


Serial No. 2472 

MICROWAVE TRANSMISSION 

DESIGN DATA 

Classification changed from 

To 

By authority of ,.1A4 - 

File No.ALQ  Dated. m.--' 

Publication No. 23-80 

SPERRY GYROSCOPE COMPANY, Inc. 

MANHATTAN BRIDGE PLAZA 

BROOKLYN N. Y. 



ThiPeL, eocuent contains information 

affecting the national defense of the 

United States within the meaning of the 

Espionage Act 50 U S C 31 and 32, as 

amended. 

Its transmission or the revelation of 

its contents in any manner to an un-

authorized person is prohibited by law. 



CONFIDENTIAL 

INTRODUCTION 

Coaxial lines and hollow pipe wave guides designed to propagate ultra-
high frequency radio waves have come into widespread use in recent years. 
Much equipment utilizing these microwave transmission lines has been and 
is being designed. In designing such equipment, it is convenient to have 
for ready reference a considerable amount of information relating to these 
two types of transmission lines. Unfortunately, much of this useful infor-
mation has been gathered during wartime, and for secrecy reasons the dis-
tribution has necessarily been on a limited scale. Other material was printed 
before and during the war, but at present it is widely scattered throughout 
the literature. Still other information of a generally useful nature has been 
obtained by different groups and individuals, but never passed on to others 
who would be interested. As a result, any person who is doing work with 
microwave systems must be prepared to investigate many sources of infor-
mation in order to locate some particular item. 

For these reasons this reference handbook has been, prepared. It contains 
as much pertinent information as could be collected from a number of 
sources. One of these sources was the microwave research done in the Re-
search Laboratories of the Sperry Gyroscope Company. Other material 
came from unpublished notes of W. W. Hansen. Information was also ob-
tained from textbooks and periodicals. Much of the material was taken from 
sources which for reasons of wartime security cannot be identified. It is 
regretted that credit cannot be given for this material when much credit is 
due. Throughout the text, references have been made wherever possible to 
the original sources, so that the reader may refer to them for more complete 
information if he so desires. 

The material in this handbook was collected, prepared and edited by 
members of the Measurements Development Laboratory of the Sperry 
Gyroscope Company. 

T. Moreno, 
May, 1944. 
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GLOSSARY OF SYMBOLS 
General 

a = attenuation constant 
= phase constant 

y = propagation constant 
= skin depth 

s = dielectric constant = unity in free space 
el = dielectric constant of the propagating medium (coaxial lines) 
• = s' — ja" for complex dielectrics 
= measure of eccentricity for eccentric lines 

em 
tan", = loss tangent of dielectrics = 

r, = standing wave ratio in power = 
y 

v nun 
), = wave length in free space 
= wave length in the line (coaxial lines) 

• = permeability = unity in free space 
(J.1 = permeability of the propagating medium (coaxial lines) 
= resistivity 

z = conductivity 
• = unit area of wall (cavity resonators) 
(.) = angular frequency = 2.7,f 
c = velocity of light = 3 X 101° cm/sec 
f = frequency 

z E 
p = power factor (dielectric) = — cs) - - 

a 
• = velocity of propagation 

Ccaxial Lines 

• = radius of inner conductor 
= radius of outer conductor 

R = resistance per unit length 
L = inductance per unit length 
G = conductance per unit length 
C = capacity per unit length 

Zi = characteristic impedance — 

1. -
Zo = surge impedance = 

170 = 
1 

surge admittance = — 
Zo 

COW IDEN 7111111 II 

R 
G ± jt.)C 



CONFIDENTIAL 

GLOSSARY OF SYMBOLS—Continued 

Coaxial Lines—Continued 

Z1, = load impedance 

YL = load admittance = —1 
ZL 

V1 = magnitude of incident wave of voltage 
V2 = magnitude of reflected wave of voltage 
= magnitude of incident wave of current 

/2 = magnitude of reflected wave of current 
Vmax = magnitude of maximum voltage (voltage loop) in line 

= magnitude of minimum voltage (voltage node) in line 
'max = magnitude of maximum current (current loop) in line 
Imi„ = magnitude of minimum current (current node) in line 

),1 = wavelength in the line 

Wave Guides 

f = frequency 
f, = frequency at cutoff 
X = wavelength in free space 
= wavelength at cutoff (air-filled guide) 

X', = wavelength at cutoff (dielectric-filled guide) 
X, = wave length in the guide—general 
= wavelength in the guide—air-filled 

vp = phase velocity 
Vg = group velocity 
B = normalized susceptance 

Cavity Resonators 

= resonant frequency 
X0 = resonant wavelength 
= unit volume 
= unit area of cavity wall 

E = electric field 
B = magnetic field 

RsH = shunt resistance 
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Part I 

CONCENTRIC LINES 

CHAPTER I 

GENERAL FORMULAE FOR CONCENTRIC LINES 

Concentric lines are transmission systems in m hich the electromagnetic 
wave is propagated through a dielectric medium bounded by two coaxial 
conducting cylinders. The skin depth at microwave frequencies is small 
enough so that in all cases the conducting medium can be considered of 
infinite thickness. 

The principal symbols used in this chapter are defined as follows: 

1 = wave length 

f = frequency 

(e) = angular frequency = 

= velocity of propagation 

c = velocity of light = 3 X 101° cm/sec 

a = outer radius of inner conductor 

b = inner radius of outer conductor 

e = dielectric constant = unity in free space 

Ei = dielectric constant of propagating medium 

= permeability = unity in free space 

p.i = permeability of medium separating the conductors 

R = resistance per unit length 

L = inductance per unit length 

G = conductance per unit length 

C = capacity per unit length 

Zi = characteristic impedance 

Zo = Vriù 

cudb1111114 
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MICROWAVE TRANSMISSION DESIGN DATA 

A. Line Parameters of Concentric Lines 

Inductance = .4605Lm logio b la X 10 -6 henric /meter 
This formula neglects the inductance caused by the current penetrating 

a finite distance into the conductors. 
ei 

Capacity = .241  X 10-" farad /meter 
logio b la 

B. Characteristic Impedance 

The characteristic impedance Z, of a transmission line is given by the 
formula 

zi R Fjcal.  
G jtaC 

Where losses in the line are small, this formula reduces to 

ZiZo=t 

For a coaxial line with low losses, the characteristic impedance is 

Zi Zo = 138 11.- log10 = 60 111?- ln b la 
Et 

The characteristic impedance of a coaxial line as a function of diametric 
ratio (assuming L.1.1 = = 1) is shown in Fig. I-2. 

C. Propagation Constant 

The propagation constant y of a transmission line is given by the formula 

y = -V(R jwL) (G ± :noC) 
The propagation constant can be separated into real and imaginary 

components 
= + where 

a = attenuation constant 
= phase constant 

The phase constant is related to the wavelength in the system by the 
formula 

27. 

The velocity of propagation y in the transmission line is given by 
c.) 

= 

Where losses are small, this velocity of propagation becomes 

—   

and the wavelength in the line ).1 is related to A by 

—  

-4 
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GENERAL FORMULAE FOR CONCENTRIC LINES 
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MICROWAVE TRANSMISSION DESIGN DATA 

D. Voltage and Current Equations 

Given a transmission line of characteristic impedance Zi, terminated 
by a load impedance Z,, and knowing the voltage V, and the current I, 
at the load, the voltage and current along the line are given by the following 
equations: 

V = V, cosh y/ sinh y/ 
V, 

I = I, cosh yl — sinh y/ 
Zi 

Neglecting losses, these equations reduce to 
V = V, cos ?.,1 jI,Z0 sin 

.V, 
I = I, cos j— sin 5/ 

Zo 
In the above equations t is the distance from the load to the point where 
the voltage and current are being measured. 

E. Field Configurations 

The principal mode of transmission in a coaxial line is the one nearly 
always used for transmission of energy. The field configurations of this 
mode are as indicated in Fig. I-3. 

In Fig. I-3, solid lines are used to indicate the electric field and broken 
lines the magnetic field. Where /0 is the conduction current amplitude 
along the inner conductor, the following equations give the field distribu-
tions throughout the dielectric medium. 

H, = 

II = 

Hz = 

E, = 377 1-° • 
el 2.r.r 

E0 = 
Ez = 

With .To in amperes, the magnetic field H is in ampere turns per meter, the 
electric field E in volts per meter, and the radius r in meters. It will be seen 
that the electric and magnetic field intensities decrease inversely with 
radial distance from the axis of the line. 

FIG. I - 3 
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GENERAL FORMULAE FOR CONCENTRIC LINES 

F. Breakdown 

Breakdown will occur in a coaxial line when the maximum voltage 
gradient exceeds a limiting value. The maximum voltage gradient is always 
found at the inner conductor. No experimental data is available concerning 
breakdown at ultra high frequencies. At ordinary frequencies under ordinary 
atmospheric conditions, the breakdown gradient is approximately 30,000 
volts/cm. 

The electric field intensity at any point in the region between the inner 
and outer conductors of a coaxial pair is given by 

V  
E = 

r ln b/a 
The gradient is seen to be a maximum when the radius r is equal to the 
radius of the inner conductor a. For a specified outer diameter b and 
maximum field strength E., the allowed potential difference between 
conductors is 

V = E. b ln b/a 
bla 

For maximum voltage between conductors, the optimum ratio b/a is 2.718. 
This corresponds to a characteristic impedance of 60 ohms. 

G. Maximum Power Transfer for a Given Maximum Voltage 
Gradient 

The power transferred by a line will depend upon the ratio V2/Z1. 
Hence the maximum power that can be transferred by a given line is 

P — 
Eni2 b2 in b/a 

60 (b/a) 2 
For a specified outer diameter b, the maximum power can be transferred by 
a line when the ratio b = 1.65. This gives a characteristic impedance of 
30 ohms. 

This is the theoretical maximum power carrying capacity, but in actual 
practice it is necessary to limit maximum powers to values considerably less 
than the theoretical limit. For one thing, gradients are higher at stub sup-
ports, if these are used, and there is also more likelihood of breakdown in a 
rotating joint, or a choke connection. The breakdown in a choke connector 
is most likely to occur at the center conductor. Referring to Fig. I--4, the 
maximum gradient in the line will be increased as the ratio a and the 

power carrying capacity is therefore reduced by a factor (a /r1)2. 

H. Variation of Maximum Power Transfer with Altitude 

The potential gradient at which breakdown will occur decreases with 
altitude because of the change in atmospheric pressure, and the maximum 
power which can be transmitted through the line will decrease accordingly. 
In Fig. I--5, the ratio PIP0 is plotted against the altitude H, where P. is 

5 ,41-44e11111ffli 
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GENERAL FORMULAE FOR CONCENTRIC LINES 

a 

FIG. 1 - 4 

the maximum power that can be carried at sea level pressure and P is the 
maximum power that can be carried in the same line at an altitude H. This 
curve assumes that Paschen's law holds at ultra high frequencies, and takes 
a seasonal average air density. 

I. Higher Modes of Transmission 

If the concentric line is made sufficiently large, propagation of energy 

becomes possible in modes other than the customarily used principal mode. 
Normally the line is restricted in size so that there will be no propagation of 
energy in any of these higher modes, and any of the higher modes that are 
excited by junctions, discontinuities, etc. will diminish exponentially with 
distance, and draw no real power. The first higher mode encountered for 

most lines is that having a field configuration shown in Fig. I-6. 
Within seven percent, the limiting wave length at which this mode be-

comes possible is equal to the circumference at the arithmetic mean dia-
meter; that is, the mode becomes possible when 

2 b ± a 
=  

2 

4 

1  
• 

à 

FIG. I - 6 
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MICROWAVE TRANSMISSION DESIGN DATA 

J. Two-wire Line 

For a balanced two-wire line at ultra-high frequencies the parameters 
are: 

Inductance per unit length 

D 
L = .921 logio —a X IV' henry/meter 

Capacity per unit length 
.120  

C = X 10 -1° farad/meter 
D 

logio --

Resistance per unit length (copper wire) 

8.4 -VT  R = X 10 -6 ohms/meter 
radius in cm. 

Characteristic impedance 
D 

Zo = 276 logio —a ohms. 

In these formulae D is the distance between centers of the two parallel 
wires, each having a radius a. D and a are measured in the same units. 

CONFIDENTIAL s 
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CHAPTER II 

ATTENUATION IN CONCENTRIC LINES 

A. General Formulae for Attenuation 

The propagation constant of a concentric line is defined as 

V(R jtoL) (G ± jwC) 

where R, L, G, and C, are the line parameters per unit length. The propaga-
tion constant is resolvable into real and imaginary components 

= Œ+ ig 

where the real component a is known as the attenuation constant. Derived 
from the above formula, a will be in nepers/unit length. For the attenua-
tion to be expressed in the more common units of decibels per unit length, 
a in nepers must be multiplied by the constant 8.69. (Attenuation in 
db/unit length = 8.69 a.) 

When the attenuation is small, it may be expressed by the approximate 
formula 

where 

R G 
= ÎT -0 nepers/unit length 

2Z,, 

= \FLIE and Y. = 1/Z0. 

1. Special Cases Where One or the Other Parameter is Supplying 
Losses.' 

Case I: The series resistance R only is not zero. R O. G = O. 

Defining Q = , the following formulas hold approximately: 

a. The loss per wave length is small (R is small). 

Œ = (312Q = R/24, 

b. The loss per wave length is large (R is large). 

Q 03 tà.V -LC 

The assumption a is generally valid for microwave propagation, but assump-
tion b is useful for attenuators. 

Case II: The shunt losses only are not zero. G 0 0, R = O. 

'From unpublished notes by W. W. Hansen. 
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MICROWAVE TRANSMISSION DESIGN DATA 

ATTENUATION IN CONCENTRIC LINES 
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ATTENUATION IN CONCENTRIC LINES 

This is infrequently true in practice, but in most solid dielectric lines, 
the shunt losses greatly exceed the series losses at microwave frequencies. 

(.)C 
Q is defined here as Q = 

a. The shunt losses are small (G is small). 

a = g/2Q = 2Gy 
b. The shunt losses are large (G is large). 

(.)-VEC cd-VLC 
a - 

2 

B. Causes of Attenuation and Numerical Formulae 

There are two sources of attenuation in coaxial lines: 1. Ohmic losses 
resulting from currents flowing in the conductors. 2. Dielectric losses re-
sulting from the imperfections in the dielectric medium separating the two 

conductors. 
1. Conductor Losses. At microwave frequencies, the conduction current 

flowing in the conductor is concentrated in the surface layer. The current 
density is a maximum at the surface, and decreases exponentially with 
depth into the conductor. The depth at which the current density has 
fallen to 1/e of its surface value is known as the skin depth a. This skin 
depth is a function of frequency, also of the conductor material. It is 
given by the formula 

8 = 4/  

where p is the resistivity of the conductor in abohm-cm., p. is the perme-
ability of the conductor, and the skin depth in cm. For copper the per-

meability is unity, the resistivity is p = 1.72 X 10 -4 ohm-cm. = 1.72 X 103 
abohm-cm., and the skin depth is a = 1.2 X 10 -4 cm. for = 10 cm. 

The losses resulting from the current being concentrated near the sur-
face are the same as if the total current were of uniform density to a depth S. 

The skin depth as a function of frequency is plotted in Fig. II-1 for 

a number of different metals. 
Resistance of a Concentric Line. The resistance per unit length of a 

concentric line is given by the formula 

 ( Pa Pb 
R 27r3 —a + 

In this formula p = resistivity in ohm-cm, when the skin depth and radii 
are in cm. Pa is the resistivity of the inner conductor, and Pb the resistivity 
of the outer conductor. When inner and outer conductor are of the same 
resistivity, the expression for resistance reduces to 

11 
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MICROWAVE TRANSMISSION DESIGN DATA 

R = ( 1 + 
27c8 '6 a 

Attenuation in a Concentric Line as a Result of Conductor Losses. 
If the inner and outer conductors of a concentric line are of different ma-
terials, the attenuation is given by 

= + 

a 
where bb is the skin depth of the outer conductor, 8. the skin depth of the 
inner conductor, and ). the wavelength in air of the signal being trans-
mitted. If the same material is used for both inner and outer conductors, 
the attenuation formula reduces to 

(1 b V 
GC = i;  

' a/In b/a nepers/unit length 

8 b\Vi  
= 13.6 —0, ( 1 ± a in b/a (lb//uunniitt length 

The attenuation increases as the square root of frequency, assuming that 
Bi is independent of frequency, and also varies as the square root of the 
resistivity of the conductors. Table II—I gives the resistivity of a number of 
conducting materials, and also the attenuation as compared to the attenua-
tion of copper. 

nepers/unit length 

TABLE II—I 

Resistivity of Metals and Their Relative Attenuation 

Metal Resistivity Relative Attenuation 

Copper  

Aluminum  

Brass  

Chromium  

Gold  

Magnesium  

Palladium  

Platinum  

Rhodium  

Silver  

Tin  

Tungsten  

Zinc  

1.72 X 10 ohm. cm 

2.83 

7 

2.6 

2.44 

4.6 

11 

10 

5.1 

1.63 

11.5 

5.51 

6.2 

1.00 

1.28 

2.02 

1.23 

1.19 

1.63 

2.53 

2.41 

1.72 

0.97 

2.58 

1.79 

1.90 

An optimum ratio b/a exists for a fixed value of b, and minimum attenuation 
occurs when the ratio b/a is 3.6. This corresponds to a characteristic im-
pedance of 77 ohms for a line with air dielectric. The minimum is rather 
broad, and impedance values can vary considerably about this value with-

out a marked change in the attenuation. 

CONFIDENTIAL 12 
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ATTENUATION IN CONCENTRIC LINES 

2. Dielectric Losses. Solid dielectric coaxial lines are not used at 
microwave frequencies when low attenuation is desired because even a 
very good dielectric has losses that are very appreciable at these frequencies. 
To express these losses mathematically, it is convenient to consider the 
dielectric constant as complex and of the form 

E = s' — ja" 
The loss tangent of the dielectric is defined as 

Eff 
tan r, = 

Usually t. is small, and we can then say that the loss tangent is equal to 
the power factor of a condenser using the dielectric. The true power factor 
is defined as 

power factor = cos 
with 

O = 90° — 
The attenuation in a coaxial line resulting from dielectric losses is given by 

Œ = 7C - tan r, nepers/unit length 

= 27.3 tan T., db/unit length 

3. Attenuation in a Coaxial Line with Both Conductor and Dielectric 
Losses. The total attenuation in a coaxial line is the sum of the attenuation 
resulting from the conductor losses and the dielectric losses; that is 

Gcr = Gic 
where aT is the total attenutation, ac is the attenuation resulting from 
conductor losses, and aD is the attenuation resulting from dielectric losses. 

It will be seen from an inspection of the attenuation formulae that if 
the dielectric constant and power factor are independent of frequency, the 
following is true: 

1. The conductor losses are proportional to the square root of frequency. 
2. The dielectric losses are linearly proportional to frequency. 
Hence at higher frequencies the dielectric losses become increasingly 

important. 

C. Measured Cable Losses 

The attenuation in a number of types of microwave cable has been 
measured with the results given in Table II—H.2 
These measurements are all at a wavelength of 10 cm. As the dielectric 
losses are much greater than the conductor losses in this region, the loss 
will be approximately a linear function of frequency. Cables in which the 

2Measured at the Naval Research Laboratories. 
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TABLE II—II 

Attenuation in Coaxial Cables 

Mfg. Type 
Impedance 

Ohms 
3000 MC 
DB/100' 

P. D.  
G. E  
Amphenol  
Amphenol  
Okonite   
B. I. W   
B. I. W   

RG-12 U 75 
RG-12 /U 75 
RG-11 /U 75 
RG-12 /U 75 
RG-11 /U 75 
RG-11 /U 75 
RG-12/U 75 

15.7 
16.7 
17.1 
18.0 
19.7 
50.8 
70.7 

Anaconda  
F. T. R.  
G. E  
P. D.  
F. T. R.  
Gen. Cable  

RG-9/11 
RG-10 /11 
RG-10/11 
RG-10/U 
RG-9/11 
RG-10/1/ 

52 
52 
52 
52 
52 
52 

16.1 
16.3 
17.0 
18.0 
18.2 
18.8 

P. D.  
G. E.  
G. E.  

RG-14/U 
RG-14/U 
RG-14 /U 

51 
51 
51 

12.0 
13.6 
14.8 

F. T. R.  
F. T. R.  
G. E.  
P. D.  

RG-17 /U 
RG-17 /U 
RG-18 / LI 
RG-18 U 

51 
51 
51 
51 

8.1 
8.2 

10.4 
13.0 

P. D.   RG-20 / U 51 7.8 

G. E.  RG-34, U 
Amphenol  RG-5 /11 
Amphenol  RG-6/U 
Amphenol  RG-54 /U 
Amphenol  RG-4, LI 
Amphenol  RG-55/U 
Amphenol  RG-58/U 
Simplex  RG-39 /11 
Simplex  RG-42 U 
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72 
51 
75 
58 
51 
51 
51 
70 
76 

16.5 
22.4 
22.4 
25.2 
28.9 
29.7 
32.4 
75.5 
95.7 
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ATTENUATION IN CONCENTRIC LINES 

dielectric is beaded are not recommended because the power transfer varies 
with movement of the cable. Solid dielectric cables are to be preferred in 
this respect, although their measured loss may be a bit higher. 

D. Impedance of Resonant Lines 

At microwave frequencies, it is often desirable to use concentric lines 
as circuit elements, particularly as resonant circuits in which the line pre-
sents a minimum or maximum resonant impedance. 

Case I: Minimum Impedance of an Open- Circuited Line. 
Neglecting losses, the input impedance of an open-circuited transmission 

line of length 1 is given by 
Z — j Zo cot g / 

This would indicate that the input impedance passed through zero at the 
odd quarter wave points. Actually, because of the presence of conductor 
losses, the input impedance does not reach zero at these points, but is 

given by the expression 

Z = 60 r a 1 ( 1 ± i? D 

as the reactive component approaches zero. In this expression, Z is in 
ohms and the other terms are dimensionally alike. The input impedance 
is a function of the diametric ratio, reaching a minimum when the ratio 

b/a is equal to unity. 
Case II: Maximum Impedance of a Short-Circuited Line. 
Neglecting losses, the input impedance of a short-circuited line is given 

by the equation 
Z = j Zo tan g 

indicating that the input impedance passes through infinity at odd quarter 
wave lengths. Because of the presence of conductor losses, the impedance, 

although high, is not infinite, and is given by the equation 

120 X b 1n2 ( a—b 
Z — 

It a 1 
1 —b 

a 

This neglects losses in the shorting plug or plate. The optimum ratio of 
bla for high resonant impedance occurs when bla = 9.2, corresponding to 
a line of Zo = 133 ohms, but the maximum is quite broad. 

E. Losses in Shorting Plugs 

The losses in various types of concentric line shorting plugs were measured 

with the following results.' The types of shorting plugs tested are sketched 

3Measured at the Research Laboratories of the Sperry Gyroscope Co. 
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in Fig. II-2, and the loss measured is in excess of that introduced by a plate 
soldered on the end of the line. 

Type of Plug Measured Loss — db 
Blunt End  .20 
Quarter Wave Fingers  .13 — .21 
Half Wave Trap  .007 

BLUNT END 

QUARTER 

WAVE 

FINGERS 

HALF WAVE 

TRAP 

FIG. II - 2 

These measurements were all at a wavelength = 10 cm. in solid 
coaxial line with inner and outer diameters .250" and .875" respectively. 
All shorting plugs were unplated brass. The loss in the plug with the 
quarter wave fingers is believed to vary over a much wider range than 
measured, depending upon the alignment and surface finish of the fingers. 

