 0° E3 = 0.693, 4'2 = -130.5 °, W3 = +144.8 °, f(0) = 1.0, O 

A B C D E F G H I J l M N O P 

.416 .416 .693 
O S cos A IJ2 +B cos C Sin C 413 -B .693cosF Sin F 1 + D + G 12 E +H L2 J + M /51 KO 

o 90.0 -40.5 .316 -.270 54.8 .399 .566 1.715 2.943¡ .296 .088 3.031 1.741 341.3 MV/M 
10 88.9 -41.6 .311 -.276 55.9 .388 .574 1.699 2.888 .298 .089 2.977 1.725 338.1 

20 84.6 -45.9 .289 -.297 60.2 .344 .601 1.633 2.668¡ .304 .093 2.761 1.662 325.7 

30 77.9 -52.6 .253 -.330 66.9 .271 .637 1.525 2.325 .307 .095 2.420 1.556 304.9 
40 68.9 -61.6 .198 -.366 75.9 .169 .693 1.367 1.868, .306 .094 1.962 1.400 274.4 

50 57.9 -72.6 -.397 86.9 .037 .692 1.161 1.349° .295 .087 1.436 1.198 234.8 

60 45.0 -85.5 
.124 
.033 -.415 99.8 -.118 .683 .915 .837, .072 .909 .954 186.8 

70 30.8 -99.7 -.070 -.410 114.0 -.282 .633 .648 .420' .223 .049 .469 .685 134.2 

80 15.6 -114.8 -.175 -.378 129.2 -.438 .537 .387 .149 .159 .025 .174 .417 811 
90 0.0 -130.5 -.270 -.316 144.8 -.566 .399 .164 .027 .083 .006 .033 .181 35.5 

100 -15.6 -146.1 -.345 -.232 160.4 -.653 .232 .002 .000 .000 .000 .000 .000 0.0 
110 -30.8 -161.3 .394 -.133 175.6 -.691 .053 .085 .007 -.080 .006 .013 .114 22.3 
120 -45.0 -175.5 -.415 -.033 189.8 -.683 -.118 .098 .009 -.151 .023 .032 .179 35.1 

130 -57.9 -188.4 -.412 .061 202.7 -.639 -.267 .051 .003^ -.206 .043 .046 .214 41.9 
140 -68.9 -199.4 .393 .138 213.7 -.576 -.385 .030 .001 -.246 .061 .062 .249 48.8 
150 -77.9 -208.4 -.366 .198 222.7 -.509 -.469 .125 .016 -.272 .074 .090 .300 58.8 
160 -84.6 -215.1 -.340 .239 229.4 -.451 -.526 .209 .044 -.287 .082 .126 .355 69.6 
170 -88.9 -219.4 -.321 .264 233.7 -.410 -.558 .268 .072 -.295 .087 .159 .399 78.2 
180 -90.0 -220.5 -.316 .270 234.8 -.399 -.566 .285 .081 -.296 .088 .169 .411 80.5 

15.776 
x 2 

33.552 

K = 196.0 - 3.031 
- .169 

V 36 30.352 

TABLE 5 

THREE -TOWER FIGURE EIGHT 

Formula: E = Kf(0) 
T( 
L\ 12M 

M1 + cos (4'1 + S cos 0 cos 0)) x 

(12M Mz 
+ cos (4'2 + S cos 0 cos 9))11/2 

Assumptions: M1 = M2 = 1.0, 4'1 = +7 °, 4'2 = 7 , f(0) = 1.0, 0 = 0 °, S = 200° 

A B C D E F G H I 

6 S cos A 3+7 1+cos C B-7 1+cos E DF /G KH 

o 200.0 207.0 .109 193.0 026 .002 .053 10.1 MV/M 
10 196.9 203.9 .086 189.9 015 .001 .036 6.9 
20 187.9 "94.9 .034 180.9 000 .000 .000 0.0 
30 173.3 '80.3 .000 166.3 .028 .000 .000 0.0 
40 153.2 160.2 .059 146.2 .169 .010 .099 18.9 
50 128.5 135.5 .287 121.5 .478 .137 .370 70.8 

60 100.0 107.0 .708 93.0 -948 .671 .819 156.8 

70 68.4 75.4 1.252 61.4 1-478 1.850 1.360 260.4 

80 34.7 41.7 1.747 27.7 1.885 3.293 1.815 347.6 

90 0.0 7.0 1.993 -7.0 1.993 3.972 1.993 381.6 
100 -34.7 -27.7 1.885 -41.7 1.747 3.293 1.815 347.6 

110 -68.4 -61.4 1.478 -75.4 1.252 1.850 1.360 260.4 

120 -100.0 -93.0 .948 -107.0 .708 .671 .819 156.8 

130 -128.5 -121.5 .478 -135.5 .287 .137 .370 70.8 
140 -153.2 -146.2 .169 -160.2 .059 .010 .099 18.9 

150 -173.3 -166.3 .028 -180.3 .000 .000 .000 0.0 
160 -187.9 -180.9 .000 -194.9 .034 .000 .000 0.0 
170 -196.9 -189.9 .015 -203.9 .086 0.001 0.036 6.9 
180 -200.0 -193.0 .026 -207.0 .109 .002 .053 10.1 

15.900 
x 2 

31.800 
K 180 = 191.5 - .002 - - .002 

31.796 / 36 
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TABLE 6 

THREE -TOWER DOG LEG 

Equation: E = Kf(0) [1 / + 1/ -S2 cos 0 cos O + .88814)3 + S3 cos O cos (0 -90)] 

A B 

Assumptions: E1 = 1.0, E2 = 

C D E F 

1.0, E3 = .888, 4-'2 

ß H I 

= 0 °, 4P3 = -158.7, S2 = 180 °, S3 = 

J L M N O 

60° 

P O 

180 cos A cos B Sine B A -90 60 cos E F -158.7 
.888 

cos G 

.888 
Sine G 1+C+ H J2 D + I M2 L +M KxP 

0 -180.0 -1.000 0.000 -90 0.0 -158.7 -.827 -.322 .827 .684 .322 .103 .787 .887 134.2 MV/M 
10 -177.3 -.999 -.047 -80 10.4 -148.3 -.756 -.467 .755 .570 .514 .264 .834 .913 138.0 
20 -169.1 -.982 -.189 -70 20.5 -138.2 -.662 -.592 .644 .414 .781 .609 1.023 1.011 152.9 
30 -155.9 -.913 -.408 -60 30.0 -128.7 -.555 -.693 .468 .219 1.101 1.212 1.431 1.196 180.9 
40 -137.9 -.742 -.670 -50 38.6 -120.1 -.445 -.768 .187 .035 1.438 2.068 2.103 1.450 219.3 
50 -115.7 -.433 -.901 -40 45.9 -112.8 -.344 -.819 .223 .049 1.720 2.958 3.007 1.734 262.3 
60 -90.0 0.000 -1.000 -30 51.9 -107.8 -.271 -.845 .729 .531 1.845 3.404 3.935 1.983 300.0 
70 -61.6 .475 -.879 -20 56.4 102.3 -.189 -.868 1.286 1.653 1.747 3.052 4.705 2.169 328.1 
80 -31.2 .855 -.518 -10 59.0 -99.7 -.149 -.875 1.706 2.910 1.393 1.940 4.850 2.202 333.2 
90 0.0 1.000 0.000 0 60.0 -98.7 -.134 -.878 1.866 3.482 .878 .771 4.253 2.062 312.0 

100 31.2 .855 .518 10 59.0 -99.7 -.149 -.875 1.706 2.910 .357 .127 3.037 1.743 263.7 
110 61.6 .475 .879 20 56.4 -102.3 -.189 -.868 1.286 1.653 .011 .000 1.653 1.285 194.5 
120 90.0 .000 1.000 30 51.9 -107.8 -.271 -.845 .729 .531 .155 .024 .555 .745 112.7 
130 115.7 -.433 .901 40 45.9 -112.8 -.344 -.819 .223 .049 .082 .007 .056 .236 35.8 
140 137.9 -.742 .670 50 38.6 -120.1 -.445 -.768 .187 .035 .098 .009 .044 .209 f 31.7 
150 155.9 -.913 .408 60 30.0 -128.7 -.555 -.693 .468 .219 .285 .081 .300 .547 82.6 
160 169.1 -.982 .189 70 20.5 -138.2 -.662 -.592 .644 .414 .403 .162 .576 .759 114.8 
170 177.3 -.999 .047 80 10.4 -148.3 -.756 -.467 .755 .570 .420 .176 .746 .864 130.6 
180 180.0 -1.000 0.0 90 0.0 -158.7 -.827 -.322 .827 .684 .322 .104 .788 .887 134.3 
190 177.3 -.999 .047 100 -10.4 -169.1 -.872 -.168 .873 .762 .121 .014 .776 .880 133.3 
200 169.1 -.982 .189 110 -20.5 -179.2 -.888 -.012 .870 .757 .177 .031 .788 .886 134.3 
210 155.9 -.913 .408 120 -30.0 -188.7 -.877 .134 .790 .624 .542 .294 .918 .958 144.9 
220 137.9 -.742 .670 130 -38.6 -197.3 -.848 .264 .590 .348 .934 .872 1.220 1.104 167.1 
230 115.7 -.433 .901 140 -45.9 -204.6 -.807 .369 .240 .058 1.270 1.613 1.670 1.293 195.5 
240 90.0 0.000 1.000 150 -51.9 -210.6 -.764 .452 .236 .055 1.452 2.108 2.163 1.471 222.5 
250 61.6 .475 .879 160 -56.4 -215.1 -.728 .510 .749 .561 1.389 1.929 2.490 1.578 8238.7 
280 31.2 .855 .518 170 -59.0 -217.7 -.703 .543 1.152 1.327 1.061 1.126 2.456 1.567 237.0 
270 0.0 1.000. 0.000 180 -60.0 -218.7 -.693 .555 1.307 1.708 .693 .480 2.188 1.479 223.8 
280 -31.2 .855 -.518 -170 -59.0 -217.7 -.703 .543 1.152 1.327 .025 .0006 1.333 1.155 174.7 
290 -61.6 .475 -.879 -160 -56.4 -215.1 -.726 .510 .749 .561 .369 .136 .697 .834 126.2 
300 -90.0 0.0 -1.000 -150 -51.9 -210.6 -.764 .452 .236 .055 .548 .303 .355 .896 90.1 
310 -115.7 -.433 -.901 -140 -45.9 -204.6 -.807 .369 .240 .058 .532 .283 .341 .583 88.4 
320 -137.9 -.742 -.670 -130 -38.6 -197.3 -.848 .264 .590 .348 .406 .164 .512 .716 108.3 
330 -155.9 -.913 -.408 -120 -30.0 -188.7 -.877 .134 .790 .624 .274 .075 .699 .836 126.5 
340 -169.1 -.982 -.189 -110 -20.5 -179.2 -.888 -.012 .870 .757 .201 .040 .797 .893 135.1 
350 -177.3 -.999 -.047 -100 -10.4 -169.1 -.872 -.168 .873 .762 .215 .046 .808 .899 136.0 

55.914 

188.6 = 151.3 MV/M 

V 
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Design 
of four -tower systems 

As is the case with three -tower patterns, there are two 
basic methods of computing four -tower designs: the 
addition method and the multiplication method. As 
you might suspect, thére are special cases here, too. 
One new factor which comes into play with any 
four -tower pattern is tower placement. You can have 
all four towers in a straight line (the so- called in -line 
array), or in the form of a parallelogram. 

The general equation (1) for a four -tower pattern is 

the same as that of a three -tower pattern, plus one 
more term. This is shown below (Equation 1): 

E= Kf (0)[1.0 LO_ +E2/412 +S2 cos Ocos (0 -d) 
+ E3 L "3 + $3 cos O cos (0 - 6) 

+ E4414 +S4 cos 0 cos (0-d)] 

As with the use of computers in Chapter 3, I have 
written in the Greek letter to represent the shift from 

PATTERN #1 

E2 /-0'2 

S2 

11.0/00 

PATTERN #2 

FOUR TOWER ADDITION FORMULA (TOWERS IN LINE) 

the referenc bearing on each tower. If all towers are 
in a straight line, then 6 = 0. 

In designi g four -tower patterns one usually looks 
at the end r ult as being the product of two or three 
two -tower patterns or the sum of two two -tower 
patterns. Because of this I'll first show an example of 
an addition method for an in -line array, then a 
multiplication method for a parallelogram pattern. 
Keep in mind both methods apply to each type of 

tower config ration. 

Four -tower dition formula 

In using this method you first must calculate the 
pattern of each of the individual two -tower patterns 
to be added. The negative and positive signs are 
added appropriately to each lobe. These ± signs must 
be carefully observed when the two patterns are 
added. For agn example I used the WTAQ nighttime 

FINAL DESIGN 

E2 
4'2 

1 / 

i 
MID- 
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E3/' 3 
2 

Figure 1 
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pattern, consisting of a two -tower 90° spaced 
cardioid and a 270° spaced four -leaf -clover pattern. 
Figure 1 shows how each pattern looks, as well as the 
end result. The calculated data is in Table 1. 

The lobes to the north on each are ( +), so they 
add. To the sides and the back these lobes are of 
opposite signs, hence they cancel. Keep ih mind that 
you can vary not only the individual pattern nulls of 
each two -tower pattern, but also the relative 
amplitude of each tower, hence the null depth. In the 
final four -tower design the nulls are determined not 
by the location of the nulls in the two -tower patterns, 
but by the bearings at which the ( +) and ( -) lobes are 
of equal magnitude, for only at those points will 
cancellation occur. Although this is an awkward 
method, it is still in common use. 

Four -tower multiplication formula-parallelogram 

This method is similar to the addition form, except 
you multiply the two -tower patterns. For this example 
I've chosen two two -tower patterns that will combine 
in a parallelogram shape. The close- spaced pattern is 
a familiar 90° super cardioid. For the wide- spaced 
array I've chosen a 200° spaced figure eight, with 

TABLE 1 

FOUR -TOWER ADDITION FORM 

E= KfM[E2 /22+ 22cos 0 cos e +E3/23+ - cos 0 cos e]* 

We Substitute: E2 = 1.0, 
22 

= -76, 2 = 135, E3 = 2.1, 23 = 97, 
23 

= 45 

ET = K [1.0 cos ( -76 + 135 cos 0) + 2.1 cos (97 + 45 cos 0)J 

A B C D E F G H I J 

0 135 cos 0 B-76 cos C 45 cos A 97 +E 2.1 cos F D +G H2 HK 
0 135.0 59.0 .515 45.0 142.0 -1.655 1.140 1.2990 321.0 MV/M 

10 132.9 56.9 .546 44.3 141.3 -1.639 1.093 1.1950 306.0 
20 126.8 50.8 .632 42.3 139.3 -1.592 .960 .9220 270.0 
30 116.9 40.9 .756 38.9 135.9 -1.508 .752 .5660 214.0 
40 103.4 27.4 .888 34.5 131.5 -1.392 .504 .2540 141.7 
50 86.8 10.8 .982 28.9 125.9 1.231 .248 .0620 69.6 
60 67.5 -8.5 .989 22.5 119.5 -1.034 .045 .0020 6.2 
70 46.2 -29.8 .868 15.4 112.4 -.800 -.068 .0050 19.2 
80 23.4 -52.6 .607 7.8 104.8 -.536 -.071 0.0050 19.5 
90 0.0 -76.0 .242 0.0 97.0 -.256 .014 .0002 4.0 

100 -23.4 -99.4 -.163 -7.8 89.2 .029 -.134 .0180 37.5 
110 -46.2 -122.2 -.533 -15.4 81.6 .307 -.226 .0510 64.0 
120 -67.5 -143.5 -.804 -22.5 74.5 .561 -.243 .0590 68.8 
130 -86.8 -162.8 -.955 -28.9 68.1 .783 -.172 .0290 48.2 
140 -103.4 -179.4 -1.000 -34.5 62.5 .969 -.031 .0010 8.5 
150 -116.9 -192.9 -.975 -38.9 58.1 1.109 .134 .0180 38.6 
160 -126.8 -202.8 -.921 -42.3 54.7 1.213 .292 .0850 81.5 
170 -132.9 -208.9 -.875 -44.3 52.7 1.273 398 .1580 111.8 
180 -135.0 -211.0 -.857 -45.0 52.0 1.293 .435 .4950 122.0 

Half angle formula added to a second half-angle formula. K = 281.5, RMS = 136 



small side lobes. These are shown in Figure 3, and 
the data used to calculate them in Table 2. The 
question now is, how does one go from the design 
values of the respective two -tower patterns to the final 
four -tower values? 

PATTERN #1 

Figure 3 

K1 = 255, 

RMS = 196 

x 

PATTERN #2 

If you assume one corner of the parallelogram as 
the reference tower (1.000L0 °), then the nearest tower 
has the same phase and field ratio as that of the 
close-spacei (90 °) pattern. Likewise, the closest 
wide -spaced'tower has the same values as that of the 

FINAL 

DESIGN 

x s3 ----o = S2 

E1 Le_ E3 

S3 

S3 

E1 = E1 Lu 
E2 = E2 I4'2 

E3 = E 3 3 

E4. E2E3I2 +th3 

FOUR TOWER MULTIPLICATION 
(TOWERS NOT IN LIND 

TABLE 2 

FOUR -TOWER MULTIPLICATION METHOD, PARALLELOGRAM 

ET = Kf(G) [(E1 + E2 /LP2 -1- S2 cos 0 cos 0) (E, + E3 /tP3 + S3 cos e cos (0 -6))1 

Where 

E1 =E2 =E3 =1.0,4'2 =- 116.4, S2= 90 °,433= 0 °,S3= 200,ó = -90 

Substituting 

E1 = K [(1 + cos ( -116.4 + 90 cos 0)) (1 + cos (0° + 200 cos (0- 90))),1 

A 8 C D E F ß H I J K L 

90 cos A B -116.4 cos C 1+ D A -90 200 cos F cos G 1+ H Eu 

0 90.0 -26.4 
10 88.6 -27.8 
20 84.5 -31.9 
30 77.9 -38.5 
40 68.9 -49.5 
50 57.8 -58.6 
60 45.0 -71.4 
70 30.8 -85.6 
80 15.6 -100.8 
90 0.0 -116.4 

100 -15.6 -132.0 
110 -30.8 -147.2 
120 -45.0 -161.4 
130 -57.8 -174.2 
140 -68.9 -185.3 
150 -77.9 -194.3 
160 -84.5 -200.9 
170 -88.6 -205.0 
180 -90.0 -206.4 

.896 

.885 

.849 

.783 

.649 

.521 

.319 

.077 
-.187 
-.445 
-.669 
-.841 
-.948 
-.995 
-.996 
-.969 
-.934 
-.906 
-.896 

1.896 
1.885 
1.849 
1.783 
1.649 
1.521 
1.319 
1.077 

.813 

.555 

.331 

.159 

.052 

.005 

.004 

.031 

.066 

.094 

.104 

-90 
-100 
-110 
-120 
-130 
-140 
-150 
-180 
-170 
-180 
-190 
-200 
-210 
-220 
-230 
-240 
-250 
-260 
-270 

0.0 
-34.7 
-68.4 

-100.0 
-128.5 
-153.2 
-173.2 
-187.9 
-196.9 
-200.0 
-196.9 
-187.9 
-173.2 
-153.2 
-128.5 
-100.0 

-68.4 
-34.7 

0.0 

1.000 
.822 
.368 

-.173 
-.622 
-.892 
-.993 
-.990 
-.957 
-.939 
-.957 
-.990 
-.993 
-.892 
-.622 
-.173 
.368 
.822 

1.000 

2.000 
1.822 
1.368 

.827 

.378 

.108 

.007 

.010 

.043 

.061 

.043 

.010 

.007 

.108 

.378 

.827 
1.368 
1.822 
2.000 

3.7920 
3.4340 
2.5290 
1.4740 

.6230 

.1640 

.0090 
.0110 
.0350 
.0340 
.0140 
.0016 

.0015 

.0260 

.0900 

.1710 

.2080 

J1/2 KK1 

1.947 497.0 MV/M 
1.853 472.0 
1.590 405.0 
1.214 309.0 

.789 201.0 

.405 103.0 

.096 24.4 

.104 26.5 
.187 47.7 
.184 46.9 
.119 30.3 
.039 9.9 
.019 4.8 
.023 5.9 
.039 9.9 
.160 40.8 
.300 76.5 
.414 105.6 
.456 116.3 
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200 ° -spaced pattern. The opposite corner tower has 
the multiplication of the two- corner tower. Thus we 
have (Equation 2): 

2= El ¡4'1 

700 

200° 
1L0 

4=E1xE2L4)1+4)2 

3=E2L2 

Another version of the four -tower multiplication 
method is that of the in -line array, where one more 
term is added to Equation 1 of the three -tower 
formula in Chapter 4. This can be written as 
(Equation 3): 

E = Kf (0), /,r 1 +Mi + cos (4'1 + S cos O cos 0)] x 
2M1 

Kf (0) [ 1 +M2 
+ cos ('Y2 + S cos O cos 0)]x 

L 2M2 

r1 +M3 + cos (4)3 + S cos e cos 0)] 
2M3 

Kf (0) 

cxc 
PATTERN #2 

OF22 
IIS 

x S 

IFI L l 
O FI L 

#3 pFq 
x IS 

O 
I 

FT L 
FINAL VALUES: 

El F1 100 100 

E2 F2I412 +F3'4'3 +F4/'4 

F2F3/'2 +4'3 +F2F4 /y2 +#'4 +F3F4/'3 +d'4 

E4 . F2F3F4 /2+4) 3+(1'4. 

FINAL PATTERN 

1 E44 
= 

Q E3 L 
IS 

E2 / 4'2 

IS 

OEl0o 



Four -tower multiplication in -line 

Equation 3, above, shows the formula to be used. For 
an example I've taken Figure 4 of Chapter 4 and 
added one more two -tower design value, having nulls 
155° True. This will produce three pairs of nulls in 
the final pattern (shown in Figure 3). The end result 
is that both sides as well as the rear arc of the 
pattern are well suppressed. All useful energy is 
directed into the major lobe. 

Figure 5, at the bottom, sets forth the method by 
which the design engineer determines the final 
operating current ratios and phase angles of each 
individual tower. In this method the letter En 
represents the "design" values of each of the pairs 
that go to make up the final four -tower pattern. F1 is 
assumed to be equal to 1.00 with an angle of LO °. 

As a final thought I'll show how separate two -tower 
designs can be added together at their mid -point. 
WTAC's pattern represents one designed by this 
approach. Figure 7 shows the two individual shapes 
with assigned values of ( +) and ( -) for the respective 
lobes. Keep in mind that wherever lobes have equal 
signs the respective magnitudes add, and where 
opposite, they subtract. At any bearing where the 
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TABLE 3 

FOUR -TOWER MULTIPLICATION 
METHOD, IN -LINE 

2 
1 f M2 + cos (42 + S cos 0 cos O))x 

2M2 
.M2 

3 + cos (4/3 + S cos O cos O))x 

(1 + 
+ cos (4J4 + S cos O cos 0))1172 

A B C D E F G H 1 

0 90 cos A B-116.4 cos C 1 +D 180+8 cos F 1+G B-98.4 

0 90.0 -26.4 .896 1.896 270.0 .000 1.000 -8.4 
10 88.6 -27.8 .885 1.885 268.5 -.024 .976 -9.8 
20 84.5 -31.9 .849 1.849 264.5 -.096 .904 -13.9 

30 77.9 -38.5 .783 1.783 257.9 -.209 .791 -20.5 
40 68.9 -49.5 .649 1.649 248.9 -.357 .641 -29.5 
50 57.8 -58.6 .521 1.521 237.8 -.533 .467 -40.6 

60 45.0 -71.4 .319 1.319 225.0 -.707 .293 -53.4 
70 30.8 -85.6 .077 1.077 210.8 -.859 .141 -67.6 

80 15.6 -100.8 -.187 .813 195.6 -.963 .037 -82.8 

90 0.0 -116.4 -.445 .555 0.0 -1.000 0.0 -98.4 
100 -15.6 -132.0 -.669 .331 164.4 -.963 .037 -114.0 
110 -30.8 -147.2 -.841 .159 149.2 -.859 .141 -129.2 
120 -45.0 -161.4 -.948 .052 135.0 -.707 .293 -143.4 

130 -57.8 -174.2 -.995 .005 122.2 -.533 .467 -156.2 
140 -68.9 -185.3 -.996 .004 111.1 -.359 .641 -167.3 

150 -77.9 -194.3 -.969 .031 102.1 -.209 .791 -176.3 

160 -84.5 -200.9 -.934 .066 95.5 -.096 .904 -182.9 

170 -88.6 -205.0 -.906 .094 91.4 -.024 .976 -187.0 

180 -90.0 -206.4 -.896 .104 90.0 0.0 1.000 -188.4 

K1 = 210, RMS = 196 MV/M 

J K L M N 

cos I 1+J E.H.K L'h MK1 

.989 1.989 3.7710 1.9420 408.0 MV/M 

.985 1.985 3.6510 1.9110 401.0 
.970 1.970 3.2930 1.8140 381.0 
937 1.937 2.7320 1.6530 347.0 

.870 1.870 1.9770 1.4060 295.0 

.759 1.759 1.2490 1.1170 235.0 

.596 1.596 .6160 .7850 165.0 

.381 1.381 .2090 .4580 96.2 

.125 1.125 .0340 .1840 38.6 
-.146 .854 0.0000 0.0000 0.0 
-.407 .593 .0070 .0850 17.8 
-.632 .368 .0080 .0910 19.1 

-.803 .197 .0030 .0550 11.5 
-.915 .085 .0002 .0140 3.0 
-.975 .024 0.0078 0.0 
-.998 .002 0.0070 0.0 
-.998 .002 .0001 .0110 2.3 

-.993 .007 .0006 .0250 5.3 
-.989 .011 .0011 .0330 6.9 



magnitudes are of opposite sign and equal in 
magnitude, the final pattern will contain a null. For 
example, at 47° and 122° are nulls in the final 
pattern. Figure 8 is a polar plot of the final pattern, 
with the calculations shown in Table 4. 