F. Summary of Line Properties 

The diametric ratio of coaxial line corresponding to various optimum 
conditions is given in Table These are for a fixed diameter of outer 
conductor. 

TABLE II—III 

Diametric Ratio — 
a 

Impedance of 

Air-Filled Line 

Maximum voltage between conductors  

Maximum power transfer  

Minimum attenuation  

Minimum resonant impedance  

Maximum resonant impedance  

2.718 

1.65 

3.6 

1.0 

9.2 

60 ohms 

30 

77 

o 
133 

The variation with diametric ratio of these various parameters is 
plotted in Fig. II-3, all curves being referred to unity as an arbitrary 
minimum or maximum. 
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CHAPTER III 

REFLECTIONS AND IMPEDANCE MATCHING 

A. Power Transfer Between System Components—General Relations 

An arbitrary microwave system is composed of a number of component 
parts, and associated with these components will be lengths of transmission 
line that are likely to be electrically "long" although physically short. To 
know the power transfer between the component parts, the impedance of 
the components must be known, and also the laws governing the power 
transfer between components as a function of their impedance. 

In most microwave systems, the impedance of many component parts 
is made equal to the impedance of the transmission line between the com-
ponents. When this is done the component or "load" is said to be "matched" 
to the line. There are several reasons for matching components to the inter-
connecting transmission line. Some of these are as follows: 

1. If the generator and load are both matched to the transmission line 
between them, the generator will always deliver maximum power to the load 
whatever the length of line. If the load and generator do not match the line, 
the power delivered to the load by the generator will then depend upon the 
length of line between them, and in general will be less than the maximum 
power that the generator is capable of delivering. This does not take into 
account line losses. 

2. Having the load match the transmission line will minimize losses 
in the transmission line. 

3. Having the load match the transmission line keeps the possibility 
of breakdown in the line at a minimum. 

4. It is easy to tell when the load impedance is equal to the line imped-
ance by measuring the standing waves in the input line. 

In the discussion that follows, it shall be assumed that R = G = 0 in 
the transmission line, i.e., the attenuation in the line will be neglected. 

The definitions of some terms introduced and used in this chapter are 
as follows: 

V2 

12 

Vmax 

Vmin = 

= 

= 

(Vmax) 2 

= standing wave ratio in power 
Vmin 

zo = N/L/C = characteristic impedance of the line 
ZL -= load impedance of the line 

magnitude of incident wave of voltage 
magnitude of reflected wave of voltage 
magnitude of incident wave of current 
magnitude of reflected wave of current 
+ V2 voltage loop or maximum 

V1 — V2 voltage node or minimum 
12 current loop or maximum 

— /2 current node or minimum 
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1. Percent Power Reflected From an Arbitrary Load. Looking at a 

transmission system from the traveling wave point of view, we may regard 
power as being carried down the line by an electro-magnetic wave incident 
upon the load. If this traveling wave encounters some terminating im-
pedance other than the impedance of the line on which it travels, part of 
the incident wave will reflect back toward the source of power, and the 
remainder will be absorbed in the terminating impedance. The interaction 
of incident and reflected waves on the line input to the terminating im-

pedance will result in standing waves of voltage and current on the input 
line; that is, the voltage and current at various points on the line will 
vary between certain maximum and minimum values, depending upon the 

point of measurement. 
These standing waves of voltage and current are shown in Fig. III-1 

for a few typical load impedances. It will be seen that the magnitude and 
phase of the standing waves are determined by the load impedance, but 

that voltage loops always coincide with current nodes, and vice versa. 
If an arbitrary load of impedance ZL is used to terminate a line of 

impedance Zo, the ratio of incident to reflected wave will be given by the 
formula 

V2 ZL Zo 

= ZL Zo 

This is an equation involving complex quantities, and the ratio V2/ VI will 
give not only the relative magnitude but also the phase difference at the 
load of the incident and reflected waves. All of the incident wave will be 

absorbed in the load impedance when ZL = Z.. 
As power varies with the square of the voltage, the impedance being 

held constant, the percent power reflected from an arbitrary load is given by 
V2 2 

% power reflected --= — 
VI 

2. Relation Between Reflected Power and Standing Wave Ratio. 

The extent to which the line and the load are mismatched is usually de-
termined by measuring the standing wave ratio in the input line. The 
relation between percent power reflected and the standing wave ratio in 

power 7; is given by 

% power reflected - ( V.-n _ 1)2 
Nri; ± 1 

The relationship expressed in this formula is plotted in Fig. 111-2. 
3. Decrease of Power Transfer With Mismatch Between Generator 

and Load. Another way of looking at this problem is to consider the gener-
ator as having an internal impedance equal to the impedance of the line, 
and therefore delivering its maximum power output to a load whose im-
pedance is that of the line. Terminating the line with a mis-matched load 
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will result in some impedance other than that of the line being presented 

to the generator, with a corresponding decrease in power output. 
If we say that the generator will deliver its maximum possible output 

to the impedance Zo, the percent of this maximum possible power that will 

be delivered to an arbitrary load ZL is given by 

% of maximum possible power delivered = 
4RR0  

Ro R jX 1 2 

In this expression, Zo being a pure resistance is called Ro, and ZL = R jX. 
This gives the same results for net power transfer as the equations of the 

previous paragraph. 
For a load that is purely resistive, the percent of maximum possible 

power delivered to the load by a generator matched to the line is given 
by Fig. 111-3. For a load whose resistance is equal to the line impedance, 
but whose reactance is finite, the percent of maximum possible power 

delivered to the load is given in Fig. III-4. 
4. Power Delivered When Neither Generator nor Load is Matched 

to the Transmission Line. A more general case than that considered pre-
viously is encountered when neither the generator nor the load is matched 
to the transmission line. When this is true, the power delivered by the 
generator to the load will depend upon the length of line between the 

generator and load, as well as the impedance of the load and the internal 
impedance of the generator. 

At microwave frequencies, the impedance of the load is usually found 
by measuring the standing wave ratio in the line feeding the load, while 
the internal impedance of the generator is frequently found by removing 
the source of power and measuring the standing wave ratio in the line with 
a signal being fed into the generator from the load end of the line. The 
generator will deliver maximum power into a load that is the complex 
conjugate of its internal impedance, and its power output will fall off with 
other load impedances. The extent to which the output will fall is indicated 

by Fig. III-5. In this figure the ordinate is looking into the load, while 
the abscissa is -17 looking into the generator. The solid lines indicate the 
greatest decrease in power delivered from the generator that will be found 
with given standing wave ratios, while the broken lines indicate the least 

possible decrease of power from the generator. The actual decrease in 
generator output will fall somewhere between these limits. 

For example, if a 5 : 1 standing wave ratio were seen looking into the 
load, and a 3 : 1 standing wave ratio were seen looking into the generator, 
the position of the intersection of these values with respect to the diagonal 
lines determines the loss in output from the generator. In this example, the 
output will decrease a maximum of 1.8 db and a minimum of slightly less 

CONFIDENTIAL 22 



CONFIDENTIAL 

REFLECTIONS AND IMPEDANCE MATCHING 
P
E
R
C
E
N
T
 
O
F
 
M
A
X
I
M
U
M
 
P
O
W
E
R
 
D
E
L
I
V
E
R
E
D
 

100 

50 

- 

VARIATION IN POWER TRANSFER 
  WITH RATIO OF LOAD RESISTANCE 
TO LINE RESISTANCE WITH ZERO 

r LOAD REACTANCE 

o o  

rt. 

:111 

2 3 R 4 5 6 7 
R, 

93 CONFIDENTIAL 



CONFIDENTIAL 

MICROWAVE TRANSMISSION DESIGN DATA 

ii  

P
E
R
C
E
N
T
 
O
F
 
M
A
X
I
M
U
M
 
P
O
W
E
R
 
D
E
L
I
V
E
R
E
D
 

100 

50 

z 

DECREASE IN POWER TRANSFER WITH • 
INCREASING LOAD REACTANCE AND LOAD 
RESISTANCE EQUAL TO LINE IMPEDANCE 

oo 

i 

CONFIDENTIAL 

2 3 4 
X 
Ro 

5 7 



CONFIDENTIM 

REFLECTIONS AND IMPEDANCE MATCHING 

2 3 4 

ri-GENERATOR 

FIG.III-5 

8 9 10 

Loss IN OUTPUT WHEN NEITHER GENERATOR NOR LOAD IS MATCHED 
, TO THE INTERCONNECTING LINE 
  MINIMUM LOSS 
 MAXIMUM LOSS 

CONFIDENTIAL 



CONFIDENTIAL 

MICROWAVE TRANSMISSION DESIGN DATA 

than 0.1 db. The actual loss will fall somewhere between these limiting 
values. 

5. Impedance and Admittance Diagrams. The sending end impedance 
Z, of a lossless transmission line is given by 

= Z ZL j Zo tan Çtil 
o 

Z, 
Zo j ZL tan 5/ 

while the sending end admittance 17, is given by 

Y'= Yr. j Yo tan 5/ 
s Yo 

YL tan 
The similarity of these two equations is apparent, and it is possible to 
express the relationships contained in them in a single diagram, which can 
be used for either admittance or impedance calculations with only a change 
in the labeling of the co-ordinate axes. 

Figs. 111-6 and 111-7 are graphs which express the above relationships, 
and each of these diagrams may be used as either an impedance or an 
admittance diagram. As an impedance diagram, the ordinate is a measure 
of reactance and the abscissa a measure of resistance, both normalized 
with respect to the characteristic impedance of the transmission line. 
Knowing the line impedance and the load impedance, we may locate the 
point on the chart that represents the load impedance ZL = RL j-YL-
The ordinate of the point will be XCZ„, and the abscissa RL/Zo. The 
sending end impedance of the line will always fall on the circle that passes 
through the point ZL, and links the point 1,0. The location of the sending 
end impedance on this circle will depend upon the length of line between 
the load and the sending end. The other, orthogonal family of circles affords 
a measure of electrical distance, and is calibrated in terms of 5/, or electrical 
degrees of length. The values of sending end impedance repeat every 180 
degrees or half wave length. Traveling away from the load and toward 
the sending end, we must proceed in a clockwise direction around the first 
family of circles. 

Example: A 50 ohm. transmission line is terminated by an impedance 
ZL = 65 + j37.5 ohm. What is the sending end impedance one-twelfth 
wavelength from the load? 
R/Zo = 65/50 = 1.3, and X/Zo = 37.5/50 = 0.75. This locates the 

load impedance on the impedance diagram. This point is seen to fall on the 
intersection of two circles, one being the circle that links the point 1,0 
and passes through the point 2,0, and the other being the circle that passes 
through the point 1,0 and is labled l = 25°. The sending end impedance 
will fall on the first of these circles. 

The sending end is a twelfth wavelength, or 30 degrees from the load, 
and we must therefore proceed around the first circle in a clockwise direc-
tion a distance of 30 degrees as measured by the second family of circles. 
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This will bring us to the curve below the horizontal axis that passes through 
the point 1,0 and is labeled gi = 5°. The intersection of this curve with 
our first circle is at the point R/Z0 = 1.95, X/Zo = — 0.25, and this point 
determines the desired sending end impedance. This will be Zs = 50(1.95 — 
j0.25) = 97.5 — j12.5 ohms. The above procedure is illustrated in Fig. III-8. 

The charts may be used in the same 
manner as admittance diagrams to 
determine the sending end admittance 
of a transmission line at a known dis-
tance from a known load. In this 

zo R/zo case, the ordinate is a measure of 
susceptance and the abscissa of con-

Zs (/ 95-J.225) 
ductance, both normalized with re-
spect to the transmission line admit-
tance. Traveling away from the load, 
we still proceed in a clockwise direction, 

but it must be kept in mind that inductive reactances are of positive sign 
while inductive susceptances are of negative sign. 
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(1.3.j0.7.5) 

FIG. III- 8 

B. Impedance Transformers 

To realize maximum power transfer between components of a system, the 
impedances of the components should be matched. This matching is often 
accomplished by impedance transformers. At microwave frequencies, the 

elements of these transformers are frequently short lengths of transmission 
line. 

1. Sleeves 

a. Quarter Wave Sleeves. A generator of internal resistance R1 may be 
matched to a load resistance R2 by inserting between the generator and 
load a quarter wave length transmission line whose characteristic im-
pedance Zo' is the geometric mean of 
the two values of resistance, that is 

Zo' = N/71?-1-1—?2. This is illustrated in 
Fig. The generator will then see 
a load resistance that is equal to its in-
ternal resistance, and deliver the max-
imum - possible power output to the load. FIG. III 9 

At microwave frequencies, the generator resistance is frequently the 
characteristic impedance of a transmission line, Zo, and the quarter wave 
section will match the resistive load R2 to the line impedance Zo. 

If the load impedance ZL, of the transmission line is not a pure resistance, 
it be -matched to the transmission line. There must be, however, 
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an additional length of line between Z.L, and the quarter wave section, of 
such length that the impedance looking into the added length is a pure 
resistance R2. This means that the input to the additional length of line 
must be at a voltage minimum or maximum. The various impedances 
must then satisfy the relation 

Zo' = -VZ0 R2 

This is illustrated in Fig. III- 10. 

A 
4 

input Impedance 

equa/s Zo j-zo,-,M37j 

Input impedance at this point 

a pure resistance Rz 

FIG. III - 10 

In microwave coaxial line, the quarter wave transformer section is 
usually obtained by placing a sleeve )Litzl long over the inner conductor or 
inside the outer conductor, as in Fig. III-11. 

/ / / / / / I / /  

t......_/ /  l // Z/Z/ 7/ / /_// //  

>14 —1^ 

FIG. III - 11 

The impedance of the transformer is then always less than the impedance 
of the line, and R2 must be less than Zo. This means that the end of the 
sleeve facing the load must be placed at a voltage minimum in the line. 

Chosen thus, R2 = Z0/V'. The following procedure will then determine 
the size and location of the sleeve necessary to match the load to the line. 
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Procedure for matching with 1/4 sleeve. 
1. Measure the standing wave ratio ..n in the input, and determine 

the location of a minimum voltage point. 
2. Choose a sleeve 1/4 long whose dimensions are determined by the 

following equations: 
a. If the sleeve is on the inner conductor, its outer diameter di should be 

di = 2b/( -b ri 
a 

b. If the sleeve is inside the outer conductor, its inner diameter d2 
should be 

d2 = 2a ( k )11-
a 

3. Insert this sleeve in the line at a position where the end of the sleeve 
facing the load is at the point previously determined to be a voltage mini-
mum, or an integral number of half waves from this position. 

The ratios di/2a and d2/2b are plotted as functions of the power standing 
wave ratio Tj in Fig. III-12 for 75 ohm coaxial line and in Fig. 111-13 for 
46 ohm coaxial line. 

b. Multiple Quarter Wave Sleeves. A single quarter wave sleeve used as 
a transformer has the disadvantage that it is resonant, i.e., it matches 
perfectly at only one frequency. The bandwidth over which the match 
is good can be extended by using two or more quarter wave sleeves, placed 
together and properly chosen in size. This is illustrated in Fig. 111-14. 
The design equation for such a transformer is as follows: 

2 (log Zo — log Zo1) = (log Zo' — log Zo") = 2(log Zo" — log R2) 
where, as before, R2 is the purely resistive impedance seen at a point of 

minimum voltage in the input line (R2 -- Zo/V13). 
Devices using multiple quarter wave sleeves can be made less and less 

frequency sensitive by using more and more sections. The increment in the 
logarithm of the impedance between succeeding sections should follow the 
binomial coefficients: 

1 2 1 
1 3 3 1 
1 4 6 4 1 

  T° load 

e 

zo Z0 ' ZO" R2 

FIG. III -14 

12, f-nAl r in r Al TI AI 
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The first of these is the double sleeve described above, the second corre-
sponds to three sleeves, etc. 

c. Tapers. It would appear from the above discussion that a frequency 
insensitive match between two impedances could be obtained by using a 
length of tapered transmission line whose impedance varied continuously 
but slowly throughout its length, and whose impedance at each end was 
equal to the impedance to be matched at that end. This is true to a first 
approximation, provided that the change in line parameters per wavelength 
is small. Such a tapered section is illustrated in Fig. III-15. 

/-7 / 7 7 z 7 z 7 z /-/ 7 7 7 7 7 7 z 7 / / z  

/ / / 7 7 

7 -o 

7 / / / / / / 7 

taperea' section 

z  

Z/ 

FIG. III - 15 

To a second approximation, the reflection introduced by the tapered 
section is given by 

V2 1 ( d in Z 1 ( d in Z e - 2 d YdX 
-V; = 4y„ dx 0 4yi dx )1 

where VI is the incident wave of voltage and V2 the reflected wave. In 
this expression, the subscript o means the value for the taper at point 
while the subscript 1 means the value for the taper at the point x,. The 
terms d in Z/dx are discontinuous at the points x1 and xo, so the values that 
are approached as a limit at the ends of the taper should be used. To the 
extent for which the above expression is valid, that is for small reflections, 
the standing wave ratio introduced by the taper is 

= L 
12 y 
—VI 

The optimum condition corresponding to minimum reflection occurs 
when no discontinuity exists in the function f(Z) = lnZ or any of its 
derivatives. This means that the impedance variation between Z1 and Z. 
should be such that' 

h Z1 fx -h2x2 
ln z = _ coe dx 

In this expression x is the distance as measured from the center of the taper, 
Z is the impedance at the point x, and h an arbitrary constant. 

'From unpublished notes by W. W. Hansen. 
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Example: Consider the case where f(Z) = ln Z varies linearly with 
distance throughout the region xo to x1. This is illustrated in Fig. III-16. 

Z, 

FIG. III - 16 

The reflection introduced by the taper is given by 

in ( 1 — e-'11e) 
V2 A  
= 8 7jd Zo 

The variation of reflection with length of taper as calculated by this formula 
is illustrated in Fig. III-18 for a taper from 46 ohm to 75 ohm line. 

2. Single Stub Transformer. Shorted stub sections of line in shunt 
with the main transmission line act as shunting reactances. Depending 
upon the length of the line, the reactance may be either inductive or capaci-

tive, and have any value between zero and infinity (neglecting losses). 
The input impedance of a shorted section of transmission line is given by 

Z = j Z. tan ?,/ 

Within limits set by losses in the line, a single stub line, tunable both in 
position and length, is capable of matching any admittance not purely 
reactive to the admittance of the transmission line. To do this, the stub 
must be located at a point in the line where the conductance component 
of the input admittance is equal 
to the line admittance. The stub 
susceptance should then be equal 
and opposite in sign to the input 
susceptance at that point. 

Example: Referring to the Ad- G/Yo 
mittance Diagram of Section A-5 
of this chapter, it is desired to 
match a load of admittance Y1 to 
a line of admittance Yo. This is 

illustrated in Fig. III-17. FIG. III - 17 
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The stub for matching should be located at either point A or point B. 
If at point A, the input admittance of the stub should be capacitive and 
of a value B1, to balance out the inductive component of the input admit-
tance of the line. This will bring the total input admittance at point A 
to Y.. A stub located at B should be inductive and have an input sus-

ceptance of — B1. 
The length and position of the shorting stub necessary to correct a given 

standing wave ratio is plotted in Fig. 111-19 for the inductive shorted stub 
and in Fig. 111-20 for the capacitive shorted stub. These curves represent 
two alternate solutions to the same problem. The length 5/ of the stub is in 
electrical degrees. The distance 5(/ between the required position of the 
stub and a previously determined voltage minimum is also in electrical 
degrees. As indicated on the curves, the distance 5d should be measured 

from a minimum toward the load. 
3. Double Stub Transformer. Another type of transformer used for 

impedance matching consists of two tunable shorting stubs, fixed in posi-
tion. This is illustrated in Fig. III-21. 

FIG. III - 21 

The range of impedances seen by the transformer at the point P which 
can be matched to the impedance of the line Z. depends upon the length 
of line between the two shorting stubs. Specifically, a transformer with 
two shorting stubs spaced 5/1, electrical degrees apart will match to the 
line admittance Yo any load whose conductance component G1 at the point 
P is less than Yo ( 1 + cot25/1). This is illustrated in Fig. III-22, where 
the maximum allowable conductance component Gi(nox) of the admittance at 
point P is plotted as a function of the distance between stubs. It would 
appear from Fig. III-22 that the double stub transformer could match the 
greatest range of impedances if the spacing between the stubs were very 
nearly some multiple of a half wave-length. But such a transformer would 
require that the stubs present a very low admittance across the line, which 
may not be obtainable in practice because of losses in the stub. Also the 
tuning will be very critical, and the match very sensitive to slight changes 
in frequency. 
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In actual practice, a compromise must be made between the range of 
impedances which the transformer is capable of matching, and the ease of 
obtaining a match. An odd multiple eighth wave spacing is frequently 
used; this will match to Yo any admittance whose conductance component 

is less than 2 Yo at the point P. 
An identical analysis holds when the stubs are in series rather than in 

shunt except that in the above expressions, impedance should be sub-
stituted for admittance, reactance for susceptance, etc. 
A double stub transformer will match any impedance to the line im-

pedance if provision is made for inserting an additional quarter wave 
length of line between the transformer and the load when required. 

4. Triple Stub Transformer. A transformer suitable for matching any 
impedance to any impedance can be constructed by placing three adjustable 
shorting stubs in shunt with the line, spaced a quarter wave apart, and 
ganging the first and third together. See Fig. III-23. This transformer 

has only two adjustments, and has an advantage over the single, movable 
stub in that there is no joint in the main line requiring sliding contacts. 

1/4 

FIG. III - 23 

5. Probes as Impedance Transformers. A mechanically convenient 
impedance transformer may be constructed utilizing probes in coaxial line. 
The probe introduces a reflection whose magnitude increases with increasing 
depth of the probe. A transformer may be constructed by using two or more 
fixed probes spaced a distance apart or a single probe whose position along 

the line can be varied. 
Experimental data for a typical probe are presented in Fig. III-24.2 

The standing wave ratio introduced into a matched line is plotted as a 
function of the depth of the probe, and is seen to approach infinity as the 
probe nears contact with the center conductor. The slight deviation from 
unity standing wave ratio at zero probe depth results from a termination 
not properly matched. This data is at a wavelength of = 10 cm. in 
co-axial line whose inner diameter was .250" and whose outer diameter 
was .875". The probe diameter was .250". 

• 2Measured at the Research Laboratories, Sperry Gyroscope Co. 
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6. Eccentric Line Transformer. To construct an adjustable quarter 
wave transformer, it is necessary to have the characteristic impedance of 
the quarter wave section continuously variable. The simplest way to do 
this is to leave the diametric ratio fixed in the quarter wave section, but 
to have the eccentricity between inner and outer conductors variable. 
Making the conductors eccentric increases their capacity and so reduces 
the characteristic impedance of the line. For the transformer to cover the 
entire range of impedances, the eccentricity should be continuously adjust-
able from a point where the two conductors are coaxial to where they are 
just grazing. The grazing limit can not be approached too closely if the 
transformer is to carry any considerable amount of power because of 
the enhanced possibility of breakdown with closer spacing. 

If the position as well as the eccentricity of the quarter wave sec-
tion is made variable, this type of transformer will match any impedance to 
the characteristic impedance of the line. 

The characteristic impedance of an eccentric line is given by 

Zo = 60 [ —b (1 - 22) 
2a 2b 

where the displacement of the axis of the inner conductor from the axis 
of the outer conductor is eb. Curves which give the variation in charac-
teristic impedance as a function of the eccentricity of the center conductor 
are given in Fig. 111-25. The curves are self-explanatory. 