As a comparison of the degree of major lobe gain I 

have taken the basic figure eight pattern of Chapter 3 
(2- towers) and Chapter 4 (3- towers) and added a 
fourth tower to produce the design shown in Figure 9. 

Table 5 is the step -by -step computation used to 
calculate this design. Forward gain is achieved by 
widening the arc of the pattern minima. Or, in other 
words, by narrowing the beam. The top of the major 
lobe has been increased from 304.9 to 381.6 M V /M 

to 420.3 MV /M. From a two -tower to a four -tower 
you have gained: 

420.3 MV/M 
304.9 MV/M 

Or a ratio of 1.378. This relates to an equivalent 
power increase of 1.900 times. 

If it is assumed that the two -tower pattern had 1 

kW of power, this would require increasing the 
transmitter power into the two -tower to 1.90 kW in 
order to equal the 1 kW signal you would get off the 
tip of the four -tower pattern. Thus doubling the 
number of tower almost doubles the effective power. 

TABLE 4 

FOUR -TOWER PARALLELOGRAM BY ADDITION 

E = Kf(e) [cos (21 + 
211 

cos o cos 0) + M cos( 22 + 22 cos o cos 0)] 

Where 11.11 = 

A B 

-20 °, S1 = 230 °, M = 0.7, 'P2 = 105 °, S2 = 270° 

C D E F G H I J L 

¢ 115 cos A B-10 cos C A -31.8 135 cos E F+105 .6 cos G D +H 12 Kwl 

0 115.00 105.00 -.259 -31.8 114.7 219.7 -.461 -.720 .518 214.4 MV/M 
10 113.25 103.30 -.230 -21.8 125.3 230.3 -.383 -.613 .376 182.6 
20 108.00 98.00 -.139 -11.8 132.2 237.2 -.326 -.465 .216 138.5 
30 99.60 89.60 .007 -1.8 134.9 239.9 -.301 -.294 .086 87.6 
40 88.10 78.10 .206 8.2 133.6 238.6 -.313 -.107 .011 31.9 
50 73.90 63.90 .440 18.2 128.2 233.2 -.359 .081 .007 24.1 
60 57.50 47.50 .676 28.2 118.9 223.9 -.432 .244 .060 72.7 
70 39.30 29.20 .873 38.2 106.1 211.1 -.513 .360 .130 107.2 
80 19.90 9.90 .985 48.2 89.9 194.9 -.579 .406 .165 120.9 
90 0.00 -10.00 .985 58.2 71.1 176.1 -.598 .387 .472 115.2 

100 19.90 -29.90 .866 68.2 50.1 155.1 -.544 .322 .104 95.9 
110 -39.20 -49.30 .652 78.2 27.6 132.6 -.406 .246 .061 73.2 
120 -57.50 -67.50 .383 88.2 4.2 109.2 -.198 .185 .034 53.1 
130 -73.90 -83.90 .106 98.2 -19.3 85.7 .045 .151 .023 44.9 
140 -88.10 -98.10 -.141 108.2 -42.1 62.8 .274 .133 .018 39.6 
150 -99.60 -109.60 -.335 118.2 -63.8 41.2 .452 .117 .014 34.8 
160 -108.00 -118.00 -.470 128.2 -83.5 21.5 .558 .088 .008 26.2 
170 -113.25 -123.25 -.548 138.2 -100.6 4.4 .598 .050 .003 14.9 
180 -115.00 -125.00 -.574 148.2 -114.7 -9.7 .591 .017 .000 5.1 
190 -113.25 -123.25 -.548 158.2 -125.3 -20.3 .562 .014 .000 4.2 
200 -108.00 -118.00 -.470 168.2 -132.1 -27.1 .534 .064 .004 19.0 
210 -99.60 -109.60 -.335 178.2 -134.9 -29.9 .520 .185 .034 55.1 
220 -88.10 -98.10 -.141 -171.8 -133.6 -28.6 .526 .385 .148 114.6 
230 -73.90 -83.90 .106 161.8 -128.2 -23.2 .551 .657 .432 195.6 
240 -57.50 -67.50 .383 151.8 -118.9 -13.9 .583 .966 .933 287.7 
250 -39.20 -49.30 .652 141.8 -106.1 -1.1 .600 1.252 1.568 372.7 
260 -19.90 -29.90 .866 131.8 -89.9 15.1 .579 1.445 2.088 430.3 
270 0.00 -10.00 .985 121.8 -71.1 33.9 .498 1.483 2.199 441.6 
280 19.90 -9.90 .985 111.8 -50.1 54.9 .345 1.320 1.742 393.0 
290 39.20 29.20 .873 101.8 -27.6 77.4 .131 1.004 1.008 309.7 
300 57.50 47.50 .676 91.8 -4.2 100.8 -.112 .564 .318 167.9 
310 73.90 63.90 .440 81.8 19.3 124.3 -.342 .098 .010 29.2 
320 88.10 78.10 .206 71.8 42.1 147.1 -.504 -.298 .089 88.7 
330 99.60 89.60 .007 61.8 63.8 168.8 -.589 -.582 .339 173.3 
340 108.00 98.00 -.139 51.8 83.5 188.5 -.593 -.732 .536 217.9 
350 113.25 103.25 -.230 41.8 100.6 205.6 -.541 -.771 .594 229.6 

14.897 

K c 191.5 MV/M 
297.8 

V14.897 
36 

37 



TABLE 5 

FOUR -TOWER FIGURE EIGHT 

Formula: 

E = Kf(0) 
r(12MMi 

2 

+ cos op, + S cos 0 cos co x 
i 

(1 + M2 

\ 2M2 

(1 +M3 
2M3 

+ cos (4'2 + S cos e cos 0)) x 

+ cos 03 + S cos 0 cos 0) 
172 

Assumptions: 

M3=M2=M3=1.0,4J1=+7°,412=-7°,4,3=0°, 
S = 200°, f(0) = 1.0, e = 0° 

A B C D E F G H I J 

0 200 cos A B +7 1+ cos C B -7 1+ cos E 1+ cos B DFG H KI 

0 200.0 207.0 0.109 193.0 0.026 .060 0.000 0.000 0.0 MV/M 
10 196.9 203.9 0.086 189.9 0.015 .043 0.000 0.000 0.0 
20 187.9 194.9 0.034 180.9 0.001 .009 0.000 0.000 0.0 

30 173.3 180.3 0.000 166.3 0.028 .007 0.000 0.000 0.0 
40 153.2 160.2 0.059 146.2 0.169 .107 .001 .033 4.9 

50 128.5 135.5 0.287 121.5 0.478 .377 .052 .227 33.8 
60 100.0 107.0 0.708 93.0 0.948 .826 .554 .744 110.9 

70 68.4 75.4 1.252 61.4 1.478 1.368 2.530 1.591 237.2 

80 34.7 41.7 1.747 27.7 1.885 1.822 6.000 2.449 365.1 

90 0.0 7.0 1.993 -7.0 1.993 2.000 7.944 2.818 420.3 
100 -34.7 -27.7 1.885 -41.7 1.747 1.822 6.000 2.449 365.1 
110 -68.4 -61.4 1.478 -75.4 1.252 1.368 2.530 1.591 237.2 
120 -100.0 -93.0 0.948 -107.0 .708 .826 .554 .744 110.9 
130 -128.5 -121.5 0.478 -135.5 .287 .377 .052 .227 33.8 
140 -153.2 -146.2 .169 -160.2 .059 .107 .001 .033 4.9 

150 -173.3 -166.3 .028 -180.3 0.000 .007 0.000 0.000 0.0 
160 -187.9 -180.9 0.001 -194.9 0.034 .009 0.000 0.000 0.0 
170 -196.9 -189.9 .015 -203.9 0.086 .043 0.000 0.000 0.0 

180 -200.0 -193.0 .026 -207.0 .109 .060 0.000 0.000 0.0 

26.216 

-149.1 
x 2 

K-\/522 52.432 
36 
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Design 
of five -tower systems 

This chapter deals with five -tower directional systems. 
Although it may seem odd, six -tower systems are 
much more common than five -tower systems. The 
reason for this is the ability to achieve a greater 
variety of patterns with six than with five, plus there 
is some simplicity in the design mathematics. 

Five towers 

There are really only two five -tower configurations 
that can be employed. The most common is the 
in -line array, shown in Figure 1. The only other 
design is that of a box or rectangle wherein the fifth 
tower is at the mid -point of the other four. This is 
shown in Figure 2, and is really a "special case." 

The in -line array can either be a two -tower system 
multiplied by a three -tower system, or four -tower 
system multiplied by themselves. A third possible way 
to look at this is to consider it as a four -tower 
parallelogram (in -line) with a fifth tower at the 
mid -point. These different basic concepts are shown 
in Figure 3. 

The most common approach is that of 3B. The 
following formula can be used (Equation 1): 

p 

E = Kf (0) [(2EEz + cos (412 + S cos O cos e)) x 
2 

(1 +Ez 3 + cos ('P3 + S cos 0 cos 0)) x 
2E3 

z 

`12EE4 
+cos ('P4 + S cos O cos CO x 

4 

(1 +E5 
+ cos 05 + S cos O cos 0))11/2 

2E5 

The similarity between this formula and that of 
Equation 3 in Chapter 4 reveals the addition of a 
fourth and fifth term to the basic three -tower 
multiplication formula, as well as a fifth term to the 
basic four -tower multiplication formula (Equation 3 
of Chapter 5). 

Keep in mind that the designer has the same two 
major advantages here that he had with the 
three -tower and the four -tower designs. These are 
the facts that the bearings of each pair of two -tower 
nulls can be individually controlled, and that the 
depth of each two -tower null can be filled as much or 

DIAGRAM OF ONE OF TWO BASIC FIVE -TOWER CONFIGURATIONS 

Figure 1 
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as little as desired. The example is that of WIMS 
nighttime. The value selected for each pair is shown 
on Figure 4. Table 1 is a step -by -step calculation of 
this pattern. Keep in mind that as with any in -line 
array, the designer only need compute halfway 
around the pattern, since all in -line designs are 
symmetrical about their tower lines. Figure 5 is the 
polar graph of WIMS. 

To arrive at the final base current ratios and 
phases, it is necessary to convert the design values of 
each two -tower pair to the final tower values. Again 

Figure 2 

FIVE -TOWER CONFIGURATIONS 

the WIMS design is used as the example. It is 
suggested that you follow the equation shown in 
Figure 4 to convert individual pairs into final values. 

Table 2 is a calculation of a five -tower in -line 
figure eight array. This type of pattern will achieve 
the maximum amount of gain off the two ends of the 
propellor blades. It also achieves very good suppres- 
sion over a wide arc between the two major lobes. 

Figure 6 is a graphical plot of the five -tower plot of 
Table 2. 
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TABLE 1 

FIVE -TOWER MULTIPLICATION IN -LINE DESIGN 

E= K[E1 +E2/412 +S COS O +E3/413+ 2S cos 0 +E4/414 +3S cos 0 +E5 /4i5 +4S cos 0 

Where: E1 = E2 =E3 = E4 = 1.0; S = 90 °, 412 = 165 °, 1.P3 = 170 °, 414 = 132.5 °, P5 = -90 ° E5 = 0.582 

Substituting:** 

E = K [(1 f S cos 0 + Lf2) (1 +S cos 0 + 423) (1 + S cos 0 + 4'4) + (1 + 0.5822 + S Cos 4.15)1/2 
2(0.582) J 

A B C D E F G H I J K L M 

1.15+ 
9 90 cos A 185+B 1+ COI C 170°+B 1+ cos E 132.5-B 1+ cos G B-90 cos DFHJ K1/2 L.K1 

0 90.0 255.0 .7411 260.0 .8264 -42.5 1.7373 0.0 2.1500 2.2876 1.5120 963.3 MV/M 
10 88.6 253.6 .7076 258.6 .8023 -42.9 1.7205 -1.4 2.1490 2.1000 1.4490 923.1 

20 84.5 251.6 .8497 254.5 .7328 -48.0 1.6691 -5.4 2.1450 1.7040 1.3050 831.4 

30 77.9 242.9 .5444 247.9 .8238 -54.6 1.5793 -12.1 2.1280 1.1413 1.0680 680.4 

40 68.9 233.9 .4108 238.9 .4835 -83.6 1.4446 -21.1 2.0830 .5976 .7730 492.5 

50 57.8 222.8 .2662 227.8 .3283 -74.7 1.2638 -32.2 1.9960 .2203 .4690 298.8 

60 45.0 210.0 .1339 215.0 .1808 -87.5 1.0436 -45.0 1.8570 .0469 .2165 137.9 

70 30.8 195.4 .0340 200.0 .0603 -101.7 .7972 -59.6 1.7360 .0028 .0533 33.9 
80 15.6 180.5 .0000 185.6 .0048 -116.9 .5476 -74.4 1.4190 .0000 .0000 0.0 
90 0.0 165.0 .0340 170.0 .0152 -132.5 .3244 -90.0 1.1500 .0002 .0139 8.8 

100 -15.6 149.4 .1392 154.4 .0982 -148.1 .1510 -105.6 .8811 .0018 .0426 27.1 

110 -30.8 134.6 .3015 140.0 .2339 -163.3 .0422 -120.8 .6439 .0019 .0437 27.8 
120 -45.0 120.0 .5083 125.0 .4264 -177.5 .0009 -135.0 .4430 .0001 .0095 8.0 
130 -57.8 107.2 .7042 112.2 .6221 -190.3 .0161 -147.8 .3038 .0021 .0463 29.5 
140 -68.9 96.1 .8937 101.1 .8075 -201.4 .0689 -158.9 .2171 .0108 .1039 66.2 
150 -77.9 87.1 1.0500 92.1 .9834 -210.0 .1375 -167.9 .1722 .0239 .1547 98.5 
160 -84.5 80.4 1.1850 85.5 1.0785 -217.0 .2014 -174.6 .1544 .0390 .1976 125.9 

170 -88.6 76.4 1.2350 81.4 1.1495 -221.1 .2464 -178.6 .1503 .0526 .2293 146.1 

180 -90.0 75.0 1.2590 80.0 1.1736 -225.5 .2627 -180.0 .1500 .0582 .2413 153.7 

"Corraerted to multiplication formulas. 
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Figuro 4 

42 

8 X X 

WINS IN -LINE DESIGN 

4 X 

FINAL 

PATTERN #1 PATTERN #2 PATTERN #3 PATTERN #4 \ / DESIGN 

F4/d'4=1.0/ -132.5 (j) F2/'/'2 '1.0/165 

F3/"3 =1.0/170 F5 /41'5 = 0.582/-90 

1 

F2 4/ 

I F3 I F4LL.Li'l I F5 ?ES 
S X S X SI X S = S 

F1L óF1L óF1L Fi Li. ¢E4 
S 

DETERMINATION OF BASE VALUES ° 
I 

E3 
S = 90 

Ei 11 F1L0 1.E21'( 

S 

E21 2 = F211.4'2+F314i 3+F4I°4+F5I° 5 E1 

= 2.7720/-161.35° 

E3'413 F2 F3 rij'2+4P3+F2F4I412+44 +F2F5f 41'2+41'5+ 

F3F4'4)13+41'4 +F3F5'41'3+41'5 +F4F5'4"4+4"5 

= 3.2660 /43.6° 

E4I4 F2F3F4I4"2+4"3+4)4 + F2F3F5I412+11)'3+4,5 

F3F4F5 13+th4+L5 + F2F4F5 2+11)4 +41 
5 

= 1.9294 1-105.10° 

E51° 5 =F2F3F4F5'y 2+e 
d' 

3+ 4+ 

0.582/112.50° 
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TABLE 2 

FIVE -TOWER FIGURE EIGHT 

200° 190' 180 170° 160 150 

Equation: E = Kf(0) 
ri 
L(12M1 + cos (4'1 + S cos 0 cos 0)) x (1 + cos (4'2 + S cos e cos 0)) x 

z 

(1 + M3 + cos (113 + S cos 0 cos 0)) x (1 2M4 + cos (414 + cos 0 cos Q))] 1n 

2M3 
a 

Assumptions: M1 = M2 = M3 = M4, 4'1 = +7°, 4'2 

S = 200°, f(0) = 1.0, 0= 0° 

A B C D E F G 

= -7°, 

H 

4'3 = 

1 

+38°, 

J 

4"4 = 

L 

-38°, 

M N 

0 200 cos A B+7 1+cos C B-7 1+cos E B+38 1+cos G B-38 1+cos l DEHJ V L KN 

o 200.0 207.0 0.109 193.0 .026 238.0 .470 162.0 .048 0.000 0.000 0.0 MV/M 

10 196.9 203.9 0.086 189.9 .015 234.9 .425 158.9 .067 0.000 0.000 0.0 

20 187.9 194.9 0.034 180.9 .001 225.1 .304 149.9 .135 0.000 0.000 0.0 

30 173.3 180.3 0.000 166.3 .028 211.3 .148 135.3 .289 0.000 0.000 0.0 

40 153.2 160.2 0.059 148.2 .169 191.2 .019 115.2 .574 0.000 .010 1.8 

50 128.5 135.5 0.287 121.5 .478 186.5 .028 90.5 .991 0.004 .061 11.1 

60 100.0 107.0 0.708 93.0 .948 138.0 .257 62.0 1.489 0.253 .503 91.5 

70 68.4 75.4 1.252 81.4 1.478 106.4 .718 30.4 1.863 2.475 1.573 286.3 

80 34.7 41.7 1.747 27.7 1.885 72.7 1.297 -3.3 1.998 8.533 2.921 531.6 

90 0.0 7.0 1.993 -7.0 1.993 38.0 1.788 -38.0 1.788 12.698 3.563 648.4 

100 -34.7 -27.7 1.885 -41.7 1.747 3.3 1.998 -72.7 1.297 8.533 2.921 531.6 

110 -68.4 -61.4 1.478 -75.4 1.252 -30.4 1.863 -106.4 .718 2.475 1.573 286.3 

120 -100.0 -93.0 0.948 -107.0 .708 -62.0 1.469 -138.0 .257 0.253 0.503 91.5 

130 -128.5 -121.5 0.478 -135.5 .287 -90.5 .991 -166.5 .028 0.004 0.061 11.1 

140 -153.2 -146.2 0.169 -160.2 .059 -115.2 .574 -191.2 .019 0.000 0.010 1.8 

150 -173.3 -166.3 0.028 -180.3 0.000 -135.3 .289 -211.3 .146 0.000 0.000 0.0 

160 -187.9 -180.9 0.001 -194.9 .034 -149.9 .135 -225.1 .304 0.000 0.000 0.0 

170 -196.9 -189.9 .015 -203.9 .086 -158.9 .067 -234.9 .425 0.000 0.000 0.0 

180 -200.0 -193.0 .026 -207.0 .109 -162.0 .048 -238.0 .470 0.000 0.000 0.0 

35.228 
K - 180 

= 182.0 

/335.228 

V/ 36 

90° 

100' 

110' 
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Design 
of six-tower systems 

As with five -tower arrays, there are two basic 
configurations: the in -line or the parallelogram 
shapes (shown in Figure 1). There are several ways to 
think of the basic combinations used. The in -line 
patterns can be looked upon as individually 
multiplied together or as a three -tower combined with 
a second three -tower. They can even be looked at as a 
four -tower combined with a two- tower, as shown in 
Figures 2 and 3. 

The parallelogram shape is probably more common 
in the six -tower design than the in -line. It is almost 
always looked upon as a direct multiplication of a 
three -tower by a two- tower, as shown in Figure 3. The 
parallelogram has two advantages over the in -line. 
First, it requires less real estate. Secondly, it can 
produce a much narrower major lobe. Optional 
arrays include the three -tower in -line closed- spaced 
multiplied by the two -tower wide -spaced, or the three - 
tower wide -spaced multiplied by the two -tower 
close- spaced. 

Six -tower in -line 

The general equation (1) for the in -line can be written 
as follows: 

Figure 1 
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E = Kf (0)[(12FF2 + cos (4'2 +S cos 0 cos 0))x 
2F2 

(1 +F3 
+ cos (413 +S cos O cos 0))x 

2F3 

(1 +F4 + cos (4'4 +S cos 0 cos O))x 
2F4 

(1-1-Fs 
+ cos (4'5 +S cos 0 cos 0))x 

2F5 

(1 +F6 
+ cos (416 +S cos O cos 0))1112 

2F5 

The terms are the same as previously explained. 
The advantages are the same as those of Equation 1 

in Chapter 6, namely: each pair can be so designed 
as to effect its own angle and depth of null. 

One danger with six -tower in -line is that if the 
spacing is 90° or less between adjacent towers, the 
overall radiation efficiency may be very low. (Chapter 
10 will discuss the reason for this in depth.) 

As with the five -tower array, you need to convert 
from the individual pairs to the final operating 
values. This is shown in Table 1. The example shows 
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F4/4'4 = 5=120° 

DETERMINATION !NATION OF BASE OPERATING VALUES 

E1L_ 

E212 

F1/0 = 1.0/0° E5 /5 F2 F3 F4 F5 /412 +413 +04 +k65 + 

F24' 2 + F3/4'3' + F4/4'4' + F5/4)5' + F6/416' 

I/16' E 

F2 F3 F4 F6 /412 +4°3+414' +4)6' + 

E3/3' 

2 .5553 /180.11° F2F3F5F6 /21+g13+4'5 +4'6' + 

F2 F3 
/412'+413' + F2 F4 /412' +4'4 + F2F5/4"2.+`l'5' + F2F4F5F6/412+414+415,+4)61 + 

, , , 

F3F4F5F6 /3+4+5+6 

E4 
4 

F2F6'2 +416' + F3F43+d +F3F5/4'31+415' + 

/113'+1116' + /y4' +415' + c4 F6 /41q'+4)61 + 
1.6451 /54.37° 

F2 F3 F4 F5 F6 '2 +".3+`.4+-5+y6 F5 F6 I(11'5+41 6 

3.235 /15.5° 

6 

0.5342/-103.47° 

/412'+413'+4 + F2 F3 F5 14'2. +4'3'+4'5 ' + 

Figure 4B 

/4'2'+4'3'+4'6' + /413'+414 +5' + 

, 

F3 F4 F6 
/J13'+q+#16 + F4F5F6 /414'+(/'5'+ 6' + 

F2 F4 F5 '+4+5 + F2 F4 F6 /412'+4)41+y6' + 

F3 F5 F6 /413+415,+6 + F2F5F6/4'2,+4'5'+416' 
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the WJPC six -tower in -line design. The pairs used to 
produce the pattern of Figure 4 are shown in Figure 
S. 

Six -tower parallelograms 

The six -tower parallelogram can be computed, based 
upon the following design formula EEquation 2): 

E = Kf (0)[( 2FF2 + cos (4'2 +S1 cos 0 cos 0)) x 
2 

(1 +F3 
+ cos (4'3 +S1 cos O cos 0)) x 

2F3 

(1 +F4 
+ cos (4'3 +S2 cos (0 -A) cos 0))] 

1/2 

2F4 

Most of these terms are self -evident. The usual 
tower spacing term "S" has been replaced with an S1 

and an S2. The logic for this should be obvious, but 
in case it is not, Su represents the spacing between 
towers of the two -tower pattern. 

One new term is introduced; this is (0 -A). Because 
the six towers do not lie along tIhe same axis (or 

PATTERN #1 

X 
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TABLE 1 

SIX -TOWER IN -LINE DESIGN 

E = K [(12zF' + cos (4' + S cos 0)) x 
/ 1 

2F3F + COS (433 + S cos 0)) x 

\1 2F4F1 + cos (434 + S cos 0)) x (1 2FF5 + cos (Ts + 5 cos 0)) x 

z 

(4J6 + S cos 0))11/2 + cos 
6 

A B C D E F G H I J K 

0 120 cos A , B+123.66°; 1+ cos C B+148.94 ' 1+ cos E B+180 1+ cos G^ B-120 1.080 + cos I B-76.07 

0 120.00° 243.66° .56160 268.94° .98250 300.00 1.50000 0.00 2.0800° 43.93' 
10 118.18 241.84 .53330 267.18 .95080 298.18 1.47220 -1.82 2.0795 .. 42.11 

20 112.76 236.42 .45190 261.76 .85670 292.76 1.38690 -7.24 2.0720 36.69 
30 103.92 227.58 .32980 252.92 .70630 283.92 1.24060 -16.08 2.0409 27.85 
40 91.92 215.58 .19020 240.92 .51400 271.92 1.03350 -28.08 1.9623 15.85 
50 77.13 200.79 .06724 226.13 .30700 257.13 .77730 -42.87 1.8129 1.08 

60 60.00 183.66 .00244 209.00 .12540 240.00 .50000 -60.00 1.5800 -16.07 
70 41.04 164.70 .03390 190.04 .01532 221.04 .24570 -78.96 1.2715 -35.03 
80 20.84 144.50 .18250 169.84 .01570 200.84 .0654.3 -99.16 .9208 -56.77 
90 0.00 123.66 .44090 149.00 .14280 180.00 .00000 -120.00 .5800 -76.07 

100 -20.84 102.82 .77230 128.16 .38210 169.16 .06543 -140.84 .3046 -96.91 
110 -41.04 82.62 1.12260 107.96 .69160 138.96 .24570 -161.04 .1343 -117.11 
120 -60.00 63.66 1.43840 89.00 1.01750 120.00 .50000 -180.00 .0800 -136.07 
130 -77.13 46.53 1.68360 71.87 1.31120 102.87 .77730 -197.13 .1244 -153.20 
140 -91.92 31.74 1.84730 58.08 1.52870 88.08 1.03350 -211.92 .2312 -167.99 
150 -103.92 19.74 1.93920 46.08 1.69360 76.08 1.24060 -223.92 .3597 -179.99 
160 -112.76 10.90 1.98080 37.24 1.79610 67.24 1.38690 -232.76 .4748 -188.83 
170 -118.18 5.48 1.99480 30.82 1.85880 61.82 1.47220 -238.18 .5527 -194.25 
180 -120.00 3.66 1.99750 29.00 1.87460 60.00 1.50000 -240.00 .5800 -196.07 

TABLE 2 

SIX -TOWER MULTIPLICATION DESIGN 

ET = K [I1 + cos (4J1 + S1 cos 0)]* [cos 2 + 2 cos (0 -6)] ** 

Where: 
4J1= 0 °,51= 217 °,4J2 = 92.4 °,52 =90 °, d= 90 °,I1 =0.91, 
ET = K [0.91 + cos (217 cos 0)] [cos 46.2° + 45 cos (0 -90)] 

A B C D E F G H I J K L M 

0 cos 0 217xB cos C 0.91 +D 0 - 90 cos F 45.G H +46.2° cos I ExJ K2 K.301 

90 0.0000 0.0 1.000 1.910 0 1.000 45.0 91.2 0.02094 0.04000 0.001600 12.10 MV/M 
100 -0.1735 -37.6 .792 1.702 10 0.9850 44.3 90.5 0.00873 0.01488 0.000220 4.20 
110 -0.3420 -74.2 .272 1.182 20 0.9400 42.3 88.5 0.02818 0.03095 0.000960 9.30 
120 -0.5000 -108.5 -.314 .598 30 0.8660 39.0 85.2 0.08368 0.04980 0.002500 19.90 
130 -0.8430 -139.8 -.782 .148 40 0.7680 34.5 80.7 0.18160 0.02390 0.000570 7.20 
140 -0.7880 -188.2 -.971 -.061 50 0.6430 29.0 75.2 0.25500 0.01555 0.000240 4.70 
150 -0.8660 -188.0 -.990 -.080 60 0.5000 22.5 68.7 0.36300 0.02900 0.000850 8.70 
160 -0.9400 -204.0 -.913 -.003 70 0.3420 15.4 61.6 0.47500 0.00142 0.000002 0.43 
170 -0.9850 -214.0 -.829 .081 80 0.1735 7.8 54.0 0.58800 0.04770 0.002280 14.30 
180 -1.0000 -217.0 -.799 .111 90 .0000 0.0 46.2 0.69200 0.07690 0.005910 23.20 
190 -0.9850 -214.0 -.829 .081 100 -0.1735 -7.8 38.4 0.78300 0.06340 0.004020 19.10 
200 -0.9400 -204.0 -.913 -.003 110 -0.3420 -15.4 30.8 0.85900 0.00258 0.000007 0.78 
210 -0 8660 -188.0 -.990 -.080 120 -0.5000 -22.5 23.7 0.91500 0.07320 0.005370 22.10 
220 -0.7660 -166.2 -.971 -.061 130 -0.6430 -29.0 17.2 0.95500 0.05830 0.003410 17.60 
230 -0.8430 -139.6 -.762 .148 140 -0.7660 -34.5 11.7 -0.97900 0.14500 0.021100 43.60 
240 -0.5000 -108.5 -.314 .596 150 -0.8660 -39.0 7.2 0.99210 0.59130 0.349600 177.90 
250 -0.3420 -74.2 .272 1.182 160 -0.9400 -42.3 3.9 0.99770 1.18100 1.400000 355.00 
260 -0.1735 -37.6 .792 1.702 170 -0.9850 -44.3 1.9 0.99950 1.70200 2.910000 512.00 
270 0.0000 0.0 1.000 1.910 180 -1.0000 -45.0 1.2 0.99980 1.91000 3.660000 574.00 

'Special case of a 3 -tower with equal current ratios in end towers. 
**Special case of a 2 -tower (half -angle formula). 
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L M N O 

1.028+cos K DFHJL NK1 

1.74500 3.004300 1.73330 1002.50 MV/M 
1.76700 2.743000 1.65620 957.90 

1.82700 2.032300 1.4255 824.50 

1.90900 1.125900 1.06110 613.70 

1.98700 0.393900 .62760 362.80 

2.02600 .058930 .24270 140.40 

1.98700 .000480 .02190 12.67 

1.92500 .000315 .01770 10.27 

1.69700 .000292 .01710 9.89 

1.26800 .000000 .00000 0.00 

.89520 .005260 .07256 41.97 

.55970 .014335 .11970 69.25 

.29490 .017260 .13140 76.00 

.12230 .026090 .16150 93.40 

.04810 .032400 .18000 104.10 

.02600 .038100 .19520 112.90 

.03767 .088250 .29700 171.80 

.05647 .170400 .41280 238.00 

.06474 .213700 .46230 267.00 

K1-578,RMS=400 

280 

Figure 7 

tower -line), but rather along two axis, let this term 
stand for the angular displacement between the two 
axis (or tower -lines). 

Table 2 is a calculation using this method. In 
arriving at the final base operating impedances, one 
merely determines the "three- tower" parameters first. 
The second row of towers then has its phase added to 
that of each front -row towers. The current ratio is the 
product of the amplitude of the second tower in the 
two -tower times each of the towers in the other row. 
The math is shown in the following example. Let the 
three -tower be represented by: 

1 

1L 

2 3 

S 1- S 1-- 01 

1.9/10° 1/20° 

And let the two -tower be shown as: 

S2--7 02 
1L .9/ ±90° 

The product would then look like this: 

- 02 

1L0 1.9/10 1/20 

1 

S1 

1 

s1 

' 01 
S2 S2 S2 

1 1 1 
.9/90 1.71/100 .9/110 

Equation 2 can be modified because the end towers 
of the three -tower wide- spaced are of equal currents. 
This is the "little -used method" described in Chapter 
4. 

Therefore, the six -tower parallelogram formula can 
be rewritten as follows (Equation 3): 

E = Kf (6)[( 
21 

+ cos (S2 cos 0 cos O)) x 

¡1 +F3 z 

+ cos (4' +S1 cos O cos (0 -A))] 
2F3 

1/2 

Figure 6 shows the breakdown of how the two 
patterns are multiplied together to achieve the final 
six -tower design. Also shown are how the design 
engineer would determine the final base values by 

combining the separate two patterns' values. Figure 7 

is à polar graph of the final design. 
The second type of six -tower parallelogram is that 

formed by the two times three. Figure 8 is a display 
of this, with Figure 9 being the polar graph. The 
equation and the step -by -step math is tabulated in 
Table 3. 
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The final six -tower to look into ^s like Figure 4, an 
in -line array. However, in this case the adjacent tower 
spacing has been increased to the point where the 
maximum signal is broadside to the line of towers, 
not along the row as was the case in Figures 4 

and 5. Figure 10 is a polar plot, which can be 

constructively compared with the figure eight pattern 
of a two- tower, a three -tower, a four- tower, etc. The 
maximum lobe signal has increased from 304.9 
MV /M for the two -tower to 675.4 MV /M with the 
six -tower and can be ratioed to find the equivalent 
increase in power. This works out to 4.9 kW. By 

tripling the number of towers power has been 
increased almost five times! 

TABLE 3 

SIX TOWER TWO BY THREE 

Equation: E = KÎ(0)r(1 
2 

Mi + cos (4'1 + S1 cos 0 cos (0 -d)) 
LL`` 1 

2 (1 M2 + COS (4'2 + S2 cos 0 cos 0)) x 

(1 +Mi + COS (43 +S2COS 0 COS 0))112 
2M3 

Assumptions: M1 = 0.5, M2 = M3 = 1.0, 4p1 = 00, = -95.4 °, 4P3 = 122.1 °, S1 = 240 °, 

S2 =90 °, d= -90 °,t i0)= 1.0, 0 =0° 

A B C D E F G H I J L M 

0 A-90 240cos B 1.25 F cos C 90 cos A E-95.4 1 +cos F E-122.1 1 +cos H DGI AT KL 

0 -90 0.0 2.225 90.0 -5.4 1.995 -32.1 1.847 8.1980 2.863 454.9 MV/M 

10 -80 41.6 1.998 88.6 -6.8 1.993 -33.5 1.833 7.3060 2.703 429.5 

20 -70 82.1 1.388 84.6 -10.8 1.986 -37.5 1.793 4.9320 2.721 352.9 

30 -60 120.0 .750 77.9 -17.5 1.954 -44.2 1.717 2.5160 1.586 252.0 

40 -50 154.2 .349 68.9 -26.5 1.895 -53.2 1.599 1.0570 1.028 163.3 

50 -40 183.8 .252 57.8 -37.6 1.792 -64.3 1.434 .6470 .805 127.9 

60 -30 207.8 .366 45.0 -50.4 1.637 -77.1 1.223 .7330 .856 136.0 

70 -20 225.5 .549 30.8 -64.6 1.429 -91.3 .977 .7660 .875 139.0 

80 -10 236.3 .695 15.6 -79.8 1.177 -106.5 .716 .5860 .765 121.6 

90 0 240.0 .750 0.0 -95.4 .906 -122.1 .469 .3190 .565 89.8 

100 10 236.3 .695 -15.6 -111.0 .642 -137.7 .260 .1160 .341 54.2 

110 20 225.5 .549 -30.8 -126.2 .409 -152.9 .109 .0240 .156 24.8 

120 30 207.8 .366 -45.0 -140.4 .229 -167.1 .025 .0020 .045 7.2 

130 40 183.8 .252 -57.8 -153.2 .107 -179.9 .000 .0000 .000 0.0 

140 50 154.2 .349 -68.9 -164.3 .027 -190.4 .016 .0001 .012 1.9 

150 60 120.0 .750 -77.9 -173.3 .007 -200.0 .060 .0003 .017 2.7 

160 70 82.1 1.388 -84.6 -180.0 .000 -206.7 .107 .0000 .000 0.0 

170 80 41.6 1.998 -88.6 -184.0 .002 -210.7 .140 .0005 .024 3.8 

180 90 0.0 2.225 -90.0 -185.4 .004 -212.1 .153 .0010 .037 5.9 

27.203 
x 2 

54.406 
-8.198 180 
- .001 

K = = 158.9 

46.207 
/46.207 
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TABLE 4 

SIX -TOWER FIGURE EIGHT 

Equation: E = Kf(0) r(1 + Mi + cos (4'1 + S cos O cos 0)) x 
lL \\ 2M1 

Assumptions: 

¡1+M2 
` 2M2 

(1 + M3 

\ 2M3 

(1 + M4 

\ 2M4 

(1 + Ms 
\ 2M5 

+ cos (4'2 + S cos O cos 0)) x 

+ cos (433 + S cos O cos 0)) x 

+ cos (414 + S cos 0 cos 0)) x 

+ cos 's S cos + e cos 0)) 
J 

ln 
(4 

M1=M2=M3=M4=M5=1.0,4'3=+7°,412=-7°,413=0°,4'4=38°, 
4'5 = -38°, S = 200°, f(0) = 1.00, 0 = 0° 

A B C D E F G H I J L M N O 

1+cos 1+cos 1+cos 1+cos DF 
0 200 cos A B+7 1 +cosC B-7 E B B+38° H B-38° J HIL \/M KN 
0 200.0 207.0 0.109 193.0 0.026 0.060 238.0 .470 162.0 .048 .0000 .000 0.0 MV/M 

10 196.9 203.9 0.086 189.9 0.015 0.043 234.9 .425 158.9 .067 .0000 .000 0.0 
20 187.9 194.9 0.034 180.9 0.001 0.009 225.9 .304 149.9 .135 .0000 .000 0.0 
30 173.3 180.3 0.000 166.3 0.028 0.007 211.3 .146 135.3 .289 .0000 .000 0.0 
40 153.2 160.2 0.059 146.2 0.169 0.107 191.2 .019 115.2 .574 .0000 .003 0.4 
50 128.5 135.5 0.287 121.5 0.478 0.377 166.5 .028 90.5 .991 .0014 .038 5.1 
60 100.0 107.0 0.708 93.0 0.948 0.826 138.0 .257 62.0 1.469 .2090 .457 62.2 
70 68.4 75.4 1.252 61.4 1.478 1.368 106.4 .718 30.4 1.863 3.3860 1.840 250.6 
80 34.7 41.7 1.747 27.7 1.885 1.822 72.7 1.297 -3.3 1.998 15.5480 3.943 537.0 
90 0.0 7.0 1.993 -7.0 1.993 2.000 38.0 1.788 -38.0 1.788 24.5940 4.959 675.4 

100 -34.7 -27.7 1.885 -41.7 1.747 1.822 3.3 1.998 -72.7 1.251 15.5480 3.943 537.0 
110 -68.4 -61.4 1.478 -75.4 1.252 1.368 -30.4 1.863 -106.4 .718 3.3860 1.840 250.6 
120 -100.0 -93.0 0.948 -107.0 .708 .826 -62.0 1.469 -138.0 .257 .2090 .457 62.2 
130 -128.5 -121.5 0.478 -135.5 .287 .377 -90.5 .991 -166.5 .028 .0014 .038 5.1 
140 -153.2 -146.2 0.169 -160.2 .059 .107 -115.2 .574 -191.2 .019 0.0000 .003 0.4 
150 -173.3 -166.3 0.028 -180.3 .000 .007 -135.3 .289 -211.3 .146 .0000 .000 0.0 
160 -187.9 -180.9 0.001 -194.9 0.034 .009 -149.9 .135 -225.9 .304 .0000 .000 0.0 
170 -196.9 -189.9 0.015 -203.9 0.086 .043 -158.9 .067 -234.9 .425 .0000 .000 0.0 
180 -200.0 -193.0 0.026 -207.0 0.109 .060 -162.0 .048 -238.0 .470 .0000 .000 0.0 

62.880 

K 180 = 136.2 

V62.860 
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Design of eight-, nine-, 
and twelve -tower systems 

This chapter focuses on the largest directional 
antennas currently approved and in use by U.S. 
stations. These are not common, but are practical. 

Eight -tower arrays 

Presently, none of these exist in the United States. 
There had been one for many years, which eventually 
added a third row to change from eight to twelve 
towers. This was necessary in order to increase power. 

There can be only one basic configuration of eight 
towers: the basic parallelogram. It can be looked at 
either as two rows of four or four rows of two (see 
Figure 1). The general equation (1) is: 

z 

E=Kf(0)[( 
2FFz+ z 

(1+F3 

2F3 

(1+F+ 
2F4 

(1+F5 + 
\ 2F5 

cos ('2 + Si cos O cos O))x 

cos + Si cos O cos 0) ) x 

cos ( 4 + S1 cos O cos 0))x 

cos 015 + cos O cos (0 -A) )] 1/2 

The first three parts of Equation 1 represent the 
three pairs of patterns used to develop a typical 
four -tower in -line multiplication array. The last part 
of the equation is that used to "multiply" the 
four -tower by the two- tower. The term (0-A) repre- 
sents the offset between the individual tower lines. 
This is the angle in degrees to be measured between 
the tower -line bearing of the four -tower in -line and 
the tower -line bearing of the two -tower in -line. 

For an example, assume a hypothetical design. In 
this case, designed for maximum suppression along 
the sides and the rear of the pattern. 

Figure 2 shows how this basic eight -tower array can 

be formed. For this example (Figure 3, 3A), a 
four -tower wide -spaced multiplied by a two -tower 
close- spaced has been used. Note that the tower - 
lines are not at right angles. That is to say, they are 
not displaced by 90 °. This was selected to show 
several facts. First, the final pattern is not 
symmetrical even though each of the individual 
patterns were symmetrical. Secondly, with this type of 
a design the engineer must calculate entirely around 
the pattern, not just halfway (as was the case with 
most of the previous examples). Finally, how to treat 
this deplacement angle (0-A). 

Table 1 is a complete calculation of this pattern. 
As noted, it shows 36 lines of calculations, not just 18. 

Note that the equation at the top of Table 1 is not 
the same as Equation 1, above. What is going on 
here? The answer is nothing. This demonstrates the 
flexibility possible in calculating patterns. 

In Equation 1, it was said the first three terms or 
pairs represent the four -tower design, while the last 
term is that of a two- tower. In Equation 1, the offset 
is shown in the two -tower pattern, although it could 
be in either, but not in both. In Table 1, the offset 
(0 -A) was chosen to be in the four -tower pattern. The 
first term of Table 1 represents the two -tower pattern, 
and therefore is similar to the last term of Equation 
1. But it may appear that the four -tower part of 
Equation 1 is not the same as the last of Table l's 
equation. Actually they are. One method of 
computing a four -tower (multiplication method) was 

substituted for a second method (addition method). 
The final answer is still the product of a four -tower 
times a two- tower. The basic four -tower equation 
used here is similar to that of WTAQ shown in 
Chapter 5 of this manual. 

In arriving at the final operating values one first 
must convert the individual two -tower pairs of the 
four -tower in -line into their base current ratios. Then 
the values of the back row can be determined from a 

multiplication of each front row field ratio by the 
magnitude of the second tower of the two- tower. The 
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phase angles of each of the rear towers is a simple 
addition of the phase angle of the second tower of the 
two -tower phase, to the phase angle of each of the 
corresponding towers in the front row. This is 
self- evident, and of course is basically identical with 
that of the six -tower multiplication form. Figure 3A 
shows how this is accomplished. The phase angles of 
the front row reflect the phase angle of the two- tower. 
The difference in phase angle between adjacent 
towers of the wide -spaced reflect the differences in 

Figure 1 

Figure 2 
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the four -tower phases. In the examples these are all 
zero degrees. 

Nine -tower arrays 

As with eight towers there can be only one basic 
shape: three times three, as shown in Figure 4. While 
it is technically feasible to have nine towers all in a 
straight line, it probably never will be proposed. 

Surprisingly, one of the first nine -tower arrays ever 
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constructed was that of WDGY, :pore than 25 years 
ago. The following general formula (Equation 2) can 
be used to calculate the shape of a nine -tower array: 

1+F2 + + SI 0 0)) 

320 
40° 

31O 
50 

300 
60 

290 
70 

2860° 

cos `42 cos cos x E = Kf (0)[( 
2F2 

¡ 1+ F3 

` 2F3 

¡ 1+ F4 

2F4 

( 1+ F5 

2F5 

+ cos 14'3 + S1 cos 0 cos 0)) x 

+ cos (414 + S2 cos (0 -A) cos O)) x 

1/2 
+ cos (4'5 + S2 cos (0 -A cos O)) 

The first two parts of the above equation are those 
of a three -tower design; the last two parts represent 
the other three -tower design. Although this is not the 
only formula available, it represents the one which 
gives the greatest flexibility in the design of null 
bearings and null depth. 

Figure 5 shows how a three -tower is multiplied by a 
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three -tower. Table 2 is a calculation of a nine -tower 
pattern. As with Table 1, a slightly different formula 
than that of Equation 2 has been used. The equation 
on Table 2 is a three -tower written around the 
mid -point multiplied by a three -tower written around 
its mid -point with the offset. This is a special case of 
the basic three -tower when the end towers have equal 
magnitudes and are of equal and opposite phase 
angle. 

The last step is designing the final operating values 

of each tower base current and phase angle. This is 
best accomplished by determining the base values of 
each of the two three -tower patterns. The operating 
values for each should be written around the center 
tower, as in the example. 

To arrive at the final values, one merely multiplies 
one pattern by the other. Or, tower five is the 
product of the two reference towers, so obviously it 
retains the value 1.00L0 °. Towers four and six really 
have the end -tower values of the first three -tower 

TABLE 1 

EIGHT -TOWER DESIGN 

liz 
1 cos ( ET = Kf(0)[ 

1 ES S + cos (435 + S15 cos O cos O), x [(E!3 cos (0 -120) cos O)) 

+ (E2 cos cos S24 (0 -120) cos O))} 

Where: 
E5 = 1.0, E1 = 1.0, E2 = 2.76, WS = -90°, 51 = 95°, S14 = 645°, S23 = 215° 

A B C D E F G H I J K L M N 

322.5 107.5 2.76 
0 95 cos A B -90 cos C 1+ D \/-E A -120 cos G cos H cos G oos J I +K FL M.K1 

0 95.0 5.0 .9962 1.9962 1.4128 -120 -161.7 -.9494 -53.7 1.6339 .6845 .96710 118.4 MV/M 
10 93.5 3.5 .9981 1.9981 1.4135 -110 -110.3 -.3469 -36.8 2.2100 1.8631 2.63300 322.5 
20 89.3 -0.7 .9999 1.9999 1.4140 -100 -55.9 .5606 -18.6 2.6160 3.1766 4.49100 550.0 
30 82.3 -7.7 .9909 1.9909 1.4109 -90 0.0 1.0000 0.0 2.7600 3.7600 5.30500 650.0 
40 72.8 -17.2 .9553 1.9553 1.3983 -80 55.9 .5606 18.6 2.6160 3.1766 4.44180 535.7 
50 61.1 -28.9 .8755 1.8755 1.3695 -70 110.3 -.3469 36.8 2.2100 1.8631 2.55150 312.5 
60 47.5 -42.5 .7373 1.7373 1.3180 -60 161.7 -.9494 53.7 1.6339 .6845 .90220 110.5 
70 30.8 -59.2 .5120 1.5120 1.2296 -50 207.3 -.8886 69.1 .9846 .0960 .11800 14.4 
80 16.5 -73.5 .2840 1.2840 1.1331 -40 247.0 -.3907 82.3 .3698 -.0209 -.02370 2.9 
90 0.0 -90.0 .0000 1.0000 1.0000 -30 279.3 .1616 93.1 -.1492 .0124 .01240 1.5 

100 -16.5 -106.5 -.2840 .7160 .8462 -20 303.0 .5446 101.0 -.5266 .0180 .0152 1.9 
110 -30.8 -120.8 -.5120 .4880 .6985 -10 317.8 .7384 105.8 -.7515 -.0131 -.00920 1.1 
120 -47.5 -137.5 -.7373 .2627 .5125 0 322.5 .7933 107.5 -.8299 -.0366 -.01870 2.3 
130 -61.1 -151.1 -.8755 .1245 .3528 10 .0131 .00460 0.6 
140 -72.8 -162.8 -.9553 .0447 .2114 20 .0180 .00380 0.5 
150 -82.3 -172.3 -.9909 .0091 .0954 30 .0124 .00120 0.1 
160 -89.3 -179.3 -.9999 .0000 .0000 40 .0203 .00000 0.0 
170 -93.5 -183.5 -.9981 .0019 .0436 50 .0960 .00018 0.01 
180 -95.0 -185.0 -.9962 .0038 .0616 60 .6845 .00260 0.3 
190 .0436 70 1.8631 .08120 10.9 
200 0000 80 3.1766 .00000 0.0 
210 0954 90 3.7600 .35870 43.9 
220 .2114 100 3.1766 .67150 80.9 
230 .3528 110 1.8631 .65730 80.5 
240 .5125 120 .6845 .35080 42.9 
250 .6985 130 .0960 .06700 8.2 
260 .8482 140 -.0209 -.01770 2.2 
270 1.0000 150 .0124 .01240 1.5 
280 1.1331 160 .0180 .02040 2.5 
290 1.2296 170 -.0131 -.01610 1.9 
300 1.3180 -180 -322.5 .7933 -107.5 -.8299 -.0366 -.04820 5.9 
310 1.3695 -170 -317.6 .7384 -105.8 -.7515 -.0131 -.01190 2.2 
320 1.3983 -160 -303.0 .5446 -101.0 -.5266 .0180 .02520 3.1 
330 1.4109 -150 -279.3 .1618 -93.1 -.1492 .0124 .01750 2.1 
340 1.4140 -140 -247.0 -.3907 -82.3 .3698 -.0209 .03010 3.7 
350 1.4135 -130 -207.3 -.8886 -69.1 .9846 .0960 .13570 16.6 

'Duplicates 0° to + 180° 
"Duplicates 0° to -180° 
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pattern, while towers two and eight have the 
end -tower values of the other three -tower design. 
This is because multiplying either by the other's 
reference tower, is the same as multiplying a number 
by 1.0L0 °, which produces the same number as the 
original number. The phase angles are merely added 
from each basic pattern as shown in Figure 6. 