7. Dielectric Transformer. A short section of dielectric material in-
serted in a transmission line will act as an impedance transformer. Its 
performance may be readily calculated because both the characteristic 
impedance of the line and the wavelength in the line are inversely pro-
portional to the square root of the dielectric constant. These transformers 
are not widely used because of the small selection of good dielectrics at 
microwave frequencies. 

Example: It is desired to correct a standing wave ratio of 4 : 1 in a line. 
The procedure is as follows: 

1. Select a low loss dielectric material whose dielectric constant is the 
square root of the measured standing wave ratio. In this case a dielectric 
constant of two would be required. 

2. Cut a bead of this material to fit inside the line whose length is given 
by 

length of bead - 

where E is the dielectric constant of the bead material. 

3. Insert this bead in the line so that the face nearest the load is at a 
voltage minimum. This is illustrated in Fig. III-26. 
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FIG. III - 26 

8. Double Slug Transformer. A convenient impedance transformer may 
be constructed utilizing two sections of line, electrically a quarter wave long, 
whose impedance is different from that of the main line. These sections are 
usually obtained by placing slugs of metal or dielectric material within the 
line that are electrically a quarter wave long. A typical transformer using 
dielectric slugs is shown in Fig. 111-27. Two controls are provided for these 

4b17 4/7 

FIG. III - 27 

slugs: 1. With the spacing between held constant, the slugs are moved along 
the line. 2. The spacing between the slugs is varied by moving each slug 
an equal amount in opposite directions. The advantage of this transformer 
is that the first control changes the phase of the reflection without affecting 
the magnitude, while the second control varies the magnitude of the re-
flection with little effect on the phase. 

The following analysis assumes that the slugs are made of dielectric 
material whose constant is e, but the results are equally applicable for any 
sort of slug that reduces the characteristic impedance of the line by a 
factor 

The magnitude of reflection introduced into a matched line by the 
transformer is given by 

vi 

j 11 
e — e ) tan gi 

2 -I- j( 1 + e)tang/ 
e 
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where gl is the electrical distance between the two quarter wave sections. 
The standing wave ratio as a function of l is plotted in Fig. III-28 for 
various values of e. 

The shift in phase q) of the standing waves with increasing (V is 

given by 
( 1 

2 
à cp = -2 V — -1 talt -' [\ E 

2 tan 

1 

This shift in phase is a measure of the extent to which the phase of the 
standing waves is dependent upon the second control, which primarily 
affects amplitude. The shift is arbitrarily chosen as zero when V is zero. 
Curves are given in Fig. III-29 of this shift as a function of l for various 

values of e. Maximum shift in phase is given by 

2 -2 tan -I‘ i- + E 
E  

1 2 1 1 
( AP) max tan -1 

E 2 

9. Line Stretcher Transformer. The power delivery from a generator 
to a load, neither of which is matched to the line impedance, can be 
varied by varying the length of line between them. This is frequently 
done with a "line-stretcher" or "trombone". Although line-stretchers in 
general will not produce a perfect match, they are widely used because 
of their simplicity and because they usually increase the power transfer 
over what would otherwise be obtained with an arbitrary length of line. 

C. Beads in Lines, 

The center conductor of a concentric line must be supported clear of 
the outside conductor. This is done in cables by using a solid dielectric 
material between the conductors. But at microwave frequencies, even the 

best solid dielectrics introduce such a high amount of attenuation that 
solid dielectric cables cannot be used for transmitting power over any very 
large distances. 

An air dielectric is required when low attenuation is desired, and the 
center conductor must be supported by either quarter wave stubs or short 
beads of dielectric. The following material deals with the use of dielectric 
beads for supporting the inner conductor, and that following with the 
design of supporting stubs. 

1. Reflections from a Single Bead. A single bead of dielectric material 
introduced into an air-filled concentric line will cause a partial reflection 
of an incident electromagnetic wave. This results from the changed im-

3From unpublished notes by W. W. Hansen. 
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pedance of the transmission line in the presence of the dielectric material. 
The magnitude of this reflection will therefore depend upon the length 
of the bead. 

Neglecting losses, the exact reflection coefficient from a single bead is 
given by 

1 
— j — ) tan Vi 

Vi 1 
2 ± j Nre v i) tan N/ E / 

If the value of tan l is small, this reduces to 
V2 

( E - 1) t?,l 
2 

The absolute value of this expression is 
V2 
vi = ( e — 1) 

The magnitude of the standing wave ratio introduced by a bead is given 

graphically in Fig. III-30. In this figure, 7) is plotted against —VU which is 
' 

the electrical length of the bead in wavelengths. Curves are given for 
several values of dielectric constant. These curves assume no loss in the 
dielectric, and it is seen that a half-wave bead introduces no net reflection. 

2. Undercut Beads. The reflection from a dielectric bead can be mini-
mized by adjusting the diametric ratio at the bead so as to hold constant 
the characteristic impedance. This is illustrated in Fig. III-31. To 
maintain the characteristic impedance constant, the radius a' of the inner 
conductor at the bead should be 

a' = 
b 

(- a) 

e 

zzzz:zz;  

FIG. III - 31 

This formula is derived from simple theory, and neglects fringing effects, 
but it has been checked experimentally and found to agree with measured 
results. The thinner the bead, the less critical the undercut. 

Undercut beads such as this are not frequency selective, and will intro-
duce no great reflection at any frequency, but they are mechanically some-
what difficult to handle in long lines, where split beads seem to offer the 
best solution. 
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3. Pairs of Beads. The reflection introduced by a single bead can be 
cancelled by inserting another similar bead which will introduce a reflection 
of such magnitude and phase as to cancel the reflection of the single bead. 
For the two reflections to cancel, the spacing between the beads should be 
approximately a quarter wave. Referring to Fig. 111-32 the exact formula 

/ /// / / / / / / 1"/ / / /  

5  

FIG. III - 32 

for proper spacing between beads to cancel reflections is 

X = -1 tam -' [ 2 Vi cot (Vi 
(3 1 ± 

where e is the dielectric constant of the bead material. A disadvantage 

of pairing beads to cancel reflections is that the device is resonant, and will 
introduce a reflection at frequencies near the designed frequency. For 
example, consider a concentric line in which the inner conductor is sup-
ported by two Y4" beads of dielectric constant e = 2.6. If the beads are 
properly spaced for no reflection at X = 10 cm., (x = 1.391) the standing 
wave ratio introduced into the line as a function of wavelength is given in 
Fig. III-34. 

4. Multiple Beads. If it is desired to use a long coaxial line for trans-
mission of microwave signals, the problem arises of how best to support 
the center conductor. When this is done by multiple beads of dielectric, 
some care must be taken in choosing the spacing between the beads. 

Consider a large number of beads, of thickness cl and uniformly spaced 
a distance 1 apart. This is illustrated in Fig. 111-33. 

\\Xll  

\\\\  

d 

FIG. III - 33 

It is readily apparent that if the distance / were approximately a half 
wave, the reflections introduced by each bead would add in phase, and the 

line would have very high attenuation, even if the dielectric is perfect and 
absorbs no power. Furthermore, the presence of this reflected wave makes 
the input impedance highly reactive and prevents power from entering 
the line. 
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cz'e 

FIG. III - 36 

An approximate calculation based on filter theory and assuming that 
d « 1/2 shows that this region of high attenuation is found for values of 
between 1/2 — de and A/2 — d, as illustrated in Fig. III-35. 

The presence of losses will mod-
ify this curve, and leads to the 
general form shown in Fig. III-36. 
A surprising distance exists be- 

tween 1 = A/2 and the region of 
high attenuation, and with losses 

A/4  \\%._ 
present, a A/2 spacing actually 
gives less attenuation than a  
spacing. But the A/2 spacing is 

-e critical enough to frequency that 1—de —41 

it is very seldom used—a slight FIG. III - 35 

change in frequency resulting in a 
marked increase in attenuation. The A/4 spacing has proven most satis-
factory for general use. 

Another method of bead support that has given satisfactory results 
is the use of beads that are elec-
trically a half wave long, and hence 
introduce no reflection. The actual 
physical length should be A/2-s/. 
Such a device is, of course, some-
what frequency sensitive. 

2/2 Still another approach to the long 

2 line has been developed by Lawson. 
This starts with two beads, prop-
erly spaced so as to minimize re-
flections. Then two of these units 

are placed with their centers an odd number of quarter wave lengths apart, 
This means that in the neighborhood of the correct frequency, the reflection 
will be a quadratic instead of a linear function of frequency. If the process 
of adding beads is continued by doubling sections and keeping section centers 
an odd number of quarter wave lengths apart, the reflections in the immedi-
ate vicinity of the correct frequency become less, but for slightly greater 
deviations of frequency become greater. As the number of sections increases 
the "pass band" becomes narrower, until for an infinitely large number of 
sections, there is an infinitely narrow pass band. 

D. Stub-supported Lines 

A quarter wave, shorted section of transmission line has an infinite 
input impedance, and can therefore be used as a stub support for the center 
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conductor of a coaxial line. Such a support has considerable frequency 
sensitivity; as at different frequencies, the stub section is no longer a quarter 
wave long, and introduces a reactance which shunts the transmission line. 
If the stub support is designed as shown in Fig. III-37, it will introduce a 
negligible reflection over a much wider range of wavelengths than the 

simple stub support. 
A transformer on the "straight through" section of the center conductor, 

providing an impedance Z1, is made Xo/2 long, where X0 is the center wave-
length for a given band. Such a transformer will, of course, cause no re-
flections at lo. 

The right angle stub of impedance Zo, shown centered on the trans-
former, can be adjusted until it is effectively X0/4 long. As illustrated in 
Fig. III-38, on an admittance diagram of the type shown in Figs. III-6 

(  
FIG. III - 37 

TYPICAL TEE STUB SUPPORT 

and III-7, the whole combination will introduce no reflection at lo. If 
the load is matched to the line, the admittance at point r in Fig. III-37 
will be Yo. From r to s is a quarter wave, bringing the admittance at point s 
back to the G axis. The stub is exactly a quarter wave long, so the admit-
tance at point t will be the same as at point s. From t to u is another quarter 
wave, and the admittance at u is again Yo. 

There are two other wavelengths, Xi and one less and one greater 
than at which no reflections occur. At )q < Ao, illustrated in Fig. III-39, 
from r to s is greater than 11/4, and the admittance at s will therefore fall 
below the G axis. But the stub is now longer than A1/4, and introduces a 
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FIG. III - 38 

A. 
STUB IS EQUAL TO -4 AND ADDS NOTHING 

G 

capacitive or positive susceptance which brings the admittance at t above 
the G axis. From t to u is greater than )/4, bringing_the admittance at u 
around to Yo. 

At X2 > X0, illustrated in Fig. III-40, the section from r to s is less 
than X2/4, and the admittance at s therefore falls above the G axis. The 
stub is now inductive, and adds a negative susceptance which brings the 
admittance at t below the G axis. The section from t to u is now less than 
-A2/4, but brings the admittance at u back again to Yo. 

FIG. III - 39 

STUB IS GREATER THAN 4 AND ADDS CAPACITY 

The relation between the characteristic impedance of a line (Z0) and 
the impedance of the 0/2 transformer section (Z1), obtained from trans-
mission line theory, is as follows: 

(Zi\ 3 + 2 ( Z1 \ 2 1 Z1 2 = 
Zo ) Zo) p2 Z o 

irX0 
Where p = tan —2X1 and p = tan — 2).2 
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4 

IMPEDANCE MATCH AT A0, A1 & A2, DEPICTED 

ON ADMITTANCE DIAGRAMS 

For a :Vs' 0.1)., 44 ohm coaxial line let )si = 9.1 cm., o = 9.9 cm., and 
= 10.7 cm. The two equations for p yield values of + 8.15 and — 7. 

As a compromise let i,2 ( 50, which gives -- = .835. 
Zo 

With proper adjustment of the Zo stub length this type of support 
centered about = 10.0 cm., will exhibit the standing wave ratio-wave-
length relation shown in Fig. 111-41. 
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As indicated in Fig. III-41, this stub support introduces standing wave 
ratios no greater than 1.04 (power) for any wavelength between 8 and 
12 cm. inclusive. 

Due to the complexity of line conditions at the junction of the stub and 
straight through section, no attempt has been made to derive theoretical 
formulae for the exact length of the stub. The standard stub-length measure-
ment is made between the stub short and the center line of the straight 
through section, although this is generally not equal to 

For any given size line it is usually much simpler to determine this 
length experimentally the first time. Table III-I below gives all available 
stub lengths and other dimensions for the various size lines in use at present. 
In referring to the "size" of coaxial lines the dimension given is the outer 
diameter of the outer conductor. The center wave length for each stub may 
be determined from dimension,: given for the ./.„/2 transformer. 

TABLE III-1 

TEE STUB SUPPORTS 

Line Size 

1% 

z, 

(all dimensions in inches) 

t. 2 Transformer Conductor 

Length Diameter O.D. Inner I.D. Outer 

51 .315 X 2 

46 .975 X 2 

75 .985 X 2 

53.3 .975 X 2 

.218 

.425 

.327 

.725 

Length of 

Stub Short to 

Center Line 

.187 .437 

.374 .811 

.250 .875 

.624 1.527 

.516 

1.450 

1.311 

1.750 

Phase distortion caused by stub supports, while small, should be con-
sidered if the application requires great accuracy. In stub supported 
coaxial impedance meters, for instance, it will be necessary to determine 
the increase in electrical over mechanical length for is 2 and the decrease 
for 

Universal Stub for Right Angle Turns in Coaxial Lines. An adaptation of 

the tee stub principle involves the universal stub shown in Fig. 111- 42, which 
permits transmission of microwaves around right angle bends without ap-
preciable reflections over a broad band. 

If a short is located properly on the stub section ((lotted lines), a tee 
support results which functions like the one described above. By placing 
a short at one end of the )/2 transformer and leaving the stub open, how-
ever, a right angle bend is formed. Power may then be introduced through 
the opposite end of the transformer or through the stub. Careful analysis 
of the impedance at the vertex of the right angle by means of circle diagrams 
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enables one to place a A0/4 transformer on the stub line which cancels 
reflections at wavelengths 11 and A2 as above. If symmetry about the stub 
is maintained a short may be placed at either end of the ) o/2 transformer 
and a "universal" broad band unit is obtained which permits introduction 
of microwave energy into any of the three arms. 

The diameter of the 'Xo/2 transformer may be obtained from the same 
equation as that for the tee stub. Location of the short must again be 
determined experimentally for each size line. 

E 

Z2 

 -Nd 

2 

L1 

L  
FIG. III - 42 

UNIVERSAL STUB 

Proper dimensions for a 7A" and 1" universal stub are given in Table 
III—II below. 

Line Zo 

Size Ohms 

TABLE III— II 

4/2 Transformer 

Length Diameter 

7/* 46 

1" 75 

.975 X 2 

.985 x 2 

.425 

.327 

Conductor 

Stub 
L, d  

I.D. O.D. Diameter 

Outer Inner I 

.811 

.875 

.374 1.250 1.094 . 11 .445 

.250 1.410 1.10 . 10 .342 
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Part 2 

WAVE GUIDES 
CHAPTER IV 

GENERAL FORMULAE FOR WAVE GUIDES 

Electromagnetic wa‘ es will propagate through hollow conducting pipes 
filled with air or some other dielectric material, even though no center 
conductor is present. These hollow pipes are customarily termed wave 
guides. The electromagnetic energy will be transmitted through the pipe, 
although there is no go and return circuit similar to those used at ordinary 
frequencies. 

There are an infinite number of modes, or field configurations, in which 
energy can be transmitted through wave guides and concentric lines. In 
concentric lines, the mode of propagation commonly used is the principal 
one, in which both the electric and magnetic fields have only components 
that are normal to the direction of propagation, and the line is restricted in 
size so that the higher modes cannot propagate. This principal mode 
requires two separated conductors, and therefore cannot exist in a wave 
guide. Energy is propagated only in the higher modes, and this requires 
that the guide exceed certain minimum dimensions to allow transmission 
of signals of a given wave length. 

The various modes of propagation can be divided into two classes. 
In one of these the electric field has only components that are normal to the 
direction of propagation; these waves are therefore termed Transverse 
Electric, or TE waves. TE waves are sometimes called H waves, as the 
magnetic field has components in the direction of propagation. Similarly, 
TM or Transverse Magnetic waves are waves in which the magnetic field 
has only components normal to the direction of propagation, and these 
are sometimes called E waves, as the electric field has a component along 
the axis of the guide. 

This section will deal with the ideal properties of wave guides, i.e., 
losses and attenuation will be neglected, the pipe considered of infinite 
conductivity, and the dielectric a perfect insulator. 

The principal definitions introduced in this chapter are as follows: 
f = frequency 

fc = frequency at cutoff 
= wavelength in free space 
= wavelength in the wave guide 

Xc = wavelength at cutoff 
vp = phase velocity 
= group velocity 
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A. Field Distribution in Wave Guides 

1. Rectangular Wave Guide. The notation applied to rectangular wave 
guides will be that illustrated in Fig. IV-- 1. 
The dominant mode of transmission in a rectangular wave guide is the 
TEL° wave. The field distribution of this mode is given in Fig. IV-2, 
and the field equations are as follows: 

Ez = Ez = 11 = 
1).c.,17 . IZX 

E = B k2a sin 7  sin (cdt - 13z) Y 

Hz = - B cos 7  cos (wt - ez) 

- Oz) H„ = B 
, 

  sin— t sin wc 
k2a a 

where B is an arbitrary constant 

of amplitude. The phase constant 
e, in general given by 

(•)2 m2 n-
em,H2 = _ ,2 

a2 

in this case reduces to 
,2 

$2 _ 
C2 a2 

The quantity k is defined ln 

the expression 

k 2 = e2 
SIDE VIEW 

Y 
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By dominant mode is meant the mode with the longest cutoff wave length. 
In rectangular wave guides, the first and second subscript are a measure 
of the number of half wave variations in transverse field intensity along 
the x and y dimensions of the guide, respectively. For example, it will be 
seen that in the TEL° wave there is a half wave variation of transverse field 
along the x axis, and no variation of transverse field along the y axis. 

Field configurations for a few of the higher modes of transmission are 
given in Fig. IV-3, and the corresponding field equations are: 

TM.... wave 
. nwy mzx 

E. = A sin   sin .b a cos (cd — Oz) 

/3 n7. n 7cy7. . mx . 
Ey = A -F ,. 7  Cos   b a sin   sin (cd — Oz) 

j3 mi: . nwy m7.X . 
E=A sin k a b cos a sin ((ot — az) 

2  
//z = 0 

El» mit . nicy »MX . 
Hy = — A —  sin cos   sin (Gd — Oz) 

a 
ew n7: n fr 1 X . 

H x = A 1-72 —17 cos  sin  a sin (ta — ez) 

T MI 

// // 

FIG.IV-3  
MODES IN RECTANGULAR 
WAVE GUIDE 

TE 

/// / //// 

TE2,1 

III / 

/ " Th" A A ./ 
/ / 
/ / 
/  
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In these equations, A is an arbitrary constant of amplitude, 
have been defined previously. 

TE„,, n wave 
Ez = 

and k 

Ldp. mir Ivry ??/ 17.X 
=-- — B 17 —a COS b sin a sin (tot — ez) 

Gip. nz nzy inlrx 
Ex = B -ki- —6- sin cos a  sin (fiit — sz) 

nzy MT.".17 
Hz = — B cos b a cos  cos (bit — Oz) 

fi trz i H . nzy mzx 
T sin  b a , = B cos sin (cdt — ,(32)¡ i  

a mir nzy 7,.-X 
b 

r I x = B -k-i-Tr —t cos si 111 n — sin (cot — Oz) 
a 

In these equations, B is an arbitrary constant of amplitude, and k 
have been defined previously. The higher modes are not so frequently 
used as the dominant mode, because of the difficulty of exciting one of 
the higher modes without exciting others. If the dominant mode is used, 
the pipe can be chosen of such a size that all higher modes will attenuate 
rapidly with distance and draw no real power. 

Current Flow With Dominant Mode of Transmission 

The conduction current in a wave guide is confined to the inner surface 
of the guide, the depth of penetration being determined by skin depth 
considerations, as outlined in Chap. II—Sec. B-1. The lines of current 

flow in the walls of the pipe are illustrated in Fig. IV-4. The direction of 
current flow is orthogonal to the direction of the magnetic field at the 

inner surfaces of the guide. 

FIG.IV-4  

CURRENT FLOW IN WALLS OF RECTANGULAR 
WAVE GUIDE PROPAGATING TE ip MODE 
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2. Circular Wave Guides. The notation applied to circular wave guides 

will be that illustrated in Fig. IV-5. 
A number of possible modes of transmission in circular wave guides 

are illustrated in Fig. IV-6. The dominant mode in circular guide—that 
with the longest cutoff wave length—is the TELI mode, which will be seen 
to correspond to the TEL0 mode in rectangular pipe. The field equations 

corresponding to some of these possible modes are: 

Tliu.1 wave (Circular Magnetic Mode) 

Es = A 

E, = - A 12c±J1 (u 0 sin (cot — 0z) 
u a 

Es = Hz = H, = 

Ho = - A 0 sin (tat ez) 
a 

u = 2.405 

Jo (u -r ) cos (cdt - ez) a 

= ( C 
0 )2 ( ) 11\2 

\ a  FIG. IV - 5 

TELI wave (Dominant Mode) 

Hz = B J, (u' -r ) cos 0 cos (6)/ - az) 
a 

= B ' [J 0 (u' -r ) 1)] cos 0 sin ((at - i3z) 
2it a a 

ea2 
110 = — B — ji (u' —7) sin 0 sin (fiit — ez) 

uir 
E. = 

E, = — ;1 (—.) Ire 

(1.) 
E0 = Hr 

u' = 1.841 = 3.39 

TE0,1 wave ( Circular Electric Mode) 

= - B Jo (u' cos (cat - ez) 

B Ji (le ) sin ((a - ez) 

HO = E1 = E, = 
ta 

E0 = — Hr 

u = 3.832 
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In these equations il and B are arbitrary constants determining ampli-
tude. The various subscripts have a different connotation when applied 
to modes in round pipe. The first subscript denotes the order of the Bessel 
function (or its derivative) which specifies the component of electric or 
magnetic field parallel to the axis, and the second subscript indicates which 
root of this Bessel function satisfies the expression ..T„ (ka) = O. The first 
subscript also indicates the number of full-period variations of radial 
component of field along angular co-ordinates, and the second subscript 
indicates the number of half-period variations of angular component of 
field along radial co-ordinates. 

3. Elliptical Wave Guide. A knowledge of the behavior of elliptical 
wave guides is of some importance because the inevitable deformations 
encountered in a round guide will result in an equivalent ellipticity. A few 
of the possible modes in an elliptical wave guide are shown in Fig. IV-7,' 
along with the corresponding mode in round pipe. In general, if a round 
wave guide is deformed, the wave being propagated will split into two 
components which proceed down the pipe with different phase velocities 
and different attenuation: This instability will be found in all cases except 
when 

1. Deformation is along an axis of symmetry of the wave. 
2. The wave has circular symmetry (e. g. TE0,1 or TM-0.1 wave). 

B. Cutoff—Formulae 

1. Rectangular Wave Guide. A wave guide acts as a high pass filter, 
and will transmit electromagnetic waves in a given mode only when the 
wavelength of the signal is less than the cutoff wavelength. The cutoff 
wavelength depends upon the mode of transmission, and is given by the 
formula 

2 
= 

en2 ± Cif 
In this formula m and n are the subscripts denoting the particular mode 
under consideration (e.g. TE„,,„), and A, is the limiting wavelength that will 
propagate down the guide. The equation holds for either TE or TM modes 
of propagation. 