This leaves the four corner -tower values to be 
determined. Tower one is really the product of tower 
two times four. Tower three is then the product of 

tower two times six. Likewise, the other two corner 
towers can be seen to be the products of tower four 
times tower eight and tower six times tower eight. For 
a graphic picture of this, see Figure 6A. 

Twelve -tower arrays 

There are no more than two arrays with this many 
towers now existing or proposed, which lends some 
idea as to their rarity. Unlike nine -towers which can 
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have only one basic "floor- plan," twelve can be 
looked upon as three rows of four towers or four rows 
of three towers. 

The following example has assumed a three -tower 
pattern multiplied by a four -tower. As with the 
foregoing, a hypothetical design which is assumed to 
produce maximum suppression along the sides and 

the rear of this pattern has been chosen. The only 
application possible for a pattern like this would be 
on a clear channel, where wide -angle protection is 
required to be provided to the skywave service area of 
a class I -A or I -B station. 

For the twelve -tower design, the multiplication 
form is the basic formula (Equation 3): 

TABLE 2A 
NINE -TOWER DESIGN 

E = Kf(0) [(31 + cos NI + S1 cos 0 cos 0)) x 
(32 + cos (0° + S2 cos (0 -90) cos 0))] 

1/2 

Where 
F1 = 1.00, W3 = -94°, Si = 90, F2 = 1.016, S2 = 200° 

E = Kf0 [1.0 + 2(.5)/ (90 cos 0 -94 °)] x [1.0 + 2(.508)/200 cos (0 -90) + 0 °] 

Using the special case where end towers are equal 
So 

E1 = Kf0 [F1 + 2F2 /S2 cos 0 cos 0 + 413] x [F1 + 2F3 /S3 cos (0 -90 °) + kIJ3] 

Work each out, square, multiply, then take square root. 

E1 = K1 f [I.0 + 1.0 cos /90 cos (0) -94 1 [1.0 + 1.016 cos / 200 cos (0 -90 °)j 

TABLE 2B F140100 
NINE -TOWER DESIGN 

ET = Kf(0) [E1 + 2E2 cos (S2 cos 0 cos O + 4)2)] x [E1 + 2E3 cos (S3 cos 0 cos 0 -A) + T3] 

Where: 
E1= 1.0,E2= 0.5,S2 =90 °,412=- 94 °,E3= 0.508,S3= 200,4f3= 0,A =90 

A B C D E F G H I J K L 

0 90 cos A B -94° cos C D+ 1 A -90 200 cos F E cos G 1.016.H 1+ I EJ K.K1 

0 90.0 -4,0 .9975 1.9975 -90 0.0 1.0000 1.0160 2.0160 4.02700 4179.6 MV /M 
10 88.6 -5.4 .9956 1.9956 -80 34.7 .8220 .8351 1.8351 3.66200 3800.8 
20 84.6 -9.4 .9886 1.9866 -70 68.4 .3681 .3739 1.3739 2.72930 2832.7 
30 77.9 -16.1 .9608 1.9608 -60 99.9 -.1719 -.1746 .8254 1.61840 1679.7 
40 68.9 -25.1 .9066 1.9066 -50 128.5 -.6225 -.6325 .3675 .70060 727.1 
50 57.8 -36.2 .8069 1.8069 -40 153.2 -.8926 -.9069 .0131 .02370 24.6 
60 45.0 -49.0 .6560 1.6560 -30 173.2 -.9929 -1.0088 -.0088 .01430 14.8 
70 30.8 -63.2 .4508 1.4508 -20 187.9 -.9905 -1.0063 -.0063 .00910 9.4 
80 15.6 -78.4 .2010 1.2010 -10 196.9 -.9565 -.9718 .0282 .03380 35.1 
90 0.0 -94.0 -.0697 .9303 0 200.0 -.9397 -.9547 .0453 .04210 43.8 

100 -15.6 -109.6 -.3354 .6646 10 .0282 .01870 19.4 
110 -30.8 -124.8 -.5707 .4293 20 -.0063 .00270 2.8 

120 45.0 -139.0 7547 .2453 30 -.0088 .00215 2.2 
130 -57.8 -161.8 -.9499 .0501 40 -.0131 .00066 0.7 
140 -68.9 -162.9 -.9558 .0442 50 .3675 .01580 16.4 
150 -77.9 -171.9 -.9900 .0100 60 .8254 .00820 8.5 
160 -84.6 -178.6 -.9999 .0000 70 1.3739 .00000 0.0 
170 -88.6 -182.6 -.9989 .0011 80 1.8351 .00200 2.1 
180 -90.0 -184.0 -.9976 .0024 90 2.0160 .00480 5.0 

'Second half duplicates first half because 
3-tow widespaced is symmetrical about the tower line. 
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2 

E = Kf (0)[(F'2F 
2 

+ cos (4V2 + S1 cos O cos 0)) x 
2 

(F1 F3 2 

+ cos `T, 3 + Si cos O cos 0)) x 
2F3 

(F12 + D+ cos (11V4 + S2 cos (0 -A) cos 0))x 
2F4 

Fib FS + cos (Vi, + S2 cos (0 -A) cos 0)) x 

(F?2+F+ 
cos (V6 + S2 cos (0 -A) cos 0))]1/2 

The first two terms represent a typical three -tower 
design, whereas the last three are a typical four -tower 
in -line design. As with the six -, eight -, and nine -tower 
designs, the (0 -A) term represents the angle between 
the respective tower lines. The most common value 
for these multiple element arrays is ±90 °. When one 
uses A = 90 °, the final pattern will be symmetrical 
about the tower -line of the three -tower pattern. 

Figure 9A shows how a three -tower is multiplied by 
a four -tower. As with the example of an eight- tower, 
two patterns that are offset by 120° have been used. 
This will produce a final pattern that is not 
symmetrical, even though each of the basic patterns 
were symmetrical. 

Table 3 is a complete set of calculations. Because 
of the unsymmetrical offset, it is necessary to 
calculate 36 lines instead of 18 lines. Note that the 
equation at the top of Table 3 is not completely the 
same as Equation 3 above. Here too, the flexibility of 
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Design of nighttime 
directional antennas 

This chapter will examine the special considerations 
required of nighttime arrays and top -loaded towers, 
as well as the special problem that falls on the 
designer when the towers are unequal in height or 
when the shapes are not uniform. 

Skywave propagation 

You probably realize, or are at least aware, that 
during hours of darkness a given radio tower will 
broadcast a signal both along the ground as well as 
via the ionosphere to distant areas. The reason one 
does not hear (at least most of the time) distant 
signals during the daytime is not due to the fact that 
towers fail to radiate signals skyward during daylight 
hours; but, that such emissions are absorbed in the 
lower ionosphere and fail to return to the surface of 
the earth. Figure 1 shows nighttime skywaves. FCC 
Figure 6 predicts the value of O and (D. 

Unfortunately, the FCC Rules assume that sky - 
waves are turned on and off at sunset or sunrise. 
There is, of course, a transitional period each day. 
Fortunately for the directional antenna designer, the 
FCC Rules assume that once skywave conditions 
occur, they are constant. While this is not true, it 
nevertheless is a realistic approach to nighttime 
designs. If conditions were different from hour to 
hour, you could conceivably have one pattern needed 
for 8:00 p.m., a second one for 10:00 p.m. and even a 
third one for midnight. This just would not be 
practical. The FCC has, in my opinion, employed a 
most practical application on these physical prin- 
ciples. 

Vertical characteristics 

Each vertical radio tower has certain properties 
insofar as its generation of signals at various vertical 
angles above the horizon. This often is referred to as 
the Vertical Radiation Characteristic. FCC Figure 5 
represents such a typical pattern for non -directional 
towers, with heights of 45° - 225 °. Thus, one of the 
two tools that allow the design to restrict radiation at 
vertical angles is the electrical tower height. 

Taking a purely theoretical example where a 
distant station whose vertical angle lies at 36° above 
the horizon needs protection, you could use a tower 
of 225 °. This would give a perfect null, regardless of 
the power or signal along the ground. 

The second tool is the ability to place nulls and 

major lobes at various vertical angles by controlling 
the currents, phases, and tower spacings of the 
various elements of the array. It can generally be 
stated that whenever you design a null on the ground, 
you also will have that null follow vertically along 
some calculable path. I don't mean that a null on the 
ground will go straight up vertically from that point. 

Vertical nulls 

An example that will show the principle of vertical 
nulls is a two -tower design with a single pair of nulls 
at 45 degrees off the tower -line. Figure 3 shows a 
polar plot of this simple pattern. Figure 4 is a 
composite path of this pair of nulls, or rather the 
route these nulls will take as one looks around the 
end of the pattern. The degree marks along the 
horizontal scale represent degrees from north on the 
ground. The degree marks on the vertical scale 
represent elevations above the ground. These two 
nulls come closer and closer together as they increase 
their elevation above the ground, until finally at 45° 
they merge. 

The next question is how to employ this 
information. Let's assume you must protect a 
co- channel station (WXXX) by skywave whose vertical 
angle from you is 25° vertically and lies at a 
horizontal bearing of 215° True. Is the null at this 
bearing? Well, it is on the ground, but if you trace a 
line straight up from 215° True, to an elevation of 
25° vertical, there is no null! The null at 25° vertical 
elevation actually lies 3° clockwise from 215 °. The 
solution to the problem would be to rotate the tower 
line 3° counter -clockwise, só that the null on the 
ground now lies at 222° True and the 25° vertical 
null lies directly overhead of 215° True. Figure 5 

shows how this would look on the ground as well as 
vertically. (Note the difference between Figure 6 and 
Figure 3.) 

Design protections to more than one co- channel 
nighttime station could require "spreading" or 
foreshortening the number of degrees along the 
surface between the two nulls in the example. Figure 
7 shows how with two nulls 35° off the tower -line, you 
can still meet the protection to WXXX at 215° True 
and vertically at 25 °, plus protection to WYYY at 
180° True and 34° vertically. 

A formula now can be written to calculate the 
phase angle, if the horizontal bearing at which a 
vertical null is required, is known. Or, in other words, 
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if 0 and O are known, and the spacing between any 
two towers is known, W can be found as follows 
(Equation 1): 

±180 = +S cos 0 cos 0 

This is the formula for a two -tower design. As an 
example, assume the vertical null has to be at 30 °, 
and the bearing is on the tower -line, and that S = 
90 °. Solving for 4V, it is equal to - 102.0 °. To find the 
horizontal bearing at which the null occurs you can 
calculate as follows (Equation 2): 

cos 0 = 
S 

±180 +W 

In this formula the cosine of 0 would be looked up in 
a cosine table and it would represent the number of 
degrees off the tower -line the null falls. By knowing 
the 0 bearing of the vertical null, it is a simple matter 
of subtraction to arrive at the horizontal shift of the 
null. 

Vertical cosine effects 

As shown in Figure 2, whatever the tower spacing 
difference between the two towers, they decrease by 
the cosine of the vertical angle, from a reference of 
zero degrees at the horizon. The equations shown in 
the earlier segments of this series all had a cosine O 
term in them. For example, Equation 3 of Chapter 3 

Figure 1 
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,ç2 ... 

was as follows: 

E = Kf (0) i 1 +M 
+ cos (4W + S cos 0 cos 0) 

2M 

When patterns are designed purely in the 
horizontal plane, the cosine of 0° is 1,000, hence this 
multiplier has no effect. Proceeding vertically, this 
cosine term multiplier becomes smaller and smaller 
until at 90° it cancels completely the influence of S 
cos O. 

This cosine term when multiplied times (S cos 0) is 
the actual cause of rotation of the horizontal null as 
it proceeds upward in Figures 4, 5, and 7. 

Vertical attenuation 

Besides the influence of the cosine of the vertical 
angle e, the vertical attenuation also must be taken 
into account. Or as commonly written, fie). 
Sometimes it is referred to as the vertical form factor. 

The total energy radiated by a single tower, in a 
directional array, is distributed in the vertical plane. 
This takes the form of a half -donut shape, commonly 
called a hemi -toroid. As the tower height increases, 
the amount of energy both along the surface as well 
as at specific vertical angles will change. FCC Figure 
5 shows some typical heights. The FCC Rules are 
basically concerned only with the total energy 
directed along the ground. In fact, different classes of 

i 
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stations have different minimum RMS limits on the 
horizontal plane RMS. 

The energy at any given vertical angle varies 
because the current flowing upwards in the tower is 
not distributed uniformly. Standing waves exist in 
every tower. The radiation which occurs from any 
point along the antenna is proportioned to the 
current flowing at that point. The magnitude of each 
of these point currents, as well as its phase 
relationship, is due to its height above ground on the 
tower. The mathematical summation of these 
infinitesimal currents will determine the total 
radiated energy over the half hemisphere. 

Any tower will radiate the same total amount of 
power as any other tower, but the radiated fields will 
be distributed differently. The most efficient tower is 
one which will produce the greatest groundwave 
signal, since that is where the listeners generally 
reside. In the design of a given directional pattern the 
engineer can take advantage of these differences in 
individual efficiency both horizontally and vertically. 

Conical planes 

When speaking about the vertical elevation plane for 
a specific vertical angle, you really don't mean a 
"plane," but rather a pattern as described on a 
conical surface. For example, the only plane pattern 
is that on the ground. At an elevation of +5° the 
ratio of base to altitude on the conical surface is 
large. As the vertical angle increases, this ratio of 

base to altitude on the cone becomes unity at V = 
45° and proceeds down to a very small ratio at 
V = 85 °. 

This next comment may seem ludicrous after the 
above paragraph. But, the FCC requires that these 
conical surface patterns be submitted on plain paper! 
These may be either polarily or rectangularly dis- 
played. Figure 9 shows a comparison of such a plot 
for WKAM at an elevation of 30° vertically. 

The equation (4) to be used to calculate this 
WKAM 30° conical surface is as follows: 

z 

Eno = Kf (0)r1 +M + cos (4' + S cos O cos 0)1112 
LL2M 

Table 1 contains the calculations. As with earlier 
pattern calculations, it is only necessary to compute 
halfway around the pattern, since the pattern is 
symmetrical about the tower -line. Probably the only 
new figure here is the f(0) value. The factor "K" as 
well as the other values have been previously 
explained. You may either compute the value of f(0) 
for a given vertical elevation angle or, more 
conveniently, it can be pulled out of a table of 
vertical form factors.'. It should be pointed out that 
this f(0) is dependent upon both the electrical height 
of the tower as well as the vertical elevation angle. 

For those wishing to compute them, the following 
formula can be used (Equation 5): 
1. NAB Engineering Handbook, pp 2 -16. 

Figure 2 
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F(0)- cos(G sin 0) - cos G 

cos e (1 - cos G) 

In this formula O represents the vertical angle above 
the ground. The letter G is a symbol to represent the 
electrical height of the towers. Normally all towers in 
a DA -N are of equal height. If they are not, it will 
require an individual calcualtion for each tower at 
each elevation. 

If you care to confirm the value for f(0) used in 
Table 1, the electrical tower height at WKAM is 
110 °. Both towers are equal, which is why the f(0) 
term is shown outside the radical sign (square root). 

Vertical planes are interesting in that the 
calculation gives a three -dimensional view of a given 
horizontal plane pattern. They are also necessary to 
prove the absence of co- channel interference at night. 

Top- loaded towers 

Some stations use top -loading on their towers which 
is often accomplished by tying the upper guy wires to 
the top of the tower and then adding a horizontal 
skirt wire around the lower end of these top -loading 
segments. This is shown in Figure 10. 

In the ground plane the effect of top -loading is not 
considered other than it may raise the RMS efficiency 
of a given tower. The maximum that can be expected 
would be +10 %. But when talking about designing 
nighttime patterns where top -loaded towers are used, 
the effect must be considered. This manifests itself as 
a change in the f(0) factor. The following equation (6) 
is used: 

f (0) - cos B cos (A cos O) - cos O sin B sin (A -cos 0) - cos G 

cos 0 (cos B - cos G) 
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Where: A = the electrical height of the vertical 
length of the tower that is top -loaded. 

B = the electrical length of the portion of the 
sine wave effectively added by the top - 
loading. 

G = A + B 

In the previous equations this new value of f(0) 
would be substituted for the normal values. This new 
f(0) would be a constant for any tower at a given 
frequency, and vertical angle (0). But if you change 
the frequency, you would obviously change the value 
of electrical lengths A and B, and thus f(0) would 
change. 

Unequal tower heights 

Up to this point I have written about designing 
antenna systems where the radiations from the 
individual elements were directly proportional to the 
currents in the towers or as it is often referred to, the 
field ratio. This condition will occur when each tower 
within a given system is of equal height and 
cross -section to each of the others. If not, then a new 
factor needs to be entered into our design considera- 
tions. 

The new factor can be looked upon as a ratio of 
the respective tower efficiencies. For example, a 

quarter -wave tower operating by itself (energized by 
1000 watts of power) will generate a signal at one 
mile proportional to its amperes of base current: 

196MV/M 
EMV/M/Amp = 

v 
/ 1000 = 37.2 MV/M/Amp 

36 

In other words, for each and every ampere of current 
that will ever flow in that tower we will measure 37.2 

WXX X 

Figure 5 

MV /M at a distance of one mile. Thus 2.0 amperes 
would produce 74.4 MV /M, etc. 

But let's look at what would happen if our tower 
were a half -wave tower. Then the MV /M /Amp would 
be: 

237.0 
EMV/M/Amp = 1000 = 221.0 MV/M/Amp 

870 

We now generate for each ampere of current flowing 
in this second tower a signal at one mile of 221.0 
MV /M. 

Let's look into the condition that will exist in a 
simple cardioid pattern consisting of two towers, 
whereby one is a quarter -wave and the other is a 
half -wave. And let's assume you wish to achieve a 
zero null. From the earlier chapters it is apparent 
that to create a zero null you must have equal 
radiated fields from each of the two towers. Or the 
MV /M at one mile must be equal in magnitude, and 
of course at the null bearing they must arrive 180° 
displaced in phase. The actual currents that must 
flow to produce these equal fields are not equal, but 
are inversely proportional to the MV /M /Amp 
calculated for the individual tower heights. The tower 
with the lowest efficiency (i.e. MV /M /Amp) must 
have the higher total amperes to create the null. 

In the example it's assumed each tower contributes 
a total field intensity, at one mile, of 98.0 MV /M. 
For the quarter -wave this requires 2.63 amps of 
current. And for the half -wave it requires 0.44 amps. 
The base current ratio would be 5.98 or almost six 
times. Yet the field ratio would be 1.0:1.0 - Unity. 

Most design engineers today prefer to specify equal 
height for all towers since it allows base currents and 
base current ratios to be equal to designed field 
ratios. It is obviously easier to see what is going on 
within a directional pattern when this condition 

PATH OF N ULL BE AR ING 

220° 2000 180° 1600 

HOR IZONTAL ANGLES FROM TRUE NORTH 

1400 

50o 

40° 

30o 

20° 

100 

0° 

67 



occurs, rather than having to interpret the additional 
factor of unequal MV /M /Amp. 

A second area to keep in mind while designing 
directional systems is the difference in cross -sectional 
areas, or in the extreme condition, towers of varying 
cross -sectional widths. Probably the self -supporting or 
free- standing tower would be the classic example of 
this condition. In the first case where there are equal 
heights, but different cross -sectional weights (even 
though each tower is uniform) there will be a minor 
difference in the MV /M /Amp due to the variations in 
electrical properties of each tower. 

In the case of self -supporting towers there is an 
additional effect due to the variation in width along 
the tower. This is the problem that exists due to the 
fact that the current flowing in the tower is not 
sinusoidally distributed. In the early chapters I stated 
that one of the prime assumptions necessary to the 
theory of design is sinusoidal current distribution. 

The ideal way to know the difference factor to 
apply is to operate each tower as a non -directional 
tower, then apply a correction factor based upon the 
MV /M /Amp ratio. 

Figure 7 

Figure 8 
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TABLE 1 

VERTICAL ELEVATION DATA 

140 
220 

130 
230 

120 
240 

250 

q0 
260 

90 
270 

70 
290 

60 
300 

50 
510 

40 
320 

Bearing 5° 10° 15° 20° 25° 30° 

MV/M M' / M MV/M MV/M MV/ M MV/M 
93°T 95.0 91.0 82.0 71.0 58.0 42.0 
83 103 91.0 87.0 77.0 67.0 52.5 38.4 
73 113 76.0 72.0 63.0 54.0 41.1 29.1 
E3 123 50.5 47.2 41.2 33.9 25.9 19.7 
53 133 25.4 24.3 23.5 22.9 25.9 31.0 
43 143 45.4 45.8 48.8 52.0 55.0 58.0 
33 153 93.5 94.0 93.0 93.0 92.0 91.0 
23 163 142.0 141.0 138.0 134.0 129.0 123.0 
`3 173 183.0 181.0 175.0 169.0 160.0 150.0 

3 183 210.0 207.0 200.0 191.0 180.0 168.0 
353 193 217.0 214.0 207.0 198.0 186.0 174.0 
343 203 206.0 204.0 190.0 190.0 180.0 169.0 
353 213 180.0 178.0 174.0 169.0 162.0 153.0 
323 223 145.0 143.0 143.0 140.0 137.0 133.0 
313 233 108.0 109.0 109.0 108.0 109.0 110.0 
303 243 75.5 77.0 79.0 82.0 85.0 88.0 
293 253 50.4 52.0 57.5 60.0 67.0 72.0 
263 263 36.4 38.2 42.5 48.2 55.0 62.0 
273 32.8 34.4 38.5 43.8 51.0 58.0 

Figure 10 
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Calculating 
the RMS efficiency 

This chapter deals with the subject of pattern 
efficiency or RMS, as it's normally referred to. It will 
be demonstrated why some patterns "work" and why 
others do not. Sometimes a pattern can be designed 
whose shape looks great, fits all the requirements, but 
when constructed it doesn't work. 

In the early days of designing directionals, the 
design engineer would generally guess at the RMS of 
his pattern. Past experience was usually the basis for 
such guestimates. Also, in the early days the FCC was 
less concerned about RMS efficiency. The only limits 
were that the minimum efficiency for power and class 
of station were met (Section 73.189 of the Rules) or 
that the point of interference to another station was 
not exceeded. This was both reasonable and proper 
by the FCC since there were fewer broadcast stations 
in those days. 

In time though, several stations were granted which 
could not achieve the first of the above criteria. I 

won't cite any of these since it is not my intent to 
embarrass other engineers or stations, but I will cite 
one case with which I had first -hand knowledge. It 
won't embarrass the station involved, because they 
have since dropped their directional and now operate 
non -directionally. In about 1964, station WRSW was 
granted a three -tower daytime 1000 watt pattern. 
This is shown in Figure 1. While I did not design 
the original pattern nor was I involved in the 
theoretical aspects, I was retained by WRSW to 
construct and to "tune" the pattern. After seven 
weeks of struggling with tuning moves, overheating of 
parts, impossibly low drivepoint impedances, I finally 
realized that for 1000 watts input power, the most we 
could radiate was about 300 watts! At this point it 
was obvious that the design engineer had goofed on 
his RMS prediction. 