IL. J. Chu, Electromagnetic Waves in Elliptical Hollow Pipes of Metal, Jour. App. 
Phys., Vol. 9, p. 583, Sept. 1938. 
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The size of pipe necessary for propagation of some of the lower modes is 
illustrated in Fig. IV-8. In this figure b/A is the ordinate, and a/A the 
abscissa. The various curves mark the boundary between sizes where the 

modes will propagate and where they will not. For example, the TE2,0 mode 
will propagate in all sizes of wave guide in which a/A is greater than unity. 
To allow only the dominant mode to propagate, one dimension of the guide 
should not exceed A and the other should not exceed A/2. 

2. Circular Wave Guide. The cutoff wavelength in a circular wave 
guide for a given mode depends on the ratio of diameter to wave length. 
For the TE,r,„i wave, the cutoff wavelength is given by the formula 

2za  
— 

where a is the radius of the guide. The constant tt'„,m is the mth root of the 
equation J' (u) = O. Some of the lower values of /tin,. are 

= 3.832 /4'0,2 = 7.016 
u'1,1 = 1.841 u'1,2 = 5.33 

U'2,1 = 3.05 
For the TMn.m wave, the cutoff wavelength is given by 

27:a 

where a is the guide radius and un,m is the mth root of the equation J(u) = O. 
Some of the lower values of u„,„, are 

u0,1 = 2.405 tto.2 = 5.520 110,3 = 8.654 
= 3.832 = 7.016 

112,1 = 5.136 
In Fig. IV-9 is illustrated the relation between the ratio a/A and the 

cutoff wavelength for several of the lowest modes in circular wave guide. 
3. Elliptical Wave Guides2. The variation in cutoff wavelength with 

eccentricity for elliptical wave guide is illustrated for some of the lowest 
modes of transmission in Fig. IV-10. In this figure, the ratio of periphery 
s to free space wavelength at cutoff A, is plotted for some modes as a function 
of eccentricity resulting in both even and odd waves. The distinction between 
even and odd waves is illustrated in Fig. IV-7. Technically the distinction 
between odd and even waves is as follows. The field in an elliptical wave 
guide is specified in terms of Mathieu functions, which are of two kinds, even 
and odd. Those waves which are specified by the even functions are termed 
even waves, and those specified by the odd functions are termed odd waves. 

4. Wave Guides Filled with Dielectric Material. The cutoff wave-
length A/ in a hollow pipe wave guide filled with dielectric material of 
constant a is related to the cutoff wavelength A, of the same pipe when 

air filled by the formula 
= 

2Chu, loc. cit. 
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C. Wave Length in Wave Guides 

In coaxial lines filled with air dielectric, the wavelength in the line is al-
ways equal to the free space wavelength, provided the attenuation is 
small. In hollow pipe wave guides, filled with air dielectric and neglecting 
attenuation, the wavelength in the guide always exceeds the free space wave-
length. As the frequency is unchanged, this would appear to indicate that 
the velocity of propagation of waves in a wave guide exceeds the velocity of 
light. Actually, the phase velocity vp in an air-filled wave guide, given by 
the formula 

ve = psg 

is greater than the velocity of light by the factor kg/k. But the actual rate 
of propagation of energy down the guide is the group velocity vg; this is 
related to the phase velocity by the equation 

C2 
ve. = 

where c is the velocity of propagation in free space, i.e. the velocity of light. 
The wavelength -A, in an air-filled hollow pipe wave guide is related to 

the cutoff wavelength in the guide and the free space wavelength of the 
transmitted radiation ). by the formula 

— 

111 — 

The wavelength in the guide is always greater than the wavelength in free 
space, and as the free space wavelength approaches the cutoff wavelength 
of the guide, the guide wavelength approaches infinity. The relations given 
in the above expression are plotted graphically in Fig. IV- 11. In this 
figure the ratio -A -A, is plotted against the ratio -A:kc, and the relationship 
between the two is seen to be a quarter circle of unity radius. 

1. Waveguides Filled with Dielectric. 
If the waveguide is filled with a perfect dielectric of constant '4, the 

wavelength in the guide is given by the equation 

= 
"V — Os/M 2 

where i. is still the free space wavelength in air, and -A, the cutoff wavelength 
of the guide when air-filled. If the dielectric is not perfect, but has a complex 
dielectric constant of the form 

= E ' — st" l  

the wavelength in the guide is given by the equation 
),  

-A, =   
' — \ 2 

\ ) 21 + 21 r , 
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IFIG.IV-10  
 VARIATION OF CUTOFF WAVELENGTH WITH 
ECCENTRICITY FOR ELLIPTICAL WAVE GUIDES 
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D. Standard Wave Guides 

Standard waveguides that have been chosen for various wavelengths 
are given in Table IV—I, along with the guide wavelength associated 
with each wavelength and wave guide, and the cutoff wavelength for the 
next highest mode associated with each size of guide. 

E. Recommended Wave guides 

Various standard sizes of round and rectangular pipe suitable for wave-
guides are listed in Table IV—II, along with the range of wavelength for 
which each is suitable. These ranges are suggested by the Subcommittee 
on Wave Guide Connectors of the RMA Committee on H.F. Line Con-
nectors. 

F. Power-Carrying Capacity of Wave Guides 

The maximum power that can be transmitted through an air-filled 
waveguide will depend upon the maximum electric field strength that can 
exist without breakdown. 

If the maximum allowable breakdown potential is specified, the maxi-
mum power carrying capacity of the wave guide can then be expressed when 
the wavelength and the size of the guide are known. The following formulae 
give the maximum power in terms of the maximum allowable field strength. 

Experimental data on allowable field strengths at ultra high frequencies 
are not available. A value of 30,000 volts/cm. is frequently used at ordinary 
frequencies as the breakdown voltage under standard conditions of tempera-
ture, pressure, and humidity. • . 

The values given by the equations below are the theoretical maximum 
powers, and do not take into account increases in potential gradient caused 
by standing waves or discontinuities in the guide. In actual practice, 
breakdown will occur at considerably lower powers than expressed by the 
formulas unless extraordinary precautions are taken. 

1. Rectangular Waveguide. The maximum power that can be carried 
by a rectangular waveguide operating in the dominant or TEL° mode 
with a > b is 

  — 6.63 X 10 -4 ab 
Emax -2  Isg 

If the potential gradient Emax is expressed in volts/cm., the dimensions of 
the guide, a and b, should be expressed in centimeters for the power P to 
be given in watts. The maximum field intensity occurs parallel to the 
narrower dimension of the guide, midway between the side walls, and is 
independent of the distance from the wide faces of the guide. 
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TABLE IV-I 

Standard Wave Guides 

Rectangular Guides 

TE1,0 mode 1.2.0 mode 

Size ( 0.D.) a (cm.) b (cm.) ),.(cm.) 

Ic(cm.) ),.g(cm.) ) c(cm.) 

1/2 ' X 1" 2.29 1.02 3.20 4.57 1 4.48 2.29 

(0.050' wall) 3.30 4.77 

3.40 5.09 

Ye" X 1 Vs" 2.86 1.27 3.20 5.72 3.86 2.86 

(1.(6" wall) 3.30 4.04 

3.40 4.23 

11/2 ' X 3" 7.22 3.40 9.1 14.44 11.70 7.22 

(0.080" wall) 9.8 13.33 

10.7 15.92 

Circular Guides 

Size (ID.) 

1'46" 

21/2 " 

D (cm.) 

2.38 

3.02 

6.35 

23/4" 6.99 

3" 7.62 

4" 10.16 

TEi d mode Th10,1 mode TE2,1 mode 

),c(cm.) 

3.20 

3.30 

3.40 

3.20 

3.30 

3.40 

4.06 

5.15 

9.1 10.83 

9.8 

10.7 

9.1 

9.8 

10.7 

9.1 

9.8 

10.7 

9.1 

9.8 

10.7 

11.92 

13.00 

17.33 

Xg(cm.) 

5.17 

5.54 

6.15 

4.08 

4.30 

4.52 

16.8 

23.0 

70.0 

14.1 

17.2 

24.2 

12.8 

14.9 

18.8 

10.7 

11.9 

13.6 

Mcm.) Xg(cm.) Xc(cm.) i.g(cm.) 

3.11 

3.94 

8.29 

9.12 

9.95 

13.27 

5.49 

6.04 

6.73 

3.11 

11.80 7.19 

22.4 7.85 

56.4 

12.5 10.46 

14.5 

18.1 

18.5 

28.0 
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TABLE IV- 11 

Recommended Sizes for Wave Guides 

Rectangular Guides 

Outer Dimensions 

Inches 

Outer Diameter 

Inches 

3 

25/8 

21/4  

2 

13/4  

1 IA 

1 % 

1 I/8 

1 

Yri 
3/4 

Yir 

91(6 

Wall Thickness 

Inches 

Suited for Wave Length 

Range - cm. 

.081 

.064, . 081 

.064, . 081 

.064 

.050, . 064 

.064 

Round Guides 

.065 

.062 

.065 

.065 

.065 

.042 

.065 

.032 

.032 

.035 

.032 

.020 

.028 

7.6 

5 
3.7 

3.0 

2.4 

1.7 

9.6 

8.3 

7.1 

6.2 

5.4 

4.7 

4.15 

3.6 

3.1 

2.7 

2.3 

1.95 

1.7 

- 
- 

- 
- 
- 

- 

- 

11.8 

7.6 

5.7 

4.7 

3.7 

2.6 

10.9 

9.6 

8.1 

7.2 

6.2 

5.4 

4.8 

4.15 

3.6 

3.1 

2.7 

2.3 

2.0 
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2. Circular Wave Guide. For the dominant, or TE1,1 mode in circular 
wave guide the relation between maximum power and maximum allowable 
field strength is 

Emax2 -• = 1.99 X 10 -3 a' (-)"-) 

where a is the radius of the guide, X the free space wavelength, and 4 the 
guide wavelength. Maximum field strength is at the center of the guide. 

For the circular magnetic, or TM0,1 mode, there are two separate cases: 
Case I: a/) < 0.761 

a' ), 
 2•  = 7.69 X 
Emag- Xg 

In this case the maximum field intensity is at the center of the guide. 
Case II: alX > 0.761 

 •  = 3.33 X 10 -3 a' ( 2'1 ) 
Emax ' 

In this case the maximum field intensity is at r = 0.765a and is inde-
pendent of angle. 

3. Variation of Power-Carrying Capacity with Altitude. The maximum 
possible power that can be carried in a waveguide varies with altitude in 
the same manner as in concentric lines. Refer to Fig. I-5 for the decrease 
in maximum allowable power with altitude. 
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CHAPTER V 

ATTENUATION IN WAVE GUIDES 

In the previous chapter, it was assumed that the \\ a‘ e guide walls were 
of infinite conductivity, and that the wave guides were filled with a perfect 

dielectric. If these assumptions were completely justified, power would be 

carried down the inside of the wave guide with no attenuation, provided 

the wave guide was not below cutoff dimensions for the wave being trans-
mitted. In physically realizable wave guides, the conductivity of the walls 
is finite, and as a result the wave is partially attenuated because of losses 

in the metal. In addition, if some dielectric other than air is used inside 
the guide, the losses in the dielectric may result in a very rapid attenuation 

of the transmitted waves. 

A. Conductor Losses 

In calculating conductor losses, the skin depth in the conductor must 
be considered. The same considerations apply to wave guides as were 

outlined in Chapter II, Section B-1 for concentric lines. The attenuation 
in a wave guide resulting from conductor losses will vary with the square 

root of the resistivity of the conductor, the same variation as is encountered 

in concentric lines. 
1. Rectangular Wave Guides. The notation used here is the same as 

is outlined at the beginning of Chapter IV. For a rectangular, copper, 

air-filled waveguide operating in the dominant or TE1,0 mode, the attenua-

tion is given by 

2c 
]1a ( .;:e) 3/2 ± (:ft," ) 

— I 4 db per ft. 

1(.frcY  

The dimensions of the guide, a and b, are in inches. If some metal other 

than copper is used as a conductor, the attenuation given by the above 
formula should be multiplied by the appropriate loss factor in column 3 of 

Table II-1. 

In Fig. V-1 is plotted the variation of attenuation with wavelength for 
the various recommended wave guides listed in Chapter IV—Section E over 

the wavelength range for which each is recommended. It is assumed that 

the material is copper. 
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Formulae giving attenuation as a function of frequency and guide 
dimensions for some other modes of propagation in a rectangular copper 

wave guide are as follows: 

cec  TE2, o r 
-2(÷,;(î )3" ( )' db per ft. 

.1( 1-)2 1 

TEL 
.01107  

otc = a3'2 
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a 3/2 

('7).-tY " ±(— E ab{ 1 + aby ‘ jc , bf  db per 
ft. 2 3/4 

[ 1+ ( 01 . 1(1.4) 

1- 2 — 1 
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Cic — 
.01107 [ 
a3 / 2 

( 3/2 

[  î.)  1d1) per ft. 
[1 ± 131" 1 

As before, the guide dimensions are in inches. 

The variation with frequency of the attenuation in a typical rectangular 
wave guide (a = 2", b = 1") is plotted in Fig. V-2 for some of the lower 
modes of propagation. The variation with frequency is seen to be similar 
for all the modes, although the magnitude of attenuation differs with the 
mode of propagation. 
A term L can be defined as the loss length, or length per unit attenuation. 

If Fig. V-3 the dominant or M ho mode of propagation is assumed and 
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I./M 12 is plotted against 2(0, for values of the ratio b/a that cover the range 
commonly used. In this figure the loss length is in feet/di), ami the free 

space wavelength ), in cm. The conducting material is assumed to be 
copper. These curves permit rapid calculations of attenuation for any 
arbitrary wavelength signal in a wave guide chosen within the range com-

monly used. 
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2. Circular Wave Guides. The attenuation formulas for conductor 
losses in circular wave guides are as follows: 

For TEL1 mode ( Dominant Mode) 

2c. 
.00423 (.1f-, + 2.138 ( ff 3'2 , )  

db per = ft. a3"2 

D 2  1 

For T/1/0,1 mode (Circular Magnetic Mode) 

( f \ 3/2 

.00485 )  
a312 2 

.‘l( irc) — 1 

For TE0,1 mode (Circular Electric Mode) 

f 
.00611 \ fe  

dl) per ft. 
a3l2 f \ 2 

) 

2c = 

db per ft. 

These formulae assume air- filled copper guides with the radius a in 
inches. For different conductor materials the attenuation should be multi-
plied by the appropriate loss factor in column 3 of 'Fable II- 1. 

The variation of attenuation with frequency for a round copper wave 
guide 2 inches in diameter for each of the above modes is given in Fig. V-4. 
It is interesting to note that for a given size guide, the attenuation of the 
7'E0.1 mode decreases without limit with increasing frequency. Experi-
mental verification of this is lacking, and the anomalous attenuation 
characteristic is lost if the guide is elliptical. See section A-3 of this chapter. 

The variation of attenuation with wavelength for the various rec-
ommended circular wave guides of Chapter IV, Section E is plotted in 
Fig. V-5. This is for the TEL' mode of transmission in air-filled, copper 
wave guide. For different conductor materials, the value of attenuation 
obtained from this figure should be multiplied by the appropriate loss factor 
given in column 3 of Table II- 1. 

The loss length L is defined as the length of line per unit attenuation. 
In Fig. V-6 the term L/e2 is plotted against 2a/) for the above three 
modes of transmission. In this figure, L is in feet/db, the radius a in inches 
and the free space wavelength ). in cm. The wave guide is assumed to 
be copper, air-filled. 
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3. Effect of Ellipticity on Attenuation in Circular Wave Guides.' If a 
circular wave guide is deformed or made elliptical, the propagation will be 

affected, as outlined in Chapter IV—Sec. A-3. The attenuation of the 

waves will also be affected. The notation applied here to modes of propaga-
tion in elliptical pipe shall be the same as used in Chapter IV. The following 
conclusions may be drawn regarding attenuation as a function of ellipticity, 

with the perimeter of the pipe held constant. 
1. The attenuation of the elic, and ,Eo waves will always increase as the 

ellipticity increases. In addition, the allowave will not have an attenuation that 
decreases indefinitely with increasing frequency unless the ellipticity is zero. 

2. The attenuation of the XI and el-11 waves will not be appreciably 

affected by the ellipticity. 
3. The attenuation of the ell, and ,,E1 waves will be increased with 

increasing ellipticity except in the case of the ,H1 wave very near cutoff. 
The minimum attenuation which can be obtained as a function of 

frequency is plotted in Fig. V-7 as a function of the ellipticity of the guide 
for the above modes of propagation. The periphery is assumed to be held 
constant at 40 cm., and the minimum attenuation is given in db/mile for 
copper, air-filled wave guide. In general, the variations in attenuation are 

not important except for large deformations. 
4. Conductor Losses in Dielectric-Filled Wave Guides. If a wave 

guide is filled with a dielectric, there will be losses introduced by the dielec-
tric, and in addition, the copper losses will be affected by the presence of 
the dielectric material. The formulae given in this section for losses in an 
air-filled guide may be applied to wave guides filled with a dielectric whose 
constant is el if some slight corrections are made, as follows: 

1. Wherever the cutoff frequency f in the air-filled guides appears in the 
formulae, substitute the cutoff frequency in the dielectric-filled guide fc'. 

These terms are related by the equation 
.fc  

- 

2. Multiply the modified expression by the factor ell. In other words, 

if the original expression for attenuation in an air-filled guide was 
2 = F(f,a,byft) 

the modified expression for attenuation in the same wave guide filled with a 

dielectric whose constant is el will be 
a = F(f,a,b,fc') = z F(f,a,b,f,) 

This expression only takes into consideration the effect upon conductor 
losses of having a dielectric inside the guide, and does not include losses 

resulting from the finite power factor of the dielectric. 
IL. J. Chu, Electromagnetic Waves in Elliptical Hollow Pipes of Metal, Jour. App. 

Phys., Vol. 9, p. 583, Sept. 1938. 85 CONFIDENTIAL 
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B. Dielectric Losses 
In a wave guide filled with dielectric material, there will be losses 

resulting from the imperfections of the dielectric as well as the finite con-
ductivity of the conducting walls. These dielectric losses may be calculated 
by assuming the dielectric constant to be complex for actual dielectrics 
although real for perfect dielectrics. The dielectric constant may therefore 
be written 

Si = Eli Si" 
and the loss tangent of the dielectric is defined as 

tan = 

The loss tangent of the dielectric is equal to the power factor, defined by 
power factor = cos (90° — 

for all but very lossy dielectrics. 
If art ideal dielectric whose constant is ri is assumed, the cutoff wave-

length ),' in the dielectric-filled guide will be 

= 
where ?„ is the cutoff wavelength in the same guide when filled with air. 
Inserting a dielectric with a constant greater than unity will increase the 
cutoff wavelength of the guide, and permit it to transmit power at lower 
frequencies than would otherwise be possible. But in general, losses in the 
dielectric are so high that the saving in space is more than compensated for 
by the increased attenuation of the power. On the other hand, it is quite 
feasible to construct satisfactory fixed attenuators by using a wave guide 
filled with a lossy dielectric. 

The wavelength in a guide filled with an ideal dielectric has been given 
in Chapter IV, Section C-1 as 

1, = 

where A is the free space wavelength and X, the cutoff wavelength of the 
empty guide. If the dielectric is not perfect, the exact wavelength in the 
guide is 

1 

Ej 

=   X   
2 

1141 1/2 -I- 1/2 [  
X, (A)2T + ii 

which reduces to the approximate formula 
A 

isg — 

— (—)2 X, 
for all except the most lossy dielectrics. 
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The exact formula for attenuation in a wave guide resulting from an 
imperfect dielectric is 

ap = 830 —€1" ( db per ft. 
X, 

where Ag, the guide wavelength given above, and the free space wavelength 
A are in cm. In all cases where the approximate calculation for wavelength 
is justified, the attenuation may be expressed as 

1  
ceD = 830 I   db per ft. 

) 

C. Attenuation Resulting from Both Conductor and Dielectric Losses 

To find the total attenuation in a wave guide resulting from both con-
ductor and dielectric losses, the following formula should be applied: 

CCT = CCD ± 

In this formula xr, the total attenuation, is seen to Le the sum of at', the 
attenuation resulting from dielectric losses, and ac, the attenuation resulting 
from conductor losses. When conductor losses are calculated, care should 
be taken to use the modified formulae which take into account the effect 
of the dielectric upon the conductor losses. 

D. Losses in Flexible Wave Guide 

The attenuation in various types of flexible wave guides has been 
measured.' The values are given in Table V-1, along with some calculated 
figures for solid wave guides put in for comparison. The measured values 
are for guide that is old and well used, and the wavelength was A = 3.2 cm. 
All guides were approximately 1" X IA" 0. D. rectangular tubing. 

TABLE V—I 

Losses in Wave Guides 

Type of Guide 

Solid copper  

Solid brass  

Flexible copper  

Flexible copper— Silver plated  

Flexible aluminum  

Flexible brass  

Attenuation 

.035 

.07 

.64 

.087 

.5 4.0 

.219 

Comments 

Calculated 

Calculated 

Measured—guide very oxidized 

Measured—guide very well used 

Measured—Loosely wound 

Measured—interlocked and 

soldered 

2N I casured at Research Laboratories of the Sperry Gyroscope Co. 
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The attenuation in copper guide is particularly a function of age, for when 
the copper is clean, its attenuation is very little different from the flexible 
silver-plated guide. 

E. Losses in Joints in Wave Guides 

The losses in various types of connecting joints for wave guides have 
been measured at A = 3.2 cm. in 1" X O.D. X .050" rectangular wave 
guide. The conclusions reached were that either the simple butt joint 
squeezed very tightly, or the choke coupling aligned by pins is satisfactory. 
The choke has a slightly higher loss but gives more consistent results with 
reasonable precautions. The following losses were measured in brass guide. 

Type of Joint Loss in db 

Soldered—soft or silver .008 to .010 
Butt Joint—very tight .000 
Choke and Flange Joint .009 to .013 
Ordinary Butt Joint .004 to 1 

One advantage of a choke coupling is that it permits the ends of the 
wave guide to be separated without a marked decrease in transmission. 
The percent transmission as a function of the separation between the ends 
of the waveguide is given in Fig. V-8 while the standing wave ratio at the 
input introduced by displacement in various directions is given in Fig. 
V-9. These measurements are in 1" X AI" O.D. X .050" rectangular 
wave guide at a wavelength A = 3.2 cm. 

F. Losses in Various Types of Shorting Plugs3 

The losses in various types of shorting plugs in 1" X -I" O.D. X .050" 
wall rectangular wave guide at A = 3.2 cm. have been measured with the 
following results. The types of shorting plugs tested are sketched in Fig. 
V-10, and the loss measured is in excess of the loss introduced by a brass 
plate soldered on the end of the wave guide. 

Type of plug Measured loss — db 

A—silver plated .001 
B—silver plated .005 to .006 
C—silver plated .015 to .025 
D—silver plated .017 to .035 
E—brass .038 

The losses in types A to D do not vary greatly with age, but the losses 
introduced by type E have been observed to increase markedly with age. 
The above measurement of the type E plug was made with a clean, newly-

machined model. 

3Measured at Research Laboratories of the Sperry Gyroscope Co. 
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G. Attenuation in a Wave Guide Below Cutoff 

If a possible mode of propagation is excited in a wave guide that is 
below cutoff for that particular mode, there will be no real propagation 
of energy down the guide. The input impedance will be a pure reactance, 
if losses in the walls are neglected, and the fields that are excited in the 
guide will diminish exponentially with distance from the point of excitation. 