The solution was to reexamine the basic pattern to 
see what changes could be made in current ratios and 
phase angles to hold essentially the same pattern 
shape, but to enhance the RMS. Figure 2 is the 
result. Note the similarity in patterns between one 
and two. But look at the phase angle and current 
ratios. Pattern two achieved a measured RMS of 203 
MV /M. In this case WRSW was lucky that a similar 
pattern could be found. Other stations have not been 
so fortunate. 

70 

Major lobe vectors 

One of the quick and cheap methods of looking at 
the probable efficiency of any given pattern is to 
study the vector relationship of the individual towers 
as they combine to produce the major lobe. Figure 3 

is a plot of these vectors for each of the WRSW 
patterns. The dashed line represents the resultant 
signal in the major lobe. The reference tower was 
selected as having a value of 1.0 units. Even without 
determining the individual tower signals in MV /M, 
the three vectors in pattern two add up to a much 
greater resultant. 

Let's look at another concept exemplified by this 
case. To achieve the same resultant signal (R) from 
both patterns, it is obvious that the individual signals 
(in MV /M) from each of the three towers would have 
to be much greater in pattern two. In order to 
achieve stronger fields for each tower, one would have 
to generate higher antenna currents. As tower 
currents go up, so do the losses per tower. Ohm's 
Law states that this will occur in direct relationship 
to the square of the current. In pattern two, if it took 
twice the base currents to achieve the true pattern 
sizes, losses would be quadrupled! And with higher 
losses it would require higher base currents, which 
would increase the losses in an almost never -ending 
cycle. The point should be obvious -maximize the 
vectors in the major lobe for greatest efficiency! This 
brings up the concept of pattern gain. 

Pattern power gain 

The vectors of Figure 3 reveal that in some patterns 
the combination of vectors is more efficient. If these 
combinations result in more total signal along the 
ground, overall, than would be achieved by a single 
tower (ND) operating with the same power level, then 
a pattern is said to have gain (g). 

This measurement of pattern gain is thus the gain 
along the surface, and not the gain at some vertical 
angle. It would follow, from the law of conservation 
of energy, that in order to achieve "gain" you must 
conserve somewhere at vertical angles. One way to 
predict if gain will be achieved in the horizontal 
plane, is to look at the rate of attenuation of the 
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vertical field intensities. For example, if there are 
large overhanging lobes, it is a good bet the signal 
along the ground will be less than the equivalent of a 
single (ND) tower. 

To calculate the gain of any antenna pattern, first 
compute or measure the directional RMS. This is 
then divided by the field intensity at one mile from a 
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single reference tower having the same height with 
the same power. Gain is expressed as follows 
(Equation 1): 
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The figure E0 is used to represent the RMS of the 
DA, and E1 is the horizontal field intensity at one 
mile of the Number 1 or reference tower. To use this 
equation, E0 and E1 should be the same power. 

Why be concerned with power gain at this point? 
In addition to the above reasons, the best reason is 
because the coverage of a radio station can be 
increased if for the same number of watts, the 
horizontal RMS can be increased. Maximum cover- 
age per watt is still the ultimate goal. 

Efficiency of directional antenna 

This is one way of expressing antenna gain, 
demonstrated by the following formula (Equation 2): 

EO=E1\ri 

It is necessary to use the square root of g in order to 
determine the RMS voltage of the final design. No 
losses are assumed in Equation 2. 

Since Equation 2 was written upon the basis of 
no -loss in either the reference antenna (El) or the 
directional array (E0), g truly represents the inherent 
property of the DA to be a gainer or a loser of 
horizontal RMS. If the system has losses, and every 
one ever built has, Equation 2 must be modified 
downward to account for these losses. This can be 
written as follows (Equation 3): 

EOL = E1 VS- Vÿ 
In this equation, EOL is the RMS of the directional 
with losses. The new term y can be computed from 
the following expression (Equation 4): 

PR 
Y == 

The power efficiency (y) is proportional to the power 
radiated divided by the sum of the power radiated 

TOWER 
SPACING 

ELEVATION 
ANGLE (0) 
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TABLE 1 

BESSEL FUNCTION VALUES 

90° 135° 180° 225° 270° 380° 

0.470 0.030 -.306 -.400 -.265 .222 
0.484 0.047 -.290 -.400 -.285 .200 
0.524 0.105 -.240 -.400 -.336 .126 
0.584 0.200 -1.500 -.365 -.390 -.025 
0.666 0.338 -.010 -.264 -.399 -.236 
0.760 0.500 0.210 -.062 -.270 -.397 
0.850 0.680 0.470 .242 -.072 -.304 
0.928 0.845 0.733 .597 .450 .140 
0.980 0.960 0.928 .888 .840 .724 
1.000 1.000 1.000 1.000 1.000 1.000 

plus the power lost. The term y must always be less 
than unity. 

Power flow integration 

This is one of the three generally accepted methods 
used by design engineers to calculate the RMS of a 
given directional pattern. Don't let that word 
"integration" throw you. I don't intend to go through 
any calculus steps. It suffices to say that in order to 
determine the total amount of power that will be 
generated from a given directional pattern, measure 
or compute the total energy over the semi -hemisphere 
of the array. Calculus integration is one mathematical 
way to sum up this energy. Fortunately for the design 
engineer, this has been reduced to a single term 
called a Bessel Function (J0). The Bessel Function will 
vary with the tower spacing between the elements, 
and will vary with the vertical elevation angle. Table 
1 contains a partial list of some common Jo values. 
Complete tables or graphs of Bessel Functions are 
available in math handbooks or in the NAB 
Handbook. 

Table 2 shows how to begin with the basic formula 
for a two -tower pattern and expand it through to find 
the ES value of the total signal. Line one represents 
the basic formula of a two -tower pattern. This is then 
changed from Polar Coordinates to Rectangular 
Coordinates, squared, and simplified by Cost +Sine= 
1.0. The fourth line represents the general equation 
for the horizontal plane. Line five is modified to show 
the same general equation modified by introducing 
Vertical Angles (0). The standard integration over the 
hemisphere in line six is very difficult. However, in 
order to avoid this integration, use the summation of 
the individual calculations of the RMS, taken at 10 
degree vertical intervals. Note the similarity of this 
approach to the summation technique used in Table 
4. To obtain an idea of what a three -tower pattern 
would look like at a vertical angle of 0, use the 
following equation; assuming all towers are equal in 
height (Equation 5): 

EO = f(0) [EI + H + E3 

+ 2E1 E2 cos W12 J0 (S22 cos (3) 

+ 2E1 E3 cos 11113 Jo (S13 cos 0) 

+ 2E2 E3 cos W23 Jo (523 Cos 0)11/2 

For a directional antenna with more elements, the 
number of terms will increase. It will be obvious that 
the general equation consists of the following terms 
under the _ radical: first, the square of all the 
individual antenna field intensities, and second, the 
terms written as twice the product of the field 
intensity of each pair of towers multiplied by the 
cosine of the difference in phase times the Bessel 
Function for the spacing and elevation angle of that 
pair of towers. The power radiated then, in terms of 
Eb, can be written as (Equation 6): 



2n n/2 
P= 1 f f E2d2cos Od Od0 

RC 0 0 

For the standard hemispherical field intensity pro- 
duced by the directional antenna system, of any 
general pattern, write (Equation 7): 

n/2 
ES= f E2e cos OdO 

0 

This is the exact formula for determining the size 
of the directional antenna pattern. However, the 
integration for even the general case is quite tedious. 
Therefore a practical and useful solution is to 
determine the value of Ee at a number of elevation 
angles and to replace the integral in Equation 7, with 
a summation. It is common to do this at 10 degrees 
of elevation intervals. The approximate equation 
(using the trapezoidal rule from mathematics) will be 
written as (Equation 8): 

ES = r 
8 

18 L 20 + 
H. cos (10 °)] 

1 

Where ES = the standard hemispherical FI 
produced by a directional antenna, where E0 = the 
RMS in the horizontal plane, and where E10 is the 
RMS of each of the specified elevation planes. Table 
3 shows a summation calculated for a basic two -tower 
pattern. For each vertical plane the RMS decreases. 
The last column is a tabulation of the RMS field 
intensity for each 10° elevation angle plane. 
There are two steps to Table 3. The first consists of 
columns A through F, which allow the designer to 
calculate the RMS gain in relationship to tower one, 
or the tower taken as unity. These individual ratios 
are then squared, multiplied by the cosine of their 
respective vertical elevation angle, and summed. The 
last step is to arrive at a computation for the radiated 
field intensity from tower one. To do this, since it is 
known that the power of 1 kW over a hemisphere will 
produce 152.1 MV /M, divide this standard by the 
summation and arrive at a value for E1. To calculate 
the RMS in the horizontal plane, multiply E1 x the 
gain in the horizontal plane. In the example this is 
145.0 MV /M x 1.355 = 196.48 MV /M. 

Resistance method of pattern size 

The above method could be used to find the base and 
loop mutual resistance of each element in a given 
antenna system. It does not yield, however, the drive 
point impedances, but it is a very practical and useful 
method for determining the RMS of a pattern. The 
resistance method is in essence an extention plus 
simplification of the Power Flow Integration Method. 

TABLE 2 

TWO -TOWER POWER -FLOW DERIVATION 

ET= E1/0 +'E2 /S2 COS 0 + 'V2 

Changing to rectangular coordinates 
and squaring. 

E2, = Ei + E cos2 (S2 cos O + 'V2) + 
E2 sin2 (S2 cos 0 + 1112) + 
2 EI E2 cos (S2 cos 0 + 47 

Since cos2 + sin2 = 1.0, we can simplify as 
follows: 

ET= E;= E2 +2E1 E2 cos (S2 cos 0 +'Y2) 

Integration over the horizontal field: 

2n 
E2I = f E2 d0 = 

.0 

2 [El + E2 + 2E1 + E2 cos 4'12 Jo (S1)] 
Integration for any angle 

Ere 
f2n 

Edo = Ei f1 ( 0)2 + E F2 (0)2 + 
o 2E1 f1 (0) E2 f2 (0) 

cos 4112 Jo (S12 cos O) 

The standard Hemispherical field intensity 
will be: 

ES = 
0 

n/2 
E,21e cos OdO 

(While this is the exact formula for 
calculating the size of any two -tower 
directional pattern, the general case is 

ES = 
E2 8 

18 L 
T + L 
2 

cos (10n)1 
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Begin by comparing the relationship between field 
intensity and antenna current. This can be expressed 
as MV /M /Amp. The value of field intensity is 
dependent upon the distance the observer is from the 
antenna, the electrical height, and the elevation angle 
(0). The General Equation is written (Equation 9): 

E 
RC I [cos (G sin 0) - cos G] 

2nd cos O 

If the terms are not familiar by now, E is the field 
intensity in V /M, Re is the resistance of free space 
(376.71 ohms) and I is the distance in meters. If at 
this point the letter "h" is substituted for the 
expression: 

h 
-cos (G sin O) - cos G 

c 

Then Equation 9 can be rewritten as follows (Equa- 
tion 10): 

RCI h 

2nd c 

The self and mutual resistance terms can be found 
by the following method (Equation 11). 

R 
R12 = 

2 O5 

2 
h1 h2 Jo (S12 cos 0) d e 

= Rc [(1 - cos G1) (1 - cos G2) Jo (S12)] 
36 

8 

+ (h1)010 (h2)010 JO (S12 cos 010] 

1 

Since this integration is quite laborious, it is more 
simple to graphically determine the value of h1 and 
h2. This can be read from the graph of Figure 6. Also 
the (JO) Bessel Function can be read from Table I or 
standard Bessel Function Graphs. The convenience of 
this method lies in its ability to compute mutual 
resistance between towers of unequal heights. 

Table 4 shows how to calculate the mutual 
resistance between two towers: one of 90° and one of 
150° spaced 200° apart. This would yield a value of 
21.44 ohms. In order to convert this loop value to its 
base equivalent it is only necessary to divide it by (Sin 
G1 Sin G2). In the example then: 

21.44 ohms - 42.88 ohms 
(1.0) (0.5) 

ro find the power radiated from the two- tower, use 
the following formula (Equation 12): 

Pr = Il R11 + R22 + 2I1 12 cos 4212 R12 

If the pattern's power is known, we can find the size 
of the hemispherical RMS by the following (Equation 
13): 
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ES- /Pr Re 

V 2 d2 

But since the horizontal RMS (E0) is of interest, the 
following equation can be substituted for a two -tower 
pattern (Equation 14): 

E0 = E2+2E1E2COS 4112Jo(512) 

If the towers in this two -tower array are of equal 
height, then the current ratios can be substituted for 
the field ratios. 

If Equation 14 is solved for El, then recognize that 
the current in tower one is proportional to the square 
root of the power radiated by the first tower divided 
by the operating resistance of the first tower. This 
can be written as an expression having numerators 
and denominators that are very similar, the only 
difference being that the denominator contains the 
resistance ratio, while the numerator contains the 
Bessel Function (Equation 15): 

Eo = E1s 

El + E2 + 2 El E2 cos 412 JO (S12 cos 0) 

E; + E2 + 2 El E2 cos 411 
12 

R11 

In the equation, E0 is the horizontal RMS expressed 
in MV /M. Els is the horizontal field intensity of 
antenna 1, acting as a reference antenna of PR watts. 
R12 is the mutual loop resistance between towers 1 

and 2, while R11 is the self loop radiation resistance. 
These latter two quantities are each expressed in 
ohms. 

Driving point impedance 

This last method is most useful since it allows the 
designer to determine both the drive point impedance 
of each tower operating in the directional antenna 
but also allows the introduction of losses. This 
method is demonstrated with a three -tower pattern. 

Figure 5 shows the design values of field ratio and 
phase angles, as well as the tower spacing. Since the 
towers are of equal heights, current ratios can be 
substituted for field ratios. The self resistance as well 
as the mutual impedance can be looked up in 
standard graphs or texts. In order to solve for each 
tower we would use the basic equation (Equation 16): 

Z01 =R11 +IZM12 +3M13 
I1 Il 

The term Z01 is the operating impedance of tower 
one. Likewise I will solve for the Z02 and Z03. The 
three by four squares in Figure 5 show how to 
compute these values. 

The next step in the solution is to take the three 
operating resistances (1.56, 2.74, and 5.42 ohms) and 
compute the actual current of tower one. This is done 
by taking the current ratio, squaring it, multiplying 
each by its respective base resistance, then adding 



TABLE 3 

RMS CALCULATION BY SUMMATION 

E0 [Ei f (01) + Ez f (02) + 2 E1 f (Or) E2 f (02) cos W12 J0 (S12 cos 0)]1/2 

If the height of E1 = E2, then f(0) = 802) and this term can be removed from the radical, 

let: E1 = 1.0, E2 = 1.0, 4'12 = -110 °, S = 90 °, and the power be 1000 watts 

A B C D E F G H J 

J0S12 2 cos 
e f(e) = 90° 1012 GD +2.0 BV F2, cos B GH 
0 1.000 0.470 -0.173 1.836 1.355 

10 .978 0.485 -0.173 1.831 1.323 1.750 0.985 1.724 
20 .914 0.525 -0.173 1.817 1.232 1.518 0.939 1.425 
30 .816 0.584 -0.173 1.800 1.095 1.199 0.866 1.038 
40 .695 0.666 -0.173 1.768 .924 .854 0.766 .654 
50 .559 0.760 -0.173 1.736 .736 .542 0.643 .348 
60 .418 0.850 -0.173 1.704 .545 .297 0.500 .148 
70 .277 0.928 -0.173 1.678 .359 .129 0.342 .044 
80 .138 0.980 -0.173 1.659 .177 .031 0.173 .005 

Sum = 5.386 

[ 

E2] 8 

ES =«-z \ 2 +: Polo cos Olo) ES = 1.049 Since 1 kW hemisphere = 152.1 MV /M 
1 

= 
8 

1. 
2552 ) + (5.386) 

E S 
152.1 MV /M - 145.0 MV /M 
1.049 

RMS in the horizontal plane = 
145.0 MV /M x 1.355 = 196.48 MV /M 

TABLE 4 

CALCULATION OF MUTUAL RESISTANCE 

n/2 
R12 = 

2n 
f 82 h2 Jo (S12 

o 
cos 0) d0, can be approximated by the following 

R r (1-cos Go (1-cos G2) (4) 8 

36 L 2 
ih 

l(10) h2{10) 
Jo (S12 cos 0)] 

If G1 =90 °, G2= 150 °, and S12 = 200° 

8 

I= e 

1 10 
20 
30 
40 
50 
60 
70 
80 

h1(90 °) h2(150 °) Jo(S12 cos e) Sum 

0.97 1.77 -0.37 -.635 
0.89 1.54 -0.34 -.466 
0.76 1.20 -0.27 -.246 
0.61 0.88 -0.13 -.069 
0.45 0.55 0.09 .022 
0.29 0.32 0.37 .034 
0.16 0.15 0.68 .016 
0.06 0.05 0.91 .003 

-1.341 

R 376.7 r (1.0) (1.865) (-0.38) 1.341] 12 
36 L 2 

= 10.46 ,[-0.709 -1.341] 

R12 = 21.44 ohms (Loop) 

To convert to base mutual, divide by 

R12 21.44 - 42.88 ohms R12(13"e) (Sin G1) (Sin G2) (1.0) (.50) 
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Figure 4. 

Figure 5 
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INTEGRATION Of POWER FLOW OUT OF HEMISPHERE 

ES 

21r 7r /2 

ZENITH 

[2 dB dd, 

Z02 - 

203" 

#1 #2 #3 
o S 0---5 (/) - 0° 

0.714 1. 0/- 209.1 0.5711- 48 

GIVEN: 

SELF RESISTANCE (Rll) = 24.5 OHMS 

MUTUAL IMPEDANCE 170°) = 19.2/- 22 

MUTUAL IMPEDANCE 1140 °I = 13.2/- 77 

TOWER #1 TOWER #2 

S = 70°, G = 78° 

TOWER #3 ANSWER 

E 

Ill- 209,11119.2/- 221 1.571/- 481(13.2/- 77) 
24.5 + JO 

- 16.88 + J20.9 

1.0/0 

26. 9 1- 231.1 

.1714/0 

10.56/- 125 

-6.06- J8.65 

-16.88+J20.9 -6.06-J8.65 1.56 +J11.25 

1.7141.01(19.2/-221 1.571/-481(19.2/-22) 24.5 + JO 

11- 209.1 1/- 209.1 

13.71 /187,1 10.97 /139.1 -13, 60 - 11.69 

-8.16 + J7.17 
-13.6-J1.69 -8.16+J7.17 2.74+J5.48 

(.714L) (13,21-22) {1.0/-209.11(19.21_22) 24.5 +JO 

0.571/-48 0.5711-48 

16.5 1- 29 33.61- 183,1 14.42 - J8. 0 

-33.4 +J11.82 

14.41-18.0 -33.5+J1.82 5.42-J6.18 

OPERATING RESISTANCES ARE: 

RI - 1.56 OHMS R2 2.74 OHMS R3 - 5.42 OHMS 



and equating it to the proposed power (1000 watts) 
(Equation 17): 

3 

1000 Watts = 12 R 
1 

Substituting in the example, plus adding 1.0 ohm loss 
in series with each tower gives: 

1000 = I2 [(.714)2 (1.56 + 1.0) + (1.0)2 

(2.74 + 1.0) + (.571)2 (5.42 + 1.0)] 

Solving for I2 results in 11.84 amps, with loss. 
Proceed to calculate the actual field intensity radiated 
by the tower two (reference). At this point it is 
necessary to calculate the MV /M /Amp of a tower of 
this electrical height. 

Study FCC Figure 8 to determine the Unattenuated 
Field Intensity for 1 kW and this tower height. Using 
the self- resistance (R11) value of 24.5 ohms (Equation 
18): 

192.8 MV /M 
Field Int. /Amp = 1 1000 Watts = 30.2 MV /M /Amp. 

V 24.5 Ohms 

2.0 

1.8 

1.6 

1.4 

1.2 

1.0 

0.8 

0.6 

0.4 

0.2 

-0.2 

0.4 

-0.6 

-0.8 

-1.0 
0 

This means that tower two, with a base current of 
11.84 amps, will radiate a field intensity of 357.6 
MV /M. Tower one would be 255.3 MV /M and tower 
three would be 204.2 MV /M. 

Equation 14 determines the gain times the field 
intensity of tower two (our reference tower) to 
determine the RMS (Equation 19): 

Eó= Ei +Ei +E3 +2 E1 E2 cos W12J0(S12) 
+ 2 E1 E3 cos W13 Jo (Se) 
+ 2E2 E3 cos W23 Jo (523) 

E0= 357.6'/0.510 +1.00 +.326 
+ 357.6 \/ 1.428 cos (- 209.1) (0.656) 
+ .815 cos ( -48 °) ( -.038) 
+ 1.142 cos (102.9) (0.656) 

E0 = 192.2 MV/M 

It is important to keep terms straight, and not to 
mix measured values with theoretical values. After 
all, the real purpose here is to predict the theoretical 
RMS of any given pattern. In actual practice the 
measured RMS may be greater or lesser than theory 
predicts. 

e0° 

20 40 60 80 100 120 140 160 180 200 220 240 

G ANTENNA HEIGHT IN DEGREES 

VALUE OF h FUNCTION PLOTTED FOR VARIOUS VALUES OF ELEVATION ANGLE O AS 

A FUNCTION OF ANTENNA HEIGHT G 

260 

Figure 6 
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The FCC standard method, plus 
use of computers and hand calculators 

START 

READ DATA 

DO THE PATTERN 
CALCULATION 

13 TIMES 

DO A RADIAL 
CALCULATION 

72 TIMES 

CALCULATE 
FIELD STRENGTH 

ON A RADIAL 

PRINT 
FIELD 

STRENGTHS 

Flow Chart shows instructions given computer 
to solve the problem. 

Figure 1 
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This chapter will discuss the use or "help" that 
computers and pocket calculators can be to the 
design engineer. The FCC's standard method of 
calculating directional antennas for submission with 
FCC applications will then be considered. 

Using digital computers 

Besides relieving the design engineer of much of the 
relatively non -productive work, any computer has two 
significant advantages: great speed and a high degree 
of accuracy. Accessibility of computers is easy with 
almost all large companies owning or sharing them, 
as well as all major universities and even many high 
schools. 

By using one of the new IBM models, the simple 
two -tower daytime pattern calculated by longhand in 
Chapter 2 can be computed and printed out in no 
more than two minutes. (Or about the time it takes to 
unpack your pocket calculator, sharpen a couple of 
pencils, pick up a pad of paper, and get ready to go 
to work.) 

If you are afraid the computer may replace the 
chief engineer some day, there is little cause for 
concern because all computers have one fault -they 
are stupid. They must be told in a very specific way, 
everything they are to perform. This seems in- 
congruous when you think of their speed and 
accuracy, but it is true. In fact, a computer even has 
to be told when to stop. 

Computer programs 

The instructions you give to a computer in order for 
it to work a specific problem is called a "program." 
The program must list precisely and in correct se- 
quence each step to be performed. Most computer 
programmers rarely have any knowledge of the elec- 
tronic and mechanical principles involved in computer 
operations. This is because one does not need to 
know how a computer functions if you can speak its 
language. 