The field as a function of distance down the guide is given by 

E = E. e ' 
where E0 is the initial amplitude of excitation. The attenuation is given by 

Œ8.69 8.69 ( — 217 / — \ —/ 27 
db  

unit length 
where X is the free space wavelength and the wavelength at cutoff. In 
Fig. V-11 is plotted attenuation as a function of ?s, for a given k„ which is in 

turn a function of the size of the wave guide and the mode of excitation 
(Chapter IV, Section B). As the free space wavelength becomes much 
larger than the cutoff wavelength, the attenuation becomes nearly inde-
pendent of )„ and approaches a limit of 

as ), becomes very large. 

It was stated above that there is no real propagation of energy through 
a wave guide that was below cutoff. This is the idealized case for a perfectly 
conducting wave guide of infinite length. It is possible to insert a probe or 
other pick-up device into the guide at a distance from the point of excita-
tion, and abstract power which will be proportional to the square of the 
field strength at that point. So there will be some propagation of energy 
through the guide. As the amount of energy abstracted from the guide is 
proportional to the square of the field strength at the point of pick-up, and 
this field strength diminishes exponentially with distance from the point of 
excitation, a wave guide below cutoff can be used as a variable attenuator 
whose attenuation in decibels is a linear function of distance. 

In such an attenuator the TELI or Tilf0,1 modes in circular guides are 
most commonly used. For these modes, the attenuation formula becomes: 

For the T.E1,1 mode 

54.6 db  
X, unit length 

Œ = 8.69 1.8a41 )2 2?7 )2 

For the TH0,1 mode 

2./7 y a = 8.69 ( 2.105 )2  
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CHAPTER VI 

REFLECTIONS AND IMPEDANCE MATCHING IN WAVE GUIDES 

A. General Discussion 

In an ordinary coaxial transmission line, the principal mode is used for 
propagation of energy down the line, and the line restricted in size so that 
the higher modes will not propagate. If there is some discontinuity or 
reflecting element introduced into a line that is otherwise perfectly matched, 
part of the incident principal wave will be reflected back toward the gener-
ator, and in addition higher order modes may be excited. The line being 
sufficiently restricted in size (See Chapter I, Section I), these higher order 
modes will not propagate down the line, but will diminish exponentially with 
distance from the point of excitation. The higher order fields will vary as 

E = E, e 
where E0 is their initial amplitude of excitation. The attenuation a is given 
by 

a =  y ( ) 27: \ 2 nepers/unit length 
)  

where )L is the free space wavelength and )„ the cutoff wavelength for the 
mode under consideration. If the ratio ),/)„ is large, the attenuation will be 
given approximately by 

27: 
= nepers/unit length 

Xc 
and the fields will have fallen to 1/e of their initial amplitude at a distance 

2 from the point of excitation. 

Ordinary transmission line theory may be accurately applied to discon-
tinuities and junctions in the line only if the higher order fields set up by the 
discontinuity can be neglected. Distortion and fringing of the fields is an 
indication of the presence of higher order fields, and if the fringing is appreci-
able, results obtained by ordinary transmission line theory may be in error. 

For an ideal line in which these higher order modes can be neglected, the 
reflection coefficient of the discontinuity, which is the percent of the incident 
wave that will be reflected from the discontinuity, is given by 

— — 1 
E2 Zo  

ZL 
— 1 
Zo 

where ZL is the input impedance at the point of discontinuity, Zo the 
characteristic impedance of the line, and E1 and E2 the magnitudes of the 
electric fields associated with the incident and reflected waves, respectively. 
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The ratio ZL/Zo in the above expression is termed the normalized impedance 
at the input to the discontinuity. By measurement of the magnitude and 
position of the standing waves between the discontinuity and the generator, 
the normalized impedance may be determined even though the actual line 
impedance Zo is not known (See Chapter III, Section A-5). As will be 
seen, this normalized impedance is a useful concept for transmission systems 
in which the value of Zo may be in doubt. 

In wave guides which are restricted in size so that only the dominant 
mode will propagate energy, the effects of a discontinuity are much the same 
as in a coaxial line, except that the first higher order modes that are excited 
can never be very far away from cutoff, and can therefore never be neglected. 
For example, if a rectangular wave guide is carrying the dominant or TEL° 
mode, the width a of the guide must always be greater than A/2, while 
cutoff for the next higher mode (TE0.01 is given by = a. 

B. Impedance in a Wave Guide 

Various definitions have been proposed for characteristic impedance in 
a wave guide. The one in most general use at present is the "specific wave 
impedance," which is the ratio of transverse electric to transverse magnetic 
fields for a given mode in the guide. For a guide of uniform cross section, 

this impedance is as follows: 
For all TE waves: 

- 
Ag 

= 377 
si 

For all TM waves: _ 

Z, = 
Si Ag Ag 

This definition is not exactly the same in physical meaning as the 
characteristic impedance of a concentric line, for the ratio of transverse 
electric to magnetic fields in any system operating with the principal mode 

1/ 7T, of transmission is 377 .` " ohms, regardless of the geometrical configura-

tion of the system. So the exact wave guide analogy of characteristic 
impedance in a concentric line is doubtful, but the effects of discontinuities, 
loads, etc. may be expressed in terms of normalized impedances which do 
not require an exact knowledge of Zo. 

If some reflecting element is introduced into a wave guide, an analogy 
can be drawn between its action and the action of an impedance discon-
tinuity in an ordinary transmission line. For instance, if the reflecting 
element is a perfect conductor, one would expect that its action will be 
equivalent to some combination of series and shunting reactors in an 
ordinary transmission line which absorb no power. It has been found 
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theoretically and verified experimentally that many reflecting elements 
whose dimension along the guide axis is small compared to a wave length are 
equivalent to simple shunting reactances. The normalized input admittance 
Y to such reflecting elements when introduced into a matched wave guide 
can be represented by 

Y = 1 jB 

where B is the normalized susceptance of the reflecting element. 

C. Relation Between Normalized Susceptances and 
Standing Wave Ratio 

Impedance matching in a wave guide—making the load impedance 
equal to the guide impedance—is usually accomplished with one or more 
of these reflecting elements. A shunting reactance that introduces a certain 
standing wave ratio into a matched transmission line will, if properly 
placed, correct the same standing wave ratio in another system. 

input id"  

field hltensIty 

a/ony guide 

FIG. VI - 1 

Sudceptance e 

?notched /odd 

Consider the system illustrated in Fig. VI-1. The relationship between 
the shunting susceptance É and the standing wave ratio 11 which it intro-
duces into a matched wave guide or corrects in a mismatched guide is 
given by 

7) = 
(V4 -I- B2 ±  

\ V4 -I- B2 — Bi 

which may also be written as 

— 1  
B = .n1/4 

This relationship between 11 and B is shown graphically in Fig. VI-2. 

To correct a given mismatch, the size of the reflecting element should 
be chosen by the considerations outlined above. Then, to match the load 
to the line impedance, it should be placed at a position determined by 

90 — tan-1 I A I 
2  

— Ag 
720 
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where d1 is the distance between the reflecting element and a voltage 
minimum. If the reflecting element is inductive (B is negative) it should 
be placed at a distance d1 on the load side of a minimum, while if capacitive, 
it should be at a distance d1 on the generator side of a minimum. The 
distance d1 is plotted against I B I in Fig. VI-3. 

As a typical example of impedance matching with a reflecting element, 
consider a 1" X M" O.D. X .050" wall rectangular wave guide, with 
= 3.2 cm., feeding a load that gives 11 = 5.0:1 in the wave guide. 

With the chosen wave guide and wavelength, the wavelength in the guide 
= 1.764' and 1,/a = 1.96. It is desired to correct this mismatch with a 

symmetrical inductive window of the type discussed in Section D-1-a of 
this chapter, illustrated in Fig. VI-4 (an alternative method of matching, 
suitable for this type of window, is also included in Section D-1-a). 

1. From Fig. VI-2, it is seen that T, = 5.0:1 requires that the window 
have a susceptance B = 0.82. Therefore B(a/),) = 0.42. 

2. The chosen wave guide and wavelength correspond to one of the 
curves in Fig. VI-4. From this curve it is seen that to obtain the required 
value of B(aIM, the window opening should be d/a = .663, giving 
d = .596". 

3. From Fig. VI-3, this window should be located at a distance 
= .070X, = . 123" toward the load (B is negative) from a voltage mini-

mum. For minimum frequency sensitivity, the window should be placed 

as near the load as possible, yet not so near that there will be interaction 
of the higher order fields. (See Section D-1 of this Chapter). It will be 
recalled that voltage minima are spaced a half wave apart in the wave 

guide, and a reflecting element that produces a certain effect at a given 
location in a wave guide will produce the identical effect one or more half 
waves away from that point. 

D. Windows in Wave Guides 

A thin plate of metal placed perpendicular to the axis of a wave guide 
and partially blocking it acts as a shunt susceptance across the guide. 
The magnitude of the susceptance, and its sign (whether inductive or 
capacitive) will depend upon the size and location of the window through 
the plate. 

1. Rectangular Wave Guides 

a. Symmetrical Inductive Windows. When the window opening extends 
completely across the guide and is symmetrically located with the sides 
parallel to the narrow dimension of the guide (see Figure VI-4) the window 
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acts like a shunt inductance across the guide. This type of window has the 

theoretical susceptance 

B = — cot,  a -2—a 
where is the guide wavelength, a the guide width, and d the opening 

of the window. 

In Fig. VI-4, B a is plotted as a function of the ratio dia. On the same 
Ag 

sheet are plotted the experimentally observed results' for two different 
sizes of wave guide at a wavelength of = 3.2 cm. These curves are all 
seen to lie above the theoretical curve. This is because of the finite thick-
ness of the windows, which is not taken into account by the simple theory, 
and which effectively increases the susceptance of the window. All of these 

curves were made with ;i2" thick diaphragms. 
Special curves for symmetrical inductive windows have been included 

1' 
for one special case: 1" X —2 O.D. X .050' wall wave guide. = 3.2 cm. 

For this case, curves are given in Figs. VI-5 and Fig. VI-6 of the standing 
wave ratio as a function of window opening, and of the distance dI (in 
thousandths of an inch) at which the .window must be located on the load 
side of a minimum. To match impedances using these curves: 

1. Measure .11 and the position of a minimum. 

2. From Fig. VI-5 select the proper size window opening. 

3. From Fig. VI-6 determine the distance d1 between a voltage mini-
mum and a proper location of the window, and place the window at this 

distance on the load side of a minimum. 

Frequency Sensitivity of Windows. As can be seen from the theoretical 
formula, the standing wave ratio introduced into a given wave guide by a 
given window will depend upon the wavelength of the transmitted signal. 
This effect has been measured' for u," thick symmetrical inductive windows 

1" in 1' X O.D. X .050' wall wave guide. The experimental results are 

given in Fig. VI-7, along with the theoretical results. 

Coupling Between Windows. Theoretical calculations have been made 
which give the coupling between symmetrical inductive windows in rectangu-
lar wave guide operating in the dominant mode as a function of their sus-
ceptance and the distance S between them. This coupling is a result of the 
interaction of the higher order fields excited by the windows, and modifies 
the values of susceptance introduced by the individual windows. 

'Measured at Research Laboratories, Sperry Gyroscope Co. 
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The results are conveniently expressed by modifying the admittance 

of the second window. If Y1 and Y2 are the admittances of the windows, 
then 171 = — jBi and 12 = jB2, with Y2 the admittance of the window 
nearest the load. The modified value of Y2, termed Y2', is given by 

a 
B1  X  B2  31cs 27cS 

Y21 = —iB2 — 6 — X, 1 + -1 B1 1 + —a B2) e 171, sin X, 
X, 

2irS 4. cos 2irS 
—j B2 sin 

X, X, ) 
where a is the width of the guide, S is the distance between the windows, 

and YL is the load admittance referred to the plane of window 2. This 
2icS 

equation is valid to the extent that e=, is small compared to unity. 
Figs. VI-8a and VI-8b contain plots of the magnitude and phase of the 

ratio Y27172 as a function of the ratio S/ g. These are for the special case 
of YL = 1 (matched wave guide), Ida = 1.96, and two different values 
of Y1 and Y2, specified on the figures. 

b. Asymmetrical Inductive Windows. If the window opening extends 

from top to bottom of the guide with the sides parallel to the electric field, 
but is not symmetrically located in the center of the guide, the effect will 
still be that of a shunting inductance, but the magnitude of the inductance 
will be a function both of the window opening and the degree of displace-
ment from the center. A formula derived for the theoretical susceptance in 

this case is 
7.d 7.d 

B = cot' —2a ( 1 sec2 —2a cot2 
a a 

where x„ is the distance from one side wall to the center line of the window 
(when the window is centered, xo = a/2). This theoretical susceptance is 
plotted in Fig. VI-9, along with some experimental results. 

For the special case of asymmetry when one side of the window coincides 
with one wall of the pipe (xo = d/2) the theoretical formula reduces to 

B = — cot2 —2a ( 1 cosec2  a 2a 
This theoretical formula is plotted in Fig. VI-10, along with some experi-

mental results.' 
c. Capacitive Windows. When the window opening extends completely 

across the guide with the sides perpendicular to the electric field, the 
window acts as a capacitance shunted across the guide. The theoretical 
value of capacitive susceptance, assuming the window of zero thickness, is 

ird 
B = —4h log, cosec —2b 

X, 

1Measured at Research Laboratories, Sperry Gyroscope Co. 

10.5 reuirinnmat 



CONFIDENTIAL 

MICROWAVE TRANSMISSION DESIGN DATA 

10 
FIG.VI- 7  

_FREQUENCY SENSITIVITY OF INDUCTIVE 
W INDOWS IN A WAVE GUIDE 
IXV2 0.D.X.05D RECTANGULAR WAVE GUIDE 

Á 3.2cm 
 EXPERIMENTAL 
 THEORETICAL 

L 

6 

5 

4 

3 

2 

-f--

- 
•-•-•-. • 

.605 

.645 

- 
_ .672 

1   
2.9 3.0 3.1 3.2 3.3 3.4 3.5 3.6 

A-cm 

CONFIDENTIAL 106 



UNt 1AI 

REFLECTIONS AND IMPEDANCE MATCHING IN WAVE GUIDES 

1.00 

.96 

.92 

.88 

.84 

.80 

.78 

.72 

.68 

.64 

I 

i  
  FIGNI-8A r..j 

COUPLING BETWEEN WINDOWSL 
IN WAVE GUIDES 

Yi Ya c r-•0.51 
Kg 

MATCHED 

CnNIF111FNITIAI 



CONFIDENTIAL 

MICROWAVE TRANSMISSION DESIGN DATA 

Y2 

1.00 

.98 

.92 

.88 

.84 

.80 

.78 

.72 

.88 

.64 

-e 

9 

8 

7 

5 

4 

2 

o 
.12 

:::• 77.1. !•• 

CONFIDENTIAL 

fi 

, 

E  

.16 .20 .24 .28 
S 
Ag 

.32 .36 

E 

à 

MiiU1-1 • 

SUS  

UN  

th -1• .• • 
 FIGNI-813  

 COUPLING BETWEEN WINDOWS.. 
IN WAVE GUIDES 

i.:A111.741 .11  
  tr.r. 

11! WI; 
" ; •"1 

108 

•-• ":: 

-5L.0.51 Ag 

MATCHED 

--

•40 



CONFIDENTIAL 

REFLECTIONS AND IMPEDANCE MATCHING IN WAVE GUIDES 

FIG.VI-

- SUSCEPTANCE OF ASYMMETRICAL INDUCTIVE 
WINDOWS IN A RECTANGULAR WAVE GUIDE 

X=10.7CM 

Ag 

--e•-•-e-e-e- EXPERIMENTAL 
— - - - --THEORETICAL 

0.2 0.4 0.6 0.8 
X0-cm 

1.0 1.2 1,4 

CONFIDENTIAL 



CONFIDENTIAL 

MICROWAVE TRANSMISSION DESIGN DATA 

where d is the aperture width, b the smaller dimension of the guide, and A, 
the guide wavelength. The thickness of the window has an appreciable 
effect in the case of the capacitive window. A theoretical expression has 

been derived giving the susceptance and equivalent shunt conductance of a 
capacitive window of finite thickness. These expressions are 

B = B   

G — In14/ B d 
Ag b 

where B and G are the shunt susceptance and conductance of a window 

of thickness W, and Bo is the value given for the window of zero thickness. 
These values refer to the entrance plane of the window. The two theoretical 
formulae are plotted in Fig. VI-11 as a function of d/b, along with some 

experimental results.' 
The capacitive window is not widely used because the greatly enhanced 

possibilities of breakdown limit its use to low power systems. 

2. Circular Wave Guides 

a. Inductive Windows. A circular window centered in a circular wave 
guide acts as an inductive susceptance for all openings. No theory has been 
derived as yet for such a window. Some experimental data are presented 
in Fig. VI-12. 

E. Obstacles in Wave Guides 

1. Tuning Screws. A tuning screw is a cylindrical probe extending 
into a wave guide parallel to the electric field. The screw acts essentially 
as a shunting reactance in the guide. The magnitude of the susceptance 
varies with the depth of the probe in the guide. Short lengths of probe are 
equivalent to shunting capacities, the susceptance increasing with depth 
until at a length of approximately a quarter wave in free space a resonance 
occurs at which substantially all of the incident wave is reflected. For still 
greater lengths the screw becomes inductive, but in actual applications, it is 
always used in the capacitive region. The sharpness of the resonance is a 
function of the diameter of the screw, and higher Q's are found with smaller 
diameters. 

In Fig. VI-13 are plotted the susceptances of two different diameters of 
tuning screws as a function of the depth that the screw enters into the guide. 
These measurements were at a wavelength of 3.2 cm., in 1' x O.D. x 

.050" wave guide. 
2. The Inductive Cylindrical Post. If the probe in the above section 

extends completely across the guide, becoming a cylindrical post, it intro-

'Measured at Research Laboratories, Sperry Gyroscope Co. 
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duces an inductive shunt susceptance whose magnitude depends upon the 
diameter of the post. A theoretical formula has been derived for this case, 
giving the susceptance B as 

B = 2X,  1  
a 4a  

loge irde2 

where X, is the guide wavelength, a the guide width, d the diameter of the 
post, and e the base of natural logarithms (e = 2.718). This formula holds 
for posts whose diameter is small compared to the width of the guide. This 
theoretical result is plotted in Fig. VI-14, along with experimental points. 

3. The Inductive Strip. If a thin metal strip extends across a rectangular 
wave guide and is centered with the plane of the strip perpendicular to 
the axis of the guide, the strip acts as a shunting inductive susceptance. 
A theoretical expression has been derived for the magnitude of the sus-
ceptance as a function of the width of the strip, when the width is small 
compared to the guide width, as follows: 

B — 2 Xg 1  
a 8a 

log, 
itde2 

In this formula, X, is the guide wavelength, a the larger dimension of the 
guide, d the width of the strip, and e the base of natural logarithms 
(e = 2.718). A similarity to the formula for the inductive cylindrical post 
will be noted. 

4. The Capacitive Strip. If the strip extends across the guide parallel 
to the larger dimension of the guide, it acts like a shunt capacitive sus-
ceptance. A theoretical formula has been derived for the susceptance of 
this strip, which holds when the width of the strip is small compared to the 
small dimension b of the guide. The shunt susceptance is given by 

B 7,2 xgd2 

2 X2b 
where d is the strip width, b the small dimension of the guide, and X the free 
space wavelength. 

5. The Capacitive Disk in Circular Guide. A thin metal disk that is 
mounted in the center of a circular wave guide perpendicular to the axis 
of the guide acts as a shunt capacity across the guide. No theoretical 
formula has been derived for this disk, but some experimental results are 
plotted in Fig. VI-15, which give the susceptance as a function of the 
diameter of the disk. 

F. Resonant Structures in Wave Guides 

Certain types of structures when placed in a wave guide exhibit reson-
ance phenomena. For example, a diaphragm with an opening of the proper 
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size and shape will transmit an incident wave with no reflection at a given 
frequency, while for openings slightly larger or smaller, the obstacle will 
reflect part of the incident wave and act as either an inductive or capacitive 
shunting susceptance. This corresponds to a parallel resonant circuit 
shunting an ordinary transmission line, which will not disturb the traveling 
waves when it is at resonance, but will have some effect if slightly off 
resonance. 

Correspondingly, certain obstacles of the proper size and shape when 
placed in a wave guide will reflect substantially all of an incident wave at 
a given frequency. An example of this has already been discussed in the 
case of the tuning screw (Chap. VI—Section E-1) which reached resonance 
at a length of approximately a quarter of the free space wavelength, and 
was capacitive if shorter and inductive if longer. 

Obstacles of this general type correspond to series resonant circuits 
shunted across a transmission line, which reflect substantially all of the 
incident wave at resonance. In many cases, a series resonant obstacle in a 
wave guide will be similar in size and shape to the opening in a transmitting 
screen or diaphragm. 

1. Resonant Rings. An example of a series resonant structure in a 
wave guide is the resonant ring. No theoretical formulas for this ring are 
available, but a number of experimental measurements have been made. 
A resonant ring is simply a conducting ring of metal which exhibits resonant 
properties when placed perpendicular to the axis of the wave guide. Both 
round and rectangular rings exhibit resonance phenomena. 

The measured shunt susceptance of a circular ring of square cross section 
mounted centrally in a circular wave guide is shown as a function of s». 
in Fig. VI-16. In this figure s is the circumference of the ring and A the free 
space wavelength, in this case 3.2 cm. Resonance occurs when the circum-
ference is decidedly longer than a free space wavelength. 

For a fixed mean diameter d = .49" and a fixed wavelength A = 3.2 cm., 
the susceptance of a resonant ring as a function of the cross sectional 
dimensions is shown in Fig. VI-C. 

The data in Fig. VI-18 give the susceptance of a ring of circular cross-
section centrally located in a circular wave guide. The susceptance is 
given as a function of the diameter. The wavelength was not stated in the 
original report, but is believed to be about 9.8 cm. 

The susceptance of a rectangular resonant ring is plotted in Fig. VI-19 
as a function of the mean perimeter of the ring. These measurements were 
made at a wavelength of A -= 3.2 cm., in 1" X %" O.D. X .050' wall rec-
tangular wave guide. Here again, as in the case of the circular rings, the 
resonance occurs at a mean perimeter in excess of the free space wavelength. 
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2. Transmitting Diaphragms With Rectangular Window Openings. A 
number of different kinds of openings in diaphragms in wave guides exhibit 
the properties of a resonant transmitting screen, corresponding to a parallel 
resonant circuit shunted across a transmission line. The type of screen for 
which most data are available is a rectangular opening in a thin diaphragm 
across a rectangular guide. It has been found empirically that the approxi-
mate dimensions for resonance for the TEL° mode are obtainable from the 
relation 

CI, 1 1 f)\2 = 1 f)\2 

b \ 2a  ) 
where a and b are the guide dimensions, a' and b' are the dimensions of the 
opening, with a' being measured parallel to a and b' parallel to b. The 
free space wavelength is X. The results expressed in this equation can be 
represented by the following geometrical construction. In the center of 
the cross section of the wave guide lay out a line of length A/2, parallel 
to the large dimension of the guide and centered with respect to the walls. 
Draw a hyperbola passing through the ends of this line and also through 
the corners of the wave guide. This is illustrated in Fig. VI-20. The 
approximate dimensions of a resonant rectangular opening are then any 
rectangle whose corners lie on the hyperbola and whose sides are parallel 
to the walls of the guide. The experimental results given in Fig. VI-21 
provide a check on the validity of the empirical design illustrated in Fig. 
VI-20. A group of resonant slots were- constructed by this design, for 
= 10.7 cm., the wavelength was then varied about this value until the 

shunt susceptance of the window was zero. In Fig. VI-21, X/2a is plotted 

as a function of —a', and the experimental points are shown along with the 
b' 

straight line on which they would have fallen had the design been correct. 
All points fall near but below the line, indicating that the resonant wave-
length was less than = 10.7 cm. 