The instructions contained in a given computer 
program must be in a "language" which can be 
understood by the writer and the computer. 
Computer languages, although similar to the basic 
spoken word, have some rather unique names, such 



TYPICAL PRINTOUT FROM IBM COMPUTER 

FOR A VERTICAL ANGLE OF O. THE FOLLOWING RESULTS ARE OBTAINED 
PHI ETH MV EST MV PHI ETH MV EST MV PHI ETH MV EST MV PHI ETH MV EST MV 

460.76 483.86 95 55.94 59.29 185 93.79 98.82 275 3.92 9.12 
461.32 484.46 100 20.33 22.85 190 94.12 99.16 280 34.08 38.69 
459.99 483.06 105 12.41 15.37 195 93.36 98.37 285 71.17 75.17 
456.69 479.59 110 38.82 41.56 200 91.68 96.60 290 110.93 116.76 
451.22 473.85 115 60.19 63.72 205 89.47 94.29 295 152.07 159.89 
,443.31 4E5.55 120 76.08 80.29 210 87.31 92.04 300 193.32 203.15 
432.62 454.32 125 86.66 91.36 215 85.88 90.54 305 233.47 245.28 
418.77 439.78 130 92.50 97.47 220 85.72 90.37 310 271.48 285.17 
401.40 421.55 135 94.45 99.50 225 87.03 91.74 315 306.53 321.96 
380.22 399.31 140 93.59 98.61 230 89.48 94.30 320 338.02 355.01 
355.05 372.89 145 91.17 96.07 235 92.25 97.20 325 365.60 383.96 
325.88 342.27 150 88.40 93.18 240 94.19 99.24 330 389.16 408.70 
292.91 307.67 155 86.34 91.02 245 94.07 99.11 335 408.79 429.31 
256.59 269.55 160 85.61 90.26 250 90.69 95.57 340 424.71 446.02 
217.61 228.64 165 86.33 91.01 255 83.04 87.57 345 437.26 459.19 
176.89 135.91 170 88.13 92.89 260 70.38 74.34 350 446.79 469.20 
135.54 142.55 175 90.38 95.25 265 52.30 55.51 355 453.69 478.44 
94.79 39.96 180 92.44 97.40 270 28.78 31.30 360 458.26 481.24 

FOR A VERTICAL ANGLE OF 5. THE FOLLOWING RESULTS ARE OBTAINED. 
PHI ETH MV EST MV PHI ETH MV EST MV PHI ETH MV EST MV PHI ETH MV EST MV 

452.96 475.68 95 54.99 58.30 185 91.87 96.79 275 3.87 8.99 
453.53 476.27 100 20.05 22.53 190 92.18 97.12 280 33.54 36.12 
452.21 474.89 105 12.10 15.03 195 91.46 96.37 285 69.93 73.87 
448.93 471.44 110 38.04 40.74 200 89.87 94.71 290 108.94 114.87 

443.51 465.76 115 59.07 62.54 205 87.80 92.54 295 149.30 156.97 
435.68 457.53 120 74.73 78.87 210 85.81 90.46 300 189.77 199.42 
425.11 446.43 125 85.20 89.82 215 84.53 89.12 305 229.17 240.77 
411.42 432.07 130 91.03 95.91 220 84.49 89.08 310 266.50 279.94 
394.29 414.08 135 93.03 98.01 225 85.85 90.50 215 300.93 316.08 
373.41 392.17 140 92.27 97.21 230 88.28 93.04 320 331.88 348.57 
348.64 366.15 145 89.94 94.77 235 90.98 95.86 325 359.02 377.05 
319.95 336.04 150 87.22 91.94 240 92.83 97.80 330 382.23 401.42 

287.55 302.03 155 85.15 89.76 245 92.62 97.59 335 401.58 421.73 

251.88 264.59 160 84.34 88.92 250 89.21 94.01 340 417.29 438.23 

213.61 224.43 165 84.92 84.92 255 81.61 86.06 345 429.69 451.24 

173.65 182.51 170 86.56 91.24 260 69.10 73.00 350 439.12 461.15 

133.08 139.96 175 88.66 93.43 265 51.30 54.46 355 445.95 488.32 
93.11 98.09 180 90.59 95.48 270 28.18 30.65 360 450.49 473.08 

FOR A VERTICAL ANGLE OF 10. THE FOLLOWING RESULTS ARE OBTAINED 
PHI 

Figure 2 

ETH MV EST MV PHI ETH MV EST MV PHI ETH MV EST MV PHI ETH MV EST MV 

430.27 451.85 95 52.25 55.39 185 86.43 91.07 275 3.74 8.61 

430.82 452.43 100 19.24 21.61 190 86.69 91.35 280 31.99 34.45 

429.53 451.08 105 11.21 14.05 195 86.08 90.71 285 66.36 70.09 
426.34 447.72 110 35.79 38.35 200 84.76 89.33 290 103.17 108.80 

421.07 442.19 115 55.80 59.09 205 83.07 87.56 295 141.27 148.53 

413.47 434.21 120 70.80 74.74 210 81.52 85.94 300 179.48 188.61 

403.25 423.48 125 80.95 85.34 215 80.67 85.05 305 216.73 227.69 

390.07 409.65 130 86.72 91.38 220 80.94 85.33 310 252.05 264.76 

373.63 392.39 135 88.88 93.64 225 82.43 86.89 315 284.69 299.02 

353.66 371.43 140 88.39 93.12 230 84.79 89.36 320 314.09 329.88 

330.03 346.62 145 86.32 90.96 235 87.26 91.95 325 339.93 357.01 

302.74 317.97 150 83.78 88.30 240 88.83 93.59 330 362.08 380.27 
272.00 285.70 155 81.70 86.12 245 88.40 93.13 335 380.62 399.72 

238.21 250.23 160 80.68 85.06 250 84.90 89.47 340 395.72 415.58 

202.01 212.25 165 80.90 85.29 255 77.45 81.68 345 407.68 428.13 

164.26 172.64 170 82.09 86.54 260 65.40 69.10 350 416.81 437.71 

125.95 132.47 175 83.76 88.28 265 48.39 51.39 355 423.44 444.68 

88.23 92.96 180 85.36 89.95 270 26.43 28.79 360 427.85 449.31 
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as Fortran, Cobol and Algol. These are abbreviations 
for much longer names such as FOR -mula- TRANs1a- TYPICAL CALCULATOR PRINTOUT 
tion (FORTRAN), COmmon Business Oriented 
Language (COBOL), or ALGOrithmic Language 
(ALGOL). The language used depends upon the 
computer and its manufacturer. In addition, each 
manufacturer needs to develop a program that 
translates the source language (FORTRAN) into an 
object language which actually controls the circuitry 
and micro -devices within the computer and its related 
equipment. 

In order to write a program, it first becomes 
necessary to understand the problem which you wish 
the computer to solve, from the computer's viewpoint. 
Then select the basic computer language which best 
suits that type of problem. FORTRAN is generally 
used for engineering and other mathematical applica 
tions. 

To program a computer, it is first necessary for the 
reader to "learn" the language to be used. Learning a 
computer language is much like learning any 
language; there are rules of grammar and of spelling 

CALCULATOR PROGRAM 
BY STEPS 

001 LBLA 21 11 

002 RCL5 36 05 
003 COS 42 
004 ENT} -21 
005 RCLO 36 00 
006 x -35 
007 ENT} -21 
008 RCL1 36 01 

009 + -55 
010 ' STOD 35 14 
011 RCLD 3614 
012 COS 42 
013 ENT} -21 
014 RCL2 36 02 
015 + -55 
016 x2 53 
017 STO E 35 15 
018 RCLD 36 14 
019 SIN 41 

020 X2 53 
021 RCLE 36 15 
022 + -55 
023 ST + 6 36 -55 06 
024 RC L4 36 04 
025 ST + 5 35 -55 05 
026 RCL5 36 05 
027 3 03 
028 6 06 

Bearings 

0.00 *'* 
5.00 '' 

10.00 ' 
10.00 
20.00 '" 

25.00 
30.00 ' 
35.00 ' 
40.00 
45.00 " 

Theoretical 

406.52 *** 
445.30 "' 
480.58 * 

5 .32 * 

533 8.32 

560.33 * * 

577.84 
591.15 
600.71 
607.05 

Standard Parameters 

427.08 ' " "MV /M 125.00 0 
467.78 "' 117.50 1 

504.80 ' 0.55 2 
565.47 * * 83.50 3 
565.41 

588.51 " 
5.00 4 
0.00 5 

606.89 0.00 6 
620.87 * * 444.00 7 
630.90 395.41 8 
637.56 " 0.00 9 

50.00 610.78 641.47 "' 0.00 A 
55.00 * * 612.52 *" 643.30 1.00 B 
60.00 " "" 612.87 ' " 643.67 " 0.00 C 
65.00 ' 612.38 ` * 643.16 ** 0.00 D 
70.00 " 611.54 * 642.27 ' 0.00 E 
75.00 610.71 641.40 13.42 I 

80.00 610.18 640.84 
85.00 610.08 *** 640.74 ** 

90.00 "' 610.45 641.13 
95.00 * 611.19 641.90 * 

100.00 * 612.07 642.82 
105.00 612.75 643.54 
110.00 ** 612.79 643.55 *' 
115.00 611.68 642.42 " 
120.00 * 608.82 639.41 "" 
125.00 * * 603.59 633.93 "' 
130.00 595.39 625.32 ' " 
135.00 ** 583.64 612.99 
140.00 567.86 596.42 ' 
145.00 ** 547.67 * ** 575.23 
150.00 " 522.90 549.23 
155.00 493.55 518.42 
160.00 459.88 483.08 
165.00 422.40 443.74 
170.00 * 381.94 401.29 " ** 
175.00 339.68 * 356.54 
180.00 297.21 * 312.39 
185.00 256.71 " 269.91 
190.00 221.10 " 232.58 * * 

195.00 194.15 * 204.34 
200.00 " 175.72 * * 189.23 **" 
205.00 175.69 189.20 "" 
210.00 192.20 " 202.30 
215.00 212.85 223.94 ' 
220.00 237.36 249.62 
225.00 * 262.62 276.11 " 
230.00 286.68 * " 301.34 " 
235.00 " 308.39 324.11 
240.00 327.07 343.71 ' 
245.00 342.37 ' 359.77 " 
250.00 354.11 372.08 
255.00 362.20 380.57 ' 
260.00 366.61 385.20 ' 
265.00 367.35 385.97 "' 
270.00 364.40 *' 382.88 
275.00 357.78 375.94 
280.00 * 347.50 365.15 
285.00 333.61 " 350.58 *" 

Figure 2A Figure 2B 
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and much memorizing to be done. The more you 
know of the language, the greater will be the speed 
and facility with which you can "converse" with the 
computer. 

Today, there are so many computer programs 
already written and available, that it is rarely 
necessary to "write" a new one. 

The next step in designing the pattern by computer 
is to feed the data -processing cards (punched cards) 
into a data -processing reader. In some computers this 
input is via perforated tape or keyboard input. The 
output from the computer can be in one of many 
forms: punched cards, perforated tape, magnetic 
tape, typewriter print out, or line printer output. 

Pattern calculations 

It is most common to write and /or use a program 
that has as its final output the radiation pattern in 
V/M or MV /M, with computations at 5° horizontal 
intervals and 5° vertical intervals. These vertical 
computations would be limited to the zone between 
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0° and 60 °, the limits required by the FCC in 
support of nighttime directional applications.' The 
program must be capable of handling any number of 
towers in any physical or electrical configuration, as 
well as individual tower heights and for any 
frequency. 

The basic equation the computer is programmed to 
solve is the general equation (1) covering any 
directional antenna system.2 

K=n 
E= Ekfk(0)/Bk 

K=1 

These terms can generally be recognized by the 
reader as commonly used in the hand calculation of 
two -, three -, and four -tower designs. The only new 
expression here is Carl Smith's use of the term Bk 
(Equation 2): 

1. Antenna Patterns by Computer; B/E March 1967. 

2. Theory and Design of Directional Antennas, Carl Smith. 
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Bk = Sk cos 0 cos (0k - 0) + 4 

The terms used in these two equations are defined as 
follows: 

E = the total effective field intensity vector at 
unit distance (D) for the antenna array with 
respect to the voltage- vector reference axis. 

K = the Kth tower in the directional antenna 
system. 

280 n = the total number of towers in the antenna 
array to be calculated; i.e. n = two, n = 
three, etc. 

Ek = the magnitude of the individual field at the 
unit distance, produced by the Kth tower 
acting alone. 

fk(A) = the vertical radiation characteristics of the 
Kth tower. 

0 = the vertical elevation angle of the observer at 
point "P" measured above the horizon in 
degrees. 

Sk = electrical spacing of the Kth tower in the 
horizontal plane from the reference point. 

0k = true horizontal azimuth orientation of the 
Kth tower with respect to the reference point. 

0 = true horizontal azimuth angle of the direc- 
tion to the observation point "P." 

'Pk = time phasing portion due to the electrical 
phase angle of the voltage (or current) in the 
Kth tower with respect to the reference axis. 
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This formula is really the addition form discussed 
earlier, which is not the speediest way to calculate a 
pattern. But while shortcuts may be applied to some 
patterns, only a general equation can apply to all 
systems of any number and configuration. Also keep 
in mind that while the computer may have to work a 

60 little longer to do everything the hard way with this 
generalized pattern, the difference in time normally 

lo. will be in the order of a few seconds. 
The punched cards fed into the computer contain 

the system parameters, field ratios for each tower, the 
phase angle for each tower, the electrical spacing 
between each tower and the reference tower, the 
electrical height of each tower, and the shift from 
reference of each tower's individual bearing or 
tower -line. It is also necessary to tell the computer 
the power level and in some cases even the RMS or 
efficiency factor. 

If the computer printout agrees with your slide -rule 
design to eight significant places, you can feel 
confident in the mathematics. The probability of any 
error in the computer is negligible. 
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Flow chart 

A "flow chart" helps show how a computer attacks 
an antenna design problem. An analogy to a flow 
chart might be a highway road map; they both show 



the route to follow in traveling from point A to 
point B. 

The first step taken by the computer is to read the 
punch cards. The second step is to calculate the 
pattern 13 times (once for each vertical pattern from 
00 to 60 °). This is called an execution statement, or 
in some computers, a "do- loop." What this really 
does is tell the computer to execute a series of 
operations a specified number of times (in this case 
13 times). 

The second execution statement instructs the 
computer to calculate the signal strength for each 5° 
of azimuth in each elevation plane. This step actually 
tells the computer how to compute the required 
performances. This may seem backward, but in 
writing a computer program, it is necessary to think 
like a computer. And recall I said all computers are 
dumb! - 

Figure 1 shows that this second execution 
statement requires that the calculation be made 72 

times. This should be obvious since 360° divided by 
5° increments corresponds to 72 bearings. When all 
calculations have been made by the computer, the 
program next tells the machine to give the answer in 
a readable form. This is normally referred to as the 
print statement. In addition to the answers, the 

TABLE 1 

BASIC THEORETICAL PATTERN 

computer must be told how to print the information, 
i.e., whether to print the data in rows, in columns, or 
any other desired configuration. Usually for aid 
in plotting polar patterns, it is helpful to ask the 
computer to print the data in tabulation form. It is 
customary to have the data grouped by vertical 
planes. Figure 2 shows a portion of the ground plane 
data computed for the nighttime array of Figure 3. 

The last step in the computer program is to 
instruct the computer to "stop." 

This brief look into the world of computers in the 
design of directional antennas reveals they are a 
useful tool for speed, for accuracy, and for final 
verification. But the computer has a long way to go 
before it can replace the intuitive experience of a 
design engineer. 

Pocket calculators 

Today one seldom sees a slide rule used or even a 
Chinese abacus. The electronic pocket calculator has 
replaced these devices. The pocket calculator is fast, 
can compute to six or eight decimal places, and can 
do trig functions without resorting to tables. A pocket 
calculator can be used "manually" to perform each 
and every step that an IBM computer does. Or one 

A B C D E F O 

Bearing 70 cos A B -110° cos C 1+0 EV2 F x 447 

0 70.0 -40.0 0.766 1.766 1.330 595.0 MV/M 
10- 350 68.9 -41.1 0.754 1.754 1.326 593.0 

20- 340 65.8 -44.2 0.717 1.717 1.310 585.0 

30-330 60.6 -49.4 0.650 1.650 1.266 574.0 

40- 320 53.6 -56.4 0.553 1.553 1.246 556.0 

50- 310 45.0 -65.0 0.423 1.423 1.193 533.0 

60-300 35.0 -75.0 0.259 1.259 1.124 501.0 

70- 290 23.9 -86.1 0.068 1.068 1.034 462.0 

80-280 12.2 -97.8 -.136 0.864 0.931 416.0 

90-270 0.0 -110.0 -.342 0.658 0.812 362.0 

100 -260 -12.2 -122.2 -.538 0.467 0.684 305.0 

110 -250 -23.9 -133.9 -.689 0.311 0.558 250.0 

120 -240 -35.0 -145.0 -.819 0.181 0.426 190.0 

139 -230 -45.0 -155.0 -.906 0.094 0.307 137.0 

140-220 -53.6 .163.6 -.960 0.040 0.200 89.0 

150 -210 -60.6 -170.6 -.985 0.015 0.123 55.0 

180 -200 -65.8 -175.8 -.995 0.005 0.071 31.7 

170-190 -68.9 -178.9 -.999 0.001 0.031 13.8 

180 -70.0 -180.0 -1.000 0.000 0.000 0.0 

Q 

CO ó 
ó 

Q 

VECTOR - - NULL 
Q 

VECTORS SHOWING HOW Q FACTOR EFFECTS 

MAJOR LOBE, MINOR LOBES, OR NULLS. 

DASHED LINE REPRESENTS RESULTANT. 

Figure 7 
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can use the the programmable calculator like the 
HP -97. With the built -in memories these units 
possess, they can perform several of the manual steps 
a pocket calculator would do. 

In fact, with the HP -97 I have written a program 
about its memories such that it can compute up to a 
six -tower directional pattern. The accuracy is identi- 
cal with an IBM, but of course its speed is much 
reduced. For example, to compute a single pattern on 
IBM will take four or five minutes to "think" about 
the problem, then print out the solution in 10 -15 
seconds. Whereas the HP -97 type will require 20 -25 
minutes to think about a problem, and then 15 -18 
minutes to print out the solution. Figure 2A shows a 
portion of the program written for an HP -97, and 
Figure 2B is a portion of the print -out one would 
obtain. 

Standard patterns 

There is one final area in which the design engineer 
must become familiar and must be willing to take 
into account. This revolves around the fact that no 
directional antenna constructed ever tuned up to 
perfectly fit its theoretical design. But furthermore, 
even if it could be so initially adjusted, there is no 
way it could forever be held in such a state. 

Historically, the FCC has conceived different 
approaches to this problem of pattern shape 
variations. Initially it was their concern of the 
magnitude of such variations along bearings toward 
co- channel, or if daytime, also toward adjacent 
channel stations. In the early days it was the 
responsibility of the design engineer to determine how 
much above the designed values of radiation these 
upper limits were to be proposed. In other words, it 
was a judgment predicated upon experience, maxi- 
mum allowable radiation before interference would 
result, and the levels to which he felt the pattern 
could be contained. 

Later, the concept of MEOV (Maximum Expected 
Operating Values) was used. As the name implies, 
this was the value of radiation beyond which 
deviations of the initial tune -up plus the day -to -day 
operation would not exceed. Figure 4 is an example 
of such a use of MEOV. Most of the DAs currently 
licensed by the FCC are of this type. Only the newer 
directionals granted since 1971 must conform to the 
new FCC standard pattern concept. 

Essentially the new standard pattern incorporates 
the old MEOV concept, plus some new factors. One 
of these is the use of a safety factor of 1.05 times the 
theoretical pattern in all directions. Under the old 
MEOV concept it was customary to plot MEOVs only 
over nulls and minor lobes, plus along bearings 
toward other stations to whom interference could 
result. 

Another way to look at this standard pattern is to 
see it as the last step to be taken after you have 
designed your theoretical pattern, prior to its 
submission to the FCC. 
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Comparing methods 

Figure 4 was a 5 kW pattern designed by the old 
method with MEOV limits. The formula for this is as 
follows (Equation 3): 

E = K[1 2M2 + cos (43 + S cos 0)11/2 

Figure 5 is a plot of this pattern. Figure 6 is a plot of 
the same basic 5 kW two -tower pattern, this time 
with the addition of the two extra factors. 

The first step in determining the final standard 
pattern is to calculate the old theoretical pattern by 
Equation 3, as shown in Table 1. Then this design is 
multiplied by the following (Equation 4): 

ESTD = 1.05 [E2theo + Q21112 

In this equation, ESTD represents the final design. 
It is expressed in MV /M. Etheo represents the 
"basic" theoretical pattern, or the old theoretical 
pattern. The term Q is a factor applied in quadrative 
to each and every bearing. Quadrative, for those who 
may not recall their high school math, is when a 
second number is added at right angles. Figure 7 
shows how the vector Q would be added to the major 
lobe, a null and a minor lobe. Obviously Q will not 
have a significant effect except in areas or bearings of 
the old theoretical pattern where the radiation is zero 
or very weak. 

Computing Q 

The factor Q is stated by the FCC to be an 
orthogonal component. In this respect it always will 
be a constant for any given pattern. It is calculated in 
one of two ways. Whichever yields the larger constant 
is the one to use. One of the methods is to figure the 
value of Q by multiplying 6.0 times the square root of 
the power in kilowatts. This is written as (Equation 
5): 

Q = 6.0 (Pkw)112 

If the power in the pattern were 1 kW, this would 
calculate out to 6.0. If 5 kW it is 13.4, if 10 kW it is 
19.0 and so forth. The FCC Rules say that for powers 
of less than 1.0 kW, 6.0 is the minimum factor that 
can be used for Q. 

The second method of computing Q is by 
multiplying 0.025 times the RSS of the unit fields. 
The RSS term is not to be confused with the RMS of 
a pattern as explained in the previous chapter. Each 
individual tower of any pattern will radiate its own 
signal. Each tower, regardless of how many towers 
there are in a pattern, if it could be measured alone, 
would produce at one mile an unattenuated signal of 
En MV /M. 

In the foregoing two -tower example you would 
expect two signals. Had three towers been used, you 



would have three signals, and so forth. In computing 
RSS the individual signals are taken from each tower 
and squared. This is followed by adding each of the 
individual squares, then taking the square root of the 
total. 

To demonstrate how to do this, take the individual 
fields for the two -tower in the above 5 kW example. 
Each of the towers would have a signal of 316 
MV /M. These when squared are 100,000 and 
100,000. The square root of 200,000 is 447 MV /M. 
This would be the RSS, for this 5 kW pattern. 

Having arrived at the RSS, you would then 
multiply the 447 MV /M times 0.025 which computes 
to 11.2 MV /M. At this point the design engineer 
would stop and compare which value of Q yields the 
greater factor; six times the square root of 5 kW is 

13.4 MV /M, whereas 2.5% of the RSS is 11.2 MV /M. 
This may seem like a lot of extra work, but 
remember that for any given pattern Q is always a 
constant and needs to be calculated just once. In the 
case of nighttime patterns the factor Q must be 
applied against the vertical form factor. 

The Q factor is applied in quadrative to the old 
theoretical pattern. This is done by taking the 
original field intensity at any given bearing, squaring 
it, then adding the square of Q, and taking the 
square root of the total. Table 2 shows how the 
design engineer would take the values from Figure 5 

to achieve the final data plotted in Figure 6. Table 2 

shows the addition of both the linear and orthogonal 
components. The end result of Column E is 
multiplied by 1.05 and yields the final Standard 
Radiation Pattern. Figure 2 shows the print -out of 
both the theoretical and the Standard Patterns. 

TABLE 2 

STANDARD RADIATION PATTERN 

A B C D E F 

Bearing Theo. Pat. B2 C +02 D1/2 1.05 x E 

0 595.0 354,000 354,180 595.0 624.0 MV/M 
10-350 593.0 352,000 352,180 593.0 622.0 

20-340 585.0 342,000 342,180 585.0 614.0 

30-330 574.0 333,000 333,180 574.0 602.0 

40-320 556.0 309,000 309,180 556.0 584.0 

50-310 533.0 285,000 285,180 533.0 560.0 

60-300 501.0 251,000 251,180 501.0 525.0 

70-290 462.0 213,500 213,680 462.0 485.0 

80-280 416.0 173,000 173,180 416.0 436.0 

90-270 362.0 131,100 131,280 362.0 380.0 

100-260 305.0 93,000 93,180 305.0 320.0 

110-250 250.0 62,500 62,680 250.0 262.0 

120-240 190.0 36,100 36,280 191.0 201.0 

130-230 137.0 18,770 18,950 138.0 145.0 

140-220 89.0 7,920 8,100 90.0 94.5 

150-210 55.0 3,030 3,210 56.6 59.4 

160-200 31.7 1,005 1,185 34.4 36.2 

170-190 13.8 190 370 19.3 20.3 

180 0.0 0 180 13.4 14.1 
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Review of basic math 

This is a brief review of the fundamentals of vector 
math as well as trigonometry. I'm certain most of you 
knew or grasped these concepts back in your school 
days. 

Trigonometry 

In simple words, trigonometry is the use of triangles 
to solve math problems. How these triangles are 
constructed and how the various angles, sides, 
altitudes, bases, etc., combine in orderly fashion is 
the science of trig. But to be able to understand the 
use of vectors, you first must understand trig. As has 
already become apparent, the design of directional 
antennas is based on vectors. 

The angle between any two adjacent sides of a 
triangle can be measured in units called degrees or 
units called radians. Figure 1 shows how a circle is 
divided up into 360° total. In nautical science each 
degree is subdivided into seconds. There are 60 
seconds in each minute and 60 minutes in each 
degree. In computing directional designs, most 
engineers resort to the use of decimal divisions of a 
degree simply because it makes calculating easier. 
For example, 6° 5' 23" can be written as 6.0897. 

Angles between two lines can also be measured in 
radians. An angle whose arc is exactly equal to the 
length of either side is one radian. If that sounds con- 
fusing, take the radius of a circle and divide it into 
the circumference of the same circle and you will find 
it divides 2n times. The angle along the circumference 
covered by one radius is an angle of one radian. One 
radian equals 57.2958 °. 