3. Resonant Screens and Corresponding Reflectors. A number of 
differently shaped resonant apertures in diaphragms and the corre-
sponding resonant obstacles have been investigated in round wave guide 
which can support only the dominant or TELI mode. A number of these 
are illustrated in Fig. V1-22 in which the transmitting screens are placed 
opposite the corresponding reflecting obstacles. 

These measurements are all at a free space wavelength of X = 9.1 cm., 
in a round pipe of inner diameter d = 2.5". A "radiation Q" has been 
defined for the transmitting screens as 

), 
Q=fh )›. 
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where A is the resonant wavelength and A + A), the wavelength at which 
the susceptance of the screen is equal to unity. The following observations 
have been made on the screens illustrated in Fig. VI-22. 

a. Straight Slit. The slit width was 4% less than A/2 for resonance. 
The Q's were about 25 and 50 for slits M mm., wide and .1 mm., wide, 

respectively. 
b. Crescent Slit. The arc length was about A/2 for resonance and the Q 

for a slit width of .5 mm., was approximately 140. 
c. Dumbbell Slit. For a length of straight section equal to 4.2 mm., and 

radii of the end circles equal to 1.4 mm., the measured Q was roughly 9. 
d. Circular Slit. The inner circumference of the slit was very nearly 

for resonance. 
The variation of Q with slit width is shown below: 

Slit Width (mm.) 
0.1 40 
0.5 20 
0.8 16 

In all the above observations, the thickness of the foil used to construct the 
resonant screens was .00e. Using brass W thick increased the Q's by a 
factor of about 2. For the circular slit the outer diameter had to be increased 
more than the inner diameter had to be decreased to obtain resonance with 
slits of various widths. As a typical example, the following values are 
quoted: 29 mm., I.D.-29.5 mm., 0.D.; and 26.5 mm., I.D.-40 mm., 0.D. 

G. Probe Antennas in Wave Guides'. 

A transition is frequently made from coaxial line to wave guide by 
having the center conductor of the coaxial line terminate in a probe antenna 
which radiates energy down the wave guide. The effectiveness of such a 
transformer is determined by the impedance which the probe termination 

'See Sperry Gyroscope Company Report 5220-112, Measurements of Impedance of 
Antennas in Wave Guides. 
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of the coaxial line offers to the coaxial line. The impedance of this antenna 
will be determined by its size and position in the guide, and also the con-
figuration of the guide and the standing waves in the guide. 

Measurements have been made in two special cases which are of interest. 
In both of these, the antenna was an extension into the wave guide of the 
center conductor of a 70 ohm coaxial line. Two sizes of 70 ohm line were 
tested: 1. The probe was .040' in diameter, an extension of the center 
conductor of a . 125" X 0.40' coaxial line. 2. The probe was ‘2" in diameter, 
an extension of the center conductor of a W X Wi coaxial line. All 
measurements were at a wavelength A = 3.2 cm., and the wave guide was 
1" X " O.D. X 0.50' wall. For both lines the impedance was measured 
with respect to the plane of entry of the antenna into the wave guide. Two 
types of wave guide loading were investigated. 

Case I: The wave guide was terminated at both ends in its characteristic 

impedance. The antenna impedance was measured as a function of the 
distance that the antenna extended into the wave guide. The measured 
reactance and resistance are plotted as a function of antenna length in 
Fig. VI-23 for the two diameters of antenna. 

Case II: One end of the wave guidé was terminated in its characteristic 
impedance, and the other was fitted with a short whose position was variable. 
The impedance of the antenna was measured as a function of the distance 
from the antenna to the shorting plug for each of a number of lengths of 
antenna. The measured resistance and reactance are plotted against the 
distance from the antenna to the short in Fig. VI-24 for the .040' diameter 
antenna and in Fig. VI-25 for the " diameter antenna. 
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CHAPTER VII 

WAVE GUIDE TEES AND BENDS 

A. Circular Bends 
The term circular bend as applied here means a wave guide which main-

tains its internal dimensions as it bends through an angle 0 on a constant 
radius. There are three types of wave guide circular bends as shown in 
Fig. VII-1. Fig. VII-1A shows an E bend in rectangular wave guide, so 
called because the electric vector is rotated through the angle 0 in passing 
through the bend. Fig. VII-1B shows an H bend in rectangular wave guide. 
This derives its name from the fact that the magnetic vector is rotated. 
Fig. VII-1C shows a circular bend in circular wave guide. In this case the 
vector rotated depends on the orientation of the field in the guide. 

Theoretically the worst reflection from these bends will be obtained 
when 0 = 45°. Calculations on an E bend with a = .900", b = .400", 
r -= 1", X = 3.20, and 0 = 45° give i? = 1.03 where .1) is the standing wave 
ratio in power. On a similar H bend at the same wavelength •/) = 1.02. 

Bends of both types with a = .900", b = .400", 0 = 90° and r = 1" 
have been tested at X = 3.20 cm. On these tests the values obtained were 
= 1.1 for both the E bend and the II bend. Radii of 2", 3" and 4" were 

also tried and in each case the larger radius was slightly better than the 

next smaller value. 
To obtain values as good as these it is necessary to obtain smooth 

bends. This is easily accomplished by filling the guide with a low melting 
alloy before bending and melting this out after the bend is made. 

Bends can also be made in circular wave guide but here the wave emerges 
from the bend elliptically polarized. The phase difference between the 
field vector parallel to the plane of the bend and the field vector normal 

to this plane is 

r a [ 3.64 ( 2 
+ 0.046 ( — 0.020 

± g g 

n 4  

where 0 = angle of bend, r =- radius of the inside of the bend, a = radius 

of guide and X, = wavelength in the guide. 
For a given angle 0, the ellipticity of polarization becomes smaller as 

the radius of curvature is increased. 
The following methods can be used to eliminate the elliptical polariza-

tion. 
1. In the above equation if we consider only the first term, then 

0  ore, r + a where 0 is the angle the bend goes through and r a is the radius 

of curvature of the center line of the wave guide. If two bends are used in 
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FIG.VII-IA  
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series the polarization caused by the first will be cancelled by the second if 
01 02  
+ a — r2 + a 

If r1 and r2 are different, then 01 and 02 will be different and there will 
be a net curvature of 01 — 02 without elliptic polarization. 

2. Two identical bends can be placed in different planes so as to cancel 
the phase differences while at the same time changing the direction of the 
wave. 

3. The ellipticity caused by a bend can be compensated by deforming 
the pipe to produce an elliptical cross section oriented in the proper manner. 

4. A piece of dielectric material may be inserted in the wave guide to 
correct the elliptical polarization. This is in the form of a strip extending 
lengthwise in the wave guide. The length and thickness as well as the angle 
at which this sits in the wave guide must all be correct to neutralize the 
phase differences. 

Although the above methods are all theoretically possible it is evident 
that successful results with any one of them will be hard to obtain in actual 
practice. 

B. Corners 
As with the circular bends, wave guide corners also consist of three 

types; E-bend in rectangular wave guide (Fig. VII-2A), H-bend in rectangu-
lar wave guide (Fig. VI I-2B) and corner in circular wave guide (Fig. VII-2 C). 

In contrast to bends which follow a smooth curve, corners change 
direction abruptly. It is evident that any such sharp change in direction 
causes reflections and consequent standing waves. By inserting a plane 
directly at the corner as in Fig. VII-2 it is possible to eliminate these 
reflections. Fig. VII-3 and Fig. VII-4 give data for the positioning of this 
plane to give a standing wave ratio of 1.0. The particular data shown come 
from measurements made at A = 10.84 cm. in rectangular wave guide 
7.0 cm. by 3.25 cm. Using A = 3.20 cm. in a . 900' X .400' guide the opti-
mum dimensions for 0 = 90° are d = .325" for the E bend and d = .830' for 

d 
the H bend. These give values of — = .57 and .61 respectively. 

do 
No data is available at the present time on the circular guide corner. 

Reflections could be eliminated by a similar plane at the corner but un-
doubtably elliptical polarization would occur. This, theoretically, could be 
corrected by some method such as deforming the pipe but in actual practice 

good results would be hard to obtain. 

C. Twists 
Extensive tests have not been carried out on wave guide twists because 

no difficulty has been experienced with these units. If one wishes to keep 7) 
less than 1.1, all that is necessary is to keep the length 1 over TX for a 90° 

113 rnnicsnrmr, At 



CONFIDENTIAL 

MICROWAVE TRANSMISSION DESIGN DATA 

FIG.VII-3 POSITION OF OF CUT-OFF PLANE FOR 

ZERO REFLECTION IN E-BEND 
CORNER 

10 20 30 40 50 

CONFIDENTIAL 

60 

134 

70 80 

(P° 

90 100 110 120 130 



WAVE GUIDE TEES AND BENDS 

- 
  FIGNII-4 1  
POSITION OF CUT-OFF PLANE FOR 

 1 ZERO REFLECTION IN H-BEND 
1CORNER 

10 20 30 40 50 60 70 80 90 100 110 120 130 

CONFIDENTIAL 



CONFIDENTIAL 

MICROWAVE TRANSMISSION DESIGN DATA 

twist (Fig. VII-5). Shorter twists are not only harder to make but cause 
more reflections. 

D. Tee Sections 

A tee section as considered here consists of a straight section of wave 
guide from which there branches at right angles another section of wave 
guide. This may be either rectangular or round wave guide. Only the 
rectangular type is discussed here. In the rectangular wave guide there are 
two types of tees. The series tee has the right angle leg branching off the 
larger dimension (Fig. VII-6A). The shunt tee has the right angle leg 
branching off the smaller dimension (Fig. VII-6B). 

Data are included (Figs. 7 through 24) showing the impedance looking into 
both series and shunt tees made up of .900' X .400" I.D. wave guide operat-
ing at X = 3.20 cm. This was obtained looking into the tee in the direction 
of the arrow with a termination Zo in one leg and a short in the third leg. 
The impedance is given with respect to the center line of the branching 
leg. Two types of curves are given. The first (Figs. VII-7 through VII-12) 
are circle diagrams of the type discussed in Chapter III Section A-5. 
The values on one family of circles equal the standing wave ratio in voltage 

(Vi). The values on the other, orthogonal family of circles are the distance 
in electrical degrees that the center line of the branching leg is from a voltage 
node (for admittance diagrams) or a voltage loop (for impedance diagrams). 
The actual impedances (taken from the circle diagrams) are shown in Figs. 
13 through 18. These are plotted as a function of the distance between the 
short and the inside of the wave guide. 

The curves are self-explanatory (see Chapter III, Section A) and from 

them the impedance may be determined for any position of the short. The 
experimental data on series tees shown here agree very closely with theory 
that has been developed. It will be noted from the circle diagrams that only 
the cases shown in Figs. VII-8 and VII-11 give a good match without screw 
or window matching of some type. 

The data shown in Figs. 19 through 24 were obtained in .900" X .400" 
I.D. wave guide by varying the wavelength from 3.00 to 3.60 cm. In this 
case the short was moved until the minimum standing wave ratio was 
obtained and the position of the node was measured. p shows the minimum 

standing wave ratio in power. —L gives the position of the short necessary 
X, 

D 
to obtain the minimum standing wave ratio and —., shows the node position 

Ag 

with respect to the center line of the branching leg. In the cases shown in 
Figs. VII-19 and VII-22 the minimum 11 = 1.0 so no standing wave is 
present. 
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CHAPTER VIII 

WAVE GUIDES FILLED WITH DIELECTRIC MATERIAL 

The electric and magnetic fields along the axis of a wave guide vary as 
e-Tz e, where y is the propagation constant, a the attenuation 
constant, and /3 the phase constant. If the wave guide is partially or com-
pletely filled with some dielectric material with a dielectric constant given 
by e = e' —je, the propagation constant of the guide will be affected, and 
the impedance of the guide and its cutoff wavelength will also change. 

A. Propagation Constant 

If the guide is completely filled with a dielectric, the propagation constant 

of the guide becomes 
2z 2 , 

Y - e = v (x/),,)  je 

where 1 is the wavelength in air and the cutoff wavelength in the air-
filled guide. If the losses in the dielectric are small ( e/e' « 1), this 

formula reduces to 
E" ± 2j [ e' (1/X,)21 

'k e' — 
and for a perfect dielectric 

. 2 •ir 
— 

B. Wave Guide Impedance 

The "specific wave impedance" of a wave guide has been defined in 
Chapter VI, Section B as the ratio of transverse electric to transverse 
magnetic field strength. We now define the "normalized impedance" Z of 
the guide as the ratio of specific wave impedance when the guide is filled 
with dielectric to specific wave impedance when the guide is air-filled. 

The following formulas can then be applied; 
For all TE waves: 
It can be shown that for all TE waves in wave guides, the normalized 

impedance Zr E of a dielectric-filled guide is given by 

Yo 
ZrE = — 

Y 
where yo is the propagation constant in the air-filled guide and y the pro-
pagation constant in the dielectric-filled guide. This leads to the following 
formula for normalized impedance in a dielectric-filled guide 

CONFIDENTIAL 

ZrE = (/),c) 2 — 1  
(Xl)c) 2 4- je" 

156 



CONFIDENTIAL 

WAVE GUIDES FILLED WITH DIELECTRIC MATERIAL 

When the dielectric is low power factor, this may be re-written 
1 a"  

ZTE = [ 1 ± 
2 e — (A/).)2 Ago 

where ),go is the guide wavelength in the air-filled guide and A, the guide 
wavelength in the dielectric-filled guide. For an ideal dielectric 

Xg = J1 — (A/X,)2 
--
)̀go (O'c) 2 

The normalized impedance of a wave guide operating in a TE mode 
and filled with a dielectric is always less than unity, and decreases with 
increasing dielectric constant. 

For all TM waves: 
It can be shown that for all TM waves in wave guides, the normalized 

impedance ZTm of a dielectric-filled guide is 

7.731 = Eyo 
This leads to the following formula for normalized impedance in a dielectric-
filled guide: 

Zrm = 
 1 ,i(V) c) 2 e' je" 

jeff (X/M 2 — 1 
For a low-loss dielectric this becomes 

ZTM = Ago1 + J7 [ 1 E1/2  
E'Xg e' (xn,c) 2 J f 

and for a perfect dielectric 

Zni = 
E' 1 — 

1 — (X/Xj 2 

For TM waves, if (X/M2 < the normalized impedance will always 
be less than unity, and will decrease continuously as the dielectric constant 
increases. However, if (X/Xc)2 > the normalized impedance will first 
increase to a value greater than unity and then decrease to zero, with 
increasing dielectric constant. It will pass through the value unity at a 

value of e' given by 

= 1 — 

C. Reflections From Dielectric Plugs in Wave Guides 

If there is a sudden change in the dielectric material inside a wave guide, 
a wave that is incident upon the boundary will be partially reflected because 
of the discontinuity in the medium of propagation. If the interface between 
dielectrics is normal to the axis of the wave guide, one might hope that the 
reflection could be determined by a consideration of the impedance of the 
system on both sides of the discontinuity. The question then to be asked is: 
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What property of a wave guide can be considered as analogous to the 
characteristic impedance of an ordinary transmission line in making these 
calculations? We have already considered the "specific wave impedance" 
of a wave guide (Chapter VI, Section B) and have found it in part analogous 
and in part not analogous to the characteristic impedance of a coaxial 
or two-wire line. It can be shown, however, that the analogy is good 
for the particular problem under consideration. If the interface is then 
the boundary in a given wave guide between air-filled and dielectric-filled 
regions, the reflection from this boundary will be given by 

E2 Z — 1  
Z + 1 

In this equation E1 is the magnitude of the electric field of the incident wave, 
E2 is the magnitude of the electric field of the reflected wave, and Z is the 
normalized impedance of the dielectric-filled guide. The standing wave ratio 
input to the interface, if the dielectric-filled section is terminated in its 
characteristic impedance, will be 

or 

r,+ 

= Z2 if Z > 1 

- 

E2 

) 
E2 

El 

; )2 if Z < 1 

and the losses in the dielectric are small. 
If the portion of wave guide that is filled with dielectric material is 

finite in length, there will be a reflection at both the incoming and out-going 
faces of the dielectric region. The phase relationship between the reflections 
will then depend upon the length of the dielectric region, unless the attenua-
tion in that region is so high that the wave which is reflected from the far 
face of the dielectric is negligible in comparison with the wave reflected from 
the near face. The problem is best treated by considering the dielectric-
filled region as a length of transmission line with a characteristic impedance 
and propagation constant different from the air-filled guide. These calcu-
lations yield a reflection coefficient of 

E2 sinh y/  
E1 sinh (y/ ± 0) 

where / is the length of the dielectric section, y is the propagation constant 
of the dielectric section, and 

0 = 
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The net wave transmitted, E3, will be related to the incident wave E1, by 
E3 eToi sinh 
El sinh (it ± 0) 

The difference is accounted for partially by the wave that is reflected and 
partially by the wave that is absorbed in the dielectric. For a rectangular 
air-filled guide operating in the dominant or TEL° mode with a plug of per-
fect dielectric, the percentages of the input power that will be reflected and 

transmitted are given by 1,0 102 . _ sin2 

P Refl. = 1g .kgo «), 2 
i+1,(_ —-) 2• 2 2'wl sm 

1 
P Trans. = , Igo )sg 2 . n 21r./ 

1 + — stn- —  
Ag Ago Xg 

where /go is the wavelength in the air-filled guide and lg the wavelength 
in the dielectric-filled guide. These formulas have been checked experi-
mentally for polystyrene at / = 9.0 cm., with the results shown in Fig. 
VIII-1. The discrepancy can be accounted for by experimental error, 
as the measured total power transmitted and reflected sometimes exceeds 

100% of the total input power. 
D. Wave Guides Partially Filled with Dielectric Material 

Consider a wave guide of indefinite length in which only part of the cross-
sectional area of the wave guide is filled with dielectric material, and the 
rest is filled with air. In such a wave guide, the fields will be pulled into the 
dielectric material, and one effect will be to reduce the phase velocity and 
the wavelength in the guide below the air-filled values. When the guide 
wavelength /, is equal to the free space wavelength 1, there is total internal 
reflection inside the dielectric at the air-dielectric boundary, and most of 
the energy is carried in the dielectric-filled portion of the wave guide. 
A dielectric cylinder bounded by another dielectric of lower dielectric 

constant is capable of acting as a wave guide, and will guide electromagnetic 
radiation although there is no conducting material present. The fields will 
not be completely enclosed within the dielectric cylinder, however, and will 
extend to infinity in a direction normal to the axis of the dielectric guide. 
In this respect, they will be analogous to the fields being guided by an 
ordinary two-wire transmission line. If the dielectric cylinder is in turn 
enclosed by a larger, hollow cylinder of conducting material, this cylinder 
will disturb somewhat the field configurations inside and outside the di-

electric cylinder, but its major effect will be to enclose completely all of the 
energy being guided by the dielectric cylinder. This shielded dielectric wave 
guide is the limit that is approached when enough dielectric material is 
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put into an ordinary hollow pipe wave guide to bring the guide wavelength 

below the free space wavelength. 
Case I: If a rectangular wave guide operating in the TEL° mode is 

partially filled with some perfect dielectric material in the manner indicated 
in Fig. VIII-2, the field configuration will depend upon the ratio 1/1,, 
which in turn will depend upon the size of the wave guide and the amount 
of wave guide that is filled with the dielectric. Three cases are illustrated in 
Fig. VIII-2, which are drawn for a typical wave guide and low-loss 
dielectric. The dielectric constant is assumed in this and subsequent cases 
to be 2.45, a generally accepted value for polystyrene in the neighbor-
hood of A = 3 cm. In the first case Ag > A and the presence of the dielectric 
somewhat modifies the fields that are present in the air-filled guide. In the 
second, A, = A; this is the point at which total internal reflection in the di-
electric is reached. In the third, A, < A, and this is similar to the shielded 
dielectric guide. The cutoff wavelength of the wave guide will also be a func-
tion of the percentage of the wave guide that is filled with dielectric, and in 
Fig. VIII-3, a/A, is plotted as a function of dia, where a is the width of 
the wave guide and d is the width of the dielectric, as illustrated. Also 
shown on this figure is the variation of an,, as a function of dia for the 
next higher, or TE2,0 mode. The maxima in the slope of these curves 
will occur when the transverse field maxima are passing through the inter-
face between the dielectric and air. For the TEL° mode the maximum 

d 
slope is at a value of — < 0.5, indicating that the field is being pulled into 

a 
the material with the higher dielectric constant. 

In Fig. VIII-4, the ratio An., is plotted as a function of dia for various 
values of aA; these curves illustrate the effect of the dielectric upon the 
guide wavelength. The maxima in the slope of these curves will occur 
when the increment of dia is in a region of maximum transverse field 
strength, as the effect of the dielectric will then be greatest. Here again 
the maximum slope is at a value dla < 0.5, also illustrative of how the 
field is pulled into the dielectric material. Fig. VIII-5 contains much the 
same information as Fig. VIII-4, but here the ratio A/A, is plotted against 

an, for a number of different values of dla. Also shown on these curves 
are the points where propagation of the TE2,0 mode becomes possible. 
All of the curves except that labeled dia = 0 will eventually become 
tangent to the dia = 1.0 curve, for at sufficiently high values of an,, the 
dielectric cylinder will in every case act as a dielectric wave guide and 

contain practically all the energy. 
Case II: When the dielectric is inserted at the center of the guide, 

instead of at the edges, the effect upon cutoff wavelength for the TEIA 
and TE2,0 modes will be as illustrated in Fig. VIII-6. For the TEI,c, mode 
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the maximum slope is at a value of dia = 0, this is because the dielectric 
is being inserted in a region of maximum field strength when it is placed 

in the center of the guide. A similarity will be observed between the curve 
for the TEL() mode in Fig. VIII-6 and the curve for the TEL° mode in 
Fig. VIII-3. This arises from the fact that the dielectric is inserted in 
corresponding regions of field in the two cases. 

In Fig. VIII-7, the ratio 1/X, is plotted against the ratio dia for various 
values of a/X. This figure should be compared with Fig. VIII-4, which 
is the corresponding figure for Case I. Maxima of slope occur at dia = 0, 
for the same reason as in Fig. VIII-6. Fig. VIII-8 is comparable to Fig. 
VIII-5 for Case I. In this case it will be noted that the curves are crowded 

more toward the curve labeled dia = 1.0, illustrating the greater effect 
of the dielectric when placed in the strong fields at the center of the guide. 

Case III: When the dielectric is against both side walls of the wave 
guide, as illustrated in Fig. VIII-9, the effect of a given amount of dielectric 

will be even less than in Case I, because here the dielectric is concentrated 
even more in a region of low field. The variation of cut-off wavelength 
with increasing dia is shown in Fig. VIII-9 for the TEL° and TEL° modes. 
The curve for the TE2,c, mode is similar to the curve for the TEL(' mode 
in Fig. except for a scale factor. 

The variation in 1/Xg as a function of a/X is given in Fig. VIII-10 for 
a number of values of dla. In this case the curves are crowded more toward 
the curve for d/a = 0, which indicates the relative ineffectiveness of the 
dielectric when concentrated in a region of low field. 

Case IV: When the dielectric partially fills the wave guide in the 
manner indicated in Fig. VIII-11, the situation is more complicated than 
in the preceding cases. The field structure which goes continuously into 
the TEL° mode as the dielectric thickness approaches zero has five non-
vanishing field components, Ex, E,„ E., H., and H.. This field has both 
electric and magnetic components along the axis of the guide, and is trans-

verse magnetic to the direction normal to the interface between the air 
and the dielectric. As the thickness of the dielectric approaches zero, the 
E. and E. components will vanish, leaving only the E5, H., and H. com-
ponents that are found in an air-filled guide propagating the TE1,0 mode. 

In this case the properties of the guide are a function of an additional 
parameter, the ratio of the guide cross-section dimensions. Therefore no 
single family of curves can be applied to show the variation of O., with 
increasing values of dielectric thickness d. For this reason, only a single, 
typical curve of X/Ag vs. b/), is shown in Fig. VIII-11 for a wave guide 
in which bla = 0.45 and d,/b= 0.50. In Fig. VIII-12 are given two curves 
of X/Xz vs. d/b for two typical values of b,/A. These are for wave guides 
in which b/a = 0.45. 
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E. Reflections From Tapered Sections of Dielectric 
The general problem of reflections from tapered discontinuities in line 

impedance have been discussed for coaxial lines in Chapter III, Section 
B-1C, and the same principles may with reservations be applied to tapered 
changes of impedance in wave guides. To a second order of approximation, 
the reflection from a tapered dielectric section of length 1 in a rectangular 
wave guide supporting the TEL° mode only is found to be 

E2 8 cAg\ ( dXg\ dzi _ e - 
7r dz ) dz ) f = o z = 

If the taper is sufficiently gradual, it will be seen by the above formula 
that the magnitude of the reflection depends upon the discontinuity in 
the derivative of the guide wavelength at the beginning and at the end 
of the taper. A taper which starts at one side of the wave guide and ends 
at the other should then be very good, as the rate of change of wavelength 
at the ends of the taper will be small. But there will be oscillations in the 
curve of reflection as a function of the length of the taper, because of the 

dz 
variations with length of the term e - f . If the taper tarts in the 

o Ag 
center of the guide, the reflection is likely to be larger for a similar taper 
of the same length, but the curve of reflection vs. length of taper will have 
smaller oscillations. The standing wave ratio introduced as a function of 
the length of taper is given in Fig. VIII-13 for a taper that starts on the 

long dimension of the guide and extends to the other side. That is, a cross-
section in the tapered region would appear as Case IV of the partially 

filled guide. 

F. Effect of a Dielectric Post in a Wave Guide 
A dielectric post which extends across the center of a rectangular wave 

guide operating in the TEL() mode, parallel to the lesser dimension of the 
guide, will act as a shunt admittance provided the diameter of the post is 
small compared to a wavelength, that is if 

2irR y 
< < 1 

where R is the radius of the post. If this assumption is valid, the admit-

tance of the post will be given by 
1 . a l, X (a\ 1 é 

1 = -A —g loge Tz• 
f — —  1.472 E ICE ) 

where a is the width of the guide, the guide wavelength, X the wave-

length in free space, e the complex dielectric constant of the substance 

forming the post, and f (a-i) is as given in Fig. VIII-14. 
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Part 3 

MISCELLANEOUS 

CHAPTER IX 

DIELECTRIC MATERIAL 

Consider the impedance of a parallel plate condenser, first in air and 
second with an insulating material between the plates. If the capacity 

of the air-dielectric condenser is Co, its impedance will be given by ----i . (,)C0 

When the condenser is filled with insulating material, its impedance becomes 

— j where e is the dielectric constant of the insulating material. 
EG)Co' 

Losses in the dielectric can be taken into account by considering the 
dielectric constant as complex and of the form 

L = s ' — je " 
The loss tangent of the dielectric is then defined by 

tan t. = —7-e 
In general t. is a small angle, and nearly equal to the power factor p. 

The power factor is 

p = — = cos e 
8 

where 
0 = 90° — t, 

At microwave frequencies, the dielectric constant and power factor 
of insulating materials may be different from the values found for the 
same materials at lower frequencies. A considerable number of measure-
ments have been made at centimeter wavelengths, with the results given 
in Table IX—I. Discrepancies that exist between values obtained by differ-
ent observers may be accounted for in part by inaccuracies in measure-
ment, and in part by the use of different samples. 

The value a ' can usually be measured with good accuracy, except 
for very lossy materials, and the results given are in general accurate 
within one or two percent. The loss tangent, tan , is much more difficult 
to measure with great accuracy, especially for low loss dielectrics, but 
the majority of values given are probably accurate within ten percent 
for the samples measured. The wide discrepancy in values obtained by 
different observers for certain substances, notably paraffin, ceresin and 
linen bakelite, is not fully understood. It may be that different precautions 
were taken for the presence of moisture in the samples. All values are at a 
temperature of approximately twenty degrees centigrade. 
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TABLE IX-I 

Material I. cm. 

Barium Titanate* Ba Ti 03 10.0 

Titanium Dioxide*  10.0 

Titanium Dioxide*  10.0 

Tan Observer 
_ 

1760 . 17 M.I.T. 

92.5 .016 M.I.T. 

104 .0006 M.I.T. 

Glass (Code.) 

704 I 10.0 4.60 .0044 M.I.T. 

705  10.0 4.90 .0053 M.I.T. 

7052  10.0 5.10 .0061 M.I.T. 

707  10.0 4.00 .0016 M.I.T. 

772  10.0 4.40 .0051 M.I.T. 

774  10.0 4.89 .0089 M.I.T. 

775  10.0 4.26 .0043 M.I.T. 

790  10.0 3.84 .0008 M.I.T. 

012  10.0 6.70 .0040 M.I.T. 

3320  10.0 4.60 .0064 M.I.T. 

Benzene  10.0 2.27 .0021 M.I.T. 

Cable Oil . 5314  10.0 2.23 .0018 M.I.T. 

Castor Oil  10.0 2.68 .087 M.I.T. 

Dow Corning 

Fluid 190**  10.0 

Fluid 200**  10.0 

2.72 

2.73 

.015 M.I.T. 

.0095 M.I.T. 

Ethylene Glycol  10.0 12.5 1.1 M.I.T. 

Glycerol  10.0 5.40 .57 M.I.T. 

Nujol  10.0 2.14 .0008 M.I.T. 

Propylene Glycol   10.0 5.4 .90 M.I.T. 

Pyranol  10.0 2.74 .0026 M.I.T. 

Salt Solution .00992 Molal 

pure Na CI  10.0 77.5 . 16 M.I.T. 

Salt Solution . 1010 Molal 

pure Na Cl  10.0 75.0 .22 M.I.T. 

Styrene, N-100  10.0 2.42 .0017 M.I.T. 

Transil Oil 10-C  10.0 2.16 .0028 M.I.T. 

Tung Oil  10.0 2.61 .039 M.I.T. 

Water  10.0 77.1 . 15 M.I.T. 

The measurements reported are provisional and may be characteristic only of these samples, 

which were prepared from commercial raw material by the laboratory for Insulation Research, M.I.T. 

**These were laboratory samples that may not be representative of plant production. 
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TABLE IX - I - Continued 

Material k cm. Tan Observer 

Bakelite 

Black Linen  1 10.0 4.36 I . 031 

10.0 3.98 .073 

6.0 3.60 .07 

3.2 i 3.79 .080 

Natural Linen  10.0 4.58 .012 

10.0 4.15 .086 

3.2 3.98 .093 

Black Paper  10.0 4.05 .070 

3.2 3.70 .085 

Cellulose Acetate  10.0 3.42 .064 

Cibanite  1 10.0 3.52 .0064 

Dielectene # 100  10.0 3.40 .0030 

Dielectene el 60  10.0 3.28 .0029 

Durite #221-X  10.0 3.65 .035 

Lucite  10.0 2.53 .0068 

10.0 2.60 .0084 

Methyl Methacrylate**  10.0 2.60 .0063 

Pol>mer  

Lucite  3.2 2.70 .016 

Plexiglass   6.0 2.70 .014 

Polystyrene  10.0 2.55 .0005 

Polystyrene  10.0 2.51 .0008 

Polystyrene  3.2 2.52 

Polystyrene Ba Ti 0,3**  10.0 154 .017 

Polythene . 80 A**  10.0 2.26 .0005 

Polysulfone # 111**  10.0 3.50 .020 

Polyvinylcarbazole  10.0 2.94 .0040 

Styramic  10.0 2.65 .0004 

StIrene Copolymer** 

(#1421) GE  10.0 2.47 .0008 

Styrene Copolymer  10.0 I 2.52 .001 

Thiokol Powder  10.0 4.59 .29 

M.I.T. 

Sperry 

M.I.T. 

Sperry 

M.I.T. 

Sperry 

Sperry 

Sperry 

Sperry 

M.I.T. 

M.I.T. 

M.I.T. 

M.I.T. 

M.I.T. 

M.I.T. 

Sperry 

M.I.T. 

Sperry 

M.I.T. 

M.I.T. 

Sperry 

Sperry 

M.I.T. 

M.I.T. 

M.I.T. 

M.I.T. 

M.I.T. 

M.I.T. 

Sperry 

M.I.T. 

**These were laboratory samples that may not be representative of plant production. 
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TABLE IX - I - Continued 

Material ). cm. E' Tan r, Observer 

Acrawax  10.0 2.92 .090 M.I.T. 

Armour Wax  10.0 2.50 .007 M.I.T. 

AD1180-C 

Armour Wax N180 

Armour Wax SWAM- 1 180-A 

Beeswax  

Beeswax & Rosin 50:50  

Candellilla   

Carnauba  

Cerafiux  

Ceresin, White  

Ceresin, Yellow  

Celowax  

Glycowax A  

Montan  

Nipocer N  

Paraffin  

Rezo Wax A  

Rezo Wax B  

Shellac Wax  

Wax Kate  

Wax S324 (Glyco Prods, 
Bklyn, N. Y.). 10.0 2.67 .024 M.I.T. 

10.0 2.81 .074 M.I.T. 

10.0 2.61 .014 M.I.T. 

10.0 2.30 .011 M.I.T. 

10.0 2.32 .014 Sperry 

3.2 2.33 .013 Sperry 

3.2 2.43 .009 Sperry 

10.0 2.36 .0024 M.I.T. 

10.0 2.48 .0060 M.I.T. 

10.0 2.15 .0010 M.I.T. 

10.0 2.26 .0006 M.I.T. 

10.0 2.28 .003 Sperry 

3.2 2.18 .004 Sperry 

10.0 2.25 .0006 M.I.T. 

10.0 2.29 .003 Sperry 

3.2 2.18 .004 Sperry 

10.0 2.27 .0009 M.I.T. 

10.0 2.42 .0060 M.I.T. 

10.0 2.38 .0070 M.I.T. 

10.0 2.45 .0095 M.I.T. 

10.0 2.20 .0002 M.I.T. 

10.0 2.19 .002 Sperry 

3.2 2.17 .011 Sperry 

10.0 2.63 .0074 M.I.T. 

10.0 2.59 .0025 M.I.T. 

10.0 2.47 .011 M.I.T. 

10.0 2.46 .0045 M.I.T. 

Italian lava---unfired   3.2 5.46 .008 Sperry 

Italian Lava-fired  3.2 5.87 .021 Sperry 

Mahogany  10.0 1.91 .078 Sperry 

3.2 1.95 .094 Sperry 
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Material 

Oak  

Rosin  

Rubber (hard)  

Sulfur  

Transite  

DIELECTRIC MATERIAL 

TABLE IX — I — Continued 

Tan Observer 

10.0 

3.2 

10.0 

3.2 

10.0 

3.2 

10.0 

3.2 

10.0 

3.2 

2.49 

2.21 

2.60 

2.45 

2.89 

2.79 

3.83 

3.85 

15 .42 
Ç5.51 

15.55; 

.070 Sperry 

.103 Sperry 

Sperry 

Sperry 

.007 Sperry 

.007 Sperry 

.003 Sperry 

.002 Sperry 

.072 Sperry 

.084 Sperry 

1s1 er,l1,1,r1I1,116.1,11 
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CHAPTER X 

CAVITY RESONATORS 

A. General Discussion' 

At ordinary radio frequencies, a 
resonant circuit consists of a coil and 
condenser. Associated with these cir-
cuit elements are losses which may be 
lumped together into an equivalent 
resistance, as indicated in Figure X-1, 
where L is the inductance, C the 
capacity, and Rd, an equivalent resistance which takes care of circuit losses. 
A knowledge of these three parameters permits a complete description of 
the behavior of the circuit in response to an impressed voltage. The resonant 

frequency fo of the circuit is given by the equation 

X - 1 FIG. 

1  
f" 27.VL C 

and the input impedance Z to the circuit at a frequency f is given by 

1 1 1'0 
= Rsh (I f 

The characteristic impedance R„ of the circuit is defined as 

Ro = L 

and the customary definition of Q is 

Q = Rsh/caL 

Ordinary resonant circuits are usually discussed in terms of R51„ L, 
and C, and equations describing circuit behavior are usually written with 
these terms involved. But the behavior of a resonant circuit could be 
described equally well in terms of the three parameters Ro, Q, and fo. 

At microwave frequencies, the components of an ordinary resonant 
circuit become so small that they are physically not practical to use, and 
cavity resonators are required because they are physically large and because 
they are highly efficient. Any hollow, conducting cavity has associated 
with it an infinite number of resonant frequencies, each corresponding 
to a different configuration of electromagnetic fields which can be excited 
in the interior of the cavity. That a cavity resonator is like an ordinary 
resonant circuit in many waysc an be readily shown, but an exact parallel 

1From unpublished notes by W. W. Hansen, also W. W. Hansen, A Type of Electrical 
Resonator, Jour. of App. Phys., Vol. 9, p. 654, October 1938. 
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cannot be drawn between the two. For example, there is no unique defi-
nition of inductance in a cavity resonator. The inductance L of a lumped 
circuit may be described in any of a number of ways 

ti) L = 2 ( 1  = 2 X L/2 energy stored  
1- /2  current' 

b) L — 
LI flux linkages 
I — current 

c) Calculate L from the equation f. — 
21W LC 

1 

energy stored  
with C = 2>< 

voltage' 
In an ordinary resonant circuit each of these definitions leads to the 

same calculated value of inductance. This is not true for a cavity resonator, 
where in the general case a different answer will be obtained by each method 
of calculation. A similar ambiguity will be encountered in any attempt 
to find a unique definition of capacity. 

But in a cavity resonator there is a unique value of resonant frequency 
corresponding to a given mode of oscillation; for a given shape of cavity 
and given mode of oscillation, this resonant frequency will depend only 
upon the size of the cavity. 

The Q of a cavity operating in a given mode of oscillation may also 
be uniquely defined. We have previously defined Q as 

Rsh 
Q = 

and one might assume that as no unique definition of L has been found, 
there is also no unique definition of Q. But Q may also be defined as 

energy stored  
Q = 2ir energy lost/cycle 

and the Q obtained by this definition is a unique quantity for a given mode 
of oscillation. 

No unique definition may be given for the shunt impedance of a cavity 
resonator; this is a fundamental shortcoming and cannot be circumvented 
by a good choice of definition. In fact the losses may be expressed either 
in terms of an equivalent series resistance, defined by the relation 

PR„ 
average energy lost/sec = 

2 
or in terms of an equivalent shunt resistance, defined by the relation 

average energy lost/sec —   
2 Rsh 

If these definitions were unique, the ratio of shunt to series resistance would 
be Q2, as in ordinary resonant circuits. But in general, this ratio is not 
equal to Q2 for cavity resonators. Cavity resonators are nearly always 

183 CONFIDFNTIM 



CONFIDENTIAL 

MICROWAVE TRANSMISSION DESIGN DATA 

voltage fed, so the shunt resistance is usually considered. But this in no 
way makes less valid the definition of series resistance; there is just all 
inherent ambiguity and a choice must be made. 

Resonant Frequency of a Cavity Resonator. To obtain the resonant 
frequency of a cavity resonator, solutions to Maxwell's equations must 
be found which satisfy the boundary conditions imposed by the resonator. 
It is nearly always assumed that the cavity is made of a perfect conductor, 
which means that for calculations of resonant frequency, penetrations of 
the fields into the walls of the resonator are neglected. The boundary 
conditions which must then be met are that no tangential electric field 
and no normal magnetic field exist at the surface of the cavity walls. 

The electric and magnetic fields are derivable from some sort of potential 
which satisfies a wave equation, and the calculation usually leads to an 
attempt to find a suitable potential function which is applicable to the 
problem in hand. An analytical solution is only possible for a limited 
number of cavity shapes, shapes which can be readily defined in terms of 
one of the standard co-ordinate systems. A number of approximate methods 
of calculation have been developed which give more or less accurate answers 
for many cavity shapes that cannot be solved by analytical methods. 
Two cavities that are identical in shape but different in size will have 
resonant wavelengths that are proportional to the linear dimensions of 
the cavity. 

Q of a Resonator. The Q of a resonator has previously been defined by 

Q 2 energy stored  ,. 
energy lost/cycle 

This is a unique definition for a given mode in a given cavity. The quantity 
Q is frequently used as a figure of merit for a resonant circuit, for it is a 
measure of the damping of a freely oscillating circuit. It can be shown 
that the total field energy in a freely oscillating circuit varies with time 
according to the equation 

W = Woe 1, 
where W is the energy at a time t and Wo the initial energy at t = O. The 
Q of a resonator is also a measure of the sharpness of the resonant circuit, 
as the bandwidth between 70% response points ,àf is related to the resonant 
frequency fo by 

.àf = 1 

To calculate the Q of a resonator, the relation must be found between 
energy stored in the cavity and losses in the cavity. If dielectric losses 
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are neglected, and only losses resulting from conduction currents in the 
resonator walls considered, these losses are 

8 
energy lost/cycle = —8f B2 del 

where is the skin depth, B the magnetic field at the wall of the cavity, 
and du an element of area in the cavity wall. The integral is carried out 
over the interior surface of the cavity. The energy stored in the cavity is 

energy stored = 1 f132 (IT 

with ds an element of volume, and the integral carried out over the volume 
of the cavity. The Q of the cavity is then 

- X 2 f 132 d^:  
Q 8 If B2 Ida I 

It will be seen that Q is a dimensionless quantity. If this equation is re-
written as 

= 2 f B2 ch  
Q  Bldcri 

the right hand side is independent of the wavelength and depends only 
upon the size and shape of the cavity. It is therefore sometimes known 
as the form factor of the cavity. To a first approximation this becomes 

2 f  Q 
f11:10.1 

as the form factor is not a rapidly varying function of the flux distribution. 
Also, because the magnetic field is a maximum at or near the surface of 
the resonator, the mean surface value of 132 will be twice the mean value 
throughout the volume, and it can be said approximately that 

1V 
Q = .3 

where V is the volume and S the bounding area of the resonator. A sub-
stitution of typical values will show that Q's greater than 1000 are easily 
obtainable at microwave frequencies. The cavity Q is also proportional 
to the volume to surface ratio. Large cavities will therefore have high Q's 
in general, and cavities that are highly re-entrant are likely to have Q's 
that are somewhat lower than the average. Two cavities of the same 
shape but different in size will have Q's that are proportional to the square 

- root of the resonant wavelength. 
Shunt Impedance of a Cavity Resonator. The shunt impedance, or 

more properly the slim t resistance, of a resonator is not a quantity that 
can be uniquely defini d. The shunt resistance of an ordinary resonant 
circuit can be defined a 

voltage2  
Rsh 2 X energy lost/sec 
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This definition is in many ways the most useful one that can be applied 
to a cavity resonator, as it is a factor of the resonator which tells the amount 
of input power that must be supplied to the resonator to maintain a given 
voltage across whatever path may be chosen. It may be calculated by the 
following conditions. The energy lost per second is given by 

af 
energy lost/sec = —8 f B2IdcrI 

where is the skin depth, f the frequency, B the magnetic field at the 
surface, and chf an element of surface in the cavity. The integration is 
carried out over the enclosing area of the cavity. 

The voltage is defined as the line integral of the electric field, which 
by Stokes' theorem may be set equal to 

f E • dsi = — —1 f B. • dzi 

where dsi is an element of length, and doi an element of area. The value of 
this integral will depend upon the path of integration chosen. Usually 
the path chosen is one which gives a maxi-
mum voltage difference without an ex-
treme path being chosen. For example, in   
the resonator illustrated in Fig. X-2, the CT do; 
path of integration is chosen along the 
axis of the resonator, with the path being 
closed around outside the cavity. The tE ill f 
element of length ds, is along the axis of 
the resonator as indicated. The element 
of area dCii lies in a cross section containing   
the axis and the integration is carried out 

over the portion of that cross section en- FIG. X - 2 

closed by the path of the line integral. If 
the resonator is excited by a beam of electrons passing through, the voltage 
used in shunt impedance calculations is obtained by integrating the electric 
field along the path of the electron beam. 

The shunt resistance obtained by this method of calculation is then 
given by 

The factor 

R 
[ f B • d71]2 ).c = 167.2 

f B2 I d r; emit 

16 
f B21 dz 

is independent of the frequency and has to do only with the shape 
of the resonator. It then follows that for two resonators of the same 
shape but of different size, the shunt impedance will be proportional to 
the square root of the resonant wavelength. 
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To get some idea of the magnitudes involved, for copper at 10 cm. 
lc 
— = 2.5 X 106 ohms 
8 

and the shape factor is approximately unity, so the shunt resistance is of 
the order of 1 megohm. 

That a cavity has a high Q in no way implies that it also has a high 
value of shunt resistance, in fact it is possible to find cavities with any 
combination of Q and Rs*. 

B. Characteristics of Various Cavity Resonators 

1. Rectangular Resonators 

The characteristics of a rec-
tangular prism resonator, such as 
illustrated in Fig. X-3, are read-
ily calculated by analytical 
methods. 
A resonant wavelength ) o 

will be found in such a resonator 
when 

4  
).0 =   

)2 + ( Y )2 
2a 

FIG. X-3 

where 1 = numbet of half wave variations of field along the x axis 
ni = number of half wave variations of field along the y axis 
n = number of half wave variations of field along the z axis 

1, in, n = 0,1,2,3, . . . but not more than one may equal zero 
for fields to exist. 

For large resonators of this type, the number of modes dN in a range of 
wavelength d), is 

V 
dIV = 8 — d), 

).14 
where V is the volume of the resonator and ki is the center of the wavelength 
band dX. 

The number of resonant states N in such a resonator with wavelengths 
greater than some minimum wavelength 12 is given approximately by 

87: V N = 
3 ),23 

This approximate formula is quite accurate even for low N. 
Consider a rectangular resonator in which a = h, and where 1 = ni = 1, 

and n = 0. This is illustrated in Fig. X-4. 
The resonant wavelength in such a resonator is given by 

= 2 -V-2 a 
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The Q of this resonator is given by 

Q = .353 10  1  
, , a 

-- 
2 zo 

and the shunt impedance by 

R = 120 zo  1  
a a 

2 zo 

where is the skin depth. For large cubical 
resonators of this type in which a = b = zo, 
resonators operating in a high mode of 
oscillation, the Q is approximately 

FIG. X - 4 

Q a = 2 -Ao 

2. Cylindrical Resonators. The infinite number of modes that exist in 
cylindrical resonators can be divided into two general types: 1. Those in 
which the electric field is purely transverse to the axis of the cylinder and 
2. Those in which the magnetic field is purely transverse to the axis of the 
cylinder. The notation that will be applied to cylindrical resonators is 
illustrated in Fig. X-5. 

TE Modes. Considering first those modes in which the electric field has 
no component along the axis, the resonant wavelength ).0 is given by 

= 

FIG. X - 5 
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II( 
Each of these modes occurs when the 
resonator is effectively a section of cylin-
drical wave guide that is an integral 
number of half wavelengths long for 
some TE mode of transmission in the 
wave guide. The term 1 gives the number 
of half wavelengths contained in the 
resonator, and must therefore be an in-
tegral number, i.e., 1,2,3, . . . No mode 
exists in which 1 = O. If the TE,g.„, 
mode in a wave guide is the mode being 
excited in the resonator, u'„,m is the mth 
root of the equation 

= 
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A tabulation of some of the lower roots of this equation is given in Chapter 
IV, Section B-2. 