Consider definitions of some other terms, such as 
complementary angles. These are any two angles 
whose sum equals 90 °. This can be written 
mathematically as follows (Equation 1): 

A= (90 ° -B) 
and 

B = (90° - A) 

A second common term is supplementary angles. 
These are any two angles whose sum is 180 °. This is 
written mathematically as follows (Equation 2): 
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A = (180° - B) 
and 

B = (180° - A) 

Trigonometric functions 

In talking about triangles it is commonly said that 
there are just six possible functions, or if expressed in 
relation to the sides of a right triangle, as ratios. 
These are the sine, the cosine, the tangent, the 
cotangent, the secant, and the cosecant. Table 1 
demonstrates these basic relations. One way of 
remembering them is that three of the functions are 
reciprocals of the other three. The cotangent is the 
reciprocal of the tangent; the secant is the reciprocal 
of the cosine; and the cosecant is the reciprocal of the 
sine. 

These ratios of one side to another side do more 
than define these six separate functions. They 
actually produce them! Let's look at a couple of 
examples. 

If the angle at "A" in Figure 3 is 45 °, each of the 
smaller sides is of the same length. From the 
definitions in Table 1, it can be seen that the sine of 

1.0 
45° = = 0.707. 

Likewise the cosine of 

1.0 
45° _ \FT = 0.707. 

The tangent of 45° = 
1.0 

= 1.000. 

In the case of "A" being 60 °, 

the sine 

The cosine 

2.0 

1_0 = 0.500. 
2.0 

= 0.866. 
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And the tangent = 1 = 1.732. 

If you had an angle where you did not know the 
number of degrees, but knew it was part of a 
right -angle triangle, all you would need to do is 
measure with your ruler the length of each of two 
sides, calculate their ratio, then look up in a trig 
table to find the angle corresponding to that ratio. 
Thus the numbers you find in trig tables are not 

Figure 3 
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2.0 -/3 

1.0 

1.0 

mythical values, but represent actual ratios of 
selected sides in any and all right triangles, having 
that given angle. 

Something funny happens, of course, should the 
angle of "A" in Figure 4 begin to get closer and 
closer to either zero degrees or 90 degrees. The angle 
A, as it approaches zero, causes its opposite side (a) 
to become smaller and smaller, and at the same time 
causes side (b) to approach the length of side (c), 
until they actually become equal when "A" is zero. 
Conversely, as angle "A" approaches 90 °, side (a) 

Figure 4 

180° 

Figure 5 

a 

(+1 

90° 

i+1 

0° 

270° 

380' 



becomes larger and larger until its length equals that 
of side (c) when angle "A" reaches 90 °. In this event 
side (b) has disappeared and becomes zero. 

To summarize: for any angle there will be definite 
values of these six functions. Conversely, when any of 
the six functions is known, the angle is "defined." 
Tables have been prepared in much detail down to 
tenths and even hundredths of a degree. These are 
helpful, and necessary, unless you own one of the new 
pocket calculators. 

Right triangles 

I have discussed how any angle can be described as a 
ratio of any of the two sides of its triangle. But, this 
can be taken one step farther by saying that if we 
know the angle, and one of the sides of a given 
triangle, the other sides can be determined. 

In our example above, I said: 

Sine A = 

From this you can also say that (Equation 3): 

C (Sine A) = (-) C or, 

a 
c Sine A 

Similar equations can be written for cosine functions, 
tangents, cotangents, cosecants and secants. 

Angles greater than 90° 

In angles greater than 90 degrees, the values of (a) 
and (b) become negative on occasion, in accordance 
with the rules of Cartesian coordinates. Figure 5 

shows how a circle of 360° can be divided into four 
quadrants, by two perpendicular intersecting lines. As 
pointed out in Chapter 1, zero degrees is assumed to 
lie to the right, at three o'clock. In the next figure 
I've described which of the sides are positive and 
which are negative for each quadrant. Keep in mind 
that each quadrant is 90° wide. Thus the first 
quadrant is 0° to +90 °, the second quadrant is +90° 
to +180 °, the third quadrant is +180° to +270° (or 
-90° to -180 °), and the fourth quadrant is +270° to 
+360° (or 0° to -90 °). 

By the use of Figure 6 you can tell the sine of any 
function in any quadrant. For example, to find the 
sine of the angle A in the third quadrant, we recall 
from above that the sine is a/c. Note that in this 
third quadrant, a has a negative sign in front of it. 
The answer would be -a /c. Likewise, to find the sign 
of the tangent in the second quadrant, recall that 
tangent = a /b. This yields an answer of a / -b. And 
you could say the tangent of any angle in the second 
quadrant will carry a minus sign. Where there is a 
double negative sign, such as the tangent in the third 
quadrant, the answer is a positive sign. 

Figure 6 

Graphs of trig functions 

If you plot the sine function from 0 -360° and then 
beyond, you produce what is called a sine wave. This 
is usually expressed as y = sine x, where x is in 
radians or degrees. Figure 7A shows this wave over 
two cycles (0- 720 °). 

Likewise you can plot a cosine wave from 0 -360° 
and beyond. This for comparison purposes is shown 
in Figure 7B. The magnitude of either the sine or the 
cosine wave varies between +1.0 and -1.0, and each 
of these waves repeats itself. Note that in Figure 7, 

the cosine wave is similar to the sine wave, except it 
is displaced by 90° or n/2 radians. 

Tangent curves 

The tangent curve (shown on Figure 8) is not like the 
sine or cosine, since while it repeats itself each cycle, 
it is not continuous. The tangent function begins at 
zero and rises toward positive infinity at 90 °. It then 
changes signs to a negative infinity approach down to 
zero magnitude at 180° and then repeats itself over 
the second half of the circle. The tangent can have 
the value of anything from +co to -co. 

The co- tangent curve is the inverse of that of the 
tangent. At zero degrees its value is +°° and at 90° 
its value has decreased to zero. 

The other two trigonometric functions are the 
secant and the cosecant. These, like the cotangent, 
are of less importance. They are respectively the 
inverse of the cosine and the inverse of the sine. 
Therefore they will vary in magnitude from +1 to -1. 

Vectors 

Here is where to use all that trigonometric knowledge 
and relationships. A scaler quantity has only length 
or magnitude, but a vector has both magnitude and 
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direction. The direction of any vector has to be 
measured from some reference point, hence the need 
for angles or radians of displacement. 

Looking at a simple difference between a scaler 
and a vector, if you say the wind is blowing 30 mph 
this is a scaler. If, however, you say the wind is 30 
mph from the east, you have a vector. 

Vectors are usually represented by arrows, where 
the length of the arrow is its magnitude and the 
direction the arrow is pointing is its direction. Vectors 
can be added graphically or trigonometrically. There 
is no limit to the number of vectors that can be 
added. 

This is useful in the design of DAs, where it is 
common to let the signal radiated by each tower be a 
vector. The length of the respective vectors will be 
proportional to the respective radiated fields from 
each tower. At any given bearing each of these 
vectors will have some angular displacement. If you 

Figure 7 

know, or if you have computed these angles, you can 
then add all the vectors together and arrive at the 
correct (total) radiation at that bearing. Carrying this 
one step further, if you repeat this vector addition 
each 10° around a circle you will be able to plot the 
final directional pattern. In the early days many 
engineers used this method to design their patterns. 

In order to be able to algebraically add, subtract, 
multiply, or divide vectors, first have a logical 
notation system. Two notation systems are commonly 
used: the Cartesian and the Polar Coordinate 
Systems. The Polar is more often used in the design 
of DAs. The Cartesian method is usually used in the 
calculation of Tee or Ell networks, or in odd complex 
numbers like R +jX. 

In the Cartesian system each vector is divided into 
its components of X and Y. As an example, let the 
vector Z on Figure 9 be the sum of vectors X and Y. 
By the use of ( +) and ( -) signs any vector can be 

JANJORT CURVE 

7A 

7B 

Figure 8 
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described in terms of X and Y unit vectors. In the 
example the vector Z will be: 

Z = 3 + j4 

You may ask at this point where did the term (j) 
come from? This letter is used to denote the Y 
component. Keep in mind that along the X axis it is 
positive to the right from zero, and negative to the 
left. Along the Y axis the sign is positive above the 
axis and negative below. 

The coordinates 3 + j4 describe the location of the 
vector Z in our example, but they do not describe the 
scaler value. This can be found easily by use of the 
Pythagorian theorum. Or in simple language, the sum 
of X +Y equals the square root of the sums of the 
squares (Equation 4): 

Z= '32 +42 =5. 

Addition of vectors 

This is easily accomplished by adding the horizontal 
components of each vector together, then adding the 
vertical components and applying the Pythagorian 
theorem. The best analysis of this is a comparison 
between addition of the sine and the cosine 
components of any vector. The cosine terms are 
usually expressed in a horizontal plane like the X 
axis, while the sine terms are expressed vertically like 
the Y axis. In fact the ( +) and ( -) signs are the same. 
Figure 10 shows the similarity. That is, the cosine to 
the right of the vertical axis is ( +), just as the X is 
( +). Conversely, the sine is ( +) above the horizontal 
axis just as is the Y term. 

Adding the vectors results in the following 
(Equation 5): 

A+B=(xl+x2)+j (Yi +y2) or, 
A + B = (cosl + cos2) + J (Sinl + Sin)2 

Subtraction of vectors 

Subtraction is the opposite of addition. Here one 
merely separates each vector into its horizontal and 
its vertical components. Subtraction is thus accom- 
plished by subtracting the horizontal components and 
subtracting the vertical components (Equation 6): 

A-B= (xi -x2+j (Yi -Y2) 

Multiplication of vectors 

This is a little more tricky than simple addition or 
subtraction. The operation of multiplication of two 
vectors is actually a simple algebraic operation. It 
must be pointed out that the imaginary number (j) 

when multiplied by itself equals a( -1). This is 
commonly written as (Equation 7): 

j2=-1 

1 +1 

Y3 f 
X =4 

t-1 

Figure 9 

SINE 

1 +1 

COSINE 

Figure 10 

z 

1 +1 

The multiplication of the two vectors A and B gives 
the following results (Equation 8): 

AB= (x1 +jy) (x2 +jy2) 
= x1 x2 +j x1y2 +j x2 y1 +j 2Y1 Y2 

= xl x2 -Yi Y2 +j (xl Y2 + x2 YO 

The actual use of multiplication of vectors is rare in 
the design of directional antennas. And I have shown 
it here primarily for reference. The same is true of 
division of vectors. 
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Division of vectors 

Again the basic 
The imaginary 

A 
B 

operation is one of algebraic division. 
term (j) is taken as a -1 (Equation 9): 

xi +j Yi 

x2 +J Y2 

(xi +J Y2) (x2 -J Y2) 

(x2 +J Y2) (x2 -J y2) 

x1x2+YiY2+J(x2 

Xi + Yi 

Polar coordinates 

Yi ' xl Y2) 

So far I have discussed vectors when they are 
expressed in Cartesian coordinates. The more 

Figure 11 

Figure 12 
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frequent use in designing directionals is to express 
vectors on their polar coordinates; this is written as a 
magnitude plus a vectorial angle with an arbitrary 
reference axis. In Figure 13 the magnitude of vector 
A is shown as 30 MV /M at an angle of 60° True. 
This would be written as (Equation 10): 

30 MV/M /60T 

Any polar coordinate can be converted to its 
Cartesian equivalent and vice versa. For example, a 
vector (Equation 11): 

A= x +jy= Vx2 +y2 /tan1=x 
Y 

In this conversion the tan -1 means the angle of the 
tangent, or arc tangent. This can be written because 

ADDITION OF TWO VECTORS 

} XA+ Xg 

A+ B 

YA 
YB 

SUBTRACTION OF TWO VECTORS 

XA 

A-B 

B 

XB 

y 

a 

YA 

vg 



the separate component vectors x and y are always 
assumed to be the lesser sides of a right triangle. 

To convert from Polar coordinates to Cartesian 
coordinates, divide the vector into separate products 
of its sine and cosine terms. Using the example in 
Table 1 (Equation 12): 

AFB °= A cos B ° +jA sin B° 
30 MV /M X60° = 30 cos 60 +j 30 sin 60 

= 15 +j 26 

One thing to keep in mind when dealing with 
vectors is that you can only add or subtract like kinds 
of vectors. That is, you can add voltage vectors to 
voltage vectors and current to current, but not voltage 
to current. This I trust is self- evident. 

TRUE 

Figure 13 

AX 

Figure 14A 

VECTOR 'A(X +JY) 

CARTER IAN COORDINATES 

A COS ß 

POLAR COORDINATES 
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Appendix 
Vertical Form Factor -The following Table 1 contains a 
summary of the f(8) term for every tower height between 0° 
and 250° of electrical heights. The vertical intervals are in 
5° increments between the horizon and 85 °. 

The values not shown on this table can be interpolated 
between chart values or the theoretical values can be 
computed from the following equation: 

f(8) = cos (G sin 8) - cos G 

(1 -cos (G) sin 8 

Where: f(8) = Vertical radiation characteristics 
G = Electrical height of antenna in degrees 
8 = Elevation angle in degrees 

ANTENNAS, TOWERS, AND WAVE PROPAGATION 
TABLE 1. VERTICAL -RADIATION CHARACTERISTIC f(8) 

Tower height, G° 

8° 

e° 

0 
5 

10 
15 
20 

25 

30 

35 
40 

45 

50 

55 

60 
65 
70 
75 
80 
85 

e° 

o 

5 
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15 
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25 
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35 
40 

45 

50 

55 
60 
65 
70 
75 
80 
85 
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0 5 10 15 20 25 30 35 40 

1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

0.9962 0.9962 0.9962 0.9961 0.9961 0.9961 0.9960 0.9960 0.9959 
0.9848 0.9848 0.9847 0.9846 0.9845 0.9843 0.9841 0.9839 0.9838 
0.9659 0.9659 0.9657 0.9655 0.9653 0.9649 0.9644 0.9639 0.9832 
0.9397 0.9394 0.9393 0.9390 0.9386 0.9379 0.9372 0.9362 0.9351 
0.9063 0.9062 0.9058 0.9054 0.9047 0.9037 0.9026 0.9012 0.8996 
0.8660 0.8658 0.8654 0.8648 0.6638 0.8626 0.8610 0.8592 0.8571 
0.8192 0.8188 0.8186 0.8176 0.8164 0.8148 0.8129 0.8106 0.8080 
0.7660 0.7658 0.7653 0.7642 0.7628 0.7610 0.7587 0.7561 0.7530 
0.7071 0.7069 0.7062 0.7051 0.7035 0.7014 0.6989 0.6960 0.6925 
0.6428 0.6423 0.6418 0.6406 0.6390 0.6368 0.6341 0.6309 0.6272 
0.5736 0.5732 0.5726 0.5714 0.5697 0.5674 0.5647 0.5615 0.5577 
0.5000 0.4947 0.4990 0.4979 0.4961 0.4940 0.4914 0.4882 0.4848 
0.4226 0.4222 0.4217 0.4203 0.4191 0.4171 0.4143 0.4117 0.4084 
0.3420 0.3412 0.3412 0.3404 0.3390 0.3372 0.3351 0.3325 0.3297 
0.2588 0.2579 0.2584 0.2575 0.2564 0.2550 0.2533 0.2513 0.2490 
0.1736 0.1695 0.1732 0.1727 0.1720 0.1710 0.1697 0.1684 0.1688 
0.0871 0.0844 0.0869 0.0869 0.0864 0.0858 0.0852 0.0844 0.0838 

45 50 55 60 65 70 75 80 85 

1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
0.9958 0.9957 0.9956 0.9955 0.9953 0.9952 0.9950 0.9948 0.9948 
0.9832 0.9830 0.9824 0.9819 0.9815 0.9809 0.9804 0.9795 0.9788 
0.9625 0.9617 0.9607 0.9597 0.9585 0.9573 0.9559 0.9544 0.9527 
0.9339 0.9325 0.9309 0.9289 0.9272 0.9251 0.9227 0.9200 0.9173 
0.8978 0.8957 0.8934 0.8908 0.8879 0.8848 0.8813 0.8776 0.8735 
0.8546 0.8519 0.8487 0.8453 0.8416 0.8375 0.8328 0.8278 0.8224 
0.8050 0.8015 0.7977 0.7934 0.7887 0.7836 0.7779 0.7718 0.7651 
0.7485 0.7449 0.7410 0.7358 0.7305 0.7244 0.7180 0.7109 0.7103 
0.6886 0.6769 0.6791 0.6735 0.6675 0.6608 0.6536 0.6457 0.6372 
0.6230 0.6186 0.6130 0.6073 0.6009 0.5936 0.5862 0.5777 0.5686 
0.5535 0.5486 0.5427 0.5373 0.5308 0.5236 0.5159 0.5075 0.4984 
0.4804 0.4759 0.4705 0.4648 0.4587 0.4518 0.4441 0.4361 0.4271 
0.4042 0.4002 0.3954 0.3898 0.3843 0.3779 0.3710 0.3630 0.3558 
0.3263 0.3216 0.3190 0.3141 0.3089 0.3031 0.2970 0.2906 0.2842 
0.2463 0.2433 0.2400 0.2363 0.2323 0.2279 0.2232 0.2181 0.2127 
0.1649 0.1629 0.1622 0.1576 0.1557 0.1515 0.1492 0.1457 0.1406 
0.0826 0.0816 0.0804 0.0791 0.0777 0.0761 0.0739 0.0726 0.0707 

90 95 100 105 110 115 120 125 130 

1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
0.9944 0.9942 0.9939 0.9937 0.9934 0.9931 0.9927 0.9923 0.9919 
0.9781 0.9770 0.9760 0.9749 0.9738 0.9725 0.9712 0.9697 0.9681 
0.9509 0.9489 0.9468 0.9445 0.9420 0.9393 0.9363 0.9337 0.9297 
0.9143 0.9110 0.9074 0.9035 0.8993 0.8947 0.8898 0.8845 0.8788 
0.8691 0.8642 0.8590 0.8534 0.8473 0.8407 0.8336 0.8259 0.8175 
0.8165 0.8102 0.8033 0.7959 0.7878 0.7791 0.7698 0.7597 0.7489 
0.7579 0.7501 0.7417 0.7320 0.7228 0.7122 0.7000 0.6886 0.6754 
0.6946 0.6855 0.6759 0.6656 0.6541 0.6420 0.6288 0.6157 0.5999 
0.6279 0.6180 0.6073 0.5958 0.5834 0.5702 0.5560 0.5408 0.5245 
0.5591 0.5487 0.5373 0.5253 0.5124 0.4987 0.4838 0.4689 0.4511 
0.4886 0.4781 0.4669 0.4548 0.4419 0.4281 0.4134 0.3977 0.3809 
0.4178 0.4078 0.3969 0.3854 0.3730 0.3600 0.3460 0.3310 0.3151 
0.3470 0.3378 0.3279 0.3174 0.3061 0.2942 0.2813 0.2680 0.2538 
0.2766 0.2687 0.2598 0.2509 0.2413 0.2311 0.2203 0.2091 0.1969 
0.2067 0.2007 0.1937 0.1866 0.1790 0.1709 0.1623 0.1533 0.1437 
0.1377 0.1331 0.1281 0.1237 0.1180 0.1130 0.1064 0.1005 0.0941 
0.0686 0.0664 0.0640 0.0614 0.0588 0.0559 0.0529 0.0497 0.0484 
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ANTENNAS, TOWERS, AND WAVE PROPAGATION 
TABLE 1. VERTICAL -RADIATION CHARACTERISTIC ((8) (CONTINUED) 

Tower height, G° 

135 140 145 150 155 160 165 170 

0 ".0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
5 0.9915 0.9910 0.9905 0.9899 0.9893 0.9886 0.9878 0.9870 

10 0.9663 0.9645 0.9624 0.9602 0.9577 0.9551 0.9522 0.9491 
15 0.9259 0.9219 0.9175 0.9127 0.9075 0.9019 0.8958 0.8889 
20 0.8725 0.8657 0.8584 0.8504 0.8418 0.8324 0.8222 0.8110 
25 0.9085 0.7988 0.7883 0.7769 0.7645 0.7511 0.7366 0.7207 
30 0.7372 0.7245 0.7108 0.6961 0.6801 0.6628 0.6440 0.6237 
35 0.6612 0.6460 0.6293 0.6118 0.5926 0.5720 0.5496 0.5254 
40 0.5837 0.5664 0.5477 0.5276 0.5060 0.4828 0.4577 0.4305 
45 0.5070 0.4882 0.4681 0.4466 0.4235 0.3979 0.3719 0.3432 
50 0.4330 0.4137 0.3932 0.3710 0.3473 0.3219 0.2948 0.2657 
55 0.3631 0.3440 0.3237 0.3020 0.2786 0.2542 0.2278 0.1996 
60 0.2981 0.2802 0.2611 0.2407 0.2190 0.1960 0.1713 0.1451 
65 0.2382 0.2222 0.2051 0.1867 0.1675 0.1469 0.1256 0.1019 
70 0.1838 0.1716 0.1555 0.1399 0.1237 0.1065 0.0881 0.0687 
75 0.1335 0.1227 0.1114 0.0994 0.0866 0.0732 0.0590 0.0439 
80 0.0868 0.0796 0.0719 0.0634 0.0547 0.0458 0.0359 0.0256 
85 0.0428 0.0390 0.0351 0.0309 0.0265 0.0218 0.0169 0.0117 

8° 175 18Q 185 190 195 200 205 210 

0 1.0000 1.50000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
5 0.9861 0.9851 0.9840 0.9828 0.9815 0.9801 0.9784 0.9766 

10 0.9455 0.9418 0.9375 0.9330 0.9278 0.9222 0.9159 0.9089 
15 0.8815 0.8733 0.8645 0.8547 0.8438 0.8319 0.8186 0 8038 
20 0.7988 0.7855 0.7708 0.7548 0.7370 0.7175 0.6958 0.6718 
25 0.7034 0.6845 0.6638 0.6412 0.6168 0.5888 0.5585 0.5250 
30 0.6015 0.5774 0.5510 0.5222 0.4907 0.4561 0.4179 0.3757 
35 0.4991 0.4706 0.4395 0.4057 0.3687 0.3283 0.2839 0.2350 
40 0.4013 0.3696 0.3353 0.2979 0.2573 0.2129 0.1645 0.1112 
45 0.3122 0.2788 0.2427 0.2036 0.1612 0.1152 0.0650 0.0103 
50 0.2344 0.2008 0.1646 0.1256 0.0834 0.0378 -0.0118 -0.0657 
55 0.1658 0.1370 0.1022 0.0649 0.0247 -0.0186 -0.0655 -0.1161 
60 0.1171 0.0873 0.0553 0.0211 -0.0155 -0.0550 -0.0973 -0.1431 
65 0.0772 0.0509 0.0228 -0.0071 -0.0391 -0.0733 -0.1100 -0.1494 
70 0.0481 0.0261 0.0029 -0.0220 -0.0483 -0.0765 -0.1065 -0.1388 
75 0.0280 0.0111 -0.0069 -0.0259 -0.0461 -0.0676 -0.0905 -0.1150 
80 0.0148 0.0033 -0.0089 -0.0218 -0.0354 -0.0499 -0.0633 -0.0818 
85 0.0062 0.0004 -0.0057 -0.0122 -0.0191 -0.0264 -0.0341 -0.0424 

8° 215 220 225 230 235 240 245 250 

0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
5 0.9746 0.9723 0.9697 0.9668 0.9635 0.9597 0.9551 0.9504 

10 0.9011 0.8925 0.8826 0.8580 0.8586 0.8442 0.8275 0.8084 
15 0.7873 0.7689 0.7481 0.7247 0.6981 0.6679 0.6333 0.5935 
20 0.6450 0.6151 0.5815 0.5438 0.5010 0.4525 0.3970 0.3334 
25 0.4877 0.4462 0.3997 0.3475 0.2887 0.2220 0.1462 0.0593 
30 0.3291 0.2772 0.2188 0.1548 0.0821 0.0000 -0.0931 -0.1992 
35 0.1810 0.1214 0.0551 -0.0188 -0.1016 -0.1948 -0.2997 -0.4191 
40 0.0529 -0.0117 -0.0814 -0.1620 -0.2501 -0.3489 -0.4599 -0.5853 
45 -0.0498 -0.1156 -0.1881 -0.2683 -0.3572 -0.4562 -0.5671 -0.6917 
50 -0.1243 -0.1885 -0.2588 -0.3363 -0.4216 -0.5163 -0.6216 -0.7394 
55 -0.1711 -0.2310 -0.2962 -0.3677 -0.4462 -0.5327 -0.6285 -0.7351 
60 -0.1924 -0.2461 -0.3040 -0.3674 -0.4364 -0.5125 -0.5958 -0.6882 
65 -0.1918 -0.2375 -0.2880 -0.3406 -0.3989 -0.4625 -0.5322 -0.6089 
70 -0.1733 -0.2107 -0.2503 -0.2935 -0.3402 -0.3909 -0.4463 -0.5069 
75 -0.1411 -0.1691 -0.1992 -0.2315 -0.2664 -0.3042 -0.3452 -0.3899 
80 -0.0992 -0.1182 -0.1380 -0.1600 -0.1826 -0.2079 -0.2346 -0.2639 
85 0.0511 -0.01305 -0.0705 -0.0812 -0.0927 -0.1051 -0.1185 -0.1330 
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TABLE 2 
BESSEL FUNCTIONS, J0(S cos 9) 