The Q of the resonator when a half wave long will be given by 
.a 

zo [ ten,m — 2 [ 1 , 
2 

= /0 „,,„  
a2 7:2 a (zo _ a) 772 n2 a /0 [ , 

— n,m 
a 4zo2 4z02 1t nm2j 

The Q is seen to decrease with increasing order of excitation. In the case 
where n = 0, and / = ni = 1, the Q is given by 

  1 —a )2 

lo zo Q — .610 1 + ( .410 a )  -I- .168 ( 

zo 1 + . 168 ( a ) zo 

Resonators operating in this mode of oscillation, which corresponds to the 
TE0,1 mode in a wave guide, have an exceptionally high Q, and are ideal 
for precision wavemeters except that some sort of damping system must be 
used to eliminate the other modes. 
TM Modes. For the other class of resonant modes in which the magnetic 

field has no component along the axis, the resonant wavelengths are given by 
4 

=   
( n,m 

—20) 2 

As before, each of these modes occurs when the resonator is effectively a 
section of cylindrical wave guide that is an integral number of half wave-
lengths long, this time for a TM mode of propagation. As before, / is an 
integer ( 1,2,3,4, . . . ) which gives the number of half waves in the resonator. 

In addition, modes exist when / = 0, these modes have an electric field 
that is purely axial and do not represent a possible mode of propagation 
in a wave guide. 

If the TM,,,,,, mode in a wave guide is the mode excited in the resonator, 
um,m is the mth root of the equation 

J„(u) = 
When / = 0, the axial electric field will still be given by an nth order 
Bessel function, which will have its mth root at the radius a. As before the 
term u„.„, will be the mth root of the nth order Bessel function which deter-
mines the axial field. A tabulation of some of the lower roots of this equation 
is given in Chapter IV Section B-2. 

The Q of the TM modes for a resonator a half wave in length when 
n 0 is given by 

Q /0 a  1  

zo 
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lin = 0 the Q is given by 

a 1 
Q = , a 

— 
2z0 

With this exception, for these modes the Q is not a function of the order 
of excitation, this is in contrast to the other class of modes. 

The shunt resistance of the mode in which 1 = n = 0, and nt = 1, 
i.e., the lowest mode in which the electric field is purely axial, is given by 

R = 144.; a, , a 
— 
2 zo 

1•0 ZO 1 

and the resonant wavelength lo by 

= 2.61 a 

3. Spherical Resonators. The first resonance will occur in a spherical 
cavity of radius a when 

).0 = 2.28 a 

and the second resonance when 

= 1.4 a 

The field configuration for these first two modes is shown in Fig. X-6. 
The Q of a spherical cavity operating in the dominant mode is 

Q = .318 

and the the shunt impedance given by 

x= 2.28a 
Electric field 
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4. Spherical Resonators With Reentrant Cones.' A resonator that can 
be solved by analytical methods consists of part of a sphere of radius a, 
and two cones whose apex is at the center of the sphere and whose half 
angle is Oo. Such a resonator is sketched in Fig. X-7, and the field corres-
sponding to the fundamental mode of oscillation is illustrated. 

The resonant wavelength of this cavity is given by 
= 4a 

and is not a function of the angle 00. The Q of the resonator does vary 

with the angle 00, and in Fig. X-8, Q —b is plotted as a function of 00. The 
Xo 

maximum value of Q is found at an angle of 00 = 34°, and is equal to 
Xo 

Q = .1095 — 

The shunt impedance is also a function of the angle 00, and Fig. X-9 gives 

the variation of R —ô with 00. The maximum value of R is reached at an 
X° 

angle of 00 = 9°. At this angle R is given by 

R = 32.04 --
8 

FIG. X - 7 

5. Ellipsoid-Hyperboloid Resonators.' Another type of resonator that 

has been solved is the ellipsoid-hyperboloid shown in Fig. X-10. The 
resonator is a figure of revolution about the axis passing through the foci. 
The resonant wavelength X0 of this resonator may be determined from 
Fig. X-11. In this figure, the distance a between the foci is held constant, 
and also the hyperboloid that determines part of the resonator. The 
equatorial radius xo is varied, and A0/x0 is plotted as a function of the shape 
factor cr0, defined by cro-= 2icx0/a. Also shown on the curve are the resonator 
shapes which correspond to various values of ao; these resonators are scaled 
in the drawing so as to maintain constant the resonant wavelength ).0. 

2See W. W. Hansen and R. D. Richtmeyer, On Resonators Suitable for Klystron Osci-
lators, Jour. of App. Phys., Vol. 10, p. 189, March 1939. 

3Hansen and Richtmeyer, loc. cit. 

191 CONFIDENTIAL 



7
V
I
I
N
3
C
H
N
O
D
 

.140 

J20 

.100 

.80 

Q-1 

.60 

.40 

.20 

e. 

F I G. X- 8  

Q OF A SPHERICAL RESONATOR 
WITH RE-ENTRANT CONES 

QR M
I
C
R
O
W
A
V
E
 
T
R
A
N
S
M
I
S
S
I
O
N
 
D
E
S
I
G
N
 
D
A
T
A
 

1
V
I
/
N
3
0
1
A
N
O
D
 





CONFIDENTIAL 

MICROWAVE TRANSMISSION DESIGN DATA 

The Q of the resonator is also a function of the shape factor cro, and in 

Fig. X-12, —Q8 is plotted against cr,,. The variation in shunt impedance 
Xo 

with the shape can be obtained from Fig. X-13, where - is plotted 

against ao. 

FIG. X - 10 

6. Concentric Line Resonator. One type of concentric line resonator is 
that shown in Fig. X-14. The field equations of the dominant mode in 
this resonator are 

A. 
Er = —r sin 

E0 = Ez = 
B, = B. = 

A 
r Bo=-- cos  2 zo 

The resonant wavelength of this resonator is 
),0 = 4 zo 

The Q is given by 
1  

Q — 2 zo 1 -I- b/ta  
4 + 

b loge b/a 
The optimum diametric ratio for lowest losses is b/a = 3.6, this leads to a 
formula for Q of 

Q xo  1  
— 
- 4 -I- 7.2 

The shunt impedance of this resonator is 
60 A, b loge2 b/a 1  

R = 
7. zo 1 ± b/a1 + 2 b loge b/a  

zo 1 ± b/a 
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\\ hen b «),, the maximum R is found when 
b/a = 9.2. For this value, the above formula 
reduces to 

R 30 )0  1 
zo 

1.41 -I- 3.24 -b 

and for b/X„/«/1, this reduces to 

R c• 9.25 X° P 
zo 

It will be observed that optimum Q occurs at 
b/a =3.6, and optimum R at b/a= 9.2. But at b,/a= 
3.6, R has fallen only to 74% of its maximum value, and at b/a = 9.2, Q has 
fallen only to 78% of its maximum. So the values are not critical with 

diametric ratio. 

The most important results of this section are collected and compared 

in Table X-I. 

7. Quarter Wave Concentric Line Resonators. One widely used type of 
resonator is the quarter-wave concentric line cavity illustrated in Fig. X-15. 

FIG. X - 14 

If the length of the cavity z1 is much greater than the 
radii, resonance will occur when -= 44. If the dimen-
sion 8 is sufficiently small to introduce an appreciable 
capacity at the end of the line, the length for resonance 
must be correspondingly modified. An approximate for-
mula that considers the resonator as a length of concentric 
line terminated by a lumped capacity is FIG. X - 15 

).0 = 2^. ( - 2z0 pi2 loge ;2 y 
pi 

Even this approximation falls far short of the truth when the length of the 
resonator, zo, becomes small. A better approximation has been worked out 
for this case, with the results given in Figs. X-16. These charts make it 
possible to determine within a few percent the resonant wavelength of a 

8 
cavity of given dimensions. On all of the charts, the ratio -- is plotted against 

pi 
zo 

the ratio -. There are several families of curves, each family for a given 
pi 

ratio -P2. Each curve in the family is for a given value of kph where k is 
pi 

related to the resonant wavelength ).„ by the formula 

27. 
k= 

Ao 
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1 + y a zo 
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zo 
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a _L a 
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Two families of curves are plotted on each chart, to aid in interpolation. 

If the four dimensions of the cavity are known, can be determined, or 
if three dimensions and X. are known, the fourth dimension of the cavity is 
obtainable. • Shunt impedance and Q can be determined from Figs. X-17.4 
In these figures the resonant wavelength is assumed constant at 1„ = 3.2 
cm., and the figures are drawn to scale The resonator material is assumed 
to be copper. Conversion can be made to other wavelengths by scaling the 
dimensions up or down in proportion to the wavelength. The Q and shunt 
resistance will vary as the square root of the wavelength. 

The Q and R of each resonator are given below the resonator, the R 
values should be multiplied by 105 to give ohms, while the Q values should be 
multiplied by 10e. 

In each group of figures, the distance b is held constant, as specified. 
For each column the dimension zo is held constant, while for each row the 
dimension pi is specified. The table included in each group gives the value 
of p2 that will then be required for resonance at the specified wavelength. 

The values of R and Q given by these figures are not so accurate as the 
values of ?.o. The accuracy for R and Q will be within 10% for the resonators 
most nearly resembling a quarter-wave line, and for shorter resonators the 
errors may be up to 25% or more. But the values are exact in the extreme 
case of the flat cylinders. 

C. Cavity Resonators as Filters 

Cavity resonators are used in microwave systems as single tuned circuits, 
and as such find numerous applications as wavemeters, filters, etc. Many of 
the expressions that have been derived for tuned circuits at ordinary radio 
frequencies can be applied with equal accuracy to cavity resonators at 
microwave frequencies. The bandwidth of a cavity resonator between 
70.7% response points is given by 

Q = fo 

where 3.f if the bandwidth and fo the resonant frequency. When used as a 
filter, the loss in the cavity is given by 

Db loss = 10 log  
- Qr. 

where Q. is the unloaded Q of the cavity and QL the loaded Q. 

4See Westinghouse Research Report SR-127, Design Characteristics of Resonant 
Cavities. 
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CHAPTER XI 

MEASUREMENT TECHNIQUES 

This chapter is written to provide useful information for people working 
in research laboratories, and to point out some precautions which should 
be taken to obtain accurate data. The equipment discussed is generally 
that which is in most common use at Sperry, and for that reason and others, 
no attempt has been made to provide a truly comprehensive treatise on 
measurement techniques. 

A. Frequency Measurement 

For rough measurements of frequency, it is permissible to connect the 
wavemeter directly to the signal source. For accurate measurements, this 
should not be done when the signal source is an oscillator whose frequency 
depends somewhat upon the load impedance. This impedance may change 
when the wavemeter is replaced by other equipment, and most certainly 
will change as the wavemeter is tuned through resonance. The frequency 
of magnetron and Klystron oscillators is usually affected by the load im-
pedance; if an amplifier or buffer stage is used, the frequency is much 
more stable. 

Detuning effects of a changing load are reduced if there is attenuation 
between the oscillator and the load; the changes in impedance are reduced 
by the attenuation and are not so noticeable at the signal source. Another 
method is to extract a small fraction of the signal with a power divider and 
feed this to the wavemeter; tuning effects of the wavemeter are then not 
so strongly felt at the generator. For the frequency to remain unchanged, 
the power divider and wavemeter should be left connected, or replaced by 
another load of identical impedance. 

B. Attenuators 

Calibrated attenuators are used for measuring high powers with low 
power wattmeters, and for cutting down signals to low power levels. These 
attenuators can be either fixed or variable, and may be designed for either 
wave guides or coaxial lines. 

An attenuator, to be most useful, should in general have its impedance 
at both input and output matched to the impedance of the line or wave 
guide in which it is used. If the match is imperfect, reflections from the 
attenuator will affect its apparent attenuation, which will then depend in 
part on the associated circuit elements (see Chapter III). For this reason, 
when two or more poorly matched attenuators are used in cascade, the 
measured total attenuation is usually not equal to the sum of the measured 
values of the individual attenuators. 
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The match that a variable attenua tor presents to the line may depend 
upon the attenuation and it is sometimes desirable to check this match 
and see that it is constant over the range of attenuation used. 

Fixed attenuators are usually designed to have a given attenuation and 
to present a matched load at a certain wavelength. If used at a different 
wavelength, both the attenuation and the match may be changed. Fig. 
XI-1A shows a fixed wave guide attenuator designed for a wavelength 
= 3.20 cm. The wave guide is filled with linen bakelite, and there are 

end steps for matching. Power is absorbed because of the high power factor 
of the bakelite. Fig. XI-1B shows a similar construction used in coaxial 
line at a wavelength A = 10.0 cm. Attenuators may assume many forms— 
these examples have standing wave ratios better than yi = 1.1 : 1 at the 
designed wavelengths. 

When these and similar attenuators are used, care should be taken that 
they are not required to dissipate so much power as to affect their operation. 
Their characteristics may also be changed by varying the ambient tempera-
ture and humidity. 

FIG. XI - IA 
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C. Joints 

Two pieces of rigid coaxial line are usually connected with a butt joint 
on the outer pipe and a pin on the center conductor. A closely-fitting sleeve 
will hold the outer conductors in line—tolerances should be such that the 
pin will never buckle the center conductor. These joints are satisfactory if 
securely fastened, and several such joints in a line will not appreciably 
affect the standing wave ratio. 

Wave guides are joined by butt connectors or choke joints. If the butt 
joint is carefully aligned and the two guides tightly pulled together, the 
loss and reflections will be less than in a choke joint. But any misalignment 
or gap between the adjoining pieces may cause sizeable reflections. Losses 
in a choke coupling are slightly higher than in a good butt joint, but their 
use is generally preferred because they are more reliable and give consistent 
results. Choke joints may be separated much farther than butt joints for 
the same loss in power. Sidewise misalignment of chokes is more critical 
than separation, and for a given misalignment, the transmission may actually 
be improved by separating the chokes (see Chapter V—Section E). A standing 
wave ratio yj = 1.1 : 1 may be maintained if one choke is rotated with respect 
to the other, provided the angle of rotation is less than 5°. 

Two chokes are sometimes used at a coupling, or a choke and flange 
may be paired together. The use of two chokes is more costly, but is often 
preferable for laboratory use as equipment may be reversed in direction. 
A disadvantage that arises when two chokes are used is that there may be 
resonance effects in the slot, resulting in appreciable power losses and a 
worse standing wave ratio than is found with a choke-flange joint. 

D. Power Measurement 

Basically, most microwave power measurements now involve a con-
version of R.F. energy to some other form of energy whose effects can be 
more readily measured. When R.F. power is absorbed by a resistive ele-
ment it is converted to heat, and any of several convenient devices may be 
used to indicate the temperature rise of the element. The microwave power 
measurement method in most general use today employs a hot wire or 
thermistor as the absorbing element and a D.C. operated Wheatstone 
bridge as an indicator. In the paragraphs which follow, specific precautions 
are presented which, if heeded, will insure maximum accuracy when using 
equipment now available. 

One of the first considerations in making accurate power measurement 
involves the establishment of conditions for maximum power transfer 
between the generator and the absorbing element. This means that the 
impedance presented to the generator must be that into which the generator 
will deliver its maximum power output. For some generators, including 
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those in which a matched attenuator follows the power source, this optimum 
load will be the transmission line impedance. But this is not necessarily 
true for other power generators, including Klystron oscillators. 

Matched transmission lines maintain a fixed impedance which is de-
termined by their physical design. When it is desired to have a power 
source such as a *Klystron deliver its maximum output to the transmission 
line impedance, it may be necessary to place between the matched line and 
the power source an impedance transformer which will enable the generator 
to work into its optimum load impedance. 

If the transformer is tuned so that the generator delivers maximum 
power to the transmission line impedance, the section of line which contains 
the power-absorbing element must provide a matched termination for the 
line. If the standing wave ratio of the wattmeter is not unity, part of the 
input power will be reflected. 

The transformer between generator and wattmeter can be adjusted 
for maximum power output from the generator even if the wattmeter is 
not matched to the transmission line, and this is sometimes done when the 
transformer is an integral part of the wattmeter. But the presence of stand-
ing waves in the transmission line will then result in increased losses in the 
line. These can become appreciable if the wattmeter is badly mismatched. 

A further precaution involves insertion of "lossy" lines or material 
into any part of the line between the generator and absorbing element. 
Only that power which arrives at the hot wire is indicated by the bridge. 
Steel screws, paper, wood, water, or carbon in any form in the line may 
absorb an appreciable fraction of power which can then never be measured. 

In measuring powers in the lowest range (.5 microwatt to 5 milliwatts) 
it should be realized that the temperature rise of the absorbing element is 
very slight. After applying D.C. power to the bridge, five to ten minutes 
should be allowed for the hot wire (more for a thermistor) temperature to 
stabilize before R.F. power measurements are attempted. At the end of 
this time it will be necessary to readjust the bridge current slightly to return 
the bridge to balance. 

Microwattmeters should have casings built of bakelite or other heat-
insulating material to protect temperature sensitive components from the 
heat of the operator's hands. In making any adjustment of these wattmeters 
care should be taken to see that only such insulated portions are handled. 
Drafts from fans or other causes over the power measuring unit are also 
to be avoided, as they are likely to cause erratic drifting of the null indicator. 

In using attenuators, it is often necessary at present to make certain 

*Reg. Trade-Mark of Sperry Gyroscope Co. 
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that their calibration is correct and that varying temperatures do not alter 
this calibration (Section B of this Chapter). 

Power dividers have a "built in" dividing ratio which depends on their 
design and use under fixed conditions. When the impedances of dissipating 
antennas and wattmeters differ from each other or from the divider itself, 
erratic dividing ratios will be obtained. It is necessary in every case, there-
fore, to make certain that standing wave ratios of the antenna and watt-
meter used with a power divider are unity. 

E. Measuring Standing Wave Ratios 

1. General Information. The standing wave ratio p as used throughout 
this handbook is in power, defined by 

( \ 2 

Emin 
where Emo. and Emin are the R.F. fields at the loops and nodes respec-
tively in the line being measured. 

Various types of indicating equipment may be used for measuring stand-
ing wave ratios. One of the best types uses as a signal source a Klystron 
which is 100% modulated by a square wave inserted in series with the beam 
or reflector supply. This square wave is easily generated by a multivibrator 
and clipper circuit. A square wave is used rather than a sine wave to prevent 
frequency modulation of the Klystron. The probe crystal output is fed 
into a tuned audio amplifier with a vacuum tube voltmeter to read the 
output. This amplifier can be made very sensitive, and it does not respond 
to stray signals induced in the crystal lead by outside sources unless they 
are modulated at the frequency to which the amplifier is tuned. 

Another type of standing wave detector uses a calibrated variable 
attenuator between the pick-up probe and the crystal detector, or between 
the generator and the probe. This can be used to measure very high stand-
ing wave ratios with considerable accuracy, as the signal delivered to the 
crystal is held constant by varying the attenuator while the probe is moved 
along. The standing waye ratio may then be determined by the difference 
between maximum and minimum settings on the attenuator. Because of the 
loss of power in the variable attenuator, a super-heterodyne receiver may 
be required to detect the signal at the crystal. 

The particular equipment discussed below uses a continuous wave 
signal. The probe crystal feeds into a Rubicon galvanometer with a sensi-
tivity of .004 microamps per millimeter deflection. If other equipment is 
used the procedure will be similar to that described, with variations to suit 
the individual. 

To measure standing wave ratios, it is convenient to have an attenuator 
between the crystal and the galvanometer. This may be calibrated either 
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in power ratios or in db. It should be remembered that the galvanometer 
reads D.C. output of the crystal, which is proportional to the square of 
the R.F. voltage input to the crystal. The crystal should be checked to 
see that its square law characteristic holds over the range of powers that 
is used. 

In general, standing wave ratios may be measued in the following three 
ways. 

a. For low standing wave ratios (up to 5 : 1 in power) the maximum and 
minimum may be read directly on the galvanometer with the attenuator 
setting at a constant value. The zero setting of the galvanometer should 
be checked periodically for drift if the readings are taken for more than a 
quarter of an hour. The attenuator should be set so that the maximum is 
read as near full scale as possible. This is done so that any error due to 
mis-setting the zero will be minimized, e.g., in measuring a standing wave 
ratio of 5 : 1, when the zero setting is off 1 division out of 100; there is an 
error of 4% when the maximum is measured at 100, and of 9% when it is 
measured at 50. This method is not recommended for accurate measure-
ments when p is greater than 5 : 1 as any shift in the zero setting or any 
mis-reading of the minimum causes an error which is increasingly large 
with lower minimums. 

b. For standing wave ratios between 5 : 1 and 100 : 1, the attenuator 
between the crystal and the galvanometer may be used to advantage. 
This attenuator should preferably be set so that readings over half scale 
are obtained for both maximum and minimum values. 

If the attenuator is calibrated in power ratio 

= IIDCmax Pmax 
71   

DCmin -r min 
where p is the standing wave ratio in power. IIDCmax and rpcmin are the 
galvanometer readings at E„,„ix and Em,„ respectively, and P„,„x and Punt: 
are the corresponding readings on the attenuator. 
If the attenuator is calibrated in db 

lipCma dbmon — dbmin 
= T, antilog 

Dcmin  20 

As before, /IDCmax and 1113Cmin are the galvanometer readings at E„,„x and 
Emin respectively, and dbmax and dbmin the corresponding readings on the 
attenuator. 

In both instances, it is not necessary that rpcmax be greater than IIDCmin• 

Standing wave ratios greater than 100 : 1 may be measured by this 
method if the crystal being used is square law over that range. 

c. For standing wave ratios over 100 the double minimum method is 
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satisfactory. To apply this method one needs to be able to measure the 
movement of the probe as well as the intensity of the field. The value of 
Fpcmin is determined where rpcmin is the galvanometer reading at a node 
(PDcminatEmin2). Next 2rDcmin is located on either side of the node and the 
distance between these latter two points is measured. This is shown in 
Fig. XI-2 as 2X1. 
The standing wave ratio is now given by 

-- 21' 
ûCnirn 

.11 2Xlgoir )2 
where Ai is the wavelength in the line OCerIn 

(either coaxial or wave guide). 
If enough power is available, it is well 

to set the attenuator so that the mini-
mum is read just below the mid-point of 
the scale. Twice the minimum will then 
occur near the top of the scale, thus giving the most accurate measurements. 

2. Node Location. Locating a node by hunting for the minimum is 
often inaccurate as the minimum is usually broad and the position is hard 
to determine exactly. A more accurate method is to locate the position of 
the probe at two points of equal galvanometer reading on either side of the 
minimum. The average of the two probe positions should be the position 
of the node. If the power has changed between taking these two values 
the result obtained will be to one side of the true position. It is well to 
take several sets of readings at various heights on the galvanometer and 
see that the values obtained by averaging them agree. 

3. Drift. Drift in a galvanometer reading is usually caused by change 
in power input to the standing wave detector or by pick-up of stray signals. 
The first of these may be corrected by proper tuning of the oscillator, or 
if due to voltage changes by stabilizing the power supply. Stray signals 
cause trouble because they are picked up by the indicator (galvanometer 
or other), fed through the crystal cable, rectified and returned as D. C. 
This difficulty may be overcome by installing a line between the crystal 
and the indicator which passes D. C. but attenuates or filters out the 
bothersome signal. It is also a good plan to shield the indicator and its 
cables. 

2X0 

FIG. XI - 2 
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