ELEVATION ANGLE 8° 

5° 0° 10° 20° 30° 40° 50° 60° 70° 80° 

45° 0.852 0.856 0.868 0.888 0.913 0.962 0.982 0.998 
50° 0.818 0.823 0.838 0.862 0.891 0.923 0.953 0.978 0.994 
55° 0.783 0.789 0.807 0.835 0.869 0.907 0.943 0.973 0.993 
60° 0.744 0.751 0.772 0.805 0.845 0.890 0.933 0.968 0.992 
65° 0.703 0.712 0.735 0.773 0.820 0.871 0.921 0.963 0.990 
70° 0.660 0.669 0.696 0.739 0.792 0.851 0.909 0.957 0.989 
75° 0.615 0.626 0.656 0.703 0.764 0.830 0.896 0.950 0.987 
80° 0.569 0.580 0.613 0.667 0.734 0.808 0.882 0.944 0.985 
85° 0.521 0.535 0.570 0.628 0.702 0.785 0.867 0.937 0.983 
90° 0.472 0.486 0.525 0.588 0.670 0.761 0.851 0.929 0.981 
95° 0.422 0.437 0.479 0.547 0.636 0.735 0.835 0.921 0.979 

100° 0.372 0.387 0.432 0.506 0.601 0.709 0.818 0.913 0.977 
105° 0.321 0.337 0.385 0.463 0.565 0.682 0.801 0.904 0.975 
110° 0.270 0.287 0.337 0.419 0.528 0.654 0.783 0.895 0.972 
115° 0.220 0.237 0.290 0.376 0.491 0.625 0.763 0.886 0.970 
120° 0.170 0.188 0.242 0.332 0.453 0.596 0.744 0.876 0.967 
125° 0.120 0.139 0.195 0.288 0.415 0.565 0.724 0.866 0.964 
130° 0.072 0.091 0.148 0.244 0.376 0.535 0.703 0.855 0.961 
135° 0.026 0.044 0.102 0.201 0.337 0.503 0.682 0.844 0.958 
140° -.020 -.001 .058 .158 .299 .472 .660 .833 .955 
145° -.064 -.045 .013 .115 .259 .440 .638 .821 .952 
150° -.105 -.087 -.029 .073 .221 .408 .615 .809 .949 
155° -.145 -.126 -.070 .032 .183 .375 .592 .797 .945 
160° -.182 -.164 -.108 -.007 .145 .343 .569 .785 .942 
165° -.217 -.200 -.146 -.045 .107 .310 .545 .772 .938 
170° -.249 -.232 -.180 -.082 .070 .277 .521 .759 .935 
175° -.278 -.263 -.213 -.118 .035 .245 .497 .746 .931 
180° -.304 -.290 -.244 -.151 -.001 .212 .472 .732 .927 
185° -.328 -.315 -.272 -.183 -.035 .180 .447 .718 .923 
190° -.348 -.336 -.297 -.214 -.068 .148 .422 .704 .918 
195° -.365 -.355 -.320 -.242 -.100 .117 .397 .689 .914 
200° -.379 -.371 -.340 -.267 -.131 .086 .372 .674 .910 
205° -.390 -.383 -.357 -.292 -.160 .055 .346 .659 .905 
2100 -.397 -.393 -.372 -.313 -.188 .025 .321 .644 .901 
215° -.407 -.399 ..384 -.333 -.214 -.004 .296 .629 .896 
220° -.403 -.402 -.393 -.350 -.239 -.032 .270 .613 .892 
225° -.401 -.403 -.399 -.364 -.263 -.061 .597 .887 
230° -.396 -.400 -.402 -.377 -.284 -.088 .220 .581 .882 
235° -.389 -.395 -.403 -.387 -.304 -.114 .195 .565 .877 
240° -.378 -.386 -.401 -.394 -.322 -.139 .170 .549 .871 
245° -.365 -.375 -.396 -.399 -.339 -.164 .145 .533 .866 
250° -.350 -.361 -.389 -.402 -.353 -.187 .120 .516 .861 
255° -.332 -.346 -.379 -.403 -.366 -.209 .097 .500 .856 
260° -.312 -.327 -.367 -.401 -.377 -.231 .072 .483 .850 
265° -.290 -.307 -.353 -.397 -.386 -.251 .049 .466 .844 
270° -.266 -.285 -.336 -.391 ..393 -.270 .026 .449 .839 
275° ' -.241 -.262 -.318 -.382 -.398 -.288 .003 .432 .833 
280° -.214 -.236 -.298 -.372 -.401 -.304 -.020 .415 .827 
285° -.186 -.210 -.276 -.360 -.403 -.320 -.042 -.397 .822 
290° -.157 -.182 -.253 -.346 -.402 -.334 -.063 .380 .816 
295° -.128 -.154 -.228 -.330 -.400 -.346 -.084 .363 .809 
300° -.098 -.125 -.203 -.313 -.396 -.358 -.105 .345 .803 
305° -.068 -.095 -.176 -.294 -.391 -.368 -.125 .328 .797 
310° -.038 -.066 -.149 -.273 -.384 -.377 -.145 .311 .791 
315° -.008 -.036 -.122 -.252 -.375 -.382 -.163 .293 .784 
320° .022 -.007 -.093 -.229 -.365 -.391 -.182 .276 .777 
325° .051 .023 -.065 -.206 -.353 -.396 -.200 .259 .771 
330° .079 .051 -.037 -.182 -.340 -.399 -.217 .241 .764 
335° .106 .079 -.009 -.157 -.325 -.402 -.233 .224 .752 
340° .132 .106 .020 -.131 -.310 -.403 -.249 .207 .750 
345° .156 .131 .047 -.105 -.293 -.402 -.203 .190 .744 
350° .170 .155 .073 -.079 -.275 -.401 -.278 .173 .737 
355° .201 .178 .099 -.053 -.257 -.398 -.291 .156 .730 
360° .220 .199 .124 -.027 -.237 -.394 -.304 .139 .723 
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TABLE 3 
MAGNITUDE OF MUTUAL LOOP IMPEDANCE 

BETWEEN TWO EQUAL HEIGHT TOWERS 

TOWER HEIGHTS (G) IN DEGREES 

Spacing 60° 70° 80° 90 0¡ 100° 110° 120° 140° 160° 180° 200° 220° 

60° 8.4 13.7 20.7 29.3 39.1 50.0 59.5 76.5 83.2 78.5 65.0 49.8 
í^ 80° 7.4 12.2 18.5 26.2 34.8 45.0 52.4 67.0 73.2 69.5 59.3 45.0 
\100° 6.5 11.0 16.7 23.6 31.2 39.4 47.0 59.8 65.5 62.2 52.5 40.3 

120° 5.8 9.9 15.1 21.2 28.2 35.6 42.7 54.4 59.5 56.5 47.5 36.2 
140° 5.2 8.9 13.7 19.3 25.7 32.5 39.2 49.9 54.7 52.0 43.4 32.5 
160° 4.6 8.0 12.4 17.6 23.7 30.0 36.1 46.2 50.6 48.1 39.9 29.3 
180° 4.3 7.3 11.4 16.2 21.7 27.6 33.4 43.0 47.4 45.0 37.0 26.7 
200° 4.0 6.7 10.4 15.0 20.1 25.7 27.3 40.2 44.5 -47.1r 34.6 24.4 
220° 3.7 6.1 9.6 13.9 18.7 24.0 25.7 37.8 42.0 40.2 32.7 22.6 
240° 3.4 5.8 9.0 12.9 17.5 22.3 24.3 35.7 39.7 38.2 31.1 21.2 
260° 3.1 5.4 8.3 12.0 16.4 21.0 23.0 33.8 37.7 36.3 29.7 20.0 
280° 2.9 5.0 7.8 11.4 15.5 19.8 21.8 32.0 36.0 34.7 28.4 19.1 
300° 2.7 4.7 7.4 10.6 14.6 18.7 20.7 30.3 34.3 33.3 27.4 18.3 
320° 2.6 4.4 7.0 10.1 13.7 17.7 19.7 28.9 32.7 32.0 26.5 17.7 
340° 2.5 4.2 6.6 9.5 13.0 16.9 18.9 27.6 31.4 30.8 25.6 17.2 
360° 2.4 4.0 6.3 9.0 12.4 16.0 18.0 26.3 30.1 29.7 24.7 16.8 
380° 2.3 3.8 6.0 8.6 11.8 15.2 17.3 25.2 29.0 28.5 24.0 16.4 
400° 2.1 3.6 5.7 8.3 11.2 14.6 16.6 24.2 27.9 27.6 23.4 16.0 
420° 2.0 3.4 5.4 7.8 10.8 14.0 15.9 23.2 26.9 26.7 22.7 15.6 
440° 1.9 3.3 5.2 7.5 10.4 13.3 15.4 22.4 25.9 25.8 22.0 15.3 
460° 1.8 3.2 5.0 7.2 9.9 12.8 14.8 21.4 25.0 25.0 21.5 15.0 
480° 1.8 3.0 4.8 7.0 9.5 12.3 14.2 20.7 24.1 24.2 20.9 14.7 

TABLE 4 
PHASE ANGLE OF MUTUAL LOOP IMPEDANCE 

BETWEEN TWO EQUAL HEIGHT TOWERS 

TOWER HEIGHTS (G) IN DEGREES 

Spacing 60° 70° 80° ( 90° 100° 110° 120° 140° 160° 180° 200° 2200 

60° -25 -19 -15 -11 -8 -8 -6 -6 -8 -12 -20 -27 
80° -33 -30 -28 -27 -25 -24 -25 -26 -27 -30 -34 -39 

100° -46 -44 -43 -42 -42 -42 -42 -43 -44 -48 -52 -54 
120° -60 -60 -60 -60 -60 -60 -60 -61 -63 -66 -68 -69 
140° -77 -77 -77 -78 -78 -78 -79 -80 -82 -84 -87 -86 
160° -93 -93 -94 -94 -95 -96 -97 -98 -102 -104 -106 -104 
180° -111 -111 -112 -112 -113 -114 -115 -118 -121 -123 -125 -123 
200° -129 -129 -130 -130 -131 -132 -133 -136 -138 -1r- -144 -143 
220° -147 -148 -149 -150 -151 -152 -153 -155 -158 -161 -164 -163 
240° -166 -166 -167 -168 -169 -170 -172 -174 -177 180 176 177 
260° 175 174 173 173 172 171 170 167 164 160 157 157 
280° 157 156 155 154 153 152 150 148 145 140 137 136 
300° 137 137 136 135 134 133 132 128 125 121 117 115 
320° 118 117 116 115 114 113 112 109 106 102 98 95 
340° 98 98 97 96 95 94 93 90 87 83 78 75 
360° 79 79 78 78 77 76 74 72 68 64 59 55 

380° 60 60 59 58 57 56 55 52 49 44 39 35 
400° 41 41 40 39 38 . 37 35 33 29 25 20 15 
420° 21 21 20 19 18 ' 17 = 16 14 10 6 0 -5 
440° 2 1 0 -1 -2 -3 -4 -6 -10 -13 -19 -25 
460° -18 -18 -19 -20 -21 -22 -23 -25 -29 -33 -39 -45 
480° -38 -38 -39 -40 -41 -42 -43 -45 -48 -52 -58 -64 
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TABLE 5 
TRIGONOMETRIC FUNCTIONS 

Degrees Sine Tangent Cotangent Cosine 

0 .0000 .0000 1 .0000 90 
1 .0175 .0175 57.2900 .9998 89 
2 .0349 .0349 28.6360 .9994 88 
3 .0523 .0524 19.0810 .9986 87 
4 .0698 .0699 14.3010 .9976 86 
5 .0872 .0875 11.4300 .9962 85 
6 .1045 .1051 9.5144 .9945 84 
7 .1219 .1228 8.1443 .9925 83 
8 .1392 .1405 7.1154 .9903 82 
9 .1564 .1584 6.3138 .9877 81 

10 .1736 .1763 5.6713 .9848 80 
11 .1908 .1944 5.1446 .9816 79 
12 .2079 .2126 4.7046 .9781 78 
13 .2250 .2309 4.3315 .9744 77 
14 .2419 .2493 4.0108 .9703 78 
15 .2588 .2679 3.7321 .9659 75 
16 .2756 .2867 3.4874 .9613 74 
17 .2924 .3057 3.2709 .9563 73 
18 .3090 .3249 3.0777 .9511 72 
19 .3256 .3443 2.9042 .9455 71 

20 .3420 .3640 2.7475 .9397 70 
21 .3584 .3839 2.6051 .9336 69 

tt-4/2 .3746 .4040 2.4751 .9272 68 
1 23 .3907 .4245 2.3559 .9205 67 
24 .4067 .4452 2.2460 .9135 66 
25 .4226 .4663 2.1445 .9063 65 
26 .4384 .4877 2.0503 .8988 64 
27 .4540 .5095 1.9626 .8910 63 
28 .4695 .5317 1.8807 .8829 62 
29 .4848 .5543 1.8040 .8746 61 

30 .5000 .5774 1.7321 .8660 60 
31 .5150 .6009 1.6643 .8572 59 
32 .5299 .6249 1.6003 .8480 58 
33 .5446 .6494 1.5399 .8387 57 
34 .5592 .6745 1 .4826 .8290 56 
35 .5736 .7002 1.4281 .8192 55 
36 .5878 .7265 1.3764 .8090 54 
37 .6018 .7536 1.3270 .7986 53 
38 .6157 .7813 1.2799 .7880 52 
39 .6293 .8098 1.2349 .7771 51 

40 .6428 .8391 1.1918 .7660 50 
41 .6561 .8693 1 .1504 .7547 49 
42 .6691 .9004 1 .1106 .7431 48 
43 .6820 .9325 1.0724 .7314 47 
44 .6947 .9657 1 .0355 .7193 46 
45 .7071 1.0000 1.0000 .7071 45 

Cosine Cotangent Tangent Sine Degrees 
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PHASE ANGLE BETWEEN TOWERS 

0° 45° 900 135° 180° 

0 0 O OOO.3À 

0.50a 

2(3 Da 
0.75a 

1.W, 

TYPICAL PATTERNS FOR A TWO -TOWER ARRAY FED WITH EQUAL CURRENTS AND EQUAL HEIGHTS, 

AND WITH VARIOUS SPACINGS AND PHASE ANGLES 

0 40 80 120 160 200 240 280 

ELECTRICAL HEIGHT IN DEGREES 

320 360 

LOOP RESISTANCE FOR TOWERS AS A FUNCTION OF TOWER HEIGHT. 

140 

120 

100 

80 

60 

40 

20 

Figure 1 

Fique 2 

99 
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ANTENNA ARRAY The number of towers and their 
physical configuration, i.e.; in -line, dog -leg, parallelo- 
gram, etc. 

ANTENNA RESONANCE This is a condition which occurs 
when the base impedance of a given tower has zero 
reactance and pure resistance. 

AXIS OF ARRAY This is the bearing line of the towers, if 
all towers are in a straight row, or the principal axis of 
design, if not. 

AZIMUTH ANGLE The horizontal bearing from true north 
of the desired calculation. 

CENTER OF ARRAY The point within the antenna array 
from which all calculations are made in the design. 

CURRENT RATIOS This is the ratio of current in the Nth 
tower divided by the current in she reference tower. 

DIRECTIONAL ANTENNA A system employed to control 
the radiation in given directions. 

DRIVE POINT IMPEDANCE This is the actual operating 
impedance of a given tower within an array and con- 
sists of self impedance plus mutual impedance from all 
other towers in that given array. For each pattern this 
is a different value. 

DIRECTIVITY A measure of the ability to concentrate 
energy in a preferred direction. Exact directivity is a 

ratio of maximum lobe power to the average power. 
DOG -LEG ARRAY This describes an array of three towers 

or more where the towers are not in a straight row. The 
spacing between may or may not be uniform. 

ELEMENT OF ARRAY This is one tower of an array of 
towers. 

ELEVATION ANGLE The angle above the horizon at which 
a calculation is made. Commonly called the vertical 
angle and represented by the Greek letter e. 

FIELD RATIO The radiated signal of the Nth tower, as 
compared to the radiated signa of the reference tower. 

FLOW CHART A block diagram of the procedure or se- 
quence of steps taken by a ccmputer or calculator to 
arrive at a final design. 

GROUND PLANE This is one other word for horizontal 
plane and refers to the plane along the surface of the 
earth. 

GROUND SYSTEM This is the physical system of wires, 
straps and screens that form the earth connection from 
each tower of the antenna system. 

HEIGHT- ELECTRICAL The height of the tower(s) ex- 
pressed in degrees of a wavelength at the design fre- 
quency. This is commonly represented by the letter 
"G." 

HEIGHT -PHYSICAL The height of the tower(s) expressed 
in feet or in meters. 

HORIZONTAL ANGLE The angle at which a horizontal 
calculation is made, measured in a clockwise direction, 
with reference to true north as 0 °. This is represented 
by the Greek letter 0. 

Glossary 

IMPEDANCE -MUTUAL Ratio of voltage to current at the 
loop or base of a second tower (Nth) as influenced by 
the first tower (reference). See Mutual Coupling. 

IMPEDANCE -SELF Ratio of voltage to current at a given 
point on a tower, usually the base of the tower. Some- 
times called the natural impedance. 

IN -LINE ARRAY This is a directional antenna where all of 
the towers, regardless of the number, are in a straight 
line or row. 

INVERSE DISTANCE This refers to the mathematical re- 
lationship of signal attenuation with distance from the 
antenna. Signal equals the reciprocal of distance and 
vice versa. 

INVERSE DISTANCE FIELD INTENSITY This is the field 
intensity one would measure at a given distance, if 
there were no losses due to the passage of the signal 
over the surface of the earth, i.e. perfect soil con- 
ductivity. 

LOBE -MAJOR That part of the pattern containing the 
greatest amount of signal. A pattern can have more 
than one major lobe. For example a figure eight would 
have two equal major lobes. 

LOBE -MINOR This is a small lobe between two minimas. 
A given pattern can have any number of minor lobes. 

MID -POINT The center reference spot about which all 
design calculations have been made. This may or may 
not be the same as the physical center of the array. 

MINIMA This is another word for null and refers to any 
bearing where the radiated signal is reduced to zero, or 
a small amount. A given pattern can have more than 
one minima. 

MUTUAL COUPLING A term which stands for the effect 
of current flowing in one tower as induced in the Nth 
tower. This depends upon current ratios, phase angles, 
tower spacing, and tower heights. 

MUTUAL RESISTANCE See Impedance -Mutual. 
NO -LOSS CONDITION This is a theoretical condition 

whereby the ohmic losses are ignored and all power is 
assumed to result in useful radiated energy. 

NON- DIRECTIONAL PATTERN This is the pattern one 
would measure from a single tower acting by itself as 

one element of a directional antenna. Theoretically as- 
sumed to radiate uniform signal intensity in all 
directions. 

NULL -See Minima. 
NULL -FILL This describes the condition of a null that has 

not been reduced to zero signal. It will occur when the 
vectors do not all cancel at a given bearing. 

OPERATING IMPEDANCE See drive point impedance. 
ORIENTATION OF ARRAY The axis of the array. Com- 

monly called the tower line. Arrays of more than two 
towers can have more than one tower line. 

PARALLELOGRAM ARRAY This is a name given to an 

array of four, six, eight, nine or twelve towers whose 
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opposite side dimensions form the sides of a parallelo- 
gram. 

PARAMETERS The design values used by the engineer 
for computing any directional antenna and can be 
divided into variable and fixed. 
VARIABLE: field ratio, phase angle, RMS or power 
frequency. 
FIXED: Spacing, orientation, electrical height. 

PATH LENGTH This is the distance, usually expressed in 

degrees, of the distance from a tower in an array to the 
point of the observer. The path length from one point 
in space to each tower in an array is usually different. 

PHASE ANGLE The angular time displacement of current 
flowing in the Nth tower in relation to the reference 
tower current, expressed in ±degrees. This is repre- 
sented by the Greek letter W. 

PHASE DELAY The time interval between the arrival of 
energy at the Nth tower in relation to the reference 
tower, commonly expressed in ±degrees. 

POLAR COORDINATES A mathematical system of nota- 
tion whereby the location of a point is defined by a 

magnitude and an angle. 
POLAR PATTERN A graph of the unattenuated field in- 

tensity in a 360° circular configuration, referenced to a 
1 -mile radius. 

POWER DIVISION This represents the proportion of the 
total power which is consumed in each tower of the 
array. The sum of the individual powers from all towers 
will equal the power input to the antenna system. 

POWER GAIN This is a ratio of the equivalent power it 
would take from a single non -directional tower to 
achieve the radiated signal at the tip of the major lobe, 
divided by the power into the directional system. 

POWER- RADIATED This is the amount of power con- 
sumed by the antenna, and represents the total power 
minus the system losses. 

O FACTOR This is the orthogonal component used in the 
FCC Standard Method of directional antenna computa- 
tion. It is 2.5% of the R.S.S. or 6.0 /power in kilowatts, 
whichever is greater, for a given pattern. 

R.M.S. A measurement of the given radiation patterns 
efficiency, as expressed in MV /M and is equivalent to 
the radius of a non -directional tower having the same 
power radiated. 

RADIATION EFFICIENCY This is a measure of the ability 
of a given antenna pattern to radiate the full power 
applied. This is represented by the Greek letter .i. 

RADIATION PATTERN See Polar Pattern. 
RADIATION RESISTANCE -BASE This is the resistance 

one would measure at the base of a tower within an 
array, that represents that portion of the energy 
radiated into free space. The loss resistance of a given 
tower is assumed to be in series with the radiation re- 
sistance. 
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RADIATION RESISTANCE -LOOP This is the resistance 
one would measure at the point one -quarter wavelength 
below the top of a given tower, at the point of 
maximum current. 

RECTANGULAR COORDINATES A mathematical system 
of notation whereby the location of a point is defined 
by its ± distance along the "X" axis and the "Y" axis. 

REFERENCE -TOWER The one tower in each antenna 
array having a current ratio of 100 %, and a phase angle 
of 0 °, in relationship to all the other antennas within a 
given array. 

SELF -RESISTANCE This is the resistance part of the self 
impedance of a single element acting independently, 
i.e. the natural non -directional resistance. 

SHIFT FROM REFERENCE This is the angular displace- 
ment ± in degrees from the axis of the array to a given 
tower. Sometimes the shifts of each tower are referred 
to the angular displacement from true north. 

SPACE PHASE The difference in path length between the 
signals from two towers as measured at the point of 
the observer "P." This is commonly computed as S cos 
0. 

SPACING This represents the physical separation be- 
tween any two towers in an antenna system. It can be 
expressed in electrical degrees or in physical dimen- 
sions. It is represented by the letter "S." 

SYMMETRICAL PATTERN This refers to a pattern whose 
right half is a mirror of its left side. This condition will 
exist when all the antenna towers are in a straight row. 

TIME DISPLACEMENT This represents the difference in 
time that one would measure between the arrival of two 
signals from two towers. It is expressed as S cos 0. 

TOP LOADING This refers to the physical appurtenances 
added to the upper portion of a tower to increase its 
equivalent electrical height. 

TOWER LINE See Orientation of Array. 
TOWER SPACING The electrical or physical separation 

between towers, usually referred to one tower as the 
reference tower. 

UNIT VECTORS This is the vector which represents the 
proportional signal from each tower, expressed not in 
actual MV /M but in arbitrary units. The reference tower 
is normally assumed to be 1.0 units. 

VECTORS A mathematical unit having both magnitude 
and directivity. 

VERTICAL ANGLE See Elevation Angle. 
VERTICAL ATTENUATION See Vertical Form Factor. 
VERTICAL ELEVATION PLANE The angle above the 

horizon at which a calculation is made, commonly ex- 
pressed by the Greek letter G. 

VERTICAL FORM FACTOR The configuration of radiation 
at all vertical angles above the horizon to the zenith, 
expressed as f( e). 
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